5)
-
ge;
c
a —— o p—
oo WO W N
™ =
Lo
QO OO
T T T T
—_ © 0 00O
.S w2222
p - T Nt gt Npguet®
L0 ® O = = (N = ©
EE=S ENVV VY 3
TR TR I .w
)4 2 0 2 NY I W W
> c o OO0 =
< $ ERRRNN =
N s CWLWLWLW 2% &
- [Te]
=2% ¢ cE
} N o
-0 a ST &
00000008 00000000000 0000000 0000000 0000000 00000 0000 2000000 0000000000000000 0000000000000 000OROGS 000000 000000900000
00000000 000000000000 0000000 0000000 90000606000 0008 00000 .“”““"“““. ““”“““““““““““““ ““““......... 2000000 .“"""“““ \ ”"“"“"...“““
00000000 Sosococccssses socscece cesesese 00000000s00s soctss _sesoss sosssscsssse sescccsssccssses soee sesssses | sesscossssss
444 sees sssee *ecse seee’ soee o3 o2 secsse | Sees eees’
0000 o000 °0000 0000000000 o000 [ L] ® (YY)
9000 0000 00000 20000000 o000 00000000 [ 00000
o000 o000 o000 oo0000 [$.4.3.4 6000000 ® (XTI
o000 0000 o000 000 0000 20000000 o o0 s0 0000
coss ceee cee 4+ ceee o - gt
0000 0000 [ 344 2000 [ L3114 [ 1 4 (X 1] eeose 00060
oonnnnoo oon”nn onnnnn [ n oouuuuoo oouuuuoo oouu nnuoo i nuuuu ““nuu
00000000 0000000000009 000000 ® 000000080 000000800 0000500500008 000006 900000 { 0000000000000
00000000 000000000000 000000 ® 00000000 0000000 0000000000000 000000 000000 00000000000
00000000 00000000000 000000 L] 00000 4444444 00 0000S b4-4-4-444 0000000 000000000000 000000 00000 \ .“““““““.



Preface

This publication is a reference manual for the programmer
using the IBM System/3 Basic Assembler language. This
fanguage provides facilities for representing machine
usable instructions symbolically on a one-for-one basis.
The symbolic representations are translatéd by the IBM

Related Publications

The IBM System/3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21-9236, contains specifications
governing the use of assembler Janguage instructions.

System/3 Basic Assembler into the machine usable form
necessary for running a program on the System/3.

System/3 Model 8

The System/3 Model 8 is supported by System/3 Model 10
Disk System control programming and program products.
The facilities described in this publication for the Model 10
are also applicable to the Model 8, although the Model 8 is
not referenced. It should be noted that not all devices

and features which are available on the Model 10 are avail-
able on the Model 8. Therefore, Model 8 users should be
familiar with the contents of /BM System/3 Model 8
Introduction, GC21-5114.

Eighth Edition (April 1975}
This is a minor revision of SC21-7509-5 incorporating Technical Newsletters:

SN21-5385 March 17,1976
SN21-5434 December 31, 1976
SN21-5536 JYune 24,1977

This revision makes some changes to various pages and introduces information concerning
the IBM System/3 Model 8. Changes to text and small changes to illustrations are
indicated by a vertical line at the left of the change; new or extensively revised
fllustrations are denoted by the symbol ®at the left of the figure caption.

This edition applies to version 12, modification 00 of 1BM System/3 Model 10 Disk System
Basic Assembler (Program Product Number 5702-AS1); version 03, modification 00 of
IBM System/3 Model 15 Basic Assembler (Program Product Number 5704-AS1); and to all
subsequent versions and modifications unless otherwise indicated in new editions or
technical newsletters. Changes are continually made to the specifications herein; before
using this publication in connection with the operation of IBM Systems, consult the

latest IBM System/3 Bibliography. GC20-8080, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative or to
the branch office serving your locality.

A Reader’s Comment Form is at the back of this publication. If the form is gone, address

your comments to IBM Corporation. Publications, Department 245, Rochester,
Minnesota 55901.

©Copyright International Business Machines Corporation 1970, 1971, 1972, 1973, 1975



INTRODUCTION
Minimum System Requrrements

Main Storage Requirements

PART I. BASIC ASSEMBLER LANGUAGE
Basic Statement Format
Terms and Expressions .
Terms . .
The Symbol . .
The Self-Defining Term
Location Counter Reference
Expressions
Assembler Coding Convennons
The Statement Format .
Comment Statements
Addressing
Direct Addressmg
Base-Register Drsplacement Addressmg
Relative Addressing .
Instruction Addressing .
Data Addressing .
Control of Location Counter
Machine Instruction Statements
Name Entry Attributes .
Machine Instruction Mnemonic Codes
Extended Mnemonic Codes
Machine Instruction Operands .
Assembler Instruction Statements
Symbol Definition Instruction
Data Defining Instructions .
Listing Control Instructions
Program Control Instructions .

PART II. PROGRAMMER'’S GUIDE
Assembler Control Statements
Headers Statement .
Options Statement
OCL Statements For Assembler
OCL For Loading the Assembler .
OCL For Calling the Assembler
Sample Assembler Procedure Stored in Procedure
Library . R
Object Program Descnptron
Record Formats .
Object Program After Punch Conversron
Assembly Time Data File Requirements .
Source File
Object File
Work File
Operating Procedures

Placing Assembler Subroutmes in R (Rounne) lera.ry
Using Assembler Object Program With the Program

Loader

Assembler Listing
Control Statements .
External Symbol List (ESL)

[ &)

—
S @WW~IAN L WwWwwW

[ R T o T e T e T e S e R S Sy G Sy
NO 0002 E b b wwww NN

27
27
27
27
29
29
31

32
32
32
33
34
34
34

36
36

37

38
38
39

Source and Object Listing .
Cross-Reference List
External Symbol List (ESL) Table Slze

APPENDIX A: MACHINE INSTRUCTIONS
Machine Language Instruction Formats

Operation Code .

Q Code

Control Code

Storage Addresses
Mnemonic Operation Codes (Machme)
Extended Mnemonic Codes

APPENDIX B: ASSEMBLER INSTRUCTION
REFERENCE TABLE .

APPENDIX C: SYSTEM/3 ASSEMBLER — SOURCE
LANGUAGE ERROR CODES AND DIAGNOSTICS .

TO RPG II LINKAGE

Using Fields in the RPG II Progrdm

Referencing a Field in an RPG II Program .

Referencing a Table or Array in an RPG 11 Program

Referencing an Indicator in an RPG II Program .
RPG Il Linkage Sample Program 1

RPG II Linkage Sample Program 2
1/0 Subroutines .

Linkage for I/O Subroutmes .

Library Deck Generator Program (Model 10 Only)
Writing the Assembler Language Program
Assembling the Subroutine .
Running the LDG Program
Qutput of the LDG Program
Example . .

Contents

39
40
42

43
43
43
43
43
43
47
48

67

69

APPENDIX D: ASSEMBLER LANGUAGE SUBROUTINE

71
7
71
7

72
72
72
72
76
76
79
79
82
82

APPENDIX E: ASSEMBLER LANGUAGE SUBROUTINE

TO COBOL OR FORTRAN LINKAGE
Standards

APPENDIX F: BASIC ASSEMBLER SAMPLE
PROGRAM .
Model 10 and Modef 12 Sample Programs
Program Description
Mode! 15 Sample Program .
Program Description

APPENDIX G: IBM 1255 MAGNETIC CHARACTER
READER SUPPORT (Models 12 and 15 Only)

INDEX

86
88

89
89
89
93
93

99

. 105



The IBM System/3 Basic Assembler language is a
symbolic language. That is, it must be translated into a
form usable by the computer before a program can be
run. The computer-usable form is called machine
language, and the IBM System/3 Basic Assembler language
provides a convenient method for representing, on a
one-for-one basis, machine language instructions and
related data necessary to write a program for IBM
System/3. This one-for-one relationship to machine
language instructions gives assembler language great
programming versatility.

The assembler language is composed of symbols, called
mnemonics, which are used to represent the operation
codes of two types of instruction statements:

1.  Machine instruction statements are the symbols
that represent machine language instructions on a
one-for-one basis. Note that symbolically repre-
sented machine instructions are translated into
machine language by the assembler.

2. Assembler instruction statements are instructions
which control the functions of the assembler. Each
assembler instruction statement causes the assembler
to perform a specific operation during the assembly
process.

The IBM System/3 Basic Assembler:
e Processes instructions written in assembler language.

e Translates the assembler language instructions into
machine language.

e Assigns storage locations.

e Performs other functions necessary to produce an
executable machine language program.

In order to call the assembler from its storage

location, a specific set of OCL (operation control
language) instructions must be used. Following these
OCL instructions, the user may elect to include an
OPTIONS instruction, a facility which allows him to
take advantage of various combinations of output listings
and punched decks.

Introduction

There are certain procedures for storing assembler routines
on the Model 10 Disk System, Model 12, and Mode] 15 R
(relocatable) Libraryand for loading assembler object pro-
grams into main storage. These procedures, as well as the
other items mentioned briefly above, are discussed more
fully in the text.

MINIMUM SYSTEM REQUIREMENTS

The minimum system configuration and optional device
support for the Basic Assembler program is shown in the
IBM System/3 Models 6, 8, 10, and 12 System Generation
Reference Manual, GC21-5126 and in the JBM System/3
Model 15 System Generation Reference Manual,
GC21-7616.

Introduction 1



MAIN STORAGE REQUIREMENTS

The Model 10 Disk System Basic Assembler (5702-AS1)
requires 8,192 bytes of main storage for execution,
exclusive of control program requirements.

The Model 12 Basic Assembler (5705-AS1) and the
Model 15 Basic Assembler (5704-AS1 or 5704-AS2)
require 10,240 bytes of main storage for execution,
exclusive of control prograim requirements.

T

e



The IBM System/3 Basic Assembler language is a symbolic
language that provides a convenient method for
representing, on a one-for-one basis, machine language
instructions. The symbolic representations in assembler
language coding are transiated by the IBM System/3
Basic Assembler into the machine language form usable
by the computer. In order to code in assembler
language, the user must become familiar with certain
terms, coding conventions, instructions, and other
features of the language. The remainder of this chapter
deals with these items.

BASIC STATEMENT FORMAT

A statement coded in assernbler language can contain up
to four entries from left to right: Name, Operation,
Operand, and Remark. See Assembler Coding Conventions
in this manual for an explanation of the contents and
functions of each entry.

Part 1. Basic Assembler Language

TERMS AND EXPRESSIONS

A term is a single symbol, self-defining value, or location
counter reference which can be used only in the operand
field of an assembler language instruction. The three

types of terms are described under Terms in this section.

An expression consists of one or more terms. It is used
to specify the operand fields of assembler language
instructions. Terms and expressions are classed as either
absolute or relocatable. A term or expression is absolute
if its value is not changed when the assembled program in
which it is used is relocated in main storage. A term or
expression is relocatable if its value is changed when the
program in which it is used is relocated.

Basic Assembler Language

3



Program relocation is the loading of an assembled
program (object program) into a different area of main
storage from that which was originally assigned by the
assembler. The difference (in bytes) between the
originally assigned address of the object program and the
address of the relocated object program is the amount of
relocation. The addresses assigned to all instructions and
data in the retocated program are changed by the amount

Storage

Address Main Storage

0

2000

First Loading

Figure 1. Program Relocation

Address

of relocation. In Figure 1, Object Program A is initially
loaded at address 2000 in main storage. When Object
Program A is loaded a second time, it is placed at address
3000 in main storage. The amount of relocation is 1000
bytes. Therefore, the values of all relocatable terms and
expressions used in Object Program A would be increased
by 1000 during the second loading.

Storage
Main Storage

Second Loading

* The amount of program relocation is 1000 bytes,



TERMS

Three types of terms are used in the IBM System/3
Basic Assembler language.

e Symbol
e Self-defining term

e Location counter reference

The Symbol

A symbol is a character or combination of characters
used to represent storage locations, instructions, input/
output units, registers, or arbitrary values. A symbol can
be used in either the name field or the operand field of

a statement. When used in the name field, the symbol is
called a name field entry. When used in the operand
field, the symbol is called a symbolic term.

When the assembler finds a symbol in the name field of
a statement, it assigns to that symbol an address value
attribute. See Addressing in this section. The assembler
also assigns a length attribute to the symbol, which is
the number of bytes in the storage field named by the
symbol. There are exceptions. When the assembler en-
counters EQU, START, or TITLE statements, it does
not assign the usual attributes. EQU name field entries
derive their values from the operand, START name field
entries are assigned a length of 1, and TITLE name field
entries are assigned no values at all.

The same symbol cannot be used as a name entry more
than once within a program with the exception of the
TITLE card. In order for a symbol to be used in the
operand field, it must be defined (that is, used as a name)
on an instruction other than a TITLE card somewhere in
the program. Once it is defined, the symbol may appear
in any number of operands. Whether the symbol is used
as a name or an operand, these rules must be followed:

1. The symbol can consist of no more than six
characters, the first of which must be either
alphabetic or $, #, @. The other characters can be
any combination of alphabetic, numeric, or $, #,@.

2. Blanks and special characters other than $, #, @
cannot be used in a symbol.

The Seif-Defining Term

The self-defining term is a term which specifies an actual
value or bit configuration.

The value expressed by the self-defining term is taken
literally by the assembler and is assembled into the instruc-
tion. Like all terms, the self-defining term is used only

in the operand field.

There are four types of self-defining terms:
o Decimal

e Hexadecimal

e Binary

e Character

Decimal Self-Defining Terms

A decimal self-defining term is an unsigned decimal
number written as a sequence of decimal digits. High

order zeros may be used, such as in 0003. If a decimal
term is used as an address, its value cannot exceed the
number of bytes in main storage. A decimal term consists
of no more than five digits and cannot exceed a value of
65,535. This value is equivalent to the binary value

that can be contained in two bytes. A decimal self-defining
term is assembled as its binary equivalent.

Examples: 16 132 00006 43678

In the following example, a decimal self-defining term is
used in a Move Immediate (MVT) instruction. The binary
equivalent of 25 would be placed in the 1-byte area
referenced by the symbol, COST

NAME OPERATION OPERAND

ALPHA MVt COST, 25

B

]
|
-
|
|

Basic Assembler Language 5



Hexadecimal Self-Defining Terms

Hexadecimal self-defining terms can consist of up to
four hexadecimal digits enclosed in apostrophes and
preceded by the letter X.

Examples: X‘C34A° X'04F X‘6' X'DE’

Each digit is assembled into its 4-bit binary equivalent.
Therefore, the maximum value would be X‘FFFF’
(65,535).

The following is an example of the use of a hexadecimal
self-defining term. The 1-byte area at SWITCH would
contain the hexadecimal value FO (binary, 11110000}
after execution of the instruction,

NAME OPERATION OPERAND

BETA MV

SWITCH, X'F0O’

Binary Self-Defining Terms

Binary self-defining terms are written as a sequence of
1I’s and O’s enclosed in apostrophes and preceded by the
letter B; such as B‘1011°. This term would appear in
storage as 00001011. The high-order (leftmost) bits

are padded with O-bits to make a multiple of eight bits of
data (one or two bytes). A maximum of 16 bits of data
can be represented in each term. In the following
example of a Move Immediate instruction, the binary

information will be moved into the 1-byte field at AREA.

NAME OPERATION OPERAND

GAMMA MVI AREA, B‘10110011°

1
1
|
T
|
]

Character Self-Defining Terms

Character self-defining terms consist of one or two
characters enclosed by apostrophes and preceded by the
letter C; such as C°A3’. Any of the valid punch
combinations can be used in a character seif-defining
term.

Examples: C'A9° CEA’ CLB C3

Because certain terms in the assembler language must be
enclosed by apostrophes (such as C°EA”), for every
apostrophe that is used as a character in a self-defining
term, two must be written. For example, the characters
A’ would be written as C'A™.

In the following example, a dollar sign (§) would be
moved into the byte field at REPORT.

H
NAME OPERATION | OPERAND

DELTA

I
MV i REPORT, C'$’
|

Location Counter Reference

Location Counter: The location counter is an internal
counter, maintained by the assembler, which always
points to the next available storage location. As each
new statement is processed, the location counter is
increased by the number of bytes in the assembled
statement. The assembler uses the current address

in the location counter to assign consecutive storage
addresses to program statements.

Location Counter Reference: A location counter
reference is an asterisk (*) used as a term in the operand
of an instruction. When the assembler encounters

an asterisk, it substitutes the current value of the
location counter (which always points to the next
available storage location) for the asterisk.



EXPRESSIONS

An expression consists of an arithmetic combination of
one or more terms. In a multi-term expression, terms
must be separated by an arithmetic operator: the
arithmetic operators are + for addition, — for subtraction,
and * for multiplication.
AREA+X2D’

Examples: N-25 R+I5 A*8

The rules for coding an expression are:

1.  Two terms or two operators must not be used
consecutively in an expression.

2. Parentheses cannot be used in an expression.

3. Only absolute terms can be used in a multiply
operation.

4.  Blanks are not allowed in an expression.

. Using the Model 10 disk system basic assembler,
an expression may consist of only one term when
that term is a symbol used as the operand of an
EXTRN statement.

b. Using the Mode! 15 basic assembler, if the expres-
sion contains an external symbol, then the
expression must be of the form A or Ate. Aisa
symbol used as the operand of an EXTRN state-
ment and e is an absolute expression.

Note: An Ate expression must not be in a Model
10 subroutine with RPG I1.

If there is more than one term in the expression, the
terms are reduced to a single value as follows:

1.  Each termis evaluated separately.

2. Arithmetic operations are then performed in a
left-to-right sequence, except that multiplication
is performed before addition or subtraction. An
example would be A+B*C, which would be
evaluated as A+(B*C), not (A+B)*C. The result
would be the value of the expression.

3.  The intermediate result of the expression
evaluation is a 3-byte, or 24-bit value. Intermediate
results must be in the range of —2 4 through
2241,

Negative values are carried in the two’s-complement
form. The final value of the expression is the truncated,
rightmost 16 bits of the result. The value of the
expression before truncation must be in the range of
-65536 through +65535. A negative result is considered
to be a 2-byte positive value.

Note: In address constants the full 24-bit final expression
result is truncated on the left to fit the length of the con-
stant.

Absolute Expressions: An expression is considered
absolute if its value is unaffected by program relocation.

An absolute term may be a non-relocatable symbol, or
any of the self-defining terms. All arithmetic operations
are permitted between absolute terms.

An absolute expression can contain relocatable terms or
a combination of relocatable and absolute terms under
the following conditions:

1. The expression must contain an even number of
relocatable terms.

2. The relocatable terms must be paired and each
pair must consist of terms with opposite signs.
The paired terms need not be adjacent.

3. Relocatable terms cannot be used in a multipli-
cation operation.

Pairing relocatable terms with opposite signs cancels

the effect of the relocation, because both terms would be
relocated by the same value. Therefore, the value
represented by the paired terms would, in effect, remain
constant regardless of the program relocation. For
example, in the absolute expression A—~Y+X, A is an
absolute term and X and Y are relocatable terms. If A
equals 50, Y equals 25, and X equals 10, the value of
the expression would be 35. If X and Y are relocated by
a factor of 100, their values would become 110 and 125,
respectively. However, the expression would still
evaluate as 35 (50—125+110=35). Absolute expressions
reduce to a single absolute value.

Relocatable Expressions: A relocatable expression is
one whose value changes by the amount of relocation
when the program in which it is used is relocated. All
relocatable expressions must reduce to a positive
value.

Basic Assembler Language

7



A relocatable expression can be a combination of
relocatable and absolute terms under the following
conditions:

1. There must be an odd number of relocatable
terms.
2. All relocatable terms, except one, must be paired

and each pair must consist of terms with opposite
signs. The paired terms need not be adjacent.

3. The unpaired term must not be immediately
preceded by a minus sign.

4.  Relocatable terms cannot enter into a multiplication
operation.

All terms in a relocatable expression are reduced to a
single value. This single value is the value of the unpaired
relocatable term after it has been adjusted (displaced) by
the resultant value of the other terms in that expression.
For example, in the expression W—X+Y where W, X,

and Y are relocatable terms; and W=10, X=3, Y=1;

the result would be the relocatable value of 8.

If the program is relocated by 100 bytes, the resultant
value of the expression would be increased by the amount
of relocation (100), giving the expression a value of 108.

In the following expression, a combination of absolute
and relocatable terms are used: A+F*G—D+B. A, D,
and B are relocatable terms; F and G are absolute
terms. When given the values A=3, B=2, D=5, F=], and
G=4, the result would be a relocatable value of 4. The
multiplication occurred first, resulting in 4; then the
addition and subtraction of the other terms, including
the result of the multiplication, was performed in a
left-to-right direction. The result of the arithmetic
operations is a relocatable value of 4 for this expression.

Upon relocation, the value of this expression can be
determined by adding the amount of relocation to all
relocatable terms.

ASSEMBLER CODING CONVENTIONS

This section explains the general coding conventions
associated with the IBM System/3 Basic Assembler
language. When coding in assembler Janguage, the
programmer uses the IBM System/3 Assembler Coding
Form (Figure 2).

The Statement Format

Each line on the coding form is divided into two segments:
Statement (columns 1-87), and Sequence (columns 89-96).

The Statement segment can contain up to four entries,
from left to right: Name, Operation, Operand and
Remark. The Name field is column dependent. It
must start in column 1, unless otherwise specified by
the ICTL assembler instruction (see Assembler
Instruction Statements). All other entries can start

in any column, as long as there is at least one blank
separating each entry and the entries remain in the
stated order. Figure 3 is a diagram of assembler
statement entries.



w20 § FUIPO)) 19|qUIASSY diseq ¢/WASAS WH "7 2ndiy

6 a%enSue] wIquassy diseg

. - T
i 1
1BM System/3 Basic Assembler Coding Form Form %21.9107
IBM Priotoa o 'S A,
'
PROGAAR PUNCHING GRAPHIC PAGE or
PROGRAMMER EME INSTRUCTIONS | pynch CAHD ELECTHO HUMRER

STATEMENT

1 7N§mﬁ 5 61 H(‘r‘-ml':)“?;\ 121314 35 6 37 1R 19 W 21 nogac’nyra‘d?s 2627 28 28 30 31 32 33 3435 35 37 38 3040 41 42 40 14 45 46 47 48 49 50 51 52 53 b4 55 56 57 58 ?:icggré:w 6% 64 65 80 67 66 S0 70 /1 72 13 7a 7576 77 78 79 80 81 82 83 ua 8 By, B7 48| 8O 90 H1 92 93 94 95 9§
T T T 17717 T " I ] 2l T 1
i 4
b 3 T T 1
- il ; i NERENNNNNEARENNE iy
| f ' I
b lL_ 4 1 r __'_[ i ! “f" 1t i L
BERENEEE BN SRRRREE SRERREEI T ARRRNEANNRNRRNRRNNN
1 t -+ - b e e
N : L 1 M - JJH L4t
| T
B 1 il Lty L] |
T 1 i 11 T AREE
- — ; T BEREES! ] ]
‘{ | T | T 'T"‘J""T T | | T
™1 I - + 41— 1 L T 1 |
| i | & &
1 e =
i O L ] 1]
| | | RAEREREE |
T T T T T T T
- AH*“ + B :
+H L Ll Ly
!
- [ S 1 4
EERREERE : 1] I i ]
I #T
T
1
L | 4 L
F Bl ] | -
- ! f
T —t—
J’__‘_‘_l’_ :~ - “'
{ L4 )
SEERERAREE : HH . i
1 i

V 2 54 5 G]7]8 5 10711120314 516 37 18 19 20 71 27 23 24 % 36 27 78 29 0 31 37 33 34 3> 36 37 30 T A0 41 47 43 42 45 45 47 48 4950 1 5755 54 55 56 57 58 59 6061 62 63 64 6566 67 64 63 70 71 72 73 74 7576 77 78 79 8061 B7 63 54 85 55 8715689 90 91 92 93 04 95 96




Name Entry

e Optional or required depending on the specific

instruction.

e Up to six characters can be used in a name.

e First character must be alphabetic (including $, #, @).

e First character must be in column 1 unless otherwise

specified by an ICTL assembler instruction.

e No special characters or blanks in a name (except

5, #, @).

e At least one blank must follow the Name entry or

appear in the first Name entry column (if no name is
entered).

Operation Entry

Required entry.

Contains mnemonic operation code (list of valid machine
codes is in Appendix A. Machine Instructions).

Must be followed by a blank.

Operand Entry

Optional or required depending on the specific
instruction.

Contains coding that describes data to be acted upon.
Operands are separated by a comma.
No blanks between terms or operands.

Blanks are allowed within character constants and
character self-defining terms only.

If the entire operand entry is omitted, but a remark
entry is desired, absence of the operand must be
indicated by a comma in the operand entry, preceded
and followed by one or more blanks.

Must be followed by a blank.

10

Remark Entry
e Optional entry.

e Contains a brief verbal description of the statement’s
function.

e Cannot extend beyond column 87 or a limit prescribed
by ICTL assembler instruction.

e Can contain any combination of valid characters or
blanks.

e Must be followed by a blank.

{dentification—Sequence Entry
e Optional entry.

e Contains statement identification or sequence
characters.

o See ISEQ — Input Sequence Checking later in this section.

Comment Statements

The entire statement field (columns 1-87) can be used
for comments by placing an asterisk in column 1 (or the
beginning column, as set by the ICTL assembler
instruction). Comments can be extended for more than
one line by the repeated use of the asterisk in the first
column of additional cards. Comment lines may be used
anywhere in the source program and are printed on the
program listing. Sequence checking is also performed
on cards containing comment statements.



[©)

NAME ¥ OPERATION % OPERAND + REMARK ¥ SEQUENCE

1 87 89 96

Name Entry Operation Entry

This entry consists of the
mnemonic code for the
desired operation. The
operation can be either

L
I _ 1L

Assembler instruction

This entry may contain
up to 6 characters,

If not left blank, column
one must contain an
alphabetic character.

Machine instruction or

Cperand Entry

®

One or more operands
that consist of either:

il
[ | L 1

EXP (EXPW or | EXP(EXPEXP) | or |EXP {,EXP)

l 1

EXP or

A single term consisting of: or An arithmetic combination
of terms,
A symboi or A self-defining term or A location counter
{AT or RT} (AT) reference (*) (RT)
T EXP = expression
AT = absolute term

L 1 L L AT =refocatabie term
Decimal Hexadecimal o Binary or Character
e.g 156 or a.g. X'C4’ r e.g. B'101 e.g. C' AB’

Remark Entry

This entry contains any
statement meaningfutl
to the programmer.

This entry is optional.

Figure 3. Assembler Statement Entries

Sequence Entry

This field may contain
any valid characters.

This entry is optional.

Basic Assembler Language

11



ADDRESSING

The programmer must be able to access any part of storage.
IBM System/3 provides two methods of addressing: direct
and base-register displacement. The relative addressing
technique can be used with both methods. For addressing,
see the /BM System /3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21-9236.

Direct Addressing

The direct addressing method allows the programmer to
represent a 16-bit instruction address by using an
expression as an operand entry. The assembler places
the value of the expression in the machine instruction
which it generates.

Two bytes are always used in the machine instruction for
a direct address. A direct address is indicated by the
absence of a register in the operand.

Example: MVI ACD’
This indicates to the assembler that a direct address is to

be generated for location A (see Machine Instruction
Operands).

Base-Register Displacement Addressing

Base-register displacement addressing involves setting up
a base address from which other addresses can be
calculated. This base address must be placed in the base
register before the base register is used for addressing.

One byte is always used in the machine instruction for a
base-register displacement address and is indicated by the
presence of a register in the operand.

Examples: MVI
MVI

A(2)CD
5(,1),C'D’

This indicates to the assembler that a base-register displace-
ment address is to be generated for location A using base
register 2 and for displacement 5 from base register 1.

IBM

Al 2N§m2 5 6|7 soawfch?? 12] 33| )4££ 17 181920 21 npgae'g;'dﬁ %27 7829 0313233 MB
XL ey |1 1]

! LA DBAS E|,IRIX 1

| YS! Mo AIDBIASIE], 1RIx] 1

11T vlel | (], IRX(1]3], [Bl( |2, [RX[3]) |
RRNRRENNRRRAN |

Lﬁ#% T [f? i 1

Figure 4. Base-Register Displacement Addressing

The base register plus a displacement can reference any
higher address within 255 bytes of the specified base
address. The displacement portion of the address can be
either absolute or relocatable; however, in either case the
programmer indicates that a base-displacement address is

to be generated by the presence of the register in the
operand (see Machine Instruction Operands). If relocatable
displacements are used, the USING statement (see Assembler
Instruction Statements) must be used to indicate to the
assembler which register contains the base address and
what address will be loaded into that register. The USING
instruction does not load the register with the specified
address; the programmer must use a load instruction to
place the indicated address into the register. Figure 4 is

an example of base-register displacement addressing.

In Figure 4 two bytes of data will be moved from the
location of B to the location of A. The assembler
calculates the displacement to the addresses for A and
B, if A and B are relocatable and are within a positive
255 bytes of the address in base register XR1. If either
A or Bis over 255 bytes from the base address, an
addressing error occurs and an assembier error statement
is generated. If the terms A and B are not relocatable
symbols, the assembler uses the absolute values (up to
255) of the terms for the displacement. If absolute
displacements are used, the USING assembler statement
is not required.

Note: The programmer must explicitly specify the base
register whenever base-register displacement addressing is
used.

The programmer terminates the use of a previously
defined base register through the use of the DROP
instruction (see Assembler Instruction Statements). The
value of the register is not affected. This register
cannot, however, enter into base-register displacement
addressing using relocatable displacements until specified
again by a USING instruction,

Relative Addressing

Relative addressing is an addressing technique
accomplished by adding bytes to or subtracting bytes
from a symbol or location counter reference. The
expression *+5, for example, specifies the location 5
bytes beyond the current value of the location counter.
Figure 5 is an example of relative addressing.



In Figure 5, the instruction with the operation code
ZAZ has a length of 6 bytes, the instruction AZ has a
length of 5 bytes and the instruction with MVI has a
length of 4 bytes in storage. Using relative addressing,
the location of the AZ instruction can be expressed in
two ways, AAA+6 or BBB-5.

1BM
i 2N];1m:' 5 6 7”8—090”.'?7“?? 1201314 15 16 17 18 19D 21 :'?Oglg?’ﬁ?s?vzsz’simjla'?nxiﬁ;
il
A zAz | [ 18,]c
AlZ| | | | lel(|1dl, 11Dl ¢
Bigl | | | [mvtl | I X["[Re[*
Bl
3l || [T]AlAaAe |
NENESEERNEREN L

Figure 5. Relative Addressing

Figure 6 shows how the AZ instruction can be addressed
relative to the nearby symbolic addresses, AAA and BBB.

Relative addressing may also be used with base-register
displacement addressing if the displacement is a
relocatable term.

Example: MVC  A+5(,RX1),B(2,RX1)

In the example, A+5 is an example of relative addressing
used with base-register displacement addressing.

Instruction Addressing

A symbol used as a name entry in a machine-instruction
statement addresses the leftmost byte of storage occupied
by that instruction.

Data Addressing

A symbotl used as a name entry in a data definition
instruction (see DC — Define Constant and DS — Define
Storage) address the rightmost byte of storage occupied
by or reserved for that data.

Control of Location Counter

Addressing in any computer language depends upon the
location counter. IBM System/3 allows the programmer
to control the location counter by using two assembler
instructions: START and ORG. The START assembler
instruction can be used to initialize the location counter
to a desired value at the beginning of a program. The
ORG assembler instruction can be used to change the
value of the location counter anywhere in a program.

l——&bytes —l-——5~bytes —'—4—bytes -l

LTulL Ll

{ A

AZ MVI
ZAZ {AAA+B) {BBB)
symbolic address = (AAA) (BBB-5)

Figure 6. Schematic of Relative Addressing

These two instructions are described in detail under
Assembler Instruction Statements.

MACHINE INSTRUCTION STATEMENTS

Machine instruction statements are symbols that
represent machine language instructions on a one-for-one
basis. The assembler translates these symbolic repre-
sentations into machine language usable by the
computer. Machine instruction statements differ from
assembler instruction statements in that the machine
instruction statements are executable parts of the
program’s logic (such as MV, ST, LA etc), while
assembler instruction statements are simply orders to

the assembler, each statement directing a specific operation
(such as DC, START, SPACE, etc). See /BM System/3
Models 8, 10, 12, and 15 Components Reference Manual,
GA21-9236 for a description of the execution of machine
instructions.

The format for a machine instruction statement is closely
related to, but not the same as, the machine language
instruction format which results from the assembly
process (see Appendix A. Machine Instructions for
machine language instruction formats).

A mnemonic operation code is used in place of the
actual machine language operation code and one or
more operands provide the information required by
the machine instruction. A remark and a sequence
entry may be included in the machine-instruction
statements, but they will not affect the machine
language instruction.

Basic Assembler Language 13



Name Entry Attributes

Any machine-instruction statement can contain a
symbol as a name entry. Other machine-instruction
statements can use that symbol as an operand. The
assembler assigns value and length attributes (charac-
teristics) to every sumbol used in a program. The value
attribute of a symbol which is used as a name entry

in a machine-instruction statement is the address of
the leftmost byte of storage occupied by the assembled
instruction. The length attribute of the symbol is

the number of bytes of storage occupied by the
assembled instruction. Refer to Lengths—FExplicit and
Implied in this section for a discussion of the length
attributes of other types of symbols, terms, and
eXpressions.

Machine Instruction Mnemonic Codes

The mnemonic operation codes are designed to be
easily-remembered codes that remind the programmer
of the functions performed by the instructions. The
mnemonic codes are translated into machine-language
operation codes by the assembler. IBM System/3 Basic
Assembler provides mnemonic and extended mnemonic
operation codes. The complete set of mnemonic codes
is listed in Appendix A. Machine Instructions.

Extended Mnemonic Codes

Extended mnemonic codes are provided for the
convenience of the programmer. They are unlike other
mnemonic codes in that part of the information

usually provided in the operand is in the extended
mnemonic code itself. Extended mnemonic codes allow
the following:

1. Conditional branches (BC) and jumps (JC) can
be specified mnemonically, requiring only a
branch address as an operand.

2. Half-byte moves (MVX) can be specified
mnemonically, requiring only the use of addresses
as operands.

3. The supervisor call form of the command CPU
(CCP) machine operation can be specified
ninemonically (Model 15 only).

Extended mnemonic codes are not part of the set of
machine instructions, but are translated by the assembler
into the corresponding operation code and condition
combinations.

See Appendix A. Machine Instructions for a list of
extended mnemonic codes.

Machine Instruction Operands

This section describes (1) operand fields and subfields,
(2) explicit and implied lengths, and (3) operand groups
and formats. The operands of machine instruction
statements provide the information about addresses,
lengths, and immediate data that is required by the
assembler to generate executable machine instructjons.
General rules for coding of operands are covered in
Assembler Coding Conventions.

Operand Fields and Subfields

The left operand of a pair is called operand 1, or
operand field 1; the right operand is called operand 2,

or operand field 2. An operand field may include one
or two subfields (length subfield, register subfield)

as in the following example of base-register displacement
addressing.

Example: 40(,2)

The above operand field contains a displacement entry,
40, and a register subfield entry, 2, representing index
register 2. The following rules apply to the coding of
subfields:

1. Parentheses must enclose a subfield or subfields.
2. Blanks cannot be used within subfield parentheses.

3. A comma must separate two subfields within
parentheses (L,R).

4. If the first subfield of a pair is omitted, the
comma that separates it from the second subfield
must be retained (,R).

5. If the second subfield of a pair is omitted, the
comma separating the pair must also be omitted

(L).

6.  If both subfields are omitted, the separating
comma and the parentheses must also be omitted.

Operand subfields can contain immediate data, length,
or register information. Only absolute expressions
and self-defining terms may be used as subfield entries.



Lengths — Explicit and Implied

A length subfield in an operand may be either explicit
or implied. To imply a length, the programmer omits
the length subfield from an operand. When a length
specification is not included in an operand requiring

a length, the assembler includes the implied length of
the first operand, such as the length attribute of a name
entry (see Name Entry Attributes in this section).

The length attributes of various terms and expressions
are shown in Figure 7.

An explicit length is written by the programmer in the
operand as an absolute expression. The explicit length
overrides any implied length.

Term or Expression Length Attribute

Length, in bytes, of the
instruction.

1. Name entry symbol
of a machine-instruction

Length, in bytes, of the
instruction in which it

appears {except in the EQU
assembler statement, where the

2. Location-counter
reference (*)

Length attribute of the
leftmost term in the
expression.

3. Expression

4. Self-Defining Term Length attribute is one.

5. START name entry Length attribute is one.

NOTE: See also Subfield 3 -- Length under Data Defining

Instructions.

length attribute assigned is one).

Figure 7. Length Attributes of Terms and Expressions

Operand Groups

Machine-instruction statement operands are divided
into six groups. The characteristics of each group are
as follows:

Group 1: Two-operand format in which a length is
explicit or implied in both operands.

Group 2: Two-operand format in which a length can
be explicit in either operand, but not in both. If
length is not explicit in either operand, the assembler
uses the implied length of operand 1.

Group'_?: Two-operand format in which a length
cannot be specified.

Group 4: One-operand format in which only immediate
data may be used.

Group 5. Two-operand format in which both operands
are immediate data.

Group 6: Two-operand format in which operand 1 is

used by the assembler to calculate a positive displacement

and operand 2 is immediate data.

Basic Assembler Language

15



Figure 8 shows the allowable operand formats for each operand (I-field) is not used since the information is
operand group. The instructions using each operand inherent in the mnemonic (see Extended Mnemonic
group are also listed. Refer to Appendix A. Machine Codes in this section).

Instructions for the related machine-instruction formats.

For the extended mnemonics of the MVX instruction, Data movement is from operand 2 to operand 1 in a
the I-field information is inherent in the mnemonic and two-address format instruction (group 1 and group 2).
the I-field is omitted from the operand. For the extended This operand order is equivalent to that of machine
mnemonics of the BC and JC instructions, the second instructions.
GROUP INSTRUCTIONS ALLOWABLE OPERAND FORMAT
1 ZAZ AZSZ AA A(L),A D{,R),A D(L,R),A
A,A(L) A(L),A(L) D{,R),A{L) D{L,R),A(L)
A,D{,R} A(L),D(,R) D{,R},D{,R) D(L,R},D{,R)
A,D(L,R) A(L),D(L,R) D{,R),D{L,R) D{L,R},D(L,R)
2 MVC,CLC,ALC AA A(L),A D{,R),A D(L,R),A
SLC,ITC,ED AA(L) A(L),D(,R) D{,R},A(L}) D{L,R),D{,R)
A,D(,R) D{,R}),D(,R)
A,D(L,R) D(,R),DIL,R)
MV X AALD All},A D{,R),A{l) D{I,R},A
A,D{1,R) A{1),D(,R) D(,R),D{I,R) D{l,R),D{,R}
3 MVI,CLI1,SBN Al D(,R),i
SBF,TBN,TBF
TIO,SNS,LIO
BC
L,ST.A LA AR D{,R}),R
SCP*,LCP*
4 APL,SVC* !
5 HPL,SIO,CCP* 1,1
6 JC Al
*Model 15 only,
The following codes are used to describe the possible operand formats:
QODE MEANING ACCEPTABLE FORM
A Address Relocatable expression, absolute expression, or self-defining value.
D Displacement Relocatable expression, absolute expression, or self-defining value.
L Length Absolute expression or seif-defining value.
R Hegister Absolute expression or self-defining value.
! Immediate Data (bit masks, Absolute expression or self-defining value.
condition bit masks, or
control bits to be used in
the instruction)

Figure 8. Operand Format by Group

16



In groups 3, S, and 6, the Q-code operand is always T 1
on the right. See Appendix A. Machine Instructions NAME | OPERATION | OPERAND
, . ; ] T 1
for an explanation of Q codes. symbol [ cOu | an expression
I !

ASSEMBLER INSTRUCTION STATEMENTS

The expression in the operand field can be either
absolute or relocatable. Any symbol appearing in
the operand field must have been previously defined.
Figure 9 illustrates how this instruction can be used
to equate a symbol with the contents of the operand.

When writing a program the programmer uses two types
of statements: executable instructions and instruction
statements to the assembler. The executable instructions
are the machine instruction statements. These are
symbolic representations of the programmer’s logic,

such as brarnich, move, or compare, which are transiated

into machine language by the assembler. In Figure 9, MAX has the value of TEST + X‘3FC’

(X102+X‘3FC’ or X‘4FE’) any time it is used in the
Assembler instruction statements, on the other hand, do program. The symbol STEST has the value of the first
not generate executable machine codes. They are (left most) byte of the data area reserved by the DC
instructions that control specific assembler functions. instruction. Since the symbol on the DC (TEST) has
These instructions are used to set up areas in storage, to the value of the rightmost byte, this type of EQU is
define data, to equate symbols, and to control program useful for addressing the leftmost byte. The symbol
listings, location counter, statement formats, and types REG?2 in any statement is the same as using the number
of addressing. In the remainder of this section, the 2.
individual assembler instruction statements are
discussed.

IBM
Symbol Definition Instruction PROGAAM

Name Operation o Qowrand

EQU-Equate Symbol ) 7T:I< = 58 % 12/ 18 Hl‘: TP NN TEEEE TEETE E
The EQU instruction is used to equate symbols with ERRNEE : :
register numbers, immediate data, or other arbitrary MA| STHY' IRAC!
values. The EQU instruction defines a symbol by EG
assigning to it the length and value of the expression : N T

in the operand field of the EQU instruction. The EQU
instruction has the following format: Figure 9. EQU Assembler Instruction

Basic Assembler Language 17



Data Defining Instructions

Two data defining instruction statements are available:
Define Constant (DC), and Define Storage (DS). These
instructions are used to enter data constants and to
reserve areas in storage. Each instruction can have a
name field entry (symbol) to which other instructions
can refer.

DC-Define Constant

The DC instruction is used to initialize a storage
location with a desired value. The 1BM System/3

Basic Assembler Language allows six types of constants:
storage address, binary, character, decimal, hexadecimal,
and integer. The format of the DC instruction is as
follows:

T T

NAME OPERATION | OPERAND
H

t ' T T T

symbol | BC :Duplication !Type I Length :Constant
or | | Factor | (2) ; 3 | (4

biank | N EY | | l

I i A P i

Notice that the operand of the DC statement consists
of four subfields. The first three describe the constant
and the fourth provides the constant. The only blanks
permitted within an operand field are blanks embedded
in a character constant. The symbol that identifies the
DC statement receives the value of the address of the
rightmost byte of the area defined by the statement.

Subfield 1~ Duplication Facror: This subfield enables the
programmner to repeat the constant in storage. The constant
will be generated the number of times indicated by the
entry in the first subfield. This entry can be any unsigned,
nonzero, decimal value, I through 65535. If this subfield

is omitted, a duplication factor of 1 is assumed. This
duplication factor is applied after the constant is fully
assembled. If duplication is specified for an address cons-
tant containing a positive location counter reference, the

value of the location counter used in each duplication is
increased by the length of the constant.

Subfield 2—Type: This subfield defines the form of the
constant being entered. From the type specification, the
assembler determines how it is to interpret the constant
and translate it into the appropriate machine format. The
type entry is specified by one of the letter codes A, B, C,
D, X, or I (see Subfield 4 — Constant for related meanings).
The type entry is required.

Subfield 3—Length: The third subfield describes the
number of bytes required by the constant. The entry for
this subfield may be written two ways:

1. Ln, where n is an unsigned, nonzero, decimal value.
The value of n is as follows:

n=1-256 for I, B, C, X constants
n = 1-31 for the D constant
n=1-3 for an A constant

2. L (absolute expression), where an absolute
expression is enclosed in parentheses. The value
limits for the absolute expression are the same as
those for n in the previous paragraph. A location
counter reference is not allowed in this expression.

The total area allocated for this constant is the result of:
Duplication Factor * Length=Total Area. The length
entry Is required.

Subfield 4—Constant: This subfield supplies the constant
that was described in subfields 1 through 3. In general, the
address constant (type A)is enclosed in parcntheses, while
the data constants (types B, C, D, I, and X) are enclosed in
apostrophes. An entry in the constant subfield of a DC
statement is always required.

Address Constant (A ): This constant is used to load an
address into a storage area.

Example: SYMBOL DC AL2 (BETA)

In this example, the address represented by the symbol
BETA will be stored in the 2-byte field addressed by
SYMBOL. The full 24-bit final expression result is trun-
cated on the left to fit the length of the constant. The
maximum length of an address constant is 3.

e



Binary Consrant {B): This constant is used to create bit
patterns and masks.

Example.  SYMBOL DC 1BLi‘10011°

The byte of storage addressed by SYMBOL will contain
00010011. Truncation or padding with binary zeros
occurs on the left if the constant is not the length speci-
fied. This constant is enclosed in apostrophes. Each digit
within the apostrophes represents a single bit in storage,
and each eight bits specified will occupy one byte of

storage.

Character Constant (C): This constant can be used to
place a string of characters in storage.

Exampie:. SYMBOL DC
The byte of storage addressed by SYMBOL will contain a

blank, and the byte of storage addressed by SYMBGL-16
will contain the character P.

Nore: Two blanks have been padded on the right of the
character string.

If the constant is not the specified length, truncation or
padding with blanks will occur on the right. Each
character (including blanks) within the apostrophes will
occupy a byte of storage. 1f an apostrophe occurs within
the string of characters, it must be represented by a
double apostrophe.

Decimal Constant (D): This constant can be used for
arithmetic purposes.

Example:  SYMBOL DC DLS5%125.66°
This constant will appear in zoned-decimal form in a 5-byte
storage field, addressed by SYMBOL. The decimal point
is used only as a convenience for the programmer, and
is not assembled into the constant. The value of the
constant is calculated without the decimal point. Trunca-
tion or padding with decimal zeros occurs at the left of the
field, if nnecessary. Signed decimal constants are permitted,
making it possible to have a decimal constant with a nega-
tive value. Each decimal digit will occupy one byte of
storage.

Hexadecimal Constant (X): This constant is used to
associate a hiexadecimal value with a symbol in a defined
area in storage.

SYMBOL DC 1XL6'8AC14’

Example:

1CL17‘PLANT 5 PAYROLL’

The 6-byte field addressed by SYMBOL will contain the
following 12 hexadecimal digits: 00000008AC14.

Truncation or padding with hexadecimal zeros occurs at
the left. Each two digits between apostrophes will occupy
one byte of storage.

Integer Constant {I1): This constant is used for fixed-point
binary arithmetic.

Example: SYMBOL DC 1IL2°-7’
A negative number may be used for an I constant. The
negative constant is placed in storage in its two’s-comple-
ment form. This example would appear in storage in bit
formas 1111111111111001. There is always a positive
equivalent to a negative constant; in the above example, it
is hexadecimal FFF9 or decimal 65,522. The range of [
constants must be within —232+1 to 232—1. If the number
is positive, it is padded on the left with O-bits. If the
number is negative, it is padded on the left with 1-bits.

DS—Defines Storage

The DS instruction is much like the DC instruction. It
assigns a symbol to an area of storage. Unlike the DC
instruction, the DS instruction only reserves the area of
storage, it does not insert data. A constant subfield cannot
be used with a DS statement. The following illustration
shows the DS format.

|
NAME | OPERATION | OPERAND
l — T
symbol | 0S i duplication | type |length
or | [ factor [ |
Blank | L L

A duplication factor of zero can be used in a DS statement
if the programmer wishes only to assign a fength to its
corresponding symbol. The symbol will be given the value
of the current location counter minus one. The type and
length subfields must follow the same rules as for the DC
statement.

The duplication factor can be used by the programmer to
specify a reserved area larger than 256 bytes.

Fxample: SYMBOL DS 3CL100

This instruction would reserve a 300-byte area, which woulc
be referenced on the right by the name entry SYMBOL.

Basic Assembler Language 19



Listing Control Instructions
The listing control instructions aid the programmer in

documenting his assembler listing. These instructions are
TITLE, EJECT, SPACE, and PRINT.

TITLE — Identify Assembly Output

The TITLE instruction enables the programmer to identify
assembled object cards and assembler listings.

NAME OPERATION OPERAND

a sequence of characters
enclosed in apostrophes

label or blank | TITLE

T
I
I
!
L

. -

The name field entry can consist of a maximum of six
characters. The first character may be numeric. The
contents of the name field in the first TITLE card is punch-
ed into the sequence field of all object cards produced by
the assembler. This name field entry also appears in all
listing header fields.

The name on the TITLE statement is not the object pro-
gram name, but may be the same as the object program
name. See START — Start Assembly. The name field
entry is used only for identification and may not be
referenced by the program.

The operand field contains a sequence of characters
enclosed in apostrophes. Any embedded apostrophes must
be represented by a double apostrophe. The contents of
the name and operand fields are printed at the top of each
page of the assembler listing.

A program can contain more than one TITLE statement.
When a new TITLE statement is read, the listing is advanced
to a new page before the new heading is printed. The name
fields of all subsequent TITLE statements are ignored by
the assembler. The TITLE instruction is not listed on the
assembler listing, but it does increase the statement counter
by one. Figure 10 shows an example of the TITLE
statement.

20

1BM

PRCGRAM

PROGRAMMER

1 7N.1mﬁ s 817 Bo:e'!an“?:‘vz 13014 1516 17 18 19 0 2 2702';2‘55 2627 28 20 3 31 2 3343
SITAR|T] [x|'13/7]"
PAY TiriLEl ' olcimolsler) |"1s] 1PAlYIRlow|L '
DIAITIA/IM_IDIC feidlel] | EEEEENNNNN
SAVIE | | DIs el [ od L
TEN [ EQd | [ Ix| A" 1 |
T T T ' 'i*}-ﬁ)—

Figure 10. Use of the TITLE Statement

EJECT — Start New Page

The EJECT instruction causes printing to begin at the top
of a new page, under the page heading. Through the use
of the EJECT statement, the programmer can separate
routines in the assembler listing. The format of the EJECT
assembler instructions is as follows:

NAME OPERATION OPERAND

I
|
T
I
i

Not Used

T
|
!
|
blank |

In Figure 11, the EJECT instruction is used to separate
executable instructions from the data-defining assembler
statements. The EJECT instruction is not listed on the
assembler listing, but it does increase the statement counter
by one. The coding example in Figure 11 shows the position
of EJECT. Note that the corresponding statement number
(4) has been omitted in the listing. Statement number §
appears at the top of the next page, under the heading.



SPACE ~ Space Listing

This instruction is used to insert one or more blank lines
between statements in the assembler listing:

An unsigned decimal value is used to specify the number
of blank lines that are to be inserted. If the operand con-
tains a blank, a zero, or a 1, one blank line will be inserted.
If the value of the operand exceeds the number of lines
remaining on the current page, the instruction has the
same effect on the listing as an EJECT statement. The

T } - . . . . .
NAME | OPERATION | OPERAND SPACE instruction, like the EJECT instruction, is not
4 | listed on the assembler listing, but does increase the state-
blank i SPACE ! decimal value or a blank ment counter by one.
] |
IBM IBM System/3 Basic Assembler Coding Form
rocen PROGRAM 1 4[ FuNCHING GHAPHIC
proGRamuer A X X IiﬂE { (RETRUCHONG PuNCH I
STATEMENT
Name Operation Operard Hemarks
1 2 2 4 5 6[7]8 910 1 12013014 1516 17 18 1920 21 2223 24 25 26 27 28 29 30 31 12 33 34 35 36 37 38 39 40 41 41«344&64547454@505\5753545515557555900muwsdﬁises?&sTtsum!wnrnm
PRPl6[1] | [s[AalRlr] X['[182['T [ ] HIENRERRER) [
Aslk1 | e 8L e 1] EEEEERNEE [ l_
coumria e 3l T ! NERRBEE i
T [leREer | ENEEEN INSENREREERRARRAA|
RIEIAD, Lo ) ; L4 A.J L]
STG E M c L “ # . L l ! 4 “ | | I
et L 4+ e e e
E|MD R EAlD LT BRREANEN
T SHNNN ARRRRRARRE
e — i . A’.._ 1 T + ’_ - —+ 4 L
{ ! { i |
F*JfLT‘l‘l‘iJf i T L e 1t [ 4*;'- =i ( t 1—‘£J'
Listing Page 1
Statement Name Operation Operand Remark
O number
1 PROG1 START X100’
O 2 MASKI1 DC 1BL1'01101°
3 COUNT3 DC 3iL2'0
|

Listing Page 2

Statement Name Operation
number

Operand Remark

5 READ L10

O
O
O 6 STORE MVC
O

Figure 11. EJECT Instruction

Basic Assembler Language 21



PRINT—Print Optional Data

The programmer can control the printing of an assembly
listing by using the PRINT instruction. A program can have
any number of PRINT instructions. Each PRINT
instruction controls the listing until the next PRINT
instruction is encountered.

NAME OPERATION OPERAND

blank PRINT operand

The operand field can include entries from the following
groups (one or two operands for the Model 10, one, two,
or three operands for the Model 12 and the Model 15):

1. ON-A listing is printed.
OFF —No listing is printed.

2. DATA-—Constants are printed out in full on the
assembler listing.
NODATA-Only the leftmost 8 bytes of the con-
stants are printed on the assembler listing.

3. (Model 12 and Model 15 only)
GEN-Print statements generated by the macro
processor if not overridden by other listing
control statements.
NOGEN--Suppress printing of statements gen-

erated by the macro processor.
Operand entries must be separated by a comma.

The ON, GEN and DATA conditions are assumed by the
assembler unless otherwise specified by a PRINT instruc-
tion. If an operand is omitted, it is assumed to be un-
changed and continues according to its last specification.
Both of the examples in Figure 12 would cause a listing
to be printed with only the leftmost 8 bytes of the con-
stants appearing in the listing.

IBM

PROGRAM

PRCGRAMMER

Name
3 4 5 674

12 ’T
L]
MAX.
ana
—H

1::_1—";1‘5.4:’: 12[13]18 1516 17 18 19 0 21 2:0;?’;:‘125 26 27 28 29 10 31 32 39 3435 ¢
p oM, [MolplalT]A
el | 11 15lclcl3] jalee]’

Or
Name Uperation Coerand

23,43 Bvslv 111 17) 1 \415|snva|9202|nzaza?ﬁzrsvﬂ79793)!'-3713345‘1
L LIPRl N nplols INRERENREANI
X H ;Qig.'_.} 5CL3 lABC ! I lL i i "
% i! a ::. : | L AT §’ *__‘ I.,f__:~>..g+—_._;_,__.
1 ‘- —4— - T T— .": O I

e

Figure 12. The PRINT Statement

22

Program Control Instructions

{CTL—Input Format Control

The ICTL statement permits the programmer to change
the normal bounds of the source program statements.
When included, the ICTL instruction must precede ali
other source statements. This instruction can be used
only once during a program. An invalid or mispositioned
ICTL statement causes termination of the assembly.

T
NAME | OPERATION

OPERAND

=

blank ! 1CTL

I two decimals in the form of B,E

The term B specifies the beginning column and the term
E specifies the ending column of the source statement.
The beginning column must be within columns 1-48. The
ending column must be within columns 49-95. The
column after the ending column must be blank.

When an ICTL statement is not included in a source
program, the beginning column is assumed to be column
I, and column 87 is assurmed to be the ending column.
Figure 13 is an example of the ICTL instruction. In
Figure 13, the name field would start in column 14

and the remark field would end in column 80.

IBM
rrocraw  PRO GRAM X3
PROGRAMMER x xx e
1 7Nsam: 5 617 aogue'\;h?? 12 13 m||5 18 ;;vjmm 7|'/F'-f:'.-'-':-< i 37 -\]w‘;‘- ,-Aln, 14 36 35 37
/L) | 1114 NENEEEERNNANES
PRGN START X['[1lde T 1T
MAIA | | EQu | L2
T S\YMBlolL| 1Dlc | | 1 ciLig'islyMB
| HHE | | !
B -
P
A

Figure 13. The ICTL Statement
ISEQ—Input Sequence Checking

The ISEQ instruction is used to check the sequence of
source cards. Sequence checking begins with the first
card after the ISEQ instruction. The first sequence entry
is taken from the sequence identification field of the
ISEQ statement. The sequence entry on the next card is
then compared to the previous sequence value. The ISEQ
assembler statement has the following effect:

1. The sequence entries on source-statement cards are
checked for ascending order.



2. Statements that are out of order and statements
without sequence entries are flagged in the assembler
listing.

3. The total number of flagged stateinents is noted at

the end of the assembler listing.

For example. with the sequence values 13, 27, 31, 6, 8,
45,47, % and 48, the card numbered 6 and the card with-
out a sequence value would be out of sequence. The
assembly does not stop due to a card being out of
sequence order. In this example, the card numbered 6
and the card without a sequence entry would be flagged
in the error field of the listing. If sequence checking is
requested, there is a statement at the end of the listing
showing that two cards were out of sequence.

The assembler will not check the sequence unless requested
to do so by use of the ISEQ statement.

The following is the ISEQ instruction format:

NAME OPERATION OPERAND

blank ISEQ two decimal values in the

form L, R; or blank

The operand entries, L or R, specify the leftmost (L) and
rightmost (R) columns of the field to be sequence checked.
The value of L must be within the range of 73 through 96
(inclusive). The length of the sequence field may be from
1 to 8. If the programimer wants to discontinue sequencing,
an ISEQ instruction card with a blank operand is inserted.

The sequence field must be separated from the last column
of the source statement by at least one blank position,
The last column of the source statement is column 87
unless otherwise specified by the ICTL assembler state-
ment. The sequence field must not appear before the last
column +1 of the source statement. If the sequence field
is to start before column 89, the ICTL statement must be
used to redefine the beginning and end of the source state-
ment. For example:

ICTL 1,71 Source statement is defined within
columns 1-71

ISEQ 73,80 Sequence field is in columus 73-80

START-Start Assembly.

The START instruction may be used to initialize the
location counter to a desired value at the beginning of a
program. The format of the START instruction is:

NAME OPERATION OPERAND

symbot START a self-defining value or blank

The assembler uses the single self-defining term in the
operand as the initial Jocation-counter value. For example,
either of the START instructions in Figure 14 could be
used to indicate an initial assembly location of 2040.

If the operand of a START instruction is blank, the
location counter is initialized with a value of zero. If
neither an ORG nor a START instruction is used to initial-
ize the location counter, the initial value is also zero.

A START instruction must not be preceded by any state-
ment that affects or is dependent upon the setting of the
location counter.

The name entry in the name field of a START instruction
provides the program with an identifier name called the
module name. The module name may be the same as the
first TITLE statement.

Note: Certain naming restrictions apply when assigning
names for your progranm. For more information on naming
restrictions, see /BM System/3 Model 10 Disk System
Control Programming Reference Manual, GC21-7512.
IBM System/3 Model 12 System Control Programming
Reference Manual, GC21-5130, IBM System/3 Model 15
System Control Programming Reference Manual,
GC21-5077 (Program Number 5704-AS1), or /BM
System/3 Model 15 System Control Programming
Concepts and Reference Manual, GC21-5162 (Program
Number §704-AS2).

This program name may be used for program linkage. If
the START card is not included in the program, or if the
name field is blank, a default program name is assigned.
See the MODULE NAME MISSING diagnostic in
Appendix C. System/3 Assembler — Source Language
Error Codes and Diagnostics.

IBM
PRAOGRAM
PROGRAMMER
s
Name Opwration Gera
1 2 3 & & 6718 9 o0 v 12013014 45 96 17 18 19 20 21 22 3 2
Slymglolc] [sITlalR]T [2lg4id |
T + t
] O S 'L__, aln \_
| k U"A

0 I
JUON 495
'—;7 | :

Figure 14. Using START to lnitialize the Locatior Counter

SiviBlol | [siralRir! XI* 7ls T | o
e

Basic Assembler Language 23



ORG—Set Location Counter

The ORG statement sets the location-counter value.

T N
NAME | OPERATION | OPERAND
| —
blank | ORG ] blank operand or an expression A
| | optionally followed by two absolute
I expressions in the form A, B, C
[ !

The location counter is set to the smallest value greater
than or equal to A which is C more than a multiple of B.
In the following example, A can be either a relocatable or
absolute expression; B and C must be absolute expressions.
The default values for B and C are | and O, respectively. If
the second operand (B) is omitted, the third operand (C)
must also be omitted.

Current New

Location Location

Counter A B C Counter
275 * 109 50 350
340 * 10C 50 350
350 * 100 50 350
504 * 256 0 512
750 1000 . — 1000

All symbols used in the expression A must have been
previously defined. The value specified by the ORG state-
ment must be greater than or equal to the starting location-
counter value.

If previous ORG statements have reduced the location-
counter value for the purpose of redefining the current
program, an ORG instruction with a blank operand is used
to set the location counter to the previous maximum
assigned address plus one (see Figure 15).

Location — S —
Counter Address ) 1 4 s 8] 708 5 10 11 12[13| 19 1516 17 18 18 X 73 22 237774
0064 PIRoIGI4_| |SITIAIRIT] |1
0064 0069 SiYmBoi D el 1
006A _ |0325  |FlIL[L|I N D] 7.clL 1dd
00CE L TRl [1IF 2L N=159]9
DOCE 01F9 aTal | |l | L5l
0326 L T oRe i1
T ﬁi | B 1 i t

_ COL D ool (IO

*  Previous

High Address

Figure 15. Using ORG to Control the Location Counter

24

USING — Use Register for Base-Displacement Addressing

The USING statement specifies the register to be used for
base-displacement addressing and also specifies the base
address that the assembler will assume to be in that register
at object time. The USING statement does riot load the
base address into the register specified. This must be done
by the programmer before the register can be used for
base-register displacement addressing. See Addressing in
this section.

NAME OPERATION CPERAND

blank USING

?
L
i V.R

i
!
—
T
1
|

In the preceding format, term V represents an expression.
Term R represents an absolute expression with a value of
1 or 2. Term R specifies the index register assumed to
contain the base address represented by the term V. The
programmer has the option of changing the base register
or base address at any time by (he insertion of another
USING statement. Two USING sraternents enable the
programmer to use the iwo index registers as base registers
to two different portions of main storage.

In Figure 16, register 2 is loaded with the address of
ADRESI, which will be used as the base address in instruc-
tions following the USING statement.

Operatian Dowran -
B 0 10 )y 12(13[ 14 15 ve 12 18 16 0 o0 ia o our 9 & 3t W 1363

q

Figure 16. Specifying a Base Register With the USING Statements



DROP — Drop Base Register

The DROP instruction specifies a base register that is no
longer to be used as a base register. The programmer can
reinitiate the base register with another USING
instruction.

T
NAME |

OPERATION OPERAND

blank DROP

T
|
i
! specified register
|

]

The operand must contain an absolute expression of
either 1 or 2. This absolute expression represents the
register that is no longer to be used as a base register.
The contents of the register are unaffected by the DROP
instruction. Figure 17 shows an example of the DROP
instruction. Another USING statement is used to
specify register 1 as the new base register.

IBM
PROGRAM
PROGRAMMER
Name Opesation Operany .
1 2 3 4 5 678 910 t1 1213014 1516 17 18 1920 21 2223 24 25 26 27 28 29 031 32 33 34 I/ ¢
PR]cle]1 STqRT
L AlojRlEIs[1], 2
Uislrinvle |ADIRIES L,
DiRlolP | |2
L EEERRR
s ivle] lalplrigis]a] (1]

Figure 17. Example of the DROP Statement

ENTRY — Identify Entry Point to Program

This instruction identifies symbols, defined in the current
program, which can be used as entry points from other
programs.

| T
NAME | OPERATION | oPERAND
| —
blank | ENTRY | any reiocatable
| | symbol found in the
| | name field of the
) | current program

The symbol used in the ENTRY operand can also be refer-
enced by any other program provided that program uses
the same symbol in the operand of an EXTRN statement.
See the example given in the discussion of EXTRN for
additional information on the use of ENTRY.

EXTRN — ldentify External Symbols

This instruction identifies symbols, used in the current
program, which are defined in another program. Each
symbol in the operand of an EXTRN statement must be
identified by an ENTRY statement or be the module name
in some other program.

NAME | OPERATION OPERAND

one relocatable symbol
not found in the name
field of the current pro-
gram, optionally followed
by an avusolute expression
in parentheses

blank EXTRN

—
[
|
\
|
!

The external symbol cannot be used in a Name field in the
same program that describes that symbol as an EXTRN.

An EXTRN subtype can be specified for the EXTRN
symbol by following the symbol with an absolute
expression enclosed in parentheses. The value of the
absolute expression cannot be less than zero nor more
than 255. Any symbol in the expression must have been
previously defined. For an explanation of the subtype
values and their meanings, see IBM System/3 Overlay
Linkage Editor Reference Manual, GC21-7561.

Basic Assernbler Language 25



Figure 18 shows how ENTRY and EXTRN can be used to

make two or more programs act as one main program through

sharing data and control. The main program defines sym-
bols A, B, and C and identifies them as entry points. These
same symbols are identified as EXTRNs (external symbols)
in the subroutine. This allows the subroutine to use these

symbols just as it would if the symbols had been defined

in the subroutine. SUBROI, on the other hand, is defined
and identified as an entry point by the subroutine and as an
EXTRN, external symbol, by the main routine. These four
symbols — A, B, C, and SUBRO1 —- can now be used inter-
changeably by both the main routine and the subroutine.

The main routine has control first. It executes instructions
and then branches to SUBRO1 which is defined as an entry

IBM
- point in the subroutine. Instructions in the subroutine are
PROCH A executed. Notice that the subroutine uses symbols A, B, and
T S T C which were defined in the main routine. Control is then
|| 73‘56789‘0”\?: 14 1516 17 18 1920 21 77 331 24 25 26 27 78 29 ) 31 32 13 34 35 36 37 33 30 & .
MAT W T [ [STralR] i | passed back to the main routine.
T ENTIRY AT
L LENITRYL B L Note: The actual resolution of symbols between programs
' ENTRY Icf | ] | ‘
:,.. § HEVTRR SOBREL I T is not performed by the assembler.
ENTRY LT !
HEERNEN | | H
e SlUBRBL] ] iEEEE
T 2 UEERE ml L 1 END—End Assembly
t T g 11 T *T
| i 1 { B W f— -t A
11 Dé | Dti/' !5%?121 | The END instruction terminates assembly of the program.
E T %5 LG 11T The operand of this instruction can contain an expression
| ' | L1 (usually a name field entry) which specifies the address
] l | .__i_i TR T r‘-__ i to which control is to be transferred after the program is
EEEBEE E:Nﬁ T R i J 1 loaded. The END instruction must be the last statement
T T T T T T T T T in the program. The relocatable expression in the operand
Main Routine must not contain external symbols. The start-of-control
address must be specified for programs loaded with the
P g
1B absolute loader.
— , .
— NAME , OPERATION | OPERAND
i
1 "-436),(‘('h“ﬂ‘1712‘4|5||r|bmﬂ)2\77o7_\74257u772879]1:13113)-453\;3718:\95 H T
Su B|R T 1 [siTARIT] I HRRE! blank + END I arelocatable expression or a blank
L_ ENTRY! [SIDBIRIAL [ | | l
e EXTRN A | | [ A
1 gi?ézl % NSRS —H 4y Figure 19, shows an END statement. In this example, the
gpﬂgwl ST || | RETORNEB Jal T INEEEE '[ i program receives control at the address corresponding to
| vl | T ERL (ISPl Ml [T T 1] 0] BEGIN when it is executed.
T [zag] [ pCanL NG [T T EL T
ARNRRRNCERRAC NN J [ | IBM
L LEDLLLLERPI MO LD L] L i moew PROGRAM ONE
e | MiVic N cl(5) )EDI,TT‘ Lo Lt rRocrammes X K X0
RETURJNJE 1l L L [ 1] 11 il 7 _F
MASKE b ] | | /2@202;@" 8421@ | . Name peration Cowrond
E_Q;[ T L D{Z, : | i | [THLITT ‘_T; | 1 1] ' 23 45 50718 9 16 11 2|3 M_lrs‘u;[u NP Iy T E FIRTER rb”
O [ Lot Uy o LTI S EERE PiRol6l1 | \STIARIT | | | | —“—-;_‘._‘L_[__L.._..-.J' N
NEBEANNCCARREUNRRRANERDE! ..7'-”‘._'_;1_,, 4 : IR ENERRNRRAN IR
i NRENNNNNNNRRN i IRRRNENRNAEN Ecl/In MVc_MO;i‘mI,. Ble((1]] jL;.!;,'_'lﬁ_
' et .;_,,_;v — _i,;ALL Ll
Subroutine | E/Lip_~1 ]E:G'!/ M r [ 1] 4'“; NREEN
1 | i ! | G | ! ‘ | | t .
A l HHH

Figure 18. Example of ENTRY and EXTRN Statements

26

Figure 19. Designating an Entry Point With the END Statement



ASSEMBLER CONTROL STATEMENTS

Two control statements are used: The HEADERS state-
ment and the OPTIONS statement. Up to 45 of these
control statements may be used, in any order. Each state-
ment is limited to six operands. All control statements
must appear before any assembler source statements,

HEADERS Statement

The HEADERS control statement specifies control infor-
mation other than output control information to the
assembler. The programmer may specify a category level
for the object module through the CATG operand, or the
length of the control section for any subtype 4 or 5
EXTRNs in the assembler through the COMLA and COMLS
operands. For an explanation of category levels and
subtype 4 and 5 EXTRNs, see /BM System/3 Overlay
Linkage Editor Reference Manual GC21-7561.

The format of the HEADERS statement with the CATG
operand is:

[ BHEADERSHCATG-nnnnn l

Mooz N

Column 2 At least Decimal category
or greater one blank level

nnnnn
nnnnn is a one to five character decimal string whose value
must be less than 00256. If more than one CATG operand
appears in the assembler control statements, the value of
the last valid operand is used for the module category level.
The module category level is placed in the module ESL
record.

The format of the HEADERS statement with the COMLA
and COMLS operands is:

BHEADERSWYCOMLA-nnnnn, COML5-nnnnn—J

NN

Column 2 At least Decimal control
or greater section length

one blank

Part 2. Programmer’s Guide

nnnnn is a one to five character decimal string whose value
must be less than 65536. If more than one COMLA or
COMLS operand is present in the assembler control state-
ments, the length in the last valid operand is used for the
appropriate subtype control section length. The lengths
specified are placed in the ESL records for the subtype 4
or 5 EXTRNs.

OPTIONS Statement

An OPTIONS statement is a control statement for
assembler control options. All OPTIONS statements must
precede the source deck. The user may specify the follow-
ing assembler options on OPTIONS statements: DECK,
NODECK, LIST, NOLIST, XREF, NOXREF, REL,
NOREL, OBJ, OBJ(T), OBJ(P), NOOBJ. XBUF-nnnnn
and NOXBUF are also available to users having program
5704-AS2. They may appear on one statement in any
order, but must be separated by commas. If the pro-
grammer prefers, separate statements may be used for
each option. The OPTIONS keyword must start in
column 2 or higher (the preceding column must be blank),
and there must be one or more blanks between the key-
word and the selected options. Blanks are not allowed
between the selected options.

The following example shows options appearing on one
statement:

[ wOPTIONSBDECK, LIST, NOXREF, REL |

T

Column 2

At least one blank between

or greater. keyword and options.

More than one OPTIONS statement may be used. In the
following example, three statements are used:

BOPTIONSBDECK

BOPTIONSBLIST

BOPTIONSBNOXREF

Programmer’s Guide 27



The following list provides a brief description of all the
options available:

Option

DECK

NODECK

LIST

NOLIST

XREF
NOXREF
REL

NOREL

28

Explanation

The object program is punched. When an
object program is punched, it is preceded
by a // COPY OCL card and followed by

a // CEND OCL card. These cards are
provided for placing the object program in
the R library with the library maintenance
utility program (SMAINT).

The object program is not punched.

The following sections of the assembler
listing are printed (see Assembler Listing
in this section for a description of the
listings):

® Options information

e External symbol list

® Source and object program listing

® Diagnostic listing

® Error suminary statements

Only the following listings are printed:

® Options information

® Any statements in error and the
associated diagnostics

® FEyrror summary statements

The NOLIST option overrides all
assembler PRINT statements.

A cross-reference listing is generated.

A cross-reference listing is not generated.
A relocatable object program is produced.
An absolute object program is produced.
Note: Absolute object programs can only
be used as stand-alone programs; that is,

programs which are not dependent on any
other disk management system program.

OBJ or
OBJ(T)

OBI(P)

NOOBJ

On the Model 10 an absolute loader will pre-
cede the absolute deck if DECK is specified
and if MFCU?2 is specified on the // PUNCH
statement. On the Model 12 and Model 15,
an absolute loader will precede the absolute
deck if DECK is specified and if the
SYSPCH device is MFCU, 1442, or MEFCM
(Model 15 only). The loader punched will
program load only on the device type on
which it was punched. A blank card is in-
serted between the absolute loader and the
object program. This blank card and the
OCL cards included with the object program
do not affect the operation of the absolute
loader and may be discarded.

To prevent cataloging of the absolute object
program when NOREL is specified, you
should specify NOOBJ.

The object program is placed in the R
library with a retain entry of temporary.

The object program is placed in the R library
with a retain entry of permanent.

The object program is not placed in the R
library. (See Placing Assembler Subroutines
in R {Routine] Library in this section.)

If no OPTIONS statement is used, the assembly is processed
as though DECK, LIST, REL, XREF, and OBJ had been
specified. NOXBUF is also assumed with program

5704-AS2.

XBUF-nnnnn Specifies the size of the disk external buf-

NOXBUF

fers the user has requested. From one to
five numeric digits may be used to specify
the size of the disk external buffers (pro-

gram 5704-AS?2 only). External buffers

should not be specified due to performance
considerations if the program size including
physical disk buffers does not exceed 56K.
However, if external buffers are specified,
they should equal the size of the physical
disk buffers that normally would be set

aside within the program.

Specifies no external buffers are requested
for the program (program 5704-AS2 only).

If DECK or OBJ is entered on the OPTIONS statement and
there are errors in the assembly, a halt is issued.



OCL STATEMENTS FOR ASSEMBLER

The loading and running of a disk-system program,
including the assembler, is done under control of a group
of programs called disk system management. The user
tells disk system management to run a program through
the use of Operation Control Language (OCL) state-
ments. It is necessary to have a set of OCL statements
each time a program is run. This section discusses the
OCL statements required for use of the assembler. For

a complete discussion of OCL, see IBM System/3

Model 10 Disk System Control Programming Reference
Manual; GC21-7512, IBM System/3 Model 12 System
Control Programming Reference Manual, GC21-5130,
IBM System/3 Model 15 System Control Programming
Reference Manual, GC21-5077 (Program Number
5704-AS1), or IBM System/3 Model 15 System

Control Programming Concepts and Reference

Manual (Program Number 5704-AS52), GC21-5162.

The assembler language source program can be obtained

from either a system input device, a source library entry, or

the macro processor. If the source records are obtained
from an 80-column device, they are padded with 16
blanks before being placed in the $SOURCE file. In this

case, the user should provide an ICTL statement to prevent
the assembler from processing the sequence field of the

80-column record.

OCL For Loading the Assembler

Source Program on System [nput Device (Cards)

Figure 20 is a sample set of OCL statements to load the
assembler when the source program is on cards. The unit
parameter (F1) on the // LOAD statement specifies
where the assembler resides. The codes for the disk
drive upon which the assembler resides are:

e R1I — drivel
e Fl — drivel

e R2 — drive?2

e F2 drive 2

Programmer’s Guide

29



The first // FILE statement specifies the attributes and
location of the file used for source program residence
during the assembly process.

The second // FILE statement specifies attributes and the
location of the file used for object output of the assembler.
The third // FILE statement specifies attributes and
location of the file used for assembler working storage
during the assembler process.

The SWORK?2 // FILE statement is optional on the

Model 10 Disk System. If it is not supplied, the assembler
allocates the work space. However, by specifying the
proper placement of file locations, as in Figure 20, this
file statement improves the performance of the assembler.
It should, therefore, be specified.

In all three // FILE statements, the PACK and UNIT
parameters indicate the location ot the file named in the
NAME Parameter. In addition to R1, F1, R2, and F2, the
UNIT parameter can specify D1, D2, D3, and D4 for the
Model 15. The RETAIN parameter should reflect a scratch
file(s). The TRACKS parameter contains the number of
tracks required for that file. The user should choose the
number of tracks required in accordance with the space
requirements charts in the Assembly Time Data File
Requirements section. See IBM System/3 Model 10 Disk
System Control Programming Reference Manual,
GC21-7512, IBM System/3 Model 12 System Control
Programming Reference Manual GC21-5130, and /BM
System/3 Model 15 Syvstem Control Programming
Reference Manual (Program Number 5704-AS1),
GC21-5077, or IBM System/3 Model 15 System Control
Programming Concepts and Reference Manuaf, GC21-5162,
(Program Number 5704-AS2) for further information.

Source Program in a Source Library

Figure 21 shows a sample set of OCL statements used when
the source program is in the source library.

IBM System/3 Basic Assembler Cading Form

P
[onr e
/éL : s(),"-‘_”-nrw‘- Ry If.‘“‘;s . ’T ERTEIEE TR R 4K|_,JT_|_T_; ssiim ot 5 : ",:
VELL LI TP LTI ITTIT TR IR TITTT l ‘ ! ERNBERNEES B
R AR AR A RN AR AR RRRRERe A aRRAaREN T T T
/.71 P LIEL WAME|- B SOURCIE wﬂ-lvmm NI FIL, RETAITNF S, O T
/7] rRACIKS- 2] ,;‘oc TIOH‘J.N&H‘; ; B RN | }‘ i
A/ FlI KIAME-[$ ACK- VIDIL 2 [T[Ti-RL] RETAJN-si 1] 1| HERERREREREEEN |
/1 TRACIHS (51, 1IOC AT OIN -[2] »Q% _LSTLT:L':’, INEENEEN AN NRERARNRRRENN 11
/7 FTILE NAME-EWORK2 PACK- Vo] si.ﬁW T E RETAINES, O] NanEEnh FANEN!
/TRACRS 25 ILOCATI BN | 11 (11| ;z'%.gu,ﬁ T T T
/] ﬂ SRAESE INSSSN SN RN R B! I aNEsNNER ) SNSRI RN RNES ARERN : LU 1 L1l
‘fﬂ‘%?‘q'l' gl_,.;s;, b HLL SHEE N BTN S R A S
"‘J_LSOUI’ e e —4t. T b ‘r'_ : .4_" 11 Ly L E tS SIS
FH PLEG INEu. L R O 0 O 1 O AREES
%‘{ : 4 Ly ]:,l |: e oY 5 S Y I | | ‘
=t —3 N . {' s d 7 I S . 4
/5 i i S | s ,‘;.;IL_{.».M..;AL.i.‘.V
B H 1 2 :,lf {2 ot .,,IL,A - "T'f::;4"
©) Optnonal on Model 10 DlSk System
Figure 20. Assembler OCL Statements (Source Program on Cards)
M 1BM Syrtem/3 Bawc Assembler Coding Form ::::
T eoansu Trmowe Jewee T T T [ T T T T o
[ Jorrt el | : j”_ T 1 ) | B
= : = s STAYOWINT ; e _ - : . 3 l‘d-:muuol\
P23 & s 7!0!0!1’11ll)sl("!lwl}ﬂunnﬁnﬂnﬂ?ﬂ)lnnu!lﬂhll’nut!ubundu&ﬂb's?&MSSTwnrﬂwwi)J-\ 3 .Ix]w.-‘ )I'1 ‘15{.1! OBt e B il ae e BT [RAIBE M W 2 Mg
: Ll I
/| oAl § N ol CO
[$|§ - B OMREE PRI ND AL b TE L, TR RERNNRRERA
ARSI~ 150 (111 IO il LAl L
5 ME- Pl ol gl N TR RETALIN-SL | HENERNENEY ]
7 R IKE -5, IORIATI N 7 NEENENENR
HILE AaE- 60 gl I AL RIETAIN-IL] (0 BERNREREANER .
KS- o L Lol bt ] hod £ L
ICOMH! T-RL, 5[0 g ﬁr JUNLT ey ] i
f ICd R 5 l L L] | ISR r
[.g._l,g - Punch Deck on MFCU! EEEE R R }
A NEE 4 1 e Nl
\ H[IT\\IIHH NNERAE ; | L I
Source program in Source Library with: OPTIONS DECK, OBJ -P-—Place'z object progr am in R h ary an R 1 3 | i 'HT
WENERA YRR 111 i 1

édOpnonai on Model 1

6_1_1_L_LL1_L_L_|_1_1_|_1_._J_LJIJ|14_L|L .
Disk System

Figure 21. Assembler OCL Statements (Source Program in Source Library}

30



Note that the additional OCL statement // COMPILE is
required. The following entries in the figure are optional:
PUNCH  This statement specifies where an object
deck is punched. For more information on
statement, see IBM System/3 Model 10 Disk
System Control Programming Reference
Manual, GC21-7512, IBM System/3
Model 12 System Control Programming
Reference Manual, GC21-5130, IBM
System/3 Model 15 System Control
Programming Reference Manual, GC21-5077
(Program Number 5704-AS1), or IBM
System/3 Model 15 System Control Pro-
gramming Concepts and Reference Manual,
(Program Number 5704-AS2), GC21-5162.

OBJECT
operand

This operand is used to indicate to the
assembler the library unit used when the
OBJ option is used on the OPTIONS
statement.

The // LOAD and // FILE statements are as described in
the first example. The // COMPILE statement specifies
both the location of the source library and the required
source program within the library. The // COMPILE
statement may appear at any position between // LOAD
and // RUN.

Macro Processor-Produced Source Program

The macro processor creates a source program on the
$SOURCE file. To indicate that the macro processer has

// SWITCH Considerations

The external indicator Ul indicates that the macro
processor has loaded the SSOURCE file and the source
program is not in the input stream. If this indicator is
on when the assembler is Ioaded, the $SOURCE file

is not loaded.

When the $SOURCE file is to be loaded, external
indicator Ul must be off. This can be ensured by
entering the following statement after the assembler
// LOAD statement:

| |

/171 sl frieln] (@] xx x

L |
L

OCL For Calling the Assembler

It is possible for the user to store a portion of the OCL
statements required for use by the assembler in

a procedure library. They may then be called with a

/| CALL statement, thus reducing the number of
written OCL statements required for each assembly.
Examples are included for source programs on cards and
for source programs in a source library on disk.

Source Program on Cards
If the source program is a deck of cards, the OCL cards

necessary to assemble the program, and the order in
which they must appear, are as follows:

already loaded the $SOURCE file, external indicator Ul IBM
must be turned on. This is done through a // SWITCH reogHan
statement. If this indicator is on when the assembler is oot
loaded, the $SOURCE file will not be loaded. A R P T T

/& ‘ ,
In the following OCL stream, the source program has been H gﬁ‘-L ASM,EL| |
created on the $SOURCE file: q — | }

=) ! I
1BM N
L — ~Source Program Deck I ! T
{ | ?
Sv—" [ 2[ !
E N NR AN N SR RN R RN R AR RN AR KRR 2 NENNENAR
Il 1&0 $|Alss[EM[, RIL i Indlcate that the source file EEEREE I ! i } ; ! l ' I ?
/| lsmrich 1][’”‘:"‘“‘" 1‘ ™ has been loaded by the macro o
7] [t el REE] (S oluRIcEl - .| |
RanaEn LE;J NAME]-[$ /WO, 1. . . ;Oproce“"’ S‘epi -
/7] FILE] IMAME]-[$wiolRK [ 2]s -] 1t | . .
A [Rup| % M fp | ]ii _" ‘{ ‘{ M TIT ' In this example, ASM is the procedure name. F1 refers
g’ T - .ﬁj LT to the disk pack upon which the assembler OCL procedure
eferences the source f»le crea!ed B | { I X . . .
by the macro processor step. 4 u Bl H T is stored. In this case, it would be the fixed disk on

@ Optional on Model 10 Disk System

Note: For more information on the macro processor, see
IBM System /3 Models 10 and 12 System Control Program-
ming Macros Reference Manual, GC21-7562, or IBM
System/3 Model 15 System Control Programming Macros
Reference Manual, GC21-7608.

drive one.

Programmer’s Guide 31



Source Program in a Source Library

If the source program is stored on disk in a source
library, the OCL format must be as follows:

;‘7 Jf‘jﬂ‘;?;“l Gl '—:'i—';'j_'l_’;\I;‘V%Tifpl-Tst?n“vuu
// ;tA L S .Fi' N || |

/I CONMPTLE. SO0URCE-SUBRALUNTIT-RI

/{ IR RN AN

/9 l{ ;_LL_1 L_.A|Ii. _.A.ii_ |

In this example, ASM is the procedure name and F1
refers to the fixed disk on drive 1. SUBRA is the name
of the source program. The user must substitute his
own source program name. Rl is the disk pack upon
which the source library resides.

Sample Assembler Procedure Stored in Procedure
Library

A sample assembler procedure is shown in Figure 22. The
format is as it would appear in the procedure library.

The // LOAD statement and // FILE statements are as
described in preceding examples.

OBJECT PROGRAM DESCRIPTION

The assembler converts the source program into

a set of control information, machine language instruc-
tions, and data, all of which collectively are called an
object program. There is one object program produced
per assembly. Fach object record is originally produced
as a 64-byte field. If the object program is punched on
the MFCU, it is translated into a 96-byte punch record
(bytes 2 to 64 are transtated 4 for 3 for punching;

for every three 8-bit bytes. four card code characters
are created). See Object Program After Punch Conversion
in this section. Each object program generated by the
assembler contains four types of records:

e HEADER record

® ESIL (external symbol list) record
o TEXT-RLD (text-relocation directory) records

e END record

Record Formats

The following paragraphs describe the format of each
record type.

HEADER Record

A HEADER record with record type H is added by the
overlay linkage editor when it processes the assembler
object program. The HEADER record format is:

Object program information field

Hall

12

® Byte 1 Record type identifier H.

® Bytes 2-64 Object program information field.

ESI Record

The object program name, that is the module name and all
EXTRN and ENTRY symbols are placed in the ESL record.
The ESL record format is:

Is l Length -1 ESL Entries | X'00° |
1 2 3 62 63 64
e Bytel Record type identifier S,

e Byte2 Length -1 of the ESL entries.

o Bytes 3-62 ESL entries. Up to five MODULE,

ENTRY, and/or EXTRN fields.
@ Bytes 63-64 Filled with hexadecimal zeros.

m 1BM System/3 Batic Assmbdter Coding Form Foem
ore
PROGRAM o D _ - T UNCHING GRaric —[ I l_ T ] I Lm‘-i oF
[e— HET I il [T 1 [ CarD eLECTAD MUwELR

STATEMENT

Figure 22. Sample Asserabler Procedure in Source Library

32

Iih‘:f:, @l s iJ::“ﬁNﬂn?ﬂ:nJlﬂn]l!l”‘)ﬁo" l1l;ru6tel‘ll809!l)s|ﬁu#ﬁ&uslu:@g’g;(:\‘m(ao‘éﬁ(-asvsnsa:‘ﬂ”)7?1"757!77787730!!025:94%»‘870.83”3.:":1““
/] 1O ] [ ; ] EERIAEANEAEARREA

Bl -V s JUNTT-RIL, RIEMIAlL N-K], TRACK, FFM,A_L__ INNENERRINEEREEN
ANE00C NG LT1-[F R T NS TIRAKE - LU | L 1 ENBEENENETNRRREHNEN

HiL R KL, OACK-NOLA R, N1 TR, RETIAL IN-K, TR g O T[T {J,d‘ SRRTNRNANEE
/RUNL L] ! i INEERASHRNNEEEEREIRD t 1]

t [BRERANERRREERNERERNRRN 1T B B! ,.'_.l_L.uL.;__J_;.E_ BEN
@Optionai on Model 10 Disk Systemn -+ H SEESE ! . 1’+i y L JQ Ly ] |



TEXT-RLD Records

Text records and RLD pointers are combined in this type
of input record. The text portion of each record contains
the object code for the program, while the RLD pointers
indicate where the address constants and relocatable
operands of the text are located. If the NOREL option
has been selected on the OPTIONS control card, there
will be no relocation indicators in the record. The format
for the TEXT-RLD record is:

| )
Texts=4X'00'¢RLD
1 j

|+

Length-~1 I Assembled Address

1 2 3 4 5 64
e Bytel Record type identifier T.
® Byte? Length - 1 {of text only).
e Bytes 3-4  Assembled address of the low order (rightmost)

text byte in the record.

e Bytes 5-64 Text starts at byte 5 and goes right, RLD
starts at byte 64 and goes left. The leftmost
end of the RLD section is marked by
hexadecimal zeros, which fill the space
between the Text and RLD sections. The end
of text is always followed by at least one
byte of X'00".

END Records

The last record in each object program is an END record.
It contains the entry address of the object program. If the
user did not include an operand in his source program
END statement, the object program END record generated
by the assembler will contain the address X'‘FFFF’. The
END record format is:

Entry END card program
E Address
1 2-3 4

® Byte1 Record type identifier E.
e Bytes2-3 Entry address of the object program.
e Bytes 4-64 Program to transfer control to Entry address.

Object Program After Punch Conversion

All four types of records (HEADER, ESL, TEXT-RLD,
and END) assume the same format when they are punched
into cards. The punched record format, using 96-column
cards, is as follows:

Record ID | Data Field | Self Check | Identification
Number Sequence Field
1 2 85 86 88 89 96
Column 1 Record type identifier (H, S, T, or E).
Columns 2-85 Data field, transformed 4 for 3. (For every
three 8-bit bytes, four card code characters
are created for System/3 96-column cards.)
Columns 86-88 A 2-byte self check number transformed
4 for 3, to 3 bytes.
Columns 89-96 Identification/sequence field.

The punched record format, using 80-column cards, is as
follows:

Record ID | Data Field | Blank Self Check | Identification
Number Sequence Field
1 2 64 65 69 70 72 73 80
Column 1 Record type identifier {H, S, T, or E).
Columns 2-64 Data field, bytes 2 to 64 of the object record.

Cotlumns 65-69 Blank.

Columns 76-72 A 2-byte self check number transformed 4 for 3,

to 3 bytes.

Columns 73-80 identification/sequence field.

Note:. When an object module is punched, it is preceded
by a // COPY OCL card and followed by a // CEND OCL
card. These cards are provided for placing the object
module in the R library with the Library Maintenance
program (SMAINT).

Programmer’s Guide 33



ASSEMBLY TIME DATA FILE REQUIREMENTS
There are three data files necessary at assembly time:
1. Source file (NAME-$SOURCE)

2. Object file (NAME-SWORK)

3. Work file (NAME-SWORK?2)

Model 10 Disk System: These files must be located on
5444 disk drives. 1f a // FILE statement is not provided
for $WORK2, the assembler allocates its own work space.

Model 12: These files must be located on the simulation
area.

Model 15: These files must be located on either 3340,
5444, or 5445 disk drives.

Source File ($3SOURCE)

The source file is used by the assembler for storage of the
source program. During the job initialization procedure,
a disk system management program places the source
program in the source file (if the macro processor has not
{oaded the file}. The source records are obtained from
either the system input device or a source library using
the // COMPILE statement. (See OCL statements for
Assembly in this section.) Each source record contains
96 bytes, so that eight records occupy three disk

sectors in the source file. (One sector = 256 bytes, and
is the smallest addressable unit on a disk.) Figure 23

is a source file space requirements table showing how
many tracks are required for the size of the source pro-
gram indicated.

If the assembler is processing a source tile created by

the macro processor. the // FILE statement for $SSOURCE
must correspond to the SSOURCE file produced in the
MAacro processor run.

Object File (SWORK)

The object file is used by the assembler for intermediate
storage of the object program. The object records are
stored in four 64-byie entries per sector. (See Object
Program Before Conversion in this section.) Becuause each
track in the object flle can contain 96 records on the 5444,
80 records on the 5445, or 192 records on the 3340, two
tracks usually are sufficicnt for most assemblics.

34

Work File (SWORK2)

The work file 1s a scratch file used by the assembler
throughout the assembly process for intermediate data
storage. The file contains four types of data:

l. [ntermediate text

9

Symbol table entries
3. Cross-reference data

4. Error information

Intermediate Text

Intermediate text is made up of fixed length (1 0-byte)
records. The number of fixed length records is variable
for each source statement, and is dependent on the
statement type and the contents of the operand field.

The tollowing rules can be used o determine intermediate
text file requirements. (The rules apply only to error-

free source statements. A statement that contains errors
generally requires less storage space.)

All Instructions.

e One record for each machine or assembler instruction,
or comment statement.

e Onc record if there is a name field entry.

Machine Instructions: One additional record for each
term in the operand field.

—

Source Program Size Number of Tracks Required
(Statements)
——— - — —— ——eo ————
5444 * 5445 3340
100 ) 2 2 | 1
| H : —
200 4 | a 2
el = | R S
300 5 | 6 3
| e e o | ¥ I —_— _
400 | 7 a 4
500 3 10 4
600 i 10 12 5
700 [ 1" 14 6
i 4 i ]
800 13 15 | 7
900 15 j 1 8
1000 16 19 8

*Or simulation area

Figure 23. Source File Space Requirements Chart




Assembler Instructions:

e END, ENTRY, EQU, EXTRN, ORG, USING — One
additional record for each term in the operand field.

e [SEQ, PRINT, SPACE, START — One additional record
for each instruction.

e TITLE — Additional records = N/8 (plus one for any
non-zero remainder); where N is the number of
characters in the TITLE operand field.

s DS/DC

— One additional record for duplication factor
(default or specified value).

— One additional record for each term in the length
specification.

e DC

— Address constant—One record for each term in
the address constant expression.

— All other constants—Additional records - N/8
(plus one for any nonzero remainder); where N is
the number of bytes required to contain the
converted constant plus one.

Figure 24 is a sample list of instructions together with the
intermediate text space requirements for each.

Text Space
DECK START O 3
ENTRY SLC A{2),A 5
MVC A(2),CON1 4
ALC A(2),CON2 4
HPL X'FF X'FF’ 3
A Ds CL2 4
CON1 DC L2500 5
CON2 DC 1L2°-320’ 5
END ENTRY 2

Figure 24. Intermediate Text Space Requirements

Symbol Table Entries

Whenever a symbol is used in the name field of an instruction
(except a TITLE statement) it becomes a symbol table

entry. When the assembler user requests a cross reference,

all symbol table entries are added to the work file immedi-
ately after the intermediate text. The symbol table entries
are also 10-byte, fixed-length records. Assuming an average
of one name entry for every four source statements, one
sector per 100 source statements is required.

Cross-Reference Data

Cross-reference data is written in the same area as the
intermediate text and symbol table entries and does not
impose any additional space requirements.

Error Information

Each statement in error requires a 10-byte error record;
therefore, a track will contain at least 600 error records.

Work File Space Requirements

Figure 25 is a work file space requirements table showing
the number of tracks required for the number of source
statements indicated. The requirements for intermediate
text and symbol table entries are summed to get the
table values. Approximately 40 sectors per 100 source
statements are needed to cover most varieties of source
statements. 1f a SWORK?2 // FILE statement is not pro-
vided on the Model 10 disk system assembler, the source
file ($SOURCE) size is used for the work file size.

Source Program Size Number of Tracks Required
(Statements)
5444° 5445 3340
100 2 2 1
200 4 4 2
300 6 6 3
400 7 8 4
500 9 10 5
600 1" 12 6
700 t2 14 6
800 14 16 7
900 16 18 8
1000 18 20 9

*Or simulation area

Figure 25. Work File Space Requirements Chart

Programmer’s Guide 35



OPERATING PROCEDURES

Placing Assembler Subroutines in R (Routine} Library

Assembler subroutines can be placed on disk in the R
library by two methods.

].

[89]

For

Punching an object deck and using the Library
Maintenance program (SMAINT) to place it in the
R library.

Specifying OBJ in the OPTIONS statement to
place the object program direcy into the R
library. The retain entry can be either temporary
or permanent.

more information on the OCL and utility control state-

ments needed to use SMAINT, see /BM System /3 Model 10
Disk System Control Programming Reference Manual,
GC21-7512, IBM System[3 Model 12 System Control Pro-
gramming Reference Manual, GC21-5130, or IBM System/3
Modet 15 System Control Programming Reference Manual,
GC21-5077.

Plac

ing a Punched Object Program in the R Library

In the sample procedure shown below, the subroutine
SUBRA is being placed in the R library from a punched
object deck.

/L

OAD Statement: In this sample procedure, SMAINT

is the routine which interrogates the // COPY statement

and

calls the proper routine to accomplish the desired

results.

F1 is the disk pack upon which the utility program resides.

/] COPY Statement: The FROM parameter names the

devi

ce holding the subroutine to be entered. The

READER option must be used to copy the assembler

The LIBRARY parameter, R, specifies a relocatable library.
The NAME parameter gives the name of the subroutine to
be entered. This name must be the same as the program
name (that is the name on the START instruction). The
following names are restricted and cannot be used in this
parameter:

e ALL
e DIR

e SYSTEM

The TO parameter specifies the physical destination of
the object program (in this case, R1).

The RETAIN parameter specifies the ultimate disposition
of the object program.

// CEND (Copy End) Statement. The /| CEND
statement must follow the object deck.

// END: The /[ END statement must be the end of all
library maintenance decks.

Placing an Object Program Directly in the R Library

When the object program is placed directly in the R
library, it has the following characteristics in the library.

o Name of the object program is the module name
specified in the START instruction or the default
module name. See the MODULE NAME MISSING
diagnostic in Appendix C. System/3 Assembler —
Source Language Error Codes and Diagnostics.

e Retain entry in the library is temporary if OBJ or OBJ(T)
is specified and permanent if OBJ(P) is specified.

punched object program.
{BM System/3 Basic Assmbler Cading Form
M4
PROGAAM —| PUNCHING GRAPHIC l PAGE
PAOTR AMMER lnus 1 INSTRUCTIONS PuNCH l CARD ELE
STATEMENT
1 7’?’“35678;!;"??m| l4|s|e|7te|9muna?;'nuzsnﬂnn;n:nnn;u:ﬁ:n:n:nnnu nuusuuqnwuszmusﬁxsvssT?eﬂé‘on::szuueﬁuuuwmn v77:7475:s'nva'>smu|mms«
] | -
LOA $ i Tl F : : ; I
/] UN | : | | Lk
/1 coplyl [FROM- ER], [LIRIRIARY- R, -[SWERA[, TOl- TR EEE 1y
g ! | BE)
¢ | ! l L1
L&t i t BE EBEENBERENER
- Object Deck b ! : e . -i NEREI T
i | {1, __T.F _L H DI 8 S Lok
) I HERE | | | B
§ 1 =t EEEREEREEE
s o i -l _1 R L 44 7_:_:T; ot
E ND | - A L e - t 1 TR
HTHTT NANNRRAARNRRANANNRDRNANENARSANRR
T ; i i ' i T T TTTT I T Iy

36




® Library to receive the object program is the disk speci-
fied in the OBJECT operand of the // COMPILE state-
ment. The default disk is the program disk.

Using Assembler Object Program with the Program Loader

The user may have the need to load a user-written assemb-
ler object program as a stand-alone program. To use

an assembler object program in this manner it is necessary
to have the program punched into an object deck on the
system punch device. The assembler language user ob-
tains an absolute loader by specifying DECK and NOREL
on the OPTIONS card (see NOREL option under OPTIONS
Statement). The 96-column loader contains six cards and
the 80-column loader contains one card.

It is the user’s responsibility to ensure:

1. That he has not referenced any address greater than
the storage capacity of the System/3 on which the
program is to be executed.

2. That the address specified on the START instruction
statement is greater than X'FF’. (The START
assembler statement must specify the address at
which the program is to be loaded.)

3. That the END statement indicates the start-of-control
address.

Note: If absolute object decks for more than one assembly
are to be loaded together, then the loader must be re-
moved from the front of the second and all subsequent
decks, and the END card must be removed from the

back of all decks except the Jast.

1BM 5424 MFCU

The procedure for loading and executing an assembler
object program on the IBM 5424 MFCU is as follows:

1. Clear MFCU.

2. Place assembler object deck, including the toader,
in primary hopper.

3. Press MFCU START.

4. Ready the printer.

5. Set IPL SELECTOR to MFCU for Mode] 10 Disk
System or ALT for Models 12 and 15.

6.  Press console PROGRAM LOAD to load and execute
the assembler object program. (L1 or L2 halt is
issued for error or not ready conditions on the
MECU.)

1BM 2560 MFCM (Model 15 only)

The procedure for loading and executing an assembler
object program on the IBM 2560 MFCM is as follows:

1. Clear MFCM.

2. Place assembler object deck, including the loader,
in primary hopper.

3.  Press MFCM START.
4.  Ready the printer.
5. Set IPL SELECTOR to ALT.

6.  Pressconsole PROGRAM LOAD to load and execute
the assembler object program. (L1 halt is issued for
error or not ready conditions on the MFCM.)

IBM 1442 Card Read Punch {Models 12 and 15)

The procedure for loading and executing an assembler
object program on the IBM 1442 Card Read Punch is as
follows:

1. Clear 1442.

2. Place assembler object deck, including the loader,
in hopper.

3. Press 1442 START.

4.  Ready the printer.

5. Set IPL SELECTOR to ALT.

6.  Press console PROGRAM LOAD to load and execute

the assembler object program. (L1 halt is issued for
error or not ready conditions on the 1442.)

Programmer’s Guide 37



ASSEMBLER LISTING

An important part of the assembler’s output is the assem-
bler listing. The assembler’s printed output is on the system
printer (under control of the // PRINTER OCL statement
for Models 12 and 15).

The listing is a printed reproduction of the source program
and the corresponding object code generated for it to-
gether with other important information. Figure 26 at

the back of this section is a sample listing. Specifically,
the listing consists of the following:

Control Statements

Any OPTIONS or HEADERS statements specified by

the user are printed and specification errors are noted.

A list of OPTIONS in effect during the assembly is then
printed. The page is ejected before the control statement
information is listed.

38



External Symbol List (ESL)

The cbject program name, EXTRNs, and ENTRYs will
appear in the following format:

Symbol Type
Program name MODULE
ENTRY symbol ENTRY
EXTRN symbol EXTRN

Source and Object Listing
The source and object listing consists of the following:

e Error code for improperly coded statements (see
Diagnostics in this section).

e Location counter value, in hexadecimal, of the high
order address of the object code generated by the
corresponding source statement.

e The object code, in hexadecimal, generated by the
corresponding statement.

¢ The value, in hexadecimal, of the expression in the
operand field of the EQU, USING, DROP, and END
statements, the storage address, in hexadecimal, of the
low order address of the DC constants, and DS storage
areas.

e Statement number, in decimal, for each statement,
including comment statements. These numbers are
assigned by the assembler. The statement number is a
four-digit field which limits the assembly to 9,999
statements.

@ The source image, which is forinatted according to the
size of the panter used:

Fold point for 96~ Fold point for 120-
or 126-column printer

Source Record
column printer

e A
lSource Statement (Columns 1-88) : lID/SEOJ
i L
1 52 53 76 77 8889 96

The following examples assume the 1D/SEQ field is in
columns 89-96 of the source record:

Note: The 1ID/SEQ field may be from one to eight adja-
cent characters long and may reside anywhere between col-
umns 73-96.

1. On a 96-column printer, the ID/SEQ field is left-
justified in columns 89-96 of the print line. If
columns 53-88 of the source statement are blank,
line 2 will not be printed.

Object code Columns 1-52 of the
line 1 field b |source statement ID/SEQ field
1 35 36 37 88 89 96
Columns 53~88 of
line 2 source statement

53 88

2. Ona 120-column or 126-column printer, the
ID/SEQ field is left-justified in columns 113-120
of the print line. 1f columns 77-88 of the source
statement are blank, or if the start of the 1D/SEQ
field on the source record is less than column 77,
line 2 will not be printed.

Object code |Columns 1-76 of the
line 1 field b |source statement ID/SEQ field
1 35 36 37 112 113 120
Columns 77-88 of
line 2 source statement

101 112

3. With the 132-column printer, the complete source
image is printed on one line.

Object code Columns 1-88 of the
field b |source statement ID/SEQ field
1 35 36 37 124 125 132

Note: Statements generated by the macro processor
contain a plus symbol (+) in column 36.

Programmer’s Guide 39



Diagnostics

The source and object program listing includes error codes
for improperly coded statements. These errors are listed
again, with a message, at the end of the source and object
program listing under the heading DIAGNOSTICS. This
list provides the following information:

e Statement—The statement number, in decimal, (assigned
by the assembler) of the statement which is in error.

e Error code—a 3-digit alphameric code. See

Appendix C: System/3 Assembler—Source Language

Error Codes and Diagnostics for a list of error codes and
translations.

e Message—A translation of the error code indicating the
type of error made.

Also included under DIAGNOSTICS are the following
error summary statements:

e A count of the total statements in error in the assembly.

e A count of total sequence errors in the assembly if
sequence check is requested.

40

Cross-Reference List

If XREF is specified on the OPTIONS statement this list
includes all symbol names referred to in the source program.
The following columns are included:

e Symbol—The symbol name.

e Length—The decimal length attribute of the symbol in
bytes.

e Values—Value, in hexadecimal, of the symbol.

o Defined—Statement number, in decimal, where the
symbol is defined.

e References—Statement numbers, in decimal, where the
symbol is referenced. Symbolic references to data areas
and machine registers whose contents may be altered by
execution of a machine instruction are flagged with an
asterisk.

At the end of the cross-reference list, the error summary
statements are printed again.



SUBRC

SYMBOL

TYPE

EXFERNAL SYMBOL LIsST

VER 00, MOD 00 01/30/76 PAGE

SURRC MODULE
‘\-\_N__",,__\_____,ﬂ—————‘__——""———‘__——___‘5\_N_AH__i“”4,———‘**“'“““

SUBRC

ERR LOC

co0q

0000 34
0004 236
0008 34
000C 34
0010 C2
0014 2C
0019 78
001C F2
001F 85
0022 8BS
0025 BC
0028 C2
002C CO

SUBKC

SYMBOL LEN
ARR col
CONG ce2
GET QCa
RET CCa
SAVE CO4

SUBARC oCl
TEST X0}

SAMPLE Ex 17

o&
[ox:]
ca
c2
02
0l
oo
90
02
02
c3
02
87

003G 0006

TOTAL STATEMENTS
.—mmm—mmm—m————

P,ﬂ”—/““—“'—‘—_ﬂﬂ—ﬁ~"*~"__’—‘_*‘”‘_‘~——————-\—/’-—“—___’_‘“‘~—«’_“‘———~——”"”"‘\\\_,—\4*\’ﬂ'//’“\«‘%“

VaLUEL

060¢
Co31
coLc
co2¢C
ac2e
00GC
coLs

TOTAL STATRMENTS

OBJECT CCnE

oc13
gC2y
0C2F
ocz=
scec
OCIf 0%
ocC

0s

02

3

oG
0GCC
occc

CEFN

£C3s
c033
€G24
CL32
ce3l
€C1s
CC26

IN ERRUR

1A ERRUR

CRISS REFERENCL

REFCRFNCES

on2g
cn21
cozox
0C22+
23

GG21x 0022

cc27
CCzh*

IN THLS ASSEMBLY = Q

e
T ——

VER 00, MOD 00 01/30/76 PAGE 3

SURKRULTINZ—=F IFLD AND INDICATOR
ADRDR STMT STIRCE STATEMENT VER 00, MOD 00 01/30/76 PAGE 2
FAR T T A LS IR YRR S S S R N e R S R AR A R AR R R R R R N Rt
ERE %
4 % NA¥E ccecessssaas SUBRC. &
5w *
5 % FUNCTION .. eeeaes EXIT SUBROUTENE wITEH FlelLD AND INDICATOR *®
7= PARAMETERS., *
a *
5 % THE CODE GENERATEL BY THE COMPILER IS AS FOLLOWS: =*
1C = *
[ B SULRC x
te = ocC ILIPFLELC LENGTR-1! *®
13 « DC AL2YAOCRESS OF Klorl OF FLELDY *
14 = nc XL1'0G ®
15 * oc XL1VINLICATOR MASK? x
16 = v XLL'RECISTER 1 DISPLACEMENT?® *
17 # %
IR AN IR s R i R R R s R S A S R A R R R ]
19 SURRC  STARI 0O
?0 ST GET+3,4ARR SAVE PARM AULR
21 A CONb, AKR INCREMENT TO RETLRN
22 5T RET+3,ARR SAVE RETURN
23 ST SAVE+3,2 SAVE XR¢Z
24 GRT La Bk, 2 GET PARMETER ADDRESS
25 MvC TEST+212),5(+2) MCVE IN MASK AND CISPLACEMENT
26 TEST THN sty 1) ,6-% TEST INUICATCR
27 JF SAVE INDICATUKR OFF
2% L 2042142 GET CONTROL FIELC AQDRESS
ral L 5042)92 GET tCOKk UP ACDRESS
30 Mv [ 0(,2)sCC? #OVE IN CeC!
31 SAVE LA w2 RESTORE
32 RET ) x—% RETURN
D031 33 L6 oC TL2t6t
asne 34 AR EQU 8
TFFF 35 END
T THIS ASSEMSLY = 0

——— e

Figure 26. Sample Assembler Listing

Programmer's Guide

41




External Symbol List (ESL) Table Size

The ESL table is an execution time main storage table
containing the module name (START statement name or
ASMOBJ) and each EXTRN and ENTRY symbol defined
in an assembly. The total of EXTRNs and ENTRYs
allowed in a single assembly is limited by the ESL table
size.

Using the Model 10 disk system assembler, the limit is 74
EXTRNSs and ENTRYs.

Using the Model 12 and Model 15 assembler, the limit varies
with the amount of storage available in the execution partition.
The limiting sizes and associated storage ranges are:

Storage Available Limit of EXTRNs and ENTRY s

10K 84
12K 124
14K 169
16K 209
18K - 48K 254

42



MACHINE LANGUAGE INSTRUCTION FORMATS
Operation Code

The first byte of cach instruction, the operation code,
specifies the addressing modes to be employed by the

instruction in bits O through 3, and the operation to be
perforrmed in bits 4 through 7.

Q Code

The second byte of each instruction is the Q code. In 2-
address formats, the Q code is always a length count, In
other formats, depending upon the operation specified, the
Q code can be:

e Length count

e [mmediate data

Appendix A. Machine Instructions

Register address

Data selection

e Branch or skip condition

e Device address and functional specifications

Control Code

The third byte of an instruction in the Command Format
contains additional data pertaining to the command to be
executed.

Storage Addresses
For instructions in the 1-operand and 2-operand formats,

the third byte of the instruction and all bytes following
are storage address information.

e Bit mask
3 Bytes
4 Bytes . Op Q Address
op Length Destination | Source Code Code Displacement
Code Count Address Address
. 0 | 1
Dispiacement | Dispiacement ;'8 15|16 23
0 78 1516 23724 31 e { RN
- - | ~ ~
S Bytes immediate Data ! Destination Address 7
Op Length Direct ] Source | Bit Mask Source Address |
Code Count Destination Address { Register Address Branch Address |
Address Displacement } Branch or Skip Condition ' ;
0 78 7516 3132 39 \Data Selection | |
~ e 1 |
~ | l
5 Bytes 4 Bytes < ) |
Op Length Destination Direct )
Cade Count Address Source gp Q Direct
Displacement Address ode Code Address
0 78 1516 2324 39 0 78 1516 31
One-Address Formats
6 Bytes
3 Bytes
Op Length Direct Direct
Code Count Destination Source Op Q Controt
Address Address Code Code Code
0 78 15186 3132 47
0 7's 15116 23
— - - -
-~ T
@ Two-Address Formats | Device Address |
| and functional !
{ specifications |
: Skip Conditon t
. Halt Identifier 1
@ Command Farmat
Appendix A. Machine Instructions 43




Op Mnemonic Type
64 ZAZ

66 AZ \<-2ADDRESS+
67 Sz

68 MV X

6A eo [op] o] b1 [p2 |
6B ITC

6C MvC I<—4 bytes—»l
6D CLC

6E ALC R1 R2
6F SLC

70 SNS

71 LIO 1 ADDRESS
74 ST '<_..‘

75 L

78 TBN

79 TBF l<—3 bytes—»{

7A SBN

7B SBF

7C MVI R1

7D CL!

7E Scp*

7F LCP*

84 ZAZ

86 AZ |-<-2 ADDR ESS—P—I
87 sz

88 MV X Indexed Direct
8A ED [op] @] Dt T Operand Two |
8B ITC

8C MVC |I: 5 byte ;l
8D CLC

8E ALC R2

8F SLC

94 ZAZ

96 AZ i<-2 ADDRESS->|
97 Sz

98 MV X Indexed
9A ED Op Q D1 D2
oo | e e[ a] o1 ] |
aC MvC I<—4 bytes—b-l
[]] CLC

9E ALC R2 R1
9F SLC

A4 ZAZ

AB AZ '-4-2 ADDRESS—P,
A7 Sz

A8 MV X Indexed
AA ED Op| Q D1 D2
av | oEp o oe] af | |
AC MVC I: 4 bytes ;!
AD CLC

AE ALC R2 R2
AF SLC

Op Mnemonic Type

04 ZAZ

a6 AZ l<-2 ADDRESS —'.‘{
07 Sz

08 MV X Direct

0A ED |7Op I O—|Operand One I Operand Twﬂ
0B ITC |
oc MVC ’: 6 bytes :l
oD CLC

OE ALC

OF SLC

14 ZAZ

16 AZ ' ‘<— 2 ADDRESS-»-I
17 Sz

18 MV X Direct Indexed

1A ED |Op | OIOperand One ] D2 |
1B ITC

1c YIVICHE ™ 5 bytes =
1D CLC

1E ALC R1

1F SLC

24 ZAZ

26 AZ I~<—2 ADDRESS—D{
27 sz

28 MV X Direct Indexed

2A ED |?p | O|Operand One I D2 [
2B ITC | |
2C MVC |: 5 bytes :I
2D CLC

2E ALC R2

2F SLC

30 SNS

31 LIO 1 ADDRESS

34 ST

35 L Direct

36 A l Op | Q | Operand One —I

38 TBN

39 TBF l<— 4 bytes—b'i

3A sen !

3B SBF

3cC MV

3D CLI

3E SCp*

3F LCP*

44 ZAZ

46 AZ i‘— 2 ADDRESS—D‘
47 Sz

48 MV X

an ED ‘ Op | o| D1|  Operand Two |
4B ITC

4C MVC E: 5 bytes —!
4D CLC

4E ALC R1

4F SLC

54 ZAZ

56 AZ 2 ADDRESS

57 Y4

58 MV X Indexed

5A ED [op | @] D1 ] D2 |

58 ITC

5C MVC l“_—4 bytes—>|

5D CLC

5E ALC Rt R1

5F SLC

44

* Model 15 only,

Legend:

Di
D2 -
R1
R2

I

Displacement, operand 1
Displacement, operand 2
Register 1
Register 2




Op Mnemonic Type

BO SNS

81 Lo 1 ADDRESS
B4 ST f—|

BS L Indexed
B6 A [Op] G T D1 ]

B8 TBN

89 TOF  l——3bytes—]

BA SBN

BB SBF

BC MV XR2

8D CLI

BE SCP*

BF LCP*

co BC Direct
c Tio  [op] a ] Addres)
Cc2 LA = 4 bytes =———p=}{
Do BC

D1 Tio  [op[ Q| D2] +XR?
D2 LA = 3 DY 1€ i}

EO BC

£1 Tio [op] a] D2} +XR2
£2 LA jt— 3 by tes ———ip{

FO HPL

F1 APL

F2 sk [op] o] R |

F3 SIO ‘.4—3 bytes —.’

F4 CCP*

*Mode! 15 only.

Appendix A. Machine I[nstructions

45



9t

Op Coae a Operands Total | Type
{one by1e) Code Instr
Bns B Length
03 Bits 4.7 Ine First +—— Second—— Summacy ————
Byte
0 1 2 3 4 5 6 7 8 9 A 8 C D £ F Op | Q i-—ooeraﬂd———
il zaZ AZ | sz | mvx ED | ITC | MVC| CLC| ALC] SLC 2 Bytes 2 Bytes Direct 8 X | J
I Direct TBve D
A . - - o yte Disp 5 X D1
ZAZ Az | sz | mvx 1 ED | 1TC | mve] cLe| ALcy sl IndexBy A1 l
| zZAZ Az | sz | mvx { €D | 1Tc | mve] cLe]| aLc] stc 1Byte Disp 5 X b2
| i Index-By R2 |
| s 1 2 -
| e ST | L a BN SBF | MVI| CLI [SCPe|LCP* <~ 4 Y |
I T t —] f 1
4 ZA2 az | sz ED | 1TC | SLC 1 Byte 2 Bytes Direst 5 % | o | J
) i
I | T T i Displacement T Bvie Disn 1
| - 5> > | e e 2 ¥ ST
! i | zaz A2 |82 ‘X | ED ¢ Indexed Index-By R1 4 b D1 | D1 |
[ { I By A1 T Byte Di | s s
| ey 3 L g - : o yte Disp 4 . 1
| 6 | | AZ Az | s VIV X | EC LC| ALC]sLC) Index By 2 X | D1 | D2
I T N T o T !
|7 | SNS| LIO| 57 L A TEM| TEF | SBN| SBF | Mvi] CLE|SCP* LCP*| < 3 Y i | D1
- 1 — |
! 1 I | - i ) I I
g l | ZAZ AZ | 52 | MV X | €D | 1Te | mvc| cLe| aLcy sLe 1 B 2 Bytes Direct 5 D2 !
U Y ] S I s | g i 1 Byie | s }
I T [ Displacement ] Byte Disp % e
g 78 — - e Lo s A 1 3
|1 i 5 R ple | | LT Sk indexed | index-By R1 Dz | D1
| t | I i : By R2 [ 1Byte Disp 4 i
A EL {5t Index-By : (). | D2
b — | ki |
| | | 1
! B SNS | LIC | | s A TEF ¥ | o2 |
= ! t T —
[ c |Bc iTio] z
' t ¢
| o (1S o 3 z
| il I | Index-By R1 I B
T T =z : T
[ =, =T i Byte Disp 3 7 Ea
fr'" BE: ) T LA Index-By RZ §
[ T T T BT 3 ; T ]
| L Je | siojccpe ;
L il B!

"Nodel 15 only.




MNEMONIC OPERATION CODES (MACHINE)

Instruction® Mnemonic Operation Code

Zero and Add Zoned Decimal

Add Zoned Decimal
Subtract Zoned Decimal

Move Hex Character

Move Characters

Compare Logical Characters
Add Logical Characters
Subtract Logical Characters
Insert and Test Characters
Edit

Move Logical Immediate
Compare Logical Immediate
Set Bits On Masked

Set Bits Off Masked
Test Bits On Masked
Test Bits Off Masked
Store Register

Load Register

Add to Register

Branch On Condition
Test 1/O and Branch
Sense [/O

Load [/O

Load Address

Load CPU***

Store CPU***

Advance Program Level
Halt Program Level
Start I/O

Command CPU***

Jump On Condition

ZAZ
AZ
SZ

MVX
MVC
CLC
ALC
SLC
ITC
ED

MVI
CLI
SBN
SBF
TBN
TBF
ST

BC

TIO
SNS
LIO

LCP
SCP

HPL
SI0
CCp

IC

Two-address
Format**

One-address
Format**

Command
Format**

* For information concerning specifications for the use of
these instructions with the Model 10, see the IBM System/3
Model 10 Components Reference Manual, GA21-9103,
or with the Model 15, see the IBM System/3 Model 15
Components Reference Manual, GA21-9193.

** See Machine Language Instruction Formats in this

appendix.

*%% These instructions are for the Model 15
but they can also be generated on the
Model 12 through the macros $LCP, $SCP,
and $CCP. For more information concerning
the use of the Model 12 macros, see
IBM System /3 Models 10 and 12 System
Control Programming Macros Reference
Manual, GC21-7562.

Appendix A. Machine Instructions

47



48

EXTENDED MNEMONIC CODES
Instruction

Move Hex Character (MVX)

Move to Zone from Zone

Move to Numeric from Zone
Move to Zone from Numeric
Move to Numeric from Numeric

Branch On Condition (BC)

Branch

Branch High

Branch Low

Branch Equal

Branch Not High

Branch Not Low

Branch Not Equal

Branch Overflow Zoned
Branch Overflow Logical
Branch No Overflow Zoned
Branch No Overflow Logical
Branch True

Branch False

Branch Plus

Branch Minus

Branch Zero

Branch Not Plus

Branch Not Minus

Branch Not Zero

Jump On Condition (JC)

Jump

Jump High

Jump Low

Jump Equal

Jump Not High

Jump Not Low

Jump Not Equal

Jump Overflow Zoned
Jump Overflow Logical
Jump No Overflow Zoned
Jump No Overflow Logical
Jump True

Jump False

Jump Plus

Jump Minus

Jump Zero

Jump Not Plus

Jump Not Minus

Jump Not Zero

Command CPU (CCP—Model 15 only)

Supervisor Call

Mnemonic Operation Code

MNZ
MZN
MNN

BH
BL

BE
BNH
BNL
BNE
BOZ
BOL
BNOZ
BNOL
BT

BF

BP
BM
BZ
BNP
BNM
BNZ

JH
JL
JE
JNH
JNL
JNE
Joz
JOL
JINOZ
JNOL
JT

JF
JP
M
JZ
JNP
JNM
INZ

SvC

Q Code

X000
X022’
Xor
X03

X87
X84’
X882
X881
X004’
X02
Xor
X‘88’
X‘AQ°
X08
X220
X110
X90’
X84’
X82
X‘81’
X04’
X022
Xor

X87r
X84’
X822
X8r
X'04’
X902’
Xor
X888
X‘A0’
Xo8
X220
X10’°
X90’
X84’
X‘82’
X8r’
X04°
X0
Xor

X10

T,



Assembler Language to Machine Language Relationships

The following charts show the relationship between a
machine instruction statement as coded by the System/3
Basic Assembler Language programmer and the machine
language as generated by the assembler.

For exainple, the instruction coded by the programmer is
ZAZ FINAL(S),DONE(1,1). From the second line of the
first of the charts we can develop the relationship between
the instruction and the machine code as follows (assume
FINAL is a relocatable symbol with value X*131B” and
DONE js an absolute symbol with value X‘BA'):

Machine instruction statement
as input 1o assembler

N_‘/—\
ZAZ FINAL (5}, DONE (1, 1}

FAVTH ] L

ZAZ AN(L1),D2(L2,R1) ‘ 14 T 12 U a1 Taddress Al ‘Disp D2

from R1 I

l

t T
{1a T a4 { o ] 13 | 18] 8a |
e T

Five-byte machine instruction generated by assembler

Used in this manner, the following charts show what
machine code results from a particular assembler language
statemment, and vice versa, what assembler language format
obtains a particular machine code format.

The abbreviations used on the following pages mean:

Al Direct address, operand 1
A2 Direct address, operand 2
D!  Displacement, operand 1

D2 Displacement, operand 2

Ll  Length of operand |

L2 Length of operand 2

R1  Register |

R2  Register 2

RX  Local storage register

I Immediate data

Appendix A. Machine Instructions 49



Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
ZAZ AT(L1},A2{L2)} 04 I L1-L2: L2-1 I Address A1 ] Address A2
) ! | [
ZAZ A1(L1),D2(L2,R1} 14 [ L1125 L2-1| Address A1 | Disp D2 |
| | | | from R
\ i ) | J |
ZAZ A1(L1),D2(L2,R2) 24 I L1-L21 21 | Address /11 | DbispD2
| 'l | | fromR2||
| . X | | |
ZAZ D1{L1,R1},A2{L2) 44 ! L1-L2; L2-1 I Disp D1 | Address A2
| | | _fromRi1 I I
T
| | |
zaz D1{L1,R1),D2(L2,R1) 54 | L1-L2i L2 ] Disp DT | Disp D2 | |
. f | fromR1 = fromR1 I
! . | |
ZAZ D1(L1,R1),D2(L2,R2) 64 [ Li-L2iL21 1 DispD1 | Disp D2 | l
. ! | fromR1 , fromR2 |
i | ! |
ZAZ D1(L1,R2),A2(L2) 84 | L2121 0 pispD1 | Address A2 |
| | | from R2 | ! |
J — ] : ! |
ZAZ D1{L1,R2).D2(L2,R1) 94 [ L1-L27L21 ) Disp D1 | Disp D2 |
| ! I tomp2 | fromR1 |
: — | ! | |
ZAZ D1{L1,R2),D2{L2,R2) A4 L1-L2¢ L2 | Disp D1 l Disp D2 | |
l | from R2 from R2
1 | 1 1 I |
] | I
NOTES:

If L1 or L2 is not specified, the implied length is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

50




Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
L t
AZ AT(L1},A2(L2) 06 . L1-L2'12-1!  Address At | Address A2
t T ] . T
AZ A1(L1),D2({L2,R1) 16 | L1-L2 : L2-1| Address Al ’I Disp D2 | |
L | — | ]' fromR1 |
AZ A1{L1),D2(L2,R2) 26 i L1-L2 ; 1211 Address A1 I Disp D2 '
[ L [ | fromR2| |
AZ D1{L1,R1),A2(L2) 46 2 : L2117 Disp D1 | Address A2
I || fromR1 I |
- T l l
AZ D1(L1,R1),D2(L2,R1) 56 Li-L2! L1 pispD1 | Disp D2]
| L | fromR1 | fromR1 | |
[ | 1 |
AZ D1{L1,R1),02(L2,R2) 66 L1-L2) 121 DispD1 ' DispD2]! ‘
| N | from R1 | fromR2 | l
| L [ !
AZ D1(L1,R2},A2{L2) 86 | L1-L2}L2-1 DispD1 |  Address A2 |
|
F 4' | fromR2 1 |
4 1
" 1
AZ D1{L1, R2),D2(L2,R1)| [ 96 T L12j2a ] pispD1 | DispD2] | |
| L | fromR2 'l from R1 | [
| ' N | I
AZ D1(L1,R2),D2(L2,R2) A6 L1212t DispD1 | Disp D2 | |
' IL fromR2 | from R2 |
| —
i L |
NOTES:

If L1 or L2 is not specified, the implied length is used.

{f D1 or D2 is relacatable, the assembler computes the displacement based on the USING instruction,

Appendix A. Machine Instructions

S1



Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 ’ Byte 4 [ Byte 5 —[ Byte 6
" n i 1 !
sz AT(L1},A2(L2) ]07 L1-L2[L2-1 ' Address Al | Address a2
| 1 |ﬁ L
¥4 A1(L1),D2(L2,R1) 17 | L1-L27L21 | Address Al | DispD2 |
| | ! X from R1 I
T ) [ |
sz A1(L1), D2(L2,R2} 27 | L1-L2ie2-1 T Address A1 | DispD2 |
1 : I ! from R2
| 1 | |
sz D1{L1,R1),A2(L2) 47 h L1-L2:L2-1 ‘ Disp D1 ' Address A2 [
| | ' fromR1 | )
T | 1 l
sz D1(L1,R1),D2(L2,R1) 57 T wiLzjt2a | piseot [ Disp D2 |
| | | fromR1 | from R1[| |
{
| 1
sz D1(L1,R1),D2(L2,R2} 67 ' L1-L21L291 | DispD1 | Disp D2 | |
| | | fromR1 | from R2||
T
| | | |
¥4 D1(L1,R2),A2(L2) 87 | L1-L2}L2—1 I Disp D1 | Address A2 I
[ ) | from R2 ! |
, , | il
sz D1{L1,R2),D2(L2,R1) 97 I L12i241 Toispo1 | DispD2]| {
| ! | fromR2 , fromR1 | |
| | i
sz D1(L1,R2),D02(L2,R2) A7 " -i21i21 ! DispD1 | DispD2]! I
' ! I tromR2 | from R2|! !
| 1 1 | |
NOTES:

If L1 or L2 is not specified, the implied length is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

52




Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
— L] 'y — I

MVX A1(1),A2 [o8 I |_Address A1 | Address A2 ]
—_ | [ 1

MV X A1{1),D2(,R1) 18 R " Address A1 T Dpispp2 :
! ’ : | fromR1
T | 1 [ |

MVX A1{1},D2(,82) 28 | | Address AT ~ 0 DispD2| |
L L ! | from R2|
t : T T l

MV X D1{1,R1),A2 L48 [ ! Y Disp D1 | Address A2 |
| | fromR1 | [

| ! 1 ]
— f

MV X D1(1,R1),D2(,R1) 58 T ‘ Disp D1 | Disp D2]| |
| ! fromR1 , fromR1|| :
| ) !

MVX D1{I,R1),D2(,R2) 68 [ [ DispD1 | Disp D2 ! I
i | from R1 | from R2 | |
= Foort 5 |

MV X D1(1,R2},A2 88 I 1 Disp D1 Address A2
L | from A2 | | I

— ‘ ! | I

MV X D1(1,R2),D2(,R1) 98 I | DispD1 | Disp D2] |

! | from R2 | from R1 | |
1 T

MVX D1(1,R2),D2(,R2) A8 7 T hiseD1 ¥ DispD2]! f
| ''fromRr2 ! from R2|! '
I L L L

NOTES:

| may be specified on either operand, and must have the value X'00’,X’01°,X°02°, or X’03".

1f D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction,

For the extended mnemonics of the MV X instruction, I-field information is inherent in the mnemonic and the I-field
is omitted from the operand field. See Extended Mnemonic Codes for the extended MV X and the associated Q-codes.

Appendix A. Machipe Instructions

53




Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 B Byte 2 Byte 3 Byte 4 Byte 5 ' Byte 6
MVC AT{L1),A2 [T)C R | Address A1 |  Address A2 :I
T — + t
MVC A1(L1),D2(,R1} 1C |oL [ Address A1 " DispD2] |
. | I fromR1]J }
' ! 1 ! l
MVC A1(L1),D2(,R2) 2C | L1-1 I Address A1 l Disp D2 |
B | 1 from R2
, - N 1 |
MVC D1{L1,R1),A2 ac R T DispD1 | Address A2 |
| | from R1 | : |
| Bl 1 !
MVC D1(L1,R1),D2(,R1) 5C R [ DispD1 ' DispD2]] [
. | fromR1 | fromR1 ; |
T
4 A
MVC D1(L1,R1),D2(,R2) 6C 1 "DispD1 ! DispD2] 1 |
| | from R1 | fromR2 | '
1 ] 1 f |
MVC D1(L1,R2),A2 8C [ | Disp D1 | Address A2
| from R2 1 ' [
N [ T T |
MVC D1(L1,R2),D2(,R1) ac | L | Disp D1 ' Disp D2 ! ]
| | fromR2 | from R | |
T T l
i L |
MVC D1(L1,R2),D2(,R2) AC I "DispD1 I DispD2 |}
J | from R2{ fromR2 ! I
] ] 1 i ]
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

54




Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 —L Byte 4 ‘] Byte 5 Byte 6
L L
cLC AT(L1),A2 [OD HEE | Address A1 | Address a2
1 L i L |
cLc AT{L1),D2(,R1) 1D II L1-1 | Address Al 1 DispD2 |
L l | tromR1
| ! | - |
CcLC A1(L1),D2{,R2) 2D L1 | Address Al i Disp D2| |
L IL L from R2 i
L 1
cLC D1(L1,R1),A2 4D L1-1 | DispD1 | Address A2 |
IL L from R1 | L
i — } |
' L
cLe D1{L1.R1).D2(R1) 5D IE] T DispD1 | Disp D2l |
| | fromR1 | fromR1||
} . ‘! | |
CcLC D1{L1,R1),D2(,R2) 6D L1-1 [ Dise D1 | Disp D2 |
' from R1 from R2 I
L L
I . | | |
cLc D1(L1,R2),A2 8D | L1 I DispD1 |  Address A2
L | fromR2 | 1 '
T | i | |
cLe D1{L1,R2),D2(,R1) 9D EE Disp D1 ! Disp D2 |
| | from B2 |  from g1l
: I | |
cLC D1(L1,R2),02(,R2) AD L1-1 Disp D1 | Disp 02 | |
| from R2 N from R2
T — f l
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction,

Appendix A. Machine Instructions

55



Assembler tnstruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
- . :
ALC A1{L1),A2 [oE ;L1 | Address A1 | Address AZ
| } — i
ALC A1{L1),D2(,R1) 1E T L1 Address A1 | Disp D2 |
1 4 ; | from R1| |
| { 1
ALC A1{L1),D2(,R2) 2E | L1 T Address A1 I Disp D2
| : | fromR2||
l ! I l l
ALC D1{L1,R1),A2 4E (oL | Disp D1 | Address A2
) from R1 | | !
! I ( 1 [
ALC D1{L1,R1),D2(,R1) 5E EE | Disp D1 I Disp D2}
i ; from R1 : from R1 | l
|
1
ALC D1(L1,R1),D2(,R2) 6E EE I DispD1 | DispD2 ! |
| | fromR1, fromR2 |
; | ' | !
ALC D1(L1,R2),A2 8E R I bispD1 | Address A2 |
| | fromR2 | '
T i \ ] |
ALC D1(L1,R2),D2(,R1) 9E | Lt | DispD1  Disp D2 l |
, | from R2 ! from R1|! |
v T
I [ I
ALC D1(L1,R2),D2(,R2) AE LI .~ DispD1 | Disp D2 : !
! I fromR2 | fromR2 l
T i { | !
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

1f D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction,

56




Assembler Instruction Format

Machine Instruction Format

Operation Operands QOp-Code Q-Code Operands
Byte 1 Byta 2 Byte 3 Byte 4 Byte 5 Byte 6
2 'L Fill ' O
sLC A1(L1),A2 [oF RE | Address A1 | Address AZ
‘If— il | ‘! I
sLC A1(L1),D2(,R1) 1F L1 T Address A1 | DispD2 f
I | ! {;from R1 ‘
4 R
sLe AT{L1),D2(,R2) 2F | L | Address A ' pispD2]
I | 1' | from R2)
[ L
SLC D1(L1,R1),A2 4F 1 L1 1 DispD1 | Address A2 |
| { fromR1 | f
1 1 : |
SLC D1(L1,R1),D2(,R1) 5F SE Disp D1 | Disp D2] |
L fromR1 , fromR1 l
1 1 i |
- I
sLC D1(L1,R1),D2({,R2} 6F T L1 T Disp D1 | Disp D2] !
L | fromR1 ' fromR2| | |
sLC D1(L1,R2),A2 8F IR | Disp D1 |  Address A2 |
| from R2 | | |
I 3 L f
sLC D1(L1,R2),D2{,R1) 9F L1-1 T pispD1 | Disp D2] | |
i
N from R2 | fromR1 | |
1 1 |
SLC D1(L1,R2),02(,R2) AF LR I DispD1 | Disp D2 l |
L I from R2 from R2] | I
I L 1 L -
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

57



Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
| | 1 [
ITC AT({L1),A2 [ 0B \ L1-1 | Address At ] Address A2
; . ! |
ITC A1(L1),D2(,R1) 18 R " Address A1 i DispD2] I
| I . |__from R1| |
X | ! l
ITC A1{L1),D2{,R2) 2B 1 L11 | Address A|1 i Disp D2 !
| , from R2] |
t
l | I |
ITC D1{L1,R1},A2 4B [ L1-1 | Disp D1 I Address A2
from R1 | 1 |
[ ! .
ITC D1{L1,R1),D2(,R1) 5B NN I Disp D1 I Disp D2, '
| | from R1 from R1 | |
| | ! 1
ITC D1(L1,R1),D2(,R2) 68 i L1-1 N Disp D1 | Disp D2 I
, I fromR1 ; from R2 1 {
T RE . | 1
ITC D1(L1,R2),A2 88 [ [ Disp D1 | Address A2 |
| | from R2 |
| : T I !
ITC D1{L1,R2}),D2(,R1} 9B t Lt-1 ! Disp D1 [ Disp D2 I l
. | from R2 | from R1 " |
j |
} ] I
ITC D1(L1,R2),D2(,R2) AB i L1-1 I Disp D1 | Disp D2 ! I
. ! from R2 \ from R2 I
I i 1 I |
NOTES:

Operand one must address the data field at the leftmost byte.

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

58




Assembler Instruction Farmat Machine Instruction Format

Operation Operands Op-Code I Q-Code Qperands

| i e R = —
' Byte 1 r Byte 2 Byte 3 l Byte 4 I Byte 5 | Byte 6
- Coee 4 — L ——i ok | !
ED | Al(LY) A2 0A =R | Address A1 I Address A2 |
i ] '_,, . i" ] ) "
ED l AT{L1).D2{,R1) [m AL | Address A1 | Disp D2
| | L ! . fromRi1 I
I i | . |
ED [AT(LT),D2(,R2) 2A . L1 ' Address A1 ; Disp D2 |
i ! from R2
N : ! |
i
ED DILT,R1),AZ 4A L "DispDt T Address A2 l
| o ! 7 wl from R1 | | !
. N R | __4_—1 | I
ED l D1{LT R1),D2{,R1) 5A } L1-1 } Disp D1 Disp D2 | J
| i
s e from R1 from R1 1 1
_ - [ = |
ED D1(L1,R1),D2(,R2) 6A R " DispD1 | Disp D2 |
) { " from R1 from R2| | |
[ |
e i = '

ED D1{L1,R2),A2 8A ST A | Disp D1 Address A2 '
| from R2 | |
| | | i |

ED D1{L1,R2).D2(R1) A EE | DispD1 | Disp D2 : |

o T { from R2 I from R1 I
. SRR R LIPS ! ' 1
ED D1(L1,R2},D2(A2) AA L1 "Disp D1 | Disp D21
_'L i from R2 | from R2|| ,
—— S i Ly | S N | 1 L
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 15 relocatable, the assembier computes the displacement based on the USING instruction.

Appendix A. Machine Instructions 59



Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 ,Byte 4 [ Byte 5 J Byte 6
] 'y Ll t
MV Al 3C T ! Address A1 ! [ :
| [ I t {
MV D1{,R1),! 7C ! [ Disp D1 ! I |
M from R1 ! | |
M 4 t 1 |
i 4
MV D1{,R2),) BC T " Disp D1 l I
| ! from R2 | | |
I —I ! | I
NOTE:
If D1 is refocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
cul A1l 3D T | Address A1 | | '
X T [ | l
cLI D1(,R1),1 7D o I Disp D1 | I
I ¢ [
: | fromR1 I I I
| ' [ | l
cLI D1(,R2),! BD I | Disp D1 ] |
! | from R2 ! ]
t 1 | L I
NOTE:
If D1 is retocatable, the assembler computes the displacement based on the USING instruction,
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Py « ]
SBN A1l 3A [ | Address A1 | | I
J |
| |
SBN D1{,R1),l 7A |l y Disp D1 I | i
i , from R1 | | |
| +— l | |
SBN D1{,R2),l BA | Disp D1 l
! from R2 | |
t —+ I | 1
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

60




Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 l Byte 4 L Byte 5 L Byte 6
! — -
S8F A1l [38 | 1 Address AT, ; :
| | I
|
SBF D1(R1},I 78 I I Disp D1 | | i
[ | from R1 | !
I | ! |
SBF D1{,R2} 1 BB l 1 Disp D1 ! | |
L ! from R2 | , i
1 1 i ! 1
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction,

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 I Byte 4 Byte 5 L Byte 6
I N 1 i
TBN A1l | 38 I 1 Address A1 4 N ,
L. I | | ]
TBN D1(LR1I 4 78 L | Disp D1 | i l
. ¢ from R1 | 1
b + | |
TBN D1{,R2),l 88 I | Disp D1 ! |
'L , fromR2 | !
T R | | ]
NOTE:
If D1 is refocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte & Byte 6
TBF Al [39 il I Address A1 | ] I |
T
| 1
|
TBF D1(R1,S 79 L [ DispDT | | !
IL | from R1 I i !
1 [ I
{
TBF D1(,R2),I B9 Py I' bisp O1 i ' |
! I tromR2| 4 | |
[ 1 t L
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

[}




Assembier Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
'S | I
ST A1,RX [34 ; RX | Address Al ll i |
N 1
ST D1{,R1),RX 74 I RX " Disp D1 | i |
| I from R1 | i |
I i
ST D1(,R2).RX B4 | RX | Dispo1] | ! |
1 | from R2 ! ! !
[ I | b |
NOTE:
1f D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 !Byte 4 l Byte b Byte 6
L TRy et | 1
L A1,RX [35 , BX | Address A1 ; 1, |
& Il | |
L D1(,R1),RX 75 ' RX ; DispD1 ] | | |
I | from R1 i
1 T | | I
L D1(,R2) RX B5 FRx THspDT] | ' '
| | from R2} 4 I !
1 T ] | !
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
|
A A1,RX [36 " RX I Address A1 14 I
L]
; ) == | [ |
A D1(,R1),RX 76 RX | Disp D1 1 | ]
! ffrom B1J | | |
- A
A D1(,R2),RX 86 T mx ~Toispn1] ! ' !
I | from R2| | I !
- ! l I |
NOTE:

Hf D1 is relocatabie, the assembler computes the displacement based on the USING instruction,

62




Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
{ 1
BC A1, [co T | Address A1, || |
| I ! ! |
BC D1(R1),1 DO P y Disp D7 | | i |
i | from R1 | 1 |
4 1 I 1 l
BC D1{,R2},I EQ to Tbisp D1 . ]
| | from R2 I
r T I ! 1
NOTES:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction,

For the extended mnemonics of the BC, the second operand (i-field) is not used since the information is inherent in the mnemonic.
See Extended Mnemonic Codes for the extended branches and their associated Q-codes.

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
1
TIO A1) [c1 K " Address A1 11 |
] [ 1 i !
TIO D1(,R1),1 D1 P! | Disp D1 ! { |
| | from R1 t ) ]
) | 1 |
TIO D1(,R2),! E1 ™ I DispD1| 1 !
[ I fromR2| | | !
T 1 . | |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
4 —t— |
SNS A1l [ 30 : | I Address A1 K "
{ | {
SNS D1{,R1},l 70 I | Disp D1 { | .
{ | from R1 I \ |
! |
SNS D1(,R2)1 BO [ | Disp D1 | ! !
A , fromR2 ! ! |
1 1 L |
NOTE:

1f D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

63




Page of SC21-7509-6
Issued 24 June 1977
By TNL: SN21-5536

Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
M i ] i
LIO A1l [31 | 1 Address A1 |l |
v ; t I
i
LIO D1(R1),I 71 T | DispD1| ! I |
! | from R1 ! | |
| 1 | 1
LIO D1(,R2),I B1 [ | Dsp D] | |
| , from R2 |
t 1 I I
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
i 1
LA A1,RX [c2 , RX Address A1 ]I |
T
4 |
LA D1(,R1),RX D2 . RX | DispD1| | !
| |_from R1 I | !
| | | i ]
LA D1{,R2),RX E2 RX Disp D1 1 |
| | | !
\ from R2
} t i ! |
]
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format

Machine Instruction Format

The Model 15 LCP instruction can aiso be generated on the Model 12 through the
$LCP macro instruction; see /8M System /3 Mcdels 10 and 12 System Control
Programming Macros Reference Manual, GC21-7562.

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 I Byte 4 ! Byte 5 [ Byte 6
LCP A1RX [3F . RX | Address A1 -l; i
T T
l L
LCP D1({,R1),RX 7F TRX "DispD1 | | | I
| | fromR1| | i !
| | ! [ !
LCP D1(,R2),RX BF | RX I Disp D1 | | 1 !
\ ! from R2 | I '
NOTES:

64




Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 lByte 4 L Byte 5 I Byte 6
i i
scp A1RX (e |_RX [ Address AT ] ; :
[ | : | |
SCP D1(,R1),RX 7€ | RX Disp D1 | !
1 , from R1 | I |
SCP D1{,R2),RX BE Y RX | Disp D1 | :
! fromR2| | !
I . ) l |
NOTES:

The Model 15 SCP instruction can also be generated on the Model 12 through the $SCP
macro instruction; see /BM System /3 Models 10 and 12 System Control Programming

Macros Reference Manual, GC21-7562.

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Byte 3 1 Byte 4 l Byte 5 ] Byte 6
APL | [ F 0 ~Too |1 ! :

- — —T 1 i

NOTE:
The APL is a NO-OP instruction on the Model 15.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Cods Operands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
HPL 1,12 [ Fo 12 ] : { 'L
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code QOperands

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
SI0 11,12 [ 3 .12 T : L

Appendix A. Machine Instructions

65




Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 J Byte 4 ! Byte 5 l Byta 6
1
|

ccp 11,RX [Fa . RX JEE | | .

J ! I | ]
NOTES:

The Model 15 CCP instruction can also be generated on the Model 12 through the $CCP
macro instruction; see /8M System /3 Models 10 and 12 System Control Programming
Macros Reference Manual, GC21-7562.

For the SVC form of the CCP instruction, the Q-code is inherent in the mnemonic and the RX field is omitted
from the operand field. See Extended Mnemonic Codes for the associated Q-code.

Assembler Instruction Format Machine instruction Format
Operation Operands Op-Code Q-Code Operands

Byte 1 Byte 2 Bytie 3 Byte 4 Byte 5 Byte 6
Jc A1)l [F2 ll | ? Y 3 lI || |I

*If the first operand is absolute, this value is ptaced in byte 3.
If the first operand is relocatable, the displacement from the next sequential instruction to address A1 is placed in byte 3.

NOTE:

For the extended mnemonics of the JC, the second operand {i-field) is not used since the information is inherent in the mnemonic,
See Extended Mnemonic Codes for the extended jumps and their assoeiated Q-codes.




Appendix B: Assembler Instruction Reference Table

Operation Entry

Name Entry

Operand Entry

DC Any Symbol or Biank One operand entry containing: Duplication Factor, Type, Length, Constant.

DROP Blank Specified register (1 or 2).

DS Any Symbo! or Blank One operand entry containing: Duplication Factor, Type, Length.

EJECT Blank Blank.

END Blank A relocatable expression or blank.

ENTRY Blank Any relocatable name entry found in the current program.

EQU Any Symbol An expression.

EXTRN Blank b oncwias by an abeclue expretion nlosss in paremthesss.

ICTL Blank Two decimals in the form of B,E.

ISEQ Btank Biank or two decimal values in the form L, R.

ORG Blank Blank operand or an expression (A) optionally followed by two absolute
expressions in the form A,B,C.

PRINT Biank Mode! 10 Disk System: One or two entries from DATA, NODATA, ON,
OFF.
Model 12 and Model 15: One to three entries from DATA, NODATA,
GEN, NOGEN, ON, OFF.

SPACE Blank Blank or a decimal value.

START Name or Blank A self-defining value or blank.

TITLE Name or Blank A sequence of characters enclosed In apostrophes.

USING Blank A refocatable éxpression {V} and an index register {R} in the form V,R.

Appendix B. Assembler Instruction Reference Table

67




Appendix C: System/3 Assembler — Source Language Error Codes and Diagnostics

Code Diagnostic Explanation

NO1 INVALID NAME LENGTH Name field entry greater than six characters

NO2 INVALID CHARACTER IN NAME Name starts with non-alphabetic or contains an invalid character

NO3 NAME NOT ALLOWED ON THIS Name field entry not allowed on this instruction

INSTRUCTION
NO4 REFERENCE TO UNDEFINED SYMBOL The referenced symbot is not defined in this program
NOS NAME MISSING FROM Name field entry missing from EQU instruction
INSTRUCTION REQUIRING ONE

NO6 PREVIOUSLY DEFINED SYMBGL Symbol has been previously defined in this program

NO7 MODULE NAME MISSING START instruction missing, or START instruction present but name fieid
entry {module name) missing. Assembler assigns the default modute
name ASMOBJ.

Qo1 INVALID OPERATION CODE Undefined operation field entry

002 INVALID ORIGIN Attempt to ORG to a vatue less than the initial value of the location counter

003 INVALID OR ILLEGAL ICTL Operand error on ICTL, or ICTL not the first statement in the program.
{ICTL treated as last source statement in program)

004 INVALID START INSTRUCTION START instruction encountered after location counter is initialized

005 LOCATION COUNTER ERROR Location counter overflow (greater than 65536) or attempt to reference
the location counter at 656636

006 MISSING END STATEMENT END statement missing from the program

PO1 INVALID OPERAND DELIMITER An operand field syntactical delimiter is either misplaced or missing

PO2 INVALID OPERAND FORMAT The operand field is not of the proper format for this instruction

PO3 MISSING OPERAND Operand field entry missing from instruction requiring one

P04 INVALID SYNTAX IN EXPRESSION Vioiation of one or more expression syntax rules

POS EXPRESSION VALUE TOO LARGE Final expression value not in range ~216 to 216-1

P06 INVALID OPERAND One or more operand entries do not meet specifications for this instruction

PO7 ARITHMETIC OVERFLOW Intermediate expression value not in the range -224 10 224-1

PO8 ADDRESSABILITY ERROR Relocatable displacement outside the range of USING instruction

P09 REGISTER SPECIFICATION ERROR Index register specification not 1 or 2

P10 INVALID CONSTANT Error in constant specification on DC instruction

P11 INVALID CONSTANT TYPE Data type specified on DC/DS is not valid

P12 INVALID DUPLICATION FACTOR Error in duplication factor specification on DC/DS

P13 INVALID LENGTH SPECIFICATION Error in length specification

P14 INVALID STATEMENT DELIMITER The column following the statement field is not blank

P15 RELOCATABLE MULTIPLICATION A relocatable term used in multiply operation

P16 RELOCATABILITY ERROR A relocatable expression is used where an absolute expression is required,
or an absolute expression is used where a relocatable expression is required

P17 INVALID SYMBOL Invalid character in or invalid tength of a symbol in the operand field

P18 INVALID SELF-DEFINING TERM Error in the format of a self-defining term

P19 SELF-DEFINING VALUE TOO LARGE Value of self-defining term is outside of range -216 10 216-1

P20 INVALID IMMEDIATE FIELLD Immediate field not in range X'00’ to X'FF’

P21 INVALID DISPLACEMENT Absolute displacement not in range 0 to 255

Appendix C. System/3 Assembler — Source Language Error Codes and Diagnostics 69



Code

Diagnostic

Explanation

P22

P23

INVALID EXTRN

TOO MANY ESL RECORDS

Symbol is invalid or already defined in the program or subfield
is invalid.

More than allowed number of EXTRN and ENTRY statements
were found in the program. This count includes multiple
EXTRNsand ENTRYs, ENTRYs with valid symbols which are
not defined, and EXTRNs with valid symbols which are defined
in the program. See £ESL Table Size in Part /1. Programmer’s
Guide.

70




Appendix D: Assembler Language Subroutine To RPG |l Linkage

Assembler subroutines can be linked to an RPG II program.

The RPG I1 program passes parameters as it branches to
the assembler subroutine. To write a subroutine that will
be linked to an RPG Il program the following rules must
be used:

i. The name of the assembler subroutine must be
SUBRxx. xx can be any valid alphabetic characters
for user-written subroutines. (Numeric characters
are reserved for IBM-supplied subroutines.) The
name used must be the same as the name used in
the RPG II program.

2. Upon entry to the assembler language subroutine,
the address recall register (ARR) contains a pointer
to the parameters which represent the fields to be
referenced by the assembler subroutine. The return
point to the RPG II program is the first byte after
the parameters.

3. If the subroutine makes use of registers } and 2, the
contents of these registers must be stored upon
entry to, and restored before exit from, the
subroutine.

USING FIELDS IN THE RPG It PROGRAM
When linkage is effected from RPG II to an assembler
subroutine, three possible areas in the RPG II program can
be referenced by the subroutine. They are: field, table
or array, and indicator.
Referencing a Fieid in an RPG If Program
The following parameters (symbolic form of code
generaled by the compiler) are passed by RPG Il when a
field is to be referenced:

B SUBRxx

DC ILI'Field length -1’

DC  ALZ(rightmost address of field)

Referencing a Table or Array in an RPG 1l Program

The following parameters (symbolic form of code
generated by the compiler) are passed by RPG Il when a
table or array is to be referenced:

B SUBRxx

DC IL1‘Entry length~1’

DC AL2(leftmost address of table control field)
The subroutine can refer to the table or array defined in
the RPG II program by utilizing the control field created
for that table or array. This control field, one of which
is created for each table or array built by the RPG 11

program, is in the following format:

Bytes Meaning

1-2 Rightmost address of the first entry.
34 Rightmost address of the last entry.
5-6 Initialized to rightmost address of first entry;

used at object time for rightmost address of
the last looked-up entry of a table.

7-8 Length of an entry.

The subroutine can obtain the data retrieved from the last
RPG 11 table LOKUP by using the address in bytes 5-6.
To access the table or array itself, the address in bytes 1-2
must be used.

Data used by the subroutine must be left unpacked for the
RPG I program.

Appendix D. Assembler Language Subroutine to RPG {1 Linkage 71



Referencing an Indicator in an RPG Il Pragram Linkage for 1/O Subroutines
The following parameters (symbolic form of code generated
by the compiler) are passed by RPG II when an indicator

is to be referenced:

The following linkage is generated by RPG [l to communi-
cate with the user-supplied [/O subroutine.

1.  DTF (define-the-file) format:

B SUBRxx
Bytes Descrip tion
DC XL1'00
0 Device code (X‘00)
DC  XL1‘Mask for the indicator’
1 UPSI mask
DC  XLI‘Displacement to the indicator from XR1’
2-3 Attributes

Note: The parameters passed to the assembler subroutine

are determined by the coding done in the RPG Il program. 4-5 Reserved for data management

For a description of this coding, see the IBM System/3

RPG II Reference Manual, SC21-7504, IBM System/3 6-7 Address of next DTF

Model 6 RPG II Reference Manual, SC21-7517, or IBM

System(3 Card System RPG Il Reference Manual, 8-B Reserved for data management

SC21-7500.

C-D Logical record address

RPG Il LINKAGE SAMPLE PROGRAM 1 E Completion code

In this sample program, the RPG II program links to the X‘42’ = End-of-file

assembler language subroutine SUBRA (Figure 27). X‘41’ = Controlled cancel (not

When control is returned to the RPG II program, the recognized by Model 10

character ‘A’ will have been moved into the field in the card system)

RPG 11 program. X‘40’ = Normal completion (not
recognized by Model 10
card system)

RPG Il LINKAGE SAMPLE PROGRAM 2 F Operation

X‘CO" = Get and put (model 10

In this sample program, the RPG 11 program links to the card system only)

assembler subroutine SUBRB (Figure 28). The first X80’ = Get

parameters passed reference a table. The second param- X‘4Q’ = Put

eters reference an indicator. The subroutine refers to X20’ = Update

both sets of parameters. The subroutine first tests the X‘10" = Close

indicator in the RPG II program. If the indicator is off,

control is returned to the RPG II program. If the indicator 10-11 Input /O address

is on, a character ‘C’ is moved into the last looked up

entry in the table. When control is retumed to the RPG II 12-13 Output 1/O address

program, it checks for a ‘C’ in the table.

14-15 Block length
1/0 SUBROUTINES 16-17 Record length
Subroutines that support input or output devices can also 1819 Address of array DTT if array linkage

be linked to an RPG II program. These subroutines are
commonly referred to as RPG II SPECIAL subroutines.

72

is used



The address of byte 0 of the DTF will be passed to

the 1/O subroutine in index register 2. Bytes 0-3, 6-7,
C-D, and 10-17 are filled in by RPG Il at compile time.
Byte E, completion code, is inserted by the /O sub-
routine when control is returned to RPG II. Byte F,
the operation byte, is inserted at object time. The
information in bytes 0 and 4-B must be available,
unchanged at close time, for data management.

The DTT (define-the-table) is used for array linkage.

DTT format:
Bytes Description
0-1 Address of rightmost byte of the first

element of the array.

2-3 Address of rightmost byte of the last
element of the array.

4-5 RPG fast LOKUP element.

6-7 Length of array element.

2, The /O subroutine must save and restore the registers
altered in the routine. Control should be retumed to
the address in the address recall register (ARR).

Note: The combined get and put operation code, X‘CO’, is
utilized by the System/3 Model 10 Card System only. The
System/3 Model 10 Disk System, System/3 Model 12, and
System/3 Model 15 use alternate get and put operations to
accommodate combined files. When coding an I/O subroutine
to be used on either system, be certain to consider this fact.

When an input operation is done, the 1/O subroutine must
move the address of the physical buffer currently being
used to the logical buffer address location in the DTF (bytes
C-D). In the Model 10 Card System, address bytes 10-11
will be the same as bytes C-D (one physical buffer).

When an output operation is requested, the 1/O subroutine
must move the data from the logical buffer (address in
bytes C-D of the DTF) to the physical buffer (address

in bytes 12-13 of the DTF). The two addresses are the
same in the Model 10 Card System. Bytes O-B are unused
in the Model 10 Card Systen.

The I/O subroutine must do its own open when the first
call to it is issued. It must also do its own close to the
file on a close call.

If a dual 1/O is requested, the second area will be immediately
behind the first (Model 10 Disk System, Model 12, and Model
15 only).

The 1/O subroutine cannot be overlaid in the Model 10 Disk
System, Model 12, and Model 15.

Sequential processing only is supported.

When an 1/O subroutine issues a halt, three halts should be
displayed as follows:

1. The first halt issued should be the FF hait reserved
by RPG 1l for SPECIAL [/O subroutine usage.

2. The second halt should be the last two digits of the
subroutine name.

3. The third halt may be any valid halt that can be
displayed.

Appendix D. Assembler Language Subroutine to RPG II Linkage 73



vL

Control passed to SUBRA
by RPG Il program

RPG 1] Program

1BM Sytte/3 Ausembiae Codiog Form

1 ureiBoaq ajdureg ioj (VyYdNS) 2Ugnoiqng afendue Jajquiassy L7 am3ig

IEM
. ‘ ==
Symbolic representation of code [rTST—. o
generated by the RPG 11 compiler: — ST =
1 oL L T izl u 4y 6 1 k19 71 2D e 25 27 A T 31 57 33 e T o 11 200 1 47 43 40 % % A1 5 435D 1 47 31 54 58 30 80 26 Vg ACLED 0/ KDt 65 50 7 0 2201 37 g 14 5w I TS 81 83 oA i B 6
Tl [“RPE] h NXakle] Tslmpluel T ] 111 ‘ T 7Jp INRERRARAN! BERN ‘
8 susRA—_ | A NuN i3 Jﬁfl? Tl i ki SYSTIEN
DC IL10° ~— » | | JL | Sk | IIEL i L..Jr,_,_L4 t,l‘._? -
DG_ AL2 (HERE) \Tl REEES BERREN RAMETER WDDR] %&“ T
s ! I a5 T
S 73 18 i il ! BRARERANEERRLEE
5 N3 12 ] ' T 11 [ ] Sheee LT
ET L i AMET ANARRRRRERE]
L (REDIN o T
M ] 7 ITol Flleup ENENEREANK
) ] _#.1 FLP BEER i LW T i f“ HH
RECCARERN0FY RSN RN RN AR
N 1 I = f p 1
S T
ANERREREEN WIBNIRANI

Control returned to
first byte after
parameters

e



afeyuiy [] OdY O aunnoiqng afendueT 1afquiassy (| xipuaddy

SL

7' urexfolg dpdureg 105 (gY4NS) aWinosgng afenue jquassy gy aradiyg

Control passed to SUBRB

by RPG 1I program

1BM System/3 Aumembier Coding Form

I S i A O A
e cmaiiond’ £ G5 (25 000 O ONR [O IE '
‘ﬁm\
a4 % et 47 4f 4y S0 50 W2 52 ba 56 8 L1 v W B0 e 4 no13n
] j;lr"# 7 ,\ pEm
RPG 1 Program UB&?OU_\.;IM& g g.um 11jq @LSJ,K 'gys p;L
- TIRBILE, i\‘,w,cylm [ .
Symbalic representation of code { i R R N '
generated by the RPG’:’&V—Lﬂ L s fﬁﬁ AMETER
+—1 “ I.' o
B SUBRB ..gAV 551?133 ]
@ %DC Lo’ @ L BE MEITE
ne AL2 (leftmaost address of table control field) ﬂ &V I J{‘M
S | [TELS] { (LA
DC XL1'00 TNl Dr o
@{DC XL1'80’ GET TROL.
DC  XL1'31 i GET! 100K U
I 5 El rO L 1L
RS , RETIY L L BEENE
| TT1 | 1
@ Parameters passed for a table EREEENRBRERRERENEEENN i] SRERN
s e £ A1, LL e IF
@ Parameters passed for an indicator L NRGE R H t I ’% JL‘ 5 [
14 i - 138 it s 4t i1
CHHETH T T
@ Control field for table ) [ OIS M\a!sﬂ\u~vm7\ﬂunﬁxnnlnmzunnl:u51:131:\-)\0 lruunlnrauma zluusssaLs/uL#aﬂllsjuuujl«lﬂna’ownuu’!nv R TETTYYT
DC  ALZ {address of first entry}
DC  ALZ2 (address of last entry)
DC  ALZ2 (address of last looked-up entry [TABB])
DC  1L21" {length of entry}

Control returned to

first byte after
parameters



LIBRARY DECK GENERATOR PROGRAM (MCDEL 10
ONLY)

The System/3 Model 10 Card System user can write assem-
bler language subroutines to be used as SPECIAL or EXIT
routines in an RPG II program. These assembier routines,
however, cannot be inserted directly into the RPG I1
compiler. The assembler language subroutine must

first be assembled by the System/3 Model 10 Disk System
Basic Assembler and then translated by the Library Deck
Generator (LDG) program before it can be placed in the
RPG 11 compiler.

The entire operation, from writing an assembler subroutine
to selection of that subroutine by the 1BM System/3 Model
10 Card System RPG Il compiler is outlined as follows:

1. The assembler subroutine is written by the programmer.

If standard control cards supplied by the LDG program
are not being used, the programmer must also code
control cards for the subroutine.

2. The assembler subroutine is assembled on the
System/3 Model 10 Disk System by the Basic
Assembler,

3. The LDG program is read into System/3 Model 10
Disk System storage. The *** parameter card,
assembler subroutine object deck, and blank cards
are placed in the MFCU.

4, The LDG program produces a deck of cards, con-
taining the subroutine, which can be placed in the
RPG Il compiler. The deck produced by the LDG
program contains the following:

Header card
Control cards
Text

Q-card

End card

5. The deck produced by the LDG program may now
be placed in the RPG II compiler deck. When an
RPG Il program is compiled, this subroutine will be
selected, when required, just as any other compiler
subroutine.

The following material describes the information
needed to use an assembler language subroutine in an
RPG II program. This material is divided into four major
sections:

Writing the assembler language program

Running the LDG program

Qutput of the LDG program
Example of a SPECIAL subroutine

76

Writing the Assembler Language Program

The following information must be considered when the
assembler language program is written.

Title Instruction

The name field of the TITLE instruction must contain
OOGEB in columns 1-5.

Control Cards

Control cards are needed for every assembler language sub-
routine. Control cards contain code, executed during
compile time, which determines whether the subroutine
should be included as part of the program being compiled.
Library routines are selected only when the execution of a
control card determines they are needed. In addition,
control cards are needed to ensure that the entry point for
the subroutine is placed in the proper location in core for
the RPG II compiler to find and use it.

There are two ways to get the control cards you need. In
some cases, you will need to code them yourself; in others
standard control cards are supplied by the LDG program.
If your subroutine is to be used as a normal SPECIAL or
EXIT routine, the LDG program wili supply three control
cards. See Figure 29 for samples of these. When these
control cards are provided, a SPECIAL routine is selected
if bytes 12-13 of the file description compression matches
the identification characters of the routine, and if the
SPECIAL device code B‘Oxxx 1010’ is present in byte 16
of the same file description compression. EXIT routines
are selected if the identifier in the library routine is the
same as an entry in the symbol table (bytes 3-4) and if
byte 2 of the same entry contains bit configuration
11100000. When these decks are selected, the address of
the entry point of associated object code is placed in the
symbol table entry, bytes 3-4 for an EXIT reference and/or
bytes 8-9 of the file description compression for a SPECIAL
reference.

You must code control cards for your subroutine when:
® The subroutine is not a SPECIAL or EXIT routine.

® The subroutine needs a function not provided by the
standard control cards.

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards.



Coding Control Cards

There are three types of control cards each identified by
a special character in column 1. Each type performs a
different function:

® Cards with a J in column 1 (J-cards) are usually used to
control the selection of a routine for an object program.
They also place the routine entry address in compile
time storage for use by the RPG II compiler.

® Cards with a K in column 1 (K-cards) are used only
when one routine from a set of related routines is to be
used in any job. A J card will determine if any of these
routines are needed and if so will start the scan for K
cards which in turn control selection of the proper
routine.

® Cards with an L in column 1 (L-cards) are used to pass
information from RPG Il compile time core to a sub-
routine or vice versa. They are executed only if the
deck in which they appear has been selected for use with
the current program.

Control card identification characters must be defined for
assembly at X*0000" and are placed in column 1 of control
cards. The only allowable characters are J, K, L, and blank.
There should be one non-blank control card identifier
character for each block of code for a control card. The
blank is used as a delimiter between control card strings.

For example, DCBH CLIOTKLLBLBLBL’ shows identi-
fiers for seven control cards and four control card strings.
The first is a 4-card string with identifiers ‘JKLL’ used.
The others are single card strings, each of which has an
‘L’ identification.

LDG identifies the control cards and assigns one control
card identification character to each one. The control

card strings are merged with the text cards for the routine
functional code in the following manner. The first control
card string is merged in front of the text, and one addition-
al control card string is merged into the text cards where
there is a break in the text caused by a DS or an ORG which
changes the location counter.

Each control card must contain executable code. Control
cards are coded in the order needed for the purposes de-
scribed above. Each must begin at X*'0017’; therefore, an
ORG to 23 or X‘0017" must precede the code for each card.

Your control cards must contain instructions for calculating
the address at which your subroutine will be loaded. To
calculate the true entry address, use the current relocation
factor described here.
Label Address Function
RELOCF X'030C’ to
X‘030D’

Contains the current
relocation factor. Is
modified when the end
card of the selected deck
is encountered or JIEAA]
is entered.

See Figure 29, Part 1, found at the end of this section, for
an example of the use of the current relocation factor,

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards.

J-Card Scan Routine reads the library deck until a J-card is
encountered. The routine has three entry points.
Label

Address Function

J3EAA1l X'031A° Scans for J-card. When
one is found, control is
passed to that card. All
other cards are ignored.
J2EAAL  X'3014 Clears X'00EQ’ to X‘00FF’
and X‘007C’ to X‘007F’
to hex zeroes then scans
for J-card as J3EAAT.
JIEAA1 X'030F’ Resets the relocation
factor to the next object
address and performs as

J2EAAL

K-Card Scan Routine has one entry point.

Label Entry Point Function

KIEABI X‘0320 Scans for K-card. When
one is found, control is
passed to that card. All
other cards except J-
cards are ignored. [fa
J-card is found, a halt

40’ is executed.

Appendix D. Assembler Language Subroutine to RPG JI Linkage 77



Relocate Deck Routine has one entry point.

Label Entry Point Function
RI1EAC] X032C Initiates or continues

relocation of the current
deck. Will recognize and
execute L-cards and re-
organize and print Q-cards.
Exits to JIEAAL when
end card is encountered.

Scan File Description Compressions Routine has two entry
points. This routine steps through the file description com-
pressions. It returns a pointer to the next compression in
register 2. If the condition code is high, the pointer is
valid. Any other condition indicates the pointer is invalid.

Label Entry Point Function

F1EAEI X‘0338’ Initializes pointer to first
file description compres-
sion and sets condition
code.

F2EAE1 X033F Points register 2 to the

next compression and
sets the condition code.
(Register 2 need not be
pointing to the last
compression.)

Scan Extension Compressions Routine has two entry
points and steps through the extension compressions and
returns a pointer to the next compression in register 2. A
high condition code indicates a valid pointer. Any other
condition code indicates an invalid (undefined) pointer.

Label Entry Point Function

E1EAFI] X'0344° Initializes pointer to first
extension compression
and sets condition code.

E2EAF] X'0344° Points register 2 to the

next compression and

sets conditien code.
(Register 2 need not

point to last compression.)

78

Text Handling Routine builds up full text card in storage
and, when a card is full, punches that card. The area from
X'0080’ to X°00DF is the location of the punch buffer
and this must be considered when using this area of core.

Label Engry Point Function

BKEAH1 X0350 Forces any partial text
card to be punched.

STXLAL X'035C Accepts a string of text to

be added to the current
text immediately following
the last text passed. Re-
quires a 1-byte parameter
following the branch.
Parameter contains a
displacement relative to
register 1 to the length
byte of the text being
passed. The text string
should be preceded by
this length byte which
contains the length of
text.

Wait On Punch Busy Routine:

Function

Label Entry Point

WTPUNI X0362 Returns when the previous
punch operation has been
successfully completed

and the buffer is not busy.

Title of Subroutine

The title of the routine must be a defined constant to be
loaded starting at X'0000°. It must be equal to or Jess
than 80 characters in length. This title is printed on the
RPG I1 compiler listing with the address of the entry point
of the routine if it is selected at compile time.



Routine Functional Code An OPTIONS card must be used to successfully assemble
the subroutine.

This code must be assembled starting at X‘0000°. The

code must contain a break in continuity (a DS or an

ORG which changes the location counter value) where

control cards are to be inserted. Running the LDG Program

The following paragraphs describe a special parameter card

Assembling the Subroutine that must be used with the assembler deck, the OCL required
to load the LDG program, and error conditions that may re-
The assembler subroutine is assembled by the Model 10 sult,

disk system basic assembler. The OCL considerations for
assembly are discussed in Section II: Programmer’s
Guide under the headings OPTIONS Statement and

OCL Statements For Assembler.

Appendix D. Assembler Language Subroutine to RPG I Linkage 79



Library Deck Generator Parameter Card (

iii)

A parameter card must precede the assembler generated
object deck to provide the LDG program with information
regarding output. Entries for the parameter card are as

follows:

Columns

1-3

4.9

10

11

12

13

14

15-16

17-18

19

20

21-96

80

Entry

* % %

SUBRxx

, {comma)

S

, lcomma)

D

, comma)
\AY)
MM

0 (zero)

, {comma)

Subroutine
title

Explanation

Three asterisks identify a parameter card.

These characters identify the subroutine. Substitute any two characters

for xx — the second may be blank, but the first must not. Note that the

LDG program will not diagnose an error in these columns.

Required.

Standard control cards will be provided by the LDG program for the subroutine
identified by the characters found in columns 8-9 of this parameter card. The
title, also extracted from this parameter card, will be assigned to the subroutine.
The entry point of the routine must be the first byte of the routine. GEB will be
forced as module identifier.

Non-standard control cards will be supplied by the user as will identification
characters and title. (The format of this material may be found in Figure 29.)
If N is specified, the title specified in this parameter card is ignored. Thus, if

N is used, columns 21-36 may be left blank.

Required.

Default values for component version, modification level, and indication of
complete or partial deck replacement for header card are provided by the LDG
program.,

Default values are not assumed. The user must provide them in columns 15-19.
Required if column 11 contains an S or column 13 a G.

Two numbers indicating the component version.

Two numbers indicating modification level.

Partial deck replacement for header card.

Complete deck replacement for header card.

Required only if column 13 contains a G and column 11 an S.

If column 11 contains an N, the title is not required. |f column 13 contains
a D, the title of the subroutine must begin in column 15.



Examples:

SIATEMENT

! 7. % X T e 36 36 37 X 3940
_ _F zfzfjm
e SR .——‘ - - »—4—4—17

User will supply all control cards, identifying characters,
and title for subroutine ‘Ap’.

P

IBM

S — ]

j——

STATEMENT

Name Dperation Temrand
T 7 2 a5 6 PIRC 2425067 879 03 W W IB MW HG

%505 RSAER) ':'T'f"g il T
SHERBR, . 5l, 82011 SPECTAL, RO e, BB
— ‘._.t.r_ b 1 r...p.t.,,- _‘L_L___;._L_, ++ )
bt I ',*,f‘-"-n:"-'--l-"'.""' ';-Ll

z
&
3
-4
N

IS

Library Deck Generator will supply standard control cards
which will be used for selection of subroutine BB. The title
will be printed on the 4th tier of the cards and on the com-
piler listing. The values given in columns 15-19 will be used
on the header card. The component version (02) will go in
columns 59-60 of the header card, the modification level
(00) will go in columns 31-32, and deck replacement indi-
cator (1) will be placed in column 85.

Loading the LDG Program

au
PROGRAMME (&

STATEMERT

Dpr 3 1 Qe s
218 @ i3] s 16 17 1g 1 1 37

%ﬂgﬁwﬂ SASTIog, Ry T _
SR (e e LT
ERBRRARN ERARRRRRRNRNNRNRRD
SSENHLER] bl pRogRAR 1] |11

G 33 3435 36 31 38 39 40

T

=l
|
i

o
IR

Ll

| S S Tl 385

il 0 |
b

1

4 Bt e S

i =

{

I

e &
0 5 5
o o 5
i —— *41::

-+

|

-
=
1 A 0
0 s 0 i
B B N
BenE
T

Error Conditions

Several errors are considered to be terminal. If terminal
errors occur, the card image is printed, the error message
is printed, the deck is run through to the ‘/*’ card, and a
C halt is displayed. When this halt is reset, processing is
discontinued by the end-of-job routine.

If the error is not terminal, the card image is printed, an
error message is printed, and a C halt is displayed. The
program is restartable, however, and processing will
continue.

Following is a list of error messages generated by this

phase. An asterisk (*) preceding the number indicates
which are warning errors.

1. Number of control cards generated incorrect.
2. Length of control card text, too great for one card.
3. Card sequence incorrect.
4. Title too long or the first text is contiguous.
*5. First control card character may not be blank.
6. Not enough breaks for control strings.
*7. More breaks than control strings.
*8. Last text not at highest address expected.
9. Improper card in deck.
10. End card out of sequence.
11. Invalid control card identification.
12. First object card must be an ESL card.
13. Insufficient core for control card storage.
14. Invalid entries on *** conirol card.
*15. /* card or *** card out of sequence.
*16. GEB not used as module identifier.
17. *** card required before object deck.

18. Too many control card identifiers specified or
invalid sequence.

Appendix D. Assembler Language Subroutine to RPG Il Linkage

81



Output of the LDG Program Example

The header card in stacker 2 should be placed in front of Figure 29 is an example of a SPECIAL subroutine. This

the remainder of the output deck in stacker 3. Insert the sample program can be used as a base for any SPECIAL or
subroutine deck in the RPG II Compiler deck using the EXIT subroutine. The only changes required are modifying
Program Maintenance Program. The subroutine deck must the subroutine identification characters, entry point, label,
have GEB in columns 91-93. and routine title. Areas of change are outlined in the sample

listing. Control cards are created for you.

O0GEB ANY TITLE DESIRED MAY BE USED

ERR LOC OBJECT CQODE ADDR STHMT SDURCE STATEMENT

R L T Y T ) 00020000

3. « 00030000

4 ® THIS IS A SAMPLE CODING FOR THE CONTROL CARDS FOR A 'SPECTIAL' hd 00040000

5 * 00050000

6 DEVICE REFERENCED IN AN RPG PROGRAM, ALL LABELS WHICH WILL hd 00060000

7 * * 00070000

8« NEED TO BE MOOIFIED FOR A PARTICULAR PROGRAM HAVE LABELS * 00080000

9 * * 00090000

10 * STARTING WITH THE CHARACTER *#*'. THIS DECK IS IN THE FORMAT * 00100000

11 * * 00110000

12 * REQUIRED BY THE LIBRARY DECK GENERATOR. * 00120000

13 * * 00130000

14 * THESE CONTROL CARDS MAY BE USED FOR ANY SPECIAL OR EXIT * 00140000

15 * 00150000

16 * SUBROUTINE. * 00160000

17 * * 00170000

18 ® SEEEESEIEEEIEEEEEIEEEESEEIEEL R SRS EERREUIEEEEEEREEERREIDESREEEEEE # 00180000

20 % ERSEEREEEENEUEEEUEEREEUERERERENEEREEEEEEEREEEPEEEESEKNREERENEUNEERE & 00200000

PASE * 00210000

22 STANDARD LABELS AND LABELS USED TO LINK TO THE LIBRARY * 00220000

23 * hd 00230000

24 * SELECT ROUTINE AND RPG COMPEILER COMMUNICATIONS AREA * 00240000

25 * * 00250000

26 F SEEXERERESEEESEEREES R RN EREE RN EEE ISR ESE SRR ESSA SRR ERAB RPN KSR R EE & 00260000

0000 28 START START © PROGRAM SHOULD BE STARTEO AT 0 00280000
ooot 29 XR1 EQU 1 STANDARD LABEL FOR INOEX REGISTER 1 00290000
0002 30 XR2 EQU 2 STANDARD LABEL FOR INDEX REGISTER 2 00300000
0008 31 ARR EQU 8 ADORESS RECALL REG 00310000
0300 33 RELOCF EQU START+X'030D* RELOCATION FACTOR FOR CURRENT DECK 00330000
030E 34 JLEAAL EQU START+X'0O30E" ENTRY PQINT TO RESET RELOCATION 00340000
35 * FACTOR AND SCAN TO NEXT *J' CARD 00350000

0314 36 J3EAAL EQU START+X'031A°* ENTRY TO SCAN TO NEXT *J* CARD WITH- 00360000
37 » OUT RESETTING RELOCATION FACTOR 00370000

032¢C 38 R1EAC] EQU START+xt032C* ENTRY POINT TO INITIATE OR CONTINUE 00380000
39 * RELOCATION OF THIS DECK 00390000

0338 40 FLEAEL EQU START+x'0338°* ENTRY POINT TO INITIATE THE SCAN OF 00400000
41 * THE FLLE DESCRIPTION COMPRESSIONS 00410000

033E 42 F2EAE]l EQU START#X*033E" ENTRY POINT TO CONTINUE FILE DISC. 00420000
43 COMP. SCAN 00430000

44 ® BOTH OF THE PREVIOUS ENTRIES 00440000

45 » RETURN A POINTER IN XR2 AND A 00450000

46 * CONDITION CODE ‘*HIGH® 1F THAT 00460000

47 ¢ POINTER [S VALID 00470000

028C 49 COMMON EQU START+X'028C" START OF THE RPG COMPILER 00490000
50 * COMMUNICATIONS AREA 00500000

02E6 51 ENDCOR EQU COMMON+90 HOLOS LAST ADDRESS IN MEMORY -FIRST 00510000
52 BYTE USED FOR SYMBOL TABLE - 00520000

02EA 53 ENDST €EQU COMMON+94 HOLDS LAST ADDRESS USED FOR SYMBOL 00530000
54 TABLE. 00540000

Figure 29 (Part 1 of 4). Sample Coding for SPECIAL Device

82



ERR LOC

[eele]d]
0001
0003
000%
0007
0009
000A
0008
000D
000F
oolo
0011

0012
0013
0014

0000

0000 D101D1

0017

0017

0014A
001F

0023
0027
002A
0020

0030
0033
0037

0038
003E

0042
0044

Figure 29 (Part 2 of 4).

OBJECT CODE

4E
co

60

B89
F2

9C

co
Do
co

00

o1
87

01

8%
96

FF
o1
87

86
87

0000
7878

ADDR STHT

[efelolo]
0002
0004
0006
0008
0009
000A
000C
000E
000F
0010
o0l1l
0012
0013
0015
0002
0078
0000

78

43 030D

0338
0000

45 0C

OF

OF

o7

78

08 &3

0313

23

031a
0043
0045
0002

Sample Coding for SPECIAL Device

56
57
58
%9
60
61
62

&4
65
66
67
63
69
T0
71
T2
73
T4
75

17
78
79
80
81

83
84
a5
86

as
89
90

92

94
9%

97

99
100
101
102
103
104
105
106
107
108
109

j )
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

128
129
130
13}
132
133
134
135
136

138
139

141

SOURCE STATEMENT

% CSESO NN E NN EN N SN N SE SN NN SR NSRS EEE S NS EE O EA N RSN K EEE N ON OO RO ROOS @&
L] *«
. THE FOLLOWING 1S A SKELETON FOR A FILE DESCRIPTION .
. .
. COMPRESSION .
- *
LN IS R R R R INRINEIA R R RN RS R TR RTINS TIYRITRLIRIY LY ]
FCFG DS cLl FLAG BYTE FOR COMP. ALNAYS X'FF!
DS cL2 OUTPUT BUFFER 3
DS cL2 INPUT BUFFER ADDRESS
DS cL2 PRINT BUFFER ADDRESS
FCENTa DS cL2 10CS ENTRY POINT ADDRESS
DS cLl FLAG BYTE
DS cLl FLAG BYTE
FCIDNT DS cL2 HOLDS IDENT FOR SPECIAL ROUTINE
DS cL2 EXTERNAL INDICATOR ASSIGNMENT
FCOVA DS cL1 DEVICE COOE B'OXXX1010' FOR SPECIAL
0s cLl BLOCKING FACTOR
DS cLt RECORD LENGTH
& SES NSRS ESSNSEES NS SEES RN NSRS RSEEESES NS At SRS EE SN RESE Qe EERsEEE &
* L
. THE FOLLOWING IS A SKELETON FOR A SYMBOL TABLE ENTRY .
* *
* SEESESEEEENSEEEESR NS RN NS ES S S SEESREEE SRR RN ESHERENESERO NN EEESREER &
STLEN DS cLl LENGTH FOR FIELD ENTRY
STFLAG DS cLl FLAG BYTE SPECIAL NEEDS 8° '
STIONT DS cL2 IDENT FOR SPECIAL C'#8' HOLDS ENTRY
. POINT AFTER SELECTION
* SN N NSRS S SEEEEESEE SN NSNS SEREENNSNERNNNSRNSEE SRS NS ESREESENEEE #
. .
. THE FOLLOWING DC CONTAINS THE ID'S FQOR THE CONTRQL CARDS .
* L]
S CSSNSEES USSR NS HES RN SRS RS SE PN SSS NN RSO CSSESSSEEESSSSErSSOeE &
ORG O
nC [(AELNNND THREE CONTROL CARDS ALL WITH IDENT
. 'J' AND INSERTED IN FRONT OF THE
. DECK
* SESRSEEEFREESUSESNS SRS ESESES S SENESES R SSESSE S SRS USUSENESRRERSSES R &
* *
. THIS CONTROL CARD SCANS THE 'F* COMPRESSIONS FOR REFERENCE TO *
* L
. *##' IF FOUND 1T SETS THE FLAG BYTE AT X'0078' TQ X'FF'. .
L] *
. 1F EITHER FOUND OR NOT FOUND [T STARTS THE SCAN FOR THE NEXT *
L] *
. CONTROL CARD. .
* *
" SESEEE SR U NS EESE S SEE SE S ESEE S REESSESUSES RSN ESSE S S RESES SR IEESESE &
ORG  X*0017* REQUIRED FOR EACH CONTROL CARD
FLG EQU  START+X®78¢ AREA FROM X*78¢ TO X'FF' I§
. USABLE FOR WORKING STORAGE
. THIS BYTE USED TQ FLAG IF
. ROUTINE IS REFERENCED ON *F?
. SPECTFICAT [ONS
USING START,xXR1 VALID AT ENTRY TO ANY CTL. CARD
MVI  FLGU4XR1),X*00" INITIAL1ZE FLAG FOR NOT USED
. ON FILE DESCRIPTION SPECS.
ALC  #ENTRY(2,XR1),RELOCF CALCULATE TRUE ENTRY ADDRESS
8 FLEAEL INITIATE SCAN OF *Fv COMPS.
USING FCFGyXR2 VALLD UPON RETURN FRQM F1EAEL
SPCAL CLC  WIDENTU(2,XR1),FCIDNT(,XR2} IS THE IDENT THE RIGHT CHAR
TBN  FCDVA(,XR2),B'00001010° AND IS DEVICE CODE THAT FOR
T8F  FCDVA(,XR2),8°10000101°* *SPECIAL®
Je SPCA2,X'96° IF THIS IS NOT THE RIGHT COMP,
MV1l  FLGI XR1)¢X'FF? SET FLAG TO INDICATE USED ON
. FILE DESCRIPTION SPECS.
MVC  FCENT@(24XR2),#ENTRY(,XR1) MOVE ENTRY ADDRESS TQ THE
. FILE DESCRIPTION COMP.
SPCAZ B F2EAE] ELSE SCAN TO NEXT CQMP
BH SPCAL(,XR1) IF POINTER STILL OX LOOP
B J3EAAL GET NEXT *J' CARD
. THIS ENTRY WILL NOT CLEAR THE
* BYTE AT FLG.
¥ENTRY DC AL2(SUBRES) ENTRY POINT AGOR. TQ BE RELOCAT
S1DENT DC IS TE TWO CHARACTER IDENT FOR ROUTINE
DROP  XR2 Identify your subroutines by

replacing these # signs with
identifying characters.

00560000
00570000
00580000
00590000
00600000
00610000
00620000

00640000
00650000
00660000
00670000
00680000
00690000
00700000
00710000
00720000
00730000
00740000
00750000

00770000
00780000
00790000
00800000
00810000

00830000
00840000
00850000
00860000

00880000
00890000
00900000
00910000
00920000

00940000
00950000
00960000
00970000
00990000
01000000
01010000
01020000
01030000
01040000
01050000
01060000
01070000
01080000
01090000

01110000
01120000
01130000
01140000
01150000
01160000
01170000
01180000
01190000
01200000
01210000
01220000
01230000
01240000
01250000
01260000

41280000
01290000
01300000
01310000
01320000
01330000
01340000
01350000
01360000

01380000
01390000

01410000

Appendix D. Assembler Language Subroutine to RPG Il Linkage 83



ERR LOC

0017
0017

001C
0020

0024

0027
002a
002E

0017
0017
001C
0021
0025
0024
0020

0031
0035
0038
0038
003F
0042
0045

0048
004C

0050
0052

0054

OBJECT CODE

4C

cz
36

F2
6C
co

4E
4C
SE
4D
F2
c2

90
B8
DO
9C
BA
F2
0

co
co

0

02
02

10
ol
87

0l

01
0l
82
02

ol
EO
96
[}
01
87
FF

0l
87

0000
7878

FFFC

70 02EA

FFFC
02E6

02

06
70 04
0314

51 030D
30 O2E6
30 55
30 O2EA
18

0000

04 53
02
21
04 S1
02
o7
78

030E
032C

ADDR STHTY

0070

ooll

0002

0011

0051
0053

0055

143
146
145
146
147
148
149
150
151

153
154
155
156
157
158
159

161
162
163
164
165
166
167
168
169
170
171
172
173

175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

203
204

206
207

SDURCE STATEMENT

»
*
*
*
*
.
*
.
*

NOa

“ % nweem

SPCBO

.
*
*
*
*
*
*
*

SPCB1

spcB2

SPCB3
*

SPCB4

WENT
#10N

STSTEP
*

THIS CONTRQOL CARO OEYERMINES THE END AOORESS TO BE USED

N THE SEARCH OF THE SYMBOL TABLE DONE BY THE NEXT CONTROL

CARD.

EQU

ORG
MVC

LA
A

USING
TBF

JT
MVC
8
OROP

CALCULATIONS.

PEIBIRIIIPEIEROEENINI S RO R RN RO RN R E LA RAIEIXII NI EERERRNRAB RS RD

PREEBAE SRR R RN RN R R RN R R E N VAR O AR NN SR RR PRI PR EI AR T E AR B AR RN BRI &N

START+X* 70"

xX*0017"
END@{2,XR1),ENDST

X*FFFC* 4 XR2
ENDCOR,XR2

STLEN-1,XR2
STFLAG( ,XR214X"18¢

SPCBO
END@{2,XR1)sSTIONT(4XR2]}
J3EAA]L

XR2

CEEPPPIOEIPIIP PN PN PPPIII I PRI AN AN BRI PR EPE SR I E R R RN RRNPRR P RER D
THIS CONTROL CARD CHECKS THE SYMBOL TABLE FOR REFERENCES FROM

OF THE DECK IS INITIATEO

ORG
ALC
MyC
ALC
cLe
JL

LA
USING
cc
TBN

Y%
S8N

J
cLt
BNE

oc
ocC

DL

HEFRAIP AP ANRBPE ST PRI EEEE LISV PSR EEP SR PR R EE SR TR LV USSR bR BB P &S

X'0017°
WENT{2,XR1)RELOCF
SPCB2#3{2,XR1)y ENDCOR
SPCBZ24312,XR1},STSTEP{4XR1)
SPCB2+3(2yXR1),ENDST
SPCB3

*-%,XR2

STLEN-1,XR2
STIDNT(24XR2)+#IONL, XR1)
STFLAGL,XR2)+¢B'11100000°"
SPCB1{,XR1}l ¢ X*96"
STIDNT(2,XR2} 4 WENT{,XR1)
STFLAG(,XR2)4B* 00000001’
SPLB4

FLGL+XR1) 4X"FF!

J1EAAL
R1EAC]

ALZ(SUBRRE)
CL2'nun

1L2% -4

IF REFERENCED THERE OR ON *F*' SPECS RELOCATION

- BB e

THIS TWO BYTE AREA WILL HOLD
THE AODRESS TO CONTROL THE
SYMBOL TABLE SCAN. IT WILL BE
THE ADDRESS OF THE END OF THE
SYMBOL TABLE OR THE FI1RST
TABLE ADDRESS TABLE POINTER
WHICH EVER IS HIGHEST

INITTALIZE END ADODRESS TO END
OF SYMBOL TABLE

INITIALIZE XR2 TO NEGATIVE 4

POINT XR2 TO FIRST ENTRY IN
SYMBOL TABLE

TEST [F ENTRY FOR TABLE QR
ARRAY

tF NEITHER -=> JUMP

ELSE RESET THE ENO ADDRESS

GO GET NEXT CARD

START OF CONTROL CARD TEXT
CALCULATE ENTRY ADORESS
INITIALZE LA BELOW

STEP BACK TO NEXT ENTRY

CHECK FOR END OF SYMBOL TABLE
IF BEYOND END --> JUMP

POLINT TO ENTRY

IS THE 1DENT CORRECT AND
THE ENTRY FOR AN EXIT LABEL
IF NOT CORRECT ENTRY --> LOOP
ELSE MOVE IN ENTRY POINT
SET FLAG FOR ROUTINE FOUND
START RELOCATION OF ROUTINE
WAS ROUTINE REFERENCED FROM
FILE DESCRIPTION SPECS. 7
ND — UNUSED SCAN TO NEXT DECK
YES — USED AS SPECLAL RELOCATE

ENTRY POINT FOR RELOCATING
IOENTIFICATION

NEGATIVE LENGTH OF SYMBOL
TABLE ENTRY

your subroutine,

Replace these # signs with
the characters identifying

Figure 29 (Part 3 of 4). Sample Coding for SPECIAL Device

84

01430000
01440000
014650000
01460000
01470000
01480000
01490000
01500000
01510000

01530000
01540000
01550000
01560000
01570000
01580000
01590000

01610000
01620000
01630000
01640000
01650000
01660000
01670000
01680000
01690000
01700000
01710000
01720000
01730000

01750000
01760000
01770000
01780000
01790000
01800000
01810000
01820000

01840000
01850000
01860000
01870000
01880000
01890000
01900000
01910000
01920000
01930000
01940000
01950000
01960000
01970000
01980000
01990000
02000000
02010000

02030000
02040000

02060000
02070000

v



ERR LOC QOBJECT CODE ADDR STMT SOURCE STATEMENT

209 % SRS EEEERRCE R LR EEE R REE RN RS REEEEEREEEEEROEERE SRR ERRREEER &
210 « .
211+ THE FOLLOWING DC CONTAINS THE PROGRAM TITLE TO BE PRINTED .
212 » .
213 « ON THE RPG LISTING AND SHOULD BE CHANGED TO REFLECT THE .
214 » *
215 « NAME OF THE SUBROUTINE. .
216 » .
217 & $9 406420 RR AR E AR RAR R AR E R RA AR BR A A EF AR SR FRAEREEAEE RN SRR ERE4E &
0000 219 arRG 0 SIGNALS START OF TITLE
0000 E207C5C3C9C1D340 0010 221 oc CL30*SPECIAL 1/0 ROUTINE ¥#*
0008 C961D64009D6E4E3 221
0010 C9D5C54078784040 221
0018 404040404040 221
L
Replace these ¥ signs with
the characters identifying
your subroutine.
223 & FRR SNBSS ERBBEERBIRI SRR ERED ER N ERRBED RIS E RS EERNEEE RS 2SS SN ERE &
224 * -
225 » THE FOLLOWING CODE REPRESENTS THE FUNCTIONAL CODE FOR THE .
226 « .
227 * USER ROUTINE. THE ABOVE CONTROL CARDS ASSUME THE ENTRY POINT  »
228 « .
229 = 1S AT SUBRES. THE ENTRY POINT 1S UNLQUE TO EACH SUBROUTINE. ¢
230 * .
231 » THE ENTRY POINT IS THE LABEL ON THE ROUTINE CODE, NOT THAT »
232 » .
233 » ON THE START CARD. .
234 = *
235 & SR SRR EINNEEREERENENR SR E RS ER AR AN EAE I ERNNABEEEEINELEAEAAEREERERNR S B
237 & 626 RRREERNR PRI NERERARRERAER RN NEEE SRR E SNBSS E S LSRN E SR AERAIIRE B
238 » .
239 = THE ROUTINE MUST MEET THE FOLLOWING REQUIREMENTS .
240 » *
241 % 1. WHEN ENTERED FOR INPUT OR OQUTPUT (NOT EXIT) 1T MUST .
242 ACCEPT THE STANDARD SPECIAL [/D LINKAGE PARAMETERS. .
243 ¢ *
244 * 2. WHEN ENTERED VIA AN EXIT FROM CALCULATIONS IT MUST .
265 » ACCEPT THE STANDARD EXIT LINKAGE AND PARAMETERS. .
246 = »
247 = 3. 1T MUST INDICATE END OF FILE BY PROVIDING THE CORRECT .
248 » COMPLETION CODE IN THE DTF. *
249 = »
250 * 4. IF A DIFFERENT AREA 1S USED FOR THE ACTUAL ENPUT OR .
251 » OUTPUT BUFFER THE DATA MUST BE MOVED TO OR FROM THE ADDRESS®
252 » SUPPLIED IN THE DTF. .
253 = *
254 & SRS EERNAEEEEREREEAREE XA BEENERE RN E SR ESER LRSS R R R E SRR E RS SRR R EERE &
oooe 256 ORG O SIGNALS START OF ROUTINE TEXT
0000 258 SUBRNE EQU ¢ TH1S IS THE ENTRY POINT TO THE ROUT.
Replace these # signs with
the characters identifying 260 sssenns ROUTLNE CODE 1S PLACED HERE ennsenees
your subroutine.
0000 262 END  SUBR¥A THES INSURES PROPER LISTING FROM RPG

Figure 29 (Part 4 of 4). Sample Coding for SPECIAL Device

02090000
02100000
02110000
02120000
02130000
02140000
02150000
02160000
02170000

02190000

02210000

02230000
02240000
02250000
02260000
02270000
02280000
02290000
02300000
02310000
02320000
02330000
02340000
02350000

02370000
02380000
02390000
02400000
02410000
02420000
02430000
02440000
02450000
02460000
02470000
02480000
02490000
02500000
02510000
02520000
02530000
02540000

02560000

02580000

02600000

02620000

Appendix D. Assembler Language Subroutine to RPG I Linkage 85



Appendix E: Assembler Language Subroutine To COBOL or FORTRAN Linkage

This section describes standard linkage conventions for use
between modules produced by the System/3 language
translators: COBOL, FORTRAN, and Basic Assembler.
Programmers using standard linkage conventions are able

to code routines in the language most appropriate to the
function being performed, with the assurance that effective
and permanent communication has been established. Figure
30 illustrates the standard described on the following pages.

* SAMPLE SYSTEM/3 LINKAGE -- MODULE A CALLS MODULE B

*

EXTRN MODB
@XR1 EQU X'o1l'
@XR2 EQU X'o2'

MODA START X'0000'
*

* INITIALIZE XR1 AND XR2 TO TEST SAVING
*
L XR1,@XR1
L XR2, @XR2
B MODB CALL MODULE B
DC AL2 (PLIST)
HPL  X'6F',X'6F' HALT 00 AFTER RETURN
*
* PARAMETER LIST
*
PLIST EQU  *
DC AL2 (SAVA) ADDRESS OF SAVE AREA
DC AL2 (PARMI) ADDRESS OF FIRST PARAMETER
DC AL2 (PARM2) ADDRESS OF SECOND PARAMETER
DC XL1'00"
*
* PARAMETERS
*
PARM1 EQU  EQU *
DC CLS 'FIRST'
PARM2 EQU *
DC CL6 'SECOND'
SAVE AREA
SAVA DC XL1'BO" INDICATOR BYTE -- ASSEMBLER MAIN
DC CL6 'MODE' MODULE NAME
*
XR1 DC CL2'R1’
XR2 DC CL2'R2"
END  MODA

Figure 30 (Part 1 of 2). Illustration of Standard Linkages

86




*

@XR1 EQU X'01"

@XR2 EQU X'g2!

@ARR EQU X'08’

@IAR EQU X'10"'

*
ENTRY MODB

*

MODB START X'0000°

*
ST SAVAR1,@XR1
LA SAVA,@XR1
USING SAVA,@XR1
ST SAVAR2 {,@XR1) ,@XR2
ST SAVART (,@XR1) ,@ARR
L SAVART(,@XR1l) ,@XR2
L 1(,@XR2),@XR2
ALC

*

* BODY OF ROUTINE

*
L SAVAR2 (,@XR1) ,@XR2
L SAVAR1 (,@XR1) ,@XR1
L SAVART, @IAR

*

* SAVE AREA

*

SAVA DC XL1'30"
DC CL6 'MODB'

SAVAR1 DC XL2'00"

*

SAVAR2 DC XL2'00"

*

SAVART DC AL2 (00)

*

TWO DC IL2'2"

*
END

SAMPLE SYSTEM/3 LINKAGE -- MODULE A CALLS MODULE B

SAVE CONTENTS OF XR1
XR1 WILL BE BASE FOR SAVE AREA

SAVE CONTENTS OF XR2

SAVE CONTENTS OF ARR

XR2 POINTS TO ADDRESS OF PARM
LIST

XR2 POINTS TO PARAMETER LIST

SAVART (,@XR1) ,TWO(,@XR1l) SET RETURN POINT 2 PAST ARR.

RESTORE XR2
RESTORE XR1
RETURN

INDICATOR BYTE -- ASSEMBLER LANG

MODULE NAME

CONTENTS OF XR1l ON ENTRY TO THIS
MODULE

CONTENTS OF XR2 ON ENTRY TO THIS
MODULE

RETURN POINT

Figure 30 (Part 2 of 2). Iustration of Standard Linkages

Appendix E. Assembler Language Subroutine to COBOL or FORTRAN Linkage

87



STANDARDS

In order to be standard, linkage must be accomplished as
follows:

1.

Each module must have a save area (Figure 31).

Byte Bit Description Program

Subroutine
Main program

0=Not a main program
1=Main program

1-3  000=FORTRAN
001=COBOL
011=Basic Assernbler

Subroutine
Main program

4.7 Reserved

1-6 EBCDIC name, Subroutine
left justified Main program

7-8 Value of index register 1 Subroutine
(XR1) atentry

9-A Value of index register 2 Subroutine
XR2} at entry

B-C Return point in Subroutine

calling program

Note: Main program refers to the program with the highest
level of control.

Figure 31. Save Area

2.

Each moduie that calls another module must have one

or more parameter lists (Figure 32).

Byte Description
0-1 Address of save area in this program
2-3 Address of first parameter

{2N)-{2N+1) Address of Nth parameter

(2N+2) XL1°00’ to indicate end of parameter list

Note: The first two bytes as well as the end-of-parameter-list
indicator (XL1°00') must be present in all parameter lists. If
no parameters are to be passed, the parameter list will be only
three bytes in length. in this case, byte 3 will be 0 and the
called program will indicate a parameter list length of 2.

Note: Addresses in parameter lists refer to the first byte
(byte with the iowest address} of the item.

Figure 32. Parameter List

88

When control reaches a program entry point, the
address recall register (ARR) must point to a 2-byte
field containing the address of the first byte of the
parameter list.

The Basic Assembler language code to call a COBOL
or FORTRAN subroutine would normally be as
follows:

EXTRN  SUBR

B SUBR

DC AL2(PARAMS)
RETNPT EQU *

Note that the pointer to the parameter list points
to the left byte of the save area address.

Normal return is accomplished by placing in the
instruction address register (IAR) a value that is
two larger than the contents of the ARR when the
program was entered.

Index registers 1 and 2 (XR1 and XR?2) must be
saved upon entry in the called program’s save
area, and restored at exit.

The address recall register need not be restored,
but the return address must be determined and
placed in the called program’s save area.



Along with the Basic Assembler, you will receive a sample
program. By executing the sample program you can verify
that the Basic Assembler is operational.

MODEL 10 AND MODEL 12 SAMPLE PROGRAM

This section describes the sample program and explains the
operating procedures necessary for executing it. General
operating procedures for the Basic Assembler are found in
the IBM System /3 Model 10 Disk System Operator's Guide,
GC21-7508, IBM System[3 Model 12 Operator's Guide,
GC21-5144, and in Part II of this manual.

Program Description

The sample program is called Prime Number Test Program.
The program reads a number from the console display
data switches, tests to see if it is a prime number, and

Appendix F: Basic Assembler Sample Programs

indicates the results of the test on the message display
unit. If the number zero is tested, the program is
terminated.

Three halt codes are used in this program to request input
and indicate whether the number is prime. They are:

Halt Code Meaning
EN Enter a number to be tested.
P The number tested is prime.
NP The number tested is not prime.

Figure 33 shows the OCL that assembles, link edits, and
executes the sample program. Figure 34 shows the sample
program statements.

Appendix F. Basic Assembler Sample Programs 89



1BM System/3 Bauc Asembier Coding Form

Mo e T T T T T
ome 1 e T T
Dol Y . ) om0 3a 3K 31 18 99 40 41 42 4y 4445 @5 4> g vy 50 L1 871 b L7 A G5 s .
1 1 T i H T T [ R o X I‘Ir 13 T111 H 1 T T !: T T -1 3 T Kf! 71 :
f=t-t - + I e S T T bt s 4 Tt
ERIRAREINAN IENRERRERANRARREN HINGRNENAN B
Q.ALS.SQH;.LH_ LU { T I 8
L1 bd | { Lif L
MAWH‘ sloviRC] L] 1T
i 53 | —
K| Cl L
L B i B
L], [TIRIAIC | g | B
& cl IS R o b o I L +
] ek o K L SER O o ) 1 = o B
i 1 i
s o N 121 I Y H V) i
/| RVUN| | B I ; il i AEEEEE I
ﬁ‘_,,,.,,u . ﬁN :L R x"" NS . .
: i T y I
£\ LolAln] HolL) mu ] L .'}'il T .,;E, i
mEREEN 13 THE NSRS D | )i Ly |
7/1 IFLE MAMIE.7$‘S‘O‘UR( i _ r—[R;Rlelz,TRiALQKS;-QQ ENEREARARTENNANRERNINERCUNSARENARA
o S o o S A e . 15 S N N Y - I Ffet [0 0 e o e ™ E i
/_j [Fl L] ;NgA;ME;fNO_RKJ cx-sz\’;zrzlﬂwmcﬂs -1o! NNERREEEEH ill RARSRRYNERRER
; | | 1| S A | :
ey iy o kI e B e T ‘t1|‘~|'{?-‘;~
/HIRMN,[“‘WTW }1]: b }1} } i AERRREREIREN
NEE “'l',_-~‘-lr| »]‘ L I H U;-]H.‘ lrw}
H- { L t I IR e 8 I
LIXTL l-.}’ fx‘i!‘ i i er 0 e 0 0 0 e I 51 8 Y R !‘l.‘
P73 4 3673'('0n¥7\"¥l\&\uv 1919 D 22 BB A I'Batn:nn_u)a:sxnnu-nuu‘ 44 45 45 47 48 49 0 51 37 5] JﬂSﬁwsvmﬂSﬁs\ihwesmn &0 A6 JO 11 92 13 va 516 2y me M BD W BT ki ke e K7L 8D g0 e g
IBM System/3 Basic Assembier Coding Form
IBM
PROGRAM PUNCHING CRARHIC
HO 0 [one INSTRUCTIONS i
STATEMENT
1 N;‘m: 6 M.,! IH‘ 1201314 518 17 151920 ZP%';T’?S 76 27 78 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4§ 49 50 51 52]53 54 55 56 57 \lr'vl. | Lt:(i? EJTSA 65 66 67 68 68 70 71 72 73 74
I T T
14 11 Ll ! | P
[/ PIHA|SIE ]N‘AMF___—ﬁAfSSPO | |
1
!
t
/171 lo/PT1loNis! Malpl-[x[RelF i |
© @ : l
I
Z/, IINcLuDEl INAME[=$|als|sIAR], ulN[T|T]=Rl2 ! i l
[ | I - |
T o B ~rr 1T I ryrrirreorr T T 1
77N T T ! NENNENERENEARANE
| L] L] 4! I
/! ! JJ[ > 12 A :r L__‘,l I
L T i [ | T
1 T T T
4 AL L 0 -
L] I I I
T I | i
il 1 " e T -
| ' i o
. t B EEEEERE 1
l ! ] I | ; | _,‘_T_
i ; T T f T
NOTES:
1. Specifies the location of the assembler program. 5. Name given to the output assembler object {O) program.
2. Name of assembier sample program in the source library. 6. Module name and object program name (R}.
3. Specifies the source library with the sample program. 7. Specifies the object {O) program, stored on the Overlay
Linkage Editor program pack by default.
4. Library in which the output assembler object {R} module
is stored. if the system configuration does not include drive 2, references

in the OCL to F2 and R2 must be changed to specify devices
available on the system.

Figure 33. Model 10 and Model 12 Sample Program OCL

90

o



OPTIOMS MODFCK

a001

THE (157 QF ¢ ChS ASSE¥ALY JS—- NODECK,LT1ST, XREF ,REL, 7RI
$AGEER EXTEPNAL SYMBCL LTSY
SYMANL TYPE VER 13. MOD OO 01/30/76 PAGE 1
HOMLE
SASSPR  PRINMF MUMAEE TEST o BM
ERR LOC OBJECT fOUE ADOT STMT SOURCE STATEMENT VER 13, MQD 00O 01/30/76 PAGE 2
7
I THIS PP Ra® RELNS A NUMBER FRONM THE CCONSOUE COYSPLAY CATA SWITCHES, TFSTS 1T FOR
4 # DRIMENFSS, AMD IMDICATES THE RESULTS Om THE MESSACE O1SPLAY UNIT.
g =
& * THEEF ARFE THREE HALY CCOFS USEN IN THIS PROGRAM:
T HALT CODE MEANING
8 %= X ENTER A& NUMBER TC 8E TESYED. 1IF NMUMBEP ENTEREQ IS ZEPD THE
5 * PROGRAM TERMINATES,
e » 1 NUMBER 15 PRIME.
1o 113 MUMBER IS NOT PPIME.
12 *
LLLT] 13 %8SSPR START O
oaon 14 USTNG ®.XR1 ESTABLISH BASE PEGTSTER
oone €2 01 0000 15 LA *, XRY LCAQ BASE REGISTER
0008 F0 TC 2F 16 BEGIN  HFL XP2E, X700 TENY HALT
T 10 00 18 17 SAS  SENSE(,XP1) .0 SENSE THE DATA SWITCHES
000A S0 0t 78 76 18 CLT SENSE(2,%P1) ,2ERCL, XR1) YEST INDICATiEGN TC QUIT
a1 0% 19 JhE FREEAR NUMBER TO TESY
87 nao& 2t 8 4 CC YO END OF 4ne
soLs 21 [ols XL1v8s
22+
23w PREPARE THE [APUT NUMAER
0016 5D 14 24 PREFAR CLC GENSFU(2,XR1), THREEL X7 1) TESY FOR ONE, THC AND THREE
OD1A F2 25 SEH PRIME# CALL ONE, TwO ANC THREF PRIME
o010 78 28 T8N SENSE(,XR1), %701 TESY FOR EVEN
0020 F2 27 JF NPRIME EVEN, MCT PRIME
0023 50 T4 28 MG TEST#{2,XR1Y «THO(,XR1)
00271 =C TR ra MY C EMDA+1{2,XR1),SENSE({.XR]) CIVIDE INPUT BY THWC
oaze I 30 vl ERDA-~1{,XP1),0 YO USE FOR END TESYING
002F SE T8 21 ALC ENDA +1 {3, XR]) ,ENCH*1(,XR])
0032 5¢ TR 32 LIN# ENC#41 (3,XR]1),ENDR*1(,XR1)
0024 SE T8 213 aLC ENDHAL (3 4XR1) L END#2] ((XR1)
0038 SF TR ALC EMOM+1(3,XR1) LENDE2T(,XR1)
003E SE 18 ALC EACASL (3, XRI)LENDRL(, XA 1Y
0042 SE T8 aLC ENDH4TED(XR1) LENOA L {,XR])
00&& SF TR LINS ENDE+1(3,XR L), END#21L, XR1)D
*
* MATH TEST (00P
004A SE CG1 TF 72 40 LECEST ALC TESTHI2, XR1),ONEL,XR1} TNCREMENT TEST
CO0&4E =0 Q)1 TF Te a1 cLe TESTHL2,XFL) , eNDR T, XR]) TEST FQR COMPLETE
0052 F2 B4 14 42 JH PPIMES CCHPLETE, CALL IT PRINF
aoss SC al ™o 71e 47 MyC TEMPAR{2,%P1),SENSEL, %R1) MAKE COPY AKD
atsg 5F 0} 0 7F 44 SURTR  SLC TEMPARI[2¢XRI) (TESTHL  XPL) FIND REMAINDER
0o0s0 DO A& %9 a5 ap SUBTR L, XR1) 8Y SUBTRACTING
0080 DO 01 4a LT ahz LOCBRST (L, XP1) REMAINNER NOT ZFROD
T »
up NUNBER NCT PRIME
0063 FO 2F 3F 45 NPRIME HPL  X'3Ft,x'2€¢ NOT PRIME (NP] HALT
00&E DO BT 04 50 8 BEGINI,XR1) GC RACK TO BEGINING
51 &
2 = NUMRER [S PRLNE
0069 FO 03 3F £ PP IMEN KR X'IET, X103 IS PRIME [1P) HALT
QOeC DO BT N4 Sty £ BEGINL,XR1) GO BACK 10 BEGINTNG

I of 2). Listing ol Statements in Model 10 and Model 12 Basic Assembier Sample Program

Appendix F. Basic Assembler Sample Programs

0003
cCra
0005
0006
ccer
0608
0009
6C10
0011
0012
cc1?
0014
0c1¢
oc1e
0017
cC1e
6C19
0020
ccz1
0022
0022
0C24
0025
£C26
ocay
0028
0C2s
00130
0031
0caz
0032
0C24
gc2s
001¢
0c3?
0028
0039
0cac
0041
cC42
0¢42
0044
0Ca5
0046
0047
GC4E
0049
00%¢
(133
0052
c€Css
0054
005%

91



$ASSPR

PRIME KUMBER TEST PROGRAM

ERR LOC O0OBJECT COOE

006F 0000
0071 0001

TOTAL STATEYENTS TN ER

SASSPR
SYMBOL

$ASSPR
BEGIN
ENNK

LngPsSY
NDR [ME
ONE
PREPAR
PaIMEH
SENSE
SUBTR
TEMPAR
TESTH
THREE
TWO
XRY

ZERQ
AAELE

oL105
0oL1 03

LEN

col
003
002

004
002
002
aca
003
002
004
oez
ocz
002
002
oct

002

VALUE DEFN

Q000 0013
0004 0016
Q07a 0CE3

Q04A £040
0CE3 (04S
00172 0059
0016 €024
0066 €053
0078 0062
G55 0r4s4
007D 0065
00TF 0066
octe neel
0074 0C60
0001 0067

ao7¢ Cese

STATEMENTS IK EP

ToThe ;
1 TCTAL NUMBER

CODE

ADDR

€070
0072
0074
anTe
nnre
noTA
cara
007F
0001
0020

ROR IN THIS ASSEMBLY

REFERE

0068
0050
CC29*
0038
00456
oez7
0040
0018
¢azs
0017
0045
CO43%
0028%
€024
c028
cotre
0020
Q036
0046
0018

STMTY

56

SCURCE

»
»
25%0
ONE
TWC
YHREE
SFNSE
EADE

TEMPAR
TESTH
XR1

STATEMERT VER 13. MOD 00 01/30/76 PAGE 3
CATA AREA

oc 11200 ATNARY ZERQ

oc xL2¢00G1" CNE

a1 812'00000C10" WO

oC AL2(2) THREF

0s cLz

[ cLe

cs cLl

oS cL2

cs cL2

EoL 1 BASE RECISTER

END  $ASSPR

= 0

CRCSS REFFRENCE

NCES

0054
0030#
002¢*

0042
ootle

C044¥
004 0%

0015»
0021
0037
0050

0031
€037

€024

0041

0017
0031
cc27
0054

0031*
CC2T*

0026

0044

0018
cc3z
cC40

ROR TN THIS ASSEMELY =

fTH OF $ASSPR IS

VER 13. MOD 00O 01/30/76 PAGE 4

0032 0032% 0033 0032* 0024 0034% 0035 0035%
0041

002% 0042

0018 0024 0024 002¢ 0028 0028 0C29 0029
0032 0032 0033 0034 @034 0035 0035 0036
0C4C CC4l CC41 0043 0043 0044 0064 0045

]

128 DECIMAL,

OF LIBRARY SFCTCRS PECUIREO 1S 2
NAME-£ASSPR, PACK-RIR IR T, UNTT-R]1,RETAIN=-T,LTBRARY-R,CATEGORY~000

Figure 34 (Part 2 of 2). Listing

of Statements in Model 10 and Model 12 Basic Assembler Sample Program

ocs?
0o0ss8
0059
ocec
0061
cce2
coez
Qgé6a
0065
006¢
0067
opeet
0Css



MODEL 15 SAMPLE PROGRAM

This section describes the sample program and explains the
operating procedures necessary for executing it. General
operating procedures for the Basic Assembler are found in
the I1BM System/3 Model 15 Operator’s Guide, GC21-5075
and in Part II of this manual.

Program Description

The sample program is called System Input Device List
Program. The program reads records from the system input
device and lists them on the system printer. Statements

are read and listed until one of the delimiters (/*,/&, or

[.) is encountered. If the delimiter is /*, another file can

be listed under operator control.

There are three messages displayed by this program:

Message Meaning

EOF ON SYSIN End of file encountered on the
system input device. More files
can be printed if the EOF condi-
tion is caused by /*. The operator
replies P to print another file or

C to cancel.

PRINTER ERROR A permanent printer error has
occurred. The program issues the
message and then goes to end of
job. (The message is displayed and
then removed when end of job is
reached. However, the message is
in the system history area and may
be displayed from there.)

SYSIN ERROR A permanent system input device
error has occurred. The program
issues the message and then goes to
end of job. (The message is dis-
played and then removed when end
of job is reached. However, the
message is in the system history area
and may be displayed from there.)

The sample program uses Model 15 macros and therefore
the assembly step must be preceded by a macro processor
step.

Figure 35 shows the OCL that assembles, link edits, and
executes the sample program. Figure 36 shows the sample
program statements.

Appendix F. Basic Assembler Sample Programs 93



{BM System/3 Basc Assembler Coding Form

IBM
Jr—

B [ 7T I —
L»‘no{.»uuurn |‘ L |Dv~c-< L J | [ I | [ !:;n:: PrE—
I S YT o I___o;m;-',»b;]“,smm T LRy RURCRT ubllﬁu «‘qm’: CEER T L mueeue:a;]unu LEE] rslye ] LR L
7 r S . .
& - "l:' ¥T!H T "’“"‘;‘llull'
S N ., i . a.;_l. |
Al | | | i ) 17
1 528 2 1 T ]v—“r —i'
# .' IT( T T 1 lll E
. SW', —t + L r+H i
1 : RS T T T T
SEEREEREE NN RANENINEEREE
:"*' T T ‘[\V i."'l’ |r
l:e t =t
I 50 0 L
L | ! ; L1
1 i AR
P— b+ EREEERE
b ey b S
/ : ISR
| 0 bt
/ HE , c HHH
] |
L1 +1 4 v 2 4 L4l B 0 '
/7] FITiL e[ MAME[-[oRiW2], Plalc rm{@nf.; IRENNEE L-L---l:
ANNEERAREEN L] [ REENEEEAR AEESENNENENED
717 FlTjLfE] niamiel-1$|s|oluRIClE], | : ,r RERRRANI HERRERE BEEERD B
| 3 ; | 1 i !
i T EEmEme = } ' T T T
11/] [clomplr e[ oebrlelem-laial || (111 LTI Hib T HTH L] | L NN
T 11 f il i H | f H T
' 2 34 s 6]0]8 S en n[:{umnu MWD T D MBS BT MBI I 7 3 e B M IS A1 424 44 4 47 8 495D 51 5751 54 5536 31 58 50 6081 67 03 54 G566 67 68 59 70 71 72 13 74 1576 77 78 9 BONI @2 83 Ba i o ATpA O W 91 0 93 94

1BM System/3 Bauc Asmbler Coding Form

PROGHEN

[ 1
R |D‘”_ Lms RLCTIONS l [ | I ] [

[wemme Jowwe | T T T T [ T [ or

J CARD £LEGTAO RUMAER

S
1 IN;mi 5 6l Eosnil‘uh??ﬂh 14 13 16 4716 19 X )8 170;’) 7576]”75)‘)1‘7 7 1)45}]7 (‘J\‘GOI\ 47 4 a4 35 W8 7‘3"1505‘5:]5‘55!657)«3/)505117&15‘65“67“':!707 72 73 74 7576 3 1a /9 80 8 42 63 64 88 36 §7|xn)
T T v
/\/ RIUN 4 l L] '_,_lL Lo i ‘_‘ ]ﬂ,?_L‘x ITT[ :[ \ l | : ..4_!*
| ~L.l.,.i:4 P O | ;\ i : |
| ! |
I L_J__ I IA_; |.._‘._'r_» i
AL L | la bt NS -
Lol rlrlakiKls[~IL : ‘ [ !
T 5| T L i ?_t i
| .t £ A4 4 L
TRALKS!L ARENTERERIRNN
| ] l i 4 |
7 =TT \ SESERESIENS T
{ 1 | ! 2 e v B X8
B NEE 1 l.‘ T I T !:" T
+ S R : 1= R =B S
/ I i
W I T T T 1T R B bt i"‘
7/ —T - - .,‘ :f._T r + 1‘, - fid 4 .l_r
F+ 3 111 wj o + 4 ST
T R B R At B L B =TT t ! T EEREEEE
L L AN A RENE ! | ) L1 .
T TPt =ttt T t | e o o R
| & 0 s +: A R ..
| § L 3 /‘l.”“"*'f—_;‘ L : ) : l | I+
4 S T 08 o 155 5 A 0 G O L L - 1 NS B A
| i ;_ﬁ‘ e | ARy ENRERNNEE
t ! - r—- b1t 1 | T._——-RW s Tt
; |.I' I (A ! | _4>_‘|.._~ Ll
I | Lih_i‘il - I —~—I—‘L A A S I
I Im 1 i |
:;_l IL _+;_JL. o ‘ L L O A j..JL;
{ i —., f 140 {I.~1 : B ) . Ll + ‘.,.,J_
1 T O ANNRENNNEN o T
1. 2 34 8 &[7]|8 9 101 12/ INWM 1612 a:gl)nh})ﬂ?&xn?ﬂ?sl]lVD)lhl:n:lunuI7L,M6G"4luw5|575191555‘!75“.@5\5‘1BJMUSHH“HWHUY]H75»/77!’9!)!1mu&l%a&ﬂv’ﬁmm’uwnv'

Notes:

39}

Figure

94

Specifies the program pack. 5. Module name and object program name (R).

Name of the assembler sample program in the source 6.  Specifies the system pack.
library.
If the system configuration does not include the 3444

Library in which the output assembler object (R) drive 2 or the 5445 drive |, references in the OCL to R2
module is stored. and D1 must be changed to specify devices available on

the system,
Name given to the output assembler object (O)
program,

35. Model 15 Sample Program OCL



OPTIONS NODECK 0BJECT TO L IBRARY IJNLY 40012000

THE LISY OF OPTIONS USED DURING THIS ASSEMBLY [5-- NODECK ,LIST,XREF,REL, 08}

$ASSPR EXTERNAL SYMBOL LIST
SYMBIL TYPE VER 01, MOD 03 11-09-73 PAGE 1
$ASS PR MODUL £
$$LPRT EXTRN
$ASSPR
ERR LOC UBJECT CODE ANDR STMT SOURCE STATEMENT VER I1, 411 Ja 1i-)9-173 PALH 7
L ICTe 1,71
2 I[SFEQ 73,80
3 PRINT NOGEN,NJOATA
$ASSPR SYSTEM INPUT DJEVICE (SYSIN) LIST PROGRAM
ERR LOC 0OBJECT CODE ADDR STMT SOURCE STATEMENT vEx 01, 403 20 L1-29-73 PAGE 3
5 % THIS PROGRAM READS A FILE FROM T4 SYSTEM [NPUT DEVICE aN?Y LISTS
6 *x IT ON THE PRINTER.
T %
8 = THERF ARE THREE MESSAGES [SSJED "y THIS PRIGRAM:
9 = MESSAGE TYPE MEANING
10 = YEDOF ON SYSIN' ATIR  FND IF FILE FNJOUNTZRED UN SYSIN,
11 * MORE FILES MAY RE PRINTED 1F THF
12 = EOF CZONDITION IS CAUSED BY a v7#',
13 = THE JPERATOR RUPLYS T THIS MESSAGE
14 = ARE 'P* TD PRINT ANOTHER FILE AND
15 = ¢2r TO ZANCEL AND 50 TO £0J.
16 = TPRINTER ERROKS AT2 THERE HAS SEEN A PERMANENT PRINTFR
LT ox ERROA, T4E PROGRAM [SSJES THE
18 = MESSAGE aND G1IFS TU END OF 498,
19 # TSYSIN FERRIR! AT YHERE “HAS BEEN A PFUAANENT SYSIN
20 = ERROR, TH4E PROGRAM TSSULS THE
21 = MESSASE ANU GIES T END DE 3048,
4000 23 $ASSPR START XT'4090¢
JJ01 24 EXTRN §$LPRT PRINTER DATA MANAGEMENT
4080 25 USING 8ASE,RARG FSTABLISH A 4ASF RESISTEQ
4200 C2 J1 408C 26 La BASEBRG FOR THE JATA AREAS
23 # PREPARE THE PRIMTER FILE FOR USF
4004 D2 02 07 29 LA PRNDTF [ ,3R%5),%0TF
30 = $ALOC ALLJCATE PRINTFR FILE
33 » $OPEN JPFN PAUINTER FILE
4JJ0F BC 01 13 36 “VI $OFSPA{,$)TF) 41 SET FOR SINGLE SpPaCF
4012 8C 40 OF 37 MY 1 SDFOPC L, $DTF ), 3002 PRT 55T OP~CODE TU PRINT
4015 7C o1 00 38 MvI SYSINL#$SRFCT{,BRG), $SRIDF SET SYSIN 3P-0))E €02 1ST AUFF
40 * PREPARE TO PRINT A NEW FILF
4018 7C 01 L7 41 FILES MVI PRNOTF+S0FSKB({,BRG}, 1 SET T3 S<IP BEFIRE FIRST PAINT
43 ® READ FROM SYSIN AND 2RINT UNTIL END UF FILF
4018 D2 02 00 44 FILEL LA SYSINLL«BRG),SYS
45 % $READ OPC-N RCAD F20M SYSIN
49022 89 50 20 49 cud $SRFECT(,SYS),8500F TEST FIXR FQOF (r/7xt gt /8, 0/ .0
4025 F2 81 30 50 JE EOF
4228 80 80 20 51 il SSREZTI,SYS) ps5kEIIY TEST F B [N AP |
+02B8 F2 31 53 52 JE [N}
4J2E 80 69 00 53 cul HSRFCT L, SYS) 85 RERR TEST FJR SYSIN FRROR
4331 F2 81 3C 54 JE SYSER
4234 3C 00 0O 55 “vl $SRFCT (4,575, 85270 SET ¥ NEXT SYSIAN Rrad
4337 6C U1 14 04 56 MyC PRNDTFraDFLRALZ 2 BRGI,BSANE2 L 5Y S]] FUOINT T CURSENT 2503R)
4038 02 92 O7 57 LA PRANDTF(4335),30T
58 2 $PUTP DEV-1433 PAINT FHE QUARFNT RETIR)
4242 B30 4l OE 29 cLi $OECMP{,83TF) ,S§IPPER TEST FJR PRINTER FRPIH
+045 F2 81 32 51 JE PRNERR
4048 32 00 10 &2 My LOFSXBL, 52T F),D SeT P 8 s40p a+E
4048 BD 43 OF 63 et SNFCMP L, 8DTF),BL P NS TesT FAR PAGE HIVEHRFLUA
44t F2 D1 23 b4 JNE NISKIP
4051 3C Ul 10 25 Myl POFSKBL,&DTF), 1 SET SXIP Tu LinNe INE
4054 Cu 87 4018 66 NOSKIP 3 FILFL

Figure 36 (Part 1 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

Appendix F. Basic Assembler Sample Programs

VU230
23533300
13949330

J0060930
00073909
J0a39202
RINIE DRIV
V0100300
73113300
00120000
JO1339200
JOL4JI02
90150000
BLRE-NI )
col720200
32180000
J0190000
032000090
03210200
102209000

70240730
20759039
0269200
392730720

33290190
00390200
30310900
J0320030
23333339
J03423)30)
230353030

29372300
Ju339330

3340030)
U0419300
JC42320D
23463400
JI460000
20453130)
J345430)
Q0472200
048309320
JO&T 300D
J359 1700
1251320)
135231330
1053100
PRET D Ioh
JFZo009D
156100
JAs13)20
00943400
J2549939)

95



SASSPR SYSTEM INPUT DEVICE

(SYSIN) LIST PROGRAM

ERR LOC QBJECT CODE ADDR STMT SOURCE STATEMENT VER 01, 43D 90 11-09-73 PAGE 4
68 * END OF FILE ON SYSIN
#058 D2 02 28 69 EOF LA E0FMSGL,3R6G),L0G
70 * $LGG ATOR EDF MESSAGE
©05F 70 C3 37 74 cL! REPLY{4BRG) L *C* JPERATOR SAY CANCEL
4062 F2 81 IC 75 JE £0J
4065 10 D7 37 76 cLt REPLY {,BRG).C*P? OPERATIR SAY PRINT ANOTHER
4068 CO 81 4018 77 8E FILES
406C CO B7 4058 78 8 EQF INVALIN REPLY, TRY AGAIN
80 * ERROR ON SYSIN
©070 D2 02 38 81 SYSER LA SERMSGU+BRG},LOG
82 ¢ $LOG ATD SYSIN ERROR MESSAGE
4077 F2 87 07 86 J £0J GO TO ECY
88 * ERROR ON PRINTER
40TA D2 02 44 89 PRNERR LA PERMSG{,835}),L06G
90 = SLOG WTD) PRINTER ERROR MESSAGE
95 ¢ END OF JOB ROUTINE
4081 96 EQUJ EQU *
4081 D2 02 07 97 LA PRNDTF{,BRG ), $DTF
98 * $CLOS CLOSE PRINTER FILE
101 = $EOJ 30 TO EOJ
$ASSPR SYSTEM INPUT DEVICE ({SYSIN) LIST PROGRAM
ERR LOC (OBJECT CODE ADDR STMT SODURCE STATEMENT VER D1, M1ID 00 11-09-73 PAGE 5
105 & CONSTANTS ANO DATA AREAS
408C 106 BASE £QU * BASE REGISTER ADDRESS
108 *® SYSIN TABLES
109 *®YSINL S$SRLST BUFI-BJUFFY1yBUF2-3UFFR2y SYSIN PARAMETER LIST
110 = WORK~-WORKAR
116 * $RLSD SYSIN EQUATES
133 & PRINT FILE TABLES
134 *®RNDTF $DTFP DEV-1403,RCAD-0,I108A-PRNI1OB, PRINT FILE OTF
135 * [ OAA—PRNBUF ,RECL-96,
136 * OVFL-60,PAGE-66
160 * $OTFO D1403-Y PRINTER DTF DISPLACEMENTS
223 ¢ SYSTEM LOG TABLES
224 *®*0FMSG SLWTO COMP-~AS,HALT~AMy SUBH-PG+TLEN-12, SYSIN EJF WTOR
225 * TADR-EOFY4GC 4REPLY-Y4RLEN-1,RADR-REPLY
#0C3 E7 40C3 238 REPLY OC cL1x* WTOR REPLY
239 *ERMSG SLWTO COMP-AS,HALT-AM,SJUBH-PG,TLEN-11, SYSIN ERROR WTD
240 = TAOR-SERMGC
251 *ERMSG SLWTO COMP~AS,4ALT-AM,SUBH-PG,TLEN-13, PRINTER ERROR WTD
252 «* T ADR-PERYGC
40DC 263 EOFMGC EQU *
40DC CS5D6C640D6DS40E2 40ET 264 oc CLI2'EOF ON SYSIN'
40E8 265 SERMGC EQU *
40E8 E2EBE2C9D540C5D9 40F2 266 nC CL11*SYSIN ERROR!
40F3 267 PERMGC EQU L]
40F3 DYDICIDSE3IC5D940 40FF 268 ocC CLI3*PRINTER ERROR!
270 * SYSIN BUFFER AND WORK AREAS
4100 271 ORG *,128 ORG TO REQUIREO BOUNOARY
4100 272 BUFFR1l EQU * BUFFER ONE
4100 00000D0000000000 417F 273 oC xL128¢0*
4180 274 BUFFR2 EQU * BUFFER TWO
4180 0000000000000000 41FF 275 ocC XLi28*0"
4200 276 WORKAR EQU * WORK AREA
4200 0000000000000000 422€ 277 oc XL4T7°0"
279 & PRINTER BUFFER AND WORK AREAS
#27C 280 ORG 2,256,X'7C" ORG TO REQUIRED BODUNDARY
427C 281 PRNBUF EQU * PRINTER BUFFER
427C 4040404040404040 4305 282 oc cLl3gr ¢
4306 283 PRNID8 EQU * PRINTER 108
4306 0000000000000000 4337 284 oc XL50'0°*
286 ¢ REGISTER LABELS
0001 287 BRG EQU 1 BASE REGISTER
0002 28B SYS EQU 2 SYSIN PARAMETFR LIST POINTER
0002 289 LOG EQU 2 SYSLOG PARAMETER LIST POINTER
4000 290 END $ASSPR
TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY-- 0
TOTAL SEQUENCE ERRORS IN THIS ASSEMBLY-- 0

Figure 36 (Part 2 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

96

00610000
30620900
00630000
00640000
30650000
00660000
00670000
00680000

0070G000
20710000
00720000
Q0730000

00750300
007460000
30770000

00790000
30800000
00813300
0082C¢000
00830000

00850000
00860000

00880000
X30890000
00900000
00910000

00930000
X00940000
X00850040

00960000

00970000

00990000
X01000000
01010000
01020000
X01030000
01 040000
X01050000
01060000
01070000
01080000
01039G0G0
01100000
01110000
01120000

01140000
01150000
01160000
01170000
01180000
01190000
01200000
01210000

01230000
01240000
01250000
01260000
01270000
01280000

01300000
01310000
013200300
91330000
01340000



$AS5PR
SYMBOL

$SLPRTY
$ASSPR
$ALCOIL
$SALDAT
SALH56
$ALINT
$A4LMFM
$ALPCH
$ALPRT
$a1PR2
$A1RD
SAZALL
SA2AMP
$A2EDF
$A2HUC
$A21IND
$AZMBF
$420PN
$A2SIN
$CPCND
$CPEOF
$CPOVF
$CPPER
sCPSUC
$OFARR
$OFAT1
$OFAT2
$SOFCHA
$DFCHB
SDFCMP
$0FDEY
$DFLP
$OFLRA
$OFMSK
$0FQPC
$OFOVF
$OFPGS
$OFPI8
$0FPIO
$0FPOS
$SDFPQ
$DFPR
$OFPRL
SDFSKA
$DFSKB
$DFSPA
$0FSPB
$DFUPS
$DFXRS
$DTF
$0CPRT
$SABF1
$SRBF 2
$SREOF
$SREDJ
$ SRERR

LEN

001
001
001
001
0d1
001
001
001
0a1
0ol
001
00l
001
001
001
J01
001
001
001
001
001
001
001
001
001
00t
001
001l
001
ool
001
001
001
201
o001
001
001
001
001
001
001
001
001
00l
001
001
0a1
001
001
001
a01
001
001
001
001
001

VALUE

0001

40090
0oto
0001

0002
0004
Q008
0020
0040
0001
0080
0040
0004
ovoe
0022
0080
oul0
0001

0020
0010
0042
0048
0041

0040
0209
0002
0003
0005
0007
Q00E
0000
0010
0000
001F
000F
001C
0020
0017
0019
Q01E
0014
0015
oolB
0012
0010
ooti3
0011

0001
0008
0002
0040
0002
0004
0050
0080
0060

DEFN

0024
0023
o193
gl98
0196
0195
0194
0192
0191
0197
0190
0203
0208
0206
0207
0202
0205
0209
0204
0214
0217
0213
d216
0215
ol168
0164
0165
0166
0l67
0171
0162
0183
0170
0185
0172
0182
0186
0179
0180
0184
o177
0178
o181
0175
0173
0176
0174
0163
0169
o161
0221
0118
o119
0129
0131
0130

CROSS REFERENCE

REFERENCES VEY Ol 422 07 11-)9-73  PAGE 5

J059
0290

0063
0060

3060 0063

0056%

2037+

0041*% 0062% 0065*
0036x%

0029% Q036 0037 0057+ 0060 02352 02063 2065
0037

00506
0049
0051
0053

3097

Figure 36 (Part 3 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

Appendix F. Basic Assembler Sample Programs

97



$ASSPR

SY+B8IL

$SRFCT
$SRNGOM
$SRRD
$SRROD
$SRADF
$SRRDL
$ SAWRK
BASE

BRG

BJFFR |
BUFFR2
EOQF
EOFMGC
EQFMSG
EJJ
FILEL
FILES
1.OG
NOSKIP
PERMGC
PERMSG
PRNBUF
PRNDTF
PRNERR
PRN1OA
REPLY
SERMGC
SERMSG
SYsS
SYSER
SYSINL
WORKAR

LEN

001
G391l
Jul
001
001
DIl
001
001
qa1

301
001
003
301
001
Q01
303
003
001
004
Q01
901
a0l
001
203
001
001
001
Qo1
0ol
0433
001
201

VALUE

0090
3040
0009
0000
0001
J002
3006
408C
09001

4100
4180
4058
400C
4084
4081
4018
4018
0002
4054
40F3
4000
427C
4093
4074
4306
40C3
40€E8
40C4
0002
4079
4083C
4200

TOVTAL STATEMENTS

JEFN

oLz
o128
0126
0123
0124
ci25
0120
01906
2287

c212
0274
0069
0263
0227
0096
0044
0041
0289
0066
Q267
U254
3281
0137
Q089
0283
0238
32565
0242
0288
0081
oltl
0276

IN ERROR

TOTAL SEQUENCE ERRORS

OL105 1

oL103

THE CODE LENGTH UF $ASSPR

TOTAL NUMBER OF LIBRARY SECTORS REWUUIRED

CRNSS REFERENCE

REFERENCES

0038% D049

0055
3038

0025 2026
3325 J026*
00689 0097
oll3
olla
J050 00674
0235
0069
aas2  097s
0066
2077
0U69x UD81¥
2064
0262
4089
Q153
0029 Jusl=
0061
0152
J074 Q076
2250
Jos1
0044% UV49
3354
30338% 2044
0ll5

0051 0053
3929 Qu3e
Q086

0089=
VJS56% 0J57
0237

0051 0u53

IN THIS ASSFMALY -~

THIS A>SEMBLY--

15

VER Ol MDD 20 11-29-73 PAGE

DI55¢

3041  00%4 OUS56 0157 02063 J374 0376 0081

0097

00%% 0050

824 DECIMAL,

15 5

NAME-$ASSPR,PACK-R]IRIRL, JNIT-R] ,RETAIN-T, LI3RARY~],CATEZIRY-)2)

Figure 36 (Part 4 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

98

7

2



Appendix G: 1BM 1255 Magnetic Character Reader Support (Models 12 and 15 Only)

Support is provided by the following IBM-supplied
subroutines:

® SUBRO7 -~ 1255 (Model 15 only)

® SUBRO8 — 1255 (Model 12 and Model 15)

® SUBR(O9Y — 1419 (Model 12 and Model 15)

For detailed information concerning this support, see the
1BM System (3 Models 12 and 15 1255 and 1419 Magnetic

Character Reader Reference and Program Logic Manual,
GC21-5132.

Appendix G. [BM 1255 Magnetic Character Reader Support (Models 12 and 15) 99



100 (101-104 deleted)




SWORK 2 file 34
// CEND card 33
// SWITCH statcment 31

absolute displacements 12
absolute expressions 7
absolute object program 28
address constant 18
addressing 12
base-register displacement method 12
data addressing 13
direct method 12
instruction addressing 13
reiative addressing technique 12
symbolic (direct) 12
assembler
coding conventions 8
coding form 9
functions 1
instruction statements 17
data definition 18
fields 8
format 8
listing control instructions 20
program centrol instructions 22
symibol definition instruction 17
listing 29
assembler language subroutines
linkage to COBOL 86
Jinkage to FORTRAN 86
linkage to RPG 11 71
placing in R library =~ 36
assemibling a souice program 28
asterisk
use in commernt statement 10
use as location counter reference 6
attributes
length atribute 14
value attribute 14

base address 12

base register 12

base-register displacement addressing 12
basic assembler sample program 89
beginning column 25

binary consiant 6,19

binary self-defining term 6

calling a source program 31
category level 27
CATG operand 27
character
constants 19
self-defining terms 6
COBOL linkage 86

code
control 43
mnemonic 1
operation 9,43
machine 47
mnemonic |
Qcode 17,43
coding conventions, assembler 8
coding form, assembler 9
coding sample for SPECIAL device 82
COMLx operands 29
comment statement 10
complement (two’s complement form) 19
constant (see also self-defining term)
address 18
binary 19
character 19
data 18
decimal 19
define constant (DC) 18
hexadecimal 19
integer 19
negative (see integer constant)
padding of 19
truncation of 19
control card code for assembler subroutine 76
control statements 27
control cards, LDG program (see Library Deck Generator
parameter card)
control section length 27
control code 43
conversion, punch 33
cross reference data 35
cross reference listing 28, 40

data

addressing 13

constant 18
data defining instructions (DC and DS) 18
dats file requirements 34
DC (define constant) instruction 18
decimal constant 19
decimal self-defining term 5
deck, object 17
define constant (DC) instruction 18
define storage (DS} instruction 19
diagnostics 40

table of 69
direct addressing 12
displacement 12

absolute 12

relocatable 12
DROP statement 25
DS (define storage) instruction 19
duplication factor

with DC instruction 18

with DS instruction 19

Index

Index

105



EJECT statement 20
END record 33
END statement 26
ending column (see also ICTL statement) 2§
entry (see fields)
entry point 25
ENTRY statement 25
EQU (equate symbol) statement 17
error code 69
error conditions, LDG program 81
error information 35
ESL record 32
explicit length 15
expression 7
absolute 7
evaluation of 7
multi-term 7
relocatable 7
rules for coding 7
extended mnemonic codes 14, 48
external symbol list 39
table size 42
EXTRN statement 25
EXTRN subtype 25
specifying 27

fields(s)
assembler statement 8

identification-sequence 10
name 10

operand (machine instructions) 14
operation 10

remark 10

files
source 34
object 34
work 34
format(s)

assembler statement 8
machine-instruction statement 13, 43
operand 14

format control, input 22

FORTRAN linkage 86

groups machine-instruction operand 15

HEADER record 32

HEADERS statement 27
hexadecimal constants 19
hexadecimal self-defining terms 6

ICTL (input format control) statement 22
identification-sequence entry (field) (see also ISEQ statement) 10
I-field (immediate data) 16

implied length 15

input format control 22
input sequence checking (1SEQ) statement 22
instruction(s)

addressing 12

assembler instruction statements 17

data defining 18

listing control 20

106

instruction(s) (continued)
machine-instructjon statements 13
program control 22

symbol definition (EQU) 17
types 17
integer constant 19
intermediate text 34
ISEQ (input sequence checking) statement 22

Jcards 77

Kcards 77

label (see symbol and name entry)
language
machine (see also machine instruction formats)
RPGII 71
symbolic 1
Lcards 78
length(s)
attribute 14
control section 27
explicit 15
implied 15
subfield 14
of data definition instructions 18
Library Deck Generator parameter card 80
Library Deck Generator Program 76
linking
to COBOL 86
to FORTRAN 86
to RPGII 71
listing control instructions 20
listings, program 28, 38
loading the assembler 29
location counter 6
control of (see also START and ORG) 13
location counter reference (*) (see also terms) 6

machine-instruction(s) 13
format 43
list of 43
mnemonic codes 14
operands 14
machine language 1, 49
macro processor 30
main storage requirements 2
messages 69
mnemonic operation codes 1
for assembler instruction statements 67
for macliine-instruction statements 47
module category level 27
module name 23

name entry (field) 10

name, module 23

negative values (see integer constant)
NOREL 28

NOOB! 28

e



OBR} 28
object deck 28
object file (§WORK) 34
object operand 31
object program 4, 32
object program, placing in R library
direct 36
punched 36
OCL statements 29
one-address format (machine-instructions) 43
Op code (machine-instruction formats) 43
operand(s)
entry (field) 10

fields 14
formats 15
groups 1§

machine-instruction 14
subfields 14
of DC and DS instructions 18

operation procedures 36
operation codes

extended mnemonic 13

mnemonic (see mnemonic operation codes)

Op code (machine instructions) 43
operation control language statements 29
operation entry (field) 10
OPTIONS 36
OPTIONS statement 27
ORG (set location counter) instruction 24

PRINT (print optional data) instruction 22
program control instructions 22

program relocation 4

punch conversion 33

Qcode 17,43

record formats 32
REL 28
relative addressing 12
relocatable
displacements 12
expressions 7
terms 7
relocation of programs 4
remark entry (field) 10
representation of negative values (see integer constant)

requirements
data file 34
main storage 1
system 1
restrictions, module name 23
RPG 11
linkage to assembler language subroutine 71

sample program

basic assembler 89

RPG 11 linkage 71

SPECIAL subroutine 82
segment, assembler statement 8
self-defining term  §

sequence 8
checking (ISEQ) statement 22
entry (field) 8
source file 34
source and object listing 39
source program, from macro processor 31
source statemnent (assembler instruction statement) 1
SPACE (space listing) statement 21
special character(s)
in symbols (name entries) 5

START (start assembly) statement 23
statement(s)
assembler instruction 17
fieldsof 8
format of 8
types 1
comment 10
machine instruction 13
storage
addressing 4

definition (y) instruction 19
relocation in 4
requirements 2

subfield(s)
constant (DC instruction) 18
duplication factor 18

length 18
of machine instruction operands 14
type 18

subroutine linkage 71, 86

SUBRO7 99

subtype, EXTRN 2§

subtype, specifying 27

symbol (see also name entry) 5
definition instruction (EQU) 17
mnemonic (see mnemonic operation codes)
rules for coding 5
table entries 35

symbolic
addressing (see direct addressing)
language 1

system requirements |

terms S

text, intermediate 34

TEXT-RLD records 33

TITLE (identify assembly output) statement 20
trunication of constants (see DC instruction)
two-operand format 15

two’s complement form (see integer constant)

USING statement 24
Ul indicator 31

value attribute 14

work file 34

1255 support 99
3741 Data Station 1

Index

107



International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.0. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/international
44 South Broadway

White Plains, New York 10601
U.S.A.

{International)

SC21-7509-7

(LZ-€S "ON ajl4) 20UaIa4aY Ja|qIasSy J1seq €/ WalsAS gl

L-60SL-12IS 'V'S'N ul paiulld



	Table of Contents

	Introduction

	1 - Basic Assembler Language

	2 - Programmer's Guide

	A - Machine Instructions

	B - Assembler Instruction Reference Table

	C - System/3 Assembler - Source Language Error Codes and Descriptions

	D - Assembler Language Subroutine to RPG II Linkage

	E - Assembler Language Subroutine to COBOL or Fortran Linkage

	F - Basic Assembler Sample Programs

	G - IBM 1255 Magnetic Character Reader Support

	Index




