IBM System/3
Basic Assembler
Reference Manual

DOOO

0066

Program Numbers:
5702-AS1 (Models 8 and 10)
5704-AS1 (Model 15)

5704-AS2 (Model 15)

5705-AS1 (Model 12)

OO e

§C21-7509-7
File No. 83-21

T Program Product

Preface

This publication is a reference manual for the programmer Related Publications

using the IBM System/3 Basic Assembler language. This

language provides facilities for representing machine The IBM System/3 Models 8, 10, 12, and 15 Components
usable instructions symbolically on a one-for-one basis. Reference Manual, GA21-9236, contains specifications
The symbolic representations are translatéd by the IBM governing the use of assembler language instructions.

System/3 Basic Assembler into the machine usable form
necessary for running a program on the System/3.

System/3 Model 8

The System/3 Model 8 is supported by System/3 Model 10
Disk System control programming and program products.
The facilities described in this publication for the Model 10
are also applicable to the Model 8, although the Model 8 is
not referenced. It should be noted that not all devices

and features which are available on the Model 10 are avail-
able on the Model 8. Therefore, Model 8 users should be
familiar with the contents of IBM System/3 Model 8
Introduction, GC21-5114.

Eighth Edition (April 1975)
This is a minor revision of SC21-7509-5 incorporating Technical Newsletters:

SN21-5385 March 17, 1976
SN21-5434 December 31, 1976
SN21-5536 June 24,1977

This revision makes some changes to various pages and introduces information concerning
the IBM System/3 Model 8. Changes to text and small changes to illustrations are
indicated by a vertical line at the left of the change; new or extensively revised
illustrations are denoted by the symbol ® at the left of the figure caption.

This edition applies to version 12, modification 00 of IBM System/3 Model 10 Disk System
Basic Assembler (Program Product Number 5702-AS1); version 03, modification 00 of
IBM System/3 Model 15 Basic Assembler (Program Product Number 5704-AS1); and to all
subsequent versions and modifications unless otherwise indicated in new editions or
technical newsletters. Changes are continually made to the specifications herein; before
using this publication in connection with the operation of IBM Systems, consult the

latest IBM System/3 Bibliography, GC20-8080, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative or to
the branch office serving your locality.

A Reader’s Comment Form is at the back of this publication. If the form is gone, address

your comments to IBM Corporation, Publications, Department 245, Rochester,
Minnesota 55901.

©Copyright International Business Machines Corporation 1970, 1971, 1972, 1973, 1975

INTRODUCTION . . . Coe
Minimum System Requirements . . .

Main Storage Requirements

PART 1. BASIC ASSEMBLER LANGUAGE
Basic Statement Format
Terms and Expressions .
Terms. . .
The Symbol . .
The Self-Defining Term
Location Counter Reference
Expressions .
Assembler Coding Conventlons
The Statement Format .
Comment Statements
Addressing .
Direct Addressmg
Base-Register Displacement Addressmg
Relative Addressing .
Instruction Addressing .
Data Addressing . . .
Control of Location Counter .
Machine Instruction Statements
Name Entry Attributes .
Machine Instruction Mnemonic Codes
Extended Mnemonic Codes
Machine Instruction Operands .
Assembler Instruction Statements
Symbol Definition Instruction
Data Defining Instructions .
Listing Control Instructions
Program Control Instructions .

PART II. PROGRAMMER'’S GUIDE

Assembler Control Statements
Headers Statement .

Options Statement .

OCL Statements For Assembler
OCL For Loading the Assembler .
OCL For Calling the Assembler

Sample Assembler Procedure Stored in Procedure

Library .

Object Program Descnptlon

Record Formats .

Object Program After Punch Conversron
Assembly Time Data File Requirements .

Source File

Object File

Work File
Operating Procedures

Placing Assembler Subroutlnes in R (Routlne) lerary
Using Assembler Object Progtam With the Program

Loader .

Assembler Listing
Control Statements . .
External Symbol List (ESL)

[8]

ROV ANANNUNDLWWwWwWwWw

Source and Object Listing .
Cross-Reference List .
External Symbol List (ESL) Table Slze

APPENDIX A: MACHINE INSTRUCTIONS
Machine Language Instruction Formats .
" Operation Code .
Q Code
Control Code
Storage Addresses
Mnemonic Operation Codes (Machlne)
Extended Mnemonic Codes

APPENDIX B: ASSEMBLER INSTRUCTION
REFERENCE TABLE Coe .

APPENDIX C: SYSTEM/3 ASSEMBLER — SOURCE
LANGUAGE ERROR CODES AND DIAGNOSTICS .

Contents

39
40
42

43

43
43
43
43
47
48

67

APPENDIX D: ASSEMBLER LANGUAGE SUBROUTINE

TO RPG II LINKAGE .
Using Fields in the RPG II Program .
Referencing a Field in an RPG II Program

Referencing a Table or Array in an RPG II Program
Referencing an Indicator in an RPG II Program .

RPG II Linkage Sample Program 1

RPG II Linkage Sample Program 2

1/O Subroutines . . .
Linkage for I/O Subtoutmes

Library Deck Generator Program (Model 10 Only)

Writing the Assembler Language Program
Assembling the Subroutine .
Running the LDG Program

Output of the LDG Progra.m

Example . .

APPENDIX E: ASSEMBLER LANGUAGE SUBROUTINE

TO COBOL OR FORTRAN LINKAGE
Standards

APPENDIX F: BASIC ASSEMBLER SAMPLE
PROGRAM .. .
Model 10 and Model 12 Sarnple Programs
Program Description P
Model 15 Sample Program .
Program Description

APPENDIX G: IBM 1255 MAGNETIC CHARACTER
READER SUPPORT (Models 12 and 15 Only)

INDEX

89

89
93
93

99

. 105

The IBM System/3 Basic Assembler language is a
symbolic language. That is, it must be translated into a
form usable by the computer before a program can be
run. The computer-usable form is called machine
language, and the IBM System/3 Basic Assembler language
provides a convenient method for representing, on a
one-for-one basis, machine language instructions and
related data necessary to write a program for IBM
System/3. This one-for-one relationship to machine
language instructions gives assembler language great
programming versatility.

The assembler language is composed of symbols, called
mnemonics, which are used to represent the operation
codes of two types of instruction statements:

1. Machine instruction statements are the symbols
that represent machine language instructions on a
one-for-one basis. Note that symbolically repre-
sented machine instructions are translated into
machine language by the assembler.

2. Assembler instruction statements are instructions
which control the functions of the assembler. Each
assembler instruction statement causes the assembler
to perform a specific operation during the assembly
process.

The IBM System/3 Basic Assembler:
o Processes instructions written in assembler language.

e Translates the assembler language instructions into
machine language.

e Assigns storage locations.

o Performs other functions necessary to produce an
executable machine language program.

In order to call the assembler from its storage

location, a specific set of OCL (operation control
language) instructions must be used. Following these
OCL instructions, the user may elect to include an
OPTIONS instruction, a facility which allows him to
take advantage of various combinations of output listings
and punched decks.

Introduction

There are certain procedures for storing assembler routines
on the Model 10 Disk System, Model 12, and Model 15 R
(relocatable) Libraryand for loading assembler object pro-
grams into main storage. These procedures, as well as the
other items mentioned briefly above, are discussed more
fully in the text.

MINIMUM SYSTEM REQUIREMENTS

The minimum system configuration and optional device
support for the Basic Assembler program is shown in the
IBM System/3 Models 6, 8, 10, and 12 System Generation
Reference Manual, GC21-5126 and in the IBM System/3
Model 15 System Generation Reference Manual,
GC21-7616.

Introduction 1

MAIN STORAGE REQUIREMENTS

The Model 10 Disk System Basic Assembler (5702-AS1)
requires 8,192 bytes of main storage for execution,
exclusive of control program requirements.

The Model 12 Basic Assembler (5705-AS1) and the
Model 15 Basic Assembler (5704-AS1 or 5704-AS2)
require 10,240 bytes of main storage for execution,
exclusive of control program requirements.

The IBM System/3 Basic Assembler language is a symbolic
language that provides a convenient method for
representing, on a one-for-one basis, machine language
instructions. The symbolic representations in assembler
language coding are translated by the IBM System/3
Basic Assembler into the machine language form usable
by the computer. In order to code in assembler
language, the user must become familiar with certain
terms, coding conventions, instructions, and other
features of the language. The remainder of this chapter
deals with these items.

BASIC STATEMENT FORMAT

A statement coded in assembler language can contain up
to four entries from left to right: Name, Operation,
Operand, and Remark. See Assembler Coding Conventions
in this manual for an explanation of the contents and
functions of each entry.

Part 1. Basic Assembler Language

TERMS AND EXPRESSIONS

A term is a single symbol, self-defining value, or location
counter reference which can be used only in the operand
field of an assembler language instruction. The three

types of terms are described under Terms in this section.

An expression consists of one or more terms. It is used
to specify the operand fields of assembler language
instructions. Terms and expressions are classed as either
absolute or relocatable. A term or expression is absolute
if its value is not changed when the assembled program in
which it is used is relocated in main storage. A term or
expression is relocatable if its value is changed when the
program in which it is used is relocated.

Basic Assembler Language 3

Program relocation is the loading of an assembled
program (object program) into a different area of main
storage from that which was originally assigned by the
assembler. The difference (in bytes) between the
originally assigned address of the object program and the
address of the relocated object program is the amount of
relocation. The addresses assigned to all instructions and
data in the relocated program are changed by the amount

Storage
Address

0

Main Storage

2000

First Loading

Figure 1. Program Relocation

Address

of relocation. In Figure 1, Object Program A is initially
loaded at address 2000 in main storage. When Object
Program A is loaded a second time, it is placed at address
3000 in main storage. The amount of relocation is 1000
bytes. Therefore, the values of all relocatable terms and
expressions used in Object Program A would be increased
by 1000 during the second loading.

Storage
Main Storage

2000 (1

3000

Object Program A

Second Loading

* The amount of program relocation is 1000 bytes.

TERMS

Three types of terms are used in the IBM System/3
Basic Assembler language.

e Symbol
o Self-defining term

o Location counter reference

The Symbol

A symbol is a character or combination of characters
used to represent storage locations, instructions, input/
output units, registers, or arbitrary values. A symbol can
be used in either the name field or the operand field of
a statement. When used in the name field, the symbol is
called a name field entry. When used in the operand
field, the symbol is called a symbolic term.

When the assembler finds a symbol in the name field of
a statement, it assigns to that symbol an address value
attribute. See Addressing in this section. The assembler
also assigns a length attribute to the symbol, which is
the number of bytes in the storage field named by the
symbol. There are exceptions. When the assembler en-
counters EQU, START, or TITLE statements, it does
not assign the usual attributes. EQU name field entries
derive their values from the operand, START name field
entries are assigned a length of 1, and TITLE name field
entries are assigned no values at all.

The same symbol cannot be used as a name entry more
than once within a program with the exception of the
TITLE card. In order for a symbol to be used in the
operand field, it must be defined (that is, used as a name)
on an instruction other than a TITLE card somewhere in
the program. Once it is defined, the symbol may appear
in any number of operands. Whether the symbol is used
as a name or an operand, these rules must be followed:

1. The symbol can consist of no more than six
characters, the first of which must be either
alphabetic or $, #, @. The other characters can be
any combination of alphabetic, numeric, or $, #,@.

2. Blanks and special characters other than $, #, @
cannot be used in a symbol.

The Self-Defining Term

The self-defining term is a term which specifies an actual
value or bit configuration.

The value expressed by the self-defining term is taken
literally by the assembler and is assembled into the instruc-
tion. Like all terms, the self-defining term is used only

in the operand field.

There are four types of self-defining terms:
e Decimal

o Hexadecimal

e Binary

e Character

Decimal Self-Defining Terms

A decimal self-defining term is an unsigned decimal
number written as a sequence of decimal digits. High

order zeros may be used, such as in 0003. If a decimal
term is used as an address, its value cannot exceed the
number of bytes in main storage. A decimal term consists
of no more than five digits and cannot exceed a value of
65,535. This value is equivalent to the binary value

that can be contained in two bytes. A decimal self-defining
term is assembled as its binary equivalent.

Examples: 16 132 00006 43678

In the following example, a decimal self-defining term is
used in a Move Immediate (MVI) instruction. The binary
equivalent of 25 would be placed in the 1-byte area
referenced by the symbol, COST

NAME OPERATION OPERAND

ALPHA Mvi COST, 25

Basic Assembler Language 5

Hexadecimal Self-Defining Terms

Hexadecimal self-defining terms can consist of up to
four hexadecimal digits enclosed in apostrophes and
preceded by the letter X.
Examples: X‘C34A’ X'04F° X6’ X‘DE’
Each digit is assembled into its 4-bit binary equivalent.

Therefore, the maximum value would be X‘FFFF’
(65,535).

The following is an example of the use of a hexadecimal
self-defining term. The 1-byte area at SWITCH would
contain the hexadecimal value FO (binary, 11110000)
after execution of the instruction. '

NAME OPERATION OPERAND

BETA MVi SWITCH, X’FO’

Binary Self-Defining Terms

Binary self-defining terms are written as a sequence of
I’s and O’s enclosed in apostrophes and preceded by the
letter B; such as B‘1011°. This term would appear in
storage as 00001011. The high-order (leftmost) bits

are padded with 0-bits to make a multiple of eight bits of
data (one or two bytes). A maximum of 16 bits of data
can be represented in each term. In the following
example of a Move Immediate instruction, the binary

information will be moved into the 1-byte field at AREA.

NAME OPERATION OPERAND

[

GAMMA MVI AREA, B’10110011"

Character Self-Defining Terms

Character self-defining terms consist of one or two
characters enclosed by apostrophes and preceded by the
letter C; such as C°A3’. Any of the valid punch
combinations can be used in a character self-defining
term.

Examples: C‘A9° CEA’ CLB C3

Because certain terms in the assembler language must be
enclosed by apostrophes (such as C‘EA’), for every
apostrophe that is used as a character in a self-defining
term, two must be written. For example, the characters
A’ would be written as C*A™.

In the following example, a dollar sign ($) would be
moved into the byte field at REPORT.

1
NAME OPERATION | OPERAND

DELTA MVI REPORT, C'$’

| — —

Location Counter Reference

Location Counter: The location counter is an internal
counter, maintained by the assembler, which always
points to the next available storage location. As each
new statement is processed, the location counter is
increased by the number of bytes in the assembled
statement. The assembler uses the current address

in the location counter to assign consecutive storage
addresses to program statements.

Location Counter Reference: A location counter
reference is an asterisk (*) used as a term in the operand
of an instruction. When the assembler encounters

an asterisk, it substitutes the current value of the
location counter (which always points to the next
available storage location) for the asterisk.

EXPRESSIONS

An expression consists of an arithmetic combination of
one or more terms. In a multi-term expression, terms
must be separated by an arithmetic operator: the
arithmetic operators are + for addition, — for subtraction,
and * for multiplication.
AREA+X2D’ N-25

Examples: R+15 A*8

The rules for coding an expression are:

1. Two terms or two operators must not be used
consecutively in an expression.

2. Parentheses cannot be used in an expression.

3. Only absolute terms can be used in a multiply
operation.

4. Blanks are not allowed in an expression.
5. a. Using the Model 10 disk system basic assembler,
an expression may consist of only one term when

that term is a symbol used as the operand of an
EXTRN statement.

b. Using the Model 15 basic assembler, if the expres-
sion contains an external symbol, then the
expression must be of the form A or Aze. Aisa
symbol used as the operand of an EXTRN state-
ment and e is an absolute expression.

Note: An Aze expression must not be in a Model
10 subroutine with RPG II.

If there is more than one term in the expression, the
terms are reduced to a single value as follows:

1. Each term is evaluated separately.

2. Arithmetic operations are then performed in a
left-to-right sequence, except that multiplication
is performed before addition or subtraction. An
example would be A+B*C, which would be
evaluated as AHB*C), not (A+B)*C. The result
would be the value of the expression.

3. The intermediate result of the expression
evaluation is a 3-byte, or 24-bit value. Intermediate
results must be in the range of —2 4 through
2241,

Negative values are carried in the two’s-complement
form. The final value of the expression is the truncated,
rightmost 16 bits of the result. The value of the
expression before truncation must be in the range of
-65536 through +65535. A negative result is considered
to be a 2-byte positive value.

Note: In address constants the full 24-bit final expression
result is truncated on the left to fit the length of the con-
stant.

Absolute Expressions: An expression is considered
absolute if its value is unaffected by program relocation.

An absolute term may be a non-relocatable symbol, or
any of the self-defining terms. All arithmetic operations
are permitted between absolute terms.

An absolute expression can contain relocatable terms or
a combination of relocatable and absolute terms under
the following conditions:

1. The expression must contain an even number of
relocatable terms.

2. The relocatable terms must be paired and each
pair must consist of terms with opposite signs.
The paired terms need not be adjacent.

3. Relocatable terms cannot be'used in a multipli-
cation operation.

Pairing relocatable terms with opposite signs cancels

the effect of the relocation, because both terms would be
relocated by the same value. Therefore, the value
represented by the paired terms would, in effect, remain
constant regardless of the program relocation. For
example, in the absolute expression A—Y+X, A is an
absolute term and X and Y are relocatable terms. If A
equals 50, Y equals 25, and X equals 10, the value of
the expression would be 35: If X and Y are relocated by
a factor of 100, their values would become 110 and 125,
respectively. However, the expression would still
evaluate as 35 (50—125+110=35). Absolute expressions
reduce to a single absolute value.

Relocatable Expressions: A relocatable expression is
one whose value changes by the amount of relocation
when the program in which it is used is relocated. All
relocatable expressions must reduce to a positive
value.

Basic Assembler Language

7

A relocatable expression can be a combination of
relocatable and absolute terms under the following
conditions:

1. There must be an odd number of relocatable
terms.

2. All relocatable terms, except one, must be paired
and each pair must consist of terms with opposite
signs. The paired terms need not be adjacent.

3. The unpaired term must not be immediately
preceded by a minus sign.

4. Relocatable terms cannot enter into a multiplication
operation.

All terms in a relocatable expression are reduced to a
single value. This single value is the value of the unpaired
relocatable term after it has been adjusted (displaced) by
the resultant value of the other terms in that expression.
For example, in the expression W—X+Y where W, X,

and Y are relocatable terms; and W=10, X=3, Y=1;

the result would be the relocatable value of 8.

If the program is relocated by 100 bytes, the resultant
value of the expression would be increased by the amount
of relocation (100), giving the expression a value of 108.

In the following expression, a combination of absolute
and relocatable terms are used: A+F*G—D+B. A, D,
and B are relocatable terms; F and G are absolute

terms. When given the values A=3, B=2, D=5, F=1, and
G=4, the result would be a relocatable value of 4. The
multiplication occurred first, resulting in 4; then the
addition and subtraction of the other terms, including
the result of the multiplication, was performed in a
left-to-right direction. The result of the arithmetic
operations is a relocatable value of 4 for this expression.

Upon relocation, the value of this expression can be
determined by adding the amount of relocation to all
relocatable terms.

ASSEMBLER CODING CONVENTIONS

This section explains the general coding conventions
associated with the IBM System/3 Basic Assembler
language. When coding in assembler language, the
programmer uses the IBM System/3 Assembler Coding
Form (Figure 2).

The Statement Format

Each line on the coding form is divided into two segments:
Statement (columns 1-87), and Sequence (columns 89-96).

The Statement segment can contain up to four entries,
from left to right: Name, Operation, Operand and
Remark. The Name field is column dependent. It
must start in column 1, unless otherwise specified by
the ICTL assembler instruction (see Assembler
Instruction Statements). All other entries can start

in any column, as long as there is at least one blank
separating each entry and the entries remain in the
stated order. Figure 3 is a diagram of assembler
statement entries.

6 o3en3ue] wiquossy oseg

uLio g 3urpo) 1A[quusssy diseq ¢/wa)sAS Wel T aundiy

1BM System/3 Basic Assembler Coding Form

Form X21-9107

IBM ey
PROGRAM PUNCHING GRAPHIC PAGE oF
PROGRAMMER I DATE INSTRUCTIONS | pynch CARD ELECTRO NUMBER
STATEMENT

Identification-
q

Name
1 2 3 45 617

Operation
8 9 10 11 12|

13}

Operand Remarks
14 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41_42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 6970 71 72 73 74 7576 77 78 79 80

81 82 83 84 85 86 87]88]B9 90 91 92 93 94 95 96|

R R N NN RO [(N U A U N R R U A NN I N DI Iy s

SR FNGPS PUVUR WU, U WY SN QUGN Ty SR ISR NSNS IS RpUi [N PR S SR S Epuy S

1 2 34 5 617

8 9 10 11 12]

13

14 1616 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47 48 49 50 51 5253 54 55 66 57 58 59 6061 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 8081 82 83 84 85 86 87]83[69 90 91 92 93 94 95 96|

ART: 52908

Name Entry

e Optional or required depending on the specific

instruction.

e Up to six characters can be used in a name.

o First character must be alphabetic (including $, #, @).

o First character must be in column 1 unless otherwise

specified by an ICTL assembler instruction.

o No special characters or blanks in a name (except

$,#. @.

o At least one blank must follow the Name entry or

appear in the first Name entry column (if no name is
entered).

Operation Entry

Required entry.

Contains mnemonic operation code (list of valid machine
codes is in Appendix A. Machine Instructions).

Must be followed by a blank.

Operand Entry

Optional or required depending on the specific
instruction.

Contains coding that describes data to be acted upon.
Operands are separated by a comma.
No blanks between terms or operands.

Blanks are allowed within character constants and
character self-defining terms only.

If the entire operand entry is omitted, but a remark
entry is desired, absence of the operand must be
indicated by a comma in the operand entry, preceded
and followed by one or more blanks.

Must be followed by a blank.

10

Remark Entry
e Optional entry.

e Contains a brief verbal description of the statement’s
function.

e Cannot extend beyond column 87 or a limit prescribed
by ICTL assembler instruction.

o Can contain any combination of valid characters or
blanks.

® Must be followed by a blank.

ldentification—Sequence Entry
e Optional entry.

e Contains statement identification or sequence
characters.

o See ISEQ — Input Sequence Checking later in this section.

Comment Statements

The entire statement field (columns 1-87) can be used
for comments by placing an asterisk in column 1 (or the
beginning column, as set by the ICTL assembler
instruction). Comments can be extended for more than
one line by the repeated use of the asterisk in the first
column of additional cards. Comment lines may be used
anywhere in the source program and are printed on the
program listing. Sequence checking is also performed
on cards containing comment statements.

®

NAME % OPERATION 't OPERAND % REMARK ‘k SEQUENCE
1 87 89 96
@ Name Entry @ Operation Entry
’ . This entry consists of the
This entry may contain mnemonic code for the
up to 6 characters. desired operation. The
operation can be either
|
If not left blank, column l l
one must contain an Machine instruction or Assembler instruction
alphabetic character.
@ Operand Entry
One or more operands
that consist of either:
EXP or {EXP(EXP) | or | EXP(EXP,EXP) | or | EXP (,EXP)
A single term consisting of: or An arithmetic combination
of terms.
A symbol or A self-defining term or A location counter
(AT or RT) (AT) reference (*) (RT)
EXP = expression
[| AT = absolute term
1 1 1 RT =relocatable term
Decimal or Hexadecimal or Binary or Character ‘
e.g. 166 e.g. X'C4’ e.g. B'101’ e.g. C' AB’
@ Remark Entry @ Sequence Entry

This entry contains any
statement meaningful
to the programmer.

This entry is optional.

Figure 3. Assembler Statement Entries

This field may contain
any valid characters.

This entry is optional.

Basic Assembler Language

11

ADDRESSING

The programmer must be able to access any part of storage.
IBM System/3 provides two methods of addressing: direct
and base-register displacement. The relative addressing
technique can be used with both methods. For addressing,
see the IBM System/3 Models 8, 10, 12, and 15 Components
Reference Manual, GA21-9236.

Direct Addressing

The direct addressing method allows the programmer to
represent a 16-bit instruction address by using an
expression as an operand entry. The assembler places
the value of the expression in the machine instruction
which it generates.

Two bytes are always used in the machine instruction for
a direct address. A direct address is indicated by the
absence of a register in the operand.

Example: MV1 ACD’
This indicates to the assembler that a direct address is to

be generated for location A (see Machine Instruction
Operands).

Base-Register Displacement Addressing

Base-register displacement addressing involves setting up
a base address from which other addresses can be
calculated. This base address must be placed in the base
register before the base register is used for addressing.

One byte is always used in the machine instruction for a
base-register displacement address and is indicated by the
presence of a register in the operand.

Examples: MVI
MVI

A(2)CD’
5(,1),CD’

This indicates to the assembler that a base-register displace-
ment address is to be generated for location A using base
register 2 and for displacement 5 from base register 1.

®

1 zN:m: 5 5‘7[80;”:;‘?:'12!314 15 16 17 18 1920 21 2;’%‘;’:’526712&293)31323«3453
x|t EIQ] |
LA Blals|g[, RIX 1]
Vlsli IMa ADBA}SL
vl (], IR, Bl(a], IRX]s
: 1
1

Figure 4. Base-Register Displacement Addressing

12

The base register plus a displacement can reference any
higher address within 255 bytes of the specified base
address. The displacement portion of the address can be
either absolute or relocatable; however, in either case the
programmer indicates that a base-displacement address is

to be generated by the presence of the register in the
operand (see Machine Instruction Operands). If relocatable
displacements are used, the USING statement (see Assembler
Instruction Statements) must be used to indicate to the
assembler which register contains the base address and
what address will be loaded into that register. The USING
instruction does not load the register with the specified
address; the programmer must use a load instruction to
place the indicated address into the register. Figure 4 is

an example of base-register displacement addressing.

In Figure 4 two bytes of data will be moved from the
location of B to the location of A. The assembler
calculates the displacement to the addresses for A and
B, if A and B are relocatable and are within a positive
255 bytes of the address in base register XR1. If either
A or Bis over 255 bytes from the base address, an
addressing error occurs and an assembler error statement
is generated. If the terms A and B are not relocatable
symbols, the assembler uses the absolute values (up to
255) of the terms for the displacement. If absolute
displacements are used, the USING assembler statement
is not required.

Note: The programmer must explicitly specify the base
register whenever base-register displacement addressing is
used.

The programmer terminates the use of a previously
defined base register through the use of the DROP
instruction (see Assembler Instruction Statements). The
value of the register is not affected. This register
cannot, however, enter into base-register displacement
addressing using relocatable displacements until specified
again by a USING instruction.

Relative Addressing

Relative addressing is an addressing technique
accomplished by adding bytes to or subtracting bytes
from a symbol or location counter reference. The
expression *+5, for example, specifies the location 5
bytes beyond the current value of the location counter.
Figure 5 is an example of relative addressing.

In Figure 5, the instruction with the operation code
ZAZ has a length of 6 bytes, the instruction AZ has a
length of 5 bytes and the instruction with MVI has a
length of 4 bytes in storage. Using relative addressing,
the location of the AZ instruction can be expressed in
two ways, AAA+6 or BBB-35.

PROGRAM
PROGRAMMER
Name Operation Operand
1 2 3 45 6/718 31011 '2‘314'516|7|E|9m2'2223245282728?1’3_)&32&34&1
[zl | 18,]c
eld1d, 1), c
B3 MV | D, IX| " FF|’
0
B AAAHG
L LU

Figure 5. Relative Addressing

Figure 6 shows how the AZ instruction can be addressed
relative to the nearby symbolic addresses, AAA and BBB.

Relative addressing may also be used with base-register
displacement addressing if the displacement is a
relocatable term.

Example: MVC A+5(,RX1),B(2,RX1)

In the example, A+5 is an example of relative addressing
used with base-register displacement addressing.

Instruction Addressing

A symbol used as a name entry in a machine-instruction
statement addresses the leftmost byte of storage occupied
by that instruction.

Data Addressing

A symbol used as a name entry in a data definition
instruction (see DC — Define Constant and DS — Define
Storage) address the rightmost byte of storage occupied
by or reserved for that data.

Control of Location Counter

Addressing in any computer language depends upon the
location counter. IBM System/3 allows the programmer
to control the location counter by using two assembler
instructions: START and ORG. The START assembler
instruction can be used to initialize the location counter
to a desired value at the beginning of a program. The
ORG assembler instruction can be used to change the
value of the location counter anywhere in a program.

}-——G-bytes —-l»——S-bytes -—-I-4-bytes -{

Lttt
) A

AZ Mvi
ZAZ (AAA+6) (BBB)
symbolic address = (AAA) (8BB-5)

Figure 6. Schematic of Relative Addressing

These two instructions are described in detail under
Assembler Instruction Statements.

MACHINE INSTRUCTION STATEMENTS

Machine instruction statements are symbols that
represent machine language instructions on a one-for-one
basis. The assembler translates these symbolic repre-
sentations into machine language usable by the
computer. Machine instruction statements differ from
assembler instruction statements in that the machine
instruction statements are executable parts of the
program’s logic (such as MVI, ST, LA, etc), while
assembler instruction statements are simply orders to

the assembler, each statement directing a specific operation
(such as DC, START, SPACE, etc). See IBM System/3
Models 8, 10, 12, and 15 Components Reference Manual,
GA21-9236 for a description of the execution of machine
instructions.

The format for a machine instruction statement is closely
related to, but not the same as, the machine language
instruction format which results from the assembly
process (see Appendix A. Machine Instructions for
machine language instruction formats).

A mnemonic operation code is used in place of the
actual machine language operation code and one or
more operands provide the information required by
the machine instruction. A remark and a sequence
entry may be included in the machine-instruction
statements, but they will not affect the machine
language instruction.

Basic Assembler Language 13

Name Entry Attributes

Any machine-instruction statement can contain a
symbol as a name entry. Other machine-instruction
statements can use that symbol as an operand. The
assembler assigns value and length attributes (charac-
teristics) to every sumbol used in a program. The value
attribute of a symbol which is used as a name entry

in a machine-instruction statement is the address of
the leftmost byte of storage occupied by the assembled
instruction. The length attribute of the symbol is

the number of bytes of storage occupied by the
assembled instruction. Refer to Lengths—Explicit and
Implied in this section for a discussion of the length
attributes of other types of symbols, terms, and
expressions.

Machine Instruction Mnemonic Codes

The mnemonic operation codes are designed to be
easily-remembered codes that remind the programmer
of the functions performed by the instructions. The
mnemonic codes are translated into machine-language
operation codes by the assembler. IBM System/3 Basic
Assembler provides mnemonic and extended mnemonic
operation codes. The complete set of mnemonic codes
is listed in Appendix A. Machine Instructions.

Extended Mnemonic Codes

Extended mnemonic codes are provided for the
convenience of the programmer. They are unlike other
mnemonic codes in that part of the information

usually provided in the operand is in the extended
mnemonic code itself. Extended mnemonic codes allow
the following:

1. Conditional branches (BC) and jumps (JC) can
be specified mnemonically, requiring only a
branch address as an operand.

2. Half-byte moves (MVX) can be specified
mnemonically, requiring only the use of addresses
as operands.

3. The supervisor call form of the command CPU
(CCP) machine operation can be specified
mnemonically (Model 15 only).

Extended mnemonic codes are not part of the set of
machine instructions, but are translated by the assembler
into the corresponding operation code and condition
combinations.

14

See Appendix A. Machine Instructions for a list of
extended mnemonic codes.

Machine Instruction Operands

This section describes (1) operand fields and subfields,
(2) explicit and implied lengths, and (3) operand groups
and formats. The operands of machine instruction
statements provide the information about addresses,
lengths, and immediate data that is required by the
assembler to generate executable machine instructions.
General rules for coding of operands are covered in
Assembler Coding Conventions.

Operand Fields and Subfields

The left operand of a pair is called operand 1, or
operand field 1; the right operand is called operand 2,

or operand field 2. An operand field may include one
or two subfields (length subfield, register subfield)

as in the following example of base-register displacement
addressing.

Example: 40(,2)

The above operand field contains a displacement entry,
40, and a register subfield entry, 2, representing index
register 2. The following rules apply to the coding of
subfields:

1. Parentheses must enclose a subfield or subfields.
2. Blanks cannot be used within subfield parentheses.

3. A comma must separate two subfields within
parentheses (L,R).

4. If the first subfield of a pair is omitted, the
comma that separates it from the second subfield
must be retained (,R).

5. If the second subfield of a pair is omitted, the
comma separating the pair must also be omitted

).

6. If both subfields are omitted, the separating
comma and the parentheses must also be omitted.

Operand subfields can contain immediate data, length,
or register information. Only absolute expressions
and self-defining terms may be used as subfield entries.

Lengths — Explicit and Implied

A length subfield in an operand may be either explicit
or implied. To imply a length, the programmer omits
the length subfield from an operand. When a length
specification is not included in an operand requiring

a length, the assembler includes the implied length of
the first operand, such as the length attribute of a name
entry (see Name Entry Attributes in this section).

The length attributes of various terms and expressions
are shown in Figure 7.

An explicit length is written by the programmer in the
operand as an absolute expression. The explicit length
overrides any implied length.

Term or Expression Length Attribute

1. Name entry symbol
of a machine-instruction

Length, in bytes, of the
instruction.

2. Location-counter
reference (*)

Length, in bytes, of the
instruction in which it

appears (except in the EQU
assembler statement, where the

3. Expression Length attribute of the
leftmost term in the
expression.

4, Self-Defining Term Length attribute is one.

5. START name entry Length attribute is one.

NOTE: See also Subfield 3 -- Length under Data Defining

Instructions.

length attribute assigned is one).

Figure 7. Length Attributes of Terms and Expressions

Operand Groups

Machine-instruction statement operands are divided
into six groups. The characteristics of each group are
as follows:

Group 1: Two-operand format in which a length is
explicit or implied in both operands.

Group 2: Two-operand format in which a length can
be explicit in either operand, but not in both. If
length is not explicit in either operand, the assembler
uses the implied length of operand 1.

Group”3: Two-operand format in which a length
cannot be specified.

Group 4: One-operand format in which only immediate
data may be used.

Group 5: Two-operand format in which both operands
are immediate data.

Group 6: Two-operand format in which operand 1 is

used by the assembler to calculate a positive displacement

and operand 2 is immediate data.

Basic Assembler Language

15

Figure 8 shows the allowable operand formats for each
operand group. The instructions using each operand
group are also listed. Refer to Appendix A. Machine

Codes in this section).

Instructions for the related machine-instruction formats.

For the extended mnemonics of the MVX instruction,
the I-field information is inherent in the mnemonic and
the I-field is omitted from the operand. For the extended
mnemonics of the BC and JC instructions, the second

instructions.

operand (I-field) is not used since the information is
inherent in the mnemonic (see Extended Mnemonic

Data movement is from operand 2 to operand 1 in a
two-address format instruction (group 1 and group 2).
This operand order is equivalent to that of machine

GROUP INSTRUCTIONS ALLOWABLE OPERAND FORMAT
1 ZAZ,AZ,S2 AA A(L),A D(,R),A D(L,R),A
AA(L) A(L),A(L) D(,R),A(L) D(L,R),A(L)
A,D(,R) A(L),D(,R) D(,R),D(,R) D(L,R),D(,R)
A,D(L,R) A(L),D(L,R) D(,R),D(L,R) D(L,R),D(L,R)
2 MVC,CLC,ALC AA A(L),A D(,R),A D(L,R),A
SLC,ITC,ED AA(L) A(L),D(,R) D(,R),A(L) D(L,R),D(,R)
A,D(,R) D(,R),D(,R)
A,D(L,R) D(,R),D(L,R)
MV X AA() All),A D(,R),A(l) D(1,R),A
A,D(I,R) A(1),D(,R) D(,R),D(I,R) D(l1,R),D(,R)
3 MVI,CLI,SBN Al D(,R),i
SBF,TBN,TBF
TIO,SNS,LIO
BC
L,ST,A,LA AR D(,R),R
SCP*,LCP*
4 APL,SVC* !
5 HPL,S10,CCP* 1l
6 JC Al

*Model 15 only.

The following codes are used to describe the possible operand formats:

CODE

-ro>»

MEANING

Address
Displacement
Length
Register

Immediate Data (bit masks,
condition bit masks, or
control bits to be used in

the instruction)

ACCEPTABLE FORM

Relocatable expression, absolute expression, or self-defining value.
Relocatable expression, absolute expression, or self-defining value.

Absolute expression or self-defining value.
Absolute expression or self-defining value.
Absolute expression or self-defining value.

Figure 8. Operand Format by Group

16

In groups 3, 5, and 6, the Q-code operand is always
on the right. See Appendix A. Machine Instructions
for an explanation of Q codes.

ASSEMBLER INSTRUCTION STATEMENTS

When writing a program the programmer uses two types
of statements: executable instructions and instruction
statements to the assembler. The executable instructions
are the machine instruction statements. These are
symbolic representations of the programmer’s logic,

such as branch, move, or compare, which are translated
into machine language by the assembler.

Assembler instruction statements, on the other hand, do
not generate executable machine codes. They are
instructions that control specific assembler functions.
These instructions are used to set up areas in storage, to
define data, to equate symbols, and to control program
listings, location counter, statement formats, and types
of addressing. In the remainder of this section, the
individual assembler instruction statements are
discussed.

Symbol Definition Instruction

EQU—Equate Symbol

The EQU instruction is used to equate symbols with
register numbers, immediate data, or other arbitrary
values. The EQU instruction defines a symbol by
assigning to it the length and value of the expression
in the operand field of the EQU instruction. The EQU
instruction has the following format:

OPERATION OPERAND

EQU

symbol an expression

T

NAME l
]
|
L

The expression in the operand field can be either
absolute or relocatable. Any symbol appearing in
the operand field must have been previously defined.
Figure 9 illustrates how this instruction can be used
to equate a symbol with the contents of the operand.

In Figure 9, MAX has the value of TEST + X‘3FC’
(X‘102+X‘3FC’ or X‘4FFE’) any time it is used in the
program. The symbol STEST has the value of the first
(left most) byte of the data area reserved by the DC
instruction. Since the symbol on the DC (TEST) has
the value of the rightmost byte, this type of EQU is
useful for addressing the leftmost byte. The symbol
REG?2 in any statement is the same as using the number
2.

IBM

PROGRAM

PROGRAMMER

Name Operation Operand
1.2 3 4 5 6]7]18 9 10 11 12]13{14 1516 17 18 1920 21 2223 24 25 26 27 28 20 30 31 32 33 M B X

Figure 9. EQU Assembler Instruction

Basic Assembler Language 17

Data Defining Instructions

Two data defining instruction statements are available:
Define Constant (DC), and Define Storage (DS). These
instructions are used to enter data constants and to
reserve areas in storage. Each instruction can have a
name field entry (symbol) to which other instructions
can refer.

DC—Define Constant

The DC instruction is used to initialize a storage
location with a desired value. The IBM System/3

Basic Assembler Language allows six types of constants:
storage address, binary, character, decimal, hexadecimal,
and integer. The format of the DC instruction is as
follows:

NAME | OPERATION | OPERAND
f ' T T T
symbol | DC I'Duplication ! Type ! Length :Constant
or | | Factor :(2) : 30 1 4
blank ! Rt} ! , !

Notice that the operand of the DC statement consists
of four subfields. The first three describe the constant
and the fourth provides the constant. The only blanks
permitted within an operand field are blanks embedded
in a character constant. The symbol that identifies the
DC statement receives the value of the address of the
rightmost byte of the area defined by the statement.

Subfield 1—Duplication Factor: This subfield enables the
programmer to repeat the constant in storage. The constant
will be generated the number of times indicated by the
entry in the first subfield. This entry can be any unsigned,
nonzero, decimal value, 1 through 65535. If this subfield

is omitted, a duplication factor of 1 is assumed. This
duplication factor is applied after the constant is fully
assembled. If duplication is specified for an address cons-
tant containing a positive location counter reference, the

value of the location counter used in each duplication is
increased by the length of the constant.

18

Subfield 2—Type: This subfield defines the form of the
constant being entered. From the type specification, the
assembler determines how it is to interpret the constant
and translate it into the appropriate machine format. The
type entry is specified by one of the letter codes A, B, C,
D, X, or I (see Subfield 4 — Constant for related meanings).
The type entry is required.

Subfield 3—Length: The third subfield describes the
number of bytes required by the constant. The entry for
this subfield may be written two ways:

1. Ln, where n is an unsigned, nonzero, decimal value.
The value of n is as follows:

n = 1-256 for I, B, C, X constants
n = 1-31 for the D constant
n = 1-3 for an A constant

2. L (absolute expression), where an absolute
expression is enclosed in parentheses. The value
limits for the absolute expression are the same as
those for n in the previous paragraph. A location
counter reference is not allowed in this expression.

The total area allocated for this constant is the result of:
Duplication Factor * Length=Total Area. The length
entry is required.

Subfield 4—Constant: This subfield supplies the constant
that was described in subfields 1 through 3. In general, the
address constant (type A) is enclosed in parentheses, while
the data constants (types B, C, D, I, and X) are enclosed in
apostrophes. An entry in the constant subfield of a DC
Statement is always required.

Address Constant (A): This constant is used to load an
address into a storage area.

Example: SYMBOL DC AL2(BETA)

In this example, the address represented by the symbol
BETA will be stored in the 2-byte field addressed by
SYMBOL. The full 24-bit final expression result is trun-
cated on the left to fit the length of the constant. The
maximum length of an address constant is 3.

Binary Constant (B): This constant is used to create bit
patterns and masks.

Example: SYMBOL DC 1BL1°10011°
The byte of storage addressed by SYMBOL will contain
00010011. Truncation or padding with binary zeros
occurs on the left if the constant is not the length speci-
fied. This constant is enclosed in apostrophes. Each digit
within the apostrophes represents a single bit in storage,
and each eight bits specified will occupy one byte of
storage.

Character Constant (C): This constant can be used to
place a string of characters in storage.

Example: SYMBOL DC
The byte of storage addressed by SYMBOL will contain a

blank, and the byte of storage addressed by SYMBOL-16
will contain the character P.

Note: Two blanks have been padded on the right of the
character string.

If the constant is not the specified length, truncation or
padding with blanks will occur on the right. Each
character (including blanks) within the apostrophes will
occupy a byte of storage. If an apostrophe occurs within
the string of characters, it must be represented by a
double apostrophe.

Decimal Constant (D): This constant can be used for
arithmetic purposes.

Example: SYMBOL DC DL5125.66°
This constant will appear in zoned-decimal form in a 5-byte
storage field, addressed by SYMBOL. The decimal point
is used only as a convenience for the programmer, and
is not assembled into the constant. The value of the
constant is calculated without the decimal point. Trunca-
tion or padding with decimal zeros occurs at the left of the
field, if necessary. Signed decimal constants are permitted,
making it possible to have a decimal constant with a nega-
tive value. Each decimal digit will occupy one byte of
storage.

Hexadecimal Constant (X): This constant is used to
associate a hexadecimal value with a symbol in a defined
area in storage.

SYMBOL DC

Example: 1XL68AC14°

1CL17‘PLANT 5 PAYROLL’

The 6-byte field addressed by SYMBOL will contain the
following 12 hexadecimal digits: 00000008AC14.

Truncation or padding with hexadecimal zeros occurs at
the left. Each two digits between apostrophes will occupy
one byte of storage.

Integer Constant (I): This constant is used for fixed-point
binary arithmetic.

Example: SYMBOL DC 1IL2-7
A negative number may be used for an I constant. The
negative constant is placed in storage in its two’s-comple-
ment form. This example would appear in storage in bit
formas 1111111111111001. There is always a positive
equivalent to a negative constant; in the above example, it
is hexadecimal FFF9 or decimal 65,529. The range of I
constants must be within —232+1 to 232_1. If the number
is positive, it is padded on the left with O-bits. If the
number is negative, it is padded on the left with 1-bits.

DS—Defines Storage

The DS instruction is much like the DC instruction. It
assigns a symbol to an area of storage. Unlike the DC
instruction, the DS instruction only reserves the area of
storage, it does not insert data. A constant subfield cannot
be used with a DS statement. The following illustration
shows the DS format.

| I
NAME | OPERATION OPERAND
1 L
T T 1
symbol | DS | duplication : type |length
or | | factor | |
blank | | L

A duplication factor of zero can be used in a DS statement
if the programmer wishes only to assign a length to its
corresponding symbol. The symbol will be given the value
of the current location counter minus one. The type and
length subfields must follow the same rules as for the DC
statement.

The duplication factor can be used by the programmer to
specify a reserved area larger than 256 bytes.

Example: SYMBOL DS 3CL100

This instruction would reserve a 300-byte area, which would
be referenced on the right by the name entry SYMBOL.

Basic Assembler Language 19

Listing Control Instructions
The listing control instructions aid the programmer in

documenting his assembler listing. These instructions are
TITLE, EJECT, SPACE, and PRINT.

TITLE — Identify Assembly Output

The TITLE instruction enables the programmer to identify
assembled object cards and assembler listings.

NAME OPERATION OPERAND

TITLE a sequence of characters

enclosed in apostrophes

1
|
I
label or blank I
]

The name field entry can consist of a maximum of six
characters. The first character may be numeric. The
contents of the name field in the first TITLE card is punch-
ed into the sequence field of all object cards produced by
the assembler. This name field entry also appears in all
listing header fields.

The name on the TITLE statement is not the object pro-
gram name, but may be the same as the object program
name. See START — Start Assembly. The name field
entry is used only for identification and may not be
referenced by the program.

The operand field contains a sequence of characters
enclosed in apostrophes. Any embedded apostrophes must
be represented by a double apostrophe. The contents of
the name and operand fields are printed at the top of each
page of the assembler listing,

A program can contain more than one TITLE statement.
When a new TITLE statement is read, the listing is advanced
to a new page before the new heading is printed. The name
fields of all subsequent TITLE statements are ignored by
the assembler. The TITLE instruction is not listed on the
assembler listing, but it does increase the statement counter
by one. Figure 10 shows an example of the TITLE
statement.

20

IBM

PROGRAM

PROGRAMMER

Name Operation Operand
1 2 3 4 5 6]/7/18 9 10 11 12[13[14 15 16 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 :

sITalRlT [x]'[3[]*
v Tit|riLigl [oicirolaleld [(s Plalyirlol]d”
paTiAL M [Dle llelciglel*] 17
SAV. Dis| 4iciL|lipid
BN .d XAl

Figure 10. Use of the TITLE Statement

EJECT — Start New Page

The EJECT instruction causes printing to begin at the top
of a new page, under the page heading. Through the use
of the EJECT statement, the programmer can separate
routines in the assembler listing. The format of the EJECT
assembler instructions is as follows:

NAME OPERATION OPERAND

.______—

blank EJECT Not Used

In Figure 11, the EJECT instruction is used to separate
executable instructions from the data-defining assembler
statements. The EJECT instruction is not listed on the
assembler listing, but it does increase the statement counter
by one. The coding example in Figure 11 shows the position
of EJECT. Note that the corresponding statement number
(4) has been omitted in the listing. Statement number 5
appears at the top of the next page, under the heading.

SPACE — Space Listing

This instruction is used to insert one or more blank lines
between statements in the assembler listing:

An unsigned decimal value is used to specify the number
of blank lines that are to be inserted. If the operand con-

tains a blank, a zero, or a 1, one blank line will be inserted.

If the value of the operand exceeds the number of lines
remaining on the current page, the instruction has the
same effect on the listing as an EJECT statement. The

T T !
NAME | OPERATION | OPERAND SPACE instruction, like thg EJECT instruction, is not
— }+ listed on the assembler listing, but does increase the state-
blank 1 SPACE | decimal value or a blank ment counter by one.
1 |
IBM 1BM System/3 Basic Assembler Coding Form
rmocran P RO G QA’ M 1 PUNCHING GRAPHIC
rrocrammer XX X l OATE - INSTRUCTIONS [~ oo
STATEMENT
1 2 N;mi 5 §l 7, 309‘)0:%!“‘7:‘ 12{13]14 15 16 17 18 19 20 21 nom:dﬁ ilam 91_3_13253_4‘;35 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 !'Zleggré:SZ g;:g_s_rs_s__tslss 6970 71 72 73 74
[PIRIolGTa] | [S[Al (X[Ta' T 1] T i
Malsik 1] | [oic! 1Bl @1 1|’ !
CouiNT|3 IDiC 32y [
ENElC!T] |
RIE|AD LIl O B
STIO M viC] Jolele]ofe]e :
. 1
E|MD READ !
1
\
Listing Page 1
Statement Name Operation Operand Remark
O number
1 PROG1 START X100’
O 2 MASK1 DC 1BL1°'01101"
3 COUNT3 DC 3iL2'0
Listing Page 2
Statement Name Operation Operand Remark

number

5 READ LIO
6 STORE MvC

END

(OOOOO

Figure 11. EJECT Instruction

READ

Basic Assembler Language

21

PRINT—Print Optional Data

The programmer can control the printing of an assembly

listing by using the PRINT instruction. A program can have

any number of PRINT instructions. Each PRINT
instruction controls the listing until the next PRINT
instruction is encountered.

NAME OPERATION OPERAND

blank PRINT operand

T
[
1
t
[
l

N T —

The operand field can include entries from the following
groups (one or two operands for the Model 10, one, two,
or three operands for the Model 12 and the Model 15):

1. ON-A listing is printed.
OFF—No listing is printed.

2. DATA-—Constants are printed out in full on the
assembler listing.
NODATA—Only the leftmost 8 bytes of the con-
stants are printed on the assembler listing.

3. (Model 12 and Model 15 only)
GEN-Print statements generated by the macro
processor if not overridden by other listing
control statements.
NOGEN-Suppress printing of statements gen-

erated by the macro processor.
Dperand entries must be separated by a comma.

The ON, GEN and DATA conditions are assumed by the
assembler unless otherwise specified by a PRINT instruc-
tion. If an operand is omitted, it is assumed to be un-
changed and continues according to its last specification.
Both of the examples in Figure 12 would cause a listing

Program Control Instructions

ICTL—Input Format Control

The ICTL statement permits the programmer to change
the normal bounds of the source program statements.
When included, the ICTL instruction must precede all
other source statements. This instruction can be used
only once during a program. An invalid or mispositioned
ICTL statement causes termination of the assembly.

L

NAME | OPERATION « OPERAND
i

blank ! ICTL

I two decimals in the form of B,E

The term B specifies the beginning column and the term
E specifies the ending column of the source statement.
The beginning column must be within columns 1-48. The
ending column must be within columns 49-95. The
column after the ending column must be blank.

When an ICTL statement is not included in a source
program, the beginning column is assumed to be column
1, and column 87 is assumed to be the ending column.
Figure 13 is an example of the ICTL instruction. In
Figure 13, the name field would start in column 14

and the remark field would end in column 80.

lal l@

PROGRAM

PROGRAM X3

PROGRAMMER

XXX

ST

Name Operation
1 2 3 45 61718 9 101

Operand
1 12 13[14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

to be printed with only the leftmost 8 bytes of the con- 1A
stants appearing in the listing. P X3| |STARIT| X|'|[1id@’
MAl EQu [| &
ProGRAM S|YMBlol| 1Dl] | | [t[cldel' islymiBlolL!"
END K
1 ZN;’“: 5 6|7 ao;e::t‘?:"2| 14 1516 17 18 1920 21 2?2:';’.“’52577 28 29 30 31 32 3334 3B : %
plel rqr oM, IMolDlAlTIA
MAX vi<h 5ic|Li3] laBiC] Figure 13. The ICTL Statement
ISEQ—Input Sequence Checking
IEM Or The ISEQ instruction is used to check the sequence of

PROGRAM

PROGRAMMER

Name l Operation Operand
1 23456789mn|2|]415‘5!7'8!9202'nnz‘?Szenzazs_&_)__:_iL:!z:lJ:uiﬁa
PIRl IN[T] |wio|D
X Dic 5iciLi3]' |A[B
0

¢

.

Figure 12. The PRINT Statement

22

source cards. Sequence checking begins with the first
card after the ISEQ instruction. The first sequence entry
is taken from the sequence identification field of the
ISEQ statement. The sequence entry on the next card is
then compared to the previous sequence value. The ISEQ
assembler statement has the following effect:

1. The sequence entries on source-statement cards are
checked for ascending order.

2. Statements that are out of order and statements
without sequence entries are flagged in the assembler
listing.

3. The total number of flagged statements is noted at
the end of the assembler listing.

For example, with the sequence values 13, 27, 31, 6, 8,
45,47, and 48, the card numbered 6 and the card with-
out a sequence value would be out of sequence. The
assembly does not stop due to a card being out of
sequence order. In this example, the card numbered 6
and the card without a sequence entry would be flagged
in the error field of the listing. If sequence checking is
requested, there is a statement at the end of the listing
showing that two cards were out of sequence.

The assembler will not check the sequence unless requested
to do so by use of the ISEQ statement.

The following is the ISEQ instruction format:

NAME OPERATION OPERAND

blank ISEQ two decimal values in the

form L, R; or blank

The operand entries, L or R, specify the leftmost (L) and
rightmost (R) columns of the field to be sequence checked.
The value of L must be within the range of 73 through 96
(inclusive). The length of the sequence field may be from
1 to 8. If the programmer wants to discontinue sequencing,
an ISEQ instruction card with a blank operand is inserted.

The sequence field must be separated from the last column
of the source statement by at least one blank position.
The last column of the source statement is column 87
unless otherwise specified by the ICTL assembler state-
ment. The sequence field must not appear before the last
column +1 of the source statement. If the sequence field
is to start before column 89, the ICTL statement must be
used to redefine the beginning and end of the source state-
ment. For example:

ICTL 1,71 Source statement is defined within
columns 1-71

ISEQ 73,80 Sequence field is in columns 73-80

START-Start Assembly.

The START instruction may be used to initialize the
location counter to a desired value at the beginning of a
program. The format of the START instruction is:

NAME OPERATION OPERAND

symbol START a self-defining value or blank

The assembler uses the single self-defining term in the
operand as the initial location-counter value. For example,
either of the START instructions in Figure 14 could be
used to indicate an initial assembly location of 2040.

If the operand of a START instruction is blank, the
location counter is initialized with a value of zero. If
neither an ORG nor a START instruction is used to initial-
ize the location counter, the initial value is also zero.

A START instruction must not be preceded by any state-
ment that affects or is dependent upon the setting of the
location counter.

The name entry in the name field of a START instruction
provides the program with an identifier name called the
module name. The module name may be the same as the
first TITLE statement.

Note: Certain naming restrictions apply when assigning
names for your program. For more information on naming
restrictions, see IBM System/3 Model 10 Disk System
Control Programming Reference Manual, GC21-7512,
IBM System/3 Model 12 System Control Programming
Reference Manual, GC21-5130, IBM System/3 Model 15
System Control Programming Reference Manual,
GC21-5077 (Program Number 5704-AS1), or IBM
System/3 Model 15 System Control Programming
Concepts and Reference Manual, GC21-5162 (Program
Number 5704-AS2).

This program name may be used for program linkage. If
the START card is not included in the program, or if the
name field is blank, a default program name is assigned.
See the MODULE NAME MISSING diagnostic in
/‘lppendix C. System/3 Assembler — Source Language
Error Codes and Diagnostics.

IEM
PROGRAM
PROGRAMMER
S
Name Operation Operand

1 2 3 4 5 6]7]8 9 10 11 12/13]14 1516 17 18 1920 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36
Sy m[glolc| [sITlalRIT [2\@l4ld LidclalT]/ o] bl

Aainl D

(&7
S|YmBloL| |S[TIAIRIT] X|'|7|FA8l/| | [LbolClAITI IO 2@ | |

I |
Figure 14. Using START to Initialize the Location Counter

Basic Assembler Language 23

ORG-Set Location Counter

The ORG statement sets the location-counter value.

T
NAME | OPERATION
]

|

I OPERAND
t

blank [blank operand or an expression A

| optionally followed by two absolute

| I expressions in the form A, B, C
1

: ORG

The location counter is set to the smallest value greater
than or equal to A which is C more than a multiple of B.
In the following example, A can be either a relocatable or
absolute expression; B and C must be absolute expressions.
The default values for B and C are 1 and 0, respectively. If
the second operand (B) is omitted, the third operand (C)
must also be omitted.

Current New

Location Location

Counter A B C Counter
275 * 100 50 350
340 * 100 50 350
350 * 100 50 350
504 * 256 0 512
750 1000 — —_ 1000

All symbols used in the expression A must have been
previously defined. The value specified by the ORG state-
ment must be greater than or equal to the starting location-
counter value.

If previous ORG statements have reduced the location-
counter value for the purpose of redefining the current
program, an ORG instruction with a blank operand is used
to set the location counter to the previous maximum
assigned address plus one (see Figure 15).

Location — — —
Counter Address |1 2 3 a 5 6[7][8 9 10 11 12[13]14 15 16 17 18 1920 21 2223 24
0064 PlRlolel4] | Is|TlalRlT] [1ipld)
0064 0069 [S|YMBloiL| DiC el |
006A *0325 FlILiL] N[[DIS 7lelL1ld
00CE ORlG] El []d[N-519]9
ooce | o1ro _plalrial | [Iple] [[[1lsiplele]al"lael |
0326 olRle]

E|MD
* Previous

High Address

Figure 15. Using ORG to Control the Location Counter

24

USING — Use Register for Base-Displacement Addressing

The USING statement specifies the register to be used for
base-displacement addressing and also specifies the base
address that the assembler will assume to be in that register
at object time. The USING statement does not load the
base address into the register specified. This must be done
by the programmer before the register can be used for
base-register displacement addressing. See Addressing in
this section.

NAME OPERATION OPERAND

blank USING V,R

- — 4~ — 4

In the preceding format, term V represents an expression.
Term R represents an absolute expression with a value of
1 or 2. Term R specifies the index register assumed to
contain the base address represented by the term V. The
programmer has the option of changing the base register
or base address at any time by the insertion of another
USING statement. Two USING statements enable the
programmer to use the two index registers as base registers
to two different portions of main storage.

In'Figure 16, register 2 is loaded with the address of
ADRESI1, which will be used as the base address in instruc-
tions following the USING statement.

IBM
PROGRAM
PROGRAMMER
1 2N;m: 5 6] 7 aomﬁ?:“|2| 14 1516 17 18 1920 21 7???’2’4“’25262728291)3!32333453
PRI0EL | ISITIAIR
L DIREISU],
vislt V61 AIDRES!L] 12

Figure 16. Specifying a Base Register With the USING Statements

DROP — Drop Base Register

The DROP instruction specifies a base register that is no
longer to be used as a base register. The programmer can
reinitiate the base register with another USING
instruction.

NAME OPERATION OPERAND

blank DROP

specified register

The operand must contain an absolute expression of
either 1 or 2. This absolute expression represents the
register that is no longer to be used as a base register.
The contents of the register are unaffected by the DROP
instruction. Figure 17 shows an example of the DROP
instruction. Another USING statement is used to
specify register 1 as the new base register.

IBM
1 2N;m: s 6} 7 aomﬁ?:' 12| |J|4 16 16 l? 18 1920 21 nogr;r‘tdz 26 27 7_8_‘_21231_‘37 3334:51‘
PIR[olel1] | IS[TiAlR[T]

4 A[D[RIE]s1], 2

Jisiriviel IADIR|€IS|1],

DR | |2

L AD|RE S|2],

Uisl1 iNi6|_lAIDIRIELS| 2],

Figure 17. Example of the DROP Statement

ENTRY — Identify Entry Point to Program

This instruction identifies symbols, defined in the current
program, which can be used as entry points from other
programs.

NAME OPERATION OPERAND

blank ENTRY any relocatable
symbol found in the
name field of the

current program

I
l
+
I
|
I
|

The symbol used in the ENTRY operand can also be refer-
enced by any other program provided that program uses
the same symbol in the operand of an EXTRN statement.
See the example given in the discussion of EXTRN for
additional information on the use of ENTRY.

EXTRN — Identify External Symbols

This instruction identifies symbols, used in the current
program, which are defined in another program. Each
symbol in the operand of an EXTRN statement must be
identified by an ENTRY statement or be the module name
in some other program.

NAME OPERAND

1
OPERATION |
1
1

one relocatable symbol

not found in the name
field of the current pro-

' gram, optionally followed
by an absolute expression

| in parentheses

blank EXTRN

(R R —

The external symbol cannot be used in a Name field in the
same program that describes that symbol as an EXTRN.

An EXTRN subtype can be specified for the EXTRN
symbol by following the symbol with an absolute
expression enclosed in parentheses. The value of the
absolute expression cannot be less than zero nor more
than 255. Any symbol in the expression must have been
previously defined. For an explanation of the subtype
values and their meanings, see IBM System/3 Overlay
Linkage Editor Reference Manual, GC21-7561.

Basic Assembler Language 25

Figure 18 shows how ENTRY and EXTRN can be used to

make two or more programs act as one main program through

sharing data and control. The main program defines sym-
bols A, B, and C and identifies them as entry points. These
same symbols are identified as EXTRNs (external symbols)
in the subroutine. This allows the subroutine to use these

symbols just as it would if the symbols had been defined

in the subroutine. SUBRO1, on the other hand, is defined
and identified as an entry point by the subroutine and as an
EXTRN, external symbol, by the main routine. These four
symbols — A, B, C, and SUBROI — can now be used inter-
changeably by both the main routine and the subroutine.

The main routine has control first. It executes instructions
and then branches to SUBRO1 which is defined as an entry

IBM
v point in the subroutine. Instructions in the subroutine are
PROGRAMMER executed. Notice that the subroutine uses symbols A, B, and
F""”’ . S L C which were defined in the main routine. Control is then
AT 47&}1& T T ITIIT EERRERED passed back to the main routine.
ENTIRIY] A
TIRIY| 18 Note: The actual resolution of symbols between programs
%&4 TIE ,z gUBR 1 is not performed by the assembler.
EN[TRIY] [[EQUI [[b
')
B SIUBIR)
2 END—End Assembly \
5
gg gt 4/, ‘52:2’ ‘é: The END instruction terminates assembly of the program.
c DS cLs The operand of this instruction can contain an expression
4 (usually a name field entry) which specifies the address
5 to which control is to be transferred after the program is
ENlD ENT loaded. The END instruction must be the last statement
f in the program. The relocatable expression in the operand
Main Routine must not contain external symbols. The start-of-control
address must be specified for programs loaded with the
BM absolute loader.
g 1 ,
NAME , OPERATION | OPERAND
I B IS I g | R pupae T i
5 'Af{gty- gjﬁ < blank lLEND i a relocatable expression or a blank
EIXITIRIN] 1A
gglgw & Figure 19, shows an END statement. In this example, the
SDBREL ST RETORNEEL® program receives control at the address corresponding to
c EDL (5D, MIAls BEGIN when it is executed.
ZAR| [[[DICAD], A4
AlZ DIC4D], BI(14D) IBM
Eec E?ls'g(g)ljig rrosran PROGRAM ONE
el X msmmsn‘ XXX
MASIK D XiLi5) 12 4@ o/|B2ld" Name Gperation Gperand
ED‘T Ds D ; 1 2 3 45 6|78 9 10 11 12[13]14 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
D DSD DlL@ PIRDI6|2| | ISITIAIRIT] '
E . :
! E6/ N Ve olu 7], |ABlel (1)

Subroutine

Figure 18. Example of ENTRY and EXTRN Statements

26

£ b EGy N

Figure 19. Designating an Entry Point With the END Statement

ASSEMBLER CONTROL STATEMENTS

Two control statements are used: The HEADERS state-
ment and the OPTIONS statement. Up to 45 of these
control statements may be used, in any order. Each state-
ment is limited to six operands. All control statements
must appear before any assembler source statements.

HEADERS Statement

The HEADERS control statement specifies control infor-
mation other than output control information to the
assembler. The programmer may specify a category level
for the object module through the CATG operand, or the
length of the control section for any subtype 4 or 5
EXTRNs in the assembler through the COMLA and COMLS5
operands. For an explanation of category levels and
subtype 4 and 5 EXTRNS, see IBM System/3 Overlay
Linkage Editor Reference Manual, GC21-7561.

The format of the HEADERS statement with the CATG
operand is:

rhSHEADERSIbCATG -nnnnn

Column 2\ At Ieast\ Decimal category

or greater

one blank tevel

nnnnn

nnnnn is a one to five character decimal string whose value
must be less than 00256. If more than one CATG operand
appears in the assembler control statements, the value of
the last valid operand is used for the module category level.
The module category level is placed in the module ESL
record.

The format of the HEADERS statement with the COML4
and COMLS5 operands is:

rbHEADERSh$COML4-nnnnn, COMLS-nnnnn |

T N~

Column 2 At least ecimal control
or greater one blank section length

Part 2. Programmer’s Guide

nnnnn is a one to five character decimal string whose value
must be less than 65536. If more than one COMLA4 or
COMLS operand is present in the assembler control state-
ments, the length in the last valid operand is used for the
appropriate subtype control section length. The lengths
specified are placed in the ESL records for the subtype 4
or 5 EXTRNs.

OPTIONS Statement

An OPTIONS statement is a control statement for
assembler control options. All OPTIONS statements must
precede the source deck. The user may specify the follow-
ing assembler options on OPTIONS statements: DECK,
NODECK, LIST, NOLIST, XREF, NOXREF, REL,
NOREL, OBJ, OBJ(T), OBJ(P), NOOBJ. XBUF-nnnnn
and NOXBUF are also available to users having program
5704-AS2. They may appear on one statement in any
order, but must be separated by commas. If the pro-
grammer prefers, separate statements may be used for
each option. The OPTIONS keyword must start in
column 2 or higher (the preceding column must be blank),
and there must be one or more blanks between the key-
word and the selected options. Blanks are not allowed
between the selected options.

The following example shows options appearing on one
statement:

[BOPTIONSWDECK, LIST, NOXREF, REL |

!

Column 2
or greater.

At least one blank between
keyword and options.

More than one OPTIONS statement may be used. In the
following example, three statements are used:

BOPTIONSBDECK

BOPTIONSBLIST

BOPTIONSBNOXREF

Programmer’s Guide 27

The following list provides a brief description of all the
options available:

Option

DECK

NODECK

LIST

NOLIST

XREF
NOXREF
REL

NOREL

28

Explanation

The object program is punched. When an
object program is punched, it is preceded
by a // COPY OCL card and followed by

a // CEND OCL card. These cards are
provided for placing the object program in
the R library with the library maintenance
utility program (SMAINT).

The object program is not punched.

The following sections of the assembler
listing are printed (see Assembler Listing
in this section for a description of the

listings):

® Options information

External symbol list

® Source and object program listing

Diagnostic listing

® Error summary statements

Only the following listings are printed:
® Options information

® Any statements in error and the
associated diagnostics

® Error summary statements

The NOLIST option overrides all
assembler PRINT statements.

A cross-reference listing is generated.

A cross-reference listing is not generated.
A relocatable object program is produced.
An absolute object program is produced.
Note: Absolute object programs can only
be used as stand-alone programs; that is,

programs which are not dependent on any
other disk management system program.

OBJor
OBJ(T)

OBI(P)

NOOBJ

On the Model 10 an absolute loader will pre-
cede the absolute deck if DECK is specified
and if MFCU?2 is specified on the // PUNCH
statement. On the Model 12 and Model 15,
an absolute loader will precede the absolute
deck if DECK is specified and if the
SYSPCH device is MFCU, 1442, or MFCM
(Model 15 only). The loader punched will
program load only on the device type on
which it was punched. A blank card is in-
serted between the absolute loader and the
object program. This blank card and the
OCL cards included with the object program
do not affect the operation of the absolute
loader and may be discarded.

To prevent cataloging of the absolute object
program when NOREL is specified, you
should specify NOOB]J.

The object program is placed in the R
library with a retain entry of temporary.

The object program is placed in the R library
with a retain entry of permanent.

The object program is not placed in the R
library. (See Placing Assembler Subroutines
in R [Routine] Library in this section.)

If no OPTIONS statement is used, the assembly is processed
as though DECK, LIST, REL, XREF, and OBJ had been
specified. NOXBUF is also assumed with program

5704-AS2.

XBUF-nnnnn Specifies the size of the disk external buf-

NOXBUF

fers the user has requested. From one to
five numeric digits may be used to specify
the size of the disk external buffers (pro-
gram 5704-AS2 only). External buffers
should not be specified due to performance
considerations if the program size including
physical disk buffers does not exceed 56K.
However, if external buffers are specified,
they should equal the size of the physical
disk buffers that normally would be set
aside within the program.

Specifies no external buffers are requested
for the program (program 5704-AS2 only).

If DECK or OBJ is entered on the OPTIONS statement and
there are errors in the assembly, a halt is issued.

OCL STATEMENTS FOR ASSEMBLER

The loading and running of a disk-system program,
including the assembler, is done under control of a group
of programs called disk system management. The user
tells disk system management to run a program through
the use of Operation Control Language (OCL) state-
ments. It is necessary to have a set of OCL statements
each time a program is run. This section discusses the
OCL statements required for use of the assembler. For

a complete discussion of OCL, see IBM System/3

Model 10 Disk System Control Programming Reference
Manual; GC21-7512, IBM System/3 Model 12 System
Control Programming Reference Manual, GC21-5130,
IBM System/3 Model 15 System Control Programming
Reference Manual, GC21-5077 (Program Number
5704-AS1), or IBM System/3 Model 15 System

Control Programming Concepts and Reference

Manual (Program Number 5704-AS2), GC21-5162.

The assembler language source program can be obtained

from either a system input device, a source library entry, or

the macro processor. If the source records are obtained
from an 80-column device, they are padded with 16
blanks before being placed in the $SOURCE file. In this

case, the user should provide an ICTL statement to prevent
the assembler from processing the sequence field of the

80-column record.

OCL For Loading the Assembler

Source Program on System Input Device (Cards)

Figure 20 is a sample set of OCL statements to load the
assembler when the source program is on cards. The unit
parameter (F1) on the // LOAD statement specifies
where the assembler resides. The codes for the disk
drive upon which the assembler resides are:

e Rl —drivel
e F1 — drivel
e R2 — drive2
e F2 — drive2

Programmer’s Guide

29

The first // FILE statement specifies the attributes and In all three // FILE statements, the PACK and UNIT

location of the file used for source program residence parameters indicate the location of the file named in the
during the assembly process. NAME Parameter. In addition to R1, F1, R2, and F2, the
UNIT parameter can specify D1, D2, D3, and D4 for the
The second // FILE statement specifies attributes and the Model 15. The RETAIN parameter should reflect a scratch
location of the file used for object output of the assembler. file(s). The TRACKS parameter contains the number of
The third // FILE statement specifies attributes and tracks required for that file. The user should choose the
location of the file used for assembler working storage number of tracks required in accordance with the space
during the assembler process. requirements charts in the Assembly Time Data File
Requirements section. See IBM System/3 Model 10 Disk
The $WORK?2 // FILE statement is optional on the System Control Programming Reference Manual,
Model 10 Disk System. If it is not supplied, the assembler GC21-7512,IBM System/3 Model 12 System Control)
allocates the work space. However, by specifying the Programming Reference Manual, GC21-5130, and /IBM
proper placement of file locations, as in Figure 20, this System/3 Model 15 System Control Programming .
file statement improves the performance of the assembler. Reference Manual (Program Number 5704-AS1), -
It should, therefore, be specified. GC21-5077, or IBM System/3 Model 15 System Control

Programming Concepts and Reference Manual, GC21-5162,
(Program Number 5704-AS2) for further information.

Source Program in a Source Library

Figure 21 shows a sample set of OCL statements used when
the source program is in the source library.

1BM System/3 Basic Assembler Coding Form
IEM v ng

[roonam Tomcoms Jowme | T 1T 1T T T [o= or
[orocnammen Jorre | mormverions [T [T T 1T 1T 1 [[cmorccmonmsen

STATEMENT]
ration Oper Remark:

Identificatr

Name Ope rand, T Sequence

3 4 5 6/718 9 10 11 1213114 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3940 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 63 70 71 72 73 74 7576 77 78 79 80 81 82 83 84 85 86 87[88|89 %0 91 92 9!
T

A I +___]

FlI |LIE[WAME[-1$/S0U Ki-[VIOLId@iL] GIN[T[T-[FI1L AITNE S
Lo D) [T Junn

l ! K- VDL giz], AN IR Iliﬂrs‘

FIILEEl NAME-EWo| %'VOL ,qu -2, RETAIN-S, (D

T

|
{

—Fot =

SSNINNININN

°
aﬁlnyz
3k 31 ()M
P&

-
: |

SININISSIS NN

I

RS ARG (S N NSRS s SRy SRS N IS S IS R S A YU

8 N R U DU St USROS NP S AP SR QY SU (S Y S S

@ Optional on Mode.l 10 Di§k.System
Figure 20. Assembler OCL Statements (Source Program on Cards)

m 1BM System/3 Basic Assembier Coding Form Form X3

[[rmocnan T roncrne [snamac I T 1 | | | [[race oF

[rocnmases Tome 1remenos P 1T 1 1 1 || || omorcmonmeen .

STATEMENT] identification
Name Gperation Gperand Remacks
1 2 3 45 6] 718 9 10 11 1201314 15 18 17 18 1920 21 2223 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 50 60 61 62 63 64 65 66 67 68 89 70 71 72 73 74 7576 77 78 79 80 81 82 83 84 85 86 87 '”22-&_‘ -
T

LI0lAD of !
g;tml'r- . 1 IN-S],

=1 =R N
-V mm}tﬁ \ﬁil B

t AME- ‘
=0 = ngﬁ
3, dus ALN-SLT (D

3

(@1 M)

e

0 N I

/i M~ Punch Deck oln
|

LS
T TN

W

T
MFCU :
i :
L !

——f e e e L L

|

|
|- Source program in Source Library with: OPTIONS DECK,
IIllvll_llllllllllllll'lllllllllllilllllll
@ Optional on Model 10 Disk System

Figure 21. Assembler OCL Statements (Source Program in Source Library)

OBJ#=Place object program in R library on R1 3=
11

1 1 Ll rrryrerrrrree et ertreesl

30

Note that the additional OCL statement // COMPILE is
required. The following entries in the figure are optional:
PUNCH This statement specifies where an object
deck is punched. For more information on
statement, see IBM System/3 Model 10 Disk
System Control Programming Reference
Manual, GC21-7512, IBM System/3
Model 12 System Control Programming
Reference Manual, GC21-5130, IBM
System/3 Model 15 System Control
Programming Reference Manual, GC21-5077
(Program Number 5704-AS1), or IBM
System/3 Model 15 System Control Pro-
gramming Concepts and Reference Manual,
(Program Number 5704-AS2), GC21-5162.

OBJECT
operand

This operand is used to indicate to the
assembler the library unit used when the
OBJ option is used on the OPTIONS
statement.

The // LOAD and // FILE statements are as described in
the first example. The // COMPILE statement specifies
both the location of the source library and the required
source program within the library. The // COMPILE
statement may appear at any position between // LOAD
and // RUN.

Macro Processor-Produced Source Program
The macro processor creates a source program on the

$SOURCE file. To indicate that the macro processer has
already loaded the $SOURCE file, external indicator Ul

// SWITCH Considerations

The external indicator U1 indicates that the macro
processor has loaded the $SOURCE file and the source
program is not in the input stream. If this indicator is
on when the assembler is loaded, the $SOURCE file

is not loaded.

When the $SOURCE file is to be loaded, external
indicator U1 must be off. This can be ensured by
entering the following statement after the assembler
// LOAD statement:

N 1'
S

1 IrielH] [@{xXX[xXx/x

OCL For Calling the Assembler

It is possible for the user to store a portion of the OCL
statements required for use by the assembler in

a procedure library. They may then be called with a

/| CALL statement, thus reducing the number of
written OCL statements required for each assembly.
Examples are included for source programs on cards and
for source programs in a source library on disk.

Source Program on Cards

If the source program is a deck of cards, the OCL cards
necessary to assemble the program, and the order in
which they must appear, are as follows:

IBM

must be turned on. This is done through a // SWITCH PROGRAM
statement. If this indicator is on when the assembler is o
loaded, the $SOURCE file will not be loaded. — T o S
/ 2.3 4 5 61718 9 10 11 12[13{14 1516 17 18 1920 21 22 23 24 25 26 27 28 29
In the following OCL stream, the source program has been ; ; U:-lL ASM,[F|1
created on the $SOURCE file: q
IBM KT
[Croeme -Source Program Deck
[PROGRAMME R IDA!‘E 2
: ST {
Nam: Operation Operand
i PRI [
/[7] Llojalo] I$[Als|s[eM[s[RL Indicate that the source file i
|/ V[riclu] [2]xpx[xixxxIx F has been loaded by the macro
7] JFULIE] (WA MiEl-$/slolulRICIET- . |.] processor step.
x :::-.e I;“IAJMIE-I:IﬂPI'ﬂK’z-] (‘I—) :
E - R ofofe
/1] RlulN) 1 In this example, ASM is the procedure name. F1 refers
| IR'e'fe'rL,l c'es tlhle 'Sum ce file crLa[te d to the disk pack upon which the assembler OCL procedure
by the macro processor step. is stored. In this case, it would be the fixed disk on

@ Optional on Model 10 Disk System

Note: For more information on the macro processor, see
IBM System /3 Models 10 and 12 System Control Program-
ming Macros Reference Manual, GC21-7562, or IBM
System /3 Model 15 System Control Programming Macros
Reference Manual, GC21-7608.

drive one.

Programmer’s Guide 31

Source Program in a Source Library e HEADER record

If the source program is stored on disk in a source ® ESL (external symbol list) record

library, the OCL format must be as follows:
e TEXT-RLD (text-relocation directory) records

IBM
oroomAn e END record
12 N:sm: 5 6] 7 Bospe::"?? 12} 13]14 15 16 17 18 1920 21 270;;!;2625 26 27 28 29 30 31 32 33 34 Recofd Fol’mats
/€1 1 || |
N/ AISM, IFi1 . .
J/ COMPIILE SIQURCE-S JUNTT=RI The following paragraphs describe the format of each
; / i record type.

— R L HEADER Record
In this example, ASM is the procedure name and F1

refers to the fixed disk on drive 1. SUBRA is the name A HEADER record with record type H is added by the
of the source program. The user must substitute his overlay linkage editor when it processes the assembler
own source program name. R1 is the disk pack upon object program. The HEADER record format is:
which the source library resides.

Sample Assembler Procedure Stored in Procedure | H] Object program information field |
Library 12 64
A sample assembler procedure is shown in Figure 22. The ® Bytel Record type identifier H.

format is as it would appear in the procedure library. ® Bytes2-64 Object program information field.

The // LOAD statement and // FILE statements are as

described in preceding examples.

ESL Record
OBJECT PROGRAM DESCRIPTION

The object program name, that is the module name and all

EXTRN and ENTRY symbols are placed in the ESL record.
The assembler converts the source program into The ESL record format is:
a set of control information, machine language instruc-
tions, and data, all of which collectively are called an
object program. There is one object program produced
per assembly. Each object record is originally produced 1 2 3 6263 64
as a 64-byte field. If the object program is punchea on
the MFCU, it is translated into a 96-byte punch record

Is I Length -1 ESL Entries I X'00’ |

(bytes 2 to 64 are translated 4 for 3 for punching; e Bytel Record type identifier S.
for every three 8-bit bytes, four card code characters e Byte2 Length -1 of the ESL entries.
are created). See Object Program After Punch Conversion e Bytes3.62 ESLentries. Upto five MODULE,

ENTRY, and/or EXTRN fields.

in this section. Each object program generated by the
® Bytes 63-64 Filled with hexadecimal zeros.

assembler contains four types of records:

m 1BM System/3 Basic Assembler Coding Form Form
[[T I S . Ca—
[PROGRAMMER- Inns _I ! l PUNCH l | | l l l [lunnnemnonwuu
STATEMENT JI Identif
A] 2“:7":] 6|7Ilml 1 uuununmnn]n;‘iﬁnnnnmnnnalum::on un«ﬁ‘nnl‘ms‘[n‘uuss-nus'm:uuuuucl--mnnnn‘rsn'nnnmllnnunuﬂ UmnE:
N i
| . IPARIKV TV~ Kl TRACKEH '
/| AU - , [PACIKEIV T-[F3, IR - 3=
AR:T - PACKI-NG] LT[R, -8, TR -8 D
RENINRNENNRRNERE] !
() Optional on Model 10 Disk System : ' ;

Figure 22. Sample Assembler Procedure in Source Library

32

TEXT-RLD Records

Text records and RLD pointers are combined in this type
of input record. The text portion of each record contains
the object code for the program, while the RLD pointers
indicate where the address constants and relocatable
operands of the text are located. If the NOREL option
has been selected on the OPTIONS control card, there
will be no relocation indicators in the record. The format
for the TEXT-RLD record is:

|~

| [
Length-1 I Assembled Addressl Text-»'.X’OO’k-RLD
| 1 2 1

1 2 3 4 5 64
e Byte1 Record type identifier T.
e Byte2 Length - 1 (of text only).
e Bytes 3-4 Assembled address of the low order (rightmost)

text byte in the record.

o Bytes 5-64 Text starts at byte 5 and goes right, RLD
starts at byte 64 and goes left. The leftmost
end of the RLD section is marked by
hexadecimal zeros, which fill the space
between the Text and RLD sections. The end
of text is always followed by at least one
byte of X'00’.

END Records

The last record in each object program is an END record.
It contains the entry address of the object program. If the
user did not include an operand in his source program
END statement, the object program END record generated
by the assembler will contain the address X‘'FFFF’. The
END record format is:

Entry END card program
E Address
1 2-3 4

® Byte1 Record type identifier E.

e Bytes 2-3 Entry address of the object program.

o Bytes 4-64 Program to transfer control to Entry address.

Object Program After Punch Conversion

All four types of records (HEADER, ESL, TEXT-RLD,
and END) assume the same format when they are punched
into cards. The punched record format, using 96-column
cards, is as follows:

Record ID | Data Field | Self Check | ldentification
Number Sequence Field
1 2 85 86 88 89 96
Column 1 Record type identifier (H, S, T, or E).
Columns 2-85 Data field, transformed 4 for 3. (For every
three 8-bit bytes, four card code characters
are created for System/3 96-column cards.)
Columns 86-88 A 2-byte self check number transformed
4 for 3, to 3 bytes.
Columns 89-96 Identification/sequence field.

The punched record format, using 80-column cards, is as
follows:

| Record ID I Data Field I Blank Self CheckJ Identification I

Number Sequence Field
1 2 64 65 69 70 72 73 80
Column 1 Record type identifier (H, S, T, or E).

Columns 2-64 Data field, bytes 2 to 64 of the object record.

Columns 65-69 Blank.

Columns 70-72 A 2-byte self check number transformed 4 for 3,

to 3 bytes.

Columns 73-80 Identification/sequence field.

Note: When an object module is punched, it is preceded
by a // COPY OCL card and followed by a // CEND OCL
card. These cards are provided for placing the object
module in the R library with the Library Maintenance
program ($MAINT).

Programmer’s Guide 33

ASSEMBLY TIME DATA FILE REQUIREMENTS
There are three data files necessary at assembly time:
1. Source file (NAME-$SOURCE)

2. Object file (NAME-$WORK)

3. Work file (NAME-$WORK?2)

Model 10 Disk System: These files must be located on
5444 disk drives. If a // FILE statement is not provided
for SWORK?2, the assembler allocates its own work space.

Model 12: These files must be located on the simulation
area.

Model 15: These files must be located on either 3340,
5444, or 5445 disk drives.

Source File (8SOURCE)

The source file is used by the assembler for storage of the
source program. During the job initialization procedure,
a disk system management program places the source
program in the source file (if the macro processor has not
loaded the file). The source records are obtained from
either the system input device or a source library using
the // COMPILE statement. (See OCL statements for
Assembly in this section.) Each source record contains
96 bytes, so that eight records occupy three disk

sectors in the source file. (One sector = 256 bytes, and
is the smallest addressable unit on a disk.) Figure 23

is a source file space requirements table showing how
many tracks are required for the size of the source pro-
gram indicated.

If the assembler is processing a source file created by

the macro processor, the // FILE statement for SSOURCE
must correspond to the $SOURCE file produced in the
macro processor run.

Object File (SWORK)

The object file is used by the assembler for intermediate
storage of the object program. The object records are
stored in four 64-byte entries per sector. (See Object
Program Before Conversion in this section.) Because each
track in the object file can contain 96 records on the 5444,
80 records on the 5445, or 192 records on the 3340, two
tracks usually are sufficient for most assemblies.

34

Work File (SWORK2)

The work file is a scratch file used by the assembler
throughout the assembly process for intermediate data
storage. The file contains four types of data:

1. Intermediate text
2. Symbol table entries
3. Cross-reference data

4. Error information

Intermediate Text

Intermediate text is made up of fixed length (10-byte)
records. The number of fixed length records is variable
for each source statement, and is dependent on the
statement type and the contents of the operand field.

The following rules can be used to determine intermediate
text file requirements. (The rules apply only to error-

free source statements. A statement that contains errors
generally requires less storage space.)

All Instructions:

o One record for each machine or assembler instruction,
or comment statement.

e One record if there is a name field entry.

Machine Instructions: One additional record for each
term in the operand field.

Source Program Size Number of Tracks Required
(Statements)
5444 5445 3340
100 2 2 1
200 4 4 2
300 5 6 3
400 7 8 4
500 8 10 4
600 10 12 5
700 1 14 6
800 13 15 7
900 15 17 8
1000 16 19 8

*Or simulation area

Figure 23. Source File Space Requirements Chart

Assembler Instructions:

e END, ENTRY, EQU, EXTRN, ORG, USING — One
additional record for each term in the operand field.

e ISEQ, PRINT, SPACE, START — One additional record
for each instruction.

e TITLE — Additional records = N/8 (plus one for any
non-zero remainder); where N is the number of
characters in the TITLE operand field.

e DS/DC

— One additional record for duplication factor
(default or specified value).

— One additional record for each term in the length
specification.

e DC

— Address constant—One record for each term in
the address constant expression.

— All other constants—Additional records - N/8
(plus one for any nonzero remainder); where N is
the number of bytes required to contain the
converted constant plus one.

Figure 24 is a sample list of instructions together with the
intermediate text space requirements for each.

Text Space
DECK START O 3
ENTRY SLC A(2),A 5
MVC A(2),CON1 4
ALC A(2),CON2 4
HPL X'FF' X'FF’ 3
A DS cCL2 4
CON1 DC 1L2'500 5
CON2 DC 1L2'-320° 5
END ENTRY 2

Figure 24. Intermediate Text Space Requirements

Symbol Table Entries

Whenever a symbol is used in the name field of an instruction
(except a TITLE statement) it becomes a symbol table
entry. When the assembler user requests a cross reference,
all symbol table entries are added to the work file immedi-
ately after the intermediate text. The symbol table entries
are also 10-byte, fixed-length records. Assuming an average
of one name entry for every four source statements, one
sector per 100 source statements is required.

Cross-Reference Data

Cross-reference data is written in the same area as the
intermediate text and symbol table entries and does not
impose any additional space requirements.

Error Information

Each statement in error requires a 10-byte error record;
therefore, a track will contain at least 600 error records.

Work File Space Requirements

Figure 25 is a work file space requirements table showing
the number of tracks required for the number of source
statements indicated. The requirements for intermediate
text and symbol table entries are summed to get the
table values. Approximately 40 sectors per 100 source
statements are needed to cover most varieties of source
statements. If a SWQRK?2 // FILE statement is not pro-
vided on the Model 10 disk system assembler, the source
file ($SOURCE) size is used for the work file size.

Source Program Size Number of Tracks Required
(Statements)
5444* 5445 3340
100 2 2 1
200 4 4 2
300 6 6 3
400 7 8 4
500 9 10 5
600 1" 12 6
700 12 14 6
800 14 16 7
900 16 18 8
1000 18 20 9

*Or simulation area

Figure 25. Work File Space Requirements Chart

Programmer’s Guide 35

OPERATING PROCEDURES
Placing Assembler Subroutines in R (Routine) Library

Assembler subroutines can be placed on disk in the R
library by two methods.

1. Punching an object deck and using the Library
Maintenance program ($MAINT) to place it in the
R library.

2. Specifying OBJ in the OPTIONS statement to
place the object program directly into the R
library. The retain entry can be either temporary
or permanent.

For more information on the OCL and utility control state-
ments needed to use SMAINT, see IBM System /3 Model 10
Disk System Control Programming Reference Manual,
GC21-7512, IBM System/3 Model 12 System Control Pro-
gramming Reference Manual, GC21-5130, or IBM System/3
Model 15 System Control Programming Reference Manual,
GC21-5077.

Placing a Punched Object Program in the R Library

In the sample procedure shown below, the subroutine
SUBRA is being placed in the R library from a punched
object deck.

// LOAD Statement: In this sample procedure, SMAINT
is the routine which interrogates the // COPY statement
and calls the proper routine to accomplish the desired
results.

F1 is the disk pack upon which the utility program resides.

/| COPY Statement: The FROM parameter names the
device holding the subroutine to be entered. The
READER option must be used to copy the assembler
punched object program.
BM

The LIBRARY parameter, R, specifies a relocatable library.
The NAME parameter gives the name of the subroutine to
be entered. This name must be the same as the program
name (that is the name on the START instruction). The
following names are restricted and cannot be used in this
parameter:

e ALL
e DIR

e SYSTEM

The TO parameter specifies the physical destination of
the object program (in this case, R1).

The RETAIN parameter specifies the ultimate disposition
of the object program.

// CEND (Copy End) Statement: The /| CEND
statement must follow the object deck.

// END: The /| END statement must be the end of all
library maintenance decks.

Placing an Object Program Directly in the R Library

When the object program is placed directly in the R
library, it has the following characteristics in the library.

e Name of the object program is the module name
specified in the START instruction or the default
module name. See the MODULE NAME MISSING
diagnostic in Appendix C. System/3 Assembler —
Source Language Error Codes and Diagnostics.

o Retain entry in the library is temporary if OBJ or OBJ(T)
is specified and permanent if OBJ(P) is specified.

1BM System/3 Basic Assembler Coding Form

PROGRAM

PUNCHING GRAPHIC PAGE

PROGRAMMER [DATE

nsTRucTioNs [~ ole CARD ELE

STATEMENT

Operation Operand
1 2 3 4 5 6]7]18 9 10 11 1213414 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 4! uu«&uuunmsls:uussus‘lumg_’_ela

Remarks

le

5 66 67 68 6070 71 72 73 74 7576 77 78 79 80 81
T

12
|
1
1=
1t

]

]
+

1 [NT], [HL

Pyl [FROM-IREA ,LlﬁhA-, - N

SR

Q SIANAICI=C

LN

O N Y I Y

Bt e e et s e

36

® Library to receive the object program is the disk speci-
fied in the OBJECT operand of the // COMPILE state-
ment. The default disk is the program disk.

Using Assembler Object Program with the Program Loader

The user may have the need to load a user-written assemb-
ler object program as a stand-alone program. To use

an assembler object program in this manner it is necessary
to have the program punched into an object deck on the
system punch device. The assembler language user ob-
tains an absolute loader by specifying DECK and NOREL
on the OPTIONS card (see NOREL option under OPTIONS
Statement). The 96-column loader contains six cards and
the 80-column loader contains one card.

It is the user’s responsibility to ensure:

1. That he has not referenced any address greater than
the storage capacity of the System/3 on which the
program is to be executed.

2. That the address specified on the START instruction
statement is greater than X‘FF’. (The START
assembler statement must specify the address at
which the program is to be loaded.)

3. That the END statement indicates the start-of-control
address.

Note: If absolute object decks for more than one assembly
are to be loaded together, then the loader must be re-
moved from the front of the second and all subsequent
decks, and the END card must be removed from the

back of all decks except the last.

I1BM 5424 MFCU

The procedure for loading and executing an assembler
object program on the IBM 5424 MFCU is as follows:

1. Clear MFCU.

2. Place assembler object deck, including the loader,
in primary hopper.

3. Press MFCU START.

4. Ready the printer.

5. Set IPL SELECTOR to MFCU for Model 10 Disk

System or ALT for Models 12 and 15.

6. Press console PROGRAM LOAD to load and execute

the assembler object program. (L1 or L2 halt is
issued for error or not ready conditions on the
MFCU.)

1BM 2560 MFCM (Model 15 only)

The procedure for loading and executing an assembler
object program on the IBM 2560 MFCM is as follows:

1. Clear MFCM.

2. Place assembler object deck, including the loader,
in primary hopper.

3. Press MFCM START.
4. Ready the printer.

5. SetIPL SELECTOR to ALT.

6. Press console PROGRAM LOAD to load and execute
the assembler object program. (L1 halt is issued for
error or not ready conditions on the MFCM.)

IBM 1442 Card Read Punch (Models 12 and 15)

The procedure for loading and executing an assembler
object program on the IBM 1442 Card Read Punch is as
follows:

1. Clear 1442.

2. Place assembler object deck, including the loader,
in hopper.

3. Press 1442 START.

4. Ready the printer.

5. Set IPL SELECTOR to ALT.

6. Press console PROGRAM LOAD to load and execute

the assembler object program. (L1 halt is issued for
error or not ready conditions on the 1442.)

Programmer’s Guide 37

ASSEMBLER LISTING

An important part of the assembler’s output is the assem-
bler listing. The assembler’s printed output is on the system
printer (under control of the // PRINTER OCL statement
for Models 12 and 15).

The listing is a printed reproduction of the source program
and the corresponding object code generated for it to-
gether with other important information. Figure 26 at

the back of this section is a sample listing. Specifically,
the listing consists of the following:

Control Statements

Any OPTIONS or HEADERS statements specified by

the user are printed and specification errors are noted.

A list of OPTIONS in effect during the assembly is then
printed. The page is ejected before the control statement
information is listed.

38

External Symbol List (ESL) 1. On a 96-column printer, the ID/SEQ field is left-
justified in columns 89-96 of the print line. If

The object program name, EXTRNs, and ENTRYs will columns 53-88 of the source statement are blank,
appear in the following format: line 2 will not be printed.
Symbol Type
Program name MODULE Object code Columns 1-52 of the

line 1 field b |source statement ID/SEQ field
ENTRY symbol ENTRY

1 35 36 37 88 89 96
EXTRN symbol EXTRN
Columns 53-88 of
line 2 source statement

Source and Object Listing
53 88

The source and object listing consists of the following:

e Error code for improperly coded statements (see

Diagnostics in this section). 2. Ona 120-column or 126-column printer, the

ID/SEQ field is left-justified in columns 113-120

of the print line. If columns 77-88 of the source

statement are blank, or if the start of the ID/SEQ
field on the source record is less than column 77,
line 2 will not be printed.

e Location counter value, in hexadecimal, of the high
order address of the object code generated by the
corresponding source statement.

e The object code, in hexadecimal, generated by the

corresponding statement.
. . L Object code Columns 1-76 of the I
o The value, in hexadecimal, of the expression in the line 1 field b |source statement ID/SEQ field
operand field of the EQU, USING, DROP, and END
statements, the storage address, in hexadecimal, of the 1 35 36 37 12 13 120
low order address of the DC constants, and DS storage
areas. Columns 77-88 of
line 2 source statement
e Statement number, in decimal, for each statement,
including comment statements. These numbers are 101 112

assigned by the assembler. The statement number is a
four-digit field which limits the assembly to 9,999

statements. 3. With the 132-column printer, the complete source

. o . image is printed on one line.
o The source image, which is formatted according to the

size of the printer used:

Source Record Fold point for 96~ Fold point for 120- ‘
column printer or 126-column printer Object code Columns 1-88 of the
K field B |source statement ID/SEQ field
Source Statement (Coll::mns 1-88) i |ID/SEQ|
i 1 l 1 35 36 37 124 125 132
1 52 53 7677 8889 96

The following examples assume the ID/SEQ field is in

columns 89-96 of the source record: Note: Statements generated by the macro processor
contain a plus symbol (+) in column 36.

Note: The ID/SEQ field may be from one to eight adja-

cent characters long and may reside anywhere between col-

umns 73-96.

Programmer’s Guide 39

Diagnostics

The source and object program listing includes error codes
for improperly coded statements. These errors are listed
again, with a message, at the end of the source and object
program listing under the heading DIAGNOSTICS. This
list provides the following information:

e Statement—The statement number, in decimal, (assigned
by the assembler) of the statement which is in error.

o Error code—a 3-digit alphameric code. See

Appendix C: System/3 Assembler—Source Language

Error Codes and Diagnostics for a list of error codes and
translations.

o Message—A translation of the error code indicating the
type of error made.

Also included under DIAGNOSTICS are the following
error summary statements:

e A count of the total statements in error in the assembly.

e A count of total sequence errors in the assembly if
sequence check is requested.

40

Cross-Reference List

If XREF is specified on the OPTIONS statement this list
includes all symbol names referred to in the source program.
The following columns are included:

e Symbol—The symbol name.

o Length—The decimal length attribute of the symbol in
bytes.

e Values—Value, in hexadecimal, of the symbol.

o Defined—Statement number, in decimal, where the
symbol is defined.

o References—Statement numbers, in decimal, where the
symbol is referenced. Symbolic references to data areas
and machine registers whose contents may be altered by
execution of a machine instruction are flagged with an
asterisk.

At the end of the cross-reference list, the error summary
statements are printed again.

SUBRC

EXTERNAL SYMBOL LIST

SYMBOL TYPE
SUBRC MODULE
S
N———

ERR LOC OBJECT CCCE ADDR STMT

2

3

4

5

'S

7

8

9

10

11

12

13

14

15

16

17

18

co00 19
0000 34 0& 0C13 20
0004 36 08& 0C21 21
0008 34 €8 0C2F 22
000C 34 G2 ocze 23
0010 C2 02 occe 24
0014 2C 01 oC1PR OS5 25
0019 78 00 OC 26
001C F2 90 0§ 27
001F 85 02 02 23
0022 85 02 0% 27
0025 BC C3 00 30
0028 C2 02 0CCC 31
002C CO 87 occcC 32
0030 0006 0031 33
acoe 34

FFFF 35

VER 00, MOD 00 01/30/76 PAGE 1

W

SUBRC SAMPLE EXIT SUBRUUTINE--FIELD AND INDICATOR

SOURCE STATEMENT

VER 00, MOD 00 01/30/76 PAGE 2

e e L R R e e e Lt
* *
¥ NAME ceeecceecesss SUBRC. *
* *
% FUNCTION eceeeees EXIT SUBROUTINE wITF FIELD AND INDICATOR *
* PARAMETERS. *
% *
* THE CODE GENERATEC BY THE COMPILER IS AS FOLLOWS: *
* *
* B SUBRC *
* ocC ILL*FLELC LENGTH-1" *
* ocC AL2'ADCRESS OF RIGHT OF FIELDY *
* oc XLitoce *
* oC XLL'INCICATOR MASK® *
*® e XLL'RECISTER 1 DISPLACEMENT?® *
* *
e R R L ey R e e e Ll st s
SUBRC START 0O

ST GET+3,ARR SAVE PARM ADOCR

A CON6» ARR INCREMENT TO RETLRN

ST RET+3,ARR SAVE RETURN

ST SAVE+3,2 SAVE XR2
GET LA ey 2 GET PARMETER ADDRESS

MvC TEST+2(2)45(42) MCVE IN MASK AND CISPLACEMENT
TEST TBN Bk (gl) g ®=—x% TEST INDICATCR

JF SAVE INDICATOR OFF

L 2092) 42 GET CONTROL FIELC ADDRESS

L 5(42)42 GET LCOK UP ACDRESS

MVI 0(,2)4CC? MOVE IN C'C*
SAVE LA *-x,2 RESTORE
RET B *ox RETURN
CON6 oC |SANCY
ARR EQU 8

END

= 0

TOTAL STATEMENTS IN ERRUR IN THIS ASSEMBLY

SUBKRC

SYMBOL LEN VALUE CEFN REFCRFNCES

ARR €01 000¢ 0C34 €028 0G21#* 0022
CONé GC2 G031 CO033 coz1

GET CC4 COLC CO024 C020%

RET €C4 002C CcC32 0Cc22%

SAVE 004 0G28& CO31 CC23* ¢C27

SUBRC 0Cl1 000C GC19

TEST 0C3 (0015 CG26 CCz5%

TOTAL STATFEMENTS IN ERRUR IN THIS ASSEMBLY

VER 00, MOD 00 01/30/76 PAGE 3

ey

CROSS REFERENCL

Figure 26. Sample Assembler Listing

Programmer’s Guide

41

External Symbol List (ESL) Table Size

The ESL table is an execution time main storage table
containing the module name (START statement name or
ASMOBJ) and each EXTRN and ENTRY symbol defined
in an assembly. The total of EXTRNs and ENTRYs
allowed in a single assembly is limited by the ESL table
size.

Using the Model 10 disk system assembler, the limit is 74
EXTRNs and ENTRYs .

Using the Model 12 and Model 15 assembler, the limit varies
with the amount of storage available in the execution partition.
The limiting sizes and associated storage ranges are: -

Storage Available Limit of EXTRNs and ENTRY s

10K 84
12K 124
14K 169
16K 209
18K - 48K 254

42 -

MACHINE LANGUAGE INSTRUCTION FORMATS
Operation Code

The first byte of each instruction, the operation code,
specifies the addressing modes to be employed by the

instruction in bits O through 3, and the operation to be
performed in bits 4 through 7.

Q Code

The second byte of each instruction is the Q code. In 2-
address formats, the Q code is always a length count. In
other formats, depending upon the operation specified, the
Q code can be:

e Length count

o Immediate data

Appendix A. Machine Instructions

Register address
e Data selection
e Branch or skip condition

e Device address and functional specifications

Control Code

The third byte of an instruction in the Command Format
contains additional data pertaining to the command to be
executed.

Storage Addresses
For instructions in the 1-operand and 2-operand formats,

the third byte of the instruction and all bytes following
are storage address information.

e Bit mask
3 Bytes
4 Bytes Op Q Address
Op Length Destination Source Code Code Displacement
Code Count Address Address
. 0 1
Displacement | Displacement 78 15 :16 23k
0 78 1516 2324 31 P i S~
Vg ~
- | ~ ~
5 Bytes Immediate Data : Destination Address ﬁl
Op Length Direct Source | Bit Mask ' Source Address ‘
Code Count Destination Address | Register Address | Branch Address |
Address Displacement | Branch or Skip Condition | |
0 78 15 16 3132 39 LD\ata Selection | i
Sa 1 |
o 1 |
5 Bytes 4 Bytes N |
Op Length Destination Direct .
Code Count Address Source Op Q Direct
Displacement Address Code Code Address
(o] 78 15 16 2324 39 78 15 16 31
. One-Address Formats
6 Bytes
3 Bytes
Op Length Direct Direct
Code Count Destination Source Op Q Control
Address Address Code Code Code
0 78 15 16 3132 47
0 7's 15116 23
-— J ~ -~
— =9
@ Two-Address Formats | Device Address |
' and functional)
| specifications |
\ Skip Conditon |
. Halt Identifier !
© Command Format
Appendix A. Machine Instructions 43

Op Mnemonic Type
64 ZAZ

66 AZ }<-2ADDRES$+
67 Sz

68 MV X

6A eo [op] o] b1]p2]
6B ITC

6C MVC |<—4 bytes—pl
6D CcLC

6E ALC R1 R2
6F SLC

70 SNS

71 LIO 1 ADDRESS
74 ST

75 L

76 | A fo| o] o1]

78 TBN

79 TBF |=3bytes—]

7A SBN

78 SBF

7C MVI R1

7D CLI

7E SCP*

7F LCP*

84 ZAZ

86 AZ l-4-2 ADDR ESS—P‘
87 Sz

88 MV X Indexed Direct
8A ED [Op] @] D1] Operand Two |
8B ITC

8C MvC !: 5 bytes ;l
8D CLC

8E ALC R2

8F SLC

94 ZAZ

96 AZ '4- 2 ADDRESS-D-I
97 Sz

98 MV X Indexed
9A ED Op Q D1 D2
oA | e foe] a] I |
9C mMvC l: 4 bytes :!
9D CLC

9E ALC R2 R1
9F SLC

A4 ZAZ

A6 AZ |<-2 ADDRESS-DI
A7 Sz

A8 MV X Indexed
AA ED Op Q D1 D2
an e foe] af I]
AC MvC | 4bytes ;!
AD CLC

AE ALC R2 R2
AF SLC

Op Mnemonic Type

04 ZAZ

06 AZ '4-2 ADDRESS '——’l
07 Sz

08 MV X Direct

0A ED]?p I Q IOperand One l Operand Two]
0B ITC |
ocC MvC l<———6bytes :I
oD CLC

OE ALC

OF SLC

14 ZAZ

16 AZ '4— 2 ADDREss—"I
17 sz

18 MVX Direct Indexed

1A ED IOp I Q[Operand One I D2]
1B ITC

1c MVC {5 bytes —>|
1D CLC

1E ALC R1

1F SLC

24 ZAZ

26 AZ |<-2 ADDRESS-—D’
27 Sz

28 MV X Direct Indexed

2A ED [Tp] Qﬁ)perand One | D2 |
2B ITC

2C MvC |<-——5 bytes-——PI
2D CLC

2E ALC R2

2F SLC

30 SNS

31 LIO 1 ADDRESS

34 ST

35 L Direct

36 A | op | Qfoperand One |

38 TBN

39 TBF ld— 4bytes—>|

3A seN !

3B SBF

3C MVI

3D CLI

3E SCpP*

3F LCP*

44 ZAZ

46 AZ Id— 2 ADDR ESS—D'l
47 SZ

48 MVX

4A ED [Op | Q|D1| Operand Two |
4B ITC

4Cc mMvC ‘4—-5 bytes-—bl
4D CcLC

4E ALC R1

4F SLC

54 ZAZ

56 AZ 2 ADDRESS

57 sz fe——

58 MV X Indexed

5A e |[op| @] D1]| D2 |

5B ITC

5C MvC |<_—4 bytes—"'l

5D CLC

5E ALC R1 R1

S5F SLC

44

* Model 15 only.

Legend:

D1
D2
R1
R2

Displacement, operand 1
Displacement, operand 2
Register 1
Register 2

Op Mnemonic Type

BO SNS

B1 LIO 1 ADDRESS
B4 ST ||

B5 L Indexed
B6 A [Op] Q | D1]

B8 TBN

B9 TOF jem—— 3 bytes—a-]
BA SBN

BB SBF

BC MVI XR2

BD CLI

BE SCP*

BF LCP*

Co BC Direc

c1 Tio [op| a | Address
c2 LA e 4 Dytes |
DO BC

D1 TIO |[Op[Q| D2] +XR*
D2 LA = 3 DYy teS mmmmmai}

EO BC

E2 LA |t 3 Dy tes mmmmepef

FO HPL

F1 APL

F2 sk |op]l of R |

F3 SI10 3 bytes -—-.'

F4 ccp* =

*Model 15 only.

Appendix A. Machine Instructions

45

9

Op Code Q Operands Total |Type
(one byte) Code Instr
Bits Length
0-3 Bits 4-7 Jne First <+—— Second—— Summary
Byte
0 1 2 3 4 6 7 8 9 A B c D E F Op | Q F—Operand—'
0 ZAZ AZ | sz | mvx] ep | iTc | mvc| cLe| ALc] sLe 2 Bytes 2 Bytes Direct 6 X l
Direct 1 Byte Disp
1 ZAZ AZ | Sz | MVX] ED | ITC | MvC| cLC| ALC] SLC Inde-Ble 5 X N D1
2 ZAZ AZ | sz | mvX eD | 1Tc | Mvc| cLc| ALc] sLe :n%:;%a%snpz 5 X | D2
3 sNs | 110 ST A 78Nn| TBF | sBN| sBF | Mvi| cLi |scP+|LcP* 4 Y
a zaz Az | sz | Mvx] ED | 1TCc | mvc| cLe| ALc] sLe 1Byte 2 Bytes Direct 5 X D1 j
Displacement -
5 zAZ Az | sz | mvx ep | 1mc | mvc| cLe] ALc| ste Indexed il 2 4 | x D1 | b1
By R1 1 Byte Dis|
6 zAZ Az | sz | mvx eo | itc | mvc| cLe| aLc] ste Index.By A2 4 X D1 | D2
7 SNS| LIO ST A TBN| TBF| SBN| SBF | MvI| cLI |SCP*|LCP* 3 Y D1
8 ZAZ| AZ | Sz | MvX] ED | ITC | MVC| CLC]| ALC| SLC 1Byte 2 Bytes Direct 5 X D2
Displacement 1 Byte Disp 4
9 ZAZ Az | sz | mvx ED | 1Tc | mvc| cLc| ALc| sLe Indexed Index-By R1 X D2 | D1
By R2 1 Byte Dis
A zAzZ az | sz | mvx eo | 1Tc | mve| cLe| aLc| ste v |nd:xABy'F‘:2 4 | x D2 | D2
B | SNS| LIO ST A TBN| TBF | SBN| SBF | MVi | CcLI |SCP*|LCP* 3 Y D2
c |sc | TIOf LA 2 Bytes Direct 4 z |
1 Byte Disp 3
D |BC [TIO| LA Index-By R1 z D1
1 Byte Disp 3 z
E BC | TIO| LA Index By R2 D2
F HPL| APL]| JC | sio |cCP* 3 F

*Model 15 only.

MNEMONIC OPERATION CODES (MACHINE)

Instruction* Mnemonic Operation Code
Zero and Add Zoned Decimal ZAZ

Add Zoned Decimal AZ

Subtract Zoned Decimal SZ

Move Hex Character MVX

Move Characters MVC) Two-address
Compare Logical Characters CLC | Format**
Add Logical Characters ALC

Subtract Logical Characters SLC

Insert and Test Characters ITC

Edit ED

Move Logical Immediate MVl

Compare Logical Immediate CLI

Set Bits On Masked SBN

Set Bits Off Masked SBF

Test Bits On Masked TBN

Test Bits Off Masked TBF

Store Register ST One-address
Load Register L Format**
Add to Register A

Branch On Condition BC

Test I/O and Branch TIO

Sense I/O SNS

Load 1/O LIO

Load Address LA

Load CPU*** LCP

Store CPU*** SCP

Advance Program Level APL

Halt Program Level HPL

Start I/O SIO Command
Command CPU*** cCp Format**
Jump On Condition IC

* For information concerning specifications for the use of
these instructions with the Model 10, see the IBM System/3
Model 10 Components Reference Manual, GA21-9103,
or with the Model 15, see the IBM System/3 Model 15
Components Reference Manual, GA21-9193.

** See Machine Language Instruction Formats in this

appendix.

% These instructions are for the Model 15

but they can also be generated on the

Model 12 through the macros $LCP, $SCP,
and $CCP. For more information concerning
the use of the Model 12 macros, see

IBM System |3 Models 10 and 12 System
Control Programming Macros Reference
Manual, GC21-7562.

Appendix A. Machine Instructions

47

EXTENDED MNEMONIC CODES

Instruction Mnemonic Operation Code Q Code
Move Hex Character (MVX)
Move to Zone from Zone MZZ X00’
Move to Numeric from Zone MNZ X02’
Move to Zone from Numeric MZN X001’
Move to Numeric from Numeric MNN X03’

Branch On Condition (BC)

Branch B X87 -
Branch High BH X84’
Branch Low BL X882 .
Branch Equal BE X81’
Branch Not High BNH X04’
Branch Not Low BNL X902’
Branch Not Equal BNE Xor
Branch Overflow Zoned BOZ X‘88’
Branch Overflow Logical BOL X‘A0’
Branch No Overflow Zoned BNOZ X908’
Branch No Overflow Logical BNOL X220’
Branch True BT X10°
Branch False BF X90’
Branch Plus BP X‘84°
Branch Minus BM X‘82’
Branch Zero BZ X81°
Branch Not Plus BNP X‘04°
Branch Not Minus BNM X‘02’
Branch Not Zero BNZ Xor

Jump On Condition (JC)

Jump J X87

Jump High JH X84’

Jump Low JL X82’

Jump Equal JE X‘81°

Jump Not High JNH X04’

Jump Not Low JNL X02’ -
Jump Not Equal INE X901’ -
Jump Overflow Zoned Joz X‘88’

Jump Overflow Logical JoL X‘A0’ .
Jump No Overflow Zoned INOZ X08’ -
Jump No Overflow Logical JNOL X220’

Jump True JT X10’

Jump False JF X90’

Jump Plus JP X84’

Jump Minus M X82

Jump Zero JZ X8r

Jump Not Plus JNP X04’

Jump Not Minus JNM X02’

Jump Not Zero INZ Xor

Command CPU (CCP—Model 15 only) o
Supervisor Call SVC X‘10

Assembler Language to Machine Language Relationships

The following charts show the relationship between a
machine instruction statement as coded by the System/3
Basic Assembler Language programmer and the machine
language as generated by the assembler.

For example, the instruction coded by the programmer is
ZAZ FINAL(5),DONE(1,1). From the second line of the
first of the charts we can develop the relationship between
the instruction and the machine code as follows (assume
FINAL is a relocatable symbol with value X‘131B’ and
DONE is an absolute symbol with value X‘BA’):

Machine instruction statement
as input to assembler

e e ——
ZAZ FINAL (5), DONE (1,1)

£V

ZAZ

*

[1 1 1 ‘
A1{L1),D2(L2,R1) 14 V1.2 UV 12.1 7 Address A1 Disp D2
I IfromR1 I
H H I
{ia | 4 § o] 13 | 18B]BA |
B

Five-byte machine instruction generated by assembler

Used in this manner, the following charts show what
machine code results from a particular assembler language
statement, and vice versa, what assembler language format
obtains a particular machine code format.

The abbreviations used on the following pages mean:

Al Direct address, operand 1
A2 Direct address, operand 2
D1 Displacement, operand 1
D2 Displacement, operand 2
L1 Length of operand 1

L2 Length of operand 2

R1 Register 1

R2 Register 2

RX Local storage register

I Immediate data

Appendix A. Machine Instructions 49

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
ZAZ A1(L1),A2(L2) 04 { L1-L2;L2-1, AddressAf I Address A2
. ! | |
ZAZ A1(L1),D2(L2,R1) 14 I L1-L2iL2-1| Address A1 | DispD2 '
I L : {from Rt |
ZAZ A1(L1),D2(L2,R2) 24 U L2 e2a T Address A]1 | Disp D2 l
| ! from R2]|
1 | |
{ . .] |
ZAZ D1(L1,R1),A2(L2) 44 ' L1-L21 121 | Disp D1 | Address A2 |
l 1 | from R1 | |
| ' l |
ZAZ D1(L1,R1),D2(L2,R1) 54 | L1-L21L2-1 | Disp D1 | DispD2 | |
N z | fromR1 fromR1 |
1 \ i |
ZAZ D1(L1,R1),D2(L2,R2) 64 | L2211 DispD1 | DispD2 | |
, H | fromR1, fromR2 | |
i] J
ZAzZ D1(L1,R2),A2(L2) 84 | L2129 DispD1 | Address A2 |
| i | fomR2 ' |
' , } } I |
ZAZ D1(L1,R2),D2(L2,R1) 94 I L1-L2yL2-1 | Disp D1 | Disp D2 |
1 ! I fromR2 ! fromR1 |
: — | ! |
ZAZ D1(L1,R2),D2(L2,R2) A4 L1-L21L21 | Disp D1 | Disp D2 | | |
l : . from R2 , from R2
1 1 | i I
NOTES:

If L1 or L2 is not specified, the implied length is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

50

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

AZ A1(L1),A2(L2) 06 , L1-L27L2:11 Address A1 | Address A2]

T T T . 1
AZ A1(L1),D2(L2,R1) 16 | L1-L2 : L2-1| Address Al I Disp D2} |

L L N , fromR1j|

T T l 1) l
AZ A1(L1),D2(L2,R2) 26 o L1-L2 fL2-1 I Address A1 I DispD2

| L1 | | fromR2| |

1 L | I
AZ D1(L1,R1),A2(L2) 46 YooLL2 L2 I Disp D1 | Address A2

| L | fromRi i |

| . ' l
AZ D1(L1,R1),D2(L2,R1) 56 L1-L2} 121 I" DispD1 | DispD2| |

‘ 1 | fromR1] fromR1 ,

| I] I
AZ D1(L1,R1),D2(L2,R2) 66 L1212 " DispD1 ' DispD2]! |

l 1 | #rommil frommy!

! 1 | | l
AZ D1(L1,R2),A2(L2) 86 L1-L27L2-1 . Disp D1 Address A2

| I I

|

. i i fromR2 1 |

’ N W
AZ D1(L1, R2), D2(L2, R1) 96 I L1L2j124 1 DispD1 | Disp D2} | !

| { | fromR2 ! from R1j | [

1 — ' l ‘
AZ D1(L1,R2),D2(L2,R2) A6 L1-L211L21 7 DispD1 | Disp D2 | |

‘ ' | fomR2 ! fromR2

{ 1 t] |
NOTES:

If L1 or L2 is not specified, the implied length is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

51

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 I Byte 4 l Byte 5 Byte 6
— + 'l 'l
sz A1(L1),A2(L2) {07 I L1-12,121 7 Address A1 | Address A2]
I 1 I i T
sz A1(L1),D2(L2,R1) 17 | L1L27L2:1 | Address Af ‘ Disp D2| |
N L : , fromR1 |
! I]]
sz A1{(L1), D2{L2,R2) 27 | L1-L21L21 T Address A1 | DispD2 |
, ! | 1 from R2| |
T 9 : [
sz D1(L1,R1),A2(L2) 47 IR | Disp D1 Address A2 |
| 1 . _fromR1 | !
f 1 } I
sz D1(L1,R1),D2(L2,R1) 57 I L1-L2{121 | DispD1 | DispD2]| I
| 1 | fromR1 | fromR1 ' |
1
{ {
sz D1(L1,R1),D2(L2,R2) 67 " L1-L21121 | DispD1 | Disp D2 ‘ |
] , fromR1 | fromR2|!
!) ! | |
sz D1(L1,R2),A2(L2) 87 | LiL2 L2 I Disp D1 | Address A2 I
| . | from R2 |
, . T i '
sz D1(L1,R2),D2{L2,R1) 97 I L1202 1 DispD1 | Disp D2 | [
| ! | fromR2 , fromR1 | |
| X X
sz D1(L1,R2),02(L2,R2) A7 ' L1-L2{L2-1 | DispD1 | Disp D2 | '
| | | fromR2 | from R2| | |
T | 1 1]
NOTES:

If L1 or L2 is not specified, the implied length is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

52

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

1 1 A '

MV X A1(1),A2 08 Ml |_Address A1 ,__ Address A2]

¥

L } l 3 l

MV X A1(1),D2(,R1) 18 T | Address A1 ! Disp D2 |
! ! | fromR1
T 1 I [|

MVX A1(1),D2(,R2) 28 | i | Address A1 ! Disp D2 '
N { ! | from R2] l
1 . I 1

MV X D1(1,R1),A2 48 | | ! Disp D1 | Address A2 l
{ ' from R1 N | ’
4 | 1 | {

MV X D1(1,R1),D2(,R1) 58 i I Disp D1 | Disp D2} | '
| , fromR1 , fromR1 |
] 1 T | |

MVX D1(1,R1),D2(,R2) 68 |1 | DispD1 | Disp D2 |
| | fromR1 | from R2|l |
L 1 N |

MV X D1(1,R2),A2 88 ;] | DispD1 | Address A2 [
! I from R2 | | |
| l | | I

MVX D1(1,R2),D2(,R1) 98 " | DispD1 | DispD2|, |
I | fromR2 , from R1 |
t , |

MVX D1(1,R2),02(,R2) A8 Iy "DispD1 | Disp D2]! !
I I tromR2 | from R2|! |
1 1 1 } |

NOTES:

| may be specified on either operand, and must have the value X'00°,X'01°,X'02’, or X‘03'.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction,

For the extended mnemonics of the MV X instruction, I-field information is inherent in the mnemonic and the |-field

is omitted from the operand field. See Extended Mnemonic Codes for the extended MVX and the associated Q-codes.

Appendix A. Machine Instructions 53

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

MVC A1(L1),A2 @: L1-1 | Address A1 Address A2
T t 1 — LN

MVC A1(L1),D2(,R1) iCc TEE | Address A1 . DispD2] 1
. 1 I from R1} |
! i | L l

MVC A1(L1),D2(,R2) 2C [L1-1 I Address A1 | Disp D2 |
| 1 1 from R2
.) . I |

mvc D1(L1,R1),A2 ac IRE "' DispD1 T Address A2 |
| I from R1 I : |
| ! L T

mMve D1(L1,R1),D2(,R1) 5C SE T DispD1 ! DispD2]! |
X | fromR1 | fromR1 : |
1]

4 L

MvVC D1(L1,R1),D2(,R2) 6C LI " DispD1 I DispD2]! |
I | fromR1 | fromR2 : |
| 1 !

MVC D1(L1,R2),A2 8C R | Disp D1 | Address A2 !
| from R2 , ' I
l 1 J T I

MVC D1(L1,R2),D2(,R1) ac ; L1-1 | Disp D1 I Disp D2 } |
X , fromR2 | from R1 | I
T : '

MvVC D1(L1,R2),D2(,R2) AC R " DispD1 | DispD2]|! !
! | from R2 | fromR2 ! |
1 I 1 l |

NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

54

—

i3

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
cLC A1(L1),A2 [oD EE | Address A1 | Address A2]
{ | | ! |
cLC A1(L1),D2(,R1) 1D EE | Address A1 1 Disp D2 |
| X | fromR1
1 J i) |
cLC A1(L1),D2(,R2) 2D [| Address At | Disp D2 |
| 1 . | trom R2
7 ! ; 1 l
cLc D1(L1,R1),A2 4D oL | DispD1 | Address A2 |
| | fromR1 | [
t) N . |
cLC D1(L1,R1),D2(,R1) 5D I L1 [DispD1 | DispD2]I |
l | fromR1 | fromR1j|
L . | |
cLC D1(L1,R1),02(,R2) 6D R | Disp D1] Disp D2 l ‘
I fromR1 | fromR2|l
I i
[. | | |
cLC D1(L1,R2),A2 8D | L1 I DispD1 | Address A2
\ | fromR2 i |
T L]
% + | '
cLc D1(L1,R2),D2(,R1) 9D [L1 Disp D1 | Disp D2 I
| I from R2 | fromRi}!
-] 1 | |
cLC D1(L1,R2),D2(,R2) AD L1-1 | Disp D1 | Disp D2 I
' , fromR2 from R2
T f f [|
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

55

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
1 *
ALC A1(L1),A2 | oE , L , Address A1 | Address A2
| | t T
ALC A1(L1),D2(,R1) 1E T 13 [Address A1 | DispD2|!
I ! ! |__fromR1]|
l 1 [1 |
ALC A1(L1),D2(,R2) 2E | L T Address A1 I Disp D2
| : | fromR2||
1 1 I I |
ALC D1(L1,R1),A2 4E [L | DispD1 I Address A2
. from R1 | | |
! ! | | [
ALC D1(L1,R1),D2(,R1) 5E | L1 | Disp D1 7 DispD2]
| \ fromR1! from R1 | !
L) I I
! I
ALC D1(L1,R1),02(,R2) 6E L1-1 I DispD1 | DispD2 l
| | fromR1, from R2 l
% | ’ l l
ALC D1(L1,R2),A2 8E R " DispD1 | Address A2 |
| from R2 | s
T | 5 f I
ALC D1(L1,R2),D2(,R1) 9E | L1 | Disp D1 Disp D2] | |
. | from R2 | from R1] | |
M L
1 [" l
ALC D1(L1,R2),02(,R2) AE LR | Disp D1 I Disp D2 I :
I ' fromR2 | from R2
T | 1 1 l
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

56

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Il
sLC A1(L1),A2 [oF RE | Address A1 | Address A2]
] 1
[| 1
sLC A1(L1),D2(,R1) 1F X E] T Address A1 | Disp D2 !
| | , fromRi1 ‘
N . .
sLC A1(L1),D2(,R2) 2F { L | Address A1 1 pisp D2||
1t L ! 1 from R2j
| . t 1 |
sLC D1(L1,R1),A2 4F (XK I DispD1 | Address A2 |
1 { fromR1 ! I
{ |] | |
sLC D1(L1,R1),D2(,R1) 5F [L | Disp D1 | Disp D2] |
. fromR1 ; from R1 | [
t 1 '
4 |
SLC D1(L1,R1),D2(,R2) 6F | XE | pisp D1 ; Disp D2] |
[| fromR1 ' fromR2| | '
. l !] |
sLC D1(L1,R2) A2 8F IR | Disp D1 | Address A2 |
| ! fromR2 |
1 ! | ! '
sLC D1(L1,R2),D2(,R1) 9F [L T DispD1 | Disp D2| | |
! | fromR2 ; fromR1 | |
1 ! 1
sLC D1(L1,R2),D2(,R2) AF JRE ! DispD1 | Disp D2 ' |
| ! fromR2 | fromR2| | [
1 1 | | |
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

if D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

57

Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 I Byte 4 Byte 5 Byte 6
1 1
ITC A1(L1) A2 [0B , L1 | Address Al | Address A2 J
L)
. 1 |
ITC A1(L1),D2(,R1) 1B I L1 T Address Al | Disp D2 I
| | { 1 from R1f |
)
| !
ITC A1(L1),D2(,R2) 2B I L1 ' Address Al1 i Disp D2 I
! X from R2| {
1 1 .] [.
ITC D1(L1,R1),A2 4B | L1-1 | Disp D1 | Address A2 -
fromR1 | | |
| | 1 |
ITC D1(L1,R1),D2(,R1) 5B LK I Disp D1 | Disp D2 | ! -
| | from R1 from R1 | !
' | ! |
ITC D1(L1,R1),D2(,R2) 6B I L1-1 Disp D1 | Disp D2 !
. | fromR1 , from R2 I I
1 | N l l
[l
ITC D1(L1,R2),A2 8B oA | Disp D1 ' Address A2 [
| { from R2 | |
! N ! I
ITC D1(L1,R2),D2(,R1) 9B SE " DispD1 | Disp D2 |]
! | from R2 | _from R1 | |
} T I '
1
ITC D1(L1,R2),D2(,R2) AB i 11 DispDT | Disp D2! '
. ! fromR2 ~ from R2 I
i t i | |
NOTES:
Operand one must address the data field at the leftmost byte.
L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.
If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

z/"‘ :

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
ED A1(L1),A2 | oA R | Address A1 I Address A2
T | 1] i
ED A1(L1),D2(,R1) 1A L1 | Address A1 , Disp D2
| I . from R1 !
1 ' | N |
ED A1(L1),D2(,R2) 2A p L1 T Address A1 v Disp D2}
. | ! I from R2 |
T ' 1]
ED D1(L1,R1),A2 4A T " DispD1 | Address A2 '
! I from R1 |] [
. | I 1 1 |
ED D1(L1,R1),D2(,R1) 5A L1-1 DispD1 , Disp D2} 1
| | |
. from R1 | from R1 1 |
I | 1
ED D1(L1,R1),D2(,R2) 6A I L1 " DispD1 | Disp D2 | I
| | from R1 L fromR2}| |
: I \ 1 |
ED D1(L1,R2),A2 8A L1-1 | Disp D1 I Address A2
| from R2 | 1 |
1 I |] |
ED D1(L1,R2),D2(,R1) 9A R | DispD1 I Disp D2 |
1
) | fromR2 ! from R1 | I
N |
1 1
ED D1(L1,R2),D2(,R2) AA 1! L1-1 " DispD1 | Disp D2]! !
: ! fromR2 | from R2|| '
1 | 1 1 |
NOTES:

L1 may be specified on either operand; if L1 is not specified, the implied length of operand one is used.

If D1 or D2 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

59

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 lByte 4 I Byte 5 | Byte 6
Pl A (]]
MVI A1l [3c L | Address A1 ! i !
I ! ! { |
MVI D1(,R1),l 7C L [DispD1] ' 1 |
. | fromR1]| ' ' |
: ! ' ' |
MVI D1(,R2),! BC T " DispD1| | |
I b fompa| | | '
I i 1 I |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
cLl A1l [3D HEL | Address AT | B ;
. 1] |
L
cLl D1(,R1),l 7D | ! U'DispD1| | |
. | from R1 | |' |
} ! I .l |
CLI D1({,R2),l BD ; | | Disp D1 | | |
. | from R2]
f 1 |] I
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
1 L
SBN A1l [3Aa | { Address A1 | 1 1
] | l I
SBN D1{,R1),l 7A | ! Disp D1 | | |
| fromR1] | | |
| - [(!
SBN D1(,R2),1 BA | | Disp D1 |
' ! from R2 | |
1 t | | 1
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

60

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Il 4 L
SBF A1l [3B | I I Address A1 |]: :
| | |
SBF D1(,R1),I 78 1 (DispD1] | | '
| | from R1 | | !
4 ! l !
SBF D1(,R2),1 BB I | Disp D1 | |
) , fromR2| | I |
1 1 1 ! A
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 IByte 4 Byte 5 Byte 6
" s 1 |
TBN A1l [38 HIL | Address A1 | I I
L] | |
TBN D1(,R1),1 78 | | | Disp D1 | | |
A y from R1 I | :
[|
TBN D1(,R2),1 B8 T T Disp D1 | ! [
! , from R2 ! |
| I 1 1 |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
TBF A1) 139 Yo 1 Address A1 |] | |
T
| |
[l
TBF D1(R1),l 79 . [DispDT| | | !
! | from R1 I | |
)] l
1
TBF D1(,R2),1 B9 [1" Disp D1 { ! |
| I fromR2| | I [
| 1 \ | 1
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

61

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
{ |
ST A1,RX [34 . RX . Address A1 | I :
1 ! |
N |
ST D1(,R1),RX 74 T RX MDiseD1] | |
| ! from R1 | | |
I |
sT D1(,R2),RX B4 [RX I DispD1] | | l
I | fromR2| ! ! '
1 1 1 } |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
4 P [l '
L A1,RX [35 . RX | Address A1, ; |
N 1
" ' 1 |
L D1(,R1),RX 75 T Rx y DispD1| | | |
! (from R1 | |
1 1 | |
L D1(,R2),RX B5 Rx MBipDT] | ' !
! | fromR2| ! !
| | 1 1 |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
1
A A1,RX [36 " RX | Address A1, I |
Ll ' l
t]
A D1(,R1),RX 76 " RX | DispD1] | : I
! 4 from R1
t I I !
A D1(,R2),RX B6 T RX IbispD1] ! I '
I | fromR2| | | l
1 1 | l]
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

62

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
BC A1, [co HE | Address A1,] : |
! | ! |
BC D1(,R1), DO ! y DispD1 | | | I
! .Lfrom R1 [} 1 |
N . |]
BC D1(,R2),1 EO T T"Disp D1 I l !
| | from R2 !
t T I ! |
NOTES:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

For the extended mnemonics of the BC, the second operand (1-field) is not used since the information is inherent in the mnemonic.
See Extended Mnemonic Codes for the extended branches and their associated Q-codes.

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
TI0 A1l [T 1 * Address Al ' '
! I H | |
TIO D1(,R1),1 D1 ;) | Disp D1 | 1 1
1 | from R1 | 1 |
) | 1
1
TIO D1(,R2),1 E1 — [DspDI] 1 ! ,
| | fromR2] | i !
T 1 1] |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
SNS A1, [30 T Address Al mE X
] [N
| [} [}
SNS D1(,R1),1 70 1 | Disp D1 { " (
| y from R1 l ' |
! !
SNS D1(,R2),I BO B | Disp D1 ! ! !
, | fromR2| ! ! |
1 1 | 1 l
NOTE:

If D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Appendix A. Machine Instructions

63

Page of SC21-7509-6
Issued 24 June 1977

By TNL: SN21-5536

The Model 15 LCP instruction can also be generated on the Model 12 through the
$LCP macro instruction; see /BM System /3 Models 10 and 12 System Control
Programming Macros Reference Manual, GC21-7562.

I1f D1 is relocatable, the assembler computes the displacement based on the USING instruction.

Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
4 Il ‘
LIO A1l | 31 | Address A1]' ;
. !) -
LIO D1(,R1),] 71 ™ | DispD1| | | |
! y fromR1| | [|
| 1 | 1
LIO D1(,R2),1 B1 | ! | DseDT| I |
from R2
: ; ! l l
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
4]
LA A1,RX [c2 ; RX Address A1 JI l
T T
$ 1
LA D1(,R1),RX D2 " RX | Disp D1 { !
I | fromR1] | ! |
] ' | [|
LA D1(,R2),RX E2 I RX Disp D1 | |
' I from R2 !
i N ' l
T 1 |
NOTE:
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
Lcp A1RX [3F , RX |_Address A1 J: 1
t 1
[ry
LCP D1(,R1),RX 7F " RX ' Disp D1 ! l l
| | fromR1| | 1 !
! J I I I
LCP D1(,R2),RX BF | RX Disp D1 1 |
I from R2 !
! } | I |
NOTES:

64

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
A 4
scp A1,RX (EE |_RX [Address A1 |] ; I
[1 | | I
SCP D1(,R1),RX 7E | RX Disp D1 | |
1 , from R1 i | |
, |
scp D1(,R2),RX BE T RX | DisoD1] | I {
! | fomR2| | !
t . | 1
NOTES:
The Model 15 SCP instl;uction can also be generated on the Model 12 through the $SCP
macro instruction; see /BM System /3 Models 10 and 12 System Control Programming
Macros Reference Manual, GC21-7562.
If D1 is relocatable, the assembler computes the displacement based on the USING instruction.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
APL I | F MK oo |1 ! |
I T] 1
NOTE:
The APL is a NO-OP instruction on the Model 15.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
[T | | |
HPL 11,12 | ro HIlE: HIE] " H N
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
1
SI0 11,12 LF3 y 12 T I N |

Appendix A. Machine Instructions

65

Assembler Instruction Format

Machine Instruction Format

Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
ccp 11,RX | Fa : RX : "] :
NOTES:
The Model 15 CCP instruction can also be generated on the Model 12 through the $CCP
macro instruction; see /BM System /3 Models 10 and 12 System Control Programming
Macros Reference Manual, GC21-7562.
For the SVC form of the CCP instruction, the Q-code is inherent in the mnemonic and the RX field is omitted
from the operand field. See Extended Mnemonic Codes for the associated Q-code.
Assembler Instruction Format Machine Instruction Format
Operation Operands Op-Code Q-Code Operands
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
i Al [F2 ™ M

T

*If the first operand is absolute, this value is placed in byte 3.
If the first operand is relocatable, the displacement from the next sequential instruction to address A1 is placed in byte 3.

NOTE:

For the extended mnemonics of the JC, the second operand (I-field) is not used since the information is inherent in the mnemonic.
See Extended Mnemonic Codes for the extended jumps and their asso¢iated Q-codes.

66

Appendix B: Assembler Instruction Reference Table

Operation Entry Name Entry Operand Entry

DC Any Symbol or Blank One operand entry containing: Duplication Factor, Type, Length, Constant.

DROP Blank Specified register (1 or 2).

DS Any Symbol or Blank One operand entry containing: Duplication Factor, Type, Length.

EJECT Blank Blank.

END Blank A relocatable expression or blank.

ENTRY VBVlank Any relocatable name entry found in the current program.

EQU Any Symbol An expression.

e o oo™

JCTL Blank Two decimals in the form,of B,E.

ISEQ Blank Blank or two decimal values in the form L, R.

ORG Blank Blank operand or an expression (A) optionally followed by two absolute
expressions in the form A,B,C.

PRINT Blank gll:gel 10 Disk System: One or two entries from DATA, NODATA, ON,
Modt;l 12 and Model 15: One to three entries from DATA, NODATA,
GEN, NOGEN, ON, OFF.

SPACE Blank Blank or a decimal value.

START Name or Blank A self-defining value or blank.

TITLE Name or Blank A sequence of characters enclosed in apostrophes.

USING Blank A relocatable éxpression (V) and an index register (R) in the form V,R.

Appendix B. Assembler Instruction Reference Table 67

68

Appendix C: System/3 Assembler — Source Language Error Codes and Diagnostics

Code Diagnostic Explanation

NO1 INVALID NAME LENGTH Name field entry greater than six characters

NO2 INVALID CHARACTER IN NAME Name starts with non-alphabetic or contains an invalid character

NO3 NAME NOT ALLOWED ON THIS Name field entry not allowed on this instruction

INSTRUCTION
NO4 REFERENCE TO UNDEFINED SYMBOL The referenced symbol is not defined in this program
NOS NAME MISSING FROM Name field entry missing from EQU instruction
INSTRUCTION REQUIRING ONE

NO6 PREVIOUSLY DEFINED SYMBOL Symbol has been previously defined in this program

NO7 MODULE NAME MISSING START instruction missing, or START instruction present but name field
entry (module name) missing. Assembler assigns the default module:
name ASMOBJ.

001 INVALID OPERATION CODE Undefined operation field entry

002 INVALID ORIGIN Attempt to ORG to a value less than the initial value of thg location counter

003 INVALID OR ILLEGAL ICTL Operand error on ICTL, or ICTL not the first statement in the program.
(ICTL treated as last source statement in program)

004 INVALID START INSTRUCTION START instruction encountered after location counter is initialized

005 LOCATION COUNTER ERROR Location counter overflow (greater than 65536) or attempt to reference
the location counter at 656636

006 MISSING END STATEMENT END statement missing from the program

PO1 INVALID OPERAND DELIMITER An operand field syntactical delimiter is either misplaced or missing

P02 INVALID OPERAND FORMAT The operand field is not of the proper format for this instruction

P03 MISSING OPERAND Operand field entry missing from instruction requiring one

PO4 INVALID SYNTAX IN EXPRESSION Violation of one or more expression syntax rules

P05 EXPRESSION VALUE TOO LARGE Final expression value not in range -216 t0 2161

P06 INVALID OPERAND One or more operand entries do not meet specifications for this instruction

PO7 ARITHMETIC OVERFLOW Intermediate expression value not in the range -224 452244

PO8 ADDRESSABILITY ERROR Relocatable displacement outside the range of USING instruction

P09 REGISTER SPECIFICATION ERROR Index register specification not 1 or 2

P10 INVALID CONSTANT Error in constant specification on DC instruction

P11 INVALID CONSTANT TYPE Data type specified on DC/DS is not valid

P12 INVALID DUPLICATION FACTOR Error in duplication factor specification on DC/DS

P13 INVALID LENGTH SPECIFICATION Error in length specification

P14 INVALID STATEMENT DELIMITER The column following the statement field is not blank

P15 RELOCATABLE MULTIPLICATION A relocatable term used in multiply operation

P16 RELOCATABILITY ERROR A relocatable expression is used where an absolute expression is required,
or an absolute expression is used where a relocatable expression is required

P17 INVALID SYMBOL Invalid character in or invalid length of a symbol in the operand field

P18 INVALID SELF-DEFINING TERM Error in the format of a self-defining term

P19 SELF-DEFINING VALUE TOO LARGE Value of self-defining term is outside of range -216 to0 216-1

P20 INVALID IMMEDIATE FIELD Immediate field not in range X'00’ to X'FF"

P21 INVALID DISPLACEMENT Absolute displacement not in range O to 255

Appendix C. System/3 Assembler — Source Language Error Codes and Diagnostics

69

Code

Diagnostic

Explanation

P22

P23

INVALID EXTRN

TOO MANY ESL RECORDS

Symbol is invalid or already defined in the program or subfield
is invalid.

More than allowed number of EXTRN and ENTRY statements
were found in the program. This count includes multiple
EXTRNs and ENTRYs, ENTRYs with valid symbols which are
not defined, and EXTRNSs with valid symbols which are defined
in the program. See ESL Table Size in Part Il. Programmer’s
Guide.

70

Appendix D: Assembler Language Subroutine To RPG Il Linkage

Assembler subroutines can be linked to an RPG II program.

The RPG II program passes parameters as it branches to
the assembler subroutine. To write a subroutine that will
be linked to an RPG II program the following rules must
be used:

1. The name of the assembler subroutine must be
SUBRxx. xx can be any valid alphabetic characters
for user-written subroutines. (Numeric characters
are reserved for IBM-supplied subroutines.) The
name used must be the same as the name used in
the RPG II program.

2. Upon entry to the assembler language subroutine,
the address recall register (ARR) contains a pointer
to the parameters which represent the fields to be
referenced by the assembler subroutine. The return
point to the RPG II program is the first byte after
the parameters.

3. If the subroutine makes use of registers 1 and 2, the
contents of these registers must be stored upon
entry to, and restored before exit from, the
subroutine.

USING FIELDS IN THE RPG || PROGRAM
When linkage is effected from RPG II to an assembler
subroutine, three possible areas in the RPG II program can
be referenced by the subroutine. They are: field, table
or array, and indicator.
Referencing a Field in an RPG Il Program
The following parameters (symbolic form of code
generated by the compiler) are passed by RPG II when a
field is to be referenced:

B SUBRxx

DC IL1°Field length -1’

DC AL2(rightmost address of field)

Referencing a Table or Array in an RPG |l Program

The following parameters (symbolic form of code
generated by the compiler) are passed by RPG II when a
table or array is to be referenced:

B SUBRxx

DC IL1‘Entry length-1’

DC AL2(leftmost address of table control field)
The subroutine can refer to the table or array defined in
the RPG II program by utilizing the control field created
for that table or array. This control field, one of which

is created for each table or array built by the RPG II
program, is in the following format:

Bytes Meaning

1-2 Rightmost address of the first entry.

34 Rightmost address of the last entry.

5-6 Initialized to rightmost address of first entry;
used at object time for rightmost address of
the last looked-up entry of a table.

7-8 Length of an entry.

The subroutine can obtain the data retrieved from the last
RPG 1I table LOKUP by using the address in bytes 5-6.
To access the table or array itself, the address in bytes 1-2
must be used.

Data used by the subroutine must be left unpacked for the
RPG II program.

Appendix D. Assembler Language Subroutine to RPG II Linkage 71

Referencing an Indicator in an RPG |l Program

The following parameters (symbolic form of code generated

by the compiler) are passed by RPG II when an indicator
is to be referenced:

B SUBRxx
DC XLi1‘00
DC XL1‘Mask for the indicator’

DC XL1‘Displacement to the indicator from XR1’

Note: The parameters passed to the assembler subroutine

are determined by the coding done in the RPG II program.

For a description of this coding, see the /BM System /3
RPG II Reference Manual, SC21-7504, IBM System/3
Model 6 RPG II Reference Manual, SC21-7517, or IBM
System/3 Card System RPG II Reference Manual,
SC21-7500.

RPG Il LINKAGE SAMPLE PROGRAM 1

In this sample program, the RPG II program links to the
assembler language subroutine SUBRA (Figure 27).
When control is returned to the RPG II program, the
character ‘A’ will have been moved into the field in the
RPG II program.

RPG I LINKAGE SAMPLE PROGRAM 2

In this sample program, the RPG II program links to the
assembler subroutine SUBRB (Figure 28). The first
parameters passed reference a table. The second param-
eters reference an indicator. The subroutine refers to
both sets of parameters. The subroutine first tests the
indicator in the RPG II program. If the indicator is off,

control is returned to the RPG II program. If the indicator

is on, a character ‘C’ is moved into the last looked up

entry in the table. When control is returned to the RPG II

program, it checks for a ‘C’ in the table.

1/0 SUBROUTINES

Subroutines that support input or output devices can also
be linked to an RPG II program. These subroutines are
commonly referred to as RPG IT SPECIAL subroutines.

72

Linkage for 1/0 Subroutines

The following linkage is generated by RPG II to communi-
cate with the user-supplied I/O subroutine.

1. DTF (define-the-file) format:

Bytes Description

0 Device code (X‘00%)

1 UPSI mask

23 Attributes

45 Reserved for data management
6-7 Address of next DTF

8-B Reserved for data management
C-D Logical record address

E Completion code

X‘42’ = End-of-file

X‘41’ = Controlled cancel (not
recognized by Model 10

card system)

X‘40’ = Normal completion (not
recognized by Model 10
card system)

F Operation

X‘CO’ = Get and put (model 10
card system only)

X80’ = Get

X‘40’ = Put

X20’ = Update

X‘10’ = Close

10-11 Input I/O address
12-13 Output I/O address
14-15 Block length

16-17 Record length

18-19 Address of array DTT if array linkage
is used

The address of byte 0 of the DTF will be passed to

the I/O subroutine in index register 2. Bytes 0-3, 6-7,
C-D, and 10-17 are filled in by RPG II at compile time.
Byte E, completion code, is inserted by the I/O sub-
routine when control is returned to RPG II. Byte F,
the operation byte, is inserted at object time. The
information in bytes 0 and 4-B must be available,
unchanged at close time, for data management.

The DTT (define-the-table) is used for array linkage.

DTT format:

Bytes Description

0-1 Address of rightmost byte of the first
element of the array.

2-3 Address of rightmost byte of the last
element of the array.

4-5 RPG last LOKUP element.

6-7 Length of array element.

2. TheI/O subroutine must save and restore the registers
altered in the routine. Control should be returned to
the address in the address recall register (ARR).

Note: The combined get and put operation code, X‘CO’, is
utilized by the System/3 Model 10 Card System only. The
System/3 Model 10 Disk System, System/3 Model 12, and
System/3 Model 15 use alternate get and put operations to
accommodate combined files. When coding an 1/O subroutine
to be used on either system, be certain to consider this fact.

When an input operation is done, the I/O subroutine must
move the address of the physical buffer currently being
used to the logical buffer address location in the DTF (bytes
C-D). In the Model 10 Card System, address bytes 10-11
will be the same as bytes C-D (one physical buffer).

When an output operation is requested, the I/O subroutine
must move the data from the logical buffer (address in
bytes C-D of the DTF) to the physical buffer (address

in bytes 12-13 of the DTF). The two addresses are the
same in the Model 10 Card System. Bytes O-B are unused
in the Model 10 Card System.

The 1/0 subroutine must do its own open when the first
call to it is issued. It must also do its own close to the
file on a close call.

If a dual I/O is requested, the second area will be immediately
behind the first (Model 10 Disk System, Model 12, and Model
15 only).

The I/O subroutine cannot be overlaid in the Model 10 Disk
System, Model 12, and Model 15.

Sequential processing only is supported.

When an 1/O subroutine issues a halt, three halts should be
displayed as follows:

1. The first halt issued should be the FF halt reserved
by RPG II for SPECIAL I/O subroutine usage.

2. The second halt should be the last two digits of the
subroutine name.

3. The third halt may be any valid halt that can be
displayed.

Appendix D. Assembler Language Subroutine to RPG II Linkage 73

L

Control passed to SUBRA
by RPG Il program

RPG Il Program M 1BM System/3 Assembler Coding Form
_ ' Ilmam I PUNCHING li‘""'c 4[I L T l] l 'T‘G‘
Symbolic representation of code [Frocnammen Torre | erevemons (Moo | O O I I e

generated by the RPG |l compiler: — STaTEwEnT

1z”mscvlor:m'IlMlsll!’l!ll'D:lE:‘ﬁnzlanfﬁﬂnn)‘!ﬁ)?lrnll0!3“6'5‘704’5’5'57535‘55“575!50‘73';"06)“6666‘75'00707!717174757‘777.7!&)!!!!”“&“8
W 1Tl T | KA lE L Tl LTI Hfilk ;

B SUBRA\ | ! uBRO *r/v;k‘_glb L/F{ Tid D/ lEm] RIPl6| /T

DC IL10’ —~t %iﬁ :gg{r ! .

DG_ AL2 (HERE) " B 8 5|

1 Imy
~
L[
>
E3
— []
=
%
$
3
STAISTN
m
[~
=

B Y Sy Sy S Uy QN TR PP [) S

1 wreiBoaq sjdureg 1oy (VYdNS) dunnoiqng adenfue] ojquisssy L7 amSig
XA
E3P3

Control returned to
first byte after
parameters

aSeyur I OJY 03 sunnoIqng sfenfue 1Ojquassy g xipusddy

SL

T ! uresdoaq sjdures 1oy (gYGNS) dunnoiqng 3fendue 1dquiassy ‘gz a3

Control passed to SUBRB
by RPG Il program

1BM Systam/3 Assembiler Coding Form

IBM
[oo [roncme | cramc I I O O A
[Torocnammen Towe e) T T T 1T [[[ooncmow
1 3"6’“:5.730:.:;'?:" l!llvs't"lll'l)ﬂﬂﬂrﬁﬁﬂanl‘lmnnuis!ﬂ'lnuﬂl'4?(3“6‘47‘“”5'!26:54“-SY“:%'::uuu‘suuuunn7273"757‘77"””’7&”."..
0 [T H
RPG Il Program Lok i 3 _#{%BEA 0 Dt SY| lé Il
I NDI H
Symbolic representation of code \ NERRN HIN | !
——" RPW" T TING, b :
1
V I !
B SUBRB @ 413]. 12| |
@ %DC Lo’ T [¥,12 | MET 1S9 :
DC AL2 (leftmost address of table control field) (12) :ﬁ(3 2) J PLACEMENT L
nn’ Tel=Del (11101, hd=hel ST _{(WID(CIAT] H
DC XL100 ’ (INDICATOR 10FF | | i
@{Dc XL180 | o
DC XL1'31’
~— | | 4 2) LIl E| i Cl
.{ﬂﬁ T [}
EM [u :
4 | Z\Ql

@ Parameters passed for a table

@ Parameters passed for an indicator

@ Control field for table

DC AL2 (address of first entry)

DC AL2 (address of last entry)

DC AL2 (address of last looked-up entry [TABB])
DC 1L2‘1’ (length of entry)

S RS R N SN

1

12 34 5 8[s]8 9 10 12

T4 1516 17 18 19 20 21 22 23 24 25 26 27 78 29 30 31 32 30 34 35 36 37 38 30 40 41 42 43 44 45 46 47 8 50 51 5253 54 55 56 87 58 50 6061 62 63 64 6505 67 68 970 71 72 73 74 7576 77 78 798081 82 83 04 %5 %6 8

Control returned to
first byte after
parameters

LIBRARY DECK GENERATOR PROGRAM (MODEL 10
ONLY)

The System/3 Model 10 Card System user can write assem-
bler language subroutines to be used as SPECIAL or EXIT
routines in an RPG II program. These assembler routines,
however, cannot be inserted directly into the RPG II
compiler. The assembler language subroutine must

first be assembled by the System/3 Model 10 Disk System
Basic Assembler and then translated by the Library Deck
Generator (LDG) program before it can be placed in the
RPG II compiler.

The entire operation, from writing an assembler subroutine
to selection of that subroutine by the IBM System/3 Model
10 Card System RPG I compiler is outlined as follows:

1. The assembler subroutine is written by the programmer.

If standard control cards supplied by the LDG program
are not being used, the programmer must also code
control cards for the subroutine.

2. The assembler subroutine is assembled on the
System/3 Model 10 Disk System by the Basic

Assembler.

3. The LDG program is read into System/3 Model 10
Disk System storage. The *** parameter card,
assembler subroutine object deck, and blank cards
are placed in the MFCU.

4. The LDG program produces a deck of cards, con-
taining the subroutine, which can be placed in the
RPG II compiler. The deck produced by the LDG
program contains the following:

Header card
Control cards
Text

Q-card

End card

5. The deck produced by the LDG program may now
be placed in the RPG II compiler deck. When an
RPG II program is compiled, this subroutine will be
selected, when required, just as any other compiler
subroutine.

The following material describes the information
needed to use an assembler language subroutine in an
RPG II program. This material is divided into four major
sections:

Writing the assembler language program

Running the LDG program

Output of the LDG program

Example of a SPECIAL subroutine

76

Writing the Assembler Language Program

The following information must be considered when the
assembler language program is written.

Title Instruction

The name field of the TITLE instruction must contain
00GEB in columns 1-5.

Control Cards

Control cards are needed for every assembler language sub-
routine. Control cards contain code, executed during
compile time, which determines whether the subroutine
should be included as part of the program being compiled.
Library routines are selected only when the execution of a
control card determines they are needed. In addition,
control cards are needed to ensure that the entry point for
the subroutine is placed in the proper location in core for
the RPG II compiler to find and use it.

There are two ways to get the control cards you need. In
some cases, you will need to code them yourself; in others
standard control cards are supplied by the LDG program.
If your subroutine is to be used as a normal SPECIAL or
EXIT routine, the LDG program will supply three control
cards. See Figure 29 for samples of these. When these
control cards are provided, a SPECIAL routine is selected
if bytes 12-13 of the file description compression matches
the identification characters of the routine, and if the
SPECIAL device code B‘Oxxx1010’ is present in byte 16
of the same file description compression. EXIT routines
are selected if the identifier in the library routine is the
same as an entry in the symbol table (bytes 3-4) and if
byte 2 of the same entry contains bit configuration
11100000. When these decks are selected, the address of
the entry point of associated object code is placed in the
symbol table entry, bytes 3-4 for an EXIT reference and/or
bytes 8-9 of the file description compression for a SPECIAL
reference.

You must code control cards for your subroutine when:
® The subroutine is not a SPECIAL or EXIT routine.

® The subroutine needs a function not provided by the
standard control cards.

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards.

Coding Control Cards

There are three types of control cards each identified by
a special character in column 1. Each type performs a
different function:

® Cards with a J in column 1 (J-cards) are usually used to
control the selection of a routine for an object program.
They also place the routine entry address in compile
time storage for use by the RPG II compiler.

® (Cards with a K in column 1 (K-cards) are used only
when one routine from a set of related routines is to be
used in any job. A J card will determine if any of these
routines are needed and if so will start the scan for K
cards which in turn control selection of the proper
routine.

® Cards with an L in column 1 (L-cards) are used to pass
information from RPG II compile time core to a sub-
routine or vice versa. They are executed only if the
deck in which they appear has been selected for use with
the current program.

Control card identification characters must be defined for
assembly at X‘0000’ and are placed in column 1 of control
cards. The only allowable characters are J, K, L, and blank.
There should be one non-blank control card identifier
character for each block of code for a control card. The
blank is used as a delimiter between control card strings.

For example, DCipgPp CLIOJKLLPLPLYL’ shows identi-
fiers for seven control cards and four control card strings.
The first is a 4-card string with identifiers ‘JKLL’ used.
The others are single card strings, each of which has an
‘L’ identification.

LDG identifies the control cards and assigns one control
card identification character to each one. The control

card strings are merged with the text cards for the routine
functional code in the following manner. The first control
card string is merged in front of the text, and one addition-
al control card string is merged into the text cards where
there is a break in the text caused by a DS or an ORG which
changes the location counter.

Each control card must contain executable code. Control
cards are coded in the order needed for the purposes de-
scribed above. Each must begin at X‘0017’; therefore, an
ORG to 23 or X‘0017’ must precede the code for each card.

Your control cards must contain instructions for calculating
the address at which your subroutine will be loaded. To
calculate the true entry address, use the current relocation
factor described here.
Label Address Function
RELOCF X‘030C’ to
X‘030D’

Contains the current
relocation factor. Is
modified when the end
card of the selected deck
is encountered or JIEAA1
is entered.

See Figure 29, Part 1, found at the end of this section, for
an example of the use of the current relocation factor.

The following paragraphs describe several compiler resident
routines which can be used by programmer coded control
cards.

J-Card Scan Routine reads the library deck until a J-card is
encountered. The routine has three entry points.
Label

Address Function

J3EAA1 X031A° Scans for J-card. When
one is found, control is
passed to that card. All
other cards are ignored.
J2EAA1 X‘3014 Clears X‘00EQ’ to X‘00FF’
and X‘007C’ to X‘007F’
to hex zeroes then scans
for J-card as J3EAAL.
JIEAA1 X‘030F’ Resets the relocation
factor to the next object
address and performs as

J2EAAL.

K-Card Scan Routine has one entry point.

Label Entry Point Function

K1EAB1 X‘0320° Scans for K-card. When
one is found, control is
passed to that card. All
other cards except J-
cards are ignored. Ifa
J-card is found, a halt

‘40’ is executed.

Appendix D. Assembler Language Subroutine to RPG II Linkage 77

Relocate Deck Routine has one entry point.

Label Entry Point Function

Initiates or continues
relocation of the current
deck. Will recognize and
execute L-cards and re-
organize and print Q-cards.
Exits to JIEAA1 when
end card is encountered.

RI1EAC1 X'032C

Scan File Description Compressions Routine has two entry
points. This routine steps through the file description com-
pressions. It returns a pointer to the next compression in
register 2. If the condition code is high, the pointer is
valid. Any other condition indicates the pointer is invalid.

Label Entry Point Function

F1EAE1 X‘0338’ Initializes pointer to first
file description compres-
sion and sets condition
code.

F2EAEl X‘033F’ Points register 2 to the

next compression and
sets the condition code.
(Register 2 need not be
pointing to the last
compression.)

Scan Extension Compressions Routine has two entry
points and steps through the extension compressions and
returns a pointer to the next compression in register 2. A
high condition code indicates a valid pointer. Any other
condition code indicates an invalid (undefined) pointer.

Label Entry Point Function

E1EAF1 X‘0344° Initializes pointer to first
extension compression
and sets condition code.

E2EAF1 X‘034A° Points register 2 to the

next compression and

sets condition code.
(Register 2 need not

point to last compression.)

78

Text Handling Routine builds up full text card in storage
and, when a card is full, punches that card. The area from
X‘0080’ to X‘00DF” is the location of the punch buffer
and this must be considered when using this area of core.

Label Entry Point Function

BKEAH1I X‘0350 Forces any partial text

card to be punched.
STXLAI X‘035C Accepts a string of text to
be added to the current
text immediately following
the last text passed. Re-
quires a 1-byte parameter
following the branch.
Parameter contains a
displacement relative to
register 1 to the length
byte of the text being
passed. The text string
should be preceded by
this length byte which
contains the length of
text.

Wait On Punch Busy Routine:

Label Entry Point Function

WTPUNI X‘0362 Returns when the previous
punch operation has been
successfully completed

and the buffer is not busy.

Title of Subroutine

The title of the routine must be a defined constant to be
loaded starting at X‘0000°. It must be equal to or less
than 80 characters in length. This title is printed on the
RPG II compiler listing with the address of the entry point
of the routine if it is selected at compile time.

Routine Functional Code An OPTIONS card must be used to successfully assemble
the subroutine.

This code must be assembled starting at X‘0000°. The

code must contain a break in continuity (a DS or an

ORG which changes the location counter value) where

control cards are to be inserted. Running the LDG Program

The following paragraphs describe a special parameter card

Assembling the Subroutine that must be used with the assembler deck, the OCL required
to load the LDG program, and error conditions that may re-
The assembler subroutine is assembled by the Model 10 sult.

disk system basic assembler. The OCL considerations for
assembly are discussed in Section II: Programmer’s
Guide under the headings OPTIONS Statement and

OCL Statements For Assembler.

Appendix D. Assembler Language Subroutine to RPG II Linkage 79

Library Deck Generator Parameter Card (***)

A parameter card must precede the assembler generated
object deck to provide the LDG program with information
regarding output. Entries for the parameter card are as

follows:
Columns Entry Explanation .
1-3 e Three asterisks identify a parameter card.
4-9 SUBRxx These characters identify the subroutine. Substitute any two characters
for xx — the second may be blank, but the first must not. Note that the
LDG program will not diagnose an error in these columns. N
10 , (comma) Required.
1 S Standard control cards will be provided by the LDG program for the subroutine
identified by the characters found in columns 8-9 of this parameter card. The
title, also extracted from this parameter card, will be assigned to the subroutine.
The entry point of the routine must be the first byte of the routine. GEB will be
forced as module identifier.
N Non-standard control cards will be supplied by the user as will identification
characters and title. (The format of this material may be found in Figure 29.)
If N is specified, the title specified in this parameter card is ignored. Thus, if
N is used, columns 21-96 may be left blank.
12 , (comma) Required.
13 D Default values for component version, modification level, and indication of
complete or partial deck replacement for header card are provided by the LDG
program. '
G Default values are not assumed. The user must provide them in columns 15-19.
14 , (comma) Required if column 11 contains an S or column 13 a G.
156-16 vv Two numbers indicating the component version.
17-18 MM Two numbers indicating modification level. B
19 0 (zero) Partial deck replacement for header card.)
1 Complete deck replacement for header card.
20 , (comma) Required only if column 13 contains a G and column 11 an S.
21-96 Subroutine If column 11 contains an N, the title is not required. If column 13 contains
title a D, the title of the subroutine must begin in column 15.

80

Examples:

PROGRAM

PROGRAMMER J

STATEMENT

Name Operation
1. 2 3 45 6718 9 10 11 12]13]

R LN, ID]

Operand
14 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 3940

User will supply all control cards, identifying characters,
and title for subroutine ‘Ap’.

IBM
PROGRAM
PROGRAMMER J
STATEMENT
Name , Operation Operand
1 23!5678910"‘1‘|4|5|8|7|s|91)2|2223245262728293):"3213345'3&3738_3_9_‘2
WSIUIBRIBE, K. 51, 1], [SPEIC] AILT [Riofuf] 1 INE] [BiBY

Library Deck Generator will supply standard control cards
which will be used for selection of subroutine BB. The title
will be printed on the 4th tier of the cards and on the com-
piler listing. The values given in columns 15-19 will be used
on the header card. The component version (02) will go in
columns 59-60 of the header card, the modification level
(00) will go in columns 31-32, and deck replacement indi-
cator (1) will be placed in column 85.

Loading the LDG Program

PROGRAM

STATEMENT

Operation Operand
8 9 10 11 12013{14 15 16 17 18 1920 21 2223 24 %6 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40

PROGRAMMER l
PRINTER

5
L SASILIDG,
U

R [](

CARD;

Error Conditions

Several errors are considered to be terminal. If terminal

errors occur, the card image is printed, the error message
is printed, the deck is run through to the ‘/*’ card, and a
C halt is displayed. When this halt is reset, processing is

discontinued by the end-of-job routine.

If the error is not terminal, the card image is printed, an
error message is printed, and a C halt is displayed. The
program is restartable, however, and processing will
continue.

Following is a list of error messages generated by this
phase. An asterisk (*) preceding the number indicates
which are warning errors.

1. Number of control cards generated incorrect.
2.
. Card sequence incorrect.

Title too long or the first text is contiguous.

*5. First control card character may not be blank.

Not enough breaks for control strings.

*7. More breaks than control strings.

*8. Last text not at highest address expected.

Improper card in deck.

10. End card out of sequence.

11. Invalid control card identification.

12. First object card must be an ESL card.

13. Insufficient core for control card storage.

14. Invalid entries on *** control card.

15. [card or *** card out of sequence.

*16. GEB not used as module identifier.

17. *** card required before object deck.

18. Too many control card identifiers specified or

invalid sequence.

Appendix D. Assembler Language Subroutine to RPG II Linkage

Length of control card text, too great for one card.

81

Output of the LDG Program

The header card in stacker 2 should be placed in front of
the remainder of the output deck in stacker 3. Insert the
subroutine deck in the RPG II Compiler deck using the
Program Maintenance Program. The subroutine deck must
have GEB in columns 91-93,

00GEB ANY TITLE DESIRED MAY BE USED

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

Example

Figure 29 is an example of a SPECIAL subroutine. This
sample program can be used as a base for any SPECIAL or
EXIT subroutine. The only changes required are modifying
the subroutine identification characters, entry point, label,
and routine title. Areas of change are outlined in the sample
listing. Control cards are created for you.

2 = * 00020000

3 % - * 00030000

4 % THIS IS A SAMPLE CODING FOR THE CONTROL CARDS FOR A °*SPECIAL® * 00040000

5 % * 00050000

6 * DEVICE REFERENCED IN AN RPG PROGRAM. ALL LABELS WHICH WILL * 00060000

T * 00070000

8 * NEED TO BE MODIFIED FOR A PARTICULAR PROGRAM HAVE LABELS * 00080000

9 * * 00090000

10 = STARTING WITH THE CHARACTER '#'. THIS DECK IS IN THE FORMAT * 00100000

11 = * 00110000

12 = REQUIRED 8Y THE LIBRARY DECK GENERATOR. * 00120000

13 » * 00130000

14 = THESE CONTROL CARDS MAY BE USED FOR ANY SPECIAL OR EXIT * 00140000

15 * * 00150000

16 * SUBROUTINE. * 00160000

17 » * 00170000

18 *= b 00180000

20 = * 00200000

21 = * 00210000

22 *» STANDARD LABELS AND LABELS USED TO LINK TO THE LIBRARY * 00220000

23 » * 00230000

24 * SELECT ROUTINE AND RPG COMPILER COMMUNICATIONS AREA * 00240000

25 * * 00250000

26 * * 00260000

0000 28 START START O PROGRAM SHOULD BE STARTED AT 0 00280000
0001 29 XR1 EQU 1 STANDARD LABEL FOR INDEX REGISTER 1 00290000
0002 30 XR2 EQU 2 STANDARD LABEL FOR INDEX REGISTER 2 00300000
0008 31 ARR EQU 8 ADDRESS RECALL REG 00310000
030D 33 RELOCF EQU START+X*030D* RELOCATION FACTOR FOR CURRENT DECK 00330000
030E 34 J1EAALl EQU START#X*030E"* ENTRY POINT TO RESET RELOCATION 00340000
35 * FACTOR AND SCAN TO NEXT *J*' CARD 00350000

031A 36 J3EAALl EQU START+X*031A* ENTRY TO SCAN TO NEXT *J* CARD WITH- 00360000
37 = OUT RESETTING RELOCATION FACTOR 00370000

032¢C 38 R1EAC1 EQU START#X'032C* ENTRY POINT TO INITIATE OR CONTINUE 00380000
39 * RELOCATION OF THIS DECK 00390000

0338 40 F1EAELl EQU START+X*0338°* ENTRY POINT TO INITIATE THE SCAN OF 00400000
41 * THE FILE DESCRIPTION COMPRESSIONS 00410000

033E 42 F2EAEl EQU START#X*033E"* ENTRY POINT TO CONTINUE FILE DISC. 00420000
43 % COMP. SCAN 00430000

44 * BOTH OF THE PREVIOUS ENTRIES 00440000

45 * RETURN A POINTER IN XR2 AND A 00450000

46 * CONDITION CODE *HIGH* IF THAT 00460000

47 * POINTER IS VALID 00470000

028C 49 COMMON EQU START+x*028C"* START OF THE RPG COMPILER 00490000
50 * COMMUNICATIONS AREA 00500000

02E6 51 ENDCOR EQU COMMON+90 HOLDS LAST ADDRESS IN MEMORY -FIRST 00510000
52 * BYTE USED FOR SYMBOL TABLE - 00520000

02EA 53 ENDST EQU COMMON+94 HOLDS LAST ADDRESS USED FOR SYMBOL 00530000
54 * TABLE. 00540000

Figure 29 (Part 1 of 4). Sample Coding for SPECIAL Device

82

a

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT

56 + *e . 00560000

57 . 00570000

58 THE FOLLOWING IS A SKELETON FOR A FILE DESCRIPTION . 00580000

59 * - 00590000

60 * COMPRESSION . 00600000

61 = . 00610000

62 . 00620000

0000 0000 64 FCFG DS CL1 FLAG BYTE FOR COMP. ALWAYS X'FF' 00640000
0001 0002 65 s CL2 OUTPUT BUFFER @ 00650000
0003 0004 66 0s cL2 INPUT BUFFER ADDRESS 00660000
0005 0006 67 DS cL2 PRINT BUFFER ADDRESS 00670000
0007 0008 68 FCENT? DS CL2 10CS ENTRY POINT ADDRESS 00680000
0009 0009 69 s cL1 FLAG BYTE 00690000
0004 000A 70 ps Ll FLAG BYTE 00700000
0008 000C 71 FCIDNT DS CL2 HOLDS IDENT FOR SPECIAL ROUTINE 00710000
0000 000 72 s cL2 EXTERNAL INDICATOR ASSIGNMENT 00720000
000F 000F 73 FCOVA DS CLL DEVICE CODE B'OXXX1010' FOR SPECIAL 00730000
0010 0010 74 s CL1 BLOCKING FACTOR 00740000
0011 0011 7% oS cil RECORD LENGTH 00750000
77 * 00770000

78 + * 00780000

79 THE FOLLOWING IS A SKELETON FOR A SYMBOL TABLE ENTRY . 00790000

80 * . 00800000

Bl * & * 00810000

o012 0012 83 STLEN DS CLL LENGTH FOR FIELD ENTRY 00830000
0013 0013 84 STFLAG DS CL1 FLAG BYTE SPECIAL NEEDS B® . 00840000
0014 0015 85 STIDNT DS CL2 IDENT FOR SPECIAL C'##° HOLDS ENTRY 00850000
86 * POINT AFTER SELECTION 00860000

88 * - 00880000

89 * . 00890000

90 * THE FOLLOWING DC CONTAINS THE ID'S FOR THE CONTROL CARDS * 00900000

91 * . 00910000

92 * 5 ER K ERE R EESERE X 00920000

0000 94 ORG O 00940000
0000 D101D1 0002 95 OC CL3'JJJ° THREE CONTROL CARDS ALL WITH IDENT 00950000
9% * *J* AND INSERTED IN FRONT OF THE 00960000

97 = DECK 00970000

99 « * 00990000

100 * * 01000000

101 * THIS CONTROL CARD SCANS THE 'F' COMPRESSIONS FOR REFERENCE TO * 01010000

102 & * 01020000

103 * *##* IF FOUND IT SETS THE FLAG BYTE AT X'0078% TO X'FF'. * 01030000

104 * . 01040000

105 * IF EITHER FOUND OR NOT FOUND IT STARTS THE SCAN FOR THE NEXT & 01050000

106 * * 01060000

107 * CONTROL CARD. . 01070000

108 * . 01080000

109 * rens . 01090000

0017 1n ORG X*0017¢ REQUIRED FOR EACH CONTROL CARD 01110000
0078 112 FLG EQU START#X*7B® AREA FROM X'78°¢ TO X'FF' IS 01120000

113 » USABLE FOR WORKING STORAGE 01130000

114 * THIS BYTE USED TO FLAG IF 01140000

115 * ROUTINE IS REFERENCED ON 'F° 01150000

116 * SPECIFICAT IONS 01160000

0000 117 USING START,XR1 VALID AT ENTRY TO ANY CTL. CARD 01170000

0017 7C 00 78 118 MVE FLG(4XR1)oX?00° INITIALIZE FLAG FOR NOT USED 01180000
119 * ON FILE DESCRIPTION SPECS. 01190000

001A 4E 01 43 030D 120 ALC #ENTRY(2,XR1),RELOCF CALCULATE TRUE ENTRY ADDRESS 01200000
001F CO 87 0338 121 8 FLEAEL INITIATE SCAN OF 'F' COMPS. 01210000
0000 122 USING FCFG,XR2 VALID UPON RETURN FROM FLEAEL 01220000

0023 6D 01 45 OC 123 SPCAl CLC WIDENT(2,XR1)oFCIDNT(sXR2) IS THE IDENT THE RIGHT CHAR 01230000
0027 B8 0A OF 124 TBN FCDVA(,XR2),B'00001010° AND 1S DEVICE CODE THAT FOR 01240000
002A B9 85 OF 125 TBF FCDVA(,XR2),B8°10000101°¢ *SPECIAL® 01250000
002D F2 96 07 126 JC SPCA2,X'96' IF THIS IS NOT THE RIGHT COMP, JUMP 01260000
0030 7C FF 78 128 MVI FLGUsXRL) ¢X'FF? SET FLAG TO INDICATE USED ON 01280000
129 * FILE DESCRIPTION SPECS. 01290000

0033 9C 01 08 43 130 MVC FCENT@(2+XR2),#ENTRY{,XR1) MOVE ENTRY ADDRESS TO THE 01300000
131 * FILE DESCRIPTION COMP. 01310000

0037 CO 87 033E 132 SPCA2 B F2EAEL ELSE SCAN TO NEXT COMP 01320000
0038 DO 84 23 133 BH SPCAL(,XR1) IF POINTER STILL OK LOOP 01330000
003E CO 87 031A 134 B J3EAAL GET NEXT *J* CARD 01340000
135 THIS ENTRY WILL NOT CLEAR THE 01350000

136 * BYTE AT FLG. 01360000

0042 0000 0043 138 #ENTRY DC AL2(SUBREH) ENTRY POINT ADDR. TO BE RELOCAT 01380000
0044 7878 0045 139 #IDENT DC CL2*##* TWO CHARACTER IDENT FOR ROUTINE 01390000

A
0002 141 DROP XR2 Identify your subroutines by 01410000

replacing these # signs with
identifying characters.

Figure 29 (Part 2 of 4). Sample Coding for SPECIAL Device Appendix D. Assembler Language Subroutine to RPG II Linkage 83

ERR LOC O0BJECT CODE

0017
0017

oo1C
0020

0024

0027
002A
002€

0017
0017
001C
0021
0025
002A
002D

0031
0035
0038
0038
003F
0042
0045

0048
004C

0050
0052

0054

«C

c2
36

F2
co

o1
02
02
18
10
87

0000
1878

FFFC

007D

70 O02EA

FFFC
02E6

0011
02

04
70 04

031A
0002

0011

0051
0053

0055

ADDR STMT

143
144
145
146
147
148
149
150
151

153
154
15%
156
157
158
159

161
162
163
164
165
166
167
168
169
170
171
172
173

175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

203
204

206
207

SOURCE STATEMENT

* *
* *
* THIS CONTROL CARD DETERMINES THE END ADDRESS TO BE USED *
* *
* IN THE SEARCH OF THE SYMBOL TABLE DONE BY THE NEXT CONTROL *
* -
* CARD. *
* -
* *
ENDa EQU START+X*7D* THIS TWO BYTE AREA WILL HOLD
* THE ADDRESS TO CONTROL THE
* SYMBOL TABLE SCAN. IT WILL BE
* THE ADDRESS OF THE END OF THE
* SYMBOL TABLE OR THE FIRST
* TABLE ADDRESS TABLE POINTER
* WHICH EVER IS HIGHEST

ORG X*0017*

MVC END@(2,XR1),ENDST INITIALIZE END ADDRESS TO END
* OF SYMBOL TABLE

LA X*FFFC® 9 XR2 INITIALIZE XR2 TO NEGATIVE 4

A ENDCORy XR2 POINT XR2 TO FIRST ENTRY IN
* SYMBOL TABLE

USING STLEN-1,XR2

TBF STFLAG(sXR2)yX*18* TEST IF ENTRY FOR TABLE OR
* ARRAY

JT7 sSpPCBO IF NEITHER --> JUMP

MvC END@(2,XR1)ySTIDNT (4 XR2) ELSE RESET THE END ADDRESS
spCBO B J3EAAL GO GET NEXT CARD

DROP XR2
* *
* THIS CONTROL CARD CHECKS THE SYMBOL TABLE FOR REFERENCES FROM «
* *
* CALCULATIONS. IF REFERENCED THERE OR ON *F* SPECS RELOCATION *
* : *
* OF THE DECK IS INITIATED *
* *
* *

ORG X*0017* START OF CONTROL CARD TEXT

ALC #ENT(2,XR1),RELOCF CALCULATE ENTRY ADDRESS

MvC SPCB2+3(2+XR1), ENDCOR INITIALZE LA BELOW
SPCB1 ALC SPCB2+43(2,XR1)¢STSTEP(4XR1) STEP BACK TO NEXT ENTRY

cLe SPCB2+3(2,XR1),ENDST CHECK FOR END OF SYMBOL TABLE

JL SPC83 IF BEYOND END -—~> JUMP
SPCB2 LA *-%4XR2 POINT TO ENTRY

USING STLEN-1,XR2

cLc STIDNT(24XR2) #IDN(4 XR1) IS THE IDENT CORRECT AND

TBN STFLAG(9XR2) 4811100000 THE ENTRY FOR AN EXIT LABEL

BC SPCB1l(yXR1),X*96" IF NOT CORRECT ENTRY --> LOOP

MVC STIDNT(24XR2) y #ENT(,XR1) ELSE MOVE IN ENTRY POINT

SBN STFLAG(,XR2),8°00000001* SET FLAG FOR ROUTINE FOUND

J SPCB4 START RELOCATION OF ROUTINE
SPC83 CLI FLGUsXR1) ¢ X*FF* WAS ROUTINE REFERENCED FROM
* FILE DESCRIPTION SPECS. ?

BNE J1EAAL NO - UNUSED SCAN TO NEXT DECK
sPCe4 B8 R1EAC1 YES - USED AS SPECIAL RELOCATE
#ENT oC AL2(SUBR##) ENTRY POINT FOR RELOCATING
#IDN nC CL2'#8 IDENTIFICATION
STSTEP DC 1L2'-4* NEGATIVE LENGTH OF SYMBOL
* TABLE ENTRY

your subroutine.

Replace these # signs with
the characters identifying

Figure 29 (Part 3 of 4). Sample Coding for SPECIAL Device

84

01430000
01440000
01450000
01460000
01470000
01480000
01490000
01500000
01510000

01530000
01540000
01550000
01560000
01570000
01580000
01590000

01610000
01620000
01630000
01640000
01650000
01660000
01670000
01680000
01690000
01700000
01710000
01720000
01730000

01750000
01760000
01770000
01780000
01790000
01800000
01810000
01820000

01840000
01850000
01860000
01870000
01880000
01890000
01900000
01910000
01920000
01930000
01940000
01950000
01960000
01970000
01980000
01990000
02000000
02010000

02030000
02040000

02060000
02070000

w

ERR LOC OBJECT CODE

0000

0000 E2D7CSC3C9C1D340
0008 C961D64009D6E4E3
0010 C9D5C54078784040
0018 404040404040

0000

Replace these # signs with
the characters identifying
your subroutine.

ADDR STMT

001D

0000

0000

209
210
211
212
213
214
215
216
217

219

221
221
221
221

223
224
225
226
221
228
229
230
231
232
233
234
235

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

SOURCE STATEMENT

LA R R N B X X)

2R 2K 2K 2R IR 2R B 3K 2R 3R R R J

LR 3 2 3K B 2R 3K L 2R 2% R 2K NN 3R N N J

SUBR## EQU * THIS IS THE ENTRY POINT TO THE RQUT.

THE FOLLOWING DC CONTAINS THE PROGRAM TITLE TO BE PRINTED
ON THE RPG LISTING AND SHOULD BE CHANGED TO REFLECT THE
NAME OF THE SUBROUTINE.

ORG] SIGNALS START OF TITLE

oc CL30*SPECIAL 1/0 ROUTINE ##°*

Y

Replace these # signs with
the characters identifying
your subroutine.

THE FOLLOWING CODE REPRESENTS THE FUNCTIONAL CODE FOR THE
USER ROUTINE. THE ABOVE CONTROL CARDS ASSUME THE ENTRY POINT
IS AT SUBR##. THE ENTRY POINT IS UNIQUE TO EACH SUBROUTINE.
THE ENTRY POINT IS THE LABEL ON THE ROUTINE CODE, NOT THAT

ON THE START CARD.

P

THE ROUTINE MUST MEET THE FOLLOWING REQUIREMENTS

1. WHEN ENTERED FOR INPUT OR OUTPUT (NOT EXIT) IT MUST
ACCEPT THE STANDARD SPECIAL 1/0 LINKAGE PARAMETERS.

2. WHEN ENTERED VIA AN EXIT FROM CALCULATIONS IT MUST
ACCEPT THE STANDARD EXIT LINKAGE AND PARAMETERS.

3. IT MUST INDICATE END OF FILE BY PROVIDING THE CORRECT
COMPLETION CODE IN THE DTF.

4. IF A DIFFERENT AREA IS USED FOR THE ACTUAL INPUT QR

OUTPUT BUFFER THE DATA MUST BE MOVED TO OR FROM THE ADDRESS

SUPPLIED IN THE DTF.

ORG [SIGNALS START OF ROUTINE TEXT

EEERRRS ROUTINE CODE IS PLACED HERE ERXKEERRE

LK K IR IR R N N

L2E IR 2K IR I 2N B 2R B R K B

L3R 3R B BE 2R K X K 2 BK BK IR R 3R X 3 N

END SUBR## THIS INSURES PROPER LISTING FROM RPG

Figure 29 (Part 4 of 4). Sample Coding for SPECIAL Device

02090000
02100000
02110000
02120000
02130000
02140000
02150000
02160000
02170000

02190000

02210000

02230000
02240000
02250000
02260000
02270000
02280000
02290000
02300000
02310000
02320000
02330000
02340000
02350000

02370000
02380000
02390000
02400000
02410000
02420000
02430000
02440000
02450000
02460000
02470000
02480000
02490000
02500000
02510000
02520000
02530000
02540000

02560000

02580000

02600000

02620000

Appendix D. Assembler Language Subroutine to RPG II Linkage 85

Appendix E: Assembler Language Subroutine To COBOL or FORTRAN Linkage

This section describes standard linkage conventions for use
between modules produced by the System/3 language
translators: COBOL, FORTRAN, and Basic Assembler.
Programmers using standard linkage conventions are able
to code routines in the language most appropriate to the
function being performed, with the assurance that effective .
and permanent communication has been established. Figure N
30 illustrates the standard described on the following pages.

*

* SAMPLE SYSTEM/3 LINKAGE -- MODULE A CALLS MODULE B
*
EXTRN MODB
@XR1 EQU X'Ol'
@XR2 EQU X'02'

MODA START X'0000'
*

* INITIALIZE XR1l AND XR2 TO TEST SAVING
*

L XR1l,@XR1

L XR2,@XR2

B MODB CALL MODULE B

DC AL2 (PLIST)
HPL X'6F',X'6F' HALT 00 AFTER RETURN

* PARAMETER LIST
*

PLIST EQU *
DC AL2 (SAVA) ADDRESS OF SAVE AREA
DC AL2 (PARM1) ADDRESS OF FIRST PARAMETER
DC AL2 (PARM2) ADDRESS OF SECOND PARAMETER

DC Xr1'oo"

* PARAMETERS
*

PARML EQU EQU *
DC CL5'FIRST'
PARM2 EQU * <
DC CL6 'SECOND' -
*
* SAVE AREA
*
SAVA DC XL1'BO" INDICATOR BYTE -- ASSEMBLER MAIN
DC CL6 'MODE " MODULE NAME
*
XR1 DC CL2'R1’
XR2 DC CL2'R2'
END MODA

Figure 30 (Part 1 of 2). Mlustration of Standard Linkages

86

*

@XR1
@XR2
@ARR
@IAR
*

MODB

SAMPLE SYSTEM/3 LINKAGE

EQU
EQU
EQU
EQU

ENTRY
START

ST

LA
USING
ST

ST

L

L
ALC

X'ol’
X'02'
X'08'
X'1o0'

MODB
X'0000'

SAVAR1, @XR1

SAVA, @XR1
SAVA,@XR1

SAVAR2 (,@XR1) ,@XR2
SAVART (,@XR1) ,@ARR
SAVART (,@XR1) ,@XR2

1(,@XR2) ,@XR2

-- MODULE A CALLS MODULE B

SAVE CONTENTS OF XR1l
XR1l WILL BE BASE FOR SAVE AREA

SAVE CONTENTS OF XR2

SAVE CONTENTS OF ARR

XR2 POINTS TO ADDRESS OF PARM
LIST

XR2 POINTS TO PARAMETER LIST

SAVART (,@XR1) ,TWO(,@XR1l) SET RETURN POINT 2 PAST ARR.

* BODY OF ROUTINE

*

L
L
L

* SAVE AREA

*
SAVA

SAVAR1
*
SAVAR2
*
SAVART
*

TWO
*

DC
DC
DC
DC
DC
DC

END

SAVAR2 (,@XR1) ,@XR2
SAVAR1(,@XR1l) ,@XR1
SAVART, @IAR

XLl'30'
CL6 'MODB'
XL2'00"
XL2'00'
AL2 (00)

IL2'2’

RESTORE XR2
RESTORE XR1l
RETURN

INDICATOR BYTE -- ASSEMBLER LANG

MODULE NAME

CONTENTS OF XR1l ON ENTRY TO THIS
MODULE

CONTENTS OF XR2 ON ENTRY TO THIS
MODULE

RETURN POINT

Figure 30 (Part 2 of 2). Illustration of Standard Linkages

Appendix E. Assembler Language Subroutine to COBOL or FORTRAN Linkage

87

STANDARDS

In order to be standard, linkage must be accomplished as
follows:

1. Each module must have a save area (Figure 31).

Byte Bit Description Program
0 0 0=Not a main program Subroutine
1=Main program Main program
1-3 000=FORTRAN Subroutine
001=COBOL Main program

011=Basic Assembler

4-7 Reserved

1-6 EBCDIC name, Subroutine
left justified Main program

7-8 Value of index register 1 Subroutine
(XR1) atentry

9-A Value of index register 2 Subroutine

XR2) at entry

B-C Return point in Subroutine
calling program

Note: Main program refers to the program with the highest
level of control.

Figure 31. Save Area

2. Each module that calls another module must have one
or more parameter lists (Figure 32).

Byte Description
0-1 Address of save area in this program
2-3 Address of first parameter

(2N)-(2N+1) Address of Nth parameter

(2N+2) XL1°00 to indicate end of parameter list

Note: The first two bytes as well as the end-of-parameter-list
indicator (XL1°00’) must be present in all parameter lists. If
no parameters are to be passed, the parameter list will be only
three bytes in length. In this case, byte 3 will be 0 and the
called program will indicate a parameter list length of 2.

Note: Addresses in parameter lists refer to the first byte
(byte with the lowest address) of the item.

Figure 32. Parameter List

88

When control reaches a program entry point, the
address recall register (ARR) must point to a 2-byte
field containing the address of the first byte of the
parameter list.

The Basic Assembler language code to call a COBOL
or FORTRAN subroutine would normally be as
follows:

EXTRN SUBR

B SUBR

DC AL2(PARAMS)
RETNPT EQU *

Note that the pointer to the parameter list points
to the left byte of the save area address.

Normal return is accomplished by placing in the
instruction address register (IAR) a value that is
two larger than the contents of the ARR when the
program was entered.

Index registers 1 and 2 (XR1 and XR2) must be
saved upon entry in the called program’s save
area, and restored at exit.

The address recall register need not be restored,
but the return address must be determined and
placed in the called program’s save area.

Along with the Basic Assembler, you will receive a sample
program. By executing the sample program you can verify
that the Basic Assembler is operational.

MODEL 10 AND MODEL 12 SAMPLE PROGRAM

This section describes the sample program and explains the
operating procedures necessary for executing it. General
operating procedures for the Basic Assembler are found in
the IBM System/3 Model 10 Disk System Operator's Guide,
GC21-7508, IBM System/3 Model 12 Operator's Guide,
GC21-5144, and in Part II of this manual.

Program Description
The sample program is called Prime Number Test Program.

The program reads a number from the console display
data switches, tests to see if it is a prime number, and

Appendix F: Basic Assembler Sample Programs

indicates the results of the test on the message display
unit. If the number zero is tested, the program is
terminated.

Three halt codes are used in this program to request input
and indicate whether the number is prime. They are:

Halt Code Meaning
EN Enter a number to be tested.
P The number tested is prime.
NP The number tested is not prime.

Figure 33 shows the OCL that assembles, link edits, and
executes the sample program. Figure 34 shows the sample
program statements.

Appendix F. Basic Assembler Sample Programs

89

1BM System/3 Basic Assembler Coding Form

1BM
[Frocmam If:",‘:':f) Towe 1T 1 1 1 [[1 [~=
[rrocmammn Torre | N I O I O I e,
1 2o s 6] a8 % er 12 16 15 16 17 18 19 20 21 208 202 26 27 28 20,30 31 32 33 34 3 36 37 35 39,40 41 42 43 44 45 45 47 45 45 50 51 52 53 54 55 56 57 58 o9 60 o1 62 63 64 65 66 67 68 6370 71 12 73 74 152 21 70 73 80w w2 1 wa s s 7|
/1/] IMolulalLiT] T T
‘jﬁ 0 i :
/7] [olalp| $la]SlS |elM], FlL ! :
1 1 —
/1/] |F1ILIE] IMAME|~$ISOVRICIE|, [RIEIT|A[LN]-[S], [VIN]I [T}~ [Ri2], IPIAIC K| -|R|2|R|2IR|2|, | T|RIA|C|K]S|~|5| !
! 1 |
EEEENnE NAM{E-$ ORK,RETA\M-S,UM!T—FZ,PAC]K-FZFZFZ,T AlCiK(s|- (2] ! T
i H T
E1 [L[E[[vaME[-BwloRIkI2], IR[e[T]A [N~ [S], lu[M [T]-[FlL], [PlAle [K[- [Flu [F[LF[L], [TR]Aic K]S |- |5 i Bl
3 4] : 1 ~
CloM[p[s [LIE SouRCE-$ASSPL,UNIT—RL,OPJECT-RL : !
| ! |
//] IRVIN I) 1L
0 T RERENI i .
1/ L{0[A[D ounlx,n ! ! ~
I]
F[1 L[MAMI -Fso|u{ace,msnu~-s lumr-az,P CIK[-RI2IR[2|R[2], [T[RIAlc[KIs|-[1]0 '
] 1 \ | B -
//| FULEL NAMEL-$WORK), RETAN N-[S], VN IT)-[Fiz], PIAICIK.- F 1z plzlF |2, [TIRIACIKS |- | O] ! B
N I
/7| [RIVIN| i HEEERRNERENEANEE]
! }
1 | | L
! HRIREER
|]
1 2 34 5 6|7/8 9 wnl-zlt 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 42 44 45 46 47 48 49 0 51 52'53545556515!59605!52 63 64 6566 67 68 69 70 71 72 73 747575117 78 79 8081 82 83 B4 85 A6 87|88 |89 %0 91 92 93

1BM System/3 Basic Assembler Coding Form

IBM
PROGRAM PUNCHING GRAPHIC
PROGRAMMER I DATE INSTRUCTIONS PUNCH
STATEMENT
Name Operation Operand Remarks
1 2 3 4 5 6]7 9 10 11 12{13]14 1516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52'53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 6970 71 72 73 74
I
/\/| [PHIAISIE| INIAMIE|-I$IAISISIP i
|
/1/| [O[P[TIIION|S| [M|A|P|~|X|RIE|F 1
e 0 :
/] [TNCIUulDE] INIAIME|-$|Als|SIPR], [UN]T[T]-|RI1 g
1
77T END !
1
/7] [H|AILIT] 5) | (7 : :
!
/I/] [LloAlD #lalsls|Aol, A2 (0} |
' '
/1] [RUlN] ! ‘
]
T -
]
[} -
NOTES: »
1. Specifies the location of the assembler program. 5. Name given to the output assembler object (O) program.
2. Name of assembler sample program in the source library. 6. Module name and object program name (R).
3. Specifies the source library with the sample program. 7. Specifies the object (O) program, stored on the Overlay
Linkage Editor program pack by default.
4, Library in which the output assembler object (R) module
is stored. If the system configuration does not include drive 2, references

in the OCL to F2 and R2 must be changed to specify devices
available on the system.

Figure 33. Model 10 and Model 12 Sample Program OCL

90

OPTIONS NODECK

THE LIST OF OPTICNS USED DURING THIS ASSEMRLY YS--

$ASSPR
SYMBOL

$ASSPR

$ASSPR

TYPE

MODULE

0001

NODECK,L1ST, XREF ,REL ,OBJ

EXTERNAL SYMBCL LIST

PRIME NUMBER TEST PRNGRAM

ERR LOC OBJECT CODE

0000

0000
0004
0007
0002
000€
0011
o015

0016
001A
0010
0020
0023
0027
0028
002€
0032
0026
003A
003E
0042
0046

0044
0Q04E
0052
0055
0059
0050
0060

0063
0066

0069
006C

c2
Fo
70

F2
co
84

FO
0o

FO
00

2F
87

03
87

3€
04

3€
04

72
TA

78
7F

ADDR STMY

0000

0015

SOURCE STATEMENT

VER 13. MOD 00 01/30/76 PAGE 1

VER 13. MOD 00 01/30/76 PAGE 2

* 0003
* THIS PROGRAM READS A NUMBER FROM THE CONSOLE DISPLAY DAYA SWITCHES, TFSTS IT FOR ccca
* PRIMENESS, AND INDICATES THF RESULTS OM THE MESSAGE DISPLAY UNIT. 0005
* 0006
* THERE ARE THREE HALY CCDFS USED IN THIS PROGRAM: ccer
* HALT CODE MEANING 0008
* EN ENTER A NUMBER TC BE TESTED. IF NUMBER ENTERED IS 2ERD THE 0009
* PRCGRAM TERMINATES., oc10
* 1P NUMBER IS PRIME, 0011
* NP NUMBER IS NOT PRIME. 0012
* 0C13
$ASSPR START O 0014
USING *,XR1 ESTABLISH BASE REGISTER 001¢%
LA *,XR] LCAD BASE REGISTER 0C1¢
BEGIN HPL X12F1,X*7C?* TEN' HALT 0017
SKS SENSE [4XR1) 4,0 SENSE T+HE DATA SWITCHES ocie
cLe SENSE(2,XR1) ,ZERO(, XR1) TEST INDICATION TC QUIT ocC19
JNE FREPAR NUMBER 1O TEST 0020
8 4 GC TO END OF JNe cc21
DC XL1'84° 0022
* 0023
» PREPARE THE INPUT NUMBER 0C24
PREPAR CLC SENSE(24XR1},THREE(4XR1) TESYT FOR ONE,TWO AND THREE 0025
JNH PRIME# CALL ONE, TWO AND THREE PRIME cC26
T8N SENSE(yXR1),X*01" TEST FOR EVEN 0c27
JF NPRIME EVEN, NCT PRIME 0028
wvC TESTH(2,XR1) , TWO(4 XR1) 0c2s
MVC END#41(2, XR1), SENSE(,XR1) DIVIDE INPUT BY TWC 0030
Wi END#-1(,XR1),0 TO USE FOR END TESTING 0031
ALC END#41(3,XR1) +ENO#+1(,XR1) 0032
ac ENC#+41(3,XR1),END#+1(,XR1) 0033
AMC END#41(3,XR1) ,END#+1 (,XR1) 0C34
ALC END#41(3,XR1),END#+1(,XR1) 0C2s
AMC ENCH#41(3,XR1),ENDR*1(,XR]) 003¢
ALC END#+1(3,XR1),END#+1 (,XR1) 0C37
ALC END#+41(3,XR1),END#+1(, XR1) 0038
* 0039
* MAIN TEST LOOP 0C4C
LCOPST ALC TESTH#(2,XR1)4ONE(,XR1) INCREMENT TEST 0041
ctc TEST#{24+XR1) . END#(,XR1) TEST FOR COMPLETE 0c4a2
JH PRIME# CCMPLFTE, CALL IT PRIME 0042
mMvC TEMP AR (24 XR1)y SENSE (4 XR1) MAKE COPY AND 0044
SUBTR SLC TEMPAR(2,XR1) 4 TEST#((XR1) FIND REMAINDER 0CAS
|-14 SUBTR (s XR1) BY SUBTRACTING 0046
BAN2 LCCPST(,XPL) REMAINDER NOT ZERO 0047
* 0C4e
* NUMBER NOT PRIME 0049
NPRIME HPL X'3E',X*2F" NOT PRIME (NP) HALT 0050
8 BEGIN(,XR1) GC BACK TO BEGINING ([.1 3%
* 0052
* NUMBER IS PRLIVME ces
PRIMEN HPL X*3E*,X*03* IS PRIME (IP) HALY 0054
e BECINt,XR1) GO BACK TO BEGINING 005%

Figure 34 (Part 1 of 2). Listing of Statements in Model 10 and Model 12 Basic Assembler Sample Program

Appendix F. Basic Assembler Sample Programs

91

SASSPR PRIME NUMBER TEST PROGRAM

ERR LOC OBJECT CODE ADDR STMY SOURCE STATEMERT VER 13. MOD 00 01/30/76 PAGE 3
56 * 0cs?
57 * CATA AREA 0058
006F 0000 CO070 58 ZERO DC 1L200° BINARY ZERO 0059
0071 0001 0072 59 ONE oc XL290001¢ CNE ocec
0073 0002 0074 60 TWC cc BL2'00000010* WO 0061
0075 0003 007¢ €1 THREE DC AL2(3) THREF cce2
0077 0078 62 SENSE DS cL2 00€&2
0079 007A 63 END# DS cL2 0064
0078 007R 64 oS cLl 0065
007¢C 007D 65 TEMPAR CS cL2 006€
007€ 007F 66 TEST# DS cL2 : 0067
0001 €7 XR1 EOU 1 BASE RECISTER 00€€
0000 68 END $ASSPR 0c6s
TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY = 0 -
-
SASSPR CROSS REFERENCE
SYMBOL LEN VALUE DEFN REFERENCES VER 13. MOD 00 01/30/76 PAGE 4

$ASSPR 001 0000 0013 0068

BEGIN 003 0004 0016 0050 0054

END# 002 007A 00¢3 €029% 0030%* 0031 0031* 0032 0032* 0033 0033% 0034 0034*%* 0035 0035%*
0036 003€&#* C037 CC27* 0041

LOOPST 004 004A 0040 0046

NPRIME 003 00&é3 CC4S 0027

ONE 002 0072 0059 0040

PREPAR 004 0016 0024 0019

PRIME# 003 0069 0053 0025 0042

SENSE 002 0078 0062 0017+ 0018 CO024 0026 0029 0042

SUBTR 004 0059 0C44 0045

TEMPAR 002 007D 0065 C043% C044*

TEST# 002 O0O7F 0066 0028% 0040%* 0041 0044

THREE 002 0076 00€1 €024

WO 002 0074 0C60 0028

XR1 0C1 0001 0067 0014 0015* 0017 0018 0018 0024 0024 0026 0028 0028 0C29 0029
0020 0021 0031 C€C32 0032 0033 0033 0034 0034 0035 0035 0036
0036 0037 €027 CC40 0C4C CC41 CC41 0043 0043 0044 0044 0045
0046 0050 0054

ZERO 002 0070 ccCse 0013

TOTAL STATEMENTS IN ERROR TN THIS ASSEMBLY =]
01105 I THE CODE LENGTH OF $ASSPR IS 128 DECIMAL.

0OL103 T TCTAL NUMBER OF LIBRARY SECTCRS RECUIRED IS 2
NAME-$ASSPR,PACK-RIR1IR 1, UNIT=-R1,RETAIN=-T,LIBRARY-R,CATEGORY~000

Figure 34 (Part 2 of 2). Listing of Statements in Model 10 and Model 12 Basic Assembler Sample Program

92

MODEL 15 SAMPLE PROGRAM

This section describes the sample program and explains the
operating procedures necessary for executing it. General
operating procedures for the Basic Assembler are found in
the IBM System/3 Model 15 Operator’s Guide, GC21-5075
and in Part II of this manual.

Program Description

The sample program is called System Input Device List
Program. The program reads records from the system input
device and lists them on the system printer. Statements

are read and listed until one of the delimiters (/*,/&, or

/) is encountered. If the delimiter is /*, another file can

be listed under operator control.

There are three messages displayed by this program:

Message Meaning

EOF ON SYSIN End of file encountered on the
system input device. More files
can be printed if the EOF condi-
tion is caused by /*. The operator
replies P to print another file or

C to cancel.

PRINTER ERROR A permanent printer error has
occurred. The program issues the
message and then goes to end of
job. (The message is displayed and
then removed when end of job is
reached. However, the message is
in the system history area and may
be displayed from there.)

SYSIN ERROR A permanent system input device
error has occurred. The program
issues.the message and then goes to
end of job. (The message is dis-
played and then removed when end
of job is reached. However, the
message is in the system history area
and may be displayed from there.)

The sample program uses Model 15 macros and therefore
the assembly step must be preceded by a macro processor
step.

Figure 35 shows the OCL that assembles, link edits, and
executes the sample program. Figure 36 shows the sample
program statements.

Appendix F. Basic Assembler Sample Programs 93

1BM System/3 Basic Assembler Coding Form

IBM
I PROGRAM]runcnmc [crarric | | | | [I [[pace oF
!TOGRAWEN Inns I INSTRUCTIONS I PUNCH l I l I I I l J CARD ELECTRO NUMBER
STATEMENT] entification-
1 2":": 5 6[7 ﬂonp.:.olk::li 13414 1516 17 18 1920 21 nog';:dzsxzvnn:n:nnn:a:sunu:unn 424305647005)5‘n0955u57ﬂgm:amu65ﬂﬂlsﬂn’"727374757‘777.7!')“.2““'5.557“”'09!0193“
/] snlr{g__r_g{m I 5 }
1
/1 Lo P v.gr :
| 4 1
111 FITLE -I8/5/OURCIE], RETVLINI=IT], UNE TI- K2, PIACK - RZ[R2]R2], TIRACIKS 6] 1
(1] icopMPlL ouh%:lﬁ@s%‘t? \Tr-Fad) ! i
/] Rl i !
2 ! i
T T
] 1
[] T
! 1
1 1 -
| 1
//| |L|OAD GI I"I:Fli i i
1 1
Jl/] [sWizivici J.qua_mxxx ! !]
| 1
/7] FiziLle] Mial ;}ggﬂgl_h ETATN-/s|, UTiT]- R3], IPlale| - RI2[RI2IR2], [TRIAK KIS |12 i
iniiin ANNRRRANNNARARANNARN AN AR AR !
7/ FILIK mnjlgjl; Ri2|, RIEITA f‘ “IHQ’I"METK-MWM m_;#p_c ! -
i 4 |
~[5lslo Z - - t]
717 rnngg'ggg i R ggqg;n S|, INZ(T]- |2, [Plalcid- [WalRi2] ; :
1/ caﬂgg{g & ! E
]
1 2 34 s 6[7]8 9 10m 12 uIts'unuumnunnann:lnm:n:nu:uzs:n:nnnd)u 42 42 44 45 46 47 48 49 50 51 wls:ussuﬂuueonnuuuune‘nmn72737vt1snlnnnmnununuﬂ B9 90 91 92 93 94
m 1BM System/3 Basic Assembler Coding Form
I PROGRAM l’W"'“G lcnrmc | [| | [| | oF
rmoc.nmusn Ibns l'"s"w"‘)"‘ Imm | [| | |] | ‘unnnscmouwusn
STATENENT -] [Eettcaton:
_L;N:m: k3 6'7 Go:':;"?:‘ﬂ! 14 15 16 17 18 19 20 21 zzog;';:dzszsnnzs:n:- 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52:)5‘555657!!.‘;%&2 uyesuevunmn 72737475?.777.7!”".20.‘5“07.annuﬂ
/I/] IRIU|N o :
/17| [L]olalD{ [3loj FriNiK], [l !
[[H
1/ [FlL]E mml -I[QwIOJIRK,IRETAIN-ls.UNI‘I‘-D.I.,{PACK~DLH.LU.L,TIR c,'KISI~1 !
! 1
1171 [F|l k] NAME]-[3]s]oluRc]E], IRIE TIAIN]-|s], lulMET]|- [R]2], PlAlci]- zﬂzaz,n‘acqg;gg !
> : .
(/] RN |
L 4 !
/17| |P|HinlsiE| NiA] E-iAl lslo |
i]
[0 0!5!1. |s] HALP:!HEF L i
1 1
e B o r |
1 [}
1 zlfcllcujgpg_p«_}q_gg-ss PR(T], uivix|v |- Fl1] ! !
1
711 [END !
oAb S :
71/ 1T §Als FIL \ '
N ! :
/] [RIuN| ! E -
1
1 2 3‘15I0!78 9 10 11 12[131 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4 44 45 46 47 48 49 50 51 Hlullﬁﬂhuuwl!l?ﬂu“."’.-mﬂn737‘7571‘777‘?.”!! 82 83 84 865 86 87§88 [BO 90 91 92 93 %4 § A
Notes:

1. Specifies the program pack.

5. Module name and object program name (R).

2. Name of the assembler sample program in the source 6. Specifies the system pack.

library.

If the system configuration does not include the 5444

3. Library in which the output assembler object (R) drive 2 or the 5445 drive 1, references in the OCL to R2

module is stored.

4. Name given to the output assembler object (O)

program.
Figure 35. Model 15 Sample Program OCL

94

and D1 must be changed to specify devices available on
the system.

OPTIONS NODECK

OBJECT TO L IBRARY DNLY 00010000

THE LIST OF OPTIONS USED DURING THIS ASSEMBLY [S~- NODECK,LIST XREF,REL,08J

$ASSPR
SYMBIL

$SASSPR
SSLPRT

$ASSPR

ERR LOC UBJECT COOE

TYPE

MODULE

EXTRN

EXTERNAL SYMBOL LIST

VER Ol, MOD 00 11~09-73 PAGE 1

ADDR STMT SOURCE STATEMENT VER 21, ¥)) 00 11-29-73 PAGE 2
1 ICTL 1,71
2 ISEQ 73,80
3 PRINT NDGEN,NIDATA

$ASSPR SYSTEM INPUT DEVICE (SYSIN) LIST PROGRAM

ERR LOC O0OBJECT CODE

4000

4000

4004

4J0F
4012
4015

4018

4018

4022
4025
4J28
©028
402€E
4031
4034
4037
4038

4042
4045
4048
4048
4J4E
4051
4054

c2

D2

BC
8C
7C

7c

D2

BD
F2
80
F2
80
F2
8C
6C
D2

8D
F2
B8C
80
F2
8C
co

()3

02

01
40
)}

o1

0001
408C
408C

07

13
OoF
90

17

00

20
30
00
53
00
3C
00
14 04
27

OE
32
10
0E
03
10
4018

ADDR STMT

28
29
30
33
36
37
38

40
41

43
44
45

49

50
51
52
53
54
55
56
57
58
60
61
62
63
64
65
66

SOURCE STATEMENT VER 01, M0) 00 11-09-73 PAGE 3

* THIS PROGRAM READS A FILE FROM THE SYSTEM INPUT DEVICE AND LISTS
* IT ON THE PRINTER.

*

* THERE ARE THREE MESSAGES ISSUED BY THIS PRIGRAM:

* ME SSAGE TYPE MEANING

* *EQF ON SYSIN' WTOR FND OF FILE ENCOUNTERED UN SYSIN.

* MORE FILES MAY BE PRINTED IF THE

* EOF CONDITION IS CAUSED BY A */%¢,
* THE JPERATOR REPLYS TO THIS MESSAGE
* ARE 'P*' TO PRINT ANOTHER FILE AND

* ' TO ZANCEL AND 30 TO EOJ.

* -VPRINTER ERROR' ATD THERE HAS BEEN A PERMANENT PRINTER

* ERROR. THE PROGRAM ISSJES THE

* MESSAGE AND GOFS TO END OF JOB.

* *SYSIN ERRIR! AT THERE HAS BEEN A PEIMANENT SYSIN

* ERROR, THE PROGRAM ISSUES THE

* MESSAGE AND GJES T2 END OF JO8.

$ASSPR START X'4000'

EXTRN $SLPRT PRINTER DATA MANAGEMENT
USING BASE,BRG ESTABLISH A 3ASF REGISTER
LA BASE BRG FOR THE DATA AREAS
* PREPARE THE PRINTER FILE FOR USF
LA PRNDTF{ 4BRG) 4 $DTF
* $ALOC ALLLOCATE PRINTFR FILE
* $OPEN JPEN PRINTER FILE
MVI $OFSPA(4$DTF),1 SET FOR SINGLE SPACE
MVI $OF3PC(,$NTF),$0CPRT SET GP-CODE TU PRINT
MVI SYSINL+$SRFCT(,BRG), $SRRDF SET SYSIN DJP-C3DE FIR 1IST BUFF
* PREPARE TO PRINT A NEW FILE

FILES MVI PRNDTF+$DFSKB(,RRG),1 SET T3 SXIP BEFJRE FIRST PRINT

* READ FROM SYSIN AND PRINT UNTIL END UF FILE
FILEL LA SYSINL{,+BRG),SYS

* $READ OPC-N READ FROM SYSIN
CcLI $SRFCT(,SYS) 4 $SREDF TEST FOR EOF (V7% 40 /80,0 /00
JE EOF
LI $SRFCT(4SYS) y$SRENY TEST FOR EOJ ('78%%7.%)
JE EQJ
cLl $SRFCT(4,SYS)y $SRERR TEST FIR SYSIN ERROR
JE SYSER
MVI $SRFCT(,5YS), $S2RID SET FOR NEXT SYSIN READ
MVC PRNDTF+S$NDFLRA(24BRG) 4 $SRBF2(,SYS) POINT TO CURRENT RECHRD
LA PRNDTF(,33G),$DTF
* $PUTP DEV-1403 PRINT THE CURRENT RECIRD
CLI $OFCMP(,$0TF) ,$ZPPER TEST FOR PRINTER FRROR
JE PRNERR
MVI $DFSKB{,$DTF),0 SFT FJR N3 SKIP 3EFORE
cLt $NDFCMP{,$DTF) ,$CPUVF TEST FOR PAGE OVERFLOW
JNE NOSKIP
MVI $DFSKB(,$NTF),1 SET FOR SKIP TO LINE DJNE
NOSKIP B FILEL

Figure 36 (Part 1 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

30020700
30030)00
J0040090

00062000
00070000
J0089009
30090000
00100500
00110900
00120000
J0130000
00140902
00150000
00169000
00170000
00180000
00190000
002009200
00212900
00220000

20240900
30250000
00260900
90272000

00290200
00300000
30310000
00320000
00330000
003490090
00350000

20373100
903380100

00400202
004102300
30420000
03430700
00440000
00450200
30460200
004702300
00480000
004900090
00500300
20513700
20520000
03532200
3235490100
00550000
00569700
005702990
00580009
J0590209

Appendix F. Basic Assembler Sample Programs 95

SASSPR SYSTEM INPUT DEVICE (SYSIN) LIST PROGRAM

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT VER 01, 3D 00 11-09-73 PAGE 4

68 * END OF FILE ON SYSIN 00610000
€058 D2 02 28 69 EOF LA EOFMSG(4+8RG),LOG 00620000
70 * $LOG WTOR EJDF MESSAGE 00630000
&05F 7D C3 37 74 cLI REPLY{4BRG),C*C* OPERATOR SAY CANCEL 00640000
4062 F2 81 1C 75 JE EQJ 00650000
4065 7D D7 37 76 cLI REPLY (4 BRG),C*P* OPERATOR SAY PRINT ANOTHER 00660000
4068 CO 81 4018 17 BE FILES 00670000
406C CO 87 4058 78 8 EOF INVALID REPLY, TRY AGAIN 00680000
80 * ERROR ON SYSIN 00700000
4070 D2 02 38 81 SYSER LA SERMSG{+BRG)LOG 00710000
82 * $LOG AT SYSIN ERROR MESSAGE 00720000
4077 F2 87 07 86 J EQJ GO TO EOJ 00730000
88 * ERROR ON PRINTER 00750000
407A D2 02 44 89 PRNERR LA PERMSG(4BRG) ,LOG 00760000
90 * $LOG WTD PRINTER ERIOR MESSAGE 00770000

95 * END OF JOB ROUTINE 00790000 -
4081 96 EOJ EQU * 00800000
4081 D2 02 07 97 LA PRNDTF({,BRG),y $OTF 00810000
98 * $CLOS CLOSE PRINTER FILE 00820000

101 * $E0J 50 TO EOJ 00830000 -

$ASSPR SYSTEM INPUT DEVICE (SYSIN) LIST PROGRAM

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT VER 01, MOD 00 11-09-73 PAGE 5
105 * CONSTANTS AND DATA AREAS 00850000
408C 106 BASE EQU * BASE REGISTER ADDRESS 00860000
108 * SYSIN TABLES 00880000
109 *YSINL S$RLST BUFL-BUFFR1,BUF2-3UFFR2y SYSIN PARAMETER LIST X00890000
110 * WORK-WORKAR 00900000
116 * $RLSD SYSIN EQUATES 00910000
133 * PRINT FILE TABLES 00930000
134 *RNDTF $DTFP DEV-1403,RCAD-0,10BA-PRNIOB,y PRINT FILE DTF X00940000
135 = I0AA-PRNBUF,RECL-96, X00950000
136 * OVFL-60,PAGE-66 00960000
160 * $DTFO D1403-Y PRINTER DTF DISPLACEMENTS 00970000
223 * SYSTEM LOG TABLES 00990000
224 *0FMSG $LWTO COMP-AS yHALT-AM,SUBH-PGyTLEN-12y SYSIN EOF WTOR X01000000
225 * TADR-EOFMGC yREPLY-YRLEN-1,RADR-REPLY 01010000
€0C3 E7 40C3 238 REPLY DC cLi'x* WTOR REPLY 01020000
239 *ERMSG $LWTD COMP-AS,HALT-AM,SUBH-PG,TLEN~11, SYSIN ERROR WTO X01030000
240 * TADR-SERMGC 01040000
251 *ERMSG SLWTD COMP-AS ,4ALT-AMySUBH-PGsTLEN-13, PRINTER ERROR WTO X01050000
252 * TADR-PERMGC 01060000
40DC 263 EOFMGC EQU * 01070000
400C C506C640D06D540E2 40ET 264 [+ CLL2'EOF ON SYSIN® 01080000
40E8 265 SERMGC EQU * 01090000
40E8 E2EBE2C9D540CS5D9 40F2 266 219 CL11*SYSIN ERROR® 01100000
40F3 267 PERMGC EQU * 01110000
40F3 DTD9C9D5E3C5D940 40FF 268 oC CL13'PRINTER ERROR® 01120000
270 * SYSIN BUFFER AND WORK AREAS 01140000
4100 271 ORG *,128 ORG TO REQUIRED BOUNDARY 01150000
4100 272 BUFFR1 EQU * BUFFER ONE 01160000
4100 0000000000000000 4L7F 273 ncC XL128¢0° 01170000
4180 274 BUFFR2 EQU * BUFFER TWO 01180000 .
4180 0000000000000000 41FF 275 DC XL128°0°* 01190000
4200 276 WORKAR EQU * WORK AREA 01200000
4200 0000000000000000 422 277 DC XL4T'0" 01210000 -
279 & PRINTER BUFFER AND WORK AREAS 01230000 .
427C 280 ORG *,25649X'7C" ORG TO REQUIRED BOUNDARY 01240000
427C 281 PRNBUF EQU * PRINTER BUFFER 01250000
427C 4040404040404040 4305 282 1108 cL13s* ¢ 01260000
4306 283 PRNIOB EQU * PRINTER 108 01270000
4306 0000000000000000 4337 284 DC XL50t0° 01280000
286 * REGISTER LABELS 01300000
0001 287 BRG EQU 1 BASE REGISTER 01310000
0002 288 SYS EQU 2 SYSIN PARAMETFR LIST POINTER 01320000
0002 289 LOG EQU 2 SYSLOG PARAMETER LIST POINTER 01330000
4000 290 END $ASSPR 01340000
TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY-- 0
TOTAL SEQUENCE ERRORS IN THIS ASSEMBLY-- 0o

Figure 36 (Part 2 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

96 S

$ASSPR
SYMBOL

$SLPRT
$ASSPR
$A1CDI
$ALDAT
$ALH56
$ALINT
$SALMFM
$ALPCH
$ALPRT
$A1PR2
$ALRD
$A2ALL
$SA2AMP
$A2EDF
$A2HUC
$A2IND
$A2MBF
$A20PN
$A2SIN
$CPCND
$CPEOF
$CPOVF
$CPPER
$CPSUC
$DFARR
$OFAT1
$DFAT2
$DFCHA
$DFCHB
$DFCMP
$DFDEV
$DFLP
SOFLRA
$DFMSK
$DFOPC
$OFOVF
$OFPGS
$DFPIB
$OFPIO
$DFPOS
$DFPQ
$DFPR
$OFPRL
$DFSKA
$DFSKB
$OFSPA
$DFSPB
$DFUPS
$DFXRS
$OTF
$O0CPRT
$SRBF1
$SRBF2
$SREOF
$SREDJ
$SRERR

LEN

00l
001
001
001
001
ool
001
00l
001
001
001
001
001
00l
001
001
ool
001
001
001
Q01
001
001
001
001
001
001
001
001
001
ool
001
001
o01
001
001
001
ool
001
001
001
001
001
ool
001l
001
001
ool
001
001
Q01
001
001
00l
001
001

VALUE

0001
4000
0010
0001
0002
0004
0008
0020
0040
0001
0080
0040
0004
0008
0002
0080
0010
0001
0020
0010
0042
0048
0041
0040
0009
0002
0003
0005
0007
000E
0000
0010
0000
001F
000F
o01C
0020
0017
0019
001E
0014
0015
o018
0012
0010
0013
0011
0001
0008
0002
0040
0002
0004
0050
0080
0060

DEFN

0024
0023
0193
0198
0196
0195
0194
0192
0191
0197
0190
0203
0208
0206
0207
0202
0205
0209
0204
0214
0217
0213
0216
0215
0168
0164
0165
0166
0167
oL71
0162
0183
0170
0185
0172
o182
0186
o179
0180
0184
0177
0178
0181
0175
0173
0176
0174
0163
0169
o161
0221
o118
0119
0129
0131
0130

CROSS REFERENCE

REFERENCES VER 01, M2J 02 11-)9-73 PAGE 5

0059
0290

0063
0060

2060 0063

0056%

0037%

0041* 0062*% 0065%
0036%*

0029% 0036 0037 0057% 0060 2052 2063 0065
0037

0056
0049
0051
0053

J097*

Figure 36 (Part 3 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

Appendix F. Basic Assembler Sample Programs

97

$ASSPR CROSS REFERENCE

SYMBOL LEN VALUE DEFN REFERENCES VER 01, MOD 00 11-209-73 PAGE 7

$SRFCT 001 0000 0117 0038%* J049 0051 0053 0U55*

$SRNOM 001 0040 0128

$SRRD 001 0009 0126

$SRROD 001 0000 0123 0055

$SRROF 001 0001 0124 0038

$SRRDL 001 0002 0125

$SRWRK 001 0006 0120

BASE 001 408C 0106 0025 0026

BRG 001 0001 0287 0025 0026* 0029 0038 0041 00%% 0056 0057 0069 023074 0076 0081
0089 0097

BUFFR1 001 4100 0272 0113

BUFFR2 001 4180 0274 0ll4

EOF 003 4058 0069 0050 0078

EOFMGC 001 40DC 0263 0235 .
EOQOFMSG 001 4084 0227 Q0069

EJJ 001 4081 0096 0052 0075 0086

FILEL 303 4018 0044 0066

FILES 003 4018 0041 0077 -
LOG 001 0002 0289 0069% 0081% 0089% =

NOSKIP 004 4054 0066 0064

PERMGC 001 40F3 0267 0262

PERMSG 001 4000 0254 0089

PRNBUF 001 427C 0281 0153 -
PRNDTF 001 4093 0137 0029 J041* 0056% 0057 0097
PRNERR)03 407A 0089 0061

PRNIOB 001 4306 0283 0152

REPLY 001 40C3 0238 0074 0076 0237

SERMGC 001 40E8 0265 9250

SERMSG 001 40C4 0242 J081

SYS 001 0002 0288 0044%* 0049 0051 0053 0055 0056
SYSER 003 4070 0081 0054

SYSINL 001 408C 0111 0038% 0044

WORKAR 001 4200 0276 0l15

TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY-- 0

TOTAL SEQUENCE ERRORS IN THIS ASSEMBLY-- 0

0L105 I THE CUDE LENGTH OF $ASSPR IS 824 DECIMAL.,
OL103 I TOTAL NUMBER OF LIBRARY SECTORS REQUIRED IS 5
NAME-$ASSPR,PACK-R1R1R1 yUNIT-R1,RETAIN-T, LIBRARY-R,CATEGORY-)0)

Figure 36 (Part 4 of 4). Listing of Statements in Model 15 Basic Assembler Sample Program.

98

Appendix G: IBM 1255 Magnetic Character Reader Support (Models 12 and 15 Only)

Support is provided by the following IBM-supplied
subroutines:

e SUBRO7 — 1255 (Model 15 only)

e SUBROS8 — 1255 (Model 12 and Model 15)

e SUBRO09 — 1419 (Model 12 and Model 15)

For detailed information concerning this support, see the
IBM System /3 Models 12 and 15 1255 and 1419 Magnetic

Character Reader Reference and Program Logic Manual,
GC21-5132.

Appendix G. IBM 1255 Magnetic Character Reader Support (Models 12 and 15) 99

100 (101-104 deleted)

$WORK 2 file 34
// CEND card 33
// SWITCH statement 31

absolute displacements 12
absolute expressions 7
absolute object program 28
address constant 18
addressing 12
base-register displacement method 12
data addressing 13
direct method 12
instruction addressing 13
relative addressing technique 12
symbolic (direct) 12

assembler
coding conventions 8
coding form 9

functions 1
instruction statements 17
data definition 18
fields 8
format 8
listing control instructions 20
program control instructions 22
symbol definition instruction 17
listing 29
assembler language subroutines
linkage to COBOL 86
linkage to FORTRAN 86
linkage to RPGII 71
placing in R library 36
assembling a source program 28
asterisk
use in comment statement 10
use as location counter reference 6
attributes
length atribute 14
value attribute 14

base address 12

base register 12

base-register displacement addressing 12
basic assembler sample program 89
beginning column 25

binary constant 6, 19

binary self-defining term 6

calling a source program 31
category level 27
CATG operand 27
character
constants 19
self-defining terms 6
COBOL linkage 86

Index

code
control 43
mnemonic 1
operation 9,43
machine 47
mnemonic 1
Qcode 17,43
coding conventions, assembler 8
coding form, assembler 9
coding sample for SPECIAL device 82
COMLx operands 29
comment statement 10
complement (two’s complement form) 19
constant (see also self-defining term)
address 18
binary 19
character 19
data 18
decimal 19
define constant (DC) 18
hexadecimal 19
integer 19
negative (see integer constant)
paddingof 19
truncation of 19
control card code for assembler subroutine 76
control statements 27
control cards, LDG program (see Library Deck Generator
parameter card)
control section length 27
control code 43
conversion, punch 33
cross reference data 35
cross reference listing 28, 40

data
addressing 13
constant 18

data defining instructions (DC and DS) 18
data file requirements 34
DC (define constant) instruction 18
decimal constant 19
decimal self-defining term §
deck, object 17
define constant (DC) instruction 18
define storage (DS) instruction 19
diagnostics 40

table of 69
direct addressing 12
displacement 12

absolute 12

relocatable 12
DROP statement 25
DS (define storage) instruction 19
duplication factor

with DC instruction 18

with DS instruction 19

Index

105

EJECT statement 20

END record 33

END statement 26

ending column (see also ICTL statement) 25

entry (see fields)

entry point 25

ENTRY statgment 25

EQU (equate symbol) statement 17

error code 69

error conditions, LDG program 81

error information 35

ESL record 32

explicit length 15

expression 7
absolute 7
evaluation of 7
multi-term 7
relocatable 7
rules for coding 7

extended mnemonic codes

external symbol list 39
table size 42

EXTRN statement 25

EXTRN subtype 25
specifying 27

14,48

fields(s)
assembler statement 8

identification-sequence 10

name 10

operand (machine instructions) 14
operation 10

remark 10
files

source 34

object 34

work 34
format(s)

assembler statement 8
machine-instruction statement 13, 43
operand 14

format control, input 22

FORTRAN linkage 86

groups machine-instruction operand 15

HEADER record 32

HEADERS statement 27
hexadecimal constants 19
hexadecimal self-defining terms 6

ICTL (input format control) statement 22
identification-sequence entry (field) (see also ISEQ statement) 10
I-field (immediate data) 16

implied length 15

input format control 22
input sequence checking (ISEQ) statement 22
instruction(s)

addressing 12

assembler instruction statements 17

data defining 18

listing control 20

106

instruction(s) (continued)
machine-instruction statements 13
program control 22

symbol definition (EQU) 17
types 17
integer constant 19
intermediate text 34
ISEQ (input sequence checking) statement 22

Jcards 77

Kcards 77

label (see symbol and name entry)
language
machine (see also machine instruction formats)
RPGII 71
symbolic 1
Lcards 78
length(s)
attribute 14
control section 27
explicit 15
implied 15
subfield 14
of data definition instructions 18
Library Deck Generator parameter card 80
Library Deck Generator Program 76
linking
to COBOL 86
to FORTRAN 86
toRPGII 71
listing control instructions 20
listings, program 28, 38
loading the assembler 29
location counter 6
control of (see also START and ORG) 13
location counter reference (*) (see also terms) 6

machine-instruction(s) 13
format 43
list of 43
mnemonic codes 14
operands 14
machine language 1, 49
macro processor 30
main storage requirements 2
messages 69
mnemonic operation codes 1
for assembler instruction statements 67
for machine-instruction statements 47
module category level 27
module name 23

name entry (field) 10

name, module 23

negative values (see integer constant)
NOREL 28

NOOBJ 28

1

OBJ 28
object deck 28
object file (SWORK) 34
object operand 31
object program 4, 32
object program, placing in R library
direct 36
punched 36
OCL statements 29
one-address format (machine-instructions) 43
Op code (machine-instruction formats) 43
operand(s)
entry (field) 10

fields 14
formats 15
groups 15

machine-instruction 14
subfields 14
of DC and DS instructions 18

operation procedures 36
operation codes

extended mnemonic 13

mnemonic (See mnemonic operation codes)

Op code (machine instructions) 43
operation control language statements 29
operation entry (field) 10
OPTIONS 36
OPTIONS statement 27
ORG (set location counter) instruction 24

PRINT (print optional data) instruction 22
program control instructions 22

program relocation 4

punch conversion 33

Qcode 17,43

record formats 32
REL 28
relative addressing 12
relocatable
displacements 12
expressions 7
terms 7
relocation of programs 4
remark entry (field) 10
representation of negative values (see integer constant)

requirements
data file 34
main storage 1
system 1
restrictions, module name 23
RPGII
linkage to assembler language subroutine 71

sample program

basic assembler 89

RPG Il linkage 71

SPECIAL subroutine 82
segment, assembler statement 8
self-defining term S

sequence 8
checking (ISEQ) statement 22
entry (field) 8
source file 34
source and object listing 39
source program, from macro processor 31
source statement (assembler instruction statement) 1
SPACE (space listing) statement 21
special character(s)
in symbols (name entries) 5

START (start assembly) statement 23
statement(s)
assembler instruction 17
fieldsof 8
format of 8
types 1
comment 10
machine instruction 13
storage
addressing 4

definition (DS) instruction 19
relocationin 4
requirements 2

subfield(s)
constant (DC instruction) 18
duplication factor 18

length 18
of machine instruction operands 14
type 18

subroutine linkage 71, 86

SUBRO7 99

subtype, EXTRN 25

subtype, specifying 27

symbol (see also name entry) S
definition instruction (EQU) 17
mnemonic (see mnemonic operation codes)
rules for coding 5
table entries 35

symbolic
addressing (see direct addressing)
language 1

system requirements 1

terms §

text, intermediate 34

TEXT-RLD records 33

TITLE (identify assembly output) statement 20
truncation of constants (see DC instruction)
two-operand format 15

two’s complement form (see integer constant)

USING statement 24
Ul indicator 31

value attribute 14

work file 34

1255 support 99
3741 Data Station 1

Index

107

108

| [|
THTH))
|l

"
.|||“I
il
®

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(International)

SC21-7509-7

[-60SL-12DS ‘V'S'N Ul palulld (LZ-€S "ON 8jid) 99uaIdjay Jajquiassy diseq £/walsAg NGl

.
>4 e
! ' A ~*. Lok
3 L4

- READER’S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about |BM systems, changes in IBM programming
support, requests for additional publications, etc, should be directed to your |BM representative or to the IBM branch office nearest your location.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Page Number Comment

IBM may use and distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You may, Name
of course, continue to use the information you supply.

Address

Jenueyy aduaiaey

13jquiassy aiseg

€/walsAs NG|

L-60SL-120S

$C21-7509-7

Fold Fold
| " || | FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.
L]
T
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY |F MAILED IN THE UNITED STATES R
. ‘ N
g POSTAGE WILL BE PAID BY . . . —
g A
R
I
IBM Corporation o __
General Systems Division E——
Development Laboratory C—
Publications, Dept. 245 ——

Rochester, Minnesota 55901

s

¥
A

International Business Machines Corporation

L-60GL-12€3S "V'S’N ul paluld (LZ-ES "ON 3jid) aduaiajay Ja|quiassy diseqg g/walsAs WAl

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(International)

—

