CPU Clock .
L o <
CycleControls . . . ‘. ., ° .
v e :". * .

Bridge Basic Storage Module . . .
s T
Storage Principles, .
S
5410 BSMs

Addxessing-;System'. . e

Roadout .

.'M"— -

M H
16K or 32K BSM Byte Comml o { .

.
¢ .

’wa’a 2]&

'Contents

o . il ‘ fl o
KCHAPTER 1. INTRODUGTION . . IR A14,1-1 -
System Compc;nents 1-2
S410 Processing Unit «CPUY 1-2
S424 MFCU . . .= 1-3
"~ $203 Primcr':. . s, - 1-3
- . Sae -
S444Disk Drive . ¥ ¢ 13
MZchine Language . 1.3
Nuraber Systems. - i 1-3
Number Conversions ha e e e 1-5
‘Data Formits St 1-6
- . L e s
(‘PJJ Opera,uon e ;., e 1-7
Bndgx Basxc Storagc Mudule 1.7
+ Instruetion and E.\ecutc Cycle '.“: 18
f s e , ST
;«ﬁgg_uenﬁ;l Instruction Execution . __,~". .7, 1-9
‘Branching 1-10
“1/0 Data Transfer . ~ 1-11
Addressing - VA e 1-11
 Instruction Formats. 1112
Instructiopd 1-14
TDataFlow’ A 1-16
. / . . %
Parity Checking . . O
/ s
CHAPTER 2. FUNCTIOWAL UNITS JRBIS T
. S R

217‘- :

o
—

FRAME LOCATION TABLE
Page : | Frame | Card
i1-1 0 A4 1A
12 A5 141
13 A6 11
15 18% 11
1-6 BOl . 1-1
17 BO2 1-]
1-8 BO3 1-1

19 804 1-1.
f—lo B05. 1-1
1-11 BOS . 1-1
n-12 Bo7 {,,. 4,3,,-1
114 BO9 1-1
1-16 Bl -1
2-1 B15 |'1-1
2-2 Bl 1]
20 co6 14
2-15 . cnoi-
247 c13 1-
s

Write (Store) .
Storage Cycle Tming . . .
Chained BSMs

Interface . LY

Power Supply and Temp\eraturc Compemati(‘)n .

Sli»ragc Data Register (SDR)

Storage Address Register (SAR) - R4
B Register
A Register

ALU /\ L ~,;*»’V~i~

T

AND/OR and Tes¥alse

Binary Subtraction ’
Y

" Binary Addition . .‘l .

Decimal Subtraction

Decimal Addition

b4
:
. Recomplement :‘.
. 134
.. .-
Check ALL . 0 . . . o

e
Parity Generation and Parnity (‘heckf‘

Local Storage Registers (LSR) .

Op Register REEN
. T
Q Register . [5. -
Condition Register (CR) .. & . \ -
k g !
VO Interface L L
’ w

CHAPTFR 3. THEORY 6I~' OPERATION

Two Address Instruction

I1Cycles
) !
Indexing . J R
A =i
'Execu!iohc'yclcs LT

@

Add Logical Characterr- ALC .

Subtract Logical Characters-SLC . |.

PRV

Contents

W
[

t
to
(%)

to o 9 to I‘\J (]

b) ; h b

to [(9] o to to L
> (7 4 [%9) [)

L]
[
o

31

et

A02

. FRAME LOCATION TABLE

Page | Frame | "“Card
2-18 cl4 141
2-19 c15 1A
2-21 c17 1
2-23 DOt - 1-1
2-24 l Da2 -1
2250 D03~ 1-1
2-26 D04 1-1.
2-28 D06 1-1.
2-30 DO8 11
231 DO 1-1
2-32 D10~ 1-1
2-34 ;\-o' 2t g4
2-36 D14 1-1
2139 . Dl6 e
31 . B2 11
3-4 E05 1-1
3-6 07 - 1-1
34 E09. -1
3-10 EIT 1A

Contents

FRAME LOCATION TABLE

"Compare Logical Characters-CLC 310 .
Move Characters-MVC { - 510 Page Frame Card
Add or Subtract Zdned Decimal-AZ-SZ 3-12 3-10 E11 1-1
Zero and Add Zoned-ZAZ I 315 3-12 13 1-1
Edit-ED 315
3-15 E16 141
Insert and Test Character-ITC 3-18 -
Move Hex Character=MVX 3-18 3-1R A10 1-2
ne Address Instructions 320 3-20 Al2 1-2
ICycles 32 3-21 Al3 1=2
Move Logical Immediate-M%¥I v .32 3-22 : Ald 1-2
Compare Logical Immediate~CLI*. . 322 - N
_’ 324 Alé6 1-2
Set Bits On Masked-SBN . .~ 322 -
. . - . - - - .
Set Bits Off Masked-SBF '3~24. 4 3-26 A18 1-2
Test Bits On Masked—TBN 3 - 3-27 _BO1 1-2
® Test Bits Off Masked—TBF 32¢ 3-28 BO2 1-2
Store Register—ST 327 3-29 . BO3 © -1=2
toad Register-L 328 o
: . - 3-30 ‘BO4 - 1-2
Add to Register-A". . 7. 329 : Ve
‘Load Address-LA // 330 3-32 - 806 . 1-2
. N d . o ..
*Branch On €ondition—BCn332.- . 3-34 BOR™ - 1-2
ommand Instructions .~, . D) I 1 3-44 ’ BIS 1-2
JumpOn Conditign-JC 332 ° | - S
"i; R 345° . COl . 1-2]
Halt Program Levek(Basic Machin¢) 3-34 _ . ; :
o R 3-47 * co3 . 1-2
Halt Program Level (Dual Programming Feature) . * 1 3-34 N .
‘Olnstructions . & .y . L. L Ly Y
Start /O-SIO, 334~
h » B
- ST e s ' A
cLoad /O-LIO » . . L. T 344
 SenseI/O-SNS . . . - . /* S 3as
Test 1/O and .Br'anch-f-:rlo . < C T 3-45
“ Advance Program LevelSAPL .-~ . . . 347
: lm‘(lal‘Ptp.gm_\m L%Q-IPL e N 347,

:A03

Contents

CHAPTER 4. FEATURES . . . // <. . FRC06.1-2 FRAME LOCATION TABLE
Dual Program Feature (DPF) . . . C’f' N ' -5 |
’;;d\'/ance Program Level-APL . ‘4-2 Poge Frame Card
Binary Synchronous Communications Adapter 4-3 3 4-] C06 1-2
Serial Input/Qutput Channel Attachment 4.3 4-2 co7 1=2
5471 Printer Keyboard Attachment 4-4'
4-3 cog 12
CHAPTER 5. POWER SUPPLIES ANDCONTROLS . . FRCl1.1-2 4~ cos . 12
SECTION 1. BASICUNIT51 5-1 T 1-2
Power Supplies 5-1 5+4 C 14 1-2
Power Sup.ply Regulators 54 5<5 Cl15 1-2
Voltage Regulation . ' .o 54)
. 56 - Cl16 1-2
Overvoltage Protection 54
Ove;cunent Protection. 54 577 c17 . 1-2
Undervoltage Protection 5§ S5-R Ci18 1-2
Normal Power On Sequence (Early Design Power K . ‘ 59 DO1 1=2
Control) T 56)
Normal Power Off (Early Design Power Control) . . . S5-6 6-1 . DO3 1-2
Normal Power On Sequence‘(Redesigned Power Control- 69 D1 1-2
- Printed Circui yPaney 57
Nm:::z“igned Power Control) §-7 6-12 V D14 ! -2_
Abnormal Power Off 57 ' 6-14 D16 1-2
Test Points(TPs) 538 A= D18 1-2
SECTION 2. FEATURES 'S9
CHAPTER 6. CONSOLE AND MAINTENANCE . y ,
FEATURES .- . .~ . .« . _ IR DO3.1-2
SECTION 1. ("ONSOLE XS |
S);stcm ControlPanel 6-1
Opér_atb; Controls . ‘ S 6-1
CEControls~ J 69
CE Key S“;itch Y , k
Co 4D'i‘s‘}lay R 612
SECﬂ MAINTENANE& F.EATURES 614
AFPFNDIX A. ’UNIT(HARA(‘T['R‘ISTI(‘S D FRDIK. 1-2

AO4

FRoge

A%l

P

v

XS

~.

M AL e\ S DMANANN e DA ENA AN DM T A Ced (0N L T NI AN Meded MDD S
TV) ek vk g e (Y)Y €)T DT YO YO e pd el K L B B B R e e e R R e T R T T et N e wmd 7TV ek b)
Nt athiala R AD RS DS METe STOTANTL O NS LOL T DO LT D DL L LITDIL T I YD
b ot N N TN et ot et PN N et b bt et ek Nt Nl ok b oo et NI Al e T e d Nt (Nt N NN e e N et ot o et o ot e U\
(R T T N T T T T T T O T IO T T T T TN O T T T O JOY T T O O J T T T O N N Y N T O IO I O |
—4— e~

et ot o Pt g pod gt ol i o oomd ol ek gt L e e e K Ea KoY) ot g gt o o e]) e e o P o od Pt rd o gt e Pt ot 0 g 1 ol et o e

o [N AP N VR ol K S Y S R PR TR X MR TR R I v e R [T ST PUR A 5
. prian . Lo

RS Ul

- N

- R T T R P - - - - —- e - - - - - - -
- — -~ S e - PU— - [S e e e o JRD U S e)
(O e B ol el el ol Sl Sl = SR Sy e el ol o SRS S S e [l e ol e Ll Sl el ool el ol S o = L el ol e e N e et

e ¢ 0 % o 5 e 0 s 0 & 0 v o ® ¢ ¢ o 0o 0 o o s ® 6 6 06 0 e 0 ¢ 0 s 08 s e 0 e e 0 0 e ® ¢ 0 ¢ 0'e o 0 o o o
[
"o
e 6 o & 4 0 2 ¢ & 4 0 0 00 ¢ o.F & o ® o 0 o o ® 06 0 ¢4 @ 0 ® 2 0 00 s 0 0 a0 e ® o 6 @ @ ¢ 9 0 o o o
e % 0 0 o 8 2 0 0 s 0 s e LY * o e o o o o -.oo.ooo”.‘-‘ooo.-oonc ® o ¢ 0 6 0 o o o o 4
X ! : . .
[- . .
e ® 0 % ¢ ® & ® ¢ 0 0 & O 0 ® oy 0, 0 O 0 * 0 0 b..loo..oo.o»c.oocu.o e o o 0 @ ° o s 9 o g
as ’
«7
e« ® o & @ & 0o 0 ¢ o o o o ® e/ ¢ o6 0 o ® ¢ ¢ - e e oW o ® o % 0 0 g 0 4 0 0 0 e o o 0 o @ o ® 0 0 s 0 0 o o
1
’ ® .
e ® g @ & ¢ ® o s o 0 * » o0 ® o/ @ © & 4 o ¢ @ o & 8 06 & o & o L/ 4 @ o . 6 o o o o 0 o ® o o % 9 ¢ 0

I
s
-
(
I3 _l)
.(

.
T ~ <. T
o |~ 1T LIS S A o o @ o o o o ® o ¢« ® o o o 8 o ¢ o™ o o) e« s @& ® & o ® ¢ 0 o e T o
~ 4 | [— N ™~ AR T ~ T []
~ 7 .. oo ‘ [R B | ~ -
. . N . o . T e)] e~ o @ ® e o o 0 0 o 0 o7 — ® e o o o ® e 0 0 s o) = e +
2 - — [M [| —_— N = Z
s J - [} e T N — v 1o
LI SRV O R SN SR I B R Y N\ . .. o o o o o | e o e, @ - —D e o o o1 [] ——
Wl e PN | | - .. i ! vt oo ~ 3 ta
— T > LA e - s bt Y o 1 - M
o Je— £ @ AT i LI} - e . N I alhers .. ~ v D
R R e U . -~y = | —— e | — b
- — ‘ -— — N nogr — e S i e PR It
e T R R e T | [S U . L e > ey g —— R AR T R S B
T AT i, e T R P [— 1 B I S L Vo Awﬂ.l.\.:)ﬁl., -,
CoNern ot o > — ——lo et T T —" Y coLSe Y e ~ —— —_
| Toa S .- [- ~ e ¥ NV o= —— S, [S
~ LT T e) N \ —— Ve T Y S o A T B SN S R G | —_—T ey < <7
s T T no L N N N =TT Lo
S T e > 2 Y~ o T, N N7 T T p= i | e TN e T e LN YA/A§.\. AR aRa] Jbr,'i o !
— ~ —— [o~ — > r — . b L T e T €T T
VARV ARV VARV AV S r — n - ool o e N —_——, < xiF.,_Lo’«
IRV R VRV Ve h — > > T T D T> T SN Al w ™ Tt A)
S e L4 oo T n oo o IR NN I 2 TR S E I [T P e)
> RS teT N4 e T2 LT EESRRVARE R CUAIND I e Hie SRINEVAR VAT - Rueraiv s B AR SRS —— L S
NPTV NS Rivian R AN > SR, ¢ T L AT e — v FLusd, I 247 TO0ULD e hra—s g 0002 [Vl s 4
[RSO ED Y S0 | SRS SR S S S Yy bt et Y (Y L AL L. TI T Lol U000l >>> <AL i~
dagaAddaCTdAaAg LT LD CTY CO0JLUOOLLLVOULLCLOLVLVULY DA OO0R

// . -~ N -

"1
7

i
-

/\u]“l
.1-1 C

T

e .
~ AO5

2=

HYSTHA

T
f
{ Lb A

te

bR s

no
x20
wow
—
[}
() et ot
xOD

—~—
joREN;

[y

NNOT TSI~ 0MDON~0N~0 FoMENOTOONC
l..\UlCO«UAU.‘.J\JﬁJ‘._ v\v.:.4la‘ulsUlLlln‘,.(‘lluJ.:«
duCebwihrwodex LOTOCC.STLDTOC WW

212111111221111128227121211
.__._._.._.__..._..._.._._.
.l..l1111111111111111111111111
,u.\JﬁU\Z,.Jﬂ..:u.‘«‘bu)«,.\w:,\,\).rvu\u.‘w AUAJ\ITCJWU.,.\.HZ\TJ
OD«U\UJH.HHJORAJW,\Uﬁ,‘,d“qu_UQH)Dﬂﬂ\,JOﬁJH,
TTTTTITTTT.TT.T:TT.TTTTT.TT-TT-TTT

ooo-.sov-.ooo.OO¢ooooc¢-ooo

.....‘.l‘..'......"t’.......

o
—
oooooooo'o-o.ot....catooooo
M
e o 0 0 0o 0 0 o o~ 5 % 8 ® e e a8 0 a0 000 0
.Y o~
|y o~ N —
ono..oooo..«,.,.rt.au.o_ooulooloo
— T -t ol — — 1 |
N ==t [N AT
e 0o 0 0 0 0 o 00 <le e o o & | er—i| o L)
M x [l . Mx
<« (VNN ¢ -2 m
o 06 0 0,400 060 T pm—ie e o . j e o
/ TR - v o
o O I e i L TTU VS e
Coe b N e) At g— i — O
[N =TV ol Al e A e IT O R ARl o [| T 1D [Sl |
[| | I ARSI Nt) D T e D sl
Mee 0 —_N e N I8 T e T < -
- STl e —_—— [R s gai
e L' x YT - —"uTd
i AT U T Y Y Y
VAV AGTOLS NS PR S R Yo WUURURUS OL S 4 Wi e
Wi D>>> 270 L d SO Lo S U >0
OO UU = DD Du XX T I>NT 720>
[SUVL\S I G I ST R R I § (OIS N T
DU S Y NTSCLNTEEN] PRl o S P o S ; c
QUOIT L A D= NN Nk T SN LonT oo

xLL.
Tl T mr T2 2TNSNNSSNSNNN Y

A L e g e et et e e et St St b St St ot et o ot T e e 0t

She

vl-2 O
v1-2 €76

T
T)

3_A L3

INT T

YISPLAY

Ctpin] T

AGE
N
Uit

- S8
Juyvp

DN
))t
cCLLroo

NN N~ N
[I T I |
P e den]
YN

- —
— e e

[e

o

x r

| o & ol
£ L adie 4
« NiVahdo)
~ e | -t
I RARRES)
I -
< 1 —
‘ -
borow

-“r\/\.,,ﬂkl 4)
S = >
N2l el
_— ="
VakaRE oy s
o DN L
b — Y -
N
-

c T2«
RERSER SIS SR
R B
— e) d e

[oRvaR Faian]

St gt ek e

aquidadq

et 4 N N\
[I
[T ——]
NCHY VO

e S

[

a

o o 0 o ®

e o & o ¢
—
o~

o o % o}
~

x
o o ot
-
~ RaN
P e~
—] «7
~ —
. a7

- —Z

N eSS

-1 T oo —

D e T

z oIl

a0 cC

B

e

a T e

AN b A

—

—_ DO L

et o et et o o ¢) b el T,

LolCuwldwuc

—t et N NG O NGO N
| O T T O T I I |

ot g et 7t ot e el e o e
KD Y AN TIP T RELARE g -

I Yol P N]
— et - -

e b b b b e b

e o 0 0 & o 9 ¢ o @
.

%Uﬂ%[%}

e ey o o ¢ | e o o
Folal | 1
——0, @ o @ Falialha'
(] — ~
— N — >, [}
g [~
. > r —
) - —_——
b NG T
i o [A
—_—et I 20
A4S N, - 27
— o d
d e T TN
gt "
- M. R JVIRUER N
N L Vo TP V- gt
- ToZ7T o
> > Dk >
e el SN NY SUES Qi ey
bt et Ot ke
L. T rz T
e 3T
R G I B
g

/
~<

Aoe}

et =T Y ™ +

7Y ot ek =

N (0D

— N

[FERNS JUPRS ND LR

NS e O NN

Al

-

o o o o

e o o °

« "9
)
¢ o o
o e 0
o o
3
i
“ e, e
. .
—
o« .
o
[
- —
-~
-
-

’ .

L —
T e
T
A 2

Teeo

ERRIO

e et Ran Ko Kan Rdn i] —

L] * o .
o o e .
« e .
« o o -
e o o
e o o
e e .
. . .
1
. . -
or | .
-
b - .
>
I)
»
L,
ot -
e .
PASREN) \
X X 4
21017 v

~ TN P
—t et)t

LoD

D Toald

et o e 4 (Tt

it e ot ek ek d
Y4

e b b b

.« o e .
'
i
« b .
« s e .
A3
. - .
[
. .
tobeer
N N GRS
~ |
.l
A - .
PR
Sy
“rer DD
e h o A o
Y Y Yoy

AN
NN NI U ke IR e R Nl e L IaalagiaN
P e L ae Lan s Y e B R ot et et e 1Y ot ot N el
[EISTEUSTOIN [L, L} Shliale Lol fau SN DO S S e
v

et e PN N NN N T et e et O o e Y e TN
[T T T T T T T I O O O O N A
\Lllllllllll]llllvllllll111\1

T [N SPNE O T . A !

e = »,J..

A . I . B .
O e N L e i Sl o e e e ol el
. - L] . - L] . .

® o o o o o o 0o e ® o o o & 0 o o

e~ @ ® o @ e 8 & 9 5 & 4 ¢ o 0 @ s o s 0 ¢ s 0
- -
) -
. e » o o DI R R I R I
. e o o e ® 4 % o 0 8 @ @ ¢ & s o s a— s o
Ll
+ ‘A-. \g
.) . . L] ®)= . L] . . L L] L] . L * o L] . o ® .
— |
. - a_* e e o o * v o & v o I e o
- ') —
[i — !
. . .] * e o ’] e o e+ o+ (e
1 | N
- . —
. . . “ . o s em o |
P . ~ e,
- PN e " | 7 o—
. . . o e ! —_— [| " . O
— o - . s
\ v e ~ 2o ~ e tos - .
! [O - Lt T Sy
1 - ~ - \— .
- —— - N -
h - e 7 &N e
[N o > - — —_— g~
[l > ~ - F e °
- Lo ray
— ~ N - — P
PR [- ko b
~ - — - ~ Vet
. e ' w
’ s — Wr‘ —p e —

. P A

. Yo 2 VARG
LU | P e e N e b b e b =) >
VA NVa Va1V ol ValialVatiaW NIV IVAR ¢ TVALV A SEVIVEIVVALVO LV ol ANV LA

—. DT N S e A
Ndom T Yl pd et

NI 00200 -

N NN N VENT NP

| O T T T T N I |
el e gt el ook et gt o rd o

AR)Y e
G e = oy
[Sy e

- -

\
e p o e o 0 00 te o
.
~™ .

. e . o s o 0 o
| |
o ~

7 e o @a\® e e o
- ¢ \/ A
| IR B —
U el N e

- P ¢
. -
— . . L] —
24 »
r~oo A '

Vo . LN R
g Lo
T, PRI «Jl -) -
.., "
e Aw,nurs.\ Y < N
« W, -
.MS \ ' , T —
DU S
\ - .Jva)

- . e ~
- -

-

oh——— -

—_—= TN N e

R
s
T bt e b b -
IR AN AR I A S
[S GO S |

3
e b e b e b o o

S

w1=-7 ¢l

Cl=2 Ll

M.

rf

T,

C]a

1=
wi=-1

Cm
2 Y

T

- F -

\V)'

-1

T,

CONTINUED ON
FRAME Ao

AO8 .

CONTINUED ON
FRAME A0

A09

1l

!
Il
"l'
-lII"lllllm-

i

(i

Chapter 1,

Chapter 2.

Chapter 3.

;)
Chapter 4.

Chapter 5.

Chapter 6.

Appendix

- Processing Unit

Maintenanéé Library

introduction
Functional Units

Theory of Operation

Features

Power Supplies and Controls

Console and Maintenance Features

-
. -

Theory of Operation

AlQ

SY31-0207-2

Preface

THis manual. 1-0207. describes the operation of the
IBM 5310 Processing Unit. The manual gives an explan-
ation of the logical fulpctions of a ¢ircuit and the major
circuit objectives. Wigh this information, the CE can
interpret the operation\of citvuits illustrated in the
companion diagrams manual (DM).

Other manuals necessary for"the\g'E to understand and

service the 5410 are: -y
. W
l. For instructional and maintenance diagrams, flow-

charts, and timing charts:.
IBM 5410 Processing Unit Diagrams, -
SY31-0202
2. For maintenance’ prmedures
1BM 5410 Proc essing Unit ’tlazmcnam‘e
Manial, SY31-0244 .

Second Edition (December 1971)

This manual is a complete revision of . and obsoletes, SY31-0207-1 and supplements
SS831-0289 and SS31-0290. 5
» < N
A change to the text or a small change to an illustration is indicated by 2 vertical
line to the left oY the change; an e\(ensnel» changed or added illustration is degolcd
by the symbol ® to the left of the caption. .
Some illustrations in }fm manual have a code number in the lower corner. This js a
publlshmg conteol number and is not relatcd w the subject matter.
-
Chanaes are cpntmually’ made,to the spéctﬁcauons herein; any such changc will be
rcponed in subscqucnt re\mons or Technical Newsletters.
i)
A Réader’ sCom‘mem Po:m is at the back of this publication. If the form has been _
rempved, ad,drcis ybyr comments to §BM Corporation, Publications, Department 24}

4

Rochester, M 55901.
U h

“~© Coﬁyrfght International Business Machines Corporation 1969, 1970, 1971

All

AAR
ALD
ALU
ARR
ASCII .

BAR
BSM
BSCA

CPU
CR
CRR
DA
DBI.
DBO
DFDR
DFCR
DPF
DRR

EBCDIC

Hz
IAR
1/0

A Address Register g\

Automated Logic Diag’;am
Arithmetic and Logic Unit

Address Recall Register

American National Standard Code for
Information Interchange

B Address Register

Basic Storage Module -

Binary Synchronous Communications= ~

Adapter
Processing Unit

~ Condition Register

Condition Recall Register
Deyice Address

Data Bus In

Data Bus Out

Disk File Data Address Register

‘Disk File Control Address Register

Dual Program Feature

‘Data Recall Register

Extended Binary Coded Decimal Inter-

change Code

Hertz

Instruction Address Register -
input/Owtput

Al2

IPL

K

LCR
LCRR
LPDAR
LPIAR
LSR
MAP
MFCU
MPCAR
MPTAR
MPDAR
MST
oV/0C
PC

PG
POR
PSR
SAR
SCR
SDR
SI0C
SMS
s/z
uc

XR

List of Abbreviations

Inittal Program Load
Thousand e

Length Coant Register

Length Count Recall Register

Line Printer Data Address Register !
Line Printer Image Address Register
Local Storage Register -
Mainfenance Anhalysis Procedure
Multi-Function Card Unit-

MFCU Punch Data Address Register
MFCU Print Data Address Register
MFCU Read Data Address Register
Monolithic System Technology
Overvoltage/Overcurrent

Parity Check

Parity Generate

-Power On Reset

Program Status Register
Storage Address Register

Silicon Controlled Rectifier

Storage Data Register

~-Serial Input/Output Channel

Standard Modular System
Sense/Inhibit
Undercurrent

Index Register

5410 TO

il

INTRODUCTION

A13

"The IBM System/3 is a compact, high-speed data processing
system designed to use the 96-column card. The IBM 5410
Processing Unit (CPU), the control unit for the System/3,
is supplemented with tabletop I/O units arranged for
convenient opetation by a single operagor'.

“<This manual describes the, processing unit for the 1BM
System/3. Figure 1-1 shows the system copfiguration.

Chapter 1. Introduction

Compact packaging of the IBM System/3 is made possible
through the use of miniaturized monolithic systems.
technology (MST) and the small, increased capacity card.
The minimum system configuration (CPU, MFCU, printer)
provides forcomplete unit record type functions including
card reading, punching, interpreting, collating, reproducing,’
summaty punching, computing, and printed reports all
under program control. The addition of disk storage drives,
with removable disk cartfdges, offers practically unlimited
data storage growth.

5203 Printer P 5410 CPU]ﬁ 5424 MFCU
Model | 100 LPM Model D c £250 CPU
96 Print] A02|8K Read Model AO1
Positions A13 | AD3|12K . 60 CPM
48 Character 214 | A04| 16K Pu.nch
Set Print
P A15 | A0S |24K
Model 1t || 200 LPM - | At6 | A06|32K 500 cPM Model A02
132 Print ead
Positions 120 CPM
Punch
120 Character Print -
Set
Dual Carriage 8444 Disk }
' ‘ Additianal Feature:
Z.45 Million Dual Program
Bytes H
| b 4.90 Mijttion.
i ata y ’
| Entry Bytes
Il Keyboard 7.35 Million
Bytes
9.80 Million
Bytes

l‘igugcq 1. Svstem/3 Configuration

Al

5410 TO 1-1

'SYSTEM COMPONENTS

\

|

5410 ProcdssingUnit (CPU)

The IBM 5410 CPU (Figure »l-2A) contains the facilities for
addressing storage, arithmetic and logical processing of

data sequencing instructions, and controlling the transfer

of data between core storage and attached input/output
devices. The bhsic unit of information is the byte which
represents one alphabetic, numeric; or special character.

In arithmetic operations, a byte contains one numeric char- .

acter and a zone. The low order byte contains the sign in
the zone portion. Bytes may be handled separately or
grouped together to form fields.

The CPU contains 8192 (8K) positions of core storage
which may be increased to 32,768 (32K) positions. The
storage locations are numbered consecutively (0, 1, 2, . .)
Each number corresponds to the address of an individual
byte.

The 5410 Model C is the base system CPU. A02 through
AQ6 correspond to core size (Figure 1-1). (1 R A14y Model D

(disk systém) starts with A13-(12K storage) and continues to

Al6.

-~

The CPU core storage unit has a read/write cycle time of .
1.2 us., with a data access time of 465 ns from the start of

-

>

% S B VRIS
[

Figure 1-2. IBM System/3

1-2

read. A calculation time is insertgd between the read/write
time to provide a basic machine cycle (read/compute/write)
time of 1.52 us. . .

’

Addressing for CPU functions is maintained in local storage
registers (LSRs). These registers contain the core addresses
necessary for instruction sequencing as well as data manipu-
lation: both intgrnally, and to and from IfO devices. In
addition, the LSRs are used as temporary storage for data

- while the CPU is performing instructions,

Step-by-step data processing is controlled by registers (op
register, Q register, and condition register) which contain
the operation code for the instruction being performed and
the additional information required to gxecute the instruc-
tion.

Calculations within the CPU are performed in the arith-
metic and logical unit (ALU). All data to be processed
within the CPU is routed through the ALU which is capable

of performing the action required toarrive a}‘the desired
result. .

The CPU has direct control over all the 1/0 d@n‘ces attached
to n 1/0O operations affinitiated and tested by program
inslructiony&hich determine what operation i performed

{read,yme. etc..) and which unit is to be used.
v

-+ CPU

Al5

An automatic-interrupt is provided to allow the system to
make optimum use of the 1/0 devices. An interrupt origi-
nates at an I/O device which requests special attentipn from
the CPU. Generally, an interrupt means that the C ust
interrupt a current instruction sequence, perform an inte
vening instruction sequence, and return to the interrupted
program.

In addition, the CPU is available for processing during most
of each I/O operation even though many devices may be
functioning simultaneously. This overlap of 1/O operations
and CPU processing is made possible by a cycle steal capa-
bility by which an 1/O device,.while performing an 1/0
operation, breaks'into the main program and uses enough -
cycles to transmit the bytes which are immediately available.
For instance, when reading a row of data from, 4 card, that
row of data is placed in the proper core location with cycle
steal cycles and the main program then continues until the

" next row of data is available. Thus, the cycle steal capability
. provides the benefit of a buffer without sacrificing storage
capucity or requiring a separate buffer.

In the CPU, odd parity is provided for all bytes of data to
provide a means of checking for the validity of data. As
the datais transferred throughout the CPU, each register

is parity checked to determine if the data transferred
correctly. As data is changed within the ALU, the parity of
the resultant byte is determined by a second ALU (check
ALU) and the generated parity is then checked at the ALU
latched output.

In addition to parity checking, as the program is executed.
each operation code is checked to énsure that it contains
a valid instruction.

5424 MFCU

The 1BM 5424 Multi-Function Card Unit (MFCU) provides
the IBM System/3 with the capabilities of many single unit
+ accounting machines. With two hoppers, a pho‘totransistor’
read station, a common punching station, a printing station,
and four selective stackers, the MFCU offers full card tile
mantenance abilities plus three or four lines of card docu-
nient printing.

Cards from both the primary and secondary hopper can be
read, punched, printed, and selected into any one of the
four stackers, regardless of the hopper origin. The tradi-
tional unit record functions of rgproduging, gang-punching.
summary punching, interpreting, collating, and sorting can
. be performed on the MECU under complete control of the
stored program.

.The decimal number system has ten symbols:
. 5,6,7,8,and 9. Counting starts in the units position
“with 0 and proceeds'through the next nine symbols. When

5203 Printer

The 1BM 5203 Printer provides printed report output for
the 1BM System/3. The aﬁw‘habetic numeric, and special
characters are ass¢mbled ofia chain and the printing for-
mat is controlled by the sys’tem s stored program. As the
ain travels in a Iponzomal planq, each character is printed
as it is positioned opposite a magnet driven hammer that™
drives the form against the chain.
An interchiangeable chain cartridge permits the operator
to change type fonts and character sets. Spacing and
skipping i is performed by a tapeless carriage under comrol
of the CPU stored program.

5444 Disk Driva

The IBM 5444 Disk Drive provides System/3 Model D with
dual disk capabilities on a gingle disk spindle. One disl is

* mounted perrgapently in a container at the base-f the

spindle; the other is mounted at the top ef the spindle and
is removable.

Each disk contains 2.45 million bytes of storage. Therefore,
the addition of a second disk drive provides online disk
capacity ofﬂ'fSO million bytes.

“MACHINE LANGUAGE

Number Systems

To understand the operation of the CPU, it is necessary

to become famijiar with the number systems and character
codes used. Accordingly, the following topics discuss the
decimal, binary, and hexadecimal number systems.
Decimal Number System

® System has ten symbois: 0,1,2,3,4,5,6,7. 8, and 9. .

® Base of system is 10.

0.1,2.3.4,

9 is reached. there are no more symbols: therefore, a 1 1s

S410TO 143

Al6

placed in the position to the left (tens position) and the -
count regpmes with a 0 in the original position:

. Units Position

0

1

2

3

4

5

6

7

8

9

Tens _—10
Position 11
12

and so on

Continuing the count, it takes 101 numbers (count began
with zero) before a third position (hundreds position) is
required to express a 3- -digit number. Similarly, nf’takes-
1001 numbers before a fourth position (thousands posmon)
is required to-express a 4-digit number. Because of the role
that the powers of 10 play in the represehtation of.a num-
ber, (10 unique symbols), 10 is said to bé the base of the
decimal system. . R

G
S

~
A number is made up of terms corresponding to the number

of positions required to express the number. Each term
consists of a product of a pawer of 10 and some number
from 0t 9. For example, the number 4 23 breaks down as
follows:

ax10h+@2x10h+3x10% |
L7

- : 30 tens

3 units

/ lOﬂ hundreds

| ﬂ

. Binary Number System

® System has two symbols: Oand 1.

- ® Base of system is 2.

Current digital computers use binary circuits and, therefore,
binary mathematics. The binary, or base 2, system uses
two-symbols, 0 and 1, to represent all quantities. Counting
is started in the same manner as in the decimal system, with
0 for zero and 1 for oné. At this point, there are no more
symbols to be used. \t is therefore necessary to express

14

a2 by plaung a 1 in the next position to the left and -
starting again with 0.in the original position. Thus binary
10 is equivalent to 2 2 in the decimal system. Counting con-
tinues with a carry to the next higher order every time 3 2
is reached instead of every time a 10 is reached. Coun)?ng

~in the binary system is as follows: v
Bi*‘uy Decimal Binary Decimal
0. 0 110 - 6

1 1 111
10 S22 1000 ‘,8/
1 3 1001
100 4 1010 10
101 5 1011 ?Jl
and so on

The 1s and Os of a binary number represent-the coefticients -,
of the ascending powers of 2. To jllustrate, assume the
binary number 1111011, the number is expressed:as;
ax2+axdyraxzheax2hroxahrax2hrax2?

x

The various terms do ot have the meanings of_'units;tcns, K
hundreds, thousands, etc., as in the decimal system, but'y
signify units, twos, fours; eights, sixteens, ete. Thus the
binary number. breaks down as follows (compared with

.decimal equivalent):

Binary Decimal

1111011 . 123

| l—;—‘ 1 units~ . \l——. 3 units
2 twos) 20 tens

0 fours 100 hundreds
8 eights 123
16 sixteens

32 thirty-twos®
L 64 ~_64sixty- -fours
123

Hexadecimal Numbec-8ystém
' N
e System has 16 symbols: 0,1, 2
C.D,E,and F,

® Base of S&s?em is 16.

3,4,5,6,7,8,9,A,B,

® System is shorthand notation for binary numbers.
® Four binary bits are represented by one hexadecimal
symbol.

e Byteis representéd by two hexadecimal symbols.

Al7

Binary numbers have approximately 3.3 times as many
terms as their decimal counterparts. This increased length
presents a problem when talking or writing about binary
numbers. A long string of 1’s and 0's cannot be effectively-
spoken or read. A shorthand system is nécessary, one that
has a simple relationship to the binary system and that ®
compatlble with the basic 8-bit byte used in the CPU. The
hexadecimal number system meets these requirements. -

The hexadecimal system has sixteen symbols: 0, 1, 2, 3,
4,5,6,7,8,9,A,B,C, D, E, and F. Counting nsperformed
as in the decimal and binary systems. When the last symbol

(F)1s reached; a 1 is placed.in the next position to the left:

and coumlng resumes with'a O in the original position, as
follows?

0 10 20 AO
1 11 N Al
2 12 22 A2
3 13 23
4 .14
5 15 ‘
6 16 and so on
7 17
8 18
-9 19
A 1A _——" 9A
B 1B 9B
C 1C - 9C
D 1D 9D
E 1E 9t
¥ 13 9k

T .

s

One hexadecimal symbol can represent four binary bits.
Thus the 8-bit binary byte, in turn, can be represented by
two hexadecimal symbols. The relationship between the
hexadecimal, binary, and decimal systems is as follows:

Hexadecimal Binary Decimal,

0 0000 0

1 0001 1

2 0010 2

3 0011 3
T4 ‘ 0100 4

5 =~ . 0101 S

6 0110 .

7 0111 {;\\

8 1000 - 8
9, 1001 - 9
A S 1010 10

B 1011 11

C 1100 12

b - . 1ol 13

E I § LU 14

¥ 1111 - 15

<

The impoOrtant relationship to remember is that four binary
positions are equivalent to one hexadecimal position.

1

Al8

Hexadecimal numbers are represented in the same ma ‘n
6.

as dccr;nal and binary nufnbers, except that the base is
The tefms of the number represent the coefficients of the.

‘ascendmg powers of 16. For example, ¢onsider.the hexa—

decimal number 257 {decimal equlvalcnt equals 599)
57=2x 16} +(5x 16} RS
=(2x256)+(5x16)+(Tx 1)
. =512+80+7
=599

‘

Number Conva_hiom
The p}eceding topies derived decimal eguivalents by multi-

plying the terms by the coefficients of the ascending powers

of the'base. Earge numbers are difficult to convert with
this method. The following tapics outline simpler methods
for converting hexadecimal to decimal and back. and hexa-
decimal to binary and back.

Y

Hexadecimal to Decimal
To convert a hexadecimal number to its decimal equivalent:

1. Convert any term represemed by a letter symbol m
its decimal equivalent.

2. Multiply the high-order term by 16.

3. Add the next lower order term to the product ab-
tained in step 2. !

4. Multiply the result obtained in step 3‘by 16.

. 2
5. Add the next lower order term to the product ob-
tained in step 4. '

6. Continue multiplying and adding until the low ()ﬁder
‘ term has been added to the answer, at which time
the conversion is complege.

~

t
As an example, convert the hexadecimal number 273 to its

decimal equisgient.)
h Sy

—
[o]

2
"~
X

+
" w
-

39
x 16

to
2l
$u

39
624

627

5410 TO 1-5

CONTINUED ON

FRAME BO!

+ ~

As a second example, canvert the hexadecimal number. .

A7B. Converting letter Symbols to decimal equxvalentS'
yields 107 11.

-7 .

l .

+
o
g
[l S
A

g

Decimal to Hexadecimal

To conve}t a dcc‘imﬁl number to its hexadecimal equivalent:

1. Divide the dec1mal number. by 16. the zemainder of
this first division becomes the low order term of the
- final answer.

Divide the quoti;ht (received from the first, division)
by #6; again the refhainder becomes a patt of the .
 final answer (next h:gher ordér tcrm)

~3.. Repeat steps 1 and 2 untllghe quouent 1§;jess than
. 16. This final quotient is the high order ferm of the.
final answer. . - A
‘ . : . "g", :
4. Convert any.term between 10 and 15 1o its hexa-
decirﬁal letter-symbol equivaleixt.

-

For exaﬁi’ple convert the decunal numh’ér 471 to its

hexadecimal equivalent: o ’
L - : S
29 ‘0 read

167471 15ﬂ§ Axsr'————l .

7! 6 ., \ =
151 8« 13- 13=D - «
-

PR | — 7

answer = 1D7 . '5 N

.:‘}

Hexadecimal to Binary ariq/ainary to Hexadecimal

Hexadecimal terms O thrqugh F, w}uch‘have the valugaof
0 through 15, respectnvely, are tepresented in the binary .
system by four binary bxts To convert a'hexadecimal
number to its binary equlhlent express each tefm in its
equivalent 4-bit binary group. To convert binary nurpbers
to hexadecimal numbers, reverse the process.

~

" 1-6

For example: Hexadecimal: .3 7 B 1

Binary: 0011 0111 1011 0001

Another example: Hexadecimal: A 6 S F

Binary: 1010 0110 0101 1111

l

Data Formats

The basic unit of infornmon in the CPU is the byte. Each
byte is 8 bits or two hexadecimal characters in length. An
additional bit (P bit) is added to each 8-bit byte to maintain
odd parity. Figure 1,3 shows the bit structure of a byte.

Each main storage address location contains one byte of
information. Therefore, each time main storage is addressed

* a full byte is readfrom storage to be processed.

To represent data, eath byte is divided ifgo two parts. Bits
4 to 7 represent the numeric portion of a &haracter and

bits 0 to. 3 represent the zone portion. Therefore, a byte
can represent numeric, alphabetic, or special characters.
Thesg characters are exgressed in FBCDIC (Extended Binary
Coded Decjmal Igterch%Code).

. When used as a numeric quantity, each byte contains one

numeric digit in bits 4 to 7 with the sign of the entire field .
contained in the zone portion of the low order byte. The
zone portion of the rest of the bytes in the field contain

- the EBCDIC for a numeric digit (F in hexadecimal). The

EBCDIC for plus is the hexadecimal F and for minus
hexadecimal D. Internally, the CPU also recognizes the
ASCI1-8 (Aimerican National Standard Code for Informa-
tion Interchange) for minus (B in hexadecimal) but changes

* it to EBCDIC in the result fi¢ld of a decimal operation.

Any . other zone combination is considered to be plus.

A rainus field is entered into the CPU from a cax_d by
punching a B zone over the units position of the field. A’

plus field contains no zone punch. Figure 1-4 (I R B02) contams a

co;wewsxon chart for EBCDIC and card code.

The ma)gmbm length of a source field is 16 digits and the
. maxnmum length of a result ﬁeld is 31 dxgxts.

3

) ‘ Zg.ine | Numeric |

- Bits [plof1]2][3]4[s{6]7]

Y .
Figureil-3. Byte Styucture 7

BOI

L]

kA -

ggfo'coua 1100 {1101 | 1110 | 1111 +
Zone :

4567 E::‘.Chch BA B A

0000 ¢
0001 1 A J 1
0010 | . 2 . B K S 2
0011 21 c L T -
0100 4 o} M U 4
0101 41 E N \ 5
ot10| 42 F 0 w 6
0111 421 G P X 7
1000| 8 " H Q- \ 8
1001 8 1 1 R pa 9

*Card Code for Numeric Z_eio is A Only

Figure 1-4. Card (‘otha‘nd EBCDIC Conversion Chart

CPU OPERATION

Bridge Buic Storage N}odule .

<

~ The Abf"fdgc\basic storage module (BSM) is a ferrite core

storage unit, available in threegbasic sizes:

<oy o’

<1 i 8,192 byte (9 bit) readout. |

‘2 16,384 byte {9 bit) readout.
3

Yoo 8
32,768 byte (9 bit) gcadoet. :

These capacities are commonly called 8K 9 bit, 16K 9 bit,
and 32K 9 bit.- The 24K 9 bit or 32K 9 bit capacities can
be obtained by cbaining two BSMs together or. by using one

32K 9 bit BSM. Check circuitry ‘causes an invalid address
for addresses above the rated capacity.

Physically, the BSM is a separately packaged unit“that
mounts in the space providéd for an MST-1 board. It con-
tains a core array, timing and control circuits, a drive system,
and a sense/inhibit system. The BSM also includes the
storage data register (SDR}, but does not contain a storage
address register (SAR)z

Communication between the system and storage is via
interface lines which transfer address information, input
data, output data, and control signals. Interface circuits
are compatible with MST-1 circuit technology.. Within the
BSM some SLT circuits are used.

’))
Each storage cycle (read cycle or write cycle) takes approx-
imately 1.2 us. Once it has been started by a read call/write
call signal, the BSM executes one cycle, either a read or.a-
writg cycle, depending upon which was last completed.

T Singé the core-storage has a destructive readout, a write

Zyale.must alwvays follow a read cycle in order to allow the
dafa» {o be regenerated. Interlocks are provided to ensure
that #ead and write cycles alternate properly. However, a

-

2, . . .
: sy%(eil resef resets these interlock¥'so that the first storage

cycldis a read cycle.

" Acce time, from read call until data is available at'the

interfhce, is approximately 465 ns.

5410 TO \1-7'

BO2

A

Basic Data Flow Instruction and Execute Cycle

>

The system storage address register (SAR) addresses the ® lcycles réud out instructions from storage.

storage-unit (see *Addressing System’ for details). When
the system signals the storage unit with read call/write call,
aread cycle is started. The data located at the specified
address is read out to the storage data register (SDR) and
placed on data lines to the system. The read cycle is com-
plete and the storage clock stops after approximately 600
ns. Data flow is shown in Figure 1-§.

® A cydes arfd B cycles execute the instruction.

There are two types of machine cycles used in the internal
operation of the CPU. These are instruction cycles (I-cycles)
and execute cycles.

I-cycles are used to move the instructions from storage to
the various registers required to execute the instruction.
If the instruction does not require additional use of main

The data read out may be placed back into the addressed
location, or new data may be placed into that storage
position. When storing new information, ‘store new’ causes
the data latches to be cleared prior to their setting with new storage after the completion of I-cycles, such as a branch
data. Read callywrite call starts a write cycle and the infor- instruction, the operation is completed without execute
~~mation in the data latches is transferred to core storage. fyclcs. However. most operations require the use of data
The write cycle is complete and the storage clock stops rom one or two main storage tields. Execute cycles are

after approximately 600 ns. used to manipulate this data fo perform the operation.
i

ﬁ.*\

X \ Sense Bits
\
(’ § . Store Bjts
\ 1
§ Storage Data
§ Register
Interface §
\
, ____ Timing and interlock _] iming | _‘ o !
S_ ’f Signels “§ /Z o.:::o' B _“Wme | Read
) - 7 Inhibit Sense
%- ;'\1 " 7
\ its 1 and 2 i
. \) y
- § “ Add i
) S'—ﬁ SAR\ \ Deco:hn:nd 'k . Array
: ’ : % /.:) Drive
N — |
' sysTem * ? « - MEMORY

Figure l-\S‘
yad
/

e

N

System-Méiﬁory Data Flow

BO3

Two types of execute cycles are used by the CPU. A-cycles
are used to address main storage for the source‘}fields and
B:cycles are used to address main storage for the result
field. If only one field is involved with the instruction,
B-cycles are used to address main storage.

Sequential instruction Execution

Q Instructions are located.in consecutive, ascending main
storage locations.
® Ipstruction Address Register (1AR) is incremented by .
: e B -
1 each instruction cycle. : \

The CPU performs computations in a step-by-step procedure
similar to manual accounung. However, while many steps
may be combined in a manual operation, the CPU requires

a separate operatiop for qach step. For instance, when
figuring net pay in a manual payroll operation, all the de-
ductions could be added together in one step. The CPU
must add each deduction into the deduction total in a
separate operation (Figures1-6).

BO4

{

The example shown would probably require three steps in
the CPU. Since it would probably be desirable to retain the
federal tax figure, the total deductions would be calculated
in a separate location. Therefore, the first step would be to
reset the total deduction field to zeros and add the federal
tax into the total aeductiqn field (zero and add zoned).
Then in separate steps thestate tax and United Fund fields*

" would be added to thetotal (add zoned decimal).

Manual CcPU

Federal Tax . 17.50 Federal Tax 17.50
State Tax 6.30 State Tax 6.30
United Fund 1.50 Total 23.80
Total Deductions 25.30 United Fund 150

Total Deductions 25.30

Figure 1-6. Step-By-Step Processing
5410 TO - 1-9

Bacause of this step-by-step method of processing, the
e arranged in ascending storage locations in
e 1-7). Instruction sequence is maintaimed

Stru réss register (IAR). The [AR is a two byte
-LSR and is incremented each cycle so the next ascending
siarage location can bg addressed.

ln"‘thés{ample program shown in Figure 1-7 the IAR would
contain“the storage location 1000. Storage location 1000
is then addxessed during an I-cycle and the operation code
is read from Ytorage and loaded intoyghe operation register
(op register). Thevquuittity I is then added to the IAR so
storage location 1001 can be addressed during the next
cycle. This process continues until the stgrage location

1005 has been addressed. The instruction is.then executed.

After the instruction has béen completed, the TAR is again
used to address storage location 1006 (op code of next
instruction).

Branching

® If branch condition is met, CPU branches to address
given in branch instruction for location of next instruc-
tion to be performed.

4

\Branching is used by the CPU to alter the instruction
sequence under certain conditions and thus provides flex-
ibility within a given CPU program. By branching to a
different storage location and skipping certain steps the
results of the stored program are altered. Figure 1-8 show:
a sample program that contains a branching operation. In
this example, the company has a stock option plan which

’ pérmjts employees who earn $80.00.or more to purchase

stock. If they do not earn $80.00 or more, the stock de-
duction is bypassed.

During the subtract zoned decimal operation the condition

register (CR) is set to high, low, or equal depending upon

the result. This is a function of all arithmetic and compare

operations, with the CR setting varying with the operation

performed. For the subtract zoned decimal operation, the

CRiis set to low if the result is negative. When siibtracting
7 $80.00 from the salary field. any salary of less than $80.00
will result®in a minus total.

The Q code bit structure determines the branch condition
for a branch on condition instruction. In the example
shown, the branching condition is a CR low setting (Figure

1-8). (1 R Boe) If the CR is set at high or equal. the next sequential

instruction (storage location 1028) is performed. However,
if the CR is=et at low, the branch-to address (storage loca-
tion 1034) replaced the next sequential address and the
next instruction is by passed.

Zéroand :
Add Zoned |-Q Code Address of Total Address of Federal Tax
Operation .| (Length of | Deductions Field Field
Code Two Fields) (B Field) (A Field)
{ 00000100 | |] |]
Storage 1000 1001 1002 1003 1004 1005
Location
Add Zoned | Q'Code Address of Total Address of State Tax Field
Decimal < | (Length of | Deductions Field
Operation | Two Fields) g
o 3 (8 Field) (A Field) >
(00000110] | [| [i
Storage 1006 1007 1008 1009 1010 1011
Location
Add Zoned’ _Q Code Address of Total Address of United Fund
Decimal (Length of | Deductions Field Field
Operstion | Two Fields) (B Field) (A Field)
Code
[00000110 | |] | |]
Storage 1012 1013 1014 1015 1016 1017

Locstion
Figure 1-7. Sequential Instruction Execution

’
1-10

BO5

1/0 Data Transfer

The CPU issues a start 1/O (S10) instruction which starts
the needed mechanical motion. Whenever the I/O device
reaches a point in its mechanical operation where it needs
data from storage (write, print, punch) or has data to send
to storage (read) the device requests an 1/O cycle. The

CPU uses two methods for transferring data to and from the
various I/O devices: cycle steal and interrupt.

Cycle Steal

The 5424 is one 1/O device which uses the cycle steal
method of transferring-its data. An I/O cycle request can
occur during any cycle and is granted before the next CPU
cycle. The attachment then has complete control of data
flow, LSR selection, and storage during that cycle.)

More than one device attachment may request a cycle at
a time so each device is assigned a cycle steal priority.

Interrupt

.
i

Some I/O attachments operate by means of an interrupt
routine. An inf‘grrupt differs from a cycle steal by inter-
rupting the main program with a separate program reutine.
For this reason, an interrupt can occur only at the com-
pletion of an instruction.

1/O attachments transferring data during interrupt routines
are assigned priorities, as in cycle steal. The highest inter-

“rupt level dévice attachment takes precedence over lower

level devices. It is possible for one interrupt routine to
interrupt another interrupt routine of lower priority.

Addressing

The CPU uses two types of addressing for the various fields
when executing instructions: direct addressing and indexed .
addressing.

Direct Addressing
® Two byte address is contained in instruction.

The sample programs used in Q% two previous topics are
examples of direct addressing. Direct addressing requirds
two bytes for each field or location used by the instruction.
The fizrst.address which follows the Q code in the instruc-

tion, is the address of the result or destination field (B field).

For twq address in}quctions, the second address is the
source field (A field). The B field address is maintained _
in the B addrﬁs's register (BAR) and the A field address is
mair’tained in;the A address register (AAR).

Subtract Q ! Address of Salary Address of Minimum ¢~
Zoned | Code Field - Earnings (80.00)
Decimal (Length of Field
Operation | 2 fields) (B Field) * (A Field)
00000111]]
Storage 1018 1019 1020 1021 1023.
Location .
H A
" Branch l'a | Branch to Address i
i on l Code | (Storage location i
: 1 Condition ‘ (Brapch 1034} \
Operation I on CR ' (B Field) ‘ TR
Code Low) o - -
[11000000 | 00000010 | 90000100 | 00001010 |
Storage 4024 . 1025 1026 1027

Location

L]

Add Zoned | Q Address of Total

Decimal Codeé Deductions Field
Operation | (Length of | £)
Code 2 Fields) (B Field)

Address of Stock
Deduction Field

(A Field)

LT Tos]

| |

Storage 1028 1029 1030 1031 1032

Figure 1-8. Branch On Condition

1033

sS40 TO 1-11

BO6

Most adﬂrésscs given in the instructions are for the location
of the low order or right hand digit of tlhe field. Therefore,
.as the instruction is executed and as each digit position is
processed. the BAR and AAR are decremented to address
_core in descending order. An exception is the insert and
test charagter operation which is executed from high order
to low order digits. In this case the BAR is incremented in

the same rhanner the AR 1s incremented during instruction
cycles. :

. ~
Indexing

® Two byvidandex régister 1s added to one byte trom
instruction to create new address.

Indexing proVides the programmer with a means of changing
addresses within a program without changing the instruction.
An indexed dtdress consists of a single byte within the
instruction. This single byte is added to the contents of a
two byte index register to form a new address. The indexed
address is then loaded into the BAR or AAR depending upon
the address being indexed.

Indexing is used in: (1) performing an in$truction with an
indexed address. (2) adding a constant to the index register.
and (3) branching to an address to perform the instruction at
a different core storage location. Thus it is possible to per-
form an instruction or series of instructions many times
without wasting main storage by repeating the instruction.

Either of two,index registers (XR-1 or XR-2) can be selected
for indexing. The recognition of indexed addresses and the
selection of each index register is covered under_ “Instruction

Instruction Formats
® Instruction fength_is three to six bytes.

@ Bits 0-3 of op code determine type of instruction and
addressing.

The CPU performs three types ofinstructions. They are:
® (wo address instructions

® one address instructions

‘@ command instructions

Two address instructions are those instructions which in-
volve two separate fields within main stordge and therefore
contain two addresses. Most one address instructions in-
volve only one field within main storage and therefore -
contain one address (the load address instruction contains
the needed dafa rather than an address). Command in-
structions are those instructions which do not involve main
storage at all and therefore contain no addresses.

Each lﬂSKUC(lOH consists of an operation cqde and a Q code

(Flgun,v"l -9). (1 R Bosy These are followed by either a control code.

or oné or two addresses. Thus. the length of the instruction
variés from three to six bytes depending upon the type of
instruction and the type of addressing.

- Formats.’

412

BO7

Op Code Q Code

B Field Address l A Field Address ‘

1 Byte 1 Byte

[f l\ L “ I [7 2-Addl;m
\-_ |nd9x9d.1/ \ Indexed-i/
1] [1]

Direct - 2¥Bytes Direct~- 2 Bytes

| Op Code | QCode B Field Address |
|
i
" 1Byte 1 Byte Direct - 2 Bytes l
L I l Ly 1- Address
- g
‘ indexed - 1
Op (‘/de Q Code Control
Code

18Byte : 1Byte 1 Byte .

L [] } Command

Figure 1-9. Instruction FFormat

5410 TO

1-13.

The first half byte of the op code (bits 0-3) determines the
format of the instruction performed (one address, twa
address, etc.) and the method of addressing used (Figure
1-10). If all four bits are present, the instruction is a
command instruction. From there the bits are broken injo
two groups (bits 0-1 and bits 2-3). If both bits in either
gioup are present, the instruction is a one address insteuc-
tion: if neither group has both bits present, the instruction
is a two address instruction. If a bit is present in &ither of
the groups in a two address instruction or in the bit-absent
group of a one address instruction, the address is indexed
(Figure 1-10).

Instructions

The second half byte (bits 4-7) of the op cpde determines
the actual operation performed. Use of the Q code and
control code depend upon the operation being performed.
The complete instructiof set performed by the CPU is
shown in Figure 1-11. (R Bim

t
Number : Op Code ‘
of Bytes in| B Field - Bits A Field
Address Address 01 23 Address
1
2 Direct 00 I 00 Direct
t Indexed XR1 | 01 l 01 | Indexed XR1
) 1 Indexed X R2 10] 10 Indexed XR2
No address 11 l 11 No address

Iigure 1-10. Determining Instruction Format

BO9

Operation | Mnemonic and Operstion Q Code Use Control Code Uge,
Type

ZAZ | Zero snd Add Zoned

AZ | Add Zoned Decimal —

sZ Subtract Zoned Decimal '

MVC| Move Characters
2 ALC | Ad8 Logicsl Characters Field
Address SLC | Subtract Logical Characters Length

CLC | Compare Logical Characters

ED Edit ..

I1TC Tnsertt‘qnd Test Characters

MV X| Move Hex Character Half-byte Selec;_ion

MV | Move Logical immediate % immediste

CLI | Compere Logical immediate Data

BBN | Set Bits On Masked 9

SBF | Set Bits Off Masked | Bit '

TBN Test Bits On Masked s . Selection) !

TBF | Test Bits Off NJasked !
1 ST Store Register Q i
Address L Load Register . Register

A Add tp Registar s Selection

LA Load Address -

BC Branch on Condition % Branch

TIO | Test 1/0 and Branch \ Condition

SNS | Sense1/0 [} Device

LIO | Load 1/0 { Address and

Data Selection
. HPL | Hait Program Level Halt Identifier (tens) Halt ldentifier (units)

Command | APL | Advance Pcogram Level Advance Condition Not Used

JC Jump on Condition Jump Condition Address Madifier

SIO | Start 1/0 Device Address and Unit| Stacker select, spacing, etc.

Figure 1-11. Instructions

v

BIO

5410 TO 115

DATA FLOW

Data flow for System/3 is shown in Figure 1-12. «l R 812y Data
ﬂowstlth'rough the machine in 8-bit bytes plus one garity bit.
It flows serially by byte through the arithmetic an?logic

. unit (ALU) and is distributed to the remaining fun¢tional
units of the machine.
The ALU receives two bytes of data and combines them in
parallel into one byte. It is able to perform decimal add and
subtract, binary add and subtract, and logical AND and OR
operations. All data to the ALU comes from the A and B
registers, and the output is the contents of B modified by
the contents of A.
Qutput of the ALU is available to the 1/O attachmentson .
the data bus out (DBO) in one of two forms: either trans-
lated from EBCDIC (Extended Binary Coded DRcimal
Interchange Code) to System/3 card code, or straight from
the ALU. The ALU output is also available to the storage
data register (SDR) for entry into main storagg., to the.op.
and Q registers for infstr,uctxon decode, to thé condition
register (CR),-arid to the Yoca! storage registers (LSR) for
témporary storage.

1-16

Parity Checking

" A check for drophed or extra bits during data transfer is
accomplished by checking for an odd number of bits after

the transter. Figure 1-12 (1 R B12) shows the parity checking (P)and
parity generating (PG) points. Chapter 2 of the DM shows

error checking circutts, and Chapter 2 of the MM gives a

detail list of all error conditions and their causes. '

Check ALU

Correct output parity is generated in the check ALU since
the parity of the ALU does not stay constant with the
inputs. After the data leaves the A and B registers, it can be
altered by the decimal and binary complement circuits, the
ALU, the decimal correct circuits, and the sign control cir-
cuits. The parity changes caused by all these must be con-
sidered when determining the parity of thd ALU output.

Bl

- Main
Storage

Address
Decode

®

Parity Checked

A

® ®

Register

@.

LSR

Lo

H l

AR

ARR

AAR

XR1

XR2

tcr |

DRR

BAR

MPTAR

LSR Select

LPDAR

LPIAR

MPCAR

MPDAR

LCRR | CRR

inter 1-1AR

Inter 1-ARR

Hi [Lo

Figure 1-12, CPU Data Flow

Parity Generated

Conditio
Register

o}

Transtate

In

Channel
In
Control

Channel
Out
Contro!

Transiate

Out

l D8I

Register
LOp and Q Decode 1
Controls]
Run Control
Cycle Control
Clock Control
LSR Control ”
Register Control
| Op 1Q IR P I-XV) -HT 1L X2) 1-H2) 1-L2 § EA EB /0
g Basic Clock ~—
\
~ ~
|/Storage Read Storage Write =~
0 1 2 3 4 5 6 7 8 9
ABCDE | ABCDE | ABCDJABCD|ABCD|ABCDJABCD|ABCD|ABCD{ABCD
Load Miscellaneoys Compute Address‘ Address) CE
SAR Lo Hi !
Modfy Modify :

Bi12

CPU Timing

The basic unit of time in the CPU is a 1.52 us machine cycle,
and based on the speed of the main storage unit. Each

» . . .
“Mmachine cycle contains a storage read and a storage write
time.

. .
..

The machine cycle is divided into nine clocK times known
as clock O through clock 8 (Figure 1-13). Clock 0 and
clock 1 age each 200 ns long and all of the remaining clock
times'are 160 ns in length. Each cléck time is divided into
4Q~ns phases. A clock 9 time consisting of four phase
pulses is taken each cycle during system reset, step mode,
alter SAR, and alter/display storage with the storage test
switch in its step position.

Each machine cycle is divided into five functional time

- periods. The first, clock 0, is address time. This f§ the
time when the address LSR is selected and sent to the SAR.
During 1/0 cycles the 1/O device attachment provides the
selection of the LSR assigned as its addjess Tegister.

The second functional time is known as the miscellaneous
period. After the CPU has addressed main storage for a

read operation, there-is a delay before the output is avail-
able. This delay prqvides time to process other data through
the ALU. The data processed is determined by &he purpose
of the machine cycle and as the name implies. there is no
specific function during this period.

The third functional time is the compute period and is the
time in which the main storage contents become available

to the CPU in the SDR. The SDR at this time is sent to,

the B register unless it is blocked and is processed through-
the ALU with the contents of the A register. The A register’
may be loaded with zero if the SDR conteat is to be trans-
ferred through the ALU unchanged, or the A register may
contain a modifier if the data from storage is to be modified
or tested. The results of the modification are available on
the ALU output for transfer into the SDR for storage. -
This time is also used to transfer data through the A registet, .
ALU, ar‘d into the SDR.

The fourth and fifth functional time periods are address
modification periods known as modify lo (clock 5-6) and
modify hi (clock 7-8). During modify lo, the low half of
the selected LSR is gated into the B register and into the
ALU to be modified by the contents of the A register.
During modify hi, the same thing is repeated for the high

" half of the selected LSR. During 1/0 cycles, the attachment

must supply the modifier on the data bus in.

During clock 1 and 5§ the CPU sends the read and write
pulse to main storage.

Basic Clock)
0 1 2 3 4 5 6 7 | 8 9 |
ABCDE | ABCDE | ABCD | ABCD | ABCD | ABCD | ABCD | ABCD| ABCD | ABCD
Load Misc Compute Address Address | CE
SAR Lo Hi |
Modify Modity |

Figure 1-13. Clock Timing

BI3

FUNCTIONAL

UNITS

Chapter 2. Functional Units

CPU CLOCK BRIDGE BASIC STORAGE MODULE

This is a group of binary triggers driven by a 25 MHz ocil- - ‘

lator (OSC) to supply the basic timing pulses for the system. Storage Principles

This clock provides timing pulses for both the CPU internal - "

operations and the 1/0 attachments. These pulses (Figure The IBM 5410 CPU uses magnetic core storage. A magnetic

2-1) are nine (0-8) basic clock pulses (the CE can force a core is a tiny ring of a special magnetic material. This core
clock nine times for diagnostics). Clocks O and 1 are each can be magnetized clockwise or counterclockwise by passing
200 ns in length while the remaining clock times are 160 ns and electric current through a wire which 1s passed through
cach in length. These clock times are further divided into . the hole in the core. The core is magnetized clockwise by
40 ns pulses called phase pulses. Clocks 0 and 1 have five . passing a current in one direction and counterclock wise by
phases: A through E: while the other clock times have oply ~ Passing a current in the opposite direction. By assigning the
four: A through D. . values of 1 and O (bir and no-bit) to the two states of this

core, we can store one bit of information.
TR ST
Refer to DM 4-020 for a circuit description.

For a useful storage device, this idea is expanded to include
many cores. Figure 2-2 «t R B16)shows several cores in a core stor-

CYCLE CONTROLS age arrangement. The problem is to store a bit of infor-
mation in only one of these cores. A specific amount of
These are a group of triggers. controlled by the contents of current is required to change a core from one state to the
the op code, which determjne what machine cycles are other; therefore, if two wires are used (X- and Y-drive lines)
needed to execute an operation. with half the required current in each, we can select the

‘ core to be set.
Refer to DM 4-030 for a circuit description.

l j 3
osc

"Enable Clk Run
Trigger A

Figure 2-1. CPU Clock Timing

5410 TO, 2-1

BIS

Figure 2-2 shows a 4 by 4 core plane. The X-drive lines

run horizontally and the Y-drive lines run vertically. If half
the required current passes through the X-drive line labeled
A and half through the Y-drive line labeled B, only ihe
shaded core 1s set (it is the only core receiving full current).
Current through these two lines in one direction sets the
core to bit status (wrnite current). Current through the same
two lines in the opposite direction resets the core to no-bit
status (read current). < =

When a current passes through*these lines in the read direg-
tion and the core 1s already reset (no®bit), 1t will not change.
However, if the core is set (bit), it will change status. We
must be able to detect this change of%tatus 1o know whether
the core contained a bit oF no-bit. This is.done by passing
one wire (scgsc !mc) through all the cores. When a core
changes status, it imduces a voltage in the sense Line and this
voltage 1s sensed as a hit.

»

H
The 5410 arrays conl#in either five, nine, or 18 core planes.
Every plane has two separate’inhibit windings. An inhibit
winding passes through every core in the plane. When write
current passes through X- and Y-drive lines, it passes thfough
the selected cores of all planes. If we do not .want to write
a bit in a specific plang, current passes through the inhibit
winding. The inhibit ¢urrent is gqual to and in the opposite
direction of the current in the X-drive line. This cangels
the effect of the current in the X-drive line and no-bit is
written in that plane. :) .

In the 5410, the same wire handles the sense and mhibit

functions.
.)

5410 BSMs

Figure 2-3 (ER 817115 an overview of the 5410 BSMs. The separate

functions of each part of the BSM are discussed in the
following text.

Y-Drive Lines
A

~
@)

Q

(}

Sense/Inhibit

Lines

X~Dnve<
Lines

> X-Drive
Lines

/v

Y-Drive Lines

Figure 2-2. Core Selection
-

2-2

»

Address Bits (SAR)

Address Decode

and X-Y Drivers ¢
. .+
\
Read/Write, Storage Tsmer
Call - . N . .
y 1
’ Inhibit ~ | Core . Sense ' . Sense
"1 DrNers Array Amplitiers Data
: Register
- AND
Stoce New Data .
Data from ALU
Byte
> Control % : » Data to B Regster
(16-32K)

Jumpers for 8K BSM only '

Figure 2-3. Overview of a 5410 BSM

*

BI7

vaezal core planes comprise a core array Arrays with
thelr.dnvers ‘control circuits, diodes, sense data latches
(which are also called the storage data register—SDR), and

all associated wining attached are called basic storage .
modules (BSMs).

If 8K, 12K, or 16K of storage:is installed in the CPU, it is
in one 8K or 16K BSM at 01A-B4. If 24K or-32K of
storage is installed in the CPU, three types of BSMs can be
used (Flgure 2-4). For early systems, 24K of storage uses
one 8K BSM apd one 16K BSM chained together; 32K of
storage uses two. BSMs chained together. For later systems;
a 32K BSM is used fOr both 24K and 32K of storage. When
two 16K BSMs are chamed (dual BSMs) they are at 01 A-B4
and 01 A-A4 of the CPU. Whep one 32K BSM is used, it is

at 01 A-B4 of the CPU. If 48K of storage is installed, it uses*

a 16K BSM which is at 01 A-A4 and a 32K BSM which is at -

01 A-B4. If 64K of storage (RPQ S40048) is installed, it' uses

two 32K BSMs unc at 01A-A4 and one at 01A-B4.

24

BI8

: . BE&M “lu‘ Required <
o Stbrage ¢ R . R
Capacity 8K 16K r 32k}
8K 1
- 12K 1
16K 1 '
24K 1 and 1 cil‘ 1
; T t
32K 2 ' or 1
9]
t
48K 1 and 1
5 A .
sdc 2

Figure 2-4. Storage Capacity - BSM.Requirements .’

CONTINUED.ON

FRAME CO1-°

Each core plﬁllc contamns 10,384 (16K) cores at the inter- S/Z segments via the X-return card at the bottom of the

section of 128 X-dnve hnes and 128 Y-drive lines. The array (Figures 2-5 and 2-6). I R ¢02) Thus, when one X-drive];&e
core plane also has a sense; inhibit wire (S, Z winding) whach and one Y-drive line'are active, two cores on the plane
runs parallel to the X-drive hne. Thus, three wires go experience coincident currents (one in each segment). This
through each core. one X-dnve hine . one Y-drive line, and means that each plane contains two bits for each of the
one $;Z wAading. Each plane contamns two S/}_ segments possible X/Y addresses. Since there are 16K cores on the
(separate windings), each representing one dafa bit. For plane. they can all be addressed by 8K unique addresses
8K and 1oK BS&Ms, each X-dnive hine passes through both provided by SAR bits 3-15.
| . N
’ 2 Y-Drive Lines
(one end of each)
X-Return
Card
Printed X-Return
. Wires
" Odd-Numbered .
Lines
Bottom Diode
+~ Board
One X-Drive Line (see SR 214)
(both ends)
- 1 -
. ! . o Even-Numbered
4 Lines
’ . Side B
N Even-Numbered
Jd’* Lines
Top v
Diodg \ f
Board ,
(see SR 204) < »
Odd-Numbered
Side A P umoere
. : ' Lines
One X-Drive Line
(both ends)
e
"
CardS v ‘
ard Side) o 2 Y-Drive Lines
of Frame (one end of each)
. . N~
N ™
- ~ . . /

Figure 2-5. SK Array Assembly

-

'5410TO 2.5 -

Col

. One Y-D-ive Line
’ (ore end
X-Return C2. d
Bottonm, -
. Diode - '
Board -
'see SR 214%
One X-Drive Line ﬁ D
e 1
{both ends!
~ ?
~
P A
- 4
-~
7
P)
~
1P
<4
. Phd ~V
’ ~
Top
Diode ~ L~ : 1
L~ Printed :
Board |~ X-Return g
isee SR 204) e H
Wire
-~ ' B
e
‘\b _
One Y-Drive Line
{one end)
Figure 2-6. 16K Array Assembly S, . /f oL
N ’
w o

Fach X-drive tine travels through tive planes betore crossing

to the second half of the core planes via an X-return card

at the end of the array . This X-return card has printed hnés

that carry X-drive line current from one end of the X-drive

line in the lower half of the array to the other end of the

X-drive line in the upper half of thcﬂarray. The winding

pattern of the array 1s such that alternate X-dnve lines are

driven from opposite ends of the core plane (Figure 2-5). (iR ¢0D

“Figure 2-7 (R Covishows a 32K BSM. Each X-dnive hine passes
through one S/Z segment (there is no X-return card). When
one X-drive line and one Y-drive line are active, one of 16K
coreson the plane has coincident current. This means that
each planc hs one bit for cach of the possible X/Y addresses.
SAR bits T gnad 3-15 provide 16K unique addresses.

LY
8K Basic Storage Module A Y-drive line starts at either the top or bottom of the furst
k B core plane and is wound through cach plane. It leaves the
An ‘8K by te BSM has five core planes (Figure 2-5).J R C0DThe a5t plane on the opposite side from which it entered. Thus,

firstiplane forms bits 0-1. the second plane forms bits 2-3, if drive current flows through one X-drive line and one Y-
the thﬂn‘d plane forms bits 4-5, the fourth plane forms bits drive line, ten cores will experience the coincident drive
6'7, ahd hulf.-()f‘ the fifth plane f()”]lS bit 8. The lower half current necessary to affect the cores. The tenth core.n

. of the fifth plane is not used in an 8K byte BSM. the lower half of the last plane, experiences coincident drive

drive current, but this core output is not sensed because
the S/Z segment is not used.

2-6

C02

Bottom
° Diode
Board
» (see SR 214)
. < ‘
\\
N\
Ohe X-Drive Line X | [\
(both ends) > s b
N
N
.]
1
> VP)/1/7
™~ 16
> /K y d
A / 14 / !
R / 13 / |
e ™~ 112 L1 | 2
Pl P R
. L-T10] A iy
r / / PR V/
X ' V) 1 g } //
N\
e, D | > 17 1A |
. 3 ~ 16 1 P
-
T A |
N Top) 13 1 //
Ciode 3 (2 /
Board |) One Y«Drive Line
{see SR 204) 3 {(both ends)
]
i /
] SAR=7 2 SAR=1,2
) *Segment A
0-8K | 8k-16K
16K-24K | 24K-32K
Segment B
SAR=1,2 | SAR=1,2
Figure 2.7. 32K Array Assembly
[Y-Drive
' Top Diode Board |q Read
Two cores are addressed 1n everyplane during a read oper-
ation and during a write operation. During a read operation, X D
o . rive
nme bits are sent to the sense data latches (which are also
cv.alled the storage data register- SDR}. During a write oper- —M—-—‘
‘?uon either thé same nine bits or nine different bits (stor-
g flew data) tfrom the ALU are written back into the core Read \Write

lanes
planes.

Each dnive line (X or Y) is connected to the array through
dxodes pn .the top diode board or the bottom diode board’
(anure.z 8).. Thes: diodes are part of the gate and selection
system described lmdo;“X/Y Drive System™ in thns chapter.

> .

Bottom Diode Board

*D'—w

~

Y-Drive
}—— Read
—— Write

Figure 2-8. Diodes X- and Y-Drive.Lines

Co3

5410 TO

27

16K Basic Storage Module During a read operation, I8 bits are sent to the sense data
latches (SDR). SAR bit 2is used in byte control circuits

A 16K byte BSM has nine core planes (Figures 2-611 1 (12, which causes either the first nine bits or the second nine

and 2:9) Two cores are addressed in every plane duning a read bits to be gated out from the SDR to the B register durning

operaton and during a wnte operation. the read operation

All S/Z segments are used, providing 1¥ bits ot data at cach Duning a write operation if “store new’ 15 active, SAR bit 2

address. Asin the 8K BSM. there are 8K unique addresses detfrmines which nin - of the 18 bits are replaced with nine
available. With the additron of one more address bit (SAR new bits from the ALU. On the other hand. during a wnte
bit 2). 16K total addresses become available. operation if ‘store new” 1s not active, all 18 bits trom the

SDR are wrnitten back into storage.

w
>
pej

]

— 3

64 X-Drive Lines

—_
w

I

—-
H

Py
w

l

-
~

SDR:

-
-

8

-
-dp
,

[N

1 0

128 3 2
Y-Drive 5 , 4 gﬂ

7 6

9 8

.

__elefelef~]=]e

b 0 SCEEE——

Lines

T T3~ ®v 3yoW

PN O B <

9 el

o TO ~0 O, Q @2 30MW
[{e]

\Y

v

H
——

® ligure 2-9. 16K BSMs

2.8

Co4

32K Basic Storage Module

A 32K BSM has 1% core planes (Frgures 2.7 00 R ¢otoand 2-10)
One core s addressed in every plane duning a read operation
Each plane is divided mto two
sczment A and segment B SAR it s used tor
segment control which selects erther segment A or segment

and duning a write operation
segments
B to,be read out of or wnitten into. Duning a read operation,
I8 bitsare sent to the sense data latches (SDR) - Sense data
latches 0% contamn byte 1. sense data latches 9417 contain

byte 2 SAR bit 215 used tor byte control which selects
either bvte 1 or byte 2 to be gated from the sense data
latches to the Bregster during a read operation

%

During a write operation if *store new’ is active. SAR bit 2
determines which nine of the 18 bits are replaced with nine

.new bits trom the ALU. On the other hand, during a write

operation if ‘store new” is not active, all 18 bits from the
SAR are written back into storage.

SAR
7] —
N
2| p— -
3 . f
4
5
6 —128Y-Dnvel.mes .
7
8 -
9
10
1 ¥
12 : 128
X-Drive SDR
13 Lines l 0
14 1
15 I < x e 9
L |
I S
|16K-24K}
Bit O I y S :
1 I / ? e s
2 X =9 n| ¢
: -
3 | / e | O
: : oK-8K” / ? (1o B register)
’. . 5 ‘ | ! 8
/| 1 nlo
6 £ X -9 ? 8
) 7 // | B t
| A
.__.__._._.__.__._8._/ |24K-32K 1 :
9 ' _ .
10k 1 - 3 4
X -
11
8
f J2 "
) 13] 8x-16K
T 14
15
16 A Segment
17

| /

1 L]
Figude 2-10. 32K BSM

CO05

5410TO 29

Addressing System Duning a write operation 1f “store new’ is active. SAR bit 2
deternunes which nine of the 1% bits are replaced with nine

The storage address register (SARV in the CPUL provides new bits from the ALU

storage address bits The address bit imes nilist be held

active throughout the read and write operations

The 8K BSM uses 5AR bits 3-15 10 access all the addresses

in the 8K of storage (Figure 2-11). X/Y Drive System

The TOR BSM requires the use of SAR bit 2 as by te control. The X Y dnve system uses
By te control circuits deternune which sense data Jatches ‘

(0-% or 9-17) to use dunng a read operation and “store new’] ('ur?:nl sources
operation) J

® (ate and selection svstem

When two BSMs are chained {Figure 2-9) 00 R €04y another \
address bit s required SAR it 1 called "2nd BSM selected’). The XY drive system sefects and passes current ihnh(h one
This bit determines it the storage timer s started in the low- N-drive line and one Y-dnive hine. Each of these currentsis
order or the high-order BSM. The low-order BSM 1s storage one-half the current necessary to cause a core to tlip. Con-
HEX address 0000-1FFF in CPU 01 A-B4. The high-order sequently eores at the intersection of the selected lines are
BSM 1s storage HEX address 2000-3FFF in CPU O1A-A4. the only cores which can be attected. Also. during the read
- cyvele, coresn the logical one state are the only one which
Thc"orulput ot data latches 0-% 1n the hagh-order BSM are can thp. A third wire in each core. the S Z winding. senses
dot-ORed with data latches 0-8 i the Tow-order BSM. The the cores which thp from the one state to the zero state
output of data latches 9-17 1n the high-order BSM are dot- ,
ORed with data latches 9-17 1n the low-order BSM. Fhe Since all the logical ones at the addressed location are
low-order BSM using SAR bit 2 performs byte control: this . changed tological zeros on aread ey cle. this 1s calied de-
BSM controls the gating out ot data tor both BSMs to the structive readout. These bits are now in the SDR and may
B register. i be used to restore the cores by reversing the X- und Y-dnve
. currents at the same addressed location during the write
The 32K BSM uses SAR bty 1T and 3-15 to aceess 1ok avele (New data may be placed in the SDR prior to the

unique addresses (Figures 227 a0 R codand 2-110 SAR it s wnte avelet this s g store new operation)
also used tor segment control which gates the T bits to the

sense data latches durmy a read operation SAR bit 21y Zeros m the SDR are used to activate inhubit (Z) dnivers
used tor byte control - By te control aircurts determine which pass current through the S Z winding in 4 direction
which sense data latches (0-% or 9-17) are sent dunny a read which opposes the X-drive'hne current and prevents the 4
operation to the B register corresponding cores from thpping to the one state
Capacity Version i SAR Bits
0(1]2]3 15
8K (1 BSM) XX X|3 15
12K (1 BSM) X|X| |3 15
16K (1 BSM) x| x[-]3 15
24K 32K (2 BSMs chained) xX|®|-13 15
24K 32K (1 BSM) X * |3 15
48K 64K 12 BSMs chained) L4 " |13 15
— ,
® 7nd BSM Selected ”
* Byte Contiol 5 -
Setects esither X Decode 3 4 5 6 7 8 9 10 n 12 13 J 14 15
Hi A or X, Decode
Hi 8 Y Decade Hi Y Decade Lo X Decode Hi A X Decode L&
X Not used -
k‘gzx BSM —#| X Decode H: B

Figure 2-11. Addiessing System
)

2-10

" CO6

Current Sources: Supply drive current to the X- and Y-dnive

Imes. Fhere are four current sources in the BSM packaged

on one card - Xeread, XNewnite, Yoaead. and Ywnite Fach
L

current source has a transtormer primary and secondany

The primary as driven by a transistor controlled by oy ele

trging (Figure 2-1 23 The secondary s the current source

tor Nge N-and Y-drive hine drivers

Gare and Sclection Svstem Directs drive current to one
N-drve hine and one Y-dnve hne The gate and selection
S\ stent acts like ¢ switch at cach end of the drive hines 1o
direct the current source drive current to one drive hne
(Ficures 2-130R Cosiand 2-14) (R Coo

Durnng the read ovele, uddrcschcudcrs select a read Hi
driver and a read Lo dniver for one X-dnve line Figure 2-12).
and one read Hidrovver and one read Lo driver for one Y-
dove e Duning the write ovele . the same address deco-

ders select one write i dniver and one write Lo driver tor
IhMmand one write Hidriver and one write

To dnver for the same Y-dnive ine. These dnvers. along

with diodes i the N-and Yedove hnes to the array (Fiaure
215000 Rt cause current to flow o the X- and Y-dnive hines in
one dnection durmg read and the opposite direction durmg

write

~

To 7 More
Drivers

Lo-X Decode

X Rd Lo Gate
Current ————

Source

1 g

Read Ttmlng f

H)-X Decode
—

X Rd Hi Gate

Lo Driver

Hi Driver

To 7 More Diodes
(8K-16K BSMs)

To 15 More Diodes
(32K BSM!

>
‘ ; L
To 7 More
Drivers (8K - 16K BSMs)
-30 Vde = . To 7 More
B To 15 More Diodes Diades
(32K BSM) A
: Write <
Gate
X N
Drivers Pt
¥ L
- ' 53533
Figure 2-12. X-Dnive Syst§m

€07

. 5410 TO 2-11

Figure 2:13. Gate and Selection System X/Y (Simplified)

2-12

C0o8

!
A
| I
| |
" Decode H: l
| O QO |
| 0 0 |
“ O l \
y ! QQOO |
¢4 —— —t — — - — - —_——— —_——_——_——_—— - One Diode
in Each Line
|
! . S AeoslDoed o806 VY 4
»’ * * *o90e 10000084 20000001
; { T i !] I
: nR b REREEE
| : EREE ' RN
N [B i
§ RS 3 SR A B Ll SEEEES!
Y -/] j [
e Lo L) 17 } T 10 I } [
. ' i . 1 t i
Shel ; RERE | NERE |
” i Ll
[Lo i
_}'\/L,F\.wn/v'\r N AN A "VNHNM LI PR
\.(Tq/ﬁ"\/‘v"v‘ \AATM“NP' “Array f\-r\qqanr T\AT’TT
! I 1 -}
| - ———
| 1S
4 e e ~ b
) . 2 {i N
. i
| Al
. — ‘ﬁ
: <P ii £
. { ¢ One Diode
j((in Each Line
Current 3¢
Source,
A
|
" |
|
8 |
I
Decode Lo |
- e - e - —_- — e — e —— - — 1
- > *
Note: Y Drive for 8K - 16K BSM .
- X or Y Drive for 32K BSM

‘) % : One Diod
One Diode - } ne Diode
in Each Line ™ —‘3 (\ n Each Line
I A
: n) t‘ b |
‘J A jl yi
af il
r . L%//" -
h.-—-lbL;.) a\JL LLKM%JL\MNJN AL AL
R e ~ AN T A"..v L Ny, N A~— o
41 N ! rTqP
’ : i k|
(Z L * 4 £
- i 1
- [——.—— —+ P — — —J— +t++— — — — -+t — — et
— €]
| IR
) | |
| — C
1 |
| A\ :
| — /) ' .
: {
e 3 I
e 7
~
) *, AL |
i) X I;!as;rn Cafe t 8 jl ‘F [
‘_.__*_._?____._..L__.__._ e i — — e e ey e e)
Note: | X Drive for BK— 16K BSM
Figure'2-14. Gate and Selection System - X Only (Simpliﬁed)>
5410 TO 213

-

. <
,
‘, ’Jl‘)g) ~ . B12 ;)n X XRead Sink
. ~ PRIIARD v . R
X Readt ST N i3 P Fred X Read H Gt
Lo Gate Beat o T - VT [163 —
- P |w 161 XXE2§ |
[00 H | SAR 10 O
rxn) 169 14 _ i .
. e | \) ! 1 SAR 11 0
SAR T3 1 | 1 I 57 L 16 A g2 2
SZRvad Y 155 L D SRRz 0
f ——
e T - -1 i ' LR
SART1L D J U . 53 20 1 Dt , e)
. — K JO0i D110 . 1 X Write M Gate
—— \1 i ' . L1 —J Array X Write Source
] LR 1 00 N ! 2]) _
M Gare Ve 09T RERD T 1 Sute —+ | LXXE2]
X Wrae Sink ' N - K___ H
L i ‘ H C
i - 4 : o
u:g;z,J o 1_10 | . i 1% ’
| =T |, i j i
Ttk | S o5
At e —]
Ouate ; Donce H
o — e (-
25 ’ T
Vg Blarg . B g e
.
- 3
Figure 2-15. Array Diodes X-Read Drive (One Line:- BK and 16K) '

Readout ® Pulses are generated on the S/Z winding wrcn the cores
L change state during a read cycle. The sens¢ amplifier
Readout from one addressable location in the BSM is accom- circuits sense these pulses.
plished by :
‘ . ® During a write cycle, the S/Z winding can frevent cores
® Activating the X-read and Y-read current sources. trom changing to ones.

® Selecting. by address decode, two X-read drivers and During the read cycle. a core that switChes-thdices a pulse”
two Y-fead drivers. : into the $/Z winding. The sense amplif‘icr senses a differ-
rg ence in voltage on both ends of the sense line and amplities
® Sensing Which of the selected cores have flipped from only the difference (Figure 2-16). (1 R €12) Qutputs from sense
the logigal one state to the zero state. amplifiers are sent to detector circuits which, along with
i storage timer strobe pulses, distinguish between noise and
® Sending this data out via the interface, also saving it for one-bit signals and send the one-bit pulses to the SDR.
the subsequent write cvefe. o _ During the read cycle. a core that does not switch (was a
logical zero) induces no pulse in the sense winding and sets
no SDR latch.
During the write cycle, if a logical one is to be stored in a
core, the cote is flipped by coincident X- and Y-drive cur-
rents. In this case. inhibit cyrrent does not flow yn the
Sense/Inhibit (S/Z) Windings inhibit segment (Figure 2-16). (1 R €12y 1f a logical Zero is to be
stored. inhibit current must flow to opposc the magnetic
® A combination S/Z winding is used (one tor each data eftect of the X-drive current. With the absence of one bit
bit). from the SDR to Z driver input, the Z driver conducts and

inhibit current flows. The effect of the inhibit current is
® Etach winding goes through 8K cores (one-half of a plane) to cancel the X-drive line current and the core remains in
parallel to the X-dnive lines. a logical zery state:

541010 2-15

Cll

Bit 0

Sense
Bit 0

Data Latch
Store Bit O
Sense Bit 0 2nd BSM OR L
Strobe
Detector
Inhibit Z Driver ier:“
Time E .
S A A o
4 A. - AR
co ’—0
— N NI i
Note Note
______ A
- Reset
N Note
siz SR 071
Winding
\~ .
g Z Current Limitingh!si;tors Are On Resistor Board
Y (Probe Side of Frame) (see SR 264)
. Note: Bit Locations Bits 0, 1, 2 {SR 071)
-30v Bits 3, 4,5 (SR 072)
Bits 6, 7,8 (SR073)
Bits 9,10,11 (SR 074)
Bits 12,13,14 (SR 075)
. Bits 15,16,17 (SR 076)

Figure 2-16. Sense/Inhibit Logic (Bit ()
N -

Ci2

16K or 32K BSM Byte Control

Every read operation reads out 18 bits (two bytes). Byte
control circuits, controlled by SAR bit 2, determine which
SDR latches (0-8 or 9-17) to send to the B register during
a read operation (Figures 2-17 and 2-18). A1 R C1 4

Byte control is not used for 8K BSMs.

Sense Data
Sense Bits (0-8) Latches (0-8)

SR 071-73

)

(byte control) SAR 2

Sense Data
Sense Bits (9-17) Latches (9-17)

Store Bits (9-17) m

Reset

SR 074-76

e

Sense Bits (0-8)

e

® Figure 2-17. Byte Control

cl13

5410 TO

2-17

Byte 2

Segment

(store bits from ALU)
9

Sense Data
Latches

Strobe (SDR)

Store New
SAR 2 A

|

71-7
SRO 3 SenseaButs \

OR| To B Reg

9
SR 077 |

\

Sense Data
Latches

SR 074-76

Fagure 2-18 Byte Control (32K BSM)

Write (Store)

A write ¢cvcle must follow evegy read cycle in order w
restore the cores to their ongmal status (betore the read

cycle). The read data bits are in the sense data latches

(SDR) and serve as imputs to control the Z dnivers. However,

if this s @ store new operation, “store it lines from the
interface set the SDR Tatches along:with the control line
store new’. The “store new’ line causes the SDR latches to
be reseq prior to their setting with new data. 1 SAR but 2
was uséd for byte control on the readout. it is now used to
generate store byte 1 orstore by te 2 These two signals
control the setung of the SDR latches 0-8 and 9-17 respec-
tively. SAR bit 2 selects only one of these two by tes and
the data contamed i the other by te is gated back into
storage.

Storage Cycle Timing

The BSM 1s an asynchronous unit: that s, once started. it
runs independently. The CPU starts the storage cycle by
issuing the read call wnte call signal. This turns on the
tnung control latch and the read. write latch. The reud. ‘
write latch Wetines this cycle as readout evele. Late in'
the radout cycle the set reset lateh is&urned on: though
perfornung no function at this time, § ensures that the
next read calliwrite call resets the read write latch.

4

Theretore, the tollowing cvele 1s a wnite ¢ycle. Durning the
write cycle, the set reset latch will be turned oft, torcing
the tollowing cycle to be 4 readout ¢yvele.

The system must allow a minimum ot 600 ns for each cycle
to be completed and also must hold the SAR (address lines)

active for both cycles. (Figure 2-19 11 R C1Sishows the cycle timings.)

Cl4

~e
3)
1 5 N . T
CPU Cyele - -
vee, ascoe|” . ABCD ABCDE
e 680 ns ~e 840 s -
\d p \ 3
-7 I-l I——————/
Read Time H——J i o f—
L 4 . V4
Read Set J </ ~
‘-4—250 ns ,,L—?SO ns-»j -
IC4 //\\‘ .
: .
Read/Write Call (CPU)}_——J—_—l 4 - ;;_l l SF l l f
] .
! L L 4 L w4
] 77 l 77 . T B 7
1 o
SAR Bt (CPU) ﬁ—-l : ¢-0
[o
3 .
fe—azs ns—s] L o
X-Read Current f—J H L——f, - - ~
' : .
T
475 ns
YR t F____’.‘_- H L.fL . 7L P
X/Y Rd Cur 150 ns (BK-16K) ! 7 7/ 7
.75 n: (32]'() i (I ¢)
s 275 ns {BK-16K) 350 ns {32K) .
Y-Reed Current F ; J ! A . fa 4
E » l#—50 ns (adjustable) ,
. =250 ns [Je———— 75 s (8K-16K) 100 ns (32K) > >
Strobe 7/ 27 77 4
7L -
con . fe—=s 450 s 4N 7 ‘
’ Data f,(-;m Core 1n SDR Data changed at 5-A 1f ‘store new’ is active
Write Time f———‘ *{,’
A L
27
' .
[e——350 ns——"l
X/Y Write Current - _f~= J’f{ - <
)]
e 425 ns ——]
Wr Control F {/J: oS f— -
. : :
pd ., 375 ns——.l : P
Inhibit J v p IJ J 7 7
Note: All timing relationships on this chart are approximate.

Figure 2-19. Storage Read/Write Cycle Thmings

Storage Timer

Each read call/write call signal turns on the timing control
latch. This starts the storage timer, which is a delay line_
tapped at 25 ns intervals. This timing control latch is
turned off after 225 ns, so the duration of cach delayed
pulse is about 225 ns. These pulses are wired to AND
circuits to provide timing signals.

Chgined BSMs

For early systems, 24K of storage has one K BSM chained

to one 16K BSM, and 32K of storage has two 16K BSMs
chained tog}ther. By chaining a 32K BSM and a 16K BSM, -
48K of storage are created (Figure 2-20). « R ¢ 16) By-chaining two
32K BSMs, 64K by tes of storage are available.

Chaining involves cabling 4 segond BSM to the tirst BSM|

addipg, or removing terminator cards, and removing the
by fe control card from the second BSM.

5410 107, 2-19

CI5

Figure

220 Chained BSMs

cl6

SAR J .
- { 1328k 33K) l)
\ 14 (48K) 1 | 1
git 1 I Address Address
{48K only) | Decode » I Decode
Bits 3-15 ; l
(24K - 48K) | ~ i
I Storage
N i AND Timer
) I AND Storage
Timer
Bit O (48K) | -
] . <
Bit 1
(24K - 32K)
a ok
Bt 2 Byt)
Controt -vg
Read/Write
Call
B Register
. 4
|
cPU I 15t BSM (01A-B4) 2nd BSM (01A-A4) :
J‘/

Interface

The BSM communicates with the sys;enl over a series of
signal lines called the interface. All control signals, addres-

ses, and data are transmitted. over this interface (Figure 2-21).

(FRC18)

Read Call/Write Call

Upon receipt of the first read call/write call signal, the
storage timer of the BSM starts. The BSM goes through
one read cycle and stops. Upon receipt of a second read
call/write call siggal. the BSM goes through a write cycle
and stops. The %151 cycle following a system reset is always
aread cvcle. Thereafter, read and write cycles aiternate.

~

Reset

The ‘reset’ line resets the storage timer latches which con-
trol the read/write cycles in the BSM: it also resets'the SDR
latches. This signal is present during a power-on sequence
and every CPU clock 0 CD.

Ci7

Store New

The ‘store new' line resets the selected BSM SDR latches

prior to it being set with new information at the beginning .
of astore cycle.

2nd BSM Select or SAR Bit 1

For dual BSM 24K or 32K systems, this line is called

"2nd BSM sclect’. When the line is active, the high address
BSM (O1A-A4)is used: when it is inactive, the low\address
BSM (01A-B4) is used.

For 8K or fle BSMes, this ling is not wired on the CPU
board (O1A-B3) and thus is always inactive.

Fo{r 32K BSMs. this linc is called *SAR bit 1" and is an
address bit.

SAH BItS

If a 32K single BSM is installed."SAR bit 1" active addres-

sps segment A of the BSM or *SAR bit 1" active addresse
segment B of the BSM. :

5410 TO 2-21

_ ‘store new’ cycle.

to
[

SAR bit 2 is used for byte control. ’

*

SAR bits 3-15 supply the address to the BSM addressing
circumry.

The SAR bit lines are active through both read and write ,

cycles.

Store Bits

Store bit lines provide data input to the SDR during a.)
>

Sense Bits

Sense bit hines carry the storage data out to the system.

The lines become active within 450 ns after *rd call/wr call’

starts a read operation and remain active until changed
cither by ‘store new’ during the write operation or by the
‘reset” Jine which is active during CPU clock 0 CD.

(7]

PO T T T S S T S 4

From .’ 4

% From BSM

{
READ CALL/WRITE CALL ; \

SYSTEM RESET
STORE NEW =
2nd BSM SELECTED * (SAR BITO) .
2nd BSM SELECTED ** (SAR BIT 1}
SAR BIT 2 T
SARBIT 3
SAR BIT 4
SAR BITS
BIT6
SARBIT 7
SARBIT 8
SARBIT9
SARBIT10 -
SAR BIT 11
SARBIT 12
SAR BIT 13
SAR BIT 14
SAR BIT 15

STORE BITO
STORE BIT 1
STORE BIT 2

- *STORE BIT 3

.STORE BIT 4
STORE BITS
STORE BIT6 :
STORE BIT 7 .
STORE BIT 8

48K and 64K Storage.

** Bual BSM 24K and 32K Storage

SENSE BITO
SENSE BIT 1
SENSE BIT 2
SENSE BIT 3
SENSE BIT 4
SENSE BITS
SENSEBIT 6
SENSE BIT 7
SENSE BIT 8

I
Figure 2-21. Storage Interface
ey

¢

Ci8

CONTINUED ON
- FRAME DO1

L

Power Supply and Tempera(ure-'Compensation

® D voltgees the BSM requares +oV 4V 30V

® DX voltages penerated within the BSM - 43V 14V
® System amrtlow cools the BSMe
S Z arrcunts ase +3V (dernved tipm the +6Vinput)

(denved
current

14V

trom the - 30V input) generates sense amphfier

Anspecial temperature compensatey supply furnshes the
30V tor the XL Y. and Z dsivers. A thermustor near the
core array senses the srray semperature and sends any
temperature vanations to the 230V power suppiv - Thas
mput to the -30V supply regulates the voltage =75 m\ tor
every 17 F temperature nise (-135 mV for every 17
perature rise)

C tem-

STORAGE DATA REGISTER (SDR)

All dat.} read from or written into CPU storage (BSM) 1
stored r’n the sense data latches which are in thu BSM.
These §ense data latches are also LZ]“CVhC sturaue data
regmyer (SDR).

[»)urmL a read operation. the storage strobe gates data read
trom storage into the SDR latghes. Characternistics of ter-

e memary cores and components vary i BSMs. theretore.

the ume that data s avadible to the SPR latches can vary i
The strobe pulse 1s adjustable to compensate for these
vanatons. .
Dependimg on the storage capaaity .msmllcd.. thereis a
varying amount of SDR latches (Figure 2-22). However,
no matwf what the amount ot SDR latches installed s,
durmgd read operation, only ‘one byte (mm, SDR latehes)

I yted to the B register. - .
— =
% 7 . RS
v, e *,
‘9»1- 4.'\? t’/ 9’1» o, N\ -
% ‘G 1
‘t . < Q’f‘
Numb@r of Senfe 9 18 7 N 36 -
Data Latches (SDR) -
— T, —
1 pSM 2-BSMs
-) Chamned
> §

Figure 2-22. Sense Data Latch Requirem"ems‘

>

When an 8K BSM is installed. there are nine SDR latches
(one by te) available to be gated to the B register during a
read operation. If a 16K or 32K, BSM 1s installed, there are
18 SDR latches available. but orﬁy, one byte is gated to the
B register (gated by SAR bit 2). If chained BSMs are used,
there are SDR latches available in each BSM. During a read
operation, ‘2nd BSM selected” selects one of the two BSMs
and 1ts SDR latches. (Refer to DM 4-080 for storage data
flow.) SAR bit 2 gates nine ot these SDR latches (one byte)
to the B register.

Jurmg a read operation, data tlows from storage to the
storage data reaster and then to the B register. Duning a
write (store) operation when store new ', active, data s

gated into the SDR latches trom the ALU at ¢lock S

During 4 write operation if "sgore new’ is not active, all data

. from the SI)R latches s returned to storage

STORAGE ADDRESS REGISTER (SAR)

A two byte address contamed i the storage address register
(SAR) addresses maik storage. SL’MMQ@&C‘P B
regsteES R) provides two bytes to the SAR cach machine
tyele 1o serve as the address A panty bit accompanies

cdch by te to provige, an 18-bit SAR. All bits are not always
lsed. (See lht‘ d\‘sul;’lnm ot SAR bits in" the section

inte rfau

B REGISTER
- The B rcgl:u'(15 & one-by te buiter to gate intasthe ALU
all data whchrfhé‘cumcms of the A register can modify.
The data in the SDR s normally gated into the B register
every_rpachime ¢y cle. but can be inhibieed it the operation
requires. During an {0 L)L]t‘ the attachment has control
_of this gating :

A REGISTER.

All @ta which ‘modifies the contents oi the B register in
the ALU s huttcred in-the one-byte A’ rcystcr The mos,
difier comes frony the local storage segister (LSRﬂ tfic
contittion register (CR), or from an 1/0 dcvu.t én data bus
in (DB, For narmal address modification, output of the
LSRs are fed to the B register, and through the ALU while
the A regster pyovided the fmccd mod/Tiér.

All incoming I/O datats fed lhrough tha A gegister and into -
the ALU. There 1s no other path for the /O data to enter
thc C Pl‘ Or main storage.

$4J0TO 2-23°

DOl

ALU

The ALU is a multiple function unit which receives infor-
mation from the A and B registers and performs the follow-
ing functions with the A and B register data:

® Logical OR

® [ogical AND

e Test for presence or absence of bits

® Pass B register through

® Pass A register through

e Binary subtract

® Decimal subtract

e Decimal add

The ALU operates on a full byte of information. Each
register can supply either a full byte or one half of the
byte depending upon the operation. The ALU is used four
times during each machine cycle and is loaded each even
clock CD time except 0 (Figure 2-23). The results of each
computation are available from the latches while the com-
ponents within the ALU are starting wigh the next com-
putation.

The A and B registers, except the P bits, enter the ALU in
parallel form and result in a single byte output. Each ALU
position (bit 7 through bit 0) consists of a group of AND,
OR, and exclusive OR blocks which give the correct output
for the desired function. Because the parity of the result

[] i
Binary add does not stay constant with the inputs. correct parity is
generated for the results.
. B ALU
Latches
Register b
Bit
o
= Even CD O | ;
‘r'
Clock | 0 ' 1908 2 | 3and 4« |Sand6 |7and8' l N
| . .
oy ML W ., mm
¢ ‘
Compute data !
from miscellaneous
registers, Results from previous computation)
latched in ALU-compute data from
miscellaneous registers (generally
address registers) .
1and £ time results
s iatc n ALU—compute
datf from main storage.
L—

Figuré,2-23. ALU Timing

2-24

The output from the ALU 1s sent to main storage. local
storage registers, operatign register, Q register. condition
register.and data bus ouf The use of this outputis covered
under the individual opdrations.

AND/OR and Test Fals:

Figure 2-24 llustrates the AND/OR and test false functions
for a single bit position. Outputs from the test false dines
are used to set the CR test false latch. These outputs depend

upon the presence"or absence of bits in the A and B
registers and the active control line (AND or OR). Test
false outputs are covered under the operations that use them.

The AND function is a bit-by-bit comparison of the two
registers and requires the same bit in each register to have
that bit out. The OR function gives an output for any bit
which is present in either register. Figure 2-25 contains the
outputs available through the use of the AND and OR con-
trol lines. '

LN Test False
o .
) ° A ALU
A Register Bit 7 (K OR . Bit 7
. AND Latch
—
|
N
. [
B Register Bit 7 }—
g
Figure 2-24. Singie Bit AND'OR
B
R e
egister Output is v Register Need same bit
A same as in both registers
B register for vutput.
Register .
(No controls)
L
'
Register Bit in either ‘0
3 register for nput s
I3 same as
output’
A register.

Figure 2-25. ALU-AND/OR Functions

D03

5410 TO 225

Binary Subtraction .

Figure 2-26 shows a decimal comparison between the con-
ventional method of subtraction and the type of sub-
traction used by the System/3. Under the conventional
method, whenever it is necessary to borrow from the next
position, the minuend is effectively increased by 10 in the
posption where the subtraction is taking place and de-
creased by 1 in the position that is borrowed from. For
instance, when subtracting the 6 from the 4 in the units
positions, after borrowing from the tens position, the units
position of the minuend effectively becomes 14. Because
of the borrow, the tens position is reduced to 1. In this
example, another borrow is necessary. so after the borrow
the tens position of the minuend is effectively 11 and this
method continues to the end of the problem.

The same result is reached if. instead of reducing the min-
uend by 1 after borrowing. the subtrahend is increased by
I with a carry (Figure 2-26). Thus, in the tens position
of the example shown. the carry method effectively sub-

tracts 5 from 12 instead of 4 from 11 asn th€ conventional

method.

Binary subtracting is done 1n the same way except for the ,

value of the borrows. Because decimal numbers have as-
cending powers of 10, a borrow has an effective value of
10. Similarly. since binary numbers have ascending powers
ot 2. a borrow has an etfective value of 2. Figure 2-27
illustrates this by subtracting the hexadecimal value B, F
from E/B. After subtracting the first two positions, it be-

- comes necessary to borrow in order to subtract the third
position. This borrow has an effective value of 2 and the

Minuend and
borrow value

3 2 3 2 .
B Reg 1110 10 1 1 Minuend
A Reg 1 O; 1£ 1 1' 111 Subtrahend
“I \2 %2 52 '
Carry 17171 1 \Sub(rahend
ALUTotaa 00 1 0 . 1 10 0 and carry
value

E/B minus B/F

Fagure 2-27. Binary Subtract

result of the subtractionis 1. Using the carry method of
subtraction, a carry to the fourth position gives the subtra-
hend an effective value of 2. This forces a borrow from
the next position which, when added to the minuend,
gives it an effective value of 3. This method continues

to the end of the problem.f

The minuend enters the ALU from the B register and the
subtrahend enters from the Aregister (Figure 2-2%). (1 R husi The
character is subtracted bit-by!;it. starting with bit 7 and
continuing through bit 0. Carries from bit to bit are in-

ternal but if there is a carry from bit 0 it is held in the carry
tniggers unul 1tis needed in bit 7 (Figure 2-28). (1 R Dos) Figure

o

2-29 d R DoSyllustrates the subtract tunction for a single bit position.

L]
Minuend and

/ borrow value \

Subtrahend
and carry
value

2 1114 12 14
Minuend 23 2 a 2 3 2 4
Subtrshend 1 2 4 6. 1 25 46
Total 10 78 Carry RR T
Tost 1 0 7 8
E 3
1]
) Conventional s~ System 3 ,
{reduce minuend (increase subtrahend
N by 1 with borrow) by 1 with carry)

oele,

Figure 2-26 Subtraction - Borrow Compared to Carry

[
[
>

DO4

Subtract

Circuits
? . ALU
) N Latches
B Register internal Bit 7
Subtract Bit Bit
A Register 7 Carry To 6 Even CD 7
-
\‘ -
B Register Internal Bit6)
Subtract | Bit 1
A -Register 6 Carry To 5 .
Bits 5
Through 1
B Register Internal Bit O
Subtract | Bt
A Register 0 Arithmetic Carry Out
Digit
Carry Carry to next
)
1 cycle for 3 and
FF
4 compute time
Temporary
Carry Carry within
% cycle for register
FF modfication.

& ALU Data Flow Binary Subtract

FFigure 2-2
\
Carry Carry
In A Qut
A A | OR
Register
»_- -0
A -
. ALU
OE Bit 7
Latch
Subtract A -
B OE €
Register 13

Figu'rc 2-29. Single Bit Subtract
S410TO 2-27

D05

Binagy Addition

Since the ALU is designed for binary subtraction. itis
necessary to change the figures to be added in a way that
will produce the correct results when they are subtracted.
Thus is accomplished by complementing the A register and
subtracting it from the B register.

The A register complement figure is an exact binary com-
plement. That is. a bitis replaced by no-bit and no-bit

1s replaced by a bit. In order to get a true complement
figure. 1t i1s necessary to force a carry into the low-order
bit of the first character. Figure 2-30 shows the method
used to add the hexadecimal values 8 F x°3and 3 F 93

The ALU controls and circuits are the same as binary sub-
tract exceptfor complementing the A register and forcing
a carry into bit 7 in the first cycle { Figure 2-31).

Decimal Subtraction

Since the ALU is a binary subtractor, it is capable of
handling the binary representation of decimal numbers.
However, because decimal numbers only use one-half of
each byte. the ALU must be split in half to subtract them.
Thus, a carry from bit 4 to bit 3 is used to set the digit
carry trigger (Figure 2-32). '

Arithmetic Carry Out (1st cycle of operation)

B Register

Binary Complement Subtract

AR
Register

-
Bit In = No-Bit Qut
No-Bit In = Bit Out

~

Pigure 2-31. Binary Addiuon Data Flow

Borrowed Amount 32 222 22 A
Minuend(Trug) 1000 1111 1000 0011
Subtrahend {Complement) 1100 0000 0110 1100
Tarry 1 11111 1 Forced Carry]
ALU Total 1100 th11 0001 0110

8/F 8/3 plus 3/F 9/3

Subtract
Circuits
B Register -
Sub Bit
A Register 7 Carry To 6

Bits 6
and 5

B Register
Sub Bit
A Register 4 Arnthmetc Carry to Bit 3

Carry

Carry to ALU
Bit 7 for next
digit position

Figure 2-30. Binary Add (Complement and Subtract)

9]
[
x

Figure 2-32. Carry Control Decimal Subtract

D06

Subtraction is done in the same way as binary subtraction

as long as the nunuend (B register) is larger than the subtra-

hend (A register). But. because the ALU is capable of -

pandling digits up to 15 (F in hexadecimal) and in thus case
the dits have a maximum value of 9. the ALU reaches an
incorrect decimal result when it becomes necessary to bor-

B Larger Than A

8-3

222
B register 1000
A register 0011

A L;rger than B
& 3-8

2
B Register 0011
A Register 1000

Tow from the next digat (A register larger than B register). Carry 11 Carry
This difference of 6 must be subtracted from the result in Total 0101 Total 1011
order to reach a correct result (Figure 2-33). The decumal
correct crreunts are activated by the carry from the bit 4 Note.
posttion. Figure 2-34 shows the data flow tor decimal Subtract and complement Tota 1311
- . . - X otal
subtraction and contains a table of the bit correction for | functionsaftect only the
T Decimal Correct 0110
the legitimate decimal characters | gt portions. The zone Carry ® i
& : portion 1s not affected. M e
Corrected Total 0101
Bits 0 to 3 of the low order decimal character contains the _
sign of the field. The ALU output for bits O to 3 1s deter- *Mathematical carry, not done by carry circunt
mined by the sign control circuits and is covered under the
individual operations. Figure 2-33 Decimal Correction
A
ALU ’
Latches
B 7 through 4
B Regtster
Internat Bits 7 through 4 Decimai| . !
L
ALU Arithmetic Correct
A Register Carry Circurts %
to
Bit 3
Subtract
A
Decimal
{nstruction .
Figure 2-34. Decimal Subtract Data Flow
5410 TO 2-29

D07

Decimal Addition

Decimal addition is similar to decimal subtraction in the
same way binary addition and subtraction are simular. That
18, to add decimal digits 1t 15 necessary to complement the
A register and subtract it from the B register.

However, since the characters being complemented are
decimal, the binary equivalent of the 9°s complement 1s
used. Figure 2-35 gives an example of decimal additon.
Asn subtraction, it the complemented A register digit 15
larger than the B register. the result must be corrected.
Figure 2-36 shows the decimal add data flow with a table
tor the 9's complement ot the legitimate decimal digits.

2233
B Register 0011 -
A Regrster Complemented 0111
Carry * 1111=+Forced
Total 101 r
2
Tota! 1011
Decimal Correct 0110
Carry* 1
Corrected Total 0101
B Register 13! pius A Register 12:
J

*Mathematical carry; n3t done by carry circuits

Fagure 2-35 Decimal Addiuen (Complement and Su/mu\n

Arithmetic Carry Out (1st cycie)

B Register

Decimat
Complement
Circuits

A Register

Bits 7

through 4
Subtract

Decimal Complement
A Register

Input Qutput

I Bits . Bits
4567 | 4567 ¢
0000 1001
0001 1000

; 0010 o

10011 0110
0100 0101
0101 0100 |

10110 | 0011 |
0111 0010 |
1000 0001)
1001 ooooJ

-

Decimal
Instruction 3

ALU
Latches
7 through 4

Internal Bits

7 through 4

Figure 2-36. Decimal Addition Data Flow

2-30

D08

Recompiement ° sub~tract operation with like signs for the two ﬁeld#
' d the A field is larger than the B field. :
Decimal adding or subtracting under certain conditions .

produces a result which is a complement form of the correct ® A result is minus zero. . Y
result. This requires a recomplement operation whereby
the result is fed through the ALU a second time to change The need for a recomplement cycle is signaled by a carry
it to its true-form. A recomplement is necessary if the from the high order position of the field. In the case of a
operation is:) ’ minus zero result, the recomplement is signaled by the
. condition register and is covered under the decimal opera-

® An add operation with unlike signs for the two fields tions. Figure 2-37 contains the data flow for recomple-

and the Afield is larger than the B field. menting. ’ ’

Arithmetic Carry Out (1st cycle)_

ALU
Latches

gh 4
. B Register
Decimal Complement
B Register
Carry
A Register To Bit
" (1in 1stcycle) 3

Subtract

Decimal Complement

A Register Decimal A
Tnstruction ‘ B
L 3
K
Figure 2-37. Recomplement Data Flow
5410 TO 2-31

D09

Figure 2-38 illustrates the method used to recomplement.
After subtracting 52 from 27, the ALU result is 75. To
recomplement, the result is fed back through the B register

and-is decimal complemented before entering the ALU. The -

A register is set to 1 on the first cycle and is left blank each
remaining cycle. The decimal complement of the A register
is subtracted from the B register complement. A carry

is forced into the first digit just as in regular complementing.
The final result is the 10’s complement of the original
result.

CHECK ALU
Parity Generation and Parity Check

Because the parity of the results does not stay constant
with the inputs, correct parity is generated for the ALU
output. After the data leaves the A and B registers, it

can be altered by the decimgal and binary complement
circuits, the ALU, the decimal correct circuits, and the sign
control circuits. The parity changes caused by all these
must be considered when determining the parity of the
ALU output.

A second ALU, or check ALU. is provided to determine
the parity changes which take place within the ALU (Figure

2:39).a R DI1) The check ALU does not have a latched output,
decimal correction, o{sign control, but otherwise performs
similarly to the ALU. The output of the check ALU is a
group of exclusive ORs which count the mumber of changes
made to the B register complement after it enters the ALU.

The check ALU output is then added to the changes d
by the B register complement, sign control, and the decimal
correct circuits to determine if a P bit is required for the
ALU. The output of the ALU is thfm checked ta ensure
that it has bdd. parity.

The A register complement circuits are checked separately.
Incorrect parity from either the ALU or the A register
complement circuits cause an ALU parity error (Figure
2-39).41R DI

Carry Check

An additfonal set of carry triggers is used to control carries
from the high order bit of the check ALU. The triggers
function identically to the digit carry trigger and the
temporary carry trigger used for the ALU. The outputs of

-the two carry control groups are then compared to check

for the correct number of carries for the ALU (Figure 2-40).
«(tR DI

Subtract Cycles
Borrowed Amount 22 2
B Register 0010 0111
A Register 0101 0010
Carry » 11
: P A Borrowed Amount 32
Total B 1101 001 Total 1101 0101
’ - Decimal Correct 0110
Carry* 11
- Total o111 0101
Recompiement Cycles
Borrowed Amount . 2 2 2 22
B Register {9's Complement) 0010 0100
A Register {9's Complement of 1} 1001 1000
Carry 1 111<+—Forced
DURE—— Borrowed Amount 22 2
Total © 1000 1011 Total 1000 1011
. Decimal Correct 0110 Q110
Carry* . 11 1
*Mathematical carry; not done Bv carry circurts Total 0010 0101 (minus)

Figure 2-38. Recamplement

2-32

DIO

Register

%

+{ Parity
Generate

Sign

Control

Circuits

ALU

Latches

Even A Register Compiement P Check

OR

| ALU Paritv' Error

Figure 2-39. ALU Parity Check

.

Carry
Triggers

| Carry Check

Figure 240. ALU Carry Check

Dl

s§10TO

2-33

Y

LOCAL STORAGE REGISTERS (LSR) LOCAL STORE REGISTERS (BASE SYSTEM)
The LSRs are a group of 9 bit registers (one byte plus parity)
that serve as halfword address registers. They have the
following primary functions:

LOCAL STORE REGISTERS (BASE $YSTEM)

01 | Prog Level 1 Instr Address Reg P1-I1AR-
e Maintaining sequential instruction addresses 02 | Prog Level 1 Address Recall Reg P1- ARR
03 A Address Reg AAR
L 5 L . 04 Spare SPARE T
® Maintaining current operand addresses during instruction P -
v execution - 05 Prog Level 1 index Reg 1 P1- XR1
Prog Level 1 Status Reg* P1-PSR
o 07 B Address Reg BAR
® Maintaining I/O data area addresses . 08 | MFCU Print Data Address Reg MPTAR
N)) _ 09 | ProgLevel 1 Index Reg 2 .« P1-XR2
In addition, LSRs have the following secondary fufctions: 10 | LinePrinter Data Address Reg LPDAR
: ~ 1 Line Printer mage Address Reg LPIAR
® Index registers for modification of operand addresses, 12 | MFCU Punch Data Address Reg MPCAR
. 13 | MFCU Read Address Reg ~ MRDAR
® Interim storage for data, length count, and program con- '4 | Length Count Reg LCR Data Recall Reg DRR
dition status referred to as ‘scratch pad’ type of storage 15 | Interrupt Level 1 Instr Address Reg . |AR-1
. p yp g 16 Interrupt Level 1 Address Recall Reg ARR -1
Figure 2-41 lists the LSRs ff)r the base system and available * PSR Lo is used as the Condition Recall Register, CRR;
featuges. To read out data only ‘select’ is peeded. To write, . PSR Hi is used as the Length Count Recall Register, LCRR.

‘data’, ‘write hi or write 10* and "LSR select” are needed. The

following is a list of the functions of the base system LSRs:)
. LOCAL STORE REGISTERS (FEATURE 1)

Instruction Address Register—Used to keep track of the :

storage of the next sequcnlial.instruction byte to be read 01 | Prog Level 2 Instr Address Reg P2 1AR

out of storage. At the beginning of each I-cycle, the address + o5

Prog Level 2 Address Recall Reg P2- ARR
in the 1AR is gated into the SAR-to be decoded. *During ~ 03 | Bi-Sync Comm Adapter Address Reg ASCAR
each I-cycle. the contents of the 1AR is incremented by.l "' 04 | Serial /O Channel Address Reg SIAR
in preparation for the next Icycle. 05 | Prog Level 2 Status Reg® P2. psR

06 Interrupt Level 4 Instr Address Reg I1AR -4
A Address Register— The AAR keeps track of the storage 07 © Interrupt Level 4 Address Recall Reg - ARR-4
address of the next byte to be addressed in the A field. 08 | Disk File Control Address Reg QFCB
During lcycles. the A field addressis taken from the in- 09 | Proglevel 2 Index Reg2 © P2sXR2

struction and loaded into the AAR. At the.beginning of 10 | Spare SPARE 4

each A<ycle, the address in the AAR is gated into the S§R. :; :::::,:z: t:::g :‘;:r:::z'?:‘geg LARRR _22
During each A-cycle. the contents of the AAR is decre- — >
. . N . 13 Disk File Data Address Reg) DFDR
mented by 1 in prepa.ratlon tor the next A-tycle. 14 | ProgLevel 2 Index Reg 1 P2 - XR1
15 Interrupt Level O Instr Address Reg tAR-0
16 interrupt Level 0 Address Recall Reg ARR-0

B Address Register— The BAR keeps track of the storage , =
address of the next byte to be addressed in the B field. , ! .
During l-cycles, the B field address is taken from the
instruction and loaded into the BAR. At the beginning of

each B-cycle. tRBe address in the BAR is gated into the S‘k{{

LOCAL STORE REGISTERS (FEATURE 2)

During each B-cycle, the contents of the BAR is normally - 0114 | Spare i Spare
decremented by 1 in preparation for the next B-cycle. 15 | Interrupt Level 3 nstr Adaress Reg 1AR-3

16 Interrupt Level 3 Address Recall Reg ARR-3
Index Register 1 and Index Register 2—These registers can

each store a two byte address to be used in indexing oper-
ations. During an indexing operation. the CPU automatically
adds the sipgle byte displacement from the instruction to
the contents of XR1 or XR2 to obtain the actual Bor A

Figure 2-41. Local Storage Registers

’

D12

field address. "The contents of the index registers is not
changed as a result of the addition. The resulting address
is placed in the BAR qy the AAR. '

Address Recall Register—On a branch instruction, the ARR
contains the ‘branch to’ address. On a decimal instruction,
the ARR retains the starting address of the B field in the
event recomplementing is required. On an insert and test

" characters instruction, the ARR contains the address of the
first significant digit encountered.

Lengih Count Register—The LCR is a one byte register that
contains the length count of the B and A fields. it gets
decremehted by 1 on each B-cycle except the first one.

" Data Recall Register—The DRR is a one byte register that
provides temporary storage for the data character readzout
of storage during each A-cycle. It is also used to store the

Q code of single address instructions® .

Program Status Register—The high byte of the PSR is used
as the length count recall register (LCRR). The LCRR"

is used only during a recomplement operation. It stores
the length of the data fields and is decremented on each
recomplement cycle except the first. The low byte of the
PSR is used as the condition recall register (CRR). The
CRR is-used to store the contents of the condition register
when changing program levels (used only with dual pro-
gramming).

MFCU Read Data Address Register—The MRDAR keeps
track of which storage position is to be addressed next
while reading data from a card into the card read area in
core storage. :

MFCU Punch Data Address Register—The MPCAR keeps
track of which storage position on the MFCU print data
area is to be addressed next during a punch operation.

DI3

- MFCU Print Data Address Register—The MPTAR keeps

track of which storage position in the MFCU print data
area is to be addressed next during an MFCU prift operation.

Line Pringer Data Address Register—The LPDAR keeps
track of which storage position in the line printer data
area is to be addressed next during a print operation.

Line Printer Image Address Register—The LPIAR keeps
track of which storage position in the chain image area

is to be addressed next during a print operation of the

line printer.

Interrupt Level 1-The 1AR-1 contains the address of the
next sequential instruction byte to be read out of storage
during an interrupt level 1 operation.

Interrupt Level 1 Address Recall Register— The ARR-1
has the same function as the ARR, but is active only during
an interrupt level 1 operation.

The registers are paired (Figure 2-42) (1 R D14) to give an LSR Hi

(the high-order byte) and an LSR Lo (the low-order by te).
Only one byte can be written into an LSR ata time. To

write into an LSR, it is necessary to activate the select

line for a pair of registers and the ‘LSR write Hi’ or ‘LSR
write Lo’. All 18 bits for the LSR selected are available at
the output of the LSR array. These bits can be gated to the
SAR (18 bits), the B register (9 bits), and the A register

(9 bits) for modification of the addresses in these registers.

DM 4-070 shows the circuitry for the LSRs.

LSR select and write lines are normally controlled by the
CPU. However, during an 1/O cycle, the 1/0 attachment
can control the select lines for the LSR assigned to it.
DM 4-072 shows the LSR select circuitry and DM 4-076
shows the LSR select 1/0 circuitry.

5410 TO 2-35

|wvput

\ P012346567

- —
Write Hi Write Lo
1SR
Select
01-16

Hi Out Lo Out

4

PO01234567 P01234567

LSR HI LSR Lo

34567

P01234567 .

PO 1,2
» - ' k—/—/‘\
Data

2 A |_LSR Bit Out
Write PH
A
LSR Select . F : Single'LSR Bit Position
[4
Flgure 242. Local Storage Register Array
OP REGISTER
S

Op codes of the CPU are eight bits wide and are stored in
the op.register. The op codes are sent to the op register
from main storage through the SDR, the B register, and
the ALU. Decode of the op register is performed to de-
termine which instruction the machine should execute.
When an 1/0 instruction is decoded, the 1/O attachments
receive this information through signal lines which are a

direct outiulof the decode logic.

QREGISTER

Each instruction includgs a Q byte which generally serves

to extend or modify thévop code. During the execution

of an instruction the Q byte is stored in the Q register. This
register is loaded through the same data path as the op ,
register and its output is decoded to determine the necessary
information for the CPU to execute the instructions. During
170 instructions the Q register stores the Q byte, but each

2-36

1Y

I/O device also receives the Q byte from the ALU output
on DBO at the same time. The CPU does not use the Q
byte of the I/O instruction even though it is stored in the
Q register. ~

v
CONDITION REGISTER (CR)

The condition register is a six bit register which co{tains
the six conditions ofn which the system may test as a Tesult
of instruction exec;\'on. These six bits are tested as
follows:

2 34567

X x x x x1 qual conditian

X x X x 1 x w condition -,

X X x 1 x x High condition

x x 1 x x x Détimal overflow condition
x 1 x x x X Test false condition

1 x x x X X Binary overflow condition |

Di4

The equal, low, high, and binary O{erﬂow conditions reflect
the result of executing the last instruction which affected
them (one of the following):

® Add zoned decimal

-

® Zero and add zoned
° Subtraci zoned decimal

e Edit

-t
® Compare logical characters

»

® Add logical characters

® Subtract logical characters

® Addto Tegist“er

® Compare logical immediate

The decimal overflow or the test false condition is set by
_ the first instruction which results in that condition and
can be reset by one of the following:

® Branch on condition

® Jump on condition

® | oad register (PSR) instruction (loads the respective bit
position to zero)

® System reset

System reset initializes the condition register to:

° “E(wa]A condition

A

® Not overflow condition
. N

® Not test false condition

Loading of the condition register may be from the ALU
output, but normally the bits are set individually in the
latches by the CPU log 2s a result of instruction execution.
When the CR contents is needed for program testing, its
output is fed to the A register and into the ALU.

The lower six bit& of the program status register (PSR) ,
contain the image of the condition register for the specific
progr'am level. PSR is used to save and to initialize con-
dition register settings of the ind,'vidual program levels.

Figure 2-43 shows the condition renggs.

The conditions of the I/O attachment logic are stored in
registers in the attachment and do not affect the state of
the condition register. :

Operation Logical Add . Branch or
- ’ Decimal Comparg Logical Add . Test Jumpon
Condition * | Bit |, Arithmetic Sub Logical to Rugister - Edit Bits Condition
Equal -1} 7 Resultis First Result is Source is
Zero Operand:is Zero Zero
2 , Equal to: ’
v’ . 8econd
Low 6 i Negative First No Carry and Negative
Operand is Non-Zero
Lower than Result
* Second N
High 5 Positive First Carry and Positive
Y Operand is Non-Zero
&= Higher thag. Resuit
Second P
Decimal 4 |- Overflow Overflow Reset
Overflow : if Tested
-~
Test 3 / Test Test Faise Reset
False False if Tested
Binary 2 Overfiow
Overflow

Figure 2-43. Condition Register Settings

D15

-

5410 TO 237

1/0 INTERFACE _ . 12. MFCU Print
l

~

The CPU acts as a controller for all 1/0 devices operating » 13. ‘Spare
over a single I/O attachmént interface. The 1/O devices :
operate in a cycle steal mode over an interface called 14. Spare
input/output channel (1/O channel).
' . 15. Spare
The 1/0 channel consists of': :
) 16. Spare
1. A setof powered signal lines which carry information ‘ '
to and from the CPU, and : . - 17. Spare
2. Logic to establish cycle steal priorities. . 18. Spare
¥
%
The following priority is assigned to the devices using cycle 19. QJpare

steal: J
- 20. Disk File Control

I. Disk File Read/Write This priority assignment makes it possible for the interface

.. . to operate on a time sharing basis without the need for

2. Spare : . 1/Q byffers. Once a cycle steal request has been granted.
the attachment has complete control of the CPU for that

3. Pfinter) Cyde') o . .
a. sl0c . P

‘ d DM 4-100 shows the 1/0O interface lines.
5. Spare
6. BSCA

D8I Translator

7. "MFCU Read and Punch - :
The DBI tsanslator is.used during clock 2 and 3 time to

8. Spare . translate the 9§-column card code into EBCDIC. The
' translator is not used in every I/O cycle and if the “translate
9. Spare in' line is inactive, t\he I/O data i3 transferred to the A
- register unchanged. Figure 2-44 (1 R D17)shows a “translate in’ con-
10. Spare version table. . : T
11. 1442 DM 4-060 shows the circuitry for the DBI translator.
2-38 i

Di6

Used only

foF L B A8 4 21
—t— .
‘ 01 23456 7 D8! Bits

>

6 Bit Card Code Positions

DI7

Example
i 012 3{(4 56 7 D8I Bits
001olo1,00 Card Code
\\.\/
Caode in
. o EBCD(C
. D8I
< BITS .) .
0123—= " ¢ 1 2 3 4 5 6 7 8 9 |{ A-] C D E F
4,5,6.7—}- : - |
0 40 FoO | 60 0o | 00 BO 20 90 co 70 \ E0 | 6a | 80 30 A0 | 2A
SPACE| o - .
1 F1 61 D1 c1 81 21 91 81 n E1 51 41 3 AL LS o
. 1 / J A s .
I 2 U
2 F2 E2 D2 Cc2 |-B2 A2 92 82 72 62 52 42 32 22 12 02
2 |-s 1 K 8 - A . !
3 F3 E3 D3 c3 83 A3 93 83 73 63 | .53 43 33 23 13 03
3 T L c .
4 Fa E4 D4 ca B4 A4 94 84 74 64 54 44 34 24 14 04
4 U M D *
5 FS ES D5 cs 85 AS 95 85 | 78 65 55 a5 35 25 15 05
5 v N OE 1 - -
6 F6 E6 D6 C6 .| B6 A6 96 86 76 66 |- 56 46 36 | 26.| 16 06
6 |¢w o} F -
- 7 -
7 4 F7 E7 D7 c7 B7 A7 97 87 77 67 57 47. 37 27 17 07
7 X P G 4
8 F8 E8 08 c8 88 A8 98 88 78 68 58 48 38 28 18 08
8 Y Q H ’ : .
9 F9 €9 D9 co B9 A9 99 | 89 79 %9 | s9 49 39 29 19 09
9 z R]
- - - -
A _L-7a"| s0 5A 4A 3a | 10 1A 0A FA EA. | DA CA BA AA 9A 8A
- - & ' c i -
"By 78 68 58 4B 38 28 JB (]3] FB EB o8 | c8 88 AB 98 88
] = .. s : -
/
c | x-.|.sc 5C 4C 3C 2C 1c oc FC EC DC cC BC AC aC 8C
@ % . < .
D } 10 6D 5D 4D 30 20 1D 0D FD ED | DD cD 8D AD 9D 8D
- B) (. A R
"€ 7E | 6E SE 4E 3E 2€ 1€ 0E FE EE DE CE BE AE 9€E 8E
. = 1, > v + . - .';ﬂ
¥ q
F 7F |>6F SF aF 3F 2F |LIF | OF FF EF DF CF BF AF 9F 8F
? —/]
. “J -
Figure 2-44. DBI Translator I 53540
) 5410 TO 2-39

DBO Translator

013234567 ALUBit .
Used A8 4 2 1, 96Column Card L ' ‘
- P°L"'V U e portom The DBO translator is used during clock 4 and 5 time to
translate ALU data (EBCDIC) to'96-column ¢ard code: The
Example ; DBO translator is not used during every I/G cycle and jf the
- : ‘translate out’ line is inactive, thé data is transferred to-the
0123 5 ALU Bit Positions 1/0 attachment unchanged. Fjgure 2-45 shows a ‘translate
. - , ' 1)
1t 101 100 EBCDIC » out’ conversion table. :
~ »
o 4 ALUBits] DM 4-065 shows the circuitry for tite DBO translator.
96-Column’Card Code g
. Character . S . N
ALU o
8ITS
01,23 0 1) 3 4 5 | s 7 8 9 A 8 c D E Fr
4567 ' : -
" N - M
. N v Y .
0 40, | sA 60 | DO 00 1A 20 90 co 76 EO 50 80 30 A0 I 10
g h ' SPACE| & . 3})
1 Fi €1 I B1 Al 1" 81 7 61| i [a1 3 | o2 9N o1
/ A J 1
2 F2 *| . E2 D2 | ‘c2 82 A2 |92 82 72 62 52 a2 32 22 12 | 02
% . ‘ : K s 2
3 F3 E3 03 c3 83 |. A3 93 83 3 63 | 53-| 43 33 23 13 03
. : £ . c L T 3
a Fa | “ea D4 | ca | B4 A4 | o4 84 4 | 64 | 54 a4 | .3 ~4 14 o4
A 1 D M.|.u 4
5 F5 ES o5 | c5 85 A5 95 85 | 1565 55 a5 | 35 25 |15 Q5
T . E N Y 5
6 |- F6 E6 D6 6 86 .|-A6 | 96 86 76 | 66 56, | 46 | 36 26 16 06
. : ' F o | w 6
7 | B2 £7 07 c7 87 | A7 97 87 77 67 57 | a1 | 27 17 |, 07
’ : : ’ : G P X |7
8 [/8 | €8 | D08 | c8 | B | A8 | 98 | 88 | 78 | 68, | 58 | 48 | 38 | 28 | 18 | 08
: H Q 1\ 8
. . ‘ 3 z
9. | F9 |*E9 D9 c9-. | B9 A9 | 99. | 89 79 | 69 | 59 49 39 29 | g 09
) 1 - : b b T 4 9
.
: - - T — —
A A 6A FO | 4A 3A 2a K- B8O | O0A FA EA DA |1 CA BA AA| 9A 8A
o . . . ' 4
B B8 | 68 58 | 48 38 . 28 |. 18 o]} FB | €8 o8B | c8 | BB AB | 9B 88
, , N RE - - . .
- N
- P :
C C 6C 5C ac W, | 2€ c oC FC EC oC cc BC | ac | 9c | sC
< o % CEEN . ‘
' D 7D 6D 50 40 30 | 20 10 oD FD ED | oD | “cD | *8D AD | 9D 8D
{) - ‘
E 7€ 6€ SE | 4E 3E 2E 1€ O FE EE | DE CE BE AE 9E 8€
+ > } . [N)
F 7F 6F SF aF 3F 2F w | b FF EF OF CF'| BF*| AF| oF 8F
I ? " 1
N -

Figure 2-45. DBO Translator

240

I 53542

CONTINUED ON

'D 18 FRAME EO1

THEORY
C0F
OPERATION

TWO ADDRESS INSTRUCTION C

I-Cycles

® Load operation code into op register.

® Load Q code into Q register, LCR, and LCRR.

. Load B field address into BAR.

¢ | oad B ficld address into ARR for decimal instructions.
“® Load A field address into AAR.

When performing two address instructions, the following
information must be known:

1. Whats the operation?

2. Where are the tields located”
Y
3. How long are the fields or 1s there any special con-

sideration that must be given them”?
: -
Icycles are used to load the vanous cantrolling registers
with this information.

-~ First, an l-op cycle transfers the operation code from main
strage to the op register. For two address instructions,
the Q code generally contains the length count for the fields.
The only exception to this is the move hex-¢haracter oper-
/ation in which»the Q code controls the data flow. Differences
" in Q code use are covered under-the individual operations.
However, in all cases an I’Qc'y.cle Toads the Q code into the
Q register, the LCR,/apd/the LCRR.

Two cyclés. LLHT and I-L 1. are used to load the B field

address j the BAR. For decimal instructions, the B field
. €ss1s also loaded into the ARR. If indexing is used,

a single I-X1.gycle replaces the I-H1 and I-L1 cycles.

An I-H2 I-L.2 cycle load the A field address into the
AAR. THe A field address can also be indexed by replacing
the I-H2 and I-L2 cycles with a single 1-X2 cycle.

1-Op Cycle /

i

~ The first Jep in an l-op cycle, as in all cycles, is to address |
the core Storage location’ to be used during that cycle. At

Chapter 3. Theory of Operation

clock O time (Figure 3-1) the contents of the IAR are
transferred to the SAR. The operation register byte is then
read from core storage and enters the SDR

During clock 3 and’4 times the byte is transferred through
the B register and 1s latched into the ALU output (Figure
3-2). Atclock 5 time the latched ALU output is then
stored 1n the op register. Read call/write call stores the
SDR contents back into the same core.storage location to
regengrate the operation character. ’

Load SAR LSR LSR| *
i Lo Set |AR
SAR SAR
Hr - Lo

i | M—

Figure 3-1. Instruction Cy cle-Storage Addressing

-
Main S 8
Storpge |D L Register
R
Gate SDR To B
Op
- . |Register
Load Op Register
l-‘iguﬁl. Storage to Op Register Data Flow
’ 5410 TO 3-1

EO2

The rest of the cycle is then'used to increment the IAR so
that the next instruction position can be addressed. Figure
3-3 shows that a | 1s added to the AR contents. Two steps
are required becanse of the possibility of a carry from the
low order to the high order position.

a

DM 5-010 contains the circuit description.

1-Q Cycle

The 1-Q cycle is the same as an Lop ¢yvcle, except that the

Q code byte is stored in the LCR. the LCRR. and the Q

register (Figure 3-4). «1 R 104y The AR is incremented in the same
manner as for an I-op cycle (Figure 3-3).

DM 5-010 contains the circut description.

Gate LSR Lo To B

Miscellaneous

Bit 7to A

Binary Subtract

Binary Complement

A Register

. LSR | LSR
N Sefect AR
. o ——
Hi Lo
LSR Write Low
Step 1

- Clock 5 and 6

Gate LSR Hi to B
¥
8 <
Register

Binary Subtract

Binary Complement

A Register

LSR LSR
. Setect AR
e -
Hi Lo
LSR Write High
Step 2
Clock 7 and 8

ifigure 3-3. Incrementing IAR

EO3

T

Main S

Storage |O jumm—ge

Gate SDR 10 8 ‘

Load Q Register

Q
Register

Select DRR and LCR

LSR LSR

Select PSR (LCRR) Hi Lo

LSR Write H)

(LCR and LCRR)

Figure 3-4. 14) Cycle-Storage to Registers Data I low

I-H1and I-L1 Cycles

I-H1 and I-L1 cycles are the same as the [-op and 1-Q

cycles except that the data bytes. B field address. are stored
in the BAR. During the I-H1 cycle. the first byte s sto/cd
in the high order position of the BAR (Figure 3-5). The
following cycle. I-L.1 . stores the second byte in the low order
position of the BAR. For decimal mstructions, the bytes
are also stored in the ARR.

DM 5-030 contains the circuit description.

I-H2 and I-L2 Cycles

I-H2 and I-L2 cycles are the same as [-H1 and I-L1 cycles
except the address bytes are stored in the AAR.

DM 5-030 contains the circuit description.

EO4

-~y
Main S
Storage |D B8)
R IRegister

Gate SDR To B

’

LSR LSR.
Select BAR Hi Lo
LSR Write Hi
Figure 3-5. 1-H1 Cycle-Storage to BAR High
5410TO 3-3

Indexing

The need for I-X ¢veles is determined by the bit structure
of bits U through 3 of the operation register. An [-X1

cyvcle results from the presence ot either bit 0 or bit 1. but
not both:an {-X2 cvcle from either bit 2 or 3. but not both.
The bit which is present also determunes the index register
used (Figure 2-60). '

.

' Operation
Register
Bit

Index
Register
Selected |

Cycle

XR1
i sz
‘ XR1

L XA
L

N W | O

X2 . xR2
L i 1

Figure 3-6. Index Register Sclection

During an I-K1 cycle the IAR is selected and loaded into

the SAR in the same manner as for other instruction cycles.

At clock 3 time the low order position of the selected index

register is entered into the A register (Figure 3-7). The

address byte is read from main storage and is gated from

the SDR to the B register. The two bytes are then added

in the ALU. At clock 4 time. the index register is dropped

and the BAR is selected. The ALLU contents are then

written into the low order position of the BAR. If a carry

results from the computation, it is added to the high order

position of the BAR during clock 7 and & time (Figure 3-8). (L R s
The high order position of the selected index register is

gated into the B register and added in the ALU. At clock

% time the'results are written into the high order position

of the BAR. If the operation is a decimal or branch oper-

ation, the results are also stored in the ARR. An I.X2 ¢ycle
operation is the same as an [-X! except that the repults are
written in the AAR. ’
Since clock 7 and 8 times are normally used to increment
the high order position of the IAR, the incrementing se-
quence is changed for an [-X cycle. Because the high order
position of the IAR can be affected only by a carry from
the low order position, the CPU. looks ahead to determine
if a carry will be needed. During clock 1 and 2 times the

Gate SDR to B Gate LS4 0 Normal To A
] [
b Main | S 8 A
. Storage | D Register Register
R .

Binary Subtract

Binary Complé?mem& ALY
A Register
XR1 Selected LSR LSR
(or X R2 Selected)
Hi Lo
Clock 3

Binary Subtract

\ ALU

Binary Complement

\
A Regster
Select BAR LSR LSR
LSRWntelo | o | '
Clock 4

L4

Figure 3-7. I-X1 Cycle—Indexing BAR Low

34

EOS

Gate LSRH:1108

Binary Subtract

Binary Complement

A Register

R
XR1 Setected LSR LS
—_—_—

{or XR2 Setected) Lo

Clock 7

Register

Binary Subtract

ALU
Binary Compile ment
A Register
)
Setect BAR i
LSR | LSR |
;
LSR Write H. Hi Lo

Clock 8

Fagure 3-8. [-X1 Cycle- Indeving BAR High

E06

5410 TO

3-5

low order of the IAR 1s decoded to determine it 1t con-
tains F F (Figure 3-9). If it does. a one is loaded n the A
register to substitute tor the carry. The high order position
of the AR 1s entered into the B register and the two are
added in the ALU. The ALU results are then loaded in the
high order position of the IAR. At ¢clock § and & ume the
low order position of the [AR 15 incremented in the normal
manner.

DM 35-040 contains the cireurt descnption

Execution Cycles

Because only one byte g a time can be removed trom or
placed into main storag&‘m o oy cles per byte are required
when controlling data between two different storage
locations. During the A cvcle. the A field byvte 1s removed
from storage and retained. The B cycle is then used to
remove the B field byte from storage and. depending upon

the particular vperation, to determune what to do with
cach by te.

The B cyvcle operation 1s covered under the individual
operations but since the A oy cle data tlow 1s the same.
repardless of the operation.it can be covered as a separate
topic. Some operations require the condition register to
be resgd to equal during the first A ¢ycle and some require
the use of sign control for the A field character. but the
basic data flow remains the same

A Cycle

® Store A ticld byvte in DRR

The first step i an A cvele. as 1 ail ovedes. s to address
the core storage location to be used during that cycle

At clock 0 time the contents ot the AAR are transterred
to the SAR n the same manner that the TAR was transrerred

Gate LSR Hi To B

- [y
- -
IRegister]

Binary Subtract
—_—r e

A Regster

N

LSR

"~ Select |AR
o e

LSR Write H:

LO |

Decode | Miscellaneous

F/F Bit710A

Step 1
Clock 1 and 2

Gate LSR Lo To B

I B A
Register

Misceliarieous

Bit 7to A

Bin Sub

ALU
/ Binary Complement

A Register

Select AR

S

LSR Write Lo

Step 2
Clock 5 and 6

Figure 3-9. I-X Cycle~Incrementing AR

36

EQ7

|
|
|

van IS | Y |=

Storage |O *Regcster

—————

Ga'e SDR 10 B

Setect CRR anc LCR

LSR Write Lo
DRR)

Figure 3-10, ACycle Storage to DRR Transter

No data 1s transferred during clock 1 and 2 timégs as the
CPU waits for the data to read from core storage and enter
the SDR Durning clock 3 and 4 imes the byte 1s trans-
ferred through the B regster and ALU and stored in the
DRR (Figure 3-10). Atclock 5. 'read wnte pulse’ stores
the SDR contents back into the sarne core storage location
to regenerate the A field character

The rest of the cvcle is then used 1o decrement the AAR so
that the next position of the A field can be addressed if
necessary. Figure 3-11 shows that a 1 1s subtracted from
the AAR . Two steps are required because »f the possibiling

of a carry from the low order to the high order position

Reter to the operation flowcharts in the IBM 5410 Pro-
cessing Unit Dragrams, SY31-0202 for the circunt
description

Gate LSR Lo To 8

Miscellaneous
Binary Subtract\ A

Select AAR
e —— ——m

Step 1

)

Bit 7to A

LSR Write Lo

Gate LSR H.tc B

Binary Subtract

LSR | select AAR

Lo | SR Write High

Step 2

Figure 3-11. Decrementing AAR

EO8

5410 TO 37

Add Logical Characters—ALC
® Binary add A field to B field data.
® A and B fields are same length (Q code plus 1).

The add logical characters operation adds the A field data,
one byte at a time, to the B field data. The entire A '
field byte (bits 7 through 0) is binary added to the B field
byte. The operation begins with the low order position
of each field and continues until the high, order position

" is reachall. Both fields are the same length, which is 1 more
than the Q code. ° .-

The CPU performs the add logical characters operatior{
with a series of A and B cycles. First an'A cycle removes
the first A field byte from storage and retains it in the DRR.
Then a B cycle removes the first B field byte from storage .
adds it to the A field byte, and%tores the result in the B
field units location. The next A field byte is then added

to the second B field byte through the same process, and

so on to the end of the field.

After the first A field byte has been stored in the DRR and
. the AAR has been decremented (refer to A cycle). the

CPU enters into a B cycle. The BAR is selected and loaded -
into the SAR in the same manner that the [AR was trans-
ferred (Figure 3-1). ('R 02)

The B field units byte is read from storage and is loaded
into the B register. The A ﬁelﬁd"byte is transferred from '
the DRR to the A register and the two bytes are binary -
added in the ALU (Figure 3-12). Store new enters the
result into the SDR and read call/write call then writes the
new data into the B field units storage Tocation.

The BAR is thén\decrementea in the same manner that
the AAR was decremented. The Q register is tested to
il the end of the field has been reached (blank Q register).
the Q register is not blank, the CPU takes another A ;
cysle and another B cycle to add the next characters: if the
Q register i®blank. the ‘op-end’ trigger is turned onand the
operation ends. / ‘

During clock 1 and 2 of each B cycle, except for the first,

the LCR is decremented (Figure 3-13). d R 1 10) The LCR contains
the field length which was stored there during the 1-Q cycle.

The result, which is latched into the ALU at clock 2CD time.

is toaded into the Q register at clock 3 time. By not de-
crementing-the LCR on the first B cycle. the field length

becomes | more than the Q code.

Binary Complement

Gate SDR To B |
B
Register,
RN
Main S
Storage |D Store New
———————e e
R
Select DRR and LCR Hi

Gate LSR Lo Normal To A (DRR)

A Register
Binary Subtract

. Figure 3-12. Add Logical Operation- Adding Characters

3-8

EO9

Gate LSR Hi To

B (LCR)

Binary Subtract

Miscellaneous Bit 7 Tq A
. (Not 15t B Cycle)

A L.
Registery

. Load Q Register - |

{-

Q
Register

LSR LSR

Hi Lo

Select DRR and LCR

LSR Write Hi (LCR)

Figure 3-13. Decrcme?\ung Length Count-Equal Length Fields

An additional function of the add logical characters oper-
ation is to set the condition register. Figure 3-14 shows the
condition register settings and the significance of each result.

During clock 1 and 2 of the first B cycle of the operation,
the condition register is reset to equal. During each B cycle.
after computing the A and B field data at clock 3 and 4
time. the ALU output is sampled. If the ALU output is all
zeros, the condition register remains set to equal. However,
if an ALU output occuss during any B cycle the result can

no longer be equal and the equal condition is reset.

#
Binary
Equal Low ~ High Overflow
Result 1s | No Carry‘ Carry and . Result too
zero 1 and nof- | non-zero large for
zero result \esult field (no
. high order
carry)
Figure 3-14. Condition Register— Add Loglcal&hﬁctcrs

Once the equal condition has been reset the final high or
low setting of the condition register is not determined until
the last B cycle of the operation. In the meantime, because
of the machine circuitry, a CR high condition will be in-
dicated. During the last B cycle (Q register all zeros) if a
carry results from the computation, the CR is set to low; if
no carry occurs the condition register remains set to high.

If there is no cairy from the high order position, the CR
binary overflow condition is also set. This is an indication
that the result is too large to be contained in the B field.

«

DM 5-080 contains the circuit description,

5410 TO 3-9

GateSDR To B Gate LSR Lo Normal To A (DRR)

Main S
Storage |D
R

Binary Subtract

Select DRR and LCH

o~
Figure 3-15. Subtract Logical Operation—Subtracting Characters

~

Subtract Logical Characters—SLC resulps are used merely to set the condition register (Figure
3-16).
® Binary subtract A field characters from B field characters.

Tow DM 5-080 contains the circuit description.
® A and B fields are the same length (Q code plus 1).

The subtract logical characters operation is the same as
the add logical characters operation except that the A field Move Characters-MVC
data is subtracted from the B field data (Figure 3-15).
Figure 3-16 shows the significance of the CR settings. Al-
though the settings have a different significance, the CR

¢ Move A field characters to B field locatjon.
e A and B fields-are the same length (Q code plus 1).

is set in the same manner as in the add logical characters The move characters operation moves the A field data, one
operation, except the binary overflow is not set on. ' byte at a time, into the B field location. The operation begins
- with the low order position of each field and continues
DM 5.080 contains the circuit description. until the high order position is reached.
\ .

The operation is the same as add logical characters. except
that the B field character is not loaded into the B register
Compare Logical Characters—CLC (Figure 3-18). (} RE12) With the B registet blank, the operation is

the same as adding the A field to zero.
e Compare A field data to B field data. e e to e

® A and B fields are the same length (Q code plus 1).]
During the compare logical characters operation, the CPU »
compares the two fields by bm;ry subt.ract.mg the A field PP B fiora e P
data {gom the B field data_ The operation is the same as fields are lower than higher than
a’subtract logical operation except that the results aré not equal A field A field
entered into storage (Figure 3-17). (1 R 1.12)Instead, the A and
B fields remain unchanged by the operation and the ALU

4 Equal - " Low High

Figure 3-16. Condition Register—Subtract.or Compare Logical Characters

3-10

Ell

Gate SDRto B

Gate LSR .o Normal To A (DRR)

Main S
Storage {D
R

Select DRR and LCR

Binary Subtract

Figure 3-17. Compare Logical Operation—Comparing Characters

4

Gate LSR Lo Normal to A (DRR)

Register

Store New
Main S
Storage . |D
L IR

Binary Complement

, LSR |LSR

Setect DRR and LCR

Binary Subtract

A Register

T

Figure 3-18. Move Character- Storing:Data

El2

5410 TO

3-11

The AAR, the BAR, and the LCR are decremented the
same way and the operation ends in the same manner (Q
register all zeros). However, the condition register setting
is not changed.

DM 5-080 contains the circuit description.

Add or Subtract Zoned Decimal—AZ—-SZ

° imal add A field data to B.field data for add in-

stfuction with like signs and subtract instruction with
nlike signs. ’

Decimal subtract A field data from B field data for

add instruction with unlike signs and subtract instruction
with like signs.

® Signs are in zone portion of low order bytes.

® Length of A field is a numeric portion of Q code plus 1.
\
o B field is longer than A field by amount in zone portion
of Q code. '

Although the add zoned decimal and subtract zoned/decimal\
operations have different operation codes, the execution of
each operation is the same depending upon the signs of the
two fields. For instance, an add instruction with unlike
signs Yor the two fields (1 minus and 1 plus) actually sub-
tracts the A field from the B field. Likewise, a subtract
instruction with unlike signs actualty adds the A field to

the B field. In either instance, the operations are the same
except for the add or subtract function of the ALU.

The operations begin with the fow order position of each
field and continues until the high order position of the B
field is reached. First an A cycle remoyes the first A field
byte from storage and retains it in the DRR. Thena B
cycle removes the first B field byte from storage, transfers
it'to the B register, and adds or subtracts the registers in
the ALU. This process continues until the end of the A
field, which can be shorter than the B field, and then B
cycles continue to the end of the B field.
If the result is'in true form, nothing more needs to be done
with it. But if the result is in complement form, the result
" must be recomplemented. Results are in complement form
“when:

® Operation has a subtract function (no A register com-
plement) and the A field is larger than the B field.

® Result is minus zero.

312

EI3

Recomplement begins with the low order position of the B
field and continues to the high order position. Continuous
B cycles remove tl.e bytes from storage and recomplement
the?‘lin the ALU.

The numeric portion of the Q code plus { is the length of
the A field. The B field is longer than the A field by the
amount in the zone portion of the Q code.

After an A cycle has stored the first A field byte in the

DRR and the AAR has been decremented the CPU enters

into a B cycle. During the B cycle, the first B field byte is

read from storage and is loaded into the B register. The

A field byte is transferred from the DRR to the A register

and, depending upon the operation code and the signs of

the two fields, the two bytes are either decimal added or

subtracted in the ALU (Figure 3-19). (1R I-13) Store new enters the
result into the SDR and read call/write call writes the new

data into the B field storage lacation.

The BAR is decremented and the Q register is tested to see
if the end of the A field (Q register numeric portion all
zeros) or if the end of the B field (Q register all zeros) has
been reached. If the numeric portion of the Q register is
not all zeros, the CPU takes another A cycle and another
B cycle to add or subtract the next characters. If the
numeric portion is all zerps but the zone portion still con-
tains bits, ‘EA eliminate’ is activated to block A cycles *
and the CPU takes a B cycle.

If the Q register is all zeros, a check is made to determine

if the total is in true or complement form. {f the operation
function is decimial subtract (A register not complemented)
and a carry occurs from the high order byte, ‘recomplement
cycle’ is activated to start recomplementing. Under all
other conditions, except a minus zero result, the ‘op-end’
trigger is turned on and the operation ends. A minus zero
result, which is also recomplemented, is determined by the
CR setting and is covered later.

During clock 1 and 2 of each B cycle, except for the first,
the LCR is decremented (Figure 3-20). (1 R 1 14) The LCR contains
the length count which wasstored there during the 1-Q

._-t':ycle. The result, which is latched into the ALU at 2CD
" time, is loaded into the Q register at clock 3 time. Until the

Q register numeric portion is all zeros, the LCR is de-
cremented with a 7 bit; after the numeric portion is all

zeros, decrementing is done with a 3 bit (Figure 3-20).
(I RL14)

During each A and B cycle, ‘sign control’ is activated to
provide the EBCDIC code for the sign of each field. The
sign is in bits 0-3 of the first byte of each field. EBCDIC
sign for mirius is 1101 and for plusis 1111. The CPU also
recognizes the ASCII-8 code for minus (1011) but ‘sign

Gate SDR To B

B
i Register,
Main S
Storage | D Store New
— >
R

., Select DRR and LCR

Gate LSR Lo Normal To A (DRR)

- Carry (15t B Cycle Only)

Decimal Subtract

Decimal Complement A Register

Like

LSR

Hi

LSR

Add Signs
CR Instruction in A
and B

Fields

Uniike
Lo Subt-act Signs
Instruction in A
And B

Fields

Figure 3-19. Add or Subtract Zoned Decimal-Add or Subtract Characters

Gate LSR Hi To B (LCR)

Binary Subtract

Lo

Load Q Register

Lo R

Misceltaneous Bit 7 To A

—
jad

(Not 1st B Cycle)

Miscellaneous Bit 3 To A

Q
Register| - Decode
N umeric
Portion
Blank

Select DRR and LCR

LSR Write Hi (LCR)R)

(Not 1st B Cycle)

— Eliminate A Cycles

Figure 3.20. Decrementing Length Count—Unequal Length Fields

"El4 '

5410 TO

3-13

} I

control’ changes thxs to EBCDIC " After the first byte of

each field, all zone bats (l'l 11) are provided for each

ey:racter During the ﬁrit B cycle, the sign of the B field is
ered into storage. ;

During clock 1 antf 2
register is reset tojeq

the first"A gycle, the condition
. Then'in the first B cycle, the
‘CR lo/hi’ latch } settby the result sign-(lo for minus, hi
for plus). Howgver,Af no nurneric output occurs from the
ALU (all zerosfvth condition register remains fet to equal.
If, during any 8 cydle a non-zero ALU output occurs, the
result can no onget be equal and the equal condition is
reset. The sejtmg f the ‘CR lo/hi’ lat31 is then used to
determine thie CR setting.

. 1

If the CR equal. chdmon has not been reset before the
last B cycle and tl;le ‘CR lo/hi’ latch is set to lo (minus)
the result is mmws zero. All zero results are considered
plus so recomp}emem cycle’ is activated to recomplement

7
the resu'ts. J
,

-
~ .4‘1"*

If the operation is an add function (decimal complemeAt

A register) and no carry occurs from the high order position,
the CR decimal overflow condition is also set. This is an
indication that the result is too lafge to be contained in the
B field. Figure 3-21 shows the significance of all the CR
settings.

.

<
DM 5-100 contains the circuit description. -° .

Recomplement

Addressing for recomplement bycles is.controlled by the
ARR which contains the low order address of the B field

ﬁ(refer to I-H1 and I-L1 cycles). The ARR is decremented

each recomplement cycle in the same manner that the AAR -
and BAR are decremented in other operations.

‘EA eliminate’ is active through the entire recomplement
operdtion causing continuous B cycles. Each byte is read
from Storage and loaded into the B register (Figure 3-22).
The A register has a 1 forced into it on the first recom-
plement cycle and is left with all zeros for the.remainder of
the cycles. Both the A and B registers are decimal com-
plemented. o
The length of the field is determined by the LCRR whxch
was loaded during the I-Q cycle. Decrementingjof the
LCRR is the same as for the LCR in a decimal 4dd or

subtract operation (Figure 3-20). (1 R F14) N
Condition Decimal
Register | Equal Low High Overflow
ALU ° | Result | Resutt Result | Result too
result 1 is zero is minus is plus large for

' - field

Figure 3-21. Condition chister—A;‘jd or Subtract Zoned Decimal

Gate SDR to B

Main .‘S 3

Storage D Store New
oo = "

Miscellaneous Bit 7 To A

(1st Recomplemgnt Cycle‘OnEy)

A 7
Register

»

Decimal Subtract

F

Decimal Complement A Register

Decimal Complement B Register

~

Figure 3-22. Recomplementing

EI5

Main
Storage

Gate LSR Lo Normal to A (DRR)
T

(1st B Cycle Only)

Decimal Suptract

* Select DRR and LCR

Figure 3-23. Zero and Add Zonéd—Adding Characters

The Q register is tested each cycle to see if the end of the
fleld has been reached (all zeros in the Q register). When
the 'Q register is all zeros, the ‘op-end’ trigger is turned on
and ty operation ends.

Because recomplement is necessary only when the A field
is larger than the B field or the result is minus zero. ‘sign
control’ is activated to reverse the sign of the result. The
‘CR lo/hi’ latch is reset on the first cycle and the CR setting
is determined in the same way as during decimal agd or

y

subtract. .

DM 5-100 contaihs the circuit descrption.

. \ ~
Zero and Add Zoned—-ZAZ

° ‘Decimal add A field data to zeros and place result in
B field. v

e B field is longer than A field by amount in zone portion
ofth;Q code.) .

El6

The zero_ and add zored operation is similar to an add

zoned decimal operation except the functiqn is always add,
without consideration of the fields signs. Another difference
is that the B field characters are not loaded into the B
register (Figure 3-23)." With the B register all zeros, the
operation is the same as adding the A field to zero. The

only other significant difference is that the A field sign is
entered as the sign of the result instead of the B field sign.

The address registers and the LCR are decremented the
same way and the operation ends in the same manner.
‘Recomplementing is not necessary unless the result i¥minus
zero. The CR settings are shown in Figure 3-21.} RELS)

.

DM 5-100 contains the circuit description.

Edit—ED
® Replace hex"2/0 in B field with A field data.

® Skip other characters in B field leaving them as they
were.

® Length of B».ﬁeld is @ eode plus 1.

5410TO 3-15

. B field byte from storage, tra

. L v /- - |
An_gdit operation ointsg EqAl tow / High
commas, or other 1 d,,PifB“f‘ field A figld A fiel
3-24 shows an ex The A field is zero is nzative is pogitive
represents the t d fifteen A,

First, an ‘A cycle temoves the first A fjefd byte from storage
and retains it in the DRR. Then cycle removes the first
ers it to the B register,

and checks to see if the chafacter is a replaceable character.
Only a hex'2/0 is'recogr’,uzed. If the character is 2/0, thes .
A field character is stored in that location; if the'character
is not 2/0, the A field charaeter is retained and the next B
field character is checked.

/

.))
Figure 3-25. Edit-Condition Registér

the B field units storage locations” Sifice the A field byte
was stored, the machin j take another A cycle to read out _

- the next A field charagter and stoté it in the DRR.

If the B register byte was not 2/0, the ALU output is not -
entered into the SDR and the B register byte is regeneratcd
back into main storage.. “In this case, ‘EA eliminatetis
act[vated the A ﬁeld’ byte is retained i the DRR, and the
machine takesanother B. cycle to read the next B field byte

" from storage

The Q'code plus 1 is the length, in bytes, of the B field.

LR
»

. The A field characters are assumed to be decimal numeric,

and their zone portions are all set to F before entering them
into the B field. However, the sign of the A field before

" the operation is used to control the setting of the condition

register. Figure 3-25 shows the significance of the condition
register settings. '

- Aftergh A cycle has stored the first A field byte in the

DRR, the CPU enters into a B cycle. Durmg the B cycle
the A field byte is transferred from the DRR to the A regis-
‘ter. The first B field byte is read from storage and is loaded

- into the B register. The ‘AND’and ‘OR’ lines are activated

1o move the A register byte thioug! the ALU (Figure 3-26). _
¢t R F18) The B register is checked to see if it contains the

character 2/0. If it does, ‘store new’ enters the ALU result into
the SDR and ‘read call/write call then writes the new data into

A field

B field before edit X xxx.xx * 7
L
Blank /

B field after pdit 0,907 .15 '°

x = Replaceable Character (2/0)

Figure 3-24_Edit

3-16

<

B

"“Dunng each Bcycle, except the first Bcycle, the LCR is

decremented.- The LQR contains the B field length count
which was stored there dering the [-Q cycle. The result,
which is latched into the ALU at clock 2CD time, is loaded
into the Q register at clock 3 time.)

~The Q register is tested each.B cycle to see if the end of the

field has been reached (all zéros Q register). !f' the Q registe
is all zeros, the ‘op end’ trfgger is turned on and the operagfon
ends. By not decrementing the LCR on the-first B Cycje, the

B field length becomes one more than the Q code.

»

Figure 3-27 (1R I18)shews the cycles re
edit operation. During the first A cycle/the A field low .
order byte, in this case a 5, is stored’in the DRR. During

the following two B cycles, as the asterisk and space are

read from storage, the 5 is retained in the DRR. On the

third B cycle, when the replaceable character is read from -
storage, the %eplaces the 2/0 in the B fieldTocation.

Another A cycle follows to read out thegext A field char-
acter, and’so on until thé length count is reduced to zero.

During clock 1 and 2 of the first A cycle, the condition
register is set to equal. The sign of the A field (which is
contained in the zone portion of the low order byte) is
checked while the byte is in the B register. If the sign is
minus the CR low latch is turned on; if not the latch is
left off. During each B cycle, after computing the A and B
data at clock 3 and 4 time, the ALU output is sampled. If
the ALU output is all zeros, the condition register remains
set to equal and the equa: condition takes precedence over
the sign of the field. However, if an ALU outpul gccurs
during any B cycle the result can no longer be.equal and
the equal condition is reset.

>

, El7

ifed to complete a typical

* f - -
Gate SDR To B e Gate LSR Lo Normal To Ay’f (DRR) '
’ B -
’ fRIginer ,
’ ecode
2/0 .
Main '
Storage |D - Store New i
R
\ ’
: o °
I
’ > Seiect DRR and LCR
-\ -
4 - _.'r
Figure 3-26. Ldit—New Data to Storage
— -
Cycle AlB/B|B|A|B|A|B|B 8 B B |8
B register sl*In|x|1{x|7]. x]|0O 9 0|, {x
A register 5|5 1 7 9 0|0
" | Data recall register{ 5| 5| 5 111177 9|00
.| Regenerate 5i*| b 1 -7)
‘New data s 1
Length count 9(9/8{7/7!6]/6/5{4}4 (3|312(2[1]0

x = Replaceable Character.(2/0)

-

5

Afield /. 080715
B field before edit” x,xxx.x *
B tield after ed'y‘. 0,907 .15 ,*

/. ‘blank.j SN

. N o '

Note: %e the A and B registers are, ioaded each-odd CD clock time, the
figurg$ shown apply only;ﬁ clock 3 and 4 time when the main storage data
iseing analyzed. - - ’

ke

Figure 3-27. Edit Cycles

5410 TO 317
CONTINUED ON

EI8 FRAME A10
8 c}m 1-2

	a01
	a02
	a03
	a04
	a05
	a06
	a07
	a08
	a09
	a10
	a11
	a12
	a13
	a14
	a15
	a16
	a17
	a18
	b01
	b02
	b03
	b04
	b05
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	c01
	c02
	c03
	c04
	c05
	c06
	c07
	c08
	c09
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	d01
	d02
	d03
	d04
	d05
	d06
	d07
	d08
	d09
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	e01
	e02
	e03
	e04
	e05
	e06
	e07
	e08
	e09
	e10
	e11
	e12
	e13
	e14
	e15
	e16
	e17
	e18

