3 2

IBM System/32

System Control Programming
Macroinstructions

Reference Manual

Information

ming

Program

GC21-5157-0

‘ 'd File No. $32-36

| Program Number
5725-SC1

e e vt e ey e W ey

IBM System/32

System Control Programming
Macroinstructions
Reference Manual

Preface

This manual describes the macroinstructions provided by Related Publications

the IBM System/32. The publication is intended for

persons who are programming in the Basic Assembler These publications contain information that further
Language or its equivalent and who are familiar with the describes topics discussed in this manual:

concept of macroinstructions and system programming

for the IBM System/32. + IBM System/32 Basic Assembler and Macro Processor

. Reference Manual, SC21-7673

The' following topics are discussed in this publication:

« IBM System/32 Functions Reference Manual,

« Coding macroinstructions GA21-9176 :

« - Descriptions of the various macroinstructions « IBM System/32 System Control Programming
Reference Manual, GC21-7593
« OCL necessary to call the macroinstruction processor
. » IBM System/32 System Logic Manual, SY21-0567
« Error conditions detected by the macroinstruction)
processor : « IBM System/32 System Data Areas and Diagnostic
Aids, SY21-0532
« A sample program showing how macroinstructions
are used « IBM System/32 Data Communications Reference
Manual, GC21-7691

First Edition (March 1977)

This edition applies to version 06, maodification 00 of IBM System/32 (Program
Number 5725-SC1) and to all subsequent versions and modifications unless
otherwise indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM systems, refer to the latest
IBM System/32 Bibliography for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A Reader's Comment Form is at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Publications,

Department 245, Rochester, Minnesota 55901. Comments become the property
of IBM.

© Copyright International Business Machines Corporation 1977

CHAPTER 1. INTRODUCTIONt 1
Writing Macroinstructions, L
System Configuration e 3
MacroinstructionsProvided Lo 3
CHAPTER 2. MACROINSTRUCTION STATEMENTS. 5
Programming Considerations 5
System Services Macroinstructions 6
System LogSupport e e 6
General SCP Support. e e e e e e e e e 10
Input/Output Macroinstructions 13
General I/OSUPPOrt v i 14
Printer Support e e e 18
Disk DeviceSupport0 i 20
Display Screen/Keyboard 27
BSC Support. D S 33

Contents

CHAPTER 3. OCL AND SAMPLE PROGRAMS. 40 -
OCL for Macro Processor« o v v v i v v v v 40
Sample Program 1. e e e e e 41
SampleProgram 2. e e e e 44
Sample Program 3. i e e e e e 45
Sample Program 4. e e e e e 46
APPENDIX A. ERRORINFORMATION. 47

APPENDIX B. MACROINSTRUCTION SUMMARY

CHART. i i i i i e e e 49
INDEX. i i i i et i e e 51
iii

Chapter 1. Introduction

A macroinstruction is a source statement that causes generation of a
predetermined set of assembler statements each time the macroinstruction is
used. The System/32 system control program provides macroinstructions that
perform both system services and input/output device support. By using these
macroinstructions, you can minimize the coding for both system and
input/output operations.

WRITING MACROINSTRUCTIONS

You code macroinstructions as follows:

Starting
Column 1 ’ 10 16 72
Name Operation Operands Continuation
Symbol or Macro name No operands or | Any nonblank
blank one or more characters if
separated by continuation is being
commas used

The name field can contain any valid assembler language symbolic name
beginning in column 1. The name is assigned to the first byte of generated
code. Since the name is optional, it is shown enclosed in brackets.

The desired mnemonic operation code (macroinstruction name) must appear as
specified in the macroinstruction description. The operation code must start in

column 10.
Keyword
Dash
L Parameter
[4 Il
[Name] $ABCD NAME-moduIe[,FIND-‘address] [,PACK-P/S]
R N —
: r yd /T

Operand Optional Default Option
Operand Value List

Introduction 1

Operands specify the available services and options. The operands must start
in column 16 and are written as follows:

« Each operand consists of a keyword followed by a dash and a parameter.

« Commas separate the operands; no blanks should be left between
operands.

« Keywords—those shown in capital letters—are coded exactly as shown. The
keyword part of each operand must correspond to one of the keywords in
the macroinstruction description.

« The parameter part of the operand must immediately follow the dash.

« Parameters—those shown in lowercase letters—indicate information you must
supply. Some operands are not required; these optional operands are
enclosed in brackets [KEYWORD-parameter].

An option list for a keyword parameter is specified as follows:
KEYWORD-A/B/C

This list indicates that the keyword has the options A, B, or C. In this
example these are the only valid options.

When the options Y/N are given as parameters in a macroinstruction, Y
- indicates a yes response, N indicates a no response.

+ The operands may be written in any order. If an operand is not speci.ﬁed,
the default value is used. The default value is indicated in the
macroinstruction description by a line under the default option. For example,
[KEY-A/B/C] indicates that option A is the default value.

No operands can be specified beyond column 71. If continuation is required,
column 72 must contain a nonblank character and the last operand on that line
must be followed by a comma. An operand cannot be divided and continued
on the next line. The operands of the continued field must begin in column 16.
For an example of continuation coding, see Figure 1.

Comments must be separated from the operand or comma by at least one
blank space. Comments cannot be inserted between operands on a one-line
macroinstruction. Figure 2 shows examples of comments used with
macroinstructions. On the assembiler listing, all comments on the generated
code are justified by the macroinstruction processor to begin in column 40.
Any comments too long to be contained in columns 40 through 71 are
truncated from the right.

MIELL S DITIFD AlCICEISIS]-ICO], [Rielc|L]-1818] INlalie]- SlalmiPle], IBLKIL]- 51412], IClWAl W- WigiMEl2,
K|ChiD|-BUIFIL, Il0/ARIEAI- BUIE2
AME2 $DTIFIAl 1eclqp]- BUIF|, ZlolAklEA - BUIF 2 X

PUIGE|-125, Wlulel-1Y], X
CHA |- WAME 3, PRINITI-IY | X
S/ Pl8-|z ,iS|PhAlciEB|- 12l

Figure 1. Continuation Coding Examples

4 T\ I$DITIFlo] D/]sik]-lyY 71| |/ wisirldl.] W4l oF|

¥ TH!Lls ClomuewT] PERTHY WS| [Tl [TH, exlr | Nislrruictir ol 018 5ER|ES| O

¥ |/ NISITIRUICTI DIMS], | [THEREIFORE S| |!|T] |) S| TElRED BEFloLE T I WISITRUCITI

% OTHERW (154 |/ 1T D Folllcpm TIHE MAlcR0) WISTTRUCITI DN E] NSl

M /v THEL 1L/ sirtvie

Clominr|2 $ILMISlG) =YL AL T TH\1 s |/ WisiTiRiciTl oW BWD| [TH! S| X

1¢-| 42314, lolP Tvigl- Y COMMENT! larlel ICoWlrl/WiUED

Figure 2. Comments on Macroinstructions

SYSTEM CONFIGURATION

The system control programming macroinstructions are provided as a part of ‘
the system control program and can be used on any model of the IBM
System/32 with the IBM System/32 Basic Assembler and Macro

Processor Program Product (Program Number 5725-AS1) or equivalent.

MACROINSTRUCTIONS PROVIDED

The macroinstructions provided by the system control program (SCP) and the
functions they perform are shown in Figure 3.

All macroinstructions you want to use must be in the library. You may want to
delete some macroinstructions from your library to reduce the amount of disk
space required for the macroinstructions. For instance, if your system does not
include the binary synchronous communications (BSC) support, the BSC
macroinstructions would be of no use to you. You can delete
macroinstructions from your library by using the library maintenance utility
program, $MAINT. See the IBM System/32 System Control Programming
Reference Manual, GC21-7593.

Introduction 3

- Device Type
Supported

System Log

General SCP

General 1/0

Printer

Disk

BSC

Display

Screen/
Keyboard

Macroinstruction
Name

$LMSG

$LOG
$LOGD

$CSLD

$FIND
$FNDP
$LOAD
$EQJ
$COMN

$ALOC
$OPEN
$CLOS
$DTFO

$DTFP
$PUTP

$DTFD
$GETD
$PUTD

$DTFB
$GETB
$PUTB
$TRL

$TRTB
$TRAN

$DTFS
$GETS

$PUTS
$PGS

Figure 3. Macroinstructions

Function

Generate parameter list for halt message
on system log

Generate linkage to system log
Generate offsets in log parameter list

Load a function into the control storage
increment

Find a directory entry)
Generate parameter list and offsets for $FIND
Load a module

End of job

Generate commonly used equates

Allocate disk space or device

Prepare an 1/0O device

Prepare a device for controlled termination
DTF offsets for all devices

Define the file for disk
Construct a printer PUT interface

Define the file for disk
Construct a disk GET interface
Construct a disk PUT interface

Define a BSC file

Construct a BSC GET interface

Construct a BSC PUT interface

Generate a translate parameter list

Generate a translate table

Generate an interface to the translate routine

Define the file for display screen
Construct a keyboard/display screen
GET interface :

Construct a display screen PUT interface
Construct a PUT, then a GET request to
display screen/keyboard

Chapter 2. Macroinstruction Statements

You code macroinstructions to generate a block of assembler statements that
perform a certain function. Some functions may be the same each time they

are used; others may be modified by different operands specified by the user.
This chapter explains the System/32 macroinstructiohs in detail.

The macroinstructions are grouped in this chapter according to the functions
they perform:

« System services)
« Input/output support

Input/output support macroinstructions are further divided according to the
device supported.

PROGRAMMING CONSIDERATIONS

When you use the macroinstruction processor you should remember the
following restrictions:

The generated code for some macroinstructions may alter the contents of
register 1 and register 2 depending on the parameters specified. You should
save the contents of the register used by the generated code before issuing
the macroinstruction; otherwise, the contents may be destroyed. The
macroinstruction $TRAN uses register 1. The macroinstruction $CSLD uses
registers 1 and 2. These macroinstructions use register 2:

$ALOC $LOG

$CLOS $OPEN
$FIND $PGS

$GETB $PUTB
$GETD $PUTD
$GETS $PUTP
$LOAD $PUTS

The code generated by the macroinstructions is assigned labels that begin
with a dollar sign ($). To avoid duplicate label errors, you should not use a
dollar sign as the first character of a label.

Macroinstruction Statement 5

- SYSTEM SERVICES MACROINSTRUCTIONS

By using system services macroinstructions, you can communicate with the
system control program. These macroinstructions can do the following:

« Log and write error messages

« Determine the location of an object module on disk

« Terminate the current job

« Load a function into extended control storage

The system services macroinstructions are divided into two groups:

System log macroinstructions provide support and linkage to the following
system log functions:

$LMSG
$LOG
$LOGD

General SCP macroinstructions provide linkage to the following system
functions:

$CSLD
$EOJ
$FIND
$FNDP
$LOAD
$COMN

System Log Support

Specifying a $LOG macroinstruction in your program generates a call to system
log. (System log is a group of system output routines that provide :
communication with the operator.) You may want to use system log to notify
the operator of error conditions, error recovery procedures, and the validity of
previous operator responses to halts. If the operator selects an invalid option
in response to a halt, the response is not accepted by system log. Instead,
another halt is issued to the operator until a valid option is taken.

Note: When an immediate cancel (option 3) is selected, control is passed
directly to the end-of-job (EOJ) routine by system log.

Two types of output are available through system log: formatted and
unformatted messages. Both are printed or displayed on the system log
device. ’

« A formatted message is identified by a 4-character statement that indicates
the type and source of an error. Formatted messages reside in a message
member.

For information about building a message member see the IBM System/32
System Control Programming Reference Manual, GC21-7593.

« An unformatted message is a statement that can be used to indicate the
presence of errors or to issue instructions to the operator; for example,
requesting that a disk file be loaded onto disk from diskette. Unformatted
messages‘reside in the user’s program.

Messages can be issued with or without an accompanying halt.

Note: A halt must be accompanied by a formatted line and an option.

Two devices can be used as the system log device: the printer or the display
screen. If you do not specify a device, the display screen is used when you
perform initial program load (IPL). You can change devices by entering a LOG
OCL statement in your job stream.

To use system log, you must do the following:

1. Build the log parameter list using the $LMSG macroinstruction.

2. Use the $LOGD macroinstruction to establish equates for the log
parameter list. :

3. Issue the $LOG macroinstruction.

4, Process the operator’'s reply in your program.

Generate a Parameter List for Messages Displayed by System Log ($LMSG)

This macroinstruction generates a system log parameter list for a message to
the operator. \

The format of the $LMSG macroinstruction instruction is:

[Name] $LMSG [TYPE-1/2] [MEMBER-code] [, MINOR-code]
' [.SUBID-code] [, FORMAT-Y/N] [LHALT-Y./N]
[MIC-number] [OPTNO-Y/N] [,OPTN1-Y/N]
[LOPTN2-Y/N] [,OPTN3-Y/N] [,SKIP-Y/N]
[.SPACE-1/2/3] [, MSGLN-number]
[LMSGAD-address]

TYPE-1/2 specifies the type of system log parameter list. TYPE-1 specifies

output from a message member; TYPE-2 specifies output from a user program.
If this operand is omitted, TYPE-1 is assumed.

Macroinstruction Statement

The folléwing operands apply whén output from a message member is specified
(TYPE-1):

MEMBER-code is the first character of the 4-character 1D code specifying
the program that issued the message. If this operand is omitted, the default
is P.

Code Meaning

C SCP

D Data management

| 108

RPG, FORTRAN, Assembler

SCP nucleus

SCP linkage editor, word processing, and the overlay linkage
editor

SCP utilities

Sort

Data file utility

SCP librarian

User-defined message access (default)

SEU

BSC and SNA/SDLC

SCP system services

MRJE and SCP messages contained in program product
message members ‘

H Heading and miscellaneous text

m<

X -mRXRTUOUTrmnmwmwcCc

MINOR-code is the second of the 4-character ID. This code specifies the
module within the program. If this operand is omitted, blank is assumed.
(Any alphameric character is valid.)

SUBID-code includes the third and fourth characters of the ID. This code is
used to further identify the module within the program. If this operand is
omitted, blank is assumed. (Any alphameric character is valid.)

Note: MINOR and SUBID should be chosen so that the 4 characters of the
ID are unique for each module.

FORMAT-Y /N specifies whether or not to include the format line for output
from a message member. If this operand is omitted, Y {yes) is assumed.

HALT-Y /N specifies whether or not an operator response is required. If this
operand is omitted, Y (yes) is assumed.

Note: The FORMAT parameter must be Y (yes) when HALT parameter is Y
(yes); otherwise an error is issued. If HALT-Y is specified, one or more of
the OPTN operands must be specified; otherwise an error is issued.

MIC-number is a decimal number from 1 to 9999 used to identify a specific
message within the message member. If this operand is omitted, 1 is
assumed.

OPTNO-Y /N specifies whether option O-is allowed. If Y (yes) is entered,
option 0 is aliowed; if N (no) is entered or if the operand is omitted, option
0 is not allowed.

OPTNI1-Y /N specifies whether option 1 is allowed. If Y (yes) is entered,
option 1 is allowed; if N (no) is entered or if this operand is omitted, option
1 is not allowed.

OPTN2-Y /N specifies whether option 2 is allowed. If Y (yes) is entered,
option 2 is allowed; if N'(no) is entered or if this operand is omitted, option
2 is not allowed. ’

OPTN3-Y /N specifies whether option 3 is aliowed. If Y (yes) is specified,
option 3 is allowed; if N (no) is specified or if this operand is omitted,
option 3 is not allowed.

Note: if option 3 is allowed and selected by the user, control will not be
returned to the user’s program.

The following operands apply when output from the user program is specified
(TYPE-2): v

SKIP-Y /N specifies skip to line one of the next page before printing. If this
operand is omitted, N (no) is assumed. - This operand is valid only for printed
messages.

SPACE-1/2/3 sbecifies the number of lines to space after printing a
message. If this operand is omitted, 1 is assumed. This operand is valid

only for printed messages.

MSGLN-number specifies the text length. This entry is a decimal entry from
1 to 132. If this operand is omitted, 001 is assumed.

MSGAD-address specifies the address of the leftmost byte of the text. If
this operand is omitted, zeros are assumed.
Generate Displacements for System Log ($LOGD)
This macroinstruction generates the field labels and offsets for the syétem log
parameter lists. To avoid duplicate labels, you should use this macroinstruction
only once in a program.

The format of the $LOGD macroinstruction is:

$LOGD

Generate the Linkage to the System Log ($LOG)

This macroinstruction generates the linkage required to use the system log
function, and checks the response returned. The $LOGD macroinstruction must
be used with this macroinstruction to establish offsets in the system log
parameter list.

If you will need to use the data in register 2 at a later time, you should save
the contents of that register before issuing the $LOG macroinstruction.

Macroinstruction Statement

The format of the $LOG macroinstruction is:

[Name] $LOG [LIST-address] [,OPTNO-address] [, OPTN1-address]
[,OPTN2-address]

LIST-address specifies the address of the leftmost byte of the system log
parameter list. |f this operand is not specified, the address of the parameter
list is assumed to be in register 2.

OPTNO-address specifies the address of the routine that should receive control
if option O is taken. If this operand is not specified, no check is made for a
response of 0. You would use this operand only if the $LMSG
macroinstruction used to generate the system log parameter list was coded
OPTNO-Y.

OPTN1-address specifies the address of the routine that should receive control
if option 1 is the response. If this operand is not specified, no check is made
for a response of 1. You would use this operand only if the SLMSG
macroinstruction used to generate the system log parameter list was coded
OPTN1-Y.

OPTN2-address specifies the address of the routine that should receive control
if option 2 is taken. If this operand is not specified, no check is made for a
response of 2. You would use this operand only if the $LMSG
macroinstruction used to generate the system log parameter list was coded
OPTN2-Y.

General SCP Support
The general SCP macroinstructions allow you to provide linkage to system
functions by communicating with the system control program.

Find a Directory Entry ($FIND)
The $FIND macroinstruction generates the interface that searches the library
directory for the requested module name. If the module name is found, the
directory entry is placed in the parameter list; if the name cannot be found, the

parameter list remains unchanged.

If you will need to use the data in register 2 at a later time, you should save
the contents of that register before issuing the $FIND macroinstruction.

The format of the $FIND macroinstruction is:
[Name] $FIND PLIST-name
PLIST-name is the label of the 14-byte parameter list built by $FNDP. After

execution, it contains the directory entry of the module. If this operand is
. omitted, register 2 is assumed to contain the address of the parameter list.

Generate Parameter List and Displacement for $FIND ($FNDP)
The $FNDP macroinstruction generates a 14-byte parameter list and /or the
equates for the displacements into the parameter list. This parameter list is
used as input to the supervisor by $FIND. ‘
The format of the $FNDP macroinstruction is: -

[Name] $FNDP [NAME-module] [,V-DC/EQU/ALL] [[TYPE-O/P/R/S]

NAME-module is the name of the module to be found by the $FIND
macroinstructiqn. If this operand is omitted, blanks are assumed.

V-DC/EQU/ALL specifies whether the DCs, equates, 6r_ both are to be
generated. If this operand is omitted, EQU is assumed.

DC generates a 14-byte parameter list used by the $FIND macroinstruction.

EQU generates the-equates for the displaceménts into the $FIND parameter
list.

ALL generates the parameter list and corresponding displacements.
TYPE-O/P/R/S specifies the library member type.
Code Meaning
Load module (default)
Subroutine module

Source module
Procedure module

WO

Load or Fetch a Module ($LOAD)

" The $LOAD macroinstruction generates the linkage to load a module into main
storage at the address you specify. You may have control returned after the
module is loaded, or you may pass control to the module. If you will need to
use the data in register 2 at a later time, you should save the contents of '
register 2 before issuing the SLOAD instruction.

The format of the $LOAD macroinstruction is:

[Name] $LOAD [PLIST-address] [,LOAD-address] [,TYPE-code]
PLIST-address is the address used in the previous $FIND macroinstruction. It
identifies the directory entry of the module in main storage. If this operand is
omitted, the address is assumed to be in register 2.

LOAD-address specifies the address where the module is to be loaded in main

storage. If this operand is omitted, the address is assumed to be in the
parameter list generated by $FNDP and updated by $FIND.

Macroinstruction Statement

TYPE-code specifies which program receives control after the requested
program is loaded:

LOAD loads the module and returns control to the requesting program.
FETCH loads the module and passes control to the module.

SYSFETCH loads the module and passes control to the module. In addition,
the disk and module relocation factors are updated.

Note: If both LOAD and TYPE operands are omitted, then equates and offsets
are generated for the relocation loader parameter list. These equates and
offsets are used for RIB values for the relocating loader and for parameter list
displacements.

End of Job ($EOJ)

The $EOJ macroinstruction generates the linkage required to execute the
end-of-job routine.

The format of the $EOJ macroinstruction is:

[Name] $EOJ

COMMON Equates ($COMN)
This macroinstruction generates equates for various labels and values, such as
register equates, which may be used by other macroinstructions in the
program. This macroinstruction is not required for $CSLD, $DTFB, $DTFD,
$DTFO, $DTFP, $DTFS, $EOJ, $LMSG, and $LOGD.

The format of the $COMN macroinstruction is:

$COMN

Load a Function into Extended Control Storage ($CSLD)

This macroinstruction provides the linkage to load a function into the control
storage increment.

CAUTION
Do not issue this macroinstruction from the transient area because
unpredictable results will occur.
The format of the $CSLD macroinstruction is:

[Name] $CSLD [FUNC-function] [,ERR-address]
FUNC-function specifies the function to be loaded. The default is FORTRAN.
ERR-address specifies the address of the user’'s code that receives control if

the function to be loaded cannot be found. If this operand is omitted, the
default address is X'0000’.

INPUT/OUTPUT MACROINSTRUCTIONS

The input/output support macroinstructions provide access to devices without
requiring that you write extensive routines to perform each function. The
input/output support macroinstructions are divided into five groups:

» General macroinstructions. are used with all device types. The following
macroinstructions are in this group:

— $ALOC
- $CLOS
— $DTFO
— $OPEN

« Printer macroinstructions support printer devices. The following
macroinstructions are in this group:] .

- $DTFP
- $PUTP

« Disk macroinstructions provide support and linkage to disk data
management. The following macroinstructions are in this group:

— $DTFD
— $GETD
— $PUTD

« BSC macroinstructions provide support and linkage to BSC data
management. The following macroinstructions are in this group:

— $DTFB
— $GETB
- $PUTB
— $TRAN
— $TRL

— $TRTB

. Display screen/keyboard macroinstructions support the display screen and
keyboard devices. The following-macroinstructions are in this group:

$DTFS
‘$GETS
$PGS

$PUTS

|

Macroinstruction Statement

13

14

General 1/0 Support

The general |/ 0O support macroinstructions are used with all devices. The
normal sequence for using these macroinstructicns is:

1. $ALOC to allocate the file(s) or device(s) to be used in the user’s
program

2. $OPEN to prepare the file(s) or device(s) for use in the user's program
3. I/0O operations and any processing required

4, $CLOS to prepare the file(s) and/or device(s) for end of job

Allocate Space ($ALOC)

The routines called by the $ALOC macroinstruction allocate various
input/output devices and space on the disk for each disk file. These routines
check to ensure that:

« The system supports the requested device.

« The device requested is available to the requesting program and/or is
capable of multiple allocations.

« The LOCATION parameters of the OCL file statements (if given) are valid.
« Space is available on the disk for the requested data files.
« No more than 52 DTFs are present in the calling program.

An allocate request requires that preopen DTFs be supplied as input to the
routine. For a description of DTFs, see $DTFB, $DTFD, $DTFP, and $DTFS.
You can allocate more than one DTF at one time by chaining the DTFs. To
chain DTFs, you must enter the address of the next DTF in the DTF you are
building. The last DTF in a chain has hex FFFF entered in place of the address.
If your program contains an interrupt handler, such as a binary synchronous
communications program, all DTFs in the program should be chained together
and allocated in one operation. When an error condition occurs, the allocate
routine calls halt/syslog to display the proper halt code.

If you will need to use the data in register 2 at a later time, you should save
the contents of that register before issuing the $ALOC macroinstruction.

The following output is produced when control is returned to your program:

« The contents of register 1 are saved when ALLOCATE is called, and are
restored before control is returned to the user.

« The format-1 labels in the scheduler work area are updated.

« For a nondisk DTF, bit 1 in the second byte of the attribute bytes of the
preopen DTF is set on to indicate device allocation.

« The address of the first DTF allocated is returned in register 2.

Note: If your program uses telecommunications, $ALOC must be issued prior
to any telecommunications operation.

The format of the $ALOC macroinstruction is:

[Name] $ALOC [DTF-address]
DTF-address specifies the address of the leftmost byte of the DTF being
allocated. If a series or chain of DTFs is to be allocated, this operand specifies

the address of the leftmost byte of the first DTF in the chain. If this operand
is not entered, the address of the DTF is assumed to be in register 2.

Prepare an 1/0 Device ($OPEN)

This macroinstruction prepares an input/output file for data transfer. The file
to be prepared (opened) must previously have been allocated by the allocate
macroinstruction. Depending on the device, one or more of the following
functions are performed for each file opened:

« The preopen DTF is formatted to a postopen DTF (see Figure 4).
« Preopen DTF information is preserved in the format-1 label as required.

« Data |/0 buffers, index 1/0O buffers, and the |0B(s) are formatted as
needed.

« Buffers are initialized as required.

« The index area on disk for indexed files and the data area on disk for direct
files are formatted as required.

« Diagnostics are performed to ensure that the access method and the file
organization are compatible. '

Note: You can open more than one DTF at one time by chaining the DTFs. To
chain DTFs, you must enter the address of the next DTF in the DTF you are
building. The last DTF in a chain has hex FFFF entered in place of the address.
See $DTFB, $DTFD, $DTFP, and $DTFS.

Macroinstruction Statement

15

16

Preopen Conditions Postopen Conditions

1. Unformatted disk files are present 1. Formatted disk files are created.
for output files. '
2. 1/0 buffers, 10Bs, and various work
2. The I/O buffer is in the areas are formatted as required.
unformatted mode.
3. A bit is set on in the DTF attribute
bytes to indicate an opened file.

4, Backward chain pointers are built.
Figure 4. Comparison of Preopen and Postopen DTFs and Data Areas
Input: The preopen DTF and format-1 label are input to the open routine.
Before the open macroinstruction.is issued, you must be sure to have the
device allocated by previously issuing the allocate macroinstruction. Also, if
you will need to use the data in register 2 at a later time, you should save the
contents of that register before issuing the $OPEN macroinstruction. You must

also consider the following in preparing the DTF:

« The disk access method must be compatible with the disk file organization
of the file being opened. : '

« The access method must be compatible with the access method of the
same file opened or for an inquiry program.

« The record length, block length, and key length must be specified correctly.

Output: The open routine returns control to your program when the requested
file has been opened. The following output is produced:

« The contents of register 1 are saved when OPEN is called, and restored
before control is returned to the user.

« The format-1 labels are updated.

 Bit 7 in the second attribute byte in the postopen DTF is set on to indicate
that the file has been opened.

« The buffers are initialized as needed.
« The address of the last DTF opened is returned in register 2.
The format of the $OPEN macroinstruction is:
[Name] $OPEN [DTF-address]
DTF-address specifies the address of the leftmost byte of the DTF for the file
to be opened. If a series or chain of DTFs is to be opened, this operand

specifies the address of the leftmost byte of the first DTF in the chain. If this
operand is not entered, it is assumed that the address is in register 2.

Prepare a Device for Termination ($CLOS)

The $CLOS macroinstruction prepares a file(s) or device(s) for job termination.
The routine returns postopen DTFs to their preopen state and updates
format-1 labels to reflect the current file status. For devices other than disk,
only the entries related to the requested functions are restored. f you will
need to use the data in register 2 at a later time, you should save the contents
of that register before issuing the $CLOS macroinstruction.

Input to the close routine consists of the postopen DTF and the format-1
labels. The allocate and open macroinstructions must have previously been

issued.

Output created by $CLOS is returned to your program when control is
returned. The output requires the following operations:

« The contents of register 1 are saved when CLOSE is called, and restored
before control is returned to the user.

« The postopen DTFs are reinitialized to the preopen state.
« Any pending |/O operations are performed.
« The format-1 label for disk files is updated to indicate current file status.

« The buffer contents scheduled for disk output or update operations are
written.

« The data and index are written to disk if needed, and an indicator is set if
key sorting is required at end of job for indexed output files and file
additions to indexed files.

Note: You can close more than one DTF at one time by chaining the DTFs.
Each DTF to be closed must contain-the address of the next DTF in the chain.
The last DTF in a chain has hex FFFF entered in place of the address.

The format of the $CLOS macroinstruction is:
[Name] $CLOS [DTF-address}
DTF-address specifies the address of the leftmost byte of the DTF to be
closed. If this operand is not entered, the address is assumed to be in register
2.)
Generate DTF Offsets ($DTFO)
This macroinstruction defines the DTF labels, offsets, field contents, and field
lengths for all devices and access methods supported by System/32. To avoid
duplicate labels, this macroinstruction should be used only once in each

program; you should also set the operands to indicate any devices you plan to
use in the program.

Macroinstruction Statement

The format of the $DTFO macroinstruction is:

[Name] ~ $DTFO [DISK-Y/N] [,PRT-Y/N] [,BSC-Y/N] [,CRT-Y/N]
[ALL-Y/N] [FIELD-Y/N]

DISK-Y /N specifies whether labels are to be generated for the disk device. If
this operand is omitted, N (no) is assumed.

PRT-Y /N specifies whether labels are to be generated for the printer. If this
operand is omitted, N (no) is assumed.

BSC-Y /N specifies whether labels are to be generated for BSC. If this operand
is omitted, N (no) is assumed.

CRT-Y /N specifies whether labels are to be generated for the display screen.
If this operand is omitted, N (no) is assumed.

ALL-Y /N specifies whether labels are to be generated for all devices
supported. If this operand is omitted, N (no) is assumed.

FIELD-Y /N specifies whether labels are to be generated that define the
contents of a DTF field for the devices specified. If this operand is omitted, N
(no) is assumed.

Printer Support

This section describes the macroinstructions that support the printers. The
following functions are provided:

« Build a preopen DTF for a printer and format its offsets. The DTF provides
information to printer data management routines that perform input/output

operations.

« Build the interface needed to print‘data.

Define the File for Printer ($DTFP)

The DTF provides information needed to allocate, open, close, and access a
printer. This macroinstruction generates the code that builds the printer DTF.

The format of the $DTFP macroinstruction is:
[Name] $DTFP RCAD-address,|OAREA-address [,OVFL-number]
[,PAGE-number] [, UPSI-mask] [[HUC-Y/N]
[,CHAIN-address] [,PRINT-Y/N] [,RECL-number]

RCAD-address is a required operand that gives the address of the leftmost byte
of the logical record.

IOAREA-address is a required operand that specifies the address of the
leftmost byte of the 1/0 area. This area must be at least 146 bytes long.

OVFL-number specifies the line on the printer after which the overflow
completion code will be returned. If this operand is not specified, default is
made to 6 lines less than the number specified for the PAGE operand.

PAGE-number specifies the number of lines to print per page. If this operand
is not specified, default is made to the system value for the number of lines
per page.

UPSI-mask specifies the settings of the external (SWITCH statement) indicators
used for conditionally opening files. The code must be specified as 8 binary
bits. For example, to set on bits 0, 3, 5, and 7, you would enter
UPSI-10010101. If this operand is not entered, zeros are assumed.

HUC-Y /N specifies whether to halt if an unprintable character is detected. If N
{no) is specified or if this operand is omitted, no halt occurs.

CHAIN-address indicates the address of the next DTF in the chain of DTFs. If
there is no DTF chain or if this is the last DTF in a chain, this operand should
be omitted (a value of hex FFFF is assumed).

PRINT-Y /N specifies whether to perform a print operation. Default is N (no},
meaning that a print is not performed.

RECL-number specifies the length of the line to be printed. If this operand is
omitted, default is 132 positions.

Construct a Printer Put Interface ($PUTP)

This macroinstruction generates the interface needed to communicate with
printer data management. You must provide a DTF for the file and use the
$DTFO macroinstruction to establish the offsets in the DTF. You must also
provide, through an EXTRN statement in your program, the label #3BDMC for
continuous and noncontinuous forms. (This label is necessary for the printer
data management module to perform the printer output operation.)

If you will need to use the data in register 2 at a later time, you should save
the contents of that register before issuing the $PUTP macroinstruction.

The code generated by this macroinstruction gives control to the data
management routine. The routine completes execution and returns control to
the generated code. If the ERR operand is specified, the generated code
checks the completion code for errors and branches to your error routine if
errors occurred.

The format of the $PUTP macroinstruction is:
[Name] $PUTP [DTF-address] [,PRINT-Y/N] [,SKIPB-number]

[, SPACEB-0/H/1/1H/2/2H/3/3H] [,SKIPA-number]
[[SPACEA-O/H/1/1H/2/2H/3/3H] [,ERR-address] [OVFL-address]

Macroinstruction Statement 19

DTF-address specifies the address of the leftmost byte of the DTF for this file.
If this operand is omitted, the address is assumed to be in register 2.

PRINT-Y /N specifies whether to perform a print. If this operand is omitted,
the DTF remains unchanged.

SKIPB-number specifies the line to skip to before the print operation. This
DTF field is set to zero when the file is opened. If this operand is omitted, the
DTF remains unchanged (maximum = 84).

SPACEB-number specifies the number of lines to space before the print
operation. This DTF field is set to zero when the file is opened. If this operand
is omitted, the DTF remains unchanged {maximum is 3 lines, 3H if half spacing
is valid). Half spacing is valid only with the printer set at 6 lines per inch and
the half space feature installed. i

SKIPA-number specifies the line to be skipped to after the print operation.
This DTF field is set to zero when the file is opened. If this operand is
omitted, the DTF remains unchanged (maximum = 84).

SPACEA-number specifies the number of lines to space after the print
operation. This DTF field is set to zero when the file is opened. If this
operand is omitted, the DTF remains unchanged (maximum is 3 lines, 3H if
half spacing is valid). Half spacing is valid only with the printer set at 6 lines
per inch and the half space feature installed.

ERR-address supplies the address in your program where control is passed if
the controlled cancel option is taken in response to a permanent 1/0 error. If
this operand is omitted, no code is generated to check for the controlled cancel
completion code, and you should check the return code in your program to
determine the outcome of the operation.

OVFL-address specifies the address in your progrém that should receive control
if page overflow occurs. If this operand is omitted, no check is made for an
overflow condition.

Note: If a PRINT, SKIPB, SPACEB, SKIPA, or SPACEA operand is specified,
the DTF is changed. The DTF is not reset after the operation is complete; the
user must reset the DTF if it is required.

Disk Device Support

This section describes the macroinstructions that support disk devices. The
following functions are provided:

« Build a preopen DTF for disk |/O operations and- assign its offsets
. Build the interfaces required to get records from the disk via a get or a read

« Build the interfaces required to put records to the disk via a put or a write

Define the File for Disk ($DTFD)

The DTF provides information needed to allocate, open, close, and access a
file on the disk device. This macroinstruction generates the code that builds

the disk DTF.

The format of the $DTFD macroinstruction is:

[Name]

$DTFD

ACCESS-code,RECL-number, NAME-filename,
BLKL-number,IOAREA-address [,UPSI-mask]
[BUFNO-1/2] [,LIMIT-Y/N] [ORDLD-Y/N]
[L,CHAIN-address] [, RCAD-address] [,KEYL-number]
[,KDISP-number] [, KEYADD-address]
[LMSTNDX-address] [, MSTBYT-number]

[, CURENT-address] [,HIGH-address]

ACCESS-code specifies the access method used for the file. This operand is
required. The codes and their meanings are as follows:

Access
Code

CA
CG
co
CuU
DG
DO
DU
DGA
DOA
DUA

10

IS

ISA

ISU
ISUA

IR

IRA

IRU
IRUA
DUMMY

System
Module

#$CSOP
HECSIP
#$CSOP
#$CSuP
#$DAID
#SDAUD
#$DAUD
#$DAIB
#$DAUB
#$DAUB
#$I0AD
#SI0UT
#$ISIP
#$ISAD
#SISUP
#$ISUA
#$IRIP
#$IRAD
#$IRUP
#$IRUA

Access Method

Consecutive add

Consecutive input

Consecutive output

Consecutive update

Direct input with decimal record numbers
Direct output with decimal record numbers
Direct update with decimal record numbers
Direct input with binary record numbers
Direct output with binary record numbers
Direct update with binary record numbers
Indexed add

Indexed output

Indexed sequential input

Indexed sequential add

Indexed sequential update

Indexed sequential update and add
Indexed random input

Indexed random add

Indexed random update

Indexed random update and add .
Dummy open to obtain information about how a file
was created

Note: You must provide,“through an EXTRN statement in your program, the
label {(under System Module column above) for the appropriate access code.

RECL-number specifies the decimal length of the logical record. This operand
must be specified. '

NAME-filename specifies the name of the file. The name must be no more
than 8 characters in length. This operand must be specified.

BLKL-number specifies the number of bytes in the buffer. The minimum
number of bytes is 256. Larger lengths may be specified, but must be in
multiples of 256.

Macroinstruction Statement

21

22

IOAREA-address provides the address of the leftmost byte of an area in main
storage allocated to contain all buffers and IOB(s) for the access method
specified in the ACCESS operand. This operand must be specified. The
amount of main storage required is shown in the following chart:

Access Method Formula

Consecutive, Direct If the record length is an integral power of 2 (2, 4, 8,
16, 32, 64, 128, . .. ,4096), then:

IOAREA = (22 x BUFNO) + [{record length + 255
rounded down to the next muitiple of 256) x
BUFNO}

If the record length is not an integral power of 2
then:

IOAREA = (22 x BUFNO) + [(record length + 255
rounded up to the next multiple of 256) x BUFNO]

Indexed If the record length is an integral power of 2 (2, 4, 8,
16, 32, 64, 128, . . . 4096), then:

IOAREA = 22 + [(record length + 255 rounded
down to the next multiple of 256) x BUFNO] + 22
+ 256 : ’

If the record length is not an integral power of 2
then:

I0AREA = 22 + [(record length + 255 rounded up
to the next multiple of 2566) x BUFNO] + 22 + 256

UPSI-mask specifies the settings of the external (SWITCH statement) indicators
used for conditionally opening files. The code must be specified as 8 binary
bits. For example, to set on bits O, 3, 5, and 7, you would enter
UPSI-10010101. If this operand is not entered, zeros are assumed.

BUFNO-1/2 allows you to specify either one or two buffers for the file. You
can use two buffers only with #$CSIP and #$CSOP consecutive access
methods. If this operand is omitted, one buffer is assumed.

LIMIT-Y /N is specified only for indexed sequential get and indexed sequential
update. It specifies whether the sequential access is within limits. If this
operand is not entered, N (no) is assumed.

ORDLD-Y /N specifies whether an ordered load is to be used with the indexed
output access method. This operand can be specified only with the indexed
output access method. If this operand is not entered, N (no) is assumed.

CHAIN-address specifies the address of the next DTF in the chain of DTFs. If
there is no DTF chain or if this DTF is the last DTF in the chain, this operand
should be omitted and hex FFFF assumed. :

RCAD-address specifies the address of the leftmost byte of the logical record.
If this operand is not entered, hex 0000 is assumed. Depending on the disk
access method being used for an input operation, either move mode or locate
mode is used. If move mode is used, the record is provided at the address
specified in the RCAD parameter. If locate mode is used, the address of the
input record is contained at the displacement of $DTFWKB in the DTF and this
operand is not used. For information on the mode used by the different access
methods, see IBM System/32 System Logic Manual, SY21-0567.

KEYL-number specifies the length of the key field and must be used for all
indexed access methods, but no others. If omitted, a default length of 1 is
assumed.

KDISP-number is entered for all indexed access methods. It indicates the
displacement into the record of the leftmost byte of the key field. The
displacement of the first byte in the record is zero, the second byte is one, and
so on. If this operand is omitted, zero is assumed.

KEYADD-address specifies the following:

« Main storage address of the leftmost byte of the key field for indexed
random access methods. This area must be one key length long.

« Main storage address of the leftmost byte of the relative record number
field for direct access methods. This area must be 23 bytes when decimal
relative record numbers are used, with the relative record number located
right-justified in the rightmost 15 bytes of the field. This area must be 8

" bytes when binary relative record numbers are used, with the relative record
number located right-justified in the rightmost 3 bytes of the field. If
omitted, a default address of zero is supplied.

HIGH-address specifies the address of the leftmost byte of the user’'s save
area, two key lengths long, with the low key in the left half and the high key in
the right half. This operand is used in conjunction with indexed sequential
processing within limits. If omitted, a default address of zero is supplied.

MSTNDX-address specifies the address of the leftmost byte of the master
sector index in main storage. This operand can be specified only for indexed
random access. |f omitted, a default address of zero is supplied. You must
allocate space in main storage for the master sector index.

MSTBYT-number specifies the number of bytes reserved for the master sector
index. If omitted, the default value is zero. This parameter should be used in
conjunction with the MSTNDX parameter.

CURENT-address specifies the address of the leftmost byte of the user’'s save

area for current and last keys for indexed sequential access method. If
omitted, a default address of zero is supplied.

Macroinstruction Statement

23

2

Construct a Disk Get Interface ($GETD)

The $GETD macroinstruction generates the interface needed to communicate
with disk data management when a record is being read from a disk file. To
use this macroinstruction, construct a disk DTF for the file and use the $DTFO
macroinstruction to establish the offsets for the DTF. You must also provide
the labels for the necessary data management routines through EXTRN
statements in your programs. If you will need to use the data in register 2 at a
later time, you should save the contents of that register before issuing the
$GETD macroinstruction.

The code generated by this macroinstruction gives control to the data
management routine; the routine completes execution and returns control to
the generated code. The ‘generated code tests the completion codes returned
by data management.

The format of the $GETD macroinstruction is:

[Namel] $GETD ACCESS-code [,DTF-address] [,ERR-address]
[,EOF-address] [, NRF-address]

ACCESS-code specifies the access method for the file. This operand is
required. The codes and their meanings are as follows:

Access System

Code Module Access Method

CA #$CSOP Consecutive add

CG #$CSIP- Consecutive input

co #$CSOP Consecutive output

cu #3$CSUP Consecutive update

DG #$DAID Direct input with decimal record numbers
DO #$DAUD Direct output with decimal record numbers
DU #$DAUD Direct update with decimal record numbers
DGA #$DAIB Direct input with binary record numbers
DOA #3$DAUB Direct output with binary record numbers
DUA #SDAUB Direct update with binary record numbers
1A #$I0AD Indexed add '

10 #$I0UT Indexed output

IS #$ISIP Indexed sequential input

ISA #SISAD Indexed sequential add

ISU #$ISUP Indexed sequential update

ISUA #$ISUA Indexed sequential update and add

IR #SIRIP Indexed random get

IRA #SIRAD Indexed random add

IRU #$IRUP Indexed random update

IRUA #$IRUA Indexed random update and add

Note: You must provide, through an EXTRN statement in your program, the
label (under System Module column above) for the appropriate access code.

DTF-address indicates the address of the leftmost byte of the DTF for this file.
If this operand is not specified, the address is assumed to ‘be in register.2.

ERR-address supplies the address in your program where control is passed if
the controlled cancel option is taken in response to a permanent |/O error. If
this operand is omitted, no code is generated to check for the controlled cancel
completion code.

EOF -address specifies the address in your program that receives control when
the end of file is detected. If this operand is not supplied, no code is
generated to check for the end-of-file condition. You must not use this
operand with random or direct access methods.

NRF-address must be used only for random and direct access methods. It
specifies the address in your program that is to receive control when a
no-record-found condition occurs.

Note: If ERR, NRF, or EOF addresses are not specified, your program should
check the return code in the DTF to determine the outcome of the operation.

Construct a Disk Put Interface ($PUTD)

The $PUTD macroinstruction generates the interface needed to communicate
with disk data management when the program is putting a record to disk or
updating a previously retrieved record. You must provide a DTF for the file and
use the $DTFO macroinstruction to establish the offsets in the DTF. You must
also provide, through EXTRN statements in your program, the labels of the
disk data management modules necessary to perform the 1/0O operation. If you
will need to use the data in register 2 at a later time, you should save the
contents of that register before issuing the $PUTD macroinstruction.

The code generated by this macroinstruction gives control to the data
management routine; the routine completes execution and returns contro! to
the generated code. Completion codes are tested and control is returned to
your program.

The format of the $PUTD macroinstruction is:
[Name)] $PUTD ACCESS-code [,DTF-address] [,ERR-address]
[LEOX-address] [,DUPREC-address]

[.SEQERR-address] [, KEYERR-address]
[LUPDATE-Y/N]

Macroinstruction Statement 25

26

ACCESS-code specifies the access method used for the file. This operand is
required. The codes and their meanings are as follows:

Access System

Code Module Access Method

CA #$CSOP Consecutive add

CG #$CSIP Consecutive input

co #$CSOP Consecutive output

cuU #$CSUP Consecutive update

DG #$DAID Direct input with decimal record numbers
DO #$DAUD Direct output with decimal record numbers
DU #$DAUD Direct update with decimal record numbers
DGA #$DAIB Direct input with binary record numbers
DOA #$DAUB Direct output with binary record numbers
DUA #$DAUB Direct update with binary record numbers
1A #$I0AD Indexed add

10 #3I0UT Indexed output

IS #3ISIP Indexed sequential input

ISA #PISAB Indexed sequential add

ISU #$ISUP Indexed sequential update

ISUA #SISUA Indexed sequential update and add

IR #$IRIP Indexed random input

IRA #$IRAD Indexed random add

IRU #$IRUP Indexed random update

IRUA #$IRUA Indexed random update and add

Note: You must provide, through an EXTRN statement in your program, the
label (under System Module column above) for the appropriate access code.

DTF-address specifies the address of the leftmost byte of the DTF associated
with this file. If this operand is not specified, the address is assumed to be in
register 2.

ERR-address supplies the address in your program where control is passed if
the controlled cancel option is taken in response to a permanent |/0 error. If
this operand is omitted, no code is generated to check for the controlled cancel
completion code.

EOX-address supplies the address in your program that is to receive control
when an end of extent is reached during the operation. This operand is not
used when UPDATE =Y.

DUPREC-address provides the address in your program that is to receive
control when an attempt to add a duplicate record has occurred. This operand
is used only with an indexed add access method.

SEQERR-address is the address in your program where control is passed in the
event of a sequence error during an ordered load of an indexed sequential file.

KEYERR-address specifies the address of your routine to be called when an
attempt has been made to update a record in an indexed file and the attempt
would destroy the record key.

UPDATE-Y /N indicates whether an update is to be performed. If this operand
is not entered, N (no) is assumed.

Note: If ERR, EOX, DUPREX, SEQERR, or KEYERR addresses are not
specified, your program should check the return code in the DTF to determine
the outcome of the operation.

Display Screen/Keyboard
This section describes the macroinstructions that support the display
screen/keyboard. This support can be grouped in two categories: dispiay
support and program function key support. It provides the following

capabilities:

« Builds a preopen DTF for the display screen/keyboard data management

Builds the interface to get a record from the keyboard

Builds the interface to put a record to the display screen

» Builds the interface to'put a record to the display screen, and then to get a
record from the keyboard

The display screen/keyboard macroinstructions provide information to the
display screen/keyboard data management routines that perform the
input/output operations. “

Display Support

Define the File for Display Screen/Keyboard ($DTFS)

The $DTFS macroinstruction provides information needed to allocate, open,
access, and close a display screen/keyboard file. This macroinstruction
generates the code that builds a display screen/keyboard DTF.

The format of the $DTFS macroinstruction is:

[Name] $DTFS [PUTDAT-address] [,PUTLOC-number]} [,UPSI-mask]
[,CHAIN-address] [,PUTLEN-number] [,OPC-code]
[GETDAT-address] [,GETLOC-number]
[GETLEN-number] [,FUNKEY-number]
[,CMDKEY-number] [,SHIFT-A/N] [,CURSOR-number]
[,SPACE-number] [, WAIT-Y/N] [,IOBST-address]

PUTDAT-address specifies the leftmost byte of the logical record for a put
request. For a $PGS request, this area is used for the output. If this operand
is not specified, hex 0000 is assumed, and the address must be updated with
(or prior to) the first $PGS or $PUTS request issued.

Macroinstruction Statement

28

PUTLOC-number specifies a number that represents the starting location on the
display screen for a put request. Valid entries for this operand are from 1
through 240. If this operand is not specified, 1 (the first display screen
position) is assumed. If the number exceeds 240, no data is written.

UPSI-mask specifies the settings of the external (SWITCH statement) indicators
used for conditionally opening the file. The mask must be specified as 8 binary
bits. For example, to set on bits 0, 3, 5, and 7, you would enter
UPSI-10010101. If this operand is not specified, zeros are assumed for all 8
bits.

CHAIN-address specifies the address of the next DTF in the DTF chain. |f
there is no DTF chain or if this DTF is the last one in the chain, this operand
should be omitted and end of chain (hex FFFF) assumed.

PUTLEN-number specifies the number of bytes to process for a put request. If
this operand is not specified, the missing information must be supplied with (or
prior to) the first $PGS or $PUTS request. Valid entries for this operand are
from 1 through 240. If this number plus the entry for the PUTLOC operand
exceeds 241, the data written is truncated at location 240.

OPC-code specifies the operation code to be set. If this operand is not
specified, the information is supplied with the first $GETS, $PUTS, or $PGS
request. The codes and their meanings are:

Code Meaning

OUTPUT Display prompt or data on display screen
BDE Basic data entry

SDE Sequential data entry

CSDE Controlled sequential data entry

GETDAT -address specifies the leftmost byte of the area into which the input
data will be placed for a get request; for a $PGS request, this area is used for
the input. If this operand is not specified, hex 0000 is assumed, and the
information must be supplied with (or prior to) the first $GETS or $PGS
request issued.

GETLOC-number specifies a number that indicates the starting location on the
display screen for a get request. Valid entries for this operand are 1 through
240. If this operand is not specified, 1 (the first display screen position) is
assumed. If a number greater than 240 is specified, no data will be read.

GETLEN-number is a decimal number that represents the number of bytes to
get. If this operand is not specified, hex 0000 is assumed, and the missing
information must be supplied with (or prior to) the first $PGS or $GETS
request issued. Valid entries for this operand are 1 through 240. If this
number plus the entry specified for the GETLOC operand exceeds 241, the
data read is truncated after location 240.

FUNKEY -number is a 3-byte hex number you can use to redefine the use of the
function keys for your program. If this operand is omitted, hex 000000 is
assumed. For further information see IBM System/32 Functions Reference
Manual, GA21-9176.

CMDKEY -number is a 3-byte hex number you can use to identify the command
keys acceptable as input for your program. If this operand is omitted, hex

. 000000 is assumed. For further information see IBM System/32 Functions
Reference Manual, GA21-9176.

SHIFT-A/N indicates whether your input can be alphameric or numeric only. If
this operand is omitted, A is assumed.

CURSOR-number specifies the cursor position within the display screen. 1
identifies the first position, 2 identifies the second position, etc. If zero is
entered or the operand is omitted, the cursor is not displayed.

SPACE-number specifies the number of lines the display screen should be
rolled before input is accepted from the keyboard. Valid entries are O through
6. If this operand is omitted, zero is assumed.

WAIT-Y /N=Y (yes) waits for keyboard input before returning control to the
user. N (no) returns control to the user before keyboard input completion is
checked in the first call to data management, and the second call to data
management waits for completion of the keyboard input before returning
control to the user. If this operand is omitted, Y {yes) is assumed.

IOBST-address specifies the address of the leftmost byte of the keyboard 10B.
If this operand is omitted, the defauit address is hex 0000.

Get a Record from the Keyboard ($GETS)

The $GETS macroinstruction generates the interface needed to communicate
with display screen data management when a record is being read from the
display screen. To use this macroinstruction, construct a display screen DTF
for the file and use the $DTFO macroinstruction to establish the offsets for the
DTF. You must include an EXTRN for #$BDMC. If you will need to use the
data in register 2 at a later time, you should save the contents of that register
before using the $GETS macroinstruction.

The format for the $GETS macroinstruction is:

[Name] $GETS {DTF-address] [GETDAT-address] [, GETLEN-number]
L GETLOC-number] [,OPC-code] [,FUNKEY-number]
[,CMDKEY-number] [SHIFT-A/N] [WAIT-Y./N]
[,CURSOR-number] [,SPACE-number]

DTF-address specifies the leftmost byte of the DTF for this file. If this operand
is not specified, the address of the DTF is assumed to be in register 2.

GETDAT -address specifies the leftmost byte of the area into which the data will
be placed. If this operand is omitted, the current address in the DTF remains
unchanged. :

GETLEN-number specifies the number of bytes to get. Valid entries for this
operand are 1 through 240. If the sum of this number plus the number
specified for the GETLOC operand exceeds 241, the data read is truncated
after location 240. If this operand is omitted, the current length in the DTF
remains unchanged.

Macroinstruction Statement

GETLOC-number specifies a number representing the starting location on the
display screen for this get. Valid entries for this operand are 1 (the first display
screen position) through 240. If this entry exceeds 240, no data is read. If this
operand is omitted, the current location in the DTF remains unchanged.

OPC-code specifies the operation code to be set. If this operand is omitted,
basic data entry (BDE) is assumed.

Code Meaning

BDE Basic data entry
SDE Sequential data entry
CSDE Controlled sequential data entry

FUNKEY -number is a 3-byte hex number used to redefine the use of the
function keys. If this operand is omitted, the function key mask in the DTF
remains unchanged.

CMDKEY -number is a 3-byte hex number used to identify the command keys
acceptable as input. If this operand is omitted, the command key mask in the
DTF remains unchanged.

SHIFT-A/N indicates whether the input is alphameric or numeric only. [f this
operand is omitted, the shift indicator in the DTF remains unchanged.

WAIT-Y /N-Y (yes) waits for keyboard input before returning control to the
user. N (no) returns control to the user before keyboard input completion is
checked in the first call to data management, and the second call to data
management waits for completion of the keyboard input before returning
control to the user. If this operand is omitted, Y (yes) is assumed.

CURSOR-number specifies the cursor position within the display screen
(maximum = 240). If this operand is omitted, the cursor position in the DTF
remains unchanged.

SPACE-number specifies the number of lines the display screen should be
rolled before input is accepted (maximum = 6). If this operand is omitted, the
space count in the DTF remains unchanged.

Generate a PUT /GET Operation through Display Screen Data Management ($PGS) \

This macroinstruction generates a PUT/GET data request to display screen
data management. To use this instruction, you must construct a display screen
DTF for the file and use the $DTFO macroinstruction to establish the offsets in
the DTF. You must also provide the labels for the necessary data management

" routines through an EXTRN for #$BDMC. If you will need to use the data in
register 2 at a later time, you should save the contents of that register before
issuing the $PGS macroinstruction.

The format for the $PGS macroinstruction is:

[Name] $PGS [DTF-address] [,OPC-code] [,PUTDAT-address]
[,PUTLEN-number] [,PUTLOC-number]
[GETDAT-address] [, GETLEN-number]
[LGETLOC-number] [,FUNKEY-number]
[LCMDKEY-number] [,SHIFT-A/N] [, CURSOR-number]
[.SPACE-number] [WAIT-Y/N]

DTF-address specifies the address of the DTF for this file. If the operand is
not specified, the address is assumed to be in register 2.

OPC-code specifies the operation code to be set. If this operand is omitted,
basic data entry (BDE) is assumed:

Code Meaning.

BDE Basic data entry
SDE Sequential data entry
CSDE Controlled sequential data entry

PUTDAT -address identifies the leftmost byte of the user area from which the
data will be taken. If this operand is omitted, the current address in the DTF
remains unchanged.

PUTLEN-number specifies the number of bytes to put to the display screen.
Valid entries for this operand are 1 through 240. If the sum of this number -
plus the entry specified for the PUTLOC operand exceeds 241, the data written
is truncated after location 240. If this operand is omitted, the current length in
the DTF remains unchanged.

PUTLOC-number specifies the starting location on the screen for this put
request. Valid entries for this operand are 1 (the first display screen position)
through 240. If this number exceeds 241, no data is written. If this operand is
omitted, the current location in the DTF remains unchanged.

GETDAT -address specifies the leftmost byte of the area into which the data will
be placed for a get request. If this operand is omitted, the current address in
the DTF remains unchanged.

GETLEN-number specifies the number of bytes to get from the display screen.
Valid entries for this operand are 1 through 240. If the sum of this number
plus the entry specified for the GETLOC operand exceeds 241, the data is
truncated after location 240. If this operand is omitted, the current length in
the DTF remains unchanged.

GETLOC-number specifies the starting location on the display screen for this
get request. Valid entries for this operand are 1 (the first display screen
position) through 240. If this number exceeds 240, no data is read. If this
operand is omitted, the current location in the DTF remains unchanged.

FUNKEY -number is a 3-byte hex number used to redefine the use of the

function keys. If this operand is omitted, the function key mask in the DTF
remains unchanged.

Macroinstruction Statement

31

32

CMDKEY -number is a 3-byte hex number used to identify the command keys
acceptable as input. If this operand is omitted, the command key mask in the
DTF remains unchanged.

SHIFT-A/N indicates whether the input is alphameric or numeric only. If this
operand is omitted, the shift indicator in the DTF remains unchanged.

CURSOR-number specifies the cursor position within the display screen
{maximum = 240). If this operand is omitted, the cursor positon in the DTF
remains unchanged.

SPACE-number specifies the number of lines the display screen should be
rolled before accepting input (maximum = 6). If this operand is omitted, the
space count in the DTF remains unchanged.

WAIT-Y /N-Y (yes) waits for the completion of keyboard input before returning
control to the user. N (no) returns control to the user before keyboard input
completion is checked in the first call to. data management, and the second call
to data management waits for completion of the keyboard input before
returning control to the user. If this operand is omitted, Y (yes) is assumed.

Note: If the operands PUTDAT, PUTLOC, PUTLEN, GETDAT, GETLOC, or
GETLEN are not specified, you must supply the missing information in the DTF
before issuing the first $PGS request.

Put a Record to the Display Screen via Data Management ($PUTS)

This macroinstruction generates a put data request to display screen data
management. To use this macroinstruction, you must construct a display
screen DTF for the file and use the $DTFO macroinstruction to establish the
offsets in the DTF.

If you will need to use the data in register 2 at a later time, you should save
the contents of that register before issuing the $PUTS macroinstruction. You
must also provide the labels for the necessary data management routines
through an EXTRN to #$BDMC. '

The format for the $PUTS macroinstruction is:

[Name] $PUTS [DTF-address] {,PUTDAT-address] [,PUTLOC-number]
[,PUTLEN-number] [,SPACE-number]

DTF-address specifies the address of the DTF for this file. If this operand is
not specified, the address is assumed to be in register 2.

PUTDAT -address specifies the leftmost byte of the area from which the data
will be taken. If this operand is omitted, the current address in the DTF
remains unchanged.

PUTLOC-number specifies the starting location on the display screen for this
put. Valid entries for this operand are 1 (the first display screen position)
through 240. If this number exceeds 240, no data is written. If this operand is
omitted, the current location in the DTF remains unchanged.

PUTLEN-number specifies how many bytes to put to the display screen. Valid
entries for this operand are 1 through 240. If the sum of this number plus the
entry specified for the PUTLOC operand exceeds 241, the data written is
truncated at location 240. If this operand is omitted, the DTF remains
unchanged.

SPACE-number specifies the number of lines the display screen should be
rolled before accepting input (maximum = 240). If this operand is omitted, the
space count in the DTF remains unchanged.

Note: If the operands PUTDAT, PUTLOC, or PUTLEN are missing, the missing
information must be supplied in the DTF before the first put request is issued.

BSC Support

This section describes the macroinstructions that support BSC. The following
functions are provided:

» Build a DTF for BSC GET/PUT operations and its offsets
« Build the interface to get a BSC record

« Build the interfaces required to translate data from ASCIl to EBCDIC or
EBCDIC to ASCII

« Build the interface to put a BSC record

Define the File for BSC ($DTFB) A

The DTF provides information needed to allocate, open, close, and access a
BSC file. This macroinstruction generates the code that builds. the BSC DTF.

The format of the $DTFB macroinstruction is:

[Name] $DTFB RECL-number,RCAD-address, BLKL-number,
FTYP-RCV/TSM [,BUFNO-1/2] [BUFST-address]
[.IOBST-address] [, TYPE-PP/AA/MA/MP/MC]
[[CODE-E/A] [,UPSI-mask] [,CHAIN-address]
[ITB-Y/N] [TRANSP-Y/NI [,RVIADR-address]
[,RVIMSK-code] [,DLYCT-number] [,RCVID-address]
[RCVCT-number] [, SNDID-address] [SNDCT-number]
[, TERMAD-number]

RECL-number specifies, in decimal, the maximum record length for this file,
excluding line control characters. Record length is limited by available storage
and terminal characteristics. ’

RCAD-address specifies the symbolic address identifying the leftmost byte of

your logical buffer. The logical buffer must be large enough to contain one’
record for this file.

Macroinstruction Statement

Records are moved from the logical buffer to the BSC 1/0 buffers on PUT
requests (JPUTB macroinstruction), and moved from the BSC 1/0 buffers to
the logical buffer on GET requests ($GETB macroinstruction).

BLKL-number specifies, in decimal, the maximum block length for this file,
excluding line control characters. Block length must be equal to or greater than
record length (RECL operand).

FTYP-RCV /TSM indicates whether the first operation for this file is receive
(RCV) or transmit (TSM). If you define a receive file (RCV), the first I/0
request for the file must be a GET request; if you define a transmit file (TSM),
the first i/0 request for the file must be a PUT request or a request for an
online test.

BUFNO-1/2 specifies the number of |/0 buffers and 10Bs to be contained in
the /0 area for this file. If this operand is omitted, one is assumed.

BUFST-address specifies the address of the leftmost byte of the |/O buffer. If
BUFST is omitted, the $DTFB macroinstruction generates a name and buffer
area. If shared buffering between $DTFBs is desired, the user must supply the
buffer via the BUFST parameter. The buffer should be large enough to satisfy
the requirements of the $DTFB needing the largest area. The area needed can
be calculated as follows:

(buffer length)*(number of buffers) 1 or 2 buffers allowed

buffer length = BLKL + 21 + {number of ITB characters)
number of ITB characters = ((BLKL/RECL)-1)*(ITB count)
ITB count =1 for ITB nontransparent

3 for ITB transparent receive

0 for non-ITB

I0BST-address of the leftmost byte of the 10B. In a one IOB DTF, this address
must point to a 22-byte area. In a two /0B DTF, this address must point to a
44-byte area. If IOBST is omitted, the $DTFB macroinstruction generates a
name and IOB area.

Note: |0BST must address a different |0B area for each $DTFB.
TYPE-PP/AA/MA/MP/MC: specifies the type of line connection to be
established for this file. You must have the appropriate network attachment

feature installed before specifying one of the following line types:

PP specif‘ies that this file will use a point-to-point nonswitched line. PP is
assurned if no line type is specified.

AA spacifies that this file will use a switched line, auto answer.
MA specifies that this file will use a switched line, manual answer.

MP specifies that this file will use a multipoint line, and that this station is a
tributary station. TYPE-MP requires the TERMAD operand.

MC specifies that this file will use a switched line, manual call.

CODE-E /A specifies whether the character code of your data is EBCDIC (E) or
ASCII (A). If this operand is omitted, E is assumed.

UPSI-mask specifies the settings of the external (SWITCH statement) indicators
used for conditionally opening files. The code must be specified as 8 binary
bits. For example, to set on bits O, 3, 5, and 7, you would enter
UPSI-10010101. If this operand is omitted, zeros are assumed.

CHAIN-address specifies the symbolic address of the next DTF in the chain.
Chained DTFs are allocated, opened, or closed at the same time as the first
DTF in the chain. An end-of-chain indicator, hex FFFF, is entered in the last
DTF, or in a DTF if no chain operation is needed.

ITB-Y /N specifies whether intermediate block checking is requested: Y if yes,
N if no. ITB is not valid with transparent transmit files. If this operand is
omitted, N (no) is assumed.

TRANSP-Y /N specifies whether data for this file will be transmitted or received
in transparent mode: Y if yes, N if no. If this operand is omitted, N (no) is
assumed.

RVIADR-address specifies the symbolic address of a 1-byte field you provide.
The field is used with the mask specified in the RVIMSK operand (following
paragraph) to indicate when a reverse interrupt request (RVI) is received.
RVIADR-address requires the RVIMSK operand.

RVIMSK-code specifies 2" hexadecimal characters to represent the reverse
interrupt (RVI) mask. The bits represented by the mask are set on by 10S in
the RVIADR field (preceding paragraph) if reverse interrupt request (RVI) is
received.

DLYCT-number specifies a decimal delay count. The delay count is the number
of seconds after receiving or transmitting a block of data that System/32 will
wait for you to receive or transmit another block of data for the same file
(1-999). If you do not specify a number, a 180-second delay count is
assumed. If you do not specify a delay count, consider the time that may be
required for such things as device errors, halts, and readying |/0O devices.

RCVID-address specifies the symbolic address of the leftmost byte of the
identification sequence required from the remote station. RCVID-address
requires the RCVCT operand. Using RCVID and RCVCT improves data security
on switched lines; these operands are valid for switched lines only.

RCVCT-number specifies, in decimal, the length of the identification sequence
required from the remote station. Length can be from 1 to 15. If 1 is
specified, 10S expects to receive 2 characters—duplicates of the character
addressed by the RCVID operand (preceding paragraph). If no length is
specified, O is assumed. RCVCT-number requires the RCVID operand.

Macroinstruction Statement

35

36

Issue

Issue

SNDID-address specifies the symbolic address of the leftmost byte of the
identification sequence required by the remote station. SNDID-address requires
the SNDCT operand. Using the SNDID and SNDCT operands improves data
security on switched lines; these operands are valid for switched lines only.

SNDCT-number specifies, in decimal, the length of the identification sequence
required by the remote station. Length can be from 1 to 15. If 1 is specified,
I0S transmits 2 characters—duplicates of the character addressed by the
SNDID operand (preceding paragraph). SNDCT-number requires the SNDID
operand.

TERMAD-number specifies the hexadecimal representation of the 2-character
polling or addressing sequence used by this file. If this is a transmit file
(FTYP-TSM), TERMAD specifies polling characters; if this is a receive file
(FTYP-RCV), TERMAD specifies addressing characters. Each tributary station
on a multipoint line must have unique polling and/or addressing characters.
The TERMAD operand is used only when TYPE-MP is specified. For further
information about polling and/or addressing characters see IBM System/32
Data Communications Reference Manual, GC21-7691.

a GET Request ($GETB)

The $GETB macroinstruction generates code to move data from an 10S buffer
to your logical buffer. To use this macroinstruction, construct a BSC DTF for
the file and use the $DTFO macroinstruction to generate the labels and
establish the offsets for the DTF. You must also provide, through an EXTRN
statement in your program, the label #$BSDB for BSC data management.

The format of the $GETB macroinstruction is:
[Name] $GETB [DTF-address] [REJECT-address] [,EOF-address]

DTF-address specifies the address of the DTF (file) for which the GET was
issued. If this operand is omitted, the address of the DTF is assumed to be in
register 2.

EOF -address specifies the user's end-of-file routine. If this operand is omitted,
control is returned to the caller at the next sequential instruction after the
$GETB.

REJECT -address specifies the routine to receive control if this GET request is
rejected by BSC. If this operand is omitted, control is returned to the caller at
the next sequential instruction after the $GETB.

If EOF or REJECT addresses are not specified, you should check the return
code in your program to determine the outcome of the operation.

a PUT Request ($PUTB)

The $PUTB macroinstruction generates code to move data from your logical
buffer to an 10S buffer. To use this macroinstruction, construct a BSC DTF for
the file and use the $DTFO macroinstruction to generate the labels and
establish the offsets for the DTF. You must also provide, through an EXTRN
statement in your program, the label #$BSDB for BSC data management.

The format of the $PUTB macroinstruction is:
[Name] $PUTB [DTF-address] [,REJECT-address]

DTF-address specifies the address of the DTF (file) for which the PUT was
issued. If this operand is omitted, the address is assumed to be in register 2.

REJECT -address specifies the routine to receive control if the PUT request is
rejected by BSC. If this operand is omitted, control is returned to the caller at
the next sequential instruction after the $PUTB, and the return codes should be
checked to determine the outcome of the operation.

Generate a Translate Parameter List ($TRL)
This macroinstruction generates a parameter list used by the translate routine.
This list is specified in the $TRAN macroinstruction. $TRL does not generate
executable code. Figure 4 shows the format of the translate parameter list.
Translate Routine Operation
To use the translate routine, you must provide a translate control area. To
construct a translate control area you can use the $TRTB macroinstruction.

The format of the area is:

Byte Field Description

0 Byte contents used to identify an invalid character (character is not
to be translated)

1 Byte contents substituted for characters that are not to be
translated

2-257 256-byte translate table for EBCDIC to ASCII
2-129 128-byte translate table for ASCIl to EBCDIC

The translate routine processes a field, specified by the $TRAN
macroinstruction, 1 byte at a time.

The translate table must be constructed so that the value the character is to be
translated to is located at the displacement (from the beginning of the table)
equal to the hexadecimal representation of the untranslated character. (For
example, if you want to translate hex C1 to hex 41, you should construct a
translate table in which the value at displacement hex C1 in the table is hex
41.) '

Macroinstruction Statement

38

The contents of the byte at a given displacement are compared with the
contents of the first byte in the translate area (byte 0). If an equal compare
results, the character is considered to be invalid, and the following actions are
performed: ’

« The completion code in the parameter list is set to indicate that an invalid
character was detected.

« The hexadecimal value in the second byte of the translate area (byte 1) is
substituted for the original character. ’

« Translation continues with the next character.
The format of the $TRL macroinstruction is;)
[Name] $TRL TO-address, FROM-address,LEN-number, TRT-address

TO-address specifies the symbolic address of the leftmost byte of the data
field to which the translated data will be moved.

FROM-address specifies the symbolic address of the leftmost byte of the data
field to be translated. This address may be the same as the address specified

in the TO operand.

LEN-number specifies the decimal length of the number of characters to be
translated.

TRT-address specifies the symbolic address of the leftmost byte of the
translate control area. If the $TRTB macroinstruction is used to generate the
translate control area, this address should be the label assigned to the $TRTB
macroinstruction.

All four operands are required.

Generate a Translate Table ($TRTB)

This macroinstruction generates an EBCDIC to ASCII or an ASCII to EBCDIC
translate table. The table is generated in the format required by the $TRL
macroinstruction, and can be addressed by $TRL when you translate data.

The format of the $TRTB macroinstruction is:
[Name] $TRTB [CODE-E/A] [,HEX-hex]

CODE-E/A specifies whether the data is to be translated from EBCDIC to
ASCII (E} or ASCII to EBCDIC (A). If this operand is omitted, EBCDIC (E) is
assumed. |f CODE-E is specified, $TRTB generates a 258-byte control area; if
CODE-A is specified, $TRTB generates a 130-byte control area.

HEX-hex specifies the hexadecimal pattern with which to replace any invalid
characters found during translation. If the HEX operand is not specified, the
replacement character is hex 3F for EBCDIC or hex 1A for ASCII.

Generate an Interface to the Translate Routine ($TRAN)

This macroinstruction generates an interface to the translate routine. After the
translate routine has finished, control is returned to your program with a
completion code in the translate routine parameter list. The address of the
parameter list is in register 1. If you will need to use the data in register 1 at a
later time, you should save the contents of the register before issuing the
$TRAN instruction. You should check the completion code to see whether any
invalid characters were encountered.

The format of the $TRAN macroinstruction is:
[Name] $TRAN [TRL-address]

TRL-address specifies the symbolic address of the translate parameter list. If
this operand is not entered, the address is assumed to be in register 1. If the
$TRL macroinstruction is used to generate the parameter list, this address
should be the label assigned to the $TRL macroinstruction. The parameter list
is described below:

Field
Length Field Description

2 Address of the translate control area (your program must define
the translate control area)

2 FROM field address, for translation
2 TO field address, for translation

2 Number of bytes to translate

1 Completion code:

Hex 00 = translation complete, no errors
Hex FF = invalid character encountered

Figure 5. Translate Parameter L.ist

Macroinstruction Statement 39

Chapter 3. OCL and Sample Program

OCL FOR MACRO PROCESSOR

OCL statements used to call the macro processor can be entered through the
system input device or be called as a procedure from the source library. The
OCL statements necessary to call the macro processor are shown below. The
COMPILE statement shown is only necessary when input is in a source library.

STATEMENT

Name Operation Operand Remarks
1 2 3 4 5 6 7 8910111213 14]15}16 17 18 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 6/ 68 69 7071 72 73 74 75

/] IlldAD XY

/1| Fi1iLE WAME-gisoulrclel, IRETAlNIN-S|,IBIL blclks!-

/7| F/LE WanE-BPlaisM wiPlT, RETALIN-IS Ul - F 1], |8l - Blalswl WiPlTH IBLID I iKls - 16l@
// FILé A E—#mpﬂ JRETA|IN -9, Bltlolcks]-1310)

/11 FliiLel WiaMe -igwlociK(2], RETIA IN-15!. BlL lolc ks -2

/l/ ,EME R PRloclelaM L -MPAsMSG 1.

/\/| MEMBER| PR0:IRAM2-MPASHISE 2

/| CioMPULLIE| SIOURCE -IWFI/LE]

/1] Kuw

40

program that includes binary sychronous communication, error logging, and

This sample program shows how macroinstructions can be used to write a
printing:

SAMPLE PROGRAM 1

3 [7) Q
8 Y
8 XY K
® 2
8 ~ [0 [FTIATYY
8 r=Y Wi N HA S/
3 = N YY) 2
3 Q = Ity %)) WY
.8 - ~|) = oY)
ie N ~ XY o [
. = [« S
2 YIS ~ ~) . [A IS
8 N v 1 o d
5 N oy Q) o OI5<
8 ff VYIS I
8 [\ ST D)) [Vb
3 & Ql 1O W) NMev|l |2
2 [THELTN g W O &y
8 = [¥ SIEEES) oY B I%)
5 M 7% u, NI <J W1y
2 Q) [5) > A4
3 [OEZ [~I4 = (W) VD
g O S Q o [Vl
3 < ~J) ~ = ~) ~ N[2[00\
o [N & << = J [[\ WA
e T\ Z |2 S N[> ><[><[<C Nty
3 [\) < [N
2 YIRS W) WWY
el 1> = X 2 = >
s Sy > W Wy W) <<t/
& e[W[\ E W W < K (SO sN[kol 13 KA K| SR K
=l 8 e X[¥ £ 3 ﬁ > Sk
°l 3 3K = | 3 3 K| W4
5 St E K| K| ¥ e SH K[
g > >K| ELEEE 3 < E4IlE G
8 EJIE S E<EE K| K.
3 e i< < K] <SS
3 - SEES JmuTT b3 a K - O~
B YR = TS E-IE? X QI
5 ~ > e S| [e E4dNE K= Vo
8 fa E KA S| [B E HENE 31 =R
E < EARNES 3 K| EYIE AEIE K=K S[=Z [T
2 % K~ S K = S 7 pt| | K)8 (S WO S
~ G) S QN <S¢ [] FRIMEY WO Rk ~] =~
8 Q b o un. 3 “vf 2y HT < < M S<los Em...a)
g E) k4 Moy
3 Q. M A N o iZ&I&A | ~lar |~
Q S It S P ok ~ RIS [~] AW [K2 ¥ H O
8 W) ~EEE] > ~ W ¥ A E AT IR E S e E I LGN
5 E S o>k ~ EAl=IE RS ENE I N I =
] Q P = [e CANED > A i I X oK aAaNda XA O
92 X N [N w Ex < ' S| — [o > | R Z SH[1| 1 [SK| ~[e § () &Y
] < | [Sk| [oB) =[S] MIS[E < [[NS WYKoz Q| =
&r K X Al T [&) J FAEAMMIMAINES =R SR =5~
e [~ K <R (3% N WW [N XMW O[O K ¥A QX AT N
B E oL o ﬂ K AHAIEAISNE INES
= W [= E A < =2 (@) Q [=Y) T I = O[S o)
o[1N E 3 ¥ jo [OF] (5 (bl (O [d[>55 ﬂ&urd.b <)] =
gl R MW [N ECIEE o | O [K[<[3 EANINE -CAE SIS
& ~ E Rk > IR | A3) ~) uBu =¥ KOS ~ S M-I
2l P~] 1 <[Ly . [X < KA A E DIFAVAE KRR K O KR |
P Sk e D¢ E i< de[<g E
w EQ < £ K| B 3 BEY E>IVIE
~ S Ex S K = a o FEUlRIER
. © [XT) wm ER 3 u S | Y E Ex <]
£ RENESENED E-IRES] = ECE 3 I
Z . % <] - E SK ~ E E 3 3
o E | TR E2 S < ¥ K2
~ < AME?Y 5] < e) ZHE E-IEZEIY
- EANESERE SRR EJENETED < Sl P i K[] 3¢

Sample Program 1 (Part 1 of 3)

OCL and Sample Program 41

= | W
R o
8 Y [T -~ Y Y
8 b, |2 5 Ow_.u. kS QO 1
© ~ |
8 Y SN e .
8 Ql Qe Wy &£ [\) [W o
H [N DO) Ol Il b~ Fo]RLJIANSY Of \9
8 O 1) M <<€ [M NE g olw M L=< [d
, 8 L ¥Y) o | > ~ VWX TwodZ [w ~<
HE QO N Y N [H JY WY) — 1 V) W
£ 8 (3] A B ~ =2 29N W=D Wy, W (2] ~i| N Y]
e W TN = X [Swl < 4) I W)
8 =% (NQW_ [Z2ZA T [<) RIAL) (3% QW J | ><|~<c|
3 ~IN[QK[> = NO[N>, S WNINZI=[AN V[N v
8 O Lty %L 1] W J S0 T =] ~ o > W Wy
8 > O[O Q =la. ~ ~1Q oz | o & O oy
b ~ < < [2) O SOEESIN W i)) N [J) Ol 0! Q
2 O W awalk (9 wa walt [V oo o. 1
B LW AD [> — ~N> RS IENEY > [|Ow)
LY Y QS04 XWUXIQ O J= OO Q[ZIo QW J o QOO ~— W4y
3 Y4 [, V=T [HN VY LX) X =2 NHI=Z A L0 11 Qg
3 ' N
5 [\\)
8 W [V
@ A2} [
3 [(SYCS ~4
3 [T
5 g (¥ ~ =
£ 5 1 Q.
sl 8 [e) EREA
al s Q| = -~) X
Y])] [TV X W
5 -~ [o)) £ 2
3 N [\™ [) P23
8 T2 - < P ~)
s = [4 ¥ [() |
3 Y I), 7)) Q) > > [E
s = > ~ > —- =~ o 9l Ed
5 1 B LX) %)) [¥) -
H |~] W0y < 1 'a) W () [= E,
] [C1 L) ~S (o[> |0 - ~N A [=N A £
2 Ay 2 [X) A ") O ﬁ [e) \ME:
5 S -~ S =) e [0 CERET [s Tw T -~ X[=Z
o 1w e ~ IS] ~ T~ I T AT (S ~ 1y = = =
gl 1 ™~ Sl Jodsl~] [N 4 | - W SN -~ ~ W V| ¥
3 - -~ -~ ~ B~ -~ ~ T~ 7~ - —~ - -~ | ~J ”~ 3
IR ~ SO~ N S A ~ o e o 9 ol K —
sl QINRN [~l= N[WS SO (ol 15 AEINM™
s S TS| 19[a S ¢~ ~ [0 N R X Mm =
H] [3) =y th < .mCA..b N EOIE 4 Qv N
g2 [V[S [N TWEL 1 =39 OR[W) O W W[HO[M] o] ~[~
se [¥) NN =W O W TN <~ NEWVN NSV =D ~ 3 <[\ -y W[<
g = I~ NWT YO Q[<€ O] By S Q Yoo Z W o — [=K1
e ¥ RS SN IINQS [X) IS RS) uA O K| [
3 Q. Q. K= (1))
s¢o ~ 1= W X o [2)
gl W HQS] [OID[J] [N [STINIEY) Wyl HWO o Q S J)
3 Y N ETE LY => 2> ~ > J > J v MOl < /<))
2 2] IS o SIS QR oSO A > Mo > /0 hnT SN)
© B E
~ «~ ~N ™ 3 k|
. © X %4 o [N
Eol W[[} < <t S v M Y>>
Z > [Z (V% <D < Q. Q . Ex W[=[]
o 1Al 1= 1N . 3 = b3 al [= x| ¥ o\ wn
~ [+ A Q [«) 2 N K| J[\D [
- [+ %) <J) J =] MK Olv[osa

Sample Program 1 (Part 2 of 3)

42

]3P s el adad sl aeinelselaahe el sl el %4&4ﬂ**:xk [:
CILARATH VIE Coplel '
*ﬂ*xugg_ KoRpeE b IR R VAL A
TF DITIFB] RECLIB@, 8l KiL|-8I8], Rl - MlyREC!, FITlYIP - TSI, DEFINE| Bsc! FiliLE
n CHAlN-DqFZ:TR NISIP -1, NIO|-2 FOR SE|
DT 2] DiTFB| [RECIL]-88), BlLi|Li-88. RCAD- MYREC| FITlYP-RCN] el INEl Blse] ELLEl | K
CHA|1I |- 3, TIRANSIPI-Y |, BuFND- 2 FolR [RECE! V[E
TF DT R RlaD|-MYREL] TOARER - PIRTRIUF]: PR MT- Y] DEF NE| PRI NT]
. RECIL- 818, PIAGE|-blbl,0lVFILI-b FliLE
LioeLsi | | #misil TIYIPEl-z], MisleL|-148, WS 6laiD-Welkipiele] 5N SlylsiLiole M
¥
MYIREC EQul | | ¥
CLi8pl | | TEjot] DATA REICORD @oet’ L 0G|/ ICAIL C
X c. CL4‘I¢{Z|¢|1’
0 DC CLY o1
#
Misil1 DC CL%ﬁ‘TEST ~ FliiLE| NolT| OPEN OR| WoT 4l pur| Frice | |’
Iy
S Df 0L4ﬂ‘ el |- [1INVALLID laislel1] leldldRIAlcIEIR ’
e
MiSG 3 Dic ClL ﬂ‘ TEISIT = 1IN ALl D QUIES T] /
%
Ms6lY D CL4f‘ TEsIT] -] PERRMANIENT] [ERR|0R ‘
¥ .
KSGS Dic CL4pl | TEesT! -] UNDER!IIMED ERRIOR 7
56 DiC CLYol| Tegr [~ FliLe NoT bDPEN OR Noirl Al EET| AdLE] |/
AREEA] | Elalu] | | B¢
56 DS ClLYlp MelssUGE! Blu R
* N
PRTBIUF EQU %
D clLitdle]* g’ PRI N[TER [I/10 AREI
%
i v Ds L5 SANE| IAREA |- DIT
END 40T

Sample Program 1 (Part 3 of 3}

OCL and Sample Program 43

SAMPLE PROGRAM 2

This sample program shows how macroinstructions can be used to write a
subroutine to print a record:

RN GOOBER K XN X %g{uhe
CoMMoN |EQuUATES 1 ¥
eyt ikl e xcheseliche £
X .
HCOMN GEeN| CloMMo A S
< TIFol PRTI-[Y, FlliEILD- GEN| PRNTR L LIS & OlFFlsEfs
FHE D TR DENE I INAEE K e et Je TR 36 6 iﬁiﬁ**¥*k¥%*”%
¥ ALLiolclaTE! AND| OPEN PRUNTER| IFliiLE I
i ****hu Vi ¥ ¢ MMy, pxl _“v_;,‘l.*** WKVl
v
ol DITIF-DITEP LiLoicATel PRI IFlrI e
OPEN! [DITIFI-PTFIP EN| [PRT| IFl/iLE
| PRITW|0EIRR
%
KN DG I M K o e A
‘ TIERM| 1 NJAT]I O[N] RloU[T!t NE| X
b Ym b S¥ AV AW IS | bsb atar AR R k3 Far T LY b o talhcatih ol atd
E0\T] ClLlols| DITF|-[DITIFIPT] CiLosiE| PR IFlILe
. 3 Eloly] TWRN CloWlriRloll] Tro] SlulPeRVI]slo
AR B S B S S S R e
PRI NT| [suBRlulT WIE
Yk ik ¢ 6 b DI 136 €136 M K K N Y Y e
€l | : .
PRITolERAR 18 ¥ -
ST RITINIA[#(3), [pUlR R AVIE| ReTURW, ADPRESS
viel | | sl wiGRECH0/(1218]), NloleRRIS| | Molviel DATA| [Tol BulFFER]
b PUTP| DITF-DTFPT, PIRINTI-Y. [S|PRCERI
Mvic si/INllRIEICH 113[11¢T11312])], Wisl NlGIRIEIC|+1 13l2 LIEAR P A
R -¥| l RETU 1
KA ¥ SIS L A M VR Y e P
DECLARIATI Ve |CIOlE
I\K‘?l(\l.\l\l;ﬁ (Y} ,\(vvvuv'\ K**;’K(rw,\ %;IUS\IHU%
DTFPT $DTIFIP| Riclab|-Wls|i WieREC, el Wel lPRliWTE ILE X
oarlEAl-uls| kiblrlola s X
SIPAKIEA -1
Uislit NiGIIloB| EQuU ¥
DS X|LIL46 ys|1|cAll BiurFeR| Eor PRIIWTIE
Sl | EQu
DC ClLs[33]*] | Locllclall] R D Fold PermMTElR
ERIRS! | | be cldZg)® d e EF s ’ ‘

Sample Program 2

a4

SAMPLE PROGRAM 3

This sample program shows how macroinstructions can be used to write a
subroutine to find a module in the library and load it into main storage:

8 >
8 \N
ﬂ ,L
b Q) N
8 LY
8 <[(%))
3 ~) A ~
3 NS %)
.8 W \n Q) Q ~
HE w [>N Tw) 7YY M AN} ~J
§s Wy < S S)
8 W W =2/ V) W] W Ny 3
8 W [Q ~[Q. (%! [V Y2 Q|
& </W W ~ - ~ Q)
8 O ~| RS
8 W) 4l W NN
3 = L)) SN RG] [[s) (% U
2 W.o N < < < <o [XT) =2
& p ~ a, [72) [%a he) Ql~ o SIS S
s ™ <N Q [V2) N W) < GO
2 Ol Q> <~) AV LYY IR
g V[~ Y > = 9 IQ)
3 b K= [1 =~ NN
5 Wl X ¢ [= NZN a8 V) RINR
2 I LS N[N~ ~ ~| Qi< = ~ > OB
) NEIEN </ =L L = Yy (N WnWWN
3 EM%R QN [« ESENES
g AT < _I~=s Sl [~ S L) W [T
el s Z (=2 NO ~ EINEY] > a8
gl s Wl -9 NENE ~[Q[< RN S \ ~
8| o[a<[FEIDHRN E3E 3 N A = S [ELAES N ERE 55 A0 BN KUEIEGIESE “E I IS
= 3 : S QA ¢ b Q N AN Sd (1) YY)
8 E ¥ E So[>N T [RO RN
kN2 Sk W NINEZIE —| 1] ~ ~ oM N TN
HIF 2 2 £3 = B SO N N e [
8 [d FONNE S ONES nxCN...M.uKCCC
39 F E] A N W WW |
3 K| A= Q] [= N IEYES) Q) W)
B3 ,.XW = ' ¥ A A= <M [Q] Q] D
HE3 i ~ 3¢ W=~ Qe T Q] o Q
HE -k K Y \D) S B AR S LX))
2 3| W_wr P [NY ~| EORS N Y2
o [Sle F £ ~ J K hal NN IE A = IE?
NF. 2 K| S <IN _*MJA
R K] 2K 3¢] Q X ~ d (¥ W AR aa S
ESINES Hw P [<) q, RN) N A~] < ¥ o o
R K2 [N [G) S QX0 [EBEIS] NQT MM N T [T
MEGESS K~ N (O] [G) (O <= W M2 B EDEIEE |
Y [SR NER W %) CY WY e~ NI R ERIEIF 2R Q. a] e
MEEECR) RN~ [a1 > s x ' KK OQ[WY ¢ [N[NN[MK O O [
HESINIER [0 K[S 9 '] ¥ N[E-EE 2 S - - -
2 o[W YMSW2a [HQl K W CA I W 0 2 WO W WK < S |
§o <! KQeO V=] Vi W= W ~ E Y MHQUAQ [=S¢ [N oy N
&~ a KIS - [Wal = N[~ ~[=~ ~ RN NI~ o0 WAL SN S5 >l] 5K ~J ~
e] NMXEQ [N S [Ja [SINKAQ %W; | NESININSE ELR ASEANIEASIE S
AEYEREY oK ER IR ¥ | ¥
BEAKe) =) [~ QL i< ™ 9| IRIEAENIED
fo[RH O R) KV (G [G) [L) EIENNEZY] [P N N[Z] K
[P B IEISIE 7N =) S I 0 Qo[Q[0 NELPPR T[] —[¢ S (S 1S
S-S [N[~ <t(N[J S [(O B[N N T QDF A F O =
HER ﬂ$$$uo*SL$BE WHRAD WM $$u A $H b ALWALBWEW
NE =)
DEZIEE X E £ >
~ [l < < 34 EXIRE S
EX Y] Q) = N > K <O e
EIEYIE sINEIN QU N QU X QS [
Z . Q) [N} [N [Y K[ST [SIKSIENIES K ~ N
o H S Eal [LY NIES R {INE 2 [CICISEIETG! W S
NEZIE4 ~H < W 5 N - % 2 ERRES > N [7a
- 333 X R =] b [y SRECLN P MBS NENE R b w B xR S LY

Sample Program 3

OCL and Sample Program 45

SAMPLE PROGRAM 4

This sample program shows how macroinstructions can be used to write a

subroutine to update a disk file:

L .

N ><X ¢l |
~ L
& Y I
8 Q/

& (SN Q)

g ~Q Q.

8 [RRIRT W Q

b3 !) |

I =

g3 Q [N [\ = =¥

HEd > O\ [Q)

§s QNS (N ; Q) %)
3 V¥ YIS 1 1Y) ~
] NN ENINIEY] N Y] Q
5 WO (RN Q
2 R YA YIS O~ O~ =
8 SNV SN Y AN S
3 QS ~SIQQL [¥ ~ w
2 Ql [WW =Y Q. SN N)

% N R NCVWV QR YIRWQ N \%)
2 SIQQ S B AV) Qv [+)
3 SN) 2 19 [V5) ~
g)~ QWS W <[=2 N [J 'Y
3), QJ [Qel<) >~ 2[J TSN LS R ESY (Y] Q ﬁW
g ~ [\ 2 QST LY =) = QN NI [~
9 Wy ~IAY S Ol W | < N~ ~
3 NAlo NI QA ~ kS \ > <
g YAV N S NER NS IS T o Wl - Q =~
gl @) GO SN[w1 Ny ST BN o > W ¥ TR
g s Q. O WL [O[S/ OiN[><h) W) L) P - W)
g = 3 NILYENESFZEN SR W < [N S SR = [
< 3 Si<! ~ << > N 1
& 3 3 ~F Ex a e < [—/Q,
5 <[DK ~ = [[«
8 > o> K| ~ ~[> MM S t |
8 X = SIS Sl SESN - e X §<]
3 3 ~ ~ SRS X~ |~ o [BETIEY;
8 W.. >K] ~ &~ |- <) [a) Q=K & ~
8 EIES <[<l X [<Q [| D] N~] [X A
51 ~][>]~ e [~ ~ QIO E WY [~ W e 5 > \ >
8 ~l1%) Al Q] Tl ~[M] TS 3 =3] = E)
2 N ~ ~ - af w{™~[~ > > ~ ~ ~fpa 3 W) -
H K| k= o~ [~ . [~ ~[~NN[D S/~ SR N4 ALY N '
S e[Q3K &N (O [N ~4 o] DK B S o [Qef v
8 S K~ ><| O Qe Qvi>< > [<4 -~ E ¥ ~ N [~
g = il A <[[SN W< <[] 3 < .m 3 <} '\
D =W SR~ ~ B2 A~ = T < 153 CS) <
Q Ey ol ~l JOS[X<) A AT BRI -~ ~ N NN [T
N < S v O ™M~ ol N > [K <] > Sl ~ N
s AKNDAW S xo] [+ ~QIVNQ QI[N ENTY RN S < D] B ~[<9] [~
SN[SPROIRKWQNRSZION S (SLLNIE LI NW Q XN T i

S = AN = TR A W B R S B ARSIV E T ICE <L R R AT B E S 1 < W) = N

§ = N T RO T TR [T QINQO AR QIR EANRQ O[3 Wl <[O[> N W

8 USROS QST W WS WISy 1 SN (D W.KG S SO Wy [NI[SHNR ~
o RN BI[OUW»M KTV QA QSRS WD QTP] DK = S ISR [OSSN T ND \§
2 ExEYEA Qg EdhNE)

e [< N[[13]

L EIF IR QN | NENE ZENE 2ANAR E <™ Ty

g QNS D[\ NWisy W[N SN R IR D RYEE S E S IS =R S S SN S~

8 - IR QA WIHO EIENAAN] >>W>] K SN>SQ] S R[OS O N OO Q)
HUANINEINES N Y\ R A (X) 09> S)ieq A T S [51Eh0.D [Sid) [Sid A A ERVLR N
> Sk~ K W EcLNGA >
® Sl E ch E A< NE S
~ 3 > LIEE TN E R W\E =

e © k| QW I N X N\ - >k [N) (O] RN NEAY)

Eo EGENE kT EARE =) < H QM Squ ~ SINKW

2. Wik~ 2 G-I N EISEERYY v ODM, <
" kIO XK | < QY | E QKW | (W (¥ [
S ¥ ﬂé S2ERE 3N S > =3 <~ L= ~| O] 7
- * = WA ¥ 5k RTINS S

Sample Program 4

46

Appendix A. Error Information

Any errors made in coding macroinstructions are flagged in the SASMINPT file.
When an error is found in @ macroinstruction, an error code and an error
message are piaced immediately following the macroinstruction in the
$ASMINPT file. The error code and message are then printed on your
assembly listing when the source program is assembled.

The following listing shows the error codes that may be caused by errors in
macroinstructions. Other error codes may be generated by the
macroinstruction processor and are caused by errors in the macroinstruction
definitions. These error codes are explained in the IBM System/32 Basic
Assembler and Macro Processor Reference Manual, SC21-7673.

MIC Message

2600 NO ACCESS-CONSECUTIVE INPUT ASSUMED
2601 OUTPUT RECORD BUFFER ADDRESS DEFAULTED
2602 KEY ADDRESS FIELD DEFAULTED TO ZEROS
2603 NO RECORD LENGTH SPECIFIED. ASSUMED 1
2604 NO I/O AREA ADDRESS SPECIFIED. ASSUMED 0
2605 NO BLOCK LENGTH SPECIFIED. ASSUMED 256
2606 NO FILE NAME SPECIFIED. ASSUMED FILENAME
2607 WRONG ACCESS METHOD FOR "ORDLD’

2608 WRONG ACCESS METHOD FOR 'LIMIT

2609 WRONG ACCESS METHOD FOR "BUFNO’

2610 WRONG ACCESS METHOD FOR 'KEYADD’

2611 WRONG ACCESS METHOD FOR "CURENT

2612 WRONG ACCESS COMBINATION FOR "HIGH’
2613 WRONG ACCESS METHOD FOR "KEYL

2614 WRONG ACCESS METHOD FOR 'KDISP’

2615 WRONG ACCESS METHOD FOR '"MSTNDX/MSTBYT
2616 KEY/RECORD ADDRESS AREA DEFAULTED TO O
2617 CURRENT/LAST KEY AREA DEFAULTED TO O
2618 HIGH/LOW KEY HOLD AREA DEFAULTED TO O
2619 KEY LENGTH DEFAULTED TO 1 FOR INDEX FILE
2620 KEY DISPLACEMENT DEFAULTED TO O

2621 LOAD MUST BE BLANK OR 2 IF PLIST EQUAL 2'
2622 PLIST & LOAD@ CAN'T -BE EQUAL FOR A LOAD
2623 KEYWORD GIVEN FOR TYPE IS NOT VALID

2624 CONFLICTING PARAMETERS-BLKL,RECL

2625 CONFLICTING PARAMETERS-TRANSP,CODE
2626 CONFLICTING PARAMETERS-TERMAD,TYPE
2627 CONFLICTING PARAMETERS-RCVID, TYPE

2628 CONFLICTING PARAMETERS—RCVID/RCVCT,TYPE
2629 CONFLICTING PARAMETERS-SNDID/SNDCT, TYPE
2630 CONFLICTING PARAMETERS-SNDCT, TYPE

2631 CONFLICTING PARAMETERS—-RVIMSK, RVIADR
2632 CONFLICTING PARAMETERS-TRANSP,ITB,FTYP
2633 STATION IDS RECOMMENDED ON SWITCHED LINE

Error Information

47

MIC Message

2634 MISSING REQUIRED OPERAND-FTYP
2635 MISSING REQUIRED OPERAND—RCAD
2636 MISSING REQUIRED OPERAND-TERMAD
2637 MISSING REQUIRED OPERAND-RCVCT
2638 MISSING REQUIRED OPERAND-RCVID
2639 MISSING REQUIRED OPERAND—SNDCT
2640 MISSING REQUIRED OPERAND-SNDID
2641 MISSING REQUIRED OPERAND-RECL
2642 MISSING REQUIRED OPERAND-BLKL
2643 INVALID OPERAND-CODE

2644 INVALID OPERAND-DLYCT

2645 INVALID OPERAND-BUFNO

2646 INVALID OPERAND-RCVCT

2647 INVALID OPERAND-SNDCT

2648 INVALID OPERAND-FUNC

2649 INVALID OPERAND-ACCESS

2650 INVALID OPERAND-CRDLD

2651 FORMAT MUST BE Y & AN OPTION SPECIFIED
2652 UPSI OPERAND NOT 8 DIGITS. DEFAULT O’s
2653 INVALID OPERAND-TYPE

2654 INVALID OPERAND-TERMAS

2655 INVALID OPERAND-TRANSP

2656 INVALID OPERAND—ITB

2657 INVALID OPERAND-LIMIT

2658 INVALID OPERAND-HUC

2659 INVALID OPERAND—PRINT

2680 INVALID OPERAND-OPC

2681 INVALID OPERAND-SHIFT

2682 INVALID OPERAND-WAIT

2683 INVALID OPERAND-MEMBER

2684 INVALID OPERAND-OPTNO

2685 INVALID OPERAND—OPTN1

2686 INVALID OPERAND—OPTN2

2687 INVALID OPERAND—OPTN3

2688 INVALID OPERAND-SKIP

2689 INVALID OPERAND-FORMAT

2690 INVALID OPERAND--HALT

2691 INVALID OPERAND~UPDATE

2692 INVALID OPERAND-SPACEB

2693 INVALID OPERAND-SPACEA

2694 MISSING REQUIRED OPERAND-IOAREA

Appendix B. Macroinstruction Summary Chart

[Name] $ALOC [DTF-address]
[Name] $CLOS [DTF-address]
$COMN
[Name] $CSLD [FUNC-function] [,ERR-address]
[name] $DTFB RECL-number, RCAD-address, BLKL-number,

FTYP-RCV/TSM [,BUFNO-1/2] [BUFST-address]
[,IOBST-address] [, TYPE-PP/AA/MA/MP/MC]
[[CODE-E/A] [,UPSI-mask] [, CHAIN-address]
[ITB-Y/N] [TRANSP-Y/N] [,RVIADR-address]
[,RVIMSK-code] [,DLYCT-number] [,RCVID-address]
[,RCVCT-number] [,SNDiD-address] [, SNDCT-number]
[TERMAD-number]
[Name] $DTFD ACCESS-code, RECL-number, NAME-filename,
BLKL-number,IOAREA-address [,UPSI-mask]
[BUFNO-1/2] [LIMIT-Y/N] [ORDLD-Y/N]
[[CHAIN-address] [,[RCAD-address] [,KEYL-number]
[,KDISP-number] [, KEYADD-address]
[MSTNDX-address] [, MSTBYT-number]
[,CURENT-address] [,HIGH-address]

[Name] $DTFO [DISK-Y /NI [[PRT-Y/N] [,BSC-Y/N] [,CRT-Y/N]
LALL-Y/N] [FIELD-Y /N]

[Name] $DTFP RCAD-address, IOAREA-address [,OVFL-number]
[,PAGE-number] [,UPSI-mask] [, HUC-Y/N]
[,CHAIN-address] [,PRINT-Y /N] [,RECL-number]

[Name] $DTFS [PUTDAT-address] [,PUTLOC-number] [,UPSI-mask]
[,CHAIN-address] [,PUTLEN-number] [,OPC-code]
[GETDAT-address] [,GETLOC-number]
[GETLEN-number] [,FUNKEY-number]
[LCMDKEY-number] [, SHIFT-A/N] [, CURSOR-number]}
[, SPACE-number] [WAIT-Y/N] [I0OBST-address]

[Name] $EOJ

[Name] $FIND PLIST-name

[Name] $FNDP [NAME-module] [,V—DCMALL] [L,TYPE-Q/P/R/S]
[Name] $GETB [DTF-address] [,REJ ECT—address] [,EOF-address] |
[Name] $GETD ACCESS-code [,DTF-address] [ERR-address]

[, EOF-address] [, NRF-address]

Macroinstruction Summary Chart 49

50

[Name]

[Name]

[Name]

[Name]

[Name]

[Name]

[Name]

[Name]

[Name]

[Name]

[Name]
[Name]

[Name]

$GETS

SLMSG

$LOAD

$LOG

$LOGD
$OPEN

$PGS

$PUTB

$PUTD

$PUTP

$PUTS

$TRAN
$TRL

$TRTB

[DTF-address] [GETDAT-address] [,GETLEN-number]
[GETLOC-number] [,OPC-code] [, FUNKEY-number]
[.CMDKEY-number] [, SHIFT-A/N] [WAIT-Y/N]
[,CURSOR-number] [,SPACE-number]

[TYPE-1/2] [MEMBER-code] [, MINOR-code]
[,SUBID-code] [,FORMAT-Y/N} [HALT-Y/N]
[,MIC-number] [,OPTNO-Y /N] [,OPTN1-Y/N]
[LOPTN2-Y/N] [,OPTN3-Y/N] [,SKIP-Y/N]
[,SPACE-1/2/3] [MSGLN-number]

[MSGAD-address] ‘

[PLIST-address] [,LOAD-address] [, TYPE-code]

[LIST-address] [,OPTNO-address] [,OPTN1-address]
[,OPTN2-address]

[DTF-address]

[DTF-address] [,OPC-code] [, PUTDAT-address]

[,PUTLEN-number] [,PUTLOC-number]

[,GETDAT-address] [, GETLEN-number]
[,GETLOC-number] [,FUNKEY-number]
[,CMDKEY-number] [,SHIFT-A/N] [, CURSOR-number}
[,.SPACE-number] [WAIT-Y/N]

[DTF-address] [, REJECT-address}]
ACCESS-code [,DTF-address] [,ERR-address}

[LEOX-address] [,DUPREC-address] [,SEQERR-address]
[LUPDATE-Y/N]

[DTF-address] [,PRINT-Y/N] [, SKIPB-number]
[,SPACEB-0/H/1/1H/2/2H/3/3H] [,SKIPA-number]
[,SPACEA-0/H/1/1H/2/2H/3/3H] [,ERR-address]
[,OVFL-address]

[DTF-address] [,PUTDAT-address] [,PUTLOC-number]
[,PUTLEN-number] [SPACE-number]}

[TRL-address]
TO-address,FROM-address,LEN-number, TRT-address

[CODE-E/A] [LHEX-hex]

Index

)

$ALOC 14 close routine

$CLOS 17 input 17

$COMN 12 output 17

$CSLD 12 coding conventions 1

$DTFB 33 comments 2

$DTFD 21 configuration, machine 3

$DTFO 17 ' considerations, programming 5

$DTFP 18 construct a BSC get interface, macroinstruction 36
$DTFS 27 construct a BSC put interface, macroinstruction 36
$EOJ 12 construct a disk get interface, macroinstruction 24
$FIND 10 construct a disk put interface, macroinstruction 25
$FNDP 11 construct a display screen/keyboard get interface,
$GETB 36 macroinstruction 29

$GETD 24 construct a display screen/keyboard put interface,
$GETS 29 macroinstruction 32

$LMSG 7 construct a printer put interface, macroinstruction 19
$LOAD 11 : continuation coding 3

$LOG 9

$LOGD 9

$OPEN 15

$PGS 30

$PUTB 36

$PUTD 25 data management interface (BSC)

$PUTP 19 get 36

$PUTS 32 put 36

$TRAN 39 data management interface (disk)

$TRL 37 ’ get 24

$TRTB 38 put 25

updating record 25
data management interface {display screen/keyboard}

get 29
put 32
put/get 30
allocate space, macroinstruction 14 data management interface (printer) 19
data management routines
BSC 33
disk 20
display screen/keyboard 27
printer 18 :
BSC buffer storage requirements 34 data transfer, input/output file 15
BSC data management interface default value, definition 2
get 36 define the file control blocks (see DTF)
put 36 define the file for BSC 33
BSC support 33 define the file for disk 21
buffer storage requirements, BSC 34 define the file for display screen/keyboard 27
buffer storage requirements, disk ~ 22 define the file for printer 18
buffers deleting macroinstructions 3
formatted 15 device allocation 14
initialized 15 device support
BSC 33
disk 20
display screen/keyboard 27
general 14
printer 18
chaining device termination 17
allocate space routine 14 devices supported 3
close routine 17 disk buffer storage requirements 22

DTFs 14
open routine 15

Index 51

disk data management interface generate equates

get 24 common 12
put 25 device 17
updating record 25 ’ system find 11
disk device support 20 systemlog 9
disk input/output block (see 10B) get
disk routines BSC 36
get 24 " disk 24
put 25 display screen/keyboard 29

updating record 25
disk, update 25
display screen/keyboard support 27

DTF
BSC 33
disk 21 halt, system log 14
display screen/keyboard 27
printer 18
DTF defined
field contents 17
labels 17
offsets 17 input
postopen 15 close routine 17
preopen 15 open routine 15
DTF descriptions input/output block (see I0B)
BSC 33 input/output support 14
disk 21 interrupt program 6
display screen/keyboard 27 10B
printer 18 BSC 33
DTF, chaining 14 disk 21
formatting 15
printer 18
end of job, macroinstruction 12
equates
common 12 keyboard support 27
device 17
system find 11
systemlog 9
error information 47
jobend 12

job termination, device 17

file definition

BSC 33

disk 21

display screen/keyboard 27 labels

printer 18 common 12
find a directory entry, macroinstruction 10 device 17
find and load 10 restrictions 5

system find 11
systemlog 9
load a module 11
log device, system 7
log, definition 6
general 1/O support 14
general SCP support 10
generate a parameter list
system find 11
systemlog 9
translate 37
generate a translate table 38

52

machine configuration 3 read from disk 24

macro processor register usage 5
register 5 residence of macro processor 3
residence 3 restrictions
restrictions 5 allocate space 14
macroinstructions labels 5
coding 1 macro processor 5
definitions 1 routines, data management
deleting 3 BSC 33
error messages 47 disk 20
in sample programs 41 display screen/keyboard 27
list of 4 printer 18

summary 49
messages, error information 47
- messages, system log 7

sample program 40

scP 3
statement, OCL. 40
name field, description 1 supported devices 3

system configuration 3
system control program 3
system find 11
system log 9
system services macroinstructions 6
OCL, for macro processor 40
offsets
device 17
system find 11
systemlog 9

open routine table, translate 38

input 15 terminate device 17

output 15 translate parameter list 37
operand 1 translate routine, operation 37
operation code 1 translate table 38
operation of translate routine 37
output

close routine 17
open routine 15

write to disk 25
write to operator 6
writing macroinstructions 1

parameter list
system find 11
systemlog 9
translate " 37
pass control 11
prepare a device for termination 17
prepare an 1/0O device 15
printer data management interface 19
printer support 18
program control, pass 11
programming considerations 5
put
BSC 36
disk 25
display screen/keyboard 32
printer 19

Index 53

Please use this form only to identify publication errors or request changes to publications. Technical questions about I1BM systems, changes in |BM programming

READER’S CamsfMENT FORM

support, requests for additional publications, etc, should be directed to your |BM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

® No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

D Check if reply is requested.

Name

Address

jenuepy aduaiagey

(7))
=g
e 4
=
e 3
5
@ 0
I 0
£ 3
o
g 2
*3
Qe
Y]
3
3
=]
«w

ze/wasAs NI

0-£G16-1229

GC21-5157-0

FIRST CLASS

x
o m
O
T
= =
w»w =
m oz
& 0O
z o

©
z g

’

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

&

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A.

(International)

—_— e e e e e e e e e e e e L — —aun

Buojy IN) — — — —

(9€-ZES "ON 28i1d) |enuepy soualajal suolINsuIoLR| JOS Z€/WaIsAs WAl

‘V'S'N ut pajulld

0-LG15-1229

GC21-6157-0

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A.

(International)

(9€-2€S ‘ON 3lid) lenuely 9309‘19;98 SUOIIONJISUIOLORIAl DS ZS/UJSISAS wgi

V'S’ ul pajutid

0-£G15-1229

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58

