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To support FORTRAN on the IBM System/32 there is a
scientific instruction set. These instructions are used by

FORTRAN and require no programmer action other than
writing FORTRAN language statements.

As an added capability you can use a subset of the
scientific instruction set with the IBM System/32 Basic
Assembler and Macro Processor. To do this you must
have Feature 1500, which is the control storage
increment and scientific microcode required by
FORTRAN, and install the scientific macroinstructions at
system generation time.

To use these scientific instructions with the assembler,
the programmer must code a series of
macroinstructions. These macroinstructions generate the
scientific instructions that perform the specific functions
necessary for scientific calculations. This expands the
assembler user’s ability to handle add, subtract, multiply,
and divide binary data, and floating-point data.

There are three activities that the programmer must
perform to use the scientific instructions with the
assembler program.

1. Establish the required environment using the
following macroinstructions:
a. $CSET '
b. $CNTR

2. Establish the interface between the assembler and
the scientific microcode. This capability is
provided by:

a. $CALL
b. $INVK
c. $CSuUB

3. Code the necessary macroinstructions to generate
the scientific instructions to solve your particular
requirements.

The remainder of this manual describes each of these
steps and provides you with the information necessary
to use scientific macroinstructions with the IBM
System/32 Basic Assembler and Macro Processor. The
terms System/32 mode and scientific mode are used
throughout this manual to describe which processor
executes a series of instructions or subroutine.

Chapter 1. introduction

When the system is executing the instructions,
described in the System/32 Functions Reference Manual,
GC21-9176, using the system control program it is in
System/32 mode and scientific macroinstructions are
invalid. Likewise, when the system is executing the
instructions described in this manual using the scientific
microcode, it is in scientific mode and System/32
instructions are invalid.

SCIENTIFIC MACROINSTRUCTION STATEMENTS

Scientific macroinstructions are symbolic source
statements that are expanded into a predetermined
sequence of object code by the IBM System/32
Assembler and Macro Processor, then executed by the
scientific microcode. The format of a scientific
macroinstruction is:

[Label] $BADD address|, 1]
Name Operation Operand
Entry Code Address

DATA FORMATS

Data resides in main storage in 8-bit bytes. The
instruction the system is executing determines how the
data is interpreted.

In any instruction, data is represented as a positive or
negative number by the value at bit 0. If bit O is O the
data is positive. If bit O is 1 the data is negative.

INEEEEEN

Bit 0 7
High Order Low Order

Introduction 1



Binary Format

Binary data is recorded in a 2-byte or 4-byte format.
Both formats use bit O as a sign bit followed by the
integer field. Positive numbers are represented in true
binary notation. Negative numbers are represented in
twos-complement notation. Twos-complement notation
does not include negative zero.

The following is an example of the hexadecimal number
5EB3 written as a positive number in true binary
notation:

0101 1110 1011 0011

This is an example of the same hexadecimal number,
5EB3, written as a negative number in twos-complement
notation:

1010 0001 0100 1101

Floating-Point Format

Floating-point data is recorded in either single-precision
or double-precision format. Both formats use bit O as
the sign bit of the mantissa followed by the
characteristic, in excess 64 notation, in bits 1-7.
Single-precision data contains the mantissa in bits 8-31,
while double-precision data contains the mantissa in bits
8-63.

ADDRESSING

Main storage is addressed in binary; source programs
and program listings customarily use hexadecimal
notation to represent these binary addresses. Main
storage positions are numbered consecutively from hex
0000 to the upper limit of storage. Storage locations
are specified by the address of the leftmost byte in the
field.

An address that is used to refer to main storage can be
specified by either of two methods: direct addressing or
indexed addressing.

Direct Addressing

When direct addressing is used, the effective address
(actual storage location of data) is taken from the
instruction. The address in the instruction is 2 bytes
long.

For example, if you were to code the statement:

NAMEA $BLD FIELDA

If FIELDA equals storage location 0013, then the 4
bytes of data at locations 0013 through 0016 are placed
in the binary register.

Indexed Addressing

Addresses in most scientific instructions can be indexed.
If an address is indexed, the effective address used by
the instruction is the sum of the current contents of the
scientific index register and the contents of the address
portion of the instruction.

For example, if you were to code the statement:

NAMEA $BLD FIELDA,I

If FIELDA equals storage location 0013 and the index
register contains 0005, then the 4 bytes of data at
locations 0018 through 001B are placed in the binary
register.

MACHINE INSTRUCTION FORMAT

All of the System/32 scientific instructions are 3 bytes
iong. They are composed of a 1-byte op code and
either a 2-byte address or a 2-byte data field. Bits 0-6
of the op code specify the instructions, and bit 7
denotes the type of addressing to be used: 0 = direct
addressing, 1 = indexed addressing.



Some macroinstructions using this format are named
according to the data type, data length, and the
operation to be performed. These instructions are:

Instruction :\::Iet,i‘plier Index Integer*2 Integer*4 Real*4 Real*8 Address
(M) (X) (H) (B) (R) (D) (A)

Load (LD) $XLD $HLD $BLD $RLD $DLD $ALD

Store (ST) $MST $XST $HST $BST $RST $DST

Add (ADD) $XADD  $HADD $BADD $RADD  $DADD

Subtract (SUB) $HSUB $BSUB $RSUB  $DSUB

Multiply (MLT) $XMLT  $HMLT $BMLT $RMLT  $DMLT

Divide (DIV) $HDIV $BDIV $RDIV  $DDIV

Compare (CMP) $HCMP $BCMP $RCMP  $DCMP

Load

Immediate (LI) $MLI $XLI $ALI

And (AND) $BAND

Or (OR) $BOR

Not (NOT) $BNOT

Multiply

and Add (MTA) $XMTA

If (IF) . $BIF $RIF

Introduction 3



Other macroinstructions are named according to their
function. These instructions are:

Instruction Function

$GOTO Changes the execution sequence
to the instruction at the effective
address

$INVK Changes to System/32 mode
execution beginning at the
effective address

$LSET Sets the binary register according
to the condition code register
contents and the instruction mask

$CALL Executes the scientific subroutine

$CEQU Generates labels required to gain
access to the scientific
communication area

$CSET Loads the scientific microcode

$CNTR Enters the scientific microcode

$CsSuB Starts the scientific subroutine

$CRTN Exits the scientific subroutine

REGISTERS

Scientific mode registers that are directly accessible by
the scientific instructions are the index register, the
index multiplier register, the binary register, the
fioating-point register, the address register, and the
condition code register. All of these registers are in
control storage and can be referenced only through the
use of scientific instructions.

The index register is used in indexed instructions to
compute the effective address. The index register is a
2-byte register that contains the index value for indexed
addressing.

The index multiplier register is a 2-byte register used in
computing the value to be placed in the index register.
The $XMTA and $XMLT instructions cause the product
of the index multiplier register and the instruction
operand to be either added to or placed in the index
register.

The binary register is a 4-byte register that contains
twos-complement binary numbers. It is used for integer
arithmetic. For integer*2 (H) operations, the operand is
copied to temporary storage and extended on the left
with the sign bit to make a 4-byte value; the result is
used as the actual operand for the instruction. The
exception to this is the HST instruction, which stores
the 2 low-order bytes of the register with no
consideration for sign or truncation.

The floating-point register consists of an 8-byte
floating-point value. Associated with the floating-point
register are a8 guard digit during computation and a
status indicator for single- or double-precision. Function
and resulting status vary according to the operand type
(R,D) and the status. All floating-point operations,
except load and store, have normalized results; meaning
that the high-order hexadecimal digit of the mantissa is
nonzero.

The floating-point register status is set to
double-precision whenever a single- or double-precision
operation is performed (except for RLD) and the prior
status was double-precision. The status is set to
single-precision by an RLD instruction and remains
single-precision as long as only single-precision
operations are performed. if the status is
double-precision and the operation is single-precision
the operand is extended to double-precision and the
operation is carried out as double-precision. If
characteristic overflow or underflow occurs, the
appropriate indicator is set in the scientific
communication area.

The address register is a 2-byte register used in
conjunction with the $INVK (invoke) instruction.
Parameters or values used by System/32 mode
instructions are addressed via the address register.
When the $INVK instruction is executed, the contents of
the address register are placed in XR2 (index register 2).
XR2 can then be used by the System/32 mode
instructions to locate and gain access to the parameters
or values in main storage.

The condition code register is a 1-byte register that
contains the results of a compare operation. The
register is set to low, equal, or high by a compare
instruction. $LSET (test condition) is the only instruction
provided to test the contents of the condition code
register.



Chapter 2. Scientific Mode Linkage And Support Macroinstructions

SCIENTIFIC ENVIRONMENT AND SUBROUTINE
LINKAGE

Scientific mode linkage and support macroinstructions
provide the interface from the System/32 mode routines
to scientific routines, between scientific routines, and
from scientific routines to System/32 mode routines.

The general environment for scientific mode processing
is that System/32 XR1 (index register 1) addresses the
scientific communication area and System/32 XR2
(index register 2) addresses the current save area for the
executing scientific program.

Note: For detailed information regarding the scientific
communication area, see the IBM System/32 Control
Storage Logic Manual, SY21-0533.

The subroutine linkage in the scientific macro package is
implemented via the $CSET, $CNTR, $CALL, $CSUB,
and $CRTN macroinstructions. $CSET loads the
scientific microcode and establishes the environment for
scientific mode processing. $CNTR switches to scientific
mode. $CALL generates the linkage to scientific
subroutines, and passes required arguments. $CSUB
establishes the subroutine environment and makes the
received parameters available within the subroutine.
$CRTN returns execution control to the calling routine.
In the scientific subroutine linkage conventions, called
subroutines must be external, separately assembled
programs.

Variables passed to this subroutine can be accessed by
indexing within the subroutine. The index value
(parameter address) is in variables generated by the
$CSUB macroinstruction. These variables are named
$ARGNNn, where nn represents the position of the
desired variable within the parameter list. Figure 1
illustrates the subroutine linkage.

EXECUTE SCIENTIFIC SUBROUTINE ($CALL)

[Label] $CALL name(,address . . .)

This instruction causes the external scientific subroutine
specified by name to be executed using variables at the
specified addresses as parameters. When the
subroutine completes execution, standard calling
discipline resumes execution with the scientific
macroinstruction following the $CALL macroinstruction.

RETURN TO SYSTEM/32 MODE ($INVK)

[Label] $INVK address

This instruction transfers the program to System/32
mode and continues execution with the System/32
instruction at the effective address.

LOAD SCIENTIFIC MICROCODE ($CSET)

[Label] $CSET

The $CSET macroinstruction generates code necessary
to load the scientific microcode. The expansion includes
the scientific communications area and the main save
area. The $CSET macroinstruction is used only once in
the program.

If you will need to use the data in XR1 or XR2 at a later
time, you should save the contents of the registers
before issuing the $CSET macroinstruction.

Note: If $CSET is unable to locate and load the
microcode, control is passed to SMODERR. $MODERR
must be a customer defined error recovery subroutine,
failure to do so results in an assembly error.

Scientific Mode Linkage and Support Macroinstructions 5



ENTER SCIENTIFIC MICROCODE ($CNTR)

[Label] $CNTR

The $CNTR macroinstruction generates code necessary
to initialize the environment for, and to enter, scientific
mode.

If you will need to use the data in XR1 or XR2 at a later
time, you should save the contents of the register
before issuing the $CNTR macroinstruction.

GENERATE SCIENTIFIC LABELS ($CEQU)

[Label] $CEQU

The $CEQU macroinstruction generates labels necessary
to allow access to the scientific communication area.

START SCIENTIFIC SUBROUTINE ($CSUB)

[Label] $CSUB number

This instruction generates code necessary to establish
receiving subroutine linkage. The label specifies the
entry point name. The number specifies the number of
parameters to be received by the subroutine.

EXIT SCIENTIFIC SUBROUTINE ($CRTN)

[Label] $CRTN

This instruction generates code necessary to return
control from a scientific subroutine.

Note: A macroinstruction has not been provided that
allows the user to issue the $INVK macroinstruction
then return to the microcode loaded into the control
storage increment without destroying the environment
that was established by the $CSET and $CNTR
macroinstructions. However, it is possible to issue the
$INVK macroinstruction then return to the previously
established environment using the XFER instruction
described in the IBM System/32 Functions Reference
Manual, GC21-9176, and the IBM System/32 Control
Storage Logic Manual, SY21-0533.



TESTPG

LABELX

SQRTB

WORK

START X'0800

$CSET

$CNTR

$CALL SQRTB,X,Y
$INVK LABELX
$EOJ

DS cLa

DS cLa
END TESTPG
$CSUB 2

$XLD $ARG1
$RLD 0,1l
$XLD $ARG2
$RST 0,1l
$CRTN

DS cLs
END

Figure 1. Subroutine Linkage Example

LOAD SCIENTIFIC MICROCODE
ENTER SCIENTIFIC MICROCODE

Y+SQRT(X)

LEAVE SCIENTIFIC MODE

DEFINE X AREA
DEFINE Y AREA

END OF ASSEMBLY

PICK INDEX TO FIRST ARGUMENT
PICK UP ARGUMENT VALUE

PICK INDEX TO RESULT VARIABLE
PLACE RESULT IN VARIABLE

EXIT SUBROUTINE

DEFINE WORK AREAS FOR ROUTINE

END OF ASSEMBLY

Scientific Mode Linkage and Support Macroinstructions






Address Register Instructions

The address register is used in conjunction with the
invoke ($INVK) macroinstruction to pass parameters and
values from scientific subroutines to System/32
subroutines. When a scientific subroutine has been
completed and the data required by a System/32
subroutine is ready to be passed to the subroutine, the
address of the data (parameter or values) is loaded into
the address register. Then, when the $INVK
macroinstruction is executed, the contents of the
address register are placed in XR2.

Chapter 3. Instructions

ADDRESS REGISTER LOAD ($ALI)

Macroinstruction Format
[Label] $ALI address],i]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

46 Operand address

47 Base address for indexed instruction
Operation

This instruction places the 2-byte effective address in
the address register.

Instructions

9



10

Example (Nonindexed)
Instruction

46 00 13
Operand

00000000 00001010
0013 0014

Address Register Before Operation

11001111 10110011
Byte O Byte 1

Address Register After Operation

00000000 00010011
Byte O Byte 1

Example (Indexed)
Instruction

47 00 13
Operand Before Indexing

00000000 00001010
0013 0014

Index Register

00000000
Byte O

Operand After Indexing

00000000 01011100
0018 0019

Address Register Before Operation

11001111 10110011
Byte O Byte 1

Address Register After Operation

00000000 00011000
Byte O Byte 1

00000101
Byte 1



Binary Register Instructions

The binary register instructions perform binary arithmetic
on operands serving as fixed-point data, as well as
addresses and index quantities. The operands are
signed and 32 bits long. Negative quantities are stored
in twos-complement form. One operand is always in the
binary register; the other operand is in main storage.

Binary register instructions allow loading, adding,
subtracting, multiplying, dividing, and storing.

Data Format

Binary numbers appear in a fixed-length format
consisting of a sign bit followed by the integer field.
When stored in the binary register, a fixed-point quantity
has a 31-bit integer field and occupies all 32 bits of the
register.

Fixed-Point Number—2 bytes

) Integer

Fixed-Point Number—4 bytes

S Integer

Binary data in main storage appears in a 32-bit format
or a 16-bit format, with a binary integer field of 31 or
15 bits, respectively.

A 16-bit operand in main storage is extended to 32 bits
by propagating the sign bit as the operand is fetched
from storage. Subsequently, the operand is used as a
32-bit operand.

Note: In all discussions of binary numbers in this
manual, the expression 4-byte denotes a 31-bit integer
with a sign bit and the expression 2-byte denotes a
15-bit integer with a sign bit.

Number Representation

All binary operands are treated as signed integers.
Positive numbers are represented in true binary notation
with the sign bit set to 0. Negative numbers are
represented in twos-complement notation with a 1 in
the sign bit. The twos complement of a number is
obtained by inverting each bit of the number and adding
1 to the resuit.

This type of number representation is considered the
low-order portion of an indefinitely long representation
of the number. When the number is positive, all bits to
the left of the most significant bit, including the sign bit,
are zeros. When the number is negative, all these bits,
including the sign bit, are ones. Therefore, when an
operand must be extended with the high-order bits, the
expansion is achieved by prefixing a field in which each
bit is set equal to the high-order bit in the operand.

Twos-complement notation does not include a negative
0. it has a number range in which the set of negative
numbers is one larger than the set of positive numbers.
The maximum positive nhumber consists of an all-1
integer field with a sign bit of 0, whereas the maximum
negative number (the negative number with the greatest
absolute value) consists of an all-0 integer field with a
sign bit of 1.

The sign bit is the leftmost bit in a number. In an

arithmetic operation, a carryout of the integer field
changes the sign.

Instructions 11



instruction Format

Binary instructions appear in the following format:

Op code Operand
0 78 24

In this format, bits 0-6 specify the function to be
performed by the instruction. Bit 7 indicates if indexing
is to be used in addressing the operand. A O in bit 7
indicates that bits 8-24 contain the operand location in
main storage. If bit 7 is 1 the contents of the index
register are added to the operand to form an address
designating the storage location of the operand.

The results of binary instructions replace the contents of
the binary register; an exception is the store instruction,
where the register contents replace the data at the main
storage location.

The contents of all registers and storage locations
participating in the addressing or execution part of an
operation remain unchanged, except for the storing of
the final result.

12



BINARY REGISTER ADD ($HADD)-2 BYTES
Macroinstruction
[Label] $HADD address|, 1]

Machine Instruction Format

Byte 1

{Op Code) Bytes 2 and 3

26 Operand address

27 Base address for indexed instruction
Operation

This instruction adds the 2 bytes of data starting at the
effective address to the contents of the binary register.
The 2-byte operand is expanded to 4 bytes before
addition by propagating the sign-bit value through the
16 high-order positions. Addition is performed by
adding all 32 bits. If the carryout of the sign-bit position
and the carryout of the high-order numeric bit position
are the same, the sum is satisfactory; if they are not the
same an overflow occurs. The sign bit is not changed
after an overflow. A positive overflow yields a negative
final sum, and a negative overflow results in a positive
final sum. An overflow is not flagged, nor does a
program interrupt occur.

Example (Nonindexed)

Instruction

26 14 C3

Operand

00001101 10111100
14C3 14C4

Binary Register Before Operation

00000000 00000000 00011000 01100110
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00100110 00100010
Byte O Byte 1 Byte 2 Byte 3

Example (Indexed)
Instruction

27 14 C3
Operand Before Indexing

00001101 10111100
14C3 14C4

Index Register

00000000 00111010
Byte O Byte 1

Operand After Indexing

00001100 10100011
14FD 14FE

Binary Register Before Operation

00000000 00000000 00011100 01010101
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00101000 11111000
Byte O Byte 1 Byte 2 Byte 3

Instructions
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BINARY REGISTER ADD ($BADD)—4 BYTES
Macroinstruction Format
[Label] $BADD address|,1]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

1A Operand address

1B Base address for indexed instruction
Operation

This instruction adds the 4 bytes of data starting at the
effective address to the contents of the binary register.
Addition is performed by adding all 32 bits of both
operands. If the carryout of the sign-bit position and the
carryout of the high-order numeric bit position are the
same, the sum is satisfactory; if they are not the same,
an overflow occurs. The sign bit is not changed after an
overflow. A positive overflow yields a negative final
sum, and a negative overflow results in a positive final
sum. An overflow is not flagged, nor does a program
interrupt occur.

Example (Nonindexed)
Instruction
1A 0C 14

Operand Before And After Operation

00110001 00101110 00110001 00101110
oc14 0C15 0C16 0oc17

Binary Register Before Operation

00111000 10100101 00111000 10100101
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

01101001 11010011 01101001 11010011
Byte O Byte 1 Byte 2 Byte 3

14

Example (Indexed)
Instruction
1B 0OC 14
Index Register

00001111
Byte O

01010000
Byte 1

Operand Before Indexing

01110000 11001100 01110000 00101110
0C14 0C15 ocie oc17

Operand After Indexing

00000011 10100101 00000011 10100101
1B64 1B65 1B66 1B67

Binary Register Before Operation

00111010 01010101 00111010 01010101
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00111101 11111010 00111101 11111010
Byte O Byte 1 Byte 2 Byte 3



BINARY REGISTER COMPARE ($HCMP)-2 BYTES
Macroinstruction Format
[Label] $HCMP address],l]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

56 Operand address

57 Base address for indexed instruction
Operation

This instruction compares the contents of the binary
register with the 2 bytes of data starting at the effective
address. The condition code register is set (low, equal,
or high). The 2-byte operand is extended to 4 bytes
before the comparison by propagating the sign-bit value
through the 16 high-order bit positions. Comparison is
algebraic, and both operands are treated as 32-bit
signed integers.

Programming Note: Neither operand is altered by the
instruction.

Resulting Condition Code Register Settings

Bit Name Condition Indicated

5 Low Binary register value is less than the
operand value

6 Equal Values are equal

7 High Binary register value is greater than the

operand value

BINARY REGISTER COMPARE ($BCMP)-4 BYTES
Macroinstruction Format
[Label] $BCMP address|,1]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

58 Operand address

59 Base address for indexed instruction
Operation

This instruction compares the contents of the binary
register with the 4 bytes of data starting at the effective
address. The condition code register is set {low, equal,
or high). Comparison is algebraic, and both operands
are treated as 32-bit signed integers.

Programming Note: Neither operand is altered by the
instruction.

Resulting Condition Code Register Settings

Bit Name Condition Indicated

5 Low Binary register value is less than the
operand value

6 Equal Values are equal

7 High Binary register value is greater than the

operand value

Instructions 15



BINARY REGISTER DIVIDE ($HDIV}-2 BYTES
Macroinstruction Format
[Labell $HDIV address|,!]

Machine Instruction Format

Byte 1

{(Op Code) Bytes 2 and 3

24 Operand address

25 Base address for indexed instruction
Operation

This instruction divides the contents of the binary
register by the 2 bytes of data starting at the effective
address. The 2-byte operand is extended to 4 bytes
before the division by propagating the sign-bit value
through the 16 high-order bit positions. Both operands
are treated as 32-bit signed integers. The quotient is a
32-bit signed integer and replaces the dividend in the
binary register. If both operands have the same sign,
the quotient is positive. If they have opposite signs, the
quotient is negative. A zero quotient is always positive.

Example (Nonindexed)
Instruction
24 04 O9E

Operand

00000000 00000101
049E 049F

Binary Register Before Operation

00000000 00000000 00000000 00110010
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00000000 00001010
Byte O Byte 1 Byte 2 Byte 3
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Examplie {indexed)
Instruction
25 04 9E
Index Register

00000000 00001011
Byte O Byte 1

Operand Before Indexing

00000000 00000101
049E 049F

Operand After Indexing

00000000 00001010
04A9 04AA

Binary Register Before Operation

00000000 00000000 00000000 00110010
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00000000 00000101
Byte O Byte 1 Byte 2 Byte 3



BINARY REGISTER DIVIDE ($BDIV)—4 BYTES
Macroinstruction Format
[Label] $BDIV address], ]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

18 Operand address

19 Base address for indexed instruction
Operation

This instruction divides the contents of the binary
register by the 4 bytes of data starting at the effective
address. Both operands are treated as 32-bit signed
integers. The quotient is a 32-bit signed integer and
replaces the dividend in the binary register. If both
operands have the same sign, the quotient is positive. If
they have opposite signs, the quotient is negative. A
zero quotient is always positive.

Example (Nonindexed)
Instruction
18 01 B3

Operand

00000000 00000000 00000000 00001100
0183 0184 0185 01B6

Binary Register Before Operation

00000000 00000000 00100010 00001000
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00000010 11010110
Byte O Byte 1 Byte 2 Byte 3

Example {Indexed)
Instruction
19 01 B3
Index Register

00000000 01100111
Byte O Byte 1

Operand Before Indexing

00000000 00000000 00000000 00001100
01B3 01B4 0185 01B6

Operand After Indexing

00000000 00000000 00000000 00000110
021A 021B 021C 021D

Binary Register Before Operaﬁon

00000000 00000000 00100010 00001000
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00000101 10101100
Byte O Byte 1 Byte 2 Byte 3

Instructions
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BINARY REGISTER LOAD ($HLD)-2 BYTES
Macroinstruction Format
[Label] $HLD address], 1]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

2C Operand address

2D Base address for indexed instruction
Operation

This instruction places the 2 bytes of data starting at the
effective address in the binary register. The 2-byte
operand is extended to 4 bytes during the operation by
propagating the sign-bit value through the 16 high-order
bit positions.
Example (Nonindexed)
Instruction

2C 02 1
Operand

01100011 10100011
02C1 02C2

Binary Register Before Operation

00000000 01000001 00000000 00111100
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 01100011 10100011
Byte O Byte 1 Byte 2 Byte 3

18

Example {Indexed)
Instruction
2D 02 cC1
Index Register

00000000 00110001
Byte O Byte 1

Operand Before Indexing

01100011 10100011
02C1 02C2

Operand After Indexing

10100011 00111010
02F2 02F3

Binary Register Before Operation

00000000 01000001 00000000 00111100
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

11111111 11111111 10100011 00111010
Byte O Byte 1 Byte 2 Byte 3



BINARY REGISTER LOAD ($BLD}-4 BYTES
Macroinstruction Format
[Label] $BLD address|,!]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2and3

20 Operand address

21 Base address for indexed instruction
Operation

This instruction places the 4 bytes of data starting at the

effective address in the binary register.

Example {Nonindexed)
Instruction

20 01 D4
Operand

00000000 10011101 00110101 11001010
01D4 01D5 01D6 01D7

Binary Register Before Operation

10100011 11000010 00111010 11000001
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 10011101 00110101 11001010
Byte O Byte 1 Byte 2 Byte 3

Example {Indexed)
Instruction
21 01 D4
Index Register

00000010
Byte O

00111000
Byte 1

Operand Before Indexing

00000000 10011101 00110101 11001010
01D4 01D5 01D6 01D7

Operand After Indexing

01100011 10100101 11000110 11110010
040C 040D 040E 040F

Binary Register Before Operation

10100011 11000010 00111010 11000001
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

01100011 10100101 11000110 11110010
Byte O Byte 1 Byte 2 Byte 3

Instructions
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BINARY REGISTER MULTIPLY ($HMLT)-2 BYTES
Macroinstruction Format
[Label] $HMLT address|,l]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

2A Operand address

2B Base address for indexed instruction
Operation

This instruction multiplies the contents of the binary
register by the 2 bytes of data starting at the effective
address. The 2-byte multiplier is extended to 4 bytes
before multiplication by propagating the sign-bit value
through the 16 high-order bit positions. Both the
multiplier and the multiplicand are 32-bit signed
integers. The product is always a 32-bit signed integer
and replaces the multiplicand in the binary register. The
sign of the product is determined by the rules of algebra
from the multiplier and multiplicand signs, except that 0
is always positive. An overflow is not flagged, nor does
a program interrupt occur.

Programming Note: The significant digits of the product
usually occupy 32 bits or less; however, if the product
exceeds 32 bits, the high-order bits are shifted out
without inspection and are lost.

20

Example (Nonindexed)
Instruction

2A 10 93
Operand

00000000 00000111
1093 1094

Binary Register Before Operation

00000000 00000000 00000000 01100011
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation
00000000 00000000 00000010 10110101
Byte O Byte 1 Byte 2 Byte 3
Example {(Indexed)
Instruction
2B 10 93
Index Register

00000000

Operand Before Indexing

00000000 00000111
1093 1094

Operand After Indexing

00000000 00001001
109F 10A0

Binary Register Before Operation

00000000 00000000 00000000 10110101
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 00000110 01011101
Byte O Byte 1 Byte 2 Byte 3

00001100
Byte O Byte 1



BINARY REGISTER MULTIPLY ($BMLT)-4 BYTES Example (Nonindexed)

Macroinstruction Format Instruction
[Label] $BMLT addressl,1] 1E 01 C4
Machine Instruction Format Operand
Byte 1 00000000 00000000 10100001 00101001
(Op Code} Bytes 2 and 3 01Cc4 01C5h 01C6 01C7
1E Operand address Binary Register Before Operation
1F Base address for indexed instruction

00000000 00000000 00000000 11000110
Byte O Byte 1 Byte 2 Byte 3
Operation
Binary Register After Operation

This instruction multiplies the contents of the binary
register by the 4 bytes of data starting at the effective 00000000 01111100 10100101 10110110
address. Both the multiplier and the multiplicand are Byte O Byte 1 Byte 2 Byte 3
32-bit signed integers. The product is always a 32-bit
signed integer and replaces the multiplicand in the

binary register. The sign of the product is determined Example {Indexed)
by the rules of algebra from the multiplier and

multiplicand signs, except that O is always positive. An Instruction

overflow is not flagged, nor does a program interrupt

occur. 1FO1 C4

Index Register
Programming Note: The significant digits of the product
usually occupy 32 bits or less; however, if the product 00000000 10100011
exceeds 32 bits, the high-order bits are shifted out Byte O Byte 1
without inspection and are lost.
Operand Before Indexing

00000000 00000000 10100001 00101001
01C4 01C5 01Cé6 01C7

Operand After Indexing

00000000 00000000 00000001 00110110
0267 0268 0269 026A

Binary Register Before Operation

00000000 00000000 00000000 11000110
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00000000 11101111 11000100
Byte O Byte 1 Byte 2 Byte 3

Instructions



BINARY REGISTER STORE ($HST)-2 BYTES Example (Indexed)

Macroinstruction Format Instruction
[Label] $HST address|,i] 23 04 36
Machine Instruction Format Index Register
Byte 1 00000000 10010011
{(Op Code) Bytes 2 and 3 Byte O Byte 1
22 Operand address Binary Register
23 Base address for indexed instruction

00000000 11000011 10100101 00111100
Byte O Byte 1 Byte 2 Byte 3
Operation
Operand Before Indexing
This instruction places the contents of the 2 low-order
bytes of the binary register in the 2-byte area starting at 00011000 11110111
the effective address. 0436 0437

Operand Before Operation (after indexing)
Example (Nonindexed)

10011001 01100110

Instruction 04C9 04CA
22 04 36 Operand After Operation
Binary Register 10100101 00111100

04C9 04CA
00111000 01100110 10100011 11001001
Byte O Byte 1 Byte 2 Byte 3
Operand Before Operation

00011000 11110111
0436 0437

Operand After Operation

10100011 11001001
0436 0437
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BINARY REGISTER STORE ($BST)-4 BYTES
Macroinstruction Format
[Label] $BST addressl|, I]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

16 Operand address

17 Base address for indexed instruction
Operation

This instruction places the contents of the binary

register in the 4-byte area starting at the effective

address.

Example (Nonindexed)
Instruction

16 0OC 19
Binary Register

00000000 01001101 00111010 11000101
Byte O Byte 1 Byte 2 Byte 3

Operand Before Operation

00111100 01011100 01101001 00111100
0C19 0C1A oc1B ocic

Operand After Operation

00000000 01001101 00111010 11000101
oc19 OC1A oc1iB ocic

Example {Indexed)
Instruction
17 OC 19

Index Register

00000000 00111010
Byte O Byte 1

Binary Register

00000000 01001101 00111010 11000101
Byte O Byte 1 Byte 2 Byte 3

Operand Before Indexing

00111100 01011100 01101001 00111100
oci19 OC1A oc1B ocic

Operand Before Operation (after indexing)

01100011 11000111 10101010 01010111
0C53 0Cb54 0C55 0C56

Operand After Operation

00000000 01001101 00111010 11000101
0Cs3 0C54 0Cs5 0C56

Instructions
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BINARY REGISTER SUBTRACT ($HSUB)-2 BYTES
Macroinstruction Format
{[Labell $HSUB address|, ]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

28 Operand address

29 Base address for indexed instruction
Operation

This instruction subtracts the 2 bytes of data starting at
the effective address from the contents of the binary
register. The 2-byte operand is extended to 4 bytes
before the subtraction by propagating the sign-bit value
through the 16 high-order bit positions. All 32 bits of
both operands are used, as in Binary Register Add
($HADD).

Example (Nonindexed)
Instruction
28 03 19

Operand

00001011 01101100
0319 031A

Binary Register Before Operation

00000000 00001100 00111100 11000111
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00001100 00110001 01011011
Byte O Byte 1 Byte 2 Byte 3

24

Example (Indexed)
Instruction
29 03 19
Index Register

00000000
Byte O Byte 1

Operand Before Indexing

00001011 01101100
0319 031A

Operand After Indexing

00000100 01110111
03ED O3EE

Binary Register Before Operation

00000000 00001100 00111100 11000111
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00001100 00111000 01010000
Byte O Byte 1 Byte 2 Byte 3

11010100



BINARY REGISTER SUBTRACT ($BSUB)—4 BYTES
Macroinstruction Format
[Label] $BSUB addressl, ]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

1C Operand address

1D Base address for indexed instruction
Operation

This instruction subtracts the 4 bytes of data starting at

the effective address from the contents of the binary
register. All 32 bits of both operands are used, as in
Binary Register Add ($BADD).
Example (Nonindexed)
Instruction

1C 00 7B

Operand

00000000 11001100 11110100 01000011
007B 007C 007D 007E

Binary Register Before Operation

00000000 11111100 11001100 10001111
Byte O Byte 1 Byte 2 Byte 3

Binary Register After Operation

00000000 00101111 11011000 01001100
Byte O Byte 1 Byte 2 Byte 3

Example (Indexed)
Instruction
1D 00 7B
Index Register

00000000
Byte O

01100011
Byte 1

Operand Before Indexing

00000000 11001100 11110100 01000011
0078 007C 007D 007E

Operand After Indexing

00000000 00001100 01001000 10000011
OODE OODF OOEO OOE1

Binary Register Before Operation

00000000 11111100 11001100 10001111
ByteO Byte1 Byte2 Byte3

Binary Register After Operation

00000000 11110000 10000100 00001100
Byte O Byte 1 Byte 2 Byte 3

Instructions

25



Floating-Point Register Instructions

The floating-point instructions perform calculations on
operands with a wide range of magnitude and vyield
scaled results to preserve precision.

A floating-point number consists of a signed
characteristic and a signed mantissa. The quantity
expressed by this number is the product of the mantissa
and the number 16 raised to the power of the
characteristic. The characteristic is expressed in
excess-64 notation; the mantissa is expressed as a
hexadecimal number having a radix point (see Number
Representation, later in this chapter} to the left of the
high-order digit.

The floating-point instructions provide loading, adding,
subtracting, multiplying, dividing, and storing. Short
operands provide faster processing and require less
storage than long operands. Long operands provide
greater precision in computation.

Maximum precision is preserved in addition, subtraction,
multiplication, and division by producing normalized
results (see Normalization, in this chapter). Normalized
operands are used in any floating-point operation.

Data Format

Floating-point data appears in a fixed-length format,
which may be either a single-precision format or a
double-precision format. Both formats can be used in

main storage and in the floating-point register.

Single-Precision Floating-Point Number

S | Characteristic Mantissa

0 1 78 31

Double-Precision Floating-Point Number

S | Characteristic Mantissa

R

1 78 63
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The first bit in either format is the sign bit (S). The
subsequent 7 bit positions are occupied by the
characteristic. The mantissa can have either 6 or 14
hexadecimal digits.

The entire set of floating-point instructions is available
for both single- and double-precision operands. When
single-precision is specified, all operands and results are
32-bit floating-point values. The rightmost 32 bits of the
floating-point register are not used in the operations and
remain unchanged. VWhen doubie-precision is specified,
all operands and results are 64-bit floating-point values.

Final results have six mantissa digits in single-precision
and 14 mantissa digits in double-precision.

Number Representation

The mantissa of a floating-point number is expressed in
hexadecimal digits. The radix point of the mantissa is
assumed to be immediately to the left of the high-order
mantissa digit. To provide the proper magnitude for the
floating-point number, the mantissa is considered to be
multiplied by the power of 16. The characteristic
portion, bits 1-7 of both floating-point formats, indicates
this power. The bits within the characteristic field can
represent numbers from O through 127. To
accommodate large and small magnitudes, the
characteristic is formed by adding 64 to the actual
number. The range of the characteristic is thus -64
through +63. This technique produces a characteristic in
excess 64 notation.

Both positive and negative quantities have a true
mantissa, the difference in sign being indicated by the
sign bit. The number is positive or negative accordingly
as the sign bit is O or 1.

The range covered by the magnitude (M) of a
normalized floating-point number is:

16% < M < (1 - 16°%) 1682 in single precision

166 < M < (1 - 16"%) 1683 in double precision
or approximately

5.4 107° < M < 7.2 107% in either precision



Normalization

A quantity can be represented with the greatest
precision by a floating-point number of given mantissa
length when that number is normalized. A normalized
fioating-point number has a nonzero, high-order,
hexadecimal mantissa digit.

If one or more high-order mantissa digits are O, the
number is said to be unnormalized. The process of
normalization consists of shifting the mantissa to the left
until the high-order hexadecimal digit is nonzero and
reducing the characteristic by the number of
hexadecimal digits shifted. A O fraction is considered to
be normalized.

Normalization usually takes place when the intermediate
arithmetic result is changed to the final result. This
function is called postnormalization.

Programming Note: Since normalization applies to
hexadecimal digits, the 3 high-order bits of a normalized
mantissa may be 0.

Instruction Format

Floating-point instructions appear in the following
format:

Op code Operand

o

N}
4]
N
FN

In this format, bits 0-6 specify the function to be
performed by the instruction. Bit 7 indicates if indexing
is to be used in addressing the operand. A O in bit 7
indicates that bits 8-24 contain the operand location in
main storage. If bit 7 is 1 the contents of the index
register are added to the operand to form an address
designating the storage location of the operand.
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FLOATING-POINT REGISTER ADD ($RADD}-SINGLE
PRECISION

Macroinstruction Format
[Label] $RADD address|,]

Machine Instruction Format

Byte 1

{(Op Code) Bytes 2 and 3

32 Operand address

33 Base address for indexed instruction
Operation

This instruction adds the 4 bytes of data starting at the
effective address to the contents of the floating-point
register. The 4 low-order bytes of the floating-point
register are ignored and remain unchanged.

28

Addition of two floating-point numbers consists of a
characteristic comparison and a mantissa addition. The
characteristics of the two operands are compared, and
the mantissa with the smaller characteristic is shifted
right; its characteristic is increased by 1 for each
hexadecimal digit of shift until the two characteristics
agree. The mantissas are then added algebraically to
form an intermediate sum. The intermediate sum
consists of seven hexadecimal digits and a possible

carry.

The low-order digit is a guard digit obtained from the
mantissa that is shifted right. Only one guard digit
position is used in the addition. The guard digit is O if
no shift occurs. After the addition, the intermediate sum
is shifted left as necessary to form a normalized
fraction; vacated low-order positions are filled with
zeros; and, the characteristic is reduced by the amount
of shift. The sign of the sum is derived by the rules of
algebra. The sign of a sum with a 0 mantissa is always
positive.



Example (Nonindexed)
Instruction

32 14 32
Operand

40 10 24 00
1432 1433 1434 1435

Floating-Point Register Before Operation

40 21 34 00 00 00 00 OO0
Byte O Byte 7

Floating-Point Register After Operation
40 31 58 00 00 OO OO0 OO0
Byte O Byte 7
Example (Indexed)
Instruction
33 14 32
Index Register

01 34
Byte O Byte 1

Operand Before Indexing

40 10 24 00
1432 1433 1434 1435

Operand After Indexing

40 1 93 01
1566 1567 1568 1569

Floating-Point Register Before Operation

40 21 00 00 72 00 OO0 OO
Byte O Byte 7

Floating-Point Register After Operation

40 32 93 01 72 00 00 OO
Byte O Byte 7
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FLOATING-POINT REGISTER ADD
{$DADD)-DOUBLE PRECISION

Macroinstruction Format
[Label] $DADD addresst, ]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

3E Operand address

3F Base address for indexed instruction
Operation

This instruction adds the 8 bytes of data starting at the
effective address to the contents of the floating-point
register.

30

Addition of two floating-point numbers consists of a
characteristic comparison and a mantissa addition. The
characteristics of the two operands are compared, and
the mantissa with the smaller characteristic is shifted
right; its characteristic is increased by 1 for each
hexadecimal digit of shift until the two characteristics
agree. The mantissas are then added algebraically to
form an intermediate sum. The intermediate sum
consists of 15 hexadecimal digits and a possible carry.

The low-order digit is a guard digit obtained from the
mantissa that is shifted right. Only one guard digit
position is used in the mantissa addition. The guard
digit is O if no shift occurs.

After the addition, the intermediate sum is shifted left as
necessary to form a normalized mantissa; vacated
low-order positions are filled with zeros; and the
characteristic is reduced by the amount of shift. The
sign of the sum is derived by the rules of algebra. The
sign of a sum with a O mantissa is always positive.



Example (Nonindexed)
Instruction

3E 03 47
Operand

36 12 04 00 00 00 00
0347 0348 0349 034A 0348 034C 034D

Floating-Point Register Before Operation

3 10 60 00 00 00 00 OO0
Byte O ' Byte 7

Floating-Point Register After Operation
36 13 OA 00 00O 00O OO0 OO0
Byte O Byte 7
Example (Indexed)
Instruction
3F 03 47
Index Register

01 01
Byte O Byte 1

Operand Before Indexing

40 00 00 00 00 00 12
0347 0348 0349 034A 034B 034C 034D

Operand After Indexing

37 29 71 00 00 00 00
0457 0458 0459 045A 045B 045C 045D

Floating-Point Register Before Operation

37 13 OA 00 00 00 00 O0
Byte O Byte 7

Floating-Point Register After Operation

37 3C 7B 00 00 00 OO0 OO
Byte O Byte 7

034E

034E

045E

Instructions
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FLOATING-POINT REGISTER COMPARE
($RCMP)-SINGLE PRECISION

Macroinstruction Format
[Labell] $RCMP addressl,I]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

BA Operand address

58 Base address for indexed instruction
Operation

This instruction compares the contents of the
floating-point register with the 4 bytes of data starting
at the effective address. The condition code register is
set (low, equal, or high). The 4 low-order bytes of the
floating-point register are ignored. Comparison is
algebraic and takes into account the sign, characteristic,
and mantissa of each number.

Programming Note: Neither operand is altered by the
instruction.

Resulting Condition Register Settings
Bit Name Condition Indicated

5 Low Binary register value is less than the
operand value
Equai Vaiues are equai
7 High Binary register value is greater than
the operand value

=3}
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FLOATING-POINT REGISTER COMPARE
{$DCMP)-DOUBLE PRECISION

Macroinstruction Format
[Label] $DCMP addressl|, I}

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

5C Operand address

5D Base address for indexed instruction
Operation

This instruction compares the contents of the
floating-point register with the 8 bytes of data starting
at the effective address. The condition code register is
set (low, equal, or high). Comparison is algebraic and
takes into account the sign, characteristic, and mantissa
of each number.

Programming Note: Neither operand is altered by the
instruction.

Resulting Condition Register Settings
Bit Name Condition Indicated

5 Low Binary register value is less than the
operand value
Equal Values are equal
7 High Binary register value is greater than
the operand value

(=]

Instructions
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FLOATING-POINT REGISTER DIVIDE
($RDIV)-SINGLE PRECISION

Macroinstruction Format
[Label] $RDIV address|,1]

Machine Instruction Format

Byte 1

{Op Code) Bytes 2 and 3

30 Operand address

31 Base address for indexed instruction
Operation

This instruction divides the contents of the floating-point
register by the 4 bytes of data starting at the effective
address. If the data is O, the divide check indicator is
set in the scientific communication area and the
floating-point register remains unchanged.

34

A floating-point division consists of a characteristic
subtraction and a fraction division. The difference
between the dividend characteristic and the divisor
characteristic plus 64 is used as an intermediate
characteristic. The sign of the quotient is determined by
the rules of algebra.

All dividend fraction digits participate in forming the
quotient, even if the normalized dividend fraction is
larger than the normalized divisor fraction. The quotient
fraction is normalized, if necessary.



Example {Nonindexed)
Instruction

30 16 31
Operand

37 EO 00 00
1631 1632 1633 1634

Floating-Point Register Before Operation

35 A8 00O 00 00 00 OO0
Byte O

Floating-Point Register After Operation
3E CO 00 00 OO0 00 00
Byte O

Example (Indexed)

Instruction

31 16 31

Byte 7

Byte 7

Index Register

00
Byte O

Operand Before Indexing

37 EO 00 00
1631 1632 1633 1634

Operand After Indexing

35 EO 00 00
1665 1666 1667 1668

Floating-Point Register Before Operation

35 A8 00 00 00 OO0 00
Byte O

Floating-Point Register After Operation

40 CO 00O 00 00 OO0 OO
Byte O

34
Byte 1

00
Byte 7

00
Byte 7

Instructions
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FLOATING-POINT REGISTER DIVIDE
($DDIV)-DOUBLE PRECISION

Macroinstruction Format
[Label] $DDIV address[,!]

Machine Instruction Fromat

Byte 1

(Op Code) Bytes 2 and 3

3C Operand address

3D Base address for indexed instruction
Operation

This instruction divides the contents of the floating-point
register by the 8 bytes of data starting at the effective
address. If the data is O, the divide check indicator is
set in the scientific communication area.

36

A floating-point division consists of a characteristic
subtraction and a fraction division. The difference
between the dividend characteristic and the divisor
characteristic plus 64 is used as an intermediate
characteristic. The sign of the quotient is determined by
the rules of algebra.

All dividend fraction digits participate in forming the
quotient, even if the normalized dividend fraction is
larger than the normalized divisor fraction. The quotient
fraction is normalized, if necessary



Exampie (Nonindexed)
Instruction

3C 17 43
Operand

33 EO 00 00 00 00 00
1743 1744 1745 1746 1747 1748 1749

Floating-Point Register Before Operation

34 B6 00 00 00 00 OO0 OO0
Byte O Byte 7

Floating-Point Register After Operation
41 DO 00 00 OO0 00 00 00
Byte O Byte 7
Example (Indexed)
Instruction
3D 17 43
Index Register

01 01
ByteO  Byte 1

Operand Before Indexing

33 EO 00 00 00 00 00
1743 1744 1745 1746 1747 1748 1749

Operand After Indexing

33 BO 00 00 00 00 00
1844 1845 1846 1847 1848 1849 184A

Floating-Point Register Before Operation

3 6E 00 00 00 00 00 OO0
Byte O Byte 7

Floating-Point Register After Operation

41 A0 00 00 00 00 00 O0
Byte O 8dyte 7

00
174A

174A

1848

Instructions
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FLOATING-POINT REGISTER LOAD ($RLD)-SINGLE
PRECISION

Macroinstruction Format
[Label] $RLD address], ]

Machine Instruction Format

Byts 1

(Op Code) Bytes 2 and 3

38 Operand address

39 Base address for indexed instruction
Operation

This instruction places the 4 bytes of data starting at the
effective address in the floating-point register and sets
the floating-point register status to single-precision.
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Example (Nonindexed)
Instruction

38 04 62
Operand

40 36 93 02
0462 0463 0464 0465

Floating-Point Register Before Operation

33 08 67 30 01 00 00
Byte O

Floating-Point Register After Operation
40 36 93 02 01 00 00
Byte O

Example (Indexed)

Instruction

39 04 62

Index Register

00
Byte O

Operand Before Indexing

40 36 93 02
0462 0463 0464 0465

Operand After Indexing

41 27 08 00
0474 0475 0476 0477

Floating-Point Register Before Operation

39 08 67 30 01 00 00
Byte O

Floating-Point Register After Operation

41 27 08 00 O1 00 00
Byte O

00
Byte 7

00
Byte 7

12
Byte 1

Byte 7

00
Byte 7

Instructions

39



FLOATING-POINT REGISTER LOAD
($DLD)-DOUBLE PRECISION

Macroinstruction Format
[Label] $DLD address|,1]
Machine Instruction Format

Byte i
(Op Code) Bytes 2 and 3

44 Operand address
45 Base address for indexed instruction
Operation

This instruction places the 8 bytes of data starting at the
effective address in the floating-point register and sets
the floating-point register status to double-precision.
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Example (Nonindexed)
Instruction

4 81 94
Operand

36 14 30 00 00 00
8194 8195 8196 8197 8198 8199

Floating-Point Register Before Operation

40 18 96 40 00 00 00 OO0
Byte O Byte 7

Floating-Point Register After Operation
36 14 30 00 00 00 00 OO
Byte O Byte 7
Example (Indexed)
Instruction
45 81 94
Index Register

00 20
Byte O Byte 1

Operand Before Indexing

36 14 30 00 00 00
8194 8195 8196 8197 8198 8199

Operand After Indexing

34 26 19 00 00 00
81B4 81B5 81B6 81B7 81B8 81B9

Floating-Point Register Before Operation

40 18 96 40 00 00 00 00
Byte 0 Byte 7

Floating-Point Register After Operation

34 26 19 00 00 00 00 OO0
Byte O Byte 7

819A

819A

00
81BA

8198

819B

00
81BB

Instructions
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FLOATING-POINT REGISTER MULTIPLY
($RMLT)-SINGLE PRECISION

Macroinstruction Format
[Label] $RMLT address[,1]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

36 Operand address

37 Base address for indexed instruction
Operation

This instruction multiplies the contents of the
floating-point register by the 4 bytes of data starting at
the effective address.

42

The multiplication of two floating-point numbers
consists of a characteristic addition and a fraction
multiplication. The sum of the characteristics minus 64
is used as the characteristic of the product. The sign of
the product is determined by the rules of algebra. The
product fraction is normalized, if necessary. The product
characteristic is reduced by the number of left shifts.
The product fraction is truncated to 6 digits after
normalization. When the product fraction is zero, the
product sign and characteristic are made zeros, vielding
a true zero result.



Example (Nonindexed)
Instruction

36 06 42
Operand

41 FO 00 00
0642 0643 0644 0645

Floating-Point Register Before Operation

34 AC OO0 00 00 00 OO0
Byte O

Floating-Point Register After Operation
35 96 00 00 00 00 OO0
Byte O

Example (Indexed)

Instruction

36 06 42

Index Register

00
Byte O

Operand Before Indexing

41 FO 00 00
0642 0643 0644 0645

Operand After Indexing

39 BO 00 00
0685 0686 0687 0688

Floating-Point Register Before Operation

Byte 7

Byte 7

43

Byte 1

34 A0 00O 00 00 00 00 OO0

Byte O

Floating-Point Register After Operation

Byte 7

2D 6E 00 00 00 00 00 00

Byte O

Byte 7

Instructions
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FLOATING-POINT REGISTER MULTIPLY
($DMLT)-DOUBLE PRECISION

Macroinstruction Format
Label] $DMLT address|,|]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

42 Operand address

43 Base address for indexed instruction
Operation

This instruction multiplies the contents of the
floating-point register by the 8 bytes of data starting at
the effective address.

44

The multiplication of two floating-point numbers
consists of a characteristic addition and a fraction
multiplication. The sum of the characteristics minus 64
is used as the characteristic of the product. The sign of
the product is determined by the rules of algebra. The
product fraction is normalized, if necessary. The product
characteristic is reduced by the number of left shifts.
The product fraction is truncated to 14 digits after
normalization. When the product fraction is zero, the
product sign and characteristic are made zeros, yielding
a true zero result.



Example (Nonindexed)
Instruction

42 08 13
Operand

40 90 00 00 00 00 00
0813 0814 0815 0816 0817 0818 0819

Floating-Point Register Before Operation

3F DO 00 OO0 00 00 OC 00
Byte O Byte 7

Floating-Point Register After Operation
40 75 00 00 OO OO0 OO0 OO0
Byte O Byte 7
Example (Indexed)
Instruction
43 08 13
Index Register

01 00
Byte O Byte 1

Operand Before Indexing

41 09 00 00 00 00 00
0813 0814 0815 0816 0817 0818 0819

Operand After Indexing

40 70 00 00 00 00 00
0913 0914 0915 0916 0917 0918 0919

Floating-Point Register Before Operation

40 EO 00 00 00 00 00 00
Byte O Byte 7

Floating-Point Register After Operation

40 62 00 00 OO0 00 OO0 OO0
Byte O Byte 7

00
081A

081A

00
091A

Instructions
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FLOATING-POINT REGISTER STORE ($RST)-SINGLE
PRECISION

Macroinstruction Format
[Label] $RST addressl, 1]
Machine Instruction Format

Byte 1
(Op Code) Bytes 2 and 3

2E Operand address
2F Base address for indexed instruction
Operation

This instruction places the single-precision portion
(high-order bytes) of the floating-point register in the
4-byte area starting at the effective address.
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Example (Nonindexed)
Instruction

2E 01 23
Floating-Point Register

39 08 42 60 19 08 00 OO0
Byte O Byte 7

Operand Before Operation

11 92 36 08
0123 0124 0125 0126

Operand After Operation

39 08 42 60
0123 0124 0125 0126

Example (Indexed)
Instruction
2F 01 23
Index Register

00 08
Byte O Byte 1

Floating-Point Register

40 18 09 63 00 00 00 OO0
Byte O Byte 7

Operand Before Indexing

41 92 36 08
0123 0124 0125 0126

Operand Before Operation (after indexing)

39 10 83 62
012B 012C 012D 012E

Operand After Operation

40 18 09 63
012B  012C 012D 012E

Instructions
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FLOATING-POINT REGISTER STORE
($DST)-DOUBLE PRECISION

Macroinstruction Format
[Label] $DST addressl,|]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

3A Operand address

3B Base address for indexed instruction
Operation

This instruction places the contents of the floating-point
register in the 8 byte area starting at the effective
address.
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Example {Nonindexed)
Instruction

3A 48 03
Floating-Point Register

49 80 14 30 00 00 O00 OO0
Byte O Byte 7

Operand Before Operation

36 00 91 87 40 00 00
4803 4804 4805 4806 4807 4808 4809

Operand After Operation
49 80 14 30 00 00 00
4803 4804 4805 4806 4807 4808 4809
Example (Indexed)
Instruction
3B 48 03
Index Register

03 8A
Byte O Byte 1

Floating-Point Register

38 10 83 47 62 10 00 00
Byte O Byte 7

Operand Before Indexing

36 00 91 87 40 00 00
4803 4804 4805 4806 4807 4808 4809

Operand Before Operation (after indexing)

31 68 79 53 00 00 00
4B8D 4BB8E 4B8F 4B90 4B91 4B92 4B93

Operand After Operation

38 10 83 47 62 10 00
4B8D 4BBE 4B8F 4B90 4B91 4B92 4B93

480A

480A

480A

4B94

4B94

Instructions
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FLOATING-POINT REGISTER SUBTRACT
{$RSUB)-SINGLE PRECISION

Macroinstruction Format
[Label] $RSUB address],!]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

34 Operand address

35 Base address for indexed instruction
Operation

This instruction subtracts the 4 bytes of data starting at
the effective address from the contents of the
floating-point register. The low-order half of the
floating-point register is ignored and remains
unchanged. This instruction is similar to Floating-Point
Register Add ($RADD), except that the sign of the
operand is inverted before addition. The sign of the
difference is determined by the rules of algebra. The
sign of the difference with a O result fraction is always
positive.
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Example (Nonindexed)
Instruction

34 03 45
Operand

39 18 43 00
0345 0346 0347 0348

Floating-Point Register Before Operation

40 91 96 50 00 00 OO0
Byte O

Floating-Point Register After Operation
40 90 12 20 00 00 OO0
Byte O

Example (Indexed)

Instruction

35 03 45

Index Register

00
Byte O

Operand Before Indexing

39 18 43 00
0345 0346 0347 0348

Operand After Indexing

40 80 14 30
0355 0356 0357 0358

Floating-Point Register Before Operation

40 91 96 50 00 00 00
Byte O

Floating-Point Register After Operation

40 11 82 20 00 00 00
Byte O

Byte 7

Byte 7

10
Byte 1

Byte 7

Byte 7

Instructions
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FLOATING-POINT REGISTER SUBTRACT
($DSUB)-DOUBLE PRECISION

Macroinstruction Format
[Label] $DSUB address], 1]
Machine Instruction Format

Byte 1
{Op Code) Bytes 2 and 3

40 Operand address
41 Base address for indexed instruction
Operation

This instruction subtracts the 8 bytes of data starting at
the effective address from the contents of the
floating-point register. This instruction is similar to
Floating-Point Register Add ($DADD), except that the
sign of the operand is inverted before addition. The sign
of the difference is determined by the rules of algebra.
The sign of the difference with a O result fraction is
always positive.
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Example (Nonindexed)
Instruction

40 10 F2
Operand

36 21 02 69 52 01 11
10F2 10F3 10F4 10F5 10F6 10F7 10F8

Floating-Point Register Before Operation

36 38 14 79 63 55 21 00
Byte O Byte 7

Floating-Point Register After Operation
36 17 12 10 11 54 10 00
Byte O Byte 7
Example (Indexed)
Instruction
41 10 F2
Index Register

04 00
Byte O Byte 1

Operand Before Indexing

36 21 02 69 52 01 11
10F2 10F3 10F4 10F5 10F6 10F7 10F8

Operand After Indexing

36 16 03 58 61 43 11
14F2  14F3  14F4 14F5 14F6 14F7 14F8

Floating-Point Register Before Operation

36 38 14 79 63 55 21 00
Byte O Byte 7

Floating-Point Register After Operation

36 22 11 21 02 12 10 00
Byte O Byte 7

00
10F9

00
10F9

00
14F9

Instructions
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Index Multiplier Register Instructions

INDEX MULTIPLIER REGISTER LOAD IMMEDIATE
($mL)
Macroinstruction Format

[Label] $MLI DATALI]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

12 Data

13 Base data
Operation

This instruction places 2 bytes of data from the
instruction in the index multiplier register. If indexing is
used, the sum of the instruction data added to the
contents of the index register is placed in the index
multiplier register.

Example (Nonindexed)
Instruction
12 04 CA

Index Multiplier Register Before Operation

00000011 10101011
Byte O Byte 1

Index Multiplier Register After Operation

00000100 11001010
Byte O Byte 1

Example (Indexed)
Instruction
13 04 CA
Operand Before Indexing
04CA
Index Register

00000000 00001011
Byte O Byte 1

Operand After Indexing
04D5
Index Muitiplier Register Before Operation

00000011 10101011
Byte O Byte 1

Index Multiplier Register After Operation

00000100 11010101
ByteO  Byte 1



INDEX MULTIPLIER REGISTER STORE ($MST)
Macroinstruction Format
[Labell $MST address!, ]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

14 Operand address

15 Base address for indexed instruction
Operation

This instruction places the contents of the index
multiplier register in the 2-byte area starting at the
effective address.
Example (Nonindexed)
Instruction

14 03 96

Index Multiplier Register

00000000 00000111
Byte O Byte 1

Operand Before Operation

00111000 01011101
0396 0397

Operand After Operation

00000000 00000111
0396 0397

Example (Indexed)
Instruction

15 03 96

Index Multiplier Register

00000000 01000101
Byte O Byte 1

Operand Before Indexing

00111000 01011101
0396 0397

Index Register

00000000 00001100

Byte O

Byte 1

Operand Before Operation (after indexing)

00000100 10011001
03A2 03A3

Operand After Operation

00000000 01000101
03A2 03A3

Instructions
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Index Register Instructions

INDEX REGISTER ADD ($XADD)
Macroinstruction Format
[Label] $XADD address],|]

Machine Instruction Format

Byte 1

{Op Code) Bytes 2 and 3

08 Operand address

09 Base address for indexed instruction
Operation

This instruction adds the 2 bytes of data starting at the
effective address to the contents of the index register.
Example (Nonindexed)
Instruction

08 08 14
Operand

00000001 10001001
0814 0815

Index Register Before Operation

00000111 00101100
Byte O Byte 1

Index Register After Operation

00001000 10110101
Byte O Byte 1
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Example (Indexed)
Instruction

09 08 14

Operand Before Indexing

00000001 10001001
0814 0815

Operand After Indexing

00000000 11011011
obB7 0oDB8

Index Register

00000101 10100011

Index Register Before Operation

00000101 10100011
Byte O Byte 1

Index Register After Operation

00000110 01111110
Byte O Byte 1



INDEX REGISTER LOAD ($XLD)
Macroinstruction Format
[Label] $XLD addressl, I}

Machine Instruction Format

Byte 1

{Op Code) Bytes 2 and 3

06 Operand address

07 Base address for indexed instruction
Operation

This instruction places the 2 bytes of data starting at the
effective address in the index register.
Example (Nonindexed)
Instruction
06 07 38
Operand

00000000 01111101
0738 0739

Index Register Before Operation

00001100 10100011
Byte O Byte 1

Index Register After Operation

00000000 01111101
Bytt 0  Byte 1

Example (Indexed)
Instruction
07 07 38
Index Register

00000000 01111001
Byte O Byte 1

Operénd Before Indexing

00000000 01111101
0738 0739

Operand After Indexing

00000000 11011111
0781 0782

Index Register Before Operation

00000000 01111001
Byte O Byte 1

Index Register After Operation

00000000 11011111
Byte O Byte 1

Instructions
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INDEX REGISTER LOAD IMMEDIATE ($XLlI)
Macroinstruction Format

[Label] $XLi datal,|]

Machine Instruction Format

Byte 1
(Op Code) Bytes 2 and 3

0A Data
0B Data for indexed instruction
Operation

This instruction places the 2 bytes of data from the

instruction in the index register. If indexing is used, the

instruction data is added to the contents of the index
register. The result is placed in the index register.
Example (Nonindexed)
Instruction

OA 01 8C
Operand

018C
Index Register Before Operation

00000011 10011110
Byte O Byte 1

Index Register After Operation

00000001 10001100
Byte O Byte 1
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Example (Indexed)
Instruction
oB 01 8C
Operand Before Indexing
018C
Index Register

00000000 01101111
Byte O Byte 1

Operand After Indexing
O1FB
Index Register Before Operation

00000000 01101111
Byte O Byte 1

Index Register After Operation

00000001 11111011
Byte O - Byte 1



INDEX REGISTER MULTIPLY ($XMLT)
Macroinstruction Format
[Label] $XMLT address[,|]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

OE Operand address

OF Base address for indexed instruction
Operation

This instruction muiltiplies the contents of the index
multiplier register by the 2 bytes of data starting at the
effective address and places the product in the index
register.
Example (Nonindexed)
Instruction

OE 06 C4
Operand

00000000 00001101
06C4 06C5

Index Multiplier Register

00000000 00000011
Byte O Byte 1

Index Register Before Operation

00000010 10001010
Byte O Byte 1

Index Register After Operation

00000000 00100111
Byte O Byte 1

Example (Indexed)
Instruction

OF 06 C4

Operand Before Indexing

00000000 00001101
06C4 06C5

Operand After Indexing

00000000 00011000
06D0 06D1

Index Multiplier Register

00000000 00000011
Byte O Byte 1

Index Register After Operation

00000000 01001000
Byte O Byte 1

00000000 00001100

Byte O

Index Register

Byte 1

Instructions
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INDEX REGISTER MULTIPLY AND ADD ($XMTA)
Macroinstruction Format
[Label]l $XMTA address],i]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

10 Operand address

11 Base address for indexed instruction
Operation

This instruction adds the product of the index muiltiplier
register and the 2 bytes of data starting at the effective
address to the contents of the index register.
Example (Nonindexed)
Instruction

10 OD C2

Operand

00000000 00000110
0DC2 0DC3

Index Multiplier Register

00000000 00000101
Byte O Byte 1

Index Register Before Operation

00000000 00101010
Byte O Byte 1

Index Register After Operation

00000000 01001000
Byte O Byte 1
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Example (Indexed)
Instruction
11 OD cC2
Index Register

00000000 00101010
Byte O Byte 1

Operand Before Indexing

00000000 00000110
0DC2 ODC3

Operand After Indexing

00000000 00000010
ODEC ODED

Index Multiplier Register

00000000 00000101
Byte O Byte 1

Index Register Before Operation

00000000 00101010
Byte O Byte 1

Index Register After Operation

00000000 00110100
Byte O Byte 1



INDEX REGISTER STORE ($XST)
Macroinstruction Format

[Label] $XST address],]

Machine Instruction Format

Byte 1
(Op Code) Bytes 2 and 3

(0]03 Operand address
0D Base address for indexed instruction
Operation

This instruction places the contents of the index register
in the 2 byte area starting at the effective address.
Example (Nonindexed)
Instruction

0C 0A 12
Index Register

00000000 00110011
Byte O Byte 1

Operand Before Operation

00001001 10011001
0A12 0A13

Operand After Operation

00000000 00110011
0A12 O0A13

Example (Indexed)

Instruction

0D O0A

Operand Before Indexing

00001001 10011001

0A12

12

0A13

Index Register

00000000 00110011

Byte O

Byte 1

Operand Before Operation (after indexing)

00110110 01100110

0A45

Operand After Operation

00000000 00110011

0A45

0A46

0A46

Instructions
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Logical Instructions

BINARY REGISTER AND ($BAND)
Macroinstruction Format
[Label]l $BAND address|,!]

Machine Instruction Format

Byte 1

{Op Code) Bytes 2 and 3

60 Operand address

61 Base address for indexed instruction
Operation

This instruction interrogates the contents of the binary
register and the 4 bytes of data starting at the effective
address. If both values are nonzero, the binary register
is set to X’00000001°. If either value is O, the binary
register is set to X"00000000’.

BINARY REGISTER OR ($BOR)
Macroinstruction Format
[Label] $BOR address],|]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

62 Operand address

63 Base address for indexed instruction
Operation

This instruction interrogates the contents of the binary
register and the 4 bytes of data starting at the effective
address. If both values are O, the binary register
remains unchanged. If either value is nonzero, the
binary register is set to X’00000001".
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BINARY REGISTER NOT ($BNOT)
Macroinstruction Format
[Label] $BNOT

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

64 Not used
Operation

This instruction interrogates the contents of the binary
register. If the binary register contains O, it is set to
X'00000001°. If the binary register is nonzero, it is set
to X’00000000°.



TEST CONDITION ($LSET)
Macroinstruction Format
[Label] $LSET mask

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

5E Mask
Operation

This instruction tests the contents of the condition code
register. If the condition code register value (less than,
equal, or greater than) satisfies the $LSET mask, the
binary register is set to X’00000001’; otherwise, the
binary register is set to X’00000000°.

Mask Bit Setting

Code

(Hex) Name
0004 Low

0006 Low, Equal
0002 Equal
0005 Not Equal
0003 Equal, High
0001 High

Instructions
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Branch Instructions

BINARY REGISTER IF ($BIF)
Macroinstruction Format
[Label] $BIF address1,address2,address3

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

04 Address of the IF block
Operation

The next instruction to be executed is located at the
corresponding address if the binary register value is
negative (address1), zero (address2), or positive
(address3).

FLOATING-POINT REGISTER IF ($RIF)
Macroinstruction Format

[Label] $RIF address1,address2,address3

Machine Instruction Format

Byte 1

{Op Code) Bytes 2 and 3

04 Address of the IF block
Operation

The instruction to be executed next is located at the

corresponding address if the floating-point register value

is negative (address1), zero (address2), or positive
(address3).
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BRANCH ($GOTO)
Macroinstruction Format
[Label] $GOTO address|,1]

Machine Instruction Format

Byte 1

(Op Code) Bytes 2 and 3

02 Operand address

03 Base address for indexed instruction
Operation

The next instruction to be executed is at the effective
address.



Appendix A. System/32 Scientific Instruction Set Summery

System /32 scientific programs are executed under the
control of an interpreter resident in the control storage
increment. The object program language, processed by
the interpreter, is called the scientific instruction set.
The major component of the scientific instruction set is
the scientific instruction. A 3-byte scientific instruction
is generated for each executable statement in the
processed source string. Byte O contains the operation
code (bits O through 6) and the index bit (bit 7). Bytes 1
and 2 contain a 16-bit System/32 address. The
effective address for a scientific instruction is the
address part of the instruction plus the scientific
instruction set XR (index register) if the index bit is 1.
Scientific instruction addresses consistently refer to the
leftmost byte of entries in the symbol table.

The principal scientific instruction set registers are:

1.  XR. Index register: A 2-byte value used in
indexing for effective address.

2. XMR. Index multiplier register: 2 bytes, used for
temporary storage in computing index values.

3. BR. Binary register: 4-byte two’s complement
register, used for integer arithmetic.

4. FR. Floating-point register: Holds short or long
precision floating-point hexadecimal value in
System /360 format.

5.  Scientific IAR. Instruction address register:
Contains 2 bytes which hold the address for the
next scientific instruction to be executed.

6. AR. Address register: Holds addresses for certain
scientific operands.

7. CR. Condition code register: 1 byte containing the
result of a compare operation.

When control is passed to the load module for
execution, the first instruction in the program entry
record is a branch to the interpreter code. The
interpreter locates the first scientific instruction following
the branch and before decoding and executing it, sets
the scientific IAR to point to the next instruction. This
continues until all scientific instructions are executed. In
executing the various instructions, other interpreter
modules or sections of code may be used.
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The following table describes the scientific instructions
and operations:

Hex Value

X 00
X'02'
Xoa"
X'06’
X'08'
X'0A’
X'0C’
X'OF’
X' 10
X112
X14
X'16’
X'18’
X1A’
X1C
X1E
X' 20’
X'22'
X'24'
X'26’
X' 28’
X2A'
X'2C
X' 2E’
X'30°
X'32'
X'34°
X'36'
X'38'
X'3A’
X'3C’
X'3E'
X' 40’
X'42
Xa4'
X'46'
X'48’
X AN
X'4c’
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Scientific
Instruction
Mnemonic

CGO'
GO
IFGO
XL
XLl
XST
XM
XMA
XMLI
XMST
BST
BD
BA
BS
BM
BL
HST
HD
HA
HS
HM
HL
RST
RD
RA
RS
RM
RL
DST
DD
DA
DS
DM
DL
ADR
INV
DOBGN'
DOEND'

Scientific

Macroinstruction

Mnemonic

$GOTO
$BIF or $RIF
$XLD
$XADD
$XLI
$XST
$XMLT
$XMTA
$MLI
$MST
$BST
$BDIV
$BADD
$BSUB
$BMLT
$BLD
$HST
$HDIV
$HADD
$HSUB
$HMLT
$HLD
$RST
$RDIV
$RADD
$RSUB
$RMLT
$RLD
$DST
$DDIV
$DADD
$DSUB
$DMLT
$DLD
$ALI
$INVK

Functional Description

Sequence control for computed GOTO
Sequence control for GO branch

Sequence control for arithmetic IF

Indexed register load

index add

Index register load immediate

Index register store

Index multiply

Index multiply and add

Index multiplier register load immediate
Index multiplier register store

Binary register store

Binary register divide

Binary register add

Binary register subtract

Binary register multiply

Binary register load

Binary register half store

Binary register half divide

Binary register half add

Binary register half subtract

Binary register half multiply

Binary register half load

Floating-point register store

Floating-point register divide

Floating-point register add

Floating-point register subtract
Floating-point register multiply
Floating-point register load

Floating-point register double-precision store
Floating-point register double-precision divide
Floating-point register double add
Floating-point register double-precision subtract
Floating-point register double-precision mulitiply
Floating-point register double-precision load
Addressing operations

Invoke branch

DO loop initialization

DO loop variable control



Hex Value

X'4E
X'50°
X'62'
X'64
X'56"
X568’
X'BA’
X'6C’
X'5E
X'60°
X'62
X'64’

'These scientific instructions do not have macroinstruction equivalents and cannot be used by the assembier programmer.

Scientific
Instruction
Mnemonic

CALL
10
DED'
DODED'
HC
BC
RC
DC
LSET
AND
OR
NOT

Scientific
Macroinstruction
Mnemonic

$CALL

$HCMP
$BCMP
$RCMP
$DCMP
$LSET
$BAND
$BOR
$BNOT

Functional Description

Subprogram call

Input/output control

Data element descriptor

DO control variable DED

Binary register compare (integer*2)
Binary register compare (integer*4)
Floating-point register compare (real*4)
Floating-point register compare (real*8)
Test condition code register

Logical AND

Logical OR

Logical NOT

System/32 Scientific Instruction Set Summary
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Appendix B. Error Information

Any errors made in coding macroinstructions are flagged
in the $ASMINPT file by placing an error code and an
error message immediately after the macroinstruction.
The error code and message are then printed on the
assembly listing when the source program is assembled.
The following listing shows the error codes that may be
caused by errors in macroinstructions. Other error codes
may be generated by the macro processor and are
caused by errors in the macroinstruction definitions.

These error codes are explained in the Basic Assembler
and Macro Processor Reference Manual.

MiIC Maessage

2660 MISSING FIRST ADDRESS-NSI ASSUMED

2661 MISSING SECOND ADDRESS-NSI ASSUMED

2662 MISSING THIRD ADDRESS-NSI ASSUMED

2663 SUBROUTINE ADDRESS NOT SPECIFIED

2664 NUMBER OF SUBROUTINE PARAMETERS NOT NUMERIC
2665 ADDRESS OR IMMEDIATE DATA MISSING

2666 INVALID LSET MASK

2667 INVALID INDEX SPECIFICATION
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Hexadecimal and Decimal Integer Conversion Table

Appendix C. Hexadecimal-Decimal Conversion

HALFWORD HALFWORD
BYTE BYTE BYTE BYTE
BITS: 0123 4567 0123 4567 0123 4567 0123 4567
Hex Decimal Hex Decimal Hex Decimal Hex | Decimal Hex | Decimal | Hex | Decimal | Hex | Decimal | Hex | Decimal
0 0/ 0 0 0 0| 0 0 0 0io 0}o0 0 0 0
1| 268,435,456 | 1 16,777,216 | | 1,048,576 | 1 65,536 ] 4,09 |1 256 | | 16 1 1
2 536,870,912 | 2 33,554,432 2 2,097,152 | 2 131,072 2 8,192 | 2 512 | 2 32 2 2
3 #05,306,368 | 3 50,331,648 3 3,145,728 | 3 196,608 3 12,288 | 3 768 | 3 48 3 3
4 [1,073,741,824 | 4| 67,108,864 | 4 | 4,194,304 | 4| 262.144 4 | 16,384 4 1,024 | 4 54 4 1
5 [1,342,177,280 | 5 83,886,080 5 5,242,880 | 5 327,680 5 20,480 { 5 1,280 | 5 80 5 5
6 [1,610,612,736 ] 6 100, 663,296 6 6,291,456 | 6 393,216 6 24,576 [ 6 1,536 | 6 96 3 [
7 [1,879,048,192 1 7 117,440,512 7 7,340,032 | 7 458,752 7 28,6721 7 1,792 1 7 112 7 7
8 [2,147,483,648 | 8 134,217,728 8 8,388,608 | 8 524,288 8 32,768 | 8 2,048 | 8 128 8 8
9 12,415,919,104 | 9 150,994,944 9 9,437,184 | ¢ 589,824 9 36,864 1 9 2,304 | 9 144 9 9
A |2,684,354,560 | A (167,772,160 | A [10,485,760 | A | 655,360 A | 20,960 | A | 2,560 | A | 160 A 10
B |2,952,790,016 | B | 184,549,376 | B |11,534,33 | B | 720,89 8| 45,056 |8 2,616 | B 176 B 17
C |3,221,225,472 | C 201,326,592 C 12,582,912 | C 786,432 C 49,152 | C 3,072 | C 192 C 12
D |3,489,660,928 | D |218,103,808 | D |13,631,488 | O | 851,968 D | 53,248 | D | 3,328 | D | 208 D 13
E [3,758,096,384 | E 234,881,024 E 14,680,064 E 917,504 E 57,344 | E 3,584 | E 224 [3 14
F]4,028,531,890 | F 251,658,240 | F [15,728,680 | F | 983,040 | F | 81,440 [F 3,840 | F | 240 F 15
8 7 6 5| 4 3 2 1
TO CONVERT HEXADECIMAL TO DECIMAL EXAMPLE To convert integer numbers greater than the capacity of
— table, use the techniques below:
V. Locate the column of decimal numbers corresponding to Conversion of
the leftmost digit or letter of the hexadecimal; select Hexadecimal Volue D34 HEXADECIMAL TO DECIMAL
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter. 1. D 3328 Successive cumulative multiplication from left to right,
2. Repeat step 1 for the next (second from the left) 2. 3 48 adding units position.
position. Example: D34)4=3380, D= 13
3. Repeat step | for the units (third from the left) 3. 4 4 x16
position. 208
4. Add the numbers selected from the table to form the 4. Decimal 3380 3= _;I:I;
decimal number.
x1é
3376
TO CONVERT DECIMAL TO HEXADECIMAL e
EXAMPLE
1. (a) S?lect from the table the highest decimal number Conversion of DECIMAL TO HEXADECIMAL
that is equal to or less than the number to be con- Decimal Volue 3380
verted. L. . .
(b) Record the hexadecimal of the column containing Do 2128 Divide and collect the remainder in reverse order.
the selected number. ! — 5 . _
(c) Subtract the selected decimal from the number to 52 Example: 3380)0 B xlé
be converted. 2.3 48 16 | 3380 remainder
2. Using the remainder from step 1(c) repeat all of step 1 4 16 121 \ 4
to develop the second position of the hexadecimal |——\
(ond a remainder) . 3. 4 -4 16 |13 \ 3
3. Using the remainder from step 2 repeat all of step 1 to 4. Hexadecimal D34 D 3380y0=D34,
develop the units position of the hexadecimal . :

4. Combine terms to form the hexadecimal number.
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Hexodecimal and Decimal Fraction Conversion Table

HALFWORD
BYTE BYTE
BITS 0123 4567 0123 4567
Hex | Decimal | Hex Decimal Hex Decimal Hex Decimal Equivalent
.0 .0000 .00 .0000 0000 .000 .0000 0000 0000 .0000 .0000 0000 0000 0000
1 0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 .0000 1525 8789 0625
.2 .1250 .02 .0078 1250 .002 .0004 8828 1250 .0002 .0000 3051 7578 1250
3 . 1875 .03 L0117 1875 .003 .0007 3242 1875 .0003 .0000 4577 6367 1875
4 .2500 .04 .0156 2500 .004 .0009 7656 2500 0004 .0000 6103 5156 2500
.5 3125 .05 0195 3125 .005 .0012 2070 3125 .0005 .0000 7629 3945 3125
.6 .3750 .06 .0234 3750 .006 .0014 6484 3750 .0006 .0000 9155 2734 3750
7 4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 .0001 0681 1523 4375
.8 .5000 .08 .0312 5000 .008 .0019 5312 5000 .0008 .0001 2207 0312 5000
.9 .5625 .09 .0351 5625 .009 .0021 9726 5625 . 0009 .0001 3732 9101 5625
LA .6250 .0A .03%0 6250 .00A 0024 4140 6250 .000A .0001 5258 7890 6250
.B 6875 0B | .04% 6875 .008 .0026 B554 6875 .0008B .0001 6784 6679 6875
.C .7500 .0C 0468 7500 .00C .0029 2968 7500 .000C .0001 8310 5468 7500
.D .8125 .0D .0507 8125 .00D | -.0031 7382 8125 .000D .0001 9834 4257 8125
.E .8750 .0E .0546 8750 . 00E .0034 1796 8750 .000E .0002 1362 30446 8750
.F .9375 .OF .0585 9375 .00F .0036 6210 9375 .000F .0002 2888 1835 9375
1 2 3 4
TO CONVERT . ABC HEXADECIMAL TO DECIMAL To convert fractions beyond the capacity of table, use techniques below:
Find .A in position 1  .6250
Find .0B in position 2 .0429 6875 HEXADECIMAL FRACTION TO DECIMAL
' ' . Convert the hexadecimal fraction to its decimal equivalent using the same
Find .00C in position 3 0029 2968 7500 technique as for integer numbers. Divide the results by 16" (n is the
LABC Hex is equal to  ,6708 9843 7500 number of fraction positions).
Example: .8A7 = .540771)9
TO CONVERT .13 DECIMAL TO HEXADECIMAL 8A716 = 221510 540771
163 = 4096 4096[2215 000000
1. Find .1250 next lowest to .1300
subtract -.1250 = .2Hex
2. Find .0039 0425 next lowest to .0050 0000 DECIMAL FRACTION TO HEXADECIMAL
-.0039 0625 = .01
3. Find .0009 7456 2500 10010 9375 0000 Collect the integer parts of the product in the order of calculation.
~-0009 7656 2500 = .004 Example: 54080 = 8A7q
4. Find .0001 0681 1523 4375 .0001 1718 7500 0000 5408
-,0001 0681 1523 4375 = .0007 : <16
.0000 1037 5976 5625 = .2147 Hex 8 =« [8]'¢528
5. .13 Decimal is approximately equal to A - @4:13
x16
7 < [7 e

POWERS OF 16 TABLE
Example: 268, 435,456,0 = (2.68435456 x 108) 0 = 1000 00004 = (107) 3¢

16" n

110

16 {1

256 | 2

409 |3

65 536 | 4

1048 576 | 5

16777 216 | 6

268 435 456 | 7

4 294 967 296 | 8

88 719 476 736 | 9
1 099 511 627 776 [10=A
17 592 184 044 416 |11 =B
281 474 976 710 656 [12=C
4 503 599 627 370 496 |13=D
72 057 594 037 927 936 14 =E
J 152 921 504 606 846 976 |15 =F

DccimoIYVaIues
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$ALI 9
$BADD 14
$BAND 62
$BCMP 15
$BDIV 17
$BIF 64
$BLD 19
$BMLT 21
$BNOT 62
$BOR 62
$BST 23
$BSUB 25
$CALL 5
$CEQU 6
$CNTR 6
$CRTN 6
$CSET 5
$DADD 30
$DCMP 33
$DDIV 36
$DLD 40
$DMLT 44
$DST 48
$DSUB 52
$GOTO 64
$HADD 13
$HCMP 15
$HDIV 16
$HLD 18
$HMLT 20
$HST 22
$HSUB 24
$INVK 5
SLSET 63
$MLI 54
$MST 55
$RADD 28
$RCMP 32
$RDIV 34
SRIF 64
$RLD 38
$RMLT 42
$RST 46
$RSUB 50
$XADD 56
$XLD 57
$XLI 58
$XMLT 59
$XMTA 60
$XST 61

Index

add, binary register-2 bytes 13
add, binary register—4 bytes 14
add, floating-point register, double-precision 30
add, floating-point register, single-precision 28
add, index register 56
address register 4, 9
address register instructions 9
address register load 9
address, effective 2
addressing
base-displacement 2
direct 2
AND, binary register 62

base-displacement addressing 2
binary data format 2, 11
binary instruction format 12
binary number representation 11
binary register 4
binary register instructions 11
binary register add—2 bytes 13
binary register add—4 bytes 14
binary register AND 62
binary register compare—-2 bytes 15
binary register compare—4 bytes 15
binary register divide—2 bytes 16
binary register divide-—4 bytes 17
binary register IF 64
binary register load—2 bytes 18
binary register load—4 bytes 19
binary register multiply—2 bytes 20
binary register multiply—4 bytes 21
binary register NOT 62
binary register OR 62
binary register store—2 bytes 22
binary register store—4 bytes 23
binary register subtract-2 bytes 24
binary register subtract—4 bytes 25
branch instructions 64

index
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compare, binary register—2 bytes 15

compare, binary register—4 bytes 15

compare, floating-point register, double-precision 33
compare, floating-point register, single-precision 32
condition code register 4

condition test 63

conversion, hexadecimal to decimal 71

data formats 1

binary 2, 11

floating-point 2, 26
decimal to hexadecimal conversion 71
direct addressing 2
divide, binary register-2 bytes 16
divide, binary register—4 bytes 17
divide, floating-point register, double-precision 36
divide, floating-point register, single-precision 34
double-precision floating-point register add 30
double-precision floating-point register compare 33
double-precision floating-point register divide 36
double-precision floating-point register load 40
double-precision floating-point register multiply 44
double-precision floating-point register store 48
double-precision floating-point register subtract 52

effective address 2

enter scientific microcode 6
environment, scientific 5
equates, generate scientific 6
excess 64 notation 26
execute scientific subroutine 5
exit scientific subroutine 6

floating-point data formats 2, 26

floating-point instruction formats 27

floating-point number normalization 27

floating-point number representation 26

floating-point register 4

floating-point register instructions 26
floating-point register add—double-precision 30
floating-point register add—single-precision 28
floating-point register compare—doubie-precision 33
floating-point register compare—single-precision 32
floating-point register divide—double-precision 36
floating-point register divide—single-precision 34
floating-point register IF 64
floating-point register load—double-precision 40
floating-point register load—single-precision 38

74

floating-point register instructions {continued)
floating-point register multiply—double-precision 44
floating-point register multiply—single-precision 42
floating-point register store—double-precision 48
floating-point register store—single-precision 46
floating-point register subtract—double-precision 52
floating-point register subtract—single-precision 50

format
binary data 2, 11
binary instructions 12
floating-point instructions 27
machine instruction 2

formats, floating-point data 2, 26

4-byte binary register add 14

4-byte binary register compare 15

4-byte binary register divide 17

4-byte binary register load 19

4-byte binary register multiply 21

4-byte binary register store 23

4-byte binary register subtract 25

generate scientific equates 6

hexadecimal to decimal conversion 71

IF, binary register 64
IF, floating-point register 64
index multiplier register 4
index multiplier register instructions 54
index multiplier register load immediate 54
index multiplier register store 55
index register 4
index register instructions 56
index register add 56
index register load 57
index register load immediate 58
index register multiply 59
index register multiply and add 60
index register store 61
instruction format 2
binary 12
floating-point 27
instruction statement 1
instructions
address register 9
binary register 11
branch 64
floating-point register 26
index multiplier register 56
index register 54
logical 62



linkage, subroutine 5

load address register 9

load immediate, index multiplier register 54
load immediate, index register 58

load scientific microcode 5

load, binary register-2 bytes 18

load, binary register—4 bytes 19

load, floating-point register, double-precision 40
load, floating-point register, single-precision 38
load, index register 57

logical instructions 62

macroinstruction statements, scientific 1
microcode

enter scientific 6

load scientific 5
mode

scientific 1

System/32 1
multiply and add, index register 60
multiply, binary register—2 bytes 20
multiply, binary register—4 bytes 21
multiply, floating-point register, double-precision 44
multiply, floating-point register, single-precision 42
multiply, index register 59

normalization, floating-point numbers 27
NOT, binary register 62
notation

excess 64 26

twos complement 11
number normalization, floating-point 27
number representation

binary 11

floating-point 26

OR, binary register 62

register add, binary-2 bytes 13

register add, binary—4 bytes 14

register add, floating-point, double-precision 30
register add, floating-point, single-precision 28
register add, index 56

register AND, binary 62
register compare, binary—2 bytes 15
register compare, binary—4 bytes 15
register compare, floating-point, double-precision 33
register compare, floating-point, single-precision 32
register divide, binary—2 bytes 16
register divide, binary—4 bytes 17
register divide, floating-point, double-precision 36
register divide, floating-point, single-precision 34
register IF, binary 64
register IF, floating-point 64
register instructions

address 9

binary 11

floating-point 26

index 56

index multiplier 54
register load immediate, index 58
register load immediate, index muiltiplier 54
register load, binary—2 bytes 18
register load, binary—4 bytes 19
register load, floating-point, double-precision 40
register load, floating-point, single-precision 38
register load, index 57
register multiply and add, index 60
register multiply, binary—2 bytes 20
register multiply, binary—4 bytes 21
register multiply, floating-point, double-precision 44
register multiply, floating-point, single-precision 42
register multiply, index 59
register NOT, binary 62
register OR, binary 62
register store, binary—2 bytes 22
register store, binary—4 bytes 23
register store, floating-point, double-precision 48
register store, floating-point, single-precision 46
register store, index 61
register store, index multiplier 55
register subtract, binary-2 bytes 24
register subtract, binary—4 bytes 25
register subtract, floating-point, double-precision 52
register subtract, floating-point, single-precision 50
registers

address 4

binary 4

condition code 4

floating-point 4

index 4

index multiplier 4
registers, size 4
representation

binary numbers 11

floating-point numbers 26
return to System/32 mode 5

Index
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scientific environment 5
scientific equates, generate 6
scientific macroinstruction statements 1
scientific microcode

enter 6

load b5
scientific mode 1
scientific subroutine

execute 5

exit 6

start 6
singlie-precision fioating-point register add 28
single-precision floating-point register compare 32
single-precision floating-point register divide 34
single-precision floating-point register load 38
single-precision floating-point register multiply 42
single-precision floating-point register store 46
single-precision floating-point register subtract 50
size, register 4
start scientific subroutine 6
statements, scientific macroinstructions 1
store, binary register—2 bytes 22
store, binary register—4 bytes 23
store, floating-point register, double-precision 48
store, floating-point register, single-precision 46
store, index multiplier register 55
store, index register 61
subroutine linkage 5
subroutine

execute scientific 5

exit scientific 6

start scientific 6
subtract, binary register—2 bytes 24
subtract, binary register—4 bytes 25

subtract, floating-point register, double-precision 52

subtract, floating-point register, single-precision 50
System/32 mode 1
returnto 5

76

test condition 63

2-byte binary register add 13
2-byte binary register compare 15
2-byte binary register divide 16
2-byte binary register load 18
2-byte binary register multiply 20
2-byte binary register store 22
2-byte binary register subtract 24
twos complement notation 11

2-byte binary register add 13
2-byte binary register compare 15
2-byte binary register divide 16
2-byte binary register load 18
2-byte binary register multiply 20
2-byte binary register store 22
2-byte binary register subtract 24
4-byte binary register add 14
4-byte binary register compare 15
4-byte binary register divide 17
4-byte binary register load 19
4-byte binary register multiply 21
4-byte binary register store 23
4-byte binary register subtract 25
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