


When You Are:

Planning to
Install Your
Computer

Getting Your
Computer
Ready to Use

Operating
Your
Computer

Operating and
Using the
Utilities

Programming

Your
Computer

Communicating
with Another
Computer or
Remote Device

Determining
the Cause
of a Problem

You Can Find Information In:

What to Do Before Your Computer Arrives

or

Converting from System/34 to System/36

Setting Up Your Computer

Performing the First System Configuration For Your System

System Security Guide

Learning About Your Computer
Operating Your Computer

Source Entry Utility Guide
Data File Utility Guide
Creating Displays

Work Station Utility Guide
Utilities Messages

Concepts and Programmer’'s Guide
System Reference

Sort Guide

Work Station Utility Guide
Programming with Assembler
Assembler Messages

{communication manuals)
{communication message manuals)

System Messages
(message manuals)
System Problem Determination



IBM System/36:
Programming with Assembler

5C21-7908-3

What Is Your Opinion of This Manual?

Your comments can help us produce better manuals. Please take a few minutes to evaluate this manual as soon as you become
familiar with it. Circle Y (Yes) or N (No) for each question that applies. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

Y N
Y N
Y N
Y N
Y N
Y N
Y N
Y N
Y N
Y N
Y N
Y N
Y N

FINDING INFORMATION
Is the table of contents helpful?
What would make it more helpful?

Is the index complete?
List specific terms that are missing.

Are the chapter titles and other headings meaningful?
What would make them more meaningful?

Is information organized appropriately?
What would improve the organization?

Does the manual refer you to the appropriate places
for more information?
List specific references that are wrong or
missing.

UNDERSTANDING INFORMATION
Is the purpose of this manual clear?
What would make it clearer?

Is the information explained clearly?
Which topics are unclear?

Are the examples clear?
Which examples are unclear?

Are examples provided where they are needed?
Where should examples be added or deleted?

Are terms defined clearly?
Which terms are unclear?

Are terms used consistently?
Which terms are inconsistent?

Are too many abbreviations and acronyms used?
Which ones are not understandable?

Are the illustrations clear?
Which ones are unclear?

USING INFORMATION

Y N Does the information apply to your situation?
Which topics do not apply?

Y . N s the information accurate?
What information is inaccurate?

Y N s the information complete?
What information is missing?

Y N Is only necessary information included?
What information is unnecessary?

Y N Are the examples useful models?

What would make them more useful?

Is the format of the manual (shape, size, color)
effective?

What would make the format more effective?

OTHER COMMENTS

Use the space below for any other opinions about this manual
or about the entire set of manuals for this system.

YOUR BACKGROUND

What is your job titie?

What is your primary job responsibility?

How many years have you used computers?

Which programming languages do you use?

How many times per month do you use this manual?

Your name

Company name
Street address
City, State, ZIP

No postage necessary if mailed in the U.S.A.



S$C21-7908-3

Fold and tape

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

iBM CORPORATION
Information Development
Department 532

Rochester, Minnesota, U.S.A. 55901

NO POSTAGE
NECESSARY I[F
MAILED IN THE
UNITED STATES

Jjsul}

Fold and tape

Please do not staple

CONR/-17INS  W'R'N Ul D31ULIA  {17-OSQ "ON 3114} 131aWwassy UMM Bunuurifinil cac/inaiche mat



£ System/36

Programming with Assembler

Program Number 5727-—-AS1

Program Number 5727—AS6

File Number
S36-21

Order Number
SC21-7908-3



Fourth Edition (January 1986)
This major revision obsoletes SC21-7908-2.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent revisions. Changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change or addition. See About this Manual
for a summary of major changes to this edition.

This edition applies to Release 4, Modification Level 0, of the IBM System/36 Assembler
Program Product (Program 5727-AS1 and Program 5727-AS6), and to all subsequent
releases and modifications until otherwise indicated in new editions.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program
may be used instead.

This publication contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental. i

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

‘A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Canada Ltd. Information
Development, Department 849, 895 Don Mills Road, Don Mills, Ontario, Canada, M3C
1W3. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1984, 1985, 1986



Contents

About This Manual
Who should use thismanual ... ........
How this manual is arranged . . .
What you should know . . .
If you need more information . . .
Summary of changes ... ...............

.............

Chapter 1. Introduction to the IBM
System/36 Assembler Language
System/36 Assembler Language
The Source Program
System Procedures and Considerations
ASM Procedure
ASM Procedure Command
OLINK Procedure
Files Used by the Assembler Program
Assembler Listing
Prologue
Control Statements
External Symbol List (BESL) .........
Object Code and Source Program
Listing
Page Heading
Diagnostics
Cross-Reference List
Statements in the Assembler Source
Program
Assembler Coding Form
Valid Characters
Coding Form Parts
Records in the Assembler Object Program
Communications Programs ‘
Data Communications Programming
with SSP-ICF
Data Communications Programming
withBSC ......................
Other Systems with BSC
Magnetic Character Reader

........

.................

..................
..........

.................

...................
........................

................

.......................
...................
.....................

..............

........................
.............
.................

.................
...........

..................

...........

..........

Chapter 2. Using IBM System/36
Assembler Programming Language
Before You Write an Assembler Language

Program .
Assembler Control Statements

.........................

........

1-1
1-2
1-3
1-4
1-4
1-4
1-7
1-7
1-9
19
19
19

1-10
1-12
1-12
1-13

1-14
1-15
1-15

1-15

1-18
1-20

1-20

HEADERS Statement
OPTIONS Statement
Assembler Program Conventions
Terms
Expressions
Location Counter Reference
Addressing
Program Linking References
Machine Instructions
A (Add to Register)
ALC (Add Logical Characters)
ALI (Add Logical Immediate)
AZ (Add Zoned Decimal)
BC (Branch on Condition)
BD (Branch Direct)
CLC (Compare Logical Characters)
CLI (Compare Logical Immediate)
ED (Edit)
ITC (Insert and Test Characters)
JC (Jump on Condition)
L (Load Register)
LA (Load Address)
MVC (Move Characters)
MVI (Move Logical Immediate)
MVX (Move Hexadecimal Character)
S (Subtract from Register) . ......
SBF (Set Bits Off Masked) ... ....
SBN (Set Bits On Masked) .....\...
SLC (Subtract Logical Characters) ...
SLI (Subtract Logical Immediate) . ...
SRC (Shift Right Character)
ST (Store Register)
SZ (Subtract Zoned Decimal)
TBF (Test Bits Off Masked)
TBN (Test Bits On Masked)
XFER (Transfer)
ZAZ (Zero and Add Zoned)
Supervisor Call Instructions

..............
...............
.......
..........................
.....................
........
.....................
.......
...............
...............
......
.......
...........
.........

.......................

...........
................

...............
...........

.....

........
...............
.......
........
........
i
.........

..........

Chapter 3. Using Assembler
Instructions
Assembler Instruction Statements
DC (DEFINE CONSTANT)

..........

Contents

iii



- DS (Define Storage)
DROP (Drop Index Register as Base
Register)
EJECT (Start New Page)
" END (End Assembly) ".............
ENTRY (Identify Entry-Point Symbol)
EQU (Equate Symbol) .............
EXTRN (Identify External Symbols) ..
ICTL (Input Format Control)  .......
ISEQ (Input Sequence Checking)
ORG (Set Location Counter) ........ ,
PRINT (Control Program Listing) .
SPACE (Line Feed) ...............
START (Start Assembly) ...........
TITLE (IDENTIFY LISTING) .......
USING (Use Index Register for Base
Displacement Addressing) .........

...........

Chapter 4. Creating Macroinstructions

Macroinstruction Definition ...........

Macroinstruction Coding Conventions ..
Sequence Symbol .................
Character String ........... e
Character Expression
Substring ............. ... ...
Alphameric Value
Variable Symbol

..............

.................

...................

Positional Parameters Keyword Parameters

Count Function ..................
Arithmetic Expression .............
Continuation ............ e e
Concatenation .............ccvuuu.n
Creating Macroinstruction Definitions
Definition Control Statement Format .
Macroinstruction Format ..........
Macroinstruction Definition Control
Statements
Header .............. . 0. i,
Prototype
Global ............ 0.,
Local ........ .. i,
Tables . .....cviiiiininiiiiienens
TABDF (Table-Definition) ..........
TEXT . it e i e e
Comment ...........cuuuiunn.nn
AIF (Conditional Branch) ..........
AGO (Unconditional Branch Record) .
SETA (Set Arithmetic)
SETB (Set Binary) ...............
SETC (Set Character) .............
ANOP (Assembly No Operation) .....
MNOTE (Message) .........c00...
MEXIT (Logical End)
MEND (Physical End)

......................

......................

............

..............

............

iv

PR S A SRR S

........................

4-1

4-9
4-10
4-10
4-11

Definition Restrictions ............ 4-34
Example of A User Macroinstruction
Definition . .......... ... i, 4-35
Using Macroinstructions  ............ 4-37
Chapter 5. Macroinstructions Supplied
by IBM . .....iiiiienernennanas 5-1
$ALOC (Allocate File or Device) ..... 5-4
$CLOS (Prepare a Device or File for
Termination) .................... 5-6
$DTFB (Define the File for BSC) ..... 5-7
$DTFD (Define the File for Disk) .... 5-13
$DTFO (Generate DTF Offsets) ...... 5-19

$DTFP (Define the File for a Printer) . 5-20
$DTFW (Define the File for Display

. Station) ................. P 5-23
$EOJ (End of Job) ..... e ... 530
$FIND (Find a Directory Entry) ..... 5-31
$FNDP (Generate Parameter List and

Displacements for $FIND) .. ........ 5-32
$GETB (Issue a Get Request) ....... 5-34

- $GETD (Construct a Disk Get Interface) 5-35
$INFO (Information Retrieval) ...... 5-39
$INV (Inverse Data Move) ......... 5-43
$LMSG (Generate a Parameter List for

a Displayed Message ............. 5-44
$LOAD (Load or Fetch a Module) .... 548
$LOG (Generate the Linkage to the ‘

SystemLog) ................... 5-49
$LOGD (Generate Dlsplacements for

SystemLog) ............c0ue.. 5-61
$OPEN (Prepare a Device or File for

Access) i e e e 5-52
$PUTB (Issue a Put Request) ....... 5-53

$PUTD (Construct a Disk Put Interface) 5-54
$PUTP (Construct a Printer Put

Interface) ..................... 5-57
$RIT (Return Interval Time) ........ 5-59
$SIT (Set Interval Timer) .......... 5.61

$SNAP (Snap Dump of Main Storage) 5-63
$SORT (Construct a Loadable Sort

Interface) ............. ... ..., 5-65
$SRT (Generate a Loadable Sort

Parameter List) ................. 5-66
$TOD (Return Time and Date) ...... 5-70
$TRAN (Generate an Interface to the

Translate Routine) .............. 5-71

$TRB (Generate Timer Request Block)  5-72
$TRL (Generate a Translation
Parameter List) ................. 5-73

‘$TRTB (Generate a Translation Table) 5-74
$WIND (Generate Override Indicators
for Display Station) ............. 5-76



$WSEQ (Generate Labels for Display

Station) ............ ... 5-76
$WSIO (Construct a Display Station
Input/Output Interface) ........... 5-77
Programming Considerations ......... 5-88
Coding Restrictions .............. 5-88
Binary Synchronous Communications .. 5-89
Macroinstructions - ............... 5-89

Preparing BSC DTFs For Data Transfer 5-90
Initiating and Terminating the Transfer

of Data ....................... 591
Using Move Mode ................ 5-92
Blank Truncation ................ 5-93
Blank Compression/Expansion ...... 5-94
Data Formats ................... 5-95
Changing the BSC Environment ..... 5-96
Errors ........ .. .. i i, 5-96

Automatic Call Support ............. 597
Chapter 6. Assembler Problem
Determination .................. 6-1
How to Use this Procedure ............ 6-1
Identifying Assembler Problems ........ 6-1
Contacting Your Service Representative . 6-7

Appendix A. Programming Examples A-1

BSC Programming Example ........... A2
Transmit ............c. oo A-2
Receive Program ................ .. A3
Transmit and Receive Program ....... A5
System Date/Time Program ......... A-8
Workstation and Print Program ..... A-11
Alternative Index and Noncontiguous

Keys Program .................. A-17

Appendix B. Character Sets ........ B-1
EBCDIC ............ .. .. .. B-2
ASCII ... . i i B-3
Appendix C. Assembler Coding Forms C-1
Assembler Coding Form GX21-9279-2 .... C-1
Appendix D. Assembler Machine
Instruction Formats ............ D-1
Assembler Instruction Formats ......... D-1

Appendix E. Disk Data Management

Considerations .........cc0000e E-1
Access Methods . ................... E-1
Data Management Control Blocks and

Interface Areas .................... E-8
Allocating and Opening the File ....... E-10
Accessing Recordsina File .......... E-11
Completion Conditions .............. E-23
Closingthe File ................... E-30
Appendix F. Display Station Data

Management Considerations ....... F-1

GET and ACI Return Codes ......... F-1
ACQReturnCodes ................ F-2
STI Return Codes . ................ F-2
Return Codes for All Operations Except
GET, ACI, ACQ,and STI .......... F-3
GlOSSAYY < ¢ et eveeenseaancanaans G-1
Index . ... iveiniienennnnnnnans X-2

Contents V






About This Manual

Who should use this manual . . .

This System/36 Programming With Assembler manual is intended for the
experienced programmer who will be using the System/36 Assembler and Macro
Processor licensed program. This manual contains the following:

® The relationship of the assembler language (source code) to the machine
language (object code)

e How to code, assemble, follow, and debug assembler programs

e How to create, store, and call macroinstructions.

About This Manual Vii



How this manual is arranged . . .

viii

This manual is arranged as follows:

Chapter 1 explains the assembler language and the relationship between an
assembler language and machine language. Some of the characteristics of the
System/36 assembler language are presented.

Chapter 2 presents the assembler language components, coding conventions
and programming conventions.

Chapter 3 describes the assembler instruction statements.

Chapter 4 describes the macro.processor and the coding of macroinstruction
definitions. Some macroinstruction examples are given.

Chapter 5 describes macroinstruction statements and IBM-supplied
macroinstructions. :

Chapter 6 describes procedures for identifying and correcting assembler
problems. :

Appendix A gives prograrhming examples.

Appendix B contains the EBCDIC and ASCII character sets and a list of the
valid display screen symbols.

Appendix C shows the assembler coding form, GX21-9279.

Appendix D shows the assembler machine instruction formats and operation
codes.

Appendix E provides detailed information on disk file access methods.

Appendix F describes the various return codes that are used with display
station operations.

Note: Some terms will appear earlier in the manual than any discussion
explaining them. If you do not understand a term, please refer to the index or to
the glossary.



What you should know . . .

An understanding of the IBM System/36 architecture can be gained through the
following manuals:

® [BM System/36 Functions Reference Manual, SA21-9436

® IBM System/36 System Refereﬁce (SSP), SC21-9020

® |BM System{36 Concepts and Programmer’s Guide, SC21-9019

® IBM System[36 Learning About your Computer, SC21-9018.

Users of the assembler and macro processor should have the following manuals
available while coding programs, entering data, or clearing errors (debugging a
program);

® IBM System/36 Guide to Publications, SC21-9015

® IBM System/36 Assembler Messages, SC21-7942

® [BM System/36 Utilities Messages, SC21-7939

Other manuals you might expect to use are listed under If You Need More
Information in this section.

About This Manual iX



If you need more information . . .

You will find further informétion in these related publications
e IBM System/36 Overlay Linkage Editor Guide, SC21-9041

® [BM System(36 Interactive Communications Feature Guide and Examples,
SC21-7911

® [BM System/36 Interactive Communications Feature Reference, SC21-7910

® [BM System/34 IBM System/32 Scientific Macroinstruction Functions
Reference Manual, SA21-9275

® IBM System/36 System Data Areas , LY21-0592

® IBM System/36 Source Entry Utility Guide, SC21-7901

® |BM System/36 System Problem Determination, SC21-7919

® IBM System/36 System Problem Determination, SC21-9063

® [BM System/36 Operating Your Computer - 5364, SC21-9085

® [BM System/36 Operating Your Computer - 5360, 5362, SC21-9026
® IBM System/36 Distributed Data Management Guide, SC21-8011

o IBM System/36 Getting Started with Interactive Data Definition Utility,
GC21-8003

o  Using System/36 Communications, SC21-9082.

Information about linking assembler subroutines to programs written in
higher-level languages is contained in the following publications:

® [BM System(36 Programming with RPG II, SC21-9006

e IBM System/36 Programming with COBOL, SC21-9007

® [BM System[36 Programming with FORTRAN IV, SC21-9005.
Assembler Coding Material

~ ® IBM System/34 System/36 Assembler Coding Form, GX21-9279.



Summary of changes . ..

The following changes have been made for release 4, modification 0:

o A Problem Determination chapter has been added to assist in assembly-time,
linkage-time, and execution-time problems. Details are provided in Chapter
6.

® Various technical and editorial changes have been made to improve the
quality and usability of this manual.

About This Manual Xi



Notes:

xii



Chapter 1. Introduction to the IBM System/36 Assembler Language

This chapter introduces the assembler language, and explains the relationship
between machine language and assembler language.

An assembler language is a set of labels that are used to represent the various
machine language instructions available in a system. Most labels in the assembler
language are simple and easy to remember. Each instruction will have values,
addresses, and other parameters, which the assembler program uses to create all
of the machine language code necessary to perform the desired task.

\
A machine language is the set of binary instructions that the system hardware can
interpret and use to manipulate data. For instance, the following series of binary
data is an instruction and its parameters:

0011 This
1100 instruction moves

1010 this byte
1111 of data

0010 in
1111 to

1100 this
1011 address

The preceding instruction is easier to write, and much easier to understand, when
it is written using IBM System/36 assembler language as:

Operation (Move Immediate)
MVI X'2FCB',X'AF'

Address Data

This instruction moves specified data to a selected location.

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-1



System/36 Assembler Language

1-2

The IBM System/36 assembler language gives you a convenient method to
‘represent the machine instructions and related data needed to create a program.

Before you run it, your assembler language source program is assembled into
System/36 machine language (an object program) by the assembler program.

When using the assembler language you can refer to instructions, data areas, and
other program elements by symbolic names you assign or by machine addresses.
You have the EBCDIC bit pattern, and binary arithmetic capabilities available,
and you have access to SSP control blocks such as the DTFs and the IOB:s.
Because programming with assembler is done at the most elementary level, it is
possible for an assembler language programmer to write programs that will run
more efficiently than some routine procedures (with their inherent compromises)
generated by COBOL, RPG, or other high-level languages.

You do not have to write routines to handle IOBs and DTFs. You can use the
IBM-supplied macroinstructions to perform system services and to support
input/output devices. Macroinstructions usually represent a sequence of
instructions. The macroinstruction processor scans for any macroinstructions you
have used before an assembler language program is asssmbled. When a
macroinstruction is encountered, the associated complete set of instructions (a
definition) is combined with any parameters you used with the macroinstruction
statement. This combination creates a series of assembler language statements
that are inserted into the source program in place of your macroinstruction
statement. The macroinstruction statement is changed into a comment and is
printed in the listing of the program.



The Source Program

The statements that make up an assembler source program are entered through
the source entry utility (SEU). The SEU assembler display resembles the
assembler coding form with the primary fields defined.

After you have signed onto the system, sign on to SEU by entering:

SEU

After you enter the name of the member that contains the assembler program, the
member type (S for source), and the appropriate library, SEU presents the
Z-display. You can enter assembler source statements on the Z-display, but you
will find it is easier to use the assembler display because the entry fields are
defined for you. You will need to select the assembler display from the Select
display. Press command key 3 to see the Select display.

When you have the Select display, select the ASSEM display. When the ASSEM
display appears, you can enter the following types of assembler program
statements:

e Assembler language statements

e Assembler instruction statements

e Macroinstruction statements

& Macroinstruction definition statements including prototype statements and
definition control statements.

The requirements and formats of the various kinds of statements recognized by
the assembler and the macro processor are described in later chapters of this

manual.

For the additional information you need about SEU, see the Source Entry Utility
Guide.

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-3



System Procedures and Considerations

System/36 procedures are used to load and run the assembler and macro
processor. These procedures, and the procedure commands that request them, are
described here. (For a complete description of System/36 procedures and
procedure commands, see the manual System Support Reference.)

ASM Procedure

The ASM procedure calls the assembler program and can call the macro
processor.

ASM Procedure Command

The ASM procedure command requests the ASM procedure, which in turn calls
the assembler and, optionally, the macro processor. If you enter ASM, or HELP
ASM, or you type ASM and press the Help key; a display prompts you for
parameters.

ASM

s

-

p

L

10 36

job queue

NO s {LIST » | XREF ,|0BJ - |, {MACRO LIBRARY
YES NOLIST NOXREF NOOBJ

ource member name,}input libraby s Joutput library{,{MAC ’
current library input library NOMAC

source file size|,|macro merge source file size|,

30 45
i

assembler work file sizel|,|assembler work2 file size},




source member name: Specifies the source program name.

input library: Specifies the name of the library in which the source program is
located. The current library is the defauit.

output library: Specifies the name of the library in which the object module will be
placed. If omitted, the source library specified in the second parameter is
assumed. If the second parameter is also omitted, the current library is the
default.

MAC, NOMAC: Specifies the use or bypass of the macro processor.
MAC: Calls the macro processor.
NOMAC: Bypasses the macro processor.
The default is MAC.

source file size: Specifies $3SOURCE file size, a 3-digit decimal number indicating
the number of blocks required by SSOURCE. The default is 030.

$SOURCE provides source input to the macro processor. If the macro
processor is not called, $SOURCE provides source input to the assembler.
See Files Used by the Assembler.

macro merge source file size: Specifies SASMINPT file size, a 3-digit decimal
number indicating the number of blocks required by SASMINPT. The
default is 045.
SASMINPT provides source input to the assembler if the macro processor is
called. SASMINPT contains the merged source program and macro
processor-generated code. If the macro is not called, this file is not

allocated and $SOURCE provides source input. See Files Used by the
Assembler.

assembler work file size: Specifies SWORK file size, a 3-digit decimal number
indicating the number of blocks required by SWORK. The default is 010.

$WORK contains the object code produced by the assenibler. See File Used
by the Assembler.

assembler work2 file size: Specifies SWORK?2 file size, a 3-digit decimal number
indicating the number of blocks required by $WORK?2. The default is 036.

$WORKZ2 is used as a work file by the assembler. See Files Used by the
Assembler.

job queue: Specifies placement of the job on the job queue.
NO: Does not place job on the job queue.
YES: Places the job on the job queue.

The default is NO.

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-5



1-6

LIST, NOLIST: Specifies the listing option to be used. If not speciﬁéd, the LIST
option specified on the assembler OPTIONS statement is used.

LIST: Specifies that the assembler is to produce a complete compiler listing
including control statements, statements in error and associated
diagnostics, and error summary statements.

NOLIST: Specifies that the assembler is not to produce the compiler listing.

Only the prologue, the control statements, statements in error and
associated diagnostics, and the error summary statements are printed.

XREF, NOXREF: Speciyﬁes the cross-reference option to be used. If not specified,
the XREF option specified on the assembler OPTIONS statement is used.

XREF: Speciﬁes‘that the assembler is to produce a cross-reference listing of
the program.

NOXREF: Specifies that the assembler is not to produce a cross-reference
listing.
OBJ, NOOBJ: Specifies whether the assembler should place the compiled
program in the specified library. If not specified, the OBJ option specified
on the assembler OPTIONS statement is used.

OBJ: Specifies that the assembler is to plaée the object (compiled) program
in the library as a subroutine member. '

NOOBJ: Specifies fhat the assembler is not to place the object (compiled)
program in the library. ,

MACRO LIBRARY: .Speciﬁes the name of the library in which user macros are
located. The order of library search will vary as follows:

e If MACLIB is blank, seélrch #ASMLIB theﬁ #LIBRARY

e If MACLIB is #ASMLIB,V search #ASMLIB ‘then #LIBRARY

o If MACLIB is #LIBRARY, search #LIBRARY then #ASMLIB

e Otherwise, search USER-LIBRARY, then #ASMLIB, then #LIBRARY.

Note: If you specify a library that is not found, error message is issued.



OLINK Procedure

The OLINK procedure calls the Overlay Linkage Editor to create a load module.
The OLINK procedure is described in the Overlay Linkage Editor Guide.

Files Used by the Assembler Program
The assembler program uses the following disk files:

e Source program records (SSOURCE and $ASMINPT files). $SOURCE
contains source program records for the macro processor or the assembler. If
the macro processor is not called, $SOURCE contains source program
records for the assembler. If the macro processor is called, SASMINPT
contains source program records for the assembler.

e Intermediate text (SWORKZ2 file).

e Cross-reference file (SWORK2 file).

e Overflow symbol table(s) (SWORK2 file).
® Object program ;ecords ($WORK file).

If source records are 80 (rather than 96) positions long, they are padded on the
right with 16 blanks before they are placed in the input file. In this case, you
should provide an ICTL statement to prevent the assembler from processing the
sequence field of the 80-column record.

$SOURCE, $SASMINPT, $WORK?2, and SWORK are automatically allocated but
their default sizes can be overridden by parameters in the ASM procedure
command. These files are specified as extendable files; if the specified or default
file sizes are not large enough, these files are made larger by an extent value when
they become filled. The extent values in blocks are:

Work Extend
File Value

$SOURCE 20
SASMINPT 30
$WORK 10
$WORK?2 25

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-7



1-8

You can save extension overhead by specifying adequate file sizes. The number
of blocks required for the $SOURCE and SASMINPT files are:

Source Program Size Number of Required Blocks
(number of statements) (one block = 2560 bytes)
100 4

200 8

300 : ‘ 12

400 15

500 19

600 23

700 27

800 30

900 34

1000 38

Note: The number of generated statements should be included in the program
size when calculating the size of SASMINPT.

SWORK?2 requires approximately 4 blocks (40 sectors) per 100 source statements:

Source Program Size Number of Required Blocks
(number of statements) (one block = 2560 bytes)
100 - 4

200 8

300 C 12

400 16

500 20

600 24

700 - 28

800 32

900 36

1000 40

$WORK contains the object records. One sector contains four 64-byte object
records. The default is 10 blocks.



Assembler Listing

Printed output from the assembler includes the prologue, control statements,
external symbol list, object code and source program, page heading, error
messages (diagnostics), and cross-reference list.

Note: A printer is required to print the assembler prologue and error messages.

Prologue

The prologue contains procedure parameters, modification information, and a list
of options in effect during an assembly.

Control Statements

Any OPTIONS or HEADERS control statements you specify are printed and any
specification errors are noted.

External Symbol List (ESL)

The ESL contains the object program name, EXTRNs and ENTRYS, which are
printed in the following format:

Symbol Type
Object program name MODULE
EXTRN symbol EXTRN
ENTRY symbol ENTRY

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-9



Object Code and Source Program Listing -

1-10

The following items are printed for each entry in the source and object programs:

(ERR) Error Field: Which contains an E, I, W, or M for those statements in
error. (Severity codes are described under MNOTE in Chapter 4.)

E Assembler and macro processor errors
w MNOTE warnings with a severity of 8
I Informational messages from the macro processor

M MNOTE errors with severity greater than 8

(LOC) Location Counter: Which is a 4-digit hexadecimal number representing
the leftmost byte of any object code printed on this line.

Object Code: Which is translated code. All code in this field is left-justified. The
parts of the object code are: ’

e Instructions: Maximum of 6 bytes (12 hexadecimal characters). The
operation, Q-code, operand 1, and operand 2 fields are separated by one
blank.

¢ Data Constants: Maximum of 8 bytes (16 hexadecimal characters) per line.
No blanks are inserted between the data constants.

e (ADDR) Address Field: Blank except for the following:

— For the DC and DS instructions: The address of the reference byte, that
is, the rightmost byte of the field.

— For the END instruction: The address to which control is passed to start
the program.

— For the USING instruction: The address referenced in the first operand
field.

— For the DROP instruction: The register dropped (0001 or 0002).

— For the EQU instruction: The value of operand 1.

— For the ENTRY instruction: The entry point address.



(STMT) Statement Number Field: Which contains the sequential source
statement number. All source statements, including comments, are numbered.
Valid SPACE, EJECT, and TITLE statements are always assigned statement
numbers but are not printed. The statement number field is a 4-character field;
therefore, the program listing is accurate for only 9999 statements.

Source Statement: Which is a reproduction of the source record. All source
records, except for the listing control statements (SPACE, EJECT, and TITLE)
are printed as follows:

Column Item

1 Error flag

5 through 8 location counter

10 through 25 Object code

27 through 30 Address

32 through 35 Statement number

36 A plus sign (+) indicating that a

source statement generated by
the macro processor follows.
37 through 132 Source statement

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-11



Page Heading
- The following information is printed for each page in the listing:
® A header stating that the object code listing was produced by the IBM
System/36 Assembler and Macro Processor Program Product, with an
identifier of the release level.

e The content of the current TITLE statement.

e A short description of the contents of the various fields of the source program
and object code listing, the current date and time, and the page number.

Diagnostics
The printed list of the source program and object code includes error codes for
improperly coded statements. These codes are documented at the end of the
source program and object code listing under the heading Diagnostics: The
diagnostic list provides the following information:

® Statement: A decimal number assigned by the assembler to the statement in
error.

® Error code: A 4-digit code. See Assembler Messages, SC21-7942, for a
complete list of these codes and the corresponding messages.

® Message: A description of the error and the type of error.

e The number of sequence errors in the assembled program if a sequence check
was requested.

The number of statements in error in the assembly does not include a missing
module name and missing end statement errors.

1-12



Cross-Reference List

If XREF is specified for an assembly, a list of all symbol names referred to in the
source program is generated. This list contains the following information:

SYMBOL: The symbol name.

LEN: The decimal length of the symbol.

VALUE: The hexadecimal value of the symbol.

DEFN: The decimal number of the statement that defines the symbol.
REFERENCES: The decimal numbers of the statements that reference the

symbol. Each reference by symbol to a data area or machine register that can
be altered by a machine instruction is flagged with an asterisk.

At the end of the cross-reference listing, the error summary statements are printed
again.

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-13



Statements in the Assembler Source Program

1-14

An assembler language source program is a set of assembler language statements
that perform some task for you. Each statement has an identification-sequence
number associated with it. When you use the coding sheet, the assembler
language statement is entered in positions 1 through 87, position 88 is always left
blank, and the identification-sequence number is entered in positions 89 through
96. You can change these position numbers with an ICTL statement.

There are three types of assembler language statements:

e Machine instruction statements that represent machine language instructions
on a one-for-one basis.

o Assembler instruction statements that cause the assembler to perform various
operations while your source program is being assembled. These instruction
. statements are not translated into machine language.

o Macroinstruction statements that represent a sequence of machine instruction
statements, assembler instruction statements, or both.



Assembler Coding Form

The assembler coding form is shown in Appendix C. The following material
describes the use of the coding form.

Valid Chafacters

Assembler statements can be written using these characters:

Alphabetic characters A through Z, and $ # @ _
Digits 0 through 9
Special characters + -, . %) (' blank

In addition to these characters, any valid character that you can enter with your
‘input device, with the exception of the ampersand (&) in a macroinstruction
definition, can be placed between single quotes, or in the remarks and comments.
Note that not all printers are able to print all characters, even though the
assembler accepts them as input. There might be some display stations at which
you can enter characters that other stations cannot display.

Coding Form Parts

The coding form has four fields: LABEL, OPERATION, OPERAND, and
IDENTIFICATION SEQUENCE. The REMARKS heading is provided only as
a reminder.

A blank is used to separate the parts of the assembler statement. The following
illustrates the parts of a statement on a coding form.

GX21.92791

IBM System/34, System/36 Assembler Coding Form Printed in U.S.A.

I PROGRAM I:me T"‘""c I X I 1 r T ] ] r l l"ﬂE l
[ B N i o 170 W O ]
STATEMENT /
Label Operation Operand Romerks Sequancs
123 4586 7 89 1011 12 :I|ll$16!7VBV9202|17232(2526272829303!32333‘353637]63940‘!0.3“45‘5.74!495“5152535‘5&56575259‘)6'87536‘“66!’688970“7’27314757677’3’9’)8! 82 83 84 85 86 87|aa89 90 91 92 93 94 9596
1] [TT1] T
THIIS FI @ il 15K | 1 I TME] |
ASSMPIL Tl ’
i 1
D F-qgix F L a
3 N DTF-ID T g
] D TIF. - 2 - T F
U] F- TE. - E@- 1l
1 - — il
1 23 456 7 8 9 10111213184151617 I!|9702V2223?‘2§25277.29303|3733!4536J73.39404|4?A3“454§l?uu”5'52535!5655575‘5@.06!126351‘66557606970"7.27)7475167"Il‘l!nlDl2.3l‘l5!6l73s.‘909|979)7!3’%
| S N —]

- o e s’
o O o (0]

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-15



1-16

OLabel -

A label is any symbol that a programmer uses to identify either an assembler

language statement, a storage area, or a value used by the program. A label is
allowed in most instructions. ’

The first character of a label must be alphabetic. Enter it in the first position
(position 1 on a coding form) of the language statement. If the first position is

‘blank, the assembler program does not treat the rest of the entry as a label. The

remaining characters can be letters or numbers, but not special characters.
Follow the label by at least one blank.

©Operation
An operation is the mnemonic term used to identify a particular machine

instruction, assembler instruction, or macroinstruction. You must enter an
operation for each assembler language statement. This entry can start in any

position except position ! and must be followed by at least one blank.

OOperand

An operand identifies and describes the data to be acted upon by the operation.
The operand indicates storage locations, registers, masks, number of bytes of
storage affected, or types of data. Operands are required in all machine
instructions. An operand is defined as a term, or an arithmetic combination of
terms.

Separate the operand entries with commas, with no blanks between operands.
The last operand of a language statement must be followed by at least one blank.

Q) dentification Sequence

You can use positions 89 through 96 to enter program identification or statement
identification sequence numbers. These numbers are used to ensure that the
statements are in order. During assembly, you can have the assembler verify the
sequence of the source statements by using the input sequence instruction (ISEQ).

GReniarks

You can provide descriptive information about the program in a remark. Use
any valid character available on your input device, except the ampersand within a
macroinstruction definition. Separate the remark from the operand with at least
one blank, and do not extend a remark past position 87. If there is no operand,
separate the operation from the remark with a comma (,). Remember that every
character you can enter might not be available on your printer.

Comment Statements

The entire statement field, to position 87, can be used as a comment if you place
an asterisk (*) in the first position (position 1) of a statement. You can make a
comment several lines long by placing an asterisk at the beginning of each line.
Your comments can be placed anywhere in the source program except before
HDR OPTIONS and ICTL. They do affect the storage requirements of the
source program, and the assembly time. However, they do not affect the running



or storage requirements of the assembled program. The comments are printed in
the assembler listing and can be an aid in following the listing.

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-17



Records in the Assembler Object Program
The assembler program converts the source program into control information,
machine language instructions, and data, all of which make up the object
program. There is one object program produced per assembly.
An object program containé three types of records:
e ESL (external symbol list) record
e TEXT-RLD (text-relocation directory) records
e END record.

Each object record is produced as a 64-byte field.

ESL Record: Contains the object program name, module name and all EXTRN
and ENTRY symbols. The ESL record format is:

e Byte 1: Record type identifier S

e Byte 2: Length minus 1 of the ESL record

e Bytes 3 through 62: ESL record

e  Bytes 63 and 64: 0's.

T EX T-RLD Records: Combination of text records and RLD pointers. The text
portion of each record contains the object code for the program; the RLD

pointers indicate where the address constants and relocatable operands of the text
are located. The format for the TEXT-RLD record is:

Byte 1: Record type identifier T.
e Byte 2: Length minus 1 (of text only).

e Bytes 3 and 4: Assembled address of the low-order (rightmost) text byte in
the record.

e Bytes 5 through 64: Text starts at byte 5 and goes right. RLD starts at byte
64 and goes left. The leftmost end of the RLD section is marked by the hex
0’s that fill the space between the text and RLD sections. The end of text is
always followed by at least 1 byte of hex 0’s.

1-18



END Record: Contains the entry address of the object program. If there is not
an operand in the source program END statement, the object program END
record generated by the assembler contains the hexadecimal address FFFF. The
format for the END record is:

e Byte 1: Record type identifier E

e Bytes 2 and 3: Entry address of the object program

e Bytes 4 through 64: Reserved.

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-19



Communications Programs

Data Communications Programming with SSP-ICF

You can use assembler to program applications for SSP-ICP. Refer to the
SSP-ICF Guide and Examples and to the SSP-ICF reference manuals for detailed
information. If you are programming for binary synchronous communications for
the IBM 3270, refer to the 3270 Device Emulation Guide, SC21-7912.

Data Communications Programming with BSC

1-20

The IBM System/36 assembler provides binary synchronous communications
(BSC) macroinstructions for batch BSC support. BSC macroinstructions let you
write programs that send and receive data over communications lines. The BSC
support performs all functions necessary to connect exchange identification
sequences, send and receive data, and use the correct termination or disconnect
procedures.

System/36 BSC support runs as a separate task from the assembler program,
allowing the assembler program to be swapped into and out of main storage. The
BSC task requires 4K bytes of main storage that will not be swapped and up to
8K per line for mapping to your buffers.

The BSC data management program that runs under control of your task is
required. This program can be swapped, and requires 10K of user area.



Other Systems with BSC

You can have binary synchronous data transfers between System/36 and the
following:

® Another System/36 with assembler, RPG II, or BSCEL subsjstem i
e System/34 with basic assembler, RPG II, or BSCEL subsystem

e System/32 with either basic assembler or RPG II

e System/3 with RPG II, MLMP, or CCP

e System/7 with MSP/7

® Operating System or Disk Operating System Basic Telecommunications
Access Method (OS, OS/VS, DOS/VS, or DOS BTAM)

e System/360 Model 20 Input/Output Control System for the Binary
Synchronous Communications Adapter

o Customer Information Control System (CICS/DOS/VS or CICS/VS)

» Information Management System (IMS/VS)

e IBM 3741 Model 2 Data Station or Model 4 Programmable Work Station
e IBM 3747 Data Converter

e IBM 5231 Data Collection Controller Model 2 (as a 3741 in transmit mode
only)

e IBM 3750 Switching System (World Trade only)

e IBM 5110 (in 3741 mode)

e IBM 5120 (in 3741 mode)

e IBM Series/1 (in System/3 mode)

e IBM 5260 Point of Sale Terminal (in 3740 mode)

e IBM 5280 Distributed Data System (in 3740 mode)
e IBM 6640 Document Printer

e IBM Office System/6 Information Processor

e IBM Magnetic Card II Typewriter — Communicating
e IBM 6670 Information Distributor

e IBM 6240 Magnetic Card Typewriter — Communicating

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-21



e IBM Displaywriter System
e IBM System/38 with RPG III.

Note: System/36 data communications operation procedures are explained in the
System/36 Operator’s Guide.

1-22



Magnetic Character Reader

There are two subroutines that provide you with a methods for processing
document information read by the 1255 Magnetic Character Reader. This two
subroutines are part of the System Support Program (SSP) and are described as
follows:

1.

SUBROS

System and stacker specifications describe the job to be done by the 1255.
These system and stacker specifications are specified by the programmer as
compile-time arrays for RPGII and COBOL. They are hard coded in the
Assembler Source Program.

SUBR25

A device control language (DCL) program describes the job to be done by the
1255. The SUBR25 parameter list is the data management interface between
SUBR25 and the DCL program. The parameter list replaces the system and
stacker specifications in the RPGII, COBOL or Assembler program. The
DCL program is a separate program that runs in the attachment I/O
controller for the 1255. The DCL source program consists of assembler-like
statements that are actually MACROS that need to be expanded by the
System/36 Assembler Macro processor.

Refer to the Using and Programming the 1255 Magnetic Character Reader manual
for a detailed explanation of how to use the 1255 MCR. The manual contains
in-depth explanations of the following:

SUBRO08 and SUBR25
System and Stacker Specifications
SURBR2S Parameter List and Device Control Language program

Input record format.

Chapter 1.Introduction to the IBM System/36 Assembler Language 1-23



Notes:

1-24



" Chapter 2. Using IBM System/36 Assembler Programming
Language

Before You Write an Assembler Languagé Program

Before you write an assembler program, you must be familiar with the meanings
of certain terms, coding conventions, and other features of the assembler
language. It is also necessary to understand the rules and conventions of the
language.

Assembler Control Statements

You can use two types of control statements: HEADERS and OPTIONS. A
total of 45 control statements can be used, in any order. Each statement is
limited to six operands. All control statements must be placed ahead of assembler
source statements. '

Chapter 2.Using IBM System/36 Assembler Programming Language 2-1



HEADERS Statement

S : \
The HEADERS control statement specifies control information, other than
output control, to the assembler. You can specify a category level for the object
module through the CATG operand, or the length of the control section for any
subtype 4 or 5 EXTRNSs in the assembly through the COML4 and COML5
operands. For an explanation of category levels and subtype 4 and 5 EXTRNS,
see the System/36 Overlay Linkage Editor Reference Manual.

The format of the HEADERS statement with the CATG operand is:

PROGRAM TYPING GRAPHIC
PROGRAMMER ) | DATE INSTRUCTIONS ['cHARACTER
] STATEMENT
e Label "| openation Operand " ) .
‘_? ‘3'4 5 6 7 nQ‘ul'|2|31‘|5'817|B‘|92°2|22232‘2526272329”31323334“36373839“4"2‘3“‘6“4748‘9“5‘52535‘“55575859“616253““53_576869707'72737
o~
HE ATIE- |ninininln
—+ +

annnn is a 1- to S-character decimal string of a value less than 256. If more than
one CATG operand appears in the assembler control statements, the value of the
last valid operand is used to designate the module category level. The module
category level is placed in the module external symbol list (ESL) record. The
HEADERS keyword can start in any column (except column 1), and must be
preceded by a blank. One or more blanks are required between the keyword and -
the selected options. Blanks are not allowed between options.

The format of the HEADERS statement with the COML4 and COMLS5 operands
is: :

PROGRAM TYPING GRAPHIC
PROGRAMMER j I OATE INSTRUCTIONS | cHARACTER
STATEMENT
Label Operation Operand Remarks .
123 456 7 8|90 11 1213 14}15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 7
HE S| ICoML]- [ninininrl, ICAML[S - In[Ainjnn)
P L

nnnnn is a 1- to S-character decimal string whose value must be less than 65536.
If more than one COML4 or COMLS5 operand is present in the assembler control
statements, the length in the last valid operand is used for the appropriate subtype
control section length. The lengths specified are placed in the ESL records for the
subtype 4 or 5 EXTRNs. The HEADERS keyword can start in any column
(except column 1), and must be preceded by a blank. One or more blanks are
required between the keywords and the selected options. Blanks are not allowed
between options.

22



OPTIONS Statement

An OPTIONS statement supplies assembler control options. All OPTIONS
statements must be placed before the source statement with the HEADERS
statement(s). You can specify the following assembler options on OPTIONS
statements: LIST, NOLIST, XREF, NOXREF, OBJ, NOOBIJ. Several options
can be placed on one statement in any order, separated by commas. If you
prefer, separate statements can be used for each option. The OPTIONS keyword
can start in any column (except column 1), and must be preceded by a blank.
One or more blanks are required between the keyword and the selected options.
Blanks are not allowed between the selected options.

The following example shows options placed in one statement:

PROGRAM TYPING GRAPHIC
PROGRAMMER l DATE INSTRUCTIONS | CHARACTER
STATEMENT
Label Operation Operand Remarks .
12 3 456 78 9’10‘1 12 13 14]15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 656 56 57 58 59 60 61 62 63 64 65 66 67 68 69 707172 73 7
71 LIIIST, ! Fl,

Chapter 2.Using IBM System/36 Assembler Programming Language 2-3



The following list bﬁeﬂy describes the optibns available:
Option Explanaﬁon
LIS’Tk The following sections of the assembler listing are printed:
e Options information
e External symbol list
~ @ Source and object program listing
e Diagnostic listing
e Error summary statements.
NOLIST Only the following listings are printed:
e Prologue and control statements
e Any statements in error and the associated diagnostics
o Error summary statements.
The NOLIST option overrides all assembler PRINT statements.
XREF A cross-reference listing is printed.

NOXREF A cross-reference listing is not printed.

OBJ The object program is placed in the library as a subroutine
IR “member.
NOOB]J The object program is not placed in the library.

If OBJ is entered on the OPTIONS statement and there are errors
in the assembly, a halt is issued giving you the choice of either
ending the assembly or placing the object program in the library as
a subroutine member.
The defaults are:

LIST

XREF

OBJ

You can override (replace) the OPTION statement for an assembly by specifying

the options in the ASM procedure (see the ASM Procedure Command in
Chapter 1).



" Assembler Program Conventions

Terms

You must follow certain conventions and rules for using terms and expressions,
for addressing, and for linking references.

Programs are assembled to begin at address 0000, unless you use the START
statement to specify a different address. If you do not specify a 2K boundary
when you specify the beginning address, the program will begin at the next higher
2K boundary.

When a data constant is used in the operand of an instruction, the constant’s
address is assembled into the instruction.

You should understand the meanings of expression and term to follow the rest of
this chapter. A term is a single symbol, a self-defining value, or a location
counter reference in the operand of an assembler language statement. The three
types of terms are described under Terms in this section. An expression consists
of one or more terms and makes up the operand field of an assembler language
instruction.

Terms and expressions are classed as either absolute or relocatable. (see table on
page 1-14)A term or expression is absolute if its value is not changed when the
assembled program in which it is used is loaded into main storage and is
relocatable if its value depends on addresses within the program.

Every term represents a value, a constant. This value can be assigned by the
assembler program (for symbols and for location counter references) or can be
part of the term itself (self-defining).

An absolute term is a nonrelocatable symbol, or any of the self-defining terms.
Arithmetic operations are permitted between absolute terms.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-5



2-6

Symbols (Symbolic Terms)

A symbol is a character or combination of characters used to represent a storage
location, a register, or a value.

Symbols can be used as label entries and operand entries. This is an easy way to
name and refer to a field or an instruction. Symbols used as label entries-in a
source statement are assigned values and a length attribute by the assembler.

The value assigned to a symbol in the label entry of a machine-instruction
statement is the address of the leftmost byte of the storage location containing the
statement. The values assigned to symbols naming storage areas and constants
are the addresses of the rightmost bytes of the storage fields containing these
items. The symbols naming storage areas and constants are considered
relocatable terms because the address of an area or constant might change.

A symbol that is a label entry in an equate symbol assembler instruction
statement (EQU) is assigned the length and the value designated in the operand of
the statement. You can have the operand represent a relocatable value or an
absolute value. The length attribute of the symbol on an EQU instruction is the
length of the operand entry (or operand 2, if specified).

The value of a symbol cannot i‘be a negative number and cannot exceed 65535.
The length attribute, if specified, must be from 1 to 256.

EQU statements require that a symbol in the operand be previously defined. A
symbol is defined when it appears as the label of a source statement or the
operand of an EXTRN instruction.

A symbol used as a label in a statement or operand of an EXTRN instruction can
be defined only once in an assembly.



Constants (Self-Defining Terms)

A constant is a term whose value is shown by the term. When a self-defining
term is used in a machine-instruction statement, its value is assembled into the
instruction. It is not assigned a value by the assembler. For example, the decimal
term 15 represents a value of 15.

Constants have the following characteristics:
e The length attribute of a constant term is always 1.

® Constants specify machine values or bit configurations without equating the
values to symbols and then using the symbols.

® Constants are always right-justified. Truncation and padding with 0’s occurs
from the left.

The four types of constants are: decimal, hexadecimal, binary, and character.
Each term is a representation of a corresponding machine-language bit
configuration. Constant terms are used to specify program elements such as
immediate data, masks, registers, displacements, lengths, addresses, and address
increments. The use of decimal, hexadecimal, binary, or character constants
depends on what you are specifying.

Decimal Constants: Consist of decimal numbers written as a set of decimal digits.
High-order 0’s can be used (for example, 007). A decimal constant is assembled
as its binary equivalent. A decimal constant cannot consist of more than 5 digits
or exceed 65535. A decimal constant that represents an address should not exceed
the size of storage. Some examples of decimal constants are: 8, 147, 4092, and
00,021.

In the following example, a decimal constant is used in a move immediate (MVI)
machine instruction. The 1-byte area referred to by the symbol, COST, will
contain the decimal value 25 (binary 0001 1001) after the instruction in an
assembled program is performed.

PROGRAM

TYPING GRAPHIC

PROGRAMMER I DATE INSTRUCTIONS [ CHARACTER
STATEMENT
Labet Operation Operand Remarks .
1T 2 3 4 5 6 7 8)9h011 1213 14[15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 i

I

Ll

Chapter 2.Using IBM System/36 Assembler Programming Language 2-7



Hexadecimal Constants: Consist of the letter X (coding character for
hexadecimal), followed by one to four hexadecimal digits (0 through 9,

A through F) enclosed in apostrophes. An example is X'4A9’. Each
hexadecimal digit is assembled as its 4-bit binary equivalent, in this case, as
0100 1010 1001. The largest hexadecimal constant is hex FFFF.

The hexadecimal digits and their bit patterns are as follows:

Digit Bit Pattern Digit - Bit Pattern

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

The following is an example -of a hexadecimal constant term. The 1-byte area
referred to by the symbol SWITCH would contain the hexadecimal value FO
(binary 1111 0000) after the instruction is performed.

PROGRAM : TYPING GRAPHIC
PROGRAMMER | DATE INSTRUCTIONS | CHARACTER

STATEMENT

Label Operation Opesand . : . . : Remarks .
12 3 456 7 8190111213 18]15]16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 ;

AERARNNREANRRANARN NANRY RED

2-8



Binary Constants: Consist of the letter B (coding character for binary), followed
by an unsigned sequence of 1’s and 0’s enclosed in apostrophes, as follows:
B’10101101°. This term would occupy 1 byte of storage. A binary constant can
have up to 16 bits. Binary terms are used in logical operations or to designate bit
patterns of masks.

The following example illustrates a binary term used as immediate information in
a move immediate (MVI) machine instruction. The byte of information replaces
the byte of information referred to by the symbol BETA.

PROGRAM TYPING GRAPHIC
PROGRAMMER I DATE INSTRUCTIONS | CHARACTER
STATEMENT
Labet Operation Operand Remarks

»
1 2 3 45 6 7 8910111213 14[15116 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 7

IVI IITA. ‘11 Ng

+

Character Constants: Consist of the letter C, followed by characters enclosed in
apostrophes. Letters, decimal digits, and special characters can be used in a

_ character constant. In addition, any character available on an input device can be
entered. The following are examples of character constants:

cr/t C'AB' c'13’

Each character in a sequence is assembled as its EBCDIC equivalent. Because
apostrophes are used as characters in the syntax of the assembler language, two
apostrophes must be written as input for each apostrophe desired in a character
constant as output. For example, you would write the character value A’ as
C’A”. In the following example, a dollar sign ($) would be moved into the 1-byte
field at REPORT.

PROGRAM TYPING GRAPHIC
PROGRAMMER | DATE INSTRUCTIONS | CHARACTER
STATEMENT
Label Operation Operand Remarks . i
123456 7 8|s 01112!31‘1518!7'81920212223242526272829303!323334536373839‘0414243444546‘745‘9505152535‘5556575859606|E263$l6566676869707|7273:
I 1B
+
NENRNANDERENEE |

Chapter 2.Using IBM System/36 Assembler Programming Language 2-9



Expressions

2-10

An expression is an arithmetic combination of terms. The arithmetic operators
used to combine terms into expressions are:

+ Addition
- Subtraction

* Multiplication

The following are examples of valid expressions:

AREA +X2D/ N-25 5*X'C1 *+15
AREA value plusa N value Decimal 5 times Current value of
hexadecimal 2D minus a the hexadecimal the location
decimal 25 C1 (result is counter plus
decimal 965) decimal 15

The rules for coding an expression are:

e Blanks are not allowed in an éxpression.

¢ Parentheses cannot be used in an expression.

¢ In a multiplication operation, only absolute terms can be used.

¢ Two terms or two operators must not be used consecutively in an expression.

¢ When an expression contains an external symbol, the symbol must have the
form A or A =+ e, where A is the symbol used as the operand of an EXTRN
statement and e is an absolute expression. Any symbol equated to an
expression like this cannot be used in an expression that has more than one
term.

If the expression has more than one term, the terms are reduced to a single value
as follows:

e Each term is evaluated separately.

e Arithmetic operations are performed in a left-to-right sequence, with
multiplication operations performed before addition or subtraction
operations. For example: A + B*C would be evaluated as A + (B*C), not
(A+B)*C.

The intermediate result of an expression evaluation is a 3-byte or 24-bit value.
Intermediate results must be in the range of -2 through 2%-1. Negative values are
carried in the twos complement form.

The final result of an expression is a 2-byte value, the truncated, rightmost 16 bits
of the result. In an address constant, the amount of truncation and the length of
the result depend on the length of the constant. The value of the expression
before truncation must be in the range of -65536 through + 65535 (-2¢ through



216-1). The result will not be a negative number. A negative result is considered
to be a 2-byte positive value.

Absolute Expressions: Contain relocatable terms or a combination of relocatable
and absolute terms under the following conditions:

e The expression must contain an even number of relocatable terms.

e The relocatable terms must be paired, and each pair must consist of terms
with opposite signs. Paired terms need not be next to each other.

® Relocatable terms cannot be used in a multiplication operation.

Because both terms would be relocated by the same value, pairing relocatable
terms with opposite signs cancels the effect of the relocation. The value
represented by the paired terms remains constant regardless of the program
relocation. For example, in the absolute expression A - Y + X, A is an absolute
term and X and Y are relocatable terms. If A equals 50, Y equals 25, and X
equals 10, the value of the expression would be 35. If X and Y are relocated by a
factor of 100, their values would become 110 and 125, respectively. However, the
expression would still evaluate as 35 (50-125+ 110=35).

Relocatable Expressions: Contain a combination of relocatable and absolute
terms under the following conditions:

o There must be an odd number of relocatable terms.

e All relocatable terms, except one, must be paired, and each pair must consist
of terms with opposite signs. The paired terms need not be next to each
other.

¢ The unpaired term must not immediately follow a minus sign.
® Relocatable terms cannot be used in a multiplication operation.
e Every relocatable expression must reduce to a positive value.

All of the terms in a relocatable expression are combined and reduced to a single
value. This is the adjusted value of the unpaired relocatable term after it is
displaced by the values of the other terms in that expression. For example, in the
expression W - X + Y where W, X, and Y are relocatable terms, and W=10, X
= 3,Y = 1 before relocation, the result is the relocatable value of 8.

If this program is relocated by 100 bytes, the resulting value of the expression
would be increased by the amount of relocation (100), giving the expression a
value of 108.

In the following expression, a combination of absolute and relocatable terms are
used: A + F*G -D + B. A, D, and B are relocatable terms; F and G are
absolute terms. Given the values A = 3, B =2 D =5 F=1,and G = 4.
The multiplication occurs first, resulting in 4; then the addition and subtraction of
the other terms, including the result of the multiplication, is performed in a
left-to-right direction. The result of the arithmetic operations is a relocatable
value of 4.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-11



2-12

The value of this expression after relocation can be determined by adding the
amount of relocation to the relocatable result. . o



Location Counter Reference

A location counter is used to assign storage addresses. It is the assembler’s
equivalent of the instruction counter in the computer. As each assembler
language statement or data area is assembled, the location counter is increased by
the number of bytes required for the assembled item. The counter always points
to the next available location. ‘If an instruction statement is labeled by a symbol,
the label is assigned the value of the location counter before addition of the
assembled length. If a statement defines storage or a constant, the symbol is
assigned a value one less than the value of the location counter after the addition
of the assembled length.

The location counter setting can be controlied by using the START and ORG
assembler control statements. The maximum value for the location counter is
65535.

You can refer to the current value of the location counter by using an asterisk (*)
as a term in an operand. The asterisk represents the location of the first byte of

currently available storage. For example:

Location counter = 1300

Source Generated
Relocatable - LAB2 DC AL2(*) ' 1300
LAB3 DC AL2(LAB2) 1301
Absolute '
(nonrelocatable) LAB2 DC AL2(X"1300") 1300

Chapter 2.Using IBM System/36 Assembler Programming Language 2-13



Addressing

2-14

The two methods of addressing any part of storage are direct addressing and base

displacement (relatlve) addressing.

Direct Addpressing

Direct addressing allows you to represent a 16-bit instruction address by using an
expression as an operand. The assembler places the value of the expression in the
machine instruction as 2 bytes. A direct address never refers to a register in the
operand. Sé_e the following figure for an example of direct addressing.

LOC  OBRJECT CODE
0000
0000 D 0048 0033

oC 1
0006 OC 07 0070 OO3R
000C OC OE OO7F 004A

0016 DNINSCBISA0N14B40 0033
0034 F2FBFB8&60FSF3F9F2 003B
003C IPDSCICBCSEEICS 0044

004k
00469
0071

ADDR STMT
1

2

a4

5

&

7

-]

10

11

12

13

0016 19
20

21

22

004§ 24
00468 25
0070 26
007F 27
0000 28

SOURCE STATEMENT

EXAMF  START O
FRINT NODATA,NOGEN

* A *

» AN EXAMPLE OF DIRECT ADDRESSING. *

* R ) *
MVC  NAME2(30) ,NAMEL MOVE "NAME" OF AREAL TO "NAME" OF ¢
MUC  PHON2COS) , PHONL MOVE "FHON" OF AREAL TO "PHON" OF ¢
MUC  CITY2¢15),CITYL MOVE “CITY" OF AREAL TO "CITY" OF ¢

» $SEO. . END OF JOB

AREA1 EQU . %

NAME ] DC  CL3O?JOHN J. SMITH? UNAME" OF AREAL

FHONL DC . CLO8*286-5392°* “EHON" OF AREAL

CITY1 IC . CL1S?ROCHESTER? “CITY” OF AREAL

AREAZ  EOM =

NAME2 = DS  CL30 UNAME" OF AREA2

FHON2Z DS ~ CLO8 "FHON" OF AREA2

CITY2 DS CcL1S "CITY" OF AREAZR

END! EXAMP



ERR

ERR

Base Displacement Addressing

Base displacement addressing involves:the programmer having assembler placing a
base address in a register. Other addresses.can then be calculated from this base
address. This base displacement is one byte in the machine instruction. Any
value in an index register allows access to 256 storage positions.

The USING statement makes the contents of an index register the basis for base
displacement addressing. The DROP statement ends base displacement
addressing. For information about the USING and DROP statements, see their
descriptions in Chapter 3. The following figure shows examples of base
displacement addressing:

LOC OBJECT CODE - ALDR STMT SOURCE STATEMENT
0000 1 EXAMFL  START ©
2 FRINT NODATA,NOGEN
4
5 *
b6 * AN EXAMPLE OF BASE-DISFLACEMENT ADDRESSING WITH THE *
7 PUSING' INSTRUCTION. *
B * *
.9
0000 C2 01 0018 11 LA AREAL,R1 POINT TO THE MOVING 'FROM' FIELD
oois 12 USING AREAL,R1 SET TO USE LABELS AS DISFLACEMENTS FROM AREAL
0004 C2 02 004D 14 LA AREA2,R2 . . POINT TO THE MOVING "TO" FIELD
0018 15 USING AREAL,R2 SET TO USE LABELS OF AREAL AS DISFLACEMENTS
16 * INTO AREAZ.
0008 9C 10 1D 1D 18 Mvc NAME(30,R2) ,NAME(,R1) MOVE "NAME" OF AREAL TO “NAME" OF AREA2
000C 9C 07 25 25 1? MYC FPHONCO8,R2) , FHON(,R1) MOVE “FHON" OF AREAL TO "FHON' OF AREAZ
0010 9C OE 34 34 20 MuC CITY(1S,R2),CITY(,RL) MOVE “CITY" OF AREA1 TO “CITY" OF AREA2
21 = o SEOJ END OF JOE
0018 27 AREAL EQU *
0018 D1NGCBUSACNIAR40 0035 28 NAME nc CL30* JOHN J. SMITH? NAME" OF AREAL
0036 FRFBFBOOFSFIFPF2 003D 29 FHON nc CLO8? 28853927 “FHON" OF AREAL
O03E DYDECICBCSELEICS 004C 30 CITY - .nc CL1S?ROCHESTER? HCITYY OF AREAL
004t 32 AREAZ EQU * ‘
004D 006A 33 ns CL30 UNAME" OF AREAZ
006E 0072 34 s cL.ose YFHON" OF AREAZ
0073 0081 35 ns CL1s “CITY" OF AREA2
0001 37 R1 [N} 1 EQUATE FOR REGISTER 1
0002 38 R2 EQU 2 EQUATE FOR REGISTER 2
0000 39 END EXAMFL
LOC ORJECT CODE ADDR STMT SOURCE STATEMENT
0000 1 EXAMP2 START O
2 PRINT NODATA,NOGEN
4
G o *
& » AN EXAMFLE OF BASE LISFLACEMENT ADDRESSING *
7o USING “"EQUATES" *
8 » *
9
0000 C2 01 0018 11 LA AREAL,R1 FOINT TO THE MOVING "FROM" FIELD
0004 C2 02 004D 13 LA AREAZ2,R2 FOINT TO THE MOVING "TO" FIELD
0008 9C 1D 1D 1D 19 MvC NAME(30,R2) , NAME (,R1) MOVE "NAME'" OF AREAL TO "NAME" OF AREA2
000C 9C 07 25 25 16 MVC PHONCO8,R2) , PHON(,R1) MOVE “FHON' OF AREAL TO “FHON" OF AREA2
0010 9C OE 34 34 17 MVC CITY(1%5,R23,CITY(,R1) MOVE “CITY" OF AREAL TO “CITY" OF AREA2
18 = $EOJ END OF JOE
oo18 24 AREAL EQU *
0018 DiD4CBDSA0DL4AR40 0035 25 nc CL30?JOHN J, SMITH® "NAME"” OF AREAL
0036 F2FBFB&OFSFIFPF2 003D 26 nc cLo8’ 28853927 “FHON' OF AREA1L
O03E D9N6CICECSE2EICS 004C 27 nc CL15?ROCHESTER? “CITY'" OF AREAL
oo04n 29 AREA2 EQU *
004D 006A 30 s CcL30 “NAME' OF AREA2
00&B 0072 31 s cLos "FHON' OF AREA2
0073 0081 32 s CL1S "CITY" OF AREA2
ooLn 34 NAME EQU 29,30 “NAME" DISFLACEMENT INTO AREAS 1 & 2
0025 35 PHON EQU NAME+8,8 “FHON" DISFLACEMENT INTO AREAS 1 & 2
0034 36 CITY EQU FHON+15,15 “CITY” DISFLACEMENT INTO AREAS 1 & 2
0001 38 R1 EQU 1 EQUATE FOR REGISTER 1
0002 39 R2 EQU 2 EQUATE FOR REGISTER 2
0000 40 END EXAMP2

Chapter 2.Using IBM System/36 Assembler Programming Language 2-15



Relative Addressing

Relative addressing addresses instructions and data areas by giving their location
(in bytes) in relation to the location counter or to some symbolic location. This.
type of addressing is only entered in bytes. Thus the expression * +4 specifies an
address that is 4 bytes greater than the current value of the location counter. In

the sequence of instructions shown in the following example, the instruction with
the operation code ZAZ has a length of 6 bytes, the instruction AZ has a length

of § bytes, and the instruction with MVI has a length of 4 bytes.

PROGRAM TYPING GRAPHIC
PROGRAMMER | DATE INSTRUCTIONS | CHARACTER
STATEMENT
Label Operation Operand Remarks .
123456 78 0"121;“!516171819202122232‘525272829”3'32333‘536373839‘0‘14243“‘545‘7.549505152535‘“56575G59”6‘62638‘““676869”7|72737
g, g
K MVI| | | D, X FIFl
B AAAHE

When you use relative addressing, the location of the AZ machine instruction can
be expressed in two ways: AAA+6 or BACK-5.

Instruction Addressing

A symbol used as a label entry in a machine-instruction statement addresses the
leftmost (low-address) byte of storage occupied by that instruction.

Data Addressing
A symbol used as a label entry in a data definition instruction (see DC-Define

Constant and DS-Define Storage in Chapter 3) addresses the rightmost
(high-address) byte of storage occupied by or reserved for that data.

Program Linking References

2-16

You can link independently assembled programs by defining symbols in one
program and referring to them in another. The assembler must provide
information about the linkage symbols to the overlay linkage editor. Using the
linkage symbols provided by the ENTRY and EXTRN instructions, the assembler

 places the necessary information in the external symbol lists.

You will use the ENTRY assembler instruction to identify the linkage symbol in
program A. Once the symbol is identified as naming an entry point, you can use
that symbol in another program (B), in a branch operation, or as a data reference.
With an EXTRN assembler instruction in program B, you must also identify the
symbol used in program A. You can also use the label of a START statement
for program linking. The formats of the EXTRN and ENTRY assembler control
instructions are included in Chapter 3.




Machine Instructions

Machine instructions are the most elementary instructions you can use with
System/36. A summary chart of all instructions is in Appendix D.

General Programming Notes

These programming notes apply to all machine instructions. Notes that apply to
specific instructions are explained with those instructions.

Operand 2 is not changed unless the fields overlap. However, overlapping
operands can destroy part of operand 2 before it is used in the operation.

A length value is not required. If you omit the length, implied lengths are
used.

Operations other than AZ, SZ, ZAZ, and SRC, where you can specify length,
allow a maximum length of 256 bytes.

For zoned operations, AZ, SZ, and ZAZ, the maximum value of lengthl is 31
bytes and the maximum value of length2 is 16 bytes. Also, lengthl must be
greater than or equal to length2 and lengthl minus length2 must be 16 or less.
For Shift Right Characters (SRC), the maximum length is 16 bytes.

Save areas for registers occupy 2 bytes.

Labels on all data in examples point to the rightmost byte shown.

Information about the setting of the Program Status Register after each
instruction is given in the System/36 Functions Reference manual.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-17



A (Add to Register)

The A instruction adds the binary number in the location indicated by the
operand to the contents of the 2-byte register indicated by the hexadecimal values
assigned as follows:

Register Hex Value
Index Register 1 01 or 03
Index Register 2 02
Program Status Register 04
Address Recall Register 08
Instruction Address Register 10 or 20
Work Register 4 44

Work Register 5 45

Work Register 6 46

Work Register 7 47

For example:

A BIGE,O08
Label Before (hex) After (hex)
BIGE 01 32 01 32
ARR 09 SE 0A 90

This instruction adds the contents of BIGE-1 and BIGE to the contents of the
address recall register (ARR).

This instruction can be used in the following formats:
Operation Operand Hex Value (XX)

‘A address XX
A displacement(,regl) , XX
A displacement(,reg2) , XX

Programming Notes

o This instruction changes the contents of only one register.
e Constants must be at least 2 bytes long.

e The operand value is not changed.

e Adding to the Program Status Register causes an unpredictable result. Hex
04 is forced into the high-address byte of the program status register.

e Adding to the IAR causes an unconditional branch without changing the
ARR,

2-18



ALC (Add Logical Characters)

The ALC instruction adds the binary number at the locations indicated by
operand 2 to the binary number at the locations indicated by operand 1. For
example:

ALC FIL1(4),FIL2

Label Before (hex) After (hex)
FIL1 FE ED FF FF FF OF 00 00
FIL2 00210001 00 21 00 01

This instruction adds the 4-byte hexadecimal number at FIL2 to the 4-byte
hexadecimal number at FIL1.

Operation Operandl Operand2
ALC addressl(lengthl) ,address2
ALC  addressl(lengthl) ,displacement2(,regl)
ALC  addressi(lengthl) ,displacement2(,reg2)

ALC displacementl(lengthl,regl),address2 .
ALC  displacementl(lengthl,regl),displacement2(,regl)
ALC displacement!(lengthl,regl),displacement2(,reg2)
ALC  displacementl(lengthl,reg2),address2

ALC  displacementl(lengthl,reg2),displacement2(,regl)
ALC displacementl(lengthl,reg2),displacement2(,reg2)

Programming Notes

A length can be given in either operand, but not in both.
Both operands must be the same length, up to a maximum of 256 bytes.
If you do not specify a length, the implied length of operand 1 is used.

The system sets the binary overflow bit to 0 if a carry does not occur and to 1
if a carry does occur.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-19



ALI (Add Logical Immediate)

2-20

The ALI instruction adds the binary number in the supplied byte to the binary
number in the location specified by the operand. For example:

ALI DEPT,X'2E'

This instruction adds the value 2E (8 bits) to the contents of the location
indicated by DEPT.

Label Before (hex) - After (hex)
43

Dept 15
Operation Operand Hex Value (XX)
ALI address XX

ALI displacementl(,regl) :XX
ALI  displacementl(,reg2) ,XX

Programming Notes

- @ This instruction affects only a single l(ocation.

e The ALI instruction uses the SLI operation code and changes the value to
twos complement when assembled.

e The program status register is set according to the twos complement value of
the operand’s Q-code.



AZ (Add Zoned Decimal)

The AZ instruction adds the decimal value of the numeric portion of the locations
indicated by operand 2 to the decimal value of the numeric portion of the
locations indicated by operand 1. For example:

Label Before (hex) After (hex)
FIL1 F3F6F9 F3 F9 F4
FIL2 F2F5 F2 F5

This instruction adds the two numeric portions of FIL2 to the three numeric
portions of FIL1.

Operation Operandl Operand2
AZ  addressl(lengthl) ,address2(length2)
AZ  addressi(lengthl) ,displacement2(length2),regl)
AZ  addressl(lengthl) ,displacement2(length2,reg2)

AZ displacementl(lengthl,regl),address2(length2)
AZ  displacementl(lengthl,regl),displacement2(length2,regl)
AZ  displacementl(lengthl,regl),displacement2(length2,reg2)
AZ  displacement2(lengthl,reg2),address2(length2)
AZ  displacementl(lengthl,reg2),displacement2(length2,regl)
AZ  displacementl(lengthl,reg2),displacement2(length2,reg2)

Programming Notes

e The address of operand 1 remains in the address recall register until another
AZ, BC, ITC, SZ, or ZAZ instruction is performed, or until the register is the
target of an A, L, LA, or S instruction.

® The system does not check for valid decimal digits in either operand.

e The zone bits of all but the rightmost byte in operand 1 are always set to hex
F. The zone bits of the rightmost byte are set to hex F if the result of the

operation is positive, or to hex D if the result is negative.

e If the zone bits of the rightmost byte are hex D or B, the operand is negative.
If the zone bits are anything else, the operand is positive.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-21



BC (Branch on Condition)

2-22

‘The branch instructions cause a transfer of control to the specified instruction if

bits 2 through 7 of the high-address byte of the program status register meet the
conditions represented by the data byte.

 These are the conditions tested for, and the data byte bits:

Condition Data Byte Bit

Equal 7
Low 6
High 5
Decimal overflow 4
Test false 3
Binary overflow 2

If bit 0 of the data byte is 1, match of 1 bits between the program status register
and the data byte causes a branch. If bit 0 is 0, all of the tested bits of the
program status register must be 0 for a branch to occur. If no conditions are met,
the system performs the next instruction. To perform a branch, the system places
the address of the next sequential machine instruction in the address recall
registet, then branches to the supplied address. You can test for a combination of
conditions with the BC instruction. For example:

BC BURT,X'AS8'

This instruction branches to the location labeled BURT if the value in the

" program status register indicates either a decimal overflow or a binary overflow

condition.

The instruction has the following format:
Operation Operand Hex Value (XX)

BC  address XX
BC  displacement(,regl) , XX
BC  displacement(,reg2) , XX
BC  displacement(,reg8) , XX



Branch Mnemonics

Use the branch mnemonics from the following list to branch on a specific
condition. Use one of these mnemonics in place of BC and specify only

operand 1.

Instruction

Branch (unconditional)
Branch high

Branch low

Branch equal

Branch not high

Branch not low

Branch not equal

Branch overflow zoned
Branch overflow logical
Branch no overflow zoned
Branch no overflow logical
Branch true

Branch false

Branch plus

Branch minus

Branch zero

Branch not plus

Branch not minus

Branch not zero

Programming Notes

Generated Data
Byte (hex)

®  An address remains in the address recall register until another AZ, BC, ITC,
SZ, or ZAZ instruction is performed, or until the register is the target of an

A, L, LA, or S instruction.

e If the ARR is used in the operand, the address being branched to is
determined before the ARR is changed to the next sequential instruction.

e Test data of hex 80, 07, 17, 27, 37, 47, 57, 67, 77, OF, 1F, 2F, 3F, 4F, 5F, 6F,

or 7F is a no operation (no-op) condition; that is, no branch occurs.

e Test data of hex 00, 87, 97, A7, B7, C7, D7, E7, F7, 8F, 9F, AF, BF, CF,
DF, EF, or FF causes an unconditional branch.

e  When the branch instruction is performed, only bit 4 (decimal overflow) and

bit 3 (test false) of the program status byte are set off as they are tested.

e The program status byte is never hex 00, and only one of 5, 6, or 7 is always

on.

Chapter 2.Using IBM System/36 Assembler Programming Language

2-23



BD (Branch Direct)

‘The BD instruction causes-an unconditional branch to the address represented by
the operand, and does not change the ARR. For example:

'BD BURT

This instruction branches to the location labeled BURT, and does not change the
address recall register.

Operation  Operand
BD address
BD displacementl1(,regl)
BD displacement2(,reg2)

Programming Notes

This instruction assembles into the same object code as LA of the IAR.

2-24



CLC (Compare Logical Characters)

The CLC instruction compares the contents of the location indicated by operand
1 with the contents of operand 2. The setting of the program status register is
determined by the results of the comparison. The program status register settings
are given in the following table: :

Set on Condition Register Bit Name
Operand 1 value larger 5 High
Operand 1 value smaller 6 Low
Compare equal 7 Equal

For example:

CLC BARB(2),MIKE

This instruction compares the 2-byte contents of BARB (16 bits) with the contents
of MIKE (16 bits).

Operation Operandl Operand2
CLC  addressl(lengthl) ,address2
CLC addressi(lengthl) ,displacement2(,regl)
CLC addressl(lengthl) ,displacement2(,reg2)
CLC displacement2(,regl) ,address2

CLC displacementli(lengthl,regl),displacement2(,regl)
CLC displacementli(lengthl,regl),displacement2(,reg2)
CLC displacementl(lengthl,reg2),address2

CLC displacementl(lengthl,reg2),displacement2(,regl)
CLC displacementl(lengthl,reg2),displacement1(,reg2)

Programming Notes

® The length (number of locations), up to a maximum of 256, can be given in
either operand of the instruction, but not in both. If you do not specify a
length, the implied length of operand 1 is used.

e The contents of neither operand location is changed by this instruction.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-25



CLI (Compare Logical Immediate)

2-26

The CLI instruction compares all the bits of the supplied byte with the bits in the

location specified by the operand. The setting of the program status register is
determined by the results of the comparison. The program status register settings
are given in the following table:

Set on Condition Register Bit Name
Supplied value smaller 5 High
Operand value smaller 6 Low
Compare equal 7 Equal

For example:

CLI DENN,X'3F'

This instruction compares the value hex 3F (8 bits) with the contents of the
Iocation indicated by DENN.

Operation Operand Value
CLI  address XX
CLI  displacementl(,regl) XX
CLI  displacementl(,reg2) ,XX

Programming Notes

Neither the supplied value nor the contents of the storage location is changed by
this instruction.



ED (Edit)

The ED instruction replaces bytes containing hexadecimal 20 in the locations
indicated by operand 1 with bytes from the locations indicated by operand 2,
starting at the rightmost position of both operands. The zone bits of the copied
bytes are set to hexadecimal F as they are written. For example:

ED BERT(6) ,ERNI

Label Before (hex) After (hex)
BERT 2020 20 4B 20 20 F1 F9 F9 4B F5 FO
ERNI F5 F1 F9 F9 D5 DO F5 F1 F9 F9 D5 DO

This instruction copies the data from each of the locations indicated by ERNI
(changing the zone bits to hex F) into each of the six locations indicated by
BERT that contain hex 20. If only the first location at BERT had contained a
hex 20, then only the data in the rightmost location at ERNI would have been
used.

Operation Operandl Operand?2
ED  addressi(lengthl) ,address2
ED addressi(lengthl) ,displacement2(,regl)
ED addressl(lengthl) ,displacement2(,reg2)

ED displacement!(lengthl,regl),address2
ED displacementl(lengthl,regl),displacement2(,regl)
ED displacementl(lengthl,regl),displacement2(,reg2)
ED displacementi(lengthl,reg2?),address2
ED displacementl(lengthl,reg2),displacement2(,regl)
ED displacementli(lengthl,reg2),displacement2(,reg2)

Programming Notes

® Operand 2 must contain at least as many bytes as there are hex 20s in
operand 1.

o The length (number of locations) can be supplied by either operand, but not
both.

® The first location addressed in either operand is the highest addressed
(rightmost) location, with the next lower address being used in each successive
cycle.

e Resultant data in operand 1 is unsigned numeric.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-27



ITC (Insert and Test Characters)

2-28

The ITC instruction replaces characters in the locations indicated by operand 1
with the character in the location indicated by operand 2. All characters to the

- left of the first significant digit (decimal 1 through 9) are replaced with the

character from the operand 2 location. This replacement continues for the
specified number of locations, or until a location indicated by operand 1 is found
to contain a number (hex F1 through F9). For example:

ITC BOB1(6),RAY2

Label Before (hex) After (hex)
BOBI1 F0 FO 6B F8 F5 F0 5C 5C 5C F8 F5 FO
RAY2 5C 5C

The character found at RAY2 is copied into the locations indicated by BOBI,
beginning with location BOB1-5 and continuing until a number (hex F1 through
F9) is found.

Operation Operandl Operand2
ITC addressl(lengthl) © ,address2
ITC = addressl(lengthl) . displacement2(,regl)
ITC  addressi(lengthl) ,displacement2(,reg2)

ITC  displacementl(lengthl,regl),address2
ITC  displacementl(lengthl,regl),displacement2(,regl)
ITC  displacementl(lengthl,regl),displacement2(,reg2)
ITC  displacementl(lengthl,reg2),address2
ITC  displacementl(lengthl,reg?),displacement2(,regl)
ITC displacementl(lengthl,reg2),displacement2(,reg2)

Programming Netes

e At the end of this operation, the ARR contains either the address of the first
significant digit or, if none, the address+ 1 of the first operand.

® An address remains in the address recall register until another AZ, BC, ITC,
SZ, or ZAZ instruction is performed, or until the register is the target of an
A, L, LA, or S instruction.

e The length (number of locations) can be supplied by either operand, but not
both.

e This operation occurs from low address (leftmost) to high address (rightmost).

e The second operand is a 1-byte field.



JC (Jump on Condition)
The jump instructions cause the program to jump either forward or backward to a
new instruction address when bits 2 through 7 in the high-address byte of the
program status register satisfy the conditions tested by the supplied data byte.

The conditions represented and the bits tested for are given in the following table:

Condition Bit On (1)
Equal 7
Low 6
High 5
Decimal overflow 4
Test false 3

Binary overflow 2

If bit 0 of the supplied data is 1, any matching 1 bits between the program status
register and the data byte cause a jump. If bit 0 is 0, all of the tested bits of the
register must be 0 for a jump to occur. If none of the conditions are met, the
system performs the next sequential instruction.

To perform a jump, the program determines a displacement from the operand of
the jump instruction. This displacement is added to or subtracted from the
address in the instruction address register after the IAR has been increased
beyond the jump instruction. The program jumps to that new address at the end
of the jump on condition operation. For example:

JC MORT,X'81"

This instruction causes a jump, using the address (or displacement) found in the
location indicated by MORT, if the value in the program status register is odd
(condition equal).

This instruction has the following format:
Operation Operand - Value

JC address XX
JC displacement, XX

Chapter 2.Using IBM System/36 Assembler Programming Language 2-29



Jump Mnemonics

~-Use the jump mnemonics from the following list to-jump on a specific condition.
Use one of these mnemonics in-place of JC and specify only operand 1.

Do w0 g Generated Data
Instruction Mnemonic  Byte (hex)

Jump unconditional J 87 .
Jump high v JH - 84
Jump low . JL 82
Jump equal . . . JE . 81
Jump not high : JNH - 04
Jump not low JNL 02
Jump not equal : JNE 01
Jump overflow zoned JOzZ 88 .
Jump overflow logical JOL A0
Jump no overflow zoned INOZ 08
Jump no overflow logical JNOL 20,
Jump true JT 10
Jump false JF 90
Jump plus . o JP . 84
Jump minus T M - 82.
Jump zero jZz ’ 81
Jump not plus =~ JNP 04
Jump not minus JNM 02

Jump not zero .. INZ 01
Programming Notes ' |

e The operand must be an address within 255 bytes (hex FF) of the next
sequential instruction. ’

o The program stéfiis byte is never hex 00, and only one of bits 5, 6, or 7 is
-always on. ~

e The ARR is not éhangéd by this instruction.

e Test data of hex 80, 07, 17, 27, 37, 47, 57, 67, 77, OF, 1F, 2F, 3F, 4F, 5F, 6F, '
or 7F causes a no operation (no-op) condition, which means no jump occurs.

e Test data of hex 00, 87, 97, A7, B7, C7, D7, E7, F7, 8F, 9F, AF, BF, CF,
DF, EF, or FF causes an unconditional jump.

e Bit 4 (decimal overflow) and bit 3 (test false) of the program status byte are
set off as they are tested. The other bits are not affected.

e An absolute value of 0 through 255 can be used as the operand.

2-30



L (Load Register)

The L instruction copies data from the 2-byte field specified by operand 1 into the
specified register, shown in the following table:

Register ‘ Hex Value (XX)
Index Register 1 01 or 03

Index Register 2 02

Program Status Register 04

Address Recall Register 08

Instruction Address Register 10 or 20

Work Register 4 44

Work Register 5 45

Work Register 6 46

Work Register 7 47

For example:

L FOX1,X'08'

This instruction copies the 2-byte contents of the location indicated by FOX1 into
the address recall register:

Operation  Operandl Hex Value (XX)
L address XX
L displacementl(,regl) XX
L  displacementl(,reg2) , XX

Programming Notes
e This instruction copies data into only one register.

e The system performs an unconditional branch to any address placed in the
instruction address register without changing the ARR.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-31



LA (Load Address)

2-32

- The LA instruction places the 2-byte address represented by operand 1 into the

specified register shown in the following table:

Register Hex Value (XX)

-Index Register 1 B 0! or 03
Index Register 2 ’ 00 or 02
Program Status Register 04
Address Recall Register 08
Instruction Address Register 10 or 20
Work Register 4 4
Work Register 5 45
Work Register 6 ' 46
Work Register 7 , 47

For exampie:
LA PAT3,X02

This instruction places the addréss 6f PATS3 into index register 2.

Operation  Operand1 Hex Value (XX)

LA address XX

LA displacement(,regl) XX

LA displacement(,reg2) ;XX
Programming Notes

e This instruction copies data into only one register.

e This instruction causes an unconditional branch to any address plaécd in the
IAR without changing the ARR.



MVC (Move Characters)

- The MVC instruction copies the data at the location (starting with the rightmost
byte) indicated by operand 2 into the location indicated by operand 1. For
example:

MVC. DED1(6) ,DED2
Label  Before (hex) After (hex)

DED1 D9 96 83 88 85 A2 E3 96 99 96 95 E3
DED2 E3 96 99 96 95 E3 E3 96 99 96 95 E3

This instruction copies the 6 bytes at DED2 into six locations beginning at

DED1.

Operation Operandl Operand2
MVC addreésl(lengthl) ,address2
MVC addressl(lengthl) ,displacement2(,regl)
MVC addressl(lengthl) ,displacement2(,reg2)

MVC displacementl(lengthl,regl),address2

MVC displacementl(lengthl,regl),displacement2(,regl)

‘MVC displacementl(lengthl,regl),displacement2(,reg2)
© MVC displacementl(lengthl,reg2),address2

MVC displacementl(lengthl,reg2),displacement2(,regl)

MVC displacementl(lengthl,reg2),displacement2(,reg2)

Programming Notes .

® Alength,uptoa maximum of 256, can be given in either operand, but not in
both. If you do not specify a length, the implied length of operand 1 is used.

e . You can propagate a character through a field by setting the operand 2
address one byte higher (to the right) than the operand 1 address.

o The contents of the locatioﬂs of operand 2 are not changed unless the fields
overlap.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-33



MVI (Move Logical Immediate)

The MVI instruction copies a 1-byte value into the location indicated by
operandl. For example: . :

MVI FERD,X’OO'
This instruction sets the contents of location FERD to 0.
Operation Operandl Hex Value (XX)

MVI  address XX

MVI  displacementl(,regl) , XX

MVI  displacementl(,reg2) , XX

Programming Notes

The first operand is a 1-byte storage locatidn. -

2-34



MVX (Move Hexadecimal Character)

The MVX instruction copies either the numeric or the zone portion of the
location indicated by operand 2 to either the numeric or the zone portion of the
location indicated by operand 1, as shown in the following table:

Operation Mnemonic  Hex
Copy to zone from zone MZZ 00
Copy to zone from numeric MZN 01
Copy to numeric from zone MNZ 02
Copy to numeric from numeric ~MNN 03

For example:
MVX ADD1(01),ADD2

Label Before (hex)  After (hex)
ADD1 12 52
ADD2 F5 FS

This instruction copies the numeric portion of ADD2 into the zone portion of
ADDI1. The instruction could also be written as NZ ADD1,ADD2.

Operation Operandl Operand2
MVX addressi(lengthl) ,address2
MVX addressl(lengthl) ,displacement2(,regl)
MVX addressl(lengthl) ,displacement2(,reg2)

MVX displacementl(hex,regl) ,address2
MVX displacementl(hex,regl) ,displacement2(,reg])
MVX displacementl(hex,regl) ,displacement2(,reg2)
MVX displacementl(hex,reg2) ,address2
MVX displacementl (hex,reg?2) ,displacement2(,regi)
MVX displacementl (hex,reg?) ,displacement2(,reg2)

Programming Notes
e Both operands specify 1-byte storage locations.

o The second operand is changed if both operands specify the same byte.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-35



S (Subtract from Register) R AU ED S

2-36

The S instruction subtracts the binary number in the 2-byte location indicated by
the operand from the contents of the 2-byte register indicated by the hexadecimal
values assigned as follows: ,

Register Hex Value (XX)
Index Register 1 01 or 03
Index Register 2 02

Program Status Register ~04

Address Recall Register 08

Instruction Address Register 10 or 20

Work Register 4 44

Work Register 5 45

Work Register 6 46

Work Register 7 47

For example:

S FIL1,08

This instruction subtracts the contents of FIL1 -1 and FILI from the contents of
the address recall register (ARR).

Operation Operandl Hex Value (XX)

S address ‘ XX
S  displacementl(,regl) , XX
S  displacementl(,reg2) , XX

Programmilig Notes

e This instruction chaﬁges the contents of only one register.

e The operand value is not changed.

. Subtraction from the program status register causes unpredictable results.

e Subtraction from the instruction address register causes an unconditional
branch without changing the ARR.



SBF (Set Bits Off Masked)

: The SBF instruction changes a bit of the data at the location specified by operand
1 to binary 0 if a corresponding bit of the 1-byte value is binary 1. If a bit of the
value is binary 0, no changes are made to the corresponding bit in operand 1.
For example:

SBF NODR,X'0F’

This instruction sets all bits of the numeric portion of the data in NODR to
binary 0’s, but will not alter the zone portion. .

Operation Operandl Hex Value (XX)
SBF address XX
SBF  displacementl(,regl) XX
SBF  displacementl(,reg2) , XX
Programming Notes

The length of operand 1 is 1 byte.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-37



SBN (Set Bits On Masked)

2-38

The SBN instruction changes a bit of the data at the location specified by
operand 1 to binary 1 if a corresponding bit of the 1-byte value is binary 1. If a
bit of the value is binary 0, no changes are made to the corresponding bit in
operand 1. For example:

SBN FERN,X'FO'

This instruction sets all bits of the zone portidn of FERN to binary 1’s, but does
not alter the numeric portion.

Operation Operandl ~ Hex Value (XX)
SBN address XX
SBN displacementl(,regl), XX
SBN displacementl(,reg2) ,XX
Programming Notes |

The length of operand 1 is 1 byte.



SLC (Subtract Logical Characters)

The SLC instruction subtracts the binary number in the location indicated by
operand 2 from the binary number in the location indicated by operand 1. For
example:

SLC ONE2(2) ,FEW2

Label Before (hex) After (hex)’
ONE2 DD DD CB A9
- FEW2 12 34 ' 12 34

This instruction subtracts the 2-byte binary number at FEW2, operand 2, from
the 2-byte binary number at ONE2, operand 1, leaving the result of the operation
in the operand 1 locations.

Operation Operandlk: o ~ Operand2
SLC addressl(lengthl) ~ ,address2 '
SLC addressl(lengthl) ,displacement2(,regl)
SLC addressl(lengthl) ,displacement2(,reg2)

SLC displacementl(lengthl,regl),address2
SLC displacementl(lengthl,regl),displacement2(,regl)
SLC displacementl(lengthl,regl),displacement2(,reg2)
SLC displacementl(lengthl,reg2),address2
SLC displacementl(lengthl,reg2),displacement2(,regl)
SLC displacementl(lengthl,reg2),displacement2(,reg2)

Programming Notes

e A length, up to a maximum of 256, can be given in either operand, but not in
both. If you do not specify a length, the implied length of operand 1 is used.

e If the value of operand 2 is greater than operand 1, an additional high-order

bit is implied for operand 1. Therefore, the resulting difference will never be
a negative number.

" Chapter 2.Using IBM System/36 Assembler Programming Language 2-39



SLI (Subtract Logical Immediate)

2-40

The SLI instruction subtracts the binary number in the supplied byte from the

* binary number in the location specified by the operand. For example:

SLI FIL1,X'3F'

Label " Before (hex)  After (hex)
FIL1 (hex) EE AF

This instruction subtracts the value hex 3F (8 bits) from the contents of FIL1.
Operation Operandl Hex Value (XX)

SLI address XX

SLI displacementl(,regl), XX

SLI displacementl(,reg2) , XX

Programming Notes
e This instruction affects only a single storage location.

e If the value of operand 2 is greater than operand 1, an additional high-order
bit is implied for operand 1.



SRC (Shift Right Character)

The SRC instruction causes the specified storage locations to shift the specified
number of bits to the right. The leftmost bits are set to zero and the rightmost
bits that were shifted out are lost. The shifted field can be up to 16 bytes long
and up to 16 bits can be shifted. For example:

SRC NITA(2),4
Label Before (hex)  After (hex)
NITA-1 X'F4 X'OF’
NITA X'F5 X’4F’

This instruction shifts the 16 bits (2 bytes) at the locations NITA and NITA-1
4 bits to the right. The leftmost 4 bits of NITA-1 are set to 0.

The format of this instruction is as follows:
Operation Operandl Hex Value (XX)
SRC  address XX

SRC displacementl(,regl):XX
SRC  displacementl(,reg2) XX

The resulting program status register settings are:

Condition Bit Name

Only zeros remain in the string 7 Equal

String even, not zero 6 Low

String odd 5 High

Any 1s shifted out 2 Binary overflow

The binary overflow bit is set to 0 if no 1-bits are shifted out of the rightmost
byte during this operation.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-41



ST (Store Register)

~The ST instruction places the-contents of the specified register into the 2-byte field
specified by operand 1, as shown in the following table:

Register . Hex Value (XX)
Index Register 1 01 or 03

Index Register 2 02

Program Status Register 04

Address Recall Register 08

Instruction Address Register 10 or 20

Work Register 4 44

Work Register 5 45

Work Register 6 46

Work Register 7 47

For example:

ST DOG1,X'08'

This instruction copies the contents of the address recall register into the 2-byte
location indicated by DOGI.

Operation = Operand1 - © Hex Value (XX)
ST address XX ‘
ST displacementl(,regl) , XX
ST displacementl(,reg2) , XX

Programming Notes

This instruction copies only one register.

2-42



SZ (Subtract Zoned Decimal)

The SZ instruction subtracts the decimal value of the numeric part of the
locations indicated by operand 2 from the decimal value of the numeric part of
the locations indicated by operand 1. For example:

SZ FIL1(3),FIL2(2)

Label Before (hex)  After (hex)
FIL1 FSFOF4 F4 F8 F2
FIL2 F2F2 F2F2

This instruction subtracts the contents of FIL2 from the contents of FIL1 and
leaves the result at FIL1.

Operation Operandl Operand2
SZ  addressi(lengthl) ,address2
SZ  addressi(lengthl) ,displacement2(,regl)
SZ  addressi(lengthl) ,displacement2(,reg2)

SZ displacementl(lengthl,regl),address2
SZ  displacementi(lengthl,regl),displacement2(,regl)
SZ displacementl(lengthl,regl),displacement2(,reg2)
SZ  displacementl(lengthl,reg2),address2
SZ  displacementl(lengthl,reg2),displacement2(,regl)
SZ  displacementl(lengthl,reg?),displacement2(,reg2)

Programming Notes

® The address of operand 1 remains in the address recall register until another
AZ, BC, ITC, SZ, or ZAZ instruction is performed, or until the register is the
target of an A, L, LA, or S instruction.

e The system does not check for valid decimal digits in either operand.

® The zone part of all bytes except the rightmost byte of operand 1 is set to hex
F. The zone part of the rightmost byte is set to hex F if the result of the

operation is positive; it is set to hex D if the results are negative.

e If the zone bits of the rightmost byte are hex D or B, the operand is negative.
If the zone bits are anything else, the operand is positive.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-43



TBF (Test Bits Off Masked)

2:44

The TBF instruction tests specified bits of the data in the location specified by the

‘operand. Each bit that is on in the supplied data causes the same bit in the

operand location to be tested. If any of the tested bits are on, bit 3 (test false) of
the program status register is set on. For example:

TBF MEL2,X'01l’

This instruction tests the contents indicated by MEL2 for an even condition. If
the value is not even, bit 3 (test false) of the program status register is set on.

Operation Operandl Hex Value (XX)

TBF  address XX
TBF displacementi(,regl) , XX -
TBF displacementl(,reg2) , XX

Programming Notes

e The supplied value and the contents of the storage location are not changed
by this instruction.

e Bit 3 (test false) of the program status register is set off by system reset, when
you use the bit as a condition for a branch or jump on condition, or by
loading a binary 0 into the program status register bit 3. Bit 3 is never set off
by TBF or TBN (only set on).



TBN (Test Bits On Masked)

The TBN instruction tests specified bits of the data in the location specified by
the operand. Each bit that is on in the supplied data causes the same bit in the
operand location to be tested. If any of the tested bits are off, bit 3 (test false) of
the program status register. is set on. For example:

TBN BENT,X'01'

This instruction tests the contents indicated by BENT for an odd condition. If
the value in BENT is even, bit 3 of the program status register is set on.

Operation Operand1 Hex Value (XX)
TBN  address XX

TBN displacementl(,regl):XX
TBN displacementl(,;reg2) , XX

Programming Notes

e The supplied value and the contents of the storage location are not changed
by this instruction.

e Bit 3 (test false) of the program status register is set off by system reset, when
you use the bit as a condition for a branch or jump on condition, or by
loading a binary 0 into the program status register bit 3. Bit 3 is never set off
by TBF or TBN (only set on). A

Chapter 2.Using IBM System/36 Assembler Programming Language 2-45



XFER (Transfer)

The XFER instruction gives the extended control storage supervisor the control to
perform the selected function as shown in the following table:

Function ‘ Value
Begin main program . 01
Begin subroutine 02
Reenter program after call 03
Subroutine return to calling module 04
Perform next scientific instruction 05
Perform next scientific instruction after invoke 07
Place scientific interpreter in double mode 0A
Place scientific interpreter in real mode 0B
Do fixed to floating-point conversion | 0C
Do real*8 floating-point to fixed conversion ‘ 0D
Do real*4 floating-point to fixed conversion 0E

For example:

XFER 01,X'05"'

This instruction causes the next scientific instruction encountered to be performed
after control is given to the extended control storage supervisor.

Operation Hex Value (XX)

XFER 01,XX
!

Fixed Value

2-46



ZAZ (Zero and Add Zoned)

The ZAZ instruction sets all bytes of operand 1 to zero (hex F0) then adds the
numeric part of the locations indicated by operand 2 to the numeric part of the
locations indicated by operand 1. The instruction copies the numeric data from
the locations indicated by operand 2 into the locations indicated by operand 1
after setting the zone portions of operand 1 to hex F (binary 1111). The zone
part of the rightmost byte of the result contains hex F (positive result) or hex D
(negative result). For example:

ZAZ FIL1(5),FIL2(2)

Label Before (hex) After (hex)
FIL1 65842392 Al FO FO FO F8 F2
FIL2 F8 F2 F8 F2

This instruction copies 2 bytes of data from FIL2 into FIL1 and sets 3 bytes of
FIL1 to EBCDIC 0.

Operation Operandl Operand2
ZAZ  addressl(lengthl) ,address2
ZAZ  addressi(lengthl) ,displacement2(,regl)
ZAZ  addressl(lengthl) ,displacement2(,reg2)

ZAZ  displacementl(lengthl,regl),address2
ZAZ  displacementl(lengthl,regl),displacement2(,regl)
ZAZ  displacementl(lengthl,regl),displacement2(,reg2)
ZAZ  displacementl(lengthl,reg2),address2
ZAZ  displacementl(lengthl,reg2),displacement2(,regl)
ZAZ  displacementl(lengthl,reg2),displacement2(,reg2)

Programming Notes

® An address remains in the address recall register until another AZ, BC, ITC,
SZ, or ZAZ instruction is performed, or until the register is the target of an
A, L, LA, or S instruction.

o The zone bits of all bytes except the rightmost byte in operand 1 are set to
hex F. The zone bits of the rightmost byte are set to hex F (binary 1111) if
the value of operand 2 is positive, or are set to hex D (binary 1101) if the
value is negative.

e If the zone bits of the rightmost byte are D or B, the operand is negative. If
the zone bits are anything else, the operand is positive.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-47



Supervisor Call Instructions

248

1

Supervisor call instructions stop the main storage processor and generate an
interrupt to the control storage processor. The control storage processor saves the
current status of the main storage processor and uses an operand (a call identifier)
to determine which supervisor call instruction to perform. Other operands define
the details of the instruction. Most supervisor call instructions are privileged, and
cannot be used by the assembler programmer. All supervisor call instructions
must be used with caution because of the sensitivity of the system to changes in
location of reference data. The supervisor call instructions are usually generated
through macroinstruction expansions and are individually documented in the
Functions Reference Manual.



Notes:

Chapter 2.Using IBM System/36 Assembler Programming Language 2-49



2-50 -



Chapter 3. Using Assembler Instructions

This chapter explains each assembler instruction. Assembler instructions cause

the assembler program to perform certain operations during assembly. Assembler
instruction statements, unlike machine instruction statements, are not translated

into machine language. Some statements, such as DS and DC, cause the

assembler to set aside storage areas for constants and other data. Other

statements, such as EQU and SPACE, are effective only during assembly; they

generate nothing in the object program and have no effect on the location

counter.

You use assembler instruction statements to define symbols and data, to control
listings, and to control the assembler processor.

Assembler Instruction Statements

The operations that can be performed by each assembler instruction are shown in
the following table:

Operation
Code

Operation

DC

Define constant

DS

Define storage

DROP

Drop index register for base-displacement addressing

EJECT

Start new page

END

End assembly

ENTRY

Identify entry-point symbol

EQU

Equate symbol

EXTRN

Identify external symbol

ICTL

Input format control

ISEQ

Input sequence checking

ORG

Set location counter

PRINT

Print program listing

SPACE

Space listing

START

Start assembly

TITLE

Identify assembly output

USING

Use index register for base-displacement addressing

Chapter 3.Using Assembler Instructions



DC (DEFINE CONSTANT)

The DC instruction is used to reserve areas of storage, assign names to the
reserved areas, and to initialize the reserved areas with one of seven types of
constants. The seven types of constants are shown in the following table:

Type

ID

Example

Explanation

Address

A

AL2(BETA)

BETA could be an external
reference. If a constant is not
the specified length, padding
with binary 0’s or truncation
occurs on the left. The
maximum length is 3 bytes.

Binary

BL1°10110’

If a constant is not the specified
length, padding with binary 0’s
or truncation occurs on the left.
Each digit occupies 1 bit of
storage; 8 digits occupy 1 byte
of storage. The maximum
length is 256 bytes.!

Character

CL14CHARACTERS’

If a constant is not the specified
length, padding with blanks or
truncation occurs on the right.
Each character, including
blanks, occupies 1 byte of
storage. The maximum length is
256 bytes.! not the specified
length, padding with binary 0’s
or truncation occurs on the left.
The maximum length is 3
bytes.!

Decimal

DL5'125.66

This constant is stored in zoned
decimal format. The decimal
point is used only for
documentation; it is ignored by
the assembler. If the constant
is not the specified length,
padding with decimal 0’s or
truncation occurs on the left.
Each decimal digit occupies 1
byte of storage. The maximum
length is 31.

I The system permits a maximum of 256 bytes. The actual 1§ngth of the constant
(before padding) will be restricted by the positions remaining on the statement line.

3-2




Type

Example

Explanation

Floating
Point

g

FL4’52 (single
precision)
F1.8/9237.7734E-69’
(double precision)

Floating-point numbers have two
components: a mantissa and an
exponent. The mantissa is a signed or
unsigned number. Its decimal point can
be at the beginning, at the end, or within
the decimal number. The exponent
consists of the letter E, followed by a
signed or unsigned decimal integer. The
only valid lengths are either 4 or 8. If a
constant is not the specified length,
passing with binary 0’s or truncation
occurs on the right.

Note: There are no assembler
floating-point instructions. Floating
point is supported only for specific
macroinstructions.

Hexa-
decimal

XL3’ABCS5’

If the constant is not the specified length,
padding with binary 0’s or truncation
occurs on the left. Each two digits
occupy 1 byte of storage. The maximum
length is 256 bytes.2

Integer

1215

Negative numbers are inserted into
storage in twos complement notation.
The constant is padded or truncated on
the left if it is not the specified length.
Positive constants are padded with os,
and negative constants with hex 1s.The
value must be within the range of
-(29)+1 to 2%2-1 (-4294967295 to
4294967295). The maximum length of the
constant is 256 bytes. The rightmost 4
bytes will contain the value.

2

The system permits a maximum of 256 bytes. The actual length of the constant
(before padding) will be restricted by the positions remaining on the statement line.

Chapter 3.Using Assembler Instructions 3-3




The format of the DC assembler instruction is as follows:

PROGRAM ' L TYPING GRAPHIC
PROGRAMMER —l DATE INSTRUCTIONS [ CHARACTER
STATEMENT
Label Operation Gperand . ., . Romarks. .
123456 78 10 11 12 13 14]15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 .37 38 39 40 41 42 43 44 45 46 47 43 49 50 51 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 i
A 1 od [ IsaUT 18" "
Label

The label is optional. The symbol in the label field of the DC statement is the
name of the constant. The value of the symbol naming the DC statement is the

address of the rightmost byte of the constant. =

Operand

The operand is the constant and its description. The parts of the operand are

written in the following sequence.

The first three parts of the operand describe the constant in the fourth. No
blanks are permitted within the operand unless provided as characters in a
character constant. Part 1 of the operand is optional. Parts 2, 3, and 4 must be

present in the operand field.

1  Duplication factor
2 Type

3  Length

4  Constant

Duplication Factor: Optional. If specified, the constant is generated the number
of times indicated by the factor. The factor must be specified by an unsigned
decimal value of 1 through 65535. The duplication factor is applied after the

constant is assembled into its proper format.

Type: Defines the type of constant being specified. From the type specification,
the assembler determines how to interpret the constant and translate it into the
appropriate machine format. The type is specified by a letter code as follows:

Address

Binary
Character
Decimal
Floating Point
Integer
Hexadecimal

XHYO QWP
LI T | I I I A

Length: The number of bytes of storage occupied by the constant. The length

can be written in two ways.

‘®  Ln, where n is an unsigned, decimal value. The value of n is as follows:

n = 1 through 256 for I, B, C, X constants



n = 1 through 31 for D constants
n = 1 through 3 for A constants
n = 4 or 8 for F constants

e L (absolute expression), where an absolute expression is enclosed in
parentheses. The value limits for the absolute expression are the same as
those for n as an unsigned, decimal value. A location counter reference is not
allowed in this expression. Refer to Assembler Program Conventions in
Chapter 2 for information about expressions.

Chapter 3.Using Assembler Instructions 3-5



ERR

Constant: Described by the subfields that come before it. A data constant (any
type except A) must be enclosed in apostrophes An address constant (type A)
must be enclosed in parentheses o
The constant types, their identification letters, and an example of each are shown
in the table under DC (Define Constant) in this chapter.

Examples of the DC instructions for each of the constant types are given in the
following table. The object code generated for these constants is also shown.

ST726AS1AS ROOMOO YYMMIID IBM SYSTEM/36 ASSEMBLER-MACRO PROCESSOR

ADDR STﬁT SOURCE. STATEMENT 10/14/62

TIME 143159 FAGE

LOC  ORJECY CODE
0000 3ER6 0001 3 INTL ne ILR2*159107 INTEGER~-NORMAL
0002 26 0002 4 INT2 nc IL12159107 INTEGER-TRUNCATED
0003 O000OF 0005 S INT3 ne ILI?+15 INTEGER-SIGN SFECIFIED & PADDED
0006 FFFFF1 0008 6 INT4 nc IL3? 157 INTEGER-NEGATIVE & PADDED
0009 FLF2FS QOOR 7 DEC1 nc L3’ 1,25 LECIMAL-NORMAL. WITH DECIMAL FOINT
QOOC FI 000C 8 DEC2 nc ni1¢12%5¢ DECIMAL~TRUNCATED
000N FOFOF1F2FS co11 9 LEC3 . nc LS? 125 DECIMAL~FALDED
0012 FOFOF1F2D5 - 0016 10 LEC4 . c oo DLS? 1257 DECIMAL~-NEGATIVE & PADDED
00L7 89 (el irg 11 BIN1 ne EBL1710001001° BINARY-NORMAL
0018 000089 001A 12 BIN2 nc BL.3710001001° BINARY-PADDED
00LE 10 QOLE 13 BINI nc RL.171111000111007 BINARY~TRUNCATED
0010 CACLE3C140404040 0023 14 CHR1 nc’ CL8’DATA? CHARACTER-FADDED
0024 CACL 00ORS 15 CHR2 1o CL2*DATA? CHARACTER~TRUNCATED
Q026 3F 0026 16 HEX1 nc XL1*3F? HEXADECTMAL~NORMAL.
0027 000F 12 0029 17 HEX2 nc XLI*F1L2? HEXAIECIMAL~-FADDED
002a 23 002A 18 HEX3 nc XL1*F1237 HEXADECIMAL~TRUNCATED
OO2E 43100000 OORE 19 FLT1 e FLA?256* FLOATING FOINT-SINGLE FRECISION,NORMAL
QO2F ARATAORE 0032 20 FLT2 nc FLAT2G6E+10? FLOATING FOINT-SINGLE FRECISION, TRUNCATED
D033 - BBAAREIF . 0036 . 21 FLT3 R FLA4?25,6E-8"  FLOATING FOINT-SINGLE FRECISION,NEG EXPONENT
0037 L.OOOCO00000000 OO3E 22 FLT4 i FLB?-256* FLOATING FOINT~SINGLE FRECISION, NEGATIVE
DORF LOOOGOCOO00000 0046 23 FLTS onc FLB?256,07 FLOATING FOINT-SINGLE FRECISION,DECIMAL POINT
Q047 AR2TA0LEA0000000 004E 24 FLTé ne FL8?2U6EL0” FLOATING POINT-SINGLE FRECISION,EXPONENT
004F Q4n2 0050 25 AlD1 oc AL2(1234) ADDRESS~LECIMAL,
00%L 34 00B3. 26 ADDR ne ALL1(X?12347%) ADDRESS-HEXALECIMAL  TRUNCATED
QOE2 - 0OQOF L 0054 . 27 ADDR3--. . DC ALI(X?F1?) - ADDRESS-HEXADECIMAL , PADLET
0055 FRE 0056 28 ADD4 nc AL2C¢~1234) ALDRESS-DECIMAL » NEGATIVE
1 00ET FOFO 0058 2 ADDS - oc AL2CX?FFFF*~X* OFOF * ) ADDRESS~RESOLVED



DS (Define Storage)

The DS instruction is used to reserve areas of storage and to assign labels (names)
to those areas. The format of the DS instruction is as follows:

/Symbol or Blank /One Operand

mocraw /- / ' : TYPING GRAPHIC
PROGRAMMER / : / I DATE INSTRUCTIONS | cHARACTER
/ 8 / - STATEMENT
Lobnt’ Operation Operand Romarks

| -
12 3 45 6 7 8910111213 14|15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 568 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 '

Label

The label is optional. The symbol in the label of the DS instruction is the name
~ of the constant. The value attribute of the symbol naming the instruction is the
- address of the high-order address (rightmost) byte of the constant.

Operand

.The operand is the constant and its description. The duplication factor is
optional; type and length are required.

Duplication Factor: Used to reserve storage areas larger than 256 bytes. Ifa
duplication factor is included in the operand, the total amount of storage assigned
to the constant field is the duplication factor times the length. The total value is
limited to 65535.

Type: Requires one of the seven letter codes I, X, D, A, B, F, or C. The use of
the type during execution is not tested, but length restrictions are different for
each type.

Length: The value up to 256, depending on constant type for the number of
bytes of storage to be reserved. The duplication factor is used to reserve larger
areas. The length can be written two ways:

® Ln, where n is an unsigned, decimal value. The value of n is as follows:

1 through 256 for I, B, C, X constants
1 through 31 for D constants

1 through 3 for A constants

4 or 8 for F constants

BBBB
i

I

e L (absolute expression), where an absolute expression is enclosed in
parentheses. The value limits for the absolute expression are the same as
those for n as an unsigned, decimal value. A location counter reference is not
allowed in this expression. Refer to Assembler Program Conventions in
Chapter 2 for information about expressions.

Chapter- 3.Using Assembler Instructions 3-7



DROP (Drop Index Register as Base Register)

/Blank

The DROP instruction specifies that an index register can no longer be used as a
base reglster It ends a USING instruction.

The format of the DROP instruction is as follows:

Value of 1 or 2
(indicating index register 1 or 2)

12345678

9 011121318

15

PROGRAM [ / ) ) : B TYPING GRAPHIC
PROGRAMMER / / l DATE INSTRUCTIONS | CHARACTER
/ L : : STATEMENT
anl Operation Omnd ) Romerks

16

L.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 .34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 58 56 57 58 59 80,61 62 63 64 66 66 67 68 69 707172 713

P

1

38

i

It is not necessary to use a DROP instruction when the base address is changed
by a USING instruction, nor are DROP statements needed at the end of the
source program. :

Operand

The operand is an absolute expression with a value of 1 or 2 that indicates which
index register, previously specified in a USING statement, is no longer avallable
for base register use.




EJECT (Start New Page)

The EJECT instruction causes the next line of the listing to start a new page.
This instruction gives you a convenient way to separate routines in the assembler
listing. The format of the EJECT statement is as follows:

ZBlank /Blank

PROGRAM / [ TYPING GRAPHIC
PROGRAMMER / / rnA'rE INSTRUCTIONS | cHARACTER
-/ y:
/[ / STATEMENT
Lahl, Operstion Opoundl Remarks .
123 45 6 7 8910111213 14}15116 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 *
+

The EJECT statement is not printed in the source listing, but does increase the
statement counter by 1.

Label and Operand

The label and operand fields of an EJECT instruction must be blank.

Chapter 3.Using Assembler Instructions 3-9



END (End Assembly)

The END instruction must always be the last statement in the source program. It
causes the assembly of a program to end. The format of the END instructiop
statement is as follows:

3-10

/Blank /Blank or Relocatable Expression
PROGRAM / TYPING GRAPHIC
PROGRAMMER / [ DATE INSTRUCTIONS | CHARACTER
/' [ﬁ ] _ STATEMENT
I-lhlll * Operation OWIM, Remarks .
1 2.3 4 5 6 7 89 10111213 14}rs 16 17 18 19 20 21 22232425252728’293’0:“ 32 33 34 35 36 37 38'39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 €9 7071 7273
Operand
The operand of this instruction can be blank or contain an expression (usually a
label) that specifies the address to which control is transferred after the program is
loaded. This is usually the name given on the START instruction. If the operand
is blank, control is transferred to the address identified by the START instruction.
The assembler checks the first 87 bytes of the source statement unless you use
ICTL to change the source record format.
Note: If you have no operand on the END instruction, sequence numbers or
comments appearing before byte 87 sometimes cause assembly errors. If the
operand is blank and you want to put a comment on the instruction, code a
comma as the operand. For example:
B ? GRAPHIC
. ::z:::u — l DATE r'rs'r':gmlous CHARACTER
'STATEMENT
Labet ‘Operation Opersnd . Remarks .
12 34 5 6.7 890 111213 14]15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 55 56 67 58 59 60 61 62 63 64 65.66 67 68 69 7071 72 73 .
aF [EX




ENTRY (Identify Entry-Point Symbol)

The ENTRY instruction identifies linkage symbols that are defined in the
program containing the ENTRY instruction and can be referred to from other
programs.

The format of the ENTRY instruction is as follows:

/Blank / Relocatable Symbol in Program
PROGRAM / / TYPING GRAPHIC
PROGRAMMER / [ I DATE INSTRUCTIONS | CHARACTER
/ / STATEMENT
LM, Operation owand’ Remarks
123 456 7.910|I12%&!5‘5!7181920212223242‘26272329303'32333‘3536373839‘0“42‘3“‘54647‘8495051525354“56575859‘05!626364“66675869707‘7‘273
Operand

The symbol in an ENTRY instruction operand field can be referred to by another
program by using an EXTRN instruction provided that the program uses the
same symbol in the operand of the EXTRN instruction. The symbol used in the
operand field, for both EXTRN and ENTRY instructions, has a limit of

6 characters. See EXTRN-Identify External Symbols later in this chapter.

The following example identifies the statements named SINE and TAN as entry
points to the program.

PROGRAM TYPING GRAPHIC
PROGRAMMER l DATE INSTRUCTIONS | CHARACTER
- STATEMENT
Remarks
Label Operation Operand .
123 4586 7 l9'o'll|213'Q!Sis|718‘9202'222324526272829303!32333‘53637383940‘1‘243“4546‘74849505152535‘“56575859”6’52635‘““67688970717273

l

Chapter 3.Using Assembler Instructions 3-11



EQU (Equate Symbol)

You use the EQU assembler instruction statement to define a label (a symbol) by
assigning it to an expression in the operand field. The format is:

/Symbol /Expressmn

/

PROGRAM / / TYPING GRAPHIC
PaoanmEiy / Tons 'INSTRUCTIONS [ CHARACTER
) '
/ / STATEMENT
LIM, Operation ) Opourdl Remarks .
123 4567 8910111213!415‘517|a|9207|2223242526272829303!32333433637383940.1uuutsasucaassosv5253545556575859806162636‘856567635970717273'
E

The expressions in an operand field can be absolute or relocatable, but you must
have defined any symbols you use in the expression. Label and operand field
entries are required.

The assembler gives the symbol in the label field the same value and relocatability
attributes as the first expression in the operand field. The length of the symbol is
the value of the second expression, if present, or the length of the leftmost (or
only) term of the expression when the second operand is omitted. When an
asterisk (*) or a self-defining term is used as an operand, the default length
attribute is 1.

The following example illustrates how this instruction can be used to equate a
symbol with the contents of the operand:

PROGRAM TYPING GRAPHIC
PROGRAMMER IDA‘I’E INSTRUCTIONS | CHARACTER
STATEMENT
Label Operstion Operand Remarks
123456 7 8lopgon |2731l|5|ﬁ|7|B|9202|22232425262728293031323334%35373839&0414243u4646474949505|5253545556575559606!626354656657636970717’2131
ISTIART] IX|* |12
STEST Eg ]
E NGk
’
X TIEST*X]3FC.
RE E 2
DIS{ EQY | | 13,3
L i

The symbol STEST has the value of the first (leftmost) byte of the data area
reserved by the DC instruction. Because the symbol on the DC (TEST) has the
value of the last (rightmost) byte, EQU is useful for addressing the leftmost byte.
Using the symbol REG?2 in any statement has the same effect as using the number
2. DISP has a length of 3 assigned. If DISP is used as the displacement from a
register in an instruction, and no length is specified in that instruction, the length
value would default to 3.

EQU can be used to equate symbols to register numbers, immediate data, and
other arbitrary values. To reduce programming time and improve documentation,
you can equate symbols to frequently used expressions, then use the symbols as
operands in place of those expressions.

3-12



EXTRN (Identify External Symbols)

The EXTRN instruction identifies symbols used in the current program that are
defined in another program. Each symbol in the operand of an EXTRN
instruction must be identified by an ENTRY instruction or by the module name
in some other program. The symbol used in the operand field, for both EXTRN
and ENTRY instructions, has a limit of six characters. The format of the
EXTRN instruction is as follows:

/Blank /See Text

PROGRAM / / TYPING GRAPHIC
PROGRAMMER / / Lous INSTRUCTIONS | CHARACTER
. /
/ / STATEMENT
4
led’ Operation Operand Remarks . )
12 3 45 6 7 8]9 10111213 1815116 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73
Label

The external symbol cannot be used in a label field in the same program that
describes that symbol as an EXTRN. The label field entry of the EXTRN
statement must be blank.

Operand

An EXTRN subtype can be specified for the EXTRN symbol by following the
symbol with an absolute expression enclosed in parentheses. The value of the
absolute expression cannot be less than 0 nor more than 255. Any symbol in the
expression must be previously defined. For an explanation of the subtype values
and their meanings, see the Overlay Linkage Editor Reference Manual.

An example of Using EXTRN and ENTRY: The example in the following figure
shows how these instructions can be used to make two or more programs act as
one program by sharing data and control. The main program defines symbols A,
B, and C and identifies them as entry points. These same symbols are identified
as external symbols in the subroutine.” This allows the subroutine to use these
symbols just as it would if the symbols had been defined in the subroutine.
SUBROI, on the other hand, is defined and identified as an entry point by the
subroutine and as an external symbol by the main routine. The four symbols (A,
B, C, and SUBRO1) can now be used interchangeably by both the main routine
and the subroutine.

Chapter 3.Using Assembler Instructions 3-13




The main routine has control first. It executes instructions, then branches to
SUBROI, which is defined as an entry point in the subroutine. Instructions in the
subroutine are executed. Notice that the subroutine uses symbols A, B, and C,
which were defined in the main routine. Control is then passed back to the main
routine.

Note: The resolution of symbols between programs is performed by the overlay
linkage editor and not by the assembler. :

, l:oh: s ho Operation Operand o Labet Operation Operand
AIN ST 51 START [ T 11
ENTIRY FINTIRY] 1
ENTRY] | EXTIRN A
NTIRY| i€ XTIRN [B
EXT 1 Definition EXTIRN IC
ENTRY] ' — 1 s ETURN+3,[8
$ arancd + MviC 1T([5)
H k“_v_‘,—-’ R4 (4], 4)
SUEBR-H (l4 4))
$ 3 EDIT([S])],
. mvic | | ic(ishl. [EDI
RETURN [ | B e~
Cl in ‘ DIC| XILiS* 7
B C NECLEH ED T D DLI5
c Lg S|
$ E
t
Ebﬁb N
LI

3-14




ICTL (Input Format Control)

The ICTL instruction allows the programmer to alter the normal format of the
source program statements. If ICTL is used, it must be the first instruction in the
source program, including comment statements. An improperly used ICTL
instruction ends the assembly. The format of the ICTL instruction is as follows:

,Blank /Beglnnmg Column, Ending Column
PROGRAM / / . TYPING GRAPHIC
PROGRAMMER DATE INSTRUCTIONS | CHARACTER
/ /[ [
Z [ STATEMENT
Labat’ Operation Operand’ Romarks .
12 3 45 6 7 819011 121314)15[16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 31 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 |

Note: When HEADERS or OPTIONS assembler control statements are used,
they must be placed before the ICTL instruction, which itself must be placed
before all other source statements. The HEADERS and OPTIONS statements
are described in Chapter 2.

Operand

The first operand, which can be a number from 1 to 48, specifies the beginning
column of the source statement. The second operand, which can be a number
from 49 to 96, specifies the ending column of the source statement. The column

after the second operand must be blank.

If no ICTL instruction is used in the source program, the assembler assumes that
the beginning column is 1 and the ending column is 87.

Chapter 3.Using Assembler Instructions 3-15



ISEQ (Input Sequence Checking)

a The ISEQ instruction checks the sequence of source records. The assembler does
not check the sequence of record numbers unless requested to do so by the ISEQ
instruction. Sequence checking begins with the first record after the ISEQ
instruction. The sequence number of each following record is compared to the
sequence number of the previous record. The ISEQ instruction does the
following:

1. Checks the sequence entries on source statement records for ascending order.

2. Flags statements that are out of order and statements without sequence
entries in the assembler listing.

3. Indicates the total number of flagged statements at the end of the listing.

For example, with sequence values of 13, 27, 31, 6, 8, 45, 47, blank, and 48, the
record numbered 6 and the record without a sequence value (blank) are flagged in
the error field of the listing, and a statement at the end of the listing shows that
two records were out of sequence. The record numbered 8 would not be flagged,
because it is sequential with the record just before it.

Note: Statements generated by the macroprocessor are not tested for sequence.

The following is the ISEQ instruction format:

/Blank /Left Position, Right Position or Blank
PROGRAM / / . TYPING GRAPHIC
PROGRAMMER / / l DATE INSTRUCTIONS | CHARACTER
£ .
/ / STATEMENT
l.ab-l, Operation Ow-ndl . Remarks . )
Tt 2 3 45 6 7 891011 1213 14[15§16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 :

The label field must be blank.
Operand

The operand identifies the positions of the statements to be read for the sequence
number. To check for sequence, specify the leftmost position (no lower than
position 73) and the rightmost position (no higher than position 96), separated by
a comma. The operand field specified to be checked can be from 1 to 8 positions
long.

An ISEQ instruction with no operand ends the checking operation. Checking can
be resumed by using another ISEQ instruction.

3-16



ORG (Set Location Counter)

The ORG instruction alters the setting of the location counter and lets you specify
storage boundaries. For example, you can use the ORG instruction to set the
location counter so that an input buffer is aligned on an 8-byte boundary.

Operand

The operand determines the function of the ORG instruction and can have two
formats.

Blank Operand: Restores the location counter to the previous maximum assigned
address, plus 1. Do this if the previous ORG statement reduced the location
counter to redefine the current program. The format for the blank operand is as

follows:
/Blank ,Blank
PROGRAM A / TYPING GRAPHIC
PROGRAMMER / / loA‘l’E INSTRUCTIONS | CHARACTER
ys s
/ / STATEMENT
/
Lllnll Operation Operand Remarks .
123 45 6 7 8|oho 111213 18]15]46 17 18 19 20 21 22 23 24 26 26 27 28 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 707172 73

Expression A as Operand: Optionally followed by the two absolute expressions B
and C is used in the following way:

/ Blank

PROGRAM / TYPING - GRAPHIC
PROGRAMMER / T DATE INSTRUCTIONS [ CHARACTER

f—

/ STATEMENT
thol, Qperation Operand Remarks N
12 3 4 5 6 7 8910111213 14[15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73
’ B
diRG AL, B, IC
+

Chapter 3.Using Assembler Instructions 3-17



3-18

The location counter is set to the smallest value that is equal to or greater than A,
and is also C more than a muiltiple of B if B and C are specified. The expression
A may be either absolute or relocatable; B and C must be decimal values. The
default values for B and C are 1 and 0, respectively. For example:

Current New
Location Location
Counter A B C Counter
275 * 100 50 350

340 * 100 50 350

350 * 100 50 350

504 * 256 0 512

750 1000 - - 1000

Any symbols used in the expression must be previously defined. An ORG
operation can reduce the location counter for the purpose of redefining the
current program, but must not specify a location below the initial location
counter value. If an ORG statement reduced the location counter to redefine the
current program, an ORG statement with a blank operand can be used to restore
the location counter to a value one greater than the previous maximum assigned
address.

Location
Counter  Address Name Operation Operand
0064 0069 SYMBOL DC 1CL6’'ABCDEF’
006A 0325 FILLIN DS 7CL100
00CE —~ — ORG FILLIN — 599
00CE 01F9 DATA DC 150CL2'AZ’
0326 - - ORG —

END



PRINT (Control Program Listing)

You can control the printing of an assembler listing with the PRINT instruction.
A program can have any number of PRINT instructions with each one in control
until the next PRINT instruction is encountered. The format of the PRINT
instruction is as follows:

/Blank / Optional, Has Default Entries
PROGRAM / / TYPING GRAPHIC
i INSTRUCTIONS | CHARACTER
PROGRAMMER / / j DATE
/ ) / STATEMENT
I.lbl' Operstion Op-md, Remarks . )
123 4 5 6 7 8910111213 18[15[16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 :
—

Label
The label field must be blank.
Operand

The operand describes what will be printed. The operand has three parts, all
optional. They have the following descriptions:

ON or OFF: ON, the assembler listing is printed. OFF, no listing is printed.
The default is ON. :

DATA or NODATA: DATA prints complete constants in the assembler listing.
NODATA prints only the first (leftmost) 8 bytes of each constant. The default is
DATA.

GEN or NOGEN: GEN prints the statements generated by the macroprocessor
unless overridden by other print controls, such as PRINT OFF. NOGEN
suppresses the printing of statements generated by the macroprocessor. The
default is GEN.

Operand entries must be separated by commas. If no operands are entered, the

assembler assumes either the previous print instruction or, if this is the first
PRINT statement, the default for the previous entry.

Chapter 3.Using Assembler Instructions 3-19



SPACE (Line Feed)

The SPACE instruction is used to insert one or more blank lines in the listing.
The format of the SPACE is as follows:

/Blank /Decimal Value or Blank

PROGRAM / / TYPING GRAPHIC
PROGRAMMER / _ / . [ DATE INSTRUCTIONS | CHARACTER
/' / § STATEMENT
uu’ Operation Ow-nd’ Remarks

. -
12345 6 7 8{91011 1213 14]15016 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 43 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 |

P

The SPACE statement is not printed in the assembler listing but does increase the
statement counter by one.

Label
The label field must be blank.
Operand

The operand is an unsigned decimal value that specifies the number of blank lines
to be inserted in the listing. If the operand is a blank, a 0, or a 1, one blank line
is inserted. If the value of the operand exceeds the number of lines remaining on
the current page, the SPACE instruction has the same effect on the listing as an
EJECT instruction and will start a new page.

Note: The assembler checks the first 87 bytes of the source statement unless you
use ICTL to change the source record format. If you have no operand in the
SPACE instruction, sequence numbers or remarks appearing before the 87th byte
cause assembly errors.

3-20




START (Start Assembly)

The START instruction specifies an initial location counter value for the
program. If no START instruction appears in the program, the initial location
counter value is set to 0. The format of the START instruction is as follows:

Symbol or Blank /Self~Defining Term or Blank

/

PROGRAM / / TYPING GRAPHIC
PROGRAMMER / / ] DATE INSTRUCTIONS [ CHARACTER
ys ys
/ / STATEMENT
Lavet’ Operation Operand’ Remarks .
1.2 3456867 ss101112!3|41516|7|a19202|222324252527282930:u323334353637333940414243144545474819505!5253545556575859.061szs:s‘ﬁssﬂsass?()ﬂnn.

Note: The START instruction must not be preceded by any type of assembler
language statement that can either affect or depend upon the value in the location
counter.

Label

The label is optional and is limited to six characters.

Operand

The operand is a self-defining term that the assembler uses as the initial location
counter value for the program. If the operand is omitted, the assembler sets the
initial location counter value of the program at 0.

If a symbol names the START instruction, the symbol is established as the name
of the object program. If a symbol name is not specified, the object program is
assigned the default name ASMOBJ and a diagnostic message is issued.

For example, either of the following START instructions indicate an initial

assembly location of 2040. In addition, the first statement establishes MAIN as
the object module name.

PROGRAM TYPING GRAPHIC
PROGRAMMER 19‘1’5 INSTRUCTIONS { CHARACTER
STATEMENT
Label Operation Operand Remarks
123 456 7 8lson \2131‘1515\718192021222324252627252930313233343535373839w4|4243u46464745A9505152535455555758590061526354665657685970717.2737
START] X[*[7F8’

Chapter 3.Using Assembler Instructions 3-21



TITLE (IDENTIFY LISTING)

The TITLE instruction prints the operand field on each page of an assembler
listing. The format of the TITLE instruction is as follows:

/Not Required /Character Sequence Enclosed in Apostrophes

PROGRAM / / TYPING GRAPHIC
PROGRAMMER f / I DATE INSTRUCTIONS | cCHARACTER
/ .
/ / STATEMENT
h“’ e °"""“/ iy 69707172 73 ©
Tt 2 3 45 6 7 B9 0111213 14]15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 66 67 68 B
Label

The label field is not required, but can contain up to six alphabetic or numeric
characters in any combination. The label of the first TITLE instruction is used
on the title header line of each listing. The labels of all other TITLE instructions
are ignored.

Operand

The contents of the operand field are printed beneath the IBM ASSEMBLER
heading on each page of the assembler listing. The operand field contains a
sequence of characters enclosed in apostrophes. Each single apostrophe desired as
a character in the operand must be represented by a pair of apostrophes.

You can use more than one TITLE instruction in a program. Each TITLE
instruction creates the heading for the pages of the assembler listing that follow it,
until another TITLE is encountered. Each TITLE instruction advances the listing
(skips) to a new page before the heading is printed. The TITLE statement is not
printed in the source listing, but does increase the statement counter by 1.

3-22



USING (Use Index Register for Base Displacement Addressing)

The USING instruction specifies the index register to be used for base
displacement addressing on labeled instructions and specifies the relocatable value
to be used to compute base displacements during assembly.

Notes:

® A USING instruction does not load the index register because it is executed
only during assembly and no code is generated.

e It is the programmer’s responsibility to see that the base address value is
placed in the index register during program execution. See the text describing
the operand.

® The USING statement is not required if you code only absolute
displacements.

An example of how to use the USING instruction in base displacement addressing
is given in Chapter 2 under Addressing.

The format of the USING instruction is as follows:

/Blank /Value, Register

PROGRAM / TYPING GRAPHIC
PROGRAMMER Z I DATE INSTRUCTIONS [ CHARACTER
-/ /
/ / STATEMENT
N 7
I.-Hl Operation Operand Remarks .
1 2 3 4 5 6 7 8J9011121314[15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 |
Operand

The operand, Value, is a relocatable expression whose value must be in the range
0 to 65535. The operand, Register, is an absolute expression specifying the index
register to contain the base address (represented by value) during program
execution. Register must have a value of either 1 or 2.

You can use two USING instructions to specify an index register as a base
register for two different portions of main storage. You must change the value in
the index register currently used as a base register. The assembler computes
displacement from the specified new value (by means of the second USING
statement) until another USING or DROP statement is encountered.

Chapter 3.Using Assembler Instructions 3-23



3-24



Chapter 4. Creating Macroinstructions

A macroinstruction represents a sequence of machine and/or assembler
instructions, including other macroinstructions. However, before you can code a
macroinstruction, a macroinstruction definition must be previously coded and
named, either by a user, or by IBM. That name can be used in an assembler
source program to represent the predefined series of instructions. The
macroinstruction definition must also reside in the assembler library (#ASMLIB),
the system library (#LIBRARY), or the library specified as the MACRO library
on the ASM procedure or the ASM help screen.

The IBM-supplied macroinstructions are discussed in Chapter 5 in this manual.

Chapter 4.Creating Macroinstructions 4-1



Macroinstruction Definition

N

A macroinstruction definition resembles a small program. It consists of a
prototype or skeleton containing symbols, parameters, and statements that specify
values for those parameters. The definition and its parameters are used by the
macroprocessor to create the set of instructions in the source program during
assembly.

The prototype statement is used to assign a name to the macroinstruction and to
define the parameters of the corresponding macroinstruction statement. You
would use the name of the prototype statement to code the macroinstruction into
an assembler source program.

The control statements that follow the prototype statement are similar to,
assembler language instructions. They usually contain an operation mnemonic,
operand, and remarks. Labels can also be assigned to control statements.
Control statements must be coded in a specific sequence within the
macroinstruction definition. The following illustration shows the relationship
between the various parts of a macroinstruction definition.

Prototype statement.. (label) name operands
Control statement.... (label) operation operands
Control statement.... (label) operation operands

You can use standard assembler coding forms or the SEU assembler format to
code the components of a macroinstruction definition. The format of a
macroinstruction is described in this chapter under Macroinstruction Format. The
rules, or coding conventions, for coding macroinstructions follow. The rules for
coding macroinstruction statements are at the end of this chapter.



Macroinstruction Coding Conventions

Sequence Symbol

Character String

Character Expression

The following are the detailed rules or conventions that must be understood and
followed to code workable, effective macroinstructions.

Sequence symbols provide labels that can be branched to and, therefore,
determine the sequence in which macroinstruction definition statements are
processed.

A sequence symbol is written as a period, followed by an alphabetic character, $,
#, @, or _, followed by as many as five alphabetic or numeric characters.

A character string is any combination of alphameric, special characters, and
blanks and is enclosed in single apostrophes. For every apostrophe that is
required as a data character in a character string, two apostrophes must be coded
in succession. A character string can be from 1 to 50 bytes long.

Note: Special characters refer to the characters other than alphabetic and numeric
that are available in the System/36 character set.

A character expression is a term, null term, or combination of terms enclosed in
single apostrophes that can be reduced to a character string from 0 to 50 bytes
long. Terms are either literal strings of any of the 256 hexadecimal combinations
possible for each byte, except an ampersand or variable symbols. A null term is
specified by two consecutive apostrophes. If an apostrophe is required as a data
character, it must be entered as two consecutive apostrophes inside the delimiting
apostrophes. In expressions with multiple terms, such as:

'DEPARTMENT-&DEPT,BUILDING O1'

if &DEPT is a variable symbol containing 47A, then the expression will expand
to:

'DEPARTMENT-47A,BUILDING O1°'.

All the rules of concatenation apply (see Concatenation in this chapter).

Chapter 4.Creating Macroinstructions 4-3



Substring
Substring selects specific sequential characters from a character string defined in a
character expression. A substring is specified as a character string or its label
(m,n) where m and n are each a valid arithmetic expression. The starting
character of the substring is m; the length of the substring is n. The following
rules apply when you are specifying substrings:
e The value of m must be greater than 0.

® The value of n must be 1 or greater.

e If the value of n is 0 or if the value of m is greater than the length of the
character string, the substring has no value.

e If the value of n were greater than the remaining length of the character
string, the substring is all the remaining characters of the character string.

Note: There can be no blanks between the closing single apostrophe of the
character string and the left parenthesis of the substring.

The following is an example of creating a substring:
The original character string &CHAR is ABCDEFGHIJKL.
The desired substring contains DEFGH (five characters from position 4).

The substring is coded as "ABCDEFGHIJKL’'(4,5) or &CHAR (4,5).

4-4



Alphameric Value

Variable Symbol

An alphameric value is a continuous string of alphameric characters not enclosed
by apostrophes. When an alphameric value is processed, commas, blanks, dashes,
and equal signs become delimiters. A decoded alphameric value can be up to 50
bytes.

A variable symbol is written as an ampersand (&) followed by an alphabetic
character, $, #, @, or_, and followed by as many as five characters. The
characters can be any combination of alphabetic, numeric, or $, #, @, _ (no other
character or blanks can be used).

Note: The ampersand is a restricted character and cannot be used anywhere else
or it will cause an error, ASM-5402.

Attribute

The kind of value assigned to a variable symbol in the variable symbol table is
called an attribute. The attributes are:

e Numeric value

e Character string value
e Null value

e Binary value.

There are two types of variable symbols: symbolic parameters and set symbols.

Chapter 4.Creating Macroinstructions 4-5



4-6

Symbolic Parameter

Positional or keyword symbolic parameters are parameters that are assigned
values by the macroinstruction statements, prototype statements, and table
records. The values assigned to symbolic parameters cannot be changed by the
macroprocessor. =

Positional Parameters: Positional parameters are represented by variable symbol
names. Positional parameters appear before the keyword parameters in the
prototype record. Each positional parameter is written as an & (ampersand)
followed by an alphabetic character, $, #, @, or _, followed by as many as five
alphabetic or numeric characters, followed by a comma. Positional parameters
appear in your macroinstructions as parameter values positioned before keywords
and in the same sequence that they had in the prototype.

Keyword Parameters: Keyword parameters are variable symbol names followed
by a dash, and immediately following the dash, a parameter value, a comma, or,
if the keyword parameter is the last parameter in a macroinstruction, a blank. If
a parameter value is included, that value is used. If a parameter value is not
included, no default value is used. Keyword parameters follow positional
parameters in the prototype statement. Each keyword parameter is written as an
& (ampersand) followed by an alphabetic character, $, #, @, or _, followed by
five alphabetic or numeric characters.

Keyword parameters on user macroinstruction statements have a label similar to
the prototype definition statement; however, the lead ampersand (&) is deleted,
&KYWORD becomes KYWRD-, followed by a dash, followed by the parameter
value.

The difference between keyword parameters and positional parameters is that the
keyword in a keyword parameter must always be followed by a dash (-). An
example of a macroinstruction that contains only keyword parameters follows:

EXP1 &PLIST-2,&NOTE -

An example of a macroinstruction that contains only positional parameters
follows:

EXP2 &A,&B

An example of a macroinstruction that contains both positional and keyword
parameters follows:: ’

EXP3 &C,&D,&PLIST-3

Note: &SYSNDX cannot be used as a keyword or positional parameter.



Set Symbol

A set symbol is a storage area defined by global or local statements. The values
-assigned to these symbols can be changed by the macroprocessor by use of set
statements.

Three different kinds of set symbols can be used:

® Arithmetic set symbols are defined by GBLA (arithmetic global) and LCLA
(arithmetic local) statements and are assigned values by SETA (set
arithmetic). -

e Binary set symbols are defined by GBLB (binary global) and LCLB (binary
local) statements and are assigned values by SETB (set binary) statements.

e Character set symbols, which are defined by GBLC (character global) and
LCLC (character local) statements and are assigned values by SETC (set
character) statements.

Global: A global set symbol is defined by a global statement. This symbol has a
storage area assigned to it only once for each program assembled. The same set
symbol can be defined in other macroinstruction definitions in the program, but
the storage area remains as that of the original. Global set symbols are a primary
means of passing information to macroinstruction definitions called later in the
‘program.

Note Be careful when using global set symbols because they retain values and
spaces in the symbol table even when they are not being used. Do not use global
set symbols when they are not needed; they can cause the symbol table to
overflow. '

Local: A local set symbol (storage area) retains its value only during the
expansion of a single macroinstruction definition. Each time a local set symbol
statement appears, it is treated as though it is the first definition of that symbol in
the program. These symbols retain values that can be used later in the same
macroinstruction definition.

&SYSNDX

&SYSNDX is a system variable that might be concatenated with other characters
to create unique names for macroinstruction definition statements and generated
assembler source instructions. &SYSNDX must not be used as a variable symbol
or symbolic parameter. SYSNDX cannot be used as a keyword or positional
parameter. The 3-digit number 001 is the value assigned to &S YSNDX when the
first macroinstruction definition is processed. The value is increased by 1 for each
subsequent macroinstruction definition processed in the program.

&SYSNDX has a maximum value of 999. Therefore, the number of
macroinstructions in one job must not exceed 999 when &SYSNDX is used.

Note: No diagnostic messages exist for the incorrect use of &SYSNDX.

Chapter 4.Creating Macroinstructions 4-7



Count Function

Arithmetic Expression

The count function determines the length, in bytes, of the value assigned to a
symbolic parameter. This length is obtained by prefixing K’ to the label of a
symbolic parameter. For example, if &LIST equals ABCDEFG, the K'&LIST
equals 7.

You can refer to the count function only in the operand of a macroprocessor
control statement (for example, AIF or SETA).

An arithmetic expression is a term or series of terms separated by operators. The
valid terms of an arithmetic expression are variable symbols, self-defining terms,
or count functions. The valid operators in an arithmetic expression are addition
(+), subtraction (-), multiplication (*), and division (/). Parenthesized expressions
are supported for up to three nested levels.

The following rules apply to arithmetic expressions:

o Terms must be separated by operators.

® Operators must be séparated by terms.

e No morevthan three nested levels of parentheses are allowed.

e DParentheses must be balanced; that is, for each left parenthesis there must be
a right parenthesis.

e Unless a left parenthesis is the first element in the expression, there must be
an operator or another left parenthesis immediately before it.

e A left parenthesis must be immediately followed by a term or another left
parenthesis.

® A right parenthesis must be immediately preceded by a term or another right
parenthesis.

® A right parenthesis must be immediately followed by an operator or another
right parenthesis unless it is the end of the expression.

Arithmetic expressions are evaluated using 24-bit signed arithmetic (a 3-byte field
ranging from -8388608 to 8388607). An expression is reduced to a single value as
follows:

® Parenthesized expressions are evaluated from the innermost set of parentheses
outward.

® Multiplication and division are performed before addition and subtraction.
All operations are performed from left to right.



Continuation

Only prototype statements can be continued. Any character in position 72
following a comma after the last operand indicates that a continuation line of the
prototype statement follows. Columns 1 through 15 must be blank. At least one
operand, beginning in position 16, must appear on every continuation line of a
prototype statement. Only nine continuation lines can be used, giving a
maximum statement of ten lines for each prototype record.

Concatenation

Separate values physically combined so that they appear as one value are said to
be concatenated. Concatenation occurs under any of the following conditions:

e A symbolic parameter or set symbol is immediately before or after another
symbolic parameter or set symbol with no delimiter between them.

e Characters are immediately before a symbolic parameter or set symbol with
no delimiter between them.

o Characters are joined to the symbolic parameter immediately before them or
to a set symbol by a period between them.

You can concatenate symbolic parameters, set symbols, and character strings of

AIF statements. However, model records and assembler instructions can
concatenate only symbolic parameters or set symbols and alphameric values.

Chapter 4.Creating Macroinstructions  4-9



Creating Macroinstruction Definitions

You must use definition control statements to create macroinstruction definitions.
The values established in the definition control statements are used by the
macroprocessor to generate assembler and/or machine instruction statements.
The following list shows the definition control statements in the order that they
must appear in a macroinstruction definition:

MACRO (required)
Prototype (required)
Global declares
Local declares
Table

Table definitions
TEXT (required)
MEXIT

MEND (required)

Definition Control Statement Format

A definition control statement can contain up to four entries: name, operation,
operands, and remarks. Name, operation, and operands are position-dependent
and must begin in positions 1, 10, and 16, respectively. The remarks entry can
occur in any position following the operands if at least one blank separates it
from the operands.

4-10



Macroinstruction Format

. The format of a macroinstruction follows:

Symbol or Blank  Mnemonic  Operands Blank Before Remark (optional)

/

\vnocnm / / / TYPING GRAPHIC
\\‘oeumusn [ rl j / l DATE INSTRUCTIONS | CHARACTER
\ | / '/ staTemEnt

\ Lo /
Label Operation Operand Remarks "
123 45 6 7 8910111213 14[15]16 17 18 19 20 21 22 23 24 25 26 2| 28 29 30 31 32 33 335 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72

YMEOL [ | MACIRA IOPERL], OF REMARK
L] | 1] 1] [HAN 1

+ t + 1t T

Label

If the label field on the macroinstruction contains a symbol, and if a symbolic
parameter is used in the label field of the associated prototype statement, the
symbolic parameter is assigned the value of the symbol in the macroinstruction.
(See Prototype in this chapter.)

If the label field on the macroinstruction contains a symbol, and if the label field
of the associated prototype statement does not contain a symbolic parameter, the
symbol is ignored.

If the label field on the macroinstruction is not used, and if a symbolic parameter
is used in the label field of the associated prototype statement, the symbolic
parameter is assigned a null value. The length of the label field is up to 8 bytes
with blanks padded on the right.

Operation

The mnemonic operation code must be identical to the mnemonic operation code
of the associated prototype statement.

Operand

The operand can contain either keyword or positional parameters, or both. The
value assigned a keyword or positional parameter in a macroinstruction is
assigned to the corresponding symbolic parameter defined in the associated
prototype statement.

A symbolic parameter defined without a value in a prototype statement is
assigned a null value with an undefined attribute, unless an operand referring to
the corresponding keyword or positional parameter is used in the associated
macroinstruction.

A keyword parameter defined with a value in a prototype statement retains the
assigned value, unless an operand containing the corresponding keyword appears
in the associated macroinstruction.

The keyword parameters can be written in any order; however, positional

parameters must be in the sequence specified on the prototype statement and must
occur before any keyword parameters.

Chapter 4.Creating Macroinstructions 4-11



Keyword Parameter 'Opefands:' “Each keyword operand must consist of a keyword
immediately followed by a dash, immediately followed by the value assigned to
the keyword. =~ , :

Each keyword in the operand must correspond to one of the symbolic parameters
in the operand of the associated prototype statement. However, each symbolic
parameter in the associated prototype record does not require a corresponding

. keyword in the macroinstruction. A keyword corresponds to a symbolic
parameter when the characters in the keyword are identical to the characters
following the ampersand in the symbolic parameter.

Positional Parameter Operands: A positional parameter operand corresponds to a
keyword value; that is, just the value is given, not the keyword. Commas in
succession indicate the omission of positional parameters and the assignment of
null vaiue. An example of a macroinstruction statement and its relationship to
the prototype definition control statement follows:

PROGRAM : TYPING GRAPHIC
PROGRAMMER . . i ‘ ] DATE INSTRUCTIONS | CHARACTER
STATEMENT
Label Opesration Operand ) . Remarks .
123 45 6 7 8|ofo11 1213 14}15016 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 63 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73
ELIABEL] [ | [7 ¢DATL[, [EDATE , EDAT 8], EDIATAl-
- L1 -
1|
EST | [YES,, |, DAT4-|112
\§ /|

7 \

Macroinstruction Statement Prototype

&DAT1is assigned YES by the macroinstruction.
&DAT?2 is assigned null value by omission.
&DATS3 is assigned 8 by prototype default.
&DAT4 is assigned 12 by the macroinstruction.

4-12



Macroinstruction Definition Control Statements

You use macroinstruction definition control statements when you are creating
macroinstructions to define and describe the specific macroinstruction that you
are creating.

Header
The header statement is required and marks the beginning of a macroinstruction
definition. It must be the first control statement in the definition. No more than
one comment (an asterisk in position 1) can be before the header. A comment
appearing before a header is not generated as source output. The format of the
header statement follows:
/ Blank / Blank
PROGRAM / / TYPING GRAPHIC
rnoenmsn/ / . Tous INSTRUCTIONS [ CHARACTER
/’ [' STATEMENT
l.chd' Operstion omnd, Remarks "
123 456 7 890111213 14)1516 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 42 44 45 46 47 48 49 50 51 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 .
RC ‘

Chapter 4.Creating Macroinstructions 4-13



Prototype .
The prototype statement is required and defines both the mnemonic operation
code that must be used and any parameters (operands) that can be used on the
corresponding macroinstruction statements. The mnemonic operation code in the
definition prototype statement is the same one used to code a macroinstruction
statement in the assembler source program. By varying the values assigned to
parameters, the user can change the assembler source instructions generated for
each user macroinstruction. The prototype must be the second control statement

‘in a macroinstruction definition. The format of the prototype statement follows:

PROGRAM TYPING GRAPHIC
PROGRAMMER . Tons INSTRUCTIONS | CHARACTER
STATEMENT
Label Operation Operand Remarks 3 .
12 3 456 7 89110111213 14)15116 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33.34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 ;
ED 4 L R -NLI¢P LIS 3] TIO ﬂFl;L T C
N | EPARMS - T ICaNTITINUATITION A
/ a Y 1A
1 , ] (
Symbol or Mnemonic : Positional Parameters  Blanks Indicate the Remarks after ~ Continuation
Not Used Followed by Keyword End of Operand the Blanks Indicator
Parameters {can be any
’ ‘ ' _character)
Label

The name of the prototype statement is optional. If the keyword prototype
statement is continued, the label and operation entries must not be repeated on
the continuation lines.

Operation

The symbol in the operation entry is the mnemonic operation code that must
appear in all user macroinstruction statements that refer to this macroinstruction
definition. The operation mnemonic must not be more than 5 characters long. If
the keyword prototype statement is continued, the operation entry must not be
repeated on the continuation line.

Operand

The operand consists of either positional or keyword symbolic parameters or
both, separated by comimas. A blank indicates the end of the operands.

A comment may be entered following the operands as long as at least one blank is
placed between it and the operands.

If the prototype statement is continued, at least one operand beginning in position
16 must appear on every continuation line. A prototype statement can have up to
nine continuation lines. The preceding example shows a continued prototype
statement.

4-14



Global

/Not Used

Three types of global statements can be used in macroinstruction definitions to
generate global set symbols: arithmetic, binary, and character. A global set
symbol value is available to all macroinstructions in an assembler source program.
If used, a global statement must be the first definition control statement following
the prototype statement. Global statements can be specified in any order and
more than one of each type can be used.

A global set symbol is established when the first specification of a symbol name is
given in a global statement. Subsequent global statements can specify the same
symbol name, but the global set symbol value is not reestablished. When you
again declare (use) the symbol, you must specify it as the same type, arithmetic,

binary, or character.

GBLA (Arithmetic Global)

The GBLA global mnemonic specifies an arithmetic set symbol. Arithmetic set
symbols are initialized to 3 bytes of hex 0’s. The 3-byte field remains through all
value assignments. The format of the arithmetic global record follows:

/One or More, Separated by Commas

123456 78

9 110 11 12 13 14[15[16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

PROGRAM / / TYPING GRAPHIC
raoenwsn/ / l DATE INSTRUCTIONS [ CHARACTER
/‘ /l STATEMENT
Lahd, Operation Owlnd, Remarks .
123 456 7 8Bjapoi 1213 |.1555 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 7
LAl | FlAGLIOBIL, FIAGLD
HA ]
GBLB (Binary Global)
The GBLB global mnemonic specifies a binary set symbol. When a binary set
symbol is defined, the defined variable is initialized to 0. The variable can later
be set to either 0 or 1 by SETB statements. The format of the binary global
statement follows:
/Not Used /One or More, Separated by Commas
PROGRAM / / TYPING GRAPHIC
PROGRAMMER / / J DATE INSTRUCTIONS [ CHARACTER
/’ L’ STATEMENT
Llhd, Operation Opu-nﬂ, Remarks

»
65 66 67 68 69 7071 72 73

¥iBG

.

LU

|

Chapter 4.Creating Macroinstructions

4-15




GBLC (Character Global)

The GBLC global mnemonic specifies a character set symbol. When a character
set symbol is defined, it is given a length of 0. A 0- to 8-byte character field can
be assigned by the SETC statement. The assigned characters can be any of the
256 hexadecimal combinations possible for each byte. The format of the
character global statement follows: '

GRAPHIC
PROGRAM _ i
DATE INSTRUCTIONS CHARACTER
PROGRAMMER -
STATEMENT
Remarks
Labet Operation Operand

*
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 707172 73 7

12 3 4 5 6 7 8J9 0111213 1415

SARNARARNNARRANARAA D

4-16



Local

Three types of local statements.can be used in macroinstruction definitions to
generate local set symbols: arithmetic, binary, and character. If used, they must
be the first control statements following the global set symbol statements, if global
set symbols are used, or be the first control records following the prototype
statement, if global set symbols are not used. Local statements can be specified in
any order and more than one of each type can be used.

Local set symbols are established and initialized in each macroinstruction
definition in which they appear.

LCLA (Arithmetic Local)
The LCLA local mnemonic specifies an arithmetic set symbol. Each arithmetic

set symbol specified is initialized to 3 bytes of hex 0’s and remains as a 3-byte
field. The format of the arithmetic local statement follows:

/Not Used /One or More, Separated by Commas
PROGRAM / TVPING GRAPHIC
PROGRAMMER / f l DATE INSTRUCTIONS | cHARACTER
L‘ / 8 STATEMENT
I-llnll Opaerstion Ommlr Remarks

12 3 4.5 6 7 8|90 111213 14]15]16 17 18 19 20 21 22232‘2528272829303132333453537383940‘142‘3“45‘6474349505152535‘5556575&59006‘626364“66676839707'7’27'!
T

T LS T L B LI

Chapter 4.Creating Macroinstructions 4-17




LCLB (Binary Local)

The LCLB local mnemonic specifies a binary set symbol. Each binary set symbol
is initialized to 0. The format of the binary local statement follows:

PROGRAM TYPING GRAPHIC
PROGRAMMER I DATE INSTRUCTIONS | CHARACTER
STATEMENT
Label Operation Opersnd Remarks

12 3456 7 8|9

ho 11 12 13 1a]1she

-
17 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 7

¢BLACLL ElBL
RNANRRANRNRAE

LCLC (Character Local)

The LCLC local mnemonic specifies a character set symbol. Each character set
symbol is initialized to a null value and a length of 0. It can then be changed to a
character value of from 0 to 8 by SETC. The format of the character local
statement follows:

/One or More, Separated by Commas

/Not Used

PROGRAM / / TYPING GRAPHIC
PROGRAMMER [ / —l DATE INSTRUCTIONS | cHARACTER
Y s
/ L STATEMENT
/ 4
Labet Operation Operand Remarks .
123456 7 8[9N011121314[15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 7

]

i _!ffl .Fl

4-18



Tables

The TABLE and TABDF (table-definition) statements are used together to define
and assign values to tables. These tables are used in and by the assembler
program.

TABLE (Table)

The table statement is used to assign a value to a positional or keyword symbolic
parameter. A table statement must be followed by at least one table-definition
statement. The format of the table record follows:

/Not Used /Svmbolic Parameter
PROGRAM / / TYPING GRAPHIC
wnocnmea/ / | DATE INSTRUCTIONS | CHARACTER
f’ /' STATEMENT
I-lhl' Operation Opomu' Remarks

-
123 45 6 7 8[91011 1213 14]15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73

hifas

——t r

Chapter 4.Creating Macroinstructions 4-19



TABDF (Table-Definition)

The TABDF statement assigns values to symbolic parameters specified in table
statements. The operand value in a table-definition statement is assigned to the
symbolic parameter in the previous table statement, if one of the following
conditions is satisfied: '

® The label field (argument) of the table-definition statement matches the value
previously assigned to the symbolic parameter by the macroinstruction or
prototype statement.

e Positions 1 and 2 of the label field (argument) of the table-definition
statement are apostrophes, and no value (null) was previously assigned to a
symbolic parameter by the macroinstruction or prototype statement.

e The label field (argument) of the table-definition statement is blank. A blank
argument assigns the specified value of the operand to a parameter if the
parameter does not match an argument specified in an earlier TABDF
statement.

At least one table-definition statement must follow each table record. The format
of the table-definition statement follows:

Z Argument / Value

PROGRAM / / ' TYPING GRAPHIC
DATE INSTRUCTIONS | CHARACTER
rnoenumsn/ /
s /
/ / STATEMENT
boll Operatios Operand 4 Remarks N
N . 6869 707172 73 °
12 3 4 5 6 7 8fof101112134]15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

TA
L

4-20



Label

The label is a string of characters with no embedded blanks. The string can be
taken from the prototype record or a user macroinstruction.

Operand

The operand is a character string or an alphameric constant. Following is an

example of lines from a macroinstruction definition instruction that define a table
or table statement:

PROGRAM TYPING GRAPHIC
PROGRAMMER EATE INSTRUCTIONS | CHARACTER
STATEMENT
Labet Operation Operand Remarks .
23 456 7 [10 11 12 13 14]15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 656 66 67 68 69 7071 72 73 ©
BE| TES T, KIDAT2 JEDIATII- 8], KDATHRI-
TIABLE] ¢ DAT|L
ES TIA L
TIABDF|
' TIABDF| |4
—

In this example, if the user enters a yes for the first positional parameter
(&DATT1), then &DAT] is assigned a value of 1. If you make no data entry for
the first positional parameter, &DATI is assigned a value of 9.

Chapter 4.Creating Macroinstructions 4-21




TEXT

The TEXT statement must be present in every macroinstruction definition. The
TEXT statement marks the beginning of conditional processing instructions. The
definition control statements that can appear before the text statement in the
input or output stream are: header, prototype, global, local, table, and
table-definition records. Any of these records following the text statement are
invalid, and errors result. The format of the text statement follows:

/N_ot Used /Not Used

oo / / ] TYPING GRAPHIC
DATE INSTRUCTIONS | CHARACTER
PROGRAMMER / /
/‘ 7/ STATEMENT
/ - 7/ Remarks
Label Operation Operand 6 66 67 68 69 7071 72 73 ;

16 17 |B|92°2|‘22232‘25262728293031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 66 56 57 58 50 60 61 62 63 64

1T 23 45 6 7 8J91011 12131815

TEXIT]

4-22




Comment

Source output comments can be placed after the TEXT statement and before the
first trailer record (MEND). These comments are written as part of the
macroinstruction expansion. The format of a source output comment follows:

PROGRAM

TYPING GRAPHIC

PROGRAMMER [ DATE INSTRUCTIONS | CHARACTER
STATEMENT
Label Operation Operand Remarks
12 3 4 5 6 7 8910111213 14]15}16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7’2 73
ESIRED| € i
One comment with this format can appear before the header record, but is not
generated as source output.
Comments that are internal to the macroinstruction definition can be placed after
the header record and before the first trailer record (MEND). These comments
are not included in the macroinstruction expansion. The format of an internal
macroinstruction comment follows:
PROGRAM TYPING GRAPHIC
PROGRAMMER J DATE ’ INSTRUCTIONS | CHARACTER
STATEMENT
Label Opoeration Operand Remarks R
1 23 4566 7 8910111213 18}15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73
.*DiLSIR[E cl ik N|
- } I R

Chapter 4.Creating Macroinstructions 4-23



AIF (Conditional Branch)

The AIF statement conditionally alters (forward or backward) the sequence in
which macroinstruction definition statements are processed. The AIF statement
can be used anyplace after the TEXT statement. The format of the AIF
statement follows:

/Sequence Symbol or Blank/ Logical Expression as Described

::::::mén // - // ||m's ‘ 'T':::ﬁ‘-"“m CHARACTER
/’ /’ ' STATEMENT
L-hl, Operation Op.nnd/ Remarks
1 2 3 45 6 7 8910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5253545555575859008‘6263“0566676&5970717273
L Ae LT L L T T P L T T T T
Operand

The logical expression in the operand is evaluated to determine whether it is true
or false. If the expression is true, the statement named by the sequence symbol in
the operand is the next statement processed by the macroprocessor. If the logical
expression is false, the next sequentlal instruction of the macroinstruction
definition is processed.

Whenever AIF operands of unequal length are compared (after assigned values
have been substituted for symbolic parameters), the lengths, not the content, of
the operands are compared. Otherwise, three kinds of comparisons of content are
possible:

e Type attribute checking

~® Binary condition checking

® - Value checking.

424



Type Attribute (T') Checking: Permits the user to check the attribute type only
in the operand of the AIF record. Attribute checking cannot be performed with
set symbols. The following list gives the conditions and meanings:

Condition

AIF (T’&name

AIF (T’&name

NE
AIF (T’&name{ EQ}‘U’)

NE
AIF (T’&name {EQ- }")

NE

.sequence symbol

.sequence symbol

.sequence symbol

.sequence symbol

AIF (T’&name{ EQ} T’&name 1).sequence symbol

Meaning

Test &name for a
numeric value.

Test &name for a
character string
value.

Test &name for a
null value (no value
assigned). This null
test is
recommended.

Test &name for a
null value (no value
assigned). This nuil
test is not
recommended.

This test determines
whether &name and
&namel have the
same attribute.

Note: No concatenation of symbols in an AIF operand is supported in T

processing. If concatenation is specified, an error results.

Binary Condition Checking: Has a format for binary condition checking as

follows:

AIF (&symbol).sequence symbol

This format is valid only if &symbol is a binary set symbol. See SETB (Set
Binary Record) in this chapter. If &symbol has a value of 1, the AIF condition is
assumed to be true, and a branch forward or backward to the sequence symbol is
taken. Otherwise, processing continues with the next sequential instruction.

Chapter 4.Creating Macroinstructions 4-25



Value Checking: Has the following format:

GT
count function GE count function
symbol 1EQ, symbol } .sequence symbol
'character expression® NE *character expression’

LT

LL%

Notes:
1. Symbol = any symbolic parameter or set symbol.

2. ’char. expression’ = any character expression.

GT = greater than

GE = greater than or equal
EQ = equal

NE = not equal

LT = less than

LE = less than or equal

Concatenation of symbolic parameters, set symbols, and character strings is
supported for an AIF record.

4-26



AGO (Unconditional Branch Record)

The AGO statement unconditionally alters (forward or backward) the sequence in
which macroinstruction definition statements are processed. AGO causes a
branch forward or backward to the statement whose name matches the sequence
symbol given in the operand of the AGO statement.

The AGO statement can be used anyplace after the TEXT statement and before
the MEND statement. The format of the AGO statement follows:

/Sequence Symbol or Blank/ Sequence Symbol

PROGRAM / / TYPING GRAPHIC
moemmsn/ / [ DATE INSTRUCTIONS | CHARACTER
f— y
'7/ / STATEMENT
Labet Operation Operand’ Remarks .
12 3 45 6 7 8fs 10111213 14{15016 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 :
. .
SETA (Set Arithmetic)

The SETA statement assigns a value to the arithmetic set symbol referred to in
the label field. The 3-byte hexadecimal value assigned is derived from an
evaluation of the operand field. The SETA statement can be used anyplace after
the TEXT statement. The format of the SETA statement follows:

/Arithmetic Set Symbol/Arithmetic Expression

PROGRAM / / TYPING GRAPHIC
PROGRAMMER / / l DATE INSTRUCTIONS [ CHARACTER
-/ £
/ / STATEMENT
Llhd, Operation opomd/ Remarks .
12 3 4 5 6 7 8[9(1011 1213 14]15{16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73

!

l

O kAR A o

The operand is an arithmetic expression that can contain arithmetic, character,
and/or binary set symbols. Any character set symbols used must have a value of
from 1- to 8-decimal digits. Binary set symbols are either 0 or 1, and &SYSNDX
is given a hexadecimal representation of its current value. The values assigned by
the SETA records must be in the range of -8388608 to 8388607. If you use the
count function as an operand, it must appear alone.

Chapter 4.Creating Macroinstructions 4-27




SETB (Set Binary)

The SETB statement assigns a value’ of O or 1 to the binary set symbol referred to
in the label field. The SETB statement can be used anyplace after the TEXT
statement. The format of the SETB statement follows:

/Binary Set Symbol /0 or1

PROGRAM [ . / . . o TYPING GRAPHIC
o TDATE INSTRUCTIONS [CHARACTER
PROGRAMMER / /
/ / STATEMENT ]
’ Remarks
Lahl’ Operation ow-ndr

-
. 67 68 69 7071 72 73
12 3 4 5 6 7 8191011 1213 14]15{16 17 18 1920 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66

I

4-28



SETC (Set Character)

The SETC statement assigns an 0- through 8-character expression to the character
set symbol referred to in the label field. The character value assigned is derived
from an evaluation of the operand field. If the derived value contains more than
eight characters, only the first eight characters are used.

The SETC statement can be used anyplace after the TEXT statement and before
the MEND statement. The assigned characters can be any of the 256

hexadecimal combinations possible for 1 byte. The format of the SETC statement -
follows:

/Character Set Symbol /Character Expression

PROGRAM / / TYPING GRAPHIC
| PROGRAMMER / / I DATE INSTRUCTIONS | CHARACTER
/ / STATEMENT
I.lhd’ Operation Opouvd, Remarks

*
123 45 6 7 8o 011 1213 14|15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 .

'5|l§"| c

The character expression in the operand, can contain character, arithmetic, or
binary set symbols, and can include substring notation. You can assign null
values in the character expression by specifying two consecutive single
apostrophes or by specifying only variable symbols that are already specified null
values.

Arithmetic set symbols you use in the character expression are converted to only
their significant decimal digits in the string. All leading 0’s are dropped, and, if
the value of the arithmetic set symbol is 0, a single decimal 0 is used. Binary set
symbols appear as either 0 or 1, and &SYSNDX is given its current value in
3-decimal digits.

Chapter 4.Creating Macroinstructions 4-29



ANOP (Assembly No Operation)

The ANOP statement does not generate any executable machine-language code.
The ANOP statement can be used to provide a label (sequence symbol) to which
AIF and AGO statements can‘brgnch. ANOP can be used anyplace after the
TEXT statement and before the MEND statement. The format of the ANOP
statement follows:

/Sequence Symbol /Not Used

PROGRAM / ' / " TYPING GRAPHIC
PROGRAMMER / / l DATE INSTRUCTIONS | CHARACTER
' £
/ / STATEMENT
Labet ! ‘Operation Opound, Remarks
. -
123 456 7 8900111213 18115016 17 18 19 20 27 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60 61 52 63 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73

4-30



MNOTE (Message)

The MNOTE statement can be used to generate a message to indicate error
severity, if any, associated with the message. The MNOTE statement can be used
anyplace after the TEXT statement. The format of the MNOTE statement
follows:

/Sequence Symbol or Not Used/ See Following Text

PROGRAM / / TYPING GRAPHIC
ruoonwsn[ / I DATE INSTRUCTIONS | cHARACTER
= A
/ pd STATEMENT
-/ v "
Label Operation Operand emarks .
1 2 3 45 6 7 89011 1213 14|15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 30 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 67 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 7

The operand consists of a 2-digit severity code, and any information that follows
it. The severity code can be optionally followed by either a message or a message
identification code (MIC) number and a message ID.

SC = Severity code made up of 2 digits from 00 through 99.
Severity codes are divided into the following classifications:

SC < 08 The macroprocessor generates the message as an assembler
comment (* in position 1), and no error condition occurs.

SC = 08 The macroprocessor generates a special assembler statement
that causes the message to be printed on the assembler source
listing with a warning (W-error).

SC > 08 The macroprocessor generates the message without an * in
column 1, which causes the assembler to flag that statement as
a hard nonrecoverable error (M-error).

Message: 1 to 50 characters enclosed in apostrophes with no embedded
apostrophes. This message appears, as coded, on the assembler source listing.

MIC Message identifier code, a 4-digit code that identifies the message
within the message member.

Message ID  This is the 3- or 4-character identifier before the MIC, separated
by a dash. For example, if the assembler message ID is ASM and
the MIC is 2600, then the printed message would be presented as
ASM-2600 followed by the message text.

Chapter 4.Creating Macroinstructions 4-31



The following shows an MNOTE statement that causes a warning (W-error) and
a comment on the source listing:

PROGRAM TYPING GRAPHIC
PROGRAMMER l DATE INSTRUCTIONS | CHARACTER
STATEMENT
Label Operation Operand Remarks .
1 23 4 5 6 7.81901011121314J15]16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 67 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 ©
L4

.J5E] IOTE! A8, [ DEFIAULIT] [ASISUME
| 1N il ! L i

The following shows an MNOTE statement that causes a hard (M-error) and
generates message ASM-2601 as obtained from the assembler message member:

PROGRAM TYPING GRAPHIC
PROGRAMMER ] DATE INSTRUCTIONS | CHARACTER
STATEMENT
Labet Operation Operand Remarks .
123 4546 7 8fjafton 1213|‘l516|7l8192°2|2223242526272829303'3233343535373839‘0“42‘3“‘5454748‘8505’52535‘“55575859”5‘625384“5557686970717273

.JSE mltﬂﬂ‘?élﬂl.
! ERRENRNRNEN |

T

The following shows an MNOTE statement that causes a hard (M-error) but no

message:
PROGRAM TYPING GRAPHIC
PROGRAMMER l DATE INSTRUCTIONS | CHARACTER
STATEMENT
Label Operation Operand Remarks
»
1 23 4 5 6 7 8[]9 0111213 14115116 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 |
.|5E] E 132
L L1 !

4-32



MEXIT (Logical End)

The MEXIT statement ends the macroinstruction definition processing. MEXIT
statements can be located anywhere in a macroinstruction definition. The format
of the MEXIT statement follows:

/Sequence Symbol or Not Used/ Not Used

PROGRAM / / TYPING GRAPHIC
rnocnmusa/ / DATE INSTRUCTIONS [ CHARACTER
. e
/ e STATEMENT
Label” Operation Operand” Remarks .
1234586 7 8 9\“,“‘213141516'71819202122232‘2525!72329”:"32333"35373839‘0."2‘3“““‘7“‘9”5‘5:535‘“5‘575359“61525364““‘7536970’17273'
1T
-

Chapter 4.Creating Macroinstructions 4-33



MEND (Physical End)

The MEND statement marks the physical end of the macroinstruction definition.
The MEND statement is required and must be the last definition control
statement in the macroinstruction definition. Processing of the macroinstruction
definition ends when this statement is encountered.

The format of the MEND statement follows:

/Sequence Symbol or Not Uy Not Used

PROGRAM / / TYPING GRAPHIC
rnocmmsnl / ! DATE INSTRUCTIONS | CHARACTER
-/ e
/ [ STATEMENT
/- 7
Label Operation Operand Remarks .
123 45 6 7 8]9[011 12131415116 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 57 S8 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 .
] [ +—

Definition Restrictions

The macroprocessor assumes that any ampersand (&) starts a variable symbol. An
ampersand used anywhere else, even in a comment, causes error ASM-5402.

4-34




Example of A User Macroinstruction Definition

The figure on the next page shows the definition of a user-defined
macroinstruction that generates instructions to move more than 256 bytes of data.
The following page shows an assembled program in which the user-defined

macroinstruction is issued. The macroinstruction is issued several times in the

program to demonstrate how parameters specified in the macroinstruction
determine which lines of code are generated from the macroinstruction definition.

IBM-supplied macroinstruction definitions are also shown in Chapter 5.

MACRO
@MOVL. &TO, MOVE *TO* LABEL (LEFT BYTE) C
&FROM, MOVE *FROM? LABEL (LEFT BYTE) c
&LENGTH, LENGTH OF FROM AND' TO FIEILDS [
&ADDR— ADNURESS TO BE IN REGISTER ONE
LCLA  &WRKLNG LENGTH-~REMAINING EBYTES TO MOVE
LCLA  AWRKLM1 LENGTH MINUS ONE
LCLE  &SW ENIT SWITCH, IF ON GEN NO CODE
LCLC &WRKAD SURSTRING OF ADDR~ FARM
TEXT
SPACE
&SW SETE O SET EDIT SWITCH OFF
o ¥ +oIF THERE IS AN EDIT ERROR
o ++IT IS SET TO ONE AND NO
¥ + + INSTRUCTIONS WILL RE GENERATEL
.
o *
o CHECK FARAMETER ONE, ’*TO’ ADDRESS LABEL. *
o *
.
AIF (T?&TO NE *0*) MVF001 IF FIRST FARM IS ENTERED,
+ % ++B0 CHECK SECOND FARM, ELSE
' % ++WRITE OUT AN ERROR MESSAGE
3. ++AND SET ON THE EDIT SWITCH SO
" ++THAT NO CODE IS GENERATED.
o
MNOTE 08, *'FARM 1 (TO ADDR) MAY NOT BE OMITTEI. *
&SW SETB 1 SET EDIT ERROR SWITCH ON
o
o
o - *
% CHECK PARAMETER TW0O, ?*FROM? ADDRESS LAREL *
¥ *
.
+MV2001  ANOP
AIF (T?AFROM NE *07).MVU$002 IF SECOND FARM IS ENTEREN,
o ++GO CHECK THRID FARM, ELSE
o ++WRITE OUT AN ERROR MESSAGE
o % +«+AND SET ON THE EDIT SWITCH SO
o ++THAT NO CODE IS GENERATED.
o
MNOTE 08, 'FARM 2 (FROM ADDR) MAY NOT BE OMITTED.?
&SW SETB 1 SET EDIT ERROR SWITCH ON
o
.
o *
o CHECK FARAMETER THREE, LENGTH OF MOVE. »*
o *
. »* 2333
+MUR002  ANOF
AIF (T?ALENGTH NE *0%).MV$003 IF LENGTH FARM ENTERED,
o ++60 SEE IF IT IS NUMERIC, ELSE
o ¥ «JWRITE OUT AN ERROR MESSAGE
o ««AND SET ON THE EDIT SWITCH SO
o ++THAT NO CODE IS GENERATED.
MNOTE 08, ’FARM 3 (LENGTH) MAY NOT BE OMITTED.’
&S0 SETE 1 SET EDIT ERROR SWITCH ON
AGO «MV2004 GO SEE IF AlLL EDITS FASSED
+MVR003  ANOF
AIF (T?&LENGTH EG ’"N’) MV$004 IF THE LENGTH FARM IS NUMERIC,
o ++ B0 CHECK ERROR SWITCH, ELSE
o +« +WRITE OUT AN ERROR MESSAGE
o +«+AND SET ON THE EDIT SWITCH S0
o ++THAT NO CODE IS GENERATEI.
o
MNOTE 08, *PARM 3 (LENGTH) MUST EE NUMERIC.,*
&8W SETB 1
o e
.
o *
B CHECK THE EDNIT SWITCH. *
] *
B
+MUZ004  ANOF
ALF (&SW) S MUSEXIT IF THE ENIT SWITCH I8 ON, EXIT

o
o

« o THE MACRO AND IO NOT GENERATE

« +ANY COLE.

Chapter 4.Creating Macroinstructions

4-35



.

(3.4 *
o % GENERATE THE NECESSARY MOVE INSTRUCTIONS. *
o . *
+ .

AWRKLNG SETA  &LENGTH SET TO TOTAL NUMBER OF BYTES

AWRKLM1  SETA &LENGTH-1 SET TO NUMEBER TO MOVE MINUS ONE
+MVELOOF ANOF . .
ALF (&WRKLNG LT *257#).MVSEND - IF THERE ARE LESS THAN 257

o* ++BYTES REMAINING TO EE MOVELD,
o ++THEY CAN BE MOVED IN ONE

o . . ++ INSTRUCTION, OTHERWISE

¥ +oMOVE ONLY 286 BRYTES AND

o + +NECREASE THE NUMEER REMAINING
o ++RY 256,

HMue &ATO+AWRKLML (264) 5 &FROMF&WRKLML
&WRKLNG SETA  &WRKLNG-256
AWRKLML  SETA AWRKLNG-1

AGD +MVELOOF
«MVEEND  ANOF

MUC ATO+AWRKLML CAWRKLNG ) 5 &FROM+&WRKL M1
¥
. KN
% *
% CHECK PARAMETER FOUR, ADDRESS TO BE LOALED IN REGISTER ONE *
% i

*

.

AIF (T*&ADDR EQ *0*) JMVSEXIT IF PARM 4 WAS OMITTED, THIS I8 .
o ++OK AS IT IS AN OFTIONAL FARM. <

o
AIF CAADDR? (1,1) NE *@7) MUELDAD  IF THE FIRST CHARACTER
% «+0OF FARM 4 IS NOT AN *@’, GO
o + +BENERATE A LOAD ADDRESS
o® + + INSTRUCTION, OTHERWISE
o + +GENERATE A LOAD INSTRUCTION
% + +USING CHARACTERS 2 THROUGH 7.
o
SWRKALD SETC &ADDR? (2,7) SET STRING TO IGNORE THE ’@*
L AWRKAL, 1
AGD CMVEEXIT MACRO IS DONE, EXIT MACRO

+MVEL DAL ANOF
LA &ADLR, 1
SMUSEXIT ANOF

MEXIT
MENI
ERR LOC ORJECT CODE ADDR STMT SOURCE STATEMENT
0000 1 MACSAM START X?0000*
2% @MOVL. RERE, THERE,S$12
0000 OC FF O22F 042B 4+ MvC HERE+511¢256) , THERE+511
0006 OC FF O12B 032B . ad MVC HERE+255(256) , THERE+25%5
& * @MOVL. HERE, THERE , 224 , ADDR~HERE
O00C OC DF O10B O3OE 8+ MVC HERE+223(224) , THERE+223
0012 €2 01 002C 9+ ERE »
10 @MOVL. HERE, THERE , 400 ) ADDR-@HEREALIR
0016 OC FF O1iBB O3BE 12+ MG HERE+399(256) , THERE+399
001C OC BF OOBB O2BE 13+ MVC HERE+143(144), THERE+143
0022 35 01 OO2E 14+ L HEREADR, 1
15 % BMOVL. HERE, , 3¢5
W 17 %08 PARM 2 (FROM ADDR) MAY NOT BE OMITTED.
18 = @MOVL. HERE , THERE , HERE
W 20 *08 PARM 3 (LENGTH)> MUST BE NUMERIC.
21 = END OF JOB
22+% LINKAGE TO END OF JOB ROUTINES
Q026 F4 01 04 23+ sve Xr04°,X?01¢ - EQJ sVC
0029 04 0029 24+ nc XL1704? EOJ RIB
25+% END OF EXFANSION
002A 002C QO2R 26 HEREADR DC AL2(HERE)
002C 27 HERE EQU *
002¢ 022K 28 s 2CL.256
022C 29 THERE EQU *
022¢ 042R 30 DS 2CL.256
0000 31 END MACSAM
TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY-— [

4-36



Using Macroinstructions

A macroinstruction is written as a source statement. The macroinstruction
statement generates a predetermined set of assembler statements when the
program is assembled. If a macro library was specified on the ASM procedure or
on the second ASM help screen, a comment appears after the commented
invocation of the macro call. This comment gives the name of the library where
the macro was actually found.

You write macroinstructions as follows:

Label Operation Operands Continuation

Symbol | Macro— From none to Any character in

or instruction many — if more than position 72 if

blank mnemonic one, separate with continuation is
commas wanted

The label field can contain any valid assembler language symbolic label beginning
in position 1. The label is assigned to the first byte of generated code. Because
the label is optional, it is shown below in brackets.

The desired operation mnemonic must appear as specified in that
macroinstruction description. The operation code must start in position 10.

Keyword Dash  Parameter

AN

[label] | SABC NAME-module[,FIND ~address] [ PACK-P/S]
. /dﬁ

Operand Optional Default Option
Operand Value List

Chapter 4.Creating Macroinstructions 4-37



The operands specify the options and services that you want to use. Operands
must start in column 16. No operands can be entered beyond column 71. If
continuation is required, column 72 must contain a character and the last operand
before a continuation character must be followed by a comma and at least one
blank. If the comma is in column 71, the blank is not required. An operand
cannot be divided and continued on the next line. The operands of the continued
field must begin in column 16. To see the use of continuation coding, see the
following example:

PROGRAM TYPING GRAPHIC
PROGRAMMER I DATE INSTRUCTIONS | CHARACTER
) STATEMENT
Label 5 Operation Operand Remarks .
1 23 45 6 7 81910111213 14[35§16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 66 67 €8 69 7071 72 713 ©
1 T -IC0, RECLI-IA0, - SAMPLLE], CHATN - 2,
UTRECH L

D

L LR L

A comment must be separated from the operand or comma by at least one blank
space. A comment cannot be inserted between operands on a 1-line
macroinstruction. The following figure shows examples of comments used with
macroinstructions. On the assembler listing, all comments on the generated code
are aligned by the macroprocessor to begin in column 40. Any comments too
long to be contained in columns 40 through 71 are truncated from the right.

STATEMENT

Label Operation Operand Remarks .
123456 7 8loho11 1213 18}15}16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 60 51 52 53 54 B6 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73

| 1SK- T -l HAS| ONE! |

=
mZl
D

o wI
-

C N BALT-NL] | *TJFILIQ THI il

Tt L Tt T T

4-38



Chapter 5. Macroinstructions Supplied by IBM

The IBM System/36 Assembler and Macro Processor Program Product provides
macroinstructions that perform system services and device support. By using
IBM-supplied macroinstructions, you can perform these operations with less
coding. Scientific macroinstructions are described in the Scientific
Macroinstruction Reference manual.

The following conventions apply to the IBM-supplied macroinstructions:
® Only keyword operands are used.

o FEach operand consists of a keyword followed by a dash and a parameter.

(R)
KEYWORD- (B)
(C)

This list indicates that options A, B, and C are the only valid options for the
keyword parameter. When the options Y/N are given in a macroinstruction,
Y indicates a yes response, and N indicates a no response.

e Commas separate the operands; no blanks are allowed between operands.

e Keyword operands can be written in any order.

Optional operands are indicated in this chapter by brackets
[KEYWORD-parameter]. If an operand is not specified, the default is used. A
default is selected for any optional keyword that is omitted. The default is

indicated by a line under the default option. For example, [KEYWORD-A/B/C]
indicates that option A is the default.

Chapter 5.Macroinstructions Supplied by IBM  5-1



The macroinstructions and functions of the IBM System/36 Assembler and Macro
Processor Program Product are shown in the following table. This table is
arranged according to device. The macroinstructions that follow each device are
in alphabetic order.

Device Type Macroinstruction

Supported Name Function
System log SLMSG Generate parameter list for message
displayed by system log.
$LOGD Offsets in log parameter list
$LOG Creates linkage to system log
General SSP  $FNDP Generates find parameter list
$FIND Finds a directory entry
$LOAD Loads or fetches a module
SSNAP Performs snap dump of main storage
SINFO Retrieves system information
$INV Moves inverse data
$EOQJ Creates linkage to end job
General I/O  $ALOC Allocates file or device
SOPEN Prepares a device or file for access
$CLOS Prepares a device or file for termination
$DTFO Generates DTF offsets for all devices
Printer $DTFP Defines the file for a printer
SPUTP Constructs a printer PUT interface
Disk $DTFD Defines the file for a disk
$GETD Constructs a disk GET interface
$PUTD Constructs a disk PUT interface
Disk Sort $SRT Generates a loadable sort parameter list
$SORT Constructs sort interface



Device Type Macroinstruction

Supported Name Function
Timer STRB Generates timer request block
$SIT Sets timer interval
SRIT Returns/cancels timer interval
$TOD Returns time and date
Display $DTFW Defines the file for display station
Station
$WSIO Passes 1/O requests to display station
SWIND Generates indicators for PUT and PUT
overrides
$WSEQ Generates labels and values for display

station device-dependent values

BSC $SDTFB Defines the files for BSC

$GETB Creates GET requests to receive data
(move data from BSC I/O buffer to logical
buffer)

$PUTB Create PUT requests to transmit data
(move data from logical buffer to I/O
buffer)

$TRAN Generates an interface to the translate
routine

$TRL Generates a parameter list used by the
translate routine

$TRTB Generates EBCDIC to ASCII or ASCII to

EBCDIC translate table

Chapter 5.Macroinstructions Supplied by IBM ~ 5-3



$SALOC (Allocate File or Device)

5-4

The routines called by the SALOC macfoinstruction allocate all input/output
devices and files. These routines check that:

The DTF is not open.

e The system supports the requested device.

~ o The device requested is either not being used or is capable of multiple

allocation.
® Space is available for a new file.
® A FILE statement is given for each disk file.
These routines also:
e Match the DTF with the COMM, FILE, and PRINTER statements given.
& Load the data management task for data communications DTFs.
When the allocate request is for a disk file, a FILE OCL statement is also
required. More than one DTF can be allocated at one time by chaining the
DTFs. To chain DTFs, you must enter the address of the next DTF in the DTF
you are building. The last DTF in a chain must have X’FFFF’ entered in place
of the chain address. For a description of the disk, printer, and display station

DTFs, see $DTFD, $DTFP, and $DTFW.

Note: If you will need the data in register 2 later, you should save the contents of
that register before issuing SALOC.

The normal execution sequence for the general I/O support macroinstructions is:
1. $ALOC to allocate the file or device to your program.

2. $OPEN to prepare the file or device for use.

hat

I/O operations and any processing required.

4. $CLOS to prepare the file or device for job termination.



The following output is returned to your program:
The DTF is prepared as required by $OPEN.

The format of the SALOC macroinstruction follows:

[label] $ALOC [DT F-address]

Note: A DTF that was opened cannot be supplied to an allocate request until it
is closed. That is, SALOC must occur before SOPEN.

DTF: Specifies the address of the leftmost byte of the first DTF being allocated.
If this operand is entered, an LA instruction is generated to load the specified
address into register 2. If this operand is not entered, the address of the DTF is
assumed to be in register 2.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-5



$CLOS (Prepare a Device or File for Termination)
The $CLOS macroinstruction prepares a device or file for job termination.
Input to SCLOS consists of the opened DTF.

Output from $CLOS is returned to your program when control is returned. The
DTF is returned to the state it was in before $ALOC and $OPEN were used. For
example:

e Bit 7 of the second attribute byte of the DTF is set off to indicate the file is
closed.

e Bit 5 of the third attribute byte in the DTF is set off to indicate the file is not
allocated.

The devices and files that correspond to the open DTFs are prepared either for
the job to end or to be allocated and opened again.

Notes:

1. If a device or file is to be reused after it is closed, both allocate and open
must be issued before I/O operations can be processed.

2. More than one DTF can be closed at one time by chaining the DTFs. To
chain DTFs, each DTF to be closed must contain the address of the next
DTF in the chain. See $DTFD, $DTFP, and $DTFW later in this chapter.

3. If the DTF is to be reopened, the program must reset the SWSF1A field to be
the library F1 address or the program should initialize the field to zero. The
$WSF1A field is dually defined with the $WSTU field which is changed by
work station data management.

The format of the $CLOS macroinstruction follows:

[label] $CLOS [DTF."addr‘eSs]

DTF: Specifies the address of the leftmost byte of the first DTF to be closed. If
this address is entered, an LA instruction is generated to load the specified
address into register 2. If this operand is not entered, the address is assumed to
be in register 2.

5-6



$DTFB (Define the File for BSC)

The DTF provides information needed to allocate, open, close, and access a BSC
file. This macroinstruction generates the code that builds the BSC DTF. The
format of the SDTFB macroinstruction follows:

1

. Y
, TRANSP-\ N

- o

[, DLYCT-decdi g] [, RCVID-address

Y
,UPSI—mask] [, CHAIN-address] ,ITB—{_&}

[, RVIADR—address]

[label] $DTFB RECL-decdig,RCAD-address,BLKL-decdig, FTYP—{

-

.

:BUFNO-{Z} [,ERRCT-decdig] {,RECSEP—number]

,RVIMSK—code]

-

[,SNDID-address]

RCV
TSM

» TYPE-

P—P
AA
MA
MC
MP

} [, NAME-file name]

E N
[.RCVCT—decdig] [,SNDCT—decdig] [,TERMAD-address] ,RECFNT-{V} [,OPD—{Y}]

Chapter 5.Macroinstructions Supplied by IBM ~ 5-7




5-8

RECL: Specifies in decimal the maximum record length for this file, excluding
the transmission control character. The maximum allowable record length is 4075
bytes. However, if data is being blocked (with ITBs or record separators), the
record length cannot be so large as to force the physical I/O buffer to be longer
than 4096 bytes.

The following algorithm may help you determine a value to use as RECL.

Buffer size = (record length * number of records per block) + number of
bytes needed for ITBs or record separators + 21 (rounded up to a multiple of
eight).

Number of bytes needed for ITBs = number of records per block minus 1
(nontransparent), or number of records per block minus 1 times 3
(transparent).

Number of bytes needed for record separator = number of records per block.

Note: For get-a-block operations (OPC-BLK), the record length in the DTF
(8BSRCL) is modified by BSC to reflect the length of the block (including
transmission control characters) received. See also the RECFMT description in
this section.

RCAD: Specifies the symbolic address that identifies the leftmost byte of your
logical buffer. The logical buffer must be large enough to contain one record for
this file. Records are moved from the logical buffer to the BSC I/O buffers on
put requests (SPUTB macroinstruction), and are moved from the BSC I/O buffers
to the logical buffer on get requests (SGETB macroinstruction).

BLKL: Specifies in decimal the maximum block length for this file, excluding line
control characters. Block length must be equal to or greater than the record
length (RECL operand). For maximum block length, see RECL.

FTYP: Specifies whether put requests (TSM) or get requests (RCV) are to be
performed on this file.

NAME: Specifies the name of the BSC file to be accessed. If this operand is
omitted, no file name is used. The file name is used in certain SSP error
messages.

BUFNO: Specifies the number (1 or 2) of physical I/O buffers and IOBs
(input/output block) to be contained in the I/O area for this file. If this operand is
omitted, 1 is assumed. This operand has no effect on the RECL or BLKL
parameters, or the logical buffer length.

ERRCT: Specifies the number of times an unsuccessful BSC operation is retried
before an error condition is posted. Valid entries for this parameter are 1 through
255. If this operand is omitted, a value of 7 is assumed. Specifying a retry count
of 255 will be treated as an infinite retry count. This will allow BSC to wait
forever on a SGETB operation.

RECSEP: Specifies a 1-byte, 2-character hexadecimal value. For put files, BSC
inserts the specified byte between blocked records. For get files, this parameter



indicates that the data being received has an intermediate record separator to be
removed. Any valid ASCII or EBCDIC character can be used.

The following is a list of invalid characters:

ASCII EBCDIC

(hex)  (hex)
00 00
01 01
02 02
03 03
04 10
05 IF
11 26
15 2D
16 32
17 37
IF 3D

TYPE: Specifies the type of line connection to be established for this file.

Type Specification

PP Point —to — point nonswitched line. PP is assumed if no line type is
specified.

AA Switched line with automatic answer.

MA Switched line with manual answer.

MC Switched line with manual call.

MP Multipoint line; tributary station. MP requires TERMAD parameter.

Note: If you are using an autocall line, the switch type specified has no effect.
However, if no phone list is specified in the COMM OCL statement or if the
autocall task is not active, the switch type specified here is established unless the
ALTERCOM procedure overrides it.

CODE: Specifies whether the character code used on your communications link
is EBCDIC (E) or ASCII (A). If this operand is omitted, E is assumed.

UPSI: Specifies the settings of the external (SWITCH statement) indicators used
for conditionally opening files. The code must be specified as 8 binary bits. For
example, to test bits 0, 3, 5, and 7, you would enter UPSI-10010101. If this
operand is omitted, zeros are assumed.

CHAIN: Specifies the symbolic address of the next DTF in the chain. Chained
DTFs are allocated, opened, or closed with the first DTF in the chain. To
decrease the execution time of your program, all BSC DTFs should be chained
together.

ITB: Specifies whether intermediate block checking is requested: Y if yes, N if

no. ITB is not valid with transparent transmit files. If this operand is omitted, N
is assumed.

Chapter 5.Macroinstructions Supplied by IBM  5-9



5-10

TRANSP: Specifies whether data for this file will be transmitted or received in
transparent mode: Y if yes, N if no. If this operand is omitted, N is assumed.

RVIADR: Specifies the symbolic address of a 1-byte field you provide. The field
is used with the mask specified in the RVIMSK operand (following paragraph) to
indicate when a reverse interrupt request (RVI) is received. RVIADR-address
requires the RVIMSK operand.

RVIMSK: Specifies 2 hexadecimal digits to representk the reverse interrupt (RVI)
mask. The bits represented by the mask are set on by BSC in the RVIADR field
(preceding paragraph) if reverse interrupt request is received.

DLYCT: Specifies a decimal delay count. The delay count is the number of
seconds after receiving or transmitting a block of data that BSC will wait to
receive or transmit another block of data for the same file with no error message.
The number must be within the range of 1 through 999. If you do not specify a
number, a 180-second delay count is allowed for such things as device errors,
halts, and readying I/O devices. The delay count should allow for such things as
printing and operator response time. When the delay count is exhausted, EOT is
transmitted to the remote station, an error message is displayed for the user, and
an error completion code ($BSDLYEX) is returned to your program.

Note: See the BSC Completion Code Table on page 5-12 for an explanation of
completion codes.

RCVID: Specifies the symbolic address of the leftmost byte of the identification
sequence required from the remote station. RCVID requires the RCVCT
operand. Using RCVID and RCVCT may improve security on switched lines;
these operands are valid for switched lines only. If the IDs do not match,
initialization stops, an error message is displayed, and an error return code is
generated.

SNDID: Specifies the symbolic address of the leftmost byte of the identification
sequence required by the remote station. SNDID requires the SNDCT operand.
Using the SNDID and SNDCT operands may improve security on switched lines;
these operands are valid for switched lines only.

RCVCT: Specifies in decimal the length of the identification sequence required
from the remote station. The length can be from 1 to 15. If 1 is specified, BSC
expects to receive two characters —two duplicates of the character addressed by
the RCVID operand (previous paragraph). If no length is specified, 0 is assumed.
RCVCT requires the RCVID operand be specified also.

SNDCT: Specifies in decimal the length of the identification sequence required by
the remote station. Length can be from 1 to 15. If 1 is specified, BSC transmits
two characters — duplicates of the character specified by the SNDID operand
(previous paragraph). SNDCT requires the SNDID operand.

TERMAD: Specifies the hexadecimal representation of the 2-character polling or
addressing sequence used by this file. If this is a transmit file (FTYP-TSM),
TERMAD specifies polling characters; if this is a receive file (FTYP-RCV),
TERMAD specifies addressing characters. Each tributary station on a multipoint
line must have unique polling and addressing characters. The TERMAD operand
is used only when TYPE-MP is specified.



RECFMT: Specifies whether the BSC program will receive records of fixed (F) or
variable (V) record length. Fixed (F) is assumed if this parameter is omitted.
Transparency, ITB mode, and blank compression or truncation are invalid with
variable (V) length records. BSC returns the length of the record received in field
$BSRCL of the DTF if RECFMT-V is specified. This parameter has no effect on
PUT files. If you specify RECFMT-V, the RECL field must contain the
maximum record length you expect to receive.

Note: Relative record numbers (RRN) are specified in an 8-byte field in the DTF.
The first RRN is specified in binary, starting with 0 (zero), and in decimal starting
with 1 (one). The following labels expanded by the $DTFO macroinstruction
define the RRN field in the DTF: '

SF1ARG This is a displacement to the rightmost byte of the 8-byte RRN
field in the DTF.

SF1IRRNB This is a displacement to the rightmost byte of the 3-byte binary
RRN field of the DTF. This displacement points to the left 3
bytes of $F1ARG. If you are processing with binary relative
record numbers you must specify a right-justified, 3-byte binary
number in this field.

SFIRRND This is a displacement to the rightmost byte of the 8-byte decimal
RRN field of the DTF. This displacement points to the same field
as the SF1ARG field described above. If you are processing a
decimal RRN, you must specify a right-justified, 8-byte decimal
number in the field.

OPD: Specifies whether the BSC program will do normal end of file processing
by sending EOT (N), or by using EXT as the file separator (Y). The Office
Product Device support protocol is found in the Program Service Information
manual. This mode is only supported for assembler users and only on
transmitting. The last record transmitted in a block must be done with a SPUTB
OPC-EOB.

Chapter 5.Macroinstructions Supplied by IBM  5-11



BSC Completion Code Table

5-12

$BSCMP is a byte in the workstation DTF that contains the completion code. It
is referenced by loading an index register with the start address of the DTF and
using $BSCMP as an offset. For example:

TBN $BSCMP( ,XR2) ,$BSNRMC . TEST FOR SUCCESSFUL COMPLETION

$BSCMP EQU  $BSWKB+1,1 COMPLETION CODE

* COMPLETION CODES

$BSRQAC EQU  X'00’ BSC TASK NOT ACTIVE
$BSNRMC EQU  X'40° NORMAL COMPLETION
$BSUSER EQU  X'41 USER ERROR

$BSEOF EQU X'42" END OF FILE

$BSINVID EQU X'43’ INVALID ID ON SWITCHED LINE
$BSREQIG EQU X4A’ REQUEST IGNORED
$BSINVAS EQU  X'4B’ INVALID ASCIi CHARACTER
$BSNOCON EQU . X'4C NO CONNECTION

$BSINVRQ EQU X'4D’ ‘ INVALID REQUEST
$BSDLYEX EQU X'4F' DELAY COUNT EXCEEDED
$BSPERM EQU  X'4F PERMANENT ERROR
$BSNORSP EQU  X'50 "~ NO RESPONSE

$BSDTCK EQU X'51’ : DATA CHECK

$BSLSTDT EQU X'52 LOST DATA

$BSLSTCN EQU  X'63 LOST CONNECTION
$BSINVRS EQU X'54’ INVALID RESPONSE
$BSADCK EQU  X'65’ ADAPTER CHECK
$BSFWDAB EQU  X'56' FORWARD ABORT RECEIVED
$BSABRT EQU X'57 EOT ABORT

$BSMLCAT EQU  X'58’ MLCA TEMP ERROR

$BSMLCAP EQU X'59". ‘ MLCA PERM ERROR



$DTFD (Define the File for Disk)

The $DTFD macroinstruction generates the code that builds the preopen DTF
disk for GET/PUT operations. The disk DTF provides information needed to
allocate, open, and access a file on the disk.

Further information access methods for disk files is in Appendix E.

The format of the $DTFD macroinstruction follows:

N

L

»KEYL-number

HEEREFREERE KX EXR B

* The following *

* seven parameters *
* are only associ- *
ated with keyed
files.

L

»ORDLD-fY
N

-

* *

r

* *

* *

ERREEXLERRRFXXEXRES

L

.GSEQ-{x}
N

LR L E R L RS L X E X2 R RS R

* The following

* nine parameters
* are only associ-
* ated with GAM.

*

L

L T A

AR E RS RS EE LR E S

E

)

4

?

N

,ARRN—{?

.GRAN—{x}
N

[,OUTREC-address] [.DBLOCK—number] [CHAIN—address] .IOMSG-{Y}

»RETURN-{Y} [,LABEL-offset] »LOCKCK

[label] $DTFD ACCESS-code »NAME-file name [,RECL-number] [,INREC-address]

N

o] [t

[.KDISP—number] [,KEY—offset] [,IBLOCK—number]

,LIMIT-(Y
N

ARG-JBIN
DEC

[, HIGH-offset]

»UPDATE-fY »DELETE-fY »AEOD-)Y
N N N

I » ORDER~-fRECORD
»CREATE-{S KEY
D

Note: The above parameters have been grouped according to their function;
however, they may be arranged in any order.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-13




5-14

ACCESS: Specifies the access method used for the file. This operand is required.

The access methods and corresponding codes are:

Access Method
Consecutive add

Consecutive input

‘Consecutive output

Consecutive update

Direct input (decimal RRN)

Direct output (decimal RRN)

Direct update (decimal RRN)

Direct input addrout (binary RRN)
Direct output addrout (binary RRN)
Direct update addrout (binary RRN)
Generalized access method

Indexed random add

Indexed output

Indexed sequential input

Indexed sequential add with input capable
Indexed sequential update

Indexed sequential update and add’
Indexed random input

Indexed random add with inpu’; capable
Indexed random update

Indexed random update and add

Record/key length, key displacement in DTF

~ Code

CA
CG
CO
CU
DG
DO
bU
DGA
DOA
DUA
GAM
IA

IO

IS
ISA
ISU
ISUA
IR
IRA
IRU
IRUA

PSEUDO

Note: Refer to APPENDIX E for additional information on Access Methods.



NAME: Specifies the name of the file. The name cannot exceed eight characters,
- and must be the same as that specified on the FILE OCL statement. This
operand must be specified.

RECL: Specifies the decimal length of the record. The maximum length is 4096.
This operand is required for all access types except PSEUDO, which returns the
record length of the file. The default record length is 32 bytes.

INREC-address: Specifies the initial address of the leftmost byte of an area that
will contain the record from the input operation. The area reserved must be equal
to the record length.

OUTREC: Specifies the address of the leftmost byte of the area that will contain
the record for any update or add operation. This area must be equal to the
record length.

DBLOCK: Specifies the number of records to be moved between main storage
and disk with each disk I/O operation. Buffer space is reserved based upon this
number and the record length. Data management might change this number
based on current file status. The number must be between 1 and 65535. If not
specified, 1 is assumed. The DTF value for this field can be overridden by the
value specified on the FILE OCL statement.

CHAIN: Specifies the address of the next DTF in the chain of DTFs. If there is
no DTF chain or if this is the last DTF in the chain, this operand should be
omitted (hex FFFF is then assumed).

IOMSG: Specifies that an error message should be issued by the System Support
Program (SSP) for a permanent disk error. When N is specified, control is
returned with the completion code set. If this operand is omitted, N (no) is
assumed.

RETURN: Is used only if IOMSG-Y (yes) is also specified to present the options
allowed to the operator when a permanent disk error occurs. If RETURN-Y
(yes) is specified, the operator is allowed to take option 2 and receive the
permanent disk error message. If option 2 is taken, control is returned to the user
program with the completion code set. If RETURN-N (no) is specified, the
operator is allowed option 3 only. If this operand is omitted, N is assumed.

LABEL: Specifies the first byte of the label area from the end of the DTF. the
DTF must be 8-bytes long. A file label is returned if:

e When a duplicate key error occurs on the currently used index, the $PUTD
macro branches to the routine specified on the DUPREC parameter. When a
duplicate key error occurs on an index other than the currently used index,
the SPUTD macro branches to the routine specified on the DUPRCO
parameter.

e For update key error conditions, the label area contains the label of the file in
which the key update is being attempted. When an update key error occurs,
the SPUTD macros branches to the routine specified on the KEYERR
parameter.

Chapter 5.Macroinstructions Supplied by IBM  5-15



5-16

e For a permanent I/O error, the label of the file where the error occurred is
returned here. When a permanent 1/O error occurs, the $SPUTD macro
branches to the routine specified on the IOERR parameter.

Note: If alternate indexes are defined on the file that you were processing, this
label may be different than the file that you were accessing.

The label field must follow the DTF. The last byte of this field must be within
2048 bytes of the first byte of the DTF.

LOCKCK: Requests a check by data management to see if the requested input
record is already owned by this task. If Y (yes) is specified, a completion code is
returned if the record is already owned. If N (no) is specified, or the operand is
omitted, no check is made.

UPSI: Specifies the settings of the external indicators used for conditionally
opening files. The code must be specified as 8 digits. For example, to test bits 0,
3, 5, and 7, you would enter UPSI-10010101. When all corresponding indicators
are on, the file is opened. If the file is not opened and operations are issued for
this DTF, the operations are not performed, and you receive a return code of hex
99. If this operand is omitted, zeros are assumed.

KEYL: Must be specified for all keyed access methods except PSEUDO to
supply the length of the key field. The maximum length is 29, and if this operand
is omitted, a length of 1 is assumed. An open with ACCESS-PSEUDO specified
returns the key length for an indexed file. If the file has noncontiguous keys, the
sum of the lengths of the individual key fields must be specified.

KDISP: Must be specified for all keyed access methods except PSEUDO to
indicate the displacement into the record of the rightmost byte of the key field.
The displacement of the first byte in the record is 0, the second byte is 1, and so
on. The maximum displacement is 4095 and if this operand is omitted, a
displacement of 0 is assumed. A pseudo open returns the key displacement for an
indexed file. If the file has noncontiguous keys, KDISP must contain decimal
65535 (hexadecimal 'FFFF).

KEY: Specifies the first byte of the key area as the displacement from the end of
the DTF. This reserved area must be equal to the key length. This operand is
required for KEY, KEYA, and KEYEA operations. The key area must following
the DTF. The last byte of the key area must be within 2048 bytes of the first byte
of the DTF. If the file has noncontiguous keys, the sum of the lengths of the
individual key fields must be specified.

IBLOCK: Specifies the number of index entries moved between main storage and
disk with each disk I/O operation. Buffer space is reserved based upon this
number and the record length. Data management might change this number
based on the access and the current system status. The number must be between
1 and 65535. If not specified, 1 is assumed. The DTF value for this field can be
overridden by the value specified on the FILE OCL statement.

ORDLD: Specifies that data management will check that record keys placed in
the file are in ascending order. ORDLD can be specified for the following
indexed add-capable or output-capable access method (IA, IRA, IRUA, IO, and
GAM with AEOD-Y and/or ARRN-Y). IfY (yes) is specified, and the record



keys are not being loaded in ascending order, data management will return a
nonsuccessful completion code. If N (no) is specified, data management does not
check for ascending order. Duplicate keys are allowed as specified in the FILE
OCL statement when the file was created. If ISA or ISUA is specified, the user is
forced into ORDLD-Y mode regardless of whether the ORDLD parameter is
specified or not. If the operand is omitted for the other indexed-ADD or output
methods, N (no) is assumed.

LIMIT: Specifies whether this access is within limits. LIMIT can only be
specified for indexed sequential access methods (IS, ISA, ISU, ISUA, and GAM
with GSEQ-Y). This allows you to get records in consecutive order from a keyed
file by specifying the lowest and highest record key. If while processing within the
specified limits, a nonsequential get is issued, the current limits are cancelled. See
the HIGH parameter of SDTFD and the $SGETD macroinstruction for more
information on limits. If this operand is omitted, N (no) is assumed.

HIGH: Specifies the first byte of the limits keys area as the displacement from
the end of the DTF, which is lengths long: the low key is in the left half and the
high key is in the right half. This field must be after the DTF. The last byte of
this field must be within 2048 bytes of the first byte of the DTF. If this operand
is omitted, hex FFFF is assumed.

GSEQ: Used only with GAM to specify whether sequential get operations will be
issued with this file access. The consecutive get operations that can be specified
with the $GETD macroinstruction OP parameter, are NEXT, PREV, PLUS, and
MINUS. If this operand is omitted and ACCESS-GAM is specified, Y (yes) is
assumed.

GRAN: Used only with GAM to specify whether random get operations will be
issued with this file access. Random get operations specified with the SGETD
macroinstruction OP parameter are KEY, KEYEA, KEYA, RRN, FIRST, and
LAST. If this operand is omitted and ACCESS-GAM is specified, Y (yes) is
assumed.

UPDATE: Used only with GAM to specify whether UPDATE operations will be
used with this file access. If this operand is omitted and ACCESS-GAM is
specified, Y (yes) is assumed.

DELETE: Used only with GAM to specify whether DELETE operations will be
issued with the file access. If this operand is omitted and ACCESS-GAM is
specified, Y (yes) is assumed.

Note: If a DELETE operation is issued against a file that is nondelete capable, an
invalid operation completion code is set.

AEOD: Used only with GAM to specify whether add-at-end-of-data operations
are issued with this file access. If they are issued, this would cause the added
record to be placed in the file at the end of the current records. If this operand is
omitted and ACCESS-GAM is specified, Y (yes) is assumed.

ARRN: Used only with GAM to specify whether add-by-RRN operations are
issued with this file access. If they are issued the added record is placed in the
specified AREA location in the file. If this operand is omitted and
ACCESS-GAM is specified, Y (yes) is assumed.

Chapter 5.Macroinstructions Supplied by IBM  5-17



ARG: Used only with GAM or for direct input or update access to specify '
whether the argument (the RRN or the plus/minus value) for this access is binary
(BIN) or decimal (DEC). If this operand is omitted, binary (BIN) is assumed.

CREATE: Used only with GAM to specify which file type should be created
when the output is put to a new file or to a load-to-old file.

I creates an indexed file
S creates a sequential file
D creates a direct file

There is no default for the CREATE parameter.
ORDER: Required parameter that must be used with GAM to specify whether

the data is to be accessed by key or by record (not by key) There is no default
for the ORDER parameter.

5-18



$DTFO (Generate DTF Offsets)

This macroinstruction defines the DTF labels, offsets, field contents, and field
lengths for all devices and access methods supported by System/36. To avoid
duplicate labels, this macroinstruction should be used only once in each program.
For a list of the fields that $DTFO defines, see the DTFs in the Data Areas
Handbook.

The format of the $DTFO macroinstruction is:

[label] $DTFO

)

r

» ICRTC-fY
N

‘}1

)

SALL-fY
N

)

o)

o] [y

DISK: Specifies whether labels are to be generated for the disk devices. If this
operand is omitted, N (no) is assumed.

PRT: Specifies whether labels are to be generated for the printer. If this operand
is omitted, N (no) is assumed.

BSC: Specifies whether labels are to be generated for BSC. If this operand is
omitted, N (no) is assumed.

WS: Specifies whether labels are to be generated for work station and SSP-ICF
devices. If this operand is omitted, N (no) is assumed.

ICRTC: Specifies whether labels are to be generated for SSP-ICF(interactive
communications feature) return codes. If this operand is omitted, N (no) is
assumed.

ALL: Specifies whether labels are to be generated for all devices supported. If
this operand is omitted, N (no) is assumed.

FIELD: Specifies whether labels are to be generated to define the contents of the
DTF fields. If this operand is omitted, N (no) is assumed.

COMMON: Specifies whether labels are to be generated to define the field

content on the common portion of the DTF (from the start of the DTF, and
ending with the name field). If this operand is omitted, Y (yes) is assumed.

Chapter 5.Macroinstructions Supplied by IBM  5-19




$SDTFP (Define the File for a Printer)

$DTFP builds a DTF for a printer and assigns its offsets. The DTF provides
information needed to allocate, open, and access a printer. This macroinstruction
generates the code that builds the printer DTF.

The format of the $SDTFP macroinstruction follows:

- - -

[label] $DTFP |RCAD-address ,IOAREA-address] [,NAME-file name]

L . L

- - -

s OVFL-number ,PAGE—number] [,UPSI—mask]

b ol L.

- - I -
sHUC-(Y [, CHAIN-address] »PRINT- N } [, SKIPB—number]
N ‘TRANS

h ol

N\

,SPACEB-< [. SKIPA—number] »SPACEA-

UWUN =
HWHN -

Ve

[

,RECL—number] ALIGN—{Y} .ERROR—{Y} ,RETURN-{Y}
L N N N

—

5-20



RCAD: A required operand that specifies the address of the leftmost byte of the
logical record. :

IOAREA: This parameter is not required and is provided for System/34
compatibility only.

NAME: Specifies the name of the print file. This name must be the same as the
name specified on the PRINTER OCL statement. This operand defaults to FILE
NAME.

OVEFL: Specifies the print line after which the overflow completion code will be
returned. If this operand is omitted, the value defaults to six lines less than the
number specified for the PAGE operand.

PAGE: Specifies the number of printed lines to print per page. If this operand is
omitted, it defaults to the system value for the number of lines per page or to the
LINES parameter of the PRINTER OCL statement.

UPSI: Specifies the settings of the external (// SWITCH statement) indicators
used for conditionally opening files. The code must be specified as 8 bits. For
example, to set on bits 0, 3, 5, and 7, you would enter UPSI-10010101. When the
mask bits that are set to 1 are also set in the switch, the file is opened. If the
DTF is not opened and operations are issued for this DTF, the operations are not
performed and you receive a return code of hex 99. If this operand is omitted, 0’s
are assumed.

HUC: Specifies whether to halt if an unprintable character is detected. If N (no)
is specified or if this operand is omitted, no halt occurs, and unprintable
characters appear as blanks.

CHAIN: Indicates the address of the next DTF. If there is no DTF chain or if
this is the last DTF in a chain, this operand should be omitted ( hex FFFF is then
assumed).

PRINT: Specifies with Y (yes) to perform both a print and the specified skip or
space, or with N (no) only a skip or space. The default is Y, meaning that a print
is performed as well as the other operation.

PRINT-TRANS (transparent mode): Requires the before forms feed commands at
the beginning of the record. The after forms feed command of the printer DTF
must be 0 or 1.

SKIPB: Specifies the line to skip to before the print operation. If this operand is-
omitted the existing value is used. If the operand is an invalid number (too large)
the parameter is ignored and no skip is performed, until a valid value is used.

SPACEB: Specifies the number of lines to space before the print operation. If
this operand is omitted the existing value is used. If the operand is an invalid
number (too large) the parameter is ignored and no space is performed, until a
valid value is used.

Chapter 5.Macroinstructions Supplied by IBM  5-21



5-22

SKIPA: Specifies the line to be skipped to after a print operation. The maximum
allowed is 255. If this operand is omitted the existing value is used. If the -
operand is an invalid number (too large) the. parameter is ignored and no skip is

- performed, until a valid value is used.

Note: If the SKIP or SPACE values exceed the value of PAGE (lines per page),

no operation is performed.

SPACEA: Specifies the number of lines to space. after the print operation. If this
operand is omitted the existing valpe is used. If the operand is an invalid number
(too large) the parameter is ignored and no space is performed, until a valid value
is used.

Note: If the SKIP or SPACE values exceed the value of PAGE (lines per page),
no operation is performed.

- RECL: Speciﬁes the length of the line to be printed, from 1 through 198

positions. If this operand is omitted, the default is 132 positions. When a value
greater than 132 positions is specified, the output must be printed at 15 characters
per inch.

,ALIGN Specifies whether alighment is requested on the first page. If Y (ves) is

specified, a halt is issued to the operator after the first data line is printed,
allowing the operator to check alignment. If this operand is omitted, N is
assumed.

Note: This parameter may be overridden by the ALIGN parameter on the
PRINTER OCL statement.

ERROR: Specifies whether an error message should be issued for a permanent
error. If N (no) is specified, control is returned to the user program with the
completion code set. If this operand is omitted, Y is assumed.

Note: NOT READY conditions on the printer, such as a forms jam or an
out-of-forms condition, are not considered permanent errors.

RETURN: Specifies the options available to the operator after a permanent I/O
error message is issued. If Y (yes) is specified, permanent-error console messages
are printed on the system printer and the operator is allowed to select option 2 or
option 3. If option 2 is selected, control is returned to the user program with the
completion code set. If N (no) is specified, the user is allowed only option 3. If
this operand is omitted, N is assumed.



$DTFW (Define the File for Display Station)

The SDTFW macroinstruction generates the code that builds the display station
DTF. The display station DTF provides information needed to allocate, open,
and access a display station file.

All communication with the display stations or system console is done via work
station management. Work station management consists of two parts: a
generator routine and a data management routine. The screen format generator
routine (SFGR) builds the library load member required when a display station is
used as a formatted input/output device. For further information about the
screen format generator routine (SFGR), see the Creating Displays: Screen
Design Aid and System Support Program manual.

Work station data management provides the interface between the system and the
display stations. This section describes the macroinstructions that support display
station devices. You build your DTF using the $DTFW macroinstruction. You
then use the $WSIO macroinstruction to modify the DTF fields for each
operation.

Note: For a description of how to code SDTFW for the interactive

communications feature, see the Interactive Communications Feature: Reference
manual.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-23



‘The format of the $DTFW macroinstruction follows:

[label] $DTFW

v L
Y
L.RESET— N

-

r -

DEV-code}

[,RCAD-address] {,INLEN~number]

- - -

,ROLINE-number

L - b

- - -

s VARLIN=number

e - b

,INDA-address] {,NEMBER—name]

oY Y
,PRNT—{u} ,ROLL-{ﬂ}

p-

.TERMID—name]

-

Y fY Y
,CLEAR-\NJ| |,RECBKS-\Nf| |,HELP-\N

- - -

,TIDTAB-address

. - o

,RPGEXT-address

o o b

It
’HALTS-{N} [:CMDKEY—mask]

DTF DTF
»CKMASK-) EQRMAT( | |, FKMASK-) EORMAT

L

] Y
, EXTEND-N

pe

,IDDUCM-iddu-communications¥file—definition-name

L

;DICTCM-iddu-communicatioﬁs—data—dictidnary-name

;UPSI‘mask] [.CHAIN-address} [;OUTLEN—numbEr]

,STRTLN*number] [.ENDLN—number]

‘ Y
» FKDATA-|\N

.ENTLEN—number} [.TNUM-number]

-

-l

524




DEY specifies the file type for which this DTF is to be used. If this operand is
omitted, WSTN is assumed. The codes and their meanings are as follows:

Code  File Type

CONS RPG console

KBD  RPG keyboard
CR;I‘ N RPG display screen
WSTN Display station

UPSI: Specifies the setting of the external (// SWITCH statement) indicators used
for conditionally opening files. The code must be specified as 8 bits. For
example, to test bits 0, 3, 5, and 7, you would enter UPSI-10010101. When the
corresponding bits are on in the switch, the file is opened. If the file is not
opened and operations are issued for this DTF, the operations are not performed,
and you receive a return code of hex 99. If this operand is omitted, 0’s are
assumed, and the file is unconditionally opened.

CHAIN: Specifies the address of the next DTF in the chain of DTFs. If there is
no DTF chain or if this is the last DTF in the chain, this operand should be
omitted (hex FFFF is then assumed).

OUTLEN: Only required for OPMODs of ERROR and UNF; or OPCs of PUT,
PTG, PNW, and PTI of the $WSIO macroinstruction. If the operation is
ERROR , the OUTLEN value must be between 1 and 78, and the value
represents the amount of data written from the logical record area to the error
line at the display station. If the operation is UNF, the OUTLEN value must be
between 2 and 4096, and the value represents the exact length of the data stream.
If the operation is a PUT, PTG, PNW, or PTI, OUTLEN represents the
maximum amount of data that can be written from the logical record area:to the
output fields in the display screen format. The OUTLEN value must be at least
as large as the sum of the lengths of all execution-time output fields.

An execution-time output field is a field that was declared as output of $SFGR
field definition specifications (columns 23 and 24) and does not have data
specified on the $SFGR field definition specifications in columns 57 through 79.
The data for this field is specified at execution time by the user program. If this
operand is omitted, an OUTLEN value of hex 0000 is assumed. After a
successful input operation, the actual length of data returned is in this field;
therefore, OUTLEN should be specified again after every input operation.

Note: For each $SFGR D-specification that requires MIC data from the user’s
logical record area, 6 bytes must be added to the total OUTLEN value. These
bytes contain the 4-character message identification code followed by a
2-character message member identifier.

RESET: Specifies whether to reset the active format index address. If Y is
specified, a new format index is built, and the old index is lost. If N is specified

- and there is an active format index, the new index is added to the old. Formats
can be added to the index during open, and duplicate entries result in a halt. If N
is specified and there is no active format index, a format index is built. If this
parameter is omitted, N is assumed.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-25



5-26

RCAD: Specifies the symbolic address of the leftmost byte of the logical record
area. . :

Note: If the operation being performed involves GET, ACI, or UNF, the record
area must be on an 8-byte boundary.

INLEN: Specifies in decimal the size of the user’s input buffer; that is, the
maximum amount of input data that the application program is prepared to
recéive. This number must not be greater than 65535. If this operand is omitted,
zero is assumed, and no data is transferred.

Note: If the operation being performed is an unformatted PUT, this value must
equal the total length of all input fields defined on the display.

ROLINE: Specifies in decimal the number of lines to roll the displayed data on a
roll operation. The maximum number is 24. If this operand is omitted, 01 is
assumed.

STRTLN-number: Specifies in decimal the first line of the roll area on a roll
operation. The maximum number is 23. If this operand is omitted, 01 is
assumed.

ENDLN: Specifies in decimal the number of the last line of the roll area on a roll
operation. The minimum number is 02; the maximum number is 24. If this
operand is omitted, 24 is assumed.

VARLIN: Specifies in decimal the actual start line number if a variable start line
number was specified in SFGR for the format associated with this request. The
maximum number is 24. If this operand is omitted, 01 is assumed.

INDA: Specifies the symbolic address of the leftmost byte of the override
indicator area if override indicators were specified at SFGR time for this format.
The indicator area must not start at address hex 0000 because WSDM assumes no
indicator area exists at address hex 0000, and the indicators are assumed to be off.
If this operand is omitted, address hex 0000 is assumed.

MEMBER: Specifies the name of the SFGR load member containing all the
formats to be opened. If this operand is omitted, blanks are assumed and no
formats are opened.

TERMID: Specifies the symbolic name of the display station. This is the
2-character ID, which the user assigned via system configuration or the SYMID
parameter on the // WORKSTN statement that represents the display station to
which the request is directed. If this operand is omitted, blanks are assumed. For
an SRT program, blank means the requesting display station is assumed. For
MRT programs, a halt is issued unless the operation does not need TERMID
such as ACI (accept), SIQ (status inquiry) INQ, (status inquiry), GTA (get

attributes) operation, or EGTA (extended get attributes) operation.

The following parameters, PRNT, ROLL, CLEAR, RECBKS, CMDKEY,
CKMASK, FKMASK, and HELP are the function-control-key mask
specifications.



PRNT: Specifies whether your program will process the Print key. If Y (yes) is
specified, the print key indicator is placed in the attention identification (AID)
byte field of your program DTF when the operator presses the Print key. If N
(no) is specified, the system attempts to print the current display with the optional
heading and border on the display station’s associated printer. If this operand is
omitted, N (no) is assumed.

ROLL-Y/N: Specifies whether your program will process the Roll T (Roll Up)
and Roll | (Roll Down) keys. If Y (yes) is specified, the roll key indicator is
placed in the AID byte of your program DTF when the operator presses a Roll
key, and data is returned as if the Enter/Rec Adv key was pressed. If N (no) is
specified, an error message is displayed to the operator when the operator presses
the Roll key. If this operand is omitted, N (no) is assumed.

CLEAR specifies whether your program is able to process the Clear key. If Y
(yes) is specified, the clear key indicator is placed in the AID byte field of your
program DTF when the operator presses the Clear key. If N (no) is specified, an
error message is displayed when the operator presses the Clear key. If this
operand is omitted, N (no) is assumed.

RECBKS: Specifies whether your program can process record backspace (that is,
the Home key when the cursor is only in the home position). If Y (yes) is
specified, the record backspace key indicator is placed in the AID byte field of
your program DTF when the operator presses the Home key. If N (no) is
specified, an error message is displayed to the operator when the operator presses
the Home key. If this operand is omitted, N (no) is assumed.

HELP: Specifies whether your program can process the Help key. If Y (yes) is
specified, the help indicator is placed in the AID byte field of your program DTF
when the operator presses the Help key and your program must support the key.
If yes is specified, application help is not available. If N (no) is specified and the
operator presses the Help key, either your application help or an error message is
displayed. If this operand is omitted, N (no) is assumed.

FKDATA: Specifies whether input data is to be returned along with a function
key indicator for all enabled function keys. If Y (yes) is specified, the appropriate
function key indicator is placed in the AID byte field of your program DTF when
the operator presses an enabled function key, and input data is returned regardless
of whether the operator has modified any of the fields. This does not apply to
remote work stations (see Note 2). If N (no) is specified, the appropriate
function control key indicator is placed in the AID byte field of your program
DTF when the operator presses an enabled function control key, but no input
data is returned. If this operand is omitted, N (no) is assumed. (See Note 1.)

Notes: ;

1. The FKDATA parameter has no effect on the operation of the Roll Up and
Roll Down function control keys These keys always operate as specified by
the ROLL parameter.

2. You must use the FKDATA parameter with caution when you are
programming for a remote work station. Your job could permanently halt if
there are no modified input fields on the display of the remote work station
when a function key is pressed while the FKDATA parameter is active.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-27



5-28

TIDTAB: Speciﬁ'esy the address of a work station ID.table. Programs that
support multiple display stations typically maintain a table of display station IDs

and associated status indicators. By specifying the TIDTAB, ENTLEN, and
TNUM parameters, you reserve an area for the ID table. OPEN places the ID of

the display station that requests the program in the first 2 bytes of the first entry
of the table, and sets the first bit in the third byte on. OPEN also places the
SYMID value from each WORKSTN statement into other entries in the table.
The IDs are placed in the first 2 bytes of the entries. If REQD-YES is specified
in a WORKSTN statement, OPEN sets on the first bit of the third byte in the
corresponding table entry. The ID table must be large enough to contain an ID
for each display station acquired by the program plus additional entries up to the
program’s MRTMAX value. MRTMAX is specified in a COMPILE statement
and can be overridden by an ATTR statement. The entire table must be
initialized to hex 00 before OPEN is called. After open is complete, the user
program must maintain the table. If this operand is omitted, address hex 0000 is
assumed, and no table is built. (For a description of ATTR, COMPILE, and
WORKSTN statements, see the System Reference manual.)

ENTLEN: Specifies in decimal the length of each entry in the display station ID
table TIDTAB. The maximum allowed is 255. If TIDTAB was specified, the
minimum ENTLEN is 3: 2 bytes for an ID and a third byte for status indicators.

TNUM: Specifies in decimal the total number of TIDTAB table entries. The
total space allocated for the table is assumed to be the product of ENTLEN and
TNUM. The maximum TNUM allowed is 255. If this operand is omitted, 01 is
assumed.

HALTS: Valid only if this DTF is used with the interactive communications
feature, which is described in the manual, Interactive Communications Feature:
Reference. This parameter specifies whether interactive communications data
management should halt for permanent communications errors; Y if yes, N if no.
If this operand is omitted, N (no) is assumed.

CMDKEY: Specifies the command key mask to be placed into DTF. The mask
is made up of 24 binary bits (bit 0 = CMDI, bit 23 = CMD24) entered as 6
hexadecimal digits. If this operand is omitted, hex FFFFFF is assumed.

CKMASK: Specifies whether WSDM should use the command key mask from
the display format or from the DTF. If this operand is omitted, FORMAT is
assumed.

FKMASK-FORMAT/DTF: Specifies whether WSDM should use the function
key mask from the display format and from the DTF (FORMAT) or just from
the DTF (DTF). If this operand is omitted, FORMAT is assumed. If FORMAT
is specified, the function key must be masked ON in both the format and the
DTF for the function key to be enabled.

EXTEND: Specifies whether the extended DTF is generated for Communications
Data Dictionary purposes. If Y or YES is specified, the workstations DTF is
extended allowing the IDDUCM and DICTCM parameters to be used. If N or
NO is specified or if the EXTEND parameter is not specified, the workstation
DTF will not be extended. Refer to Getting Started with the Interactive Data
Definition Utility (IDDU) or IDDU Online Information for information on using
IDDU. ’



IDDUCM: Specifies the name of the Interactive Data Definition Utility (IDDU)

file to be used for communications. Refer to Getting Started with the Interactive

Data Definition Utility (IDDU) or IDDU Online Information for information on
using IDDU.

Note: If the DTF is extended and the IDDUCM parameter is not specified at
compile time, it is expected the parameter will be entered as data at the time the
program is run.

DICTCM: Specifies the name of the data dictionary to be used for IDDU
communications. Refer to Getting Started with the Interactive Data Definition
Utility (IDDU) or IDDU Online Information for information on using IDDU.

Note: If the DTF is extended and the DICTCM parameter is not specified at

compile time, it is expected the parameter will be entered as data at the time the
program is run.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-29



$EOJ (End of Job)

The $EOJ macroinstruction generates the linkage required to perform the
end-of-job routine.

The format of the $EOJ macroinstruction follows:

[label]. $EDJ no .operands

5-30



$FIND (Find a Directory Entry)

You can use the $FIND macroinstruction to locate library members for your
program.

The SFIND macroinstruction searches the library directory for the requested
module name; if SFIND locates the module name it returns the directory entry

data in the parameter list.

The format of the SFIND macroinstruction follows:

{1abel] $FIND [PLIST*address]

PLIST: Specifies the address of the leftmost byte of the 17- or 54-byte parameter
list built by SFNDP. After execution, the parameter list contains the directory
entry of the module. If this operand is not specified, the address of the parameter
list is assumed to be in index register 2.

SFIND uses the parameter list generated by the SFNDP macroinstruction.

You can include more than one $FIND macroinstruction in a program.

However, after you issue the first SFIND, you must continue to restore relevant
fields in the parameter list generated by $FNDP before you issue successive
$FINDs. You can restore fields in the parameter list by moving new values to the
fields.

A successful SFIND can be determined by checking the field SFNDDTOT.
(SFNDDTOT is an equate generated by the SFNDP macro that is the offset from
the start of the SFNDP parameter list.)

The following instructions could be used:

CLC S$FNDDTOT (2,XR2),ZEROES
JE ERROR

(where ZEROES is defined as ZEROES DC X1.2'0000")
If the total length of the found module is zero, then the module is not found.
Note: When a module is not found by $FIND:

e If LOADER-Y is specified in the SFNDP macroinstruction, a cancel-only halt
is issued and control is not returned to your program.

e If LOADER-N is specified in the $FNDP macroinstruction, control is
returned to your program for determination of appropriate action.

If you will need the data in register 2 later, you should save the contents of that
register before issuing $FIND.

Chapter 5.Macroinstructions Supplied by IBM 5-31



$SFNDP (Generate Parameter List and Displacements for $FIND)
The $FNDP macroinstruction generates a load parameter list and the labels for
the displacements into the parameter list. This parameter list is used as input to
the supervisor by $FIND.

The format of the $FNDP macroinstruction follows:

EQU
[label] $FNDP [NAME-(ﬁodulg}] ,V-4aLL ¢l |, TYPE-
DC

NO
,SKIP-fUSER
SYSTEM

w xR VIO

N

,LOADER-{Y} » LOAD-address [USERLB—DESGNT/other}

NAME: The name of the module to be found by the $FIND macroinstruction.
If this operand is omitted, blanks are assumed.

V: Specifies whether the parameter list, labels, or both are to be generated. If
this operand is omitted, EQU is assumed.

DC: Generates a 17- or 54-byte parameter list used by the SFIND
macroinstruction.

EQU: Generates the displacement labels for the SFIND parameter list. If
V-EQU is specified or supplied as the default, all other operands are ignored.

ALL: Generates both the parameter list and the corresponding displacement
labels.

TYPE: Specifies the library member type. If this parameter is omitted, O is the
default. The codes have the following meaning:

(8 Load member

P Procedure member
R Subroutine member
S Source member

5-32



SKIP: Specifies the type of library search to perforxﬁ by specifying which library
to skip. The codes have the following meaning:

NO Search the designated user library, then the system library.
USER Skip the user library and search only the system library.

SYSTEM  Skip the system library and search only the designated user
library.

If this operand is omitted, NO is assumed, and both libraries are searched.

LOADER: Specifies whether the parameter list is used by SLOAD. If Y (yes) is
specified, a 17-byte parameter list is generated for use by SLOAD. If N (no) is
specified, a parameter list containing 17 bytes of loader information, 33 bytes of
directory, and 4 bytes of find information overlays the input. If this operand is
omitted, N (no) is assumed. LOADER-Y can only be specified with TYPE-O.

Note: When the module is not found:

e If LOADER-Y is specified in the $FNDP macroinstruction, a cancel-only halt
is issued and control is not returned to your program.

e If LOADER-N is specified in the $FNDP macroinstruction, control is
returned to your program for determination of appropriate action.

LOAD: Specifies the main storage address where the module is to be loaded.
This address must be on an 8-byte boundary, due to the I/O buffer boundary
restrictions. This operand is processed only if LOADER-Y is specified.
USERLB: Specifies the library to be searched.

DESGNT: Specifies a search of the current (designated) user library.

Other: Specifies a search of the library specified in SFNDDF1A.

Chapter 5.Macroinstructions Supplied by IBM 5-33



$GETB (Issue a Get Request)

-The $GETB macroinstruction generates code to move data from a BSC I/O buffer
to your logical buffer. To use this macroinstruction, construct a BSC DTF for
the file (using the $DTFB macroinstruction) and use the $DTFO macroinstruction
to generate the labels and establish the offsets for the DTF.

The format of the $GETB macroinstruction follows:

[iabel] $GETB [DTF-address] [,REJECT-address] ,OPC‘{H } [,EOF-address]
BLK

DTF: Specifies the address of the DTF for which the get was issued. If this
. operand is omitted, the address of the DTF is assumed to be in register 2.

REJECT: Specifies the routine to receive control if this get request is rejected
by BSC. If this operand is omitted, control is returned to the user program at
the next sequential instruction after the SGETB.

OPC: Specifies how BSC handles the record received for this program.

N indicates normal deblocking by BSC before the record is passed to the
receiving program. That is, BSC removes transmission control characters and
moves the data to the logical buffer (RCAD in $DTFB) one record at a time.
BLK indicates the entire block (including control characters) is passed to the
receiving program. BSC places the length of the block in $BSRCL in the
DTF if OPC = BLK or when receiving variable length records. If this
operand is omitted, N is assumed.

Note: If you specify OPC-BLK, be sure your logical buffer (RCAD in
$DTFB) is large enough to hold an entire block of data plus transmission
control characters (maximum 4096).

EOF: Specifies your end-of-file routine. If this operand is omitted, control is
returned to the user program at the next sequential instruction after the
$GETB.

If EOF or REJECT addresses are not specified, your program should check the
return code in the DTF ($BSOPC) to determine the outcome of the operation.

5-34



SGETD (Construct a Disk Get Interface)

The SGETD macroinstruction generates the interface needed to communicate
with data management when a record is being read from a disk file. Before using
$GETD you must provide a DTF for the file (see $DTFD). If you need the data
in register 2 later, save the contents of that register before issuing $SGETD.

Data management operates in move mode for input operations. In move mode,
disk data management moves a record into the logical buffer (INREC) identified
in the disk DTF from the physical buffer.

The code generated by this macroinstruction gives control to the data
management routine; the routine completes execution and returns control to the
generated code. The generated code performs any requested tests on the
completion codes returned by data management.

The format of the SGETD macroinstruction follows:

[

[,EOF-address]

INVOP-address

N

[1abel] $GETD OP-code [,DTF-address] ,LIMIT—{Y} [,IOERR-address]

-

’ NRF—address] {, IRN—address]

-

[, ERROR-address]

Chapter 5.Macroinstructions Supplied by IBM  5-35




5-36

.DTF: Specifies the addreéss of the leftmost byte of the DTF for this file. If this

operand is omitted, the address is assumed to be in register 2.

LIMIT: Specifies whether new limits are to be set for this file. If Y (yes) is
specified, the low and high limit keys must be in the area specified by the HIGH
parameter of $DTFD. If N (no) is specified, the DTF is unchanged. If this
operand is omitted, N is assumed.

Note: If a GET PREV is going to be used, only the low limit key needs to be
specified; the high limit key is ignored. ‘

OP: Must be specified as in the following list.

Fer consecutive access:

Code
NEXT
PREV

PLUS

MINUS

Meaning

Get next

Gét previous |

Get forward by argument value

Note: The argument value is placed in the DTF at label
$F1ARG.

Get backward by argument value

Note: The argument value is placed in the DTF at label
$F1ARG. ‘

For direct access:

Code

RRN

FIRST

LAST

Meaning
Get random record by RRN

Note: The RRN value is placed in the DTF at the label

~ $FIRRNB (in binary format) or SFIRRND (in decimal format).

Get first in file

Get last in file

For indexed random access:

Code

KEY

KEYEA

KEYA

Meaning

Get random by key

Get key equal or above

Get key abové



FIRST

LAST

Get first by key

Get last by key

For indexed sequential access:

Code Meaning

NEXT Get next By key

PREV Get previous by key

READE  Get key equal. (Do a NEXT and return record if its key is equal
to the key in the field specified by the key parameter in the
$DFTD.)

For GAM (record order):

Code Meaﬁng

RRN Get random record by RRN
Note: The RRN vaiue is placed in the DTF at the label
$F1RRNB (in binary format) or SF1RRND(in decimal format).

FIRST Get first ‘in file '

LAST Get last in file

NEXT Get next

PREV Get previous

PLUS Get forward by argument value
Note: The argument value is placed in the DTF at label
$F1ARG.

MINUS Get backward by argument value
Note: The argument value is placed in the DTF at label
$F1ARG. )

For GAM (key order):

Code Meaning

KEY Get random by key

FIRST Get first by key

LAST Get last by key

NEXT Get next by key

Chapter 5.Macroinstructions Supplied by IBM ~ 5-37



5-38

PREV Get previous by key
READE  Get key equal. (Do a NEXT and return record if its key is equal
to the key in the field specified by the key parameter in the
$DFTD.)

KEYEA  Get key equal or above

KEYA Get key above
For any access (key or record order):

Code Meaning

NULL No-op is moved into the DTF (see note)
Note: Null can be used if the operation code is changed by the program. The
programmer is responsible to assure that some operation code is moved into the
DTF before SGETD is run.
IOERR: Specifies the address that receives control if the controlled cancel option
is taken in response to a permanent disk error. If this operand is omitted, there is
no check for a permanent disk error completion code.
EOF: Specifies the address in your program that receives control when the end of
file is detected. If this operand is not supplied, no code is generated to check for
the end-of-file condition. Do not use this operand with random or direct access
methods. ’
NRF: Specifies the address in your program that receives control if a
no-record-found condition occurs. Do not use NRF with consecutive or indexed

sequential access methods.

IRN: Specifies your program address receiving control if an

- invalid-record-number condition occurs on a PLUS or MINUS or RRN

operation.

INVOP: The address in your progtam that receives control if an invalid
operation condition occurs.

ERROR: Supplies the address in your program that receives control if an
unsuccessful completion code is detected. The successful completion code is hex
40. Any other hex value is an unsuccessful completion code.

r
Note: If an IOERR, EOF, NRF, IRN, or INVOP occurs but is not specified, and
you do not specify'ERR'QR, you should check the return code in your program to
determine the outcome of the operation.



$INFO (Information Retrieval)

The $INFO macroinstruction allows access to system information that cannot be
accessed directly in the system communications area or work station local data
area. The macroinstruction performs three functions:

¢ Generates labels and displacement values for the parameter list.

® Generates an SVC to retrieve or change specific system information based on
the values supplied in the SINFO parameters.

® Generates a parameter list for the function based on the parameter values
supplied for $INFO parameters.

The $INFO macroinstruction must be expanded at least three times to retrieve
system information. The first expansion generates the labels supplied in the
macroinstruction. This expansion should be placed in the area of your code
where you are defining other labels.

Follow this format to generate the labels (DEFINITION PASS):

S$INFO

The second expansidn of the macroinstruction generates the SVC to retrieve or
change specific system information. This expansion is placed within your
executable code where you want to perform the request.

Follow this format to generate fhe SVC (EXECUTION PASS):

2
[label] $INFO PLIST-{address}

PLIST: Specifies the address of the left-most byte of the parameter list generated
by the third expansion of this macro. (This would be the LABEL on the LIST
pass expansion of $INFQO.) A 2 indicates that this address is available in XR2.

This second expansion of the $INFO macro could be considered the
EXECUTION pass of the macro. (This is the pass which generates the executable
SVC call. If the PLIST parameter is omitted, labels would be generated again as
in the DEFINITION npass (first expansion) of the $SINFO macro.)

The third expansion of the $INFO macro is the LIST pass which generates the

parameter list to be executed by the SVC generated in pass 2, and defines the
function desired.

Chapter 5.Macroinstructions Supplied by IBM  5-39




Follow this format to generatekthe parameter list (LIST PASS):

Note: This invocation creates a parameter list. It should not be placed within
executable code or an execution-time error may occur.

[label] $INFO

GET-code [,BUFFER-address] [,ID-name]
PUT-code

»LEN-number] [.OFFSET-number] [,CIB] [;CD]

5-40

GET: Specifies the value to be retrieved from the system and placed in the buffer

you supply. If this operand is omitted, UPSI is assumed. A description of each
GET function follows. The number of bytes returned in the buffer and the
contents of those bytes is also given.

DATEFRMT: Returns the 1-byte program date format. The character D
indicates day-month-year format; M indicates month-day-year format; Y
indicates year-month-day format.

JULIAN: Returns the Julian date in the format YYDDD, which is based on

the program date.

PROGDATE: Returns 3 bytes containing the program date field. Thisis a
6-digit date in YYMMDD format.

SDATE: Returns 3 bytes containing the session date field. This is a 6-digit
date in YYMMDD format

UPSI: Returns the 1-byte UPSI switch value.

INQUIRY: Returns the 1-byte inquiry switch value. The character Y
indicates an inquiry request is pending; N indicates an inquiry request is not

pending. If a Y is returned, the inquiry request indicator is reset. A pending
inquiry request indicates that the requesting operator has pressed the inquiry
key and then selected option 4 from the inquiry menu. If your program is an

MRT option 4 is not available to the operator.

LOCSYS: Returns up to 512 bytes of the system local data area as specified

by the LEN and OFFSET operands.
Note: LOCSYS and LOCUSER are mutually exclusive.

LOCUSER: Returns up to 512 bytes of the user local data area as specified
by the LEN and OFFSET parameters.

NEP: Returns the 1-byte program attribute. The character Y indicates the

program is-a never-ending program (NEP); N indicates the program is not a

never-ending program.




MRTMAX: Returns the 1-byte hexadecimal value for the maximum number
of requesters allowed. :

LINES: Returns the 1-byte hexadecimal value for the number of lines per
page.

DATEUNPK: Returns 6 bytes containing the unpacked program date field in
the format defined in the date format field.

SLIST: Returns 3 characters showing the status of the current system list
device.

OFF: System list device is off.

CRT: System device is the display station.

ID: The system list device identification is returned as the printer ID.
SYS: The system list device is the system printer.

SPID: When the $INFO GET-SPID, BUFFER-address is issued, the buffer
should contain the printer filename. If the file is found, the 6-character spool
ID is returned in the format SPXXXX, where XXXX is a four- digit number,
If the printer file is not found, a return code is issued. See the label
SINFRET in the first expansion of SINFO for the possible returned codes,
returned at offset SINFRNT from the start of the parameter list.

CIB: Returns the 33-byte block of complier information. This would only be
used by a compiler module.

CD: Returns a 2-byte compilation code to the user buffer.
PUT-code: Specifies that the value in the specified buffer is the data used for
updating. A description of each PUT function follows. The number of bytes
updated and the contents of those bytes is also included.
UPSIL: Updates the 1-byte UPSI switch with the value in the user’s buffer.
PROGI1: Updates the 3-byte, program-1 message member disk address of the
job control block (JCB) with values from the SFIND parameter list, which is
the 3-byte sector address and the 3-byte F1 address of the library.
PROG2: Updates the 3-byte, program-2 message member disk address of the
JCB with values from the $SFIND parameter list, which is the 3-byte sector
address and the 3-byte F1 address of the library.

USERI1: Updates the 3-byte, user-1 message member disk address with values
from the $FIND parameter list, which is the 3-byte sector address and the
3-byte F1 address of the library.

LOCSYS: Updates up to 512 bytes of the system local data area as specified
by the LEN and OFFSET operands.

Note: LOCSYS and LOCUSER are mutually exclusive.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-41



5-42

CIB: Puts a 33-byte block of compiler information into the compiler
information block. This would only be used by a compiler module.

CD: Puts a 2-byte compilation code in the JCBDTRCD field of the job
control block.

LOCUSER: Updates up to 512 bytes of the user local data area as specified
by the LEN and OFFSET parameters.

BUFFER: Specifies the address of the leftmost byfe of the buffer in which the
data is placed for a GET operation or acquired for a PUT operation. If this
operand is omitted, address hex FFFF is assumed.

1D: FSpeciﬁes the 2-byte logical ID of the terminal used in selecting the job
control block. If this operand is omltted the job control block for the active task
is used.

LEN: Specifies a decimal value from 1 to 512, which is used as the length of this
local request. Data is counted starting from the offset value specified. If this
operand is omitted, 1 is assumed.

Note: The sum of the values of LEN and OFFSET cannot exceed 513.

OFFSET: Specifies a value from 1 to 512, which is used as the offset for this
local request. If this operand is omitted, 1 is assumed.



$SINV (Inverse Data Move)

The SINV macroinstruction generates the code that allows you to do an inverse
move on desired data. That is, the bytes of data at the 7O address are in the
opposite order they were in when at the FROM address.

The format of the $INV macroinstruction is:

label| $INV |FROM-address ,TO-address » LEN-number
displacement(reg) displacement(reg)

FROM: Specifies the rightmost byte of the field where the data is located. This
operand can be either a symbolic address, or a register displacement address
indicated by displacement(reg).

TO: Specifies the leftmost byte of the field where the data is to be moved. This
operand can be either a symbolic address, or a register displacement address
indicated by displacement(reg).

Note: If the FROM and TO fields overlap, data will be lost.

LEN: Specifies the decimal length (in bytes) of the field to be moved.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-43



$LMSG (Generate a Parameter List for a Displayed Message

The $LMSG macroinstruction generates a system log parameter list for a message
to the operator. This parameter list is referenced by a $LOG macroinstruction
when $LOG is used to issue a message.

Fora description’of how to use system log, refer to $LOG.

The format of the SLMSG macroinstruction follows:

Y

,HALT—{ﬂ} »MIC-number

»OPTN2-(N »OPTN3-fN
Y Y

.MSGLN-(number}
o

»DRL EN-{number}

»OPTNO-(N
, Y

JYSGAD-{address}

, DRADD-{address}

,HIST—{E} ,CRT-{ﬂ} ,VARIN-{ﬂ}
Y, Y Y

[label] $LMSG [TYPE-code] [,COMID—code] [,SUBID*code] ,FORMAT-{N}

»OPTN1-fN
Y

,NRSTE-{;}

Y

)

5-44




SLMSG Parameter Use Chart

Message Type
Parameter 1 1R 2 2R 3 4 Default Values
COMID R if S S R if blanks
FORMAT-Y FORMAT-Y
SUBID R if S S R if blanks
FORMAT-Y FORMAT-Y
FORMAT R 2673 E 2646 E 2646 E 2646 E 2646 R 2673 No
HALT R 2674 E 2647 E 2647 E 2647 R 2674 R 2674 No
MiC R 2657 R 2657 R 2657 R 2657 0001
OPTNO R if HALT-Y |) R if HALT-Y (R if HALT-Y |No
2650 2650 2650
OPTN1 R if HALT-Y R if HALT-Y |R if HALT-Y |No
2650 If HALT-Y is specified, Y must be | {2650 2650
specified for at least one OPTN
OPTN2 R if HALT-Y R if HALT-Y [R if HALT-Y |No
parameter.
2650 2650 2650
OPTN3 R if HALT-Y R if HALT=Y |R if HALT-Y |No
2650 7 2650 2650
SKIP No
SPACE R 2675 R 2675 1
MSGLN R if R 2654 R 2654 R 2654 TYPE-1 and
VARIN-Y VARIN-Y, 8;
» else, 75
MSGAD Rif R 2649 R 2649 R 2649 FFFF
‘ VARIN-Y
WRSTE R 2672 R 2672 R 2672 R 2672 R 2672 R 2672 Yes
DRLEN R 2653 R 2653 8
DRADD R 2648 R 2648 FFFF
HIST - S S S S Yes
CRT S S S Yes
VARIN S No

Key to chart:

No entry = Parameter not used with corresponding message type.

R = Parameter is used with corresponding message type under noted
circumstance or diagnostic MIC number issued if not entered.

E = Parameter invalid with corresponding message type and diagnostic MIC

number issued if entered.

Chapter 5.Macroinstructions Supplied by IBM  5-45




5-46

S = Parameter used with corresponding message type and default assumed if not
entered.

TYPE: Specifies the type of system log parameter list. If this operand is omitted,
TYPE-1 is ass'umedf The valid codes and their meanings follow:

Code  Meaning

1 Output from a message member, without data response

R Output from a message; member, with data response

2 Output from a usér program, without data response

2R Output from a user program, with data response

3 Output from a user program, with a format line. The format line

"contains the program ID, the MIC number, options if options are
available, and the program name.

4 Type-1 with 8 bytes of user-supplied information added to the front of
the message ' ‘

COMID: Specifies a 2-byte field used to identify the module issuing the message.
If this operand is omitted, blank is assumed. This field is not displayed, but is
logged in the history file if HIST-Y is specified.

SUBID: Specifies a 2-byte field used to further identify the module issuing the
message. If this operand is omitted, blank is assumed. This field is not displayed,
but is logged in the history file if HIST-Y is specified.

FORMAT: Specifies whether to include the format line if the output is from a
message member. If this operand is omitted and TYPE-3 is not specified, N (no)
is assumed. If TYPE-3 is specified, do not specify FORMAT: FORMAT-Y (yes)
is always assumed if TYPE-3 is specified.

HALT: Specifies whether the operator is supposed to enter an option number).
If this operand is omitted, N (no) is assumed.

MIC: Specifies a decimal number, within 0001 through 9999, used to identify a
specific message within the message member. If this operand is omitted, 0001 is
assumed.

OPTNO: Spééiﬁes whether option 0 is allowed. If Y (yes) is entered, option 0 is
allowed; if N (no) is entered or if the operand is omitted, option 0 is not allowed.

OPTN1: Specifies whether option 1 is allowed. If Y (yes) is entered, option 1 is
allowed; if N (no) is entered or the operand is omitted, option 1 is not allowed.

OPTN2: Specifies whether option 2 is allowed. If Y (yes) is entered, option 2 is
allowed; if N (no) is entered or the operand is omitted, option 2 is not allowed.

OPTN3: Specifies whether option 3 is allowed. If Y (yes) is specified, option 3 is
allowed; if N (no) is specified or the operand is omitted, option 3 is not allowed.



If option 3 is allowed and selected by the user, control will not be returned to
your program.

MSGLN: Specifies the text length. The number must be a decimal entry (from 1
to 132). Anything over 75 bytes is truncated if the message is routed to a display
station or the system console. This parameter specifies the insert data length if
VARIN-Y is specified.

MSGAD: Specifies the leftmost byte of the message buffer. This parameter
specifies the insert data address if VARIN-Y is specified.

Note: The message buffer should contain only printable characters. For example,
the buffer should not contain values less than hex 40.

WRSTE: Specifies whether the message is routed to the display station or the
system console. If this operand is omitted, Y (yes) is assumed and the message is
routed to the display station. If WRSTE-N is specified, messages are routed to
the system console. If the system console is being used as a display station and
the job is an SRT, messages are routed to that display station.

Note: The message is displayed only if CRT-Y is specified, regardless of routing.

DRLEN: Length of the reply area in decimal. This area must be either 1, 8, 60,
or 120 bytes long.

DRADD: Specifies the address of the leftmost byte of the reply area.

HIST: Specifies whether the message is to be recorded on the history file. If this
operand is omitted, Y (yes) is assumed.

CRT: Specifies whether the message is to be displayed on the display screen. If
this operand is omitted, Y (yes) is assumed.

VARIN: Specifies a variable length data insert (1 through 32) for type-1
messages. The system log function allows you to insert variable length data
anywhere in the text of a message that is retrieved from a message member.
Substitution occurs wherever the symbol # appears in the message text. If this
operand is omitted, N (no) is assumed.

Note: The inserted data should contain only printable characters. For example,
the data string should not contain values less than hex 40.

For a description of how to use system log, refer to SLOG.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-47



SLOAD (Load or Fetch a Module)

The $LOAD macroinstruction generates the linkage to load a module into main
storage at the address you specify. The address is specified in the SFNDP or
$LOAD macroinstruction using the LOAD keyword. LOADER-Y should be
specified in the SFNDP macroinstruction so that the parameter list output from
$FNDP will be a $LOAD parameter list. You can have control returned after the
module is loaded, or you can pass control to the module. If you will need the
data in register 2 later, save the contents of register 2 before issuing SLOAD.

The format of the $LOAD macroinstruction follows:

[label] SLOAD 2 > TYPE-JLOAD 2
PLIST-| address FETCH »LOAD-| address X

5-48

PLIST: This address identifies the directory entry of the module in main storage
and specifies the address of the leftmost byte of the parameter list built by
SFNDP. Register 2 can be specified; however, if this operand is omitted, the
address is assumed to be register 2.

TYPE: Specifies the type of load to perform. If this operand is omitted, LOAD
is assumed.

LOAD: Loads the module at the specified LOAD address and returns
control. '

FETCH: Loads the module at the specified LOAD address and passes
control to the module.

LOAD: Specifies either the address at which the module is to be loaded in main
storage, or the address in register 2. The address must be on an 8-byte boundary.
Use this parameter only if the load address is to be filled or changed. There is no
default for LOAD. If an address is specified for LOAD, then PLIST must be
specified and cannot be the value 2.



$LOG (Generate the Linkage to the System Log)

The $LOG macroinstruction generates the linkage required to use the system log
function, and checks the response returned.

Use the $L.OG macroinstruction to notify the operator of error conditions, error
recovery procedures, and the validity of previous operator responses to halts. If
the operator selects an invalid option in response to a halt, the response is not
accepted by system log. Instead, the halt is displayed again with afiother message
indicating that the response is invalid.

Formatted and unformatted output are available through system log. Both types
are displayed on the system log device.

o A formatted message has two lines. The first line is the format line, which
contains the message ID and available options. The second line contains the

message text.

¢ An unformatted message has one line. It indicates errors or issues
instructions to the operator.

To use system log, you must do the following:

1. Build the log parameter list using the $LMSG macroinstruction.

2. Use the $LOGD macroinstruction to establish labels for the log parameter
list. You can then use the labels to modify the parameter list during program
execution.

3. Issue the $LOG macroinstruction.

4. Process, in your program, any replies returned by the operator.

If you will need the data in register 2 later, you should save the contents of that
register before issuing $LOG.

The format of the $LOG macroinstruction is:

[label] $LOG

L

-

‘LIST-address]

»OPTN2-address

’ OPTNO—address] ‘ [, 0PTN1~address]

L

E

LIST: Specifies the address of the leftmost byte of the system log parameter list
generated by the SLMSG macroinstruction. If this operand is not specified, the
address of the parameter list is assumed to be in register 2.

OPTNO: Specifies the address of the routine that should receive control if option
0 is taken. If this operand is not specified, no check is made for a response of 0.

Chapter 5.Macroinstructions Supplied by IBM  5-49




5-50

You would use this operand only if OPTNO-Y was specified for the associated
system log parameter list.

OPTN1: Specifies the address of the routine that should receive control if option
1 is taken. If this operand is not specified, no check is made for a response of 1.
You would use this operand only if OPTN1-Y was specified for the associated
system log parameter list.

OPTN2: Specifies the address of the routine that should receive control if option
2 is taken. If this operand is not specified, no check is made for a response of 2.
You would use this operand only if OPTN2-Y was specified for the associated
system log parameter list.



$LOGD (Generate Displacements for System Log)
The $LOGD macroinstruction generates the field labels and offsets for the system
log parameter lists. To avoid duplicate labels, you should use this
macroinstruction only once in a program.

For a description of how to use system log, refer to $LOG.

The format of the SLOGD macroinstruction follows:

[label] $LOGD

Chapter 5.Macroinstructions Supplied by IBM  5-51



SOPEN (Prepare a Device or File for Access)

This macroinstruction prepares a device or file for data transfer. Use the $ALOC
macroinstruction before preparing (opening) the file. -One or more of the
following functions are performed for each file opened:

e The DTF is formatted.

e Data (I/O) buffers and data management control blocks have space allocated.

e Bit 7 in the second attribute byte of the DTF is set on to indicate that the
DTF is open.

e Data management control blocks are initialized.

Diagnostic tests are performed to ensure that the access method and the file
organization are compatible and that other information in the DTF is correct.

Note: When a DTF is opened (SOPEN) it cannot be moved or overlaid until it is
closed (JCLOS). More than one DTF can be opened at one time by chaining the
DTFs. See $DTFB, $DTFD, $DTFP, and $DTFW.

Input: The preopen DTF is input to the open routine. Before issuing SOPEN,
you must be sure to allocate the device or file by issuing the SALOC
macroinstruction.

Output: The open routine returns control to your program after the requested file
is opened. All register contents are restored. The devices and files corresponding

to open DTFs are prepared for use.

The format of the SOPEN macroinstruction follows:

[label] $OPEN [DTF—address]

5-52

DTF: Specifies the address of the leftmost byte of the first DTF to be opened. If
this operand is entered, an LA instruction is generated to load the specified
address into register 2. If this operand is not entered, the address is assumed to
be in register 2.




$SPUTB (Issue a Put Request)

The $PUTB macroinstruction generates code to move data from your logical
buffer to a BSC I/O buffer. To use this macroinstruction, construct a BSC DTF
for the file (using the $DTFB macroinstruction) and use the $SDTFO
macroinstruction to generate the labels and establish the offsets for the DTF.

The format of the SPUTB macroinstruction follows:

[label

]

N
$PUTB [DTF—address] [.REJECT-address] ,OPC—{EOB}
EQF

DTF: Specifies the address of the DTF for which the put was issued. If this
operand is omitted, the address is assumed to be in register 2.

REJECT: Specifies the routine to receive control if the put request is rejected
by BSC. If this operand is omitted, control is returned to the user program at
the next sequential instruction after the $PUTB. You should check the return
code to determine the outcome of the operation.

Note: To prevent issuing BSC requests after a BSC error has occurred, the
REJECT parameter should always be coded.

OPC: Specifies how BSC shouid send this record.

N: Specifies normal record blocking before the record is sent. If this
operand is omitted, N (no) is assumed.

EOB: Specifies that the block is ended with this record and should be
sent as it is.

EOF: Specifies end of file. The put file is closed by transmitting the last
block of data with end of text (ETX), then transmitting end of
transmission (EOT). If operation is in 3740 multiple file mode, the last
block of data is transmitted with end-of-text block (ETB), and System/36
waits for the next user operation.

Note: No new data is sent when the EOF operation code is issued. The ETX
or ETB is placed at the end of the previous block of data.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-53




/

$PUTD (Construct a Disk Put Interface)

The $PUTD macroinstruction generates the interface needed to communicate with
data management when putting a record on disk or updating or deleting a
previously retrieved record. Before using $PUTD you must provide a DTF for
the file (see $DTFD). If you need the data in register 2 later, you should save the
contents of that register before issuing SPUTD.

Note: Disk data management operates in move mode for output operations. In
move mode, disk data management moves a record from the logical buffer
(OUTREC) identified in the disk DTF to a physical buffer.

The code generated by this macroinstruction gives control to the data
management routine. The routine completes execution and returns control to the
generated code. Completion codes are tested if requested and control is returned
to your program.

The format of the $PUTD macroinstruction follows:

Tr -
$PUTD OP-code [.DTF-address » DUPRCO-address [,IOERR-address]

T
label

h o b

, EOX-address] [, DUPREC-address » SEQERR-address

:KEYERR-address] [, INVDRP-address] [.DIRNDR-address] [, INVOP—address]

» IRN-address] [, ERROR-address]

OP: Must be specified as follows:

Code Meaning

AEOD Adds a record at the end of data (consecutive, indexed, and
GAM with AEOD capable).

ARRN Adds a record at the RRN location (direct and GAM with
ARRN capable).

UPDATE Updates the record at the current record pointer location.

DELETE. Deletes the record at the current record pointer location.

5-54




RELEASE Releases the record at the current record pointer location.
NULL Does not move any operation code into the DTF (see note).

Note: Null can be used if the operation code is changed by the program. The
programmer is responsible to assure that some operation code is moved into the
DTF before $SPUTD is run.

DTF: Specifies the address of the leftmost byte of the DTF associated with this
file. If this operand is omitted, the address is assumed to be in register 2.

DUPRCO: Specifies the address that receives control when you attempt to add a
duplicate key to an alternative index of this file, and that other index does not
allow duplicates.

IOERR: Specifies the address that receives control if the controlled cancel option
is taken in response to a permanent disk error. If this operand is omitted, there is
no check for a permanent disk error completion code.

EOX: Supplies the address in your program that receives control when an
end-of-extent is reached during the operation.

DUPREC: Provides the address in your program that receives control when you
attempt to add a duplicate key to this file and duplicates are not allowed.

SEQERR: Address in your program that receives control in the event of a
sequence error during an ordered load of an indexed sequential file.

KEYERR: Specifies the address in your program that receives control when an
attempt is made to update a record in an indexed file and the attempt would
destroy the record key.

INVDRP: Specifies the address in your program that receives control if an
invalid put to a delete-capable file is detected. This condition can occur with all
access methods. An invalid put is signaled if the record to be added to or
updated in the file contains hex FF in the first byte.

DIRNDR: Used only for the direct access method and GAM. It specifies the
address in your program that receives control if you are doing direct output to a
delete-capable file and the current record in the file is not a deleted record (the
record does not contain hex FF in the first byte).

IRN: Specifies your program address that receives control when an
invalid-record-number condition occurs. For example, issuing SPUTD
OP-ARRN for a record not in the file.

INVOP: The address in your program that receives control if an invalid
operation condition occurs.

ERROR: Supplies the address in your program that receives control if any
unsuccessful completion code is detected. The successful completion code is hex
40.

Note: If DUPRCO, IOERR, EOX, DUPREC, SEQERR, KEYERR, INVDRP,
DIRNDR, IRN, or INVOP occurs but is not specified, and ERROR is not

Chapter 5.Macroinstructions Supplied by IBM ~ 5-55



specified, you should check the return code in your program to determine the
outcome of the requested operation. '

5-56



$PUTP (Construct a Printer Put Interface)

This macroinstruction generates the interface needed to communicate with printer
data management. When using $PUTP, you must provide a DTF for the file (see
SDTFP).

The code generated by this macroinstruction gives control to the data
management routine. The routine completes execution and returns control to the
generated code. If the ERR operand is specified, the generated code checks the
completion code for errors and branches to your error routine if errors occurred.

If the OVFL operand is specified, the generated code checks for page overflow
and branches to your overflow routine if overflow occurred.

The format of the SPUTP macroinstruction is:

Y 0
[label] SPUTP [DTF-address] ;PRINT*{N } [.SKIPB-number] »SPACEB-] 1

TRANS 2
3
0
['SKIPA-number] »SPACEA-)1 [,ERR-address] [,OVFL-address]
2
3

Chapter 5.Macroinstructions Supplied by IBM ~ 5-57



5-58

DTF: Specifies thé address of the leftmost byte of the DTF for this file. If this

operand is omitted, the address is assumed to be in register 2.

PRINT: Specifies with Y (yes) to perform both a print and the specified skip or
space, or with N (no) only a skip or space. If this operand is omitted, the DTF is

unchanged.

PRINT-TRANS (transparent mode): Requires the before forms feed commands at
the beginning of the record. The after forms feed command of the printer DFT
must be 0 or 1. :

SKIPB: Specifies the line to skip to before the print operation. The maximum
must be less than the number of lines per page as specified in $DTFP. If this
operand is omitted, the DTF is unchanged.

SPACEB: Specifies the number of lines to space before the print operation. The
maximum must be less than the number of lines per page as specified in SDTFP.
If this operand is omitted, the DTF is unchanged.

SKIPA: Specifies the line to be skipped to after the print operation. The

- maximum must be less than the number of lines per page as specified in $DTFP.

If this operand is omitted, the DTF is unchanged.

SPACEA: Specifies the number of lines to space after the print operation. The
maximum must be less than the number of lines per page as specified in SDTFP.
If this operand is omitted, the DTF is unchanged.

Note: If SKIP or SPACE values exceed the value specified for PAGE, no
operation is performed.

~ ERR: Supplies the address in your program that receives control if the controlled

cancel option is taken in response to a permanent I/O error. If this operand is
omitted, no code is generated to check for the controlled-cancel completion code,
and you should check the return code in your program to determine the outcome
of the operation.

OVFL: Specifies the address in your program that should receive control if page
overflow occurs.

\Note: If a PRINT, SKIPB, SPACEB, SKIPA, or SPACEA operand is specified,

the DTF is changed. The DTF is not reset after the operation is complete; the
program must reset the DTF if this is required.



$SRIT (Return Interval Time)

The $RIT macroinstruction returns the remaining amount of a time interval or
cancels an unexpired time interval. The remaining time is returned in the time
field, displacement STRBTIME, of the TRB established by the $STRB
macroinstruction. The time interval is set by $SIT and is returned in the format
specified by the TYPE parameter in the $RIT macroinstruction.

The format of the SRIT macroinstruction follows:

[label] $RIT [TRB-address] .cANCEL-{Y} JWAIT- Y , TYPE-BIN
N N

DEC

TU

»ID-timerlD » IDADDR-address

TRB: Specifies the address of the leftmost byte of the timer request block. If
this operand is omitted, the address of the timer request block is assumed to be in
register 2.

CANCEL: Specifies whether the remaining time in the interval is to be canceled.
If this operand is omitted, N is assumed.

WAIT: Specifies whether or not the task issuing the SRIT macroinstruction is to
be put in a wait state until the time interval expires. If this operand is omitted, N
is assumed. This operand is ignored if CANCEL-Y is specified.

TYPE: The method of stating the format of the time returned.

DEC A 6-byte decimal number specifying the time in hours, minutes,
and seconds (HHMMSS) until the timer expires. The time is
based on a 24 hour clock.

BIN A 32-bit binary number specifying the time in seconds until the
timer expires. The binary value is right-adjusted in bytes 4
through 7 of the timer request block time field. The time is based
on a 24 hour clock. ‘

TU A 32-bit binary number specifying the time in timer units until
the timer expires. One timer unit is 8.192 milliseconds. The
binary value is right-adjusted in bytes 4 through 7 of the timer
request block time field. The time is based on a 24 hour clock.

The default is DEC.
ID: A 1-byte self-defining expression, whose value is from 1 through 255, used to
identify task timer intervals. This parameter is not needed if the time intervals are

synchronous. This parameter is ignored if IDADDR is also specified. The
default value is 1.

Chapter 5.Macroinstructions Supplied by IBM  5-59




IDADDR: The address of the location containinga self-defining expression of the
value 1 through 255 that is used to identify task timer intervals.

5-60



$SIT (Set Interval Timer)
The $SIT macroinstruction sets the interval timer, which causes an interrupt after
the specified amount of time. Before issuing $SIT you must place the desired

interval in the time field of the timer request block.

The format of the $SIT macroinstruction follows:

'DEC REAL

[label] $SIT [TRB-address] s TYPE-) BIN »ITYPE-LWAIT [aID—timerID]
TU
T0D

[, IDADDR—address]

TRB: Specifies the address of the leftmost byte of the timer request block. If this
operand is omitted, the address of the timer request block is assumed to be in
register 2.

TYPE: Specifies the format of the time interval in the timer request block. You
must place the time interval in the time field of the timer request block before
issuing $SIT. The time field is at displacement STRBTIME in the timer request
block generated by $TRB. If this operand is omitted, DEC is assumed. The valid
time interval formats are:

DEC A 6-byte decimal number specifying the hours, minutes, and
seconds (HHMMSS) on a 24-hour clock that can pass before the
timer interrupt.

BIN A 32-bit binary number specifying the number of seconds that
can pass before the timer interrupt. The binary value must be
right-adjusted in bytes 4 through 7 of the timer request block
time field.

TU A 32-bit binary number specifying the number of timer units that
can pass before the timer interrupt. One timer unit is 8.192
milliseconds. The binary value must be right-adjusted in bytes 4
through 7 of the timer request block time field.

TOD The aétual time of day when the timer interrupt is to occur. The
time is a 6-byte decimal number specifying the hour, minute, and
second (HHMMSS). The time is with respect to a 24 hour clock.

ITYPE: Specifies the type of interval to be timed. If this operand is omitted,
REAL is assumed. The types of time intervals are:

REAL The timer decreases the time interval continuously for all types of
processing.

Chapter 5.Macroinstructions Supplied by IBM  5-61



5-62

WAIT The program issuing the $SIT macroinstruction is placed in a .
wait state for the specified time interval. When the time expires,
control returns to the instruction following the $SIT
macroinstruction.

ID: A 1-byte self-defining expression, whose value is from 1 through 255, used to
identify task timer intervals. This parameter is not needed if the time intervals are
synchronous. This parameter is ignored if IDADDR is also specified. The
default value is 1.

IDADDR: The address of the location containing a self-defining expression of the
value 1 through 255 that is used to identify task timer intervals.



$SNAP (Snap Dump of Main Storage)

The $SNAP macroinstruction provides a system storage dump. You must specify
the region or the limits of the area to be dumped. The program continues
unaffected at the end of the dump. The contents of the specified main storage
area are printed on the SYSLIST device. Output from the dump routine consists
of:

e The specified dump identifier

e The contents of register 1 (XR1), register 2 (XR2), the instruction address
register (IAR), and the address recall register (ARR)

o The contents of work registers W4, W5, W6, and W7
e The contents of the specified main storage area.
Control is returned to the next sequential instruction in your program.

The format of the $SSNAP macroinstruction follows:

YES 1Tr
[label] SSNAP REGION-{_&Q} [,LON—address ,HIGH-address}

- -

2 DC
[.ID-char] ,PLIST-{ address s V-{EQU
INLINE ALL

Chapter 5.Macroinstructions Supplied by IBM  5-63



5-64

REGION: Specifies whether the entire region should be dumped and whether the
HIGH and LOW parameters should be ignored. If Y (yes) is specified, the entire
region is dumped: If N (no) is specified, the area specified by the HIGH and
LOW parameters is dumped. If this operand is omitted, N is assumed.

LOW: Specifies the address of the low limit of the storage area to be dumped.
The low limit must be lower than the high limit and within the allocated storage
area. If this operand is omitted, address X'FFFF’ is assumed.

HIGH: Specifies the address of the high limit of the storage area to be dumped.
If the high limit is not within the allocated storage area, only that storage that is
within allocated storage is dumped, and an error message is displayed. If this
operand is omitted, address X"0000 is assumed.

If you allow REGION, LOW, and HIGH to default, you will not get a dump (the
low address is higher than the high address).

ID: Specifies the four characters used as a dump identifier. If this operand is
omitted, blanks are assumed.

PLIST: Specifies the address of the $SNAP parameter list. If this operand is
omitted, 2 is assumed. The parameters have the following meanings:

2 The address is in register 2.

address  Specifies the address of the leftmost byte of the parameter list.
INLINE Specifies inline generation of the parameter list.

The PLIST and V keywords are mutually exclusive. Normally, unless
PLIST-INLINE is specified, you use one $SNAP macroinstruction to generate a
parameter list (V-DC), and one or more additional $SNAP macroinstructions to
dump portions of your program (PLIST-2 or PLIST address).
Y-DC/EQU/ALL: Specifies whether the parameter list labels, DCs, or both, are
generated. If this operand is omitted, neither is generated. Do not specify V if
you specified PLIST-INLINE. The parameters have the following meanings:
DC $SNAP initializes the storage area for the parameter list. .

EQU $SNAP generates labels; all other SSNAP operands are ignored.

ALL $SNAP initializes the storage area for the parameter list and generates
labels.



$SORT (Construct a Loadable Sort Interface)

The $SORT macroinstruction generates an interface to the sort utility. The sort
utility is part of the SSP. The sort utility is described in the Sort Reference
Manual. Before you issue $SORT, you must generate a sort parameter list by
issuing the $SRT macroinstruction. $SRT is described in the following pages.

If you will need the data in register 2 later, you should save the contents of
register 2 before you issue $SORT.

The code generated by $SORT gives control to the sort utility. After completing
the sort, the utility returns control to the instruction that follows the code
generated by $SORT. You should check the sort completion indicator to
determine whether the sort was successful. The indicator (SSRTCOMP) is at
displacement $SSRTINDB in the sort parameter list. If $SSRTCOMP is off, the
sort was successful; if SSRTCOMP is on, the sort was unsuccessful.

$SORT can be issued more than once to perform multiple sorts in a single
program. Before you issue $SORT, all files named in $SRT must be defined by
FILE statements, and the files must be closed.

The format of the $SORT macroinstruction is:

[label] $SORT [PLIST-address}

PLIST: Specifies the address of the leftmost byte of the sort parameter list that is
generated by the $SRT macroinstruction. If this operand is omitted, the address
of the sort parameter list is assumed to be in register 2.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-65



$SRT (Generate a Loadable Sort Parameter List)

The $SRT macroinstruction generates the parameter list used by the sort utility

when it is called by the $SORT macroinstruction.

The sort utility is part of the SSP. The sort utility and the parameter list are

described in the Sort Guide manual.

The maximum size of the parameter list is 2048 bytes, including 125 bytes
reserved as a work area for the sort utility.

The format of the $SRT macroinstruction follows:

[label] $SRT

DC
v-1EQU
ALL

-

L

» INPUT3-file nanme

[ ]
»INPUT6~Ffile name

r

L

»INPUTG-file name

-

»INPUT7-file name

Y Y
»ALTSEQ- (N »KANJI- N

[,OUTPUT-file name] [,SOURCE-source member name]

»USERLB-library name] [,INPUTl-file name] {,INPUTZ-file name]

- S

» INPUTS5~-file name

[ )
» INPUT8-file name

5-66




V-DC/EQU/ALL: Specifies whether the parameter list labels, DCs, or both, are
generated. If this operand is omitted, EQU is assumed.

DC Generates the sort parameter list used by the sort utility when it is
called by the $SORT macroinstruction.

EQU Generates the displacement labels for the loadable sort parameter list.
If V-EQU is specified or assumed, all other operands for $SRT are
ignored.

ALL Generates both the loadable sort parameter list and the corresponding

displacement labels.

OUTPUT: Specifies the name of the file that is to contain the sorted data. If this
operand is omitted, blanks are assumed. See Notes 1 and 2.

SOURCE: Specifies the name of the source member that contains the sort
specifications. If this operand is omitted, no entry is created for it in the
generated parameter list, and the 34-byte sort specifications must be placed
immediately after the generated portion of the sort parameter list.

Omit this operand if you want to supply the sort specifications.in the sort
parameter list. See Note 1.

USERLB: Specifies the name of the user library that contains the source member
specified in the SOURCE parameter, if any. If this operand is omitted, no entry
is created for it in the generated parameter list. #LIBRARY is assumed if a
source name is specified and USERLIB is omitted. Omit this operand if you
want to supply the sort specifications in the sort parameter list. See Note 1.

INPUT1: Specifies the name of the first, or only, input file to sort. If this
operand is omitted, blanks are assumed. See Notes 1 and 2.

INPUT2: Specifies the name of the second input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. See Note 2.

INPUT3: Specifies the name of the third input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUTS3 can be specified, INPUT2 must be specified. See Note 2.

INPUT4: Specifies the name of the fourth input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUT4 can be specified, INPUT2 and INPUT3 must be specified. See Note 2.

INPUTS: Specifies the name of the fifth input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUTS can be specified, INPUT?2 through INPUT4 must be specified. See Note
2.

INPUTG6: Specifies the name of the sixth input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUT®6 can be specified, INPUT2 through INPUTS must be specified. See Note
2.

Chapter 5.Macroinstructions Supplied by IBM  5-67



INPUT7: Specifies the name of the seventh input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUT?7 can be specified, INPUT2 through INPUT6 must be specified. See Note
2. '

INPUTS: Specifies the name of the eighth input file to sort. If this operand is
omitted, no entry is created for it in the generated parameter list. Before
INPUTS can be specified, INPUT2 through INPUT7 must be specified. See Note
2.

ALTSEQ: Specifies whether an alternative collating sequence table is contained
in bytes 1793 through 2048 (the last 256 bytes) of the loadable sort parameter list:
Y if yes, N if no. If this operand is omitted, N is assumed. If Y is specified, you
must place the alternate collating sequence table in bytes 1793 through 2048 of
the loadable sort parameter list.

KANJI: Specifies whether to invoke the extended sort utility, for sorting
ideographic data: Y if yes, N if no. If this operand is omitted, N is assumed.
Omit this parameter if non-ideographic data is to be sorted.

Notes:

1. Space is always reserved in the generated parameter list for an OUTPUT file
name and an INPUT!1 file name. If you want to reserve space in the
parameter list for other operands, specify names in $SRT for the operands
(actual names can then be inserted in the parameter list by your program).

2. All files named in $SRT must be defined by FILE statements before the
$SORT macroinstruction is used. Files named must correspond to the
NAME parameter on the FILE OCL statements for the respective files. The
files must be closed before $SORT is used.

5-68



Constructing a SORT Parameter List

The following example shows how to use $SRT to build a parameter list to be
passed to the loadable sort transient. In this example:

¢ The input file is named IN and has 100-byte records.

e The output file is named OUT and contains input file records sorted on
columns 1 through 10.

® The sort sequence specifications are included in the parameter list, not in a
source member.

® The specified alternative collating sequence sorts all characters except blanks,
uppercase alphabetic characters, and numeric characters to the end of the file.

PROGRAMMER I DATE INSTRUCTIONS | CHARACTER
- T o 40 45 8 50 5 53 55 56 57 ES:::‘;T‘SZSQSAGSGS 67 68 69 707!7’2737
Al SR -JALLL, [IINRUTIL-TIN, JadTiRdT]- JALTSEQ-M T ] [T1] [

DC L1341 HSORT LIDA X122 ‘| | [SORT] DER SPEC
DC i ‘FINC 1 ’ Se| 9 | |1 [THRU s
DC cL34{" 1AL’ DATA IS E
DC * END/ E SORT] C
ORG ARM#X|* ! TE AL Q JAREA
D XL FF| CHARS F BL
DC 1Y) 1/ BLA
D L28XLILNFIF CH TERS [THRU A
D] | [ fcay GHI" A TTHRU [T |
DC TXILIL FFL C T

DC CLA 7KL ’ J| THRU R l

DC BIXILILINFIF|” CHA E THRU S
DC" 8" STUVMXY(Z " S| THR 1

C 6XLIL FF "HARIAC THRU

C LA 31123456789 @ [THRU 19 ]

D OXLLMFIF Y REMAINING CHARAG S

RERRENREREREN
The following operation calls the loadable sort:
PROGRAMMER lDATE 'NST"UCTIONS CHARACTER
R PULIST- FARM
| isifii

Chapter 5.Macroinstructions Supplied by IBM  5-69



$TOD (Return Time and Date)

"The $TOD macroinstruction returns the time of day and the system date to the

program. The time of day is returned in the time field of the timer request block;

the system date is returned in the date field. The time and date fields are at

displacements $TRBTIME and $TRBDATE, respectively, in the timer request
block generated by $STRB. The date is returned in the format specified during
system configuration.

The.format of the $TOD macroinstruction follows:

o e ' pec)|
[label] $TOD [TRB-address] ,TYPE-{BIN}

TU

5-70

TRB:  Specifies the address of theleftmost byte of the timer request block. If this
operand is omitted, the address of the timer request block is assumed to be in
register 2.

TYPE: Specifies how the time is to be returned in the timer request block. The
time is with respect to a 24 hour clock. The valid formats are:

DEC A 6-byte decimal number indicating the time in hours, minutes
and seconds (HHMMSS).

BIN A 32-bit binary number indicating the time in seconds. The

number is right-adjusted in bytes 4 through 7 of the time field of
the timer request block.

TU A 32-bit binary number indicating the time in timer units. One
timer unit is 8.192 milliseconds. The number is right-adjusted in
bytes 4 through 7 of the time field of the timer request block.

If this operand is omitted, DEC is assumed.




$TRAN (Generate an Interfaée to the Translate Routine)

The STRAN macroinstruction generates an interface to the translate routine for
EBCDIC-ASCII translation. See $TRTB and $TRL macros.

[label] $TRAN [TRL-address]

TRL: Specifies the symbolic address of the translate parameter list. If this
operand is omitted, the address is assumed to be in register 1. If the STRL
macroinstruction is used to generate the parameter list, this address should be the
label assigned to the STRL macroinstruction. The parameter list is described as

follows:

Field Length Field Description

2 Address of the translate table (Your program must define the
translate table.)

2 FROM field address, for translation

2 TO field address, for translation

2 Number of bytes to translate

1 Completion code: Hex 00 indicates translation complete, no

errors; hex FF indicates invalid character encountered

Chapter 5.Macroinstructions Supplied by IBM  5-71




$STRB (Generate Timer Request Block)

The $TRB macroinstruction generates a timer request block (TRB). You must
use $STRB if you use $SIT, SRIT, or $TOD in your program.

The format of the $TRB macroinstruction follows:

be
[label] $TRB |V-4EQU
ALL

V-DC/EQU/ALL: Specifies whether the parameter list labels, DCs, or both, are
generated for the $RIT, $SIT, and $TOD macroinstructions. If this operand is
omitted, DC is assumed. The following is the parameters and their meanings:

DC Generates the DC’s for the timer request block parameter list.

EQU ‘Generates the displacement labels for the timer request block.

ALL Generates the timer request block and the corresponding displacement
‘ labels.

5-72



$TRL (Generate a Translation Parameter List)
The $TRL macroinstruction generates a parameter list used by the translation
routine for EBCDIC-ASCII translation. See STRAN and $TRTB macros. $TRL

does not generate executable code.

The format of the $STRL macroinstruction follows:

[1abel} $TRL [To-address] [,FROM—address] [,LEN—decdig] [,TRT*address]

TO: Specifies the symbolic address of the leftmost byte of the field to which
the translated data will be moved.

FROM: Specifies the symbolic address of the leftmost byte of the data field
to be translated. This address may be the same as the address specified in the
TO operand.

LEN: Specifies in decimal the number of characters to be translated.

TRT: Specifies the symbolic address of the leftmost byte of the translate

table. If the $TRTB macroinstruction is used to generate the translate table,
this address should be the label assigned to the STRTB.

Chapter 5.Macroinstructions Supplied by IBM  5-73



$TRTB (Generate a Translation Table)

‘This macroinstruction’ generates an EBCDIC to ASCII or ASCII to EBCDIC

translation table. The table is generated in the format required by the STRL
macroinstruction, and the table can be addressed by $TRL when you translate
data. ' o

The format of the $TRTB macroinstruction follows:

e s s3] [ocne]

5-74

CODE: Specifies whether the data is to be translated from EBCDIC to
ASCII (E) or from ASCII to EBCDIC (A). If this operand is omitted, E is
assumed. If CODE-E is specified, $TRTB generates a 258-byte translation
table; if CODE-A is specified, STRTB generates a 130-byte translation table.

HEX: Specifies the hexadecimal digits with which to replace any invalid
characters found during translation. If the HEX operand is not specified, the
replacement character is hex 3F for ASCII to EBCDIC or hex 1A for
EBCDIC to ASCII.

Translation tables generated by the $TRTB macroinstruction are generated in
the following format:

Byte Field Description
0 Identifies a character that is not to be translated.
1 Substituted for characters that are not to be translated.

2 through 257  256-byte EBCDIC to ASCII translation table.
2 through 129  128-byte ASCII to EBCDIC translation table.

Construct the translation table so that the displacement from the beginning of the
table equals the hexadecimal representation of the untranslated character. The
contents of the location indicated by the displacement is the character to be
translated to. (For example, if you want to translate hex C1 to hex 41, you
should construct a translation table in which the value at displacement hex C1 in
the table is hex 41.)




The translate routine processes a field, specified by the $STRL macroinstruction,

I byte at a time. The byte at a given displacement is compared with the first byte
in the translate table (byte 0). If they are equal, the character is considered to be
invalid, and the following actions are performed:

e The completion code in the parameter list is set to indicate that an invalid
character was detected.

o The second byte of the translate area (byte 1) is substituted for the original
character.

e Translation continues with the next character. After the translate routine is
finished, control is returned to your program with a completion code in the
translate routine parameter list.

Chapter 5.Macroinstructions Supplied by IBM  5-75



$WIND (Generate Override Indicators for Display Station)

The $WIND macroinstruction generates a table of override indicators and offsets
for PUT and PUT overrides used by work station data management.

The format of the SWIND macroinstruction follows:

{1abel] SWIND [MAXIND*number]

MAXIND: Specifies in déci"niallthe highest number used by SFGR as an override
indicator for your program. If this operand is omitted, 99 is assumed.

$WSEQ (Generate Labels for Display Station)

This macroinstruction generates labels and offsets to reference certain work
station device-dependent values, such as identification (AID) bytes and bit
representations for the display screen attribute bytes and write control characters.

The format of the $WSEQ macroinstruction follows:

[label] SWSEQ

5-76




$SWSIO (Construct a Display Station Input/Qutput Interface) - .

‘The $WSIO macroinstruction builds the executable code to modify a display
station DTF using only the specified parameters, then issues a call to work station
data management to perform the specified operation. Before using $WSIO you
must provide a DTF for the file (see SDTFW) and establish the offsets for the
DTF (see $DTFO). If you will need the data in registers 1 and 2 later, save the
contents of those registers before issuing SWSIO. For a description of how to
code $WSIO for the interactive communications feature, see the manual,
Interactive Communications Feature: Reference Manual.

_ After each $WSIO macroinstruction, you should check the return code. The

return codes are defined in the $DTFO macroinstruction with WS-Y and
FIELD-Y. Return codes from $WSIO are described in Appendix F.

Chapter 5.Macroinstructions Supplied by IBM  5-77



The format of the $WSIO macroinstruction follows:

-

-

-

L

-

[label] SWSIO [DTF-address] [.OPMDD-code} [,0P0~code] [,OUTLEN-number]

-

U Y
,INLEN*number] [,RCAD-address] ,ROLDIR*{D} ,RLCLER4{N}

- ~ -

s STRTLN=-number [.ENDLN-number]

B L o

»ROLINE-number

» VARLIN-number

,INDA-address] [,FORMAT-name]

e L

‘ Y Y Y
.TERMID-name] .PRNT—{N} ,ROLL-{N} .CLEAR-{N}]

Y {f} {Y
»RECBKS-\N »HELP-\N » FKDATA-\N [,PID- id ]

DTF
;PLa-address] [,CMDKEY-mask] ,CKNASK-{FORNAT}

{DTF }
,FKMASK~ | FORMAT

~ 5-78




DTEF: Specifies the address of the leftmost byte of the display station DTF to be
modified. If this operand is omitted, the address is assumed to be in register 2.

OPMOD: Specifies the operation code modifier to be generated. The codes and
their meanings are as follows:

ERROR: PUT for displaying information on the error line.

OVR: PUT for displaying only override fields and attributes. (If an override
indicator was specified on the SFGR S specification, this value is not
required.)

ROLL: Rolls the display with the specified operation.

UNF: The FORMAT parameter need not be specified. The stream of data
and control commands in the user’s program logical record area, beginning at
the RCAD specified address, is sent to the work station. The OUTLEN
parameter specifies the number of bytes to be sent. If an unformatted PUT is
specified and there are input fields defined in the data stream, the INLEN
value must be specified on the $WSIO macroinstruction.

Note: Sec the Functions Reference Manual for more information on display
station data streams.

PRINT: Prints the displayed data on the printer specified in the PID
parameter.

PRUF: PUT for read under format.

FMH: Use only with the interactive communications feature, which is
described in the Interactive Communications Feature: Reference Manual,
SC21-7910. This code indicates that a function management header precedes
the data associated with an evoke operation. The code is valid only for evoke
operations for the SNUF (SNA upline facility) subsystem.

CONFIRM: Use only with the interactive communications feature, which is
described in the Interactive Communications Feature: Reference Manual,
SC21-7910. This code indicates that a confirm indication is to be sent with
the data associated with the EVOKE, PUT, GET (in the send state only), and
INVITE (in the send state only) operations. This code is valid only for the
APPC subsystem. '
ZERO: Clear any previous OPMOD specification.

Notes:

1. The OPMOD keyword can be coded as OPM.

2. An OPC of PUT, PTG, PNW, or PTI must also be specified for OPMOD
values of OVR, UNF, or PRUF.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-79



5-80

"OPC: Spemﬁes the operation requested of WSDM. The codes and their
meanings are ‘as follows (codes unique to the interactive communications feature
are descnbed in the manual Interactzve Commumcatzons Feature: Reference):

ZERO Sets the operation code field to hex 00. This code is used with
operation code modifiers for which you do not want a WSDM operation
code. For example, if you wanted to roll or print displayed data without
requesting any other work station operation in the call to WSDM, you could

‘use the ZERO operation code with the modifier ROLL or PRINT.

GET: Receives data from the display station specified by the TERMID
parameter. Control is returned to your program when the data is available in
the user record area. This operation ignores the OPMOD value.

PUT: Sends data to the display station specified by the TERMID parameter.
Control is returned to your program when data transfer is complete.

PTG: Sends a combination of a put-no-wait (PNW) operation to the display
station specified by the TERMID parameter, followed by a GET request to
the same display station. ‘Control is returned to your program when the data
resultmg from the GET operatlon is available in the user record area.

INV: Enables the dlsplay station specified by the TERMID parameter to
send data to the system. The data entered by the display station operator is
presented to your program in response to a subsequent accept input (ACI)
operation or GET operation. Control returns to your program as soon as the
invite input (INV) is scheduled.

PNW: Sends data to the display station specified by the TERMID
parameter. Control is returned to your program when the operation is
scheduled, and the program’s DTF, record area, and indicators are available
for reuse. If a second put-no-wait (PNW) is issued to the same display
station, the first PUT must be complete before the second operation is
scheduled. The main difference between a PUT and PNW is the return code.
On a PUT, the return code reflects the status of the entire PUT operation,
while on a PNW, the return code reflects only the scheduling of the
operation.

PTI: Sends a combination of a put-no-wait (PNW) and an invite input (INV)
to the same display station. Control is returned to your program when the
invite input request is scheduled.

ACI: Requests data from any display station that responded to a previous
invite input operation. For example, suppose your program issues three invite
input operations to.display stations A, B, and C. The program could now
issue an accept input request, and be presented with data from any display
station (A, B, or C) that responds with a data transmission. The ID of the
display station that sent the data is returned at displacement SWSNAME in
the DTF. This operation ignores the OPMOD value.

ACQ: Allocates the display station specified by the TERMID parameter for
this program. ThlS operatlon ignores the OPMOD value.



REL: Releases from this program the display station specified by the
TERMID parameter. This operation ignores the OPMOD value.

GTA: Gets the attributes of the display station specified by the TERMID
parameter, and places them in the program’s record area. This operation
ignores the OPMOD value.

Following, a get attribute operation, the program’s record area appears as
follows: : '

Byte 0 Device Type
Cc'D’ Display type
C'N’ Nondisplay type

All remaining letters are reserved.

Byte 1 Display Size

cr 1920-character display
Byte 2 Attachment Type

c'r Local

CR’ Remote

The attachment type is C'R’ for a display station pass-through or DHCF
device.

Byte 3 Online/Ofﬁine Status

coO Device is online

C'F Device is offline

Byte 4 Allocation Status of Device
CA’ Device allocated to requester
CF Device allocated to other user
cv’ Not allocated but available
C'N Not allocated, not avaﬂable |
cu Device unknown to system
Byte 5 Invite Status of Device |
cYy’ Device is invited

C'N’ Device ‘not invited

Chapter 5.Macroinstructions Supplied by IBM  5-81



5-82

Byte 6 Completion Status of Device Invite

cy | Invite completed
C'N’ | Invite not completed
Byte 7 Inquiry Status

cy’ Device in inquiry
C'N’ Device not in inquiry

EGTA: Gets any other attributes of the display station specified by the
TERMID parameter, and places them in the program’s record area. This
operation also ignores the OPMOD value.

Following a get attribute operation, the program'’s record area appears as
follows:

Bytes 0-7 Same as for GTA.

Note: If the device is offline (Byte 3 = C'F’), the values found in Bytes 8-15
may not be accurate.

Byte 8 . Display type.

CA’ Alphanumeric/Katakana type.
CT - Idedgraphic type.

Byte 9 Keyboard type.

CA’ Alphanumeric/Katakana type.
(6 Ideographic type.

Byte lOV Sign-on type.

CA’ Alphanumeric/Katakana type.
CT ; Ideographic type.

Byte 11 \ Application help facility.

cyY’ Facility enabled.

oN' . Facility not enabled.

Byte 12 e | | 27x132 status.

clr , | 27x132 capable display station is in 24x80

mode.



c2 : 27x132 capable display station is in 24x132

mode.
C'N’ 24x80 capable only.
Bytes 13-15 Reserved. Hex A is returned.

GST: Gets the Advanced-Program-to-Program Communication session
status. See the Interactive Communications Feature: Reference Manual,
SC21-7910 for more information.

STI: Cancels a previously issued invite input request to the display station
specified by the TERMID parameter. If the stop invite fails (the operator
already pressed the Enter/Rec Adv key, a function key, or command key),
your program is informed by a return code, and the data remains at the
display station and is available for a subsequent request. If the program
issues a get or accept after the stop invite fails, the system handles any
disabled command or function key. The system waits until the Enter/Rec
Adv key or an enabled command or function key is pressed before giving data
or control back to the program. However, if an output request is issued to
the display station, the input data is lost.

Note: A stop invite is not required to override an existing invite input.
WSDM performs a stop invite when necessary. However, if input is already
available, the input data is lost.

RES: Resets the keyboard of the display station specified by the TERMID
parameter without requesting a format. This allows an application to ignore
keys that are not supported.

RTG: Performs a keyboard reset (RES) followed by a GET.
RTIL: Performs a keyboard reset (RES) followed by an invite input (INV).

ERS: Erases all modified input capable fields that are currently defined on
the display of the display station specified by the TERMID parameter. This
operation locks the keyboard and repositions the cursor to the first input
field. For a detailed explanation of how erase input fields works, see the
erase input fields entry (columns 31 and 32) under the $SFGR — Screen
Format Generator Utility Program in the Creating Displays: Screen Design
Aid and System Support Program.

ETG: Performs an erase input fields (ERS) followed by a GET.
ETI: Performs an erase input fields (ERS) followed by an invite input (INV).

CLR: Clears the entire display of the display station that was specified by the
TERMID parameter, including attribute bytes. This operation also destroys
any existing field definitions pertaining to that specific display station.

INQ: Determines the invite status of the display stations associated with this
program. This operation returns a 2-byte return code in index register 2. In
the high-order byte, hex 00 means no invites outstanding; hex 10 means at
least one invite outstanding; hex 30 means at least one invite outstanding, and
at least one completed invite. In the low-order byte, hex 00 means stop

Chapter 5.Macroinstructions Supplied by IBM 5—83



5-84

system is not in effect; hex 02 means stop system is in effect. This operation
has no associated DTF; register 2 need not contain a DTF address. Register
1 contents are not changed. If this operation code is specified, all other

-- specified parameters are ignored.

SIQ: Determines the invite status of the display stations associated with this
program. This operation performs a function similar to INQ, except SIQ uses
the DTF to issue the operation and return the data. Two, 1-byte return codes
are returned in the DTF as a result of this operation. In the DTF at
displacement $WSRSIQ, hex 00 means no invites outstanding; hex 30 means
at least one outstanding invite, and at least one completed invite. In the DTF
at displacement SWSRTC, hex 00 means stop system is not in effect; hex 02
means stop system is in effect. If this operation code is specified, any

* specified operation code modifier is ignored, and the operation code modifier
field in the DTF is cleared to hex 00.

STM: Specifies the time interval to wait before issuing a timer expired return
code. The first 6 bytes of the user record area specify the interval in the
format HHMMSS. A timer expired return code is returned on the first accept
following the expiration of the timer. When this return code is given, a
TERMID is not returned, and the TERMID field of the DTF is unchanged.

" If a previous set timer has not yet expired, the old time interval is replaced

- with the new. ‘

OUTLEN: Only required for OPMOD parameters ERROR and UNF, or OPC
parameters PUT, PTG, PNW, and PTI. If the operation is ERROR, the
OUTLEN value must be between 1 and 78. OUTLEN represents the amount of
data written from the logical record area to the error line at the display station.

If the operation has an OPMOD of UNF, the OUTLEN value must be between 2
and 4096. It represents the exact length of the data stream. If the operation is a
PUT, PTG, PNW, or PTI, OUTLEN represents the maximum amount of data
that'can be written from the logical record area to the output fields in the display
format. The OUTLEN value must be at least as large as the sum of the lengths
of all program output fields. If the operand is omitted, the DTF value is
unchanged. After a successful input operation, the actual length of data returned
is stored in this field. Therefore, OUTLEN should be respecified after every input
operation.

Note: If the execution time output data from the user’s logical record area also
contains MIC data, the user must reserve 6 bytes for each MIC to contain the
4-character digits and the 2-character message member identifier. This 6-byte
length must be included in the total OUTLEN value.

INLEN: Specifies in decimal the size of your input buffer; that is, the maximum
amount of input data that your program is prepared to receive. This number
must not be greater than 65535. If this operand is omitted, the DTF is
unchanged. The INLEN and PID(printer ID) parameters use the same field in
the DTF. Therefore, INLEN must be specified after each operation that specified
a PID. :

Note; If the operation being performed is an unformatted PUT, INLEN must
equal the total length of all input fields defined on the display.



RCAD: Specifies the symbolic address of the leftmost byte of the logical record
area. If this operand is omitted, the DTF is unchanged.

Note: If the operation being performed involves GET or ACI or UNF, the record
area must be on an 8-byte boundary.

ROLDIR: Specifies the direction to roll the diSplay when requested. This
operand must be specified in the first $WSIO you issue with a roll operation. If
this operand is subsequently omitted, the DTF is unchanged.

RLCLER: Specifies whether the lines vacated by a roll operation should be
cleared. This operation must be specified in the first $WSIO you issue with a roll
operation. If this operand is subsequently omitted, the DTF is unchanged.

ROLINE: Specifies in decimal the number of lines a roll operation should roll
the data being displayed. The maximum number is 24. If this operand is
omitted, the ROLINE-number in the DTF is unchanged.

STRTLN: Specifies in decimal the first line of the roll area on a roll operation.
The maximum number is 23. If this operand is omitted, the DTF is unchanged.

ENDLN: Specifies in decimal the last line of the roll area on a roll operation.
The minimum number is 02. The maximum number is 24. If this operand is
omitted, the DTF is unchanged.

VARLIN: Specifies in decimal the actual start line number if a variable start line
number was specified to SFGR for the format for this request. The maximum
number is 24. If this operand is omitted, the DTF is unchanged.

INDA: Specifies the symbolic address of the leftmost byte of the override
indicator area if override indicators were specified at SFGR time for this format.
The indicator area must not start at address hex 0000 because WSDM assumes no
indicator area exists at address hex 0000, and the indicators are assumed to be off.
If this operand is omitted, address hex 0000 is assumed.

FORMAT: Specifies the name of the display format to be used for this operation.
This operand is required only for formatted PUT operations. If this operand is
omitted, the DTF is unchanged.

TERMID: Specifies the symbolic name of the display station. This is the
2-character ID, which the user assigned either during system configuration or in
the SYMID parameter on the // WORKSTN statement that represents the display
station to which the request is directed. If this operand is omitted, the DTF is
unchanged.

PRNT: Specifies whether your program can process the Print key. If Y (yes) is
specified, the print key indicator is placed in the AID byte field of your program
DTF when the operator presses the Print key. If N (no) is specified, the system
attempts to print the current display with the optional heading and border on the
printer associated with the display station. If the operand is omitted, N (no) is
assumed.

ROLL: Specifies whether your program is able to process the Roll Up and Roll

Down keys. If Y (ves) is specified, the roll key indicator is placed in the AID
byte field of your program DTF when the operator presses a roll key. Data is

Chapter 5.Macroinstructions Supplied by IBM ~ 5-85



5-86

returned as if the Enter/Rec Adv key was pressed. If N (no) is specified, an error
message is displayed when the operator presses either roll key (see Note 1).

CLEAR: Specifies whether your program can process the Clear key. If Y (yes) is
specified, the clear key indicator is placed in the AID byte field of your program
DTF when the operator presses the Clear key. If N (no) is specified, an error
message is displayed when the operator presses the Clear key.

RECBKS: Specifies whether your program can process the record backspace (that
is,-the Home key when the cursor is in the home position). If Y (yes) is specified,
the record backspace indicator is placed in the AID byte field of your program
DTF when the operator presses the Home key. If N (no) is specified, an error
message is displayed when the operator presses the Home key.

HELP: Specifies whether your program can process the Help key. If Y (yes) is
specified, the help key indicator is placed in the AID byte of your program DTF
when the operator presses the Help key. If N (no) is specified, an error message is
displayed when the operator presses the Help key.

FKDATA: Specifies whether input data is returned along with a function control
key indicator for all enabled function control keys. If Y (yes) is specified, the
appropriate function control key indicator is placed in the AID byte field of your
program DTF when the operator presses an enabled function control key. Input
data is returned regardless of whether the operator modified any of the fields.
This function does not apply to remote work stations (see Note 2).

If N (no) is specified, the appropriate function control key indicator is placed in
the AID byte field of your program DTF when you press an enabled function
control key. No input data is returned (see Note 1).

Notes:

1. The FKDATA parameter has no effect on the operation of the Roll Up and
Roll Down keys. These keys always operate as specified by the ROLL
parameter.

2. You must use the FKDATA parameter with caution when you are
programming for a remote work station. Your job could permanently halt if
there are no modified input fields on the display of the remote work station
when a function control key is pressed while the FKDATA parameter is
active.

PID: Specifies the ID of the desired printer on a print request. Allowable values

are:

Code Meaning

SYSTEM . The system printer.

WSTN The printer associated with the display station specified by
the TERMID parameter nn.

XX Where XX is the 2-character ID of the desired printer.



If this operand is omitted, the DTF is unchanged. The INLEN and PID
parameters use the same field in the DTF; therefore, PID must be specified after
each input operation.

PL@: Used with the interactive communications feature. This parameter
specifies the address of an associated evoke parameter list, which is generated by
the SEVOK macroinstruction. $EVOK is described in the manual Interactive
Communications Feature: Reference. This operand must be specified for the first
evoke operation and is unchanged if not specified again.

CMDKEY: Specifies the command key mask to be placed in the DTF. The mask
is made up of 24 binary bits (bit 0 = CMDI1 through bit 23 = CMD?24) entered
as 6 hexadecimal digits. If this operand is omitted, hex FFFFFF is assumed.

CKMASK: Specifies whether WSDM should use the command key mask from
the display format or from the DTF. If this operand is not specified on any
$WSIO call, FORMAT is assumed. If it is specified on any $WSIO call, any
future $WSIO calls will leave the DTF unchanged if this parameter is omitted.

FKMASK: Specifies whether WSDM should use the function key mask from the
display format and the DTF (format is specified in the DTF), or just from the
DTF (DTF is specified). If this operand is not specified on any $WSIO call,
FORMAT is assumed. If it is specified on any $WSIO call, any future $WSIO
calls will leave the DTF unchanged if this parameter is omitted.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-87



Programming Considerations

Coding Restrictions

5-88

The generated code for some macroinstructions uses register 1 and/or register 2.
The contents of the register must be saved before issuing the macroinstruction;
otherwise, the contents are destroyed. The $WSIO macroinstruction uses registers
1 and 2. These macroinstructions use register 2:

$ALOC
$CLOS
$FIND

$GETB

$GETD
$INFO

$LOAD
$LOG

$OPEN
$PUTB
$PUTD
$PUTP

$RIT
$SIT
$SNAP
$SORT
$TOD

Disk, printer, and work station data managements use work registers 4, 5, 6, and
7. Unless the contents of these registers are no longer needed, they must be saved

$GETD
$PUTD
$PUTP

$WSIO

~ before issuing any of the following macroinstructions:

The code generated by the macroinstructions is assigned labels; these labels begin
with the dollar sign (§). To avoid duplicate-label errors, do not use the dollar
sign as the first character of a label.



Binary Synchronous Communications

Macroinstructions

BSC macroinstructions can cause the IBM System/36 to function as any of the
following station types:

e Receive only (receive data from a remote terminal)
e Transmit only (transmit data to a remote terminal)

e Transmit and receive (no conversational reply) in one of three modes of
operation:

— Transmit a file, then receive another file

— Receive a file, then transmit another file

— Transmit records from one file while receiving records from another file.
Note: Because BSC closes the file in use before another file is to be used,
there is a delay between each transmit and receive operation. The remote
station might not be tolerant of this delay.

Every BSC program you write with the assembler language must do these two
things:

® Prepare BSC DTFs for data reception, data transmission, or both.

® Begin and end the transfer of data (receive data, transmit data, or both).

* Chapter 5.Macroinstructions Supplied by IBM  5-89



Preparing BSC DTFs For Data Transfer

5-90

When writing a program for data transfer, always include the following three
steps:

1. Generate field displacements and labels for the BSC DTFs by using the
$DTFO macroinstruction coded with BSC-Y and FIELD-Y.

2. Prepare BSC data files. Define each BSC file ($DTFB), allocate it (SALOC),
and open it (SOPEN).

3. If data in your BSC files requires translation, either before it is transmitted or
after it is received, you must provide for data translation by constructing
translate tables (STRTB macroinstruction for EBCDIC/ASCII tables) and
generating a translate parameter list (STRL). When you translate data,
generate the interface to the translate routine (STRAN).

Note: If you want to transmit or receive ASCII data, be sure to give the polling
and addressing characters and station identification sequences in ASCII.



Initiating and Terminating the Transfer of Data
To initiate data transfer, you must issue the following requests:
® Get requests to receive data (3GETB)
®  Put requests to transmit data (SPUTB).

The first get or put request causes BSC to establish line connection with the
remote station. How the data transfer is ended depends on whether the
System/36 is receiving data (SGETB) or transmitting data ($SPUTB). If System/36
is transmitting, then stop sending the data to the current file by one of the
following means:

e $PUTB with OPC-EOF. This transmits the last block of data ending with
ETX. The System/36 then transmits EOT. In 3740 mode, the System/36
waits for the next user operation and then sends either STX ETX or EOT.

e SPUTB to another transmit file. This transmits the last block of data from
the current file ending with ETX. System/36 sends EOT, and line
initialization for the new file takes place. The block ends with ETB when in
3740 mode. In 3740 multiple file mode, STX ETX replaces the EOT.

e S$SGETB to a receive file. This transmits the same sequences as issuing a
$PUTB to another transmit file.

® S$CLOS to the current file. This transmits the last block of data ending with
ETX and EOT (or DISC if switched lines). The last block ends with ETB
when in 3740 mode. In the case of 3740 multiple file mode, use $CLOS to
transmit EOT.

If the System/36 is receiving, the remote station initiates the end of data
transmission. You can detect this by coding EOF on the $GET macroinstruction
or by checking for hex 42 ($BSEOF) in the $SBSCMP field of the BSC DTF after
each $GETB request.

Issue successive SGETB requests until you detect EOF or an error. You can
detect a BSC error by coding REJECT on the SGETB macroinstruction. The
error code is returned in $BSCMP.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-91



Using Move Mode

System/36 performs all BSC get and put requests in move mode. BSC moves data
from the BSC I/O buffers to the logical buffer on get requests, and from the
logical buffer to the BSC 1/O buffers on put requests.

A single get or put request does not necessarily result in the actual data
transmission over the communications line. For a get request, the remote station
transmits data only when its BSC I/O buffer is filled.

A put request transmits data to the remote station only if the record to be moved
to a BSC I/O buffer cannot be contained in the current I/O buffer. The first put
request begins line initialization. Data transfer begins after the second put
request, so your program is always at least one put request ahead of BSC.

5-92



Blank Truncétion

System/36 BSC can transmit and receive data with the trailing blanks removed.
For put files, BSC moves data from the logical buffer to the BSC I/O buffer with
all trailing blanks removed. After each record, BSC inserts an IRS character.

For get files, BSC scans the data in the BSC 1/O buffer for an IRS. BSC then
moves all data up to the IRS character to the logical buffer and blanks the
remainder of the logical buffer.

To use blank truncation, run the ALTERCOM procedure with the TRUNCATE
parameter or the $SETCF utility with a SETR utility control statement with
BLANK.-T parameter specified before running the BSC program.

Be aware of the following:

e Blank truncation will not operate in ITB mode. You can specify blank
truncation with transparent mode; however, the truncation will not be
performed. :

® When you use blank compression/expansion or blank truncation with blocked

records, the number of records per block vary depending on the number of
blanks in each record.

Chapter 5.Macroinstructions Supplied by IBM  5-93



Blank Compression/Expansion

5-94

In order to use the line more effectively and decrease communications line costs,
the System/36 BSC offers assembler users the capability of transmitting and
receiving data with all contiguous blanks (groups of 2 or more blanks) removed.
This is done by using the same format used by the IBM 3780.

For put files, BSC moves data from the logical buffer to the BSC I/O buffer with
contiguous blanks removed and compression control characters inserted. After
each record, BSC inserts an IRS.

If the record is to be printed from the logical buffer, it should be printed before a
put because BSC alters the record with IGS characters and count characters while
compressing the record.

For get files, the procedure is reversed as follows. The System/36 BSC removes
compression control characters, inserts blanks removed at the remote station,
recognizes the intermediate record separator and moves the record from the BSC
I/O buffer to the logical buffer.

To use blank compression/expansion, either run an ALTERCOM procedure with
the COMPRESS parameter before running the BSC program, or run a SETR
utility control statement with BLANK-C specified.

When you use blank compression/expansion or blank truncation with blocked
records, the number of records per block vary depending on the number of blanks
in each record.

Note: You cannot use blank compression/expahsion with transparent or ITB
mode.



Data Formats

System/36 BSC support uses the following data formats for transmission of data.
Use these formats when sending data to System/36 from a processing unit.

o Nontransparent, non-ITB:
STX-data-ETX(ETB)

o Nontransparent, non-ITB, blocked:
STX-rec 1/rec 2/.../rec n-1/rec n-ETX(ETB)

e Nontransparent, ITB:
STX-data-ITB-data-ITB-data-ETX(ETB)

o Transparent, non—ITB:v
DLE-STX-data-DLE-ETX(ETB)

® Transparent, non-ITB, blocked:
DLE-STX-rec 1/rec 2/.../rec n-1/rec n-DLE-ETX(ETB)

® Transparent, ITB (receive files only):

DLE-STX-data-DLE-ITB-DLE-STX-data-DLE-
ITB-DLE-STX-data-DLE-ETX(ETB)

Chapter 5.Macroinstructions Supplied by IBM ~ 5-95



Changing the BSC Environment

Errors

5-96

BSC configuration information is changed by the System/36 ALTERCOM or
SETCOMM procedure. When you run BSC programs from the job queue, the
configuration information from the system console is used for the job. The SSP
gets this information at the same time the job is run. If you want to change the
BSC environment when running from the JOBQ, first run ALTERCOM from the
system console before starting your job.

The ALTERCOM procedure runs the SSETCF utility. Instead of using this
procedure to change the BSC configuration, you can use the SETB and SETR
utility control statements of the $SETCF utility. For information on coding
System/36 procedure commands and utility control statements, see the System
Reference manual.

If an error occurs at either the sending or receiving station, System/36 retries the
operation the number of times specified by the SDTFB macroinstruction, or the
number of retries specified by the ALTERCOM procedure command, or the
SETB utility control statement. (See the System Reference manual for
information on the SETB utility control statement and the ALTERCOM
procedure.) ; , :

Note: Refer to the expansion within your program of the $DTFO macro for
possible error codes (following label SBSCMP). These will appear only when the
parameter BSC-Y is coded on the $SDTFO macro.



Automatic Call Support

When System/36 is configured with the MLCA (multiline communications
adapter) and the Autocall feature or the X.21 feature, remote locations can be
called without operator intervention. Because there is no reference to the autocall
or X.21 capabilities in user programs, existing programs can add autocall or X.21
without other modification. You specify autocall or X.21 by using the PHONE
parameter on the COMM OCL statement. The COMM statement is described in
the System Reference manual.

The phone list specified in the COMM statement can contain up to 120 phone
numbers and is generated by the DEFINEPN or the DEFINX21 procedure
described in the System Reference manual. When the first request during any
BSC job step is made to BSC data management, the phone list is searched for a
number to call. The first time the list is referred to, the search begins with the
first number. For each succeeding reference, the search begins with the next
available number. If a number cannot be reached, the value of the number of
retries is reduced by one and the next number is called. If no numbers in the list
can be reached, a no-line connection return code is passed to the user program.
A message is displayed to the system console indicating each number that could
not be reached. When a number is reached, a message is displayed indicating the
number reached, and communication proceeds in the same manner as for a
manual call line. When the job step ends, you can use the OCL statement with
the LISTDONE parameter to perform the step again and call the next number.
You can use the same phone list in a later step of the job.

If a batch BSC job is run on an autocall line and no phone list is specified in the
COMM statement (or there is no COMM statement), the call mode defaults to
the mode specified in the user’s DTF or the display station communications
configuration record. The mode can be manual answer, manual call, or
automatic answer. If the phone list is specified in the COMM statement but the
line is not an autocall line, or the autocall task was not loaded at IPL time, the
line is considered to be a manual or automatic answer line, depending on the
switch type defined for the line.

If a batch BSC job is run on a switched line under X.21 and no phone list is
specified, switch type automatic answer is assumed. If the X.21 task is not active,
an error message is displayed and the BSC program is not run. You must IPL
the system to make the X.21 task active.

The ability to call multiple locations within a single BSC job step is useful
primarily when the System/36 is receiving data from multiple locations. Because
any number may be called during a request, transmission of data to a particular
location should be performed using a phone list containing a single number.

If, during the receiving of data, a permanent error occurs, the phone number
associated with the data link is not reset. Because the number is not reset, it
cannot be called again on subsequent passes through the list. The recovery
associated with that particular job step is the responsibility of the user.

Chapter 5.Macroinstructions Supplied by IBM ~ 5-97



5-98



Chapter 6. Assembler Problem Determination

If a problem occurs while you are using assembler, the cause of the problem
may not be obvious. An error in your application or in system operation
could have caused the problem. The problem determination procedure in
this chapter can help you solve or circumvent the problem. If you need
more information refer to the System/36 System Problem Determination
manual, SC21-7919 for the 5360 System Unit, or to the System/36 System
Problem Determination manual, SC21-9063 for the 5362 System Unit, or to
chapter 13 in System/36 Operating Your Computer - 5364, SC21-9085 for the
5364 System Unit, before contacting your service representative.

How to Use this Procedure

This procedure is arranged in a sequence of questions that you can answer
with a Yes or No. Based on your answer, you are directed to another
question or to a recommendation for action.

Start at the beginning of the procedure and follow the question-and-answer
sequence, answering each question to which you are directed based on your
previous answer. If the problem is a condition that requires more detailed
procedures, you are referred to those procedures.

Identifying Assembler Problems

When a assembler problem occurs, you can use the following series of
questions to pinpoint its possible cause:

H Did you receive a message indicating that an operator needs to
do something to a device such as a printer or a display station?

No Yes

Take the actions indicated by the message and save any
automatic dumps printed as a result of the message. If the
action requires operator action, call your system operator.
If the action requires you to call for help, see Contacting
Your Service Representative on page 6-7.

When you examine a message for indicated actions, check
v the following:

Chapter 6. Assembler Problem Determination 6-1



6-2

e Second-level message text, which describes the
message in more detail. To get the second-level
message text press the Help key.

e Some messages contain a number of options for
possible recovery actions. These options are explained
in Chapter 1 of the Assembler Messages Manual,
SC21-7942.

If you still cannot solve your problem after fully
examining the message, see Contacting Your Service
Representative on page 6-7.

Are other system users having problems communicating with
the system?

No Yes
Call your system operator and describe the problem. Have
your operator use the procedures in the appropriate
System|36 System Problem Determination manual.

Is this the first time you have ever run the job or subroutine?

Yes No
You may have a system problem. Call your system
operator, describe your problem, and have the operator use
the appropriate System/36 System Problem Determination
manual.

Are you having a nonprogramming problem, such as spooled
output that is not produced or a device that is not working?

No Yes
You may have a system problem. Call your system
operator and have -the operator use the appropriate
procedure in the appropriate System/36 System Problem
Determination manual.

Are you using the current release of SSP?

Yes No _
‘ Install the current release of SSP.

Have all IBM-supplied program changes you have received that
apply to the current release of SSP been installed?

Yes No
| Install the program changes you have received that have
not yet been applied.

Are you using the current release of assembler? The release
number is printed on the first line of the source listing for any
assembler program.



Yes No
Install the current release of assembler and compile or run
the program again.

Have all IBM-supplied program changes you have received that
apply to the current release of assembler been installed?
(Check with your system operator)

Yes No
Install the program changes you have received that have
not yet been applied and run the program again.

Have any non-IBM changes been made to assembler or to SSP?

No Yes
If assembler has been changed, install its current release
and program changes, and run the program again. If SSP
has been changed, install its current release and program
changes.

Have changes been made to the user program since the last
time it ran successfully?

No Yes
Read on, but consider what has been changed. For
example: have operating procedures changed, has the data
within the files changed, are new device files being used,
or have program changes been applied recently? A good
starting point for problem determination is a changed
item.

Assembly Time Problems
Was unexpected assembler output produced?

No Yes
Check if:

e The NOLIST option was used. NOLIST specifies that
the assembler is not to produce the assembler listing.
Specify LIST to produce the complete assembler
listing.

o The program has the NOGEN option. NOGEN
suppresses the printing of statements generated by the
macroprocessor. Specify GEN to print statements
generated by the macroprcessor.

o The program has the PRINT OFF option. This option
overrides The GEN option. Specify PRINT ON in your
program.

Does the program have poor performance during
assemble-time?

Chapter 6. Assembler Problem Determination 6-3



No Yes
Check if:

e There is space allocated for the work area. Examine
the ASM procedure for allocation and enlarge the
allocated space.

o The macro processor was called, but no
macroinstructions were used. Examine the listing and
specify NOMAC in the ASM procedure.

o There are required macroinstructions in #ASMLIB.
Do a LISTLIBR OF #ASMLIB and move user written
macroinstructions to #ASMLIB.

e If you cannot solve or circumvent the problem contact
¥ your service representative.

Link Time Problems
Were errors encountered during linkage?

No Yes
Check if:

® There are any coding errors that occurred during
assembly. The assembler message should indicate
what the error is. Correct and re-assemble the
program until all the errors are corrected.

® The program has the NOOBJ option. NOOBJ specifies
that the assembler is not to place the object
(assembled) program in the library. Specify OBJ in
your program to place the object (assembled) program
in the library as a subroutine member.

e Refer to the IBM System|36 Overlay Linkage Editor
1‘ Guide, SC21-9041 for other considerations.

Execution Time Problems
Did errors occur when loading the program (via //LOAD OCL)?

No Yes
Check if:

e The load module exists by specifying LISTLIBR of the
load module.

o The object module (R module) is linked before
Y executing.

6-4



Was unexpected execution-time output produced?

No Yes
Check if:

o There is incorrect program data.

e There are assembler coding errors.

] e The program is in an infinite loop.
Did a task dump occur?

No Yes

e TFollow the system prompt to get a listing of the dump.
Examine the dump to find the cause of the problem.
Go to the next question about messages.

Did you get Message SYS—0015?
No Yes
e If the message SYS—0015 appears, make sure your

program does not try to execute data., The following
example of a program demonstrates this.

BH LABEL
DATA DC XL2'0000"
LABEL EQU *

If the branch does not take place, X’0000” is interpreted
as an instruction, but 00 is an invalid main storage
instruction.

e Make sure a valid instruction was not modified by the
program. This often happens when the base registers
XR1 and XR2 contain incorrect data. The following

Y example of a program, demonstrates this.

Chapter 6. Assembler Problem Determination 6-5



location

MOVE MVI 0(,XR1),X'00’
02A0 J LABEL
LABEL EQU *

If location X"02A0’ of the program is a JUMP
instruction, but at the point of execution of the MVI
instruction at label MOVE, XR1 contains X’02A0°. The
MVI instruction has modified the Jump instruction to

y ’00’, but 00 is an invalid instruction.

EB] Did you get Message SYS—0013 or Message SYS—0014 ?

No Yes

e If the messages SYS—0013 or SYS—0014 appear, the
program tried to access an address outside the region
size of the program. Check if the index registers
contain correct values. The following example of a
program demonstrates this.

MVC DATA1(2),0(,XR1)

DATAL bC : XL2'0000"'

If the program size is X"0400" bytes, but when
executing the MVC instruction, XR1 contains X’0600’,
v SYS-—0013 will occur.

Did a system message occur?
No Yes

The message should provide some information. Carefully,

check the usage of system macros, DTF’s, device file, OCL,
and return codes.

If you still cannot solve your problem after fully
examining the message, your program and procedures, see
| Contacting Your Service Representative on page 6-7.




E1 Does the program have poor performance during
execution-time?

No Yes
Check if:

e There is over utilization of some system resources, for
example disk usage. Your system operator can run the
System Measurement Facility to find the utilization of
system devices. Refer to the System Measurement
Facility Guide, SC21-9025 to find the optimal

Y configuration for your system.

If after using this procedure you or your system operator have not solved
the problem, consult the appropriate System/36 System Problem
Determination manual for your system unit before calling the service
representative.

Contacting Your Service Representative

If you cannot solve a problem by the problem determination procedures
listed in this chapter, and the appropriate System/36 System Problem
Determination manual, you may want to contact your service
representative. Before contacting your service representative, you will be
asked to provide the following:
e For compile time problems:

—~ A task dump at the time of the failure

— Run the APAR procedure and include the entire history file

— A diskette copy of the user program source and macro source

— A diskette copy of the user procedure

— An assembled source listing with cross-references
e For execution time problems, the above and the following:

— A diskette copy of the user files

~ A diskette copy of the user display screens

— A diskette copy of the user load module

— A diskette copy of the history file immediately after the problem
occurs

The procedures for obtaining the above information are explained in the
appropriate System/36 System Problem Determination manual.

Chapter 6. Assembler Problem Determination 6-7



6-8



Appendix A. Programming Examples

This appendix contains assembler programming examples, macroinstruction
definition examples, and related macroinstruction expansions.

Appendix A.Programming Examples A-1



BSC Programming Example

The following programming example illustrates the use of the BSC
macroinstructions in assembler programs.

Transmit
This program reads a file from disk (BSCFIL) and transmits it to another
System/36. :
Note: The following BSC examples (A2 to A8) are only representative portions of
larger programs; therefore, they are incomplete and should be used for illustrative
purposes only.
EE:%F:- 1BM System/34, System/36, Assembler Coding Form w.:::’:ﬁ’:_:,
[ PROGRAM I'rvrma [G""’"c l l T I _L I i l L T I’AGE J
[ Frochamcn [ome romenowsfomameten | | 1 T [ T T T [ [ T ]
Labet Operstion Operand — Remarks. . Sequance
1L ART] [
E 24 b tadiad ket adiindo ot adle
| ¢
TiE] [AND N CHATLIN 1aF] DS || I«
o | e
YTV 6 I EERE EDE 16 oJiadiad A K ) K e L K
1$ALOC, PTF|-BSICOITF TE AL DTFS
PEN DITF- F EN_ALLL DITF' S
DX DEDDEDENE D DE D D DEDE KPOEDE DI DE
e tl
¥ TRANSMI[T [THE |FIILE *
1 1€
el laad be ¢ peaehrelaélael ¢ #P ¥ b e s xdad |
LIOOP1 3 ¥ L | ! |
D DTF|-DSKDTF, TOERR - ,[EOFCLOSE, OP
PUTB DITF|-BSCDIIF), IRE] - '
OFiL LO UNTIL [El FIIILE]
el ¢ e e e el b e loebi oy - e D6 i e e b e o
e L ¥
INT R OF] ’T}HlAN TlsISTON e
b
mmImme e el aeae e aefaeaelx i 3l sacais
| 0 O 5 O s ot i = -
T 1] ] | T T
| | | [ ]K ]
MviCl | | PTIBUF+39((40) | ERRIL 39 15K E RI SSAGE! | [(isleiel -8l Forl IdeFlinfiFian)
Cl
i ; :
Vil || PTBUFT+39/(49) 2439 DS B5C| ERROR sielel A-3 Flolrl dlelfliinifFilon)
¥ | i
PUTH DT - F BERRE !
T F ; I
Tl 1
ek M adre e e i
4 * i
% TF]' |5 | BUFFERS],| AND EGUATE! .
* g
D De % e e e R i
RECL|- LKL - | BUFIFRIL:, F[TYP - [T TYIPE - i
CHAIN-P F VIID-[RCVX] [RCVICTI- 4] |SNDIDI- T} CT-4 | i |
BUFFRI b ] |
C | ] 1xCiae ad’
PRTDTF F O~ UF |, |LOAREA-PTII, RECLI-144,
,r IINTI- Y] CHATIN- IDSIKDTF |, ISPACEA-| 1], INAME]- PRINT]
ggg -Cd, IReC-82, IMAME-[BSCIFITIL], [TINREIC- E@l ]
PTBU RU ¥ J_i
ClLad* 3 SFIUCLY| [TRANSMIIT|T 'P%RTITR * '

T2 34 5 6 7 8 4101012131415 161716 192021 22 2324 25 26 2/ 28 29 30 31 3233 34 35,36 37 38 39 4D 81 42 43 44 45 46 47 43 4950 51 52 63 54 55 56 57 50 5960 61 67 63 64 65 66 67 68 69 70 7172 73 74 75 76 77 /8 7980 8) 62 62 4 85 86 873 89 90 91 92 92 94 9~ %6
*A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column.

A-2



Receive Program

The foliowing program receives data and prints that data:

GX21-9279-1
§§§=§ 1BM System/34, System/36, Assembler Coding Form Printed in US.A.
=

PROGRAM BSASM 2 ] rvema [oparme | L L LT T T T Jrme & |
PROGRAMMER l OATE l"‘"l“c'lﬂ"l rmumsu l r l I’ r r r r | h.,, 3 _l

STATEMENT Identification
Labet Opecation Opwand Romerks . Sequence
12 3 45 6 7 BJ90111213 14115[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 7@ 79 80 81 82 83 84 85 86 875589 90 91 92 93 94 9596}

cM STIART]
AR droirdrirein DDA T
b h

X
X
X
X
X
R
X
X

[a)
{w]lwikS
~
]
=1
SIE
CNed

oo L

IR RTRRX
-
m
bl
2
\wi
3
2=
=N
==

EdmliwiiwIES

]

]
im
o

[]
)
Ind
0
e

[
=

FAEIF 3 >3
(=]
m
20
i
=
=]
303

L SF 3

K[ e reheleeeebe el el pepeee 1 i

123 456 78 91011 121314151617 1819 20 23 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 85 56 57 58 5960 61 62 63 64 65 66 67 68 69 70 73 72 73 74 7578 77 78 7580 61 62 83 84 85 86 8788 89 90 91 97 93 94 95 96
*A continuation record foflows if the character in this column in non-biank and if a comma follows the last operand preceding this column.

GX21-9278-1
E 5 IBM System/34, System/36, Assembler Coding Form Printed in U.S.A.

oo BSASM & Tome T T T T T T I T T [ [ 2 )
Py SR R o N O O W 0 O R B

STATEMENT
Label Operstion Operand Romarks . Sequence
12 3 a5 6 7 8[9H011 1213 141516 17 \l192021222:!2426262?2.29303\323334353637JIJSWM42‘3‘445“47ul'sﬂsls:s:“sﬁsﬁﬁ'!ﬂ!ﬁ‘ﬂsl62635!““61&56970717213147516777l79'381.2I:l‘sbwl"uﬂwmszs:s‘%w

TERET INEREN |RIRERN ]
C| Fl+[719 gﬂ) ER +79 BsC] [ER S5
v D IIPB-i INT
€302 w6 ¥ aehehe o] 2¢a6rd)
F'

y SE

EIEIE S

L
()
(WIEES

(wiES!

B[O X
(m)
=i
1
NI

| [

123 456 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 35 39 40 41 42 43 44 45 45 47 42 49 50 51 52 53 34 66 56 57 58 6060 51 62 63 64 65 66 67 68 €9 70 7172 73 74 7576 77 78 7980 81 82 83 84 85 66 8789 89 90 9) 97 93 94 95 96
*A continuation record follows if the character in this column in non-blank and if a comma follows the last opersnd preceding this column,

Appendix A.Programming Examples A-3



Gx21.92794
st 1BM System/34, System/36, Assembler Coding Form

mocmw  BOASM 2

TYPING GRAPH! PacE 3
PROGRAMMER Ions INSTRUCTIONS | CHARACTER oF 3
STATEMENT
Labet * Operation Operand . * Romeria Soquens
1.2 3 45 6 7 8]9p0 11213145

iy .
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 65 56 57 58 50 60 61 62 63 64 66 66 67 68 69 7071 72 73 74 75 76 7778 79 80 81 82 B3 84 85 86 §7]

ING FITILE’

80 50 91 92 93 94 9598,

-

CLea R WHILL

=

a)
=
3
—

123 4 56 28 9 10111213 1415181718 192021222324 2526272829 3031 32 33 34 35 36 37 38 35 40.47 42 43 44 45 46 47 48 4950 51 5253“““!1u”“o'OZ.I““‘I.?C.””7'7.!7311157'77n7.ulll2'3u.5l“7“"w"'7039‘99“
*A continuation record follaws if the character in this column in non-blank and if a comma follows the fast operand preceding this column.



Transmit and Receive Program

This program receives two files from a 3741, then transmits two different files in
return. The data is transmitted from two disk files (BSFIL1 and BSFIL2). The
data received is printed.. Before running this program, run the ALTERCOM
procedure with MULTFILE specified.

IBﬁ 1BM System/34, System/36, Assembler Coding Form : mG.:‘lml
oo BSASM 3 P S N N O D S |
Proovumer [ove | Mwemfommew | { [ | | T [ [ [ | J» 5 |

1.2 3 45 6 7 890111213 14115116 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 :2sausuoru:snouun:uuaanuuws‘szsa545555s7stu.onon:uosecuum*mnn7aunununnalnnu:suw-lnsosnszs:mssu

AR T 111 ]
e

¥

X!

[
i bbbl 6
PJ{ND CHAIIN dF| DTiF*
e ¢
ad T

héheé] xFe

p [ ]

EIED

El
o

X

s Liiata

—
hul

p
[ [
=

=i

bl

(AN

0
_ﬁ.___i -
)
=
()
—
b 1R 3
—
—
[aa}

Q
]
G
=
Gl
il
0]
"
1)
=
™

(w)
<
—
A
%‘lﬂc
rliwilw]
(R
[
=
fFrme
M
IO
2
[)
m
10
x—‘-l'ﬁ*
X[ m
Alm
n‘lﬁ p.JE 35 IF
3 X (al
L
uliul
o
=
)
I~

EIF.IEIE T
T

1
443 3096 G

v ﬁ? DTF: DT, [EOF|- M :
TF-PTRDTF ISPACER- 3
e TTTTTTTTT T [ﬁag oF Fli

42 3 45 6 7 8 9 1011121314151617 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 &1 ‘243“““47“!‘”5‘52535‘“5‘5’”9“6!02036‘“5567‘!””7I7.1737!75767?mnnu!l!l:l“3505l7“.999‘929391'5“
*A continustion record follows if the charscter in this column in non-blank and if a comma follows the lsst aperand preceding this column.

E3E
‘%
0
m
IO
-
|

GX21-9778.1

zggg; 1BM System/34, System/36, Assembler Coding Form Printed in US.A.

e BSASM B Tome T T T T T 1 1T T T [ Te 2
PROGRAMMER Inn: ]'W""ﬂ'm rCNARACYEIT 1 ‘ "[ T ‘ I T T T 10; 5 ’]

Lebot J Operation [Lm.m Remarks . Sequence
12 3 45 6 7 8910111213145 ll7l8\9202|222324252627232930:":2::JAS:IJT3!3940"‘:‘3«'5“47“”505'3253s‘ﬁM51ﬁs!ws‘s?ial‘.ﬁasc?ﬂs?ﬂ“7273747576717!79“!‘IZ3354.685!7‘“-909‘9193949596
¥ ¥ el T ot
be ¥
u A 1T A FIILE b
i 1 | be!
% i el e *ik » Bk it
I E| ¢ aaal
HIGE]T Fl-IDKDTIF L IIOERN-D EloF|-XMI[Ti2 [GET] Al IRECO
PUTH DT TFi2|, REJECT-ERR3 TIRANSMIIT] IT]
1 | NTT IFl
hepel

TiL
e e e mj’f e

1 -
G ANSMI{T ANGTHER FIT|LE] e
pe 1] LI ¥
e beeel] seebelachelse el aag st el e neloe
XMIT e |
| D [DTF-DRDITFE, TPERR- JEcF- T A REC
UTH DIF TIF|3, |RETIECT]-EIRRI4] NSMLT| TH
Al

L.
=
Q
.
-4
—
(=]
—
Q)
bl
~
=
[d]

123 4 56 7 8 9 1011121341516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 42 44 45 46 47 48 4950 5) 52 52 54 56 56 57 58 5080 61 62 61 64 65 66 67 €8 €9 70 71 1.213 74 7576 77 78 7980 8) 82 83 84 85 86 8768 89 90 91 92 93 94 95 96
*A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column.

Appendix A.Programming Examples A-5



IBM System/34, System/36, Assembler Coding Form

IEM

GX21-9279-1
Printed in US.A,

[novs-m BSASM 3 o | | T T 1 T 1

rrms 3

]

TYPING
l PROGRAMMER lenucrm

Lmu's

CHARACTER J l }

[ 1

r‘”

s |

STATEMENT

Lubel Operation Operand Remeris

Sequence

123 45 6 7 8]5 0111219 16fis16 17 16 19 20 21 22 29 26 25 26 27 26 20 30,01 32 33 34 36 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 53 53 54 56 36 57 58 59 60 63 52 5 64 6 68 67 68 69 7073 72 73 74 78 76 7778 79 B0 81 62 8 84 85 05 SWasdsw 50 1 52 93 54 9596
] he el S
" [ i X
el IPERFIOR) AND| ERI 1 i
e LT | RERSNARRN
M eaelaehelhe e el el peidaelicheveoelloheldreerend e
DONE ] [1]]
C H39(l4d) | 439

=)

| L=

J:i
=3

]

1

1

39

|
T
F

e

K

=

T

o

A DIF-P c

2 I 11

-+
123 456 28 510111213 151617 161920 21 22 23 24 25 26 2> 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 56 56 57 58 5960 61 52 63 64 85 66 67 65 69 70 71 72 73 74 7576 77 78 1980 81 82 83 34 85 66 8758 29 90 91 52 93 94 95 96

“A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column,

Gx21.92781

z%%é 1BM System/34, System/36, Assembier Coding Form Printed in U.S.A.
erocran  BSASM 3 TYRING lcmmlc 1 l L L L l 1 1 T l [nns 4 I
PROGRAMMER rDAYE _] INSTRUCTIONS lmAnAcreq —I | l I l 1 L T L J oF 5 I

Label [L Operation f [ Qpweand S Remacks . Sequenco
el Taehel ¢l heele e aedael el el e peepefiche o
ad ¥
R DTF| ‘19 AND J0 ¥
i ol
(it i ¥4 i iadid b 4
Cl ‘ DTF - B5| 1 C L DTF’ IS

$EC: E Vet

96| 94 3424 #1961 K1 v el o haibhad 942096 3426 %0 badhaitad Emtale tad kb
Wl d
£ DTF'ls .| |8 S, | AND EQUATES d
e 1 %
6106 ¢ 36106 DD 614 e M e aad Fiﬁ

TF1 ECL- BILKL |~ FITYIPI- RCV, (TIY|PEI-MA, - AT JCHATIN- F

T TFE RECL-4d, BLKIL-4id FiTYIP-TisM, [TIYIPE}-MA, RCAD- DIKBUF |, ! - F

T RECL- KLl "IFTYPL- TISM, TIYPPE] MAT, IRCIAID- DIKBUF | CHATN- DKDITIF L

TIFlL DITF] S-1CG, RECU-4d, N FILIL [TIOAREIA-DKIC, i - DD,
D, T C! -C4 -4, INAME, I I - DHIO -PT

TF E%fFFA - PTIBUF, RRINT- Y], RECI- 4], NAVE|-PRINT '

kd

[ L

123456 2 89 10107212 %4751617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 36 36 37 36 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 5960 6162 63 64 6566 67 68 €9 70 71 72 73 74 7576 77 76 7980 81 82 83 84 85 66 8750 80 90 91 92 93 54 95 9

*A continuation record follows if the character in this column in non-blank and if a comma follows the last operand precading this column.



6X21.82781
IBM 1BM System/34, System/36 Assembler Coding Form Printed in US.A.

PROGRAM BSASM 3 “TYPING I“""""‘ l T‘[ T r r J l l L ["G‘ 5 j
PROGRAMMER Lnus ]'Mn\umwsjw““nll J l L L J J L [ L Io; 5 ]

Label Operation Operand Remarks . Sequence
1.2 3 466 7 8oh011121318)15]16 17 18 19 20 21 22 20 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 66 66 6/ 68 69 7071 72 73 74 75 76 77 78 79 BO 81 82 83 84 85 56 87]99489 50 91 92 93 94 9596

T
a1
AN

‘ﬁ_ IMIING FIIRST FILE"

Wﬁin*nx

=
=4
[oad
M M 1™
—
=]
()
N
=4
-

Lo ) ()

2 L&F‘ IIL

()|

[

[

(m)E 30l
i nd

B

=)

[

=

<

()

=
—
.
=
=
(i
=
S

(w0
(X
1)
i
T
—
i
i

T

123456 789101 121314151617 1819 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 36 36 37 38 9 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 5960 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 79 80 81 82 83 84 85 86 8708 39 90 91 92 93 94 95 96
*A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column,

Appendix A.Programming Examples A-7



System Date/Time Program

DTIM START O .
T T R R I T Y YT
* PROGRAM: DTIM - PRINT THE SYSTEM DATE/TIME

* DESC : THE PROGRAM USES THE MACRO $TOD TO ACCESS THE SYSTEM
* DATE AND TIME, IT PRINTS THEM IN THE FORMAT

* TIME = HH.MM

* DATE = MM/DD/YY

* INPUT : SYSTEM DATE AND TIME

OUTPUT : PRINT DATE AND TIME *
Ry I )

EE R Y Y R R R TR E TR Y X
* ALLOCATE THE PRINTER FILE *
LR R R R RS TS S E RS S SRS EE SRS SRR RS SRS E SRR R R RS RS E R SRS AR SRR EEEEEERESS)
. ,

* ¥ X ¥ ¥ *

*

SALOC DTF-PRT ALLOCATE THE PRINTER FILE

EJECT
*
R T L R T X,
* OPEN THE PRINTER FILE ‘ *

EEX R R R RS R XSS SRR LRSS AR A E RS SRR RS R AR S E SRS AR SRR SRR RS EREREEEEERESEERERSESS
*

$OPEN DTF-PRT OPEN THE PRINTER FILE
EJECT .

A-8



LR EEE SRR RS SR SRR RS SR RS S R RS AR RS R R R R RS R EEEEEESE SRR EREEEEEREESE RS
* GET THE TIME/DATE AND PRINT THEM *
khkkkkhkkhhkkhkhkkkhkhhhkhkhkhkhkhkhhhkhhkhkhhkhhhkhhhkhhhkhkhkkhkhkhkhhkhkhhkhhkhhkhkhhkhkhhhkdkhkhhkhkhhkhkhhkkkx
*

$TOD TRB-TIMDAT CALL MACRO
MVC  PTIME(2),$TRBTIME-2(,XR2) GET MINUTES
MVC  PTIME-3(2),$TRBTIME-4(,XR2) GET HOURS
MVC PDATE(2) ,STRBDATE (,XR2) GET YEAR

MVC  PDATE-3(2),$TRBDATE-2(,XR2) GET DAY
MVC  PDATE-6(2),$TRBDATE-4(,XR2) GET MONTH

MVC PRTBUFL+5(6) ,DTIME MOVE TIME DESC TO PRINTER BUF
MvC PRTBUFR(5) ,PTIME MOVE THE TIME TO PRINTER BUFF
SPUTP DTF-PRT PRINT THE TIME

MVC PRTBUFL+5(6) ,DDATE MOVE DATE DESC TO PRINTER BUF
MVC PRTBUFR(8) ,PDATE MOVE THE DATE TO PRINTER BUFF
$PUTP DTF-PRT PRINT THE DATE

EJECT :

*
AKhkkhkkhkhkAhkAhkIAhkkIRkhrhIkRhkkkAk Xk krAhhkhbhkhkhhkdhkdohkhhkhkhkhkrhrhbhrrkhkdhkrhkdhkhkrhkhrkrohhkhkrdhdk
* CLOSE THE PRINTER FILE AND GO TO END OF JOB *
kkkkkhkhkkhkkkhkkkkhkhkhkhhkhhkhkhhkkhkhhkhkhkhhkhkhkhkhkdhhkhkhkhhkhkhkhkkhkhhhhkkdhkhhhhkhkhkkhhkhkhhhhxdhkxd
*

$CLOS DTF-PRT CLOSE THE PRINTER FILE
SEOJ

*
RS R EE R SRR EEE LSRR RS SR R EEEEEEREESEEEEREREEEEEEEREREREEREEEEES SRR EEEEEEEEE]

* DEFINE THE DATA AREAS *
T I T T Ty

*
PRT $DTFP NAME-PRTFILE,RCAD-PRTBUFL, IOAREA~PRTIO,RECL-20,SPACEB-1

Appendix A Programming Examples

A-9



* :
PRTBUFL EQU * PRINTER BUFFER

PRTBUFR DC XL20'00" PRINTER BUFFER INITIALIZED
*
PRTIO EQU  * PRINTER INPUT/OUTPUT
DC XL20'00"' PRINTER INPUT/OUTPUT INITIALIZED
* : .
DTIME DC CL6'TIME =' TIME DESCRIPTION
DDATE DC  CL6'DATE =' DATE DESCRIPTION
PTIME DC cLs' . ! ‘ TIME FIELD
PDATE DC cLg' / /! "~ DATE FIELD
* ) .
XR1 EQU 1 ~ INDEX REGISTER 1
XR2 EQU 2 L INDEX REGISTER 2
EJECT
* . . . )
TIMDAT  $TRB V-ALL o MACRO FOR TIME/DATE REQUEST BLOC
EJECT o a -
* o
$DTFO PRT-Y GENERATE DTF OFF-SETS
END : ’

A-10



Workstation and Print Program

WSASM START O SET LOCATION COUNTER VALUE

PRINT NOGEN
e T Ty Xy
* PROGRAM: WSASM - WORK STATION OPERATION
* DESC : THIS PROGRAM ASSUMES THE EXISTENCE OF A DISPLAY FORMAT
* 'FMTNM' IN A FORMAT LOAD MEMBER 'WSFMT'.
* THE PROGRAM ISSUES A 'PUT AND GET' OPERATION TO THE
* WORK STATION MANAGEMENT WHICH PUTS OUT A DISPLAY SCREEN
* AND PASSES THE INPUT DATA FROM THE SCREEN TO THE
* PROGRAM. THE PROGRAM WILL THEN PRINT OUT THE SCREEN
* INPUT. THE ABOVE PROCESS CONTINUES UNTIL THE WORK
* STATION OPERATOR INDICATES SO ON THE DISPLAY SCREEN.
* INPUT : THERE ARE FOUR INPUT FIELDS FROM THE DISPLAY FORMAT
* AN EOJ INDICATOR - 1 BYTE
* 'Y' IF END OF JOB IS DESIRED
* NAME FIELD - 3 BYTES
* STREET FIELD - 19 BYTES
* CITY FIELD - 20 BYTES
* OUTPUT : THE NAME FIELD, STREET FIELD, AND CITY FIELD FROM THE
* SCREEN INPUT WILL BE PRINTED. '
* ENTRY : DISPLAY FORMAT 'FMTNM' HAVE BEEN CREATED AND COMPILED.
* EXIT : NORMAL
B T

* CONSTANTS, BUFFER, AND EQUATES *

dkkhhhkhkhhkhhhhhhhhhkhhhhkhkhhhhhdhhhhhhhbhhbhkhhhhhdhhhhhhdhkhhohkrhxhhhrhkxk

¥k % ¥ Gk F % ¥ X X F ¥ % X F % ¥ ¥ F

Appendix A.Programming Examples A-11



XR2

*

*

PRTDTF

*

PRTBUF
PRTNM

PRTST

A-12

SPACE
EQU
SPACE

SPACE
$DTFO

EJECT

SPACE
EQU
$DTFP

SPACE

SPACE
ORG
EQU
DS

DS

DS

DS

INDEX REGISTER 2

*************************************

DTF DISPLACEMENTS ~ = = *

*************************************

DISPLACEMENTS FOR PRINTER - c
DISPLACEMENTS FOR WORK STATIONS

*************************************

1
2
2

*
1
PRT-YES,
WS-YES

*
1

*

RCAD-PRTBUF,
IOAREA~-PRTAREA,
NAME-PRTFILE,
CHAIN-WSDTF,
RECL-7O

2

*

1
*, 8
*
CL10
CL3
CL7

‘CL19

fu

PRINTER DTF R

kkkkhkkhdkhkhkhhhhhhhhhkbhhdbrdbdrkrrrbhrhhd

ADDR OF LEFMOST BYTE OF PRT DTF
ADDRESS OF LOGICAL BUFFER
ADDRESS OF PHYSICAL BUFFER

NAME OF PRINT FILE

POINTER ‘TO WORK STATION DTF
RECORD LENGTH

[oXoNoXe!

*************************************

) LOGICAL PRINT BUFFER B
khkkkkkkkkkhhkhhhhhhhhhhrkhhhhhhrkrhdd

SET LOCATION COUNTER TO 8 BYTE BOUNDARY
. POINTER TO LEFT BYTE OF PRT BUFFER
' BUFFER POSITIONAL PADDING

NAME FIELD

' POSITIONAL PADDING

STREET: FIELD -



PRTCT

*

PRTAREA

* * ¥ * ¥ %

WSDTF

* ¥ X ¥ X ¥

WSINDX

DS
DS
SPACE

SPACE
EQU
DS

DS
EJECT

SPACE
EQU
$DTFW

SPACE

SPACE
EQU
DS

CL11

POSITIONAL PADDING

CL20 CITY/STATE FIELD
2 _
khkkkkkkhkhkhkhkhkhhkhkhkhkhhkhhkhkkkhkkhkkkhkkhkkkk
* PHYSICAL PRINT BUFFER *
d ke kK ok Kk dkodk ok ok ok ok ok kk ok ok kodkdkddkdodkdkokkkkkdkkkkkk
1
* LEFT ADDRESS OF PHYSICAL PRINT BUFFER
CL70 PHYSICAL PRINT BUFFER
CL19 + ROOM FRO IOB
khkkkhkkhkhkhkhkhkhkhkhkkhkhkkkhkhkhkkhkkkkkkkkkkkk
* *
* WORK STATION *
* DTF *
* *
Khkkhkhkhkhkhkhkkkkhkhkhkhkhkkkhkhkkhkkhhkkhhkkhkhhkkkkk
1 ,
* WORK STATION DTF
MEMBER-WSFMT, FORMAT LOAD MEMBER NAME c
INLEN-43 TOTAL LENGTH OF ALL INPUT FIELDS
2 , ‘
*************************************
* *
* WORK STATION INDEX AREA AND *
* LOGICAL BUFFERS *
* *
kkhkkhkkhkhkhkhhhkhkhhkhhkhkhkkhkhkhhkhhkkhkkkhkkkkk
1
* WORK STATION INDEX AREA
CL16 EACH FORMAT REQUIRES 16 BYTES

Appendix A.Programming Examples

A-13



SPACE 2 e o
ORG  *,8 . LOC CTR'SET TO 8 BYTE BOUND FOR GET OP

WSLBUF  EQU  * ' _LEFT -ADDR'WORK STATION LOGICAL BUFFER
WSIND DS CL1l:" '~ " WS OPERATOR END OF JOB INDICATOR
NAME DS CL3 " \NAME INFORMATION STORAGE
STREET DS CL19 " . ADDRESS INFORMATION STORAGE
CITY DS CL20 ADDRESS INFORMATION STORAGE
EJECT ’
***********************************************************************
* ' MAINLINE ROUTINE ' *
khkhkkhkhhkhkhhkdbhhhkdhhkhkhhkrhhhhhhkrhhhbhkrhhhdhhhhhrhbhhkhddhrhkdbhrhkhdrhkdohhrdrrhokdrhkdx
SPACE 1 P :
START $ALOC DTF-PRTIDTF ALLOCATE PRINTER
; $OPEN DTF-PRTDTF = OPEN PRINTER
NXTREC B GETWS GET RECORD FROM WORK STATION
B PRINT GO MOVE DATA TO PRINT BUFFER
CLI  EOJIND,X'O1l' PROGRAM END OF JOB INDICSATOR ON?
BNE NXTREC NO - GO PROCESS NEXT RECORD
$CLOS DTF-PRTDTF ' CLOSE PRINTER
$EOJ GO TO END OF JOB
SPACE 2
IR AR EEEEE R R RIS EEEE S SRR SRS E SRR AR AR EREREEEEEREEEEERESEEE]
* ROUTINE 1 - PRINT ROUTINE *
hhkkhkhkhkhkhkhhkrhhkhhhhhhddrdhkdkdkhhkhkhhkhkkhhhhkhkdhhodkhhhhkhkhhkhbhhodkhkhkrhhkhrhhkrxhhkhrdxk
SPACE 1
PRINT ST RETURN1+3,ARR STORE RETURN ADDR
USING PRTBUF,XR2 SYMBOLVALUE TO USE IN DISP CALC
LA PRTBUF,XR2 LOAD @ PRT BUFFER INTO BASE REGISTER
B CLRBUF GO CLEAR PRINT BUFFER
MVC ~ PRTNM(3,XR2),NAME = MOVE NAME TO NAME FIELD

MVC PRTNM(19,XR2),STREET MOVE ADDRESS TO STREET FIELD

A-14



MvC PRTCT(20,XR2) ,CITY MOVE CT/STATE TO CITY FIELD

DROP XR2 STOP BASE DISP CALCULATION
$PUTP DTF-PRTDTF, POINT TO PRINTER DTF o
SKIPB-20, SKIP TO LINE 20 BEFORE PRINTING c
SPACEA-2 SPACE TWO SPACES AFTER PRINTING
RETURN1 B *ox RETURN TO CALLER'S NSI
SPACE 2
khkkkkkkkhhhkhkkhhkhkhhkhhkhhkhhhhkkhkkhkhkhhkhhhkhkkhkhkhhkhhkhkhkhkkhkkkkhhhkhkdhkhhhkrkhkhkk
* ROUTINE 2 - CLEAR BUFFER *
kkkhkhhkhkhhkkhdhhhkhhdhhhhhkhhkrhhhhhkhhkhrhhohhkkhhhhhhkhhkhhhhhhhhhhhhkhhhkhkhkhdhk
SPACE 1 , :
ARR EQU 8 ADDRESS RECALL REGISTER VALUE
CLRBUF ST  RETURN2+3,ARR SAVE CALLER'S RETURN ADDRESS
MVI  PRTCT,BLANK PUT BLANK IN RTMOST POS OF BUFFER
MVC  PRTCT-1,PRTCT(69) PROPAGATE THRU REST OF BUFFER
RETURN2 B *ok RETURN TO CALLER'S NSI
BLANK  EQU  X'40'
EJECT
* khkkkhhkhkhhkkkhhhhhkkhhkhhhkkhhkhkhhkhkhkhhhhhhk
* * *
* *  PUT AND GET FROM DISPLAY STATION *
* *  CALL TO WORK STATION MANAGEMENT *
* * *
* hkkkkhkkhkhkhhhkhkhhhkhhhkhhkkhhkhhkhhkhhkhhkhkkhkkdhkkk
SPACE 1
GETWS ST  RETURN3+3,ARR STORE RETURN ADDR
$WSIO DTF-WSDTF, ADDRESS OF LEFT BYTE OF WS DTF c
OPC-PTG, PUT UP FORMAT AND GET RECORD c
INLEN-43, MAX AMOUNT OF DATA FROM WS c
RCAD-WSLBUF, LEFTMOST ADDR OF WS BUFFER c
FORMAT-FMTNM FORMAT NAME IN LOAD MEMBER
CLI  WSIND,C'Y' END OF JOB IND BY OPERATOR?
BNE RETURN3 NO - GO PROCESS THE NEXT RECORD
SBN  EOJIND,B'00000001' YES - SET PROG END OF JOB INDICATOR
RETURN3 B *k RETURN TO CALLER'S NSI
EOJIND DS BL1 PROGRAM END OF JOB INDICATOR
END  START PROGRAM ENTRY POINT

'Appendix A.Programming Examples A-15



The program uses the following display format:

( | A

SAMPLE DISPLAY FORMAT

_END OF JoB YES - Y

NO = ANY CHARACTER
NAME......
STREET....
CITY......

ENTER - TO INPUT DATA

This display was created from the following format listing:
WSEFMT S FMT 11/09/84 14.38 000003 ‘

SFMTNM ,

DFLO001 21 630Y CSAMPLE DISPLAY FORMAT
DFL0O002 10 9ley CEND OF JOB

DFL0OO003 1 929 Y

DFL0004 7 949y " CYES - Y

DFL0OO0O0S5 191049Y CNO - ANY CHARACTER
DFLO0006 101216Y CNAME......

DFLO0O0O7 31229 Y Y i

DFL0008 10141e6Y CSTREET....

DFL0O009 191429 Y

DFLOO10 101616Y CCITY......

DFL0011 201629 Y

DFL0012 212018Y CENTER - TO INPUT DATA

A-16



Alternative Index and Noncontiguous Keys: Program

This is a sample program that illustrates some of the features of disk support.
This program does a keyed access to retrieve a record by key from a file that has
a 39 byte noncontiguous key. The program assumes the existence of a file that
has three noncontiguous keys. This file was created as a sequential file by a
COBOL program and had an alternative index built using the BLDINDEX
procedure. For more information on the BLDINDEX procedure, please refer to
the System Reference Manual, SC21-9020.

KEYASM START O
*

********‘********************************************************************

* PROGRAM: KEYASM - KEYED ACCESS NONCONTIGUOUS AND GREATER THAN 29 BYTES *
* DESC : THIS PROGRAM ASSUMES THE EXISTENCE OF AN INDEXED FILE WITH AN *
* ALTERNATIVE INDEX WITH NONCONTIGUOUS KEYS. *
* THIS PROGRAM DOES AN INDEXED GET USING THE GENERALIZED ACCESS *
* METHOD (GAM) WITH A KEY *
* ' SMITH ' + 'LUMBERJACK '+ 'IC' + '1234567' *
* (SMITH LUMBERJACK ', 'IC' AND '1234567' ARE THE 3 *
* KEYS) *
* IF THE RECORD IS FOUND, IT IS PRINTED. *
* INPUT : INDEX FILE . y *
* ALTERNATIVE INDEX FILE WITH NONCONTIGUOUS KEY *
* FORMAT: *

Appendix A.Programming Examples A-17



* ; *
* INITIALS *
* \ | *
* 111111112222222222222222222234456666666 LAST NAME (KEY1l) *
* NAME OCCUPATION A | NUMBER OCCUPATION (KEY1l) *
* BLANKS BLANK *
* o ~ INITIALS (KEY2) *
* == == : BLANK , *
* KEY 1 ‘ NUMBER (KEY3) *
* C == ‘ *
* . KEY 2 *
* ======= . %
* KEY 3 *
* v *
* OUTPUT : PRINT THE RECORD ' *
* ENTRY : PROCEDURE THAT CREATES THE INDEX FILE THEN BUILDS THE INDICES *
* EXIT : NORMAL : *
* ERROR - THE KEY IS NOT FOUND *

khkkhhhkkhhhhkhkhhhhhhhhhhhhhhhhhhhhhkdhhhhhhhhrhhrbrbhhhhhdhhbhbhhhhhbbrdhhohkkhdhrdrkx
X E R E RS R R E SRS RS EE R R R R R R SRR R R R AR R R SRR AR SRR EESRER R R R R SRR ER R R ERES KRS

* ALLOCATE THE DISK AND PRINTER FILES ' *
e R e T
* v *
SALOC DTF-IND ALLOCATE THE DISK FILE
SALOC DTF-PRT ALLOCATE THE PRINTER FILE
EJECT :

*
R I I I I I I I T I I I

* OPEN THE DISK AND PRINTER FILES *

IR RS R E RS RS SRR LR R R RS AR R R R R R R R RS SRR LR EEREEREEEEEREEEEES]
* .

SOPEN DTF-IND OPEN THE DISK FILE

SOPEN DTF-PRT . OPEN THE PRINTER FILE
EJECT

A-18



khkkhkkhhkhkhkhhhkhhhkrhhkhhhhhhhhhhhhhhhhdhkhkhhkhdhhdhhhhhhhdhhohhhhhhhkhhhhrhrrkrhhhhhhhhk

* GET THE RECORD FROM THE INDEXED FILE *
L Yy
*

'MVC  PRTBUFR(80) ,IMSG INFO MSG: INDEXED FILE

$SPUTP DTF-PRT PRINT THE MSG

$GETD DTF-IND,OP-KEY,NRF-NOFOUND GET THE RECORD

MVC ~ PRTBUFR(39),IDSKBUFR MOVE THE RECORD TO PRINTER BUF

$PUTP DTF-PRT PRINT THE RETRIEVED RECORD

MVC ~ PRTBUFR(80),SMSG INFO MSG: TEST SUCESSFUL

$PUTP DTF-PRT PRINT THE MSG

EJECT
khkhkkhkhkkhhhhhhkhhhhkhhkhhhkhkhhhhhdhhhhhkhkkhhhkhhhhhkhhhhhhkhkhhkhhhrkhhdihhhkhkhhhkhhhhrhhhkk
* CLOSE DISK AND PRINTER FILES AND GO TO END OF JOB *
LRSS S A RS R R R EE R AR RS R RS R R R R RS SR SRR SRR R R LR EE SRR SRR RS ERREREREEEEE R TS S S
* .
EOJ $CLOS DTF-IND ‘ CLOSE THE DISK FILE

$CLOS DTF-PRT CLOSE THE PRINTER FILE

$EOJ : :

* ,

Ly T T T T T R P T T T s
* IF THE RECORD WAS NOT FOUND, PRINT THE "NOT FOUND" MESSAGE AND END *
ey s
*

NOFOUND MVC PRTBUFR(80) ,NMSG INFO MSG: TEST FAILED
SPUTP DTF-PRT PRINT THE MESSAGE
J EOJ
EJECT

Appendix A.Programming Examples A-19



hkhkAkkhkkhrRhhbhkAhhkhkd kA rrkrhdhbhhrrhbh bk khhkhhdhhhhhhhhdhdhrhdhrddkhhkdhhhdhhrhhhx

* DATA AREAS . *
R e R e T X xn

* DISK DTF - NOTE THAT THE RECORD LENGTH IS 39 BYTES. THE KEY DIS-  *
* PLACEMENT (KDISP) IS X'FFFF'. THIS KDISP VALUE IS A *
* REQUIREMENT TO TELL THE SYSTEM THAT THIS FILE HAS *
* NONCONTIGUOUS KEYS. ALSO, THE KEY FOR THE DESIRED *
* RECORD IS PASSED IN DATA AREA INDKEY. NOTE THAT THE *
* KEY IS PASSED AS IF IT WAS A CONTIGUOUS FIELD WHEN *
* THE FILE CONTAINS BLANKS BEFORE AND AFTER 'IC'. *
khkhkhkdkhhhhkdkdohhhdhodhhkhhhhhhdhhhkhhhhrhhhhhhdhhbhhdhhdbhhkhhhhhhrhhkhhrdbrbhbkrdidkdhkx
*
IND $DTFD NAME-KEYNCK,ACCESS-GAM,KEY-0,RECL-39, X
INREC-IDSKBUFL, IOMSG-Y,KEYL-37 ,KDISP-NCKEY ,ORDER-KEY
* : ’
INDKEY DC CL8'SMITH' " INITIALIZE KEY - NAME
DC CL20 ' LUMBERJACK ' INITIALIZE KEY - JOB
DC CL9'IC1234567" INITIALIZE KEY - INITIALS, #
NCKEY EQU  X'FFFF' A KEY DISPLACEMENT
*
PRT $DTFP NAME-PRTFILE,RCAD-PRTBUFL,IOAREA-PRTIO,RECL-80,SPACEB-1
* .
IDSKBUFL EQU  * RECORD BUFFER
IDSKBUFR DC XL39'00" INITIALIZE RECORD BUFFER
*
PRTBUFL EQU * PRINTER BUFFER
PRTBUFR DC XL80' 00" INITIALIZE PRINTER BUFFER
*
PRTIO EQU ¥ PRINTER INPUT/OUTPUT AREA
DC XL80'00" INITIALIZE I/O AREA
R R R R X R R RS RS E SRS EE RS S S SRR L EE S AR R RS SRS X EEESEEEREEEERERES]
* PRINTED MESSAGES *
hhkkkhhhkrRhrhhhhkhhhhhhhhdhrhhhrhhhhrhkhhhkhhhhhhhrhkrhhhhhhhhbhhdhhhhdhrrhhkhhhdkdx
IMSG DC CL80' INDEXED FILE -- NONCONTIGUOUS KEY'
NMSG DC CL80'TEST FAILED!! RECORD NOT FOUND'
SMSG DC CL80'TEST SUCCESSFUL! ! RECORD FOUND'
EJECT
*
$DTFO DISK-Y,PRT-Y GENERATE THE DTF OFFSETS
END

A-20



Appendix B. Character Sets

The coded character set for EBCDIC (extended binary coded decimal interchange
code) and ASCII (American National Standard Code for Information
Interchange) in the following tables.

Appendix B.Character Sets B-1



EBCDIC

B-2

Main Storage  Main Storage Bit Positions 0, 1,2,3

Bit Positions . ‘ r T )

4567 |o0o|1|23|4a]s5|6|7]|8]29 F
O(NUL|DLE|DS| [ b | & | - 0
1 [SOH| DC1]|S0S / a | i 1
2 | sTX|DC2| Fs [SYN b | k 2

™
3 |ETX|DC3 c |1 3
. — [ DC3
4 | PF | RES|BYP| PN d | m 4
5| HT| NL | LF | RS | e | n 5
—[EOB
6| LC| BS uc flo 6
| é d
PRE | ,
7 |DEL| IL EOT g | p 7
8 CAN ' h | q 8
9 | RLF| EM il or 9
A [sMm| cC | sm ¢ | v LVM
B| vT|cu1|cu2|cus $ |, | #
c| FF | IFs DAl < | * | % | @
D| crR|IGS[ENQINAK| ( | ) | _ |
E| so | IRs [ACK + ]| >
F| st {ws{seclsu| 1 |1 | 2|~ EO
Duplicate Assignment




ASCII

Main Storage Main Storage Bit Positions 0, 1, 2, 3
Bit Positions
4,5,6,7 0 1 2 3 4 5 6 7 8 9 B Cc D E F
O [NUL|DLEjSP | O | @ | P p
1 [SOH|DC1| ! 1 A Q a q
2 |STX|DC2| " 2 B R b r
3 |ETX|DC3| # 3 c S c s
4 [EOT|DC4| $ | 4 | D | T | d t
5 [ENQ|NAK]| % 5 E U e u
6 |ACK|SYN| & 6 F Vv f v
7 |BEL|{ETB| ' 7 G w g w
8 | BS |[CAN| ( 8 H X h X
9| HT |EM | ) 9 | Y i y
A | LF |suB| * J z i z
BIVT|ESC| + | ; | K | [ |k | {
CIFF|Fs| , [ <L |{N] 1|}
DICR|GS| - |=|M]|] |m]}
E | SO | RS > N 1 n ~
Flstjus| /| 2o _1|o |DEL

Appendix B.Character Sets

B-3






Appendix C. Assembler Coding Forms

Assembler Coding Form GX21-9279-2

IBM

L PROGRAM

1BM System/34, System/36 Assembler Coding Form

GX21.92191
Printed in U.S.A,

] rvema

l PROGRAMMER

lum«c‘ [

N A O N I

l PAGE

Tons

] INSTRUCTIONS Inu.u:“ll T

|

loF

|

STATEMENT

Label
123456 7 8]

Operation
011 12 13 14}

Operand
s,

16 17 18 19 20 21 22 23 24 25 26 27 78 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 80 61 62 63 64 85 66 67 68 69 7071 72 73 74 76 76 77 78 79 80 A1 82 83 34 85 86 97

Remarks

Bequence

99 50 91 92 93 94 9596|

L

L

123456 2891011213 14151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 30 39 40 41 42 43 44 45 46 47 4B 49 50 51 53 53 54 55 56 67 58 6960 61 62 63 64 85 66 67 68 69 70 71 7273 74 78 76 77 787980 41 82 43 84 86 86 8765 B8 90 91 92 53 94 95 4

A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column.

Appendix C.Assembler Coding Forms

C-1



C-2

Notes:



Appendix D. Assembler Machine Instruction Formats

Assembler Instruction Formats

Op Code
Two-Add 1 (0 d 1/0p d 2) One Address
Direct/ |Direct/ |Direct/ |XR1/ XR1/ XR1/ XR2/ XR2/ XR2/
Mnemonic | Function Direct | XR1 XR2 Direct XR1 XR2 Direct XR1 XR2 Direct XR1 XR2 Control
A Add to register 36 76 B6
ALC Add logical character OE 1E 2E 4E 5E 6E 8E 9E AE
AZ Add zoned decimal 06 16 26 46 56 66 86 96 A6
BC Branch on condition co [»]0) EQ
BC Branch on ARR FO
CLC Compare logical character 0D 1D 2D 4D 5D 6D 8D 9D AD
(o8] Compare logical immediate 3D 7D BD
ED Edit 0A 1A 2A 4A 5A 6A 8A 9A AA
ITC Insert and test characters 0B 1B 28 48 58 68 88 98 AB
JB Jump backward F1
JC Jump on condition F2
L Load register 35 75 85
LA Load address Cc2 D2 E2
LPMR Load program mode register Fé
MvC Move characters oc 1c 2C ac 5C 6C 8C ' 9c AC
MVI Move logical immediate 3C 7C BC
MvVX Move hex character 08 18 28 48 58 68 88 98 A8
S Sub from register 37 77 87
SBF Set bits off masked 3B 78 BB
SBN Set bits on masked 3A 7A BA
SLC Subtract logical character OF 1F 2F 4F 5F 6F 8F 9F AF
St Subtract logical immediate 3F 7F BF
SRC Shift right character 3E 7E BE
ST Store register 34 74 B4
svC Supervisor -call F4
Sz Subtract zoned d | 07 17 27 47 57 67 87 97 A7
TBF Test bits off masked 39 79 B9
TBN Test bits on masked 38 78 B8
XFER Transfer control F5
ZAZ Zero and add zoned 04 14 24 44 54 64 84 94 Ad

Appendix D.Assembler Machine Instruction Formats

D-1




D-2

Notes:



Appendix E. Disk Data Management Considerations

Access Methods

Figure E-1 lists the actions caused by Allocate and Open when the various access
methods are used to access the three types of files. The following situations are
covered on the chart:

o The combination of the file type and the access method is allowed. These
situations are indicated by a blank entry in the chart.

e The combination of the file type and the access method is not allowed either
by allocate or by open. For these situations, the issuer and the message
number of the message issued are given in the chart.

e In several situations, a load-to-old will occur to the file. Load-to-old includes
the following:

— The contents of the old file are destroyed.

— A new file is created using the current file’s location and space.

— The new file’s type is determined by the access method and other
parameters specified in the DTF.

For these situations, load-to-old and the type of file created — sequential, direct, or
indexed —are given in the chart.

Note: Please refer to the Distributed Data Management Guide, SC21-8011 for
remote file considerations when using Assembler.

Appendix E.Disk Data Management Considerations E-1



SEQUENTIAL FILES

DISP Not
Specified, DISP Not
o DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW ‘| DISP-SHRRR ‘| DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
CG Access Sequential Aloc 1356
File Created
CU Access Sequential Open 2217 Open 2217 Aloc- 1356
File Created ) ;
CA Access Sequential |Open 2217 Open 2217 Sequential
File Created File Created
CO Access Load-to-old |Sequential [Aloc 1360 Aloc 1360 “|Aloc 1360 Aloc 1360 Aloc 1359 Sequential
Sequential File Created ‘ : File Created
File Created
DG/DGA Access Direct File Aloc 1356
Created
DU/DUA Access Direct File |Open 2217 Open 2217 Aloc 1356
Created
DO/DOA Access Load-to-old | Direct File |Aloc 1360 ) Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 | Direct File
Direct File Crgated Created
Created )
IR Access Open 2203 [Indexed File |Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 - | Aloc 1356
Created
IRU Access Open 2203 |Indexed File |Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 |Aloc 1356
i : . Created ~
1IA/IRA/IRUA Access Open 2203 |Indexed File |Open 2217 Open 2217 Open 2203 Open 2203. Open 2203 |Aloc 1356
Created ) )
10 Access Load-to-old |Indexed File |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Indexed File
Indexed File |Created Created
Created
IS Access Open 2203 |Indexed File |Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 |Aloc 1346
Created
ISU Access |Open 2203 |Indexed File |Open 2217 Open2217 Open 2203 Open 2203 Open 2203 |Aloc 1356
Created

Figure E-1. (Part 1 of 6). Access Method and File Type Combinations




SEQUENTIAL FILES

DISP Not
Specified, |DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
Indexed File

ISA/ISUA A Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 |Aloc 1356

GAM Access Sequential
ORDER-RECORD File Created |Open 2217 Open 2217 Aloc 1356

GAM Access
ORDER-RECORD, Direct File
AEOD-N Created Open 2217 Open 2217 Aloc 1356

GAM Access
ORDER-RECORD Sequential
AEOD-N, ARRN-N File Created |Open 2217 Open 2217 Aloc 1356

GAM Access
ORDER-RECORD,

AEOD-N, ARRN-N, Direct File

GSEQ-N Created Open 2217 Open 2217 Aloc 1356
GAM Access '

ORDER-RECORD,

AEOD-N, ARRN-N, Sequential
GSEQ-N, GRAN-N File Created |Open 2217 Open 2217 - Aloc 1356

GAM Access Load-to-old
ORDER-RECORD, Sequential | Sequential . i Sequential
CREATE-S File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 - Aloc 1360 Aloc 1359 File Created

GAM Access Load-to-old
OWNER-RECORD, Direct File Direct File Direct File
CREATE-D Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created

GAM Access Load~to-old
ORDER-RECORD, Indexed File |indexed File , Indexed File
CREATE-| Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created

GAM Access indexed File
ORDER-KEY Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 | Aloc 1356

Load-to-old

GAM Access Sequential | Sequential Sequential
ORDER-KEY, File Created |File Created File Created
CREATE-S Open 2203 |Open 2203 |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Open 2203

Load-to-old o '

GAM Access Direct File Direct File Direct File
ORDER-KEY, Created Created Created
CREATE-D Open 2203 |Open 2203 |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Open 2203

GAM Access Load-to-old
ORDER-KEY, Indexed File |indexed File Indexed File
CREATE-I Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created

Figure E-1. (Part 2 of 6). Access Method and File Type Combinations
Appendix E.Disk Data Management Considerations E-3




DIRECT FILES

DISP Not
Specified, |DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
Sequential
CG A File Created Aloc 1356
Sequential
CU Access File Created |Open 2217 Open 2217 Aloc 1356
Sequential - . Sequential
CA Access Open 2202 |File Created |[Open 2217 Qpen 2217 Open 2202 Open 2202 Open 2202 | File Created
Load-to-oid ' '
Sequential Sequential Sequential
CO A File Created |File Created | Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 File Created
Direct File ’ '
DG/DGA Access Created Aloc 1356
Direct File
DU/DUA Access Created Open 2217 Open 2217 Aloc 1356
Load-to-old
Direct File Direct File . Direct File
DO/DOA Access Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 [ Created
Indexed File
IRA Open 2203 . |Created Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 | Aloc 1356
Indexed File ‘
IRU Access Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 | Aloc 1356
Indexed File
1A/IRA/IRUA Access Open 2203 |Created Open 2217 Open 2217 Open 2203 QOpen 2203 Open 2203 |Aloc 1356
Load-to-old
Indexed File |Indexed File : Indexed File
10 Access Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Indexed File
IS Access Open 2203 |Created Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 | Aloc 1356
i Indexed File i
ISU Access Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 | Aloc 1356
Indexed File
ISA/ISUA Access Open 2203 |Created Open 2217 Open 2217 'Open 2203 Open 2203 Open 2203 | Aloc 1356

Figure E-1. (Part 3 of 6). Access Method and File Type Combinations

E-4




DIRECT FILES

DISP Not
Specified, DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
GAM Access Sequential
ORDER-RECORD File Created |Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD, Direct File
AEOD-N Created Open 2217 Open 2217 Aloc 1356
Gam Access
ORDER-RECORD, Sequential
AEOD-N, ARRN-N File Created |Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD,
AEOD-N; ARRN-N, Direct File
GSEQ-N Created Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD,
AEOD-N, ARRN-N, Sequential
GSEQ-N, GRAN-N File Created |Open 2217 Open 2217 Aloc 1356
GAM Access Load-to-old
ORDER-RECORD, Sequential | Sequential Sequential
CREATE-S File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 Aioc 1360 Aloc 1359 File Created
GAM Access Load-to-old
ORDER-RECORD, Direct File Direct File Direct File
CREATE-D Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Load-to-old
ORDER-RECORD, Indexed File |Indexed File Indexed File
CREATE-I Created Created Aloc 1360 Aloc 1360 - | Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Indexed File
ORDER-KEY Open 2203 |Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 |Aloc 1356
Load-to-old
GAM Access Sequential Sequential Sequential
ORDER-KEY, File Created |File Created File Created
CREATE-S Open 2203 |Open 2203 |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Open 2203
Load-to-old
GAM Access Direct File Direct File Direct File
ORDER-KEY, Created Created Created
CREATE-D Open 2203 |Open 2203 |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 13569 |Open 2203
Load-to-old
GAM Access Indexed File {Indexed File Indexed File
ORDER-KEY, CREATE-| |Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Figure E-1. (Part 4 of 6). Access Method and File Type Combinations
Appendix E.Disk Data Management Considerations E-5




INDEX FILES

DISP Not
Specified, |DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
Sequential
CG Access File Created Aloc 1356
Sequential :
CUA File Created |Open 2217 Open 2217 Aloc 1356
Sequential Sequential
CA Access File Created |Open 2217 Open 2217 File Created
) Load-to-old
Sequential | Sequential Sequential
CO A File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 File Created
Direct File
DG/DGA Access Created Aloc 1356
Direct File
DU/DUA A Created Open 2217 Open 2217 Aloc 1356
Load-to~old
Direct File Direct File Direct File
DO/DOA Access Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Indexed File
IRA Created Aloc 1356
Indexed File
IRU Access Created Open 2217 Open 2217 Aloc 1356
Indexed File
1A/IRA/IRUA Access Created Open 2217 Open 2217 Aloc 1356
Load-to-old
Indexed File |Indexed File Indexed File
10 Access Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Indexed File
IS A Created Aloc 1356
indexed File
ISU Access Created Open 2217 Open 2217 Aloc 1356

Figure E-1. (Part 5 of 6). Access Method and File Type Combinations




INDEX FILES

DISP Not
Specified, |DISP Not
DISP-SHRMM or | Existing Specified,
DISP-OLD |DISP-NEW |DISP-SHRRR |DISP-SHRRM |DISP-SHRMR |DISP-SHR File New File
ISA/ISUA |Indexed File
A Created Open 2217 Open 2217 Aloc 1356
GAM Access Sequential
ORDER-RECORD File Created |Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD, Direct File
AEOD-N Created Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD, Sequential
AEOD-N, ARRN-N File Created |{Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD,
AEOD-N, ARRN-N, Direct File
GSEQ-N Created Open 2217 Open 2217 Aloc 1356
GAM Access
ORDER-RECORD,
AEOD-N, ARRN-N, Sequential
GSEQ-N, GRAN-N File Created |Open 2217 Open 2217 Aloc 1356
GAM Access Load-to-old
ORDER-RECORD, Sequential | Sequential Sequential
CREATE-S File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 File Created
GAM Access Load-to-old
ORDER-RECORD, Direct File Direct File Direct File
CREATE-D Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Load-to-old
ORDER-RECORD, indexed File |indexed File Indexed File
CREATE-| Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Indexed File
ORDER-KEY Created Open 2217 Open 2217 Aloc 1356
GAM Access Load-to-old
ORDER-KEY, Sequential | Sequential Sequential
CREATE-S File Created |File Created |Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 File Created
GAM Access Load-to-old
ORDER-KEY, Direct File | Direct File Direct File
CREATE-D Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
GAM Access Load-to-oid
ORDER-KEY, indexed File |Indexed File Indexed File
CREATE-1 Created Created Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1360 Aloc 1359 Created
Figure E-1. (Part 6 of 6). Access Method and File Type Combinations
Appendix E.Disk Data Management Considerations E-7




Data Management Control Blocks and Interface Areas

To use data management to process disk files, you are required to provide storage
space for interface information.

DTF

The DTF is the major control block for communication between you and data
management. The DTF provides the information needed to allocate, open,
access, and close a file on a disk. It also contains pointers to other control blocks
and areas needed to interface with data management. The DTF must be available
to the system from the time it is allocated until it is closed, and must not be
moved or overlaid from the time it is opened until it is closed. The DTF is

78 bytes long for record (nonkeyed) accesses and 98 bytes long for keyed
accesses. For more information on generating a disk DTF, see SDTFD (Define
the File for Disk) in Chapter 5.

Input Record Area

When data is being read from disk through any type of get operation, you must
provide an input record area. This is the location in your program where
data management will place the record read from disk. This area can be the same
area as the output record area described below. The location of this area (as
specified in the DTF) can be changed at any time. This area corresponds to the
INREC parameter of the SDTFD macroinstruction.

Output Record Area

When data is being written to disk through an output, an add, or the output
portion of an update, you must provide an output record area which is the
location in your program where data management will get the record to write to
disk. This area can be the same area as the input record area described above:
The location of this area (as specified in the DTF) can be changed at any time.
This area corresponds to the OUTREC parameter of the SDTFD
macroinstruction.

Key Area

While processing under an indexed random input-capable access method, you use
the key area to provide to data management the key of the record to read from
disk. These access methods are IR, IRU, IRA, IRUA, and GAM with GRAN-Y
and order-key specified or assumed. The length of the key area must equal the
key length. This area corresponds to the KEY parameter of the $SDTFD
macroinstruction.

Key Limits Area

When you request the use of key limits by using the LIMIT-Y parameter of the
$DTFD macroinstruction, you must provide an area to contain the low and high
key limits. The length of this area must equal two times the key length. The
location of this area should not change after the file is opened. The low key is in
the left half and the high key is in the right half. Limits are established when the
first get-next operation is issued. This area corresponds to the HIGH parameter
of the $DTFD macroinstruction.



Label Return Area

When processing disk files, data management can return a file label when certain
conditions occur. If you want this file label returned, you must provide an 8-byte
label return area. The location of this area should not change after the file is
opened. A file label is returned in the area under the following conditions:

e Duplicate key in another index. An add or update operation would cause the
creation of a duplicate key in another index over the file, or in this index if
the file is being accessed by a nonkeyed access method. The label of the file
in which the duplicate would have been created is returned in the label area.

e Update key error. An update operation would cause a key to be changed in a
file that does not allow key updates. The label of that file is returned in the
label area.

® Permanent I/O error. The label of the file where the error occurred is
returned in the label area.

This area corresponds to the LABEL parameter on the $DTFD macroinstruction.

Appendix E.Disk Data Management Considerations E-9



Allocating and Opening the File CUT g

E-10

- Before processing data from any disk file, the file must be allocated (JALOC) and
- opened (OPEN). $ALOC:and $OPEN perform the following operations:

e - If the file is new, space for the file is reserved and initialized on the disk.

+ @ Tests:are performed to ensure that the access method and file organization are

compatible and that all necessary information about the file was provided.

"~ e Space in main storage (but not in your program) is allocated for buffers and

data management required control blocks: - The.control blocks are initialized.
— . The DTF is formatted to a postbpen state. -
For more information on the SALOC and $OPEN macroinstructions, see SALOC

(Allocate File or Device) and $SOPEN (Prepare a Device or File for Access) in
Chapter 5.



Accessing Records in a File

After the file is allocated and opened, you can begin accessing records in that file.
The interface between your program and data management is the same DTF that
was used for allocating and opening your file. Some fields in the DTF
communicate from your program to data management, some communicate from
data management to your program, some are bidirectional and communicate both
ways, and still others are for data management internal use only.

Figure E-2 describes the DTF fields that make up the data passed back and forth.
Each field in the DTF has a name as defined in the $DTFO macroinstruction
expansion. Those field names are used in Figure E-2 to identify specific DTF
fields. The length of each DTF field is given with the initial field description.
Several DTF fields are pointers or offsets to main storage areas in your program,
and are identified as such. All DTF fields not described in this figure are reserved
for internal data management use and should not be altered or otherwise used by
any calling program.

Appendix E.Disk Data Management Considerations E-11



Field
Name

Field
Description

Access
Methods
Applic-
able

Macro
Used

Key-
word
Used

Can Be
Altered
After
Allocate

Interf
To/[Fr

D/M

$F1DEV

Disk DTF device
code, 1 byte. Set by
the $SDTFD
macroinstruction to
hex AO to indicate
this is a disk DTF.

All

None

None

No

To

$F1CCQ

Completion code
qualifier, 2 bytes. In
certain error
situations, data
management issues
error messages to the
operator. If control is
returned to he
program, the number
of the message issued
is returned in this
field. '

All

None

None

Yes

From

$SF1UPS

External indicators
(UPSI), 1 byte. Used
to condition open files.
Masked against the
external switch settings
set by the // switch
OCL statement.

All

‘$DTFD

UPSI

No

To

$SF1CHB

DTF forward chain
field, 2 bytes. S
Contains a pointer to
the next DTF ina -
chain of DTFs if the
program chooses to
allocate, open or close
multiple DTFs with
one call. The last
DTF in the chain
should not specify the
CHAIN parameter.

All

SDTFD

CHAIN

No

To

Figure E-2 (Part 1 of 11). Disk DTF Field Description




Field
Name

Field
Description

Access
Methods

Applic- -

able

‘Used

‘Macro

| Key-
:| word

Used

Can Be
Altered
After

Allocate

Interf
To/Fr
Disk
D/M

SF10UT

Output Record area
address, 2 bytes.
Contains a pointer to
the output record area
in your program. Data
management gets the

| record to write to disk

from this area for
output, add, and
update operations.
This DTF field can be
changed at any time.
The output record
area address can be
the same as the record
area address (SF1INP)
described below.

GAM,
CA CO,
CU, DO
DOA,
DU .
DUA, IA,
10 ISA,
ISU’
ISUA,
IRA IRU,
IRUA

$DTFD

OUTREC

' Yes

To

$SF1CMP

Completion code, 1
byte. Set by data
management to

| indicate successful or

unsuccessful
completion of the
operation requested of
data management.

All

None

None

Yes

From

SF10PC

Operation code, 1
byte. Set by the
program to indicate
what operation data
management is to
perform.

All

§DTFD

| sPUTD

OP OP

Yes

To

$F1AT1

| Attribute byte 1, 1

byte. Defines in
general the type of
access, and the

-| operation codes

allowed under the
access method. The
other attribute bytes
(2-5) described below
can further define the
access and allowable
operation codes.

All

$DTFD

ACCES
GRAN
GSEQ
AEOD
ARRN -
UPDATE
‘DELETE

[N

No

To

Figure E-2 (Part 2 of 11). Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-13



Field
Name

Field
Description

Access
Methods
Applic-
able

Macro

.| Used

Key-
word
Used

Can Be
Altered
After
Allocate -

Interf

To/Fr
Disk -
D/M -

SF1AT2

Attribute byte 2, 1
byte. Further defines
the type of access.
Indicates if the access
is by record or key.
Indicates if this is
ACCESS-PSEUDO.
Indicates if the file has
been opened.

All

$DTFD

ACCESS.,
ORDER

No

To

SF1AT3

Attribute byte 3, 1
byte. Further defines
the type of access.
Indicates what type of
file to create
(sequential, direct, or
indexed) for output
accesses. Indicates if
data management
should ensure keys are
in ascending order
when keyed output or
add is done. Indicates
whether the relative
record number or
argument value for
ARRN, RRN, PLUS,
or MINUS operations
is binary or decimal.
Default for o
ACCESS-CG is binary
if SDTFD ARG
parameter is not
specified.
ACCESS-DGA
/DOA/DUA implies
binary RRNs/ values,
ACCESS-DG,
DO/DU implies
decimal RRNs/ values.
Indicates if the file
has been allocated.

Figure E-2 (Part 3 of 11). Disk DTF Field Description

E-14




Field
Name

Field
Description

Access
Methods
Applic-
able

Macro
Used

Key-
word
Used

Can Be
Altered
After
Allocate

Interf
To/Fr
Disk
D/M

SF1AT4

Attribute byte 4, 1
byte. Indicates whether
or not return
permanent disk errors
to the program.
Indicates whether to
allow option 2 on
permanent disk error
messages issued.
Indicates if key limits
are used for this keyed
access. Indicates if
data management is to
check if the requested
record is already
owned by the task.

All

$DTFD

IOMSG
RETURN
LIMIT
LOCKCK

No

To

$SF1RCL

Record length field, 2
bytes. Defines the
record length of the
records in the file
being accessed through
this DTF.

All

SDTFD

RECL

No

To

SFINAM

File name field. 8
bytes. Indicates the
name of the file being
accessed through this
DTF. The name
specified in the DTF
must be the same as
the name specified in
the NAME parameter
on the // FILE OCL
statement for the file.
The name is
left-justified in this
field.

All

$DTFD

NAME

No

To

Figure E-2 (Part 4 of 11). Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-15



The input record area
address can be the
same as the output
record area address
($F1OUT) described
previously.

Access Can Be Interf
; Methods , Key- Altered To[Fr
Field Field Applic- Macro word After Disk
Name Description able Used Used Allocate | D/M
$F1INP Input record area GAM, SDTFD | INREC | Yes To
address, 2 bytes. CG, CU, :
Contains a pointer to DG,
the input record area DGA,
in your program. Data | DU,
management places the | DUA, IS,
record read from the ISA, ISU,
disk in the area for all ISUA,
input operations. This IR, IRA,
DTF field can be IRU,
changed at sny time. IRUA

Figure E-2 (Part 5 of 11). Disk DTF Field Description

E-16




Field
Name

Field
Description

Access
Methods
Applic-
able

Macro
Used

Key-
word
Used

Can Be
Altered
After

Allocate

Interf
To/Fr

Disk

D/M

$SF1DBF

Data blocking factor,
2 bytes. Specifies the
number of records to
be moved between
main storage and disk
for each disk I/O
operation. A default
of 1 is assumed if the
$DTFD DBLOCK
parameter is not
specified. Allowed
blocking factors are
from 1 to 65535.
Buffer space is
reserved by the open
function based on this
factor, the index
blocking factor
($F1IBF described
below), the record
length, and the type of
access. The maximum
size buffer space is
45056. If the blocking
factors, record length,
and access type dictate
a buffer space larger
than the maximum
allowed, the buffer
space is set to 45056
bytes, and divided as
equally as possible
between data buffers
and index buffers (if

any).

All

$DTFD

DBLOCK

No

To

$F1IMD1

Modifier byte 1, 1
byte. Set by SGETD
LIMIT parameter to
indicate if new key
limits should be set by
data management for
this GET request.

GAM
(GSEQ-Y
and
ORDER
-KEY) IS,
ISU

$GETD

LIMIT

Yes

To

Figure E-2 (Part 6 of 11).

Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-17



Access | Can Be Interf
Methods Key- Altered To/Fr

Field Field Applic- Macro word After Disk .
Name Description able Used Used Allocate | D/M
$F1ARG | Argument field, 8 GAM None None Yes To/Fr

bytes. Relative record (GRAN-Y

number (RRN) or and

argument value. For | ORDER. -

certain I/O operations, | -RECORD)

the program is DG,

required to pass an DGA,

RRN or an argument DU,

value to data DUA,

management in the DO,

field. This value can DOA

be specified in binary

or in zoned decimal.

$F1RRNB, described

below, redefines this

field for decimal

values. See

descriptions following

for additional

information.
SF1RRNB | Binary argument field, | GAM None None Yes To/Fr

3 bytes. This field is (GRAN-Y

defined over the &

leftmost 3 bytes of the | ORDER

SF1ARG field, -RECORD)

described above. If DGA,

you are passing a - | DUA,

binary argument, place | DOA

it as a 3-byte number

in this field.See the

$DTFD ARG

parameter for

information on how to

specify that the

argument is in binary.
SF1RRND | Decimal argument GAM None None Yes To/Fr

field, 8 bytes. This (GRAN-Y

field is defined over and

the entire 8 bytes of ORDER-

the SF1ARG field, RECORD),

described above. If DG, DU,

you are passing a DA

decimal argument,

place it as an

unsigned, 8-byte

decimal number in this

field. See the SDTFD

ARG parameter for

information on how to

specify that the

argument is.in

decimal.

Figure E-2 (Part 7 of 11). .Disk DTF Field Description

E-18




Access : Can Be Interf
Methods Key- Altered To/Fr
Field Field Applic- Macro word After Disk
Name Description able Used Used Allocate | D/M
SF1FBL Feedback label offset All $DTFD | LABEL No To
field, 2 bytes. This
field is an offset from
the end of the DTF to
the leftmost byte of
the 8-byte feedback
label area in your
program. This area
must be after the
DTF. The last byte of
this area must be less
than 2048 bytes away
from the first byte of
the DTF. In some
situations, data
management can
return a file label in
this area.
SF1ATS Attribute byte 5, 1 None None None No -
byte. This attribute.
byte is for expansion
purposes only.
SFIKEY | Key area offset field,2 | GAM $DTFD | KEY No To
bytes. This field is an (GRAN-Y
offset from the last and
byte of the DTF to the | ORDER
first byte of the key -KEY)
area in your program. IR, IRA,
| The area length must IRU,
be equal to the key IRUA
length. This area must
be after the DTF. The
last byte of this area
must be less than 2048
bytes from the first
byte of the DTF. The
key area must contain
the key of the record
to.be read from disk
for indexed random
input-capable access
methods.
$F1KL Key length field, 2 GAM $DTFD | KEYL No To
bytes. This field (ORDER
contains the key length | -KEY),
of the file being 10, IS,
accessed through this ISA, ISU,
DTF. ISUA,
: IR, IRA,
IRU,
IRUA

Figure E-2 (Part 8 of 11). Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-19



is 0, the second is 1,
and so on. The
maximum
displacement is 4095
bytes.

Access Can Be | Interf
Methods Key- Altered To/Fr
Field Field Applic- Macro word After Disk
Name Description able Used Used Allocate | D/M -
$F1KD Key displacement GAM $DTFD | KDISP No To
field, 2 bytes. This (ORDER
field contains the -KEY),
displacement into the 10, IS,
record of the ISA, ISU,
rightmost byte of the ISUA,
key in the record. The | IR, IRA,
displacement of the IRU,
first byte in the record | IRUA

Figure E-2 (Part 9 of 11). Disk DTF Field Description

E-20




IBLOCK parameter is
specified. Allowed
blocking factors are
from 1 to 65535. The
actual blocking factor
may be larger because
the index buffer is
always a multiple of
256 bytes and thus
may hold more entries
than requested. (Index
entries do not cross
256 byte boundaries in
the index buffer.)
Buffer space is
reserved by SOPEN on
this factor, the data
blocking factor
($F1DBF described
above), the record
length, and the type of
access. Maximum size
buffer space is 45056
bytes. If the blocking
factors, record length,
and access type dictate
a buffer space larger
than the maximum
allowed, the buffer
space is set to 45056
bytes, and divided as
equally as possible
between data and
index buffers.

Access Can Be | Interf
Methods Key- Altered To/Fr
Field Field Applic- Macro word After Disk
Name Description able Used Used Allocate | D/M
- $SF1IBF Index blocking factor GAM $SDTFD |{IBLOCK {No To
field, 2 bytes. Gives (ORDER
the number of index -KEY),
entries (key length 10, ISA,
+3) moved between ISU,
main storage and disk ISUA,
for each I/O IR, IRA,
operation. Default is IRU,
1 if the SDTFD IRUA, IS

Figure E-2 (Part 10 of 11).

Disk DTF Field Description

Appendix E.Disk Data Management Considerations

E-21



" | Can Be*

Interf

your program. The
key limits area length
must be equal to two
times the key length.
This area must be
after the DTF. The
last byte of this area
must be less than 2048
bytes away from the
first byte of the DTF.
Use this field to pass
the low and high key
limits to data
management if this
access is keyed within
limits.

Access
Methods Key- Altered To/Fr
Field Field Applic- Macro word . After Disk
Name Description , able | Used Used | Allecate | D/M
SF1LIM | Key limits area offset - | GAM SDTFD | HIGH No To
field, 2 bytes. This { (GSEQ
field is an offset from- |and = -
the end of the DTF to | ORDER |
the leftmost byte of -KEY), |
| the key limits area in IS, ISU

Figure E-2 (Part 11 of 11).

E-22

Disk DTF Field Description




Completion Conditions

Figure E-3 describes all currently defined completion conditions, and the access
methods and I/O operations to which they apply. The completion condition
indicates whether the I/O operation was successful or not, and is returned to your
program by disk D/M in the completion code field (SF1CMP) in the DTF. The
labels and hex values generated by the SDTFO macroinstruction for the
completion conditions are used in Figure E-3.

Appendix E.Disk Data Management Considerations E-23



$GETD OP-PREV
parameter is attempting
to read before the first
record in the file. A
$GETD OP-NEXT
issued after a SGETD
OP-NEXT, which
received an EOF, also
received an EOF. A
$GETD OP-PREV
issued after a $GETD
OP-PREV which
received an EOF, will
also received an EOF.
This $SGETD
OP-READE is
attempting to read a
record whose key is not
equal to the key specified
by the key parameter in
the $SDTFD.

, Applicable Applicable
$DTFO Value | Completien Condition Access Operation
Label (hex) | Description Methods Codes
$SF1CCSUC | 40 Normal. The operation . All All

completed normally.
$SF1CCPER | 41 Permanent I/O Error. An | All except All except
unrecoverable software PSEUDO RELEASE
or hardware error
occurred. Refer to the
$DTFD IOMSG and
RETURN parameters
for message options that
can be requested for this
error. Also, if the
$DTFD LABEL
parameter is specified,
the file label is returned
~ | in the label return area.
$F1CCEOF | 42 End of File (EOF). This GAM Get NEXT,
$GETD OP-NEXT (GSEQ-Y), PREYV,
parameter is attempting CG, CU, IS, READE
to read past the last ISA, ISU,
record in the file, or this ISUA

Figure E-3 (Part 1 of 6). Completion Condition Descriptions

E-24




is invalid for the access
method in the DTF or
for the type of file being
accessed. SGETD,
OP-KEY/KEYEA/KEYA
/RRN/FIRST/LAST
were issued, but the
access is not
random-get-capable.
$GETD,
OP-NEXT/PREV/PLUS/
MINUS issued, but the
access is not
sequential-get-capable.
$GETD, LIMIT-Y was
issued, but LIMIT-Y
was not specified on
$DTFD
macroinstruction.
$GETD, OP-UPDATE
were issued, but access is
not update-capable.
$GETD, OP-DELETE
issued, but access or file
is not delete-capable.
$PUTD OP-AEOD was
issued, but the access is
not
add-at-end-data-capable.
$PUT OP-ARRN issued,
to a sequential file that is
not delete-capable, to a
direct file that is not
delete-capable, to an
indexed access DTF, or
to an access that is not
random-add-capable.
Issue $PUTD OP-AEOD
to a direct file.

Applicable Applicable
$DTFO Value | Completion Condition Access Operation
Label (hex) Description Methods Codes
SF1CCIOP |43 Invalid Operation Code. All except i All except

The operation requested PSEUDO RELEASE

Figure E-3 (Part 2 of 6).

Completion Condition Descriptions

Appendix E.Disk Data Management Considerations

E-25



and the completion code
from the previous
$GETD or $PUTD was
48.

; Applicable Applicable
$DTFO Value | Completion Condition Access Operation
Label (hex) Description Methods Codes
$SFICCNRF | 44 Record Not Found. The GAM Get FIRST,
requested record was not | (GRAN-Y) LAST,
found in the file. 1 DG, DGA, PLUS,
$GETD OP-FIRST DU,DUA, MINUS,
J/LAST issued, but the ‘1IR, IRA, KEY,
file is empty. SGETD IRU, IRUA KEYA,
OP-PLUS/MINUS KEYEA,
/RRN issued, but the RRN
record at that position in
the file is deleted.
$GETD OP-KEY
/KEYEA/KEYA issued,
but the requested key
does not exist in the file.

$SFICCNPR | 45 No Pending Record. For | GAM -Put
a nonshared file, the (UPDATE-Y), | UPDATE,
program has not read a CU, DU, DELETE
valid record before DUA,IRU,
issuing a $GETD IRUA,ISU,
OP-UPDATE/DELETE. |ISUA
For a shared file, the
operation immediately
preceding a SGETD
OP-UPDATE/DELETE
was not a valid read of a
record.

$SF1CCIRN | 48 Invalid Relative Record GAM Get PLUS,
Number (RRN). The (GRAN-Y MINUS,
requested RRN is not and RRN Put
within the file. SGETD ORDER- ARRN,
OP-PLUS/MINUS/RRN | RECORD), UPDATE
issued, but no record or (ARRN-Y
exists with that RRN. and
$PUTD OP-ARRN ORDER-
issued, but the RRN is RECORD)
beyond the extents of the | DG, DGA,
file. SPUTD DU, DUA,

| OP-UPDATE issued, DO, DOA

Figure E-3 (Part 3 of 6). Completion Condition Descriptions

E-26




Applicable Applicable
$DTFO Value | Completion Condition Access 1 Operation
Label (hex) Description Methods Codes
$F1CCIUA | 49 Invalid Data Record. GAM (with Put

The program is any UPDATE,
attempting to put a combination ARRN,
record with hex FF in of AEOD
the first byte into a UPDATE-Y,
delete-capable file. ARRN-Y,

SPUTD AEOD-Y)
OP-UPDATE/ARRN/ CU, DU,

AEOD issued, the record | DUA, DO,

to be written has hex FF | DOA, IO,

in the first byte, and the IA, IRU,

file is delete-capable. IRUA, ISU,

ISUA

$F1CCKER | 50 Update Key Error. The GAM Put
program is attempting to | (UPDATE-Y) | UPDATE
change a key in the CU, DU,
index for a file (parent DUA, IRU,
index if this is a multiple IRUA, ISU,
index file). $SPUTD ISUA
OP-UPDATE issued,
and the key in the record
to be written is different
from the key for that
record in the index for
that file (parent index, if
this is a multiple index
file).
$F1CCNDR | 53 No Deleted Record GAM Put ARRN
Found. $PUT (ARRN-Y),
OP-ARRN issued to a DU,DUA,
delete-capable file, but DO, DOA
the record at the RRN
location is not a deleted
record.
$SF1CCDUP | 60 Duplicate Key. The GAM (with Put AEOD,
$PUTD any ARRN,
OP-AEOD/ARRN combination UPDATE
JUPDATE being of
attempted will cause a UPDATE-Y,
duplicate key in the ARRN-Y,
index being used to AEOD-Y)
access the file, and that CU, DU,
index does not allow DUA, IA,
duplicate keys. If this is 10, IRU,
an AEOD and IRUA, ISU,
BYPASS-YES was ISA, ISUA
specified on the // FILE
. OCL statement, the add
will be allowed.

Figure E-3 (Part 4 of 6).

Completion Condition Descriptions

Appendix E.Disk Data Management Considerations

E-27



wage 0| JApplicable Applicable
$DTFO Value Completlon Condltlon . [Access =+ ..v | Operation

Label (hex) | Description - 2o oo f Methods Codes. . =

$F1CCDPO | 61 Duplicate Key in ... |'GAM (with - |Put AEOD,
Another Index. SPUTD :{ any J:ARRN,
OP-AEOD/ARRN combination . | UPDATE
/UPDATE being of
attempted which causes a UPDATE-Y,
duplicate key inan index * | ARRN-Y.
not being used to access ‘_,AEOD-Y)
the file, and that index CU, DU,
does not allow duplicate DUA, IA,
keys. 10, IRU,

IRUA, ISU,
ISA, ISUA

$SF1CCSEQ | 62 Key Out of Sequence. GAM Put AEOD
The program is adding a | (AEOD-Y),
key less than the IA, 10, ISA,
previous key that was ISUA
added, and an ordered
load ($DTFD
ORDLD-Y or $SDTFD
ACCESS-ISA/ISUA
specified) was requested
for this access.

$SF1CCEOX | 70 End of Extent. The GAM Put AEOD
program is issuing a (AEOD-Y),
$PUTD OP-AEOD to a CA, CO, IA,
file, the file is full, and 10, IRA,
either the EXTEND // IRUA, ISA,

FILE OCL statement ISUA
parameter was not
specified for the file, or
an extend was attempted
but could not be
completed.
SF1CCUAT |75 Undefined Access Type.
Currently never issued.

SF1CCRAL | 80 Record Already Locked. GAM (with All Get
The program is any operations
attempting to read a combination Put ARRN
record, or to add a of
record by a $SPUTD UPDATE-Y,

OP-ARRN, through a ARRN-Y,
DTF that has AEOD-Y),
LOCKCK-Y specified, CG, CU,
and that record is DG,DU,
already owned (read with | DUA, IR,

an update-capable access | IRU, IRUA,
method) by another IS, ISU, ISA,
DTF in the program. ISUA

Figure E-3 (Part 5 of 6).

E-28

Completion Condition Descriptions




Applicable Applicable

$DTFO Value | Completion Condition | Access Operation
Label (hex) Description Methods Codes
SF1CCNOP | 99 File Not Opened. The All except | All

program is attempting to | PSEUDO
access a file, and the
DTF for that file has not
been opened.

Figure E-3 (Part 6 of 6). Completion Condition Descriptions

Appendix E.Disk Data Management Considerations E-29



Closing the File

E-30

When you are finished processing records in a file, you should close (SCLOSE)
the file. Close performs the following operations:

e Writes to disk any data buffers that need to be written.

e Releases the main storage space allocated in open for buffers and data
management required control blocks.

® Resets the disk DTF to a preallocate state.
Once a DTF has been closed, it must be allocated (JALOC) and opened (SOPEN)

again before it can be used to access records in a file. For more information on
the $CLOS macroinstruction, see $CLOS (Prepare a Device or File for

‘Termination) in Chapter S.



Appendix F. Display Station Data Management Considerations

Following each DTF operation issued via SWSIO, a 2-byte return code is passed
back in the DTF at displacements $WSRTC-1 and SWSRTC. The return codes
possible after the various $WSIO operations are described here, except for
operations issued to the interactive communications feature. Return codes from
- the interactive communications feature are described in the Interactive
Communications Feature: Reference manual. All the return codes listed for an
operation are mutually exclusive.

Note: For a guide to work station data management concepts and considerations,
see the Concepts and Programmer’s Guide.

GET and ACI Return Codes

After a GET or ACI operation, the following return codes are possible at

$WSRTC:
Label Value Explanation
(hex)
$WSROK 00 Operation was successful.
SWSRACC 01 New requester.
Note: If the user program does ACI as the first
operation in order to accept program data, and
their input buffer is not large enough to accept all
of the program data, a return code of X’01’ is
returned. $WSOUTL will contain X'0000°.
SWSRSTP 02 Stop system was requested by system operator.
SWSRCTL 03 No data was returned — control information only.
$SWSRACR 11 ACI was rejected. No invites outstanding.
$SWSRNAV 24 Display station was released by display station
operator.
$WSRREL 28 GET was rejected. Display station previously

released by program.

Appendix F.Display Station Data Management Considerations =~ F-1



ACQ Return Codes

STI Return Codes

F-2

Label
$WSRIRJ

$WSPOST
$WSPPRE

Value
(hex)

34

60
80

Explanation

Input was rejected. Iﬁput buffer INLEN |

“parameter) is too small.

Postéd with uéer-deﬁned address. -

Permanent I/O error occurred at the display
station. In response to the error, the system -
operator selected option 2.

After an ACQ operation, the following return codes are possible at SWSRTC:

Label

$WSROK
$WSRQO

SWSRAFW

$SWSRAFN

Value
(hex)

00
08

18

38

Explanation

ACQ was successful.

ACQ was successful. Display station was already
allocated to the task.

- ACQ failed. Display station was allocated to a

non-NEP.

ACQ failed:

e Display station is not in standby mode.

e Display station is in command reject mode.

e A permanent I/O error occurred at the display
station.

e The display station is allocated to a NEP.

o The previous release operation for the display
station is still being processed.

After an STI operation, the following return codes are possible at SWSRTC:

Label

SWSROK
$WSRNAV

$WSRREL

SWSRSPF

Value
(hex)

00
24

28

44

Explanation

STI was successful.

Display station was released by display station
operator.

STI was ignored. Display station was previously
released by program.

STI failed. Display station operator entered data,
which should be read by a GET or ACI operation.



Label

$WSPRE

Value
(hex)

80

Explanation

Permanent I/O error occurred at the display
station. In response to the error, the system
operator selected option 2.

Return Codes for All Operations Except GET, ACI, ACQ, and STI

After any operation except GET, ACI, ACQ, and STI, the following return codes

are possible at SWSRTC:

Label

SWSROK
SWSRNAV

SWSRREL

$SWSRIRJ

$WSROFL
$WSPOGE

$SWSRPAL
SWSRGRF

SWSRGI

Value
(hex)

00
24

28
34

40
45

48
50

51

Explanation

Operation was successful.

Display station was released by display station
operator.

Operation was ignored. Display station previously
released by program.

Input was rejected. Input buffer INLEN
parameter) too small.

Requested terminal was offline.

Invalid ideographic data was found on a print
operation. :

Print operation was issued to the allocated printer.

On an output operation, a display station
ideographic character table full of ideographic
characters was detected. The user selected a .2
option.

On an output operation an invalid ideographic
character was found.The user selected a 2 option.

Appendix F.Display Station Data Management Considerations

F-3



Label

SWSRGU

SWSRPE

Value
(hex)

52

80

Explanation
On an output operation, one of the following
errors was detected:

e An undefined ideographic character was
found.

e The extended file of ideographic characters
has not been allocated.

e The extended file of ideographic characters
has not been restored.

The user selected a 2 option.
Permanent I/O error occurred at the display

station. In response to the error, the system
operator selected option 2.



Notes:

Appendix F.Display Station Data Management Considerations F-5



F-6



Glossary

#LIBRARY. The library, provided with the system,
that contains the System Support Program Product. See
system library.

abnormal termination. A system failure or operator
action that causes a job to end unsuccessfully.

access method. The way that records in files are
referred to by the system. The reference can be
consecutive (records are referred to one after another in
the order in which they appear in the file), or it can be
random (the individual records can be referred to in any
order).

address. A name, label, or number that identifies a
location in storage, a device in a network, or any other
data source.

address recall register (ARR). A register in the main
storage processor that is used for temporary storage of
an address to be used later by the program being run.

advanced program-to-program communications (APPC).
Communications support that allows System/36 to
communicate with other systems having the same
support. APPC is the way that System/36 puts the IBM
SNA LU-6.2 protocol into effect.

alarm. An audible signal at a display station or printer
that is used to get the operator’s attention.

allocate. To assign a resource, such as a disk file or a
diskette file, to perform a specific task.

alphabetic character. Any one of the letters A through
Z (uppercase and lowercase). Assembler extends the
alphabet to include the special characters #, $, and @.

alphameric. Consisting of letters, numbers, and often
other symbols, such as punctuation marks and
mathematical symbols.

alphanumeric. See alphameric.

alternative system console. A command display station
that can be designed as the system console.

American National Standard Code for Information
Interchange (ASCII). The code developed for
information interchange among data processing systems,
data communications systems, and associated
equipment. The ASCII character set consists of 7-bit
control characters and symbolic characters.

APPC. See advanced program-to-program
communications (APPC).

application. (1) A particular business task, such as
inventory control or accounts receivable. (2) A group
of related programs that apply to a particular business
area, such as the Inventory Control or the Accounts
Receivable application.

application program. A program used to perform an
application or part of an application.

ASCIL. See American National Standard Code for
Information Interchange (ASCII).

assembler. A program that converts assembler language
statements to an object program.

assembler instruction statement. A statement that
controls what the assembler does, rather than what the
user’s program does.

assembler language. A symbolic programming language
in which the set of instructions includes the instructions
of the machine and whose data structures correspond
directly to the storage and registers of the machine.

attribute. A characteristic.

autoanswer. In data communications, the ability of a
station to receive a call over a switched line without
operator action. Contrast with manual answer.
autocall. In data communications, the ability of a
station to place a call over a switched line without

operator action. Contrast with manual call.

autocall unit. A common carrier device that allows
System/36 to automatically call a remote location.

Glossary G-1



base displacement addressing. In assembler language, an
addressing method that involves setting up a base
address from which other addresses can be calculated.

base number. The part of a self-check field from which
the check digit is calculated.

BASIC (beginner’s all-purpose symbelic instruction
code). A programming language designed for
interactive systems and originally developed at
Dartmouth College to encourage people to use
computers for simple problem-solving operations.

batch. Pertaining to activity involving little or no
operator action. Contrast with interactive.

batch BSC. The System Support Program Product
support that provides data communications with BSC
computers and devices via the RPG T specification or
the assembler $DTFB macroinstruction. :

binary. (1) Pertaining to a system of numbers to the
base two; the binary digits are 0 and 1. (2) Involving a
choice of two conditions, such as on-off or yes-no.

binary synchronous communications (BSC). A form of
communications line control that uses transmission
control characters to control the transfer of data over a
communications line. Compare with synchronous data
link control (SDLC).

bit. Either of the binary digits 0 or 1. See also byte.

block. (1) A group of records that is recorded or
processed as a unit. Same as physical record. (2) Ten
sectors (2560 bytes) of disk storage.

branch instruction. An instruction that changes the
sequence in which the instructions in a computer
program are performed. The sequence of instructions
continues at the address specified in the branch
instruction.

branching. Performing a statement other than the next
one in sequence.

BSC. See binary synchronous communications (BSC).

byte. The amount of storage required to represent one
character; a byte is 8 bits.

call. (1) To activate a program or procedure at its
entry point. Compare with load. (2) In data
communications, the action necessary in making a
connection between two stations on a switched line.

cancel. To end a task before it is completed.

character. A letter, digit, or other symbol.

character key. A keyboard key that allows the user to
enter the character shown on the key. Compare with
command keys and function key.

character string. A sequence of consecutive characters.

check. (1) An error condition. (2) To look for a
condition.

check digit. The rightmost digit of a self-check field
used to check the accuracy of the field.

close. To end the processing of a file.

COBOL (common business-oriented language). A
high-level programming language, similar to English,
that is used primarily for commercial data processing.

code. (1) Instructions for the computer. (2) To write
instructions for the computer. Same as program. (3) A
representation of a condition, such as an error code.

command. A request to perform an operation or a
procedure.

command display station. A display station from which
an operator can start and control jobs. A command
display station can become an alternative system
console, can be designated as a subconsole, and can also
be used as a data display station. See also alternative
system console, data display station, and subconsole.

command keys. The 12 keys on the top row of the
display station keyboard that are used with the Cmd key
(and optionally the Shift key) to request up to 24
different actions defined for program products and user
programs. Compare with character key and function
key.

command mode. A mode that allows a display station
operator to request or start jobs.

command text, command source or load member. The
command to be processed when an operator selects an
option on a menu.

comment. Words or statements in a program or
procedure that serve as documentation rather than as
instructions.

compilation time. The time during which a source
program is translated from a high-level language to a
machine language program.

compile. To translate a program written in a high-level
programming language into a machine language
program.



constant. A data item with a value that does not
change. Contrast with variable.

constant field. A field that is defined by a display
format to contain a value that does not change.

continuation line. A line of a source statement into
which characters are entered when the source statement
cannot be contained on the previous line or lines.

control command. A command used by an operator to
control the system or a work station. A control
command does not run a procedure and cannot be used
in a procedure.

control station. The primary or controlling computer
on a multipoint line. The control station controls the
sending and receiving of data.

cursor. A movable symbol (such as an underline) on a
display, usually used to indicate to the operator where
to type the next character.

data display station. A display station from which an
operator can only enter data. A data display station is
acquired and controlled by a program. Contrast with
command display station.

data file utility (DFU). The part of the Utilities
Program Product that is used to create, maintain,
display, and print disk files.

data item. A unit of information to be processed.

data type. A category that identifies the mathematical
qualities and internal representation of data.

decimal. Pertaining to a system of numbers to the base
ten; decimal digits range from 0 through 9.

default value. A value stored in the system that is used
when no other value is specified.

define-the-file (DTF). A control block containing
information that is passed between data management
routines and users of the data management routines.

delete. To remove.

DFU. See data file utility (DFU).

direct file. A disk file in which records are referenced
by the relative record number. Contrast with indexed
file and sequential file.

disk. A storage device made of one or more flat,

circular plates with magnetic surfaces on which
information can be stored.

display. (1) A visual presentation of information on a
display screen. (2) To show information on the display
screen.

display control specification. A record within the
display format specifications, it provides information
about the entire display format that, in general, is
unrelated to the specific fields being defined. Also
known as the S-specification.

display format. Data that defines (or describes) a
display.

display layout sheet. A form used to plan the location
of data on the display.

display screen. The part of the display station on which
information is displayed.

display station. A device that includes a keyboard from
which an operator can send information to the system
and a display screen on which an operator can see the
information sent or receive information from the
system.

display text source or load member. Describes the
information displayed on a menu.

DTF. See define-the-file (DTF).

edit. (1) To modify the form or format of data; for
example, to insert or remove characters such as for
dates or decimal points. (2) To check the accuracy of
information that has been entered, and to indicate if an
error is found.

embedded blanks. Blanks that are surrounded by any
other characters. :

enter. To type in information on a keyboard and press
the Enter key in order to send the information to the
computer.

extended binary-coded decimal interchange code
(EBCDIC). A set of 256 eight-bit characters.

field. One or more characters of related information
(such as a name or an amount).

file. A set of related records treated as a unit.

format. (1) A defined arrangement of such things as-
characters, fields, and lines, usually used for displays,
printouts, or files. (2) To arrange such things as
characters, fields, and lines.

FORTRAN (formula translation). A high-level

programming language used primarily for scientific,
engineering, and mathematical applications.

Glossary G-3



function key. A keyboard key that requests an action
but does not display or print a character. The cursor
movement and Help keys are examples of function keys.
Compare with command keys and character key.

GAM. See generalized access method (GAM ).

generalized access method (GAM). A disk file access
method in assembler allowing random and consecutive
processing, update, delete, and add.

hex. See hexadecimal.

hexadecimal. Pertaining to a system of numbers to the
base sixteen; hexadecimal digits range from 0 (zero)
through 9 (nine) and A (ten) through F (fifteen).

host system. The primary or controlling computer in
the communications network. See also control station.

index. (1) A table containing the key value and location
of each record in an indexed file. (2) A computer
storage position or register, the contents of which
identify a particular element in a set of elements,

indexed file. A file in which the key and the position of
each record is recorded in a separate portion of the file
called an index. Contrast with direct file and sequential

file.

index key. The field within a record that identifies that
record in an indexed file.

indicator. An internal switch that communicates a -
condition between parts of a program or procedure.

informational message. A message that provides
information to the operator, but does not require a
response.

input. Data to be processed.

input/output (I/O). Pertaining to either input or output,
or both.

instruction. A statement that specifies an operation to
be performed by the computer and the locations in
storage of all data involved in that operation.

instruction address register (IAR). A register in the
main storage processor that contains the address of the
next instruction to be performed.

instruction fetch. The act of getting an instruction from
storage and loading it into the correct registers.

integer. A positive or negative whole number; that is,

an optional sign followed by a number that does not
contain a decimal point.

G-4

interactive. Pertaining to activity involving requests and
replies as, for example, between an operator and a

‘program or between two programs. Contrast with

batch.

Interactive Communications Feature (SSP-ICF). A
feature of the System Support Program Product that
allows a program to interactively communicate with
another program or system.

interchange record separator (IRS). Same as record
separator.

intermediate-text-block (ITB) character. In binary
synchronous communications, the transmission control
character used to indicate the end of a section of data to
be checked.

IRS (interchange record separator). Same as record
separator.

TTB. See intermediate-text-block character.
K-byte. 1024 bytes.

key mask. A string of numbers and alphabetic
characters that identify the function keys and command
keys that the operator can use to control program
operations.

left-adjust. To place or move an entry in a field so that
the leftmost character of the field is in the leftmost
position. Contrast with right-adjust.

library. (1) A named area on disk that can contain
programs and related information (not files). A library
consists of different sections, called library members.
(2) The set of publications for a system.

library member. A named collection of records or
statements in a library. The types of library members
are load member, procedure member, source member, and
subroutine member.

link-editing. To combine, by the overlay linkage editor,
a number of load members and/or subroutine members
into one program.

literal. A symbol or a quantity in a source program
that is itself data, rather than a reference to data.

load. To move data or programs into storage.
load member. A library member that contains

information in a form that the system can use directly,
such as a display format. Contrast with source member.



load module. A program in a form that can be loaded
into main storage and run. The load module is the
output of the overlay linkage editor.

local. Pertaining to a device, file, or system that is
accessed directly from your system, without the use of a
communications line. Contrast with remote.

machine instruction. An instruction of the machine
language that can be performed by the computer.

machine language. A language that can be used directly
by a computer without intermediate processing.

macro. See macro definition, macro instruction.
macro call. Synonym for macro instruction.

macro definition:. A set of statements that defines the
name of, format of, and conditions for generating a
sequence of assembler language statements from a single
source statement.

macroinstruction. A single instruction that represents a
set of instructions.

macro library. A library of macro definitions used
during macro expansion.

magnetic stripe reader. A device, attached to a display
station, that reads data from a magnetic stripe on a
badge before allowing an operator to sign on.

manual answer. In data communications, a line type
requiring operator actions to receive a call over a
switched line. Contrast with autoanswer.

manual call. In data communications, a line type
requiring operator actions to place a call over a
switched line. Contrast with autocall.

menu. A displayed list of items from which an operator
can make a selection.

message. Information sent to an operator or
programmer from a program. A message can be either
displayed or printed.

message identification. A field in the display or printout
of a message that directs the user to the description of
the message in a message guide or a reference manual.
In Assembler, this field consists of the alphabetic
characters ASM, followed by a dash, followed by the
message identification code.

message identification code (MIC). A four-digit number
that identifies a record in a message member. This
number can be part of the message identification.

message identifier. A field in the display or printout of
a message that directs the user to the description of the
message in a message guide or reference manual. This
field consists of up to four alphabetic characters,
followed by a dash, followed by the message
identification code.

message member. A library member that defines the
text of each message and its associated message
identification code.

MIC. See message identification code (MIC).

modulus 10/modulus 11 checking. Formulas used to
calculate the check digit for a self-check field.

noncontiguous. Not being in actual contact.

null character. The character hex 00, used to represent
the absence of a printed or displayed character.

numeric. Pertaining to any of the digits 0 through 9.

object module. A set of instructions in machine
language. The object module is produced by a compiler
from a subroutine or source program and can be input
to the overlay linkage editor.

object program. In COBOL, a set of instructions in
machine — runnable form. The object program is
produced by a compiler from a source program.

OCL. See operation control language (OCL).
open. To prepare a file for processing.

operand. (1) A quantity of data that is operated on, or
the address in a computer instruction of data to be
operated on. (2) In COBOL, the object of a verb or an
operator; that is, an operand is the data or equipment
governed or directed by a verb or operator.

operation. A defined action, such as adding or
comparing, performed on one or more data items.

operation code. A code used to represent the operations
of a computer.

operation control language (OCL). A language used to
identify a job and its processing requirements to the
System Support Program Product.

output. The result of processing data.

overlay. (1) To write over (and therefore destroy) an
existing file. (2) A program segment that is loaded into
main storage and replaces all or part of a previously
loaded program segment.

Glossary G-5



overlay linkage editor.. The part of the System Support
Program Product that combines object programs to
produce code that can be run and allows the user to
determine overlays for programs.

overlay region. A continuous area of main storage in
which segments can be loaded independently of other
regions. R o

override. (1) A parameter or value that replaces a
previous parameter or value. (2) To replace a
parameter or value.

parameter. A value supplied to a procedure or program
that either is used as input or controls the actions of the
procedure or program.

printout. Information from the computer that is
produced by a printer. ’

procedure. A set of related operation control language
statements (and, possibly, utility control statements and
procedure control expressions) that cause a specific
program or set of programs to be performed.

procedure member. A library member that contains the
statements (such as operation control language
statements) necessary to perform a program or set of
programs. '

program. (1) A sequence of instructions for a
computer. See source program and load module. - (2) To
write a sequence of instructions for a computer. Same
as code.

program product. A licensed program for which a fee is
charged.

prompt. A displayed request for information or -
operator action.

record. A collection of fields that is treated as a unit.

record separator. In binary synchronous
communications, a character used to indicate the end. of
one record and the beginning of another.

recovery procedure. (1) An action performed by the
operator when an error message appears on the display
screen.” Usually, this action permits the program to
continue or permits the operator to run the next job.
(2) The method of returning the system to the point
where a major system error occurred and running the
recent critical jobs again.

register. A storage area, in a computer, usually

intended for some special reason, capable of storing a
specified amount of data such as a bit or an address.

G-6

relative record number. A number that specifies the
location of a record in relation to the beginning of the
file. ~

remote. Pertaining to a system or device that is
connected to your system through a communications
line. Contrast with local.

restore.  Return to an original value or image. For
example, to restore a library from diskette.

return code. In data communications, a value generated
by the system or subsystem that is returned to a
program to indicate the results of an operation issued by
that program.

right-adjust. To place or move an entry in a field so
that the rightmost character of the field is in the
rightmost position. Contrast with left-adjust.

RPG. A programming language specifically designed
for writing application programs that meet common
business data processing requirements.

RRN. See relative record number.

run. To cause a program, utility, or other machine
function to be performed.

screen design aid (SDA). The part of the Utilities
Program Product that helps the user design, create, and
maintain displays and menus. Additionally, SDA can
generate specifications for RPG and WSU work station
programs.

SDA. See screen design aid (SDA).
SDLC. See synchronous data link control (SDLC).

self-check field. A field, such as an account number,
consisting of a base number and a check digit.

sequential access. An access method in which records
are read from, written to, or removed from a file based
on the logical order of the records in the file.

sequential file. A file in which records occur in the
order in which they were entered. Contrast with direct
file and indexed file.

SEU. See source entry utility (SEU).

significant digit. Any digit of a number that follows the
leftmost digit which is not a zero and that is within the
accuracy allowed.

source entry utility (SEU). The part of the Utilities
Program Product used by the operator to enter and
update source and procedure members.



source member. A library member that contains
information in the form in which it was entered, such as
RPG specifications. Contrast with load member.

source program. A set of instructions that are written
in a programming language and that must be translated
to machine language before the program can be run.

special character. A character other than an alphabetic
or numeric character. For example; *, +, and % are
special characters.

special registers. In COBOL, compiler-generated data
items used to store information produced by specific
COBOL features (for example, the DEBUG-ITEM
special register).

split key. A key, for an indexed file, defined from more
than one field within each record.

SSP. See System Support Program Product (SSP).

SSP-ICF. See Interactive Communications Feature
(SSP-ICF).

statement. An instruction in a program or procedure.

storage index. A table in main storage that contains the
address of the lowest key on each track in the file index.

subconsole. A display station that controls a printer or
printers.

subroutine member. A library member that contains
information that must be combined with one or more
members before being run by the system.

synchronous data link control (SDLC). A form of
communications line control that uses commands to
control the transfer of data over a communications line.
Compare with binary synchronous communications

(BSC).

system library. The library, provided with the system,
that contains the System Support Program Product and
is named #LIBRARY.

System Support Program Product (SSP). A group of
licensed programs that manage the running of other
programs and the operation of associated devices, such
as the display station and printer. The SSP also
contains utility programs that perform common tasks,
such as copying information from diskette to disk.

terminal error. Any error that causes termination of the
current program.

transaction. (1) An item of business. The handling of
customer orders and customer billing are examples of
transactions. (2) In interactive communications, the
communication between the application program and a
specific item (usually another application program) at
the remote system.

TRANSACTION file. In COBOL, an input/output file
used to communicate with display stations and SSP-ICF
sessions.

truncate. To shorten a field or statement to a specified
length.

turnaround time. The time interval required to reverse
the direction of transmission over a communication line.

unique. The only one.

unprotected field. A displayed field for which operators
can enter, modify, or delete data.

Utilities Program Product. A program product that
contains the data file utility (DFU), the source entry
utility (SEU), the work station utility (WSU), and the
screen design aid (SDA).

utility contrel statement. A statement that gives a
utility program information about the way the program
is to perform or the output it is to produce.

utility program. A System Support Program Product
program that allows you to perform a common task,
such as copying information from diskette to disk.

variable. A name used to represent a data item whose
value can change while the program is running.
Contrast with constant.

work station. A device that lets people transmit
information to or receive information from a computer;
for example, a display station or printer.

work station data management. The part of the System
Support Program Product that enables a program to
present data on a display screen by providing a string of
data fields and a format name.

work station utility (WSU). The part of the Utilities
Program Product that helps you to write programs for
data entry, editing, and inquiry.

WSU. See work station utility (WSU).

Glossary G-7






Index

Special Characters

&SYSNDX 4-7
$SALOC — Allocate File or Device 5-4
SASMINPT file size parameter 1-5
$CLOS — Prepare a Device or File for Termination 5-6
$DTFB — Define the File for BSC 5-7
$DTFD — Define the File for Disk 5-13
$DTFO — Generate DTF Offsets 5-19
$SDTFP — Define the File for a Printer 5-20
$DTFW — Define the File for Display Station 5-23
$EOJ—End of Job 5-30
$FIND parameter list and displacement
generation —$FNDP  5-32
$FIND — Find a Directory Entry 5-31
$FNDP — Generate SFIND Parameter List and
Displacements 5-32
SGETB —Issue a Get Request 5-34
SGETD — Construct a Disk Get Interface 5-35
$INFO — Information Retrieval 5-39
SINV —Inverse Data Move 5-43
SLMSG parameter use chart 5-45
SLMSG — Generate a Parameter List for a Message
Displayed by 5-44
$L.OAD — Load or Fetch a Module 5-48
$LOG macroinstruction 5-49
$LOG — Generate the Linkage to the System Log 5-49
$SLOGD — Generate Displacements for System
Log 5-51
$SOPEN — Prepare a Device or File for Access 5-52
$PUTB —Issue a Put Request 5-53
$PUTD — Construct a Disk Put Interface 5-54
$PUTP — Construct a Printer Put Interface 5-57
SRIT — Return Interval Time 5-59
$SIT — Set Interval Timer 5-61
SSNAP — Snap Dump of Main Storage 5-63
$SORT — Construct a Loadable Sort Interface 5-65
$SOURCE file size parameter 1-5
$SRT — Generate a Loadable Sort Parameter List 5-66
$TOD —~ Return Time and Date 5-70
$TRAN — Generate an Interface to the Translate
Routine 5-71
$TRB — Generate Timer Request Block 5-72
$TRL — Generate a Translation Parameter List 5-73
$TRTB — Generate a Translation Table 5-74
SWIND — Generate Override Indicators for Display
Station 5-76
S$WORK file size parameter 1-5
SWORK?2 file size parameter 1-5
SWSEQ — Generate Labels for Display Station 5-76
$WSIO — Construct a Display Station Input/Output
Interface 5-77

A

A — Add to Register 2-18
absolute expression 2-11
access information — $SINFO 5-39
Add Logical Character— ALC 2-19
Add Logical Immediate - ALI 2-20
Add to Register— A 2-18
Add Zoned Decimal— AZ 2-21
addressing 2-14, 3-23
USING 3-23
AGO — Uncondition Branch Record 4-27
ATF — Conditional Branch 4-24
ALC-— Add Logical Character 2-19
ALI— Add Logical Immediate 2-20
Allocate File or Device—SALOC 5-4
alphabetic characters 1-15
alphameric value, macroinstruction 4-5
alter format of source program statements 3-15
alter location counter 3-17
ALTERCOM 5-96
alternative index and noncontiguous keys
program A-17
alternative index program A-17
ANOP — Assembly No Operation 4-30
appendices’ descriptions  viii
architecture ix
arithmetic expression, macsoinstruction 4-8
arithmetic expressions 2-10
Arithmetic Global —GBLA 4-15
Arithmetic local —LCLA 4-17
arrangement of manual viii
ASCII table B-3
ASM procedure command 1-4
assembler coding form 1-15, C-1
assembler control statements 2-1
assembler files 1-7
assembler instruction formats D-1
assembler instruction statements 2-49
assembler language 1-1
assembler listing 1-9
assembler program control 3-8, 3-10, 3-11, 3-15, 3-21,
3-23
Drop Index Register as Base Register— DROP 3-8
End Assembly—END 3-10
Identify Entry-Point Symbol— ENTRY 3-11
Input Format Control —ICTL 3-15
Start Assembly—START 3-21
Use Index Register for Base Displacement 3-23
assembler program control-Identify External
Symbols —EXTRN 3-13
assembler program control statements 3-17
Set Location Counter —ORG 3-17
assembler program conventions 2-5
assembler rules - 2-5.

Index X-1



assembler work file size parameter 1-5
assembler work?2 file size parameter 1-5
Assembly No Operation— ANOP 4-30
attribute, macroinstruction 4-5
autocall 5-93

AZ— Add Zoned Decimal 2-21

base displacement addressing 2-15, 3-23
BC — Branch on Condition 2-22
BD — Branch Direct 2-24
before programming 2-1
beginning location 3-21
binary constants 2-9
Binary Global— GBLB 4-15
Binary Local—-LCLB 4-18
blank compression 5-94
expansion 5-94
blank truncation 5-93
Branch Direct—BD 2-24
Branch on Condition—BC 2-22
BSC 1-20, 5-96
environment 5-96
BSC Completion Code Table 5-12

C

change format of source program statements 3-15
changes xi

character constants 2-9

character expression, macroinstruction 4-3
Character Global —GBLC 4-16

Character Local—LCLC 4-18

character string, macroinstruction 4-3
characters 1-15

check source sequence 3-16

CLC — Compare Logical Characters 2-25
CLI—Compare Logical Immediate 2-26

coding a program 1-3

coding form 1-15, C-1

coding form entries 1-15

coding restrictions 5-88

comment 4-23

comment, coding form 1-16

communications 1-20 )
communications area information —$INFO = 5-39
communications with other systems 1-21
Compare Logical Characters— CLC 2-25
Compare Logical Immediate—CLI 2-26
compression of blanks 5-94 '
concatenation, macroinstructions 4-9
Conditional Branch—AIF 4-24

constant 2-7

Construct a Disk Get Interface —$GETD 5-35

X-2

Construct a Disk Put Interface —$PUTD 5-54

Construct a Display Station Input/Output
Interface —$WSIO  5-77

Construct a Loadable Sort Interface —$SORT 5-65

Construct a Printer Put Interface —$PUTP ~ 5-57

continuation, prototype records 4-9

control assembler processor 3-1

Control Program Listing—PRINT 3-19

control statements 1-9, 2-1

control storage supervisor,extended 2-46

conventions 2-5

count function, macroinstruction 4-8

cross-reference list 1-13

D

data addressing 2-16

data communications support 1-20

data formats 5-95

DC -~ Define Constant 3-2

debugging information ix

decimal constants 2-7

decimal to hexadecimal table (0 to F) 2-8

Define Constant—DC  3-2

Define Storage—DS 3-7

define symbols and data 3-1

Define the File for a Printer—$DTFP 5-20

Define the File for BSC ~$DTFB 5-7

Define the File for Disk —$DTFD 5-13

Define the File for Display Station—$DTFW  5-23
definition control statement format 4-10
definition control statement header 4-13

definition control statements, macroinstructions 4-10
diagnostics, listing 1-12

direct addressing 2-14

disk files used by assembler 1-7

Drop Index Register as Base Register —DROP 3-8
DROP — Drop Index Register as Base Register 3-8
DS-Define Storage 3-7

dump storage — $SNAP  5-63

E

EBCDIC table B-1

ED - Edit 2-27

Edit—ED 2-27

EJECT —Start New Page 3-9
End Assembly—END 3-10
End of Job—8$EOJ 5-30
end, see MEND 4-34

end, see MEXIT 4-33
END — End Assembly 3-10
entering a program 1-3
ENTRY example 3-13



ENTRY - Identify Entry-Point Symbol 3-11
EQU — Equate Symbol 3-12
Equate Symbol—EQU 3-12
error field, listing 1-10
error message, sse MNOTE 4-31
ESL 1-9
example 1-1, 4-35, 4-36, 4-38
comment 4-38
IBM macroinstruction definition 4-35
machine language 1-1
use of sample macroinstruction 4-36
user macro definition 4-35
execution information 1-4
exit, see MEXIT 4-33
expansion of blanks 5-94
expression 2-5
expression rules 2-10
expressions 2-10
extended control storage supervisor 2-46
extended mnemonics 2-23
Branch on Condition 2-23
extended mnemonics/Jump on Condition 2-30
external symbol list (ESL) 1-9
EXTRN example 3-13
EXTRN — Identify External Symbols 3-13

fetch a module—$LOAD 5-48

files used by the assembler 1-7

Find a Directory Entry — $FIND 5-31
format 4-10

macroinstruction definition control statement 4-10

formats for instructions D-1

G

GBLA — Arithmetic Global 4-15
GBLB — Binary Global 4-15
GBLC — Character 'Global 4-16
general programming notes 2-17
Generate $FIND Parameter List and
Displacements —$FNDP  5-32
Generate a Loadable Sort Parameter List —$SRT 5-66
Generate a System Log Displayed Message Parameter
List—SLMSG 5-44
Generate a Translation Parameter List—$TRL 5-73
Generate a Translation Table—$TRTB 5-74
Generate an Interface to the Translate
Routine—$TRAN 5-71
Generate Displacements for System
Log—$LOGD 5-51
Generate DTF Offsets —$DTFO 5-19
Generate Labels for Display Station—$WSEQ 5-76
Generate Linkage to System Log—$LOG 5-49

Generate Override Indicators for Display
Station —$§WIND 5-76

Generate Timer Request Block—$TRB 5-72
global set symbol, macroinstruction 4-7
global statement 4-15, 4-16

Arithmetic Global—GBLA 4-15

Binary Global—GBLB 4-15

Character Global—GBLC 4-16
global statements  4-15

H

header 4-13

macroinstruction definition 4-13
HEADERS 2-2
HEADERS statement 2-2
hexadecimal constants 2-8
hexadecimal to decimal table (0 to F) 2-8
how to 4-37

use macroinstructions 4-37

1]

IBM macroinstruction conventions 5-1
ICTL — Input Format Control 3-15
ID sequence 1-16
identification sequence, coding form 1-16
Identify Entry-Point Symbol — ENTRY 3-11
Identify External Symbols —EXTRN 3-13
identify linkage symbols 3-11
identify other program symbols 3-13.
indirect addressing 2-15, 2-16
information x
Information Retrieval -INFO 5-39
initial location counter value 3-21
initialize storage areas to constant type 3-2
initiating and terminating the transfer of data 5-91
initiating the transfer of data 5-91
Input Format Control —ICTL 3-15
input library parameter 1-5
Input Sequence Checking—ISEQ 3-16
Insert and Test Characters—ITC 2-28
instruction addressing 2-16
instruction formats D-1
Instruction set 2-18, 2-19, 2-20, 2-21, 2-22, 2-24, 2-25,
2-26, 2-27, 2-28, 2-29, 2-31, 2-32, 2-33, 2-34, 2-35,
2-36, 2-37, 2-38, 2-39, 2-40, 2-41, 2-42, 2-43, 2-44,
2-45, 2-46, 2-47, 2-48
.Add Logical Character —ALC 2-19
Add Logical Immediate— ALI 2-20
Add to Register—A 2-18
Add Zoned Decimal—AZ 2-21
Branch Direct—BD 2-24
Compare Logical Immediate—CLI 2-26
Edit—ED 2-27

Index X-3



Insert and Test Characters—ITC 2-28
Jump on Condition—JC 2-29
Load Address-LA 2-32
Load Register—L 2-31
Move Characters—-MVC 2-33
Move Hexadecimal Character-MVX 2-35
Move Logical Immediate —MVI 2-34
Set Bits Off Masked —SBF  2-37 .
Set Bits On Masked-SBN  2-38
Shift Right Character —SRC  2-41
Store Register —ST 2-42
Subtract from Register-S 2-36
Subtract Logical Characters—SLC 2-39
Subtract Logical Immediate—SLI 2-40
Subtract Zoned Decimal -SZ 2-43
supervisor call 2-48
Test Bits Off Masked 2-44
Test Bits On Masked-TBN 2-45
Transfer — XFER 2-46
Zero and Add Zoned-ZAZ 2-47
Instruction statement 3-2, 3-7, 3-12
Define Constant—DC  3-2
Define Storage— DS 3-7
Equate Symbol—EQU 3-12
instruction statements 2-49
introduction 1-1
Inverse Data Move —$INV 5-43
ISEQ — Input Sequence Checking 3-16
Issue a Get Request—$SGETB 5-34
Issue a Put Request —$PUTB  5-53
ITC —Insert and Test Characters 2-28

JC—Jump on Condition 2-29
Jump on Condition—JC 2-29

K

keying a program 1-3
keyword parameter 5-1

L —Load Register 2-31

LA-Load Address 2-32

label 4-11, 4-14
macroinstruction 4-11
prototype statement 4-14

label (name) storage 3-7

label, coding form 1-16

language, machine vs assembler 1-1

X-4

LCLA — Arithmetic local 4-17

LCLB~Binary Local 4-18

LCLC— Character Local 4-18

Line Feed —SPACE 3-20

linkage symbols, identification 3-11

linking 2-16

LIST,NOLIST parameter 1-6

listing control statements 3-9, 3-19, 3-20
Control Program Listing—PRINT 3-19
Line Feed —SPACE 3-20
Start New Page —EJECT 3-9

listing, assembler 1-9

load a module—$LOAD 5-48

Load Address-LA 2-32

Load or Fetch a Module —$LOAD 5-48

Load Register—L 2-31

local set symbol, macroinstruction 4-7

local statements 4-17, 4-18
Arithmetic local —LCLA 4-17
Binary Local—LCLB 4-18
Character Local —-LCLC 4-18

locate library members —$FIND 5-31

location counter 2-13

location counter, listing 1-10

Logical End — MEXIT 4-33

M

MAC/NOMAC parameter 1-5

machine instruction formats D-1

machine instructions 2-17

machine language 1-1

MACRO 4-10

macro library 1-4, 1-6, 4-1

macro merge source file size parameter 1-5

macroinstruction 4-3, 4-11, 4-13, 5-31, 5-32, 5-39, 5-48,

5-49, 5-51, 5-63
$FIND 5-31
$FNDP 5-32
$INFO 5-39
$LOAD 5-48
$LOG 5-49
$LOGD 5-51
SSNAP 5-63
coding conventions  4-3
definition control statement 4-13
label 4-11
operand 4-11

macroinstruction definition 4-1, 4-13, 4-14, 4-15

global statement 4-15

header 4-13

prototype 4-14
macroinstruction format 4-11
macroinstruction introduction 1-2
macroinstruction —$LMSG  5-44
magnetic character reader 1-23

‘manual arrangement viii



MEND — Physical End 4-34

message, sce MNOTE 4-31

Message — MNOTE 4-31

messages ix

MEXIT — Logical End 4-33

MNOTE — Message 4-31

more information x

Move Characters—MVC 2-33

Move Hexadecimal Character 2-35
Move Logical Immediate—MVI 2-34
move mode 5-92

MVC — Move Characters 2-33
MVI—Move Logical Immediate 2-34
MVX-Move Hexadecimal Character 2-35

N

name (label) storage 3-7

new line 3-20

new page 3-9

NO OP see ANOP 4-30
NOLIST,LIST parameter 1-6
noncontiguous keys program A-17
NOOBJ,OBJ parameter 1-6

notes on programming 2-17
NOXREF,XREF parameter 1-6

o

OBJ,NOOBJ parameter 1-6
object code listing 1-10
object code, listing 1-10
OLINK procedure 1-7
operand 4-11, 4-14
macroinstruction 4-11
prototype statement 4-14
operand, coding form 1-16
operation 4-14
prototype statement 4-14
operation, coding form 1-16
OPTIONS 2-3
OPTIONS statement 2-3
ORG —Set Location Counter 3-17
other manuals ix
other systems with BSC 1-21
output library name parameter 1-5

|

page heading, listing 1-12
page, new 3-9

parameters, ASM  1-4
phone list 5-97

Physical End—MEND 4-34

Prepare a Device or File for Access—$OPEN 5-52
Prepare a Device or File for Termination—$CLOS 5-6

preparing BSC DTFs for data transfer 5-90
prerequisite knowledge ix
print assembler listing 3-19
PRINT — Control Program Listing 3-19
problem determination 6-1-6-6
procedures 1-4
Program Control Statements 3-16
Input Sequence Checking—ISEQ 3-16
program linking 2-16
program listing 3-19
programming notes 2-17
programming rules 2-5
programming with BSC 1-20
prologue 1-9
prototype 4-14
macroinstruction definition 4-14

R

read file/transmit program A-2
receive program A-3
record formats 1-18
relative addressing 2-16
relocatable expressions 2-11
remarks, coding form 1-16
reserve storage 3-7
retrieve information —$INFO 5-39
return information — $INFO 5-39
Return Interval Time— $RIT 5-59
Return Time and Date—$TOD 5-70
rules 2-5, 4-3

macroinstruction coding 4-3
run information 1-4

S-Subtract from Register 2-36

SBF — Set Bits Off Masked 2-37
SBN-Set Bits On Masked 2-38

select display 1-3

self-defining terms 2-7

sequence symbol, macroinstruction 4-3
Set Aritmetic— SETA 4-27

Set Binary—SETB 4-28

Index



Set Bits Off Masked —SBF 2-37

Set Bits On Masked-SBN  2-38

Set Character —SETC 4-29

Set Interval Timer — $SIT  5-61

Set Location Counter —ORG 3-17

set storage boundaries 3-17

set symbol, macroinstruction 4-7

SETA — Set Arithmetic 4-27

SETB— Set Binary 4-28

SETC — Set Character 4-29

SEU 1-3

severity code, error 4-31

Shift Right Character —SRC 2-41

SLC - Subtract Logical Characters 2-39
SLI—Subtract Logical Immediate 2-40
Snap Dump of Main Storage — $SNAP  5-63
snap dump —$SNAP 5-63

source file size parameter 1-5

source member name parameter 1-5
source output comment 4-23

source program assembler statements 1-14
source program library 1-5

source program listing 1-10

source statement, listing 1-11

SPACE —Line Feed 3-20

special characters 1-15

specify storage boundaries 3-17
SRC — Shift Right Character 2-41

ST — Store Register 2-42

Start Assembly —START 3-21

start new line 3-20

Start New Page — EJECT 3-9

START — Start Assembly 3-21

starting address 2-5

statement number, listing 1-11
statements in the assembler source program 1-14
stop assembly (END) 3-10

storage supervisor, extended control 2-46
Store Register—ST 2-42

substring, macroinstruction 4-4

Subtract from Register-S 2-36

Subtract Logical Characters—SLC 2-39
Subtract Logical Immediate —SLI 2-40
Subtract Zoned Decimal —SZ 2-43
summary of changes xi

supervisor call instructions 2-48
supervisor, extended control storage 2-46
symbolic parameter, macroinstruction 4-6
symbols 2-6

symbols in another program, identification 3-13
system date/time program A-8

system log support 5-49

SZ — Subtract Zoned Decimal 2-43

X-6

T

TABDF — table definition 4-20
table definition— TABDF 4-20
table of IBM macroinstructions 5-2
TABLE —table 4-19
TBF-Test Bits Off Masked 2-44
TBN-Test Bits On Masked 2-45
term 2-5
terminate assembly (END) 3-10
terminate USING 3-8
terminating the transfer of data 5-91
terms 2-5, 2-6

symbolic 2-6
terms, self-defining 2-7
Test Bits Off Masked-TBF 2-44
Test Bits On Masked-TBN 2-45
TEXT —text 4-22
Transfer— XFER 2-46
transmit program A-2
transmit/receive program A-5
truncation of blanks 5-93

U

Unconditional Branch Record— AGO 4-27

understand this first ix

Use Index Register for Base Displacement
Addressing 3-23

user macro definition example 4-35

using EXTRN and ENTRY 3-13

using macroinstructions 4-37

using SEU 1-3

USING — Use Index Register for Base Displacement
Addressing 3-23

Vv

valid characters 1-15
value checking 4-26
variable symbol, macroinstruction 4-5

W

work station local data area information—$INFO 5-39
workstation and print program A-11



X Z

XFER — Transfer 2-46 Z-display 1-3
XREF,NOXREF parameter 1-6 ZAZ-Zero and Add Zoned 2-47
Zero and Add Zoned-ZAZ 2-47

Index X-7



X-8



1BM System/36:

Programming with Assemblier SC21-7908-3

READER’'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in publications. Direct any
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not
include your name and address below. If your comment is applicable, we will include it in the next revision

of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

Please contact your nearest IBM branch office to request
additional publications.

Name

Company or
Organization

Address

No postage necessary if mailed in the U.S.A. City State Zip Code



S§C21-7908-3

- Fold and tape

Please do not staple

- — — — — — G — — — — —— — - m—e - e i o— | — f—— —t ——— — o — o i tatos i o s e

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM CORPORATION
Information Development
Department 532

Rochester, Minnesota, U.S.A. 55901

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

— — — — —— o— am— —— ———— o —— o Smmam e —— —— —— — wm—— m— wove o vem w— —— ov—— ——— o—— o— w——— — on— o—

Joufl

Fold and tape

Please do not staple



=
= =
-
®

International Business Machines Corporation

File Number
$36:21

Order Number
SC21-7908-3

Part Number
59X3987 :

Printed in U.S.A.

Programming with Assembler

Contents

1 Introduction to the IBM System/36 Assembler Language
2 Using IBM System/36 Assembler Programming Language
3 Using Assembler Instructions

4 Creating Macroinstructions

5 Macroinstruction Supplied by |BM

6 Assembler Problem Determination

Appendixes

Glossary

Index

SC21-7908-03

-




	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	5-85
	5-86
	5-87
	5-88
	5-89
	5-90
	5-91
	5-92
	5-93
	5-94
	5-95
	5-96
	5-97
	5-98
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	replyA
	replyB
	xBack

