


Preface 

The IBM System/38 employs both advanced tech­
nology and many new data processing concepts. 
While the laboratory in Rochester, Minnesota, had 
primary responsibility for design and development, 
IBM people in laboratories in Boeblingen, Germany, 
Burlington, Vermont, and East Fishkill, New York, 
made important contributions. 

Our mutual objective was to produce a system that 
would be both accessible and extendable, and at the 
same time offer efficient conversion facilities. 

Function menus, help keys, multilayer messages, and 
a system-wide control language are essential elements 
of System/38, along with a flexible "user authoriza­
tion" scheme for system integrity and security. We 
chose to avoid traditional hardware-dependent 
addressing and storage management and instead to 
readily accommodate new technologies and storage 
organizations through a high-level machine archi­
tecture that not only frees the user from earlier 
restrictions but also supports a new kind of data 
base facility. 

Finally, because System/38 is viewed as a growth 
path from present systems, especially the IBM 
System/3, we developed conversion techniques rather 
than an emulator to give these users an opportunity 
to benefit from the novel, even unique, capabilities of 
the System/38. 

Some 50 authors are represented in this special 
collection of papers. I want to thank them and their 
many colleagues whose combined efforts made 
System/38 a distinguished family of IBM products. 

B. G. Utley 
Manager, GSD Advanced Systems 

Second Edition (July 1980) 

This is a major revision of and obsoletes G580-0237-0. 
Changes include minor technical changes and an update of 
authors' biographies. 

The new cover design reflects a high-level view of the archi­
tecture of System/38. 

The papers in this volume are not intended to replace IBM 
publications in describing the capabilities of the system 
components and how to use them. Keep in mind that the 
papers are for general technical communication purposes; 
they do not represent an I BM warranty or commitment to 
specific capabilities in the referenced products. 

Different structures and levels of detail may exist in the 
papers because they were written as technical articles by 
various developers of the System/38. In order to preserve 
their technical integrity and vitality, they have not been 
integrated relative to consistency of style, language, or 
method of presentation. 

Note that these papers will not be updated as changes are 
made over time to the System/38 products. 



--- -----
~,: =t~1 Product design and development IBM System/38 

Technical Developments General Systems Division 

G. G. Henry 

N. C. Berglund 

H. W. Curtis 

M. N. Donofrio, B. Flur, and R. T. Schnadt 

R. L. Hoffman and F. G. Soltis 

M. E. Houdek and G. R. Mitchell 

D. 0. Lewis, J. W. Reed, and T. S. Robinson 

E. F. Dumstorff 

F. X. Roellinger, Jr. and D. J. Horn 

J. N. Tietjen and W. E. Hammer 

D. T. Brunsvold 

J. W. Froemke, N. N. Heise, and J. J. Pertzborn 

R. A. Peterson 

3 

7 

11 

16 

19 

22 

25 

28 

32 

36 

38 

41 

44 

IBM S/38 TECH DEV, pp. 1-110, 1980 

Table .of contents 

Introduction to IBM System/38 architecture 

ENGINEERING TECHNOLOGY SUPPORT 

Processor development in the LSI environment 

Integrated circuit design, production, and packaging for System/38 

Memory design/technology for System/38 

UNDERLYING MACHINE STRUCTURE 

Hardware organization of the System/38 

Translating a large virtual address 

System/38 1/0 structure 

Application of a microprocessor for 1/0 control 

Microprocessor-based communications subsystem 

Microprocessor-based work station controller 

Microprocessor control of impact line printers for printing character-string data 

System/38 magnetic media controller 

Shared function controller design 

©1978 by International Business Machines Corporation. See individual articles for copying information. ISBN 0-933186-03-7. Printed in U.S.A. 



S. H. Dahlby, G. G. Henry, D. N. Reynolds, 
and P. T. Taylor 

V. Berstis, C. D. Truxal, and J. G. Ranweiler 

K. W. Pinnow, J. G. Ranweiler, and J. F. Miller 

C. T. Watson and G. F. Aberle 

R. E. French, R. W. Collins, and L. W. Loen 

P.H. Howard and K. W. Borgendale 

D. G. Harvey 

D. G. Harvey 

C. T. Watson, F. E. Benson, and P. T. Taylor 

H. T. Norton, R. T. Turner, K. C. Hu, 
and D. G. Harvey 

J. H. Botterill and W. 0. Evans 

C. D. Truxal and S. R. Ridenour 

R. 0. Fess and F. E. Benson 

H. T. Norton and T. R. Schwalen 

R. A. Demers 

J. K. Allsen 

47 

51 

55 

59 

63 

67 

70 

74 

78 

81 

83 

87 

91 

94 

97 

100 

HIGH-LEVEL MACHINE STRUCTURE 

System/38-A high-level machine 

System/38 addressing and authorization 

System/38 object-oriented architecture 

System/38 machine data base support 

System/38 machine storage management 

System/38 machine indexing support 

SOME ADVANCES IN PROGRAMMING SUPPORT 

User-System/38 interface design considerations 

Introduction to the System/38 Control Program Facility 

System/38 data base concepts 

System/38 work management concepts 

The rule-driven Control Language in System/38 

File and data definition facilities in System/38 

File processing in System/38 

Table-driven work management interface in System/38 

The generalized message handler in System/38 

System/38 common code generation 

103 Authors 

109 Appendix: Reader's guide 



States that new concepts in System/38 architecture include a layered structure providing consistent interfaces, a 
unique high-level machine architecture, and capabilities for virtual addressing and task management. Support 
functions are summarized and architectural concepts are described. 

The IBM System/38 is a new general-purpose data 
processing system designed to provide a high level 
of function, ease of use, reliability, serviceability, and 
nondisruptive growth. It supports advanced data 
base and interactive work station applications as well 
as traditional batch applications. These extensive 
capabilities are made possible by the use of novel 
architecture and design concepts, advanced techno­
logies, and new implementation of system compo­
nents, both hardware and software. The new concepts 
include a layered structure providing consistent inter­
faces, a unique high-level machine architecture, 
and powerful capabilities for virtual addressing and 
task management. 

This paper first summarizes the user support provided 
by the System/38 components and then introduces 
some of the salient architectural concepts that per­
vade the design of System/38. 

System function 
System/38 consists of a machine and three major 
IBM licensed programs: Control Program Facility 
(CPF), RPG III, and Interactive Data Base Utilities 
(IDU). The CPF provides operating system functions 
to other programming components and to the end­
user. RPG III is an enhanced version of the well­
established RPG II language. IDU provides inter­
active data entry, source language entry, and query 
functions. These components fit together to provide 
a comprehensive and cohesive set of capabilities 

HENRY 

oriented to support advanced user requirements. 

Figure 1 shows a high-level view of the system, in­
cluding the dependency of all programming upon 
the machine instruction set and the dependency of 
RPG III and IDU upon CPF functions. 

Some key characteristics of the user-oriented support 
are: 
• Extensive data base facilities providing field-level 
described data, program independence from _physical 
file structures through use of logical files, and simul­
taneous access to data by multiple users. The data 
base concepts are discussed by Watson, et al [I]. 
• Flexible work management functions supporting 
several different application approaches and allowing 
dynamic sharing of storage and other system re­
sources. Work management aspects are treated by 
Norton, et al [2,3]. 
• High levels of device independence provided to 
programs-including screen formats and local/remote 
transparency. Various aspects are covered by Truxal 
and Ridenour [5], and Fess and Benson [12]. 
• New control language and data definition inter­
faces providing consistent access to all control 
program and utility functions. These are discussed 
by Botterill and Evans [ 4] , and by Truxal and 
Ridenour [ 5] . 
• Comprehensive and integrated authorization facili­
ties, which are reviewed by Berstis, et al [ 6] . 
• Powerful program development facilities such as 

Introduction to 
I BM System/38 

architecture 

G.G. Henry 

library, test and debug, source maintenance, and 
data base utility functions. 

The remainder of this paper addresses the key con­
cepts of System/38 architecture. 

Control 
Program 
Facility 

System/38 machine 

Figure 1 A high-level view of the architecture of 

System/38 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

INTRODUCTION TO IBM SYSTEM/38 ARCHITECTURE 3 



System-oriented design and implementation 

A total-system approach was used for the architec­
ture, design, and implementation of System/38. 
That is, system-wide design trade-offs were made 
during the design and implementation of all compo­
nents of the system. This approach toward eliminat­
ing potential problems of design mismatch was sup­
ported by imposing no internal compatability con­
straints with previous systems. Furthermore, al­
most all design and implementation of hardware 
and programming was done in the same location by a 
single organizational entity. This total system trade­
off and design process has resulted in a high degree 
of fit between system components, thus eliminating 
redundancy and unused function. 

Unified function 
The combination of the System/38 machine and the 
programming products provides a very high level of 
function, such as extensive data base facilities. 
Typically, these kinds of advanced functions have 
been provided on other systems by discrete "sub­
systems," each having different user interfaces, 
specific configuration restrictions, special resource 
tuning requirements, and separate installation and 
service characteristics. Such a subsystem approach is 
partly the result of the lack of system-oriented design 
and implementation and the lack of well-defined 
architectural structures. 

In System/38, the total-system design approach 
allows these advanced functions to be integrated 
into a single machine and a single control program 
with a single user interface to all functions on all sys­
tem configurations. That is, all control program 
functions (other than 1/0 dependencies) are auto­
matically available in all System/38 installations. 
Furthermore,.no "system generation" or complicated 
tuning procedure is required to adapt the program­
ming products to different machine configurations. 

Figure 2 shows the System/38 integrated structure 
contrasted with a general subsystem structure. 

4 HENRY 

Layered system structure 

This approach to system-wide design and integrated 
function is supported by the layered structure of the 
system. System/38 support is structured into hori­
zontal layers, each providing a consistent interface 
that is not dependent upon implementation details 
of the other layers. 

Most systems have a layered structure to some degree. 
The significant concepts of the System/38 approach 
are that there is only one interface for any general 
type of usage; this interface is designed such that 
all functions are presented in a consistent and extend­
able fashion, and the interface does not require or 
permit use of implementation details of the next 
lower level of system support. 

Subsystem approach 
Different user interfaces 

Many SYSGEN 
versions to 
select function, 
hardware 
configuration, etc. 

System/38 approach 

No SYSGEN _______ _. 

versions 

Data 
base 

Figure 2 Unified structure of System/38 design 

Work station 
support 

Base control program 

Machine 

Single user interface 

_i 

Control Program Facility 

Machine 

Duplication of 
function, complex 
resource tuning, etc. 

All functions integrated 
------for optimal efficiency, etc. 

IBM S/38 TECH DEV 



The System/38 RPG III and Interactive Data Base 
Utilities provide traditional high-level language and 
utility interfaces. 

The Control Program Facility [7] executes on the 
System/38 instruction interface and provides three 
interfaces, each providing consistency and implemen­
tation-independent characteristics similar to those 
of high-level programming languages. 
• A single new control language [4] provides access 
to all end-user CPF execution functions through a 
consistent and extendable high-level interface. This is 
in contrast to having one specialized control language 
for the system operator, another for the work station 
user, a third for the programmer, a fourth for the user 
of a system utility function, and so forth. 
• A single new data and file definition language 
[ 5] supports both data base and device file defini­
tions for all devices. This permits easy interchange 
of devices or device files with data base files without 
modifying programs or file definitions. 
• The data management function interfaces [ 12] 
used by both IBM and user programs provide high­
level capabilities and consistency across all devices 
and data base functions. 

High-level machine architecture 
Just as the program product interfaces are improved 
in structure and consistency over previous such inter­
faces, so is the machine instruction set interface. 
The primary characteristic of System/38 is its unique 
high-level machine interface [8, 9]. This provides 
many of the basic supervisory and resource manage­
ment functions previously found in operating 
systems. 

Examples of the System/38 advanced instruction 
set functions include physical record level data 
management, tasking management, queue manage­
ment functions, generic and late-bound computation­
al functions, and. high-level program linkage 
functions. To provide these functions, it was neces-

HENRY 

sary to employ new architectural concepts. For 
example, the instruction interface addressing struc­
ture, discussed by Dahl by, et al [9] , is an "object­
oriented, uniformly addressable store"; that is, all 
objects reside in storage and all storage on the system 
can be addressed with a single device-independent 
addressing mechanism. Furthermore, the addressing 
mechanism incorporates integrity and authoriza­
tion checking [ 6] for valid usage. (The use of objects 
is discussed by Pinnow, et al [10], and machine stor­
age management is discussed by French, et al [13] .) 

This generalized addressing scheme demonstrates one 
of the most critical general characteristics of the 
System/38 instruction set. Its structure is inde­
pendent of underlying implementation characteristics 
such as hardware registers, physical 1/0 access 
mechanisms, detailed data formats, and control block 
structures. 

The significance of this approach is that it extends 
the advantage of high-level language interfaces to 
lower levels of programming; namely, the high-level 
nature of the System/38 instruction set provides 
the capability to make design and implementation 
changes to the hardware and functions implemented 
in microprogramming without affecting IBM or user 
programming. In addition, by placing advanced 
functions such as data base in microprogramming, 
a tight fit with the hardware structures can be 
achieved. 

The concept of a layered system structure extends 
into the machine itself. There are three layers of sup­
port: the physical hardware, and two layers of 
microprogramming. The boundaries between these 
layers represent internal design criteria and are not 
available for external use. 

Figure 3 illustrates the total System/38 structure, 
including the internal machine divisions. 

Several new hardware technologies are used in Sys­
tem/38 [14, 15, 16]. The combination of advanced 
capability provided by these technologies and the 
system-wide design approach result in new hardware 
structures and capabilities. For example, very power­
ful virtual addressing capabilities [ 11] and task man­
agement support functions [8] are provided by the 
hardware. 

Control 
Program 
Facility 

System/38 instruction set 

Microprogramming layer 

Microprogramming layer 

Hardware 

Figure 3 The total structure of System/38 

Summary 

Internal 
IBM divisions 
of effort 

From a user viewpoint, System/38 offers a high level 
of function and ease of use. This is made possible 
by the use of advanced approaches in the underlying 
structure, design, and implementation of the system 
components. The salient elements are: 
• Use of new hardware technology 
• Application of system-wide architecture concepts 
across all system components 
• Implementation of advanced technical approaches 

The papers that follow address some of these techni­
cal elements in more detail. 

References 
1. C.T. Watson, F.E. Benson, and P.T. Taylor, "System/38 

data base concepts," page 78. 
2. H.T. Norton, R.T. Turner, K.C. Hu, and D.G. Harvey, 

"System/38 work management concepts," page 81. 
3. H.T. Norton and T.R. Schwalen, ''Table-driven work 

management interface in System/38," page 94. 
4. J.H. Botterill and W.O. Evans, "The rule-driven Control 

Language in System/38," page 83. 

INTRODUCTION TO IBM SYSTEM/38 ARCHITECTURE 5 



5. C.D. Truxal and S.R. Ridenour, "File and data definition 
facilities in System/38," page 87. 

6. V. Berstis, C.D. Truxal, and J.G. Ranweiler, "System/38 
addressing and authorization," page 51. 

7. D.G. Harvey, "Introduction to the System/38 Control 
Program Facility," page 74. 

8. R.L. Hoffman and F.G. Soltis, "Hardware organization of 
the System/38," page 19. 

9. S.H. Dahlby, G.G. Henry, D.N. Reynolds, and P.T. 
Taylor, "System/38-A high-level machine," page 47. 

10.K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 
object-oriented architecture," page 55. 

11.M.E. Houdek and G.R. Mitchell, "Translating a large 
virtual address," page 22. 

12. R.0. Fess and F.E. Benson, "File processing in 
System/38," page 91. 

13.R.E. French, R.W. Collins, and L.W. Loen, "System/38 
machine storage management," page 63. 

14.H.W. Curtis, "Integrated circuit design, production, and 
packaging for System/38," page 11. 

15.M.N. Donofrio, B. Flur, and R.T. Schnadt, "Memory 
design/technology for System/38," page 16. 

16.N. C. Berglund, "Processor development in the LSI en­
vironment," page 7. 

6 HENRY IBM S/38 TECH DEV 



Presents the problems of testing in the LSI environment and describes the design techniques used in the 
development of the System/38 to solve the testing and test generation problems. 

The IBM System/38 central processor is implemented 
with IBM's new high performance large scale inte­
gration technology. This technology uses the master­
slice concept wherein each chip contains a fixed num­
ber of logic circuits of various types-receivers, 
drivers, nands, etc.-which the system logic designer 
interconnects to perform a function. The processor 
is made of many such chips, each uniquely person­
alized, as described in the article by Curtis [ 1] , 
to perform a portion of the total function. The pro­
cessor, which consists of 29 LSI logic chips with 
approximately 20,000 circuits and five arrays, is 
packaged on one planar board, 10 by 15 inches. 
This concentration of function presents significant 
new problems in many phases of development and 
manufacturing. In particular, the requirements of 
manufacturing testing must be considered on a par 
with the needs of the system designers. 

The principal problem in designing with LSI is the 
inaccessibility of internal signals. This is critical 
to problem isolation during the initial debug of 
engineering prototype hardware, during manufactur­
ing testing, and in the customer environment. The 
conventional techniques used in the past involved 
testing the chips with complex sequential patterns 
which would attempt to exercise all the internal 
circuits and to propagate the state of internal signals 
to the output pins of the chip where they could be 
observed. This process is too complex to lend itself 
to efficient utilization of program-generated test 
data. System/38 uses a design system called level 

BERGLUND 

sensitive scan design (LSSD) to solve problems of 
testing and test data generation at all levels of pack­
aging-chips, boards, and system. The LSSD 
technique allows the LSI chips (Figure 1) to be com­
pletely tested for de faults using computer-generated 
test data. 

The LSSD technique 
In the LSSD technique, the only type of storage 
element (other than arrays) permitted in a logic 
design is called a shift register latch (SRL), shown in 
Figure 2. An SRL is a pair of polarity hold latches 
(type D) with the output of the first latch, called Ll, 
permanently connected to the data input of the 
second latch, called L2. The L1 latch is a functional 
storage element to be used by the system designer. 
The purpose of the L2 latch is to improve the 
effectiveness of chip testing. The LI and L2 latches, 
as connected, form a single stage of a shift register. 
The L2 latch has a single data input which is con­
nected to the output of the LI latch and a single 
clock input, called the B clock, which is used to load 
the L2 latch from the L1. The L1 latch can be set 
from two sources because it has to function as part 
of the test system and as a storage element for the 
system designer. 

One input, called the scan data input (SDI), is re­
served to be connected to the output of another L2 
latch on the LSI chip. A clock input, called the A 
clock, is used to clock data from the SDI into the L1 
latch. The other input is the normal functional data 

Processor 
development in the 

LSI environment 

N.C. Berglund 

input used by the designer. A separate clock input, 
called the system clock input, is used to load data 
from this input. All the SRLs on the entire chip are 
connected together into a long shift register by con­
necting each L2 output to another L1 SDI. The first 
L1 latch in the shift register is connected to a chip in­
put pin which is designated as SDI for this chip. 
The output of the last L2 in the shift register is con­
nected to a chip output pin which is designated 
scan data out (SDO) for this chip. The A and B clock 
inputs of each SRL are connected in common to a 
pair of chip input pins designated as the A and B 
clock inputs (scan clocks) for this chip. The designer 
has lost the use of four chip pins and the circuits re­
quired to implement the L2 latches and associated 
clock drivers, but the connection of the SRLs into a 
shift register in no way interferes with the normal 
functional operation of the chip. When the chip is 
tested, the four pins and the L2 latches enable the 
test system to control and retrieve the contents 
of any storage element on the chip by means of a 
simple shift technique. 

PROCESSOR DEVELOPMENT IN THE LSI ENVIRONMENT 7 



SDI o-----
A clock o----+-,._ 

B clock o----+-,... 

Input I 0---~llof 

System clock Cl o----+-,._ Cl 

System clock C2 o----t-,... C2 

., 
I 
I 
I 
I 
I ..------------------ _, 

' I 
L 

Output J 

-------<1 Output J + 1 

Input I+ 2 o----+--------"'\ 

Figure 1 Typical LSSD LSI chip 

A clock 

System clock 

2 dock de;.,,:,:: o---._ 

------------. -
I 
I 
I 

Figure 2 Shift register latch 

8 BERGLUND 

__________ .....--L1 

I 
I 
I 
I 
I .-------- -----

-- - --o SDO 

+ L2 output 

Chip testing 
When a chip is tested, a test system provides a test 
pattern, which is a serial string of binary data, to the 
SDI pin of the chip. It operates the scan clocks (A 
and B) causing the test pattern to be shifted 
(scanned) into the SRLs on the chip. This test pat­
tern, which now resides in the latches on the chip, 
and stimuli applied to the chip input pins cause the 
combinatorial logic on the chip to take some parti­
cular state. Some of the combinatorial logic is con­
nected to SRL data inputs and some is connected 
directly to chip output pins (Figure 1 ). The output 
pins can be observed to determine if the combina­
torial logic is functioning properly; but, to test the 
logic which is connected to SRL data inputs, the sys­
tem clocks must be applied to transfer the state of 
the combinatorial logic into the SRL LL The test 
system applies a pulse to some or all of the functional 
clock inputs of the chip and this changes the state of 
some or all of the SRLs. The test system applies the 
scan clocks once more, this time observing the serial 
binary data coming out of SDO for this chip. This 
data represents the state of the SRLs after the system 
clocks were operated (which is the same as the state 
of the combinatorial logic before the system clocks 
were applied). The data is compared to the expected 
state of the SRLs as determined from a simulation 
model. In this manner the logic on the chip is tested 
for typically 98% to 100% of all de faults with pro­
gram-generated test data. 

No complex sequences of system clocks are necessary 
to test all stages of counters, shift registers, etc., 
which are buried in the logic of the chip. When using 
the LSSD technique, patterns are loaded to test all 
stages of counters, etc., without stepping the counter 
through all its states. Each system clock will be 
pulsed no more than once per test pattern, and this 
will be sufficient to test the combinatorial logic 
connected to the data input, the clock driver of the 
SRL, and the SRL itself. 

Circuit cost considerations 
But what of the cost of such a system? On first 

IBM S/38 TECH DEV 



analysis, the LSSD system appears to carry a signifi­
cant overhead in unusable circuits. The extra input to 
the LI latch, the L2 latch, and the extra clock 
drivers do require circuits which are then unavailable 
to the designer for his unrestricted use in implement­
ing the processor function. These circuits represent 
the hardware cost of LSSD and they can approach 
20% of the available circuits. These circuits do not, 
in fact, have to remain strictly as overhead because 
they can be used for implementing the processor 
function and for several other features in addition 
to their use in the LSSD system. 

At the chip level, for example, the L2 latch can be 
used to make functional shift registers, counters 
and control latches. This is accomplished by logically 
OR-ing a system clock with the B clock input to the 
L2 latch. The A and B clock inputs are used only 
when the chip is tested so no interference exists if the 
L2 is used functionally. When combined with a 
2-phase, non-overlapping clock, the L1 and L2 latch 
acts as a master-slave storage element which can be 
used to implement any function that can be imple­
mented with the more traditional storage elements 
(J-K flip-flops, etc.). Furthermore, the L2 latches of 
a register provide a double buffer function which has 
many uses such as a backup register for retry or as a 
double buffer for data storage. 

The 2-phase clock system, while appearing to present 
performance disadvantages for counters, etc., (since 
two clocks are required to advance a counter or shift 
register by one position), can actually be used to ad­
vantage where overlapped processing is used. Fre­
quently, in high performance processors, the execu­
tion of the next cycle will begin before the current 
cycle completes. The SRL is uniquely suited to this 
since it consists of two independently clocked 
latches. The L2 can be used to hold the information 
necessary for the current cycle while the L1 is loaded 
to begin the next cycle. In the System/38 processor, 
more than 85% of the L2 latches are used function­
ally; these and other uses to be described serve to 
overcome the hardware cost of LSSD. 

BERGLUND 

Test patterns 
By extending the LSSD shift register concept to the 
planar level, the board can be tested in a manner 
consistent with the means for testing chips. All 
the chips on the planar are connected into one long 
shift register, as indicated in Figure 3, by connecting 
the SDO of one chip to the SDI of another. SDI of 
the first chip and SDO of the last chip in the shift 
register are connected to planar input/output pins. 
Test patterns for the entire planar are computer gen­
erated in the same manner as for the chips. In prac­
tice, the chips are grouped into several shift registers 
of shorter length which are loaded in parallel to 
reduce test time. The planar is inserted in a test fix­
ture, test patterns are loaded into the SRLs of 
every chip, stimuli are applied to the planar input 
pins, and the system clocks are pulsed. The output 
pins are measured, and the SRLs are scanned out; 
both are compared to the expected results. Essenti­
ally, no additional hardware is required to support 
planar test because the LSSD hardware in each chip 
is also utilized for this purpose. This technique tests 
the entire processor before it is installed in a system. 

Service control 
adapter 

Figure 3 System/38 planar board and interfaces 

The same technique is applied again at the next level 
of packaging. The LSSD technique is used at the 
system level in the customer environment to provide 
a processor checkout each time the machine is turned 
on, or when necessary to aid service personnel in 
problem isolation. The testing problem in the field 
is more complex, however, since the planar is mount­
ed in a system and not in a test fixture. In the sys­
tem, the planar signal pins are connected to channels, 
memories, etc., hence, they are not directly observ­
able. But the processor SRLs can be controlled and 
they are connected to 90% to 95% of the logic, so an 
effective test can be performed. To extend the LSSD 
concept to the system level, the planar I/Os-SDI, 
SDO, A and B clocks-are connected to the system 
control adapter (SCA). The SCA is a separate 
microprocessor (not on the planar) used to perform 
several system maintenance-related tasks. The SCA 
has the ability to provide serial data on the SDI and 
the ability to observe the serial data on SDO while 
pulsing the A and B clocks to the shift registers on 
the planar. Hence, the state of nearly every storage 
latch on the entire planar can be observed and 

Planar board 

Control Main 1/0 
store store channel 

PROCESSOR DEVELOPMENT IN THE LSI ENVIRONMENT 9 



controlled from the SCA. A small amount of mainte­
nance interface logic on the planar gives the SCA the 
ability to shut off the system clocks to the processor 
and to pulse those same system clocks for test 
purposes. (The latches in the maintenance interface 
logic cannot be scanned because they function in 
conjunction with the SCA to allow the latches of the 
processor to be scanned.) With this support, the SCA 
reads test patterns from a system file, loads them into 
the latches on the planar, pulses the system clocks, 
retrieves the contents of the latches, and compares 
the results to the expected results that are also ob­
tained in the file. 

Historically, processors are tested in the field with 
diagnostic programs. With the LSSD technique, 
test patterns can set up conditions to test for specific 
faults much easier than can be done by diagnostic 
programs which are limited to the capabilities of the 
machine instruction set. LSSD patterns provide, 
however, only a de test of machine operation. Time 
dependent or ac problems must still be located with 
diagnostic programs operating at machine speed. 
The combination of LSSD patterns and processor 
diagnostics provides an effective means to verify 
proper operation. 

Console operations 
Since the shift registers used in the LSSD concept 
provide a way of altering or displaying the state of 
every storage element in the processor, they lend 
themselves to the support of console manual opera­
tions. Typically all systems will have a console for 
displaying the contents of registers, memory, and cri­
tical control latches as an aid for diagnosis of hard­
ware and programming problems. System/38 
provides this function by using the LSSD shift regis­
ters as the means for displaying and altering machine 
registers from the console. 

The SCA has access to the latches through the same 
mechanism it used to conduct the LSSD test of the 
planar. Maintenance interface logic on the planar 

10 BERGLUND 

gives the SCA the ability to bring the processor 
to a controlled stop, while the SRLs are scanned, 
and to restart the processor when the scan is com­
plete. The SCA scans the data from the shift regis­
ters and formats it for display on the CRT. If the dis­
played data is altered, the SCA will take the altered 
value and replace it in the processor by scanning 
new contents into the machine latches. This tech­
nique saves the extra hardware normally required 
to get into and out of the facilities to be displayed 
and altered. This technique further provides the 
capability to alter and display every latch in the 
processor. 

Concluding remarks 
In System/38 IBM has found the LSSD technique to 
be a cost-effective solution for processor design in 
the LSI environment. LSSD, while conceived to solve 
LSI chip test problems, has been used to provide an 
integrated test and maintenance approach from the 
chip to the system level. The circuit overhead and in­
herent restrictions of a single storage element design 
are overcome with no significant sacrifice in cost or 
performance through functional use of the L2 latches 
and by capitalizing on the unique characteristics 
of an LSSD design. Program-generated test data, 
high test coverage, and the ability to observe and 
control every latch are valuable LSSD attributes 
which were used to reduce the cost of both develop­
ment and manufacturing and to raise the quality of 
the shipped system. 

References 
1. H.W. Curtis, "Integrated circuit design, production, and 

packaging for System/38,'' page 11. 

IBM S/38 TECH DEV 



Discusses steps in the production and packaging of logic chips for System/38. Includes discussion of circuit and 
chip topology, processing of the master slice, design automation, and packaging. 

This survey ·paper on System/38 semiconductor component technology represents the summation of technical contributions 
made over many years by East Fishkill Development and Manufacturing personnel too numerous to mention. 

The announcement of System/38 provides the first 
public disclosure of a new level of compatibility in 
bipolar, integrated-circuit, array and logic technology. 
Based on Schottky T2 L circuitry with a nominal de­
l'!Y of about 3 ns per gate, the new logic chips are less 
than 25mm square, contain up to 704 logic gates plus 
more than 60 off-chip driver circuits, employ three 
layers of interconnection wiring above the silicon 
surface, and are physically attached to ceramic single­
chip carriers by 132 solder connections. A unique 
feature at this level of integration is the logic de­
signer's ability, through a corporate-wide design auto­
mation system, to request almost any desired inter­
connection of all or part of the 704 available logic 
circuits. This is accomplished through the production 
use of electron-beam direct exposure of photoresist­
coated wafers. Interchangeable with optical mask 
technology, the electron beam is used at several 
process steps to avoid the use of masks and their 
attendant fabrication time and yield problems. 

All logic chips, regardless of ultimate system func­
tion, are produced with the same optically defined 
device patterns in the silicon; a silicon wafer contain­
ing these repetitive device structures in each chip area 
is termed the "master slice." As the need for specially 
designed "part number" circuit configurations arises, 
"personalization" through metallic interconnection 
between devices and between individual circuits is 
accomplished using electron-beam photolithographic 
technology. The logic designer's flexibility, using this 
"open part number set" approach, enables par­
ticularly efficient use of silicon and of packaging 
space and materials. 

In the material which follows, logic circuit and chip 
topology will be discussed, the geometrical form and 
dimensions of devices and metallization will be iden­
tified, and design automation capability will be out­
lined, highlights of the electron beam's role will be 
described, and the method of single chip packaging 
will be illustrated. 

Circuit and chip topology considerations 
Each chip in the System/38 master slice contains a 
total of over 7 ,000 resistors, diodes, and transistors. 
These devices are arranged in a series of narrow bands 
across each chip, and take up a total area less than 
one-half the chip area. The bands are divided into 
rectangular circuit component areas. The slightly 
wider rows separating the device bands are used as 
channels along which the first level of wiring is 
placed. The second level of wiring is placed at right 
angles to the first, and a second level conductor may 
be electrically connected to the first level wiring at 
any intersection by providing an etched via at the de­
sired location in the insulating layer between the 
conductors. 

First level wiring directly above the device bands 
can be configured to provide any of over 100 logic 
functions in each circuit area to meet design needs. 
Of these possibilities the predominant logic circuit in 
System/38 chips is a Schottky T2 L gate with either a 
three- or four-emitter input transistor, the two assoc­
iated Schottky barrier diodes, and four resistors. 
Power for these logic gates is supplied from a 1.5 
volt bus. An additional power supply level, 4.5 volts, 

Integrated circuit design, 
production, and packaging 

for System/38 

Huntington W. Curtis* 

is used by emitter-follower off-chip drivers, necessi­
tated by the increased IR drops and capacitance of 
the long path lengths compared to the on-chip 
interconnections. 

One further configuration consequence warrants 
discussion: the problem of how, with a limited 
number of off-chip connections, to test a chip com­
pletely. Of the electrically conducting solder 
connections to the chip, 94 are available for signal 
input/output use; the remainder are allocated for 
power supply distribution. At a much lower level of 
integration than employed here, a chip may provide 
only combinational logic, in which each signal pattern 
applied to the inputs determines a corresponding 
unique signal pattern at the output ports; for this 
case, a test pattern for complete testability may 
readily be derived. At the 704-circuit LSI level avail­
able in System/38, however, sequential logic within 
a chip must be employed; that is, memory registers 
or latches store intermediate results of several levels 

*The author was associated with the IBM System Products 
Division (now the Data Systems Division) in East Fishkill, 
NY, when this paper was written. He is now at IBM IRD 
Medical Systems, Mt. Kisco, NY. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

CURTIS INTEGRATED CIRCUIT DESIGN, PRODUCTION, AND PACKAGING FOR SYSTEM/38 11 



E 
I 

B I SBD 
I 

P+ Isolation edge 

Subcollector outline 

c 

t 
2µm 

P+ Resistor 

N- Epi 
Epitaxy 

! 
N+ 

Figure 1 Top and section drawing of transistor, Schottky barrier diode, and resistor 

between input and output. Testing by output-input 
comparison in this case would be prohibitively 
lengthy, even for a single chip. 

This problem has been solved by additionally con­
necting all required latches as a serial shift register. 
Not used as such in the normal computer logic 
applications of a chip, the shift register latch function 
is available in testing to read in initial settings, or to 
read out memory states after one logical operation, 
thus simplifying the testing problem from sequential 

12 CURTIS 

to combinational logic. Only four terminals (input, 
output, and two shift clocks), are required for this 
important feature, leaving 90 1/0 ports for the logic 
designer's use. 

Master slice 
Starting with polished 82 mm diameter wafers cut 
from single crystal silicon, the familar steps of sub­
collector and subisolation diffusion, epitaxial silicon 
layer growth, collector reach-through diffusion, base 

and resistor diffusion, and emitter diffusion are 
carried out. Appropriate sequences of silicon oxida­
tion, application of photoresist, exposure to light 
through mask patterns, and development and etching 
determine the location, type, and spacing of the 
devices within each chip area. Figure 1 depicts the 
resulting configuration of a typical transistor and 
Schottky diode clamp, and also the contact at one 
end of a resistor, after master slice processing has 
been completed. Some typical dimensions are as 
follows: epitaxial layer thickness 2 µm; transistor 
emitter top surface, 3 µm x 8 µm; resistor 4.5 µm 
x 70 µm; Schottky diode, 5 µm x 6 µm. From these 
dimensions it should be evident that, although most 
of the processing steps are conventional, many im­
provements in process control and photolithography 
precision have been achieved to provide the required 
circuit density. 

The last steps in master slice processing include 
etching openings in a blanket surface insulating layer 
for later contact to devices by metallic conductors 
in the personalization process, vacuum depositing a 
thin platinum layer over the entire wafer, and sinter­
ing to form platinum silicide in all contact openings, 
thus simultaneously providing ohmic contacts and the 
Schottky barriers. After unreacted platinum is re­
moved by etching, the wafer is placed in stock until 
required for personalization. 

Design automation 
In the development of System/38, use is made of an 
engineering design system at two levels of packaging: 
First, the interconnection of the devices and resulting 
circuits within the master slice chip areas to provide 
desired logic chip part numbers; and second, the de­
sign of the wiring patterns of the next level of pack­
aging, i.e., the planar board on which the logic and 
array single chip modules are mounted and are 
interconnected. The objective of this system is to 
minimize manual intervention during the design pro­
cess. Identical versions of this engineering design 

IBM S/38 TECH DEV 



system are now used at more than 25 IBM locations 
worldwide. 

The chip designer's input to the system is a descrip­
tion of the logical functions that a chip is to perform. 
The automated system provides a logic diagram as a 
printed output, through simulation performs a design 
verification, and, when this meets the designer's re­
quirements, does the necessary transformations to 
generate the physical design of shapes and patterns 
and their precise locations on each of the three 
variable-format mask levels needed in the personal­
ization process. In addition, the system generates the 
complete set of data required for functional testing 
of each chip. 

In performing the automated design function for a 
particular master slice type, the technology param­
eters for that type are stored as a set of rules. The 
physical design of a logic chip resulting from a de­
signer's input goes through the following steps. 

Preliminary checking for possible rules violations such 
as logic errors, fan in or fan out violations, exceeding 
chip circuit count, or exceeding chip input/output 
connection count. 

Automatic placement of logic circuit gate locations, 
to minimize wiring channel use and to allow for maxi­
mum circuit utilization (out of the 704 possible cir­
cuits in the case of System/38). 

Automatic wiring which, together with the placement 
function, results in the decision of the final location 
for all interconnection patterns on the chip. 

Shapes generation which, through use of a graphic 
language, identifies the optical mask or electron­
beam patterns needed by manufacturing in appro­
priate personalization process steps. As part of this 
shapes-generation step, computer based checking 
is performed for possible rules violations on spacings, 
overlaps, or other shape constraints. This checking 

CURTIS 

function includes a physical net check to assure 
that allowable signal line voltage drops are not ex­
ceeded, and that maximum capacitance rules affect­
ing circuit speed are not violated. 

Test generation is also performed automatically, and 
this digital information, together with the results 
of the other design steps, is consolidated as part of 
a single magnetic tape. This information is trans­
mitted to the manufacturing location, providing all 
information needed for rapid fabrication of engineer­
ing or production quantities of a chip "personalized" 
to meet the unique needs of the designer. 

Personalization 
In this portion of the integrated-circuit manufactur­
ing process, chip sites on master slice wafers receive 
interconnection wiring and terminal metallurgy, 
followed by functional testing. Information on the 
shapes message from the designer for a particular part 
number, after transformation to electron-beam con­
trol signals, determines the location of first-level 
aluminum-copper metal conductors, the location of 
via holes through a blanket of planarized Si02 de­
posited over the first metal pattern, and the location 
of second-level interconnecting wiring. Another in­
sulating layer is then deposited, and for all part 
numbers there is an identical pattern, optically ex­
posed, of via holes to be etched through this layer. 
A third interconnecting metal pattern, also identical 
for all part numbers, is used principally for power dis­
tribution across the chip, and this is followed by de­
position of a final Si02 insulating layer. Vias are 
etched through this final layer in a standard pattern, 
after which thin layers of chromium, copper and gold 
are vacuum deposited at 132 locations through a 
metal mask; then lead-tin solder is deposited through 
the metal mask. 

During development of individual chip designs (chip 
"part numbers") for the processor for System/38, 

the system's complexity required many engineering 
changes for improving the balance between indivi­
dual chip functions and performance in order to 
optimize system performance; thus, it was essential 
that designers receive very rapid delivery of chips for 
each new design. Although classical methods of 
optical mask production could be used for the three 
patterns unique to a specific part number, many pro­
duction steps with their associated delays are ob­
viated by use of direct electron beam "writing" of the 
required patterns on photoresist-coated wafers. 
In addition to the saving in time, greater precision 
in registration is obtained since each chip site is in­
dividually aligned at four points, as opposed to two­
point alignment of an optical mask to an entire wafer. 

Figure 2 shows the vertical structure added during the 
personalization process. The three layers of wiring 
are separated by deposited Si02 approximately 2 µm 
thick, and a 3 µm Si02 layer covers the third metal 
pattern. First and second level metal interconnecting 
patterns, each formed from a blanket deposited 
aluminum-copper alloy by a selective "lift-off" 
process rather than by subtractive etching in order 
to obtain better coverage over device areas, have a 
minimum width of 4.4 µm, with 2.5 µm spacing. 
In the wiring channels, first-level conductors are 5 
µm wide, the via holes etched to allow first to second 
level connections are 6.5 µmin diameter, and second 
level conductors are 6.5 µm wide. This "zero over­
lap via" technology, made possible by extremely 
tight photolithography tolerances, is an important 
factor in successfully achieving the present wiring 
density. The third metal layer is also aluminum­
copper, deposited to be twice as thick as the first and 
second layers. It is etched subtractively to provide 
conductors with four times the cross-section of the 
first and second (principally signal) conductors, 
thus improving power distribution capability. 

The last steps in the personalization process consist 
of etching holes in the top Si02 layer to reach third-

INTEGRATED CIRCUIT DESIGN, PRODUCTION, AND PACKAGING FOR SYSTEM/38 13 



First 
Si02 First (planar) Si02 

Lead-tin solder 

Second Si02 

Si3N4 

::::::::~~~~~~~i::L:LL~~~::::::::::::::::::::::::::::::::::::::::~~~sio2 

Silicon 

Figure 2 Three levels of metallization, showing silicon to solder ball electrical path 

level metal at each point where an external connec­
tion will be located and then vacuum depositing 
protective chromium-copper-gold metallurgy through 
a metal mask. Lead-tin solder is deposited through 
the same mask; when the mask is removed, wafers 
are heated until the solder flows and surface tension 
causes each solder pad to assume a hemispherical 
shape. The wafer is then ready for transfer to final 
test where electrical functionality of each chip is 
evaluated and locations on each wafer of defective 

14 CURTIS 

chips are automatically recorded. Finally, the tested 
wafers are diced, followed by automatic selection and 
storage by part number of all good chips. 

Packaging 

Logic circuitry for System/38 is supplied by 29 logic 
chips comprising a total of 22 part numbers. Each 
chip has signal 1/0 plus power connections in an area 
array on the device side of the chip. The carrier 
for each chip is a 25 mm square of 1.5 mm thick 

Figure 3 Closeup of mounted chip 

Figure 4 Single chip module before cover is added 

ceramic (Al 2 03 ) which has been fabricated with 116 
pins for planar board mounting. Figure 3 shows the 
metallization pattern on the ceramic surface in the 
vicinity of an attached chip. The outward extension 
of this pattern provides the required "space ex­
pander" function connecting each of the 116 rela­
tively wide-spaced module pins to appropriate chip 

IBM S/38 TECH DEV 



Figure 5 Planar board 

contacts. Figure 4 is a picture of the module with a 
mounted chip and with a copper ground plane in 
place to minimize coupling between signal leads. The 
completed single-chip module is protected by an 
aluminum cap, is designed to dissipate about one 
watt, and is air cooled. 

For System/38 a planar board, shown in Figure 5, 
provides interconnections among the logic modules 
and five array modules. The board is a multilayer 
conductor and insulator laminate with through­
plated holes for module pin connections to appro­
priate layers. Four signal distribution planes with 
copper conductor patterns determined by computer 
instructions generated in the design automation 
system are combined with four fixed-pattern power 
distribution and ground plane layers. The copper 
conductive patterns are supported by and are insulat­
ed from each other by epoxy bonded glass fiber 
sheets. These layers are further bonded into a single 

CURTIS 

planar sheet, into which the single chip module pins 
are inserted and soldered. 

Summary 

This description of some of the steps in IBM inte­
grated circuit production and packaging for System/ 
38 has centered on the logic chips used in the central 
processor. One key element in the successful use of 
the "open part number set" concept at the 704 cir­
cuit level of integration has been identified as a design 
automation system of extraordinary complexity and 
capability. A second is the use of electron-beam 
direct wafer exposure. For this powerful photolitho­
graphic tool, the principal features being utilized are 
its flexibility in handling a multiplicity of designs 
and its ability to align with great precision to each 
chip area being exposed; the ability to expose patterns 
too small for optical wavelengths is not yet required, 
and remains as a potential for further advances. 

There are many interrelated factors involved in tech­
nology development decisions; for example, chip 
size, circuit density, power dissipation, design flexi­
bility, testability, and the logistics problems of rapid 
response by manufacturing to engineering change re­
quirements. Some of the problems involved increase 
factorially with increases in circuit count per chip; 
very few are made easier. The trade-offs among such 
factors, in order to optimize the system performance 
and manufacturability, are particularly complex. 
This article has identified some of the principal 
features which are important to this extension of 
IBM's bipolar, integrated-circuit technology. 

INTEGRATED CIRCUIT DESIGN, PRODUCTION, AND PACKAGING FOR SYSTEM/38 15 



Memory 
design/technology 
for System/38 

N.M. Donofrio, B. Flur, and R. T. Schnadt* 

Three random access memory chip designs of 18K, 
32K, and 64K bits per chip'-all of them manufac­
tured in a new field effect transistor (FET) tech­
nology-allow fabrication of modules containing up 
to 256K bits. Compared to IBM's previous main 
memory modules, the new modules provide up to 32 
times improvement in module density. 

Both 32K- and 64K-bit chips are used in the 
System/38 random access memory cards. Each card 
contains 256K bytes of memory. 

The 64K-bit memory chip includes circuitry that pro­
vides additional function at the chip level, such as a 
high speed 8-bit register that allows for improved 
system data rates. 

The chips take advantage of the improved densities 
offered by the one device memory cell invented by 
IBM in 1967, and the added density efficiency of a 
new FET semiconductor technology and manufac­
turing process developed by IBM. In satisfying 
System/38 needs, the new memory array designs are 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

16 DONOFRIO, FLUR AND SCHNADT 

Describes a new FET technology for a family of single-cell array, random access, memory chips ranging in density 
from J 8K to 64K bits per chip. Shows array designs for control store module and for main memory modules. 

utilized to cover the need for high performance con­
trol store memory and high density (low cost)/mod­
erate performance main memory. The silicon and 
aluminum metal oxide semiconductor (SAMOS) 
process technology allows for the flexibility in per­
formance and density offered at the array chip and 
module level of assembly. The array chip densities 
and array chip performances for these new memory 
chips span a factor of 2.4 change in chip density 
(area/bit) for a factor of 3.1 change in chip per­
formance (access time). 

This paper will briefly describe the new FET process 
and the various memory array design and tradeoff 
considerations that result in this range of new tech­
nology offerings. 

Technology 
IBM's newly developed FET process represents a 
significant departure from other FET processes. 
The SAMOS process is an n-channel FET process 
which implements metal gates, relies upon silicon 
nitride to enhance gate reliability relative to gate 
shorts, and employs a conductive polysilicon field 
shield to control surface leakage. 

The objective of this technology was to provide 
high density memory chips that have acceptable 
performance characteristics, are small in size, simple 
in process, and offer optimum manufacturing yields. 

The process was developed and optimized for low 
cost memory chips by using one-device cell design 
(Figure 1) and minimizing the cell and chip area by: 
(1) eliminating contact holes in the cell, (2) using a 
doped oxide to provide a self-aligned diffusion 
source, (3) using the polysilicon field shield as the 
reference plate of the storage node capacitor to sim­
plify wiring in the cell, and ( 4) designing to tight 
lithographic ground rules. 

The process was developed to max1m1ze yield by 
minimizing process complexity and by incorporating 
on-chip redundancy. Process complexity was mini­
mized by reducing the number of discrete process 
and mask steps. Redundancy is implemented by a 
write once read only memory unit built into the 
second layer metal of each array chip. This memory 
unit is used in conjunction with appropriate on-chip 
address compare circuitry to allow one or more 
extra storage lines provided on the chips to be. used 
to replace a like number of possibly defective storage 
lines identified when the chips are initially tested. 
This significantly enhances productivity and reduces 
chip cost. 

*Mr. Donofrio and Dr. Flur are with the General Technology 
Division in Burlington, VT; Dr. Schnadt is with the System 
Products Division in Boeblingen, Germany. 

IBM S/38 TECH DEV 



Additionally, better reliability was achieved by using 
a multiple layer oxide/nitride gate dielectric and a 
multiple layer insulator between the first and second 
metal layers. An organic polymer layer is used as 
the final insulator layer over the second level metal­
lization. As many as four chips are then mounted 
on 2.5 cm (1 inch) metallized ceramic modules 
using conventional IBM chip mounting technology. 

Array designs 

High performance control store random access 
memory array module. In order to satisfy the need 
for a high performance memory to meet the control 
store memory application requirements of the 
System/38, an 18K-bit array chip, shown in Figure 2, 
has been developed that provides 36K bits worth of 
storage in a 2.5-cm square module. The module has 
an access and cycle time of 140 nanoseconds and 280 
nanoseconds respectively. This array chip is designed 
and organized to permit a module organization that 
meets System/38's performance, density, granularity, 
and reliability requirements with minimal system 
overhead (i.e., support circuitry requirement, cooling 
and space considerations). 

N 

T 
Figure 1 One-device-cell structure 

DONOFRIO, FLUR AND SCHNADT 

Design of the 18K-bit chip included a tradeoff of 
density for performance. By optimizing the area 
occupied by a new one-device-cell design in the new 
semiconductor technology, maximum array signal 
strength is obtained in the minimum possible time, 
allowing for best chip/module performance. 

High density main memory random access memory 
array modules. For main memory applications of the 
System/38, two array chips have been developed; one 
for cost/performance-driven applications and one for 
cost-driven applications. 

The 32K-bit array chip shown in Figure 3 provides 
128K bits of storage in a 2 .5-cm square module at an 

Figure 2 18K-bit array chip 

access and cycle time of 285 ns and 470 ns, 
respectively. The chip organization, performance, and 
function additionally allows for module level charac­
teristics that satisfy the System/38 application with 
minimal system overhead. 

The 64K-bit chip shown in Figure 4 provides 256K 
bits of storage in a 2.5-cm square module with an 
access and cycle time of 440 ns and 980 ns respec­
tively. This design achieves maximum density and 
minimum cost through minimum cell size and a new 
IBM· developed sensing circuit. The chip organiza­
tion, performance, and function for the 64K-bit 
chip, as for the 18K-bit chip and 32K-bit chip, allow 
for module level characteristics that satisfy memory 
system requirements with minimal system overhead. 

Figure 3 32K-bit array chip 

MEMORY DESIGN/TECHNOLOGY FOR SYSTEM/38 17 



Figure 4 64K-bit array chip 

Summary 
By using a family of single-cell array random access 
memory chips ranging in density from 18K to 64K 
bits per chip, the System/38 takes advantage of a new 
FET technology to provide memory modules cover­
ing a range of 36K to 256K bits in density and 140 ns 
to 440 ns in performance. Design and process 
decisions were made to optimize performance, per­
formance/density (cost), and density (cost) driven 
designs to provide the greatest flexibility to the 
System/38 in addressing its memory application 
needs. 

18 DONOFRIO, FLUR AND SCHNADT IBM S/38 TECH DEV 



Gives an overview of the hardware and microcode architectures for the System/38. Also describes how some 
functions traditionally found in programming systems are incorporated into the hardware design. 

The IBM System/38 hardware is designed to effi­
ciently support its high-level machine architecture. 
An engineering design objective was to take advan­
tage of new technologies such that certain high­
level functions would be implemented in hardware 
and microcode. As a result, functions such as task 
dispatching, queue handling, virtual storage transla­
tion, stack manipulation, and object sharing became 
a basic part of the hardware control structure. A fur­
ther objective was to provide for sufficient extenda­
bility to permit future implementation trade-offs. 

Figure 1 shows the hardware configuration of the 
System/38. This article describes the hardware or­
ganization and the functions used by the hardware 
control structure. 

Hardware organization 
System/38 hardware consists of a processor com­
municating over a high-speed channel to independ­
ently functioning I/O units. The processor and the 
I/O units have access to a main storage array. The 
System/38 processor, which is implemented in a new, 
high-performance large-scale integration (LSI) tech­
nology [1], fetches 32-bit micro instructions from 
the random access memory control store shown in 
Figure 1 (8K words for both 5381 Model 3 and 5). 
One micro instruction is executed for each processor 
cycle. The processor cycle times are 400 or 500 ns for 
the 5381 Model 3 (200 or 300 ns for the 5381 Model 
5), depending on the micro instruction operation. In 
a single cycle, either one- or two-byte arithmetic 

HOFFMAN AND SOL TIS 

operations may be performed on signed binary, 
unsigned binary, or packed format decimal data. 

A new, high-density metal oxide semiconductor 
field effect transistor (MOSFET) technology main 
storage [2] is available at two performance levels: 
1100 ns fetch cycle time for the 5381 Model 3 and 
600 ns fetch cycle for the 5381 Model 5. Data path 
width is four bytes to either memory. Available 
memory capacities are 512K, 768K, 1024K, 1280K, 
and 1536K bytes for either the Model 3 or 5. In 
addition, the Model 5 may have memory capacities of 
1792K and 2048K bytes. Error correction circuitry 
(ECC) is used in both models. 

Direct memory access for I/O units as well as for the 
processor is provided by the virtual address trans­
lation (VAT) hardware which converts 6-byte seg­
mented virtual addresses to main storage addresses. 
Address translation tables in main storage and a trans­
lation lookaside buffer in hardware provide mapping 
from virtual to real main storage addresses, as dis­
cussed by Houdek and Mitchell [3]. Virtual ad­
dresses are used in I/O operations, and page faults 
are allowed during data transmissions with low­
speed devices. 

Page faults are resolved by data transfer from second­
ary storage. Data is moved to main storage in 512-
byte page units from disk storage via the channel. 

Hardware 
organization of 
the System/38 

R.L. Hoffman and F.G. Soltis 

Each I/O device is connected to a controller which is 
connected to the channel. Magnetic media control­
le'rs (MMC) [4] are used for high data-rate devices 
such as disks, while microprogrammed I/O controllers 
(IOC) [5] handle a multiplicity of lower data-rate 
devices. 

Each system also includes a system control adapter 
(SCA) which shares an IOC with the keyboard dis­
play console. The SCA performs the system main­
tenance functions, including testing the hardware 
logic circuitry as described by Berglund [6]. 

Control structure 
System/38 manipulates a unit of execution called 
the "task." All computer systems need to control 
execution and, in multiprogrammed systems like 
System/38, switch between units of execution, i.e., 
tasks. Traditionally, an interrupt structure with a 
fixed number of interrupt levels or classes, built on 
the hardware, is transformed by a software supervisor 
into a multilevel, interrupt-driven system to bridge 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

HARDWARE ORGANIZATION OF THE SYSTEM/38 19 



Control 
store 

Processing 
unit 

OMA 

Disk Disk 

Figure 1 Hardware configuration 

MMC 

Diskette 
controller 

the gap between the actual hardware and the abstract 
concepts of multiprogramming. The System/38 re­
places this interrupt structure with a single tasking 
mechanism which is used to control all processing. 

A multilevel, queue-driven task control structure is 
implemented in microcode and hardware on the Sys­
tem/38. A task dispatcher implemented in microcode 

20 HOFFMAN AND SOL TIS 

1/0 channel 

IOC 

SCA 
CE/OP 
panel 

Keyboard 
display 
console 

IOC IOC 

Card 1/0 

allocates processor resources to prioritized tasks. 
1/0 and program processing tasks are integrated in a 
common dispatching structure, with their priorities 
adjusted for system balance. 1/0 processing takes 
place when system resources are available, not when 
an 1/0 interrupt occurs. 

1/0 and program processing requests are stacked in 
main storage on a linked list called the task dispatch-

IOC IOC IOC 

Communications 
controller 

ing queue (TDQ). The task dispatcher selects the 
highest priority request from the TDQ and gives it 
control of the processor. Instructions associated 
with this task, known as the active-task, are executed 
until control is passed to another task. 

A set of system control operations (SEND and RE­
CEIVE) are used to communicate between tasks and 
to pass control between tasks via the task dispatcher. 

IBM S/38 TECH DEV 



If the active task is to communicate with another 
task, it does so by sending a message to a queue in 
main storage known to both tasks. If the active 
task is to obtain a message from a queue, it executes a 
RECEIVE operation. If the message is available on 
the queue, the message is passed to the active task 
and processing continues. If the message is not avail­
able (e.g., it has not yet been sent), the active task is 
made inactive and the task waits for the message. 
The task dispatcher is then invoked to select the new 
active task from the TDQ. The task dispatcher is also 
invoked on a SEND operation if a task of higher 
priority than the active task is waiting for the 
message. If the waiting task is of lower priority than 
the active task, the task dispatcher is not invoked, but 
the processing request for the waiting task is placed 
on the TDQ. 

I/O in System/38 is implemented with a queue-driven 
command structure using the SEND/RECENE mech­
anism to pass information across the I/O interface, 
which is described by Lewis et al [7]. To a task, 
a device looks like another task. Commands to de­
vices and responses from devices are exchanged in 
the same way that messages are communicated be­
tween any two tasks in the system. The messages 
sent to the devices are specially formatted and con­
tain the device commands. In addition to individual 
commands, a complete channel program can be sent 
as a single message. Because a queue structure is 
used, command stacking is automatic. In a similar 
manner, the device sends response and status 
information back to a task via a main storage queue. 
Note that only commands and responses use the 
queueing structure; data transfers between devices 
and main storage are direct. 

High-level call/return functions are directly supported 
by another set of system control operations which 
provide the linkage mechanism between routines 
executing within the same task. The performance of 
programs written using structured programming tech­
niques is enhanced by the use of this mechanism. 
The same linkage mechanism is used by the hardware 

HOFFMAN AND SOLTIS 

to report program exceptions. With this mechanism, 
exceptions for any task (including such things as page 
faults) execute at the same priority level as the task 
itself. A low priority task incurring an exception 
will not interfere with the execution of higher priori­
ty tasks. 

Summary 

The hardware implementation of System/38 pro­
vides the foundation on which the high-level machine 
architecture is built. Through the use of advanced 
LSI technologies, System/38 achieves a high level 
of processor performance and reliability. The use 
of intelligent controllers for I/O device attachments 
distributes the I/O workload throughout the system. 

A unique aspect of the System/38 hardware and 
microcode is the incorporation of very powerful con­
trol functions. These functions provide a single 
mechanism which is used to control all processing in 
the system. Other high-level functions implemented 
in the microcode further enhance the flexibility 
and performance of the system. 

References 
1. H.W. Curtis, "Integrated circuit design, production, and 

packaging for System/38," page 11. 
2. M.N. Donofrio, B. Flur, and R.T. Schnadt, "Memory 

design/technology for System/38," page 16. 
3. M.E. Houdek and G.R. Mitchell, "Translating a large 

virtual address," page 22. 
4. J.W. Froemke, N.N. Heise, and J.J. Pertzborn, 

"System/38 magnetic media controller," page 41. 
5. E.F. Dumstorff, "Application of a microprocessor for 1/0 

control," page 28. 
6. N.C. Berglund, "Processor development in the LSI 

environment," page 7. 
7. D.O. Lewis, J.W. Reed, and T.S. Robinson, "System/38 

1/0 structure," page 25. 

HARDWARE ORGANIZATION OF THE SYSTEM/38 21 



Translating 
a large virtual 
address 

M.E. Houdek and G.R. Mitchell 

The System/38 supports a large virtual address space 
structure, large enough to contain all programs and 
data required by the system. To reference this space, 
a 48-bit virtual address yielding a 281-trillion-byte 
address space is implemented. This virtual space 
is very large compared to the portion of the virtual 
space that can be in main storage at any given time 
[1] . Since the processing unit references the virtual 
address space and the hardware references a physical 
main storage space, there must be a translation from 
the 48-bit virtual address to the smaller main storage 
address. Because the virtual address used in System/ 
38 is so very large, the conventional techniques which 
have been used to translate will not work efficiently. 
This article describes the translation process deve­
loped for this system. 

Translation 
The virtual address space is divided into 512-byte 
blocks called "pages." When a page resides in main 
storage, all 512 bytes of that page are located in an 
area of main storage called a "frame." The part of 
the virtual address that uniquely identifies that page 
is called the page address, and the part of the main 

22 HOUDEK AND MITCHELL 

Presents the unique aspects of the virtual storage structure in the System/38. Shows the development of the 
virtual address translation method and explains how a large virtual address is converted to a main storage address. 

storage address that identifies the frame is called the 
frame identifier (FID). The part of the main storage 
address that identifies the byte within the frame is 
identical to the virtual address part identifying the 
byte within a page. This byte address is called the 
byte identifier (BID). No translation needs to take 
place on the BID. However, the page address needs 
to be translated to the FID. 

The translation of the page address to the FID is 
accomplished by using two tables, a hash index and a 
page directory, as shown in Figure 1. The page dir­
ectory contains one entry for every frame in main 
storage. The index of a particular entry into the page 
directory is identical to the FID for that entry. Thus, 
the first entry of the page directory corresponds to 
the first frame of the main storage, the second en try 
to the second frame, and so on. 

One field of the page directory entry contains the 
page address of the virtual address located in the cor­
responding frame of the main storage. When this 
field matches the page address of the virtual address 
to be translated, the index of that page directory 
entry becomes the FID for that virtual page. Thus 
the FID translated from the page address, along with 
the BID from the virtual address together form the 
main storage address. 

Specific bits from the virtual address are combined 
or hashed by the hash generator to select an entry 
from the hash index _table. The selected hash index 

table entry contains an index into the page directory. 
A part of the page directory is reserved as a pointer 
or index to indicate where additional entries with 
the same hash are to be found, if there are any. 
Thus, all of the entries with the same hash value 
are found on a linked list (or chain) in the page dir­
ectory. The last entry on each chain is distinguished 
from the others by an end-of-chain indicator. 

During the translation of the virtual address, the page 
directory searching mechanism need only find the 
chain that contains the virtual page and search only 
those entries on that chain, looking for a match 
of the virtual page address. If a match is found, then 
the index of that page directory entry is the FID for 
that virtual page. If an end-of-chain bit is encountered 
before a match is found, a page fault is signaled to the 
page fault handling routine. This routine can then 
resolve that page fault by bringing the page corres­
ponding to that virtual address from secondary 
storage to main storage and updating . the page 
directory. 

If, at any given point in time, several virtual addresses 
were to hash to the same hash value, long page chain 
lengths would result and the performance of the 
machine would be degraded. It is therefore advanta­
geous to have many short page chains. This is 
accomplished by making the number of entries in the 
hash index table larger than the number of entries 
in the page directory and providing a hash generator 
that produces a uniform distribution of hash index 

IBM S/38 TECH DEV 



table entries. It can be shown [2] that, with this 
uniform distribution, the average number of page 
directory entries probed, N, is dependent on the ratio 
of the hash index table size to the page directory 
size, R, or 

N=1+-1-
2R (1) 

Thus, if the hash index table is twice the size of the 
page directory, the average number of probes is 1.25 
entries. 

If the hash generator does not provide a uniform dis­
tribution of hash index table entries, Eq. (1) does not 
hold and the average number of entries probed 
would increase since some en tries of the hash index 
table would be favored over others. Therefore, to 
minimize the average number of probes, the hash 
generator must provide a uniform distribution 
of hash index table en tries. The actual hashing 
algorithm required to provide the uniform distribu­
tion depends on how addresses are assigned. 

Assignment of virtual addresses 
Data structures or "objects" [3], as they are called 
in this article, are created, destroyed, grow in size, or 
shrink in size during the life of a computer system. 
In order to facilitate the handling of these objects, 
the virtual address space is divided into independent 
address spaces called "segments." Each segment 
consists of a linear sequence of addresses, from a 
starting virtual address to some maximum. One ob­
ject may be contained in a segment and then is allow­
ed to grow to the maximum size of the segment. 
Only the portion of the segment that contains data 
physically exists in main storage or secondary storage. 
Since the segment is generally larger than the object 
it contains, some of the virtual pages associated with 
the segment are not used. This leads to a sparse usage 
of the virtual address space. The portion of the vir­
tual address that uniquely identifies the segment is 

HOUDEK AND MITCHELL 

called the segment identifier (SID) and that portion 
of the address that identifies the page within the seg­
ment is called the page identifier (PID). 

Virtual address 

Hash 
generator 

Page address 

Hash index table 

Page 
directory 
index 

End 
of 
chain 

Byte 
identifier 

Frame Byte 
identifier identifier 

Main storage address 

Figure 1 Virtual address translation 

Consider a computer system with a fixed amount of 
main storage and secondary storage. There is a 
relationship between the number of objects and the 
average size of the objects in that system. The system 
can be characterized as having a large number of small 
objects, a small number of large objects, or some­
where in between. A system with a large number of 
small objects has a large SID and a small PID. 
Conversely, a system with a small number of large 
objects has a small SID and a large PID. 

In System/38, two segment sizes are allowed, a small 
segment of approximately 65,000 bytes and a large 
segment of approximately 16 million bytes. Depend­
ing on its potential size, an object can be assigned 
either to a small segment or a large segment, leaving 
a portion of the segment vacant. Thus, some mechan­
ism is needed to transform the nonuniform distri­
bution of virtual addresses to a uniform distribution 
of hash index table entries. This transformation is 
performed by the hash generator. 

Hashing algorithm 
The hashing algorithm must transform the sparse 
usage of the virtual address space to a uniform dis­
tribution of hash index table entries. It is also de­
sirable that consecutive virtual pages, small segments, 
or large segments cannot hash to the same hash index 
table location since there is a relatively high proba­
bility of consecutive pages or segments being 
referenced. 

Thus, the hash generator of Figure 2 is used to meet 
these requirements. The hash is developed by taking 
the exclusive-or of the reverse order of the PID bits, 
with the low-order bits of both the small SID and the 
large SID. 

TRANSLATING A LARGE VIRTUAL ADDRESS 23 



Virtual address 

Large 
segment 
identifier 

Figure 2 Hash generator 

Pointer into 
hash index table 

Byte 
identifier 

The effect of this hashing algorithm when the system 
is using a large number of small objects is that more 
bits from the SIDs and fewer bits from the PID are 
effective in generating the hash. On the other ex­
treme, in the system using a small number of large 
objects, fewer bits from the SIDs and more bits 
from the PID are effective in generating the hash. 
Thus, the hash generator compensates for variations 
in the number or the size of the objects contained 
in the system. 

Since virtual address bits are taken from both the 
small segment identifier and the large segment identi­
fier, the ratio of the number of large segments to 
small segments is not important to the effectiveness 
of the hashing algorithm. 

Conclusion 
The method has been described for translating a large 

24 HOUDEK AND MITCHELL 

virtual address to a comparatively small main storage 
address on System/38. A hash generator is used to 
provide a uniform distribution of hash index table 
entries which in tum minimizes the average number 
of probes into the page directory resulting in fewer 
main storage accesses during translation. Since the 
FID is derived from the index of the page directory, 
no FID field is required. The page directory is easily 
updated without moving entries, by just changing the 
chain or chains associated with the virtual addresses 
added or removed. This page directory design lends 
itself to reverse translation since a frame identifier 
can be used to directly index the page directory 
entry containing its virtual address. 

References 

1. R.E. French, R.W. Collins, and L.W. Loen, "System/38 
machine storage management," page 63. 

2. R. Morris, "Scatter storage techniques," Communications 
of the ACM, 3843, (January 1968). 

3. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 
object-oriented architecture," page 55. 

IBM S/38 TECH DEV 



Provides an overview of the System/38 1/0 structure by describing the operation of the 1/0 channel and the 
methods used to attach devices to the system. 

System/38 1/0 
structure 

Design objectives 
The I/O structure for IBM System/38 was designed 
to achieve three major objectives. The first was to 
develop a channel architecture which allows model 
implementation tradeoffs, exploits current LSI tech­
nology, utilizes the system's virtual addressing capa­
bilities, and allows multiprogramming at the channel 
program level. The second objective was to decouple 
the processing unit from the channel by means of a 
queued asynchronous structure which allows channel 
program stacking with minimum impact on the 
processing unit. The third objective was to provide 
multiple I/O product attachment interfaces for 
flexibility of added features and to accommodate 
user migration. 

User views of input/output 
There are two views of input/output apparent to the 
System/38 user. The first is at the data management 
level. This level provides device and data independ­
ence. Input/output managers (IOM) support that 
data management level by translating data manage­
ment I/O requests into channel programs. The 
second view is at the physical attachment level, 
that is, the external interface. This physical level 
provides a number of unique machine (UMI) and 
multimachine (MMI) interfaces. These two user views 
of input/output are combined by means of an inter­
nal structure, as shown in Figure 1. This structure 
consists of: 
• A queued asynchronous system channel boundary. 

LEWIS, REED AND ROBINSON 

System 
channel 
boundary 

c 
H 
A 
N 
N 
E 
L 

IOM1 

0; I 
u•o 
o:M 

•0 

Channel management 

D.O. Lewis, J.W. Reed, and T.S. Robinson 

IOMj 

0: I 
u•o 
o:M 

IQ 

- D.irect memory access 
- Channel bus operation 
- Protocol and priority 
- Bandwidth management 
- Command/status interface 
- Channel operations (control) 

Main 
storage 

Channei __________________ .....i, ____________________ _ 

bus 

External 
device ------ - - - ---- --- - - - - ---------- ------ -- --- ----- - -- ------- - -
interface 

Figure 1 System/38 1/0 structure 

Device 
1 

External world 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

SYSTEM/381/0 STRUCTURE 25 



• A channel processor which executes channel com­
mands or channel programs (multiple commands), 
allows direct memory access, multiplexed 1/0, and 
supports intelligent 1/0 adapters (IOA) via a common 
channel bus. 

• Internal~ IOAs which give to system designers the 
capability of distributing function from IOM com­
ponents to an IOA. 

The operational unit task 
An important attribute of the System/38's 1/0 chan­
nel is the concept of an operational unit (OU) task. 
An OU task performs all of the functions of what is 
commonly termed a "subchannel" in many channel 
structures; that is, it contains all of the informa­
tion necessary to sustain an 1/0 operation with its 
associated 1/0 unit. In addition, the OU task is the 
channel component which executes IOM-formed 
channel commands and is capable of competing 
for system resources as a system task. Communica­
tion between the IOM and its associated OU task is 
accomplished by the sending and receiving of mes­
sages to the operational unit queue (OUQ) and the 
input output manager queue (IOMQ). These mes­
sages either carry an !OM-formed channel command 
or point to an !OM-formed channel program for OU­
task execution. They also carry an OU task-formed 
response, to the !OM-requested work. There are five 
channel command types generically referred to in 
System/38 as operation blocks (OB). The five OB 
types give the IOM programmer the capability of 
writing sophisticated channel programs. The OBs 
are 16-byte fields and contain the information nec­
essary to initiate, sustain, and terminate an 1/0 opera­
tion. The data address contained in the OB is a 6-
byte virtual address, hence, System/38 1/0 partici­
pates fully in the system's virtual addressing struc­
ture. 1/0 unit addressability is accomplished with an 
operational unit number, a one-byte descriptor which 
is unique to an OU task, and its associated 1/0 unit. 

26 LEWIS, REED AND ROBINSON 

-ORE 
ORE 

Input/output manager queue 

ORE 
ORE 

Operational unit queue 

• SENDM = Send message 
Channel management • RECM = Receive message 

IOM 
Task 

OU 
Task 

J 

IOA/Device --~-----------' 

Channel 
mg mt. 

0 

Figure 2 Channel operation 

Channel operation 

0 

An overview of channel operation is shown in Figure 
2. An IOM task requests an asynchronous 1/0 opera­
tion by sending a send/receive message (SRM) con­
taining a channel program to the OUQ. The OUQ 
task responsible for servicing the queue receives the 
SRM and initiates the 1/0 operation by executing the 
first OB in the channel program. A channel program 
may contain one or more OBs. The distinction is im-

0 

portant because the OU task participates in the 
execution of each OB. The IOM task, however, only 
participates in the forming and transmission of a 
channel program, receiving ending status from the OU 
task at the completion of the channel program and 
not for each OB executed within the channel pro­
gram. Processing and 1/0 overlap is, therefore, greatly 
enhanced with the effective utilization of channel 
programming by the IOM. 

IBM S/38 TECH DEV 



Each OB (channel command) results in the OU task 
sequencing through three distinct phases: 
1. Receiving, decoding, and execution of the OB. 
In effect, the OU task initializes channel management 
such that subchannel operation and the IOA/device 
may be initiated and sustained. 
2. The OU task quiesces to the dispatchable-wait 
state pending completion of the device command by 
the IDA/device. During this period, channel manage­
ment selects, transmits the device command, moni­
tors, and services the IDA/device on a multiplexed 
prioritized basis. When a command-ending status 
is presented to channel management by the IDA/ 
device, a channel processing function called the 1/0 
event handler services and presents this ending 
status to the OU task which goes to the dispatchable­
ready state. 
3. Upon being dispatched again by the system, the 
OU task must present the IDA/device ending status 
as OU status to the IDM via a message sent to the 
IDMQ if the completed operation block (command) 
is the final or only operation block in the IDM­
issued channel program. If there are additional OBs in 
the channel program, the OU task will return to Phase 
1 and process the next OB. 

Channel management communicates with attached 
IOAs over a common channel bus, as shown in Figure 
3. The channel, in selecting and servicing IOAs, 
utilizes three distinct sequences: 

START A particular IDA is selected and informed 
of a pending command in channel. 

POLL A particular IDA is informed on a prio­
rity basis that a channel service grant is 
available. 

GRANT The polled IDA is granted channel service. 

The particular sequence is reflected by the aggregate 
state of the ten TAG lines, six channel-activated 
and four IDA-activated. During the POLL-GRANT 

LEWIS, REED AND ROBINSON 

Channel 
bus 

Channel 

• Start 

• Poll 

• Grant 

..---{: 10 tag lines 

Bidirectional data bus 

- Device ADDR (OU#} 
- Priority code 
- Data 

Figure 3 Channel dialog with device 

sequences, the channel operates in a block-multi­
plexed mode over a bidirectional bus with the length 
of the block transfer determined by the IDA. 

Input/output adapters 
The intelligent IDAs are either hardwired [I] for 
high-speed devices or microprogrammed controllers 
[2] for low- and medium-speed devices. A given 
IDA may, depending on speed and function require­
ments, service multiple device attachments. This is 
reflected in the many unique machine and multi­
machine interfaces to external devices. Examples of 
multimachine interfaces seen on System/38 are SDLC 
remote links and the SDLC local loop. 

Summary 
The 1/0 structure of System/38 has been developed 
to meet demands now posed by the concept of the 
attached work station, the distribution of function 

to intelligent adapters, and the ever-increasing use of 
networking. This, coupled with device multiattach­
ment methods, will permit the user of low-end com­
puters to utilize the functional capabilities normally 
associated with much larger systems. 

References 
1. J. W. Froemke, N. N. Heise, and J. J. Pertzborn, 

"System/38 magnetic media controller," page 41. 
2. E. F. Dumstorff, "Application of a microprocessor for 

1/0 control," page 28. 

SYSTEM/38 1/0 STRUCTURE 27 



Application of a 
microprocessor for 
1/0 control 

E. F. Dumstorff 

Microprocessors are significantly influencing the 
design of system structures, particularly in input/ 
output control. The advent of LSI has made the 
extensive use of microprocessors in I/O subsystems 
economically feasible. I/O subsystems using micro­
processors have three primary advantages over con­
ventional hardware designs. First, more function from 
the CPU can be moved into the I/O subsystem, 
leaving more CPU power to drive more micro­
processor-controlled devices or to simply improve 
processing unit performance with the same number of 
devices. Second, in the LSI environment, the micro­
processor approach minimizes the number of engi­
neering changes and unique part numbers. Once 
developed, the microprocessor and its role in I/O 
subsystems became the design standard. The shallow­
est possible device-unique adapters are then 
developed, making the best possible use of the 
microprocessor for each device attached to the 
system. The adapter design process in general be­
comes more structured and easier to control. Third, 
the microprocessor approach is more flexible. As 
development progresses, it is often desirable to move 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the I BM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

28 OUMSTORFF 

Characterizes the microprocessor that was designed specifically for the attachment of devices to the System/38. 

function to or from the processing unit or hardware 
portion of the adapter, or simply to redefine a 
function already designed. In the LSI environment 
these types of changes· would be disastrous to a 
conventional hardware design. However, with the 
microprocessor approach, these changes are more 
easily handled with microcode changes. Many times 
no hardware changes are required. For these reasons, 
a microprocessor-based I/O subsystem was chosen for 
the IBM System/38. 

The I/O structure used in the System/38 [1] makes 
multiple use of a microprocessor as an I/O control­
ler. General characteristics of the I/O controller 
(IOC) and its connection to the system control 
adapter (SCA), system channel, and device adapter 
are presented in this article. 

1/0 subsystem structure 
The 1/0 subsystem structure used in the System/38 is 
shown by Hoffman and Soltis [2] , who indicate the 
multiple use of the IOC in the I/O structure. 

The IOC is connected directly to the system channel 
through the channel adapter. It is packaged on a logic 
card which contains both the channel adapter and the 
IOC. Logic associated with the channel adapter 
accounts for one-third of the hardware on the logic 
card which is approximately 7 x 9 inches in size. This 
logic card is a common field replaceable unit (FRU) 
used by device adapters to perform device control 
functions and to connect the device adapter to the 

system channel. All I/O, with the exception of some 
magnetic media devices, connect to the system via the 
IOC. Read only storage (ROS) control store that 
personalizes the IOC function to a specific device is 
packaged with the adapter unique to that device. 
Operation of each IOC is initiated by the SCA. At 
power-on time, all IOCs, with the exception of the 
IOC used by the SCA, are in a stopped, reset state. 
The SCA can then start the IOCs one at a time via 
SCA control as the system is brought up. 

Controller characteristics 

The IOC is an 8-bit processor with parity checking. 
It includes an internal 512 x 9 data store (DS). An_ 
additional 512 x 9 array is optional. Thirty-two 
local store registers (LSRs) are implemented as the 
first 3 2 DS locations in the first 512 x 9 DS array. 
The IOC has two program levels, one interrupt and 
one background. I/O instructions passing data to 
or from the device adapter can be extended in 
increments of one IOC clock cycle (670 ns) by the 
adapter. The I/O extend function is used to extend 
I/O instructions when more time is required in the 
adapter to respond to the data on the I/O interface. 
This makes the IOC easy to connect to adapters im­
plemented in slower logic technologies. All instruc­
tions, with the exception of extended I/O and BRN 
(Branch Register Indirect) instructions, execute in 
one controller clock cycle. Thirty instructions are 
implemented. The IOC generates a 13-bit control 

IBM S/38 TECH DEV 



store address (CSA) with parity added, making the 
complete address 14 bits. 

Data flow 
A data flow diagram of the logic contained on the 
System/38 I/O controller card is shown in Figure 1. 
It is divided into three areas: SCA control decode, 
the IOC, and the channel adapter. 

The IOC is a two-address machine. During one in­
struction execution (670 ns), it loads two operands 
into the ALU operand registers, combines them, 
and stores the result. In parallel with the execution 
of an instruction, the next instruction to be execu­
ted is being accessed from control store and the 
control store address is incremented via a hardware 
incrementer. 

The IOC data flow is designed to execute four basic 
types of instructions. These are LSR to LSR, LSR to 
DS and DS to LSR, KI (control immediate), and 
I/O. KI instructions are used to pass data between 
control space (internal control registers, such as 
CSAR save registers for both program levels, check/ 
status register, data store page register) and LSR 
space. I/0 instructions pass data between LSR space 
and the device adapter. 

The IOC is connected to three other logic areas in 
the system. These are the SCA, the system channel, 
and the device adapter areas. The SCA area generates 
ten control lines which are used to control various 
internal parts of the system. In the I/O subsystem, 
these control lines are used to start, stop, reset, 
and perform diagnostic functions on any IOC in the 
system concurrent with other IOCs operating the 
devices associated with them. 

The channel adapter generates a connection one byte 
wide to the system channel. This connection, includ­
ing control, consists of 27 lines. Data can be passed 
to or from the channel via the channel adapter at 
480K bytes/sec. The channel adapter is controlled 

DUMSTORFF 

SCA INF IOC CHAN INF r---,---------------------------------,---------------1 1 OP K_IA_D_D_R ____________________________ ..,._ __________ _ 

I decode 
I 
I 
I 
I 
I 
I 

SCA 10 I 
CTL------!'1------t 

I 
I 

PC 
r- --, 
I I 
I I 
: Data I 

er: I store I 

CCU 
buffer 
10 x 9 9 

l----
g l 512_x9: -----<t: I option 1 System 

channel 
...._.------+--- I I 

L...-----
14 

Adapter 
INF 
control 

I I 
I I 

Data 
store 
480 x 9 

LSR 
32 x 9 

ALU OUT 9 bits 

Kl 
ADDR CCU 

INF 
control 

14 

CSD/DBI Clocks Misc DBO ABO 

Adapter 

Figure 1 A data flow diagram of logic on the System/38 1/0 controller card 

by the IOC via KI instructions. It is effectively a 
native adapter attached to and packaged with the 
IOC. This is important in that it makes the controller 
easy to adapt to other system environments. 

The device adapter interface consists of 72 lines. It 
includes the control store interface and I/O interface 
for transferring data to and from the adapter. For 
I/O write operations, ABO (9-bit address bus out) 
and DBO (9-bit data bus out) are sourced directly 
from the arithmetic-logic unit (ALU) operand regis­
ters. This permits an I/O write operation, where ad­
dress and data originate in LSR space, in one instruc­
tion cycle (670 ns). When operating with adapters 
requiring more time to respond to this interface, 

I/O instructions can be extended in increments of 
670 ns. This is done by the adapter conditioning the 
~'I/O extend" line on the adapter interface at the 
beginning of the I/O instruction and keeping it condi­
tioned until the required number of instruction cycles 
(670 ns each) have occurred. 

Instruction timing 
Figure 2 shows the timing associated with an IOC 
clock cycle. Each clock cycle is divided into ten 
clocks, each 67 ns in length. The resulting ten clock 
signals are made available to the adapter for use 
as desired. 

APPLICATION OF A MICROPROCESSOR FOR 1/0 CONTROL 29 



osc 00 

osc 01 

I -, 

I 
I 
I _, I 

I 
•--17nsec 
I 
I 
I 

I• : 50 nsec 

IOC cycle 

Clock 0 2 3 4 5 6 8 9 

Cycle 

Operation 

LSR ADDR 

A,B REG 

Write LSR 

Load CSAR 

CSADDR 

Load check/status 

I 
Operand B 

LDIR 

r2 

B +- I 
B +- KS[A] 
B +- (r2) 

Figure 2 Operand register/destination sources 

Four basic operations are performed during each IOC 
cycle. First, the instruction register is loaded during 
I time. Second, operand B is loaded from the source 
specified by the current instruction. Third, operand 
A is loaded similar to operand B. Fourth, the re­
sult is generated and stored in the memory 

30 DUMSTORFF 

670 NS 

Operand A 

r1 

A +- DBI 
A +- DS 
A+- (r1) 

ALU 

\ 
Result 

r1 

KS[A] +- ALU 
DS +- ALU 
(r1) +- ALU 

Pl change 
error log 

space specified by the instruction. 
The possible sources for the operand registers and the 
destinations for the result are shown in Figure 2. 
This information, along with the instruction descrip­
tion shown in Figure 3, can be used to better under­
stand the IOC data flow for the various instructions. 

Controller instruction set 
A list of the IOC instructions implemented is shown 
in Figure 3. Each instruction contains 17 data bits 
plus one parity bit. The function performed by each 
instruction is described in Figure 3. 

Conclusion 
1/0 control functions in the system environment 
are well suited for application of microprocessors. 
The structure chosen for the IBM System/38 1/0 sub­
system depends heavily on the use of the micro­
processor described in this paper. This approach was 
chosen based on three primary advantages micro­
processor-based 1/0 structures offer over conven­
tional hardware designs. 

In general, more device control function was moved 
from the processor to the 1/0 subsystem. This left 
more processor cycles to improve the overall system 
performance. The number of engineering changes and 
unique part numbers required in the 1/0 subsystem 
were reduced by approximately 30% from a conven­
tional design approach. As the system was developed, 
a considerable number of functional changes were 
included in the various devices late in the develop­
ment process by making ROS control store changes. 
Without the flexibility the microprocessor approach 
offers, many of these changes would not have been 
possible. 

As technology continues to advance, microprocessors 
will continue to be used extensively in the system 
environment. 

References 
1. D.O. Lewis, J.W. Reed, and T.S. Robinson, "System/38 

1/0 structure," page 25. 
2. R.L. Hoffman and F.G. Soltis, "Hardware organization of 

the System/38," page 19. 

IBM S/38 TECH DEV 



Instr 

KIR 

2 KIW (BRN) 

NRI 
ARI 
XRI 
LRI 
CRI 
ORI 
TBNI 

XR 
AYR 
AR 
SYR 
SR 
NR 
OR 

RR 
LR 
CR 

LN 
STN 
IOR 
IOW 
IORI 
IOWI 

LND 
STND 

B 
BC 

Format 

1111111 
01234567890123456P 

0000 r1 ~1 A 

p 

0000 
t--

0001 p 

0010 
0011 I 

0100 
0101 
0110 
0111 

t---
1000 r2 001 p 

1000 010 
1000 011 
1000 100 
1000 101 
1000 110 
1000 111 
t-- f---+-

1001 000 p 

1001 001 
1001 011 

t-- t--+-

1010 000 p 

1010 001 
1010 010 
1010 011 
1010 110 
1010 111 
t--

1011 Dl DL P 

1100 H 2 

1101 B P' p 

1110 ~ 

PSC 

L 

L 
A 
L 

A 
L 
L 

L 
c 
A 
c 
A 
L 
L 

R 
R 
A 

L 

L 

Description 

(r1) <--- KS[A] 
KS[A] <--- (r1) 

(r1) (r1) I 
(r1) (r1) + I 
(r1) (r1) v 
(r1) I 

PSC (r1) + + 1 
(r1) (r1) v 
PSC (r1) v 

(r1) (r1) v (r2) 
(r1) (r1) + (r2) + c 
(r1) (r1) + (r2) 
(r1) (r1) + (r2) + c 
(r1) (r1) + (r2) + 1 
(r1) (r1) (r2) 
(r1) (r1) v (r2) 

(r1) (r2) ROT RT 
(r1) (r2) 

PSC (r1) + {r'.2) + 

(r1) DS[DSP:(r2)] 
DS[DSP:(r2)] <--- (r1) 
(r1) +-- IOS[(r2)] 
IOS[(r2)] <--- (r1) 
(r1) +-- IOS[l:110] 
IOS[l:111] <--- (r1) 

(r1) +-- DS[(r2):D] 
DS[(r2):D] <--- (r-1) 

IC P':B 

IC IC Hl:B 

DBC 1111 M IC IC Hl:B IF DIAG M 

KS refers to control space (i.e., internal control registers) 

2 A KIW instruction to a particular address is decoded as a BRN (Branch Register Indirect) 
which causes the controller to enter a 2-cycle sequence resulting in the control store 
address to be sourced from the register address by (r1). 

3 A MASK OF - 100 010 001 000 
TESTS FOR 
CONDITION CODE- cco CC1 CC2 CC3 

Arithmetic result 0 - + Carry 
Compare result (r1) = (r2) (r1) (r2) (r1) (r2) Carry 
Logical result All Os All ls Mixed No branch 
Rotate result All Os High order 1 Mixed & (+) Low order 

Figure 3 Micro instruction format 

DUMSTORFF APPLICATION OF A MICROPROCESSOR FOR 1/0 CONTROL 31 



Microprocessor-based 
communications 
subsystem 

F.X. Roellinger, Jr. and D.J. Horn 

This article highlights the main features of the com­
munications subsystem on the IBM System/38. 
This subsystem employs a microprocessor to multi­
plex up to four synchronous data link control 
(SDLC) teleprocessing lines through one port on the 
system channel. The microprocessor operates under 
control of the processing unit, which presents various 
sequences of commands (start-up, read, write, etc.) 
via the system channel to perform data exchanges 
on one or more TP lines. The operation of the sys­
tem channel is described by Lewis, et al [ 1] . 

Organization of the communications subsystem 

The System/38 communications subsystem employs 
a building-block approach to offer diverse and flexi­
ble line-type attachment possibilities. Four build­
ing-block types are used as shown in the subsystem 
diagram (Figure 1). 

The 1/0 controller (IOC) is a vertical type micro­
processor utilizing 17-bit-plus-parity control words, 
8-bit-plus-parity data paths and a 670 ns instruction 
cycle time. Further details of the IOC structure and 
operation are discussed by Dumstorff [2]. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

32 ROELLINGER AND HORN 

Discusses the building block approach used to implement the communications subsystem on the System/38. 

Other 
System/38 
device 
attachments 

Processing unit 

System channel 

System/38 ---+----+----ii-----.... 
- boundary 

::::; 4 communications ports 

Figure 1 Communications subsystem hardware structure 

A communication adapter (CA) is used for each port 
installed. The CA contains hardware function which 
is personalized and controlled by the IOC microcode 
to support the specific port application. 

The communication common control (CCC) provides 
function which is common to all CA line appearances 
(thus reducing hardware duplication cost) and con­
tains the IOC ROS control store. 

The data link adapters (DLA) provide capability for 
several forms of communication attachments (Figure 
1). Each of the different DLA designs provides for 

1. 1200 bps integrated modem 
- Nonswitched 
- Switched with auto answer 
- Switched with manual answer 
- Nonswitched, switched back·up with auto answer 

2. 2400 bps and 4800 bps integrated modems 
- Nonswitched 
- Switched with auto answer 

3. External modem adapter (switched or nonswitched use) 
- For use at data rates ~ 9600 bps 
- EIA RS232C/V.24 interface 

4. External autocall unit adapter (must be used in combination with 
an adjacent external modem adapter) 

5. Digital service adapter-connects to a channel service unit (CSU) 
of the nonswitched AT&T Data-Phone (registered trademark of 
American Telephone and Telegraph Company) digital data service 
network at data rates of 2.4 kb/sec., 4.8 kb/sec., and 9.6 kb/sec. 

6. Loop system control adapter-available on an RPO basis at 9.6 kb/sec. 
and 19.2 kb/sec. data rates. 

*DLA types available 

an identical physical connection to the CA. As a re­
sult, it is possible to use the single CA design as part 
of each of the various communications attachments. 

The partitioning of function within the communi­
cations subsystem is shown in Table 1. 

Features of the subsystem 

The subsystem provides for half-duplex SDLC opera­
tion over a maximum of four communications ports. 
Attachment flexibility is achieved by permitting 
installation of any combination of four DLAs which 

IBM S/38 TECH DEV 



Table 1 Communications subsystem function 

Communications adapter (CA) hardware 

Driving and sensing registers for DLA control 
Serialization/deserialization of external SD LC data stream 
SD LC flag detection, abort and idle detection 
SDLC zero bit insert/delete 
NRZI encoding/decoding of data stream (when enabled) 
Internal clock correction for asynchronous modem applications 
Diagnostic capabilities for communications subsystem verification 
Parity checking and generation on subsystem address and data paths 

Communication common control (CCC) hardware 

SDLC ROS control store, accessing control, and address parity checking 
CA line selection/multiplexing control 
Control of functions requested by the system control adapter (SCA) 
Internal clock source 
Subsystem reset and register clocking control 
TP line analysis diagnostic support 

IOC function as implemented in microcode 

Insertion and deletion of SDLC flag characters 
Frame check sequence (FCS) generation and checking 
Data buffering between system channel and CA 
Operation of timer counters for SD LC timeouts (e.g., idle state detect) 
Automatic polling of remote multipoint tributary stations 
Handling of errors detected by system channel 
Switched line connection via the DLA 
Presentation to SCA of DLA status 
1/0 command fetch and interpretation 
Synchronization of read/write command sequence 
Diagnostic checkout of CA functions 
Handling of parity checks detected by IOC, CCC, or CA 

Data link adapter (DLA) hardware (possible types of function) 

Modulation/demodulation 
Voltage level (electrical characteristic) conversion 
External network connection control circuitry 

ROELLINGER AND HORN 

is consistent with the subsystem maximum aggregate 
data rate of 57 .6 Kb/sec. 

DLA choices provide the capability to operate point­
to-point on analog switched facilities, and point-to­
point or multipoint on analog or digital nonswitched 
facilities. Switched connection options include 
manual or automatic calling, and manual or auto­
matic answering. Automatic switched network dis­
connect is provided under microcode control. Both 
primary and secondary station operation are sup­
ported. In addition, primary station control of a local 
loop system is available on an RPQ (request for price 
quotation) basis. 

The microcode provides an automatic polling func­
tion for up to eight multipoint tributary stations 
(per communications port). This function removes 
from the processing unit the burden of regularly 
polling inactive terminals. 

Data integrity within the subsystem is ensured by 
both hardware and microcode function. Hardware 
parity checking is provided on all address ·and data 
paths between the IOC, CCC, and CA building blocks; 
external SDLC data stream checking is provided 
through microcode frame check sequence (FCS) 
generation and checking. Error recovery or reporting 
is under microcode control. 

Microcode organization 
The subsystem includes 1024 bytes of data storage, 
accessible by the IOC. The first 32 bytes of data 
storage are used by the IOC as local store registers 
(LSRs). The LSRs are used primarily as temporary 
work areas, but several are reserved for flags and 
status indicators to effect communication between 
the two program levels. 

Data storage is divided into five general areas: (1) 
data buffers for storage of data between the system 
channel and the communications lines; (2) tables 
indicating which lines are installed and their relative 
service priorities; (3) queuing areas of channel 

MICROPROCESSOR-BASED COMMUNICATIONS SUBSYSTEM 33 



service requests; (4) common work areas, which are 
extensions of the LSRs; (5) line parameter tables, 
each containing status and personalization data for 
one communications line. 

The microcode as organized is reusable, so that one 
copy may service any of the communications lines. 
Before a particular service routine is invoked, a line­
selecting routine is used which sets a base register 
according to the line selected for service. This base 
register then becomes a line-parameter-table selector 
for the line to be serviced. In addition to status and 
personalization data, the line parameter table also 
contains the data buffer pointers and information 
necessary for communication with the input/output 
managers in the processing unit. The line parameter 
table is the heart of the line multiplexing capability in 
the microcode. 

Processor command execution 
The same queuing structure used throughout the sys­
tem is also used between the processor and the com­
munications subsystem. When the input/output 
manager for communications wishes to activate a 
particular function in the subsystem, an 1/0 
command is placed on a queue in main storage and 
the subsystem is notified via a hardware signal on the 
system channel. The microcode then fetches the 
command from main storage, performs the requested 
function, and issues a status reponse to the process­
ing unit. The command/response queue is known as 
an Operation Unit (OU) queue. 

Each communications line employs two OU queues, 
one for transmitting and the other for receiving. 
The communications subsystem does not have a 
full duplex implementation, but at times commands 
may be outstanding on both queues. A typical 
example is a read/write sequence in which the sub­
system transmits an SDLC frame with the poll/final 
bit on in the control byte, allowing a response from 

34 ROELLINGER AND HORN 

the remote station. Explicit synchronization of the 
transmit/receive sequence is not necessary by the pro­
cessing unit; upon receiving either command, the sub­
system will wait for the other before transmitting. 
At the end of the frame, response status is transferred 
to the processor for the write command, line turn­
around takes place, and the receive command is 
activated to receive the response from the remote 
station. 

Interrupt structure 
The microcode employs two program levels, an in­
terrupt level (0) and a background level (1). A 
pseudo-interrupt level is available for hardware parity 
checks, which force a trap to error-handling code. 
After the startup, data store initialization, and line 
priority specification have been completed by the 
system control adapter (SCA) and CPU, the mi­
crocode enables program level 0 interrupts and 
remains in the program level 1 idle loop until an in­
terrupt occurs. The following events will cause an 
interrupt: a 13.3 ms timer pulse on the CCC, a byte 
service request from a CA, or a device-address-ready 
signal from the system channel that an 1/0 command 
is outstanding. 

Byte service requests are handled directly by program 
level 0 routines, while timer and device-address-ready 
interrupts are enqueued for handling by program 
level 1. Other program level 1 tasks are: fetching 
commands and issuing responses via the system 
channel, issuing data-buff er transfer requests to and 
from main storage via the system channel, providing 
signals for the DLA status display, and execution of 
the 1/0 commands. 

As previously stated, program level 0/ 1 communi­
cations are effected through the LSRs. When 
program level 0 requires processing by program level 
1, it merely sets a bit corresponding to the line being 
serviced in the appropriate LSR. Service requests 

include data transfers for both transmit and receive 
data, and logical-operation-end (end of an SDLC 
transmitted frame or an SDLC receive frame se­
quence). Program level 1 is the supervising level 
in that its execution of 1/0 commands causes the acti­
vation of program level 0 code, and because it may 
disable interrupts and deactivate the operation of 
the interrupt service routines. 

Concurrency features 
The subsystem allows a considerable amount of flexi­
bility in line operation and diagnosis without inter­
action with other operating lines. Most hardware 
errors associated with one DLA or CA will be handled 
by the microcode or reported to the processing unit 
without affecting the operation of other lines. A 
failing line may be removed from the line service 
priority table, diagnosed concurrently with other 
line operations, and replaced in the service table; 
if desired, the service priority may be altered at any 
time. This is all in keeping with the concurrent 
maintenance philosophy of the entire system. 

Diagnostic functions 
Various components have been built into the system 
to facilitate problem determination by the customer 
engineer. These components issue various diagnostic 
1/0 commands to the subsystem which write and 
sense the state of the DLA and exercise the CA to 
isolate a failing hardware component. One single 
1/0 command is available which, as implemented in 
microcode, checks out all of the SDLC functions (ex­
cept zero bit insert/delete) and many of the other 
functions performed by the CA. 

Other hardware diagnostic capabilities include an in­
ternal trap which allows the customer engineer to 

IBM S/38 TECH DEV 



record and display both transmit and receive data, 
and to display the activity of the DLA dynamically 
on the system console for any installed line. 

References 
1. D.O. Lewis, J.W. Reed, and T.S. Robinson, "System/38 

1/0 structure," page 25. 
2. E.F. Dumstorff, "Application of a microprocessor for 1/0 

control," page 28. 

ROELLINGER AND HORN MICROPROCESSOR-BASED COMMUNICATIONS SUBSYSTEM 35 



Microprocessor-based 
work station 
controller 

J.N. Tietjen and W .E. Hammer 

The 5250 series terminals can be attached to the Sys­
tem/38 using a work station controller or by the 
remote communications adapter [1]. The work sta­
tion controller provides a more responsive path from 
terminal to user programs. The communications 
line-related overhead is eliminated, thereby improving 
system response time to a terminal transaction. 

The work station controller as shown in Figure 
is a microprocessor-based control unit designed to 
allow the attachment of IBM 5250 series of terminals 
to the IBM System/38. The System/38 1/0 control­
ler, a dedicated, high-speed microprocessor having a 
670 ns instruction time, is used in conjunction with 
optional data store cards to allow up to 20 keyboard/ 
displays and/or printers to be controlled by a single 
work station controller. The microcode has been de­
signed to support both keyboard/displays and printer 
terminals. Alternate language keyboards are sup­
ported by loading an appropriate translate table in 
the microprocessor data storage. The microprocessor 
design allows operation of the supported terminals 
to be compatible with remotely located terminals 
attached to the IBM 5251 Model 12. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

36 TIETJEN AND HAMMER 

Presents the method used to directly attach multiple work stations to the System/38. 

RAM 
data store 
card 

SK 
RAM 

System/38 1/0 channel 

System/38 
1/0 controller 

WSA 
base 
adapter 

8K 
RAM 

RAM 
driver/receiver 
card 

*With cable-through feature 

Figure 1 System/38 work station controller 

Hardware overview 

The hardware consists of the following elements: 
• Microprocessor-System/38 1/0 controller [2} 
• Serial-to-parallel converter and control logic 
• Twinax cable driver receivers 
• Optional read/write data store 
• ROS control store 

Microprogram overview 
The microcode for the work station controller is 
assigned to the two program levels within the micro­
processor. Program level 0, the interrupt level, is 
assigned the major task of keystroke management. 
Interrupts are caused either by the expiration of a 
program-loadable timer or by the system channel bus 
logic, on the microprocessor card, indicating a 
processing unit command is available for processing 
(device address ready). Recognition of device­
address-ready by the microprogram will cause a flag 
to be set to request ·program level 1 command 
servicing. 

Program level 1 performs all control functions to the 
system channel. These tasks include controlling 
the transfer of data to/from main storage, interpret­
ing the controller-defined processing unit commands, 
interpreting and executing the (user) data streams 
for display control, generating responses, and generat­
ing necessary status information. 

As a result of interpreting the (user) data stream, 
a format table is built in the data store defining the 
location, length, and edit characteristics of all input 
fields (i.e., the field control words) on a display. 
Data keying is · allowed only in screen locations 
defined within the format table; that is, before a key­
stroke is written to a-- display, the cursor location 
is checked to determine that the cursor is in a user­
defined field. 

IBM S/38 TECH DEV 



Keystroke processing 
The program-loadable timer will normally be set for 
an interval of approximately 32 ms. At the comple­
tion of this interval, each of the attached terminals is 
polled by the microcode for keystroke activity. 
A poll list, loaded at controller initialization time, 
is indexed sequentially by the microcode and used to 
control the polling function. The terminal responds 
to a poll with a status byte and a scan code byte, 
which are processed by the microcode. When the 
microprogram determines that a new keystroke is 
being presented, the scan code is used to access a 
translate table, and the required function is per­
formed. In the case of a data key, the display code is 
read from the translate table and sent to the display 
after all field edit checks are satisfied. Keys such as 
enter, which send data to the host, cause the 
microprogram to post the data transfer request to a 
first-in first-out (FIFO) stack for handling by the 
program level 1 microprogram. In general, all key­
strokes or error conditions requiring data transfer to 
main storage are posted to FIFO stacks for handling 
by the program level 1 microprogram. 

Data stream processing 
The data stream received from the user program is 
processed for a single terminal at a time. The actual 
data stream is in the same format as the data stream 
used by a remotely attached terminal (IBM 5251 
Model 12). The data stream contains commands 
and orders which tell the adapter how to write the 
screen and which define the input field edit charac­
teristics. The terminal operator can enter data only 
into valid input fields whose characteristics are 
defined by the data stream. The following field-level 
edit functions are supported by the work station 
adapter: 

Alpha shift 
Alpha only 
Numeric shift 
Numeric only 
Signed numeric 
Bypass 

TIETJEN AND HAMMER 

Dup enable 
Auto enter 
Field exit required 
Monocase 
Mandatory enter required 
Mandatory fill 
Right adjust zero fill 
Right adjust blank fill 

As part of interpreting the data stream, a table of in­
put field characteristics, called a format table, is 
either built or modified. The format table has the 
starting address of the input field on the screen, 
the ending address, and the field edit characteristics. 
With these field format entries, edit checking and 
control are moved outboard of the user program. 
This provides immediate feedback to the terminal 
operator. With edit checking performed by the 
station controller, the user application program is 
guaranteed that all data received meets the require­
ments specified by the program. For example, only 
numeric characters will be accepted in a numeric­
only field, or only alpha characters will be accepted 
in an alpha-only field. The program does not have to 
check for data not meeting this criterion. 

For the 5256 printers, the commands and orders 
are contained in the data stream and are interpreted 
by the printer. The commands and orders perform 
various printer control functions, such as formatting 
the data and printing on a new line or new page, for 
example. Blocks of data up to 256 bytes long are 
transferred to the printer. The printer has two 
256-byte buffers, and the number of buffers in the 
work station controller is specified by the Control 
Program Facility [3] along with the pacing count as 
described next. When the printer has a buffer 
available, the controller sends a block of data to the 
printer. The controller checks its inventory of avail­
able buffers and, if the inventory is equal to or 
greater than the pacing count, it requests that more 
data blocks be sent by the CPF. With this technique, 
the pnnter should be kept busy and all other 
resources can be shared. 

Concluding remarks 
The work station controller provides for high.­
performance attachment of display terminals and 
printers. The microprocessor attachment provides 
field-level processing, that gives immediate feedback 
to the terminal operator and permits program inde­
pendence between terminals attached to the work 
station controller and terminals attached to com­
munications lines. 

References 
1. F.X. Roellinger, Jr. and D.J. Horn, "Microprocessor-based 

communications subsystem," page 32. 
2. E.F. Dumstorff, "Application of a microprocessor for 1/0 

control," page 28. 
3. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 

MICROPROCESSOR-BASED WORK STATION CONTROLLER 37 



Microprocessor control of impact 
line printers for printing 
character-string data 

D.T. Brunsvold 

Microprocessors are used to control the impact line 
printers on the IBM System/38. The design of 
the controller provides the flexibility to print char­
acter-string data redirected from terminal devic.es 
as well as line-formatted data intended for line 
printers. This differs from conventional approaches in 
that system output can be directed to alternate 
output devices with a minimum of reformatting, 
resulting in a saving of system resources and a 
reduction in processing unit contention. 

Printer subsystem features 
The printer controller for the System/38 has been de­
signed to control printers with speeds of 300 and 650 
lines per minute. The microprocessor used in the 
printer controller is the System/38 1/0 controller 
(IOC), which is described by Dumstorff [1]. One con­
troller is needed for each printer attached to the sys­
tem, but when a printer with the lower speed is up­
graded to one with the higher speed, the controller 
need not be changed. The system identifies the print­
er attributes to the controller, which then makes 
appropriate control decisions. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

38 BRUNSVOLD 

Describes the System/38 printer subsystem design and presents the characteristics of the printer attachment. 

The controller accepts data that has been blocked 
either by line or by form. Printing using line-by­
line blocking requires one command from the system 
for each line printed. Printing data that has been 
blocked by form requires only one command from 
the system to print an entire form. In this mode 
of printing, character-string data intended for a ter­
minal device can be redirected to a line printer and 
result in a similar visual display, subject to the 
restriction that some terminal control functions 
embedded in the character string are not meaningful 
on a line printer and must be ignored or have a similar 
control function substituted for them. 

Carriage and forms control, including the detection of 
end of forms and the prevention of printing beyond 
the end of the last form, are achieved in the IOC 
microprogram using information supplied by the sys­
tem when it issues initializing commands to the print­
er controller. Printing either 6 or 8 lines per inch 
is achieved in the same way, giving the system 
operator program control of forms length and the sel­
ection of 6/8 LPL 

Additional flexibility is achieved with interchange­
able print belts. The system operator has the option 
of mounting print belts containing specialized or ex­
tended sets of graphics. The operator then issues sys­
tem commands containing image information about 
the particular belt to the printer controller which 

controls the printing using the most recent belt 
information supplied. 

Printer subsystem configuration 
The printer subsystem consists of three parts-the 
printing unit, the hardware portion of the controller, 
and the microcode portion of the controller including 
the microprocessor (IOC). The functions performed 
in the various parts of the subsystem are listed in 
Table 1. 

Data store description and organization 
The controller hardware includes 1024 bytes of 
random access memory data store which can be 
accessed by the microprocessor. It is divided into four 
256-byte pages. The first page of the printer con­
troller data store contains local storage registers, 
control flags and pointers, status information, and 
space reserved for logging critical parameters and 
information about failing hammers, in the event of an 
error in the subsystem. 

The remaining three pages contain (1) the current 
print belt information, (2) data store page control 
and print hammer optioning control constants, and 
(3) buffers which hold the current print line data, 
print hammer addresses to be strobed to the printing 
unit, and failing hammer information that is obtained 
after an echo check or any hammer-on check. 

IBM S/38 TECH DEV 



Table 1 Printer subsystem functions 

Printer hardware functions 

Print hammer address decoding 
Parity checking 
Carriage emitter generation 
Print subscan emitter generation 
Print hammer echo pulse generation 
Carriage, belt, and ribbon 

motor controls and drivers 
Ribbon speed checking 
Diagnostic functions 
Print hammer and paper clamp drivers 

Controller hardware functions 

Address bus decoding 
Data bus funneling and latching 
Parity generation and checking 
Run control and status latching 
Fire tier generation 
Print hammer echo checking 
Print hammer address strobe generation 
Any hammer-on detection 
Carriage timing generation and checking 

Controller microcode functions 

Command and data transfer and decoding 
Printer status monitoring 
Printer switch and interlock recognition 

and indicator control 
Print belt synchronization and idle control 
Controller status generation and 

error recovery 
System data channel error detection 

and recovery 
Interrupt handling 
Hardware and microcode timer control 
Carriage control and checking 
Paper clamp control 
Failing hammer logging for echo check and 

any hammer-on errors 
Unprintable character detection 
Print hammer optioning and I imiting 
Character string data analysis 
Execution of imbedded character string 

control functions 

BRUNSVOLD 

Controller operation 

Interrupt structure 
Microcode instructions are issued in the micro­
processor in two different interrupt levels. Program 
level 0 is the interrupt level that performs time- and 
synchronization-dependent tasks; program level 1 is 
the background level that performs supervisory and 
housekeeping tasks. See Table 2 for a description of 
the tasks performed in each program level. 

Command processing 
Most system commands sent to the printer controller 
are decoded, verified, and immediately executed in 
program level 1. Upon completion of the command, 

Table 2 Tasks performed in program levels 0 and 1 

Program level 0 tasks (interrupt level) 
Determine interrupt causes 
Control hardware and microcode timing 

facilities 
Synchronize the print belt with the 

microcode 
Control the paper clamp and carriage 
Detect and log errors 
Perform print hammer optioning and 

limiting 
Detect unprintable characters 

Program level 1 tasks (background level) 
Control communications and information 

transfer between controller and host 
system 

Initialize hardware latches, registers, 
and data store after power on reset 
sequencing 

Decode, verify, and execute system 
commands 

Detect, analyse, and execute imbedded 
character string control functions 

Monitor printer status, switches, and interlocks 
Generate controller status 
Detect and recover from controller and 

system channel error conditions 

or if an error occurs, response information contain­
ing the completion status of the command is sent to 
the system. Additional detailed status information 
and a log of essential registers and parameters will be 
placed in data store if command execution was other 
than successful, and this information can be retrieved 
with other system commands. System commands 
that require printing and/or carriage motion are de­
coded and verified immediately, but the actual print­
ing or carriage motion is executed in synchronism 
with the printing unit upon receipt of the proper 
timing pulses. The response containing the com­
pletion status of the command is sent to the system 
after the printing portion and all but the final line 
of carriage motion of the command are complete. 
The next system command and its associated data 
will be fetched and processed during the final line of 
carriage motion. This overlap improves throughput 
to the extent that double buffering of print data does 
not require the additional buffering hardware. 

When operating on character-string data, the control­
ler receives one system command per printed form, 
rather than one per printed line. This results in a 
savings of system resources and a reduction in 
processing unit contention caused by task switching. 
Spooling applications are simplified because line-by­
line reblocking is eliminated. 

The reduction in processing contention is dependent 
upon system configuration and the particular appli­
cation program, ranging as high as 10% or more. 
When printing in character-string mode, data fields 
containing embedded control functions are continu­
ously fetched from the time the system command 
is received until a form is completed with the control 
function which causes advancement ta line 1 of the 
next form. At this time, response information is 
sent to the system. Each byte in the data field is 
analyzed and determined to be one of the following: 
a graphic character, which will be placed into the 
print data buffer; a control function supported by the 
controller, which will be interpreted much like a 

MICROPROCESSOR CONTROL OF IMPACT LINE PRINTERS FOR PRINTING CHARACTER-STRING DATA 39 



system command and executed; or a-control function 
not supported by the controller, which will result in 
immediate termination of the current system 
command and the returning of error response status 
to the system. As with discrete system commands 
requiring printing or carriage motion, the character 
string control functions which require printing or 
carriage motion are executed synchronously with the 
printing unit; however, response is not returned to 
the system until the current form is completed. 

Print hammer optioning 
Optioning, that is, the selection of which print 
hammers are to be fired based on print belt posi­
tioning and the data to be printed, is under IOC 
microprogram control. Optioning is performed 
synchronously with the printing unit and occurs as a 
result of the controller receiving a print subscan 
emitter pulse (PSS emitter) from the printing unit. 
When this emitter pulse is detected, the micro­
processor switches to program level 0 and a number 
of events occur. The print belt position is updated 
and new pointers are calculated for the print belt 
image in data store. The PSS emitter count is 
updated, causing new echo checking information to 
be sent to the hardware portion of the controller, and 
new pointers are calculated for the print data buffer. 
Also, as a result of these updates, a series of checks is 
performed to confirm that the print belt, the fire 
tiers, and the microcode are still synchronized. When 
this checking has been completed, the actual selection 
of print hammers to be fired takes place. 

Error detecting and logging 
Errors are detected in the printer subsystem by 
several methods: hardware detected errors which the 
IOC microcode discovers by periodic polling of 
interface lines and controller latches, hardware detec­
ted errors which cause the microprocessor to switch 
to program level 0, IOC microcode-initiated error 
timeouts which cause the microprocessor to switch to 
program level 0, and errors detected by the IOC 
microcode during its normal execution. 

40 BRUNSVOLD 

At the time of detection of an error condition, the 
IOC microcode logs critical parameters into a reserved 
location in data store, recovers from the error by re­
setting controller latches and the printing unit, and 
then returns 1/0 error response to the system. If the 
error involved a print hammer failure, a poll is taken 
of the current status of all print hammers and com­
pared to the history of recent print hammer firings 
maintained in data store by the IOC microcode, and 
information about hammers detected to be failing 
either on or off is also logged. 

References 
1. E.F. Dumstorff, "Application of a microprocessor for 1/0 

control," page 28. 

IBM S/38 TECH DEV 



Presents a descnption of the magnetic media controller used on the System/38 to attach high-data-rate, 
magnetic-media devices. 

During the early development stages of IBM 
System/38, it was necessary to develop an alternative 
to the conventional attachment techniques to facili­
tate the control of high data-rate, magnetic media, 
input/output devices. Engineering design trade-offs 
were evaluated based on a need for a general solution 
that would minimize both product cost and develop­
ment cost while retaining performance capability and 
shortening the product development cycle. 

Concept 
Conventional 1/0 device attachment design tech­
niques generally fall into one of two categories: 
1. Hardwired controller, where most of the device 
control function is personalized at the AND-OR level, 
requires the development of many new chip part 
numbers for the attachment of each new 1/0 device. 
Low product cost and high data-rate performance 
are obtainable but at a relatively high development 
cost and long product development cycle. 
2. Microprogrammed controller, where most of the 
device control function is personalized at a high 
level in microprogram-ROS {read only storage). This 
reduces the number of new chip part numbers, 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

FROEMKE, HEISE AND PERTZBORN 

resulting in a savings of development cost and a 
shorter product development cycle for low to 
medium data-rate 1/0 devices. 

The IBM Syst~m/38 magnetic media controller 
{MMC) architectural concept has evolved from these 
two 1/0 attachment design techniques. The channel 
function is hardwired in a set of chips while most of 
the device control function is personalized at a high 
level in programmable logic array-read only storage 
{PLA-ROS). This results in a performance capability 
for the channel attachment and direct control of 
high-data-rate magnetic media devices and a common 
usage set (menu) of chip part numbers. A common 
data flow was developed to interconnect the func­
tions within the MMC in a consistent manner. The 
use of MMCs to attach the disk storage devices to 
the System/3 8 channel is discussed by Peterson [ 1] . 

Description 
Figure 1 shows both the microprogrammed 1/0 con­
troller (IOC) and the magnetic media controller 
techniques used for the attachment of 1/0 devices 
to IBM System/38. Figure 2 shows the functional 
data flow within the MMC. Overall, five similar 
functions exist in both cases: 
1. A hardwired channel function provided for re­
sponding to the internal System/38 channel hand­
shaking requirements on a real-time basis. This is 
implemented in bipolar technology as a set of channel 

System/38 
magnetic media 

controller 

J.W. Froemke, N.N. Heise, and J.J. Pertzborn 

chips designed for common usage with all magnetic 
media device attachments. Block transfer of data 
over, the channel is provided in multiples of eight 
bytes to accommodate high-data-rate devices. A 
more detailed description of the channel operation 
is given by Lewis, et al [2]. 
2. A buffer function is provided for storing channel 
commands and status, data, and device control in­
formation. It is implemented as either 256 or 512 
bytes of bipolar technology random access memory 
depending on the individual device requirements. The 
buffer operation is time sliced so that both the 
channel and the device controller have access to the 
buffer during each MMC 400 ns cycle time as shown 
in Figure 3. 
3. A set of register chips is provided to send control 
information and synchronize the transfer of status 
and data to. and from the device. Common usage 
of these bipolar register chips reduces the prolifera­
tion of new chip part numbers. The number of regis­
ter chips used by an MMC depends on the number of 
signal lines to the device and its actual data rate. 
4. A common set of driver/receiver modules is pro­
vided to satisfy the electrical characteristics of the 
internal System/38 channel. 
5. A controller function is provided to control the 
channel, buffer, and device operations (e.g., read, 
write, seek, block check, error detection and multi­
plexing). This function is personalized at a high level 
in PLA-ROS (field-effect-transistor technology) as 
compared to microprogram-ROS in micropro­
grammed controllers or custom-designed logic chips 
in hardwired controllers. The number of PLA-ROS 

SYSTEM/38 MAGNETIC MEDIA CONTROLLER 41 



I BM System/38 channel 

DVR/RCVRS 

IOC channel 

Buffer-RAM 

Microprocessor 

Personalized 
microprogram 

ROS 

1/0 registers 
and control 
logic 

DVR/RCVRS 

0 

0 

• 
e 

I 
I 
I 
I 
I 
I 

I I 
I ,, 

I // I /I 
I 11 
I 1: 

le'' 11 
I fl 
I // 
I II ,, 
0 ,, ,, ,, ,, 

ti 
fl 
If 
I 
I 
I 

DVR/RCVRS 

MMC channel 

Buffer-RAM 

Personalized 
PLA-ROS 

Registers 

DVR/RCVRS 

Figure 1 System/38 device attachments 

chips used by an MMC is dependent on the number 
of devices and their complexity. 

Performance 

Performance requirements for the MMC were based 
on the combined characteristics of several, relatively 
high-data-rate magnetic media devices and the inter­
nal System/38 channel. Typical hard disk file, flexible 

42 FROEMKE, HEISE AND PERTZBORN 

DVR/RCVRS 

MMC channel 

Buffer-RAM 

Personalized 
PLA·ROS 

Registers 

DVR/RCVRS 

Magnetic media devices 

DVR/RCVRS 

MMC channel 

Buffer-RAM 

Personalized 
PLA·ROS 

Registers 

DVR/RCVRS 

... 4wide 
6 high 
attachment 
cards 

diskette, tape and other magnetic-media-based de­
vices have instantaneous data rates in excess of 
IOOKB, serial by bit or by byte. Concurrent opera­
tion of multiple attachments on the system channel 
requires that the MMC provide adequate data buffer­
ing and timely transfer of data blocks over the chan­
nel. System commands must be transferred, decoded, 
and executed with orders given to the device. Appro-

priate responses with status data must be assembled, 
encoded, and transferred over the channel. During 
these channel operations, the controller must also 
be able to provide a response in less than I 0 µs to 
multiple asynchronous signals from the device. 

The MMC meets these performance requirements 
through the use of a hardwired channel function and 
a PLA-ROS based controller with a buffer time­
sliced between them, as shown in Figure 3. During 
the 400 ns PLA cycle time, inputs are sampled, 
logical responses are generated, and outputs are acti­
vated. The logical power (analogous to the function 
and width of an ALU) of each PLA cycle is flexible. 
The number of operations (channel commands, data 
transfers, device control, etc.) being controlled si­
multaneously is also flexible. Overall, the PLAs with­
in the MMC can be personalized to provide a high 
level of performance for the direct control of mag­
netic media devices having stringent characteristics. 
The on-chip combination of registers and logical 
function within personalized ROS provides PLA­
based controllers with an inherent performance ad­
vantage over separately packaged configurations with­
in the same technology. The ability to execute 
multiple, simultaneous operations is critical for the 
cost-effective control of magnetic media devices 
attached to the System/38. 

Test and service 

A common test and service approach has been devel­
oped for use with the MMC in the System/38 environ­
ment. That is, the- same level sensitive scan design 
(LSSD) test patterns used by manufacturing are also 
usel in the field for system fault isolation and repair 
verification. The application of LSSD test patterns 
has resulted in improvements in the test coverage of 
densely populated controller cards and their service 
costs without increasing product cost or lengthening 
the product development cycle. Use of LSSD 
throughout the MMC has also led to improvements in 
test generation and coverage at the chip level for 
channel and register chips. 

IBM S/38 TECH DEV 



__ o_v_R_l_R_c_v_R_s __ ,-' "_,, ~_-:.- _,-' 

MMC channel ,, 
~~;":./~ A --------; " ------Buffer-RAM ---...._ ______ ...,... _____________ _ 

Personalized 
PLA-ROS 

Registers 

,, 

Channel 
~ 

Channel 

Time-sliced 
buffer 

Devices 

Figure 2 Magnetic media controller-functional data flow 

Channel 
transfers 

Buffer 
cycles 

PLA 
cycles 

A s 

y g 

c 
h 
r 
0 

0 

u 

(200 ns) 

(400 ns) 

2 

• • • Input 
I 

I --fSP __________ __,, ______ _. 

Figure 3 MMC simultaneous channel/device(s) operations 

FROEMKE, HEISE AND PERTZBORN 

Response 

PLA chip outputs 
~ 

D 

Search (and) 
ROS 
array 

~ 
PLA chip inputs 

Ls..,___. --

Summary 

Overall, the design objectives of the System/38 
magnetic media controller were met in the follow­
ing ways: 
1. The menu of bipolar chips (i.e., channel and 
register) is available for common usage with new 
device attachments. Personalization of logical func­
tion in PLA-ROS removes the designer from the 
physical design and test generation activities at the 
chip level. The result is a savings of development cost 
and a shorter product development cycle. 
2. Extensive use of LSSD and a consistent data flow 
within the MMC have resulted in a savings of service 
cost and a shorter product development cycle. 
3. Single card packaging (i.e., one field replaceable 
unit) of the entire attachment for one or more de­
vices is made possible through the use of fewer high­
density components. This results in a savings of both 
product and service costs as well as space for pack­
aging additional attachments within the system. 
4. Overlapped operation of the time sliced random 
access memory between the channel and device, 
together with the fast (400 ns) PLA cycle time, 
provides sufficient performance capability for the 
attachment of high-data-rate magnetic media devices. 

References 
1. R.A. Peterson, "Shared function controller design," 

page 44. 
2. D.0. Lewis, J.W. Reed, and T.S. Robinson, "System/38 

1/0 structure," page 25. 

SYSTEM/38 MAGNETIC MEDIA CONTROLLER 43 



Shared function 
controller design 

R.A. Peterson 

IBM System/38 is a virtual storage machine with 
auxiliary storage consisting of one to six spindles of 
integrated, nonremovable disk storage. Data, in 
512-byte blocks, is paged in and out of main storage 
across the system 1/0 channel, which is described by 
Lewis, et al [l]. 

The design approach for attaching the virtual storage 
subsystem to the 1/0 channel is described in this 
article. The high data rate of the disk and the 
hardware cost of the attachment were the prime 
reasons for developing a non-microprocessor design. 
The disk storage attachment on System/38 handles 
the function necessary to attach up to four spindles 
to the system 1/0 channel. The necessary hardware is 
contained on one 4 wide by 6 high card with separate 
clocking logic. 

The attachment incorporates the concept of a shared 
function controller, whereby each major function has 
its own separate sequence controller. The term 
"controller," as used, is defined to mean a sequential 
state machine designed with logic circuits as opposed 
to a microprocessor. These controllers are built using 
high-density programmable logic array (PLA) tech-

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

44 PETERSON 

Describes how the control of disk storage devices is accomplished on the System/38 by sharing multiple magnetic 
media controllers. 

nology [2]. The ability to subdivide the function into 
manageable pieces capable of being shared by all 
attached spindles made this approach feasible. 

The attachment controls the disk storage for 
System/38, performing read, write, and diagnostic 
functions. The operation for each spindle is specified 
by an eight-byte command element containing the 
command, a starting address, and the number of 
blocks of data to be transferred. Six registers in the 
virtual address translator (VAT) are allocated for each 
spindle to point to command and data locations in 
main storage. The storage management function 
initializes these registers and issues a channel opera­
tion to inform the attachment that the command is 
ready to be obtained and operated on. 

The connection between the attachment and the 
spindle consists of a bidirectional byte bus used for 
access and diagnostic sensing operations and a serial 
data .bus. The attachment initiates the access, deter­
mines successful completion, and performs the 
serialization and deserialization functions and the 
cyclic redundancy check (CRC) function. 

The attachment is divided into function controllers as 
shown in Figure 1. The channel controller, access 
controller, rotational position sensing (RPS) con­
troller, read/write controller, and serializer/de­
serializer (SERDES) controller each control a portion 
of the data path and have access to the random access 
memory. 

All data passes through the random access memory, 
allowing access to the necessary information by each 
function controller. The random access memory is 
divided into sections which contain command blocks, 
status blocks, and channel control blocks for each 
spindle. There is also an 8-byte ID block, an 8-byte 
header data block, and a 256-byte data block which 
are shared by all four spindles. 

The five function controllers and random access 
memory are shared among four sequence controllers, 
one for each spindle. These sequence controllers are 
responsible for determining the proper action of each 
function controller and locking out each other while 
using a function controller. The four sequence con­
trollers are. located in one PLA. No data flow is 
associated with these controllers. A set of defined 
states exists within each sequence controller to 
represent the allowable command states as defined 
for the attachment. 

Lockout technique 
The lockout mechanism is important because the 
function controllers share a common data path and 
random access memory and are themselves shared by 
more than one sequence controller. Not all operations 
defined for the attachment can be serial with respect 
to each other. An example of parallel functions is the 
transfer of data across the channel while data is also 
being transferred to and from the device through the 
random access memory. 

There are three levels of function controller lockout 
within the attachment. The first one involves the 

IBM S/38 TECH DEV 



Access _I_ 

Bidirectional 
byte bus 

.I 
") 

_, 
- J 

Sequence controller 1 control Access controller ..,. ____________ _, 
lines 

Channel controller 
Channel control lines 

Sequence controller 2 _.. -
RPS 

Sequence controller 3 
------------- -

control - Sequence controller 4 
lines 

R/W 
control 
lines 

(_ ~ , 
Buffer data bus ~ Channel 

,.... 
~- ~ Buffer addres~ bus 

~ ~ 

Data ] [Address 

RAM RPS controller Read/write controller 

...---

TS1 ... data 
reg 

~ 

Figure 1 Disk storage attachment 

timeslicing of the random access memory. The attach­
ment runs on a 400 ns clock while the random access 
memory runs on a 200 ns clock allowing for two 
accesses per attachment cycle. The channel controller 
and access controller use the first time slice while the 
RPS, read/write, and SERDES controllers use the 
second time slice. This enables parallel operation 
between the channel and SERDES controllers. 

PETERSON 

."11111 

• * 512X9 

...---

-.... TS2 ~ ~ 
data 
reg 

L...--

The second level of lockout exists between the 
channel, access, and RPS controllers. No time-critical 
function or long operations which would adversely 
affect the channel interface controller are contained 
within the access and RPS controllers. The four 
sequence controllers each use a three-step operation 
to maintain this lockout. When one of the three 
function controllers is to be requested, the sequence 

Ser des Serial 
control data 
lines bus 

Serdes controller Serdes 
J 

!** 
) 

_J 
-~ 

controller goes to a request state (step 1 ). On the 
next attachment cycle, the status of the other three 
sequence controllers is checked for a busy state, and 
the status of the higher priority controllers is checked 
for a request state. The sequence controller for the 
first spindle is arbitrarily defined to have the top 
priority. If none of the three function controllers is 
busy and none is being requested by sequence 

SHARED FUNCTION CONTROLLER DESIGN 45 



controllers of higher priority, the sequence controller 
goes to a busy state (step 2) and proceeds to operate 
the desired function controller. When the operation is 
complete, the controller goes to a wait state (step 3) 
for a minimum of one attachment cycle before 
requesting another function controller. The sequence 
controller for spindle 1 must stay in the wait state 
until the sequence controller for spindle 3 is in a wait 
state. The sequence controller for spindle 2 must stay 
in the wait state until the sequence controller for 
spindle 4 is in a wait state. This balances out the 
priority and ensures a window in which all sequence 
controllers can get the use of a function controller in 
a timely manner. 

The third level of lockout involves the use of the 
function controllers on the second time slice. When 
·the RPS controller determines that the head is now 
located one sector prior to the requested sector, the 
sequence controller is allowed to use the read/write 
controller which in tum determines what read/write 
operation is to take place. The read/write controller 
tells the SERDES controller what operation to 
perform and, by way of the sequence controller, 
requests data transfers from the channel controller. 
At the time the RPS controller determines the correct 
location of the head, a lockout is issued to all the 
other sequence controllers prev.enting the use of the 
RPS controller (and indirectly the read/write con­
troller) since a determination of the correct location 
of the head on another spindle would be of no 
significance as long as the SERDES is busy. This 
lockout also extends out from the attachment for 
those commands which transfer data across the 
channel. This lockout signal is used to keep the 
channel from being overloaded by two high-data-rate 
attachments. The disk storage attachment monitors 
for a lockout from other attachments to inhibit the 
use of the RPS controller in the same manner as the 
internal lockout. 

The design cycle was highly dependent on software 

46 PETERSON 

modeling and simulation. The major spindle and 
functional changes were absorbed during the 
modeling phase. Most of the sequences were simu­
lated at the high level, module level, and card level to 
ensure a degree of confidence in the design prior to 
embedding in a PLA module. This modeling effort 
proved to be a necessary step for a hardwired sequen­
cer design in an LSI environment. 

References 
1. D.O. Lewis, J.W. Reed, and T.S. Robinson, "System/38 

1/0 structure," page 25. 
2. J.W. Froemke, N.N. Heise, and J.J. Pertzborn, 

"System/38 magnetic media controller," page 41. 

IBM S/38 TECH DEV 



Characterizes the System/38 high-level machine instruction interface. Describes microcoded functions and the 
rationale for providing them. 

One of the primary characteristics of the IBM 
System/38 that identifies it as an advanced computer 
system is its high-level machine instruction interface, 
which incorporates new architectural structures and 
provides a much higher level of function than 
traditional machine architectures, such as the IBM 
System/3. The function and architectural structures 
are more similar to those of high-level languages than 
to conventional machines. The purpose of this article 
is to describe the advantages and salient architectural 
features provided by the System/38 instruction inter­
face, and how they are realized in the specifics of the 
System/38 machine. 

Relevant system objectives 
Many factors influence the choice of the architectural 
characteristics [ 1] of a new system. In System/38 the 
primary influences, such as anticipated user require­
ments and hardware technology trends, led to the 
adoption of some major objectives for the total 
system. Briefly, these were: 
• Programming independence from machine imple­
mentation and configuration details 
• High levels of integrity and authorization capa­
bility with minimal overhead 
• Efficient support in the machine for commonly 
used operations in control programming, compilers, 
and utilities 
• Efficient support in the machine for key system 
functional objectives, such as data base and dynamic 
multiprogramming. 

DAHLBY, HENRY, REYNOLDS AND TAYLOR 

The following sections highlight the major System/38 
instruction interface concepts and features that 
address these objectives. 

Independence from machine implementation and 
configuration 
In previous systems, the ability for users to take 
advantage of new technology and implement new 
function was limited by dependence on a specific 
low-level instruction interface; for example, depend­
ence upon the hardware-implemented address size. 
One of the major goals of System/38 architecture was 
to enable users to be as independent as possible of 
hardware and device characteristics. 

In System/38, hardware dependencies have been 
absorbed by internal microcode functions that pro­
vide an instruction interface, which is largely inde­
pendent of hardware details. Users of the instruction 
interface, therefore, need not be concerned with 
hardware addressing [2] , auxiliary storage allocation 
and addressing [3], internal data structures and 
relationships (4], channel and I/O interface details, 
and internal microprogramming details [5]. 

This hardware independence characteristic of the 
System/38 instruction interface is due in large 
measure to the use of an object-oriented interface [ 4] 
instead of the more conventional byte-oriented inter­
face. An object is a System/38 instruction interface 
construct that contains a specific type of information 

System/38-A 
high-level 
machine 

S.H. Dahlby, G.G. Henry, D.N. Reynolds, 

and P.T. Taylor 

and can be used only in a specific manner. A number 
of different types of objects are defined in the 
interface, and various object-specific instructions are 
provided to operate upon each object type. An 
example of a System/38 instruction interface object 
is a data space (file), which has associated instructions 
for operations such as the adding and deleting of 
records [ 6] . 

Each object is created by a System/38 interface 
instruction that uses a user-specified data structure to 
define the object's characteristics and initial values. 
Once the object is created, its internal stored format 
is not apparent to the user (with the one exception 
discussed below). The status and values of the object 
may be retrieved or changed by using interface 
instructions, but the internal format of the object 
cannot be directly viewed or modified. That is, 
objects can be operated upon functionally, but not as 
a byte string. This approach prevents dependence on 
the internal format of the object and enables applica­
tions to remain independent of evolving internal 
implementations of the machine. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

SYSTEM/38-A HIGH-LEVEL MACHINE 47 



There is one specific exception to this shielding of the 
internal format of an object. A space object is a 
construct that can be used by a program for storage 
of and operation upon byte-oriented operands such as 
character strings and numeric values. 

In addition to this object orientation, main storage 
and auxiliary storage addresses are not directly 
apparent in the System/38 instruction interface 
[2,4] . All interface addressing of objects is accom­
plished by resolving symbolic names (supplied-by the 
user) to a pointer. A pointer is an object that is used 
only for addressing and does not permit examination 
or manipulation of the implied physical address. A 
system pointer gives a user the ability to address 
objects; for example, to create or destroy an object or 
to examine or directly modify its content through 
associated specific instructions. A space pointer 
allows the direct addressability of bytes within a 
space object. Both of these pointer types can be 
contained within a space object, but they can be used 
for addressing only when operated on by pointer 
manipulation instructions. Pointers are assured of 
validity via tagged storage in both main and second­
ary storage. Direct modification of a pointer area via 
a "computational" instruction results in the tag 
becoming invalid and causes the pointer to no longer 
be usable for addressing purposes. 

Similarly, users are not concerned with the addressing 
structures of either main storage or auxiliary storage 
[3], or even necessarily that there are multiple levels 
of storage, since all storage used for all objects in the 
system is allocated and managed by the machine. 
That is, there is no differentiation in the System/38 
instruc~ion interface as to where an object or portions 
of an object reside. The total address space of 
System/38 thus consists of an unconstrained number 
of objects, uniformly addressable by pointers. 

Similar constructs shield the System/38 instruction 
interface user from dependencies upon channel and 
1/0 device addresses and low-level communication 
protocols. 

48 DAHLBY, HENRY, REYNOLDS AND TAYLOR 

Figure 1 illustrates this basic object-oriented, high­
level interface approach. 

Integrity and authorization 
A natural consequence of the object-oriented 
approach is improved system integrity and authori­
zation mechanisms [2]. All user information is stored 
in System/38 instruction interface objects. Access to 
that information is through System/38 instructions 
that ensure the structural integrity of the manipu­
lated objects. An attempt to misuse an object is thus 
detected and causes the instruction execution to be 
terminated and an exception condition to be raised. 
An example is the attempt to directly change a byte 
within a program object. 

Authorization capabilities are likewise facilitated by 
the System/38 instruction-interface object-oriented 
structure. Each user of the machine is identified by a 
user profile, which is itself an object. Each object in 
the system is owned by a user profile, and the owner 

Access via 
specific functions only 

\ I I 
\ I I I 

\v---bi 
'~~------~ 

\ "--------~ 

\ 

Main 
storage 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 

Figure 1 System/38 object-oriented structure 

may delegate to other user profiles various types of 
authority to operate on the objects. Processes (tasks) 
execute under a specific user profile (in the name of a 
user), and functions executed within a process verify 
that the objects referenced have been properly 
authorized to that user. 

Figure 2 illustrates this approach to providing integ­
rity and authorization capability. 

Support for common programming functions 
The System/38 instruction interface is designed to 
provide direct support for a wide variety of functions 
common to control programming, compilers, and 
utilities. This increased level of machine function 
eliminates the need to implement these common 
functions in multiple programming components, 
increases consistency across all programming com­
ponents, and supports programming approaches con­
ducive to providing integrity and reliability. 

System/38 instruction interface 

Figure 2 System/38 instruction interface integrity 
and authorization scheme 

IBM S/38 TECH DEV 



There are two basic modes of addressing in the 
System/38 interface. The first is pointers, which 
allow varying addressability to all objects and bytes 
within space objects. The second, dictionary address­
ing, deals with program references to values within a 
space object. 

Operands referenced in program instructions are 
defined in a dictionary portion of the program 
separate from the instructions themselves. Instruction 
operands are index references to these dictionary 
entries which define operand characteristics such as 
data type and length. Binary, zoned decimal, packed 
decimal, character, and pointer data types are 
examples of operand characteristics that may be 
defined. The dictionary entries do not contain the 
operand values; the specific location of the operands 
is not apparent to or required by programs. However, 
the user can control the general type of location 
characteristics: for example, relative to the area 
addressed by a pointer or relative to the storage area 
allocated for program variables within the executing 
process. 

This approach of having instructions reference dic­
tionary entries describing the operand characteristics 
allows additional capability over low-level instruction 
interfaces. For example, the following high-level 
capabilities are provided: 
• Computational instructions are generic with 
respect to data type and length. For example, there is 
only one numeric add instruction in the System/38 
instruction interface; it operates on whatever data is 
defined in the operand definition dictionary. This 
enables the use of source and receiver operands of 
varying type, length, and decimal positioning with all 
conversions and scaling being performed by the 
machine. 
• Arrays may be defined in the interface and 
instruction operands support array indexing to locate 
specific elements of the array. 
• Since applications often allow operations on 
multiple formats of data, some instructions (for 

DAHLBY, HENRY, REYNOLDS AND TAYLOR 

example, the copy instructions) support late-binding 
of data definition where the data (type, length, and 
decimal positioning) need not be defined until the 
instruction is executed. 

In addition to these types of high-level data opera­
tions, the System/38 instruction interface provides 
and, in some cases, requires functions intended to 
support programming constructs more directly than 
in traditional machines. For example, programs are 
invoked through call/return functions defined in the 
interface. Argument/parameter functions provide 
communications from one program to another. Allo­
cation and initialization of storage for program 
variables within a process is performed by the 
System/38 machine. Additional examples are found 
in Watson [6] and Howard [7]. 

Figure 3 illustrates this System/38 program structure 
and the general relationship between a high-level 
language program and the corresponding System/38 
constructs. 

Typical 
high-level 
language 
structure 

DCL A BIN (16) 
B BIN (32) 

BASED (X) 

A= A+ B 

System/38 instruction 
interface program 

Figure 3 System/38 instruction interface program 
structure 

Support for key system functions 
The System/38 machine was designed to support a 
usage environment characterized by a dynamically 
changing application load consisting of a wide variety 
of application types-all utilizing advanced functions 
such as data base. For example, batch, interactive, 
and transaction processing, along with program 
development activities, may all be executing concur­
rently with dynamically changing workloads and 
priorities. One of the key requirements for the 
System/38 instruction interface was to provide 
efficient support in this type of environment for 
application requirements such as multiprogramming 
and data base operations. This centralization of 
function in the machine simplifies the user program­
ming task and reduces overhead in a dynamic 
multi-user environment. 

Two examples of this system function support will be 
described here-multiprogramming and data base. 
Similar high levels of machine capability exist in 
other major functional areas such as I/O. 

System/38 supports multiprogramming through the 
concept of processes. A "process" is similar to a task 
in other systems and is the basis for managing work in 
the machine. The user of the System/38 instruction 
interface controls the number of processes currently 
initiated, the priority of each process, and the 
relationship of one process to another, that is, with 
respect to processor utilization and storage utiliza­
tion. The machine then allocates the processor and 
storage resources based on these parameters as well as 
on the current status of the process, for example, 
waiting or dispatchable. 

This level of multiprogramming support in the 
System/38 machine offers advantages like these: 
• A single resource management mechanism is 
applied to processing across all system activities. This 
reduces overhead and results in better management of 
resources in a complex and dynamic environment. 

SYSTEM/38-A HIGH-LEVEL MACHINE 49 



• Other efficient resource management mechanisms 
can be used to take advantage of hardware character­
istics without programming dependencies. 

Similarly, the System/38 machine provides the basic 
functional building blocks for a high-function inte­
grated data base. Data base objects include a compre­
hensive set of functions supporting different access 
mechanisms, file sharing, record format definition 
and mapping, efficient record retrieval, update, add, 
and delete. This allows, for example, a data base file 
structure to be defined that maps a single physical file 
into records with multiple formats and content. In 
addition, a single physical data base file may have 
multiple indexes (access paths) defined over it, all of 
which are concurrently updated when the file is 
changed. Each user of the file may view the data in 
the form suitable to a particular application. 

Overhead considerations 

One of the major problems inherent in the imple­
mentation of a high-level instruction interface such as 
that provided for the System/38 is overhead. In order 
to reduce the potential overhead, and also to facili­
tate future extensions, the System/38 instruction 
interface definition does not require a directly exe­
cutable implementation of the instruction interface. 
The instructions and the operand definition dic­
tionary are presented to the instruction interface and 
are translated into an executable microcode structure 
called a program object. The internal microcode 
format is not apparent at the interface. Figure 4, 
System/38 executable program creation, illustrates 
this process. 

Having an executable program creation step allows 
the system to have the advantage of both a high-level 
instruction interface and reduced overhead at execu­
tion time. 

In addition, direct support of high-use functions in 
the System/38 instruction interface, as previously 

50 DAHLBY, HENRY, REYNOLDS AND TAYLOR 

System/38 instruction interface 

;J;J7Pmgrnm 

Create executable 
program instruction 

Figure 4 System/38 executable program creation 

described, is itself an approach toward reducing 
system overhead. A single implementation of a 
complex function that can be applied system-wide 
reduces overhead. 

Also, by implementing these functions in the 
machine, hardware facilities can reduce the overhead 
that is associated with the higher level imple­
mentation typically required in programming. 

Summary 

The IBM System/38 provides a new type of machine 
instruction interface that comprises a high level of 
function together with structures similar to high level 
language structures and includes computation, 
addressing, and such traditional programming func­
tions as process (task) management, resource 
management (storage and processor), data base 
management, and device handling. This new machine 
was designed to satisfy major design objectives for the 
entire system-hardware, microprogramming, and 
program products. The concept of a high-level 
machine has been discussed in the literature and has 

been experimented with in both industrial and 
research environments; however, System/38 is the 
first IBM system to bring the advantages of a 
high-level machine to the business user. 

References 
1. G.G. Henry, "Introduction to IBM System/38 archi­

tecture," page 3. 
2. V. Berstis, C.D. Truxal, and J.G. Ranweiler, "System/38 

addressing and authorization," page 51. 
3. R.E. French, R.W. Collins, and L.W. Loen, "System/38 

machine storage management," page 63. ' 
4. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 

object-oriented architecture," page 55. 
5. R.L. Hoffman and F.G. Soltis, "Hardware organization of 

the System/38," page 19. 
6. C.T. Watson and G.F. Aberle, "System/38 machine data 

base support," page 59. 
7. P.H. Howard and K.W. Borgendale, "System/38 machine 

indexing support," page 67. 

IBM S/38 TECH DEV 



Discusses addressing, authorization, locking, and synchronization in System/38. 

The high-level machine interface of System/38 
achieves user independence from the internal machine 
implementation primarily through the use of an 
object-oriented architecture. Objects representing 
storage for constructs such as programs, processes, 
and data base files are accessed through a consistent, 
integrated addressing structure. Because authority 
enforcement and control of shared objects are critical 
in multiprogramming environments, these functions 
have been incorporated into the addressing path. This 
article describes some of the key features of the 
addressing design of System/38 and how they are 
presented to the user through the Control Program 
Facility (CPF), which is described by Harvey and 
Conway [I]. 

Objects and spaces 
Before addressing can be described, it is necessary to 
define what is accessed. Everything stored in the sys­
tem is an object (see Figure 1), which consists of a 
functional portion and an associated space (see Pin­
now, et al [2] ). The functional part of an object is 
used to implement a particular construct. For exam-

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

BERSTIS, TRUXAL AND RANWEILER 

ple, the functional part of a program object is created 
by the translation of System/38 machine instructions 
into microcode. The program is said to be encap­
sulated because there is no direct access to the storage 

Object 

Functional part 

Examples: 

------- Program 
Process 
Data base file 
Index 
Oueue 
Context 
User profile 

Space part 

Region of bytes 

--

Extendable 
to 16 megabytes 

Figure 1 System/38 objects and pointers 

System/38 
addressing and 
a~.•thorization 

V. Berstis, C.D. Truxal, and J.G. Ranweiler 

used to support it. Instead, the object is manipulated 
at a high level through the System/38 instruction set. 
In this way, encapsulation ensures the functional 
integrity of all objects. 

Sample contents of space 

---- --

System pointer 

Space pointer 

Data pointer 

SYSTEM/38 ADDRESSING AND AUTHORIZATION 51 



The associated space portion of an object is a region 
of bytes that can be directly manipulated by the 
machine user. The space is associated with the 
functional part of the object and provides a conveni­
ent way of storing additional (user-defined) data 
pertinent to that object's usage. One type of object, 
called a space object, has no functional part. Its 
associated space is used to provide storage for control 
blocks, buffers, pointers, and other data. 

Pointers 
There are four different types of pointers. System 
pointers address objects; space pointers and data 
pointers address specific byte locations within the 
space portion of an object; and instruction pointers 
control execution flow. This article covers object 
addressing through system pointers; 

A system pointer, used to address an object, contains 
both the location of the object in storage and object 
usage rights, as will be discussed later. Only specific 
System/38 instructions can create pointers. Although 
pointers can be copied, the user cannot construct 
pointers by bit manipulation. As a result of these 
properties, System/38 has the basic elements of 
capability based addressing [3] . 

Name resolution 

A system pointer exists in one of two states: resolved 
or unresolved. In the unresolved state, the pointer 
specifies the name of an object and not its location. 
When the pointer is first referenced (see Figure 2), 
the machine searches for an object having the speci­
fied name. Once found, the resulting object location 
is stored in the pointer, thereby eliminating sub­
sequent searches. The pointer is then said to be in the 
resolved state. 

The search performed during pointer resolution 
involves the use of objects called contexts, containing 
object names and locations. Various execution 
environments are obtained by specifying an ordered 

52 BERSTIS, TRUXAL AND RANWEILER 

list of contexts to be searched. For example, the 
production and test versions of files can be located 
through different contexts. Therefore, by simply 
exchanging the contexts searched, either program­
ming environment can be achieved. 

Authorization 
The ability to control pointer resolution in the 
machine is not sufficient to effectively control the 
users' access to objects because it is an "all or 
nothing" type _of control. The System/38 object 
authorization mechanism provides the fineness 
(granularity) of control needed for the wide range of 
operations performed on objects. 

Every reference to an object requires that the user 
have the appropriate authority for the operation to 
be performed; otherwise, the operation is suppressed 
and the attempted violation is recorded. The 
authority checking function is uniformly applied to 
all types of objects. Separate authorities (retrieve or 
update, for example) can be granted to individual 
users or to all users (the public). Therefore, a user's 
authority can be limited to what is exactly necessary 
for an application. For example, a user might be 
authorized to retrieve data from a data base file but 
not to update or destroy the file. 

System/38 instruction 

OP code 

Operand 

Unresolved 

search 

Figure 2 The object access path 

Object 

User profiles 

Sources of authority 
A prerequisite for authority verification is the identi­
fication of the user. This prerequisite is satisfied 
through the use of an object called the user profile, 
which identifies the user and the user's authority. 
Every process is initiated with a specified user profile 
as the primary source of authority. Object authorities 
can be granted to or revoked from a user profile, thus 
providing control over the authority available to the 
process. Objects can also be publicly authorized, 
thereby eliminating the need to explicitly authorize 
every user profile. 

In some applications, subprograms require a different 
amount of authority than that available to the calling 
program. To accomplish this, programs can adopt a 
user profile (Figure 3). The adopted user profile adds 
its authority to what is already present in a process. 
When the program calls other programs, the adopted 
user profile authorities can be optionally propagated 
to the called program. This provides considerable 
flexibility in controlling the security environment. 

Once authority to an object has been established, it 
can be optionally stored in the pointer to that object. 
This provides faster authority verification than with 
unauthorized pointers. 

Other authorizations 
One type of authority not related to objects is the 
privileged instruction authority. Such authorization is 
used for process initiation, user profile creation, 
machine reconfiguration, etc. Other special authori­
ties range over many machine functions rather than 
specific instructions. For example, all-object special 
authority permits unlimited use of all objects in the 
system. The control of storage resources is another 
wide-range authority. The storage occupied by 
objects is charged against the storage limit of the user 
profile (the owner) under which they were created. 
Owners have implied object authority to the objects 
they own. 

IBM S/38 TECH DEV 



User profiles contributing authority to program 

A+B r--7 I A+l+cl ~ A+B 

User profile 

Process initiation 

Initial call 

Process 
user 
profile 

User profile 
associated 
with a 
process 

User profile 

l 
Program 

Adopt & 
propagate 

Figure 3 User profiles as sources of authority 

Locking and synchronization 

The authority mechanism of System/38 ensures that 
an application accesses only objects within its 
intended rights. When multiple applications attempt 
to reference the same objects concurrently, additional 
controls are provided to prevent interference. 

BERSTIS, TRUXAL AND RANWEILER 

Call 

User profile 

Program 

Adopt & not 
propagate 

l 
Program 

Call 

System/38 incorporates implicit synchronization 
functions into the object access implementation to 
accomplish this. For example, if one process is 
updating an object while another process is attempt­
ing to access the same object, the operations are 
automatically serialized. On the other hand, if both 

processes are retrieving data from the same object, 
the operations are allowed to proceed simultaneously. 
Therefore, contention is reduced and integrity of the 
object is ensured. 

Explicit synchronization is available to the user in the 
form of locks. By locking an object, the user can 
control the access of other users to the object. Entire 
sequences of operations can be serialized when 
required to maintain data integrity. In addition, 
record level locks in data base files reduce much of 
the contention that would be present if the entire file 
were locked. 

Synchronization functions complete the machine 
addressing path, which starts with the object name 
and continues through pointer resolution and 
authority verification. 

Addressing path usage 

The Control Program Facility (CPF) is an IBM 
program product providing the user a high-function, 
ease-of-use interface to the machine (1] . With the 
high-level machine facilities available in the 
System/38, the CPF addressing and authorization 
function uses both capability-based and symbolic 
object addressing with authority validation at execu­
tion time. 

CPF uses machine pointer resolution, authorization 
management, and locking to implement internal CPF 
security and synchronization. It provides these facili­
ties to the user through CPF interfaces. 

Within CPF, the work management component 
isolates and protects its critical resource control and 
scheduling functions by executing them under the 
system user profile. The remaining CPF modules 
execute under the user's profile. Thus, the machine 
authorization management directly validates the 
user's authority to perform every requested function 
on any specified object., Everything in CPF is an 
object. 1/0 devices and Control Language commands 

SYSTEM/38 ADDRESSING AND AUTHORIZATION 53 



are objects, as are more typically files, programs, and 
libraries. Because of this, an installation can control 
system resources to the extent desired. 

Installation authorization 
This control of ·an installation's resources has led to 
the concept of one specific user as an installation's 
security administrator. This user is entrusted with 
authorities allowing system-wide control of all users 
and their resources. A set of IBM-supplied user 
profiles is delivered with CPF, including one for the 
security officer. This profile has all-object authority, 
as well as authority to create and modify user 
profiles. Therefore, the security officer can enroll 
users on the system and control their use of system 
resources. When a user profile is created or modified, 
special authorities, resource allocation parameters, 
and a user password can be specified. The user 
password is for verification of user identity at sign-on 
and for determining the user profile associated with a 
process. 

Once the user is executing, functions are performed 
by executing programs or commands. These functions 
reference objects (such as files) by name, and CPF 
locates the object through the use of the machine­
addressing facilities. This is easily implemented 
because contexts (objects that contain names of 
other objects [2]) are used by CPF as system and 
user libraries. When an object such as a program or 
file is created, it is placed in a library. Subsequent 
referencing of the object initiates pointer resolution, 
and the machine not only locates the object, but 
validates the current user's authority to the object 
and determines whether serialization of an operation 
is necessary. To expedite authority checking, CPF 
requests that the authority be set in the pointer for 
future use. 

CPF object authorities 
When a user creates an object, it can be declared 
"public" or "private." Subsequently, any of the 

54 BERSTIS, TRUXAL AND RANWEI LEA 

object's authorities can be granted or revoked to 
individual users or the public. Display commands are 
also available to report object authority. 

Summary 
The System/38 is based on an object-oriented archi­
tecture in which everything in the system is an object. 
An object can be referenced by its name, which is 
used in a pointer resolution process that includes 
authorization and synchronization functions. The 
resulting resolved pointer can contain object location 
and authority to avoid subsequent searches. The 
machine enforces authority requirements on every 
object referenced, verifying the authority from the 
pointer or user profile(s). The user profile is an object 
that identifies a user in the system and contains all of 
that user's authorities. The CPF uses the machine 
addressing, authorization, and synchronization facili­
ties, and provides their function to the user. 

The System/38 thus delivers the flexibility of named 
object addressing and the integrity of machine­
enforced authorization and synchronization of those 
objects. 

References 
l. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 
2. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 

object-oriented architecture," page 55. 
3. Theodore A. Linden, "Operating system structures to 

support security and reliable software," Computing Sur­
veys, Vol. 8, No. 4, 409 (1976). 

IBM S/38 TECH DEV 



States that the construct, "object," is of central significance in System/38. Discusses the concepts, purpose, and 
characteristics of System/38 machine objects. 

System/38 provides a range of capability not pre­
viously available in low-cost data processing systems. 
This capability is made possible by the use of a num­
ber of technical innovations. One of these is the 
object. This article discusses objects-the means 
through which information is stored and processed 
on System/38. Included are the concepts, purpose, 
and characteristics of System/38 machine objects and 
their use by the Control Program Facility (CPF). 

Object concepts 
Previous machine instruction sets have provided bit­
and byte-string manipulation capabilities. The 
machine instruction set in System/38 provides simi­
lar functions and also provides machine instructions 
that operate on complex data structures to accom­
plish high-level functions. 

Some of the data structures are similar to such things 
as programs and data files in conventional systems. 
Some are unique to System/38. The data structures 
that appear in the instruction interface are collec­
tively categorized as objects. 

An object is brought into existence through execu­
tion of a create instruction. The user controls the 
creation of the object through a template [ 1] that 
provides a set of attributes and values that are to 
apply to the new object. The new object also has 
operational characteristics that define the set of func­
tions that may be accomplished through it. Examples 

PINNOW, RANWEILER AND MILLER 

of object attributes and operations are shown in 
Figure 1. 

The three examples of attributes illustrated in Figure 
1 are (1) a name that permits symbolic reference to 
the object, (2) an existence that specifies whether 
implicit destruction is allowed, and (3) ownership 
that identifies who, if anyone, owns the object. 

The set of instructions that are operationally mean­
ingful to an object consist of generic operations that 
apply to all types of objects and unique operations 
that apply to a specific type object. The generic 
operations are primarily authorization-, addressing-, 

Name 

Attributes Ownership 

Existence 

Authorization 

Explicit 
Addressing 

functions 

Generic 
Resource 

operations Atomicity 

Object 
Implicit Lock enforcement 
functions 

Authorization enforcement 

Materialization 
Explicit 

Modification functions 

Unique Destruction 

operations 
Atomicity 

Implicit 
Lock enforcement functions 

Authorization enforcement 

Figure 1 Some examples of object attributes and 
operations in System/38 

System/38 
object-oriented 

architecture 

K.W. Pinnow, J.G. Ranweiler, and J.F. Miller 

and resource-related [2]. The unique operations 
include a destroy that removes the object from the 
system, some form of materialize that identifies the 
object's attributes or content, and sometimes a 
modify that changes the attributes of the object. 
Many other unique operations exist that are not iden­
tified in Figure 1. 

Each operation, whether generic or unique, also pro­
vides significant implicit functions. The implicit 
functions are authorization, lock enforcement, and 
atomic (exclusive) operation. 

Object purpose 
The concept of an object gives a common attribute 
to a group of data structures and enables the 
definition of an interface that produces a number of 
benefits. 

The existence of objects allows systematic manipula­
tion of structures. Their presence permits the defini­
tion of an instruction interface that is consistent 
across a wide range of supervisor and computational 
instructions. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

SYSTEM/38 OBJECT-ORIENTED ARCHITECTURE 55 



Objects exist to make users independent of specific 
implementation techniques used in the machine. 
Since it is necessary that usen control the data used 
in supervisor functions, object management capabi­
lity is provided. When a request for a high-level 
machine function is made, a specific instruction 
operator (operation code), optionally an attribute 
template, and an object are specified. System/38 
uses the object to accumulate results of operations, 
to store them in such a way that they are safe from 
inadvertent modification, and to assure that they 
are available for subsequent operations. 

Objects exist to make the user independent of the ad­
dressing structure actually used in the hardware. Al­
though main storage and auxiliary storage exist in 
System/38, users are shielded from the mechanics of 
actually addressing that storage. In other words, 
objects remove the traditional responsibility of map­
ping data onto physical storage. 

Object characteristics 
For an object like a program, creation establishes 
the essential content of the object, and subsequent 
~instructions use it operationally. For other objects, 
the creation is primarily a space allocation mechanism 
for which succeeding operation_s, .. establish the 
content. For example, once a data space has been 
created, records niay be inserted into it. Manage­
ment of the size of an object and changes to that size 
are generally transparent to the System/38 user. 

All System/38 machine objects are encapsulated. En­
capsulation is the process of accepting a definition of 
an object through a create instruction and using this 
definition to produce an object whose internal 
structure is only accessible to the machine. Objects 
are encapsulated to maintain the integrity of the in­
ternal structure and to permit different implementa­
tions of the machine instruction interface without 
impact to its users. 

It is possible to associate an unencapsulated (byte 

56 PINNOW, RANWEILER AND MILLER 

string) area with each object. This byte-string area is 
referred to as a space and is up to 16 megabytes of 
virtual storage into which the machine user can build 
control blocks of other control information or data. 
As a degenerate case of an object, one with essen­
tially no encapsulated portion, a space exists as an 
independent object. Whether it is an object itself 
or is associated with another object, a space has its 
size modified through explicit instructions by the 
machine user. 

System/38 machine objects 
The following lists and briefly describes the objects 
of the System/38 machine-instruction set. 

Access group. An object that permits the physical 
grouping of other objects to achieve more efficient 
movement of the objects between main storage and 
auxiliary storage. 

Context. An object that contains the type, subtype, 
and name of other objects to allow addressability. 

Controller description. An object that represents an 
1/0 controller for a cluster of 1/0 devices or a station 
that attaches groups of communication devices over 
the same data communication link. 

Cursor. An object used to provide addressability into · 
a data space. 

Data space. An object used to store data base records 
of one format. 

Data space index. An object used to provide a logi­
cal ordering of records stored in a data space. 

Index. An object used to store and automatically 
order data. 

Logical unit description. An object that represents 
a physical 1/0 device. 

Network description. An object that represents a 
network port of the system. 

Process control space. An object used to contain 
process execution. 

Program. An object for uniquely selecting and order­
ing machine interface instructions. 

Queue. An object used to communicate between pro­
cesses, and between a process and a device. 

Space. An object used for storing pointers and scalars. 

User profile. An object used to identify a valid user 
of the machine interface. 

CPF use of machine objects 
The CPF extends the object-oriented approach of 
the machine and provides its users with a high-level, 
object-oriented interface [3] . All data stored on the 
system by CPF users is stored in object form and is 
processable in terms of control language commands 
and high-level languages. To the user of CPF, objects 
are named collections of data, and the functions 
associated with objects provide the vehicle for pro­
cessing this data and obtaining work from the system. 
The 19 objects presented to the user at the CPF 
interface include conventional constructs, such as 
files and programs, as well as constructs that are 
unique to System/38, such as job descriptions and 
message queues [ 4] ... 

The functions that CPF provides for its objects in­
clude some that are object-type-specific and some 
that are generic with respect to object type. The 
object-type-specific functions define and limit the 
way in which an object can be used while the generic 
functions provide for authorization, locking, saving, 
restoring, dumping, moving, and renaming objects. 
Through the generic functions, the user has a way of 
managing objects once they exist. 

IBM S/38 TECH DEV 



Objects are brought into existence through the speci­
fication of a create command that defines the name, 
attributes, and initial value of the object tq be 
created. Each object is assigned a type and subtype 
as a part of the creation process. The object's type 
is determined by the kind of machine object created 
to support the object that the CPF user wishes to 
create; the object's subtype designates the use that 
CPF intends for the machine object. Each unique use 
that the CPF makes of a machine object 
is assigned a unique subtype identifier. This aspect 
of the design is important because it is through the 
use of unique types and subtypes that the system 
can ensure that each type of object is always used in 
the way it was intended. After an object has been 
created, it remains on the system until it is explicitly 
deleted via a delete command. At the time an object 
is created, CPF places the name of the object 
into a machine object known as a context. · 

Contexts are presented to the user as libraries. Be­
cause the functions associated with contexts are cap­
able of finding an object based on its name, type, and 
sub-type, libraries can be considered as a catalog or 
container for the user-created objects. Whenever an 
object is to be found, CPF initiates a search for the 
object either in a single library or through an ordered 
list of libraries that the CPF maintains with each 
executing job. When the list of libraries is used to 
find an object, each successive library in the list 
is searched until the object is found. Using the 
list of libraries to find the objects to be processed 
is advantageous because the same commands or pro­
gram can perform functions on different objects 
merely by changing the order of the libraries in the 
library list. 

CPF maintains descriptive information for all objects 
and provides functions for the retrieval and display 
of this data. The descriptive information records who 
the object owner is, when the object was created, 
where the object has most recently been saved, 
and text information provided by the user to further 
describe the object. 

PINNOW, RANWEILER AND MILLER 

An important feature of CPF object architecture 
is the manner in which CPF objects are constructed. 
CPF uses machine objects as building blocks to pro­
duce the objects that CPF users see. Figure 2 shows 
an exampfo of how one kind of Control Program 
Facility object is constructed. 

In this example, four types of machine objects (a 
data space, a data space index, a cursor, and a space) 
are combined to produce the higher level CPF object 
known to the user as a data base file. CPF manages 
the individual pieces of a file in a way that allows 

User 

~~=rface - ---- ----- - it __________ L_b ___ _ 
'?J- 1 rary 

I 

I 
I 

I 
I 

I 

' I 
I 

I , 
I 

~ .,,,.----........ ---....... ......_......_. 
.,,.. Space ', -

Data~file ~ 

I 
I 

I 

/ 
/ 

I 

,"' ' 
/ \ 

/ \ 

/' \ 
/ \ 

Cursor 

\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

I 
\ 
\ 
\ 
\ 

\ 
I 

I Data space 

\\D D 
\ 

' ' ' ' ,_ ---

Data space 
index 

---- - - - --
; 

; _ ..... 
, 

/ 

I 

I 
I 

I 
I 

I 
/ 

Figure 2 An example of how one kind of Control 
Program Facility object is constructed 

the user to perceive the file as a single entity. For ex­
ample, the separate pieces of the file come into exist­
ence when a single create-file command is processed 
and remain in existence until the file is explicitly 
deleted. Thus, the user is relieved of the complexity 
and organizational details of the data and can process 
it as a logical entity. When lower level objects are 
put together to form a higher level object, the higher 
level object is known as a composite object. CPF 
object architecture permits any type of System/38 
machine or CPF object to be combined to produce a 
new type of object. In fact, CPF-provided functions 
for managing objects are table-driven, based on 
unique object type and subtype combinations. This 
aspect of the design means that the object-oriented 
approach can be quickly and easily extended. It also 
permits new kinds of objects to be compatibly intro­
duced later on in the life of the system. 

The key advantage of the System/38 building block 
architecture, however, is that the implicit functions 
provided by the machine for its objects are made 
directly available to the end user in a consistent 
manner. For example, implicit in all CPF objects 
are the machine-provided functions of security, 
lock enforcement, and object resolution by name. 
The benefits of this architecture are readily apparent 
when one contrasts the approach of System/38 with 
that of other systems having different addressing 
structures for different collections of data, added-on 
security functions, and user interfaces that require 
knowledge of the physical aspects of data 

. organization. 

Summary 

The object orientation of the System/38 machine and 
CPF interfaces permits common provision of function 
at each interface. With machine-interface objects, the 
hardware addressing mechanism and the internal for-

SYSTEM/38 OBJECT-ORIENTED ARCHITECTURE 57 



mat and organization of data are transparent to the 
user; serialization and authorization functions are 
implicit in the objects. The key characteristic that 
makes this possible is encapsulation of objects in the 
machine-instruction interface. Since CPF uses the 
objects of the System/38 instruction interface as 
building blocks, its objects possess all the function of 
the machine objects. 

References 
1. J.K. Allsen, "System/38 common code generation," page 

100. 
2. V. Berstis, C.D. Truxal, and J.G. Ranweiler, "System/38 

addressing and authorization," page 51. 
3. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 
4. R. A. Demers, "The generalized message handler in 

System/38," page 97. 

58 PINNOW, RANWEILER AND Ml LLER IBM S/38 TECH DEV 



States that much of the data base function in System/38 is provided by the machine instruction set. Describes the 
machine support and discusses performance, security, integrity, and ease-of-use considerations. 

One of the advanced features of System/38 is its data 
base facility. The data base facility is a primary 
component of the Control Program Facility (CPF) 
[1,2] and much of the data base function is 
supported by the machine instruction set. This data 
base support is used by the CPF data base com­
ponent, which adds ease-of-use characteristics. The 
intent of this article is to describe this unique 
microcoded data base support and to discuss the 
factors considered in determining the level of support 
to be provided. A short description of the micro­
coded function is followed by a discussion of how 
performance, security, integrity, and ease-of-use con­
siderations affected the determination of the level of 
support to be provided by the machine. 

Figure 1 shows the comparative level of function 
provided in the microcode support for the various 
divisions of data base function. In general, for the 
"data transfer" instructions of the CPF data base 
component, as much function as possible was placed 
in the machine to improve performance. For the 
other divisions identified in Figure 1, the distribution 
was dictated by function and the desire to have as 
little logic in microcode as possible. In Figure 1, each 
column indicates the proportion of the function that 
is provided by the CPF code or by the machine­
provided support. For "file definition" all the func­
tion is provided by CPF, while for "data transfer," 

WATSON AND ABERLE 

the function is almost entirely provided by the 
machine support. 

The microcoded data base support 
System/38 is an object-oriented machine and its 
machine-instruction interface is an object-oriented 
interface [3] . The objects provided by the micro­
coded data base support are the data space, the data 
space index, and the cursor. 

File 
definition 

Member 
definition 

Open Data 
transfer 

Control program facility implementation 

- Machine-provided support 

Close 

Figure 1 System/38 data base facility functional 
distribution 

System/38 
machine data 
base support 

C.T. Watson and G.F. Aberle 

The data space is the data storage object. It is an 
arrival sequence file containing records of a single 
format. The microcode supports record lengths up to 
32K bytes and files up to 256M bytes. 

The data space index is used to provide access paths 
other than arrival sequence. The data space index 
provides a logical reordering of the records in one or 
more data spaces, based on keys made up of field 
values in the records and constants called "fork 
characters." The data space index can provide a 
logical reordering of records in one data space, a 
logical merge of like format records from several data 
spaces, or a logical hierarchical ordering of records of 
different record types from different data spaces. The 
key definition provides this extensive ordering capa­
bility. The key is made up of fields from the record, 
and fork characters, in any order. For each key field, 
ordering attributes can be specified, such as 
ascending, descending, absolute value, alternate col­
lating sequence, etc. The fork characters are one­
character constants that provide very powerful order­
ing functions for duplicate keys or duplicate portions 
of keys. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

SYSTEM/38 MACHINE DATA BASE SUPPORT 59 



Figure 2 shows the forced hierarchical ordering of 
duplicate supplier numbers in different record types 
through use of fork characters. · 

Assumed key definitions: 

Supplier file I Supplier# 

Part file j Supplier# 2 Part# I 
where "l" and "2" are fork characters. 

Figure 2 also shows how records from one or more 
files can be logically reordered through key definitions 

Keys in 
sequential order 

12 

12 2 018 

12 2 082 

12 2 096 

22 

22 2 024 

22 2 027 

36 

36 2 013 

36 2 016 

Records in 

' ' '·, 
' ' ' ' ' ' ' ' 

Supplier file 

Supplier# Address, etc. 

' ' 

Part file 

Figure 2 Use of keys in forcing logical hierarchical 
ordering 

60 WATSON AND ABERLE 

supplied with a data space index. The use of fork 
characters forces the record from the supplier's file to 
be returned before the records from the part file 
supplied by that supplier. Note that the part number 
field (or the supplier field) can be defined to be 
ordered in ascending, descending, absolute value, or 
other sequence, independent of the fork characters. 

By definition, a key exists for each record contained 
in each file covered by the data space index. A 
feature is provided to allow a subset of the available 
records to be addressed based on values in the record. 
This facility allows the records to be partitioned into 
logical files entirely differently than actually stored. 
Through one set of data space indexes the data 
appears to be separated by days of the week, while 
through another set, the same data appears to be 
separated by sales department. The actual parti­
tioning of the data may be done by either of these or 
by an entirely different method. The data space index 
is immediately updated to reflect changes in the data 
spaces it covers. 

The data space index is implemented through use of a 
general machine index function that is also used by 
many other components and objects in System/38. It 
is based on a binary search algorithm and is optimized 
and balanced for performance among modification, 
random searches, and sequential searches [ 4] . 

The cursor connects the data spaces and optionally a 
data space index to the process. It contains current 
position information for use in "next" type opera­
tions. If the data space index is not specified, the 
access path is either direct or sequential by arrival 
sequence over one or more data spaces where the data 
spaces appear to be concatenated. If the data space 
index is provided, the cursor provides a keyed access 
path for either random or sequential retrieval based 
on the key values or a direct access path via the 
arrival sequence relative record number. A very 
extensive set of search operations is supported. 

The cursor is the facility through which records are 
locked between retrieval and modification. The cur­
sor also contains the logic necessary to map the 
physical record to and from the logical record defined 
by the user. This mapping provides for reordering the 
fields, subsetting the fields, and conversion of the 
fields to new types and lengths, thus supporting the 
logical file format capability. 

As shown in Figure 3, physical and logical files are 
implemented through use of the three machine data 
base objects. The data space in the physical file 
contains the actual data. A data space index is used 
where a keyed access path is specified. A prototype 
cursor is duplicated for each shared usage of the file 

Logical 
file uses 
physical 
file data 

Logical file 

Prototype 
cursor 

Format 
function 

Physical file 

Prototype 
cursor 

Physical 
format 

.----, 
I I 
I I 
I I ' -L I 
I I 
L- --.J 

I 

\Data space 

'I 
Actual 
physical 
data 

Data space 
index 

Keyed 
access 
path 
function 

Data space 
index 

Keyed 
access 
path 
function 

Figure 3 Machine object usage in implementing 
physical and logical files 

IBM S/38 TECH DEV 



and contains the format function. The cursor, 
data space, and data space index are used by the 
CPF data base component to implement logical 
and physical files. 

Performance 
Because System/38 is a data base machine and all of 
the user's file data is maintained by the data base 
facility, performance has been a very important 
consideration in the design. A very good way to 
improve performance is to move closer to the 
hardware. In System/38, this was done by providing 
the data base search and modify operations in the 
machine. This can be seen in Figure 1 in the column 
called "data transfer." Machine instructions have 
been tailored to do, almost entirely, the work of the 
Control Program Facility GET, PUT, UPDATE, and 
DELETE functions. First, last, next, previous, generic 
next, generic previous, and direct search functions are 
provided through a SET CURSOR instruction which 
supports the positioning portion of GET. The record, 
as defined in the logical format, is returned by a 
RETRIEVE instruction for the data portion of the 
GET. The UPDATE, DELETE, and PUT functions 
are handled by UPDATE, DELETE, and INSERT 
machine instructions which automatically update all 
the data space indexes to reflect the change. 

The machine does all space management for the data 
base facility, utilizing the machine storage manage­
ment component. The microcode has been thor­
oughly optimized to shorten "normal" path lengths 
and to reduce the number of pages touched, when­
ever possible. 

Authorization 
A primary objective of System/38 is to improve 
security of the system, and the data base facility in 
particular, over previous systems. To effect this, 
object authorization was implemented in microcode 
below the lowest user-available interface. The objects 
are stored on auxiliary storage, but there_ is no 

WATSON AND ABERLE 

interface available to the user for reading from, or 
writing to, this medium. All operations are made 
through well-defined, object-sensitive, microcode 
instruction interfaces which enforce object authoriza­
tions [5]. In systems implementing security and data 
base functions above a user-available interface, there 
have been ways to bypass the security of the data 
base. With System/38, the authorization and most 
data base functions are implemented below the 
lowest user-available interface, thus providing greatly 
improved security capabilities. It is for these reasons 
that measures like file keyword locks and data 
encryption are not considered to be necessary for the 
System/38 data base facility. 

Integrity 
The attributes of integrity are very similar to those 
for security. Because of a desire to improve data 
integrity in the data base facility, enough of the data 
base function was implemented in the machine to 
ensure that changes to objects must be made through 
the correct interfaces as defined by the architecture. 
In past data base systems, the user was able to bypass 
the data base support code and access the files 
through the file management interface, thus defeating 
integrity functions. 

In System/38, all data base operations are done in 
move mode. The data base user never has access to, or 
the address of, the actual physical record. The most 
"physical" address that is available to a record is the 
object pointer and the arrival sequence number of the 
record in question. The only way this information 
can be used is through the appropriate data base 
support instructions. 

In moving data in and out of the data base, some data 
checking is done under certain conditions, but for 
the most part, actual field data values are not 
checked. The data base facility does not explicitly do 
any range checking or guarantee any data-type 
validation. These are perceived to be user defined 

requirements. On the other hand, . usage of the 
centralized data definition capabilities will greatly 
reduce the chance of data-type errors [2]. 

Individual records are locked so that another process 
cannot change the record between the time a program 
reads it and the time the program is ready to write 
back the updated fields. 

Because of the high level of data base support 
provided by the machine, many recovery-type inte­
grity questions are solved. On process termination, 
files are automatically closed. Logical access paths 
will always represent the actual stored records, or will 
be marked as unusable and needing rebuilding. 
Sequentiality of inserts is guaranteed. The facility to 
protect random updates and deletes is also provided. 

Ease of use 

Ease of use is one of the predominant design 
considerations of System/38 and the data base 
facility. Where not impacted by security, integrity, or 
performance, the ease-of-use functions lie entirely 
above the machine interface. File definition is a good 
example. 

The actual file definition, building of control blocks, 
and system definition of data formats and field 
attributes are done entirely outside the machine­
provided data base support. The file member defini­
tion has some machine support due to the creation of 
the data base objects involved. When the file is 
created, the format and access path definitions are 
stored with no machine data base support. When a 
file member is created, the machine data base support 
is used to create the data space, data space index, and 
cursor that internally make up the physical and the 
logical files. 

Summary 

A unique feature of System/38 is its high level of 
machine function. In the data base facility, this is 
even more apparent than elsewhere. 

SYSTEM/38 MACHINE DATA BASE SUPPORT 61 



Because of the efforts to provide good performance, 
the search and data transfer operations were imple­
mented in the machine. Implementing security below 
the lowest user-available interface, and providing data 
integrity at that interface, resulted in objects being 
defined at the machine level and part of the OPEN 
and CLOSE functions to be implemented in the 
machine. The result is that, for the first time, 
optimum data base support has been provided at the 
machine instruction interface. 

References 
1. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 
2. C.T. Watson, F.E. Benson, and P.T. Taylor, "System/38 

data base concepts," page 7 8. 
3. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 

object-oriented architecture," page 55. 
4. P.H. Howard and K.W. Borgendale, "System/38 machine 

indexing support," page 67. 
5. V. Berstis, C.D. Truxal, and J.G. Ranweiler, "System/38 

addressing and authorization," page 51. 

62 WATSON AND ABERLE IBM S/38 TECH DEV 



States that primary and secondary storage in System/38 is managed by microcode. Describes key implementation 
concepts. 

In all current IBM systems utilizing virtual storage 
management techniques, a job executes in a large 
virtual address space containing job-related structures 
and programs. A storage management component 
manages the transfer of portions of this address space 
to and from main storage as required. Separate data 
management components using different disk inter­
faces and mapping techniques manage the transfer of 
data between disks and buffers in the address space. 
One of the major innovative features of System/38 is 
that, during normal operations, the storage manage­
ment component, which is part of the microcode, 
provides the only interface to disk storage, and all 
programs, files, and work spaces are managed as 
address spaces. All System/38 components thus 
address data on disk uniformly through this com­
ponent, greatly simplifying the design of the system. 
For example, the data base component on System/38 
is not concerned with buffers and disk 1/0 programs, 
but simply addresses a desired record in a file by its 
virtual address, relying on storage management to 
actually bring the data into main storage. 

Figure illustrates the relationship of storage 
management to other System/38 components. 

This paper will describe key implementation concepts 
of System/38 storage management. 

FRENCH, COLLINS AND LOEN 

Basic addressing structure 
All data on System/38 is addressed, whether by 
microcode or by System/38 encapsulated programs, 1 

through six-byte virtual addresses, each consisting of 
a 3-byte segment ID and a 3-byte offset within the 
segment. 2 Storage management maintains directories 
relating all valid virtual addresses to disk locations. 
When a required piece of data is not present in main 
storage, the System/38 instruction processor gener­
ates an address translation exception. Storage 
management receives control, determines from its 
directories the location on disk of the data, and 
transfers the data (one or more blocks, called pages) 
to main storage where it may now be accessed by the 
processor. 

When an object is created (i.e., a System/38 instruc­
tion-interface create-object instruction is issued), the 
microcode component associated with that object 
requests storage management to allocate one or more 

1Encapsulation is the process, similar to compilation, which a 
System/38 program undergoes before it is executable. An 
encapsulated program addresses data in the same fashion as 
microcode components. 

2 System/38 hardware employs an addressing scheme with 
4-byte segment IDs and 2-byte offsets. To facilitate manage­
ment of large objects, storage management assigns 256 
contiguous 64K segments at a time, so that each segment 
potentially addresses 16MB. Only the amount of space 
actually required is allocated, however. 

System/38 
machine storage 

management 

R.E. French, R.W. Collins, and L.W. Loen 

System/38 programs 

- - - - - - - - - - - - - - - - System/38 instruction interface 

p p R D s A A 
R R E A 0 D u 
0 0 s T u D T 
G c 0 A R R H 
R E u c E 0 
A s R B E s R 
M s c A I s I 

E s s I z Microcode 
M M E I N A 
G G M N G T 
T T G s K I 

T u 0 
p N 
p 
0 
R 
T 

Storage management 

Disk storage 

Figure 1 Relationship of storage management to 
other System/38 components 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

SYSTEM/38 MACHINE STORAGE MANAGEMENT 63 



segments. For each such request, storage management 
assigns a unique segment ID, allocates the amount of 
space requested on disk, and updates its directories 
accordingly. The requesting component then 
addresses data within the segment through the seg­
ment ID and offset as described above. This address is 
not directly seen by the System/38 creating program. 
Instead, the 6-byte address becomes part of the 
16-byte system pointer through which the program 
subsequently references the object. Storage manage­
ment is also invoked when a microcode component 
requires a non-object related segment, for example, a 
work area. Thus, storage management manages seg­
ments, not objects. The segments thus allocated may 
subsequently be extended, truncated, and destroyed. 
Once a segment is assigned a location on disk, it 
remains at this location until destroyed. 

Directory structure 
At a given time, many thousands of objects, implying 
many thousands of segments, will exist on the 
system. These segments will range in size from a few 
hundred bytes to millions of bytes. Some will exist 
only for a few seconds, while others will exist for the 
life of the machine. Some objects, such as data space 
-indexes, will be accessed one page at a time; others, 
such as programs, will generally be required in main 
storage in their entirety; still others may be required 
in main storage in conjunction with a number of 
other objects. The directory structure is designed to 
satisfy these requirements with minimal overhead. 

Table 1 summarizes the storage management direc­
tories. The temporary directory describes the allo­
cation of segments that are generally required only 
for the duration of a job and need not exist across 
IPu. There are generally relatively few such seg­
ments, but at a given time most of them are in use. 
The permanent directory describes segments which 
must exist across IPu, for example, data spaces and 
programs. There are generally many permanent seg­
ments, relatively few of which are in use at any given 
time. Use of separate directories thus enables faster 
look-up and allocation operations on the more 

64 FRENCH, COLLINS AND LOEN 

frequently used temporary segments. (The indication 
of which directory to search is encoded in the virtual 
address itself.) 

Together, the permanent, temporary, and free-space 
directories describe the allocation of all disk space. 
These directories are implemented as pageable 
indexes.3 Contiguous blocks of space on disk are 
called extents, and are always a power of 2 in size, 
ranging from 512 bytes (one page) to 16MB. Each 
such extent is described by a 4-byte extent descriptor 
containing the extent size (a 4-bit code which is the 
log of the number of pages) and the disk address. The 
free-space directory consists of extent descriptors 
mapping all unallocated space, while the permanent 
and temporary directories each contain entries con­
sisting of a segment ID followed by one or more 
extent descriptors mapping the disk allocation of the 
segment. 

Allocating space in blocks rather than as single pages 
facilitates multiple page transfers to and from disk 
and reduces directory size. The power of 2 scheme 
enables the concise encoding of a vast range of sizes, 
further reducing directory size. Additionally, it makes 
possible the use of a "buddy" scheme4 to partition or 
recombine extents when allocation and deallocation 
requests are received. The buddy scheme, in conjunc­
tion with a best fit algorithm for allocating space, is 
used to minimize disk fragmentation. 

To reduce the number of permanent and temporary 
directory searches (which could cause additional page 
faults since the directories are pageable ), a main 
storage resident lookaside directory is employed. This 

3 The System/38 microcode includes a component which 
supports a variety of search, insert, and remove operations 
on indexes. This function is used by storage management as 
well as by a number of other microcode components [ 1 J. 

4 Associated with each block of space is an adjacent block of 
space of the same size, called a buddy. Since the buddy's 
size is known, its address may be determined. When a block 
of space is freed, a single lookup operation is performed to 
determine if the buddy is also free, in which case the two 
may be recombined. 

directory consists of an array of entries, similar to 
those in the permanent and temporary directories, 
describing the location on disk of the most recently 
referenced segments. It is managed on a least­
recently-used basis and is accessed by hashing the 
address to be resolved and using the result as an offset 
into the directory. Typically, 90% of all directory 
lookups are satisfied in the lookaside directory 
without additionally searching the permanent or 
temporary directory. 

Often, several objects are required simultaneously in 
main storage. For example, the arrival of a trans­
action to the system may require that a number of 
work areas and control blocks needed to process the 
transaction be placed in main storage. To reduce the 
number of separate directory searches and disk 
accesses, a number of objects may be packaged 
together in an access group. Space for the access 
group itself is described in the temporary directory. 
Space for the individual object is then suballocated 
from within this space. This suballocation is described 
in an access group table of contents. The table of 
contents is a linear list of the contents of each page of 
the access group, enabling storage management to 
transfer the set of objects to or from main storage in 
a single disk operation. An access group thus facili­
tates a roll-in/roll-out or swap type of operation. 
However, the concept is generalized to include any 
set of objects referenced more or less simultaneously. 
From a performance standpoint, access groups are a 
virtual extension of the object-oriented interface [2]. 

It must also be possible, although not desirable from 
a performance standpoint, to reference a segment 
when its containing access group is not in main 
storage. This is accomplished through the access 
group member directory, an index which relates 
segments to their containing access group. 

Recovery 

Since the directories describe the location of all data 
on disk, they must be recoverable in the event of a 

IBM S/38 TECH DEV 



Table 1 Storage management directories 

Name Organization Entry size 

Permanent Index 10-22 bytes 

Directory 

Temporary Index 10-22 bytes 
Directory 

Lookaside Array 10 bytes 
Directory 

Free Space Index 4 bytes 
Directory 

Access Group Index 14 bytes 
Member 
Directory 

Access Group List 8 bytes 
Table of 
Contents 

system failure. Instead of using a recovery scheme 
that a_dds overhead to normal system operation, such 
as journaling changes or maintaining two copies of 
the directory, all pages on disk are made self-defining; 
that is, each page on disk is preceded by an 8-byte 
header containing the virtual address of the page. The 

FRENCH, COLLINS AND LOEN 

Number Number 
Entry format of entries in system 

virtual address 1 or more 
+ 1-4 extent per segment 
descriptors 

virtual address 1 or more 

+ 1-4 extent per segment 

descriptors 

virtual address 1 per extent 

+ 1 extent 
descriptor 

1 extent 1 per extent 
descriptor 

virtual address 1 per segment 
of segment, in an access 
virtual address group 
of access group, 
size of segment 

virtual address, 1 per page 1 per 
disk address in an access access 

group group 

header is always read and written along with the page. 
In the event of a failure, the directory can be rebuilt 
by reading. all records on disk. (Since the disks may 
be read sequentially, a track at a time, and since large 
blocks of allocated space may be skipped over, the 
time to recover the directories is not excessive.) 

Typical Typical number 
Accessibility size of entries 

Pageable 128K-1M 5000-40 ,000 

Pageable 5K-50K 200-2000 

Resident 4K-8K 400-800 

Page able 6K-48K 500-4000 

Page able 2.5K-25K 100-1000 

Pageable 1.5K 150 

A natural fallout of the self-defining page concept is 
that a first reference to a page of a segment is 
detected as a mismatch between the header that is 
read in with the page and the virtual address being 
read. When such a mismatch occurs, storage manage­
ment clears the page before returning to the user. 

SYSTEM/38 MACHINE STORAGE MANAGEMENT 65 



This enables storage management to provide a page of 
zeros when a page is first referenced, and without 
the overhead of maintaining a bit map of never­
referenced pages or of zeroing space on disk when a 
segment is created or destroyed. 

Summary 

All disk storage on System/38 is managed by a single 
microcode component: storage management. The 
advantages of a simple virtual storage addressing 
scheme are thus extended to all other components of 
the system. Performance considerations are met 
primarily through a flexible, multilevel directory 
structure. 

References 
1. P.H. Howard and K.W. Borgendale, "System/38 machine 

indexing support," page 67. 
2. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 

object-oriented architecture," page 55. 

66 FRENCH, COLLINS AND LOEN IBM S/38 TECH DEV 



States that one of the novel features of System/38 is the integrated capability in the machine for creating, using, 
and maintaining indexes. Describes indexing features, implementation, and rationale. 

Indexes are one of the fundamental building blocks 
of system and application programming. An index is a 
logically ordered set of en tries: Each en try consists 
of a key that is used to define the ordering and 
associated data. Typically, the key is the name of an 
object and the data is the address of that object. 
Indexes are used in many components, such as data 
management to access records in data files and in 
compilers to manage symbol tables. 

One of the novel features of IBM System/38 is the 
integrated capability in the machine for creating, 
using, and maintaining indexes. This capability is used 
internally to support many of the basic machine 
functions, such as data base and storage management 
[1]. It is also made available to the users at the 
System/38 instruction interface via the independent 
index instructions. This provides the Control Program 
Facility (CPF) [2] , compiler, and utility products a 
powerful and standardized index function for their 
many diverse uses. 

In addition to being integrated into the machine, the 
System/38 index support has an advanced imple­
mentation approach utilizing a binary radix tree 
structure with special considerations for paging. This 
approach was required due to the challenging require­
ments of generality, performance, and function that 
had to be met to allow the machine index support to 
be used as a building block for many diverse 
functions. 

HOWARD AND BORGENDALE 

This paper discusses a few salient features of the basic 
indexes and the rationale for the implementation 
choice. 

Applications 
The IBM System/38 uses index operations for sorting 
and table searches and to maintain cross-reference 
lists. Indexes are used in storage management, data 
management, context management, symbol tables, 
message handling, and authority checking. This high 
usage requires an efficient implementation. Some 
indexes are small, and others may contain up to 
16 million bytes. 

In all of these uses, there is a need for accessing an 
entry by a key value. Many require access to a prior 
or subsequent entry as well. Fast access is another 
requirement. For fast access it is important to keep 
the index compact and minimize the number of pages 
referenced. 

Several techniques help to keep the indexes compact. 
First, the uses are designed to minimize the number 
and length of entries. The ability to handle variable­
length entries eliminates the need for including 
unused fields. The indexes are implemented to 
minimize the overhead per entry. Common text, the 
leading portion of a key that is common to two or 
more entries, is stored only once. Each entry that is 

System/38 
machine indexing 

support 

P.H. Howard and K.W. Borgendale 

added to the index requires only a few bytes of 
storage in addition to its unique text. 

The second consideration in achieving fast access is to 
minimize the number of pages that are referenced on 
each access. This is important when the pages reside 
in slower secondary storage. For uses that involve 
sequential access to entries, the problem is alleviated 
by placing sequential entries on the same page. 

Another requirement of most applications is that the 
index operations be convenient. For this reason, all 
space and pages required for the index operations are 
managed by the index function. Both the key portion 
and the data portion of an index entry may vary in 
length up to a combined length of 128 bytes. 

Binary radix tree 
The System/38 uses a form of a binary tree to 
implement indexing. The primary reason for this 
choice is that it permits fast access to the individual 
entries. It differs from the usual binary tree in that a 
single bit is used to make each decision. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica· 
tions, Atlanta, GA 30055. 

SYSTEM/38 MACHINE INDEXING SUPPORT 67 



A binary search is used to bisect the index sequence 
on each iteration. Normally, this is implemented so 
that the search key is first compared with a key near 
the middle of the index sequence. Then, if the search 
key value is higher {lower), it is compared with a key 
near the middle of the upper (lower) portion of the 
index sequence. This process is repeated until an 
exact match is found. 

For the System/38 indexes, the concept remains but 
the details are changed. Instead of comparing the 
whole search key with the various index entry keys, a 
single bit of the search key is tested on each step and, 
thereby, it is determined which path will be followed 
on the next step. This process is faster and nearly as 
informative. Certain bits of the search key are not 
tested because all of the candidates (those index 
entries which have satisfied all of the prior tests) have 
those bits in the same state. Each node of the 
decision tree must identify one bit of the search key 
to be tested and, as a result of that test, select one of 
two possible successor paths. This process is repeated 
until there is only one candidate left. A termination 
text element is used to identify the unique text of the 
proper index entry. 

The tree is composed of nodes and text elements. 
Each entry is represented with a separate path from 
the root through a termination text element. The text 
elements define the location and length of text that 
logically belongs at each point along the path. Each 
node defines a test that will help select the path to be 
followed for a given search key. It identifies the 
search key bit to be tested. It also indicates the 
relative locations of successor and predecessor 
elements. 

Figure 1 is a representation of these nodes and text 
elements for a tree with eight entries. The same type 
of text element is used for text that is common to 
several entries and for the termination text of a single 
entry. 

68 HOWARD AND BORGEN DALE 

Figure 2 shows an analysis of the same entries. It 
indicates that the entries have different lengths and 
that the keys are also of different lengths. The key 
for an entry is defined as that set of leading bytes 
which is sufficient to uniquely distinguish it from all 
others. Note that subsets are included by providing a 
null text element. 

Data representation 
Every entry in a System/38 index is treated as a 
variable-length bit string. The acceptable lengths are 
multiples of eight bits up to 1024 bits (128 bytes). 

Root 

Q Node indicating bit 
Q to be tested 

D Common text 
element 

D Termination 
text 
element 

Note: The node values assume that text is represented in 
EBCDIC. 

Figure 1 Binary tree with eight entries 

The entry's length, in bytes, must be defined when it 
is inserted into the index. Its length is returned 
whenever the entry is retrieved. 

Before a new entry is inserted into the index, its 
synonym entry is found. The synonym entry is that 
entry which is found when the new entry is used as a 
search argument with the existing decision tree. If the 
new entry is an exact match for the synonym entry, 
then it is rejected because it is a duplicate. Subset 
entries are allowed; the shorter entry is placed ahead 
of the longer one. Otherwise, the first bit that differs 
between the new entry and the synonym is used to 
discriminate between them. The decision tree is 
modified along the path leading to the synonym so as 
to include the new test. The new test node is 
positioned along that path so that the search key bits 
are always tested in a strict left to right sequence; this 
keeps the entries ,in order. 

Key Data 

Entry length 

Bits tested Entry Key 
Entry on search length length 

HART 3 4 4 

HARVEY 3 6 4 

HEIN 4 4 4 

HEINTZ 4 6 5 

HENRY 3 5 3 

HOPKINS 2 3 

HOWARD 3 6 4 

HOWELL 3 6 4 

TOTAL 25 44 31 

AVERAGE 3.1 5.5 3.9 

Figure 2 Analysis of entries 

IBM S/38 TECH DEV 



Front-end compression 
The binary radix search technique described above 
will select one index entry for any given search key. 
However, the correspondence between the search key 
and the selected entry key is guaranteed only for 
those bits that were tested. To verify that the selected 
entry matches the search key, a full comparison must 
be made. This is better than the normal binary search 
because only one full comparison need be done. 

The full comparison can be performed as a single step 
at the end of the search, or it can be performed in a 
piecewise fashion as the search progresses. The latter 
method was chosen because it provided other benefits 
as noted below. 

At various stages along the search path, the next bit 
to be tested lies in a different byte than the prior one. 
At this point, all of the candidates have the same 
value for the completed bytes. By comparing each 
completed byte with the corresponding search key 
byte at the earliest possible stage, it is possible to 
terminate a search early when none of the candidates 
can match the search key. Terminating the search 
early can eliminate unnecessary page faults. Also, by 
storing the common text byte at the earliest stage in 
the decision tree, it can be eliminated from the 
termination text of each of the candidates. This can 
represent a substantial reduction in the amount of 
text required for many applications. This reduction is 
referred to as front-end compression because lead­
ing bytes of key fields need to be stored only once. 

Page splitting 
Even with front-end compression and a compact 
format for the structural elements, most decision 
trees require more than one page to represent all of 
the entries. This raises the question of how a tree 
should be distributed over several pages. 

It should be noted that the logical structure of the 

HOWARD AND BORGENDALE 

tree is dependent only on the data. The number of 
entries in the tree and the average number of nodes 
along each path are generally related as follows: 

Entries Nodes 

200 8 
1000 10 
5000 13 
30000 15 
1000000 20 

Differences in individual path lengths are unim­
portant because the time to process a few nodes more 
or less is minor. But the time for a page fault is of 
more concern. 

Accordingly, much effort is expended to provide a 
physical balance in the number of pages required to 
complete each path. The page-splitting algorithm 
allows any node in the logical tree to be replaced with 
an index page pointer; that page must then resume 
with the equivalent subtree. Most of the pages with 
termination text are placed at the outermost (that is, 
branch) level of the tree. The first page of the tree is 
called the trunk and will contain mostly pointers to 
other pages. Pages that contain pointers to other 
pages and are beyond the trunk level are called limbs. 
Table 1 gives examples of the number of pages at 
each level. 

The splitting algorithm causes the pages in the level 
adjacent to the trunk to grow gradually and then 
drop to two when an additional level is needed. This 
is done because in a virtual paging environment the 
small number of pages in the level adjacent to the 
trunk has a high probability of remaining in main 
storage just through heavy usage. The fanout from a 
single page is typically in the range from SO to 90. 

Summary 
Because of its extensive usage, indexing is a key 
element of the System/38. The index instructions 

Table 1 Examples of page hierarchies 

Trunk Limbs Limbs Branches Total 

80 81 

2 150 153 

12 1000 1013 

80 6000 6081 

3 200 14000 14204 

8 500 32258 32767 

provide fast access to the index entries by employing 
a binary radix search. Only a small number of pages 
are touched, and only a small number of nodes are 
processed. The indexing capability is independent of, 
but used by, data base and storage management. 
Thus, the index instructions provide an efficient and 
standardized set of building-block functions that are 
used by many system components. 

References 
1. R.E. French, R.W. Collins, and L.W. Loen, "System/38 

machine storage management," page 63. 
2. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 

SYSTEM/38 MACHINE INDEXING SUPPORT 69 



User-System/38 
interface design 
considerations 

D.G. Harvey 

The IBM System/38 is a new system providing 
extensive functional capabilities. One of the major 
architecture and design problems encountered in the 
development of this type of system is how this 
advanced function should be presented to the end 
user. Heavy customer investment in program and skill 
development precludes a radical diversion from cur­
rent interfaces and approaches. At the same time, 
constraints imposed by contemporary facilities pre­
vent a user from realizing the full potential of the 
new system. It is also deemed undesirable to burden 
new users with vestigial data processing constructs. 

This paper gives some insight into how these classi­
cally opposing forces were reconciled to provide the 
System/38 user with interfacing mechanisms which 
are at once familiar and progressive. In so doing, the 
paper also provides a simple overview of the system's 
primary interfaces and their relationships. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

70 HARVEY 

Provides an overview of System/38's primary user interfaces. Describes objectives, constraints, and rationale. 

Language/interface influences 
The decision on when to extend existing interfaces 
versus providing new ones was driven mainly by 
consideration of four factors: 

New technical concepts 
New function 
New users 
Business investment 

For purposes of this article, words like current and 
existing refer to IBM predecessors of System/38: 
System/3, System/32, System/34. 

New technical concepts 

A number of important technical concepts in 
System/38 have had major influence on the archi­
tecture of the user interfaces. Program/data inde­
pendence, program/system independence, binding 
flexibility, transaction processing, and modular appli­
cation structures have forced a function-language 
taxonomy that not only categorizes the languages/ 
interfaces themselves, but also classifies function by 
interface. These five concepts are more or less 
dependent on the basic notion that applications, and 
even systems, consist of three major entities: 

Objects 
Programs 
Processing environment 

Objects are those pieces of an application that "get 
worked on." They are the ultimate targets of all 
programming operations. Devices and data base files 
are perhaps the most common objects. The concept 
of the object is treated in detail by Pinnow et al [ 1 ] . 

Programs are those parts of an application that "work 
on" the objects. A program is also one of the more 
common objects since at any point in time it may 
serve as a target rather than a processor. 

Processing environment is the conditions under which 
the application will run, that is, which programs will 
process which objects under what circumstances. 
Many aspects of the environment are often system 
dependent. 

All five of the previously mentioned technical con­
cepts flow from the theory that these three major 
parts may be, to a large extent, treated as inde­
pendent entities. That is, objects within an applica­
tion may be established and modified (redefined) 
while programs and environment remain constant; or 
programs may be established and modified with no 
effect on the others, etc. Also, given separate sets of 
objects, programs, and environments, it should be 
possible to statically or dynamically bind elements 
from each into a synergistic unit (the executable 
instance). Figure 1 illustrates this concept. 

IBM S/38 TECH DEV 



Process environment 

V 0 Concurrenc 
0 C control 
C E 
A D 
T LJt-----
1 R 
0 E 
N S 

B 

Programs Objects 

N 

Bind control is part of the Process environment portion of an application. It should be flexible enough to allow establishment of an 
executable instance prior to processing an entire set of input (early bind), or allow fresh creation/destruction of an executable 
instance for each unit of information that arrives at the system (late bind). 

D 

areas 

Allocated 
main 

Open 
data files 

Etc. 

Execution 
instance 

Figure 1 A method of combining elements from objects, programs, and environments 

Given this fundamental trinity of application entities 
and an understanding of the benefits that can be 
gained by adhering to a clean separation of each, it 
became a major objective of System/38 to provide 
languages/interfaces that encourage the user to con-

HARVEY 

sciously delineate and define the separate parts. At 
the same time it was clearly recognized that there are 
enough instances of functional overlap among these 
parts that rigid enforcement of such a structure is 
neither desirable nor possible. 

New function 

Significant new function is provided on System/38, 
some of which is not readily adaptable to existing 
interfaces. The definition of data base and device 
files, for example, involves the building of structures 
and data relationships that are foreign to current user 
interfacing constructs. Other areas where new func­
tions must be manifested through the user interfaces 
are: 

Work station 1/0 
Data base 1/0 
System display capabilities 
Object creation/manipulation facilities 
Test and service functions 
Transaction processing/system control functions 
Message handling facilities 
Save/restore 
Cross referencing/where used functions 

It has been a primary objective of System/38 to not 
only give the end user access to these functions, but 
to also classify them such that they are available in 
the proper piece of an application. For example, 
some functions are clearly related only to the 
processing environment and need not be accessible 
from within programs. Many of them are system 
dependent in nature and should be rigidly isolated 
from the programming interface. 

New users 
Even a cursory analysis of this area reveals a growing 
set of users whose needs are fast outstripping current 
interfacing facilities. These users range from work 
station operators who need consistent mechanisms 
for effecting simple transactions to company 
managers who desire rapid access to their data base. 
Data entry, inquiry, and query functions (including 
hard copy generation) are required by users with little 
or no data processing training. Clearly, the final 
interface architecture had to take this user into 
account. 

USER-SYSTEM/38 INTERFACE DESIGN CONSIDERATIONS 71 



Business investment 
Several straightforward business considerations affect 
the choice and definition of user interfaces on any 
new system. Gratuitous change from current 
approaches causes increased development costs for 
IBM, high reprogramming and education costs for our 
users, and, therefore, a justified resistance to the 
product. On the other hand, there are very real 
though less easily quantified costs resulting from 
strict adherence to dated practices. Unfortunately, 
the problem is further complicated by the fact that 
the optimum rate of innovation varies from business 
to business. Because of this, it was decided that 
System/38 interfaces must allow users to move onto 
new ground at their own rate. The user should be 
allowed to bring current applications to the new 
system without having to understand most of the new 
function available and without having to deal with 
radical new interfaces. 

Results 
After considering all the above factors, some conclu­
sions were obvious. RPG was definitely the base on 
which· to build the program definition interface. 
Customer investment in the language is high and, with 
the proper extensions, it provides a simple yet 
powerful means of manipulating System/38 objects. 
New file options and new calculation operation codes 
have been added which facilitate processing of work 
station and data base files and allow for much greater 
user control over logic flow within the program. This 
new RPG, designated RPG III, also allows the user to 
write a program such that objects like data base files, 
work station files, and external data areas are not 
defined in the program. I/O operations are specified 
in the program, but the object structures (down to 
the field level) are defined via a separate interface. 
Thus, RPG III meets the requirement that programs 
need not contain object definitions. It serves as the 
primary programming interface on System/38. 

Again, looking at the major influences documented 
above, it was decided that no existing language could 

72 HARVEY 

serve as the interface for establishing and manipu­
lating the processing environment. Far too many new 
system functions are provided to even consider 
propagation and extension of the operator control 
language and utility interfaces now available. Most of 
this function is required interactively and is of an 
imperative "outside-in" nature, which fits nicely into 
a verb-noun command structure. Accordingly, a new 
Control Language (CL) interface is provided, which 
allows for the establishment and control of the 
processing environment and provides an interface to 
many system dependent functions. 

The object definition interface could have been 
folded entirely into RPG III or CL. RPG III was 
rejected for this role because many of the objects are 
system dependent in nature and because the system 
would thus be architecturally constrained to a single 
high-level language programming interface. Also, for 
reasons previously stated, object definition should be 
isolated from the program. CL on the other hand is 
high-level language independent and is the intended 
interface for system dependencies. For simple objects 
(libraries, message queues, external data areas, etc.), it 
easily provides a simple and consistent definition/ 
creation/deletion interface. Files, however, presented 
a problem. The definition of files, fields, structure, 
screens, etc., is largely a declarative process that 
historically has been supported through easy-to-use, 
fixed-form interfaces. Force fitting complex declara­
tive structures into a language, which by definition is 
verb cdriven, would detract from the single statement­
single action structure of the control language. It was 
decided that a separate forms interface should, 
therefore, be provided as a means of describing the 
more complex objects-work station and data base 
files. Appropriately, the interface is referred to as the 
data description specification, which is discussed by 
Truxal and Ridenour [2] . The data description 
specification serves only as a descriptive interface. In 
this regard, it is directly analogous to RPG III. Both 
are easy-to-use forms interfaces that describe complex 
objects (RPG III describes a program object). In all 

cases, actual object creation can only be effected via a 
CL command. While the description of simpler 
objects, such as libraries, is specified directly in create 
command parameters, the description of program and 
complex file objects is stored and referenced by name 
on the create command. Thus, the commands are 
simplified, and detailed data and program descrip­
tions can be reused when necessary. 

As illustrated in Figure 2, the three basic user 
interfaces on System/38 are the control language, 
RPG III, and data description specifications. 

Users may choose to access System/38 function only 
through these interfaces; but in order to fully 
accommodate the non-DP types of users described 
previously, and those people requiring frequent use of 
control functions, it was decided that a higher level of 
interface was required-one that would allow these 
users to access data and major system functions 
without understanding any of the primary interfaces. 
As shown in Figure 3, this interactive ease-of-use 
facility consists of two major parts. One is simply a 
conversational means of entering CL commands; it 

End users Control 
Operators Language 
Programmers 
- Process environment 

System-dependent functions 
Object creation/deletion 

Data description 
specification 
Definition of 

complex objects 

Figure 2 The three basic user interfaces in System/38 

IBM S/38 TECH DEV 



use interface 

Data description 
specification 

Figure 3 The high-level interface for accessing data 
and major system functions 

interactively helps the user to enter the proper 
information for any chosen command function and 
then dynamically builds the command and causes it 
to be executed. Results are the same as if the user 
entered the command directly in CL syntax. The 
other is a powerful facility that allows the end user to 
define and execute typical work station applications 
without having to understand any of the primary 
interfaces. Source entry, data entry, inquiry, and 
query applications may be generated and executed 
with little or no DP training. 

Summary 
The user interfaces to System/38 reflect a balanced 
means of accessing function on a new generation of 
systems. User investment, new user roles, advanced 
technical concepts, and increased function were the 
primary factors influencing the interface architecture. 
They resulted in establishment of interfaces that 

HARVEY 

support the new and advanced characteristics of the 
system while retaining a high degree of familiarity. 

References 
1. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 

object-oriented architecture," page 55. 
2. C.D. Truxal and S.R. Ridenour, "File and data definition 

facilities in System/38," page 87. 

USER-SYSTEM/38 INTERFACE DESIGN CONSIDERATIONS 73 



Introduction to the 
System/38 Control 
:Program Facility 

D.G. Harvey 

The System/38 Control Program Facility (CPF) is a 
totally new, high-function, operating system product 
designed to complement and extend the capabilities 
of the System/38 machine. As such, its functional 
offerings further emphasize the basic thrust of the 
System/38 architecture-fully integrated support for 
data base and work station-oriented applications. The 
advantages of real time, interactive access to func­
tions and data are extended, through CPF facilities, 
not only to work station operators performing user 
business functions, but also to application pro­
grammers and system operations personnel as well. In 
addition, the CPF supports a wide range of batch 
processing options allowing increased control of 
batch work flow, full concurrency with interactive 
work, and submission of batch work from locally or 
remotely attached work stations. 

To make its functions available in a consistent and 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

74 HARVEY 

States that the System/38 Control Program Facility is a new high-function operating system product. Highlights 
key aspects of function, interfaces, and design objectives. 

easy-to-use manner, the CPF provides a single new 
control language and advanced new data definition 
and data manipulation interfaces. 

This paper introduces the CPF by highlighting key 
aspects of its function, interfaces, and basic design 
objectives. It also provides the framework for related, 
but more detailed, CPF papers that follow. 

Pervasive characteristics 
In order to introduce significant advances in function, 
many previous systems have proliferated the number 
of specialized interfaces. This not only increased the 
apparent complexity of the system, it also greatly 
reduced the ease with which system users learned new 
functions and procedures. 

To avoid such problems, the CPF has been designed 
to provide its wide range of functions through 
conceptually simple and consistent mechanisms. This 
simplicity and consistency is embodied in three basic 
CPF characteristics: 

The interface to CPF functions is object-oriented. 
Each CPF "object" type can be characterized by its 
attributes, the operations that can be performed upon 
it, and the user data contained within it. Examples of 

CPF objects are: files, programs, message queues, user 
pn?files, and libraries. Object concepts are discussed 
by Pinnow, et al [6]. 

Operations on objects are performed through a single 
new control langu,age. The CPF Control Language 
(CL) consists of over 200 single-function commands. 
Command processing is available to work station and 
batch users alike. Commands can also be compiled to 
create control language programs. Key aspects of the 
Control Language are discussed by Botterill and 
Evans [2]. 

Function and object usage can be controlled through 
CPF security facilities. CPF supports both system 
level and user level security controls, as described by 
Berstis, et al [7]. System level controls can be used to 
prevent access to the system by unauthorized per­
sonnel. User level controls allow authorized users of 
the system to "own" objects and to grant and revoke 
object rights-of-use to other system users. 

These simple but pervasive features make CPF func­
tions potentially available to all CPF users through a 
single mechanism. The subset of functions needed by 
a particular user is not predefined or restricted by the 
CPF. It is determined solely by the needs and policies 

IBM S/38 TECH DEV 



of the System/38 installation. As users expand their 
use of CPF, they are not required to learn new or 
diverse interfacing techniques. 

Workflow and resource management 
One of the more novel aspects of the Control 
Program Facility is the support it provides for 
managing the flow of work and the usage of system 
resources [ 1] . Similar to some previous systems, CPF 
offers basic support for the concurrent execution of 
batch, interactive, and transaction-oriented applica­
tions. However, unlike previous systems, the CPF 
offers this support as an integrated feature of the base 
operating system product. This integrated design 
eliminates the need for unique resource management 
subsystems that impose their own operating over­
head, functional restrictions, and special interfaces on 
system users. It replaces such subsystems with a 
subsystem concept of its own-the user-defined 
subsystem. 

Integrating the subsystem concept into the basic 
operating system design allows the CPF to support 
any number of user-tailored operating environments 
through a single rule-driven mechanism. This tech­
nique not only makes the basic tuning functions of 
the System/38 machine available in all environments 
through a single interface, it also allows the user to 
isolate or intermix different types of work as appro­
priate without restricting in any way the options 
available to the application designer. 

The rules for the operation of each subsystem are 
contained in an object referred to as a subsystem 
description. A subsystem description provides a 
means by which a user can prespecify sources from 
which new work is to be accepted (such as a job 
queue or a work station), programs to control the 
processing, and various resource usage parameters. 
Prespecification also provides a means for easy 
operational control since a subsystem can then be 
started with a single command. 

HARVEY 

In keeping with the terminology of previous systems, 
each "use" of the system is referred to as a job. Within 
a job, each processing step results in the initiation of 
a process-the basic unit of parallel execution within 
the System/38 machine [8]. The degree to which 
each processing step appears to be batch-like versus, 
for example, transaction-like is totally dependent 
upon the characteristics of the program(s) controlling 
the flow of execution within the step. The specifica­
tions in the subsystem description determine whether 
the stimulus for the next processing step causes 
control to be given to a designated user program or, 
for example, to the CPF command processor. 

Command processing 

The CPF command processor is designed to operate 
as a rule-driven subprogram [2] . As such, it can be 
invoked in virtually any environment to provide 
command services to CPF users. For work station 
users, basic command processing services have been 
extended to provide a powerful, interactive, com­
mand-entry facility complete with command selec­
tion aids, parameter prompting, and message reply 
capability. Through these facilities, CPF users have 
access to all commands and user applications (via the 
CALL command) to which they are authorized. 

The rule for processing each command is contained in 
an object called a command definition. 

Each command definition describes the validity 
checking, parameter defaults, and prompting text for 
its associated command as well as the program to be 
invoked to perform the command function. Because 
the command interface is maintained separately from 
the program that performs the function, new com­
mands can be defined to tailor the interface to an 
existing program or to provide an interface to a new 
program (thereby extending the command set). 

For often-repeated command sequences, a Control 
Language compiler is provided. Compiled CL offers 

not only the expected performance advantages but 
also a number of significant "programming language" 
functions not normally found in a control language, 
including: 
• Declared program variables 
• IF THEN ELSE and DO-group capabilities 
• Work station I/O support 
• Error monitoring facilities 

These functional extensions (and others) make con­
trol language programs well-suited for performing the 
control flow portions of both batch and work 
station-oriented applications. The work station I/O 
support provided through compiled CL is specifically 
designed for simple menu and prompting usage. 

Data management 

The CPF control language provides a single interface 
through which object level functions can be per­
formed. However, one type of object, the file, has 
special significance in that it is designed to provide a 
mechanism through which system users define and 
access large volumes of data. 

As was the case on previous systems, the primary 
System/38 interfaces through which file processing is 
performed are provided by high level language com­
pilers and utilities. CPF data management facilities 
are designed specifically to provide extensive file 
processing support for such products through a 
common file approach that encompasses both devices 
and data base. This support also includes a powerful 
new data description facility (data description specifi­
cation) offering a fixed-form interface similar to 
RPG. This facility provides a system-wide mechanism 
for describing the format, relationships, and pro­
cessing options for user data files, as described by 
Truxal and Ridenour [4]. Data description specifica­
tion allows, for example, work station screen formats 
and logical views of physical data base records to be 
defined outside the programs that process the data. 
Much of the redundancy of record and field defini­
tion can be eliminated. 

INTRODUCTION TO THE SYSTEM/38 CONTROL PROGRAM FACILITY 75 



The file processing support offered by CPF extends 
to its users key System/38 machine features, such as 
concurrent data base access by multiple users and · 
local/remote transparency for work station devices. 
In addition, it provides significant levels of both 
device and file independence including the ability to 
redirect sequential I/O between devices and the data 
base. Full input and output spooling facilities are 
also provided for printer, card, and diskette devices. 
File processing concepts are described by Fess and 
Benson [5]. 

Message handling 
To facilitate communication throughout the system, 
the CPF supports the ability to send and receive 
messages via message queues, as discussed in detail by 
Demers [3]. A message queue is automatically 
created for each work station defined to the CPF. 
This allows work station users to communicate with 
each other by simply sending messages to the queue 
for the desired work station. Message queues can 
also be created for special uses such as a person­
alized "mailbox" or to allow program-to-program 
communication. 

Individual messages can be predefined and stored in 
message files independent of any particular sender or 
receiver. This independence facilitates message text 
translation and allows CPF to provide support for 
default handling of conditions that cause messages to 
be sent. The CPF supports two levels of message text 
as well as data insertion within text. 

The simple concepts of messages and message queues 
have also been integrated into other areas of the CPF 
architecture where generalized message handling func­
tions are required. A single CPF component provides 
basic message-handling functions for all interface 
layers: machine to program, program to program, job 
to job, and job to user. Even the CPF's logging 
functions are supported through the use of this com­
m on facility. 

76 HARVEY 

Application development 

To extend online services to programmers, the CPF 
control language provides a number of application 
development and maintenance functions: 

• Interactive program testing support offers both a 
"test environment" capability that protects produc­
tion data files against inadvertent modification and a 
dynamic debugging facility (e.g., no compile time 
specifications) that allows program breakpointing and 
tracing at high level language program statements and 
variable references. 

• Library facilities provide those functions needed 
to group objects for convenient reference and to 
perform basic object operations such as locating, 
moving, renaming, and deleting. 

• Extensive reporting facilities are also provided to 
allow work station or hard copy output of informa­
tion such as object descriptions, file usage, spool file 
contents, and job status. 

• A copy facility provides a means for copying data 
from one device or data base file to a new or existing 
file. Various record selection, record sequencing, and 
record formatting options are supported. 

• The CL compiler and command definition facility 
provide the programmer with excellent tools for 
utilizing the full power of the control language and 
for extending or modifying the command set. 

System management 
A number of important functions are supported by 
CPF to aid in managing the overall operation of the 
system. Highlights of these functions include: 

• A simple "no sysgen" installation procedure. CPF 
is shipped with a number of IBM-defined "user" 
objects including user profiles, subsystem descrip­
tions, device files, and message queues. After installa­
tion, the system is ready to use. Any special tailoring 

of the system can be performed at any time through a 
variety of CL commands. 

• Facilities for saving and restoring objects offline to 
or from diskettes. Save/restore functions can be used 
for producing backup copies of objects, for freeing 
auxiliary storage space, for application interchange 
between systems, or for removing data from the 
system so it can be physically secured. The CPF 
maintains a history of when and where each object 
was saved. 

• A wide range of service functions intended pri­
marily to aid IBM service personnel in analyzing, 
diagnosing, reporting, and fixing system problems. 
The majority of these functions are designed to 
operate concurrently with other system work to 
minimize impact on the overall system operation. 

• Flexible console and system operator support. Full 
work station support is provided for users of the 
system's imbedded console. System operator func­
tions are not, however, restricted to the console. Com­
munication with the system operator is performed 
through a system operator message queue that is 
independent of any particular device. The system 
operator is, therefore, free to use any work station. 

Summary 
The System/38 Control Program Facility offers a 
wide range of function to both end-users of the 
system and other System/38 products. Its "inte­
grated subsystem" approach to managing work flow 
coupled with the extensive resource management 
support of the System/38 machine provides system 
users with the flexibility and control needed to man­
age a variety of application environments. Its data 
management support extends and enhances machine 
device and data base support to provide a consistent 
and highly functional interface for data definition 
and file processing. Its single control language makes 
significant new function available that is not offered 

IBM S/38 TECH DEV 



through other interfaces. These functions and inter­
faces are provided through a design attuned to both 
the System/38 machine and the users of CPF. 

References 
1. H.T. Norton and T.R. Schwalen, "Table-driven work 

management interface in System/38," page 94. 
2. J .H. Botterill and W .0. Evans, "The rule-driven Control 

Language in System/38," page 83. 
3. R.A. Demers, "The generalized message handler in 

System/38," page 97. 
4. C.D. Truxal and S.R. Ridenour, "File and data definition 

facilities in System/38," page 87. 
5. R.O. Fess and F.E. Benson, "File processing in 

System/38," page 91. 
6. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 

object-oriented architecture," page 55. 
7. V.Berstis, C.D. Truxal, and J.G. Ranweiler, "System/38 

addressing and authorization," page 51. 
8. H.T. Norton, R.T. Turner, K.C. Hu, and D.G. Harvey, 

"System/38 work management concepts," page 81. 

HARVEY INTRODUCTION TO THE SYSTEM/38 CONTROL PROGRAM FACILITY 77 



System/38 
data base 
concepts 

C.T. Watson, F.E. Benson, and P.T. Taylor 

The System/38 data base facility differs from existing 
data base packages in many basic ways. An associated 
article, "System/38 machine data base support" [I], 
explains that much of the System/38 data base 
function is supported by the machine and discusses 
the design decisions that were made regarding the 
level of function to be supported by the machine 
instruction set. The trade-offs covered in that article 
are performance, security, integrity, and ease of use. 
This article, on the other hand, describes some of the 
differences by giving an overview of the major 
functional characteristics. These characteristics 
include the System/38's design philosophy, its file 
structure, its sharing capabilities, its expandability, 
and its data manipulation capabilities. 

Design philosophy 
In past systems, full-function data base packages have 
been applications built on the machine's operating 
system and its file management component. This has 
always caused problems with security, integrity, and 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

78 WATSON, BENSON AND TAYLOR 

States that the System/38 data base support is unique in many respects. Describes major characteristics and their 
rationale. 

performance. System/38 is the first computer system 
to have a full-function data base facility designed as a 
part of the basic machine. The data base capability is 
a primary function of the Control Program Facility 
(CPF) and is comparable to data base systems pre­
viously available only as applications on more expen­
sive machines. All online data in System/38 is stored, 
manipulated, and accessed through the data base 
component. The extensive capabilities of the data 
base facility are designed to be available to the user at 
whatever level of function and sophistication is 
needed. The security, integrity, and performance of 
the System/38 data base facility were enhanced by 
the consideration of the data base facility during the 
entire design of the system. 

Files 

All online data in System/38 is stored as records in 
data base files. A data base file has three primary 
attributes: the format of records within that file, the 
access path for the records within that file, and the 
members of that file [2]. A record has a fixed format 
defining each field and its attributes. The access path 
for a file defines the ordering of records within that 
file and provides for either random or sequential 
accessing of those records. The members of a file are 
different instances of data sharing the same file 
definition (the same format and access path 
definition). 

The access path defines an ordering of records either 
by arrival sequence (order of insertion) or by key 
sequence. The keyed access path provides compre­
hensive ordering functions. A key exists for every 
record addressed by the file. A key is made up of 
fields from the record and system-generated character 
constants used to achieve hierarchical or duplicate 
key ordering. Each field can have ordering attributes 
applied to it: ascending, descending, absolute value, 
an alternate collating sequence, etc. Additionally, 
LIFO and FIFO duplicate-key ordering is specifiable 
for duplicate keys within a file. A selection feature is 
provided to allow the access path to address a subset 
of the records within a file based on field values 
within the record. Keyed access path maintenance 
represents some additional overhead on ,data base 
changes and, therefore, continuous or deferred 
maintenance options are provided. To ensure that the 
access path always represents the actual existing data, 
the keyed access paths are automatically recovered in 
case of system failure. 

The two types of data base files on System/3 8 are the 
physical and logical files, as shown in Figure 1. 
Physical files represent the actual stored data. Logical 
files provide alternate user views of the stored data to 
support application and data independence and to 
avoid redundancy of data. 

IBM S/38 TECH DEV 



As shown in Figure 1, a physical file has one access 
path and one format. A logical file is over one or 
more physical files and has one access path and one 
or more formats. Members of physical/logical files 
(not shown) are different instances of data sharing 
the same access path and format definitions. 

A physical file has one format; therefore, all records 
within members of that physical file have the same 
fields, attributes, and length. The records in each 
physical file member are ordered as defined in the 
access path for the file. 

A logical file provides an alternate format and access 
path for one or more physical files. The logical file 
format allows a user to see a view of a physical record 
that subsets, reorders, or changes the attributes of the 
fields in the physical record. The logical file access 
path (1) allows the user to see a view of one or more 
physical file members, and (2) subsets, or reorders, 
the records in those physical members. This provides 
the user with an alternate ordering of the records for 
sequential retrieval, or, for random retrieval, a differ­
ent key than that defined in the physical file. A 

Physical file 

Logical file 

(I Format ~ 

Physical file 

[: ~~~~{b.MffiWI 

I Format 

Figure 1 Physical/logical file structure 

WATSON, BENSON AND TAYLOR 

Physical file 

Format 

different key definition can be specified for each 
physical file member addressed and any field in the 
format may be used. Figure 2 shows how a logical file 
can be used to provide a hierarchical view of one or 
more physical files. Notice that the three physical 
files, through use of a logical file, appear to be in one 
hierarchical file containing multiple record types. 

Another facet of this file-based design is security. 
Security in the data base facility is by file. When a 
user creates a file, he is the owner of that file and 
may specify public, private, or normal authorization. 
"Public" implies all users have all authorizations on 
the object. "Private" implies only the owner can 
currently use the object. "Normal" indicates that 
only the system default authorizations should be 
made public. The user may subsequently grant any 
authorities to selected (or all) users and may transfer 
ownership to another user [3]. To create a logical 
file, a user must have the correct authority on each of 
the physical files referenced. To use a logical file, 
sufficient authorization must be available for both 
the logical file and its physical files. Field-level 
security is supported through use of logical files. 

I 

·­ -----

Physical file B 

• 
-- ----

Figure 2 Hierarchical file organization achieved 
through use of a logical file 

Sharing 
Two of the main objectives in the System/38 data 
base facility design were to significantly increase 
sharability and decrease data redundancy. The main 
thrust of the physical/logical file structure is to 
achieve these ends. System/38 permits sharing on all 
levels. One of the major new features of System/38 is 
that file data definitions are specified to the system 
and shared. Programs may reference by name a 
central definition for file, format, and field attributes. 

This means that the programmer supplies only the 
format name and then the compiler automatically 
retrieves from the system the record definition for 
use in the compiled program. The programmer may 
choose to ignore the defined format and may redefine 
field names or even redefine the entire record format, 
as was the standard procedure in all previous systems. 
The use of centralized data definition allows 
improved programmer productivity, fewer errors, 
improved file maintenance and growth capabilities, 
and provides the information needed for query, 
report generation operations, and field level 
prompting. 

As noted in the "Files" section, the execution-time 
sharing of System/38 data is very powerful. Different 
user programs through different logical files see the 
same data in diverse ways. To achieve this, the 
System/38 data base facility makes changes visible to 
all users immediately, prevents users from updating 
the same record concurrently, and immediately 
reflects the change in all access paths. 

Access paths themselves may also be shared. Another 
file type called a derived logical file allows different 
format definitions while sharing the access path with 
another file. 

Expandability 
Through use of the physical/logical file structure and 
the system-defined data capability, System/38 has 
made the user's data base flexible enough to meet the 

SYSTEIVl/38 DAT A BASE CONCEPTS 79 



changing needs of application programs and users. 
Below are several examples of this. 

All file space expansion for additional record needs is 
handled automatically by the system unless the user 
specifies constraints. 

New physical or logical files can be created at any 
time for use by new applications as shown in Figure 
3. This has no effect on existing physical files, logical 
files, or application programs. 

Modification of the attributes of a data file will not 
cause the program to need to be recompiled unless 
the new definition is not consistent with the 
program's usage. The affected programs are auto­
matically notified at their next usage to indicate their 
need to be recompiled. 

Data manipulation 
The basic data base facility operations are OPEN, 
GET, PUT, UPDATE, DELETE, RELEASE, and 

Physical file 

Figure 3 Meeting the users' changing needs 

80 WATSON, BENSON AND TAYLOR 

CLOSE. OPEN and CLOSE connect and disconnect 
the file and the process. GET locates and/or reads a 
record from a file and has very powerful search 
operations. For arrival sequence access paths, the 
search can be sequential or direct. For a keyed access 
path, the search can be sequential, keyed, or direct. 

For sequential searches, the available options are first, 
last, next, previous, and same. Next and previous 
imply the record (as defined by the access path) next 
to the currently addressed record. Same is used when 
the previous GET was for position only, and now the 
record is desired. 

For direct searches, the options are to find the n-th 
record in the arrival sequence or to find the record 
± n records from the current position in the arrival 
sequence. 

For keyed searches, GET can position to the record 
whose key is before, equal or before, equal, equal or 
after, or after the position indicated by the key 
supplied by the user. Or, GET can position to the 
record whose key is next or previous to the position 
indicated by a leading portion of the key for the 
record currently addressed, that is, a generic next or a 
generic previous. 

On every GET operation, the arrival-sequence posi­
tion number of the physical record addressed is 
returned so that the user can, later, quickly reposition 
to any previously addressed record. This is very useful 
for "navigating" through a data base structure and 
can be used to jump from the hierarchical structure 
defined by one logical file to a different hierarchical 
structure defined by another logical file, that is, 
parent to child and back to a different parent. 

PUT inserts a record into a file. UPDATE modifies 
the contents of a record. DELETE removes a record 
from a file. All three operations immediately update 
all the keyed access paths to reflect the change. 
RELEASE unlocks a record that was locked by GET 
for modification or deletion. 

Summary 
The System/38 data base facility is unique because of 
its physical/logical file structure. It does not conform 
to the relational, hierarchical, or network data base 
model, but combines aspects of each. A physical file 
is similar to a relational file. The requirement that 
relationships between records {key values) must be 
stored values in the record is similar to that in the 
relational model. A logical file is a hierarchical file. 
The fact that multiple logical files can coexist and 
that the user can jump from one to the other provides 
function comparable with that provided by network 
models. In combining these features of the classical 
models in this unique way, System/38 has provided 
the user with an elegant, easy-to-understand data 
structure. 

The System/38 data base facility has extensive 
capabilities and is a basic part of the design of the 
system. The data base facility was designed to greatly 
simplify the application programmer's job and to 
provide savings to the user in bringing new appli­
cations online and in maintaining existing ones. 
System/38 and its data base facility represent a 
significant step forward in bringing this level of 
function to the diverse System/38 customer set. 

References 
1. C.T. Watson and G.F. Aberle, "System/38 machine data 

base support," page 59. 
2. C.D. Truxal and S.R. Ridenour, "File and data definition 

facilities in System/38," page 87. 
3. V. Berstis, C.D. Truxal, and J.G. Ranweiler, "System/38 

addressing and authorization," page 51. 

IBM S/38 TECH DEV 



States that the System/38 work management support is novel in many respects. Describes the objectives for work 
scheduling and how they were met. 

The current trend of computer use places increasing 
emphasis on interactive processing and high levels of 
multiprogramming. In this environment, efficient 
management of the flow of work through and within 
the system is critical to the total capabilities provided 
and the level of performance. In addition, the work 
management functions must support a wide range of 
application approaches and usage environments. The 
combination of these requirements for function, 
flexibility, and efficiency presents many design 
problems in the area of work management. IBM 
System/38 addresses this critical area with a unique 
structure providing powerful and flexible work 
management functions with special design considera­
tions for performance. 

Management. of the flow of work submitted through 
the System/38 Control Program Facility (CPF) 
licensed program [ 1] is provided by the high-level 
facilities of the System/38 instruction interface and 
specialized support provided with CPF. The 
System/38 machine provides a centralized mechanism 
for the dynamic ma-nagemenf of processor and main 
storage contention. The specialized CPF support 
provides an interface [2] through which work can be 
submitted, presented to the System/38 for execution, 
and controlled by operators. 

This paper describes the unique elements of the 
System/38 machine that relate ·to work flow manage-

NORTON, TURNER, HU AND HARVEY 

ment and the way these elements are used by the CPF 
work management support. 

Jobs and processes 
A job is the unit of work submitted by the user and 
recognized by the CPF work management support. A 
job may be a traditional batch job, an entire 
interactive session from sign-on to sign-off at a work 
station, or a spooling reader or writer. The existence 
of a job includes not only the time required to 
perform the processing but also any spooling opera­
tions accomplished in _behalf of that job. For 
example, a batch job exists from the time it is read by 
the spooling reader, through its execution, and until 
any spooled output has been written (although the 
actual spooling is performed in other spooling jobs). 
The operator may issue job-related commands during 
the entire period of the existence of the job. 

A process is the unit of work submitted to the 
System/38 machine and by which execution paral­
lelism is managed. A process may be performing work 
as specified within a submitted job or may be a 
controlling process whose function is to manage the 
flow of submitted jobs. A job may be executed 
within a single process or may be executed within a 
series of processes whose initiation is managed by one 
or more of the controlling processes. In user terms, 
each new . process initiation in behalf of a job is 

System/38 
work management 

concepts 

H.T. Norton, R.T. Turner, K.C. Hu, and D.G. Harvey 

known as a new routing step. An executing job may 
also initiate asynchronous work, which in turn is 
processed as a separate job. 

Process execution control parameters 
As a process is initiated for execution within the 
system, a set of parameters is defined to control the 
execution of that process. Some of these parameters 
are similar to those supported on other systems; for 
example, the execution priority for the process and 
the processor time slice period. There are other 
parameters, however, that are unique to the 
System/38 and provide greater flexibility in resource 
management. These new control mechanisms are 
necessary for efficient operation in a dynamic multi­
programming environment. 

A storage pool is a logical grouping of main .storage. It 
is a quantity of main storage from which the dynamic 
requirements of processes assigned to that storage 
pool are satisfied. The user controls the number and 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

SYSTEM/38 WORK MANAGEMENT CONCEPTS 81 



size of storage pools through CPF support. Inasmuch 
as the System/38 supports a uniformly addressable 
storage, there is much sharing of objects between 
executing processes (although facilities exist to 
minimize interference and handle contention between 
processes). If an object to be referenced exists 
anywhere in main storage, it may be referenced by a 
process without respect to its current storage pool 
assignment. However, if an object must be retrieved 
to main storage, it is brought into the storage pool to 
which the requesting process is assigned. In this way, 
processes attached to different storage pools do not 
interfere with one another in satisfying their require­
ments for objects not in main storage. 

A multiprogramming class relates to the allocation of 
processor resource to various processes. It is a means 
of limiting the number of processes in a class that 
may be concurrently eligible for execution. This 
allows a general control over the extent of inter­
ference among processes that would otherwise com­
pete for system resources. A process that would 
otherwise execute but exceeds the multiprogramming 
limit for its class is withheld from execution until 
some other process in that class completes to the end 
of a time slice or to some other execution wait point. 
For ease of use, CPF associates a multiprogramming 
class with each storage pool. The user views the 
multiprogramming level as belonging to the storage 
pool and can perceive the multiprogramming limit 
as relating to processes assigned to that storage pool. 

Process execution objects 

The "object orientation" [3] of the System/38 
design requires several objects to support the actual 
execution of a process. These objects contain, for 
example, the static storage and automatic storage 
required by programs invoked in the process and 
other working storage areas used during the execution 
of the process. To make the initiation of a process 
more efficient, the design of the System/38 allows 
these· objects to be precreated and reused for differ­
ent processes. 

82 NORTON, TURNER, HU AND HARVEY 

Since several objects are required to support a 
process, a performance penalty would be incurred if 
each of the objects had to be separately accessed each 
time processing is initiated. The system, therefore, 
supports a special object known as an access group. 
An access group occupies one or more physical 
extents of auxiliary storage. Many objects may be 
created into the access group. Therefore, retrieval of 
the access group is more efficient than accessing each 
object independently. 

A single access group may be associated with a 
process at the time a process is initiated. The transfer 
of such an access group between auxiliary storage and 
main storage is automatically accomplished by the 
system whenever a "long wait" in the execution of 
the process is encountered and another use of the 
main storage occupied thereby is anticipated. 
Examples of such long waits are waiting for a work 
station response, waiting for a message to arrive on a 
queue, and end of time slice. 

CPF also creates other objects for each job that are 
used by CPF in the management of the processing for 
that job. The aggregate of all objects that are 
precreated for a job is called a job structure. This job 
structure is assigned to the job at the time it is 
selected for execution and is used for all processes 
that are serially initiated to perform the processing 
required for the job. By precreating this job structure, 
much of the overhead that would otherwise be 
involved in the initiation of processes is eliminated. In 
addition, continuity of job-related information from 
one process to the next is easily supported. 

Summary 

The work management facilities provided within the 
System/38 machine provide a strong base on which 
an effective work flow control can be built. The CPF 
capabilities complement the machine facilities, 
supporting a user interface that gives to the user the 
ability to apply meaningful, effective controls over 
the flow of work within the system. The controls are 

general enough to enable the system to efficiently 
manage the instant-by-instant flow of work, but are 
flexible enough to cover the broad range of operating 
environments envisioned for the System/38. 

References 
1. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 
2. H.T. Norton and T.R. Schwalen, ''Table-driven work 

management interface in System/38," page 94. 
3. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 

object-oriented architecture," page 55. 

IBM S/38 TECH DEV 



States that System/38 has a single, flexible control language that works in conjunction with an authorization 
facility. Describes the implementation approach and rationale. 

A work station-oriented system such as the IBM 
System/38 must make its functions available to 
different types of users in a manner that can be 
readily used. For example, users need to be able to 
request standard system functions from work sta­
tions, from the system console, and from programs 
without limiting commands to particular devices or 
environments [I]. 

A single, flexible, control language coupled with an 
authorization capability satisfies these requirements, 
but is difficult to design and implement. An associ­
ated article [2], discusses the way the authorization 
capability is supported in System/38. 

This article describes how a rule-driven approach 
made this type of control language possible on 
System/38 and the significant benefits that result. 
This rule-driven approach produced a single set of 
commands with a common syntax, the same level of 
validity checking, and the same type of work station 
prompting. The restrictions and multiple sets of 
unlike commands found on previous systems were 
thus eliminated. In addition, the capability exists for 
easy modification and extension of the commands. 

Control language structure 

The basic syntax for the System/38 control language 

BOTTERILL AND EVANS 

(CL) is a simple, free-form syntax, using blank as the 
separator. The command name and parameters can 
begin anywhere on the record, allowing indentation 
and parameter alignment. Each parameter has a 
keyword that can be used to identify the parameter 
value. The keywords may be omitted if the parameter 
values are entered in a fixed order. For example, a 
Copy File command could have the form: 

CPYF FROMFILE(file-name) TOFILE(file-name) ... 

'---v-" '--v-" ~ '--v-" 
command keyword value keyword value 
name 

parameters 

A file A could be requested to be copied to file B in 
either of the following ways: 

CPYF FROMFILE(A) TOFILE(B) 

or 

CPYF A B 

The detailed description of each individual command 
and its supported parameters are stored in a com­
mand rule, which is the basis for the rule-driven 
approach. 

The rule-driven 
Control Language 

in System/38 

J.H. Botterill and W .0. Evans 

Rule-driven approach 
Basic to the rule-driven approach is the recognition 
that each command is simply an interface to a 
function. The processing of a command consists of 

CPYF FROMFILE(A) TOFILE(B) 

Common 
analysis 
and 
prompting 
based on rule 

Program 
providing 
function 
of CPYF 

CPYF 
rule 

Program 
providing 
function 
of CRTLIB 

Command rules 

CPYF CRTLIB 

Rule 
for 
command 
CPYF 

Rule 
for 
command 
CRTLIB 

Command 
processing 
programs 

Figure 1 Processing a command in System/38 

© 1978 by lnter11ational Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

THE RULE-DRIVEN CONTROL LANGUAGE IN SYSTEM/38 83 



analyzing the command based on the rule and 
providing the function, as shown in Figure 1. 

Even though the functions of two commands may be 
very different (e.g., the functions of the Copy File 
command and a Delete Program command), the user 
expects the manner of specification to be much the 
same. This includes things like command name 
specification, similar error messages for similar errors, 
and a standard defaulting technique for parameters. 
Such similarity is achieved by having the checking 
and analysis done by a common command analyzer. 

Most values used· as command parameters fall into a 
few well defined data types and subtypes such as: 

Character: Any string, name, date, time 
Decimal 
Logical 

Therefore, a function was implemented on System/38 
to define a rule for a command. The rule, which is 
called a command definition, simply defines, for a 
given command: 

Command name 
Each parameter on the command 
Program to process the command 
Where valid: Interactive and/or compiled 

For each parameter, the rule defines the type of input 
to accept and other attributes that can logically be 
centralized to the common command analysis. 
Specifically, the following can be specified for each 
parameter: 

Keyword name 
Type 
Validity checking 
Default to be used if parameter is not specified 
ProJ?pt text 
Constant value in place of user-specified value 

The command name is the identifier of the rule 
object that represents the command on the system. 

84 BOTTERILL AND EVANS 

The rule is used to control the common control 
language validity checking and command prompting. 
The only unique specifications for a given command 
are the command's rule and the program to provide 
the function. 

The following paragraphs discuss the major benefits 
achieved on System/38 through this rule-driven 
approach. 

Validity checking 
By specifying . the desired validity checking in the 
command rule, the CL validity checker ensures that: 
• Required parameter values are present 
• Data type and length requirements are met 
• Conflicting parameters are not entered 
• Where appropriate, the value of a parameter: 

- is one of a list of valid values 
- falls within a numeric range 
- satisfies a required relationship with other 
parameter values on the same command 

By separating the validity checking from the process­
ing for the command, consistent validity checking is 
provided at all of the following key times: 

Source entry into a data base file 
Batch job spooling 
Compilation of a CL program 
Command execution 
Interactive prompting 

This means that on System/38 all values can be 
checked at entry into th~ system, greatly improving 
problem . feedback and thus reducing processing steps 
based on erroneous input. 

Parameter prompting 

For work station entry of commands, a command 
prompter identifies parameters, defaults, and valid 
values for the user so that he can enter commands 
without frequent reference to publications. All the 
information necessary for this assistance is obtained 
from the command rule. 

This prompting can be requested at any time during 
command entry, independent of how much of a 
command has been keyed or whether the command 
has been requested through a command selection 
menu. The assistance is designed to fully utilize the 
display work station by presenting multiple param­
eter text descriptions on the same display along with 
corresponding input areas. Figure 2 shows a display 
screen prompting for six parameters of the Copy File 
command. 

The input areas are of the length of the values 
allowed and contain the meaningfully labeled 
defaults. The CRTFILE parameter is shown in the 
example with a default of *NO. That value can be 
accepted or keyed over with the other valid value of 
*YES. The user can quickly review the command 
parameters and their defaults and key only the values 
that are out of the ordinary. Values are entered 
without specifying parameter names or the need to 
adhere to special positional or syntactical 
requirements. 

After the values have been keyed, they are validity-

Copy File (CPYF) Promot 

Enter the following: 
From file name: 

Library name: 
To file name or *LIST: 

Library name: 
From member name : 
To member name: 
Replace or add re::cords: 
Create file (*NO *YES): 

FROMFILE 

TOFILE 

FROMMBR 
TOMBR 
MBROPT 
CRTFILE 

Figure 2 Example of command parameter prompting 

IBM S/38 TECH DEV 



checked and immediate feedback is given. This 
process continues until the user and the system agree 
that the command is ready for execution or entry 
into a source file. 

Parameter defaulting 
The System/38 control language utilizes a new highly 
visible defaulting approach. All parameters with a 
default have a corresponding specifiable word value 
that is descriptive of the default; for example, 
*NONE for an authorization default, or *NOMAX 
for a file size default. Such self-descriptive values are 
defined in the command rule, documented in the 
command reference publication, shown on the 
prompt display, and optionally coded when the 
command is entered. If the default is coded, the same 
action is performed as if a value were not coded. The 
specification of the value identifies to any person 
reviewing the program or command log what value is 
used. A value may be coded without concern for 
whether or not it is the default. 

This approach to defaulting removes the ambiguity of 
defaults, thus allowing them to be freely used to 
simplify coding and keying. A default is simply a 
valid value for the parameter that is identified as a 
default. This default can be changed by simply 
changing the command's rule definition. 

Advanced source entry support 
The separation of validity checking, prompting, and 
defaulting from the command processing program 
allows these functions to be performed at source 
entry time. Thus the standard command validity 
checking validates all parameter values as they are 
entered rather than waiting until compile or execu­
tion time. 

In addition, the same prompting support is available 
to the source entry user as to the operator entering 
commands interactively. This means that the user 
must learn only one interface and has the same 

BOTTERILL AND EVANS 

advanced function for both types of command entry. 

Customer tailorable command set 
A rule-driven command set results in an easily 
tailored interface. In order to subset, simplify, or 
change the terminology of a command or commands, 
a user can change the command definition rule and 
create his own command to invoke the system­
supplied function. 

Besides changing keywords and defaults, the user can 
set parameters to a constant value. Thus, a parameter 
that otherwise would always be specified in the same 
way can be removed from the command. Therefore, 
the command prompter will not prompt for that 
parameter, nor can it be specified. For example, a 
PRINT parameter on a Copy File command that 
accepts the value *NONE for "do not print any of 
the records" or *COPIED for "print the copied 
records" could be fixed to the value *COPIED. Thus, 
the command prompter would no longer prompt for 
the PRINT parameter and it could no longer be 
specified. The following command would no longer 
be valid: 

CPYF FROMFILE(file-name) TOFILE(file-name) + 
PRINT(*NONE) 

but instead 

CPYF FROMFILE(A) TOFILE(B) 

would always mean copy the file and print the data 
copied (i.e., *COPIED). The print option would not 
be offered during prompting and could not be 
specified. 

User command definition 
A command is provided to allow a user to define 
commands to invoke his own programs. This allows 

the user to have the full benefit of the system­
parameter validity-checking, prompting, and default­
ing facilities when invoking installation-provided 
functions. Such user-defined commands can invoke 
application-oriented functions or user-defined 
system-related functions. In this way, the rule-driven 
approach results in the customer being able to extend 
the command set. 

Development benefits 
The handling of all validity checking during the 
common command analysis results in reduced 
development costs. It removes the need for validity­
checking code within each of the command process­
ing programs. This results in more single-function, 
command-processing programs that can be more 
easily and thoroughly tested. The validity-checking 
code only needs to be tested in one place. These 
factors result in greater system reliability and con­
sistency of system operation. 

In addition to this development economy, the rule­
driven approach gives the flexibility to improve the 
ease of use and consistency of the command set 
during development without affecting the programs 
that provide the functions. This allows the develop­
ment of a well designed command set that has been 
improved through use. 

Summary 
The rule-driven approach to command processing on 
System/38 utilizes a command rule that defines a 
command to a centralized set of system programs. 
These programs support common command-process­
ing functions. 

The approach made possible a single control language 
for work station, compiled program, and batch 

THE RULE-DRIVEN CONTROL LANGUAGE IN SYSTEM/38 85 



environments. In so doing, it results in many benefits 
to its varied users. These benefits include: 
• Consistency of validity checking, parameter 
prompting, parameter defaulting 
• Extendability 
• Tailorability 
• Reliability 

All this was accomplished with greater economy of 
development cost because of the centralization. 

References 
1. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 
2. V. Berstis, C.D. Truxai, and J.G. Ranweiler, "System/38 

addressing and authorization," page 51. 

86 BOTT ER I LL AND EV ANS 
IBM S/38 TECH DEV 



Discusses System/38 files, their definition, and the advantages realized from system-wide use of a central data 
description facility. States that the System/38 central data description facility is a significant innovation. 

The IBM System/38 provides a high level of func­
tional capability and incorporates many novel tech­
nical approaches. One of its most significant innova­
tions is the unified and cohesive approach taken in 
providing function. This is particularly true in the 
area of data management support in the Control 
Program Facility (CPF). 

The principal purpose of a computer system is to 
process data. The data enters and leaves the system 
through devices and is stored on a variety of media, 
both online and offline. In the past, each program 
(utility, data base, etc.) has required a separate 
definition of the data, and the definitions frequently 
differed. This produced redundant data descriptions 
and sometimes created program incompatibilities 
making inter-language file transfer impractical. 

System/38 has an online data base, extensive device 
support, and a wide range of utilities and program 
products. To meet system design objectives for ease 
of use and file independence, one consistent system­
wide method of data definition was required. The 
result is the data description specification facility and 
the supporting data base and command functions. 
The data description specification provides the user 
interface for both data base and device file creation. 
This paper discusses System/38 files, their definition, 

TRUXAL AND RIDENOUR 

and the advantages realized from system-wide use of a 
central data description facility. An associated paper, 
"File processing in System/38" [ 1] , describes some 
of the data management concepts used in processing 
files defined by the data description specification. 

Files 
Data base files reside in the system's uniformly 
addressable storage and provide to the high-level 
language user either keyed or arrival-sequence access 
to online files. Device files are also resident in the 
system and define the user's interface to 1/0 devices, 
such as work stations (terminals) and printers. 
Throughout System/38, files are treated in a con­
sistent way. That is, all files are created through the 
data description specification, file definitions are 
displayed by the same commands, and programs 
which are compiled referencing one file can be 
dynamically redirected at execution time to use 
another. The level of device independence in the 
system even permits the interchange of data base and 
device files. 

Data description 
All data base, printer, and work station data on 
System/38 can be described at a field level, with field 
attributes such as data type and length. Options exist 
which allow specification of such things as descriptive 
text and field validation parameters for each field. 

File and data 
definition facilities 

in System/38 

C.D. Truxal and S.R. Ridenour 

The normal unit of data transferred by a program is a 
record, which is made up of one or more associated 
fields. To define a record on the system, descriptions 
of the fields comprising the record are grouped and 
are called a record format. Logical data base files and 
printer and work station files can have more than one 
record format and, to create a file, a command is 
executed with record formats and file attributes 
specified as file description input. This input is 
specified for both data base and device files using a 
common syntax. A data description specification 
coding form and an interactive utility are provided 
for creating the file description input. The syntax 
provides fixed columns for frequently specified or 
required information and keyword specifications for 
less frequently specified options. 

The data description specification is input to a com­
piler-like function, operating on file description infor­
mation and creating a file. This file not only provides 
access to data but can also maintain the description 
of that data. This description is available to all 
subsequent users of the file, as shown in Figure 1, and 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 

each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

FILE AND DATA DEFINITION FACILITIES IN SYSTEM/38 87 



Data description specification 

RCD format 1 

Field 1 attributes 
Field 2 attributes 

RCD format 2 
Field 3 attributes 

Commands 

Compiler 

Data 
mg mt 

Data description 
specifications 

Figure 1 The uses of a central file description 

to anyone defining similar files. It is used by com­
pilers, utilities, commands, user programs, data 
management file processing interfaces, and the data 
description specification facility. When defining a 
new file, existing data base files can be referenced for 
field attributes, and data base record formats can be 
shared. 

Once a file is created, it may be manipulated through 
the use of system commands, utilities, program 
products, or user programs. 

88 TRUXAL AND RIDENOUR 

Programming considerations 

For programming on System/38, two approaches are 
available to describe file data to be processed by the 
program. The first is the conventional approach, 
where the structure of the data is described in the 
program itself. In this case, the file is created with its 
records described as one data string. Because the file 
definition occurs within the program, this is· tertned 
program-described data. Since no field attributes are 
defined, the system provides no validity checking, 
transformational functions, or device formatting. This 
type of function must be performed by the program. 

This approach to data definition is provided mainly 
to facilitate program conversion to System/38. 

The alternative approach can be used to take advan­
tage of full data management function, to increase 
programmer productivity, and to decrease the 
probability of error in describing data. Files are 
specified as externally described, and the centralized 
data description specification file description is used 
by the compiler. This not only increases programming 
productivity but also significantly improves pro­
gram/data integrity. This is because there is a "level" 
associated with the system file description which 
changes when the description is changed. If the 
record format of a file changes and a program 
accesses it with an "old" format, a warning is 
automatically issued that the program is down level. 

Data documentation and interactive ease of use are 
two more programming areas enhanced by a cen­
tralized file description. When a file is externally 
described, a text description can be associated with 
each field. The compiler uses each field's text 
description to generate program comments. Inter­
active applications can use similar descriptive text at 
the work station to provide meaningful prompts on a 
field basis. The System/38 interactive utilities do this 
on file maintenance and inquiry functions. 

The System/38 data management facility performs 
functions for the programmer which are requested at 
file creation through the data description specifica­
tion. The functions available vary depending on the 
type of file. There are data base and device file­
specific parameters to match these functions. A brief 
description of some of the device and data base 
functions follows. 

Device file functions 

There are many parameters which simplify program­
ming interfaces and facilitate work station usage. 

IBM S/38 TECH DEV 



These attributes are used to specify the exact field 
location on a screen or page, automatically display 
prompt information, underline/highlight specific 
fields, specify automatic input field validation, 
indicate whether an input field is required or not, 
etc. When a program is interacting with a work 
station using field-level definitions, an entire screen 
(or multiple screens) can be input or output with one 
I/O request. Similarly, an entire page of constant and 
variable information can be formatted and printed 
with one output request. If desired, only changed 
fields are entered from a work station, with indicators 
set to show field status. These indicators and related 
conditions are options specified as data description 
specification input at device file creation. 

Data base file functions 
Both physical and logi.cal data base files are created 
using the data description specification. The struc­
tural difference between these files is that physical 
files actually contain data and are limited to one 
record format per file. Logical files provide alternate 
logical views and ordering of the data contained in 
physical files. Related records are grouped into 
members within a file, providing a partitioned or 
generation-like data structure. For example, a file 
containing annual business orders might consist of 
twelve members, each containing orders for one 
month. 

Through the data description specification, the user 
can define several record formats in one logical file 
and different key field specifications for each format. 
Key fields can have a "unique" requirement or not, 
and, if duplicate key values are allowed, the retrieval 
ordering of duplicates can be specified. A logical file 
can "interleave" records from several physical files, 
giving the illusion of variable-length records ordered 
by key in one file. 

For example, a logical file might be defined over 
three physical files: a header, a detail, and a trailer 

TRUXAL AND RIDENOUR 

record file. The logical file can be processed randomly 
by key or sequentially, and will be ordered with each 
header record followed by all associated detail 
records and the associated trailer record, as indicated 
in Figure 2. 

File data is shared by physical and logical files. 
Record sequencing information, called access paths, 
and record formats can also be shared to improve 
both space utilization and execution performance. 
Each of these sharing relationships is specified 
through the data description specification at file 
creation. 

File information 

Data base file relationships, device and data base file 
attributes, and record format specifications are file­
related information that is available through the use 

Data base structure 

Order# 

Field ---

of a System/38 command. A report on program use 
of files and record formats is similarly available, on 
display, printed, or in a data base file for program 
analysis or cross-referencing. All of this information is 
maintained dynamically on a file basis and always 
reflects the current file status. 

Summary 
The System/38 data description facility in CPF 
provides a centralized file definition capability for 
both the system's integrated data base files and device 
files. A file's definition can be at the field level, and 
contains field attributes, descriptive text, and other 
field level specifications. 

This definition is associated directly with the file for 
its life, and is used by compilers, utilities, and data 
management file processing functions. 

Data description specification 

Data description 

---- _ _ - - - -- *Header physical file 

- - - - - - - R Header (Attributes 

Record 

Physical 
files 

Logical 
file 

Header 
-: = - ,.., ....-~ :::-:::.---- :-i------1t---+--C-u-st-#-. -+-----1t---+a-n-d----1 

- - --- -- - - Order# options) 
--i------lt---+-----+-----lt---+------4 

D 0 O··· 

Trailer 
file 

Date 

Create physical file 
command 

CJ CJ ... 

Create logical file 
command 

- Data from header, detail, trailer 
- Key specifications and options 

Figure 2 Relationship of the data base structure to the data description specification and creation interface 

FILE AND DATA DEFINITION FACILITIES IN SYSTEM/38 89 



This facility, when combined with the functions 
provided by data base and device support, provides 
the user with a consistent and powerful approach to 
file processing. 

References 
1. R.O. Fess and F.E. Benson, "File processing in 

System/38," page 91. 

90 TRUXAL AND RIDENOUR IBM S/38 TECH DEV 



Describes several System/38 file processing functions. Included are opening files, binding files to programs, and 
file independence. 

The main function of data management on the IBM 
System/38 is to assist users in managing the data 
processed by their programs. Data management is 
that part of the Control Program Facility (CPF) 
licensed program that provides the means for format­
ting data into records, for organizing data records 
into files, and for transferring the data records of a 
file between a program and the file. 

The file is the central structure used to access data 
from the data base or devices attached to the system. 
All files created through the CPF data description 
specification facility consist of two parts: the file 
description and the file data. An associated paper, 
"File and data definition facilities in System/38" 
[1] , describes data base and device file creation. This 
article describes several key functions provided by the 
data management file processing interfaces. The 
functions discussed are file open (open data paths), 
late binding of files to the program (file overrides), 
and file independent operations. 

Open data paths 
Before any file can be manipulated by a program, it 
must be identified by the program and the intended 
use specified. This is done through the file open 
interface. Identifying a file also identifies the open 
data path (ODP). 

FESS AND BENSON 

An ODP is the internal structure that data manage­
ment uses to connect a program to a file such that the 
file data can be accessed through the various data 
management interfaces. 

The ODP is used by the system to contain all the file 
status information necessary for the use of the file by 
a given user. Through the implementation of ODPs, 
the system has achieved a high level of file inde­
pendence, the capability for users to share files 
concurrently, and the ability for multiple programs in 
a single job step to share a file's status, position, and 
buffers. The implementation of ODPs also minimizes 
the execution time processing required when a file is 
opened. To understand how this is achieved, it is 
necessary to understand the ODP. 

There are three types of ODPs: prototype, active, and 
inactive. A prototype ODP is created when a device 
file or data base file member is created. Thus,· for 
each group of data records there is a prototype ODP 
that is part of the permanent file structure. The 
inputs used to construct the prototype ODP come 
from parameters on the Create/ Add commands, the 
file specifications, and internal data management 
information based on file type. The active ODP is 
created when a file is opened. The inputs to creating 
an active ODP are: the prototype ODP, open param­
eters specified in the program, and parameters speci­
fied on a File Override command. Active ODPs are 
temporary objects and exist only while the file is 

File 
processing in 

System/38 

R.O. Fess and F .E. Benson 

open. Active ODPs become inactive ODPs when a file 
is temporarily closed. 

The prototype ODP is a pre-open path to the data 
that contains the base set of attributes to be 
processed when the file is opened. It contains the 
initialized linkage to the data management I/O 
interfaces supported for this file type (data base, 
card, display, printer, etc.), the allocation list for the 
file, where the data is to be retrieved or output, and 
initial open and I/O feedback information. The 
prototype ODP also contains device-initialization 
parameters such as print image and lines per inch; 
common file parameters such as share ODP and 
secure ODP from overrides, and file-dependent 
parameters such as overflow line number, force ratio, 
and hopper number. These parameters provide all the 
required information to open the file. 

Prototype ODPs are created to provide a fast open for 
the file, since they are created when the file is 
defined. The repeated processing of the same param-

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

FILE PROCESSING IN SYSTEM/38 91 



eters, initialization of allocation lists, linkages to data 
management I/O interfaces, etc., are eliminated. The 
prototype ODP also allows a program to open a file 
by specifying only the file nm;ne. 

File processing 
As is true for other systems, OPEN is the process of 
connecting the program to the file such that the data 
can be processed. OPEN processes the file name 
specified in the program against any file overrides 
that the user may have entered external to the 
program. A file override allows execution time 
alteration of file attributes and the late binding 
capability of a file to a program. This capability will 
be discussed. 

When OPEN has determined the file to be processed, 
a copy of the prototype ODP is made and parameters 
from the program and file overrides are merged with 
the file attributes residing in the ODP. The order of 
the merge is (1) program-open parameters override 
the parameters in the prototype ODP, and (2) any 
file-override parameters override both the program 
OPEN and prototype ODP parameters. This allows 
the most recent request to take precedence over older 
parameters and file attributes. After the copy of the 
prototype ODP is updated, OPEN: 
• Allocates the file to assure the users access to the 
file description and file data. For data base files, the 
file description, data space index, and data spaces are 
allocated. For device files, the file description and the 
device are allocated. 
• Creates the buffers for the user to receive the 
input data or for the user to place the output data. 
• Constructs the I/O request blocks used by the 
machine to communicate with the data base or 
device. 
• Activates the cursor or device so that data can be 
transmitted between the program and the data base 
or device. 
• Initializes the device to process the data. 

92 FESS AND BENSON 

On completion of OPEN, there is an active ODP and 
the user program can address the open feedback 
information and input and/or output buffers. This is 
through a program object called the user file con­
trol block (UFCB). The open processing_ for both 
data base and device files is similar in that a 
prototype ODP is copied and updated with file 
overrides, the file is allocated, and the connection to 
the program is the same as shown in Figure 1. 

The data from the file is retrieved via a GET interface 
and output to the file via a PUT interface. There are 
also other I/O interfaces provided by the CPF to take 
advantage of the unique operations allowed on each 
file type or device. Examples of this are the UPDATE 
and DELETE interfaces for data base files. 

As is the case in other systems, CLOSE disconnects 
the file from the program: CLOSE deallocates the 
file, deactivates the device or cursor, and destroys the 
active ODP. 

Program 

S" 
Open (X) 

File overrides 
File overrides allow the late binding of files and file 
attributes to a program. They are applied when the 
file is opened and permit the file attributes and/or the 
file to be changed at program execution time. With 
file overrides, the user can: 
• Change, at program execution, the file-open 
parameters specified in the program, the attributes 
specified in the file description, and/or the file to be 
processed. 
• Apply a single file override to a file that is used in 
one or more programs. 
• Enter file overrides in batch jobs, interactive jobs, 
and CL programs, or invoke them from a high-level 
language interface. 
• Control the files in the program to which file 
overrides can be applied. 

There are two points of view for file overrides as they 
apply to a program. One is the programmer's 
(designer/coder) and the other is the user's (caller/ 
invoker). The programmer must know what files are 

? ODP (File (A)) 

1/0 interfaces 

~ Linkage to GET 
data management routine 

Close 
1/0 interfaces 

~ Open PUT 
feedback 

UFCB (X) 
information 

routine 

1/0 0 
feedback 0 File (A) information 

0 

User 
File (A) 

buffers File 
description 

Figure 1 Opened file structure 

IBM S/38 TECH DEV 



to be processed and whether overrides are to be 
allowed for the files. The user must know the files 
accessed by the program and which files can be 
changed via a file override. Each program is treated as 
a "black box," and the user does not know or care if 
the program contains a file override. All the user of a 
program knows is that the program processes 'File A' 
with attributes a(l ), a(2), ... , a(n). These attributes 
could be specified in the file, in the program, or on 
one or more file-override commands. 

The file overrides are applied at OPEN and can be 
explicitly or implicitly deleted. A file override exists 
for the duration of the program that invoked the 
command unless explicitly deleted. At open time, a 
file name specified in the program is used to search 
for any file overrides that apply. The file overrides are 
applied from the innermost file override to the 
outermost file override as shown in Figure 2. 

1 OVRPRTF FILE (REPORTS) COPIES (6) 

2 CALL PGM (WRTRPTS) 

Program-WRTRPTS 

3 OVRPRTF FILE (OUTR) TO FILE (REPORTS)+ 

COPIES (2) LPI (6) FORM TYPE (3760) 

• 
• 
• 
CALL PGM (RPTW) 

Program-RPTW 

• 
• 
• 

4 OPEN FILE (OUTR) 

• 
• 
• 
End program-RPTW 

End Program-WRTRPTS 

Figure 2 An example of how a file override is applied 

FESS AND BENSON 

In the example shown in Figure 2, the file overrides 
from Statements 1 and 3 are applied when the file 
OUTR is opened in Statement 4. The result is that 
the file REPORTS is opened with attributes 
COPIES( 6) from Statement 1, and LPI( 6) (lines per 
inch) and FORMTYPE (3760) from Statement 3; the 
rest of the parameters will be taken from the file. 

Through the file-override command, data manage­
ment supports changing file parameters at program 
execution time and file independence. 

File independence 

File independence is provided because the file and/or 
file type can be changed but the program still receives 
or outputs the desired data in the proper record 
format. The highest level of file independence is when 
the file and file type can be changed with no impact 
to the inputs received or outputs produced by the 
program. A program can achieve this level of file 
independence by using the file-independent opera­
tions that are common to all file types. These are the 
normal OPEN, CLOSE, GET, and PUT interfaces 
with no file-dependent parameters specified. The 
processing performed by the program is to read 
sequentially through the file or write sequentially to 
the file . 

The second level of file independence is when the file 
can be changed but the file type cannot. In this case, 
the program specifies file-dependent parameters on 
the GET and PUT interfaces or uses a file-dependent 
interface such as UPDATE (a record). The desired 
input records or output records will not be produced 
unless a particular file type is used and the record 
formats that are specified in the program match those 
of the file . 

The third level of file independence is when the file 
and file type can be changed and the user is willing to 
accept slight differences in the output produced. An 
example of this is overriding a printer output file to a 

card output file. The program will function correctly 
so long as a file-dependent interface is not used. 

Summary 

On System/38, the file is the central structure used to 
access the data from a data base or device file. The 
prototype ODP is created along with a data base or 
device file. The prototype ODP is the pre-open 
structure for the file that is used by OPEN to connect 
the program to a file. When a file is opened, file 
overrides are applied to alter parameters specified in 
the program or in the file. 

Different levels of file independence are provided 
by file overrides in conjunction with file-independ­
ent operations. 

References 
1. C.D. Truxal and S.R. Ridenour, "File and data definition 

facilities in System/38," page 87. 

FILE PROCESSING IN SYSTEM/38 93 



Table-driven work 
management interface 
in System/38 

H.T. Norton and T.R. Schwalen 

The IBM System/38 is designed to satisfy a wide 
range of application environments ranging from 
purely batch work to predominantly interactive 
work, from fast response time requirements to high 
throughput requirements, from program-driven appli­
cation approaches to transaction-driven approaches, 
and so forth. This wide range of environments 
requires powerful and flexible work management 
functions. However, any particular user will normally 
deal with only a narrow set of the work management 
capabilities. Thus, the challenge of the work manage­
ment design is to provide an interface through the 
control language that is straightforward and easy to 
use, yet allows access to a wide range of function in 
an easily modifiable fashion. 

This paper discusses how these goals for managing 
work are met in System/38 through a table-driven 
interface approach. An associated paper, "System/38 
work management concepts" [I], describes the 
actual work management and functions invoked 
through this interface. 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

94 NORTON AND SCHWALEN 

States t~at work flow management is table-driven by system values and definitional objects, and that default 
settings may be used or new ones entered. 

Figure 1 illustrates the structured interface that is 
described in this paper. 

System-level controls 
The system level is the highest level of control for 
managing work flow. There are few operator controls 
at this level. The system may be started through the 

,..------ ---· ,.- -- - ----, 
I I I I 

System ~-- -+-l System 1 
I 1 1 values I 
L-----r----1 1 I 

I ~--------J I 
I 

r-- -- -'-- - -1 r- -- - ----1 
I I 1 
l Subsystem ~- -- ..i 
1 I I Subsystem 
'-----.----' : description 

I 
I 
I I 

r-----'----i :,.-------.: r---------i 
I 11 11 I I 

Job ~-----! Wor~ :T----..,, Job 1 

1 1 : 1 entries 1 1 1 description I 

~-----:- -- -J : L_ ______ JI L __ ---- ___ : 
I I I 
I I I 

,. ____ J____ :r-------,1 .---------., : : ., ., : 
: Routing step ~--- --fJ Rou~ing ~--- -~ Class 

L ____ l ____ l :L_::~l~~--Ji ~7 _____ J 

L--------, / 
Operational Definitional 

Figure 1 Structure of CPF interface for work flow 
management 

operator console and may be terminated by means of 
a command. Some global options are available to the 
system operator during the starting of the system 
through system value parameters. Using these system 
values, the installation may prescribe parameters such 
as the maximum system-wide level of multiprogram­
ming, a switch value indicating whether the system is 
to be brought up in an unattended mode if the 
console is not operational, and the format to be used 
in presenting the date on displays. 

Subsystem-level controls 
The key to the capability, flexibility, and ease of use 
of the work flow controls provided through the 
Control Program Facility (CPF) [2] is the subsystem. 
A subsystem is the means by which an operational 
environment can be defined and controlled. By 
allowing multiple subsystems to be active concur­
rently, the installation has extensive flexibility in 
defining and controlling the work being done on: 
the system. 

The definition of the operational environment for a 
subsystem is contained in a CPF object called a 
subsystem description. (The concept of "object" is 
discussed by Pinnow, et al [3] .) This makes it 
possible for a single CPF program to control all types 
of environments, although a separate invocation of 
this program is established for each subsystem that is 

IBM S/38 TECH DEV 



started. It is through the starting and terminating of 
subsystems that the subsystem-defined environments 
become active or inactive. Thus, the operational 
management of these environments is simply to start 
and terminate the desired subsystems at the appro­
priate times. 

The number of subsystems that an installation 
chooses to define or to have concurrently active 
depends on a number of factors, such as: 
• The number of unique processing environments 
that are needed to effectively manage the usage of 
resources by various applications 
• The degree of operational control that is desired 
over the set of applications defined within the various 
subsystem descriptions 
• The extent of isolation the installation chooses to 
impose between the sets of applications defined 
within the different subsystem descriptions 

The advantages provided by the implementation of 
subsystems in this manner include: 
• The entire processing environment for a set of 
applications can be prespecified and easily modified 
as needed to meet the changing needs of the 
installation. 
• Operational control of the entire operating 
environment of a subsystem is easily accomplished. 
• The use of main storage and the allowed level of 
execution concurrency for jobs executing within the 
subsystem can be dynamically tuned to adapt to the 
changing work load on the system. 
• The degree of predictability for performance 
within a subsystem can be achieved because the usage 
of resources by that subsystem is isolated from the 
resources used by other subsystems. 

Subsystem description 
The subsystem description is the CPF object con­
taining the definition of the operational environment 
for a subsystem. It includes a definition of the main 
storage allowed for work to be executed within the 
subsystem, the sources from which work is to be 

NORTON AND SCHWALEN 

accepted for execution, the identification of the 
programs to be invoked to perform the work, and the 
environment within which those programs are to 
execute. 

This environment description includes the number of 
jobs that may be concurrently active within the 
subsystem; the storage pools, a logical grouping of 
storage, to be allocated for use by this subsystem 
when it becomes active; and the activity level 
(multiprogramming level) to be used by the system in 
managing work within each storage pool. 

Work entries defined within the subsystem descrip­
tion identify the sources from which jobs may be 
accepted for execution. 

These sources include work stations, a job queue on 
which batch jobs have been placed, and automatically 
started jobs whose definition is contained within the 
subsystem description. Jobs from all of these sources 
may coexist within a single subsystem. A single 
subsystem monitor program that is common to all 
active subsystems accepts jobs for execution within a 
subsystem on the basis of the work entries contained 
in the subsystem description. It is the ability to 
accept work from a variety of sources and manage 
those jobs within a single environment that pro­
vides the installation with the flexibility it needs in 
defining its own subsystems. 

Routing entries within the subsystem description 
provide the means of relating the requests for work to 
be done with the program to perform the work and 
the environment within which the program is to 
execute. A routing data field is provided each time 
the subsystem monitor handles a work request. The 
routing data field is compared with values contained 
in the routing entries to identify the particular 
routing entry to be used for initiating execution in 
behalf of that work request. The routing entry 
identifies the program to be invoked, the storage pool 
to which the processing is to be assigned, and a class 

object that contains a collection of predefined exe­
cution parameters to be used. A process is then 
initiated to perform the required processing. Each 
time a new process is thus initiated, the user may 
view this as another routing step within the job. 

Figure 2 illustrates the flow of work within an active 
subsystem. 

The ability to predefine an entire subsystem descrip­
tion provides the programmer or application designer 
with the opportunity to prescribe an entire opera­
tional environment for a subsystem. The activation of 
that environment is then as simple as starting a 
subsystem that uses that subsystem description as its 
basis for control. 

Spooling 
reader Batch job 

or signoff 

Work 
station 

r - - Job Interactive 
: ,- - queue ._...,.,----~ job 

,:,---------- __ , 
1 11 Work entries 
1:1 
11 I Autostart job --1 II ----- ---

1 -~~~ ~t:t~:- -: 
L ~ Job queue --1 

~ 

Subsystem 

I 

I 
I 
I 
I 
... 

Internal 
queue 

Routing entries 

:-_ -:._-_-_-_-_-_: -1 
'---------.r--_._ ____ ____,I 

Submit 
asynchronous 

t_ __ lo~- -

I 
Start new job step- - -- - - - .J 

1 t End of program 

Routing step 

Figure 2 Work flow within an active subsystem 

• I 

TABLE-DRIVEN WORK MANAGEMENT INTERFACE IN SYSTEM/38 95 



Jobs and job descriptions 
All work submitted through CPF work management 
is processed as jobs. Each job must execute within the 
jurisdiction of a subsystem. In fact, a controlling 
subsystem, whose identity can be specified by the 
installation through a system value, is automatically 
started . when the system is started and may not be 
totally deactivated until CPF operation is totally 
terminated. The first work requested of CPF after it 
is started is requested through the controlling sub­
system. Other subsystems may be started and ter­
minated as the needs of the installation dictate. 

There are many parameters for a job, including such 
things as scheduling priority and message level. To 
ease the burden of specifying these parameters when 
a job is submitted, a CPF object called a job 
description is identified. This object contains a 
complete set of job parameters. A job description is 
referenced when a job is submitted to the system. 
Individual parameters may be overridden at the time 
the job description is referenced. The resulting 
parameters are used during the execution of the job. 

A job is the lowest level of work for which external 
controls are provided. A job may be held, released, or 
canceled. Certain of its parameters may be changed 
dynamically during the execution of the job. The 
attributes of a job may be displayed. These controls 
afford adequate operational management of the 
individual units of work on the system. 

Summary 

The table-driven interface to CPF work flow manage­
ment gives the programmer or application designer 
both power and flexibility in defining the work load 
to be processed by the system. This definition is 
contained in the subsystem description, job descrip­
tion, and class objects, as well as in the system values 
that are supported. Default settings for the system 
values and usable versions of the definitional objects 
are shipped with CPF, enabling the installation to 

96 NORTON AND SCHWALEN 

operate without defining these objects. On the other 
hand, the approach offers the installation the oppor­
tunity to define its own definitional objects that 
better reflect its unique requirements. 

The operational aspects of work flow management 
are simple, requiring primarily that the appropriate 
subsystems be started and terminated at the appro­
priate times. Lower level controls for managing jobs 
are available but their use should seldom be required. 
The total interface thus supported meets the ob­
jective of providing a powerful, easy-to-use means of 
controlling work flow for a broad range of appli­
cation environments. 

References 
1. H.T. Norton, R.T. Turner, K.C. Hu, and D.G. Harvey, 

"System/38 work management concepts," page 81. 
2. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 
3. K.W. Pinnow, J.G. Ranweiler, and J.F. Miller, "System/38 

object-oriented architecture," page 55. 

IBM S/38 TECH DEV 



States that the System/38 message handler provides a single, system-wide capability for defining, sending, and 
receiving messages. Messages are formally described to the system and can be received by either human users or 
programs. 

One of the pervasive problems in operating system 
design is the communication of data in the form of 
messages between the system operator, users, pro­
grams, system logs, and the machine. The problem 
has classically been solved by having separate facilities 
for each type of communication to be done: write­
to-operator, write-to-programmer, specialized work 
station facilities, messages written to output files, 
machine interrupts, special queues and events, etc. 
Each of these facilities had unique features not 
applicable to the other destinations of messages. As a 
result, the operating environment of a program was in 
part defined by how and to whom it sent messages. 
This prevented the development of programs that 
could be used as off-the-shelf components by many 
applications. It also required the user and pro­
grammer to learn multiple techniques for communica­
tion and, in effect, limited certain kinds of com­
munication, such as program-to-program or job-to­
job, to system programs. The generalized message 
handler of the System/38 is an integrated facility of 
the Control Program Facility (CPF) that provides 
Control Language (CL) commands and display 
screens for defining, sending, and receiving messages. 
The CPF is described by Harvey and· Conway (1]. 
This paper describes the key concepts of the CPF 
message handler. 

Messages 
Messages are data, but, unlike the records of a data 

DEMERS 

base file, each message is unique, having its own 
format, content, and meaning. A message can be sent 
to either a program or a user. When sent to a user, the 
message must consist of text that can be read and 
understood by the user. But when sent to a program, 
text is inconvenient to process. Programs can more 
easily process data that is organized into fields with 
predefined attributes. 

When work station users send messages to each other, 
or to the system operator, the text provided by the 
sender is the whole message. And when a program 
sends messages to a user, the message must also be in 
the form of text that can be read and understood. It 
is desirable to store this text external to the sending 
programs so that it can be easily modified or 
translated into other natural · languages. The 
System/38 supports objects called message files in 
which message descriptions can be stored. Message 
descriptions contain text and other attributes of 
a message. 

A program sending a message can provide a set of 
data fields that can be substituted into the stored 
text. The attributes of these fields are stored with the 
text in a message description. The same message can 
be sent to either a user or a program. The user 
receives the text, with data substitutions; a program 
can receive either the text or the data fields. Thus, 

The generalized 
message handler 

in System/38 

R.A. Demers 

any message can be handled by a program or 
presented to a user. This allows messages to be 
reinterpreted by other programs or handled in differ­
ent ways by different programs. The sending program 
is therefore independent of the message recipient, 
which can be either a user or a program. 

Message queues 
The CPF supports the ability to send and receive 
messages via objects called message queues. Message 
queues are associated with particular users, programs, 
or jobs through ownership, authorization, allocation, 
and other conventions of use. There are system­
created message queues for the system operator, for 
each work station, for each of the system logs, and 
for each job. Users can also create message queues to 
meet specific application needs or for use as personal 
mail boxes. Figure l illustrates the set of message 
queues that can be used by a job. 

Message queues support a wide range of applications, 
from system operation and logging to user mail 

© 1978 by International Business Machines Corporation. 
Copying is permitted without royalty provided that (1) 
each reproduction is unaltered and (2) the IBM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta; GA.30055 ... 

THE GENERALIZED MESSAGE HANDLER IN SYSJEM/38 97 



boxes. The methods of delivering and rece1vmg 
messages are comprehensive and are controlled by the 
user or program that is associated with and using the 
message queue. These facilities allow the system 
operator to be at any work station to operate the 
system, and they also provide for an unattended 
mode of operation. In the System/38, these facilities 
are not limited to the system operator. They are 
applicable to any message queue, including user 
message queues, thereby extending the range of 
application development techniques available to the 
system and user programmer. 

Message files 

Job 

z 

Message queue delivery modes 
The user or: program associated with a message queue 
determines the method by which messages are to be 
delivered by message queue. There are four delivery 
modes: 
1. Break. When a message arrives at the message 
queue, the user's job is interrupted and a program is 
invoked. For interactive jobs, if no other program is 
specified, a CPF message-handler program is invoked 
to display the message at the work station. Alterna­
tively, a user program can be specified that presents a 
formatted display of the message, or performs some 

Message queues 

OHST 

QSRV 

User MsgO 

User MsgO 

QSYSOPR 

WS A 

ws z 

Job Z 

History 
log 
Data base 

Service log 
Data base 

Work 
station 

A 

Work 
station 

z 

Figure 1 The message files and message queues used by a job 

98 DEMERS 

function requested by the message. Thus, a job can be 
interrupted to perform some more important 
function. 
2:Notify. For interactive jobs, when a message 
arrives, the work station operator can be notified of 
its arrival by an indicator light and optional alarm. 
The messages can be displayed when it is appropriate 
to the particular job. 
3. Hold. Arriving messages can be held in the message 
queue for later delivery. These messages can be 
displayed by issuing a CL command, or they can be 
received by a program. Programs can poll multiple 
message queues, or they can wait either indefinitely 
or for a specific period of time for the arrival of a 
message. This allows a programmer to coordinate the 
activities of different jobs of an application. 
4. Default. Arriving messages are rejected and those 
requiring a reply are answered with a default reply 
stored in the message description. This delivery mode 
provides for an unattended mode of operation. A 
message queue used for the control of an application 
can be set to default mode for unattended operation 
of that specific application. The system operator's 
message queue can be set to default mode for 
unattended operation of the system itself. 

Receiving and displaying messages 
Messages are usually received on a first-in-first-out 
(FIFO) basis. But when a message is received, it is not 
automatically removed from the message queue, 
although this is an option. Instead it becomes an old 
message. The message handler assigns a key to each 
message on a message queue. This key can be received 
at the time that a message is received in FIFO order. 
To receive an old message, the key must be specified. 
Alternatively, all messages can be reset to the new 
message status for FIFO access. By leaving messages 
on a message queue, a program can retain a log of the 
messages it has processed. All of the messages can be 
written to a printer file at the end of the job. It can 
also batch certain types of messages on the message 
queue and process them all at one time. 

JBM S/38 TECH DEV 



The distinction between old and new messages is 
simplified when messages are displayed at a work 
station. The user can request the display of messages 
starting with either the oldest or the newest messages 
on the message queue. The roll keys of the work 
station can then be used to view any of the messages 
on the message queue. Other display options are 
also available to allow the work station user to 
reply to messages and to remove them from the 
message queue. 

The user can retain them on the message queue to 
keep track of the messages received and replies to 
them. Also, by leaving messages in the queue, the user 
can delay taking action on particular messages until it 
is appropriate to do so. 

Since the messages at a message queue can be either 
received by a program or displayed at a work station, 
it is possible to write a program that filters messages; 
rejecting some, handling others, and displaying only 
certain messages. The independence of message 
queues from particular users, program or human, 
provides this range of facilities. 

Job message queues 
The message queues provided for each job are special 
cases of message queues. A set of logical message 
queues is built within each job message queue to 
represent the external user who requested the job and 
each program invocation of the job. These logical 
message queues are created only when message­
handling services are requested by or for their 
associated user. The set of messages retained in these 
message queues at the end of the job is printed as the 
job log. 

Since the program invocations of a job are stacked, 
the logical message queues associated with each 
invocation are also considered to be stacked. The 
external user is considered io be the caller of the 
initial program on the stack. Machine instructions are 
considered to be equivalent to called programs, 
although at a lower level of functional abstraction. A 

DEMERS 

program invocation can send messages to itself, to its 
caller, to a named program in the stack, or to its 
caller. If the specified message queue is that of the 
external user, the message is immediately written to 
the work station associated with that interactive job. 

Programs that send messages to their caller's program 
message queue give that caller an opportunity to 
reinterpret the message at a higher level of functional 
abstraction. For example, the message "cursor not 
over data space," which is signaled as an exception by 
the machine data base management instructions, can 
be reinterpreted as "end of file" by the CPF data base 
component, and this message can be reinterpreted by 
the CPF copy component as "copy completed." The 
receiving program can also handle the message as 
required by its specific environment or function. The 
messages can be written to the job log and work 
station or to specialized displays, they can be utilized 
by the program internally to correct the problem, or 
they can be listed. 

By sending messages to program message queues, a 
programmer can design his programs as independent 
components that can be selected off the shelf for 
many applications. An example of this is the com­
mand analyzer component of the CPF which is 
invoked by the interpretive CL processor, by the 
prompter, by the source entry utility, and by the CL 
compiler. As it detects error conditions in commands, 
it sends messages to its caller's program message 
queue and does not have to be concerned with how 
those messages are processed. 

Error handling 
Sending an error message to a program's caller gives 
the caller an opportunity to handle the error condi­
tion. The message handler provides special support 
for a type of message that must be handled. These are 
called escape messages because the sending program is 
terminated. Escape messages are usually sent to a 
program's caller. The caller can monitor for the 
arrival of these messages on its message queue and 

specify the action to be taken, such as a branch to an 
internal label or a program to be called. But if the 
caller is not monitoring for a particular escape 
message, default system action is taken. This includes 
taking dumps and entering a debugging breakpoint, if 
appropriate. The final action is to send a "function 
check" escape message to the same program, thereby 
giving it a chance to clean up and terminate grace­
fully. Jobs are never abnormally terminated by 
low-level functions (with the exception of machine 
checks and system crashes). 

A point of interest is that the exceptions signaled by 
machine instructions are trapped by the message 
handler and converted into escape. messages. Thus, 
the full facilities of the message handler are available 
to handle exceptions and to put out meaningful error 
messages if necessary. 

Summary 
The System/38 message handler provides an inte­
grated facility that supports communications between 
the users and/or programs of the system. Messages are 
formally described to the system and can be received 
by either human users or programs. Message queues 
support a wide range of applications and provide 
comprehensive methods for receiving and delivering 
messages. Job message queues supp_ort environment­
independent communications with the requester of a 
job and allow programs to be written for off-the-shelf 
applications. Error handling is a built-in function of 
the system. And finally, the facilities of the message 
handler are available through CL commands. CL users 
thus have the same communications capabilities as 
system programmers. These advantages have been 
exploited in the development of the CPF and the 
other System/38 licensed programs. They remain 
available to application developers and to users of 
the system. 

References 
1. D.G. Harvey, "Introduction to the System/38 Control 

Program Facility," page 74. 

THE GENERALIZED MESSAGE HANDLER IN SYSTEM/38 99 



System/38 
common code 
generation 

J.K. Allsen 

The IBM System/38 is a completely new system in 
that all of its programming support components such 
as language translators and utilities were designed and 
implemented against a new machine instruction set. A 
new implementation of a language translator can 
represent a large programming development and 
maintenance effort. One approach employed to 
reduce this effort is a common code-generation 
facility supporting the multiple code-generation com­
ponents of the IBM-provided programming support. 
However, this conceptually simple approach of 
common code generation presented many practical 
problems in achieving the obvious benefits. 

This paper provides an overview of the System/38 
common code generation facility and its significant 
design considerations. 

Program creation 
A language translator on System/38 may be either a 
compiler of high level source language (for example, 
RPG III) or a utility program which creates another 

© 1978 by International Business Machines Corporation. 
Copying is perl')1itted without royalty provided that ( 1) 
each reproduction is unaltered and (2) the I BM copyright 
notice and a reference to this book are on the first page. The 
title and abstract may be used without further permission in 
information-service systems. Permission to republish in full 
should be obtained from IBM GSD Technical Communica­
tions, Atlanta, GA 30055. 

100 ALLSEN 

Presents an overview of the System/38 common code generation facility and its significant design considerations. 

program for immediate execution (for example, 
Interactive Data base Utilities). All language trans­
lators of either type perform some tasks in common 
on System/38 in order to create a program. The most 
obvious common task is the generation of a program 
template, which is the target for any program 
creation. This template is a machine-level object 
which contains: 
• An instruction stream 
• Object definitions 
• Debugging information 

The instruction stream in the program template is a 
series of bytes representing the machine instructions 
for that particular program; the object definitions 
describe the attributes of all items referred to from 
the instruction stream. Debugging information is also 
contained in the program template. This information 
is used during the execution of the program to 
associate the instructions and objects of the program 
with their original symbolic source forms. 

A traditional approach to target code generation by 
multiple language translators on a given system is 
shown in Figure 1. Each language translator (LT) 
inputs a source program (SRC) encoded in a par­
ticular language. Each language translator typically 
reduces the source program to its equivalent target 
program by a series of distinct steps, or "passes." The 
last pass in all cases is the final mapping of inter-

mediate text (IT) into target form. Typically, on a 
given system, the format of the intermediate text 
varies from language translator to language translator. 

System/38 code generation 
To achieve centralization of function on System/38, a 
common code-generation facility is provided. This 
facility is the program resolution monitor (PRM). It is 

SRC1 SRCn 

Ooo m l more LT1 
passes 

LTn • • • 

IT1 

Final l 
pass 

LTn • • • 

Figure 1 A traditional method for program creation 
by multiple language translators 

IBM S/38 TECH DEV 



part of the System/38 Control Program Facility, and 
replaces the final pass for all the language translators 
of System/38. In order to achieve this, it was first 
necessary to define a common intermediate text 
format suitable for all the language translators. This 
textual format is called the intermediate representa­
tion of a program (IRP). 

IRP is a symbolic text format. In addition to 
isomorphic symbolic representations of the 
System/38 instructions, IRP includes symbolic 
declaration capability for all operands of those 
instructions. Constants may be either declared ex­
plicitly or defined implicitly in an instruction. Debug­
ging information is generated by the language trans­
lator via IRP constructs. The net effect is that IRP is 
the actual target for every System/38 language 
translator, with the PRM doing the translation of the 
IRP character string into a System/38 program 
template. Figure 2 shows the flow of program 
creation in System/38. 

One or I more 
passes 

Final 
pass 

RPG 
Ill 

CL IOU 

IRP IRP IRP 

I ______ I l._____ __ ___.I 

PRM 

Target code 

Figure 2 The flow of program creation in System/38 

ALLSEN 

I RP description 

The IRP generated by a language translator is passed 
as a single bit string to the PRM. Within this string is a 
series of IRP "statements," each terminated by a 
delimiter. An IRP statement may be either an 
isomorphic construct representing a machine instruc­
tion or a pseudo operation. The pseudo-operation 
statements do not have direct executable counter­
parts in the System/38 instruction interface, but are 
used to transmit object attribute information and 
debugging data to the PRM for inclusion in the 
program template. 

Isomorphic statements follow the token sequence of 
their machine-instruction counterparts. A mnemonic 
operation code is optionally followed by a string of 
operands, each separated by a delimiter. All operands 
appear as symbolic names. For compound instruc­
tions which terminate in branches or indicator set­
tings, the conditions being tested appear as a sublist 
after the mnemonic operation code; target labels or 
indicator names occur after the main operand list. 
Any isomorphic statement may be labeled with one 
or more symbolic names. In the generated program, 
these statements become branch targets. 

Pseudo-operation statements all start with an opera­
tion verb, followed by appropriate operands. There 
are eight pseudo-operation statements, each of which 
falls into one of three categories: object definition, 
debugging information, and listing control. 

There are three object-definition statements: DCL, 
ENTRY, and RESET. The DCL statement defines 
symbolic operands referred to by the isomorphic 
statements. The ENTRY statement defines the name 
of the entry point of the generated program together 
with names of associated parameters. RESET causes 
the default space name for the DIRECT attribute to 
be changed. 

The two statements for debugging information are 
BRK and LABEL. The BRK statement occurs within 

a string of isomorphic statements and establishes a 
breakpoint for later debugging operations. LABEL 
provides information for symbolic naming of objects. 

The listing control statements are SP ACE, EJECT, 
and TITLE. These allow a language translator to 
control the format of a PRM-generated IRP listing 
which is optionally produced. To further augment 
this listing capability, comments are also provided for 
in the IRP syntax. 

Rationale for the System/38 approach to code 
generation 

The notion of a "cascade compiler" is not new, and 
has been implemented on other systems where 
compilers cascade into assembler language and then 
invoke an assembler to complete the program-crea­
tion cycle. At the other extreme, proposals have been 
published which hypothesize a "Common Target 
Language" which is both source-language-inde­
pendent and target-system-independent. Attempts to 
derive such universal targets tend to culminate in 
grammars with almost mutually exclusive subsets of 
constructs unique to different languages. 

The concept of the IRP target code together with the 
centralized final pass (the PRM) on System/38 falls 
between these two extremes. The symbolic nature of 
IRP frees the System/38 language translators from 
addressability and location counter considerations 
since all references are generated "by name." The 
structure of the program template generated by the 
PRM and its complexities are not apparent to 
language-translator developers. 

While traditional cascade techniques took advantage 
of symbolic (assembler language) target code, they 
also paid the price in performance since the native 
assemblers used were designed with direct user 
invocation in mind. This meant that the target 
generated by a language translator was tuned for 
direct source encoding instead of automatic genera-

SYSTEM/38 COMMON CODE GENERATION 101 



tion. The IRP of System/38 was derived with ease of 
automatic generation as its primary constraint. A 
secondary constraint was ease of translation of the 
IRP syntax by the PRM into the bit-oriented program 
template for a high rate of performance. 

Summary 

The System/38 approach to common code generation 
is a pragmatic one. By centralizing the final pass of 
each language translator into a single component (the 
PRM), the total development and maintenance effort 
has been reduced for the language translators. The 
System/38 definition of the common code-generation 
interface represents design trade-offs aimed at opti­
mizing the benefit to compilers. 

102 ALLSEN IBM S/38 TECH DEV 



Gary F. Aberle 

General Systems Division, Rochester, MN 

Mr. Aberle received a BS degree in business administration 
from the University of Missouri in 1969. He joined IBM in 
1969 as a system programmer working on the System/3 and 
System/32. He has been involved with the System/38 for the 
past six years, working on architecture for machine data base 
support and later as manager of the department responsible 
for the machine data base support implementation. He is 
currently an advisory programmer with interests in overall 
system performance and advanced data base concepts. 

J. K. (Ken) Allsen 

General Systems Division, Rochester, MN 

Mr. Allsen received the BS degree in mathematics from 
Indiana Institute of Technology. Since joining IBM in 1965, 
he has done graduate study in computer science at the 
University of Minnesota. His career at IBM has included 
compiler design and development for various programming 
languages. He is currently a member of the Design Control 
Group for languages in the Advanced Systems Development 
Group at Rochester, MN. 

Frank E. Benson 

General Systems Division, Rochester, MN 

Mr. Benson joined IBM in 1966 in Rochester, MN, where he 
worked in compiler design. In 1968, he started work in OS 
data management where he was instrumental in developing 
the support of OCR/MICR devices and several unit record 
devices. In 1973 he joined the System/38 effort working in 
the architectural development of System/38 data base. Since 
then, he has worked in the data base/data management area 
as well as on several other aspects of System/38. Mr. Benson 
received a BS in mathematics from the University of 
Minnesota in 1966. 

Neil C. Berglund 

General Systems Division, Rochester, MN 

Mr. Berglund joined IBM in 1965 and has had various 
assignments in I/O adapter and processor design for the IBM 
System/3. He holds several patents for his work in these areas 
including an IBM Outstanding Invention Award and an IBM 
Outstanding Contribution Award for his work on the 
System/3 Model 15 processor. His most recent assignment 
has been technical design leadership of the System/38 CPU. 
Mr. Berglund is an electrical engineering graduate of the 
University of Minnesota. 

ABERLE - CONWAY 

Viktors Berstis 

General Systems Division, Rochester, MN 

Mr. Berstis is a member of the System Architecture Depart­
ment. He received his BS in mathematics and physics in 
1971, and his MS in computer information and control 
engineering in 1974 from the University of Michigan, Ann 
Arbor. Prior to joining IBM in 1977, he worked on the 
development of the Michigan Terminal System. Mr. Berstis is 
a member of the Association for Computing Machinery. 

Kenneth W. Borgendale 

General Systems Division, Rochester, MN 

Mr. Borgendale joined IBM at the General Systems Division 
Development Laboratory in Rochester, MN in 1977. He is 
currently a senior associate programmer in the Data and 
Translation Functions Department of the Advanced Systems 
Development Group. He received a BA degree in 1976 from 
the University of Minnesota and has completed course work 
for an MS in computer science, also at the University of 
Minnesota. 

J. Howard Botterill 

General Systems Division, Rochester, MN 

Mr. Botterill is an advisory programmer in the Advanced 
Systems Development Group where he has design control 
responsibility for the System/38 Control Language and the 
Control Program Facility user interface. He joined IBM at 
Rochester in 1967 and was involved in the development of 
the Multiple Terminal Monitor Task (MTMT) terminal system 
for the System/360 and the Communication Control Program 
(CCP) for the System/3. He received his BS in mathematics 
from Wheaton College, Wheaton, IL, in 1964. In 1965, he 
received his MS in mathematics from the University of 
Michigan. Prior to joining IBM, Mr. Botterill was employed at 
the White Sands Missile Range where he worked on the IBM 
7044/7094 Direct Coupled System. 

Authors 

Darryl T. Brunsvold 

General Systems Division, Rochester, MN 

Mr. Brunsvold is a staff engineer in Advanced Systems 
Engineering. Since 1975, his principal responsibility has been 
the attachment of printer products to small business systems 
using microprocessors. Prior to joining the printer attachment 
development group, he worked with direct access storage 
device attachments and performed measurements and analy­
sis of small business systems. Mr. Brunsvold joined IBM in 
1970 after receiving a BS degree in electrical engineering 
from Montana State University. 

Robert W. Collins 

General Systems Division, Rochester, MN 

Mr. Collins is an advisory programmer in the Advanced 
Systems Development Group. He joined IBM in 1966 as a 
systems engineer in Des Moines, Iowa, and worked primarily 
with OS/360 and PARS (financial) systems. From 1970 
through 1973, he helped develop CP-67 and VM/370. In 
1975, he became team leader responsible for storage manage­
ment design and implementation on System/38. He is 
currently working in performance analysis for System/38. 
Mr. Collins received his BS in electrical engineering from 
Iowa State University in 1966. He is a member of the 
Association for Computing Machinery. 

Huntington W. Curtis 

/RD Biomedical Systems, Mt. Kisco, NY 

Dr. Curtis joined IBM in 1959, becoming a senior engineer in 
1960. After serving as Manager of Technical Requirements in 
Federal Systems Division headquarters, he was promoted to 
technical advisor to the IBM Vice President for Research and 
Engineering, followed by assignments on the Corporate 
engineering staff as director of government technical liaison 
and as director of scientific and technical information. This 
paper was prepared during his recent. assignment on the 
General Engineering technical staff at the East Fishkill 
Laboratory. 

AUTHORS 103 



He received a BS in chemistry and physics from the College 
of William and Mary in 1942, an MS in physics and electrical 
engineering from the University of New Hampshire in 1948, 
and a PhD in electrical engineering from the State University 
of Iowa in 1950. Prior to joining IBM, he was a professor of 
electrical engineering at Dartmouth College. Dr. Curtis is a 
member of Phi Beta Kappa, Tau Beta Pi, and Sigma Xi; a 
senior member of the Institute of Electrical and Electronics 
Engineers; and a Trustee of the Mount Washington Observa­
tory. 

Stephen H. Dahlby 

General Systems Division, Rochester, MN 

Mr. Dahlby is a development programmer in the System/38 
machine development area of Advanced Systems. His experi­
ence on System/38 includes system architecture and machine 
design control and management positions in machine 
development. He is currently a manager in the Device Data 
Management area of the Control Program Facility. He has 
previously worked in the areas of performance measurement, 
system modeling, and compiler development. Prior to joining 
IBM in 1969, he received a BA degree in mathematics from 
the University of Northern Iowa, Cedar Falls, in 1966, and an 
MS degree in computer science from Iowa State University, 
Ames, in 1969. 

Richard A. Demers 

General Systems Division, Rochester, MN 

Mr. Demers is a Staff Programmer in the System/38 
Architecture Department. He has had design responsibility 
for· the Message Handling and Service components of the 
System/38 Control Program Facilities licensed product. In 
1968 he joined IBM as an Applications Programmer in White 
Plains, NY. He received a BA degree in Philosophy from 
Canisius College, Buffalo, NY, in 1969. In 1972, he moved to 
Endicott, NY where he worked on OS/VSl, OS/VS2, and 
DOS/VS support for the IBM 3895 Optical Check Reader. 
Mr. Demers moved to Rochester, MN in 1975. He is a 
member of the Association for Computing Machinery, and 
his interests include operating system architecture, software 
design methodologies, and software reliability. 

104 CURTIS - FRENCH 

Nicholas M. Donofrio 

General Technology Division, Burlington, VT 

Mr. Donofrio joined IBM in Poughkeepsie in 1967 working in 
the area of FET memory circuit development. He became a 
project manager in 1972 and managed the C/P and Riesling 
Array development activity in Burlington, Vermont. In 1977, 
he assumed the position of Manager of Advanced Memory 
Components Development. In September, 1978 Mr. Donofrio 
was named Administrative Assistant to the Vice President of 
Development and Manufacturing, GTD Burlington. Mr. 
Donofrio is currently the Manager of the Systems and Test 
Organization. He is responsible for the Design Systems of 
current and advanced product technologies in the Labora­
tory. He is also responsible for the Test Engineering, 
Computer Sciences, and Release/Control Center for the 
Burlington, Vermont Laboratory, and is the EDS Senior 
Manager for the General Technology Division. 

Eugene F. Dumstorff 

General Systems Division, Rochester, MN 

Mr. Dumstorff is a development engineer in Advanced 
Systems 1/0 Development at the Rochester Development 
Laboratory. He joined IBM in 1969 and has been involved 
with various projects, primarily in the area of microprocessor 
development. His most recent assignment has been with 
development and application of a microprocessor in the 1/0 
subsystem for the IBM System/38. Mr. Dumstorff received a 
BSEE from Iowa State University, an MSEE from the 
University of Minnesota, and a BA in business administration 
from Winona State University. 

Wayne 0. Evans 

General Systems Division, Rochester, MN 

Mr. Evans is· an advisory programmer in the Advanced 
Systems DevelOpment Group at the IBM General Systems 
Division Development Laboratory in Rochester; ,MN; Sfoce 
joining IBM in 1964, his experience includes computer 
monitoring of cardiovascular patients, communications 1/0 
support for the System/3, and the Multiple Terminal Monitor 
Task (MTMT) terminal system for the System/360. He is 
currently working in development of the System/38 Control 
Program Facility. Mr. Evans received a BS in mathematics 
and chemistry from Adams State College, Alamosa, CO, in 
1962 and an MS in mathematics from Kansas State Univer­
sity in 1969. Prior to joining IBM, he was employed by the 
NASA Lewis Research Center. 

Ronald 0. Fess 

General Systems Division, Rochester, MN 

Mr. Fess is currently a member of the Design Control Group 
for the System/38 Control Program Facility. He previously 
worked on various development projects in OS/MFT, 
OS/MVT, OS/VSl, and OS/MVS. Prior to joining IBM in 
1969, he received a BS in mathematics from Augustana 
College, Rock Island, IL, and an MS in computer science 
from the University of Iowa. Mr. Fess is a member of the 
Association for Computing Machinery. 

Barry Flur 

General Technology Division, Burlington, VT 

Dr. Flur joined IBM in Poughkeepsie in 1959 after receiving 
his PhD in metallurgical engineering from Carnegie Institute 
of Technology. He transferred to the Burlington Laboratory 
in 1965 working on the development of magnet film 
memories. During 1967, he was on assignment to the Hursley 
Laboratories in the United Kingdom. For the past several 
years, he has managed many areas of the SAMOS program, 
including process development, reliability engineering, test 
and characterization engineering, and the 82mm pilot line. In 
1978 he assumed responsibility for CFET Process Engineer­
ing and Development. 

· Robert E. French 

General Systems Division, Rochester, MN 

Mr. French is a project programmer in the Advanced Systems 
Development Group. He joined IBM in 1969 after receiving 
the BA degree in mathematics from Brown University, 
Providence, RI. He is currently involved with machine system 
design. Prior to joining GSD, he worked in the IBM 
Poughkeepsie Laboratory on simulation of operating systems 
and system performance analysis. 

IBM S/38 TECH DEV 



James W. Froemke 

General Systems Division, Rochester, MN 

Mr. Froemke is a senior engineer with the Engineering, 
Programming and Technology corporate staff in Valhalla, 
NY. He joined the IBM Rochester Development Laboratory 
in 1964 where he worked in telemetry and data acquisition 
system design. After a leave of absence, he returned with an 
MS degree in electrical engineering from North Dakota State 
University in 1967. In 1969 and 1971, he received an IBM 
Outstanding Contribution Award and Invention Achievement 
Award for his work with the System/3 communications 
architecture and development. Mr. Froemke joined the 
System/38 development team in 1972, participating in the 
early architectural definition of communications and micro­
processors. In 1974, he assumed management responsibility 
for the development of magnetic media I/O device attach­
ments for System/38 before becoming the technical assistant 
to the manager of GSD Advanced Systems. He joined EP&T 
as program director of small central systems in 1979. 

William E. Hammer 

General Systems Division, Rochester, MN 

Mr. Hammer is an advisory engineer in Advanced Systems 
Engineering where he is responsible for the architecture and 
implementation of the attachment of work stations to the 
System/38. Since joining IBM in 1960, he has been involved 
in several projects using microprocessors for controlling I/O 
devices. He received a BS degree in electrical engineering 
from the University of Illinois. 

David G. Harvey 

General Systems Division, Rochester, MN 

Mr. Harvey is a development programmer and manager of the 
Design Control Group for the System/38 Control Program 
Facility. He joined IBM at the Rochester, MN Development 
Laboratory in 1968 after graduating from Iowa State 
University with a BS degree in mathematics. From 1968 to 
1971, he was a designer and developer of a rule-driven 
interactive system for Computer-aided Mechanical Engi­
neering Design (COMMEND). In 1971, he joined the 
System/3 Development Group where he later received an 
Outstanding Contribution Award for his work on the 
System/3 Model 15 supervisor. Mr. Harvey joined the Ad­
vanced Systems Development Group in 1974 and worked on 
system architecture before accepting his current assignment. 

FROEMKE - HOWARD 

Nyles N. Heise 

General Systems Division, Rochester, MN 

Mr. Heise is a staff engineer at the IBM Rochester Develop­
ment Laboratory. He joined IBM in 1968 after graduating 
from the University of Wisconsin in electrical engineering. He 
received his MS degree from the University of Minnesota in 
1975 also in electrical engineering. While at IBM, his major 
emphasis has been on the attachment of magnetic media 
devices to Rochester-developed computing systems. 

G. G. (Glenn) Henry 

General Systems Division, Rochester, MN 

Mr. Henry is the manager of IBM System/38 programming 
development. His area's responsibilities include architecture, 
design, development, performance evaluation, test, and 
release of licensed programs (CPF, RPG III, IDU, etc.) and 
some microprogram components. Mr. Henry joined the GSD 
Advanced Systems Development Group in 1973. His prior 
experience includes management of programming develop­
ment for the IBM System/32 and various management and 
technical assignments on System/3, 1800, and other small 
system projects. In 1975 he received an IBM Outstanding 
Contribution Award for his work on System/32. Mr. Henry 
joined IBM in 1967 after receiving an MS degree in 
mathematics from California State University, Hayward. 
Prior to joining IBM, he worked as a consultant in data 
processing on a number of projects and was employed by the 
Shell Development Corporation. He is a member of the 
Association for Computing Machinery. 

Roy L. Hoffman 

General Systems Division, Rochester, MN 

Dr. Hoff man is a senior engineer in a system organization and 
planning group. His current interests are in storage 
technology applications and system performance analysis. He 
received the BS and MS degrees in electrical engineering from 
the South Dakota School of Mines and Technology ·in 1959 
and 1962, respectively, and the PhD in electrical engineering 
from the University of Denver in 1967. He joined IBM in 
1962 and has held a variety of assignments including 
acoustical analysis, mechanical diagnostics, and pattern 
recognition. Dr. Hoffman is a member of the Association for 
Computing Machinery and the Institute of Electrical and 
Electronics Engineers. 

Darrell J. Horn 

General Systems Division, Rochester, MN 

Mr. Horn received the BS and MS degrees in electrical 
engineering from the University of Minnesota. Graduate 
study emphasis was on digital signal processing and statistical 
communication theory. Since joining IBM in 1975, Mr. Horn 
has been a member of Advanced Systems Communications 
Development Engineering. 

Merle E. Houdek 

General Systems Division, Rochester, MN 

Mr. Houdek joined IBM in 1964 after graduating from 
Tri-State University in electrical engineering. His previous 
assignments have been with Custom Systems and the 3740 
Data Entry System Development group. He is currently an 
advisory engineer in Advanced Systems Engineering with 
interests in the performance analysis and modeling of CPU 
and I/O hardware. 

Philip H. Howard 

General Systems Division, Rochester, MN 

Mr. Howard joined IBM at Poughkeepsie in 1954 after 
receiving a BS degree in Electrical Engineering from the 
University of Wisconsin, Madison. He received an MEE degree 
from Syracuse University in 1959 and attended the IBM 
Systems Research Institute in 1973. He is now a senior 
engineer engaged in system performance analysis and was 
responsible for the development of index functions. He has 
been involved with System/38 since its inception. His other 
work interests include computer system modeling, automated 
logic design for pattern recognition systems, sorting, and 
storage management algorithms. He is a member of Eta 
Kappa Nu and the Association for Computing Machinery. Mr. 
Howard received IBM Invention Achievement Awards in 
1968 and 1974 plus an IBM Outstanding Contribution Award 
for work on automated logic design in 1972. 

AUTHORS 105 



Kuang Chi (George) Hu 

General Systems Division, Rochester, MN 

Mr. Hu received a BSEE degree from the National Taiwan 
University in 1956 and an MSEE degree from the University 
of Minnesota in 1959. He joined the IBM Thomas J. Watson 
Research Laboratory in 1959 and in 1964 joined the IBM 
Systems Development Division in Rochester, MN. He worked 
on pattern recognition problems and the development of 
optical character recognition machines until 1-968. Before 
joining the Advanced Systems Development Group in 1973, 
he worked on an IBM-Mayo Clinic joint project in developing 
ECG signal recognition algorithms, ECG diagnostic decision 
programs, and patient monitoring systems. He is currently 
working in the area of resource management for the 
System/38. 

David 0. Lewis 

General Systems Division, Rochester, MN 

Mr. Lewis is an advisory engineer in Advanced Systems 
Engineering where he has been involved in the design and 
implementation of the System/38 channel. His experience 
includes logic design, simulation, and microcode support 
associated with 1/0 adapter and channel designs. Prior to 
joining IBM in 1968, he received a BSEE degree from the 
University of Wisconsin. 

Larry W. Loen 

General Systems Division, Rochester, MN 

Mr. Loen is a member of the Advanced Systems Development 
Group in the IBM General Systems Division Development 
Laboratory in Rochester, MN. His primary work on 
System/38 has been in the area of main storage management. 
He joined IBM in 1974 at the Systems Product Division 
Poughkeepsie Laboratory and transferred to GSD in 
Rochester in 1976. His experience prior to System/38 
includes compiler development and testing. Mr. Loen holds a 
BS in computer science from Michigan State University 
(Lyman Briggs College). 

106 HU - RANWEILER 

Joel F. Miller 

General Systems Division, Rochester, MN 

Mr. Miller received the BA degree in mathematics from 
Pennsylvania State University in 1960. He joined IBM in 
1960 at the Endicott Laboratory where he was involved in 
the programming support for the 1400 series computers and 
later the System/360 family. He received an IBM Outstanding 
Contribution Award for his work in the definition of the 
System/360 RPG language. After transferring to Rochester in 
1967, he was involved in the development of System/3 and 
was manager of a Programming Advanced Technology depart­
ment until 1971. Since that time, he has held various 
positions in the development of System/38, primarily in 
system architecture and system build. 

Glen R. Mitchell 

General Systems Division, Rochester, MN 

Mr. Mitchell joined IBM in 1964 in Endicott, NY, where he 
was a member of the group which designed the automatic 
test equipment for SLT modules and cards. After joining the 
System/3 design group in Rochester in 1968, he was involved 
with the design of the communication attachments. After 
joining the Advanced Systems Development Group in 1972, 
he worked on the virtual addressing aspects of System/38, 
specifically the translation hardware and microcode used by 
the CPU and channel. Mr. Mitchell is an advisory engineer 
and is now working in the New Business Systems Design 
Group. He received his BS in electrical engineering from Iowa 
State University. 

Henry T. Norton 

General Systems Division, Rochester, MN 

Mr. Norton is a senior programmer concerned with design 
control for the Control Program Facility licensed prbgram 
product of System/38. He joined the Advanced Systems 
Development Division of IBM in 1960 at San Jose, where he 
was involved in the software design for Advanced Systems. 
He has since been associated with programming product test 
in Poughkeepsie, NY, the design of programming develop­
ment tools and text processing systems in Boulder, CO, and 
the development of programming support for the SAFE­
GUARD ABM system in Morris Plains, NJ. He joined the 
Rochester Laboratory in 1975 where he has been engaged in 
the architecture and design of the programming support for 
the IBM System/38. Mr. Norton received his BS in mathe­
matics from Oregon State University in 1952. He is a member 
of Pi Mu Epsilon and Phi Kappa Phi. Mr. Norton received an 
IBM Invention Achievement Award in 1971. 

James J. Pertzborn 

General Systems Division, Rochester, MN 

Mr. Pertzborn joined IBM in 1973 at the Rochester Develop­
ment Laboratory after graduating from the University of 
Wisconsin with a BS degree in electrical engineering. His 
experience includes logic design, simulation, and test-data 
generation associated with PLA-implemented 1/0 adapters. 
He is a staff engineer involved in the design and test of disk 
1/0 attachments. 

Ronald A. Peterson 

General Systems Division, Rochester, MN 

Mr. Peterson joined IBM in 1973 after graduating from the 
University of Minnesota with an MS degree in electrical 
engineering. He received his BS degree in physics from Seattle 
Pacific University. For the past five years, he has participated 
in the design of the disk 1/0 attachment for the System/38. 
Mr. Peterson is a staff engineer at the IBM Rochester Devel­
opment Laboratory. 

Kurt W. Pinnow 

General Systems Division, Rochester, MN 

Mr. Pinnow is a staff programmer at the Rochester Labora­
tory where he holds design control responsibility for portions 
of the programming support for IBM System/38. He joined 
IBM in 1970 at the Federal Systems Division where he was 
engaged in the simulation modeling of the effects of nuclear 
weapons. In 1974, he moved to Rochester, where he became 
involved in the architecture and design of IBM System/38. 
Mr. Pinnow holds an applied mathematics and physics degree 
from the University of Wisconsin (BS 1969). Prior to joining 
IBM, Mr. Pinnow worked for Calspan Corporation in Buffalo, 
NY. His interests include architecture and performance 
modeling of computer systems. 

James G. Ranweiler 

General Systems Division, Rochester, MN 

Mr. Ranweiler is a senior programmer in Rochester's Ad­
vanced Systems Development Group. He joined IBM in 1967 
to work on the development of System/3. In 1969, he 
received an IBM Outstanding Contribution Award for his 
design of the preassemble function of the System/3 RPG II 
compiler. Since 1974, he has been a designer of System/38 
microcode and of the System/38 instruction interface. 
Currently his primary responsibility is performance of the 
System/38. Mr. Ranweiler received a BA degree in mathe­
matics in 1964 from St. John's University at Collegeville, 
MN. 

IBM S/38 TECH DEV 



John W. Reed 

General Systems Division, Rochester, MN 

Mr. Reed joined IBM in 1967 after receiving a BSEE degree 
from Kansas State University and a MSEE degree from the 
University of Wisconsin, Madison. His past IBM assignments 
have been involved in the application of LSI technologies, 
microprocessors, and behavioral modeling techniques to GSD 
products. Since joining the Advanced Systems Engineering 
group in late 1973, he was responsible for the definition and 
implementation of the System/38 channel and was manager 
of the department responsible for the System/38 processor 
hardware and storage. He is currently an advisory engineer in 
the Technical Programs organization in the Rochester labora­
tory. 

Dale N. Reynolds 

General Systems Division, Rochester, MN 

Mr. Reynolds is a senior programmer and manager of the 
System/38 system architecture, system performance and 
system communications area. He joined the Advanced 
Systems Development Group in 1973 and has been involved 
since in the definition, architecture, implementation, and 
performance of the System/38 instruction interface. He 
previously worked on the IBM System/3 2 and on prototype 
systems at the IBM Los Gatos laboratory. In 1975 he 
received an IBM Outstanding Contribution Award for his 
work on System/32. Mr. Reynolds received an MS in 
computer science from the University of Utah in 1966. He is 
a member of the Association for Computing Machinery. 

Steven R. Ridenour 

General Systems Division, Rochester, MN 

Mr. Ridenour joined IBM at Rochester in 1969 after receiving 
a BS degree in mathematics from Iowa State University. He 
initially was a member of the System Control Program 
Development Group for the System/3 Models 6, 10, and 15, 
working primarily on data management for disk, tape, and 
unit record devices. In 1974, he transferred to Advanced 
Systems where he began work on the data definition 
interface for System/38. Mr. Ridenour was a manager in the 
Control Program Facility area of Advanced Systems until 
June, 1979. Currently, he is a manager in Programming 
Assurance for the Atlanta Application Development Center. 

REED -TIET JEN 

Thomas S. Robinson 

General Systems Division, Rochester, MN 

Prior to joining IBM in 1963, Mr. Robinson was a member of 
the engineering staff at RCA Laboratories in Van Nuys, CA, 
and Tucson, AZ. His past assignments with IBM have been 
primarily in the design and development of Advanced Optical 
Character Recognition Equipment. Since 1975, Mr. Robinson 
has been involved in I/O channel architecture with Advanced 
Systems Engineering. He received a BSEE degree in 1960 
from New Mexico State University and has done graduate 
work at the University of California. 

Francis X. Roellinger, Jr. 

General Systems Division, Rochester, MN 

Mr. Roellinger joined IBM in 1973 at the Rochester 
Development Laboratory. He received his MSEE degree from 
the University of Missouri in 1973, where he did research in 
realtime pattern recognition. From 1973 to 1978 he was with 
a communications engineering department, where his work 
included data link control analysis and microprogram design, 
simulation, and performance measurements. Currently he is 
with a communications programming department, where he 
is involved with I/O interfacing and computer network 
analysis and design. 

Robert T. Schnadt 

System Products Division, Boeblingen, Germany 

Dr. Schnadt joined IBM in October, 1970, in the Boeblingen 
laboratory, worked on device design for FET and bipolar 
technologies and on circuit design analysis for several FET 
and bipolar memory array chips. He became a project 
manager in September, 1975, for FET memory array design 
and managed three major array-chip development programs. 
He is now responsible for the advanced FET chip develop­
ment programs. 

Thomas R. Schwalen 

General Systems Division, Rochester, MN 

Mr. Schwalen is an advisory programmer in the Advanced 
Systems Development Group. He joined IBM in 1970 at the 
Rochester, MN Development Laboratory and from 1970 
through 1973 was a member of the System Control Program 
Development Group for the System/3, Models 6, 10, and 15. 
He joined Advanced Systems in late 1973 and is currently 
working in the development of the System/38 Control 
Program Facility licensed program product. Mr. Schwalen 
received a BBA degree in computer center administration 
from Wisconsin State University, Whitewater, in 1970. 

Frank G. Soltis 

General Systems Division, Rochester, MN 

Dr. Soltis first joined IBM in 1963 at the Rochester 
Development Laboratory after receiving his BS and MS 
degrees in electrical engineering from North Dakota State 
University. In 1968, while on an education leave of absence, 
he received his PhD degree in electrical engineering from 
Iowa State University. Since returning to Rochester, Dr. 
Soltis has been involved in the definition of computer system 
architectures including the System/38 architecture. His cur­
rent interests are in small system architecture designs and 
microprogramming techniques. Dr. Soltis is a member of the 
Institute of Electrical and Electronics Engineers and the 
Association for Computing Machinery. 

Perry T. Taylor 

General Systems Division, St. Louis, MO 

Mr. Taylor is a senior systems engineer in the GSD St. Louis 
branch office. Previous assignments include: Systems engi­
neer on Army Material Command account, staff member at 
the IBM Systems Research Institute in New York City, and 
manager of System Architecture for System/38. He received 
a BA degree in mathematics from Southern Illinois University 
at Edwardsville, IL, in 1963 and is a member of the Institute 
of Electrical and Electronics Engineers. 

John N. Tietjen 

General Systems Division, Rochester, MN 

Mr. Tietjen joined IBM in 1970 after graduating from 
Arizona State University in electrical engineering. Prior to his 
work on the development of the work station controller for 
the System/38, he was involved in the design and develop­
ment of a microprocessor-based line printer controller. He is 
currently a staff engineer in Advanced Systems 1/0 Develop­
ment in Rochester. 

AUTHORS 107 



C. D. (Dave) Truxal 

General Systems Division, Rochester, MN 

Mr. Truxal is an advisory programmer engaged in data base, 
authorization-related design and language processors on 
System/38. He received a BA degree in mathematics in 1967 
from the University of Kansas, and joined IBM in Kingston, 
NY, to work in virtual storage management. This work was 
interrupted by two years in the US Navy, serving as staff to 
the director of programming, BUPERS, Washington, DC. Mr. 
Truxal rejoined IBM in 1977, after working at Control Data 
Corporation, Minneapolis, MN. Other experience and 
interests include architecture and design of resource manage­
ment and I/O facilities. He is a member of the Association for 
Computing Machinery. 

Richard T. Turner 

General Systems Division, Rochester, MN 

Mr. Turner is currently a consulting Systems Engineer in the 
Bloomington, IL brance office. He was formerly a member of 
the Design Control Group for the System/38 high level 
machine microcode. He joined IBM in 1964 in the Federal 
Systems Division at Omaha, NB. Prior to joining the GSD 
Advanced Systems Development Group in 1973, he worked 
on the APOLLO project (1965-1967) in Houston and in the 
IBM Data Processing Division as a systems engineer in the St. 
Louis branch office (1967-1971). He transferred to the IBM 
GSD Development Laboratory in Rochester, MN in 1971. 
Mr. Turner received a BA degree from Southern Illinois 
University in 1964 and has done graduate work at Creighton. 
He received an IBM Outstanding Contribution Award in 1973 
for work on System/3 CCP and an IBM Outstanding 
Invention Award for patent activity in 1979 for work on the 
System/38. 

C. T. (Tom) Watson 

General Systems Division, Rochester, MN 

Mr. Watson is a manager in System/38 CPF responsible for 
Data Description Specifications, Device Configuration 
and Save Restore Functions in the Advanced Systems 
Development Group. He joined IBM in 1968 upon receiving 
his BS in engineering mechanics from the University of 
Michigan. He received his MS in computer science from 
Washington State University in 1975 while on education 
leave from IBM. He participated in the development of the 
3 740 group of products and since 197 5 has worked mainly in 
development of the System/38 data base facility. Mr. Watson 
has spoken widely within IBM on flowcharting tools and 
techniques and on the design and implementation of the 
System/38 data base facility. Mr. Watson is a member of Pi 
Tau Sigma and the Association for Computing Machinery. 

108 TRUXAL -WATSON IBM S/38 TECH DEV 



For an overview of the entire system, you should 
read: 

"Introduction to IBM System/38 architecture," 
page 3 

For the next level of detail: 
"Hardware organization of the System/38," 
page 19 

"System/38-A high-level machine," page 47 
"Introduction to the System/38 Control Program 

Facility," page 74 
"User-System/38 interface design considerations," 

page 70 

If your particular interest is in the underlying 
machine structure and technology, read: 

"Hardware organization of the System/38," 
page 19 

"Integrated circuit design, production, and pack­
aging for System/38," page 11 

"Memory design/technology for System/38," 
page 16 

"Translating a large virtual address," page 22 
"Processor development in the LSI environment," 
page 7 

"System/38 1/0 structure," page 25 
For further detail on 1/0, there are three papers 
related to control and three to individual elements­
work stations, communication subsystem, and 
printers: 

"Application of a microprocessor for 1/0 control," 
page 28 

"System/38 magnetic media controller," page 41 
"Shared function controller design," page 44 
"Microprocessor-based work station controller," 
page 36 

"Microprocessor-based communications subsys­
tem," page 32 

"Microprocessor control of impact line printers 
for printing character-string data," page 38 

The high-level machine structure is described in eight 
papers: 

"System/38-A high-level machine," page 4 7 
"System/38 addressing and authorization," 

page 51 
"System/38 object-oriented architecture," page 55 
"System/38 work management concepts," page 81 
"System/38 data base concepts," page 78 
"System/38 machine storage management," 
page 63 

"System/38 machine indexing support," page 67 
"System/38 machine data base support," page 59 

To gain an understanding of the advanced program­
ming support, you will want to read some or all of 
the following: 

"Introduction to the System/38 Control Program 
Facility," page 7 4 

"System/38 addressing and authorization," 
page 51 

"System/38 object-oriented architecture," page 55 
"System/38 work management concepts," page 81 
"System/38 data base concepts," page 78 

The next two papers present, in some detail, two 
especially important elements of the Control Program 
Facility: 

"The rule-driven Control Language in System/38," 
page 83 

"File and data definition facilities in System/38," 
page 87 

Appendix: Reader's guide 

For more detail on advanced programming support, 
read: 

"Table-driven work management interface in 
System/38," page 94 

"File processing in System/3 8," page 91 
"The generalized message handler in System/38," 
page 97 

"System/38 common code generation," page 100 

APPENDIX: READER'S GUIDE 109 





.. 
t :r 


