

--------- ---- GC21-7729-3 ---- - ---- -- -----------,-
File No. 538-36

IBM System/3S

IBM System/38
Control Program Facility Concepts Manual

Program Number 5714-881

Fourth Edition (September 1984)

This is a reprint of GC21 -7729-2 incorporating changes released in the following
technical newsletter GN21 -8278 (10 September 19821. Changes or additions to
the text and illustrations are indicated by a vertical line to the left of the change or
addition.

This edition applies to Release 4. Modification Level 1. of IBM System/38 Control
Program Facility (Program 5714-551). and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Changes are
periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible. the examples include the
names of individuals. companies. brands. and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entrely coincidental.

References in this publication to IBM products. programs. or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent program may be used instead.

Use this publication only for the purposes stated in About This Manual.

Publications are not stocked at the address given below. Requests for IBM
J;1ublications should be made to your IBM representative or to the IBM branch
office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A
form for readers' comments is provided at the back of this publication. If the form
has been removed. comments may be addressed to IBM Corporation. Information
Development, Department 245. Rochester. Minnesota. U.S.A. 55901. IBM may
use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1978. 1979. 1981. 1982

ABOUT THIS MANUAL . .
Purpose of This Manual
Organization of This Manual
Summary of Changes . . .
What You Must Know . . .
If You Need More Information

CPF Commands and Functions
Data Description Specifications .
Utilities
Content and Use of System/3S Manuals

CHAPTER 1. INTRODUCTION
CPF Overview.

Object Management
Work Management .
Data Management .
Application Development
System Management . .

System Concepts Overview .
Object-Oriented Architecture.
Single Level Storage
Activity Level Control
Access Groups ...
Data Base Functions

Control Language . . .
Command Syntax. .
Command Prompting
Parameter Defaults .

CHAPTER 2. OBJECT MANAGEMENT FACILITIES
Object Management Concepts

Objects
Libraries.
Finding Objects through Libraries

Object Management Operations
General Object Operations
Library Operations
Damaged Objects

CHAPTER 3. WORK MANAGEMENT FACILITIES .
Work Management Concepts

Subsystems
Jobs
Subsystem / Job Relationships

Work Management Functions .
CPF-Provided Subsystems.
User-Defined Subsystems
Managing Subsystems
Managing Jobs.
Initiating Jobs

CHAPTER 4. DATA MANAGEMENT FACILITIES
Data Management Concepts

Files
File Description.
Connecting a File to a Program .
File Overrides
File Processing

v
v
v
v
v
vi
vi
vi
vi
vi

1-1
1-2
1-2
1-3
1-3
1-4
1-4
1-5
1-6
1-6
1-S
1-S
1-S
1-9
1-9

1-10
1-11

2-1
2-1
2-1
2-2
2-5
2-7
2-7
2-S
2-9

3-1
3-2
3-4

3-10
3-14
3-16
3-16
3-1S
3-18
3-19
3-21

4-1
4-1
4-1
4-2
4-6
4-6
4-6

Contents

Data Base Data Management
Access Paths
Members ..
Physical Files
Logical Files .
Using Data Base Files .

Device Support Data Management .
Display Device Support . .
Nondisplay Device Support

Data Operations.
Program-Described Data Files
Externally Described Data Files
Spooled File Processing
Copying Files
File Reference Function

CHAPTER 5. APPLICATION DEVELOPMENT
Overview

Design Considerations. . .
Programming Considerations
Testing and Debugging .
Documentation

Control Language Programs.
Message Handling. . . .

Message Descriptions. .
Message Queues
Using Messages and Message Queues

Debugging Functions
Command Definition

CHAPTER 6. SYSTEM MANAGEMENT
Security

User Identification
Security Functions
Object Authorization
Using Security . . .
Using Menus for Security

Save/Restore
Save Functions. . .
Restore Functions
Using Save/Restore

.lournal Management
;nstallation and Specialization Facilities
System Operation

System Operation Functions
Message Handling

Service

GLOSSARY.

INDEX ...

4-7
4-S

4-11
4-11
4-12
4-1S
4-19
4-20
4-27
4-29
4-29
4-30
4-32
4-36
4-37

5-1
5-1
5-1
5-5
5-6
5-7
5-S

5-11
5-12
5-12
5-13
5-14
5-15

6-1
6-1
6-2
6-6
6-7
6-S
6-9

6-10
6-10
6-11
6-11
6-12

6-12.2
6-12.3
6-12.3

6-13
6-14

G-1

X-1

Contents iii

iv

PURPOSE OF THIS MANUAL

This manual describes the concepts of the System/38
Control Program Facility. These concepts must be
understood before decisions can be made about the
overall design and use of a System/38 installation with
the Control Program Facility.

This manual is intended for persons who are responsible
for designing and maintaining a system installation, for
programmers who write applications to be used on the
system, and for anyone else who needs a general
understanding of the functions provided by the
System/38 Control Program Facility.

ORGANIZATION OF THIS MANUAL

The chapters in this manual are designed to be read in
sequence. The chapters present:

• An overview of the control program facility

• The manner in which the control program facility
manages objects stored in the system

• The manner in which the control program facility
manages work performed on the system

• The manner in which data is managed on the system

• The facilities provided to assist in application
development on the system

• The facilities provided to assist in managing the
operation of the entire system

This manual does not describe how to perform
operations nor does it describe individual commands.
Instead, the manual explains the concepts that must be
understood beiore the Control Program Facility can be
used efficiently.

Note: This manual follows the convention that he
means he or she.

About This Manual

SUMMARY OF CHANGES

The following changes have been made to this manual
for release 4, modification 1:

• Journal management

• Saving only changed objects

• Miscellaneous technical changes

WHAT YOU MUST KNOW

To use this manual effectively, you should have read the
following manual:

• IBM System/38 Introduction, GC21-7728
Summarizes the System/38 design and highlights
its major functions
Describes System/38 licensed programs
Describes possible System/38 configurations
Describes device characteristics

About This Manual v

IF YOU NEED MORE INFORMATION

You may need to refer to other System/38 manuals for
more specific information about a particular topic. The
following list describes the information you may need to
find and the System/38 manuals in which you can find
that information.

CPF Commands and Functions

• IBM System/38 Control Language Reference Manual.
SC2l-773l

Describes the control language (CL) syntax rules
Describes all CL commands and their parameters
Describes command authorization by user profile
Lists CL commands by functional groups
Describes files used by commands
Describes command and keyword abbreviations
Describes the use of expressions in CL commands

• IBM System/38 Control Program Facility
Programmer's Guide. SC2l-7730

Describes how to use CL commands to perform
Control Program Facility (CPF) functions
Describes system values
Describes IBM-supplied objects

- Describes how to create a file
Describes how to test and debug application
programs

Data Description Specifications

• IBM System/38 Control Program Facility Reference
Manual- Data Description Specifications. SC2l-7806

Explains how to describe files using Data
Description Specifications (DDS)
Provides a list of valid DDS keywords for each file
type (physical. logical, display. printer.
communications. and BSC)

Utilities

• IBM System/38 Source Entry Utility Reference Manual
and User's Guide. SC2l - 7722

vi

- Describes how to use SEU to enter and maintain
Control Language (CL) statements, Data
Description Specifications (DDS), and command
definition statements

Content and Use of System/3S Manuals

• IBM System/38 Guide to Publications, GC2l-7726
Describes the contents of System/38 manuals

- Explains the reading sequences for System/38
manuals

- Defines terms used in System/38 manuals
Contains index entries from frequently used
System/38 manuais

l Chapter 1. Introduction

The Control Program Facility (CPF) is the licensed system support program for
the IBM System/38. CPF is designed to complement and to extend the
advanced capabilities of the System/38 machine to provide fully integrated
support for the use of interactive, work station oriented applications. To
supplement the full range of support of the interactive environment. CPF also
provides comprehensive support for concurrent processing in the batch
environment. CPF is designed to support a wide range of operating
environments. No single environment has the exclusive use of a given set of
functions. Thus any user in any operating environment has access to the
functions he needs.

Many of the functions of the System/38 CPF are a direct outgrowth of the
system's orientation to interactive data processing. Among these functions are:

• Data base support to make up-to-date business data available for rapid
retrieval at any work station

• Work management support to schedule the processing of requests from all
work station users so they are satisfied quickly and independently of other
work

• Application development support that allows online development and testing
of new applications concurrently with normal production activities

• System operation support that allows the system operator to perform his
work through the system console or another work station using a single
control language, complete with prompting support for all commands

• Message handling support that allows communication between the system,
the system operator, work station users, and programs executing in the
system

• Security support to protect data and other system resources from
unauthorized access

• Service support that allows service personnel to diagnose problems and
install new functions with minimal impact on normal work flow

Introduction 1-1

1-2

An installation can be operated at a basic level (for example, with only limited
interactive processing) and increase the use of controls and facilities as the
needs of the installation grow without disrupting applications that are already
used on the system.

CPF functions are used directly through the use of the control language and
the data description specifications. In addition, other System/38 program
products (such as high-level languages and the Interactive Data Base Utilities)
also use CPF functions.

System/38 is controlled through a single, consistent control language that is
supported by CPF. The control language provides the operations normally
associated with controlling the operation of a system, such as:

• Controlling the operation of input/output devices attached to the system

• Submitting batch jobs for execution

• Terminating the system

In addition, many advanced functions used in data processing are provided.
For example, data files and programs are created, program execution is
controlled, and work station users can communicate with each other by using
functions requested through the control language. However, although the
control language is the interface through which the functions of CPF are
controlled, it is not the only interface through which CPF or the system is used.
CPF provides a specialized interface, called data description specifications,
through which data in the system is described to CPF. The data is accessed
and updated by high-level language programs using CPF functions.

The subsequent sections of this introduction provide an overview of CPF and a
description of the control language.

CPF OVERVIEW

This overview groups CPF functions into topics according to their use. These
topics are described more fully in other chapters of this publication.

Object Management

The object management facilities allow objects to be grouped and located in
the system. The general term object is used to refer to named items (such as
programs or files) that are stored in the system. The general term is used
because all kinds of objects are located in the same manner. The object
management facilities allow users to name which objects they want, without
needing to specify the exact storage locations of the objects.

Certain functions of CPF, which are valid for many different types of objects,
can be performed through a single set of commands. For example, functions
that provide security or backup copies of objects apply to all object types.

Work Management

The work management facilities provide the framework through which the
system and all the work performed on the system are controlled. These
facilities provide system functions needed to support a multiprogramming
environment and to manage contention between jobs for main storage and
other system resources. The work management facilities allow work to be
submitted by the user, presented to the machine for execution, and controlled
by the system operator.

Many types of work can be performed concurrently on System/38. Often,
different types of work need different operating environments to operate
efficiently. For example, an interactive application that is used concurrently by
a number of work station users must operate in an environment that provides
rapid responses to the work station user. A batch job does not need the same
type of operating environment. Through the work management facilities,
specialized operating environments, called subsystems, control the use of
resources needed for different types of work. When CPF is installed, it
includes subsystems that support interactive, batch, and spooling processing.
Although the work management facilities can provide specialized operating
environments through the use of subsystems, the system is fully operational
when it is installed. By starting, controlling, and terminating subsystems, the
system operator can easily control entire operating environments through the
control language.

Data Management

The data management facilities support both data base files and device files.
Data base data management provides the functions required for creating data
base files and performing input/output operations to them. Device data
management provides similar operations for both local and remote devices
attached to the system, including many unique functions to support the display
devices.

Data can be described apart from the programs that use the files. That is, the
attributes of each field (such as its length, data type, and position in a record)
are described once in the file rather than in each program using the file. These
data descriptions are created with the use of the data description specifications
(DDS). A specification form (similar to the RPG specification forms) provides a
common format for describing the data. The form provides fixed columns for
frequently specified and required information and keyword specifications for
less frequently specified options.

Data can also be described in the traditional manner in which the records and
fields are described in the programs that use them. The spooling functions
support the usual operations for reading files from input devices and writing
files to output devices so that programs using the files are not tied directly to
the external devices.

Introduction 1-3

1-4

Application Development

A programmer can perform most application development activities
interactively, from a work station. These activities include:

• Entering source programs into the data base

• Compiling programs concurrently with normal system operations, without
interrupting the normal work flow on the system

• Testing programs in a protected environment so that production files can be
used as input by a program being tested, but are protected from being
changed by the program

• Debugging a program online, using CPF-provided functions to locate
program errors

• Alternating between two interactive jobs simultaneously, such as reviewing a
display of a compilation listing and reviewing the value of program variables

• Correcting the program source and recompiling the program

System Management

Through CPF functions, a system operator can control the operations of jobs
and subsystems, respond to system messages, and perform other operations
normally performed by a system operator. These operations can be performed
from any work station and are not restricted to a single person.

The security facilities allow individual work station users to have various levels
of control over the access to objects. As security requirements change, the
control provided by the security facilities can be modified.

CPF save/restore functions allow applications and data files to be backed up
concurrently with unrelated system operation. These functions can be used to
maintain backup copies of system and application objects. These copies can
be used to recover from system or application malfunctions.

---T--
CPF

System/38
Machine

. _____ J ____ _

SYSTEM CONCEPTS OVERVIEW

The System/38 Control Program Facility (CPF) and other program products
provide the interface between the system user and the System/38 machine.
These program products capitalize on the advanced features of the System/38
machine, which includes both hardware and microcode. Many functions that
have traditionally been performed by system control programs have been
integrated into the machine so that they can be performed in a more basic and
efficient manner. The interface between these functions and the system user is
provided by the program products that use the functions.

Many CPF functions are provided through a combination of CPF and machine
functions. The following drawing shows some examples of the distribution of
functions between the machine and CPF. Of course, there are many other
functions that are not represented in this drawing. This drawing illustrates how
the degree of machine dependency varies among different CPF functions. For
example, most security functions are provided by the machine, but the control
language functions (which analyze and interpret control language commands)
are completely provided by CPF.

Security
Functions

Data
Base
Functions

Device
Support
Functions

Work
Management
Functions

Control
Language

Regardless of the function the system user uses, he does not need to be
concerned about where the function is performed because CPF provides a
single, consistent interface to all the system functions. The following sections
describe some of the more significant and unique characteristics of the
machine that CPF uses in providing its support.

Machine
Interface

Introduction 1-5

1-6

Object-Oriented Architecture

The object-oriented architecture of the System/38 machine is fundamental to
the overall design of the functions provided by the system. As described
earlier in this chapter, an object is a named entity stored in the system.
Included with each object is a set of attributes that describe the object. The
objects that are created and used through CPF functions are built from one or
a combination of the basic machine object types. For each type of object,
there is a specific set of operations that can be performed on the object.
Because this object-oriented architecture is a fundamental characteristic of the
machine, access to an object and the operations that can be performed on it
are controlled by the machine. This control provides a high degree of integrity
and security not available on many previous systems.

Single-Level Storage

System/38 is a virtual storage system in which all portions of main and
auxiliary storage are addressed as though they were within a single address
space (or level of storage). The system allows the user to access objects by
name, rather than by exact storage locations. The machine uses the object's
name to determine where the object exists in the system. Because operations
cannot be performed on an object that is not in main storage, the machine
moves all or a part of the object into main storage as it is needed and places it
back in auxiliary storage when it is not needed. This transfer is not apparent to
or controlled by the system user.

The transfer between main and auxiliary storage is performed in increments of
512 bytes. Each 512-byte increment is called a page. The process of
transferring these increments between main and auxiliary storage is called
paging. When a new page must be moved into main storage, the machine
determines which existing page in main storage was used the least recently
and replaces that page with the new page. If the replaced page was changed
while it was in main storage, it is written into auxiliary storage so that the
changes are not lost. If more than one page must be moved into main storage
at the same time, the machine moves multiple pages in a single transfer
operation. The paging functions of the System/38 machine provide an efficient
use of main storage independent of the operations that are being performed by
the system users through program products and application programs.

Because System/38 is also a multiprogramming system, main storage must be
available for all the jobs that are executing concurrently in the system. To
reduce the amount of interference among jobs that are competing for main
storage and to prevent a very large job from using too much main storage,
main storage can be subdivided for use by different groups of jobs. Main
storage is subdivided according to storage pools, which are logical segments of
main storage. When the machine retrieves an object from auxiliary storage for
a job, the object (or the part of the object that is needed) is moved into main
storage that is assigned to the storage pool in which the job is executing.

A storage pool provides a restricted quantity of main storage to the jobs that
execute within that storage pool. A storage pool is not a contiguous partition
of main storage. Rather, it includes a number of 1 K (1024 bytes) increments
of main storage that are available to the jobs executing in it. These increments
can be located anywhere in main storage. For example, the following drawing
illustrates main storage that has been assigned to three storage pools:

~ Pool 1

mill Pool 2

r. Pool 3

c::::J Other

The System/38 machine requires a certain amount of main storage for
machine control functions that are always present in the system. The objects
in this storage are not paged in and out during system operation. This storage
is allocated to the machine when the system is started. The other machine
functions are paged in and out and use a storage pool that is assigned to the
machine itself (machine pool). The CPF defines another storage pool that
automatically includes all the main storage that is not assigned to some other
storage pool. A total of up to 16 different storage pools can be in use
concurrently.

One of the fundamental elements of the System/38 machine that provides
efficient use of main storage is the sharing of objects by individual users
simultaneously using the system. When an object (such as a program or a data
base file) is used concurrently by more than one system user, only one copy of
that object is placed in main storage, even though the users might be
executing jobs in different storage pools. Any number of users can be using
the object. The machine provides functions that allow synchronization between
users as necessary. This object sharing reduces the amount of paging
performed by the system and also reduces the need for large storage pools
when users are sharing an object.

Most of the storage management functions are performed and controlled by
the System/38 machine. CPF provides the functions necessary for a
programmer to establish the storage pools and assign jobs to them to ensure
that jobs execute efficiently. These functions are provided through the CPF
work management facilities. Another machine function that is controlled
through the work management facilities is the activity level control.

Introduction 1-7

1-8

Activity Level Control

To ensure that the processing unit is used efficiently, the System/38 machine
controls the number of different jobs that are competing for use of the
processing unit. The maximum number of jobs that can compete for the
processing unit at one time is called the activity level. Jobs that are not
actively competing for the processing unit (such as those that are waiting for a
response from a work station) are excluded from this number.

Each job on the system is assigned to an activity level group. The System/38
machine allows up to 16 different activity level groups to be used concurrently,
and allows a maximum of 16 active storage pools on the system. CPF
associates each activity level group with a storage pool. The activity level
group controls the number of jobs within a particular group that are competing
for the processing unit.

Access Groups

Another element used by the System/38 machine to ensure that main storage
is used efficiently is the access group. An access group is a group of system
objects that provides such things as working storage areas that are needed for
a job to execute. Several of these objects are needed, and system
performance would de:eriorate if the objects were paged in and out
individually. Consequently, objects in an access group are paged in together
when a job is competing for the processing unit. If the job enters a long wait
(such as waiting for a response from a work station), the access group is
paged out so that the main storage can be used by other jobs.

Access groups are not controlled by the system user. This activity is performed
automatically by the machine to ensure efficient system performance.

Data Base Functions

Many of the data base functions that are supported by CPF are provided
directly through functions of the System/38 machine. These functions allow
the machine to locate records within the data base file, extr<.ict the records, and
provide them to the system user. While a data base record is being updated,
the machine protects the data from being changed by another system user.

In addition to being able to extract specific records, the machine can also
extract individual fields from data base records and provide these fields to a
system user in a format that is different from the stored format. This capability
lets a system user process records in a format and sequence that may be
different from the format and sequence of the data stored in the system.
Along with the ability to share objects between system users, these data base
functions allow interactive system users to access data in a manner that suits
their own needs without affecting other system users.

The CPF data management facilities provide the interface between the system
user and the machine data base functions. This interface lets the user describe
data base files (with their records and fields) as well as the interface for
reading, writing, and updating records in the data base.

CONTROL LANGUAGE

The control language is the primary interface to CPF and can be used
concurrently by users from different work stations. A single control language
statement is called a command. Commands can be:

• Entered individually from a work station

• Entered as part of batch jobs

• Used as source statements to create a control language program

To simplify the use of the control language. all the commands use a consistent
syntax. In addition. CPF provides prompting support for all commands. default
values for most command parameters. and validity checking to ensure that a
command is entered correctly before the function is performed. Thus. the
control language provides a single. flexible interface to many different system
functions that can be used by different system users. The use of commands to
create control language programs is described in Application Development
Facilities later in this publication.

Command Syntax

Each command is made up of a command name and parameters. A command
name usually consists of a verb. or action. followed by a noun or phrase that
identifies the receiver of the action. The words that make up the command
name are abbreviated to reduce the amount of keying in that is required to
enter the command. For example. one of the control language commahds is
the Cancel Job command. The command name is CNWOB. The command
cancels a job that exists in the system.

Introduction 1-9

1-10

The parameters in control language commands are keyword parameters. The
keyword identifies the purpose of each parameter. However, when commands
are entered, the keywords are optional and can be omitted to reduce the
amount of keying required. When the keywords are omitted, the parameters
are positional and must be entered in the correct order. The following display
shows the Cancel Job command entered on the command entry display and

identifies the parts of a command.

COMMAND ENTRY OISPLAY
: :CNLJOB JOB(PAYROLL) SPLFILE(*YES) OPTION(*CNTRLD)

.. --------------------------------\~-------------\ \
\

\
\

\
\
\

CF3 - Dllpl i COl te

\

\
\

Command
Name

CNLJOB

Do I \0 what?
what? Ajob
Cancel

Command Prompting

\

CF4 - Prompt CF7 -

Parameters

\ , ,
"

\

JOB(PAYROLU SPLFILE(*YES) OPTION(*CNTRLD)

KL'd \
Parameter Value

CPF provides interactive command prompting for any command supplied with
the system. The user can identify the command he wants to enter and then
request the prompt display for the command. The resulting display consists of
a set of fill-in-the-blank requests thar~uide the user in entering the parameter

values of the command.

The following display shows the prompts for the parameters on the Cancel Job

command.

Cancel Job (CNLJOBl Prompt
Enter the following:

Job name: JOB R
User name:
Job number:

When cancel (*CNTRLD *IMMEOl:
Delay time in sec. if *CNTRLD:
Cancel spooled files?:
Maximum log entries:

OPTION
DELAY
SPLFILE
LOGLHT

*CNTRlD
30
*NO
*SAME

If a command is partially entered before the prompt display is requested, any
parameter values already entered are shown on the prompt display.

Parameter Defaults

Most of the parameters included in commands allow default values to be
supplied by CPF if the parameter is not entered. The default value can be
explicitly entered if the user desires. The prompt display provided for a
command always shows any default values that the system supplies for the
parameters that are not entered. The prompt display for the Cancel Job
command shown earlier includes default values for the SPLFILE, OPTION,
LOGLMT, and DELAY parameters. These default values can be changed by
entering other values in their places.

Indicates the
parameter is
required

Indicates the
default
parameter
values

Introduction 1-11

1-12

Chapter 2. Object Management Facilities

OBJECT MANAGEMENT CONCEPTS

The object management facilities provide the functions necessary to place
objects in storage and to find objects when they are needed for processing.

Objects

An object is a named element that is made up of a set of attributes (that
describe the object) and a value. The attributes of an object include its name,
type, size, the date it was created, and a text description provided by the
person who created the object. The value of an object is the collection of
information that is stored in the object. The value of a program, for example,
is the executable code that makes up the program. The value of a file is the
collection of records that makes up the file. The concept of an object simply
provides a term that can be used to refer to a number of different items that
can be stored in the system regardless of what the items are.

The functions performed by most of the control language commands are
applied to objects. Some commands can be used on any type of object and
others apply only to a specific type of object.

CPF supports various unique types of objects. Some types identify objects that
are common to many data processing systems, such as:

• Files

• Programs

• Commands

• Libraries

• Queues

Other object types are pertinent to the System/38 CPF, such as:

• User profiles

• Job descriptions

• Subsystem descriptions

• Device descriptions

Object Management Facilities 2-1

2-2

Different object types have different operational characteristics. These
differences make each object type unique. For example, because a file is an
object that contains data, its operational characteristics differ from those of a
program, which contains instructions.

Each object has a name. The object name and the object type are used to
identify an object. The object name is explicitly assigned by a user when he
creates an object. The object type is determined by the command used to
create the object. For example, if a program were created and given the name
OEUPDT (order entry update), the program could always be referred to by that
name. CPF uses the name (OEUPDT) and object type (program) to locate the
object and perform operations on it. Several objects can have the same name
as long as their object types differ, or as long as they exist in different
libraries.

Libraries

A library is an object that is used to group related objects and to find objects
by name when they are used. Thus, a library is a directory to a group of
objects. Libraries can be used to group the objects into any meaningful
collection. For example, objects can be grouped according to security
requirements, backup requirements, or processing requirements. The number
of objects contained in a library and the number of libraries on the system are
limited only by the amount of storage available. Thus, the number of libraries
on a system can be tailored to the way the objects are used.

The object grouping performed by libraries is a logical grouping and does not
affect an object's placement in storage. Thus, objects in a library are not
necessarily adjacent to each other. The size of a library, or of any other object,
is not restricted by the amount of adjacent space available in storage. The
system finds the necessary storage for objects as they are stored in the
system. If an object increases in size, the system automatically allocates
additional storage to the object.

Most types of objects are placed in a library when they are created. An object
can be moved from one library to another, but a single object cannot be in
more than one library at the same time. When an object is moved to a
different library, the object is not moved in storage, but it is located through
the new library.

A library name can be used to provide another level of identification to the
name of an object. As described earlier, an object is identified by its name and
its type. The name of the library further qualifies the object name. The
combination of an object name and the library name is called the qualified
name of the object. The qualified name tells the CPF the name of the object
and the library it is in. The following drawing shows two libraries and the
qualified names of objects in them.

Library Name: OELIB
Qualified Object
Names: Library Name: PAYLIS

ORDFIL

1
OEUPDT

CUSTMAST

.---

ORDFI L.OELIB
OEUPDT.OELIB
CUSTMAST.OELIB

B-EMPMAST.PA YLI
PA YPGM.PA YLiB
PAYHIST.PAYLIB

EMPMAST

PAYPGM

1
PAYHIST

Object Management Facilities 2-3

2-4

Two different objects with the same name can exist in the same library, only if
their object types differ. However, two objects with the same name and type
can exist in different libraries. Because of this, a program that refers to objects
by name can be used to process different objects (residing in different libraries)
in different executions of the program without any changes to the program.
Also, a work station user who is creating a new object does not need to be
concerned about names used for objects in other libraries. For example, in the
following drawing, a new program named MONTHUPD (Monthly Update) could
be added to the library OELlB, but not to the library ACCTLIB.

Library Name: OELIB Library Name: ACCTLIB

ORDFIL
(file)

----._-_ ...

CUSTMAST
(file)

OEUPDT
(program)

ORDFI L
(file)

BILLING
(program)

MONTHUPD
(program)

11..=y=es=========1 MONTHUPD ========== === = ,% No

(program)

An object is identified within a library by the object name and type. Many of
the commands in the control language apply only to a single object type, so
the object type does not have to be explicitly identified. In the commands that
can apply to many types of objects, the object type must be explicitly
identified.

There are CPF-provided libraries and user-defined libraries. The CPF-provided
libraries are:

• The system library, called OSYS, containing the objects that are provided as
part of CPF.

• The general purpose library, called OGPL, containing user-oriented objects
provided by CPF and user-created objects that are not explicitly placed in a
different library when they are created.

• A temporary library, called OTEMP, for each job. This library is assigned to
a job when the job begins. Objects created by the job can be placed in this
library and are then available only to that job. The objects in this library are
deleted when the job ends.

User-defined libraries can help the user organize work on the system for
specific applications.

Finding Objects Through Libraries

An object name can be specified as a qualified name (where both the object
name and library name are specified) or as a simple object name (where the
library name is not specified). If a qualified name is specified, CPF attempts to
find the object in the specified library. If a simple object name is specified,
CPF searches a list of libraries until it finds the first occurrence of the object of
that type and name or until it has searched all the libraries on the list without
finding the object. The libraries that are searched, and the order in which they
are searched, is determined by a search list called the library list. CPF creates
an initial library list for each job when the job is initiated.

Object Management Facilities 2-5

2-6

A library list has two parts. The first part is called the system part of the
library list. This part specifies the libraries used for all the jobs that run on the
system. When the system is installed, the system part of the library list
consists of only the system library (QSYS). Libraries in the system part of the
library list are searched before libraries in the second part of the library list.
Because the system part of the library list applies to all jobs on the system, it
cannot be changed for an individual job.

The second part is called the user part of the library list. The user part of the
library list contains the libraries that application programs use to perform their
functions. When the system is installed, this part contains the general purpose
library (QGPL) and the job's temporary library (QTEMP). When a system has a
number of user-defined libraries, the user part of the library list may vary
between different jobs. For example, for an order entry job, this part of the list
might be:

1. OELIB (order entry library)

2. QGPL (general purpose library)

3. QTEMP (temporary library for the job)

This part of the library list can be changed within a job so that the libraries
used and their order can be controlled from within the job.

The use of the library list in conjunction with the use of simple object names
increases the ease and flexibility of object use in System/38. When each
object is created, it can be explicitly placed in the appropriate library. A library
list can be designed for each job so that simple object names can be specified
when the objects are used. This approach provides such advantages as:

• Easier testing of application programs. Libraries can be created to contain
sample data when the program is tested. The object names used in the
library are the same as those used in the normal production library. The
library with the testing objects is placed before the normal production
libraries in the library list. When the program has been fully tested, that
library can be removed from the library list. The program then operates on
the objects contained in the normal production libraries, and the object
names are not changed in the program.

• Flexible use of the libraries on the system. As processing needs change,
existing libraries may need to be divided into more than one library to help
simplify the organization of objects on the system. This change would not
require that the names of objects in the programs be changed. Only the
library lists used by the jobs would need to be changed.

• The ability to let different system users operate on different objects using
the same application program. Separate libraries can be created for each
different user or group of users. The library list for each user's job ensures
that the correct objects are used by the program for each system user.

Because of these advantages, qualified object names are not usually specified
when existing objects are used. However, the qualified name can be specified
in situations where it is more efficient than changing the library list or where
specific objects should be specified to ensure that the correct object is used.

OBJECT MANAGEMENT OPERATIONS

Object management operations include general object operations and library
operations.

General Object Operations

The operational characteristics of objects vary depending on the type of object
involved. For example, some operations that apply to files do not apply to
programs. However, there is a set of operations, known as general object
operations, that apply to most object types. The general object operations are
as follows:

• Display a description of an object or a group of objects. This operation
displays the attributes of an object or a specified group of objects. The
information can also be printed. The descriptions of a group of objects can
be requested by object type, by a generic name, or by generic name and
object type.

• Allocate and deallocate an object or group of objects. These operations
allow a user to limit the use of an object by other users, reserve objects for
use by the requester, and to free them after use. These operations are not
valid for all object types.

• Change the ownership of an object. This operation allows the ownership of
an object to be transferred to another user.

• Dump an object. This operation is used as an aid in debugging programs. It
allows the user to dump the contents of any object stored in a library. The
user must have authority for both the object and the library.

• Move an object from one library to another. This operation moves an object
out of its current library and into a different library. After the operation is
complete, the object can no longer be accessed through the original library.
This operation is not valid for all object types.

• Rename an object. This operation changes the simple name of an existing
object. The object itself does not change, nor does it change libraries.

• Grant, revoke, and display authority to use an object. These operations
provide functions that control user access to an object and protect the
object owner's rights.

• Save and restore an object, a group of objects, or an entire library. These
operations provide the functions to save copies of objects offline and
restore them to the system. These functions can be used to provide backup
copies of objects that can be used for recovery procedures.

• Create or delete an object. These operations provide the functions
necessary to create and delete user-defined objects.

Object Management Facilities 2-7

2-8

Library Operations

CPF also provides operations used for managing libraries on the system. These
operations provide a means to observe and manage the contents of libraries as
well as to control the existence of the libraries. The library operations are as
follows:

• Create or delete a library. The operation for creating libraries provides the
functions necessary to create user-defined libraries. After a library is
created, objects can be created in it or moved into it. The delete operation
is used to remove libraries from the system. When a library is deleted, any
objects in it are also deleted.

• Clear a library. This operation deletes objects from a library but does not
delete the library.

• Display the contents of a library. This operation displays a list of all the
objects in the library or libraries specified. The information can also be
printed.

• Save and restore a library. These operations save and restore a copy of all
the objects contained in the library. Saved libraries can be used to provide
backup copies for recovery.

J

Damaged Objects

If for some reason the system can no longer process an object correctly, that
object is considered damaged. Object damage is the general term used to refer
to a class of infrequent failures involving objects. These failures occur for a
variety of reasons relating to internal failures in the system. Such failures
include:

• Logic failures internal to the system, causing a portion of the object to be
updated incorrectly.

• Hardware failures causing some portion of an object not to be read from
auxiliary storage.

• System failures resulting from external environmental influences, such as
power failures.

If the system is fully operable when a damaged object is encountered, the
system informs the user by sending a message to the program encountering
the damage. If damage to a particular object is encountered for the first time,
a message is sent to the system operator.

Object damage encountered while the system is being started is communicated
to the system operator by the lights on the system console, if the damage is
such that the system cannot be started. These lights provide the system
operator with the information necessary to restart the system.

When IBM-supplied CPF objects are damaged, some are automatically deleted
and recreated by CPF, while others are deleted and restored during the
installation of CPF. This ensures that, in the case of damage to an object
necessary for the operation of CPF, the system is still operable.

CPF does not automatically replace user-defined objects if they are damaged.
When CPF encounters a damaged object, it sends a message providing the
necessary recovery procedures to the user. The user can delete these objects,
using the delete object commands, and restore them from a backup copy. This
allows the user to return his objects to a known, processable state. Fragments
of objects and damaged objects that are no longer usable can be deleted by
reclaiming auxiliary storage.

Object Management Facilities 2-9

2-10

Chapter 3. Work Management Facilities

The work management facilities of System/38 CPF provide a framework
through which work flows on the system and the allocation of system
resources (such as main storage and processor time) are controlled. This single
framework handles all types of work performed by the system regardless of
how the work is submitted. To simplify the operation of the system, the
specifications needed for these controls are stored in the system in CPF
objects so that they do not need to be specified each time work is submitted.

The work management facilities can be adapted to a wide range of application
environments and can satisfy the requirements of diverse applications that are
active concurrently, including:

• Traditional batch processing. Data is collected and submitted for processing
in programs that do not require interaction with a work station user. These
programs are scheduled when job entry and subsystem maximum active
jobs are at a level at which the additional jobs can be scheduled.

• Interactive processing of various types. This provides a wide range of
possibilities, including those in which:

The work station user simply interacts with the system, using
system-provided functions, or the user calls an application program and
interacts with it.
The system automatically calls the appropriate application program when
the work station user signs on, and the user interacts with that program.
The system performs different functions, depending upon the data that is
provided by the work station user.

All the work performed on the system is submitted through the work
management facilities. Specialized operating environments can be designed to
handle different types of work to satisfy the unique requirements of an
installation. These operating environments can easily be started and terminated
as needed to support the work being done and to maintain the necessary
performance characteristics.

This chapter describes the objects used by work management and the
functions through which work is controlled on the system. When CPF is
installed, it includes support for interactive, batch, and spooling processing and
can be used without modification. CPF also provides the facilities through
which this support can be tailored to handle unique proceSSing requirements.
Because the work management facilities can be used as they are installed, a
complete understanding of work management concepts is not needed to
perform typical batch and interactive operations. However, an understanding of
these co~cepts is needed to define the environments for more advanced or
specialized data processing applications.

Work Management Facilities 3-1

3-2

WORK MANAGEMENT CONCEPTS

The submission, initiation, execution, and termination of work is controlled
through the work management facilities. The ability to control the concurrent
execution of different units of work in different environments is provided
through a hierarchy of operational elements in the system. These elements are:

1. The system.

2. Subsystems, which are individual, predefined operating environments
through which CPF coordinates work flow and resource usage. More
than one subsystem can be operating at the same time in the system.

3. Jobs, which are the basic units by which work is identified on the system.
Jobs execute within the operating environment provided by a subsystem.
Each job is a single, identifiable sequence of processing actions that
represent a single use of the system.

4. Routing steps, which are subdivisions of a job for which the execution
environment can be changed. A routing step is a single processing
action. (Most jobs consist of only one routing step.) The actual
processing of a user's work is performed in the routing steps.

Operations performed on the system can be controlled at each level of the
hierarchy. For example, a subsystem can be individually started and
terminated, as can jobs within a subsystem. When a subsystem is terminated,
any jobs executing in it are terminated.

Each of the operational elements, except the system itself, is defined through
an object. Although no object exists through which the system as a whole is
defined, certain specifications (such as the system date, system date format,
and system time) are defined for the entire system. These specifications are
contained in system values. Figure 3-1 shows the relationships between the
operational elements and the objects that define them.

SYSTEM <' I I System Values ... I

.A
Subsystem <- I

Subsystem Description

Job <' I I Work E.,tries I I J

I R . S AI I Routi,lg Entries I outing tep <
I ,

i I

Operational Elements Objects that Define Operational Elements

Figure 3-1. Operational Elements and the Objects That Define Them

I Job Description I I

I Class I
I Program I I

Once the system is started, the system operator can start and terminate
individual operating environments by starting and terminating subsystems.
Work is then performed by jobs that execute within the subsystems. Jobs are
considered to be batch or interactive, according to the way they are initiated.
Interactive jobs are initiated when the user signs on at a work station. Batch
jobs are initiated by the use of job control commands.

An interactive job is a job in which the processing actions are performed by the
system in response to input provided by a work station user. During the job, a
dialog exists between the user and the system. An interactive job consists of
all the work performed as a result of input received from the time the work
station user signs on until he signs' off. This work might involve processing
actions performed after the user signs off, such as writing spooled output.
However, the input causing these actions is received while the user is signed
on.

A batch job is a job in which the processing actions are submitted as a
predefined series of requests to be performed. The job consists of all the
processing actions that result from input contained within the job. Batch jobs
are placed on a queue, called a job queue; they are submitted to the system
and then are selected from the queue by the work management facilities.
Although a batch job might access a work station for all or part of its input
data, it is not treated as an interactive job by the system because the job was
not initiated by a sign-on at a work station.

Within a job, any number of related or unrelated functions can be performed.
On many systems, the execution of programs within a job is controlled only
through the use of job steps, which are identified in the control statements that
make up the job. However, in System/38, programs can simply call other
programs directly. Thus the job is simply made up of whatever sequence of
processing actions a system user wants performed. The functions might be
requested in:

• A series of control language commands

• A single program

• One or more applications that are each made up of a series of programs

All jobs processed in the system execute within an operating environment
called a subsystem. The specifications that define the subsystem, and that CPF
uses to control the subsystem, are contained in an object called a subsystem
description.

Work Management Facilities 3-3

34

Subsystems

The environment of a subsystem includes main storage and activity level
controls, sources from which jobs can be accepted, and programs that can be
invoked by the subsystem to start the execution of the job. These programs
can, in turn, call other programs to perform the functions required. Although
these elements are predefined, the environment provided by a subsystem does
not limit the flexibility of jobs that operate within it. For example, a subsystem
does not limit the files that are available nor the system functions that can be
used. These are controlled by the application design and can be further
controlled by the system security functions.

The use of subsystems provides the ability to establish as many, or as few,
unique operating environments as necessary to meet the processing needs of
an installation. The number of subsystems that can be active (initiated) at one
time is limited only by the resources available on the system. Although any
number of subsystems can be active concurrently, at least one active
subsystem is required at all times. Each subsystem can be started and
controlled independently. One subsystem, called the controlling subsystem, is
automatically started when CPF is started.

Both batch and interactive jobs can execute in a single subsystem, or separate
subsystems can be used for each type of job. The following drawing shows
both types of jobs executing in one subsystem. Job A. an interactive job, is
being used by a work station user. Job B, a batch job, was selected from a
job queue and is operating concurrently with Job A in the same subsystem.

Subsystem

~ ';······IJObAI

IJOb BI

~1
JEl

In the following drawing, two subsystems are active concurrently. Interactive

jobs C and D are executing in subsystem A. Two batch jobs, selected from a
job queue, are executing in subsystem B. The use of separate subsystems, as
shown here, allows each operating environment to be individually controlled.

:)ubsystem A Subsystem B

g. _IJOb cl IJOb EI

e· _IJOb 01

Subsystem Descriptions

A subsystem description defines each subsystem used on the system. As
shown in the following drawing, CPF uses information contained in the
subsystem description to define the environment provided by the subsystem.

Subsystem

Description

D

Work Management Facilities 3-5

3-6

When CPF is installed, it includes subsystem descriptions that support
interactive, batch, and spooling processing. If specialized support is needed for
unique processing requirements, the CPF-provided subsystem descriptions can
be altered or user-defined subsystem descriptions can be created.

The number of subsystems an installation needs to define or to have active
concurrently depends upon several factors, such as:

• The number of unique processing environments that are needed to support
various applications

• The level of operational control that is needed over the applications that
operate within the different subsystems

• The amount of isolation that is needed between the applications to ensure
that the applications have the resources they need

Once a subsystem description has been created, the subsystem can be started
and terminated by control language commands. This implementation of
subsystems provides the following advantages:

• The processing environment needed for applications can be prespecified. As
processing requirements change, these specifications can be modified to
meet those requirements.

• A predefined processing environment can be easily started, controlled, and
terminated.

• The use of main storage and the number of jobs executing in a subsystem
can be controlled while the subsystem is active so that work load changes
on the system can be accommodated.

• A level of performance predictability can be achieved within a subsystem
because the use of resources by that subsystem can be isolated from the
use of resources by other subsystems. This ensures that applications with
specific performance requirements, such as interactive applications, have the
resources needed to operate in a uniform manner.

A subsystem description contains the following three categories of information:

• Subsystem attributes, which specify the main storage available to the
subsystem and the number of jobs that can execute concurrently in the
subsystem

• Work entries, which specify the sources from which jobs can be accepted
and attributes for the jobs selected from those sources

• Routing entries, which specify the programs that can be invoked by the
subsystem and the execution environment in which those programs are to
operate

Subsystem Attributes

The subsystem attributes specify the storage pools available to jobs executing
in the subsystem and the maximum number of jobs that can be active
(initiated) at one time in the subsystem. Each subsystem can have its own
unique storage pools or a subsystem can share a common (base) storage pool
with other subsystems. Many CPF programs execute in the base storage pool,
even though the routing steps using these programs are executing in other
storage pools.

In addition to the subsystem activity level, each storage pool has an activity
level associated with it. The storage pool activity level limits the number of
routing steps in the storage pool that can be competing for the processing unit.

Work Entries

The work entries in a subsystem description specify the sources from which
jobs can be selected to execute in the subsystem. The work entries, for
interactive and autostart jobs, also specify a job description that provides
default attributes for the jobs initiated from each work entry. Each work entry
in a subsystem description except the job queue entry refers to a job
description for job attributes.

Work Station Entries: Work station entries specify the work stations from
which interactive jobs can be initiated in the subsystem. An interactive job is
initiated in the subsystem when a user signs on at one of the work stations
specified in the work station entries of the subsystem description. For
example, in the following drawing, work station B is specified as a work entry
for subsystem A.

CPF

Subsystem A
Work Station B

· ~O
Subsystem
Description

~work Station Entry:
Work Station B

Work Management Facilities 3-7

3-8

Job Queue Entry: Job queue entries specify a job queue from which the
subsystem can initiate batch jobs. Jobs are placed on the job queue when they
are read by a spooling reader or submitted to the queue from another job. In
the following example, a job queue entry specifies job queue X as a job queue
for subsystem A.

CPF

. Job Queue Entry: ~em
Job Qo,", X Ej;O"

1

Queue X

D
Autostart Job Entries: Autostart job entries specify jobs that are to be
automatically initiated when the subsystem is started. The jobs specified as
autostart jobs are not initiated from a work station, so they are processed as
batch jobs. (However, because they are directly initiated by the subsystem,
they are not placed on a job queue.) Autostart jobs can be used to perform
initialization, recovery, or other functions for applications or other jobs that
execute in the subsystem. In the following drawing, jobs K and L are started
automatically when subsystem H is started.

Autostart
Job Entries:
Job K and Job

CPF / Start Subsystem H

• CMOO
1

Subsystem H

IJOb KI IJOb LI

J

Routing Entries

The routing entries in a subsystem description specify the programs to be
invoked when routing steps are initiated, and specify the classes that define
the execution environment in which the programs are to execute (see Figure
3-1).

1
Subsystem

Routing Entry ~SUbsystem
Description

l"~ o 0
The routing entries in a subsystem description form a routing table. When a
job is initiated, the appropriate routing entry is selected by means of routing
data. The routing data can be entered by a work station user after he starts an
interactive job, extracted from the job description associated with the job, or
specified when a batch job is placed on a job queue. CPF compares the
routing data with compare values in the routing entries in the routing table to
determine which routing entry is to be selected.

The processing performed as a result of invoking the program specified in a
routing entry is called a routing step. The processing within a routing step is
controlled by the program that is invoked when the routing step is initiated.
That program might invoke other programs to perform the functions that are
performed in the routing step, or the program might pass control of the routing
step to another program.

Work Management Facilities 3-9

Jobs

3-10

For example, the subsystem descriptions provided by CPF specify the CPF
control language processor (program QCL) in the routing entries. Thus the
control language processor is invoked when routing steps are initiated in these
subsystems, and work can be submitted through control language commands.
However, to make the system easier to use, the control language processor
often invokes other programs, depending upon the user who signed on. When
the system is installed, the following programs are invoked by the control
language processor:

• The program that displays the command entry display is invoked if the
security officer signs on.

• The program that displays the programmer's menu (on the 5251 work
station, Model 11 or 12) or the command entry display (on all other work
stations) is invoked if the programmer signs on.

• The program that displays the system operator's menu is invoked if the
system operator signs on.

• The program that displays the program call menu is invoked if authorized
work station users sign on.

The system operator can manage the work load on the system by starting and
terminating the subsystems needed for the various kinds of work to be
performed. However, because jobs are separate entities that can be individually
controlled, the work load can be further managed at the individual job level.
Jobs can be initiated as follows:

• Interactive jobs are initiated when a work station user signs on. Routing
data used to initiate the routing step in the job can be either entered by the
work station user or extracted from the job description that is specified in
the work station entry of the subsystem description.

• A batch job is initiated when the subsystem selects a job from the job
queue. The job could have been read by a spooling reader and placed on
the job queue, or it could have been submitted to the job queue from
another job. In either case, the routing data is specified for the job or
extracted from the job description. Batch jobs, once initiated, are usually
controlled by the system operator.

• Autostart jobs are initiated automatically when a subsystem is started. The
routing data used to initiate the routing step in the job is extracted from the
specified job description.

Although interactive and batch jobs appear to be quite different to the system

user, all jobs once started, are handled essentially the same way by the
system. Each job exists and is identifiable in the system from the time it is
submitted (for example, from sign-on at a work station or from the time a job
is placed on a job queue) until all processing actions related to the job are
completed (such as writing spooled output files). As long as the job exists in
the system, control language commands can be used to control that job. These
commands, along with the commands available to control the system and
subsystems, provide a complete set of commands for controlling work in the
system.

Job Description

Each job has a set of attributes. Different sets of attributes are needed for
different jobs to meet the special requirements of each job. Because specifying
all the attributes each time a job is submitted would be tedious and time
consuming, the CPF supports an object called a job description in which the
attributes of a job can be predefined. These attributes can be modified as
processing needs change. The attributes specified in a job description include:

• The job queue on which the job should be placed when it is submitted (for
batch jobs only).

• The scheduling priority used to control when the job is selected from the job
queue for execution.

• The user portion of the library list that is in effect when the job is started.
(There are two parts of a library list: the user portion and the system
portion. Only the user portion of the library list is changed.)

• The routing data used by the subsystem to determine the appropriate
routing entry for the job.

• The default output queue onto which spooled output should be placed.

• The output scheduling priority to be used for producing spooled output.

• The user profile for the job.

Work Management Facilities 3-11

3-12

Each work entry in 'a subsystem description except the job queue entry refers
to a job description for job attributes (see Figure 3-1). CPF is shipped with
pre-built job descriptions as default values for batch, spooled, and interactive
jobs.

CPF

Subsystem
Description

~
Work Entries / L......J

1
Subsystem

Job Description

.~
: Job Attributes

For a job placed on a job queue, the job description is specified when the job
is submitted to the queue. The job attributes specified in the job description
can be overridden when a job is submitted. For example, a different user
library list might be specified. The user library list specified in the job
description would then be ignored.

Routing Steps

Work management establishes the execution environment for a routing step
when the routing step is initiated. The execution environment of a job can be
changed during a job because that environment is defined by the routing entry,
not by the job description. (The job description only defines the attributes, or
external characteristics, of the job.) The execution environment is specified
through an object called a class, which is specified in the routing entry (see
Figure 3-1).

CPF

Subsystem
Description

Routing EntrIes P CI o :"
The same class can be specified for any number of routing entries. The
parameters that can be specified in a class include:

• The machine execution priority to be given to the routing step

• The time slice, or quantity of processor time, allowed for the routing step
before other waiting routing steps are given the opportunity to execute

• The maximum processor time allowed for the routing step

• A default maximum time to wait when an instruction in the routing step
must wait for some resource

Most jobs consist of just one routing step, the one initiated at the start of the
job. If a routing step's execution environment is to be changed, a new routing
step is initiated. This may change the program that controls the routing step,
the storage pool in which the program executes, the class that describes the
execution environment, or the subsystem in which the routing step executes.
In any case, only one routing step is ever active at a time in any job.

Work Management Facilities 3-13

3-14

Subsystem/Job Relationships

The framework through which the work management facilities control work is
specified through definitional objects, namely system values, subsystem
descriptions, job descriptions, and classes. These objects provide extensive
flexibility in managing the operational aspects of the system; these aspects are
subsystems, jobs, and routing steps.

Because operating environments (subsystems) are defined through these
objects, a single subsystem monitor is able to manage all types of
environments. A separate invocation of this monitor is established by CPF for
each subsystem that is started. Each invocation uses a separate subsystem
description to provide the required operating environment. Because of this
design, specialized programs in separate environments are not needed for
special functions, such as supporting interactive jobs or scheduling batch jobs.
In addition, most of the work management functions are driven by the
occurrence of discrete events; that is, the functions are available when needed,
but they do not require system resources when the functions are not being
used.

The work management facilities control the execution of jobs within the
subsystems that are active on the system. The following example shows how
the work management facilities use information in the various objects to start
an interactive job. This example shows how a job would be started using the
support for interactive processing provided when the CPF is installed. When
this example begins, CPF and the subsystem have already been started. The
following steps take place:

1. The work station user signs on the system.

g •• --@

2. The subsystem monitor uses the work station entry in the subsystem

description to determine which job description to use.

Job
Description

Work
Entry

Description S::;lulltlsvstem
;tit'" .· .. ".",,,.c

• •

3. Using the routing data from the job description, the subsystem monitor
finds the appropriate routing entry in the routing table. This routing entry
specifies that the program to be invoked to control a job should be
invoked for the routing step, and also identifies the class that specifies
the execution environment for the routing step.

Routing
Data

Job
Description

Routing
Table

4. The user can now enter control language commands to perform his work.
For example, he might use a command to call an application program.
When that program ends, he can enter other commands to perform other
operations.

This sequence shows the functions performed by work management. These
functions are performed automatically when the work station user signs on. No
action by the system operator is required, and other users of the system
continue to operate independently of the new interactive job.

Work Management Facilities 3-15

3·16

WORK MANAGEMENT FUNCTIONS

CPF provides a set of objects needed for the operation of the standard
subsystems, the functions needed to create or modify subsystem descriptions,
and the functions needed to manage the operation of the system, subsystems,
and jobs.

CPF-Provided Subsystems

When CPF is installed, it includes subsystem descriptions designed to provide
interactive, batch, and spooling operating environments. These subsystems can
be used as installed to satisfy typical processing requirements.

J

Interactive Subsystem

The interactive subsystem, QINTER, supports jobs processed interactively
through the system console or through work stations. Another subsystem,
QPGMR, is available to programmers for online programming. When the
system is shipped, QCTL is specified as the controlling subsystem, which is
automatically started when CPF is started. QCTL supports all interactive jobs
processed through the system console.

Batch Subsystem

The batch subsystem, QBATCH, is used for processing batch jobs in the
system. QBATCH can be started by a control language command. All the jobs
processed in the batch subsystem are obtained from its job queue. Jobs can
be submitted to the job queue even though the subsystem is not active. They
are available on the queue for processing when the subsystem is started.

Spooling Subsystem

The spooling subsystem, QSPL, is used for processing the spooling readers
and writers. This subsystem needs to be active only when readers or writers
are active. The spooling subsystem and the individual readers and writers can
be controlled from jobs that execute in other subsystems.

The spooling facilities support the functions commonly provided with other
systems, such as:

• Performing input and output operations apart from their related jobs

• Saving entries on job queues and output queues when the system is
terminated so those entries can be processed after the system is started
again

• Manipulating and displaying entries on the queues

Work Management Facilities 3-17

3-18

User-Defined Subsystems

In addition to the subsystem descriptions for the CPF-provided subsystems,
CPF also provides the functions needed to create, change, display, and delete
subsystem descriptions and to add, remove, and change specific entries in
them. These functions can be used either to change the CPF-provided
subsystem descriptions or to create other subsystem descriptions to support
special data processing requirements. For example, special subsystems might
be needed to:

• Control an application that must be continuously available and that must
provide a rapid response to its users.

• Provide an operating environment that must be separately controllable. For
example, if certain work stations are to be used only during a specific period
of the day, these work stations could be specified as work entries in a
user-defined subsystem that the system operator starts and terminates on a
set schedule each day.

• Process different kinds of jobs, such as:
- Long-running batch jobs
- Nighttime batch jobs

High-priority batch jobs
Batch jobs requ9sted by the system operator

• Provide specific control over a critical or unique application. By having a
separate subsystem for this type of application, the performance and
consistancy of the application can be controlled more easily.

Managing Subsystems

CPF supports the following operations for managing subsystem descriptions
and their contents through control language comm mds:

• Creating, changing, displaying, or deleting a subsystem description. The
commands that create or change a subsystem description apply only to the
subsystem attributes; the work entries and routing entrios are added,
changed, or removed through separate commands. The commands to
display or delete subsystem descriptions apply to the entire subsystem
description.

• Adding, changing, or removing work entries in existing inactive subsystem
descriptions. Separate commands apply to each type: autostart job entries,
work station entries, or a job queue entry.

• Adding, changing, or removing routing entries in existing inactive subsystem
descriptions.

Managing Jobs

Two types of operations are provided for managing jobs. Object operations
apply to the job-related objects that are used by work management; execution
control operations apply to the execution of jobs and routing steps.

Object Operations

CPF supports the following operations for managing job-related objects:

• Creating, displaying, and deleting job descriptions

• Creating, displaying, and deleting classes

Execution Control Operations

CPF provides commands that support the following operations to control job
execution:

• Changing a job's attributes. The job being changed must exist on the
system as an active job, as a job on a job queue, or as a job having output
on an output queue.

• Displaying a job. The display presents information about a job. The job
being displayed must exist on the system as an active job, as a job on a job
queue, or as a job having output on an output queue.

• Holding a job. This operation withholds the job from further processing.
The job being held must exist on the system as an active job or as a job on
a job queue.

• Releasing a job. This operation makes a previously held job available for
further processing. The job being released must exist on the system as an
active job or as a job on a job queue.

• Canceling a job. This operation removes a job from the system. If output
from the job exists on an output queue, that output can also be removed
from the system.

• Signing off. This operation terminates an interactive job.

• Submitting a job from within another active job. The job issuing the
command can be either an interactive job or a batch job. The job being
submitted is placed on a job queue for subsequent processing as a batch
job.

Work Management Facilities 3-19

3-20

CPF provides commands that support the following operations for routing
steps:

• Rerouting a job. This operation causes a new routing step to be initiated for
the job. The current routing step is terminated. The job continues to
execute in the same subsystem.

• Transferring a job. This operation is used to transfer a job to a different
subsystem. When the job is selected for execution in the new subsystem, a
new routing step is initiated. The command transfers the job issuing the
command.

• Returning from a routing step. This operation returns control from the most
recent invocation of the program (user- or system-supplied) to the next
highest program invocation. If the most recent invocation is the highest in
the series of invocations (called the invocation stack). the following results
occur:

The routing step is terminated.
Control is returned to the subsystem monitor. This will either reroute the
job, thus initiating a new routing step if the job is to be automatically
routed, or display the manual routing screen if the job is to be manually
routed.

• Allocating an object. This operation allocates an object. or a group of
objects, to be used by a routing step.

• Deallocating an object. This operation deallocates an object, or a group of
objects, from a routing step.

Initiating Jobs

Interactive Jobs

An interactive job is initiated when a work station user signs on. An interactive
job remains active until the work station user signs off or the job is terminated
as a result of a command entered by another job.

Batch Jobs

Batch jobs are initiated when they are selected from a job queue. Jobs can be
submitted to a job queue at any time. If the job queue is not allocated to an
active subsystem when jobs are placed on it, the jobs remain on the queue
until a subsystem that specifies the queue is started.

Jobs are selected from a job queue according to the scheduling priority
assigned to each job. The scheduling priority is assigned in the job description
specified at the time the job was submitted to the queue. More than one job
from the job queue can be executing concurrently. The maximum number of
active jobs from the job queue is controlled by the maximum number of active
jobs specified in the job queue entry in the subsystem description. As shown
in the following diagram, jobs with a higher scheduling priority (lower number)
are selected before jobs with a lower priority (higher number). Jobs with equal
priority are selected on a first-in-first-out basis.

Priorities

Ajob added to the queue r~:::::::;:::::::;:::::::A~:::::::;~::::~:::::::;,
with a priority of 1 would 2 3 4 9
go here.

.....

D
Job Queue

Jobs can be submitted to a job queue from within other active jobs or through
a reader.

Work Management Facilities 3-21

3-22

Submitting Jobs from Within Active Jobs: Individual jobs are submitted for
asynchronous execution when a need arises for a separate function that can be
executed as a batch job. Jobs can be submitted to any job queue on the
system. The job queue does not have to be in use by a subsystem at the time.
The function could be performed within the submitting job, but it might delay
the work currently being done.

For example, if the system operator needs to save a data base file, he can
simply enter the appropriate command. When the file is completely saved, he
can enter other commands to continue his work. The operator may need to
save the file, but may not want to wait until the end of the operation to
continue his other work. In this case, he can submit the job to a job queue, to
be performed independently of his other work. The job will be selected from
the job queue by the appropriate active subsystem.

Submitting Jobs Through a Reader: Batch jobs can be placed on job queues by
CPF programs called readers. These jobs can include data files, called inline
data files, that are used by the jobs. Inline data files are placed in the system
and processed as described in Chapter 4, Data Management Facilities.

A job is read from an input source and is put on a job queue. Each reader
reads from only one source, but more than one reader can be active at one
time. The sources from which jobs are read are:

• Cards

• Diskettes

• Data base files

The following drawing shows how a reader reads a job and places it on a job
queue. The program continues reading until it reaches the end of the input or
is terminated by a command.

Spooling Subsystem

J

The following example shows an input stream. Each job is identified by a job
command. Each job might include the execution of more than one program.
Programs within the job can call other programs.

I I JOB DAI L YSALES JOBPTY (2)
RPLLlBL L1BL(ORDLIB OGPL OTEMP)
CALL SALES205 /*PR INT DEPT SUMMARY* I
CALL SALES206 /*PRINT PRODUCT SUMMARY* I
CALL SALES209 I*PRINT SPECIAL SALES* I
II DATA

II

AJ1052
X04031
BZ9504

CALL SALES213
II ENDJOB
1/ JOB DAI L YSHIPT JOBPTY(5)

/1 ENDJOB

/*END OF INLINE DATA*I

If readers are used to submit batch jobs with or without inline data files, the
efficiency of batch jobs can be increased. For example:

• Batch jobs are not limited by the speed of the device that contains the inline
data files.

• The amount of device contention between jobs is reduced because each job
can read input files without being constrained by the availability of the input
device.

• Jobs can be read by the reader in any order because the subsystem selects
jobs for execution based on priority, not on the order in which they were
read.

• Named inline data files can be processed by more than one program in the
same job. The file does not need to be read separately for each program
that uses it.

Work Management Facilities 3-23

3-24

Chapter 4. Data Management Facilities

DATA MANAGEMENT CONCEPTS

Files

The basic elements of data management are files, records, and fields. A file is
a collection of data records. A data record is a group of related data items,
called fields. In System/38, each file has a description that describes the file,
its records, and, in many cases, the fields in the records. CPF uses this
description whenever a file is processed.

A file is an object that is created through CPF. A file is made up of its
description and the data accessed through the file. The data management
facilities support two types of files: data base files and device files. A" data is
accessed through files.

Data base files are files whose associated data is stored permanently in the
system. Device files are files whose associated data is read from or written to
devices attached to the system. The device files supported are:

• Card files

• Data communications files
Binary synchronous communications (BSC) files

- Communications files

• Diskette files

• Display files

• Printer files

• Tape files

The concept of a file is the same regardless of what type of file it is, which
device is supported, or whether the device is attached loca"y or through a
communications line. When a file is used by a program, it is referred to by
name, which identifies both the file description and the data itself.

Data Management Facilities 4-1

4-2

File Description

When a file is created, CPF builds the file description from infocmatio"fl
specified through the create command and information specified through data
description specifications, if these specifications are provided. The file
description contains the information necessary for a program to access a file.
The file description includes:

• Data association specifications that specify where the data is in the data
base or which device the file uses.

• Record format specifications that describe the format of the records
contained in the file. If records of different formats are contained in the file,
specifications for all the formats are included here.

• Special file attributes that further describe the file (such as whether the file
contains source statements).

The information in the file description varies, depending upon the type of file it
describes. The kind of information contained in a data base file description is
different from the kind contained in a device file description.

The data contained in a file is described in the file description. The record
format specifications can describe the fields contained in the record. A file
whose data is described at the field level in the file description is called an
externally described data file because the data is described apart from the
programs that use the file. This file description is entered using data
description specifications.

Data Description
Specifications

D
D", d'~"pdo" /1
specifications ara Source File
placed in a source file.

CPF

File

The source is used by
/the CPF when the file

./ is created.

~
~

File Description

If the data is not described to this level, the record format specifications define
the length of the record, and the fields must be described in the programs that
use the file. A file whose data is described this way is called a
program-described data file. Describing a file this way is similar to describing
files for other systems.

Externally described data files are supported for data base files, display files,
printer files, BSC, and communications files. Program-described data files are
supported for all files.

J

The difference between the two types exists in the location of field
descriptions. In the following example of an externally described data file, CPF
provides the record length plus the field description to the compiler when the
program is compiled:

Source File Compiler

Record. Length' t
I~RDNO I CUSTNO I AM;r2~~~ ,or0

9
ram A

---.-~ '-v-'
Field Description

Record Format File Description

Program-described data is completely described in the program.

Externally Described Data

When an externally described data file is created, the data in the file is
described to CPF through data description specifications. These specifications
are entered as source statements and are used by CPF to create the record
format specifications associated with the file description.

When a program that uses an externally described data file is compiled, the
source statements in the program normally specify that the record format is
externally described. The compiler then uses the record format from the file
description. The field names and descriptions in the record format are copied
into the program by the compiler. To provide program documentation, the
compiler also generates program comments from text descriptions specified in
the source statements for the record format. When the file is processed,
records passed between the program and CPF are made up of the fields
specified in the record format.

The record format in the file description can be ignored by a program that
processes the file, if that program contains its own record format
specifications. In this case, the record format is not copied into the program
when it is compiled. Instead, the fields used by the program are defined in the
program as if a program described data file were being used. The records are
passed between the program and CPF according to the record format
specifications, and the program divides the record into the fields defined in the
program.

Data Management Facilities 4-3

4-4

CPF assigns a unique level identifier for each record format when the file it is
associated with is created. The level identifier is based on the format and field
description of the record and is not affected by the time or date. Thus, if you
re-create the file without changing the field formats, the level identifier remains
the same and you do not need to re-create the HLL program. The level
identifiers of the opened file and the file description that is part of the
compiled program are compared when the file is opened. If the identifiers
differ, it indicates that the file was changed (deleted and created again) and the
changes could affect the program.

Programs that process externally described data files are executed in the same
way as programs that process program-described data files. However, there
are advantages to using externally described data files, such as:

• Simplicity in writing programs that use the files. If the same file is used by
many programs, the fields can be defined once to CPF and used by all the
programs. This saves coding activity when programs are coded and ensures
that the fields are defined consistently for all the programs that use them.

• Less program maintenance activity when the file's record format is changed.
If the fields were defined in the program, the program would have to be
updated whenever a change is made to the record format. When externally
described data files are used and record formats that are not used by a
program are changed, the program does not have to be changed or
compiled again. In many cases, if a record format used by the program is
changed, the program can be compiled again without requiring any changes
to the program's source statements.

• Less redundant coding when the same record format is used by more than
one file. In this case, the record format used in the first file can be
referenced when subsequent files are created. This saves coding time while
ensuring consistency in the record formats. This technique is especially
useful when data base files use the same record format.

• Improved documentation. This occurs because:
Programs that use the same files use consistent record and field names.
Text and column headings can be included in the record format and
displayed at the work station.
Text descriptions of the files and records can be displayed, supporting
inquiries about the files and record formats.
Integrity is improved because record format level checking warns of the
use of a file whose record format does not match the record format used
in the program.

Program-Described Data

When a program-described data file is created, it contains a default record
format specification. This record format defines a record with minimal fields.
When a program processes the file, records are passed to and from the
program. The program must define any individual fields used in the record.

J

Special File Attributes

The special file attributes in a file description specify such things as:

• Whether record format level checking should be performed when the file is
processed

• Whether the file is a source file

• Whether a device file is to be spooled

• Whether the file can be shared by more than one program in the same
routing step while the file is being processed

Record Format Level Checking: Record format level checking provides a way to
ensure that the record format specifications for an externally described data file
have not changed between the time the program was created and the time it is
executed. Record format level checking can be specified when the file is
created or when a program that uses the file is executed.

To support record format level checking, CPF assigns a record format level
identifier to each format in an externally described data file. The level
identifiers for each record format are placed in the program when it is
compiled. When the program processes the file, the level identifiers in the
program are compared with the level identifiers in the file to ensure that the
record format has not been changed since the program was created.

Source File: A source file is a file created to contain source statements for
such items as:

• High-level language programs

• Data description specifications

• Command definitions

• Print images

• Translation tables

Source files use the same record format, regardless of the file type (such as
data base files or card files). The record format for a source file specifies a
sequence number field and a date field followed by the data (source
statement).

Spooled Files: A device file defined as a spooled file provides access to data
processed by the readers and writers; a spooled file is not intended for direct
access to a device. When spooled device files are opened for input, they
provide access to data that is read inline with a job. When they are opened for
output, the data is stored by CPF as spooled files on an output queue until it is
w(itten to the device by a writer.

Output spooling can be specified for card, printer, and diskette device files.

Data Management Facilities 4-5

4-6

Connecting a File to a Program

A file is connected to a program when the file is opened. Opening a file
automatically allocates the file to the program. Data base files can be allocated
exclusively to a program or shared by different jobs so that more than one user
can access the file at the same time. Files can also be explicitly allocated to a
job (before the file is opened) as a result of a control language command.
Explicitly allocating a file to a job ensures that the programs in the job will have
access to the necessary data when the file is opened.

When a program opens a file, CPF creates a data path between the program
and the file. This data path allows data to be passed between the file and the
program. For data base files and spooled device files, the data path connects
the program to data stored in the system. For nonspooled device files, the
data path connects the program to the device associated with the file. The
data path is maintained until the file is closed by the program or until the
routing step ends and the file is automatically closed by CPF.

File Overrides

File overrides are used to temporarily change attributes of a file that were
specified when the file was created. File overrides are specified through certain
commands when a file is used. The overrides are performed when the file is
opened, and they remain in effect for that file until it is closed or until a job or
program is completed. Overrides can be used for the following:

• Changing the name of the file to be processed

• Indicating whether input or output is to be spooled

• Redirecting input and output to different devices (for example, sending
printer output to a different printer)

File Processing

When a program is connected to a file, the program can perform input/output
operations to use the file. The program can be written so that it is independent
of the type of file being processed or is dependent on the file type.

File-independent programs are written so that the input/output operations
performed are not unique to the type of file being processed. For example, a
program that sequentially reads all the records from an input file is not
dependent on the file type. In one use of the program, it might read records
from a card file. In another use, as a result of an override, the program might
read records from a data base file. CPF performs the operations requested for
each type of file. File-independent programs can process different files from
the same type of device or from different device types at different times.

The use of file-independent programs provides additional flexibility in the way
files and devices are used on the system. For example:

• A program that normally processes a card input file can be used to process
a diskette or data base file.

• A program that normally produces output to a printer file can produce
output to a diskette file.

• A program that normally produces output to the system printer can produce
output to a work station printer.

In any of these cases, the program would execute normally regardless of the
file type involved in a particular program execution.

On the other hand, file dependent programs are written to take advantage of
the full range of operations that are valid for the type of file specified in the
program. These operations may not be valid for other file types. For example,
various retrieval methods are supported for data base files. Also, for display
device files, many unique functions are supported for device operations, such
as display formatting and the use of command function keys.

DATA BASE DATA MANAGEMENT

The System/38 data base includes all files whose data is stored permanently
in the system. Data base data management lets different programs operate on
data independently of other programs using the same data. Each program can
view the data in a way that meets the requirements of that program.
Additional data can be added to the data base without affecting the use or
availability of the data that is already there.

Data base files provide permanent data storage much as normal disk files do
on other systems. However, because of the data base facilities and because
the data is permanently online and can be used concurrently by many
applications, the following advantages are achieved:

• The applications have constant access to up-to-date data because data that
is updated is immediately available to other applications that use it.

• The concurrent availability of data to more than one program is improved
because:

A record can be read while being updated by another job.
A record can be updated by only one job at a time; this guarantees data
integrity for the record.

• Storage space is used more efficiently because less redundant data exists
on the system.

• System operation is more efficient because separate jobs do not have to be
run to sort and update data files every time an application is going to use
them.

Data Management Facilities 4-7

4-8

Basic to System/38 data base data management are the concepts of access
paths, physical files, and logical files. Access paths provide the organization
necessary to process the data stored in data base files. Two kinds of files are
used to process the data. One actually contains data and is called a physical
file. The physical file has a fixed format and an implied access path. The
other, called a logical file, provides alternative methods of formatting and
accessing data that is stored in one or more physical files. Application
programs are written the same way regardless of whether they use physical or
logical files. In either case, the program simply processes a file.

Access Paths

An access path provides a logical sequence to records that are stored in data
base files. In many previous systems, records were stored on the disk
according to the organization dictated by the access method. In System/38,
records are stored independently of their retrieval organization. When records
are added to a data base file, they are stored in a physical file in the order of
their arrival. When the records are processed, CPF uses the access path as the
means by which to locate and retrieve the data records needed by a program,
either randomly or in a predefined sequence. The access path to be used is
specified when the file is created. When the file is used for input/ output
operations, records are processed according to the sequence provided by the
access path. When the file is processed, the access path can also be used to
select or omit certain records.

More than one access path can be used to access the same physical data in
the data base. The access paths can be maintained as the files are processed
so that when the data is used concurrently by more than one program, each
access path to the data reflects the current contents of the file. This support
lets different users randomly access and update the same data. Alternatively,
access paths can be rebuilt when they are opened; this method avoids the
overhead of dynamic maintenance.

CPF supports two types of access paths: arrival-sequence and
keyed - seq uence.

Arrival-Sequence Access Path

This access path is based on the order in which the records are stored in a
physical file. Records in the file can be processed:

• Sequentially, in which the records are retrieved consecutively from the file

• Directly by relative record number, in which the record is identified by its
position from the beginning of the file or from the last record accessed in
the file

Processing files using the arrival-sequence access path is similar to processing
consecutive or direct files on previous systems.

J

J

Keyed-Sequence Access Path

This access path logically organizes the records in a file according to the
contents of key fields in the records. A key field is a field whose contents are
used to sequence the records in the file. Records in the file can be organized
according to either the ascending or descending sequence of the key fields.
Records in the file can be processed:

• Sequentially, according to the contents of the key fields

• Randomly, with the key fields identifying the records

A keyed-sequence access path is created when the file is created. It is
updated whenever records are added to or deleted from a file or whenever a
record is modified and the contents of a key field change. Thus, all the access
paths to the data can be maintained concurrently.

Key Fields: The contents of more than one field can be used as a single key.
In this case, all the records that have the same value in the first key field are
sequenced by the contents of the next key field, and so on. The fields used in
the key can occur anywhere in the record format. In addition, some of the
fields might be used in ascending sequence and others in descending
sequence. Duplicate key fields can be allowed or prohibited and specifications
for processing them can be included when the file is created.

Processing Keyed-Sequence Files: Using a keyed-sequence access path is
similar to using an indexed sequential access method on previous systems.
Records in the file can be accessed sequentially or randomly. Random
processing includes the capability to select a record randomly, then to process
preceding or succeeding records sequentially. Thus, a work station user
(through an application program) could randomly select a record, then continue
with sequential processing or select records based on their position in relation
to the randomly selected record.

If more than one key field is used for the keyed-sequence access path, either
the entire key or a partial, or generic, key can be used to retrieve the records.
If a generic key, which has fewer fields than the entire key, is used to retrieve
the record, the first record that contains the requested key field is retrieved
from the file.

Data Management Facilities 4-9

4-10

For example, a company keeps employee information listed by department
number and employee name. If a manager needs to know how many days of
vacation a particular employee has taken so far this year, he finds the
information by first obtaining the information for his department, 003, and then
for the employee, Works.

I

r- First key field r- Second key field
~D-E-P-A~R~T-M-E-N-T----------N~~~M-E---'~Key

Acce~s path 001 Furre
Matheson
Thebert
Allen
McMillan
Yarms

001
001
002
002
002

'----003 ------,

003
003

Felbert
Jireng
Verbos

003 '-----. Works

In this case, the entire key is used in accessing the records.

At another time, an employee in the Payroll Department needs to know how
many hours of overtime were worked by department 002. In this case, a
partial, or generic, key (department number) is used to retrieve the records.

~st key field ,t::Second key field

r-I-D-E-P-ART~T r=== NAME =J
I Generic key

A~P,th :~i
002
002
003
003
003
003

Furre
Matheson
Thebert
Allen
McMillan
Yarms
Felbert
Jireng
Verbos
Works

Members

Data records within a data base file are grouped into members. All the records
in a file can be in one member or they can be grouped in different members.
The first member can be added when the file is created. Subsequently added
members are named when added to the file. Each member of a file is
processed individually through a separate access path. The records from
different file members are not merged; however, a logical file member can be
used to merge records from more than one physical file member so that they
appear to exist in one file.

Using more than one member of a file to contain different groups of records
requires less system overhead than creating a separate file for each group.
Examples of files with more than one member include:

• Source files in which each member contains the source statements for a
different program

• An order file that has a separate member for each month's incoming orders

Physical Files

A physical file is a data base file that contains data records. Thus a physical
file is similar to files on disk for other systems. All the data records in a
physical file have the same format; that is, a physical file contains fixed-length
records, all of which contain the same fields. CPF stores records in a physical
file in the order in which they are placed in the file. However, the records can
be processed in any order that is established by the access path specified
when the file is created.

The file description for a physical file is created when the file is created. The
file description includes:

• A description of the record format used by the file

• A description of the access path used for processing records from the file

• A description of the storage attributes of the file

The data contained in a physical file can be processed through many different
logical files. Consequently, the records in a physical file can contain more
fields than any single program would process at one time. However, because a
physical file can contain the fields used by many logical files, fields that are
used in more than one logical file need to be stored only once in the data
base. When such a field is updated for one logical file, it is also updated for all
the other logical files that use that field. Thus the storage space in the system
is used efficiently, and up-to-date data is available to any programs using the
data through various logical files.

Data Management Facilities 4-11

4·12

Logical Files

A logical file is a data base file through which data that is stored in one or
more physical files can be accessed. The data can be accessed through record
formats and / or access paths that are different from the physical representation
of the data in the system. A program that processes data by using a logical
file operates as though the file actually contained the data. In the following
example, program 1 is accessing data from physical files A and 8 through the
logical file C:

A logical file can be used to access data from physical files, but not from other
logical files because logical files do not actually contain data. logical files can
share the same access path.

One of the many advantages of using the data base is that different programs
can access the same elements of data as they need it, through different logical
files. In the following example, programs 1 and 2 both access data from the
physical file A. but through different logical files (8 and C).

Data in a physical file can be used by any number of logical files. Each logical
file can impose its own characteristics, such as field length and type, on the
data. However, the data is always stored in the system according to the
characteristics and organization specified by the physical file. When a data
record is accessed through a logical file, the data is transformed to meet the
requirements of the logical file. This data transformation is not apparent to the
program using the file.

Logical files can share an access path, so two or more logical files can use the
same access path to retrieve the same data. For example, two logical files
might use different record formats to process the same data from a physical
file. If they both want records sequenced on the same key field in the same
order, they can share the same access path. When this is done, the access
path needs to be described only once and the system needs to build and
maintain only one access path for the two files.

A logical file can impose its own characteristics and organization on data
independently of the data's physical characteristics and organization. For
example, an order entry application might put incoming orders in two physical
files. One, named HDRIN, contains header information from each order
received. The second physical file, named DTLlN, contains the detailed
information from each order. In DTLlN, one record is generated for each line
on the order. The record formats and the records contained in these physical
files are shown in the following table.

PHYSICAL FI LE: HDRIN

RECORD FORMAT: ORDNO ORDDAT CUSTNO SALMN TTLAMT

1
522184
523480
534800
553672
564211
566421

PHYSICAL FI LE: DTLIN

RECORD FORMAT: ORDNO

?
522184
522184
522184
523480
523480
523480
523480
534800

~

l
063078
071078
071078
071178
071578
071778

T

LlNENO

~
01
02
03
01
02
03
04
01

~

f
108211
100429
180241
123876
156827
108211

r
ITEMNO

1
46628
06189
17281
31482
42218
22184
18421
28442

~

J l
085 141111
026 143250
047 040479
079 108449
068 046848
085 067152

T ~

QTY AMT

1 ~
048 059210
020 003660
129 078241
024 004800
481 096200
006 010800
037 031450
080 024548

? ?,
~

Data Management Facilities 4- 1 3

4-14

These two physical files are shared by two logical files that are accessed by
work station users. The work station users access the data through order entry
application programs. In the following drawing, user A has asked to see order
number 523480. The order is available through the logical file INPRCORD
(in-process orders). User B has asked to see all the orders that are entered for
customer number 108211. This information is available through the logical file
CUSTORDS (customer orders).

A

"'1 --... t()i

]'":'1 Fml ___ ·< · ~
t t

INPRCORD CUSTORDS D D Logical Files

1 t
HDRIN D Physical Files

ORD NO: 523480 DATEIN: 07/1 0/78 CUSTNO: 100429

LINENO ITEMNO

01 31482
02 42218

03 22184
04 18421

CUSTNO: 108211

ORONO

522184
566421

OATEIN

06/30/78
07/17178

QTY AMT INSTK

024 48.00 YES
481 962.00 YES
006 108.00 NO
037 314.50 YES

CREDIT CLASS: 02

TOTALAMT

1411.11
671.52

SALESMAN: 026

Multiple Record Formats

A logical file can use more than one record format. Each logical file record
format must be related to one or more physical file record formats and can be
used for processing data from one or more physical files. If a logical file record
format is used to process data from more than one physical file, all the fields
in the logical file record format must be contained in each of the physical file's
record formats. One logical file record cannot contain data from more than one
physical file. A single logical file with multiple record formats can be used to
process data from more than one physical file as though the data were all in
the same file, as follows:

I

Program

D
t

Logical File

~Format A for file 1 ~
Format B for file 2
Format C for file 3 , I

Multiple Record Formats

The records processed from a logical file can vary in length because of the
different record formats used. The access path for the logical file determines
the order in which the records are processed from the physical files. This
makes different record formats from different physical files available through
one logical file.

Data Management Facilities 4-15

4-16

File Description

The file description is created when the file is created and includes:

• A description of each of the record formats used by the file

• A description of the access path used for processing records from the file

• An identification of the physical files containing the data that can be
processed through the logical file

The file description and an access path are all that exist in storage for a logical
file, because the data is actually contained in one or more physical files. If the
logical file record format is different from the physical file record format,
records processed through a logical file are transformed to the logical format
by CPF as the records are retrieved by a program using the logical file.

In the example shown previously under Logical Files, file transformation occurs
when records for the logical file CUSTORDS are retrieved from the physical file
HDRIN. The physical file description specifies an arrival-sequence access path
and the record format containing the following:

ORDNO ORDDAT CUSTNO SALMN TTLAMT

The logical file CUSTORDS does not use the field SALMN and uses the other
fields in a different order. The record format specified in the file description
contains:

CUSTNO ORDNO ORDDAT TTLAMT

Because this file is used to find records according to the customer number and
the order date, those fields are specified as key fields in the file description
and are used to build a keyed-sequence access path for the file.

J

J

When a program requests a record from the file CUSTORDS (by providing the
customer number), CPF finds that record through the access path, the record
format changes from the format used in the physical file HDRIN, and CPF
passes the record to the program. This is done each time a record is
requested by the program. The following drawing shows how this file
transformation occurs:

Logical
File

Physical
File

Program

CUSTORDS

File
Description
and Access
Path

Records Passed to Program
through Logical File

108211
108211

f
522184 063078
566421 071778

J ~-~:-----1----------

{t ___ File Transformation II Performed by CP F

HDRIN

141111
067152

File Records Existing in Physical File

Description ~
-Access-Path--- ~~~~-- 522184 063078 108211 085 141111
-R~;;;;ds----- .~-~ 523480 071078 100429 026 143250

l .~

~~~~ .... ~~. 566421 071778 108211 085 067152 , 

Data Management Facilities 4-17 



4-18 

Using Data Base Files 

The System/38 data base allows information to be stored on the system in an 
efficient manner and also provides great flexibility in how that data is used. 
Through the use of physical files, logical files, different record formats, and 
different access paths, application programs can be designed to use whatever 
data they need. 

Because the same physical data in the system can be processed differently 
through different logical files, the copy, sort, and file maintenance operations 
that are often necessary on other systems can be avoided. Thus, fewer file 
preparation and maintenance activities are required when programs are 
executed, and a minimum of redundant data needs to be maintained on the 
system. 

The following example illustrates how the data base data management facilities 
are used. An application program processes customer orders. Two types of 
information are needed: 

• Header information that applies to each order. This information includes the 
order number, the customer name, the customer address, the order date, 
and other information that applies to the whole order. 

• Detail information that applies to each item included in the order. This 
information includes the item being ordered, the quantity, and the price. 

In this example, each item ordered should be treated separately, as one record. 
The header information should not be repeated in each record, so two physical 
files are used. One physical file contains records of header information, with 
one record for each order received. The other physical file contains records of 
detailed information, with one record for each item included in the order. The 
only information that must be repeated in both files is the key fields (for 
example, the order number field). 

To process orders, this program needs both the header records and the detail 
records. The program could be written to process both physical files. Instead, 
a logical file is used that shares the data contained in the two physical files. 
The logical file has two record formats, one for each type of record. The 
access path uses key fields in the records so that the detailed records are 
presented to the program following the appropriate header record. 

When a work station user executes the application program, he accesses the 
data contained in both physical files. The program lets the work station user 
request information about any order contained in the files. Another application 
program, using different logical files with a different access path, lets the work 
station user request information about orders placed by individual customers. 
In addition, programs can use either physical file independently. 

J 

J 



DEVICE SUPPORT DATA MANAGEMENT 

The device support data management facilities support the external devices 
that can be attached to System/38. The devices supported are the display 
devices (which include the console). the communications devices, the diskette 
magazine drive, the multifunction card unit, the magnetic tape unit, and the 
system and work station printers. 

For each device attached to the system, there is a device description object that 
describes the device to CPF. 

Data management operations access external devices through device files. 
Device files contain file descriptions, which are kept in the system and are 
used by CPF to transfer data to and/or from the device. The same device file 
can be used concurrently by more than one job. Each job must use the device 
file with a different device. 

The file description for any file refers to specific device characteristics in the 
device description. Thus, as shown in the following drawing, the file 
description and the device description serve as connecting links between the 
program and the data in the file. 

Program 

D .... ~ .... ·0 
File Description t ! 

File Device Description 

~LJ 

Both externally described data files and program-described data files can be 
created for work stations and printers. Only program-described data files can 
be created for card, diskette, and tape devices. For communications devices, 
only externally described data files can be created. The formats of records in 
program-described data files must be described in the programs that use the 
files. The record formats of externally described data files are described to 
CPF when the files are created and are kept in the file descriptions. 

Data Management Facilities 4-19 



4-20 

Display Device Support 

The display device support is designed to simplify the use of display devices 
(work stations) by application programs and provide functions that are not 
easily accomplished on many interactive systems. Most display files are 
externally described data files. Externally described data files offer the 
following advantages: 

• CPF performs the device control operations. including formatting data on the 
screen. accepting input from the keyboard. and handling error conditions 
that occur at the device. 

• CPF can perform subfile operations. which let the program perform 
input/output operations that send and receive multiple records of the same 
record format in one operation. The program processes one record at a 
time. but CPF and the work station send and receive blocks of records. If 
more records are transmitted than can be displayed on the screen at one 
time. the work station operator can page through the block of records 
without returning control to the program. 

• CPF can validate information entered by the work station user and let the 
user correct any errors before the record is passed to the program. For 
example. if the work station user enters an invalid numeric value into a field 
whose range is validated by CPF. the work station user would be informed 
of the error without returning control to the program. 

• CPF can accept indicators from the program to control the operations 
performed at the work station and return indicators to the program to inform 
it of actions taken by the work station user. 

J 



When externally described data files are used for display devices, coding the 
application program is simplified because the program sends and receives 
records as they are described in the file's record formats. The record format 
describes both the format of the record as it is used in the application program 
and the format of the record when it is displayed. The formats are described 
to CPF through data description specifications, as follows. 

Format used to 
display the record 

'\ 
CUSTNM 
CUSTNO 
SALMN 
ORDDAT 
DELDAT 

File Description Record Format 

Program 

If program-described data files are used for display devices, the record formats 
and display formatting must be specified in the application program that 
processes the file. The following discussion about display device support is 
limited to the use of externally described data files. 

File Description 

The file description is created when the file is created. It consists of the 
record formats for the file and the functions that CPF is to perform when 
input/output operations are requested. 

When the file is processed, CPF transforms output data from the program to 
the format to be displayed and displays it on the screen. When data is passed 
to the program, CPF transforms data from the device to the format used by 
the program. CPF performs all the operations needed to control the work 
station. It also passes indicators between the work station and the program so 
that the work station user and the program can communicate with each other. 

Format used in 

/ the program 

Data Management Facilities 4-21 



4-22 

Record Formats 

Record formats tell CPF what fields are contained in a record, how the fields 
should appear at the device, and how the fields should appear to the program. 
Thus, the record format is the basic unit for passing information between an 
application program and the work station user. 

A record format used for a display file can contain fields used for input only, 
for output only, and for both output and input (called output/input fields). 
Output fields contain information that is displayed to the work station user. 
Input fields allow information to be entered by the work station user. 
Output/input fields contain output that can be overlaid and returned as input 
by the work station user. 

Attributes can be defined to control the way the fields are displayed or 
processed. For example, field attributes allow: 

• Displaying fields in reverse image 

• Blinking the field 

• Validity checking input keyed into the field 

Indicator fields can be specified to provide communication between the 
program and CPF. These indicators, which can be set on or off, can be used 
to control data management functions for output operations and to indicate the 
results of input operations. For example, an indicator used in an output 
operation (called a conditioning indicator) could cause a field to be highlighted 
when it is displayed. For input operations, an indicator called a response 
indicator could be used to inform the program that a specific key was pressed 
by the work station user. 

J 



Using Display Device Support 

A" the operations necessary to establish an interface through which system 
users can communicate with application programs can be performed by the use 
of the display device support functions. These functions can: 

• Format displays on the screen so that the work station user can use the 
information provided by the program. This function includes the capability to 
control, from the application program, which fields are displayed on the 
screen. 

• Design displays into which the work station user can easily enter input. 

• Automatica"y associate the device file used by a program with the work 
station from which the program is invoked. 

• Use subfiles for either output or input so that the work station user can 
work on a block of records. This capability can reduce the amount of CPF 
activity required between the work station user and the program. It also lets 
the work station user scan the records without returning to the program. 

• Handle errors that occur at the work station without returning to the 
application program. 

• Display error messages to the work station user based on indicators passed 
to CPF by the application program. 

Data Management Facilities 4-23 



4-24 

The following steps illustrate how an application program might process 
records using a display device file. The example uses functions provided by 
high-level language programs and data description specifications. The example 
detects an error in the input and uses CPF functions to display an error 
message. 

1. The application program moves the data A JONES into a variable named 
CUSNAM. 

Program 

I:l 
Move 'A JONES' to 'CUSNAM' 

LJ 

2. A high-level language application program passes an output record to the 
work station, using record format A. 

Program 

I:l ---0 Write Format A to Display 

LJ 
1 

J 



~ 

Sequence 
Numbef-

1 2 3 .. 5 

A 

A 

A 

A 

A 

Conditioning 

Condition Name 

" I 0 o ,_ 
~ 5 !O 5 

] 0 ] 0 
z z 

3. Using record format A. CPF displays the record on the screen. The two 
constant fields (Name: and Order:) are specified in the record format. 
The variable from the application program is displayed following Name:. 
The input field following Order: is to be filled in by the work station user. 

CPF 

, Two Constants Input Field 

DATA DESCRIPTION SPECIFICATIONS 

Location 

~ --

~ 
Na".., length " 

Functluns 

l' 
~ w 

~ a Line "" Two specified 
0 ~ ... 

!~ 5 ~ g, 
] Z 

• 0 '5 O~ 

9 10 11 12 13 14 1516 17 192021222324252617 28 031323334 36 37 38394041 47 43 44 

40 constants 
4~ 46" 7 48 49 5051 5253 r 5 56 ~ 58596061 626364 6566 67 68 69 /071 72 73 74 757677 78 7980 

1 2' No.me : 1/ / 
CUSNAM 2~ 1 8 / 

2 2. • Ord e 1"": 1/ 

OR Dt,1 UM 'l ~I 2. q C.HANGf Un) 
1~7 IV E~RMSG ( \ Qrd er not found I ~.!II7) 

j/ 
Variables 

Data Management Facilities 4-25 



4-26 

Sequence 
Number 

1 2 3 4 5 

A 

A 

A 

A 

A 

4. The cursor is placed at the first position of the input field (position 9). 

Position 9 

5. The work station user keys 3571 into the input field and presses the 
Enter key to indicate that he has finished entering the data. 

6. CPF places the data, 3571, into the variable ORDNUM and turns on 
indicator 01 to indicate that the field has been changed. 

7. If the data entered is incorrect, the program turns on indicator 07 to 
display an error message. The program then passes control to CPF to 
display the error message caused by indicator 07. 

CPF displays the error message on the bottom line and displays the input 
field (3571) in reverse image with the cursor at the beginning of the input 
field. 

The indicator included in the ERRMSG keyword, 07, is always turned off 
when the record is returned to the program. This eliminates the need for 
the program to reset error indications. 

CPF 

Error Message 

t 
Conditioning I I 

II ""'-i-r,-------; 

Condition Name !~ 
1---,---,--,,-----1£ 

I I ~ 
£ z S z. £ ? 
~ I-I ~ ::1 .~ ~ 
E :~ :5 ~i ] ~ 

~ 

Length ~ Functions 

" ~ 

- 0 line Pos 

~ ]:~ i 
8 ~~ ~ 

9 10:11 12 13 1~j15 16 17 19 2021 22 23 24 25 26 ~7 28 303132333435363138 394041424344045464148 -49 5051525354 5556 57 58 5960616263 &48566 67 68 69 70 1172 7374757677 78 7980 

I J 2 '/II",...: I 
I "20 1. 8 . 

j 2 2 \ O .. tlc .. : I 

I oRD"I.(N 4 OJ: 2 
111 J IEIlI.HS~(·O"'~C,," NoT ~tll4"tI'~ ____ ~ 

/ 
Error Message ~Indicator 

J 



Nondisplay Device Support 

The nondisplay device support functions are the data management functions 
that apply to printers, the diskette drive, the magnetic tape unit, the 
communications devices, and the multifunction card unit. The file description 
for a nondisplay device file includes: 

• Identification of the device associated with the file. 

• Spooling information, such as output scheduling, copies, and forms for the 
file. 

• Device-dependent information. Examples include form size and number of 
lines for printer use, and diskette location for diskette use. 

Using program described data files in your programs is similar to using files on 
other IBM systems. The records are described in the using programs, and 
record types must be identified in the program if more than one type of record 
can be contained in the same file. 

Printer File Support 

The printers attached to System/38 are supported by CPF through printer files. 
Among the functions supported for printer files are: 

• Folding or truncating the output records if the lines of the records passed to 
the printer are longer than the maximum line length allowed for the device. 
Folded records are continued on subsequent print lines until the entire 
record is printed. 

• Spooling the file to an output queue for subsequent printing. When the file 
is spooled, execution of a program that uses the file is not dependent on 
the availability or speed of the printer. 

• Allowing the operator to align printer forms before the file is printed. 

• Initializing constant fields for a file. 

• Editing fields in the records according to a predefined edit code or edit 
word. 

Printer files can also be externally described data files. The record format is 
then contained in the file description. When externally described data printer 
files are used, the format of the printed records can often be changed without 
changing the programs that use the file. When the record format needs to be 
changed, the system user changes the file description by creating the file with 
a different record format, then recompiling the program. 

Data Management Facilities 4-27 



---------------------------

4-28 

Multifunction Card Unit Support 

The multifunction card unit is supported for card input and output files. Among 
the functions supported for card files are the following: 

• Output files can be punched only, printed only, or both punched and printed. 
(This function is handled by the high-level language being used.) 

• Combined files can be used that combine reading input data and punching 
and/or printing output data. (This function is handled by the high-level 
language being used.) 

• Output records that exceed the length allowed by the device are truncated 
to the maximum length allowed. 

• Files can be copied from cards to the system and from the system to cards. 

Card device files are always processed as program-described data files. 

Diskette Magazine Drive Support 

Thediskette magazine drive is supported through high-level language programs 
for both input and output files. CPF includes the functions needed to initialize 
diskettes, display the volume and file label information from a diskette, rename 
diskettes, copy files from diskettes into the system and from the system to 
diskettes, clear diskettes, and duplicate diskettes. Multivolume diskette files 
are also supported. Diskette device files are always processed as 
program-described data files. 

Magnetic Tape Unit Support 

Tape is supported through high-level language programs for both input and 
output files. CPF includes the functions needed to initialize tape, display the 
volume and file label information from a tape, and copy files from tapes into 
the system. Multivolume tape files are also supported. Tape device files are 
always processed as program-described data files. 

Communications Devices 

Communications devices are supported through high-level language programs 
for combined output and input files. CPF includes the functions needed to 
open files for output/input operations, obtain records from output/input files, 
write records to output/input files, and close files. Communications files are 
always processed as externally described data files. 

J 

J 



DATA OPERATIONS 

The steps involved in creating a file, and the requirements imposed on 
programs that use the file, depend on whether the file is an externally 
described data file or a program-described data file. 

Program-Described Data Files 

CPF provides the commands needed to create, change, and delete 
program-described data files. The same commands are used for both 
program-described data and externally described data files. However, data 
description specifications are not used for program-described data files. When 
the file is deleted, the file's description and, for data base files, any data in 
storage that is associated with it are destroyed. 

For program-described data files, the file description serves primarily as a link 
between the application program and the device or data used by the program. 
Because the data is not described to CPF, CPF treats each record as a single 
field containing a character string. The program using the file must identify the 
fields in the record by each field's location in the character string, as follows: 

The CPF passes the record to the program as a 
character string. 

I nput Record (A character string from au""""""", ". 
or data base file'! 

/ Application Program 

D-OR -0 
I ~-Cf 

~L, i [2J 
Data Base File Data Base File 

00 

The applica~ion program defines the fields 
in the records: 

Field Name 

CUSTNM 
ACCTNO 
ORONO 

Positions 

1-20 
25-32 
40-48 

The application program also defines the 
field for output records. For example, 
printer records are defined so that a printed 
report is formatted. 

Output Record (A character string from the program to the device.! 

Data Management Facilities 4-29 



Externally Described Data Files 

As with program-described data files, CPF provides the commands needed to 
create externally described data files. However, for externally described data 
files the record formats used by the file must also be described to CPF by 
source statements provided when the file is created. The source statements 
are called data description specifications. 

Commands are also provided to delete files and to change device files. 
Deleting a file destroys the file's description and any data in storage that is 
associated with it. 

The data description specifications form is used for coding the data description 
specifications for externally described data files: 

DATA DESCRIPTION SPECIFICATIONS GX21-7754·1 UM/050· 
Printed in U.S.A. 

I De,,,;O';on ~F_;le _______ '--____ --I1 Key; ... 

Programmer I Date . Instruction I I I I I I I Key I 
of 

Sequence ~ 
Number i 

e 
&8 
~~ 
e!2 
&i 

s S 
! l' 
~ :g 

1 , 3 • •• 7 • I. 1213 

A 

A 
•• • •• 

A 
· • • •• • • 

A · . . . 
A 

A 

A 
•• 

A 

A 

A 

A . 
A 

A . 
A . : .. · . . 
A · · . · .... " -
A · 

• 

. . 

• • 
. 

A . 
• • : · , ... . 

A 
• · 

· .. 
A 

. 

• 

• • • 
· . • 

A · • • • • 
• • 

"Number of sheen per p.t may YfIIY slightly. 

4-30 



The form is used for both data base files and device files. A complete 
description of the data description form and the entries allowed for each 
position is contained in the CPF Reference Manual-DDS. Examples showing 
how the form is used are contained in the CPF Programmer's Guide. 

The data description specifications are provided as source statements when the 
file is created. There are two ways to enter the source statements: 

• Use a card or diskette source file. 

• Use the source entry utility (SEU), a part of the Interactive Data Base 
Utilities, to build a source file in the data base. 

The following sequence of operations is used to create an externally described 
data file. 

1. The data description specifications are coded and entered: 

Data Description r O 
Specifications 

0----'1 C~'----I Source 
File 

rFll 
~ 

Source File in the Data Base 

2. A command is entered to create the file. This command identifies the 
source file that contains the data description specifications for the file: 

3. 

CPF 

Ocommand. 

0&, D.~';~;O" '0' ~L 1 
the File to be creat~~ oFile 

/~ 
Identified Source File/ ""'-Created File 

CPF provides a listing of the source statements used to create the file. 
The file now exists on the system. 

Data Management Facilities 4-31 



4·32 

Spooled File Processing 

CPF provides spooling functions for both input and output. For input, CPF 
programs that are called readers read jobs and place them on a job queue. If 
inline data files are included with the jobs, they are placed in the system as 
spooled input files. For output, CPF places output records produced by a 
program in a spooled output file in the system. These files are later written to 
the external devices by CPF programs called writers. However, the program 
processes any spooled file as though the program were using the device 
directly. 

Intine Data Files 

Inline data files are processed by a program as program-described data files 
coming from the external device. The records in the file are processed 
sequentially from the beginning of the file to the end of the file. Inline data 
files can be either unnnamed or named. 

Unnamed Intine Data Files: 

Unnamed inline data files are identified in the spooled input by the / /DATA 
command, which does not specify a file name. Once an unnamed file has been 
processed by the job, it cannot be accessed again in the job. If more than one 
unnamed inline data file is included in a job, the files are opened in the order in 
which they were read in the spooled input. 

Named Intine Data Files: 

Named inline data files are also identified in the spooled input by the / /DATA 
command, which specifies a file name. Because these files are uniquely named 
within the program, they can be opened and processed in any order. In 
addition, a file can be closed and then reopened in the same job. Each time a 
named inline data file is opened, records are processed from the beginning of 
the file. The file is available until the job ends. 

J 



Using Inline Data Files: 

In the following example, an unnamed inline data file is included in the input 
stream. This file, identified by the / / DATA command, can be used by any of 
the programs in the first job. However, it can be opened and used only once. 
(If an inline data file is to be accessed more than once by the job, a named, 
inline spool file must be used.) 

II JOB DAI L YSALES JOBPTY(2) 
RPLLlBL LlBL(ORDLIB OGPL OTEMP) 
CALL SALES205 !*PRINT DEPT SUMMARY" I 
CALL SALES206 !*PRINT PRODUCT SUMMARY*I 
CALL SALES209 /*PRINT SPECIAL SALES" I 
II DATA 

AJ1052 
X04031 
BZ9504 

CALL SALES213 
II ENDJOB 
II JOB DAI LYSHIPT JOBPTY(5) 

II ENDJOB 

Data Management Facilities 4-33 



4-34 

Spooled Output Files 

Output spooling functions are performed by CPF without requiring any special 
operations by the program that produces the files. When an output file is 
opened by a program, CPF determines whether the file is to be spooled. The 
following information in the file description applies to spooled output files: 

• The output queue for the file 

• The type of forms to be used 

• The number of copies to be produced 

• The maximum number of records that can be placed in the file 

• Whether the spooled file can be written to the device while the program is 
still producing output 

• Whether the file should be saved on the queue after it has been written to 
the device 

This information in the file description is used when the file is opened, unless 
the information is overridden by a control language command in the job. 

When a spooled output file is opened, an entry for the file is placed on the 
appropriate output queue and the data is placed in a spooled file in the system. 
In the following drawing, program A is executing in the interactive subsystem. 
The program produces a spooled printer file. As the program executes, the 
records for the printer file are placed in the spooled file in the system. 

Interactive Subsystem 

O Program 

............. 8 .. 

Entry 
for 
Spooled 
File 

___ .~1 :;7::::d 



The spooled file can be made available for printing when the file is opened, 
when the file is closed, or at the end of the job. As shown in the following 
drawing, a writer is started in the spooling subsystem to write the records to 
the printer. The output for the file is selected from an output queue. This can 
occur while program A is active or, as shown here, when program A is no 
longer active and program B is active. 

Interactive Su bsystem Spooling Subsystem 

Printer o ........... r:'1 ...--... [J 

Entry 
for 
Spooled 

File 

Data Management Facilities 4-35 



4-36 

Copying Files 

System/38 provides functions for copying data from one data base file or 
device file to another. After a copy operation, the records exist in two places: 
in the file that was copied from, and in the file that was copied to. The copy 
functions can be used to copy entire files or portions of files as follows: 

• Copy from any data base file to a physical data base file 

• Copy from any data base file to a device file (except to tape and display 
device files) 

• Copy from a device file to another device file 

• Copy from a device file to a physical data base file 

Records can be added to the receiving file, or they can completely replace any 
previously existing records in the receiving file. 

Both externally described data files and program-described data files can be 
copied. Through the use of the copy functions, some operations that could 
previously be performed only by application programs can be performed. 
These operations include: 

• Selecting only a subset of records from the file being copied 

• Omitting a portion of the records from the file being copied 

• Changing the sequence of the records so that the organization of the new 
file is different from that of the copied file (externally described data files 
only) 

• Changing the format of the records as they are copied by deleting or adding 
fields to the record formats of the new file (externally described data files 
only) 



File Reference Function 

As application programs are developed, the programmer needs to know what 
data is available in the system and where it is used before he can determine 
whether additional files, record formats, and field definitions are needed. This 
information is also necessary when changes are made to the data base. CPF 
provides commands that can be used to determine how data is stored on the 
system and how it is accessed by application programs. 

CPF provides facilities to track file usage on the system. These facilities 
simplify the work done when applications are being developed. The functions 
provide information about the use of both data base and device files, such as: 

• Which files are used by a program; how the file is used by the program, for 
example input, output (or both), or update; and what record formats in the 
file are used by the program 

• The contents of the file description, including file attributes, the record 
formats and access paths used for data base files, and the output queues 
and record formats used for a device file 

• The relationships between shared files, record formats, and access paths in 
the data base, including which files use a specific record format or a 
specific access path and which logical files use the data in a specific 
physical file 

• The individual fields included in each record format in a file, with detailed 
information describing each field in the record formats used by a file and 
secondary references to other record formats 

The information generated by these facilities can be displayed at a work station 
or printed. In addition, most of the information can be placed in a data base 
file. For example, the query utility, part of the Interactive Data Base Utilities, 
could be used to examine specific information in the data base file to find such 
information as: 

• Which programs use a particular file 

• Which files contain record formats that use a particular field 

Data Management Facilities 4-37 



4-38 



Chapter 5. Application Development 

OVERVIEW 

The process of developing a data processing application for any system 
generally involves a sequence of activities. such as: 

1. Application design 

2. Program writing 

3. Application testing and debugging 

4. Application documentation 

Many of the functions provided by CPF are used during application 
development. The first part of this chapter discusses the application 
development activities and relates them to System/3S. The rest of the chapter 
discusses CPF concepts related to application development that have not been 
presented earlier in this publication. 

Design Considerations 

The major design consideration is whether to implement a batch application or 
an interactive application. In many cases. a complete application is a 
combination of batch and interactive programs. For example. if an application 
requires documents to be printed (such as picking slips or purchase orders). 
that part of the application is best performed by a batch job. However. the 
entry of data that updates master files is needed on a timely basis and is best 
performed interactively. Generally. any task that ties up a work station for 
more than a short time (while the task executes and the work station user 
cannot interact with the system) should be executed as a batch job. 

In System/3S. batch jobs can be submitted by both the system operator and 
other work station users. Consequently. these batch jobs can be included in 
the application design in such a way that the work station users can submit 
them whenever they are needed. 

Three primary elements should be considered when an interactive application is 
designed: 

• The interface needed by the user to invoke and to communicate with the 
application 

• The files needed for the application 

• The structure of the application; that is, the programs to be included and 
the method used to control flow among the programs 

Application Development 5-1 



5-2 

User Interface 

Calling a Program: The interface used to call an application or program should 
be designed specifically for the application user. Any program can be called 
through a command. However, because many work station users are not 
familiar with the control language, some other interface might be more 
convenient for those users. 

CPF provides the following menu (through which programs can be called), 
which is designed for work station users who are not familiar with the control 
language: 

PROGRAM CALL MENU 
Select one of the following: 

1. Call program (identify belowl 
2. Display messages 
3. Send message to system operator 
90. Sign off work station (*NOLIST *LISTI 

Option: __ Program name: 
Parameters or message: 

To call a program using this menu, the work station user selects option 1, 
provides the name of the program, and enters any parameters that are 
required. 

User-defined menus can be designed through display device files. These 
menus, which can be tailored specifically to the needs and experience of the 
work station users, can provide a specialized user interface through which 
application programs can be called. The following menu is an example of a 
user-defined menu that could be used for an order entry application. 

ORDER DEPT CONTROL CLERK MENU 
Select one of the following: 

1. General Menu 
2. File Maintenance Menu 
3. Batch Job Menu 
90. Sign off 

Option: __ 

J 



The work station user selects an option to display another menu from which he 
can select the option that starts his program. Of course, in smaller 
applications, the first menu the work station user responds to could start the 
program. 

Application programs can also be designed so that the work station user does 
not need to call them. The application designer can do this by: 

• Specifying that the program should be called whenever the appropriate work 
station user signs on the system. Through this method, the program is 
available to the work station user whenever he signs on. 

• Specifying that the program should be invoked through a routing entry in 
the subsystem description. When the work station user wants to use the 
program, he might request it by pressing a function key or by entering the 
appropriate routing data. The display that requests the routing data could be 
a standard display supplied by CPF or a user-defined display. The routing 
data can be a descriptive word or phrase that describes the desired 
function, such as PAYROLL. 

• Specifying the program as an autostart job in the appropriate subsystem 
description. When the subsystem is started, the job starts and allocates the 
appropriate work stations. The program is then ready for use by the work 
station user. In this case, the use of these work stations is restricted to the 
functions performed by the job. 

Functions that are designed for users who are familiar with the control 
language, such as programmers, could be specifically called through 
IBM-supplied commands or user-defined commands. User-defined commands 
can be defined to provide functions that are not available through commands 
provided by CPF or to provide a different interface to CPF-supplied functions. 
CPF provides prompting for any commands defined on the system. More 
information on command definition is provided later under Command Definition 
in this chapter. 

Program-User Communication: When an interactive program is executing, 
communication is needed between the program and the work station user. 
This communication is normally performed through a display device file. 

Application Development 5-3 



5-4 

Data Files 

Designing the files used by an application is an important part of designing an 
application for use on any system. The CPF data management facilities provide 
flexibility in the use of both data base and device files. 

Data Base Files: Because logical files can be used to process data stored in 
the data base, programs can process data using record formats and access 
paths that differ from those used to store the data on the system. During 
application design, the following decisions must be made about the use of data 
base files: 

• What files, record formats, and access paths are needed? 

• Are new physical files needed, or do the physical files already on the system 
contain the necessary data? 

• Are new logical files necessary to provide the record formats and/or access 
paths needed by the program? 

• Are the record formats and fields used by the program already defined in 
the system? 

CPF provides the functions necessary to display the file descriptions, record 
formats, and file usage information for files that already exist on the system, as 
described in Chapter 4, Data Management Facilities. 

Device Files: The device files used by a program can process either externally 
described data or program-described data, depending on the type of device 
accessed by the file. The CPF functions that display file descriptions, record 
formats, and file usage information also apply to device files, as described in 
Chapter 4, Data Management Facilities. 

J 

J 



Application Structure 

An application can consist of a number of programs! _ Each program can be 
designed to perform a specific function. Whenever the function is needed, the 
program is called. When applications are structured in this manner, one 
program in the application controls the flow of activity within the application. 

When the application is developed, each program should be written in the 
high-level language that best provides the functions needed. Any program can 
call any other program regardless of the high-level languages in which the 
programs are written. For example, control language programs might be 
needed to provide the interface through which a work station user requests 
application functions. Control language programs also can be used to call other 
programs based on conditions that exist during program execution. 

The high-level languages provide the facilities needed to perform operations on 
the data processed by the application. These programs can request data base 
manipulation functions through the data management functions provided by the 
CPF. Because control language programs do not perform the processing 
normally associated with data base files, these functions are not available 
through control language programs. 

Applications that are made up of more than one program can pass information 
from one program to another in one of the following ways: 

• In the parameters of the command that invokes the program 

• In messages supported by the CPF message handling facilities (described 
later under Message Handling in this chapter) 

• In a data base file 

• In a data area object 

A data area object contains common data that can be shared by different 
programs in a job or by programs in different jobs. It exists independently of 
the programs that use it. Values can be placed in the data area to control the 
functions performed by programs that access those values. The values can be 
changed by the programs or by commands entered by a work station user. A 
facility is provided to synchronize the use of values in the data area so that one 
program does not change a value while another program is using it. 

Programming Considerations 

After an application has been designed, the files used in the application must 
be described and created and the various programs must be coded and 
compiled. Data description specifications are source statements for externally 
described data files. Control language commands and other high-level 
language source statements must be provided for programs that will be 
created. 

Application Development 5-5 



5-6 

Entering Source Statements 

For programs or externally described files to be created, source files containing 
the source statements are needed. The user can place source statements in 
the data base by copying them from a device file or by entering the source 
statements through the source entry utility, which is part of the Interactive Data 
Base Utilities. A source file can also be either a spooled or nonspooled device 
file that is provided when the program or file is created. 

The source entry utility (SEU) provides special display formats to help the user 
enter specifications for other programs and for data description. The utility also 
can perform syntax checking on the source statements that are entered. A 
complete description of the source entry utility is contained in the SEU 
Reference Manual and User's Guide. 

Creating Programs and Files 

CPF provides the commands that are needed to create files and programs from 
the source statements contained in source files. These commands can be used 
in either interactive or batch jobs. 

Any externally described data files must be created before the programs that 
use them because the record formats from the file descriptions are copied into 
the program when it is created. A program is compiled when it is created and 
then exists as a program object that can be called to be executed. 

Testing and Debugging 

Application programs that manipulate data stored in the system are normally 
tested with sample data before they are executed using normal production data 
files. CPF provides the functions needed to test applications against sample 
data in a protected environment and also provides functions that help a 
programmer debug his programs. 

Programs that run in the protected environment can use data from files in any 
library, but they can update only those files contained in test libraries. Thus 
data files that are used in normal data processing operations are protected 
from unintentional modification by the program being tested. 

This environment can also be a useful tool for protecting production data files 
while work station users are being trained to use the program. Because the 
program executes the same way in either environment, the work station user 
can be fully trained before he uses the normal operating environment. 

J 

J 



If errors occur in the functions performed by a program when it is tested, the 
cause of these errors must be detected. The debugging facilities provided by 
CPF can be used in the protected environment for debugging any high-level 
language program, including control language programs. These functions do 
not require any special coding within the program. Specific pOints in the 
program are identified by the labels and statement identifiers used in the 
program's source statements. More information on the CPF debugging 
functions is provided under Debugging Functions in this chapter. 

After a program has been tested and debugged, the source for the program 
can be changed to correct any errors found during testing. When the source 
has been updated, the program can be created again (recompiled) and retested. 

Documentation 

Good documentation is a key element in maintaining any data processing 
system or application program. CPF allows up-to-date documentation to be 
maintained on the system itself. In addition to the use of comments, which is 
supported by most high-level languages, CPF provides: 

• The ability to include a text description of any object (including libraries) in 
the object description on the system. The text description can be provided 
when the object is created and changed through commands that change the 
object. The text description is displayed when the object description is 
displayed. 

• The ability to include a text description in the data description specifications 
for any record format or for individual fields within the record format. These 
text descriptions are stored in the file description and are displayed when 
the file description is displayed. They also become comments in all the 
programs that use externally described data, which provides complete and 
consistent program documentation of the data to the field level. 

• The ability to use CPF functions to provide a cross-reference of the use of 
files and record formats by programs. 

Text descriptions and comments can be included in and stored with the 
program source statements, but they are not used as input to a compiler. 

Application Development 5-7 



5-8 

CONTROL LANGUAGE PROGRAMS 

A control language program is made up of control language commands. The 
commands are compiled into an executable program that can be called 
whenever the functions provided by the program are needed. There are many 
advantages in using control language programs in an application. For example: 

• Because the commands are compiled and stored in executable form, using 
control language programs is faster than entering and executing the 
commands individually. 

• Certain functions that are not available when commands are entered 
individually are available in control language programs. 

• Control language programs can be tested and debugged like other 
high-level language programs. 

• Parameters can be passed to control language programs to adapt the 
operations performed by the program to the particular requirements of that 
use. 

Control language programs can be used for many kinds of applications. For 
example, control language programs can be used to: 

• Provide an interface to the user of an interactive application through which 
the user can request application functions without an understanding of the 
commands used in the program. This makes the work station user's job 
easier and reduces the chances of errors occurring when commands are 
entered. 

• Control the operation of a batch application by establishing variables used in 
the application (such as date, time, and external indicators) and specifying 
the library list used by the application. This ensures that these operations 
are performed whenever the application program is executed. 

• Provide predefined procedures for the system operator, such as procedures 
to start a subsystem, to provide backup copies of files, or to perform any 
other procedural operating functions. The use of control language programs 
to perform these procedures reduces the number of commands the operator 
uses regularly, and it ensures that system operations are performed 
consistently. 

J 

J 



Most of the control language commands provided by CPF can be used in 
control language programs. In addition, some functions designed for use in 
control language programs are not available when commands are entered 
individually. These functions include: 

• Logic control functions that can be used to control which operations are 
performed by the program according to conditions that exist when the 
program is executed. For example, if a certain condition exists, then do 
certain processing, else (otherwise) do some other operation. These logic 
operations provide both conditional and unconditional branching within the 
control language program. 

• Data operations that provide a way for the program to communicate with a 
work station user. These operations let the program send formatted data to 
the work station and receive data from the work station. 

• Functions that allow the program to send messages to the work station 
user. 

• Functions that receive messages sent by other programs. These messages 
can provide normal communication between programs or indicate that errors 
or other exceptional conditions exist. 

• The use of variables and parameters for passing information between 
commands in the program and between programs. 

Through the use of control language programs, applications can be designed 
with a separate program for each function and with a control language program 
controlling the execution of all the programs within the application. The 
application can consist of control language programs and other high-level 
language programs. In this type of application, control language programs are 
used to: 

• Determine which programs in the application are to be executed. 

• Provide system functions that are not available through other high-level 
languages. 

• Provide interaction with the application user. 

Thus control language programs provide the flexibility needed to let the 
application user select the operations he wants to perform and to execute the 
necessary programs. 

Application Development 5-9 



5-10 

The following example shows how control could be passed between a control 
language program, RPG programs, and DFU (data file utility) programs in an 
application. To use the application, a work station user would request program 
A. Program A controls the entire application. The example shows: 

a A control language program calling another control language program 

II A control language program calling an RPG program 

II An RPG program calling another RPG program 

a An RPG program calling a control language program 

II A control language program calling a DFU program 

PGMA (Cl) PGMB (RPGI PGMC 

11 

Cali PGM B Call PGMC End 

Call PGME Call PGMD------I--~ PGMD 

Return End 

PGME (Cll PGME 

Call PGME 

End RETURN 

J 

(RPGI 

J 
(Cll 

(DFUI 



MESSAGE HANDLING 

A message is a communication sent from one user or program to another. 
Most data processing systems provide communication between the system and 
the system operator to handle errors and other conditions that occur during 
processing. In addition to this type of support, CPF provides message handling 
functions that support two-way communications between programs and 
system users, between different programs, and between different system 
users. The CPF message handling functions support the use of: 

• Impromptu messages, which are created by the program or system user 
when they are sent and are not permanently stored in the system. 

• Predefined messages, which are created before they are used. These 
messages are placed in a message file when they are created and retrieved 
from that file when they are used. 

Because messages can be used to provide communication between programs 
and between programs and system users, the use of the CPF message 
handling functions should be considered when applications are developed. The 
following concepts of message handling are important to application 
development: 

• Messages can be defined in message files, which are outside the programs 
that use them, and variable information can be provided in the message text 
when a message is sent. Because messages are defined outside the 
programs, the programs do not have to be changed when the messages are 
modified. 

• Messages are sent to and received from message queues, which are 
separate objects on the system. A message sent to a queue can remain on 
the queue until it is explicitly received by a program or work station user. 

• A program can send messages to a user who requested the program 
regardless of what work station that user has signed on to. Messages do 
not have to be sent to a specific device; thus, one program can be used 
from different work stations without change. 

Because replies can be returned by a user or a program that receives a 
message, the message handling facilities provide a mechanism for two-way 
communication. 

Application Development 5-11 



------------ -

5-12 

Message Descriptions 

A message description defines a message to CPF. In addition to information 
about the message, the description contains the text of the message. This 
message text can include variable data that is provided by the message sender 
when the message is sent. 

Message descriptions are stored in message files. Each description must have 
an identifier that is unique within the file. When a message is sent, the 
message file and the message identifier specify to the CPF the message 
description that is to be used. 

CPF supports message types that allow many kinds of messages. Through 
these message types, information, inquiries, requests and replies can be sent 
between users and programs. In addition, completion messages and various 
types of diagnostic messages are supported to provide information about the 
status of work on the system. 

Message Queues 

When a message is sent to a program or a system user, it is placed on a 
message queue associated with that program or the user. The program or the 
user obtains the message by receiving it from the queue. 

CPF provides message queues for: 

• Each work station on the system 

• Each job on the system and each active program within a job 

• The system operator 

• The system logs 

Additional message queues can be created to meet any special application 
requirements. Messages sent to message queues are retained, so the receiver 
of the message does not need to process the message immediately. Thus, a 
message queue can be used as a mailbox to hold the messages until the 
appropriate program or user decides to receive them. 

J 



Using Messages and Message Queues 

Messages and message queues can be used both to pass information and to 
request processing by programs in an application. For example, an application 
used for entering orders into the system could use messages and message 
queues as follows: 

1. Three work station users enter orders using the same order entry 
program. (Because of the design of the system, all three users actually 
share a single copy of the executable program.) 

2. Once an order has been entered, the application must produce a picking 
slip needed for filling the order. One program is used for producing 
picking slips. Because this program interacts directly with the printer, if it 
were called from one order entry program, it could handle orders from 
only one user at a time, thus delaying the work station users while the 
printer is in use. The following drawing shows this type of operation. 
User C has completed an order, so program PS has been called to print 
the picking slip. Program PS is now unavailable to the other users. 

A r--' O . .! OE! 
lr--l Picking Slip Q: -I-I··~:I °OEE 'I--+r'::'~b o Program 

To prevent this delay, the program that produces picking slips processes 
entries by processing messages from a message queue, as shown in the next 
drawing. The order entry program sends a message to that queue for each 
order and then continues processing. Message processing, as shown here, is 
supported through control language programs. 

A o · · L~~-lg:eS9sage Queue 
B ,I OE I 

0 1 I l!~< ..- r Picking Slip for Use.r C 

c]----i P'""m Pr:J ..... b 
Application Development 5-13 



5-14 

DEBUGGING FUNCTIONS 

CPF includes functions that let a programmer observe operations that are 
performed as a program executes. These functions can be used to locate 
operations in the program that are not performing as intended. Debugging 
functions can be used either in batch jobs or interactively from a work station. 
In either case, the program being observed must be in the testing environment. 

The debugging functions narrow the search for errors that are difficult to find 
in the program's source statements. Often, an error is apparent only because 
the output produced is not what is expected. To find those errors, a 
programmer needs to be able to stop the program at a given point and 
examine variable information in the program to see if it is correct. He might 
want to make changes to those variables before letting the program continue 
executing. The programmer does not need to know machine language 
instructions, nor does he need to include special instructions in the program to 
use the debugging functions. The CPF debugging functions let the 
programmer: 

• Stop the execution of the program at any named point in the program's 
source statements. 

• Display the variable information used by the program as it exists when 
program execution is stopped. If he wants to, the programmer can also 
change the variable information before program execution is resumed. 

• Trace the use of variables in the program by recording the steps in t~e 
program that change the variables and what those changes are. This 
operation produces a printout or display that traces the execution sequence, 
showing which statements in the program are executing and what the value 
of a variable is at any point in the program. 

J 

J 



COMMAND DEFINITION 

Through the control language commands, the support of control language 
programs, and other CPF functions, CPF provides the functions normally 
needed for developing application programs. However, advanced uses of the 
system might require redefinition of some control language commands or the 
creation of additional commands to meet the specific needs of an installation. 
CPF includes functions that allow the creation of user-defined commands. 

Each command on the system has a command definition object and a command 
processing program. The command definition object defines the command, 
including: 

• The command name 

• The command processing program 

• The parameters and values that are valid for the command 

• Validity checking information that CPF can use to validate the command 
when it is entered 

• Prompt text to be displayed if a prompt is requested for the command 

The command processing program is the program that CPF calls when the 
command is entered. Because CPF performs validity checking when the 
command is entered, the command processing program does not always have 
to check the parameters passed to it. 

The command definition functions can be used to: 

• Create unique commands needed by an installation or individual users. 

• Define alternative versions of commands provided by CPF to meet the 
requirements of an installation or individual users. This function might 
include having different defaults for parameter values or simplifying the 
commands so that some parameters would not need to be entered. 
Constant values can be defined for those parameters. The IBM-supplied 
commands should not be changed. 

More detailed information on command definition is contained in the CPF 
Programmer's Guide and CPF Reference Manual-Control Language. 

Application Development 5-15 



J 

J 

J 

5-16 



Chapter 6. System Management 

The System/38 CPF provides the facilities that are needed to regulate the use 
and the operation of a data processing installation. These facilities are 
designed to augment the facilities described in previous chapters to provide 
system-wide management and control. System management includes: 

• Controlling the use of system resources 

• Backing up the system and objects in the system 

• Installing new support 

• Operating the system 

• ServiCing the system 

SECURITY 

In an interactive system, the implementation of controls that ensure data 
integrity and security becomes especially important because the work stations 
provide many points of direct access to the system outside the physical control 
of the data processing department. Without these controls, the potential for 
data being misused or destroyed increases, especially when many work station 
users are using the system concurrently. 

Security and authorization functions provided by the SystemJ38 can reduce the 

risk of unauthorized use, but will not eliminate it. For these functions to be 
effective, proper user implementation should be accompanied by other control 
practices, such as physical security and division of duties. Overall controls and 
security are the responsibility of the system security officer. 

For. many data processing installations, maintaining the integrity and the 
security of data processing information is a primary concern. The most 
important concern is integrity: the protection of programs and data from 
inadvertent destruction or alteration. Security is the prevention of access to or 
use of data or programs by unauthorized persons. Directly related to integrity 
and security is the need for user identification: the ability to recognize a system 
user so that only the facilities and data he is authorized to use are made 
available to him. 

The security facilities of CPF provide mechanisms for user identification and for 
authorizing user access to specific objects. These facilities allow the system to 
be tailored to provide the necessary level of security and integrity. In addition, 
the user identification supported by these facilities can be used to design an 
application-oriented interface for work station users. The system can be 
tailored so that each work station user has access to only the system 
functions, applications, and data that he needs to perform his work. 

System Management 6-1 



6-2 

User Identification 

All System/38 security functions rely on a user profile to identify each system 
user. A user profile is an object that represents a particular user or group of 
users to CPF. The user profile identifies which objects and functions the user 
is authorized to use and can also identify a program (called an initial program) 
that is to be executed when the user signs on the system. This initial program 
is called only if the user's job is routed to the command language processor 
(program GCl). When a work station user signs on to the system, he enters a 
password to identify himself. CPF uses that password to determine which user 
profile represents that user. If more than one user signs on the system using 
the same password, they are represented to CPF by the same user profile and 
have access to the same objects and functions. A password is usually known 
only by the person or persons who use it. To help prevent unauthorized use, 
passwords can be changed as desired. 

When a work station user signs on, his password is used by CPF to find the 
user's profile. Each user profile is named. The user is known in the system by 
the name of his user profile; thus, references to a user in the system do not 
need to be changed when a password is changed. The following drawing 
shows how CPF uses the password and the name of the user profile. 

Work station user (OEUSER1) signs on using his password. The password 
(BLUE) is not displayed when it is entered. 

1. The CPF uses the password (BLUE) to determine which user profile to 
use. 

Sign On: BLUE 

CPF 

User Profile 

User profile name: OEUSER1 

4 Password: 
Authorized to: 

BLUE 
OEENTRY 

J 

J 



L 2. The work station user requests the program OEENTRY. The CPF 
determines whether the user profile (OEUSER1) is authorized to use the 
object. 

CPF 

<P 
Call OEENTRY 

User Profile 

User profile name: OEUSER1 
Password: BLUE 
Authorized to: OEENTRY 

3. If the user is authorized to use the object, the request is honored. 

CPF 

L OEENTRY 

~ 

System Management 6-3 



6-4 

In this example, the user (DEUSER1) calls the program DEENTRY. If that 
program is to be executed whenever DEUSER1 signs on the system, DEENTRY 
could be specified as the initial program in the user profile. In this case, the 
example proceeds as follows. 

Work station user (DEUSER1) signs on using his password. The password 
(BLUE) is not displayed when it is entered. 

1. CPF uses the password to determine which user profile to use. 

Sign On: BLUE 

User Profile 

User name: OEUSERl 
Password: B LU E 
Authorized to: OEENTRY 

Initial program: OEENTRY 

2. CPF, through the work management facilities, initiates the job and 
determines from the user profile that the program DEENTRY is to be 
invoked for the job. 

o· 
CPF 

User Profile 

User name: OEUSER 1 
Password: BLUE 
Authorized to: OEENTRY 

I nitial program: OEENTRY 



3. The program is started and the work station user interacts with the 
program OEENTRY. 

CPF 

0· 
OEENTRY 

In this example, the work station user does not interact with CPF after he has 
signed on the system. Instead, the initial program provides the interface 
between the user and the system. This interface can be a menu or prompt that 
is especially designed for the work station user's needs and experience. 

When CPF is installed, it includes a set of predefined user profiles. Together, 
these profiles allow the use of all the system functions. The predefined user 
profiles are: 

• The system security officer: Lets a system user control user profiles and 
other security functions 

• The programmer: Lets a system user perform the functions necessary to 
develop system or application programs 

• The system operator: Lets a system user perform the functions necessary 
to operate the system 

• The work station user: Lets a system user operate work stations to execute 
application programs 

• The program support representative: Lets service personnel maintain CPF 

• The customer engineer: Lets service personnel use a set of functions called 
the concurrent service monitor to maintain the machine 

System Management 6-5 



6-6 

Security Functions 

Because all the functions and the data available on the system exist as objects, 
their use is controlled by the specific authorization of system users. As shown 
in the following drawing, CPF provides two levels of security functions: system 
security and user security. 

/ /j,.... ___ Se_c_ur_itY_O_ff_ice_r __ ....,~, 

/ \ , 
Each user profile is given 
the authority that pertains to its 
use of the system. 

/ / \ , 
/ / The security officer can create, change, and \ '" 

/ / delete other user profiles. \ 

(/ / \ '\. 

'1 
I 
I 
I 
I 

System Security 

User Security 

User 
Profile A 

User 
Profile B 

User 
Profile C 

I 
I 
I 
I 
I 
I 

Objects Objects Objects I I Owned Owned Owned I 
by User by User by User 

~ Profile A Profile B Profile C ) 

f'----------f- J / 
The security officer can also control ownership, 
use, and existence of other user's objects. 

Each user can also grant 
other users the authority to use 
its objects. 



System Security Functions 

The system security functions require the use of the system security officer 
user profile. The system security officer can: 

• Enroll users on the system by assigning them to a user profile that is 
provided by CPF or that he has created 

• Grant or revoke a user's authority to use specific system functions, 
subsystems, application programs, and any other objects on the system 

• Revoke a user's authority to sign on the system by changing the password 
or deleting the user profile from the system 

The system security officer has the ultimate control over the use of the system. 

User Security Functions 

Within the limits established by the user profile, each system user can control 
the use of his objects. User security functions are provided through object 
authorization. 

Object Authorization 

Object authorization is the process of controlling which system users are 
allowed (authorized) to use an object and how each user can use the object. 
Two basic concepts are involved in object authorization: object ownership and 
object authority. 

Object Ownership 

Whenever a system user creates an object, he becomes the owner of that 
object. Unless ownership is transferred to a different user, he remains the 
owner of the object until the object is deleted from the system. The owner has 
complete control over his object. He can authorize other system users to use 
the object and he can transfer ownership of the object to some other system 
user. Only the system's security officer has the same control over an object as 
the object's owner. 

System Management 6-7 



6-8 

Object Authority 

Each system user must be authorized to use each object he needs. When an 
object is created, three levels of public authority to use the object can be 
established: 

• A" authority, which allows any operation involving the object by a" system 
users. 

• No authority, which allows no operations by anyone except the object 
owner. 

• Normal authority, which allows the operations normally associated with the 
object to be performed by a" system users. For example, the normal 
operation for a program would be its execution. 

After the object is created, any authority can be granted or revoked for specific 
users or for the public. 

How a user can use an object depends on what rights of object use are 
included in his authority. The object's owner and the system's security officer 
always have a" rights to the use of an object. Other system users can be 
granted some or a" rights of object use either through public authority or 
explicitly granted authority. The authority that can be granted is in two 
categories: 

• Object rights control what the user can do to the entire object. For example, 
object rights can let a user delete, move, or rename an object. 

• Data rights control how the user can use data in the object. For example, 
the data rights might give certain users the authority only to read data, while 
other users may be given authority to read and update data. Data rights 
provide additional control over the use of data entries within objects and are 
granted in addition to the object rights a user has. 

Using Security 

An insta"ation's security needs should be considered whenever application 
programs are designed. Application programs can be designed so that the 
security can be increased, as required by future needs, without unnecessary 
changes to the application programs. The following are typical security 
considerations: 

• Each system user should have access only to the functions and data he 
needs to perform his job. 

• Work station users should be able to access and update data in the data 
base only through thoroughly tested programs. 

J 

J 



A user can be authorized to use the objects he needs through the program he 
uses. To use this function, programs are created that execute with the user 
profile of the program's owner in addition to that of the user who calls the 
program. As long as the user is using the program, he has access to the 
objects and functions used by the program. This kind of operation offers such 
advantages as the following: 

• System users are authorized to use the objects without requiring numerous 
explicit authorizations to be made. 

• Additional work station users can easily be authorized to use the application. 

• Changes and additions can be made to the application without requiring 
additional explicit authorizations. 

• Security can be established through the same program that provides the 
interface to the user. 

The use of this function ensures that all users have access to the system 
functions they need without public authority being granted for many objects. 
As with any other security functions, the program should be designed to 
prevent users from circumventing the controls that are established. 

Using Menus for Security 

You can design menus for users to access certain applications. The users are 
limited to those functions they can access by using the options on the menus. 
Because the users can only perform the functions on the menu, you should 
organize the menus so they appear in logical sequence. 

The menu approach is not suited for all applications and is only as effective as 
your menu design. 

Additionally, a menu design that uses DFU or query can allow security 
exposures because these utilities allow the user to access other files while 
designing an application. 

System Management 6-9 



6-10 

SAVE/RESTORE 

CPF includes the functions needed to save objects outside the system and later 
restore them to the system. These save/restore facilities can be used to 
establish the procedures to be used to back up the system. These procedures 
can be designed as an integral part of system operations. The save/restore 
facilities can also be used to save seldom-used objects and free their auxiliary 
storage for other objects, and to store sensitive objects in a physically secure 
location to prevent access by unauthorized persons. CPF provides functions to: 

• Save objects from the system by writing a copy of the objects to storage 
outside the system and, optionally, free the auxiliary storage that is occupied 
by the objects so the space can be used for other objects 

• Restore saved objects to the system 

These functions can be used to -create backup copies of entire libraries or of 
individual objects on the system. The use of save/restore functions is essential 
for the proper maintenance of your system's files and objects. You may also 
want to consider off-site storage of a copy of your backed up files to protect 
against a physical disaster. 

Save Functions 

The save functions write a copy of an object, and its description, onto diskette 
or tape. When an object is saved it is only copied to the diskette or tape and 
not removed from the system and the object is still available for use. In a save 
operation, you can save: 

• A single object in a library 

• All objects in a library 

• Only those objects that have changed since the last save of the entire library 
or a specified date and time 

• All user libraries 

CPF maintains save/restore history information about each object saved. The 
information tells CPF when and where each object was last saved and when 
the object was last restored. The information can be used to ensure that 
objects are not inadvertently restored from an outdated copy of the object. 
This information can be displayed through the use of control language 
commands. 

When you save an object, you can free that object's storage for other system 
use. After the storage has been freed, the object is offline. When an object is 
offline, its description and offline location are still maintained in the system. 
However, space from the contents of the object is freed. Thus some 
operations, such as displaying the object description, can still be performed. 
Freeing the object's storage is not the same as deleting an object. When an 
object is deleted, all information about it is removed from the system; the 
object must be created or restored before it can be used again. 

J 



Restore Functions 

The restore functions of CPF copy saved objects back into the system. These 
functions are used to restore any saved object. The system library objects are 
copied back into the system by the CPF installation and specialization facilities 
described later in this chapter. 

Using Save/Restore 

System operating procedures should include a plan for backing up the system 
to recover from system or application failures. The plan should identify which 
objects must be saved and how often the save operations must be done. 

All the objects in a system do not all need to be saved at the same time. 
Some objects are used often but are seldom changed. and so they might be 
saved only after a change has occurred. Other objects might contain crucial 
information that changes daily. These objects might be saved daily to provide 
an up-to-date copy of the object for backup purposes. 

The ability to recover from errors and application failures should be part of the 
design of an application. When an application is designed. its design should 
include the approach to be used to maintain a backup copy of the files and 
programs used by the application. 

System Management 6-11 



6-12 

JOURNAL MANAGEMENT 

Journal management allows the recording of changes made to a data base 
member. 

You can use journal management to: 

• Reduce the time it takes to back up many of your files 

• Eliminate the loss of file updates because a file is damaged or lost 

The changes that are recorded by journal management can be used for: 

• An audit trail: Application programs can be created to analyze the changes 
made by a specific program or user, or to a specific record in a file. 

• Activity reporting: Application programs can be created to process the 
changes to determine what happened in an application. 

• Debugging: The recorded changes can be used to trace the history of a 
record. 

• Security: The recorded changes identify each user who has made a change. 
A journal entry is also made when a journaled file is opened. You can use 
this journal entry to review all users who have accessed a file for read only 
or update purposes. 

Journal management provides flexibility in recovering data base files because: 

• The changes can be saved without saving the entire file. 

• The changes are recorded in a separate object (called a journal receiver). 

• The changes can be moved offline quickly. 

• A data base file can be recovered up to a specific change. 

• Changes can be removed from a data base file from the time of a specific 
change. 

The changes to the data base files are recorded in the order in which the 
changes are made, regardless of which user made the changes, the type of job 
being performed (batch or interactive), or the type of change. Journal 

, management can usually reduce file backup time because only the changes to 
the file are saved; therefore, the entire file can be saved less frequently. 



CPF provides the commands nocessary to create both types of objects that are 
needed to use journal management: 

• The journal identifies which data base files are being journaled and the 
journal receivers associated with those files. 

• The journal receiver contains the actual changes made to the files it is 
associated with. 

A journal can be tailored for a specified use. For example, a journal with one 
set of attributes could be used for recovering data in critical files. Another 
journal, with a different set of attributes, could be used to record daily 
transactions for audit purposes. 

System Management 6-12.1 



6-12.2 

INSTALLATION AND SPECIALIZATION FACILITIES 

CPF includes the facilities needed to perform: 

• Initial installation of the IBM-provided objects that make up CPF 

• Installation of IBM-provided objects that are distributed as updates or 
enhancements to a previously installed CPF 

• Installation of CPF libraries that were saved by the save/restore facilities 

After CPF is installed, System/38 is operational and can be used to satisfy 
many data processing requirements. CPF can be tailored (specialized) to meet 
specific data processing requirements. Specialization of CPF, which is 
performed with control language commands, can be performed at any time 
after CPF is installed. Specialization might include: 

• Defining the work stations, the control units, and the lines on the system to 
CPF 

• Creating any unique print images and translate tables needed by the 
application programs 

• Creating user-defined libraries 

• Changing system values to meet specific system requirements 

• Creating any additional subsystem descriptions, job descriptions, job queues, 
and classes that are needed to manage the work done on the system 

• Creating any additional message queues needed by applications run on the 
system 

• Creating additional output queues to be used by the spooling functions of 
CPF 

• Creating any additional user profiles and authorizing the various system 
users to use the objects they need 

• Creating new edit descriptions 

Control language commands are also used to install other program products. 

J 



L 

SYSTEM OPERATION 

The operation of System/38 is controlled through control language commands 
and system messages. The system operator uses commands to control and 
terminate the system, subsystems, and other functions on the system. He can 
also use the message handling facilities to monitor the operation of the system. 
Although system operation is normally controlled through the system console, 
once the system is started, the operator can sign on at any work station and 
perform his normal system operation functions. The system console can also 
be used as a normal work station. In addition, System/38 and CPF are 
designed for semiattended operation. Once the system is started and the 
devices are ready for operation, the system can operate with minimal operator 
attention. 

System Operation Functions 

When CPF is installed, it includes a user profile for the system operator. This 
user profile authorizes the system operator to use the CPF functions and 
objects that are normally needed to operate the system. The operations 
associated with system operation include: 

• Starting the system 

• Starting and controlling the operation of subsystems 

• Controlling input/output devices when intervention is required 

• Controlling spooling functions 

• Performing save/restore operations 

• Handling diagnostic messages that CPF provides indicating errors or 
exceptional conditions that have occurred 

System Management 6-12.3 



6-12.4 

CPF provides the following menu to assist the system operator: 

SYSTEM OPERATOR MENU 
Select one of the following: 

1. OSPJOBQ !jobq) 
2. OSPOUTQ !outql 
3. SNDMSG tomsgq,(typel,msg 
4. CALL progr~m 

5. Execute command 
6. SBMJOB (jobl,!jobdl,!cmdl 
7. STRPRTWTR device,outq 
8. OSPWTR writer 
9. SBMDKTJOB dev,label,!loc) 

10. SBMDBJOB file,(member) 
11. DSPSBt1JOB 
12. DSPACTJOB (reset) 
90. SIGtlOFF OIlIOLIST *LISTl 
Option: __ P~rms: 

Cmd or parm: 

Log requests: *YES 
CF6-DSPMSG QSYSOPR 

CF3-Command entry 
CF7-DSPSBS 

CF4-Prompt !5 only) 
CF8-DSPSYS 

J 



When the system operator uses this menu, he can perform frequently used 
tasks quickly and easily. He can perform many common tasks by simply 
selecting an option from the menu. The operator can request functions that are 
not included on the menu by selecting option 5 and entering the appropriate 
control language command. Many of the functions selected from the menu 
require fewer system resources than they would if commands were entered to 
request them. 

Many of the operations that are traditionally performed by the system operator 
on other systems can also be performed by other work station users on 
System/38. These operations include submitting batch jobs to a job queue, 
starting and terminating spooling readers and writers, and starting and 
terminating subsystems. The use of these functions can be limited through 
each user profile. 

Message Handling 

When CPF is installed, it mcludes a message queue for the system operator. 
Messages from CPF intended for the system operator are sent to this message 
queue. Work station users and application programs can also send messages 
to this message queue. The system operator can receive messages from this 
queue regardless of the work station at which he signs on. 

The system operator and other work station users can communicate with each 
other by using the message-handling facilities. The CPF message-handling 
functions support the use of: 

• Predefined messages, which are created before they are used. These 
messages are placed in a message file when they are created and are 
retrieved from that file when they are used. 

• Impromptu messages, which are created when they are sent and are not 
permanently stored in the system. 

A message can be sent to a specific work station user (actually, to the queue 
associated with his work station) or to all the work stations on the system. For 
example, if the system operator needs to inform all the work station users that 
he is terminating the system, he can send, in one operation, one message to 
all the work stations. 

System Management 6-13 



6-14 

SERVICE 

CPF lets service personnel perform most service functions concurrently with 
normal data processing operations. The service facilities of CPF provide 
support for handling CPF problems, work station problems, and machine 
problems. The following support is provided to handle CPF problems: 

• Analyzing and diagnosing the problem. Commands are provided that 
produce diagnostic information. Dumps of specific objects, dumps of 
internal job information, and traces of processing flow can be obtained 
through these commands. A dump can be automatically generated if a job 
terminates because of an unexpected exceptional condition. 

• Reporting problems to IBM. A command is provided to copy previously 
produced diagnostic information onto a diskette so that it can be submitted 
to IBM as documentation of a problem. 

• Installing program patches and changes. Commands are provided so that 
temporary repairs (patches) can be applied to a program. Commands are 
also provided to apply IBM-supplied changes. 

CPF provides commands to perform the following functions to service internal 
machine problems: 

• Copy the contents of the machine error log to a spooled printer file. 

• Produce a trace of the internal machine activities. 

• Start the machine problem determination procedures. 

CPF also provides support through which work station device operation can be 
checked and work station printer operation can be verified. 

J 



This glossary includes terms and definitions from the 
IBM Vocabulary for Data Processing, Telecommunications, 
and Office Systems, GC20-1699. 

access path: The means by which CPF provides a 
logical organization to the data in a data base file so 
that the data can be processed by a program. See also 
arrival sequence access path and keyed sequence access 
path. 

activity level: An attribute of a storage pool or the 
system that specifies the maximum number of jobs that 
can execute concurrently in the storage pool or in the 
system. 

allocate: To assign a resource for use in performing a 
specific task. Contrast with deallocate. 

application: A particular data processing task, such as 
an inventory control application or a payroll application. 

arrival sequence access path: An access path that is 
based on the order in which records are stored in a 
physical file. See also keyed sequence access path and 
access path. 

attribute: A characteristic; for example, attributes of a 
field include its length and data type, and attributes of a 
job include its user name and job date. 

authority: The right to access objects, resources, or 
functions. 

autostart job: A job that is automatically initiated when 
a subsystem is started. 

autostart job entry: A work entry in a subsystem 
description that specifies a job to be automatically 
initiated each time the subsystem is started. 

auxiliary storage: All addressable storage other than 
main storage. Auxiliary storage is located in the 
system's nonremovable disk enclosures. 

batch job: A group of processing actions submitted as 
a predefined series of actions to be performed with little 
or no interaction between the user and the system. 

Glossary 

batch processing: A method of executing a program or 
a series of programs in which one or more records (a 
batch) is processed with little or no interaction with the 
user or operator. Contrast with interactive processing. 

class: An object that contains the execution parameters 
for a routing step. The system-recognized identifier for 
the object type is ·CLS. 

command: A statement used to request a function of 
the system. A command consists of the command 
name, which identifies the requested function, and 
parameters. 

command definition: An object that contains the 
definition of a command (including the command name, 
parameter definitions, and validity checking information) 
and identifies the program that performs the function 
requested by the command. The system-recognized 
identifier for the object type is ·CMD. 

command processing program: A program that 
processes a command. This program performs some 
validity checking and executes the command so that the 
requested function is performed. Abbreviated CPP. 

control language: The set of all commands with which 
a user requests functions. Abbreviated CL. 

control language program: An executable object that 
is created from source consisting entirely of control 
language commands. 

Control Program Facility: The system support licensed 
program for System/38. It provides many functions that 
are fully integrated in the system such as work 
management, data base data management, job control, 
message handling, security, programming aids, and 
service. Abbreviated C PF. 

controlling subsystem: An interactive subsystem that 
is started automatically when the system is started and 
through which the system operator controls the system. 
IBM supplies one controlling subsystem: QCTL. 

CPF: See Control Program Facility. 

CPP: See command processing program. 

Glossary G-1 



data base: The collection of all data base files stored in 
the system. 

data base file: An object that contains descriptions of 
how input data is to be presented to a program from 
internal storage and how output data is to be presented 
to internal storage from a program. See also physical 
file and logical file. 

data description specifications: A description of the 
user's data base or device files that is entered into the 
system using a fixed-form syntax. The description is 
then used to create files. Abbreviated DDS. 

data file utility: The utility of the Interactive Data Base 
Utilities licensed program that is used to create, 
maintain, and display records in a data base file. 
Abbreviated DFU. 

data rights: The authority to read, add, update 
(modify), or delete data contained in an object. 

DDS: See data description specifications. 

deallocate: To release a resource that is assigned to a 
specific task. Contrast with aI/ocate. 

DEVD: See device description. 

device description: An object that contains information 
describing a particular device that is attached to the 
system. The system-recognized identifier for the object 
type is *DEVD. Abbreviated DEVD. 

device file: An object that contains a description of 
how input data is to be presented to a program from an 
external device and/or how output data is to be 
presented to the external device from the program. 
External devices can be work stations, card devices, 
printers, diskette magazine drives, magazine tape drives, 
or a communications line. 

DFU: See data file utility. 

display file: A device file created by the user to support 
a display work station or console. 

externally described data: Data contained in a file for 
which the fields in the records are described to CPF, by 
using data description specifications, when the file is 
created. The field descriptions can be used by the 
program when the file is processed. Contrast with 
program-described data. 

G-2 

externally described file: A file for which the fields in J 
the records are described to CPF, through data 
description specifications, when the file is created. The 
field descriptions can be used by the program when the 
file is processed. Contrast with program-described file. 

file: A generic term for the object type that refers to a 
data base file, a device file, or a set of related records 
treated as a unit. The system-recognized identifier for 
the object type is *FILE. 

file description: The information contained in the file 
that describes the file and its contents. 

file overrides: The file attributes specified at execution 
time that will override the attributes specified in the file 
description or in the program. 

general-purpose library: The library provided by CPF to 
contain user-oriented, IBM-provided objects and 
user-created objects that are not explicitly placed in a 
different library when they are created. Named QGPL. 

high-level language: A programming language that 
relieves the programmer from the rigors of machine level 
or assembler level programming; for example, RPG III" 
CL, and COBOL. Abbreviated HLL. ...., 

HLL: See high-level language. 

inline data file: A file described by a / /DATA 
command that is included as part of a job when the job 
is read from an input device by a reader program. 

integrity: The protection of data and programs from 
inadvertent destruction or alteration. 

Interactive Data Base Utilities: A System/38 licensed 
program that consists of DFU, SEU, query, and SDA. 
Abbreviated IDU. 

interactive job: A job in which the processing actions 
are performed in response to input provided by a work 
station user. During a job, a dialog exists between the 
user and the system. 

interactive subsystem: A subsystem in which 
interactive jobs are to be processed. IBM supplies three 
interactive subsystems: QCTL, QINTER, and QPGMR. 

invocation: An instance of the execution of a program. 



job: A single identifiable sequence of processing actions 
that represents a single use of the system. A job is the 
basic unit by which work is identified on the system. 

job description: An object that contains information 
defining the attributes of a job. The system-recognized 
identifier for the object type is *JOBD. 

job priority: The order in which batch jobs on a job 
queue are selected for execution by CPF. More than 
one job can have the same priority. 

job queue: An object that contains a list of batch jobs 
submitted to the system for execution and from which 
the batch jobs are selected for execution by CPF. The 
system-recognized identifier for the object type is 
*JOBQ. 

job queue entry: A work entry in a subsystem 
description that specifies the job queue from which the 
subsystem can accept batch jobs and transferred jobs. 

journal: (1) An object through which entries are placed 
in a journal receiver when a change is made to a data 
base file. The system uses the journal to record 
information about the journal receivers and data base 
files that are associated with the journal. The 
system-recognized identifier for the object type is *JRN. 
See also journal entry and journal receiver. (2) To place 
entries in a journal. 

journal receiver: An object that contains journal entries 
that are generated when a change is made to a data 
base file being journaled. The system-recognized 
identifier for the object type is *JRNRCV. See also 
journal. 

key field: A field in a record whose contents are used 
to sequence the records of a particular type within a file 
member. 

keyed sequence access path: An access path to a 
data base file that is ordered on the contents of key 
fields contained in the individual records. See also 
arrival sequence access path and access path. 

library: An object that serves as a directory to other 
objects. A library is used to group related objects and to 
find objects by name when they are used. The 
system-recognized identifier for the object type is *LlB. 

library list: An ordered list of library names used to 
find an object. The library list indicates which libraries 
are to be searched and the order in which they are to be 
searched. The system-recognized identifier is *LlBL. 
*LlBL specifies to the syster:n that a job's current library 
list is to be used to find the object. 

logical file: A description of how data is to be 
presented to or received from a program. This type of 
data base file contains no data, but it provides an 
ordering and format for one or more physical files. 
Contrast with physical file. 

main storage: All storage in a computer from which 
instructions can be executed directly. 

member: A description of a named subset of records in 
a physical or logical file. Each member conforms to the 
characteristics of the file and has its own access path. 
All I/O requests are directed to a specific member of a 
data base file. 

message: A communication sent from one person or 
program to another person or program. 

message description: The information describing a 
particular message. A message description is stored in a 
message file. 

message queue: An object on which messages are 
placed when they are sent to a person or program. The 
system-recognized identifier for the object type is 
*MSGQ. 

object: A named unit that consists of a set of attributes 
(that describe the object) and, in some cases, data. An 
object is anything that exists in and occupies space in 
storage and on which operations can be performed. 
Some examples of objects are programs, files, and 
libraries. 

object authority: The right to use or control an object. 

object rights: The authority that controls what a 
system user can do to an entire object. For example, 
object rights include deleting, moving, or renaming an 
object. There are three types of object rights: object 
existence, object management, and operational. 

password: A unique string of characters that a system 
user enters to identify himself to the system. 

Glossary G-3 



physical file: A description of how data is to be 
presented to or received from a program and how data 
is actually stored in the data base. A physical file 
contains one record format and one or more members. 
Contrast with logical file. 

production library: A library containing objects needed 
for normal processing. Contrast with test library. 

program~escribed data: Data contained in a file for 
which the fields in the records are described in the 
program that processes the file. Contrast with externally 
described data. 

program~escribed file: A file for which the fields in 
the records are described only in the program that 
processes the file. To CPF, the record is viewed as a 
character string. Contrast with externally described file. 

public authority: The authority to an object granted to 
all users. 

qualified object name: An object name and the name 
of the library containing the object. Contrast with object 
name. 

query: A request to extract, from a file, one or more 
records based upon some combination of data. 

queue: A line or list formed by items in the system 
waiting for service; for example, work to be performed 
or messages to be displayed. 

reader: A program that reads jobs from an input device 
or a data base file and places them on a job queue. 

record: An ordered set of fields that make up a single 
occurrence of the basic unit of data transferred between 
a file and a program. 

record format: The definition of how data is structured 
in the records contained in a file. The definition includes 
the record name, field names, and field descriptions 
(such as length and data type). The record formats used 
in a file are contained in the file's description. 

restore: To transfer specific objects or libraries from 
magnetic media such as diskettes or tape to internal 
storage by reconstructing them in internal storage. 
Contrast with save. 

G-4 

routing data: A character string that CPF compares 
with character strings in the subsystem description 
routing entries to select the routing entry that is to be 
used to initiate a routing step. Routing data can be 
provided by a work station user, specified in a 
command, or provided through the job description for 
the job. 

routing entry: An entry in a subsystem description that 
specifies the program to be invoked to control a routing 
step that executes in the subsystem. 

routing step: The processing performed as a result of 
invoking a program specified in a routing entry. 

save: To duplicate specific objects or libraries by 
transferring them from internal storage to magnetic 
media such as diskettes or tape. Contrast with restore. 

security: The control of access to, or use of, data or 
functions. 

security officer: The individual at an installation who is 
designated to control the authorization of functions and 
data in System/38. 

single-level storage: The technique of addressing 
multiple levels of storage through a single addressing 
structure. 

source file: A file created by the specification of 
FILETYPE(*SRC). A source file can contain source 
statements for such items as high-level language 
programs and data description specifications. 

spooled file: A generic term for three types of files: a 
device file that provides access to an inline data file or 
that creates a spooled output file, an inline data file,. or a 
spooled output file. 

spooling: The CPF-provided execution-time support 
that reads and writes input and output streams on an 
intermediate device in a format convenient for later 
processing or output. 

spooling subsystem: A subsystem that provides the 
operating environment needed by the CPF programs that 
read jobs onto job queues and write files from the 
output queues. IBM supplies one spooling subsystem: 
QSPL. 

storage pool: A logical segment of main storage 
reserved for executing a group of jobs. 

J 

J 



subsystem: An operating environment, defined by a 
subsystem description, through which CPF coordinates 
work flow and resource usage. 

subsystem attributes: Specifications in a subsystem 
description that specify the amount of main storage 
available to the subsystem and the number of jobs that 
can execute concurrently in the subsystem. 

subsystem description: An object that contains 
information defining a subsystem and that CPF uses to 
control the subsystem. The system-recognized identifier 
for the object type is ·SBSD. 

system library: The library provided by CPF to contain 
system-oriented objects provided as part of CPF. 
Named QSYS. 

system operator: The person who operates the system 
and looks after the peripheral equipment necessary to 
initiate computer runs or finalize the computer output in 
the form of completed reports and documents. 

temporary library: A library that is automatically 
created for each job to contain temporary objects that 
are created by that job. The objects in the temporary 
library are deleted when the job ends. Named QTEMP. 

test library: A library to be used in debug mode and 
that does not contain objects needed for normal 
processing. Contrast with production library. 

user identification: System recognition of a system 
user so that only the facilities and data he is authorized 
to use are made available to him. 

user profile: An object that contains a description of a 
particular user or group of users. A user profile contains 
a list of authorizations to objects and functions. The 
system-recognized identifier for the object type is 
·USRPRF. 

work entry: An entry in a subsystem description that 
specifies a source from which jobs can be accepted to 
be executed in the subsystem. 

work station: A device that lets a person transmit 
information to or receive information from a computer as 
needed to perform his job. 

work station entry: A work entry in a subsystem 
description that specifies the work stations from which 
users can sign on to the subsystem or from which 
interactive jobs can transfer to the subsystem. 

work station user: A person who uses a work station 
to communicate with System/3S. 

Glossary G-5 



J 

J 

G-6 



access groups 1-8 
access paths 

arrival sequence 4-8 
definition of G-1 
general description 4-8 
keyed sequence 4-9 
sharing 4-13 

access to system, controlling 6-1 
activity level 3-7 
activity level control 1-8 
adding routing entries 3-18 
adding work entries 3-18 
adopt user profile 6-10 
allocate G-1 
allocating objects 3-20 
allocation of storage, objects 2-2 
application G-1 
application design 5-1 
application development 

description of 5-1 
overview 1 -4 

application structure 5-5 
application, structuring 5-5 
area, data 5-5 
arrival-sequence access path G-1, 4-8 
ascending sequence 4-9 
asynchronous job execution 3-22 
attribute G-1 
attributes 

display field 4-22 
file 4-2 
job 3-11 
objects 2-1 

authority G-1 
authority, object 6- 7 
authorization, objects 6-7 
authorizing system users 6-7 
autostart job G-1 
autostart job entry G-1,3-10 
auxiliary storage G-1 

backing up the system 6-9 
batch applications, design 5-1 
batch job 

definition G-1,3-3 
initiating 3-21 

batch processing G-1 
batch subsystem 3-17 

call menu, program 5-2 
canceling jobs 3-19 
card device support 4-28 
changing job attributes 3-19 
changing passwords 6-7 
changing routing entries 3-18 
changing subsystem descriptions 3-18 
changing work entries 3-18 
charac.teristics, device 4-19 
checking, record format level 4-5 
class G-1,3-13 
class operations 3-18 
clearing a library 2-8 
command 

definition G-1, 5-15 
definition of G-1 
description of 1-9 
entry display 1-10 
name, description of 1-9 
parameters 1-10 
processing program G-3, 5-15 
prompting 1 -10 
syntax 1-9 

communication, program-user 5-3 
concepts 

data base 4-7 
data management 4-1 
work management 3-2 

concepts, system 1-5 
concurrent service 6-14 
conditioning indicator 4-23 
connecting a file to a program 4-6 
consecutive record processing 4-11 
control language 

definition of G-1 
general description 1-9 
logic functions 5-9 
programs G-1, 5-8 

control program facility, definition 
of G-1, 1-1 

controlling resource usage 3-2 
controlling subsystem G-1, 3-4, 3-17 
controlling system operation 1-2 
controlling work flow 3-2 
copy operation 4-36 
copying files 4-36 
CPF 

definition of G -1, 1-1 
interfaces 1-2 
overview 1-2 

CPF-provided libraries 2-5 
CPF-provided subsystems 3-16 
CPF-provided user profiles 6-6 

Index 

Index X-1 



creating 
edit descriptions 6-11 
libraries 2-8 
print images 6-11 
programs and files 5-6 
subsystem descriptions 3-18 

customer engineer, user profile 6-6 

data area 5-5 
data association specifications 4-2 
data base 

definition of G-1, 4-7 
file design 5-4 
functions 1-8 

data base data management 4-7 
data base file 

definition of G-1,4-1 
using 4-18 

data description specifications 
definition of G-2, 1-3 
form 4-30 
source statements 4-31 
use of 4-2 

data file utility G-2, 5-10 
data files 

designing 5-4 
inline 4-32 

data integrity 6-1 
data management 

card device 4-28 
concepts 4-1 
data base 4-7 
device support 4-19 
diskette 4-28 
facilities 4-1 
overview 1 -3 
printer 4-27 

data operations 
externally described data files 4-30 
general description 4-29 
program described data files 4-29 

data path 4-6 
data portion, objects 2-1 
data rights G-2, 6-8 
data, description of 4-2 
data, routing 3-9 
deallocating objects 3-20 
debugging and testing 5-6 
debugging functions 5-14 
defaults, parameter 1 -11 
defining commands 5-15 
defining devices 6-11 
definitional objects, subsystem 3-14 
deleting 

libraries 2-8 
subsystem descriptions 3-18 

dependent programs, file 4-7 
descending sequence 4-9 

X-2 

describing data 4-2 
description 

device 4-19 
file 4-2 
job 3-11 
logical file 4-18 
message 5-12 
physical file 4-11 
text 5-7 

design considerations, application 5-1 
designing data files 5-4 
developing applications 5-1 
device 

characteristics 4-19 
configuration 6-11 
description G-2, 4-19 
file design 5-4 
file, definition of G-2 
files 4-19 
files, definition of 4-1 

device support 
card 4-19, 4-28 
communications 4-19,4-27 
data management 4-19 
diskette magazine drive 4-19, 4-28 
display 4-19, 4-20 
nondisplay 4-27 
printer 4-27 
tape 4-19,4-28 

DFU (data file utility) G-2, 5-10 
diskette magazine drive support 4-19, 4-28 
display 

command entry 
device support 
fields 4-23 

1-10 
4-20 

file descriptions 4-21 
file record formats 4-22 
file, definition of G-2 
files 4-20 
library contents 2-8 
prompt 1-11 
subsystem descriptions 3-18 

displaying 
jobs 3-19 
object descriptions 2-7 
subsystem status 3-18 

documentation 5-7 

edit descriptions, creating 6-11 
enrolling users 6-7 
entering commands 1-9 
entering source statements 5-6 
entries 

routing 3-9 
work 3-7 
work station 3-7 

entry, job queue 3-8 
environment, operating 3-4 

J 

J 



exclusive file allocation 4-6 
execution control operations 3-19 
execution environment, machine 3-13 
explicit file allocation 4-6 
external device support 4-19 
externally described data G-2, 4-2 
externally described data file 

creating 4-30 
definition of G-2 
operations 4-30 

facilities 
data management 4-1 
installation and specialization 6-11 
object management 2-1 
service 6-14 
work management 3-2 

field level description 4-2 
fields, display 4-22 
file 

connecting to program 4-6 
definition of G-2, 4-1 
members 4-11 
opening 4-6 
overrides G-2, 4-6 
processing 4-6 
processing, spooled 4-32 
source 4-5 

file attributes 
general description 4-2 
special 4-5 

file dependent programs 4-7 
file description 

definition of G-2 
display file 4-21 
general description 4- 2 
logical file 4-16 
physical file 4-11 

file independent programs 4-6 
file reference function 4-37 
file usage, tracking 4-37 
files 

card 4-28 
copying 4-36 
creating 4-31,5-6 
data base 4-7 
designing 5-4 
diskette 4-28 
display 4-20 
general description 4-1 
message 5-11 
physical 4-11 
printer 4-27 
spooled 4-5 

finding objects in libraries 2-5 
formatting, screen data 4-20 
free storage 6-9 

functions 
debugging 5-14 
restore 6-10 
save 6-10 
save / restore 6-9 
security 6-7 
system operation 6-12 

general object operations 2-7 
general purpose library G-2, 2-5 
generic keys 4-9 
granting authority 6-7 
grouping objects 2-2 

handling messages 5-11 
high-level language G-2, 4-28 
history information, save / restore 6-10 
holding a job 3-19 

identification, user 6-1 
identifier, record format level 4-5 
identifying objects 2-2 
impromptu messages 6-13 
independent programs, file 4-6 
information, passing 5-5 
initiating jobs 3-21 
inline data file G-2, 4-32 
input spooling 4-32 
installation and specialization 
facilities 6-11 

integrity, data 6-1 
integrity, definition of G-2 
interactive 

application, design 5-1 
command prompting 1-10 
debugging 5-14 
job, definition of G-2, 3-2 
jobs, initiating 3-21 
subsystem G-2,3-17 

Interactive Data Base Utilities 
interface, user 5-2 
interfaces to CPF 1-2 
invocation, definition of G-2 
invoking an application 5-2 

G-2, 5-6 

Index X-3 



job 
definition of G-2, 3-2 
general description 3-11 
holding 3-19 
transferring 3-20 

job attributes, changing 3-19 
job description 

definition of G-2 
general description 3-11 
operations 3-19 

job entries, autostart 3-10 
job priority 

batch 3-21 
definition of G-2 

job priority, batch 3-21 
job queue entry G-2, 3-8 
job queue, definition of G-3, 3-3 
job stream, example 3-23 
job / subsystem relationships 3-14 
jobs 

batch 3-3 
canceling 3-19 
displaying 3-19 
general description 3-10 
holding 3-19 
initiating 3-21 
interactive 3-2 
managing 3-19 
releasing 3-19 
rerouting 3-20 
submitting 3-19, 3-22 

key field G-3, 4-9 
key field, definition of 4-9 
key, generic 4-9 
keyed-sequence access path G-3, 4-9 
keyed sequence files, processing 4-9 
keyword parameters 1 -10 

level checking, record format 4-5 
level identifier 4-3 
libraries 

backing up _ 6-10 
CPF-provided 2-5 
general description 2-2 
test 5-6 

library list 
definition of G-3, 2-5 
use 2-6 

library operations 2-8 
library search 2-5 
library types 2-5 
library, definition of G-3, 2-2 
list, library 2-5 

X-4 

locating objects 2-5 
logic functions, control language 5-9 
logical file G-3, 4-12 
logical file description 4-18 

machine execution priority 3-13 
main storage 

definition of G-3 
pools 3-7 

management facilities 
data 4-1 
object 2-1 
work 3-2 

managing jobs 3-19 
managing libraries 2-8 
managing subsystems 3-18 
managing the system 6-1 
member G-3, 4-11 
menu, program call 5-2 
message 

definition of G-3 
descriptions G-3, 5-12 
files 5-11 
handling 

general description 5-11 
system operation 6-12 

queue G-3, 5-12 
text 4-23 

messages, using 5-13 
monitor, subsystem 3-14 
monitoring system operation 6-12 
moving objects 2-2, 2-7 
multifunction card unit support 4-28 
multiple-field keys 4-9 
multiple record formats 4-14 

named inline data files 4-32 
names, object 2-2 
non display device support 4-27 
normal object authority 6-8 

object 
allocating 3-20 
attributes 2-1 
authority G-3, 6-7 
damage 2-9 
data portion 2- 1 
deallocating 3-20 
definition of G-3, 1-2, 2-1 
description, displaying 2-7 



object (continued) 
finding 2-5 
identification 2-2 
management concepts 
management facilities 
management operations 
management, overview 
moving 2-2, 2-7 

2-1 
2-1 

2-7 
1-2 

name, qualified 2-2 
names 2-2 
operations 

general 2-7 
job 3-19 

organization 2-2 
ownership 6-7 
renaming 2-7 
restoring 6-10 
rights G-3, 6-7 
savel restore operations 
saving 6-10 
security operations 2-7 
types 2-1 

2-7, 6-9 

object-oriented architecture 1-6 
object use, rights of 6-7 
objects in a library 2-2 
opening a file 4-6 
operating environment 3-4 
operational characteristics, object 2-2 
operations 

data 4-29 
library 2-8 
object 2-7 
subsystems 3-18 
system 6-10 

operator, system 6-5 
organizing objects 2-2 
output files, spooled 4-34 
output spooling 4-34 
overrides, file 4-6 
overriding job attributes 3-12 
ownership, object 6-7 

parameter defaults 1-11 
parameters, definition of 1-10 
passing parameters 5-5 
password 

changing 6-7 
definition of G-3 
general description 6-3 

path, access 4-8 
physical file G-3, 4-11 
physical file record format 4-11 
pools, storage 3-7 
predefined job 3-2 
predefined messages 6-13 
predefined operating environment 3-4 
predefined user profiles 6-6 
print images, creating 6-11 

printer file support 4-27 
priority 

job queue 3-21 
machine execution 3-13 

processing a file 4-6 
processing keyed sequence files 4-9 
processing spooled files 4-32 
processor ti me 3 -13 
profile, user 6-2 
program 

command processing 5-15 
connecting to a file 4-6 
control language 5-8 
creating 5-6 
file dependent 4-7 
file independent 4-6 

program call menu 5-2 
program-described data G-3, 4-2, 4-4 
program described data files, 
operations 4-29 

program invocation 5-2 
program support representative, user 
profile 6-5 

program-user communication 5-3 
programmer user profile 6-4 
programming considerations 5-5 
prompts, commands 1-10 
protected environment, testing 5-6 
public authority G-3, 6-7 

qualified object name G-3, 2-3 
query G-3 
queue G-3 
queues, message 5-12 

randcm record processing 4-9 
reader 

definition of G-3 
execution 3-22 

reader, job submission 3-22 
record G-3 
record format 

definition of G-3 
display file 4-23 
logical file 4-12 
multiple 4-15 
physical file 4-11 

record format level checking 4-5 
record format specifications 4-2 
record organization, retrieval 4-7 
record retrieval 

general description 4-8 
random 4-9 

record sequence 4-8 

Index X-5 



record, definition of 4-1 
recovery 6-10 
reference function, file 4-37 
relationships, subsystem/job 3-14 
relative record number retrieval 4-8 
releasing jobs 3-19 
removing routing entries 3-18 
removing work entries 3-18 
renaming objects 2-7 
rerouting jobs 3-20 
resource usage, controlling 3-2 
response indicator 4-22 
restore G-3 
restore functions 6-10 
restore objects 6-10 
retrieval organization, records 4-8 
revoking authority 6-7 
rights of object use 6-8 
routing data G-3, 3-9 
routing entry 

definition of G-4 
general description 3-9 
modifying 3-18 

routing step G-4, 3-9, 3-13 
routing step operations 3-20 

sample data, testing 5-6 
save functions 6-10 
save/restore 6-9 
save / restore history information 6-10 
save/restore operations 

library 2-8 
object 2-7 

save/restore, using 6-10 
save, definition of G-4 
saving objects 6-9 
screen formatting 4-20 
searching libraries 2-5 
security G-4, 6-1 
security considerations 6-8 
security functions 6-6 
security officer G-4, 6-5 
security operations, object 2-7 
security, using 6-8 
semi-attended operation 6-12 
sequence of records 4-8 
sequence, arrival 4-8 
sequential record retrieval 4-8 
service 6-14 
sign-on, password 6-3 
single level storage G-4, 1-6 
source file G-4, 4-5 
source statements 

data description specifications 4-31 
entering 5-6 

sources, reader 3-22 
special file attributes 4-5 
specialization facilities 6-11 

X-6 

specifications 
data association 4-2 
record format 4- 2 

specifications form, data 
description 4-30 

spooled file G-4, 4-5 
spooled file processing 4-32 
spooled output files 4-34 
spooling functions 3-17 
spooling input 3-22, 4-34 
spooling subsystem G-4,3-17 
spooling, definition of G-4 
starting a subsystem 3-18 
step, routing 3-9, 3-13 
storage allocation, objects 2-2 
storage pool, definition G-4, 1-6 
storage, single level 1,6 
storage, transfer 1-6 
structuring applications 5-5 
subfiles 4-20 
submitting jobs 3-19, 3-22 
subsystem attributes G-4, 3-6 
subsystem description 

contents 3-6 
definition of G-4, 3-3 
operations 3-18 
use of 3-4 

subsystem/job relationships 3-14 
subsystem monitor 3-14 
subsystem operations 3-18 
subsystem, definition of G-4, 3-4 
subsystems 

batch 3-17 
controlling 3-4, 3-17 
CPF-provided 3-16 
general description 3-4 
managing 3-18 
spooling 3-17 
user-defined 3-18 

support, display devices 4-20 
system back-up 6-9 
system concepts, overview 1-5 
system level security 6-7 
system library G-4, 2-5 
system management 

facilities 6-1 
overview 1-4 

system operation 6-12 
system operation functions 6-12 
system operation, controlling 1-2 
system operator user profile 6-5 
system security functions 6-6 
system security officer 6-5 
system tailoring 6-11 

J 

J 

J 



tailoring the system 6-11 
temporary library G-4, 2-5 
terminating a subsystem 3-18 
test library G-4, 5-6 
testing and debugging 5-6 
testing environment 5-6 
testing, library use 2-6 
text descriptions 5-7 
text of messages 4-23, 5-11 
time slice 3-13 
tracing variables 5-14 
tracking file usage 4-37 
training work station users 
transferring object ownership 
types of libraries 2-5 
types of objects 2-1 

5-6 
6-7 

unnamed inline data files 4-32 
use of library list 2-6 
user access to objects, controlling 6-1 
user authorization 6-7 
user-defined commands 5-15 
user-defined subsystems 3-18 
user identification G-4, 6-2 
user interface 4-22 
user interface, designing 5-2 
user-level security 6-7 
user profile 

adopting 6-9 
definition of G-4, 6-2 

user-program communication 5-3 
user security functions 6-7 
user, work station 6-5 
using data base files 4-18 
using display device support 4-23 
using externally described data 4-2 
using messages and message queues 5-13 
using savel restore 6-10 
using security 6-8 

variable messages 
variables, debugging 

5-11 
5-14 

where used, files 4-37 
work entry 

autostart job entries 3-10 
definition of G-4 
general description 3- 7 
job queue entry 3-8 
modifying 3-18 

work entry (continued) 
work station entries 3-7 

work management concepts 3-2 
work management facilities 3-1 
work management functions 3-16 
work manangement, overview 1-3 
work station G-4 
work station entry G -4, 3-7 
work station support 4-20 
work station user 

definition of G-4 
job 3-3 

Index X-7 



J 

J 

X-8 



L IBM System/38 
'-' Control Program Facility Concepts Manual 

GC21·7729·3 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any 
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and 
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. 

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

D If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s) : 

No postage neceQary if mailed in the U.S.A. 

Please contact your nearest IBM branch office to request additional 

publications. 

Name 

Company or 

Organization 

Address 

Phone No. 

City State Zip Code 

Area Code 



GC21-7729-3 

Fold and tape 

Fold and tape 

Please do not staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
I nformation Development 
Department 245 
Rochester, Minnesota, U.S.A. 55901 

Please do not staple 

1 00 s: 
Fold and tape ,~ -, ~ 

.----------------~ -~ 
NO POSTAGE 
NECESSARY IF 
MAl LED IN THE 
UNITED STATES 

Fold and tape 

(") 
o 
" r+ 

o 
""0 

o 
I~ 

3 
,~ 

!:l. 

I~ 

:J 
,~ 

I 

I 

s: 
Q) 

" c 
~ 

~ 





T=~_~ - -- ---------~-.-e 

International Busilllll Machines Corporation 

tii 
s:: 
en 
< = <II 
3 -&! 
~ 
:::l ... .. 
2-
~ .. 
.g .. 
I» 
3 

~ ." 
I» g, 
~. 

(") 
0 
:::l 
Q 
"0 ... ... 
s:: 
I» 
:::l 
C 
!!. 

:!! 
CD 
z 
~ 
en -&! w 
~ 

~ 
::1. 
:::l ... 
3. 
5· 
c 
en 
l> 

Q 
(") 

'" .... 
~ .... 
'" <0 
W 

6C21-7729-3 


