
SYSTEM 801

Principles of Operation

Version 2.5 November 22, 1976

IBM CONFIDENTIAL

801 Experimental Minicomputer Project
Computer Sciences Department
Thomas J. Watson Research Center
Yorktown Heights, N. Y.

Contents

1. System Architecture .. 1
1.1 Central Processing Unit .. 1
1.2 Register Organization ... 3

1.2.1 The Instruction Address Register .. 3
1.2.2 The MQ Register .. 4
1.2.3 The Condition Register :4

1.3 Instruction Formats .. . S
1.4 Interrupts ... 6
1.5 Input and Output .. _ 7

1.5.1 The External Interrupt Adapter ... 8
1.5.2 Input/Output Interface ... 8

2. Storage Access ... 9
2.1 Instructions ... 9

3. Address Computation .. 11
3 .1 Instructions . 11

4. Branching ... 11
4.1 Invalid Branch Address . 11
4.2 Branch With Execute Instructions .. 12
4.3 Instructions ... 12

5.Traps ... 15
5.1 Instructions ... 15

6. Moves and Inserts .. 16
6.1 Instructions . 16

7. Arithmetic ... 20
7 .1 Instructions . 20

8. Logical Operations · 24
8.1 Instructions ... 24

9. Shifts : .. 26
9.1 Instructions ... 26

10. System Control .. 30
10.1 Cache Control Operations . 30
10.2 Instructions .. 30

11. Relocate ... 32
11.1 Relocate Facilities ... 32
11.2 Interrupts . 33
11.3 New or Modified Instructions .. 33

12. 801 1/0 Subsystem .. 35
12.1 Introduction . 35
12.2 1/0 Structure Overview .. 35
12.3 1/0 Instructions .. 35

IBM CONFIDENTIAL

Contents (continued)

12.4 Serial Link ; ... 37
12.5 Control Units ... 37

12.5.1 Control Unit Signals ... 38
12.5.2 CU States and Commands .. 38
12.5.3 CU Summary Status Byte . 39

12.6 BSA .. 40
12.6.1 Transmission , ~ . . 40
12.6.2 Receive ... 41

· 12.6.3 Status Register : 41
12.6.4 Status Register Extension ... 42

12.7 OMA ... 44
12. 7 .1 Functional Description . 44
12.7.2 Conclusion of OMA Operations ... 46
12. 7 .3 .status Register . 46
12.7.4 Status Register Extension ... 47

12.8 External Interrupt Adapter .. 48
12.8.1 Functional Description ... 48
12.8.2 Status Register ... 48
12.8.3 EIA Reset ... 49

12. 9 Switch . 49
12.10 Errors in the 1/0 Subsystem .. 49

12.10.1 Errors in Executing PIO Instructions 49
12.10.2 MIO Bus Errors ... 50
12.10.3 Errors that do not cause an 1/0 Check Interrupt 50

12.11 I/ 0 System Reset . 50
12.12 Initial Program Load (IPL) ... 50

13. Index By Code .. 52

14. Index By Mnemonic 55

IBM CONFIDENTIAL

1. 801 System Architecture Page 1

1. System Architecture

Logically an 801 system consists of main
storage, a central processing unit, low-speed and
high-speed input/ output devices, and an inter­
rupt adapter. This structure is shown in Figure
1.1.

Main storage provides the system with di­
rectly accessible fast access storage of data. Both
data and programs must be loaded into main
storage (from input devices) before they can be
processed.

No processing of data occurs in main stor­
age, either implicitly or explicitly. All data must
be loaded into high-speed CPU storage called
registers before it can be operated upon.Be­
tween main storage and the registers, there is, on
some 801 implementations, another storage level.
This level, called cache, is split into two parts,
one for data, the other for instructions.

Unlike many systems, the fetching of in­
structions and the fetching and storing of data
are not tightly coupled. The CPU always at­
tempts to prefetch one or more instructions.
Hence, modification of an instruction by a pro­
gram may not be seen when that instruction is
fetched for execution, unless explicit steps have
been taken to ensure that all pre-fetched instruc­
tions have been invalidated. For the purpose spe­
cial instructions to control the caches have been
provided.

Again, unlike many systems with caches,
the data cache is not tightly coupled to the flow
of data to or from input/output devices. For low­
speed devices, which communicate directly with
the CPU through its registers, this creates no
problem. For high-speed input/ output devices
which may access memory directly, the program
must ensure that, where necessary, updated data
in cache is placed in storage prior to output, and
that storage updated by input is correctly reflect­
ed in the data cache. Again, the cache control
instructions can be used to guarantee correct
results in these situations.

Fetching and storing of data by the CPU
are only affected by any concurrent direct mem­
ory access input/ output data transfer to the ex­
tent that the CPU may be stopped while awaiting
memory response. When concurrent requests to
a main storage location occur, access is normally

granted in a predetermined sequence that assigns
highest priority to input/ output requests. ff the
first reference changes the contents, any subse­
quent storage fetches obtain the new contents,
although, as noted above, care must be taken to
ensure the synchronization of data and instruc­
tion caches where concurrent accesses are possi­
ble.

Main storage may be volatile or nonvolatile.
ff it is volatile, the contents of main storage are
not preserved when power is turned off. ff it is
nonvolatile, turning power on or off does not
affect the contents of main storage provided the
CPU is in the stopped state and no references are
made to main storage by input/ output devices
which can directly access storage. The organiza­
tion of storage is shown in Figure 1.2.

0 1 2 3 4 s 6 7 Digits

0 1 2 3 Characters

0 1 Half wonh

Ill 0 Register

0 Word

0 1 2 3 4 s 6 7
0 4 8 12 16 20 24 21 1

Figure 1.2. Stonp Orpalzadoo

1.1 Central Processing Unit

The central processing unit (CPU) is the
controlling center of the system. It contains the
sequencing and processing controls for instruc­
tion execution, interruption action, initial pro­
gram loading, and other system-related func­
tions.

The CPU, in processing instructions, at­
tempts to achieve the greatest instruction proc­
essing rate possible. Instructions which do not
require storage access may be executed while
storage is being accessed for some previous in­
struction, and the CPU attempts to pre-fetch
instructions whenever possible, overlapping such
fetches with the execution of other instructions.

u:u.A rru.1c1nc~1T1A1 71:. 1 1 ') ')

Page 2

Main

Memory

Memory Control

1. 801 System Architecture

high-speed
input/ output

devices

'~ ~ ... _______ _!II.DI

'

Direct
Memory

Access (OMA)

instructions

instruction
cache

76. 10. 15

Central
Processing
Unit

data

data
cache

external interruption line

Figure 1.1. System Organization

IBM CONFIDENTIAL

low-speed
input/ output
devices

adapters

external
interrupt
adapter

1t
1/0 Bus

1. 801 System Architecture

Since a successful branch instruction requires the
fetching of an instruction out of sequential order,
means are provided to permit execution of one
instruction while fetching the target instruction
of the branch. Control is maintained over such
pre-fetching so that instruction execution ap­
pears to take place in the order intended by the
programmer.

General hrpoee Registers

Instructions which the CPU can execute fall
into ten classes; storage access, address computa­
tion, branching, trap, move, arithmetic, logical
operation, shift, system control, and
input/ output instructions. A separate section is
devoted to each instruction class.

1.2 Register Organization

All manipulation of information is done in
high-speed storage internal to the central proc­
essing unit (CPU). The principal storage internal
to the CPU is a set of sixteen registers. Each reg­
ister consists of 24 bits. These registers contain a
prefix of eight bits and a half of sixteen bits. The
half consists of two characters, CO and Cl, of
eight bits each. The half is also considered to
consist of four digits, DO, DI, 02, and 03, each
containing four bits. The register organization is
shown in Figure 1.3.

I

Prefix

I I

Register

Half

co

I

Cl

To avoid the destruction of operands in
certain operations, some instructions provide for
the result of the operation to be placed in the
twba, of a pair, of one of the source operand reg­
isters. The register twin to a given register bas
the name, in binary, of the given register, with
the low-order bit inverted. Thus, the twin of reg­
ister S (binary 0101) is register 4 (binary 0100),
and the twin of register 14 (binary 1110) is regis­
ter 15(binary 1111).

DO I Dl 02 I 03

For computational purposes, registers are
treated as signed algebraic quantities, unsigned
positive quantities, or, where required, as un­
structured logical quantities. In a register, an al­
gebraic quantity consists of twenty-four bits in
two's complement representation.

Ir ' 12 II"

The MQ RePter"

l MQ

The Condition Register

l CR
I~

l IAR

.... """13

I~ 22

0

1

2

3

4

s
6

7

8

9

10

11

12

13

14

15

Page 3

Pair

Pair

Pair

Pair

Pair

Pair

Pair

(Chars)

(Digits)

Three additional special-purpose registers
exist within the CPU. These registers are known
as (a) the instruction address register (IAR), (b)
the MO-register, and (c) the condition register
(CR). These registers are implicitly or explicitly
addressed for a particular action or operation,
and they may be accessed, used, or altered by a
multiplicity of instructions.

Figure 1.3. Repter Orpllizadom

Page4 1. 801 System Architecture

1.2.1 The Instruction Address Register

The instruction address register (IAR), as
shown in Figure 1. 4, is a 24-bit register which
normally contains the address of the next instruc­
tion to be executed. Since all instructions are
constrained to lie on half-word boundaries, the
low-order bit (bit 23) of the instruction address
register is constrained to be zero.

As a rule, the content of the instruction
address register is incremented by the length of
the current instruction during the process of de­
coding that instruction. Should this instruction
be a successful branch instruction, the content of
the instruction address register will be changed to
the address of the branch target instruction, as
given by the branch instruction.

1.2.2 The MQ Register

The MO-register (MQ) is a 16-bit register
whose primary use is to provide a register exten­
sion to accommodate the product for the Multi­
ply Step instruction and the dividend for the Di­
vide Step instruction.

1.2.3. The Condition Register

The condition register (CR) is a 16-bit reg­
ister used to reflect the effect of certain opera­
tions, to provide a mechanism for testing (and
branching) on a bit or condition, and to provide a
'parity stack' to indicate which bytes of the last

· four half words loaded were addressed. The con­
dition register is shown in Figure 1.4.

The first four bits of the condition register
are used for the parity stack (SX). Bit 0 is known
as SXO, bit 1 as SXl, bit 2 as SX2, and bit 3 as
SX3. An effect of an instruction that loads the
half of a register is to push the parity stack down
one position. The lowest bit of the stack (SX3)
is lost, while the low-order bit of the storage ad­
dress is placed on the top of the stack. above the
previous top three stack elements.

Bit 4 of the condition register is set by the
IOR and IOW instructions. It is set to one if the
1/0 adapter selected by one of these instructions
cannot accept the command. It is set to zero if
the adapter accepts the command.

Bit S of the condition register is the decimal
exception latch (DX). H the decimal feature is
installed, this bit is set by the decimal instruc­
tions (Add and Subtract Decimal) to one or zero
if an exception condition is or is not, respective-

Bit
0 SXO Parity Stack Zero
1 SXl Parity Stack One
2 SX2 Parity Stack Two
3 SX3 Parity Stack Three

4 IO I/OBusy
s DX Decimal Exception
6 EN Previous Enable State
7 LT Compares Less Than, Neg. Value

8 EQ Compare Equal, Zero Value
9 GT Greater Than or Positive
10 co Carry from Bit 0 or CO •
11 Cl Carry from Bit 8 or C 1 •

12 ov Overflow
13 so Summary Overflow
14 PZ Permanent Zero
15 TB Test Bit

Figure 1.4. Condition Register Bits

ly, detected. In the initial 801 implementa­
tion, the decimal feature is not imtalled and
this bit is reserved. It is set to zero whenever
the condition register is loaded.

Bit 6 of the condition register is the previ­
ous enable state latch (EN). It is set by the ena­
ble and disable instructions to reflect the enable
state previous to the execution of these instruc­
tions. H the processor bad been enabled, this bit
is set to one; if it had been disabled, it is set to
zero.

Bit 7 of the condition register is the less­
than latch (LT). It is set to one by comparison
operations if the first comparand is less than the
second comparand. It is set to one by certain
other arithmetic and logical operations if the re­
sult is negative or if the high-order bit of the re­
sult is one.

Bit 8 of the condition register is the equal
latch (EQ). It is set to one by comparison opera­
tions if the first comparand equals the second
comparand. It is set to one by certain other logi­
cal and arithmetic operations if the result is zero,
or if all bits of the result are zeros.

Bit 9 of the condition register is the greater­
than latch (GT). It is set to one by comparison
operations if the first comparand is greater than
the second comparand. It is set to one by certain
other arithmetic and logical operations if the re-

76.11.22 IBM CONFIDENTIAL

1.' 801 System Architecture Page 5

suit is positive or if the high-order bit of a non­
zero result is zero.

Bit 10 of the condition register is the carry­
zero latch (CO). It is set to one by certain arith­
metic instructions if the operation generates a
carry out of bit position zero. It also functions as
a special-purpose indicator for the Divide Step
and Multiply Step instructions. This latch is set
by logical compare instructions to show
equality /inequality of character CO of the com­
parands.

Bit 11 of the condition register is the carry­
one latch (Cl). It is set to one by certain arith­
metic instructions if the operation generates a
carry out of bit position eight. This latch is also
set by logical compare instructions to show
equality/inequality of character Cl of the com­
parands.

Bit 12 of the condition register is the over­
flow latch (OV), which is set to one when arith­
metic and certain shift operations overflow. It
also functions as a special purpose indicator for
the Divide Step instruction.

Bit 13 of the condition register is the
summary-overflow latch (SO). Whenever an in­
struction sets the overflow latch, it resets the
summary-overflow latch to the OR of the
overflow-latch with the old value of the
summary-overflow latch.

Bit 14 of the condition register is the
permanent-zero bit (PZ). It is set to zero when­
ever the condition register is loaded, and it can­
not be reset to one. Its presence provides for a
guaranteed branch in the BI format by use of the
Branch On Not-Bit instruction, where the perma­
nent zero bit is specified.

Bit 15 of the condition register is the test
bit (TB). A bit may be moved to or from an ar­
bitrary bit position in a half from or to the test
bit of the condition register through use of the
Move From/To Test Bit instructions.

All bits of the condition register, save those
required to be zeros, can be arbitrarily set
through use of the Move To Condition Register
instruction. Additionally, any individual bit of
the condition register may be set to an arbitrary
value by use of the Insert Condition Bit Immedi­
ate instruction, except, of course, those bits re­
quired to be zero.

1.3 Instruction Formats

The five instruction formats, X, R, D, BI,
and BA, are shown in Figure 1.5. For X and D
instructions that refer to storage, and for 1/0
instructions, address calculation is according to
the formulas:

X-Format (RB) + 0 I (RC)

D-Format 0 I (RC)+ (O(bits 0-7) II I)

where 0 I (RC) indicates the value 0 if RC is
specified as 0, else the contents of register RC. I
is treated as an unsigned 16 bit integer.

X-Format l OP l RA l RB I RC l
12 IS

R-Format

D-Format .

li
l OP I RB I

8

BI-Format

I
31

BA-Format l OP l BA I
Ji

Figure 1.5. Instruction Formats

IBM CONFIDENTIAL 76 1 ' "'2

Page 6 1. 801 System Architecture

1.4 Interrupts

An interrupt consists of:

1. setting information about the machine
state at interrupt into the Interrupt Save
Byte (ISB),

2. disabling the processor,

3. storing an instruction address into a par­
ticular location in main memory, and

4. resetting the IAR to the address of a
particular instruction location.

The Interrupt Save Byte (ISB) is used to
save information about the machine state upon
an interrupt. The first four bits (bits 0 - 3) have
the same meaning for all interrupts, whereas the
second four bits (bits 4 - 7) are used for interrupt
codes specific to the interrupt. Bit 0 is used to
store the enable state at interrupt (1 - enabled,
0 - disabled), bit 1 the length code for the in­
struction just executed (1 - 32 bits, 0 - 16 bits).
Bit 2 is reserved for future use and bit 3 indi­
cates whether or not the interrupted instruction
was the subject instruction of a branch with ex­
ecute instruction (1 - a subject instruction, 0 -
not a subject instruction). The specific use of
bits 4 - 7 by the different interrupts bas not yet
been defined. The content of the ISB can be
accessed by using the Move From ISB and Con­
dition Register instruction (MFICR) to place the
value of the ISB into the prefix of a specified
register, along with the value of the condition
register into the half of the specified register.

The Interrupt Save Byte (ISB)

~
Bit
0 Enable State
1 Instruction Length
2 Reserved
3 Subject Instruction
4 Interrupt Code O (ICO)

Type

Machine Error

Program Error

Trap

External

1/0 Check

Machine Error

Program Error

Trap

External

1/0 Check

Locadoa Area

100
NEW

11C

120
NEW

13C

140
NEW

1SC

160
NEW

17C

180
NEW

19C

200 OLDIA

204 Reserved

208
20C
210

Software Use 214
218
21C

220

23C

240

25C

260

27C

280

29C

S Interrupt Code 1 (ICl)
6 Interrupt Code 2 (IC2)

Figure 1. 7. Interrupt Areas

7 Interrupt Code 3 (IC3)

Figure 1.6 lnterrapt S.Ye Byte

76.11.22 IBM CONFIDENTIAL

1. 801 System Architecture Page 7

Each interrupt type has an area of 32 bytes
for storing the old IA and other information as­
sociated with the interrupted state, and an area
of 32 bytes (8 words) to which control is trans­
ferred when the interrupt occurs. Both of these
areas may or may not be in the data or instruc­
tion cache, respectively, when the interrupt oc­
curs. The organization of these interrupt areas is
shown in Figure 1. 7.

The 32 byte areas called NEW are the loca­
tions to which control is passed when an inter­
rupt occurs. Presumably, a branch instruction
will be placed in an area. The word labeled OLD
IA is the location into which the old IA is stored.
The reserved word is saved for possible future
use by the hardware to provide more inf onnation
about the interrupt. The remaining six words are
usable by the software.

The particular address stored in the OLD
IA location depends on the instruction being ex­
ecuted and the type of interrupt. Normally, the
address stored in the OLD IA is that of the next
instruction to be executed, and the interrupted
program can be resumed at that address. The
exceptions to this general rule are shown in"Fig­
ure 1.8. For some of these exception cases, it
may be possible to reconstruct the machine state
with the help of the information in the ISB.

OldIA

undef.op. all
instruction execu·

ted

out of range data
instr. following

subject instruction subject instruc-
address

ti on

out of range in-
all

instruction execu·
struction address ted

illegal subject in- illegal subject in- instruction execu-
struction struction ted

processor failure all undefined

Figure 1.8. Old IA Exception Cues

The following is a description of each of the
interrupt types. ·

Mac:blDe Error - All processor and I/ 0 ma-

chine failures are reported with this inter­
rupt.

Program Error - Program errors are repon­
ed with this interrupt. These include:

- Out of range load/ store address
- Out of range instruction address
(an address 'too close' to the top of
memory
- Undefmed operation
- ruegal subject instruction following
a branch and execute.

Trap - The trap instructions use this inter­
rupt to repon a successful comparison.
The old IA will be the instruction following
the trap.

External - A signal from the external inter­
rupt adapter while the processor is enabled
causes this interrupt. The interrupt will
never occur between a branch and execute,
and its following instruction, which are
treated as a single operation.

1/0 Check - A time-out or an error in the
adapter interface during an 1/0 read or
write will cause the operation to be sup­
pressed and an I/ 0 check interrupt to be
taken. The old IA location will contain the
address of the 1/0 instruction which
failed. The interrupt will not occur be­
tween a branch and execute, and its sub­
ject instruction, which are treated as a sin­
gle operation.

1.5 Input and Output

Input/Output (1/0) operations involve the
transfer of inf onnation between main storage or
the CPU and an 1/0 adapter. 1/0 adapters atta­
ch 1/0 devices to the CPU via an 1/0 Bus which
operates at approximately 801 speed. These
adapters also connect to a special adapter, called
the External Interrupt Adapter, that collects all
the interrupt requests from the other adapters,
and presents them to the 801 through the exter­
nal interrupt line. Some high-speed I/ 0 devices
also attach through Direct Memory Access
(OMA) directly to main memory for the direct
transfer of data at high data rates.

The 80 I I/ 0 Subsystem is described in de­
tail in Section 12.

IRM rnNi:tni:NTIAI 76.11.22

Pages· 1. 801 System Architecture

t .5. t The External Interrupt Adapter

The interrupt adapter is the common link
for all inten:upts from the I/ 0 adapters to the
CPU. It accepts requests for service from the
various attached 1/0 devices, and, when the
CPU is enabled for external interruptions, pres­
ents them to the CPU.

The External Interrupt Adapter itself ap­
pears to the CPU like an I/ 0 device, with vari­
ous functions depending upon the particular
model of the adapter.

t.5.2 Input/Output Interface

Communications between an adapter and
the CPU is under program control. While all
adapters, including the External Interrupt Adap­
ter, attach to the common I/ 0 bus, control se­
quences are, in general, unique to a particular
adapter. These sequences, and their responses,
are provided through the instructions Input­
Output Read and Input-Output Write, which
transmit to a specified adapter a 16 bit
address/ command field, and attempt to accept or
transmit 16 bits of data or control information in
a specified register. Hence, apart from the com­
monality of the I/ 0 bus and the interrupt adap­
ter, the interface between each device and the
CPU is essentially a programmed ·interface.

For Direct Memory Access that attaches
high-speed I/ 0 devices directly to memory, a
given control sequence is required to initiate the
direct transfer of a block of data between main
memory and the device. Once initiated, the data
transfer proceeds without CPU intervention. The
end of the data transfer is signalled to the CPU
by an external interrupt from the OMA. In such
circumstances the device shares memory with
other active directly attached devices and the
CPU.

76.11.22 IBM CONFIDENTIAL

2. Storage Access Instructions Page9

2. Storage Access

Storage is organized as a sequence of 32-bit
words, each consisting of four 8-bit bytes. Bytes
in storage are consecutively numbered, left to
right, starting with zero. Each number is consid­
ered the address of the corresponding byte. All
addresses are computed as byte addresses. Stor­
age addressing wraps around from the maximum
byte address, 16,777,215, to address zero. If less
than the maximum amount of storage is installed,
an attempt to utilize a byte from a non-existent
storage location will result in an address excep­
tion condition.

All storage accesses are for a word or multi­
ples thereof. Accesses for a register cause the
three low-order bytes of a word to be fetched or
stored. Accesses for a half cause the high- or
low-order half-word of a word, as required, to be
fetched or stored. Accesses for instructions may
require the fetching of a word, a half-word, or
the low-order half-word of a word followed by
the high-order half-word of the next consecutive
word in storage.· Half-word or word addresses
are generated, respectively, by ignoring the low­
order one or two bits of a byte address.

If a cache memory for data references is
installed, accesses to or from cache to storage
occur in multiples of words. Because instruction
fetch, storage access, and register access are ov­
erlapped in the execution of load and store in­
structions, interrupts, such as for a bad effective
address, may be imprecise.

2.1 Instructions

Load Half Algebraic, D-form

LHAD RB.RC.I

Ji

The half (chars CO and C 1) of the register speci­
fied by RB is replaced by the half word of stor­
age addressed by 0 I (RC) + I. The resulting sign
bit is extended through the prefix of register RB.
The parity stack in the condition register is
pushed down, and the condition register bit SX3
is lost. Condition register bit SXO assumes the
value of the low-order bit of the storage address.

Load Half Algebraic, X-form

LHAX RA.RB.RC

I 4 I RA I RB I RC I
0 4 8 12 15

The half (chars CO and C 1) of the register speci­
fied by RA is replaced by the half word of stor­
age addressed by (RB) + 0 I (RC). The resulting
sign bit is extended through the prefix of register
RA. The parity stack in the condition register is
pushed down, and the condition register bit SX3
is lost. Condition register bit SXO assumes the
value of the low-order bit of the storage address.

Load Half Zero, D-form

LHZD RB.RC.I

ca
0 8 12 16 31

The half (chars CO and Cl) of. the register speci­
fied by RB is replaced by the half word of stor­
age addressed by 0 I (RC) + I. The prefix of
register RB is set to zeros. The parity stack in
the condition register is pushed down, and the
condition register bit SX3 is lost. Condition reg­
ister bit SXO assumes the value of the low-order
bit of the storage address.

Load Half Zero, X-form

LHZX RA.RB.RC

The half (chars CO and Cl) of the register speci­
fied by RA is replaced by the half word of stor­
age addressed by (RB) + 0 I (RC). The prefix of
register RA is set to zeros. The parity stack in
the condition register is pushed down, and the
condition register bit SX3 is lost. Condition reg­
ister bit SXO assumes the value of the low-order
bit of the storage address.

IBM CONFIDENTIAL

Page 10 2. Storage Access Instructions

Load, D-form

LO RB.RC.I

l EB [RB I RC (I 12 6 31

The content of the register specified by RB is
replaced by characters 1,2 and 3 of the word in
storage addressed by 0 I (RC) + I.
Note: This instruction does not affect the condi­
tion register in order to be able to preserve the
machine state when processing an interrupt.

Load, X-form

LX RA.RB.RC

The content of the register specified by RA is
replaced by characters 1,2 and 3 of the word in
storage addressed by (RB) + 0 I (RC).
Note: This instruction does not affect the condi­
tion register in order to be able to preserve the
machine state when processing an interrupt.

Store Character, D-form

STCD RB.RC.I

31

The char of storage addressed by 0 I (RC) + I is
replaced by char C 1 of the register specified by
RB.

Store Character, X-form

STCX RA.RB.RC

l 1 I RA l RB I RC I
4 12 13

The char of storage addressed by (RB) +
0 I (RC) is replaced by char C 1 of the register
specified by RA.

Store Half, D-form

STHD RB.RC.I

l 04 [RB I RC I I 12 16 Ji

The half word of storage addressed by 0 I (RC)
+ I is replaced by the half of the register speci­
fied by RB.

Store Half, X-form

STHX RA.RB.RC

l 2 l RA l RB I RC I
12 13

The half word of storage addressed by (RB) +
0 I (RC) is replaced by the half of the register
specified by RA.

Store, D-form

STD RB.RC.I

Ji

Chars 1, 2, and 3 of the word in storage ad­
dressed by 0 I (RC) + I is replaced by the con­
tent of the register specified by RB.

Store, X-form

STX RA.RB.RC

l 3 l RA l RB r RC 1
- 12 13

Chars 1, 2, and 3 of the word in storage ad­
dressed by (RB) + 0 I (RC) is replaced by the
content of ~e register specified by RA.

76.10.15 IBM CONFIDENTIAL

3. Address Computation and 4. Branching Instructions Page 11

3. Address Computation

3.1 Instructions

Compute Address, D-form

CAO RB.RC.I

Ji

The address specified by 0 I (RC) + I replaces
the content of register RB. No storage references
for operands occur, and the address is not in­
spected for address exceptions.

Compute Address, X-form

CAX RA.RB.RC

The address specified by (RB) + 0 I (RC) re­
places the content of register RA. No storage
references for operands occur, and the address is
not inspected for address exceptions.

4. Branching

The normal sequential execution of instruc­
tions may be changed by the use of the branch
instructions in order to perform subroutine link­
age, decision making, and loop control.

Subroutine linkage is provided by branch
and link instructions: BALA, BALAX, BALR,
BALRX, BALI, and BAUX. These instructions
permit not only the introduction of a new in­
struction address, but also prese"ation of the
return address in an implicitly or explicitly desig­
nated register. In every case, the new instruction
address, the address of the branch target instruc­
tion, is computed before the return address is
saved. For the regular forms of the instruction,
the return address is the address of the byte im­
mediately fallowing the Branch And Link in­
struction; for the execute forms of the instruc­
tion, the return address is the full word boundary
on or preceding the location six bytes beyond the
instruction immediately following the branch and
link with execute instruction. In the latter case,
the register containing the return address is avail­
able to the subject instruction. Note that when O
is specified as register RC in the R-form Branch
And Link instructions, the branch address is tak­
en from register 0. A separate instruction, Move
From Instruction Address Register, is provided
for obtaining the current instruction address.

Facilities for decision making are provided
by the branch on bit and branch on not bit condi­
tional branch instructions: BB, BBX, BBR,
BBRX, BNB~ BNBX, BNBR, and BNBRX.
These instructions provide the capability of
branching or not according to any specified state
of any bit of the condition register. Loop control
can also be accomplished through use of these
instructions to test the outcome of address arith­
metic and counting operations.

4.1 Invalid Branch Addresses

U a branch specifies an invalid storage loca­
tion as the address of the branch target instruc­
tion, the address exception condition is not set
until an attempt is made to execute the branch
target instruction.

IAM CONFIDENTIAL 76.10.15

Page 12 4. Branching Instructions

4.2 Branch With Execute Instructions

For every branch instruction, there is a cor­
responding branch with execute form of the in­
struction. The instruction immediately following
a branch with execute instruction is called the
subject instruction. Whether or not the branch is
taken, the subject instruction is executed. The
execution of the branch and of the subject in­
struction is considered as a single unit. If an in­
terrupt occurs at any time during the execution of
the branch and its subject instruction, the ma­
chine state will be left as if the subject instruc­
tion did not execute and the old instruction ad­
dress will be that of the branch. An interruption
during a branch, link, and execute, however, may
or may not leave the link address in the specified
register.

Certain instructions are not allowed to fol­
low a branch and execute instruction. These are
branch instructions, trap instructions, cache con­
trol instructions, and I/ 0 instructions.

4.3 Instructions

Branch Absolute and Link

BAI.A BA

l BA

Ji

The content of register 15 is replaced by the up­
dated instruction address, and then the updated
instruction address is replaced by BA, with its
low order bit (bit 23) forced to zero.

Branch Absolute and Link with Execute

BAI.AX BA

l BA

31

The content of register 15 is replaced by the up­
dated instruction address incremented by six and
set to the preceding full word boundary, the in­
struction immediately following the branch in­
struction is executed while the the updated in­
struction address is replaced by BA, with its low
order bit (bit 23) forced to zero.

Branch and Link, I-form

BALI AB.Bl

Bl

31

The content of register RB is replaced by the
updated instruction address, and then bits 3-22
of the updated instruction address are replaced
by BI.

Branch and Link with Execute, I-form

SALIX RB.Bl

Bl

31

The content of register RB is replaced by the
updated instruction address incremented by six
and set to the preceding full word boundary, the
instruction immediately following the branch
instruction is executed while bits 3-22 of the up­
dated instruction addres_s are replaced by BI.

Branch and Link, R-form

BALA RB.RC

The content of register RB is replaced by the
updated instruction address. The updated in­
struction addre5s is replaced by the content of
register RC, with its low-order bit (bit 23) set to
zero.

Branch and Link with Execute, R-form

BALRX RB.RC

l RB I RC I
12 13

The content of register RB is replaced by the
updated instruction address incremented by six
and set to the preceding full word boundary. The
instruction immediately following the branch

76.10. 15 IBM CONFIDENTIAL

4. Branching Instructions Page 13

instruction is executed while the the· updated in­
struction address is replaced by the content of
register RC, with its low-order bit (bit 23) set to
zero.

Branch on Bit

BB RB.Bl

I SE Bl

0 8 12 31

If the condition register bit specified by RB is
one, bits 3-22 of the updated instruction address
are replaced by BI. If the condition bit is zero,
the updated instruction address is unaltered, and
no branch occurs.

Branch on Bit, R-form

BBR RB.RC

I 87 I RB RC I
0

If the condition register bit specified by RB is
one, the updated instruction address is replaced
by the content of the register specified by RC,
and the low-order bit is forced to zero. If the
condition bit is zero, the updated instruction ad­
dress is unaltered, and no branch occurs.

Branch on Bit and Execute, R-form

BBRX RB.RC

I 97
0 8 12 IS

If the condition register bit specified by RB is
one, the following instruction is executed while
the updated instruction address is replaced by the
content of the register specified by RC, with the
low-order bit forced to zero. If the condition bit
is zero, the updated instruction address is unal­
tered, and no branch occurs.

Branch on Bit and Execute

BBX RB.Bl

Bl
jJ

If the condition register bit specified by RB is
one, the following instruction is executed while
bits 3-22 of the updated instruction address are
replaced by Bl. If the condition bit is zero, the
updated instruction address is unaltered, and no
branch occurs.

Branch, Execute and Enable

BEX RC

The instruction immediately following the BEX
instruction, this following instruction called the
subject instruction, is executed while the updated
instruction address register is replaced by the
content of the register specified by RC, with the
low-order bit forced to zero. Upon completion
of the subject instruction the machine becomes
enabled.

Branch on Not Bit

BNB RB.Bl

Bl
31

If the condition register bit specified by RB is
zero, bits 3-22 of the updated instruction address
are replaced by Bl. If the condition bit is one,
the updated instruction address is unaltered, and
no branch occurs.

Branch on Not Bit, R-form

BNBR RB.RC

IBM CONFIDENTIAL 76. 10. 1 ti

Page 14 4. Branching Instructions

If the condition register bit specified by RB is
zero, the updated instruction address is replaced
by the content of the register specified by RC,
with the low-order bit forced to zero. If the con­
dition bit is one, the updated instruction address
is unaltered, and no branch occurs.

Branch on Not Bit and Execute, R-form

BNBRX RB.RC

l RB I RC
12 I~

If the condition register bit specified by RB is
zero, the following instruction is executed while
the updated instruction address is replaced by the
content of the register specified by RC, with the
low-order bit forced to zero. If the condition bit
is one, the updated instruction address is unal­
tered, and no branch occurs.

Branch on Not Bit and Execute

BNBX RB.Bl

Bl
jf

If the condition register bit specified by RB is
zero, the following instruction is executed while
bits 3-22 of the updated instruction address are
replaced by BI. If the condition bit is one, the
updated instruction address is unaltered, and no
branch occurs.

76.10.15 IBM CONFIDENTIAL

5. Trap Instructions Page 15

5. Traps

The trap instructions are provided to test for
a specified set of conditions. If the conditions
tested by a trap instruction are met, a trap excep­
tion condition is generated, and an interruption
occurs. Control is transferred to the special in­
terrupt area associated with trap interrupts (see
section 1.4). If the tested conditions are not met,
instruction execution continues with the next
sequential instruction. Trap instructions may not
appear as the subject instruction of a branch with
execute.

The comparisons are performed on ope­
rands treated as 24 bit unsigned integers.

5.1 Instructions

Trap if Register Greater Than, Immediate

TGTI RB.I

31

If the content of the register specified by RB is
greater than the value of the field I, extended on
the left with eight zeros, a trap exception condi­
tion is generated.

Trap if Register Greater Than or Equal

TGTE RB.RC

If the content of register RB is greater than or
equal to the content of register RC, a trap excep­
tion condition is generated.

Trap If Register Less Than

TLT RB.RC

l RB I RC
12 i3

If the content of register RB is less than the con­
tent of register RC, a trap exception condition is
generated.

Trap If Register Less Than, Immediate

TLTI RB.I

lt

If the content of the register specified by RB is
less than the value of the field I, extended on the
left with eight zeros, a trap exception condition is
generated.

Trap If Register Not Equal, Immediate

TNEI RB.I

Ji

If the content of the register specified by RB is
not equal to the value of the field I, extended on
the left with eight zeros, a trap exception condi­
tion is generated.

IBM CONFIDENTIAL 76.10. 15

Page 16 6. Moves and Inserts

6. Moves And Inserts

This group of instructions is concerned sole­
ly with the movement of data between registers
and with the insertion of data from the immedi­
ate field of an instruction into a register. Except .
when data is moved or inserted into the condition
register. none of these instructions alter the con­
dition register or generate exception conditions.

6.1 Instructions

Insert Condition Bit Immediate

ICBI RB.RC

I BF
0 8 12 15

The condition register bit specified by RB is set
equal to the low order bit of RC. H the bit speci­
fied by RB is a permanent-zero bit. the value of
the bit is unchanged.

Insert Prefix Immediate

IPI RB.I

I EC
ll

I .

0

The prefix of the register specified by RB is re­
placed by the eight low order bits of I (bits 24-31
of the instruction.

Insert Prefix Immediate and Zero

IPIZ RB.I

I FC
0 8 12 16 31

The prefix of the register spt;cified by RB is re­
placed by the eight low order bits of I (bits 24-31
of the instruction. The half of the register speci­
fied by RB is set to zeros.

Move Character Zero from Zero

MCOO RB.RC

I 81
0 8 12 15

Char CO of the register specified by RB is re­
placed by char CO of the register specified by
RC.

Move Character Zero from One

MCOl RB.RC

I 91
0 8 12 15

Char CO of the register specified by RB is re­
placed by char C 1 of the register specified by
RC.

Move Character One from Zero

MC10 RB.RC

I Al
0 8 12 u

Char C 1 of the regis~er specified by RB is re­
placed by char CO of the register specified by
RC.

Move Character One from One

MC11 RB.RC

I · Bl

0 8 12 15

Char C 1 of the register specified by RB is re­
placed by char C 1 of the register specified by
RC.

76.11.22 IBM CONFIDENTIAL

6. Moves and Inserts Page 17

Move from Character Indexed by SXO

MFCO RB.RC

Char C 1 of the register specified by RB is re­
placed by char CO or char C 1 of the register
specified by RC, as condition register bit SXO is,
respectively, zero or one. Char CO of the regis­
ter specified by RB is set to zero.

Move from Character Indexed by SXl

MFCl RB.RC

Char C 1 of the register specified by RB is re­
placed by char CO or char Cl of the register
specified by RC, as condition register bit SXl is,
respectively, zero or one. Char CO of the regis­
ter specified by RB is set to zero.

Move from Character Indexed by SX2

MFC2 RB.RC

Char C 1 of the register specified by RB is re­
placed by char CO or char C 1 of the register
specified by RC, as condition register bit SX2 is,
respectively, zero or one. Char CO of the regis­
ter specified by RB is set to zero.

Move from Character Indexed by SX3

MFC3 RB.RC

l RB I RC I
12 13

Char C 1 of the register specified by RB is re­
placed by char CO or char Cl of the register
specified by RC, as condition register bit SX3 is,

respectively, zero or one. Char CO of the regis­
ter specified by RB is set to zero.

Move from Digit

MFD RB.RC

A digit of register RB is selected by bits 22-23 of
register RC. This digit is placed in digit 03 of
RB and the remainder of RB is set to zero.

Move from Digit Paired

MFDP RB.RC

A digit of register RB is selected by bits 22-23 of
register RC. This digit is placed in digit 03 of
the twin, in a register pair, of RB and the remain­
der of the twin is set to zero.

Move from Instruction Address

MFIA RB

The content of register RB is replaced by the
value of the current instruction address, i.e., the
location of this instruction.

Move from 158 and Condition Resister

MFICR RB

The content of the prefix of register RB is re­
placed by the content of the interrupt save byte
(ISB), and the content of the half of register RB
is replaced by the content of the condition regis­
ter.

11"11•• rt"'\1..lr"'ll""'\1'911.ITI A I

Page 18 6. Moves and Inserts

Move from MQ

MFMQ RB

I AD I RB I x

0

The content of the half of register RB is replaced
by the content of the MQ register. The prefix of
register RB is set to zeros.

Move from Prefix

MFP RB.RC

C2 RB RC

0 8 12 IS

Char C 1 of the register specified by RB is re­
placed by the prefix of the register specified by
RC. The prefix and char CO of the register spec­
ified by RB is set to zeros.

Move from Test Bit

MFTB RB.RC

I F2 I RB RC I
0 8 12 IS

A particular bit of the half of register RB is set to
the value of the condition register test bit. The
particular bit of the half of register RB is speci­
fied by the value of digit 03 of register RC.

Move from Test Bit Immediate

MFTBI RB.RC

I FA

0 8 12 IS

The bit of the half of register RB specified by RC
is set to the value of the condition register test
bit.

Move to Condition Register

MTCR RC

I 89
0 8 12 IS

Those bits of the condition register not reserved
and/ or required to be zero are set to· the values
of the corresponding bits of the half of register
RC.

Move to Character Indexed by SXO

MTCO RB.RC

I 83
0

Char CO or C 1 of the register specified by RB is
replaced by char Cl of register RC, as condition
register bit SXO is zero or one, respectively.

Move to Character Indexed by SXl

MTCl RB.RC

I 93
0 8 12 IS

Char CO or C 1 of the register specified by RB is
replaced by char Cl of register RC, as condition
register bit SXl is zero or one, respectively.

Move to Character Indexed by SX2

MTC2 RB.RC

I A3
0 8 12 IS

Char CO or C 1 of the register specified by RB is
replaced by char Cl of register RC, as condition
register bit SX2 is zero or one, respectively.

76.10.15 IBM CONFIDENTIAL

6. Moves and Inserts Page 19

Move to Character Indexed by SX3

MTC3 RB.RC

I B3
0 8 u 1S

Char CO or C 1 of the register specified by RB is
replaced by char Cl of register RC, as condition
register bit SX3 is zero or one, respectively.

Move to Digit

MTD RB.RC

I F7

0 8 12 15

The digit of register RB specified by bits 22-23
of register RC is replaced by digit 03 of register
RB.

Move to Digit Paired

MTDP RB.RC

I BF
0 8 12 1S

The digit of the twin, in a register pair, of RB
selected by bits 22-23 of register RC is replaced
by digit 03 of register RB.

Move to MQ

MTMQ RC

I A9

0 8 12 15

The content of the MQ register is replaced by the
half of register RC.

Move to Prefix

MTP RB.RC

The prefix or the register specified by RB is re­
placed by char C 1 of the. register specified by
RC.

Move to Test Bit

MTTB RB.RC

The condition register test bit is set to the value
of a bit of the half of register RB. This bit is
specified by digit 03 of register RC.

Move to Test Bit Immediate

MTTBI RB.RC

The condition register test bit is set to the value
of a bit of the half of register RB, this bit speci­
fied by RC.

7610 15

Page 20 7. Arithmetic Instructions

7. Arithmetic

The arithmetic operations; with the excep­
tion of the decimal operations Add Decimal and
Subtract Decimal, treat registers as consisting of
a 24 bit quantity in two's complement represent­
ation. On these operations, the LT, EQ, and GT
bits in the condition register are set to reflect the
result: LT is set to one if the result has a negative
sign, EQ if the result is zero, and GT if the result
has a positive sign and is not zero. Condition
register bit CO is set to reflect the carry out of bit
position zero and C 1 the carry out of bit position
eight. The overflow latch, OV, is set to one if the
carry out of bit position one is not equal to the
carry out of bit position zero. The summary over­
flow bit (SO) is set to the OR of the new value of
OV with the old value of SO.

The extended operations use the value of
the C 1 bit to determine the result. The extended
add instructions, AE and AEI, add the value of
the C 1 bit to the sum of the two operands to de­
termine the result. In the extended subtract in­
structions, SE and SEI, the value of the first ope­
rand is added to the complement of the second
operand and to this result is added the value of
the C 1 bit to determine the result.

7 .1 Instructions

Add

A RB.RC

l RB I RC I
12 is

The contents of registers RB and RC are added
and the result placed into register RB. Condition
bits LT, EQ, GT, CO, Cl, OV, and SO are set.

Absolute

ABS RB.RC

l RB I RC I
12 ts

The content of register RB is replaced by the
absolute value of the content of register RC.
Condition bits LT, EQ, GT, OV and SO are set.

Normally, only condition bit EQ or GT is set to
one according to the value of the result. If regis­
ter RC contains the maximum negative number,
for which there is no equivalent positive number,
then condition bits LT, OV and SO will be set to
one.

Add Decimal
This instruction is not in the initial 801
implementation.

AD RB.RC

The two-digit decimal number in the low-order
byte of the register specified by the second ope­
rand, augmented by the value of the condition
register CO bit, is added to the two-digit decimal
number in the low-order byte of the register
specified by the first operand. The result replaces
the low-order byte of the register specified by the
first operand, while the high-order bytes of this
register remain unaltered.

The condition register bit CO is set to one if a
carry results from the operation, otherwise it is
set to zero. The condition register bit EQ is set
to one if both digits of the result are zero, other­
wise it is set to zero.

If any digit is an invalid decimal digit; i.e. hex' A,
B, C, D, E, or F', the operation is suppressed,
and the condition register decimal-exception­
latch, DX, is set to one. Otherwise this latch is
set to zero.

Condition register alterations:
DX,EQ, CO

Add Extended

AE RB.RC

The content of register RB, the content of regis­
ter RC, and the value of condition bit Cl are
summed and the result placed into register RB.
Condition bits LT, EQ, GT, CO, Cl, OV, and SO
are set.

76. 11.22 IBM CONFIDENTIAL

7. Arithmetic Instructions Page 21

Add Extended Immediate

AEI RB.RC.I

l 90
12 16 31

The field I, e'xtended on the left with eight zeros,
the contents of register RC, and the value of
condition bit C 1 are summed and the result
placed in register RB. Condition bits LT, EQ,
GT, CO, Cl, OV, and SO are set.

Add Immediate

Al RB.RC.I

l 80 l RB r RC 1
12 16 Ji

The field I, extended on the left with eight zeros,
is added to the contents of register RC and the
result placed in register RB. Condition bits LT,
EQ, GT, CO, Cl, OV, and SO are set.

Compare

C RB.RC

The contents of registers RB and RC, both treat­
ed as 24 bit signed algebraic quantities, are com­
pared. Condition bits LT, EQ, and GT are set
according to bow the value of register RB relates
to that of register RC.

Compare Immediate

Cl RB.I

31

The content of register RB is compared to field I,
extended on the left with eight zeros. Condition
bits LT, EQ, and GT are set according to how
the value of register RB relates to that of field I.

Divide Step

DIS RB.RC

I E7

0 8 12 15

The content of register RC is added to or sub­
tracted from (register RB) I I (bit 0 of MQ) de­
pending on whether the signs of registers RB and
RC disagree or agree. The 24 low order bits of
the sum replace register RB. The MQ is shifted
left one position and bit 1 S of the MQ is set to 1
if and only if S, the sign of the result, equals the
sign of register RC. Condition bits CO and OV
are set: CO-(RC(bit 0)-S) and OV-(RB(bit
0)-S).
Note: Condition bit SO is unaffected by this in­
struction.

Extend Sien

EXTS RB.RC

I E3
0 8 12 15

The content of the half of register RB is replaced
by the half of register RC. Bits 0 - 7 of register
RB are set to equal bit 8. Condition bits LT,
EQ, and GT are set.

Multiply Step

MUS RB.RC

I 07

0 8 12 15

The incomplete product of register RC and bits
14-15 of the MQ are formed in (register
RB) I I MQ. A 26-bit sum is formed in accord­
~ce with the following table:

IR~JI l"fll\H:rni:NTl.ll.I

Page 22 7. Arithmetic Instructions

Condi- MQBit MQBit
tional 14 15 Algebraic Sum
Bit CO

0 0 0 (RB)+(RC)

0 0 1 (RB)+2(RC)

0 1 0 (RB)-(RC)

0 1 1 (RBl+O

1 0 0 (RB)+O

1 0 1 (RB)+(RCI

1 1 0 (RB)-2(RC)

1 1 1 (RBl-(RC)

The MQ is algebraically shifted right two posi­
tions, with the two low order bits of the sum re­
placing bits 0-1 of the MQ. Register RB is re­
placed with the 24 high order bits of the sum.
Condition register bit CO is set to ... bit 14 of the
MQ (before shift).

Subtract

S RB.RC

The content of register RC is subtracted from the
content of register RB and the result placed into
register RB. Condition bits LT, EQ, GT, CO,
Cl, OV, and SO are set.
Note: if RB·RC, the content of this register is
set to zero and bit CO of the condition register is
set to one.

Subtract Decimal
ThiJ inJtruction iJ not in the initial 80 I
implementation.

SD RB.RC

The two-digit decimal number in the low-order
byte of the register specified by the second ope­
rand, augmented by the inverse of the condition
register bit CO, is subtracted from the two-digit
decimal number in the low-order byte of the reg-

ister specified by the first operand. The result
replaces the low-order byte of the register speci­
fied by the first operand, while the high-order

- bytes of this register are unaltered.

The condition register bit CO is set to zero if a
'borrow' was required to perform the subtraction,
otherwise it is set to one. The condition register
equal-latch EQ is set to zero if both digits of the
result are zero, otherwise it is set to one.

If any digit is an invalid decimal digit; i.e. hex' A,
B, C, D, E, or F', the operation is suppressed,
and the condition register decimal-exception­
latch DX is set to one. Otherwise this latch is set
to zero.

Condition register alterations:
DX,EQ,CO

Subtract Extended

SE RB.RC

I B5

0 8 12 u

The complement of register RC is added to the
content of register RB to which result is added
the value of condition bit Cl and the result
placed into register RB. Condition bits LT, EQ,
GT, CO, Cl, OV, and SO are set.

Subtract Extended Immediate

SEI RB.RC.I

BO

0 8 12 16 31

The field I, extended on the left with eight zeros,
is complemented and added to the content of
register RC to which result is added the value of
condition bit C 1 and the result placed in register
RB. Condition bits LT, EQ, GT, CO, Cl, OV,
and SO are set.

7. Arithmetic Instructions

Subtract from Immediate

SFI RB.RC.I

l RB I RC I
12 16 Ji

The content of register RB is replaced the by
content of the 'register specified by RC subtract­
ed from I. For the subtraction, I is extended on
the left with eight zeros. The condition bits LT,
EQ, GT, CO, Cl, OV, and SO are set based on
the result.

Subtract Immediate

SI RB.RC.I

31

The content of register RB is replaced by I sub­
tracted from the register specified by RC. For
the subtraction, I was extended on the left with
eight zeros. Condition bits LT, EQ, GT, CO, Cl,
OV, and SO are set based on the result.

Test Prefix for Overflow

TPO RB.RC

The content of register RB is replaced by the
content of register RC. If any of bits 0 - 7 do
not equal bit 8 (the sign bit) of register RC, then
set OV and SO of the condition register to one;
else set OV to zero.

Page 23

7t:. 1f'\ 1 c::.

Page 24 8. Logical Operation Instructions

8. Logical Operations

The logical operations treat registers as 24
bit unsigned integers. The exception is the in­
struction Count Leading Zeros, CLZ, which is
applied to the half of a register, i.e., the 16 low­
order bits. The logical compares set the LT, EQ,
and GT bits of the condition register according
to the relative values of quantities treated as 24
bit unsigned integers. The other logical opera­
tions that set the LT, EQ, and GT bits do so ac­
cording to the algebraic value expressed in two's
complement representation. If the result is a
negative value, LT is set to one; if it is zero, EQ
is set to one; or if it is positive and not zero, GT
is set to one.

8.1 Instructions

Compare Logical

CL RB.RC

The content of register RB is compared with the
content of register RC. Both comparands are
treated as 24 bit unsigned quantities. Condition
register bits LT, EQ, GT, CO and Cl are set.
LT, EQ, and GT are set according to how the
value of register RB logically relates to that of
register RC. CO is set to one if the CO characters
in both comparands are equal, else it is set to
zero. C 1 is set to one if the C 1 characters in
both comparands are equal, else it is set to zero.

Compare Logical Immediate

CU RB.I

l BC [RB I x I I
31 12 16

The content of register RB is compared with field
I, extended to the left with 8 zeros. Both compa­
rands are treated as 24 bit unsigned quantities.·
Condition register bits LT, EQ, GT, CO and Cl
are set. LT, EQ, and GT are set according to
how the value of register RB logically relates to
that of field I. CO is set to one if the CO charac-

ter of register RB is equal to bits 16-23 of the
instruction, else the CO bit is set to zero. C 1 is
set to one if the C 1 character of register RB is
equal to bits 24-31 of the instruction, else it is set
to zero.

Count Leading Zeros

CLZ RB.RC

I 02
0 8 12 I~

The content of the register specified by RB is
replaced by the binary representation of the
number of leading zeros in the half of the register
specified by RC (i.e. The number of zeros to the
left of the left-most one-bit of the half of register
RC).

And

N RB.RC

I D5
0 8 12 15

The AND of the contents of the registers speci­
fied by RB and RC replace the content of the
register specified by RB. Condition bits LT, EQ,
and GT are set according to the result.

And Immediate

NI RB.RC.I

I DO I RB RC

0 8 12 16 31

The AND of field I, extended to the left with 8
zeros, and of the content of register RC replaces
the content of register .RB. Condition register
bits LT, EQ, and GT are set. The connective
AND is applied bit by bit.

8. Logical Operation Instructions Page 25

Or

0 RB.RC

I E5
0 8 12 13

The OR of the contents of the registers specified
by RB and RC replace the content of the register
specified by RB. Condition bits LT, EQ, and GT
are set according to the result.

Or Immediate

01 RB.RC.I

I EO l RB I RC I I
0 12 16 31

The OR of field I, extended to the left with 8
zeros, and of the content of register RC replaces
the content of register RB. Condition register
bits LT, EQ, and GT are set. The connective OR
is applied bit by bit.

Exclusive Or

X RB.RC

The EXCLUSIVE OR of the contents of the
registers specified by RB and RC replace the
content of the register specified by RB. Condi­
tion bits LT, EQ, and GT are set according to the
result.

Exclusive Or Immediate

XI RB.RC.I

l FO [RB I RC I l 12 16 li

The EXCLUSIVE OR of field I, extended to
the left with 8 zeros, and of the content of regis­
ter RC replaces the content of register RB. Con­
dition register bits LT, EQ, and GT are set. The
connective exclusive or is applied bit by bit.

IDlA 1""1'"\MCJl""\CfJTl/\1 '1A 11'\ 1 ~

Page 26 9. Shift Instructions

9. Shifts

Shift instructions operate either on 24 bits
or on 16 bits (a half). The instructions shift a
distance of from 0 to 15 bits either left or right.
All shifts set the condition register to indicate if
the algebraic value returned to the register is
zero, positive, or negative. All except the alge­
braic right shift are logical in their treatment of
the value shifted. On all left shifts, zeros are
supplied to the vacated low order positions.

9.1 Instructions

And, then Shift Left Immediate

NSLI RB.RC.I

31

The AND of field I, extended to the left by eight
zeros, and the contents of register RB, shifted
left the number of bits specified by RC, replaces
the content of register RB. Condition bits LT,
EQ, and GT are set.

And, then Shift Left Paired Immediate

NSLPI RB.RC.I

31

The AND of field I, extended to the left by eight
zeros, and the contents of register RB, shifted
left the number of bits specified by RC, replaces
the contents of the twin (in a pair) of register
RB. Condition bits LT, EQ, and GT are set.

And, then Shift Right Immediate

NSRI RB.RC.I

l RB r RC 1
12 16 31

The AND of field I, extended to the left by eight
zeros, and the contents of register RB, shifted

right the number of bits specified by RC, re­
places the contents of register RB. Condition bits
LT, EQ, and GT are set.

And, then Shift Right Paired Immediate

NSRPI RB.RC.I

I DA I RB I RC

0 8 12 16 31

The AND of field I, extended to the left by eight
zeros, and the contents of register RB, shifted
right the number of bits specified by RC, re­
places the contents of the twin (in a pair) of reg­
ister RB. Condition bits LT, EQ, and GT are set.

Shift Algebraic Right

SAR RB.RC

I E6
0 8 12 lS

The contents of register RB (bits 0-23) is shifted
right the number of bit positions specified by
digit 03 of register RC. Bits equal to the original
sign bit (bit 0) are supplied to the vacated high
order positions. Condition bits LT, EQ, and GT
are set.

Shift Algebraic Right Immediate

SARI RB.RC

I EB
0 8 12 l'

The contents of register RB (bits 0-23) is shifted
right the number of positions specified by RC.
Bits equal to the original sign bit (bit 0) are sup­
plied to the vacated high order positions. Condi­
tion bits LT, EQ, and GT are set.

9. Shift Instructions Page 27

Shift Half Left

SHL RB.RC

I 86

0 8 12 15

If bit 19 of register RC is zero, then the content
of the half of register RB (bits 8-23) is shifted
left the number of bit positions specified by digit
03 of register RC, with zeros supplied to the
vacated low order positions, and the prefix set to
zero. If bit 19 of register RC is one, then register
RB is set to zeros. Condition bits LT, EQ, and
GT are set.

Shift Half Left Immediate

SHLI RB.RC

I 8B
0 8 12 15

The content of the half of register RB (bits 8-23)
is shifted left the number of bit positions speci­
fied by RC. Zeros are supplied to the vacated
low order positions. The prefix of the result is
set to zero. Condition bits LT, EQ, and GT are
set.

Shift Half Left Paired

SHLP RB.RC

I 88
0 8 12 15

If bit 19 of register RC is zero, then the content
of the half of register RB (bits 8-23), shifted left
the number of bit positions specified by digit DJ
of register RC, with zeros supplied to the vacated
low order positions, and a prefix of zero, is
stored in the twin, in a register pair, of RB. If bit
19 of register RC is one, then the twin of register
RB is set to zeros. Condition bits LT, EQ, and
GT are set.

Shift Half Left Paired Immediate

SHLP~RB.RC

The content of the half of register RB (bits 8-
23), shifted left the number of bit positions spec­
ified by RC, with zeros supplied to the vacated
low order positions, and a prefix of zero, is
stored in the twin, in a register pair, of RB.Con­
dition bits LT, EQ, and GT are set.

Shift Half Rl1ht

SHR RB.RC

If bit 19 of register RC is zero, then the content
of the half of register RB (bits 8-23) is shifted
right the number of bit positions specified by
digit 03 of register RC, with zeros supplied to
the vacated high order p<>sitions, and the prefix
set to zero. If bit 19 of register RC is one, then
register RB is set to zeros. Condition bits LT,
EQ, and GT are set.

Shift Half Rlcht Immediate

SHRI RB.RC

l RB I RC I
12 15

The content of the half of register RB (bits 8-23)
.is shifted right the number of bit positions speci­
fied by RC. Zeros are supplied to the vacated
high order positions. The prefix is set to zero.
Condition bits LT, EQ, and GT are set.

Shift Half Rl1ht Paired

SHRP RB.RC

Page 28 9. Shift Instructions

If bit 19 of register RC is zero, then the content
of the half of register RB (bits 8-23), shifted
right the number of bit positions specified by
digit 03 of register RC, with zeros supplied to
the vacated high order positions, and a prefix of
zero, is stored in the twin, in a register pair, of
RB. If bit 19 of register RC is one, then the twin
of register RB is set to zeros. Condition bits LT,
EQ, and GT are set.

Shift Half Right Paired Immediate

SHRPI RB.RC

I 9A

0 8 12 IS

The content of the half of register RB (bits 8-
23), shifted right the number of bit positions
specified by RC, with zeros supplied to the va­
cated high order positions, and a prefix of zero, is
stored in the twin, in a register pair, of register
RB. Condition bits LT, EQ, and GT are set.

Shift Left

SL RB.RC

I A6

0 8 12 IS

The content of register RB is shifted left the
number of bit positions specified by digit 03 of
register RC. Zeros are supplied to the vacated
low order positions. Condition bits LT, EQ, and
GT are set.

Shift Left Immediate

SLI RB.RC

I AB

0 8 12 lS

The content of register RB is shifted left the
number of bit positions specified by RC. Zeros
are supplied to the vacated low order positions.
Condition bits LT, EQ, and GT are set.

Shift Left Paired

SLP RB.RC

The content of register RB, shifted left the num­
ber of bit positions specified by digit 03 of regis­
ter RC and with zeros supplied to the vacated
low order positions, is stored in the twin, in a
register pair, of RB. Condition bits LT, EQ, and
GT are set.

Shift Left Paired Immediate

SLPI RB.RC

l RB I RC I
12 13

The content of register RB, shifted left the num­
ber of bit positions specified by RC and with
zeros supplied to the vacated low order positions,
is stored in the twin, in a register pair, of RB.
Condition bits LT, EQ, and GT are set.

Shift Right

SR RB.RC

I B6
0

The content of register RB is shifted right the
number of bit positions specified by digit 03 of
register RC. Zeros are supplied to the vacated
high order positions. Condition bits LT, EQ, and
GT are set.

Shift Right Immediate

SRI RB.RC

The content of register RB is shifted right the
number of bit positions specified by RC. Zeros

76.11.22 IBM CONFIDENTIAL

9. Shift Instructions

are supplied to the vacated high order positions.
Condition bits LT, EQ, and GT are set.

Shift Right Paired

SRP RB.RC

l RB I RC I
12 B

The content of register RB, shifted right the
number of bit positions specified by digit 03 of
register RC and with zeros supplied to the vacat­
ed high order positions, is stored in the twin, in a
register pair, of RB. Condition bits LT, EQ, and
GT are set.

Shift Rl1ht Paired Immediate

SRPI RB.RC

The content of register RB, shifted right the
number of bit positions specified by RC and with
zeros supplied to the vacated high order posi­
tions, is stored in the twin, in a register pair, of
RB. Condition bits LT, EQ, and GT are set.

IBM CONFIDENTIAL

Page 29

76.10.15

Page 30 10. System Control Instructions

1 0. System Control which issues cache control operations or aligns
data on cache line boundaries. (It is probably
safe to assume that each line size is a power of

10.1 Cache Control Operations two and that the lines are aligned in memory with
respect to their own size.)

The 801 processor is organized to allow
independent memory access for data and instruc­
tions. Each access path may be served by an in­
dependent cache. The effects of these caches on
program execution (other than to improve per­
formance) occurs only in special circumstances.
Particularly, modifications to main memory by
I/ 0 paths must not be assumed to be reflected to
the processor, since the areas affected may al-

. ready be copied in either or both caches. Modifi­
cations to memory by the processor may not be
reflected in subsequent instruction or 1/0 access
to main memory, since the updates may be buff­
ered in the data access cache for an indetermi­
nate period of time. This buffering can affect
both read and write I/ 0 accesses. Reads can be
changed if a buffered modification to the target
area of the read is accomplished after the read
has completed. Writes will transmit the wrong
values if buffered modifications have not been
accomplished. (It should be stressed that the 801
architecture allows for indeterminately long de­
lays between store instructions and the actual
modification of main memory.) ·

In systems which are as fast as the current
801 implementation, cache misses are a very im­
portant source of performance degradation. To
minimize this degradation, instructions are pro­
vided which allow programs to give usage in­
formation to the cache management hardware.
This will enable the system to avoid unnecessary
line transfers between cache and main storage.

The cache control instructions are provided
to allow program control of the relationship be­
tween main memory and the caches. These in­
structions deal with cache lines which are imple­
mentation defined. In the current implementa­
tion, lines of both data and instructions are 32
bytes long on 32 byte boundaries. The data
cache does not attempt to update main memory
until a line which has been changed must be re­
moved to make room for a new line.

It is likely that details of the cache will be
model dependent, and may even be changed in
the prototype. Thus all cache control algorithms
should be designed and packaged in a way which
makes response to such changes reasonably easy.
At the very least, the line sizes of the instruction
and data caches should be reflected as
independent symbolic constants in each routine

10.2 Instructions

DI sable

DI

The cpu is disabled for any interruptions due to
an external interruption condition. The previous
enable state bit (EN) of the condition register is
set to one if the processor was enabled previous
to this instruction, else the processor was disa­
bled and the bit is set to zero.

Enable

El

The cpu is enabled for interruptions due to an
external interruption condition. A pending ex­
ternal interrupt will cause an immediate proc­
essor interrupt after ENABLE. The previous
enable state bit (EN) of the condition register is
set to one if the processor was enabled previous
to this instruction. else the processor was disa­
bled and the bit is set to zero. (Engineering
note: Care must be taken that an enable followed
immediately by a DISABLE, IOR, or IOW in­
struction works correctly.)

Instruct Data Cache Une

INDCL RB.RC

Register RC contains the address of a byte in
storage which resides in some line. This line is

10. System Control lnstructlOns Page 31

called the subject line. RB (bits 8-11 of the in­
struction) instructs the cache as follows:

RB•O Invalidate Data Cache Line.
If a previously fetched copy of the line
containing the byte addressed by the
contents of register RC exists in the data
cache, that copy is (logically) replaced
by the current value of that line in main
storage (no actual fetch from main stor­
age is implied). This instruction can be
used before the transmission into main
storage of data from a direct memory
attachment, to guarantee that the values
received will be the ones seen by subse­
quent accesses and that pending updates
are cancelled. This instruction can also
be used to suppress storing dead tempo­
rary values back into main storage from
the data cache.

RB• I Store Data Cache Line
The data cache is searched to see if a
pending update to the subject line exists.
If a pending update is found, it is per­
formed. The line may be retained in the
cache for later use.

RB•2 Load Data Cache Line
If the subject line is not in the cache, it is
loaded in the cache, just as if a data ref­
erence to the subject line bad occurred.

RB-3 Set Data Cache Line
If the subject line is not in cache, a cache
entry is established for it but the line is
not loaded into the cache. If the subject
line is in the cache, it is flagged as being
unchanged. This can be used to suppress
loading dead values into the data cache
from main storage when new values are
to be created.

The f o/lowing two cache instructions are not
in the initial 801 implementation. Other
cache instructions, also not in the initial 801
implementation, are defined in Section 11.

RB-4 Move to Buffer
The subject line is moved into a data
cache line buffer. This instruction does
not disturb any data cache entry.

RB•S M<We from Buffer
The cache line buff er is moved into the
subject line. If the subject line was in
cache, it is written over. If the subject
line was not in cache, the line is written

over in backing store -- the cache is left
undisturbed.

Note. Since the buffer may be any cache line
temporarily used for this purpose, MOVE
TO/FROM BUFFER sequences must run disa­
bled to ensure that the buffer contents are not
modified between the sequences.

Invalidate Instruction Cache Line

INICL RC

If the instruction cache has a copy of the line
containing the word addressed by the contents of
register RC, that copy is abandoned. Thus previ­
ous updates to that line which are reflected in
main storage (see the Store Data Cache Line
option of INDCL) will be reflected in subsequent
execution. If the line indicated by this instruction
is the line currently addressed by the Instruction
Address Register or the line following, or if ei­
ther of these lines and the lines immediately fol­
lowing contain consecutive ZNOP instructions,
the results are unreliable. This instruction can be
used in conjunction with the INDCL(RB-1)
instruction to synchronize the creation or modifi­
cation of program text with the subsequent exec­
ution of this new program text.

Zero Time No-op

ZNOP

No operation is performed and the next following
instruction is executed, usually during the CPU
cycle that would normally be· taken for the exec­
ution of this instruction; hence the appearance of
zero-time execution.
Note. This instruction can be used to force the
IAR to a full word boundary.

IBM CONFIDENTIAL 76.10.15

Page 32 11. Relocate

11. Relocate

11.1 Relocate Facilities

The Relocate feature of the 801 is not
implemented in the first prototype being
developed.

The 801 without Relocate provides one
real address space up to 16 megabytes. The
actual size of a particular system is known to
the CPU, which presents a program interrupt if
an access above this limit is requested.

In addition to this real address space, the
801 Relocate feature provides up to 255 virtual
address spaces, each up to 16 megabytes.

The following are some important differ­
ences between 801 Relocate and S/370 Relo­
cate:

- An address, as presented to the storage
subsystem, consists of 32 bits (8 bit Address
Space ID (ASID) and 24 bit address in this
address space). An ASID of 0 indicates real
address space. The 24 bit address is developed
normally. The 8-bit ASID is taken from one of
two new registers, the Instruction Relocate
Register (IRR) and the Data Relocate Register
(ORR). (These may be physically in their
respective caches.) The format of the Relocate
Register is shown in Figure 11.1. The machine
assumes that each such 32 bit address refers to

. a unique byte in real memory (or that the page
is not in real memory). Thus shared pages are
not supported by the machine in a manner
guaranteed to be correct.

- Whereas the equivalent ASID in S/370
is the address of a segment table, the 801
ASID is symbolic and independent of the ad­
dress of the relocation table. Thus page tables
can be moved freely without invalidating cache
directory entries. The format of a page table
entry is shown in Figure 11.2.

- The relocation tables are one level (i.e.
there are no segment tables in this architec­
ture).

I ASID P.T. ADDRESS

0 8 10 23

ASID: Address space
L:

P.T. ADDRESS:

Length of address space
(2, 4, 8, or 16 .meg)
Address of Page Table
(on lK boundary)

Figure 11.1 Relocate Register Format

Bit:

0 Reserved
1 Software Use

(can be used by software to mark
read-only pages - not enforced by
hardware)

2 Data Reference Flag
(set to one when this PTE is used
by the data cache)

3 Valid Flag
(1 causes a Page Fault Interrupt re­
gardless of the value of the Real
Page Address)

4-15 Real Page Address
(4K pages)

Figure 11.2 Page Table Entry Format

- Because the 801 has a split instruction cache
and data cache it is natural (and useful) to sup-_
port two possibly different active address
spaces, one for data and one for instructions.

(Engineering note : Because of the above
three characteristics it is possible to run both
caches "virtual", that is, to search the cache
directory with the unique virtual address rather
than with a real address. Thus, on cache hit,
there is no performance degradation.

76.8.23 IBM CONFIDENTIAL

It is also possible now to resolve cache
misses independently by accessing page tables
which themselves are participating in the
instruction/data cache replacement strategies.)

11.2 Interrupts

The set of interrupts already defined for
the 801 remain unchanged, except for the fol­
lowing:

1. A new interrupt type is defined, called
Page Fault. This is raised whenever one of the
following occurs:

- A real address (ASID-0) exceeds the
range of this machine.

- A virtual address is resolved, via a
page table entry, to an address
which exceeds the range of the
machine.

- A virtual address is resolved to a page
table entry which has an invalid
flag set.

- A virtual address exceeds the size of
its address space.

(Bits 4-7 of the ISB will distinguish these
cases).

The Old IA for Page Fault interrupt con­
tains the instruction whose attempted execution
caused the interrupt.

(Engineering note : Because Page Fault
interrupts are defined to be synchronous they
must not be raised early (due to prefetch­
buffer activity) or late (due to overlapped
processing with data cache accesses).)

2. The Program interrupt for out-of-range
real addresses will never be raised.

3. The execution of all interrupt types
consists additionally in setting the Instruction
and Data ASID's to zero (i.e. the first level
interrupt handlers all run real).

4. The reserved word following each
OLD IA word in the interrupt areas is used to
store the old Instruction and Data ASID's.

11.3 New or Modified Instructions

Branch, Execute and Change State
Replaces Branch, Execute and Enable

B~SX RB.RC

I 99 I RB I RC
0 8 12 15

The instruction immediately following the
BCSX instruction, called the subject instruc­
tion, is executed. Then the contents of the
register specified by RB replaces the Instruc­
tion Relocate Register. Finally the machine is
enabled, and the branch target is fetched
(which may cause a page fault).

Branch Execute and Set ASID

BSAX RB.RC

0 8 12 1.5

Same as above except the machine is not ena­
bled.

Change Data Relocate Register
Option of Instruct Data Cache
Instruction

INDCL 6.RC

I 09
0 8 12 1.5

Line

The contents of the register specified by
RC replace the Data Relocate Register.

(Enginttring note : To insure that store-back
does not also require table lookup, the data

IBM CONFIDENTIAL 76.8.23

Page 34 11. Relocate

cache directory should contain the real line
address in addition to the virtual address.)

Flush Data Cache Line
Option of Instruct Data Cache Line
I nstruclion

INOCL 7.RC

I 09
0 8 12 15

Same as Store DCL except that the line is not
retained in the cache. (Used when a PTE is
modified.)

Invalidate Instruction Cache Line

INICL RB.RC

E9

0 8 12 15

RB contains the ASID of the line to be
invalidated. Otherwise the instruction remains
unchanged.

76.8.23 IBM CONFIDENTIAL

12. 801 1/0 Subsystem Page 35

12. 801 1/0 Subsystem

12.1 Introduction

Overall 801 1/0 structure and the func­
tional characteristics of certain specific I/ 0
adapters are defined in this section. All of the
1/0 components described will not necessarily
be in the initial 801 implementation.
Specifically, the Switch and Switch Adapter
(SA) are not in the initial 801 implementa­
tion.

12.2 1/0 Structure Overview

Figure 12.1 shows the general structure of
the 801 1/0 subsystem. The 1/0 components
in the figure are:

• I/ 0 Bus is a parallel bus which moves
control and data to and from the 801 un­
der control" of 801 instructions. I/ 0 per­
formed under control of 801 instructions
is called programmed 1/0. A detailed de­
scription of the bus is available in the doc­
ument "801 System 1/0 Interface Specifi­
cation" number 4322-11.

• BSA: Bus Serial Adapter is an adapter
which is primarily used to transfer short
blocks of data and control information to
and from a control unit over a serial link.

• EIA External Interrupt Adapter collects
interrupt request ·from all adapters and
control units and presents a single external
interrupt signal to the 801 when appro­
priate.

• Serial Link attaches a Control Unit to a
BSA or DMA. The link is compatible
with synchronous data link control
(SDLC).

• CU A Control Unit provides the logical
capabilities necessary to operate and con­
trol one or more I/0 devices. A CU may
be connected by a serial link to a BSA or
DMA or connected locally to a Functional
Adapter (FA).

• FA Functional Adapter is any adapter
designed to attach a particular kind of
Control Unit to the I/0 Bus.

• MIO Bus The Memory 1/0 Bus provides
access to the main memory of the 801. It
is descri~d in the document "801 Memo­
ry 1/0 Bus Specification" number 4322-
14.

• DMA The Direct Memory Access adap­
ter is connected to both the IO Bus and
the MIO Bus. It is used for transferring
data between a CU and main memory
over a serial link. Once initiated the data
transfer proceeds without CPU or 1/0 Bus
involvement.

• Switch is a full duplex switch for serial
links. An integral part of the switch is the
Switch Adapter (SA) through which the
switch is controlled.

12.3 1/0 Instructions

Programmed 1/0 (PIO) instructions are
used to transfer data between the CPU general
purpose registers and 1/0 Bus adapters. The
instructions are I/0 Read (IOR) and 1/0
Write (IOW) and they have the D instruction
format:

Input/Output Read

IOR RB.RC.I

I CF I RB RC

0 8 12 16 31

Input/Output Write

IOW RB.RC.I

I OF I RB RC

0 8 12 16 31

•D•A rn .. ICU'"\C .. ITl/\.1 7F. rn 11;

Page 36

801
Memory

Memory
Control

1I

Cache

801

CPU

76.10.15

][

OMA

12. 801 1/0 Subsystem

Serial Link
1--------------

MIO Bus

I
I

OMA I- - J
.---.... _
I "' ________ ..

Switch 0.
~--1--~--___ i-, I

~----o

·-

I I
I I
I I . I ; l

1-- EIA

,.. __

I - - I- - BSA - - •

I
I
1

I L
IT
I l
I I
I I
I I

I I.. -- BSA

._ _______ _
1-- - - - - - - ~·

I- - -·

SA

n 1/0 Bus

FA µ Serial Link ~ .___ _________ LJ --
cu

Figure 12.1. 1/0 Subsystem Structure

IBM CONFIDENTIAL

12. 801 1-0 Subsystem Page 37

In the execution of both instructions, the CPU
puts on the 1/0 Bus a 16 bit
address/ command field consisting of one bit
indicating IOR (0) or IOW (1) followed by the
lower order 1 S bits of the sum of I and
O/(RC). The address/command field has the
following format

I CMO I
0 1 6 15

The first bit distinguishes a read from a write,
and ADDR is a S bit field used to select one
adapter on the 1/0 Bus. The 10 bit command
field CMD contains information for the select­
ed adapter. In general the use of CMD is
adapter independent.

At the time an instruction is initiated by
the CPU, the selected adapter may be in a
"busy" state relative to the specific instruction.
If it is busy, execution of the instruction only
results in setting the 1/0 busy bit in the condi­
tion register to 1. Otherwise, for IOW, the
1/0 busy bit is set to zero and the half of the
source register RB are transferred· to the adap­
ter, or, for IOR, two bytes from the adapter
are placed in the half o(the target register RB
and its prefix set to zero.

The above description of the operation of
I/ 0 instructions assumed no errors occurred
during instruction execution. If an error is de­
tected, an I/ 0 check interrupt occurs at the
completion of the instruction and the contents
of RB, RC, and the value of the 1/0 busy bit
in the condition register are unchanged.

Note: The conditions under which an
instruction sets the 1/0 busy bit to 1 depends
on the CMD field, the. specific adapter, and the
state of the adapter when the instruction is
initiated. Adapters may be designed so that
they are never busy for some or all I/ 0 in­
structions. In these cases, it is not necessary
for the program to test the 1/0 busy bit for the
successful execution of the data transfer part of
the 1/0 instruction, since it will always be set
to zero.

12.4 Serial Link

Detailed information on the Serial Link is
available in document 4322-12, and in "IBM
Synchronous Data Link Control" GA27-3093.

For the purposes of this manual, the fol­
lowing properties of the Serial Link should be
understood by the reader.
(1) The link is full duplex.
(2) All transmissions are delimited by SDLC

flags:

(3)

(4)

F I (CRC) F

where F is the SDLC flag byte
(01111110), I is the information in an in­
tegral number of data bytes modified by
the SDLC zero insertion rule, and CRC is
the standard SDLC two byte cyclic redun­
dancy check.
SDLC idle and abort are implemented by
the receiver and transmitter.
The rate of transmission is set by the CU
data transmission clock. Control Units
which are locally attached over serial links
to the 801 may further control the rate by
introducing a pause in the transmissions in
both directions on the link by stopping the
data clock for up to 100 milliseconds.

12.5 Control Units

Only Control Units which are attached to
the system via serial links are covered here. A
Control Unit provides the logical capabilities
necessary to operate and control an 1/0 de­
vice. . A CU accepts and executes commands
sent to it and provides by means of intem1pts
and messages sent over the link indications
concerning CU and device status. The I/ 0
device attached to the CU participates in the
e,ecution of most types of commands. For
such commands, the CU provides the detailed
signaling sequences required to perform the
operation.

IBM CONFIDENTIAL 76.11 ??

Page 38 12.801 1-0 Subsystem

CU commands are conveyed to a CU by
a BSA or a OMA via a serial link and they
have a variable length format.

I CMO I DATA

The first byte sent defines the command and
subsequent bytes are interpreted as data or
command modifiers as appropriate to the com­
mand. All of the bytes are transmitted in a
single SDLC frame.

With respect to the data transmitted by
the CU, commands fall into two categories:

(1) Read type commands: These commands
are requests for two or more bytes of data
from the CU. If the CU is unable to pro­
vide the data, it sends a one byte CU sum­
mary status message detailing why it can­
not execute the command. Should the CU
detect an error condition after having ini­
tiated the transfer of the requested data, it
aborts the transmission. Otherwise, the
receiver of the data assumes successful
execution of the command by the CU.

(2) Write type commands: One or more bytes
of data are transmitted to the CU and the
CU responds with its summary status byte.
The CU normally sends the status byte
after it receives the complete message.
However, if the CU detects the end of
data condition during a write or if it is in a
state where it cannot execute the com­
mand, it may send the status byte before
the complete message is sent.

12.5.1 COlltrol Unit Sipals

Once initiated, I/ 0 operations are per­
formed asynchronously relative to CPU execu­
tion. To facilitate synchronization of 1/0 and
CPU activity certain conditions which mark the
CU' s and device' s progress in executing a
command are signaled by the CU. These sig­
nals are made available to the program either
via the BSA or OMA or by CU interrupts and
are as follows:

(l) Data end: the data end signal indicates
that the CU has received or provided all
of the data associated with the command.
Data end is always signaled to the BSA or

OMA, either explicitly as a bit in the sum­
mary status byte message or implicitly by
sending the data requested as part of a
read type command.

(2) CU end. Certain commands may keep the
CU busy after the data end condition is
reached. The CU end signal indicates that
the CU bas completed its part in execut­
ing the command. (Commands which in­
volve an 1/0 device may still be in prog­
ress). CU end may be signaled concur­
rently with data end or it may be signaled
afterwards by a CU interrupt. The CU
end signal may not be generated as a sig­
nal distinct from device end by some types
of Control Units.

(3) Device end. Conclusion of all commands
is indicated by the device end signal. De­
vice end may be signaled concurrently
with data end or it may be signaled after­
wards by a CU interrupt.

Note: For any particular CU and command
data end, CU end, and device end are signaled
in only one way and order. Control units
which serve only one device do not distinguish
between CU end pd device end. Further­
more, CU end may not be distinguished from
device end by some CU' s even though they
serve several devices. The CU generates inter­
rupts to signal CU end and device end when
these conditions occur after data end was sig­
naled. Since an interrupt may have multiple
causes, the program must sense the "status" of
the CU to determine the nature of the inter­
rupt.

12.5.2 CU States and Commuds

In general, the result of initiating a CU
command · depends on the state of the CU
when the command is initiated. Excluding the
non-operational state, there are three CU
states (Available, Working, and Interrupt Pend­
ing) and, exclusive of modifiers, five CU com­
mands (Read, Write, Sense, Halt, and Control).

Available. The available state indicates that
the CU is available to execute any of the five .
commands.

76.11.22 IBM CONFIDENTIAL

12. 801 1-0 Subsystem Page 39

Working. The working state indicates that the
CU is in the process of executing a previously
initiated command A CU leaves the working
state after signaling CU-end or device-end.

Interrupt Pending. When the CU has an inter­
rupt condition to report which has not been
masked in the CU it enters the interrupt pend­
ing state. The CU leaves the interrupt pending
state as a result of executing a sense command
addressed to the interrupt condition register of
the CU.

Note: The working state can only be entered
as a result of initiating a CU command. The
CU is in the available state from the time CU­
end or device end occun until either an inter­
rupt condition which is relevant to the program
is recognized by the CU or the next command
is initiated. The sense command addressed to
the interrupt register of the CU clears the in­
terrupt condition.

The CU command code assignment is list­
ed in Figure 12.2. The symbol x indicates that
the bit position is ignored; m identifies a modi­
fier bit. The meaning of the modifier bits de­
pends on the type of control unit.

Coaummd
HALT
SENSE
READ
WRITE
CONTROL

Code
001 Xllll
()()() mmmmm
Olmmmmmm
10 mmmmmm
11 mmmmmm

Figure 12.2. CU Comm•nd Codes

Read. A read operation is initiated between
the CU and the BSA or OMA. The Read com­
mand and any modifiers are transmitted to the
CU. If the CU is in the available state when
the command is initiated, the requested bytes
(at least two) are transmitted by the CU. If
the CU is in the Working or Interrupt Pending
State, the CU sends its status byte to the BSA
or OMA. Data end is implicit with the trans­
mission of the last byte in both cases. CU end
and device end may be concurrent with or sub­
sequent to data-end.

Write. A write operation between the CU and
a BSA is initiated. The write command, .any
modifiers, and the data to be written are trans­
mitted to the CU. If in the Available state, the
CU responds with its status byte after receiving
the complete message. If in the working or
interrupt pending state, the <;U may respond
with its status byte immediately.

Sense. A sense operation is initiated at the
CU. The sense command and any modifiers
are transmitted to the CU by the BSA and the
CU responds with two or more bytes of sense
information, provided the CU is not in the
working state when the command is initiated.
When the sense command is addressed to an
interrupt condition register in the CU, the reg­
ister is also set to zero. If the CU is in the
working state when the command is initiated, it
responds with its status byte. Device end is
implicitly signaled with the transmission of the
last byte of sense information.

Halt. The Halt command stops the transfer of
data from the CU on a read type command.
The CU executes the command by sending any
last data byte and the concluding CRC and flag
bytes. If the transmission had not yet begun
when the command is received by the CU, the
CU sends the null message consisting of two
flag bytes separated by the CRC bytes, and if
the transmission had been completed. the com­
mand is equivalent to a NO-OP ..

Control. A control operation is initiated at the
CU. The control command byte with modifiers
and data are sent to the CU. A control com­
mand is used to initiate an operation which
does not involve transfer of data such as posi­
tioning a disk-access mechanism or preparing
the CU for transfer of data with a OMA. The
interpretation of the command, modifiers, and
data is CU dependent. In particular, the states
in which a CU accepts and executes a control
command is CU dependent.

12.5.3 CU Summary Stam Byte

The CU transmits its summary status byte
under the following circumstances

(1) When it detectS the end of a write opera­
tion.

IBM CONFIDENTIAL 76.11.22

Page 40 12.801 1-0 Subsystem

(2) In response to a command it cannot exec­
ute because it is in the working or inter­
rupt pending state.

(3) When it detects a transmission error in a
received message.

(4) When it receives an illegal command.

The significance of the bits in the summary
status byte is shown in Figure 12.3.

Bit
0
1
2
3
4
s
6
7

Deslpatloa
Unit Check
Transmission Error
Incorrect length
Working State
Interrupt Pending State
Device End
Control Unit End
Data End

Figure 12.3. Summary Status Bits

Unit Clwck Unit check indicates that the
1/0 device or control unit has detected an unu­
sual condition. Detailed information is ob­
tained by issuing a sense command. Unit
check may indicate either a programming error
or a hardware malfunction.

Transmiuion Error. The CU receiver has de­
tected a transmission error.

lncotnct Length: This bit is set to 1 on a
write operation when the CU detects the data
end condition before it receives the second
flag.

The significance of bits 3 to 7 is de­
scribed above.

12.6 BS~

The Bus to Serial Adapter (BSA) is pri­
marily designed to simultaneously transmit and
receive from one to 16 bytes of data over the
serial link. Subject to possible limitations on
data rate, longer blocks of data can be handled
by appropriate programming. All BSA 1/0
operations are initiated and controlled by PIO
instructions.

12.6.1 Tnmnrisdon

Data to be transmitted are loaded into the
BSA transmission buffer by PIO, the flag and
CRC bytes and zero insertion required by the
link protocol being supplied by the BSA hard­
ware automatically. The buffer is a first
in/first out queue (FIFO) with room for 16
bytes. The program controls the loading of the
queue and the time at which the transmitter
starts. An over-run check condition occurs if
the transmitter attempts to take a byte from an
empty queue. Maskable interrupts are generat­
ed and posted in the status register when a
complete frame has been sent and when the
queue contains eight or fewer bytes and the
transmitter is on.

LB2 is an IOW with command field:

I 11 I xxxxxx I oo I
6 • 14 u

First char. CO and then char. Cl of register RB
are put on the transmission queue. If the
queue does not have room for the bytes or if
the last byte flag had been set by a previous
instruction (LLB2, LLBJ) the I/0 busy bit in
the condition register is set to 1.

Load Last Two Byrn (LLB2)

LLB2 is an IOW with command field:

I 11 I xx xx xx I 01 I
6 8 14 u

LLB2 is identical to LB2 in the way data are
placed on the queue. In addition, the instruc- -
lion starts the transmitter if it was not already
started and it sets the last byte flag to 1. The
transmitter resets this flag after it transmits the
last byte put on the queue by this instruction
and the concluding CRC and flag bytes. If the
queue does not have room for the bytes or if
the last byte flag is already set to 1 when the
instruction is initiated, the I/ 0 busy bit in the
condition register is set ti> 1.

76.11.22 IBM CONFIDENTIAL

12. 801 1-0 Subsystem Page 41

Load Last One Byte (LLB 1)

LLB 1 is an IOW with a command field:

, , , I xx xx xx I 10 I
6 8 14 15

· Char. CO of register RB is put on the transmis­
sion queue and the last byte flag is set to 1.
The instruction starts the transmitter if it was
not already started. If the queue does not have
room for the byte or if the last byte flag is al­
ready set to 1 when the instruction is initiated,
the I/ 0 busy bit is set to 1. The last byte flag
is reset by the transmitter after it transmits the
byte stored by this instruction and the conclud­
ing CRC and flag bytes.

Load Two Bytes and Start Transmitter
(LB2S7'

LB2 ST is an IOW with a command field:

, ,, I xxxxxx, ,, I
6 • 14 15

LB2 ST loads the transmission queue in the
same way as LB 2 and in addition starts the
transmitter. If the transmitter is transmitting
when the command is initiated, the 1/0 busy
bit is set to 1.

Trammit Immediate (TRI)

TRI is an IOW with a command field:

DATA

6 8 15

The data portion of the command field, bits 8
to lS, is transmitted as a one byte message.
The I/ 0 busy bit. is set to 1 if either the BSA
is transmitting or the transmission queue is not
empty when the command is initiated.

12.6.l ReceiYe

The BSA receiver puts the information
bytes contained in each SDLC frame on a
FIFO receive queue. The queue has room for
16 bytes and the program accesses the queue
with IOR instructions. An overrun check con­
dition results if either the transmitter tries to
put a byte on the queue when it is full or if the
queue is not empty when the first data byte of
an SDLC frame is detected. The BSA bas a
counter accessible to the program which is
equal to the number of bytes in the queue.
Maskable interrupts are generated and posted
in the status register when a complete frame is
received and when the queue contains eight or
more bytes.

Read One Byte (RDJ)

RDJ is an IOR with a command field:

, ,, I xuxxx I Xl I
6 8 14 u

RD 1 transfen the first byte in the receive
queue into char. CO of the target register of
the IOR. Char. Cl is set to zeros. The 1/0
busy bit is set to 1 if the queue is empty when
the instruction is initiated.

Read Two Bytes (RD2)

RD2 is an IOR with a command field of

, ,, I xxxxxx I xQ I
6 8 14 15

RD2 transfen the first byte in the receive
queue into char CO of the .target register in the
IOR and the next bYte into char Cl. The 1/0
busy bit is set to 1 if the queue contains less
than two bytes when the command is initiated.

12.6.3 Stam Resister

The status register and the status register
extension provide to the program the status of
the -BSA and the conditions under which an
1/0 operation was concluded. Those bits in
the status register which are read-only (R/0)

IBM CONFIDENTIAL 76.,, "2

Page 42
12.801 1-0 Subsystem

are unaffected by IOW instructions addressed
to the register. Some of the bits may cause the
interrupt request line to be activated and these
bits may be either maskable or non-maskable.
The significance of the bits in the status regis­
ter is shown in Figure 12.4.

Bit Designation
0 Interrupt Summary
1 Link Idle
2 not used
3 not used
4 Receive queue

half-full
5 Transmit queue

half-full
6 Frame received
7 Frame transmitted
8-11 Interrupt Mask
12-15 Received byte

counter

Type lntenupt Mask
R/O Yes No
R/0 No

R/0 Yes

R/0 Yes

R/W Yes
R/W Yes
R/W No
R/0 No

Yes

Yes

Yes
Yes

Figure 12.4. BSA Status Register

lnte"upt Summary. One. or more bits in the
status register extension which can cause an
interrupt is set. ·

Link Idle. The idle condition on the link has
been detected by the receiver. The bit is reset
to zero when the beginning flag of the next
frame is received.

Recei11e Queue half-! ull This bit is equal to
one whenever there are eight or more bytes in
the queue.

Transmit Quew half-! ull This bit is equal to
one whenever there are eight or fewer bytes in
the transmit queue and the transmitter is trans­
mitting.

Frame Received. The bit is set to zero when
the first flag of a frame is received and is set to
1 when the final flag is received.

Frame Transmitted. The bit is set to zero by
any of the load buff er commands that start the
transmitter and is set to 1 when the final flag
of the frame is sent.

Interrupt Mask. The four bits selectively mask
the corresponding bits in bit positions 4-7 of

the status register: 1 allows the interrupt, 0
masks the interrupt.

Received Byte Counter. The four bit counter
is equal to the number of bytes in the receive
queue. It is incremented as each byte is re­
ceived and put on the queue and decremented
as bytes are removed by IOR' s.

12.6.4 Status Register Extension

The bits in the status register extension
have the meaning shown in Figure 12.5.

Bit
0
1
2
3
4
5

Designadoa
Bus Parity Error
Invalid Instruction
Abort received
Transmission Error
Receiver Overrun
Transmission
Overrun

6 Clock Failure
7 Programmed Con­

trolled Interrupt
8 Diagnostic Mode
9-15 not used

Type laterrupt Mask
R/W No
R/W No
R/W Yes No
R/W Yes No
R/W Yes No
R/W Yes No

R/W Yes No
R/W Yes No

R/O No

Figure 12.5. BSA Status Register Extension

Bw Parity E"or. An 1/0 Bus parity error
occurred during the execution of the current
PIO instruction. An 1/0 check interrupt is
taken by the CPU.

Invalid Instruction. The current PIO instruc­
tion is invalid. An 1/0 check interrupt is taken
by the CPU.

Abort Received. The SDLC abort signal is
detected by the receiver. The receiver is reset
to the idle state.

Transmission Oven-un The transmitter needs a
data byte to send but the transmission queue is
empty. The transmission is aborted and the
transmitter reset to the idle state.

Receiver Overrun. The receiver has a data byte
to put on the receive queue but the queue is
full or else the receiver has received the first
information byte of a frame and the queue is

76.11.22 IBM CONFIDENTIAL

12. 801 1-0 Subsystem Page 43

nonempty. The receiver is reset to the idle
state.

Transmission E"or. A CRC check occurred or
the number of bits received was not an integral
number of bytes. The receiver is reset to the
idle state.

Clock Failute The clock has not been received
for more than a fixed time interval (100 milli­
seconds in prototype). Both transmitter and
receiver are reset to their idle states.

ProgramtMd Controll«l /ntn?'Upt. The pro­
gram may use this bit to generate an interrupt
request from the BSA.

Diagno.rtic Moth. This bit is set to 1 when the
BSA is in diagnostic mode.

The 1/0 busy bit in the condition register
is always set to zero by control commands.

Read Status Register

An IOR with command field:

6 • 12 15

transfers the status register into the target reg­
ister of the IOR.

Write Statm R.guter

An IOW with a command field

6 • 12 15

sets the R/W bits of the status register to the
value of the corresponding bits in the source
register of the IOW. R/0 bits are not affected.

Read .Status Registt!r Extmsion

An IOR with command field:

6 • 12 15

transfers the status register extension to the
target register of the IOR.

Write Status Register Extmsion

An IOW with command field:

6 • 12

sets the bits in the status register extension to
the value of those in the source register of the
IOW.

Reset Command

An IOW with command field:

I oo I xxxx I 2

6 • 12 15

causes the BSA to perform its reset function.
The 1/0 busy bit is always set to zero.

Reset Function. Execution of the reset func­
tion leaves the BSA in the following state:

(1) Status register and its extension all zeroes.
(2) Transmit and Receive queues empty.
(3) Transmitter in idle state, transmitting 1 ' s.
(4) Receiver in idle state, looking for the first

flag of a frame.

Write Mask

Write Mask is an IOW with a command
field of

I 00 I mask 3
6 • 12 15

Write Mask sets the interrupt mask in the sta­
tus register equal to bits 8-11 of the command
field.

IBM CONFIDENTIAL 76.11.22

Page 44 12.801 1-0 Subsystem

Reset Frame Recei''lled Bit Leave Diagnostic Mode

An IOW with a command field An IOW with a command field of

loolxxxxl 4

6 8 12 1.5

resets the frame received bit in the status regis­
ter to zero.

Reset Frame Transmitted Bit

An IOW with command field:

loolxxxxl 5

6 8 12 1.5

resets the frame transmitted bit in the status
register to zero.

Reset ReceiYer - An IOW with a command
field of

loolxxxxl 6
6 8 12 15

resets the receiver to the idle state and sets the
received byte counter to zero.

Diagnostic Mode

In diagnostic mode, the BSA generates its
own data clock signal and connects its trans­
mitter serial output to its receiver input.

Enter Diagnostic Mode

An IOW with a command field of

loolxxxxl 7

6 8 12 15

puts the BSA into diagnostic mode.

l oo I xxxx I a
6 8 12 15

takes the BSA out of diagnostic mode.

12.7 OMA

The Direct Memory Access adapter
(OMA) is designed to transfer a block of data
between main memory and a Control Unit over
a serial link. Before the data transfer begins,
the OMA and CU must be appropriately ini­
tialized with PIO and CU commands, respec­
tively. A start instruction is then issued to the
OMA and the data transfer proceeds to com­
pletion without CPU action. The data end con­
dition may be recognized by either the CU or
the OMA but the completion of the data trans­
fer is always signaled to the CPU by a OMA
interrupt. The CU may also signal a subsequent
device end by means of an interrupt.

The OMA includes the BSA capabilities
as a subset of its capabilities and except for
invalid commands, the OMA and BSA are
equivalent so far as programs designed for BSA
operations are concerned. However, the OMA
has only one transmitter and receiver.There­
fore, while a OMA read or write is executing,
PIO instructions which normally load the trans­
mit queue or read the receive queue will set the
1/0 busy bit in the condition register to one.

12. 7 .1 Funcdooal Description

In what follows, only OMA functions be­
yond those in a BSA are described.

Address Register

0

Address

Register I
23

The 24 bit address register specifies the loca­
tion of the first byte of data in main memory

76.,, 22 IBM CONFIDENTIAL

12. 801 1-0 Subsystem Page 45

involved in the data transfer. The low order S
bits of the address must be zero (viz. 1/0
transfers must start on a cache line boundary).
Subsequent bytes are used in ascending order
from the original address. On read operations,
the number of bytes stored in main memory is
always an integral number of cache lines. When
the number of bytes transferred between the
CU and the OMA on a read is not divisible by
32, the remainder of the last line is padded out
with zeros.

The address register is incremented by 32
each time a cache line is transferred between
the OMA and main memory.

The address register may be read or writ­
ten by the program.

A command field of

I oo I xxxx I 9
6 8 12 15

addresses the low order two bytes of the regis­
ter and a command field of

loolxxxxj A

6 8 12 15

addresses the high order byte of the register.
The high order byte is set equal to the value of
the low order byte of the source register of the
IOW. An IOR addresses to the high order byte
moves the byte to the low order byte of the
target register of the IOR. The 1/0 busy bit is
set to one if a previously initiated OMA opera­
tion had not yet completed when these instruc­
tions are initiated.

Count Registir

0

Count

Register

15

The 16 bit count register is initialized at the
beginning of a OMA operation with the num­
ber of bytes to be transferred. As each byte is
transmitted to or received from the Control
Unit, the count is decremented by one (but not

below zero). Excluding hardware errors and
the bytes that may be needed to pad out the
last cache line on a read, the difference be­
tween the initial count and its value at the end
of an operation is equal to the number of bytes
transferred between main memory and the CU.

Set Count and Start Write

An IOW with command field:

I 00 I xxxl I B
6 8 12 15

sets the count register to the value of the data
register of the IOW and initiates the transfer of
data from main memory to the CU. The 1/0
busy bit is set to 1 if a previously initiated op­
eration had not completed when the instruction
is initiated.

Set Count and Start Read

An IOW with command field:

I oo I xxxo I B

6 8 12

sets the count register to the value of the data
register of the IOW and initiates the OMA read
operation by sending a one byte OMA read
command to the CU. The CU then proceeds to
send data to the OMA. The 1/0 busy bit is set
to 1 if a previously initiated operation had not
yet completed when the instruction is initiated.

Read Count

An IOR with command field:

I 00 I xxxx I B
6 I 12 IS

transfers the count register into the data regis­
ter of the IOR. The 1/0 busy bit is always set
to zero by this instruction.

IBM CONFIDENTIAL 7611.2?

Page 46
12.801 1-0 Subsystem

DMA Halt

An IOW with command field:

loolxxxxl C
6 8 12 15

stops a OMA read or write operation. If the
operation is a read, a HALT command is sent
to the CU. Any data already received from the
CU is transferred to main memory but subse­
quent data bytes are ignored except for CRC
data checking. If the operation was a write, the
transfer is concluded by completing the trans­
mission of any partially sent data byte and then
sending the concluding CRC and flag bytes. If
the data transfer had already been complete or
not yet been started, the instruction is equiva­
lent to a NO-OP. The 1/0 busy bit is always
set to zero by the instruction, and the interrupt
request line is raised at the completion of the
Halt operation.

12.7.2 Conclusion of OMA Operations

An iilterrupt request is generated at the
end Gf all OMA read and write operations. The
normal end of a read occurs when the conclud­
ing flag is received from the CU and the data
has been stored in main memory. The normal
end of a write occurs when the concluding flag
byte has been sent to the CU and the CU sum­
mary status byte has been received. The status
byte is stored in the BSA receive queue and
may be read by the program.

Abnormal endings of OMA operations
either generate a OMA interrupt request or an
1/0 check interrupt. Information detailing the
cause of the abnormal end is placed in the sta­
tus register extension and is available to the
program as soon as the interrupt is generated.

Operations which have incorrect length
(the number of bytes transferred is different
from the initial value set in the count register)
but which otherwise execute normally are not
considered to have abnormal endings. Either
the OMA or CU may recognize the data end
condition. For the OMA, data end occurs when
its count register goes to zero while for CU' s,
data end will depend on the type of CU. There
are four cases to consider

(1) OMA recognizes data end on a write:
The OMA concludes its transmission and
waits for the CU to respond with its sum­
mary status byte.

(2) CU recognizes data end on a read. The
CU concludes its transmission and the
OMA completes the transfer of the data to
main memory.

(3) CU recognizes data end on a write before
receiving the final flag byte: The CU
sends its summary status byte with the
data end and incorrect length bits set and
the OMA concludes its transmission in re­
sponse to the status byte.

(4) OMA recognizes data end on a read be­
fore receiving the final flag byte: The
OMA sends a Halt command to the CU
which concludes its transmission in re­
sponse to the Halt Command.

Note: To avoid confusion between OMA and
BSA interruptions, the BSA interrupt mask
should be set to zeros before a OMA operation
is initiated.

12. 7 .3 Stan. Register

The status register and the status register
extension provide to the program the status of
the OMA and the conditions under which an
1/0 operation was concluded. The OMA status
register shown in Figure 12.6 is the same as
the BSA status register except that certain bits
which are not used by the BSA are utilized.
The status register is accessed by the program
with the same IOW and IOR instructions used
for the BSA ..

lncom!ct Length. This bit is set to 1 on OMA
read operations when either then CU sent less
bytes than the initial count or else attempted to
send more bytes than the initial count. 'fl?.e bit
is unaffected during OMA write operations,
incorrect length is detectable on writes by the
value of the CU summary status byte sent by
the CU at the conclusion of the write.

DMA Working. This bit is set to 1 by the set
count and start write or set count and start
read commands and is reset to zero at the end
of the operation.

76.11.22 IBM CONFIDENTIAL

12. 801 1-0 Subsystem Page 47

Bit Desipatioa Type Interrupt Mask
0 Interrupt Summary R/O YES NO
1 Link Idle R/W NO
2 Incorrect Length R/W NO
3 OMA Working R/0 NO
4 Receive queue R/O YES YES

half-full
s Transmit queue R/0 YES YES

half-full
6 Frame received R/W YES YES
7 Frame Transmitted R/W YES YES
8-11 Interrupt Mask R/W NO
12-1 S Received Byte R/0 NO

Counter

Figure 12.6. DMA Stahll Rqlster

For a description of the other bits in the
status register, see the BSA status register.

12. 7.4 Stam RePter Extelllioa

The format of the OMA status register
extension is shown in Figure 12.7.

Bit Type latenapt Mask
0 R/W NO
1 R/W NO
2 Abort Received R/W YES NO
3 Transmission R/W YES NO

Overrun
4 Receiver Overrun R/W YES NO
s Transmission Error R/W YES. NO
6 Clock Failure ~/"1 YES NO
7 Program Controlled R/W YES NO

Interrupt
8 Diagnostic Mode
9 Memory Parity R/W NO -NO

Error
10 Memory Overrun R/W NO NO
11 Memory Sequence R/W NO NO

Error
12-lS not rued

Fiaure 12.7. DMA Stam Resister Extemioa

Bits 0 to 8 are the same as for the BSA. The
register is accessed with the same IOW and
IOR instructions used for the BSA.

Memory Parity E"or. A parity error was de­
tected by the OMA on data transferred on the
MIO Bus. An 1/0 check interrupt is taken by
the CPU.

Mniory Owrrun. The memory system did not
respond to a OMA memory request in time. An
1/0 check interrupt is taken by the CPU.

Mmnory Sequence E"°'· A sequence error
was detected by the OMA during a MIO Bus
operation. An 1/0 check interrupt is taken by
the CPU.

When any of the erron corresponding to
bits 0-6 occur, the action taken is as described
for the BSA and in addition any OMA read or
write in progress is terminated. For the memo­
ry erron above, the following action is taken.
Any transmission in progress is aborted and
both transmitter and receiver put in the idle
state. Data transfer to or from main memory is
terminated, the appropriate bits in the status
register extension set, and the read or write
operation concluded.

DMA. Re•t

An IOW with command field:

I oo I uxx I 2
6 . • 12 ts

causes the OMA to perform its reset function.
The 1/0 busy bit is always set to zero.

Re•t Function. Execution of the reset func­
tion leaves the OMA in the following state:

(1) All registen set to zero.
(2) Transmit and Receive queues empty.
(3) Transmitter in idle state, transmitting 1 ' s.
(4) Receiver in idle state, looking for the first

flag of a frame.

IBM CONFIDENTIAL 76.,, ??

Page 48
12.801 1-0 Subsystem

12.8 External Interrupt Adapter

External Interrupt Adapters (EIA) can be
tailored for specific application environments.
The following describes the EIA which will be
built for the 801 prototype system.

12.8.1 Factional Description

The EIA provides for 32 interrupt
sources. Twenty-seven of the 32 may be exter­
nal to the EIA and five are generated internally
within the IA. These internal interrupts consist
of a timer interrupt and four programmed con­
trolled interrupts (PCI). Each of the interrupt
sources is associated with a unique bit in one
of two 16 bit registers, IRVO and IRVl. The
assignment of these 32 bit positions to inter­
rupt sources is EIA model and configuration
dependent. There is no hardware priority be­
tween the sources; priority is under program
control.

Each interrupt is selectively masked by
two 16 bit registers, MASKO and MASK 1; in
these registers, 1 allows the interrupt and 0
masks the interrupt. The external interrupt line
to the 801 is activated when and only when a
non-masked interrupt source is a logical one.

The EIA has a 3 2 bit clock with a one
microsecond resolution which can be read or
written by the program. The clock is continu­
ously compared by the EIA hardware with the
value set in the interrupt time register. When
the clock is greater than the value in the regis­
ter the timer interrupt latch is set to 1. The
interrupt latch is also set each time the clock
"wraps around" from 111.. .. 1 to zero.

All programmed I/ 0 instructions directed
to the EIA set the 1/0 busy bit in the CPU' s
condition register to zero; ie. the data transfer
associated with 1/0 instructions is always com­
pleted. The first two bits in the command field
of all PIO instructions are zero; only the re­
maining 8 bits are given below.

lnte"upt Request Vector. Each interrupt
source is associated with a bit position in one
of the two 16 bit interrupt request vectors
IRVO and IRVl. IRVO (IRVl) may be read
using a command field of X' 03' (X' 04'). The

vectors are read only (the interrupt must be
"reset" at the source).

Interrupt Mask. MASKO (MASKl) is a 16 bit
register which selectively masks each interrupt
source in IRVO (IRVl). MASKO (MASKI)
may be read or written using a command field
of X' OS' (X' 06').

Clock. The 32 bit clock has a one microse­
cond resolution. The low (high) order 2 bytes
may be read or written using a command field
of X' 07' (X' 08'). When the low order 2 bytes
are read, the high order 2 bytes are moved to
the clock back up register, The back up regis­
ter may be read using a command field of
X' 09'.

Interrupt Time Register. The 32 bit interrupt
time register is continuously compared with the
clock and the timer interrupt latch is set to one
when the value in clock is greater than the val­
ue in the register. The low (high) order 2
bytes of the register may be read or written
using a command field of X' OA' (X' OB'). The
write instructions reset the timer interrupt latch
to zero (if the value written is less than the
clock, the latch remains equal to 1).

12.8.2 Status Register

The EIA status register, shown in Figure
12.8, may be read or written using a command
field of X' 00' .

Bit
0-3

4
s
6
7-15

Designation
Programmed ControD:ed

Interrupts
Timer Interrupt Latch
Bus Parity Error
Invalid Instruction
not llSl!d

Type
R/W

R/O
R/W
R/W

Figure 12.8. EIA Status Register

Bits in the status register which are read only
are unaffected by the IOW.

Programmed Controlled Interrupts. The pro­
gram may use these bits to generate interrupt
requests. The bits are wired to positions in
IRVO or IRVl.

76.11.22 IBM CONFIDENTIAL

12. 801 1-0 Subsystem Page 49

Timer Interrupt IAtch. The latch is set to 1
when the value in the clock is greater than the
value in the interrupt time register or when the
clock wraps around from 1111..1 to zero. The
bit is wired to a position in IRVO or IRVl.
Once set to 1, it remains equal to one until
reset by an IOW addressed to the interrupt
time register which makes its value greater than
or equal to the clock. The bit is R/ 0 relative
to an IOW addressed to the status register.

Bw Parity E"or. An I/0 Bus parity error
occurred during the execution of the current
PIO instruction. An 1/0 check interrupt is tak­
en by the CPU.

Invalid Instruction. The current PIO instruc­
tion is invalid. An I/0 check interrupt is taken
by the CPU.

12.8.3 EIA Reset

The EIA is reset by the I/ 0 system reset
function or by an IOW with command field of
X' 02' . The state after the EIA is reset is as
follows.

(1) Status Register set to zero.
(2) Clock set to zero.
(3) Interrupt Masks set to zero.

12.9 Switch

The Switch allows system configurations
with fewer SSAs and DMAs than Control
Units. It switches full duplex serial links trans­
parently with respect to the link protocol: bits
which are received at its inlets are transmitted
without modification to the outlets to which
they are connected.

The design of the Switch will be specified
at a later date; the Switch and Switch Adapter
are not in the initial 801 implementation.

12.10 Errors In the 1/0 Subsystem

Errors in the I/ 0 subsystem are classified
according to where the errors are detected and
how the program is alerted to the error. Errors
which are detected during the execution of PIO

instructions or during the transfer of data be­
tween the MIO Bus and an adapter (OMA)
cause an I/0 check interrupt. Information
concerning the error is available to the program
in the Interrupt Status Byte (ISB) and in the
status register(s) in the adapter. All other er­
rors do not result in an I/O check interrupt.
Such errors may occur in an adapter, a serial
link, a Control Unit or an IO device but they
are only reported by an adapter or Control
Unit by an interrupt request to the IA.

12.10.1 Erron in Execudq PIO lnstruc­
dons

An I/ 0 check interrupt is taken by the
CPU and the data transfer associated with the
I/0 instruction is suppressed. The value of the
instruction counter stored at location 280
(hexadecimal) is equal to the address of the
failing PIO instruction. Bits 0 to 3 of the ISB
have their standard meaning and the remaining
bits are used as follows.

Bit De5i1nadon
4 PIO Error
S CPU Parity Error
6 Bus Time Out
7 not wed

PIO E"or. Bit 4 is set to 1 if the I/0 check
interrupt was caused by a PIO instruction; it is
set to zero if the error was associated with a
Ml/ 0 Bus operation.

CPU Parity E"or. The CPU has detected a
parity error on the I/ 0 Bus during the execu­
tion of the instruction.

Bus Timeout. No adapter has responded to the
instruction within the I/ 0 Bus timeout period.
The cause of the timeout may be any of the
following:

(1) No adapter recognizes the
address/ command field of the instruction.
The address may actually be invalid or a
bus error may have occurred in some bit
positions of the address.

(2) An adapter is selected but it detected an
IO Bus parity error in the command field
or in the data (IOW).

(3) An adapter is selected but the command
field is invalid.

IBM CONFIDENTIAL 76 11.:>"

Page 50 12.801 1-0 Subsystem

In cases (2) and (3), bits in the status
register(s) of the selected adapter are appropri­
ately set.

12.10.2 MIO Bus Erron

An 1/0 check interrupt is taken by the
CPU at the conclusion of the current instruc­
tion (but not between a branch and execute
and its following instruction). The affected
OMA terminates its data transfer with the
Control Unit as described in Section 14 above.
The value of the instruction counter stored at
location 280 (hexadecimal) is equal to the ad­
dress of the next instruction to be executed,
and the interrupted program can be resumed at
that address. Bits 0 to 3 of the ISB have their
standard meaning and the remaining bits are
used as follows.

Bit Deslpadon
4 MIO Error
5 Read/Write
6 MIO Bus Parity

MIO Error. Bit 4 is set to zero if the 1/0
check interrupt was caused by an MIO error;
it is set to 1 if the error was associated with a
PIO instruction.

Read/Write. OMA read or write operations
involve transfer of data and control in both
directions on the MIO Bus. Bit 5 is set to 1 if
the error occurred during a transfer towards
main memory and is set to zero if the transfer
was towards the OMA.

MIO BUS Parity. A parity error was detected
by the main memory side of the MIO bus.

DMA Detected Error. The error in the MIO
Bus operation was detected by the DMA side
of the MIO Bus. Information distinguishing
between memory overrun, parity error or a se­
quence error is available in the DMA status
register.

12.10.3 Errors that do not cause an 1/0
Check Interrupt

This class of errors is detected by IO
adapters or control units. When the error is
detected by an adapter, it sets its status

register(s) appropriately and requests a CPU
in~errupt via the Interrupt Adapter (IA). If the
interrupt is not masked in the EIA and the
CPU is enabled, the program is alerted to the
error at the conclusion of the current instruc­
tion. Otherwise, the program can only discover
that an error occurred by examining the
adapter' s status register(s).

When an error is detected by a Control
Unit, the CU' s action may be any of the fol­
lowing:

(1) If the error is detected during the initia­
tion of a CU command, it sends its sum­
mary status byte to the BSA or DMA with
the appropriate bits set.

(2) If the error occurred during a read type
operation bit before data end, the CU
aborts the transmission.

(3) If the error occurred during a write opera­
tion but before data end, it sends its sum­
mary status byte with the appropriate bits
set.

(4) If the error is detected after data end, the
CU goes into the interrupt pending state.

In general, detailed information concern­
ing the error is available to the program in CU
status registers.

12.11 1/0 System Reset

The I/O system reset is initiated from the
operator panel by pressing system reset or
power on. Each adapter on the IO Bus and
each Control Unit performs its reset function.
Reset causes the termination of any 1/0 opera­
tion in progress and the resetting of all status
information and interruption conditions. The
Control Units are put in the available state.

12.12 lnltlal Pro1ram Load (IPL)

Pressing the IPL button on the operator
console initiates the following actions.

(1) The CPU is reset and both instruction and
data caches are invalidated.

(2) The I/0 system is reset as described in
Section 12.11, above.

76.11.22 IBM CONFIDENTIAL

12. 801 1-0 Subsystem

(3) The OMA selected for IPL by the console
switches is initialized with a count of 100
hexadecimal and a read operation is initi­
ated with the attached Control Unit.

(4) Upon completion of the read operation the
CPU begins normal instruction execution
starting at location zero.

IBM CONFIDENTIAL

Page 51

76.11.22

Page 52 13. Index By Code

CODE MNE FORM PG TYPE INSTRUCTION

0
1 STCX (X) 10 strge store char,X-form
2 STHX (X) 10 strge store half ,X-form
3 STX (X) 10 strge store,X-form
4 LHAX (X)· 9 strge load half algebraic,X-form
5 LHZX (X) 9 strge load half zero,X-form
6 LX (X) 10 strge load,X-form
7 CAX . (x) 11 adres compute address,X-form
80 AI (0) 21 arith add i11111ediate
81 MCOO (R) 16 move move character zero from zero
82 MFCO (R) 17 move move from character indexed by SXO
83 MTCO (R) 18 move move to character indexed by SXO
84 TGTE (R) 15 trap trap if greater than or equal
85 A (R) 20 arith add
86 SHL (R) 27 shift shift half left
87 BBR (R) 13 brnch branch on bit, R-form
88 SHLP (R) 27 shift shift half left paired
89 MTCR (R) 18 move move to condition
SA SHLPI (R) 27 shift shift half left paired i11111ediate
88 SHU (R) 27 shift shift half left i11111ediate
BC TNEI (0) 15 trap trap if not equal i11111ediate
80 MF I CR (R) 17 move move from ISB and condition reg.
SE BB (BI) 13 brnch branch on bit
SF ICBI (R) 16 move insert condition bit i11111ediate
90 AEI (0) 21 arith add extended i11111ediate
91 MCOl (R) 16 move move character zero from one
92 MF Cl (R) 17 move move from character indexed by SXl
93 MT Cl (R) 18 move move to character indexed by SXl
94 TLT (R) 15 trap trap if less than
95 AE (R) 20 arith- add extended
96 SHR (R) 27 shift shift half right
97 BBRX (R) 13 brnch branch on bit and execute, R-form
98 SHRP (R) 27 shift shift half right paired
99 BEX (R) · 13 brnch branch,execute and enable
9A SHRPI (R) 28 shift shift half right paired inmediate
9B SHRI (R) 27 shift shift half right i11111ediate
9C TLTI (0) 15 trap trap if less than inmediate
90 MFIA (R) 17 move move from instruction address
9E BBX (BI) 13 brnch branch on bit and execute
9F
AO SI (0) 23 arith subtract inmediate
Al MClO (R) 16 move move character one from zero
A2 MFC2 (R) 17 move move from character indexed by SX2
A3 MTC2 (R) 18 move move to character indexed by SX2
A4 ((R) 21 arith compare
AS s (R) 22 arith subtract
A6 SL (R) 28 shift shift left
A7 BNBR . (R) 13 brnch branch on not-bit, R-form
AS SLP (R) 28 shift shift left paired
A9 MTMQ (R) 19 move move to MQ
AA SLPI (R) 28 shift shift left paired inmediate
AB SLI (R) 28 shift shift left i11111ediate
AC CI (0) 21 arith compare i11111ediate
AO MFMQ (R) 18 move move from MQ
AE BNB (BI) 13 brnch branch on not bit

76.10.15 IBM CONFIDENTIAL

13. Index By Code Page 53

AF MFDP (R) 17 move move from digit paired
BO SEI (0) 22 arith subtract extended i11111ediate
Bl MCll (R) 16 move move character one from one
B2 MFCJ (R) 17 move move from character indexed by SXJ
BJ MTCJ (R) 19 move move to character indexed by SXJ
B4 CL (R) 24 lo~ic compare logical
BS SE (R) 22 ar1th subtract extended
B6 SR (R) 28 shift shift right
B7 BNBRX (R) 14 brnch branch on not-bit and execute, R-form
B8 SRP (R) 29 shift shift right paired
B9
BA SRPI (R) 29 shift shift right paired i11111ediate
BB SRI (R) 28 shift shift ri~ht i11111ediate
BC CLI . (D) 24 logic compare ogical i11111ediate
BO
BE BNBX (BI) 14 brnch branch on not bit and execute
BF MTDP (R) 19 move move to digit paired
co SFI (0) 2J arith subtract from i11111ediate
Cl BALR (R) 12 brnch branch and link,R-form
C2 MFP (R) 18 move move from prefix
CJ MTP (R) 19 move move to prefix
C4 STCD (0) 10 strge store char,D-form
cs
C6 AD (R) 20 arith add decimal (not implemented)
C7
CB LHZD (0) 9 strge load half zero,D-form
C9
CA NSLPI (D) 26 shift and,then ~hift left paired i11111ediate
CB NSLI (0) 26 shift and,then shift left i11111ediate
cc TGTI (D) lS trap trap if greater than i11111ediate
CD
CE BALA (BA) 12 brnch branch and link absolute
CF IOR (D) JS i-o input-output read
DO NI (D) 24 logic and i11111ediate
Dl BAL RX (R) 12 brnch branch and link with execute,~-form
D2 CLZ (R) 24 logic count leading zeros
03 ABS (R) 20 arith absolute
04 STHD (D) 10 strge store half ,D-form
DS N {R) 24 logic and
06 SD {R) 22 arith subtract decimal {not implemented)
D7 MUS (R) 21 arith multiply step
DB LHAD (0) 9 strge load half algebraic,D-form
09 INDCL (R) 30 sys instruct data cache line
DA NSRPI (0) 26 shift and,then shift right paired i11111ediate
DB NSRI (0) 26 shift and,then shift right i11111ediate
DC
DD DI {R) JO sys disable
DE BALAX {BA) 12 brnch branch and link absolute with execute
OF IOW (D) JS i-o input-output write
EO OI {D) 2S logic or i11111ediate
El
E2
E3 EXTS (R} 21 arith extend sign
E4 STD (D) 10 strge store,D-form
ES 0 (R) 2S logic or
E6 SAR (R) 26 shift shift algebraic right
E7 DIS (R) 21 arith divide step

ICU f"f\11.lClnCNTIAI JR 1n 1 !'i

Page 54 13. Index By Code

ES LO (0) 10 strge load,D-form
E9 IN I CL (R) 31 sys invalidate instruction cache line
EA
EB SARI (R) 26 shift shift algebraic right i11111ediate
EC IPI (0) 16 move insert prefix i11111ediate
ED EI (R) 30 sys enable
EE BALI (Bl) 12 brnch branch and link,1-form
EF CAD (0) 11 adres compute address,D-form
FO XI (0) 25 logic exclusive or i11111ediate
Fl
F2 MFTB (R) 18 move move from test bit
F3 TPO (R) 23 arith test prefix for overflow
F4 MTTB (R) 19 move move to test bit
FS x (R) 25 logic exclusive or
F6 MFD (R) 17 move move from digit
F7 MTD (R) 19 move move to digit
F8
F9
FA MFTBI (R) 17 move move from test bit inrnediate
FB MTTBI (R) 19 move move to test bit i11111ediate
FC IPIZ (0) 16 move insert prefix inrnediate and zero
FD ZNOP (R) 31 sys zero-time no-op
FE SALIX (81) 12 brnch branch and link with execute,1-form
FF

76.10.15 IBM CONFIDENTIAL

14. Index By Mnemonic Page 55

MNE CODE FORM PG TYPE INSTRUCTION

A S5 (R) 20 arith add
ABS D3 (R) 20 arith absolute
AD C6 (R) 20 arith add decimal (not implemented)
AE 95 (R) 20 arith add extended
AEI 90 (D) 21 arith add extended immediate
AI so (D) 21 arith add immediate
BALA CE (BA) 12 brnch branch and link absolute
BALAX DE (BA) 12 brnch branch and link absolute with execut
BALI EE (BI) 12 brnch branch and link,I-form
BAL IX FE (BI) 12 brnch branch and link with execute,I-form
BALR Cl (R) 12 brnch branch and link,R-form
BAL RX Dl (R) 12 brnch branch and link with execute,R-form
BB SE (BI) 13 brnch branch on bit
BBR S7 (R) 13 brnch branch on bit, R-form
BBRX 97 (R) 13 brnch branch on bit and execute, R-form
BBX 9E (BI) 13 brnch branch on bit and execute
BEX 99 (R) 13 brnch branch,execute and enable
BNB AE (BI) 13 brnch branch on not bit
BNBR A7 (R) 13 brnch branch on not-bit, R-form
BNBRX 87 (R) 14 brnch branch on not-bit and execute, R-f orm
BNBX BE (BI) 14 brnch branch on not bit and execute
c A4 (R) 21 arith compare
CAD EF (D) 11 adres compute address,D-form
CAX 7 (X) 11 adres compute address,X-form
CI AC (R) 21 arith compare immediate
CL B4 (D) 24 logic compare logical
cu BC (D) 24 logic compare logical immediate
CLZ D2 {R) 24 logic count leading zeros
DI DD {R) 30 sys disable
DIS E7 {R) 21 arith divide step
EI ED (R) 30 sys enable
EXTS E3 (R) 21 arith extend sign
ICBI SF (R) 16 move insert condition bit immediate
INDCL D9 (R) 30 sys instruct data cache line
IN I CL E9 (R) . 31 sys invalidate instruction cache line
IOR ·CF (D) 35 i-o input-output read
IOW OF (0) 35 i-o input-output write
IPI EC (0) 16 move insert prefix immediate
IPIZ FC (0) 16 move insert prefix immediate and zero
LO ES (D) 10 strge load,D-form
LHAD DB (D) 9 strge load half algebraic,D-form
LHAX 4 {X) 9 strge load half algebraic,X-form
LHZD cs- (0) 9 strge load half zero,D-form
LHZX 5 (X) 9 strge load half zero,X-form
LX 6 (X) 10 strge load,X-form
MCOO 81 (R) 16 move move character zero from zero
MCOl 91 (R) 16 move move character zero from one
MClO Al (R) 16 move move character one from zero
MCll Bl (R) 16 move move character one from one .
MFCO S2 (R) 17 move move from character indexed by SXO
MF Cl 92 (R) 17 move move from character indexed by SXl
MFC2 A2 (R) 17 move move from character indexed by SX2
MFC3 B2 (R) 17 move move from character indexed by SX3
MFD F6 (R) 17 move move from digit
MFDP AF (R) 17 move move from digit paired-

Page 56 14. Index By Mnemonic

MFIA 9D (R) 17 move move from instruction address
MF I CR SD (R) 17 move move from ISB and condition reg.
MFMQ AD (R) . lS move move from MQ
MFP C2 (R) lS move move from prefix
MFTB f 2 (R) lS move move from test bit
MFTBI FA (R) lS move move from test bit i11111ediate
MUS D7 (R) 21 arith multiply step
MTCR S9 (R) lS move move to condition
MTCO S3 (R) 18 move move to character indexed by SXO
MTCl 93 (R) lS move move to character indexed by SXl
MTC2 A3 (R) 18 move move to character indexed by SX2
MTC3 B3 (R) 19 move move to character indexed by SX3
MTD f 7 (R) 19 move move to digit
MTDP BF (R) 19 move move to digit paired
MTMQ A9 (R) 19 move move to MQ
MTP C3 (R) 19 move move to prefix
MTTB f 4 (R) 19 move move to test bit
MTTBI FB (R) 19 move move to test bit i11111ediate
N DS (R) 24 logic and
NI DO (D) 24 logic and i11111ediate
NSLI CB (D) 26 shift and,then shift left i11111ediate
NSLPI CA (D) 26 shift and,then shift left paired i11111ediate
NSRI DB (0) 26 shift and,then shift right i11111ediate
NSRPI DA (0) 26 shift and,then shift right paired i11111ediate
0 ES (R) 2S logic or
OI EO (0) 2S logic or i11111ediate
s AS (R) 22 arith subtract
SAR E6 (R) 27 shift shift algebraic right
SARI EB (R) 27 shift shift algebraic algebraic i11111ediate
SD D6 (R) 22 arith subtract decimal (not implemented)
SE BS (R) 22 arith subtract extended
SEI BO (D) 22 arith subtract extended immediate
Sf I co (D) 23 arith subtract from immediate
SHL S6 (R) 27 shift shift half left
SHU SB (R) 27 shift shift half left immediate
SHLP 88 (R) 27 shift ·shift half left paired
SHLPI SA (R) 27 shift shift half left paired i11111ediate
SHR 96 (R) 27 shift shift half right
SHRI 9B (R) 27 shift shift half right immediate
SHRP 9S (R) 27 shift shift half right paired
SHRPI 9A (R) 28 shift shift half right paired i11111ediate
SI AO (D) 23 arith subtract i11111ediate
SL A6 (R) 28 shift shift left
SLI AB (R) 2S shift shift left i11111ediate
SLP AS (R) 2S shift shift left paired
SLPI AA {R) 2S shift shift left paired i11111ediate
SR B6 (R) 2S shift shift right
SRI BB (R) 2S shift shift right i11111ediate
SRP BS (R) 29 shift shift right paired
SRPI BA (R) 29 shift shift right paired i11111ediate
STCD C4 (D) 10 strge store char,D-form
STCX 1 (X) 10 strge store char,X-form
STD E4 (D) 10 strge stor.e,D-form
STHD 04 (D) 10 strge store half ,D-form
STHX 2 (X) 10 strge store half ,X-form
STX 3 (X) 10 strge store,X-form
TGTE 84 (R) lS trap trap if greater than or equal

76.10.15 IBM CONFIDENTIAL

14. Index By Mnemonic . Page 57

TGTI cc (0) 15 trap trap if Treater than i11111ediate
TLT 94 (R) 15 trap trap if ess than
TLTI 9C (0) 15 trap trap if less than i11111ediate
TNEI BC (D) 15 trap trap if not equal i11111ediate
TPO F3 (R) 23 arith test prefix for overflow
x F5 (R) 25 logic exclusive or
XI FO (0) 25 logic exclusive or i11111ediate
ZNOP FD (R) 31 sys zero-time no-op

IBM CONFIDENTIAL 76.10.15

