SYSTEM 801
Principles of Operation

Yersion 2 ¥ovember 21, 1975
Opdated |} December 12, 1975
* Januvary 16, 1976

i S ——-

TABLE OF CONTENTS

1. System Architecture .

1.1 Central Processing Unit . . .«
1.2 Register Organization
1.2.1 The Instruction Address FReg

1.2.2 The MQ Register

1.2.3 The Condition Kegister

1.3 Instruction Formats
1.4 Interrupts . « « «
1.5 Input and Output .

1.5.1 The External Interrupt
1.5.2 Input/Output Interface

Z. Storage ACCESS o « »
2.1 Instructions . . .

3. Address Computation .
3.1 Instructions . . .

4. Branching « « =« « « «

- - - - - -
-
-
i
- - - - - - -
- - - -
- - - - - - -
- - - - - - -
- - - - - - -
Adapter
- - - -
- - - -
- -

4.1 Invalid Branch Address . « « »

k.2 Branch With Execute
4.3 Instructions . . .

5 - Tr aps - L 2 - - - - -
5.1 Instructions . .

6. Moves and Inserts . .
6.1 Instructions . .

7. Arithmetic . . . « »
7.1 Instructions . . .

8. Logical Operations
8.1 Instructions . . .

L]

9. ShiftsS « o « o «
9.1 Instructions

1C. System Control . . .
0.7 Locking . &« « - «

10.2 Cache Control Operations

16.3 Instructions . -~ .

11. Input/Output Control
11.1 Instructions . . .

12. Index By Code . . =

13. Index By Fnemonic .

- - - - - - -
Instructions
- - -

- -

- - - - - - -
- - - - - - -

- - - -
- - = - = - -
- - - - -
- - - - - -

] CONFIDENTIAL

g)’
L I)
o
M oo 0

L) L LN JE R BN D A

y 8 %

[]

L

LA B B

L] L2 B S I I I D D D R)

L I I]

LN T B]

*

L} L N B N I B I I B I]

L2 B B]

L}

LI B B]

L2 R B R R 2NN DN R I D

L]

s » * 9

L 2N I B]

s 8 & & 9 B B 3 ¢ B

L]

[I B]

LI I B

*

L 2 T D R D DN N I R I]

L]

L2 B I

.

L B N

L R D I I 2 I I 2 I

L A]

L}

[I B B]

- - 1
- - 3
- - n
- - 6
- - 6
- - 6
. - 10
. o 11
. . 14
. 15

- o 19
. . 19
o o 20
- - 20
- - 21
. 26

. e 26
. 28
36

. 43
43

. 87
- - &7
. e 53
- - 53
- 54
. 58
76.1.16

1. 807 SYSTEM ARCHITECTURE Page 1

1. System Architecture

Logically an 801 system consists of main storage, a
central processing unit, low-speed and high-speed
input/output devices, and an interrupt adapter. This
structure is shown in Figure 1.

Main storage provides the system with directly
accessable fast access storage of data. Both data and
programs must be loaded into main storage (from input
devices) before they can be processed.

Ho processing of data occurs in main storage, either
implicitly or explicitly. All data must be loaded into
high—-speed CPU storage called registers before it cam be
operated upon. Main storage may be either physically
integrated with the CPU or may be constructed as stand-alone
units. ARdditionally, main storage may be composed of large
volume storage and faster access buffer storages, called
caches. A CPU may have no cache, a cache for data
references, a cache for instruction references, or
individual caches for instruction and data references.

Uniike many systems, the fetching of instructions and
the fetching and storing of data are not tightly coupled.
Whether or not a cache for instructions is present, the CPU
always attempts to prefetch one or more instructions.
Aence, modification of an instruction by a program may not
be seen when that instruction is fetched for execution,
unless explicit steps have been taken to ensure that all
pre—fetched instructions have been invalidated. Por the
purpose special instructions to control the caches have been
provided.

Rgain, unlike many systems with caches, the data cache
is not tightly coupled to the flow of data to or from
input /output devices. For low-speed devices, which
communicate directly with the CPU through its registers,
this creates no problem. For high~speed input/output devices
which may access memory directly, the program must ensure
that, where necessary, updated data in cache is placed in
storage prior to output, and that storage updated by input
is correctly reflected in the data cache. Again, the cache
control instructions can be used to dguarantee correct
results in these situations.

IBr CONFIDENTIAL 76.1.16

1. 801 SYSTEM ARCHITECTURE Page 2

i i
i I
¢ '
i I
i I
] Main }
§ }
} Kemory i i }
i f I high-speed |
i i { input/output |
] } devices t
i i I I
I Kemory Control I |
i I i
| H H 3 Direct i
H B ITIXTIIXIITIIIIIIIIIY} Memory [
B H } Access (DELR} |
B instruction H data i | f
H movement H movement i H
3 H I H
B i1 I H
} i i i i H
{ instruction | i data 1 I B
i cache f 1 cache i "
i § ! i ! B
| ! I } I 4 | . : {
¢ B i i low-speed |} B®
B H i } input/output | B
H 4 }] devices I "
i B I ¥ | B
i I ! f H
! i i i |+
! i I |
} | ¥ } adapters i H
i I i I I B
i ; I I H H
t Central] } i B B
} Frocessing FIITXIIITYITIIITITIITIIINITIIT
] Unit i i } 1/0 Bus
¥ i . |
} I (3 |
i ¥ { external !
i i | dinterrupt |
i i I adapter i
I I I i

i
!
!

T —

external interruption line

Figure 1 - SYSTEM ORGANIZATION

IBM CORFIDENTIAL 76.1.16

. 801 SYSTEM ARCHITECTURE Page 3

Fetching and storing of data by the CPU are not
affected by any concurrent direct memory access input/output
data transfer. When concurrent reguests to a main storage
location occur, access is normally granted in a
predetermined segquence that assigns highest priority to
input/output requests. If the first reference changes the
contents, any subsegquent storage fetches obtain the new
contents, although, as noted above, care must be taken to
ensure the synchronization of data and instruction caches
where concurrent accesses are possible.

Bain storage may be volatile or nonvolatile. If it is
volatile, the contents of main storage are not preserved
when power is turned off. If it is nonvolatile, turning
power on or off does not affect the contents of main storage
provided the CPB is in the stopped state and no references
are made to main storage by input/output devices which can
directly access storage. The organization of storage is
shown in Pigure 2.

i i i I I i i i I
10 1Y 12 13 t8 15 16 17 | DbpIcITS
i i i i ! ¥ i f i
i i ! i }
i 4 i 1 I 2 i 3 | CHAES
I i i i !
I ! I
i G } 1 | HALFWORDS
t ! i
i i
i 0 | WORD
i i
I ¥ i
| Vid4 I 0 f EREGISTER
I i I
i] i § { i § i i
I ! I i i i I I I
i i i i I i i 1 i
¢ 4 8 12 16 20 24 28 31 BITS

Pigure 2 - STORAGE OKRGANIZATION

1.1 Central Processing Unit

The central processing unit (CPU)} is the controlling
center of the system. It contains the sequencing and
processing controls for instruction execution, interruption
action, initial program loading, and other system-related
functions.

The CPU, in processing instructions, attempts to

IBM CONFIDENRTIAL 76.1.16

1. 807 SYSTEM ARCHITECTURE Page 4

achieve the greatest instruction processing rate possible.
Instructions which do not reguire storage access may be
executed while storage is being accessed for some previous
instruction, and the CPU attempts to pre-fetch instructions
whenever possible, overlapping such fetches with the
execution of other instructions. Since a successful branch
instruction requires the fetching of an instruction out of
sequential order, means are provided to permit execution of
one instruction while fetching the target instruction of the
branch. Control is maintained over such pre-fetching so that
instruction execution appears to take place in the order
intended by the programmer.

Instructions which the CPU can execute fall into ten
classes; storage access, address computation, branching,
trap, move, arithmetic, logical operation, shift, system
control, and input/output instructions. A separate section
is devoted to each instruction class.

1.2 Register Organization

All manipulation of information is done in high-speed
storage internal to the central processing unit (CPU). The
principal storage internal to the CPU is a set of sixteen
registers. EFach register consists of 24 Dbits. These
registers contain a prefix of eight bits and a half of
sixteen bits. The half consists of two characters, €0 and
C1, of eight bits each. The half is also considered to
consist of four digits, DO, D1, D2, and D3, each containing
four bits. The register organization is shown in Pigure 3.

To avoid the destruction of operands in certain
operations, some instructions provide for +the result of the
operation to be placed in the twin of one of the source
operand registers. The register twin to a given register has
the name, in Dbinary, of the given register, with the
low-order bit inverted. Thus, the twin of register 5 (binary
0101) is register 4 (binary 0100), and the twin of register
12 (binary 1100) is register 13 (binary 1101).

For computational purposes, registers are treated as
signed guantities, unsigned positive guantities, or, where
required, as unstructured logical quantities. A register may
be treated as (a) an algebraic quantity consisting of a sign
bit and tventy-three low-order integer bits, in two's
complement representation, or (b} an unsigned positive
integer of twenty-four bits.

IBM CONFIDERTIAL 76.1.16

W PR A WSS WED BN TRUR W S T

b BRI R I IR Y

1. 807 SYSTEM ARCHITECTURE

W SR AU AR e I N NG R e S

REGISTER

PREFIX HALF

!

I

I co
!

I DG | D1
I i

[I R e aprpe—

(5, 0 R

LU Y I e -

10 I
11
CHARS

DIGITS

———

m
i

.

15

Mo

Pigure 3 — REGISTER ORGANIZATION

IEM CONFIDERTIAL

Page 5

PRIR

PAIR

PAIR

PAIK

PAIR

76.1.16

1. 8071 SYSTEM ARCHITECTURE Page 6

Three additional special-purpose registers exist within
the CPU. These registers are known as (a) the instruction
address register (IAR), (b} the MQ-register, and (c} the
condition register (CR}. These registers are implicitly or
explicitely addressed for a particular action or operation,
and they may be accessed, used, or altered by a multiplicity
of instructions.

1.2.1 The Instruction Address Register

The instruction address register (IAR), as shown in
Figure 4, is a 24-bit register which normally contains the
address of the next instruction to be executed. Since all
instructions are comnstrained to lie on half-word boundaries,
the low-order bit (bit 23) of the instruction address
register is constrained to be zero.

! P
i IAR - 10} 1IC
| _t
0 22 23

1

Figure 4 - INSTRUCTION ADDRESS REGISTER

As a rule, the content of the instruction address
register is incremented by the length of the current
instruction during the process of decoding that
instruction. Should this instruction be a successful branch
instruction, the content of the instruction address register
will be changed to the address of the branch target
instruction, as given by the branch instruction.

1.2.2 The M0 Register

The MQ-register (MQ) is a 16-bit register whose primary
use is to provide a register extension to accomodate the
product for the Multiply Step instruction and the dividend
for the Divide Step instruction.

1.2.3 The Condition Register

The condition register (CR) is a 16-bit register used
to reflect the effect of certain operations, to provide a
mechanism for testing (and branching) on a bit or condition,
and to provide a 'parity stack?® to indicate which bytes of
the last four half words loaded were addressed. The
condition register is shown in Figure S.

IBM CONFIDENTIAL 76.1.16

* ¥ % H * N

L R

1. 8071 SYSTEM ARCRITECTURE Page 7

§ SSSS |IDLL | EGCC |OSPT}
| XXXX fOXXT|QTO 1| VOZB}
10123 I I]

I ! i i I
0 4 8 12 15

5X0 —— PARITY STACK ZERO
SX1 —— PARITY STACK ONE

SX2 PARITY STACK TWO
SX3 PARITY STACK THREE

16 -- TI/0 Busy

DX —— DECINAL EXCEPTION

LX -- LOCK EXCEPTION LATCH

LT -- COMPARES LESS THAN, NEG VALUE
EQ COMPARES FQUAL, ZERO VALUE

GT ~-— COFPARES GREATER THAN, POS VALUE

Cco CARRY PROM BIT0 OR CONFARE CO =
c1 CARRY FROM BITB OR COMPARE C1 =
ov OVERFLOR LATCH

SC SUMMARY OVERFPLOW LATCH

PZ -— PERMANENT ZERO BIT
T8 -—-— TEST BI1T

Pigure 5 — THE CONDITION REGISTER

The first four bits of the condition register are used
for the parity stack (SX). Bit 0 is known as SX0, bit 1 as
SX1, bit 2 as $X2, and bit 3 as SX3. An effect of an
instruction that loads the half of a register is to push the
parity stack down one position. The lowest bit of the stack
(SX3) is lost, while the low-order bit of the storage
address 1is placed on the top of the stack, above the
previous top three stack elements.

Bit 4 of the condition register is set by the IOR and
10W instructions. It is set to one if the I/0 adapter
selected by one of these instructions cannot accept the
command. It is set to zero if the adapter accepts the
command.

Bit 5 of the condition Tregister is the decimal
exception latch (DX). If the decimal feature is not
installed, this bit is also reserved, and is set to zero
vhenever the condition register is loaded. If the decimal
feature is installed, this bDit is set by the decimal
instructions (Add and Subtract Decimal) to one or zero if an
exception condition is or is not, respectively, detected.

IBN CORFIDENTIAL 76.1.16

1. 801 SYSTEM ARCHITECTURE Page 8

Bit 6 of the condition register is the lock exception
lJatch (LX)}. If the lock feature is not installed, this bit
is also reserved, and is set +to zero whenever the condition
register is loaded. If the lock feature is installed, the
use of this bit is described under the definition of the
establish lock instruction.

Bit 7 of the condition register is the less—than latch
(LT}. It is set to one by comparison operations if the first
comparand is less than the second comparand. It is set to
one by certain other arithmetic and logical operations if
the result is negative or if the high-order bit of the
result is one.

Bit 8 of the condition register is the egual latch
(EQ). 1t is set to one by comparison operations if the first
comparand equals the second comparand. It is set to one by
certain other logical and arithmetic operations if the
result is zero, or if all bits of the result are zeros.

Bit 9 of the condition register is the g¢greater—than
latch (6T). It is set to one by comparison operations if the
first comparand is greater than the second comparand. It is
set to one by certain other arithmetic and logical
operations if the result is positive or if +the high-order
bit of a non-zero result is zero.

Bit 10 of the condition register is the carry-zero
latch (CO). It is set to one by certain arithmetic
instructions if the operation generates a carry out of bit
position zero. It also functions as a special-purpose
indicator for the Divide Step and Multiply Step
instructions. This latch 1is set by logical compare
instructions to show equality/inequality of character CO of
the comparands.

Bit 11 of the condition register is the carry-one latch
{C1). It is set to one by certain arithmetic instructions if
the operation generates a carry out of bit position eight.
This latch is also set by logical compare instructions to
show equality/inequality of character C1 of the comparands.

¥' Bit 12 of the condition register is the overflow latch
(oV), which is set to one when arithmetic and certain shift
operations overflow. It also functions as a special purpose
indicator for the Divide Step instruction.

Bit 13 of the condition register is the
summary-overflow latch (SO). Whenever an instruction sets
the overflow latch, it resets the summary-overflow latch to
the OR of the overflow-latch with the 0ld value of the
surmary-overflow latch.

Bit 14 of the condition register is the permanent-zero

IBM CONFIDERTIARL 76.1.16

1. 801 SYSTEM ARCHITECTURE Page 9

bit (PZ). It is set to 2zero whenever the condition register
is loaded, and it cannot be reset to one. Its presence
provides for a guaranteed branch in the BI format by use of
the Branch On Not-Bit instruction, where the permanent zero
bit is specified.

Bit 15 of the condition register is the test bit (TB).
A bit may be moved to or from an arbitrary bit position in a
half from or to the test bit of the condition register
through use of the Move From/To Test Bit Indexed/Value
instructions.

A1l bits of the condition register, save those required
to be zeros, can be arbitrarily set through use of the Move
To Condition Register instruction. Additionally, any
individual bit of the condition register may be set to an
arbitrary value by use of the Insert Condition Bit Immediate
instruction, except, of course, those bits required to be
Zero.

IBM CORFIDENTIAL 76.1.16

1. 807 SYSTEM ARCHITECTURE Page 10

1.3 Instruction Formats

The five instruction formats, %X, R, D, BI, and BA, are
shown in Pigure 6. For X and D instructions that refer to
storage, and for I/0 instructions, address calculation is
according to the formulas:

i-Format (RB)} + O/ (RC}
D-Format O/(RC) + (O(bits 0-7) |} I)
where 0/(RC) indicates the value 0 if RC is specified as 0,

| else the contents of register RC. I is treated as an
| unsigned 16 bit integer.

I I i t i
| OP | RR | RB | RC | (X)

I I i I I
o b 8 12 15

I op I RB | RC | (R)

0 8 12 15

I i I i I

i op | RB | BKC | I I (D)
I I i i I

0 8 12 16 31

I ! i i

t or t RB BI I (BI)
I I | I

o 8 12 31

3 ! i

i oP t BA I (BR)
! I I

0 8 31

Figure 6 - INSTRUCTION FORMATS

IBM CONFPIDENTIAL 76.1.16

WO DR AR R WU G W SR S DA TR G SINP WU W W I S

L L LB U R R Y

L L]

G N R .

1. 801 SYSTEM ARCHITECTURE Page 11
1.4 Interrupts

An interrupt consists of storing the instruction
address (IR) of the next instruction in a particular
location in main memory and resetting the IA to a fixed
value. Each interrupt type has area of 32 bytes for storing
the o0ld IR and other information associated with the
interrupted state, and an area of 32 bytes (8 words) to
which control is transferred vhen the interrupt occurrs.
Both of these areas may or may not be in the data or
instruction cache, respectively, when the interupt occurs.
The organization of these interrupt areas is shown in Figure
7. The 32 byte areas called NEW are the locations to which
control is passed when an interrupt occurrs. Presumably, a
branch instruction will be placed in an area. The word
labeled OLD IA is the location into which the old 1IA is
stored. The reserved word is saved for possible future use
by the hardware to provide more information about the
interrupt. The remaining six words are usable by the
softvare.

Normally, an interrupted program can be resumed at the
location wvwhose address has been stored as the old 1Ii.
However, when errors are being reported, this may not dbe
possible. In general, the attempt will be to suppress the
erroneous operation and report its location as the old Ii.
In some cases, a confused machine state may exist at
interrupt. Particular difficulties are caused by branch and
execute instructions and by load/store instructions. If
errors arise either in the branch and execute or the
instruction following it (the subject instruction), the old
IA will identify the branch, and software analysis will be
required. (It may not be possible to completely recover
from a failure in the subject instruction of a branch, link
and execute.) Load and store instructions are overlapped
with instruction execution, and thus an imprecise interrupt
scheme will be needed to report memory failures. The
following is a description of each of the interrupt types.

IFL - This interrupt is used to initiate program
execution after an IPL. THe processor is disabled after
an IPL interrupt.

Machine Error - R1ll processor and I/0 machine failures
are reported with this interrupt. After the interrupt,
the processor is disabled.

Program Error — Program errors are reported with this
interrupt. These include:

out of range load/store address

Out of range instruction address

Undefined operation

Illegal subject instruction following a branch and

IEM CONFIDERTIAL 76.1.16

T T W S SR e S WO -

1. 801 SYSTENM ARCHITECTURE Page 12

execute.
After the interrupt, the processor retains its former
enable/disable status.

Trap - The trap instructions wuse this interrupt to
report a successful comparison. The o0ld IA will be the
instruction following the trap. The processor

enable/disable state is retained.

External - A signal from the external interrupt adapter
while the processor is enabled camses this interrupt.
The interrupt will never occur between a branch and
execute, and 1its following instruction, which are
treated as a single operation. The processor is
disabled after the interrupt. (Note that the processor
must have been enabled before the interrupt.)

1/0 Check — A time-out or an error in the adapter
interface during an I/0 read or write will cause the
operation to be suppressed and an I/0 check interrupt
to be taken. The o0ld IA location will contain the
address of the I/0 instruction which failed. The enable
state of the processor is retained after this
interrupt.

IBM CONFIDERTIAL 76.1.16

mmmmmmmmmwmmmmmmmmmmm”'mmwmmmmmmmmmmmmmmmmmmm”

1. 8071 SYSTEM ARCHITECTURE

Iype Location AREA

IPL

Machine Error
Program Error
Trap

External

I/0 Check

IPL

ﬂgékine Error
Progras Error
Trap

External

1/0 Check

100 REW

11C
120

NEW

13C
140

NEW

15C
160

REW

L™
180

NEW

19C
120

REW

18C

B0 g e e) e e) e e e o D s e e
8 em g e em) e) W e) e e) e o § e

200
204
208
20C
210
214
218
21C
220

OLD IA
RESERVED

-

SOFTWARE
USE

2480

25¢C
260

27c
280

29C
2R0

I
!
I
)
)
'
]
|
!
23c |
!
I
I
[
I
i
)
|

b dE B B IR I B B I R R —,

2BC

Figure 7. Interrupt Areas

IBM CORFIDENTIAL

Page 13

76.1.16

—

- * % W oA B e RN NN R N

LK B 3K BK R 2

LAE B K I

—

LK BE B BR BE BN B B R NN Y

LK B

7. 807 SYSTEM ARCHITECTURE Page 14

1.5 Input and Output

Input/Output (I/0) operations involve the transfer of
information between main storage or the CPU and an I/0
adapter. 1I/0 adapters attach I/0 defices to the CPU via an
I/0 Bus which operates at approximately 801 speed. These
adapters also connect to a special adapter, called the
External Interrupt Adapter, that collects all the interrupt
requests from the other adapters, and presents them to the
801 through the external interrupt line. Some high-speed
I/0 devices also attach through Direct Memory Access (DHMA)
directly to main memory for the direct transfer of data at
high data rates.

A complete description of the I/0 structure, program
architecture, and functional characteristics, appears in the
#8501 I/0 Subsystem Definition®™ document.

1.5.1 The External Interrupt Adapter

The interrupt adapter is the common link between all
I/0 for all interrupts from the 1I/0 adapters to the CPU. It
accepts requests for service from the various attached I/0
devices, and, when the CPU is enabled for external
interruptions, presents them to the CPU in some priority
sequence.

The External Interrupt Adapter itself appears to the
CPU like an 1I/0 device, with various functions depending
gpon the particular model of the adapter. It may contain
interval timers, real time clocks, device selection and/for
masking mechanisms, and other features.

1.5.2 Input/Output Interface

Communications between an adapter and the CPU or memory
is under program control. While all adapters, including the
External Interrupt Adapter, attach to the common I/0 bus,
control sequences are, in general, unique to a particular
adapter. These seguences, and their responses, are provided
through the instructions Input/Output Read and Input/Cutput
Write, which transmit to a specified adapter a 28 bit
address/command field, and attempt to accept or transmit 16
bits of data or control information in a specified
register. Hence, apart from the commonality of the I/0 bus
and the interrupt adapter, the interface between each device
and the CPU is essentially a programmed interface.

For the Direct Memory Access that attach high~speed I1/0
defices directly to memory, a given control sequence may
initiate the direct transfer of a block of data between main
memory and the device. In such circumstances the device

IBM CONFIDENTIAL 76.1.16

1. 8071 SYSTRM ARCHITECTURE Page 15

* shares memory with other active directly attached devices
* and the CPU.

IBM CORFIDERTIAL 76.1.16

- — - —

2. STORAGE ACCESS INSTRUCTIORS Page 16

2. Storage Access

Storage is organized as a sequence of 32-bit words,
each consisting of four 8-bit bytes. Bytes in storage are
consecutively numbered, 1left to right, starting with zero.
Each number is considered the address of the corresponding
byte.

All addresses are computed as byte addresses. Storage
addressing wraps around from the maximum byte address,
46,777,215, to address zero. If less than the maximum amount
of storage is installed, an atteampt to utilize a byte from a
non—existent storage location will result 3in an address
exception condition.

All storage accesses are for a word or multiples
thereof. Accesses for a register fetch or store the three
low-order bytes of a word. Rccesses for a half fetch or
store the high— or low-order half-word of a word, as
required. Accesses for instructioas may require the
fetching of a word, a half-word, or the low-order half-word
of a word followed by the high-order half-word of the next
consecutive word in storage. Half-word or word addresses
are generated, respectively, by ignoring the low-order one
or two bits of a byte address.

If a cache memory for data references is installed,
accesses to or from cache to storage occur in multiples of
words. Because instruction fetch, storage access, and
register access are overlapped im the execution of load and
gtore instructions, interrupts, such as for a bad effective
address, may be imprecise.

2.7 Instructions

LHAD -~ load half algebraic,D-form

i I
[I 9 4 I KB | RC | 1 I (o)
| I I I !

0 8 12 16 31

The half (chars CO and C1) of the register specified by RB
is replaced by the half word of storage addressed by 0/(RC)
+ I. The resulting sign bit is extended through the prefix
of register RA. The parity stack in the condition register
is pushed down, and the condition register bit S5X3 is lost.
Condition register bit SX0 assunmes the wvalue of the
low-order bit of the storage address.

IBN CONPIDERTIAL 76.1.16

2. STORAGE ACCESS INSTRUCTIONS Page 17

LHAX ~— load half algebraic,X-form

13 | I I I
1t X | RR | BB | RC | (X}
| I !] I
0 4 8 12 15

The half (chars CO and C1) of the register specified by EA
is replaced by the half word of storage addressed by (RB) +
0/(RC) . The resulting sign bit 1is extended through the
prefix of register RA. The parity stack in the condition
register is pushed down, and the condition register bit SX3
is lost. Condition register bit SX0 assumes the value of the
low-order bit of the storage address.

LEZD - load half zero,D-form
i I i f |
} XX { RBE | RC | I I (D}
1 | I i I
0 8 12 16 3

The half (chars CO and C¥) of the register specified by RB
is replaced by the half word of storage addressed by 0/ (RC)
+ I. The prefix of register RB is set to zeros. The parity
stack in the condition register is pushed down, and the
condition register bit SX3 is lost. Condition register bit
SX0 assumes the value of the low-order bit of the storage
address.

LHZX -~ load half zero,X-form

i i i i I
P X { RR | EB | RC |
I i I I I
0 4 g 12 15

(X}

The half (chars CO0 and C1) of the register specified by RA
is replaced by the half word of storage addressed by (RB) +
0/(kC). The prefix of register RA is set to zeros. The
parity stack in the condition register is pushed down, and
the condition register bit SX3 is lost. Condition register
bit SX0 assumes the value of the low-order bit of the
storage address.

IBM CONFIDERTIAL 76.1.16

2. STORAGE ACCESS INSTRUCTIONS Page 18

LD -- load, D-form

i i I
b 9 4 | EB | RC | I

i i i
0 8 12 16 3

(D)

- ——

o W —

The content of the register specified by RB is replaced by
characters 1,2 and 3 of the word in storage addressed by
0/(EC) + I.

Note: This instruction does not affect +the condition
register in order to be able to preserve +the machine state
when processing an interrupt.

X -— load, X-form
1 i i I I
} X | RA | RB | RC } {X)
i i ¥ I !
0 g 8 12 15

The content of the register specified by RA is replaced by
characters 1,2 and 3 of the word in storage addressed by
(RB) + 0/(RC) .

Note: This instruction does not affect the condition
register in order to be able to preserve the machine state
when processing an interrupt.

STCD -= store char,dp~form
t i i i i
I XX I RB | RC | I I (D}
i ! I I 4
0 8 12 16 31

The char of storage addressed by 0/(BC) + I is replaced by
char C1 of the register specified by ERB.

IBE CONFPIDERTIAL 76.1.16

2. STORAGE ACCESS INSTRUCTIONS Page 19

STCX --— store char ,x-form

I ! I I !
I X | RA | BB | RC | (X)
|

I i | I
¢ 5 8 12 15

The char of storage addressed by (EB) + 0/(RC) is replaced
by char C1 of the register specified by RA.

STHD -= store half,D-form

XX I RB | RC |} I (D)

- o
—
—
-

e o - w—

G 8 12 16 3

The half word of storage addressed by 0/(RC) + I is replaced
by the half of the register specified by EB.

STHX - store half, X-form

i ! i !
X | RA § EB | RC | (X}

i i ! i
0 g 8 12 15

o

The half word of storage addressed by (RB) + 0/(RC) is
replaced by the half of the register specified by RA.

} STD -- store, D—-form
i I I i I
i XX t RB | RC |} I I (D)
I I i i
0 8 12 16 31

Chars 1, 2, and 3 of the word in storage addressed by 0/(EC)
+ I is replaced by the content of the register specified by
gB ‘-
| Nete: This instruction does not affect the condition
} register in order to be able to preserve the machine state
} when processing an interrupt.

IBM CORFIDENTIAL 76.1.16

3. ADDRESS COMPUTATION INSTRUCTIONS Page 20

STX -- store, X-form

| i ! | I
| X | RA [RB } RC | (x)
! i t I i
0 4 8 12 15

Chars 1, 2, and 3 of the word in storage addressed by (RB) +
0/(EC) is replaced by the content of the register specified
by RA.

Bote: This instruction does not affect the condition
register in order +to be able to preserve the machine state
vhen processing an interrupt.

IEM CORFPIDENTIAL 76.1.16

3. ADDRESS COMPUTATION INSTRUCTIONS Page 21

3. Address Computation

3.1 Instructions

CaD -=- compute address,D-form
I I t f I
I & ¢ I RB | ERC } I i (D)
i ! I I i
0 8 12 16 31

The address specified by 0/(RC) + I replaces the content of
register RB. Wo storage references for operands occur, and
the address is not inspected for address exceptions.

CAX -— compute address,X-form

(x)

The address specified by (RB) + 0/(RC}) replaces the content
of register Ei. Ho storage references for operands occur,
and the address is not inspected for address exceptions.

IBM CORFIDENTIAL 76.1.16

4. BRANCHING INSTRUCTIONS Page 22

§. Branching

The normal sequential execution of instructions may be
changed by the use of the branch instructions in order to
performs subroutine 1linkage, decision making, and 1loop
control.

Subroutine linkage is provided by branch and 1link
instructions:

branch and link absolute (with execute)-—— BALA ,BALAX
branch and link (with execute), RE-~form -- BALR,BALRX
branch and link (with execute), I-form -— BALI,BALIX

These instructions permit not only the introduction of a new
instruction address, but also preservation of the return
address in an implicitly or explicitly designated register.
In every case, the new instruction address, the address of
the branch target instruction, is computed before the return
address is saved. FPor the regular forms of the instruction,
the return address is the address of the byte immediately
following the Branch And Link instruction; for the execute
forms of the instruction, the return address is the full
word boundary on or preceeding the the location six bytes
beyond the instruction immediately following the branch and
link with execute instruction. In the latter case, the
register containing the return address is available to the
subject instruction. Note that when 0 is specified as
register RC in the R—form Branch And Link instructions, the
branch address is taken from register 0. A separate
instruction, Move From Instruction Address Register, is
provided for obtaining the current instruction address.

Facilities for decision wmaking are provided by the
conditional branch instructions:

branch on bit (and execute), I-form -— BB,BBI

branch on bit (and execute}, E—form -- BBE,BBRX
branch on not-bit (and execute), I-form -- BY¥B,BNBX
branch on not-bit (and execute), E-form ~- BNBR,ENBRX

These instructions provide the capability of branching
or not according to any specified state of any bit of the
condition register. Loop control can also be accomplished
through use of these instructions to test the outcome of
address arithmetic and counting operations.

4.1 Invalid Branch Addresses
1f a branch specifies an invalid storage location as
the address of the branch target instruction, the address

exception condition is not recognized until an attempt is
made to execute the branch target instruction.

IBM CONFIDERTIAL 76.1.16

4. BRANCHING INSTRUCTIONS Page 23

4.2 Branch With Execute Instructions

For every branch instruction, there is a corresponding
branch with execute form of the instruction. The instruction
immediately following a branch with execute instruction is
called the subject instruction. Whether or not the branch is
taken, the subject instruction is executed. The execution
of the branch and of the subject instruction is considered
as a single unit. If an interrupt occurs at any time during
the execution of the branch and its subject instruction, the
machine state will be left as if the subject instruction did
not execute and the old instruction address will be that of
the branch. An interruption during a branch, 1link, and
execute, however, may or may not leave the 1link address in
the specified register.

Certain instructions are not allowed to follow a branch
and execute instruction. These are branch instructions, trap

instructions, cache control instructions, and 1/0
instructions.

4.3 Instructioans

BALA - branch absolute and link

(BA}

I
E6 i Ba
t

i T

G 8 3

The content of register 15 1is replaced by the updated
instruction address, and then the updated instruction
address is replaced by BA, with its low order bit (bit 23)
forced to zero.

IBE CONFIDENTIAL 76.1.16

4. BRARCHIRG INSTRUCTIORS Page 24

BALAX -—- branch absolute and link with execute

i i
i E7 t Bi
} i

o 8 3

The content of register 15 is replaced by the updated
instruction address incremented by six and set to the
preceeding full word boundary, the instruction immediately
following the branch instruction is executed while the the
updated instruction address is replaced by BA, with its low
order bit (bit 23) forced to zero.

BALI -— branch and link,I-form

i i
I E& | RB BI (BI)
t i

o~ ——— w—

0 8 2 3

The content of register RB is replaced by the updated

instruction address, and then bits 3-22 of the updated
instruction address are replaced by BI.

BALIX -- Dbranch and link with execute,I-form

I BX
i

(B1}

e —

1] 8 2 3
The content of register RBE is replaced by the updated
idstruction address incremented by six and set to the
preceeding full word boundary, the instruction immediately
following the branch instruction is executed while bits 3-22
of the updated instruction address are replaced by BI.

IBM CONFIDENTIRL 76.1.16

4. BRANCHIRG INSTRUCTIONS Page 25

! 94 } RB | RC

0 8 122 1

The content of register BB is replaced by the updated
instruction address. The updated instruction address is
replaced by the content of register RC, with its low-order
bit (bit 23) set to zero.

BALRX ~- Dbranch and link with execute,E~form

The content of register RB 1is replaced by the updated
instruction address incremented by six and set to the
preceeding full word boundary. The instruction immediately
followving the branch instruction is executed while the the
updated instruction address is replaced by the content of
register RC, with its low-order bit (bit 23) set to zero.

BB -— branch on bit
i | ! I
i EO i BB § BI i (B1)
i t i I
O i 12 31

1f the condition register bit specified by KB is one, bits
3~22 of the updated instruction address are replaced by BI.
If the condition bit is zero, the updated instruction
address is unaltered, and no branch occurs.

IBH CONPIDENTIAL 76.1.16

4. BRANCHING INSTRUCTIONS Page 26

BBR -— branch on bit, k-form

i i I i

|} XX I RB | RC | (R)
I i I i

0 8 12 15

If the condition register bit specified by KB is one, the
updated instruction address is replaced by the content of
the register specified by RC, and the low—order bit is
forced to zero. If the condition bit is zero, the updated
instruction address is unaltered, and no branch occurs.

BBRX -= branch on bit and execute, R-form
i 1 }
I Xx {f RB | RC | (R)
§ H ¥ I
4] 8 12 15

If the condition register bit specified by RB is one, the
following instruction is executed while the updated
instruction address is replaced by the content of the
register specified by RC, with the low-order bit forced to
zero. 1f the condition bit is zero, the updated instruction
address is unaltered, and no branch occurs.

BBX -~ branch on bit and execute

i ;
I E1 | BB BY (BI)
i I

-

0 8 2 3
If the condition register bit specified by RB is one, the
following instruction is executed while bits 3-22 of the
updated instruction address are replaced by BI. If the
condition bit is zero, the updated instruction address is
unaltered, and no branch occrs.

IBM CONFIDENTIAL 76.1.16

4. BRANCHIRG INSTRUCTIORS Page 27

BEX -~- branch,execute and enable
i !] I
H c2 } RE } RC | {R)
I i] I
0 8 12 15

The instruction immediately following the BEX instruction,
this following instruction called the subject instruction,
is executed while the updated instruction address register
is replaced by the content of the register specified by EC,

} with the low-order bit forced to zero. Upon completion of
the subject instruction the machine becomes enabled.

BNEB — branch on not bit

; |
I E2 | RB
I I

BI (BI)

. T ——

0 8 2 3
If the condition register bit specified by RB is zero, bits
3-22 of the updated instruction address are replaced by BI.
If the condition bit is one, the updated instruction address
is unaltered, and no branch occurs.

HBENEBER -- branch on not-bit, R-form

i I H I
1 XX { RB | KC (R)
¥] } I
) 8 12 15

If the condition register bit specified by RB is zero, the

updated instruction address is replaced by the content of

the register specified by RC, with the low—-order bit forced
* t0 zero. If the condition bit 1is one, the updated
* jinstruction address is unaltered, and no branch occurs.

IBY CONFIDENTIAL 76.1.16

4. BEANCHING INSTRUCTIONS Page 28

BENBRX -—— Dbranch on not-bit and execute, R-fors

i ! i I
P xx I RB | RC | (E)
i I f I

0 8 12 15

If the condition register bit specified by RB is zero, the
following instruction is executed while the updated
instruction address is replaced by the content of the.
register specified by RC, with the low-order bit forced to
zero. If the condition bit is one, the updated instruction
address is unaltered, and no branch occurs.

BNBX -~— branch on not bit and execute

i I
I Bl ¥ (B1)
I l
12 31

i i
i E3 | RB
t

0 8

If the condition register bit specified by BB is zero, the
following instruction is executed while bits 3-22 of the
updated instruction address are replaced by BI. If the
condition bit is one, the updated instruction address is
unaltered, and no branch occurs.

IBM CONFIDENTIAL 76.1.16

T R W e S

5. TRAP INSTRUCTIONS Page 29

5. Traps

The trap instructions are provided to test for a
specified set of conditions. If the conditions tested by a
trap instruction are met, a trap exception condition is
generated, and an interruption OCCUrS. Control is
transfered to the special interrupt area associated with
trap interrupts (see section 1.4). If the tested conditions
are not met, instruction execution continues with the next
sequential instruction. Trap instructions may not appear as
the subject instruction of a branch with execute.

The comparisons are performed on operands treated as 24
bit unsigpned integers.

5.1 Instructions

TGTI -— trap if register greater than immed

I i f i f
i EC I BB | // | I t (D)
A | ! i I

0 8 12 16 31

If the content of the register specified by BB is greater
than the value of the field I, extended on the left with
eight zeros, a trap exception condition is generated.

TLT -— +trap if register less than
) | I | I

P XX { RB } RC | (R}

1 i ! I

"0 8 12 15

If the content of register RB is less than the content of
register RC, a trap exception condition is generated.

IBM CONFIDENTIAL 76.1.16

5. TRAP INSTRUCTIONS Page 30

TLTI -~ trap if register less than immediate

i | i I

i ED | RB | // | I

i I I |

0 8 12 16 3

(D)

.‘mmm

If the content of the register specified by RB is less than
the value of the field I, extended on the left with eight
zeros, a trap exception condition is generated.

TNE - trap if register not equal
i i I ¥
| XX P RB | RC } (R)
i i i i
0 8 12 15

If the content of register RE is not equal the content of
register RC, a trap exception condition is generated.

TREXI ~— trap if register not eqgual immediate

i 1 I i

I EE VRB} // | I

I ! i i

0 8§ 12 16 3

(D)

o o — —

If the content of the register specified by RB is not equal
to the value of the field I, extended on the left with eight
zeros, a trap exception condition is generated.

IBM CONFIDENTIAL 76.1.16

6. MOVE INSTRUCTIONS Page 31

6. HKoves And Inserts

This group of instructions is concerned solely with the
rovement of data betveen registers and with the insertion of
data from the immediate field of an instruction into a
register. Except when data is moved or inserted into the
condition register, none of these instructions alter the
condition register or generate exception conditions.

6.1 Instructions

ICBI ~— insert condition bit immediate

DC I RB | RC

.0 8 12 1

The condition register bit specified by RB is set equal to
the low order bit of RC. If the bit specified by RB is a
reserved or permanent-zero bit, the value of the bit is
unchanged.

IPI -— insert prefix immediate

I i I I i

i 2 I RB I // | I f (D)
] t I I I

0 8 12 16 31

The prefix of the register specified by RB is replaced by
the eight low order bits of I (bits 24-31 of the
instruction.

IPIiz ~- insert prefix immediate and zero

4 I ! I 1

1 XX I EB | // | I ! (D)
1 | { i I

0 8 12 16 31

The prefix of the register specified by RB is replaced by
the eight low order bits of I (bits 24—-31 of the
instruction. The half of the register specified by RB is set
to zeros.

IBKE CONFIDERTIAL 76.1.16

6. MOVE INSTRUCTIONS Page 32

MCGO -= move character zero from zero

i I i i
[88 | RB | RC | (R)
I ! i !
0 8 12 15

Char CO of the register specified by KB is replaced by char
CO0 of the register specified by RC.

KCO1 - move character zero from one
I ' } i
i 89 {t RBE | RC | (R)
i I I i
4] 8 12 15

Char CO0 of the register specified by RBE is replaced by char
C1 of the register specified by EC.

BC10 ——~ move character one from zero
I | I ¥
i 8A { RB | RC | (B)
H H ¥ I
¢ 8 12 15

cﬁar C1 of the register specified by RB is replaced by char
CO0 of the register specified by EC.

NC11 -— nwmove character one from one
} i ¥ I

1 01.] { EB | RC | (R}

I i i |
4] 8 2 15

cﬁar C1 of the register specified by RB is replaced by char
C1 of the register specified by RC.

IBM CONPIDENTIAL 76.1.16

6. MOVE INSTRUCTIONS Page 33

MPCR -— move from condition register

! i I I
I D4 I BB} /7 | (R)
I I i i
0 8 12 15

The content of the half of register RB is replaced by the
content of the condition register. The prefix of register
BB is set to zeros.

MFCO -— nmove from character indexed by SX0

I i i i
i 80 { RB | RC | (R)

i I i I
-0 8 12 15

Char C1 of the register specified by RB is replaced by char

C0 or char C1 of the register specified by RC, as condition

register bit SX0 is, respectively, zero or one. Char CO0 of
I the register specified by KB is set to zero.

MFC1 —— move from character indexed by SX1

i i i f
I 81 I RB | RC } (R)
i

I ! [
0 8 12 15

Char C1 of the register specified by RB is replaced by char

CO0 or char C1 of the register specified by RC, as condition

register bit SX1 is, respectively, zero or one. Char C0 of
I the register specified by RB is set to zero.

IBM CORFPIDENRTIAL 76.%.16

WD W O MU SRR R SRS R O .

6. MOVE INSTRUCTIONS Page 34

MFC2 -- mnove from character indexed by SX2

I I i I
i 82 I RB | RC | (R)
i i ! I

o 8 12 15

Char C1 of the register specified by RB is replaced by char
C0 or char C1 of the register specified by RC, as condition
register bit SX2 is, respectively, zero or one. Char CO of
the register specified by RB is set to zero.

MFC3 -— move from character indexed by SX3

I ' i t
i 83 } RB | RC } (K}
{ i i I
0 8 12 15

Char C1 of the register specified by KB is replaced by char
CO or char C1 of the register specified by RC, as condition
register bit SX3 is, respectively, zero or one. Char C0 of
the register specified by RB is set to zero.

BFD -~ move from digit

I 1 i
8cC it KB | BC | (E)
i ! i
G 8 12 15

_—

A digit of register RB is selected by bits 22-23 of register
RC. This digit is placed in digit D3 of RE and the
repainder of RB is set to zero.

EFDP ~- move from digit paired

i 1 i
8D I EB } ERC

I
i I {
- 0 8 12 15

(R)

- —

A digit of KB is selected by bits 22-23 of RC. This digit
is placed in digit D3 of the twin, in a register pair, of RB
and the remainder of the twin is set to zero.

IBM CORFIDERTIAL 76.1.16

!

W N W G W GNUR WO W NN NSRS

6. MOVE INSTRUCTIONS Page 35

NFIA ~- move from instruction address

1 I i i
D & I BB | // | (R)
) t i I

0 8 12 15

The content of register RB is replaced by the value of the
current instruction address, i.e., the location of +this
instruction.

BFNQ -— move from MQ

D5 { RB (R)

T w—-——

¢ 8
The content of the half of register RB is replaced by the

content of the MQ register. The prefix of register BRE is
set to zeros.

BFP ~=- move from prefix

I i I |

I 92 | BB | KC } (R)
I I |

0 8 12 15

Char €1 of the register specified by BB is replaced by the
prefix of the register specified by RC. The prefix and char
CO of the register specified by BB is set to zeros.

T

BFTB -— move from test bit

i I t i
I D7 I RB | RC | (R)
I | i |
0 8 122 15

A particular bit of the half of register BB is set to the
value of the condition register test bit. The particular bit
of the half of register KRB is specified by the value of
digit D3 of register RC.

IBH CONFIDERTIAL 76.1.16

I
!
I
i
I
i
I
t
i

i

6. HMOVE INSTRUCTIONS Page 36

MFTBY -~~~ move from test bit value

| | i l
I D9 | RB | RC | (R)
i

i I I
0 8 12 15

The bit of the half of register BB specified by RC is set to
the value of the condition register test bit.

MTICR -- move to condition register

! I i i
t Cch t // 1} RC | (R)
i I i !
0 & 1z 15

Those bits of the condition register not reserved and/or
required to be zero are set to the values of the
corresponding bits of the half of register RC.

MTCO -- move to character indexed by SXO

i t I
84 {t KB | RC | (R)

i ! I
0 8 12 15

- ———

Char CO0 or Ct1 of the register specified by RB is replaced by
char C1 of register RC, as condition register bit SX0 is
zZero or one, respectively.

BIC1 -~ move to character indexed by SX1

(R)

@
i
. —
]
=

Char C0 or C1 of the register specified by RB is replaced by
char C1 of register RC, as condition register bit SX1 is
zero or one, respectively.

I8N CONFIDENTIAL 76.1.16

|
i
I
I
|
|
I
I
i
I

VN N S G D S R G

6. MOVE INSTRUCTIONS

MTC2 -— move to character indexed by

I f i I

] 86 } RB | RC |} {R)

; I I i

0 8 122 15
Char CO or C1 of the register specified
char C1 of register RC, as condition
zero or one, respectively.
MTC3 —— move to character indexed by

i I 4 I

i 87 t RB |} RC | (R)

I i I i

.0 8 12 15
Char CC or C1 of the register specified
char CY of register RC, as condition
zeroc or one, respectively.
MTD -- move to digit

I I I I

i 8 § RB |} RC |} (R)

i I I |

o 8 12 15

Page 37

Sx2

by RB is replaced by
register bit SX2 is

5x3

by BB is replaced by
register bit SX3 is

The digit of register RB specified by bits 22-23 of register
RC is replaced by digit D3 of register RE.

BIDF -~ move to digit paired
i I i !
i 8F I RE | RC |} (R)
| i i f
0 8 12 15

The digit of the twin, in a register pair, of BB selected by
bits 22-23 of RC is replaced by digit D3 of register RB.

IBM CONFIDENTIAL

76.1.16

L B L L

L L R Y

6. MOVE INSTRUCTIONS Page 38

BINO -- move to NMQ

i ¢ I
c5 : Vi4 g RC § (R}
(¥ 8 22 15

The content of the MQ register is replaced by the half of
register RC.

MTP - move to prefix

I
I 93 t RB | RC (K)
!

- 0 8 12 1

The prefix or the register specified by RB is replaced by
char C1 of the register specified by EC.

MTTB -- move to test bit

i i I i
1 b8 f RB | RC { (R)
t

i i i
0 8 1z 15

The condition register test bit is set to the value of a bit
of the half of register RB. This bit is specified by digit
D3 of register RC.

a?TB¥ -= move to test bit value
H H I !
} DA I KB | RC | {R)
I I i I
0 8 12 15

The condition register test bit is set to the value of a bit
of the half of register KRB, this bit specified by RC.

IBM CORFIDERTIAL 76.1.16

* %

7. ARITHMETIC INSTRUCTIONS Page 39

7; Arithmetic

\ The arithmetic operations, with the exception of the
decimal operations Add Decimal and Subtract Decimal, treat
registers as consisting of a sign bit followed by 23 integer
bits. On these operations, the LT, EQ, and GT bits in the
condition register are set to reflect the result: LT is set
to one if the result has a negative sign, EQ if the result
is zero, and 6T if the result has a positive sign and is not
zero. Condition register bit CO0 is set to reflect the carry
out of bit position zero and C1 the carry out of bit
position eight. The overflow latch, 0V, is set to one if the
carry out of bit position omne is not equal to the carry out
of bit position 2zero. The summary overflow bit (S0} is set
to the OR of the new value of OV with the old value of OV.

The extended operations use the value of the C1 bit to
determine the result. The extended add instructions, AE and
AEI, add the value of the CT bit to the sum of the two
operands to determine the result. In the extended subtract
instructions, SE and SEI, the value of the first operand is
added to the complement of the second operand and to this
result is added the value of the C1 bit to determine the
result.

7.1 Instructions

A -~ add

) 1 I I
i ¥ !t RB | RC } (K)
I

! i I
0 8 12 15

The contents of registers RB and RC are added and the result
placed into register RB. Conditiom bits 1T, EQ, 6T, CO, C1,
OV, and SO are set.

IBE CONFIDENTIAL 76.1.16

7. ARITHMETIC INSTRUCTIONS Page U0

ABS -— absolute value
i i I 4
i XX | RB | RC | (R)
 § i] ¥
0 8 12 15

The content of regiéter RB is replaced by the absolute value
of the content of register RC. Condition bits LT, EQ, 6T,
0OV, and SO are set.

AD -— afd decimal

i

} a9
I
- G 8

(R)

ey e
m
o

1
i
i
12 1
The two-digit decimal number in the low-order byte of the
register specified by the second operand, augmented by the
value of the condition register CO0 bit, is added to the
two-digit decimal number in the low-order byte of the
register specified by the first operand. The result replaces
the low-order byte of the register specified by the first
operand, while the high-order bytes of this register remain
unaltered.

The condition register bit CO0 is set to one if a carry
results from the operation, otherwise it is set to zero.
The condition register bit EQ is set to one if both digits
of the result are zero, otherwise it is set to zero.

If any digit is an invalid decimal digit; i.e. X*a, B, C,
D, E, or F*, the operation is suppressed, and the condition
register decimal-exception-latch, DX, 1is set to one.
Otherwise this latch is set to zero.

Condition register alterations:
DX, EQ, CO

IBM CONFIDERTIAL 76.1.16

7. ARITHHMETIC INSTRUCTIONS Page 41

AE ~- add extended

| ! i !
I 2B ! RB | RC } (R)
f i ! I
) 8 12 15

The content of register RB, the content of register RC, and
the value of condition bit C1 are summed and the reésult
placed into register RB. Condition bits LT, EQ, 6T, CO, Ct,
OV, and SO are set.

KEI -=— add extended immediate
i] } t H
{ PEB } RB | KC } b § I (D)
¥ } i | I
0 8 12 16 31

The field I, extended on the left with eight zeros, the
contents of register RC, and the value of condition bit C1
are summed and the result placed in register EB. Condition
bits LT, EQ, 6T, CO, C1, OV, and SO are set.

AX -— add immediate

i | i I
i (D)

e
-
T — —

i
0 8 12 16 3

The field I, extended on the left with eight zeros, is added
to the contents of register RC and the result placed in
register RB. Condition bits LT, EQ, GT, C0, C1, 0OV, and SO
are set.

IBYM CORFIDENTIAL 76.1.16

i

7. ARITHMETIC INSTRUCTIONS Page 42

Cc ~- compare
i ! i !
} CB I BB | RC | (R}
1 I i I
O 8 12 15

The contents of registers RB and RC, both treated as 248 bit
signed integers, are compared. Condition bits LT, EQ, and GT
are set according to how the value of register RB relates to
that of register RC.

104 § -~ compare immediate
! I i ! I
{ EB | RB | // | I I (D)
i I I I I
1] 8 12 16 31

The content of register RB is compared to field I, extended
on the left with eight zeros. Condition bits LT, EQ, and GT
are set according to how the value of register RB relates to
that of register RC.

DS ~-= divide step
I ! I i
i BY | RB | RC } {E)
! I I I
0 8 2 15

The content of register RC is added to or subtracted from
(register RB) || (bit 0 of MQ) depending on whether the signs
of registers RE and RC disagree or agree. The 24 low order
bits of the sum replace register RB. The MQ is shifted left
one position and bit 15 of the MQ is set to 1 if and only if
Sy the sign of the result, eguals the sign of register RC.
Condition bits CO and OV are set: CO=(RC(bit 0)=S)} and
OV=(RB(bit 0)=S).

Rote: Condition bit SO is unaffected by this instruction.

IB¢ CONFIDENTIAL 76.1.16

7. ARITHMETIC INSTRUCTIONS

BXTS -=- extend sign
I I I I
I ¢ { { BB | RC } (R)
i ¢ I i
0 8 12 15

The content of the half of
half of register RC.

equal bit 8.

Ms -~ multiply step

! i i !
i B8 P RB | RC | (R)
I 4 i I

5 0 8 1z 15

Page 43

register EB is replaced by the
Bits 0 - 7 of register BRB are set to
Condition bits LT, EQ, and GT are set.

The incomplete product of register RC and bits 14-15 of the

Mg are formed in (register RE) }||IMQ.

in accordance with the following table:

jCondition|

MO 1 MQ 11 Algebraic
f Bit CO |} Bit 14 | Bit 15 |1} Sum
L 1 i H
i 0 i 0 I Y i1 (RB) + (RC)
i O i g } 1 i (RB}+2(RC)
i 0 i 1 i 0 Il (BB} —(RC)
] G t 1 H 1 [t (BB} +0
i 1 i 0] 0 it (BB} +0
i 1 I 0 i 1 Il (EB)}+(RC)
i 1 I 1 f 0 i (RB) -2 (RC)
I 1 ! 1 1 HI_(RE} - (RC}

L AL L I L R L R

E 26-~bit sum is formed

The MQ is algebraically shifted right two positions, with
the two low order bits of the sum replacing bits 0-1 of the
is replaced with the 24 high order bits of
the sum. Condition register bit CO0 is set to -bit 14 of the
MO (before shift).

MO. Register RE

IBM CONFIDENTIAL

76.1.16

7. AERITHMETIC INSTRUCTIONS Page U4

s -— subtract
i I i !
t AE ! BB | KC } (R)
! ! i I
0 8 12 15

The content of register RC is subtracted from the content of
register RB and the result ©placed into register RB.
Condition bits LT, EQ, 6T, CO, C1, OV, and SO are set.

Note: if RB=RC, the contents of this register is set to zero
and bit CO0 of the condition register is set to one.

Sh ~=- gsubtract decimal
i I i I
i ARD I RBE | RC | (R)
i } } i
O & 12 15

The two-digit decimal number in the low-order byte of the
régister specified by the second operand, augmented by the
inverse of the condition register bit C0, is subtracted from
the two~digit decimal number in the low-order byte of the
register specified by the first operand. The result
replaces the low-order byte of the register specified by the
first operand, while the high-order bytes of this register
are unaltered.

The condition register bit €0 is set to zero if a *borrow?
was required to perform the subtraction, otherwise it is set
to one. The condition register equal-latch EQ is set to zero
if both digits of the result are zero, otherwise it is set
to one.

If any digit is an invalid decimal digit; i.e. X*a, B, C,
D, E, or P*, the operation is suppressed, and the condition
register decimal-exception-latch DX is set to one. Othervise
this latch is set to zero.

condition register alterations:
" DX, EQ, CO

IBM CONFIDERTIAL 76.1.16

!

7. ARITHMETIC INSTRUCTIONS Page 45

SE -— subtract extended
I I I i
' AP f RB |} RC | (R)
} I L] i
0 8 122 15

The complement of register RC is added to the content of
register RB to which result is added the value of condition
bit C1 and the result placed into register BRB. Condition
bits LT, EQ, 6T, C0, C1, 0OV, and SO are set.

SEI -- subtract extended immediate

i I i I i

D ¢ ¢ { KB | RC } I I (D)
i I I | !

0 8 12 16 31

The field I, extended on the left with eight zeros, is
comlepented and added to the content of register RC to which
result is added the value of condition bit C1 and the result
placed in register RB. Condition bits LT, BQ, GT, CO, C1,
OV, and SO are set.

Srz -~ subtract from immediate

} i i i !
t XX ! RB | EC | I] (D}
! i i I !
0 8 12 16 31

The content of register RB is replaced the by content of the
register specified by RC subtracted from I. Por the
subtraction, I is extended on the left with eight zeros. The
condition bits LT, RQ, 6T, CO, C1, OV, and SO are set based
oii the result.

IBM CONFIDERTIAL 76.1.16

7. ARITHMETIC INSTRUCTIONS Page 46

SI - subtract immediate
} i ! i i
! ix t RB | RC | 1 i (D)
i I 1 I I
0 8 12 16 31

The content of register RB is replaced by I subtracted from
the register specified by RC. For the subtraction, I was
extended on the left with eight zeros. Condition bits LT,
6T, C0, C1, OV, and SO are set based on the result.

TPO -~ test prefix for overflow

I I i I
I XX I RB | RC
i

] I I
0 8 12 15

The content of register RB is replaced by the content of
register RC. If any of bits 0 — 7 do not egqual bit 8 (the
sign bit) of register KB, then set OV and SO of the
condition register to one; else set OV to zero.

IBM CONFIDERTIAL 76.1.16

LA L R K BN

* ¥ %

8. LOGICAL OPERATION INSTRUCTIONS Page 47

8. Logical Operations

The logical operations treat registers as 24 bit
unsigned integers. The exception is the instruction Count
Leading Zeros, CLZ, which is applied to the half of a
register, i.e., the 16 low-order bits. The 1logical
operations that set the LT, EQ, and GT bits of the condition
register according to the result do so according to the
algebraic value of the result. If the result is a negative
value, LT is set to one; if it is zero, EQ is set to one: or
if it is positive and not zero, GT is set to one.

8.1 Instructions

CL -— compare logical
I I I I
i ca I EB | RC | (R)
| I i I
0 8 12 15

The content of register RB is compared with the content of
register RC. Both comparands are treated as 28 bit unsigned
guantities. Condition register bits LT, EQ, GT, CO and C1
are set. LT, EQ, and GT are set according to how the value
of register RB logically relates to that of register RC. CO
is set to one if the CO0 characters in both comparands are
equal, else it is set to zero. C1 is set to one if the C1
characters in both comparands are equal, else it is set to
Zero.

CLI -~= ¢ompare logical immediate

d] i b i I

i EA P RB}V /7 | I i (D)
I i I i I

-0 8 12 16 31

The content of register RB is compared with field I,
extended to the left with 8 zeros. Both comparands are
treated as 24 bit unsigned quantities. Condition register
bits LT, EQ, GT, CO and C?1 are set. LT, EQ, and GT are set
a¢cording to how the value of register RB logically relates
té6 that of register B&C. C0 is set to one if the CO
characters in both comparands are equal, else it is set to
zZero. C1 is set to one if the C1 characters in both
comparands are equal, else it is set to zero.

IBM CONFIDERTIAL 76.1.16

8. LOGICAL OPERATION INSTRUCTIONS Page 48

CLZ -- count leading zeros
i I I I
b 9P I RB |} RC | {R)
I I I !
0 8 12 15

The content of the register specified by RB is replaced by
the binary representation of the number of leading zeros in
the half of the register specified by RC (i.e. The number of
zeros to the left of the left-most one-bit of the half of
register RC).

N -~ and

| I I |
4 BC | RB | RC } (R)
! ! i I

0 8 12 15

The "ana® of the contents of the registers specified by RB
apd RC replace the content of the register specified by BRB.
Condition bits LT, EQ, and 6T are set according to the
result.

NI -~ and immediate
i i ¥ i i
i FC I BB | RC | I i (D)
{ I i i I
G 8 12 16 31

The ™and® of field I, extended to the left with 8 zeros, and
of the content of register EC replaces the content of
régister RB. Condition register bits LT, EQ, and GT are set.
The connective "and"™ is applied bit by bit.

IBE CONFIDENTIAL 76.1.16

8. LOGICAL OPERATION INSTRUCTIONS Page 49

I I ! !
I BD i BB | RC { (R)

i I | !
0 & 12 15

The "or™ of the contents of the registers specified by RB
and RC replace the content of the register specified by EB.
Condition bits LT, EQ, and 6T are set according to the
result.

43 4 ~— or immediate
} I I I i
| FD | KB | EC § I ! M)
I I ¥ i I
0 8 12 16 31

The "or"™ of field I, extended to the left with 8 zeros, and
of the content of register RC replaces the content of
register RB. Condition register bits LT, BQ, and 6T are set.
The connective ®or®™ is applied bit by bit.

i -- exclusive or

1 i i i
| BE t RB | RC |
i } i f
o g8 12 15

The ®exclusive or®™ of the <contents of the registers
specified by RB and RC replace the content of the register
specified by RB. Condition bits LT, EQ, and 6T are set
according to the result.

IBM CONFIDENTIAL 76.1.16

9. SRHIFT INSTRUCTIORS Page 50

I -~ exclusive or immediate
i l I]
t PE } EB | KC | I i §4))
i H i I !
0 8 12 16 31

The %"exclusive or® of field I, extended to the left with 8
zeros, and of the content of register RC replaces the
content of register RB. Condition register bits LT, EQ, and
GT are set. The connective exclusive or is applied bit by
bit.

IBE CORFIDENTIRL 76.1.16

W Y v —— o — —

L

L A L I IR R e e —

L L U I L I

9. SHIPT INSTRUCTIORS Page 51

9. Shifts

Shift instructions operate either on 24 bits or on 16
bits (a half). The instructions shift a distance of from 0
to 15 Dbits either left or right. A1l shifts set the
condition register to indicate if the value returned to the
register is zero, positive, or negative. All except the
algebraic right shift are logical in their treatment of the
value shifted. On all left shifts, zeros are supplied to
the vacated low order positions.

9.1 Instructions

NSLI ~— and,then shift left inmediate

I i i | i
i F4 | KB | KC 1} I i (D}
i t I } [
0 8 12 16 31

The ™and™ of field I, extended to the left by eight zeros,
and the contents of register RB is shifted left the numbder
of bits specified by RC and replaces the content of register
RB. Condition bits LT, BQ, and GT are set.

ﬁSLPI == and,then shift left paired immediate

I i I i I
I PS5 I RB | RC |} I ! (D)
i ¢ I I I

0 8 12 16 31

The “and®™ of field I, extended to the left by eight zeros,
and the contents of register KB is shifted left the number
of bits specified by RC and replaces +the contents of the
twin (in a pair) of register RB. Condition bits LT, EQ, and
GT are set.

IBEM CONFIDENTIAL 76.1.16

TR IR AR TR IR W RO SR W R ST N S W T N e N T W WS Y e

R L BB B B I R L)

9. SHIFT INSTRUCTIORS Page 52

NSRI -=- and,then shift right immediate
i t i I I
i F6 | RB | RC | I I (D)
I I } i i
0 8 12 16 31

The "and®™ of field I, extended to the left by eight zeros,
and the contents of register kB, shifted right the number of
bits specified by RC, replaces the contents of register EB.
Condition bits LT, BQ, and GT are set.

NSRPI — and,then shift right paired immediate
i ! I i I
I Fi I RB |} RC | I i D)
! I i i i
0 8 12 16 31

The "and™ of field I, extended to the left by eight zeros,
and the contents of register EB is shifted right the nusmber
of bits specified by RC and replaces the contents of the
twin (in a pair) of register E&B. Condition bits LT, EQ, and
GT are set.

SAR -~ shift algebraic right

I ! I i

! A2 I RB | RC | (R)
i I i]

0 8 12 15

The contents of register RB (bits 0-23) is shifted right the
number of bit positions specified by digit D3 of register
RC. Bits equal to the origimal sign bit (bit 0) are
supplied to the vacated high order positions. Condition
bits 1T, EQ, and GT are set.

IEN CONFIDERTIAL 76.1.16

LB L R NS UNR GNND WRER R G S N W S R S

e *wwwwm-mmmw

9. SHIFT INSTRUCTIONS Page 53

SARY -—— shift algebraic right immediate
I i I i
¥ B2 I RB | RC |} (R)
! i I !
0 8 12 15

The contents of register KB (bits 0-23) is shifted right the
number of positions specified by RC. Bits equal to the
original sign bit (bit 0) are supplied to the vacated high
order positions. Condition bits LT, EQ, and GT are set.

SEL -— shift half left

! I !

XX | BB | RC |}

! I I

0 8 122 15

(R)

I - ——

The content of the half of register RB (bits 8-23) is
shifted left the number of bit positions specified by digit
D3 of register RC. 2Zeros are supplied to the vacated low
order positions. The prefix of the result is set to zero.
Condition bits LT, EQ, and GT are set.

SHLI -= shift half left impediate

t I !

xx i BB | RBRC }

i i ¢

0 8 12 15

(R)

N, s

The content of the half of register RB (bits 8-23) is
shifted left the number of bit positions specified by EKC.
Zeros are supplied to the vacated low order positions. The
prefix of the result is set to zero. Condition bits LT, 20,
and GT are set.

IBM CORFIDERTIAL 76.1.16

Lo B R] *mmmmmmm“m S SN N YU R W AN AN S T R S

T G WU O S O W S DI AN N Y e

9. SHIFT INSTRUCTIORS Page 54

SHLP -- shift half left paired

The content of the half of register REB (bits 8-23) is
shifted left the number of bit positions specified by digit
D3 of register RC. Zeros are supplied to the vacated low
order positions. The prefix of the result is set to zero
and the result is stored in the twin, in a register pair, of
KB. Condition bits LT, EQ, and 6T are set.

SHLPI -—— shift half left paired immediate

i i I
XX } RB | RC |
I I I
0 8 12 15

(R)

W owlin

The content of the half of register KRB (bits 8-23) is
shifted left the number of bit positions specified by KC.
Zeros are supplied to the vacated low order positions. The
prefix of the result is set to zero and the result is stored
in the twin, in a register pair, of RB. Condition bits 1T,
EQ, and €T are set.

SHR —-— shift half right

—— —
—
—
———

XX I RB | RC | (R)

The content of the half of register RBE (bits 8-23) is
shifted right the number of bit positions specified by digit
D3 of register RC. Zeros are supplied to the vacated high
order positions. The prefix is set to zero. Condition bits
LT, EQ, and GT are set.

IBE CONFIDERTIAL 76.1.16

e W e W SR S

9. SHIFT INSTRUCTIORS Page 55

SHRI -— shift half right immediate

I f I
XX I RB | RC | (R)
i § i
0 8 12 15

””"m

The content of the half of register RB (bits 8-23) is
shifted right the number of bit positions specified by RC.
Zeros are supplied to the vacated high order positions. The
prefix is set to zero. Condition bits LT, EQ, and GT are
set .

SHRP - shift half right paired

I
¥ XX I KB | RC
I

0 8 12 1

The content of the half of register RB (bits 8-23) is
shifted right the number of bit positions specified by digit
D3 of register RC. Zeros are supplied to the vacated high
order positions. The prefix of the result is set to zero
and the result is stored in the twin, in a register pair, of
EB. Condition bits LT, EQ, and GT are set.

SERPI -—— shift half right paired immediate

|
i XX { RB | RC (R)
I

0 8 122 1

The content of the half of register RB (bits 8-23) is
shifted right the number of bit positions specified by KC.
Zeros are supplied to the vacated high order positions. The
ptefix of the result is set to zero and the result is stored
in the twin, in a register pair, of KEB. Condition bits LT,
EQ, and GT are set.

IBM CONFPIDERTIAL 76.1.16

WA G R W G G AR AN R N TR e L L L I R R Y

NG W S S A L I W R RS

9. SHIFT INSTRUCTIONS Page 56

SL -— shift left

i ! i i
L) | RB | RC | (R)
i i I I
0 g8 12 15

The content of register KB is shifted left the number of bit
positions specified by digit D2 of register RC. 2Zeros are
supplied to the vacated low order positions. Condition bits
LT, BQ, and GT are set.

SLI - shift left immediate

i I I f
| B } KB } RC
i ! ! !
0 8 12 15

(R)

The content of register RB is shifted left the number of bit
positions specified by BRC. Zeros are supplied to the vacated
low order positioms. Condition bits LT, BQ, and GT are
set,

SLP -~ shift left paired

| I f !
I a5 I RB | RC | (R)
i i ! I
0 8 12 15

The content of register RB is placed in its twin (in a pair)
and the content of this register is shifted left the number
of bit positions specified by digit D3 of register RC. Zeros
are supplied to the vacated 1low order positions. Condition
bits LT, EQ, and GT are set.

IBE CONFIDENTIAL ' 76.1.16

W SN S R AN W SR WO NS R R Radi o L B R L U R —,

W MBS N W N R W R S W

9. SHIPT INSTRUCTIONS Page 57

SLPI ~-— shift left paired immediate
I ! I I
. BS | RB |} EC | {R)
i i I i
0 8 12 15

The content of register BB is placed in its twin (in a pair)
and the content of this register is shifted left the number
of bit positions specified by RC. 2Zeros are supplied to the
vacated lowv order positions. Condition bits LT, EQ, and GT
are set.

SR -— shift right

! i f I
I &C I RB | RC | (R)

I f] i
o 8 122 15

The content of register EB is shifted right the number of
bit positions specified by digit D3 of register RC. Zeros
are supplied to the vacated high order positions. Condition
bits LT, BQ, and GT are set.

SRI -- shift right immediate
i I i I
I a1 I RB | RC | (R)
I ! i !
0 g8 12 15

The content of register BB is shifted right the number of
bit positions specified by KC. Zeros are supplied to the
vacated high order positions. Condition bits LT, BQ, and GT
are set.

IBEM CONFPIDERTIAL 76.1.16

L L L L R R

N GO SR O W WS UOT N WU o e

9. SHIPT INSTRUCTIORS Page 58

SRP -~ shift right paired
i I i i
i BO it EB | RC } (B)
! I I I
0 8 12 15

The content of register RB is placed in its twin (in a pair)
and the content of this register is shifted right the number
of bit positions specified by digit D3 of register RC. Zeros
are supplied to the vacated high order positions. Condition
bits LT, EQ, and GT are set.

SRFI — shift right paired immediate
f i i i
] B1 I RB | RC | (R}
i § I {
o 8 12 15

The content of register RB is placed in its twin (in a pair)
and the content of this register is shifted right the number
of bit positions specified by RC. Zeros are supplied to the
vacated high order positions. Condition bits LT, EQ and GT
are set.

IBM CONFIDERTIAL 76.1.16

—

R B IR BT TR R R e enap—"

—— b B IR L B R R e——

L B B I R IR A T e —

10. SYSTEM CORNTEOL INSTRUCTIONS Page 59
10. System Control

10.% Locking

Locking control is provided to support the use of a
special disable state of the processor as a lock. In the
uniprocessor version, there is exactly omne such lock, which
is seized by the Lock imstruction and released automatically
16 machine instruction executions later. This system lock
can be used to protect short critical paths or to protect
the implementation of a more complex discipline (such as
semaphores) for longer critical regions. The lock has the
effect of defering external interrupts independtly of the
current enable state of the machine. Thus, during a locked
critical path, the machine can be enabled or disabled as
necessary. However, external interrupts will be defered.
W¥hen the 1lock is released, interrupts will again be
controlled by the enable state. A defered interrupt will be
taken only if the processor is enabled when the lock is
released.

: If this mechanism is extended to a multiprocessor
system, the use of a single lock to protect all short
critical regions may cause excessive blocking. If this is
the case, the lock instruction can be provided with a
parameter which is interpreted as a critical section or lock
ID. Critical sections will then be mutually exclusive only
if they are protected by the same lock ID. R given processor
can only seize one lock ID at a time. An attempt to seize a
second lock (with the same or a different ID) will cause the
current lock to be released and the processor enabled for
pending interrupts (unless it is in the disabled state
independent of the 1lock mechanism). Only then will the new
lock be seized and the processor disabled for a new 16
instruction period.

10.2 Cache Control Operations

The 801 processor is organized to allow independent
memory access for data and instructions. Each access path
may be served by an independent cache. The effects of these
caches on program execution {other than to improve
performance) occurrs only in special circumstances.
Particularly, modifications to main memory by I/0 paths must
not be assumed +to be reflected to the processor, since the
areas affected may already be copied in either or both
caches. Modifications to memory by the processor may not be
reflected in subsequent instruction or I/0 access to main
memory, since the updates may be buffered in the data access
cache for an indeterminate period of time. This buffereing
can affect both read and write I/0 accesses. Reads can be
changed if a buffered modification to the target area of the
read is accomplished after the read has completed. Writes

IBR CONFIDERTIAL 76.1.16

W o W o

A U T R WS SR W e S G

10. SYSTEM CONTROL INSTRUCTIONS Page 60

will +transmit the wrong values if buffered modifications
have not been accomplished. (It should be stressed that the
801 architecture allows for indeterminately 1long delays
between store instructions and the actual modification of
main memory.)

The cache control instructions are provided to allow
program control of the relationship between main memory and
the caches. These instructions deal with cache 1lines which
are implementation defined. In the current implementation,
lines of both data and instructions are 32 bytes long on 32
byte boundaries. The data cache does not attempt to update
main memory until a 1line which has been changed must be
removed to make room for a new line.

It is 1likely that details of the cache will be model
dependent, and may even be changed in the prototype. Thus
all cache control algorithms should be designed and packaged
in a way which makes response to such changes reasonably
easy. At the very least, the line sizes of the instruction
and data caches should be reflected as independent symbolic
constants in each routine which issues cache control
operations or aligns data on cache line boundaries. (It is
probably safe to assume that each line size is a power of
two and that the lines are aligned in memory with respect to
their own size.)

10.3 Instructions

p1 — disable

i i i
D1 V27V /27) (K)

i I I
0 8 12 15

- —

The cpu is disabled for any interruptions due to an external
ifiterruption condition.

IBM CORFIDENTIAL 76.1.16

O R W SR ONINE YU SRR NUS T SU AS GIIN W ST TN R S B e

10. SYISTEM CONTROL INSTRUCTIONS Page 61

EX -=- enable

I I I
Do : V4 : Va4 : (R)
o 8 12 15

The cpu is enabled for interruptions due to an external
interruption condition. Onless a lock is in force, a
pending external interrupt will cause an immediate processor
interrupt after ENABLE. (Engineering note: Care must be
taken that an enable followed immediately by a DISABLE,
LOCK, IOR, or IOW instruction works correctly.)

INDCL — dinvalidate data cache line

i I I
XX : // 1 RC § (R}
I
0 8 12 15

- —

If a previously fetched copy of the line containing the byte
addressed by the contents of register RC exists in the data
cache, that copy is (logically) replaced by the current
value of that line in main storage (no actual fetch from
main storage is implied). This instruction can be used
after the write into main storage of data from a direct
memory attachment, to guarantee that the values received
will be the ones seen by subsequent accesses. This
instruction can also be used to suppress storing dead
temporary values back into main storage from the data
cache.

IBM CORFIDERTIAL 76.1.16

mmmmm*m”wm—mmmmmmmmw

A A GRS R S R

A O NP . T —

10. SYSTEM CONTROL INSTRUCTIONS Page 62

IFICL -- invalidate instruction cache line

i | I I

I D2 V // t BRC | (R)
} i ! i

0 g8 12 15

If the instruction cache has a copy of the line containing
the word addressed by the contents of register RC, that copy
is abandoned. Thus previous updates to that line which are
reflected in main storage (see the Store Data Cache Line
instruction) will be reflected in subsequent execution. If
the line addressed by this instruction is the line currently
addressed by the Instruction Rddress Register or the line
following, the results are unreliable. This instruction can
be used in conjunction with the STDCL instruction to
synchronize the creation or modification of program text
with the subsequent execution of this new program text.

LOCK -— establish lock
I I I f I
i EB V // | RC | I] §1)]
i i I i I
.0 8 12 16 31

If the processor holds a lock it is released. (If the
processor is enabled, pending interrupts are taken. The old
instruction address (1K) for such interrupts will be the
lock instruction). 1In a uniprocessor, a nev locked state is
then enterred. This lasts for 16 instructions or until
another lock instruction is executed within these 16
instruction executions.

In a multiprocessor, O0/RC + I is interpreted as a 24 bit
lock ID. If this lock is available, it is seized and the
lock proceeds as in a uniprocessor. If the lock ID is
unavailable, the lock instruction is retried. This retry
includes accepting pending interrupts if the processor is
enabled. The program may assume that the multiprocessor lock
manager is fair. (A processor waiting for a 1lock will
eventually get it no matter what other processors are
doing.}

IBM CONFIDENRTIAL 76.1.16

i
|
I
i
i
i
I
!
i
I
i
I
i
!

10. SYSTEM CONTROL INSTRUCTIONS Page 63

STDCL -~ store data cache line

f I I i
i Cs8 t // I RC | (R)
i ! ¢ !

0 8 12 15

If a data cache or other mechanism that buffers or delays
stores is installed, it is searched to see if a pending
update to the 1line containing the byte addressed by the
contents of register BRC exists. If a pending update is
found, it is performed. The line may be retained in the
cache for later use.

ZBOP - zero—time no-op

!
| D3 V /7 8 /7
t
¢ 8 12 1

¥o operation is performed. If the address of this
instruction is an odd half-word, and if the instruction is
encountered in normal sequential instruction execution (as
opposed to being the target of a branch), it appears to be
executed in zero time. More precisely, the next following
instruction is executed during the CPU cycle that would
normally be taken for the execution of this instruction:
hence the appearance of zero-time execution.

IBM CONFIDENTIAL 76.1.16

LI IR O 3 K

* % * # * % % % »

* % ¥

LI I I B BE

11. INPUT/OUTPUT CORTROL INSTRUCTIONS Page 64

11. Input/Output Control

. The input /output instructions form a 24 bit
address/conmand field by replacing the high order bit of the
24 bit sum of I and O/(RC) with 0 for an IOR or 1 for an
I0W, and then transfer this coemand/address field to the
adapter selected by this field. This field has the following
format:

P
iX| AR [CF| DAC
-
01 6 8 2

(Al womr o v

where bit X represents a read or write, AA is a 5 bit field
selecting an adapter, and the 2 bit CF field and 16 bit DAC
field contain control information of a form specific to the
selected adapter, control unit, and device.

kB complete description of the I/0 structure, program
architecture, and functional characteristies, appears in
th$e ®801 I/0 Subsystem Definition®™ document.

11.1 Instructions

i&ﬂ ==~ input-output read
i | i I I
{ PO ! RB | RC | I i (b)
! I I i I
0 8 12 16 31

An attempt is made to transmit 16 bits from the I/0 adapter
selected in the command/address field formed from O/(RC) + I
into the half of register RB, setting the prefix of register
EB to zeros. If the selected adapter can accept the
commpand, the I/0 Busy bit of the condition register is set
to zero. If the adapter cannot accept the cormand, the 1I/0
Busy bit is set to one.

IBM CORFIDENTIAL 76.1.16

* B %% %N ®

12. TIRDEX BY CODE Page 65

10 -= input-output write
I i i i !
i F1 I EB | EC |} I I ()
! i I I I
¢ 8 12 16 31

An attempt is made to transmit the half of register RB to
the I/0 adapter selected in the command/address field formed
from 0/(RC) + 1. If the selected adapter can accept the
command, the I/0 Busy bit of the condition register is set
to zero. If the adapter cannot accept the command, the I/0
Busy bit is set to one.

IBM CONFIDENTIAL 76.1.16

CODE HBNE
1]

1

2

3

L

5

6

7

80 MPCO
81 BFC1
82 BFC2
83 MFC3
84 MTCO
85 m1C1t
86 MTC2
87 mTC3
88 MCOO
89 BCO1
8a BC10
&B MC11
8C MFD
8D MFDF
8E MTD
8F NTDP
90

91

92 BFP
93 ETP
94 BALR
95 BALRX
96

97

98

99

Sk

9B

9C

9D

9E

oSF CLZ
AO SR
K1 SRI
A2 SAR
A3

AR SL
RS SLP
A6

&7

A

A9 AD
BEA A

TYPE

(R)
(k)
(®)
(R)
(R)
(R)
(R)
(R}
(R)
(R)
(R}
(E)
(R)
(®)
(R)
(R)

(R}
(R)
(®)
(R)

(R)
(F)
(R)
(B}

(R)
(R)

(R)
(R)

12.

SECTION

6:move
6move
6:move
6:move
6:move
6move
6:move
bimove
6:move
6:move
6bsmove
6:move
6:move
6:move
6:move
b:move

6:move
6:move
8:brnch
4:brnch

8:1logic
9:shift
9:shift
9:shift

9:shift
9:shift

T:arith
T:arith

INDEX BY CODE Page 66

INSTRUCTION

move from character indexed by SX0
move from character indexed by Sx1
move froe character indexed by SX2
move from character indexed by SX3
move to character indexed by SX0
move to character indexed by SX1
move to character indexed by SX2
move to character indexed by SX3
move character zero from zero
move character zero from one

move character one from zero

move character one from one

move from digit

rove from digit paired

move to digit

move to digit paired

move from prefix

move to prefix

branch and link,BE-form

branch and link with execute,R-form

count leading zeros
shift right

shift right immediate
shift algebraic right

shift left
shift left paired

add decimal
add

IBM CONFIDENTIAL 76.1.16

AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B?
B8
B9
BR
BB
BC
BD
BE
BF
co
c1

Cc3
ch
C3
cé6

c8
c9
Ck

cC

CE
CF
DO
D1
D2
D3
D&
b5
D6

D8
i1
DR
DB

DD
DE
j13 4
EO

AE
Sb

SE
SRP
SEPI
SARI

SLY
SLPI

L
DS

O

BEX

BTCR
BTHQ

STDCL

CL

EX

DI
INICL
ZROP
MPCR
MFNO

MFTE
BTTH
MFTIBV
MITBV

ICBI

BB

(®)

(R}
(R)
(k)
(R)
(R)
(R)

(R)
(R)

(B}
(R)

(E)
(B}
(R)

(R)

(R)
(R)

(R}

(R)
(K}

(R)
(R)
(R)
(R)
(R)
(R)

(R)
(R)
(R}
(R)

(R)

12,

T:=arith

T:arith
7z:arith
7z:arith
9:shift
9:shift
9:shift

9:shift
9:shift

F:arith
T:arith

8:logic
8:1ogic
8:1logic

:brnch

6:move
6:move

10:sYs

8:1logic
T:arith

10:sys
10:sys
10:sys
10:sys
6:move
6:move

6smove
6:move
6:move
6:move

6:move

INDEX BY CODE

Page 67

add extended

subtract decimal

subtract

subtract extended

shift right paired

shift right paired immediate
shift algebraic right immediate

shift left immediate
shift left paired immediate

multiply step
divide step

and
or
exclusive or

branch,execute and enable

move to condition
move to MQ

store data cache line

compare logical
compare

enable

disable

invalidate instruction cache line
zero~time no-op

move from condition

wove from MO

move from test bit

move to test bit

Bove from test bit value
move to test bit value

insert condition bit immediate

(BI) &:brnch branch on bit

IEM CONFIDERTIAL

76.1.16

BBX
BRB
BNBX
BALI
BALIX
BALA
BALAX
LOCK

CLI
CI
T6TI
TLTI
TRET

IOK
Iow
IrI

NSLI
NSLP1
KSEXI
NSRFI

Al
AEI
N1
01
X1

CAX
LHAX
LAZX
LX
STCX
STHX
STX
ABS
BBER
BNBR
BERX
BNEBRX
CaD
EXTS
IRDCL
Iz
LD
LHAD
LHZD
MFILA
SFI
SHL
SBLI

(BI)
(BI)
(BI)
(BI)
(BI)
(B2)
(BA)
(D}

(RI)
(R1)
(RI)
(RI)
(RI)

(0)
(D)
(RI)

(D)
(D)
(D)
(D)

(D}
(D)
(D)
(D)
M

(X)
(x)
(x)
(X)
(x)
(x)
(X)
®)
(R)
(R)
(R)
(R)
")
()
(R}
(R1)
(D)
(D)
(D)
(R)
(D)
(R)
(R}

12,

4:brnch
&:brnch
§:brnch
L:brnch
4:brnch
4:brach
:brnch
10C:sys

8:1logic
7:arith
S:trap
5:trap
S5:trap

11:i/0
11:i/0
6:move

9:shift
9:shift
9:shift
S:shift

T:arith
7:arith
8:logic
8:logic
8:logic

3:adres
2:strge
Z:strge
2:strge
2:strge
2:strge
2:strge
Tz:arith
4:brach
§:brnch
§:brnch
B:brnch
3:adres
T:arith
10:sys

b:move

Z:8trge
2:strge
2:strge
6:move

T:arith
9:shift
Y:shift

IBE CONFPIDENTIAL

INDEX BY CODE

Page 68

branch on bit and execute

branch on not bit

branch on not bhit and execute

branch and link,I-form

branch and link with execute,I-form
branch and link absolute .

branch and link absolute with execut
establish lock

compare logical immediate
compare immediate

trap if greater than immed
trap if less than immediate
trap if not equal immediate

input-output read
input-output write
insert prefix immediate

and,then shift left immediate
and,then shift left paired immediate
and,then shift right immediate
and,then shift right paired immediate

add immediate

add extended immediate
and immediate

or immediate

exclusive or immediate

compute address,X-form
load half algebraic,X—form
load half zero,X-form
load, X—form

store char,i-form

store half ,X-form
store,X—form

absolute value

branch on bit, RE-fore
branch on not-bit, R-form

‘branch on bit and execute, R-~form

branch on not-bit and execute, r-for
compute address,D-form

extend sign

invalidate data cache line
insert prefix immediate and zero
load,D-forsm

load half algebraic,b-form

load half zero,Db—form

move from instruction address
subtract from immediate

shift half left

shift half left immediate

76.1.16

X

XX
XX
XX
XX
X
XX
Xx
XX
XX
X
XX
ix

SHLP
SHLPI
SHER
SHRI
SHEP
SHRP1
SEI
SI
STCD
STD

STHD

TLT
TNE
TRO

(B)
(R)
(R)
(R)
(R)
(R)
(D)
(D)
(D)
(D)
(D)
(R)
(R)
(R)

12.

9:shift
Y:shift
G:shift
9:shift
9:shift
9:shift
7:arith
Tzarith
2:strge
2:strge
2:strge
S5:trap

S:trap

7:arith

IEM CONFIDERTIAL

INDEX BY CODE

shift half
shift half
shift half
shift half
shift half
shift half

left paired
left paired immediate

right immediate
right paired
right paired immediate

Page 69

subtract extended immediate

subtract immediate

store char,pD-form
store,D~fors

store half,D-form

trap if less than

trap if not equal

test prefix for overflow

76.1.16

MNE

ABS
AD

AE
AE1
Al
BALA
BALAX
BALI
BALIX
BALR
BALEX
BB
BER
BBRX
BBX
BEX
BNB
BNBER
BEBRX
BNBX

CAD
CAX
L% §

CLI
CLZ
pI

DS

EI
EXTS
ICBIL
INDCL
INICL
I0R

1w
181
IPIZ
LD
LHAD
LHRX
LHZD
LHZX
LOCK
LX
BCOO
BCO1
¥C10
EC11
BFCR

CODE TYPE
AR (R)
XX (R)
A9 (R)
AR (R)
PB (D)
FA (D)
E6 (BA)
E7 (BR)
E3 (BI)
E5 (BI)
sS4 (B)
95 (R)
E0 (BI)
XX (R)
XX (R)
E1 (BI)
€2 (®)
E2 (BI)
XX (R)
XX (®)
E3 (BI)
CB (R)
XX (D)
X (x)
EB (RI)
ca (R}
EA (RI)
9% (R)
D1 (R)
BY (R)
DO (R)
XX (R)
DC (R)
X (R)
D2 (R)
PO (D)
F1 (D)
F2 (RI)
XX (RI)
XX (D)
X (D)
b (x)
XX (D)
X (x)
E8 (D)
X (x)
88 (R)
89 (R}
88 (R)
88 (R)
D4 (R)

13.

SECTION

Tzarith
7:arith
7:arith
T:arith
7T:arith
Tzarith
§:brnch
4:brnch
4:brnch
&:brnch
§:brnch
B:brnch
:zbrnch
:brnch
4:brnch
4:brnch
G:brnch
k:brnch
&:brnch
4:brnch
:brnch
Tsarith
3:adres
3:adres
T:arith
8:logic
8:1logic
8:logic
10:sys

7:arith
10:sys

7T:arith
6:move

10:sys

10:sys8

11:i/0

11:i/0

6:move

6:move

2:strge
2:strge
2:strge
2:strge
Z:strge
10:sYys

2:strge
6zmove

bzmove

6:move

6:move

6:move

IBM CORFIDERTIAL

INDEX BY MNEMONIC

Page 70

INSTRUCTION

adad

absolute value

add decimal

add extended

add extended immediate

add immediate

branch and link absolute

branch and link absolute with execut
branch and link,I-form

branch and link with execute,I-form
branch and link,R—form

branch and link with execute,R-form
branch on bit

branch on bit, E-form

branch on bit and execute, R—form
branch on bit and execute
branch,execute and enable

branch on not bit

branch on not-bit, R—form

branch on not-bit and execute, r-for
branch on not bit and execute
compare

compute
compute
compare
compare
compare

address,b-form
address,X-form
immediate

logical

logical immediate

count leading zeros

disable

divide step

enable

extend sign

insert condition bit immediate
invalidate data cache line
invalidate instruction cache line
input-output read

input-output write

insert prefix immediate

insert prefix immediate and zero
load,D-form

load half algebraic,D-form

load half algebraic,X—form

load half zero,D-form

load half zero,X-form

establish lock

load,X-form

move character zero from zero
move character zero frosm one
move character one from zero
move character one from one

move from condition

76.1.16

MFCO
HFC1
BFC2
MFC3
MFD
MFDP
EFIA
BFNO
¥FP
MFTEV
MFTB
NS
BTCR
BTCO
MTC1Y
MTC2
MTC3
MTD
BIDP
BTEQ
BTP
MTTBV
KTTB

NI
RSLI
NSLPX
NSRI
NSEPI

oI

SAR
SARIY
sp
SE
SET
SFI
SHL
SHLI
SHLP
SHLPI
SHER
SHRI
SHRP
SHREI
ST

SL
SLI
SLP
SLPI
SR
SR1
SkpP

(R)
(R)
(R)
(R)
(B)
(R)
(R)
(R)
()
(R)
(&)
(R)
(E)
(B)
()
(R)
(R)
(R)
(R}
(R)
(R)
(R)
(R)
(R)
(D)
(D)
(D)
(D)
(D)
(R)
(D)
(R)
(R)
(r)
(R)
(R)
(D)
(D)
(R)
(R)
(R}
(R)
(R)
(R)
(R)
(R)
D)
(R)
(R)
(R)
(R)
(R)
(R)
(K)

13. INDEX BY HNEMONIC

6:move
6:move
6:move
move
6:move
6:move
6:pove
6:move
6:move
6:move
6:move
Fezarith
6:move
6:move
6:move
6:move
6:move
6:move
6:move
6:move
6:move
b:move
6:move
8:logic
8:logic
9:shift
9:shift
9:shift
9:shift
8:1logic
8:logic
T:arith
S:shift
9:shift
T:arith
7:arith
Tzarith
7:arith
Y:shift
S:shift
9:shift
9:shift
9:shift
Y:shift
S:shift
Geshift
T:arith
Y:shift
9:shift
S:shift
S:shift
9:shift
Y:shift
9:shift

IBM CONFIDENTIAL

Page 71

move from character indexed by SX0
rove from character indexed by SX1

. move from character indexed by SX2

move from character indexed by S$X3
move from digit

move from digit paired

move from instruction address

nove from MQ

rove from prefix

move from test bit value

move from test bit

multiply step

mrove to condition

move to character indexed by SX0
move to character indexed by SX1
move to character indexed by SX2
move to character indexed by SX3
move to digit

move to digit paired

move to MQ

move to prefix

move to test bit value

move to test bit

and

and immediate

and,then shift left immediate
and,then shift left paired immediate
and ,then shift right immediate
and,then shift right paired immediate
or

or immediate

subtract

shift algebraic right

shift algebraic algebraic immediate
subtract decimal

subtract extended

subtract extended immediate

subtract from immediate

shift half left

shift half left immediate

shift half left paired

shift half left paired immediate
shift half right

shift half right immediate

shift half right paired

shift half right paired immediate
subtract immediate

shift left
shift left
shift left
shift left
shift right
shift right immediate
shift right paired

immediate
paired
paired immediate

76.1.16

SRPI
STCD
STCX
STD
STDCL
STHD
STHX
STX
TGTI
TLT
TLTI
TNE
TNEI
TPO
XX

ZNOP

B1
Xx

XX
Cc8
XX

EC
XX
ED
XX
EE
Xx
FE
BE
D3

(R)
(D)
(x)
(D)
(R)
(D)
(X)
(X}
(R1)
(R}
(BI)
(B)
(RI)
(R)
(D)
(R)
(R)

13.

9:shift
2:strge
2:strge
2:strge
10:sys
2:strge
2:strge
2:strge
S5:trap
Sstrap
5:trap
S5:trap
Sstrap
7sarith
8:1o0gic
8:logic
1W:sys

IBM CONFIDENTIAL

IRDEX BY MEEMONIC

shift right paired immediate
store char,D~form

store char,Xi-form
store,D-form

store data cache line

store half,D-form

store half,X-form
store,X—~form

trap if greater than immed
trap if less than

trap if less than immediate
trap if not egqual

trap if not equal immediate
test prefix for overflow
exclusive or immediate
exclusive or

zero-time no-op

Page 72

76.1.16

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

