000 LDX x'=n+c¢ \') 070 CALL Subroutine Entry + 130 FLOAT Convert n: from fixed to floating
001 ADX x'=x4+n+ A Link in X * 131 FIX Convert a from floating to fixed \'
002 NGX x'=-n-c v 072 EXIT Subroutine Exit \' ** 132 FAD a' =a+n: If X = 1. Unrounded
" . " _ _ . - »
003 SBX x' : x-n- \' Link in X :: 133 FSB a’ : a-n: I = 2. Not normalized
004 LDXC x’ =n+c c 074 Conditional Branch to N:- 134 FWMPY a = a.n: X = 4, Interchange a and n
005 ADXC x' =x+n + c X=0 BRN Branch unconditionally ** 135 FDVD a' = a/n
006 NGXC x'=-n-c¢ c X=1 BVS Branch if V is set ** 136 LFP a' =n: IfX=1,a'=0
007 SBXC x' =x-n- c X=2 BVSR Branch if V is set and clear V ** 137 SFP n:'=a IfX=1 n'=a, a =0
X=3 BVC Branch if V is clear :
010 STO = x4 e v X =4 BVCR Branch if V is clear or clear V '
011 ADS n'=n+x+ v X=5 BCS Branch if C is set * 150 X N(M) SUSBY Suspend if peripheral N(M), unit X, is active
012 NeS n' =-x-c¢ v X=6 BCC Branch if C is clear . : 151 X N(M) REL Release peripheral N(M), unit'X
013 SBS n' =n-x- v X=r1 BVCI Branch if V is clear and/or invert V V 152 X N(M) DIS Disengage peripheral N‘H), unit X
014 STOC n' =x+ ¢ C {076 Test floating point accumulator * 153 X N(M) Unassigned =
015 ADSC n' =n + x + c * 154 X N(M) COBJ'I‘ Read more program from peripheral N(M), unit X
016 NGSC n' = - x - c * 155 X N(M) SUSBP Suspend and dump program on peripheral N(M), unit X
017 SBSC n' = n - x - p 100 LDN x' =N+c¢ * 156 X N(M) ALLOT Allocate peripheral N(M), unit X, to the program
101 ADN x'=x+N+c V * 157 X N(M) PERI Initiate peripheral transfer according to control
; 102 NGN x'=-N-c¢ area N(M), unit X
020 ANDX x =x&n 103 SBN x' =x-N-c¢ \'4
021 ORX x: =xvn 104 LDNC x' =N+ ¢
022 ERX x' =x#n 105 ADNC x' =x+N+c¢ C * 160 0 N(M) SUSTY Suspend and type message on console typewriter .
023 OBEY Obey the instruction in ¥ 106 N6GNC x' =-N-¢ (o * 160 1 N(M) DISTY Type message on console typewriter without suspension
024 LDCH x" =n; 107 SBNC x' =x-N-¢ C * 160. 2 N(M) DELTY Delete program and treat message as console directive
025 LDEX x =n, * 161 0 NN(M) SUSWT Suspend and type HALTED NN on the console typewriter
026 TXU SetCifnZzxorc=1 * 161 1 NN(M) DISP Type DISPLAY NN on the console typewriter without
027 TXL Set Cifn+c¢>x Ny =0 110 SLC Shift x left Ns places. Circular) suspension
N, =1 SLL shift x left Ns places. Logical * 161 2 NN(M) DEL Delete program and type DELETED NN on the console
030 ANDS n' =ng&x N, =23 SLA Shift x left Ng places. Arithmetic v typewriter
031 ORS n =nvx N, =0 112 SRC Shift x right Ns places. Circular Single t* 162 X 0 SUSMA Suspend if subprogram X is active
r t >
032 ERS n =né¢x Nt =1 SRL Shift x right N5 places. Logical length t* 1'63 X N(M) AUTO Activate and enter subprogram X at N(M)
033 ST0Z n' =0 Nt =2 SRA Shift x right N5 places. Arithmetic t* 164 0 0 SUSAR De-activate the current subprogram
034 DCH "j' = x, Nt =3 SRAV Shift x right N, places. Special * 165 X N(M) GIVE If N(M) =0, X will contain date in binary
035 DEX n e' = x, © 114 NORM Normalize x \D If N(M) = 1, XX* will contain date in character
036 DSA ng' = xa $ 116 MVCH Transfer N characters form
037 DLA n,' =x If N(M) = 2, XX* will contain time in character
3 m
form
©040 MPY x:' =n.x v V,=0 o 111 SLC Shift x: left Ng places. Circular) If N(M) = 3, X will contain core store allocated
©041 MPR x' = n.x rounded, x* spoiled v N, =1 SLL shift x: left N5 places. Logical to this program
©042 MPA x:' = nm.x + x* v N, =23 SLA shift x: left Ng places. Arithmetic V
©043 OB x:' = 10.x: +n;j v N, =0 © 113 SRC Shift x: right Ng places, Circular | Double Notes
©044 DVD x*' = x:/n, x' = Remainder v N, =1 SRL Shift x: right N places. Logical length
] - . - = s . .
© 045 DVR x" = xi/n rm'mded, x' = Remainder V Nt 2 SRA Shift x: right Vs places. Arithmetic The function codes 140 to 147 are undefined.
©046 DVS x*' = x*/n, x' = Remainder v N t =3 SRAV Shift x: right Ns places. Special :
©047 ¢BD x:' = 10.x:, nj' = Character © 115 NORM Normalize x: V) c These instructions may set the carry register but cannot cause
$ 117 Smo Supplementary modifier to next instruction overflow.
050 BZE Branch to ¥ if x = 0 The carry register C is left clear by any order except 023 and 123,
052 BNZ Branch to N if x # 0 120 ANDN x' =x &N unless that order sets C.
054 BPZ Branch to N if x 2 0 ' _ :
121 ORN x'=xv N
056 BNG Branch to ¥ if x <0 122 ERN =x2 N \'} These instructions may cause overflow.
060 BUX Single word modify: xa' = xg+ 1 xe = xe -1 12 '
3 NULL No operatio i
062 BDX Double word modify: x,' = %m + 2 ' Branch to ¥ 124 LoeT , l; i n ® These instructions are performed on 1902, 1903 by extracode and by
064 BCHX Character modify: x,‘ = xmt.1) if xc; £0 on Xc d' }’;m =0 hardware on the other machines.
: y : 125 MODE Set mode
. r
} 066 BCT Count least significant }& bits of £ x,’ =x, - 1 © 126 MOVE Transfer N words from address x to address x* ** These instructions are performed on 1902, 1903, 1904 by extracode and
ax ?lf'an(’l} ;00” ©127 SUM x' = Sum of N words from address x* by hardware on the other machines.
x i
m
. hd These instructions are performed by extracode on all machines.
L] -
lnternatlonal ICL House 1900 Serles t These facilities are not available on 1902, 1903 processors with less
Computers Lo PLAN — Summarised e 10 X st
] p London SW15 } These instructions are available on 1906, 1907 processors only.

FORM 11/129(1.69)

Limited

programming information

Date of publication — March 1965

© International Computers Limited

NOTATION

N is a core store address or a 12 bit number.
X is an accumulator (registers 0-7).

N is a modifier register (registers 1-3).

F is a-function.

C is the carry register.

¢ is the content of C (0 or 1).

V is the overflow register.

A is the floating point accumulator.

a is the content of A.

x, m are the contents of X, X respectively.
n is the content of ¥ after modification by m if necessary.
X* is the accumulator X + 1 (X7* = X0)

x* is the content of X*.

x', n', a' are the contents of X, N, A after an instruction
has been obeyed.

x:, n: are double length numbers in' X, £+ 1, and N, ¥ + 1
respectively.

S is the sign bit (bit 0).

The most significant bit of the second word of a double
length number is always zero.

Subscripts

In general these are applicable to x or n.

xo is the least significant 9 bits of x. The exponent of a
floating point number occupies this portion of the second
word.

xq, is the least significant 12 bits of x (the N address of
an instruction).

x. is a 9 bit counter at the most significant end of x.

Xq 18 the least significant 15 bits of x (the modifier
part of an index register).

xp is the most significant 2 bits of x, used in character
modifying with end-around - carry to xm.

x4 is the least significant 7 bits of xc.

xj is any one of xy, x;, X2, X3, the four 6-bit characters
of x.

N is the most significant 2 bits of the 12 bit ¥ address.
Ng is the least significant 10 bits of the 12 bit ¥ address.

Note: -

* When in extended mode (1906 and 1907 only) the modifier
extends to 22 bits, the count being held separately.

24-bit I.C.T. 1900 word

S

F N

N or X,

MACRO INSTRUCTIONS (PLAN 3 ONLY)

NO. OF BASIC

The appearance of any directive in this group cancels the
effect of any previous directive in the group.

PROGRAM

LOWER

UPPER

PERIPHERAL

MACRO

END

FINISH
PLAN 1 only
COMPLETE

introduces a section of program instructions
introduces lower data (below location 4096)
introduces upper data (not Plan 1)

is followed by specification of peripherals
(other than magnetic tapes)

indicates that a description of a private macro
follows (Plan 3 only)

the last statement of a segment; ends compilation
indiqates that this is the last segment to be compiled

indicates that the program is to be output in
consolidated form.

NORMAL ; INSTRUCTION EFFECT INSTRUCTIONS
7 2 12
ORDERS : LDX XX* N(M) x' = n: 2
x F ¥ ADX XX* N(M) x'=x +n 2
JUMP 3 6 15 NGX XX* N(M) x:' = -n: 2
ORDERS SBX XX* N(M) x:: =x: -n 2
X F I Nt Ns STO XX* N(M) n:) = x: 2
» ADS XX* N(M) n:' =n: +x 2
SHIFT 3 7 2 | 2 10 NGS XX* N(M) nit' = -x: 9
ORDERS SBS XX* N(M) n'=n -x 2
[S
DOUBLE BXU X Ny(M),N, If x# n; jump to N, 2
LENGTH 1 23 BXU XX* N,(M),N, If x: # n,: jump to N 3
FIXED < BXE X Ny(M),N, If x=n; jump to N» 2
POINT 0 BXE XX* N,(M),N, If x: =n;:jumpto N, 3
NOMBER 1 23 BXL X Ny(M),N, If x <n, jump to ¥, 9
L . BXL XX* N,(M),N, If x: <n,:jumpto VN, 3
(5 BXGE X N;(M),N, If x 2n, jump to N, 2
BXGE XX* N,(M),N, If x: 2 n;:jumpto N, 3
1 23
FLOATING l LDSA X N(M) x' = n, 2
ma 0 Xg LDLA X N(M) x' = n, 2
LDPL. X N x' = N(15 bits) 1
1 14 9
L
NORMAL *ec xn
COUNTER- 9 15
MODIFIER .
* WIM X Write tape mark on MT% 1
x xd x REW X Rewind MTX 1
CHARACTER ’ > § BSP X Backspace MTX 1
COUNTER~ 2 7 15 % P BTM X Move back past tape mark on MTX 1
MODIFIER, - FTM X Move forward past tape mark on MTX 1
' X9 x, X2 X3 % | CLOSE X Close MTX 1
CHARACTER 6 6 6 6 £ | scr X OPEN MTX and leave scratch 1
POSITIONS _ UNL X Close file and unload
MAJOR DIRECTIVES . PROGRAM AREA DIRECTIVES

These directives appear in PROGRAM area only.

CUE

ENTRY

MONITOR

-

gives a label to the following instruction for use by all
segments

makes the following instruction entry point N, where N is
written in the operand field

introduces specification of monitor printing

GENERAL PURPOSE DIRECTIVES

The directives may appear anywhere in the program

SET
DEFINE

#
PAGE

used to define a name (may be reset)
used to define a name (may not be redefined)
used for writing comments

causes paper throw on'printer.

