FARRANTI . TD

FORRANTT ATLAS C HPULER

EXTRACODI: FUNCTIONS

Computer Department

London Computer Cemtret 68 Newmen Street, London, W.d1.
Telephone: Museum 5040.

21 Portland Place, London, W.1,
Telephone: Langham 9211.

Offices, Laboratories & Works: West Gorton, Manchester, 12.
Telephone: East 1301,

Research Laboratories: Western Road, Bracknell, Berks.

List CS 309A
December 1262

ATLAS EXTRACODZE FUNCTIONS

1. INTRODUCTION

This document describes the way in which the instruction code on Atlas has

been exterded by the technigue of extracode instruotions, and gives descriptions
of these extracodes.

20 NOTATION

Lower case letters are used for suffixes and for the contemts of a locatisn
The result of an operation is denocted by a prime. Thus, s is the contents
of address S, and s’ =5 + om means the oontents of S after the operation is
equal to the contents of S before plus the contents of Am,

(i) Suffixes
x the fractional part of the suffixed loocation -

v the exponent of the suffixed location
: the consecutive pair of looations starting with that suffixed
® the register following that suffixed

(ii) General

A the full double lenghth floating point accumulator, of 79 bit
- fractional part Ax and 8 blt exponent Ay

M the 48 bit floating point register consisting of L, Ls and Ay

Am the 48 bit floating point register consisting of M and Ay

A0 the accumulator overflow register

B a general B-register

Ba the B-register speocified by the Ba digits of an instruction

Bm the B-register specified by the Bm digits of an instruction

Be the B~carry

Bt the B-test register

C the main control register B127

C() the contents of the bracketed location

E the extracode control register B126

EO the exponent ovorflow register

F the funciion digits

G the logical accumulator, comsisting of B98 and B9

B the modified address part of an instruction regarded as a half
word address

X the least significant octal fraction of an address

L the less significant half of Ax; 39 bits with no sign
Ls the sign bit associated with L

M the most significant half of Ax; sign bit and 39 bits

M/E a control flip-flop between main end extracode control

N the 24 bit address digits of an instruction

n the modified address part of an instruotion regarded as a 21
bit integer, with a fractional part consisting of one octal
digit :

P the block address part of an address, i.e. digits 4 - 11 of 3

Q thw word address within a block, i,e. digits 12-20 of S

S the modificd address part of an instruction regarded as a full
word address ’ v

Vr line r of the V-store, where r is an integer

X signifies those accumulator extracodes suitable for fixed

point working
CS 3u9A

-2
- The 24 digits £ 2 half word.ors numbered from o £~ 25, digit .+

being the mest significant, .digit 1 tho.next, etec. In on instruction,
the function digits (U-9) are referred to as fo - fg.

3. ATLAS TNSTRUCTIONS

An instruction on Atlas occupies a Tull 48 bit register. It consists of
a function F, two B-registers Ba and Bm, and an address N.

F(10 bitsy Ba(7 bits) Bu(7 bits) N(24 bits)
o - 9 10 - 16 17 - 23 O - 23

The Punction consists of a most significant binary bit fo, followed by
three octal numbers £, -fz, £,-fg, £7-To. Ba and Bm specify 24 bit B-registers
in the range 0 - 127. N is usually regarded as a 21 bit integer with a least
significant octal fraction.

Atlas instructions are ~f two kinds, basic or cxtracode.

367 Basic instruotions

Basic instructions are the operations which the computer hes been
designed to perform directly. They arc recognised by fo being zero, and are of
two types.

(i) A-type are accumulator instructions. N is doubly modified to give &
full word address S =N + ba + bm.

(ii) B-type are B-register instructions. Ba is used as an operand; the
other operand is obtained by singly modifying N, This operand may
be used directly as a number n =N + bm or as the address H=N +pn
of a half word h. In some B-type instructions, such as test in-
structions, Bm is used as an operand, and so N is not modified.

The basic instructions are described in CS 345.

3¢l Bxtracode instructions

Extracode instructions cause more complicated operations to be performed
which the machine has not been designed tc execute directly. They cause auto-
matic entry to basic instruction subroutines in the fixed stare.

Extracode instructions arc recognised by fo =1, and the other function
digits determine the particular subroutine entry address required. Normally
the subroutines end by exiting automatically to the instruction following the
extracode instruction which caused entry to them. Thus extracode instructions
can be treated for most purposes as if they were basic instructions.

In detail, the following action takes place when an extracode instruction
is encountered.

(1) Main control B127 is advanced by onc to the address of the next
program instruction. ‘

(ii) N is modified according to type (N + ba + bm for A~type, N + bm
for B~type) and the result placed in B119.

(iii) The seven Ba digits arc placed in bits 15-21 of B121 so the extra-
code can refer to Ba by using B122. In the special casc of the

CS 3094

-3 -

extracode instruction specifying Ba as B122, B121 is left unaltered.

(iv) The function digits fy ~ fo are placed in extracode control B126 as
shown belowe.)

Bit o2 3-8 91011 12 1314 15146 17 1819 20 21 - 23
Value 100 0 0f, £y £f; 0 O £, f5s £ 7 g fe 0
(v) Control is switched to extracode control.

The next instruction tc be obeyed is thus in the fixed store at an
address determined by the function digits, and under extracode control.

It is in one of 64 registers (given by f4 — fo) in onc of 8 tables at
intervals of 256 words (given by f1 ~ fs). These tables are called " jump
tables". This instruction will be, in general, an unconditional jump into a
routine in the fixed store which will perform the reguired operation. These
routines, which are written in basic instructions, are called extracodes. They
end with en instruction in which f1 #= f3 = 1,(e.g. functions 521 or 720) which
is obeyed as if f3 =0 (i.e. as 121 or 320) after which conmtrol is re-switched
to main oontrol. The rnext instruction to be nbeyed is then given by main con-
trol and, except for extracodes which may cause conditional jumps, is that
inmedintely following the exbraccde inmstruction. :

CS 30%A

4. ALLOCATION COF FUNCTIONS

There are 512 function numbers available for extracodes, 1000 - 1777,
Of these 1000 = 1477 are singly modified instructions (B-type) and 1500 - 1777
are doubly modified (A-type).

The extracodes are divided into sections as shown below:

1000 - 1077 Magnetic tape, input and ~utput routines

1100 -~ 1177 Organisation routines

1200 ~ 1277 Test instruction and 6-bit character operations
1300 -~ 1377 B-register operations

1400 ~ 1477 Complex arithmetic, vector arithmetic and miscellaneous
B-typc accumulator routines

18500 ~ 1877 Double length arithmetic and accunulator operations using
the address as an operand.

1600 - 1677 Logical accumulator operations and half word packing

1700 - 1777 Arithmetic functions (log., exp., sq.rt., sin, cos, tan, etc.)
and similar miscellancous A-type accumulator operations.

5. UNALLUCATED FUNCTIONS

Not all of the extracode funotions have been allocated, and, where
oonvenient, extracode programs and constants have been packed into the un~
allocated Jjump table locations. This means that use of a non-existent extra-
code may result in an unassigned function interrupt or may causc some extracode
to be entered wrongly. The latter case would give the programmer wrong results.

The extracode 1000 always causes an unassigned function interrupt. It
can be entered by "obeying" floating point zero as an instruction, which is
equivalent to 1000 0 0 0. The relevant entry in the jump table, i.e.
the first location in the fixed store which causes this interrupt, is the float~
ing point nuiber .

C3 3094

6. EXTRACUDE SPECIFICATIUNS

The extracode function is listed at the left of the page amd fnllowed
by a short description. The number of basic instructions obeyed is given at
the right of the page. This number includes the extracode ins¥ruction and
its entry in the jump table; where necessary a range or formula is given.

In the arithmetic extracndes, where possible, the last two octal function
digits correspond to those of similar basic instructions. Accumulator oper-
ations are rounded floating point unless marked X when they are suitable for
fixed point working.

6.1 Magnetic Tape Routines 1001 - 1047

The sctal froction of the address, K, is used in many instructions as a
counte O <K < 7. In general, for any I, K+1 bPlocks are involved in the
transfer. This allows transfers of from 1 to 8 blocks,

6.1.,1 Block Transfers.

4001 Search for sectinn n on tapc Ba

1002 Read next K+l sections from tape Be int st re bioseks P, P4d, <ot 4K

.

1003 Read previous K+1 sections from tape Ba int- st ro bl cks
P+K,e**+, P+1, P

1004 TWrite store blocks P, P+1,°**, P+K on to the next K+l sections on tape Ba.
41005 Move tape Ba forward ¥+1 sections

1006 Move tape Ba backwards K+1 sections

6.1.2 Organisation.

1007 Mount next reel of file Ba and allocate number n to it.

1010 Mount
Aliocate number Ba to tape with title in locations starting at S. I
tape is not already available instruct operator to mount it.

1011 Mount free
Select a free tape (instruct operator to mount one if necessary), write
the title from location S onwards on to section O of this tape and
allocate it as tape Ba.

1012 Mount on logical channel XK.
1013 Mount free on logical channel XK.

1012 and 1013 are similar t- 1010 ard 1011 respcctively, but X specifies a
logical channcl number in the rangc v to 7. If this channel has not been
previously defined (by use of 1012 or 1013), where ever possible, the tape

is mounted on a chonncl different to any which have been defined. This chamnel
is then designated as program channel K. If X has been previocusly defined,
where ever possible, the tape, is mounted on this chamnel. Thus these extra-
codes allow the programmer to mount up to 8 tapes on differcnt channels.

1014 VWrite title
Write on section U of tape Ba the title stored from S.

1015 Read title
Read the title of tape Ba from scotion o to locations from S,

1016 Unload, preserve for later use.
Rewind tape Ba and disengagc. Instruct operator to remove, check title
on recl and store.
CS 309A

1017

1020

-6 -

Free tape, not required again
Erasc title on tape Ba, return tape to Supervisor for general use.

Release tape, pass it t- annther program
Delete tape Ba from program cllocation and make it availdble for another
progran.

If n#0 in 1016 - 1020, the number of tape mechanisms reserved for the program
is reduced by one.

1021

1022

1023

1024

Beled

Release mechanisms
Reduce by n the number of tape mechanisms rcserved for use by the program.

Re-allocate

All-cate the number n to the program magnetic tape previously referred to
as Ba

How™ long? _ }
h' = number of 512 word scotions available on tape Ba, excluding seotion O

Where am I?

(i) After block transfer orders:
s’ = address of next section on tape Ba, going forwards.
This is in the full word position of the first half word; +the second
half word is cleared.

(ii) After variablc length transfers: (sec under)

Variable Length Instructions. Variable length working must always be

initiated by a start instruction. The information is stored in strings of

words

with 24 bit markers at thc ends of cach string. These markers give the

murmber of words in the string end a separation level markcr is a nusber in the

range

4-7 which is set by the programmer to indicate different levels of units

of the information, e.g. level 1 for ordinary strings, level 2 for a group of
records, level 3 for complete files, ete.

BEach writing transfer writes one string. A reading transfer may read

o specified number of words or up t» the und of a string (the markers arc not

read).

Tn this scction K is the least significant octal fraction of n unless

ctherwise stated.

1030

1031

1032

1033

1034
1035
1036

Start rceding forwards

Selcet tape Ba to be read forwards starting at the next word on the
tape. Therafter ensure the buffer is kept replenished. The buffer
is in blocks P, P+, ,P+K,

Start reading backwards
Seleet tape Ba, starting at previous word.
Then as 1030

Start -piting forwards ,

Select tape Ba to be written forwards from the next word on the tape.
Up to K+1 buffer blocks are used as required. A marker Q(0<Q<7) is
written before the first word of information. The buffer is in blocks

" P, P+lyeess, P+K

Select
Select tape Ba for succeeding varicble length operations in the mode
previously specificd for that tape

Start reading forwards from fixed blocks
Start reading backwards from fixed blocks
“,a' = selected magnetic tape
CS 309A

-7 -

1037 = mode of magnetic tape Ba

= 0 for variable length read forward transfer using strings

=1 for variable length rcad backwards transfer using strings

= 2 for variable length writec transfers using strings

— 8 for fixed block transfer

=4 for variable length read forwards transfcrs from fixed blocks

=5 for variasble length read backwards transfers from fixed blocks

1040 Transfor the ba words bebtween store addresses starting at S and the
selceted tape in the appropriatc selected mode. On writing, the cotal
marker K at the foot of ba is written after the last word.

On reading, the transfer continues until ba words have been read or
until a marker m > K is encountered, whichever is sonomer. Then, ba'=
no, of words actually read, with K' = 0 if no marker > K was met, or

K’ =n if a marker m > XK terminated the transfer.

~

-~ =~

=gl = i~k S < < X

Notes:
(:'L) when reading backwards the words read occupy store locations
S+ba~1, S+ba~2 **°
(ii) if ba =0, the transfer continues until the first marker is en-
countered
1041 Skip
Skip ba words, or skip until a marker m > K is enocountered, whichcver
is sooner, Skip cperates as transfoer cmeept that no words are lrans-

ferred. (1041 is much less cfficient than 1044 (searoh) for pnsit-
ioning the tape.)

1042 Mark
Marker K(0<K<7) is written after the last word on the selected tape.
1042 is ignored if in reading mode.

1043 Stop
Stop varisble length operations on taope Ba. This releases associated
buffer blocks, and after writing operations causes the last part section
to be written immediately. (This could also be done by start, search,
unload, relcase tape, or end program).

1024 VWhere am 17
(i) After varicble length transfer

s’ = halfwords A and W, defined below:
Less significant half of s’ = address (W) within the section of
the current marker on tape Ba (or if not on a marker, of the next
forward word)
More significant half of s’ = address (A) of the section contain-
ing the address described above.

(ii) For after block transfers sce under Organisation (641.2.)

1044 Word scarch
Search for word W, scction A »f tape B where S contains A and W as
defined in 1024

1046 Read Orion tape forwards
Read the next block on Urion tape Ba intn store blocks P, P+l,»s+ P+K.
A oheck is made that tapc Ba is an Orion tape; the program is monitored
if insufficient pages are rescrved for the transfer,
The maximum transfer is 4096 words; no indication is given of how many
words have been read.

1047 Read Orion tape backwards
Read the previous block on urion tape Ba to store blocks P + K,
P+ K-1,¢00¢,P., As 1046, except the first word read is stored in

address 511 of block P + X, the next in 510 and so on.
CS 309A

6,2,

6424
1050

1051

1052

1055

10564

—-8.‘-\

Input and Output Routines 1050 - 1072

Input s

Select input n
Succeeding read orders rofer t- the date called Input n in the Job

Desoription. Input 0 is assumed if rced orders occur without previous
use of 10560

Figd selected input
ba’ = number of currently selected input

Find peripheral equipment number ‘

ba’ =V-store address of the periphernl used for the currently selccted
inpug. (ba’ = 0 if this input originated as output from another pro-
gram

Test binory/internal cede
ba’ =n if next character recad is a binary character. (ba unaltered
if in internal code)

ba’ = next character/c’ =n at end of record.

Rend the next 6-bit character to digits 18-23 of Ba, clearing bits 0-17.
For binary input, which is in 12-bit quarter words, the first use of
1054 reads the more significant 6 bits, the next gives the less signif-
iocant 6 bits. If end of rucord has just been exceoded, o =mn and

ba' = carringe coutrol oharachter in bits 48-23.

Carriage control character:-

1055

1056

1057

6.2.2
1060

1061

1062

Octal value: Meaning:
00 ignored, used to end binary records
01 to 17 1 to 15 line feeds, no carriage return
20 carriage return
21 to 37 carriage return and 1 to 15 line feeds
40 to 47 paper throw, no carriagc return.
Home on chamncls 0 to 7
50 o 57 paper throw with carriage return.
Home nn channels 0 to 7
60 t» 67 Spare

ba’ = number of blocks read

Read ba half words to S onwards

ba’ is unchanged except for bit O sct =1 and bits

22, 23 set =0

If end »f record is rcached, ba’' = number of characters read.

Read next record to S onwards
On exit, ba’' == number of characters read

vutput.

Select output n

Succecding write orders are to the peripheral called OVutput n in the
Job Descriptinn. '

Bit 23 of n =1 if binary, O if internal code

vutput O is assumed if write orders occur before any use of 1060,

Tind selected output
ba' = number of currently selectud output, (with bit 23 as in 1060).

Find peripheral equipment type
ba' = V-store address of equipment number O of thc peripheral type
currently selected for cutput (ba’ = 0 if ocurremly to any pcripheral).

€S 509A

1064

1065

1066

1067

1070
1071
1072

Write character n
Write the character in bits 18-23 of n. If binary mode, 1064 has to be
used twice to write the morc ard less significant halves.

End this record

Writcs the carriage comtrol character in digits 18-23 of n to the
selectcd output and terminates the rcoord. (If binary mode, n =0
usually; this last character is always ignored at the time of printing).
Write ba halfwords from S

If bit O of ba =1 the record is not cended; if bit 0 is = 0 the record
is ended and the last character (in S+ba-0.1) is the carriage control
character,

Write a record from S
The effect is the same as 1066 with bit 0 of ba equal to zero.

Rename output n as input ba
Break output n

Define output n, with ba = maxinmun amount of output (in blocks) and
ba® = destination of output.

CS 309A

Bed

6e 3,1
1100
1101
1102

6.3.2
1103

1104

1105

1406
1107

6.3.3
12

1113

1114

1115
1416
1117

6. 5'4
1120

- 10 -

Subroutine Entry, Branching, Monitoring and Miscellaneous Transfers

Subroutine Entry,

Enter subroutine at s, ba' =c + 1 6
Enter subroutine at n, ba’ =c + 1 5
Enter subroutine at bm, ba’ =¢ + 1 6

Branch instructions

Establish Ba branches. Bach branch will preserve the accumulator and
the o ntents of B-registers Bn, B(n+1), B(n+2),++, B 99, B 119, B 121,
B 126, B 127; where Bn is given in bits 15 - 21 of n

Start branch with number Ba at n (0<Ba<63).

The branch is given priority Ba, but has lower priority than any
branches already defined with number Ba. The main progran is automat-
ically defined as a branch O.

Kill all branches with nunmber Bd. If Ba == 64 kill the current branch
onlye.

If any branch with number Ba is active, halt current branch.

¢’ =n if any branch with nuuber Ba is active.

Monitor.,

Set wmonitor jump to n

If the program is terminated other than by extracode 1117 (end program)
enter a private monitor sequence at n. The ~etal frection of n,

(K), has the following effects.

If K =0, ¢ =n after printing the typc of fault
K=1, ¢’ =n imediately
K=2, ¢’ =n after standard post mortem printing

Set restart

Preserve Supervisor working registers associated with this program.
Should a future restart be necccssary, rccover thesec and rc-enmter this
program with ¢’ =n

Exit from trap

After trapping a computer error or an off line failure, permit resump-
tion of the program and rccovery of working registers, n is inter-
preted as follows:

If n ¢ 0, monitor and end program
n == 0, restart program completely
n > 0, and odd, resume program by ¢’ =n
n > 0 and even, recover extracode working registers, then ¢’ =n

If monitored, dump on to tape Ba from section n
If nonitored, do not dump

End progranm

Miscellaneous Transfers.

ba’ = clock
ba digits -5, 4-7, O-11, 12-15,16-1C,20-23
vatue [Tons] Units[Tor] Units [tons! Unite]

MM
Hours Minutes Seconds

S 309A

-1 -

1121 ba’ =date
ba digits 0-3, 47, 811, 12-15, 16-19,20-23
value - Tens | Units |Tens |Units f Tens. {Units
D Nt v*""‘*-../-""'\l
Day Month Year
1122 ba’ = local instruction counter
Set ba’ = number of instructinns to be obeyed (wnits of 2048) before the
local instruction counter is axceeded.
1123 Set loeal instruction counter = 2048n
1M24 v6' =n
The least significant six bits of V-store line 6 are used as follows:
Digit 18 19 20 21 22 23
ﬁ2/15 shift on div-] Sign of
ision instructions | quotient
Value (needed to adjust (Qs) in A0 Bt Be
: renainder for 376, | Pasic div-
377 instructions) isinn in-
structions
Set =1 12 shift Qs<0 AQ set bte0 | btfo Be set
! Set =0 413 shift QR8>0 1 A0 cleart bt>0 | bi=0 Be clear
1125 ba' =v6 & n
1126 v7' =n. Hoot, operated by least significant digit of n
1127 ba' =v7 & n. Read engineers handswitches, digits 16 - 23
6.4 Searches, Traps, Compiler & Supervisor R-uutines. 1131-1457
B8.4.1 Scarches and Traps
1131 Table search f-r s, starting at C{ba)
ba’' = address of successful halfword, or - 22° if unsuccessful.
¢’ =c + 2. Clc + 1) is used to specify parameters k, 1, m as shown
below., Up t» L + 1 halfwords are sclected, starting from C(ba), contin-
uing at intervals of k halfwords, which ore masked with m before compar-
ison with s
Bits 0O - 9, 10 - 2u, 21-25 0 - 23
value k 1 f n
interval count spare mask
1132 Set address of trap vector to S

Store words S onwards contain trap vector. Each word is used as follows:
More significant halfwords = trap jump address (if this is < 0, no
trapping required for this entry in vector).

Less significant holf, bits 15-21 = B-register in which main control is
to be preserved.

If <0, revert to n» trapping.

CS 309A

-19 -

1133 ba’ = trap address
ba’ = start of trap vector, (ba' set <0 if no trapping vector defined).
1134 Trap Ba
Jump to address given in entry Ba of the trap vector, preserving ¢ in
the B-register specified in entry Ba.

1135 ¢’ =n if block label > ba defined
If in the future a block is newly defined by non-equivalence with a
block label = ba, then b9’ =c¢ and ¢’ =n

1136 am’' = number of instructions obeyed, from start of program, as a fixed
point integer with exponent 16 as the number is in multiples of 2048

6.4,2 Compiler and Supervisor

1140 Read "parameter" Ba of program to store starting at location S
Ba Parameter

0 Job title (10 words)

1 Computing time estimate, in seconds, in digits 0-23 (Une half word)

2 fixecution time estimate, " " "

3 No. of store blocks required, in digits 1-11 (One half word)

4 "Parameter" in Job Description (One half word)

5 Logic%% tape numbers defined (8 half words)
The j digit (0 < j < 15) of the 1B na1f word is a 4 if tape number
161 + j is defined

6 Inputs defined (One half word)

The i*h digit (0 <i < 15) is 1 if input stream i is defined
7 Outputs defined (One half word) As for 6

1142 End compiling., Used normally only by a compiler.
Informs the Supervisor that compilation has ended, so that the number of
store blocks which may be used is now restricted to that specified in the
progran’s Job Description

1143 Call system document s to be input stream ba

1144 Call system document s to store block ba onwards

1147 Call in library program n and set ¢’ =Dba

1150 Assign ba blocks, labels P to (P+ba~1) to overflow K

1151 Set up blocks P onwards from overflow K

1156 Enter extracode control at n if the "In Supervisor" switch is set
1157 Enter Extracode control at n if the "Process" switch is set

Note: extracodes 1156 and 1157 are for use only by Supervisor routines which
use Main Control. They will cause a monitor if used by ordinary programs.

CS 309A

6'5
1160

1161

1162

1165

1164

1165

1166

Note:

1167

1170

171
1172

1173

M74

1175

453 -

Store Routines 1160 - 4177

Read block P,

P is inbits 1 - 14 of n; bit ¢ of n is 0 if operands section of store
preferred, or 1 if instruction section preferred,

The requested transfer is inserted in the drum queue., If P was in the
drum store, it is read to core store s 1ts drum store space made empty
and the learning program entered to sclect a page to write to the drum
store.

Release block P

Parameters are set so the learning program will choose this page next
to write to the drun.

Duplicate read
Pr =Dbits 1 - 11 of n, Py =bits 1 ~ 11 of ba
A copy of block P; is made as Pp, always leaving P, in the core store.

Duplicate write

P, and P; as in 1162. A copy of P, is made as P, in the drum store.
P, is always left in the core store.

Renane
Py and Py as in 1162. Block Py is renamed as block P; and the original
block P, is lost. :

Write block P.

The requested transfer is inserted in the drum queue. Block P is
written to the next empty sector if it was in core store and its core
store space made empty. (In general, 1461 will release a block from
core store faster than 1165) '

Read block P to absolute page p

p 1s an integer, in the integer pnsition of ba, which gives the absolute
core store page that block P is to occupy. The contents of p, say Px,
are copied to a free page which is then called Px, and block P is trans~
ferred to page p. 1166 allows complete manipulation of the store for

exceptional programs in which this is worth while.

before using 1166 the programmer must set a trap, in case page p is. lncked
down and reserved by the supervisor. ’

Lose block P
The scctor or page occupied by P is made enpty.

Clear/ not clear new blocks

This supervisor switch is set initially for each progran tn "clear", so
new core store pages allocated to the program are cleared to floating
point zero, 1170 sets and resets this switch. If n ¢ 0, clear blocks
not required, if n > O clear blocks again required. 7
Store allocation = n blocks

Pages available

ba’ = the number of core store pages unallocated (at that moment)i
Blocks available

ba’ ==the nuiber of blocks in the one-level store which are unallocated
(at that moment)

Reserve band d
A band of the drum store is reserved for the program and this band is
allocated the number d given by bits 13~20 of n.

Read K-1 blocks from band d
d =bits 13-20 of ba
P =bits 1-11 of n, K =Dbits 21-23 of n (0 < K < 5)

CS 309A

1176

1177

- 44 -

A multiple btlock transfer takes place, which reads K+1 blocks (K taken
modulo 5) to form pages P, P+l,vee¢, P4+K in the core store

Write K+1 blocks to band d

d, P and X as in 1175, A multiple block transfer takes place, which
writes pages P, P+1,¢++, P+K to the program band d and frees these éore
store pages.

Lose band 4 ,

The band d, given by bits 13-~20 of n, is made free and returned to the
one level store,

CS 3094

- 45 -

6.6 Test instruction
1200 ba' =n if Accumulator verflow (A0) is set; clear AO 9
1201 ba' =n if A0 is not set; clear AO 7
1206 ba' =n if most significant character in G is zero 4
1216 ba' =n if bu > 0 5-6
1217 ba' =n if bm < 0 4-5
1225 Dba’ =n if B-carry is set 4
1226 Dba' =n if bt > 0 4-6
1227 ba' =n if bt < O 3-5
1234 ¢’ =c¢ + 2 if am is approximately equal to s 11
1235 ¢’ =oc¢ + 2 if am is not approximately = s 11

Approximate equality is defined by,§§5é~§[<0(ba)

with am standardised and # 0

If amn =0, am is not approx. = s.
1236 ba' =n if an 3 0 4-8
1257 ba' =n if am < 0 5-5
1727 ¢’ ==c+ 1, 20or S asam >, =, or < s 7
1736 ¢’ =c + 2 if |am|x s 8
1737 ¢’ =c + 2 if |em|< s 7

6.7 Character Data Processing 1250 -~ 1253

1250 ba’' (digits 18-23) =s, ba’ (digits 0-17) =0 7-10
1254 s’ =Dba digits 18-28. Other characters in S unaltered 11-18
In 1250 and 1251, S is taken as a character address

1252 Unpack n characters, sbtarting froa character address C(ba), 16+int.pt.(6%h)
to half words from C(ba*), placing one character at the foot
of each half word and clearing the octher digits

1253 Pack n characters from digits 18-23 of half words starting 18+5n
from C(ba*) into successive character positions starting from
C(ba)

G5 309A

6.8

1300
1301
1302

1303

13504

B-register Operations

ba’ = integral part of s, an’ = fractional part of s
ba’ = integral part am, am’ = fractional part am
ba’ =Dba.n

ba' = -ba.n

ba’ =int.pt. {ba/n), b7’ = remainder

In 1302-1304, ba and n are 21 bit integers in digits 0-20
Octal fractions are rounded towards zero

1512
1313
1514

ba’ =Dba.n
ba’ = -ba.n
ba’ =int.pt. (ba/n), 197’ = remainder

In 1312-1314, ba and n are 24 bit integers

1340
1344

1342
1345
1344
1345
1347
1353

1356
1357
1364
137

1376
1377

ba' =ba.2 "; unrounded arithmetic shift right
ba’ .-:.ba.,?n; unrounded arithmetic shift left
ba’' =Dba circularly shifted right n places

ba’ =ba circularly shifted left n places

ba’ =ba logically shifted right n places

ba’ =Dba logically shifted left n places

h'= h v ba

ba’' = position of most significant 1 bit in bits 16-23 of n.

(as B 123).

btl=ba #h

bt'= ba #n

ba' =(ba &n)v (bm & n); b 119’ (bm #Abn) &n
b121 = Ba, 1319’ = N+bn '

bt’ =ba & h

bt’ =ba & n

CS 309A

10

25-24
22-23
25-28

25-24
22-23
25-28

10-22
9-21
10-19
9-18
10-21
9-20

1 >

o

LS & B O B o - Y

-7 -

6.9 Complex Arithmetic

The complex accumulator, Ca, is a pair of consecutive registers, the
first register having address ba. (If Ba =0, Ca is locations 0, 1).
st is a number pair. Ca may coincide with S: but not overlap with it.
a is spoiled.

1400 ca’ = log s:

1402 ca’' = exp. s: 140
1403 ca' =oconj. s: 5
1410 oca’ =d5: Max.117
1441 am’ == arg. s: radians

1412 an’ == mod. s: lax.53
1413 ca’ =35 cos s¥, s sin s¥ 95
1414 ca’ = reocip. s: 15
1420 ca' =oca + s: 8
1421 ca’' =oca - s: 8
1424 ca’ =s: 6
1425 ca’ =~ s 6
1456 s:' =oa 5
1462 ca’ == ca.s: 18

- 18 -

6,10 Vector Operations 1430 - 1437

The vectors are of order n. s; is stored in consecutive looations from
ba, and s, from ba? a is spoiled.

1430 sf =8 + 8z 9+ 4n
1431 s{ =35 - sp 9 + 4n
1432 s{ =am. sy 10 + 4n
1433 8/ =851 + am. Sp 10 + 5n
1434 sf =sz (forwards or backwards) 13 + 2n
1436 an’ »—=§?;-sli,sgi 10 + 5n
n-1
1457 8 =2oimesey 10 + 13n

CS 309A

- 19 -

6,11 Miscellaneous B-type Accumulator Operations
1452 n' =m.xs, @OVSPR o0 pal (%) 19 - 25

4445 Generate pseudo randonm numbers (PRN's) in A and in S (or S*) from
numbers in S and S%,
This extracode may be used in several ways.

1. With digit 21 of S =0, the PRN is placed in S and A,

(1) If s*y =0, sx30 and s*x>0, then s’ will be a PRN in the range
0 to 85Y, rectangularly distributed amd fixed-point (i.e. sx’
is a fixed-point PRN and sy’ = S) a’ will be a PRN in the
range O to s*z. 85 (with al’ =s').

(ii) If s*y =0, sx<0 and s*x>0, then as (i) except that the ranges
ecome -85 to 0 and -5%x.85Y~1 to 0 respectively.

(iii)If s*y = 0 and s¥x<0, then as (i) except that the PRN's
alternate in sign.

2, With digit 21 of s =1, the PRN's are generated in S* and A
instead of S and A, The cases are as for 1., interchanging
S and S* throughout.

3« Two successive uses of the extracode, with digit 21 of S first
= 0 and then =1, and with sy =s%*y = 0, will set PRN's in
S and S*, both rectangularly distributed in the range 0 to 1.
A will contain the product of two PRN’s and so will be distrib-
uted in-the range O to 1 with the probability - log x.dx of being
in the neighbourhood ¢x of x.

In all cases the generation process must be started with Sx and S*x contain-
ing numbers with a random mixture of binary digits, and with their least
significant bits set to 1.

1466 2’ =C(N + bm + ba).C(N +) + & 18
1467 an’ zbg;s.r am' where Sr =85 + r, 8 + In
1475 n' = (xafxs). 8T PR pr —pa (%) 24 - 28
1474 C(ba)’ = quotient (am/s), an’ = remainder. (X) 20 - 29
1495 C(ba)’' = quotient (a/s), am’ = remainder (X) 19 -~ 28
1476 C(ba)’ = quotient ([int.pt.an]/s), am’ = remainder (X) 28 - 37

1477 Remainder and adjusted integral quotient when used after
extracode divisions 1574, 1575, 1774 or 1775 (with no
other extracode in between and am not altered)

s’ = adjusted integral quotient, an’ = remainder.

The type of remainder is determined by the Ba digits as

follows:

Sign of Remainder

Same as densminator
Opposite to denominator
Same as numerator
Opposite to numerator
Same as quotient
Opposite to quotient
Positive

Negative

N BN SC 'gﬁ

CS 309A

- 20 -

6.12 Double Length Arithmetic

The double length number is s: =s + s¥, where sy - 13 = sy¥ s -2n” al
are assumed 1o be positive numbers

1500 a’ =a + s: 10
1501 a’ =a - s: 10
1502 a’ —=- a + s: 14
1504 a' =s: | 4
1505 a' =~ s: 3
1542 a' = a.s: 15
1543 a' = -a,s: 19
1556 s:' = g

1565 a’ =- a 5
1566 a‘ = |a| 4-6
1567 a’' =|s:| 5
1576 a' =a/s 19

6.13 Arithmetic Using Address as Operand

The address is taken as a 21 bit inkeger with one octal fractional place,
Tixed point operations imply an exponent of 12.

1520 anm’ =am + n 10
1521 an’ =am - n)
1524 am’ =mn, 1'=0 8
1625 am’ =-mn, 1'=0 7
1634 am’ =n, 1’ =0 (X) 10
1635 am’ =-n. 1" =0 (X) 9
1562 am’ = amen 8
1574 am’ = an/n 16
1575 an' =a/n 15

CS 309A

6.14

1204

1206
1265
1601

1604
1605
1606
1607
1611

1613
1615
1630
1635
1646
1652

6.15

1624

1626

Logical Accumulator Operations

The logical accunulator G is B98 and B9¢

ba’' = no, of 6 bit characters from mist significant end

identical in g and s 10 - &
ba’ = n if most significant character in G is zero 4
g’ =2% + n, ba’ = overflow fron g. 11
g =s 3
g =g+s 7
g’ =g + s with end around carry 12
g =g#s 4
g =gé&s 5
51"_'.8‘ 5
s' =g 3
an’ =g 4
g =gé s S
g =an “
g =gvs 5
bt =g - s 7=9

Half word packing

h hes an 8 bit exponent and a 16 bit argument
an’ =h

h' = an, with h rounded

CS 309A

6.16.

1700
1701

1702
1703
1704
1705
1706
1707
1710
1711

1712
1713
1714
1715
1720
1721

1722
1725
1724
1725
1726
1750
1751

1752
1753
1754
1755
1752
1753
1754
1755
1756
1757
1760
1762
1763

- 929 -

Punctions and Miscellaneous Routines

The operand in some of these instructions is specified as aq, The
associated routines all begin by standardising the accumulator and then

truncating it to single lengbh, so ag can be defined as the first 13 signif-
icant octal digits of a.

an’ = log s
an’ = log agq
an’ —=exp s

an’ =exp agq

= int.pt. s
a’ = int.pt. a
&' =sign s
a’ =sign a
an’ =A's

am’ ==J aq

am’ —Aag® + s°

an’ = aq®. (am x> 0)

an’ =1/s

an’ =1/an

an’ = arcsin s (-7/2 < anc< 7/2)

am’ = arcsin agq
am’ =arccos s (0 - am < 7)
an’ = arccos ag
7 - / h
am’ = arctan s (T7/2 < an < %/2)

a, = arctan aq

an’ = arctan (aq/s) (-7 < an < m)

am’ = sin s

amn = sin aq

{_‘9
f

cos s
an’ = cos aq
en’ =tan s
an’ =tan aq
n' =rx, 8%; ay’ =ay - 12 (X)
ex'=n, 8%, ay’ =ay + 12 (X)

round am by adding; standardise

ay-1n
ax’ =ex., 89 7; ay' =n (X)
1 ’
s’ =an, an =8

on’ = s/an

an’ = an®

n' =ax. 82 (X)
ex’ =n, 8% (X)

CS

o B &

4&
5~86

54~36
54~ 36

5136
51-36
&1-36
51-36
54
33
10

0w o 0

S09A

- 923 -

1764 ox’ =o0x,8" (X)

1765 ax' =ax.8 (X)

1766 an’ = |s| (X)

1771 b 121’ =Ba, b119" =N + ba + bn

1772 m' = (m.sx) 8'%; ay’ =ay + 5y - 12 (X)

1773 w' = (ax/sx)Say‘sy‘”'m; ay’ =12 (X)

1774 an’ = am/s

1775 an' =a/s

1776 Remainder and integral quotient.
When used after division extracedes 1574, 1575, 1774 or
1775, with no ~ther extracodes in between and an not altered:
s’ = integral quotient, am’ = remainder,
The remainder has the sign of the denominator.
(See also 1477)

MHJIB/ dmh

18.12.62

I

{ \(:‘«/z FERRANTI LTD 1962

N
-

17

12

11

10

13

