DIGITAL RESEARCH
Post Office Box 579
Pacific Grove, California 93950

CP/M INTERFACE GUIDE

Copyright (o Digital Research
1975, 1976

7.

TABLE OF CONTENTS

INTRODUCTION . . ¢ & o o o o o o o o«
1.1 CP/M Organization
1.2 Operation of Transient Programs

1.3 Operating System Facilities . .

BASIC I/0 FACILITIES « ¢« « ¢ o o o &
2.1 Direct and Buffered I/O

2.2 A Simple Example

DISK I/O FACILITIES . . « « « « « &
3.1 File System Organization . . .
3.2 File Control Block Format . . .
3.3 Disk Access Primitives

3.4 Random ACCESS « « ¢ « o s o o

SYSTEM GENERATION . « &« o o o o o+ &

.

4.1 Initializing CP/M from an Existing Diskette

CP/M ENTRY POINT SUMMARY

ADDRESS ASSIGNMENTS . . ¢ « ¢ + o &

SAMPLE PROGRAMS . . ¢ ¢« &« ¢« ¢ ¢ o ¢ o o o &

ii

10
12
18

18
19

20

22

23

CP/M INTERFACE GUIDE

1. INTRODUCTION

This manual describes the CP/M system organization including
the structure of memory, as well as system entry points. The
intention here is to provide the necessary information required
to write programs which operate under CP/M, and which use the
pcripheral and disk I/0 facilities of the system.

1.1 CP/M Organization
CP/M is logically divided into four parts:

BIOS
BDOS - the basic disk operating system primitives

the basic I/O system for serial peripheral control

CCP - the console command processer
TPA - the transient program area

The BIOS and BDOS are combined into a single program with a com-
mon entry point and referred to as the FDOS. The CCP is a dis-
tinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the diskette.
The TPA is an area of memory (i.e, the portion which is not used
by the FDOS and CCP) where various non-resident operating system
commands are executed. User programs also execute in the TPA.
The qQrganization of memory in a standard CP/M system is shown in
Figure 1.

The lower portion of memory is reserved for system information
(which is detailed in later sections), including user defined inter-
rupt locations. The portion between tbase and cbase is reserved
for the transient operating system commands, while the portion
above cbase contains the resident CCP and FDOS. The last three
locations of memory contain a jump instruction to the FDOS entry
point which provides access to system functions.

1.2 Operation of Transient Programs

Transient programs (system functions and user-defined programs)
are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each
prompt character. Each command line takes one of the forms:

<command> -
<command> <filename>
<command> <filename~” ,<filetype>

Figure 1. CP/M Memory Organization

fbase: FDOS
cbase: CCP
TPA
tbase:
System Parameters
boot: [TTTTTTIT]

{;address field of jump is fbase

entry: the principal entry point to FDOS is at location 0005
which contains a JMP to fbase. The address field at
location 0006 can be used to determine the size of
available memory, assuming the CCP is being overlayed.

Note: The exact addresses for boot, tbase, cbase, fbase,}
and entry vary with the CP/M version (see
Section 6. for version correspondence) .

Where <command> is either a built-in command (e.g., DIR or TYPE),
or the name of a transient command or program. If the <command>
is a built-in function of CP/M, it is executed immediately; other-
wise the CCP searches the currently addressed disk for a file

by the name

<command>.COM

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at tbase in memory (see the CP/M LOAD command). The CCP loads
the COM file from the diskette into memory starting at tbase,

and extending up to address cbase.

If the <command> is followed by either a <filename> or
<filename>.<filetype>, then the CCP prepares a file control-
block (FCB) in the system information area of memory. This FCB
is in the form required to access the file thrOugh the FDOS, and
is given in detail in Section 3.2.

The program then executes, perhaps using the I/O facilities
of the FDOS. 1If the program uses no FDOS facilities, then the
entire remaining memory area is available for data used by the
program. If the FDOS is to remain in memory, then the transient
program can use only up to location fbase as data.* In any case,
if the CCP area is used by the transient, the entire CP/M system
must be relocaded upon the transient's completion. This system
reload is accomplished by a direct branch to location "boot" in
memory.

The transient uses the CP/M I/0 facilities to communicate
with the operator's console and peripheral devices, including
the floppy disk subsystem. The I/O system is accessed by passing
a "function number" and an "information address" to CP/M through
the address marked "entry" in Figure 1. In the case of a disk
read, for example, the transient program sends the number corres-
ponding to a disk read, along with the address of an FCB, and
CP/M performs the operation, returning with either a disk read
complete indication or an error number indicating that the disk
operation was unsuccessful. The function numbers and error in-
dicators are given in detail in Section 3.3.

1.3 Operating System Facilities

CP/M facilities which are available to transients are divided
into two categories: BIOS operations, and BDOS primitives. The
BIOS operations are listed first:**

* Address "entry" contains a jump to the lowest address in the
FDOS, and thus "entry+l" contains the first FDOS address which
cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres-
ponds exactly to Intel's peripheral definition, including I/O
port assignment and status byte format (see the Intel manual
which discusses the Intellec MDS hardware environment).

Read Console Character
Write Console Character
Read Reader Character

Write Punch Character

Write List Device Character
Set I/0 Status

Interrogate Device Status
Print Console Buffer

Read Console Buffer
Interrogate Console Status

The exact details of BIOS access are given in Section 2. The BDOS
primitives include the following operations:

Disk System Reset

Drive Select

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Read Record

Write Record

Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

The details of BDOS access are given in Section 3.

2. BASIC I/O FACILITIES

Access to common peripherals is accomplished by passing a
function number and information address to the BIOS. In general,
the function number is passed in Register C, while the informa-
tion address is passed in Register pair D,E. Note that this
conforms to the PL/M Conventions for parameter passing, and thus
the following PL/M procedure is sufficient to link to the BIOS
when a value is returned:

.

DECLARE ENTRY LITERALLY '0005H'; /* MONITOR ENTRY */
MON2: PROCEDURE (FUNC, INFO) BYTE;

DECLARE FUNC BYTE, INFO ADDRESS;

GO TO ENTRY;

END MON2;

or

MONl: PROCEDURE (FUNC, INFO)
DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY;
END MON1

if no returned value 1is expected.

2.1 Direct and Buffered I/0.

The BIOS entry points are given in Table I. In the case of
simple character I/0 to the console, the BIOS reads the console
device, and removes the parity bit. The character is echoed back
to the console, and tab characters (control-I) are expanded to
tab positions starting at column one and separated by eight char-
acter positions. The I/O status byte takes the form shown in
Table I, and can be programmatically interrogated or changed.

The buffered read operation takes advantage of the CP/M line edit-
ing facilities. That is, the program sends the address of a read
buffer whose first byte is the length of the buffer. The second
byte is initially empty, but is filled-in by CP/M to the number

of characters read from the console after the operation (not
including the terminating carriage-return). The remaining posi-
tions are used to hold the characters read from the console. The
BIOS line editing functions which are performed during this oper-
ation are given below:

break - line delete and transmit

rubout - delete last character typed, and echo

control-C system reboot

delete entire line

control-U

return carriage, but do not transmit
buffer (physical carriage return)

control-E
<cr> - transmit buffer

The read routine also detects control character sequences other
than those shown above, and echos them with a preceding "t"
symbol. The print entry point allows an entire string of symbols
to be printed before returning from the BIOS. The string is
terminated by a "$" symbol.

2.2 A Simple Example

As an example, consider the following PL/M procedures and
procedure calls which print a heading, and successively read
the console buffer. Each console buffer is then echoed back in
reverse order:

PRINTCHAR: PROCEDURE (B);
/* SEND THE ASCII CHARACTER B TO THE CONSOLE */
DECLARE B BYTE;
CALL MON1(2,B):
END PRINTCHAR:

CRLF: PROCEDURE;
/* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */
CALL PRINTCHAR (ODH); CALL PRINTCHAR (0AH) ;
END CRLF;

PRINT: PROCEDURE (A):
/* PRINT THE BUFFER STARTING AT ADDRESS A */
DECLARE A ADDRESS:;
CALL MON1(9,A):;
END PRINT;

DECLARE RDBUFF (130) BYTE;

READ: PROCEDURE;
/* READ CONSOLE CHARACTERS INTO 'RDBUFF' */
RDBUFF=128; /* FIRST BYTE SET TO BUFFER LENGTH */
CALL MON1 (10, .RDBUFF) ;
END READ:;

DECLARE I BYTE;

CALL CRLF; CALL PRINT (.'TYPE INPUT LINES $');
DO WHILE 1; /* INFINITE LOOP-UNTIL CONTROL-C */
CALL CRLF; CALL PRINTCHAR ('*'); /* PROMPT WITH '*' */
CALL READ; I = RDBUFF(1l):;
DO WHILE (I:= I -1) <> 255;
CALL PRINTCHAR (RDBUFF(I+2));
END;
END;

The execution of this program might proceed as follows:

TYPE INPUT LINES
*HELLOJ
OLLEH

*WALL WALLA WASH, '

HSAW ALLAW ALLAW

*MOM WOW,

WOW MOM

*tC (system reboot)

TABLE I

BASIC I/O OPERATIONS

9

string termi-
nated by 's$'

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL
Read Console None ASCII character I = MON2(1,0)
1
Write Console ASCII Character None CALL MON1(2,'A')
2
‘Read Reader None ASCII Character I = MON2(3,0)
3
Write Punch ASCII Character None CALL MON1l (4, 'B')
4
Write List ASCII Character None CALL MON1(5,'C")
5.
Get I/0 Status None I/0 Status Byte IOSTAT=MON2 (7,0)
7
Set I/0 Status I/0 Status Byte None CALL MON1(8, IOSTAT)
8
Print Buffer Address of None CALL MON1(9, .'PRINT

THIS $')

TABLE I (continued)

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL
Read Buffer Address of Read buffer is CALL MON1(10,
10 Read Buffer* filled to maxi- .RDBUFF) ;
mum length with
console charac-
(See Note;) ters
Interrogate None Byte value with I = MON2(11,0)
Console Ready least signifi-
11 cant bit = 1
(true) if con-
sole character
is ready
Notelz 'Read buffer is a sequence of memory locations of the form:
mlkijcy|ca|cs i
[-T-current buffer length
Maximum buffer length
Note2: The I1/0 status byte is defined as three fields A,B,C, and D
2b 2b 2b 2b
[alB|C|D |
MSB LSB
requiring two bits each, listed from most significant to least
significant bit, which define the current device assignment as
follows:
0 TTY 0 TTY 0 TTY 0 TTY
D = 1 CRT C =)1 FAST READER B =)1 FAST PUNCH A =) 1 CRT
Console 2 BATCH Reader \ 2 - Punch \ 2 - f List 2 -~

3 . - 3 - 3 -

3. DISK I/O FACILITIES

The BDOS section of CP/M provides access to files stored on
diskcttes. The discussion which follows gives the overall file
organization, along with file access mechanisms.

3.1 File Organization

CP/M implements a named file structure on each diskette, pro-~
viding a logical organization which allows any particular file to
contain any number of records, from completely empty, to the full
capacity of a diskette. Each diskette is logically distinct,
with a complete operating system, disk directory, and file data
area. The disk file names are in two parts: the <filename>
which can be from one to eight alphanumeric characters, and the
<filetype™> which consists of zero through three alphanumeric
characters. The <filetype™ names the generic category of a par-
ticular file, while the <filename™> distinguishes a particular
file within the category. The <filetype®s 1listed below give
some generic categories which have been established, although
they are generally arbitrary:

ASM assembler source file
PRN assembler listing file

HEX assembler or PL/M machine code
in "hex" format

BAS BASIC Source filé
INT BASIC Intermediate file

COM Memory image file (i.e., “"Command"
file for transients, produced by LOAD)

BAK Backup file produced by editor
(see ED manual)

$$$ Temporary files created and normally
erased by editor and utilities

Thus, the name
X.ASM

is interpreted as an assembly language source file by the CCP
with <filename> X.

The files in CP/M are organized as a logically contiguous se-
quence of 128 byte records (although the records may not be phys-
ically contiguous on the diskette), which are normally read or
written in sequential order. Random access is allowed under CP/M
however, as described in Section 3.4. No particular format with-
in records is assumed by CP/M, although some transients expect
particular formats:

10

(1) Source files are considered a sequence of
ASCII characters, where each "line" of the
source file is followed by carriage-return-
line-feed characters. Thus, one 128 byte
CP/M record could contain several logical
lines of source text. Machine code "hex"
tapes are also assumed to be in this for-
mat, although the loader does not require
the carriage-return~line-feed characters.
End of text is given by the character con-
trol-z, dr real end-of-file returned by
CP/M.

and

(2) COM files are assumed to be absolute machine
code in memory image form, starting at tbase
in memory. In this case, control-z is not
considered an end of file, but instead is
determined by the actual space allocated
to the file being accessed.

3.2 File Control Block Format

Each file being accessed through CP/M has a corresponding
file control block (FCB) which provides name and allocation
information for all file operations. The FCB is a 33-byte area
in the transient program's memory space which is set up for each
file. The FCB format is given in Figure 2. When accessing CP/M
files, it is the programmer's responsibility to fill the. lower
16 bytes of the FCB, along with the CR field. Normally, the FN
and FT fields are set to the ASCII <filename> and <filetype>,
while all other fields are set to zero. Each FCB describes up
to 16K bytes of a particular file (0 to 128 records of 128 bytes
each), and, using automatic mechanisms of CP/M, up to 15 addi-
tional extensions of the file can be addressed. Thus, each FCB
can potentially describe files up to 256K bytes (which is slightly
larger than the diskette capacity).

FCB's are stored in a directory area of the diskette, and are
brought into central memory before file operations (see the OPEN
and MAKE commands) then updated in memory as file operations pro-
ceed, and finally recorded on the diskette at the termination of
the file operation (see the CLOSE command). This organization
makes CP/M file organization highly reliable, since diskette file
integrity can only be disrupted in the unlikely case of hardware
failure during update of a single directory entry.

It should be noted that the CCP constructs anh FCB for all
transients by scanning the remainder of the line following the
transient name for a <filename> or <filename>.<filetype> com-
bination. Any field not specified is assumed to be all blanks.

A properly formed FCB is set up at location tfcb (see Section 6),
with an assumed I/0 buffer at tbuff. The transient can use tfcb
as an address in subsequent input or output operations on this
file.

10a

In addition to the default fcb which is set-~up at address tfcb, the
CCP also constructs a second default fcb at address tfcb+ 16 (i.e., the
disk map field of the fcb at tbase). Thus, if the user types

PROGNAME X.ZOT Y.ZAP

the file PROGNAME.COM is loaded to the TPA, and the default fcb at tfecb

is initialized to the filename X with filetype ZOT. Since the user typed
a second file name, the 16 byte area beginning at tfcb + 1675 is also
initialized with the filename Y and filetype 2ZAP. It is the responsibility
of the program to move this second filename and filetype to another area
(usually a separate file control block) before opening the file which
begins at tbase, since the open operation will £ill the disk map portion,
thus cverwriting the second name and type.

If no file names were specified in the original command, then the
fields beginning at tfcb and tfcb + 16 both contain blanks (20H). If
one file name was specified, then the field at tfcb + 16 contains blanks.
If the filetype is omitted, then the field is assumed to contain blanks.
In all cases, the CCP translates lower case alphabetics to upper case
to be consistent with the CP/M file naming conventions.

As an added programming convenience, the default buffer at tbuff
is initialized to hold the entire command line past the program name.
Address tbuff contains the number of characters, and tbuff+l, tbuff+2,
. ~., contain the remaining characters up to, but not including, the
carriage return. Given that the above command has been typed at
gpe console, the area beginning at tbuff is set up as follows:

tbuff:
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15
12 B X . Z (o] T B Y . A A P ? ? ?

where 12 is the number of valid characters (in binary), and ¥ represents
an ASCII blank. Characters are given in ASCII upper case, with un-
initialized memory following the last valid character.

Again, it is the responsibility of the program to extract the infor-
mation from this buffer before any file operations are performed since
the FDOS uses the tbuff area to perform directory functions.

In a standard CP/M system, the following values are assqmed:

boot: 0000H bootstrap load {warm start)
entry: OOO0SH entry point to FDOS

tfch: 005CH first default file control block
tfcb+16 006CH second file name

tbuff 0080H default buffer address

tbase: O0OIO00OH base of transient area

Figure 2.

0 123 4567 8 910111213141516171819..

11

File Control Block Format

...2728 29303132

- g J ! /

ET FN FT EX
FIELD FCB_POSITIONS

ET 0

FN 1-8

FT 9;11

EX 12

) 13-14

RC 15

DM 16-31
" NR 32

| -/

RC DM NR

PURPOSE

Entry type (currently not used,
but assumed zero)

File name, padded with ASCII
blanks

File type, padded with ASCII
blanks oo

File extent, normally set to
zero

Not used, but assumed zero

Record count is current extent
Size (0 to 128 records)

Disk allocation map, filled-in
and used by CP/M

Next record number to read or
write

12

3.3 Disk Access Primitives

Given that a program has properly initialized the FCB's for
cach of its files, there are several operations which can be per-
formed, as shown in Table II. 1In each case, the operation is
applied to the currently selected disk (see the disk select oper-
ation in Table II), using the file information in a specific FCB.
The following PL/M program segment, for example, copies the con-
tents of the file X.Y to.the (new) file NEW.FIL:

DECLARE RET BYTE:

OPEN: PROCEDURE (A)
DECLARE A ADDRESS;
RET=MON2 (15,A) ;
END OPEN;

CLOSE: PROCEDURE (A);
DECLARE A ADDRESS:;
RET=MON2 (16,3) ;
END;

MAKE: PROCEDURE (3);
DECLARE A ADDRESS:;
RET=MON2 (22,3) ;
END MAKE;

DELETE: PROCEDURE (A) ;
DECLARE A ADDRESS;
/* IGNORE RETURNED VALUE */
CALL MON1(19,A);
END DELETE;

READBF: PROCEDURE (A);
DECLARE A ADDRESS;
RET=MONZ2 (20,3) ;
END READBF;

WRITEBF: PROCEDURE (A):;
DECLARE A ADDRESS;
RET=MON2 (21, 3) ;
END WRITEBF;

INIT: PROCEDURE ;
CALL MON1(13,0):

END INIT;

/* SET UP FILE CONTROL BLOCKS */
DECLARE FCBl (33) BYTE ‘
INITIAL (0, 'X ‘v 'y ',0,0,0,0),
FCB2 (33) BYTE
INITIAL (O, 'NEW ','FIL',0,0,0,0);

13

CALL INIT;
/* ERASE 'NEW.FIL' IF IT EXISTS */
CALL DELETE (.FCB2);
/* CREATE''NEW.FIL' AND CHECK SUCCESS */
CALL MAKE (.FCB2):; :
IF RET = 255 THEN CALL PRINT (.'NO DIRECTORY SPACE S$'):
ELSE
/* FILE SUCCESSFULLY CREATED, NOW OPEN 'X.Y' */
CALL OPEN (.FCBl);
IF RET = 255 THEN CALL PRINT (.'FILE NOT PRESENT $'):
ELSE
/* FILE X.Y FOUND AND OPENED, SET
NEXT RECORD TO ZERO FOR BOTH FILES */
FCB1(32), FCB2(32) = 0;
/* READ FILE X.Y UNTIL EOF OR ERROR */
CALL READBF (.FCBl); /*READ TO 80H*/
DO WHILE RET = 0;)
CALL WRITEBF (.FCB2) /*WRITE FROM 80H*/
IF RET = 0 THEN /*GET ANOTHER RECORD*/
CALL READBF (.FCBl):; ELSE
CALL PRINT (.'DISK WRITE ERROR §$'):;
END;
IF RET < >1 THEN CALL PRINT (.' TRANSFER ERROK $'):
ELSE
DO; CALL CLOSE (.FCB2);:
IF RET = 255 THEN CALL PRINT (.'CLOSE ERROR$) ;
END;
END;
END;
EOF

This program consists of a number of utility procedures for
opening, closing, creating, and deleting files, as well as two
procedures for reading and writing data. These utility procedures
are followed by two FCB's for the input and output files. 1In
both cases, the first 16 bytes are initialized to the <filename>
and <filetype” of the input and output files. The main program
first initializes the disk system, then deletes any existing
copy of "NEW.FIL" before starting. The next step is to create
a new directory entry (and empty file) for "NEW.FIL". If file
creation is successful, the input file "X.Y" is opened. If this
second operation is also successful, then the disk to disk copy
can proceed. The NR fields are set to zero so that the first
record of each file is accessed on subsequent disk I/O operations.
The first call to READBF fills the (implied) DMA buffer at 80H
with the first record from X.Y. The loop which follows copies
the record at 80H to "NEW.FIL" and then reports any errors, or
reads another 128 bytes from X.¥Y. This transfer operation con-
tinues until either all data has been transferred, or an error
condition arises. If an error occurs, it is reported; other-
wise the new file is closed and the program halts. '

TABLE II

DISK ACCESS PRIMITIVES

b3
L

FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAL CALL
Lift Head None None CALL MON2(12,0)
12 Head is lifted from
current drive
Initialize BDOS None None CALL MON1(13,0)

and select disk
"A"

Set DMA address

to 80H

13

Side effect is that
disk A is"logged-
in" while all others
are considered "off-
line"

Log-in and
select disk

An integer value cor-
responding to the

None
Disk X is considered

CALL MON1(14,1)

X disk to log-in: "on-line" and selec- (log-in disk "B")
14 A=0, B=1, C=2, etc. ted for subsequent)
file operations
Open file Address of the FCB Byte address of the I = MON2(15,.FCB)
for the file to be FCB in the directory,
15 accessed if found, or 255 if
file not present.
* The DM bytes are set
by the BDOS.
Close file Address of an FCB Byte address of the I = MON2(16,.FCB)
16 which has been pre- directory entry cor-

viously created or
opened

responding to the
FCB, or 255 if not
present

14

TABLE II

(continued)

FUNCTION/NUMBER

ENTRY PARAMETERS

RETURNED VALUE

TYPICAL CALL

Search for file
17

Address of FCB con-
taining <filename>
and <«filetypes> to
match. ASCII "?2"
in FCB matches any
character.

Byte address of first
FCB in directory that
matches input FCB, if
any; otherwise 255
indicates no match.

I = ¥M0N2(17,.FCB)

Search for next
occurrence

18

Same as above, but
called after func-
tion 17 (no other
intermediate BDOS
calls allowed)

Byte address of next

I = MON2(18,.FCB)

Delete File
19

Address of FCB con-
taining <filename>
and <«filetype> of
file to delete from
diskette

I = MON2(19,.FC")

Read Next Record
20

Address of FCB of a
successfully OPENed
file, with NR set
to the next record
to read (see notel)

None

0 = successful read

1 = read past end of
file

2 = reading unwritten

data in random
access

I = MON2(20,.FCB)

Note, : The I/0 operations transfer data
the DMA address has been altered
FCB is automatically incremented after the operation.

Further,

to/from address 80H for the next 128 bytes unless
(see function 26).

the NR field of the

If the NR field exceeds 128,

the next extent is opened automatically, and the NR field is reset to zero.

15

TABLE II

(continued)

FUNCTION/NUMBER

ENTRY PARAMETERS

RETURNED VALUE

TYPICAL CALL

Write Next Record

21

Same as above, except
NR is set to the next
record to write

successful write
error in extend-
ing file

2 = end of disk data
255 = no more dir-
ectory space
(see notez)

~ O

MON2 (21, .FCB)

Make File
22

Address of FCB with
<filename> and <file-
type> set. Direc-
tory entry is cre-
ated, the file is
initialized to empty.

Byte address of dir-
ectory entry alloca-
ted to the FCB, or
255 if no directory
space is available

MON2 (22, .FCB)

Rename FCB

23

Address of FCB with
old FN and FT in
first 16 bytes, and
new FN and FT in
second 16 bytes

Address of the dir-
ectory entry which
matches the first

16 bytes. The
<filename>and <file-
type> is altered

255 if no match.

MON2 (2 3, . FCB)

Note,:

2 There are normally 64 directory entries available on each diskette (can be

expanded to 255 entries), where one entry is required for the primary file,

and one for each additional extent.

TABLE II (continued)

FUNCTION/NUMBER

ENTRY PARAMETERS

RETURNED VALUE

TYPICAL CALL

Interrogate log-
in vector

24

None

Byte value with "1"
in bit positions of
"on line" disks,
with least signi-
ficant bit corres-
ponding to disk "A"

I = MON2(24,0)

Set DMA address Address’ of 128 byte None CALL MON1(26,2000H)
26 DMA buffer Subsequent disk I/O
takes place at spe-
cified address in
memory
Interrogate None Address of the allo- MON3: PROCEDURE(...)
Allocation cation vector for ADDRESS;
27 the current disk
(usedby STATUS com- A = MON3(27,0);
mand)
Interrogate Drive None Disk number of currently I = MON2(25,0);

number
25

logged disk (i.e., the
drive which will be used

for the next disk operation

17

18

3.4 Random Access

Recall that a single FCB describes up to a 16K segment of a
(possibly) larger file. Random access within the first 16K seg-
ment 1s accomplished by setting the NR field to the record number
of the record to be accessed before the disk I/0 takes place.
Note, however, that if the 128th record is written, then the
BDOS automatically increments the extent field (EX), and opens
the next extent, if possible. 1In this case, the program must
explicitly decrement the EX field and re-open the previous extent.
If random access outside the first 16K segment is necessary,
then the extent number e be explicitly computed, given an absol-
ute record number r as .

e = I
LlZSJ

SHR(x,7)

or equivalently,

e

this extent number is then placed in the EX field before the seg-
ment is opened. The NR value n is then computed as

n r mod 128

or

n r AND 7FH.

When the programmer expects considerable cross-segment accesses,
it may save time to create an FCB for each of the 16K segments,

open all segments for access, and compute the relevant FCB from
the absolute record number r.

4. SYSTEM GENERATION

As mentioned previously, every diskette used under CP/M is assumed to
contain the entire system (excluding transient commands) on the first two
tracks. The operating system need not be present, however, if the diskette
is only used as secondary disk storage on drives B, C, ..., since the CP/M
system is loaded only from drive A.

The CP/M file system is organized so that an IBM-compatible diskette
from the factory (or from a vendor which claims IBM compatibility) looks
like a diskette with an empty directory. Thus, the user must first copy
a version of the CP/M system from an existing diskette to the first two
tracks of the new diskette, followed by a sequence of copy operations,
using PIP, which transfer the transient command files from the original
diskette to the new diskette.

19

NOTE: before you begin the CP/M copy operation, read your Licensing
Agreement. It gives your exact legal obligations when making reproductions
of CP/M in whole or in part, and specifically requires that you place the
copyright notice

Copyright (c), 1976
Digital Research

on each diskette which results from the copy operation.
4.1. Initializing CP/M from an Existing Diskette

The first two tracks are placed on a new diskette by running the tran-
sient command SYSGEN, as described in the document "An Introduction to CP/M
Features and Facilities." The SYSGEN operation brings the CP/M system from
an initialized diskette into memory, and then takes the memory image and
pPlaces it on the new diskette.

Upon completion of the SYSGEN operation, place the original diskette
on drive A, and the initialized diskette on drive B. Reboot the system;
the response should be v

a> | "
indicating that drive A is active. Log into drive B by typing

B:
and CP/M should respond with

B>

indicating that drive B is active. If the diskette in drive B is factory
fresh, it will contain an empty directory. Non-standard diskettes may,
however, appear as full directories to CP/M, which can be emptied by typing

* %
ERA.)

when the diskette to be initialized is active. Do not give the ERA command
if you wish to preserve files on the new diskette since all files will be
erased with this cdammand.

After examining disk B, reboot the CP/M system and return to drive A for
further operations.

The transient commands are then copied from drive A to drive B using the
PIP program. The sequence of commands shown below, for example, copy the
principal programs from a standard CP/M diskette to the new diskette:

A)PIPJ
*B:STAT.COM=STAT.COM,
*B:PIP.COM=PIP.COM,
*B:LOAD.COM=LOAD. COM‘?
*B:ED.COM=ED. COM'?

20

*B :ASM.COM=ASM.COM,
*B:SYSGEN.COM=SYSGEN. COM)

*B:DDT.COM=DDT. CONb
*

2
-V

The user should then log in disk B, and type the command
* *
DIR *, P

to ensure that the files were transferred to drive B from drive A. The
various programs can then be tested on drive B to check that they were

transferred properly.

Note that the copy operation can be simplified somewhat by creating
a "submit" file which contains the copy commands. The file could be
named GEN.SUB, for example, and might contain

SYSGEN,
PIP B:STAT.COM=STAT.COM,
PIP B:PIP.COM=PIP.COM,
PIP B:LOAD.COM=LOAD. CO%
PIP B:ED.COM=ED.COM,
PIP B:ASM.COM=ASM.COM,
. PIP B:SYSGEN.COM=SYSGEN. COM‘,
PIP B:DDT.COM=DDT. COM’,

The generation of a new diskette from the standard diskette is then done
by typing simply

SUBMIT GEN‘,

5. CP/M ENTRY POINT SUMMARY

The functions shown below summarize the functions of the
FDOS. The function number is passed in Register C (first para-
meter in PL/M), and the information is passed in Registers D,E
(second PL/M parameter). Single byte results are returned in
Register A. If a double byte result is returned, then the high-
order byte comes back in Register B (normal PL/M return). The
transient program enters the FDOS through location "entry" (see
Section 7.) as shown in Section 2. for PL/M, or

CALL entry

in assembly language. All registers are altered in the FDOS.

Function

O O 9 00 1 b W N = C

-
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

Number

System Reset

Read Consnle

Write Console

Read Reader

Write Punch

Write List

(not used)
Interrogate I/0O Status
Alter I/O Status
Print Console Buffer
Read Console Buffer
Check Console Status

Lift Disk Head
Reset Disk System
Select Disk

Open File

Close File

Search First
Search Next
Delete File

Read Record
Write Record
Create File
Rename File
Interrogate Login

Interrogate Disk

Set DMA Address
Interrogate Allocation

Information

ASCII character
ASCII character

ASCII character

I/0 Status Byte
Buffer Address
Buffer Address

Disk number
FCB Address

DMA Address

21

Result

ASCII character

ASCII character

I/0 Status Byte

True if character
Ready

Completion Code

Login Vector

Selected Disk
Number

Address of Allo-
cation Vector

22

6. ADDRESS ASSIGNMENTS

. The standard distribution version of CP/M is organized for an Intel
MDS microcomputer developmental system with 16K of main memory, and two
diskette drives. Larger systems are available in 16K increments, providing
management of 32K, 48K, and 64K systems (the largest MDS system is 62K
since the ROM monitor provided with the MDS resides in the top 2K of the
memory space). For each additional 16K increment, add 4000H to the values
of cbhbase and fbase.

.The address assignments are

boot = Q00OH warm start operation

tfcb = 005CH default file control block location
tbuff= 0080QH default buffer location

tbase= 0100H base of transient program area
cbase= 2900H base of console command processor
fbase= 3200H base of disk operating system
entxy= OOO05H entry point to disk system from

user programs

23

7. SAMPLE PROGRAMS

This section contains two sample programs which interface with the CP/M
operating system. The first program is written in assembly language, and
is the source program for the DUMP utility. The second program is the CP/M
LOAD utility, written in PL/M.

The assembly language program begins with a number of "equates" for sys-
tem entry points and program constants. The equate

BDOS EQU 0005H

for example, gives the CP/M entry point for peripheral 1I/0 functions. The
defualt file control block address is also defined (FCB), along with the
default buffer address (BUFF). Note that the program is set up to run at
location 100H, which is the base of the transient program area. The stack
is first set-up by saving the entry stack pointer into OLDSP, and resetting
SP to the local stack. The stack pointer upon entry belongs to the console
command processor, and need not be saved unless control is to return to the
CCP upon exit. That is, if the program terminates with a reboot (branch to
location 000OH) then the entry stack pointer need not be saved.

The program then jumps to MAIN, past a number of subroutines which are
listed below:

BREAK - when called, checks to see if there is a console
character ready. BREAK is used to stop the listing
at the console

print the character which is in register A at the
console.

PCHAR

CRLF - send carriage return and line feed to the console

PNIB - print the hexadecimal value in register A in ASCII-
at the console

PHEX - print the byte value (two ASCII characters) in
register A at the console

ERR - print error flag #n at the console, where n is

1 if file cannot be opened
2 if disk read error occurred

GNB - get next byte of data from the input file. If the
IBP (input buffer pointer) exceeds the size of the
input buffer, then another disk record of 128 bytes
is read. Otherwise, the next character in the buffer
is returned. IBP is updated to point to the next
character.

24

The MAIN program then appears, which begins by calling SETUP. The SETUP
subroutine, discussed below, opens the input file and checks for errors.
If the file is opened properly, the GLOOP (get lcop) label gets control.

On each successive pass through the GLOOP label, the next data byte
is fetched using GNB and save in register B. The line addresses are listed
every sixteen bytes, so there must be a check to see if the least signi-
ficant 4 bits is zero on éach output. If so, the line address is taken
from registers h and 1, and typed at the left of the line. In all cases,
the byte which was previously saved in register B is brought back to
register A, following label NONUM, and printed in the output line. The
cycle through GLOOP continues until an end of file condition is detected
in DISKR, as described below. Thus, the output lines appear as

0000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb
0010 bb bb bb bb bb bb bb bb bb bb bb bb bb bk bb bb

until the end of file.

The label FINIS gets control upon end of file. CRLF is called first
to return the carriage from the last line output. The CCP stack pointer
is then reclaimed from OLDSP, followed by a RET to return to the console
command processor. Note that a JMP O0OOOOH could be used following the
FINIS label, which would cause the CP/M system to be brought in again from
the diskette (this operation is necessary only if the CCP has been over-
layed by data areas).

The file control block format is then listed (FCBDN ... FCBLN) which
overlays the fcb at location 05CH which is setup by the CCP when the
DUMP program is initiated. That is, if the user types

DUMP X.Y

then the CCP sets up a properly formed fcb at location O5CH for the DUMP

(or any other) program when it goes into execution. Thus, the SETUP sub-
routine simply addresses this default fcb, and calls the disk system to

open it. The DISKR (disk read) routine is called whenever GNB needs another
buffer full of data. The default buffer at location 80H is used, along

with a pointer (IBP) which counts bytes as they are processed, Normally,

an end of file condition is taken as either an ASCII 1lAH (control-z), or

an end of file detection by the DOS. The file dump program, however, stops
only on a DOS end of file.

0100
o8BS
000F
PB14
0002
061
pooB

pasC
po8o

0100
0103
0124
127
N10A

018D

010F
0111
9151

151
0154
156
6159
915C

15D
0160
8162
0163
166
9169

plea
p16C
@l6F
9171
8174

p175
8177
9179

2106000
39

220F01
315101
C3C401

E5D5C5"
0E@B
CDOSA&
C1D1El
c9

E5D5C5
0EQ2
SF
CCes500
ClDlEl
C9

3E@D

CD5D01 -

3E@A
CD5D#A1
Cco9

E60F
FEQA
D28161

~e weo, w0 wo

BDOS
OPENF
READF
TYPEF
CONS
BRKF
FCB
BUFF

[4
o
’

=t~
[us]
o)

* we

OLDSP:
STACK:
STKTOP

00 ~e ~o

REAK:

g e ~e
=z
[
o

FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTS IN HEX

COPYRIGHT (C),

DIGITAL RESEARCH, 1975, 1976

25

-ORG 1008

EQU POO5SH ;DOS ENTRY POINT

EQU 15 ";FILE OPEN

EQU 20 :READ FUNCTION

EQU 2 ;TYPE FUNCTION

EQU 1 ;READ CONSOLE

EQU 11 sBREAK KEY FUNCTION (TRUE IF CHAR READY)
EQU 5CH ;FILE CONTROL BLOCK ADDRESS
EQU 80H ;INPUT DISK BUFFER ADDRESS
SET UP STACK

LXI H,0

DAD SP

SHLD OLDSP

LXI Sp,STKTOP

JMP MAIN

VARIABLES

DS 2 ; INPUT BUFFER POINTER
STACK AREA

DS 2

DS 64

EQU $

SUBROUTINES

;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED
MVI C,BRKF :

CALL BDOS

POP B! POP D! POP H; ENVIRONMENT RESTORED
RET

;PRINT A CHARACTER

PUSH H! PUSH D! PUSH B; SAVED

MVI C,TYPEF

MOV E,A

CALL BDOS

FOP B! POP D! POP H; RESTORED

RET

MVI A,0DH

CALL PCHAR

MVI A,0AH

CALL PCHAR

RET

; PRINT NIBBLE IN REG A

ANI
CpI
JNC

@FH
19
P10

;LOW 4 BITS

817C
417€E

9181
0183
2186

0187
0188
6189
418A
9188
@18C
@18F
190
8193

2194
8197
2199
018C
#19D
19F
#1a2
A1AS

01A8
91AB
@1AD

8180
91B3

p1B4
61B5
9187
188

#1BB
81BC
1BF
81Co

#1C1
p1C2
B1C3

81C4

Cé630
Cc38391

Ce637
CD5D01
Co

F5
oF
or
0F
oF
CD7501
Fl
CD7561
C9

CD6A0]
3E23
CD5C61
78
Cé39
CD5D¢1
Ch6A01
C3r701

380001
FE8D
C2B4@1

CCl16922
AF

S5F
1600 .
3C
320001

ES5
218000
19
7E

El
23
C9o

CDFFO1

~e

~-e

GNB:

~e “o we

~e

~e weo

~e ~o e

LESS THAN OR EQUAL T0O 9

ADI ‘0

JMP PRN B
‘GREATER OR EQUAL TO 1¢
ADI ‘AT - 10

CALL PCHAR

RET

s PRINT HEX CHAR IN REG A
PUSH PSwW

RRC

RRC ,

RRC

RRC

CALL PNIB ;PRINT NIRBLE
POP PSW

CALL PNIB

RET

: PRINT ERROR MESSAGE
CALL CRLF

MVI A, "¢’

CALL PCHAR

MOV aA,B

ADI ‘8-

CALL PCHAR

CALL CELF

JMP FINIS

;GET NEXT BYTE

LDA IBP

CPI 80d

JN2Z GO

READ ANOTHER BUFFEK

CALL DISKR

XRA A

;READ THE BYTE AT BUFF+REG A
MOV E,A

MVI D,0

INR A

STA IBP

POINTER IS INCREMENTED
SAVE THE CURRENT FILE ADDRESS
PUSH B

LXI H,BUFF
DAD D
MOV AM

BYTE IS IN THE ACCUMULATOR

RESTORE FILE ADDRESS AND INCREMENT

POP H
INX H
RET

; READ AND PRINT SUCCESSIVE BUFFERS
CALL SETUP ;SET UP INPUT FILE

26

91C7 3E88 - MVI A,80H

61C9 320001 STA IBP :SET BUFFER POINTER TO 80H
91CC 21FFFF LXT H,OFFFFA :SET TO -1 TO START
GLOOP: 27
G1CF CDASO1 CALL GNB
61D2 47 MOV B,A
. PRINT HEX VALUES
; CHECK FOR LINE FOLD
91D3 70 MOV A, L
6104 EGOF ANT 0FH :CHECK LOW 4 BITS
91D6 C2EBOL INZ NONUM
; PRINT LINE NUMBER
0109 CD6AB1 CALL CRLF
’
: CHECK FOR BREAK KEY
01DC CD5141 CALL BREAK
91DF OF RRC
01E0 DAF701 Jc FINIS ;DON'T PRINT ANY MORE
p1E3 7C MOV A,H
¥1E4 CD8701 CALL PHEX
81E7 7D MOV A, L
P1E8 CD8701 CALL PHEX
NONUM:
G1EB 3E20 , MV A, -
01ED CD5D@1 CALL PCHAR
61FD 78 MOV a,B
#1F1 CD8701 CALL PHEX
01F4 C3CF21 JMP GLOOP
EPSA: ;END PSA
: END OF INPUT
FINIS:
g1F7 CD6Ad1 CALL CRLF
01FA 2A0FD1 LELD OLDSP
01FD F9 SPHL
01FE C9 RET
; FILE CONTROL BLOCK DEFINITIONS
005C = FCBDN EQU FCB+0 ;DISK NAME
005D = FCBFN EQU FCB+1 ;FILE NAME
0065 = FCBFT EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERS)
0068 = FCBRL EQU FCB+12 FILE'S CURRENT REEL NUMBER
0068 = FCBRC EQU FCB+15 ;FILE"S RECORD COUNT (@ TO 128)
307C = FCBCR EQU FCB+32 :CURRENT (NEXT) RECORD NUMBER (¢ TO 1
607D = FCBLN EQU FCB+33 :FCB LENGTH
SETUP: ;SET UP FILE
; CPEN THE FILE FOR INPUT
01FF 115C20 LXI D,FCB
6202 OEGF MVI C,OPENF
3204 CD@500 CALL BDOS
; CHECK FOR ERRORS
0207 FEFF CPI 255

8209 C21102 JINZ OPNOK

820C
029E

6211
212
8215

6216
219
p21C
921E
9221
0224
9226

0227
- 8229

#22C
BZ2E

p231

P60l
CD9401

AF
327C00
Cc9

E5D5C5
115C30
PEl4
CDY500
C1D1lEl
FEGG
C8

FEQL
CAF701

2602
CD9401

~-e

BAD OPEN

MVI B,1 :OPEN ERROR
CALL ERR
OPNOK: ;OPEN IS OK.
XRA A
STA FCBCR
RET

-.

DISKR

~e

~e

-

:READ DISK FILE RECORD
PUSH H! PUSH D! PUSH B

LXI D,FCB

MVI C,READF

CALL BDOS

POP B! POP D! POP H
CPI) ;:CHECK FOR ERRS
RZ

MAY BE EOF

CPI 1

J2Z FINIS

MV I B,2 ;DISK READ ERKROR
CALL ERR

END

28

29

The PL/M program which follows implements the CP/M LOAD utility. The
function is as follows. The user types

LOAD filenamez

If filename.HEX exists on the diskette, then the LOAD utility reads the "hex"
formatted machine code file and produces the file

filename.COM

where the COM file contains an absolute memory image of the machine code,
ready for load and execution in the TPA. If the file does not appear on
the diskette, the LOAD program types

SOURCE IS READER
and reads an Addmaster paper tape reader which contains the hex file.

The LOAD program is set up to load and run in the TPA, and, upon com-
pletion, return to the CCP without rebooting the system. Thus, the pro-
gram is constructed as a single procedure called LOADCOM which takes the
form '

OFAH:
LOADCOM: PROCEDURE;
/* LIBRARY PROCEDURES */

MONl: ...
/* END LIBRARY PROCEDURES */
MOVE: e o ®

GETCHAR: ...
PRINTNIB: ...
PRINTHEX: ...
PRINTADDR: ...
RELOC: ...
SETMEM:
READHEX:
READBYTE:
READCS::
MAKEDOUBLE :
DIAGNOSE:
END RELOC;

DECLARE STACK(16) ADDRESS, SE ADDRESS;
SP = STACKPTR; STACKPTR = .STACK(LENGTH(STACK)) ;

CALL RELOC;

\\ STACKPTR = SP;
RETURN O;
END LOADCOM;

ECF

30

The label OFAH at the beginning sets the origin of the compilation to OFAH,
which causes the first 6 bytes of the compilation to be ignored when loaded
(i.e., the TPA starts at location 100H and thus OFAH,...,J)FFH are deleted
from the COM file). 1In a PL/M compilation, these 6 bytes are used to set up
the stack pointer and branch around the subroutines in the program. In this
case, there is only one subroutine, called LOADCOM, which results in the
following machine memory image for LOAD

OFAH: LXI SP,plmstack ;SET SP TO DEFAULT STACK
OFDH: JMP pastsubr ;JUMP AROUND LOADCOM
100H: beginning of LOADCOM procedure

end of LOADCOM procedure

RET

pastsubr:
EI
HLT

Since the machine code between OFAH and OFFH is deleted in the load,
execution actually begins at the top of LOADCOM. Note, however, that

the initialization of the SP to the default stack has also been deleted;
thus, there is a declaration and initialization of an explicit stack and
stack pointer before the call to RELOC at the end of LOADCOM. This is
necessary only if we wish to return to the CCP without a reboot operation:
otherwise the origin of the program is set to 100H, the declaration of
LOADCOM as a procedure is not necessary, and termination is accomplished
by simply executing a

GO TO OOOOH;

at the end of the program. Note also that the overhead for a system re-
boot is not great (approximately 2 seconds), but can be bothersome for
system utilities which are used quite often, and do not need the extra
space.

The procedures listed in LOADCOM as "library procedures" are a standard
set of PL/M subroutines which are useful for CP/M interface. The RELOC
procedure contains several nested subroutines for local functions, and
actually performs the load operation when called from LOADCOM. Control
initially starts on line 327 where the stackpointer is saved and re-initialized
to the local stack. The default file control block name is copied to
another file control block (SFCB) since two files may be open at the same
time. The program then calls SEARCH to see if the HEX file exists; if not,
then the high speed reader is used. If the file does exist, it is opened for
input (if possible). The filetype COM is moved to the default file control
block area, and any existing copies of filename.COM files are removed from
the diskette before creating a new file. The MAKE operation creates a new
file, and, if successful, RELOC is called to read the HEX file and produce
the COM file. At the end of processing by RELOC, the COM file is closed
(line 350). Note that the HEX file does not need to be closed since it
was opened for input only. The data written to a file is not permanently
recorded until the file is successfully closed.

EY

Disk input characters are read through the procedure GETCHAR on line
137. Although the DMA facilities of CP/M could be used here, the GETCHAR
procedure instead uses the default buffer at location 80H and moves each
buffer into a vector called SBUFF (source buffer) as it is read. On exit,
the GETCHAR procedure returns the next input character and updates the
source buffer pointer (SBP).

The SETMEM procedure on line 191 performs the opposite function from
GETCHAR. The SETMEM procedure maintains a buffer of loaded machine code
in pure binary form which acts as a "window" on the loaded code. If there
is an attempt by RELOC to write below this window, then the data is ignored.
If the data is within the window, then it is placed into MBUFF (memory
buffer). If the data is to be placed above this window, then the window
is moved up to the point where it would include the data address by writing
the memory image successively (by 128 byte buffers), and moving the base
address of the window. Using this technigue, the ' programmer can recover
from checksum errors on the high-speed reader by stopping the reader,
rewinding the tape for séme distance, then restarting LOAD (in this case,
LOADing is resumed by interrupting with a NOP instruction). Again, the
SETMEM procedure uses the default buffer at location 80H to perform £he
disk output by moving 128 byte segments to 80H through OFFH before each
write. -

00001
00naB2
Go0O3
bpouvs
0BovS
veooo6
po0v7
00B08
POB09
00010
02911
npal2
00613
ESS =/
90014
00015
200616
/
b6nl17
00018
08019
00020
00921
0022
*/
00023
p0024
ROM THE
08825

S THE MACH

N N N R O e e e el

LAC IS I SO I SO I L S [NSHLS IS

N

2

00026 .- 2

*/
60027

* kk kK Kk
00028
¥8329
00830
00031
00032
000833
000834
000835
00036
30837
08038
00039
00840
00041
00042
00043
20044
16045
20046
50047
p0048
00B49
n0050

x

NN NMDDNONNDWWWNONWWW W oNNDWWWWNNDNND

32

QFAH: DECLARE BDOS LITERALLY "0@05HE";
/* TRANSIENT COMMAND LOADER PROGRAM

COPYRIGHT (C) DIGITAL RESEARCH
JUNE, 1975
*/

LOADCOM: PROCEDURE BYTE;
DECLARE FCBA ADDRESS INITIAL(5CH) ;
DECLARE FCB8 BASED FCBA (33) BYTE;

DECLARE BUFFA ADDRESS INITIAL(8%H), /* I/0 BUFFER ADDR
BUFFER BASED BUFFA (128) BYTE;
DECLARE SFCB(33) BYTE, /*VSOURCE FILE CONTROL BLGCCK =

BSIZE LITERALLY "1924°,

EOFILE LITERALLY “1AH",

SBUFF (BSIZE) BYTE /* SOURCE FILE BUFFER */
INITIAL(EOFILE),

RFLAG BYTE, /* READER FLAG */

SBP ADDRESS; /* SCURCE FILE BUFFER PGINTEK

/* LOADCOM LOADS TRANSIENT COMMAND FILES TO THE DISK F
" CURRENTLY DEFINED READER PERIPHERAL. THE LOADER PLACE
CODE INTO A FILE WHICH APPEARS IN THE LOADCOM COMMAND

/* **xkxkkkxxxxxxk* [TBKARY PROCEDURES FOR DISKIQ ****xxx

MON1: PROCEDURE(F,A);
DECLARE F BYTE,
A ADDRESS;
GO TO BDGS;
END MON1;

MON2: PROCEDURE(F,A) BYTE;
DECLARE F BYTE,
A ADDRESS;
GO TO BDOS:
END MON2Z;

READRDR: PROCEDURE BYTE;
/* READ CURRENT READER DEVICE */
RETURN MON2(3,0);
END KREADRDR;

DECLARE
TRUE LITERALLY “1°7,
FALSE LITERALLY “0°,
FOREVER LITERALLY “WHILE TRUE’,
CR LITERALLY °“13°, _

90851 2 LF LITERALLY “10°,
00052 2 WHAT LITERALLY °“637:
pe@s53 2

pOBs4 2 PRINTCHAR: FROCEDURE (CHAR) ; 33
geB55 3 DECLARE CHAR BYTE;
90656 3 CALL MON1 (2,CHAR);
pg0e57 3 END PRINTCHAR;

900858 2

peAS9 2 CRLF: PROCEDURE;

p0060 3 CALL PRINTCHAK(CR) ;
00061 3 CALL PRINTCHAR(LF);
gov62 3 END CRLF;

0gR63 2

goo64s 2 PRINT: PROCEDURE (B) :
60065 3 DECLARE A ADDRESS:
08066 3 /* PRINT THE STRING STARTING AT ACDDRESS A UNTIL THE
g0067 3 NEXT DOLLAR SIGN IS ENCOUNTERED */
20068 3 CALL CRLF;

00069 3 CALL MON1(9,4);
peo78 3 END PRINT;:

gpo71 2

gov72 2 DECLARE DCNT BYTE;

gev73 2

0e074 2 INITIALIZE: PROCEDURE;
@8075 3 CALL MON1(13,0):;
40076 3 END INITIALIZE;
pe077 2

Ao078 2 SELECT: PROCEDURE (D) ;
60079 3 DECLARE D BYTE;
90080 3 CALL MON1(14,D);
pg281 3 END SELECT;

go082 2

p0@83 2 OPEN: PROCEDURE (FCB) ;
go084 3 DECLARE FCB ADDRESS;
90885 3 DCNT = MON2(15,FCB);
p0086 3 END OPEN;

6e087 2

90088 2 CLOSE: PROCEDURE (FCB) ;
PE@89 3 DECLARE FCB ADDRESS;
20090 3 DCNT = MON2(16,FCB);
99091 3 END CLOSE;

ge092 2

90093 2 SEARCH: PROCEDURE (FCB) ;
00094 3 DECLARE FCB ADDRESS;
06095 3 DCNT = MON2(17,FCB);
00096 3 END SEARCH;:

gee97 2

09098 2 SEARCHN: PROCEDURE; .
98099 3 DCNT = MON2(18,0):;
90108 3 END SEARCHN;

gglel 2

90102 2 DELETE: PROCEDURE (FCB) ;
08183 3 DECLARE FCB ADDRESS:
90104 3 CALL MON1(19,FCB);
2105 3 END DELETE;

ggloe 2

00107 2 DISKREAD: PROCEDURE (FCB) BYTE;
96108 3. DECLARE FCB ADDRESS:
96109 3 RETURN MON2 (20,FCB) ;
90119 3 END DISKREAD:

#0111
00112
90113
00114
00115
60116
00117
0118
60119
00129
#0121
8122
60123
00124
80125
00126
80127

%* *kk k% */

60128
129
08130
80131
00132
00133
00134
00135
00136
00137
00138
#9139
00140
09141
00142
00143
#0144 -
00145
00146
80147

RORS$ *) ;
00148
00149
00150
00151
80152
90153
80154
00155
00156
00157
80158
08159
00160
#0161
08162
80163
90164
00165
80166
00167
80168

bhwwuw'wuwwwmuhwwwumw DN WWLWWLWLNWWWNDRNWWWNN

NDNWwWWWhhNhDWWWWDONDNDWWAROLLUTWM

DISKWRITE: PROCEDURE (FCB) BYTE;
DECLARE FCB ADDRESS;
RETURN MON2(21,FCB) ; 24
END DISKWRITE;

MAKE: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
DCNT = MON2(22,FCB) ;
END MAKE;

RENAME: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
CALL MON1(23,FCB);
END RENAME;

/* kkkkkkkkkkkkkkkkkk*x END OF LIBRARY PROCEDURES KhkkXXK*XX"™"

MOVE: PROCEDURE(S,D,N):
DECLARE (S,D) ADDRESS, N BYTE,
A BASED S BYTE, B BASED D BYTE;
DO WHILE (N:=N=1) <> 255;
B = A; S=S+1; D=D+1;
END;
END MOVE;

GETCHAR: PROCEDURE BYTE;
/* GET NEXT CHARACTER */
DECLARE I BYTE;
IF RFLAG THEN RETURN READRDR;
IF (SBP := SBP+1) <= LAST(SBUFF) THEN
RETURN SBUFF (SBP) ;
/* OTHERWISE READ ANOTHER BUFFER FULL */
DO SBP = @ TO LAST (SBUFF) BY 128;
IF (I:=DISKREAD(.SFCB)) = 0 THEN
CALL MOVE (84H, .SBUFF (SBP) ,80H) ; ELSE
DO; IF I<>1 THEN CALL PRINT(. DISK READ ER

SBUFF (SBP) = EOFILE;
SBP = LAST (SBUFF) ;
END;
END;)
SBP = #; RETURN SBUFF;
END GETCHAR;
DECLARE
STACKPOINTER LITERALLY “STACKPTR ;

PRINTNIB: PROCEDURE(N) ;
DECLARE N BYTE;
IF N > 9 THEN CALL PRINTCHAR(N+ A°-10); ELSE
CALL PRINTCHAR(N+°0°7);
END PRINTNIB;

PRINTHEX: PROCEDURE (B) ;
DECLARE B BYTE;
CALL PRINTNIB(SHR(B,4)); CALL PRINTNIB(B AND 0FH);
END PRINTHEX;

woy1l69
00170
pA171
P0172
90173
00174
00175
90176
00177
00178
00179
00189
9a181
0182
P9183
00184
00185
oC */

P0186
p0187
00188
00189
00190
00191
20192
*/

pa193
P0194
P0195

GRAPH */

00196
0197
90198
P@199
00200
00201
00202
P0203
00204
90285
0206
00207
p0208
ve209
p9210
90211
p0212
80213
00214
00215
p6216
00217
00218
09219
00220
00221
00222
00223
p0224
06225

WWWLWWwWwwwihrphohoNhWWwWwN

BwWwwwwww

L -

B WWbhSsLpLWWEREERBABRBWWAELBUIOTDVOVOTULITOMTULTUTOY N

PRINTADDR: PROCEDURE (A) ;
DECLARE A ADDRESS; '
CALL PRINTHEX(HIGH(A)); CALL PRINTHEX(LOW(A)) ;
END PRINTADDR;

35
/* INTEL HEX FORMAT LOADER */
RELOC: PROCEDURE;
DECLARE (RL, CS, RT) BYTE;
DECLARE
LA ADDRESS, _/* LOAD ADDRESS */
TA ADDRESS, /* TEMP ADDRESS */
SA ADDRESS, /* START ADDRESS */
FA ADDRESS, /* FINAL ADDRESS */
NB ADDRESS, /* NUMBER OF BYTES LOADED */
SP ADDRESS, /* STACK POINTER UPON ENTRY TO REL

MBUFF (256) BYTE,
P BYTE,
L ADDRESS;

SETMEM: PROCEDURE (B);
/* SET MBUFF TO B AT LOCATION LA MOD LENGTH (MBUFF)

DECLARE (B,I) BYTE; il

IF LA < L THEN /* MAY BE A RETRY */ RETURN
DO WHILE LA > L + LAST(MBUFF); /* WRITE A PARA

DO I = § TO 127; /* COPY INTO BUFFER */
BUFFER(I) = MBUFF(LOW(L)); L =1L + 1;

END;
/* WRITE BUFFER ONTQ DISK */
P=P+ 1;

IF DISKWRITE (FCBA) <> @ THEN
DO: CALL PRINT(. DISK WRITE ERRORS’):
HALT;
/* RETRY AFTER INTERRUPT NOP */
L =1L - 128;
END;
END;
MBUFF (LOW(LA)) = B:
END SETMEM;

READHEX: PROCEDURE BYTE;
/* READ ONE HEX CHARACTER FROM THE INPUT */
DECLARE H BYTE; .)
IF (H := GETCHAR) - ‘0 ° <= 9 THEN RETURN H -
IF H- A" > 5 THEN GO TO CHARERR;
RETURN H - A" + 10;

END READHEX;

g

READBYTE: PROCEDURE BYTE;
/* READ TWO HEX DIGITS */
RETURN SHL (READHEX,4) OR READHEX;
END READBYTE;

READCS: PROCEDURE BYTE;
/* READ BYTE WHILE COMPUTING CHECKSUM */

N

(]
L

bb226
00227
00228
00229
00230
00231
00232
*/
p©v233
008234
80235
06236
06237
0238
80239
$0240
00241
08242

00243
n0244
nB245
00246
00247
90248
66249
40250
pe251
#0252
06253
00254

80255

80256
66257
P0258
00259
00260
o261
8262
00263
08264
80265
*/

00266
00267
TERED
0268
#0269

60270
8271
00272
0273
00274
80275
80276
88277
00278
8279

B W W BB

VNEa b wWwwds s s

WWWWWWWs L HUMUTU BB DB DS SBWUVU

SwNww

B W wwwbww w s

DECLARE B BYTE;
CS = CS + (B := READBYTE);
RETURN B;
END READCS; 36

MAKESDOUBLE: PROCEDURE(H,L) ADDRESS;

/* CREATE A BOUBLE BYTE VALUE FROM TwO SINGLE BYTE

DECLARE (H,L) BYTE;
KETURN SHL(DOUBLE(H) ,8) OR L;
END MAKE$SDOUBLE;

DIAGNOSE: PRCCELCUKE;

DECLARE M BASED TA BYTE;

NEWLINE: PROCEDURE:

_ CALL CRLF; CALL PRINTADDK(TA); CALL PRINTCHAR(:")

CALL PRINTCHAR(™ °):
END NEWLINE;

/* PRINT CIAGNOSTIC INFORMATION A1 THE CONSCOLE */

CALL PRINT(. LOAD ADDRESS $°); CALL PRINTADDK(TA)
CALL PRINT (. ERROR ADDRESS $°); CALL PRINTACDE(LA)

CALL PRINT (. BYTES READ:$7); CALL NEWLINE;
DO WHILE TA < LA;
IF (LOW(TA) AND QAFHB) = @ THEN CALL NEWLINE:
CALL PRINTHEX (MBUFF (TA-L)); TA=Ta+1;:
CALL PRINTCHAR(")
END;

CALL CRLF;

HALT;

END DIAGNOSE;

/* INITIALIZE */

SaA, FA, NB = 0;

SP = STACKPOINTEK;

P = 0; /* PARAGRAPH COUNT */ -

TA,LA,L = 108H; /* BASE ADDRESS OF TKANSIENT ROUUTINES

IF FALSE THEN

CHARERR: /* ARRIVE HERE IF NON-HEX DIGIT IS ENCOU

DO; /* RESTORE STACKPOINTER */ STACKPUINTEK =

CALL PRINT (., NON-HEY¥ADECIMAL DIGIT ENCOUNTERED $7)

CALL DIAGNOSE;
END;

/* READ RECORDS UNTIL :0@XXXX IS ENCOUNTERED */

DO FOREVER;

/* SCAN THE : *x/
DO WHILE GETCHAR <> “:7;
END;

-~ ~o

00280 4

pP281 4 /* SET CHECK SUM TO ZERO, AND SAVE THE RECORD LENG
TH */

pe282 4 CS = 0;

PA283 4 /* MAY BE THE END OF TAPE */ 37

90284 4 IF (RL := READCS) = @ THEN

P0285 4 GO TO FIN;

00286 4 NB = NB + RL;

70287 4

00288 4 TA, LA = MAKESDOUBLE (READCS,READCS) ;

P6289 4 IF SA = @ THEN SA = LA;

00290 4

00291 4 ‘

90292 4 /* READ THE RECORD TYPE (NOT CURRENTLY USELD) */

9@293 4 RT = READCS;

pP294 4

08235 4 /* PROCESS EACH BYTE */

00296 4 DO WHILE (RL := RL - 1) <> 255;

80297 4 CALL SETMEM (READCS); LA = LA+1;

p0298 5 END;

90299 4 IF LA > FA THEN FA = LA - 1;

p0300 4

00301 4 /* NOW READ CHECKSUM AND COMPARE */

PP302 4 IF CS + READBYTE <> @ THEN

0303 4 _ __ ___ __DO; CALL PRINT(, CHECK SUM ERROR $°);

@d384 5 CALL DIAGNOSE:

90305 5 END:

20306 4 END;

90387 3

99308 3 FIN: :

pB309 3 /* EMPTY THE BUFFERS */

00318 3 TA = LA;

pg311 3 DO WHILE L < TA;

#9312 3 CALL SETMEM(@); LA = LA+1;

00313 4 END;

pO314 3 /* PRINT FINAL STATISTICS */

98315 3 CALL PRINT(. FIRST ADDRESS $°); CALL PRINTADDR(SA):

$e316 3 CALL PRINT(. LAST ADDRESS $°); CALL PRINTADDR(FA);

90317 3 CALL PRINT(. BYTES READ $°); CALL PRINTALDR(NB) ;

90318 3 CALL PRINT (. RECORDS WRITTEN $°); CALL PRINTHEX(P):;

90319 3 CALL CRLF;

00320 3

90321 3 END RELOC;

9@322 2

2323 2 /* ARRIVE HERE FROM THE SYSTEM MONITOR, READY TO READ THE~

HEX TAPE

90324 2 ,

00325 2 /* SET UP STACKPOINTER IN THE LOCAL AREA */

99326 2 DECLARE STACK(16) ADDRESS, SP ADDRESS:

00327 2 SP = STACKPOINTER; STACKPOINTER = ,STACK (LENGTH (STACK)) ;

98328 2

p0329 2 SBP = LENGTH (SBUFF) ;

00330 2 /* SET UP THE SOURCE FILE */

PB331 2 CALL MOVE (FCBA, .SFCB,33);

P@332 2 CALL MOVE(.(HEX ,0),.SFCB(9),4):

p@333 2 CALL SEARCH(.SFCB);

66334 2 IF (RFLAG := DCNT = 255) THEN

p@335 2 CALL PRINT(. SOURCE IS READERS"); FLSE

90336 2 DO; CALL PRINT(. SOURCE IS DISKS);

#9337 3 CALL OPEN(.SFCB) ;

08338 3 ~IF DCNT = 255 THEN CALL PRINT (., =-CANNOT OPEN SOQURC
ES");

08339 3 END; 28
08348 2 CALL CRLF;

gB341 2

00342 2 CALL MOVE(. COM™,FCBA+9,3);

0@343 2

00344 2 /* REMOVE ANY EXISTING FILE BY THIS NAME */

#0345 2 CALL DELETE(FCBA);

88346 2 /* THEN OPEN A,NEW FILE */

0347 2 CALL MAKE (FCBA); FCB(32) = 0; /* CREATE AND SET NEXT RECORD */
09348 2 IF DCNT = 255 THEN CALL PRINT(. NO MORE DIRECTCRY SPACES
); ELSE

00349 2 DO; CALL RELQC;

00358 3 CALL CLOSE (FCBA) ;

‘00351 3 IF DCNT = 255 THEN CALL PRINT (. CANNOT CLOSE FILES
#0352 3 END;

06353 2 CALL CRLF;

p0354 2

88355 2 /* RESTORE STACKPOINTER FOR RETURN */

pg356 2 STACKPOINTER = SP;

88357 2 RETURN @;

#0358 2 END LOADCOM;

#8359 1 ;

pa368 1 EOF

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	10a
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

