‘f

SPD’ Symbolic
Assembly Language
Reference Manual

Taw

Vaxjo Data System AB

This manual, assembled in March 1976 by VAXJO DATA

SYSTEM AB, SWEDEN, consists of

1. SPD Symbolic Assembly Language Reference Manual MS-7215.0

2. SPD Relocatable Assembly System (75-06-24)

Vix3jd March 1976

2

A

SPD SYMBOLIC

ASSEMBLY LANGUAGE

REFERENCE MANUAL

ORDER NUMBER: MS-7215.0

DATE: AUGUST, 1975

PREFACE

This manual supercedes the SPD 10/20 Assembler Manual, MS-7113,

and is the only assembler manual required for the SPD 10/20, SPD

10/24, SPD 10/25, and SPD 20/20.

It should be noted that the SPD 10/24 was especially designed for overseas

customers.,

The SPD 10/24 is not available within the U.S. A,

Copyright ® 1974 by INCOTERM Corporation
Copyright ® 1975 by INCOTERM Corporation

The information in this manual is presénted for informational purposes
and is not intended or licensed to be used for the construction of equip-
ment. The information is believed to be accurate, but no réesponsibility
{s assumed for inaccuracies or for consequences of using the informa-

tior.

Further, INCOTERM Corporation makes no representation that use of the
information in this manual will not infringe on existing or future patent
rights of INCOTERM or of others.

This system is built and sold solely by a licensee, TRANSAC,

Ci

o

Taf;le of Contents

SECTION I. INTRODUCTION

General
Notation

SECTION II ASSEMBLY SOURCE FORMAT

General
Character Set
Operation Format
Comment Lines
Title Lines

SECTION III EXPRESSIONS

General
Operands
Symbols
Constants
Special Symbols
Operators
Addition
Compare Equal) .
Compare Greater Than or Equal
Compare Greater Than
Compare Less Than or Equal
Compare Less Than ‘
Compare Not Equal
Division
Left Shift
Logical And
Logical Exclusive Or
Logical Or
Mutltiplication
Right Shift
Subtraction -
Operator Precedence and Order of Operations
Omission of Zero Operands ’
Ekamples

W W W W
| I SR R S |

1
e e a0 00 00 00 =) =) = O O U UT DTSl Y R W B e

.o O

W
!

Wy WwwWwwwinwwwwwww
T

Table of Contents
(cont'd)

SECTION IV MACHINE OPERA TIONS

General

Word Class Instructions

Byte Class Instructions
Indexing

Operate Class Instructions
Immediate Class Instructions
Jump on Condition Instructions
Compare and Jump Instructions
Input-Output Instructions
Extended Mnemonics

SECTION V ASSEMBLER PSEUDO-OPERATIONS

General

ADDR -~ Generate two-byte data
ALGN -- Align to word boundary
BOOT -- Set boot mode

BSS -- Reserve storage

BSZ -- Generate zeros

BYTE -- Generate byte data
CNFG -- Specify configuration mode
DAC ~- Generate address constant
DUP -- Duplicate source line
EJECT -- Eject assembly listing to new page
END -- End assembly

ENDF -- End conditional assembly range
EQU -- Equate symbol to value

ESEG -- End overlay segment

HEX -- Generate hexadecimal data

IF -- Start conditional assembly range
LBL -- Generate label data

LIF -- Control Listing of IF Ranges

LIST -- Control Listing Mode

L' TXT -- Generate lower case text string

LTX8 -- Generate lower case text string with 8th bit set

NOBJ -- Turn off object output mode
OBJ -- Turn on object output mode
ORG -- Set assembly origin

PAGE -~ Set page depth

SEG -- Start of overlay segment

(G E RGBT, ST, BC N G R NC I |
1
Lo = IR IR I R T, BN S U SU RS

i 1 1

S SO N N T NN
1
0 0 =] O UL N () ke e

Ut
]
ot

U >

LI} | S S B |
—
i =)

C5-12

5-13
5-13
5-14
5-14
5-15
5-16
5-17
5-17
5-18
5-19
5-20
5-21
5-22

&

\a

Table of Contents

(cont'd)

SET -- Set symbol to value

SIZE -- Specify memory size

TEXT -- Generate text string

TXT8 -- Generate text string with 8th bit
WORD -- Generate word data

XORG -- Set execution origin

XREF -- Set cross reference mode

SECTION VI ADDRESSING RESTRICTIONS

Gereral

CNFG 10 Addressing
CNFG 20 Addressing
CNFG 24 Addressing
CNFG 25 Addressing
CNFG 0 Addressing
Size 0

Effect of Restrictions
External Memory
Lioader Considerations
Literal Pool

BSS Operations

SECTION VIIFORMAT OF PRINTED LISTING

General

Title Lines

Generated Machine Instructions
Comment Lines
Pseudo-Operations
Update/Deletion Flags

Literal Table

Cross Reference Listing
Error Flags

APPENDIX A ASSEMBLER SYNTAX, QUICK REFERENCE

Expression Operands
Expression Operators
Title Lines

Operation Formats
Key to Symbols

iii

SO>I OO OO O
1

5-23
5-24
5-26
5-27
5-28
5-29
5-20

o
1
—

t
O~ U U B R o NN R e

~1
1
—

I N I N I I I IS
1
o -SRI, BRI N N

Table of Contents
{cont'd)

APPENDIX B ERROR FLAGS, QUICK REFERENCE
APPENDIX C COMPATIBILITY WITH PREVIOUS VERSIONS

APPENDIX D SPD/DOS ASSEMBLE OPERATING NOTES

Source Input Format

Object Output Format
Operating Procedures

Option Letters

File Allocation

Definition of Standard Symbols
Display Messages

Examples

Listing Format

Format of Listing on Diskette

APPENDIX E LIST OF USEFUL PUBLICATIONS

iv

i~

Figure 2-1.
Figure D-1.

Figure D-2.
Figure D-3.

Figure D-4.

Table D-1
Table D-2

List of Illustrations

Sample Coding Form

Keyboard Layout for Preparation of Input to SPD/DOS
ASSEMBLE (10/20 Upper Case Only Keyboard)
Keyboard Layout for Preparation of Input to SPD/DOS
ASSEMBLE (10/20 Upper/Lower Case Keyboard)
Keyboard Layout for Preparation of Input to SPD/DOS
ASSEMBLE (20/20 Upper Case Only Keyboard)
Keyboard Layout for Preparation of Input to SPD/DOS
ASSEMBLE (20/20 Upper/Lower Case Keyboard)

List of Tables

Card Punch Codes for Input to SPD/DOS ASSEMBLE
ASSEMBLE Work File Capacity

3

o

el

SECTION I

INTRODUCTION

GENERAL
The SPD symbolic assembly language is designed to aid in the preparation
of programs for execution on any of the following INCOTERM processing
units:

SPD 10/20

SPD 10/24

SPD 10/25

SPD 20/20
The assembler relieves the programmer of many of the burdensome
tasks which would be associated with programming in machine language

while permitting full access to the capabilities of the processing unit.

Mnemonic operation codes are provided for the various machine instruc-
tions and the assembler outputs the appropriate bit patterns. A location
counter maintained by the assembler allows symbols to be defined as

labels for instructions. These labels may be referenced by other instruc-
tions to obtain-the corresponding location values, thus relieving the
programmer of the task of assigning storage locations. A separately
maintained load counter controls the final load location. The load counter's
value is normally the same as that of the location counter, but the values
may be separated to allow assembly of code at cne location for eventual

execution at some other location.

For locations equipped with an SPD D-250 Dual Diskette and printer,

the SFD DOS Assembler is available (See also Appendix D). ‘ 8
This assembler translates SPD assembly language into machine language.

It is basically a utility program which runs under control of the SPD/DOS

system on an SPD 10/20, 10/24, 10/25, or 20/20. The output is a DOS

loadable object file on disk.

The DOS COPY utility can be used to obtain object copies on other media.

Notation
A word surrounded by angle brackets, e.g. <label> represents a generic
type of operand. The ensuing text describes the allowed possibilities for

the operand.

A section of syntax enclosed in square brackets, e.g. [code], indicates
an optional part of -the construction which may be omitted. The text

explains the effect of including or excluding such components.

SECTION II

ASSEMBLY SOURCE FORMAT

GENERAL

An SPD assembly language program consists of a series of lines each
containing a single statement. The length of these lines is 1-80 charac-
ters, although for convenient use of the SPD/DOS EDIT facility, it may
be desirable to restrict the length of all lines to 64 characters for com-

patibility with the SPD 10/20 screen format.

CHARACTER SET

The character set used is the upper case ASCII set (corresponding to
codes X'20' - X'5F'). Any of the 64 characters of this set may appear
in character and text constants, but only the following have specific
syntactic use:

$ dollar

& ampersand

' quote

{ left parenthesis

) right parenthesis

* asterisk

hash

+ plus
comma

- minus

. period

/ slash

0-9 digits

= equal

@ at

A-Z letters

OPERATION FORMAT ~

The basic operation [ormal is shown l)glow:
label opcode operands comments «
The label, if present, starts in column L. The first character of the label
must be a letter and the remaining characters are from the set 0-9 (digits),
A -7 (letters), $ (dollar) and & (ampersand). The label length is from

1 -8 characters. If no label is present, column one must be blank.

The opcode is either a machine operation or pseudo-operation mnemonic.

It normally starts in column 10 and it-must be separated by at least one

blank from the label or, if there is no label, .must start in or after ¢olumn ~
2. In the event that indirect addressing is permitted, it is specified by

immediately following the opcode with * (asterisk). o

The operands field, if present, consists of one or more operands separated
by commas. The number of operands depends on the opcode as described

in Section IV. No blanks may appear in the operands except within character
or text constants, thus a blank is used as a term'mato;'. The operands field
must be separated by at least one and noi more than nine blanks from the

opcode field. In the case where indirect addressing is specified, no

separating blanks are required, but they may be present.

The comments field, which is optional, consists of any sequence of ASCIL
characters including blanks. The first character of this field must be
separated from the r;»perands field by at least one blank. In the case
where there is no operands field, the comment field must be separated

from the opcode field by at least ten blanks.

Although the above rules ailow "free format' input, standard INCOTERM
coding conventions require the following format to be followed where
possible. See Figure 2-1 for a sample coding form.

colé 1—8 label

cols 10-15 opcode

‘cols 16-29 operands
cplsu30-n . comment

COMMENT LINES

Any.assembly source line which contains * (asterisk) or # (hash) m)
column one is treated as a comment by the assembler, It will be printed
if the listing mode is specified (see LIST, LIF pseudo-operations) but
will otherwise be ignored. It is also possible to selectively list only

the comments starting with *.

TITLE LINES
The printed output has two title lines of forty characters each. The main

title is initially set from the source file label, or if no such label is

2-3

available, from columns 2-41 of the initial source line.

Subsequently, this main title can be modified by the occurrence of one
or more title modification lines in the source program with the following
format:

cols 1 & (ampersand)
cols 2-41 title modification data

Blanks/ in columns 2-41 have no effect. Neon-blank characters repiaqe

the coireéponding character positions of the main title. These title
modification lines are interpreted in order in pass one of the assembly
"and the resulting title ﬁsed to label the object outputkam’i to head the printed
output throughout pass two {i. é.‘ title modification iines have no effect in

pass -two).r

Title modification lines are not recognized if deleted by IF-ENDF or DUP.
, : . T “

Thus c¢onditional assembly operations may be used to select ai appropriate

main title.

23

wzo g 3urpon eydwieg *T-7 sandrg

64 [02 jue |94 |se|ra(ee fzalaz|ozas|en) 29| 9r 9% v fos|er| sr|2r| 9% 5o rv oy for [ar | onf se[sijec tifoc| ezfoz|z zef izjoz]sulsilctfortsareifzsjrmi s s el oSl efei e

oifsz|eeforlsz vefeefzefie) o6 ine) 19 5]y jss zsl sl osex| sr]or|srlsrive) cofer} irjorfsc]es| ccfoe] sejreycafze| teforlst|szfz | oz {szrefez| zefiz | ozjsi Bt zi| oe| sy riferfaijre| o] sy 8} Lpo) s v EfT

NOILY2IdILNZal SLHAMNOD LLAEEL L HOILYY¥3dO ANYN

IINIHIATY LYYHD H0TS

nvaooud WiD4 WYSD0U ATSHISSY 05L10-5SYW "NLYN ‘QYON JHONHLYHIS D aban 31va
10 39vd awva 0z/01 ..Qds JTOE 577772\ \\\ “ON 30HVKD

y # 4

o
Py
I

I

The sub-title printed on the listing is initially blank. It may be set by a
sub-title line in the source with the following format:

©

col 1 ! (quote)
cols 2-41 sub-title data (40 ASCII characters)

The occurrence of such a line implies an automatic page eject so that
subsequent pages (up to the next sub-title line in the source) are printed
with the correct sub-title. Sub-title lines are only effective if they occur

in a listed section of code (see LIST, LIF pseudo-operations).

&

2-6 a

@

E ey

SECTION III

EXPRESSIONS

GENERAL

The power of a symbolic assembler lies in its ability to reference values
in a symbolic manner. This is achieved by allowing expressions to be
used wherever a value is required (é.g. operand location, I/O function

code, immediate operand value).

Expressions may either be simple operands (e.g. constants or label
references), or they may be calculations involving the use of operators.

It is important to understand that such calculations are performed entirely
at assembly time and do not correspond to the execution of code at execution

time,

OPERANDS
Operands may stand on their own as expressions or they may be joined

together with operators to form complex expressions.

Symbols

Any symbol which has been given a value somewhere, by appearing in the
label field of a suitable machine or pseudo-operation line, may be used as
an operand. The value is the symbol value which is normally (i.e. except in
the special cases of EQU, SET, SEG) the location counter value at the

definition point.

The syntax of symbol references is the same as that previously described for

labels. The length of symbols varies from 1-8 characters and the reference

3-1

B

must be identical to the definition,

k23
Due to the two-pass nature of the assembler, labels may usually be referenced
before they are defined. In certain pseudo-operations, such "forward"
references are not permitted. These exceptions are noted in the pseudo-
operation section.
Constants
Constant operands may be in any of the following formats:
nnn. .. Decimal integer. The n's are decimal digits (0-9). Values
larger than 65535 are interpreted modulo 65536,
D'nnn..." An alternate form for a decimal integer. Used particularly
in conjunction with repeat counts in ADDR, BYTE, WORD
operands (see separate descriptions). ”
B'bbbb...! Binary integer. The b's are binary digits (0 or 1). The
integer may have one or more digits, the result being right)
justified. Only the low order 16-bits are retained. &
Olcco. ! Octal integer. The c's are octal digits (0-7). The integer
may have one or more digits. Numbers larger thanO'177777"
are interpreted modulo O'200000'.
X'xxx,..! Hexadecimal integer. The x's are hexadecimal digits (0-9,
A-F). The number may have one or more digits. Only the
low order four digits are retained, the result being right
justified if fewer than four digits are given.
'a! Single character ASCII constant. a is any legal ASCIL character
except quote. The value of the operand is the corresponding
ASCII code for the character. If a constant quote is required,
it can be expressed in hexadecimal (i.e. X'27').
tab! Double character ASCII constant. a,b are any legal ASCII o
characters except quote. The value of the operand is 256%
(ASCII code for a) + (ASCII code for b).
o

I

Special Symbols

Special symbols are predefined as follows and miay be used as operands.

$

$B

$C

$D

$L

$X

The current value of the location counter. This is always the value at
the start of the referencing line before generating any code or otherwise
interpreting the line.

A sixteen-bit value which can be set externally without affecting the
source. The method of setting $B depends on the assembler in use
(see separate appendices on specific assemblers). The use of $B
allows one source program to assemble more than one version of a
program by means of conditional assembly operations.

The location of the cursor register: X'0FFE' in CNFG 10 or CNFG 25
assembly, X'7FFE' in a CNFG 0, CNFG 24, or CNFG 20 assembly.
$C has the same value as $X but $C is preferred usage if the register
is being used as a cursor register.

Duplication count. When a line is duplicated by means of the DUP
pseudo-operation, $D has successive values of 1, 2, 3,...for duplica-
tions of the line. The value of $D is zero in non-DUPed lines.

The current value of the load counter. This is always the value at the
start of the referencing line before generating any code or otherwise
interpreting the line.

The location of the index register: X'0FFE' in CNFG 10 or CNFG 25
assembly, X'7FFE! in CNFG 0, CNFG 20, or CNFG 24 assembly.

$X has the same value as $C but $X is preferred usage when the register
is used as an index register.

An alternate form of a constant zero operand. This form is conventionally
used when the value is to be set at execution time (e.g. DAC *% for the
entry point of a subroutine called by JSR.)

w
|
w

OPERATORS
Operators are written between two operands and perform a computational
operation on the two operand values. The following paragraphs describe

the available operators in alphabetical order.

Addition
The addition operator + adds its two operands as 16-bit unsighed quantities,
ignoring overflow. This is equivalent to a twos- complement add if the

operands are regarded as signed twos-complement values.

Examples: 242 =4
X'8000'+X'8000'= 0
44+ X'FFFF! =3

X'4000'+X'4000' = X'8000'

Compare Equal

The compare equal operator . EQ. compares its two 16-bit operands and gives
a result of one if the operands are identical and zero otherwise.

Examples: X'FFFF'.EQ.X'FFFF!

!
o

2.EQ.1 =0

Compare Greater Than or Equal

The compare greater than or equal operator .GE. compares its two 16-bit
operands as unsigned integers and gives a result of one if the left operand

is greater than or equal to its right operand and zero otherwise.

L%

Examples: 3.GE.3 =1
X'FFFF'.GE. 0 =1
1.GE. 2 =0

Compare Greater Than

The compare greater than operator .GT. compares its two 16-bit operands
as unsigned integers and gives a result of one if the left operand is strictly

greater than its right operand and zero otherwise:

Examples: 3.GT.3 =0
X'FFFF'.GT.0 = 1
1.GT.2 =0

Compare Less Than or Equal

The compare less than or equal operator .L.E. compares its two 16-bit
operands as unsigned integers and gives a result of one if the left operand

is less than or equal to the right operand and zero otherwise.

Examples: 3.LE.3 =1
X'FFFE'.LE.0 = 0
1.LE.2 =1

Compare Less Than

The compare less than operator . LT. compares its two 16-bit operands as
unsigned integers and gives a result of one if the left operand is strictly less

than the right operand and zero otherwise.

3-5

Examples: 3.LT.3 =0 ’
’ X'FFFF'. LT.0 = 0
1. LT.2 =1 #

Compare Not Equal

The compare not equal operator .NE. compares its two 16-bit operands and
gives a result of zero if they are identical and one otherwise.
Examples: 3.NE. 3 =0

X'FFFF'.NE. 0O

"
—

Division

The division operator / yields the quotient of the result of dividing the left
operand by the right operand. Both operands are regarded as unsigned
16-bit operands and the result is truncated to an integer by dropping the

fractional part. Division by zero is undefined and results in an error.

£y
Examples: 3/2 =1
v 3200/100 = 32
X112341/256 = X'0012!
X'FEDC!'/256 = X'00FE'
1/X'FFFF! =0
2/0 = (error)
n

3-6

<

15}

Left shift

The left shift operator . LS. shifts its left operand to the left the number of
bits indicated by the right operand. The shift is a logical end-off shift with
zero bits entering on the right as required. The shift count must be in the

range 0-15 inclusive.

Examples: B'101010'. LS. 2 = B'10101000' -
X'FF7F'. LS. 4 =X'F7FQ!
320. LS. 1 = 640
12.LS.16 = {error)

'12. LS, X'FFFF' = (error)

Logical And

The logical and operator . AND. performs a 16-bit bit-wise "and" operation
on its two operands.
Examples: 134!, AND. X'0FO0F" = X'0304'

B'0011'. AND. 0l01" = B'0001!

Logical Exclusive Or

The logical exclusive or operator .XOR. performs a 16-bit bit-wise
"exclusive or'' operation on its two operands.

0

1]

Examples: X'41t. XOR. X'41"'
B'0011'. XOR. B'0101'. = B'0110'

X'FFF'. XOR. X'FOF 0! X'FFOF!

it

Logical Or

The logical or operator . OR. performs a 16-bit bit-wise "inclusive or"
operation on its two operands.
Examples: X'41!'. OR, X"14! = X'55¢

X‘O304'.OR.’00' = 1341

B'0011'. OR.B'0101!

B'OL11"

Multiplication

te

The multiplication operator * yields the product of its two operands which
are treated as unsigned 16-bit intégers. If necessary, the result is
truncated by dropping all but the least significant bits.

Examples: 5%5 =25

X14000"X110!

0

X'FEDC'#XF100'= X'DCO00!

Right Shift

The right shift operator .RS. shifts its left operand to the right the number
of bits indicated by the right operand. The shift is a logical 16-bit end-off
shift with zero bits entering on the left as required. The shift count must

be in the range 0-15 inclusive.

Examples: B'101010'. RS, 3 = B'101"
X'FF7F.RS.5 = X'07FB!
320, RS. 2 =160
10.RS. 1 =10

3-8

12.RS. 16 = (error)

12. RS, X!FFFF' = {(error)

Subtraction

The subtraction operator - subtracts its right operand from its left operand
to yield a result. The subtraction is performed on 16-bit unsigned quantities
ignoring overflow. This is equivaleﬂt to a twos-complement subtract if the

operands are regarded as signed twos-complement values.

Examples: 3-4 = X'FFFF' (-1)
200-100 = 100
200-X'FFFEF' = 201 (200-(-1))

3-9

OPERATOR PRECEDENCE AND ORDER OF OPERATIONS

It is permissible to write an alternating sequence of operands and operators
in an expression. In this case, the question arises of which operator is

performed first, and is resolved by the following precedence table.

Precedence
Level Operators

7 # /

6 + -

5 . RS. . LS.

4 . EQ. . NE. .GT.
. LT, . LE, .GE.

3 .AND,

2 . OR.

1 . XOR.

When two operators have a common operand, the operator with the higher
precedence is always performed first. If two such operators have the
same precedence, the one on the left is performed first. Parentheses may
be used to group sub-expressions and alter the normal order of operations as
specified by above rules. For example, the following two examples are
equivalent:

A+B.EQ. 3, AND, 4%6%7

{(A+B). EQ. 3). AND, ((4%6)*7)
Up to five levels of parentheses are permitted.

3-10

OMISSION OF ZERO OPERANDS

If the left operand of + or - is zero:

0+
0-

the zero may be omitted and is understood to be present. Thus:
-5 is the same as 0-5 (=X'FFFB')
+A%B is the same as 0+A*B
(-A)*(-B) is the same as (0-A)*(0-B)

1%-2 is the same as 1%#0-2
EXAMPLES

The following examples illustrate the rules for forming expressions and
also show several techniques which are made possible by the expression

evaluation mechanism:

A*(A,GE. B}+B*¥(B.GT. A) {maximum of A, B)
10+10%($X. RS. 14) (10 if CNF'G 10 or 25, else 20)
X-X/Y*Y (remainder of X divided by Y)

(A. XOR. X'8000!). GE. (B. XOR. X'8000') (signed comparison)

NLINES*64 (screen size)

$X-4%(34D)-2 (auto-exec area, device D)
$B.RS. 4, AND. 1 (isolate bit 4 of $B)

0" ¢ N+ (PAT - Y(-1)*(N.GT. 9) (ASCII-hex value of N (0¢(N(15))

~

SECTION IV

MACHINE OPERATIONS

GENERAL

This section describes assembler operations used to generate code for
executable machine operations. They are grouped by functional class.

Note that automatic word alignment takes place for all machine instructions
just as if they had been preceded by an ALGN pseudo-operation,. As indicated,
any i.nstlfuctiop may be labeled, in which case the symbol used as <label>

is defined to have the value of the location counter after any required word

alignment.

WORD CLASS INSTRUC TIONS

MNEMONIC HEXADECIMAL

OP CODE OP CODE DESCRIPTION
[« label>] ° CMC <as { X'?XOa.a‘ }b compare cursor
< label >] CMX <a> {X'70za' } compare index
[k label >} DEC <as> {X'58aa' } decrement
13 label“>] INC <a> { X'50aa' } increment
[« 1abel >] IN2 <as {X'60aa' } increment by two
[« 1abel 5] ;TMP <a> {X'B8aa'} jump
[« label >] JSR <a> { X!78aa’ } jump to subroutine
[<label >] LDC <a> - {X'40aa' } load cursor
[« label >] ILDX <a> {X'40aa* } load index
[« label >] STC <a> {X%48aa' } store cursor
[¢1label >] STX <a> {X'48aa' } store index

The listed operations generate one word (short address) instructions which
reference a word location in memory. < a » is an expression whose value
is the operand address which must be even. The assembler sets the sector
reference and addressing bits of the instruction in accordance with the
appropriate hardware rules. In the event that the referenced sector is not
directly accessible, an automatic entry is made in the literal i;able (called
a desectorizing link) which points to the desired address and the generated

instruction is setup to reference indirectly through this location.

Another possibility for the operand< a > is a literal consisting of an expression
immediately preceded by =. In this case, a word containing the 16 bit value

of the expression is created in the literal table and the instruction references
this word. See description of the SIZE pseudo-operation for details of the

positioning of this table.

Any of the above instructions may specify indirect addressing by the use of
an * immediately following the opcode. In this case, the indirect bit of

the instruction (if the sector is directly referencable) and the desectoriz'mg

link (if one is created) is sef on to obtain indirect addressing.

Examples: BGLOOP JIMP $
JSR SUBR
INC=* $X
LDX =0
CMC =NLIi\IES* 64
IMP* =XX (forces desectorizing)

BYTE CLASS INSTRUCTIONS

MNEMONIC HEXADECIMAL:

OP CODE OP CODE DESCRIPTION
< labels] AD <a > { X'I0aa'} add byte
[« labels] AN <a > { X'28aa'} and byte
[« 1abel>] CM <a > {X'20aa'} compare byte
[€ label>] LD <a> { X'00aa'} load byte
[< label >] OR <a > { X'30aa'} or byte
[« labels} 5B <a> { X'18aa' } subtract byte
[« label >} ST <a> { X'08aa'} store byte

The above operations generate one-word (short address) instructions which

reference a byte location in memory. <a > is an expression whose value is

the operand address. The assembler sets the sector reference and addressing

bits of the instruction in accordance with the appropriate hardware rules.
In the event that the referenced sector is not directly accessible, an
automatic entry is made in the literal table (called a desectorizing link)
which points to the desired address and the generated instruction is set up
to reference indirectly through this location, Except as described below,

literals may not be used as operands for byte class instructions.

Any of the above instructions may specify indirect addressing by the use of
a * immediately following the opcode. In this case the indirect bit of the
instruction (if the sector is referencable) and the desectorizing link (if one

is created) is set on to obtain desectorizing. Indirectly addressed byte

class instructions are treated as word class instructions. This means that
the specified address must be even and that literal references are permitted.
Examples: LD A+i4

ST* $X

LBL CM* =A (forces(aesectoriz'mg)

INDEXING

On the 20/20 only (i.e. in CNFG 20); indexing notation can be used on any
word class or byte class instruction. Preceding the operand field with @
(at sign) causes the assembler to generate an indexing (X'C94F') instruction
prior to generating code for the instruction itself. In this case, <label>,

if present, is set to the location counter value prior to generating the

indexing instruction.

For word class and indirectly addressed byte class instructions, itis
permissible to use indexing in conjunction with a literal reference, the @
sign precedes the = in this case.
Examples: LOAD LD @4

LDX @LINKP

CM* @=NEXT (forces desectorizing)

3

OPERATE CLASS INSTRUC TIONS

MNEMONIC HEXADECIMAL

OPCODE OPCODE DESCRIPTION
[<label>] NOP {X'C000" no operation
[<labels] HALT ' {X'C001Y% halt
[<labels] MLA {xrco021 move LIR to ACR
[<label>} MAL {XrC003% move ACR to LIR
[<1gbel>] MCA {X'C0047 move CHR to ACR
[<label>] MAC {X'C005% move ACR to CHR
[<1abel>] ENB {X'C006% enable interrupts
[<label>] DSB ‘ " XIC007Y disable interrupts
[<1label>] IOR {X*C008"1 < I/O reset
[<label>] SHL4 {X'C0097} - shift left four
[<label>] RTL1 {X'C00AY rotate left one"
[<label>] SRL1 {X'COOB‘} shift and rotate left one
[<label>] CLL {X'C00CH clear LIR
[<labe1>] CLC {X'CooD% clear CHR
[<label>] -WAIT {X'CO0F"}} wait

The above operations generate one-word operate class instructions as shown.
No operands are permitted. MLA, MAL, MCA, MAC, CLL, CLC may be
used only in CNFG 10 or CNFG 24 or CNFG 25 modes. RTL1 may be used

only in CNFG 20 mode, SRLI1 may be used only in CNFG 24 mode.

IMMEDIATE CLASS INSTRUCTIONS

f< labels]
[« label>]
[« label>]
[« labels]
< 1abel>]

f« label>]

MNEMONIC
OP CODE
LDI <wvs
ADI <v>
SBI <wv>
ANL <v>
ORI <wv>
XOR <v>

HEXADECIMAL

OPCODE DESCRIPTION,

{ X'80vv'} load immediate

{ X'90vv'} add immediate

{ X'98vvhy subtract immediate

{ X*ABvv'} and immediate
{X'BOvv'} or immediate

{ X'DOvv'} exclusive or immediate

The above opérations generate one-word immediate class instructions. The

operand< v >is an expression whose value is the immediate operand., This

value must be in the range 0 to 255 or -128 to -1 (X'FF80' to X'FFFF").

Indirect addressing is not permitted.

Examples:

_ADI
ANI

XOR

X'FF!

$. AND.X'FF'!

&

<

JUMP ON CONDITION INSTRUCTIONS

MNEMONIC " HEXADECIMAL

OP CODE OP CODE DESCRIPTION
[<label>] JCFAL <as {X'8800aaaa'} never jump
[<labels] JCLT <a> {X'8900aaaa'} jump on less than
[<label>] JCEQ <as {X'8A00zaaa'"} jump on equal
[<1label>] JCLE <as {X'SBOOaaaa'} jump on léss than or equal
[<label>] JCTRU <as {X'8C00aaaal always jump
[<labels] JCGE <a> {X'8D00aaaa’} jump on greater than or equal
[<label>] JCNE <a> {X!'8E00aaaa'} jump on not equal
[<label>] JCGT <a> {X'8F00aaaafh jump on greater than
[<label>] JCNG <a> {X'8801laaaa'} jump on negative
[«labels] JCPO <a> {X'8C0laaaa’} jump on positive
[<label>} JCEV <@ {X'8C02aaaal} jump on even
[<label>] JCOD <a> {X'8802aaaa'} jump on odd
[<label>] JCNC ‘ <a> {X'8900aaaa'} jump on no carry
[<labels] JCCO <@ {X'8D00aaaa'} jump on carry
[<label>] WIMP . @A {X'8C00aaaa'} word jump

The above operations generate two-word jump on condition instructions as
shown. The operand <a> is an expression whose value, which must be even,

is the target jump address.

Indirect addressing may be specified by placing a % after the opcode. In

this case the indirect addressing bit of the second word generated is set on.

4-7

Examples: JCGT
JCEQ#*
HANG JCTRU

JCNE

LOC+8
RTNAD
HANG

$-10

COMPARE AND JUMP INSTRUC TIONS

MNEMONIC

OP CODE
[k 1abels) CJFAL <v >,< 3
k labels] cJLT <y >,< 5
k labels] CIEQ <V >,;< a
k labels] CJLE <v >,< a
k label > CITRU <Vvs>,< a
k labels] CIGE <v >,< a
k label>] CJINE <V >,< a
k labels] CIGT . <v >,<a

HEXADECIMAL
OPCODE

DESCRIPTION

{X'AQvvaaaa'}

{X'Alvvaaaa'}

{X'A2vvaaaa'}

{X'A3vvaaaal}

{X'Ad4vvaaaal}

{X'Ab5vvaaaa'}

{X'Abvvaaaa'}

{X'A7vvaaaa'}

compare and never jump

compare and jump on
less than

compare and jump on
equal

compare and jump on ¢
less than or equal

compare and always jump

compare and jump on
greater than or equal

compare and jump on
not equal

compare and jump on
greater than

The above operations generate two-word compare and jump class instructions.

The first field< v >is an expression whose value is the comparison operand,

The value of this expression must be in the range 0 to 255 or -128 to -1

(X'TFF8(0' -~ X'FFFF').

The second field< a >is an expression whose value,

4-8

”

which must be even, is the target jump address.

Indirect addressing may be specified by placing a * after the opcode.
In this case, the most significant bit of the second word geneérated is set
on.
Examples; LBL CIJEQ X'Fo0', $+8
CIJNE $.AND.X'FF', MATCH
CIGE* 'C', ENTRY

CIEQ -1,BOR

INPUT-OUTPUT INSTRUCTIONS

MNEMONIC HEXADECIMAL

OP CODE _ OP CODE DESCRIPTION
[« labels] CI1O <f>,<d s {X'C9fd' } control I/O
[<label>] RIO <f>,<d > {X'CAfd'} read I/O
[<labels] WIO <f>,<d > {X*CBfd'} write 1/0O

The above operations generate the one word input-output instructions.
<f3,<d> are expressions whose value is in the range 0 to 15 which are used

to provide the function and device codes as shown.

4-9

MNEMONIC HEXADECIMAL
OP CODE OP CODE DESCRIPTION
[<label>] JFACK <f>,<d»> <a> {X'CCfdaaaal'} jump on no
1/O acknowledge
[<label>] JTACK <f>,<d>, <a> {X'C8fdaaaa'} jump on I/O

acknowledge

The above operations generate the two word test input-output instructions.
< f>, «d>are two expressions whose value is in the range 0 to >1A5 which are
used to provide the function and device codes as shown. < as is an expression
whose value is the targét jump address which must be even. Indirect
addressing may be specified by placing a* immediately following the opcode,
in which case the most significant bit of the gecond word is set on.
Examples: CIO 4, XIA!
RIO SDATA, SYNC
LOOP JFACK* 1,2, WRITE
/ JTACK BUSY, DISK, $

WIO 1, $B. AND. X'F"!

EXTENDED MNEMONICS

The assembler provides a set of opcodes representing special purpose uses
of standard instructions. Although these are not individual machine operations,

they may be regarded as such by the assembly language programmer.

MNEMONIC HEXADECIMAL
OP CODE OPCODE DESCRIPTION
K labels] CLA {xr8000"% clear accumulator

CLA takes no operands, and as can be seen from the generated code, is

actually equivalent to LDI 0.

MNEMONIC HEXADECIMAL
OPCODE OPCODE DESCRIPTION
[« labels>] SKP {X'8800'} skip next instruction

SKP takes no operands, and as can be seen from the generated code, is
equivalent to the first word of a JCFAL instruction, the skipped word

actually being the unreferenced address operand.

)

SECTION Vv

ASSEMBLER PSEUDO-OPERATIONS

GENERAL

Assembler pseudo-operations are written in normal LABEL OPCODE
OPERANDS COMMENT format but do not correspond to actual hardware
instructions. Insteéd, they al;e used to generate data in various ways or to
control the assembly process.’ This chapter lists all pseudo-operations in

alphabetical order.

ADDR -- Generate two-byte data
The ADDR pseudo-operation is used to assemble one or more two-byte
values. These values are generated in sequence and are not necessarily

aligned to a word boundary.

The form is:
[« label>] ADDR <operands, <operand>,...,<operand>
<label>, if present, is set to the value of the location counter prior to

generation of the first value. No word alignment takes place.

As shown, the number of <operand »s is variable from one to as many as will

fit on a single line.

Any expression may be used as an <operand>, resulting in generation of

two bytes containing its value.

Alternately, an <operand> can have the following format:

<repeat><constant>

5-1

where < repeat > is an explicit decimal integer and <constant> is one of the

following:
B'....' binary constant
o ,..! octal constant
D'....! decimal constant
X'eood!? hexadecimal constant
tx! one character ASCII constant
txex! two character ASCII constant

The result of such a specification is to generate two bytes ¢ontaining the
constant value the number of times specified by repeat. A zero repeat
factor results in no code being generated.

Examples: ADDR tABY, 315‘999' (generates 4 words)

KONS ADDR B'101*, 99t =t (generates 100 words)

ALGN -- Align to word boundary

The ALGN pseudo-operation increments the load and location counter if the
location counter is odd., It thus'EnSures that the following data is generated
starting on an even bytev (i. e. word) boundary. In the event that the lc;cation

counter is already even, ALGN has no effect. The form is:
[<label>] ALGN

As shown, there is no operand. <labels, if given, is assigned the location
counter value following incrementation (if any) of the counters i.e. the label
value will always be even. Note that the incrernenta.tioﬂ 'u; the odd case is
equivalent to BSS 1; no zero byte is generated.

Examples: WORDST ALGN

L4

5-2

BOOT -- Set boot mode
The BOOT pseudo-operation sets the assembler in boot mode. The form
is: BOOT

As shown, no operand or label is permitted.

Boot muast precede the first object code generation. It is used to assemble
a program which is intended to load directly using the hardware bootstrap
mechanism. The following restrictions are placed on a boot mode program:
ORG operations are not allowed. BOOT sets the origin to zero
(X'000') automatically. The normal prohibition against code
below location X'100' is not enforced.
XORG may not specify a second operand.
BSS is not allowed.
Literals may not be used.

Cross-sector references not resolvable by the hardware are
not permitted.

SEG and ESEG operations are not permitted.

END may not specify an entry point.

W
1
-

BSS -- Reserve storage
The BSS pseudo-operation is used to reserve storage without assembling
any data. The form is:
[«1label] BSS <count>
< label>, if present, is set to the location counter value atthe start. No

word alignme‘nt takes place.

<count> is an expression whose value is the number of bytes to reserve,
This value is added to both the location and load counters. Any symbols

used must have been previously defined.

Note: INCOTERM standard loaders do not clear memory before loading.
This means that the contents of any BSS areas following initial load is
whatever was there before the load started, since these areas are not

included in the object output.

Examples: BUFR BSS 128
HERE BSS 0 (no effect, except
. to define label)
ALGNR BSS $.AND. 1 (like ALGN)

BSZ -- Generate zeros

The form is:

[«label>] BSZ

<count>

The BSZ pseudo-operation is used to generate a specified number of zeros.

< label>, if present, is set to the location counter value at the start. No

word alignment takes place.

<count>is an expression giving the number of zero bytes to be generated.

A value of zero is permitted, resulting in generation of no data. Any

symbols appearing in the expression must be previously defined.

Note that the use of BSZ with large counts can result in increasing the size

of the generated object program considerably depending on the medium.

Where possible, it is desirable to replace such BSZ operations with initiali-

zation code which performs the required zeroing operation.

Examples: BUFFER BSZ

BSZ .

BSZ

BSZ

128

1256-%

$. AND. 1

64-($. AND. 63)

(generates 128 zeros)

(zeros up to location
1256 decimal)

(acts like ALGN, except
that a byte of zeros may
be generated)

(zero to end of 10/20
screen line)

BYTE -- Generate byte data
The BYTE pseudo-operation is used to assemble one or more bytes of
data according to the value of expressions given, The form is as follows:

[« labels] BYTE < operands, <operand>, ... <operand >

<label>, if present, is set to the value of the location counter prior to

generation of the first value. No word alignment takes place. .

As shown, the number of wperand>s is variable from one to as many as

will fit on a single line.

Any expression whose value is in the range 0 to 255 or -128 to -1 (X'FF80'
to XIFFFF') may be used as an<operand > with the resulting generation of

a single byte of data (upper X'FF! byte is ignored for ''negative"” values).

Alternately, ancoperand scan have the following format:
< repeat><constant >

where <repeat> is an explicit decimal integer and<constant >is one of the

following:
B...! binary constant
(oL octal constant
DLt decimal constant
Xt ..t hexadecimal constant
tx! single character ASCII constant

The result of such a specification is to generate a byte containing the con-
stant value the number of times specified by repeat. A zero repeat value
is legal and causes no data to be generated for that value.

5-6

~1

e

Examples: LOOP BYTE X'FF!

L1

BYTE A+B*C, -1

BYTE 'EY, 'RY, 3t (generates 5 bytes)
BYTE $. AND, X'FF', 79B'1001' (generates 80 bytes)
BYTE R, 0T TR ‘ (generates 2 bytes)

CNFG -- Specify configuration mode

The CNFG pseudo-operation sets the configuration mode to match the hardware

in use., The form is:

CNFG [« modes]

As shown, no label is permitted.

<mode > is an expression which has one of the following five values:

10

20

24

25

10/20 mode assembly. AXN, RTL1, SRLI instructions
not recognized. Addressing restrictions and link
resolution compdtible with SPD 10/20 architecture.

20/20 mode assembly. MCA, MAC, MAL, MLA, CLC,
CLL, SRLI1 operations not recognized. Addressing
restrictions and link resolution compatible with

SPD 20/20 architecture.

10/24 mode assembly. AXN, RTLI operations not
recognized. Addressing restrictions and link resolution
compatible with SPD 10/24 architecture.

10/25 mode assembly. AXN, RTLl, SRL] operations not
recognized. Addressing restrictions and link resolution
compatible with SPD 10/25 architecture.

Compatible mode assembly. AXN, RTLI1, MCA, MAC,
MLA, CLC, CLL, MAL, SRL! operations not recognized.
Addressing restrictions and link resolution compatible
with SPD 10/20, 10/24, 10/25 and 20/20 architectures.

Any symbols appearing in the expression for mode must have been previously
defined. See section on addressing for further details on address restrictions

and link resolution.

The first CNFG pseudo-operation in the program specifies the program
configuration mode and must occur before the first generation of object
code. Subsequent CNFG operations may occur but they affect ﬂthe
allowed operation set, not the addressing mode. This may be useful, for
example, in assembling a section of code in a CNFG 0 assembly which is

executed only in the 20/20 case and uses RTLI.

If the <mode > operand is omitted, the effect is to return to the mode of the
program (i.e. that of the first CNFG). The mode operand may not be

omitted on the initial CNFG line.

If no CNFG operation appears in a program, CNFG 10 is assumed throughout.
Examples: CNFG 10 (set 10/20 mode)
CNFG 0 (set compatible mode)

CNFG 10+10%($B. AND. 1) (10 or 20 depending on $B)

DAC -- Generate address constant
The DAC pseudo-operation is used to generate a single word containing an
address. The form is:

[<label>] DAC[*] <address>

<label>, if present, is set to the location counter value prior to generation

of the word (following possible word alignment).

<address> is an expression which evaluates to an address in the permissible
range (see section on addressing). If indirect addressing is specified, the
indirect addressing bit of the result is set, (DAC is the only pseudo-operation

which permits indirect addressing).

Examples: KPTR - DAC K-
DAC $+3%4
DAC= . 256

5-9

DUP -- Duplicate source line
The DUP pseudo-operation allows the effects of a specified source line to
be duplicated. The form is:
DUP < count>

<source line>
The effect is as if <source line> had appeared consecutively the number of
times specified by the value of the count expression. Any line may be
duplicated in this manner except DUP, END, IF, ENDF, sub-title and

comment lines.,

Any symbols appearing in <ﬁount> must be previously defined. As shown,

no label is permitted.

A duplication count of zero is valid, and causes <source line> to be assembled

zero times (i.e. to be deleted).

Within expressions appearing in ¢source lines, the special symbol $D takes

on values of 1, 2, 3,... for the successive duplications.,

Examples: DUP X.NE.O0O - (assemble if X non-zero)
DAC X
DUP 26 (26 ASCII letter codes)
BYTE TA'-1+$D
DUP 64-($. AND, 63) (blanks to end of 10/20 line)
BYTE t
DUP 16 (16 ASCII codes for hex digits)
BYTE '0f-14+$D+7%($D. GE. 10)

T

EJECT -- Eject assembly listing to new page
The EJECT pseudo-oPeratlon causes the assembly listing to eject to a
fresh page. The form is:
EJECT
As shown, no label or operand is permitted. The use of EJECT ﬁas no effect

on the generated code. EJECT is effective only in LIST 2 or LIST 3 mode.

END -- End assembly
The END pseudo-operation occurs once at the end of the source text as the
last source line and marks the end of the text. The form is:

END [<entrys]

<entry> is an expression whose value (which must be in a.cidress range) specifies
the‘loca;tion to which control is to be passed following loading the program. As
shown, it is optional. If omitted, the enti‘y point is set to the first assembled
locafion in segment zero. As shown, no label is permitted.

Examples: END

END BEGIN

ENDF -- End conditional assembly range

The ENDF pseudo-operation marks the end of a conditional assembly range and

occutrs only in conjunction with a previously occuring matching IF pseudo-operation.

The form is:
ENDF
As shown, no label or operand is permitted.

5-11

EQU -- Equate symbol to value
The EQU pseudo-operation is used to assign a given value to a specified P
symbol. The form is:

<label> EQU <value >
<label>, which is required, is the symbol whose value is to be set.

<value> is an expression giving the value to be set. Any symbols appearing

in <value» must have been previously defined.

Examples: SYMQ EQU X2m (value of ASCII quote)
HERE EQU $ (like HERE BSS 0)
PRA EQU $X-2 (location of power restart)
. . .) .
F2 EQU Fl+l (¥l must be previously defined).
-
5-12

E-3

a

ESEG -- End overlay segment
The ESEG pseudo-operation terminates an overlay segment. The form is:

ESEG [entry>]

<entry> is an expression whose value specifies the segment entry point. If
omitted, the segment entry point is set to the first assembled location in the
segment, The significance of this entry point is defined by the routines used
to load the segment. It is normally the location to which control is passed

initially if the segment is executed. As shown, no label is permitted.

Following the ESEG, the load and location counters are unchanged and assembly

resumes in segment zero (the main segment). All literals and links required
by the code in overlay segments are added to the main (segment zZero) litera.i
table which is always resident. ’

Examples: ESEG SEGMENT

ESEG

"HEX ~- Generate hexadecimal data

The HEX pseudo-operation is used to generate a string of bytes whose value
is given in hexadecimal. The form is:

[<label>] HEX <hex>

<label>, if present, is set to the location counter value prior to generation

of the first data byte. No word alignment takes place.

<hex>is an even length string of two or more hexadecimal digits (0-9, A-F).

Each successive pair of digits corresponds to a single byte of generated

data.
Examples: ENDREF HEX 7474

HEX A3FF010D

HEX 4142 (like TEXT 'AB')
IF -- Start conditional assembly range

The IF pseudo-operation provides for conditional assembly of a section of
code. The form is:

jud <tests>

<test> is an expression which is evaluated. If the value is non-zero, there
is no effect. If the value is zero, than all code between the IF and its
matching ENDF is ignored. Any symbols appearing in<test> must have been
previously defined. As shown, no label is permitted. IF ~-ENDF pairs may
be nested to any reasonable level.
Examples: IF $B. AND, X'200! {test bit 9 of $B)

IF X.GT.Y

IF X.GE.3.AND. X. LT. 17

LBL -- Generate label data
The LBL: pseudo-operation is used to generate the primary title data. The
form is:

[¢ labels] LBL

*

<label>, if given, is set to the location counter value prior to the generation
of the first byte. No word alignment takes place, As shown, no operand is

permitted.

The effect of LBL is to assemble 40 bytes corresponding to the ASCII codes
for the 40 characters of the prirriary title, as modified by any assembled &
lines in the text. The result is exactly as if this title had been assembled
by TEXT. This operation may be useful in controlling program version
number information.

Examples: LABELD LBL

LIF -- Control Listing of IF ‘R‘anges V
The LIF pseudo-operation is used to control the listing of IF's, ENDF's and
code deleted in conditional ranges. The form is:

LIiF <code>

As shown, no label is permitted.

<code> is an expression with a value of 0, 1, or 2. Any symbols used must

have been predefined. The effects are as follows:

<code> =0 IF and ENDF lines are never printed and code deleted by
""false'' ranges is also not printed. The effect is to generate

an assembly listing which (except for line numbers) is identical
to that which would have beén obtained if no IF's had been used.

<code> =1 (The default setting if no LIF appears)., Code deleted by '"false"
ranges is not listed. IF and ENDF lines list except when they are
contained within a deleted range.

<code> =2 AllIF and ENDF lines are printed. Deleted code is also printed.

5-15

In LIST 0 mode, IF and ENDF lines and deleted code are not printed
regardless of the LIF setting. Note that the assembler has an option
to control LIF mode externally, thus overriding the affect of LIF

operations in the source.

LIST -- Control Listing Mode
The LIST pseudo-operation is used to control the format of the listing.
The form is:

LIST <codes

As shown, no label is permitted.

<code> is an expression with a value of 0, 1, 2, or 3, Any symbols used

must have been predefined. The effects are as follows:

<code> = 0 Only flagged lines. are printed, .no sub-titles are printed.

<code> = 1 All lines are printed except comments starting with #.)
EJECT and subtitle lines are printed as comments but have
no other effect. No sub-titles are printed.

<code> = 2 All lines are printed except comments starting with #.
EJECT and subtitle lines are interpreted and used to format
the listing.

<code> = 3 All lines are printed including comments startingk with #.

EJECT and sub-title lines are interpreted and used to format

the listing.

In the case of IF, ENDF and lines deleted by IF-ENDF, both the LIF and LIST

conditions must be met in order for unflagged lines to print. Note that
the assembler has options to control LIST mode externally, thus
overriding the effect of LIST operations in the source.

5.16

IS

LTXT -- Generate lower case text string

The LTXT pseudo-operation is used to generate a string of bytes corresponding
to ASCH values of characters in a supplied text string except that any letters
are converted to lower case (other characters unaffected). The form is:

[k 1labels] LTXT <d> < texts<d >

<label>, if present, is set to the location counter prior to generation of the

first byte. No word alignment occurs.

<d> is any non-blank character not appearing in(text). It acts as a delimiter

and is not included in the generated data.

<text> is a string of any characters except the delimiter character. It may
range in length from zero (no data generated) to as long as is permitted by
the restriction to a single source line.

Examples: LTXT '0123! (like TEXT '0123")

XX LTXT *AB* (generates X'6162)

LTX8 -- Generate lower case text string with 8th bit set.

The L'TX8 pseudo-operation is used to generate a string of bytes corresponding
to ASCII values of characters in a supplied text string except that letters are
converted to lower case as in LTXT and the most significant (parity) bit of
each byte is set. The form is:

[«1labels] L.TX8 <d><texts< d >

<labely, if present, is set to the location counter prior to generation of the

first byte. No word alignment occurs.

<d> is any non-blank character not appearing in <text>. It acts as a delimiter

and is not included in the generated data.

<text> is a string of any characters except the delimiter character. It may
range in length from zero (no data generated) to as long as is permitted by
the restriction to a single source line.

Examples: LTX8 '0123! (like TXT8 '0123")

LB 1L.TX8 *AB* (generates X'E1E2')

NOBJ ~-- Turn off object cutput mode
The NOBJ pseudo-operation is used to discontinue generation of object code.
The form is:

NOBJ

As shown, no label or operand is permitted.

Following the occurence of NOBJ and until an OBJ pseudo-operation is
encountered no object data will be generated. However, in all other respects
the assembly proceeds as usual, with the load and location counters being

incremented in the normal manner,

NOBJ may be useful in assembling prototype {dummy) sections of code for

purposes of documentation or symbol definition. OBJ mode is automatically

5-18

set when an END or ESEG line is encountered, thus literals and entry point

records are always generated.

OBJ -- Turn on object output mode
The OBJ pseudo-operation is used to resume generation of object code,
The form is:

OBJ

As shown, no label or operand is permitted.

‘Foll‘owing the occurence of OBJ, normal output of generated code is resumed.
Since this is the normal (default) mode, OBJ is used only in conjunction with,

NOBJ to selectively inhibit object code generation for parts of the program.

ORG -- Set assembly origin
The ORG pseudo-operation is used to set or reset the location and load
counters. The form is:

[« labels] ORG) <loc >

<label>, if present, is set to the value of the location counter after the

origin operation is completed (i. e. to the value of loc).

<loc> is an expression whose value is used to reset both the load and location

counters. All symbols appearing in the expression must be previously defined.

Note: In the absence of an ORG statement at the start of an assembly, the

default sfarting value for both load and location counters is X'100'.

&
Examples: ORG $+10 (like BSS 10)
TOPS ORG XU7TEQOO! .
ORG $X.AND. X'7TE00' (CNFG independent top
sector))
ORG: $L " (resets location counter

to match load counter)

5-20

PAGE -- Set page depth
The PAGE pseudo-operation allows specification of the page depth for the
assembly listing, The form is:

PAGE <count >

As shown, no label is permitted.

<«<count> is an expression whose value is the maximum number of lines per
printed assembly page (not counting the title lines). When this value is
exceeded, an automatic eject occurs. The allowed range is 1-255. Any

symbols used must have been previously defined.

More than one PAGE pseudo-operation may occur in assembly, in which 7
case each one affects the listing for the following section. If no PAGE
pseudo-operation is used, an appropriate default which depends on the

assembler and environment is set.

The use of PAGE does not affect the generated code.
Examples: PAGE 41 {41 lines/page)

- PAGE : 255 {max allowed value)

SEG -- Start of overlay segment
The SEG pseudo-operation specifies the start of an overlay segment. The
form is:

dabels SEG . [<org>]

<label>, which is required, is set to the segment number. Segments are

numbered serially starting at 1 and ranging up to a maximum value of 250.

<org> is an expression whose value is used to set the load and location
counters in the same manner as the ORG pseudo-operation. It is optional
and, if omitted, the load and location counters are unchanged. Any symbols

appearing in <org> must have been previously defined.

The range of segment code is from the SEG operation to its matching ESEG.
No nesting of SEG-ESEG pairs is permitted. ORG and XORG pseudo-
operations may be used within the segment to modify the location and load

counters,

Standard INCOTERM loaders load only segment zero and ignore other seg-
ments. The loading of overlay segments is accomplished using special
routines appropriate to the load medium.

Examples: SEG1 SEG

SEG2 SEG SEGORG

o

SET -- Set symbol to value
The SET pseudo-operation is used to assign or reassign the value of a
specified symbol. The form is:

<label> SET <value >
<label>, which is required, is the symbol whose value is to be set.

<values is an expression giving the value to be set. Any symbols appearing

in <values> must have been previously defined. .

SET is the only operation which permits a symboi to be assigned more than
one value. This is accomplished by having more than one SET for the same
symbol. In this case the value of the symbol is whatever was assigned by
the most recent SET operation. If a SET symbol is refererced before any
SET for the SYMBOL has occured, the value (in pass 2) is that set by the

last SET in pass 1.

A symbol defined by SET must not be defined by any other method (i.e. must
not appear in the label field except on another SET operation).

Examples: Q SET Q+1 (increment previously SET value)

SEGHL SET SEGHI+($-SEGHI)*($.GT,SEGHI) (SEGHI=max(SEGHI, $))

SIZE -- Specify memory size
The SIZE pseudo-operation is used to specify the memory size and the
origin for literals. The form is:

SIZE < sizes|,<linkss [, «xsizes]]

As shown, no label is permitted.

< size> gives the address of the last byte in mémory and must have one of
the following values:

CNFG 0 X'OFFET (4K)

or XIFFF' {8K)
or XI3FFF' {16K)
or XITFFF' - (32K)
CNFG 10 X'OFFF' (4K)
CNFG 20 © XI3FFF' (16K}
or X'IFFF' (32K)
CNFG 24 X'IFFF' (8K)
or XI3FFF' (16K)
CNFG 25 . X'WOFFF'! (4K)

In the cases where more than one operand can be given, the significance is
that the value given represents the minimum workable memory size for the

program,

In addition to the values shown, X'0000' (zero) may be used. See special

section "SIZE 0 in Chapter VI for details.

dinks > gives the origin for the literal table. Literals and desectorizing links

are built downward from the specified location and extend down as far as

5-24

necessary. Thus the specified even (word) location is the lowest unused
address above the table (i.e. the lowest reserved location). A high
memory address suité.ble to the program CNF'G must be specified. As
shown, the links operand is optional. If omitted, the following default

values are used:

CNFG 0 X'TFBA!
CNFG 10 X'FD2!
CNFG 20 X'TEBA!
CNFG 24 Xt7FD2!

CNFG 25 X'FD2t

<xsizes is omitted in normal assemblies. If set it allows the load counter
(but not the location counter) to exceed the normal limit and range up to
xsize without error. The resulting program will not be loadable by
standard INCOTERM loaders, but special purpose loaders may load such
dat# into external memory for use in overlay systems. The low order

byte of the value must be X'FF',

The SIZE line may be omitted entirely, in which case the size defaults

to X'FFF' (CNFG 0, CNFG 10, CNFG 25), X'3FFF' (CNFG 20), or X'1FFF'

(CNFG 24). If present, it must precede the occurence of any éenerated

object code.

Examples: SIZE X'3FFF', X' TFBA! (CNFG 20 default)
SIZE X'FFF, X{FEO! (CNFG 10, links higher

than default)
SIZE X'7TFFF!, X'7FBA, X'FFEFF! (32K external memory)

i

5-25

TEXT -- Generate text string
The TEXT pseudo-operation is used to generate a string of bytes
corresponding to ASCII values of characters in a supplied text string.

The form is:

f<labels] TEXT <ds < text> <ds>

<abel >, if present, is set to the location counter prior to generation of

the first byte. No word alignment occurs.

<d>is any non-blank character not appearing in <text>. It acts as a

delimiter and is not included in the generated data.

<texts is a string of any characters except the delimiter character. It
may range in length from zero (no data generated) to as long as is per-
mitted by the restriction to a single source line.
Examples: TEXT 'THIS IS A MESSAGE!

MSG TEXT /QUOTE --t/

TEXT A B* (generates X'4142'")

»

TXT8 -- Generate text string with 8th bit

“ The TXT8 pseudo-operation is used to generate a string of bytes
corresponding to ASCII values of the characters in a supplied text string
with the X'80" (parity) bit set. The form is:

[<label>] TXTS8 <ds<text > < d4d>

< label>, if present, is set to the location counter prior to generation of the

first byte. No word alignment occurs.

<ds is any non-blank character not appearing in< text> It acts as a

delimiter and is not included in the generated data.

<text> is a string of any characters except the delimiter character. It
may range in length(from zero (no data generated) to as long as is per-
mitted by the restriction to a single source line.

Examples: BMS TXTS 'BLINK MESSAGE!

TXT8 *AB* (generates X'C1C2'")

WORD -- Generate word data

The WORD pseudo-operation is used to assemble one or more word values.
These values are generated in sequence and are word aligned. . The form
is:

[<label>] WORD <operand>, <operands,...<operand>

< labels, if present, is set to the value of the location counter prior to

generation of the first value. Normal word alignment takes place.

As shown, the number of {operand >s is variable from one to as many as
will fit on a single line. Any expression may be used as an< operand>,

résulting in generation of a word containing its value.

.Altgrp;tely, an< operénd} can have tﬁg following{yfon‘:‘hat‘:

| ‘<re‘peat>\< c‘onstar‘xt>') ‘ 7
where < repeat>is an explidit non-zero decimal integerk and <cc>mstan't‘>
is one of thg féllowj.r}g: ‘

Bf....' ‘' binary constant

O'....'" 7 octal constant

15 LI decimal constant

X'....'" Thexadecimal constant

vx! one character ASCII constant
txx! two character ASCII constant

The result of such a specification is to generate words containing the

constant value the number of times specified by repeat.

Note: WORD is identical to ADDR except that a prior word alignment occurs.

Examples: WORD 'AB', 3D'999 (generates 4 words)
KONS WORD |, B'101', 99kt

5-28

XORG -- Set execution origin

The XORG pseudo-operation allows separate specification of the load
and location counters for use where code is to be assembled and loaded
in oneylocation and moved to another location before it is executed. The
form is:

[<labels] XORG <ocation>[;< load>]

<location, is an expression whose value is the new value of the location

counter. Any symbols used must have been previously defined.

<load> is an expression whose value is the new value of the load counter,
Any symbols used must have been previously defined. As shown, this

operand is optional. If omitted, the load counter value ($L) is unchanged.

<labels, if present, is set to the new value of the location counter (i.e. to

the value of the first operand).

Note that when XORG is used, it is the responsibility of the executing

program to move the code into its proper location before actually executing

the code.
Examples: XORG $, $L (has no effect)
XORG X, X {like ORG X)
LDR XORG 0 (typical start of code for loader)
XORG $L {resynchronize load, location counters)

5-29

XREF -~ Set cross reference mode w4

The XREF pseudo-operation is used to control collection of cross

references. The form is: -
XREF < code>

As shown, no label is permitted.

<code>is an expression with a value of 0, 1, or 2. Any symbols used

must have been previously defined. The effects are as follows:

<code>=0 Collection of symbol cross reference is completely inhibited.
<code> =1 Symbol cross references will be collected in assembled areas.
<code> = 2 Symbol cross references will be collected in both assembled

and unassembled (IF-ENDF deleted) areas.

Note that the assembler has options to control XREF mode

&
externally, thus overriding the effect of XREF operations in the source.

&

5

SECTION Vi

ADDRESSING RESTRICTIONS

GENERAL

Although the load and location counters are full 16-bit quantities, only a
limited range of values are permissible depending on the TPU model and
mermory size. These limitations are described separately for each CNFG

value.

CNFG 10 ADDRESSIN’G‘

The SPD 10/20 and SPD 10/25 always have 4K bytes of memory and the hard-
ware program counter is only 12 bits. Consequently, the assembler limits
the range of address values to be between X'0000' and X'0FFF'. Top sector

is at location X'0EQ0Q'.

CNFG 20 ADDRESSING

The SPD 20/20 has 16K, or 32K of memory. To allow smaller programs to
run unchanged on machines with different sized memories, it is desirable
to have a uniform addressing structure. This is achieved by consistently
addressing the special top sectors with addresses of the form X'7x00'.
Thus we have.

TOP always at X'"7E00’

TOP-1 always at X'7C00!

TOP-2 always at X'7A00!

This works on smaller memories hecause unused high order address bits are

ignored. Thus an address X'7C54' is treated as X'3C54' on a 16K machine.

To implement the restrictions impliéd by a SIZE less than 32K, the

assembler limits the allowed addresses to the following ranges:

SIZE (1st parameter) Allowed Ranges
X'3FPFF! (16K) X'0000' - X'39FF

X'7TA00 - XMTFFE!
X'TFEF! (32K) X'0000' - X'7FFF!
In the case of 16K, there is a "'gap" in the allowed address range. It is the
programmers responsibility to avoid assembling code in this gap by suitable

use of ORG commands.

CNFG 24 ADDRESSING

The SPD 10/24 has 8K or 16K of memory. As in the case of the SPD 20/20,
a uniform addressing scheme is used as follows:

Top always at X'7E00'
Top-1 always at X!'7C00

The following are the allowed addressing ranges:

SIZE (lst parameter) Allowed Ranges
X'1FFF! ' (8K) X'0000' - X'1BFF!

X'7C00' - X'7TFFE!

X'3FFF! (16K) X'0000! - X'3BFE!
: X'7C00' - X'7FFF!

CNFG 25 ADDRESSING

The rules for CNFG 25 addressing are exactly the same as for the SPD

10/20.

CNEFG 0 ADDRESSING

CNFG 0 specifies a program which is to run compatibly on more than one
SPD model. Top sector is always addressed at X'7E00'. Since the 10/20
and 10/25 ignore the upper four bits and the 10/24 ignores the upper two
bits, this always produces the intended effect. The allowed address ranges

depend on the size as follows:

SIZE (1st parameter) Allowed Ranges
X'QFFF! (4K) X'0000' - X'ODFE!

X'"TE0Q - X'TFFEF!

X'1IFFF! (8K) X'0000* - X'IDFF!
X17TE00' - X'TFFF!

X1I3FFE! (16K) X'0000! - X'3DFF!
X'7E00. - X'7FFF!

X'TFEF! (32K) X'0000! - X'TFFEFF!

As usual, the significance of the SIZE parameter is the minimum required
memory. Note that this addressing convention precludes the possibility of
direct references from TOP sector to TOP-1. Thus in a CNFG 0 assembly,

desectorizing links are created for such references.

Following these addressing rules results in a program whose addressing
structure is compatible. To execute compatibly, the code must be model

insensitive. In particular, the foliowing points should be observed:

(1) INC, DEC, IN2, STX, LDX, CMX are 12 bit operations on the 10/20
and 10/25, 14 bit operations on the 10/24, and 16 bit operations on
the 20/20.

o~
b
(e

(2) Instructions specific to one model {e.g. MCA, AXN) can only be used
in sections of code which are executed only on the appropriate model.

{3) Byte references to locations X'7FFE', X'7TFFF' may have different
effects.
(4) The RTL1 instruction (X'CO0A') acts as a NOP on the 10/2x and may

be used to distinguish between machines at run time.

SIZE 0

Regardless of the CNFG se‘tting,‘ the first parameter to SIZE can be given as
zero., In this case, all address checks are omitted and the resulting program
can be loaded into any sized memory. If there is segment zero code in a
memory location not available, the address will be ""folded" by ignoring high
order bits. It is the responsibility of the executing program in this case to

test the memory size or otherwise ensure that sensible processing occurs.

EFFECT OF RESTRICTIONS

The following address operands must be within the above specified ranges:
‘ Byte class instruction operands,
Word c¢lass instruction operands,
Jump instruction target addresses,
DAC pseudo-operation operands.
Except when external memory is present as described below, it is invalid to
assemble code or data with a load counter value outside the specified ranges.

Note that the operand values of ORG and XORG are not restricted in any way,

only the actual assembly of code and address reference values.

EXTERNAL MEMORY

The specifications of external memory (SIZE third parameter) allows the
load counter value for generated code to range up to the given value. How-
ever, address operands restrictions are unaffected. Thus the XORG pseudo-

operation must be used to assemble code in external memory.

LOADER CONSIDERA TIONS

INCOTERM standard loaders use locations X'0000' - X'00FF! for the loader
program itself. Thus any non-BOOT mode program must avoid assembling
code or data with a load counter value in this region and the assembler

enforces this restriction in segment zero.

Certain INCOTERM 1oadérs use the AUTO-EXEC areas and index/cursor
register. Programs using such loaders should avoid assembling code into
these locations. In the case where a program may be loaded from more than
one device, the safe rule is to avoid the AUTO-EXEC area completely,
although the assembler does not enforce this restriction. Note, however,
that the power restart location is not used by; any loader and may be éet at

assembly time.

LITERAL POOL

The literal pool containing referenced literals and created links is built down
from the address specified as the second parameter to SIZE (or the default

value as described under the SIZE pseudo-operation).

In no case will the assembler generate literals or links which are not
addressable from every location. This means that all entries must be in
the TOP sector except on the SPD 20/20 (i.e. in a. CNFG 20 assernbly) where

TOP-1 and TOP-2 may also be used.

It is considered an error to assemble code which overlaps this generated
literal pool and this check will be performed by the assembler. Note,
however, that it is perfectly admissible to assemble data above the literal

pool.

BSS OPERA TIONS

Even though BSS does not actually generate any‘r object output, it is treated
exactly like BSZ from the point of view of the abhove address checks, Thus
BSS with a non—zer(; operand may not appear in the loader area, or in a
restricted area, or overlap the literal pool. In NOBJ mode, the load counter
value checks are omitted, thus NOBJ can be used to avoid error flags on

BSS operations (or any other generating lines) if such overlap is required.

6-6

&

SECTION VII

FORMAT OF PRINTED LISTING

GENERAL

This chapter describes the general format of the printed assembly listing.

TITLE LINES

The first line of every page contains the main title line as modified by any
assembled & line‘s in the program. It also contains the page number.

& lines themselves are listed with line numbers in the same format as comment

lines.

The second line is blank., The third line contains the current subtitle as set
by the most recently listed subtitle li.netin thé source. ’The subtitle line
itself is printed in comment format at the 'top of the page (i.e. it always
causes an EJECT so that the new subtitle is printed immediately). Subtitle
lines which are not listed (in LIST 0 mode or in unassernbled areas with

LIF 0 or LIF 1 modes set) do not affect the listed subtitle.

Line four following the subtitle is blank. In LIST 1 mode, subtitle lines are

printed as cormments and lines three and four are omitted.

The remaining lines are source lines and their generated code as described
below. The maximum number of such lines is set by the current page depth
(see PAGE pseudo-operation). If this maximum is exceeded, an automatic

page eject occurs.

GENERATED MACHINE INSTRUCTIONS

The form of the line printed for a machine instruction is as follows:

ffffss-dddd//1111p cccccece s{nnnnn) xxxxx

ffff

Ss

dddd

1111

p

ccecececece

nnnnn

KXXXXK

Up to 4 error flags (see separate section). Blank if no errors
detected,)

Current segment number (two hexadecimal digits). Omitted,
together with following minus, if no SEG statements appear
in the program,

Load counter at start of line, following any required word
boundary alignment. Omitted, together with the following

slashes, if no XORG statements appear in the program.

Location counter at start of line, following any required
word boundary alignment.

Colon in OBJ mode:. Asterisk in NOBJ mode.

Generated code, four or eight hexadecimal digits. If only
two bytes generated, then the last four columns of this field
are blank, If indexing is specified, all four bytes are printed

on a single line.

Blank if no desectorizing link generated. Asterisk if
desectorizing link generated.

Line number, 1-5 decimal digits with leading zeros as required.

Reproduction of source program line.

COMMENT LINES

Comment lines print simply as:

(nnnnn) xxxxx

Comment lines starting with # are printed only in LIST 3 mode.

L

PSEUDO-OPERATIONS

Data generation pseudo-operations list exactly like machine instruction lines
except that cceccccee may contain from 0-4 bytes (0-8 hexadecimal digits), the
case of zero occuring for zero repeat counts, null ope:;and fields etc. Also,
if more than four bytes are generated from a single source line, additional
lines are printed in the format:

ffffss—dddd//llllp ccecceece
where cccccccecontains 2-8 hexadecimaldigits., The pseudo-operations listing
in the above format are ADDR, BYTE, DAC, HEX, LBL, LTXT, LTXS8,

TEXT, TXT8, WORD.

In the following descriptions, ''location' means:
ffffss-dddd//1111p

as described for machine instructions, page 7-2.

ALGN Prints new location after any required alignment.

BOOT Prints in comment line format.

BSS Prints initial location.

BSZ Prints like data generation pseudo-operation except that only

the first line prints when the operand value exceeds 4.
CNFG Prints in comment format.

DUP Prints the duplication count in the first four columns of the
ccecccccc field as four hexadecimal digits. The duplicated
line prints in normal format except that if the duplication
results in the target line generating more than four bytes of
output, additional short lines are printed as for data generation
pseudo-~operations.

EJECT

END

ENDF -

EQU

ESEG

IiF

LIST
NLIF
NLST
NOBJ
NXRF
OBJ
ORG
PAGE

SIZE

In LIST modes 2 or 3, EJECT does not print, but causes an
eject to the top of the next page. Blank pages cannot eccur
through use of multiple EJECT lines or EJEGT lines and a
subtitle line,

In LIST 1 mode, EJECT prmts in comment format,

I.n LIST 0 mode, EJECT has no effect.

In unassembled IF-ENDF areas with LIF modes 0 or 1, EJECT
has no effect. In LIF 2 mode, the behavior. depends on the LIST

mode as described above.

The program entry point address prints in the first four columns
of the ccceccec field as four hexadecimal digits.

Prints in comment format, .

The operand value prints in the first four columns of the
cceccccce field as four hexadecimal digits.

The segment entry point address: prints in the first four -
colummns of the ccceccec field as four hexadecimal digits.

Prints in comment format,
Prints in comment format.
Prints in comment format.
Pri‘nts in comment format;
Prints in comment format.
Prints in comment format.
P;:ints in comment f(;rmat.
Prints in comment format.
Prints updated location.

Prints: in comment format.

The first operand value is printed in the first four columns of
the cccececc field as four hexadecimal digits.

XORG Prints updated location.
XREF Prints in comment format.
Note: The above rules mean that, whenever a label is defined, its value

is the current value of the location counter as printed in the 1111 field of
the line.

UPDATE/DELETION FLAGS

To warn the reader of possible discrepancies between the listing and the
source program or generated object program, the characters // are
placed on columns 5, 6 of the cccccecc field in the following lines.

(1) Al IF lines printed.

(2) All ENDF lines printed.

(3) Source line unassembled in range of DUP 0.

(4) Source lines unassembled in range of IF-ENDF if listed in LIF 2 mode.

(5) LIST lines except LIST 0 lines in LIST 0 mode.

LITERAL TABLE

After the end line, the literdl table is printed providing that the assembly
does not end in LIST 0 mode. This table prints one line for each unigue
literal in the format:

f 00-dddd//1111: cccc
The only possible flag is X, which is generated on the highest address
literal which is overlapped by previously assembled code., Although the
literal table is built backwards, it is listed and generated forwards, i.e.

by successively higher addresses.

In LIST 0 mode, the literal table is not printed except that the single line

flagged X is printed if literal overlap has occured.

CROSS -REFERENCE LISTING

Following the assembly listing, a cross-reference listing is generated
containing a sorted list of defined symbols together with a list of line
numbers in which the symbol is referenced. The SPD/DOS assembler
also generates a Iiteral cross-reference table showing line numbersv which

reference each literal or generated desectorizing link.

ERROR FLAGS

Error flags are letters placed at the left side of erroneous lines. This
section gives the meaning of the various flags. It should be noted that
the various assemblers may post flags in a slightly different manner.
Furthermore, a limited number of flags can be placed on each line, so

that errors beyond this number (usuvally four) remain unflagged.

Flag Meaning
A Violation of addressing restriction {see Chapter VI). The assembler

ignores the violation and proceeds with the code generation.

B Violation of BOOT mode restrictions (see description of BOOT
pseudo-operation in Chapter V), The attempt is ignored. Also
posted for a BOOT pseudo-operation which occurs after generaed
code. BSS in BOOT mode is flagged and treated as BSZ.

C Erroneous character (e.g. missing quote in character constant,
missing terminator in text constant, invalid numeric digit).

E An operand which must be even {i.e. a word address) is odd.

by

Flag

Meaning

H

Forward reference. An operand requiring all symbols to be
predefined references a symbol which is defined later on. A
value of zero is used at the point of reference.

Missing END line. The assembler supplies one if possible.

IF-ENDF nesting is incorrect. ENDF with no previous IF or IF
with no matching ENDF, :

Label error. Invalid label syntax or label where none permitted
or missing required label.

Multiple definition of a label. The second definition is ignored.
Some assemblers also post this on all references to multiply
defined labels,

Numeric error (e.g. operand outside permitted range, division
by zero, multiplication of negative quantities), a value of zero is
used.

Unrecognized operation code. Two words of zeros are generated.
Also caused by a wrong CNFG setting, e.g. RTL! in CNFG 10 in
which case the correct code is generated.

Invalid SIZE or CNFG parameter is ignored,

SEG-ESEG sequence error (i.e. missing ESEG for previous SEG
or ESEG with no previous SEG) or more than 250 segments.

Table overflow. Symbol or literal table overflow, or unaddressable
literal.

Reference to undefined symbol. A value of zero is used.

Too few operands or missing operand. Zero value used,

Too many operands. Extra operands are ighored.

Attempt to assemble segment zero code in loader region (X'0000' -
X'00FF!) or overlap of code and literals, or attempt to assemble

code in a region forbidden by the CNFG and SIZE parameters in
effect.

(et

€1
Symibol not defined due to symbol table overflow, may also be
posted on references to such synibols,
. *
Invalid use of indexing: incorrect format, or usced where indexing
not alltowed, or used in other than CNEG 20 mode.
Invalid use of literal: incorrdéet format, or used wherd literal
nol allowed.
Invalid use of indirect addressing: used on an apcode not permitling
indirect addressing. '
L
L5
A

APPENDIX A

ASSEMBLER SYNTAX, QUICK REFERENCE

N EXPRESSION OPERANDS
ddd. . Decimal constant
Drddd..! Decimal constant
0'ddd. .t Octal constant
B'ddd..' Binary constant
X'ddd. .! Hexadecimal constant
tet ASCII character constant
tee! ASCII word constant
11.. Label name
$ Locati;on counter
& . B B
$L . Load counter
$C, $X Cursor/index register location
- $B $B setting
$D Duplication count

#

Zero

EXPRESSION OPERATORS (in order of increasing precedence)

. XOR.
. OR.
. AND,

.NE. .GT. .LT.
.GE. .EQ. .LE.

.RS. .LS,
§ -

e
*®

TITLE LINES
&text

text

Exclusive Or
Inclusive Or
And

Comparisons

Shifts
Addition, Subtraction

Multiplication, Division

Primary Title Modification .
text is. in columns 2-41 i
Subtitle Line

Il

OPERATION FORMATS

(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]
(1]

AD
ADx*
ADDR
ADI
ALGN
AN
AN
ANI
BOOT
BSS
BSZ
BYTE
cio
CIEQ
CJIEQ*
CJFAL
CIFAL#*
CIGE

CIGE=

b

XF, XL, XX, o u o XT

P

P

br,br,...br
f,f
i, e
i, e
i, e
i, e
i, e

i,e

(1]
(11
(1]

[1]

CJIGT

CILE

CJLT

CINE

CJITRU

CLA

CLC

CLL

CM

CM

CMC

CMC*

CMX

CMX

CNFG

DAC

DAC*

DEC

DEC:*

DSB

DUP

w

(0, 10, 20, 24 or 25)

EJECT f1] renaG e

[1] ENB [1] JcoD e
END fe] [1] JcPpO e
ENDF [1] JCTRU e

1 EQU p [1] JFACK f,f,e
ESEG fe] [1] JFACK® £, f,e

[1] HALT [1] TMmP w
HEX h [1T sMmPx w
IF p [1] ISR w

[1] N2 w [1] ISR W

[1] N2 w [1] JTACK f,f,e

[1] INC w [1] JTACK® f,f,e

[1] INCx w f1] LBL

{1] IOR : fi] LD b

[1] Jcco e [1] LD=* w

[1] JCcCcox e {11 LbC w

{11 JCEQ e [1] LDC* w

[1] JCcEV e [1] DX w

[1] JcFAL e [1] LDxx* w

(1] JccE e [1] LDI i

[1] scaT e LIF p (0-2)

[1}] JCcLE e LIST p (0-3)

[1] scLnT e f1] »TXT t

[1] JCcnNe e f11 LTX8 t

[1] JCNE e {11 MaAC

(1]
(1]
(1l

(1}

(1]

[12

(1]

(1]
[1]
(1]
(1]
(1]

(1]

MAL

MCA

MLA

NOBJ

NOP

OoBJ

OR

ORc

ORG

ORI

PAGE

RIO

RTL1

SB

SB*

SBi

SEG

SET

SHL.4

SIZE

p (1-255)

f, f

a[,al,al]

(1]
(1]
(1]
(1]
(1]
[1]
(1]
(1]
[t]
(1]
(1]
(1]
(1]
(1]
(1]
[1]

SKP

ST

ST

STC

STC*

STX

STX*

TEXT

TXT8

WAIT

WIO

WIMP

WIMP=

WORD

XOR

XORG

XREF

f,f

KT, XL, « v« XT

pl. pl

p (0-2)

KEY TO SYMBOLS

b

Expression whose value is valid byte address, indexing (preceding @)
permitted in CNFG 20. -

Expression whose value is valid even address.
Expression with value in range 0-15,

Even length string of hexadecimal digits.
Expression with byte value (0 to 255 or -128 to -1).
Label

Expression whose value is previously defined.
Repeat factors allowed,

Text string enclosed in delimiters.

Expression whose value is even address or literal (= followed by any
expression), indexing (preceding @) permitted in CNFG 20. s

Any expression.

&

o 0 =

n

APPENDIX B

ERROR FLAGS, QUICK REFERENCE

Invalid address

Boot mode violation

Erroneous character.

QOdd operand where even required.
Forward reference

Missing END line.

IF -ENDF nesting error.

Label error.

Multiple definition.

Numeric error.

Invalid operation code.

Invalid SIZE or CNFG parameter.
SEG-ESEG sequence error.
Table overflow.

Undefined symbol.

Missing operand.

Extra operand.

Invalid load location.

Symbol not defined, table overflow.
Indexing error.

Invalid literal.

Invalid use of indirect addressing.

3

£a

APPENDIX C

COMPATIBILITY WITH PREVIOUS VERSIONS

The following constructions, though not considered part of the SPD assembly
language, are permittéd by all current versions of the absolute assembler for
cornpatibility with previous versions of the language. Always use the new forms
where possible.

The least significant byte of the first parameter to SIZE may be X'FE*
instead of X'FF'',

LIST with no operand is equivalent to LIST 3.

NLST is equivalent to LIST 0.

LIF with no operand is equivalent to LIF 2.

NLIF is equivalent to LIF 0.

XREF with no operand is equivalent to XREF 1.

NXRF is equivalent to XREF 0.

AXN, which may be labeled, generates an indexing instruction X'C94F'.
AXN can be used only in CNFG 20 mode.

A SIZE first parameter of X'1FFF' (8K) may be specified in CNFG 20.

C-1

3

&

APPENDIX D

SPD/DOS ASSEMBLE OPERATING NOTES

SPD/DOS ASSEMBLE is an assembler which runs under control of SPD/DOS
(diskette operating system) on any SPD TPU equipped with a diskette unit
and a printer. See the SPD/DOS Operator's Reference Manual (Order

Number MS-7177) for general details on loading and operating SPD/DOS.

Source Input Format

Source programs to be processed by SPD/DOS ASSEMBLE are stored in

DOS source files. The maximum permitted record length is 80 characters
(longer records are truncated). The 64 character upper case ASCII set is
accepted, the standard ASCII representation in the source file being assurned.
Lower case letters and special characters may be used in comments if the
printer in use will accept them, but lower case letters are not acceptable

in symbolic names.

If the source file data is entered from the keyboard (for examiple, by using
the DOS EDIT utility), the layout of the relevant ASCII characters depends
on the keyboard as shown in Figures D-1 through D-4. Note that the maximum

record length for files created by EDIT will be 64 characters.

If the source file data is entered from the card reader (for example, by
using the DOS COPY utility) the punch code is standard ASCII. Table D-1
shows these punches together with corresponding EBCDIC graphics for use
when an 029 (or similar) model EBCDIC keypunch is used to prepare card

input.

If the source file is entered from paper tape (for example, by using the DOS
GOPY utility), the standard 8 channel ASCIL code is used. The parity bit
is ignored and may be even, odd, always off or always on. For formats on

other external media, see the SPD/DOS Programmer's Reference Manual

(Order Number MS-7178).

&

Figure D-1.

ASSEMBLE (10/20 Upper Case Only Keyboard)

Keyboard Layout for Preparation of Input te SPD/DOS

T O e e

. L
o (Wil =N AL e e e s
LJ {_;‘_)' @] =S| LS _GJ xfl) JitLK EE {j [J ILI
P e e (T i = = T
“ [SPACE BAR }

Figure D-2. Keyboard Layout for Preparation of Input to SPD/DOS
ASSEMBLE (10/20 Upper/ILiower Case Keyboard)

OO0O0O00O0O0

O

815

5 6 7
= - N)

e fle)) s)
Al S
i} ;_>J g SHIFT

! SPACE BAR

Keyboard Layout for Preparation of Input to SPD/DOS

Figure D-3.
ASSEMBLE (20/20 Upper Case Only Keyboard)
O0O00000O0
BIBA 8RB0 InININa
z’gi‘lw]‘in Ty el e fe e IS
T A
SHIFT \{Z X C \Y B N M <') _-} ; SHIFT
[SPACE BAR]

Figure D-4. Keyboard Layout for Preparation of Input to SPD/DOS
ASSEMBLE (20/20 Upper/Lower Case Keyboard)

oNoNoNoNONONONS

G G G T C N s s T

! o wit el rIBLT LY IVl [Rlollle B8 IR

NN IaaInInnIse

[swrT e v ils i~ {lTw S »Z—M
(it T

Table D-1

Card Punch Codes for Input to SPD/DOS ASSEMBLE

ASCII Card Punch Corresponding
Graphic Code EBCDIC Graphic
space no punch space
: 12-8-7 |
" 8-7 "
8-3
$ 11-8-3 $
% 0-8-4 Po
& 12 &
' 8-5 '
{ 12-8-5 (
| . 11-8-5)
* 11-8-4 *
+ 12-8-6 n
s 0-8-3 y
- 11 -
. 12-8-3 .
/ 0-1 /
0 0 0
1 1 1
2 2 2
3 3 3

ASCII
Graphic

4

Card Punch

__Code

4

12-1
12-2

12-3

12-5
12-6
12-7
12-8
12-9

11-1

Corresponding
EBCDIC Graphic

4

£t

gt

ASCII
Graphic

9 0 2 7 ot

WD

Card Punch
Code

11-2

11-3

11-4

11-5

11-6

11-7

11-8

0-8

0-9

12-8-2

Corresponding
EBCDIC Graphic

K

L

L O«

[€)]

Z
¢
none (0-8-2)

Object Output Format

The output from SPD/DOS ASSEMBLE is an object file on diskette in standard

SPD/DOS object file format. See DOS Programmer's Reference Manual (Order

Number MS-7178) for full details.

Operating Procedures

ASSEMBLE is loaded with a DOS command of the form:

< sfile >

< b>

< ofile >

< olabel>

AS[,<options>] <sfile>, <> ,< ofile>, <olabel>

specifies the source prégram. If the program is in a single
file < sfile> is a normal format DOS filename. If the source
program is contained in more than one file, < sfile> is given

in the format:

<fname>, <dsnl > <dsn2>[.c dsn3s]

<fname> specifies the name of all the files (which must be the
same) and the unit of the initial file, < dsnl>, <dsn2 >{and

<dsn3 > if three files are used) specify in sequence the serial
numbers of the disks con\ta'ming the files. As shown, the parts

of this parameter are separated by periods.

is 4 hexadecimal digits (0-9, A-F) specifying the value of the

assembly parameter $B.
is the name of the output object file to be created,

is the label of the object file to be created.

w

i

If the fourth parameter is omitted, the label on the object file is copied

from the label of the source input file,

If the third and fourth parameters are omitted, the name and label of the

object file are the same as those of the source input file.

If all but the first parameter are omitted, then $B is set to X'0000' and the
name and label of the object file are the same as those of the source input

file,

If, during the assembly, a disk must be mounted, a pause will occur for
mounting. The disk containing the work file, object file and assemble

load file must never be reloaded.

ASSEMBLE requires a D (data) type work file to be estiablished prior to
initialization of the assembly. The file is called WORK and may be con-
veniently created using the CREATE utility. The minimum size is 6 tracks.
The number of symbols and ¢ross references which can be handled is a

function of the size of this work file as shown in Table D-2.

Tracks

12
15
18
21
24
27
30
33
36
39
42
45

48

Table D-2

ASSEMBLE Work File Capacity

Maximum Symbols

100

350

600

850

1100

1350

1600

1850

2100

2350

2600

2850

3100

3350

3600

Maximum
Cross References

2048
3072
4096
5120
6144
7168
8192
9216
10240
11264
12288
13312
14336
15360

16384

Ay

&7

Option Letters

The <options> field consists of one or more of the following letters in any

order,

A Alternate unit. The object file is generated on the opposite unit
from that implied by the call,

B Both pass list. A listing is given during pass 1 as well as pass 2.
Usually used only for diagnosing system errors.

C Clean list. LIF 0 mode is enforced ‘cﬁroughout the assembly regardless
of the occurence of LIF operations in the source program.

E Erase. Any previous object file of the same name is erased. In the
absence of this option, it is an error to have such'a duplicate file name.

F Full list. TJIF 2 mode is enforced throughout the assembly regardless
of the occurence of LIF operations in the source.

G Generate included code.

LIN I mode ~ . -

H Hold generated code.
LIN 0 mode . . =

I Inhibit object. The assembly proceeds normally, but output of the
object file is inhibited.

K Kill hash comments, LIST 2 mode is enforced throughout the
assembly regardless of the occurence of LIST operations in the
source program.

L List mode. LIST 3 mode is enforced throughout the assembly
regardiess of LIST operations in the source program.

N

No printer. "Listing'' output is written to diskette using a pre-existing
source file called LIST. The CREATE utility with the S option may

be used to create this file. EDIT may be used to examine the file
following assembly.

P Paper save. LIST 1 mode is enforced throughout the assembly
regardless of the occurence of LIST operations in the source program.

Q Quick assembly, XREF 0 mode is enforced throughout the assembly
and no cross reference output is generated.

R Reference unassembled. XREF 2 mode is enforced throughout the
assembly regardless of the occurence of XREF operations in the source
program.

S Short list. LIST 0 mode is enforced throughout the assembly
regardless of the occurence of LIST operations in the source
program.

T Table of contents. A table of contents showing the initial page number

for each listed sub-title line is printed immediately before the listing
of the first sub-title line in the program. This allows header comments
to precede the table of contents.

U Unlist deleted code. LIF 1 mode is enforced throughout the assembly
regardless of the occurence of LIF operations in the source program.

v Verify. Object file output is verified using a reread check. Other
disk write operations {to the WORK and LIST) files are never verified.

X Xref. XREF] mode is enforced throughout the assembly regardless
of the occurence of XREF operations in the source program.

File Allocation
The assembler will work no matter how the files are positioned, but the

following rules should be follwed for maximum efficiency.

The WORK file and ASSEMBLE program load file should be on one
unit and the source on the other unit in a two disk system. ASSEMBLE
will preferentially select the WORK file on the unit opposite to the

source if WORK files exist on both units.

The WORK file should immediately follow the ASSEMBLE program
load file. This is of particular importance from an efficiency point

of view on machines with more than 8K fnemory (SPD 10/24, 20/20).

w

e

The output object file may be on either unit with little impact on

efficiency.

The LIST file (N option set) may be on either unit. ASSEMBLE
preferentially selects the LIST file on the unit opposite to the source
if LIST files exist on béth units. In the case where a full listing is
obtained on disk, an approximate guide is to make the LIST file one

and a half times as large as the source file itself.

If disks must be reloaded during assembly (more than one source
file), then the WORK file, LIST file, ASSEMBLE program load file
and generated object file must all be on one unit, the unit which is

not reloaded.

Definition of Standard Symbols

Standard DOS symbols, as defined in the DOS Programmers Reference
Manual, Order Number MS-7178, may be referenced in an as sembly

without being defined.

These definitions are accessed only for otherwise undefined symbols, thus

the program is free tc use names of standard symbols for its own purposes.

Standard syrmbols do nst count towards the limits shown in Table D-2.

Display Messages

A one line display is active throughout the assembly,

contain the version number identification for ASSEMBLE. The remaining

twenty-four characters are used to display various messages as follows.

INITIALIZATION

PASS: 1 REC: nnnnn ERR:

PASS: 2 REC: nnnnn ERR:

CROSS REFERENCE ERR:

TERMINATION ERR:

mimim.

mmim

mimim

Bastseieal

MOUNT UNIT=X DSN=nnrsnnnn

Examples

AS,EX 1. FRED

Displayed during the assembly
initialization process.

Displayed throughout pass one, nnnnn
is the number of the current record,

mmm is the number of lines with errors

detected. Note that not all errors are
detected in pass one.

Displayed throughout pass two. nnnnn is
the record number, mmm is the number
of lines with errors.

Displayed during cross reference table
output, mmm-is the total number of
lines with errors.

Displayed during assembler termination
processing, mmm is the number of
lines with errors.

Displayed during pause for disk remount
in the case where the source program is
split over more than one diskette. The
required'diskette should be mounted on
the indicated unit and then the space bar
pressed.

This command causes the source file FRED on unit | to be assembled

generating an objectfile onunitl also called FRED with the same label as

D-14

The first forty characters

¥

e

*

i

the source file. The value of $B is set to X'000%'. XREF 1 mode will be
enforced and any previously existing object file called FRED on unit 1

will be erased before generating the new object file output.

ASSEMBLE,L XY,1000,1.YZ, VERSION 1
This command assembles the source file XY on the currently selected unit
generating an object file with name YZ on unit 1 with label VERSION 1.
The value of $B is set to X'1000! and LIST 3 mode is enforced throughout
the assembly regardless of the occurence of LIST statements in the asserpbly
source.

AS XX.DISKl.DISK2.DISK3, 177A
The source program is made up of three files all called XX on disks DiSK1,

DISK?2, and DISK3. $B will be set to X'177A'.

AS,INS PROG1
The source file PROGI on the currently selected unit is assembled with no
object file output. An errors-only listing will be written to the LIST file

which must exist before starting the assembly.

Listing Format

The format of the assembly listing itself'is exactly as described in
Chapter VII. The main title is taken from the file labe‘l of the generated
object file as tmplied by the command line used to load ASSEMBLE,
The default page depth is taken from the current DOS configuration

parameter (allowing four lines for the title and sub-title).

The cross reference listing is 'Lh two parts. The symbol cross reference
listing contains an entry for each referenced syn;xbol. In this 1isting, the
line numbers for definitions occur first using <> to surround definition
numbers (a definition corresponds to the appearance of the symbol in the
label field of an assembled instruction). References follow using () to
surround line numbers. A 'U'" flag is posted on reference lihes for
symbols with no definition and "M' flag on reference lines for symbols
which were multiply defined.

The literal cross reference contains an entry for each ujnique generated
literal or desectorizing link. The entry gives the literal value, literal
address, and numbers of referencing lines. This listing is unaffected

by the use of XREF operations and is given in its entirety unless the Q

option is set, in which case it is deleted.

In the case where the source program is split over more than one file,

the listed line numbers start at 10001 for the second file and 20001 for

D-16

5

the third file. This aids in editing the component files since the low order

four digits give the line number within the file. To avoid confusion in the

cross reference listing, the number of lines in each component file should

not exceed 10000.

Following the cross reference listing, a termination summary is printed

containing the following messages:
ASSEMBLED BY xxxxxx

SOURCE FILE DSN-dddddddd
NAME -nnnnannnn
LABEL-11111111

OBJECT FILE DSN-dddddddd

SECTORS OF OBJECT CODE nn

NUMBER OF OVERLAY SEGMENTS nn

$B SETTING X'xxxx'

xxxxxx is the version of ASSEMBLE
used to obtain this assembly,

This message shows the disk serial
number, file name and file label

of the source input file. It is printed
more than once if the program is
composed of more than one source
file. ’

This message shows the diskette
serial number, name and label of
the generated object file. Itis
omitted if there is no object file
(I option set).

This message gives the number
(nn=decimal integar) of sectors of
object code. It is omitted if there
is no object file (I option set)

This message gives the number of
overlay segments (SEG-ESEG regions)
in the program (nn=decimal integer),
nn is 0 for unsegmented programs.

This message shows the value (xxxx=four
hexadecimal digits) of the assembly para-
menier $B. It is printed only if $B is
nor-zere.

CNFG-cc SIZE-X'ssss'
EXTERNAL SIZE-X'xxxx'

BOOT MODE

NO ERRORS

ERRORS IN LINES (nnn) (nnn) ...

CROSS REFERENCE TABLE INCOMPLETE

NUMBER OF LINES WITH ERRORS nnn

This message shows the program
configuration value (cc=10, 20, 24
25 or 00), the program size (SIZE
first parameter) and the external
size (SIZE third parameter).. The

'EXTERNAL SIZE part of this message

is omitted if no third parameter is
given to SIZE. :

This message is printed only if the
program was in BOOT meode, i.e.
it contained a BOOT pseudo-operation.

This message is printed if no syntax
errors were detected in the source
program.

This message lists the numbers of
lines in which syntax errors were
detected.

This message is printed if the
cross reference table is incomplete
due to work file overflow.

This messag‘e shows the number of
lines in error, It is printed instead
of the normal error cross reference
if the cross reference table was
incomplete.

x5

Format of Listing on Diskette

If the N option is set, the format of the listing is the same as on a-printer
except as follows:

The maximum allowed LIST mode is 1; LIST modes 2, 3 are treated as
LIST 1.

Titles and sub-titles are never generated.

The Q option is enforced. No cross reference listing can be obtained and
the termination message gives the number of error lines, not a cross
reference listing.

Lines with errors are preceded with a period, thus allowing the use
of the EDIT search to locate error lines.

Full images are generated so that the file may be printed although the
lines will be truncated to 64 characters when the file is examined with
EDIT.

S

L 4]

APPENDIX E

LIST OF OTHER USEFUL PUBLICATIONS

TITLE

PUBLICATIONS
PUBLICATIONS CATALOG = SECOND EDITION
SPD/DOS MANUALS -
SPD D~250 DISKETTE REFERENCE MANUAL
SPD/DOS DISKETTE OPERATING SYSTEM OPERATORS REF. MAN.
SPD/DOS DISKETTE OPERATING SYSTEM PROGRAMMERS REF.
ASSEMBLER MANUAL
SPD SYMBOLIC ASSEMBLY LANGUAGE REFERENCE MANUAL
SPD 10/20 MANUALS
SPD 10/20 INTELLIGENT TERMINAL SYSTEM DESCRIPTION
SPD 10/20 PROGRAMMERS REFERENCE MANUAL
SPD 10/25 MANUALS
SPD 10/25 INTELLIGENT TERMINAL SYSTEM DESCRIPTION
SPD 10/25 MULTI STATION DISPLAY SYSTEM DESCRIPTION
SPD 10/25 INTELLIGENT TERMINAL SYSTEM PROGRAMMERS REF,
SPD 20/20 MANUALS
SPD 20/20 OPERATORS MANUAL
SPD 20720 MULTI STATION DISPLAY PROGRAMMERS REFERENCE
SPD 20/20 MULTI STATION DISPLAY SYSTEM DESCRIPTION
SPD 20/20 MULTI-STATION DISPLAY SYSTEM OPERATORS MAN.
SPD 320/325
SPD 320/325 VIDEO TERMINAL SYSTEM DESCRIPTION
SPD 320 VIDEO TERMINAL SYSTEM IBM 3270 COMP, "PLUS" B.
COMMUNICATIONS MANUALS
COMMUNICATION CONTROLLER REFERENCE MANUAL
INCOTERM DBATA COMMUNICATIONS MANUAL
CONTROLLERS
REMOTE LOAD CONTROLLER REFERENCE MANUAL
CYCLIC CHECK CONTROLLER REFERENCE MANUAL (with adden.)
COMMUNICATION CONTROLLER REFERENCE MANUAL
CYCLIC CHECK
CYCLIC CHECK CONTROLLER REFERENCE MANUAL (with adden)
DATA ENTRY
INCOFORM SOURCE DATA ENTRY SYSTEM DESCRIPTION MANUAL
INCOFORM SOURCE DATA ENTRY SYSTEM DESCRIPTION BROCHURE
INCOFORM SOURCE DATA ENTRY SYSTEM OPERATORS MANUAL
INCOFORM FORMS GENERATION OPERATORS MANUAL
PERIPHERAL EQUIPMENT MANUALS
PRINTER
SPD P-100 PRINTER REFERENCE MANUAL
SPD P-165/SPD P-165A PRINTERS REFERENCE MANUAL
Punch
SPD PRP-45/200 PRINTING READER PUNCH OPERATORS MANUAL
SPD PRP-45/200 PRINTING READER PUNCH PRODUCT BULLETIN
TAPE
MAGNETIC TAPE UNITS REFERENCE MANUAL
SPD~-MT TAPE UNITS PRODUCT BULLETIN
SPD=-T TAPE CASSETTE PRODUCT BULLETIN

ORDER
NUMBER

MS-7159

MS-7143
MS-7177
M5-7178

MS~-7215

MS~7145
MS-7110

M§-7199
MS-7190
M§-7217

MS-7190
MS=-7144
MS-7165
MS-7190

MS§S-7158
MS-7172

M§-7152
Ccs=-015

MS~-7121
MS-~7122
MS~-7152

MS~-7122

MS=7205
MS-

MS-7208
MS=7209

MS=-7123
M5-7146

MS-7154
MS=-7204

M§=-7153
MS-7162
Ms-7201

+

Eis

%

@

:

RELOCATABLE ASSEMBLY SYSTEM

FOR THE SPD COMPUTERS

Revised May 2, 1975

Further revised June 1, 1975
(to correspond to V6.05)

Further revised June 17, 1975

(to correspond to RASSEMBL V6.07
and later versions)

Dr. Dewar

June 24, 1377

%
Tk

3

@

TABLE OF CONTENTS

INTRODUCTION

1

RELOCATABLE ASSEMBLIES

FORM OF MODULE TEXT

Use of CNFG

Relocatable Addresses
Absolute References

TOP Sector Section
External Symbol Definitions
External Symbol References
Symbol Definitions
Expression Formation Rules
The IN Pseudo-Operation
Error Flags

THE RASSEMBL UTILITY
Format of Listing

ABSOLUTE ASSEMBLIES
IN PSEUDO-OPERATION
LIN PSEUDO-OPERATION
SIZE PSEUDO-OPERATION
CNFG PSEUDO-OPERATION
ERROR FLAGS

DOS OPTIONS

RELOCATABLE FILES IN SPD/DOS
COFY

DCOFY

ERASE

LIST

RENAME

VERIFY

SYSTEM SUBROUTINES

FORMAT OF RELQCATABLE FILE ON DISKETTE
MODULE DIRECTORY

MODULE PREAMBLE
External Symbol Dictionary
End of Module Preamble

MODULE TEXT

Word Specification (WS)

Byte Specification (BS)
One-Word (Word or Byte Class) Instructions
Immediate Glass Instructions
Jump on Conditions Instructions
Compare and Jump Instructions
Generic Instructions
Input-Output Instructions
Special Codes

End of Module Text

Page

o]

00 NI WD N

10
10
11
11
12
12
12

<

INTRODUCTION

This manual describes a system for relocatable assembly for the SPD
series of computers. It is based on the existing assembly language
as described in the SPD Assembly. Language Reference Manual, Order No.

M5-7215.0, and a familiarity with this manual is assumed.
Basically, this system permits sections of programs or individual
subroutines to be preassembled and stored in relocatable libraries

for later inclusion in a final absolute assembly.

The systems as described here is implemented in release 6 of SPD/DOS.

RELOCATABLE ASSEMBLIES

A relocatable assembly translates an appropriate source file into a
single relocatable file containing one or more modules which can sub-
sequently be individually included in an absolute assembly by means of

an IN pseudo~operation.
The form of the source file is:

<global definitions>

¢riame—1> MOD

< source-code for name-1 moduled

¢name-2) MOD

< source—code for name-2 module)

{ name —n} MOD

¢ source—code for name-n module)
END

¢name-1 >, £ name-2 >,...<name-n > are the names of the modules to be
assembled. There must be at least one and no more than 250 modules in

one assembly. The names obey the normal rules for assembler names.

The <global defintions» section, which is optional, contains EQU and

SET statements which define symbols which can be referenced in any of

the modules. Since no forward references can occur and since the symbols

$ and $I. cannot be referenced at this stage, the values defined are all
absolute guantities known at assembly time. No data generating instructions

or BSS statements may be included in the < global defintions > section.

The END statement in a relocatable assembly may not have a label or an

operand and is only used to indicate the end of the last module.

FORM QOF MODULE TEXT

The module text is essentially similar to a program written in the

standard SPD assembly language with the following exceptions:

2

&5

SIZE may not be used. Size and address checks as well as literal

allocations, are performed in the final absolute assembly:

ORG, XORG may not be used. A relocatable module consists of a seguential,

contiguous section of code (except as described below under TOP) .

SEG, ESEG may not be used. Segmentation, if any, is definied in the final

absolute assembly.
BOOT may not be used.
CNFG may be used, but acts differently. See following section.

OBJ, NOBJ may not be used.

Use of CNFG

CNFG may be used but acts only to determine the allowed set of instruction
mnemonics and the use of indexing. The first CNFG in a module must come
before any code is generated and acts to determine the CNFG setting of
the module. A CNFG O module may be included anywhere in the final absolute
assembly. A specifically CNFG’ed module may be included only in a region
of the absolute assembly with matching CNFG.

Subsequent CNFG lines change the set of allowed mnemonics but do not
affect the CNFG setting of the module. The default of CNFG O is reset
at the start of each module, so each module must contain at least one
CNFG stabtement if this default is unsuitable.

Relocatable Addresses

The location counter printed represents a relocatable value and always
starts at X°000°. When a module is INcluded in an absolute assembly, these
relocatable values are added to the initial load and location counter

values to obtain resulting absolube addresses.

Absolute References -3

Absolute references to top sectors should be done on the basis of top
sector starting at X°7EOC”. The symbols $X and $C have the value v
X*7FFE’ regardless of the CNFG.

TOP Sector Section

It is optionally allowed to end the module with a TOP sector section
consisting of a TOP pseudo-operation (no label or operand) followed by
BSS or code generating operations. The data assembled following a TOP
pseudo-operation will be allocated in the literal pool in the final
assembly in a eontiguous manner. The storage locations assigned to
each module’s TOP area will be unique and not overlap another TOP area

or any allocated literals.

The TOP pseudo-—operation allows a module to specify top sector work

areas and data. ’ s

Bxternal Symbol Definitions

Symbols which are defined within a module whose definitions are to be
made available to other modules and code in the final absolute assembly

must be listed using the DEF pseudo-operation.

DEF ¢ symbol >

< symbol> may have an absolute, relocatable or TOP value. The value obtained
in the absolute assembly in the latter two cases is the absolute value

corresponding to the actual memory allocation for the module.

A1l DEF pseudo-operations must occur before any BSS or code generating

operations. 5

The module name itself is automatically included in the DEF list with

value relocatable zero.

External Symbol References

Symbols which are defined (via DEF) in other modules and symbols defined

in the final absolute assembly must be listed using the XTIN pseudo-operation.
XTN <¢symbol>

A1l XTN pseudo-operations must occur before any BSS or code generating

instructions.

Symbol Definitions

Symbols may be defined using the label field as usual. Except in the
case of SET or EQU with absolute operands, the values of such symbols

are said to be relocatable or TOP values depending on where they appear.

The symbols defined within each MODule are completely distinct. Thus
the same name may be used in different ways in different modules. Note
however, that if two modules give the same symbol name on REF lines,
an M flag will result if both modules are INcluded in the same final

assembly .
There are, therfore, three types of symbols which can be referenced.

(a) Global symbols. Defined in the <global definitions> section.

These values are always absolute.

() Iocal symbols. Defined within the current module. These values may
be absolute, relocatable or TOP values depending on the corresponding

definitions.

(¢) External symbols. Iisted in XIN lines in the current module. The

values of such symbols are not known till the final absolubte assembly.

by

Expression Formation Rules

The use of relocatable, TOP and exbernal symbols in expressions is B

limited as follows:

External symbols (those defined in XTN statements) may only appear on their
own and may not be used with any expression operator. They may not occur
except as addresses including literals, immediate data operands, or I/0

functions and channel codes.

The +(addition) operator allows a relocatable or TOP value to be added
to an absolute value (but not vice versa) giving a relocatable or TOP

result respectively.

The —(subtraction) operator allows an absolute value to be subtracted
from a relocatable or TOP value (but not vice versa) giving a result

value of the same type. It also allows two values of the same type

e
(voth relocatable or both TOP) to be subtracted to give an absolute
value.
No other gperators permit the use of relocatable or TOP values. -
The only places where expressions with relocatable or TOP values may
be used are the following:
Address operands for instructions,
DAC, ADDR or WORD operands,
BEQU or SET operands (predefinition required),
Literal operands.
The special symbol $ may be used and has as value the relocatable or
TOP value of the current location counter contents.
H

The special symbols $C and $X have as value absolute X’7FFE’ regardsless
of the current CNFG setting.

The special symbol $L may not be used in relocatable assemblies. The
special symbols $B and $D may be used with their usual meanings.

6

I

The IN Pseudo-Operation

The pseudo-operation IN may be used to copy a module from a previously

assembled library into the library being created. The format is:

IN < filename >, <modulename >
< filename> is the name of the relocatable library file containing the
module. No unit number is given; the currently selected unit is searched

first and then the other unit to find the file.

¢ modulename > is the name of the module to be included. As shown,

this operand is required.

IN can occur in place of a MOD pseudo-operation and its text. It

cannot occur in the middle of a module.

Error Flags

The use of a pseudo-operation not permitted in a relocatable assembly

will generate an O flag.

The use of a DEF or XTN after a BSS or code generating instruction

causes a Q Tlag to be posted.

An R (relocation error) flag for violation of the rules on expression

formation given above.

The A, E, and X flags are never posted in a relocatable assembly, these

errors will be detected during the final absolute assembly.

THE RASSEMBL UTILITY

RASSEMBL is a new SPD/DOS utility program which performs a relocatable
assembly. The use of RASSEMBL is similar to that of ASSEMBLE except
that the input is in the format described in this section and the oubput

is the corresponding relocatable file.

The options and call are the same as for ASSEMBLE except for the program

name.

The error codes are identical except that RA is used instead of AS and

all references to "object" file are changed to "relocatable" file.

Format of Listing

The listing format is similar to that generated by ASSEMBLE except

as follows: v

The location counter listed is the appropriate relocatable or TOP
value. Both sections start with the counter value at X°0000°.

The ¥ for desectorizing does net appear since desectorizing is

left to the absolute assembly. Also, no literal table or literal cross-
reference table is printed.

The module number is printed as two hexadeciamal digits (00 = global
definitions section) in the same place as the segment number of an
absolute assembly.

Short form instructions list as follows:

m- /it = @)00. [=] vevet

Jds
mn is the module number
yid is the current (relocatable or top) assembly counter
@ is present only for an indexed instruction ta
00 is the opcode as two hexadecimal digits with all addressing
bits off

8

. is replaced by % 1if indirect addressing is specified
= is present only for a literal reference
haaa's is operand value

t indicates the operand type

blank absolute

R relocatable
T TOP section
X external

in the case of external, the value vvvv listed is the
serial number of the external reference as listed on the
corresponding XTN line.

Long form jumps list as follows:

mm- e s vwww [%] v

mm
41l as above

haaais

t

WWwWw first word of instruction

présent only if the jump is indirectly addressed

The values listed for WORD, DAC instructions and for EQU, SET and DEF

operands have the type appended as described for one word.instructions.

The value listed for DAC is preceded by % if indirect addressing-is

specified.

The cross reference table is sorted first by module number then by

symbol name. It includes the module number, value and type of each symbol.

ABSOLUTE ASSEMBLIES

Absolute assemblies are performed with the ASSEMBLE utility. In
fact, a normal assembly, as performed under previous releases of
D0S, is still possible and is simply a special case of an absolute

assembly in which no relocatable modules are included.

The enhancements to ASSEMBLE allow previously assembled relocatable
modules to be included in an assembly. The effect is similar to

including the source stabements of the original module.

IN PSEUDO-OFERATION.

The TN pseudo-operabion allows a single specified module to be included:

IN < filename > , < modulename >

<Pilename >is the DOS filename of the relocatable library containing
the module to be included. No unit is given. ASSEMBLE searches all
units (currently selected unit first) to find this file.

<modulename> is the name of the module to be included. If this operand

is omitted, then the first or only module is included.

The instructions and data in the relocatable section of the module are
assenmbled with the location counter values adjusted according to the
starting value at the time the IN was encountered after any required
work aligmment. In the case where the IN appears in the range of an
XORG, the bias, if any, between the load and location counters is main-

tained.

The TOP section in the module, if any, is assembled in the literal
pool region as specified by the second argument of SIZE. The literal

pool area is allocated as follows:

First the TOP sector regions of INcluded modules are allocated at

successively lower addresses, then the literals and links are allocated

below these areas. Note that XORG has no effect in the TOP section data.

10

3o

The location counter and load counber values following completion of
the INclude are those obtained after assembling the last relocatable
data (and are not affected by the presence of a TOP section).

The CNFG mode of the assembly is unaffected by an IN statement, regardless
of the occurrence of CNFG statements in the included moduleé. It is the
programmer ‘s responsibility to avoid INcluding modules containing

instructions inappropriate to the program.

LIN PSEUDO-OPERATION

The LIN pseudo-operation controls the listing of data assembled by IN

pseudo-operations.

LN <expr>
<expr> is an expression whose value is O or 1. If the value is O,
then the assembled data is not listed unless an error flag is posted.
If the value is 1, then the assembled data is listed. Any symbols
appearing in <expr)> must be pfedefined.
The default LIN mode if no LIN pseudo-operabtion appears in the source

program or until the first LIN appears is LIN O.

SIZE_PSEUDO-OPERATION

The second argument to SIZE specifies the origin for TOP areas of
INcluded modules as well as for literals and links.

In order to properly allocate TOP areas, the value of this second
parameter must be known during pass one. For simplicity and consistency,

a rule has been introduced requiring all symbols in the operand expressions
of SIZE to be predefined.

11

CNFG PSEUDO-OPERATTON

The initial CNFG must precede the SIZE statement, if present. This is

necessary for proper allocation of TOP areas.

ERROR FLAGS

If an XTN symbol reference in an INcluded module is undefined, then a
U flag will be posted on the IN line and on all generated instructions
referencing this symbol. The cross-reference table will identify the

undefined synbol.

If a DEF symbol {or the module name) is multiply defined (i.e., defined
explicity in the absolute assembly or DEFined in some other module),

then an M flag is posted in the IN line and on all generated instructions
referencing the symbol. The eross-reference table will identify the
multiply defined symbol.

If a generated operand address is odd when it should be even, the

generated instruction is flagged with an E flag.

Generated instructions which are flagged are printed regardless of the
LIN mode. By subtracting the location counter value on the IN line
from the location counter value for the flagged line, the relocatable

address within the original module text can be calculated.

A new flag, Y, is posted if the CNFG setting of a module does not match
the current CNFG.

DOS_OPTTONS

The operation of ASSEMBLE is unchanged except that two letter options have
been added to control LIN mode:
H Enforce LIN O mode, regardless of LIN statements in the

source program.

G Enforce LIN 1 mode, regardless of LIN statements in the
source program.

12

HE

RELOCATABLE FILES IN SPD/DOS

SPD/DOS Release 6 supports relocatable files as a fourth file type
using the type letter R.

COPY

COPY has an R option to allow rélocatable files to be copied. The
form of relocatable files on external media is as for data files
except that the label has an R instead of D.

DCOFY

DCOPY has an R option to allow relocatable files to be copied.

ERASE

ERASE has an R option to allow relocatable files to be erased.

LIST

LIST has an R option to allow relocatable files to be listed.

PACK

PACK has an R option allowing retention of relocatable files.

RENAME

RENAME has arn R opbion to allow relocatable files to be renamed.

VERIFY

VERIFY has an R opbion to allow relocatable file labels to be

verified.

SYSTEM SUBROUTINES

Relocatable files may be opened or created by using D&OPEN or
D&CREA with an R (X°52°) in the FDB&TYP of the FDB. They can then
be read or written using D&READ or D&WRIT.

13

L
FOBMAT OF RELOCATABLE FILES ON DISKETTE

A relocatable file is basically a sequential string of bytes which
fills consecutive sectors of the file at any non-zero interlace
factor. The standard value of this interlace factor as generated -
by the RASSEMBL utility will be chosen for efficiency, probably
in the region of 9. No assumption should be made about this value
on reading a relocatable file, the value should be obtained from

the directory entry as usual.
MODULE DIRECTORY

The first part of the file is the module directory consisting of a

series of entries in the form:

1-8 bytes Module name. MSB of last character set on.

1 byte Relative track of start of module (i.e., track rumber
of start of module preamble minus track number of start of
file).

1 byte Sector (0-31) of start of module preamble.
1 byte Offset (0-127) of start of module preamble within sector.

@

As indicated, the length of each entry is ﬁariable from 4-11 bytes,

the entries spilling over sector boundaries as required.

The end of the module directory is indicated by a dummy entry with

a name of X°FF’. This dummy entry correctly indicates the first umised
byte location in the file. The preamble for the first module immediately
follows this dummy entry, with X’FF £ill bytes optionally intervening.

MODULE PREAMBLE
The preamble 1s a contiguous string of bytes of variable length starting

at the location indicated by the associated module directory entry.
It has the following format:

14

Bytes 0-1 Highest (i.e., first unused) relocatable origin in module.
This is used to determine the location and load counter
values to be set following an IN pseudo-operation.

Bytes 2-3 Highest (i.e., first unused) TOP origin in module.
X°0000° if no TOP pseudo-operation appears in module.

Byte 4 CNFG setting of module.

External Symbol Dictionary

A contiguous series of bytes containing one entry for each EXT or DEF
pseudo-operation in the module source text, immediately following the

five header bytes described above.

Either type of entry starts with the characters of the name, the MS
bit of the last character being set on. In the case of DEF entries,

a WS (see section on word specifications) follows which specifies

the defined value of the symbol. An XIN entry complete with the name
(an examination of the codes inveolved will indicate that this arrange-

ment causes no ambiquities).

The order of DEF entries has no effect since the only function of these
entries is to make the appropriate entries in the symbol table of the

absolute assembly.
The order of the XTN entries is significant. The first entry is numbered
X’0001° and subsequent entries are assigned successively higher numbers.

References in the module text to external symbols use these numbers.

The DEF entry corresponding to the module name is present in the

preamble (and indicates an associated value of relocatable X 0000°).

15

End of Module Preamble

The end of the external symbol dictionary and hence of the preamble
is marked by a single byte with value X'FF”. The module text follows
immediately, or after X'FF” fill bybes.

MODULE TEXT

The text for each module is a contiguous series of bytes in a special

format designed to minimize the space required for relocatable libraries.

First we define some special sequences which are used throughout.

Word Specification (WS)

A WS is a specification of a word value or address operand consisting
of a descriptor byte followed by a one or two byte value. The descriptor
byte has the following form:

R

x Normally set to 1. Set to O only for an indexed one word instruction
operand.

%3

| 111 Ex %l

t

I
|t

1 Normally set to 0. Set to 1 only for a literal reference in a one
word instruetion (value given is literal operand)

i Normally set to O. Sebt to 1 if the WS represents an address operand
for an indirectly addressed instruction or pseudo-operation.

b Set to 1 if the following value is two bytes. Set to 0 if the
following value is one byte (i.e., MS byte of value is X°00°).

tt Type of value

Absolute value

Relocatable value

TOP wvalue .

External symbol reference (in this case the "value" is
the extérnal symbol number).

HROoO
HO O

e

16

4

Byte Specification (BS)

A BS specifies a byte value, as used, for example, in an immediate

class instruction. The following possibilities exist:
(a) For an external reference, a BS has the same form as a WS.
Note that the descriptor byte has one of the two values

X’E3" or X'E7”.

(b) Absolute byte values greater than or equal to X“EO’ are represented
by X'FF’ followed by the byte value.

(c) Absolute byte values less than XEQO”, the BS is simply the byte

value in question.

One-Word (Word or Byte Class) Instructions

One byte containing the opcode followed by a WS giving the operand
address. The opcode byte has all addressing bits off.

Immediate Class Instructions

Opcode byte + BS giving the byte operand.

Jump on Condition Instructiors

Two bytes giving the opcode and second byte of the instruction followed
by a WS giving the jump operand.

An SKP instruction is represented as the word value X°8800° using

the special code X‘F5° (see section on special codes).

Compare and Jump Instructions

One byte giving the opcode followed by BS giving the immediate byte
operand followed by WS giving the jump address operand.

17

Generic Instructions

Two bytes of the instruction. ¥

Input-Dutput Instructions

The opcode byte is generated first followed by a BS specifying the
function code and a BS specifying the channel. In ﬁhe case where both
function and channel are absolute (non—external), and the function code
is non-zero, these two BS’s may be (but are not required to be) combined
into a single BS specifying the second byte of the instructipn. In the
cases of JFACK and JTACK, a WS follows specifying the jump address.)

Special Codes

X°F1” " BSS 1 (used for word alignment).
X'F2" a a BSS aa where aa 1s a two byte absolute value giving the)
_ count. ‘ s &
X°F3° BS Generafc.e byte s’pecifiéd by BS once. 3
X’FL" a a BS Generate byte specified by .BS- muber of times indicéﬁed .
by twe byte absolute value aa. : o b
X°F5° WS Generate word specified by WS once.
X‘F6" a a WS Generate word specified by WS nimber of times indicated by
two byte absolute value aa.
X'F7° Start of TOP sector section.
X°01° text X°01° Generate text (0 or more bytes from TEXT, TXT8, LTX8,
LTXT pseudo—operation). Note that the opcode value
X’01” never appears so no confusion arises.
End of Module Text
The module text is terminated by a single byte X’FF’. The preamble for
I8
the next module, if any, follows. The bytes following the last byte of »
the last module text are unreferenced and undefined.
»

18

VAXJO DATA SYSTEM AB

Distributér for Incoterm i Sverige, Norge, Finland och Danmark "‘ ba)

VAXIO

Adress: Box 3034, Smedjegatan 37, 350 03 VAXJO
Telefon: 0470/10070

Telex: 52 138

HELSINGBORG

Adress: Landskronavigen 23, 252 32 HELSINGBORG
Telefon: 042/14 94 30

MALMO
Adress: Sddergatan 12, 211 34 MAIMD |
Telefon: 040/724 50 ‘

STOCKHOLM

Adress: Skeppargatan 8, 114 52 STOCKHOLM L
Telefon: 08/14 22 35 .

CORONADATA AB
Adress: Box 5143, Avigen 18, 402 23 GOTEBORG
Telefon: 031/20 03 80

CORONADATA A/S
Adress: Park Alle 296, DK - 2600 GLOSTRUP
Telefon: (02) 45 88 22

CORONADATA OV

Adress: Notstigen 4 C, SF - 00330 HELSINGFORS 33
Telefon: 0 - 48 87 22

CORONADATA A/S

Adress: Torggatamn 7, OSLO 1
Telefon: 2 - 33 42 60

LANPRODUKTER, Vixjd 1976

