USER’S GUIDE FOR
MULTI-TASKING OPERATING SYSTEM
- MT0S-68

INDUSTRIAL PROGRAMMING, INC.
9 Northern Blvd.
Greenvale, N.Y. 11548

- . January 1976

Copyright (c) 1976, by Industrial Programming, Inc., Greenvale, N.Y.

ey

~ User’s Guide for MTOS

The information in this document {s subjéct to change, ubdate
and revision without notice. Industrial Programming, Inc., assumes

no respbnsibi]ity for any errorS'that may appear in this manual or

. the associated software.

" The software described in this docuhent is furnished tQ the

purchaser under a license which forbids reproduction in whole or

part except as provided in writing by Industrial Programming, Inc.

Copyright (:) 1976, by Industrial Programming, Inc., Greenvale, N. Y.

€

Section

2.

3.

3.1
3.2

3.3

3.3.1

'3.3.2
©3.3.3

3.3.4
3.3.5

3.3.6

4.1

4.2

4.3

5.1

5.2
5.3

5.4
5.5

6.

7.

”Iﬁtroductibn -

- TABLE OF CONTENTS

L

‘Supervisor Calls

Task-Managément
| CPU Management
Task Overhead

- Task Startup
Automatic Task Startup |
Uncbnditiona] Requests for Task Startup
Conditional Reqﬁests for Task Startup
Reque§ts for Task Termination)
State of Task Upon Staftup

Task Coordination Via Event Flags

 Coordination of Shared Subprograms

SVC for Entry To and Exit From a Controlled
Subprogram

Contfo]]ed Subprogram 0verhéad

Registers and Condition Code
Time Management

Pause for Given Time Interval

~Cancel Pause for Given Task

. Set EventrFlag After Given Interval

- Synchronization for Exact Time Intervals
Pause for Minimum Time Interval

Input and Qutput of Discretes

Input and Output of Console Messages

. a0

3-10

Section

7.1

7.2
7.3
7.4

8.

9.
9.1
9.2

TA§EE OF CONTENTS (continued)

“‘Contents

Requested Output

Requested Input

Input Text Editing

Unrequested Text Messagés
Pekipheral Interrupts
Memory Allocation

MTOS Memory Map

MTOS/User Interface

Page |

7-1

7-3

7-4

8-1

- 9-1
9-1

Fiqure

31

3-2

4-1
5-1

7-1

9-1

TABLE OF FIGURES

Contents
Typical Requests for Task Startup
Typical Applications bf SVC 9
Task Coofdination Via Event Flags
Using a Cbntro]led Subprogfam
Task Coordinatibn Via Pause Cancellation
Setting aﬁ “"Alarm Clock"
Console Output

Typical Console Data

Page

3-7
3-14
3-15

4-2

5-4

7-2

9-3

iR

| S

Appendix

TABLE OF APPENDICES

Contents
Task Storage Overheéd
Summary of SVC Data Blocks

Sample Programs

S

USER'S GUIDE FOR MTOS

1. Introduction

~ An operating system is used to increase the effectiveness of a

computer by allowing several activities to proceed simultaneously
and to share common facilities without interference. Simultaneous
operation increases throughput; facility sharing conserves memory.

A Multi-Tasking Operating System (MTOS), in particular, permits

the user to divide his program into separate, individual segments

called "tasks". A task is an independent program which can run.
either. alone 6r simultaneously. with other tasks. This independence,
however, does not exclude coordinatijon among.tasks, or the sharing
df resources such as a data base or set of utility subprograms.

The abifity of a task to be run as a separate program does not
imply that it is running at all times. Often it is not. Each task

will be in one of four general states: dormant, waiting, ready, or

active.

A dormant task‘is toté]]y inactive; it is not running. Either

'it has never started, or it has run and terminated. A dormant task-

may be started by another task or by the operating system in response

“to some external event, e.g. recovery after a power failure.

A waiting task is currently running, but is temporarily blocked

from continuing. There are several wait states depending upon the

type of blockage. Generally, a task is either waiting to use some

shared facility which is busy, waiting for a requested service to

~be completed, or waiting for some internal event such as the receipt

of a coordination (go ahead) signal from another task. While a task

is in one of these wait states it does not compete for use of the
computer's Central Process1ng Unit (CPU) |

The active task is the one presently us1ng the CPU * The ready
tasks are those which could use the CPU if 1t were available.

MTOS supports the indiridua1 tasks by providing functioostand
services which are beyond the capabi1ity of any one task or which

are most efficiently concentrated in a central area. For example,

“the allocation of the CPU must be an operating system function since

dynamic, system-wide information is needed to resolve the conflicting
needs of several tasks. In contrast, the inpuf of discrete signals
could in princip1e be programmed into each task which must react to
such signals. In many cases, however program efficiency is 1mproved
by centra11z1ng the processing of discretes.
The broad categories of MTOS service are:
| 0 management of tasks
0 coordination of shared subprograms'
o management of cime
o input and output of ConsoTe message and discrefes
Each of these categor1es is described in later sections of this
document. The discussion will cover both those services _which are

provided automatica11y by MTOS (and thus which are not directly

"visib1e to the task programs),'and'those services which come. into

play only when directly requested by a: task program
In all cases, MTOS services are 1n1t1ated by interrupts. HMany

of these interrupts are generated and serv1ced by MTOS with only

1-2-

N\

|

the indifect_effects'eeen‘withih’the tasks.A-For’examp1e, the fea]-
time ¢lock periodically generates an interrupt. MTOS uses that
interrqpt'in its timekeeping functions. However, unless a task
has requested a pause for a given amount of time, or hés requested
some other time—eependent service, the clock interrupt has no.

direct consequence for that task.

-3

2. Supervisor Calls

L)

~When a task needs service, it jssues a supervisor call (sve)

using'the following code:

SVCPGM EQU $E400

The data block indicates the type of request and prov1des any

~ JSR SVCPGM
FDB data b1ock_

requ1red parameters.

_The SVCs within MTOS are:

12,
13.

wait until event flags are set

. terminate the issuing task without automatic restart

terminate the issuing task with automatic restart
after a given interval

pauée for a given time interval
cancel the pause of a given task

start a given task if it is dormant

start a given task, queuing the request 1f the

task is busy
enter a controlled shared sprrogram
exit from a controlled shared subprogram

set/reset/test an external discrete

. ~set/reset/test an internal event flag

set an event flag after a given interval

read a message from the Console

write a message on the Console
A11 of the SVCs will be described in the sections to follow.

pendix B contains a summary of the required data'b]ogks;

Ap-

2-1

oo
£ S,

H k3

e g
oot R

The supervisor call uses an internal MTOS subprogram (SVCPGM)

'-rather than the software interrubt (SWI) instruction. ‘This avoids

two problems. First, the Motorola EXORciser uses the SWI for break-
points. Our use of an internal subprogram eliminates thié conflict
and permits program development on the EXORciSer. Second, if a non-

maskable interrupt occurs during SWI pro;essing; a bogus peripheral

‘interrupt'is generated by the hardware (see Motorola Applications

Manual, Page A-10, Q9). MTOS is not subject to this anomaly.
The same data block may be referenced by several individual

requests. For example,. the data block to pause for 30 seconds is:

1000 02 PA30SC FCB 2 =pause)
1001 02 . FCB 2 =seconds)
1002 1E FCB 30 (=number of units)

Two separate requests for such a pause could be:

1500 BD E400 " JSR SVCPGM PAUSE FOR 30 SECONDS

1503 1000 FDB PA30SC

1641 BD E400 JéR SVCPGM PAUSE FOR ANOTHER 30 SECONDS
1643 1000 FDB ~ PA30SC -

- Furthermore, the data block may be in either read-only memory

(ROM) or read-write memory (RAM). Thus, a pause for a varijable

number of seconds could be constructed as fo]lon:

0120 003 PAUSE RMB 3 (in RAM)
1710 CE 0202 DX #$0202 SET UP PAUSE WITH SECONDS

1713 FF 0120 STX PAUSE AS TIME UNIT

(calculate number of seconds)

174F B7 0122 STA A PAUSE+2 STORE CALCULATED NUMBER OF SEC(=A)
1752 BD E400 JSR SVCPGM PAUSE '
1755 0120 - FDB PAUSE

N

Upon return from SVCPGM, the condition code is set to convey
certain information about the SVC. The specific meaning of the

~individual bits varies with the particular type of‘requesf.’How-

ever, the following general scheme has been adopted for all SVCs: -

H (half carry): ' always 0.
I (interrupt mask): always 0.
N (negative): ‘always O.
Z (zero): =1 if the requested conditjon already
© exists so that the SVC has no
effect. For example, if the SVC
- request was to start a given task
if it is dormant, and that task’
was already started then Z is
set to 1. '
=0 otherwise
V. (overflow): =1 if any of the parameters are beyond
' the proper range, such as an SVC
type of 99.
=0 if all parameters are within range
(carry): ‘ = original value of external discrete

N]

or internal event flag.

<

3. Task Management ‘

- Task managemenf encompasses:
. o CPU management |
0 task_overhead}
o task étartub
0 task términation

o task coordination

3.1 CPU Management

~ While several tasks may be running simultaneously, only one task

~can use the computer's Centfa] Processing Unit (CPU) at a time.

This task is said to be "activé"; MTOS determines which one of the

ready tasks will be active.

To facilitate CPU management, MTOS maintains a queue of all

| ready tasks. This Ready Tasks Queue (RTQ) is dynamic. For example,

when a dormant task first starts it is placed on the RTQ. If at some
point the task requests a pause for a given amount of time, it ﬁs
temporarily remdved from the RTQ; when the fime e]épses, the task is
reinstated. When the task finally terminates, jtlis taken permanently

from the RTQ. These processes are repeated for each subsequent

'.restart of the task.

Ordering within the RTQ is determined by a current p}iority

associjated with each task. Priorities range from 0 (Jowest) to 15

. (highest).” The priority is set when a task first starts and remains

éonstant_unti] the task terminates. However,‘each réstart of the

task may be made at a different priority. (Assignment of task

L

Yoo
N

T,

32

priority is discussed in Section 3.3.2.)
MTOS gives the CPU to that ready task having the highest priority.

_For-tasks of the same priority: first-come, first-served. Since

the RTQ is maintained in descend1ng order of current pr1or1ty, the
act1ve task is merely the head of the RTQ.

The active task retains control unt11 an interrupt occurs. At
the interrupt the_active task is automatically suspended and the
state of the machine (registers, condition code and progkam countef)

is saved in the task's stack.‘ (Each running task has its own

 stack.) MTOS then services the interrupt. The service may change

task status so that a new task becomes the head of the RTQ. To

resume task processing, MTOS loads the state of the machine from the

‘stack of whatever task is at the head of the RTQ.

3.2 Task Overhead

CPU control is an internal function of the operating system and

- requires no effort on the part of the user. There is nevertheless

certain storage overhead which must be provided for each task.
These are described fully in Appendix A. In brief, the overheads

are:

A stack for use by MTOS to store the state of thé microprocessor

during interrupt processing, andAby the task to storé sub-
program return addresses and temporary data. The user must
keep18 bytes within the stack always available to MTOS.

A7 byte entry within a table of Task Control Data (TCD). The
-TCD is fixed by the user and contains the program ehtry

~point, inherent priority, and similar static source data.

The information must be in ROM.
An 18 byte Task Control Block (TCB) which is created and used

internally by MT0S. Since the TCB contains dynamic data,
it must be in RAM. | ' |

3.3 Task Startup

3.3.1 Automatic Task Startup

When power is first applied to the processor (that is, during

the servicing of a reset interrupt), MTOS sets all app]icatibn tasks

dormant except for a user-written "reset processing" task. Although

there are no special restrictions on the reset task, it is expected
that it will initialize certain data and then will start other tasks
as required by the'paéticular application. o

| Note, however, that recovery from-a temporary power faiiure
and initial start of the system'are indistinguiéhabie as far as the
basic microprocessor is concerned; they both generate a "reset" |
interrupt. In fact, withbut some external hardware to make a dis-
tinction, turning on the processor is simply the recovery from an
extended period of power outage. |

. Since the user may wish to proceed differently after temporary

pdwer failure than after system restart, MTOS provides an external
initialize button which is used upon system restart. A éepression
of this button is treated‘exact]y as a reset interrupt, except that

a different user task--the initia]izé task—-becdmes active.

¢

3.3.2 Unconditional Requests for Task Startup

~ The reset and initialize tasks genera]Ty start other tasks

3-3

3-4

v{:} S whiéh}may, in turn, start still other tasks. The mechanism by
~which one task requests the start of another is through SVC 5.

A11 SVCs are coded as JSR SVCPGM followed by the address of a

supplementary Supervisor Data Block (SDB).‘ The‘SDB for reqﬁesting

task startup is composed as:

FCB 5 | . | (type)

FCB parameter 1 (options and contro])

FDB address of TCD for task to be started (target TCD)

FDB address of 7 byte RAM scratch area in (RCB address)

which to build queue block o
Parameter 1 contains b1t ~-by-bit control data:

o If bit 7 is a 1 the value currently in the X reg1ster of the

requesting task,w111 be placed in the X.register of the
.started task és a'startup argument; otherwise the target
task will start with the X régister cleared. This mechanism
provides for a single, 16-bit argument to be trangmitted
from the requesting to the target task. However, since the
user can establish the convention that the argument a]Wéysk
points to ﬁhe start of an entire data Array, there is no
Timit to the size of the effectiye argument list.

o The target task can only be started if it is currently
dormant. If it is running, the request is automatically
queued and wf11 eventually result in a restart of the
targetvtask. 'Bits 6 and 5 indicate the coordination
between the requesting and target task:

00 the requesting task continues without wait
after the request is queued,

w“ | 01 the requesting task wajts for the target
) , task to start as a result of the current
E ’ request,

O

10 the requesting task waits for the target task
to start ‘and terminate as a result of the
current request,
11‘not used.
ob‘The requesting taék contro]s thé priority the target task
will havé when it starts via the current request. - If}bit 5
is 1 the target task will start with whatever priority is
given in bits 3 to 0; if bit 4 is a 0 the priority will be
computed by MTOS as the 1afger of the inherent priority of
the targét task and the current priofity of the requesting
task. (The inherent priority is a fixed property preserved
within the TCD.) The pfiority aiso determines the order in
which.startup requests are queued to the target task.
~ Requests .are serviced in order of restart priority.

- Note that the target task is indicated by'giving.the address 6f'
its TCD (as opposed to its TCB). This convention is carried through-
out MTOS. Thus, if the TCD starts with a label, that Tabel becqmes
effectively the "name" of the task. v |

The finé1 element within the startup SDB is the address of a
Séfatch area in which MTOS may form a startup Request Contrb] Block
(RCB). Any scratch area in RAM may be used. However, the area must
not be modified by the user from the time the SVC is issued until
the target tasklterminates from the request. Vié]ation of this rule
may cause errors which could be very difficult to trace. To help
determine when a RCB is available for reuse, MTOS sets the leading
two bytes to hexadecimal FFFF (all ones) when the block is no

longer needed.

s
N’

3-6

Some typical requests for tésk startup are shown in Figure 3-1.
Although é]] examples use an SDB within ROM this s not an inherent.
restriction. An SDB can also be formed within RAM. In fact, this
would be required if either the given priority or tﬁe target task

were to be computed dynamically rather than beingvfixed at program

- assembly time.

A11 condition codes are reset to zero upon return from SVC 5.

For a task started by SVC 5, the stack pointer is set to the

value given within the TCD and registers A and B have some arbitrary

~values.

3.3.3 Conditional Requests for Task Startup

The SVC 5 just described is an unconditional request for task
startup. It always results in the eventual startup of the target
task. If that task is busy, the request is simply queued.

In some cdses, it is sufficient merely to have a target task

- running without reference to how the startup occurred. For these

situations MTOS provides an SVC to startup the target task"if it is
dormant. If the task ié a]readyvrunning, the SVC has no'effect.
The format of the SDB is: |
FCB 4 (type) |
FDB address of TCD for task to (target.TCD)
be started S

When the requesting task continues after the SVC has been |

protessed the Zero flag within its condition code will be-0 if the

~ task was originally dormant or 1 if the task was already running

v(so.that the SVC had no effect).

Case 1. Start task TSI with priority 7, no argument, and wait for task

to terminate: ‘
JSR SVCPGM
FDB S5SDB1
) (in ROM)
S5SDB1 " FCB 5
CFCB $57
FDB TS1TCD
. FDB TEMP7B
TEMP7B RMB 7 (in RAM)

Case 2. Start task TS2 with computed priority, transmit 4 as an argument,
and wait for task to start:

LDX #4
JSR SVCPGM
FDB S5SDB2

(iﬁ ROM)

S5SDB2 FCB 5

‘FCB $A0
DB TS2TCD
FDB TEMP7B

Case 3. Start taék TS3 with computed priority, transmit address of
, " entire argument array (ARGARY), and continue without coordination:

LDX #ARGARY | . -

JSR SVCPGM o

FDB S5SDB3 - |
i | ~ (in ROM)

S55DB3 FCB 5

R FCB $80
f”) - FDB TS3TCD

o o | FDB TEMP7B

Figure 3-1 Some Typical Requests for Task Startup

O

O
|

For a task started by an SVC 4, the stack pointer is set to

the value given within the TCD and the registers have someﬁarbitrary

--values.

3.3.4 Requests for Task Termination
_ When a task finishes its processing it issues a termination
SVC. Two SVCs are available: one automatiéal]y reschedules a

restart of thévtask after a given time interval; the other does

-not. In the'former case, the task is considered busy and thus is

not available for restart by another task. . In the latter case, if
a restart request had been queued it will now be honored; other-

wise the task becomes dormant.

Every task wou]d.normally have at least one termination SVC;

"there may be several such calls within a given task. If there are

several terminations some may request restart and others may not.

The SDB for termination without restart is a single zero byte.

~Thus, the entire SVC is a call of the SVC program followed by the

address of a byte containing a zero:

JSR SVCPGM © TERMINATE WITHOUT RESTART
FDB ZERO o
ZERO FCB O :

The SDB for termination with automatic restart after a gfven

time interval is composed as:

FCB 1 (type)
FCB parameter 1 (option and control)

FCB number of time units (0 to 255)

| 3-8

Parameter 1 contains bit—By—bit information: bit 7 indicates if.
the restart is to be baséd on the 1a$t'schedu1ed start time for the
task (bit 7=0) or 6n the current (termination) time (bit 7=1).
former is normally used for cyclic tasks, i.e. tasks which become
~active on.a regular period such as'every 15 minutes. Bfts_6 thru

3 are not used. Bits 2 thru 0 stipulate the time interval:

0=ms
1=10ms

2 = seconds
3 = minutes
4 = ‘hours

Specifyingva time interval code greater than 4 fs invalid. In
such cases, the task will start immediately with fhe Overflow bit of the
~condition cdde‘set to 1.
. - If a proper interval is given but the number of units is 0, the
| --:’task will also restart immediately. This, however, is-a va11d .
restart and the Overflow bit will be reset.
| Some time intervals can be composed in several ways. For
example, 20 ms can be‘consideredvtwenty intervals of 1 ms or two
‘ intervals of 10 ms. Both specifications'are equivalent ‘and neither
offers any specia] advantage for interval processing.
- Note that the last start time is the time the task first became
ready, not the time it actually began processing. If there were
‘h1gher pr1or1ty ready tasks, the actual start may have been de]ayed
Furthermore, suppose‘a task is to be restarted every 5 minutes

based on start time. Assume further, that the task started on

schedule at 11:00 but did‘not terminate until 11:07. Upon termina-

“tion the task immediaté]y restarts (since 11:07 is past the next

schedu1ed restart time of 11:05). If the task terminates before .

11210 it will wait until then to restart; if it terminates after

11:10 it wi]] again restart immediately trying to "catch-up".

While a task is waiting to restart at a future time it is
considered running in a wait state, not dormant. Thus; it can not
be restarted by another task (although other tasks may still queue

future restakts). Furthermore, its stack (and TCB area) are reserved

-and should not be used by other tasks.

3.3.5 State of Task Upon Startup

Whenever a task starts (or restarts) processing bégins at the

_entry point stipulated in the TCD, with the condition code set to

~ zero. When a task resumes after termination with automatic restart,

all registers (including the stack pointer) have the same value they
had upon termination.. For all other restarts, the étack pointer is
reget to the initial value given in the TCD, the index register.
points to a restart argument or is O, and the other registers have

some arbitrary values.

3.3.6 Task'Coordination Via Event Flags

vCoordiﬁation befween tasks may be accomp]ishéd in several ways.
Section 3.3.2 de;cribed one method: a requesting task starts a |
targét task. The rqueéting task has the 6ption of prdceeding'

immediately (no coordination), waiting until the target task starts

from the request (concurrent running), or waiting until the target

15.

task starts and terminate$ from the request (assured completion).
A later section will outline coordination by pause cancellation.

MTOS a1so supports coordination via event flags. Within MTOS

~there is an array_of.16 discrete, internal variables called “event

flags". Each flag may be independently set fo 1 or reset to 0. -

Upon system reset or initjalization all flagsvare automatically

cleared to zero.
The coordination is achieved by a pair of SVCs. One resets, sets

or tests an individual flag; the other causes the issuing task to wait

~until 1 or more flags are set.

In a typical application, a target task might first reset one of

the event flags and then issue a wait until that flag is set. Some

time in the future a coordinating task can set the event flag to

J*continue the waiting task. The assignment of individual event flags ‘

for the purposes of coordination is left comp]ete]y.to the user.
The SDB for the Reset, Set, or Test SVC is composed as:

FCB 9 (type)
FCB parameter 1 =~ (options and control)

Bits‘7 and 6 of parameter 1 indicate the required function:

00 or 01 = test flag
10 = reset flag
11 = set flag

| Bits 5 and 4 are not used. Bits 3 thruAO give the flag ﬁhmber,»o to

For all functions, the value of the event flag at the time the

SVC was issued is returned to the task in the Carry bit of the condition

code. For-thé'teéi function there is no other processing. For set or

reset the va]ue is then forced to 1 or 0 respectively. In these cases,

if the new value is the same as the old (so that the SVC'causes no

real change), the Zero bit of the task's condition code is also set

 to 1;.otherwise it is reset. Some typical épp]ications of SVC 9

by itself are shown in Figure 3—2.'

The SDB for the Wait Until Event Flags Are Set SVC is 3 bytes

- long:

FCB 10 (type)’
FDB mask (16 bits)

The 16 bit mask indicates which of the event flags are to end the
wait, with the left-most bit corresponding to flag 0 and thevright-

most bit corresponding to flag 15. Any or all of the bits may be

masked on. The task wait ends when any of the indicated flags are

set. Figufe 3-3 illustrates task coordination via an event flag.
Throughout MTOS all bit arrays (such as the event f]ags) are
stored left-to-right in successive bits of successive bytes. Thﬁs,

flag 0 is stored,in the left-most bit of byte 0, flag 1 is stored

in the next bit of byte 0, . . ., flag 7 is stored in the right-

' most bit of byte 0, flag 8 is stored in the left-most bit of byte 1,

. . ., flag 15 is stored in the right-most bit of byte 1. With

. this scheme flags 7 and 8 are stored in "adjacent" memory bits.

Note that Motorola numbers bits in the reverse order, i.e.

right-to-left (even though successive bytes are numbered.left-to-right).

Thus, if we‘were to maintain consistency between bit designations and

flag or discrete designafions the sequence would have to be: 7, 6, 5,

'4,3,2,1,0, 15, 14, 13712, 11, 10, 9, 8. To avoid the discon-

tinuity between 0 and 15 we chose to'bg inconsistent with Motorola

and consistent within ourselves.

Case 1. Set event flag 13:

JSR
FDB

S9SDB1 FCB
‘ FCB

JSR
FDB
BCS

S9SDB2 FCB
- FCB

SVCPGM

S9SDB1

9
$CD

Case 2. Reset event flag 15:

SVCPGM
S95DB2
WASONE

9 .
$8

(in ROM)

BRANCH IF FLAG WAS 1

(in ROM)

Case 3. Test event flag whose number is given in A:

STA A
LDA A
STA A
JSR
-FDB
BCC

-

S9SDB3 RMB

&

© S9SDB3+1
- #9

S9SDB3
SVCPGM
S9SDB3

WASZRO

2

-

BRANCH IF FLAG WAS O

(in RAM)

Figure 3-2 Typical Applications of SVC 9

Task A resets flags 1 and 2, and waits for either to be set:

JSR SVCPGM RESET FLAG 1.

. FDB RSTEF1

JSR - SVCPGM RESET FLAG 2

FDB - RSTEF2 ' .
. JSR .. SVCPGM WAIT FOR FLAG 1 OR 2 TO BE SET

FDB . WAITEF

RSTEF1 FCB - 9,$81

“RSTEF2 FCB ~ 9,%82

WAITEF FCB 10.
FDB $6000

Task B sets flag 2 to continue task A:_

JSR SVCPGM SET FLAG 2
FDB SETEF2 '

.

SETEF2 FCB 9,%C2

Figure 3-3 Task Coordination Via Event Flags

4-1

4. Coordination of Sharéd Subprograms

~If a subprogram employs only registers or stack entries for all

its arguments and temporary variables then several tasks may use the

- code simultaneously without interfErence. Tasks may invoke such»

reentrant subprograms free]y without the aid of the operating syStem.
Howé?er, it is not é]ways convenient to make a subprogram reentrant.
qu non-reentrant subprograms, MTOS contains a pair of SVCs
whfch permit only one task at a time to use the code. A1l other
fasksvwishing entry are queued (on the basis of their current priority).
Subpfdgrams used by on]y‘one task need not be controlled even ifA

non-reentrant.

4.1 SVC for Entry To and Exit From a Controlled Subprogram

To enter a controlled subprogram avtask issues an SVC with the
following SDB: |

FCB 6] ' (type) v

FDB address of subprogram (SCD address)-

: control data .

The subprogram control data (SCD) is part of the storage overhead

“which MTOS requires for its control function. An SCD is the direct

analog of a TCD for tasks.

A control]ed_subprogram exits by issuing an SVC 7. The SDB has

,the.form:'

FCB 7 (type)
FDB address of subprogram - (SCD address)
oo control data o

A typical entry and exit sequence is shown in Figure 4-1.

'.\} |

Task RAM : y

0200 08 SUBSCB RMB 8 SUBPROGRAM CONTROL BLOCK (SCB)
Task ROM
1280 06 USESUB FCB 6 SDB TO ENTER SUBPROGRAM
12A1 2152 " FDB SUBSCD -POINTER TO SCD
- 2152 SUBSCD EQU * SUBPROGRAM CONTROL DATA (SCD)
2152 C1B0 FDB SUBENT -ENTRY POINT '
2154 0200 'FDB SUBSCB -SCB AREA
-Task Code
3204 BD E400 JSR SVCPGM ENTER SUBPROGRAM

3207 12A0 FDB ~ USESUB -POINTER TO SDB

Subprogram Code/ROM

C1BO SUBENT EQU * SUBPROGRAM ENTRY POINT

. (subprogram code)

€205 BD E400 JSR SVCPGM EXIT SUBPROGRAM
C208 C20A FDB XITSUB -POINTER TO SDB
~ C20A 07 XITSUB FCB 7

.. SDB TO EXIT SUBPROGRAM

C20B 2152 FDB SUBSCD -POINTER TO SCD.

'Séquence of Program Control:

... 3204 C1BO ... C205 3209 ...
task subprogram task .

o

Figure 4-1 Using a Controlled Subprogram

5

P
£
iz

4.2 Contr611ed'Subprogram'Overhead
o As with task management, control of shafed subprograms requirés .
storage‘ovefhéad: |
0 Each controlled subprogram must have an area 8 bytes Tong
within read/write memory in which MTOS may bui]d a Subprogram
Control Block (SCB). The SCB is maintained by MTOS as
storage for current parameters such as a busy/available
flag. It is not possib]e_forise&era] subprograms to share
a common SCB. | _ o
o - Each contro]]ed.subprogram must also have an entry within
a ‘table of basic Subprogram Control Data (SCD). Each SCD

is exactly 4 bytes long and contains the following data:

BYTE DATA
0,1 address of subprogram entry point
2,3 address (within read/write memory) -

at which an SCB may be formed
A1l entries must be in non-volatile memory to survive a power Tloss.

Since SCDs contain fixed data, there is no possibility of sharing

- storage.

The relation between an SCD and SCB mirrors that bétweén a TCD
and:TCB. The SCD is fundamental; it contains the permanent source

parameters from which MTOS forms the SCB upon startup of the

~system. - The SCB, on the other hand, contains the témporary, current

information with which MTOS controls entry and exit to the subprogram.

4.3 Registers and Condition Code

When a controlled subprogram is entered, all registers (ing]udingf

S 4-4

the stack pointer) have the values of the calling task at the time
the SVC was issued. Similarly, there is continuity of register |

values upon returning to the calling task. The condition code,

however, is cleared during both the entry and exit'SVC'processing;

5. Time Mahagement

4

MTOS includes its own interrupt clock which-periodica]iy generates

a peripheral interrupt. These interrupts drive an internal millisecond

clock which is used to service time-dependenf requests such as
terminate withvaufomatiC’future restart and pause for a'given time
interval. | | |

The interrupt period'is determined by a hérdwa?e clock in-
cTuded‘within the MTOS system. A typical value is 5 ms; the possible
range.is 1 to 255 ms. The user must select a value which is consis-
tant with his application. |

If a larger value is chosen (say 100 ms), then the internal

clock would have a "granu1arity" of 100 ms. The gfanu]arity is the

smallest interval which can be seen by the system. - In other words,

the internal clock would remain at the same‘value for 100 ms and then

be incremented by 100 ms. As a result, if a pause of 1T to 99 ms wére

requested the actua] pause would be 100 ms since it takes that Tong
to see any change in time. ‘

- If -a small va]ue is chosen (say 1 ms) then the overhead in

‘servicing the clock interrupts.can become appreciable. This reduces

the -time available for task work.

'F‘The:proper interrupt period is génera]]y.dbvioqs from the time
requirements of the application. Thus, if all bauses and‘other‘
time-dependent servicing occur in mu]tipiesbof 5 ms, the period
would be set to this lowest common denom1nator

The time kept by MTOS is purely 1nterna1 and does not bear a

fixed relation to the external, real-world t1me. Intervals are

5.1 Pause for Given Time Interval

éorkectiv-requesting a paqse of 10 ms with respect to the interna1

clock causes a 10 ms pause with respect to a real-world clock. ' However,

fhe baée of the internal clock (the “time zero" point)'shifts,occésionaTIy.
.The necessity for baée shifting arises from trying to maintain a

perpetuaT c1opk in a ffnite (and preferably small) number of memory

words. - If the clock were simply a ta11y‘6n the number of milliseconds:

since system startup (br some other fixed reference point) then

-eventually the tally would overflow. MTOS solves the problem by

periodically decrementihg'both the internal clock and all interné]
references to that clock by a fixed amount. | ‘

A task may make any of the following time-related requests: |

SVC 1 - Terminate the task with automatic restart after a -
‘ ' given time interval
i'SVC 2 - Pause for given time interval
' SVCISI ->Cance] pause of given task

SvC 14 - Pause for mihimum time interval

SVC 11 - Set event‘fiag after given interval

which is used in conjunction with:

SVC 10 - Wait until event flags are set

- SVC 1 was described'in Section 3.3.4; the others are described in the

fo]Toang subsections:

The SDB to specify a pause is:
FCB 2

FCB time interval--
o 0 =ms
1 =10 ms
2 = seconds
3=

minutes

Ty
U

4 = hours
FCB number of time units (0 to 255)

Certain intervals can be composed in several ways. For example,

}2 seconds can also be expressed as 200 10-m§ units. There is no

difference 'in prdcessing efficiency.
Specifying a time interval code greater than 4 is invalid. In
such cases, the task will continue without pause and the Overflow bit

of the condition code will be set. For'a valid interval the Overflow

bit is reset.

5.2 Cancel Pause for Given Task

Cancel pause can be used to coordinate task activity: -One task

issues a pause for an arbitrary, long time (say 24 hours); another

‘task cancels that pause when it wants the waiting task to continue

(see Figure 5-1).

Cancel pause can also be used to have a task wait for some event
with timeout in case the event nevef occurs: ‘One task issues a pause
for the desired timeout interval; andther taskvmonitors the event and

cancels the pause when the event is detected. If the event never

~occurs, the task automatically continues after the default period.

The SDB for the cancel pause SVC has the form:

| FCB 3 (type) : -
FDB = task (TCD address)

If the target task is not in the pause state when the SVC is

- issued, the Zero bit of the condition code is set to 1 to indicate

~ that the SVC had no effect.

;5;4

, Task A pauses for an arbitrary long period (24 hours) :
’ " ISR SVCPGM PAUSE FOR 24 HOURS

FDB PA24HR

PA24HR FCB 2,4,24

Task B cancels pause to continue A:

~JSR SVCPGM ~ CONTINUE TASK A
FDB CPTSKA '

-

CPTSKA FCB 3
FDB TKATCD =TCD FOR TASK A

Figure 5-1 Task Coordination Via Pause Cance_]]ation

5.3 Set Event Flag After Given Interval

SVC 11 - Set Event Flag After Given Interval permits a task to
use an event'f1ag as an internal alarm c]ock‘tiher. At some point
within a task, the timer may be set by issufng SVC 11 (see Figure
5-2). The taSk‘then_continuesewith processing that may take a
vafiable amount of time. When that processing is completed, the |
task issues an SVC 10 - Wait Unit]rEyent Flags Are Set referencing
the same event flag as was specified in.the SVC 11. MTOS then ho]dsj
the task until the remainder of the original tfme interval runs out.
This mechanism permits a task to initiate action after a predeter-
mined time interval, and yet to use part of that wait interval for
further processing, |

The SDB for SVC 11 is composed as:

FCB 11 ' " (type)
FCB time interval--
0 =ms '
1 =10 ms
2 = seconds
" 3 = minutes
~ 4 = hours _
FCB number of time (0 to 255)
units

FCB event flag number (0 to 7)

__ The event flag number is Timited to the first eight (0 to 7).

'T If either 1imit is exceeded, the Overflow bit within the task's

condition code is set to 1 and the event flag iS'not~a1tered,

fhe speeified event flag is automatically reset by the SVC 11 and
tﬁen set after the given interval. The flag may also be set early by
an ihdependent SVC 9. (This does not stop the SVC 11 "countdown".)

- If a new (valid) SVC 11 is issued for the same event flag whiie

o

JSR
FDB

any

JSR
FDB

FCB
FCB
. FDB

SVCPGM
SF30MS

code

-SVCPGM

WAITEF

11,0,30,2

10
$2000

SET EVENT FLAG 2

30 MS FROM NOW
CONTINUE CALCUCATIONS -

WAIT UNTIL BALANCE OF
30 MS IS UP -

Figure 5-2 Setting an "Alarm Clock"

a previous one is in progress the original reqbest fs cancelled and
fthe new one takes control. By convention if the;number of time units

is 0 (with a valid time interval specified) the flag is‘reset,'but

no set-flag countdown is started. Thus, a valid zero-interval SVC 11

can be used to cancel a previous SVC 11 for a given event flag.

5.4 Synchronization for Exact Time Intervals

.It is sometimes necessary to have two evénts, such asvthe output
of two signals ("A" and "B"), separated by a given interval. A
straightforward.method to achieve this might be: outpdt "A", pause
for required interval, output "B". However, because bf the finite .
granularity of the clock, the pause interval is usually shorter thénk

~ expected. (Since on the average half of the current clock period is
.. already over when a pause is issued, the average pause is half a
clock .period shorter than requested.) ‘

WHen precise intervals are required, it.is best to first synchronize
io the start of a clock period before the first event. Synchronization
is achieved by,issuing a pause for minimum time interval (see Sectidn 5.5).
The sequence for precise intervals would then be: pause for minimum

interval, output "A", pause for requiréd interval, output "B".

5,5~ Pause for Minimum Time Interval

In a typical real-time system, there is at 1east one task which
runs at the maximum rate. For example, a task which samples,input
data for changes is often activated each time the interna]Ac1ock
genErates an interrupt.

A convenient method to structure such a task is to have an
1n1t1a112at10n section (which is entered JuSt once) followed by a-
cyclic sect1on. The cyclic section ends with a pause for a minimum
1nterva1 and a branch back to itself: |

ENTRY
| - initialization éection code
"LOOP:
cyclic section code
pause for miminum intervatl
'jump‘tc LOOP

‘One method to,request the required minimum pause is via SVC 2,

'w1th 1 ms. specified as the interval. Because of the finite granularity

of the internal time processing a 1 ms. pause is automatically cancelled
at the next clock interrupt (for any value of the interrupt interval).

System overhead can be reduced significantly, however, by using.

. a special SVC which bypasses the normal pause processing but still

echieves a pause until the next clock "tick". The SDB to specify a
pause for minimum interval is:
FCB 14

“Since there are no options, there are no parameters.

6. Input and Qutput of Discretes

Most systems are expected to have a variety of external, single-

bit discrete signals. Some will be 1nput, others wf]] be output;

~Typical inputs reflect the state of a button or a switch; typical

outputs control the state of an indicator, motor drive, or mechanical
attuater. | o | |
The disérétes are stored as individua1 bits, within one or more

bytés A given byte could conta1n all inputs, -all outputs, or a
m1xture of 1nputs, outputs and unused bits. Furthermore, the bytes
ded1cated to discretes need not be consecutive.

~ The storage medium could be the data section of a PIA or could
be a bipolar latch. If any of the discretes afeximp]emented on PIAs;

it is the user's responsibility to initialize the control sections

| upon system startup.-

" Because tasks run asynchronously with random interrupts, the.

. output of discrete values must be controlled by MTOS. Consider,

for example, the following situation: task "A" wishes to set

the first discrete to 0. It attempts this by loading the

fifst discretes byte, ANDing with hexadecimal 7F (which sets the
first_discrete to 0 and leaves the others unchanged), and then
stor1ng the modified value back in the first discretes byte. In

most cases this wou]d give the desired effect. However,_suppose_

- task "A" were interrupted, just before the store and a higher

priority task, "B", were to become active. Suppose further that

v discretes and then tefminate. Task "A" then continues, comp]etés

“its store and>by'this act ‘cancels any changeé made in the interim by

task "B". To avoid such problems all output of discretes 5hou1d be

~done via SVC 8.

SVC 8 can be used to reset, set or test the value of a given

~ discrete. Reset or set is equivalent to output; testing is equiv-

~alent to input.” While input can be accomplished directly (by a load

and mask) without causing the problem described above, it is some-
timeS more convenient to use the SVC.

Note that the discretes of interest in this secfion are extefna]
signa]é. Thus, they are a completely different set bf values from .
the internal event f]ags Which were discussed in.Sectioh 3;3;6.

The SDB fbr the discretes SVC has the form:

| FCB 8 (type)

FCB . parameter 1 - (options and control)

- FDB address of discrete byte

Parameter 1 contains the function:

bits 7-6: 00, or 01 = test flag .
- 10 = reset flag
11 = set flag
not used

5-3: | | “
2-0: address of bit within byte (0=bit 7, ..., 7=bit 0)

~ For a valid index (i.e. an index value less than the total number
of djscretes) the Overflow bit of the condition code is reset; for

any larger index the Overflow is set. Furthermore, for a-valid

- index the value of the discrete at the time the SVC is issued is

returned in the Carry bit. For the test function, no other actfons

are'taken. For reset or set, the discrete is forced tov] or O

_respectively; and if this represents no change in the value of the

discrete, the Zero bit in the condition code is also turned on.

7-1

7. Input and Output of Console Messages

MTOS supports a System Console by supplying the machinery for

'readjng and writing text messages to a teletype or te]etype—compatible

device. The device is interfaced fhrough.en ACIA. The functions

provided are: requested output, requested input, and unrequested

 {unsolicited) input. Both inputs have certain 1ine‘editing capabil-

jties.

7.1 Requested Qutput

~ SVC 13 is used to output a message oh the Console. The SDB is:

FCB 13 (type)
FCB message buffer length (bytes) (1 to 255)
with 0 taken as 1 ' '
" FDB . address of message buffer (in RAM or RCM)

| The message buffer is assumed to contain ASCII text and controT
data. The message must be fully formatted, i.e; any desired carriage
returns and Tine feeds must exist within the text. MTOS does not
suppTy any 1ine control eharacters on its own. The buffer may be
within read-write_of read-only memory. Some examples of message

output are shown in Figure 7-1.

7.2 Requested Input

To request input SVC 12 is -issued. The SDB is simi]ar to that

for output: -
FCB ~ 12 (type)
FCB input buffer Tength (bytes) (1 to 255)
- with 0 taken as 1 ’
FDB address of input buffer ~(in RAM)

To begin processing MTOS outputs a prompt string consisting of

a question mark followed by a blank. This signals the operator that

Message to be output:

part 1

code:

A JSR
| ~ FDB.

~LDA
ADD
-STA

JSR.

FDB
TST
BEQ
JSR
L ~° FDB
OUTPT4 - JSR
FDB

data:

PART1 FCB
FDB

FCB

. FCC

PART2 FCB

: FDB
PART3 FCB
FDB

FDB
FCC

> >

. FCC
PART4 FCB .

(CR) (LF)PROCESSED SECTION 4, SUCCESSFULLY
N

2 4

SVCPGM OUTPUT HEADER
PARTI1

SECTNO FORM AND OUTPUT

#$30 SECTION NUMBER
TEMP B
SVCPGM

PART2 g -
FAILFG: OUTPUT 'NOT' IF
OUTPT4 ~ UNSUCCESSFUL

SVCPGM

PART3
SVCPGM OUTPUT END OF MESSAGE

PART4

13,20

*+2

- $0D,$0A

/PROCESSED SECTION /
13,1

TEMP

13,4

*+2

/ NOT/

13,13

*+2

/ SUCCESSFULLY/

Figure 7-1 Console OQutput

Ed
it

7-3.

input has been requested.’ MTOS will then i1l the buffer afea with
edifed input text up to and including the mandatory‘carriage return
which marks the. end of the message (see next section).

If mofe characters are entered from the Console than will fit
jn'the buffer, the excess is discarded. In these caées, the
Overflow bit of thé éonditionAcode is set and there will a1ways
be a‘carriage return at the end of the-buffer.

: The operator must not wait more than 5 minutes before'entering
‘the first (or next) character. After 5 miﬁutesvwithout input the
Console times out and a carriage returh is automatically entered to

close out the input message.

7.3 Input Text Editing

“Al11 input text lines, whether requested or not, can be.edited

as follows:
S ASCIi, : , : output
character . hex. function response
backarrow (shift 0) 5F delete last character, none
o ‘ o v if any '
. rubout 7F delete current line . CR/LF/?/blank
carriage return (CR) oD end of input CR/LF

line feed (LF) 0A end of 1ine, but not CR/LF/blank
o : end of input o

: Thevfirst two permft character-by-chéracter and entire line
deTétion; A succession of N backarrows de]étes N characiers (or fewer
~ if N characters havé not yet been input). |

Input must be termiﬁated by a carriage return. Ohce the CR 1is
given, the Tine is no longer avai1ab1e‘for editing. The CR always

appears in the input buffer.

7-4

The 11ne feed may be'used to return the carriage phy51ca11y

w1thout ending the text The LF is not stored in the input buffer.

7.4 Unrequested Text Messages

Unsolicited text may be entered at the Console. To initiate

the process an "escape" character is entered. Assuming no solicited

‘ 1nput or output activity is pend1ng, MTOS responds by outputting the

gt prompt string. The operator may then input up to 72 edited
characters including the final carriage returﬁ.‘ When the CR is
received a user-written Unsolicited Console Message Procéssor task
will be activated and thé address of the message will be paésed as
an,afgument. The analysis of the message and any subsequent actions

are left completely to the user. However, until the Message Pro-

. cessor goes dormant another escape character will not be recognized.

The TCD for the Console Unsolicited Message Processor must be

the third entry in the table of user TCDs (see Appendix A).

o

|

8. Peripheral Interrupt%

Perﬁphera] interrupts from any device other than the internal

clock and initialize button must be serviced by the user. Uhen

~any peripheral interrupt occurs, MTOS suspends the current task

and then determines if the interrupt is internal or external to
MTOS. If external, MTOS jumps to a user subprogram whose address
is suppTied within a common interface block (see Section 9). The

user subprogram must service the interrupt and then return to MTOS

~via an RTS instruction.

The user peripheral processing must not re-enable interrupts.

s
O

9. Membry Allocation

9;] MTOS Memory Map

The standard version of MTOS resides within hexadecimal addresses

 E000 to EFFF. Of fhese, the first 256 bytes are used as an internal

scratchpad and the next 768 are not used (except for an interrupt

latch at E2F0-E2F1). The program itself occupies the final 3K bytes.'

9.2 MT0S/User Interface

MTOS requires certain information about the.user's'system to be
supplied with a fixed interface area. The data must be both non-
volatile and immediately available upon startup or initialization.

The block is 32 bytes long and immediately precedes MTOS. The format

is: ,
~location length information
DFDO L2 . address of user TCD table
~ DFD2 1 number of user tasks
. DFD3 , 2 address of user SCD table
DFD5 1 number of user controlled subprograms
DFD6 1 real-time clock period (ms) ,
- DFD7 2 address of Console ACIA data section
: (FCF5 for EXORciser)
DFD9 2 address of Console ACIA control sect1onv
. = (FCF4 for EXORciser)
- DFDB 1 Console ACIA initial control data (see
o ' Table 9-1) .
~ DFDC 1 .~ Console delay after carriage return (clock
‘ ' pulses, see Table 9-1)" -
- DFDD 1 Console delay after other character
; L _ - {clock pulses, see Table 9-1)
;_DFDE S 2 o address of user peripheral 1nterrupt
L S . processing subprogram
i DFEO 16. f'reserved for future expans1on (must be 0)

Typ1ca1 values for the Console data are shown in Tab]e 9-1.

In addition, the fo]]bwing properties of MTOS may be needed by
the user:
SVCPGM EQU $E400 address of SVC subprogram
IRQINT = EQU $E403 address of IRQ interrupt processing
RSTINT EQU . $E406 address of reset (power on) interrupt
| | processing | .
The SWI and NMI interruéts are not used by MTOS (since these‘functioné
‘must be dedicated to the EXORciser).) |
The following procedure may be used to start MTOS—68 on an,EXOR-
ciser: | |
1. Load application program.
2. Usihg MAID, change the top of memory address from 83FF to
 EFFF: | |

MAID
*FF00/83 EF (CR)

3. Depress "ABORT" button (to transfer interrupt vector).
4. Using MAID, start processing at E406:

MAID.
*E4063G

)
;

pre—.

Initial Delay After Delay After

S Control = Carriage Other.
Console Use - - _Data Return Character

T Silent 700 300 BAUD for 09 190 ms* 35 ms*
printing, 1200 :
L BAUD for tape

* 'To obtain number of clock pulses, divide by clock period. For
‘example, for a 5 ms clock rate, the delay is 190/5 = 38 clock

© pulses.

" Table 9-1 Typical Console Data

9-3

A-1

Appendix A: Task Storage Overhead

MTOS requires storage in both ROM and RAM in order to hérform
CPU management. This storage overhead is used for (1) task stacks,A
(2) task control data, and (3)'task control blocks.

Each task must have a stack with 9 bytes always avai]ab]e for
intéfrupt processing. When an interrgpt is serviced the state of
the machine is automati¢a]1y pushed ontq the stack; when the task
resumes the state is automatically popped from thé stack. Thus, the

intermediate internal use of the stack will not'be apparent to the

” task provided that the stack does not overflow.

Individual stacks may be placed anywhere in RAM; they need not
be consecutive entries in a table. Furthermore, two (or more),tésks
can share a common stack provided they can never be funnjhg at the §ame
time. Running, here, means non-dormant. | | ‘
 Each task must also have an entry within a table of basié Task;:fiﬁ,
Control Data-(TCD). Each TCD is exactly 7 bytes.long and contains.the

following data:

BYTE - | 'DATA

0 ~ inherent (default) priority (O to 15)
1,2 initial stack pointer address

3.4 address of program entry point

5.6 address (within RAM) at which a TCB

may be formed

A1l entries must be in non-volatile memory so as to survive a power
 10$$.' Since TCDs contain fixed data, there is no poésibi]ity of

. sharing, even between mutually exclusive tasks.

A]I TCDs must be stored together within a user TCD table. .Further—

more, the first three entries must be for the. tasks that respond to
the (1) power on (restart), (2) initialization button depressed, and
(3) unsolicited Consoie input entered conditions respéctively. There-
5ffef the TCDs may appear.in any order.

final]y, each task musf designate-an area within RAM in which
MfOS can build and maintaih é‘Tésk Control Block (TCB) This block
ié 18 bytes long. In principle, TCB areas can be shared by mutually .
ekc]uéive tasks. However, the conditions under which such sharing
i§ permitted are both stringent and difficult to state. Thus, in

most applications TCB areas should be dedicated to individual tasks.

Furthermore, a TCB area should not be altered by any of the application

‘ programs even if the associated task is known to be dormant.

A memory allocation for a typical set of TCDs, TCBs and stacks

is shown in Figure A-1. Exceptvfor the restrictions discussed

‘above, the arrangement and labeling shown in the figure is arbitrary.

For a given task the TCD, TCB and stack are é]] closely related.
The TCD is fundamental; it contains the permanent source parameters
from which MTOS forms the TCB ‘upon startup'of the task. In contrast,

the TCB contains the temporary, current information with which MTOS

“controls the task while it is running. The stack is used both by

the task program (to store subprogram return addresses and temporary

data)‘and by MTOS (to store the state of the machine during interrupt

‘v_ :process1ng) The TCD-supp]ies both the initia] value of the stack
v po1nter and the 1n1t1a1 contents of the stacked program counter

(program entry point).

A=2

0C73 00

\

% USER ROM j

3200 USTCDT EQU
3200 RSTTCD EQU
3200 OF FCB
3201 0C66 FDB
3203 325F FDB
3205 0C00 FDB
3207 INITCD EQU
3207 OF FCB
3208 0C66 FDB
320A 3281 FDB
320C 0C12 FDB
320E CNUTCD EQU
320E 08 FCB
320F 0C73 FDB
3211 3305 FDB
3213 0C24 FDB

* USER RAM
0C00 0012 RSTTCB RMB
0C12 0012 "INITCB RMB
0C24 0012 CNUTCB RMB
0C5A 0C RMB
0C66 00 RSTACK EQU

0C67 0C RMB .

CNUSTK EQU

L%

*

15

RSTACK
RSTENT
RSTTCB

*

15

RSTACK
INIENT
INITCB

*

8

CNUSTK
CNUENT
CNUTCB

18
18
18

*-1

“A-3

USER ‘TCD TABLE:

RESET (POWER ON) TASK
~PRIORITY

~-STACK

-ENTRY POINT

-TCB AREA

INITIALIZATION TASK e
-PRIORITY !
-STACK R
-ENTRY POINT

-TCB AREA

CONSOLE UNSOLICITED INPUT TASK
-PRIORITY ' :
-STACK

~-ENTRY POINT

-TCB AREA

TCB FOR RESET TASK
TCB FOR INITIALIZATION TASK
TCB FOR CNS UNSOLICITED INPUT TASK

STACK FOR RESET AND INIT TASKS

STACK FOR CNS UNSOLICITED INPUT TASK

Figure A-1 Typical TCD, TCB ahd Stack Allocation

:«#—3\

Appendix B: Summary of SVC Data Blocks '

The data b1ock requ1red for each of the 15 SVCs within MT0S is

_ given on the f0110w1ng pages. The SVCs are:

: 0. terminaﬁe the issuing task without automatic restart

 .1. terminate the issuing task with automatic restart
i after a given time interval

2. pause for a given time interval
3. cancel the pause of a given task
4. ‘start a given task if it is dormanti

'75. start a given task queu1ng the request if the task
' : 1s busy .

6 enter»a cqntro11ed shared subprogram

7. exit from a controlled shared subprogram
8. set/reset/test an external discrete

9. set/reset/test an internal event flag

0. wait until event flags are set

11, set an'gvent flag after a given interval

12. read a message from the Console
~13. write a message on the Console

" 14. pause for minimum time interval

B-1

SVC 0 - Terminate Issuing Task Without Automatic Restart

FCB 0 (type)

@L) SVC 1 - Terminate Issuing Task With Automatic
“'Restart After Given Time Interval

FCB 1 | (type)

FCB parameter 1 (option and'contro1)

FCB * number of time units (0 to 255)

Parameter 1 .

1}

bit 7: 0 = base restart on last scheduled start time

1

base restart on current (termination time)
6-3: unused |

2-0: time interval--

0 = ms

1 =10 ms

2 = seconds
3 = minutes
4 =

hours

- Condition Code

Overflow = 1 if time interval code is greater thén 4

- = 0 if above error condition does not exist

S,

N\

!

SVC 2 - Pause for Given Time Ihterva1

FCB 2 . ~ (type)

FCB time interval ~ (see below)

FCB - number of time units (0 to 255)

Time Interval

bits 7-3: unused

'2-0: time interval--

0 =ms

1 =10 ms
2 = seconds
3 = minutes
4 = hours

Condition Code

I

Overflow = 1 if time interval code is greater than 4

i

0 if above error condition does not exist

B-4

SVC 3 - Cancel Pause of Given Task

" FCB 3 (iype)

FDB task (TCD address)

Condition Code o

Zero: 0

1

if task was originally in pause state

if task was not originally in pause state

B-5

®)

\ .

|

SVC 4 - Start Given Task if Dormant'

FCB 4 | (type)
FDB address of TCD for task (TCD address)
to be started

Condition dee

if task was originally dormant

H

Zerp: O

1

if task was already running

 B-6

SVC 5 - Queue Start of Given Task

' FCB 5 ' _(type)
FCB parameter 1 - (options and contro])
FDB address of TCD for task to be started (target TCD)
“FDB- address of.7 byte RAM scratch area in (RCB address)
which to build queue block '

Paraméter 1

no argument to be transmitted (X register of target
task will be set to 0 upon startup)

i

bit 7: 0

1 = transfer value currently in X register of requestihg
task to X register of target task as a startup

argument
6-5: 00 = queue start request and continue without wait (no

coordination) ‘

01 = queue start request and wait until the task starts
because of this request (concurrent running)

€:> _ ‘ 10 = queue start request and wait until the task terminates

because of this request (assured completion)

11 = (i]lega1 combination)

4: 0 = use larger of inherent priority of called task and
current priority of calling task :

1 = use priority given in bits 3-0

3-0: | stargup priority (value must be given only if bit 4
is 1 o

o

O

- SVC 6 - Enter Controlled Shared Subprogram

FCB 6 -
FDB address of subprogram control data

(type)
(SCD address)

B-8

C e,

SVC 7 - Exit From Controlled Shared Subprogram

FCB 7
FDB address of subprogram control data

(type)
(SCD address)

B-9

LA

SVC 8 - Set/Reset/Test External Discrete (discretes input/output)

FCB 8 | " (type) |
FCB parameter 1 (options-and control) -
FDB address of discrete byte -

Parameter 1

bits 7-6: 00
o = test (input) discrete
01 : '
10 = reset discrete (output 0)
11 = set discrete (output 1)

| 5-3: not used
2-0: address of bit within byte (0=bit 7, ..., 7=bit Q)

| Condition ‘Code

1 if discrete was set at the time the SVC was issued

| Carry =
= 0 if discrete was reset at the time the SVC was issued
Zero = 1 {f reset or set caused no change in discrete value

= 0 if reset or set caused a change in the discrete va]ue,
or if the function was test

SVC 9 - Set/Reset/Test Internal Event Flag

FCB 9 -~ {type)
FCB parameter 1 (options and control)

Parameter 1

" bits 7-6: 0D
. = test flag

-01) .
- 10 = reset flag
11 = set flag
5-4: not used

L)

3-0: event flag number (0 to 15)

Condition Code

1 if flag was set at the time the SVC was issued

Carry
= 0 if flag was reset at the time the SVC was issued
Zero =1 if reset or set caused no change in flag value

=0 if reset or set caused a change in the flag value,
or if the function was test

B-11

SVC 10 - Wait Until Event Flags Are Set

FBC 10 (type)
FDB parameter 1 (mask)

Parameter 1

byte 1, bit continue if Flag 0 is set, or
11 u 1" L 1}] n 1] n

0

1
‘ ‘ll ' . B 2 n ' " "
] . - n 3 n " i
H v " L1} 4 1] n - n
5 " 1 "
6 [n- L]

7

7
6
5
4
3
2
1
0
byte 2, bit 7 continue if Flag 8 is set, or
1] n 6 n - " 1] n
5
4
3
2
1
0

Note: Parameter 1 may be identically 0, but then the task will
-never continue. :

PR

SVC 11 - Set Event Flag After Given Interval

FCB M | (type)

~ FCB time interval - (see below)
FCB number of time units (0 to 255)°
FCB event flag number (0 to 7%)

* Only the first 8 event flags may be used for this purpose;

Time Interval

‘0 =ms

1= 10 ms

2 = seconds
3 = minutes
4 = hours

Condition Code

1 if event flag is greater than 7, or time interval‘
code is greater than 4

-~ QOverflow

Q if none of above error conditions exists

SVC 12 - Input a Message From the Console “

"FCB 12 o | |
FCB input buffer length (bytes) (1 to 255)

 (type)

: with 0 taken as 1
FDB address of. input buffer

Condition Code

Overflow = 1 if excess input was discarded "

0 if input fit within buffer

RS e

FCB
FCB

~ FDB

SVC 13 - Output a Message’ to the Console

13 (type)

message buffer length (bytes) (1 to 255)
with 0 taken as 1

address of message buffer

B-15

- SVC 14 - Pause for Minimum Time Interval

FCB 14 ‘(type)

