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MICROCOMPUTER TRAINING SYSTEM SETUP AND TEST PROCEDURE

I.1 RECEIVING INSPECTION

Upon receipt of your Microcomputer Training System, unpack it and
inspect for any apparent shipping damage. If the equipment is
damaged, or if any of the items 1listed below is missing, telephone

Integrated Computer Systems for advice.

Items Supplied

MTS Circuit Board
Power Supply
Microcomputer Training Workbook

Pad of Coding Sheets

1.2 ASSEMBLY

Place the power supply on a table or desk with the sloping face
towards the user. Mount the computer to the power supply by placing
its 1lower edge on the table and its upper edge at the top of the
sloping surface of the power supply. Reach under the plastic cover
and push the +two black plastic devices into mounting holes on the

power supply.



INSTRUCTIONS, SETUP AND TEST

I.3 POWER CONNECTION

Plug the multiconductor cable from the power supply into the socket
at the upper left corner of the <circuit board. Plug the power cord

into a power outlet.

I.4 INITIAL TEST

Turn on the power switch at the back of the power supply. The numeric
display above the keyboard should show 8200 in the four left hand
digits. The next two digits should be blank, and the remaining
digits may contain any data. No further testing should be required
at this point, and the beginning user should now start reading the
course material. If any problems are encountered that appear to be
due to faulty hardware, it 1is recommended that the tests in the
following sections be performed before ‘calling Integrated Computer

Systems for advice.



INSTRUCTIONS, SETUP AND TEST

1.5 KEYBOARD TEST

Press the following keys in the sequence shown. The displays that
should appear are shown at the right. (?? indicates that the display

is unpredictable.)

MEM ' (8200, [ _ %%
0 | (8200 {00
N
i _1_,’ (8200 [07
2 (8200 (12
_3_ 8200, [___23
- 4 (8200 [ 39

Proceed through the remaining white keys, 5 through F. Note that B

is displayed as [::I to avoid confusion with 6, and D appears as

]

1-3




INSTRUCTIONS, SETUP AND TEST

1.6 PROGRAM LOADING TEST

woad this simple test program by pressing keys in the sequence given

below.

RST LT—"O(): L"_m- _‘?.'} l
N

MEM A F (82001 [__AF)

| ' |

NEXT 3 c | (8201] (__3C]
{ NEXT 3 7 820 | 37
.

MEM 8202° ([ 37)
L

|

MM (E201]) ‘(3¢
[ .

RST {(8200] ([ AF)
L

This program is used in the following test.



INSTRUCTIONS, SETUP AND TEST
1.7 SINGLE STEP TEST
‘Lpadvthe program given in the preceding section.

In the middle of the left side of the circuit board a red- handled
toggle switch projects slightly from under the plastic cover. Switch
if toward the bottom of the board, to the STEP position. Press the
following keys, and observe the display and the two red indicators

(LED's) just to the left of the numeric display.

RST L8200] (__AF]

STEP {8201 ([ 3C}

The LED indicator lé;p to the left of the display labeled ZERO should

be on. The other indicator (labeled CARRY) should be off.

(8202 [ 37)

Both indicators should now be off.

-

STEP | (8203, [ c9]

‘The indicator labeled CARRY should be on.

RST | (8200 ] [C_AF]

This test has demonstrated that the single step function of the MTS
is operating correctly, and has also tested the Zero and Carry

indicators.

I-5




INSTRUCTIONS, SETUP AND TEST

1.8 PROM CHECKSUM TEST

Set the red toggle switch to AUTO, and press the following keys in

sequence.

i i o f

| ADDR 0 0 MEM i |0000; [ 31

ADDR| |4 Lo .0 J BRK 0400] |BP.
: |

REG & |C 1 (8200) (C-017

'ADDR | |0 ER | | [_é (03731 (21,

N R R R

ROUN

The display will be blank for a brief period, and then it will show:

(o382) (C-0L

{0400 ] (BP.AA|

)

The valué“diSplayed at the right hand two digits is a check sum for
the content of the PROM memory. 1t should be AA for all versions of

the monitor. Check the monitor version number by:

ADDRl 0 2 i 8 ] 0 | (0280 27,
J

:
|
|
|
)

bt x o — 2

)
The number shown at the right indicates that your MTS is equipped

with monitor version 2.7.
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1.9 READ-WRITE MEMORY TEST

Load the program shown on the following page accordihg to the

foilowing procedure.

RST (8200 (27
7 ; ,

ADDR| |8 i o . o i o ! T8000) (77

MEM | |F 3 [ 8000 ;

S | e et

NEXT = |2 ‘ 1 (8001| (20

Continue with the NEXT followed Dby two hex keys from the column

headed CODE on the coding sheet until address 8015 has been loaded.

Review the program by

) 1 1 r
ADDR 8 ] 0 |0 {? ] (8000 ! ([(F3]
; B e .__..___’[
NEXT (8oot! [__21]
NEXT (8002 (15

etc.




READ-WRITE MEMORY TEST

1

0

W|D

M

1

4
i

0

D]

M

M

N
0

M

N

M

R

L

M

MO |V

MO}V

C/IAIL | L

1

7

D

CODE .
F

8

B

A

0

0

00

0

(e o]

o)

00

co

@

0

[ee]

0

@

@

@

—

o

o

Ll

(@]

[ee]

1

[ee]

—

o

-—

(=]

o]

00

—

o

0

133HS ONIAQ0D

ANILSAS ONINIVHL H3LNdINODOHIIW

SWILSAS HILNdWOD dILVHOILNI
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Now run the program by:

won s o o | o | (em (o
f ! | e L : : :
[RUN (8800] [ _FEJ

The program stops and displays a memory address at which it could not
write and read data. This is the next address beyond the memory
installed; 8800 if the MTS is equipped with 2048 bytes of memory.

Any other address indicates a memory failure.

After testing each byte the program restores the previous value, so

this test program may be run even when you have another program

loaded.
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1.10 SYSTEM EXPANSION
The Microcomputer Training System can be expanded in four ways:

a) An additional 2048 bytes of Read-Write memory can be plugged into
the circuit board, giving a total of 4K bytes of RAM. Purchase Intel
2114 (or equivalent) 1024 x 4 static RAM chips and insert them in the

empty sockets.

b) An additional 3K bytes of PROM can be plugged into the circuit
board for programs that you have developed and want to keep
permanently available. Also, by cutting and replacing some circuit
board traces it is possible to replace the 1K PROM chips with 2K PROM
chips, for a total PROM capacity of 8K bytes. Additional PROM
chips will Dbe offered by ICS in the future to provide additional

built-in programs. Contact ICS for details.

c) The 1ICS Interface Training System can be connected to the MTS
through a cable connector at the upper edge of the MTS circuit board.
This training system includes additional input/output ports, interval
timers, a power driver, digital/ analog/digital converter, and an
extensive training course workbook covering the use of these devices,

real time programming, interrupt handling, and closed loop control.



INSTRUCTIONS, SETUP AND TEST

d) The MTS can be connected to an 8S-100 system to givé access to a
full 64K memory, Teletype or CRT terminal, printer, floppy disc, and
other system devices. An interface cable and adapter board are
available from ICS to plug directly into the S-100 bus. Such a
system can support BASIC, FORTRAN, PLM and other high level

programming languages.
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INTRODUCTION TO CHAPTER 1

This chapter serves as the foundation upon which subsequent chapters
are based. The basic structure of computer systems is described,
principles of the binary number system are developed, the functional
organization of memory and the central processing unit is introduced
and the execution of several computer instructions is presented in

some detail.

By writing and loading simple programs of your own, you will learn to
use the Microcomputer Training System keyboard and display. You will
observe first-hand the dynamics of program execution by watching,
step-by-step, the results of executing individual instructions on

your own computer.

If you are familiar with some of the topics covered here, skim but do
not skip the material. The basic concepts are related to the

structure and operation of the Microcomputer Training System.

After completing this chapter you will have a clear comprehension of
the basic fundamentals of computer hardware and software. Most
importantly, your knowledge will be rooted in hands-on usage of your

MTS computer system.
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1.1 BASIC CONCEPTS
1.1.1 Definition of a Computer

A computer is an electronic system which performs arithmetic and
logical operations on data according to a sequence of instructions.
The system consists of both hardware (physical devices) and software

(sequences of instructions).

HARDWARE: The electromechanical components of a

computer system.

1.1.2 Basic Hardware Structure of a Computer

A computer has three principal hardware subsystems: a Central

Processing Unit (CPU), a memory, and Input/Output (I/0) devices.

CPU: The central processing unit, a set of elements
which perform the actual arithmetic and logical
operations. The CPU also provides the central

control function of the computer system.

MEMORY: A physical device in which data and
instructions are stored for subsequent

processing
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1/0 DEVICES:

Electro-mechanical devices that provide
input of data and/or instructions to the
system and output of results. Usually
input devices are separate from output
devices, e.g., a keyboard for input and a
CRT display for output. Sometimes one
device can combine both functions, e.g.,
a Teletypewriter can be used to input

information and print output information.

These three subsystems

are interconnected such that each one can

communicate with the other two:

— CPU B

MEMORY -

Y

ﬂ I/0 DEVICES
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The model for computer operation is as follows:

1. Insfructions are input via an INPUT DEVICE and
stored in MEMORY.

2. Data are 'input via an INPUT DEVICE and stored
in MEMORY.

3. The data are processed in a sequence and manner
specified by the instructions.

4. The results of the data processing are output via

an OUTPUT DEVICE.

In Figure 1-1, showing the layout of the MTS computer, the principal
subsystems have been identified: The CPU, Memory, and Keyboard and

Display. We will look at these in more detail later in the chapter.
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COVIPUTER SYSTEAVIS, INC.

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR
HARDWARE

80B0A Microprocessor
and Control Logic

RAM MEMORY

2048 Bytes of RAM Memory for
Programs and Data. Expandable
On-Board to 4K Bytes.

- [ererreTeT T

AUDIO CASSETTE
INTERFACE

Audio Cassette Interface and
Associated Software for Easy
Program Storage and Retrieval

DISPLAY
On-Board 8-Digit
LED Display

DMA

Direct Memory
Access (DMA)
Channel

PROM MEMORY
Eraseable PROM Memory
(containing the Educational Monitor
Program) - 1024 Bytes. .
Expandable On-Board to 8K Bytes.

FREE AREA
Space for User's
Hardware Additions

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable 170 Device including Three 8-Bit Ports.

MTS Board Layout
Figure 1-1

KEYBOARD
On-Board Keyboard
with 25 Keys for
Program and Data
Entry.
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1.1.3 Basic Software Concepts

The computer performs its functions under the control of a sequence
of instructions. As an illustration, consider usingta computer to
convert miles to kilometers using the approximation that there are
eight kilometers in five miles. The rule, as it might appear in a
textbook, would say "Multiply the number of miles by eight and divide
by five to obtain the answer in kilometers." The computer will need
more detailed instructions than this. First assuming that the
computer has been set up for the conversion by storing appropriate
instructions in memory, it will also require that data be stored in

memory. In this case the data are:

a. The number of miles to be converted.
b. The number 8.

c. The number 5.
Then, the sequence of operation might go as follows:

a. START.

b. Retrieve (miles) from memory.

c. Retrieve (8) from memory.

d. Multiply (miles) by (8).

e. Store result in memory under (temporary).

f. Retrieve (temporary) from memory when ready for next operation.
g. Retrieve (5) from memory.

h. Divide (temporary) by (5).

i. Store result in memory under (result).

Jje. Output/Display (result) and STOP
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A sequence of instructions which performs such a calculation (or

computation) is called

a program.

PROGRAM :

A sequence of instructions which performs a
specific calculation, computation or set of

logical operations.

Programs may be specified which perform a vast and varied number

of

functions, including mathematical calculations, symbol mahipulation,

word processing and

the detailed control and sequencing of I/O

devices. A collection of such programs is referred to as software.

SOFTWARE:

1) A collection of programs which perform
many different functions; 2) The program

component of a computer system in general,

as distinguished from the hardware or

physical component.
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1.1.4 The ICS Self-Study Microcomputer Training Course

This course is designed to provide you with the basic knowledge and

practical experience which will give you the capability to:

-Specify and write programs for performing a wide

variety of different functions,
-Enter programs and data into the Training Computer.

-Verify that your programs operate correctly and,

when they do not, modify them until they do.

-~Learn design techniques by actually connecting

1/0 devices to the Training Computer and controlling

them with your own programs.

-Explore the many hardware/software interrelationships,
learn the cost-effective use of each, and design

complete systems of your own.

In the succeeding chapters of +this book you will be given, in
step-by-step fashion, a sound foundation in both software and
hardware techniques. You will progress from the simplified concepts
of this introduction to a thorough understanding of these techniques
as you '"learn By doing", implementing each new concept yourself on

your own computer.

1-9
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1.2 NUMBER SYSTEMS AND REPRESENTATIONS
1.2.1 The Representation of Numbers

Physical representation of a decimal number requires an element with
ten pbssible states, one for each of the decimal digits 0-9. Such a
representation is found, for example, in the cog wheels of mechanical
caléulators. Eiements with more than ten states are also common, for

ekample in clocks.

Anyone having experience in solid state devices used in electronic
circuits will know. that substantial variability of characteristics
exists for nominally identical devices. These characteristics are
also wusually a function of temperature. To stabilize such devices
and to hold tolerances tight enough to distinguish unambiguously
between multiple states would involve complex circuitry and would
reduce reliability} Fortunately, the solid state devices are ideally
suited for two-state operation in switching circuits, where an
ON-state and an OFF-state can be readily distinguished: Thus, in the
long run it is cheaper, simpler, and more reliable to work in terms
of two-valued states, which are often two voltage levels, but can be
- for example - positive or negative polarity of a magnetic element.
In all cases, however, the computer operates on these two states in
terms of logic TRUE and FALSE. This 1is equivalent to using a

two-state or binary number system in which TRUE = 1 and FALSE = 0.

BINARY NUMBER SYSTEM: A two-valued number system

using only the digits 0 and 1.
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In most applications with which we will be concerned, the ON or HIGH
voltage level wi}l be equated to TRUE or 1, and the OFF or LOW
voltage level (usually near ground potential) will be equated to
FALSE or O. This constitutes a POSITIVE LOGIC SYSTEM. Sometimes a
NEGATIVE LOGIC SYSTEM is used, for ease of design in certain
applications. In the latter system ON or HIGH is equated to FALSE or
0, and OFF or LOW is equated to TRUE or 1. Unless otherwise stated,
we will use the POSITIVE LOGIC SYSTEM, which simply means that when
considering a binary system using only the digits O and 1, the

O-level is low and the l-level is HIGH.

To wunderstand the basic principles of computer operation, it is
essential to know something about digital logic and number systems.
If you need a review of the former, then please see Appendix F, "A
Primer on Digital Logic." We think you'll enjoy it. Now we will
turn our attention to number systems in general and binary numbers in

particular.
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1.2.2 The Decimal Number System

Consider

8192:

(1)
8000
100
920

2

8192

the following four ways of representing the decimal number

(2) (3) (4)
8 x 1000 8 x 10 x 10 x 10 8 x 10°
1 x 100 1 x 10 x 10 1 x 102
9 x 10 9 x 10 9 x 10!
2 x 1 2 x 1 2 x 100
8192 8192 8192

All of these representations are familiar. Column (1) indicates that

the number 8192 can be represented as the sum of four different

numbers.
can be
however,
product

symbols

Columns (2) - (4) go further by illustrating that 8192
represented as the sum of four products. Column (4),
exemplifies the basic principle of all number systems: each
can be obtained by multiplying a digit (in decimal the

0-9) times a base (in decimal the number 10) raised to a

power (see column 4 above).

DIGIT: One of the symbols used in a number system.

BASE: The number of different symbols used in a

number system.

POWER: The number of times that a base is multiplied

by itself to form a product.
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The decimal number system has ten digits or symbols; therefore the

decimal number system has a base of ten, and in the example each
product 1is obtained by multiplying a digit times the base ten raised
to a power. The power to which the base is raised can be seen to be a
natural progression from the least significant digit (rightmost) to
the most significant (leftmost). The value of a base raised to a
power is thus a function of its position in a string of digits, where
position 1is counted from right to left starting with zero. In the
following table we call the quantity of a base raised to its
positional power a "multiplier'. This number is multiplied by a

digit to provide the final product:

POSITION 3 2 1 0
MULTI- 103 102 10t 10°
PLIER (1000) (100) (10) (1)
DIGIT 8 1 9 2
PRODUCT 8000 100 90 2

Tables such as the above can be used to express the magnitude of a
number in a system with any arbitrary base. The binary number system

will be considered next.

¥
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1.2.3 The Binary Number System

The choice of base for a number system may be accidental or
deliberate. The decimal system doubtless became widespread because of
the ease of counting on ten fingers. Nonetheless, the Babylonians
used a base of sixty and the Mayans, a base of twenty. The binary
number system, which is most appropriate for computers, uses a base

of two, and the digits 0 and 1.

Consider the following binary number:

11011

Had we 1lived from birth with a binary number system, we would
immediately grasp 1its magnitude. As we have not, it is useful to

convert it to its decimal equivalent.

Knowing that binary numbers have a base of two, we can construct a
table similar to that for decimal numbers. The table converts binary

numbers to their decimal equivalent in the following fashion:

POS IT ION 4 3 2 1 0
MULTI- 24 93 22 ol 20
PLIER (16) (8) (4) (2) (1)
DIGIT 1 1 0 1 1
PRODUCT 16 8 0 2 1

1-14
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Thus 11011 (binary) = (16 x 1) + (8 x 1) + (4 x0) + (2 x.1) +
(1 x1) = 27 (decimal). Larger tables may be constructed for

converting longer strings of binary numbers.

Looking at the table again, it can be seen that the multiplier of
each digit position 1is exactly twice the value of the position
preceding it. Using this property, it 1is easy to calculate the

products which are to be summed.

Conversion from decimal to binary could also be accomplished by using
a table, but it is easier to use a process called "remaindering".
Dividing an even decimal number by two will produce a quotient with a
remainder of zero; dividing an odd decimal number by two will produce
a quotient with a remainder of one. The remainders are used to

construct the binary number, in the following example for decimal 57:

Quotient Remainder

57/2 = 28 1 - position 01
28/2 = 14 0 1
14/2 = 7 0 2

7/2 = 3 1 3

3/72 =1 1 4

1/2 =0 1 2 l v v

1 1 1 0 0 1

Decimal 57 is the equivalent of binary 111001. We may check this by
writing down the products, counting from position: (1 x 1) + (2 x 0)

+ (4 x0)+ (8x1)+ (16 x1) + (32 x 1), which sum to 57.
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1.2.4 Binary Addition and Counting

The rules for binary addition are very simple:

0+0=0
0+1-=1
1 +0-=1
1 +1-=10

In performing the final addition, we would say to ourselves "One plus
one equals 2zero and carry one". The rule for carries in binary is
similar to that in decimal but much simpler, as there are only two
symbols to worry about instead of ten. In both systems, symbols
cycle (are successively incremented by 1) thru a digit position until
all have been used. The next higher position is then incremented and

the cycle is repeated.

The following addition tables illustrate counting rules for binary

and decimal numbers:
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0+0-= 0 0+0= 0
0+ 1= 1 0+1= 1
1 +1-= 10 1 +1 = 2
10 + 1 = 11 2 +1= 3
11 + 1 = 100 3 +1= 4
100 + 1 = 101 4 +1= 5
101 + 1 = 110 5+ 1= 6
110 + 1 = 111 6 + 1= 17
111 + 1 = 1000 7+ 1= 8
1000 + 1 = 1001 8+1= 09
1001 + 1 = 1010 9 + 1 =10

The binary portion of this table provides a graphic illustration of
the relationship between a digit's position in a string and the
power to which the base is raised at that position. In the "zero"

position, note that that O0's and 1's cycle. In the '"one" position,
two O0's cycle with two 1's. In the "two" position, four O's will
cycle with four 1's. Each cycle is twice (base two) the length of
the previous cycle. For decimal numbers each cycle will be ten

times (base ten) the length of the previous cycle.

Subtraction, multiplication, division and the representation of
negative binary numbers will be discussed in a subsequent chapter,
but keep in mind that these operations are all derivatives of the

C\Qr'\\l ek
basic operation of addition - which in turn is dxixed from counting.
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When using more than one number system, their representations can
often become confusing. To avoid this problem, a number may be

subséripted to indicate its base:

11 (three)

11lo (eleven)

In this manual whenever a number is not apparent from context, it

will be subscripted or labelled appropriately.

A number of nomenclature conventions are important to introduce at

this time: bit, string, bit position, most significant bit, and

least significant bit.

BIT: An abbreviation for binary digit.

BIT STRING: A sequence of bits.

BIT POSITION: The location of a bit in a bit string.

MOST SIGNIFICANT BIT: The leftmost bit of a bit string.

LEAST SIGNIFICANT BIT: The rightmost bit of a bit string.
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1.2.5 Hexadecimal Representation

We have seen that binary numbers are ideally suited to machine
representation, and that they are easiiy added. Subtraction,
multiplication and division are also simple operations in binary.
There is in fact only one drawback to the use of biharyinumbers: they
are difficult to perceive and describe if there are more than a few

bits in a number. Consider, for example, the binary number:
1011000100001001

It is almost impossible to look at such a number and remember the
digit 1in each bit position. There needs to be a way of encoding and
naming such numbers so that they may be more easily comprehended;
while at the same time preserving the underlying binary notion. A
conventional arrangement is to separate the binary number into four

bit groups.

A group of four bits can represent one of 16 numbers ranging from
0000 to 1111, or from O to 15. What we need is a set of sixteen
symbols to represent each of the different numbers. We use the ten
numerals O0-9 and the six letters A-F, as indicated in the following

table. These correspond to the 16 ﬁhite keys on.the MTS keyboard.
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0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
o111 7 1111 F

Returning to the original sixteen bit example,

1011100010000 {1001

B| 1| o] o

it can be seen that this notation is much easier to read and
remember. The introduction of a sixteen-symbol convention to
represent groups of four binary digits is for the convenience of the

user only. It can be seen, however, that we have in fact introduced

a new number system with a base of 1610 , and which is called the

hexadecimal number system (abbreviated hex).

HEXADECIMAL NUMBER SYSTEM: A sixteen-valued number system

using the symbols 0 - 9, A - F.
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While it 1is possible to add hex numbers and construct tables for
converting hex to decimal and decimal to hex, we will not consider
these operations in any detail. The use of hex notation will be
limited solely to the representation of four-bit groups of binary
numbers, and is used only to facilitate describing them. The use of
numbers such as 3016 . 82FF16 etec. will always be understood as a
simple encoding of binary numbers. For practice, convert the

following hexadecimal numbers to binary.

00
02 -
08
10 ‘
14 H
63
7A
9F
8200
83F8
023D
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1.3 THE ORGANIZATION OF MEMORY

1.3.1 Memory Words

Data and instructions, represented as binary numbers, are stored in
the computer's memory. The fundamental units of memory are words,

each of which has a word size.

WORD: The basic unit of storage in a computer memory.

WORD SIZE: The number of bits contained in a word.

bit(N-1)ceveeeeses bit O A word with word size N.

The word size of memory varies with the size of the computer system.
Very large computers have word sizes from 32 to 64 Dbits.
Mini-computers typically have word sizes of 16 or 24 Dbits.
Micro-computers usually have a word size of 8 bits, which is the size
of the MTS memory word. One factor is common to most - the word size

is divisible by eight. This has led to the adoption of a special term

for a a string of 8 bits.

BYTE: An 8-bit word. More generally, an 8-bit string,

which can be part of a larger word.

10110101 A byte representing 181 decimal

or B5 hex.
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Each word in a memory has a location which is identified by a memory

address.

MEMORY LOCATION: The position of a word in a memory.

MEMORY ADDRESS: A number specifying the exact location

of a memory word.

A memory's size is equal to the number of words in a

memory.

MEMORY SIZE: The total number of words

in a memory.

An address size is the number of bits used to

address.

specify a memory

ADDRESS SIZE: The total number of bits

used to specify a memory

which may be

address.
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1.3.2 Memory Module

At first glance it might appear that memory size and address size are
directly related. For example, a computer with an address size of
eight bits can address 256 words; with an address size of sixteen
bits, 65,536 words can Dbe addressed. However, the capability of
addressing words does not imply that the memory must contain that
many words. Most computers, in fact, have far fewer memory words
available than they are capable of addressing. This is possible
because memory is usually available in modules, with each module
containing a few hundred or a few thousand words. The same CPU can
thus be used in a variety of configurations, with the size of memory
used dictated by the application for which the system has been

designed.

MEMORY MODULE: A unit of memory containing a fixed number

of words.

Memory modules contain a number of words or bytes which is generally
expressed as some factor of the quantity 1024 = 210, This is such a
convenient unit for describing memory size that the number 1024 has
been given the symbol K. A memory module containing 4096 bytes is
referred to as a 4K memory; one with 512 bytes, a .5K memory. These

concepts may be illustrated by the diagram on the following page:
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MEMORY MODULE 2 (2K)

Address 87FF16

e

add 8000
ress 16

MEMORY MODULE 1 (1K)

Address O03FF
16

L

Address 0

The diagram describes the memory structure of a system with a word
size of eight bits, an address size of sixteen bits (Why are sixteen
bits required?), and a memory size of 3K words. It is in fact the
memory structure of a minimum MTS compiter system. Two important
properties of memory organization are illustrated here. 1) Within a
memory module, addresses are numbered sequentially; 2) If two or
more modules are used, the first address of the second module is
independent of the last address of the first module (although for
ease of implementation it is usually some multiple of 1K). This
independence is made possible by the fact that the two modules are
"wired in"; the addrésses of aQailable words are determined by the

hardware of the system.
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1.3.3 Memory Access

The process by means of which a request 1is made to access a memory
word is conceptually simple. The requestor (the CPU or, iﬁ some
instances, an 1/0 device) outputs the requested address on parallel
address lines, one line for each bit of the address. This signal is
interpreted by an address decoder, which then selects the single lead
which will access the desired memory word. The contents of the word

will then be made available on the data lines.

DECODER: A device containing a switching matrix which
responds to the pattern of a set of input
signals and outputs a signal determined by that

pattern. Usually the output takes the form of

activating a particular output line.

The diagram on the following page illustrates the process:
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REQUESTER DECODER MEMORY
l o —
0 -
0 -
0 -
0 o
0 - — = = — — = — g
1 il T ——
1

[
0 — | RiR (CONTENTS=AF _ )
0 — ' 16
0 _ DATA
g — LINES
— BUS
3 - (BUS)
0 - Vv
ADDRESS MEMORY
LINES SELECT
(BUS) LINES

- The memory select 1lines are essentially internal to the memory
itself. The address lines and data lines serve as the communication

channels between the CPU and its memories and 1/0 devices, and they

have special names: address bus and data bus.

to the address size of the system.

ADDRESS BUS: The set of lines carrying address information.

The number of lines in the bus will be equal

DATA BUS: The set of lines carrying data. The number of

lines will be equal to the word size of the

system.
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1.3.4 Varieties of Memory

There are two types of memory in your MTS computer system: Random
Access Memory (RAM), which may be read or written, and Read Only
Memory (ROM), from which data may be read but not written into. To
read data from memory, the address bus 1s used to select a word whose
contents can then be read out onto the data bus. To write data into
memory, the address bus is used to select a word whose contents are
then changed to that which is being sent on the data bus. Reading

the contents of a word leaves the word unchanged.

RAM: Random Access Memory which may be both read and

written.

ROM: Read Only Memory which may be read but not written.

Read and write operations are illustrated in the following diagram:
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RAM OR ROM MEMORY
Read operations put the

contents of a word onto the

" ADDRESS BUS "

V|

<<: DATA BUS 4D\§
o

RAM MEMORY ONLY

*——\./\/

information on the data bus
ADDRESS BUS WORD

into a word.
, N
DATA BUS h

In Figure 1-2 the RAM and ROM of your MTS system are indicated. There

data bus.

Write operations put the

are 2048 words of RAM and 1024 words of ROM. Your ROM contains
a set of programs called the MONITOR, designed to assist you in

learning the system. The functions of the MONITOR will be defined
step-by-step as you progress through this manual. The RAM will be
used to store the different programs which you will write yourself.
ROMs are used for programs which do not need to be changed, and are
protected against inadvertent modification. RAMs are wused for
program development (these programs can then be placed in a ROM, but
special equipment is required) and for storage of transient data in
actual applications. Some of the RAM in your MTS is required for use
by the MONITOR and is not available for user programs. This will be

discussed later.
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ESINTEGATED COVIPU

ER SYSTEAVIS,INC.

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR
HARDWARE"

8080A Microprocessor
and Control Logic

RAM MEMORY

2048 Bytes of RAM Memory for
Programs and Data. Expandable
On-Board to 4K Bytes. -

AUDIO CASSETTE
INTERFACE

Audio Cassette Interface and
Associated Software for Easy
Program Storage and Retrieval

DISPLAY
On-Board 8-Digit
LED Display

DMA
Direct Memory
Access (DMA)

- Channel

PROM MEMORY

Eraseable PROM Memory
(containing the Educational Monitor
Program) - 1024 Bytes.
Expandable On-Board to 8K Bytes.
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On-Board Keyboard
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Entry.

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable I/0 Device Including Three 8-Bit Ports.

MTS Board Layout
Figure 1-2
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1.4 STRUCTURE OF THE CPU

On the first page of this chapter, the CPU was described as a set of
elements which perform the arithmetical and logical operations and
also serve as the central controlling elements of a computer system.
We will 1look at some of these operations in more detail,_but first
let us review the structure of the system including the data bus and

address bus:

<IL_ i DATA BUS
CPU MEMORY 1/0

ADDRESS BUS

The CPU wmay send or receive data along the data bus which is
bidirectional. The CPU sends memory addresses out on the address

bus, but does not receive from the address bus.
1.4.1 Functional Units

Internally, the CPU consists of three primary functional units. One
is concerned principally with addressing functions, selecting
addresses which will be sent out on the address bus. A seconq_unit
is concerned with interpreting and decoding the instructions. which
are stored in memory. The third is the Arithmetic and Logical Unit
(ALU), in which all arithmetic and logical functions are performed.

These units are able to communicate with each other over an internal

1-31



HARDWARE AND SOFTWARE FUNDAMENTALS

data bus, which is the fourth functional component of the CPU. The

following diagram schematically outlines this organization:

(internal data bus) ':> DATA BUS V}
! ARITHMETIC AND LOGIC
UNIT

INSTRUCTION UNIT

VRV

|
/

J
AN

ADDRESSING UNIT | > ADDRESS BUS :>

CPU ORGANIZATION
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The internal data bus is illustrated here only to indicate that there
is a physical pathway between the various internal units of the CPU.
The term data bus will always refer to the main (external) data bus,

to avoid confusion.

Each of the internal units of the CPU has one or more registers, one
or two byte storage elements which are similar to memory locations
but which are used for temporary storage, for holding the results of
a calculation, or for other dynamic purposes. The nature and
function of each register will be described as its use is first

encountered.

REGISTER: A one or two byte storage location used by
the CPU for temporary storage or other dynamic

purposes.

1.4.2 The Execution of Instructions

A computer is a system which performs operations on data according to
a sequence of instructions called a program. A program is created by
a user (programmer) to cause the computer to fulfill a particular
task. An instruction is the smallest element of the program that
conveys a complete meaning; it is similar to (and often represented
by) a command in human language such as ADD B to A. To be stored in

the computer's memory and handled by 1its electronic circuits, the
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instruction must be represented as a binary number. This
representation is called a code, and a program in binary code ready

for use by the computer is said to be in machine language.

INSTRUCTION: The smallest element of a computer
language that directs the computer

to perform a specific operation.

Each execution of an instruction will perform one small step in the
calculation or process which the program is designed to accomplish.
In turn, the execution of each instruction is broken up into a number

of steps which are performed one after another.
1.4.3 Instruction Cycles

The program will be stored in memory; therefore the execution of each
instruction will have to start with the transfer of an instruction
from memory to one of the registers of the CPU. Then the inst;uction
will be decoded (interpreted) and the operations specified will be
carried out. The total time taken to fetch and execute an instruction

is called an instruction cycle. The 1length of an instruction cycle

varies considerably, depending upon the operations which must be
performed. Every instruction cycle, however, begins with an

instruction fetch.
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INSTRUCTION CYCLE: The total time taken to fetch and.

execute an instruction.

The basic sequence of events during an instruction cycle is:

FETCH INSTRUCTION FROM MEMORY

DECODE INSTRUCTION

EXECUTE SPECIFIED OPERATIONS

1.4.4 The Program Counter

To fetch an instruction from memory requires a memory address. The
address from which an instruction is to be fetched is always
contained 1in a CPU register called the Program Counter (PC). There
are two strong implications in this statement: there must be a way
to initialize the PC with the address of the first instruction in a
program, and there must be a way to modify the PC after each
instruction cycle so that it will contain the proper address for the

next instruction to be fetched.
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PROGRAM COUNTER: A register in the CPU which contains
the address of the next instruction

to be fetched.

Use of the PC is illustrated velow:

CPU MEMORY
b-/\/\./j
ADDRESS BUS i_"“'B Word Containing
Next Instruction
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1,4.5 The Instruction Register

When a memory word has been selected by the PC, its contents will be
gated onto the data bus and placed in a CPU register called the

Instruction Register (I1).

INSTRUCTION REGISTER: A register in the CPU containing

the instruction currently being

executed.
CPU MEMORY
‘\ - r\_—-\/“/
{ (internal bus) >< DATA BUS >
S
PC |15 ~ T T T 7.

~ ‘(;\__’//" ADDRESS BUS 7 -7 o | Word Containing
Next Instruction

L/\—/_\

After the 1instruction has been loaded in I it is fed to the

instruction decoder. The instruction decoder 1looks at a pattern of

input binary signals and outputs a pattern of signals which will
sequence and control all of the steps required to execute the

instruction.
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DECODER

“l;ii‘;lé;l%" Control and Sequencing

Signals

1.4.6 The Accumulator

The program counter is one of the registers contained in the
addressing wunit. The instruction register is in the instruction
unit. The final register which we will define at this point is

called the Accumulator (A), an eight bit register in the arithmetic

and logic wunit. It is the register most actively used by programs
because it contains the results of most arithmetic and logical

instructions executed by the system.

1.4.7 The Clock

The computer operates in a sequential fashion, a step at a time.
There must be no confusion or overlapping. Signals must be available
on the appropriate lines at the right time. Many circuits are
involved, each with inherent delays. Although the delays are short,

on the order of nanoseconds, it does take time to access a particular

device, e.g. memory, and get the response to the location required.
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These delays ultimately limit the speed of operation of the computer.
To ensure that each step is carried out in an orderly fashion, the
process 1is controlled by a clock. It outputs a series of regularly
spaced pulses that time all computer eyents. The clock frequency

must be high enough to ensure rapid processing.

The wupper frequency limit is set Dby the inherent device delays. If
the frequency is too high, confusion will result because required
signals will not appear in time for a particular operation. In the
MTS system, there is an 8224 clock generator that uses an 8801 clock
generator crystal specifically selected for the MTS 8080A
microprocessor. The crystal frequency is 18.432 MHz (+0.005%). This
is counted down by a factor of 9, to produce pulses af intervals of
488 nanoseconds. Thus the time for a single step in the MTS system
is 488nS. Since a complete instruction may comprise about ten steps
or clock periods, on the average, we arrive at an average time for an

INSTRUCTION to be implemented of about 5 microseconds.

We will shortly begin active use of the Microcomputer Training
System, but before doing so the system monitor provided with the MTS

must be described briefly.
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1.5 THE MTS MONITOR

1.5.1 Monitor Software

The Microcomputer Training System has a CPU, memory (2K of RAM, 1K of
ROM) and two 1/0 devices, a keyboard and a display (see Figure 1-3).
In addition to its hardware, the MTS also has a set 0f programs which
are stored in read-only memory. This built-in software allows you to
load your own programs into the RAM memory, and to control and
observe the execution of your programs. This observation function is
called '"monitoring", and the built-in programs in ROM memory are

collectively called the Monitor.

MONITOR: A set of programs stored in Read Only

Memory, which provide ‘for:

a) Loading programs into RAM

b) Controlling and observing the
execution of programs

c) Receiving data from the keyboard

d) Displaying data in the eight digit

display

While the monitor provides these facilities to enable you to use the
MTS immediately, in later chapters you will learn to write programs

for controlling the keyboard and display yourself.
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1.5.2 The MTS Keyboard and Display

The MTS keyboard and display are shown in Figure 1-3. The display,
located in the upper-right corner of the MTS, consists of two sets of
four characters each. The characters are formed by sets of
light-emitting diodes (LEDs). In each character position, there are

eight LED elements arranged in the following fashion:

By activatihg one or more of the LEDs in a character position a

character is formed, for example "A":

We will use initially a character set consisting of 0-9, A-F, and R.
With a seven segment display, however, there are several ambiguities.
The ten decimal digits are easily created, but "B" would be the same

as '"8", and "b" the same as '"6". Also "D" would be the same as "0"

and "R" the same as "A".
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These characters are, therefore, represented by:

The keyboard is a five by five array. The upper row and right column
of this array are command keys, each of which requests the monitor to
perform a particular function. The remaining keys constitute the hex
characters 0-9, A-F. For the moment we will ignore the alpha

characters which appear on the 1, 2, 8 and 9 keys.
Using the keyboard and display, you will be able to:

-Inspect the contents of a memory word
-Change the contents of a memory word
-Inspect the contents of the program counter (PC)

-Change the contents of the program counter

-Inspect the contents of a register (e.g. A)
-Change the contents of a register
-Execute an instruction contained in a memory word

-Execute a program contained in memory
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1.5.3 Using the MTS

When you wuse the monitor to control and observe execution of your
programs you will be able to display and alter the content of the
registers and program counter. Since the monitor is a program
running in the same computer that you are using, it uses the program
counter and registers itself. The information displayed has actually
been stored in memory by the monitor; only when you press STEP or RUN
is this information actually placed in +the program counter and
registers. When we refer to the program counter or to a register in
this text we will generally be speaking of the values applicable to

your program.

When power is turned on, the monitor will set the content of your PC
to 8200, which is in RAM memory, and display this number in the left
four digits of the display panel. The content of location 8200 will
be displayed in the rightmost two digits. The monitor will then wait
for you to depress one of the keys on the keyboard. Initially, the
content of 8200 will be undefined; the contents of RAM memory are not
preserved when power is turned off, and will be random when power is
turned on. For convenience in writing, therefore, whenever a number
is wundefined we shall represent it with question marks. When power

is turned on, your display will read:

(8200]) | 2?)

Remember, the display will not actually contain question marks; it
will simply be a number which the author of this manual cannot

predict!
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1.5.4 Inspecting Memory Contents

Having turned on the MTS,

take

one of the blank coding sheets

provided. Note the columns labeled ADDRESS and CODE. Enter 8200 in

the first column, and its content

(the two rightmost digits) in the

second column. We will now continue to examine the contents of the

first ten words of memory.

command key labeled

NEXT

The display should now

read:

Write 8201 in the first

Press NEXT again,

col umn

and write

To look at the content of 8201, press the

(203 (=7

, and its content 1in the second.

down the address (8202) and its

content. Continue in this fashion until the display reads 8209.

should now know the contents of the

in whafever random condition they may be.

The command key RST

(for

You

first ten words of your memory,

RESTART) has the same effect as

turning power on: the user's PC will be set to 8200, memory address

8200 will appear in

the

left £

our digits of the display and the

content of 8200 will be displayed in the rightmost two digits.

you have made an error,
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1.5.5 Changing Memory Contents

We will now consider changing the contents of a memory word. Press

RST . The display will read: (8200] [ 2?]

Now press key 1 . The display will show Err . The monitor
demands a command before it will accept hexadecimal data, because

otherwise it does not know what was intended. By pressing the MEM
(for MEMORY) key, you command the monitor to accept data from the

keyboard and store it at the memory location whose address is

displayed. Press MEM , then hex key 1 ; the display will
read:
8200 .01

Notice the decimal point to the left of the memory content. This
indicates that data can be entered to memory. I1f it is not on, the

monitor will not accept the data.

Press hex key 2 ; the display will read:

(8200} [C.12)

Press hex key 3 ; the display will read:

(8200] [_.23)

Each time a hex key is pressed, the right digit is shifted to the
left, displacing whatever was there, and the new digit is entered in
the rightmost position. Remember, a memory word can store only two
hex characters (one byte). The monitor will allow you to preés as
many hex keys as you desire, but only the last two will be stbred.
This capability allows you to correct keying errors without the

necessity of pressing another command key. To see what all of the
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hex characters look like on the display, continue pressing the keys

until you have seen the entire set. Finally, press hex keys 0

and 1 so that the display reads:

[ 8200) .01

Now press NEXT followed by hex keys 2 and 3 . The

display will read:
(8201) (23]

Pressing NEXT allows you to enter data in consecutive memory

addresses, provided that MEM has already been pressed. The decimal

point reminds you that MEM has been pressed.

NEXT increments by one the address displayed. After the first time
you press MEM, pressing MEM again will decrement the address by one
and display the memory content. This makes it easy to back up and
correct an error. Try incrementing and decrementing the address with

NEXT and MEM.
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1.6 PREPARING A PROGRAM

You are now ready to prepare your first simple program. First, we
will define the instructions which will be used. Next we will write
the program down on paper. ‘Then the program will be entered at the
keyboard and verified. Finally, the program wi}l be executed one
instruction at a time, and the sequence of operations within the

system will be detailed for each instruction.

Instruction codes are one-byte, 8-bit binary words represented by two
hex characters. Neither the binary word nor its hex equivalent has
an intrinsic meaning, so for each instruction a short two, three or
four character mnemonic has been assigned. The mnemonic 1is a
shorthand representation of the meaning or functional description of

the instruction.
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1.6.1 Instructions to be Used

The first instruction we will use is defined as follows:

BINARY CODE: 00000000

HEX CODE: 00

MNEMONIC: NOP

MEANING: No Operation. This is an instruction

which does nothing at all. Its execution
has no effect on any memory location or

CPU register.

The chief purpose of NOP is to leave a space open in case you have to
fix something - like leaving a spare pin on the edge connector of a
printed circuit board. This instruction appears in the instruction
set of almost every computer on the market, from huge IBM
installations to microprocessors such as the one in your MTS. It is
in effect a non-instruction; when a pattern of all zeroes is

presented to the instruction decoder, no operation is specified.

Register A (the Accumulator) is the most important register in the
CPU from the programmer's point of view, and there are a number of
instructions which manipulate 1its contents. It is 1logical to
consider next an instruction which sets the contents of Register A to

Zero.
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BINARY CODE: 10101111

HEX CODE: AF

MNEMONIC: XRA A

MEANING: Clear the contents of
Register A (set to zero)

The mnemonic for this instruction will appear a bit strange. This is
actually one of a set of logical instructions operating on the A
register. The full significance of the mnemonic will become apparent
when the other instructions are considered. The third instruction
which will be wused in your first program is one which increments

(adds one) to the contents of the A register.

BINARY CODE: 00111100

HEX CODE: 3C

MNEMONIC: INR A

MEANING: Increment Register A (add one

to the contents of Register A)

With these three instructions, you can write a program which
initializes Register A with a vélue of zero and then successively
adds one to A until it éontains a specified value. Although a very
simple routine, it will introduce and clarify some of the basic

concepts of instruction and program execution.
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1.6.2 Program Specification

Writing a program is a very structured exercise, and from the
beginning you are urged to be methodical and precise about it. All

programs should originate in a program specification, a written

definition of what the program should accomplish. The specification

for your first program is:

"Write a program which begins with a "no operation" code, then sets
Register A to an initial value of zero and then, by successive

increments of one, ends with the number seven in Register A."
1,6.3 Writing (Coding) the Program

The next step is to write the program down on paper, using the same
notation which was used when you inspected the contents of the first
ten locations of your memory. An important addition to that format,
however, will be a column for comments. Programming mnemonics are so
terse that simply looking at a sequence of hex codes or mnemonics
will not convey the function, goal or intent of the program.
Comments are used to convey this information. Writing a program is
often called '"coding'", as it is a translation from a natural language

to computer code.

Your first program, written in the recommended format, should look

like Figure 1-4
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Remember, comments are used so that you will be able to look at a
program you wrote weeks or months ago and understand what it is your
program is doing. Even more important, when you are working as part
of -a team, they help someone else understand what your program is

doing.
1.6.4 Loading Your Program in the MTS

Now that your program is committed to paper, it is time to load it in

the MTS memory. First, initialize the system by pressing RST s

which will establish the first entry point at 8200. The Scenario

should be as follows:

RST (8200])] [ ??]

Set in write mode to enter data:

MEM L8200]) .27

Enter first instruction:

0 0 L8200] .00
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Advance to next instruction:

Enter second instruction.

Advance to next memory address.

1-56

NEXT

NEXT

NEXT

NEXT

NEXT

|8201| . ??
[ 8201| . AF)
[ 8202] « 3C
{ §203| l .77

203 . 3C
8204 (.27

(8204 [ .30

205] .27
205 . 3C



HARDWARE AND SOFTWARE FUNDAMENTALS

NEXT (82060 (77
3 c (8207 (39
NEXT (8208 (77
3 c (8204 [ .38

Your program has now been entered in memory.
1.6.5 Verifying and Correcting the Stored Program

Now that you have loaded your program, it will be helpful to you to
verify 1it. It 1is easy to make a mistake at the keyboard, and the
computer 1is absolutely intolerant of mistakes in the sense that it

will do exactly what you tell it to do.

To be sure that your entries are correct, press RST and then,

using the NEXT command, check the the contents of memory

against your written coding sheet. If you detect an incorrect code

in a word, it can be easily corrected, e.g.

NEXT 8205 ([_3DJ

The entry at 8205 should have been 3C. To correct it,

MEM 3 C

Corrects the error.

NEXT L8206] [ .3C]
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Inspect the next memory byte, then continue.

When you are satisfied that the program is correct according to your

coding sheet, you are ready to execute the program.
1.6.6 Executing Your Program

To execute your program and follow the results of its operation on a

step-by-step basis, three new commands must he introduced. These are

REG , STEP and ADDR . The REG command causes the

right Tfour digits of your display to present a register name and its

contents. To use the REG command, therefore, it is necessary

to follow it by pressing a hex key which is the name of the register
you wish to see. For the current program, we are interested only in

Register A. Using the protocol developed above:

REG A (8200} [A-27]
The command REG followed by the hex character A leaves the

address at 8200, but the right four digits identify the register (A)
and 1its contents (undefined at this point). All of the registers
will be represented in the right four digits according to the format:

register name/dash/register contents.

The STEP command executes the instruction contained in the

location designated by the left four-digit display (the PC). After

each STEP command, the display will present_ the address of the

hext instruction. If the command REG A has been given

putting the system in the '"display register" mode, the contents of A

will also be displayed after each instruction has been executed.
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Follow this scenario on your MTS. Use your coding sheet as a guide:

RST 8200] [00)

Set PC to 8200 and display contents (NOP). Now display Register A.

REG A A=77

Before going on, be sure that the toggle switch at the left side of

the MTS is set to STEP. Now press the STEP key.

STEP (8201] [A=77)

The NOP instruction has been executed and the PC has been
incremented. Nothing has been done, so the content of A is still

undefined.

ADDR ([ 8201] | AF]

ADDR displays the current program counter and the instruction at that

location. 8201 contains the instruction XRA A, clear Register A.

STEP (L8202] A-00

Register A has now been cleared (it may have been empty before).

STEP

Register A has been incremented. Look at your coding sheet. The

instruction at 8203 is INR A.

Press STEP to execute it:

STEP (L8204] A-02
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Continue stepping through your program in this fashion until the PC
is set at 8209. At this point, Register A should contain the number
7. If 1t does not, you have made a mistake either in entering your
program or in pressing the command keys to execute it. If you have
finished with the wrong value, inspect the memory to make sure it
agrees with your coding sheet, then go through the above procedure

again.

Anytime we wish to see the memory contents at a particular address,

we can use ADDR| . Following this by STEP| causes the memory

contents at that particular address to be tr as an instruction,

which 1is carried out. The display we get depends on whether or not

REG has been previously operated. If it has, we have just seen

that we revert to the appropriate register display, the register

contents being wupdated, if necessary, by the execution of the

instruction carried out by the STEP command. If REG had not been

operated, we would display the next instruction.
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1.6.7 Instruction Execution: A Detailed Examination

We will now 1look at the three different instructions used in your
program, describing what happens to the PC, and Registers A and I at

each stage of instruction execution. Initialize the system:

RST ((8200) | 00)

STEP

When the command STEP is issued, the following operations will occur:

1) The processor sends the contents of (PC) to memory, selecting

address 8200.

A 00 | 8200

I = AF | 8201

3¢ ] 8202

3C_ | 8203

PC | 8200 3C | 8204

The contents of A and I are not yet defined.
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2) Next, the memory sends the contents of address 8200 to the I

register and PC is incremented by 1.

T | {00l 8200
r [ar| 8201
3c| 8202

« [3c| 8203

PC 8201 |=((Pc)=— (PC) +1) 3c| szo4

Wi

The contents of A are still undefined. The instruction is executed

and as it 1is a NOP, the instruction cycle is completed. The next

instruction will clear Register A:

STEP

1) The processor sends the contents of (PC) to the memory,

selecting address 8201:

A 00 8200
AF| 8201

3c| 8202
3c| 8203
PC 8201 ] 3c| 8304

* The backward arrow (¢) 1in an expression should be read as
"is replaced by". Thus this expression reads: "The contents of

PC are replaced by the contents of PC added to one'.
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2) The memory sends the contents of address 8201 to Register I,

and the PC is incremented.

A 00 8200
o | -— AF 8201

3c 8202

3C 8203

PC 8202 (PC)==— (P.C)@ 3C 8204

s

3). The instruction is executed and Register A is set to zero.

A 00|=—((2)=—0 ) 00 | 8200
AF | 8201

3c.¢| 8202

3C 8203

PC 8202 30 8204

W

The next instruction will increment Register A:

STEP

1-63
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1) The processor sends the contents of PC to the memory,

selecting address 8202.

a  [oo] 00
1 !ﬂﬂ AF
3C
3C
pC 8202] 3c

N

2) The memory sends the contents of address 8202

and the PC is incremented.

A 00 00

I 3C AF

3C

3C

PC 8203 —-—C(PC)-"—-(PCHI) 3C

it

8200
8201
8202

8203
8204

to Register 1,

8200
8201
8202
8203
8204

3) The instruction is executed and Register A is incremented

by 1.
A |o1 (A)==—(A)+1 ) 00
. & e
3c
3c
pC 8203 3
N

1-64
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1.7 SUMMARY

This chapter has covered some very important basic concepts, both
of hardware organization and function and software preparation,
loading and executing. If you feel uncomfortable with any Qf the
materials presented, go back over the relevant sections. You
should now understand the functions of the following command
keys. Define each of them mentally and themn 1look at the

following page.

ADDR
NEXT
MEM
REG
STEP

RST
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ADDR

NEXT

MEM

REG

STEP

RST

Displays the content of your program
counter, and the hex code of the
instruction addressed. It permits you
to enter another address, by following
ADDR with four (or more) hex keys.

Advances to the next address for display
of the memory content. NEXT does not
affect your program counter.

Enables entry of data to the memory location
displayed. The memory content display
indicates that data entry is enabled. NEXT
will advance to the next location, and data
entry is still enabled. Pressing MEM
repeatedly decrements the memory address.
MEM does not affect your program counter.

Followed by the name of a register (such as A)
displays the content of that register.

Causes execution of the instruction addressed
by your program counter. If STEP follows the
entry of a new address by (ADDRxxxx) then that
address is entered into your program counter,
and the instruction located there is executed.

Returns the computer to a standard condition.
Your program counter is set to 8200.
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2.1 PROGRAM EXERCISE #2

In your first program, all of the instructions used (NOP, XRA A, INR
A) were one byte instructions, fetched from memory and executed with
no further memory accesses required. Many instructions comprise two
or three bytes and require more than one memory access. In your next
program two such instructions will be considered. Additional memory
accesses are required whenever an instruction operates on data which
is stored in memory, or when the results of an operation must be

stored in memory.
2.1.1 The ADI Instruction

A number of instructions have the effect of adding a number to the
contents of the Accumulator (A). One of these is "Add Immediate",
which translates to: "Add to the Accumulator the contents of byte
two of the instruction". Thus if the instruction is contained in

address m, the contents of m + 1 would be added to A.

" BINARY CODE: 11000110

HEX CODE: Cé

SECOND BYTE: Data

MNEMONIC: ADI

MEANING : Add to the Accumulator the

contents of the next memory

address.
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The ADI instruction requires two memory fetches, the first to get the
instruction and the second to get the contents of the following word.
Each memory access which is required during an instruction cycle is

called a machine cycle. The instruction INR A takes one machine

cycle; the instruction ADI takes two machine cycles.

'MACHINE CYCLE: The operation of accessing an address;
either for reading from or writing to

that address.

2.1.2 The STA Instruction

To transfer data from the Accumulator to a memory location takes even
more machine cycles (before reading further, close the manual and try
to determine by yourself how many cycles are required). The
instruction to store the Accumulator is a three byte instruction.
Bytes two and three contain the address in which the data is to be

stored:

BINARY CODE: 00110010

HEX CODE: 32

BYTE TWO: Low-order part of storage address
BYTE THREE: High-order part of storage address
MNEMONIC: STA

MEANING: Store the contents of the Accumulator

(A) at the address which is contained

in the following two memory locations.
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ADI is a two-byte 1instruction, STA is a "three byte instruction.
Their execution is more complex than the execution of thé single byte
instructions used in the previous program, so we will look at them in

detail before using them.
2.1.3 Instruction Execution Details

When the ADI code is fetched from memory and decoded, the logic
determines that a second memory read operation is required, and that

the data read is to be added into Register A. The operation looks

like this:
1) The processor sends (PC) to memory,
selecting address 8200 (for this example)
Cé6 8 2 0 0
A 00 8 2 0 1
‘ 27 8 2 0 2
! ??I '
P C 8200
2) The memory sends the contents of address 8200
to the I register and (PC) is incremented by 1.
| C6 8 2 0 o
A 00 07 8 2 0 1
?2? 8 2 0 2
! Cé6
SN

P C 8201 [=—( (pc) =— (pC)+1 )
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3) The instruction is decoded, and the processorpagain

sends (PC) to memory, selecting address 8201.

C6 8 2 0 0
A 00 07 8 2 0 1
?27? 8 2 0 2
| C6
p.c | 8201

4) The memory sends the contents of address 8201, which
is added to the contents of Register A, and (PC)

is incremented by 1.

C6' g8 2 0 O
07 8 2 0 1
A 07 [=—((a) @—— (A)+(8201) )jam—"
= ( ?? 8 2 0 2
' ce M
P C 8202 (PC) =— (PC)+1 )

5) The instruction is complefed. The memory has been

accessed twice (two machine cycles), and (PC) has

been incremented twice.
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When the STA instruction is decoded, the logic "recognizes" that an
address ’muét be obtained from memory before the instruction can be
completed, as the operation commanded is to store the contents of A
in that address. The contents of the two memory words‘following the
instruction STA must be read and stored temporarily in the processor
so that they may be used. This is accomplished by the use of two
registers which are called W and Z. The high-order bits of the
address (most significant eight bits) are stored in W and the low
order bits (least significant eight bits) are stored in Z. The
sixteen bit quantity W, Z is then the address in which the contents
of A will be stored. Like Register 1, Registers W and Z are for
internal use by the processor only and no instruction explicitly

refers to them.

W, Z REGISTERS: A temporary register pair in the address
logic used during internal execution

of instructions.
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The details of execution are:

1) The processor sends (PC) to memory,

selecting address 8200 (for this example):

07
??
22 1 ?27?

2) The memory sends the contents of 8200 to

Register 1 and (PC) is incremented by 1.

07

(PC) ==—— (PC)+1 )

3) The instruction is decoded,

32

00

83

??

N

32

00

83

?27?

N

o o o o

T 0 o o

N N MNMNN

N N NN

and the processor

sends (PC) to memory, selecting address 8201.

07

32

2? | 22
8201

32

00

83

?2?

N

o 0 o oo

N N NN

© O O o

0 O © o

o O o o

W N a2 O
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4) The memory sends the contents of 8201 to

Register Z and (PC) is incremented by 1. Now Z
contains the low order part of the address in which
the contents of A will be stored. The design of
the processor requires that the low order part of
‘the address be stored immediately after the

instruction code, followed by the high order portion.

32 8 2 0 o
07 00 8 2 0 1
_ 83 g8 2 0 2
lEE. ?? 8 2 0 3
22 | 00 ]
8202 [~=—(_(pc) =— (pc)+1 )
5) Again the processor sends (PC)'to memory,
selecting address 8202.
i 32 8 2 0 0
07 00 8 2 0 1
83 8 2 0 2
32 2? 8 2 0 3
22 lfoo ]
8202
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6) The memory sends the contents of 8202 to

Register W, and (PC) is incremented by 1.

The

complete address in which the contents of A

are to be stored is now available.

07

32

83 | 00

8203

—=—((PC) =— (PC)+1

7) The contents of W,

selecting address 8300:

07

32

83 00

8203

7 are sent to memory,

00

83

27

??

0 m o o®

N N NN

NN

NN

o O O o

0o O O o
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8) The processor sends the contents of

Register A to address 8300 and the

instruction is completed.

32 8 2 0 O

A 07 00 8 2 0 1

83 8 2 0 2

| 32 ?? 8 2 0 3
"

w2z g3 | 00 07 8 300
S 8203 NN

The execution of STA has required four machine cycles: an

instruction fetch, two memory reads, and the one memory write. Do
not be confused by the fact that the high and low order parts of the
address in this three-byte instruction (and all similar instructions)
are reversed. The arrangement was adopted by the microprocessor's

designers to simplify parts of the internal circuitry.

Notice that throughout the execution of STA, the content of Register
A did not change. It was duplicated in the memory location at

address 8300 and remains in Register A as well.
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2.1.4 Writing the Program

You are now ready to observe the behavior of these instructions in a

program. As before, we start with a program specification:

"§rite a program which sets the Accumulator to an initial value
of seven and then, by successive increments of one, doubles the

initial value. Store the result in location 8300."

Before looking closely at the model coding sheet which follows, try

to write the program by yourself.

ADDRESS HEX MNEMONIC COMMENTS

8200 00 NOP Dummy operation

8201 AF XRA A Clear A

8202 Cé6 ADI Add immediate to A the number
8203 07 -- contained in this location
8204 3C INR A Increment Register A

8205 3C INR A

8206 3C INR A

8207 3C INR A -- continue to increment

8208 3C INR A

8209 3C INR A

8204 3C INR A Until (A) = 14145 = B¢

820B 32 STA Store result in

820C 00 location

820D 83 8300

820E 00 NOP Dummy operation.

2-10
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Note that we have included two NOP instructions that were not in the
program specification. We will not normally write these into the
specification but will assume that the programmer will insert them
wherever he thinks it necessafy, i.e., when he thinks space should be

left for future program amendment.

The instruction in location 8201 clears A. This is required because
ADI adds the contents of the next memory byte to A. STA operates to
replace the contents of 8300 with the new value. Adding and
replacing are Dboth common operations, and the beginning programmer

must be careful to distinguish them.
2.1.5 Loading and Executing the Program

Review the directions for 1loading a program, then enter your new
program in the MTS memory. Do not forget to verify it! Before

executing your program, we need to look _at memory address 8300. In

order to do__so, the command key ADDR must be introduced.
Pressing ADDR will display the address contained in the PC and
the contents of that address. Since _ RST always sets your

program counter to 8200, you should see:

'ADDR | g200) (o0l
If ADDR is followed by four hex keys, the address specified by

those keys will be displayed with its contents:

ADDR 8 3 0 0 ' (8300] ([_22]

2-11
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If this sequence is now followed by MEM the address is now a

memory address and data may be entered. As this is the address which
your program will use to store a result, it would be instructive to

set some arbitrary initial value, so:

MEM 7 7 (83000 [ 77

Memory location 8300 now contains 77, and we are ready to execute
your program. Although we have addressed 8300, the program counter

still contains 8200. You can test this by:

ADDR (8200} {_ 00
Only the STEP and RUN commands, or execution of your
program, cahfchange the program counter. ADDR always displays

the current value of the program counter.

REG A 8200 A-22]

The contents of A are undefined here.
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STEP (8201 | A=27

The instruction in 8200 was NOP; only (PC) changes.

STEP (8202] [A-00]

Looking at the coding sheet, we see +that XRA A has cleared Register

A.

STEP [8204]). LA-07

The (PC) has been stepped by two, and A contains the results of the

ADI instruction.

STEP (8205}) [A-08]

The first of the INR A instructions adds 1 to the contents of A.

STEP (8206] [(a-09]
STEP r8207] [A—OAI
STEP (8208] (A-0B]
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STEP [8209] [A-0C

STEP (820A) [A-0D)

STEP
Now A contains OE16 = 1410§ the next instruction will store this
result in 8300:

STEP (820E] [(A-0E]

The (PC) has been stepped by three and the program has been executed.

Now take a look at location 8300:

ADDR 8 3 1o 0 8300) [_OR

If at any point your progfam execution did not produce the results
described above, correct the bad instruction in your memory (If

there's an error, there's a bad instruction!) and start over.

2-14



TWO AND THREE BYTE INSTRUCTIONS
2.2  DATA STORAGE CONVENTIONS

You may have wondered why 8300 was selected as the storage location
for this result. While it 1is somewhat arbitrary, the basic
requirement is to keep programs and data separated. It would have
been quite possible, for example, to store the results in location
820F. The program would execute exactly as before, except that the
results would be placed in a different memory word. Suppose,
however, that you wished to modify the program, to add instructions
to achieve some different purpose? The program could not utilize
additional consecutive addresses without changing the initial storage
address. In the example, only one such address was used, but in a
vomplex program with many storage addresses, the problem becomes
acute. Data addresses are therefore chosen to leave lots of space

between program and data areas.

N.B. As the monitor is stored in read-only memory, it requires part
of the RAM for temporary storage of data. Sixty four bytes of RAM,
addresses 83CO through 83FF, are allocated to the mqnitor; care

should be taken not to modify these memory locations.

.2-15
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2.3 PROGRAM EXERCISE #3

2.3.1 The LDA Instructions

An instruction similar to STA has the effect of transferring data

from memory to the Accumulator:

BINARY CODE: 00111010

HEX CODE: 3A

BYTE TWO: Low-order part of address.
BYTE THREE: High-order part of address.
MNEMONIC: LDA

MEANING: Load the Accumulétor with the

contents of the word whose
address is contained in the

following two memory locations.

The detailed instruction cycle for LDA is shown in Figures 2-1, 2-2,
and 2-3. In these figures note the mention of the address bus and
data Dbus. Review Section 1.3.3 and be sure you understand these

buses and their functions.



PROCESSOR
A 00
! AF
w
z
P C 8204

Processor sends PC

O

returns its contents

Memory selects 8204 and

data bus
A 00
————
1 3A
w
2
p C 8205

Processor loads data

TWO AND THREE BYTE INSTRUCTIONS

ADDRESS BUS

®

CONTENTS

on

DATA BUS

®

Register I and increments PC

| | (@

O N S

P 8205

(:) Processor interprets
byte instruction

3A as a three

LDA Instruction Cycle

Figure 2-1

MEMORY

AF
3A

00
83

14

0 O 0 O 00 00 o 0 W W ™ 0 o o™

N N N N NN NN D NN NMNDNMDN
©c O O © 0 0O 0 © 0 © O 0o o o
-

O O W P> © ® N & O » W N

W W N
o o M
o
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PROCESSOR MEMORY
8 2 0 0
A 00 g8 2 0 1
— 8 2 0 2
| 35 AF 8 2 0 3
W 3A 8 2 0 4
. Woo 8 2 0 5
P C 8205 83 8206
8 2 0 7
(:) Processor sends PC 8 2 0 8
(:) Memory_sglects 8205 and 8 2 0 9
returns its contents
on data bus 8 2 0 A
8 2 0 B
8 2 0 C
8 2 0 D
A 0o
-I"\
i
) 3A
w
Y4 00
P C 8206 <:> )
(:) Processor loads data to
Register Z and increments PpC
Processor sends PC N
FF 8 2 F F
14 8 3 0 0
FF 8 3 0 1
A 00 '
)
e ——
w 83
Z 00
P C 8207

Memory selects 8206 and returns
its contents on data bus

Processor loads data to Register W
and increments PC

© ©

LDA Instruction Cycle (continued)

Figure 2-2
2-18
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®© ®

PROCESSOR MEMORY
8 2 0 O
A 00 B 2 0 1
e 8 2 0 2
| 3A AF 8 2 0 3
w 83 } @ 3A 8 2 0 4
z 00 00 8 2 0 5
P C 8207 83 8 2 0 6
Processor sends contents 8 2 07
of W and Z on address bus 8 2 0 8
8 2 0 9
8 2 0 A
8 2 0 B
8 2 0 C
8 2 0 D
=N
A 14 <:>
! 3A
w - 83
b4 00
P C 8207 N
FF 8 2 F F
Memory selects 8300 and returns 14 8 3 0 0
contents on data bus
Processor loads data from data FE 8301
TN

bus into Register A

LDA Instruction Cycle (continued)

Figure 2-3
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2.3.2 The JMP Instruction

To this point we have used instructions which perform an operation
and advance the program counter so that it points to the address of
the next sequential instruction. A very important class of
instructions allows a program to branch or "jump'" to an instruction

at an arbitrary address. One of these instructions is JMP:

BINARY CODE: 11000011

HEX CODE: C3

BYTE TWO: Low-order part of address.

BYTE THRER: High-order part of address.

MNEMONIC: JMP

MEANING : Load the PC with address contained
in the following two memory
locations.

The Execution cycle of the JMP instruction 1is shown in Figures 2-4



TWO AND THREE BYTE INSTRUCTIONS

PROCESSOR MEMORY;

8§ 2 0 O
A 15 g8 2 0 1
—— 8 2 0 2
I 32 AF 8 2 0 3
w 83 3A 8§ 2 0 4
z 00 00 8 2 0 5
P C 820B @ 83 8 2 06
P 3C g8 2 0 7
(1) Processor sends PC 32 8 2 0 8
(2 Memory selects 820B 00 8 2 0 9
and returns its content <:> 83 8 2 0 A
c3 8 2 0 B
03 8 2 0 C
T ® @] 20
=i
v [ PP ®
w 83
z 00
p C 820C
<:> Processor loads data to Register I
and increments PC
<:) Processor interprets C3 as three
: byte instruction -
FF 8 2 F F
<:> Processor sends PC
15 8 3 0 0
A 15 FF 8 3 0 1
g
l C3
w 83
z 03
P C 820D
(:) Memory selects 820C and returns its
content on data bus
<:> Processor loads data to Register Z and
increments PC
JMP Instruction Cycle
2-21

Figure 2-4
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PROCESSOR

A 15

==

! C3

83
03

820D

O N s

P

Processor sends PC

Memory selects 820D
and returns content

A 15
I c3
W 82
z 03 I\
P C 8203

Processor loads data into

Register W. Processor transfers
data from W and Z into Program

Counter

MEMORY

o o

3A
00
‘,» 83
3C
32
00
83
c3
03

<:> 82

© 0 © O W O 0 0 W © o oo
NNNNNNNNN&NNNN
0O 0O 0O O O © 0O 0 0 O O o o o©
O O W » © ® N & O » W N

FF

15
FF

W o
W W N
e o m

o m

-

JMP Instruction Cycle (continued)

2-22

Figure 2-5



TWO AND THREE BYTE INSTRUCTIONS

2.3.3 Writing the Program

Program specification:

"Write a program which will clear the Accumulator, load it with
the contents of 8300, increment this number by one, and store the

result in 8300. Loop through this sequence repeatedly."

The program below starts with three consecutive NOPs, a convention
which would permit entering a three-byte instruction here, should we

wish to change the program later:

ADDR HEX MNEMONIC COMMENTS
8200 00 NOP Dummy
01 , 00 NOP
02 00 NOP
03 AF XRA A Clear A
04 3A LDA 8300 Load A from 8300
05 00
06 83
07 3C INR A Increment A
08 32 STA 8300 Store A in 8300
09 00
0A 83
0B C3 JMP 8203 Jump back to Start
oc | o3
0D 82
8300 14 Arbitrary Data




TWO AND THREE BYTE INSTRUCTIONS

Load and verify the program, press RST to set (PC) to 8200, then

press STEP:

STEP (8201) [00)

STEP executes the first NOP instruction and displays the next one:

STEP (8202] [__00]

STEP {8203] |[__AF]

Two more STEP's get us to the Clear A instruction, AF, at 8203.

Execute this instruction.

STEP (8204) ([33]

We have executed Clear A. The next instruction is LDA. (3A at

location 8204)

STEP (8207] (3C]

We cannot see the internal steps. The three byte instruction LDA
occupies addresses 8204, 8205 and 8206. It has been executed and now

the INR A instruction at 8207 is displayed.
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i

Execute the INR A instruction.

STEP (8208] (37

This is STA, another three byte instruction.

STEP Lg20B] [_C3]

We have come to the JMP instruction.

STEP (8203] [__AF]

And now we are back to the start. Examine Register A.

REG A ([ 8203] A-15

The program loaded 14 from 8300, incremented it and stored the new
value. Register A still holds that value. Execute the Clear A

instruction at 8203.

STEP (8204] (A=00]

Now Register A has been cleared.

STEP 820 {A-15]

Now the LDA has reloaded from 8300.
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ADDR (8207] [_3C]

ADDR displays:the instruction

STEP [8208] (A-16]

Step executes it and again displays the register we last examined.

Let's examine the memory location.

ADDR 8 3 0 0 (8300} [ _15]

The new value has not been stored yet. DO NOT PRESS STEP NOW - The
computer would execute from location 8300. Use ADDR to recall the

current program counter.

ADDR [(8208] [32]
Then STEP.
STEP (8208} (A-=16]

And look again at 8300:

ADDR 8 3 0 0 ' 300 18]
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Now the new value has been stored.

=~

MEM [8300] {([_.1I6]

MEM tells +the monitor you did not intend to change the program
counter, but only the memory address. Therefore you can now use

STEP.. The PC contained 820B, addressing the Jump instruction.

STEP (8203] [ &F)

So we jumped. Using the MEM key disposed of. Register A display. The
memory address we last requested is still there, so pressing MEM will

fetch it back again.

MEM (B300] (18]

We have introduced four new instructions and looked at the details of
their execution cycles. The instructions are summarized in Sectioq
2.4, and the command key functions are reviewed in Section 2.5. In
Chapter 3 we will Dbegin to develop some fundamental concepts of

programming.
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2.4 SUMMARY OF INSTRUCTIONS
3C INR A Increment Register A
One byte
One machine cycle
AF XRA A Clear Register A
One byte
One machine cycle
Cé ADI Add immediate
XX data Two bytes
Twp machine cycles
32 STA Store Register A
XX low address Three bytes
XX high address Four machine cycles
3A LDA Load Register A
XX low address Three bytes
XX high address Four machine cycles
C3 JMP Jump
XX low address Three bytes
XX high address Three machine cycles

2-28
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2.5 REVIEW OF COMMAND KEYS

ADDR

STEP

REG

MEM

Display Program Counter and Instruction.
This instruction will be executed when you
press STEP. Permits entry of another memory

address to be examined or executed.

Executes one instruction. 1If STEP
immediately follows entry of an address,
that address is entered into the program

counter.

Must be followed by a register name
(e.g. A). Displays the content of that
register, and allows a new value to be

entered from the keyboard.

Enables entry of data to a memory location.
Lights a decimal point to indicate that data

entry is enabled.

If MEM directly follows ADDR, the contents
of the program counter become the

addressed memory location.
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NEXT

If MEM follows entry of an address that

becomes the addressed memory location.

I1f MEM follows NEXT and data entry was not
previously enabled, the displayed address

becomes enabled for data entry.

If data entry was already enabled, MEM

decrements the address.

If MEM follows REG or STEP it recalls the

previously displayed memory address.

If a memory address and its content are
displayed, NEXT increments the address and
stores it as the address to be recovered
by MEM. NEXT does not enable or disable
data entry; NEXT has other functions in

monitor display modes.



MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 3

PROGRAM  LOOPS






3.1 PROGRAM LOOPS AND FLOW CHARTS

‘'The program we used in Chapter 2 was a loop:

XRA l A
LDA 8300
INR A
STA 8300
JMP | 8203

Short loops of this kind are very common in computer programs, but
they always include some means of exit from the loop. Otherwise the
program would simply recycle through the loop forever, doing nothing

useful.

3.1.1 The Monitor Run Command

To this point you have used the STEP command to execute your

programs. Each time STEP is pressed, the instruction pointed to

by your PC is executed, after which the monitor is re-entered so that

it may activate the display and wait for your next command.

When the RUN command is issued, the monitor is also re-entered

after your instruction is executed. However, instead of waiting for
your command, it immediately allows your next instruction to be
executed. To demonstrate this, make sure that your program loop is

still in memory.

If you press RUN to execute this loop, the display will

disappear and nothing more will happen. Internally, the count at
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location 8300 is being incremented again and again, but you have no
way of knowing what is happening. The Kkeyboard is dead. Only the
RESET key (or the power cord) can interfere. There must be some

means of leaving such a closed loop.

In a sense, all computer programs are loops: they must somehow return
and repeat the same instructions, but operating on different data,
producing different outputs, and sometimes executing different

sections of the program depending on the data.

This chapter presents the conditional jump, an instruction that
alters the program flow as a function of the data. This is the most
common way of exiting from a short loop. The flow chart is
introduced, which describes the problem flow and is the principal
design tool for programming. Finally, another method of entering the

monitor for input and output will be provided.
3.1.2 The Conditional Jump

When certain instructions generate a zero result, a special "Flag"
flip flop 1is set. This condition is displayed by the bottom LED
labeled "2" at the left of the numeric display. You will have seen
this turn on each time XRA A was executed in the previous exercises
(if not, try it now). When INR A causes a non-zero result, this LED
is turned off. In the program loop above, Register A is repeatedly
incremented. Once every 256 loops the content of A goes from FF to
00, setting the Zero flag. During the other 255 loops, the Zero flag
is not set. The condition of this flag can be sensed and acted upon

by the instruction "Jump if Not Zero'".
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HEX CODE:
'BYTE TWO:
BYTE THREE:
MNEMONIC:

MEANING:

BINARY CODE:

11000010

Cc2

Low-order part of address.
High-order part of address.

JINZ

Jump to the address contained

in the following two words if
the result of the last counting,
arithmetic or logical operation

was not zero.

We will now modify the

program loop above by replacing the jump

instruction with the conditional jump, as follows:

8203 AF
8204 3A
8205 00
8206 83
8207 3C
8208 32
8209 00
820A 83
8208 c2
820C 03
820D 82

XRA

LbA

INR

STA

JNZ

A

8300

8300

8203
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Change the jump instruction by pressing:

ADDR 8 2 0 B [£8208B] [C3 ]
MEM c 2 [ 820B] [C2 ]

Since the jump address for the JNZ instruction is the same as for the
old JMP, it need not be reentered. To avoid going through the loop

many times, set a high value, say FC, into address 8300. Then step

through the program:

ADDR 8 3 0 0 (8300} (27
MEM F C (8300] [_FEC]

Now go back to the beginning and step.

ADDR 8 2 0 0 8200] [_00)
STEP 8201) [__00)

Request display of Register A,

REG A 8201
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and step through the program, watching Register A.

STEP [8202] ([A-2?
STEP [(8203]) A=77
STEP (8204] (A=00]

THE XRA A instruction at 8203 has cleared A. The Zero flag should

now be set.

STEP 8207

The LDA instruction at 8204 has loaded A with the data from 8300.

The Zero flag does not change.

STEP (8208) [A-FD]

INR A done. The result was non-zero, sO0 now the Zero flag is

cleared.

STEP [s208] (A=FD]
(STA done)

STEP [8203]
(JNZ done)
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Continue stepping until you see:

STEP |8207I A-FF
(LDA done)
STEP (8208] | A-00]

INR A done. Register A has been incremented from FF to 00. The Zero
flag 1is now set, indicating that when you reach the JNZ it will not

be executed.

STEP ((820B] A-00
(STA done)
STEP “A-00

Since the INR A instruction at 8207 has incremented the value to 00,

the JNZ instruction at B820B did not result in a jump. The three
machine cycles were still performed, loading I, Z and W with the
three bytes of the instruction and incrementing the program counter

three times. At the final step, however, the logic unit tests for

zero and sees that the condition for jumping is not met -- the result
was zero —-- and so does not transfer W and Z into the program
counter. Execution continues from the previdusly incremented

contents of the program. counter to the next sequential instruction..
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3.1.3 Flow Charts

A flow chart shows this operation in the following fashion:

g

Clear A

!

Load A from 8300

!

Increment . .A

!

Store A at 8300

NO

ZERO?

YES

The diamond shape represents a program branch conditioned by data.
The branch to be followed depends on the results of the previous

operations.

Flow charts represent the design of computer programs; they may be
considered the equivalent of schematics in electronic design.

Writing the final program is akin to the circuit board layout - the
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function is fully defined but there 1is still some degree of freedom
for the designer. From here on, each exercise will either include a

flow chart or ask you to prepare one.

FLOW CHART: A symbolic representation of the logical
steps of a program, detailing control and
sequencing of the flow of data, procedures
to be followed, computations to be

performed, and input/output operations.

The flow chart above shows an incomplete program. If you continue to
step after passing the JNZ instruction, you will execute an
unintended instruction at location 820E. A closed loop such as we
started with has no value since it accomplishes nothing but merely
repeats itself. An open loop is intolerable because it will have

unintended results.

The purpose of the computer is to provide outputs depehding on
inputs. We have been obtaining outputs by looking at Register A
contents after each step. You provided one input by loading data to
address 8300. You could also change the data in the A register by a
monitor command, but this is only effective at certain points in the
program, since Clear A and Load A will destroy anything you enter.
What we need is a means of entering data only at a certain position

in the program.



PROGRAM LOOPS

3.2 PROGRAMMED MONITOR ENTRY

It 1is possible to activate the monitor from your program, instead of

from the keyboard. The command is:

BINARY CODE: J 11100111

HEX CODE: E7

MNEMONIC: RST4

MEANING: Restart the monitor at entry
point four.

When this command is executed, all of the monitor functions become
available to you. This allows you to use the RUN command, but
permits your program to enter the monitor where you wish it to do so.
Now you can modify your program to provide additional inputs.

Consider the revised flow chart in Figure 3-1.

3-9
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. Clear A

l

L. Load A from 8300 I

r

Increment A

:

Store A at 8300

NO

ZERO?

YES

Enter Monitor

Y

Put New Value in A

Conditional Jumps

Figure 3-1
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To implement the program, make the following changes to your code:

820E E7 RST4 Enter the monitor
820F C3 JMP Jump to the "INR A"
8210 07 instruction.

8211 82

Once again load a large value at '8300, then set the address to 8200

and step through the program.

When the address display shows:

(60201 [ _F3)
(or) [0020] IA-??I

you have entered the monitor. Step again and your jump instruction
will appear. Now try RUN . Each time you press RUN the display
will go blank briefly while the computer Qounts to FF and 00, and

then it will re-enter the monitor. Now press:

REG A ((820F] A-00

Register A has reached 00, the zero flag is set, and the program

counter points to the jump instruction.
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you have entered a large value to Register A.

RUN { 820 [_A-00Q

This time the display should barely blink, because the program only

looped 16 times instead of 256.

This exercise 1illustrates the way in which timed delays may be

implemented wusing program loops, a feature which is common in many

process control operations.



PROGRAM LOOPS

3.3 ADDITION BY COUNTING

The next program exercise will demonstrate finding the sum of two

numbers by the basic principle of counting. The program

specification is:

"Write a program which will form the sum of two numbers by
successively incrementing the first number and decrementing

the second, until the second reaches a value of zero."

To implement this program a new instruction will be required:

BINARY CODE: 00111101

HEX CODE: 3D

MNEMONIC: DCR A

MEANING: Decrement Register A

A flow chart for the program will be helpful and one is presented in
Figure 3-2., Before looking at the coding sheet (Figure 3-3) try to
write this program all by yourself, then match it against the one

provided.

3-13
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Enter Monitor
to Obtain a Value

l

Store It at 8300

Enter Monitor for
Another Value

|

Store It at 8301

,l

Load,.Increment and
Store the Value
at 8300

1

Load, Decrement and
Store the Value
at 8301

NO

ZERO?

YES

Go back to the monitor
to display the result
and obtain another wvalue

Load the Value From
8300

Addition by Counting

Figure 3-2
3-14



ADDITION BY COUNTING

CODE

A O D R

FoO |

Entir merndov and

ave) tho pale.e’

page’ the tali s’

Lonmad i Aol $30/

2/

3 w M N )
3 3 3 . o
%a W duA | m m ‘w LW m
. " o
% FERERE R SHERERA 2
Q ~ ,0 Q ~ ~ Q Q %u
Q U Q Q Q Q Q Q Q
| . Q| \p\ 0 N N3 1\ ™ BN
So o S NNES Co <T|S 9 o9 S |-
3 3 .
QoA |N|<T ~ g (04l < x| Y lant Qo
Q|9 ||k~ |~ A 2|~ fa) Ul = = [ by
2| VL% L Hlen - [aY[% 9 - 9
I OIQIN[] Q| ™[ N\ [M [ QM| ] U Q™ [N {M| Q] x| [ ™| | Q|| K| Q™| Y| ™| %
Q| V[V 4y W Q| ] Wy Qf | ™| Qf S| W o QI M| DO ™| M| Qf | V)| QS| ™M VY[V Q™
Olmjv|m|gwvw/fo|No|lo|gd|la|joj0jw|ln{ol~rn]|o|s|lv]fjo|n]|d]leo|d]|lajlo|ldajlwlunlolcla]lm]| < o
! N N
R P ™

133HS ONIA0D

W3LSAS ONINIVHL HI1NdWODOHIINW

~ SINLISAS HILNdWOD GILVYHDILNI

3-15



PROGRAM LOOPS

Before stepping through your program, press RST and then enter a

small value in A:

REG A 2 (8200) {(A-02)
STEP (8201 A-02
Now press STEP repeatedly:

.8203] |[_A-02]

You have just entered the monitor. (0020] A-02
Continue to STEP: (8204] (A-02]

L 8207] A-02
You have entered the monitor again. (L0020} A-02
Continue to STEP. (8208 | A-02)
This is the beginning (820B] [A-02
of the loop. Continue to step. L 820E] ([A-02]
You have done the first INR A. ( 820F] ((A-03]
The first value has been stored. (8212] ([(A=03]
The second value, also 2, has been loaded, ([ 8215] A-02]
decremented (8216] [A-0])
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and stored.

The program is now at JNZ, the result is not zero,

and the jump occurs.

The first value is 1oaded,

incremented, 2 0

stored, A

N

the second value is loaded, 1

[

decremented (and the Zero flag is set),

SHEEHEH E

stored. The program is

again at JNZ but

] B EEE B

the jump does not occur. 21C

The first value is loaded ( 821F] ([ A-04]
and now the jump

back to the beginning occurs. { 8203] [A-04]
The monitor again. ( 0020] [A-04]
Step again. Back to your ((8204) [A=-09

program with A unchanged.

As the initial value placed in A (2) became the value of both the
first and second numbers, we can verify that the result (4) is in

fact their sum.

3-17
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Now press RST and run your program for various pairs of numbers.
Remember each instruction takes only a few microseconds; the disp}ay
will not even blink. Press RUN, then REG A (PC will be 8204) and
ente; the first number. Press RUN,‘REG A (PC will be 8208) and enter
thei.second pumber. Press RUN agaih. The result will be displayed,
gﬁd you can key in a new_pair. Any two numbers whose sum is less

than or equal to 255 (=FF hex) can be added in Register A.

3-18
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3.4, EXERCISE

Thé program we have developed enters the monitor twice to acéebt fwb
numbers to be added together. The sum is displaﬁéd Ein Register A)
éhdk tﬁo m;re numbers are entered. -Modify the flow chart of Figure
342 so that after a sum is”displayed only one new nﬁmber is eﬁtered,
and that number is added to the previous sum. With the modified

program you can sum a column of numbers.

3-19
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3.5

In

use

SUMMARY

this chapter several new instructions have been introduced, the

of RUN and programmed monitor entry has been shown, and the

important concept of

flow charts has been presented. All of the

instructions used so far are summarized in Section 3.6. You may wish

to

do,

write a program of your own at this point, for practice. If you

follow the rules:

a)

b)

d)
e)

)

Specify the program

Draw the flow chart

Select memory areas for the program and for
data (Do not use locations 83C0O0 - 83FF)
Write the code, with comments

Key in the code and verify it

Step through the program to check it, then

run it



3.6 SUMMARY OF INSTRUCTIONS

00

AF

3C

3D

3A

XX

XX

32
XX

XX

C3

XX

XX

NOP

XRA A

INR A

DCR A

Lpa
low address

high address

STA
low address

high address

JMP

low address

high address

PROGRAM LOOPS

Do nothing

Clear Register A

Increment Register A

Decrement Register A

Load Register A

with the data stored

in the memory location
whose address is in the

second and third bytes.

Store the contents of
Register A in

the memory location
whose address is in the

second and third bytes.

Jump to the location
whose address is in the

second and third bytes.



PROGRAM LOOPS

C2
XX

XX

E7

JNZ
low address

high address

RST4

Jump if the result of
the last arithmetic
operation was not =zero,
otherwise continue to
the next sequential

instruction.

Enter the monitor.
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THE OTHER REGISTERS AND MEMORY ADDRESSING

THE OTHER REGISTERS AND MEMORY ADDRESSING

In this chapter we introduce the general purpose Registers B, C, D,

E, H and L. These registers are used for:

1) Temporary data storage
2) Storing operands for arithmetic and logical operations
3) Counting

4) Memory addressing

For temporary data storage and counting, the general purpose
registers are equivalent to Register A. There are instructions for
all seven registers permitting data to be moved among them, moving
data 1into them from memory, moving data from them into memory,
incrementing and decrementing their contents. They are not identical
in all functions, however, and each has certain unique features.
Register A, or accumulator, is very different in that the results of
most arithmetic and logical operations are stored in Register A.

Similarly, input/output instructions use Register A.
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4.1 THE MOV INSTRUCTIONS
It is often necessary to move data into one register from another.
The instruction to do this has the form "MOV destination, source".
Such an instruction exists for each possible pairing of registers.

For instance:

BINARY CODE: 01001111

HEX CODE: 4F

MNEMONIC: MOV C, A

MEANING: Move into C the content of A

The data remain unchanged in the source register and are copied into
the destination register, whose old content is lost. Note that in
the mnemonic the destination is listed first, then the source
register. Interchanging these is a common source of error, so be
careful. Think of the instruction as "move into C from A" or "set C
equal to A". The table below contains a summary of the MOV
instructions. Note that the table is complete, including the useless
MOV A,A; MOV B,B; etc. These are totally valueless to the user, but
because of internal procedures in the microprocessor it would have
added complexity to omit them or to use the wasted instruction codes

for other purposes.

4-2
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Inter—-Register MOV Instructions:

into Register C:

The

then

as memory location 8300.

3A
00
83

4F

content

LDA 8300

MOV C, A

copy data from some memory location

Source Register
A|B |c |p |E|H |L

MOV  A,s 7F | 78 |79 | 7a | 7B| 7C¢ | 7D
MOV  B,s 47| 40 | 41| 42 | 43| 44| a5
MOV C,s 4F | 48 | 49| 4a | 4aB| 4c | 4D
MOV D,s 57150 |51 |52)|53| 5455
MOV E,s 57| 58 | 59 | 54 | 58| 5¢ | 5D
MOV  H,s 67] 60| 61| 62|63 6465
MOV  L,s 6F | 68 | 69 | 64 | 6B| 6C | 6D
As  an example we might need to

of memory location 8300 is

copied into Register C.

loaded into Register A and

Both A and C now contain the same data
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4.2 THE ADD INSTRUCTION

The program of Chapter 3 performed addition

inefficient 1in

terms

of both program space

by counting. This is

and execution time.

A

single instruction will perform this function, now that we have a way

to put one operand into another register:

MEANING:

BINARY CODE:
HEX CODE:

MNEMONIC:

10000001
81

ADD C

Add into A the content of C

Any register content may be added to A, with the result always being

placed in A.

HEX
ADD A 87
ADD B 80
ADD C 81
ADD D 82
ADD E 83
ADD H 84
ADD L 85
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We can replace the repetitive loop in the program of Figures 3-2 and

3-3 with the ADD instruction.

8200 00 NOP

8201 00 NOP

8202 00 NOP

8203 E7 RST4 Enter Monitor

8204 32 STA 8300 Store Value Returned
8205 00 '

8206 83

8207 E7 RST4 Enter Monitor Again
8208 32 STA 8301 Store Value Returned
8209 01

820A 83

820B 3A LDA 8300 Load First Value
820C 00

820D 83

820E 4F MOV C, A First Value to C
820F 3A LDA 8301 Load Second Value
8210 01

8211 83

8212 81 ADD C Add First Value

8213 C3 JMP 8204 Go Back to Store and Display Sum
8214 04

8215 82

This program is equivalent to the modified program of exercise 3.4.
After finding a sum (by ADD C), we loop back to store the sum (STA
8300); enter the monitor to display the sum and accept a new number
(RST4). After the first sum is displayed in this program, we only

take one new number each time, and always add it to the old sum.

There 1is an important difference between this program and the

"addition by counting" program, in its effect on the Carry flag.
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4.3 THE CARRY AND ZERO FLAGS

In

Chapter 3 we introduced the Zero flag and the conditional

instruction Jump if Not Zero (JNZ). There are severallother flags,

and

conditional instructions. Different instructions affect

different flags, and some of the rules are fairly complicated.

However,

there are some simple general rules which may be defined

before proceeding.

a.

Data Transfer instructions never affect any flags. These

include LDA, STA, MOV, and other similar instructions:

Counting (incrementing or decrementing) in any single register
(A, B, C, D, E, H, L) sets the zero flag if the result df

that count is zero. The condjtion of this flag at an§ §iven
time does not necessarily mean that the register contains

zero, however. Once the flag is set, a data trgnsfer

-instruction may load the register without changing the flag.

Jump and conditional jump instructions never affect any flags.
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4.3.1 Carry
If two numbers are added whose sum is greater than FF, there should

be a Carry from the addition, e.g.:

75  (HEX)
+ 94  (HEX)

= 109  (HEX)

This Carry is generated by the ADD instruction, among others, and
sets a condition flag called Carry. Like the zero flag, Carry can be
tested to cause a conditional jump to occur, but it can also be used
in various arithmetic operations. Before discussing these, we will
étep through the program of Section 4.2 and observe Carry. It is
indicated to the left of the numeric display by the top LED, labelled
"Ccy". (In this description, keys to be pressed are shown at the
left. The displays to be expected are shown at the right. (CY) and
(Z) are shown where those flags are set. Until the first ADD, their

states are unknown.)

RESET 8200 00
RUN (until RST4) 8204 32
REG A 8204 A-2??
6 8 (enter a number) 8204 A-68
RUN (until RST4) 8208 A-68
2 0 (another number) 8208 A-20
STEP 820B A-20
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The two values have been stored and we will now load the first value.

STEP 820E A-68
STEP 820F A-68
REG C 820F C-68

The first value has been copied to Register C and we will load the

second value.

REG A 820F A-68
STEP 8212 A-20
STEP (execute ADD C) 8213 A-88

We have added the +two values. Note that both LED's left of the
numeric display are off. The result of the addition was not zero,

and did not generate a Carry.

STEP 8204 A-88

RUN (until RST4 done) 8208 A-88
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The o0ld result has been stored at 8300, and the monitor is waiting

for a new value, to be stored at 8301.

9 8 (enter a number) 8208 A-98
STEP (store it) 820B A-98
STEP (load the old result) 820E A-88
STEP (move it to C) 820F A-88
STEP (load the new number) 8212 A-98

Now the content of 8300 has been copied to register C and the content
of 8301 has been loaded into A. The next step will add these values.

The hexadecimal result should be:

88
+ 98

= 120

The sum is greater than FF, so a Carry will result and will be shown

in the upper LED to the left of the display.

STEP (CY) 8213 A-20

RUN (until RST4) (CY) 8208 A-20

Note that the jump and store instructions have not affected the Carry

flag. The value 20 (HEX) has been stored at 8300.

6 0 (enter new number) (CY) 8208 A-60
RUN 8208 A-80

We have added 20 + 60. The Carry flag is cleared, because the result

was not greater than FF,
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Now we shall allow 80 (HEX) to be used for both values.
RUN (CY)(Z) 8208 A-OO

A Carry was generated by adding 80 + 80, and the numeric result is

zero, sSo both Cérry and Zero are set.

Use this program to add the column of numbers below. Write in the

result of each addition and note if the Carry is set.

First Number 04 Carry Sum

Second Number 44

60

95

32 '

Al

FO.

c2

C2

44

60

FF

FF

0A

60

4-10
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We have seen how the Carry flag is set or reset by the addition. Note
that with the ADD instruction any previous Carry was lost and did not
affect a further result. In the next section we shall see how the

Carry flag can be used in addition.
4.3.2 Multiple Precision - The ADC Instruction

A single byte of data in memory or ip a registef can represent an
integer value from 00 to FF (255 deciﬁal). Obviously manyrcomputer
’programs need to represent numbers much larger than this, so more
than one byte\is used to represent such numbers. This is just like
the use of multiple digits to represent numbers greater than 9 in

decimal arithmetic.

Definitions:

MULTIPLE PRECISION: The use of two or more bytes to represent an

integer greater than FF (255 decimal).

DOUBLE PRECISION: The use of exactly two bytes to represent an

integer value from 0000 to FFFF (65535 decimal).

These definitions apply only to computers whose word size is 8 bits,
and only in the context of unsigned integer values. The phrases
cdnvey similar ideas but with more compiicated definitions in other

contexts.

4-11
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When we perform multi-digit addition the low order digits are added
without regard to Carry, but for all higher digits a Carry must be

considered.

Carry 101X
76 39 (decimal)
+ 15 43 (decimal)

= 9182 (decimal)

Similarly the computer can add low order bytes without regard to
Carry, and then include the Carry for higher bytes using an ADC (add

with Carry) instruction.

Example: ADC B

BINARY CODE: 10001000

HEX CODE: 88

MNEMONIC: ADC B

MEANING: Add the content of B to the content of A.

If Carry was set before the addition,
increase the result by 1. Place the result
into Register A. "If the addition generates
Carry, set the Carry flag; otherwise reset
jit. If the result of the addition is zero,

set the Zero flag; otherwise reset it.

4-12
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Note that ADD and ADC both set or reset Carry and Zero in exactly the

same way.

addition.

Example:

8200
8201
8202
8203
8204
8205
8206
8207
8208

8209

The

A full set of ADC instructions exists.

difference

lies 1in the inclusion

HEX CODE'
ADC A 8F
ADC B 88
ADC C 89
ADC D 8A
ADC E 8B

“ADC H 8C
ADC L 8D

of Carry in the

Add the content of Registers B and C to the content of

Registers D and E.

Here we consider C and E to contain the

low order bytes to be added; B and D the high order bytes.

The result is to be placed in D and E.

7B
81
S5F
7A
88
57
E7
C3
00
82

MOV A
ADD C
MOV E
MOV A,D
ADC B
MOV D,A
RST4

JMP 8200

Load this program.
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Before stepping-through the program place a two byte number (four HEX

digits) into Registers B and C, and another number into Registers D

and E.
REG B 4 5 8200  B-45
REG C 8 5 8200  C-85
REG D 5 2 8200 D-52
REG E A 7 8200 E-A7
The numbers to be added are:
B, C 4585
D, E 52A7
The sum should be: 982C
Now step through the program.
ADDR 8200 7B
REG A 8200 A-2?
STEP 8201 A-A7
STEP (CY) 8202 A-2C

The 1low bytes (A7 and 85) have been added, resulting in the low byte

of the sum in Register A. Carry is set.

STEP (CY) 8203 A-2C

STEP (CY) 8204 A-52

We are about to add the high bytes (52 and 45) with Carry, which is

set.

STEP 8205 A-98

4-14
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The sum of 52 and 45 has been augmented by the Carry. No Carry

resulted from this addition, so the Carry flag is clear.

STEP 8206  A-98
STEP 0020  A-98
STEP 8207  A-98

We reentered the monitor at 0020 and are now at 8207 where we will

jump back to the beginning. Examine the registers.

REG .B 8207 B-45
NEXT 8207 C-85
NEXT 8207 D-98
NEXT 8207 E-2C

The content of Registefs B and C has not changed. Registers D and E

contain the sum, 982C.

We can again add the content of B and C to this sum merely by

pressing RUN.

RUN 8207 E-B1

REG D 8207 D-DD

The new sum is DDBI1.
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Before doing this again, predict the next sum and carry.

B, C
D, E
Carry
RUN
NEXT

Sum

8207 D-2?

.8207 E-??

Does the result agree with your prediction? It should be Carry, 2336.

4.3.3 Exercise

Rewrite the program we have just used to add the content of Registers

B and C to the content of Registers

Registers H and L.

The solution is given in Figure 4-1.

4-16
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4,3.4 Subtraction - SUB and SBB

Subtraction is defined as the inverse of addition:

1f A B+ C

Then C A - B

We can show that this rule applies in the computer as well as in
elementary school arithmetic. The 8080 has a set of sﬁbtract

instructions; for example:

BINARY CODE: 10010000

HEX CODE: 90

MNEMONIC: SUB B

MEANING: Subtract the content of Register B from the

content of Register A. Place the result in
Register A. If the result is zero, set the
Zero flag; otherwise reset the Zero flag.
If the content of Register B was greater
than the original content of Register A,
set the Carry flag; otherwise reset

the Carry flag.
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To test the definition enter this program:

3200 78 MOV A,B
8201 81 ADD C
8202 90 SUB B
8203 C3 JMP 8200
8204 00

8205 82

‘Now enter data into B and C, and step through the program observing A.

REG B 8 6 8200 B-86
REG C 1 2 8200 C-12
REG ‘A 8200 A=7??
STEP 8201 A-86
STEP 8202 A-98
‘STEP 8203 A-12

Adding. 86 plus 12 gave 98; subtracting 86 gave 12. The rule still

holds even if the sum is greater than FF.

STEP 8200  A-12
REG ! 9 0 8200  C-90
REG A 8200  A-12
STEP (move into A from B) 8201 A-86
STEP (add C, 86 + 90) (CY) 8202  A-16
STEP (subtract B, 16 - 86) (CY) 8203  A-90

A 4-19
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Although the Carry flag was set when a sum greater than  -FF was
generated, this Carry was ignored by the SUB instruction. It was set

again by SUB when we subtracted 86 from 16.

As in addition, the Carry flag is used for multiple precision
arithmetic. The SBB (subtract with borrow) instructions are used for
this purpose. Note that although this name speaks of a "borrow"
rather than a "carry" it is represented by the same flag in the 8080
microprocessor. The 8080 does not distinguish whether it resulted

from an ADD or SUB instruction.

BINARY CODE: 1001 1000

HEX CODE: 98

MNEMONIC: SBB B

MEANING: If the Carry flag is set, reduce the value in

Register A by 1. Subtract the content of
Register B from the content of Register A.
Place the result in Register A. If the result
is zero, set the Zero flag; otherwise reset
Zero. 1f the content of Register B was greater
than the content of Register A minus CY, set

Carry; otherwise reset Carry.
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SUB and SBB exist for all registers:

97 SUB A 9F SBB A
920 SUB B 98 SBB B
91 SUB C 99 SBB c
92 SUB D 9A SBB D
93 SUB E 9B SBB E
94 SUB H 9C SBB il
95 SUB L 9D SBB L

The double precision addition we programmed in Section 4.3.2 can
readily be converted to a double precision subtraction, using SUB and
SBB in place of ADD and ADC. Refer to Section 4.3.2 and write a
program to subtract the content of Registers B and C from the content

of Registers D and E. A solution is given in Figure 4-2.

From this point on we shall omit the binary codes when new
instructions are defined, showing only the hex codes. Binary codes
have been shown to stress that the computer recognizes binary
patterns, not hex characters. If you translate intp binary the hex
codes above, and those for the MOV, ADD and ADC instructions given
previously, you can see the patterns recognized by the computer.

These are discussed in Chapter 11.
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4.3;5 Review and Self Test

In Sections 4.1, 4.2 and 4.3 we have introduced a number of
inStructions= that 1involve using registers to store data, provide
operands, and count. Test your knowledge by answering the questions
below. Each question refers to the section in which it is answered.

The correct answers are given on the reverse side of this page.

1) What is the other name for Register A? (Section 4.0)__

2) Name the other general purpose registers. (Section 4.0)_

3) VWhich register receives results from arithmetic operations?
(Section 4.0)
4) Which register has its content changed by the instruction

MOV E,C? (Section 4.1)

5) Which register has its content changed by the instruction
ADD B? (Section 4.2)
6)  Which of the flags are affected by each of the following

instructions? (Section 4.3)

ZERO CARRY

MOV E,C

ADD B :
LDA 8300

INR A

DCR C

SBB D
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Answers to Self-Test, Section 4.3.4

1)

2)

3)

4)

95)

6)

Register A is also called the Accumulator.
The other registers are B, C, D, E, H, L.
Register A receives the results of arithmetic and logic
operations.
MOV E,C moves into E the content of C. Register E is affected;
Register C is unchanged.
ADD B adds the content of B to the content of A and places the
result in A. Register B is unchanged.
MOV E,C affects no flags.
ADD B affects all flags.
LDA affects no flags.
INR A affects Zero.
does not affect Carry.
DCR C affects Zero.
does not affect Carry.

SBB D affects all flags.
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4.4 IMMEDIATE INSTRUCTIONS

Although we have distinguished program memory from data memory, it is
common to include some data in the program memory. Tables of fixed
values such as values of functions (e.g. trigonometric) or
calibration data are often stored at the end of a program. Some
instructions include data in the second, or second and third bytes of
the instruction. These are known as '"immediate data" and the
instructions are called "immediate instructions". Such an

instruction (ADI) was presented in the second chapter.

A very common requirement 1is to load a register with some fixed

value.
4.4.1 Move Immediate Instructions (MVI r)

The MOV instruction has a complete set of MVI counterparts. The

general MVI instruction looks like this:

MNEMONIC: MVI r
SECOND BYTE: Data
MEANING: Move the value contained in the

immediately following byte into

Register r.
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Following is the complete set of MVI instructions:

MNEMONIC HEX CODE
MVI A 3E
MVI B 06
_MGI . C OE
MVI D 16
MVI E 1E
MVI H 26
MVI L '2E

The MVI instruction is often used to initialize a counter. For
example, 1in serial data communications it is necessary to transmit
the eight bits of one byte sequen%ially. The copnter'is initialized
at 8 and successively decremented (using DCR) to detect complefion of
the transmission. Then a JNZ instruction at the end of the loop
causes repetition until the counter reaches zero. The instruction

cycle for: the MVI is shown in Figure 4-3.
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PROCESSOR

®
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CPU sends PC as address

Memory selects 8205 and
returns data
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8206

CPU loads data to Register I and
increments PC

CPU interprets 06 as a two byte
instruction

CPU sends PC as address
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~——
8207

Memory selects 8206 and returns data

CPU loads data to Register B and
increments PC

MVI Instruction Cycle
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Immediate Arithmetic Instructions

- 4.4.2
It is sometimes
instance
done by placing

necessary to add a fixed value to a number - for

one might want to count by threes. Although this could be

the desired value 1in a register and adding the

register content to Register A, the 8080 provides two instructions to

perform the function directly: ADI data (add immediate) and ACI data

(add with Carry immediate). We met the ADI instruction in Chapter 1;

ACI is defined here.

HEX CODE:
SECOND BYTE:

MNEMONIC:

CE

Da ta

Add the value contained in the immediately
following byte to the content of A. If Carry
was set before the addition, increase the result
by 1. Place the result in Register A. Set

or reset the Carry and Zero flags according to

the result.
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Similarly there exist immediate counterparts for SUB and SBB. Thus

we have:

) Cé ADI data
‘data
CE ACI data
data
D6 SUI data
data
DE SBI data
data

Probably the most common use of the ACI instruction occurs when an
arithmetic operation is required to generate a result with more bytes
than the numbers being added. In the example of Section 4.3.2 we
repeatedly added the content of B and C to a value in Registers D and
E. When the sum exceeded FFFF a Carry occurred from the multi-byte
addition, but was lost when we repeated the addition again. If we
had provided for an additional byte in the result (say in Register L)

the Carries could have been added into that byte by:

MOV A,L
ACI 00
MOV L,A

This technique is used in multiplication or when a column of numbers

is to be added. The next exercise demonstrates this.



THE OTHER REGISTERS AND MEMORY ADDRESSING

4.4.3 Multiplication by Repetitive Addition

The process of multiplication that we use in decimal arithmetic is

exactly equivalent to repetitive addition.
3 X8=8+81+8=24 (decimal)

The same is true in binary (or hexadecimal) arithmetic in a computer.
One way of performing multiplication is to add the multiplicand (8 in
the above. example) into the product (initially set to zero)

repeatedly, multiplier times.

Definition:

MULTIPLICAND: A number which is to be multiplied by another number,

called a MULTIPLIER to generate a PRODUCT.
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Although the multiplier and multiplicand should be interchangeable
without affecting the result, the distinction is useful in describing

the process. Load and test this:

8200 06 MVI B,08 Place in Register B
8201 08 . The multiplicand
8202 OE MVI C,03 Place in Register C
8203 03 The multiplier

8204 iE MVI E,00 Clear the product
8205 00 to zero

- 8206 7B MOV ALE Add. to product

8207 80 ADD B - The multiplicand
8208 5F MOV E A Save partial product.
8209 oD DCR C Count multiplier
820A CZ JNZ 8206 down to zero

820B 06

820C 82

820D E7 RST 4 Re-enter monitor
.820E C3 JMP 8200 Repeat

820F 00

8210 82

The result (in Register . E) is 18.HEX (= 24 decimal). The prograﬁ
works since the product does not exceed FF, and so can be stored in a
single byte. What happens for larger values of multiplicand or
multiplier? If the immediate value for the multiplicand (at address

8201) is set to 70, then the final addition results in a Carry.

Initial Product = 00

Add Multiplicand + 70

Partial Product 70 No Carry

Add Multiplicand + 70

Partial Product EO No Carry

Add Multiplicand + 70

Product 50 Carry Set
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Since the Carry is preserved, indicating a product of 150 (HEX) this

might be acceptable. If the multiplicand were 90, this process would

occur.

Initial Product = 00

Add Multiplicand + 90

Partial Product = 90 No Carry
Add Multiplicand + 90

Partial Product = 20 Carry
Add Multiplicand + 90

Product = BO No Carry

The intermediate carry is lost. The result should have been 1BO, not
BO. If the multiplicand and multiplier were each set to FF, the

product would be FEOl, a two byte number.

We can fix the program above by using two bytes for the product (say
D and E). Both must be cleared initially. Then the multiplicand is
added to the low byte of the product. If a Carry results it must be

added into the high byte of the product. This 1is done with the

ACI 00 instruction as shown below:



THE
Program For Multiplication by Re

06

8200 MVI B,FF
8201 FF
8202 OE MVI C,FF
8203 FF
8204 1E MVI E,O00
8205 00
8206 16 MVI D,O00
8207 00
8208 7B MOV ALE
8209 80 ADD B
820A 5F MOV E,A
820B 7A MOV A,D
820C CE ACI 00
820D 00
820E 57 MOV D,A
820F oD DCR C
8210 c2 JNZ 8208
8211 08
8212 82
8213 E7 RST 4
8214 C3 JMP 8200
8215 00
8216 82
Step through this program for a
Carry. Then run it and look at

Carry set or cleared at the end?

OTHER REGISTERS AND MEMORY ADDRESSING
petitive Addition

Place in Register B
the multiplicand
Place in Register C
the multiplier
Clear product

low byte

high byte

Product low byte
Add multiplicand

Product high byte
Add Carry

Count multiplier
down to zero

Enter monitor
Repeat

few loops, observing Register A and

the result in Registers D and E. Is
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4.4.4 Multiplication - Exercise

When we perform multiplication with pencil and paper, the number of

digits in the product depends on the sizes of the two numbers:

22 29
X 14 X 99
308 9801

We express the answers this way because we always discard leading
zeros, and assume that any higher ofder digits not shown must be
zero. In the computer, however, storagé must be provided for as many
bytes as might be generated with the maximum values of multiplier and

multiplicand that are permitted by the program.

The product of two numbers may occupy as many bytes as the sum of the
number of bytes Dbeing multiplied. For example, a two byte number

multiplied by a one byte number generates a three byte result.

FFFF X FF = FEFFO1

(in decimal, 65535 X 255 = 16711425)

Write a program to multiply a two byte multiplicand by a one byte
multiplier. Take the multiplier from memory location 8300. Take the
low byte of the multiplicand from memory location 8301 and the high
byte from memory location 8302. Store the three byte result in

memory locations 8303 (low byte) to 8305 (high byte).
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Try to write this program by yourself, using the instructions listed
in _Section 4.4.5. Remember to clear the product before starting the
repetitive additipns. Hint: It is usually more efficient to use
registérs for data than to 1load and store numbers in memory

repetitively. Make a table of memory and register assignments.

Meaning of Data Memory Location Register

Multiplier 8300
Mu}tiplicand (low byte) 8301

‘Multiplicand (high byte) 8302

Product (low byte) 8303
Product (mid byte) 8304
Product (high byte) 8305

A solution is given in Figure 4-4, following the list of instructions

in Section 4.4.5.
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4,4.5 Table of Instructions

Re-enter Monitor

E7

RST 4

(appiies to ICS Microcomputer

Training System only)

Jump and Conditional Jump Instructions

C3
XX

XX

Data Transfer Instructions

JMP Address
(low address)

(high address)

3A
XX
XX

78
79
7A
7B
7C
7D

(Other register-to-register

Page 4-3.)

LDA Address
(low address)

(high address)

MOV A,B
MOV A,C
MOV A,D
MOV A,E
MOV A,H
MOV A,L

XX

MOV

c2

XX

32
XX
XX

47
4F
57
S5F
67
6F

Immediate Data Transfer Instructions

3E
‘data
06
data
OE
data
16
data
1E
data
26
data
2B
data

MVI

MVI

MVI

MVI

MVI

MVI

MV1

data
data
data
data
data
data

data

JNZ Address

(low address)
(high address)

STA address
(low address)

(high address)

MOV B,A
MOV C,A
MOV D,A
MOV E,A
MOV H,A
MOV L,A

instructions

None of the above instructions affect any flags.

are

tabulated
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These counting instructions set or reset Zero.

affected.

3C.
04
ocC
14
1C
24
2C

INR
INR
INR
INR
INR
INR
INR

Arithmetic Instructions

Zero and Carry are set or

87
80
81
82
83
84
85

0]
data

97
90
91
92
93
94
95

D6
data

ADD
ADD
ADD
ADD
ADD
ADD
ADD

ADI

SUB
SUB
SUB
SUB
SUB
SUB
SUB

SUI

CEmo Qe

3D
05
OD
15
1D
25
2D

DCR
DCR
DCR
DCR
DCR
DCR
DCR

The Carry Flag is not

FEEHODOQ®E®>

reset by these instructions.

g- FrERHOQW
ﬁ
]

HFOEmOoOQWk

data

data

ADC
ADC
ADC
ADC
ADC
ADC
ADC

ACI

SBB
SBB
SBB
SBB
SBB
SBB
SBB

SBI

PoEmo QW
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4.5 CONDITIONAL JUMPS

In Sections 4.3 and 4.4 we used the Carry flag in addition (with ADC
or ACI) and 1in subtraction (SBB or SBI). This flag can also be
controlled in several ways other than by addition and subtraction.
Moreover, the Carry flag can be used to control execution of a

conditional jump just as the Zero flag has done in our programs thus

far.

Before proceding with +this subject, let wus review that single
register counting instructions (INR and DCR) affect the Zero flag,
but not the Carry flag. If the result of the count is zero, the Zero

flag is set; otherwise it is cleared.

Arithmetic and logical instructions, on the other hand, affect both
Zero and Carry. If the result of the operation is a zero in the
accumulator, the Zero flag is set; otherwise it is cleared. If the
operation generates a carry out of the highest bit the Carry flag is
set, otherwise it 1is cleared. Conditional jumps can be made with

tests for the set or clear state of each flag:

HEX CODE MNEMONIC MEANING

C2 xxxx JNZ address Jump if not Zero
CA xxxx Jz address Jump if Zero

D2 xxxx JNC address Jump if not Carry
DA xxxx Jc address Jump if Carry
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All of these are three byte instructions. For instance:

8218 D2 JNC 821C
8219 1C
821A 82

821B 14 INR D

If Carry is not set when the JNC instruction is executed, the jump to
821C 1is made. If Carry is set, the program continues at 821B. The
instruction cycle is similar to that for JMP. The entire instruction
is read, with the address being copied into temporary Registers W and
Z; the flag determines whether that address is copied into the

program counter.

The procedure shown above is another means of adding the Carry into
the high byte of a sum or product, which can be used instead of the
ACI 00 instruction. If the two instructions above are substituted

for

MOV A,D
ACI 00
MOV D,A

in the given solution for exercise 4.4.4 (Figure 4-4) the same
product will be found. When no Carry is generated by the mid-byte
addition, the JNC instruction passes over the INR D. When a Carry is
generated, the JNC 1is not executed, so Register D is incremented,

just as though the Carry had been added by ACI 00.
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There 1is one effect of the revised program different from the
original version. Since the multiplication of one byte times two
bytes cannot exceed the capacity of the three byte product, ACI 00,
in the program of Fiéure'4-4, never generates a Carry. Therefore,
the original version of this program always finishes with no Carry.
In the version using JNC, if the mid byte addition ADC B generates a
Carry on the final loop, that Carry remains at the end because
following JNC, INR D, DCR E instructions in that program do not
affect the Carry flag. With arbitrary multiplicand and multiplier we
cannot predict the state of the Carry at the end, and it conveys no
useful information. Therefore, the ACI 00 technique is generally
preferred in arithmetic programs, unless its very slightly slower
execution is important. JNC and JC were introduced here because
typical programs much more often use the Carry flag for decision

making than for arithmetic.
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4.6 TRANSFER NOTATION

A number of new instructions have been introduced. Most of these are

members of sets that perform similar functions using different

registers as a source and destination for data.

For convenience in describing instructions, we shall now introduce
"transfer notation". A capital letter designatés'a specfic register
or a flag; a lower case letter refers to a register which will be
identified in the instruction. Parentheses imply "the content of".

Thus:
ADD r (A) <- (A) + (r).

states that the content of Register r is added to the content of

Register A and the result is placed in Register A.
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4,6.1 Instruction Definitions

The instructions used so far in the course are described below using

transfer notation.

Their effects on the Carry and Zero flags are

also 1indicated. (The other three flags of the 8080 are treated in

Chapters 10 and 11.)

Review all of the instructions shown here to be

sure that you understand them.

LDA address

STA address

JMP address

(A) <- (address)

Regiser A is loaded with the content of the
membry location whose address is given in
bytes 2 and 3 of the instruction. No flags

are affected.

(address) <- (4)

The content of Register A is stored at the

memory location whose address is given in
bytes 2 and 3 of the instruction. No flags

are affected.

(PC) <- address

The address in bytes 2 and 3 of the instruction
is loaded into the program counter. Progrém
execution continues from that address. No

flags are affected.



JNZ address

JZ address

JNC address

JC address

MOV d,s
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I1f Zero flag is clear (PC) <- address
Otherwise program execution continues at the
next sequential instruction. No flags are

affected.

If Zero flag is set (PC) <~ address
Otherwise program execution continues at the
next sequential instruction. No flags are

affected.

If Carry flag is clear (PC) <- address
Otherwise program execution continues at the
next sequential instruction. No flags are

affected.

If Carry flag is set (PC) <- address
Otherwise program execution continues at the
next sequential instruction. No flags are

affected.

(d) <= (s)
The content of source Register s is copied
into destination Register d. No flags are

affected.
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MVI r, data (r) <~ data
Register r is loaded with the data contained
in byte 2 of ‘the instruction. No flags are

affected.

INR r (r) <~ (r) + 1
Register r is incremented. Zero is set or

reset. Carry is ﬁot affected.

DCR r (r) <- (r) -1
Register r is decremented. Zero is set or

reset. Carry is not affected.

ADD r (A) <= (A) + (r)

Zero is set or reset. Carry is set or reset.

ADC r (A) <- (A) + (r) + (CY)

Zero is set or reset. Carry is set or reset.

ADI data (A) <~ (A) + data

Zero is set or reset. Carry is set or reset.

ACl data (A) <~ (A) + data + (CY)

Zero is set or reset. Carry is set or reset.
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SUB r
SBB r
SUl data
SBI data
XRA A
RST 4
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(4) <= (A) - (r)

Zero is set or reset. Carry is set or

(A) <= (A) - (r) - (CY)

Zero is set or reset. Carry is set or

(A) <~ (A) - data

Zero is set or reset« Carry is set or

(A) <~ (A) - data - (CY)

Zero is set or reset. Carry is set or

(A) <~ 00

Zero is set. Carry is reset.

reset.

reset.

reset.

reset.

(Note: XRA A is a member of a set of logic

instructions which will be introduced later.

The above definition appligs to XRA A only).

Enter monitor

This applies to the ICS Microcomputer Training

System only.
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4.6.2 Beview and Self Test

In the preceding sections we have used data transfer instructions,
arithmetic and counting instructions, and immediate instructions.
Test your knowledge by answering the questibns below. Correct

answers are on Page 4-51.

1) Use transfer notation to describe these instructions:

(Section 4.5)

MOV C,E
SUB r i
MVI D,13

ADC E

ACI 00 L

2) What instruction is described by each of the following

statements in transfer notation? (Section 4.5)

(8300) <- (A)

(PC) <- address

(r) <- (r) - 1

(A) <~ (A) + data + (CY)

3) What instruction usually appears at the end of a repetitive

loop controlled by counting? (Section 4.4.1)
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Identify the register and flags affected by each of these

instructions.

INR
MOV
STA

ADC

D
B, A

8300

(Section 4.5)

Register

Zero

Carry
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Answers to Self Test, Section 4.6.2

1) MOV C,E (C) <= (E)
SUB r (A) <= (A) - (r)
MVI D, 13 (D) <- 13
ADC E (A) <= (A) + (E) + (CY)
ACI 00 (A) <= (A) + (CY)
2) STA 8300 (8300) <- (A)
JMP address (PC) <-address
DCR r (r) <-(r) -1
ACI data (A) <- (A) + data + (CY)

3) A repetitive loop controlled by counting usually ends with JNZ

4) Register Zero Carry
INR D D X
MOV B,A B
STA 8300 None
ADC E A X X
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Bit Pattern

0000

0000

0000

0000

0000

0001

0010

0100

1000

1111

0000

0001

0010

0100

1000

0000

0000

0000

0000

0111

°
Bit Patterns for MTS Display
Figure 4-5

Display

Off

(Top Horizontal)

(Upper Right)

(Lower Right)

(Bottom Horizontal)

{Lower Left)

(Upper Left)

(Middle Horizontal)

(Decimal Point)

(A1l Bxcept
" Bottom Horizontal)
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4.7 THE MTS DISPLAY

Until this point the only means we have used for input of data and
output of results has been to enter the monitor and look at registers
and memory locations. Now we will output directly to the display.
The hardware used in this process is described in Chapter 5; for the
moment simply accept the following functional description. Later we

will explain the external process.
4.7.1 Displaying a Bit Pattern

If you store a pattern of bits in a cetain memory location, that
pattern will be reproduced in one of the display digits. Note that
fhe bit pattern is not interpreted as a number, but reproduced as a
pattern. Figure 4-5 shows the segments illuminated by each bit. 1If
only one bit in the pattern is a 1 and all others are 0, then exactly
one segment will be illuminated. If two bits are - 1's, then two
segments will be illuminated. The last pattern in Figure 4-5 shows
seven bits set to 1; only the bottom horizontal is left off. Try this

with the following program.
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8200 32 STA 83F8
8201 F8
8202 83
8203 C3 JMP 8203
8204 03
8205 82

Before running this program, enter a value into register A.

REG A 4 0] 8200 A-40
RUN -
RESET 8200 32
REG A F 7 8200 A-F7
RUN A.

The bit pattern you enter into Register A is reproduced in the left
hand digit. The monitor destroys the pattern you have displayed, so
here we cannot reenter the monitor automatically, nor step through
the program. Instead the program ends with an instruction that jumps
to itself. The program waits here indefinitely, simply repeating
that Jjump, wuntil you press RESET. Therefore, we can now write
programs that have output functions but no input. Until we learn of
other means of input (in Chapter 6) we are limited to generating
displays that change only according to values built into the program,
or values entered before running the program. The following exercise

uses such a procedure.
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4,7.2 Display Digit Addresses

You saw above that a pattern stored at memory location 83F8 appears
in the left digit. The next digit 1is controlled by 83F9, the third
by 83FA, etc. The right hand digit is controlled by the bit pattern

stored at 83FF.

We can load the display with a fixed pattern by a series of

instructions like:

MVI A, xx

STA XXXX

To create the bit pattern for a desired display, draw the patterm in

seven segment format, and mark the bit numbers. For example:

0
7 4 0
5 1
6
4 2
3

If the segment is to be illuminated, enter a 1 for that bit position
into the pattern; otherwise enter a O. Translate the bit pattern
into hexadecimai and use that value in a MVI A, data instuction. The

above example gives a HEX value of 6D, so the instruction is

3E MVI A, 6D

6D
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For example, the series below will display ICS.

8200 3E MVI A,'I"
8201 06
8202 32 STA 83F8
8203 F8
8204 83
8205 3E MVI 4,'C’
8206 39
8207 32 STA 83F9
8208 F9
8209 83
8204 3E MVI 4,'S’
820B 6D
820C 32 STA 83FA
820D FA
820E 83
820F c3 JMP 820F
8210 OF
8211 82

Exercise: Convert your own initials or name into characters, using
the patterns from Figure 4-5, and make a display that

pleases you.
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4.8 REGISTER PAIRS AND MEMORY ADDRESSING

In the examples and exercises of Sections 4.3 and 4.4 we often used
two registers to store a 16 bit number (and once, three registers for
a 24 bit number). The general purpose registers (B, C, D, E, H, L)
are equivalent to each other for the instructions used so far. They
store data, provide operands for arithmetic and logical instructions,
and count either up or down. When we stored a multiplicand in
Registers B and C we could equally well have chosen any other two
registers, or we could have reversed the order, using B for the low

byte and C for the high byte.

Many instructions of the 8080 treat the general purpose registers as
pairs, to hold sixteen bit numbers, in much the way we have been

using them:

Register Pair B contains high byte
contains low byte
contains high byte
contains low byte
contains high byte

contains low byte

Register Pair D

Register Pair H

CEEHOOQW

Their arrangement is like that of Registers W and Z, and for the same
reason: a pair of eight bit registers.is able to store a 16-bit

memory address.

A" number of instructions use register pairs for addressing the data
memory . There are several reasons for addressing the memory this
way. The least important (but not trivial) reason is efficiency. If
the same address is to be accessed repeatedly, it takes less program

space and running time to load the address into a register pair than
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to repeatedly load the memory address from the program memory into
V,Z. More importantly, if the same operation is to be performed on
data in a series of adjacent memory locations, that operation can be
performed in a repetitive loop, with the address being modified by

incrementing (or decrementing) the register pair.

In many applications 'a memory address is calculated from variable

dafa, or loaded from another memory location.



THE OTHER REGISTERS_AND_MEMORY ADDRESSING
4.8.1 The LDAX and STAX Instructions

Register pairs B,C and D,E are used for addressing by the LDAX and
STAX instructions. These correspond to the LDA and STA instructions,
differing only in the source of address information. As is the case
in all iastructions using register pairs, the name. of the first

register is used to identify the pair, as in LDAX B:

HEX CODE: OA
MNEMONIC: LDAX B
MEANING: Load Register A with the content of the memory

location whose address is contained in

register pair B,C. No flags are affected.

This is called an indirect instruction, and is expressed as: " Load A
indirect from B". The term "indirect' means simply that the content
of the designated register is not to be loaded; rather, its content
is the address of a location to be loaded. The address is obtained
indirectly{ rather than by directly specifying it as the LDA

instruction would have done.
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The other instructions in this set are:

1A LDAX D Load A indirect from D

(A) <= ((DE))
The STAX instructions similarly provide for storing data:-

02 STAX B Store A indirect at B

((BC)) <= (A)

12 STAX D Store A indirect at D

((DE)) <= (4)

The content of A is stored in the memory location whose address is
contained in the named register pair. Note that double parentheses
such as ((BC)) imply the content of the memory location whose address

is contained in register pair B,C.

Figure 4-6 1illustrates the instruction cycle fbr STAX D, which

typifies this usage of register pairs.

Note the absence of LDAX H and STAX H. The register pair HL is used
to address memory in an even more powerful way, which will be

introduced in Section 4.9.
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!

PROCESSOR MEMORY

09

e

83

0l

e O,

CPU sends PC as address \\\\\\\\\\\\‘~\

Memory selects 8209
and returns data -

CPU loads data to I and -
‘increments PC

09

- e

83

0l

12

- ——

12

,//

®
O

g20a

CPU interprets instruction

CPU sends content of D, E
as an address

Memory selects 8301

09

@ O N

820A

CPU sends content of A to memory

Instruction Cycle for STAX D Instruction
Figure 4-6

-
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A 77 a

B ' b 7C

C 39 c 58

D d 5E

E 79 e

F 71 £

G 3D g 6F

H 76 h 34

I 06 i 04

J 1E J

K k

L 38 1 06

M use N,N m use n,hn
N 37 n 54

0] 7F o 5C

P 73 o]

Q a 67

R T 50

S 6D s

T t 78

U 3E u 1C

\') use U v use u
w use U,U w use u,u
X X ‘

Y 6E y

Z 5B z

HEX Codes and Characters
Figure 4-7
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4.8.2 Copy a List to Display - Exercise

With the LDAX and STAX instructions it becomes easy to access data in
successive memory locations. In this exercise we will create a
sequence of characters translated into bit patterns and place this
sequence into memory as we load the program. Then the program will

copy the characters into the display.

Figure 4-7 gives HEX codes that can be used for most characters.
Unfortunately K and X are impossible, M and W require double
characters, and several others are not very good representations
because of the physical limitations of a 7-segment display. Use this
table to generate a list of characters to be displayed, and store the

list starting at address 8300. For example:

8300 73
8301 5C
8302 06
8303 04
8304 58
8305 79
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Now write a program, using MVI instructions to load register pair BC
with the address of your list (8300); pair DE with the address of the
display (83F8), and Register L with the number of characters. Use

these addresses to copy the list into the display.

OA LDAX B Load Character

12 STAX D Copy to display

Increment the addresses in Register C and Register E; (the high bytes
in B and D should not change). Count down in Register L and repeat
(use JNZ) until the required number of characters have been copied.

Finally jump back to the starting location (8200).

Write and code your program. Step through the program to test the
program flow, but do not expect to see any results in the display
while you are stepping. The monitor program uses the same display by
writing to the same memory locations you are using. After the first
time the JNZ instruction is executed, 1look at the registers to make

sure they contain the correct addresses and count.

REG B 820A B-83
NEXT 820A c-01
NEXT 820A D-83
NEXT 820A E-F9
REG L 820A L=-05(?7)

4-64



THE OTHER REGISTERS AND MEMORY ADDRESSING

The count 1in Register L should now be one less than the number of
characters, since it has counted down once. The given solution
(Figure 4-8) has six characters. Your program may have fewer or more,

but not more than eight, since that is the size of our display.



COPY LIST TO DISPLAY

CODE

A D D R

N W Jw
) YR |
AR B )
_ ~N M _ 9!
W _ /W Wm N MM S N i
_ RS Y . ) N 0
, CARY, u/m 3
~ N o Sy S IRIY N 2
I
N Q N
™ML ISE 1M B Y Q Q
NESESNENEN % 3 Q
1 ', N 'Y 1L A Q N S
NSRRI [\l ]
% | X ~
NN N RN N % %)
NN ENNENERE AL R by N
== (=] (=] (T [N > Y|
N ey Ly QN O L N SR S O[] K[| Q[ U 8[ NN
Qlog A QN ] W O O N | sl 0[ QI Q™ N QRN
Q Q ~ Q )
¥ M R ™y

133HS ONIGOD

WILSAS ONINIVHL H31LNdWODOHIIN

SINIL1SAS H3LNdNOD A31vHOILNI

4-66




THE OTHER REGISTERS AND MEMORY ADDRESSING

4.,8.3 Display of Eight Characters

If you display exactly eight characters in the preceding program you
can make use of the fact that the final display location is 83FF.
When the display has been fully loaded, the INR E instruction will
count to 00, setting the zero flag. In your program, replace the DCR
L instruction with NOP (HEX code 00). Now exactly eight characters
will be displayed. If you want any blank characters, put zeros in

the table to turn off all segments.
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4.8.4 Register Pair Loading - LXI

Because it is so common to use register pairs for addressing memory,
the 8080 includes special load immediate and counting instructions

for register pairs.

01 LXI B, address

XX (low byte of address - to Register C)

b $:4 (high byte of address - to Register B)
11 LXI D, address

XX (low byte of address - to Register E)

XX (high byte of address - to Register D)
21 LXI H, address

XX (low byte of address - to Register L)

b.$.4 (high byte of address - to Register H)

These instructions are similar to the MVI instructions, except that
two bytes of data follow the op-code and two registers are loaded.

Note that we will write the addresses 1in a mnemonic instruction in

the conventional way, with high byte first:
LXI D, 8300

When this is translated into 8080 machine language we must follow the

8080 convention (as in JMP instructions) with low byte first, then

high byte:
11 LXI D, 8300
00 (low byte of address)
83 (high byte of address)
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In transfer notation we use the abbreviation rp to designate any one

of the register pairs. The LXI instructions can then be defined as:

LXI rp, address
(low register of pair) <- (byte 2)
(high register of pair) <- (byte 3)
No flags are affected.
In your program for copying a list to the display, replace the MVI

instructions with LXI instructions.

Change These To These

06 MVl B,83 01 LXI B, 8300
83 00

OE MVI C,00 83

00 00 NOP

16 MVI D,83 11 LXI D, 83F8
83 F8

1E MVI E,F8 83

F8 00 NOP

The program operation will be unchanged.
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4.8.5 Register Pair Counting - INX, DCX

In the program for copying a list to the displgy we started the list
at 8300, so for eight characters it ended at 8307. Suppose the list
were to start at 82FF. Then the first INR C instruction would
advance Register C to 00, but Register B would not be affected and
the address in B,C would be 8200. The 8080 includes register pair

counting instructions, which will count a sixteen bit number in a

pair.
03 INX B OB DCX B
13 INX D 1B DCX D
23 INX H 2B DCX H

Again using rp to designate a register pair:

INX rp (rp) <= (rp) + 1
No flags are affected
DCX rp (rp) <= (rp) - 1

No flags are affected

Note that the register pair counting instructions do not affect any
flags. In the modified "Copy List to Display" program, using the
count of Register E to terminate the 1loop, we must continue to use
INR E, since INX D would fail to terminate the loop at 8400. We can
use INX B to address the list, and we are then not constrained to
start the list at any particular place. Figure 4-9 shows the fully

modified version of the given "Copy List to Display" program.
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CODE

A D D R

Zuw ,
., ’ | ~M m .j/ S
YT SIRE Y ¢ _f
. J| 3 ~N H #M Am ' ~ -
\ﬂww \E\m/ J > 3 ,E/C nﬂm v
N IR (W _ N 5
Q Dy . X
A} Q. SN W N
3 R, Q Q
SN DR s
T A ~ | [ 3
Q ~ Q|w Y Y]
Y| ~= 2
N H QR[> [a [N @ << a
Rl > QI QN[22 = H| Ay
~ N 23| NHH 2 Q[ g J|H|ojw|0j®
NN SN0 ™ QD Q Qf DY VI N[ Y QIO NV VN
QIUN N UV QN NI N Q0NN Q[ QN9 VYNV
o . ol (vw]jo|n|lolo|g|ld|lo|0|lwiw]|o|l=n|w|zs|ww]|Ooln]lo|lo|d]|n|o|D]w|uw 0.. -l m| <10
N Q N 4Q
) 3R X
133HS SNIAO0D B WILSAS ONINIVHL H3LNdWODOHDIIN SIW3LSAS HILNdWOD A31LVHOIINI
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4.8.6 Delay Loops

Although most of the operations we have performed with the computer
appear to happen instantaneously, in fact each step in the computer
takes a defined time to occur. If a delay of a specific length of
tiﬁe is desired it is easy to achieve, provided that the computer has
nothing else to do. The trick is to perform some simple operation a

very large number of times.

We will cause the display we created in the previous exercises to
appear gradually by inserting a delay loop between characters. The

program description becomes:

1) Address List (BC) <- 82FF
2) Address Display (DE) <- 83F8
3) Copy one character to display ((DE)) <- ((BC))
4) Set Delay (HL) <- 0400

5) Count Delay down to zero

6) Next List Addresses (BC) <- (BC) + 1
7) Next Display Digit (E) <- (E) + 1
8) Repeat from 3 until finished

9) Clear the display

10) Repeat from start

This will 1load the display as before but with a delay between
characters. Once loaded, the display will be turned off by writing
zero into all the display locations, and the process will be

repeated.
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Steps 1, 2, 3 and 6, 7, 8 are the same steps we have been using. Step

4 uses another LXI instruction (LXI H,0400). The delay sequence is:

—> —>DCR L
—— JNZ
DCR H
JINZ
Register L repeatedly counts down from 00, FF, FE --- 01, 00. The

final count sets the Zero flag and register H is counted once. Then
L is counted down from 00 again, and so on until Registers H and L
have both reached zero. (Be sure you understand this - study the
sequence above carefully). For an 8080 running at normal speed this
delay loop takes 3855 clocks or .001882 second for each count in
Register H. Since we started with a count of 4 in Register H, the
delay would be only 7.5 milliseconds (.0075 second) at full speed,
still an imperceptible time. Because we are using the MTS monitor
your program is executed much more slowly, and the value given is

sulitable for our purpose. The slow operation is explained in the

next section.

Note that we have placed the address incrementing instructions (INX
B, INR E) after the delay. The delay count uses the Zero flag, so
the INR E instruction must follow the delay so that it can terminate

the loop for displaying digits.
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To clear the display we can again load its. address into (DE) and

write zeros into all eight locations.

Write this program yourself, referring to the program description.
Then compare your results with our solution. (Figure 4-10). The next

section describes a new technique for testing the program flow.
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4,.8.7 Breakpoints

We have used the MTS monitor to step through programs to test the
program flow and 1look for errors. In a program that has short
repetitive loops this is a little tiresome; when a loop such as the
delay in this program is repeated a large number of times it is
impractical to step through it. You would have to press STEP more

than 16,000 times to step all the way through this program.

The monitor has a powerful feature that avoids repeated stepping, yet

allows you to test program flow thoroughly.

Using the program solution given in Figure 4-10 we shall demonstrate
the Dbreakpoint ability of +the monitor. (Be sure that the toggle
switech at the left of _the circuit board is 1in the "single step"

position.)
RESET 8200 01
Do not press RESET again after the next steps.

ADDR 8 2 0 6 8206 0A

BRK 8206 BP.
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We have set a breakpoint at 8206, the LDAX B instruction.
ADDR 8200 01

This displays the present program address, at present the start of

the program.
RUN 8206 0A

Your oprogram was executed wuntil it reached the instruction whose
address you entered as a breakpoint. This instruction has not yet

been executed.

STEP 8207 12
STEP 8208 21
STEP 820B 2D
STEP 820C c2
STEP 820B" 2D

We have now started the long countdown in Register L. We have 255

steps to go.

REG L 820B L-FF
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Now we know that this piece of the program is operating. Enter

another breakpoint after this loop, at DCR H.

ADDR 8 2 0 F 820F 25
BRK 820F BP.
RUN (Z) 820F L-00

The first segment of the delay loop has been executed and we have
reached the breakpoint at 820F. The last register we displayed is
shown again, just as though we had stepped 255 times. Register L has
counted down to =zero (note that the zero flag is set) and we are

ready to count in Register H.

REG H (Z) 820F H-04
STEP 8210 H-03
STEP 820B H-03
RUN (Z) 820F H-03
RUN (Z) 820F H-02
RUN (Z) 820F H-01

Note that we are always seeing the Zero flag set from counting down

in Register L.
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The program is stopped before we execute the DCR H.

to count H down to =zero.

STEP
ADDR

STEP

The JNZ (C2)

addresses being

REG

STEP

The Zero
around

affected.

instruction

incremented.

was

not

flag is still set from the

(2)
(Z)
(2)

executed. We

(2)
(Z2)

previous DCR H.

Now we are about

8210
8210
8213

can

8213

8214

H-00
c2

H-00

watch the

C-FF

C-00

The next time

we shall see that when (BC) becomes 8301 the Zero flag is not

Now we should STEP to be sure that the next untested instructions are

correct.

REG
STEP
STEP

ADDR

This is the LDAX

REG

B instruction.

A

(Z)

8214
8215
8206

8206 -

8206

Register A still contains the first character of the list.

STEP

8207

E-F8
E-F9
E-F9

0OA

A-007?

A-73?
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We have loaded the second display character. When we press RUN that
character will appear momentarily on the display before we reach the

breakpoint at 820F.

RUN. P

(Z) 820F A-73

REG H (Z) 820F H-04
RUN (Z) 820F H-03
RUN (Z) 820F H-02
RUN (Z) 820F H-01

We are about to leave the delay loop.

STEP (z) 8210 H-00

STEP (Z) 8213 H-00
Watch REG C and the Zero flag.

REG C (Z) 8213 C-00

STEP (z) 8214  C-01

As promised, INX B did not affect Zero. We need not continue to

observe this part of the program, but we might want to see each

character displayed.

4-81



THE OTHER REGISTERS AND MEMORY ADDRESSING
We shall clear the breakpoint at 820F, but leave the bréakpoint at
8206. Press BRK to display the breakpoint:

BRK (Z) 820F BP.0O

CLR (Z) 8206 BP.0O

Clear removes the breakpoint displayed and shows the other one.

ADDR (2) 8214 1C
RUN 8206 c-01
RUN

The third character appeared momentarily and we are about to send the
fourth. If you are now satisfied that this part of the program works
we can clear the breakpoint at 8208, and insert a new breakpoint at

8218, just before the display is cleared.

BRK 8206 BP.0O

CLR ; BP.

No breakpoints remain.

ADDR 8 2 1 8 8218 11
BRK 8218 BP.
ADDR MEM 8206 .OA

’Pressing ADDR shows the instruction. MEM tells the monitor to

display the instruction instead of a register.
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Now run the remainder of the program.
RUN licE

(Z) 8218 11

After the rest of the message was shown we reached the breakpoint at

8218 when Register E counted to zero.

Step through the display clearing loop once, and then practice what
you have learned by setting breakpoints at the JNZ and JMP
instructions. After a couple of times through the clearing loop,

remove the breakpoint at JNZ, and watch the program stop at the JMP.

Finally, remove all breakpoints by pressing RESET, and run the whole

program.

It was pointed out in Section 4.8.6 that your program executes slowly
because of the MTS monitor. Before each of your instructions is
executed the monitor looks in its list of breakpoints to see whether
your program counter has reached one of them. This is done by the
8080 executing the monitor program. For every one of your
instructions that is executed the 8080 executes at least 68
instructions of the monitor program. When you have entered
breakpoints some o0f these must be executed in repetitive loops,
making the process even slower. You can make your program run at
full speed, after it is tested and operates correctly, by switching
the monitor off. At the left edge of the MTS circuit board there is
a switch. 1In its low position (STEP) the monitor is active; in AUTO

the monitor is inactive.
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4.8.8 Review and Self Test

This section has introduced register pairs, and used them to address
memory. We have practiced the use of the MTS Display and used
repetitive loops to address successive locations in memory and to
generate a time delay. Monitor breakpoints were introduced. Test

your knowledge with this quiz.

1) Identify the three register pairs, and tell which register is
used for the high byte and the low byte of an address stored in

the pair. (Sections 4.8, 4.8.1)

Register Pair Name High Byte‘ Low Byte

2) Describe the following instructions using transfer notation.

(Sections 4.8.1, 4.8.4, 4.8.5) |
|
|

LXI B, address

INX D

LDAX D A
STAX B

3) Which flags, if any, are affected by each of the above

instructions? (Sections 4.8.1, 4.8.4, 4.8.5)

4) Give the MTS key sequence to set a breakpoint at address 8218.

(Section 4.8.7) o




5)

6)

7)

THE OTHER REGISTERS AND MEMORY ADDRESSING

Create a bit pattern to display the numeral 3, and translate it

into hexadecimal. '(Section 4.7.1) ‘ A

‘Give the two instructions to display a 3 in a digit addressed by

(DE). e

What hexadecimal value should be written to a display location

for a blank digit? (Section 4.7.1)
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Answers to Self Test - Section 4.7.8

1)

2)

3)

4)

)

6)

7)

The register pairs are:

B B Stores the high byte
C Stores the low byte
D D Stores the high byte
E Stores the low byte
H H Stores the high byte
' LL Stores the low byte
LXI B, address (BC) <- address
or (C) <~ byte 2 of instruction
(low address)
(B) <~ byte 3 of instruction
(high address)
INX D (DE) <~ (DE) + 1
LDAX D (4) <~ ((DE))
STAX B ((BC)) <- (4)

None of the above instructions affects any flags.

To set a breakpoint press

ADDR 8 2 1 8 BRK

Bit Pattern for 3 = 01001111 = 4F

To display 3 at (DE)
MVI A, 4F

STAX D

Hexadecimal 00 gives a blank.
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4.9 USE OF A MEMORY LOCATION AS A REGISTER

Register pair HL is primarily intended for addressing memory, and the
memory location addressed by (HL) is available to the CPU as though
it were another register. All of the register reference instructions
(MOV, MVI, INR, DCR, ADD, ADC, SUB, 8SBB, and others not yet
presented) have counterparts that perform the same function using the
memory location addressed by (HL). The flags are affected as though

the memory location were a general purpose register.

Béfore carrying out an exercise involving this type of memory
addressing, we will formally define some instructions involving
memory reference. Note that in transfer notation parentheses mean
"the content of", so (HL) refers to the content of register pair HL.
Doubled parentheses such as ((HL)) mean 'the content of the memory
location addressed by'the content of register pair HL"., 1In memory
reference instructions that treat this memory location as a register,
we use M to designate the register. For example: INR M. Thus (M)
is always equal to ((HL)). Instead of LDAX H and STAX H we have

equivalent instructions.

7E MOV A,M (4) <= ((HL))

77 MOV M,A ((HL)) <- (A)
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4.9.1

Memory Reference Instructions

HEX

34

35

36
XX

MNEMONIC

INR M

DCR

MOV
(See Section 4.11
for hex codes)

MOV
(See Section 4.11
for hex codes)

MVI

M

M,s
.4

d,M
.4

M,data

MEANING

Increment Memory

((HL)) <= ((HL)) + 1

Increment the content of the

memory location addressed

by the content of register

pair HL.

If ((HL)) becomes 0 then (Z)<-1
else (Z)<-0

The Carry flag is not affected.

Decrement Memory

((HL)) <= ((HL)) -1

Decrement the content of the

memory location addressed

by the content of register

pair HL.

If ((HL)) becomes 0 then (Z)<-1
else (Z)<-0

The Carry flag is not affected.

Move into memory from register
((HL)) <= (s)

The memory location addressed

by the register pair HL is

loaded with the content of
source register s.

The flags are not affected.

The content of s is not affected.

Move into register from memory
(d) <= ((HL))

Destination register d is
loaded with the content

of the memory location

The flags are not affected.
The content of the memory
location is not affected.

Move immediate data into memory
((HL)) <- (byte 2)

The memory location addressed
by register pair HL is

loaded with the content of

byte 2 of the instruction.

The flags are not affected.
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ADD M
ADC M
SUB M
SBB M

Add memory to accumulator

(A) <= (4A) + ((HL))

The content of the memory

location addressed by register

pair HL is added to the

content of Register A and the

result is placed in Register A.

The content of the memory

location is not affected.

If (A) becomes 0 then (Z) <- 1
else (Z2) <= 0

If the result of the addition

is greater than FF (ie a

carry occurs) then (CY) <- 1
else (CY) <- 0

Add memory to accumulator

with Carry.

(A) <- (A) + ((HL)) + CY

Flags are affected as in ADD M

Subtract memory from accumulator
(A) <- (A) - ((HL))

The content of the memory
location addressed by (HL)

is subtracted from the content
of register A and the result

is placed in register A. The
content of the memory location
is not affected.

If the result is zero the Zero
flag is set. Otherwise the
Zero flag is reset.

If the content of the memory
location was greater than the
original content of A then
Carry is set to indicate a
borrow. Otherwise Carry is
reset.

Subtract memory from accumulator
with borrow.
(A) <= (A) - ((HL)) - CY

Flags are affected as in SUB M.
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( START | )

ﬁ

Address Augend
(DE) — 8300

Address Addend
(HL) — 8304

Load Byte Counter
(C) — 04

Clear A and CY

:

Add Bytes with Carry
Store Sum

Increment Both Addresses
Decrement Byte Count

Not Zero

Zexo

Not Carry

Carry

Increment High Byte
of Sum

,’i

Enter Monitor

Four Byte Addition in Memory

Figure 4-11
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4.9.2 Four Byte Addition Exercise

The wuse of ((HL)) as a register makes it easy to do arithmetic with
numbers that are too large (i.e., require too many bytes) to be kept
in the working registers. For example:  add ‘two numbers of four
bytes each and replace one of them (called the addend) with the sum.
Allow the sum to occupy five bytes (since it might be as great as
O1FFFFFFFE). Figure 4-11 is a flow chart for the program. We shall
use Register C for a byte counter; DE for ihe.address of the augend
(the number to be added to the addend)-and HL to address the addend.
The augend is stored at 8300 - 8303; the addend and sum at 8304 -

8308.

Because we shall do the multi-byte addition in a loop, we must use
the ADC addition instruction. Carry must be cleared before the first

addition. We have peviously used:
AF XRA A

to clear Register A; the same instruction also clears the Carry flag.

(N

The addition loop is:

XRA
— LDAX
ADC
MOV

INX

INX

Q @-m v B = O &
o

DCR

JNZ
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At the end of this loop Carry is set if the sum is too great for four

bytes. Then either of these techniques can be used:

JNC MOV

INR M ACI

> RST 4 MOV
JMP START RST 4

JMP

A,M
00

M,A

START

We have wused ADC M and INR M, treating M or ((HL)) as though it

were a register. A program solution is given in Figure 4-12.

.For additional practice, convert this into a multiplication program.



FOUR BYTE ADDITION IN MEMORY

CODE
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4-94

(o )

g

Address Display
Left Hand Digit

x

Count in Memory

Not Zero
Zero

Address Next Location
Count in Memory

Zero

Not Zero

Counting in the Display

Figure 4-13




THE OTHER REGISTERS:AND MEMORY ADDRESSING
4.9.3 Counting in the Display - Exercise

A trivial but amusing use of the INR M instruction allows us to view
a counting operation as it occurs. Since the display is controlled
by eight specified memory-locations, we can count in those locations
and see the effect on the display. Figure 4-13 shows the program
flow chart. .The left-hand digit of the display memory counts very

rapidly, using only two instructions:

— INR M

— JNZ

With the monitor disabled (seét the STEP/AUTO switch to AUTO) this
loop is exeputed once in 10 microseconds. A full cycle in that digit
takes about .00256 second. The second digit counts 256 times more
slowly; allowing for the extra instructions, but a clock rate
slightly greater than 2 MHZ, a full cycle in the second digit takes
0.646 second, and the third complétes a cycle in 165 éeconds. How

long will it be before the display is all blank again?
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4.10 INDIRECT ADDRESSING

We have previously described LDAX B (or MOV A,M) as "indirect
addressing". This 1is Intel usage of the phrase, but more
conventionally indirect addressing implies taking an address from one
location in memory to point to another memory location. This can be

done in two ways in the 8080,

LXI H, 8300
MOV C,M

INX H

MOV B,M

Now register pair BC contains an address which was (and still is)
stored in memory locations 8300 and 8301. This technique is very
powerful, as we shall see in the later exercises. A program can

store an address in memory, and later use that address to find

desired data.
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4.10.1 Load and Store HL Direct

In order to use a memory location as a working register, its address
‘must be in register pair HL. We can load an address into pair BC as
above and then copy it to HL by using MOV L,C and MOV H,B. It is so
important to be able to do this kind of function that the 8080

provides an instruction to do it:

2A LHLD Address load H and L Direct
XX (low address) (L) <- (address)
XX (high address) (H) <- (address + 1)

No flags are affected.

This is a three byte instruction similar to LDA address, but it loads
two bytes of data from memory. The byte stored at 'address" is
copied into Register L, and the following byte is copied into
Register H. Be sure to understand the difference between LXI H

address and LHLD address.

LXI H, 8300 (L) <- 00
(H) <~ 83
LHLD 8300 (L) <- (8300)
(H) <- (8301)

The reverse funcfiqn is also available:

22 SHLD Address Store H and L Direct
b @, (low address) (address) <- (L)
XX (high address) (address + 1) <- (H)
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Note that these are called "direct" instructions because the program
provides the address where the data are stored. Their principal use
is for indirect addressing; having loaded H and L directly, we now

use the information we loaded as an address to find other data.

LHLD 8300

MOV A,M

We have loaded Register A from memory, using another pair of memory

locations (8300, 8301) to provide an address.
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4.10.2 LHLD and SHLD - Example

To make these instructions more clear, enter and step through this

program:
8200 AF XRA A Clear A
8201 21 LXI H,B8400 An address for data
8202 00
8203 84 ,
8204 77 MOV M,A Store datum
8205 22 SHLLD 8300 Store address
8206 00
8207 83
8208 21 LXI H,FFFF Discard the address
8209 FF to prove it has
820A FF been stored
820B 7D MOV A,L Discard the datum
820C 2A LHLD 8300 Recover the address
820D 00
820E 83
820F 7E MOV A,M Recover the datum
8210 23 INX H Next address
8211 3C INR A Next datum
8212 Cc2 JNZ 8204 Repeat 256 times
8213 04
8214 82
8215 E7 RST 4 Enter monitor
8216 C3 JNMP 8200
8217 00
8218 82

The following pages describe the results of this program as you step

through it.
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This program will store the content of A (MOV M,A) at the address
contained in HL. At the beginning it stores 00 at address 8400, and
stores 8400 at 8300 and 8301. Set the STEP/AUTO switch to step and

go through the first six instructions.

RST 8200 AF
STEP 8201 21
STEP 8204 77
STEP 8205 22
STEP 8208 21
STEP 820B 7D
STEP 820C 2A

Now inspect the registers and memory locations.

REG A 820C A-FF
REG H 820C H-FF
NEXT (the next register) 820C L-FF
ADDR 8 4 0 0 8400 00
ADDR 8 3 0 0 8300 00
NEXT (the next memory location) 8301 84
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The registers contain garbage, but the initial value of A is stored

at 8400 and that address is stored at 8300, 8301.

ADDR 820C 2A

This is the LHLD instruction. Watch H.

REG H 820C H-FF
STEP 820F H-84
REG L 820F L-00

The address has been recovered by LHLD 8300, and (HL) now contains

8400.
REG A 820F A-FF

Register A still contains garbage but the next instruction (MOV A,M)

will recover the data from (8400).

STEP 8210 A-00

Place a breakpoint here (at 8210) and step through the next several

instructions.
ADDR BRK 8210 BP.
STEP 8211 A-00
STEP . 8212 A-01
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Register pair H now contains the next address for data storage (8401)

and Register A contains the next datum.

STEP 8204 A-01

The new value in A will be stored at 8401 by MOV M,A and the new

address will be stored at 8300, 8301.

RUN 8210 A-01 .

We have gone through the store and recover instructions, so once
again the address and datum have been recovered from memory by LHLD

8300 and MOV A, M.

REG H 8210 H-84
NEXT 8210 L-01
ADDR 8 4 0] 1 8401 01

Register pair HL points to memory location 8401, which contains the

datum 01, which we have already loaded into A.

We shall continue stepping through this program in the next section.
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4.10.3 Examining a Register Pair

The MTS monitor provides a convenient means of examining a register
pair 'and the memory location addressed by the register pair. Note

that key 8 is also labelled H. This refers to register pair H.
ADDR H MEM 8401 HL.O1

The monitor is now addressing the same memory location that is

addressed by (HL).
NEXT 8402 ??

Next displays the next memory location. It does not affect the

contents of H and L.
ADDR H MEM 8401 HL.O1
Run through the loop again.

RUN 8210 23

ADDR H MEM 8402 HL.O2
We can look backward in memory by pressing:

MEM 8401 .01

MEM 8400 .00
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Repeat this a few more times.

RUN 8210 23
ADDR H MEM 8403 HL.03
RUN 8210 23
RUN 8210 23
ADDR H MEM 8405 HL.05

Remove the breakpoint and run all the way.

BRK 8210 BP.0O
CLR BP.
RUN (Z) 8216 c3

The program has run all the way and is ready to start over.

REG A 8216 A- 00

ADDR H MEM 8500 HL.??

Now look through the memory.

ADDR 8400 8400 00
NEXT 8401 01
NEXT 8402 02
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Review what has been done. During each loop we stored a data byte in
a memory location (8400, then 8401, then 8402, etc.) and stored the
address of that memory location in a pair of other memory locations.
Then we used the registers for some other undefined purpose. Then we
recovered the address and the data byte, incremented both, and
repeated. The important points here are the storage of an address in
memory so that it could be found later, and indirectly loading data

from the addressed location.
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4.10.4 Review and Self Test

The usé of registers pairs for addressing memory, and the use of the
memory iocation addressed by (HL) as a working register are extremely
important features of the 8080 microprocessor. The next two
exercises use these features. Before going on, test:your knowledge.

1) Assume (for the program below) that memory contains:

8300 03
8301 83
8302 03
8303 06
8304 0A
8305 6F
8306 FF
8307 84

For each step in the following program indicate which registers
and/or memory locations are affected, and give the content of the

register or memory location after execution of the instruction.

Register or

Memory Location Content
8200 LXI B, 8302 -
8203 LDAX B —_—_— _;_f__;;y
8204 LXI H, 8304 - ,
8207 ADD M —_— — e, v
8208  LHLD 8306 L -
820B INX H -— —_—
820C MOV M,A )
820D  SHLD 8306
8210 LHLD. 8300 '

8213 DCR M
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3)

a)

9)

6)
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Which instructions in the program above affect the Zero flag?

Which instructions affect Carry?

P

If you press the following keys after the instruction at 8213 has

been executed, what will be displayed?

ADDR H MEM

Neither of the following instructions exists in the 8080. What

equivalent instructions do exist?

LDAX H

STAX a

There 1is no instruction to load BC or DE in the same way that
LHLD loads HL. There are several ways to accomplish the same
function with three or four instructions. Give three ways to
load register pair B with the data stored at addresses 8300 and

8301. Which takes the fewest bytes of program memory?
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Answers to Self Test, Section 4.10.4

1) After execution of:

Regist

er or

Memory Location

8200 LXI B, 8302

8203 LDAX B
8204 LXI H, 8304

8207 ADD M
8208 LHLD 8306

820B INX H

820C MOV M,A
820D SHLD 8306

8210 LHLD 8300
8213 DCR M

2) The Zero flag is reset by:

8207 ADD M (result

8213 DCR M (result

3) The Carry flag is reset by:

8207 ADD M

Do EmCe T oQ

8500

8306

8307
L

8303

OD)
05)

4) ADDR H MEM
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Content

02
83
03
04 -
83
oD
FF
84
00
85
oD
00
85
03
83
05

8303

HL.05



5)

6)

Instead

Instead
To load

a) LDA
MOV
LDA
MOV

This

b) LXI
MOV
INX
MOV

This

¢) LHLD
MOV
MOV

This

THE OTHER REGISTERS AND MEMORY ADDRESSING

of LDAX H use MOV A,M

of STAX H use MOV M,A
BC with data from memory locations 8300 and 8301:

8301
C,A
8300
5,4

takes 8 bytes of program memory.

H, 8300
C,M

H

B,M

takes 6 bytes of program memory.

8300
c,L
B,H

takes 5 bytes of program memory.
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4.11 COMPARISONS AND CONDITIONAL JUMPS

We have repeatedly used the Zero flag in counting and repeating a

loop (DCR, JNZ).

We have wused the Carry flag in arithmetic in several exercises:

setting

and SB

arithmetic program.

or resetting the flag by ADD and SUB; using it in ADC or ACI

B or SBI; and demonstrated a conditional jump (JNC) in one

There are a number of other ways to set or reset

the flags, and they are most often used with the conditional jumps.

Review the four conditional instructions that have been introduced so
far:

C2 xxxx JNZ address Jump if not zero

CA xXxX JZ address Jump if zero

D2 xxxx JNC address Jump if not carry

DA xxXX JC address Jump if carry
Recall that both Zero and Carry are affected by arithmetic and logic
instructions. Zero is affected by single register counting

instructions (INR, DCR) but not by register pair counting (INX, DCX).

Carry

is

not affected by counting.

Data movement instructions and

jump instructions do not affect any flags.
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4.11.1 Comparison Instructions - CMP

In addition and subtraction the Carry and Zero flags were set or
reset as a result of the arithmetic operation. There is a set of
comparison instructions whose only function 1is to affect the flags.
These instructions permit a program to determine whether the content
of Register A is greafer than, equal to, or less than the content of
any specified general purpose register (including M). The operation
is identical to subtraction except that the numéric result is

discarded instead of being placed in Register A,

For comparing Regisfér C with Register A the instruction is:

HEX CODE: B9
MNEMONIC: CMP C
MEANING: Subtract the content of C from the

content of A and set the flags

accordingly. The content of A is not

changed.

This sets or clears the Zero and Carry flags as follows:

Zero Carry
A greater than C Cleéred Cleared
A equal to C Set Cleared
A less than C Cleared Set
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4.11.2 Compare Immediate Instruction - CPI

The CPI instruction compares the content of the immediately following

data byte with the content of A.

HEX CODE: FE

SECOND BYTE: Data

MNEMONIC: CPI

MEANING: Subtract the value in the immediately

following byte from the content of A.
Set or reset all flags to reflect the

The content of of A is not changed.

For all of the arithmetic and 1logical instructions that operate on
data in Register A and one general purpose register, there are
corresponding immediate instructions. These may be thought of as
referring to a phantom register, created just to provide a desired

data byte.
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4.11.3 Moving Message - Exericse

In our previous display exercises we have been limited by the eight
digit display. Here we shall output a longer message, shifting it
across the display. The message will be terminated by a character
with a period (decimal point) and then it will start again. Recall
that the decimal point in a display digit is controlled by bit 7 in

the byte written to the display memory, so:

79 = "E"

Fg "E. "

We can test for the decimal point by:
CpP1 80

Any character that does not have a period or decimal point is less
than 80 (see Figure 4-7) so CPI 80 must set Carry unless a period is
present. Thus we can continue a loop to shift the display as long as
this instruction sets Carry,; when the period appears we will restart

the message.
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The procedure to be used is this:

1) Copy 8 bytes of message to display. If the end of the message
is reached, continue from the start of the message until the.

display is filled.
2) Delay

3) Examine the character displayed at the left. If it contains
a period, address the start of the message. If not, address

the next following character in the message table.
4) Repeat from (1).

We need to keep track of two message addresses - the start of the
message and the message location most recently displayed at the left.
During Step 1 we will increment the message address eight times and
then discard the final address. The starting location and the most

recent left hand location will be kept in memory.

8300, 8301 Message start location

8302, 8303 Most recent left character location
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A program flow chart is shown in Figure 4-14..

Write and code this program yourself. The next section lists all of
the instructions we -have introduced so far. Generate a message using
the characters from Figure 4-7 and store it in memory, or else use
one of two character tables that are in Read Only Memory —- at 02B3
or 0326. One of these displays the HEX characters and the other
displays the register names,:followed by some garbage characters.

Your own message can be more interesting.

A program solution is given in Figure 4-15, following Section 4.11.4.
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( smmr )
Y

Store Message StartingAddresJ
(HL) =—— Start of Message
(8300,8301) «— (HL)

(- 2

(from next
page) Store Left Character Location

(8302,8303) «—— (HL)
Address Left Digit of Display
(DE) ~— 83F8

)‘

Copy Character is Display
(a) =— ((HL))
((DE))-— (&)
Test for Period
Address Next Character

No Period (Carry)

Period (No Carry)

Address Message Start
(HL) =— (8300,8301)

k

Address Next Display Digit
(E)—(E) + 1

Not 2Zero

Zero

(to next page)

4-116 Moving Message
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6 (from previous
page)

Set Delay
(HL) —— 0400
Count Down Delay

Y

Address Left Character
(HL) -— (8302,8303)

Test for Period.

Address Next Character

Not Period

©

Period

Address Start of Message
(HL) -— (8300,8301)

®

Moving Message (continued)

Figure 4-14b
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4.11.4 List of Instructions

Re-enter Monitor

E7 RST4 (applies to ICS Microcomputer Training System
only.)

Jump and Conditional Jump Instructions

C3 JMP address Unconditional Jump
XX (low address)

XX -(high address)

Cc2 ‘JNZ address Jump if Not Zero.
XX (low address) XX

XX (high address) XX

CA JZ address Jump if Zero

XX (low address) XX

XX (high address) XX

D2 JNC address Jump if Not Carry
XX (low address)

XX (high address)

‘DA JC address Jump if Carry

XX (low address)

P XX (high address)
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Data Transfer Instructions

3A LDA address 32 STA address
b.$.¢ (low address) XX (low address)
XX (high address) xx (high address) .
0A LDAX B 02 .STAX B

1A LDAX D 12 STAX D

78 MOV A,B. 47 MOV B,A

79 MOV A,C 4F MOV C,A

7A MOV A,D 57 "MOV D,A

7B MOV A,E SF MOV E,A

7C MOV A,H 67 MOV H,A

7D MOV A,L 6F MOV L,A

7E MOV A,M 77 MOV M,A

Other register-to-register MOV instructions are tabulated below.

SOURCE REGISTER

A B C D E H L M

MOV A,s 7F 78 79: 7A 7B 7C 7D 7E
MOV B,s 47 40 42 42 43 44 45 46
MOV C,s 4F 48 49 - 4A 4B 4C 4D 4E
MOV D,s 57 50 51 52 53 54 55 56
MOV E,s S5F 58 59 5A 5B 5C 5D 5E
MOV H,s 67 60 61 62 63 64 65 66
MOV L,s 6F 68 69 6A 6B 6C 6D 6E
MOV M, s 77 70 71 72 73 74 75 -

Immediate Data Transfer

JExx MVI A, data
06xx MVI B, data
0Exx MVI C, .data
16xx MVI D, data
1Exx MVI E, data
26xXx MVI H, data
2Exx MVI L, data
36xx MVI M, data

None of the above instructions affect any flags.
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Register Pair Data Transfer Instructions

01
XX
XX

11
XX
XX

21
XX
XX

2A
XX
XX

22
XX
XX

LXI B address
(low address)
(high address)

LXI D, address
(low address)
(high address)

LXI H, address
(low address)
(high address)

LHLD address
(low address)
(high address)

SHLD address
(low address)
(high address)

Register Pair Counting Instructions

03
13
23

INX B
INX D
INX H

None of the above affect any flags.
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Counting Instructions

These counting instructions set or reset Zero. The Carry flag is not
affected.

3C INR A 3D DCR A
04 INR B 05 DCR B
ocC INR C oD DCR C
14 INR D 15 DCR D
1C INR E 1D DCR E
24 INR H 25 DCR H
2C INR L 2D DCR L
34 INR M 35 DCR M

Arithmetic Instructions

Zero and Carry are set or reset by these instructions.

87 ADD A 8F ADC A
80 ADD B 88 ADC B
81 ADD C 89 ADC C
82 ADD D 8A ADC D
83 ADD E 8B ADC E
84 ADD H 8C ADC H
85 ADD L 8D ADC L
86 ADD M 8E ADC M
Cé6 ADI data CE ACI data
data data

97 SUB A 9F SBB A
920 SUB B 98 SBB B
91 SUB C 29 SBB C
92 SUB D 9A SBB D
23 SUB E 9B SBB E
94 SUB H 9C SBB H
95 SUB L 9D SBB L
96 SUB M 9E SBB M
D6 SUI data DE SBJ data
data data

B8 CMP A

B9 CMP B

BA CMP C

BB CMP D

BC CMP E

BD CMP H

BE CMP L

BF CMP M

FE CP1 data

data
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INTEGRATED COMPUTER SYSTEMS
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MOVING MESSAGE (continued)
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4.12 SENSOR CORRECTION EXERCISE, VERSION 1

This exercise introduces a more complete and realistic problem than

any we have dealt with previously. It has four purposes:

1) to suggest the kind of task that a microcomputer may perform in

a measurement or control application;
2) to bring in the idea of a data structure;
3) to demonstrate table lookup and calculating an address; and

4) to give you practice in using the instructions that you have

learned.
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4.12.1 Sensor Characteristics

A sensor is a device for measuring a physical variable such as
temperature, pressure, sound intensity, light, ete. With our nerve
cells we detect coldness and warmth; the familiar mercury thermometer
converts that same physical variable into the length of a column of
mercury; a semiconductor device called a thermistor converts that

variable into a resistance that can be detected electrically.

The computer 1itself cannot measure resistance. External circuits
must be attached to convert the variable resistance of a thermistor
into a number that can be handled by the computer. This process is
part of what is called "interfacing" -- connecting a computer to the
external world. We shall not treat that subject here, but assume
that our computer receives a number representing a measurement. We
must process the number, perhaps to display or record a temperature

or control a heater.

Suppose that we had an unmarked thermometer. To measure temperature
in inches or millimeters of mercury would be meaningless, because the
relationship depends on the size of the well of mercury at the bottom
of the thermometer and the inside diameter of the glass tube. We
could immerse the thermometer in a pot of melting ice, to give one
repeatable temperature, and mark the point on the tube that the
mercury reached. Then 1if we placed the thermometer in a pot of
boiling water we could mark another point on the tube. Such a
procedure is called "c¢alibration". If we label the two points O and
100, and mark off equal spaces between them, we have calibrated our

thermometer to the Celsius scale of temperature.
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Similarly, if we have a sensor and an interfacing system connected to
the computer, we can relate numbers we receive to known temperatures
(or other physical qualities). Generally some arithmetic must be
done to relate the electronically generated numbers to a familiar
scale; this is similar to the procedure of converting a temperature

measured in Fahrenheit to a Celsius temperature:
C = (F-32) (5/9)

Since Fahrenheit measurements relate to the same physical sensing
device as Celsius measurements, this formula applies to any
Fahrenheit thermometer. When we use a fundamentaly different sensing
device such as a thermister, we have a more difficult problem. This
is partly because the manufacturer of these devices 1is less
consistent; each device may need a différenf offset and a-differént

scaling factor.
C = (measured value-offset) (scaling factor)

An additional problem arises with many -electronic sensors:
non-linearity. A formula such as that above may give correct answers
over a limited range of measurement, but be inereasingly in error
outside of that range. Provided that the device gives consistent
measurements, the measurements can still be converted to a standard
scale, but simple arithmetic may not be sufficient. We-mayvhave.to
calibrate the device by making measurements at many known
temperatures instead of just two. For each measurement we record the
number received by the computer, and the known temperature. The

resulting 1list is called a calibration table. Then in normal
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operation, when we receive a new measurement we can look in the table
to find the correct value. Such a procedure is part of the sensor

correction exercise.

If all possible measurements are recorded in the table, it is easy to
address the table and obtain the final result required. Sometimes,
however, we can conserve memory space by including only a partial
table. Suppose that we have a sensor which is linear over most of
the range of measurements we are interested in, but at one end of the
scale it has significant departure from linearity. Such behavior is
suggested in the curve of Figure 4-16. If we had an ideal linear
sensor, it would give a straight line in this plot, from 0 up to FF
(if this 1is the possible range). Our real sensor is linear
everywhere above about OC, but at the low end we have measured

different values. These measurements are tabulated below.

SENSOR CALIBRATION TABLE

Sensor Value Corrected Value

WO O0ONOOUMAWN—~O
WWPEOOOIOUbkWwOoO

v

Linear
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Ideal Linear
Sensor

< . Real
Sensor

| | L
Actual Physical Value

Sensor Calibration Curves

Figure 4-16
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With this table we can correct the real sensor input to be equivalent
to that of an ideal sensor. If the input 1is greater than OB, no
adjustment 1is required; if less thaﬁ that we must obtain an adjusted
value from the table. There is no offset here --0 input means O true
-— but we will have to multiply the actual or adjusted measurement by
a scaling factor.

4.12.2 Organizing the Data Structure

We shall develop a program to adjust a non-linear sensor input value
by table look-up, and multiply the result by a scaling factor. The
adjusted values will be listed in a table, with one entry for each

possible measurement up to the point -where the sensor becomes linear.

Because the same program may be used for a different sensor, which
may have a different linear point and a différent scaling factor,
these values will also be stored in the table. Such a combination of

‘related but different kinds of values is called a "data structure".

The data structure will have this form:

8308 Scaling Factor

8309 Linear Point

830A Adjusted. value for input = 00
830B Adjusted value for input = 01
830C Adjusted value for input = 02

(more adjusted values up to the linear point)

We shall see later how we can use an identical data structure, but

with different information, to describe a second sensor which is also

processed by the computer.
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4.12:3 -Organizing the Program-

This’program requires both input and output -_obtain a value, correct
it, and display it. We shall use 'a single prdgrammed entry to the
Jménitor (RST4) to accomplish the output from oné calculation and the
input to thé next calculation. Each time the ﬁonitor is entered
(after the first) Register A will contain a result. We shall display
Register A to see this, enter a new input data byte to Register A,

and press RUN to perform the next c¢alculation.’
At this point we must perform the following tasks:

1) ‘Address the data structure and load the-scaiing‘factor-into
register E.
2) Increment the address and compare the input value with the

linear point.

If the input value is equal to or greater than the linear. point, skip
the next three steps. Otherwise:
3) Increment the address to reach the adjusted value
corresponding to a zero input.
4) Add the input into the address to reach the adjusted value
corresponding to the actual input.
5) Replace the input value (A) with the adjusted value from

memory.

Register A now contains either an input value which is in the linear

range or an adjusted value.
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6) Copy the (adjusted) input value to Register C from A.
7) Clear register pair HL for the product (C) * (E).
8) Perform the multiplication. (see Section 4.4.3)
9) Jump back to enter the monitor again, with Register A

containing the high byte of the result.

Note that using (HL) to address memory gives us two advantages here.
We can move the scaling factor directly into Register E from memory,
without disturbing Register A where we have the input, and we can

compare (A) with memory to test whether the input is linear.

We have located the data structure starting at address 8308. Write

the program yourself; then compare it with the solution given in
Figure 4-17a. Copy the data structure from Figure 4-17b. Note that
a scaling factor of 00 is given there. If you perform multiplication
by repetitive addition, without special precautions, a zero

multiplier does not result in a zero product.

g

Add multiplicand into product

Decrement multiplier

Not zero
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S
H

If the multiplier is initially 01, the first decrement will set the
Zero flag and end the process after the multiplicand has been added
in once. If the multiplier is initially 00, the first decrement will
make 1t FF, not zero, and the loop will be repeated 256 times. This
technique does not admit the existance of multiplication by zero;
instead it takes 00 in the multiplier (but not in the multiplicand)

to mean 100 HEX.

We shall use this feature as a convenience here. An input of (say)
36 will be multiplied by 100 HEX, giving 3600 as a product. The high
‘byte remains in (A) at the end of the multiplication, and is to be
displayed. For initial testing of this program it will be easier if
the adjusted result has not been scaled but merely shows the data
from the table. A multiplier of 00 does this. Later we shall change

to a different scaling factor.
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4,12.4 Testing Sensor Correction

After writing your program and comparing it with Figure 4-17, you can
test it by entering data and observing results. First, however, you
should step through it to be sure there are no mistakes. If your
program is different from Figure 4-17, follow the procedure below

approximately, taking into account the differences.

RST 8200 00

RUN 8205 21

We have entered the monitor. Now it is time to enter data.

REG A 8205 A-00
3 8205 A-03
STEP 8208 A-03
STEP 8209 A-03
STEP 820A A-03

We should now have copied the scaling factor into (E) and addressed

the linear point.

REG E 820A E-00
ADDR 8/H MEM 8309 HL.OC
STEP (CY) 820B D2
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The linear point (OC) is greater than the input wvalue (03),

was set by CMP M at 820A. The JNC will not be executed.

STEP

STEP

Now we shall add the input value to the table address.

REG A

STEP

STEP

ADDR 8/H MEM

We have addressed the table for an input value of 03.

value is 05.

STEP
STEP

STEP

820E

820F

820F
8210
8211

830D

so Carry

23

85

A-03
A-0D
A-OD

HL.05

The adjusted

8212
8213

8216

4F
21

7D

All of the registers have been prepared for the multiplication.

REG C (multiplicand)
REG E (multiplier)
REG H (product)

NEXT

NEXT

8216
8216
8216
8216

8216

C-05
E-00
H-00
L-00

A-05

4-137



THE . OTHER REGISTERS AND MEMORY ADDRESSING

Step through the multiplication loop once or twice and then press

RUN.
‘RUN 8205 A-05

Multiplication by 100 HEX made the high byte of the product equal to

the multiplicand.
ADDR 8/H MEM 0500 HL.??

Test the program with each of the non-linear values (00 through O0B)
and see that the results agree with the tabulated values. Switch to

AUTO mode to speed up the lengthy multiplication.

Now change the scaling factor at 8308 to 88. Then try these input

values and see if your results agree.

Input Result
00 00
01 01
02 02
03 02
04 03
05 03
06 04
09 05
0D 06
10 08
20 11
30 19
40 22
80 44
Co 66
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4.12.5 Review

In this exercise we have introduced the idea of a data structure -- a
combination of related but different kinds of values. Often the
arrangement of the data structure has an important effect on the
efficiency of a program. If we had placed the scaling factor after
the table of adjusted values, instead of before, we could still have
found it but with several more program steps. In any program with
variable data that can be structured, the data organization should be

an early step in program development.

The table lookup in this program is a typical requirement in real
measurement and control systems. Adding a physical quantity to an
address seems peculiar on the surface -- 1like adding the number of
passengers on a train to its speed, the numbers do not have the same
dimensions. Adding a physical value to an address is only meaningful

in the context of a data structure or table.

We have seen here the use of addressing memory with the register pair
HL, thereby making a memory location available to be treated as a
register. We used a comparison and the Carry flag to make a

decision -- to adjust or not to adjust.

In the next exercise, which is a continuation of this one, we shall
see further use of table lookup using HL memory addressing, and more

decision making.
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4.13 MULTIPLE TABLES WITH A DIRECTORY

In the sensor correction exercise of Section 4.12 we had a single
sensor whose characteristics were described by the contents of a data
structure. We shall now extend that program to handle multiple
sensors. Both a sensor number and a physical measurement will be
taken as inputs. The sensors, although similar in kind, will have

different scaling factors, linear points and adjustment tabies.

We shall add a second set of data with the same data structure as the

existing one. The content of this second copy of the data structure

will be:

8316 C8 Scaling factor

8317 08 Linear point

8318 00 Adjusted value, input = 00
8319 02 input = 01
831A 04 input = 02
831B 04 input = 03
831C 05 input = 04
831D 06 input = 05
831E 07 input = 06
831F 07 input = 07

Now on the basis of the sensor number the program must select the
appropriate table. Although we have specified addresses for the two
tables in this example, the program must be written in a general way
that permits more sensors, each having its own copy of the data

structure with different data. In writing the program, then, we
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shall assume that the number of sensors and the lengths of their
tables are unknown; they are to be provided as initial information
later on. For simplicity we shall allow not more than seven sensors,
nunbered from 1 to 7; and require that all of the sensor data will

fit within 120 (decimal) bytes, from 8308 through 837F.
4.13.1 Directory to Data Structures

To find the address for the data relating to a particular sensor, we
shall create an additionmal, different, data structure called a
"directory". This is a different data structure in that the data
contained in it do not have +the same meanings as those for the
individual sensors. The directory contains a list of the addresses
of sensor data structures. It also contains, as its first entry, the
highest sensor number for which data is stored in memory. The

directory is to be located at 8300 - 8307.

8300 02 Highest existing sensor number
8301 08 Address for sensor number 1
8302 16 Address for sensor number 2
8303 00 Not used

8304 00

8305 00

8306 00

8307 00
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Since we have only two sensors in this exercise, there are no tables
for 3 through 7, and their positions in the directory are empty.
Because we have specified that all of the data are in page 83xx, we

have stored only the low byte of each data structure address.
4.13.2 Organizing the Program

We shall accept sensor number as an input to the program at the same
time that we accept the measured data. The sensor number probably
will be one for which a data table is in the memory (in our example,

1 or 2). A wise programmer protects against errors, so we shall
test for 1illegal sensor numbers -- 00 is forbidden, and any number

greater than the first entry in the directory is forbidden.

We shall again use a monitor entry (RST4) to accept inputs. To avoid
having to enter a sensor number every time, we shall keep the sensor
number in Register B and allow but not require that it be changed.
Thus you can test the program for one sensor at a time, without

touching Register B.
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Let us list the steps required in the program.

1)
2)
3)

4)

9)

6)
7)

8)

9)

Clear the result (A) <; 00

Set a legal sensor number (B) <~ 01

Enter the monitor to display the result and accept new data.

Also accept sensor number if desired.

Test sensor number for a legal value -- not zero, and not greater

than the highest sensor number in the directory. 1f illegal,

take some special action, to be determined.

Use sensor number with directory to address the data structure for

the sensor.

Load the scalihg factor into register E.

Test data input:
If less than linear point, address the adjustment table; find
and load the adjusted value.

Multiply the (adjusted) value times the scaling factor.

Go to Step 3 and display the result.
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4-144
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Figure 4-18 shows the program as a flow diagram. The circled numbers
correspond to the steps 1listed above. Reviewing these, steps 6
through 9 are identical to the program of Section 4.12. Steps 4 and
5 replace the LXI H, 8308 instruction which addressed the single data
structure in the previous program. We can replace that LXI
instruction with a JMP to some other location where we perform Steps
4 and 5; then jump back to Step 6 to finish the remaining program
steps. This is shown in Figure 4-18. As indicated in the flow
diagram, if an illegal sensor number is detected we shall go back to

set a legal sensor number again.

4.13.3 Testing Sensor Number

At return from the monitor we have two bytes of data to be handled.

(A)
(B)

data input

sensor number

At this point we jump to another program segment to test the sensor

number and find its data structue address.

We shall need Register A for making comparisons, so move the input

data to another register. Then address the directory at 8300.

MOV C,A

LXI H, 8300

Memory location 8300 contains the highest existing sensor number.
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We are required to reject the input if the sensor number is greater
than the highest existing number. Recall the way flags are set by a

comparison (section 4.11.1).

CMP r Zero Carry
(A) greater than (r) Cleared Cleared
(A) equal to (r) Set Cleared
(A) less than (r) Cleared Set

To make the decision with a single conditional jump we must make the

comparison by:

MOV  A,M Highest existing sensor

CcMP B ° Compare sensor number

This sets Carry if the sensor number is too great. Then a single JC

"will handle this error condition. If we used
,:\

MOV A,B

cMP M °©

then either Carry or Zero would indicate a legal sensor number, and

two conditonal jumps would be needed.

We must also test for the other 1illegal condition, sensor number

zero. This can be done by

MOV  A,B

ORA A

which sets Zero if the sensor number is zero.
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1t would be convenient if the error condition were soﬁehOW;indicated;
and if the illegal sensor number were keptvavailabie'fdf'inspection
at reentry to the monitor. When the sensor number is legal we go to
the monitor with (A) = high byte of the multiplication result, and
carry clear from the multipiicétion. Let us define the error result

as follows:

Carry set
(A) = illegal sensor number

(B)

sensor number 1

The following procedure will do the testing and give the above

result.

MOV C,A (C) <- Input Value
LXI H, 8300 Address Directory
MOV A,M Highest Sensor Number
CMP B Test sensor number.
MOV A,B (4) <- sensor'number
Jc 8202 To set (B) = 01 and

display (4) with.Carry

ORA A Test for sensor = 0

STC Mark:error
JZ 8202 To set (B) = 01 and

display (A) with Carry

If both tests are satisfied (the sensor number is legal) we must find

the address of its data structure.
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4.13.4 Using the Directory

Assuming that we have a legal sensor number, we shall now use it to

look in the directory and address the data structure for this sensor.

In the table 1lookup of Section 4.12 we added the input value to a
table address to find another address where desired data was stored.

Here we do the same thing. Recall that the directory contains:

8300 02 Highest existing sensor number

8301 08 Data structure address for
Sensor Number 1

8302 16 Data structure address for

Sensor Number 2

Register pair HL contains 8300, and the sensor number is already in

Register A.

Add the sensor number into the address:

ADD L

MOV L,A

and now (HL) contains either 8301 or 8302. (Since Register L
contained 00 we could skip the ADD L, but that would only work with a

directory starting at a page boundary such as 8300).

Now (HL) points to a memory location containing the address of
another memory location. Since all of the data are in a single page

we can finish the indirect addressing with only one more instruction:
MOV L,M Address data table
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Note that we can load L with a data byte from a memory location
addressed by HL. By the time Register L is affected we no longer
need the old address in HL. If the directory entries were two byte

addresses we would use a more conventional indirect addressing means.

We have now loaded HL with the address of the data structure for the

given sensor number.

For Sensor Number 1, (HL) = 8308. We have replaced the instruction
LXI H, 8308 that existed in the earlier program. One more step is

required before going back to the original program: copy the input

value back into Register A where it was placed originally.

MOV A,C

JMP 8208

Now for Sensor Number 1 the program should behave exactly as it did
with the program of Section 4.12. When you change the sensor number

you will receive different results.

When you have loaded your program and the directory and second set of
data, we shall step through the program. The addresses shown below
refer to the given solution (Figure 4-19). Follow your own program

through the same process.
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4.13.5 Testing MULTIPLE SENSOR CORRECTION

First, 1let us try the program with an illegal sensor to check on the

test:
RST 8200 3E
RUN 8205 C3
REG B 8205 B-01
3 8205 B-03
REG A 8 8205 A-08
RUN (CY) 8205 A-03

The 1illegal sensor number is displayed with Carry set. B has been

loaded with 01 again. Let 03 stay as an input value.

STEP (CY) 8230 A-03
STEP (CY) 8231 A-03
STEP (CY) 8234 A-03
STEP (CY) 8235 A-02

We have loaded the highest existing sensor number. Now the comparison

(CMP B):

STEP 8236 A-02
Since Register B contains a legal number (01) Carry is reset. We

move the sensor number into A, do not execute JNC, and test for zero.

STEP 8237 A-01
STEP 823A A-01
STEP 823B A-01
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Neither Carry nor Zero is set by the test for zero (ORA A at 823A),
but now the program sets Carry before the conditional jump, which

will not be executed.

STEP (CY) 823C A-01

STEP (CY) 823F A-01
ADD L clears the Carry but, since (L) = 00 it changes nothing else.

STEP 8240 A-01
STEP 8241 A-01

We have now addressed the directory entry for Sensor Number 1.

ADDR 8/H MEM 8301 HL.08

ADDR 8241 6E
This is the MOV L,M instruction.

STEP 8242 79

ADDR 8/H MEM 8308 HL. 88

We have addressed the scaling factor for Sensor Number 1.

STEP 8243 C3
REG A 8243 A-03
STEP 8208 A-03

We are ready for table lookup and multiply.

RUN (Z) 8205 A-02

Multiplication has set Zero (by DCR E) but left Carry clear.
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Check the two byte result of the multiplication:

ADDR 8/d MEM 02A8 HL.??

The data in HL represent the product. Because this happens also to
represent a memory address within the monitor, a data byte is shown,

but it is meaningless here.

Now try the other sensor.

REG B 2 8205 B-02

REG A 8 8205 A-08.
Set a breakpoint at the instruction after the JMP 8230.

ADDR 8 2 0 8 BRK 8208 BP.

RUN 8208 A-08

The input data has been restored. Check the sensor number and data

structure address.

REG B 8208 B-02
ADDR 8/H MEM 8316 HL.C8

We have addressed the data structure for sensor number 2.

RUN 8205 C3

REG A 8205 A-06

The entry value (08) was not adjusted, but it was multiplied by CS8.

The two byte product is:

ADDR 8/H MEM 0640 HL.??
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It all of this has worked, set AUTO mode to speed up the operation.

Try the following input data and check that your results agree. The

inputs have been chosen to include éome that give identical results.
- 1

1

Sensor Input Result’ Two Byte Product
(B) (4) (4) (HL)
01 00 00 0000
01 01 01 0198
01 04 03 0330
01 07 04 04Cs8
01 08 04 04Cs8
01 09 05 0550
01 0A 05 05D8
01 0B 05 05D8
01 oC 06 0660
01 80 44 4400
02 03 03 0320
02 06 05 0578
02 07 05 0578
02 08 06 0640
02 09 07 0708
02 0C 09 0960
02 80 64 6400
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4.14 SUMMARY

In this chapter we have met many of the 8080 instructions. Registers
have been used for temporary data storage, providing operands for
ADD, SUB, CMP, etc., and for counting. Exercises have been used to
introduce arithmetic, including double precision addition,

subtraction and multiplication.

We have used register pairs to address memory, using LDAX and STAX,
and using ((HL)) as a register. The concept and practice of indirect

addressing was introduced, and we have used several methods of

obtaining memory addresses from other memory locations.

The technique Qf operating the MTS display by storing data in certain
memory locations was also used. Overall, then, this chapter has
dealt extensively with memory. The next chapter teaches about memory
hardware and how some of these addressing techniques work in a

physical sense.
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4.15 INSTRUCTION CHART

The instruction chart on the following page shows all of the 8080
instructions. Most of the data transfer, counting and arithmetic
instructions have now been introduced, as well as a few of the branch
instructions. Study the organization of this chart so that you can
readily find an instruction when you need it. A hard copy of this

chart is supplied for convenient reference.
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HEX CODES FOR 8080 INSTRUCTIONS

SOURCE REGISTER
DATA IMMEDIATE
TRANSFER, A B (o] D E H L M SP | (DATA FROM PROGRAM)
MOV Ags 7F 78 79 7A 78 7C 7D 7€ MVI A 3E
MOV Bgs 47 40 41 42 43 44 45 46 MVIB 06
MOV Cgs 4F 48 49 4A 4B 4C 4D 4E MVIC OE
MOV Dgs 57 50 51 52 53 54 55 56 MVID 16
MOV Egs 5F 58 59 bA 5B 5C 5D 5E MVIE 1E
MOV Hgs 67 60 61 62 63 64 65 66 MVIH 26
MOV Lgs 6F 68 69 6A 6B 6C 6D 6E MVIL 2E
MOV Mgs 77 70 71 72 73 74 75 - MVIM 36
2 DATABYTES
LXlI rp 01 11 21 31 FROM PROGRAM
LDA addr 3A ADDRESS FROM
STA addr 32 PROGRAM (2 BYTES)
LDAX rp 0A 1A ADDRESS FROM
STAX rp 02 12 REGISTER PAIR
LHLD addr 2A ADDRESS FROM
SHLD addr 22 PROGRAM (2 BYTES)
SPHL F9 SP<HL
PCHL E9 PC<-HL (BRANCH)
XCHG EB DE<»HL
XTHL E3 STACK TOP<«»HL
PUSH rp Cc5 D5 E5 PUSH PSW Fb SP4—SP —- 2
POP p c1 D1 E1 POP PSW F1 SP<4—SP + 2
COUNTING A B Cc D E H L M sp FLAGS AFFECTED
INR d 3C 04 (1] & 14 1C 24 2C 34 Z,S5,P,AC
DCR d 3D 05 1]5] 15 1D 25 2D 35 2,8 P AC
INX rp 03 13 23 33 NONE
DCX rp 0B 1B 2B 3B NONE
ARITH/LOGIC A B C D E H L M SP IMMEDIATE
DAD p 09 19 29 39 (DATA FROM PROGRAM)
ADD s 87 80 81 82 83 84 85 86 ADI Ccé
ADC s 8F 88 89 8A 8B 8C 8D 8E ACI CE
SUB s 97 920 91 92 93 94 95 96 Sul D6
SBB s 9F 98 99 9A 9B aC 9D 9E SBI DE
ANA s A7 A0 Al A2 A3 A4 Ab A6 ANl E6
XRA s AF A8 A9 AA AB AC AD AE XRI EE
ORA s B7 BO B1 B2 B3 B4 B5 B6 ORI F6
CMP s BF B8 B9 BA BB BC BD BE CPI FE
INSTRUCTION FLAGS
ACCUMULATOR | RLC RRC RAL | RAR DAA | CMA STC CMC |ONLY THECY Fl';'AG IS AFFECTED EXCEPT:
CMA 0 FLAGS
AND CARRY 07 OF 17 1F 27 2F 37 3F . DAa ALL FLAGS
BRANCH JMP | CALL | RET |PCHL | HLT | NOP B Ot AFPECT ANY FLAGS T ONS
UNCOND C3 CcD c9 E9 76 00
COND NZ c2 ca | co RPRECT ANY FLAGS ExGERT DO NOT
z CA cec cs POP PSW AFFECTS ALL FLAGS
NC D2 D4 DO ARlTl-éMETLlE/LBSétS: INSTRUCTIONS
FFECT ALL F EXCEPT:
c DA DC D8 A DAD AFFECTS CY ONLY
l':g EZA E‘c‘: Eg II\;(F(K:é\;\_IrD DCR AFFECT ALL FLAGS
E :
PLUS F2 F4 FO cy
MINUS FA FC F8 INX AND DCX DO NOT AFFECT ANY FLAGS
INPUT/OUTPUT IN ouT El DI IN AND OUT ARE TWO BYTE
& INTERRUPT DB D3 FB F3 INSTRUCTIONS WITH PORT ADDRESS
RESTART RSTO | RST1 | RST2 |RST3 | RST4 [ RST5 | RST6 | RST 7
(CALL TO) 0000 | 0008 | 0010 | 0018 | 0020 | 0028 | 0030 | 0038
HEX CODE Cc7 CF D7 DF E7 EF F7 FF
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INTRODUCTION TO CHAPTER 5

Having explored (in Chapters 2 and 4) the ways that programs address
the memory, we will now examine the physical addressing of the

memory. This chapter discusses the following subjects:

Control Interface

Memory Technology - ROM and RAM

Memory Addressing and Address Decoding

Data Bus Connections and Tri-State Circuits
Direct Memory Access and Interrupt Inputs

Memory Signals and Timing

The principal purpose of this chapter is to discuss the connection of
memory devices to the microprocessor. This requires a cursory
understanding of the control signals between the CPU and the memory.
For the sake of completeness Section 5.1 discusses these control
signals in some detail, but it is suggested that the student skim
much of this section now, and refer back to it when other control

signals are brought up in later chapters.
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5.1 SYSTEM CONTROLLER

A computer must include a CPU (central processing unit), memory, and
input/output devices (Figure 5-1). The B080 microprocessor demands
additional hardware (the System Controller) to allow the necessary
connections to memory and I/0, because of pin limitations. To
overcome this limitation, some pins are bi-directional -- at some
times they are inputs to the CPU, and at other times they are

outputs.,

The CPU controls the usage of the address and data buses, giving
control signals to memory, 1/0, and other external devices to
indicate the functions to be performed. To further extend the
functions of +the 1limited number of pins, certain of the control
signals are output on the data bus, and must be accepted and stored
by the System Controller so that the data bus can be used to transfer
other data. The control signals output via the data bus are referred

to collectively as the '"status byte".
5.1.1 Control Signals

In Chapters 1, 2 and 4 we described in some detail the series of
steps required to execute each of several instructions. Such a
series 1is an "instruction cycle". In general each of the steps is.a
"machine cycle", and in each step the address and data buses may be
used differently. The control signals are largely concerned with
defining the functions of the buses, controlling the operations of

different external devices.
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Some of the control signals contain timing information, and vary
within a machine cycle. These signals have assigned pins on the 8080
chip. Other signals remain effective throughout one machine cycle.
These are output on the data bus at the beginning of a machine cycle

as the status byte and are'latchéd by the System Controller.

The timing signals are:

SYNC Designates status byte time.
DBIN CPU Wiil accept data from bus.
WR CPU places data on bus.

WAIT Acknowledge "Not Ready'.

HLDA Acknowledge ''Hold".

The two signals DBiN and WR are actually sufficient for a system that
does not use interrupts, and which uses "memory mapped" input/output.

(These I/0 schemes are described in Chapter 8.)

When DBIN is true (high) the memory or input device addressed should
deliver data onto the data bus to be read by the CPU. When WR is
true (low) the memory or output device addreséed should accept data
placed on the data bus by the CPU. These signals do not distinguish

memory from I/0 devices.

If the memory or I/0 device is too slow to deliver or accept data
within the time available, it can give the 8080 a Not Ready input
which will extend the time of DBIN or WR for one or more clock

cycles. WAIT acknowledges this request.
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If some other device needs to use the address and data buses, it may
ask the CPU.to suspend its operations and release . the buses. HLDA is

a signal that grants such a request.

SYNC actually exfends both before and after the time that the status
byte 1is present on the data bus. It must be gated with the phase 1
clock (a narrow pulse) to latch the status byte into the System
Controller. This function is performed by the 8224 clock generator,

which receives SYNC and outputs STSTB, the narrow pulse.
5.1.2 Status Byte

The status byte output on the data bus at SYNC time is defined below.
The major function of the System Controller 1is to latch (hold) the
status byte and also decode it to give signals that are more
convenienf for use by the memory and I/0 devices. The data bus line

that carries each signal is designated in parentheses.

Some of the functions mentioned below have not been defined, and wili
not be discussed wuntil later chapters. The student is urged fo
ignore them for now, and réfer back to this chapter when appropriate.
A detailed understanding of these controls is necessary for the

hardware designer, but not for the programmer.
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a. MEMR (D7) This machine cycle is to read from memory. The
signal is true during instruction fetch,memory read, stack read,

and halt machine cycles.

b. WO (D1) This machine cycle is to output from the CPU to
memory or [1/0. The signal is true (low) during memory write,

stack write, and output machine cycles.

c. INP (D6) An IN instruction 1is being executed. The

addressed input device should place data on the bus during DBIN.

d. OUT (b4) An OUT instruction is being executed. The
addressed output device should accept data from the bus during

WR.

e. M1 (D5) An instruction fetch cycle is being executed.
This is true only and always for the first machine cycle of

every instruction cycle.
f. STACK (D2) The current address is from the stack pointer.
g. HLTA (D3) 1Indicates that the CPU is in a Halt state.

h. INTA (DO) Acknowledges an interrupt.

5.1.3 Decoded Control Signals

The

System Controller gates the various status byte and timing

signals to generate control signals that are convenient for memory

and

1/0 devices. In subsequent discussion of memory and 1I/0

hardware, we will refer to the following signals:



MEMORY AND CONTROL HARDWARE

a. MEMW An active low signal indicating that the data bus
content should be stored at the addressed memory location. It

is true (low) during WR time if WO is true and OUT is false.

b. MEMR An active 1low signal indicating that data from the
addressed memory location should be placed on the data bus. It
is true (low) during DBIN time of an instruction fetch, memory

read or stack read machine cycle.

c. IOW An active 1low signal indicating that the addressed
input device should accept data from the bus. It is true (low)

during WR time if WO is trﬁé and OUT is true.

d. IOR An active low signal indicating that the addressed
input device should place data on the bus. It is true during

DBIN time of an input read machine cycle.

e. INTA An active low signal indicating that an interrupt has
been acknowledged, and the interrupt instruction should be
placed on the data bus. It is true during DBIN time if INTA of

the status byte is true.

f. M1 An active high signal indicating that the current
machine cycle 1is the <first (or only) machine cycle of an
instruction cycle. It is the latched value of Ml in the status

byte.
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5.1.4 MTS System Controller Logic

Figure 5-2 shows the detailed logic of the'MTSVsystem controller. The
two 38216 bidirectional bus.drivers provide électrical isolation of
“the ' 8080 data bus from the system bus. The 74LS174 six bit latch
stores the required bits of the status bytes. (STACK and HLTA are

not used.) The 74LS368 tri state buffer (upper section) generates

either MEMW or IOW during WR time, depending on whether OUT is false

or true. The lower section of the 368 generates IOR, MEMR or INTA
during DBIN +time, depending on whether IN, MEMR, or INTA of the
status- byte was true. These signals are further qualified by the
flip flop and gates at the bottom of the diagram, which have the

effect of inhibiting the signals when a HOLD request has been given

by the DMA channel and acknowledged by the 8080%on_HLDA;
5.1.5 Intel 8228 System Controller

All of the functions of the system controller can be provided by the
Intel 8228. This is a 28 pin chip, is fairly inexpensive, and is
used in most 8080 microcomputer systems. In fact, Intel refers to
the 8080 microprocessor,, 8224 clock generator and 8228 system

controller as the "CPU Group".

In addition to latching and decoding the control signals, the 8228
isolates the system data bus from the 8080 data bus, providing
additional power drive capability to support large memories and

allowing certain data bus uses to overlap in time.

Al though :the 8228 is applicable in most microcomputer designs and is

typically more economical than the several logic chips required to
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replace 'it, the 8228 is unfortunately not compatible with the S-100
data bus. Therefore, the MTS was designed without the 8228 because

its use would have precluded system expansion to the S-100 bus.

This incompatibility arose because the S-100 Bus was defined prior to
the development of the 8228 by Intel. For good engineering reasons,
the 8228 does not handle the status byte exactly as féquired for
S-100 compatibility. In particular, the 8228 isolates the system data
bus from the 8080 data bus during SYNC time, and does not place the
status byte on the external bus. This has the advantage that an
addressed memory or input device can place data on the bus prior to
the DBIN signal, which slightly increases the effecfive memory speed.
On the other hand, the S-100 Bus definition requires that the status
byte be available on the data bus. Therefore, the 8228 cannot be

used with an S-100 interface.

The 8228 has two additional functions that are useful in some
interrupt systems, as will be described in Chapter 8. fﬁfﬁ is
principally an output signal from the 8228, acknowledging an
interrupt and indicating that an external device should enter an
instruction to the 8080. If this pin is pulled wup through a 1K
resistor to +12 volts, the 8228 will supply the instruction code FF,
which is RST7. (See Chapter 8.) In the MTS controller this function

is accomplished by resistor pullups on the data bus.

The 8228 also recognizes a CALL instruction being placed on fhe data

bus in response to INTA, and controls the buses to accept from the

external device the second and third bytes of the CALL.
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5.2 MEMORY TECHNOLOGY

A memory device includes semiconductor circuits or elements to serve

four functions:

a) Store data in an ordered array
b) Decode the address inputs to select a certain location
¢) Alter the stored data at the selected location upon command

d) Output the data from the selected location upon command

The memory deévices used in the MTS each have 1024 locations,
addressed by the low-order ten bits of the system address bus. The
ROM and RAM memories of your MTS system are shown in Figure 5-3. The
ROM devices store eight bits at each location. The RAM devices store
four bits at each location, so two devices are used for the eight

bits that must be stored for each address.
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The electronic means of storing data depends on the kind of memory
device used. Permanent (mask) Read Only Memory (ROM) has, for each
bit, a +transistor that is either created or destroyed during the
semiconductor manufacturing process. In eraseable and Programmable
Read Only Memory (PROM) devices, such as the MTS'é 2708, a physical
quality of the semiconductor material at each bit‘position is altered
by a relatively high voltage pulse during programming. The change is
reversible but non-volatile: it will remain indefinitely until a new
programming operation is performed. The MTS has no facility for
applying such high energy pulses, so data cannot be written to the
PROM whilé it is in the circuit. The PROM can be rewritten by
rembving it from the circuit board, erasing it by exposure to intense
ultra&iblé& light, and writing a new program with a special

programming device.

In readfﬁrite memory the data are stored in the form of current or
charge in transistors. Static RAMs, such as the MTS's 2114, include
a flip flop circuit for each bit. Such a circuit has two stable
states; one traﬁéistor conducts while a second is cut off. Dynamic
RAMg stofe data in the form of a charge, which gradually leaks away
and must be refreshed at approximately onevmillisecond intervals.
Refreshing requires additional external circuits; which 1is not
apprppriate in small systems. However, many more bits can be stored

in one dynamic device, which is desirable in large systems.
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The MTS read-write memory devices have an array of 4096 storage
locations, arranged as a square 64 cells high and 64 cells wide. The
ten address lines received by the device are divided into two groups,
of six and four bits. The six lines are decoded to select one of 64
columns, as shown in Figure 5-4. The other four lines are decoded by
a one-0of-16 decoder to select four of the 64 rows, provided that the
chip select input to the memory device is active. Thus a unique ten
bit address, plus chip select, addresses a single set of four bits
out of the 4096 bits stored in the memory device. These four bits
are connected to control logic in the memory device to be read or

written as required.

The PROM addressing is similar, except that these devices store 8192

bits, arranged as 1024 sets of eight bits.
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5.3 CHIP SELECT LOGIC

The MTS provides for mounting four ROM (or PROM) chips and four pairs
of RAM chips. It is supplied with one PROM device and two RAM chip
pairs} the other locations are empty. Each memory device receives
the ten low order lines of the address bus (ABO through AB9) to
select one byte (or half byte, in the RAM). The six high order
address lines (ABiO through AB 15) are decoded externally to select
one PROM or two RAM chips. These six lines can select among 64
possible positions of which only three are occupied and only eight
can exist on the MTS circuit Dboard. If one of the four PROM
locations or one of the four RAM pair locations 1is addressed,
decoding logic shown in Figure 5-5 will generate the appropriate chip

select signal.

This 1is an active low signal, so one of eight chip select lines goes

low.

In the following description it is assumed that the reader has at
least a slight knowledge of TTL logic and conventional symbols.

Readers lacking this knowledge should skip to Section 5.4.
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5.3.1 Memory Enabling

Two signals, MEMR and MEMW, are derived by the system controller

logic from data output by the microprocessor at the beginning of each

machine cycle. If this cycle is to read from memory, MEMR becomes
true (low). This occurs for an instruction fetch (the first machine
cycle of every instruction cycle), and again to read the second and
third bytes of multi-byte instructions or to load data from memory

into the microprocessor.

If a data byte is to be written to memory (as in loading a program or

in a STA instruction, for instance) MEMW becomes true. Either MEMR

or MEMW implies that memory 1is to be addressed. Various other
operations do not require access to the memory and neither of these
signals is true. The negative OR gate (1) in Figure 5-5 recognizes

that memory access is required and enables gates (2) and (3).

5.3.2 RAM Chip Selection

One pair of RAM memory chips (1024 bytes) will be selected by one of
the output 1lines from the decoder (5). This occurs under the

following conditions.

The S-100 PHANTOM is a signal derived from the S-100 bus that can
inhibit the addressing of any of the memory on the MTS. This signal
must be false. Then if +the three high bits of the address bus
contain 100, the 74LS42 decoder selects the output line labeled 100
in Figure 5-5, and gives a true (low) signal to gate (2). Gate (3)
receives a false (high) signal from the line labeled 000, so its

output will remain false.
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Finally, address bus line 12 (ABl12) must be low to make gate (2) have
a true output and enable the decoder (5). Now this decoder selects
among four RAM chip select lines according to AB11 and AB10. These
lines are labeled with the six bits of the address bus that make them
.active. The bottom 1line of this group (100000) addresses the RAM
pair for memory addresses 8000 - 83FF. These 1024 bytes include the
display, monitor variable data, stack, and all the programs developed
in this course. This leads to an important point for the design of
small micrpcomputer systems. To address this 1024 byte RAM pair it
would be sufficient to recognize only the high bit of the address bus

if no other devices were addressed in the 8000 - FFFF memory area.

Gafe (4) allows the selection of the 8000 - 83FF RAM pair in response
to DMA ENABLE,. This signal 1is generated during the repetitive
accesses to memory to operate the display. At frequent intervals the
8080 processor stops its operations to allow the display circuits to
obtain data for the seven segment displays. During this "Direct
Memory Access“ neither MEMR nor MEMW is active, so both decoders (5)
and (6) are disabled, and the RAM chips are selected by the DMA

ENABLE signal.
5.3.3 ROM Chip Selection

Now consider gate (3) and decoder (6). These select among the ROM or

PROM chips. As for RAM chip selection, either MEMR or MEMW must be

true. (In fact only MEMR should be true, since it is not possible to
write to the ROM's, but the system hardware does not enforce this

limitation.)
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The 74LS42 decoder selects the lowest output line (000) if the three
high bytes of the address bus contain 000, Now. if AB12 is also O,
gate (3) output becomes true, and enables decoder (6). This selects
-among - its four output lines according to ABl11l and AB10, to enable one
of the four: ROM positions on the MTS. Since the monitor program
occupies addresses: 0000 through O3FF, only the lowest of these four
lines will ever be active in normal operation of the MTS as supplied.

You can read from a non—-existing location:
ADDR 0400 MEM 0400 . FF

Pullup resistors on the data bus force the bus content high when no
other device drives it. If you now press a hex key the monitor
program will attempt to write to this location. The monitor always
tests after writing, and indicates an error if writing is not

successful.
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Address

0000-03FF
0400-07FF
0800-0BFF
0COO-OFFF

1000-7FFF

8000-83FF
8400-87FF
8800-8BFF
8CO0-8FFF

9000-FFFF

AB15-AB10

000000
000001
000010
000011
000100
to
011111
100000
100001
100010
100011
100100
to

111111

MTS Memory Addresses

Figure 5-6

Memory Selected
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Empty ROM Position 1
Empty ROM Position 2
Empty ROM Position 3

No MTS Memory

RAM Pair O
RAM Pair 1
Empty RAM Pair 2
Empty RAM Pair 3

No MTS Memory
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'5.3.4 Partial Decoding

The memory locations that are addressed by the high six bits of the
address bus (AB15-AB10) are tabulated in Figure 5-6. In the monitor
and in the programs developed in this course only addresses 0000-03FF
(the monitor) and 8000-83FF (RAM) are wused. The logic of Figure 5-7
would be sufficient to select the RAM if AB15 =1 and ROM if AB15 =
0. Such an arrangement is perfectly suitable for small microcomputer
systems dedicated to well defined applications. With this
arrangement, five bits of the address bus are ignored (AB14-AB10).
Addresses 8000, 8400, 8800, 8C00, 9000, 9400, etc., are exactly
equivalent, any of them reading or writing the same byte in memory.
This is referred to as '"partial decoding”. 1Its only disadvantage is
that 1t precludes expansion of the system. The MTS uses "full
decoding'", uniquely addressing each byte of memory, to permit

expansion of the system through the S-100 bus interface.
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5.3.5 Alternative Memory Addressing

Refer again to Figure 5-5, and note that provision 1is made for
changing the address decoding. The Jjumpers between the 74LS42
decoder (Figure 5-5) and gates (2) and (3) allow the user to move the
physical memory devices on the MTS circuit board to different logical
addresses. This is not permissible with the MTS educational monitor,
which must be located at addresses 0000-03FF and must have memory at

8000—-83FF.

The jumpers between AB12-AB10 and gate (3) and decoder (6) may be
reconfigured to permit use of ROM or PROM chips containing 2048‘bytes
instead of 1024 bytes each. Thus a total of 8192 bytes of ROM could

be installed on the MTS for a large system.

The S-100 bus defines the signal S—lOOHPHANTOM. 1f this is made
true, all of the MTS memory is disabled. ?Suppose that you have
developed a program which 1is wultimately »ﬁo opgrate. at memory
locations O0000-0O7FF,. You can use the MTS monitor to load this
program into»memory physipally located in the S-100 system. Then by
setting S-100 PHANTOM true you disablg the MTS monitor and use the
S-100 memory to run your program. Such operations are beyond the
scope of this course, and this is mentioned solely to explain the

PHANTOM signal.
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5.4 DATA BUS CONNECTIONS

Figure 5-1 shows that +the inputs and outputs of all the memory
devices are connected to a common data bus. Only the chip (or
pair of RAM chips) that has been enabled by the high addreés.decoder
is allowed to use the data bus: when the bus. is active it is
driven by one device (memory, CPU, or input) and it drives one

device (memory, CPU, or output).
5.4.1 Tri-State Circuits

The device that is to receive data from the bus expects each line of
the bus to be in a clearly defined state - one or zero. To achieve’
this the driving deviceleither pulls the bus down to a voltage level
close to O volts or pulls it wup to a voltage level well above O
volts - between about 2.5 and 5 volts. Other devices that are
capable of driving the bus must not interfere with this operation.
A semiconductor ' circuit for this purpose is ca11ed a Tri-State
circuit: it has three output states, high, 1low, and off, and is

analogous to a three-way on-off-on toggle switch.

+5 Volts

No Connection O \ .
O ——— Data Bus Connection

i{ low
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Clearly we could connect many such switches to a data bus line and
if exactly one switch is high or low the line will be in a well
defined state. The circuit usedl in the memory uses MOS
transistors. If the high transistor is tuéned on, the circuit
delivers current to the line from the 5 volt supply. If the low
transistor 1is turned on, the circuit sinks current to ground. If

both are off, the circuit exhibits a high impedance to the line.

Tri-state circuits are used for all connections capable of driving
the address bus or the data bus. This includes the 8080 CPU,
the System Controller, each 2708 ROM and 2114 RAM (on the data bus

only), and the 8255 Peripheral Interface.
5.4.2 Read-Write Control

In addition to allowing many devices to share the data bus,
the tri-state circuit allows the individual device to use the same
pins for input and output. When a device has been selected by the
address bus decoder it observes the control lines from the system

controller (the control bus), signals which are derived from the CPU.

A memory read operation causes the selected memory device to connect
the outputs of the selected memory location to the system data

bus by enabling the tri-state output to enter its high or low state.

When 1its tri-state circuits are in the high impedance state the
device can sense data that the CPU has placed on the data bus.
When a signal from the CPU commands a memory write operation, the
selected device copies data from the bus to the inputs of the storage

flip flops addressed by its internal decoder.
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A similar operation occurs in the 8255 Peripheral Interface device
when: the CPU commands an iﬁput or output operation. On input the
8255 copies data 'from its external ports (from the keyboard, fdr
instance) onto the dgta bus. On output the 8255 senses the data Bus

and copies the dafa to the output ports.

Some memory devices (such as:the 2101) have separate input and output
pins; but still include tri-state circuits controlled to permit both
inputs and outputs to be connected to. the data bus.- Other memory
devices (such as the 2102) do not permit such direct connection of
outputs and inputs. Although the outputs have tri-state circuits,
these are enabled whenever the chip is selected. Therefore a
separate tri-stéie circuit must isolate fhe outputs from the data bus

during memory write.
5.4.3 DMA and Interrupts - Introduction

The 8255 provides for programmed input and output. It sends data to
the CPU. from the external world when the program requeéts it, and
it sends data to the external world when the program so specifies.
There are two other means of input and output used in computers,
and the MTS employs both of them. Direct quory Access and
Interrupts botﬁ provide for input or output on demand of an
external device instead of on demand by a program. These subjects
are discussed in detail in a later chapter; di the moment we are

concerned with their relationship to memory and the buses.

Direct memory access permits an external device to read or write to

the computer's memory without program control or CPU intervention.

5-28



‘MEMORY AND CONTROL HARDWARE

When the device needs access to the memory it generates a signal
to fhe CPU requesting a HOLD state. When the CPU finishes the
current machine cycle it acknowledges the hold and relinquishes
control of the memory, 'placing its address and data bus
drivers into the high impedance condition. The external device --
the DMA channel -- now drives the address lines and the read and
write control lines. If memory read is being requested, the selected
memory device drives the data bus just.as if the CPU had commanded
a memory read - the memory does not know the difference. The
DMA channel accepts the data from the bus, then returms control to

the CPU by dropping the hold request.

The Interrupt method of externally controlled input and output
involves only the data bus. An interrupt request is delivered to
the CPU, which finishes the current 1instruction and relinquishes
control of the buses. The interrupting device proceeds to place
an instruction on the data bus, and the CPU treats this as though it
were an instruction read from the program memory. Eight RST
instructions are provided for this purpose. As you have seen, RST4
as an instruction in your program causes an entry to .the.
monitor programe. If it were entered by means of an external
interrupt, exactly the same process would occur. Usually the
interrupt initiates a programmed input or butput operation; this is

treated in Chapter 8.
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5.5 MEMORY SIGNALS AND TIMING
5.5.1 Machine States and Transitions

Figure 5-8 shows the signals involved in memory access during the
MOV M,A instruction cycle. The system clock is driven by the 8224
clock generator, which includes an oscillator controlled by an
external crystal. The oscillator 1is counted down and divided into
a two phase clock: the ﬁl and ¢2 clocks, as shown. SYNC is generated
by the CPU at the beginning of each machine cycle. The 41 clock
period marks '"states" of the processor. Each machine cycle has three
or more states (clock periods). Each instruction cycle has one or
more machine cycles. We will proceed along the time axis and explain

the states as we meet them.
5.5.2 First State (T1)

During the last half of state Tl and the first half of state T2, the
CPU generates a SYNC signal, and outputs on the data bus an eight-bit
status word designating the kind of machine cycle that is being

performed. In the first machine cycle of any instruction this is

always an instruction FETCH.

The clock generator receives the SYNC signal and generates a status
strobe in response: This 1is a narrow pulse which the system

controller uses to latch the status data.

The CPU also connects its program counter outputs onto the address
bus during the instruction FETCH machine cycle. This connection is

retained through most of the machine c¢ycle. All of the memory
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devices receive the address (10 low-order bits) and decode it, and

the external decoder selects one of the memory devices.

The system controller recognizes that this 1is an. instruction FETCH
cycle and generates the MEMORY READ signal. This is an active low
signal; +the near O volts condition tells the memory to read. 1t is
timed by DBIN to ensure that the memory does not drive the data bus

until the CPU has released the bus.
5.5.3 Second State (T2) and Wait (TW)

During state T2 a signal (DBIN) is raised to receivevdata. The DBIN
signal 1is terminated during state T3. Some memory devices are too
slow to deliver data to the CPU by this time, or if the memory is
physically separated from the CPU +the cables may introduce an
excessive delay. To provide for this, if the READY signal to the CPU
is low at the end of T2 the CPU enters a WAIT state, TW. The WAIT
state 1is repeated until READY is high at the end of a clock period.
Figure 5-8 shows one WAIT cycle with each memory access. This does
not occur in the MTS when it operates with its own memory, ‘but is
required if it operates with S-100 memory. The READY signal can also

be used during input or output to slow peripheral devices.
5.5.4 States T3, T4 and T5

During T3 the data bus is read by the CPU, and since this is an
instruction FETCH it is loaded to Register 1. The instruction is
interpreted during T4, at the end of which a new machine cycle
begins. The T5 state is available for certain instructions, but if

not required T1 follows T4.
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Since the instruction in Figure 5-8 is MOV M,A a_MEMORY WRITE chle
is required. The CPU again outputs SYNC, Status.;ﬁd an address, but
‘now the address is the content of (H,L). During T2 the CPU places
the content of Register A on its data bus and the system controller
passes it on to the system data bus. The CPU status indicates that a
memory write cycle is required, so the system controller generates
MEMW. Once again a WAIT state is shown. After TW the standard T3
state occurs. With fast memory the T3 state provides time enough for
writing. The TW state doubles that time, while reducing the

processor's speed by about 25%.
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CHAPTER 6

MODULES, SUB-ROUTINES AND THE STACK






6.1 PROGRAM MODULES

The design and hardware of a complex machine are always divided
into modules, each having a limited function and a limited set of
inputs and outputs. The purpose 1is to make each module
comprehensible to the designer and to make it fit within a
physically realizable structure (such as a circuit board). Often
modules operate in parallel because their functions are separable

but must or can overlap in . time.

The design of a machine that uses a microprocessor is handled the
same way. The microprocessor is part of a solution; it is
surrounded by other hardware modules that relate to it. The
program of the microprocessor 1is similarly divided into modules,
which relate to each other and to the surrounding hardware. Your
microcomputer training system and its monitor program include a
clear exémple of this: when you press numeric Kkeys they are
displayed, but in ‘the hardware there is no physical connection
between the keyboard and display. There 1is a program module
which services the keyboard and a program module which services
the display. These operate independently, and other program
modules determine their interactions, which vary with time and
history. When you press a hexadecimal key it may be displayed
in any of six positions depending on what command key and other
hexadecimal keys you pressed Dbefore. (In a later chapter we
will examine the design of the MTS and its input and output

electronics and programming.)
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6.1.1 In-Line Programming

Consider the sensor correction program of Chapter 4:

If the input and output functions were part of your program you
might program them all "in-line", with a series of instructions
to accept hexadecimal keys and display them (possibly with a loop for
input of +two or more keys), followed by the instructions for the
directory search and table lookup for a linearized value, followed by
the multiplication for scaling, then the commands to output the

result, and finally a jump back to the beginning.

foy
L

Obtain the TInput

y

Search Directory

\

Table Lookup

Multiply

Y

Display Result
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6.1.2 Creating Program Modules

As these procedures become sufficiently complex, it is desirable
to distinguish each of them as a separate module and
develop it independently. This can be done with a subsequent

integration of the several modules into an

in-line program.

Consider an in-line procedure comprising input, process, and output.

Demand Input

.

Input Program

S 2 et e 4 S R e

Module ad
Input Data

Input

Data

'

Process Data

Program Module

]

Result

Command Output

Output

Program Module
Result Data

Hardware
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The input may involve several data items (for instance, sensor
number and data ihput), and the 1input program module retains
control wuntil the requisite data 1items have been obtained.
There may be loops and decision points within the module, but
control stays there until the task  has been completed. Then
some data processing occurs, which may involve loops, t@ble
lookup, and perhaps use of previous data. Again, control remains
with this program module until its task is done. Finally results
are passed to -an output module which sends out the data. Such a
procedure 1is exemplified by the sensor .correction problem in
Chapter 4, although we entered the monitor fof iﬁpdf énd_qutput. (By
the end of this chapter you will have learned ways to call upon ;the

monitor for input and output as separate functioﬁs.)

Another way of organizing a program is to write the separate modules,
locating them in different areas of program memory, and_provide a
control program that jumps to each module in turn. This is suggested
in Figure 6-1. Why -would we do this? 'Ip thejsenspr correction
exercise of Section 4.12 we used a directory procedure that required
all data tables to fit into a single page (8300 -- ) of memory. If we
found 1later that more:sensors or larger tables were needed, we might
need a directory with two byte addresses. If the program were
organized as Figure 6-1 we could rewrite the SEARCH DIRECTORY module
with no effect on any other module. If we found it desirable to have
the microprocessor select the sensor to be read instead of taking
sensor number as an input; we would modify the input module, and

possibly add a new moddie to select the sensor.
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Initialize

=

JMP to Input

JMP to Search

Directory
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JMP to Multiply

JMP to Display
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MODULES

3 INPUT
—————— JMP back

{———— SEARCH

DIRECTORY

< JMP back

——»{ TABLE LOOKUP

¢—— JMP back

{3 MULTIPLY
f——1 JMP back

|— [ DISPLAY

RESULT

€— JMP back

Program Modules with Control Program

Figure 6-1
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As long as the overall function remains unchanged and no new modules
are added, the main program retains the same jumps - one to the start
of each module. Each module jumps back to the main program location
following the instruction that jumped to the module. When each Jump
occurs, there usually is some information to be passed to thé module
or back to the main program: at least the inputs and results. These
data may be in registers (the inputs and outputs, for instance) while

other data might be in specified memory locations.

6.1.3 Module Specification

Now consider the program specification for each module. .Suppose each
were to be designed independently; what must its'designer be given?

Here are some of the important considerations:

Function:
Specify the '"black box" algorithm for the module.

Entry:

The address to which the master program must jump.

Extent:

The range of program memory allotted to the module (starting
and ending addresses or number of memory words used).
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Inputs:

Identify the inputs to be given to the module. What are
they, and where will they be? In .what register or memory
‘location? How many bytes? (Recall the specification of
register assignments in Section 4.4.4.)

Outputs:

Identify the results the module 1is to generate. What are
they, and where must the module place them?

Registers:

What registers are wused or preserved? (Recall that we
preserved sensor number in Register B.)

Constraints:

What memory areas may the module use for data storage,
either temporary or permanent? Is the module permitted to
use all of the registers, or must certain ones be preserved?
How much time 1is permitted for the module's function?

It may appear that the need to specify all of this (and often much

more) makes the wuse of program modules a nuisance. In fact it is-

one of the best reasons for modular design: it forces a

discipline that may otherwise be neglected. When lsuch_ items

are well-defined, many programming errors may be avoided.

Suppose that one module serves a function that is needed several
times in the program - displaying data, for instance. In the
sensor correction program it would be desirable to display the sensor
number and the input data; later we display the result. If we jumped
to the display module with an additional variable (perhaps in an
unused register) indicating whether the entry is for input or
result, the display module could test that variable and decide where
to return. This would demand that the specification include

two return addfesses and a definition of the new control variable.

6-7
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A much better procedure is for the main control program to pass
the return address as a variable. Then we need a jump instrucfidn

that can use a variable address. We have such an instruction:

HEX CODE: E9
MNEMONIC: PCHL
MEANING: Move the contents of register pair H,L

into the program counter and continue

program execution from that address.

To experiment with tﬁis we will write a trivial program that
does nothing except load a variable, return,address\and Jjump to a
module, which does nothing except jump back. Figure 6-2 is a flow
chart of the program shown in Figure 6-3. The return address to

be loaded must be the address of the instruction following the jump

into the module.
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Do nothing

Load immediate
return address

to HL

Jump to module

Do nothing.
Do nothing
Load immediate
"return address
to HL
Jump back
-to main
Jump to module (PCHL)

Do nothing

Jump to start

Do Nothing Program With Do Nothing Module

Figure 6-2
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When you have loaded the program, step though it. The program

counter should show this sequence:

8200 00 NOP

8201 00 NOP

8202 00 NOP

8203 21 LXI H, 8209
8206 C3 JMP 8220
8220 00 NOP

8221 E9 PCHL

8209 00 NOP

8204 21 LXI H, 8210
820D C3 JMP 8220
8220 00 NOP

8221 E9 PCHL

8210 00 NOP

8211 C3 JMP 8200
8200 00 NOP

8201 00 NOP

ete.

Of course if H,L were needed for other purposes we could have stored
the return address in memory. In fact, the use of a variable retﬁrn
address is so common that the microprocessor has special jump
instructions that do this for us automatically. When these are

used the module becomes a subroutine.
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6.2 SUBROUTINES

A subroutine is a program module that uses built-in features of the

computer for entry to the module, and return from the modple.

6.2.1 Subroutine Entry and Return

The entry to a subroutine 1is made by a special kind of jump
instruction, CALL, which includes the.aeress of the subroutine
just as an ordinary jump instruction includes an address. The
mictoprocessor 'éutomatically generates and saves an address for a

subSequent jump back to the calling program, executed at a RETurn

instruction.

SUBROUTINE: A program module which is erntered by means
of a CALL instruction and which normally

returns to the calling‘program by means of a

RETurn instruction.

CALLING PROGRAM: The program module which has called a

subroutine. The calling_program may be

the main program or another subroutine.
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The CALL instruction is:

'HEX CODE: cD

MNEMONIC: CALL

SECOND BYTE: Low address

THIRD BYTE: High address

MEANING: Save the address of'the next following
Hinstruction, and jump to the subroutine
Qhose firsf instruction is located at tﬁe

address given in Bytes 2 and 3.

The CALL instruction executes a jump, but instead of discarding
the present content of the program counter it stores (PC) in an

assigned memory area called the stack.

STACK: An area of memory assigned by the progfammer
for tﬂe temporary storage of réturn addresses
‘or other data. It is addressed by a dedicated

16-bit counter called the Stack Pointer.

The jump back to the <calling program 1is made by the RETurn

instruction:

HEX CODE: co
MNEMONIC: RET
~MEANING: Recover the address stored by

CALL and jump to that location.
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6.2.2 Tracing Subroutine Entry and Return

Revise the Do Nothing program (Figure 6-3) by replacing the

following op-codes (the JMP addresses are not changed):

Address Egg Change To
8206 C3 JMP CD CALL
820D C3 JMP CD CALL
8221 E9 PCHL C9 RET

Again trace the program flow and observe that the program
counter sequence is the same; only the instructions change.
The two LXI H instructions could be changed or removed with no
effect. Now we will examine and define the CALL and RET

instructions more thoroughly, and discuss the stack.

Use the '"Do Nothing" program to follow this. Step through your

program to 8206, the CALL:

STEP 8206 CD

The monitor can display the stack pointer as a register pair. Key 1

is also labelled P to designate the stack pointer.

ADDR 1/P MEM 83E0 SpP.??

Now step once to execute the CALL instruction:

STEP 8220 00

6-14
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Display the stack pointer again:
ADDR 1/p MEM 83DE SP0O9

The stack pointer contains the address in memory where the low byte
of the return address (8209) is stored. The next memory location

contains the high byte of the return address:
NEXT 83DF 82

Any time that you display a register pair and the memory location it
addresses you can see the following sequential memory location by
pressing NEXT. In debugging programs you will more often be
interested in the return address than the value of the stack
pointer. Key 2 is labelled T to designate the stack top - two bytes
in the stack. —

ADDR 2/T MEM 8209 STOO

The stack top contains the return address.

Now step twice to return to the main program:

STEP 8221 Cc9

STEP 8209 00

The return address has been placed in the program counter.
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6.2.3 CALL Execution

Figure 6-=4 shows the program counter addressing 8206 and the
CALL instruction being loaded into the instruction register. The
program counter is incremented three times as the op codé and the
following twd: bytes are loaded into Registers I, Z and W
respectively;: So far the process_ is ideh{ical ts that of a JMP
instruction,-\as described in Chépter 2. We- see that the
program counter ‘now addresses the next instruction following CALL,
which is to be the return address. Registers W aﬁd Z contain
the jump address. The stack pointer addresses -a locatiqn (83E0)
‘near the top of memory; this was loaded by the monitor program when

power was turned on. (The déscription continues on the next page.)
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CALL INSTRUCTIONS
PROCESSOR
——
| 21

8206
83E0

Address

v O N =

Address

8207
83E0

v O N 8

20
8208
83EO

Address

G

Data

T O N =

cD
82
20
8209

83E0

O N s -

v

As in a jump instruction, the PC is used to address

MEMORY

21
09
82
CD
20
82
00

00
C9

G o W 0 0w o w o

W ® O o 0 W o w W w o«

W W W W W W oW W

N N N N N N N NN NDN

o O 0O 0o O o o © o o o
P OO 0O N O srE N

HH 9 UOUooOgouo
= O B M O O W »

the instruction code and the two following bytes, which are loaded into

I, 2 and W respectively

Figure 6-4
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Figure 6-5 shows the stack writing operation in a CALL instruction.
The content of the stack pointer is decremented‘(7) and sent out on
the address bus (8). The high byte of the program counter is sent
out on the data bus (9) to be written to the selected location in
the stack area of the memory. Now the stack pointer is decremented
again (10) and the 1low byte of the program counter is written to
the memory at the next location below the high byte (11, 12). Any
8080 instruction that stores an address places it in the same

position sequence - low byte at the lower memory location.

Finally the subroutine address is moved (13) from Registers W and Z

into the program counter, as in a normal jump, and program

execution continues with the instruction there.

6-18



MODULES, SUBROUTINES AND THE STACK

CALL, INSTRUCTION

PROCESSOR MEMORY
o —— 8 2 0
! CD 8 2 0
w 82 8 2 0
z 20 21 8 2 0
P C 8209 09 8 2 0
s P 83E0 82 8 20
CcD 8 2 0
20 8 2 0
——— 82 8 2 0
: oD 00 8 2 0
w 82 8 20
z 20
P C 8§09 |
s P '83DF N
' 00 8§ 2 2
c9 8 2 2
g
1 CD
w 82
y4 20
P C 8209 -
s p 83DE 8 3 D
8 3 D
8 3 D
o — 8 3 D
i CD /09 8 3 D
w 82 82 8 3 D
z( 20 8 3 E
P C 8220 8 3 E
s P 83DE L/

The stack pointer is decremented (7) and sent out as an
.address (8). The high byte of the program counter is
sent on the data bus (9) and written to the addressed
memory location. This is repeated for the low byte of the program
¢ounter (10,11,12). Then the content of W,Z, is moved to PC.

Figure 6-5 6-19
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6.2.4 Return Instruction

The RET instchtion recovers the last. address entered in the stack
and executes" a Jump to that address. Note that although RET is a
jump it only requires one byte in the program (like PCHL) because the
address to which it Jjumps is a variable stored by the CALL. The

RET instruction cycle is shown in Figures 6-6 and 6-7.

HEX CODE: c9

MNEMONIC: RET
MEANING: Return to the calling program.

Figure 6-6 shows the fetch and execution of the NOP instruction at
8220 and fetch of the RET instruction (C9) at 8221, Execution of

the return is shown in Figure 6-7.
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The NOP instruction at 8220 is

MODULES, SUBROUTINES AND THE STACK

fetched and executed and the

return instruction at 8221 is

fetched.

Figure 6-6
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In Figure 6-6 we saw the RET instruction loaded to the I register.
Its execution appears in Figure 6-7. The stack pointer provides a
memory address (7) and the low byte of the return address is moved
into 2 (8). The stack pointer is incremented (9) to address the high
byte (10), which is moved into W (11). The stack pointer 'is
incremented again (12) and the content of W and Z is moved to the
program counter to accomplish the jump (13). Notice that this
process is identical to a normal jump except that after the
instruction fetch, the stack pointer is used instead of the program

counter to read the jump address.
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RETURN INSTRUCTION Cont'd
PROCESSOR ' MEMORY

i Cco9

' 8222
83DE

T O N S

09
8222
83DF

v 0O N S

c9

82
09

8222
83EO

v O N =

| c9
2]

82

05 7\ -

8209 —
83E0 |

» ON 2

The stack pointer addresses the low byte

of the return address which is loaded

to Z (7,8). The stack pointer is incremented
(9) and the high byte is loaded to W (10,11).
The stack pointer is incremented again (12)

and the program counter is loaded from W and Z.

Figure 6-7
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6.2.5 Subroutine Nesting

Why is the return address stored in memory? Since a 16 bit
register exists (the stack pointer), why not simply place the
return address in that register? In fact, this scheme was used in
early computers, and still appears in such small microprocessors as
the 4004 and 4040. The problem is that if only one register exists
there can be only one 1level of subroutine: one subroutine cannot
call another subroutine. The 4004 and 4040 have four return address

registers, so that four levels of subroutines can be used.

This 1is still a noticeable limitatioﬁ; ‘Using a '‘memory stack
permits unlimited subroutine nes;ing. Figure 6-8Jshowé some nested
subroutines. . Note that there is no inherent "level" to a subroutine.
Any subroutine can be calied from the-éain program or from any

other subroutine.

Load ‘the program (Figure 6-9) and trace the program flow, as

described bn-the'following pages. Ho
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CALL SUB1

CALL SUB3

SUB1
CALL SUB2

RET

MODULES, SUBROUTINES.AND THE.STACK

SUB2

CALL SUB3

RET |

Figure 6-8

RET




pS - % ™
M > % \w vm¢ o
M c) “) e o
Y
2
m R
2
ol I~ ™ % )
m Q XQ Q m ™
oL 1D D Q o) o)
21 [© = 3 co )
2 &
=1 |d J J <
] [al— Q| ala Ql 4 NNEN o~ [0[~
21Q( NS Qs Q< Q| Jlw [ Qly
% [0 [ NIE S NEEN LIRS
=4
o QR Q[ Q[ g™ QN[N N QR[]
I NEREENEENEREEN NEERRNEEENENER
glOo|=|N|Mm | < BD|jO|IN|[O®|d|<| o Alwluw|olr{n| || w]|o| Nl |d|aa|jlol0jlwlu]|]Oole=]|]|m]| < O~ o
00 \\
o| N
q| © -] ©

133HS ONIAO0D

WILSAS ONINIVHL H31NdWODOHIIW

SWILSAS H31NdWOJ 31VHOILNI

6-~26




Trace the program flow through the

‘MODULES,

Step to address 821C,.

RST

8200

821C

Display the stack pointer, and examine the stack.

ADDR

NEXT

NEXT

NEXT

NEXT

NEXT

Now execute the

STEP

STEP

1/p MEM

NOP and RET intructions.

(back in SUB 2)

83DA

83DB

83DC

83DD

83DE

83DF

821D

821A

SUBROUTINES AND THE STACK

dummy subroutines of Figure 6-9.

00

00

SP1A Return

82 to SUB 2

14 Return

82 to SUB 1

04 Return

82 to MAIN

Cc9

00
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The stack pointer now addresses the return address that will take us

back to SUB 1.

ADDR 1/P MEM 83DC SP14
STEP 8213 c9
STEP (back in SUB 1) 8214 00

The stack pointer now addresses the return address that will take

us”back to‘MAIN.

ADDR  1/P MEM 83DE  SPO4
STEP 8215 co
STEP  (back in MAIN) 8204 00
STEP  (call SUB 3) 8205 CD
STEP  (in SUB 3) 821C 00
STED 821D co
ADDR 1P MEM 83DE  SPOS8
STEP (back in MAIN) 8208 00
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6.3 SUBROUTINE -SPECIFICATION

The central reason for writing modules as subroutines is to permit
the same module to be called from various program locations; however,
there are two extra advantages: The single byte RET saves program
space, and it avoids the need to specify the return address during
program dééign. ZTherefore most program modules are written as

subroutines even if they are to be used only once.

We commonly give a name to a subroutine (INPUT, DISPLAY, SEARCH
DIRECfORY, TABLELOOKUP, MULTtPLY). This is a convenience fpr thé
programmer, like the mnemonic names of instructions. it is much
easier to remember a name than an address, and the name conveys
some meaﬁing. HoWever, a subroutine has an address, th; address of
its first instruction. When you write the CALL instruction you
must, of course, use the hexadecimal address of the subroutine, just

as you would use an address in a jump instruction.

Figure 6-10 shows a flow chart for the sensor correction problem
written as a series of subroutines and a main program. We shall
briefly define all of the subroutines, and then develop them one at a

time, with detailed specifications.
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CONTROL PROGRAM SUBROUTINES
~ Initalize
(-
CALL INPUT ——————® TNPUT
Process rf———— RET
CALL SEARCH e
SEAR
‘DIRECTORY AD%%ECTORY
[€—— RET
CALL TABLE LOOKUP TABLE LOOKUP
Process <§¢——— RET
CALL MULTIPLY MULTIPLY
Process g—— RET

CALL DISPLAY RESULT| ___ ]

Process e

DISPLAY RESULT
RET

Sensor Correction with Subroutines

Figure 6-10
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6.3.1 Program Development - Sensor Correction Problem
Developing a program generally involves these steps:

a) Define the problem

b) Conceive a program solution

¢c) Divide the solution into comprehensible and
realizable program modules

d) Specify the modular functiomns

e) Specify the interfaces

f) Develop the main control program

g) Develop and test the .modules

h) Integrate and test the system

In Chapter 4 we defined the sensor correction problem and conceived
a solution. Now we have divided the program into modules. It
remains to specify the functiohs and interfaces of the modules, to
develop and integrate them. First we will give brief functional

specifications. These will be developed more fully later.
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Subroutines for Sensor Correction

Input:

Accept data input from the keyboard. Display the data as it
is entered. On a specified command, change the sensor
number. Return when a command is entered.

Search Directory:

Find the table address for the present sensor number.

Table Lookup:

Obtain the scaling factor and linearized value of the input
from a data table o

Multiply:

Generate the product of the scaling factor and the linearized
value of the input as a double precision result

Display Result:

Display the double precision result.
We must also define the displays to be generated by this program.

Data to be dispiayed are the sensor number, input byte, and result.

Input Result

Blank

Sensor Number
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6.3.2 Main Program

A good procedure for developing a program that comprises a number of
subroutines is to ‘develop the main program first, using CALL
instructions to e¢all the various subroutines. At each subroutine
location enter nothing but a RET instruction. You can then step
through 'the main program to test the. program flow, even though the
subroutines do nothing. Then develop each subroutine in turﬁ; as
these are entered you can test them by running the main program. When
all of the subroutines have been developed and tested, the entire
program has also been'integrated and tested. This approach is part
of what is calledt"Top Down Programming" because you have started at

the top (the main program) and worked down to the bottom.

Often a main program is required to load data, or move data around in
registers, before calling a subroutine, and to store data returned by
a subroutine. If you leave some space between the CALL statements it
becomes easy to insert such functions into the main program later.
The main program for sensor correction is shown in Figure 6-11.
Three NOP's are left between CALL's. This is enough space for three
MOV's or one LXI, LDA, STA, LHLD, or SHLD. If more manipulation is
needed the three NOP's can be replaced by a CALL, and another
subroutine can be created to load, store or manipulate the data as
required. We have left three bytes at the beginning for

initialization.
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This 1is a very straightforward program. Most commonly the main
program makes decisions, therefore including comparisons and
conditional Jjumps. These should be designed in from the start, not
patched in later. Programs, like machines, must be designed before
they are built, or they are likely to fail. The spaces we have left
are intended only for data movement, which is not fundamental to the

design.
In Figure 6-11 we have arbitrarily placed the subroutines as follows:

8240 INPUT

8260 SEARCHDIRECTORY
8280 TABLELOOKUP
82A0 MULTIPLY

82C0 DISPLAYRESULT

Thus 32 bytes (20 hex) are allotted to each subroutine. If this is
not enough we can easily relocate a subroutine and change the address

in the main program.

Load the main program, and enter a RET instruction (C9) at each of
the addresses above. Step through to make sure the program operates
correctly. Note one of the advantages of "Top Down" programming -
with only vague definitions of the program modules we have now
established the relationships among them. This will help immensely

in specifying the modules.
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6.3.3 Input Subroutine
The definition for this subroutine was given as:

Accept data input from the keyboard.
Display the data as it is entered.
On a specified command, change the sensor number.

Return when a command is entered.

Nothing bhas been said here about register or memory assignments, and

the mention of changing sensor number is vague indeed. A better

definition is essential before we can design this module,

We shall switch temporarily from "Top Down" programming to "Bottom
Up" programming. When you have no idea of how +to accomplish a
function, it is often much better to work out some details before
proceeding with a design - just as we may experiment with a
breadboard electronic circuit, or look in catalogs to see what is

available, before specifying and designing hardware.

You do not yet have enough knowledge of the MTS hardware, nor of the
8080 instructions, to write a keyboard input_subroutine. There is a
built-in subroutine, GETKY, which you can use without understanding
how it works just as you can buy and use an integrated circuit. This
subroutine is used by the monitor when you key in a program or enter
commands such as STEP or RUN. In fact, when you are using the
monitor it spends almost all of its time in subroutine GETKY, waiting

for you to press a key. The specification is given here:
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6.3.3.1 Subroutine GETKY

Function:

Read the keyboard repeatedly until a key is pressed. Wait
until the key is released; then return the value of the key
and indicate whether it is a command or hex key.

Entry:
CD CALL GETKY
3D
02

- Inputs:

No data required at entry.
Returns:

The value of the key pfessed, with Carry set if hex key;
Carry cleared if command. '

Registers:

(4)
(B)

All other registers are preserved. All flags are affected.

(C) = Key Value
00

Note that this specification is not quite complete. No mention is
made of the possibility of several keys being pressed at once, and
there are some constraints that you need not worry about. We have
not stated the values returned for the command keys; you will

determine that by testing the subroutine.
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'6.3.3.2 Monitor Display Subroutine DBY2

Although you have operated the MTS display directly,'by writiﬁg to

memory'locations 83F8 to 83FF, and you could develop YOur.bwn disﬁiay

subroutine,

it will be easier to use another-monitor subroutine that

displays a byte of data in two digits.

Subroutine DBY2

6-38

Function:
Display one byte of data in two sSpecified digits of the MTS
display.
Entry:
CD CALL DBY2
98
02
Inputs:

Byte to be displayed in Register A. Display address for low
digit in register pair DE.

Outputs:

The

byte displayed is duplicated in Registers A and C. The

display address is decremented by two, pointing to the
memory location below the left digit location.

Registers:

(A) = (C) = byte displayed
(DE) = Entry value of (DE) - 2
(B), (H), (L) preserved
Carry and Zero are cleared

Constraints:

For
the
will
the

an effective display the entry value of (DE) must be in
range 83F9-83FF. No test is made on the address; DBY2
store symbols for two digits at the address in (DE) and
next 1lower address. Only two memory locations and

display digits are affected.
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'Wé~ can test ©both of these subroutines (GETKY and DBY2) within the
con;ex; of the sensor correction subroutine INPUT. AT 8240, enter
_the‘palls and required'input data for . these two subroutines, followed
by ”RET.' Do this yourself, and then compare your work with Figure
'6¥12.
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6.3.3.3 Testing GETKY and DBY2

These subroutines are guaranteed to work, so preés RUN. The display
Will’go-blank. Press and release a key,; its value will be displayed.
With a display address. of 83FB, the byte will appear in digits 3 and

4 of the display.

See that the hex keys of O — F are displayed as 00 - OF. Make a list

of the values returned by GETKY for commands.

REG MEM BRK CLR RST

1. .
i

STEP
RUN
ADDR

NEXT

You will find that RST does not return a value from GETKY —— it
resets the microcomputer. Electrically, RST 1is not part of the
keyboard ihput circuit. Instead, it provides a direct input to the

microprocessor and its function cannot be changed.

Place a breakpoint at the LXI D instruction, after the call to GETKY.

ADDR 8 2 4 3 BRK 8243 BP.
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Enter arbitrary data into the registers:

REG A A 8200 A-0A
NEXT B 8200 B-0B
NEXT Cc 8200 Cc-0C
NEXT D 8200 D-0D
NEXT E 8200 E-OE
NEXT F 8200 F-0OF
NEXT 8 8200 H-08
NEXT 9 8200 L-09
NEXT 8200 A-0A
RUN

The monitor blanks the display. You are now in subroutine GETKY.

Press and release key 6. The program stops at the breakpoint.

6 (CY) 8243 A-06

Examine the registers and note the Carry and Zero indicators.
Confirm that GETKY returns (A) = (C) = key; (B) = 00; that D, E, H

and L are preserved; that Carry was set by a hex key.

"Register" F actually displays the content of the five flags of the
8080; the only ones we are interested in are Carry and Zero, which
appear in the LED indicators. The others will be described in later

chapters.
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Press RUN. The key you entered is displayed by DBY2 as before.
Press RUN again. This time it is an entry to GETKY for your program.
Again execution stops at 8243. Confirm that GETKY has returned (A) =
(C) = 14 and (B) = 00. (DE) contains the value entered by your
program decremented by 2, Or(S%E?. This was returned by DBY2; GETKY
has not disturbed it. Registiis H and L are still preserved. Carry

is <cleared in response to the command key. Zero is also cleared in

response to RUN. What key returns Zero set?

Now place a breakpoint at the RET instruction (8249), retaining the
breakpoint at 8243. Run the program and press a key. When the
program stops at 8243, enter arbitrary data into Registers B and C,
and press RUN. At the 8249 breakpoint confirm that Register B has
been preserved; (A) has been copied into Registér C,; and ‘again (ﬁE) =

83F9.

Be sure that you understand these two monitor subroutines before

going on. Experiment further with them if you want.
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6.3.3.4 Definition of Sensor Correction INPUT Subroutine

Now that we have some tools (the monitor subroutines GETKY and DBYZ2Z)
we can define the INPUT subroutine for the sensor correction program.
We want it to accept hex keys followed by a command, just as the
monitor does, assembling two successive keys into a byte. We shall
see how to do that in the next section. If some specified command
key 1is entered, we are to 'change" sensor number. The original
definition was vague about this. What command key causes the change?
Exactly what 1is meant Dby '"change"? Is the wuser allowed to enter
input data for the new sensor before making the changg? If not, what
is to be done with data entered before the change? Must new data be

entered after the change?

You can make your own decisions about these questions. The solution
given here is the simplest to program, but other approaches might be

more interesting.

For simplicity we will use the following rules:

Key MEM calls for a change 1in sensor dumber. (MEM returns

Zero set from GETKY.)

A data byte for the new sensor 1is to be entered before the

change (MEM) command.

If no hex key is entered, the input value returned will be

Zero.

If only one hex key is entéred,'it will be taken as the low

digit, and the high digit will be zero.:
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If two hex keys are entered, the earlier will be the high

digit; the later will be the low digit.

If more than two hex keys are entered, the oldest will be

discarded and the last two will be wused to form the input

data byte.

The change in sensor number will be to set the next higher
allowable sensor number. The changes will be effected by
another subroutine, NEXTSENSOR, which is called by INPUT in
response to the MEM key. (Note that by defining another
subréutine we are spared worrying about its details now.

This is "Top Down'" design again.)

Now we must also éSsign registérs for data to be returned by INPUT,

aﬁd decidé whether it requires ahy'input data from the main program.

The only input data that INPUT might need would be the sensor number.
INPUT itself has no need for this; only SEARCHDIRECTORY and
NEXTSENSOR use the sensor number. Let us say that it will be stored

in memory, and leave the memory location to be defined later.

INPUT must - return the data byte keyed in, and display it. Since
GETKY and DBY2, between them, use Registers A, B, C, D and E but
preserve H and L, we can only use Register H or L to accumulate the
data as it 1is keyed in. Since NEXTSENSOR will surely need the
Accumulator, it 1is probably easiest to return the data in one of
these registers; we shall choose Register L. The specification for

INPUT is given below.
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Subroutine INPUT

Function:

Accept a Dbyte of data from the keyboard, followed by a
command. If the command is MEM, call NEXTSENSOR to set the
next legal sensor number. If no hex keys are entered,
return 00 for the data byte. Display the data byte in the
third and fourth digits of the MTS display.

Entry:
CD CALL INPUT
40
82

Inputs:

None needed for INPUT.
Outputs:

Data byte entered from keyboard.

Registers:
A, B, C, D, E and L are used. ,
At return (L) = data byte entered.
Register H is preserved.
Constraints:

In response to MEM command calls NEXTSENSOR, which must
preserve Registers H and L. ' )

Processing of successive hex keys will be as defined in
Section 6.3.3:.4.
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6.3.3.5 Design of Sensor Correction INPUT Subroutine

With a firm definition and the necessary subroutines we can now work

out the program for INPUT. How can we combine two keys into one

byte?

When the first hex key is entered, it 1is .considered to be the low
digit of the byte. When another hex key is entered, the earlier key
becomes the high digit, and the later key the low digit. Recall that
in 4 hexadecimal number the high digit has a value of 10 hex (16

decimal) times the number. That is:

10 = 1 x 10 (hex)

20 = 2 x 10 (hex)
30 = 3 x 10 (hex)
and FO = F x 10 (hex)

With two non-zero digits, the value is 10 (hex) times the higher

numeral, plus the value of the lower numeral.

24 = 2 x 10 (hex) + 4
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To convert two digits into a byte, then, we must multiply the older
digit by 10 (hex) or 16 (decimal). We could, of course, add the
older digit into a product sixteen times, but there is a much easier
procedure. Add the digit to itself once to get two times its value.
Add that result to itself to get four times the digit value; again
for eight times the digit value and once more for sixteen (10 hex)
times. Now add in the low digit. Thus with the old digit in L and

the new digit in C:

MOV A,L 0ld Digit

ADD A 2 x 0l1d Digit
ADD A 4 x 0ld Digit
ADD A 8 x Old Digit
ADD A 10,x 0ld Digit
ADD C 10,,x 0ld + New
MOV L,A = Data Byte

Let us program this into our INPUT subroutine and test it. Start by
entering a zero into Register L; call GETKY; test fér a command key
(Carry clear) and jump to the return if a command is entered.
Otherwise do the process above; address 83FB and display the result,
‘and jump back to call GETKY again. Try to program this yourself,
then compare your program with Figure 6-13. We have not yet handled

the call to NEXTSENSOR; this is covered in Section 6.3.4..
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The main program of Figure 6-11 and this input subroutine can be
as we did the test of GETKY and DBY2. When you first enter a hex
it.is displayed as the low digit, with a zero in the high digit.

next hex key shifts the old digit to the high position and enters

second key at the right. If you enter more hex keys the oldest

run
key
The
the

one

is lost. What happened to it? Review the multiplication by 10 hex.

Place a breakpoint at the first ADD A (8249 in Figure 6-13) and
the program. Enter one hex key - 7. Program execution stops at

breakpoint.

RUN

7 (CY) 8249 87
REG C (CY) 8249 c-07
REG A (CY) 8249 A-00

run

the

Carry is set because a hex key was entered. We are about to multiply

00 x 10 (hex) and add 7. When you press RUN the result is displayed

and the program waits for another key. The Carry indicator stays

RUN (CY) 07
5 (CY) 8249 A-07
REG C (CY) 8249 Cc-05
RUN (CY) 75
8 (CY) 8249 c-08
REG A (CY)- 8249 A-75

one.

The old value is 75 from the first two digits. or binary 0111 0101.

Now step through the multiplication.

STEP 8249 A-EA
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Carry 1is now off. 2 x 75 = EA with no Carry. This can also be

viewed as a left shift of the binary value.

Bit Positions CcY 7654 3210
Old Value (75) 1 0111 0101
2 x Old Value (EA) 0 1110 1010

The old Carry is lost. The high bit (0) has been shifted into Carry,
and the other bits have shifted left. Now you can step three more

times and see the hex values shown below.

4 x 0ld Value (D4) 1 1101 0100
8 x 01d Value (AS8) 1 1010 1000
10 x Old Value (50) 1 0101 0000

All four bits of the oldest key (7) have been shifted out of Register

A. The next step will add the new key from (C).
10 x 01d + New (58) 0 0101 1000

This addition clears Carry, so now all four bits of the oldest key

are irretrievably lost.
RUN 58

The equivalence of a left shift to a multiplication by two is used in

binary multiplication, as we shall see in Chapter 7.

When you test the subroutine, note any flaw you see in its operation,

and correct the flaw.
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6.3.4 Conditional Calis

We have still to handle the call to NEXTSENSOR in response to the MEM
command . Subroutine INPUT (Figure 6-13) Jjumps to 8258 when any
command key is pressed. There we must test the command key value and
if it is MEM (= 10) then call NEXTSENSOR. Obviously this can be done

by:

CPI 10 Test Command
—— JNZ to return

CALL NEXTSENSOR

— RET

CALL and RET are special forms of JMP, and the 8080 provides the same

conditional variations of CALL and RET as it does for JMP.

c3 JMP CD CALL c9 RET
c2 JNZ C4 CNZ co RNZ
CA Jz cc cz of:} RZ
D2 JNC D4 CNC DO RNC
DA JC DC cC D8 RC

Four more variations of each, not listed above, also exist.

If the specified flag is set or reset, according to the instruction,
execute the Jump, Cali or Return. Otherwise continue program
execution ét the next sequential instruction. Call if Zero is

defined in detail.
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cC CZ address Call if Zero
XX (iéw address)
XX (highvaddress)

Read the three byte instruction into Registers 1, 2 and W. If
the Zero flag is set, save the program counter in the stack and
move W and 7 into the program counter. Otherwise proceed with
program execution at the next location after the three byte CZ

instruction.

No flags are affected.

6.3.4.1 Completion of Subroutine INPUT

With conditional call instructions we can avoid spending three bytes
on a conditional jump instruction. Instead of JNZ, CALL, we shall

use:

CPI 10
CZ NEXTSENSOR

RET

As before, NEXTSENSOR is called if and only if the command key value
is 10 (MEM). If you did not detect the flaw in the operation of
INPUT, make this test. Run the program, key in a hex value and NEXT.
The number is displayed. Now press NEXT again. According to the
specification, pressing a command key with no preceding hex keys must
réturn a value of zero, but the display shows the old value. What

actually happened? Review the program and figure it out.
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To correct this flaw, display the content of Register L after a
command key is pressed. The solution given below in Figure 6-14 uses
the same call to DBY2 both for hex keys and the command, thereby
saving a little space in the program. This is not'impdrfant - memory
space 1is cheap. If your version of INPUT takes more than 20 (hex)
bytes, relocate SEARCHDIRECTORY to 8270 instead of 8260. It will fit
easily in 10 (hex) bytes. Since we -‘have not done anything with it

yet, the only change required is in the main program:

CD CALL TABLELOOKUP

70
82

Remember to insert:

8270 Cc9 RET
6.3.4.2 Subroutine NEXTSENSOR Definition

This subroutine was not included in the original list of subroutines
in Section 6.3.1, but we have described it in the dourse of
developing INPUT (Section 6.3.3.4). We must assign a location for
storage of the sensor number. We have two possibilities - in a
register or in memory. In the sensor correction program of Chapter 4
we réserved Register B for the current sensor number, but here
Register B has been affected'by GETKY. INPUT preserved Register H,
but this will be used in SEARCHDIRECTORY and MULTIPLY. Genepally it
is better to use memory to store a variabie that must be retained
indefinitely and changed only occasionally. We have previously said

that the directory occupies 8300-8307 and the data tables 8308-837F;
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let us now assign memory location 8380 for the current sensor number.

Assign memory locations 82E0 through 82FF to this subroutine.

Subroutine NEXTSENSOR

Function:

Select the next legal sensor number following the current
sensor number. If the current sensor number is the highest
allowable, set the sensor number equal to 1. Display the
new sensor number in the left hand digit.

Entry Address: 82E0

(The call from INPUT will be CZ, but this is not a part of
the subroutine specification.)

Inputs:

None required in registers. The following data must be in

memory.

8380 Current Sensor Number

8300 Highest Existing Sensor Number
Outputs:

Memory location 8380 is updated to contain the new current
sensor number.

Registers:
A, C, D and E are used. B, H and L are preserved.

Constraints:

The sensor number is to be displayed at the left by storing
its display symbol at 83F8. ‘The next display position
(83F9) must be left blank. Memory location 83F7 must not be

affected. (This location 1is reserved for use- by the
monitor, whose operation will be affected if you enter data
‘there.) '
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6.3.4.3 Subroutine NEXTSENSOR Program
The function of this subroutine may be listed in six steps.

Load and increment the sensor number.

Test for a legal number (greater than zero; less than or equal to
highest existing sensor number.)

Skip the next step if legal.

Set sensor number to 1.

Store the sensor number.

Display the sensor number.
You should be able to program all of this.

Remember that Registers H and L must be preserved. This does not
forbid you to use them, but if you need them you must preserve their
data by moving it elsewhere and restoring it to H and L before

return.

The display function introduces a problem. We have been using DBY2
for display, but this subroutine displays a byte in two digits. We
want to display the sensor number in the left hand digit (83F8) but
we are required to leave the second digit (83F9) blank, and we are
forbidden from disturbing memory location 83F7. Can you solve this

problem?

(One helpful hint: The Read Only Memory contains a table of symbols

for the numerals 0 - F, starting at 02B3.)
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6.3.4.4 Testing INPUT and NEXTSENSOR

Once again, test the new subroutine using the main program to call
it. When you enter hex keys they should be displayed; when you enter
MEM a sensor number should be displayed. Your test should include
not onIy checking the displays, but also making sure that the entire

specification for each of these subroutines is met.

For this test to be successful you must have stored the highest
allowable sensor number- - at memory location 8300. Try different
values there. This may also be a convenient time to enter the
directory and data tables. A complete version of INPUT and
NEXTSENSOR, and the directory and data tables, are shown in Figures
6-14, 6-15 and 6-16.
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6.3.5 Subroutine DISPLAYRESULT

It 1is often convenient to develop input and output subroutines for a
progfam at an early stage, because these provide tools for testing
othef program modyles. We now have the input subroutine with its own
display, and we have a monitor subroutine that makes it easy to
display the result. DBY2 only shows one byte; we want to display two
bytes; but that merely involves two calls io DBY2, one for each byte.
Remembering that DBY2 preserves the content of Registers H and L
suggests that these registers can be used for the two byte number to

be displayed.

Subroutine DISPLAYRESULT

Function:
Display two bytes of data in the four right hand digits.

Entry Address:

82C0
Inputs:

(L)
(H)

Outputs:

low byte to be displayed
high byte to be displayed

o

(Specification of the outputs is left as an exercise for the
student. Review the specification of DBY2 in Section

6.3.3.2, and state what each register will contain at return
from DISPLAYRESULT.)
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To test DISPLAYRESULT, remember that INPUT places the entry data in
Register L, and preserves_Register H. Before running the program,
use the monitor to 1load arbitrary data into H; this should be
displayed every time. The data keyed in through INPUT should appear

in digits 7 and 8 as well as digits 3 and 4.

Note that we are able to test each subroutine as we develop it, using

the main program and earlier subroutines as testing tools.

Figure 6-17 gives a solution for subroutine DISPLAYRESULT.
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6.3.6 Subroutine SEARCHDIRECTORY

This subroutine is to be used to return the address of the data table
for a particular sensor - the.one ~whose sensor number was stored at
memory location 8380 by subroutine NEXTSENSOR. With the sensor
number, directory and data tables all in a single page of memory
(83xx) this subroutine cah use singie byte indirect addressing. It

1s further simplified by the assignménts in the directory:

8301 Table address for sensor 1

8302 Table address for sensor 2

The indirect addressing theq is merely:

(H) < - 83
(L) < - (8380)
(L) <= ((HL))

This can be coded as:

LXI H,8380 (H) <. - 83
MOV L,M (L) < -  (8380)
MOV L,M (L) < -  ((8380))

Remember, however, that at the return from INPUT we have the input
data byte in Register L. This is why we provided NOP instructions in
the main program - to make space for MOV instructions. Although we
could specify that SEARCHDIRECTORY move the content of L to some
other register, this is generally undesirable. Keep subroutines as
nearly single purpose as possible in order to improve readability of

the program and generality of the subroutine.
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Subroutine SEARCHDIRECTORY

Function:

Load into register pair HL the address of the data table
corresponding to the sensor number.

Entry Address: 8260

Inputs: Sensor number stored at 8380
Outputs: Data Table Address in (HL)
Registers: Only (H) and (L) are used

Constraints:

A directory must be stored in memory at 8301 - 8307. The
data tables must also be in page 83xx.

Test SEARCHDIRECTORY wusing the main program, INPUT, NEXTSENSOR and
DISPLAYRESULT. Since TABLELOOKUP and MULTIPLY do nothing yet, the
address. returned by SEARCHDIRECTORY will be displayed by
DISPLAYRESULT . For Sensor Number 1 the address returned by

SEARCHDIRECTORY should be 8308; for Sensor 2 it should be 8316.

This subroutine (Figure 6-18) is so short that it could easily be
programmed in-line (i.e., in the main program) or it could be

included in TABLELOOKUP. In another exercise we shall see reasons

for not doing so.
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6.3.7 Program Data Initialization

At this point we can see a need for setting initial values into the
program data. In this program the only variable that is retaiﬁed
from one iteration of the main loop to the next is the sensor number.
Recall that in Chapter 4 we always tested the sensor number before
proceeding with the directory search and table lookup. Now we have
delegated the task of testing sensor number to a subroutine that is
only <called in response to a user command. This implies the
possibility of having an 1illegal sensor number stored when the
program starts to run; hence making improper calculations. The risk
is not immediately obvious, because we have already exercised
subroutine NEXTSENSOR, thereby storing a legal sensor number at
memory location 8380. Store an illegal number at that location and
run the program already loaded, without pressing MEM. The address
displayed will be neither 8308 nor 8316, which are the only proper
table addresses. When you press MEM, thereby calling NEXTSENSOR, the

table addresses become legal.

In the final program, if we accept data entry while an illegal sensor

number is stored, the result will be meaningless. This must be
forbidden. Also, of course, we want the sensor number displayed

right from the start.
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We can ernsure that a legal sensor number is set and displayed by
calling NEXTSENSOR as an initialization step. At the start of the

main program, enter:

8200 CD CALL NEXTSENSOR
8201 EO
8202 82

“Test this. Either a 1 or 2 should appear at the left. Press MEM to
change sensors. The only weakness 1is that on the first run you
cannot predict which will appear. If this matters, an initial value

must be stored before calling NEXTSENSOR.
6.3.7.1 Alternate Entry to Subroutine

There 1s another technique available which must be used with care.
Examine the given solution for NEXTSENSOR (Figure 6-15). After
incrementing the sensor number and finding it illegal (either 00 6r
greater than the highest allowable) the program reaches 82F0. The

code there is:

82F0 MVI A,01 Set Sensor 1
STA 8380
LXI D,02B3 Address symbols
ADD E Add sensor numer
MOV E,A Address and load
LDAX D Symbol for sensor
STA 83F8 Display at left
RET
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The code above can be used as a subroutine by itself, to set and

display Sensor Number 1. Thé initialization in the main program: could

be:
- 8200 CD CALL 82F0
8201 FO
8202 82

"If ‘your NEXTSENSOR program is similar to Figure 6=15, you can .use
this procedure successfully. Address 82F0 is then an "Alternate

‘Entry" to subroutine NEXTSENSOR.

Suppose now that a slightly more clever program had been written for

NEXTSENSOR:

82E0 LXI D, 8380

82E3 -LDAX D

82E4 INR A

82E5 Jz 82F1
82E8 MOV C,A
82E9 LDA 8300
82EC CMP C

82ED MOV A,C
82EE JNC 82F3
82F1 MVI A,01

82F3 STAX D
82F4 LX1 D,02B3

etcetera
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This_program is one byte shorter than the solution of Figure 6-15. If
you were to call this at the MVI A,01 instruétion, however, it would
fail, because the STAX D instruction could store 01 anyblace - in fhe
middle of your program, for instance. This 1is the danger of
alternate entries to subroutines. If used without gfeat caré they

can be disastrous.

The only safe way to use -alternate entries is at the beginning of a
subroutine. For instance, the display subroutineiwe have been-using,
DBY2, is actually an alternate5entry to the monitor. subroutine DBYTE,
~which starts at 0295 with LXI D, 83FF. A call to DBYTE displays the
byte. in (A) in the two right hand digits; the alternate entry DBYZ
allows you to select a different pair of display digits. It only
bypasses the one instruction that loads a constant into the diSplay

address.
6.3.7.2 External Alternate Entry

In the discussion above we referred to address 82F0 as a possible
alternate to NEXTSENSOR. The risk of using such an entry comes from
the fact that it is inside the subroutine - hence it may be called an
"internal alternate entry". We could avoid using an alternate entry
by creating a separate initialization subroutine to be called by the

main program.

XRA A Set Sensor = 0
STA 8380

CALL NEXTSENSOR Set Semnsor =1
RET
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This procedure is safe, because we are not relying on any specific
coding of subroutine NEXTSENSOR. We can modify this to the

following:

XRA A Set Sensor = 0
STA 8380
JMP NEXTSENSOR Set Semnsor = 1

This has an essentially identical effect. When it is called by main,
a  return address (8203) is p}aced in the stack. After sefting sensor
number equal to zero, it jumps to NEXTSENSOR- to increment the number.
When, the RET instruction is encountered at the end of NEXTSENSOR,
address 8203 is recovered from the stack so the return is directly to
the main program instead of to another RET. This is called an
"external alternate entry". We shall use this technique for

initialization of sensor number.

Figufe 6-19 shows the revised main program and subroutine INITIALIZE.
Test that we now always start with Sensor Number 1 displayed, and

that no improper table address occurs.
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6.3.8 Subroutine TABLELOOKUP

This subroutine is specified to load data from the table whose
address is supplied by SEARCHDIRECTORY. The scaling factor is loaded
from the first entry in the table and the input data (in Register A)

is compared with the linear point, the second item in the table.

MOV E,M
INX H
CMP M

If the input data byte is equal to or greater than the linear point
Carry - is cleared by the comparison ‘and no adjustment is necessary.
Here we can use the conditional return, RNC, since the task of the

subroutine is finished.

Return if Not Carry
Hex Code: DO
Mnemonic: RNC

If the Carry flag is clear, recover a return address from the

stack and jump to that address.

if'Carry is set, continue program execution at the next

sequential instruction, leaving the return address in the stack.

If the input value is less than the linear point (Carry is set) we
must .obtain an adjusted value from the table. In Chapter 4 we did

this by:
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INX H Address table for 00 input
ADD L

MOV L,A

MOV A,M

Since Carry is set (else we would have returned) we can use a trick
here: instead of INX H, ADD L we use ADC L. Adding in the Carry has

the same effect, of adding table address + 1 plus input value.

Subroutine TABLELOOKUP

Entry Address: 8280

Entry Data: (4)

Measured Input

Return Data: (E) Scaling Factor

If the input is greater than or equal to the linear point:
(A) preserved
(HL) addressing linear point
(A) = adjusted input value
(HL) addressing table location for the input value

Registers:

A, E, H and L Used
B, C, and D Preserved

To test this program we can again use our existing main program and
subroutines. (Remember that MAIN must include MOV A,L before the
call to SEARCHDIRECTORY.) Since we have not yet programmed the
subroutine MULTIPLY, (HL) contains the address in the table, and this
will be displayed. For a data input less than the linear point we
should see the table address corresponding to the sensor number and
input value. For greater inputs we should see the address of the
linear point. Test your program in this mode, comparing inputs and

results with the data tables of Figure 6-16.
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6.3.9 Stubs for Subroutines

When we first entered the main program into the computer we placed a
RET instruction at each subroutine location. Only one of these
remains now (at MULTIPLY); all the others have been replaced by
subroutines. Such a RET instruction is called a '"stub" - it is a
very short subroutine. Sometimes it is useful or necessary to have a
stub that performs some reasonable substitute for the program module.
For instance, if we did not yet have the data tables available,
TABLELOOKUP could enter a fixgp scaling factor into Register E, and
do no adjustment on the input data. We could even think of our
present version of TABLELOOKUP as a stub for a much more
sophisticated program that might eventually provide for interpolation

or some complex calculation.

8-75



MODULES, SUBROUTINES AND THE STACK

The wusual purpose of a stub is to permit other program modules to be
tested in the absence of a module which has not yet been written.
Somtimes a stub is substituted for a program module (even though that
module may have been finished and tested) in order to make the test
of a new module easier. Let us replace the existing stub of MULTIPLY
(which has been simply RET) with a new stub which will cause the

adjusted input and the scaling factor to be displayed.

82A0 67 MOV H,A (H) < - Input
.82A1 6B MOV L,E (L) < - Scaling Factor
82A2 C9 RET

Now the program will display the results of TABLELOOKUP. This might
‘discover some error in the data tables that otherwise would be
concealed by the multiplication. Now for Sensor 1 we should always
see the scaling factory (88) in the right hand digits, and the
adjuSted input in digits 5 and 6. Figure 6-20 shows TABLELOOKUP and

this stub for MULTIPLY.
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CODE
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6.3.10 Register Pair Addition

In

Chapter 4 we

used a repetitive double precision addition to

perform multiplication.

The

LXI
— MOV
ADD
MOV
MOV
ACI
MOV

DCR

JNZ

8080 provides

H, 0000
AL

C

L,A
AH

00

H,A

E

instructions

addition in a single sfep.

6.3.
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Clear product
Add multiplicand (C)

into product (HL)

Decrement multiplier

that perform the double precision

10.1 Double Precision Add - DAD

DAD rp Add the 16 bit content of register pair rp

to the content of register pair HL, placing the

result in HL.

(HL) < = (HL) + (rp)

If the result is greater than FFFF, set Carry.

Otherwise clear Carry. No other flags are

affected.
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The hex codes for the DAD intructions are:

09 DAD B (HL) < - (HL) + (BC)
19 DAD D (HL) < - (HL) + (DE)
29 DAD H (HL) < - (HL) + (HL)

6.3.10.2 Subroutine MULTIPLY

If our sensor data tables were more extensive, and might cross page
boundaries, we would have used a DAD instruction in TABLELOOKUP.

Here we shall use it in MULTIPLY.

We must still clear (HL) for the product. To use DAD we must place
the multiplicand in the low byte of a register pair, and clear the
high byte of that pair. Thén to duplicate the multiplication of

Chapter 4 we would do:

~——» DAD B

DCR E

—_— JNZ

As before, multiplication by zero would be equivalent to

multiplication by 100 hex. Although that was convenient in Chapter 4
we will here use a technique that gives the correct result of 0000 if

the scaling factor is 00. We can readily test a register content for

zero by:

1C INR E

1D DCR E
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The register content is restored and the Zero flag is set or reset

according to the content. Now we can use a conditional return:
c8 RZ Return if Multiplier Zero

If the multiplier was 2zero this returns before we have added the
multiplicand the first time. Otherwise, execute DAD B; then jump

back to DCR E, RZ.

_Writei and load this final subroutine. Once again, the main program

provides a test, described in Section 6.3.10.3.
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6.3.10.3 Final Test

With subroutine MULTIPLY written and entered we are ready for a final

test. We shall use the same data that were used in Chapter 4.

Sensor Input Two Byte Product

(HL)
1 00 0000
1 01 0198
1 04 0330
1 07 04C8
1 08 04C8
1 09 0550
1 oA 05D8
1 OB 05D8
1 ocC 0660
1 80 4400
2 03 0320
2 06 0578
2 07 0578
2 08 0640
2 09 0708
2 ocC 0960
2 80 6400

This test does not fully prove the MULTIPLY subroutine, since only

two different multipliers (88 and C8) have Dbeen used. This is one
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case where we should properly write a ‘'driver" program to test the
subroutine. Such a program would test MULTIPLY for all possible
multipliers and multiplicands. The exercise of Section 6.7 involves

writing a test driver for MULTIPLY.
6.3.11 Program Integration

Historically, every program module was written and tested separately,
using "driver" programs to supply simulated input data and test the
results. Then a giant task called "program integration" would bring
all of the modules together, and find out why they did not work. Top
down programming has brought us to a finished product when the last
subroutine was written and tested. Program integration consists of
listing the program in one place. (This listing appears at the
beginning of Section 6.5, where some additional exercises are

suggested.)

No special test programs to try out the modules were written - the
main program tested each module. The only exception was the special
stub for MULTIPLY, used for testing TABLELOOKUP. We also indicated

the need to test MULTIPLY with a "driver" program.

This does not imply that final testing is not needed, but the purpose
of the test should be to prove +that the program handles all
conditions - not to debug modules and their interfaces. Of course it
is not this easy with a big program, but that is where top down

programming really pays off.
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6.4 REVIEW AND SELF TEST

This chapter has introduced the very important concepts of program
modules and subroutines, and "top down'" programming. We have used a
main program with subroutines, and used stubs for subroutines that

had not yet been written.

Section 6;2 described how the stack pointer works with the CALL and
RET dnstructions, and we used the monitor to examine the stack
pointer and the contents of the stack. We have also used monitor
subroutines for input and output. Section 6.10 defines a number of
additiqnal monitor subroutines that you will use in this course;

others appear in Appendix A, Volume II.

Review the new instructions that have been introduced in this;

chapter. You have already used six of these fourteen.

Double Precision Add

09 DAD B (HL) < - (HL) + (BC)
19 DAD D (HL) ¢ -  (HL) + (DE)

29 DAD H (HL) < - (HL) + (HL)

These instructions set or reset Carry but do not affect Zero or any

other flag.

Indirect Jump

E9 PCHL (PC) < - (HL)
Jump to the location whose address

is in (HL)
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Call and Return Instructions

CD CALL address Unconditional Call
C4 CNZ address Call if Not Zero
ccC Cz address Call if Zero

D4 CNC address Call if Not Carry
DC ccC address Call if Carry

Calls are three byte instructions. The returns are single byte-

instructions.

c9 RET Unconditional Return
Co RNZ Return if Not Zero
Cc8 RZ Return if Zero

DO RNC Return if Not Carry
D8 RC Return if Carry

Refresh your memory by answering the following questions.

1) What instructions are used to enter a subroutine? What

supplies the subroutine address? . (.

2) What instructions exit from a subroutine? What supplies the

return address? 0

3) What is an internal alternate entry to a subroutine? Why is

it undesirable? How can you avoid the difficulties?

’

4) What happens to the stack pointer when a CALL is executed?
What datum is found in the memory location addressed by the

stack pointer after the CALL?
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5) What happens to the stack pointer when a RET is executed?

6) What£happens to the stack pointer if the instruction RNZ is
encountered when the Zero flag is set? What happens to the Zero

flag? ~ . s

7) Show the content of the three registerfpairs and the Carry
and Zero flags after each instruction in the following program

segment.

CYy Z BC DE “HL

Starting Data 1 0 0654 | 83F8 | 6400

LXI H,2000

MOV C,L.

MOV B, H

LXI D,4000

DAD B : : : ]

DAD D

DAD H
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Answers to Self Test, Section 6.4

1) CALL and conditional calls enter a subroutine. Bytes 2 and 3 of

the intructi@n supply the address.

2) RET and conditional returns exit from a subroutine. The return

address.is taken from the stack.

3) An internal_alternaté entry is a location withfn the body of a
‘subroutine that may‘_bé called from another program module. It
requires that the coding of the subroutine be designed to permit the
alterpate entry to a specific location. An external alternate entry
avoidé this requirement because it reaches the normal starting point

of the subroutine.

4) A CALL instruction causes the stack pointer to be decremented
‘twice. The high byie of the return address is stored after the first
.decrement; then the low byte is stored after the second decrement, so

therstack pointer addresses the low byte of the return address.

5) A RET instruction recovers the return address from the stack, and

in the process the stack pointer is incremented twice.

6) RNZ is not executed if the Zero flag is set. Therefore the stack
‘and Stack pointer are not changed. Call and return instructions do

not affect any flags.

(The answers to question 7 are on the next page)
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P Show the content of the three

register pairs and the Carry and

Zero flags affer each instruction in the following program segment.

cy | z BC DE HL
Starting Data 1 | o | oesa | s3rs | 6400
LXI H,2000 1 | o | oes4 | 83F8 | 2000
MOV C,L 1.1 o | oeoo | s3rs | 2000
MOV B,H 1 | o | 2000 | ssre | 2000
LXI D, 4000 1 | o | 2000 | 4000 | 2000
DAD B o [ o | 2000 | 4000 | 4000
DAD D o | o | 2000 | 4000 | 8000
DAD H 1 | o | 2000 | 4000 | o000

The first two DAD's

clear carry.

The

final DAD H adds 8000 + 8000,

giving a carry. Even though the result is 0000 the Zero flag is not

affected.

6.5 ADDITIONAL EXERCISES

The following

exercises

will

give

you added

experience in

programming, but more importantly, in specifying subroutines. All of

these involve changes to the sensor correction exercise, whose given

solution 1is repeated here for convenience.

all four changes.

NEXTSENSOR. Revise and test the program after each change.

Then

write

new

Read the descriptions of

specificatons

easy this is with a main program and subroutines.

for

INPUT and

Note how
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6.5.1 Clear Result Display

While a new data input is being entered, the old result still appéars
at the right. ‘During this time the display is showing misleading
data - an input at the left with a result at the right that does not
correspond to the input being displayed. Revise the specification of
INPUT to require that the right hand display be blanked as soon as a

key is entered.
6.5.2 Store and Recover Table Address

The sensor correction main program calls subroutine SEARCHDIRECTORY
évery time we receive new input data, even though the address
returned is always the same unless NEXTSENSOR has been called by
INPUT. It would be more efficient to combine the two functions.
Revise NEXTSENSOR to call  SEARCHDIRECTORY; and require
SEARCHDIRECTORY to store the sensor table address in memory. In

MAIN, simply load the table address from memory,

Alternately, require that INPUT and NEXTSENSOR return Zero set if a

MEM command has been entered; Not Zero for other commands. Then have

MAIN call SEARCHDIRECTORY only after a MEM command.

Very often it is useful to have a subroutine preserve or restore the
flags, especially if the subroutine is expected to be called
conditionally. In this case NEXTSENSOR could set Zero (by XRA A or

CMP A); then the above requirement would be met.
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6.5.3 Two Byte Table Addresses

Revise the directory to include two byte addresses for the data
tables. Since each entry will now require two bytes we cannot do the

simplified indirect addressing previously used in SEARCHDIRECTORY.

This was:

LX1, H, 8380 Address Sensor Number
MOV L,M Address Difectory

MOV L,M Address Table

RET

To obtain a two byte address from the sensor number, you must double
the sensor number and add it to a fixed value to generate the correct

address. Be careful about selecting the fixed value.
6.5.4 Empty Sensor Numbers

The existing data table and directory include only Sensor Numbers 1
and 2. The program allows for higher sensor numbers, but there is an
assumption that no gaps exist in the sequence. If'the sensor number
were greater than 2zero and 1less than or equal to the highest
allowable, then it is legal, and the directory must have an entry for

it.

Remove that constraint by testing for the existence of a valid
directory entry as part of the new NEXTSENSOR subroutine. 1If a
sensor does not exist, its directory entry should be 0000. Make

sensor 1 non-existent and use its data table for sensor 3.
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6.6 USING THE STACK FOR DATA

The stack can provide temporary storage of data as well as storage of
return addresses. You have probably seen a spring loaded stack of
dishes 'in a restaurant. The busboy puts clean dishes on top and
their weight pushes them down. When one is taken from the top, the
spring bops the néxt one up. The microprocessor has PUSH and POP
instructions to place data into the stack, and recover it. Since the
stack exists mainly to hold addresses, the data are entered and

recovered two bytes at a time, from and to register pairs:

C5 PUSH B Push data into ‘the stack from
D5 PUSH D register pair B, D or H

E5 PUSH H

C1 POP B Pop data into register pair B, D
D1 POP D or H from the stack.

El POP H

Suppose that a program needs to call MULTIPLY and DISPLAYRESULT but

also needs to retain other data in HL. Since each of the registers

is used in at least one of these subroutines, we must save the
content of HL in memory. We could do this with SHLD and LHLD, but at
the expense of three bytes for each instruction and two bytes in data
memory at least partially dedicated to this purpose. PUSH H before
the call to MULTIPLY and POP H after return from DISPLAYRESULT will
save and recover the data. The content of any of the three register

pairs can be saved in this manner.
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6.6.1 Testing Stack Usage

Enter this program in order to observe the operations.

8200
8201
8202
8203
18204
8205
8206
8207
8208
8209
8204
820B
820C
820D
820E
820F
8210
8211
8212
8213
.8214
8215
/8216
8217
8218
8219
821A
821B

Note. that this program pushes the

D, B

01
0C
0B
11
OE
0D
21
09
08
E5
D5
C5
cD
15
82
c1
D1
El
C3
09
82
04
0C
14
1C
24
2c
C9

LX1
LX1
LXI

PUSH
PUSH
PUSH
CALL

POP
POP
POP -
JMP

INR
INR
INR
INR
INR
INR
RET

B, 0BOC

D,0DOE

H,0809

® W oo

215

©InOoOw

[
o
©

raETCOw

and pops them in reverse

the first bytes

through the first three instructions and examine the registers.
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RST  STEP

REG B
NEXT
NEXT-

NEXT

popped.

STEP

Ve

sequence.

shall

STEP

Load registers

with easil

recognized dafa

Save HL
Save DE
Save BC

Restore BC

y

Restore DE°

Restore HL

Subroutine

see this 1in operation.

8209

8209

8209

18209

.8209

register pairs in the sequence H,

The last bytes pushed are

Step

E5
B-0B
C-0C
D-0D

E-OE
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NEXT (Ignore F) 8202 F=-2?
NEXT 8209 H-08
NEXT 8209 L-09

Examine the stack pointer.

ADDR 1/pP MEM 83E0 SP.??

Now we shall execute PUSH H

ADDR 8209 E5
STEP 820A D5
ADDR 1/P MEM 83DE SP.09
NEXT 83DF 08

The contents of pair HL have been pushed into the sStack. The stack
pointer has been decremented by 2, and points to the location where
the low byte (from L) has been stored. The next higher memory

location contains the high byte (from H).

Execute the next two push intructions.

ADDR 8204 D5
STEP 820B Cc5
STEP 820C cD
ADDR 1/P MEM 83DA  SP.0OC
NEXT 83DB 0B
NEXT 83DC OE
NEXT ‘83DD oD
NEXT 83DE 09
NEXT . 83DF 08
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The stack contains the six bytes we have saved. The top of the éfack
(the most recent two bytes stored) contains the data from register

pair B, the last one pushed.
ADDR 2/T MEM 0BOC ST.?2?

The next instruction is the call to 8215,

ADDR 820C cD
STEP 8215 04
ADDR 1/p MEM 83D8  SP.OF

The stack pointer has been decremented two more times.

The stack top now contains the return address.
ADDR 2/T MEM 820F ST.Cl1

The registers ﬁave not been altered by any of these instructions.
Step through tﬁe subroutine, which increments each of the six

registers. Review the registers again to check that we now have:
(B) =0C (C) =0D (D) =0E (E) = 0F (H) =_09 (L) = 0A
The stack still contains the original data.

Now execute fhe return and three POP instructions. When you reach
8212 check that the six registers have been restored. Also check the

stack pointer.

ADDR 1/p MEM 82E0 SP.??

The stack pointer is back to its original position, and the entire
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stack is available for other uses.

Transfer notation for PUSH and POP refers to the "Stack Top" as the"
source or destination. This means two bytes in the stack. For

example:

PUSH B (8T) < - (BC)

(SP) < - (SP) - 2

POP H (HL) < - (ST)
(SP) < - (SP) + 2

6-103



MODULES ,| ‘SUBROUTINES ‘AND THE STACK
6.6.2 Using the Stack Inside a Subroutine

‘It is |perfectly legitimate to use .the stack: for data outside of a
subroutine, as ‘we have Jjust done, and also inside a subroutine.

Replace [the subroutine above with:

8215 C5 PUSH B* (ST) (BC)
8216 01 LXI  B; 0000 (BC) 0000
8217 00

8218 00

8219 Cl1 POP B (BC) (ST)
821A C9 RET

Now step through the program agaln until you reach 82i9. (Do ndt use
a breakpoint.) ‘ﬁxamine the stack. fhe stack pointer now confains
83D6, where (C) has.been stored again.: The regiéter contents can be
saved and reétored by PUSH and POP eifﬁer outside or inside fhe
subroutiine. It 1is crucial, however, that these not be mixed. The

PUSH and POP instructions must be balanced in each program module.

What would happen if you executed a POP B inside the subroutine,
without a preceding PUSH? The two bytes at the top of the stack
would be_copied into register pair B, and the stack pointer would be
incremented twice. Now BC contains the return address, and a RET
instruction will jump to the location f9und in the next two bytes of
the stlack -~ OBOC in the prograh above. Test this by deleting the

PUSH B |at 8215 and stepping through the program.
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6.6.3 Processor Status Word (PSW)

The - content. of .the accumulator and flags can also be saved in the
stack. For PUSH and POP only, Register A and the flags are treated as

a register pair, called the '"Processor Status Word".

F5 PUSH PSW

Fl POP ‘PSW

These instructions save and restore the content of the accumulator
and all five 8080 flags (Zero, Carry, and three others not yet

described.)

Recall in the sensor correction subroutine INPUT (Figure 6-22b) we
copy an input key to Register B, and after-displaying the hex value
we test (B) to determine whether a hex key, or command MEM, or some

other command was entered.

CALL GETKY
. MOV B, A
MOV A,B

CPI 10
Jc 8242

CZ NEXTSENSOR

RET
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The CPI 10 instruction was in fact done in GETKY, which returns Carry
for hex keys; Not Carry, Zero for MEM, Not Carry, Not Zero for the

other commands. Then the above sequence could have been:

CALL GETKY

PUSH PSW

POP DPSW
JC 8242
Cz NEXTSENSOR

RET

It is fairly common to need the results of a test after some
intervening operations .that affect the flags; PUSH PSW and POP PSW
provide this facility. 1In these instructions the flags are treated
as the low byte of the pair (stored in the lower memory location of
the stack) and the accumulator is treated as the high byte. PUSH PSW
and POP PSW are the only instructions that treat +the flags as a
register, or as part of a register pair; there is no LXI PSW

instruction.
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6.6.4 - Exchange Instructions

With two exceptions the data movement instructions of the 8080 are
all one-way. MOV A,C copies into A the content of C; Register C is
not affected. SHLD stores the contents of H and L; the registers are
not affected. In each case the old content of the destination is

lost.
The two exchange intructions are the exceptions.
6.6.4.1 Exchange (HL) with (DE)
EB XCHG (HL) < - > (DE)

The content of Register E is exchanged

with the content of Register L.

The content of Register D is exchanged

with the content of Register H.
Flags are not affected.

Here all four data bytes are preserved, but in different registers.

This instruction is especially useful when two different memory
locations are successively addressed, or when some fo;lowing
operation must: use HL. It can also sometimes be used merely as a
single instruction to substitute for MOV E,L; MOV D,H. For instance,

to load four bytes from memory:

LHLD 8300
XCHG
LHLD 8302
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There is no corresponding instruction involving pair B; the other

8080 exchange involves the stack.
6.6.4.2 Exchange HL with Stack Top
E3 XTHL (HL) < - > (ST)

The operation involves the stack pointer and the temporary Registers
W and Z. The data byte addressed by the stack pointer is copied into
Z and the stack polinter is incremented; the data byte now addressed
by the stack pointer is copied into W. Register H is copied into the
stack and the stack pointer is decremented; Register L. is copied into
the location so addressed. W and Z are copied into H and L. There

is no net effect on the stack pointer; it ends up where it started.
The process could be shown as:

(WZ) < = (ST) (like a POP)
(ST) < - (HL) (like a PUSH)

(HL) < - «(W2) (like an LXI)

This powerful one byte instruction effectively adds one more register
pair to the 8080 set. This is particularly useful where three memory
locations are to be addressed and one register is wanted for a
counter. To add two multibyte numbers and place the result in a

separate location, for example:
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XRA A L
'LXI H, address of sum

PUSH
LXI , address of augend
LXI , address of addend

H
H
D
MVI C, byte count
D
M

— LDAX
ADC
XTHL
MOV  M,A
INX H
XTHL
INX H
INX D
DCR C .
INZ
POP H

The XTHL, instruction is also useful for doing arithmétic_ in
registers. To multiply two numbers of ‘two bytes each, giving a four
byte result requires eight registers; BC, DE, HL and ST provide -just

enough.
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6.7 TEST DRIVER FOR MULTIPLY-EXERCISE

We observed in Section 6.3.10 that subroutine MULTIPLY is not fully
tested by the procedure we have used, since only a very small sample
of all possible multiplicands (adjusted input values) and multipliers
(scaling factors) have been used. One way of testing such a
subroutine is to try either all possible values or a large random
sample of possible values. Then each answer must be checked by some
different calculation. We need 65536 tests to try all possible

multipliers and multiplicands - a lengthy but reasonable task.

By sequentially testing all multipliers, starting at 00, it is easy
to predict the correct result. The first product should be 0000;
each foLlowing product 'should be the previous product plus the
muitiplicand. Figure 6-23 shows thée test driver program. Note that
when all .multipliers have been»iested with a given multiplicand we
display that multiplicand; this is to,provide assurance that the
program is running. The tést for each mulfiplicand,_in AUTO mode,

takes about half a second; in STEP mode more than 40 seconds.

Write the program, using PUSH, POP and XCHG instructions where
appropriate. Step through one loop to test the program flow, then

switch to AUTO mode and run the program for the full cycle of tests.
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(f_ STAR? j) ;
!

Clear BC for Multiplicand

~y

Clear E for Multiplier
Clear HL for Product

>

Save BC,DE,HL in Stack
Call MULTIPLY

- (HL)— (E) *(3a)
(DE) =—— (HL) = Product
(HL) =— (ST) = Expected Product
Test for Equal

Equal

Not Equal

Re~enter Monitor on Error

¥

|

(DE) «— (ST)

= Multiplier (in E)
(BC) «— (ST) = Multiplicand (in C)
(HL) =— (HL) + (BC) = Next Product
(E) — (E) + 1 = Next Multiplier
Not Zero

Zero (Multiplicand Finished)

Display Completed Multiplicand
(C)—— (C) + 1 = Next Multiplicand

Test Driver for MULTIPLY

Figure 6-23
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This 1is not a complete and perfect test because we_have entered
MULTIPLY with +the flags and unassigned registers containing ﬁjxed
information. For instance, the given version of MULTIPLY (Figure
6-24b) contains the instructions MOV B,L and MOV C,A to place the
multiplicand in pair BC for the DAD instruction. If either of these
were left out inadvertently the subroutine would be wrong, but our
test program would not catch the error because the test program uses

pair BC the same way.

Suppose the repetitive addition in MULTIPLY had been written like

this:
LXI H,0000
MOV C,A
INR E
—> DCR E
RZ
MOV A,L
ADC C
MOV L,A
MOV A,H
ACI 00
MOV H,A
— JMP

Can you see the error? The test program will not find it, because
the test for equality between the value returned by MULTIPLY and the

known correct result will always clear the carry. Nevertheless, the
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routine is wrong because if it were entered with carry set it would
give a wrong answer. This error would not be detected in the sensor
correction program either - TABLELOOKUP always returns carry cleare&,
just before the call to MULTIPLY. Imagine using such a subroutine
successfully, believing you have tested it with a test driver, and
éome day copying it into a new program that occasionally calls it
';ith carry set. Even then the error isn't obvious - it only affects

the least significant bit of the result.

The design of test programs is extremely difficult - especially for
testing your own programs. It is easy to test for errors that you.
can think of, but those are not the errors you make. If at all
possible someone else should write the test, using only the module

specification as a guide.
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6.8 STACK POINTER INSTRUCTIONS AND RULES
6.8.1 Instructions that Affect Only the Stack Pointer

These intructions are deftned for completeness. You are urged not to
“use ‘them when working with MTS until you fully understnd the mogi;of

'program. -The first, however, is a vital part of any real program:

31 LXI  SP Load an initial
XX . low address. -value to the
vy high address stack pointer.

This instruction must be executed before the stack %an be used for
data storage or for subfoufine calls. Address 0000 to see it: it is
the first instruction in the monitor, and initializes the stack at

power-on or reset. Other instructions include:

33 INX SP Increment stack pointer
3B DCX SP Decrement stack poiner
39 DAD SP (HL) < -  (HL) + (SP)
F9 SPHL (SP) < - (HL)

These manipulate the stack pointer. It may be incremented (with INX
SP) to discard data or a return address that has been pushed into the
stack, or decremented (with DCX SP) to recover data that has been

pushed and popped.
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The only way of finding the content of the stack pointer is this:

LXI H, 0000
DAD Sp

‘Now (HL) is equal to (SP). Using this together .with "LXI SP,
address" permits you ‘to assign a different area in- memory: for the

stack, agd lgterfrestore the previous stack address.

LXI H, 0000 Get existing stack pointer
DAD sP

LXI SP, address Address new stack

. PUSH H Save o;d.staék.pointer

POP H Recover old stack pointer
SPHL Restore old stack pointer.
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6.8.2- Stack Operation Rules

There are some restrictions on use of the stack.

a) For every CALL there must be a RETURN. You must not jump

into or out of a subroutine except by CALL and RETURN.

b) For every PUSH there must be a POP. You must not repeatedly
push data onto the stack, or you will write into your program

memory.

¢c) To restore registers saved by PUSH, the POP instructions
must be in reverse order from the push instructions, because the

last data entered is the first data returned.

d) PUSH and POP must be in the same program module. If a
subroutine executes a POP with no preceding PUSH, the data

recovered will be the return address.

These rules are not absolute: if you understand what you are doing
you may use violations of the rules to good purpose. For instance,

one program module might push data into the stack for retrieval by

another module. This 1is referred to as unbalanced usage of the

stack. It can lead to serious problems unless great care is

utilized. (See Section 6.6.2.)

It may be desirable to jump from any of several subroutines to a
special. location in the main program when an error is detected. This
is called an abnormal return. The error handling module may then
return to the calling program, it may POP the return address to a

register paif and discard it, or it may initialize the stack. Avoid
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such procedures until you are reasonably expert.
6.8.3 Monitor Usage of the Stack

The MTS monitor program shares fhe stack with your'progfaﬁ. You will
not notice any effect ffom this except if you manipﬁléte or examine
the stack  pointer. The - monitor operates by "interrupting" your
program before each of your instructions is executed. (The subject
of interrupts is treated in Chapter 8.) The mohitor program pushes
your registers into the stack, and -calls its own subroutines. When
you - display the register contents the monitor calculates their

locations in the stack and displays the contents of those locations.

When you display the stack pointer, the monitor calculates the
address that will be contained in the stack pointer before your next
instruction is executed. To 1look into this, let wus again use a

program that places readily identified data in the registers.

8200 AF XRA A Clear Carry, Set Zero
8201 3E MVI -A,0A .
8202 0A

-8203 01 LXI B,0BOC
8204 oC

8205 OB

8206 11 LXI D,ODOE
8207 OE

8208 0D -
8209 21 LXI H,0809
820A 09

820B 08

820C E5 PUSH H

820D C5 PUSH B

820E D5 PUSH D

820F F5 PUSH PSW
8210 C3 JMP 8210
8211 10

8212 82
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6.8.3.1 Examining the Monitor Stack-

_S;ep through this program to the JMP instruction at'§210. (D6 not

use breakpoints.) Check the register contents.
(A)=0A (B)=0B (C)=0C (D)=0D (E)=0E. (F)=46. (H)=08 (L)=09

Look at your stack:

ADDR 1/p MEM 83D8 SP.456
NEXT 83D9 0A
- NEXT: .83DA OE
NEXT 83DB 0D
NEXT 83DC oc
NEXT 83DD ‘0B
NEXT 83DE 09
NEXT 83DF 08

Now let us look into the monitor's -part of the stack. The data shown
depend on your following these 'steps exactly; .a different key

sequence could give different data in the first few bytes here.

ADDR 8 3 C 2 - 82C2 A2

NEXT 82C3 02
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This is a return address within the subroutine DBY2, placed in the
stack when DBY2 called another subroutine. It has since been used by
a RET instruction. POP and RET do not remove the data or return
address from the stack memory; they recover the data and increment
the stack pointer. The contents of following locations can be seen by

pressing NEXT.

The entire stack is listed here and on the following page:

The return address 83C2 A2
described above 83C3 02
The address previously 83C4 c2
displayed, from PUSH H 83C5 83
The return address -83C6 A2
into DBY2 again 83C7 02
The address of the byte 83C8 C7
previously displayed 83C9 83
Another return address 83CA D1
for a display subroutine 83CB 92
A return address from 83CC FA
the NEXT command 83CD 01
A return address to 83CE A6
the main monitor program 83CF 00
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PSW pushed by monitor 83D0 46
83D1 0A
DE pushed by monitor 83D2 OE
83D3 0D
BC pushed by monitor 83D4 oC
83D5 0B
HL pushed by monitor 83D6 09
83D7 08
PSW pushed by your program 83D8 46
83D9 0A
DE pushed by your program 83DA OE
83DB oD
BC pushed by your program 83DC oC
83DD OB
HL pushed by your program 83DE 09
83DF 08

The monitor has used 22 (decimal) bytes in the stack. Until

breakpoints are set this is the most it uses.

There 1is no need for you to be familiar with the details above. In
fact one of the great advantages of a stack is that you can use it,
following some simple rules, without any concern over where a
particular piece of data is stored. However, an understanding of the

stack is very useful in troubleshooting programs that misbehave.
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6.8.3.2 Breakpoints in the Stack

The MTS monitor breakpoint system also uses the stack, but in a

special way.
addresses) in
stack. Four

and then step

It moves all of the existing stack downward (to lower
memory, and places the breakpoint information above the.
bytes are stored for each breakpoint. Press RST twice

to 8210 again. Now enter a breakpoint.

ADDR BRK 8210 BP.

This has moved the stack down four bytes.

ADDR 8 3 B E 83BE A2

NEXT 83BF 02

Most of the same data we looked at before are again in the stack, but

at locations

four bytes lower. A few bytes are different because we

have displayed different locations. Look at your stack pointer:

ADDR 1/P MEM 83D4 SP.46

Your stack has also been moved down by four bytes. Examine the rest'

of your stack

NEXT
NEXT
NEXT
NEXT
NEXT
NEXT

NEXT
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The next two bytes contain the value of your program counter-the Iast

time you pressed RST. Because you pressed it twice, this is 8200.

NEXT (Program counter at RST) 83DC 00

NEXT 83DD 82

Now we find the breakpoint data.

NEXT (The address, 8210) 83DE 10

83DF 82
NEXT (The data byte (JMP)) 83D0 C3
NEXT (An optional count) 83E1 00

Each breakpoint you enter occupies another four bytes in the stack.

6.8.4 The Growing Stack Problem

When you use the stack for data in complicated problems it is easy to
make a mistake and have more PUSH instructions than POP instructions.
If this occurs in a repetitive loop the stack will grow by two bytes
each time through the loop, and eventually fill the memory with stack

data until it destroys the program.
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The monitor breakpoint system can be used to protect against a
growing stack. In addition to stopping your program when the program
counter reaches a breakpoint, the monitor will stop execution if the
data stored at any breakpoint address is changed. This feature has
two uses: to stop when a loop that is writing to various locations
reaches some particular position; or to stop if your program writes
in some specific but undesired location. 1If we choose a location
somewhere between the lowest address the stack should ever reach, and
the highest address (within page 83xx) that is occupied by variable
data, we should expect no change in data at that location. By

protecting it with a breakpoint we can detect a growing stack.
Try this disastrous program:

8330 21 LXI  H,1111
8331 11

8332 11

8333 E5 PUSH H
8334 C3 JMP 8333
8335 33

8336 83

Be sure to set STEP mode, and set a breakpoint at 83A0 before

running.

ADDR 8 3 A 0 BRK 83A0 BP.
‘ADDR 8 3 3 0 8330 21
RUN 8334 C3
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Now look at the stack:

ADDR 1/P  MEM 83AE SP.11

NEXT 83AF 11

You will find 11 in all locations up through 83DB. The unbalanced
PUSH has wiped out the memory content 1in this area, but the
breakpoint at 83A0 protected everything below 8398. The monitor
detected the growing stack at the next instruction after'your stack
pointer reached 83AE, because the monitor itself had ihen written
into 83A0. Then the monitor's display operations used another eight

bytes of stack, down through 8398.
Now let us see what happens without the breakpoint proteqtion.

RST

ADDR 8 3 3 0 RUN

The display goes blank (probably - depending on the garbage pushed
into the stack other things could happen.) Push RST and look at the

test program (8330 up). It has been destroyed by the repeated PUSH.
To protect your programs against such errors, follow these rules:

Avoid using memory locations between 8398 and 83FF, except for

the stack and display.
Place a breakpoint at 83A0.

Qperate the computer in STEP mode (rather than AUTO) until you

are satisfied that your program is correct.
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6.8.5 Review and Self Test

At this point you have completed two program developments in which
you used subroutines that you wrote yourself, and also monitor
subroutines for input and output. You have used the stack to store
data, and seen how the monitor allows you to examine the stack
pointer and the stack. The questions and problems below will help

you to judge your understanding of the stack.

1) Identify the four PUSH instructions. Show their effects using

transfer notation.

2) Identify the two exchange instructionsl and show their effects

in transfer notation. How do they affect the length of the stack?

3) How many bytes_in the stack are used in the following program

segment?

PUSH B
PUSH D

CALL STUB (just a return)

CALL STUB
POP D
POP B

4) The monitor initializes the stack pointer, so you need not do

so when using the ICS Microcomputer Training System. For almost
any other machine your program must initialize the stack. What

intruction would you use?
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5) You are writing a main program, -and inhtend  to call a

subroutine called QUIZ whose specification states:

Entry data: (DE) = Address for Data
Return data: (A) = Answer
Registers: All registers are used.

The data address you must pass to QUIZ is storedzin memory
locations 8300, 8301. Register pairs DE and HL presently contain
data that you will need in subsequent opérations. Write a program
segment to save the data, load the address, call the subroutine,

and recover the data.

6) Identify the serious flaw in this multiplication subroutine
for (E) * (A), which is required to preserve (BC). Fix it without

making the subroutine longer.

PUSH B (ST) < - (BC)
LX1 H,0000 Clear Product
MOV B,L (BC) < - Multiplicand
MOV C,A
INR E Test multiplier
DCR: E and exit if zero
RZ
—» DAD B Multiplication Loop
DCR E
JNZ
POP B (BC) < - (ST)
RET '

7) How does your corrected version of the above multiplication
subroutine affect Zero and Carry? Modify it to preserve the Carry
flag, and return Zero set if the product is 0000. How many bytes

in the stack are used when the subroutine.is called?
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Answers to Self Test, Section 6.8.5
1) The four PUSH instructions are:

C5 PUSH B (ST) < - (BC)
(SP) ¢ - (SP) - 2

D5 PUSH ED (ST) < - (DE)
(SP) < - (SP) - 2

E5 ©PUSH H (ST) < - (HL)

(SP) < - (SP) - 2

F5 PUSH PSW (ST) < - (PSW)

(SP) < - (Sp) - 2

2) The two exchange instructions are:

EB  XCHG (HL) < - > (DE)

E3  XTHL (HL) < = > (ST)

XCHG does not use the stack. XTHL does not change the length of the

stack, although it temporarily changes the stack pointer.

3) Each PUSH and each CALL uses two bytes in the stack, but the two
CALL's use the same stack locations. Therefore the segment uses six

bytes in the stack.

4) LXI SP, address initializes the stack pointer. You can also use

LXI H, address; SPHL.

6-130



MODULES, SUBROUTINES AND THE STACK

5) Program segment:

PUSH D (ST) < = (DE)
PUSH H (ST) < - (HL)
LHLD 8300 (HL) < - Address
XCHG (DE) < - Address
CALL QULZ (4) <{ - Answer
POP H (HL) < - (ST)
POP D (DE) < - (ST)
Equally good:

PUSH H (ST) < - (HL)
LHLD 8300 (HL) < - Address
PUSH D (ST) < - (DE)
XCHG (DE) < - Address
CALL QUIZ (A) < - Answer
POP D (DE) < - (8T)
POP H (HL) < - (ST)

Equivalent, but two bytes longer:

PUSH H (ST) < - (HL)
PUSH D (ST) < - (DE)

LXI H,8300 Address the address
MOV E,M (DE) < - Address
INX H

MOV D,M

CALL QU1Z (A) < - Answer
POP D (DE) < - (ST)

POP H (HL) < - (ST)
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6) The bad multiplication subroutine attempts to ‘exit:for a zero
multiplier with (BC) in the stack. The version shown belpw corrects
the problem by testing for:a Zero multiplie£ before savi;g (BC) and
placing the multiplicand there. This change goes not add or ;ﬁange

any instructions.

LXI H, 0000 Clear Product

INR E Test multiplier

DCR E and exit if zero

RZ

PUSH B (ST) < - (BC)

MOV B,L (BC) < - multiplicand

MOV C,A : T
—> DAD B Multiplication Loop

DCR E
——— JNZ

POP B (BC) < - (8T)

.RET : :

7) The given solution to 6 preserves Carry if the multiplier is
zero; -otherwise it returns.Carry clear. It always returns Zero set.

The following version meets the requirement stated.:

- LXI H, 0000 Clear Product

INR E Test multiplier
DCR E and exit if zero
RZ

INR A Test multiplicand
DCR A ‘and exit if zero
RZ _

PUSH PSW Save Carry, Not Zero
PUSH B (ST) < - (BC)"

——> DAD B

DCR B

JNZ

"POP B

POP PSW

RET

Unless the product is zero, a call to this subroutine uses six bytes

in the stack.
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6.9 SUBROUTINE CLASSIFICATION

We will define four kinds of subroutines. These are not mutually

exclusive.

Global Subroutines
Local Subroutines
Reentrant Subroutines

Interrupt Service Routines
6.9.1 Global Subroutines

A global subroutine is one which is available to be called from any
other program module. Typically it serves a general purpose function
such as input, output, multiplication, exponentiation, etc. It must
be fully specified so that other programmers may use it. A number of

restrictions are uSually applied, although none are absolute:

a)' It always returns to the calling program - it does

not make abnormal returns.
b) Any use of the stack is balanced.

¢) No data are preserved from one call to the next, except
in memory locations specified by the calling program.
The global subroutine may have memory areas reserved for

its own use.

In the sensor correction problem, MULTIPLY and DISPLAYRESULT could be

considered as global subroutines.
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6.9.2 Local Subroutines

A local subroutine has restrictions that limit its use'by other
program modules. Typically it is a small or ,SPecial pufpose
procedure. It may have restrictions on "entry, abnormal returns,
unbalanced stack usage, or it may preserve variable data in
permanently assigned memory locations which'are .also.used'by‘other
modules. lIn the sensor correction problem the subroutines that use
the directory and data table are clearly Local; because the .data
organization is highly specialized. INPUT could have been written as
a global suroutine, but because it calls NEXTSENSOR it must be

considered local to the sensor correction problem.
6.9.3 Re-Entrant Subroutines

A re-entrant suroutine is one that can be called_even thoﬁgh it is
already in use. A‘few of the monitor subroutines are re—entrant.
Any subroutine that is subject to interrupts and which is called'by
an interrupt service routine must be re-entrant. Full discussion of

this type of subroutine is. beyond the scope of this text.
6.9.4 Interrupt Service Routine

An interrupt service routine is executed when an external interrupt
occurs. There are very special requirements for interrupt servicing,
which we will present in Chapter 8 with other input and output

functions.
6.9.5 Subroutine Transparency
Transparency implies that a subroutine avoids changing register
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contents except as necessary for returning results to the calling
progfamt It is generally a desirable quality in a global subroutine,
.since the calling program is less likely to need PUSH -and POP
instructiOns. The monitor subroutine GETKY is a good example; it
preserves D, E, H and L. The fact that the key value is returned in
_(BC) -as well as in (A) is used by many programs that call GETKY. It

also. returns useful information in the Carry and Zero flags.

The display subroutines of the monitor are not as transparent as
would be desirable. It would be sufficient to pass two bytes to
DBY2: the data to be displayed and the display location; all other
registers and the flags could be preserved since DBY2 has no useful
information to be returned except the next display location. It is
only convenient for DBY2 itself that the data displayed is copied
into Register C; calling programs seldom if ever use that
information. An earlier version was even worse; it destroyed the

contents of Registers A and B.

‘The use of alternate entries to a subroutine tends to make it

difficult to achieve transparency. This is especially true of

internal alternate entries, since registers cannot be pushed into the
stack at the beginning of the subroutine. Subroutine DBYTE, for
example, loads (DE) with the address 83FF to display a byte in the
right hand digit. It could save BC and DE in the stack, but the
alternate entry DBY2 could not then be used to display data at other

locations.
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6.10 MONITOR SUBROUTINES

The remainder of this chapter describes monitor subroutines that
are available to you. Others will be found in Appendix A. Timing
data are given for some subroutines. These are in decimal count of
clocks and include the time for the CALL to the subroutine (17
clocks). The MTS clock rate is 2048000 clocks per second. Operation
of the monitor greatly extends the time for the display subroutines
(by a factor of approximately 100). Operation of the display DMA
channel very slightly extends the time, typically by about 0.1

percent.
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Monitor Keyboard Scan Subroutine (SCAN)

Function

S A

Séan the keyboard once, and if a key is pressed decode it
-and ‘return with the key value in Register A, .and the CY flag
set. If no key is pressed return with CY clear.

CALL
CDh CALL SCAN
-57
02
Extent
| 0257 fﬂrough 0281
Inputs
Keyboard
Outputs

No key pressed: Cy clear, (A) = 00
Key pressed: Key value in A; CY set

Registers
A

Constraints

Uses Output Port C and Input Port A. Interface adaptor
must be programmed for these. This is done by the monitor.

Leaves Output Port C loaded with different data depending on
which key was pressed.

The monitor is disabled during operation and at return.
Timing

200 to 553 clocks, depending on input key. 457 clocks, if no
key 1is pressed. Add 5432 clocks if the monitor is enabled.
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6.10.2 Monitor Key Entry Subroutine (GETKY)

Function

Obtain one key input from the keyboard. Return when a key
has been pressed and released.

Call

CD CALL GETKY
3D
02

Extent

023D through 0256.
Calls SCAN

Inputs
Keyboard
Outputs
a) Value of the key entered, duplicated in Registers A and

C. A hexadecimal key returns the hexadecimal value as
the low four bits. Command keys return the following:

MEM 10
REG 11
ADDR 12
STEP 13
RUN 14
NEXT 15
BRK 16
CLR 17

RST causes a general reset to the processor and is not
handled by the subroutine.

b) The Carry flag is cleared if a command key is entered;
it is set if a hexadecimal key is entered.

Registers

Registers A, B and C are used. Register B is cleared. The
contents of Registers D, E, H and L are preserved.
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Constraints

a) Input Port A and Output Port C are used.

b) GETKY retains control until a key has been ipressed
and released. It delays until release has been continuously
detected for 20 milliseconds (debouncing).

¢c) The monitor is disabled during key entry. At return the
monitor, display, and keyboard are enabled.
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6.10.3 Monitor Data Byte Input Subroutine (ENTBY)

Function

Accepts hexadecimal  keys and one command

Successive hexadecimal keys are combined into a byte and
the last two keys pressed are displayed and returned in

Register L. = The preceding two keys (if

returned in Register H. Returns when a command key has been
pressed, released and . debounced, with the command key

value in Registers A and C.

.Call

CDh CALL ENTBY
36
03

Extent

0336 through 0345.
Calls DBYTE and KEYS.

Inputs

Keyboard

Outputs

Command key in Registers A and C. Last two hexadecimal
keys combined as a byte in L. Two preceding hexadecimal
keys combined as a byte in H. Number of hexadecimal keys
pressed in Register D. Register B is cleared. Zero is set if

no hexadecimal keys were pressed. Carry is cleared.
ﬁegisters
A, B, C, D, H, L

Constraints

See GETKY Constraints.
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6.10.4 Monitor Data Word Input Subroutine (ENTWD)

Function

Accepts hexadecimal keys and one command key.
Successive hexadecimal keys are combined into two bytes,
and the last four keys pressed are displayed and returned in
Registers H and L. When four or more key have been pressed
the content of the memory location addressed by those keys is
~displayed. Returns = when a command key has been
pressed, released and debounced, with the command key value
in Registers A and C.

Call Alternate Entry (See Note)
CD CALL ENTWD CD CALL ENTW2
46 49
03 03

Extent

0346 through 0364
Calls DWORD, DMEM, CLEAR

Inputs
Keyboard

Outputs
Command key in Registers A and C. Last four hexadecimal
keys in Registers H and L. Number of hexadecimal keys
pressed in Register D. Zero set if no hexadecimal keys
entered. Register B cleared. v

Registers

A, B, C, D, H, L

Note

Register pair (HL) 1is cleared at entry ENTWD, so 1f no
hexadecimal keys are pressed (HL) = 0000. If entry ENTWZ2 is
used (HL) is preserved until a hexadecimal key 1is pressed;
then the leading three digits are cleared.

Constraints

See GETKY Constraints.
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6.10.5 Monitor DisplaykDigit Subroutine (DISPR)
Function
Display one hexadecimal digit at a specified display
position. The input is a hexadecimal value; the output to
the display is encoded in the seven segment format. '
Call
CD CALL DISPR
Aé
02
Extent
0246 through 02C2
Inputs

a) Hexadecimal value in Register A.

b) Display digit address stored in register pair D,E as

. follows:

(D,E) 3
83F8 Left digit
83F9 Second digit
83FA Third digit
83FB Fourth digit
83FC Fifth digit
83FD Sixth digit
83FE Seventh digit
83FF Right digit

Outputs

a) The seven segment code for the hexadecimal input
value is placed in the address provided. If the address
is one of those listed above the value will be displayed
by  the DMA channel, provided that the channel has been
turned on. (Note: the monitor leaves the DMA channel turned
on, SO unless you use other outputs this need not concern
you.) If a different address is specified, the seven segment
value will be stored there.

b) The address in Register D, E is decremented by one.
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Registers

a) Registers A, C, D, E, H, L are used.

b) Only the memory location addressed by D,E is affected.
c) Register A is preserved and copied into Register C.

d) Zero and Carry flags are cleared.

Constraints

Hardware control outputs are not affected. For display to be
effective the display must be enabled by a high output at
PORTOC7.

Timing 82 clocks
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6.10.6 Monitor Display Byte Subroutine - DMEM, DBYTE, DBY2

i

Function

Display a byte of" daia as two hexadecimal digits. The
display 1is coded 'in seven segment format; decimal points are

off.
Call |
CD CALL DMEM - o
94 Display ((HL)) in right hand
02 digits
CD CALL DBYTE
95 Display (A) in right hand digits
02 |
CD Call DBY2
98 Display (A) at location ((DE))
02 ;
Extent

0294 through 02A5
Calls DISPR and DIGHI

Inputs
DMEM - Memory address?in H,L
DBYTE - Byte in A
DBY2 -~ Byte in A and memory address for display in DE.

DMEM and DBYTE ihitialize'register pair DE to 83FF to
display the byte in the right hand positions.
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Outputs
Registers A and C contain byte displayed.
Register pair D,E is decremented by two.

Memory 1location addressed by contents = of register

pair DE (at entry) is loaded with the seven
segment code for the low order four bits of the input
byte.

The next lower memory location (DE) - 1 is loaded with
the seven segment code for the high order four bits of
the input byte.

Registers
Registers A, C, D, E are used

Registers B, H, L are preserved Register A is preserved
except by DMEM.

Constraints

Successive calls to DBY2 will display bytes in
successive pairs of digits. DBY2 does not test the
address, so the codes may be stored in other memory
locations. If data are stored in locations between
83CO0 and 83F7 the monitor operation may be disrupted.

The monitor, display, and keyboard are enabied%ét exit.
Timing
DMEM 332 clocks

DBYTE 325 clocks
DBY2 315 clocks
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6.10.7 Monitor Display Word Subroutine - DWORD DWD2

Function

Display two bytes of dat? as four hexadecimal digits.

Call
CD CALL DWORD ;
D1 Displays content of
02 register pair H,L in
four left digits.
) CALL DWD2
D4 Displays content of
02 register pair H,L
in specified digit
Extent
02D1 through O02DB
Calls DBY2
Inputs

a) Data to be displayed in (HL)
b) For DWD2 only, displpy address in register pair DE

Outputs
Registers A and C contaih more significant byte of display.
Register pair DE is decremented by 4 from the initial
value provided by DWORD or at entry to DWD2.

Registers

Registers A, C, D and;E are used. Registers B, H and L are
preserved.

Constraints
Successive calls to - DWD2 may be made without
re-initializing (D,E), provided the first call addressed
83FF. The address supplied in DE is not tested, so the
seven segment codes  may be stored in other memory
locations. If data are stored in locations between 83CO and

83F7 the monitor operation may be disrupted.
Monitor interrupts, keyﬁoard and display are enabled at exit.

Timing 660 clocks
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6.10.8 Monitor Subroutine CLRGT, CLEAR, CLRLP

Function

Clear part or all of the display or memory.

Call

CD
82
02

Cbh
87
02
CD

o2

Extent

CALL CLRGT
Clears four right hand
display digits

CALL CLEAR
Clears entire display

CALL CLRLP

Enter with number of bytes to be cleared
in (B) and highest address to be cleared
in (HL)

0282 through 0293

Inputs

CLEAR, CLRGT - none
CLRLP - number of bytes in B

Outputs

highest address in (H,L)

Contents of display memory area starting at
right are set to 0 (except for CLRLP)

(B) =
(HL)

Registers
B, H, L

Timing

00

decremented by number of bytes cleared,
addressing memory location below last
byte cleared.

are used. Zero is set. Carry is preserved.

CLEAR 284 clocks
CLRGT 174 clocks
CLRLP 27 clocks + 30 clocks for each byte cleared.
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6.10.9 Monitor Subroutine DELAY, DELYA

Function

Wait in a loop for a defined time.

Call

CD CALL DELAY
36 Wait for one millisecond
02
CD CALL DELYA
38 Wait for a time
02 set in Register A

Extent

0236 through 023C

Input

DELAY - None
DELYA - Enter with a value in Register A,
proportional to the delay desired.
Output
(A) = 00 Zero flag set. Carry preserved
Registers

A is used.

Timing for DELYA

Delay 15 clock times for each count in
Register A, plus CALL and RET (27 clocks).

With the monitor enabled the delay is 1381
clocks for each count in Register A, plus
1393 clocks for CALL and RET.

Exact Timing for DELAY

1999 clocks = 0.976 milliseconds. With
monitor enabled 182994 clocks = 375 milliseconds.
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7.

It

LOGIC AND BIT MANIPULATION

is often necessary to perform functions that depend on individual

bits in a byte. This is common, for example, in control problems,

where data

values.

In

bits may represent discrete signals rather than numeric

this chapter two sets of instructions will be introduced: rotate

commands,

logical

which work on the Accumulator and Carry flag only; and

functions, which generally involve the Accumulator and

another register.

7.1

ROTATE COMMANDS

Rotate |is

command to move each bit in the Accumulator to an

adjacent position.

17

RAL

Rotate Accumulator Left Through Carry

Move each bit in Register A to the next higher
position. Move the most significant bit into the
Carry flag. Move the contents of the Carry flag into
the least significant bit. Carry 1is the only flag

affected.

10N 00NN

|CY B7 | B6 | BS 4 3 | B2 11B

_ )
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1F RAR Rotate Accumulator Right Through Carry

Move each bit 1in Registef A to the next lower
position. Move the least significant bit into the
Carry flag. Move the content of the Carry flag into

the most significant bit. Carry is the only flag
affected.

YO OMN0O00

L )

These two rotate. commands are sometimes called "arithmetic shift"

because they can be used to double or halve the value of the content
of Register A and are used in multiplication and division. They can
also be used to obtain access to an individual bit. To illustrate
the arithmetiec properties of rotate, consider the following simple

binary numbers:
0000 0111 (=07) 0000 1110 (=0E, or 14 decimal)

The second number results from a left shift of the first, and as a

result has'been doubled in magnitude.
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7.1.1 Rotate Exercise

A ~byte  can be doubled by moving:it -into Register A, clearing the
Carry, and rotating left. This places its most significant bit (MSB)
in -"the Carry. To double a two byte value, perform .this operation on
the less ‘significant. byteé (Register L), move the result back to L,
and repeat on the more significant byte (Register H), but without
clearing the Carry:

f ARARANARARARA

7 ] p— -

FIRST STEP cY 5{4 (312 (1|0

(111 F1F1¢16) N J

F |E B|A| 9|8 SECOND STEP

The result is that each bit in the sixteen bit word has been shifted

left one position.

The word can be halved by the reverse process. It must start with

the more significant byte and shift right:

OOOGOLOG 3
FIE|D|[C|B|A|] 9] S8 CY

N J

SECOND STEP 716

FIRST STEP

(Y O3 (3 (3 (3
15413 (2|1
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In this exercise we shall wuse the rotate left and rotate right
commands in two ways: to perform the arithmetic function of doubling
or halving a two byte value, and to move specific bits of a command
byte 1into the Carry so they can be tested. We shall use monitor
subroutines to accept data and display the results. The result of
the operation is to be preserved until a new command is entered; so
that we can (according to the command) either use newly entered data

or perform another operation on the previous result.

The result can be displayed by the subroutine DISPLAYRESULT from
Chapter 6 if you still have that in memory. Otherwise use an almost
identical monitor subroutine. DWD2 is an alternate entry to DWORD,
which displays two bytes in the left hand four digits. To place the

display at the right, preload (DE) with 83FF and call DWD2.

CD CALL DWD2 Display the content
D4 of HL in the digits
02 addressed by (DE).

To display in the left hand digits:

CD CALL DWORD Display the content
D1 of HL in the
02 left hand digits.

We shall use the monitor subroutine ENTWD to obtain two data bytes
and a command key, and act on the data word according to the command

key entered.
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CD CALL ENTWD (HL) < =- hex keys
46 (A) < - command key
03

ENTWD displays the hex keys as they are entered, using the four left
hand digits of the display. When  four or more digits have been
entered a byte is also displayed at the right. This 1is of no
interest here; it 1is part of the function of ENTWD in the monitor

when you press ADDR followed by four keys.
The arithmetic operations are to be performed by subroutines:
SHIFTRIGHT

Shift +the content of register pair HL right one bit. Shift a zero

into the high bit of (H). All flags and all other registers must be

preserved.
SHIFTLEFT

Shift the content of register pair HL left one bit. Shift a zero

into the low bit of (L). All flags and all other registers must be

preserved.
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Because we are using some new instructions and new monitor

subroutines, it is desirable here to start with "bottom-up"”

programming. Use a simple test driver:

8200 — CALL ENTWD
CALL SHIFTLEFT
LXI D,83FF

CALL DWD2

— JMP 8200

Write the subroutine SHIFTLEFT and test it. Then write SHIFTRIGHT
and change the call in the test driver. Try the programs with simple
numbers for data entry and observe that SHIFTLEFT doubles the value

and SHIFTRIGHT halves the value.
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7.1.2 Rotate Instructions for Control Functions

In the final program the command keys are to be defined as follows:

MEM (=0001 0000) Halve the new hex value
REG (=0001 0001) Double the new hex value
ADDR (=0001 0010) Halve the previous result
STEP (=0001 0011) Double the previous result
RUN (=0001 0100) Same as MEM

NEXT (=0001 0101) Same as REG

BRK (=0001 0110) Same as ADDR

CLR (=0001 0O111) Same as STEP

Thus the control is exercised according to the two low bits of the
command key value. Bit 0 (the least significant bit) selects the

arithmetic function; Bit 1 chooses between new data or an old result.

The command key definitions can be remembered easily if you use only
the top row. The left keys (REG,and,MEM) use new data and the right
keys (BRK and CLR) use the old result. The outside keys (REG and

CLR) double the value and the inside keys halve it.

The main program must make all decisions and call subroutines as
required. The decisions are based on the two low bits of the command

character:

Bit O 0 Halve the data

1 = Double the data

Bit 1 0 ‘Use new data

1 = Use old result



LOGIC AND BIT MANIPULATION

The first decision depends on Bit 1. This can be moved into Carry,
where 1t can control a conditional jump, by two RAR instructions.

These also move Bit O into Bit 7.

The old result must be kept in memory, since ENTWD uses all registers

except E. Let us assign 8300, 8301 for -the result.

ENTWD will display newly entered data in the left digifs. When an
old result is to be used for the new calculation, it will be
desirable to display it at the left. We can display it ndw, but must

save the command character:

RAR Bit 0 to Bit 7 and Bit 1 to CY
RAR
— JNC If new data to be used
LHLD 8300 (HL) < = Old Result
PUSH PSW Save Command
CALL DWORD Display Result at Left
POP  PSW 'Recover Command
—» RAL (CY) < - Halve/Double

The RAL instruction moves the original Bit O of the command from Bit

7, where two RAR's put it, into Carry.

7-10
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7.1.3 1f - Then - Else Construct

With the Carry flag set to distinguish between SHIFTLEFT and
SHIFTRIGHT we could do this:

JNC
CALL SHIFTLEFT

—— JMP

» CALL  SHIFTRIGHT

— (Display Result)

A more attractive way to do this is:

PUSH PSW
cc SHIFTLEFT
POP PSW

CNC SHIFTRIGHT

Because it has no jgmp instructions this has fewer bytes and fewer
opportunities for mistakes. (It is slower by either 6 or 11

microseconds than the former arrangement.)
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these constructions is shown in a:block diagram as:

Not Carr Carry:

SHIFTRIGHT SHIFTLEFT

)-r‘

It is described in words (in computereze) as:

This is a
and the

commonly.

7-12

If Carry Then Shiftleft

Else Shiftright

very powerful construction (or "comstruct," in computereze)

best computer languages (such as PASCAL) use it very
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Now let us describe the main program as though we were writing it in

a '"higher level language" - a computer language that understands

words instead of binary intructions.

1)

2)

3)

4)

5)

6)

Input Data and Command

If (Command Bit 1) = 1 then
Replace Input Data
Display Old Result

If (Command Bit 0) = 1 then

Else Shiftright
Store Result
Display Result

Go to step 1

do the following:
with Old Result

Shiftleft

7-13
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numbers.

Up to th
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‘One more

Try other
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leted program solution is given

you should write and code it yousel

1 ‘2 3 4 REG
CLR (2 x Old)

CLR (2 x 0ld)

BRK  (01d/2)

BRK

BRK

BRK

BRK

ted zeros out.

CLR (2 x Old)

BRK  (01ld/2)

BRK
CLR (2 x Old)
CLR

CLR

numbers to see where you lose data.

in Figure 7-3, but for

£.

1234
2468
48D0

91A0

'48D0

2468
1234

091A

048D

091A

048D
0246
048C

0918

Then experiment with

2468
48D0
91A0
48D0
2468
1234
0914

048D

is point we can restore the previous value, because we have

0914

048D

shift right will lose the one in the least significant bit.

0246
048C
0918

1230
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LOGIC'AND BIT MANIPULATION
7.1.4 Arithmetic Substitutes for RAL

We have seen that RAL doubles the content of A. This can equally

well be done by adding the content of A to itself by ADD A or ADC A.

87 ADD A (A) <= (&) + (A)

8F ADC A (4) < - (A) + (A) + (CY)

ADD A discards the old content of Carry. Since the value is doubled
it must result in an even number, with 0 in the least significant
bit. ADC A adds the old Carry in, so it is identical to RAL in its
numeric result. In SHIFTLEFT we can discard the XRA A, whose
function was to clear Carry, and replace the first RAL with ADD A.
Replace the second RAL with ADC A. Test to see that the result is

identical.

These 1instructions differ from RAL in that all flags are affected,

whereas RAL affects only the Carry flag. Sometimes one usage or the

other is preferred because of the different effect on flags.

We also hiave available the double precision add instruction DAD H.
.This shifts "left the 16 bit number in (HL), so we can replace the

entire SHIFTLEFT subroutine by:

8240 29 DAD H (HL) < - (HL) + (HL)
8241 Cc9. RET

Like RAL this affects only the-Carry flag. Make the substitution and

see that the.progrém operation is unchanged.

‘There is no arithmetic instruction equivalent to' RAR.

7-17
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7.1.5 Logical Rotate

Two other rotate commands are provided in the 8080, which are similar
to RAL and RAR ekcept for their handling of the Carry and the most

-and least significant:bits.
07 RLC Rotate Left into Carry

Move each bit in ‘Register A to the next higher
position. Move MSB into the Carry flag and into LSB.

Only the Carry flag is affected..

gpIamnaTatatata
716 |

cY 5 {ul3)2 1o

_ J

OF RRC Rotate Right into Carry

Move each bit in Register A to the next lower
position. Move LSB into the Carry flag and into MSB.

Only the Carry flag is affected.

Jop B Tc e TeTeNele
cY 7|6 |5 [4]3]2 {1 ]|o

These two instructions are called logical rotate because they treat

7-18
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the Accumulator as an eight bit ring in which MSB and LSB are
conceptually Jjuxtaposed. The operation does not have an arithmetic

equivalent.

The iogical shifts discard the old value of the Carry flag. If in
the SHIFTLEFT and SHIFTRIGHT subroutines you replace both RAL
commands (17) with RLC (07) and both RAR commands (1F) with RRC (OF)
you will '“see that the two bytes are now independent of each other.
If you enter two new bytes, using REG to shift left, and then BRK to
shift the same data right, the input value wili be restored. Now if
you use either BRK or CLR eight times each byte will be shifted back
to its original value. After four shifts in one direction the digits

of each byte are interchanged:

1 2 3 4 REG 1234 2468
CLR 2468 48D0
CLR 48D0 90A1
CLR 9041 2143

Another four shifts in either direction will restore the initial

values.

Can you modify the SHIFTLEFT and SHIFTRIGHT subroutines to achieve
sixteen bit logical rotates? This will preserve all bits, so that
pressing BRK or CLR sixteen times will resfore thé initial value.

Think of the solution before looking at Figure 7-4.
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7.2 BINARY ENTRY AND DISPLAY EXERCISE

In the preceding exercise we accepted hexadecimal keys and displayed
hexadecimal values, using monitor subroutines. Now we shall use the
display techniques learned in Chapter 4 to display a number in binary
form. Monitor subroutine GETKY Wili be used to read in one key at a

time, and diétinguish commands from hex‘keys,

CD CALL GETKY (A) = (C) < - Key
3D Carry set if hex
02

At any moment we shall control one bit of the number being entered,
and one digit of the display. This bit and display digit can be
changed back and forth between 0 and 1. A command key will move on

to the next bit and display digit.

Only the least significant bit of a hex key will be used. If it is
zero, we shall put a zero into the bit being entered; if it is one,
put a one into the bit being entered. Display O or 1 in the
corresponding display digit, using 3F for 0, 06 for 1. Until a bit

has been entered display a decimal point only (80) in the digit.

A convenient way of both testing and keeping the data bit entered
uses the RRC intruction. This sets Carry if the least significant

bit (Bit 0) is one, and also copies Bit 0 into Bit 7. Save this in

Register L.
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‘When any command key is entered, do the following:

I1If no hex key has yet been entered for the current position, enter

"and display a zero.

Shift the data bit entered for the current position into the least

significant bit of a data byte, spiftipg_preceding bits left.

Address the next digit of the display. If still within the eight
digit display then loop to accept data for the next bit. At the end
of the display, when eight bits have been entered, clear the binary

display and show the eight bit value in hexadecimal.

Figure 7-5 shows the program as a flow diagram.
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o— =)

Clear the Data Byte (H)
Address the Left Digit

On ———

Mark the Digit Addressed
with a Decimal Point

=

Call GETKY
(A) = (C)=-—Key
CY Set if Hex

Command (Not Carry)

Hex (Carry)

Shift LSB into CY and Bit 7
Copy Result into (L)

Display 0 Display 1

Binary Entry and Display Program

Figure 7-5a
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? Command Key Received

Test Display Digit for Decimal
Point or Binary Display

<<::i;532mal Point

Enter 0 into (L)
Display 0 (3F)

Shift Data Byte (H) Left
and Shift Bit 7 of (L)

into Bit 0 of (H)
Address Next’Bit Position

Within 8 Bits

(Not Zero) . v
End of Display
and Data Byte

Clear Display
Display Data Byte (H)

I

Figure 7-5b
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decimal point (80) until a

“Since the display digit contains only a

that value when a command

hex key has been pressed, we can test for

is entered. If nothing has been entered, replace 80 by 3F to display

0. Also enter 00 into Register L.

Register H is used for the data
Register L contains the new data bit.

and enter the new bit.

We have monitor display routines to

data byte (H) in hex.

CD CALL CLEAR
87

02

byte entered; the high bit of

DAD H will shift the data byte

the display and show the

Clear the display
Uses (B) and (HL)

Since CLEAR uses Register H but not A,

Then use:

CD CALL DBYTE
95

02

precede this with MOV A, H.

Display (A)

at the right

Write the program and try entering binary values.

will use similar techniques.

7-26
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BINARY ENTRY AND DISPLAY (continued)
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7.3 LOGIC FUNCTIONS

Logic functions operate on individual bits or pairs of bits. The

defined functions are:

Complement
AND
Inclusive OR

Exclusive OR

7.3.1 Complement (CMA)

If a bit is O, its complement is 1; if a bit is 1, its complement is

0. The complement is often symbolized by a bar, read as NOT. Thus:

If X

1,-§'= 0 (If X equals one, NOT X equals zero)

If X 0,'§'= 1 (If X equals zero, NOT X equals one)

The complement of a byte is the byte comprising the complements of

each of the bits of the original byte. For example:

01101100 = 10010011
or EE = 93

This function is generated in the 8080 by the instruction:

2F CMA Complement Accumulator
(A) < - (&)

No flags are affected.

The complement function is also involved in arithmetic, as you will

see in later chapters.
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7.3.2 AND (ANA)

The AND of two bits is 1 if and only if both bits are 1. The AND is
symbolized by a dot, or by the intersection :symbol (ﬂ\ , or simply
by placing two symbolic characters next to each other. Since we will

be dealing with bytes for which multiplication is also defined, we

will use /ﬁ\

X ()Y (X) AND (Y)

The operation of a logical function is often shown by a truth table.

X Y (X) /7 (Y)
0 0 0
0 1 0
1 0 0
1 1 1

The AND of two bytes is the byte comprising the bits generated by the
AND qf corresponding bits in the two original bytes. For instance:

01101100 /) 11101001 01101000

or 6C ‘/ﬁ\ E9

68

A logic function of two bytes expressed in hexadecimal is not obvious

‘at'\al glance ~ one usually has to expand the bytes. to binary

representation.

The AND of the bytes in Register A and any other register (or M, the
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memory location addressed by the content of register pair H) is

generated, and the result placed in Register A, by:

ANA r And (r) with (A);
place the result in A.
(4) <= (A) M (v)
The Carry flag is cleared.
Other flags are set or cleared

.according to the result.

7.3.3 Inclusive OR (ORA)

The inclusive OR of two bits is 1 if either of the bits is 1. The OR
is symbolized by a + sign or the union symbol \_j « Again, since

addition is defined for bytes, we use \_/

X Y x) \U )
0 0 0
0 1 1
1 0 1
1 1 1

The OR of two bytes it the OR of corresponding bits:

11101101

01101100 \_J 11101001

or 6¢ \_/ E9

ED

-The OR of the bytes in Register A and any other register (or M) is

generated, and the result placed in Register A, by ORA r.
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ORA r OR (r) with (A);
place the result in A.
(4) <= (A) \ U/ ()
The Carry flag is clearedf
Other flags are set or cleared

according to the result.

Since I\_J/1 = 1 and 0\_JO0 = 0, the function ORA A does not change the
content of Register A, but sets the Zero flag if (A) = 0, and clears
it otherwise. It similarly sets or clears the other flags which have

not yet been defined. We have used it to clear the Carry flag.
7.3.4 Exclusive OR (XRA)

The Exclusive OR of two bits is 1 if one but not both of the bits is
1, The Exclusive OR, commonly referred to as XOR (sometimes EXOR),

is symbolized (¥) .

X Y x)y (O (@
0 0 0
0 1 1
1 0 1
1 1 0

The XOR of two bytes is the XOR of corresponding bits:

o1101100 (+) 11101001

or ec. (+) E9

The XOR of the byte in Register A and any other register (or M) is

10000101

85

generated, and the result placed in Register A, by XRA r.
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XBA r XOR (r) with (A4);
place the résult‘in A,
w < @w ®
The Carry flag is cleared.
Other flags are set or cleared

according to the result.

Recognize that since 1(:)1 = 0, and O(:) 0 = 0, then (A)(Z)(A) = 0.
Therefore XRA A 1is used to clear Register A (SUB A could also be

used.)
7.3.5 1mmediate Logic Functions

For each of the logic functions except complement, there is a set of
instructions using each of the registers (or the referenced memory
location) as-  a ,soqrce' for the data byte. These instructions are
tabulated in  the instruction chart. As with the arithmetic

instructions, there are also immediate versions of each:

E6 ANI AND Immediate data
XX with Register A.
Fé ORI OR Immediate data
XX with Register A.
EE XR1 XOR Immediate data
XX with Register. A.

These generate the indicated 1logic function of the contenf of

Register A with the content of Byte 2 of the instruction and place

7-33



LOGIC AND BIT

MANIPULATION

the result iﬁ Register A. The Carry flag is cleared and other flags

are set or cleared according to the result of the operation.

The
from the
concerned wif

it is more eff

than to shi f{

more 1lmportant

If Bit 3 o

2ero.

These two ins

We have seen

affect other

flags.
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instruction

result

ANI 1is especially useful in masking unwanted data

of an input operation. .For instance, if you are
th Bit 4 of an input byte and want to jump if it is one,

ficient to write:

ANI 10 (00010000)

JNZ

L the data bit to the Carry flag and jump if Carry. Even

t, ANI can test for any of several bits:

ANI 58 (01011000)

JNZ

+ Bit 4 or Bit 6 of Register A is 1, the result is not

7.3.6 Set and Complement Carry

tructions affect only Carry.

37 STC Set Carry

3F CMC Complement Carry

several ways of clearing the Carry flag, but these also

flags. STC,CMC clears Carry with no effect on other
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7.4  LOGIC FUNCTION EXERCISE

Now we shall plan an exercise using bit shifting and masking
techniques to demonstrate the logic functions. We shall accept eight
data bits as a sequence of ones and zeros from the keyboard and
display them as they are received, using the decimal point to mark
the bit position, as in the exercise of Section 7.2. At the same
time, we shall perform a logic function, combining the new data bit
with one previously entered in the same bit bosition. The new bit,
the old bit, and the result of the loéic function will all be

displayed together.

Top Horizontal = Logic Function
'—— Middle Horizontal = Old Bit
—. Bottom Horizontal = New Bit

e Decimal Point = Bit Marker

A blank horizontal bar will represent O and an illuminated bar "will

represent 1.
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The logic function of the old and new data bytes will be selectable
by command keys. Define the commands in the top row of keys for this

purpose.

REG = ORA
MEM = ANA
BRK = XRA
CLR = CMA

These commands are to be stored, so that whenever a bit is changed

the function most recently selected can be generated and displayed.
Define the command keys at the right for moving data.

NEXT Move to next bit position

ADDR Ignore - has no purpose here

RUN Replace old data with result

of logic function
STEP Replace old data with new data

These commands are only executed when entered, so they need not be

stored.
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7.4.1 Data Byte and Bit Marker

1n this new exercise we will not clear the data byte after enterihé
eight bits, but wrap around to the most significant bit. When NEXT
is pressed we shall move on to the next bit, preserving the existing
bit, rather than inserting a zero. With this rule, the shifting
technique we used for entering bits into a register in Section 7.2 is
no longer suitable; instead we must use a masking technique. Use
Register D for the data byte. In Register H keep a mark indicating

position:

80 = Most significant bit (Bit 7)

40 = Bit 6
20 = Bit 5
10 = Bit 4
08 = Bit 3
04 = Bit 2
02 = Bit 1
01 = Bit O

The bit marker keeps track of which bit is to be entered, and we will

use it to modify individual bits. For example:

Bit Marker (H) 00100000

Data Byte (D) 01100111
A

Replace this bit
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There are several ways of entering the new bit. One obvious way is
to test the key (in the Carry after a shift right) and jump to one of

two separate procedures:

Key is zero:

Bit marker 00100000
Complement 11011111
Data byte 01100111
AND result 01000111

‘Bit set to O

-Key is one:

Bit marker 00100000
Data byte 01100111

OR result 01100111

Bit set to 1
We shall consider alternative methods later.

The bit marker itself is changed when NEXT is pressed. It moves to
the right by one bit position, until it is 00000001, marking the
least significant bit. Now it must wrap around to the most
éignificant bit. This is exactly the function of the RRC instruction,

- s0 the response to NEXT will be:

MOV A,H
RRC
MOV H,A
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7.4.2 Keyboard Functions
Review the responses to the keyboard entries:

a) When a hex key is pressed, enter its least significant bit into
Register D in the bit position marked by (H). Display the new data.

Calculate the logic function and display the new result.

b) When NEXT is pressed, move the bit marker in (H). Display the

bit marker.

c) When STEP is pressed, replace the old data byte with the new data
byte. Display the newly replaced '"old" data byte. Calculate the

logic function and display the result.

d) When RUN is pressed, replace the old data byte with the result of
the 1logic function. Displa& the newly replaced '"old" data byte.
Calculate the logic function again (now using different "old" data)

and display the result.

e) When REG, MEM, BRK or CLR is pressed, replace the logic function

selector. Calculate the new logic function and display the result.

From the above we can see that most keys require calculation and
display of the logic function. Only NEXT and ADDR have no effect on
the function result. Therefore it is reasonable to recalculate the
logic function and display it after every key has been processed.

Once displayed it need not be retained.
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7.4.3 Register Assignments

We can keep all of the data for this pfogram in registers, using the
stack for temporary storage. In the main program the following

assignments are convenient:

(D) = New Data
(E) = 01d Data
(H) = Bit Mark
(L) = Logic Function Selector

These regisfers are preserved by GETKY, and other subroutines must

affect them only as required by the data and command entries.
7.4.4 Subroutines for Logic Functions Exercise

Let us define the following subroutines to accept and process data

and commands.

GETKY The monitor subroutine (at 023D) which accepts one key and

returns:

(4)
(B) = 00

(C) = key value

Carry set for a hexadecimal key
Carry clear for a command key

D, E, H and L are preserved.

DATA A local subroutine to enter the least significant bit of a hex

key into the new data byte (D) and display. the byte.
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COMMAND A local subroutine to interpret the commands. The logic
function commands (REG, MEM, BRK, CLR) will be stored; the other

commands will be processed immediately.

FUNCTION Generate the logic function selected by (L) (ORA, ANA,
XRA, CMA), of new data (D) with old data (E). Return the result:in

Register A.

DISPLAY Display one byte of data which may be the new data, old
data, logic function or bit marker as selected by the calling

program. Enter with:

(A) = data to be displayed
(B) = symbol for data|, as follows:
01 = Logic Function (Top Horizontal)
40 = O;d Data (Middle Horizontal)
08 = New Data (Bottom Horizontal)
80 = Bit Marker (Decimal Point)

All segments of each display digit, except the segment designated by

(B), must be preserved.
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7.4.5 Main Program for Logic Function Exercise

Having assigned registers and 1identified subroutines we can now

proceed to develop the program, again using the top-down approach.

Initialize Registers

-
Display Bit Marker (DISPLAY)

Calculate Logic Function (FUNCTION)
Display Logic Function (DISPLAY)
Accept a key (GETKY)

I1f hex key, enter (DATA)

If command, process (COMMAND)
|

The bit marker is displayed by a call from MAIN because we do not
want to wait until a key is pressed to show the location. There are
two reasons for placing the logic function display in MAIN rather
than in FUNCTION. When the command key RUN is pressed we must
calculate the function in order to replace +the old data, but do not
particularly want to display it. Second, FUNCTION will require jumps
to each of the logical functions (ORA, ANA, XRA, CMA); the subroutine

will be shorter if each of these can be followed by RET instead of
calling DISPLAY.
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Assign the following memory locations to the subroutines and write

the main program.

8220  DISPLAY
8240  DATA
8260  COMMAND
82A0  FUNCTION

Use stubs (RET) for the subroutines. The registers should be

initialized as follows:

(D) < - 00 for new data byte

(E) < - 00 for old data byte-

(H) < - 80 mark most significant bit
(L) < - 17 for CMA function

LXI instructions can be used for these.

With no subroutines except GETKY the display will be blank and
pressing keys will have no visible effect. Place a breakpoint after

the return from GETKY and step through the program to be sure that

DATA and COMMAND are called appropriately in response to hex and

command keys.

7-44



LOGIC AND BIT MANIPULATION
7.4.6 Stubs:for COMMAND and FUNCTION-

These subroutines will be fairly complicated, but we must at least

react to NEXT before we can enter data and observe the display. It
will also be wuseful to have something returned by FUNCTION, for

testing the display.

The stub for COMMAND can test for NEXT, and if the command is NEXT
perform the logical rotate right on (H). If the command is not NEXT

then ignore it.

A convenient stub for FUNCTION returns the complement of the new
data. This 1is the same function that CLR will give us when COMMAND
and FUNCTION are completed. Since DATA does not yet exist, register
D will always contain 00, and FUNCTION will return FF. The stubs are

shown in Figure 7-8.

Test the operation of COMMAND by setting a breakpoint at 8265. It
should oniy be reached after a NEXT key. The content of H should be

halved each time NEXT is pressed, until after 01 it becomes 80.
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(: DISPLAY j)
Y

Save (HL) in Stack
Address Display
(HL) «— 83F8

h¢

Logical Rotate Left
the Data Byte in (A)
Save Data Byte
in Stack

Not Carry Carry

[

Clear Segment Set Segment.
in Display in Display

|ty — ) anp (BY (M) «— (1) OR (B)

-

Recover Data Byte .
Tncrement Cisplay Address

Not Zero

Zerxro

Recover (HL)

v
(:‘ RETURNj)

Logic Functions Display Subroutine

Figure 7-9
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7.4.7 Logic Functions DISPLAY Subroutine

Now create the subroutine DISPLAY, since this wiIl be a necessary

tool qu the rest of the program. It will also give you some

familiarity with the logic function commands.

In accordance with the description in Section 7.4.4, DISPLAY receives
a byte of data in Register A and a symbol in Register B. It must
preserve all segments of each display digit except the segment
designed by (B). For each bit in (A) the designated segment of the
corresponding display digit must be cleared or set. Figure 7-9 shows

one design for DISPLAY. Although a shorter version could be written,

this hgs the_advanfage of simplicity.

Enterihg the symbbl (B) into a display digit is done by the OR

fungtion.

MOV A,M-
ORA B
MOV M,A

Entering a zero requires that (B) be complemented and used as a mask.

MOV A,B
CMA

ANA M
MOV M,A

When (B) is,complemented‘all bits except the designated symbol bit
become 1, while the symbol bit becomes 0. The AND function then

preserves all display segments except the one designated.
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Stepping through DISPLAY is unrewarding because it takes existing
data from the display, but this is upset by the monitor. The best
way to debug a display subroutine is to substitute some different

memory locations such as 82F8 - 82FF when stepping.

With DISPLAY and the stub for COMMAND you can observe the bit marker
move in résponse to NEXT. Since we cannot yet enter data, the bottom
segments will remain off, and the top segments will all be turned on
because FUNCTION returns the complement of (D). Try a different

initial value for D to see the effect.
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7.4.8 Logic Functions DATA Subroutine

This subroutine was defined as follows: Enter the least significant

bit of a hex key into the new data byte (D) and display the byte.

The bit marker in (H) identifies the :bit position in (D) where the
bit 1is to be entered. We have used one method for entering a;bit
into a byte, in the DISPLAY subroutine. There we make a conditional
Jump; if the input bit is 1 we OR the symbol into the display digit;
if the input bit is O we mask the display with the complemented

symbol .

A possibly more efficient procedure is to force the bit to 1 by an
OR, and then complement that bit by XOR with the bit marker if the

‘key is zero (leaving the OR result if the key was one):

Bit marker 00100000
Data byte 01100111
OR result 01100111

Bit set to 1

Bit marker 00100000

XOR if key O 01000111

Bit set to O

This procedure is efficient if we can make the decision after the
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first OR operation. Since the logic instructions (except CMA) affect
all flags, this is a little awkward.

The following procedure avoids any Jjump instructions, but requires
use of an extra register. First, combine the input data with the bit

mask:

Key O Key 1
RAR (Clears Carry) (Sets Carry)
SBB A (A) = 00000000 11111111
ANA H (A) = 00000000 00010000

|

Save this result in another register, and create a reverse mask from

Location of Bit Marker

the bit marker by complementing it.

MOV B,A (B) = 00000000 00010000
MOV A,H (A) = 00010000 00010000
CMA (A) = 11101111 11101111

AND this with the existing data byte to force the marked bit position

to zero; OR the desired bit; and return the new byte to D.

(D) = 10110010 10110010
ANA D (A) = 10100010 10100010
ORA B (A) = 10100010 10110010
MOV D,A (D) = 10100010 10110010

Bit reset or set
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The revised data byte“is now'ih (D) where it is to be kept, and élsb
in (A), ready to be displayed. Load (B) with the symbol for the new

data byte and call DISPLAY.

Reviewing the MAIN program we can see an additional requirement to be

plaéed on DATA.. We used:

cc DATA
CNC COMMAND

IfICOmmandqis not to be called after a hex key, then DATA must return

‘with Carry set. The 8080 provides an instruction to perform this:

37 STC ‘Set- the Carry Flag
(Cy) < - 1
No other flags or registers

are affecfed,

This can be placed just before the return from DATA, to inhibit the

following CNC COMMAND in the main program.

Code and test the program. You can now enter data with hex keys and

move the bit marker with NEXT. The stub for FUNCTION retufns the
- complement of the data entered, so data entered appear in the bottom

horizontals and the complements appear in the top.

Figure 7-11 gives the coded subroutine.
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7.4.9 Additional Specifications for DATA

We have previously indicated that the bit marker is to be moved only
in response to NEXT. You might prefer to move it also whenever a hex
key 1is pressed. If we allow NEXTCOMMAND (at 8280) as an internal
alternate entry to COMMAND, it can be called by DATA. An alternative
would be for DATA to enter a simulated NEXT command, and clear Carry

to force a call to COMMAND.

"The 8080 does not provide an explicit "clear Carry" command, but the
logic instructions (ORA, ANA, XRA) all clear Carry. We have used XRA
A to clear both Carry and the content of A; this works because the

exclusive or of a bit with itself is always zero.

ORA A and ANA A have the effect of clearing Carry and preserving the
content of A, They set or reset Zero (and the other flags) according

to the content of A; in fact they are exactly equivalent to CPI 00.

Another way of controlling the flags 1is to compare (A) with itself.
CMP A will clear Carry and set Zero without affecting the content of

Register A.

Replace the STC instruction at the end of DATA with any of these

intructions:

BF CMP A
B7 ORA A
A7  ANA A
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followed by:
3E MVI A,15
15

c9 RET
Now the bit marker moves in response to hex keys as well as NEXT.

There was some purpose in the oyiginal design of DATA, that did not
shift the bit marker after a hex key: observation of the effects of
the several logic functions is more convenient if you can switch one
bit back and forth easily. Since we are using only the least
significant bit of a hex key as data, it 1is possible to define

additional bits for other purposes.

0 Enter zero into current bit position
1 Enter one into current bit position
2 Enter zero into current bit position

and shift bit marker to next position
3 Enter one into current bit position

and shift bit marker to next position

Recall that GETKY returns the key value in both A and C, and neither
DATA nor DISPLAY affects Register C (in the given solutions, at

least; check your own program designs.)
Set or reset Carry according to bit 1 of the command.

MOV A,C
RAR

RAR
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This procedure makes Carry the opposite of what we wanted according
to the definitions of the hex keys, since 2 and 3 will set Carry
which inhibits the CNC command. Another 8080 instruction corrects

this:

3F CcMC Complement Carry
(CY) < - (CY)
No other flags or registers

are affected.

The end of DATA then becomes

79 MOV 4,C

1F RAR
1F RAR
3F CMC

3E MVI A,15
15

Cc9 RET

The completed program appears in Figure 7-12. Write a specification

for the subroutine, indicating the function, entry data and return

-data.
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7.4.10 Logic Functions COMMAND Subroutine

The command keys are interpreted according to the definitions below.

REG (11) Set Logic Function ORA
MEM (10) Set Logic Function ANA
BRK (16) Set Logic Function XRA
CLR (17) Set Logic Function CMA
STEP (13) Replace 0ld Data with New Data
(E) < - (D)
RUN (14) Replace 0Old Data with Logic Function

of Old Data (E) with New Data (D)
selected according to (L)
ADDR (12) Ignore

NEXT (15) Rotate Bit Marker (H)

The sequence above reflects the physical a;fangement of the keys.
Numerically, keys of value greater than NEXT (15) or less than ADDR
(12) are' to be stored in (L) as logic function commands. Keys of
value greater than ADDR but less than NEXT (STEP = 13 and RUN = 14)
replace O0ld Data. This suggests that we can separate the key
commands with three Compare Immediate instructions and five

conditional instructions.

CPI 15 Set Zero if = NEXT
Set Carry if < NEXT

CPI 12 Set Zero if = ADDR
Set Carry if < ADDR

CPl 14 Set Zero if = RUN
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The coding for subroutine COMMAND to make and act on these tests is

indicated below:

CPI 15 NEXT

JZ to Rotate Bit Marker

JNC to Store Function Selector
CPI 12 ADDR

RZ Ignore ADDR

JC to Store Function Selector
CPI 14 RUN

MOV A,D If not Run, A < - New data
CZ FUNCTION If Run, A < - Function

Replace 0Old Data and Display
MOV E,A

MVI B,40

JMP DISPLAy

Store Function Selector

MOV L,A

RET

Rotate Bit. Marker

MOV A,H

RRC

MOV H,A
RET

Note that for the first test (CPI NEXT) there are two conditional
jumps - each with a completed decision. If neither of these
conditions 1is met, another test is made, followed by two conditional
instructions (RZ, JC) for the two completed decisions. The final
test (CPI RUN) is only testing for two possibilities - RUN or STEP -
since all others have been eliminated. Here we make an assumption
about the result - MOV A,D to copy the "new" data into A, to replace

"old data'" and display it, if the command was STEP. Now we can use
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the conditional <call (CZ FUNCTION) if in fact the command was RUN.
This "is permissible because FUNCTION has been defined to return the
logic function in Register A, and does not use Register A for input
data. Therefore we come to '"Replace old Data and Display" with the
appropriate value in Register A for either STEP or RUN. Note also

that JMP DISPLAY is used instead of CALL DISPLAY, RET.

This subroutine has four exits — RZ for ADDR; JMP DISPLAY for STEP
and RUN; RET after Store Function Selector and RET after Rotate Bit
Marker. The multiple exits are efficient, because using a single
return instruction would require three jumps to reach it. There is a
disadvantage to this efficiency. Suppose that in the course of
testing the entire program you should find that it occasionally
"derails" - it fails to return to the main program. You might want
to set a breakpoint at the return from COMMAND to examine the stack.
With multiple exits you must enter mulfiple breakpoints. This is a
minor nuisance here, but becomes a substantial problem with bigger

programs, many subroutine calls, and extensive usage of the stack.
Write the COMMAND subroutine. A solution is given in Figure 7-13.

With COMMAND in place, we can see the effect of STEP and RUN as well
as NEXT. STEP causes the middle horizontal segments to duplicate the
bottom segments; RUN causes the middle to duplicate the top. We
still have only the one logic function, CMA, in operation, so we
cannot readily see the effect of the other command keys. One way to
observe them is to store the function selector in memory and set a
monitor breakpoint to detect a memory data change at that location.

In the stub of FUNCTION, insert SHLD 8300. This will store the
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function selector at 8300 and the bit 'marker at 8301. Set a
breakpoint at 8300. Although data will be written there on every pass
through the main program loop, the monitor will only detect a change
=" which occurs only when REG, MEM, BRK or CLR has been pressed. (It

‘'will also occur the first time the program is run.)-:
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7.4.11 Subroutine FUNCTION

Finally we come to the subroutine which performs the basic purpose of

"this entire exercise. FUNCTION must recognize the selector and

perform one of the four logic functions - ORA, ANA, XRA or CMA.

At entry the registers contain:

(D) = new data
(E) = old data
(L) = function selector

Return the selected function of (D) with (E) in register A. Preserve

all other registers.

Thé function selector in L is the key value used to select the

function:

(L) = 10 = MEM = ANA
(L) = 11 = REG = ORA
(L) = 16 = BRK = XRA
(L) = 17 = CLR = CMA

Write the subroutiné yourself. A solution is given in Figure 7-14,

followed by an explanation of this solution.
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The given solution for FUNCTION achieves its efficiency by setting
two flags (Zero and Carry), to distinguish the four selector values.
This permits - loading A with the "new" data byﬁe before‘making any
jumps. By masking out the unwanted Bits 2 through 7, and rotating

Bits 1 and O into Bits 7 and 6, the four selector values become:

00000000 = MEM = ANA
01000000 = REG = ORA
10000000 = BRK = XRA
11000000 = CLR = CMA

Now ADD A shifts Bit 7 into Carry, to distinguish ANA and ORA ffom
XRA and CMA. 1t also leaves (A) = 00 and sets Zero for MEM and’BRK;

it leaves (A) = 80, so Not Zero, for ORA and CMA.

A conceivably useful feature 1is that it returns Carry set if the
function is CMA, since that does not affect"Cafry while ORA, ANA and

XRA clear Carry. .This information is not used in the program.. .
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7.4.12 Exercising Logic Functions

Now with the final program in operation we can experiment with the
logic functions and test your knowledge of them. It is particularly
instructive to see the results of the functions on identical data
bytes and on data bytes which are complementary. Enter some data -
say 11000000. Store this value as the old data (STEP). Observe the

functions:

REG (ORA) 11000000
MEM (ANA) 11000000
BRK (XRA) 00000000
CLR (CMA) 00111111

ORA and ANA duplicate the data bytes when the two bytes are
identical; XRA gives a zero result. Recall the use of ORA A or ANA A
to clear Carry and control Zero without changing the data, and XRA A

to clear Register A.

Now store the complement of the data byte (CLR, RUN), and try the

functions again.

REG  (ORA) 11111111
MEM  (ANA) 00000000
BRK  (XRA) 11111111

‘These same values will occur for any data if its complement is

stored. Try entering other data, followed by CLR, RUN, REG, MEM, BRK.
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We will use the program to test your knowledge of the logic

functions.

Problem 1) Enter the data byte 01101100 and store it as old
data by pressing STEP. Enter the ﬁew data byte 11010101.
Before using REG, MEM and BRK, calculate the results yourself
and fill in the blanks in Figure 7-15. Then use the program to

check your results.

Problem 2) Store the result of XRA by pressing BRK, RUN. Enter

new data 00010011. Calculate the next set of results, and again

check._your answers.

Problem 3) Store the result of XRA from Problem 2., Calculate a
new data byte needed to generate the last three results in

Figure 7-15,
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Enter 01101100

Store Data (STEP)

New Data 11010101
ORA (REG) e e - — —
ANA (MEM) = e e m - - -
XRA (BRK) e e e~ _

Replace old data with XRA (press BRK, RUN)
O0ld Data & e mm——— -
New Data 00010011

ORA (REG) = e e =
ANA (MEM) = e e e — -

XRA (BEK) e

Replace old data with XRA (press BRK, RUN)

Old Data = @ e - —— =
New Data & @ emm m———
ORA (REG) 10111111
ANA (MEM) 10000010
XRA (BRK) 00111101

Logic Functions - Self Test

Figure 7-15
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7.5 FLOW CONTROL TECHNIQUES

In the logic functions exercise we saw two schemes to decide which of
several possible actions to take, based on a data byte from the

keyboard. In the COMMAND subroutine we used numeric comparisons:

CPI NEXT

J2 to rotate bit mark

JNC to select logic function
CP1 ADDR

RZ

JC to select logic function
CP1 RUN

In the FUNCTION subroutine we shifted control bits and used JC and

JNZ instructions:

Mov A,L

ANI 03

RRC

RRC

ADD A

JC to BRK or CLR
JNZ to REG

These were reasonably efficient because the numeric values of the

control bit patterns had convenient relationships. If the key
definitions had been random it might have been necessary to use seven

CPl, JZ segments in COMMAND.
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It is possibie to use a directory, or "dispatch table" instead of
such a procedure. The command, or control pattern, is added to a
table address. This locates a memory byte where we have stored
another address. This is just like the directory procedure we used
in the sensor correction programs of Chapters 4 and 6. In this case,
however, we want to jump to the address obtained from the table,

rather than using it to find more data.

If register pair HL is not in wuse for other data, it is very
convenient to use it with a dispatch table, as we did with the sensor

correction directory.

If all of the program segments to which we might jump are in the same

memory page as the dispatch table, we can use single byte indirect

addressing:
LXI H, TABLEADDRESS
ADD L
MOV L,A
MOV L,M

This has loaded into register pair HL the address to which we will

jump. Recall the indirect jump instruction:

E9 PCHL Jump to the address contained
in register pair HL.
(PC) < - (HL)

No flags are affected.

If we do not want to use register pair HL, but do have another pair

available, we can use this technique:
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LXI B, TABLEADDRESS
ADD c

MOV C,A

LDAX B

MOV C,A

This has loaded the jump address into register pair BC. There is no

"PCBC" instruction, but we can use the stack.

PUSH B (ST) < - Address

RET Jump to (ST)

Here we place the address into the stack top, and a RET jumps to that

address.

A third method uses HL and the stack.

PUSH H Save (HL)
LXI H, TABLEADDRESS

ADD L

MOV L,A

MOV L,M

As 1in the first method, we have loaded the address into HL. Now we

can recover the data that we saved, and put the jump address into the

stack.

XTHL Exchange stack top with HL

RET Jump to (ST)

Any of these techniques can be wused, with only slightly more
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complexity, if two byte indirect addressing is needed.

When a dispatch table is used for MTS command keys, remember that
these keys return the values 10-17. Therefore, we must either
subtract 10 from the command before adding it to the table address
or, more efficiently, load the register pair with an address 10 hex

bytes below the actual table location.

Recall that subroutine GETKY returns with Register B cleared and the
key in C as well as in Register A. This is designed to make the use

of dispatch tables easy.

PUSH H

LXI H, DISPATCHTABLE -10
DAD B

MOV L,M

XTHL

RET

(Monitor subroutines ENTBY and ENTWD similarly return with Register B
cleared and the command key in C as well as A.) This technique can
be used in the logic functions program COMMAND subroutine. Change
the specification of COMMAND to require that (B) = 00 and (C) =
command key. (This change requires a change in DATA.) Rewrite

COMMAND to use a dispatch table. A solution is shown in Figure 7-16.
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7.6 REVIEW AND ADDITIONAL EXERCISES

The logic and bit manipulation techniques taught in this chapter are
most commonly used for control operations and decision making. The
addifional exercises suggested in the following sections simulate

some control applications.
We have introduced four types of instructions:

Arithmetic and Logical Rotate - RAR, RAL, RRC, and RLC, and the

arithmetic intructions ADD A, ADC A and DAD H that have related

.properties.

Logic Functions - ORA, ANA and XRA, which combine two data bytes by

the OR, AND and Exclusive OR rules; also CMA which complements (A)

without involving another data byte.

Flag Control Instructions - STC and CMC, plus the logic and

arithmetic instructions that can be used to control flags - ORA A,

ANA A, XRA A, CMP A.

Masking - The use of ANI to mask (discard) unwanted bits in a byte

used for control functions.

The exercises of this chapter have also given practice in important
flow control techniques: the IF-THEN-ELSE construct; the use of
conditional <calls and returns; sequential testing procedures; and
dispatch tables. We-.saw the use of making assumptions before

executing a conditional jump, call or return.

Once again we saw the convenience of top-down programming and
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'subroutines, with stubs for incomplete subroutines. We passed
arguments to subroutines. This is especially noticeable 1in the
DISPLAY subroutine, where we placed various data bytes in (A) and a
symbol in (B), but all of the subroutines in the exercise of Section

7.4 involved passing arguments.

Finally, we again wused features that are specific to the ICS
Microcomputer Training System -- the monitor subroutines DWORD and
ENTWD 1in Section 7.1, and GETKY in the later exercises; the display
system; and the use of a breakpoint to detect a change in memory

content in Section 7.4.10.

It 1is recommended that you work out at least one of the exercises in
the following four sections to obtain additional experience. Glance
through all of the descriptions before choosing which you will

pursue.
7.6.1 Traffic Control Exercise

Develop a simulator for a street intersection traffic 1light
controller. This can use the same display subroutine and much of the

same main program as the logic functions program.

Traffic lights are simulated by horizontal segments in the display.
A top segment represents a red light, middle segment a yellow light,
and a bottom segment a green light. Allow two lights to appear at
the same time by initializing the bit marker (H) to 10000001 (81).
Let (D) represent green lights and (E) represent yellow lights.

Initialize (D) to 80, to start with one green light.
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We no longer want to display the bit marker; it is convenient to
display the green light where previously we displayed the bit marker.
The display of the logic functions can be retained to display the red

light instead.

Different subroutines are célled for FUNCTION and COMMAND. These are

defined as follows:

Subroutine REDS (replaces FUNCTION)

Function:

From given yellow and green lights, return other lights as

red.

Entry Address: 82D0

Entry Data:
(D) = Green Lights (E) = Yellow Lights (H) = Light Positions

Return Data:

(A) = Red Lights

Registers:

All registers except (A) are preserved.

Constraints:

Entry of data to Register D without properly modifying the

content of E may cause an improper condition of both lights

being the same color.
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Comment : The CC DATA instruction has been retained in the
main program to permit forcing an error into Registe} D.
Test your program initially without any error protection in

subroutine REDS.

Subroutine SWITCH (replaces COMMAND)

Function:

Change any green light to yellow. If a light was previously
yvellow, change the other light to green, and turn off the

yellow light.

Entry Address: 82C0

Entry Data:

(D)
(E)
(H)

green lights

yellow lights

light positions

Return Data:

(D)
(E)

new green lights

new yellow lights
Registers:

A, D and E are affected.

B, C, Hand L are preserved.

7-81



LOGIC AND BIT MANIPULATION

Constraints:

It is assumed that the main program will display red and

green lights.

Subroutines DISPLAY and DATA from the logic functions exercise are

also required.

In this version of the program the lights only change in response to
command keys. In Section 7.6.2 a timer will be introduced. It is
suggested that you copy the changes of Figure 7-17a into the main
program of Section 7.4, but develop subroutines SWITCH and REDS

yourself.
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7.6.2 Extended Traffic Control Exercise

Elaborate the traffic control program of Section 7.6.1 in the

following ways.
7.6.2.1

Revise subroutine REDS to protect against an error that sets both
lights green at once. If such an error occurs, correct it by

modifying the content of (D).
7.6.2.2

Replace the CALL GETKY instruction with a call to a time delay
subroutine. This should set a relatively short delay for a yellow
light; a longer delay for a green light. Review the discussion of

time delays in Section 4.8.6 if necessary.

7.6.2.3

Replace +the time delay subroutine with one that tests the keyboard
during the time delay. If a key 1s pressed, call GETKY and return
without completing the time delay. The monitor subroutine SCAN
(0257) reads the keyboard once: if no Kkey is pressed it returns Not
Carry and (A) = 00; if a key is pressed it returns Carry set and the
key value in Register A. SCAN takes a relatively long time; reduce
your time delay count to compensate for this. This subroutine is
shown in Figure 7-18. It permits you to change the lights at will,

instead of waiting for the time delay.
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7- 6.'2.4

Revise the traffic control program function to simulate a triggered
traffic controller. This will normally keep the main street traffic
light (the left hand digit) green, and the side street traffic light
(the right hand digit) red. When a key is pressed, call SWITCH and a
time delay four times, to allow side street traffic to flow. This
can best be done by having the main program call a new subroutine

intead of SWITCH.
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7.6.3 Fire and Burglar Alarm

Let the :keys 0, 1, 2 and 3 represent two fire (or smoke) detectors
and two burglar alarm sensors. If a fire 1is detected, flash the
message FIRE 1in the display repeatedly. If a burglar is detected;
flash the message POLICE. If both are detected, alternate the two

displays.

Accept some sequence of the higher digits (4 through F) to simulate a
cqmbination lock used for am authorized entry, and turn off any
alarm. If a wrong sequence is entered, or a long delay occurs between

keys, call the police.
7.6.4 Model Railroad Simulator

If at this point you want to undertake a much more difficult programn,
simulate a model railroad in the display. Represent a train by a
string of segments following each other around a track. Represent
switches by the decimal point indicators. These can be set or reset
by hex keys 0 through 7. The following rules are suggested for train

control.

a) When a train is moving on the bottom track and encounters a
switch which is set, it turns up to the middle track, where it

resumes its previous direction.

b) When a train is moving on the middle track, and seéees a

switch set, it turns toward the bottom track where it resumes

its previous direction.
c) If a train 1s moving on the top track it ignores the
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-indicated switches. If one of the hex keys 8 through F is being

held down when the train reaches the corresponding position,
then the train turns toward the bottom track. If it encounters
a set switch, then it resumes its previous leftward or rightward
direction. (This will reverse its clockwise or
counter-clockwise direction.) If the train encounters a switch

which is not set it must stop until the switch is set.

program is difficult and lengthy. Do not undertake it unless

you want a real challenge.
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