Self-Study Course

MICROPROCESSOR
REAL-TIME INTERFACING

Workbook /Text Volume 1

®

Self-Study Course

Course 536A:

MICROPROCESSOR
REAL-TIME INTERFACING

Workbook/Text Volume 1

DEVELOPED & PUBLISHED BY:

INTEGRATED COMPUTER SYSTEMS
Course Development Division
© Copyright 1980

SENIOR AUTHOR:
Edward Dilingham, M.E, MS.EE.

ASSISTED BY:

Dr. Daniel M. Forsyth
Dr. Rudolf Hirschmann
Ms. Ruth H. Savoie
Dr. David C. Collins

EDUCATION IS OUR BUSINESS"

~ Allmaterials © copyright 1980 by Integrated Computer Systems.
Not to be reproduced without prior written consent.

D/9/80

© Copyright 1980 by INTEGRATED COMPUTER SYSTEMS.
Allrights reserved.
No part of this publicatlon may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic. mechanical, photocopying. recording or otherwise. or translated into any
language, without the prior written permission of the publisher.

MICROPROCESSOR REAL-TIME INTERFACING
_Two Volumes
ISBN O-89438-0O03-6
Volume |
I1SBN O-89438-004-4
Volume |l
ISBN O-89438-O05-2

TABLE OF CONTENTS

VOLUME I

TABLE OF CONTENTS

TABLE OF CONTENTS i

LIST OF ILLUSTRATIONS vii

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

1.1 INTRODUCTION 1-1
1.2 PURPOSE AND CONTENT OF THE COURSE 1-1
1.3 CABLES AND CONNECTIONS 1-3
1.3.1 Power Connections 1-3
1.3.2 Singal Terminals 1-5
1.4 INTERFACE HARDWARE AND REFERENCES 1=7
1.4.1 MTS Interface 1-7
1.4.2 Added Memory 1-7
1.4.3 Chip Selects and Resets 1-11
1.4.4 Port 1 and A/D - D/A Converter 1-15
1.4.5 Interrupt System 1-17
1.4.6 Optical Couplers and Power Driver 1-19
1.4.7 Serial Interface Circuit 1-19
1.4.8 Tape Cassette Modem 1-23
1.4.9 Tape Cassette Library 1-23
1.5 USE OF PMTL OR INTEGRATED

EXPERIMENT ASSEMBLY 1-24
INPUT/OUTPUT AND INTERRUPTS
2.1 PORT ASSIGNMENTS AND ADDRESSES 2-1
2.2 PROGRAMMING AND USING THE 8255 2~4
2.3 PORT 1A LED's AND DRIVERS 2-10
2.4 MTS DISPLAY 2=-12
2.5 INPUT/OUTPUT CONNECTIONS 2-15
2.6 EXTERNAL INPUTS 4 AND 5 2-16
2.7 INTERRUPT FLIP-FLOPS AND ENABLES 2-19
2.7.1 Interrupt Sources 2-19
2.7.2 Interfupt Flip-Flops 2-21
2.7.3 Interrupt Status and Enables 2-22

2.7.4 Clearing Interrupts 2-25

TABLE OF CONTENTS

2.8
2.8.1
2.8.2
2.9
2.10

INTERVAL

3.1
3.2
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.7
3.7.1
3.7.2
3.8
3.9
3.9.1
3.9.2
3.19

RESTART INSTRUCTIONS
RST Dispatch

RST Generation

INTERRUPT SERVICE FOR EXT 4 AND EXT 5
STANDARD PROGRAMMING FOR 8255's

TIMERS

INTEL 8253 INTERVAL TIMER
CLOCK, GATE, AND OUTPUT
TIMER MODES

MODE 0 - INTERRUPT ON TERMINAL COUNT
RESTARTING A COUNTER IN MODE 0

READING A TIMER

Measuring a Pulse Duration
Additional Exercises
Reading While Counting
MODE 2 - RATE GENERATOR
Use of Mode 2

Real Time Clock

CASCADED TIMERS

MODE 3 - SQUARE WAVE GENERATOR

Observing the Output
Observing the Counting
TIMER MODE DESCRIPTIONS

DIGITAL TO ANALOG OUTPUT

4,1
4.2
4.2.1
4,2.2
4.3

4.3.
4.3.
4.3.
4.3.

KO TCRN RN

METHODS OF D/A OUTPUT
PULSE WIDTH MODULATION
PWM Output Program
Variable Cycle Time
FREQUENCY CONTROL

Audio Tone Generator

Frequency Modulation Program

Recorded Music Player

Music Recording Program

2-31
2-31
2-33
2-37
2-43

3-1
3-5
3-9
3-13
3-21
3-25
3-25
3-34
3-36

3-39

3-39
3-43
3-51
3-61
3-61
3-62
3-65

4-3
4-5
4-6
4-23
4-25
4-27
4-29
4-33
4-48

4.4
4.5
4,5,1
4.5.2
4.6
4.6.1
4.6.2
4,6.3
4.7
4,7.1
4,7.2
4.7.3

TABLE OF CONTENTS

MULTI-BIT OUTPUT

ANALOG VOLTAGE GENERATION
Binary Summing Circuit

R-2R Ladder Network

FERRANTI D/A CONVERTER

D/A Circuit Input and Output
D/A Circuit Control Signals
Generating an Analog Voltage
FUNCTION GENERATOR

Voltage Ramps

Keyboard Controlled Function Generators

Exponential Function

ANALOG TO DIGITAL INPUT

PULSE INTERVAL MEASUREMENT
Measuring a Steady Signal
Measuring a Multi-Valued Interval
Measuring Received Pulse Intervals
FREQUENCY MEASUREMENT

Logic Level Frequency Measurements
AC Input Signal

A/D INPUT - VOLTAGE

Output, Input and Display Subroutine
Ramping Voltmeter

Tracking Voltmeter

Successive Approximation Voltmeter
AUTOMATIC A/D INPUT

Reading A/D Input

A/D Input with Interrupt

DIGITAL NOISE FILTER

Filter Program Algorithm

Program Definitions

Filter Response

4-51
4-55
4-55
4-61
4-67
4-69
4-69
4-71
4-73
4-75
4-80
4-110

5-3
5-3
5-6
5-24
5-25
5-25
5-30
5-41
5-43
5-53
5-63
5-66
5-73
5-77
5-83
5-88
5-89
5-90
5-103

e

(S

(T

TABLE OF CONTENTS

iv

5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.6.10
5.6.11

TEMPERATURE MEASUREMENT
Thermistor Characteristics
Thermistor Operation

Thermistor Input Adjustment

Table Lookup and Interpolation
Voltage to Temperature Conversion
Thermometer Program

bata Logging

Thermistor Self Heating

Other Temperature Logging Experiments
Abbreviated Temperature Lookup

Thermistor Resistance Matching

5-104
5-104
5-109
5-111
5-112
5-115
5-126
5-139
5-149
5-156
5-156
5-161

TABLE OF CONTENTS

VOLUME II

CLOSED LOOP CONTROL

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.4.5
6.2.6
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4

6.5

MOTOR

7.1

7.1.1
7.1.2
7.1.3
7.1.4
7.2

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5

ON-OFF CONTROL

On-Off Control Without Deadband
On-0ff Control with Deadband
Thermostat with Alarm Limits
Two-Way Control

PROPORTIONAL vs INTEGRAL CONTROL
Voltage Control Circuit

Voltage Control by PWM
Observing Response Time

Closing the Loop

Closed Loop Operation

Closed Loop Response

PROPORTIONAL PLUS INTEGRAL CONTROL

Applying Gain to Error Signal
Subroutine CLOSL Version 2
Revised Program

Experiments with PI Control
Full Scale Control and Overflow

PROPORTIONAL - INTEGRAL - DIFFERENTIAL

CONTROL
SUMMARY

CONTROL

OPTICAL DISC AND SLOT SENSOR

Motor, Sensor and Disc Mounting

Slot Sensor Connection and Adjustment

Motor Connection

Motor Characteristics

CONTROL SYSTEM DEVELOPMENT
Speed Measurement

Interrupt Service
Initialization

Main Program Loop

Keyboard Input Subroutine KYTIM

6-3
6-6
6-21
6-26
6-29
6-33
6-41
6-49
6-82
6-85
6-104
6-111
6-121
6-122
6-125
6-129
6-138
6-148

6-164
6-166

7-3
7-5
7-8
7-13

7-17

7-21
7-24
7-27
7-34
7-37
7-41

TABLE OF CONTENTS

7.2.6 Subroutine DECBI
7.2.7 Subroutines SMULT, SCUML

7.2.8 Open Loop Operation

7.2.9 False Speed Indications
7.3 CLOSED LOOP MOTOR CONTROL
7.3.1 Subroutine SPEED

7.3.2 Subroutine WIDTH

7.3.3 Subroutine DIVID

7.3.4 Summary of Subroutines

7.3.5 Speed Logging

7.3.6 Motor Control Program Operation
7.4 MOTOR CONTROL BY VARIABLE VOLTAGE
7.5 POWER TRANSISTOR DISSIPATION

7.6 REVIEW

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

REFERENCE FIGURES

CASSETTE INTERFACE INSTRUCTIONS AND
PROGRAM CASSETTE LIBRARY

RS 232c INTERFACE SYSTEM

TELETYPE INTERFACE SYSTEM

7-46
7-47
7-48
7-48
7-51

7-53
7-57
7-61

7-65
7-66
7-81

7-83

7-88
7-91

LIST OF ILLUSTRATIONS

VOLUME I

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
1-1 Interface Training System 1-4
1-2 Microcomputer Interfacing System 1-6
1-3 List of Interface Signals to MTS 1-8
1-4 List of Interface Signals to MTS 1-9
1-5 I/0 Chip Selects and Interrupt Flip-Flop

Reset 1-10
1-6 Truth Table for Chip Selects and Resets 1-13
1-7 Port 1 and A/D - D/A Converter 1-14
1-8 Vectored Priority Interrupt System 1-16
1-9 Optical Couplers and Power Driver 1-18
1-10 Serial Interface Circuit 1-20
1-11 Tape Cassette Modem 1-22
- 8255 I/0 Port Assignments. -
2- Port Addresses and Assignments -
2- Programming the 8255's -
2-4 MTS Keyboard Configuration and Port

Assignments 2-9
2-5 Input/Output Connections 2-14
2-6 Interrupt System - Partial Diagram 2-18
2-7 EXT 4 and EXT 5 Connections and Signals 2-20
2-8 Clearing Interrupts (Flowchart) 2-26
2-9 Clearing Interrupt Flip-Flops 2-28
2-10 Interrupt Dispatching 2-30
2-11 Generation of RST Instructions 2-32
2-12 Interrupt Service - RST 5, RST 6 (Flowchart) 2-36
2-13 Status and Command Bytes 2-39
2-14 EXT 4 and EXT 5 Service 2-40
2-15 Standard Programming for 8255's T2-44

vii

LIST OF ILLUSTRATIONS

viii

FIGURE TITLE PAGE
- Intel 8253 Interval Timer 3-3
- Timer Clocks, Gates, and Outputs 3-4
- Timer Control Byte Structure 3-10
- Timer Control Bytes 3-12
- Compare Timing Loop with Interval Timer

(Flowchart) 3-14

3-6 Compare Timing Loop with Interval Timer

(Program) 3-17

3-7 GETKY Flow Diagram 3-20

3-8 GETKY with Timer 3-22

3-9 GETKY Using Interval Timer 3-24

3-10 Twos and Tens Complement Counting 3-27

3-11 Time Diagram for Pulse Width Measurements 3-29

3-12 Pulse Width Measurement (Flowchart) 3-30

3-13 Pulse Width Measurement (Program) 3-31

3-14 Timer and Flip-Flop Operation - Mode 2

Rate Generator 3-40

3-15 Time of Day Clock 3-42

3-16 RST 5 Interrupt Service 3=45

3-17 Time of Day 3-46

3-18 Cascaded Timers 3-50

3-19 Cascaded Timers with Main Gate Input 3-52

3-20 Time Delay Program - Main (Flowcharts) 3-55

3-21 Time Delay Program 3-57

3-22 Square Wave Generator - Mode 3 3-60

3-23 Reading the Timer Contents 3-64

3-24 8253 Timer Modes 3-67

3-25 Timing Relationships 3-68
- A/D and D/A Conversion 4-2
- Output Connections for PWM 4-6
- PWM Interrupt Service 4-9
- PWM Test Program 4-11

4-5 PWM Main Program 4-12

4-6 Conversion of Binary Count to Time 4-15

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
4-7 Pulse Width Modulation Program 4-18
4-8 Audio Output Program and Circuit 4-26
4-9 List of Concert Pitch Musical Tones 4-28
4-10 Tone Generator - Main Program 4-30
4-11 Tone Generator - Interrupt Service 4-31
4-12 Codes for Musical Notes 4-32
4-13 Tune - Main Program 4-34
4-14 Tune Interrupt Service 4-36
4-15 Tune Program 4-39
4-16 Tone Table for Chromatic Scale 4-43
4-17 Home on the Range, and the Drunken Sailor 4-46
4-18 Music Regording Program, Hex Key Chart 4-50
4-19 Patch to Display Tone 4-54
4-20 Binary Summing Circuit 4-56
4-21 Numerical Values for Circuit of 4-20 4-57
4-22 Binary Summing Circuit with Op Amp 4-59
4-23 R-2R Ladder Network 4-60
4-24 R-2R Ladder Impedance 4-63
4-25 Equivalent Circuits for Single Bit = 1 4-64
4-26 D/A Converter Output Circuit 4-66
4-27 Ferranti D/A Converter 4-68
4-28 Keyboard to Voltage Program Flow and

Circuit Connection 4-70
4-29 Voltage Ramp Generators 4-74
4-30 Triangular Function Generator 4-79
4-31 Keyboard Controlled Function Generator 4-81
4-32 ﬁeyborad Controlled Function Generator 4-85
4-33 Ramp - Dispatch 4-87
4-34 Function - Key Input Processing 4-91
4-35 Timer 0 Interrupt Service 4-92
4-36 Triangular Wave Function Subroutine 4-96
4-37 Function Generator 4-99
4-38 Exponential Function 4-111

ix

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
4-39 Successive Charge/Discharge Cycles 4-114
4-40 Key Selection of Waveform 4-117
4-41 EXPV 4-121
4-42 Subroutine BMULT 4-126
4-43 Test Program for EXPV 4-131
4-44 Function Generator 4-132
4-45 Multiplication - Subroutine BMULT 4-140
4-46 Function Subroutine EXPV 4-141
5-1 Pulse Interval Measurement (Flowchart) 5-2
5=2 Pulse Interval Measurement (Program) 5-4
5-3 Multi-Valued Interval (Flchhart) 5-8
5-4 Multi-Valued Interval (Program) 5-17
5-5 Freguency Measurement - Interrupt 5-26
5-6 Frequency Measurement (Program) 5-27
5-7 Protection Circuits for AC Signals 5-31
5-8 AC Frequency Measurement (Flowcharts) 5-33
5-9 AC Frequency Measurement (Program) 5-36
5-10 Connections for Voltmeter Experiments 5-40
5-11 Output, Input, and Display Subroutine 5-44
5-12 Test Program for OIDSP 5-46
5-13 OIDSP - Program 5-49
5-14 Voltage Ramp Generator (Flowchart) 5-52
5-15 D/A Outputs and Inputs 5-53
5-16 Voltage Ramp Generator (Program) 5-54
5-17 Ramping Voltmeter (Flowchart) 5-56
5-18 Ramping Voltmeter (Program) 5-58
5-19 Tracking Voltmeter (Flowchart) 5-62
5-20 Tracking Voltmeter (Program) 5-65
5-21 Successive Approximation Signals 5-66
5-22 Successive Approximation Voltmeter

(Flowchart) 5-68

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
5-23 Successive Approximation Voltmeter

(Program) 5-70
5-24 Ferranti A/D Logic 5-72
5-25 Automatic A/D Input (Flowchart) 5-76
5~-26 Automatic A/D Input (Program) 5-78
5-27 A/D Input with Interrupt (Flowchart) 5-82
5-28 A/D Input with Interrupt (Program) 5-84
5-29 Subroutine FILTR (Flowchart) 5-92
5-30 A/D Input with FILTR - program 5-97
5-31 Filter Response for Various N 5-102
5-32 Thermistor Resistance 5-105
5-33 Thermistor Connection and Voltage Plot 5-108
5-34 Expected Voltage at Room Temperature 5-110
5-35 Temperature Conversion by Integration 5-114
5-36 Thermistor Calibration Data 5-116
5-37 Temperature Lookup by Integration 5-118
5-38 Test Program for Temperature Lookup 5=-120
5-39 Thermometer (Flowcharts) 5-128
5-40 Thermometer (Program) 5-130
5-41 Logging Thermometer - Main 5-140
5-42 Logging Thermometer - Review Data 5-142
5-43 Logging Thermometer - Replay 5-143
5-44 Logging Thermométer - Timing Constants 5-144
5-45 Logging Thermometer (Program) 5-145
5-46 Thermistor Connection and Calibration for

Self-Heating Experiment 5-150
5-47 Thermistor Self-Heating (Program) 5-153
5-48 Abbreviated Temperature Lookup 5-157
5-49 Thermistor Resistor Matching 5-160
5-50 Thermistor Resistor Matching Flow 5-163

xi

LIST OF ILLUSTRATIONS

xii

VOLUME II

FIGURE TITLE PAGE
6-1 Connections for Thermostat Exercise 6-2
6-2 Connections for On-0Off Voltage Control 6-4
6-3 On-0ff Control, No Deadband 6-7
6-4 Thermostat (Program) 6-9
6-5 Thermostat with Deadband - RST 6 6-20
6-6 Thermostat with Deadband (Program) 6-22
6-7 Circuit Connections for Simulation 6-28
6-8 Heating and Cooling Simulation 6-29
6-9 Heating and Cooling Limits 6-30
6-10 Connections for PWM Experiment 6-40
6-11 PWM Voltage -~ Fixed Period 6-44
6-12 PWM Voltage Control - Main Loop 6-48
6-13 PWM Voltage - Subroutine KYTIM 6-50
6-14 PWM KYTIM - Set Pulse Widths 6-52
6-15 Logging Voltmeter 6-58
6-16 PWM Timer Operation 6-63
6-17 PWM Interrupt Service 6-65
6-18 PWM Voltage Control (Program) 6-71
6-19 PWM -~ Open Loop Response 6-83
6-20 PWM Subroutine CLOSL 6-91
6-21 PWM Subroutine INTEG 6-93
6~-22 REG Module of KYTIM 6-95
6-23 PWM Voltage Control (Program) 6-97
6-24 Open and Closed Loop Waveforms 6-112
6-25 Closed Loop Response Waveform 6-114
6-26 Effect of Total Period 6-116
6-27 Subroutines CLOSL, INTEG, and PROPG 6-124
6-28 PWM Voltage Control (Program) 6-130
6-29 Response with Proportional Control 6-140
6-30 Response Versus Integral Gain 6-142
6-31 Proportional Plus Integral Response 6-144

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
6-32 Response tc Voltage Request 6~146
€-33 LDT1 with Full Scale Control 6-150
6-34 PWM - Subroutine LDT1, Version 2 6-152
6-35 Full Scale Response to Voltage Request 6-156
6-36 Subroutine ADTOV - Double Precision Add

and Test for Overflow 6-161
6-37 PWM Subroutine INTEG, Version 3 (Program) 6-162
7-1 Motor and Slot Sensor 7-2
7-2 Motor, Sensor and Disc Mounting 7-4
7-3 Optical Slot Sensor 7-6
7-4 Test for Slot Sensor 7-10
7-5 Motor Connections 7-12
7-6 Motor Connections with External Power 7-14
7-7 Motor Speed vs Voltage 7-16
7-8 Motor Speed vs Duty Cycle Open Loop 7-18
7-9 Motor Control Program Structure 7-20
7-10 Motor Control Interrupt Manager 7-26
7-11 EXT 4 Interrupt Service 7-28
7-12 Timer 0 Service 7-32
7-13 Motor Control 7-36
7-14 KYTIM -~ Input and Dispatch 7-40
7-15 Load Timer 1 Modules 7-44
7-16 Motion Detection with Dual Sensors 7-50
7=-17 Subroutine SPEED 7-52
7-18 Subroutine WIDTH 7-56
7-19 Subroutine DIVID 7-60
7-20 Subroutine Register Usage 7-64
7-21 Motor Control (Program) 7-67
7-22 Motor Control (Program) 7-75
7-23 Patches for Variable Voltage Control 7-85
7-24 Patches to Motor Control (Program) 7-86"
7-25 More Patches to Motor Control (Program) 7-89

xiii

This page intentionally left blank.

xiv

MICROCOMPUTER INTERFACING WORKBOOK

CHAPTER 1

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

This page intentionally left blank.

1-ii

1.1 INTRODUCTION

All computer applications involve the connection of the computer to
external hardware for input and output. In computational systems
these external devices are slaves to the computer, and they exist
only to serve the computer. In control applications, however, the
computer (or microcomputer) exists to serve the process, and the
computer design and programming must be adapted to the process. In
this course we will be concerned with control applications: how a
microprocessor 1is connected to equipment it controls, and how it is

programmed to meet process requirements.

In most control applications the computer must receive input data,
process the data and generate control outputs in a timely fashion in
order to achieve its intended goals. Failure to react in the allowed
time will result in loss of data and possibly improper control. Real
time programming deals with these requirements. Most of the exercises

in this course are real time programs.
1.2 PURPOSE AND CONTENT OF THE COURSE

The text and exercises of this course teach the use of programmed,
timed, and interrupt driven input and output. These are applied to
open and closed loop control problems, with various forms of discrete
and analog input signals. Sensor calibration is used to convert a
thermistor signal to temperature, aﬁd the speed of a motor is
measured using an optical sensor. Triangular and logarithmic output
signals are generated. A digital noise filter 1is developed. The

student will measure the response time of a closed loop control

HARDWARE INTERFACING AND REAL TIME PROGRAMM ING

system, after observing the difference in behavior between open loop
and closed 1loop. control. Arihough no attempt is made to teach
servomechanism and feedback theory, the basic ideas of proportional

and integral feedback are presented and used in exercises.

The 1interface circuit board includes an interrupt system with
priorities and vectors. These are explained and used in many

exercises having multiple interrupts.

The manufacturers of microprocessors are introducing new LSI chips to
make real time control systems easier to design and cheaper to build.
The backgrognd provided through this course will make such devices
comprehensible to the engineer and programmer. Two such devices, the
INTEL 8255 Peripheral Interface Adaptor and the INTEL 8253 interval

timer, are included in the course hardware and extensively treated.

The remainder of this chapter gives an introduction to the hardware

of the interface circuit board. Complete schematics are included
here, but details of how various parts of the hardware operate are

covered along with exercises in later chapters.

1-2

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

1.3 CABLES AND CONNECTIONS

The interface circuit board is connected to the Microcomputer
Training System through a ribbon cable. One end plugs into a
connector at the upper right edge of the MTS circuit board; the other
end into a similar connector at the right edge of the Interface
Training System. Be careful to align the cable so that Pin 1 on the
AMTS (the right hand end) is connected to Pin 1 of the ITS (toward
the top of the circuit board). Misconnection is likely to damage the
circuits. To aid in aligning the cable correctly both connectors are
keyed, and one end of the ribbon cable has a colored stripe. Power

should be turned off while the connection is being made.

1.3.1 Power Connections

The required +5 volt and +12 volt power is supplied to the ITS
through the ribbon cable from the MTS. These voltages are made
available af tie blocks on the ITS for use in experiments. There is
no negative supply required for any of the experiments described in
this course. One transistor amplifier, suitable for driving a
teletype or RS232 interface, does require a negative 12 volt supply

to be connected.

1-3

INTERFACING AND REAL TIME PROGRAMMING

HARDWARE

T-1 ©an3T14

wWo]1SAg BUuTulBJIL 99BIJIDJU]L

5
I
{
¥

NN R RN R AR R R RRR R R R A

v o~
- Nl .
o= ¥ N =ty
— >
Uiy
- r
»

J

HARDWARE INTERFACING AND REAL TIME PROGRAMMING
1.3.2 Signal Terminals

Signals used to connect the interface board to external devices, or
to connect various functions together for experiments, are made
through tie blocks at the left and top edges. The white plastic tie
blocks each have four different signals, labelled next to the block.
Each row in a block is a common line, making it easy to tie several
signals together. Wires or component leads can be inserted directly
into these tie blocks. One block, at the upper left corner, has 5

volts at all points to facilitate insertion of pullup resistors.

A row of screw terminals at the upper right provides for connections
to serial ports. The tie blocks and screw terminals can be seen in

Figure 1-1.

If you have purchased the Integrated Experiment ASsembly Board, it
should be plugged 1into the tie blocks at the left edge of the
Interface Training Board. All of the tie block connections remain
available, but the necessary parts and connections for most
experiments in the course are preassembled on the Integrated

Experiment Assembly.

1-5

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

ONINIVH1 O1
379vJ3 NOsgaIY

g-T @an314

Emoﬁ_m_&“ va_e.m_ﬂ_m wu.l HOL1OW oo@ _ﬂ@ HOLSINYIHL
o/ng)(Cone) Cons) (Clnos ﬁq tt Aqu T
mlnﬂﬂ||u Z
(8) H1SX A ¥
Yy L I
= SHIAIHG ¥IMod | [a/v ~v/a P e
HIMOd | 1198
, T | | i
Mmoo (8) (2) 1INDHID
XZO sHoLvoIaNl| | sdoLvios LdNHHILNI FOVIHIING {72
zo% aal -01d0 ALIHOIHd
i m
o=5 1) IOVAHIINI
=) (SINIT 8¥) SLHOd O/I SHIWIL 3L13ssvo [—2
TVAHILNI olanv
if 3 3

NOISN3LX3 sNng

H3 .an_S_OOﬁ

L

W3LSAS DNIOV4HILINI H3LNdWNODOHIIN

HARDWARE INTERFACING AND REAL TIME PROGRAMMING
1.4 INTERFACE HARDWARE. AND REFERENCES

An overall block diagram of the 1interface circuit board is shown in

Figure 1-2, Various sections are shown 1in separate schematic

diagrams and described in the chapters referred to below.

1.4.1 MTS Inter face

Figures 1-3 and 1-4 list the signals that are brought out to the MTS

via the 50 pin connector with their pin assignments in the connector

head.

1.4.2 Added Memory

The 1interface circuit board provides space for memory expansion when
the 1ITS is used with an early version of the MTS. THIS MEMORY SHOULD
NOT BE USED WITH YOUR MICROCOMPUTER TRAINING SYSTEM. It .occupies
addresses that are filled with memory already supplied on the later

version of the MTS.

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

CONNECTOR SIGNAL NAME CONNECTIONS ON
PIN INTERFACE BOARD
1 GND
2 GND
3 GND
4 GND
5 Vce (+5 Volts)
6 Vee (+5 Volts)
7 GND
8 +12 Volts
9 +12 Volts
10 GND
11 GND
12 CLK g2 (U26-18)
(CLK1 Tiepoint)
(CLK2 Tiepoint)
13 GND
14 AB15 (U44-11)
15 AB7 (MEM~-16)
16 AB6 (MEM-1)
17 ABS (MEM~-2)
18 AB4 (MEM-7) (U15-13)
19 AB3 (MEM-6) (U15-14)
20 ABlO (U44-10)
21 AB2 (MEM-5) (Ul16-9)
22 AB9 (MEM-14)
23 AB1 (MEM-4) (U26-20)
(u28-8) (U30-8)
(U13-5)
24 ABS8 (MEM-15)
25 ABO (MEM-8) (U26-19)
(U28-9) (U30-9)
(Ul3-4)

List of Interface Signals to MTS

Figure 1-3

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

CONNECTOR "SIGHAL NAME CONNECTIONS ON

PIH INTERFACE BOARD

26 MEMR (U42-~10)

27 RESET (G32-9) (Ul3-2)

28 POBO (U54-6)

29 POCO (U32-5)

30 MEMW (MEM~3) (U42-9)

31 INTA (U46-1) (G45-1)

32 DB7 (Ud5-9) (Ul5-2)
(U60-11,12) (U26-1)
(U28-7) (U30~7)

33 IOR (U28-5) (G30-5)
(U26-22)

34 DB6 (G59-11,12) (U26-2)
(U28-28) (U30-28)
(U45-7)

35 DB5S {(U58-11,12) (U26-3)
(U28-29) (U30-29)
(U45-5)

36 DB4 (U57-11,12) (U26-4)
(U28-30) (U30-30)
(G45-3)

37 D33 (U50-11,12) (U26-5)
(U28-31) (T30-31)
(U46-9) (ULl4-3)

33 INTR (U33-3)

39 DB2 (U49-11,12) (U26=6)"
(U28-32) (U30-32)
(U46-3) (Ul4-2)

40 DBl (G48-11,12) (U26-7)
(U28-33) (U30-33)
(u46-5) (Ul4-1)

41 INTC GND

42 DBO (U47-11,12) (C26-8)
(U28-34) (U30-34)
(Gae6-7)

43 IOW (U28-36) (U30-36)
(U26-23) (U15-3)

45, 46 -12 Volts No Connections

NOTE: (MEM -) refers to corresponding pins on all memory

chips: U47,U48,049,U050,0U57,058,U059,U060.

List of Interface Signals to MTS 1-9

Figure 1-4

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

ABO {CON

AB1 (CON

DBl (CON
DB2 (CON
DB3 (CON

S 8
RESET (CON 27)—}~[:::>c

74LS139
u1s
DB7 (CON 32) 2 ha 1yo o}
TOW(CON 43) 3 s 1¥lp s
' _E—leuc iv2lo 6
= 1¥3jo 7
AB3 (CON 19) LLH PPN 2vo 22
ABA4 (CON 18) 13158 2v1fold
AB2 (CON 21) 9 luie 1542¢ 2v2fs)
2v3by9
7415138
——_foGZA vl YO b 13
25)_ 2 9 o ——————20029 ppt—
235 U13 u13 G1 ¥2p ig
) 10 Y3p- T
Yap
40) 11n vsP—lQ———————————
39) 2|p Y6b 9
37) 3lc Y7p 7

I/0 Chip Selects and Interrupt Flip-Flop Reset

.Figure 1-5

RESET (U28-35)
(U30-35)
(U13-2)

CS1(U30-6)
CS2(U28-6)
C53(U26-21)

RO (U24-10)
R1(U24-4)

R3(U20-3)
R4 (U34-10)
R5 (U34-4)

HARDWARE INTERFACING AND REAL TIME PROGRAMMING
1.4.3 Chip Selects and Resets

Several bits of ‘the address bus, control bus, and data bus are
decoded to generate various chip select and reset signals needed on
the interface board. The circuits are shown in Figure 1-5. Figure 1-6
gives a '"truth table" listing the resuls of this decoding circuitry.
The addressing of the interface board ports is described in Section

2-1. The purpose and use of the various reset signals are described

in Section 2.7.

Figure 1-5 exemplifies the notation used in other schematics. For

example, consider several signals at the wupper left of Figure 1-5.

RESET is received from the MTS through connector pin 27 (CON 27). It
is inverted by one of the six inverters in a 7404, in chip U-32 on
the circuit Dboard, with input at pin 9 and output at pin 8. The
output 1is high while the reset key is pressed so it is designated
RESET, and goes to chips U-28 pin 35, U-30 pin 35, and U-13 pin 2.
Chip and pin designations are used 1in debugging and circuit tracing

and are of no interest in this course.

DB7 means Data Bus Line 7. faw is low during an input/output write

cycle. AB3 is Address Bus line 3.

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

This page intentionally left blank.

sjasoy pue s3oareg dIyD JOF 91qel UINIL

9-1 2an31d

1-13

Loz 3@sa9Y¥/39s 3Td (1T T T T 1 T 0 T X T T I X X X 0 T T T T 0 X X X 0
907 I9s9¥/39s 3Td [T T T T T T 0 T X 0 I T X X X o0 T T T T 0 X X X 0
Goz 39say/39s 3td |T T T T O. 1 0 T X T 0 I X X X 0 T T T T 0 X X X 0
pOz 39say/3Ps 3T (T T T 0 T T 0 1 X 0 0 I X X X 0 I T T T 0 X X X 0
€0z 3°say/3es 31 [T T 0 T T I 0 T X T T 0 X X X 0 T T T T 0 X X X 0
Zoz Ies9dy/3es 3ITa | T T T T I T 0 1 X 0 T 0 X X X o I T T T 0 X X X 0
10z 39s@y/39s 3td |T 0 T T 1T T 0 T X T 0 0 X X X 0 T T T T 0 X X X 0
00z 39sd¥/39s 3ta o T T T T I 0 T X 0 0 0 X X X o0 T T T T 0 X X X 0
z 3dogq wexboxd [T T T T T 1 0 1 X X X X X X X T T T T T 0 X X X 0
Dz 330@d @3TIM [T T T T T T 0 1T X X X X X X X X 0 T T T 0 X X .X 0
gz 3304 @3TaM [T T T T T T 0 T X X X X X X X X T 0 T T 0 X X X 0
ygIrod @Tam |1 T T T T I 0 T X X X X X X X X 0 0 T T 0 X X X 0
Z3rog wetes [T T T T 1 1 0 T X X X X X X X X X X T T 0 X X X 1
T3Ixog 3o9res [T 1T I T T 0 T T ¥ X X X X X X X X X T 0 0 X X X X
owTL 399719S ([T T T T T T T 0 X X X X X X X X X X T 0 T X X X X
309339 OoN /T T T T T T 1 T X X X X X X X X X X 0 X X X X X X

0 I € ¥ S I ¢ € 0 T 2 € % S 9 L 0 T ¢ € ¥ G 9 L Mot

S319S9Y 3O=oT°8 Qﬂﬂ—U sng ejedg sng mmOHUmu.A.N MOTT -

HARDWARE INTERFACING AND REAL TIME PROGRAMM ING

1-14

CcoMp (U28-21)
(U23-2)
U23 \obi- G2 (U26-15)
_/

—oOANALCG OUT

030
8225%1

520
4252

L4 ouT D7 L3 25 P37

j CNT D6 ii ;: PB6
R3(UL4-12) RST DS PBS
T2(326=17) dorx p4lEd 22 1ony
Vec 3 vee D3i 9 21 pg3
16| o120 oo
c1$_li‘ les_lg.pgl

. 1 s 18

.224f , D0 ————— 230
087 (CaY 32) 271 b7

DB6 (CON 34) D6

CBS (CON 35) ————224 DS

0B84 (CON 36) 30} o4

DRI (Y 37) 3103

D82 (QON 39) 32| p

DBL(CN 40) ——£ Dl

B0 (N 42) ——341 DO

ST(u15-12) O3

TR 33) :'§§

W (CON 43) ———d WR

RESET (U32-8) ———33.

ABL(CN 23) t AL

ABO (CON 25) ————2 20
vee 26 vee
I-—7. Gnad

pla‘
pC7 L0 pACT
PC6 llop}cs
pcs (12 5p1cs
ocy (23 plcs
PC3 17 - PiC3
15[04 (G33-5)
PC2 1-03 P1C2
21 LSl 21cl
o 5-5
peolkd TZ (Uls-53)
ol
oa7l37 o Ll, 2 1130w zl2 P1a7
9
cr-—NW-bi-’—I
pagli8 o Pt L1 Eagélo 5 P1AG
Lig
lbm—h
\} H ’
pa5 1 3 3 P1AS
011
ID—vW—DI—‘
pad (il T IM&*—@ 2134
ol2 ¢ zL
PAI -y A bt el el $—o PLAJ
B W0 0
[
pazl2 T s 2 p—o 2142
oly ———W——"3 9o
At
EJARE 3\]@6—.—- SR S5y ¥ P1Al
115 1K
—A Dy
°A0 4y SR VAL P1A0

4 o
bie

Port 1 and A/D-D/A Converter

<«

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

1.4.4 Port 1 and A/D - D/A Converter
The interface board includes two 8255 1/0 devices, with three 1/0
Ports each (A, B & C). One of these, designated device (or Port) 1,
drives the LED indicators at fhe top left of the interface board via
Port 1A and provides connections for the digital to analog converter
via Port 1B. It is -shown in Figure 1-7. 'The discrete outputs are
described in Sections 2.1 through 2.3. The digital to analog
converter is described in Sections 4.5 and 4.6. The circuitry that
makes it function as an analog to digital converter for input is the

subject of Sections.5.3 and 5.4. Ports 1A and 1C are brought to a DIP

socket (U-18) for general I/0 applications.

8-1 Q.H.D.wﬂnﬂ

wo1sAs a
1dnagsjur A£3TJI0TIg POIOLD
T A

vievr
v » . ﬂ-—-\Oth
NI
=: (w1 -oca) £211ved
0T at LOY vy
1 7] 297 v g
] 133 G xr 53¢ ﬂh
: Y svrly—o
e 9|% [hot hVT 3 ?
. 24£ 7] 7% n(u.lllb.u.ﬂllos‘“.
: en = |79 3] 2 7 19-
Jd =T wele—o (g
Ahmn ~©3D) ALSTAL F\i-dl‘fn ¥7 192 L ve ¥ €
R77.7 S ‘) . WI_..I 027 ovels —o ¥
: ikl :) . er-n P
T ko7 N—3z] T # 5578 | (s
€/ | VI riz K3ad v (8—xsn) L3sIY
(z4 ro2) ' 7, €€ e 5 f 7] 79¢ WMH#QN)GU» Led
oda b T rrangy] <c|F9 HAMIMQ.—. ~oD) add
! oL 3 Lk X4 153 (sewved) 5@
rremn hE ha |2 a
- &3 m.. hoxy (] €9Y £d oF @c ~o>> Kda
194 % fu : £ selt8r dad?niuuv c9q
(tsre3) eh 1L of r|t9x .thlw?m ~od) xdd
zagd 24 A € etV hY F 1 ogv od st (oh ~vod) 1494
(e rod) u—n&Un Wm— DIty O §3 (AT M‘-ﬁ\u\,‘hvu ovd
? 5 3 (11-51
£8d J o hh ke n) TsD
PANGLE =55 (Eh voo) (M0X
2 [" zL (€g o) MOX
(9ew~ed) ol bl b AMM nod) 18V
hea » 15T N vov tnps) OBV
s o 13 [HA ol-510) €5
red) Ld [(ze woo) L
sda 4 - 9¢ |t (bt pod) uﬂw
(Er02) . l_m._. ﬂ.“ 7 (5e rod) sBa
28dc h 2 [N MQlMMATQuV Lad
e 2> pestac T srn SR i
e 3L X7 f- OMMIAO}\S“UV 19d
Lbig EXA ol ¢4 <o — Cthvod) odd
me oinr 4 57 (11 -€10) Tanws
13 il ¥ el 19 {7y I
5|® B290VL LLIW 12 °o 12
J p) H>5 o} 57 - e
22 T hIhRL or 09 A
A \JUDQ\HMI“ oL 8 NllAll oD ..~ﬂ~||(AJ\- ofn
ET] ? 5 R v/ NO)
A00 Oto ol : IIIFI_ MIoYP
- |4A 2¢ od (-bin) dwed
’ T] € © 7 lﬁh S ix3
hix?
oL —0 hix3
Mo_‘r:: £y
11-k1n) hY
AT—n\J—\-& 1y

«
|

HARDWARE INTERFACING AND REAL TIME PROGRAMMING
1.4.5 Interrupt System

The second 8255 I/O port is primarily devoted to the interrupt system
shown in Figure 1-8 and described in Sections 2.7 through 2.9. The
8253 interval timer is closely tied to the interrupt system, so it is
shown in the same schematic, but this device is so important (and so

complex) that all of Chapter 3 is devoted to it.

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

1 , , MOT
7406 OcTL+
P1Cl ol P J _oMoT
(U30-15) ' T CTL-
MOT
30 3 1 —Osup
: 1 “T ??MCTG
- |
! ‘*QEES [: ! U9
) |
4 5)
R34
“AAA- k//
N 2N6121
MOT
——ODRV
+
c2
vcc 3.3
MOT
RET
10K {opTO
SENSE

1K

ANV

. OPTO
—Tf SENSE
OPTO
=0 "IN
i%MCTG 2 7

; ;
|
R50 I = [i ! R30 0 0 0 0
g L <§ﬁ§} : } U9

Vece

Optical Couplers and Power Driver

Figure 1-9

HARDWARE INTERFACING AND REAL TIME PROGRAMMING
1.4.6 Optical Couplers and Power Driver

It is often necessary to provide electrical isolation between the
computer and external equipment. Optical couplers use infrared light
as a coupling medium for information while giving complete electrical
‘isolation. An optical coupler (Monsanto MCT6) is provided on the
circuit board. One coupler is wused for output, driving a power
transistor mounted on a heat sink. The other coupler is used for

input. Figure 1-9 shows these circuits.

1.4.7 Serial Interface Circuit

The circuits shown in Figure 1-10 can be used to connect the MTS to a

teletype or a terminal such as a CRT that uses RS232 signal levels.

The RS232 system's software and board connections are described in

Appendix C.

Note that R38 is connected to the -12 volt tie block but not to the

system -12 volt supply. To use this circuit, add a wire from R38 to

pin 45 of the ribbon cable connector, which carries -12 volts.

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

Serial Interface Circuit

(Connecting R38 to =12 Volt Supply)

Figure 1-10a

1-20

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

+l2

2R36 R37
1K S 47

: R35
Py %
1 12 9 8 1K 2N2907

G SEND
R38 ,
820 ohm 1w
o-12V
—-O RECEIVE
Vee
S R39
4.7K
R41
4.7K
o — o SERIAL OUT
o3 '
N2222

R40
10K

CR4

—bh—
')

Serial Interface Circuif

Figure 1-10b

—0 SERIAL IN

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

TTI-T aJn31d

WOPON ©3139SSED adel

YLSTVL

8e

Td

62

: 4 \\/\/\/\I .
%; 32 297

D!

13

g

- Q/

9sN <

4]

0

g2ed
U A

9 .4ad ©

I osn

oed

<

a

w
<

O_Jﬁ zZ1

Lno

A+

2225Nl

' 2k 2
2E1hL

yzswl ¥ Ui 4mio

A

32

el =
T

< sen<P

z Sl

© 0
dm«

H 410 U NMOOI
. cTY

9LG1HL Y

G|

b

Nm:A

2] hl@

»mw 94571¥L Nmu 24
zgn

9 9

| | 9 8
> ..NmD.A _ gl Lno ouL

=
_°~H

SO

- al
i 9
T 9

€2

U MOt W

zzd Tlaq Tl
UNol £l

1z x £ N0 vl

waAee

oty

61

I9A

1-22

HARDWARE INTERFACING AND REAL TIME PROGRAMMING

1.4.8 Tape Cassette Modem

The interface cicuit board contains a duplicate of the tape cassette
modem provided on the MTS, which was not available on the previous
version of the MTS. The ITS modem will not ordinarily be used. It is
shown in Figure 1-11. The digital input and output are carried
through the ribbon cable but have no connections on the MTS circuit
board. If the wuser wants to operate with two separate cassette
recorders the signals should be picked up by soldering leads into
feed-through holes on the ITS cicuit‘bbard. Convenient locations are

in "the area with the silkscreened label "Microcomputer Interfacing

System", as indicated below:

MICROCOMPUTER
INTERFACING
SYSTE

To recording modem
U32-5

From receiving modem
Y54~6

1.4.9 Tape Cassette Library

A cassette tape 1is provided with most of the programming exercise

solutions and a few additional programs. It is described in Appendix

B.

HARDWARE INTERFACING AND REAL TIME PROGRAMMING
1.5 USE OF PMTL OR INTEGRATED EXPERIMENT ASSEMBLY

If you have a Portable Microprocessor Training Laboratory, or if you
have 1installed the Integrated Experiment Assembly on the Interface
Training System, the necessary connections for the more complex
experiments described in this course can be made by setting the slide
switches appropriately. The early experiments all require that the
slide switches be UP. Whenever the directions in this book indicate
the need for an experimental setup, refer to the "Portable
Microprocessor Training Lab - Selected Experiments'" Manual, or to the
"Experiment Assembly and Real-Time Firmware" Manual. There you will

find instructions for all of the necessary switch settings.

MICROCOMPUTER INTERFACING WORKBOOK

CHAPTER 2

INPUT/0UTPUT AND INTERRUPTS

This page intentionally left blank.

2. INPUT/OUTPUT AND INTERRUPTS

This chapter discusses the provisions made on the interface board for
digital logic 1level inputs and outputs to the microprocessor.
Interval timers, analog signals and optically isolated inputs are

discussed in later chapters.

2.1 PORT ASSIGNMENTS AND ADDRESSES

The interface board includes two 8255 Programmable Peripheral
Interface devices. Including the 8255 on the MTS board, a total of
72 bits of input/output is accessible to the 8080 microprocessor. In
addition there is an Intel 8253 Interval Timer (see Chapter 3) which
is addressed and programmed in much the same way as the 8255 ports.
Figure 2-1 shows the port assignments. Figure 2-2 lists the port
addresses and assignments and gives a list of programming control

bytes suitable for each of the 8255's.

In this table and throughout the course we will refer to input ports

by device number, port letter, and sometimes a bit number:

PORT 1 A
I———POR‘ZI‘.‘ A, all 8 bits
8255 #1
PORT 2 C 2 or sometimes 2C2

Bit 2 (where the least significant (or right most)

bit is bit 0 and the most significant (or left most)
bit is bit 7.
Port C

8255 #2

INPUT/OUTPUT AND INTERRUPTS

8255
#0
(MTS)

0A
0B7
to 0Bl
0BO

0C7
0Cé6
0C5
0C4
0C3
0c2
0Cl
0co

8255
#1

1A
1B

1C7
to 1c4
1C3
1c2
1C1
1Co

8255
#2

2A
2B

2C7
2C6
to 2C0

&< Keyboard Rows
Unassigned

-—— Tape Cassette Receive Data

—— Display Enable

—— Command Keys

— Keys 8-F

— Keys 0-7

— > Zero Indicator

— > Carry Indicator

—— Monitor Enable

——— Tape Cassette Send Data

T—> LED's and open collector drivers

<—>A/D - D/A Converter

} Unassigned

— Interrupt
Unassigned

— Motor Drive Enable

— A/D Count Enable

<> Unassigned I/0
<::Z Interrupt Status
—General Interrupt Disable

} Specific Interrupt Enables

8255 I/0 Port Assignments

Figure 2-1

INPUT/OUTPUT AND INTERRUPTS

PORT ADDRESSES AND ASSIGNMENTS

ADDRESS PORT NAME FUNCTION SPECIAL ASSIGNMENTS FOR 0C AND 1C
00 PORT 0A MTS Keyboard Input 0Cc7 Display Control (1=0n)
01 PORT 08 Unassigned axcept 080 0cs Enable Command Kays (0= On)
02 PORT 0C Sae column at right acs Enable Keys 8-F (0= 0n)
03 CNT 0 Control Port for MTS 8255 - oca Enable Keys 0-7 (0 = On)
_04 PORT 1A LED and Driver Outputs 0c3 Zero Indicator {1=0n)
Q5 PORT 18 D/A Qutput or A/D Input 0G2 Carry Indicator (1=0n)
06 PORT 1C See column at right ac ' n
07 CNT 1 Control Port for 8255 # 1 Monitor: Enable (1=0n)

i 0Cco Cassette Modem Out
oc PORT 2A Unassigned 080 Cassette Modem In
oD PORT 2B Interrupt Status Input 1074 Unassigned
0E PORT 2C Interrupt Enable Qutput 1c3 | (1f Enabled by 2C6)
oF CNT 2 Control Port for 8255 #2 nterrupt {If Enabled by
1C2 Unassigned
4 TV 0 Timer 0 1C1 Motor Drive Buffer (0 = On)
15 TIM 1 Timer 1 : .
16 TIM Timer 2 1C0 D/A Control (1 = Automatic A/D)
17 ™M CT Cantrol Port for 8253
-~ 8255 PROGRAMMING CONTROL BYTES (WRITE TO 8255 CONTROL PORT)
USE WITH (°7{0s|0s{04 |03 {0201 o0
8255 # FJ
CONTROL BYTE | PORT A | PORTB | PORT C0-C3 | PORT C4-C7 0 1 2 GROUP S
80 Out Out Out Out D/A et
81 Out Out In Out @ 0 ouThur
82 Out in Out Out A/D| * E‘i“.ﬁ%r
83 QOut In In Out A/D -
38 Out Out Out In D/A 3'“"%%%'5? eTion
89 Out Out In In @
8A Out In Out In A/D p——
88 Out In In in A/D JU—
90 in Out Out Out * |D/A oo outeuT
X In Out In Qut *» | @ POAT A
92 In In Out Out * |a/D| * o ouTPUT
93 In In In Out *_|A/D 00+ MODES |
98 In Out Out In D/A T « MODE 2
99 in Out In In o
9A In In Out In A/D MODE SET FLAG
98 In In In in A/D | 7 ACTIVE

+ Ganerally only these cantroi bytes should be used for normai cperation.

. Forbidden configurations

Figure 2-2

Mods Definition Format

2-3

INPUT /OUTPUT AND INTERRUPTS
2.2 PROGRAMMING AND USING THE 8255

At system reset all ports of all 8255;5 -are automatically set to
input Mode O. They can be used this way or programmed to other
configurations by writing a control byte +to the control port of the
desired 8255. The monitor program automatically re-configures the
8255 on the MTS board such that ports OA and OB are input and 0C is

output. It accomplishes this by writing 92 to the control register.

3E MVI A,92

92 0: A = IN; B = IN; C = OUT

D3 OUT CNTO ‘Output. A to 8255 #0 Control Register
03 (Address 03)

The 1interface board 8255's must be set to the desired modes by your
prograim. The first programs we will develop require output in all
three ports of 8255 1. Figure 2-2 gives 80 as the requiredvcohtrol

byte:

3E MVI A,80 Load A with control byte to

80 make device 1: A = OUT, B =
OUT, C = OUT

D3 OUT CNT1 Set 8255 #1 Control Register

07 (Address 07)

INPUT/OUTPUT AND INTERRUPTS

Because 8255 #2 is largely committed to the interrupt system it
usually 1is programmed for input at port 2B and output at port 2C.
Port 2A may be input or output but must be in Mode 0, the normal
.direct 1/0 mode. Most programs developed in this course use the
interrupt system, so in general programs should contain (again from

Figure 2-2):

3E MVI A,92 Device 2: A out, B in, C out
(MVI A,82 may also be used)

92

D3 OUT CNT2

OF

With the 8255 ports programmed, data can be read from or written to

the ports by IN or OUT instructions, for example:

DB IN PORTOA (a) (--—‘Port 0OA
00 (Keyboard Input)
D3 OUT PORT1A Port 1A <--- (4)
04 (Interface Board's LED's)

INPUT/OUTPUT AND INTERRUPTS

EXERCISE

If you write a program containing all of the instructions listed so
far, terminated with a jump back to the input instruction as in
Figure 2-3, the LED indicators on the interface board will show the

keyboard input data.

Figure 2-4 shows the keyboard connections to ports OC and OA.
Programming a port to output mode automatically sets its outputs low.
Therefore, (from Figure 2-4), if a key is pressed the corresponding
bit in port OA is made low. For example, if the MEM key is
depressed, then port OAO0 (which was pulled high by the resistor to
Vee) 1is now pulled low through. the MEM key and port 0C6. (The
monitor scans the keyboad by alternately making ports 0C4, OC5 and

0C6 low or 0O, thus identifying the key pressed).

With the program shown, port OC is programmed for output, so all keys
are enabled (0C4, 0C5 and 0C6 all low). Therefore 0, 8 and MEM will
show the same output. The input to a bit of port OA is high if no
key in that column is pressed; if a key 1is pressed and the bit of
port OC for that row is low, then the input is low. (Review Course

525, Section 8.1 if a more detailed description is needed).

PROGRAMMING THE 8255's

CODE

A D D R-

7%%@MMU¢&ﬂ”

A5 5 #/

Aol Bpt Coel

 PAS S #HL

‘ﬂpdxtd/nz)
A

A G B OCout

4

ﬁh%@éxvyf

Figure 2-3

1Plol[7|0|4 ﬂaﬁLﬁZM
4@507%%452}‘%

3
N N
AN
. ~
NWENENEAREN R ~ R
OIS]I~ NEREN
J = AN {1 I Q %%
< (Y] (VR (v Ql |N
NN N NN TN IS
EN I P N B e N S N
OISO SN F 9 NN
G N ™| Y]yl M N W] 5] ™ RQ) MMV
A IR SN RS RSN AR ANASIRN A
O|l=|N|M|x|WIO|NIO]®| L CDF_FO_IZ alolaluw|lwlol-r|l ™| < o
3 IS (S
N
[--} f @ | [+~

133HS ONIA0D

N3LSAS ONINIVH.L H31NdWODOHIIW

SIWILSAS HILNdNOD A3 LVHOILNI

INPUT/OUTPUT AND INTERRUPTS

This page intentionally left blank.

INPUT /OUTPUT AND INTERRUPTS

- AR MY
TR
L IR RN Y

MTS Keyboard Configuration

and Port Assignment

Figure 2-4

INPUT/OUTPUT AND INTERRUPTS
2.3 PORT 1A LED'S AND DRIVERS

Port 1A (address 04) drives eight sets of open collector inverters

and LED's vee
7406 open

LED collector inverter

Port D& D& - Tie
Aia Block

14X DSx
Each bit of the port drives an identical circuit. The LED indicates
the state of the output, i.e. illuminated if a one is output. The
terminal block output follows the port. The state is low if a zero

is output and open if one is output.

An open collector buffer is a TTL amplifier whose output comes from a
transistor with no internal connection to its collector. It is
approximately equivalent to the circuit below. When the input is a
logic 1 (grea;er than 2.4V) current flows into the transistor, thus
turning it on and effectively connecting the output to ground.
However, when the input is logic 0 (OV), no current flows into the
transistor's base. Therefore, it is off and the output is "floating"

(i.e., connected to neither ground nor +5V).

Output
Input

An open collector inverter is shown on a schematic diagram by:

DA~
‘\\\ Slash

INPUT /OUTPUT AND INTERRUPTS

The slash indicates an open collector. Note that the open collector
output gives a signal only if it is pulled up through some load or
pullup resistor to a positive voltage, which may be as high as 30
volts. The output is capable of sinking 40 ma to 0.7 volts. Connect
a voltmeter from one of the port 1A output drivers to ground. It
will show O volts whether the LED is on or off. Now connect a pullup
resistor to +5 volts, and the voltmeter will display either OV or 5V

depending on the state of the Port 1A0 output bit:

*
+5 volts

1K Pullup Resistor

Port 1A0

GND
For output bits 1A2, 1A3, and 1A4 (marked DS2, DS3, and DS4 on the

ITS board) pullup resistors (in Ul) are available on the circuit

board, but not connected. They can be connected by soldering jumpers

between two pads in front of the LED's for those three bits.

*NOTE: Throughout this text the illustrations represent ITS board
Tie Block connect points with the symbol 65 . These refer to one

of the labelled rows within the white Tie blocks.

INPUT /OUTPUT AND INTERRUPTS
2.4 MTS DISPLAY

The seven segment displays on the MTS are operated by a direct memory
acceSs system. Whatever data are written to memory locations 83F8
through 83FF are automatically displayed in the eight digits. (Review
‘Course 525, Section 8.3, for more detail.) The DMA channel must be
enabled by a high output at port 0C7. Since programming a port to
output automatically sets all bits low, the display was disabled when
you programmed the MTS 8255 #0. Prove this by adding STA 83F8 before
the Jjump instruction in your program. Even though you have written
the same data to the DMA display area of the MTS memory as you wrote

to the LED's, the display will remain blank.

A good way to turn the display on is by use of the bit set/reset
function of the 8255. ‘This allows a single bit of port C to be
changed without affecting any other bit. Enter this at the end of

your program (after OUT PORTI1A):

‘32 STA 83F8 Write keyboard data to display
F8

3E MV1 A,OF Set bit 7 in port OC

OF

D3 ouT CNTO

03

C3 JMP 820C Jump back to input instruction
oC

82

"INPUT/OUTPUT AND INTERRUPTS

Note that the bit set/reset control byte is written to the control

port, not to port C.

The bit set/reset control byte has the form:

7 6 5 4, 3 2 1, 0
N " g

I-——————-Set/Reset
0 = Off
1 =0n
Bit Number 0 to 7
Don't Care
0 = Bit Set/Reset Command

We will wuse the bit set/reset command frequently. Be sure you

understand it. The bit set/reset command is discussed in Course 525,

Section 8.1.

INPUT/OUTPUT AND INTERRUPTS

& o PORT=IADAMVERS “ - o o)

200800 20088090 |, o . ° oo
o o
ooo o o o @ . o o o
ur asoensse Ul 090E000 o eoaoaa-ooonooooaooeo
°e ° LXK] e Olo -] o
9 G ° o o o

-]
-]

03008908808 |ronrr °

: [‘: ssc0s200e

° °

L)
o
e o

u *

o
33000008
°

°
.
°e ws0%086008
-
ue7 890000089 W57 ROAROL3E

°
o 8000008 o QoboOBse
o 3

o [

LI
us l.B"Q.n
- 9
mnCre

¢ 2uee E_D

ve IO‘O .°

s 50000908
,Ponnc‘.

u1s !.OBOO0.00.'.O...O'.
82553 L4 %

'WHSOOOI. AMP 9090009.....08..9..

LRI N KN N N K-N BN TES] 99852380

L]
°o #96ave00
[)

U4? 0080000 N-:’” SOOBg0.0

evces e, . D/A -
COHV!!'I' °°
DUDDBDF oALLLLLL (o/l o ssaesess o veossscas
°o \ ° .9. - 1 o
G...’ vie ﬂ....'.. '33206000093009300232080 Uio BAI09800 owed 13800008
"E e- 8255 -1 e o, 0000833 [Memonry ga00- nA]
‘.° so 2 4 l
- 2 Ej ‘ * % . "°".'°" nooosa;l
or10 ANALOG omc ANALOG N ‘s €&B / o D
OSEMSE 1 <18 cio €22
1A7
las
1A5
1a4
1A3
1A2 T ———
1al
1AQ =———
PORT 1A
> Uls U6l
PORT 1C PORT 2A
lCO e — 2A0 o—
1C3 2A3
1C4 224
1C5 2A5
1Ce6 2A6
1c7 277

Input/Output Connections

Figure 2-5

INPUT/OUTPUT AND INTERRUPTS

2.5 INPUT/OUTPUT CONNECTIONS

In addition to the terminal block outputs driven by the buffers, port
1A, port 1C, and port 2A are directly connected to empty DIP sockets,
shown in Figure 2-5. A cable that plugs into this socket can be
obtained (available from Augat as part number 7P16-3T24-1). This
allows connection of these ports to any suitable device for input or
output. None of the experiments described here require these

connections, but when you develop interfaces to other equipment they

may be needed.

INPUT/OUTPUT AND INTERRUPTS
2.6 EXTERNAL INPUTS 4 AND 5

Two terminal block connections labelled EXT 4 and EXT 5 are provided
for the external inputs needed in many of the experiments in this
course. These inputs are part of the interrupt system, which will be
described in Section 2.7. Théy can also be read as single input
bits. They are connected to port 2B, bits 6 and 7 respectively (see

Figure 2-7).

EXERCISE:

Read the external input bits and display them with the LED's. Change
the program of Section 2.4 to read Port 2B instead of from Port OA.
(Refer to Figure 2-2 to find the address). Since the EXT 4 and EXT 5
inputs are connected to Port 2B bits 6 and 7, the modified program
will repeatedly 1input these bits and display them (along with random
data in the other bit positions) in both the LED's and in the left

digit of the MTS display.

5 1
\ /7 \ VS /7 N\ /\O/\O/\O/\ / 6
/O\Q/O\/O\/ \N /7 \N /7 \N /7 N\
7 6 5 4 3 2 1 0 A 2

2-16

INPUT /OUTPUT AND INTERRUPTS

Connect a clip lead to the EXT 4 input and touch it to ground to see
bit 6 change in the display. TTL circuits demand sharp rising and
falling edges. To ensure suitable signals and to prevent spurious
noise from causing interrupts, EXT 4 and EXT 5 are brought into
Schmitt Trigger inverters (in chip U2, a 7414, see Figure 2-7). The
signals are then inverted again and used to clock flip-flops in the
interrupt system, discussed in the next section. The inverted
signal, EEE__Z, is available at a terminal labelled EXT 4 OUT.
Connect this to EXT 5 IN, so that EXT 5 will be inverted from EXT 4.
Now when you connect EXT 4 input to ground both signals will change.
They will be displayed (using the program of Section 2.4) in bits 6
and 7 of the LED's.

INPUT/OUTPUT AND INTERRUPTS

2C0

—
Timer 0 F/F
2B0
2C1
I
Timer 1 F/F :
__. 2BR1
2C2 .
Timer 2 :
2B2
A/D
Converter
2B3
2C4 —J
EXT 4 F/F
| | .2B4
2B6
2C5 __4
EXT 5 F/F
I l »2B5
2B7
2C6 —
PORT 1C3
Interrupt System disable; Port 2C7 [>K>

Inerrupt System - Partial Diagram

Figure 2-6

INPUT/OUTPUT AND INTERRUPTS

2.7 INTERRUPT FLIP-FLOPS AND ENABLES

Most of the experiments in this course use the interrupt capability
of the 8080. The student should be familiar with Section 8.4 through

8.6 1in Course 525 . A review of those sections may be advisable at

this point.

2.7.1 Interrupt Sources

The MTS will accept repeated interrupts generated by its own hardware
when the AUTO/STEP toggle switch is set to STEP. We will also refer
to these as '"monitor interrupts" since their purpose is to invoke
moni tor functions such as single stepping or breakpoints. In
addition, and independent of the AUTO/STEP switch, the MTS will
accept interrupts generated by the interface board. (Once an
interrupt has occurred, or if a DI instruction is executed in the
program, no other interrupt can occur until an EI instruction and one

following instruction have been executed).

Figure 2-6 1is a partial diagram of the interrupt logic of the
interface board. Interrupts can occur in response to, signa@s
generated by the interval timers (Chapter 3), by strobed input or
output wusing port 1A, by the EXT 4 and EXT 5 input ports, and by the

Analog to Digital converter.

INPUT /OUTPUT AND INTERRUPTS

RESET 4
7414 Aé
L P Q
EXT 4 IN = :>
Q ——e—— Port 2B4
EXT 4 OUT
/ RESET 3 L. To interrupt
{ &, ~——— request gates
\ LD Q
EXT 5 @ >o— >0 >
gl 4 eore 285
Port 2B6
Port 2B7
EXT 4 IN Ny

____—____—/F, —¢
EXT 4 OUT_/_K e

LSS

EXT 5 IN _/_\ -

«
)

PORT 2B4 / h \

b) T

W
PORT 2B5 ___/

RESET 4 N
{ \ [
RESET 5) ‘ _/_

«

EXT 4 and EXT 5 Connections and Signals

Figure 2-7

INPUT/OUTPUT AND INTERRUPTS
2.7.2 Interrupt Flip-Flops

The purpose of an interrupt system is to provide for processing of an
occasional and perhaps fleeting event whiie allowing the computer to
Carry on other tasks that can be put aside temporarily when an
interrupt occurs. To permit the processor to recognize a possibly
very brief signal, the rising edges of the EXT 4 and EXT 5 inputs set
flip-flops, which actually provide the interrupt data to the
processor. Each flip-flop is reset only by a specific command from
the processor under program control. This insures that each

interrupt signal is retained until it has been processed.

Figure 2-7 shows the connections of these flip-flops in detail. To
save components the interface board uses negative logic here. The
flip-flop is actually set to O by the input signal and preset to 1 by
the reset command. Since the inverted output of the flip-flop is
used, the signal becomes true (=1) at the input rising edge and false
(=0) at reset. These ''reset" signals are software generated as

described below.

Similar flip-flops are 'connected to the outputs of timer O and timer
1, to allow interrupts on narrow pulses from these timers. The
interrupts from the A/D converter and port 1C3 are latched by their
sources so flip-flops are not needed. Only timer 2 output is
unlatched. It is used primarily in connection with the A/D converter

or in a timing mode in which it latches its own input.

INPUT/OUTPUT AND INTERRUPTS
2.7.3 Interrupt Status and Enables

All of the interrupt sources, except port 1C3, are taken to port 2B
as inputs. After an interrupt has occurred, the program can read
this port to determine the source of the interrupt. We refer to the
content of this port as the interrupt status byte. The program can,
of course, read this port at any time. ‘The data are not dependent on

whether an interrupt was enabled. Refer again to Figure 2-6 to see

these connections.

Although the hardware is designed to permit interrupts from many
different sources, most programs will be concerned with only one or a
few of these. To prevent any reaction to an undesired interrupt,

each interrupt source is gated with an output bit from port 2C. The
processor will be interrupted only if an event occurs and its enable

bit at port 2C is set high. These gates also are shown in Figure

2—6 .

The interrupt sources, their positions in the interrupt status byte
at port 2B, and their enable bits from port 2C are listed on the next

page.

INPUT/OUTPUT AND INTERRUPTS

Source Interrupt Interrupt
Enable Bit Status Bit

(Active High)

Timer O Flip-Flop 2C0 2B0O
Timer 1 Flip-Flop 2C1 2B1
Timer 2 (no Flip-Flop) 2C2 2B2
A/D Comparator 2C3 2B3
EXT 4 Flip-Flop 2C4 2B4
EXT 5 Flip-Flop 2C5 2B5
Port 1C3 2C6 1C3
General Disable 2C7

EXT 4 Direct (no interrupt) 2B6
EXT 5 Direct (mo interrupt) 2B7

Note that Timer O, Timer 1, EXT 4, and EXT 5 generate interrupts only
through their flip-flops, which are set by rising edges. In
processing the interrupt, the flip-flop will be reset (see section

2.7.4), so it will not generate new interrupts until another rising

edge occurs.

INPUT/OUTPUT AND INTERRUPTS

Port 2C7 is a general disable for all external interrupts. When it
is high, only monitor interrupts can occur. At system reset all
ports are forced to input mode thus floating the signal lines. To
the logic this appears as a high signal so port 2C7 automatically
inhibits external interrupts. Whenever port 2C is programmed for
output, all bits are automatically set 1low. Now, bits 2CO through
2C6 inhibit the individual interrupt sources. No external interrupt
can occur until 8255 #2 has been programmed and specific bits of 2C

have been set high.

INPUT /OUTPUT AND INTERRUPTS
2.7.4 Clearing Interrupts

The interrupt flip-flops for Timer O, Timer 1, EXT 4, and EXT 5 are
\reset by the act of either setting or resetting the corresponding
interrupt enable bit. This must be done by the bit set/reset command
written to CNT2 (OF). Writing a byte to port 2C does not affect the
interrupt flip-flop (see Figure 1-5). This logic design has three
purposes:

a) After an interrupt from one source has been processed, its

flip-flop can be cleared without affecting any other source which

may have received a signal while the previous interrupt was being

serviced.

b) A previously disabled source can be enabled and its flip-flop

cleared so that only future events will generate interrupts.

c) A previously disabled source can be enabled without clearing

its flip-flop (by writing to Port 2C instead of CNT 2) so that a

previous event can generate an interrupt.

INPUT/OUTPUT AND INTERRUPTS

Program MTS 8255
Program 8255 #1
Program 8255 #2

Program of
Section 2.6

L

Read Interrupt Status
Byte (Port 2B)

Write to LED's
Write to 83F8
Enable MTS Display

Decrement Delay

Not Zero

P -

Zero

Disable EXT 4 Interrupt
CNT 2 = 08

Disable EXT 5 Interrupt
CNT 2 -— 0A

Clearing Interrupts

Figure 2-8

INPUT/OUTPUT AND INTERRUPTS

EXERCISE:

We will demonstrate the setting and clearing of the interrupt
flip-flops for EXT 4 and EXT 5, using the connection already set up
(Figure 2-7), and extending the program of Section 2.6. The program
will display EXT 4 and EXT 5 flip-flops as well as the direct inputs
and demonstrate clearing the flip-flops. The routine will provide a
delay period during which the inputs can be controlled manually and
will be displayed. At the end of the delay, it will clear the
flip~-flop by a disable command. LED's DS6 and DS7 will display EXT 4
and EXT 5 direct inputs, while LED's DS4 and DS5 will display the
state of EXT 4 and EXT 5 flip flops, respectively. Figure 2-8 shows

the program.

During a delay period the interrupt status byte is repeatedly read
and displayed. At the end of the delay, the EXT 4 and EXT 5
flip—fiops are cleared by disabling their control bits in port 2C.
Now if you ground the EXT 4 input during the delay period, its
inverted output (EXT 4 OUT) will become high and set the EXT 5
flip-flop. These signals will be displayed. If you remove the
ground, the EXT 4 flip-flop will be set. If both flip-flops are set
(both LED's on),‘it is due to "bouncing'" the jumper contact more than
once during a delay. In fact it 1is very difficult to make or break
the connection so cleanly that you do not set both flip-flops, but it
is possible. This phenomenon of seeing both rising and falling edges
when a contact is opened or closed 1is called "contact bounce'", and

must be considered when connecting to switches.

CLEARING INTERRUPT FLIP-FLOPS

CODE

A D D R

%M N7 FlsF

\Lqu)fi/td/nd FAs 5 #/
eparnand) F255 #al

g

Vo Zoud 5 U LD

ala

va

Oedpt 2

/Mr's ﬂmip,(a?

Enalde INTS Diiplay

7

7

Y, A Lo
Gy ~

L (HL)

A ,a'lﬂfa.ﬁ

Figure 2-9a

Q (X

)1 ~ .
DT S Y Y I L O S A A AN V
N NEN R E SRR O I~ RNEEAN
1 1= 4 I 10 Q] 19 ™ | T |= 4 [0
< (O [(9 (& (9] o Jo | SNEEEEERER
N N TR e - NE THENEERER R QN
N (= (DY (D] 2 d 1w > 1D [V QU Q QQ
T QT S g o [N IS [« s IQlEgh 2
NN NN S R N N A R NN S I N A R R NRIRARISAIN
N N QY QN[QNAQ] Q] Q] QA L W VAL Q] DRV YD
Ol |||l |w]|[]o|N|lo]lo|lg]lon|lo|og|lw|w]|loleelan]lmw|ac|lv]o|n|olo|dlsjlojajlwlwjol]la|o| ©
Q wa N
; NEEEK .

133HS ONIAOD

W3 LSAS ONINIVHL H31NdWODOHIIW

SINILSAS HILINdWOD A3 LVHOILNI

CLEARING INTERRUPTS (continued)

CODE .

Linabds and

EXT Y \InTirpee p

Livatble)and cloar
EXT 5~ W

Figure 2-9b

A oA

MIYIZ] (Al Jole

Ol|T| |CIMT|A

oWwIT! [eVIT12
JMP| [2lQlo]e

MV T

3| E

AV

o|&
D\3

OF
3\E
D3
O\F
Ci3
0\C

Pl

8 A2

-}

133HS ONIAOD

W3 LSAS ONINIVHL H31NdNOJOHIIW

SW3LSAS H3LNdWOD d3LVHOILNI

2-29

INPUT/OUTPUT AND INTERRUPTS

INTERRUPT SERVICE

INSTRUCTION ADDRESS STORED AT COMMENT
RST 1 83F4,F5 Not used with ITS
RST 2 83F2,F3 Not used with ITS
RST 3 83F0,F1 Not used with ITS
RST 4 83EE,EF Generally used for

programmed call

to monitor.
RST 5 83EC, ED Generated by Timer O

Default dispatch to 8228
RST 6 83EA,EB Generated by other

ITS interrupts

Default dispatch to 8230
RST 7 83E8,E9 Monitor interrupt for STEP

and breakpoint

Interrupt Dispatching

Figure 2-10

INPUT /OUTPUT AND INTERRUPTS

2.8 RESTART INSTRUCTIONS

The 8080 provides for eight '"restart'" instructions, RSTO - - RST7.
(See Course 525, Chapter 8). The MTS hardware generates RST7 in
response to an interrupt by resistive pullups on the data bus. The
ITS interrupt system generates RST5 or RST6 in response to the

various interrupt sources it provides.

2.8.1 RST Dispatch

The MTS monitor dispatches to an interrupt service routine in
response to any of the RST insructions except RSTO, which corresponds
to RESET. The address of the interrupt service routine must be
stored in RAM, according to the list in Figure 2-10. The monitor
preloads addresses to dispatch RST5 and RST6 into the user's program
area. Most of the program solutions in this course use these default
addresses. Thus a Timer 0 interrupt service routine will be located

at 8228, and service routines for all other ITS interrupts start at

8230.

INPUT/OUTPUT AND INTERRUPTS

2c7 —>o , .

cc
Timer 0
—> 2C0 0
Output o) —? <
Timer 1 :> 2Cl — L DB7
tout —
Outpu 3
DB6
Timer 2 2ce —_'2 DB5
Output
L .- DB4
2C3 '
= DB3
A/D Comparator 3)e 5 10 3
Output
DB2
2t — DB1
EXT 4 —> 4
Q
‘ DRO
2C5 —4 ———
EXT 5 -__:>__, 5 INTA
Q
INTR
2C6 ———
6
Port 1C3

(Numbers in gates are for reference to text, and do not
indicate chip numbers.)

Generation of RST Instructions

2-32
Figure 2-11

INPUT/OUTPUT AND INTERRUPTS

2.8.2 RST Generation

The 1logic for generating interrupt request and restart instructions
is shown in Figure 2-11. Port 2C7 1is the general disable for
interface board interrupts. When_it is high (or floating), none of
the 1interface Dboard sources can generate an interrupt request. If
the monitor hardware generates an interrupt request, all data bus

bits will be high, giving an RST 7 interrupt.

When port 2C7 is low, the interface board interrupt sources can be
enabled by the other bits of port 2C. If any interrupt source is
high and 1its corresponding enable bit in port 2C is high, the NAND
gate (O, 1, 2, - -, 6) output becomes low, forcing the output of
gate 8 high. Now gate 9 generates the interrupt request, which is OR
gated on the MTS board with the monitor interrupt request, so in STEP
mode an interrupt occurs on every user instruction, but in AUTO mode
an interrupt occurs only if 2C7 is low and one of the NAND gates 0-6

is low.

When INTA is output by the system controller in response to the
interrupt request, the tri-state buffers are enabled to drive the
data bus (DBO-DB7). 8Six of these are always high; DB3 and DB4 are

controlled by the gates. The following possible combinations exist:

* 2C7 high. The interrupt request was generated by the MTS
hardware. Gate O and gate 10 outputs are both high, giving 11111111

on the data bus. This is an RST 7 instruction.

2-33

INPUT/OUTPUT AND INTERRUPTS

This page intentionally left blank.

INPUT/OUTPUT AND INTERRUPTS

2C7 low, timer O flip-flop and 2CO high. Gate O output is

low, forcing gate 10 output high. This gives 11101111 on the

data bus, an RST 5 instruction.

2C7 low, timer O flip-flop or 2CO low. Gate O output is high.
Now 1if any other interrupt source and its enable bit are high,

gate 10 is low, giving 11110111, RST 6, on the data bus.

2C7 low but no enabled source high. Again the interrupt request

has come from the monitor; gate 0 and gate 10 are high, and RST 7

is generated.

INPUT/OUTPUT AND INTERRUPTS

Program 8255 #0
Program 8255 #1
Program 8255 #2

e

in B in C out
out B Out C out
in B in C out

Clear memory at

8300, 8301

Enable and clear EXT 4 F/F
Enable and clear EXT 5 F/F

o

Display (8301) and (8302)

INTERRUPT SERVICE FOR RST 6

Save Registers

Read Interrupt Status
Test for EXT 4

EXT 5

Address and
increment 830
Reenable EXT

1
5

et

EXT 4

Address and

increment 8300
Reenable EXT 4

1

EI,

Restore Registers
RET

Interrupt Service - RST 5, RST 6

Figure 2-12

INPUT/OUTPUT AND INTERRUPTS
2.9 INTERRUPT SERVICE FOR EXT 4 AND EXT 5
EXERCISE:

Develop a program to count the number of times the EXT 4 input is
connected to ground and released. Program the 8255's as in the
preceding sections. Clear two bytes of variable memory at 8300 and
8301. Enable EXT 4 and EXT 5 interrupts (using the bit set command).
Write a main program with a repetitive loop that loads and displays
the two bytes from variable memory: high order byte for EXT 4, low

order byte for EXT 5.

Write an interrupt service routine at 8230 to distinguish EXT 4 from
EXT 5. Set the interrupt enable bit (to clear the flip-flop) and
increment a count of number of interrupts. Use location 8300 for EXT
4 and 8301 for EXT 5. A fiow diagram appears in Figure 2-12. Figure
2-13 lists the status bytes resulting from the various interrupt
sources and the command bytes to disable or re-enable the interrupts.
A solution to the programming problem is given in Figure 2-14a and

2-14ba

Note: The EXT4 and EXTS5 inputs may react to noise, with the result
that when one of them is triggered the other may also be triggered.
Protect against this by connecting each of them through a 10K

resistor to +5 volts.

INPUT/OUTPUT AND INTERRUPTS

In 2-14c an alternate interrupt service routine is shown to
demonstrate two programming tricks. It is only necessary to save
registers that will be used. Here only H, L, A and flags are use.
When a conditional jump is to be made based on a yes-no decision, it
is often more efficient to assume one result before making the jump.
Here we can replace a three byte LXI 8301 (at 8246) with a single
byte INX H, and we can omit the JMP 824E (at 8243). Such tricks are
often powerful, but should be introduced only after a successful
program has been written. Patching the program would be difficult in

this situation.

STATUS AND COMMAND BYTES

INPUT/OUTPUT AND INTERRUPTS

COMMAND BYTE
WRITTEN BY
STATUS BYTE OBTAINED BY IN PORT 2B OUT CNT 2
(see Note 2) (see Note 1)
INTERRUPT
SOURCE BINARY HEX DISABLE ENABLE

Timer 0 X X X X X 1 01 00 01
Timer 1 X X X X X 1 X 02 02 03
Timer 2 X X X X 1 X X 04 04 05
A/D Comparator X X X 1 X X X 08 06 07
EXT4 X X 1 X X X 10 08 09
EXTS5 X 1 X X X X 20 0A 0B
Port 1C3 (see Note 3) QocC oD

Note 1: Disable or enable command byte must be output to CNT 2 to clear the interrupt flip flop for Timer O,
Timer 1, EXT 4, or EXT 5. Disable or enable for A/D Comparator clears the interrupt in automatic A/D

mode only.

Note 2: The hex values shown assume all other bits are 0. ANI (hex value) will give zero if the interrupt is not

present.

Note 3: Port 1C3 does not appear in the status byte. It is read as XXXX1XXX by IN PORT1C. It is cleared by
reading PORT1A in strobed input mode (mode 1 or mode 2) or by writing to PORT1A in strobed output
mode (mode 1 or made 2). Otherwise it can be cleared or set by writing 06 or 07 to CNT1. The interrupt
enable for Port 1C3 is cleared or set by writing 0C or OD to CNT2, but this does not changs the data at

Port 1C3.

Figure 2-13

Status and Command Bytes

2-39

A o) MTS oIS

7%,)/44,%(/ Pt~ A/
ngaa/m/nu P55~ #7

ﬁszél/aLZZD.Lquzla§4/
dily loes))

d/réd/

Iy \}{Zﬂ L%ﬁ

4

WE/K}/

Pip anl £72/

Epnadlt) Fx7¥

Tbp

&@W@@ﬂ%

[4

Figure 2-14a

0|010\0| (leas) Lo by liz)

Al |72

CIMT71/

A, 1712

ClW| 1|2

A4, |£|0

Al 10]9

L

M| VL

o7l 1ICWVIT Y

o V|T

MV |\ T
M

O\W\r

L x| 4],

SIKILID| |£13]0|d
o\ T |[CIMT S
MVIT| |4 1018

ML

o\w7 |72

LIHILD| |Z1310P

ClAILIL | Do R D |

TPl (212l 4]

MAIN FOR EXT 4 AND EXT 5 SERVICE.

CODE

J\|E
7\

2|3

a3
Z £

Plo
D3
ol|7
J\&

912
D3

olFl
2|/

010
A
212
00
713
3|F
I\9
D |3
oF
J|E
2|8
2|3

2 A
0|0
Z\3

D/
o2
a9
/1A
£ 2

A D D R

8 o700

8 o2/ 0

121F

e 2

L2/ A

oled 0

©

133HS ODNIAO0D

W3LSAS ONINIVHL H31NdINODOHIIN

SIN31SAS H

31NdWOD 03LVHOILNI

2-40

J@%%@@Mv’
,cv/;oza4f z5ﬂ6739/

s £XT L

7

e EXT S

47é

7Y

dLnAz'éQZszﬁ%ézﬁkLzéé

Figure 2-14b

INTERRUPT SERVICE FOR EXT 4 AND EXT 5

CODE

A D D R

W RT3 R
, N
, / W M M W

W WL A

Q) Q _ N

< Q |
R N Y ™ oSNy ™ Q| |
% S S NS N NS B
NNANANEANER) SN . 1 1R <

Ql [N [™> x| NN BN DS X V] QNRTQ
NESEIRS
nlHfuln N ~ NNENEN N xly NOINRQRQ (M
NEEENEAEK > NEERNENY > NNEEEER R NN
L lalw] [B N NI (b N N [N IR Yo
\o o)\ o 0 Sy 0 US| QN o 0| N 0] N NN NN SN N
W Ol WS SURES] S| ™™ QA QAU S N Q ™ o) A VRN e [
0123456789ABCDEF0123456789ABCD:.._F01234 ©
X N » N |
K R ~ |
o ® / @48

133HS DN1A0D

WI1SAS ONINIVHL H3LNdWOJOHDIIW

SW3LSAS HILNJNOD A3LVHOILNI

2-41

A b o SHORTER_INTERRUPT SERVICE FOR EXT 4 AND EXT 5

IR

QAL 122’ 5(7d/¢a¢f

|
N X
S
N RS J_m 9
b > \ Y] T
w a K § ~
kD R
S ;
§ N O du
X N
A} Q
I |+ ™ N Q| [x
v X S NEE 9 W~ R
NEEREE < ~ ~ %
QU N (X <X [N (X (Y SRIN
RN |
Wi N N ™ NINEISEYNNNNEN
QNI R (X R 2 1D [YN
QAN N ~ T b i Q| N WX
o' N A8 N ol o0 Wfon] D N 0 WSl ™) W NN Y™
[Wy QL QW N T Q] ™ QU™ Y M QA Q| MWW WD
Ol N|MO|d |]| NO|o|g|lod|{o|0lWw|lw|O|le=|ln|O|zs|lw]|]O]|~ mlO|lOjlw|w|Oo|l=|&N|Mm| < ©
) ™}
= S| Y
[- -] 8f [--]

133HS DNIQO0D

INJLSAS ONINIVHL H3LNdWOJ0OHIIN

SIWIL1SAS H31NdWOD A3LVHOILNI

2-42

INPUT/OUTPUT AND INTERRUPTS

2.10 STANDARD PROGRAMMING FOR 8255'S

In Figure 2-12 we programmed the 8255's as follows:

8255 $0 A in B in C out
8255 1 A out B out C out
8255 # 2 A in B in C out

Almost all of the exercises in this course will use either that

programming, or the same except for port 1B:
8255 $#1 A out B in C out
In most program flow diagrams hereafter, we will show either:

Program 8255's - 1B out

Program 8255's - 1B in

This is to imply the programming above, with the assumption that the
user program need not program 8255 #0 since the monitor sets it in
the required condition. Figure 2-15 shows the program steps. You may

want to post it in a convenient place.

INPUT/OUTPUT AND INTERRUPTS

L?rogram 8255's - 1B out]

3E MVI A,80
80
D3 ouT CNT1
07
3E MVI A,92
92
D3 OuT CNT2
OF

|Program 8255's - 1B in |

3E MVI A,82
82
D3 ouT CNT1
07
3E MVI A,92
92
D3 ouT CNT2
OF

Standard Programming for 8255's

Figure 2-15

2-44

MICROCOMPUTER INTERFACING WORKBOOK

CHAPTER 3

INTERVAL TIMERS

This page intentionally left blank.

3. INTERVAL TIMERS

Timing functions are extremely common in computers used in real time
applications and communications. Timing can be achieved by program
loops but with two major limitations. The precision of the timing
is 1limited to the length of the loop, (commonly of the order of four
or more instructions) and the computer can do nothing else while it

is timing. Hardware timers overcome these limitations at moderate

cost.
3.1 INTEL 8253 INTERVAL TIMER i’

The 8253 provides three identical, independent 16 bit timers. Each
timer comprises (Figure 3-1) a 16 bit counter and a 16 bit storage
register (accessible by IN and OUT instructions), control logic and
flip flops, a clock input, gate input, and an output. Each of the
timers occupies one 1/0 port address for reading the counter and
loading the register. A fourth I/0 port provides for controlling all
of the counters. Various operation modes exist which may be

selected by writing a control byte to the control port.

Initiating a timer's operation always involves two steps. First the
timer "mode'" must be specified to the control register. Second, the

timer count-down value is initialized. Typically this requires the

following sequence.

INTERVAL TIMERS

MVI A, control byte Write control byte to

OUT TIMCT timer control port, to set mode.
MVI A, low data byte

OUT TIMER Load low time data byte

MVI A , high data byte

OUT TIMER Load high time data byte

After the count value has been initialized the timer will run under
control of its clock and gate inputs, and will generate a particular
output signal depending on which timer mode was pre-specified. The
output waveform could be used as a timed interrupt to the
microprocessor, a low speed clock for an external circuit, or a
variety of other applications in a microcomputer system, as we will

see throughout the course.

Clock
Gate

Clock
Gate

Clock
Gate

INTERVAL TIMERS

SYSTEM DATA BUS

AL

|

Control | Holding

Logic Register

Commands

Register Counter
0 0

Register : Counter .
1 1

Register | Counter

;__::::j> 2 ::::j> 2 ::::: >

= Output

- Output

Intel 8253 Interval Timer

Figure 3-1

-» Output

INTERVAL TIMERS

#2 CLK (2.048 MHz)

v
ccC
RESET 0
o THER 0 =10
?“‘5 o— OoUuT |—o—> 2C0 ——i
GATE 5
GO
2B0
0 Q- <]
VCC
RESET 1
Y TIMER 1 D
CLK = S
OUT —
GATE 2cl
Gl Q
2B1
TIMER 2 202—
LK
OUT
GATE
2B2
1Co0
r————"—"~>""™"=—"—7— |
: A/D CIRCUITS :
e e -4

Timer Clocks, Gates and Outputs

Figure 3-2

LI

INTERRUPT
REQUEST
AND RST

INSTRUCTION
GATES

INTERVAL TIMERS

3.2 CLOCK, GATE, AND OUTPUT

Each timer receives a clock input and decrements the content of its
counter at the falling edge of the clock. On the interface board all
clock inputs are normally connected to the system 2.048 MHz clock,
but this connection can be altered to permit use of an external clock

input. (See Figure 3-2.)

The gate input to each timer starts, enables or disables its
counting, depending on the selected mode. On the interface board
..these inputs for timer O and timer 1 are pulled high by resistors so
that counting is normally enabled, but these gate inputs are also
accessible at terminals for external control. The gate input to
timer 2 is connected to the analog to digital converter circuitry
because timer 2 is often used in A/D operations (as discussed in
Chapter 5). To enable timer 2 for other functions its gate input

must be forced high by setting port 1CO low.

The output of a timer goes high to indicate the end of a time
interval. The time at which it goes low depends on the mode selected.
On the interface board the outputs of timer 0 and timer 1 set
flip~flops in the interrupt system, exactly like the EXT 4 and EXT 5
flip-flops. Timer 2 output has no flip-flop. It is directly gated
with an interrupt enable bit into the interrupt system, and it is

also used to drive a counter in the A/D converter.

INTERVAL TIMERS

The output of timer 0, as well as setting an interrupt flip-flop,

also drives an inverter whose output is available at a terminal for

use by external hardware.

Because the system clock is nominally 2.048 MHz it is very easy to
relate binary counts to decimal times. The following table lists

some useful values.

INTERVAL TIMERS

Binary Count Decimal Count Time
(Hexadecimal) (milliseconds)
0100 256 0.125
0200 512 0.250
0400 1024 0.500
0800 2048 1.000
1000 4096 2
1800 6144 3
2000 8192 4
2800 (10240)*)
3000 (12288) 6
3800 (14336) 7
4000 (16384) 8
4800 (18432) 9
5000 (20480) 10
A0O00 (40960) 20
F000 .(61440) 30
0000 (65536) 32

Time (seconds)

1F40 8000 1/256
OFAO 4000 1/512
07D0 2000 1/1024

*The timer cannot be loaded with decimal values. greater than 9999,

so binary counting must be used.

INTERVAL TIMERS

This Page Intentionally Left Blank

INTERVAL TIMERS

3.3 TIMER MODES

Any of the three interval timers can operate in any of six modes
(0-5). Most of the experiments here use mode O or mode 2. The other
modes are intended principally for interfacing the timer directly
with external hardware rather than through the program. The modes
are listed below, and defined in subsequent sections along with

experiments. A summary of the modes is given in section 3-10,

Mode 0 Interrupt on Terminal Count
Mode 1 Programmable One Shot

Mode 2 Rate Generator

Mode 3 Square Wave Generator

Mode 4 Software Triggered Strobe

Mode 5 Hardware Triggered Strobe

Within each of these modes the user has some additional options. The
counters are 16 bits long, and can be loaded with two bytes of data,
less significant byte first. Two other options (which must be
selected when the mode 1is programmed) are to load only the less
significant byte or to 1load only the more significant byte. In

either of these cases, the other byte is set to 00, and counting

proceeds on both bytes.

3-9

INTERVAL TIMERS

J ~
o
vl
18
w
N
—
o

o

= binary count
1 = decimal count

000 Mode

001 Mode

' X10 Mode
' X1l Mode

100 Mode

101 Mode

00 Latching command (see Section 3.6.3)
|Ol Read/Load least significant byte only
41 10 Read/Load most significant byte only
11 Read/Load least significant byte
First, then least significant byte

Uk WNEHEO

00 Select timer 0
: |Ol Select timer 1
|lO Select timer 2
11 Illegal (Undefined)

Timer Control Byte Structure

Figure 3-3

INTERVAL TIMERS

The timers can count in binary or decimal, as selected when the mode

is programmed.

The mode and options are éelected for any one of three timers by

writing a byte to the control port of the 8253.

3E MVI A,CONTROL BYTE
XX

D3 OUT TIMCT

17

Figure 3-3 shows the bit structure of the control byte. Figure 3-4

lists the most commonly used control bytes for each of the three-

timers.

INTERVAL TIMERS

(LSB first)

0 1 2 3 4
Latch 00 |00 [o00 |00 | 00.] o0
Read/Load LSB 10 12 14 16 18 1A
Read/Load MSB 20 [22 | 24 | 26 | 28 | 2a
Read/Load Both 30 | 32 [34 | 36 | 38 | 3a
(LSB first)
Timer 1 Mode
0 1 2 3 4 5
Latch 40 | 40 | 40 | 40 | 40 | 40
Read/Load LSB 50 [52 | 54 | 56 | 58 | 5A
Read/Load MSB 60 | 62 | 64 | 66 | 68 | 6A
Read/Load Both 70 72 74 76 78 7A
(LSB £first)
Timer 2 Mode
0 1 2 3 4 5
Latch 80 | 80 | 80 | 80 | 80 | 80
Read/Load LSB 90 | 92 | 94 | 96 | 98 | 9a
Read/Load MSB a0 | a2 | a4 | a6 | a8 | AaA
Read/Load Both BO B2 B4 Bé B8 BA

Control Bytes shown set binary counting

Add 1 for decimal counting

Write control hyte to TIMCT, Port 17

Latching control byte does not affect mode
Timer Control Bytes

Figure 3-4

3.

INTERVAL TIMERS

4 MODE O - INTERRUPT ON TERMINAL COUNT

When a timer is set to mode 0, its output goes low. When it has been
loaded (with one or two bytes as required by the mode select option),
and its gate input 1is high, it will decrement the count at each
falling edge of the clock. When the count reaches zero, the output
goes high. Mode 0 is intended to generate a time delay whose duration
and starting time are set by the program. In the following exercise

we compare a programmed timing loop with an interval timer. Figure

3-5 shows the program flow diagram.

3-13

INTERVAL TIMERS

-~

Program 8255's
1A Out 1B Qut 1C Out

2A In 2B In 2
Program T?mer 2 C Out

Both bytes, Mode O
Decimal Counting

Disable Interrupts

CALL ENTWD)
(A) & Command
(HL) ¢— Time Delay

Disable Display
(set port 0OC7 low)
Enable Timer 2 interrupt
(set port 2C2 high)
Load Timer 2
(Timer 2) & (L)
(Timer 2) & (H)
Enable 8080 Interrupt

(A)&— 99

b

(A) & (A) + 01(ADI 01)
Decimal Adjust

Interrupt Service

CALL DBYTE to

display count in A
Disable Timer 2 interrupt
Discard Return Address
Enable Interrupts

3-14 Compare Timing Loop with Interval Timer

Figure 3-5

INTERVAL TIMERS

EXERCISE

This program accepts a time delay value from the keyboard, and starts
timer 2 in mode O with this value. After enabling interrupts it
enters a counting loop. At the interrupt generated by timer 2 it
displays the value reached by the counting loop. The interrupt
service discards the return address .(by POP H) and jumps to start
since the function of the main program is finished when the interrupt

occurs.

Note that timer 2, which has no external flip-flop in the interrupt
system, 1is appropriately used here because in mode 0 its output goes
low when it is programmed to mode 0 or when it is loaded, goes high

and stays high at the end of the interval.

The addresses, programming control -bytes, and interrupt
enable/disable bytes are found in Figures 2-2, 2-13, and 3-4.
Duplicate copies of these are found in Appendix A. You may want to

post them for ready reference.

The delay loop should be: ADI 01 7 clocks
DAA 4 "
JMP 10 "

21 clocks

The interval timer will count 21 times as fast as the programmed
timing 1loop. When you run the program, find the smallest delay value
you can enter that results in a zero 1in (A). This represents the

time taken to reach the DAA instruction after the second byte is

INTERVAL TIMERS

loaded to the timer. (Run the program in AUTO mode to make the time

measurements.)

You should be able to add 21 to that value and get a count of Ol.
(We programmed the timer and the loop for decimal counting to make
the arithmetic easier.) Each added value of 21 in the delay should
result in one added count in the result. At some intermediate values
you will see hex values in the display because the interrupt occurred
after ADI 01 but before DAA. At 2088 you should obtain a count of 99.
With delays from 2109 to 2115 the count will be 9A, and at 2116 it

will be 00.

If the display is not disabled during counting the programmed timing
loop will be slower because of the hold states introduced by the DMA

channel for the display.

Try running the program in STEP mode (but with the RUN key). Now you
can measure the time taken by the monitor. Insert some breakpoints

that will never be reached and observe the effect.

cooe COMPARE TIMING LOOP WITH INTERVAL TIMER

A D D R

Lroopam) Ftss 2

A st Boed C o

ﬁ@mm4£53¢2

WW&-

Aodle. S

G alep nodld)

Lt ol DC T Lped

Ps ciaémzéuﬁ)céééguézy

%uomzégﬁ
: =7
,LéLZZAALAAét Klﬂ4i;7

PoLD i tons nZo

Aoty L)

2

oo
Z

Figure 3-6a

v

D N
- 2
NE N E I EENEES ~ W ol o | %) ™ ~
S] O & R I Y Q I | |~ 4% (S o~ ¥
MR EEEPREREL Wy 103 | 1] 14 ™ 1 I~ N
| [V X 9] (v |~ <t (o [« [V [~ |k %/ [Q S
~
NS N IS N s ~ NS] N [SIE [NN (R
EN I INY B N Sl [D NIt AN Y (D QD ol Ny IR QT
O OFEOIN IR RN = N I N e =l [WE X ab
W ™ NN N ™[N WS MNN84[RS ™NS U NS QLY NN N N M) N oy
NN [W N[Q] M RRN WUV VR ™| A QNQNNR N WM Y] QN XS
O|l-la[m|esvwjoINfo|lo|g|pfo|0jlw|ju|lolriajo|tsiOoN|Dflo(dld|lOl0lw|w]|o|lr]N|misiw]o -]
N Q ~ \ QY| oy
X R N S| ¥y
® / © 3/

133HS SNI1dOD

WILSAS ONINIVHL HILNdNODOHIIW

SINILSAS HILNdW

(@]
0O

D

31VHOILNI

3-17

Ao aluli)Frsw 2

INTERRUPT SERVICE FOR TIMING COMPARISON

w

(<]

©
AN N 4& L
M WMI‘M e
N Wf M
. . e
&a K -
W
N
) XQ S| s Q
K S 4 = X
N NERERED
N
BN ~ ~ ~ Q N
= AN NERENNAS
b S YA EANAV
u DRIANTANY R o] ¥ W MW N R o] 98
S NI VO Q™| QI Q 'y | W] N
o s|lw|o|~n|lo|la|« ajuw|e |o|l~|n|o|asjlv]jo~N]®|lo|dlon|lo|0lw|u ||| |m]| < ©
a] n?/m \y)
” N .

133HS ©5NIA0D

W3I1SAS ONINIVHL mmZ.Dn_S_OUOm_O_ W

SIW3LSAS HILNdWOD A31VHOILNI

2_10

This page intentionally left blank.

INTERVAL TIMERS

(GETKY)

INTERVAL TIMERS

CALL SCAN

No key
CY
ey

(C) =— Key

(B) = 55 (hex)

CALL SCAN

Key
No Key

Decrement B

No Zero
Zero

(A) «— Key

Test for Command

Enable Monitor
and Display

RETURN

GETKY Flow Diagram

Figure 3-7

INTERVAL TIMERS

3.5 RESTARTING A COUNTER IN MODE O.

When a counter is running in mode O it can be stopped and restarted
by 1loading a new time count. The output will remain low while this

is done, and go high only when the most recently loaded count reaches

ZEero.

EXERCISE

The monitor subroutine GETKY is used to get a single keyboard entry.
After a key has been pressed and read, it repeatedly reads the
keyboard until the key has been released for 20 milliseconds to
protect against contact bounce, which might otherwise cause a single
key operation to be read as two or more operations. Figure 3-7 is a
flow diagram for GETKY. SCAN is the subroutine that actually reads
the keyboard. If a key is pressed SCAN returns the hex value in (A)
and carry set. If no key is pressed SCAN returns carry cleared. When
this has occurred for 20 milliseconds (85 repetitions of SCAN) we are
sure that the key has been released. If a key contact is sensed

during that time the delay is started again.

w
1

21

INTERVAL TIMERS

3-22

|
CALL SCAN (0257)

No Key

Rey

(C)=—Key

Disable Timer 0 Interrupt
CNT2 — 00

Program Timer 0 for
mode 0, load high byte
TIMCT <— 20

>

TIMQ<+— 10
for 20 ms delay

—

CALL SCAN (0257)

Key

No Key

Read_interfupt status
(A) -— PORT 2B
Test timer 0 (ANI 01)

Zero

(Timer o'low) Not. zero

High

(A)-Xey

[

mest for command

(:iReturn ;)

GETKY with Timer

Figure 3-8

INTERVAL TIMERS

We will develop a substitute for GETKY that uses timer O instead of a
-delay loop. Figure 3-8 1is a flow diagram for this program. The
diagram is generally the same as figure 3-7 except for the delay

functions. Write this subroutine and call it instead of GETKY in the

program below.

—> CALL GETKY-

CALL DBYTE

JMP

Note that we restart timer O each time SCAN finds the key still
present, but let it run when the key 1is released. Timer 0 output

never goes high until the timer is decremented to zero.

We have disabled the timer 0 interrupt because this program tests
timer O itself and does not want an interrupt to occur. Other
interrupts are allowed. It is neceSsary to disable the timer
interrupt (using the bit reset function) to clear the flip-flop,
because it is the flip flop output that 1is read in port 2B, not the
direct output from the timer. Timer 1 can be used in the same way.
Make that substitution and see that the program still works. It can
also work with timer 2, but port 1C must be programmed for output and
bit 1CO0 set low, otherwise timer 2 may be inhibited from counting by

the A/D circuitry.

GETKY USING INTERVAL TIMER

3-24

133HS ONIAO0D

N3 LSAS

&)

N

SINILSAS H31NdWOD A31VHOILNI

N B
N RN ,w | Q
. N N . X /M/
N \N N : 47) IJ
W\ M JM ' a ? | M,I ﬂa/ 4w . . o
3 , ﬂm N 3 % \ . »
| A N
K 3 Ikt Y |3 3 /&w/w > LM;M\N Y £
q S R ~ Jw W SRR Wan 9 %
N3 V9 | R N SR RDARKS N
~ ‘ Q
P . - R %
< Q Q1Y [l [© QN K W N ™
NI <IQ [s [[N [T (v By = 9 O
v % TS 11N LN e N NERNEE 19
g ol (o (v [N Y [o Ql I N R\
~ ' Ny :
N N NEEEENESENEEEE N >IN N
NN = QY [I [I [[« Y NEE R QN W
Q h NENEEREREEEREREEEEES h N i NINEERS
SN R E NN NN N SN R NN S A NN R TR
VY] QARSI M NI AN WNANN V] QRN S|] W SN W NN
glo|l~I N[O | D O|~MNO|lo(lg(njo(ojlw|(w ol wlo|N]|olo(d|ajo|l0|lw|{w|ol=|lo|[m|= €0
o\ R \
of JM N
d o N o N o
NiIVHl H31NdWOD0OHIINW

INTERVAL TIMERS

3.6 READING A TIMER

A timer can be read as well as loaded. The exercises of this section

make use of that facility.
3.6.1 Measuring a Pulse Duration

EXERCISE

In mode O (also modes 2, 3 and 4) counting continues only while the
gate input is high. We can use this to measure the width of a pulse.
A useful signal source is the MTS cassette modem output. Use a clip
lead to connect the test point labelled AUDIO OUT at the upper right
edge of the MTS to the gate input (Gl IN) for timer 1. Use a short
jumper to connect this also to the EXT 4 input. The modem output is
nominally 1200 Hz if port OCO output is low, and twice that when
port OCO is high. We will write a program to select the frequency by
keyboard input, measure the width of the high portion. of the output
signal, and display that width. The width 1is displayed in decimal
clock pulse units. Divide the clock count by the clock frequency
(2.048 MHz) to determine the input pulse width. Alternately, since
the signal we are measuring is a square wave, obtain the frequency by

1024000/count.

INTERVAL TIMERS

To measure the pulse width we will initially load timer 1 with zero,
while the 1input signdl is low. After the signal has gone high and

then returned to low we will read the counter.

XRA A Enter zero to
OouT TIM1 both bytes of
ouT TIM1 the timer

Wait for input

to go high and

! then low
IN TIM1 Read the timer
MOV L,A content into
IN TIM1 registers H,L

MOV H, A

Although we could clear the timer to zero with a single byte load, if
it were so programmed, we would then be restricted to a single byte

read.

The process above reads and stores the content of the timer, but
since it counts down this result is the twos or tens complement of

the actual time, as shown in Figure 3-10.

INTERVAL TIMERS

Binary Counting Decimal Counting
Positive Timer Positive: Timer
Count Data Count Data
0000 0000 0000 0000
0001 FFFF 0001 9999
0002 FFFE 0002 9998
0003 FFFD 0003 9997
0004 FFFC 0004 9996
0005 FFFB 0005 9995
0006 FFFA 0006 9994
0007 FFF9 0007 9993
0008 FFF8 0008 9992
0009 FFF7 0009 9991
0o0a FFF6 0010 9990
000B FFF5 0011 9989
000C FFF4 0012 9988

000D FFF3 .

000E FFF2

000F FFFl

0010 FFFO

0011 FFEF

O0FF FFOl 0099 9901
0100 FFO00 0100 9900
0101 FEFF 0101 9899
OFFF F0Ol1 0999 9001
1000 F00O0 1000 9000
1001 EFFF 1001 8999
FFFF 0001 9999 0001
0000 0000 0000 0000

Twos and Tens Complement Counting

Figure 3-10

INTERVAL TIMERS

The twos complement can most easily be converted by complementing the

byte as it is read and then adding one to the two byte result.

IN TIM1
CMA

MOV L,A
IN TIM1
CMA

MOV H,A
INX H

The tens complement is needed if we use decimal counting. In Course
525 (Chapter 10) we developed a subroutine to convert a two byte
decimal value to its hundreds complement. This subroutine is shown

in Figure 3-13c.

Although the counter in mode O will only run while its gate input is
high, it gives no direct indication to the program when it stops.
Figure 3-11 shows how the computer will react to the input signal.
Figure 3-12 is a flow diagram for the program. A program solution is

given in Figure 3-13 for decimal counting.

INTERVAL TIMERS

TT1-€ 2an314

JUSWeINSBON UIPTM O9SINd JO0F wexBeTq SWTIL

Ketdsta
JusuweTdwo)

IswT], pesay

MOT anduTt
103 3ITeM

ybty 3ndut
103 3ITEM

IaWT] IeaTd

Kousnbaxg 39s

SuUny JI[UITY,

moT 3ndut
I0J 3TeM

ybty andut
I03 21TeM

9zZTTeTITUI

3-29

INTERVAL TIMERS

Program Ports (1B out)
Program Timer 1
Both bytes, mode 0, decimal

Wait for EXT4 signal to
be high and become low

Read Keyboard and set
frequency. Enable dmsplay.

(A) &~ (PORTOA)
Mask for low bit.
Set high bit

(PORTOC) &= (R)

Clear Timer 1
Wait for EXT4 signal to
be high and become low

Read Timer

(L)&— (TIM1)

(H)&— (TIM1)
Convert to 100's complement
Display pulse width

Pulse Width Measurement

Figure 3-12

PULSE WIDTH MEASUREMENT

133HS SNIAOJ

NILSAS ONINIVHL mm._.Dn_S_OOOmo_ W

SIW3LSAS H31NdINOD A3LVHDOILNI

\ N -
SRR e
Wl |0 , W .
9l |l | ,m
3 N . N .
| AR N 3 :
NEN R \ o
AN RN k)
AMI % /M ﬂ/wp imw M JM mb
AR EREEENER: N REX .
< J
il A S Q ~
NIRRT L ~ INBREE
NEEECENENEEENEES X X %] |~
INNEEREREEREENEE NERENEE NN S
SYEEEE SR L ST AN R Q9 (D Q] (& T.
: : ~ | N
NN L NN NN [N RN RN Q
N D [o] [|7 s NEEENENENEREEEES Q
I IQ =g 19 s (9 |o N Y (9 [d [X< S v 2
ol [[0 | NM [[DR Q[N [Q[QNN N0 [N\ DR[N] D
SRR Q[™A N NV AN VSIS QIR QNRN N[N Q
RO.A_123456789ABCD.EF0123456789ABCDEF01234 0
ol Q ~
of ¥ M ~

3-31

. NN NN
¢a@ . qd N
33 . f N
: naj NN £
%ﬁ N %/ REENEE il 3 :
N
AJMM) mMI /W N T Wr W/ JMM d M M W
. \ | . s
J%M D) ﬂ. X 3 ﬂ;d/ N g W
| U & Q Q
o J NS =
sl=l I« [B Q o 0 A ™
slel | M 1 Q = Q [[% NEEE
MEENEEE NEREE O] ™
a ~ ~ _
& >~ NN N Q NERE N [N NN
B |92 Q< < b SENIESELY N N
m XN (SO) H 2N X | NI (B X
o1 0]\ W0 NN Q] A N[0 N S0 Qs @l x| Q] 3 Q[S] Q N[N X[Q
S| NN A N N NS YR QY QS QIR WY NN Q] oWy MU MYV
gl Ol INO|x O | Nl g|lo|jol0jlWw| |k [l |w|lOo|N]|]o|lo|d|pjOo|lO|lw|jn]|lOoj||m|= -]
ol Y) ™)
of % Y M
= 133HS ONIAOD v SINILSAS mmPDn_S_mo A31VHODILINI

W3LSAS ONINIVHL H3LNdWODO0HIIW

3-32

HUNDREDS COMPLEMENT - TWO BYTES A

CODE

A D D R

R
W_d//v/ Wy
Y (] YV W |
Y | L N NER
) N A/ . @u A/ﬁ_ Q] Y 0
P M i m
VEEERREE) S Rk TRk :
S 3 3 9IS M [v
N RNIRR < 183 |1 :
~ N @ N WQ =
. N Y |a
X H] QX QA
A 2 [y
B ™ ENEERNERNE
W <[> < EREEREN
N A N { IP<ER ~NW
AN NI [¥]S B x|~ |~ o
Wi~ D= [N
NLRINL RSN TN RN IS TRRINXY S
N (Al ([(o [3x] [% =W SN W [WQl
NEENEDNEEESEEANERRNS RS
WS Y o N W D] SN[QNN oy
0o Y O V) Q] S NS00 | R QN R g\
(=} N[o|gs|jwvw]|o|No|lo|c|lajlo|0|wWw|e |O|-|N|[o|(z|d]O|~]|0©0 | m|(Oo|0jwjuw|[Of|~|N| ™| 0
N 5
R X

133HS ONIA0D

W3ILSAS ONINIVHL H31LNJWODO0HIIN

SIWILSAS HILNdWOI d3LVHOILNI

3-33

INTERVAL TIMERS
3.6.2 Additional Exercises

Two other ways of recognizing the state of the input signal are
possible. One method uses EXT 4 and EXT 5 interrupts but is merely a
simple extension of the preceeding program. The other reads the timer
to determine whether it is running. You should develop the program of

3.6.2.2 yourself. Exercise 3.6.2.1 is optional.
3.6.2.1 Awaiting an Interrupt

EXERCISE

The program in Figure 3-13 can be modified to use the EXT 5 interrupt.

in place of the WTHL wait subroutine at 8230H.

Connect an additional jumper from EXT4 OUT to EXT5 IN, and enable the
EXTS interrupt which will occur at the falling edge of the signal.
We will load Timer 1 the first time this interrupt occurs, and then
wait for a second interrupt. When that occurs we will read the timer,

which will have counted down during the time that the signal pulse

was high.

The processor can be forced to stop operations by the HLT (76H)
instruction. When this 1is encountered in a program the processor
enters a wait state, and does not execute any further instructions
until an interrupt occurs. At this time the interrupt service routine
is executed and then control returns to the next instruction

following the HLT.

INTERVAL TIMERS

Replace the WTHL subroutine with an interrupt service routine that

does the following:
Save PSW
Reenable and clear the interrupt
Restore the PSW
EI

Return

To enable the interrupt initially, call this service routine instead
of WTHL. Follow the call by HLT to wait for the first falling edge.
Since RST6 is exactly equivalent to CALL 8230, you can insert both of

these instructions and a NOP in place of CALL WTHL.

Now replace the second CALL WTHL by HLT, NOP, NOP. This will cause
the processor to wait for the second falling edge. The remainder of

the main program is unchanged.

INTERVAL TIMERS

3.6.2.2 Reading an Active Timer

EXERCISE

You can re-code the original program (Figure 3-13) to read the timer

while it is running.

Use the original WTHL subroutine to detect the first falling edge
(The timer interrupt should not be enabled). In place of the second
call to WTHL, call a new subroutine that does the following:

Read Timer 1 (both bytes)

Save the result

Read Timer 1 again (both bytes)

Compare with previous result

Repeat until the result changes, indicating

that the timer is running
Repeat until the result no longer changes,

indicating that the timer has stopped

NOTE: wuse of an internal subroutine may shorten this program to less

than 30D bytes.

3.6.3 Reading While Counting

In the exercise of 3.6.1, the timer 1is read only when counting has
been inhibited by a low input at the gate. 1In 3.6.2.2, the counter
is read while -it is counting. The final measurement which is

displayed was taken after counting stopped.

The IOR signal that places input data on the data bus extends across

at least one phase 2 clock cycle. Since the timer runs from the phase

3-36 .

INTERVAL TIMERS

2 clock, it is guaranteed that the lowest bit will change during the
time that the counter outputs are driving the bus, and possible that
all 16 bits will change. The data thus received by the 8080 while
the data bits are changing must be considered garbage. The 8253
provides a facility for accurately reading a timer while it is
counting. There is one 16 bit register which can be synchronously
loaded with the content of any one counter, upon command from the
processor. A subsequent IN (or two IN's for two bytes) addressed to
the same counter will access the latching register rather than the
counter itself. The latching control bytes were included (though not

defined) in Figures 3-3 and 3-4.

Timer Control Byte Digits

Control Byte

Binary Hex Timer Operation
0000 XXXX 00 0 Copy timer into latching
0100 XXXX 40 1 register before reading
1000 XXXX 80 2

INTERVAL TIMERS

Like the mode set control bytes, these are sent by OUT TIMCT. To
read a running timer that is programmed for two byte read and load

the following sequence is used.

3E MVI A, 40 Latch control byte for timer 1
40

D3 OUT TIMCT Write to timer control

17

DB IN TIM1 Read latched data from timer 1
15

6F MOV L,A
DB IN TIM1 Store in (HL)
15

67 MOV H,A

Note that the IN instructions are still addressed to timer 1, and two
reads are still required if the timer is programmed for two byte load

and read.

EXERCISE

Develop a program to demonstrate that invalid data may be read from a

running counter if the latching operation is not used.

INTERVAL TIMERS

3.7 MODE 2 - RATE GENERATOR

Probably the most common use of the interval timer is generation of a
signal or an interrupt at precisely repeated intervals. This is

useful for:

* Generating a slower clock for an external device that

cannot use the 2.048 MHz system clock.

* Measuring times or generating timing functions too great

for the 32 millisecond capacity of a 16 bit counter.

* Servicing inputs or outputs on a schedule rather than by

interrupts.

* Keeping track of real time.

3.7.1 Use of Mode 2

Mode 2 is programmed by writing a . control byte to the timer control
port in accordance with Figure 3-3. For instance, to program timer 1

for a two byte load, mode 2, binary:

3E MVI A, 74
74
D3 OUT TIMCT

17

INTERVAL TIMERS

—— Count Value —wt«e— Count Value —=i

TIMER
OUTPUT
Count = 1 ——T
Count = 0
Initial value———————j
reloaded
from register
TIMER
FLIP FLOP
A A A A
Set by output _

rising edge

Reset by enable
or disable of
interrupt

Timer and Flip Flop Operation

Mode 2 - Rate Generator

Figure 3-14

INTERVAL TIMERS

This immediately sets the output high if it was not high. Counting
starts when a count value is loaded, provided the gate input is high.

Counting is inhibited if the gate input is low.

The output remains high while counting, until the count value reaches
0001, when the output goes low. At the next falling edge of the
cldck, the output goes-high and the initial value is reloaded from
the count register into the counter. Thus, a half microsecond pulse
is output once for each counting cycle. The timer need not be
reloaded, and it will give the pulse at a precisely repeated interval

even if the interrupt service is delayed.

Figure 3-14 shows the relationship between the timer output and its
flip flop. Note that the half microsecond pulse from the timer, if
it were directly connected to interrupt request, might or might not
generate an interrupt, depending on the state of the 8080 at that
moment. Therefore, the interrupt must be taken from the flip flop of
timer O or timer 1. The ITS does not provide a flip flop for Timer 2,
so this timer cannot reliably generate an interrupt in mode 2 (nor in

modes 4, 5 or 6, for the same reason).

After the flip flop has generated an interrupt it must be reset by
setting or resetting the corresponding enable bit at port 2CO0 or 2C1,
before an EI instruction is given. Otherwise repeated interrupts will

be generated, and the main program can never be executed.

INTERVAL TIMERS

Program 8255 #1

A Qut B In C Out

Program 8255 #2

A In B In C Out

Program Timer 0

High byte, Mode 2, B
Timer 0e—A0

inary

(Hours) «— (H)
(Minutes) e (L)
“(Seconds) «— 00
(One Sec)e— 32

Enable Timer 0 Interrupt

—

Display Seconds
Display Minutes
Display Hours

T

MAIN TIME DISPLAY PRO

GRAM

Time of Day Clock

Figure 3-15

 Save Registers
Decrememnt One-
Second Counter

0

=0

One SecC &= 32
Increment Seconds
(In Decimal)

Test for 60

60

= 60

Seconds=—00
Increment Minutes
Test for 60

60

= 60

Minutesa— 00
Increment Hours
Test for 24

24

= 24

Hours--—00

Restore Registers
Re~-enable Timer 0
Interrupt
EI
Return

RST 5 INTERRUPT SERVICE

INTERVAL TIMERS
3.7.2 Real Time Clock

EXERCISE

Develop a .program that will keep and display the time of day. The
flow diagram of Figure 3-15 displays hours, minutes and seconds.
Timer O generates an interrupt every 20 milliseconds and a software
counter is decremented from 32 (=50 decimal). At zero a seconds
counter 1is incremented (in decimal). At 60 seconds a minutes counter
is incremedted and at 60 minutes an hours counter is incremented.
The display function is handled by the main program. This would
permit another program to operate in conjunction with the time of
day. It can use the keyboard and display, and when nothing else is

going on the time can be displayed.

In this program the starting time (in hours and minutes) is loaded
from the content of H and L. Use the monitor to. place the time in
those registers and press RUN when the second hand of your watch
reaches zero. Test the timekeeping. You will probably find this
clock to be quite inaccurate because the crystal of the MTS is only

accurate to 0.1%. This gives an error of 86 seconds a day.

INTERVAL TIMERS

The clock can be made somewhat better by using a separate software
counter for one minute, with an initial value of about 0OBB8 (= 3000).
This can be adjusted for crystal frequency error; allowing the clock
error to be less than 30 seconds a day. Figure 3-16 shows a flow
diagram for this clock, with coding provided in Figure 3-17. A
further improvement can be made with a one hour counter, with a
nominal initial value of 02BF20 (180000 decimal). This permits an
adjustment to less than half a second per day if the crystal is

sufficiently stable.

You may want to elaborate the clock program for the fine adjustment,
or to load time of day by keyboard entry, or to keep date as well as
time with adjustments for 28, 29, 30, or 31 days. (Remember that
leap year is omitted every 100 years but included every 400 years, so

29 February 2000 will exist).

SAVE REGISTERS
DECREMENT ONE
SECOND COUNTER

#0
=0

ONE SECOND COUNTER=— 32
INCREMENT SECONDS

<

DECREMENT ONE
MINUTE COUNTER
(TWO BYTES

)
#0

=0

ONE MINUTE -— 0BBS8

COUNTER

ONE SECOND-+—32

COUNTER

SECONDS -— 00

INCREMENT MINUTES
TEST FOR 60

MINUTES <— 00
INCREMENT HOURS
TEST FOR 24

#24

HOURS =— 00

—

RE-ENABLE, RESTORE,
EI, RETURN

RST 5 Interrupt Service

Figure 3-16

INTERVAL TIMERS

3-45

| T
Wk T3
AN RN E ,
NNVEME REE Y
X NNEECRARENE 3 o Y |WYA d, N
SIS w ™ |3 M SRS I SRR o
. N . =
N = QM@ I3 NI BURE: REEL :
: p g M omgw 3@% Wm g
q q ol
Q
< ~ Q
SR ENENEN NSNS i\)) N
Sl N T TH (9 =] & [™) S Y 1/ |
AREE 4 = 1 H | 4 |H 1 |] T T3 [«
N Y & 19 = TH & R X NEIREEERERER
b | b | | 9
Al el (N[[H] = H =] [XH i I R [1 I Y s EIRNANSY
sIx] |2 [[2 [|2 |2 |2 |[<dx NEEIRNEEEREEREEE
=] SIS I S S N S s £ A A L Y SIS
e
o SN[W MR QM R[] N[] <o Q] ro] o | W[[
PN RN AR AN AN N RN E NN RN R NS
gfo|—-|N®¢ Vo (Nolo|gc(la|lolojlw(w (ol m|as|Bfo|N|o|leo(d|a(o|ldjlw|(lu|[o]jr|a|m|< ©
SN N\ vy
a d & J 6
._.m_m_‘Iw ONIAO0D W31LSAS ONINIVHL HILNdWOIOHIINW SIWILSAS HI1NdINOD G3LVHDILNI M..

TIME OF DAY - PROGRAM LOOP

R

CODE

AN} .
/@ .
M M M %
¥ A :
Q m o
S 1
N =
ﬁ NI | X
Iy
Q X ¥ R .
oy Wy > >
] Y NS TN N
I ~ 4 N N
DS ENRS x[} 5
: N ~ ~ _
T_ ~ AR x| > Q
> <% PIENN NS <
| U ESES NIE(V >
NN AN W WA Y] 0GR X[M| Q| %
N QAN V[QAN VN Qx| N U™ V[N X
O|l=|lN|O| x|]| |INO||c|loajojljlWwW|L | Ol ||l O]O|N~ ol alw| w]|]O|=|N|Mm|]| < -]
XY N
Y N

133HS DNIA0D

WILSAS ONINIVHL HILNdWODIOHIIN

SW3LSAS H31LNdWOJ A31VvHOILNI

3-47

HHEUPL OBRKVIUH

11MEBE U DAY — KDL O INIE
CODE

A D D R

‘ a
M.M MW
SN :
CERNERE A
03 | REAE
u,m 3 Kt w
SRS | :
W N R M § ﬂ.ﬂu% M. m
J M W ,wm; < /e/m.w 3
Q
N Q
3| ™) S 8 N Y ™
ul [N 0 3 ™ Y] [)
QUX| 1 N N 3 R AN .
%) N NS <
N 3 N
v N Q N NN NN N N
NEE = Ll N WOl NEREE N
AR b ¥ Wb RN =
o\l N Q] W] &y [N] Q[N Nl Y| [\ Ny WINR| Qf | Wy
O QSN S W W S S O XSS g [55[
omlglvw]|]jo|N|o|lola]|]lo|lo|Qlw|jw |ol || m|ag|lv/fo|~N]low|lo|d|loa|lo(ajw|lnw]|ofe-]|a]|o]|< 0
0 N
N ~ X
N o A ©

133HS ONIAOD

WILSAS ONINIVHL H31NdINODOHDIIN

SINILSAS H31LNdWOD A3 LVHOILNI

2_10

cope '1ME U DAY — HOL O INLI dVU ANU SUBK

A D D R

e Wﬁg
Mw ﬂWW% .W,. M e
AR mé -
MINE R
=
R RECERE RARRNRY
) ~| [N
Q ~ IR 9 [& 3 5 N <
h + ' MR W ~ | I
X <| |[¥% IS EEESLS L ES %|Q N
< S
~ NN [BXRD NN AN
N NEELY A [[QQIH[W DN A (ol
N NS NENE RIS eis NESHIIERAS
vy w0 oK W N o W NN QD™ N [W[\ N Ny
G (S5 [~x[D[Yo] 3 W VA QW Y] o] S Yol & N[Q) g Y
Oolr|n|m|ad |]| Oo|N|owololg|la|lo|lQ|lw|w |olc|la|o|at(]jo|N|[w|lo(d|(a|lo|0jlwjuw |0~]m| < -]
N + 4)
R R ~ 3
¢ ﬂa © 00)

133HS ONIAOJ

"WILSAS ONINIVHL HILNdWODOHIIN

SINILSAS H31NdWOD d3LvHDILNI

3-49

INTERVAL TIMERS

g2 CLK

v
cc

?_(\b_ c TIMER 0 <D
o % oUT *

GO G >
0

_ =
o C TIMER 1 =

X e ouT >

a1 @ $ \\
VCC

Oj

o

©|

remove jumper
and attach lead
from T0 output

”ZCLKTHHHI_LJ_LEIUUUI_
3 2 1 5 4 3 1 5 4

TO

To

Tl

Cascaded Timers

Figure 3-18

INTERVAL TIMERS

3.8 CASCADED TIMERS

It 1is possible to use the output . of one timer to control another, in
either of two ways. One output can provide a clock to another timer,
but on the experiment board this requires disconnecting the system
clock from the second timer as shown in Figure 3-18. With this
connection two timers in mode 2 can be cascaded to generate a long

time interval:

Capacity 32 bits
Maximum Count 4,294,967,295 (decimal)
Time 2,097.152 seconds

= 34 minutes, 57.152 seconds

A simpler connection, but with more restricted use, is to use the
first timer output as a gate input to the second timer, as shown in
Figure 3-19. Now if timer O is programmed to mode 2 its inverted
output will enable the gate of timer 1 for exactly one clock pulse in

each full count cycle of timer O.

This is effective only if timer O is in mode 2, giving one pulse each
count cycle, and timer 1 is in mode 0 or mode 4. In all other modes,
the gate input rising edge restarts the counter by reloading it with
the initial value from its storage register, so cascading can only be

done with the clock input.

3-51

INTERVAL TIMERS

g2 CLK
v
ccC
=D
4 O C TIMER 0 -
G0 @ G ouT —9 >_
Q—
™™
2 v 44
cC
s D
8 O Cc TIMER 1l =
ouUT >
D G _
Gl o) I
17654321765432176543217E%6
TIMER 0
TIMER 0
3 2 1 0
TIMER 1
TIMER O GATING TIMER 1
TIMER 0O IN MODE 2
TIMER 1 IN MODE 0

Cascading Timers with Gate Input

Figure 3-19

3-52

INTERVAL TIMERS

‘EXERCISE

We will use the simpler connection from TO OUT (at left of ITS
board) to Gl IN to gate the second timer. In the program of Figures
3-20 and 3-21, we accept keyboard data for a time delay to be loaded
to timer 1, which is in mode O and gated by timer 0. At the
interrupt from timer 1 we shift a bit in the LED display as a visual

indication.

If the STEP key is pressed following the numeric data, the interrupt
service routine disables the timer 1 interrupt, which 1is not
restarted until a new keyboard entry is given. I1f the RUN key is
pressed following the numeric data,' then interrupt service reloads

timer 1 and reenables the interrupt.

This program is designed to work concurrently with the time of day
display of Figure 3-15. When no keyboard entry is made, the time of

day display 1is shown. While ENTWD is accepting keyboard data, it

controls the display

The effect of STEP and RUN commands here is analagous to mode 0 and
mode 2 in the timers. With STEP timer 1 is decremented to zero and

interrupts only once, 1like mode 0. With RUN it is reloaded and

restarted each time it reaches zero.

INTERVAL TIMERS

This program can be instructive in 6ther ways. Note that in the
solution given we load timer 1 and then enable (or disable) its
interrupt. If the time delay loaded is 0002, the RST6 interrupts
will occur frequently. If the time loaded 1is 0000, the interrupts
will occur very infrequently (once every 1310 seconds). If a value
of 0001 is entered, no interrupts will occur at all. With this

initial value the interval timer will not function correctly!

INTERVAL TIMERS

PROGRAM B8255's 1B IN

" PROGRAM TIMER 0

Timer 0 High byte, mode 2, binary
Timer 1 2 Bytes, mode 0, binary
Load software counters for time
Load timer 0 for 20 milliseconds

Display time of day

Test keyboard

Mo key < >

Key pressed

Call ENTWD for time
‘data and command

Store time data
and command

Program, load and
Enable timer 1 interrupt
Clear Display

Time Delay Program - Main

Figure 3—20a

3-55

INTERVAL TIMERS

INTERRUPT SERVICE FOR TIMER 1

Figure 3-20Db

Save registers
Read Port 1A
Logical Shift Left
Write Port 1A

Test last command

N

~

STEP

Disable Timer 1
interrupt

Reload timer 1
Enable interrupt

Restore registers
EI, Return

Interrupt Service for Timer 1

Figure 3-20Db

T

Jwa‘.J

,
. AV&%
(B) &— Command

W)= Termne dala

A —F,
o,
A
et

%) —

>

__Fi

cope REVISED TIME CLOCK PLUS CASCADED TIMERS

9
‘ R
% NN
N A
Q g N R AN 3 \q
o) W PN Q Q | N Q|
~ by (O 0 N \§ N Q ™
L1 1 Q W L) S
% |k RS QX[%
N N/ w2~ x| Al y A N T N QA
> Y NGRS | o/ IR <X N X S
~ U N =[O N S N [N v <, < Y
NN RN sl W[W[R [3 ™[W[SN | VR Qf 0V QNY ™[] W[N] M| O
4&!69027640476@&D03Céf¢¢d&0240!0
R0123456789ABODEF0123456789ABCDEF01234 ®
Dé 7
Dro.d J_

133HS ONIAQ0D

W3LSAS ONINIVHL H3LNdWOJOHDIIW

SW3LSAS H3LNdWOD A31LVHOILNI

3-57

/ M
3 b WJAM
/_MN . S 3
N NEN ﬁ./ﬂy 0|
JM M NER ;
. . . 0
~ M, \ M [%Jwr\muo m
R) ANY B ~ = N
- X K
g ~ Q < N
m/ ~ ™ W N Q |V N ~ (s R
ARSI =\) 8 NEBEREEEEREEE .
NI Sy g S L[AN 1N 1 2
mnﬁ Q. < [~ []IW [N = J
g e _
P ST 3 AN) O Q. SHENEENEERNENENNEN
mu S LNES 3 SO QY QX [Y R (W
SRS C b NENERNESNESESNEN
o~
ol W N MW AN Q] Q[N[R[N[N[™| ®y Wl f m[N]M] [0 W] g Wl NN o] WN
RN EREESNEENEN ERNNENNENNNERNNNRN
o=~ Nm| e DO Now|lo|g|lon|lo|D|lwluw |||l ~]|o® d|pn|lo|0|lw|lu|o|lrla]|m|e L]
D/.
N 3 m

133HS ONIA0D

W3LSAS ONINIVHL HILNdWODIOHIIW

SIWILSAS HILNJWOD GILVHOILINI

viuvon

v [SEETAR

AVAs A W ALY A AUALIL

CODE

A D D R

3-59

HE _
3 RGAE
N . |
[D T @ g
. a . m
i 3 | R 2
N\ NEEN I T
< AN
N ~N JAJ Q
Q d| & NS % o
<% n | x| [™ Q N 3
X WXl L N[N RS Z
By QU 1 & X\ RN
XX ~ ~
N\ \lg NINEE X Nl (N U [N
= N ETENENEES R NS Q9N iy
N QAN Ny | AN UN W
RIANAY o\ BN N MN[0 [W NSO /] o S NNQ[™
VK[WA of = ™ SN W ol ad S W 4
o - o~ ™ <t [T2] o ~ [} -] - ¢ m [&] [a) w w o [N ™ < 0| O ™~ [-- BN -] 4 Q Q Wwo| [= I N 3.4 [Te] -]
o | % w
R % N

133HS ONIAO0D

INILSAS ONINIVHL H3LNdWODOHIIN

SIWILSAS H31NdWOD d31vHOILNI

INTERVAL TIMERS

Program 8255's
(A)«—Mode Set Command Byte-
for Timer 0 High bytes
Mode 3 Binary

-

(TIMCT)a—Mode Set Command
Save Mode Set Command
Load Timer 0 for 32 milliseconds
Load a Counter with 40

2l

al

Disable and Clear Timer 0 Interrupt
(CNT2)=—00

— >

Read Interrupt Status (Port 2B)
Output to LED's (Port 1lA)
Test for Timer 0 Interrupt (Bit 0)

Bit 0 = 0

Bit 0 = 1

Decrement Counter

Not Zero

Zexro

Recover Mode Set Command
Complement Bit 1 (XRA £2)

Square Wave Generator - Mode 3

Figure 3-22

INTERVAL TIMERS

3.9 MODE 3 SQUARE WAVE GENERATOR

When programmed in mode 3, a timer repeatedly counts down from its
initial value,. starting with its output high. Halfway through the
count, the output goes low. At zero, the output goes high and the

initial value is reloaded from the count register. Thus a square
wave 1is generated. If the initial value is an odd number, the first

half of the count will be one bit time longer than the second half.

The gate input disables counting when it is low. At a rising edge of
the gate input, the initial value is reloaded from the count register
into the counter. The output becomes high and a new complete cycle

starts.

If the count register is reloaded while the timer is running in this
mode, the current half period of counting will be completed with the
old value. The new value will become effective when the output

changes in either direction, or at a rising edge of the gate input.

3.9.1 Observing the Output

EXERCISE

Write a program that will change +the mode of timer O every few
seconds, alternating between mode 2 and mode 3 (Figure 3-22 shows a

flow diagram). Observe the inverte in one of these ways:

a) With an oscilloscope
b) With a voltmeter
c) By connecting TO OUT to EXT4 IN, reading Port 2B

and displaying its data in the LEDs.

3-61

INTERVAL TIMERS

An oscilloscope permits direct observation of the inverted square
wave at TO OUT and additional experiments. The voltmeter across TO
OUT and GND will show a low output (0.4 volts) when the timer is
running in mode 2, but about 2 volts in mode 3. With the jumper

connected (as in 'c' above), LED DS6 will be visibly illuminated in

mode 3 but not in mode 2.
3.9.2 Observing the Counting

The square wave generator conceivably could operate in any one of

three ways:

(a) Divide initial value by 2 before loading the counter from

the count register. Toggle the output and reload at zero.

(b) Load the counter with the initial value, and decrement by

2 at each clock. Toggle the output and reload at =zero.

(c) Compare the counter content with half of the initial value,
and set the output low at equal. Set the output high at

Zero.

3-62

‘INTERVAL TIMERS

The following exercise permits you to determine which of these is

actually used.

EXERCISE

Program a timer for mode 3 operation, low byte only (Figure 3-23).
Load it with 7E. In a loop, repeatedly latch and read the timer
while it is counting. Display the byte in the LEDs of port 1A.

Determine from this how the timer really operates in mode 3.

If (a) is true, the LEDs will never show a value greater than half of

the initial value.
If (b) is true, the least significant bit will never change.

If (¢) is true, the full value will be shown and the least

significant bit will count.

This experiment is suggested because the manufacturer's literature
does not state how the function is performed. It is sometimes
necessary to know a detail that the manufacturer did not consider

important.

INTERVAL TIMERS

PROGRAM 8255's 1B 1IN

PROGRAM TIMER 0
LOW BYTE LOAD/READ
MODE 3, BINARY
LOAD WITH 7E

LATCH, READ, DISPLAY TIMER 0
TIMCT<-——00
(A) «— TIMO
(PORTIA) <— (A)

Reading the Timer Contents

Figure 3-23

INTERVAL TIMERS

3.10 TIMER MODE DESCRIPTIONS

This section defines all six modes of the timer, includine modes 0, 2
and 3 which have previously been discussed as well as the three modes

that have been neglected.

The modes differ principally in the effect of the gate input and the

behavior of the output.

Modes Gate Input
Low Rising Edge High
0,4 Disables Enables
Counting Counting
2,3 Disables Reloads counter with Enables
Counting initial value and Counting

initiates counting.
1,5 Reloads counter
with initial value

and initiates counting

Modes Output Signal

0,1 Low while counting
High at count = 0
2,4,5 High while counting
Low for omne clock period
3 High during first half cycle

Low during second half cycle

INTERVAL TIMERS

Modes After Terminal Count

0,4 Counting continues but output

remains high

1,5 Counting stops until a new gate

rising edge occurs

2,3 Counting starts again from the

initial value and output pattern

repeats for each full count cycle

Figure 3-24 shows more detail of the gate effect and output timing,
and the following sections define each mode in detail. Figure 3-25
indicates the timing relationships. Note that mode O and mode 4 are
similar except‘for the output state during counting, but for a'given
count loaded to the timer, mode 4 will generate an interrupt one

clock time later than mode 0. The same relationship is true of modes

1 and 5

3-66

_INTERVAL TIMERS

Vg~-¢ ean3ty

SOpON J9WTL €628

*obpe HursTI °23EH JXOU 09z
I1933e SAT3IO09IFS ST 19330 990138
potasad mou HbUTIUNOD abpo hursSTI }00TO obpa buisTa 2IeMpIRH
9TTYM papeol II a23eb Ag IX3aUu 3y ox9z v | @3eh I9313IVY ybTtH g
0192
Io33e 2qox3s
b felo) o] papeoT 9314&q 2I1eM3JO9
butproTax Ag 3xX9Uu 3y 019z 3IVY | Teutry usaym uybTH 4
*potaad Te303 3JO ITeY
IX9U IO0J SATIO9II® ST obpo HUuTSTI Z/ (T + u) 2ABM
poraad mau burjzunod a23eb Aq ao Io pepeoTl 9314&q axenbsg
9T1TYm popeoTl II 019z 3y¢ 0192z 3v¥ Z/U 3Y | Teurz uayMm ybtH €
*poraead 3xau 103 obpo bursta I03RIDUDL
9ATI09II® anTea MoN 23eb Xq 10 pepeoT 934&q 23ey
*‘pojo93Ie 30U ox9z 3y¥¢ 0Ix9z 31V T=3Uunod 3I¥ | Teutry usym ybTH [4
poraad jussaixd
*putjzunoo butanp 1ous
popeorexd aq ued 9bpo DUTSTZX Pbpe bursTa [obpo Hurstx auQ
: a3eb Ag o192z Y 23eb 1333V | @3vh aO33IVY ybTH 1
“butpeoT®x AQqQ IO
2pou HuT3l3l19s Aq papeoT '93&q #msuuwu:¢
MOT 39S ST 3ndjngQ butproTax Ag 019z ¥ (495 opow 3IY| Teury USUM Moy 0
39S apou
‘po3laIelsax uybty so0b MOT Ss20b hutaunoo I9313e
3unod andanQ and3ano s3Ie3s and3ngQ SPON

S3uUsumIo)

67

INTERVAL TIMERS

Set Count Count
Load Program
MODE 0Q Mode = (Load =0
Gate
\ l \/ \ \J
Out ————— e
Count Count from 0 Count
Count Count
MODE 1 (One Shot) = 0. Automatic Reload =0
v v
! y
Gate
Out —— full partial full —
Count No Count| Count Count
MODE 2 (Rate Generator) Automatic Reload Automatic Reload
\ 4 v 2
Gate S°Ent SOBnt
out j[r LT fal|s fall ||
No Count| Count Co partial |5top| iu
unt Count Count
MODE 3 (Square Wave) Automatic Reload
v
Gate
Out
1/2 Count |1/2 Count |1/2 Count 1/2 Count‘L__
MODE 4 Load | Count Program Count
Gate * = load - l,@
out L ¢ \ ,
! Count U Count £from 0 I Count U
Automatic Reload
MODE 5
Count
Gate —_——l = g ;
| |
Out 1T
artia
Count lJNo Count Eount q gg%ﬁt LJ

3-68

Timing Relationships

Figure 3-25

Mode O

Mode 1

Mode 2

INTERVAL TIMERS

Interrupt on Terminal Count

The timer counts down from the initial value and continues
from zero. The output goes low when mode O is set or when new
data 1is loaded. The output goes high when the count reaches
zero. Counting starts when the final byte of the initial
value is loaded. If a new value is loaded during counting,
loading the first byte stops the count and sets the output
low. Mode 0 1is wuseful for generating a single time delay
function or for measuring time from a programmed or external
event, providing that the time 1is 1less than the 32
millisecond capability of the 16 bit counter. It can be used
to measure the duration of an external signal, since counting
is enabled only when the gate input is high.

Programmable One Shot

Starts counting down from the initial value after a rising
edge of the gate input. The output goes low at the first
count after the gate rising edge, high at zero. Counting
starts again from the initial value each time a rising edge
occurs at the gate input. Mode 1 is useful for generating a
time delay or measuring time from an external event,
especially if the external event is a narrow pulse.

Rate Generator

The output goes high w en the mode is set. After the count
has been loaded, the timer will repetitively count down from
the initial value to zero. The output goes low when the
count reaches one and high w it h s zero, so a 0.5
microsecond pulse is generated. Mode 2 is especially useful
for timing functions where software counters are to be used
f-» times greater than the 32 millisecond capacity of the
timers. Counting restarts from the initial value immediately
after zero is reached, so a delay before the program services
the counter does not introduce any uncertainty in the timing.
If the counter register 1is reloaded during counting, the
present period is not affected, but the new value is
effective for subsequent periods. The gate input inhibits
counting when it is low. A rising edge restarts the counter
from the initial wvalue.

Mode 3

Mode 4

Mode 5

INTERVAL TIMERS

Square Wave Rate Generator

The output goes high when the mode is set. After the count
has loaded, the timer will repetitively count down from the
initial value to zero. The output will go low when the count
reaches half the initial value and high when the count
reaches zero, so a square wave is generated. If the initial
value 1is odd, the output will be high for (ntl)/2 counts and
low for (n-1)/2 counts. If the counter register is reloaded
during counting, the present half cycle is not affected, but
the new value is effective for the next half cycle and
subsequent periods. The gate input inhibits counting when it
is 1low. A rising edge restarts the counter from the initial
value.

Software Triggered Strobe

The timer counts down from the initial value. The output goes
high when the mode is set, 1low when the count reaches zero,
then high at the next ¢lock pulse after zero. I1f the counter
is reloaded while it is running, the new count is effective
immediately after the final byte has been loaded. The gate
input inhibits counting when it is low.

Hardware Triggered Strobe

Starts counting down from the initial value after a rising
edge of the gate input. The output goes high when the mode
is set, 1low when the count reaches 2zero, then high at the
next clock pulse after zero. Countine starts again from the
initial value each time a rising edge occurs at the gate
input. If the count register is reloaded during counting,
The present period 1is not affected. The new count |is
effective when the next gate rising edge occurs.

3-70

MICROCOMPUTER INTERFACING WORKBOOK

CHAPTER 4

DIGITAL TO ANALOG OUTPUT

This page intentionally left blank.

4.

DIGITAL TO ANALOG OUTPUT

Very commonly a computer or microprocessor in a control system must
receive or generate an analog signal - a signal which represents some
value in a continuous range of values, rather than a binary O or 1.
An analog signal may be a variable voltage which is the output of a
measuring instrument or the input to a control driver: the voltage

is like the rate of flow, the temperature, the position, that is

being measured or controlled; it is an analog of the real variable.

In this chapter we will experiment with several means by which the
computer can generate an- analog signal. In chapter 5, we will
investigate the opposite task, of converting an analog signal into a
digital form that the computer can process. Instruments usually have
a one-way conversion, but control systems very often need both, as

suggested in Figure 4-1.

DIGITAL TO ANALOG OUTPUT

DIGITAL VOLTMETER

—

A/D —p»! Processor p=—pf{ Digital
Converter Display
Function Generator
P D/A Analog
roc e —] -
essor Converter Voltage
Output
Closed Loop Process Control
: > D/A . Power
Processor Converter Driver
>Process
A/D e Sensor |e—————I
Converter

A/D and D/A Conversion

Figure 4-1

DIGITAL TO ANALOG OUTPUT
4.1 METHODS OF D/A OUTPUT

Although a variable voltage is one of the most common analogs, there
are many others, each having particular advantages in appropriate
circumstances. We will discuss some of these in the next chapter,
which deals with analog input; here we introduce the few that are

especially suited for analog output from the computer.

It is not always clear where analog conversion ends. A computer
might output a set of binary data which is converted to a voltage-
input to an op-amp, which drives a powef transistor, whose output
current controls a hysteresis motor that generates a torque to
precess a gyro. The ultimate conversion was from digital data to a
new position for the guidance gyro: enroute , we have had a voltage,
a current, magnetic flux, magnetic force, mechanical force and a

precessing torque; each of these was an analog of the desired motion.

There are two basic approaches that can be used for output from the
digital processor to give a variable value: the output may be several
binary signals representing a number that is converted to a voltage
or current; or the output may be a single bit with time as the
continuous variable, so that either frequency or average power output
is the analog. In the latter case some external device, often the

load which is being driven, must integrate the signal.

DIGITAL TO ANALOG OUTPUT

For example, the binary signal may turn a heater on and off to
maintain a desired average temperature; a bimetal thermostat
controlling a household. furnace does exactly that, and the building

integrates the binary (oh and off) condition of the furnace.

In this chapter, we will consider four digital to analog conversions:

Pulse width modulation
Frequency modulation

Direct multi-bit output

Ladder network digital to voltage conversion

DIGITAL TO ANALOG OUTPUT

4.2 PULSE WIDTH MODULATION

Pulse Width Modulation

Pulse width modulation (pulse duration modulation or pulse-time
modulation) is a technique to vary average power output over time by
varying the ratio of power source on-time versus cycle-time (one
on—-time plus off-time cycle). The implementation we shall discuss is
the switching of a binary output on and off with varying duration to

generate an average power output.

CYCLE
~— TIME "

ON
™~ TIME

The figure shows a signal whose average power is decreasing over
time; there is a constant cycle-time, but a varying on-time whose
duration 1is decreasing. Although the constant cycle-time is not
necessary, it simplifies the computation. Some loads that might be
driven may 1limit the minimum or maximum on-time, in which case the
cycle-time must be varied in order to vary the on-time/cycle-time

ratio (duty cycle).

Pulse width modulation has three great advantages for analog output:
it requires only a single bit from the processor to switch from the
on state to the off state; it allows the load power to be controlled

by a switching device such as a relay or SCR rather than a power

DIGITAL TO ANALOG OUTPUT

amplifier; and it minimizes power dissipation (heat 1loss) in the
control device.

4.,2.1 PWM Output Program

EXERCISE

We will develop a program to generate a pulse width modulated output
signal, with keyboard entries to set the cycle time and the duty"
cycle. (Duty cycle = on-time/cycle-time). We will drive one of the
port 1A outputs with this signal and observe the result with a
vol tmeter. It will also be visible to some degree in the brightness

of the LED. Figure 4-2 shows the connections required.

VCC
+5
1K
PORT 1AQ
1A0
+
= GND

Output Connections for PWM

Figure 4-2

DIGITAL TO ANALOG OUTPUT

4.2.1.1 PWM Program Operation

We will use two timers and two interrupt service routinesxto control
the PWM output signal. Timer O, operating in mode 2, will control
the uniform cycle time. It will repetitively count down from its
‘initial value, generating a RST 5 interrupt when it reaches zero.
The RST 5 service routine will turn the output signal on, load Timer
2 with the on-time and enable the Timer 2 interrupt. It will also

reenable the Timer 0 interrupt to clear the latch.

When Timer 2 counts down to zero, an RST 6 interrupt will occur.
The RST 6 interrupt service routine will turn the output signal off,

and disable Timer 2 interrupt:

RST 5 RST 6 RST 5 RST 6 RST 5

_)ITIMER 2 F.
TIMER @ %l

DIGITAL TO ANALOG OUTPUT

Since timer O generates RST 5, then only timer 2 will be enabled for
RST 6; the program will distinguish the two interrupts by their RST
instructions. For the moment, let us ignore the main programAand”»

examine the interrupt service routines in Figure 4-3.
4.2.1.2 PWM Interrupt Service

At the end of a cycle, timer O generates an RST 5 interrupt. -After
saving the registers, we turn the output signal on. The 8255 does

not have individual bit control for its port A, but we can achieve

it by:
IN PORT 1A
ORI 01
OUT PORTI1A

Even when a port is programmed for output, its content can be read by
the program. This allows restoration of all bits in port 1A except
the one we want to change. Since we are not using the other bits,
this procedure is not really needed, but in some other programs it is

a useful technique.

Now the RST 5 routine loads timer 2, which is operating in mode O;
enables both interrupts, and exits. The output signal has been

turned on and will stay on until a timer 2 interrupt occurs.

Timer @
Interrupt Service

Save Registers

DIGITAL TO ANALOG OUTPUT

Timer 2
Interrupt Service

Save Registers

Turn output signal on
Timer 2¢-On Time

Reenable Timer 0 interrupt
Enable Timer 2 interrupt

Turn output signal off
Disable Timer 2 interrupt

Restore registers

EI, RET
RST 5
End of Cycle

Restore registers
EIL, RET

RST 6
End of On-Time

PWM Interrupt Service

Figure 4-3

DIGITAL TO ANALOG OUTPUT

The RST 6 interrupt service routine is invoked by timer 2. It turns
the output signal off; disables its own interrupt, and exits. Now
the output will stay off until the timer 0 interrupt service turns it

on again.

ON
TIME

CYCLE

R TIM ——)

! I !

RST 5 RST 6 RST 5

The time loaded to timer O sets the cycle time; the time loaded to

timer 2 sets the on-time.

4.2.1.3 PWM Test Program

Write the interrupt service routines according to Figure 4-3, and a
trivial main program to program the ports and timers as shown in
Figure 4-4. This will prove the hardware interface and the interrupt
service routines. The average power can be changed by entering

different initial values for cycle time and on-time.

DIGITAL TO ANALOG OUTPUT

Program 8255's P1B OUT
Program Timer 0, high byte, mode 2, binary
Program Timer 2, two bytes, mode 0, binary

(8300) ==—— Initial Cycle Time
(Timer 0) -=— Initial Cycle Time
(8302) = Initial On Time, low byte
(8303) =—Initial On Time, high byte

DI RST 5 to start operation

Perpetual Loop

PWM Test Program

Figure 4-4

11

DIGITAL TO ANALOG OUTPUT

Program 8255's

Program Timer 0, high byte, mode 2, binary
Program Timer 2, 2 bytes, mode 0, binary

P1B OUT

(8300)
(8301)

(Timer 0)=—Initial Cycle Time
(8302,03)«—Initial On-Time

<—Initial Cycle Time
<—Initial Duty Time

DI

RST 5 to initiate operation

>

Call ENTBY for new cycle
time or duty cycle

Test command key

RUN
Any
other } Store data as
cycle time
Store data as at 8300
duty cycle
at 8301

g

and sto

cycle (
Timer 0

Calculate on-time from
cycle time and duty cycle

Display on-time (2 bytes):;
cycle time (1 byte); duty

re at 8302, 03

2 decimal digits).
cycle time

PWM Main Program

Figure 4-5

DIGITAL TO ANALOG OUTPUT
4.2.1.4 PWM Main Program

After testing the hardware and interrupt service routines, we will
develop a more interesting program to allow keyboard control of cycle
time and duty cycle. (Duty Cycle = on-time/cycle time.) The program
of Figure 4-5 calls the monitor subroutine ENTBY to obtain a one byte

value and a command key:

CD CALL ENTBY
36

03

ENTBY accepts numeric keys, always returning the last two keys
entered as a byte in register L, and returns when a command key has
been pressed and released, with the command key value in registers A
and C. All registers except E are used. (See Course 525, Section
6.10.3) During operation most of the time will be spent scanning the
keyboard, waiting for keyboard entries. Although the monitor
program, as a whole cannot be interrupted (since it disables the
interrupt), any of 1its subroutines can be, so the PWM interrupt

service routines will control the output.

DIGITAL TO ANALOG OUTPUT

When Kkeyboard data are returned by ENTBY, we will test the command
key (register A): if it is RUN (=14), the data byte (register L)
will be stored as a new cycle time (and subsequently written to timer

0); other wise, the data byte will be taken as a decimal duty cycle.

We use a mixed number system in this program. Cycle time and on-time
are kept as binary numbers, but duty cycle is accepted, stored and
displayed as a decimal fraction. A subroutine (at 8290) multiplies
the Dbinary cycle time by the decimal fraction duty cycle to obtain a
two Dbyte binary on-time. This unorthodox procedure is used because
it is easy to choose a cycle time from the table given in Figure 4-6,
but binary fractions expressed in hexadecimal are awkward to handle

mentally.

4-14

DIGITAL TO ANALOG OUTPUT

Binary Count Decimal Count Time (msecs)
0100 256 0.125
0200 512 0.250
0400 1024 0.500
0800 2048 1.000
1000 4096 2
1800 6144 3
2000 . 8192 4
2800 10240 5
3000 12288 6
3800 14336 7
4000 16384 8
4800 18432 9
5000 20480 10
A000 40960 20
FOO00 61440 30
0000 65536 32

Conversion of Binary Count to Time

Figure 4-6

DIGITAL TO ANALOG OUTPUT

4.2.1.5 Use of the PWM program

Write your complete program in accordance with Figures 4-3 and 4-5.
You can test and debug the data entry, display and multiplication
sections without enabling the interrupts by omitting the DI and RST 5

instructions. The solution given 1in Figure 4-7 1is subdivided as

follows:
4-7a 8200-8223 Initialization
4-7b 8228-823F RST 5 entry and RST 6 processing
4-7c 8240-8257 RST 5 Processing
4-7d 8260-8288 Main Program Loop
4-7e 8290-82AA Subroutine BVXDF

To run the given program, depress RST, then RUN. The voltmeter
should show about 2-1/2 volts, due to an initial cycle-time of
50H(10ms) and an initial duty cycle of 50%. Keying in a decimal duty
cycle (1-99), followed by the NEXT Kkey (any command key except RUN)
will change the duty cycle accordingly and display it in two right
hand digits. The four left digits will contain the binary count
on-time (in hexadecimal clock pulses, see Figure 4-7). Keying in a
hexadecimal value followed by the RUN key, will change the cycle
timer to the new value and display it in the remaining two display

digits.

DIGITAL TO ANALOG OUTPUT

When the entire program is operating the voltmeter (connected as
shown in Figure 4-2) will display a value proportional to the duty
cycle. This depends on the mechanical inertia of the voltmeter to

integrate the signal; a digitai vol tmeter will be confused by the PWM

signal unless it has an averaging or true RMS capability.

The average output voltage is proportional to the duty cycle, and
independent of the cycle time. With a maximum cycle time, you may be
able to see some slight motion of the voltmeter needle; or if you
make the cycle time = 16.625 milliseconds, you may see it with the

stroboscopic effect of fluorescent lighting.

4-17

PULSE WIDTH MODULATION OUTPUT

CODE

A D D R

,mz A M
N 3 2 YS w AN

N . . : W . N _ N

RN m SRR ER
S) SR AREREREDS :
N) S RS SRR RS :
RN Ja . Q) ee@/ |} e,(0
P J 4& ~ /u N PR m/ el
A /_~,_. 0.\//,_‘. ~ o LR S
: TR 39 18390 9] 1384 g
W # .¢' Qm M-@-m\ M.\ ﬂo.ui 7Q0M F

| 3 _ o _ .

|~ ~ ru Q Q o

Ql N [N N I I Y NN Q QN N Q

SN ENEEEEECEERER ™ INE N AL N

TR R L [N TN N i 1N A 8 ~

N RN EEENEEENEE <t/ [|

| A | Q

NN NE N NIVEIS Jd) NEY

NN RN RN EEERNERS SN Q| [x B N|W| X

= I SOOI (FOIS (N) NN RY < RN H
5037523:.5%375037/044&3&,3%/0044433:,3a_ﬂao.ai
JfDa:,a,zoJMD/Jéb/4ffoqdaa72/40440?ﬁ£éé£@000
.0123456789ABCDEF01234.56789ABCDEF01ZY3456.73

Q N\ N

N R Y

4-18

133HS ONI1A0d

W3LSAS ONINIVHL H31NdNOJOHIIN

SW3ILSAS H31NdWOD A31VHOILNI

INTERRUPT SERVICE FOR PWM

© 133HS ONIA0D

W3ILSAS ONINIVHL HILNdWOIOHIIW

SW3LSAS H31NdWOI A31VHOILNI

N M
.W wz,w N
S 3 a
o) \ . M
W gL m
N & . 3
mﬂa wwa N % [
[X
_ N N
I RIEELS NIRRTV
N SR 5 % Y [N R
Q[AR YN L (= =
S LIS SNESENERINN
N RNAN X E _
N uluvla N U] NSIERENENNMNEN
NI E Q N R EE N RN
U S MINESESEREENERNNERYY
u 3 \o| W Q¥ Q| U9 ol 93N\ w3 O N NS
8 W W& QW WRIQW YW R Qv R Ql Wy V)
@ Nt lw|lo|~N|lolo|g|lajlo|0jlW |k |([Oofle(n|w|aglv]|/o|n]|o|lo|d|ajojla(lw|lu|{ocjeela]|lm] < ©
a Y 3
fa) & »/m

4-19

da@

/4};/")

VQM bls) T 0D

To omabblerTspetd

3 W

/ B

AN . 1 .
muu.wf g @)
21y 9~ l m 0
IRERRENEN 3 YA a
o I N
3 BN ~N 3
mT N (9 | IR AN
Mf X ™ N Z XIT Q ~ S ™
HANENENEE ~ N TR A
mﬂ, Q X <G N |y~ U] (™
m A
& IS N (N NN NN
NEINASEEREES QD 93] [[J] [[T
m_/ Q Q| slaol [Tl [l [| P
M@/ NIRRT éﬁ3é£/3p£f341

A AU QA Q Ty SN NNR N[™ Q] Q™| Q[V| ™| &
R0123456789AvBCDEF01234567 Qi Q|lwuL|o|—~iN|[™m|< «©
o] \) /u

D‘d »d

<) 0 -]

133HS ONIA0D

W3LSAS ONINIVHL H31NdWODOHIINW

SIWILSAS H31NdWOD G3LVHOIINI

4-20

PWM OUTPUT - PROGRAM LOOP

CODE

A D D_R

{ Mt
@ﬂ M M | M w .
N m |
< W 3 L@r , .Wé NI L&l Iz
) S ER RN RS | V|
193 IREEEERENEESENDEERE !
M/Mf) N mwﬂp W SRR 14 Ay |3 mf g
SN SR REERSE RS MESE REECESSREE R BN G
> <1 QA W
Y S N A N ¥ N o
M~ D) S Q x Q. Q S Q
N = (4[> <</ ™ ~ ory w X 4= \y
W 2 11 N 18 Sy) Q G NS R
SRS & BYBY X< %[&
< N I a ~ ~ ~
< N INHN P IEIRN W J ~ N NYENEN SN Q
< Ql [ofx N NEES IS s < NER Qo X I
J NSIEEN) N=N] O) N QU TV Sl N H
N
QN M| | WARIN ™| |} <8 0 N2 ™ QX] 6 AN RNQ] g XA ™R QI™ O QY
NN ENE RN E N RN RN EEEE R N R E RN E N E NN
0123456789ABCDEF0123456789ABCDEF012345678.
\y NEEL | S
™ m 4 N

133HS ONIA0D

W3 LSAS ONINIVHL H3LNdWODOHIIW

SW31SAS H31LNdWOJ Q3 1vHOIALNI

4-21

SUBR~-MULTIPLY BINARY VALUE X DECIMAL FRACTION

CODE

A D D R

Ny . "
_ -
1Y [3| 13 | a1y
M ‘EERE E a1 123
X /Iﬁ) Y M R - < - % m - m g
\ ™ M ﬁ W | e |
: /M AN | N Dl \ o
\.//./.w, , IM \ M Xk J,M |y SN <
J FF PP S R ® | |2 2 :
NS Q J | PML . N > W N v
\TM@.Z.:ZME SRERCERERENRMFRNEARANET
@)ﬂw MEE Mw,/,r@ﬁ SEEENERED e =@ |\ .
Q XY |+ o |
N MIH IHol | ™
Q 5 3 N2Y (3= [
NEE < QN [} </ > NN I~ -
N4+ 1T 4 4 4 + T + < = Q |2 I/ U
N Wity (] (Y WS YIS R[S X] [~
| : W~ o IS
SN NEENENNERE R NN ARERR) Q™ N NNEEEERITE!
Q| Q[X Q QXN] 9 QX[QAR 2 W N (WU [\
= X[QN SN S EN S YQ §h Dz K S\ e >
N A RN AN A A A AN IR A AN AN O AN AR AR NN ARIAT RN
NS Qo AN NN O IN NS & S Y Qv N NN
Ol N| M| s][N |o|aga|ln|jo!/lojlw|luw|[ole=e|ln]om|at{wvw]o|lN]o|leo|<|m Dlw|uw | O]~ N < | IO «©
W M N
> S 7 8

133HS ONIQ0D

W3LSAS ONINIVHL H31NdNOJ0HDIN

SW31SAS HILNdWOD A31LvHOILNI

DIGITAL TO ANALOG OUTPUT
4.2,2 Variable Cycle Time

OPTIONAL EXERCISE

Postulate an open loop control syStem for the heating of a chemical
reactor, in which +the heater duty cycle is set according to the
volume of material being cooked. As in the preceding exercise, the
‘required duty cycle is an input to the computer. Because a gas fired
heater is used, and ignition is not instantaneous, the minimum useful
on—-time is 20 seconds; fuel efficiency is enhanced by 1longer
on-times. When the batch is small, however, a heater off-time
exceeding 180 seconds may result in excessive cooling between heat
cycles, and shorter off-time is preferable. The chemical engineer
‘has provided this table of on time vs. duty cycle; interpolation is

to be used between these values.

Duty On off Cycle
Cycle Time Time Time
.10 20 180 200
.20 20 80 100
.30 30 70 100
.40 40 60 100
.50 60 60 120
.60 20 60 150
.70 140 60 200
.80 160 40 200
.90 180 20 200
1.00 200 0 200

DIGITAL TO ANALOG OUTPUT

Design a program that will vary the on-time and off-time according to
this table, with any reasonable interpolation scheme. To make a

convenient display during program debugging, divide the times by 10.

DIGITAL TO ANALOG OUTPUT

4.3 FREQUENCY CONTROL

Frequency 1is another analog that requires only a single output bit
with +time as the continuous variable. Varying the frequency of an
output signal can control an induction or synchronous AC motor, can
control the delivery or flow of a fluid, or can test frequency

dependent hardware.

Generation of a fixed frequency signal is automatically accomplished
by the 8253 in mode 3, thé square ﬁave generator, as we demonstrated
in Section 3.9.1. The frequency can be varied by loading different
time intervals to the timer. Some applications of variable frequency
control cannot tolerate the high harmonic content of a square wave,
and some form of multi-bit output is required to create a more nearly

sinusoidal signal. We will experiment with this in Section 4.7.

The following exercise creates audio tones with the square wave
generator thus demonstrating a technique for frequency generation.
The most common use of tone generation is for frequency modulated
data communication and recording, which is used in the tape cassette
interface included on the computer. In the next exercise we will
modify the previous program to vary the frequency and to demonstrate
frequency modulation. The final exercise in this section will create
music from the square wave generator. This is more of a toy than
part of a useful system, but it uses important programming techniques
such as bit manipulation and table look-up, as well as frequency

modulation.

UIGITAL TO ANALOG OUTPUT

Program 8255's - Port 1B Out
Program Bimer 0, Both bytes,
Mode 3, binary

Program Timer 1, Both bytes,
Mode 0, binary (for next
exercise)

CALL ENTWD
(A)&-Command
(HL)&Data

Load Timer 0

(TIMO)& (L)
(TIMO)&—(H)
GND O
TO
ouT
TIMER 0

Audio Output Program and Circuit

Figure 4-8

DIGITAL TO ANALOG OUTPUT

4.3.1

Audio Tone Generator

Write a program to load timer O with data entered through the
keyboard. Connect the loudspeaker as shown in Figure 4-8 to output
the tone generated by timer O. The timer 1is to operate in square

wave mode.

Monitor subroutine ENTWD (0346) will accept two data bytes and a
command, returning the data in register pair HL and the command in
register A, Load the data (less significant byte first) into timer
0. If you enter data from the list in Figure 4-9 the tone will be a
defined musical note. If you have perfect pitch or a standard for

comparison such as a tuning fork or a high quality audio oscillator

you may detect that the tone is imperfect. This stems from error in
the computer's crystal clock and from rounding error in the
calculation of period = l/Irequeqcy. (The latter is only significant
at the very high frequencies). Try keying in the data for various

notes and listen to the tone.

DIGITAL TO ANALOG OUTPUT

Musical Frequency Timer Period
Note (Hertz) (Hex Count)
C (below Middle C) 130.81 3D28
C# 138.59 39B9
D 146.83 367C
D# 155.56 336D
E 164.81 308A
F 174.61 2DD1
F# 185.00 2B3E
G 196.00 28D1
G 207.65 2687
A 220.00 245D
A 233.08 2253
B 246.94 2065
C (Middle C) 261.63 1E94
C# 277.18 1CDD
D 293.66 1B3E
Dt 311.13 19B7
E 329.63 1845
F 349.23 "16E8
Fi# 369.99 159F
G 392.00 1468
G 415. 30 1343
A A440 440.00 122F
A 466.16 1129
B 493,88 1033
C (above Middle C) 523.25 OF4A
C# 5547 37 0E6E
D 587.33 OD9F
D 622.25 0CDB
E 659.26 0C23
F 698. 46 0B74
F# 739.99 0ADO
G 783.99 0A34
G# 830.61 09A2
A 880.00 0917
At 932.33 0895
B 987.77 0819
c ¢ 1046.50 07A5
C# 1108.73 0737
D 1174.66 06CF
Dyt 1244.51 066E
E 1318.51 Oell
F 1396.91 05BA
F# 1479.98 0568
G 1567.98 051A
Git 1661.22 04D1
A 1760.00 048C
Af 1864.66 044A
B 1975.53 040D

List of Concert Pitch Musical Tones

Figure 4-9

DIGITAL TO ANALOG OUTPUT

‘4.3.2 Frequency Modulation Program

Modify the tone generator program to generate a tone whose frequency
increases with time. Data loaded with the MEM command will control
the rate of change by setting an interrupt period in timer 1. Data
loaded with any other command key will provide the initial frequency.
At each interrupt the period loaded to timer O will be reduced by one
count to increase 1its frequency. After the frequency of 8000 HZ
(period = 0100 hex) has been generated the original frequency will be
reloaded. Figure 4-10 shows the main program and Figure 4-11 shows

timer 1 interrupt service.

To use the program enter a period from the tone table of Figure 4-9
using any command except MEM. The tone will Dbe steady at first,
since timer 1 1is not running. Now enter an interval to timer 1,
using the MEM key. The tone will slide from the initial frequency up

to 8000 HZ, and then repeat.

DIGITAL TO ANALOG OUTPUT

Program Ports and Timers
as in Figure 4-8

ry

CALL ENTWD
(A)& Command
(HL)& Data

Test for MEM command

MEM
@A) =10

Any other key

Store data at 8302,03 Store data
at (8300,01)

Duplicate at 8304,05

Load data to Timer O Call Timer O
interrupt

(TIMO)<~ (L) service
(TIMO)< (H) (RST6)

l |

Tone Generator - Main Program

Figure 4-10

DIGITAL TO ANALOG OUTPUT

Save necessary registers

|

Reload Timer 1 with data
stored by MEM key

(TIM1)€—(8300)
(TIM1)<—(8301)

Increase frequency (decrease

period)
(HL)4—(8304,05)
(HL)<—(HL)-1
Test for (H) =0
#0

=0

Recover original frequency
(HL)<—(8302,03)

-

Store new frequency and
load timer
(8304,05)6 (HL)
(TIMO)<—(L)
(TIMO)<—(H)

Enable and clear Timer 1

Interrupt
(CNT2)&03
Restore registers, EI, Return

Tone Generator Interrupt Service

Figure 4-11

DIGITAL TO ANALOG OUTPUT

o
C (Below Middle C) 00
C# (Db 01
D 02
D (Eb) 03
E 04
F 05
F# (Gb) 06
G 07
G (Ab) 08
A 09
A# (Bb) 0A
B 0B
C (Middle C) 0C
C# (Db) 0D
D 0E
D# (Eb) OF
E 10
F 11
F# (Gb) 12
G 13
G# (Ab) 14
A 15
A+ (Bb) 16
B 17
C (Above Middle C) 18
C# (Db) 19
D 1A
D# (Eb) 1B
E 1C
F 1D
Ff (Gb) 1E
Rest 1F

80
81
82
83
84
85
86
87
838
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
98
9C
9D
9E
9F

40
41
42
43
44
45
46
47
438
49
4A
4B
4C

4D
4LE

4F
50
51
52
53
54
55
56
57
58
59
5A
53
5C
5D
5E
SF

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

Codes for Musical Notes

Figure 4-12

4-32

DIGITAL TO ANALOG OUTPUT

4.3.3 Recorded Music Player

This program module reads music - in the form of notes in a list.
Each note in the tune includes three bits to indicate duration of the
note (eighth, quarter, half and whole notes) and five bits to select
one of 30 tones starting at C below middle C and covering two and
one-half octaves. (See Figure 4-12). For each note it performs a
table lookup on the five low order bits to find a time interval
corresponding to the tone frequency, and outputs that time to timer O
operating as a square wave generator. The inverted output of timer O

drives a loudspeaker, as shown in Figure 4-8.

Timer O runs in mode 3; its interrupt is disabled, and its only
function 1is to generate the square wave. Timer 1 runs in mode 2 to
give a repetitive timing interrupt which is used to count down a
software counter, loaded from the high three bits of the note, to set

the note duration.

DIGITAL TO ANALOG OUTPUT

Program 8255's Port 1B Out
Program Timer 1
High bytes Mode 2, Decimal
Load for 512 interrupts/second
(TIMCT) +=—— 65
(TIM1) =—40
Load initial address for time
(HL) <«— 8300 '

CALL ENTWZ (0349)

Returns new data in (HL)
Preserves (HL) if no data
Command in (A) and (C)

Store tune address for
interrupt service
(83A2,A3) - (HL)

(DE) ——(HL)

Store rest flag and duration
(83A0) «—04 (83A1) «— 01

RST 6 to enable Timer 1
and start time

(HL) -— (DE)

TUNE - MAIN PROGRAM

FIGURE 4-13

DIGITAL TO ANALOG OUTPUT

The main program (Figure 4-13) initializés the ports and Timer 1, and
loads a fixed address (8300) where a tune is stored. It calls ENTWZ
to permit entry of different addresses where other tunes can be
loaded. This monitor subroutine preserves (HL) 1if no hex keys are
entered. This address and a flag and counter are stored for use by

the interrupt service routine.

Timer 1 is programmed during initialization to mode 2, decimal, and
loaded with 80 in its high byte to interrupt 256 times per second.

This value makes a whole note of one second. Faster tempo can be
obtained by loading smaller values to timer 1. (You may want to

elaborate the program to accept a value from the keyboard.)

DIGITAL TO ANALOG OUTPUT

Save registers. Load from memory:
(L) &~ Software counter for time
(H)&— Flag for note or rest

Decrement counter

Not zero
Zero

Program Timer O

Both bytes, Mode 3, Binary
(L)$- 04 for rest duration
Decrement (H) to test flag

Hot zero

(Note finished)

Zero

Load tune address
Read note and test for FF

=FF(Stop Tune)

#FF

Increment and Store tune address
Split note into 3 high bits(duration)
and 5 low bits (tone)
(E)&-high 3 bits
(D) 02 (Flag for note)
(HL) Address of tune table
Double low 5 bits and add to
tone table address
Load Timer 0 with tone table data

(HL)4~(DE)

Store counter and flag
Reenable Timer 1 interrupt
Restore registers, return

FIGURE 4-14

DIGITAL TO ANALOG OUTPUT

Interrupt service for timer 1 (figure 4-14) decrements a software

counter (83A0) and exits if not zero.

At zero it reprograms timer O (to mode 3, binary) which stops
counting until the timer is reloaded. A flag at 83Al1 is decremented,
and if it goes from 02 to 01 a rest of 1/64 note (4 counts) is
generated to separate one musical note from the next. The next time
that the software counter (83A0) reaches zero the flag will count
down from 01 to 00, and a new note is played. The tune address is
loaded from memory (83A2, A3) and the next note is read. If this
note 1is FF the tune is finished and an exit is made without loading
timer O. For any other note the tune address is incremented and
stored, and the note is split into three high bits for duration and
five 1low bits for tone. The high bits are entered to the software
counter, and the flag 1is set to 02 to indicate a note is being
played. Now the five low bits are tested for code 1F which indicates
a rest in the music. For any other code, 00 to 1E, the tone table is
addressed to find the time interval for the corresponding note. The
tone table data are copied to timer O, which now generates a square

wave of the required frequency.

DIGITAL TO ANALOG OUTPUT.

Figure 4-15 is a complete program with a tone look-up table (Figure
4-16) and a few tunes (Figure 4-17). The tone table covers four
octaves, more than can be addressed by the five bits allotted for
selecting a note. You can change the table address to obtain a
different set of notes. This also permits transposing a tune from
one major key to another, simply by entering a different address for

the table. You may wanf to provide keyboard entry for this, also.

TUNE - MAIN PROGRAM

A D o] R .

CODE

. .
3 y
X SEENKR S| .
L/.M. 3 | Y N 3
QN \ 3 . N J Y <
D R ,J ml. . h. A .m
% YN . /.7 F._. 3 AN 3
Am N JX LR pa
: Q| M N P} Q)
K. 1S 2 < N < ~
Ql [N [[« ol [[[N (™ N o™ ~ ™ =
N OINIY - NENEEEN Q Sy Q | s S
4 > p Tv * N + Iy N
S ENELAEEESESEL NS | X \§
| N S b R)
NEINENERENENENEREE J NEBEEL K RNE
NERENERESNEEERERNN R 3 V| ¢/ X NEIES
QY QY Qs |d)) [Nl T & %[H
NSNS N NS N E AN RN NN SN
M NR[Q[) NA ™ Q] N N A N ¥ o V] A ol 5[W N D] g WY\
Q N |
3 3 N

133HS 9NIA0D

WILSAS ONINIVHL H31NdWODJ0HIIW

SWI1SAS HILNIWOD O3LVHDILINI

4-39

TUNE - INTERRUPT SERVICE

CODE

A D D R

(L)e— Cprenliv
(H)— ’{Q Z '
Counlew

w5
0/,_'

Yy A
(B 3 NGVl

Uik 3
el
DIy -
M% W H; :
| l :
~ J S &
ﬂ A.Wﬂ J g S a
N ~ Q
R < | SR | N
\a ™ N w Y [N © Q N
N[X QR[> 1 = 3 |] [x 0
NNEEEENENERI <[4 [w W
AASENENEY A
D9 J U i N H & N AN N
NERNERES V= N RN RN X QY| | N
QIQ (U Qb Y IN 5 |_Rb < =Y |h <t
NN SRS N N N NI A RN A NN AN ENE
WG Q U]~ SIS S I N] o] Y QT N] f w3 NN 0 T N WG v S WY
Ol-n|Ov|s|vw]|o|nlo|lo(g|lojlo|0|jlw|lw|of~r|la|mds(vjo(~n]|o|lo|(da|lo|0lw|uw|[oj-|a|m]| < @
© 2
3 %Y

133HS ONIQOD

WILSAS ONINIVHL H31NdWNODOHIIW

"~ SINILSAS HILNdWOD G3LVHDIINI

4-40

TUNE - INTERRUPT SERVICE (continued)

NRRE MW 9 |3 %M
’ SEERE SEEERRER 3
= ~—~ P —
SRR RRENNCRERERRERE R AR :
% / N M ,E.P ol
44 SR ER) 3V zaf)% E
YWY [N SNAECAESKNERS 2
Q v
Y <
IS Y X N Q
T ™ Q oy <= S|z
ES 00 //F 0@ ~ . l:.,I J.T_
WX Al [N & 3 SRR EEESE
R b
NN NN ~ QAI>I>IH =N
NESEIES NEANELY x A QD 29D |V
NI (Y b - g} s (N9l [x[x
o W o] o syl o o]]] W s [] SN = NS WM 0y [N[9S
ST N] Sy SN S W S NS S SN SN NRN SN AN W Y 9 S[D
ol | |wb]|o|lN|o|leo|g|s|jo[d|lw|lu|ol~r|la|m|s|v]lo|N|low|lao|d|n(0o|la|lwluw|o|=a]m|= -}
o\ 9
of ™ N

133HS ONIAOD

WILSAS ONINIVHL HILNdWOJOHIINW

SINILSAS H31INdWOI AILVHOILNI

4-41

TUNE - INTERRUPT SERVICE EXIT

CODE

R

~
N
W,
3
9
W &
@@
A
X IDIEREY
REEEEN 3
N R 2
VRN
Z
N NSOIINR] N
X R AN NENANECE
“ 1= 1 QU X
| N N ™ o] WINNININ Q[
N YA QA QIR W W0
0123456789ABCDEF01234567 oAl wlu |l ~N|[M]| < -]
'\
N

133HS ONIQOD

W31LSAS ONINIVHL H31LNdWODOHIIW

SINTL1SAS H31NdWOID A31VHOILNI

4-42

CLOCKS

FREQUENCY

v

Ny

M

Q N}

N

R g g
M M W <
N N 33 0
A N W3
N %) Py
NN [y N [N IN Q Q 40 Q] S MEREBSENEL Al YW

N (o [N D] [S] s 1] (S]] [S] IS S [I Nl IN W [y

.) . .. \ . . . \ D . . . N .o . D BI

o & 1N TW W XY N [N N IS (™ [N NN ™ N[[w]~

™ (N (9] NN [N [0 T [N R [N Iy [N [N [N
NENERNERENEN R NN AR ER EE RS R AR RS

1 W 1y " n 0 " " h 1 H nl | w] " 0 2 Wl 9

o [« o [™ [w[[f [[™ [0 [D (% |™M [[N |[¥H [|9 R

B 3t R %t ey ¥ H [Qe

I T Q] Q] W [W N (W] Y X (NN Q | MK
N AR N NN N N RN AN NN N N A N D N R T A S
8[| <] o] T o] N[gl o Q[] ™ g Q] [| ‘o] o NWNY YD NQ N~ Y
glo|l~rjla|lv|ad|w]{io|N|ow|lao|lg|lalo|o|lw|w|o|l~la|fss|w|lo|N|olo(d|o|lo|0jlw|u|of=fa]|m]|< [--]
Dﬁ. 8 .
[a} J J
| © [+ [--]

133HS ONIAO0D

IW3LSAS ONINIVHL H3ILNdINODOHIIN

SINILSAS H31NdWOD A3 1VHOILNI

4-43

CLOCKS

FREQUENCY

CODE

A D D R

)
3
w
3 3
v
3 :
X s
LN ENENENENENENE NSNS ENE NSRS
NEEEEENEENENENE R ENEREEN BN D EE
.) o | e B .) . N o 1D
N [N I] Y] I8 N [(o [N OIN o NN Y [N
NENENENENEENN RN YR o [N [m (o [N
N s Y WY N NN Y Y YN NN (NN -
" "] " i) " d M 1t W n " f ,: i N
SIS S SN S G TS NS S 19 9] [©
I % % % H® % C
NENENENENEN SRS RN NN ENENENES
NN N D N NN DR A N SN N S SRR
NN WO NN NSNS NS ON™ N QN N QAR Y N QR N Q
o Nt | vjioIMO| | D|O|O|W| L |([O]l=ln|[d|as[bB]jOo|Nlo|lo|dd|O|DjwWw (||| a|om| < [
N N
R ¥

133HS ONIAOD

W3 LSAS ONINIVHL H31NdWODOHIIN

SW31SAS H31NdWOID A3LVHOILNI

4-44

CLOCKS

FREQUENCY

CODE

A D D R

U]
M
[=}
oy
SE NN N DN N (YYRNY M w

N NENEAENEN YWooel I W Y O[S] N 45

N Q D) \N . o | e N B

T 1 T N RN Y O Y IN N IR Y

NN ER NENENEREIENENNEEENEEE R ENEN

SN ENEEREEN A ERENEE 8N NN ™

oy 1IN I DY N I N IN I IN N IN N NN DY

U] t 1) H Y i 1 i l Y " n il 1y N\)

SIENENENENER SNENENEEENENENELNER

N 0y Y% 2 T AN X R

SRS NN NN NN R ESYEN

S N N N S A YN S N S S T A T I N R R I Y A T A R N IR N

AN QN QX ™) A QAN QN N N QN QR IYD QI Q9 Q

ol ({vjfOo(Nolo|lg|djo|Q{wWw|lu ool ol d dlOo|ldjlw|lu|]o|=lN|om|< ©

\y u

% A\

133HS ONIA0D

W3LSAS ONINIVHL H31LNdWOJIOHIIW

SINILSAS H3ILNdWOD A3LVHOILNI

4-45

CODING SHEET

MICROCOMPUTER TRAINING SYSTEM

HOME ON THE RANGE

INTEGRATED COMPUTER SYSTEMS

A D D R CODE TONE DURATION
8 30 0 |HAC C Y Z
1 LC C 14 GIVE
2 5/ F Yy ME
3 U3 G Yy A
4 v A Y HOME
5 |31/ F ¢ WHERE
6 30 E Yo THE
7 A D e RUFE-
N E4AA Bb Y/ f-
9 7 Gl ¥ef LO
A AV Bh Ya RoAm
B |75 A V¢ wHERE
c |2lo Bb Y THE
b |7\F 4 /o DEER
e 13/ F /e _AND
F 131/ £ A THE
8 o 5/ F 4 ANT-
1 510 13 i £ -
2 / E Vel LOPE
3 |[/]3 G whetle, ___PLAY |
s ¢ [Yo WHERFE
5 Y\C C Yy SEL -
¢ BV F Y DoM
7|43 G Yy TS
8 19 A o HEARD
9 3/ F Ye A
A |3 £ Ye BLS-
B |6\F D e _COLR"
c (36 Bb /p AG- -
b |Jb b /4 ING
I A Ab W2 WORD
F 136 Ab Ye _AND
8 °o |13l& Ab /i _THE
v |75 A /4 SKIES
21313 ¢ ‘Ie ARE
3. 151/ E 'y NoT
4 7\0 E 7 CcLouD-
5 13|/ F Y N
6 S13 G- Yy ALL
Y P whote DBY
8 V=aV= EIM|ID| |o|F 7 IO|WV|E Figure 4-17a

THE VUDKUNKLN DALLURN

133HS ONIA0J

NILSAS ONINIVHL HILNdWODIOHIIW

] =1 X T | ' 3
& - = v ~ g ! A \
.HaﬁmnAMWuQﬁuLoﬂﬁwvuemw&oH 23 o uEm&
EF; 3 |2 enm.%mbm MEﬁoHHmDmAMEMoaYIH.om
B |39 a |9 |3« 313 |G |u t1Z
NN | J =
JVVYﬁfﬁﬁhhﬁ%ﬁﬁ%ﬁwWWWW@WWWWWW&WWW&V& |4
|5
5.
] Y S QW]]] 1 |) G U Wy ol R R ROV [0 W R o
. |
S
N
W
Q
S
<
)
xfffKJJVE/f3333333603fi/ffff oy 2 oy)) Y g @
R S R S A N A A I) B A e e A N A A A e e A e e A N S Y S A S S S
ol |]|lo|Now|lo(lgd|lp(jo(l0jw|lnjo|l=la|lm|g|lvoimni®leo<la/lO(0jl w8 ™ < ©
03 .
ol ™
g © | [] ’ ©
SINFLSAS H3LNdNOD ATFLVHOILNI

4-47

DIGITAL TO ANALOG OUTPUT

4,.3.4 Music Recording Program

OPTIONAL EXERCISE

Develop a program that will play notes entered from the keyboard,
recording the tune as it is played. Define the hexadecimal keys to

represent sixteen notes in the key of C.

C D E F
F G A B
B C D E
E F G A

Define the command keys for playing and editing the music:

ADDR lLoad a starting address (optionally)
followed by a four digit address.
Otherwise use the last address entered.

BRK Set a musical key (to be followed by a

note, or by sharp or flat and a note).

MEM Sharp (to precede a note)
REG Flat (to precede a note)
CLR Delete (from the recorded tune) the last

note played, replacing it with the stop code (FF).
RUN Play the tune from the beginning to the end,

and wait for a new note to be added to the tune.
STEP Play the next note recorded (if any) and wait

for a new note to be added.

NEXT Enter a rest in the tune.

DIGITAL TO ANALOG OUTPUT

To record a tune the musician will enter:

ADDR XXXX to locate the tune

REG D (for example) to set the key of
D flat.
CLR to delete any note already recorded at

that location, and prepare to replace it.

Now enter the successive notes. The program must transpose the note
of the selected musical key into a note in the chromatic scale, play
that note while the hexadecimal key is held down, and measure the
duration of the note. When the Kkey is released, generate and store

the code for the tune and duration.

To end the recording enter any note or a rest (NEXT) and press CLR to

replace it with the stop code.
To play the tune back, press ADDR, RUN.

To edit the tune, press ADDR, STEP, STEP, STEP etc. to play one note

at a time. Replace any desired note by CLR and the desired note.

Development of this program is left as an exercise for the student.

The relationship between the musical keys (C, D flat, etc.) and the
meaning of the hex keys is shown in Figure 4-18. The hex code given

for each note is the whole note code shown in Figure 4-12.

DIGITAL TO ANALOG OUTPUT

" Hex

Koy c Ci o D4t E

0 E 04 | D¢ 03| E 04| p# o3| E 04| = 04
1 F 05 |F os| F# 06| F os5| F# 06| F 05
2 G 07| Ft 06| G 07] ¢ 07| 6# o8| ¢ 07
3 A 09| Gt o08) A 09| 6# 08| A 09| A 09
A B OB | A+ o0A| B OB| A# OA| B 0B | Af# 0A
5 c oc|c oc| c oc| ¢ oc| c# op| c ocC
6 D OE| C#t OD| D OE| D OE| D# OF| D OE
7 E 10 | D# OF| E 10|l p#g oOoF| E 10| E 10
8 F 11 | F 11| F# 12 | F 11| F¢ 12| F 11
9 G 13| F¢ 121 @ 13/ ¢ 13| G# | G 13
A A 15| G+ 14| A 15| G# 14| A 15] A 15
B B 17| A+ 16| B 17| A# 16| B 17| A+ 16
c cC 18| ¢ 18} ¢ 18| ¢ 18| c# 19f c 18
D D 1A | c# 19| D 1A | p 1A| p# 1B| D 1A
E E 1Cc | D¢ 1B| E Ic| o 1B|E 1c| c 1c
F F 10| F 1D| Fg IE| F ID| F# 1E| F 1D

her Fi G Gt A A

Key

0 F 05| E 04| E 04 | E 04 | D¢ 03 | = 04
1 F# 06 | F# 06 | F os| F# 06 | F 05 | F# 06
2 Gt 08| ¢ o7 ¢ 07| e# o8| ¢ 07| 6t 08
3 A# OAl A 09| G 08| A 09| A 09 | Af O0A
4 B OB|B oB| At o0A| B OB| A o0a | B OB
5 c# 0D | C oc | ¢ oc| ctg opl|l c oc | cg# oD
6 D# OF | D OE|Ct oOD|D OE}| D OE |D# OF
7 F 11 | E 10| D4 OF|E 10| D OF [E 10
8 F# 12 | F# 12 | F 11| F¢ 12| F 11 { F# 12
9 G+ 14|l c 13| ¢ 136t 146 13 |ct 14
A A 16 | A 15 | & 14 | A 15| A 15 | A 16
B B 17 | B 17 | A+ 16 | B 17| A+ 16 |B 17
C C# 19 | ¢ 18 | C 18| ctg 19| c 18 |ct 19
D p# 1B| D 1alct 19|Dp 1D 1a [D# 1B
E F 1ID|E 1c |p#¢ 1B|E 1c|D# 1B [E '1C
F F# 1E | F# 1E | F iD|F+ 1E|F 1D |F 1D

Music Recording Program, Hex Key Chart
Figure 4-18

DIGITAL TO ANALOG OUTPUT
4.4 MULTI-BIT OUTPUT

A multi-bit output can represent a continuous variable to any desired
precision. ‘The output is usually in the form of a binary number with
each bit having a weighted value (e.g. 1,2,4,8,16---); this must be
converted to a voltage or current by external hardware. Section 4.5
deals with this procedure. Another possibility, occasionally used
as a display device, is to illuminate an LED as a pointer. A
prototype automobile speedometer has been shown with an LED at each
mile per hour position; here all of the lower values are illuminated,
up to and including the actual speed. We will modify the tune
program of Section 4.3.3 to display the tone in this fashion , using

the LED's of port 1A.

In the program of Figure 4-15 the interrupt service obtains a note to
be played and makes a conditional jump if the note is a rest. This

is a good place to insert a patch to display the tone. At 825A

replace JZ 826A by JMP 8280, where we will place the patch.

4-51

DIGITAL TO ANALOG OUTPUT

We will display the notes as follows:

NOTES CODES DISPLAY
c,c* p,pt 00,01,02,03 00000001
E,F,Ft .G 04,05,06,07 00000011
Gt ,a,af B 08,09,0A,0B 00000111

Octave of middle C

c,ct,p,p# 0C,0D,OE,OF 00001111
E,F,F¥ G 10,11,12,13 00011111
G*,a,a% B 14,15,16,17 00111111

Octave above middle C

c,ct,p,p# 18,19,14,1B 01111111
E,F,F# 1C, 1D, 1E 11111111
Rest 00000000

4-52

DIGITAL TO ANALOG OUTPUT

The patch must save the note and the flag, and it must include the JZ
826A instruction that was replaced. We can obtain the desired
display by masking unwanted bits and shifting, so that the codes
00,01,02,03 are transformed to 00, and 04,05,06,07 are transformed to
01, etc. Then increment the result so that the values range from 01,
to 08. Now this procedure will shift from one to eight 1's into

register H:

LX1 H,OO0FF
LOOP DAD H

DCR A

JNZ LOOP

Register H can be displayed in port 1A. Figure 4-19 shows the patch.
For many tunes it may be more interesting to mask for the three low

bits and omit the shifting, so each note within a small range will be

displayed differently.

PATCH TO DISPLAY TONE

.CODE

A D D R

WILSAS ONINIVHL H3LNdWODOHDINW

_ N 182 S
YN w NRY w
_ ~ 0 AWAN
ERERIR SNE RN 33 J_M\J %
RO E R A M/ i W \ I
| , . . 0
4 W MIM M -_ M AN ./M/ W _ /.w » M@7ﬂ .m |
BN RN RS ~ .
W | | S
4\ ~ T
NI N Y N N NI
I N % ENNTIRERIN < o
Q| - R U N 1IN YA %
SRS ~ <[X[<N YIS X%
< | U
YN NENNMIR N EENNEN Sl
NEX N S| QYR IR[V SN EENLY |5
QN T A [NNNRSH [[=]s]]RIb alh
N QUSSR W N OS] 00 MN[0 ¢ 0l Q[X
NA TN SN NIENN RSN RNE NS ENERNNN RN NEE
o|lr|a|o| 5/ ofl~nlowlo|laga|ln|jo|lo|w|u o clalmlelwlo|~]|o <|lvlo|lo| w|w AN ﬂ N
W , Q, ON O~ ﬁ
R |
@ . S 0|59 N
133HS ONIAOD SIN31SAS HILNdINOD AILVHOILNI

4-54

DIGITAL TO ANALOG OUTPUT

4.5 ANALOG VOLTAGE GENERATION

Probably the most common analog signal 1is a variable voltage. The
remainder of this chapter and most of Chapter 5 are concerned with

variable voltage signals and their interface with the computer.

Clearly a variable voltage can be generated by a pulse width
modulated signal integrated by resistors and capacitors; we will use

such a generator in Chapter 5. Other schemes involve multi-bit

output.
4.5.1 Binary Summing Circuit

Consider the network shown in Figure 4-20.

DIGITAL TO ANALOG OUTPUT

Vref
+ 8 volts

o

o o4

2K

| S A

4K

L oo—wm—d

8K

Q)

®©® ® 6

Amplifier

Summing
Junction Output

Summing

Resistor '

Note: Resistance and reference voltage shown are
selected for convenience of discussion; they
are not typical values.

Binary Summing Circuit

Figure 4-20

DIGITAL TO ANALOG OUTPUT

Each of the switches, labelled 1,2,4, and 8, represents a contact
closure or a transistor switch operated by one bit of the computer
output. If switch 8 1is closed, a current of 8 milliampers flows
through the 1K resistor and generates an 8 millivolt signal across
the 1 ohm summing resistor. If switch 4 is also closed, a current of
4 milliamperes flows through the 2K resistor; the two currents are
summed to generate 12 millivolts at the summing junction. Thus any
combination of the four switches generates an analog voltage
proportional to the binary output as shown in Figure 4-21. The

output amplifier generates a more useful signal level.

Bit Value Resistor Current

1 8K 1l ma

2 4K 2 ma

4 2K 4 ma

8 1K 8 ma

Binary Parallel

vValue Resistance Current Voltage
0000 0 0.0
0001 8000 1 0.001
0010 4000 2 0.002
0011 2667 3 0.003
0100 2000 4 0.004
0101 1600 5 0.005
0110 1333 6 0.006
0111 1143 7 0.007
1000 1000 8 0.008
1001 889 9 0.009
1010 800 10 0.010
1011 727 11 0.011
1100 667 12 0.012
1101 585 13 0.013
1110 571 14 0.014
1111 533 15 0.015

Numerical Vaues for Circuit of 4-12

Figure 4-21

DIGITAL TO ANALOG OUTPUT

The accuracy of this device is limited by the influence of the
voltage at the summing resistor; as more bits are used in the
conversion, this becomes more significant, but is is largely overcome
by the wuse of an operational amplifier, as shown in Figure 4-22.
With this connection, the op-amp output is inverted from the input
signal; the current from the resistor network actually flows to the
op—amp output through the feedback resistor, and the voltage at the
summing Jjunction is held very close to ground, so that the crosstalk
between bits (i.e. the influence of one bit on the signal generated
by another) is very small. For a detailed discussion of operational
amplifiers, the student is referred to Wait, Huelsman and Vorn,

"Introduction to Operational Amplifier Theory and Applications",

McGraw-Hill, 1975. This particular subject is discussed in Cﬂapter 1,

page 11.

Even with the op-amp summing circuit, the binary weighted network
suffers from the wide range of pfecision resistor values required.
For a modest number of bits (up to 8 or even 12) these can be
obtained with discrete resistors, but a range from 1k to 128K (for an
eight bit converter) is impractical for monolithic construction. The

R-2R ladder nefwork overcomes this problem.

+8

DIGITAL TO ANALOG OUTPUT

VOLTS

Feedback Resistor

Summing ,/"

Junction

+ Output

Binary Summing Circuit with OP AMP

Figure 4-22

DIGITAL TO ANALOG OUTPUT

Vg GND
® ¢
———o
@ o -0
¢—o0
Q ¢
Q@

2R Analog
\o———vw—T_O Output

AAA
\ A4
w

AAA
\AAZ
w

R-2R Ladder Network

Figure 4-23

DIGITAL TO ANALOG OUTPUT

4.5.2 R-2R Ladder Network

Figure 4-23 shows an R-2R Ladder Network for digital to analog
conversion. In this circuit bipolar (i.e. double throw) switches are
required, so that for each bit a resistor is connected either to the
reference voltage or to ground. If all bits are 0, then all
connections go to ground and the output is 0 volts; if any bit is 1,
its resistor 1is connected to the reference voltage and injects

current into the network to develop a positive output voltage.

DIGITAL TO ANALOG OUTPUT

The R-2R network has two major advantages: only two resistor values
are used, and they differ only by a factor of 2, so it can readily be
constructed as a monolithic circuit; and it has a constant impedance
independent of the binary input. The figure below shows an

equivalent circuit for the case where the most significant bit is a 1

and the remining bits are O.

Output

Looking to the left along the circuit from any node, with all of the
less significant bits 0, one always sees an impedance of 2R to ground
as depicted in Figures 4-24a through 4-24c. Now, if the 2R resistor
for the most significant bit is connected to the positive reference
voltage, a simple voltage divider is formed, giving an output signal

equal to half the reference voltage as shown in Figure 4-244d.

4-62

DIGITAL TO ANALOG OUTPUT

<——_ Impedance = R+R = 2R

FIGURE 4-24a

R
- ~———— Impedance =
2R 2R

FIGURE 4-24b

R
- ' <«—— Impedance = 2R
2R | 2R

+R = 2R

+ |+

=l

]

FIGURE 4-24c

Output = 1/2 Vo,

= 4‘—63
FIGURE 4-24d

DIGITAL TO ANALOG OUTPUT
Binary Value 0100

RER

Output

VReF
1
2R v 3 VREF
3 R
V=gV — Output
2R 2R
Binary Value 0010 VREF

_ 11
v = 37 Yger

Equivalent Circuits for Single Bit

Figure 4-25

DIGITAL TO ANALOG OUTPUT

Figure 4-25 shows the voltages for two other cases where a single
bit is 1. When multiple bits are 1's, their voltages add, to give an

output proportional to the binary input and the reference voltage.

_ Binary Value
Vout = on Vyet

The output circuit sees a source impedance equal to R, from the
parallel combination of the 2R resistor for the high bit and the
ladder network to the left. Thus, the Thevenin equivalent circuit
for the ladder network 1is the voltage given above with a series

resistance equal to R, as shown in Figure 4-26.

The R-2R Ladder has been discussed in detail because it is used in
the Ferranti D/A Converter included on the interface board. The
operation of this device is discussed in the next section. It drives
an operational amplifier, also shown in Figure 4-26, to isolate the
load from the converter. A pot provides for adjustment of the full
scale output, to compensate for error in the reference voltage and
the value of R. In a system designed for a single purpose much less
adjustment range would generally be provided, but in the interface
board it was considered desirable to have a wide range to allow for

various experiments.

4-65

DIGITAL TO ANALOG OUTPUT

A -0 Output

- Binary Value

v o Vegr
R - 2R LADDER EQUIVALENT CIRCUIT
D/A Converter Full Scale Op-Amp
r—— =" Adjustment output Buffer
| 10K
I yVyYwe l
| | 500K .
| [Output
l |
L1 1
330K 10K

D/A Converter Output Circuit

Figure 4-26

DIGITAL TO ANALOG OUTPUT
4.6 FERRANTI D/A CONVERTER

In this section we will describe the Ferranti ZN 425E Digital to
‘Analog/ Analog to Digital Converter, and experiment with its D/A

mode. Chapter 5 deals with analog to digital input using the 425.

The device is a monolithic 8 bit D/A converter using an R-2R ladder
network. It contains »an' internal voltage reference source and a
binary counter wused for A/D conversion. Figure 4-27 is a block

diagram of the device, with its inputs and outputs.

DIGITAL TO

ANALOG OUTPUT

D/A
OUTBYT

Yee 3 FERRANTI
3 ZN 425E
B
16:
2.55
VOLT :R-2R LADDER
REF NETWORK
IENEEEEN
. 15| Vref]
L22uf =& 1| IN :BIPOLAR SWITCHES
T
8255
#1 180 ,
"1BI- 6
182 z
183 2
184 10
1B5 11l
1B6 12
187 -
‘1K .
Vee —AWA= .
) LOGIC INPUT
1€0 { :>,+:>c 2| COUNT SELECT SWITCHES
e — IHEEEEER
TMER 2 4 CLOCK 8 BIT
Tourrur BINARY COUNTER
<
RESET 3 I
50K BUFFERED ANALOG INPUT
- 18R COUNT CONTROL

Ferranti D/A Converter

PORT

2C3

Figure 4-27

PORT
2B3

TIMER 2
GATE

INTERRUPT
REQUEST

DIGITAL TO ANALOG OUTPUT

4.6.1 D/A Circuit Input and Output

The 425 has an eight bit port for digital data, connected to port 1B
of 8255 1. These 8 bits control the bipolar switches for the R-2R
ladder network. An internal circuit generates a 2.55 volt reference
voltage for the ladder, although an external source can be connected.
The analog output voltage appears at pin 14 and is connected to two
op—amps. One of these (at the upper right of Figure 4-23) has a pot
for full scale output adjustment as discussed in Section 4.5, and the
op—-amp generates a buffered analog output signal available at a tie
block. This is the output signal to be used in the experiments of

the following sections of Chapter 4.
4.6.2 D/A Circuit Control Signals

A count control signal at pin 2 of the 425 determines whether the
eight bit digital data port is to be input to the 425 or output from
the 425, When this signal from port 1CO 1is low, the 425 accepts
digital data from port 1B and converts the binary data to an analog
voltage. This is the mode we will use in the remainder of Chapter 4.
This signal also forces a NAND gate output high to give an enabling
signal to Timer 2 gate input; in this mode, Timer 2 is independent of
the D/A circuit and can be used for other purposes. The A/D
interrupt control (port 2C3) should be low to inhibit any interrupt

from the A/D comparator.

4-69

DIGITAL TO ANALOG OUTPUT

PROGRAM 8255's PORT 1B OUT

>

CALL ENTBY

(A) =—(L)
(PORT 1B)=—(A)

ANALOG
ouT

GND

Keyboard to Voltage Program Flow
and Circuit Connection

Figure 4-28

DIGITAL TO ANALOG OUTPUT

We will discuss the remaining signals shown in Figure 4-27 in the
next chapter, since they are concerned only with A/D input. To
operate the 425 in D/A output mode, the following procedure should be

used:

MVI A,80 Program 8255 #1
OUT CNT 1 A out B out C out
MVI A,92 Program 8255 #2

OUT CNT 2 A in B in C out

This sets count control (1C0) and interrupt control (203) low, as

well as programming port 1B for output to allow writing data to the

‘D/A converter.
4.6.3 Generating an Analog Voltage

EXERCISE

Write a program to accept data from the keyboard and write the data
to the D/A converter. Observe this voltage at the ANALOG OUT tie
block with a voltmeter. Adjust the full scale output to make the
least significant bit of the data byte correspond to 10 millivolts.

Figure 4-28 shows the program flow and the voltmeter connection.

4-71

DIGITAL TO ANALOG OUTPUT

For a 10 millivolt least count, full scale output should be 2.55

volts when the digital value is FF (=255). 1t is easier to read 2.50
volts on the meter, so key in FA (=250). Remember, you press a

command key following the hex value. Adjust the output pot. Now key
in various hexadecimal values and see that the output correctly

follows the keyed value.

4-72

DIGITAL TO ANALOG OUTPUT
4.7 FUNCTION GENERATOR

The microprocessor, with the D/A converter, can be used to generate
an analog signal that varies over time. If the variation of the
signal repeats itself in a predictable manner, the result is a wave.
The procedure of repeating a sequence of analog signals over time is
called waveform synthesis or function generation. In this section we
will experiment with several such functions, including sawtooth and

triangular.

Unfortunately, the microprocessor is too slow to generate signals at
useful frequencies for most purposes, typically being limited to less
than one Hertz. However, some control applications do want very low
frequency signals. Another possible use for waveform synthesis is
examination of complex waveforms resulting from harmonics or the
combination of non-harmonic frequencies, when real-time operation is

not required.

DIGITAL TO ANALOG OUTPUT

Positive Sawtooth .

—— 1

Raad Voltage
Incrament
Qutput Voltage

1

Negativa Sawtooth

1

Raad Voltage
Decrement
Output Voltags

_|

Triangular Function

|<
READ VOLTAGE
INCREASING @ DECREASING
INCREMENT DECREMENT
YES .~ LOWER NO NO UPPER
LIMIT LIMIT
RESET YES
VOLTAGE 1
SET FLAG . SET
VOLTAGE
RESET FLAG
ole]
Cl Y
A4
QUTPUT

Figure 4-29

DIGITAL TO ANALOG OUTPUT
4.7.1 Voltage Ramps

One of the commonly needed control functions is a voltage ramp - an
outpdt voltage that increases or decreases linearly with time.
Figure 4-29 shows positive and negative sawtooth functions and a
triangular wave generator. The flow diagrams shown could be simple
loops in a main program with some delay built in, but more probably
each would be 1in an interrupt service routine invoked by a timer.
The rate of increase or decrease is set by the time interval loaded

to the timer.

If a full scale sawtooth is to be generated the service routine can
read the present output voltage from the output port, increment the
value, and output the new voltage. (Remember that a port programmed

for output can be read). The service routine can be as simple as

this:.
PUSH PSw Save A and F
MVI A,01 Re-enable timer O
OouT CNT2 Interrupt
IN PORT1B Read voltage
INR A Increment
ouT PORT1B Output voltage
POP PSW Restore A,F
EI
RET

Change INR ' A to DCR A for a negative sawtooth.

DIGITAL TO ANALOG OUTPUT

This page intentionally left blank

4-76

DIGITAL TO ANALOG OUTPUT

4.7.1.1 Voltage Ramp Program

EXERCISE:

Write a program to generate a positive sawtooth waveform using the
above interrupt service routine. The main program must initialize
the ports and timers. Then it has no further function, so it can end
with an instruction that jumps to itself. The signal will appear at
the Analog Out tie block. Connect your voltmeter across Analog Out
to GND and observe the voltage increase gradually from zero to full
scale (about 2.55 volts) and drop back to zero, in cycles of about 8

seconds.

You can generate a negative sawtooth function by changing the INR A

instruction in the Interrupt Service Routine to DCR A.

4-77

DIGITAL TO ANALOG OUTPUT

4,7.1.2 Triangular Wave Program
EXERCISE:

Write a program to generate a triangular waveform. The program must
store a flag to indicate whether +the voltage 1is increasing or
decreasing. It will also need maximum amplitude data if the output
is to be less than full scale. Figure 4-30 is a flow diagram of a

service routine to generate a triangular function.

Rewrite - the service routine of the previous program to compare the
voltage with a maximum amplitude (stored at 8391) and to test an
increase (FF) or decrease (00) flag stored at 8392. At the maximum
voltage or at zero, reverse the flag. Use fixed values for the
maximum amplitude and timer interval, or «call for keyboard input of
these if you wish. The next major exercise involves keyboard entry

of data for a function generator.

4-78

DIGITAL TO ANALOG OUTPUT

Save Registers

Reenable Timer 0 Interrupt
(HL)é—Address Max Voltage
(A)Ye—PORT1B Read Voltage
CMP M Set CY if V{Max
(HL)é—(HL)+1 Address Flag
.INR M} Set Zero

DCR M if decrease

Zero Set
Decrease
Increase
Increment A
_ CY set
Fom AS Max 6t olear
01d A2 Max

((HL) }¢—~00

Decrement A

£

Decrement A

#0

TC(HL) X—FF

3

Output Voltage to PORT 1B
Restore_Registers,EI,RET

Triangular Function Generator

Figure 4-30

DIGITAL TO ANALOG OUTPUT

4,7.2 Keyboard Controlled Function Generators

In this and following exercises we shall develop a program to
generate different waveforms selected by keyboard commands. The first
exercise will again generate the triangular wave; later an
exponential will be generated by numerical integration. Generation of
a sine wave could be added. This exercise reviews some important
programming techniques: interrupt service, keyboard input, dispatch
tables, and using the stack for addresses. It also introduces methods

of passing arguments to subroutines, and a variable subroutine call.

EXERCISE:

Write a program that repetitively increases the output voltage toward
a target voltage and then gradually decreases it toward the
complement of the original target. Accept keyboard data to set the
rate of increase or decrease, and the target voltage. The rate can be

adjusted either by adding a variable value to the output data at

fixed time 1intervals (or subtracting the value for the decreasing

ramp), or by incrementing (or decrementing) the output at a variable
time interval. The latter approach gives a smoother ramp. The
program shown in Figure 4-31 and following figures provides both
approaches and also permits increasing or decreasing the rate by
command key input. Timer O provides interval timing; it is used as a
rate generator (mode 2) and interrupts the main program to add or

subtract the voltage increment to the existing output data.

4-80

SET

DIGITAL TO ANALOG OUTPUT

(:}INIIIALIZAIION :)

RUN

1

DISPLAY AND
TEST FOR INPUT

INPUT DATA
AND COMMAND

DISPATCH TO APPROPRIATE
COMMAND PROCESSOR

STEP CLR

BRK

>See Figure 4-32

See Figure 4-33

NEXT

SET TIMER

INTERVAL

L d

SET
INCREMENT

ZERO
VOLTAGE

FIX
'VOLTAGE

SET
TARGET

Figure 4-31

Keyboard Controlled Function Generator

See
Figure

4-34

4-81

DIGITAL TO ANALOG OUTPUT

When" the .output voltage 1is increased beyond the upper limit by
adding thevoltage increment, the voltage is set equal to the target
and the mode is changed to decrease, and similarly when the output is
decreasd below the lower limit. This 1leads to a triangular output
wave centered on half scale output. Section 4.7.2.5 describes the

process in detail.

4-82

DIGITAL TO ANALOG OUTPUT

This page intentionally left blank.

DIGITAL TO ANALOG OUTPUT

4.7.2.1 Main Loop

In the main program (Figure 4-32) the display is controlled to show:

Time interval being used for interrupt

Voltage increment

Present output voltage

Keyboard inputs are accepted to alter the time interval, the voltage
increment, or the target voltage. Numeric entry 1is optional; a

command key is required, and processed as shown in the table below:

RUN Set time interval
STEP Set voltage increment
CLR Start ramp at zero
BRK Set voltage and clear increment
NEXT Store or complement target
Figure 4-32 shows the main program. After initialization and

display of the initial values it repeatedly reads and displays the
output voltage and tests the keyboard. When a Kkey is pressed it
calls ENTBY for new data and a command. The command is used to

address an appropriate processing module.

4-84

DIGITAL TO ANALOG OUTPUT

RAMP GENERATOR
INITIALIZE, DISPLAY, ACCEPT INPUT, DISPATCH

Program 8255's, PORT 1B OUT
Program Timer 0 ,high byte,mode 2
(8390)6=40 Initial Time Interval
(8391)€~01 Voltage Increment
(8392)& 0 .Increase/Decrease Flag
(Timer 0)é&Time Interval
Enable Timer 0 Interrupt

(sET }— 9‘

Enable Interrupts (EI)
(LY—(8390) Time Interval
(H)é—(8391) Voltage Increment
CALL DWORD to Display

>

Read output voltage from Port 1B
Display voltage
CALL SCAN for Key input

r

(no key)
i CY Set
CALL ENTBY
(A command
(L)é—~data
DISPATCH

(to Figure 4-33)

Keyboard Controlled Function Generator

Figure 4-32

4-85

DIGITAL TO ANALOG OUTPUT

4.7.2.2 Dispatch for Keyboard Input

Dispatch 1is shown in Figure 4-33. We use the technique of dispatch
tables and pushing addresses onto the stack: if you have not been
using these techniques a review of Course 525, Section 7.5, "FLOW

CONTROL TECHNIQUES".

Since all of the processes must return to the display of time
interval -and voltage increment, we will push that address onto the
stack. The various processing modules can end with the return

instruction instead of a three byte jump.

Then we add to the command key value (10H to 17H) the low byte of the
dispatch table address minus lOH, so that MEM (10H) will direct us to
the first location in the dispatch table. The dispatch low address
byte 1is entered to L. Register H has already been loaded with 82.
This dispatch address is pushed onto the stack. To reduce processing
in the individual modules we will move the input data into register A
and load HL with the address of the voltage increment (8391). Now a
return will go to the appropriate module and the return address to

the display function will be back on the top of the stack.

4-86

DIGITAL TO ANALOG OUTPUT

(DISPATCH)

Save Input Data

(E)Ye—(L)

Push "Return' Address
(ST)&~"'SET"'s Address

Create low address byte
from command

(L)~ (A) + (Low Address-10)

|

Create high address byte
(H)&~high byte of
dispatch table base address
Get Dispatch Address
(L)¢ ((HL))

Push Dispatch Address onto stack
(ST)— (HL)

1

Recover Input Data

(&) 4= (E)

Get Voltage. Increment
Address
(HL)$—8391

Disable Interrupts

Jump to Key Processor
‘ - RET

4) 1

Vg

(To Figure 4-34)
Ramp - Dispatch

Figure 4-33

DIGITAL TO ANALOG OUTPUT

Some of the key input processing manipulates data that can also be
changed by interrupt service. To prevent confusion the ipterrupts
should be disabled while such processing 1is done. It is convenient
to disable the interrupts by DI just before the "return" to the
processing module, and enable just after the return from the
processing module. Therefore, we have an EI instruction at the start

of the main loop.

Since the monitor requires interrupts to operate in debug mode (STEP
and BRK) it is desirable to modify the 1instructions that affect
interrupts as you debug various parts of the program. Initially omit
the instruction that enables the Timer O interrupt. Replace the DI
instruction (before the '"return" in dispatch) with RST4, so that the
monitor will be called immediately before dispatching to the key
processing module. Now you can either STEP or RUN through the main
loop, using breakpoints as needed, but will always enter the monitor
before dispatching. Since the timer interrupt is not enabled you can
debug this part of the program even before writing the interrupt

service routine.

After the main loop has been checked out replace the EI instruction
at the beginning of the loop with a DI. Now the main loop, DWORD and
ENTBY will operate without interruptions by the monitor, and you can
try the various command entries very easily, always entering the

monitor just before dispatch.

4-88

DIGITAL TO ANALOG OUTPUT

This page intentionally left blank.

DIGITAL TO ANALOG OUTPUT
4.7.2.3 Key Processing

Figure 4-34 shows the key processing modules. We enter the
appropriate module with a return address (to the display function) in
the stack, the key input in register A, and the address (8321) of the

voltage increment in HL.

RUN sets the time interval. The input data byte is loaded to Timer O

and stored at 8390 for display.

STEP stores the input byte at 8391 to set a new voltage increment.
Sincé processing for RUN ends with MOV M,A;:RET; we can simply

dispatch to the MOV M,A instruction rather than duplicating it.

BRK stops the ramp and sets a fixed voltage. The ramp is stopped by
setting the voltage increment (at 8391) to zero. Then the input data

byte is written to PORT1B for the D/A output.

CLR writes the input data byte to the D/A output (00 if no data

entered).

NEXT either sets a new target voltage (if a data byte was keyed in)

or complements +the old target voltage. Address the target voltage
(8392) by INX H. ENTBY returns in register D a count of the number

of hex keys entered. If this is zero, recover and complement the old

target voltage; otherwise stbre the new data.

DIGITAL TO ANALOG OUTPUT

Enter key processing module from Dispatch with:

(A) = nymeric data keyed (00 if none)
(HL) = 8391 (address .for & v)

RUN

®

L

Setat (TIMO)é=(A) Load Timer

(HL)6~(HL)-1 Address at
&

Set&v Store at orav
: ((HL))&=(A) '

BRK j,
F:LxQoltage :

Clear Increment

((HL))&=00

CLR }—

Set Voltage Qutput Voltage to D/A

(PORT1B)é&~=(A)

O——

Set or (HL)4(HL)+1 Address Target
Complement | INR. D, DCR D Test for data .
Target
Voltage

#0 Data Entered

(A)+T(HL)) Complement Target

L

((HL))4~ (A) Store Target

Function - Key Input Processing

Figure 4-34

91

DIGITAL TO ANALOG OUTPUT

4-92

Save All Registers

(Jump past RST

6)

Push EXIT address

Load and push subroutine
address

Load argument list address

Read present D/A voltage

"Return" to function
subroutine

v
]
i

Function Subroutine
(A)é&new voltage

1 3

EXIT]

Output new voltage
(PORT1B) € (A)
Reenable Timer Q Interrupt

Restore registers, EI, RET

Timer O Interrupt Service

‘Figure 4-35

DIGITAL TO ANALOG OUTPUT

4.7.2.4 Interrupt Service Routine

Interrupt service for timer 0 is shown in Figure 4-35. It performs
the normal housekeeping duties of any interrupt service routine. At
entry it saves the registers; at exit, it clears and re-enables the
timer 0 interrupt flip-flop, restores the registers, enables

interrupts and returns.

To provide for later exercises where other functions will be
generated, the interrupt service routine enters a separate subroutine

to perform the ramp calculation. Different subroutine calls are
allowed (although at present only one will be used) by loading the

subroutine's entry address from data memory. The procedure is:

LXI H,EXIT Push an address for return
PUSH H from the subroutine

LHLD FUNC Push the stored entry

PUSH H address for the subroutine
LXI H,8391 Load a data address

RET Dispatch to the subroutine

The first function subroutine to be developed (TRIWV) is located at
8250. This address will be stored in memory locations 8398,99 to be

loaded by interrupt service. Later we will make this a wvariable.

TRIWV needs as input data the present voltage, voltage increment, and

increase/decrease flag. It returns the new voltage in register A.

We could require the function subroutine to read the voltage from

PORT1B, load the other data from the defined addresses in memory, and

4-93

DIGITAL TO ANALOG OUTPUT

output the result to PORT1B. There are three advantages to the

method chosen here:

* The subroutine is '"global". Another program could call the

subroutine to operate on different data.

* A different subroutine that needs the Same data can be

-substituted for this one.

* The function subroutine can be debugged by a temporary

calling program.

The data needed by the function subroutine (arguments) can be passed

in any of three ways:
* Loaded into registers

* Stored in memory locations reserved for this subroutine

and its calling program

* Stored in memory locations assigned to these particular
data, with the address or addresses loaded into registers or

into reserved memory locations.

Results can be returned in the same ways. In this program we will
combine the first and third methods. The present voltage will be
read from PORTIB by interrupt service and passed to the function
subroutine in register A. The vol tage increment and
increase/decrease flag are in their assigned memory locations 8391
and 8392. Address 8391 is loaded into register pair HL and passed to:

the function. TRIWV obtains the increment from ((HL)) and the flag

DIGITAL TO ANALOG OUTPUT

from ((HL)+1). The function subroutine would work equaliy well if
some other calling program passed it a different memory address, with

different data stored there.

The subroutine returns the new voltage in register A. This is output
to the D/A converter by the interrupt service routine as the first

step of its exit procedure.

DIGITAL TO ANALOG OUTPUT

TRIWV

Enter with (A) = present voltage
((HL)) = increment
((HL)+1) = target voltage

(B)$—((HL)) Aav
(HLY¢~(HL)+1 Address Target
Compare present voltage with
target

No CY

Voltagez Target
Voltage Target

(AYe—(A)+(B) v'=vtav
Compare new voltage with target

CY
RETURN

Exit if v{ target

(A)s—=((HL)) Target voltage
(A& (B) Complement and
((HL))$=(A) store as new target
(A)<—(A) Returmm (A)=o0ld
target

RETURN

Voltage Target\E
(A)&(A)-(B) v'=v-av

Compare new voltage with target

Cy

Voltage € Target

RETURN

Triangual Wave Function Subroutine

Figure 4-36

4-96

DIGITAL TO ANALOG OUTPUT

4.7.2.5 Function Subroutine TRIWV

TRIWV calculates a new voltage by either adding or subtracting the
voltage increment to the present voltage. It receives thg following

arguments (input data) from the calling program:

Location Assignment

(a) Present voltage
((HL)) Voltage increment
((HL)+1) Target Voltage

The subroutine is shown in Figure 4-36. The increment is copied to
register B and the present voltage is compared to the target to
decide whether to add or subtract the increment. The new voltage is
calculated and again compared with the target. If it was and still is
less than the target, or if it was and still is greater, return with
the new voltage in register A. If the voltage has passed the target,
however, we will now complement the target voltage to be ready for
the next entry, and return with the previous target voltage in

register A to be output.

The result is a triangular waveform increasing until it reaches the
target voltage and then decreasing to the complement of the voltage.

The waveform is centered on 1.275 volts, half of full scale.

Note that TRIWV looks like any normal subroutine. It is not ?ffected
by the variable calling procedure, which could equally well be CALL

TRIWV.

4-97

DIGITAL TO ANALOG OUTPUT
4,.7.2.6 Instructions

Write the complete program in accordance with the flow charts
presented. The solution shown in Figure 4-37 (a-h) follows the flow

charts precisely and can be referred to if help is needed.

For display of the voltage in the main loop you can CALL DBYTE. For
the sake of amusement, the program given in Figure 4-37 calls a

subroutine to show the voltage in the LED'S as well as in the seven
segmént display. This subroutine has not been documented here; yoﬁ

can copy it, or figurevit out, or just use DBYTE.

Memory assignments in the solution .given are:

8200-8227 Initialize

8228-824F Interrupt service
8250-827F TRIWV function subroutine
8280-82A4 Main loop

82A5-82AC Dispatch table

82AD-82DF . Key processing

82EB-82FF Display subroutine

8390 Time interval

8391 Voltage increment

8392 Target Voltage

8398, 99 _Entfy address for subroutine

FUNCTION GENEKALTUK = LINLLIlALLOLD

| | Q | ' Q
R Iy RARIEE SR cBELRE
WA | . N d « | < N 3
~ » : N R u/
N | N UYL RS :
. wl /w UMWM%. Y/MP#, M MTJJ M ' m
Jm JUV pa L/:,M/ ~ @. fT. T S /NN ..M_
Q | 9 Q|
| HENESYEEN 3 ~ BENEEN
Q ~ 2 > I b S AN N A\ 8 o ~ Ql W \ ~ Ay Q
NEINECENESERENS ™) ¥ (N & ™ NS
4 1= L= 1N 1 | g Q Ay b o IRl
& [V [[(] N X S EENESNER | [|8
e _ : Q| -
NHERE NENENELE NEEEES NENNEE ~ NEEERE
NERER ERENEREE Y AU~ A ol [x X > ([|
s OINIEOIQOIE IS N x|< Q (=9 [“ AN e
o] Wl m N W S o] ol [&[NS o] N o o] W s S| m[Y| [M N N @ 8] 8] 0 W N[MW W] Q<Y
gl [Qo ol N A] o QNSRS [S|] > ST QLN N Y S DN Y DS][Y0RSD
R0123456789A.B.CDEF..0.12345678,9ABCDEF012345678
o Q ~ ‘ »d .
of %Y A ™

133HS ONIA0D

IWILSAS ONINIVHL H3LNdWODOHIIN

SW3LSAS H31NdWOD A31LVHOILNI

4-99

FUNCTION GENERATOR - INTERRUPT SERVICE

RRRE 1 %
9 3 r@ W. WJ
Q- .VIA, N M @/ WT 3 “ﬁ a
SRECRER 4931 :
| y gw A NINR 9
~ ~ Q
~ Q o~ ~
kS ™ o = ™ =
" ™ W) D Sy x
SIEN RIS L Sy ENEEN a
X % . BN Q_
ENENENES R BSIS X
V)| 9| Ll | AUl [NH v N vlN NAYNYEN
DJIDIJ T Q| Wl 4| W[>< ol S (U9
la/alAQbk WX~ | [N ~ N 2
u /b,/d/u/as.320780,//rﬁ/unﬂf. NN 9 N V| QI
S AN RN R R IR RANARNRRARRINA AN
@ mitlwvwfo|n]lo|lojlgd|lalo|lojlw|w |Ol~jan]|m|ajv]|Oo|n]o0 d|loa|o|djlw|jw|O|rsriN|®| < ©
a M ™ ™ RN
H \ AN N

133HS ONI1A0D

WILSAS ONINIVHL Im._._.Dn_S_OoOIO_S_

SINILSAS HILNdWOD A3 LVHOILNI

4-100

R

P T2 R R L

FUNCTLUN uonhNoraLuvn —

4-101

CODE

R

. A
N 7
N i
W +u/. . 5
VeI &
Q
/ .
| [~| [
NS S|
A\ LR S
QU | [V ﬁD#P
~ ~[IS QU N
NEEEBNENAINNIEL
S [N [QU_[W[%
M oW N oW NN NN
NN ERINSINNIISKIEISSAS)
mit|wvw|lo|In|vjlo|c|lm]jlo|lQlu|lL oM |v]|O]|N plo|lojlw|lwu|Oo|=| ||« ©
3
N Y .

133HS ONIAOD

W3LSAS ONINIVHL H3LNdWOD0HIIN

SW3ILSAS H31NdWOD A3LVHOILNI

FUNCTION TRIWV

CODE

A D D R

3 R RN W (| o 3
A@a ,M Mm/ 3 5 8% O Q
1 N, #M +ffw/ . IW _& R Ary _/ MA_U RM £
Al M/ Q fM) /E RNEEN ,d/nﬁ ~
! bk AR . I Y 1R
|< > B) m RN .M 51 RSN ST
X 3 | . NS
,— 4M ,_\ v TM/_U /_uEr
] A\ %ﬁ) .Mﬁ N\ X) MEM ./a_ﬁ Mw_,m
N ~~ : \ :
Sci 3 [N IR N SO W NS INEENERINNG
| K2 RS Q| |9
Nl XAl
AN AN Q Y (NTRNSLN \YES L RN
R N 3 3 B A Q] |\ Q0N
{ % <% Y | 4 |4 ARSI R
NEREEENNEEES QN | =] &[T o A [[S ¢
- WA~ DA K
NI R Q| N R v s|alnx Ny [N [
SR A NEENNEERE NRER SEEREREM SN TN RN
KINYb Xk|h Nibl | [xX(eb L & To] Sl W NN] NS
S| M)) S Q] QI N N gy ov Nyl] [N Ny _E&_Ec,7c,7
0] NS S A Q)N [QNN) N YR N A QIR N DN S|
O |~ | N ™| < (2] © ~N] 7] _A .B Q Q EYF o - N ™ 4. mn| o ~ 0| < .B Ll a w | u (=2] N (2] < | D -] 7.8
\ \ 1N
R A
S . ~]

133HS ONIGOD

WILSAS ONINIVHL HILNdWOIO0HIIW

SW3LSAS H31NdWOD G31VHOILNI

4-102

vioralren

MALN LUUY,

FUNCLTLION -

CODE

A D D R

THT M |
@T W/ ,M/ N\ ,@r
. N N .
. , N 3
.%l M : M /M/ MR | J/MW 0
, q 9 | Ma_ . ONENE X /U, ™
ﬂ\,_h) /MW . W M ,_g b,r,__/w N J \m —~ \ o
~N| X "3 R N FIARA YUY - S J | M 3|
M///. ﬂ,w ﬂ, /& m/ﬂmb/bﬁu/m N /\Z(//W N .m,
A Q 3] e Q ~ |
Q ¥ ~ (X M V[3 o~
BEN ﬂ N (v A N N % 0y
™ N NN Qy X NS L NXE (WS
Aq D AN D ﬂ\b l , W NN - Hru IL,I,UH T
, .] | S W % N NN X
Q d 1 I ~ . ~ N 3+ :
4Jd [[N ~ ~ J N 4= GIN| NN [9]NN N
NI < NEA X NEELY NES NEAEEREREE NI
W TR TR T TN IEN QN IsERIEN IR
AN S AN RN A N RN AN AN N NN N NN N EER
W SN NS QS QY WS Y S AN N O[] o B NN W O N N W W N
(=] 1 N | ||| ~N O] L| 0 C. lwlu|lo|l-ran|w|g|v|fjo|[N[o|jlog|d|p|o|ld|lw|lw|oj=|a]|m|<|w .8
MM M M. AN
) S 3 2

133HS ON1A0D

W3LSAS ONINIVHL H3LNdWOJIOHIIW

.m_>_m_._.w>w H431NdWOD A3 LVHOILNI

4-103

FUNCTION - KEY PROCESSING

CODE

A D D R

v R
. W JY< AR
\ J . Jd |
S 3R #JW Aﬂ 3
WLWAAMWM w N i)
R NENER AR fMe
N
JL@MMPM.W NS g
Q
N
Q D ~
z LIS ¥
R RN
NEERRREX
xla| [~ |
NN A NS EENENEENNENEINEIN
WWIQI=RWI N[|| 1 W
R[Ny [QEds] ¥ [
~ 3 QIR Q0 o[W QI NS @l M| \g| =
X & YRRV Q[Q Q) N N QI Q)
Mt V]| OoIMNO|lO|L|d|O[AO|lW| KL | O]l ||]|]O©N~ OOl wWluw ||~ N]|™| = ©
ﬁ T M 9 |9
S NEENEAER .

133HS ONIQ0D

WI1SAS ONINIVHL H31NdWOD0HIINW

SWILSAS HILNJWOD A3 LVHDILNI

4-104

FUNCTION - KEY PROCESSING (continued)

CODE

A D D R

w R o
i
N 9
Sk NRERR
Y N :
"o
N T <
< !
QN[N <& (X
x| || ™ RN JEYLS
(V[NEINIWY
NNAS[P NS
O o] OS] o Wy 0 N[
S|~ N[N NV
012345678,9 AlWw| k||| s|w]@| N~ N{O|0|lwWw|lw| Ol N|™]| < -]
\| N
R
K ~) .

133HS ONIAOD

WILSAS ONINIVHL H31NdNOJOHIIW

SW3LSAS H31NdWOI A3LVHOILNI

4=105

DISPLAY VOLTAGE SUBROUTINE

% IS ICES RS Wu,
. 2 R e
ettt
u N - Mf/_ <
_ ?¢.@z4)é%@ ww :
J M¢m W)M Y &
SERACERERANKEED b
¥ N | =
- \ ~
b S AN Q N
Q LI . u, W Y
D b IS D Y| A/ﬁ N\
X NS X X
NEE
J| NN N Rl NLSEINLN
X Qx| | [[~ B NSEEE
V | E i) NERENE
i R Nl ol N W QNS Q[Qo N D o U] o WM
9 SEEERENERNRRREENNENNRNEE
x ol v|[{oOo| N~ B.C.DEF012.34.56789A.BCDEF01234 ©
o w_a YA RN
a g N
) 8 NN . -

4-106

133HS ONIQO0D

W3 LSAS ONINIVHL H31NdWOD0UHIINW

SW3ILSAS H3LNdWOD A3 Lvy

93 LINI

DIGITAL TO ANALOG OUTPUT

4.7.2.7 Debugging

Debugging- techniques for the main program were suggested in Section

4.7.2.2. These are repéated here, referring to addresses in the

given solution.

a) Omit OUT CNT2 at 8223 to avoid enabling timer interrupt.

'b) To debug dispatch loop omit EI at 8280 and DI at 82A3.

c) To debug key processing modules enter DI at 8280 and RST4 at 82A3.

d) To debug interrupt service enter RST5 at 8280 and EI at §2A3.
Replace EI at .epd of intérrupt service with ‘DI at 824E. Now
interrupt .service will be called, with monitor interrupts enabled,
affer each Kkey entry has been processed. The monitor will be
disabled during key input and dispatch but enabled _during key

processing and interrupt service.

e) To run the debugged program restore all of the modified

instructions:

8223 OUT CNT2
824E EI
8280 EI
82A3 DI

4-107

DIGITAL TO ANALOG OUTPUT

As you develop your own program keep debugging in mind and provide
for similar techniques. Keep a separate list of modified

instructions to be sure you restore them all.
4.7.2.8 Program Operation

With the initial value of 40 for the time interval and 01 for the
voltage increment, the output voltage will increase and decrease
slowly enough to be observed in the display and on a voltmeter. Using
NEXT will reverse the direction part way up or down. With an
oscilloscope you can observe the triangular output at higher
frequencies. Try entering smaller values of both time interval and
voltage 1increment, keeping a constant ratio so that the total period
is the same (see list below). Now observe the effect the on the

waveform.

Voltage Time Total
Increment Interval Period
(STEP) (RUN) (Seconds)
01 40 4.096
02 80 4,096
03 (6{0] 4.096
Q04 00 4,096
01 01 0.064
02 02 0.064
04 04 0.064
08 08 0.064
10 10 0.064
20 20 0.064
40 40 0.064

4-108

DIGITAL TO ANALOG OUTPUT

The CLR key starts the triangle from zero or from any desired value
-keyed in. This will be of more use in later exercises. BRK stops the
function and sets the voltage to any value keyed in. This is
convenient for calibrating the A/D output. Request a voltage and

adjust the analog out pot to make the output agree with the

voltmeter. Operate at a slower rate (press 0, RUN)

Enter 1.55 volts for the target by 9B,NEXT. Press CLR to start a
ramp at zero. Observe the voltage climb to 1.55 and then drop to

1.00, (64 hex) and climb again. Press NEXT while it is rising and

see it fall.

While the voltage is falling, press CLR to start at zero. Now the
voltage will rise toward the 1.0 volt target, complement the target
to give 1.55 volts, and continue to climb. Then it will resume the

steady rise and fall between 1.0 and 1.55.

4-109

DIGITAL TO ANALOG OUTPUT

4.7.3 Exponential Function

The charging of a capacitor leads to a voltage which increases with
time at a slowing rate as the capacitor voltage approaches the

source voltage. (See Figure 4-38). The capacitor voltage is given

by:

(a) v = Q/C

where Q is the accumulated charge and C the capacitance. The charge
is accumulated as current flows into the capacitor and is calculated

from the time integral of the current.

t

(b) Q = U/.idt
(o]

The current through the resistor 'is proportional to the voltage
‘across the resistor: the source voltagé Vs minus the capacitor

voltage at that instant.

(c) i==—%— (Vs - v)

then

- 1 -
(a) v' = —ﬁa—ojf (Vs v)dt

which can be solved to give:

(e) v' = vs(1 -e E/RC

4-110

DIGITAL TO ANALOG OUTPUT

i
<
™
o}

Exponential Function

Figure 4-38

4-111

DIGITAL TO ANALOG OUTPUT

As t increases without limit the exponmential term approaches zero and
the capacitor voltage approaches the source voltage. With a digital
computer we can solve the integral equation (d) numerically without
resort to the explicit solution (e); doing so can generate the

exponential function.

For numerical integration there is no infinitesimal time, so equation

(d) is rewritten as:

(f) V' =V + (Vs - v)At/RC

In this section we shall create a function subroutine to evaluate
equation (f), to be called in place of TRIWV in our function

generator program.

As the output voltage v approaches the source voltage Vs, it changes
very slowly. To obtain a good representation of the exponential we
must use two byte precision for the calculation. We will store the
less significant byte of v in memory, and the more significant byte

will be read from and output to PORT 1B.

4-112

DIGITAL TO ANALOG OUTPUT

This page intentionally left blank

4-113

DIGITAL TO ANALOG OUTPUT

Successive Charge/Discharge Cycles

Figure 4-39

4-114

DIGITAL TO ANALOG OUTPUT

Eventually v will stop changing, even though it 1is not yet quite
equal to Vs. At this point we will start a discharge period, in

which the source voltage is zero. Then:
(g) V' sV+ (0-V)At/RC

Again, after some time, v will stop changing and we will switch back
to the charging function. Successive charge/discharge cycles are

shown in figure 4-39.

We will store two variables to control the charge or discharge. The
source voltage Vs will be stored as hex data entered with MEM. A
"switch variable" will represent the state of the switch shown in
figure 4-39. The '"target voltage" stored or complemented by NEXT (at
8392) will be used as the switch variable: 1if its most significant
bit is one the voltage will increase toward Vs; if +the most
significant Bit is zero the voltage will decrease toward ground.

Thus the function of the NEXT key is preserved.

4-115

DIGITAL TO ANALOG OUTPUT

4.7.3.1 Exponential Waveform Generator

EXERCISE:

Modify and add to the program of Section 4.7.2 to generate either a
triangular wave or an exponential. Accept keyboard input of source

voltage (Vs), time interval A t, and the ratio At/RC.

Data will be entered as one byte values with command keys, as before.
Key input processing is shown in Figures 4-34 and 4-40, and described

in the following subsections.

4-116

DIGITAL TO ANALOG OUTPUT

Set Triangular
_(HL%&-Address at TRIWV

;

(8398,99)€—(HL)

(RETURN)

@

Store Vs
((HL)+2)Y—(4)

Set Exponential
(HL)é~Address of EXPV

CLR

Clear low byte of v
((HL)+3)€=00

Set high byte of v
(PORT1B)é—(A

A

(RETURN >

Key Selection of Waveform

Figure 4-40

4-117

DIGITAL TO ANALOG OUTPUT

4.7.3.2 Selecting the Waveform

Since the waveform is generated by interrupt service, this module
must behave differently for the th different waveforms. The
distinction 1is handled by storing a jump address in memory (at 3398,
99) according to the REG (for triangular) or MEM (for exponential)
command. The interrupt service routine of +the function generator
program (Section 4.7.2) provides for +the use of ‘this variable

subroutine address by:

LXI H, EXIT PUSH exit address

PUSH H

LHLD 8398 PUSH subroutine address

PUSH H

LXI H, 8391 Load data address

RET Dispatch to selected subroutine
4.7.3.3 Data Entry and Storage

As indicated in the table on the next page, there are two new

variable data bytes to be stored in addition to the function address.
The less significant byte of v is calculated and stored by EXPV. It
is also to be cleared by the BRK and CLR keys. This is necessary in

order to obtain a consistent result each time CLR is used.

4-118

DIGITAL TO ANALOG OUTPUT

The source voltage Vs is to be entered by MEM. For two byte precisibn
in the calculation we will use this value as the high byte, with zero
for the low byfe. (If no value is entered with MEM, the source voltage

will be set to zero.)

MEM also selects the exponential vaveform bby storing the address of
EXPV at 8398, 99. REG is to select the triangular waveform by storing

the address of TRIWV at 8398, 99.
RUN, STEP and NEXT are unchanged:
RUN loads timer O and stores At at 8390.
STEP storesAv or At/RC at 8391.

NEXT stores the switch variable or target Goltage at 8392. If no

data were entered NEXT complements the old value.

Memory assignments are:

8390 At

8391 Av orAt/RC

8392 Target voltage or switch variable
8393 Vs

8394 v (low byte)

8398,99 Function address

8250 Entry to TRIWV

8100 Entry to EXPV

4-119

DIGITAL TO ANALOG OUTPUT

4,7.3.4 Calculating Exponential Voltage
Subroutine EXPV, shown in Figure 4-41a calculates:
v = v + (Vs-v) (At/RC)

At entry, register A contains the high byte of v, and register pair
HL contains the address of the memory 1location for t/RC, a single

byte value. The other variables are contained 1in successive

locations:

Offset Nominal Variable Address
Address Address

(HL) 8391 At/RC

(HL)+1 8392 switch variable
(HL)+2 8393 Vs (high byte)
(HL)+3 8394 v (low byte)

Although specific memory addresses are listed above, the subroutine
will wuse only offset addressing, so that it could be called from
another program module with different data in different storage

locations.

The subroutine returns with the contents of the memory locations

updated, and the new two byte value of v in (DE).

4-120

DIGITAL TO ANALOG OUTPUT

Load Variables
(D)= (A) v(high)
(B)&= ((HL)) At/RC
Address and test switch variable
(at (HL)+1)

< 80 Decrease >80 Increase
(C)&— 00 (C)é— Vs
d
TS

Address and load v(low)

(E)Y€—((HL)+2)

(ST)$~(DE) Save old v

(ST Y&~ (HL) Save Address v

|

(HL)€—(DE) v
(E¥—00-(L) Vs-v
(D)6~ (C)- (H) - (CY)
(C)&-00 for (BC) at/RC
CALL BMULT

(HL)€—(HL)+(DE) (BC)

=v+(Vs-v) at/RC

(DE)é—(HL) v' (new v)

(HL)€—=(ST) Address v(low)
((HL))~ (E) Store v' (low)
(BC)&—(ST) 0ld v

‘ Test and Exit) to Figure 4-41b

EXPV - Calculate Voltage

Figure 4-41a

4-121

DIGITAL TO ANALOG OUTPUT

The subroutine moves the input voltage into register D and loads the
other variables, incrementing (HL) to access successive bytes. It
tests the switch variable and either loads Vs into (C) from memory if
the voltage is to increase or clears C if the voltage is to decrease.
Then the low byte of v is loaded to register E, so that (DE) contains
the two byte value of v. Both v and its address are saved in the

stack, and the calculation begins.
VI =V + (Vs = V) At/RC)

is to be evaluated. We shall develop a subroutine (BMULT) to
evaluate this expression with the following entry data, all as two

byte variables.

(BC) = At/RC
(DE) = Vs-v
(HL) = v

Before calling BMULT, the value of Vs - v is calculated by EXPV as
follows: Move v into (HL), and subtract its low byte from =zero,
placing the result in (E). Subtract the high byte of v from Vs (or
zero if the voltage is decreasing) wusing the SBB instruction
(subtract with borrow) and place the result in (D). Clear the low

byte of At/RC (register C) and call BMULT.

.The new value of v is returned in register pair HL. It is moved to
DE, the address for v (low) is popped and its new value is stored.

The old value of v is popped into (BC) for comparison.

4-122

DIGITAL TO ANALOG OUTPUT

This page intentionally left blank

4-123

DIGITAL TO ANALOG OUTPUT

Figure 4-41b shows the procedure for changing the switch variable.
The new value of v is compared with the old value. If it has
changed, the process will continue in the same direction. When

v no longer changes, the switch variable is complemented.

4.7.3.5 Subroutine BMULT

Both Vs and v are positive values that can range from 0000 to
FFFF. Vs - v can range from -FFFF to FFFF. The two byte subtract
gives these values with CY set if the result is negative.

For example:

Vs v (CY) (DE) Vs = v
FFFF 0000 0 FFFF +FFFF
FFFF FFFE 0 0001 +0001
0000 0001 1 FFFF -0001
0000 FFFF 1 0001 -FFFF

Thus (CY) and (DE) represent a 17 bit twos complement value.

We will design BMULT (Figure 4-42) to accept the data in this form
and perform a correct multiplication with a positive or negative
value in DE as marked by the CY flag. The resulting value of v' (in
HL) will always be positive, since Vs, V, and t/RC are all positive.
The value of v' will be greater or less than v, depending on the sign

4-124

DIGITAL TO ANALOG OUTPUT

From Calculation

(BC) = 01d v
(DE) = New v
(HL) = Address at v

Address switch variable

(HL)$~ (HL) -02

Test for change in v
(A)&(BE) v' (low)
CMP C compare v(low)
(A) €« (D) v' (high)

v'(high)}¥v(low)

RETURN

[-7 CMP B Compare v(high)

v' (high)#v(hig
; { RETURN

Complement switch variable

((HL))é=((HL)) .
(A)¢—(D) v' (high)

‘ RETURN ’

EXPV - Test for Change in Voltage

Figure 4-41b

4-125

DIGITAL TO ANALOG OUTPUT

\

Shift (DE) right one bit
and shift CY into MSB
Test for (DE) = 0

Z
g0 RETURN

Shift (BC) left one bit
(CY)Y&~MSB

No CY

CY se

Add shifted multiplicand to
partial product

(HL)¢—(HL)+(DE)

r

Test for (BC)=0

Zero (" peTURN

Set CY 1if (DE) negative
(A)Ye—(D)+(D)

Returns (HL)¢—(HL) + (DE) (BC)

Subroutine BMULT

Figure 4-42

DIGITAL TO ANALOG OUTPUT

The multiplication will be done by repeatedly shifting the
multiplicand (DE) right and the multiplier (BC) 1left. If the bit
shifted out of the multiplier is a one, add the shifted multiplicand

to the partial product (HL).

The first shift of the multiplicand will enter the carry bit into the
high bit of the multiplicand, so that the shifted value will retain a
proper twos complement form. At each loop the carry must be restored
to 1its original state by copying the high bit from (D) into the
carry. The table below shows successive values of the multiplicand
for +the two cases where it was initially 44000 or -4000 (represented

as CO0O0 with carry set).

CY Clear (+) CY Set (-)
4000 C000
2000 E000
1000 F000
0800 F800
0400 FCO0
0200 FE0O
0100 FF0O

0080 FF80

There 1is no rounding of the value as it is shifted. It is not
necessary for the precision required, and any simple rounding

procedure will lead to erroneous results.

4-127

DIGITAL TO ANALOG OUTPUT
4,7.3.6 Implementing the Program

Much of the exponential program is a modification of the previous
program. The memory locations suggested in Section 4.7.2.6 allow
room for these added functions, with BMULT and EXPV located at 8100

and 8120 respectively.

To debug EXPV and BMULT it is probably easiest to avoid the main loop
and interrupt service altogether. Instead of running from 8200, use

the debugging program shown as the first pages of Figure 4-43.

You can enter a value for v through the keyboard. With no data
entered the previous value is recovered. Then you can step through
the subroutine. When you are satisfied that program flow is correct
and stack usage is balanced, repeatedly press NEXT, and successive
values Will be generated and displayed. Breakpoints can also be used
in BMULT or EXPV. Note that the multiplier t/RC has been set to 50
(01010000); this 1is a nice value for testing BMULT because the
multiplication process can be observed during the first four bits,
but will terminate quickly. It reaches the switch point fairly

quickly (32 iterations) which is also convenient.

When you are satisfied with your subroutines restore the operating
program, but with the debugging modifications suggested in Section
4.7.2.7. Check the program flow. Remove the debugging changes and

run the full program in AUTO mode.

4-128

DIGITAL TO ANALOG OUTPUT

4.7.3.7 Program Operation

Initialization setsAt = 40 andAt/RC = 01. No value is entered for

Vs, but your debugging may have left the value FF in Vs.

The numeric display, the LED's, and the voltmeter will show the
exponential rising quickly at first and slowing until it seems to
stop at FD. Now only the less significant byte is changing. Suddenly

the voltage will drop, and then approach zero very slowly.

With the ratio At/RC fixed, an increase in the time interval At
(entered with RUN) will also represent an increase in the time
constant, so charging will take the same number of steps, but more
time. An increase in At/RC (entered with STEP) will result in larger
and fewer steps to reach the source voltage, and therefore less time.
If At and At/RC are both increased proportionately, the time constant
will remain constant and a coarser approximation of the same waveform
will be obtained. If an oscilloscope is available this will be
interesting to observe. The total cycle time will not be constant
for corresponding values of At and[lt/RC because the slow final

approach to the source voltage is not calculated precisely.

4-<129

DIGITAL TO ANALOG OUTPUT

Restore the original values for At and At/RC and enter a lower value

for Vs.
40, RUN
01, STEP
80, MEM

Now +the exponential will rise only to half scale, taking the same

time as before, and then reverse.

4-130

TEST PROGRAM FOR EXPV

CODE

A D D R

)
,../L/. \U
3 NERENERE
N N
N NI N w NT | S
] i | N N 3\ g
NS i~ N NE _m <
N o3 Y X R
N o RS P 9
Wﬂ .@mw NQ W\Q, ~ 3
pubsagERSNERRERENRN N)
N Y _ ¥ ~
™ Q N Q N~ O\ Do) Q Q
™ Q ™ B 2 ™ XN X N
~ | & I8 IS W N 1 L] 1N N
X Ny | <% X
Q A N N Q N \b
N] N d N N} N NN ~ ¥R(Q
> % > BN NS BN Q| > %X NS
iy N d “ I J) x| Q X|h
Nl W od Nl N Q| o[RIN w[Q] N SN M AN NN QN [N[M] ©
o W gl D AT W N sl oo N V[Q] QU] QN OF A T TN SN S ™ N QI
Ol lm|igs|w|loin|lololc|n]lo|llw|u]lo|lee|la|lm|agjw|fo|~Nn|[o|lo|<]|d|lo|0|lw({n]|o|=la|m]| < ©
Q Q N %
a .
. N s >

133HS ONIAOD

WILSAS ONINIVHL H31NdWOJOHIIW

SINILSAS H3LNdNOD GILVHOILNI

4-131

<)

FUNCTION GENERATOR - INITIALIZE

CODE

A D D R

k 3 ;
. Q
A\ . S w Q
% 3 uww b //W
N Q N _
) I N , . g
A /@ < ? 4_~ N M g T
\ NR 'REERRCERE RERE
S e S R T
. W/ ~ S Y LB EAN NN 2
Q Q
= Q | ™~ A S
IQL [N s Ise] 1] [| NS < ~ Q N ™ NIEAIEES
NSRS SN o A RIEICS ™ NS
LI LIS + (A [9) N) { S RIS
Y (Y (VY X = Q| [N X ¥ |V |
Q Ja)
NENENENENENEE N <[NENNEE J NN o
NENENEEREERE R X N Q| (ol [x By x| T
Q I) x|eq QO EQ (A % Qb
k%K ||
WIS NN] 0 QW MNN QINS[M W ™ o] o Qo NN~ QN ™| W ™MLY
onlag] Q| Q™ QL Q™ QLN T X R WO T) ooy R QN Q)N YN S) QI QDo No
Ol W oNo|lolglan|jlojO|lw|w|lolln|m|glvwfonlofjo|d|lalololwlulol~lalmjs|wloOol~] ®
N
Q v
N ~ R

133HS ONIA0D

W3LSAS ONINIVHL H3LNdWODOHDIW

SIW31SAS H31LNdWOD Q3LVHOILNI

4-132

MW & MJAJANVVY LN\ 4T

CODE

A D D R

m M M/,M M M—
\ 7W
am X MW m N /ﬁaw @ M .
DEp ¥ M w _ /r,m ,r I
: AR ERLTREE ;
33 IR ERRRARENSRARS u
o
M N «Q
N) N ~
R ™ < 2 0 |
Y) W i ¥
alxiql| % N BN RS Q
NS X N
DRSNS B A X
RN UK (N SN N SIS
S]] I] Q| WY =< N =< 2 (WN[QS
QIQQ|Q[H W & Qv Q| N (Y
S\ oo o] m]] o s & NN SN [o Yol NN ™ Y\ Q[Q[Q
W W IR ™ SN Qg | N S8R D] NN N W NSNS QAYINIR R
N ™) ™) ¥}

133HS ONIAOD

W3 LSAS ONINIVHL H31NdNODOHIIW

SW31SAS H31NdWOD Q3 LVHHILNI

4-133

M,
i :
] -
2 ﬂu E:
: WY :
= Q 2
& Q
H ~
2 NS
I X 07 Rl
% Q J,.U 9
g SV ASEAS BN ISTES
jcal
2
8 WS NIRRT S
z| DD 1Y N H[W
m Q13 1IN RNV X
w 3/05/351////50/
S N S N QUQ| W\ WV
o4 Mt vio|IN|O|lo|l gl]| AO|W L |[O]le=|N| MO]O] NN MO0l w|uw|Oo|| N|[m| < -]
a Y
o N
g 90 © ©

133HS DNIA0D

W31SAS ONINIVHL H3LNdWODOHIINW

SIW31SAS H3LNdINOD A3LVHOILNI

4-134

FUNCTION TRIWV

CODE

A D D R

4-135

: _ .
.m Ny \b

N Aam M N fw GMM W)
SRERR: w; m/‘m R M . RN _Jw 3
< I X J NS NI

AN Ry R ™ ,ﬂ W A@%wm4
,r qﬂ ? ,ﬂ ~ f N _/M6 o = nKLm
—~ . Y ~ e 4N &
LA A R | | e
N SINE EXNESER DN NN SNERINRE

SV IRV R Wol |Q
I~ W Il
Q ~N A N N Q| N[WA W
2) N\ Y N9 z |k QYN ~ WA QN
J % < O < 1 ! W IR EYERIEY
Qx| s QSN NS Q& NSRS & (A % NG
~ WA N 1A
NERS) a QO LR SRR RN NERY NN %
QIYI| B = W9V NEIEEREERII SN N Y NN
NN Xib | b R ELE L] = < T W [N (% X
Ny Wyl] Qe] o] Lyf)N S N Qf QTN O iyl QUM R DS
] QNN O [N N N RN Y VY QAR Sy QI g ™\
,/0123456789ABCDEF0123456789ABCDEF012345.678
3 Ny

R\ N MM

133HS ONIAOD

W3 LSAS ONINIVHL H3L1NdNODOHIIN

SW3ILSAS H3I1NdWOI 31VHOILNI

FUNCTION - MAIN LOOP, DibPralCn

CODE

A D D R

/mv S M ,
y. R
SE . SECRRARR R
w, q| 7 W Y m R 2 W | i,w/ﬁﬂ /w 3
o ,m) \w;/u | 3 \ i
I A ﬁ N
W A W MI @@Lﬁ\ rORERRNAL w Mrw 2
A . ~~ A U ~~
WY | S SEEREERESRESESAEREENRRE
S Q | N N ~
N ¥ N = Q 8 Qo
O Q W~ [v X N ~ < ™
) R x|+ O Qg > KN SRS
< Q NEE] < | (W R ERN [T
QU & Wi NEENESSES
Q N J N N X Ry
N N ~ ~ J < NN viNl X[uN|- N
NIk DS RNEAS < > < Q| X< NSREERRER NN
| v N NS S ~ ¥ = ol [Tis|Qls|d QN
HAOBD/Q&J&JJDV/QQ7QD@32/02,54,,0:/:,_ Q[~ N ™[™[e
;gqfeoaaac5/4509Jf43054/f£8?éé5744 N
O|l=|N|l|g|V|jo|IN||loo|gc|lpjOoldjW(|lojl=n||a|wfoN]jo|lo|d(o|lo|ld0lw|lw |l]m]| |1)
1R) ;
. % X ik

133HS DNI1AOD

W3LSAS ONINIVHL H31NdWOJOHIIW

SIW3LSAS H31NdINOD A3 LVHOILNI

4-136

PUNULIUN = KEY PROCHESSLING

CODE

A D D R

/ 3 3
M PN RN N
: 4 |3 N S
< A N
\ NRNCES A :
3 YW PR Rk X 3 3
} ‘BEERR S I
%n ARER X 3 X 0
R u%ww ERRERN) u
R EREE SEEC RN N ;
Q [/
~ LS
< Ql | Q
3 s I I (A S R
) + |o ; W
= Y] (=T Y
| [k~ B
ARG e N R R e I R e o e, O L I P e e L I X
EEDTUE@EU QWD [D [RY> (W BN
Sl 2 Qgud Qs [O [NNNE X)
¥ *| %[% %[x| ¥ *
<[QAR Q| [V N M N QM| G M & v\ Q
A <] YV[VRQRQ N YN N A Q= o ™M Q0
34.56789ABCDEF0123456789ABCDEF01234 [
M X YV % M
R
N J NS -

133HS ONIG0D

WILSAS ONINIVHL HILNJWODOHIIW

SINILSAS HILNdWOI G3LVHOILNI

4-137

FUNCTION - KEY PROCESSING (continued)

2 3
R N
3 R X NN b
3 @ Jf,wf,mw MZM 3 3 g
SR a 3 W 7
w +W ﬂ N _Vf ﬂ Q =
K | N m
MR W&M NI M 98 5 2 &
94 BRAYYY 3 |3y 58§ 5§ :
Q Q W
\5 ™ N T/
(S N \N N N Q
v = > ™ TSN AN} Q| \
nla ~ ~ X« So T 3 A/a M
TQQl |] [o [=% XY | O A
N)
X A N S| s H ~ N =% X[H Q. O
BEERE Q| = oW ¥ X WY gx b W
NNAQb s =]~ & NN b N
% % 3%
ul 0ol 3 | S| o] o) W NN YN Q| ¥ SN o] M NN Q[N Wy
NNERERE N EREREEENERNEEREREERENNES
glo|=lN[M|g(w]O N|ow|laoalqgq(s{fojQ|W|L [Ol~|N|®M | (DO [~N]O|® o 0jlwlnu|oj~|N|™m| < o
of N N J
AR « 5SS

133HS 9NIA0D

W3LSAS ONINIVHL H31NdIWOJOHIIN

SWIISAS HILNdWOD A3 LVHOIALNI

4-138

DISPLAY VOLTAGE SUBROUTINE

CODE

A D D R

W .aﬁ
\L wdl g
X JM 5
1D dmf w@ :
\kﬁ AERERENSHES
SEASRERARN IS -
W W]
— W ~
>~ Q Q D ~
Q V| W W]
Q A NN N Q
< N les RNES nﬁP
d
~ NN SINY SN
5N Q N g 5 Q J (W
) | e llie QL h SRS
R\l NN QLR Y N | D YN Q)
VN Q N YU QR N S N QU
m|les|w]lo|~ ajlo|ldjlw|luw|o|l~r|la|lm|s|vw]joN]lo|lo|d|od|]lo|olwluw]| o ©
\y A W
% o | S
-] 90 / (-]

133HS ONIAOD

W3 LSAS ONINIVHL H31NdIWODOHIIW

SWILSAS HILNdWOI A3 LVHDILNI

4-139

) 3 Y
. ERRERRERE S8,
/W AN .«wna ﬁ N QAN Y W D%M M_...
S JITL RS | ANy || 3R |
I,L_I W ~ N N \ﬂ#V/M RCRﬂ ,/@ el
R A3 S MM NPV HasSe JE
Q AR NS T HN 1 (v
RSN N W %Z@%r SNENESER
R MVM/[AT N HNRN [
H_/_/TI - .
m N J] g <4 IQ
= N VRERNEEER
o NESENEG NEEREES N NEERNENS
2 4 N ™ + + N RN Ay ™~ iy n :S.N N lQ
m I QY (Y] s 0 N NS x| A A [~ [
o W QW NN WY
g NN YR SN A RN ER RS QY [Salx R EEEERM
5 QY d R JY M| o] Q /= U N A Z] SN NN
Fi =X S SIS NI IN I = Ib NENERSE W %
SR S] W g W W o o N [i [N S~ o S [[~
8 NQ Q] QN N\ N N\ g 0 D xd A o QY NN QO N 9
ro|~N || v o|INo|lo|gd|lnjoldjlw|lw|[olcln|m|as|lv]o|N|o|lo|d|ld|0O|0|lw|lw|[o~|a[m|s|w|[wo|N]| 00
o Q
IN N J
g| o 00 [} -~

133HS ONIAOD

WILSAS ONINIVHL H31NdWODJOHIIN

SW3ILSAS H3ILNdWOD Q31LVHOIALNI

4-140

FUNCTION SUBROUTINE EXPV

1-141

N g1
Q J | NERRE)
NI N X SRAY | NN
A\ y 47 I Z, w N
AR AR RN J | INSEY Y
NNAN N Mw R NEER MJ, 9 N33
S ECRRREDRER R DN RN R R SN
k% M ~ W MQ)M 23 w RN Hmmm, N R M/@
SRR EENSES NN AR ERNASERENS NEEEEN :
~ Al | n Nyl h
Q - E\L\J
Q N N R K KN A
< I X/ < |= <Y)XY [= T TININY ™
SR L] N 1 NN +~ | R G A\ + W [_ANAF] A+
QIR (X XIS NEVY IR ES N, =Y o SN~ ~ A
RRNAN N N NYENENNNE
NN ENEER NN EEEEE EINENEN EENE N ENINEERESRN
QAR QX QK MR R EREEEERNEREAS o QO Q| Y Wy NN NN
TINENE NZIEb SN\ XS I I N XN xRN
] NN) N W[g 0] g SIS [o W ool Sy ol o N W QUS| INN SR N i)~
SR g NN SRS % Q] W] W N o DN [Q] QN YNV
R0123456789ABCDEF0123456789ABC.DEF012345678
02 4 3
al N
<] © V/AA © "

133HS ON1A0D

=

J1LSAS ONINIVH1 H3LNdINODOHIIW

SW31SAS H3LNdNOD Q3 LVHOILNI

EXPV - SWITCH WHEN V UNCHANGED

CODE

A D D R

Addheas) 20 Zed

Cormparg) v’ (Do)
! Ao h)

$%¢;MmQ%LL

()

Jépﬂy%LéAQ1J£¢£J
(B) i r” (K k)

7

7

Figure 4-46b

N 3 XA

N L: & T™ A
LU [[
X3 N N MNQUMNI [N DN
VI NI I QW
QR S =l FHol sl s
Q) Q| QN Q0 S N RN D
Y N N N QRO RN AN Y

8 /4/ 0

-]

[--]

133HS ONIAO0D

NI LSAS ONINIVHL HILNdNOJOHIIN

SW31SAS H3LNdWOD G31vHDILNI

4-142

DIGITAL TO ANALOG OUTPUT

This page intentionally left blank

4-143

MICROCOMPUTER INTERFACING WORKBOOK

CHAPTER 5

ANALOG TO DIGITAL INPUT

This page intentionally left blank.

5.

ANALOG TO DIGITAL INPUT

Microprocessors in instruments and control systems generally require
input of analog signals, which must be converted to digital form for
processing. Variables generated by sensors are likely to be any of

the following:

Frequency or Pulse Interval (tachometers, flow meters and other
motion sensors, and instrumentation electronics used for conversion

of other variables)
Pulse Width (instrumentation electronics - not common)
Resistance (thermistors, strain gauges, position sensors)

Capacitance or Inductance (position sensors - usually converted to

frequency)

Voltage or Current (thermocouples, photovoltaic cells, or conversions

of variable resistance.)

In this chapter we will consider digital conversion of pulse
interval, frequency, voltage, and resistance. In Section 3.6, we
measured a pulse width. That section should be reviewed, and
especially Section 3.6.3 which discussed reading a timer while it is

running.

ANALOG TO DIGITAL INPUT

Program Ports -
-Port 1B Out
Program Timer 0
Two bytes, Mode 2, Binary
Enable EXT 4 Interrupt

HALT - wait for
first interrupt

-

HALT - wait for
next interrupt

Load data stored
by interrupt service
Display data

RST 6 Interrupt Service

Save registers
Latch timer 0
Read timer 0 (2 bytes)
and store data
Clear timer 0
Reenable and clear
Restore registers
EI, RET

Pulse Interval Measurement

Figure 5-1

ANALOG TO DIGITAL INPUT

5.1 PULSE INTERVAL MEASUREMENT

An external input of the ITS (either EXT4 or EXTS5) with its edge
triggered latch makes it easy to measure a pulse interval. To avoid
noise triggering of the (flip flop the signal should be coupled
through an optical coupler (see page 1-18). Connect the AUDIO OUT
test point near the upper right corner of the AMTS to OPTO IN, and

connect OPTO OUT to EXT4 IN.
5.1.1 Measuring a Steady Signal

EXERCISE

When a rising edge occurs at the EXT 4 input, it will set the latch
and generate an RST6 interrupt. An interrupt service routine will

read and restart a timer, to measure pulse interval.

The main program displays the data read from the timer by interrupt
service, and loops to a Halt instruction. This stops program
execution wuntil another interrupt has occurred. Execution of the
main program resumes at the location following HLT after the
interrupt has been serviced. We ignore the first measurement because
it 1is meaningless. The counter was started when power came on, not
at an edge of the signal. Thereafter, we load and display the
measured data after each interrupt. Since the 8253 counts down from
zero this value is the twos complement of the number of clocks in one
modem cycle (see page 3-10). A flow chart is shown in Figure 5-1, and

a coding solution in Figure 5-2.

PULSE INTERVAL-MAIN

CODE

a N
¥ W N
ava JWL + > .
N EJ/ . }
N L 3 Mﬁ T
N 4& A M.f To)
h\ 3 0
R 7 N\ 3 H
I mw. SRR 2
R 2 . S i
fa)
| ~ Q ¥
Ql > [Il (] |9] |<% Q Q ~
NN EISEYEI NS ©))R ~
I 12 1 [N £ [%) R
< (O Y] N Y S
S ~J
NN RN RN SIS < Q.
NN NN RN I RN e <& bY
QI IE ISR IR . b
QS o [S O U) o N o ™ s S] [R~ [<[]
™ | Q| Q| DN S| Qf M Q) N M VUS| NN D T QNS QU Y™
ol ||/ o|N|ow]lo|g|ln]o]0jlw|lu|ojleelnlm|esw]jo|N]|]O|lao|d[(o0l w|lu]lojeln][m] < ©
Q W/
A =
© o | N ®

133HS ONIA0D

W3LSAS ONINIVHL H3LNdINODOHIIW

SW3LSAS 431NdWOD G31VHOILNI

5-4

PULSE LNTERVAL - INTERRUPT SERVICE

oliages Lopaler
2 lid Lemer O

e O
L alne Aals

/pa/U\W O
ploat) EXT ¥

Figure 5-2b

H P 3|010 | dobread) data

A D D R

aog\?o

8 <24/ 0

(-]

t~

K Ql [V Q Q| [0y %Y

) d (7 o I (o [|=] [g I8 [~ 13

QX L + N Py R DY :.I N L |= vy
NN ESSEEREREEEE AL

ENEN b b~

N H i LS N> NN ENENNEES

Q< S I [[(] [D] [oQnw

A SENENEEENEENNENESENE Y

wl oo N Q0] W Qo] NS N D og [N 0] M) W WIS [] WS N gl

S\ W[XN] QR NAQ SNSRI NN NN M YR Qg

NN O]l o]lOo] QW] N[/ on|o|(lo|[dd|lo(olwu|lu]lol-|a|m|< ©

133HS ONIA0D

W3ILSAS ONINIVHL H31NdWODOOHDIN

SIW3LSAS H3LNdWOD A3LVHOILNI

ANALOG TO DIGITAL INPUT

5.1.2. Measuring a Multi-Valued Interval

EXERCISE

When the cassette modem 1is actually in use its pulse interval is

switched between two values, depending on the data being recorded.

- ~ " N ~ -~
HIGH FREQUENCY LOW FREQUENCY
DATA =1 DATA = O

We <can compare the measured interval to some threshold value to
decide which frequency is present. We will use the monitor's tape
recording program SEROT to generate a data train to the cassette
modem, and develop an interrupt service routine to measure the
intervals, decide which frequency is present, and measure an average

interval for one frequency.

The 1low frequency is half of the high frequency, and the signal is a
square wave, so 1if we define W as the width of a high frequency
pulse, the interval for the high frequency is 2W and the low
frequency interval is 4W. If the bit time is constant the number of
2W intervals for a data bit equal to one should be twice the number
of 4W iﬁtervals for a =zero. This ratio is severely distorted
however, by the interrupt service routine which interferes with the
bit timing 1loop in SEROT. Therefore the number of cycles of each
frequency 1is meaningless during this test. The measurement of pulse

intervals is wvalid, however, because the recording frequency is

5-6

ANAIOG TO DIGITAL INPUT

generated by the modem hardware, not by the program.

If we use a single threshold, as suggested above, an uncertainty
arises in the measurements because an intermediate pulse interval can
also occur. The modem changes its interval after its input data from
the processor changes, at the moment when its output changes from

high to low or from low to high.

|
_,' 2w o 4w > 3W _..l

The intermediate value 3W occurs much less frequently than the other

values because it can only occur at a bit boundary, and even there it

has only a 25% probability. It will be detected, however, and our

program should provide for it.
5.1.2.1 Program Design

The program will accept (through keyboard entry) two different
thresholds. The modem output will be sensed as before by the EXT4
interrupt. At each interrupt the preceding time interval will be
measured and compared with the thresholds. If it lies between them
the interval will be added into a sum, and counted. If the interval
is less than the lower threshold or more than the higher, the time
will be discarded. All intervals will ©be counted (separately from

the count of those between thresholds).

ANALOG TO DIGITAL INPUT

Program Ports
Port 1B Out

Program Timer O
Both Bytes, Mode 0, Decimal

DI

Call ENTWD
(Hy*=—high threshold
(L)«—1ow threshold

Clear data memory 8300-OF

Store thresholds
(8302, 03)=———(HL)

Store memory address for
SEROT to transmit
(83E4) -=—0010

I

RST 6 to enable EXT4

Jump into SEROT at 0371

— ——

Abnormal exit from interrupt

Disable EXT4
Clear Stack by LXI SP, 83D3

Display sum of times (3 bytes)
and count (1 byte)

Multi-Valued Interval-Main

Figure 5-3a

ANALOG TO DIGITAL INPUT

The program will be stopped either when 100 values have been summed
or when 65,536 interrupts have occurred. The latter stop will
indicate few or no measurements have occurred between the thresholds.
If the two thresholds have been selected to include one of the 2W,
3w, or 4W intervals the program will be stopped after 100
occurrences. By varying the thresholds we can measure the average
interval for each nominal value. For ease of interpretation the

interval measurement and summing will be in decimal.

5.1.2.2 Main Program

The main program is depicted in Figure 5-3a. Timer O is used again to
measure the interval, but now it is programmed for decimal counting.
After the two thresholds have been entered the main program clears
the data memory and stores the thresholds. RST6 is used to call the
interrupt service, which will start the timer and enable the EXT4
interrupt. (This leads to some invalid measurements which will be
discarded by interrupt service). Now the reserved memory locations
83E4,E5 are loaded with a convenient address for the start of data
transmission by SEROT. Any address can be used, except that unless
quite frequent alternations oﬁ ones and zeros are present there will

be very few 3W intervals. A starting address of 0010 works nicely.

A jump into SEROT causes the monitor to start transmitting data to

the modem. SEROT starts at 0371.

ANALOG TO DIGITAL INPUT

This page intentionally left blank

ANALOG TO DIGITAL INPUT

5.1.2.3 Abnormal Exit

When interrupt service for EXT4 reaches a stopping point, after 100
measured intervals or 65,536 total intervals, it makes an abnormal
exit. Instead of restoring registers and returning to SEROT, the

abnormal exit clears the stack and displays the measured data.

Previously we have sometimes made abnormal exits from subroutines,
clearing the stack by popping the return address into a register
pair. Here we cannot use that method because SEROT uses several
nested subroutines and also uses the stack to save registers, and we
do not know how many levels of the stack may be in use. In this

program we clear the stack by reinitializing the stack pointer:

31 LXI SP,83D3
D3
83

This loads the stack pointer with the same address normally loaded by
the monitor. Although the stack contents have not been erased, this

effectively discards the past history and gives a fresh start.

ANAIOG TO DIGITAL INPUT

Save registers

Latch and read Timer 0
(DE)<—Timer 0

Restart Timer O

|

Address and increment low byte of
interrupt counter

<£§ot Zero
Zero ' '

Address and increment high byte

[ABNORMAL EXI’11<_§¢

Test high byte for zero

<]1;>Zero

Address low threshold

Compare high byte of time

&me < Threshold

Address high threshold

Compare high byte of time

¢l‘ime < Threshold

CALL ADDT Subroutine to add time into
sum

——

Reenable and clear EXT4

Restore registers, EI, RET

Multi-Valued Interval - Interrupt Service

Figure 5-3b

ANAIOG TO DIGITAL INPUT
5.1.2.4 Interrupt Service

Figure 5-3b shows the interrupt service routine. After saving the
registers we read and restart Timer O. The two byte interrupt count
is incremented. At 65536 interrupts the counter reaches zero and the
abnormal exit 1is taken. To avoid recording invalid data caused by
initialization both in the main program and in SEROT, we ignore the
first 256 measurements, by testing the high byte of the count. The
high byte of the timer data is compared to the two thresholds. Since
the timer returns the hundreds complement of the interval time, the

comparison is made not by CMP but by:

MOV A,D (A)<{---high byte of time
ADD M Add threshold
DAA

This sets CY if the time is less than the threshold.

If the time lies between the two thresholds a subroutine is called to
add the hundreds complement of the timer data into the sum, and to

increment the decimal counter.

5-13

ANALOG TO DIGITAL INPUT

Address sum of times
(HL)=-—28304

Load A with 100 decimal
(A)=—9A

Subtract low byte of timer
(A) =—(A) - (B)

Add to low byte of sum, decimal
(A)y=—(A) + ((HL))
DAA
((HL))=—(A)

1

Address next byte (INXH)
Load A with 99 or 100
(A)<—99 + CY

Subtract high byte of timer
(A)=—(A) - (D)

Add to second byte of sum
(A)=—(A) + ((HL))
DAA
((HL) }+—(A)

1

Add Carry to third byte of sum
(HLy=—(HL) + 1
(A) «—((HL))+ 00 + €Y
DAA
((HL))=—(a)

[

Decimal increment counter
(HL)e— (HL) + 1
(A)=—((HL)) + 01
DAA
((HL))=—(A)

Zero
(ABNORMAL EXIT)

RETURN

Add Decimal Time to Memory

Figure 5-3c

5-14

ANALOG TO DIGITAL INPUT

5.1.2.5 Decimal Addition Subroutine

Figure 5-3¢ shows the addition subroutine. Since the timer data
represents the hundreds complement of the time interval we must
complement it before adding it into the sum. Here we combine the two
functions. The Intel 8080 (or the NEC 8080AF) does not allow DAA

after subtraction, but only after addition.

MVI A,9A (A)<---100

SUB E Subtract low bytes
ADD M Add to low sum
DAA

MOV M,A

Subtracting a decimal value from 9A or 99 cannot generate any carry.
After adding the old sum, DAA will make the proper adjustment to a
decimal value, generating a carry if the result exceeds 99. For the
second byte we load A with 99 and add the carry from the first byte,

so it contains either 99 or 9A (= 100 decimal).

INX H Address second byte
MVI A,99 Load A with 99 or 100
ACI 00

SUB D Subtract timer

ADD M Add into old sum

DAA

MOV M,A

If this generates a carry it must be added into the third byte.

ANALOG TO DIGITAL INPUT

Now the decimal counter is incremented and we return to increment the
binary count unless the decimal counter reaches 100. Then the
abnormal exit is taken. Note that the use of LXI SP permits the

abnormal exit from any subroutine level without regard to the stack.

Write your program and test it. Section 5.1.2.6 describes the use of
the program. Memory assignments in the solution given in Figure 5-4

are:

8300,01 Binary count

8302 Low threshold

8303 High threshold

8304,05,06 Sum of times

8307 Decimal count

83E4,E5 Starting address for transmission

MuuLLi— vaALULDL LNLTERKVAL MEASUREMENT

CODE

> N
N S
\ Y 348 LS BELED
N N /m M_ 9 INY b_a
N\ NRAR ; o
3 D wuwﬁ S ,w @J :
o N\ A o
Q Q Q
~ R N = ~ ~
Q| (N S N IR EN NS oy N i Q Q [\ N
& I [o [N [™ | 2 i ~) Q) o
L= e LN Wyl 1 4 Al X Iy S, Q
& [V [V R [<(Q W (N NS
< > ~ S \\)
SIS [l I N T IS0 [IIE] 1o faeseinal [O[SE T e[[N] (SIS
NENERENEN NN SRR EEEN NS R R N R RS
SIS NESEEEES XS | laeh “ K © X/
W[N WS ool] N [N[o w N Q™][] 3 sl S 0] NN ™| 9| NWIN[M Q
M AN M NS QM A~ W ORI SN S NN N o S TN RN WS T[N N Q
R0123456789AB.CDEF,.0123456789ABCDEF012345673
DD N ™~ & nd
o Y Ny R
| » © \ u M

133HS DNIA0D

WILSAS ONINIVHL HILNdWODOHIIW

SWILSAS H31NdWOD A3LVHOILNI

5-17

SERvilo

INTERRUPT

N
Mw Q LWI /M%E JW Lw +M
. RERRUREEERR
Mﬂ W /,_m M T& %
N \
.) W N o
)5 (9 NARREE &
Q
I~ Q
B N N/ B AN QIS \9) \q Q
“ NSRS NSRS J >
QU + [N [H 2 + 1N N : < A :
SNENENENMEEEASRINENEE S N <
ENEYESEY =
na[HalalN] T~ > NAINEINEE NEIY X AN
QIR D] = NI LR ER < 22 W Q
QAR N3] [Q] [H] [ZIN] [T [[NIN| P N[p Q
y ool W Q™[NN U) WD W N O SQ 0] X o sl w3 <t QIR
S W\ W[QN N9 IR N Y FAN A N XN] o WM U9
gloj~|N|m || O[N] ® |lojlo|l0|lw|un (ol as{vw]/fo|N|[fwjo|d| || 0jw|lu|lolc|la]m]| < L]
ol ™ JV /4
1. i S

133HS ONIAOD

WILSAS ONINIVHL H31NdNODJOHIIW

SW3ILSAS 431NdNOD d3LVHOILNI

5-18

CODE

A D D R

N
3 w W M% 3
M&w .M M .A Wﬂ M m
) Mf. n JJ/ Lw M. ,W m
Wa m X &
A [S AL REERREN a
N
A\ ~ AN o~ ¥
= _ NS _ > N R
oy] B 1 % b= S
EJNN YIS SR EREY <& Y] (NQISIRA
NENERS x| xlQlst INE IS Q] |~
N R QLY | 2RO S| [9] Q|QININ[W
2 NEENE HIX QIS = |9 e fwx
NN RN NN S NN Y NN NN NS
Y N[Y[AN Qg v N QY N WS w5 [QE N o M QIR QRN W WY
01234.56789A.BCDEF012.3456789ABCDEFO1234 -]
"\ N
Y NS
- -] oof [--]

133HS ONIQOD

W3LSAS ONINIVHL HILNdWODOHIIN

SW3LSAS H31NdWOJ G31VHOILNI

5-19

BETWEEN THRESHOLDS

CODE

A D D R

R\ R
i s
] et w
7 \‘.@ g
[}
3k 4
R 3 R 3 -
N
N
™ <X . I\ .
N O~ . SRS < | | [X] <t
N ™ T ~ |Q + 19 +~ 10 L
X g W] [T o IQls] [sSxHo (LK Q 2
— M QQIT>XN| |H] QAN XSN] N XN |C> e
x SN DOEIQIR[Y O DAQKRIZIQN| [F QA (€=
4 = [PlhalsiNiE] X BHEQENEY AsHEY Risix=
SR Wy {09 [N R DN 0] Wyl O Wy QSNSRI 0] Iy W] Qf NN [W\ N[N [Q
3 < Sl 0 D | A ¥ W] =] o0 Q4)] Qa9] D | W] Ny D YW Q) g™V [
SN Iw]|OoINO|lo|lg|lojo|lQ|lwiL |Oo|l-~jn|m|aslw|lo|INn|o|leo|dlnjo|la|lwlun|loj|a]|o| =
N %
¥ A

133HS ONIAOD W3 LSAS ONINIVHL H3LNdINODOHDIN . SWILSAS H31NdWOD A3 LVHDILNI

5-20

DADNUDMLAL Dall

CODE

J\E

A D D R

18 7257 o

Lvatddles ENST¥

Cleat) atn e

o

L
56/% suzinne

(DE) = f3F7

Gl

Figure 5-4e

0|8

[4

A)

A 1213014 | Coear

D|,

Al v
DIB|Y |2
AEAr

Flf

L2 0|C

M|V

o7 |CIMTE

LIX|T| |S|P|, |£|3\D|3

L |X|T

L|X|T

MO |V

ClA L]
W%l 14
Miolv| Al |E
CIP\T

TIN(C

I M|P

I\F
) |3

O\F
J|/
2 |3
g3
2|/

O
/=

/V

2|3

7\
clD
ara
o2
2|3
78
FlE
FIL
pars

2|3

2)(&
P |7

\N
R}

X
S e

0

133HS ONIAOD

W3LSAS ONINIVHL H3LNdWOOOHIIW

SW3LSAS H31NdWOD A3LVHOILNI

5-21

ANALOG TO DIGITAL INPUT

5.1.2.6 Program Debugging and Operation

The use of RST6 to <call the interrupt service routine not only
provides an easy way to start the timer and enable the EXT4
interrupt, but also allows you to step through interrupt service for
debugging. You can step through with a normal return or force the
abnormal exit by preloading the decimal counter with 99. If the
thresholds are set at 99 and 00 then interrupt service will call the

decimal addition subroutine for any timer data.

For meaningful results the program must be run in AUTO mode. Enter
thresholds of 99 and 00 (9900,NEXT). Almost immediately a decimal
value for the time is displayed as three bytes, with a count of 00.

For instance:
0007 1332

—————————

. TOTAL TIME FOR 100

INTERVALS
DECIMAL COUNT (=100)

If equal numbers of wide and narrow intervals were received this
would be a central or average value. In fact SEROT generates enough
leading high frequency intervals that this measurement includes no 3W
or 4W intervals. Prove this by entering thresholds of 09 and 00

(0900,NEXT). A similar average will be obtained.

Try thresholds of 06 and 00. No intervals of fewer than 600 clocks
should occur, so the program will run for 65,536 interrupts, and then

display 000 000. Possibly one or a few short intervals will occur.

ANAIOG TO DIGITAL INPUT

The display might show:
0100 0530

Time for a single
short interval

One short interval observed

Try thresholds of 07 and 00. Depending on the time constant of the
cassette modem oscillator there may be no intervals, a few, or many

intervals in this range.

Now exclude the short intervals by entering thresholds of 99 and 09.
The 2W intervals will be excluded and the sum of times will include
mostly 4W intervals and possibly a few 3W intervals. The average will
be close to the 4W interval. The lower threshold can be raised to

exclude the 3W intervals. Try 99 and 13, which should include only

the 4W intervals.

Finally, set thresholds to include only 3W intervals. Try 13 and 09
(1309,NEXT). There may, or may not, be 100 measurements made before

the 65536 interrupts have been counted. In one experiment the result

was:
9510 4854

TIME FOR 95 INTERVALS
OF 3W WIDTH
COUNT OF MEASUREMENTS

The average time is 104854/95 or 1104 clock times.

5-23

ANALOG TO DIGITAL INPUT

5.1.3 Measuring Received Pulse Intervals

EXERCISE

The program of 5.1.2 can also be used to measure the pulse intervals
returned by the cassette recorder. Here we do not need (or want) the
SEROT program running, so change the JMP 0371 instruction to a jump

to itself. In the solution given in Figure 5-4:
8224 JMP 8224

Create a tape with a leader (all ones) of several seconds, or use one
you already have. Connect the EXT 4 input to OPTO OUT, and connect
OPTO 1IN to the AMTS test point AUDIO IN. Connect the cassette, start
it in playback mode, and wait until you hear the steady tone from the
leader. Now start the program as before; when it has received 356
one bits it will display the average pulse intervals. Compare these
with those observed for recording. This gives a measure of the speed

stability of your recorder.

5-24

ANAIOG TO DIGITAL INPUT

5.2 FREQUENCY MEASUREMENT

Clearly a frequency can be obtained from a pulse interval measurement
by inverting the measured data. This gives the 1instantaneous
frequency, which may be needed in some instances, especially when the
rate of change 1is important. Often the rate of change is small
compared to the frequency, and we can measure frequency by counting
pulses over some period of time such as one or ten seconds. This

method is used in the two following exercises.
5.2.1 Logic Level Frequency Measurements

EXERCISE

Measure the frequency of a logic level signal. Use EXT 4 (as in the
preceding exercise) to detect the rising edge of the signal, and
count the occurrences (in decimal). Use timer O with a software
counter to measure one second intervals. The Timer O interrupt
decrements a software counter, which starts at 64 to count 100D
intervals of 10 milliseconds each. At zero, the counter is reloaded.
The frequency count is copied to another pair of memory locations and

the counter locations are cleared.

The main program does only initialization and display. Program port
2 and timer 0. Load timer O with 5000 for a 10 millisecond interrupt
interval and enable EXT 4 and Timer O interrupts. Then repetitively
load the copy of the frequency count and display it, as suggested in

Figures 5-5 and 5-6.

5-25

ANALOG TO DIGITAL INPUT

RST 5 Interrupt

Save registers
Address and decrement
software counter

#0

=0

Software counter-— 64
Copy and clear frequency
(8303,4) -— (8301,2)
(8301,2) -— 0000

(A) =—— 01 to enable Timer 0

RST 6 Interrupt

Save registers

Address and increment
two byte frequency

count in decimal

(A) == 09 to enable EXT 4

Reenable Interrupt
Restore registers, EI, RET

Frequency Measurement - Interrupt

Figure 5-5

FREQUENCY MEASUREMENT

CODE

A D D R

Y
JM 0& A\
3 | N .
Y M L 19 :
(0]
M N MM N m,
Y | I 3
\Y _
= % |9
R T N I S N B N S B S BN NEES
N O[] IS =] o =] (Y %] ™ B ~
PR N L NN _ <
SN NEEENESEN S
S N
RN CIHNEEENE RS ~ Y 0
NEE R RN NN < =
ST IQ = NENEE U 2
fﬂsFE437£034E/3EH33D/£302
N YR NSRRI o SR N[
Olr|N|m|gslvw]o N |lo|gc|pjo|0jW|lw]lo|~|N|O|F|[O|O|N]|® alolalwlelolelaloml< ©
Q N
R R

133HS ONIA0D

WILSAS ONINIVHL H3LNdINODOHDIW

SIW3LSAS H3L1NdWOD d31VHOILNI

5=27

FREQUENCY MEASUREMENT - INTERRUPTS

CODE

A D D R

N
Q 4 ANEHEN
N k I
. VN N N MW S
{ {
. JL. “M W AM //j/, 10
_J . 0
; NEEEEAE W@M 3134
& SEARERSE Y P |% -
Q ~
Q N
R Q RN X NER
ul |8) vl [5 T |m o |~ =
puﬂ ™ =% QAlX| N + | ,N e
B S RS K TIx| SN
BSEN X .
Y| N Q viU|H SINNEENE SN (Y S
NS 3 N RNNEEERELE NENEINNSLIE
Q[L QA RN ENE = (o [Q]aulx
& N Q[o] g /oG NNw [N W[[N m s o] o W™ W N[N g
] TN] ol S0] S IS W DN) QS DN [)N IR QN[N))
O (wjo I Now|lo|lgln]j]o|0jlWw|w |oleela]m|at|v]|lO |~ ol |o|l0|wlu|ol|n]|m]|s|n] © -]
N Y © ™ AUNY
% N R RN
Qy © S o |89

133HS ONIAOD

WILSAS ONINIVHL H3LNdNOJOHIIW

SIWILSAS H3LNdW

@)
(@]

0

J1VHOILNI

5-28

CODE

A D D R

R
Q Q _wA
Sl R q
wﬂ N
% rw o)
WW 0 /MU,MI Ww/ H
uW R JW MM ,fw m
X N J ¥ N | o
~N I~ RNy Q Q ~
NEE NS T|Q S U] X
Iﬁlm TS VRN N T ~ ™ | -~ :A/m
s TRy QT (YR ENRS
BN
Uiyl [N LN [XN [N s nada
NI RS A [o [Fg> [R 2O ¥
Qs |b Qx| [N=S [H=lg [NsHSolb
Aoy g SN N N X M W N QUSSR M) 9 ™| N M\ [
| 9 QIR S ™) N N N] < x| o] o) Q 5] A ¥ NQ O
Ol | lO|INO|lo|go|Oo|OlW|L ||| x| wW][O|N~N]|® p(lolojlw|luwlo|—]] o] = 0
\ N
N Y

133HS ONIAOD

WILSAS ONINIVHL H3LNdIWODOHIIN

SIWILSAS 43 LNdNOD A3 LYHOILNI

5-29

ANALOG TO DIGITAL INPUT

5.2.2 AC Input Signal

EXERCISE

In the preceding section, we measured the frequency of a logic level
signal. Often the variable input may be an ac signal, without
sharply defined edges. For accurate results, the input signal must
be squared. A sinusoidal input may not be detected at the same point
in its cycle every time. Squaring can be accomplished with an
integrated circuit comparator or an op-amp connected as a comparator.
The interface board includes a comparator in the analog input circuit

which can be used in this way. Figure 5-7a shows the circuit.

CAUTION: The input to the op—amp must not go more negative than
-0.3 volts. If the signal is alternating above and below ground,
a protection circuit must be provided as indicated in Figure 5-7b
or else the signal must be attenuated to swing within $ 0.25

volts.

CAUTION: The input to the op-amp must not go more negative than
-0.3 volts. If the signal 1is alternating above and below
ground, a protection circuit must be provided as indicated in

Figure 5~7b or -else the signal must be attenuated to swing

+
within - 0.25 volts.

Signal
Input

Signal
Input

Signal
Input

ANALOG TO DIGITAL INPUT

50K -
18K

Ferranti 425
D/A Output

COMPARATOR CIRCUIT

Figure 5-7a
H ANALOG IN
100K

GND

M- ANALOG IN

Germanium
Diode

GND

MA- ANAT.OG IN
GND

Protection Circuits for AC Signals

Figure 5-7

— 2B3

INTERRUPT

ANALOG TO DIGITAL INPUT

The input signal to ANALOG IN is amplified (with unity voltage gain)
by the first op-amp, attenuated if necessary by the pot, and compared
with the output signal from the D/A converter. A threshold signal is
provided by the converter. This can be set very close to 0 volts, or
to some more positive value. When the input signal is greater than
the threshold, the output of the second op—amp is a low logic level.
When the input signal is less than the threshold, the logic signal

goes high and can generate an interrupt or be sensed at port 2B3,

The cassette modem output provides a suitable signal to test this
program. It has an amplitude of about % 0.3 volts with a very high
source impedance. Connect a 100K resistor from analog input to
ground to ensure that the signal stays within the safe range for the

op—amp. Set the ANAIOG 1IN pot to the far right, and connect the

CASSETTE AUX output to ANALOG IN.

With this arrangement, a RST 6 interrupt will occur whenever the
external signal goes below the threshold. Since there is no latch
for this interrupt, the program must monitor port 2B3, -and not enable
the interrupt again until this signal has become low. In the program
of Figures 5-8 and 5-9, timer 1 is used to interrupt the main program
often enough to detect when the comparator output goes low and then
enable the A/D comparator interrupt. Timer O again counts time. The
frequency 1is counted in response to comparator interrupts instead of

EXT 4 interrupts.

5-32

ANALOG TO DIGITAL INPUT

RST 6 Interrupt

Save Registers

Read Interrupt Enables

Mask to test Comparator
Enable Bit

Comparator Enabled

Timer 1 Enabled

Read interrupt status
Mask to test Comparator

Comparator High

Low

Disable Timer 1
(CNT2) —=— 02
(A) =— 07 to enable comparator

Disable Comparator
(CNT 2) =-— 06
Address and increment
two byte frequency
count in decimal

"

(A) =— 03 to enable Timer 1

—

(CNT 2) =— (A) to enable
Restore registers, EI, RET

Sinusoidal Measurement -- RST 6 Interrupt

Figure 5-8a

5-33

ANALOG TO DIGITAL INPUT

Program Ports - Port 1B Out

Program Timer 0 and Timer 1

high byte, mode 2, binary

Load Timer 0 for 10 milliseconds
Load Timer 1 for 125 microseconds
Enable interrupts for Timers 0 and 1

Display copy of frequency count

AC Signal Frequency - Main

Figure 5-8b

5-34

ANALOG TO DIGITAL INPUT

Interrupt service for this program (Figure 5-8a) introduces a
primitive interrupt manager. The occurrence of RST6 does not by
itself tell the program which interrupt source must be serviced. VWe
read the interrupt enable byte (port 2C) and test whether the
comparator or timer 1 was enabled to create the interrupt. (We know
that only one has been enabled.) If the comparator interrupt was
enabled, we know that the comparator caused the interrupt and now
must be disabled and timer 1 enabled, and the frequency count should
be incremented. If timer 1 was enabled, we read the interrupt status
byte (port 2B) to decide whether it 1is now time to enable the
comparator (and disable timer 1) or whether timer 1 should be

reenabled and the comparator remain disabled.

Clearly, the function of testing the comparator signal could be
relegated to the main program, which has very little to do. We used
the two RST 6 interrupts in order to demonstrate one means of

distinguishing the source.

5-35

AC SIGNAL FREQUENCY MEASUREMENT

CODE

7\ E
Lo

A D D R

%/\ga«xfa

Crocarnd) fr To

%MW

A%anqu&éﬁ@uu&rnil/
% Lo/

A&/ﬁuiﬁﬁdtaonél/

FoTrretl O

Lonatide T e O

M\Z/MW/

Figure 5-9a

M TR

TI1TIM| /

MViL| A, £
O\V|T| |CWT]7

MVIZ] 1A |72
MIVIZ] 1A |24

0\V|T

OW\7| |7\ZM|C|T

MVIZ| 4], 6|4

o7 Tlzim™le |7
MoV 1A 150

Ol0lT| [TIZzMlo

MVZ| Al 10|/

OlVIT

MVIE| 1A, 10|3

LIAILID] | L1303 E/a-of'a?ﬂma@
CIAILIL Dwofbﬂgg?

Ol |PloIR T |2 ¢
JMIP| |22 /|C

R4

SlE

/5

o3

/e
L2

0|3

o0\7
3£
o~
J\E

7|2
23

23

/|7

AL

D|3
/|7
JIE
/1
J\E

J10
213
o/
e

2E

2|3
O £
2|4
o\3
2|3
4
2D |/
o\lZ
2|3

8 XL O

8 2/ 0

PR/ c
8 22 0

133HS ONIAOD

WILSAS ONINIVHL H31LNdWOJOHDIW

SW3LSAS H31NdWOD QILVHOILNI

5=36

AC FREQUENCY MEASUREMENT - INTERRUPTS

CODE

A D D R

N
N N ~
9 Ay N ﬁ N U _M \
R > HERAERE NE
iR 3 S BREE S19 [3 :
w{ N SRR BER o
Y)
R : SEMEEEE ;
2 Q ; 5
O X[% §4 |IN 5 Y 2
H & Q
W Q Q
NES B N RIS N VIR
% L[S Y o [N < % [™ NS R
tita Q=] L [Qx| S I S 9
Qlw RS 5 S <L NENES SNENERRN
Wi w|w NN Bay
V¥ alle]ls Qo Vv A I [En % HE & QA [N
| < DI X < S x NV | o Y [N W
ZEES Qa4 b NNIE o =Y QENFW T [QW
* %] * *
o[\~ 9[9[Q][] W] f e[DWW W] QNN [N\ [ea[m] YN g
U S o) S sl W o ad o[N) N AR S o] SR QW LD
~lnNn|m|t|vw]jo|N|ow|lo|gd|la|jlo|]o|lw|lwhw|lo||Nn|mjg|v]|/o|N|]lo| <[njo|la|lw|luw]|]o||a]lm||[w]|© -]
3 0 0| ™ YRR
X % o S|]
% o Na N |

133HS ONIAOD

WILSAS ONINIVHL H3ILNdWODO0UHDINW

SW3ILSAS 31N

o

W

0

0

Q31VvHOILNI

5-37

FREQUENCY - TIMER 0 INTERRUPT (continued)

CODE

A D D R

Q Q /W,
. N R >
N \ J
W W . N RN %
SIS ; :
& M/ I 33 % o
1R m ER 5 3
DN N\ § R @| &
H
i
~ > 3 N N N
NEA NS IR =9 NHEEEE V[
I NE! T+ 11 ISR <
NEEE T (XY T (DT X[
BN w
Qliyl | N [x[>IN] [XN X %YaA|a =
SN [[X2l T
A= |h Oy NS S N=TE NENFEQL %)
o[l >IN S ol o[Wiss| Qo \s]| @ | o] x|~ o]\ [w
o]y QO N [N o]] S] o[QS ™ [NO N[Mg
(=] tlIwlo|INO|lo|c(an|jlo(QjlWwlL ||l (vfoN]o|lo||alo|0|lw|lw|ol-|la]lm| <
4 N
e %

133HS ONIAO0D W3 LSAS ONINIVHL H31NdNODOHIIW SIN3LSAS H31NdWOD d31VHDILNI

5-38

4ad%r W e vavea

wan

&

INITERKUYLT DRVIGVL LAl

CODE:

A D D R

R
Q
R W |
N
w RN N _M, N N 1 3 _MJ/ 2
< J mcp W NS &
L[99 3 .

3 M SRR i N ¥ Awww MW,]|
W SNER RUSEERLRE) i
J Q Q
AN ~) 4 ™ /o A W % SIS
~ Qg Q [N [™ N~ ™) Q |~ N [

SN LI + N NN R A
q |9 SUNNEES o Q |9 ™ & () [s
Q | Q

N NN | H Q. LY NN N

NEEEL N X 1] (R [NENERNER
N (g [h SENEN h N Y [P T | [S] [P
Q| Wy Nl N UGN OIS N ™ [0\ [0[Q N og o [\ | S W | ™[W D 0N | =
R QW QNN NN D Qs V[MNQ]QNQNV ™ N QR QN VRS
o migsivioIiINnfolo|glmd|jlo|lQ|lWw|uw |[Ol-r|la|olag|v]OonN|olo|d|la(lojlQ|lw|jun ||| a|mn|<
M | N N

o =

(-] Bf [--)

133HS DNIAO0D W31SAS ONINIVHL H31NdWODOHJIN SW3LSAS HILNdIWOD A3LVHOILINI

5-39

ANALOG TO DIGITAL INPUT

EXTERNAL CIRCUIT BOARD
CONNECTIONS

ANALOG
IN
L___T P
w _.D_.__
0,
OPTO
ouT 1K 10K
Tﬁ Vcc
(+5 volts)
luf =X 1K
GND
—& -2 _L

Connections for Voltmeter Experiments

Figure 5-10

ANAIOG TO DIGITAL INPUT

5.3 A/D INPUT - VOLTAGE

Conversion of a voltage input to a digital value 1is generally
performed by comparing the input signal with a voltage generated by
digital to analog conversion. The result of the comparison is used
to adjust the digital value until the two voltages are alike. A/D
converters differ in the adjustment procedure, three principal
methods being repetitive ramp, tracking, and successive

approximation. We will experiment with each of these.

The comparison between the D/A output and the analog input is the
primary purpose of the comparator circuit and gating that were
introduced in Section 5.2.2. Refer again to Figure 5-7a, which shows
the circuit. For direct measurement of a voltage that is within the
0 to +2.55 volt range of the D/A converter, the ANALOG IN pot can be
set for no attenuation of the input signal. For a signal between 2.5
and 5.0 volts, the pot can be set to attenuate the signal by a known
amount . Signals greater than 5.0 volts must be attenuated
externally, because the op-amp cannot handle a signal greater than
its supply voltage. (It will not be damaged by any signal up to +30

volts, but remember that signals lower than -0.3 volts will damage

the op-amp.) Since our OPTO OUT will be less than 2.5 volts, we can

set the ANALOG IN pot for no attenuation (rotate fully to the left).

A variable DC voltage is needed for these experiments. The OPTO OUT
of the interface board is connected through a pot to 5 volts (see
Figure 5-10). With an external 1K resistor to ground, a voltage
betwen 0.4 and 2.4 volts can be obtained. A capacitor from the

output to ground is needed to remove noise from the signal. The

5-41

ANALOG TO DIGITAL INPUT

signal is to be connected to ANALOG 1IN, and your voltmeter will be

connected to either ANALOG IN or ANALOG OUT.

Note: If you are familiar with A/D conversion, you may want to skip
the exercises of this section and proceed to Section 5.4, where the

use of the automatic A/D input feature is described.

5-42

ANALOG TO DIGITAL INPUT
5.3.1 Output,Input and Display Subroutine
EXERCISE

All of +the voltmeter programs involve changing the digital value
repetitively, comparing its analog conversion with the input signal,
and making a decision on that comparison. This operation involves

the following steps (with the digital value kept in register L):
MOV A,L (A) <--- digital value
OUT PORT 1B To D/A converter
(about 40 micro-seconds delay is required between OUT and IN)
IN PORT 2B Read interrupt status
ANI 08 Mask for comparator

Both the digital to analog converter and the comparator require some
settling time before the comparison of D/A output voltage to input
voltage is wvalid. This delay should be at least 40 microseconds.
Usually some other function can wusefully be accomplished, but

otherwise a delay loop can be used.

These steps will usually be followed by jump if zero, or jump if not

zero for the decision.

5-43

ANALOG TO DIGITAL 1INPUT

Output Digital Value
(PORT 1B)=——(L)

Save registers
(ST) «—(DE)
(ST) «—(BC)

(DE) «— 0002 for minimum delay
Test command for RUN

(C) = 14

(D)«—10 for 1/4 second delay

[

DI to prevent monitor from interfering
with delay loop

(ST) «— (DE) Save delay
(A) «— (1) Digital value
CALL DBYTE Display

(DE) «—(ST) Recover delay

—P1t

Read and Mask Comparator
Display at 83FC

Save in register C

Test keyboard

Key Pressed

Decrement and test delay

Not Zero

(A)<«—(C) Recover comparator
ORA A Set Zero if low
Restore registers, EI, RET

Output, Input and Display Subroutine

Figure 5-11

ANALOG TO DIGITAL INPUT

For convenience in debugging several voltmeter programs, we will
create a subroutine that will perform output and input, and also
display the digital value and the result of the comparison for some
fixed length of time before allowing the main program to proceed with
its operations. It will save registers so that it will have exactly
the effect of the above process when it returns. In additiom, it
will make two tests to defeat the delay, as shown in Figure 5-11. If
a key input command previousl& entered and saved in register C is RUN
(=14) a minimum delay is set and the display is bypassed. Otherwise
a 1/4 second delay is entered and the digital value is displayed.
Within the delay 1loop the keyboard is tested, and 1if any key is

pressed the delay is abandoned.

Note that saving registers, loading the delay and testing the command
provide marginally enough time for the comparator to settle after the
digital output. To guarantee enough time when RUN is used, a delay

count of 0002 is used in this case.

5-45

ANALOG TO DIGITAL INPUT

Program Ports - Port 1B Out

CALL ENTBY
(L) =— data
(A) =— command

(C) =— (A) to save command

CALL JIDSP to output
value, read comparator,

and display both

Test Program for OIDSP

Figure 5-12

ANALOG TO DIGITAL INPUT

The comparator is read, displayed and saved within the delay loop,

by:
IN PORT2B Read interrupt status
AN1 08 Mask comparator
STA 83FC Display
MOV C,A Save comparator bit

At exit from the loop, either when the delay count reaches zero or
when a key 1is pressed, the comparator bit is recovered from (C).
Since the flag set by masking has been lost by the keyboard test and
delay count, ORA A 1is executed to set or clear the zero flag

according to the content of (A). At exit the zero flag is set if the

digital value is less than the input voltage.

A trivial test program, shown in Figure 5-12, is suitable for
debugging your Output/Input/Display subroutine (OIDSP), and also for
calibration of the potentiometers. Connect the voltmeter to ANALOG
OUT 1initially. When you key in a numeric value, with any command, it
will be output to the D/A converter. Key in FA, STEP, and adjust the
ANAIOG OUT pot to obtain 2.50 volts on the voltmeter. Key in other
values, and find the value at which the comparator output changes
from low to high, as shown on the display. When the digital value is
greater than the input signal, the comparator bit is set, and will be
displayed as a bottom horizontal bar, indicating that the digital

value must be reduced.

5-47

ANALOG TO DIGITAL INPUT

This page intentionaly left blank.

5-48

TEST PROGRAM FOR VOLTAGE DLSPLAXD

CODE

A D D R

X ks
J,M 8
N Sk H
(]
M NI 1
hW4 -~ M B
N SSES i
> Q.
Q G |
Q][] [S¥ =) Qg
oo (] Y |~ 2 N Q
LR FI= \ LIS S
IO (U) N
J d
I~ &I] el QAN [\
NEREEREE RS ASEASES =
= |9 = |9 (= =3I)
QUM [N YK MW QIR MO U] Q|0 R X
M A QIR Q V™ Qo N VVNNY I
QN DO NSOl OjW|wL o=z |[w]O]|N~ pmlolQAlwlw || N|[™m| < [}
Q Q- N
3 X ||y
[--] DJ_ [- <] -]

133HS ONIGOD

W3LSAS ONINIVHL H3LNdWOJOHIIN

SW3LSAS H31NdWOD Q3 LVHOILINI

5-49

QIDSP - OUTPUT, INPUTS, DISPLAY

WG E
D gy U 5
Ww X g |9 MH
X 3 N X 3 215 |43
“M/ N M 4 (LY (NYA
N W W - . B c e ST
& s ,@/ S N A jwEl X
39 w | ™\ /w 3 N\ _,__u zw DNJW
S ,w/w Qﬂ;fdﬂﬂ,@ ﬂwjmn”,. A ol |QH™
8 A\ W Q \ 3 =
N Q - ¥ ~ ANV S
~ Q N) > ~ J <
[N U R ~ J[Q % W T N QlA &
N N9+ 3 [. Ql 18 NSRS 4 2904 [N
| N TN S &) < QY] [[N) | v N
IxX Ny d Wl ol ~
NNEERIE N MEEEEN Q N & NCYEINIECSINEIRNAN
NRNERRNE QR [N NEEERRE QAR [[\ Qlx Wi H NN
= Q| V) b = Qs QM| [[= s [We
Wl QU] o[\ o\ [< YN W N[N Q[NG QA My [~ R [Q N VM [
mA/0C/0ﬂ7F/CZ@a//F$ MONNENRNRNENERN
rlo|l~|N|®M ||| |INX|OD|L|d|lOo|0|J]W|L|([O|l|la]|ow|(g|w]jol~Nn|o|le |||l w|jlu|o|le|a|o|= ©| N~
ol 3) N
of % R
1. 3 ~ .

133HS ONIAOD

WILSAS ONINIVHL HILNdWODOHIIW

SINILSAS HILNdINOD 31VHOIINI

5-50

N |
W M .
SENRS W .
RN R
ﬁanw d/a/u‘ B
N
N
= N o
¥ W W 1 V
N <Y = IS¢ T
E R[S AN &9
4
RS NSCEEN SR
2 1RIR V| V¥ = Y | QM W}
A15 Nh e =[QAlWx
5 _
ul Q| QY[[609] TR [~ Q[N
Q] N ™[W N N NI Q[VRN)
glo|~[N[M| (V]| OoINP|lo|l«|ld|o[O|W|lL[O|~N|MM|F[WO[O]|N olo/lalw|lw|o|=l 0| < -4
D.£ F
"y K

133HS ONIA0D

W3 LSAS ONINIVHL H31NdIWOD0HIIW

SINFLSAS H31NdWOI A31vHOILNI

5-51

ANALOG TO DIGITAL INPUT

Program Ports - Port 1B Out

CALL ENTBY
(L) = data
(A) -=— Command

(C) =— (A) to save command

CALL @IDSP to output
value, read comparator,
and display both

(leave 3 NOP's for a patch)

CALL SCAN to test keyboard

Key pressed

Generate Ramp
(L) =— (L) +1

Voltage Ramp Generator

Figure 5-14

ANAIOG TO DIGITAL INPUT
5.3.2 Ramping Voltmeter

EXERCISE

Modify the test program as shown in Figure 5-14, to generate an
output voltage ramp. After output and delay, test the keyboard and
go to CALL ENTBY only if a key is pressed, otherwise increment the
digital value and go again to OIDSP. (Remember that OIDSP exits
immediately when a key is pressed, but it does not indicate whether a

key was pressed. Therefore, the main program must test the keyboard

independently.)

Now the program will cycle the digital value in register L, counting
from 00 through FF and back to 00. This will generate a voltage ramp
at the D/A output, as shown in Figure 5-15. When the output is less
than the input, the comparator bit will be 1low. When the output
becomes greater, the comparator bit will be high. Your voltmeter on

ANALOG OUT will show the ramp. Suggested code is shown in Figure

AINALOG OUT
ANALOG
Pt

5-160

COMPARATCE
D/A Outputs and Inputs

Figure 5-15

pplect/

K K
N N N
X N
R % T, E WE .
. N -
1L ~ I
. A // [Te)
W% 1l 4 &jz w ™ v
m S)J/.MWM .fw /Aﬁ_u _ B
N eRESSERS SR AREYSEL R E
> Q
Q V) =2
HANENENEE t~ A X N W
mi N[O 2 NI) Q Q
RS L] Wy 1Q © ¥ 5
Bl (VY Y (| V) Q |
& ~J < -J
WZ NENEBINENE NN QARSI x|Q
B [[[9K SEES INBEERS U NP
HRESHEREISEES = [[RRRN [[| [Nw
5 _
ol WMWY 0| UOIR[N| MO LA Q| %] Q| Q| [S¥| | S| |9 |4 Y
NN QN] N o[V ™ o/ W[V Q] W/ N S [V[Q
glo|s|ln || |w/o|N|w|lo|gc|la|jlo|0jlw|lw o[t w]|oiN|w|lo|d|ajlo|l0lw|(ln|oj=||m| < ©
D& 70& Q N
a NN
123 ~) 8

133HS OSNIAOD

W3 LSAS ONINIVHL H3LNdWODOHIIW

SIWILSAS H3LNdWOD A3LvHOILNI

5-54

ANALOG TO DIGITAL INPUT
You may want to shorten the delay for each step by reducing the value
loaded for the delay loop in OIDSP. With a value of 1000 the full

cycle of the ramp will take about 60 seconds.

Now watch the display of the comparator bit. It will be blank until
the D/A output exceeds the input voltage. As soon as it appears,
press NEXT and hold it down. This will stop the program (ENTBY will
wait for release of the Lkey) and the output voltage will be
displayed. When you release the key ENTBY will return with 00 in

register L to start a new ramp.

Obviously this function need not depend on your finger, since the
processor has the decision bit available. OIDSP returns with the
zero flag set when the comparator is low, and cleared when it is
high. Insert JNZ after the return from OIDSP, to a patch that will
display the result and restart the ramp. The program of Figure 5-17
calls an alternate entry to OIDSP that bypasses the digital value
output and the check on the stored command, and loads a different

delay time.

5-55

ANALOG TO DIGITAL INPUT

(As in Figure 5-14)

-

CALL OIDSP to output
value, read comparator,
and display both

Comparator not zero

/

CALL SCAN to test keyboard

Key pressed ////i:::>
N

Generate Ramp

(L)—(L) + 1

CALL DSPDY
(alternate entry to
@IDSP without output

and input and
test for command)

Ramping Voltmeter

Figure 5-17

ANALOG TO DIGITAL INPUT

After the result display, the digital value is set to zero to start a
new ramp. You can see the ramp on your voltmeter. If you press RUN,
the display and delay for intermediate results will be inhibited by

OIDSP, and only the final value will be displayed.

Now move the voltmeter to ANALOG IN to observe the input signal.
Compare the value displayed by the program with the measured voltage.
They should agree closely, but if some error exists, you can adjust
the ANALOG IN pot to compensate for it. Adjust the OPTO SENSE pot to
change the input value and observe the value measured by the program,

comparing it with the vol tmeter.

RAMPING VOLTMETER

N =
N N Yy & 3
q M M L \!
Q
S m m D N u g
N X ‘ -
SR AW A
W% A4 ij IR N wszr 1
N SSECCCHERHEREEENER PR
> U
KQ Uy >
Ql [[} [<% b~ Q Q < g W
oo [N (o [2 <N X \S) S N
1= L T= W 1Q =% < X =
<G ([[(v) Qy oy [
d J L
NENEEERENE NN N J x| al
N EEEE RN O QT > < @) R =
= (9 I (9 S SR b) e alle
wl WL W[S M| (OR[N DO Q] QUS| QB[S | S| | O &[] Wy =5
3N M [NQ] Qo [V ™| o0 Ua Y % N v o] Q] Q] o] @l
oMM | O/ D|O|O|W|w|O|l-~r|N|m|a|]|O]|~N]|® <|la|lolajlw|w|ofj=|a|m]| < ©
Dd w M ~
3 N N | A

133HS ONIAO0D

N3LSAS ONINIVHL H31LNdWODJOHIIW

SW3LSAS H31LNdNOD d31vHOILINI

5-58

LW VLSO LUN LU LD 1 D

AN AL AV VA A T

CODE

: -
N ..aM w
iw :
[=}
N\ 21
U <N
~
Q Ql [\
“ Q Q
Q AN
dl S
J
~ QO
NN T
J x| |k
D2££+03£2
VN] Q) Qg
Cle= | NI M| D] O™ QWi k||l []O|N~ alolalwlul|lole=]|l]l M| = 0
¥
™Y

133HS 5NIA0D

W3 LSAS ONINIVHL H31NdWOD0HIIW

SWILSAS H31NdWOD d31VHOILNI

5-59

OIDSP - OUTPUYT, LINPULS, LULSFLAX

N | n_.w 0 (s
3 3198 o2
N | N _. &l |9 & H
N -) mlf : > |4l mL
h 4
’ / 4 J) FN_V _,ZWC
W R S P Y
.M, W JUA N J N ﬂ ﬁw N_mm
M : w MJ/ NEVR $ 1Y W = 3 | |93
9N N RN N 1Pl _|AH |alH &
Q %) a4] = <]
~ O ™ Q > ~) d |
< Q \ ¥ R~ J|Q 4 W <& ~| |QlA| &~
ol I”ARl 1 N [INERER NEEER 2|94 |9
LA ~ <N (&N | S < Qlal |9 | J & o] N]
N[[Wilu|H i = R Q. N N (N HE W] | W
> DD SV W > WY ok o= |3 [+ Olol [YlwNH [MH
TIQ [aAd T | b T QAT QAR [A =2 (WX
NSNS SN NN S N SN N AN NN AN RN OIS
m720@@/007F/CZ£//F$7¢¢02$0@03Ff¢&
rlo|l~iNIMIs | oOoINn||o|qg|lajoj]ajlWwiL (ool tlv]/fonN|o|lo|d]|la|lo|d|lw|(lw|ole=la|™m| = o |~ o
DM. _ M
K k o .

133HS OSNI1A0D

WILSAS ONINIVHL H31NdWODOHIIW

SIN3LSAS HILNdWOD A3LVHOILNI

5-60

Vs

VW es m—————

CODE

A D D R

N > -
/w) N Qo Jd
AIESEE RSN :
N{ ~D ©
M @4 M N _ N i 7
AN [W W N & 2 0
N JM NIERR P.M 45 2
> NS YRR A me o
T . Q Lo
Q Q W |J
~ J . S Q W)
0% y W i N S _ L= u)
IS Y L ™ QAIQ| 1 % 2|d
QU [Ak KYYRVAQ| |- A N o] J| X
| | | SSES | wla
e XNV N YA [NyunH [a¥ ~u
X = QN = Q[N W] * JH o
N |Hlb AlT/elh | [To/NAjugajal 2 Al
Q| S vy [[g o s [N [[N L[o [N Q[o] 9w
QLY ™ W N NN QYA N N AQMN N VDY NN VRN
Ol N[M|stIWO]jO N |loo|g|ld]jo|la|lWw|k (ol w/fOo|~N]0 o OOl |lwjuw|d|~] |0 < ©
X N W |Q
B N |
(-] 04 © f (]

133HS ONIJOD

W3 1LSAS ONINIVHL HILNdWODOHIIN

SWILSAS H31LNdWOD G3LVHOIALNI

5-61

ANALOG TO DIGITAL INPUT

lComparator
Bit High

Compare new value to
previous value and
save new value
(A) =— (L)
CMP H
(H) =<— (a)

CY set - new<old

CY clear
Conversion
Complete

CALL DSPDY
to display result

Decrement digital wvalue
(L) —~— (L) -1

Jump back to
| CALL OIDSP

Tracking Voltmeter

Figure 5-19

ANAIOG TO DIGITAL INPUT

5.3.3 Tracking Voltmeter

EXERCISE

If an analog to digital conversion is being performed on only one
input signal, after the first conversion is complete, it is not
necessary to generate repetitive ramps. Instead, the digital value
can be decreased when the comparator indicates that it is greater
than the input, and increased when it is less. Now the D/A voltage
will track the input signal. Modify the ramping voltmeter program so
that it enters a tracking mode when a conversion is complete. When a
key 1is pressed, it should start a new conversion. As before, the RUN
command will cause display of completed conversion only, while NEXT
will call for display of intermediate results. When the program is
in tracking mode, the conversion is complete when the comparator bit

becomes high after an increase in the digital value.

ANAILOG TO DIGITAL INPUT

Figure 5-19 shows the modification to the ramping voltmeter. The
program is identical except for the action taken when the comparator
bit is high. Now after each test by OIDSP, if the comparator is low
the digital value 1is incremented as before, but if it is high the
digital value 1is decremented. If the comparator remains high for
successively lower digital values the decrementing continues, so as
to track a decreasing voltage. When the comparator 1is high at a
digital value equal to or greater than the previous value, the
conversion is complete and the long display is made. Now the digital
value output will alternately increase and decrease by one bit. A
complete new conversion, starting at zero will be started only when a

command key is entered.

Connect your voltmeter to the ANAIOG OUT signal, and watch it track

the input as you adjust the SENSE pot.

5-64

TRACKING VOLTMETER

CODE

A D D R

A
)

X QQPR
\ N
ERRR AR 3
R NN o
’ M NS M 0
..J. M MMQOT &
SESS N 2
~ e
> Q|4 >
A W Zs
J| <l Q ZRIYY
T ~) 0a HIIIN.
<|x|=H o 4% YN H
bl [
>0 0 a4 o8 Q| W =
ox(o[= ol R
=95 |J Al A [N
QIO [X[Q™
N Q] WY By [
Sl ||| |lplo|lojlWw|L]lo|leelN|m||WVO][®O®|N DO O|w{uw |||l |m|< ©
NS
¥

133HS ONIAOD

W3 LSAS ONINIVHL H31NdNODOHIIN

SIW31SAS H31NdWOD A3LVHOILNI

5-65

ANALOG TO DIGITAL INPUT

5.3.4 Successive Approximation Voltmeter

EXERCISE

The ramping voltmeter is relatively slow in reaching equality of
output and input, and the time required for a conversion varies
according to the input voltage. The successive approximation method
overcomes both of these drawbacks. Instead of starting at zero and
ramping upward, the D/A converter output is started at one half of
full scale and increased or decreased according to the comparator
signal by successively smaller amounts (1/2, 1/4, 1/8 - - -) until
the increment or decrement of one least significant bit has been

processed. Figure 5-21, below, shows the signals.

/

D/A OUTPUT

///GmﬁﬁmﬂDR

Successive Approximation Signals

Figure 5-21

ANAIOG TO DIGITAL INPUT

After all of the successively smaller increments or decrements down
to one least significant bit have been processed, the digital value
is within + or -1 bit of the analog input. If the process were
stopped here, the result would always be an odd number, since in the
last step the digital value, up to here an even number, was either
increased or decreased by one. The procedure of Figures 5-22 and
5-23 avoids this problem by shifting the increment right just before
adding or subtracting, and doing an ADC if the comparator is low, but
SUB if it is high. Thus when the increment reaches zero, the digital

value may still be increased, but will not be decreased. The result

is therefore within + 1/2 bit of the input value.

As in the preceding program, we will enter a tracking mode when the
conversion 1is complete, and start a new conversion when NEXT is
pressed. With the RUN key, however, we will start a new conversion

as soon as the old conversion has been completed.

5-67

ANAILOG TO DIGITAL INPUT

Program Ports - Port 1B Out

Set initial command to NXT
(C) =— 15

® -

Start new

sion s
Conversi (L) =—— 80 Initial value
(H) -=— 80 Twice initial
increment
® .
Continue-
Conversion CALIL OIDSP

Read Interrupt Status
Mask for Comparator Bit
(Returns zero flag if low)

Shift increment right
(Divide by 2, (CY)=-—LSB

Comparator LowJ///J\\\\Comparator High

(zero) i\\\v/’, (not zero) |

Add with carry Subtract
Digital value Digital value
+ increment - Increment
Subtract 00 Add 00

with borrow with carry

to prevent to prevent
going beyond FF going below 0

Go to test keyboard
and test for
conversion complete

Successive Approximation Volmeter

Figure 5-22a

ANAIOG TO DIGITAL INPUT

"CALL SCAN to test keyboard

Key pressed

Test increment for zero

(1+) =0 ? CALL ENTBY

(c)&~ command

Not Zero

Continue
Conversion Zero

Conversion

Complete Start new

conversion

CALL DSPDY to
display result

Test command for RUN

Start new
conversion # RUN

Tracking Mode

(H)$=02 to make
next increment = 1

Continue Conversion
in Tracking Mode

Successive Approximation Voltmeter (continued)

Figure 5-22b

5-69

SUCCESSIVE APPROXIMATION VOLTMETER

CODE

A D D R

8 B
V /J VU
N . w 3
. ww . 3 PW h
. . x.w b H
. J /_H_ o}
. ~
W Al 14 g |2
SHESN alg ™
Q NS Z'
& Y9 %
Q| NI] N A Y ~ Nl H
NI N RN N] Y S B <& NE|
1 N L N ~ N N Q +~ .;,IX Q ; N ™~ @
I (O] [(9]] [Y[H . <% [F[EY SN ENN IR oo Ly
J : W @
NENENEINERNEAE ~ R R VN[| QN[> ~
D Y D D |Qx AN 1 Q|| Dl = QR | SV S Qu
S E QI (= J ISSSEESLR Koy b Y (= 2N
Wl RN W x| | @ F/O&D0£6F7D4544503/a¢505
ol QI QYN QI) N2 0[])]]| DN N S8 DN oo & Q[Q=) S N 9\
(=] N ||| N[d|lomjo/0jJlw|w (O]l g|wo|nN]|w|jo|d|a|lo|dluwu|luw|ojl=| || =s|w]|w© -]
Q NN N NERIN
|y N N
3 NI N o | Vo

133HS ONIAOD

W3 LSAS ONINIVHL H3LNdWODOHIIW

SW3LSAS 43 1LNdW

O

o)

@]

J1VHOILNI

5-70

SUCCESSIVE APPROXIMATION VM (continued)

CODE

A D D R

™0
S P -
N a_,_,_ N
S REEREBERRER B RRCRIE
3115 339 CRERNER: .
M,, 3 EREEREREES M s
g . S W . 3
w %m ../gﬂ.JLx T g
> >~
R) . Q
< Q Wy X <5 (W M~ T
J N T (Q V) S Q Q|9 = N
) ¥ IS Q ISNIES I W %
Y NJANEN SRR X (v &
J J d
J ENLN J NN Nl ald Q-
T J QU= Q| [N >~ |[= Ol =
U » X Qb V x| | b s | N Ny e
QI | [Q| 5] e Wi | = | o [on |y | N [s [Ny 5| 0 | Wy 6 [O] Q[N8| ™[O)| R €%
V) 4] Y] o 8] Q][Qf] [U DN Y QXY Y QN0 [N O] Y[V
23456789ABCDF_F0123456739ABCDEF01234 -]
R) N W3
R % % .dﬂwm
EN o % NN
00 a3

5-71

133HS ONI1AOD

W3 LSAS ONINIVHL H31NdWODOHIIW

SW3ILSAS 43i1ndN

L

<

HOALNI

ANALOG TO DIGITAL INPUT

Vee s FERRANTI
% ZN 425E
16
0 2.55 :
VOLT R-2R LADDER L4
| REF NETWORK 500K
| TI T[T T o
. ; —Q
15| Vref = ouT
22uf =& L[I BIPOLAR SWITCHES] -
GRD
é’ = 6.8K
10K
a2
#?_5 130 3 -
181 6
1B2 i
1B3 3
134 10
185 1;
1B6 13
187 -
v TS
cc
LOGIC INPUT
2| count SELECT SWITCHES
1C0
P— HEEEEEN
TTIER 2 4 CLOCK 8 BIT
ANALOG OUTPUT’ = BINARY COUNTER D/a
IN OUTPUT
RESET |3 T
+
3 50K — R ———— PoRr
l.____. b2 BUFFERED ANALGG IN| 2B3
4 o TIMER 2
182 COUNT CONTROL GATE
INTERRUPT
PORT REQUEST
2€3
Vee
315k 40k J20ka
Bits 1-8 "EA‘]
01“]__.me To switches
1 counter
10k
ov: 4415

Logic Input Circuitry

Ferranti A/D Logic

Figure 5-24

ANALOG TO DIGITAL INPUT

5.4 AUTOMATIC A/D INPUT

In Section 5.3, we have been using the microprocessor's arithmetic
capability to control the D/A output for comparison with an input.
Generating a voltage ramp requires such simple logic that our
Ferranti ZN 425E D/A converter includes the necessary counter and

switches.

wo control inputs of the 425 must be operated for automatic A/D
input, and a clock signal must be provided for the internal counter.
Figure ©5-24 shows the logic of the 425. The internal counter is
driven by its clock signal and cleared by its reset signal. If the
"count" control signal is low, as we have been using it, the counter
outputs are isolated by the open collector transistor switches. Then
the R-2R ladder is controlled by the data output from Port 1B. If the
"count" control signal is high, internal gating allows the internal
counter to control the data on the 1/0 port and the switches of the
R-2R ladder. Port 1B must be programmed for input, and the data from

the A/D converter can be read there.

5-73

ANALOG TO DIGITAL INPUT

This page intentionally left blank.

5-74

ANAIOG TO DIGITAL INPUT

The clock for the internal counter is taken from timer 2. When it
generates clock pulses, the Ferranti counts up, generating a voltage
ramp at the D/A output. If it exceeds the analog input signal, the
comparator output goes high. This signal 1is NAND gated with count
control, so that when both signals are high the timer 2 gate input
becomes low, inhibiting further counting. The Ferranti's counter now
contains the digital value corresponding to the analog input voltage.

This value, available at port 1B, is held until the counter is reset.

The reset input to the 425 counter is generated when the A/D
comparator interrupt is enabled or disabled. The D/A output becomes
zero, so the comparator output goes low and clears the interrupt.
Therefore this interrupt behaves as though it had a latch cleared by
the enable or disable interrupt command. There 1is an important
constraint on treating this as a latch, as we shall see in the
following exercise. First we will demonstrate the automatic ramp

generation.

ANALOG TO DIGITAL INPUT

Program Ports
Port 1B In

Program Timer 2
High byte, Mode 2, Binary

Enable Automatic A/D
(PORT 1C)w—01

Load Timer 2 for 32 milliseconds
(TIM2)w—— 00

r

Reset A/D counter
CNT2«—06

-

Read and display A/D input
(A) «—Port 1B
CALL DBYTE

Read interrupt status byte and
mask for A/D comparator

Comparator Low

Comparator High

CALL GETKY (023D) to wait for key
before starting new conversion

Automatic A/D Input

Figure 5-25

ANALOG TO DIGITAL INPUT

5.4.1 Reading A/D Input

EXERCISE

Figures 5-25 and 5-26 show a program to operate the Ferranti 425 in
its automatic A/D input mode. Port 1B 1is programmed for input and
Port 1CO0 is set high to enable the counter. Timer 2 provides the
clock to the Ferranti: here it is set to a maximum delay to make the

ramp visible.

A new conversion is started by resetting the A/D counter. Since we
are not using an interrupt system, the disable command is given by
writing 06 to CNT2. The content of the A/D counter is read and

displayed, and then the comparator input is tested by:

IN PORT2B Read interrupt status

ANI 08 Mask for A/D comparator

The input, display and test procedure 1is repeated until the
comparator is high. The increasing ramp is readily observed in the
display, and can also be seen by connecting your voltmeter to ANALOG
OUT. When the comparator becomes high the program waits for a key to

be. pressed, and then starts a new conversion.

5-77

AUTOMATIC A/D INPUT

CODE

A D D R

| 5
% N u i
SHN : RERE
N L | vy
w@ SESEREA . , NI m M/ wM
bR ARl EEEERE
M) SCERR g PR R
R N | MAm NN G
% M \ \ o
X - S m/d . M 3
\ w1 K RN A ks
B\ N R d ,%M &
N N Q) >
~ ~ <N |~ <% pV
| [~ [ss] [s] X (o] N e | o]][] > ~ N ~ V)
o [N Y (N OIQOE Y [= 9 W ¥ [Q ~ W ~
I IS L Lls N L= (o & NI NER U N
mENEEEEEEEE al |/~ H [Al NN N
: ~ J
N N R NN NEEEN N N J Qo
NEEREEE R EEE RN R EER RS NERNELY T s
= a5 I = NI ESF o M N ¥ |b C)
W %[] Sl ™ W N [N Wi g |0 s gl ss]] W9 A o] Y NQ SN [N 55| QI | [T
NNV N Y N Y N Q] QN] IS AL N N YR QM NN VIS
o M| wjo|INo|lo|g|nlol0|lWw|w ||l ~N|O|lo|d|a|lOol0|w|lw|o]=a]|m|<
Q ~ Wa ~ :,a
3 AN 2

133HS ONIAQ0D W3LSAS ONINIVHL H31LNdIWOJOHIIW SIW3LSAS H3I1NdWOD AILVHDILNI

=

5-78

ANALOG TO DIGITAL INPUT

Now interchange the test of the comparator and the input and display

of the A/D value.

CNVRT MVI A,06 Reset A/D counter
ouT CNT2

TEST IN PORT2B Wait for comparator
ANI 08 to become high
JZ TEST
IN PORT1B Read A/D
CALL DBYTE Display voltage
CALL GETKY Wait for key
JMP CNVRT

It appears that this should display only the final voltage, since we
read it when the comparator is high. Instead, it sometimes displays
00! This demonstrates the constraint previously mentioned. The A/D
comparator does not reset instantly, as does a latch. After the
reset, the D/A output goes low very quickly, but the comparator takes
several microseconds to respond. Therefore reading the comparator
immediately after a reset may find it still high, and the program
above falsely supposes that the conversion is finished. If you press
a key quickly twice in succession, or press it again as soon as 00 is

displayed, then the program will make the conversion properly.

5-79

ANALOG TO DIGITAL INPUT

This page intentionally left blank.

ANAILOG TO DIGITAL INPUT

A Dbetter scheme is to rearrange the program again, placing the reset
before CALL GETKY. Then, if you 1like, replace CALL GETKY with CALL
DELAY (0236) for a fully automatic voltmeter. You can speed it up by
loading Timer 2 with 02 instead of 00, +to give a clock interval of
125 microseconds instead of 32 milliseconds. In the solution given
in Figure 5-26, this can be done by deleting the XRA A instruction

before loading Timer 2. We shall investigate the effect of the clock

interval in the following exercise.

ANALOG TO DIGITAL INPUT

Program Ports - Port 1B In for A/D

Program Timer 2 - Both Bytes, Mode 2, Binary
Set Port 1CO high for automatic A/D

(HL)«— 0000 for initial time interval

Load Timer 2 from (HL)

Enable A/D Interrupt

s

Display A/D value stored by interrupt

Test keyboard

No Key

Key Pressed

CALL ENTWD for Time Interval

RSTé6 Interrupt Service

PUSH PSW only

Read and Store A/D Input
Reset A/D Counter

POP PSW, EI, RET

A/D Input with Interrupt

Figure 5-27

ANAIOG TO DIGITAL INPUT
. 5.4.2 A/D Input with Interrupt

EXERCISE

Since the A/D comparator generates an interrupt signal, the input can
be accepted with an interrupt service routine. 1In this exercise we
hall demonstrate two risks with the interrupt service and a

technique that protects against both.

The main program (Figure 5-27) programs Timer 2 for two bytes and
initially 1loads it for 32 milliseconds. The A/D interrupt is
enabled. Now when a conversion is complete the interrupt service
routine reads the A/D input, stores the value in memory, and resets
the A/D counter. The main program displays the stored value. Now if
a key 1is pressed ENTWD accepts a new interval for the clock to the
Ferranti and loads Timer 2. Otherwise it merely displays the voltage

repeatedly.

Do you see the danger in this program? Write and test the program
and try to identify the problem that may occur in the solution from

Figure 5-28.

Interrupt service only provides the time for POP PSW and EI after
resetting the A/D counter. If the comparator does not respond in
that time, the interrupt is still present when RET is executed. The
main program is never allowed to execute an instruction after
enabling the A/D interrupt. (This problem is not certain to occur,

however.)

5-83

A/D LNPUL WI'TH INTERRUPT

CODE

A D D R

W3LSAS ONINIVHL H31NdWODOHIIN

SW3LSAS H3LNdINOD 3LVHOILNI

Mw N1 N
%m) /M/a. S W J M ,W &
M% W%m 3 W 3 ¥ ;
S Ny S MM
% % I M) Y g
SIHN
| b~ NS _
SHEARERIERIENEEENE . S <% NN
NN N Y E (SO OQ NIAE S
~ M ™ M I~ I +~ 19 T~ l:/w -/_/— 7ﬂ
ENEEENESS RSB RS EESEEE
NN RN QN N (R NERENNE
SO DRI IO (o =
QS Q=S SN QSN |k
R0 N S| N W W O[N] Q) SQ| MBI | M)\8) Q) %
M NQ[N N] WIS N o RS] QY NN N NI
0123456789ABCDEF0,123456789ABCDEF01234 ©
Q N ~
¥ % R
o w S s
133HS ONIAOD

5-84

A{;ngNPUT - INTERRUPT, MAIN LOOP

l
33
Pl Lk
N |9 Q R
Mb 9 n/ﬂ:u//_o W@ %r _ .50 2 a
R NN ¥ \ AN % | 8 7
AN N S RN Vi~ 3 S 0
Y | 2 3 MR SRk g
M/ INY | &Yy | L wp w%m 3 5
| 3N | = ok g I
Q) W S N
g D I Q 3
Y~ [N NN > ~ X ~)
Sld [Q NEEEE NS Q ¥ X 2 ~
Q 1% < [X < || & Ql |xlay S
BN N ~
o | R S [o] [+ EEINELS ~ ¥ ~ Q
Y & NEEEREM NERRE < I <& s
QAN [+ o YW = I |d V e NS P
| * *
Lol [N mu] e wlss] o[Wl of R\ R [RQ| Qu [N x| QAlNs| M| ®[m |5
U Q[o ™ 9 Q[QW u /) ol Y] QM| Q & V[N Q] M <) H & U Q[NS
x| O = 3456789ABCDEF0123456789ABCDEF012345 -}
o[N %
D//a n& J

133HS ONITOD

WILSAS ONINIVHL H31NdWODIOHIIW

SINILSAS H3LNdWOD QILVHOILNI

5-85

ANALOG TO DIGITAL INPUT

This problem is easily solved. Before POP PSW, EI, RET insert CALL

DELAY (0236) 1in the interrupt service routine. This monitor

F
7

subroutine generates a delay of about one millisecond, using only the
A register. Now there is plenty of time for the A/D comparator to
settle. The voltmeter program should now operate correctly, although
it is very slow because of the long <clock interval. Try shorter
intervals: 4000, 1000, 0400, 0100, 0050. Adjust the OPTO SENSE pot

and see the display follow it.

If you make the clock interval short enough, and the voltage low

enough, the main loop will not be able to operate because a correct
A/D conversion is completed before DELAY returns. Again the

interrupt is already there before EI, RET is executed.

To solve both problems, reset the A/D counter with a disable command

instead of enable:

MVI A,06

ouT CNT2

In the main program, enable the A/D interrupt by writing 08 to Port
2C, and include this in the short loop. Now an interrupt can occur
only once for each pass through the main loop, so it is guaranteed to

run, with or without the delay in interrupt service.

The slow response of the comparator introduces another problem which
can be investigated with this program. With a fast clock, several
counts may occur after the D/A output actually exceeds the input
voltage, but before the comparator responds and inhibits the clock.

This leads to slightly different results, depending on the clock

5-86

ANAIOG TO DIGITAL INPUT

rate. For any given rate, however, the error is fixed and can be
compensated for. _In our experiments it is small enough to be

ignored. We shall generally use a time interval of 20 (hex), which

gives a 16 microsecond clock.

The LM324N op-amp was selected here because it is able to operate on
a single +5 volt supply and still work with signals down to zero
volts. Faster op-amps cannot handle signals as low as the negative
supply voltage, so would require an additional power supply. A
specialized voltage comparator circuit such as National Semiconductor

LM339N would provide fast response with the single supply voltage,

but would not serve for the other op-amp functions needed here.

5-87

ANALOG TO DIGITAL INPUT
5.5 DIGITAL NOISE FILTER

If the voltage at the analog input is very close to a particular D/A
output wvalue, it 1is 1likely that the least significant bit of the
measured voltage will change from one reading to another. If noise
is present on the analog signal, several bits may change. A filter
is needed to reduce the noise. We connected a capacitor at the input

(Figure 5-10) for this purpose.

Filtering can also be done by digital processing. An excellent
technique for estimating the present value of a signal that is
changing with time, but also includes noise is to calculate a running

average that gives less and less weight to older data measurements.

E. = V. + £
i

i 0 Velqg FEVL L, ..

1 1 2°1-2

Where the V(i) are successive measurements and the f(j) are weights
applied to them. Obviously, the weights must be selected so that if
V does not change E(i) will equal V. This is achieved by the

following expression, which also minimizes the data to be stored.

E. = fV. + (1-f) E.
1 1=

1 1

Storage 1is required only for the present estimate, E(i), as a
variable and a single value of f as a constant, yet is exactly

equivalent to the infinite series of the first expression with:

5-88

ANAIOG TO DIGITAL INPUT

f0 = f
f1 = f(1-f)
2
f2 = f(1-£)
f3 = f(1—f)3 etc.

If we were to use f = 0.25, these would be:

fg =0.25
f1 = 0.1875

£, = 0.140625

£f3 = 0.10546875 etc.

Greater values of f lead to faster response of the estimate to new

data, while smaller values give more noise filtering.
5.5.1 Filter Program Algorithm

/The filter calculations will be performed by a subroutine FILTR. To
simplify the calculations, we will restrict the value of f to 1/2,
1/4, 1/8 or 1/16. With such power of 2 fractions, the miltiplication
and divisions required become simple shifts by n bits, where £f = 1/2n
The expression to be calculated then becomes:

L v, + (2"-1) E,_,

1 21’1

Data read from the A/D input have single byte precision, but to avoid
the 1loss of the less significant bits of each measurement, we will
carry out calculations and store results with two byte precision.
Rather +than storing E(i) after each new input and calculation, we

will store 2nEi . which will be wused at the next calculation.

5-89

ANALOG TO DIGITAL INPUT

Suppose that we choose f = 1/4, or n=2. Then the stored value is
4E, , which represents 4Ei—l when a new measured value V(i) is
obtained. The algorithm is shown below. (For convenience in

notation let m = 2").

STEP RESULT
m=4 general
Recover stored data 4E; 4 mE; 4
2
Multiply by m T6E; 4 nE; 4 1)
Subtract stored data 12E; 4 m(m-1E, , -1)
Divide by m 3E; 4 (m-1E;_, -1)
Add new measurement 4E; mE .

Store result

Divide by m E. E

The multiplications and divisions by m are simple shifts of n bits,
so the constant to be stored is n. To use this for single byte
precision for the measured value and double byte precision for the
arithmetic, n must be no greater than 4 (m=16), since one
intermediate result has the data shifted left by 2n bits from the
measured value. In fact, n-= 4, making f = 1/16, gives rather slower

response than we will generally want.

5.5.2 Program Definitions

Subroutine FILTR and a local subroutine SHFTN are defined below and

depicted in Figure 5-29.

ANAIOG TO DIGITAL INPUT

The program in Figure 5-30 displays both filtered voltage, E(i), and
inputted voltage, V(i). The leftmost two hex digits are E(i) and the
next two digits are V(i). The value for n (1,2,3 or 4) is entered via

the keyboard and displayed in the rightmost two display digits.
5.5.2.1 Subroutine FILTR

Calculates estimated value of a variable with repetitive measurements

containing noise.

Enter with new data in register A and (HL) addressing a four byte

memory area.

((HL)) =n
((HL) + 1,2) = 2“Ei-—1 (used in calculation)
((HL) + 3) = E, (previous result)

h

Calculates and stores (in the same two locations)

n _ n_
2 Ei = (2 1)Ei+ v,
n
Returns () = E; 2 '1)E1+Vi
21’1
(H) = E,
(L) = v,

1
Registers B,C,D and E are preserved.

5-91

ANALOG TO DIGITAL INPUT

Save Registers B,C,D,E

(B), (C)< ((HL)) n

Address 27Ei-1 and save address
(ST)<— (HL)+1
(B)—((HL)+1)Y oy
(D)<«—((HL)+2) -

Copy (HL)<(DE)
Shift (HL) left n times,
counting down in (C)

Result (HL)<22"Ei-1

(C)<«(A) To keep Vi

Subtract 2°PEi-1 - 2PEi-1
(DE)<— (HL) - (DE)

(L)<(C), (H)<=00" Vi(2 bytes)

CALL SHFTN
(DE)e— (2B-1)Fi-1

Add Vi(XCHG,DAD D,XCHG)
(DE)<-2DEi

Recover address for 2DEi

and save Vi, Store result

(ST)<>(HL)
((HL))< (E)
((HL+1)<—(D)

Address memory for Ei

Subroutine FILTR

Figure 5-29a

5-92

ANAIOG TO DIGITAL INPUT

Round (DE) down so that
SHFTM will round up only if
fractional part >1

(DE)<- (DE)-0001

CALL SHFTN

(DE)<2"Ei/2R=E]
(A)<=low byte=Ei

Store result

((HL))<=(4)

Recover‘Vi and enter Ei
(HL)< (ST) (L)&Vi
(H) < (A) (H)eEi

Restore Registers B,C,D,E
Return

Subroutine FILTR (continued)

Figure 5-29b

5-93

ANALOG TO DIGITAL INPUT

(C) =— (B) = n for
counting shifts

Clear Carry
Shift (DE) right one bit
(C) =— (C) -1

#0
zero
No Carry
Carry
(DE) =— (DE) +1

(a) =— (E)

g~
(Return)

Subroutine SHFTN

Figure 5-29c

ANALOG TO DIGITAL INPUT

5.5.2.2 Subroutine SHFTN

Shifts a data word right n bits with rounding.

Enter with (B) n

(DE)

data word

Return with (B) = n (unchanged);
(DE) = data word/2";

(A) = less significant byte of

data word.

Register C 1is cleared. Registers H and L are preserved. The carry

flag is set if roundup has occurred.

Roundup occurs if the highest bit shifted out is 1.

fractional part of (data/zn) is greater than

half.

That is, if the

or equal to one

ANALOG TO DIGITAL INPUT

A comment on rounding of the calculations is necessary, because the
requirement is not at all obvious. When the division of
m(m-l)Ei_l is done, round up should occur if the highest bit
shifted out 1is 1; that is, if the fractional part of the result is
equal to or greater than 1/2. If this roundup is not done, the final
result, with constant input, is always one less than the measured

E

value. When the division of m 1

is done to obtain E(i) for
display, the roundup must occur only if the fractional part is

greater than 1/2. Otherwise the filter can never reach a value of

Zero. This 1is handled by a DCX D before calling SHFTN the second

time.

Modify the A/D 1input with interrupt program (Figure 5-28) to use
FILTR. Display both the measured value and the filtered value, when
an interrupt occurs. Use the keyboard input to accept a new value of
n for the filter. When a new value is entered, clear the existing
mE(i) from memory, to ensure that the high bits (beyond the precision

being used) will not be left with data.

Test the program with the existing connections (Figure 5-10). Then

remove the filter capacitor and test it again.

A/D INPUT WITH FLLUTK = LNLVIALLLL

CODE

A D D R

3
_w 5
R o
M 3 g :
.ajwf M 3 N H
3313 AR g 2
N A R 5
Yo LER Z :
8 Q x
_ ~ IS 1R
I~] (sl TR [N (N [3 Qg Q
W oY =] [5] |9 [& |S X = v a
IS EFRITFN TS L ST S W
S ENESEENESESEREREEREE N IS Al A 9
2
RN NN ENEE NERNERE &
N N e YR N e O I Y O Q) QD 9D |= T
NS EEEEE N RN o (JQ |)
* % %
Q09 [N QS WU W™ N WS M S SN QIR MRS R M| NS M Q) <%
MR YN QY M) N W NI NS DAY DN
ol | |]O|]| |lp|jlo|ojlw|le|jole|ln|lm|g(w oINSl w|n|Ooj~|N]|m| <]
0 N
R N

" 133HS ONIA0D

W3 1SAS ONINIVHL H31LNdNODOHIINW

SIWILSAS H3LNdNOD AILVHOILNI

5-97

A/D INTERRUPT WITH FILTR

CODE

A D D R

R
W _ﬂ J - ,,W7 a
RERENRRRES ;
N W \y L .
43 ?k_ @ Q u
W@ QAN -§ N &
,/Lﬁ mmaﬂ AN [
Q Q WU ay
N N A
R — ™ N [N
) v N &) Q |~ 3
PHDB& +~ W ~ (=2 “
NUES < (N (99N
ENENESEN S
1) H ~ ~ NN YSQY] -
ANEEREERR BN ES = (Y [Q) of N W
Qlajaly [J < <) = I YQUUW
o)\l N\l NN 0| Ql Q@R] Wy gl M N N~ NN >
LWV Q Qf ¥ Q™ J NN V][@l] QA Q) QW] W[V
OfrilNIM IO INMN Ol W L |l m]a| D] N]© oAl wilw|oj=|N|m| = -}
™ 3
% R

133HS ONIAOD

WILSAS ONINIVHL H3LNdWODOHIJINW

SIW3ILSAS HILNAWOI AILVHDILINI

A/D INPUT WITH FILTR - MAIN LOOP

CODE

A D D R

N
) IR o
R ® Y
Y3 S SRS B AN
« Mm NENR pww S ENE AR Ay)
y N ? RS < 3 Mwm S
N N N Jl JQW d
NUN Y S 1Y 'k B Shil 2
. NN 3 0 I :
hERESQNEN R 3 R R_ e
\ NG RS g W G 9N 7
Q O & >
N S (S Q
~ o) N (b - A ~ <%
S | [< |l ¥ Y | 9 2 S
J§ A 1 L]+ Q [N \W X
< By NN RN NERE R %S
<
x| H NN [N [% J >
NN QY I R[> [[[w < Ql=
NEEN SXNININs |9 [H 2 <) =P
WIS N Q]] DN W 9] DN 0 N[Y M| WX QDRI RN 0S| W)] <6
o] QL W Y N NSy N W™ YQINAQ] ™ W o]][] QN 1)]
3 31
J NN)

133HS 9NI1A0D

W3LSAS ONINIVHL H31NdWOIOHIIW

SIN3LSAS H3LNdWOD d3LVvHOILNI

5-99

SUBROUTINE FILTR

Figure 5-30d

_ N N b
IR : A] K
A R : N N
N J 14 Z S8 NN ¥ ; &u
eI E RN T R AR R AR
WD |
N h l B I T 3] [RE RN NN
WA AR Ry | RIS g 4 9| e
) I N) : y
WNOYIN e S L L8 SESSERERREERRA RIS
> A | u| et N
~ {7V PN \f
Q NEN ERLGHREES
XN T IR N N (IR J NN Y ™
QA 4 I L] 1 +4 3 L]+ L+ Ly H | =+
QY (WX SR 0[N < W WH_ [N o [H |[e~A~YA
Ry X | < 1By Wy d NS
G = SIS N H SN QI N SN S S SN [A o [P YHT
B R E R EEAR R E N ERERNES NERREERNEERERY Ul V) | 2N
YalsisHAXHS s ESAR Y EEHIIE | >AalX L~~~ o
Mf.é/3ff3é849b452F@3F647?é0®0£€76
SR Y N W ey N oy N S] o N o AN W WY Q)R] S~ [\
glof=|lanmis | o|~no|lo|g|lnjlo(ja|w|jn|jo|l~|la|lo|(dg{v]|fo(n|[o|leo|<|o|lojla|lw(u]|lo|l~rla]|lm|st|lw|o]~N]®
07 7 /
o ™y m N

133HS ONIA0D

W3LSAS ONINIVHL H31NdWODOHIIIN

SW3ILSAS H3LNdWOD QI LVHOILNI

FILTR (continued) AND SHFTN

CODE

A D D R

g AN) W
N)
VI L]] M ILE
- N . \
DR M .@ N . M NERIR S
NEREA: 4 AR 9 M 3
w A ~N N ™
4 8 N | 3| @./Mf 0
) @ M\/\JA Aw N 1IN &N S
N NERNND &,m% RN SNSE &
=
~
N ~
W |AQ t T [N Q] [gu | & Ly
2 ~ V] ™ N ~ N +~ T \fﬂd ~
NIBERIES = QN VNS ol [wolN)
~ N
SN N N SIS NN NN Do >N Al %[>
NENEEEEES ol o 9o Wl QY| || | Q|| 0]U|= NEE
HXINE[HAV S N[Q I X XY Sz |plh ¥H X
VRIS I A N S N N NN N T S N N N NN S S R NN
QNS NSNS WAV QN NG N Nl QU QN NS
O|l=|N|M || O] O] 9ABCDE.F0123456789ABCDEF01234)
\N
¥ 3

133HS ONIA0D

W3LSAS ONINIVHL HI1LNdWNODOHIIIN

SIWILSAS HIL1NdINOD A3LVHODILNI

5-101

ANALOG TO DIGITAL INPUT

FILTER OUTPUT

NUMBER OF MEASUREMENTS

Filter Response for Various N

Figure 5-31

5-102

28

30

ANALOG TO DIGITAL INPUT

5.5.3 Filter Response

The behavior of a filter may be described in terms of frequency
response, or as response to a step function. Each contains the same
information, mathematically speaking, but one or the other is more
convenient depending on the purpose or the structure of the filter.
For a programmed digital filter, it is far easier, in general, to
obtain the step function response, since only a two valued input is
required. The response of FILTR to a full scale step input is shown
in Figure 5-31. You can obtain similar data by a simple process of
programmed calls +to FILTR. Start with the memory locations for
2nEi cleared. Load register A with FF (or some other value),
call FILTR, and display the result. Wait for a key, then repeat the

load and call.

5-103

ANALOG TO DIGITAL INPUT
5.6 TEMPERATURE MEASUREMENT

Two important devices are used for temperature measurement in
conjunction with microprocessors: thermocouples and thermistors. A
thermocouple is a junction of two dissimilar metals. When heated the
junction develops a voltage which can be measured and converted to
temperature. The thermocouple is highly precise, requires no
calibration, and is extremely rugged. It has the disadvantage that
the voltage generated is small, and no current may be allowed to flow
in its circuit, because resistive voltage drop in the wire would mask

the thermal voltage.
5.6.1 Thermistor Characteristics

A thermistor is a semiconductor device that appears as a variable
resistance dependent on temperature. Figure 5-32 1is a plot of
resistance versus temperature for the thermistor supplied with your

interface board. The manufacturer's data for this device is

Keystone Part No. RL2012-5506~120-D1

Resistance 10000 ohms at 25 degrees C Temp. Coefficient
5506 ohms at 37.8 degrees C 4.84% per degree C
251 ohms at 125 degrees C at 25 degrees

The plots of Figure 5-32 were obtained by fitting these data with a

curve generated numerically from:
R, +1 = R, (1-C,AT)

c.+1 = £7¢.
1 1

5-104

ANALOG TO DIGITAL INPUT

38K
35K
30K
25K
THERMISTOR RESISTANCE
VS TEMPERATURE
CURVE FITTED TO MANUFACTURER'S
DATA FOR
20K |~
KEYSTONE RL 2012-5506-120-D
Rie1 =R (1-GAT)
15K L (P fATCi
Rys = 10,000
R37.8 = 5,506
10K - Rygg = 251
Cog = -0.0486
t = 0.9934277
5K I~
4K r
K-
K -
1K - o
0
) 125

Figure 5-32a

5-1056

ANALOG TO DIGITAL INPUT

0.08

0.05

0.04

0.03

0.02

NEGATIVE TEMPERATURE COEFFICIENT

0.01

5-106

NEGATIVE TEMPERATURE
COEFFICIENT VS TEMPERATURE

= §AT
Ger=177°G
f = 0.9934277
C25 = "0.0484
] »] 1 1]
25 50 75 100 128
TEMPERATURE

Figure 5-32Db

ANAIOG TO DIGITAL INPUT

This page intentionally left blank.

5-107

ANALOG TO DIGITAL INPUT

+5 VOLTS

5— \Y

THERMISTOR
Rt

THERMISTOR VOLTAGE

1 1
0 25 50 75 100 125
TEMPERATURE °C

Thermistor Connection and Voltage Plot

Figure 5-33

5-108

ANAIOG TO DIGITAL INPUT
5.6.2 Thermistor Operation

When the thermistor is connected in a circuit such as shown in Figure
5433, it gives a voltage which is close to linear over modest
temperature ranges. The data can be linearized, and scaled from
voltage to temperature, by a table lookup with linear interpolation.
For the experiments in this section we will use the 10K ohm
resistance data, but for high temperatures you might choose a lower

resistance.

Because of its non-linearity and because it 1is subject to the
uncertainties of semiconductor manufacturing, a thermistor must be
calibrated. To do this adequately requires a laboratory thermometer
and thermistor. This can be done by heating the thermistor and
thermometer in a water bath. If you do not have these facilities
available, it is reasonably satisfactory to measure the resistance at
a known room temperature and- scale the manufacturer's data
appropriately. The following procedure does the necessary scaling by

a pot adjustment, assuming that you will use the fitted curve data.

5-109

ANALOG TO DIGITAL INPUT

Adjust OPTO SENSE pot
to obtain expected
voltage at room

Vee temperature.
10k
lk ¢ oPTO
ouT
ANALOG
IN ©-
QND E; " THERMISTOR @ VOLTMETER
S-
A/D Input
Temperature Exgected with
OF °¢ Voltage 2:1 Attenuation
65 18.33 2.910 92
66 18.89 2.876 90
67 19.44 2.842 8E
68 20.00 .2.808 8C
69 20.56 2.773 8B
70 21.11 2.739 89
71 21.67 2.705 87
72 22.22 2.671 86
73 22.78 :2.637 84
74 23.33 2.603 82
75 23.89 2.568 80
76 24.44 2.534 7E
77 25.00 2.500 7D

Expected Voltage at Room Temperature

Figure 5-34

5-110

ANAIOG TO DIGITAL INPUT

5.6.3 Thermistor Input adjustment

Connect the thermistor as shown in Figure 5-34. Find the room
temperature. (A household thermometer is sufficiently accurate for

this.) Find the expected voltage from:

Vt = 2.50 + 0.0615 (25-T) (Celsius)

i

or vt 2.50 + 0.0342 (77-T) (Fahbrenheit)

or use the table of Figure 5-34. Note that for any temperature below
25° C the expected voltage is beyond the 2.55 volt range of the D/A
converter. We will adjust the ANALOG IN pot to divide the voltage by
2. With the OPTO SENSE pot fully to the right for maximum
resistance, measure the actual input voltage. Using a digital
vol tmeter program such as Figure 5-28 or 5-30, display the A/D input.
Ad just ANALOG IN to make the A/D value half of the actual input. Now
adjust the OPTO SENSE to obtain the expected voltage for the actual
temperature. This procedure sets the pot to match the thermistor
resistance at 25 degrees C, thereby remqving the principal
uncontrolled variable of the thermistor. You can now heat or cool the
thermistor and observe the voltage changing. If you have a
thermometer, you can calibrate the thermistor, taking a series of

voltage and temperature measurements.

5-111

ANALOG TO DIGITAL INPUT

5.6.4 Table Lookup and Interpolation

To convert a measured voltage to a temperature requires a table
lookup and possibly some form of interpolation. Four approaches are

available:

5.6.4.1 Method A

Store a complete table of temperature versus voltage. This is not
unreasonable, since the 8 bit A/D input only requires 256 table
entries. The temperature can be stored 1in binary and converted to
decimal for display. or with two byte entries, it can be stored in

decimal. This approach minimizes program complexity, is very fast,

but is extravagant of memory.
5.6.4.2 Method B

Store a partial table, listing voltage and temperature at appropriafe
intervals. Find two (adjacent) points in the table, above and below
the measured voltage, and do a linear interpolation between them.
This requires the least storage, but requires multiplication and
division for the interpolation, and since that would probably be done
in binary, it also needs binary to decimal conversion for the

display.
5.6.4.3 Method C

Store a table of voltage, temperature, and slope at appropriate
intervals. Find the 1lowest table entry whose voltage is greater

(hence temperature lower) than the measured value and multiply the

5-112

ANAIOG TO DIGITAL INPUT

slope by the difference between tabulated voltage and measured
voltage. Add this to the tabulated temperature. This avoids division,
and can reasonably be done in decimal to avoid binary to decimal
conversion. The multiplication can readily be done by successive
addition, since the multiplier (the voltage difference) will always

be -a small number.
5.6.4.4 Method D

Store a table of slopes with ranges over which each slope applies,
and perform a numericdl integration from the start of the table to
the measured voltage. The stored slopes need greater precision than
with an interpolation, since errors accumulate, but thefsiorage
requirement is still less than any method except that of 5.6;4.2.

This method is used in the following exercise.

5-113

ANALOG TO DIGITAL INPUT

INdNI a/v

INNOD NOILILIddd

€e°1

qmﬁp@pmoch £q uorsIoAuo) aanjzeasadwd]

GE€-G 2an31y

0 4 a4 3 a
04d 3ad 09 V6 8 69 S¥%¥ €2 T043aoeEV 68
Y ¢ 9 L 8T € % S9 L8 T Z€EH¥ S 9L 8TUTE Y
T 1 § 2 3 v T 1 v § L T L] 4 v J v A\ J v T ¥ = 3
00°'T = Ed0IS IS¥Id -
F L
06°0 = HdOIS o
angoss]
“ l
L9°0 = 3dOIS .,
QUTHL]
-r 1
ﬂ J
<4
4
dHd0'IS 9
HIMN0A p
-y
¥]
o¥dZ OL

QHIINAWTIONT ST

INANI a/v NIHM KOS
L9°8T = MANLVIAdWAL

-

N O™~ VI T M N

OO0 O™~ W IN T ON H O
N = A =~

TEMPERATURE

5-114

ANALOG TO DIGITAL INPUT

5.6.5 Voltage to Temperature Conversion

Develop a subroutine and a data table to convert voltage to
temperature and display both the input and the result. The

integration technique discussed in Section 5.6.4.4 is to be used.

5.6.5.1 Data Table

Each table entry includes a slope (in decimal) and a count. The
slope 1is repeatedly summed into the temperature while its count 1is
decremented and the A/D input is incremented. When the A/D input
reaches zero, the integration is complete. If the count is
decremented to zero before the A/D input reaches zero, the next table
entry 1is accessed and the process continues. The process is
portrayed in Figure 5-35, for a hypothetical A/D input of E8. The
slopes and temperatures shown are illustrative and not at all
realistic. Figure 5-36 lists actual data for an ideal thermistor with
the previously specified characteristics. A subroutine for the
conversion by integration is defined in Section 5.6.5.2, and shown in

Figures 5-37 and 5-38.

5-115

ANALOG TO DIGITAL INPUT

TEST DATA TABLE DATA
A/D Input Temperaturé‘ Repetitions Slope
(hex) (decimal)
C4 0.600 4 0.405
Cco 2.219 10 0.373
BO 8.188 10 0.341
AO 13.644 20 0.324
80 24.012 10 0.335
70 29.372 10 0.355
60 35.052 10 0.394
50 41.356 10 0.458
40 48.684 10 0.532
38 52.940 8 0.606
30 57.788 4 0.681
2C 60.512 4 0.743
28 63. 484 4 0.820
24 66.764 4 0.918
20 70.436 4 1.046
1C 74.620 A 1.214
18 79.476 4 1.452
14 85.284 4 1.803
10 92.496 2 2.190
OE 96.876 2 2.524
oc 101.924 2 3.089
0A 108.102 1 3.573
09 111.675 1 4.065
08 115. 740 1 4.697
07 120. 437 1 5.537
06 125.974 1 6.700

5-116

Thermistor Calibration Data

Figure 5-36

ANALOG TO DIGITAL INPUT

Our calibration data do not extend to 2.55 volts (FF). The first
meaningful point occurs at 0.60° C at 3.92 volts (C4). The
integration procedure to be used demands that data be provided for
all possible values, so we will start the process with a linear
integration from -23.701° C at a slope of 0.405 for 64 repetitions.
This generates 0.600° C at 3.92 volts and gives the correct slope
from there to 2.219° C at 3.84 volts. Results down to slightly
negative temperatures will be approximately correct. The first
table entry is the starting temperature (in hundreds complement
form) and the next entry provides the 0.405° C per 20 mv slope with

40H repetitions.

8310 99‘
11 62 -23.701
12 97
13 40 64 repetions
14 05 0.405° C/20 mv

15 04 .
16 10 16 repetitions
18 03
19 10

16 repetitions

1A 41 0.341° C/20 mv

17 73 }_ 0.373° C/20 mv

1B 03

etec.

5-117

ANALOG TO DIGITAL

INPUT

Save registers B,C,H,L

Save A/D Input (register A)
Address Lookup Table

Load three bytes to registers
B,E,D for starting temperature

-

Address repetition count
(B) = ((HL)) Repetition Count
(HL) ~—(HL) +1 Address Slope

—_—

Save A/D Input (PUSH PSW)
Add two byte slope to

three byte temperature

(C) =— (C) + ((HL))

(E) = (E) + ((HL) +1) + CY
(D) =— (D) + CY

Recover A/D Input

Increment A/D Input

Zero Display
and Exit

#0

Decrement repetition count

#0

zexo

Address next repetition count

5-118

Temperature Lookup by Integration

Figure 5-37

ANALOG TO DIGITAL INPUT

5.6.5.2 Subroutine Temp

Enter with, (A) measured voltage

Return with (A)

measured voltage

Registers B,C,H,L preserved.
Display A/D input in hexadecimal, temperature in decimal either as

three bytes (xxx.xxx) or as two bytes rounded (xxx.X).

Data table, located at 8310-836F,

8310-02

8313 Repetition count for first slope
8314-15 Slope, decimal, as Xx.xxX

8316 Next repetition count

8317-18 Next slope

etcetera

Note +that the flow diagram does not detail the display function,

which is left to the student.

5.6.5.3 Test for TEMP

A simple test program is given in Figure 5-38a. Key in a hex value
representing a voltage and observe the result displayed by TEMP. Try
values from Figure 5-36 to be sure that the corresponding temperature
is displayed. It is suggested that subroutines FILTR and TEMP and the

temperature table be saved on tape, because they will be used in

later exercises.

5-119

TEST PROGRAM FOR TEMPERATURE LOOKUP

Figure 5-38a

>~
Q R
k Py Q
2 S Q
Wy 1N =
L SN
S| -
J RN Q
Ml BEES s
QY W X[H
ul QN VIV |Q|Q] QY0 Q|
S\ QW[NN Q| N
x) O e Ml | O|O] ™~ [-2] Qluwlw ol a|]|O©]| N~ nloitojwi{iw|loji~lN|m| < -
ol Q
o) 7%
gl ® =) -]

133HS 5NIA0d

WILSAS ONINIVHL H31NdWODOHIIW

SINILSAS H31NdWOD A3 LVHDILNI

TEMPERATURE LOOKUP AND DISPLAY

% _
N N
A < N /ﬂ/ @T
o J M N A 4
N N ™
N Y S ﬂ 3 ~ N A/ﬂ/ o
| , _ ,E o
1 it s NS
NRERSCANERR RN P & i
Q
~
3™ S Q
NS I | |= N X < K (D T3
Ilng. OI T ~ N T T DI 1 + 1 ™ 1)
ES QR WIAEVT Y T (WX (A O [E
RNBNEN B
NN A H (> %[SIS SN QIRIN >N O[S < H [0l D[N
NEERE o= d 2| o 2| D A F Q[RAAE| ol QAL QD
QlQlQl = HSIH S N SN AENSXASEQ T [HA=NI
xff//03@323@358550773££7F6E0ﬂ77/c
MR IR N N R R N R N E R E E SN R R N EER N
R0123456789ABCDEF01.23456789ABCDEF01234 ©
o[N Q (9
o N N 1%
| o f [©

133HS ONIQOD

W3LSAS ONINIVHL 4H31NdWOD0HOIINW

SW3LSAS H3LNdINOD G3LVHDILNI

5-121

TEMPERATURE LOOKUP AND DISPLAY (continued)

qY I¥{ 3 @ N 3
W] - Mf 4/ ‘
. N
, M & /M7 . Wv S
: A 44 /M dl_ y H
EEERRREENRERECRA S URR N SRR T m
MT. ¥ M Mf”/ﬁ #wﬁ\,m JM\U AR \/\.F/u W
NRRSARRINE BN I \ QRSN
| A W |
N W A X W <
N Q Q Q ! /=)
~ R R REEE S 3]
& (W o BIENER WA A |A| T
N X QU0 _ Q[N <|Qlt
\H I ~ 1 i | >< |
I <[IR x[H N MR H [CNUIUQ
N ‘= = NEEEES ~[x < R Qo[W
h Qlh N X\ %[J N Q4 AN
ul Q| X[Q[x| Wy O] 0 0] ¥ 9N | W o[QN S] 09~ WM)| QI S QI N QRN [N
LU QN 3 Y] Wy WY VR[N NS NN S N NRIUW Y
R012,3456789ABCDEF0123456789ABCDEF01234 -]
DD \Mw E .
13 S J -

133HS DNI1A02

W3LSAS ONINIVHL HILNdINODOHIIW

SIW3LSAS H3LNdWOD A3 LVYHDILNI

TN

TABLE OF REPETITIONS AND SLOPES

VI
N D) \
RS ag/ ¥ m R of J :
,ﬂ \ Mo QN IR QO 0&. NN N IQ m..
VR RSEREEREEDEENE L ENR gm Y .
N U Y e (4 (WY (] (s Q g
SERASEARRANTNG SHEENESNER R 5
x0,47ﬂf¢0330/30/§30¢[30 | QN0 [QD N %] N0\
810 o N NI NI NSNS N Y NN QNH[QY Q[0 §
glole|n|old|BoOo|~N|ow|lolg|la|jlo|l0jw|wlol-ja]jm|asv]oNlo|lo|ldla|jlo(lalw|luw]|lo|l]la|m]|< ©
E AN < V)
o| ™ ™)

133HS ONIA0D

NI LSAS ONINIVHL HILNdWOIOHIIW

SINILSAS H3L1NdINOD A31VHODILNI

5-123

REPETITIONS AND SLOPES (continued)

CODE

A D D R

INIIN N N SN E:
S8 (SN NY (RS WY N (o] NS ¥ (X i
R qw NNERNENNERNENNENNEN BN :
Q : NS AN s o i .) . o
Q Q (™ AN N N N|[Y ™ il
SIS RN RN YR YRR R g
NSNS N QNS s e X S s sy o N[9 R/™N™Q
O?ﬂ0¢dvdﬂ0/00¢/0//0 N Q) QN AN Y QN QS M
123.4,5 5‘7%..._,.ABCDEF01234_._..6789ABCDEF/01234 ©
) N ‘
™ ™ M
& " ®

133HS ONIQOD

W3LSAS ONINIVHL H31NdWODJOHIDIW

SNILSAS H31NdINOD A3LVHOILINI

CODE

R

REPETITIONS AND SLOUOPES (Contiiiucu)

Zﬂ
N
W,

M M
2 5 N N N NS o
N IR _ 4
SRR RREREERR wf :

NRERRENLEEEERERER k|
Q Q AN AN A\ Q 4

OSSP QIS I N D SN Q™Y QN

QN B NN R QI QM 9 DAY QRN

TN || < 56789ABCDEF Ol e[| N M| WOIO M~ miolAQ w | w (=10 I o N[| < -]
))

| INg A)

133HS ONIAO0D

WILSAS ONINIVHL HI1LNdWQIOHIIW

SW3LSAS H31NdWOD G31LVHOILNI

5-125

ANALUG TO DIGITAL INPUT

5.6.6 Thermometer Program

EXERCISE

Develop a program to read the thermistor voltage and convert the

measurement to decimal degrees by table lookup with interpolation.

In many systems it is more appropriate to take measurements at
regular intervals than as rapidly as possible. This is particularly
true with temperatures which typically change slowly and where rate
of change may be of interest. In this program a timed interrupt
will decrement a time counter and at one second intervals, it will
increment a seconds counter. At each interrupt (20 milliseconds) it
will reset the A/D converter and enable the A/D interrupt. Thus, a
measurement of temperature will be made every 20 milliseconds, and a

timer will be available to the main program.

RST 6 services the A/D interrupt. It will read the input from port
1B and call FILTR, the subroutine of Section 5.5.2, to obtain a
filtered value for the input voltage. Since a measurement is wanted
at 20 millisecond intervals, RST 6 service disables the A/D

interrupt.

The main program loop compares the interval counter with an interval
obtained by keyboard input. When the count has reached the desired
interval, it restarts the counter, loads the current estimate of
voltage and calls TEMP (the subroutine of Section 5.6.5.2) to display
the temperature. It also tests the keyboard and calls ENTBY if a key

is pressed to enter a new interval.

5-126

ANAIOG TO DIGITAL INPUT

The subroutine developed in Section 5.3.5 will convert the measured
voltage to temperature by table 1lookup and interpolation. Both
temperature and voltage are displayed. The low byte of temperature
is not significant, since the absolute accuracy is not better than
half a degree. The display function should be modified to display
only the two higher bytes. Rounding of the three byte result is
easily achieved by making the initial value -23.651 instead of

-23.701 (976.349 in hundreds complement).

Memory assignment for the program are:

8200 - 8227 Main - Initialize
8228 - 8257 Interrupt Service
8258 - 826F Main Loop

8270 - 82AF Subroutine FILTR
82B0 - 82FF Subroutine TEMP
8300 One second counter
8301 Seconds counter
8302 n for FILTR

8303-4 2"E, for FILTR
8305 Ei

8310 - 836F Table for TEMP

Note that 8300 - 8305 must be initialized at program loading, along

with the table for TEMP, even though they contain variables. A

solution is shown in Figures 5-39 and 5-40.

5-127

ANALOG TO DIGITAL INPUT

5-128

MAIN - INITIALIZE

Program Ports - Port 1B In
Program Timer 0 and load

for 20 millisecond interrupt
Program Timer 2 and load

for ¢+ 16 for A/D clock
Set Port 1lGO0 for automatic A/D
RST5 to enable interrupt
Set CY and jump into main

loop at CC ENTBY

MAIN LOOP

(DE) -«— 8301 to address
seconds counter

(A) -=—— ((DE)) seconds count

Subtract desired interval

(a) <— (A) -(L)

CY Set

Seconds < Interval

Seconds > Interval

((DE))=-— (A) Reload Seconds
(A) <— (8305) Filtered Voltage
CALL TEMP to display

Voltage and Temperature

[

CALL SCAN to test keyboard

-

No key ,/)/

CC ENTBY for new interval

J

Thermometer — Main

Figure 5-39a

RST 5 Interrupt Service

Save registers
Call service subroutine (8246)

Jump to exit (8240

RST 6 Interrupt Service

Save registers

Read A/D input (voltage)
Address data memory for FILTR
Call FILTR to calculate and

store new voltage estimate
(A)=+=—06 to disable A/D

|

Exit (locate at 8240)

CNT 2«—(A) to clear interrupt

Restore registers, EI, RET

TIMER 0 Service Subroutine

CNT 2<—07 Enable A/D
(A)<-—01 To enable Timer O
NOP, NOP For patch
Address and decrement one second

counter
<i> #10 RETURN
Zero

Reload one second counter

Address and increment counter for]
seconds

Thermometer - Interrupt Service

Figure 5-39b

5-129

INITIALIZE

THERMOMETER -

S W | =
EREEA _ INENEE W W
N : N\ XX (VU
O%@ WAZ S oama MJ R L /M W N P
N SR 2EORE R Mj | o
/ . . & ﬁl 3 1% o
S BT T S r
RS RRRER /W 1S ER :
B || i NS e
~ =
BN NS NN ESENENELEANEN N
S~ N~ (=] Y = NENEEEENIN S
1= L= + 1R I 1IN N LI R
< O N I]EOIN N RSN NSRS N
_ 9
ARSI ENE NN NN Ula
= (Y S N S I RIS ORI R Y (KN
NS EERNENES d =5 N I I =N Ky
uf Wy] O] Ly 3] o] 4N ™ N 0N W QO RN QUONY N0 RN YNNI
NN NNNE 0| NN KQN) NYSIN N QO [VWMN S
D§1 mig|lwvw/ o|~Nlo|lo]| « o|lofw|uw 0/1 N [lomlag(vw|io|mn|owleo|<ldjfOolOfw|w ﬁOX1 N = ©
o ¥ R N

133HS ONI1A0D

WILSAS ONINIVHL H31NdINODOHIIW

SINTLSAS H3L1N4INOD I LVHDILNI

THERMOMETER - INTERRUPT SERVICE

CODE

A D D R

V J
w Q N | \
N Bk :
’ “ J M Y [
SR RRRCE B S QR EERR
. : o
N N /nmﬂ
Q [4
é =~ Q M~
N} I~ X |~ (v J 9| |+
O [H Ol ¥ S N S |H
QX[= SURIEN 1 W L
W Q| | < ju
NN ENRN J _
|~ Q. 1V H S M G
NN SR [N > =
Q| @) QM | N | |h
ﬂfbéﬁaaaf Bf/aaboﬂEéeﬂao
WU SO SN WA 9] N V] NS % QIS
Ot ivwio[Now|lojlg|n|lo|OjlWw|w |l v]o|INlolo[dnjolajlwlun|loe=a]m]| < -]
% V]
R R
f ® ®

133HS ONIA0D

W3LSAS ONINIVHL H31NdWODJOHIIN

SW3ILSAS H31NdWOD 031VHODILNI

5-131

cobtVTERRUPT SERVICE =~ EXIT4 TIMER 0

A D D R

Y M_ N
N
2 _
SRR w
S MM M IS,
5 SIREERENE :
mw x @mw w /W \ :
O RNy L ERE ;
Q
N
AL NV ! 25 X
—~ N N [V Qg)
.N ") :IM ~ ~ “+
N AN L 0l [SSER I ENEY
NN YNE N MNIEERES
D [oNWUY (Y (D QX Q[=W
Q |QUYE] 1IN (T 1Y AN [NIN[
ool WS o Wy N o [0 Wl Nl ~ QU9 N S|] o3 o
QWU ™M) Q™ O N Qf T8 QIS M) ™M N)
0123456789AB.CDEF01234567 ool wle|o|—~ N[0 < =}
3 N \
% N %

133HS ONI1AO0D

WILSAS ONINIVHL H31NJdWODOHIIIN

SINF1SAS HILNdINOD d31VHDILNI

E_129

MAIN LOOP

THERMOMETER -
CODE :

A D D R

N N
N N NN o) o
M : N M Y ﬂﬂFpaad
M X O\ 3 nC\w»dmd_._
3 M. jwﬁz M Q m%zmm g
. " |]
N W R g 4NN 0
14) W 4 m ™ mwo@aﬁ :
SAESRERRNSE ADEBLRAR AN N R ;i
= |) U
) Q. = >~ S
™ A Ny <X Q o wlclt| |Q
g N Q W Q M 5 o S|<
+ Al [Q™ ~ ©) = R o o X[
Q /% ™ . W 5 H = e]H
> o < < N di [~ Q
H Q (T J ~ QU o H W HZ
SHERES Nol | I | 19 [19 [[= R
L Jllb) N Q Ny 2, A% | =
SNERNENEE NN A N E A N E E NRNS
TN <RI QNN N o oS V[9] ™] 6
ot |w|lo(n|lo|lo|qg|la|lo|l0|lw|lw|o|l-r|la]|o|g|lwv]jo([n|o|lo|(d]la|lo|a|lw|lw]|o|~]o|m|t]|w0 ©
TN 2 N o | IS
N\ ™ © S ©

133HS ONIA0D

IN3LSAS ONINIVHL H31NdWODOHIIW

SW3LSAS H3LNdWOD n_mhqm,mum._.z_

5-133

SUBROUTINE FILTR

CODE

A D D R

N >
N) &
Q3 L]] yd | 13111
.W : - |
~N X N mf W Al n/g\,w ,mu.ﬂ 33
SYRTS N TR RN I e u
N O : 3)
VAR Y|l | Je IRRNEREEE W | A
/_\H “1 MY N ,r ~ Y e @e 0 ,/.m IU /LL
N 4R R 8| 1A S
. =
RASSRAERENIEEEERSEE NS LR T PN]
> Al || v~ N
~ u |~ I
| Q : Ql |\ 2 |k A (A~
SQ SIERENE N o 4 | (ol X P2 I NS B R RS { R
AXR + LI 21 + RS LTl A AT T T D H N+ + 2 +
QY NEERRERENE JYF WL o= Al | H [¥AANEA
SN X N NEBENEREOTERNNEN
NAD DK ANNKISIS ISR S>> >H] |y T[] o [N JZHH
DDA DO Y QD Q@ Q A |G Ol v ||y
QAT I HAIHIR RN P T[22 50 s < HNA X W\
S S | o) W o8]] R g] Q] O N on g S A 8 oY
QY NI W N o N[s S < YN O N Loy N Vo ng) | Q<) Sy O W] N Y
m123456789ABCDEF0123456789ABCDEF0 N| || bv]jo|N]
N N
¥ Y
\ N 3)

133HS DNI1A0D

W3 LSAS ONINIVHL H31LNdINODOHIIW

.ws_m._.w>w 431NdNOD d3LVHOILNI

Figure 5-40e

5-134

A

PLLIIK (CONLLIIUSU) Qiiu ol

CODE

A D D R

f.:h
R
N R W M?o %
E SEEEDE RN R AR
R I
3 : Q 33 A SN
I N Y N \ A . u
g [V 14 J NI MR} S
N ,VAF : 1
:—. . E M \ : dﬂ :(ki
—\) N N N J g
NEREND SELESEE R A X DRVASIR E
R
O ~
w QS X I NEAENNENERERS Y
~ - n\u -~ N I~ A ~ ™~ ™ 4 <4
NERRERE NESEIR) O] [(WIS Al
~ S
N BSIN DD PN QS QU [DD eSS] (e N RIESRNES
Mol =l 2 Ql Q| Q) QY Q] XY QLI [|V 2 22 alw
A= HSHQ RSN XS K x| S ||k | H [
00 [0 ™| | & S QL ST I NN AN QAW W DN 4 | R S| ~ 5] QI Q>
W SN N U ey sl g N NG IN NN u[da g O
Ooleeln||aslw]lo |~ ofldlo|jo|lojlw|luw|o]l-|la|o|[g|w|jo|Nn|o|lo||B|lO(0|lw|lu|of=|a|m| < ©
N AN
N N

133HS SNIA0D

W3LSAS ONINIVHL HILNdINODOHOIIW

SIN3LSAS H31NdWOD A31VHOILNI

5-135

" TERMPERATURE LOOKUP AND DISPLAY

N |
S
BRI X M
. N * . &/ M .
Y . 3
Y ¥ . N\ 5
"IRRNR . N o
AR N S %W
5 J
~N
™ | Q
U5 = =] I = (Y= | |3 NS AR
//ﬁ B Dl -+ +*~ «~ N t— ~ 4 ~ ~ 4 /VU
Y QX TU= [N Ry (Y Q Qo
RNENEN T
NI H N3¢ Do DD U N X N DN (VIR QK
QDD X Q2 oo 2 R ||QA Q)] Q|R VY] [QERQQ[R
Na[al] s/H sSHEHEHAE[IA S HENQ SR RQZTR|H
A A A A N e A O Y S S T s A Y N A S S R SRS RS T N RN NN S
N NN R N N R N R S E R E N N N E S R
N SN
1 NEENE .

133HS ONIAO0D

WILSAS ONINIVHL H3LNdWODOHDIN

SWILSAS H3I1NdWOID QILVHOILNI

TEMPERATURE WITH TWO BYTE DISPLAY (continueaq)

CODE

A D D R

|
ik i
/@ . WA rﬂ //
X 1N \)
Y |3 M,M/ $ |- RERR :
J NN ﬂ 4R i
. 3. AJ M | % | ? M
SEae tERE AR IR CREE MR W
-) M SHER N ﬁ
Q W
N W Q ¥ ~
S Q Y Q > N
3| 5 1% R RO SR g
0y 8 N R “HI_ N ~
U RN U [S e B DY SN AR
VIN < b |
LY /o NN NN [>N SRS
¥ NI 2UX NN QY QD QI |9 QINQ[Y
h Qih NI x| NN X% (Tlq [TEIQAX
R Q]] W %[0T [AQ! N R o [N WL N NS
VIR oY QS0 Q) ™ S %] 9 O N [Q 4 [f Wy S A DN [S A N U W
=) 3456789ABCDEF.0123456789ABCDEF01234
Q M ﬂ
k \ ! .

133HS ONIAOD W3LSAS ONINIVHL H31NdWODOHIIIN- SW3I1SAS H3LNdWOID 31LvHOILNI

5-137

cope THERMOMETER - PRELOAD VARIABLE DATA

w « RN
N~ L/
~ d
NERE mf, .
U N 3
W NN 3
m g N ;
ERENER
S @\.((JE Ly W (3
W ¥
(D
~ b
<N
Qel
W
QW
2y
Wi
N
QAQAIAN
NHA QYA
~N
N 0

133HS DNIA0D

WILSAS ONINIVHL HILNJNODOHIIN

SW31SAS H31NdWOD A31VvHOILNI

E_1a

ANAIOG TO DIGITAL INPUT

5.6.7 Data Logging

OPTIONAL EXERCISE

Modify the thermometer program to make a data logger. This will
record in memory a series of measurements for later review. It will
also provide for subsequently reviewing the data. The design of
subroutines FILTR and TEMP makes the revision very simple. Before
CALLL, TEMP in the main loop, increment a data address and copy the
filtered voltage to that location. Figure 5-41 shows the data
logging program. To fit the program into the same space, we abandon
the keyboard test while running, and simply call ENTBY once as part
of initialization to obtain an interval. Register pair BC is
available for the data logging address. Note the virtue of having

subroutines save registers.

5-139

ANALOG TO DIGITAL INPUT

Program Ports and Timers
as in Figure 5-39a

CALL ENTBY

(A) =— command

(L) <— logging interval
Test command for RUN.

RUN Data
Review

RUN

RST 5 to enable interrupts
(Jump past interrupt service)
(BC) =— 8000 Logging Address

>

(DE) =— 8301 to address
seconds counter

(&) -<«—— ((DE)) seconds

Subtract desired interval

(a)=— (A7) -(L)

CY set

seconds <
interval

seconds z interval

((DE)) =— (A) Reload seconds
(A) =<— (8305) Filtered voltage
((BC)) -=— (A) Store voltage
(C) =<— (C) +1 Next address

DI, HLT

#0

CALL TEMP to display
voltage and temperature

L]

Logging Thermometer - Main

Figure 5-41

5-140

ANAILVG 1TU VUILIULTAL LNPUL

After CALL ENTBY in the initialization module, we will test the

command for any of three keys:

RUN Start data logging, at intervals given

(in seconds)

NEXT Review the stored data, showing the
temperature at each point in succession

when NEXT is pressed

STEP Replay the stored data as an output to the
D/A converter, using the time interval

entered with the command.

NEXT and STEP jump to the modules shown in Figures 5-42 and 5-43.
Replay is interesting because it allows several hours of data to be
displayed on a scope or voltmeter in a much shorter time. For
instance, if the interval entered for data logging was 3C (decimal
60), the recording interval is one minute, allowing four hours of
data to be recorded. Then a replay of the logged data with an
interval of 01 will play the data back in four minutes. Greater
speedup can be-obtained by altering the program constants used for:
.loading timer O and the "one second" counter. The table of Figure
5-44 shows the constants needed for various recording and playback

intervals, and Figure 5-45 presents a program solution.

5-141

ANALOG TO DIGITAL INPUT

5-142

Temperature Review

(HL)-—8000

(E) -=— (L) Keyed Interval
Data Address

Not CY
Key = STEP

CALL DISPLAY
Display Temperature and Address
and increment address

CALL GET
wait £

RY
or a Key

Display Subroutine

(ST) e
(a) —— (
CALL TEMP
(a) =
CALL DBYTE
(L) —=—
(DE) —~—
Return

(DE)
(HL))

(L)

(L) +1
(ST)

Save (DE)
Voltage
Display Temperature

Display Address
Next Address
Restore (DE)

Logging Thermometer - Review Data

Figure

5-42

ANAILUGU 1V WVI1IU1L1AL LivCua

Temperature Replay

Program Port 1B Out

RST 5 to enable Timer 0
(A)=—00

To clear time counters
(8300) <— (A)

—

(8301) =— (A) Restart seconds count
{PORT 1B) -—— ((HL)) Output Voltage
CALL DISPLAY

Display temperature and address
and increment address

Disable A/D interrupt
(A) -— (8301)

seconds count
(A) =— (A) - (E) subtract interval
CY set J////
Seconds < interval \
Not CY

Seconds > interval

Logging Thermometer - Replay

Figure 5-43

5-143

ANALUU 1U DIGLTAL LNPUT

5-144

Timexr O Interrupt " Interval Interval | Recording | Max Run
Preload Time Second" Count Entered Time Time
(high Preload Time (approx)
byte)
08 1 ms o1 1 ms o1 1 ms .25 sec
AQ 20 ms 32 1 sec 01 1 sec 4 min
0A 10 sec 40 min
1E 30 sec 12 hrs
3C 1 min 4 hrs
78 2 min 8 hrs
FO 20 ms cs 6 sec 0A 1 min 4 hrs
ic 6 min 24 hrs
64 10 min 40 hrs
96 15 min 64 hrs
FO 30 ms FO 7.2 sec FA .30 min 5 days

Logging Thermometer - Timing Constants

Figure 5-44

LOGGING THERMOMETER - INITIALIZE

CODE

A D D R

N | 4 | |

N\ ﬁ Q 3 o JY W
R IS NN RS ER
\ N\ N } X Q 2

¥ Ih @Z SR JAR X N
E M SERE SRR N M ;
N ¥ Mwm /Mﬂ : M 4 2
NREESHEESRRECE SN ¥ | LR

>
T ~ Q
NMENESIE NN RN NN ™ N S
NN R EER S EERE R R ENEE Q 9
TR T AR I NI N T FNT T IR TS <
& O [N&OINROIN N N] o x| [
v . 9 | KU

NN Y SNy LY N Q
S0 Q0 I I S 1D 1R I (I = (Y [Y I U [uyl=
I = = I E IS EIQIE DRI Al |h X[
L <] O N gl o] 0 W W o [[N o | D W] U0 W] QU] N MR Q) o] o9 WY QN W0’ W
NS INQ U YNS N VSN SN M QS N M QLN W 9 S
O|l-N|lm|g(w|(fo | N|owjlo|g|lajo]lajlw|(w|ol-ln|owlg|v|(fo(n|oleo(d|anajo|ldjw|lu|joe|a|m|<|w|o|N~N]|©®
Q A Y
% R %

133HS ONIQOD

NILSAS ONINIVHL HILNJINOJOHIIW

SWILSAS HILNdINOD Q3LVYHDILINI

5-145

LOGGING THERMOMETER - RUN LOOP

\
) ‘ 0
U
4 uw | W W R 4| IR
) . N \ S
Wi % ﬁ W SRNNERN:
. X > Dl M i
J N ? S Oﬂaoajpa o
SERES L] AN §
. —~ M ~ M,/ M | LW B
N m DN D Ny SISASIN |&
Q ~ | N R W
Q Q 0 LRSI
Q ™ N z NS LN S |RQ
X N % Q W 9 (1 dik
] L Ql 1% Al™ Q) [~ R ZRAREESEN
X) N N V i NN QN
e < x| [~ 1D 4] TN A
o L IHE TN (T L[| [& NS
=< < R JV NS W< DY Wl NW
J L N=lE S| RINES N X N[~
" NN NN S SN N RIS NI N A RIS
8 L YN N Qe NN ae] VW[QN Q QN N g%
o | < | @ D/EF0123456789ABCDEF01234 -]
: NEES N
a R
g 7d MM M’M nw ©

133HS ONIAOD

N3ILSAS ONINIVHL H31NdINODOHIIN

SINILSAS H31NdWOD A3 LVHOILNI

R-T4R

TEMPERATURE REVIEW WITH NXT KEY

5-147

CODE

A D D _ R

M W W
... ﬂM l
H %]
\ o
| N ﬁ |
y R Y| \ G|
AN .ArM. ¥ ﬂmqj M Bl
Q > W
Q N pV QU |
Q Q N\ b~ NN = >
g X N w Q =1\ Q!
1 ~ S G} N Rl (b S .
X Y N < | 3]
U] J < | X | ~ -
I:|H J 1) U VI | ~| V| Q|
NI J < SN > JVUX] | QR QY
% H 1) N > QU DS Ipﬁ_
SIS SN AN A R SN N AN AR R NS
Eddibgfc/263000f$76637d?0A$6
0123456739ABvCDEF0123.456789ABCDEF01234 =}
Q N N
N N ~
-] 70 [-] [<~]

133HS DNIJOD

W3 LSAS ONINIVHL H31NdWODOHIIW

SIWNILSAS H31NdINOD d31VHOILNI

TEMPERATURE REPLAY

CODE

A D D R

foawarn St 185 Dt

—

Lonesacts)

7

N
. // 9
N w 3 bR 3]
D .
L ARRG ;
ANRIRMESNLRRRCH
Q
~ Q .
NI S ~ NI N (S8~ Q o~
o] [N Q Q x| |~ NERNEES D) N
L= o ™ INEBE {1 |12 ™ ~ ~
Ny [V <T|S S LU NN W% i
<
N (O A S SNINEEN NHSEEREN @
S (LY ~ QY I SEERA Qv z
X QK| < Q) QA i g
I _
Q|0 e [[N [[DA [N | W 9[M] 4N [00]c0] T XN [0 O~
Y o] QWM S QINNQQUNS] M QR N ™ QNS o0l =] %l =
Of=(N[MIad W Oo|NMNO|logla(jloj0jW(L{ol~la|o|lg|lvjeoIn|jolo(d| o]l w|n]lol~la|m| = ©
R R ™ ™
AN AY N ~
-] 70) / ©

133HS ONIAO0D

WILSAS ONINIVHL H31LNdWODO0HIIW

SWILSAS H31LNdNOD A3 1LVHOILNI

5-148

ANALOG TO DIGITAL INPUT
5.6.8 Thermistor Self Heating

When a temperature measuring device 1is carrying current, as the
thermistor does, it generates heat internally. If the thermal
resistance between the sensor and its environment is very low, as it
will be in a liquid, this means that the sensor affects the
experiment. If the thermal resistance is high, as in still air, the

measured temperature will be higher than the real temperature.

This effect is usually negligible. In the circuit we have been using,
the maximum self heating is about 0.6 milliwatt, occuring near
25o C. Thus, the self heating would be less than 0.1 degree, not
detectable with our A/D converter. For an experiment, the effect can
be increased in two ways. Supply the thermistor from +12 volts with
smaller series resistance to increase the heat generated, and bury
the thermistor in a piece of styrofoam to decrease its dissipation.
The connection of Figure 5-46 accomplishes this, and also allows
switching the power to the thermistor on and off. We will show that
the self heating error can be eliminated by applying power only

during brief measurement intervals.

Since the circuit is changed, our previous calibration data are not

valid for this experiment. Figure 5-46 shows a plot of voltage vs

temperature for this connection, near room temperature. The input is
in the neighborhood of one volt, so the ANALOG 1IN pot should be

adjusted to no attenuation for maximum sensitivity.

5~149

ANALOG TO DIGITAL INPUT

+12 VOLTS

R2
1K

PORT1AQ PORT1AQ
=1 HEAT/MEASURE ' Thermistor
=0 OFF “«~ "in styrofoam
o v ANALOG RT
_ 1712
R1+R2+RT Rl
1K
1.90 64
60
5C
.90 3
58 H
P
a
"
B z
2
5. 80 50 B
o &
2 :
S~
<
48
.70
44
40
.60 2 P e . 1 3C

15 16 17 18 19 20 2%) 22 23 24 25
TEMPERATURE ~C

Thermistor Connection and Calibration
for Self Heating Experiment

Figure 5-46

5-150

ANAIOG TO DIGITAL INPUT

Note that with this connection, the slope 1is inverted from that of
the normal connection, so the temperature conversion of the previous
exercises must be modified. Interrupt service must be modified to set
port 1A0 high at RST 5 to enable the measurement. To detect self

heating, leave port 1A0 high, but to demonstrate its elimination, set

port 1A0 low at RST 6.

In the interrupt service routine given in Figure 5-40b and 5-40c room
was left for two patches to control power to the thermistor. In the

subroutine that services Timer 0, we had:

MVI A,01 To reenable Timer O
NOP

NOP
Replace the NOP instructions with:
OuT PORT1A Turn on Thermistor Power

Now self heating should be measurable. To eliminate self heating we

will turn thermistor power off after reading and processing the

input. After the call to FILTR insert:

MVI A,00 Turn off thermistor power
ouT PORT1A
MVI A,06 To disable A/D

5-151

ANALOG TO DIGITAL INPUT

Now power will be applied to the thermistor only while the A/D
conversion 1is being performed. The MVI A,00 can be changed to MVI
A,01 to again keep power on. The data log should demonstrate the
difference. The revised program is shown 1in Figure 5-47. One
instruction in TEMP is changed from INR A to DCR A, and a very short

calibration table is entered.

5-152

THEKMIDTUK DELY HEATING = LNTERRUPT SERVICE

CODE

A D D R

X 3
Q| N _
—/ R .
ENENREL M M 1R
Q J&% % M , Q
ML_J NER N N q d, s
) N S [\ < N ! -
IR WA s :
N MM NG M. \ .W ;
N : NS J N pY &
JWMM O anﬂ \J @7 RN O [
1] < (14 AN x
N Q ~ I = ~ -
RERS s R Al B J Q| |+ s
21 AR N “ K IS H Q| K S a
SEN [o [= [+ [& SNEESNC
Ql X <& | (< g,
NEN X J 2
NERIES b3 Y [X < NEREE =
Q) 9} QUUHN| |J J ol | J
*| K| k| k| k[* ¥
QN s[ss]oo] ol N Vo[o[\ [0] Q] Qs | W[[0 R [W
WY] 0] < R O W W A S| QU]) N og| M QI A o
m|les|wv/i oMo |lo(gdlojo|]llWw|u|o|le~ln|(om|g|vw|foINn|[olo|d|m|lO|0|lw|(n|fo|~|~|om]| < ©
MM ™
N K .

5-153

133HS ONI02

W3ILSAS ONINIVHL HI1LNdINODOHDIIN

‘SINJ1SAS H31LNdWOD A3LVHOILNI

INTERRUPT SERVICE - EXIT, TIMER 0

CODE

A D D R

=4

J Q
g 1Y S 3 MW
_ N\
Q WWW W W MW N % :
~ X A\ MM < MM rw v
N W *r MMM W g
3 R W W 3§ ;
W VNN N ERRRERRR IR :
NES &
NI Q
D Ly N ~ ~ ™ <4
- =~ Q | N | [™ Q
J v 1 > S ~ - W
ol QX I ([| [T s = 0= S
| =
SN NN o[] [e X
D QRN W (DI D > U= (22l X
Q NQUWAE| Q]] o] [AL s| |H/H| U
| *| % *
© | W~ QWIS [Yo O] Y™ [
ALY W[QS| O) QIS | [N D[] ™y g ™Y
Ol-jlN|M I Oo| Mo o |jo(0jW|L|Oo|r|N| M |W0]|O(N]® d|lom|(o|ojlw|luw|o|~|~|0| = Lo
N Ry \y
%
L N 3 .

133HS ONIAOD

WILSAS ONINIVHL H31NdWODOHIIW

SINILSAS HILNdNOD A3LVHOILNI

5-154

k
\
Lf WU, :
AR 5 K
NRRRY 3
RAERN W S
S N
' K
m N~
V)
S WQ
. NNSY
2 B
E] ASAIN
: N
VN
&
3
%
AL SO QN A
E QNN S ™
I O | N || |WO|O]|M™ DE&01234567 ool Qjlw|luL|loj~I N[0 < -]
I
PN N

133HS ONIAOD

W3LSAS ONINIVHL H31NdWODOHIIN

SW31SAS H31NdWOD A3LVHOILNI

5-155

ANALOG TO DIGITAL INPUT

5.6.9 Other Temperature Logging Experiments

The thermistor is encapsulated so that it can be wused in water,
making several interesting experiments possible. Plot temperature
versus time as you bring a pot of water from room temperature to
boiling. Determine the temperature difference from a very gentle

boil to a full boil. Determine the effect of a 1id on the pot.

There is an o0ld wives' tale that hot water will freeze more rapidly

than cold water. Test it.
5.6.10 Abbreviated Temperature Lookup

For most measurement and control purposes, the extensive temperature
table used up to here is not necessary, since it gives a precision
greater than the absolute accuracy of the thermistor. In the
program of Figure 5-48, a much shorter table is provided, fitting in
the memory space 82EC to 82FF. Each slope is used for 32 additions,
so the repetition count is not needed. This table gives the same
results within +0.1° C over the range of 10° C to 40° C and

+1.0° € from 0° C to 90° C.

5-156

ABTMP - ABBREVIATED TEMPERATURE LOOKUP

CODE

A D D R

| | IS
QA e 3
W R It SN
3 Sh W Y. w
3 . R | W .M .MJ W\
. | : \ nm
2 Y Y 3 RRERE 3
y _ Y ﬂ// l N
W .m R Y Mr 4% I W i o
3 | I3 || g
SERRCRECRERSNES SRR :
_ a (04
W W
I | NS Q
“n% NEEEEREEEEE Q| = g []| I
HBP T + -+ -~ ~ D/ ~ ~ ™~ -~ ~ lrn\u E
| < RS EIS o (W] [WHY Rl aN[x)
SNRVEN T | | 2
Nl SN[XN H] [AN TN O[T XN [N x X
SRR Ol QA [N QY Q2 QY = By
UQlQl 4 SIHEIHEHY [TXQTNEHATQY [FHQ2NN <
*| % *| ¥} X
o[\~ Al] s|w [W] m]\s v |yl o o w[Q] ™[] Q™ '\ W] QT ™[N
EdFﬁéf#JJJJ404F72x447325430YAJP&
SiT|INm(x|wioINO|lo | DO|0|W L |Ol=|N|®fs|Of© N ® 9. dlo(lojla|lwju|ojcla]|o| < L]
M Q Q (v
R
© 90 & ”vﬁ @

133HS ONIA0D

W3LSAS ONINIVHL H31NdWODOHIIW

SW31SAS'HILNdINOD A31VHOILNI

5-157

ABTMP (continued)

CODE

A D D R

~\~.

LI } Mﬁ 10
y 3 X W,
Q . X
WT R .// ; M >
1139 Jﬁw .‘ % N :
y Q| X M
WM Y N N P ; N :
> ! NN :
M [X 3| |9 Rt 5
I.AA N ¥ rﬂ Mﬂ @) w N..
Q W
N, W Q « -
N A8 Q Q T >
% N =¥ 3 W | Q
S S IR SANERARRE
Q X By S Q Q[
NN x MR \
W o] | (¥ Bl Ik[H] [K[A] TR
n Q=2 BEb3 NES N RENEER SRR
b 8 h Hlr K[N =N KUY
]| | Q8[| | oq| 0| [w [[Q]~ |] RN QN Q] Ny sl N <o g™
VA N QNS # V[o WY f NN N o] N U O QAN W Y™ g™
o|lr|n|m|fs|w|lo|Now|lo|«|n|lo|ojw|w|o|-|a|w|st|w|/o|~n|o|(o|g|o|jlo|ojuwu|lu|lol~|n|m]|< -]
3 : {
@ -] / (]

133HS ONIA0D

WILSAS ONINIVHL H31NdINODOHDIIN

SINJLSAS H31NdWOD A3LVHOILNI

5-158

CODING SHEET

MICROCOMPUTER TRAINING SYSTEM

INTEGRATED COMPUTER SYSTEMS

A D D R

(o]
o]
o
m

ABTM.P (continued)

80?,&_‘0

FF —Z0

-

o. 17/4-{ od/éZM

2F -5

04/05’ ° C’Zzﬁm

BE - 4D

0/ 357 0642&/)’”/

2F - PO

0. 32 *C /L20mr

JF - &0

0.343 “C/20 mo

S -0

0. /0 CLlmn

FF ~RD

ﬂ- é/ é ag/a?ﬁmf

SR RNSOCNPDPRRDILLERNRRR

/=00

G NN R] o [0R [aNR[O R [

/. 3L ’4AZdM

wlvlojaols|wNv]||lo|mm|OolOoO|B|p|lo|o|N]|o|lald|lw|MdM|2|lo|mm|O|O0|T|P|lo|lw|v]|laoaja|&|w]| N

Figure 5-48c

5-159

ANALOG TO DIGITAL INPUT

Vee

L ¢ ____f _7(

2.5k 16000 8000 4000 2000 1000 500 250

ANALOG INPUT VOLTAGE

0' 1 A 1 I [1 [N 1 2 A

5 10 20 30 40 50 60 70 80 90 100 110 125
TEMPERATURE °C

5-160 Thermistor Resistor Matching

Figure 5-49

ANAIUVUG 1TU DVIULLAL LINFUL

5.6.11 Thermistor Resistance Matching

OPTIONAL EXERCISE

The chief difficulties in wusing the thermistor come from the
non-linearity and high slope (degrees/volt) at higher temperatures.
These problems can be avoided 1if the series resistance is well
matched to the thermistor resistance at the temperature being
measured. By switching discrete outputs the computer can accomplish
this matching automatically. Figure 5-49 shows a circuit in which the
thermistor is connected between Vcc and a resistor ladder which can
be switched to provide different series resistance. Calibration
curves for each resistance are shown. The advantage is that only a
linear portion of each calibration curve is used, and a moderate

slope (temperature/voltage) is retained at all temperatures.

Switching of the network can be done by the Port 1A outputs. These
introduce an offset voltage because their outputs are not pulled
perfectly to ground but only to about + 0.4 volts. To use this
scheme effectively each curve should be calibrated independently,

with two temperatures for each.

5-161

ANALOG TO DIGITAL INPUT

The processing algorithm finds the highest single resistor which
brings the input voltage on-scale (less than 2.56 volts). Thus at
20o C the 16K resistor produces an off-scale voltage, but the 8K
resistor produces 1.92 volts. A table stores, for each resistor, the
lowest temperature for which that resistor will be used, the
corresponding voltage, and the slope. The measured temperature is
the 1low temperature plus the slope times the voltage difference.

Figure 5-50 shows the program flow.

The resistors required for this experiment are not supplied with the

course.

5-162

ANALOG 1U UIUL1AL 1NNFUL

Select 16k resistor
Output FA to D/A

3

Test A/D Comparator

Low
Voltage 2.50

High

Select next lower resistor

Reduce D/A Output by 1
Test A/D Comparator

Low

High

Address table data for
selected resistor.
Subtract table voltage
from measured voltage

Multiply by slope

Add table temperature

‘ EXIT ’

Thermistor Resistor Matching Flow

Figure 5-50

5-163

ANALOG TO DIGITAL INPUT

This page intentionally left blank

5-164

D/9/80

INTEGIRATED COVIPUTER SYSTEZVIS

EDUCATION IS OUR BUSINESS™

NORTH AMERICAN HEADQUARTERS
Integrated Computer Systems
3304 Pico Boulevard
P.O. Box 5339
Santa Monica, California 90405 USA
Telephone: (213) 450-2060
TWX: 910-343-6965

FRANCE

ICS France
90 Ave Albert ler
92500 Rueil-Malmaison
France
Telephone: 801) 749 40 37
Telex: 204593

NORTH AMERICA - EASTERN REGION
Integrated Computer Systems
300 North Washington Street
Suite 103
Alexandrig, Virginia 22314 USA
Telephone: 703&548-1333
TWX: 710-832-0045

GERMANY

ICSD GmbH

Leonrodstrabe 54

8000 Munich 19

West Germany
Telephone: (089) 19 80 66
Telex: 5215508

EUROPEAN HEADQUARTERS

ICSP - UK.

Pebblecoombe, Tadworth

Surrey KT20 7PA

England
Telephone: Leatherhead (©3723) 79211
Telex: 915133

SCANDINAVIA

ICSP Inc. - Scandinavia

Utbildningshuset AB

Box 1719

§$-221 O1Lund, Sweden
Telephone: (046) 30 70 70
Telex: 33345

