
pSOSystem
System Calls

000-5070-004

pSOS Product Family

Integrated Systems, Inc. • 201 Moffett Park Drive • Sunnyvale, CA 94089-1322

LICENSED SOFTWARE - CONFIDENTIAL/PROPRIETARY

This document and the associated software contain information proprietary to Integrated Systems,
Inc., or its licensors and may be used only in accordance with the Integrated Systems license
agreement under which this package is provided. No part of this document may be copied,
reproduced, transmitted, translated, or reduced to any electronic medium or machine-readable
form without the prior written consent of Integrated Systems.

Integrated Systems makes no representation with respect to the contents, and assumes no
responsibility for any errors that might appear in this document. Integrated Systems specifically
disclaims any implied warranties of merchantability or fitness for a particular purpose. This
publication and the contents hereof are subject to change without notice.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS252.227-7013 or its equivalent. Unpublished rights reserved under the copyright laws of
the United States.

TRADEMARKS

AutoCode, MATRIXX , and pSOS are registered trademarks of Integrated Systems, Inc.

The following are trademarks of Integrated Systems, Inc.:

BetterState, BetterState Lite, BetterState Pro, DocumentIt, Epilogue, ESp, HyperBuild, NetState,
OpEN, OpTIC, pHILE+, Plug-and-Sim, pNA+, pREPC+, pRISM, pRISM+, pROBE+, pRPC+, pSET,
pSOS+, pSOS+m, pSOSim, pSOSystem, pX11+, RealSim, SpOTLIGHT, SystemBuild, Xmath,
ZeroCopy.

ARM is a trademark of Advanced RISC Machines Limited. Diab Data, and Diab Data in
combination with D-AS, D-C++, D-CC, D-F77, and D-LD are trademarks of Diab Data, Inc.
ELANIX, Signal Analysis Module, and SAM are trademarks of ELANIX, Inc. SingleStep is a
trademark of Software Development Systems, Inc. SNiFF+ is a trademark of TakeFive Software
GmbH, Austria, a wholly-owned subsidiary of Integrated Systems, Inc.

All other products mentioned are the trademarks, service marks, or registered trademarks of their
respective holders.

Copyright  1997 Integrated Systems, Inc. All rights reserved. Printed in U.S.A.
Document Title: pSOSystem System Calls
Part Number: 000-5070-004
Revision Date: August 1997

Corporate pSOS or pRISM+ Support MATRIXX Support

Phone 408-542-1500 1-800-458-7767, 408-542-1925 1-800-958-8885, 408-542-1930

Fax 408-542-1950 408-542-1966 408-542-1951

E-mail ideas@isi.com psos_support@isi.com mx_support@isi.com

Home Page http://www.isi.com

Contents
Contents iii

Using This Manual vii

Organization .vii

Conventions. viii

Font Conventions. viii

Symbol Conventions . ix

Format Conventions. ix

Note, Caution, and Warning Conventions. xi

Revision Bar Convention .xii

Commonly Used Terms and Acronyms .xii

Related Publications. xiii

Support . xiv

Contacting Integrated Systems Support .xv
iii

Contents
1 pSOS+ System Calls

2 pHILE+ System Calls

3 pREPC+ System Calls

4 pNA+ System Calls

5 pRPC+ System Calls

6 pROBE+ and ESp
System Calls

A Tables of System Calls

A.1 Table of All pSOSystem Calls . A-1

A.2 pSOS+ System Calls . A-15

A.3 pHILE+ System Calls . A-18

A.4 pREPC+ System Calls . A-20

A.5 pNA+ System Calls . A-26

A.6 pRPC+ System Calls . A-27

A.7 pROBE+ and ESp System Calls. A-28

B Error Codes

B.1 pSOS+ Error Codes . B-4

B.2 pHILE+ Error Codes . B-15

B.2.1 pSOS+ Errors Related to pHILE+ . B-34

B.2.2 Conversions of NFS Error Codes . B-35
iv pSOSystem System Calls

Contents
B.2.3 Conversions of RPC Error Codes .B-36

B.3 pREPC+ Error Codes .B-38

B.4 pNA+ Error Codes .B-39

B.5 pRPC+ Error Codes .B-44

B.6 Driver Error Codes. .B-44

B.6.1 Shared Memory Network Interface Driver Error CodesB-45

B.6.2 Shared Memory Kernel Interface Driver Error Codes.B-45

B.6.3 Terminal Interface Driver Error Codes B-46

B.6.4 Tick Timer Driver Error Codes .B-47

B.6.5 RAM Disk Driver Error Codes. .B-48

B.6.6 TFTP Driver Error Codes .B-48

B.6.7 IDE Driver Error Codes .B-49

B.6.8 FLP Driver Error Codes .B-49

B.6.9 SCSI Driver Error Codes .B-50
pSOSystem System Calls v

Contents
vi pSOSystem System Calls

Using This Manual
This manual is part of a documentation set that describes pSOSystem, the modular,
high-performance real-time operating system environment from Integrated Systems,
Inc. This manual is targeted for embedded application developers using the pSOSys-
tem environment. Basic familiarity with UNIX terms and concepts is assumed.

System Calls contains detailed descriptions of all pSOSystem system calls and error
codes. For purpose of usability, System Calls provides two appendices:

■ Appendix A provides an alphabetical list of all system calls with a summary de-
scription of each call and a reference to the page where you will find call details.
This enables you to search for a call by function when you do not have the spe-
cific call name.

■ Appendix B provides a numerical list of all error codes returned by pSOSystem.
Each error code is listed with its description and the system calls that can re-
turn it.

System Calls and other manuals comprise the basic documentation set for the pSO-
System operating system. These other manuals are the pSOSystem Getting Started,
pSOSystem System Concepts, pSOSystem Programmer’s Reference, pSOSystem Ad-
vanced Topics, and the pSOSystem Application Examples.

Organization

This manual is organized as follows:

Chapter 1, “pSOS+ System Calls,” provides detailed information on each system call
in the pSOS+/pSOS+m component of pSOSystem.
vii

Conventions Using This Manual
Chapter 2, “pHILE+ System Calls,” provides detailed information on each system
call in the pHILE+ component of pSOSystem.

Chapter 3, “pREPC+ System Calls,” provides detailed information on each system
call in the pREPC+ component of pSOSystem.

Chapter 4, “pNA+ System Calls,” provides detailed information on each system call
in the pNA+ component of pSOSystem.

Chapter 5, “pRPC+ System Calls,” provides detailed information on each system call
in the pRPC+ component of pSOSystem.

Chapter 6, “pROBE+ and ESp System Calls,” provides detailed information on the
system calls supported by the pROBE+ target debugger/analyzer and the ESp
cross-system visual analyzer.

Appendix A, “Tables of System Calls,” provides a short description of each pSOSys-
tem system call with a reference to the pages that contain detailed information on
the call.

Appendix B, “Error Codes,” provides a listing of all error codes returned by pSOSys-
tem system calls.

Conventions

This section describes the conventions used in this manual.

Font Conventions

Fonts other than the standard text default font are used as follows:

Courier Courier is used for command and function names, file
names, directory paths, environment variables, messages and
other system output, code and program examples, system
calls, and syntax examples.

bold Courier User input (anything you are expected to type in) is set in bold

Courier .
viii pSOSystem System Calls

Using This Manual Conventions
Symbol Conventions

This section describes symbol conventions used in this document.

Format Conventions

Each reference section in this manual adheres to a standard format. The name of
the system call, a brief description, and its C language syntax appear at the top of
the first page. The remaining information about the call appears below the syntax
and is organized under the following headings:

Volume Types

For pHILE+ system calls only. Names the volume types the system call supports.
Volume types include pHILE+, NFS, MS-DOS, and CD-ROM.

italic Italic is used in conjunction with the default font for emphasis,
first instances of terms defined in the glossary, and publica-
tion titles.

Bold Helvetica narrow Buttons, fields, and icons in a graphical user interface are set
in bold Helvetica narrow type. Keyboard keys are also set in this
type.

[] Brackets indicate that the enclosed information is optional. The brackets
are generally not typed when the information is entered.

| A vertical bar separating two text items indicates that either item can be
entered as a value.

· The centered dot symbol indicates a required space (for example, in user
input).

% The percent sign indicates the UNIX operating system prompt for C shell.

$ The dollar sign indicates the UNIX operating system prompt for Bourne and
Korn shells.

The symbol of a processor located to the left of text identifies processor-spe-
cific information (the example identifies 68K-specific information).

Host tool-specific information is identified by a host tools icon (in this exam-
ple, the text would be specific to the pRISM host tools chain).

68K

pRISM
pSOSystem System Calls ix

Conventions Using This Manual
Description

Provides a description of the call.

Arguments

Provides descriptions of all arguments used in the call.

Target

Where applicable, provides processor-specific information about the call. The
information appears next to an icon representing the processor in question, as
below:

If the information is also specific to a set of host tools, a host tool icon appears next
to the processor icon, as below:

Return Value

Lists the possible return values of the call. For example, pSOS+ system calls always
return a 0 to indicate a successful call, and pREPC+ calls can return either a non-
zero value if the test result is true, or 0 if it is false. The Error Codes section lists
possible errors returned by each call.

Error Codes

Provides a list of the error codes that the call can generate. For pSOS+ and pHILE+
system calls, an error code returns as a system call return value. For other compo-
nents, such as the pREPC+ component/library and the pNA+ network manager, er-
ror codes are loaded into an internal variable that can be read through the macro
errno . Appendix B contains a complete list of error codes for each software compo-
nent.

On 68K processors, a signal is passed to the ASR in the D0.L register.

For 68K processors with pRISM host tools, the formula is the following:

SIZE = 32 + (4 * VSIZE) + (16 * NFD) + (42 * MAXDEPTH)

68K

68K pRISM
x pSOSystem System Calls

Using This Manual Conventions
Usage

Provides detailed usage information for certain system calls. For instance, the
verify_vol() call of the pHILE+ component performs multiple actions that re-
quire detailed explanations.

Notes

Provides supplemental information, warnings, and side effects of a call. For pSOS+
system calls, a subsection called “Multiprocessor Considerations” describes the be-
havior of the call in a multiprocessing environment if it differs from that in a single-
processor environment. Also, the subsection “Callable From” lists classes of pro-
gram elements that the system call can be called from. The system will deadlock if
the call is made from a program element not listed in the “Callable From” subsec-
tion. There are four possible program elements:

Task — The smallest unit of execution that can compete on its own for system re-
sources.

ISR — Interrupt Service Routine. A function that takes control of the system when
the CPU has been triggered with an exception from an external source. An ISR
is part of a device driver.

KI — Kernel Interface. The kernel interface is used by pSOS+m to communicate with
other pSOS+m kernels on other processors.

Callout — A function that a device driver uses to notify a pSOSystem component of an
interrupt event. A callout is called from an ISR.

See Also

Lists related service calls or the location of other relevant information.

Note, Caution, and Warning Conventions

Within the text of this manual, you may find notes, cautions, and warnings. These
statements are used for the purposes described below.

NOTE: Notes provide special considerations or details which are important to the
procedures or explanations presented.

CAUTION: Cautions indicate actions that may result in possible loss of work
performed and associated data. An example might be a system
crash that results in the loss of data for that given session.
pSOSystem System Calls xi

Commonly Used Terms and Acronyms Using This Manual
WARNING: Warnings indicate actions or circumstances that may result in
file corruption, irrecoverable data loss, data security risk, or
damage to hardware.

Revision Bar Convention

A revision bar, at left, appears in the margin next to any text that has changed since
the last release of this manual.

Commonly Used Terms and Acronyms

The following terms and acronyms are commonly associated with pSOSystem and
appear in this manual.

ASR See asynchronous signaloutine.

asynchronous
signal routine

A function within an application that executes in response to an
asynchronous signal.

callout A function that a device driver uses to notify a pSOSystem compo-
nent of an interrupt event. A callout is called from an ISR.

FD File descriptor.

FLIST A contiguous sequence of blocks used to hold file descriptors on a
pHILE+ formatted volume.

ISR See interrupt service routine.

interrupt service
routine

A function within an application or device driver that takes control
of the system when the CPU has been triggered with an exception
from an external source.

KI See kernel interface.

kernel interface A user-provided communication layer between nodes in a multi-
processing environment (pSOS+m).

NFS Network file system.

NI Network interface.

RSC See remote service call.

remote service
call

A service call made from one node to another in a multiprocessing
environment (pSOS+m).
xii pSOSystem System Calls

Using This Manual Related Publications
Related Publications

When using the pSOSystem operating system you might want to have on hand the
other manuals included in the basic documentation set:

■ pSOSystem Getting Started explains how to create and bring up pSOSystem-
based applications. This manual also contains a number of tutorials.

■ pSOSystem System Concepts provides theoretical information about the opera-
tion of pSOSystem.

■ pSOSystem Programmer’s Reference is the primary source of information on net-
work drivers and interfaces, system services, configuration tables, memory-us-
age data, and processor-specific assembly languages.

■ pROBE+ User's Manual describes how to use the pROBE+ target debugger/ana-
lyzer.

Based on the options you have purchased, you might also need to refer to one or
more of the following manuals:

■ C++ Support Package User’s Guide describes how to implement C++ applications
in a pSOSystem environment.

■ SpOTLIGHT Debug Server User’s Guide describes how to use the SpOTLIGHT de-
bugger to debug pSOSystem applications.

■ ESp User’s Guide documents the ESp front-end analyzer, which displays appli-
cation activities, and the pMONT component, the target-resident application
monitor.

ROOTBLOCK The root block on a pHILE+ formatted volume, which contains all
information needed by pHILE+ to locate other vital information on
the volume.

socket The endpoint for communication across a network.

task The smallest unit of execution in a system designed with
pSOSystem that can compete on its own for system resources.

TCP/IP Transport Control Protocol/Internet Protocol, a software protocol
for communications between computers.

UDP User Datagram Protocol.
pSOSystem System Calls xiii

Support Using This Manual
■ OpEN User’s Guide describes how to install and use pSOSystem’s OPEN (Open
Protocol Embedded Networking) product.

■ SNMP User's Guide describes the internal structure and operation of SNMP, In-
tegrated System’s Simple Network Management Protocol product. This manual
also describes how to install and use the SNMP MIB (Management Information
Base) compiler.

Support

Customers in the United States can contact Integrated Systems Technical Support
as described below.

International customers can contact:

■ The local Integrated Systems branch office

■ The local pSOS distributor

■ Integrated Systems Technical Support as described below

Before contacting Integrated Systems Technical Support, please gather the informa-
tion called for in Table 1 on page xvi. The detailed description in Table 1 should in-
clude the following:

■ The procedure you followed to build the code. Include components used by the
application.

■ A complete record of any error messages as seen on the screen (useful for track-
ing problems by error code).

■ A complete test case, if applicable. Attach all include or startup files, as well as
a sequence of commands that will reproduce the problem.
xiv pSOSystem System Calls

Using This Manual Support
Contacting Integrated Systems Support

To contact Integrated Systems Technical Support, use one of the following methods:

■ Call 408-980-1500, extension 501 (US and international countries).

■ Call 1-800-458-7767 (458-pSOS) (US and international countries with 1-800
support).

■ Send a fax to 408-980-1647.

■ Send e-mail to psos_support@isi.com.

Integrated Systems actively seeks suggestions and comments about our software,
documentation, customer support, and training. Please send your comments by e-
mail to ideas@isi.com.
pSOSystem System Calls xv

Support Using This Manual
TABLE 1 Problem Report

Contact Name:

Company Name:

Customer ID (very important):

Street Address:

City, State, Country, Zip Code:

Voice Phone Number:

Fax Phone Number:

E-mail Address:

Product Name (including components):

Version(s) :

Host System:

Target System:

Communication Used (ethernet, serial):

Customer Impact:

Brief Description:

Detailed Description (please attach supporting information):
xvi pSOSystem System Calls

1

1

pSOS+ System Calls
This chapter provides detailed information on each system call in the pSOS+
component of pSOSystem. The calls are listed alphabetically, with a multipage
section of information for each call. Each call’s section includes its syntax, a
detailed description, its arguments, its return value, and any error codes that it can
return. In addition, it includes information specific to certain processors if such
information is needed.

Where applicable, the section also includes the headings “Notes” and “See Also.” The
“Notes” entry provides important information not specifically related to the call
description. In particular, it identifies how the pSOS+m kernel handles the call if
multiple processors are involved (see “Multiprocessor Considerations,”) and
indicates where the call can be made. “See Also” lists other system calls that have
related information.

If you need to look up a system call by its functionality, refer to Appendix A, “Tables
of System Calls,” which lists the calls alphabetically by component and provides a
brief description of each call.

For more information on error codes, refer to Appendix B, “Error Codes,” which lists
the codes numerically and shows which pSOSystem calls are associated with each
one.
1-1

pSOS+ System Calls
1-2 pSOSystem System Calls

pSOS+ System Calls as_catch

1

as_catch Specifies an asynchronous signal routine (ASR).

#include <psos.h>
unsigned long as_catch(

void (* start_addr) (), /* ASR address */
unsigned long mode /* ASR attributes */
)

Description

This system call allows a task to specify an asynchronous signal routine (ASR) to
handle asynchronous signals. as_catch() supplies the starting address of the
task's ASR, and its initial execution mode. If the input ASR address is zero, then the
caller is deemed to have an invalid ASR, and any signals sent to it will be rejected.

A task's ASR gains control much like an ISR. If a task has pending signals (sent via
as_send()), then the next time the task is dispatched to run, it will be forced to
first execute the task's specified ASR. A task executes its ASR according to the mode
supplied by the as_catch() call (for example, Non-preemptible, Time-slicing
enabled, etc.) Upon entry to the ASR, all pending signals — including all those
received since the last ASR invocation — are passed as an argument to the ASR. In
addition, a stack frame is built to facilitate the return from the ASR.

as_catch() replaces any previous ASR for the calling task. Therefore, a task can
have only one ASR at any time. An ASR must exit using the as_return() system
call.

Arguments

start_addr Specifies the address of the ASR.

mode Specifies the ASR's attributes. mode is formed by OR-ing the
following symbolic constants (one from each pair), which are
defined in <psos.h> . For instance, to specify that the ASR should
have preemption turned off, you place the symbolic constant
T_NOPREEMPT in mode. To specify that the ASR should have
preemption turned off and roundrobin by time-slicing turned on,
you place both T_NOPREEMPT and T_TSLICE in mode, using the
following syntax:

T_NOPREEMPT | T_TSLICE
pSOSystem System Calls 1-3

as_catch pSOS+ System Calls
Target

User and Supervisor Modes

You use the symbolic constants T_USER and T_SUPV on each processor as follows:

T_PREEMPT /
T_NOPREEMPT

ASR is / is not preemptible.

T_TSLICE /
T_NOTSLICE

ASR can / cannot be time-sliced.

T_ASR /
T_NOASR

ASR nesting enabled/disabled.

If T_ASR is set, then the ASR should be
programmed to be re-entrant. If T_NOASR is set,
the ASR is prevented from being re-entered as a
result of another as_send() call made to that
task.

T_USER /
T_SUPV

ASR runs in user mode / supervisor mode.

See “User and Supervisor Modes” under
“Target.”

T_ISR /
T_NOISR

Interrupts are enabled / disabled while ASR
runs.

These options are available only on certain
processors. See “Interrupt Control” under
“Target.”

T_LEVELMASK0
through
T_LEVELMASKn

Certain interrupts are disabled while ASR runs.
These options are available only on certain
processors. See “Interrupt Control” under
“Target.”

On PowerPC, 960 and x86 processors, ASRs execute in supervisor
mode only. Hence the symbolic constants T_USER and T_SUPV are
ignored.

PPC

960

x86
1-4 pSOSystem System Calls

pSOS+ System Calls as_catch

1

Interrupt Control

Interrupt control means that while an ASR is executing, hardware interrupts are
disabled. On some processors, you can disable all interrupts at or below a certain
interrupt level and enable all interrupts above that level. On other processors you
can simply specify that all interrupts are either enabled or disabled. Details are
provided below:

How Signals Are Passed to the ASR

The method by which signals are passed to the ASR is processor-specific:

Return Value

This system call always returns 0.

Error Codes

This system call returns no errors.

Notes

1. An invalid ASR (for example, start_addr = 0) should not be confused with
the ASR attribute T_NOASR. If a task's ASR is invalid, then an as_send() call
directed to it will be rejected and returned with an error; whereas, the T_NOASR
attribute simply defers the ASR's execution, with any intervening signals sent to
it left pending.

2. A normal task would call as_catch() only once, and usually as part of its
initialization sequence. Before the first as_catch() call, a task is initialized by
the pSOS+ kernel to have an invalid ASR.

On 68K processors, signals are passed to the ASR in the D0.L register.

On 960 processors, signals are passed to the ASR in the G0 register.

On x86 processors, signals are passed to the ASR in the EAX register.

68K

960

x86
pSOSystem System Calls 1-5

as_catch pSOS+ System Calls
Multiprocessor Considerations

None. The actions performed by as_catch() are entirely confined to the local node,
although asynchronous signals can be sent from remote nodes.

Callable From

■ Task

See Also

as_send, as_return
1-6 pSOSystem System Calls

pSOS+ System Calls as_return

1

as_return Returns from an asynchronous signal routine (ASR).

#include <psos.h>
unsigned long as_return();

Description

This system call must be used by a task's ASR to exit and return to the original flow
of execution of the task. The purpose of this call is to enable the pSOS+ kernel to
restore the task to its state before the ASR. as_return() cannot be called except
from an ASR.

This call is analogous to the i_return() call, which enables an Interrupt Service
Routine (ISR) to return to the interrupted flow of execution properly.

Target

Restoring CPU Registers

An ASR is responsible for restoring CPU registers to their previous state before
exiting via as_return() . The exact way in which this happens varies from
processor to processor. On most processors, the ASR is written in assembly
language, so you the programmer must take care to restore the registers. On
PowerPC processors, an ASR can be written in C, and the pSOS+ kernel restores the
registers. Processor-specific information on restoring registers prior to
as_return() is provided below:

On 68K processors, an ASR is responsible for saving and restoring all
CPU registers it uses, including stack pointers. The one exception to
this rule is the register D0.L, which is restored by the pSOS+ kernel. On
68K processors, an ASR can be written only in assembly language.

On 960 processors, an ASR is responsible for saving and restoring all
CPU registers it uses, including stack pointers. The one exception to
this rule is the register g0, which is restored by the pSOS+ kernel. On
960 processors, an ASR can be written only in assembly language.

On x86 processors, an ASR is responsible for saving and restoring all
CPU registers it uses, including stack pointers. The one exception to
this rule is the register EAX, which is restored by the pSOS+ kernel. On
x86 processors, an ASR can be written only in assembly language.

68K

960

x86
pSOSystem System Calls 1-7

as_return pSOS+ System Calls
Return Value

If successful, this system call never returns. An error code is generated on failure.

Error Codes

Notes

Multiprocessor Considerations

None. The actions performed by as_return() are confined entirely to the local
node.

Callable From

■ ASR

See Also

as_catch, as_send

Hex Mnemonic Description

0x3E ERR_NOTINASR Illegal, not called from an ASR.
1-8 pSOSystem System Calls

pSOS+ System Calls as_send

1

as_send Sends asynchronous signals to a task.

#include <psos.h>
unsigned long as_send(

unsigned long tid, /* target task ID */
unsigned long signals /* bit-encoded signal list */
)

Description

This system call sends asynchronous signals to a task. The purpose of these signals
is to force a task to break from its normal flow of execution and execute its
Asynchronous Signal Routine (ASR).

Asynchronous signals are like software interrupts, with ASRs taking on the role of
ISRs. Unlike an interrupt, which is serviced almost immediately, an asynchronous
signal does not immediately affect the state of the task. An as_send() call is
serviced only when the task is next dispatched to run (and that depends on the
state of the task and its priority).

Each task has 32 signals. These signals are encoded bit-wise in a single long word.
Bits 31 through 16 are reserved for internal system use, and bits 15 through 0 are
available for user-specific purposes.

Like events, signals are neither queued nor counted. For example, if three identical
signals are sent to a task before its ASR has a chance to execute, the three signals
have the same effect as one.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

tid Specifies the task to receive the signals.

signals Contains the bit-encoded signals.
pSOSystem System Calls 1-9

as_send pSOS+ System Calls
Error Codes

Notes

1. When an ASR starts execution, all pending asynchronous signals (since its last
invocation) are passed to it as an argument.

2. as_send() does not trigger the ASR handler if signals is 0.

Multiprocessor Considerations

If tid identifies a global task that resides on another processor node, the pSOS+
kernel internally makes a remote system call (RSC) to that remote node to send the
asynchronous signal to the task.

Callable From

■ Task.

■ ISR, if the targeted task is local to the node from which the as_send() call is
made.

■ KI, if the targeted task is local to the node from which the as_send() call is
made.

■ Callout, if the targeted task is local to the node from which the as_send() call
is made.

See Also

as_catch

Hex Mnemonic Description

0x05 ERR_OBJDEL Task has already been deleted.

0x06 ERR_OBJID tid incorrect, validity check failed.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x3F ERR_NOASR Task has no valid ASR.
1-10 pSOSystem System Calls

pSOS+ System Calls de_close

1

de_close Closes an I/O device.

#include <psos.h>
unsigned long de_close(

unsigned long dev, /* major/minor device number */
void *iopb, /* I/O parameter block address */
void *retval /* return value */
)

Description

The de_close() call invokes the device close routine of a pSOS+ device driver
specified by the dev argument. The functionality of the device close routine is
device-specific. For example, an RS-232 device driver close-routine may signal a
modem to hang up to signify the end of the connection.

The de_close() call, when used in conjunction with de_open() , can also be used
to implement mutual exclusion. In this case, de_close() can be used to signal the
end of a critical region for the device operation.

Arguments

Return Code

This call returns 0 on success, or an error code on failure. Besides the error codes
listed below, other driver-specific errors may be returned.

dev Specifies the major and minor device numbers, which are
stored in the upper and lower 16 bits, respectively.

iopb Points to an I/O parameter block, the contents of which are
driver-specific.

retval Points to a variable that receives a driver-specific value
returned by the driver.
pSOSystem System Calls 1-11

de_close pSOS+ System Calls
Error Codes

Notes

Callable From

■ Task

See Also

de_open

Hex Mnemonic Description

0x101 ERR_IODN Illegal device (major) number.

0x102 ERR_NODR No driver provided.

0x103 ERR_IOOP Illegal I/O function number.
1-12 pSOSystem System Calls

pSOS+ System Calls de_cntrl

1

de_cntrl Requests a special I/O device service.

#include <psos.h>
unsigned long de_cntrl(

unsigned long dev, /* major/minor device number */
void *iopb, /* I/O parameter block address */
void *retval /* return value */
)

Description

The de_cntrl() call invokes the device control routine of a pSOS+ device driver
specified by the dev argument. The functionality of a device control routine depends
entirely on the device driver implementation. It can include anything that cannot be
categorized under the other five I/O services. de_cntrl() for a device can be used
to perform multiple input and output subfunctions. In such cases, extra parameters
in the I/O parameter block can designate the subfunction.

Arguments

Return Code

This call returns 0 on success or an error code on failure. Beside the error codes
listed below, other driver-specific errors may be returned.

dev Specifies the major and minor device numbers, which are stored in
the upper and lower 16 bits, respectively.

iopb Points to an I/O parameter block, the contents of which are driver-
specific.

retval Points to a variable that receives a driver-specific value returned by
the driver.
pSOSystem System Calls 1-13

de_cntrl pSOS+ System Calls
Error Codes

Notes

Examples of functions that are often performed by de_cntrl() include the
following:

■ For tty drivers, functions such as changing the baud rate and line-edit
characters, enabling/disabling of typed character echo, and so on

■ Reading device status information

Callable From

■ Task

See Also

de_read, de_write, de_open, de_close

Hex Mnemonic Description

0x101 ERR_IODN Illegal device (major) number.

0x102 ERR_NODR No driver provided.

0x103 ERR_IOOP Illegal I/O function number.
1-14 pSOSystem System Calls

pSOS+ System Calls de_init

1

de_init Initializes an I/O device and its driver.

#include <psos.h>
unsigned long de_init(

unsigned long dev, /* major/minor device number */
void *iopb, /* I/O parameter block */
void *retval, /* return value */
void **data_area /* device data area */
)

Description

The de_init() call invokes the device initialization routine of the pSOS+ device
driver specified by the dev argument.

The drive init routine can perform one-time device initialization functions such as:

■ Resetting the devices

■ Setting the necessary programmable registers

■ Allocating and/or initializing the driver's data area (for pointers, counters, and
so on)

■ Creating the messages queues, semaphores, and so on, that are needed for
communication and synchronization

■ Installing the interrupt vectors, if necessary

Arguments

dev Specifies the major and minor device numbers, which are
stored in the upper and lower 16 bits, respectively.

iopb Points to an I/O parameter block, the contents of which are
driver-specific.

retval Points to a variable that receives a driver-specific value
returned by the driver.
pSOSystem System Calls 1-15

de_init pSOS+ System Calls
Return Code

This call returns 0 on success, or an error code on failure. Besides the error codes
listed below, other driver-specific errors may be returned.

Error Codes

Notes

1. The pSOS+ kernel will automatically call de_init() during system
initialization if device auto-initialization is enabled. Refer to the pSOSystem
System Concepts manual for further details.

2. Normally de_init() is called once from the ROOT task for each configured
device driver. This call is normally made before other driver services are used.

Callable From

■ Task

See Also

de_open

data_area This argument is no longer used, but it remains to support
compatibility with older drivers and/or pSOS+ application
code. The pSOS+ bindings store a value into the variable
pointed to by data_area . Therefore, a dummy variable still
must be allocated to prevent memory corruption.

Hex Mnemonic Description

0x101 ERR_IODN Illegal device (major) number.

0x102 ERR_NODR No driver provided.

0x103 ERR_IOOP Illegal I/O function number.
1-16 pSOSystem System Calls

pSOS+ System Calls de_open

1

de_open Opens an I/O device.

#include <psos.h>
unsigned long de_open(

unsigned long dev, /* major/minor device number */
void *iopb, /* I/O parameter block address */
void *retval /* return value */
)

Description

The de_open() call invokes the device open routine of a pSOS+ device driver
specified by the dev argument.

The device open routine can be used to perform functions that need to be done
before the I/O operations can be performed on the device. For example, an
asynchronous serial device driver can reset communication parameters (such as
baud rate and parity) to a known state for the channel being opened.

A device driver can also assign specific duties to the open routine that are not
directly related to data transfer or device operations. For example, a device driver
can use de_open() to enforce exclusive use of the device during several read and/
or write operations.

Arguments

Return Code

This call returns 0 on success, or an error code on failure. Besides the error codes
listed below, other driver-specific errors may be returned.

dev Specifies the major and minor device numbers, which are
stored in the upper and lower 16 bits, respectively.

iopb Points to an I/O parameter block, the contents of which are
driver-specific.

retval Points to a variable that receives a driver-specific value
returned by the driver.
pSOSystem System Calls 1-17

de_open pSOS+ System Calls
Error Codes

Notes

Callable From

■ Task

See Also

de_close

Hex Mnemonic Description

0x101 ERR_IODN Illegal device (major) number.

0x102 ERR_NODR No driver provided.

0x103 ERR_IOOP Illegal I/O function number.
1-18 pSOSystem System Calls

pSOS+ System Calls de_read

1

de_read Reads from an I/O device.

#include <psos.h>
unsigned long de_read(

unsigned long dev, /* major/minor device number */
void *iopb, /* I/O parameter block address */
void *retval /* return value */
)

Description

The de_read() call is used to read data from a device. It invokes the device read
routine of a pSOS+ device driver specified by the dev argument. This service
normally requires additional parameters contained in the I/O parameter block,
such as the address of a data area to hold the data and the number of data units to
read.

Arguments

Return Code

This call returns 0 on success, or an error code on failure. In addition to the error
codes listed below, other driver-specific errors may be returned.

dev Specifies the major and minor device numbers, which are stored in
the upper and lower 16 bits, respectively.

iopb Points to an I/O parameter block, the contents of which are driver-
specific.

retval Points to a variable that receives a driver-specific value returned by
the driver. For example, it can hold the actual number of data units
read.
pSOSystem System Calls 1-19

de_read pSOS+ System Calls
Error Codes

Notes

For many interrupt-driven devices, de_read() starts an I/O transaction and
blocks the calling task. Most of the I/O transaction can actually be performed in the
device's ISR. Upon completion of the transaction, the ISR unblocks the blocked
task.

Callable From

■ Task

See Also

de_write

Hex Mnemonic Description

0x101 ERR_IODN Illegal device (major) number.

0x102 ERR_NODR No driver provided.

0x103 ERR_IOOP Illegal I/O function number.
1-20 pSOSystem System Calls

pSOS+ System Calls de_write

1

de_write Writes to an I/O device.

#include <psos.h>
unsigned long de_write(

unsigned long dev, /* major/minor device number */
void *iopb, /* I/O parameter block address */
void *retval /* return value */
)

Description

The de_write() call is used to write to a device. It invokes the device write routine
of a pSOS+ device driver specified by the dev argument. This service normally
requires the additional parameters contained in the I/O parameter block, such as
the address of the user's output data and the number of data units to write.

Arguments

Return Code

This call returns 0 on success, or an error code on failure. Besides the error codes
listed below, other driver-specific errors can be returned.

dev Specifies the major and minor device numbers, which are
stored in the upper and lower 16 bits, respectively.

iopb Points to an I/O parameter block, the contents of which are
driver-specific.

retval Points to a variable that receives a driver-specific value
returned by the driver (the actual number of data units
written, for example.)
pSOSystem System Calls 1-21

de_write pSOS+ System Calls
Error Codes

Notes

For many interrupt-driven devices, de_write() starts an I/O transaction and
blocks the calling task. Most of the I/O transactions can actually be performed in
the device's ISR. Upon completion of the transaction, the ISR unblocks the blocked
task.

Callable From

■ Task

See Also

de_read

Hex Mnemonic Description

0x101 ERR_IODN Illegal device (major) number.

0x102 ERR_NODR No driver provided.

0x103 ERR_IOOP Illegal I/O function number.
1-22 pSOSystem System Calls

pSOS+ System Calls errno_addr

1

errno_addr Obtains the address of the calling task’s internal errno variable.

#include <psos.h>
unsigned long *errno_addr();

Description

This system call returns the address of the calling task's internal errno variable.

The pSOS+ kernel maintains an internal errno variable for every task. Whenever
an error is detected by any pSOSystem component, the associated error code is
stored into the running task's internal errno variable. The error code can then be
retrieved by referencing the errno macro defined in the header file <psos.h> as
follows:

#define errno (*(errno_addr())

For example, the following statement expands to include a call to errno_addr() :

if (errno == ERR_NOMGB)

Return Value

This system call returns the address of the errno variable of the calling task.

Error Codes

None.

Notes

1. errno_addr() provides a unique errno value for each task while maintaining
compatibility with industry standard library semantics. It should never be
necessary to call errno_addr() directly from application code.

2. All pSOSystem components set a task's internal errno variable. However, for
the pSOS+ kernel and pHILE+ file system manager, which return error values
via the function return value, use of the errno macro is superfluous.

3. A successful system call does not clear the previous errno value. errno always
contains the error code from the last unsuccessful call.
pSOSystem System Calls 1-23

errno_addr pSOS+ System Calls
Multiprocessor Considerations

None.

Callable From

■ Task
1-24 pSOSystem System Calls

pSOS+ System Calls ev_asend

1

ev_asend (pSOS+m kernel only) Asynchronously sends events to a task.

#include <psos.h>
unsigned long ev_asend(

unsigned long tid, /* target task identifier */
unsigned long events /* bit-encoded events */
)

Description

This system call asynchronously sends events to a task. It is identical to ev_send()
except the call is made asynchronously. Refer to the description of ev_send() for
further information.

Arguments

Return Value

When called in a system running the pSOS+m kernel, this call always returns 0.
The pSOS+ kernel (the single processor version) returns ERR_SSFN.

Error Codes

Should the call fail, if present, the node's MC_ASYNCERR routine is invoked and the
following error codes may be reported:

If an MC_ASYNCERR routine is not provided, the pSOS+m kernel generates a fatal
error.

tid Specifies the task ID of the target task.

events Contains a list of bit-encoded events.

Hex Mnemonic Description

0x05 ERR_OBJDEL Task has been deleted.

0x06 ERR_OBJID tid is incorrect, failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.
pSOSystem System Calls 1-25

ev_asend pSOS+ System Calls
Notes

1. This call is supported only by the pSOS+m kernel.

2. The events sent to a non-waiting task, or those that do not match the events
being waited for, are always left pending.

3. If the tid input argument identifies a task residing on the local processor node,
the calling task may be preempted as a result of this call.

4. In a multiple-event wait situation, the ev_send() and ev_receive() pair of
calls depend greatly on the temporal course of events. See Note 2 under
ev_receive() for an example.

5. The pSOS+m kernel does not prevent the use of bits reserved for system use.
However, for future compatibility, these bits should not be used.

Multiprocessor Considerations

If the tid input argument identifies a global task residing on another processor
node, then the pSOS+m kernel will internally make an RSC to that remote node to
send the specified events to that task.

Callable From

■ Task

See Also

ev_send, ev_receive
1-26 pSOSystem System Calls

pSOS+ System Calls ev_receive

1

ev_receive Enables a task to wait for an event condition.

#include <psos.h>
unsigned long ev_receive(

unsigned long events, /* bit-encoded events */
unsigned long flags, /* event processing attributes */
unsigned long timeout, /* timeout delay */
unsigned long *events_r /* events received */
)

Description

This service call enables a task to wait for an event condition. The event condition is
a set of user-defined events and an ANY/ALL waiting condition qualifier. Each task
can wait on 32 events, which are bit-encoded in a long word. An ALL condition
occurs when all of the specified events are received. An ANY condition occurs when
one or more of the specified events is received.

If the selected event condition is satisfied by events already pending,
ev_receive() clears those events and returns. Otherwise, ev_receive() can
return immediately with an error, wait until the requisite events have been received,
or wait until a timeout occurs, depending on the flags argument.

If successful, ev_receive() returns the actual events captured by the call in the
location pointed to by events_r .

Arguments

events Specifies the set of events. An events argument equal to 0 is a
special case, where ev_receive() returns the pending events but
leaves them pending. In this case, the other parameters are ignored.

flags Specifies the event processing attributes. flags is formed by OR-
ing the following symbolic constants (one from each pair), which are
defined in <psos.h> . For instance, to specify that ev_receive()
blocks until all events are satisfied, you place EV_WAIT and EV_ALL
in flags , using the following syntax:

EV_WAIT | EV_ALL

To specify that ev_receive() blocks until at least one event is
satisfied, you place EV_WAIT and EV_ANY in flags .
pSOSystem System Calls 1-27

ev_receive pSOS+ System Calls
Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

1. Events are not accumulated. No matter how many identical events are sent to
the calling task before it calls ev_receive() for receiving the event, the result
is the same as if one event were pending.

EV_NOWAIT /
EV_WAIT

Return if the event condition is unsatisfied /
block until the event condition is satisfied.

Selecting EV_NOWAIT is a convenient way to reset
all or selected pending events. For example, an
ev_receive() for events 1 and 2
unconditionally resets events 1 and 2.

EV_ANY /
EV_ALL

Wait for ANY / ALL of the desired events.

A successful return with EV_ANY signifies that at
least one specified event was captured. A
successful return with the EV_ALL attribute
signifies that all specified events have been
captured.

timeout If EV_WAIT is set, the timeout parameter specifies the timeout in
units of clock ticks. If the value of timeout is 0, ev_receive()
waits indefinitely.

If EV_NOWAIT is set, the timeout argument is ignored.

events_r Points to the variable where ev_receive() stores the actual events
captured.

Hex Mnemonic Description

0x01 ERR_TIMEOUT Timed out; this error code is returned
only if EV_WAIT was used and the
timeout argument was nonzero.

0x3C ERR_NOEVS Selected events not pending; this code
is returned only if the EV_NOWAIT
attribute was selected.
1-28 pSOSystem System Calls

pSOS+ System Calls ev_receive

1

2. The ev_receive() call captures only the events that the caller selects. It
captures each selected event once. If a pending event does not match a selected
event, the pending event remains pending. Also, if a pending event was sent
after an earlier event was used to match a selected event, the pending event
remains pending. Consider the following example sequence:

a. Task P has pending events 1 and 2.

b. With EV_ALL set, P calls ev_receive() for events 1, 3, and 8. Pending
event 1 is cleared.

c. Task A sends events 1 and 8 to P.

d. Event 1 is made pending. Event 8 is used to match the wanted event.

e. Task B sends events 2, 3, and 5 to P. Event 2 has no effect because event 2
is already pending. Event 5 is unwanted and made pending. Event 3 is used
to match a wanted event. The event condition is met, so P becomes ready to
run.

f. Events 1, 2, and 5 are left pending.

g. Events 1, 3, and 8 are returned in events_r .

Multiprocessor Considerations

None. The actions performed by ev_receive() take place only on the local node
(whether or not events come from other nodes).

Callable From

■ Task

See Also

ev_send
pSOSystem System Calls 1-29

ev_send pSOS+ System Calls
ev_send Sends events to a task.

#include <psos.h>
unsigned long ev_send(

unsigned long tid, /* target task identifier */
unsigned long events /* bit-encoded events */
)

Description

This system call sends events to a task. If the target task is not waiting for events,
the newly sent events are simply made pending. If the task is waiting for events, and
the wait condition is fully satisfied as a result of the new events, then the task is
unblocked and readied for execution. Otherwise, the task continues to wait. In
either case, any of the events sent that do not match those waited on are always left
pending.

Each task has 32 events, which are encoded bit-wise in a single long word. Bits 31
through 16 are for internal system use, and bits 15 through 0 are for user-specific
purposes. ev_send() can send up to 32 different events at one time.

Events are neither queued nor counted. For example, if three identical events are
sent to a task before it issues a wait for that event, the three events have the same
effect as one event.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

tid Specifies the task identifier of the target task.

events Contains a list of bit-encoded events.
1-30 pSOSystem System Calls

pSOS+ System Calls ev_send

1

Error Codes

Notes

1. The events sent to a non-waiting task, or those that do not match the events
being waited for, are always simply left pending.

2. If the caller is a task, it may be preempted as a result of this call.

3. In a multiple-event wait situation, the ev_send() and ev_receive() pair of
calls are highly dependent on the temporal course of events. See Note 2 under
ev_receive() for an example.

4. The pSOS+ kernel does not prevent the use of bits reserved for system use.
However, for future compatibility, these bits should not be used.

Multiprocessor Considerations

If the tid input argument identifies a global task residing on another processor
node, then the pSOS+ kernel internally makes an RSC to that remote node to send
the input events to that task.

Hex Mnemonic Description

0x05 ERR_OBJDEL Task has been deleted.

0x06 ERR_OBJID tid is incorrect, failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x65 ERR_STALEID Object's node has failed.
pSOSystem System Calls 1-31

ev_send pSOS+ System Calls
Callable From

■ Task.

■ ISR, if the targeted task is local to the node from which the ev_send() call is
made.

■ KI, if the targeted task is local to the node from which the ev_send() call is
made.

■ Callout, if the targeted task is local to the node from which the ev_send() call
is made.

See Also

ev_receive
1-32 pSOSystem System Calls

pSOS+ System Calls i_enter

1

i_enter Enters into an interrupt service routine.

This function cannot be called from a high-level language.

Description

This pSOS+ service entry is available only on x86, ColdFire, and PowerPC
processors. On these processors, i_enter() provides and establishes a standard
entrance convention for all interrupt service routines (ISRs). For efficiency reasons,
i_enter() is different from other system calls in that it uses a separate entry into
the pSOS+ kernel.

Target

Entering the ISR

For more information, please refer to the examples given in the i_return() call
description on page 1-35.

Return Value

None.

Notes

i_return() must be used to exit an ISR.

On ColdFire processors, i_enter() must be called at the beginning of
an ISR so that pSOS+ can keep track of nested interrupts and can
switch stacks if an interrupt stack is being used. i_enter() is called
via TRAP #12.

On PowerPC processors, i_enter() must be called at the beginning of
an ISR before the interrupt is re-enabled. The i_enter() entry point is
located at offset 0x60 from the beginning of the pSOS+ kernel code. It’s
called with a call (bl) instruction.

On x86 processors, i_enter() must be used as the first instruction of
an ISR, so that pSOS+ can keep track of nested interrupts and can
switch stacks if an interrupt stack is being used. i_enter() is called
via INT 92H.

CF

PPC

x86
pSOSystem System Calls 1-33

i_enter pSOS+ System Calls
Multiprocessor Considerations

None. This call can only be directed at the local node.

Callable From

■ ISR
1-34 pSOSystem System Calls

pSOS+ System Calls i_return

1

i_return Provides an exit from an interrupt service routine.

This call accepts no parameters and cannot be called from a high-level language.

Description

This pSOS+ service entry provides and establishes a standard exit convention for all
Interrupt Service Routines (ISRs). It is available for all processors supported by
pSOSystem. For efficiency reasons, i_return() is different from other system calls
in that it uses a separate, private entry into the pSOS+ kernel. The method of
executing an i_return() depends on the processor and is explained in “Method of
Executing an i_return()” under “Target.”

The i_return() call is used to integrate ISR level processing within pSOS+. The
i_return() call detects when all nested ISRs have exited and control is about to be
passed back to task level execution. At this transition point, it assesses any task
execution state changes that may have taken place during ISR processing, and then
passes control to the appropriate task.

Any ISR that makes system calls that may affect the ready state of a task, must
conclude with an i_return() system call. For those processors which supply an
i_enter() call, i_return() should precede the pSOS+ service calls. Any ISR
which contains an i_enter() must conclude with an i_return() . i_return()
does not accept any input parameters, and it never returns to the caller.

Before it exits, an ISR must restore CPU registers to their state prior to the
interrupt. Processor-specific code examples of ISRs are provided in “Restoring CPU
Registers Prior to Exiting the ISR” under “Target.”

Target

Method of Executing an i_return()

The method of executing an i_return() is processor-specific:

On PowerPC processors, i_return() ’s entry point is located at offset
0x58 from the beginning of the pSOS+ kernel code. It is executed by
either a branch (b) or call (bl) instruction.

On 960 processors, i_return() is executed by a calls 13 instruction.

PPC

960
pSOSystem System Calls 1-35

i_return pSOS+ System Calls
Restoring CPU Registers Prior to Exiting the ISR

The examples below illustrate, for each processor, how an ISR restores CPU
registers before exiting via i_return() .

On x86 processors, i_return() is executed by an INT 93H call.

On ColdFire processors, an ISR must restore all CPU registers, including
the stack pointer, to their state prior to the interrupt. Below is a sample
code fragment for an ISR that internally uses CPU registers D0, D1, D2,
A0, and A2.

TRAP #12
MOVEM.L D0-D2/A0/A2,-(SP)

<body of ISR>

MOVEM.L (SP)+,D0-D2/A0/A2
TRAP #13

On PowerPC processors, right before i_return() , the stack pointer
must point to the pSOSystem standard exception frame allocated by the
interrupt vector code. Registers R29-R31, LR, CR, SRR0 & SRR1 and
SRR2 & SRR3 (for PowerPC 403) have been saved into the frame by the
vector code. The values of registers R0, R2-R13, CTR, XER and MQ (for
PowerPC 601) prior to the interrupt also need to be saved into the frame
by the ISR. i_return() will restore all the saved registers and deallocate
the frame. Below are sample code fragments of the vector code and an
ISR.

Sample vector code:

stwu sp, PS_FRM_SIZE(sp) # Allocate pSOSystem
exception frame

stw r29, PS_FRM_R29(sp) # Save r29
stw r30, PS_FRM_R30(sp) # Save r30
stw r31, PS_FRM_R31(sp) # Save r31
mfsrr0 r29 #
stw r29, PS_FRM_SRR0(sp) # Save SRR0
mfsrr1 r30 #
stw r30, PS_FRM_SRR1(sp) # Save SRR1
mflr r31 #
stw r31, PS_FRM_LR(sp) # Save LR
mfcr r29 #
stw r29, PS_FRM_CR(sp) # Save CR

x86

CF

PPC
1-36 pSOSystem System Calls

pSOS+ System Calls i_return

1

andi. r30, r30, (MSR_IR | MSR_DR | MSR_IR)
mfmsr r29 # Get current MSR
or r29, r29, r30 # Restore certain MSR bits
LA r30, (MSR_FP | MSR_FE1 | MSR_EF0)
or r29, r29, r30 # Set certain MSR bits
mtmsr r29 # Set new MSR
isync #
LA r29, InterruptHandler # Get interrupt handler

entry
lwz r29, 0(r29) #
mtlr r29 #
blr # Jump to handler

Sample ISR:

LA r31, pSOSIEnter # Get I_ENTER entry
lwz r31, 0(r31) #
mtlr r31 # Call I_ENTER
blrl #
stw r0, PS_FRM_R0(sp) # Save R0
stw r2, PS_FRM_R2(sp) # Save R2
stw r3, PS_FRM_R3(sp) # Save R3
stw r4, PS_FRM_R4(sp) # Save R4
stw r5, PS_FRM_R5(sp) # Save R5
stw r6, PS_FRM_R6(sp) # Save R6
stw r7, PS_FRM_R7(sp) # Save R7
stw r8, PS_FRM_R8(sp) # Save R8
stw r9, PS_FRM_R9(sp) # Save R9
stw r10, PS_FRM_R10(sp) # Save R10
stw r11, PS_FRM_R11(sp) # Save R11
stw r12, PS_FRM_R12(sp) # Save R12
stw r13, PS_FRM_R13(sp) # Save R13
mfctr r4 # Save CTR
stw r4, PS_FRM_CTR(sp) #
mfxer r5 # Save XER
stw r5, PS_FRM_XER(sp) #
LA r2, _SDA2_BASE_ # Set up R2 for ISR
LA r13, _SDA_BASE_ # Set up R13 for ISR

<body of ISR> # Handle the interrupt

LA r31, pSOSIReturn # Get I_RETURN entry

lwz r31, 0(r31) #

mtlr r31 # Jump to I_RETURN and

lr # never return
pSOSystem System Calls 1-37

i_return pSOS+ System Calls
On 960 processors, an ISR must restore all global CPU registers,
including the frame pointer, to their state prior to the interrupt. Below is a
sample code fragment for an ISR that internally uses CPU registers g8,
g9, g10, and g11.

movq g8,r8

<body of ISR>

movq r8,g8
calls 13
ret

On x86 processors, an ISR must restore all CPU registers to their state
prior to the interrupt. Below is a sample code fragment for an ISR that
internally uses CPU registers ES, EAX, ECX, and EDX.

INT 92H ;PERFORM I_ENTER
PUSH DS ;SAVE SOME REGISTERS
PUSH ES
PUSH EAX
PUSH ECX
PUSH EDX

<body of ISR> ;HANDLE THE ISR

POP EDX ;RESTORE REGISTERS
POP ECX
POP EAX
POP ES
POP DS
INT 93H ;PERFORM RETURN

On Super Hitachi processors, an ISR must restore all CPU registers,
including the stack pointer, to their state prior to the interrupt. Below is a
sample code fragment for an ISR that internally uses CPU registers r0, r1,
r2, and r3.

mov.l r3, @-sp
mov.l r2, @-sp
mov.l r1, @-sp
mov.l r0, @-sp

<body of ISR>

mov.l @sp+, r0
mov.l @sp+, r1
mov.l @sp+, r2
mov.l @sp+, r3
trapa #45

960

x86

SH
1-38 pSOSystem System Calls

pSOS+ System Calls i_return

1

Return Value

This system call never returns to the caller.

Notes

i_return() should not be used anywhere other than to exit an ISR.

Multiprocessor Considerations

None. This call can be directed at the local processor node only.

Callable From

■ ISR
pSOSystem System Calls 1-39

k_fatal pSOS+ System Calls
k_fatal Aborts and enters fatal error handling mode.

#include <psos.h>
void k_fatal(

unsigned long err_code, /* user's error code */
unsigned long flags /* fatal condition attributes */
)

Description

This system call allows the user application to pass control to the user-defined fatal
error handler in the event of a nonrecoverable failure. k_fatal() forces a
nonrecoverable shutdown of the pSOS+ environment and never returns to the
caller.

Arguments

If the value of flags is K_GLOBAL, a global shutdown packet is sent to the master,
which then sends a shutdown packet to every other node in the system.

Return Value

This call never returns to the caller.

err_code Specifies a user-defined failure code that is passed to the fatal
error handler. The failure code must be at least 0x20000000.

flags The flags argument is ignored in the single-processor version
of the pSOS+ kernel. In a multiprocessor system, the flags
argument is used to determine whether the local node should be
shut down or a system-wide shutdown should occur. flags is
formed by selecting one of the following symbolic constants,
which are defined in <psos.h> (see “Multiprocessor
Considerations”).

K_GLOBAL /
K_LOCAL

k_fatal() invocation causes global system
shutdown / local node shutdown.
1-40 pSOSystem System Calls

pSOS+ System Calls k_fatal

1

Notes

1. The shutdown procedure is a procedure whereby pSOS+ attempts to halt
execution in the most orderly manner possible. The pSOS+ kernel first
examines the pSOS+ Configuration Table entry kc_fatal . If this entry is
nonzero, the pSOS+ kernel jumps to this address. If kc_fatal is zero, and the
pROBE+ System Debug/Analyzer is present, then the pSOS+ kernel passes
control to the System Failure entry of the pROBE+ debugger. For a description
of the pROBE+ debugger behavior in this case, refer to the pROBE+ User’s
Manual. Finally, if the pROBE+ debugger is absent, the pSOS+ kernel internally
executes an illegal instruction to cause a deliberate illegal instruction exception.
This passes control to a ROM monitor or other low-level debug tool.

2. k_fatal() is not the only mechanism by which control is passed to the fatal
error handler. It can also receive control following an internal pSOS+ fatal error
or, in multiprocessor systems, a shutdown packet from the master node.

Multiprocessor Considerations

In a multiprocessor system, k_fatal() can be used to implement a system-wide
abort or shutdown. In this case, K_GLOBAL should be set. This causes a global
shutdown packet to go to the master node, which sends a shutdown packet to every
node in the system.

Callable From

■ Task

■ KI
pSOSystem System Calls 1-41

k_terminate pSOS+ System Calls
k_terminate Terminates a node other than the master node.

unsigned long k_terminate (
unsigned long node, /* node to terminate */
unsigned long fcode, /* failure code */
unsigned long flags /* unused */
)

Description

This system call enables the user application to shut down a node that it believes
has failed or is operating incorrectly. k_terminate() causes the specified node to
receive a shutdown packet and all other nodes to receive notification of the specified
node's failure.

Arguments

Return Value

This system returns 0 on success or an error code on failure.

Error Codes

node Specifies the node number of the node to shut down. It
cannot be the master node.

fcode Specifies a user-defined failure code. It must be at least
0x20000000.

flags Unused.

Hex Mnemonic Description

0x04 ERR_NODENO Node number out of range.

0x67 ERR_MASTER Cannot terminate master node.
1-42 pSOSystem System Calls

pSOS+ System Calls k_terminate

1

Notes

1. k_terminate() can be used to terminate the node from which it is called. In
most cases the results are the same as a k_fatal() call. However, it is
implemented differently. Whereas k_fatal() immediately enters the fatal error
handler, k_terminate() causes a packet to be sent to the master node, which
then sends a shutdown packet to the calling node. If the calling node cannot
communicate with the master, then the KI presumably calls k_fatal()
anyway. It is preferable to use k_fatal() when the failed node is known to be
the local node.

2. A k_fatal() call made with the K_GLOBAL flag set should be used to shut
down the entire system including the master node.

Callable From

■ Task

■ ISR

■ KI

■ Callout

See Also

k_fatal
pSOSystem System Calls 1-43

m_ext2int pSOS+ System Calls
m_ext2int Converts an external address into an internal address.

#include <psos.h>
unsigned long m_ext2int(

void *ext_addr, /* external reference */
void **int_addr /* local reference */
)

Description

This system call converts an external address into an internal address
corresponding to the calling node. A typical use for this conversion is by a node that
has received an address from another node that resides in a dual-ported memory
zone.

m_ext2int() is relevant only to systems with multiple processors connected by
dual-ported memory on a memory bus. Other users can disregard this call.

Arguments

Return Value

This system call always returns 0.

Error Codes

None.

ext_addr Specifies the external address.

int_addr Points to the variable where m_ext2int() stores the
resultant internal address. If the external address is within a
dual-ported zone whose p-port is tied to the calling node,
then the internal address will be different. In all other cases,
the internal and external addresses will be the same.
1-44 pSOSystem System Calls

pSOS+ System Calls m_ext2int

1

Notes

1. For descriptions of internal and external addresses and dual-ported memory
considerations, see the pSOSystem System Concepts manual.

2. Be careful about structures that straddle the boundary of a dual-port zone,
because the address range for the structure may contain a discontinuity.

Multiprocessor Considerations

None. Although m_ext2int() is primarily used in multiprocessor systems, its
action is restricted to the local node.

Callable From

■ Task

■ ISR

■ KI

■ Callout

See Also

m_int2ext
pSOSystem System Calls 1-45

m_int2ext pSOS+ System Calls
m_int2ext Converts an internal address into an external address.

unsigned long m_int2ext(
void *int_addr, /* local reference */
void **ext_addr /* external reference */
)

Description

When a node on a multiprocessor system passes an address that resides within a
dual-ported zone, it first must convert the address by calling m_int2ext() . This
call applies to systems with multiple processors that are connected by dual-ported
memory on a memory bus.

Arguments

Return Value

This call always returns 0.

Error Codes

None.

Notes

Be careful about structures that straddle the boundary of a dual-port zone, because
the structure’s address range could contain a discontinuity.

int_addr Specifies the internal address.

ext_addr Points to the variable where m_int2ext() stores the
resultant external address. If the internal address is within a
dual-ported zone whose p-port is tied to the calling node, the
external address is different. In all other cases, the internal
and external addresses are the same.
1-46 pSOSystem System Calls

pSOS+ System Calls m_int2ext

1

Multiprocessor Considerations

None. Although used in multiprocessor systems, m_int2ext() executes on the
local node.

Callable From

■ Task

■ ISR

■ KI

■ Callout

See Also

m_ext2int
pSOSystem System Calls 1-47

pt_create pSOS+ System Calls
pt_create Creates a memory partition of fixed-size buffers.

#include <psos.h>
unsigned long pt_create(

char name[4], /* partition name */
void *paddr, /* partition physical addr. */
void *laddr, /* partition logical address */
unsigned long length, /* partition length in bytes */
unsigned long bsize, /* buffer size in bytes */
unsigned long flags, /* buffer attributes */
unsigned long *ptid, /* partition identifier */
unsigned long *nbuf /* number of buffers created */
)

Description

This service call enables a task to create a new memory partition, from which fixed-
sized memory buffers can be allocated for use by the application. The pSOS+ kernel
takes a portion from the top of this region to use as its Partition Control Block.

Arguments

name Specifies the user-assigned name for the new partition.

paddr Specifies the physical memory address of the partition.

laddr Specifies the logical address of the partition generated after MMU-
translation; laddr is ignored on non-MMU systems.

length Specifies the total partition length in bytes.

bsize Specifies the size of the buffers. bsize must be a power of 2, and
equal to or greater than 4.

flags Specifies the attributes of the buffer. flags is formed by OR-ing the
following symbolic constants (one from each pair), which are defined
in <psos.h> . For instance, to specify that a partition is globally
addressable, you place the symbolic constant PT_GLOBAL in flags .
To specify that the partition is globally addressable and that it
prohibits deletion with outstanding buffers, you place both
PT_GLOBAL and PT_NODEL in flags , using the following syntax:

PT_GLOBAL | PT_NODEL
1-48 pSOSystem System Calls

pSOS+ System Calls pt_create

1

Return Value

This call returns 0 on success or an error code on failure.

Error Codes

Notes

1. Internally, the pSOS+ kernel treats a partition name as a 32-bit integer.
However, when the application calls the kernel through the pSOS+ C language
API, it passes the partition name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate partition names. If duplicate
names exist, a pt_ident() call can return the ptid of any partition with the
duplicate name.

PT_GLOBAL /
PT_LOCAL

Partition is globally addressable by other nodes /
partition can be addressed only the by local node.

The single-processor version of the pSOS+ kernel
ignores PT_GLOBAL.

PT_DEL /
PT_NODEL

Deletion of the partition with pt_delete() is
enabled, even if one or more buffers are allocated.
Deletion of the partition is prohibited unless all
buffers have been freed.

ptid Points to the variable where pt_create() stores the partition ID of
the named partition.

nbuf Points to the variable where pt_create() stores the number of
actual buffers in the partition.

Hex Mnemonic Description

0x08 ERR_OBJTFULL Node's object table full.

0x28 ERR_PTADDR Starting address not on long word
boundary.

0x29 ERR_BUFSIZE Buffer size not power of 2, or less
than 4 bytes.

0x2A ERR_TINYPT Length too small to hold the partition
control information.
pSOSystem System Calls 1-49

pt_create pSOS+ System Calls
Multiprocessor Considerations

1. The PT_GLOBAL attribute should be set only if the partition must be made
known to other processor nodes in a multiprocessor configuration. If set, the
partition's name and ptid are sent to the master node for entry in the Global
Object Table.

2. If the PT_GLOBAL attribute is set and the number of global objects currently
exported by the node equals the Multiprocessor Configuration Table entry
mc_nglbobjs , then the partition is not created and ERR_OBJTFULL is
returned.

Callable From

■ Task

See Also

pt_ident, pt_getbuf
1-50 pSOSystem System Calls

pSOS+ System Calls pt_delete

1

pt_delete Deletes a memory partition.

#include <psos.h>
unsigned long pt_delete (

unsigned long ptid /* partition identifier */
)

Description

This system call deletes a memory partition specified by its ID. Unless the PT_DEL
attribute was specified when the partition was created, pt_delete() returns an
error if any buffers allocated from the partition have not been returned.

The calling task does not have to be the creator (parent) of the partition to be
deleted. However, a partition must be deleted from the node on which it was created.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

ptid Specifies the partition identifier.

Hex Mnemonic Description

0x05 ERR_OBJDEL Partition has been deleted.

0x06 ERR_OBJID ptid is incorrect, failed validity
check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x2B ERR_BUFINUSE Cannot delete; one or more buffers
still in use.

0x53 ERR_ILLRSC Partition not created from this node.
pSOSystem System Calls 1-51

pt_delete pSOS+ System Calls
Notes

Once created, a partition is generally used by multiple tasks for data buffers, which
can be passed around between tasks, or even between nodes. There is rarely a
reason for deleting a partition, even when it is no longer used, except to allow reuse
of memory occupied by the partition.

Multiprocessor Considerations

If ptid identifies a global partition, pt_delete notifies the master node so the
partition can be removed from its Global Object Table. Thus, deletion of a global
partition always causes activity on the master node.

Callable From

■ Task

See Also

pt_create
1-52 pSOSystem System Calls

pSOS+ System Calls pt_getbuf

1

pt_getbuf Gets a buffer from a partition.

#include <psos.h>
unsigned long pt_getbuf(

unsigned long ptid, /* partition identifier */
void **bufaddr /* starting address of buffer */
)

Description

This system call gets a buffer from a partition. If the partition is empty, an error is
returned.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

ptid Specifies the partition identifier.

bufaddr Points to the variable where pt_getbuf() stores the
starting address of the allocated buffer.

Hex Mnemonic Description

0x05 ERR_OBJDEL Partition has been deleted.

0x06 ERR_OBJID ptid is incorrect, failed validity
check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x2C ERR_NOBUF Cannot allocate; partition out of free
buffers.

0x65 ERR_STALEID Object's node has failed.
pSOSystem System Calls 1-53

pt_getbuf pSOS+ System Calls
Notes

1. Buffers always start on long word boundaries.

2. It is not possible to wait for a buffer. pt_getbuf() unconditionally returns.

Multiprocessor Considerations

If the input ptid identifies a global partition residing on another processor node,
then the pSOS+ kernel internally makes an RSC to that remote node to allocate the
buffer.

Callable From

■ Task.

■ ISR, if the partition is local to the node from which pt_getbuf() is made.

■ KI, if the partition is local to the node from which pt_getbuf() is made.

■ Callout, if the partition is local to the node from which pt_getbuf() is made.

See Also

pt_retbuf
1-54 pSOSystem System Calls

pSOS+ System Calls pt_ident

1

pt_ident Obtains the identifier of a named partition.

unsigned long pt_ident(
char name[4], /* partition name */
unsigned long node, /* node number */
unsigned long *ptid /* partition identifier */
)

Description

This system call enables the calling task to obtain the partition ID of a memory
partition it only knows by name. This partition ID can be used in all other
operations relating to the memory partition.

Most system calls, except pt_create() and pt_ident() , reference a partition by
its partition ID. pt_create() returns the partition ID to the partition creator. For
other tasks, one way to obtain the partition ID is to use pt_ident() .

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

name Specifies the name of the partition.

node For multiprocessing systems, is a search order specifier. See
“Multiprocessor Considerations.” In a single node system,
this argument must be 0.

ptid Points to the variable where pt_ident() stores the ID of the
named partition.

Hex Mnemonic Description

0x04 ERR_NODENO Node specifier out of range.

0x09 ERR_OBJNF Named partition not found.
pSOSystem System Calls 1-55

pt_ident pSOS+ System Calls
Notes

1. Internally, the pSOS+ kernel treats a partition name as a 32-bit integer.
However, when the application calls the kernel through the pSOS+ C language
API, it passes the partition name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate partition names. If duplicate
partition names exist, a pt_ident() call can return the ID of any partition
with the duplicate name.

Multiprocessor Considerations

1. pt_ident() converts a partition's name to its ptid using a search order
determined by the node input parameter, which is described in pSOSystem
System Concepts. Because partitions created and exported by different nodes
may not have unique names, the result of this binding may depend on the order
in which the object tables are searched.

2. If the master node's Global Object Table must be searched, then the pSOS+m
kernel makes an RSC to the master node.

Callable From

■ Task

See Also

pt_create
1-56 pSOSystem System Calls

pSOS+ System Calls pt_retbuf

1

pt_retbuf Returns a buffer to the partition from which it came.

#include <psos.h>
unsigned long pt_retbuf(

unsigned long ptid, /* partition identifier */
void *bufaddr /* starting address of the buffer */
)

Description

This system call returns a buffer to the partition from which it was allocated.
Because the pSOS+ kernel does not keep track of buffer ownership, it is possible for
one task to get a buffer, and another task to return it.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

ptid Specifies the partition ID of the buffer to return.

bufaddr Specifies the buffer’s starting address.

Hex Mnemonic Description

0x05 ERR_OBJDEL Partition has been deleted.

0x06 ERR_OBJID ptid is incorrect; failed validity
check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x2D ERR_BUFADDR Incorrect buffer starting address.

0x2F ERR_BUFFREE Buffer is already unallocated.

0x65 ERR_STALEID Object's node has failed.
pSOSystem System Calls 1-57

pt_retbuf pSOS+ System Calls
Notes

Multiprocessor Considerations

If the input ptid identifies a global partition residing on another processor node,
then the pSOS+ kernel internally makes an RSC to that remote node to return the
buffer.

Callable From

■ Task.

■ ISR, if the partition is local to the node from which the pt_retbuf() call is
made.

■ KI, if the partition is local to the node from which the pt_retbuf() call is
made.

■ Callout, if the partition is local to the node from which the pt_retbuf() call is
made.

See Also

pt_getbuf
1-58 pSOSystem System Calls

pSOS+ System Calls pt_sgetbuf

1

pt_sgetbuf Gets a buffer from a partition.

#include <psos.h>
unsigned long pt_sgetbuf(

unsigned long ptid, /* partition identifier */
void **paddr, /* physical address */
void **laddr /* logical address */
)

Description

This system call gets a buffer from a partition. If the partition is empty, an error is
returned.

On MMU-based systems, both physical and logical addresses are returned to
simplify transfer of buffers between supervisor and user mode programs. In non-
MMU systems, the logical address is the same as the physical address, and this call
functions the same as the pt_getbuf() call.

This service is available in the non-MMU versions of the pSOS+ kernel for the sole
purpose of enabling software designed for MMU-based systems to run, unmodified,
on systems without MMU.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

ptid Specifies the buffer's partition ID.

paddr Points to the variable where pt_sgetbuf() stores the physical
address of the buffer.

laddr Points to the variable where pt_sgetbuf() stores the logical address
of the buffer.
pSOSystem System Calls 1-59

pt_sgetbuf pSOS+ System Calls
Error Codes

Notes

1. Buffers always start on long word boundaries.

2. It is not possible to wait for a buffer. pt_sgetbuf() unconditionally returns.

Multiprocessor Considerations

If the input argument ptid identifies a global partition on another processor node,
the pSOS+ kernel internally makes an RSC to that remote node to allocate the
buffer.

Callable From

■ Task

See Also

pt_retbuf, pt_getbuf

Hex Mnemonic Description

0x05 ERR_OBJDEL Partition has been deleted.

0x06 ERR_OBJID ptid is incorrect, failed validity
check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x2C ERR_NOBUF Cannot allocate; partition out of free
buffers.

0x65 ERR_STALEID Object's node has failed.
1-60 pSOSystem System Calls

pSOS+ System Calls q_asend

1

q_asend (pSOS+m kernel only) Asynchronously posts a message to an ordinary
message queue.

#include <psos.h>
unsigned long q_asend(

unsigned long qid, /* queue identifier */
unsigned long msg_buf[4] /* message buffer */
)

Description

This system call functions the same as q_send() except that it executes
asynchronously. Refer to the description of q_send() for further information. For a
detailed description of asynchronous services, refer to the pSOSystem Systems
Concepts manual.

Arguments

Return Value

When called in a system running the pSOS+m kernel this call always returns 0. The
pSOS+ kernel (the single processor version) returns ERR_SSFN.

Error Codes

Should the call fail, if present, the node's MC_ASYNCERR routine is invoked and the
following error codes may be reported:

qid Specifies the queue ID of the target queue.

msg_buf Specifies the message to send.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x34 ERR_NOMGB Out of system message buffers.
pSOSystem System Calls 1-61

q_asend pSOS+ System Calls
If an MC_ASYNCERR routine is not provided, the pSOS+m kernel generates a fatal
error.

Notes

1. This call is supported only by the pSOS+m kernel.

2. The calling task can be preempted as a result of this call.

3. q_asend() asynchronously sends a message to an ordinary message queue.
Use q_avsend() to send a message asynchronously to a variable length
message queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, then the
pSOS+m kernel will internally make an RSC to that remote node to post the
input message to that queue.

2. If a task awakened by this call does not reside on the local node, then the
pSOS+m kernel will internally pass the message to the task's node of residence,
whose pSOS+m kernel will ready the task and give it the relayed message. Thus,
a q_asend() call, whether it is on the local or a remote queue, may cause
pSOS+m activities on another processor node.

Callable From

■ Task

See Also

q_send, q_vsend, q_avsend, q_aurgent, q_receive

0x35 ERR_QFULL Message queue at length limit.

0x3A ERR_VARQ Queue is variable length

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
1-62 pSOSystem System Calls

pSOS+ System Calls q_aurgent

1

q_aurgent (pSOS+m kernel only) Asynchronously posts a message at the head of a
variable-length message queue.

#include <psos.h>
unsigned long q_aurgent(

unsigned long qid, /* queue identifier */
unsigned long msg_buf[4] /* message buffer */
)

Description

This system call functions the same as the q_urgent() call except that it executes
asynchronously. Refer to the description of q_urgent() for further information.

Arguments

Return Value

When called in a system running the pSOS+m kernel, this call always returns 0.
The pSOS+ kernel (the single processor version) returns ERR_SSFN.

Error Codes

Should the call fail, if present, the node's MC_ASYNCERR routine is invoked and the
following error codes can be reported:

qid Specifies the queue ID of the target queue.

msg_buf Specifies the message to send.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x34 ERR_NOMGB Out of system message buffers.

0x35 ERR_QFULL Message queue at length limit.
pSOSystem System Calls 1-63

q_aurgent pSOS+ System Calls
If an MC_ASYNCERR routine is not provided, the pSOS+m kernel generates a fatal
error.

Notes

1. This call is supported only by the pSOS+m kernel.

2. The calling task can be preempted as a result of this call.

3. q_aurgent() asynchronously sends an urgent message to an ordinary
message queue. Use q_avurgent() to asynchronously send an urgent
message to a variable length message queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, then the
pSOS+m kernel will internally make an RSC to that remote node to post the
input message to that queue.

2. If a task awakened by this call does not reside on the local node, then the
pSOS+m kernel will internally pass the message to the task's node of residence,
whose pSOS+m kernel will ready the task and give it the relayed message. Thus,
a q_aurgent() call, whether it is on the local or a remote queue, may cause
pSOS+m activities on another processor node.

Callable From

■ Task

See Also

q_urgent, q_vurgent, q_avurgent, q_asend, q_receive

0x3A ERR_VARQ Queue is variable length.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
1-64 pSOSystem System Calls

pSOS+ System Calls q_avsend

1

q_avsend (pSOS+m kernel only) Asynchronously posts a message to a variable-
length message queue.

#include <psos.h>
unsigned long q_avsend(

unsigned long qid, /* queue identifier */
void *msg_buf, /* message buffer */
unsigned long msg_len, /* length of message */
)

Description

This system call functions the same as the q_vsend() call except that it executes
asynchronously. Refer to the description of q_vsend() for further information.

Arguments

Return Value

When called in a system running the pSOS+m kernel, this call always returns 0.
The pSOS+ kernel (the single processor version) returns ERR_SSFN.

Error Codes

Should the call fail, if present, the node's MC_ASYNCERR routine is invoked and the
following error codes can be reported:

qid Specifies the queue ID of the target queue.

msg_buf Points to the message to send.

msg_len Specifies the length of the message. It must not exceed the
queue's maximum message length.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.
pSOSystem System Calls 1-65

q_avsend pSOS+ System Calls
If an MC_ASYNCERR routine is not provided, the pSOS+m kernel generates a fatal
error.

Notes

1. This call is supported only by the pSOS+m kernel.

2. The calling task can be preempted as a result of this call.

3. The pSOS+m kernel must copy the message into a queue buffer or the receiving
task's buffer. Longer messages take longer to copy. Users should account for the
copy time in their designs.

4. q_avsend() asynchronously sends a message to a variable length message
queue. Use q_asend() to send a message asynchronously to an ordinary
message queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, then the
pSOS+m kernel will internally make an RSC to that remote node to post the
input message to that queue.

2. If a task awakened by this call does not reside on the local node, the local kernel
will internally pass the message to the task's node of residence, whose pSOS+m
kernel will ready the task and give it the relayed message. Thus, a q_avsend()
call, whether it is on the local or a remote queue, may cause pSOS+m activities
on another processor node.

0x31 ERR_MSGSIZ Message too large.

0x35 ERR_QFULL Message queue at length limit.

0x3B ERR_NOTVARQ Queue is not variable length.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
1-66 pSOSystem System Calls

pSOS+ System Calls q_avsend

1

Callable From

■ Task

See Also

q_vsend, q_send, q_asend, q_urgent, q_vreceive
pSOSystem System Calls 1-67

q_avurgent pSOS+ System Calls
q_avurgent (pSOS+m kernel only) Asynchronously posts a message at the head of a
variable-length message queue.

#include <psos.h>
unsigned long q_avurgent(

unsigned long qid, /* queue identifier */
void *msg_buf, /* message buffer */
unsigned long msg_len, /* length of message */
)

Description

This system call functions the same as q_vurgent except that q_avurgent
executes asynchronously. Refer to the description of q_vurgent for further
information. For a more detailed description of asynchronous services, refer to the
pSOSystem System Concepts manual.

Arguments

Return Value

When called in system running pSOS+m, this call always returns 0. The pSOS+
kernel (the single processor version) returns ERR_SSFN.

Error Codes

The following error codes may be reported if a q_avurgent() call fails and the
node’s MC_ASYNCERR routine (if present) is invoked:

qid Specifies the queue identifier.

msg_buf Points to the message to send.

msg_len Specifies the length of the message.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.
1-68 pSOSystem System Calls

pSOS+ System Calls q_avurgent

1

If an MC_ASYNCERR routine is not present, the pSOS+m kernel generates a fatal
error.

Notes

1. This call is supported only by the pSOS+m kernel.

2. The calling task can be preempted as a result of this call.

3. The pSOS+m kernel must copy the message into a queue buffer or the receiving
task's buffer. Longer messages take longer to copy. Users should account for the
copy time in their designs.

4. q_avsend() asynchronously sends a message to a variable length message
queue. Use q_asend() to asynchronously send a message to an ordinary
message queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, then the
pSOS+m kernel will internally make an RSC to that remote node to post the
input message to that queue.

2. If a task awakened by this call does not reside on the local node, the local kernel
internally passes the message to the task's node of residence, whose pSOS+m
kernel readies the task and gives it the relayed message. Thus, a
q_avurgent() call, whether it is on the local or a remote queue, can cause
pSOS+m activity on another processor node.

0x31 ERR_MSGSIZ Message too large.

0x35 ERR_QFULL Message queue at length limit.

0x3B ERR_NOTVARQ Queue is not variable length.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
pSOSystem System Calls 1-69

q_avurgent pSOS+ System Calls
Callable From

■ Task

See Also

q_urgent, q_vurgent, q_vreceive, q_vsend
1-70 pSOSystem System Calls

pSOS+ System Calls q_broadcast

1

q_broadcast Broadcasts identical messages to an ordinary message queue.

#include <psos.h>
unsigned long q_broadcast(

unsigned long qid, /* queue identifier */
unsigned long msg_buf[4], /* msg. of 4 long words */
unsigned long *count /* # tasks receiving msg. */
)

Description

This system call enables the caller to wake up all tasks that might be waiting at an
ordinary message queue. If the task queue is empty, this call does nothing. If one or
more tasks are waiting at the queue, q_broadcast() gives a copy of the input
message to each such task and makes it ready to run. After a q_broadcast() call,
no tasks will be waiting to receive a message from the specified queue.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

qid Specifies the queue ID of the target queue.

msg_buf Specifies the message to send.

count Points to the variable where q_broadcast() stores the
number of tasks readied by the broadcast.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid is incorrect, failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x3A ERR_VARQ Queue is variable length.
pSOSystem System Calls 1-71

q_broadcast pSOS+ System Calls
Notes

1. q_broadcast() is particularly useful in situations where a single event (for
example, an interrupt) must wake up more than one task. In such cases,
q_broadcast() is clearly more efficient than multiple q_send() calls.

2. If the caller is a task, it may be preempted as a result of this call.

3. q_broadcast() can be intermixed with q_send() and q_urgent() calls to
the same queue.

4. q_broadcast() sends messages to an ordinary message queue. Use
q_vbroadcast() to send messages to a variable length message queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, then the
pSOS+m kernel will internally make an RSC to that remote node to post the
input message to that queue.

2. If tasks awakened by this call do not reside on the local node, then the pSOS+m
kernel will internally pass the message to each task's node of residence, whose
pSOS+m kernel will ready the task and give it the relayed message. Thus, a
q_broadcast() call, whether it is on the local or a remote queue, may cause
pSOS+m activities on one or more other processor nodes.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
1-72 pSOSystem System Calls

pSOS+ System Calls q_broadcast

1

Callable From

■ Task.

■ ISR, if the targeted queue is local to the node from which the q_broadcast()
call is made.

■ KI, if the targeted queue is local to the node from which the q_broadcast()
call is made.

■ Callout, if the targeted queue is local to the node from which the
q_broadcast() call is made.

See Also

q_send, q_receive, q_vbroadcast
pSOSystem System Calls 1-73

q_create pSOS+ System Calls
q_create Creates an ordinary message queue.

#include <psos.h>
unsigned long q_create(

char name[4], /* queue name */
unsigned long count, /* queue size */
unsigned long flags, /* queue attributes */
unsigned long *qid /* queue identifier */
)

Description

This system call creates an ordinary message queue by allocating and initializing a
Queue Control Block (QCB) according to the specifications supplied with the call.

Like all objects, a queue has a user-assigned name and a pSOS-assigned queue ID
returned by q_create() . Several flag bits specify the characteristics of the
message queue. Tasks can wait for messages either by task priority or strictly FIFO,
and a limit can be optionally set on the maximum number of messages that can be
simultaneously posted at the queue.

Arguments

name Specifies the user-assigned name of the new message queue.

count If Q_LIMIT is set (see flags , below), then the count argument
specifies the maximum number of messages that can be
simultaneously posted at the queue. If Q_PRIBUF is also set, then the
argument count also specifies the number of buffers set aside from
the system-wide pool of message buffers for the private use of this
queue. If Q_NOLIMIT is set, count is ignored.

flags Specifies the attributes of the queue. flags is formed by OR-ing the
following symbolic constants (one from each pair), which are defined
in <psos.h> . For instance, to specify that the queue is globally
addressable, you place Q_GLOBAL in flags . To specify that the queue
is globally addressable and that tasks are queued by FIFO, you place
Q_GLOBAL and Q_FIFO in flags , using the following syntax:

Q_GLOBAL | Q_FIFO
1-74 pSOSystem System Calls

pSOS+ System Calls q_create

1

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

Notes

1. Internally, the pSOS+ kernel treats a queue name as a 32-bit integer. However,
when the application calls the kernel through the pSOS+ C language API, it
passes the queue name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate queue names. If duplicate
names exist, a q_ident() call can return the qid of any queue with the
duplicate name.

3. The maximum number of queues that can be simultaneously active is defined
by the kc_nqueue entry in the pSOS+ Configuration Table. The count
argument is ignored if the Q_NOLIMIT attribute is specified.

4. A queue created with Q_NOLIMIT specified is slightly more efficient.

Q_GLOBAL /
Q_LOCAL

Queue is globally addressable by other nodes / queue is
addressable only by the local node.

Q_PRIOR /
Q_FIFO

Tasks are queued by priority / FIFO.

Q_LIMIT /
Q_NOLIMIT

Message queue size is limited to count / is unlimited.

Q_PRIBUF /
Q_SYSBUF

Private / system buffers are allocated for message
storage.

qid Points to the variable where q_create() stores the queue ID of the
named queue.

Hex Mnemonic Description

0x08 ERR_OBJTFULL Node's object table full.

0x33 ERR_NOQCB Cannot allocate QCB; exceeds node's
maximum number of active queues.

0x34 ERR_NOMGB Cannot allocate private buffers; too
few available.
pSOSystem System Calls 1-75

q_create pSOS+ System Calls
5. Q_LIMIT and a count equal 0 is a legitimate setting. This combination has the
interesting property that a q_send() will succeed only if there is already a task
waiting; otherwise, q_send() will fail.

6. Q_LIMIT set with Q_PRIBUF guarantees that enough buffers will be available
for messages to be posted at this queue. If Q_LIMIT is not set, then Q_PRIBUF
is ignored.

7. If a queue is created without private buffers, then messages posted to it will be
stored in buffers from the system-wide pool on the node where the queue
resides. The size of this pool is defined by the kc_nmsgbuf entry in the node's
pSOS+ Configuration Table.

8. The Q_GLOBAL attribute is ignored by the single-processor version of the pSOS+
kernel.

9. q_create() creates an ordinary message queue. Use q_vcreate() to create a
variable length message queue.

Multiprocessor Considerations

1. The Q_GLOBAL attribute should be set only if the queue must be made known to
other processor nodes in a multiprocessor configuration. If set, the queue's
name and qid are sent to the master node for entry in its Global Object Table.

2. If the Q_GLOBAL attribute is set and the number of global objects currently
exported by the node equals the Multiprocessor Configuration Table entry
mc_nglbobj , then the queue is not created and ERR_OBJTFULL is returned.

Callable From

■ Task

See Also

q_ident, q_delete, q_vcreate
1-76 pSOSystem System Calls

pSOS+ System Calls q_delete

1

q_delete Deletes an ordinary message queue.

#include <psos.h>
unsigned long q_delete(

unsigned long qid /* queue identifier */
)

Description

This system call deletes the ordinary message queue with the specified queue ID,
and frees the QCB. q_delete() takes care of cleaning up the queue. If there are
tasks waiting, they will be unblocked and given an error code. If some messages are
queued there, the message buffers, along with any free private buffers are returned
to the system-wide pool.

The calling task does not have to be the creator of the queue in order to be deleted.
However, a queue must be deleted from the node on which it was created.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

qid Specifies the queue ID of the queue to delete.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid is incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x38 ERR_TATQDEL Informative only; there were tasks
waiting at the queue.

0x39 ERR_MATQDEL Informative only; there were messages
pending in the queue.
pSOSystem System Calls 1-77

q_delete pSOS+ System Calls
Notes

1. Once created, a queue is generally used by multiple tasks for communication
and synchronization. There is rarely a reason for deleting a queue, even when it
is no longer used, except to allow reuse of the QCB.

2. The calling task may be preempted after this call, if a task that is waiting for a
message from the deleted queue has higher priority.

3. Any pending messages are lost.

4. q_delete() deletes an ordinary message queue. Use q_vdelete() to delete a
variable length message queue.

Multiprocessor Considerations

If qid identifies a global queue, q_delete will notify the master node so that the
queue can be removed from its Global Object Table. Thus, deletion of a global queue
always causes activity on the master node.

Callable From

■ Task

See Also

q_create, q_vdelete

0x3A ERR_VARQ Queue is variable length.

0x53 ERR_ILLRSC Queue not created from this node.

Hex Mnemonic Description
1-78 pSOSystem System Calls

pSOS+ System Calls q_ident

1

q_ident Obtains the queue ID of an ordinary message queue.

#include <psos.h>
unsigned long q_ident(

char name[4], /* queue name */
unsigned long node, /* node number */
unsigned long *qid /* queue identifier */
)

Description

The intended purpose of this system call is to enable the calling task to obtain the
queue ID of an ordinary message queue. However, since a variable length message
queue is just a special type of message queue, q_ident() and q_vident() are
functionally identical. Both return the queue ID of the first queue encountered with
the specified name, whether it be ordinary or variable length.

Most system calls, except q_create() /q_vcreate() and q_ident() /
q_vident() , reference a queue by its queue ID. For other tasks, one way to obtain
the queue ID is to use q_ident() /q_vident() . Once obtained, the queue ID can
then be used in all other operations relating to this queue.

Arguments

Return Value

The system call returns 0 on success, or an error code on failure.

name Specifies the name of the message queue.

node For multiprocessing systems, is a search order specifier. See
“Multiprocessor Considerations.” In a single node system,
this argument must be 0.

qid Points to the variable where q_ident() stores the ID of the
named message queue.
pSOSystem System Calls 1-79

q_ident pSOS+ System Calls
Error Codes

Notes

1. Internally, the pSOS+ kernel treats a queue name as a 32-bit integer. However,
when the application calls the kernel through the pSOS+ C language API, it
passes the queue name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate queue names. If duplicate
names exist, a q_ident() call can return the qid of any queue with the
duplicate name.

Multiprocessor Considerations

1. q_ident() converts a queue's name to its qid using a search order determined
by the node input parameter, as described in pSOSystem System Concepts.
Because queues created and exported by different nodes may not have unique
names, the result of this binding may depend on the order in which the object
tables are searched.

2. If the master node's Global Object Table must be searched, the local kernel
makes a q_ident() RSC to the master node.

Callable From

■ Task

See Also

q_create, q_vident

Hex Mnemonic Description

0x04 ERR_NODENO Node specifier out of range.

0x09 ERR_OBJNF Named queue not found.
1-80 pSOSystem System Calls

pSOS+ System Calls q_receive

1

q_receive Requests a message from an ordinary message queue.

#include <psos.h>
unsigned long q_receive(

unsigned long qid, /* queue identifier */
unsigned long flags, /* queue attributes */
unsigned long timeout, /* timeout in clock ticks */
unsigned long msg_buf[4] /* message buffer */
)

Description

This system call enables a task or an ISR to obtain a message from an ordinary
message queue.

Arguments

If the queue is non-empty, this call always returns the first message there. If the
queue is empty and the caller specified Q_NOWAIT, then q_receive() returns with
an error code. If Q_WAIT is elected, the caller will be blocked until a message is
posted to the queue, or if the timeout argument is used, until the timeout occurs
whichever happens first. If timeout is zero and Q_WAIT is selected, then
q_receive() will wait forever. The timeout argument is ignored if Q_NOWAIT is
selected.

Return Value

This system call returns 0 on success or an error code on failure.

qid Specifies the queue ID of the target queue.

flags Specifies whether q_receive() will block waiting for a message.
flags should have one of the following values (defined in
<psos.h>):

Q_NOWAIT Don't wait for message.

Q_WAIT Wait for message.

timeout Specifies the timeout interval, in units of clock ticks.

msg_buf An output parameter. Contains the received message.
pSOSystem System Calls 1-81

q_receive pSOS+ System Calls
Error Codes

Notes

1. If it is necessary to block the calling task, q_receive() will enter the calling
task at the message queue's task-wait queue. If the queue was created with the
Q_FIFO attribute, then the caller is simply entered at the tail of the wait queue.
If the queue was created with the Q_PRIOR attribute, then the task will be
inserted into the wait queue by priority.

2. q_receive() requests a message from an ordinary message queue. Use
q_vreceive() to request a message from a variable length message queue.

Multiprocessor Considerations

If qid identifies a global queue residing on another processor node, the local kernel
will internally make an RSC to that remote node to request a message from that
queue. If the Q_WAIT attribute is elected, then the pSOS+m kernel on the target
node must use an agent to wait for the message. An agent is an internal object
created by pSOS+ to simulate a task on a remote node. If the node is temporarily

Hex Mnemonic Description

0x01 ERR_TIMEOUT Timed out; this error code is returned
only if a timeout was requested.

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity checks.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x36 ERR_QKILLD Queue deleted while task waiting.

0x37 ERR_NOMSG Queue empty; this error code is
returned only if Q_NOWAIT was
selected.

0x54 ERR_NOAGNT Cannot wait; the remote node is out of
agents.

0x3A ERR_VARQ Queue is variable length.

0x65 ERR_STALEID Object's node has failed.

0x66 ERR_NDKLD Object's node failed while RSC
waiting.
1-82 pSOSystem System Calls

pSOS+ System Calls q_receive

1

out of agents, the call will fail. The number of agents on each node is defined by the
mc_nagent entry in the Multiprocessor Configuration Table.

Callable From

■ Task.

■ ISR, if Q_NOWAIT is set and the target queue is local to the node from which the
q_receive call is made.

■ KI, if Q_NOWAIT is set and the target queue is local to the node from which the
q_receive call is made.

■ Callout, if Q_NOWAIT is set and the target queue is local to the node from which
the q_receive call is made.

See Also

q_send, q_vreceive
pSOSystem System Calls 1-83

q_send pSOS+ System Calls
q_send Posts a message to an ordinary message queue.

#include <psos.h>
unsigned long q_send(

unsigned long qid, /* queue identifier */
unsigned long msg_buf[4] /* message buffer */
)

Description

This system call is used to send a message to a specified ordinary message queue. If
a task is already waiting at the queue, the message is passed to that task, which is
then unblocked and made ready to run. If no task is waiting, the input message is
copied into a message buffer from the system pool or, if the queue has private
buffers, into a private message buffer, which is then put in the message queue
behind any messages already posted to the queue.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

qid Specifies the queue ID of the target queue.

msg_buf Specifies the message to send.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x34 ERR_NOMGB Out of system message buffers.

0x35 ERR_QFULL Message queue at length limit.
1-84 pSOSystem System Calls

pSOS+ System Calls q_send

1
Notes

1. If the caller is a task, it may be preempted as a result of this call.

2. q_send() sends a message to an ordinary message queue. Use q_vsend() to
send a message to a variable length message queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, the local
kernel will internally make an RSC to that remote node to post the input
message to that queue.

2. If a task awakened by this call does not reside on the local node, the local kernel
will internally pass the message to the task's node of residence, whose pSOS+m
kernel will ready the task and give it the relayed message. Thus, a q_send()
call, whether it is on the local or a remote queue, may cause pSOS+m activities
on another processor node.

Callable From

■ Task.

■ ISR, if the target queue is local to the node from which the q_send() call is
made.

■ KI, if the target queue is local to the node from which the q_send() call is
made.

■ Callout, if the target queue is local to the node from which the q_send() call is
made.

See Also

q_broadcast, q_receive, q_urgent, q_vsend

0x3A ERR_VARQ Queue is variable length.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
pSOSystem System Calls 1-85

q_urgent pSOS+ System Calls
q_urgent Posts a message at the head of an ordinary message queue.

#include <psos.h>
unsigned long q_urgent(

unsigned long qid, /* queue identifier */
unsigned long msg_buf[4] /* message buffer */
)

Description

This system call is identical in all respects to q_send() with one exception: if one or
more messages are already posted at the target queue, then the new message will be
inserted into the message queue in front of all such queued messages.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

qid Specifies the queue ID of the target queue.

msg_buf Specifies the message to send.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x34 ERR_NOMGB Out of system message buffers.

0x35 ERR_QFULL Message queue at length limit.

0x3A ERR_VARQ Queue is variable length.

0x65 ERR_STALEID Object's node has failed.
1-86 pSOSystem System Calls

pSOS+ System Calls q_urgent

1

Notes

1. q_urgent() is useful when the message represents an urgent errand and must
be serviced ahead of the normally FIFO ordered messages.

2. If the caller is a task, it may be preempted as a result of this call.

3. q_urgent() sends a message to an ordinary message queue. Use
q_vurgent() to send a message to a variable length message queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, the local
kernel internally makes an RSC to that remote node to post the input message
to that queue.

2. If a task awakened by this call does not reside on the local node, the local kernel
internally passes the message to the task's node of residence, whose pSOS+m
kernel will ready the task and give it the relayed message. Thus, a q_urgent()
call, whether it is on the local or a remote queue, may cause pSOS+m activities
on another processor node.

Callable From

■ Task.

■ ISR, if the target queue is local to the node from which the q_urgent() call is
made.

■ KI, if the target queue is local to the node from which the q_urgent() call is
made.

■ Callout, if the target queue is local to the node from which the q_urgent() call
is made.

See Also

q_receive, q_send, q_vurgent
pSOSystem System Calls 1-87

q_vbroadcast pSOS+ System Calls
q_vbroadcast Broadcasts identical variable-length messages to a message queue.

#include <psos.h>
unsigned long q_vbroadcast(

unsigned long qid, /* queue identifier */
void *msg_buf, /* message buffer */
unsigned long msg_len, /* length of message */
unsigned long *count /* number of tasks */
)

Description

This system call sends a message to all tasks waiting at a specified variable length
queue. Otherwise, it is identical to q_broadcast() .

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

qid Specifies the queue ID of the target queue.

msg_buf Points to the message to send.

msg_len Specifies the length of the message. It must not exceed the queue's
maximum message length, which was specified with q_vcreate() .

count Points to the variable where q_vbroadcast() stores the number of
tasks readied by the broadcast.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid is incorrect, failed validity check.

0s07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.
1-88 pSOSystem System Calls

pSOS+ System Calls q_vbroadcast

1

Notes

1. If the caller is a task, it may be preempted as a result of this call.

2. q_vbroadcast() can be intermixed with q_vsend() and q_vurgent() calls
to the same queue.

3. The pSOS+ kernel must copy the message from the caller's buffer to a receiving
task's buffer. Longer messages take longer to copy. Users should account for the
copy time in their designs, especially when calling from an ISR.

4. q_vbroadcast() sends messages to a variable length message queue. Use
q_broadcast() to send messages to an ordinary queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, the local
kernel will internally make an RSC to that remote node to post the input
message to that queue.

2. If tasks awakened by this call do not reside on the local node, the local kernel
internally passes the message to each task's node of residence, whose pSOS+
kernel will ready the task and give it the relayed message. Thus, a
q_vbroadcast() call, whether it is on the local or a remote queue, may cause
pSOS+m activities on one or more processor nodes.

0x30 ERR_KISIZE Message buffer length exceeds max.
KI packet buffer length.

0x31 ERR_MSGSIZ Message is too large.

0x3B ERR_NOTVARQ Queue is not variable length.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
pSOSystem System Calls 1-89

q_vbroadcast pSOS+ System Calls
Callable From

■ Task.

■ ISR, if the target queue is local to the node from which the q_vbroadcast()
call is made.

See Also

q_broadcast, q_vsend, q_vreceive
1-90 pSOSystem System Calls

pSOS+ System Calls q_vcreate

1

q_vcreate Creates a variable-length message queue.

#include <psos.h>
unsigned long q_vcreate(

char name[4], /* queue name */
unsigned long flags, /* queue characteristics */
unsigned long maxnum, /* maximum number of messages */
unsigned long maxlen, /* maximum message length */
unsigned long *qid /* queue identifier */
)

Description

This system call creates a queue that supports variable length messages. Otherwise,
it is identical to q_create() . q_vcreate creates a message queue by allocating
and initializing a Queue Control Block (QCB) according to the specifications
supplied with the call.

Arguments

name Specifies the user-assigned name of the new message queue.

flags Specifies the attributes of the queue. flags is formed by OR-ing the
following symbolic constants (one from each pair), which are defined
in <psos.h> . For instance, to specify that the queue is globally
addressable, you place Q_GLOBAL in flags . To specify that the queue
is globally addressable and that tasks are queued by FIFO, you place
Q_GLOBAL and Q_FIFO in flags , using the following syntax:

Q_GLOBAL | Q_FIFO

Q_GLOBAL /
Q_LOCAL

Queue is globally addressable by other nodes /
queue is addressable only by the local node.

Q_PRIOR /
Q_FIFO

Tasks are queued by priority / FIFO.

maxnum Specifies the maximum number of messages that can be pending at
one time at the queue.

maxlen Specifies the maximum message size (in bytes).
pSOSystem System Calls 1-91

q_vcreate pSOS+ System Calls
Queues created by q_vcreate() always have a fixed number of private buffers.
The pSOS+ kernel uses maxnum and maxlen to allocate sufficient memory for
message storage from region 0. If insufficient memory is available, an error is
returned. Queues created with q_vcreate() never allocate or use message buffers
from the pSOS+ message buffer pool.

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

1. Internally, the pSOS+ kernel treats a queue name as a 32-bit integer. However,
when the application calls the kernel through the pSOS+ C language API, it
passes the queue name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate queue names. If duplicate
names exist, an q_vident() can return the qid of any queue with the
duplicate name.

3. The maximum number of queues that can be simultaneously active is defined
by the entry kc_nqcb in the pSOS+ Configuration Table. It applies to the
combined total of both fixed and variable queues.

4. The Q_GLOBAL attribute is ignored by the single-processor version of the pSOS+
kernel.

5. A special case occurs when maxnum is set to 0. In this case, a message can only
be successfully sent if a task is already waiting at the queue.

qid Points to the variable where q_vcreate() stores the queue’s pSOS-
assigned queue ID.

Hex Mnemonic Description

0x08 ERR_OBJTFULL Node's object table full.

0x30 ERR_KISIZE Global queue maxlen too large for KI.

0x33 ERR_NOQCB Cannot allocate QCB; exceeds node's
maximum number of active queues.

0x34 ERR_NOMGB Not enough memory in region 0.
1-92 pSOSystem System Calls

pSOS+ System Calls q_vcreate

1

6. A special case occurs when maxlen is set to 0. In this case, the queue behaves
much like a counting semaphore.

7. No memory is allocated by the queue when either maxlen or maxnum is set to 0.
The amount of Region 0 memory needed by the queue is given by the formula in
the section of this manual called “Memory Usage.”

8. q_vcreate() creates a variable length message queue. Use q_create() to
create an ordinary queue.

Multiprocessor Considerations

1. The Q_GLOBAL attribute should be set only if the queue must be made known to
other processor nodes in a multiprocessor configuration. If set, the queue's
name and qid are sent to the master node for entry in its Global Object Table.

2. If the Q_GLOBAL attribute is set and the number of global objects currently
exported by the node equals the Multiprocessor Configuration Table entry
mc_nglbobj then the queue is not created and ERR_OBJTFULL is returned.

3. If the maximum message length as specified by maxlen might require
transmission of a packet larger than the KI can transmit, as specified in the
Multiprocessor Configuration Table entry mc_kimaxbuf , then the queue is not
created and ERR_KISIZE is returned.

Callable From

■ Task

See Also

q_create, q_vident, q_vdelete
pSOSystem System Calls 1-93

q_vdelete pSOS+ System Calls
q_vdelete Deletes a variable-length message queue.

#include <psos.h>
unsigned long q_vdelete(

unsigned long qid /* queue identifier */
)

Description

This system call deletes a variable length message queue. Otherwise, it is identical
to q_delete() .

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

qid Specifies the queue ID of the queue to delete.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid is incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x38 ERR_TATQDEL Informative only; tasks were waiting
at the queue.

0x39 ERR_MATQDEL Informative only; messages were
pending in the queue.

0x3B ERR_NOTVARQ Queue is not variable length.

0x53 ERR_ILLRSC Queue not created from this node.
1-94 pSOSystem System Calls

pSOS+ System Calls q_vdelete

1

Notes

1. Message storage is returned to region 0. Hence the calling task can be
preempted by a high priority task waiting for memory.

2. The calling task can also be preempted after this call, if a task waiting at the
deleted queue has higher priority.

3. Any pending messages are lost.

4. q_vdelete() deletes a variable length message queue. Use q_delete() to
delete an ordinary queue.

Multiprocessor Considerations

If qid identifies a global queue, q_vdelete() will notify the master node so that
the queue can be removed from its Global Object Table. Thus, deletion of a global
queue always causes activity on the master node.

Callable From

■ Task

See Also

q_delete, q_vcreate
pSOSystem System Calls 1-95

q_vident pSOS+ System Calls
q_vident Obtains the queue ID of a variable-length message queue.

#include <psos.h>
unsigned long q_vident(

char name[4], /* queue name */
unsigned long node, /* node number */
unsigned long *qid /* queue identifier */
)

Description

The intended purpose of this system call is to allow the calling task to obtain the
queue ID of a variable length message queue. However, since a variable length
message queue is just a special type of message queue, q_ident() and
q_vident() are functionally identical. Both return the queue ID of the first
variable length or fixed length queue encountered with the specified name.

Arguments

Return Value

The system call returns 0 on success, or an error code on failure.

Error Codes

name Specifies the user-assigned name of the message queue.

node For multiprocessor systems, is a search order specifier. See
“Multiprocessor Considerations.” In a single node system,
this argument must be 0.

qid Points to the variable where q_vident() stores the queue
ID of the named queue.

Hex Mnemonic Description

0x04 ERR_NODENO Node specifier out of range.

0x09 ERR_OBJNF Named queue not found.
1-96 pSOSystem System Calls

pSOS+ System Calls q_vident

1

Notes

1. Internally, the pSOS+ kernel treats a queue name as a 32-bit integer. However,
when the application calls the kernel through the pSOS+ C language API, it
passes the queue name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate queue names. If duplicate
names exist, a q_vident() call can return the qid of any queue with the
duplicate name.

Multiprocessor Considerations

1. q_vident() converts a queue's name to its qid using a search order
determined by the node input parameter as described in pSOSystem System
Concepts. Because queues created and exported by different nodes may not
have unique names, the result of this binding may depend on the order in which
the object tables are searched.

2. If the master node's Global Object Table must be searched, the local kernel
makes an q_vident() RSC to the master node.

Callable From

■ Task

See Also

q_ident, q_vcreate
pSOSystem System Calls 1-97

q_vreceive pSOS+ System Calls
q_vreceive Requests a message from a variable-length message queue.

#include <psos.h>
unsigned long q_vreceive(

unsigned long qid, /* queue identifier */
unsigned long flags, /* queue attributes */
unsigned long timeout, /* timeout in clock ticks */
void *msg_buf, /* message buffer */
unsigned long buf_len, /* length of buffer */
unsigned long *msg_len /* length of message */
)

Description

This system call enables a task or an ISR to obtain a message from a variable length
message queue. Otherwise, it is identical to q_receive() .

Arguments

qid Specifies the queue ID of the target queue.

flags Specifies whether q_vreceive() will block waiting for a
message. flags should have one of the following values
(defined in <psos.h>):

Q_NOWAIT /
Q_WAIT

Don't wait / wait for message..

timeout Specifies the timeout interval, in units of clock ticks. If timeout
is zero and Q_WAIT is selected, then q_vreceive() will wait
forever. timeout will be ignored if Q_NOWAIT is selected.

msg_buf Points to the buffer that receives the message.

buf_len Specifies the length of the buffer msg_buf points to. If buf_len
is less than the queue's maximum message length,
ERR_BUFSIZ is returned to the caller.

msg_len Points to the variable where q_receive() stores the actual
length of the received message.
1-98 pSOSystem System Calls

pSOS+ System Calls q_vreceive

1

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

1. If it is necessary to block the calling task, q_vreceive() will enter the calling
task in the queue's task-wait queue. If the queue was created with the Q_FIFO
attribute, then the caller is simply entered at the tail of the wait queue. If the

Hex Mnemonic Description

0x01 ERR_TIMEOUT Timed out: this error code is returned
only if a timeout was requested.

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity checks.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x30 ERR_KISIZE Message buffer length exceeds max.
KI packet buffer length.

0x32 ERR_BUFSIZ Buffer is too small.

0x36 ERR_QKILLD Queue deleted while task waiting.

0x37 ERR_NOMSG Queue empty; this error code is
returned only if Q_NOWAIT was
selected.

0x3B ERR_NOTVARQ Queue is not variable length.

0x54 ERR_NOAGNT Cannot wait; the remote node is out of
agents.

0x65 ERR_STALEID Object's node has failed.

0x66 ERR_NDKLD Object's node failed while remote
service call (RSC) waiting.
pSOSystem System Calls 1-99

q_vreceive pSOS+ System Calls
queue was created with the Q_PRIOR attribute, then the task will be inserted
into the wait queue by priority.

2. The pSOS+ kernel must copy the message from the queue into the caller's
buffer. Longer messages take longer to copy. User's should account for the copy
time in their design, especially when calling from an ISR.

3. q_vreceive() requests a message from a variable length message queue. Use
q_receive() to request a message from an ordinary queue.

Multiprocessor Considerations

If qid identifies a global queue residing on another processor node, the local kernel
will internally make an RSC to that remote node to request a message from that
queue. If the Q_WAIT attribute is elected, then the pSOS+m kernel on the target
node must use an agent to wait for the message. If that node is temporarily out of
agents, the call will fail. The number of agents on each node is defined by the
mc_nagent entry in the Multiprocessor Configuration Table.

Callable From

■ Task.

■ ISR, if Q_NOWAIT is set.

■ KI, if Q_NOWAIT is set.

■ Callout, if Q_NOWAIT is set.

See Also

q_receive, q_vsend
1-100 pSOSystem System Calls

pSOS+ System Calls q_vsend

1

q_vsend Posts a message to a specified variable-length message queue.

#include <psos.h>
unsigned long q_vsend(

unsigned long qid, /* queue identifier */
void *msg_buf, /* message buffer */
unsigned long msg_len, /* length of message */
)

Description

This system call is used to send a message to a specified variable length message
queue. Other than the queue type, q_vsend() operates just like q_send() .

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

qid Specifies the queue ID of the target queue.

msg_buf Points to the message to send.

msg_len Specifies the length of the message. It must not exceed the queue's
maximum message length.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID; failed
validity check.

0x30 ERR_KISIZE Message buffer length exceeds max. KI packet
buffer length.

0x31 ERR_MSGSIZ Message is too large.

0x35 ERR_QFULL Message queue at length limit.
pSOSystem System Calls 1-101

q_vsend pSOS+ System Calls
Notes

1. If the caller is a task, it may be preempted as a result of this call.

2. The pSOS+ kernel must copy the message into a queue buffer or the receiving
task's buffer. Longer messages take longer to copy. User's should account for
the copy time in their design, especially when calling from an ISR.

3. q_vsend() sends a message to a variable length message queue. Use
q_send() to send a message to an ordinary queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, the local
kernel will internally make an RSC to that remote node to post the input
message to that queue.

2. If a task awakened by this call does not reside on the local node, the local kernel
will internally pass the message to the task's node of residence, whose pSOS+m
kernel will ready the task and give it the relayed message. Thus, a q_vsend()
call, whether it is on the local or a remote queue, may cause pSOS+m activities
on another processor node.

0x3B ERR_NOTVARQ Queue is not variable length.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
1-102 pSOSystem System Calls

pSOS+ System Calls q_vsend

1

Callable From

■ Task.

■ ISR, if the target queue is local to the node from which the q_vsend() call is
made.

■ KI, if the target queue is local to the node from which the q_vsend() call is
made.

■ Callout, if the target queue is local to the node from which the q_vsend() call
is made.

See Also

q_send, q_vreceive
pSOSystem System Calls 1-103

q_vurgent pSOS+ System Calls
q_vurgent Posts a message at the head of a variable-length message queue.

#include <psos.h>
unsigned long q_vurgent(

unsigned long qid, /* queue identifier */
void *msg_buf, /* message buffer */
unsigned long msg_len, /* length of message */
)

Description

This system call is identical in all respects to q_vsend() with one and only one
exception: if one or more messages are already posted at the target queue, then the
new message will be inserted into the queue's message queue in front of all such
queued messages.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

qid Specifies the queue ID of the target queue.

msg_buf Points to the message to send.

msg_len Specifies the length of the message. It must not exceed the
queue's maximum message length.

Hex Mnemonic Description

0x05 ERR_OBJDEL Queue has been deleted.

0x06 ERR_OBJID qid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x30 ERR_KISIZE Message buffer length exceeds max.
KI packet buffer length.
1-104 pSOSystem System Calls

pSOS+ System Calls q_vurgent

1

Notes

1. q_vurgent() is useful when the message represents an urgent errand and
must be serviced ahead of the normally FIFO ordered messages.

2. If the caller is a task, it may be preempted as a result of this call.

3. The pSOS+ kernel must copy the message into a queue buffer or the receiving
task's buffer. Longer messages take longer to copy. User's should account for
the copy time in their design, especially when calling from an ISR.

4. q_vurgent() sends an urgent message to a variable length message queue.
Use q_urgent() to send an urgent message to an ordinary queue.

Multiprocessor Considerations

1. If qid identifies a global queue residing on another processor node, the local
kernel will internally make an RSC to that remote node to post the input
message to that queue.

2. If a task awakened by this call does not reside on the local node, the local kernel
will internally pass the message to the task's node of residence, whose pSOS+m
kernel will ready the task and give it the relayed message. Thus, a
q_vurgent() call, whether it is on the local or a remote queue, may cause
pSOS+m activities on another processor node.

Callable From

■ Task.

■ ISR, if the target queue is local to the node from which the q_vurgent() call is
made.

■ KI, if the target queue is local to the node from which the q_vurgent() call is
made.

0x31 ERR_MSGSIZ Message is too large.

0x35 ERR_QFULL Message queue at length limit.

0x3B ERR_NOTVARQ Queue is not variable length.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
pSOSystem System Calls 1-105

q_vurgent pSOS+ System Calls
■ Callout, if the target queue is local to the node from which the q_vurgent()
call is made.

See Also

q_urgent, q_vreceive, q_vsend
1-106 pSOSystem System Calls

pSOS+ System Calls rn_create

1

rn_create Creates a memory region.

#include <psos.h>
unsigned long rn_create(

char name[4], /* region name */
void *saddr, /* starting address */
unsigned long length, /* region's size in bytes */
unsigned long unit_size, /* region's unit of allocation */
unsigned long flags, /* region attributes */
unsigned long *rnid, /* region ID */
unsigned long *asiz /* allocatable size */
)

Description

This service call enables a task to create a memory region, from which variable-sized
memory segments can be allocated for use by the application. The pSOS+ kernel
takes a portion from the beginning of this region to use as its Region Control Block
(RNCB.) All relevant region arguments such as unit size and whether tasks will wait
by FIFO or task priority order are established using this call.

Arguments

name Specifies the user-assigned name of the new region.

saddr Specifies the starting address of the region's memory area. saddr
must be on a long word boundary.

length Specifies the region's size, in bytes.

unit_size Specifies the region's unit of allocation in bytes. unit_size must
be a power of 2 and greater than or equal to 16. All allocation will be
in multiples of unit_size .
pSOSystem System Calls 1-107

rn_create pSOS+ System Calls
Return Value

This call returns 0 on success, or an error code on failure.

Error Codes

flags Specifies the region’s attributes. flags is formed by OR-ing the
following symbolic constants (one from each pair), which are defined
in <psos.h> . For instance, to specify queuing by task priority, you
place RN_PRIOR in flags . To specify queuing by task priority and
to enable deletion of the region even if segments are allocated, you
place both RN_PRIOR and RN_DEL in flags , using the following
syntax:

RN_PRIOR | RN_DEL

RN_PRIOR /
RN_FIFO

Tasks are queued by priority /FIFO order.

RN_DEL /
RN_NODEL

Region can / cannot be deleted with segments
outstanding.

rnid Points to the variable where rn_create() stores the region ID of
the named region.

asiz Points to the variable where rn_create() stores the actual number
of allocatable bytes available in the region.

Hex Mnemonic Description

0x08 ERR_OBJTFULL Node's object table full.

0x1B ERR_RNADDR Starting address not on long word
boundary.

0x1C ERR_UNITSIZE Illegal unit_size : not a power of 2 or
not greater than or equal to 16.

0x1D ERR_TINYUNIT Length too large (for given
unit_size).

0x1E ERR_TINYRN Cannot create; region length too
small to hold RNCB.
1-108 pSOSystem System Calls

pSOS+ System Calls rn_create

1

Notes

1. Internally, the pSOS+ kernel treats a region name as a 32-bit integer. However,
when the application calls the kernel through the pSOS+ C language API, it
passes the region name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate region names. If duplicate
names exist, an rn_ident() call can return the rnid of any region with the
duplicate name.

3. A region must consist of physically contiguous memory locations.

4. The maximum input length for a region is 32767 times the region's unit size. A
length that exceeds this limit for a given unit size is treated as an error, the
remedy for which is a bigger unit size.

5. When the RN_DEL attribute is specified, a region can be deleted while segments
are outstanding; otherwise, the pSOS+ kernel requires all segments to be
returned before the region can be deleted.

Multiprocessor Considerations

Regions are strictly local resources, and cannot be exported. Therefore, any
allocation calls must come only from the local node. However, if a region's memory
is reachable from other nodes, then any segments allocated from it can be passed
between nodes for direct access explicitly by the user's code.

Callable From

■ Task

See Also

rn_ident, rn_getseg
pSOSystem System Calls 1-109

rn_delete pSOS+ System Calls
rn_delete Deletes a memory region.

#include <psos.h>
unsigned long rn_delete (

unsigned long rnid /* region ID */
)

Description

This system call deletes the memory region with the specified region ID. Unless the
region was created with the RN_DEL attribute set, rn_delete() is rejected if any
segments allocated from the region have not been returned. The calling task does
not have to be the creator of the region to be deleted.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

rnid Specifies the region ID of the region to be deleted.

Hex Mnemonic Description

0x05 ERR_OBJDEL Region already deleted.

0x06 ERR_OBJID rnid is incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x1F ERR_SEGINUSE Cannot delete — one or more segments
still is use.

0x27 ERR_TATRNDEL Informative only: tasks were waiting.
1-110 pSOSystem System Calls

pSOS+ System Calls rn_delete

1

Notes

1. Once created, a region generally is used by multiple tasks for storing or passing
data. Reasons for deleting a region are rare. Deleting a region is dangerous
except as part of a partial or full system restart.

2. The special region with rnid equal to 0 cannot be deleted.

Multiprocessor Considerations

None, since regions are local resources. rn_delete() can be called only from the
local node.

Callable From

■ Task

See Also

rn_create
pSOSystem System Calls 1-111

rn_getseg pSOS+ System Calls
rn_getseg Allocates a memory segment to the calling task.

#include <psos.h>
unsigned long rn_getseg(

unsigned long rnid, /* region identifier */
unsigned long size, /* requested size, in bytes */
unsigned long flags, /* segment attributes */
unsigned long timeout, /* timeout in clock ticks */
void **seg_addr /* allocated segment address */
)

Description

This system call allocates a memory segment of the specified size from the specified
memory region. An allocated segment's size is always the nearest multiple of the
region's unit size, which is an input argument to the rn_create() call.

If the calling task selects the RN_NOWAIT attribute, then rn_getseg() returns
unconditionally (whether or not allocation was successful). If the calling task elects
the RN_WAIT attribute, and a subsequent request cannot be satisfied, the task is
blocked until either a segment is allocated, or a timeout occurs (if the timeout
attribute is elected).

Arguments

rnid Specifies the region ID from which the memory segment is allocated.

size Specifies the segment size, in bytes.

flags Specifies the segment’s attributes. The flags argument must
assume one of the following values, defined in <psos.h> .

RN_NOWAIT Don't wait for a segment.

RN_WAIT Wait for a segment.

timeout Specifies the timeout, in units of clock ticks. If timeout is 0 and
flags is set to RN_WAIT, then rn_getseg() will wait forever. The
timeout argument is ignored if RN_NOWAIT is used.

seg_addr Points to the variable where rn_getseg() stores the starting
address of the memory segment.
1-112 pSOSystem System Calls

pSOS+ System Calls rn_getseg

1

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

1. See pSOSystem System Concepts for a description of the allocation algorithm for
regions.

2. An allocated segment's size will always be a multiple of the region's unit size. It
can, therefore, be greater than size .

3. An allocated segment always starts on a long word boundary.

4. If the calling task must wait, it will either wait by FIFO or priority order,
depending on the attribute elected when the region was created.

Multiprocessor Considerations

Regions are strictly local resources, and cannot be exported. Therefore, any
allocation calls must come only from the local node. However, if a region's memory

Hex Mnemonic Description

0x01 ERR_TIMEOUT Timed out; only if timeout requested.

0x05 ERR_OBJDEL Region has been deleted.

0x06 ERR_OBJID rnid is incorrect; failed validity
check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x20 ERR_ZERO Cannot getseg; request size of zero is
illegal.

0x21 ERR_TOOBIG Request size too big for region.

0x22 ERR_NOSEG No free segment; is returned only if
RN_NOWAIT attribute is used.

0x26 ERR_RNKILLD Region deleted while task waiting for
segment.
pSOSystem System Calls 1-113

rn_getseg pSOS+ System Calls
is reachable from other nodes, then any segments allocated from it can be passed
between nodes for direct access explicitly by the user's code.

Callable From

■ Task

See Also

rn_create, rn_retseg
1-114 pSOSystem System Calls

pSOS+ System Calls rn_ident

1

rn_ident Obtains the region identifier of a named region.

#include <psos.h>
unsigned long rn_ident(

char name[4], /* region name */
unsigned long *rnid /* region identifier */
)

Description

This system call enables the calling task to obtain the region ID of a memory region
for which the caller has only the region name. This region ID can then be used in all
other operations relating to the memory region.

Most system calls, except rn_create() and rn_ident() , reference a region by its
region ID. rn_create() returns the region ID to a region's creator. For other tasks,
one way to obtain the region ID is to use rn_ident() .

Arguments

Return Value

This call returns 0 on success, or an error code on failure.

Error Codes

name Specifies the user-assigned name of the region.

rnid Points to the variable where rn_ident() stores the region
ID of the named region.

Hex Mnemonic Description

0x09 ERR_OBJNF Named region not found.
pSOSystem System Calls 1-115

rn_ident pSOS+ System Calls
Notes

1. Internally, the pSOS+ kernel treats a region name as a 32-bit integer. However,
when the application calls the kernel through the pSOS+ C language API, it
passes the region name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate region names. If duplicate
names exist, an rn_ident() call can return the rnid of any region with the
duplicate name.

3. The region with rnid equal 0 is special. This region is statically specified in the
pSOS+ Configuration Table, and is used for pSOS+ data structures and task
stacks.

Multiprocessor Considerations

None, since regions are strictly local resources. Only the local object table is
searched.

Callable From

■ Task

See Also

rn_create
1-116 pSOSystem System Calls

pSOS+ System Calls rn_retseg

1

rn_retseg Returns a memory segment to the region from which it was allocated.

#include <psos.h>
unsigned long rn_retseg(

unsigned long rnid, /* region identifier */
void *seg_addr /* segment address */
)

Description

This system call returns a memory segment back to the region from which it was
allocated. The pSOS+ Region Manager then performs whatever compaction is
possible, and puts the resulting free memory block in the region's free list for future
allocation.

The segment address specified must be identical to the one returned by the original
rn_getseg() call. Otherwise, the pSOS+ kernel will reject the segment.

Arguments

Return Value

This call returns 0 on success, or an error code on failure.

Error Codes

rnid Specifies the segment’s region of origin.

seg_addr Specifies the starting address of the segment, as returned by
rn_getseg() .

Hex Mnemonic Description

0x05 ERR_OBJDEL Region has been deleted.

0x06 ERR_OBJID rnid is incorrect; failed validity
check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x23 ERR_NOTINRN Segment does not belong to this
region.
pSOSystem System Calls 1-117

rn_retseg pSOS+ System Calls
Notes

1. Refer to pSOSystem System Concepts for the algorithms used to merge
neighboring free segments.

2. There is no notion of segment ownership. A segment can be returned by a task
other than the one that originally allocated it.

3. If there are tasks waiting for memory from this region, then such requests will
be re-examined and allocation granted where possible — in the order of the wait
queue (FIFO or by task priority).

4. Note that the calling task may be preempted if a task waiting for memory
segment is unblocked as a result of the returned segment, and that task has
higher priority.

Multiprocessor Considerations

None, since regions are strictly local resources. rn_retseg() can be called only
from the local node.

Callable From

■ Task

See Also

rn_getseg

0x24 ERR_SEGADDR Incorrect segment starting address.

0x25 ERR_SEGFREE Segment is already unallocated.

Hex Mnemonic Description
1-118 pSOSystem System Calls

pSOS+ System Calls sm_av

1

sm_av (pSOS+m kernel only) Asynchronously releases a semaphore token.

#include <psos.h>
unsigned long sm_av(

unsigned long smid /* semaphore identifier */
)

Description

This system call is used to asynchronously release a semaphore token. It is identical
to sm_v() except the call is made asynchronously. Refer to the description of
sm_v() for further information. This call is only supported by the pSOS+m kernel
(the multiprocessor version).

Arguments

Return Value

When called in a system running the pSOS+m kernel, this call always returns 0.
The pSOS+ kernel (the single processor version) returns ERR_SSFN.

Error Codes

If the sm_v() call fails and the node’s MC_ASYNCERR routine is present, that routine
is invoked. The following error codes are possible:

If an MC_ASYNCERR routine is not provided, the pSOS+m kernel generates a fatal
error.

smid Specifies the semaphore ID of the semaphore token to release.

Hex Mnemonic Description

0x05 ERR_OBJDEL Semaphore has been deleted.

0x06 ERR_OBJID smid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.
pSOSystem System Calls 1-119

sm_av pSOS+ System Calls
Notes

The calling task can be preempted as a result of this call.

Multiprocessor Considerations

1. If smid identifies a global semaphore residing on another processor node, the
pSOS+ kernel internally makes an RSC to that remote node to release the
semaphore.

2. If the task awakened by this call does not reside on the local node, then the
pSOS+m kernel internally alerts the task's node of residence, whose pSOS+m
kernel will ready the task and give it the acquired semaphore token. Thus, an
sm_v() call, whether it is to either the local or a remote semaphore, may cause
pSOS+m activities on another processor node.

Callable From

■ Task

See Also

sm_v, sm_p
1-120 pSOSystem System Calls

pSOS+ System Calls sm_create

1

sm_create Creates a semaphore.

#include <psos.h>
unsigned long sm_create(

char name[4], /* semaphore name */
unsigned long count, /* number of tokens */
unsigned long flags, /* semaphore attributes */
unsigned long *smid /* semaphore identifier */
)

Description

This system call creates a semaphore by allocating and initializing a Semaphore
Control Block (SMCB) according to the specifications supplied with the call.

Like all objects, a semaphore has a user-assigned name, and a pSOS+-assigned
semaphore ID returned by sm_create() . Several flag bits specify the
characteristics of the semaphore, including whether tasks will wait for the
semaphore by task priority or strictly FIFO.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

name Specifies the user-assigned name of the new semaphore.

count Specifies the initial semaphore token count.

flags Specifies the semaphore’s attributes. flags is formed by OR-ing
the following symbolic constants (one from each pair), defined in
<psos.h>:

SM_GLOBAL /
SM_LOCAL

Semaphore can be addressed by other nodes /
local nodes only.

SM_PRIOR /
SM_PRIOR

Tasks are queued by priority FIFO order.

smid Points to the variable where sm_create() stores the semaphore
ID of the named semaphore.
pSOSystem System Calls 1-121

sm_create pSOS+ System Calls
Error Codes

Notes

1. Internally, the pSOS+ kernel treats a semaphore name as a 32-bit integer.
However, when the application calls the kernel through the pSOS+ C language
API, it passes the semaphore name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate semaphore names. If duplicate
names exist, an sm_ident() call can return the smid of any semaphore with
the duplicate name.

3. The maximum number of semaphores that can be simultaneously active is
defined by the kc_nsema4 entry in the pSOS+ Configuration Table.

4. The count argument is unsigned, and thus can only be 0 or a positive value.

5. The SM_GLOBAL attribute is ignored by the single-processor version of the
pSOS+ kernel.

Multiprocessor Considerations

1. The SM_GLOBAL attribute should be set only if the semaphore must be made
known to other processor nodes in a multiprocessor configuration. If set, the
semaphore's name and smid are sent to the master node for entry in its Global
Object Table.

2. If the SM_GLOBAL attribute is set and the number of global objects currently
exported by the node equals the Multiprocessor Configuration Table entry
mc_nglbobj then the semaphore is not created and ERR_OBJTFULL is
returned.

Hex Mnemonic Description

0x08 ERR_OBJTFULL Node's object table is full.

0x41 ERR_NOSCB Exceeds node's maximum number of
semaphores.
1-122 pSOSystem System Calls

pSOS+ System Calls sm_create

1

Callable From

■ Task

See Also

sm_delete, sm_ident
pSOSystem System Calls 1-123

sm_delete pSOS+ System Calls
sm_delete Deletes a semaphore.

#include <psos.h>
unsigned long sm_delete(

unsigned long smid /* semaphore ID */
)

Description

This system call deletes the semaphore with the specified semaphore ID, and frees
the SMCB to be reused. sm_delete() takes care of cleaning up the semaphore. If
there are tasks waiting, they will be unblocked and given an error code.

The calling task does not have to be the creator (parent) of the semaphore to be
deleted. However, a semaphore must be deleted from the node on which it was
created.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

smid Specifies the semaphore ID of the semaphore to be deleted.

Hex Mnemonic Description

0x05 ERR_OBJDEL Semaphore has been deleted.

0x06 ERR_OBJID smid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x44 ERR_TATSDEL Informative only; there were tasks
waiting.

0x53 ERR_ILLRSC Semaphore not created from this
node.
1-124 pSOSystem System Calls

pSOS+ System Calls sm_delete

1

Notes

1. Once created, a semaphore is generally used by multiple tasks for
communication and synchronization. There is rarely a reason for deleting a
semaphore, even when it is no longer used, except to allow reuse of the SMCB.

2. The calling task can be preempted, if a task waiting at the deleted semaphore
has higher priority.

Multiprocessor Considerations

If smid identifies a global semaphore, sm_delete will notify the master node so
that the semaphore can be removed from its Global Object Table. Thus, deletion of a
global semaphore always causes activity on the master node.

Callable From

■ Task

See Also

sm_create
pSOSystem System Calls 1-125

sm_ident pSOS+ System Calls
sm_ident Obtains the semaphore identifier of a named semaphore.

#include <psos.h>
unsigned long sm_ident(

char name[4], /* semaphore name */
unsigned long node, /* node selector */
unsigned long *smid /* semaphore ID */
)

Description

This system call enables the calling task to obtain the semaphore ID of a semaphore
it only knows by name. The semaphore ID can then be used in all other operations
relating to this semaphore.

Most system calls, except sm_create() and sm_ident() , reference a semaphore
by the semaphore ID. sm_create() returns the semaphore ID to the semaphore
creator. For other tasks, one way to obtain the semaphore ID is to use sm_ident() .

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

name Specifies the user-assigned name of the semaphore.

node In multiprocessor systems, is a search order specifier. See
“Multiprocessor Considerations.” In a single node system,
this argument must be 0.

smid Points to the variable where sm_ident() stores the
semaphore ID of the named semaphore.

Hex Mnemonic Description

0x04 ERR_NODENO Node specifier out of range.

0x09 ERR_OBJNF Named semaphore not found.
1-126 pSOSystem System Calls

pSOS+ System Calls sm_ident

1

Notes

1. Internally, the pSOS+ kernel treats a semaphore name as a 32-bit integer.
However, when the application calls the kernel through the pSOS+ C language
API, it passes the semaphore name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate semaphore names. If duplicate
semaphore names exist, an sm_ident() call can return the smid of any
semaphore with the duplicate name.

Multiprocessor Considerations

1. sm_ident() converts a semaphore's name to its smid by using a search order
determined by the node input parameter, as described in pSOSystem System
Concepts. Because semaphores created and exported by different nodes may
not have unique names, the result of this binding may depend on the order in
which the object tables are searched.

2. If the master node's Global Object Table must be searched, then the pSOS+m
kernel makes a sm_ident() RSC to the master node.

Callable From

■ Task

See Also

sm_create
pSOSystem System Calls 1-127

sm_p pSOS+ System Calls
sm_p Acquires a semaphore token.

#include <psos.h>
unsigned long sm_p(

unsigned long smid, /* semaphore identifier */
unsigned long flags, /* attributes */
unsigned long timeout /* timeout */
)

Description

This system call enables a task or an ISR to acquire a semaphore token. A calling
task can specify whether or not it wants to wait for the token. If the semaphore
token count is positive, then this call returns the semaphore token immediately. If
the semaphore token count is zero and the calling task specified SM_NOWAIT, then
sm_p() returns with an error code. If SM_WAIT is elected, the task will be blocked
until a semaphore token is released, or if the timeout argument is specified, until
timeout occurs, whichever occurs first.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

smid Specifies the semaphore ID of the semaphore token.

flags Specifies whether sm_p() will block waiting for a token. flags
should have one of the following values (defined in <psos.h>):

SM_WAIT Block until semaphore is available.

SM_NOWAIT Return with error code if semaphore is
unavailable.

timeout Specifies the timeout interval, in units of clock ticks. If timeout is
zero and flags is set to SM_WAIT, then sm_p() will wait forever.
timeout will be ignored if flags is set to SM_NOWAIT.
1-128 pSOSystem System Calls

pSOS+ System Calls sm_p

1

Error Codes

Notes

If it is necessary to block the calling task, sm_p() will enter the calling task in the
semaphore's task-wait queue. If the semaphore was created with the SM_FIFO
attribute, then the task is simply entered at the tail of the wait queue. If the
semaphore was created with the SM_PRIOR attribute, then the task is inserted into
the wait queue by priority.

Multiprocessor Considerations

If smid identifies a global semaphore residing on another processor node, the local
kernel will internally make an RSC to that remote node to acquire a semaphore
token. If the SM_WAIT attribute is used, then the pSOS+ kernel on the target node
must use an agent to wait for the semaphore token. If that node is temporarily out
of agents, the call will fail. The number of agents on each node is defined by the
mc_nagent entry in the node's Multiprocessor Configuration Table.

Hex Mnemonic Description

0x01 ERR_TIMEOUT Timed out; this error code is returned only if a
timeout was requested.

0x05 ERR_OBJDEL Semaphore has been deleted.

0x06 ERR_OBJID smid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID; failed validity
check.

0x42 ERR_NOSEM No semaphore; this error code is returned only if
SM_NOWAIT was selected.

0x43 ERR_SKILLD Semaphore deleted while task waiting.

0x54 ER_NOAGNT Cannot wait on remote object; no free agents at
node.

0x65 ERR_STALEID Object's node has failed.

0x66 ERR_NDKLD Object's node failed while RSC waiting.
pSOSystem System Calls 1-129

sm_p pSOS+ System Calls
Callable From

■ Task.

■ ISR, if SM_NOWAIT is set and the semaphore is local to the node from which the
sm_p() call is made.

■ KI, if SM_NOWAIT is set and the semaphore is local to the node from which the
sm_p() call is made.

■ Callout, if SM_NOWAIT is set and the semaphore is local to the node from which
the sm_p() call is made.

See Also

sm_v
1-130 pSOSystem System Calls

pSOS+ System Calls sm_v

1

sm_v Releases a semaphore token.

#include <psos.h>
unsigned long sm_v(

unsigned long smid /* semaphore identifier */
)

Description

This system call is used to release a semaphore token. If a task is already waiting at
the semaphore, it is unblocked and made ready to run. If there is no task waiting,
then the semaphore token count is simply incremented by 1.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

If the caller is a task, it may be preempted as a result of this call.

smid Specifies the semaphore ID of the semaphore token to release.

Hex Mnemonic Description

0x05 ERR_OBJDEL Semaphore has been deleted.

0x06 ERR_OBJID smid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x65 ERR_STALEID Object's node has failed.
pSOSystem System Calls 1-131

sm_v pSOS+ System Calls
Multiprocessor Considerations

1. If smid identifies a global semaphore residing on another processor node, then
the pSOS+ kernel will internally make an RSC to that remote node to release
the semaphore.

2. If the task awakened by this call does not reside on the local node, the local
kernel will internally alert the task's node of residence, whose pSOS+ kernel will
ready the task and give it the acquired semaphore token. Thus, an sm_v() call,
whether it is to a local or remote semaphore, may cause pSOS+ activities on
another node.

Callable From

■ Task.

■ ISR, if semaphore is local to the node from which the sm_v() call is made.

■ KI, if the semaphore is local to the node from which the sm_v() call is made.

■ Callout, if the semaphore is local to the node from which the sm_v() call is
made.

See Also

sm_p
1-132 pSOSystem System Calls

pSOS+ System Calls t_create

1

t_create Creates a task.

#include <psos.h>
unsigned long t_create(

char name[4], /* task name */
unsigned long prio, /* task priority */
unsigned long sstack, /* task supervisor stack size */
unsigned long ustack, /* task user stack size */
unsigned long flags, /* task attributes */
unsigned long *tid /* task identifier */
)

Description

This service call enables a task to create a new task. t_create() allocates to the
new task a Task Control Block (TCB) and a memory segment for its stack(s). The
task stack sizes and scheduling priority are established with this call. t_create()
leaves the new task in a dormant state; the t_start() call must be used to place
the task into the ready state for execution.

Arguments

name Specifies the user-assigned name of the task.

prio Specifies the task's initial priority within the range 1 - 239, with 239
the highest and 1 the lowest.

Priority level 0 is reserved for the pSOS+ daemon task IDLE. Priority
levels 240 - 255 are reserved for a variety of high priority pSOSystem
daemon tasks. While t_create() will allow creation of a task at
these priorities, there should never be a need to do so.

sstack Specifies the task's supervisor stack size in bytes (see “Supervisor
Stack Size” under “Target.”) t_create() internally calls
rn_getseg() to allocate a segment from Region 0 to hold the task’s
stack and the user stack, if any.

ustack Specifies the task's user stack. ustack may be 0 if the task executes
only in supervisor mode (see “Using sstack and ustack” under
“Target”).
pSOSystem System Calls 1-133

t_create pSOS+ System Calls
Target

Using sstack and ustack

On most processors, a task can execute only in supervisor mode. Thus, a task can
have only a supervisor stack. On these processors ustack is added to sstack to
create a supervisor stack of the combined sizes. Exceptions to this usage are shown
below.

flags Specifies the task’s attributes. flags is formed by OR-ing the
following symbolic constants (one from each pair), which are defined
in <psos.h> . For instance, to specify that a task is global, you place
the symbolic constant T_GLOBAL in flags . To specify that the task is
global and uses the FPU processor, you place both T_GLOBAL and
T_FPU in flags , using the following syntax:

T_GLOBAL | T_FPU

T_GLOBAL /
T_LOCAL

Makes the task global: external tasks on other nodes
can address it / restricts the task to the local node.

The T_GLOBAL attribute is ignored by the single-
processor kernel.

T_FPU /
T_NOFPU

Informs the pSOS+ kernel that the task uses /does
not use the FPU coprocessor (see “Using the T_FPU
Flag” under “Target.”)

tid Points to the variable where t_create() stores the task ID assigned
to the task.

On 68K processors, a task can execute in either user mode or supervisor
mode. A user stack is not needed if the task never executes in the user
mode, in which case ustack should be set to 0. If the task starts in the
user mode, then ustack must be greater than 20 bytes. The supervisor/
user mode is set in the t_start() system call.

On ColdFire and PowerPC processors, a task can execute in either user
mode or supervisor mode, but there are not separately defined stacks
depending on this mode. t_create() simply adds sstack and ustack
together and allocates a stack of that resultant size.

68K

CF

PPC
1-134 pSOSystem System Calls

pSOS+ System Calls t_create

1

Supervisor Stack Size

Supervisor stack size is processor-dependent.

Using the T_FPU Flag

If the T_FPU flag is set, the size of the task's stack segment is extended to save and
restore FPU registers. It should be set if the task uses the FPU. The extension added
varies according to the processor being used.

On ARM processors, a task can execute in either user mode or supervisor
mode. A user stack is not needed if the task never executes in the user
mode, in which case ustack is set to 0. If the task starts in the user
mode, then ustack must be greater than 80 bytes to accommodate the
requirements of the interrupt handler. The supervisor/user mode is set in
the t_start() system call.

On PowerPC and ARM processors, the stack size should be no less than
512 bytes.

On 960 processors, the stack size should be no less than 256 bytes.

On x86 processors, the stack size should be no less than 128 bytes.

On 68K processors, the stack is extended by 328 bytes.

On ColdFire processors, there is no support for FPU. Hence this feature
is not supported in pSOS+.

On PowerPC processors, the stack is extended by 264 bytes.

ARM

PPC

ARM

960

x86

68K

CF

PPC
pSOSystem System Calls 1-135

t_create pSOS+ System Calls
Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

1. Internally, the pSOS+ kernel treats a task name as a 32-bit integer. However,
when the application calls the kernel through the pSOS+ C language API, it
passes the task name as a four-byte character array.

2. A null name (for example, 32-bit binary 0) should not be used, because it may
be used elsewhere as an alias for the running task.

3. The pSOS+ kernel does not check for duplicate task names. If duplicate names
exist, a t_ident() call can return the tid of any task with the duplicate name.

On ARM processors, the stack is extended by 100 bytes.

On 960 processors, the stack is extended by 48 bytes.

On 486 processors, and on 386 processors used with an 80387 FPU,
the stack size is extended by 108 bytes.

Hex Mnemonic Description

0x08 ERR_OBJTFULL Node’s object table full.

0x0E ERR_NOTCB Exceeds node's maximum number of tasks. The
maximum number of tasks that can be
simultaneously active is defined by the
kc_ntask entry in the pSOS+ Configuration
Table.

0x0F ERR_NOSTK Insufficient space in Region 0 to create stack.

0x10 ERR_TINYSTK Stack size too small.

0x11 ERR_PRIOR Priority out of range.

ARM

960

x86
1-136 pSOSystem System Calls

pSOS+ System Calls t_create

1

4. If you have installed any other components from Integrated Systems, the pSOS+
kernel adds an extension for each component to the task’s stack segment.
These extension sizes can be determined from the user manuals for those
components.

Multiprocessor Considerations

1. The T_GLOBAL attribute should be set only if the task must be made known to
other processor nodes in a multiprocessor configuration. If set, the task's name
and tid are sent to the master node for entry in its Global Object Table.

2. If the T_GLOBAL attribute is set and the number of global objects currently
exported by the node equals the Multiprocessor Configuration Table entry
mc_nglbobj , then the task is not created and ERR_OBJTFULL is returned.

Callable From

■ Task

See Also

t_start, t_ident, rn_getseg
pSOSystem System Calls 1-137

t_delete pSOS+ System Calls
t_delete Deletes a task.

#include <psos.h>
unsigned long t_delete(

unsigned long tid /* task identifier */
)

Description

This service call enables a task to delete itself or another task. The pSOS+ kernel
halts the task and reclaims its TCB, stack segment and any allocated timers.

The calling task does not have to be the creator (parent) of the task to be deleted.
However, a task must be deleted from the node on which it was created.

Arguments

Return Value

This call returns 0 on success (unless the caller does a self-delete, in which case the
call does not return) or returns an error on failure.

Error Codes

tid Specifies the task ID of the task to be deleted.

Hex Mnemonic Description

0x05 ERR_OBJDEL Task already deleted.

0x06 ERR_OBJID tid incorrect; failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x18 ERR_DELFS pHILE+ resources in use.

0x19 ERR_DELLC pREPC+ resources in use.

0x1A ERR_DELNS pNA+ resources in use.

0x53 ERR_ILLRSC Task not created from this node.
1-138 pSOSystem System Calls

pSOS+ System Calls t_delete

1

Notes

1. If the call is to delete self (suicide via tid equal to 0), there will be no return.

2. Task deletion should be carefully planned and considered. Indiscriminate use
can lead to unpredictable results, especially when resources such as allocated
memory segments, buffers, or semaphores have not been correctly returned. If a
task holds any resources from the pREPC+ library, the pHILE+ file system
manager, or the pNA+ network manager, those resources must be returned
before t_delete() is called. The commands that must be executed for
pREPC+, pHILE+, and pNA+ resources are fclose(0) , close_f(0) , and
close(0) , respectively. Following these commands, a free() command must
be used to return pREPC+ memory. This order of execution is required because
the pREPC+ library calls the pHILE+ file system manager, and the pHILE+ file
system manager calls the pNA+ network manager (if NFS is in use.) If resources
are not returned in the correct order, an error occurs. See Error Codes.

The following is an example of the correct sequence of calls for returning re-
sources. This example applies to a case where all three components have allo-
cated resources:

fclose(0); /* return pREPC+ resources */
close_f(0); /* return pHILE+ resources */
close(0); /* return pNA+ resources */
free(-1) /* return pREPC+ memory */
t_delete(0); /* and execute self-deletion */

3. Using t_delete() to delete another task does not generally allow that task a
chance to perform any cleanup work necessary for the orderly termination of
the task. In general, t_delete() should be used for self-deletion, whereas
asynchronous deletion of another task can best be achieved using the
t_restart() call.

4. t_delete() calls the optional user-supplied callout procedure, whose address
is defined in the kc_deleteco entry in the pSOS+ Configuration Table.

Multiprocessor Considerations
1. A task can be deleted only from the local node.

2. If tid identifies a global task, t_delete notifies the master node so that the
task can be removed from its Global Object Table. Thus, deletion of a global
task always causes activity on the master node.
pSOSystem System Calls 1-139

t_delete pSOS+ System Calls
Callable From

■ Task

See Also

t_restart
1-140 pSOSystem System Calls

pSOS+ System Calls t_getreg

1

t_getreg Gets a task’s notepad register.

#include <psos.h>
unsigned long t_getreg(

unsigned long tid, /* task identifier */
unsigned long regnum, /* register number */
unsigned long *reg_value /* register contents */
)

Description

This system call enables the caller to obtain the contents of a task's notepad
register. Each task has 16 such software registers, held in the task's TCB. The
purpose of these registers is to furnish every task with a set of named, permanent
variables. Eight of these registers are reserved for system use. Eight are free to be
used for application specific purposes.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

tid Specifies the task ID of the task whose notepad register will
be read. If tid equals 0, then the calling task reads its own
notepad register.

regnum Specifies the register number. Registers numbered 0
through 7 are for application use, and registers 8 through 15
are reserved for system purposes.

reg_value Points to the variable where t_getreg() stores the
register’s contents.

Hex Mnemonic Description

0x05 ERR_OBJDEL Task has been deleted.

0x06 ERR_OBJID tid is incorrect; failed validity check.
pSOSystem System Calls 1-141

t_getreg pSOS+ System Calls
Notes

The kernel does not deny access to those registers reserved for system use. For
future compatibility, however, you should not use them.

Multiprocessor Considerations

If the tid identifies a global task residing on another processor node, the local
kernel will internally make an RSC to that remote node to obtain the register's
content for that task.

Callable From

■ Task.

■ ISR, if the task is local to the node from which the t_getreg() call is made.

■ KI, if the task is local to the node from which the t_getreg() call is made.

■ Callout, if the task is local to the node from which the t_getreg() call is made.

See Also

t_setreg

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x17 ERR_REGNUM Register number is out of range.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
1-142 pSOSystem System Calls

pSOS+ System Calls t_ident

1

t_ident Obtains the task identifier of a named task.

#include <psos.h>
unsigned long t_ident(

char name[4], /* task name */
unsigned long node, /* node number */
unsigned long *tid /* task ID */
)

Description

This system call enables the calling task to obtain the task ID of a task it knows only
by name. This task ID can then be used in all other operations relating to the task.

Most system calls, except t_create() and t_ident() , reference a task by its task
ID. t_create() returns the task ID to a task's creator. For other tasks, one way to
obtain the task ID is to use t_ident() .

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

name Specifies the user-assigned name of the task.

node In multiprocessor systems, is a search order specifier. See
“Multiprocessor Considerations.” In a single node system,
this argument must be 0.

tid Points to the variable where t_ident() stores the task ID of
the named task.

Hex Mnemonic Description

0x04 ERR_NODENO Illegal node number.

0x09 ERR_OBJNF Named task was not found.
pSOSystem System Calls 1-143

t_ident pSOS+ System Calls
Notes

1. Internally, the pSOS+ kernel treats a task name as a 32-bit integer. However,
when the application calls the kernel through the pSOS+ C language API, it
passes the task name as a four-byte character array.

2. The pSOS+ kernel does not check for duplicate task names. If duplicate task
names exist, a t_ident call can return the tid of any task with the duplicate
name.

3. If name is null (for example, (char*)0), then the tid of the calling task is
returned.

Multiprocessor Considerations

1. t_ident() converts a task's name to its tid using a search order determined
by the node input parameter, as described in pSOSystem System Concepts.
Because tasks created and exported by different nodes may not have unique
names, the result of this binding may depend on the order in which the object
tables are searched.

2. If the master node's Global Object Table must be searched, then the pSOS+m
kernel makes a t_ident() RSC to the master node.

3. If the task name is null (i.e., (char*)0), then the node argument is ignored,
and the t_ident() operation returns the tid of the calling task on the local
node.

Callable From

■ Task

See Also

t_create
1-144 pSOSystem System Calls

pSOS+ System Calls t_mode

1

t_mode Gets or changes the calling task’s execution mode.

#include <psos.h>
unsigned long t_mode(

unsigned long mask, /* attributes to be changed */
unsigned long new_mode, /* new attributes */
unsigned long *old_mode /* prior mode */
)

Description

This system call enables a task to modify certain execution mode fields. These are
preemption on/off, roundrobin on/off, asynchronous signal handling on/off, and
interrupt control.

Preemption has precedence over timeslicing. Therefore, if preemption is off,
timeslicing does not occur whether or not it is set.

The calling task can be preempted as a result of this call, if its preemptibility is
turned from off to on and a higher priority task is ready to run.

To obtain a task's current execution mode without changing it, use a mask of 0.

Arguments

You create the arguments mask and new_mode by ORing symbolic constants from
the pairs below. These symbolic constants are also defined in <psos.h> .

mask Specifies all task attributes to be modified.

new_mode Specifies the new task attributes.

old_mode Points to the variable where t_mode() stores the old value
of the task’s mode.

T_PREEMPT /
T_NOPREEMPT

Task is / is not preemptible.

T_TSLICE /
T_NOTSLICE

Task can / cannot be time-sliced.

T_ASR / T_NOASR Task's ASR is enabled / disabled.
pSOSystem System Calls 1-145

t_mode pSOS+ System Calls
To create the argument new_mode, you pick symbolic constants from the pairs
described above. For instance, to specify that a task have preemption turned off,
you place the symbolic constant T_NOPREEMPT in new_mode. To specify that the
task have preemption turned off and roundrobin by time-slicing turned on, you
place both T_NOPREEMPT and T_TSLICE in new_mode, using the following syntax:

T_NOPREEMPT | T_TSLICE

The argument mask specifies the bit mask used to permit attribute modifications,
and as such, it must contain both of the symbolic constants from each pair whose
attribute is to be modified. For instance, to enable modification of preemption mode,
you place both T_PREEMPT and T_NOPREEMPT in mask. To enable modification of
both preemption mode and roundrobin mode, you place both symbolic constants
from both pairs in mask, as below:

T_PREEMPT | T_NOPREEMPT | T_NOTSLICE | T_TSLICE

Target

Interrupt Control

Interrupt control means that while a task is executing, hardware interrupts are
disabled. On some processors, you can disable all interrupts at or below a certain
interrupt level and enable all interrupts above that level. On other processors you

T_ISR / T_NOISR Hardware interrupts are enabled / disabled while the task
runs.

These options are available only on certain processors. See
“Interrupt Control” under “Target.”

T_LEVELMASK0
through
T_LEVELMASKn

Certain hardware interrupts are disabled while the task runs.
These options are available only on certain processors. See
“Interrupt Control” under “Target.”
1-146 pSOSystem System Calls

pSOS+ System Calls t_mode

1

can simply specify that all interrupts are either enabled or disabled. Details are
provided below:

NOTE: t_mode() stores in old_mode the previous setting of the interrupt
control value as stored in the task's TCB (called the true mode), rather
than the value in the task's processor status register (called the transient
mode.) These two modes are normally the same. The one instance when
they can be different is if the task changes the interrupt control value
without using t_mode() .

Processor Mode

t_mode() cannot modify the task’s processor mode. Most processors only have one
processor mode, so this is not relevant. Exceptions are handled as follows:

Return Value

This system call always returns 0.

Error Codes

None.

Notes

Multiprocessor Considerations

None. Because t_mode() affects only the calling task, its action stays on the local
node.

Callable From

■ Task

On PowerPC, x86, MIPS, and ARM processors, you can simply enable or
disable all hardware interrupts. To do this, you place both T_ISR and
T_NOISR in the mask argument and place either T_ISR or T_NOISR in
the new_mode argument.

PPC

x86

MIPS

ARM
pSOSystem System Calls 1-147

t_mode pSOS+ System Calls
See Also

t_start
1-148 pSOSystem System Calls

pSOS+ System Calls t_restart

1

t_restart Forces a task to start over regardless of its current state.

#include <psos.h>
unsigned long t_restart(

unsigned long tid, /* task identifier */
unsigned long targs[4] /* startup arguments */
)

Description

This system call forces a task to resume execution at its original start address
regardless of its current state or place of execution. If the task was blocked, the
pSOS+ kernel forcibly unblocks it. The task's priority and stacks are set to the
original values that t_create() specified. Its start address and execution mode are
reset to the original values established by t_start() . Any pending events, signals,
or armed timers are cleared.

The t_restart() call accepts a new set of up to four arguments, which, among
other things, can be used by the task to distinguish between the initial startup and
subsequent restarts.

Because it can unconditionally unblock a task and alter its flow of execution,
t_restart() is useful for forcing a task to execute cleanup code on its own behalf
after which the task can delete itself by executing t_delete() .

The calling task does not have to be the creator (or parent) of the task it restarts.
However, a task must be restarted from the node on which it was created.

Arguments

tid Specifies the task to restart. When tid equals 0, the calling
task restarts itself.

targs Specifies up to four long words of input that are passed to
the restarted task.
pSOSystem System Calls 1-149

t_restart pSOS+ System Calls
Target

Startup Values

At the start of the task, the CPU registers and the stack are initialized in such a way
that if the outermost function of the task exits by mistake, an illegal error address
results. The contents of the original registers and stack are platform-specific:

A restarted task can receive up to four long words of input arguments. To facilitate
retrieval of these arguments, they are passed to the task as if it is invoked as a high-
level language procedure or function. For example, if a C task nice has three input
arguments, it can be declared as follows:

nice (unsigned long a, unsigned long b, unsigned long c);

where targs[0] is passed to a, targs[1] to b, and targs[2] to c . In this case,
targs[3] is irrelevant and does not need the calling task to load it.

Return Value

This system call returns 0 on success, or an error code on failure.

On 960 processors, the return address (RIP) on the stack is
0xDEADDEAD.

On PowerPC and ARM processors, the return address in register LR is
0xDEADDEAD.

On x86 processors, the return address on the stack is 0xFFFFFFFF.

960

PPC

ARM

x86
1-150 pSOSystem System Calls

pSOS+ System Calls t_restart

1

Error Codes

Notes

1. Even though t_restart() resets the task's stacks, the stacks' contents
remain intact. The stack frame and any automatic variables it contains for the
task's outermost procedure should remain intact (despite restart) until
something is stored into it, or it is initialized.

2. Once restarted, a task can actively compete for the CPU and all other system
resources. Thus, it can preempt the calling task if it has a higher priority.

Multiprocessor Considerations

None. A task can be restarted from the local node only.

Callable From

■ Task

See Also

t_create, t_start, t_delete

Hex Mnemonic Description

0x05 ERR_OBJDEL Task already deleted.

0x06 ERR_OBJID tid is incorrect: failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x0D ERR_RSTFS Information only: possible file
corruption on restart.

0x13 ERR_NACTIVE Cannot restart: this task never
started.

0x53 ERR_ILLRSC Task not created on this node.
pSOSystem System Calls 1-151

t_resume pSOS+ System Calls
t_resume Resumes a suspended task.

#include <psos.h>
unsigned long t_resume(

unsigned long tid /* task identifier */
)

Description

This system call removes the suspension of a task. If the task was suspended while
in the ready state, t_resume() releases it to be scheduled for execution. If the task
was both suspended and blocked (for example, waiting for a message), t_resume()
removes only the suspension. This leaves the task in the blocked state.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

The calling task can be preempted as a result of this call.

tid Specifies the task ID of the task.

Hex Mnemonic Description

0x05 ERR_OBJDEL Task already deleted.

0x06 ERR_OBJID tid incorrect: failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x15 ERR_NOTSUSP Task not suspended.

0x65 ERR_STALEID Object's node has failed.
1-152 pSOSystem System Calls

pSOS+ System Calls t_resume

1

Multiprocessor Considerations

If tid identifies a global task residing on another processor node, the local kernel
internally makes an RSC to that remote node to resume the task.

Callable From

■ Task.

■ ISR, if the task is local to the node from which the t_resume() call is made.

■ KI, if the task is local to the node from which the t_resume() call is made.

■ Callout, if the task is local to the node from which the t_resume() call is made.

See Also

t_suspend
pSOSystem System Calls 1-153

t_setpri pSOS+ System Calls
t_setpri Gets and optionally changes a task’s priority.

#include <psos.h>
unsigned long t_setpri(

unsigned long tid, /* task identifier */
unsigned long newprio, /* new priority */
unsigned long *oldprio /* previous priority */
)

Description

This system call enables the calling task to obtain and optionally modify either its
own or another task's scheduling (software) priority. The previous priority is
returned.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

tid Specifies the selected task for the priority change. If tid
equals 0, the calling task is the target.

newprio Specifies the task's new priority. newprio must be between
0 and 255 (see Note 3). If newprio is 0, the task's priority is
not changed. This allows a read of a task's priority without
changing its priority.

oldprio Points to the variable where t_setpri() stores the task’s
previous priority.

Hex Mnemonic Description

0x05 ERR_OBJDEL The task was already deleted.

0x06 ERR_OBJID tid is incorrect: failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.
1-154 pSOSystem System Calls

pSOS+ System Calls t_setpri

1

Notes

1. If the calling task uses t_setpri() to lower its own priority, it can be
preempted by a ready task with higher priority.

2. If the calling task uses t_setpri() to raise the priority of another task, it can
be preempted if that task is ready and now possesses higher priority.

3. Priority level 0 is reserved for the pSOS+ daemon task IDLE. Priority levels 240 -
255 are reserved for a variety of high priority pSOSystem daemon tasks. While
t_create() will allow creation of tasks at these priorities, there should never
be a need to do so.

Multiprocessor Considerations

If the tid identifies a global task residing on another processor node, the local
kernel internally makes an RSC to that remote node to change the priority of the
task.

Callable From

■ Task

See Also

t_create

0x16 ERR_SETPRI Cannot change: new priority value is
out of range.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
pSOSystem System Calls 1-155

t_setreg pSOS+ System Calls
t_setreg Sets a task’s notepad register.

#include <psos.h>
unsigned long t_setreg(

unsigned long tid, /* task identifier */
unsigned long regnum, /* register number */
unsigned long reg_value /* register value */
)

Description

This system call enables the caller to modify the contents of a task's notepad
register. Each task has 16 such software registers, held in the task's TCB. The
purpose of these registers is to furnish every task with a set of named, permanent
variables. Eight of these registers are reserved for system use, and eight are free to
be used for application-specific purposes.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

tid Specifies the task ID of the task whose notepad register is
set. If tid equals 0, the calling task sets its own notepad
register.

regnum Specifies the register number. Registers 0 through 7 are for
application use, and registers 8 through 15 are reserved for
system use.

reg_value Specifies the value at which the register’s contents are to be
set.

Hex Mnemonic Description

0x05 ERR_OBJDEL Task already deleted.

0x06 ERR_OBJID tid incorrect: failed validity check.
1-156 pSOSystem System Calls

pSOS+ System Calls t_setreg

1

Notes

The kernel does not deny access to the registers that the system reserves. For future
compatibility, however, avoid using these reserved registers.

Multiprocessor Considerations

If tid identifies a global task residing on another processor node, the local kernel
internally makes an RSC to that remote node to set the register for the task.

Callable From

■ Task.

■ ISR, if the task is local to the node from which the t_setreg() call is made.

■ KI, if the task is local to the node from which the t_setreg() call is made.

■ Callout, if the task is local to the node from which the t_setreg() call is made.

See Also

t_getreg

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x17 ERR_REGNUM Register number out of range.

0x65 ERR_STALEID Object's node has failed.

Hex Mnemonic Description
pSOSystem System Calls 1-157

t_start pSOS+ System Calls
t_start Starts a task.

#include <psos.h>
unsigned long t_start(

unsigned long tid, /* task identifier */
unsigned long mode, /* initial task attributes */
void (*start_addr)(), /* task address */
unsigned long targs[4]/* startup task arguments */
)

Description

This system call places a newly created task into the ready state to await scheduling
for execution. The calling task does not have to be the creator (or parent) of the task
to be started. However, a task must be started from the node on which it was
created.

Arguments

tid Specifies the task to start. tid is returned by the t_create() and
t_ident() calls.

mode Specifies the initial task attributes. mode is formed by ORing the
following symbolic constants (one from each pair), which are defined
in <psos.h> . For instance, to specify that a task should have
preemption turned off, you place the symbolic constant
T_NOPREEMPT in mode. To specify that the task should have
preemption turned off and roundrobin by time-slicing turned on,
you place both T_NOPREEMPT and T_TSLICE in mode, using the
following syntax:

T_NOPREEMPT | T_TSLICE

T_PREEMPT /
T_NOPREEMPT

Task is / is not preemptible.

T_TSLICE /
T_NOTSLICE

Task can /cannot be time-sliced.

T_ASR /
T_NOASR

Task’s ASR is enabled / disabled.
1-158 pSOSystem System Calls

pSOS+ System Calls t_start

1

Target

Startup Values

At the start of the task, the CPU registers and the stack are initialized in such a way
that if the outermost function of the task exits by mistake, an illegal error address
results. The contents of the original registers and stack are platform-specific:

A new task can receive up to four long words of input arguments. To facilitate
retrieval of these arguments, they are passed to the task as if it is invoked as a high-
level language procedure or function. For example, if a C task nice has three input
arguments, it can be declared as follows:

T_USER /
T_SUPV

Task runs in user / supervisor mode.

(See “User and Supervisor Modes” under
“Target.”)

T_ISR /
T_NOISR

Hardware interrupts are enabled / disabled while
task runs.

These options are available only on certain
processors. See “Interrupt Control” under
“Target.”

T_LEVELMASK0
through
T_LEVELMASKn

Certain hardware interrupts are disabled while
the task runs. These options are available only on
certain processors. See “Interrupt Control” under
“Target”.

start_addr Specifies the task's location in memory.

targs Specifies four startup values passed to the task (see “Startup
Values” under “Target”).

On 960 processors, the return address (RIP) on the stack is
0xDEADDEAD.

On PowerPC and ARM processors, the return address in register LR is
0xDEADDEAD.

On x86 processors, the return address on the stack is 0xFFFFFFFF.

960

PPC

ARM

x86
pSOSystem System Calls 1-159

t_start pSOS+ System Calls
nice (unsigned long a, unsigned long b, unsigned long c);

where targs[0] is passed to a, targs[1] to b, and targs[2] to c . In this case,
targs[3] is irrelevant and does not need the calling task to load it.

User and Supervisor Modes

You use the symbolic constants T_USER and T_SUPV on each processor as follows:

Interrupt Control

Interrupt control means that while a task is executing, hardware interrupts are
disabled. On some processors, you can disable all interrupts at or below a certain
interrupt level and enable all interrupts above that level. On other processors you
can simply specify that all interrupts are either enabled or disabled. Details are
provided below:

Return Value

This system call returns 0 on success, or an error code on failure.

On 960 and x86 processors, a task can execute only in supervisor
mode. In <psos.h> , for these processors, the symbols T_SUPV and
T_USER are defined as:

#define T_SUPV 0

#define T_USER 0

for the sole purpose of compatibility with platforms that support both
user and supervisor modes.

On PowerPC, x86, MIPS, and ARM processors, you can simply enable or
disable all hardware interrupts. You do this by placing either T_ISR or
T_NOISR in the mode argument.

960

x86

PPC

x86

MIPS

ARM
1-160 pSOSystem System Calls

pSOS+ System Calls t_start

1

Error Codes

Notes

1. Once started, the task can compete for the CPU and all other system resources.
Thus, it can preempt the calling task if it has a higher priority.

2. t_start() calls the optional user-supplied callout procedure whose address is
defined by entry kc_startco in the pSOS+ Configuration Table.

Multiprocessor Considerations

None. A task can only be started from the local node only.

Callable From

■ Task

See Also

t_create, t_restart, t_ident

Hex Mnemonic Description

0x05 ERR_OBJDEL Task already deleted.

0x06 ERR_OBJID tid incorrect: failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x12 ERR_ACTIVE Task already started.

0x53 ERR_ILLRSC Task not created from this node.

0x0F ERR_NOSTK Task started in user mode with no
user mode stack.
pSOSystem System Calls 1-161

t_suspend pSOS+ System Calls
t_suspend Suspends a task indefinitely.

#include <psos.h>
unsigned long t_suspend(

unsigned long tid /* task identifier */
)

Description

This system call suspends execution of a task until a t_resume() call is made for
the suspended task. The calling task suspends either itself or another task. The
t_suspend() call prevents the specified task from contending for CPU time but
does not directly prevent contention for any other resource. See Note 4.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

1. A task that calls t_suspend() on itself always returns 0.

2. A suspended task can be deleted.

tid Specifies the task to suspend. If tid equals zero, the calling
task suspends itself.

Hex Mnemonic Description

0x05 ERR_OBJDEL Task was already deleted.

0x06 ERR_OBJID tid incorrect: failed validity check.

0x07 ERR_OBJTYPE Object type doesn’t match object ID;
failed validity check.

0x14 ERR_SUSP Task was already suspended.
1-162 pSOSystem System Calls

pSOS+ System Calls t_suspend

1

3. t_resume() is the only call that reverses a suspension.

4. A task can be suspended in addition to being blocked. For example, if a task is
waiting for a message at a queue when suspension is ordered, suspension
continues after a message has been received. For another example, consider a
task P that is blocked while it waits for an event. Another task Q decides that P
must not run, and therefore Q suspends P. When P receives the event, it must
still wait for a resumption before it can be ready to run. On the other hand, if Q
resumes P while P is still waiting for its event, P continues to wait for the event.

Multiprocessor Considerations

If tid identifies a global task residing on another processor node, the local kernel
internally makes an RSC to the remote node to suspend the task.

Callable From

■ Task

See Also

t_resume
pSOSystem System Calls 1-163

tm_cancel pSOS+ System Calls
tm_cancel Cancels an armed timer.

#include <psos.h>
unsigned long tm_cancel(

unsigned long tmid /* timer identifier */
)

Description

This system call enables a task to cancel a timer armed previously by
tm_evafter() , tm_evwhen() , or tm_evevery() . The timer must have been
armed by the calling task.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

When a task with armed timers is restarted or deleted, its timers are automatically
cancelled.

Multiprocessor Considerations

None. This call affects only the calling task.

tmid Specifies the timer to cancel.

Hex Mnemonic Description

0x4C ERR_BADTMID The tmid is invalid.

0x4D ERR_TMNOTSET Timer not armed or else already
expired.
1-164 pSOSystem System Calls

pSOS+ System Calls tm_cancel

1

Callable From

■ Task

See Also

tm_evafter, tm_evevery, tm_evwhen
pSOSystem System Calls 1-165

tm_evafter pSOS+ System Calls
tm_evafter Sends events to the calling task after a specified interval.

#include <psos.h>
unsigned long tm_evafter(

unsigned long ticks, /* delay */
unsigned long events, /* event list */
unsigned long *tmid /* timer identifier */
)

Description

This system call enables the calling task to arm a timer so that it expires after the
specified interval, at which time the pSOS+ kernel internally calls ev_send() to
send the designated events to this task. Unlike tm_wkafter() , tm_evafter()
does not block the caller. A task can use multiple tm_evafter() calls to arm two
or more concurrent timers.

The timer interval is specified in system clock ticks. For example, if the system clock
frequency is 60 ticks per second and the caller requires a timer to interrupt in 20
seconds, the input specification should be 60x20 (ticks=1200). A timer interval of n
ticks causes the events to be sent on the nth next tick. Because tm_evafter() can
happen anywhere between two ticks, the actual interval is between n-1 and n ticks.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

ticks Specifies the timer interval.

events Specifies the events to deliver upon expiration of the timer interval.
The events are encoded into a long word with bits 31-16 reserved for
system use and bits 15 - 0 available for application use.

tmid Points to the variable where tm_evafter() stores a timer identifier,
which can be used if the armed timer must be cancelled.
1-166 pSOSystem System Calls

pSOS+ System Calls tm_evafter

1

Error Codes

Notes

1. The maximum interval is 232-1 ticks.

2. The timer is counted down by successive tm_tick() calls. If no clock or timer
is provided, a timer does not expire.

3. A task must call ev_receive() explicitly to receive any timer-triggered events
(which are like other events in every other way).

4. A task with active timers can be blocked or suspended. In either case, the
designated events are sent when the timer expires.

5. When a task with armed timers is restarted or deleted, its timers are
automatically cancelled.

6. The number of simultaneously active timers is fixed and defined by the
kc_ntimer entry in the pSOS+ Configuration Table.

Multiprocessor Considerations

None. This call only affects the calling task.

Callable From

■ Task

See Also

ev_receive, ev_send

Hex Mnemonic Description

0x4B ERR_NOTIMERS Exceeds the maximum number of
configured timers.
pSOSystem System Calls 1-167

tm_evevery pSOS+ System Calls
tm_evevery Sends events to the calling task at periodic intervals.

#include <psos.h>
unsigned long tm_evevery(

unsigned long ticks, /* delay */
unsigned long events, /* event list */
unsigned long *tmid /* timer identifier */
)

Description

This system call is similar to tm_evafter() except that the armed timer expires
periodically instead of once. Events are generated at the specified interval until the
timer is cancelled with tm_cancel() .

The tm_evevery() call provides a drift-free mechanism for performing an
operation at periodic intervals. Like tm_evafter() , the interval is specified in
system clock ticks.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

ticks Specifies the periodic interval in system clock ticks.

events Specifies the events to deliver upon expiration of the timer
interval. The events are encoded into a long word with bits
31-16 reserved for system use and bits 15 - 0 available for
application use.

tmid Points to the variable where tm_evevery() stores a timer
identifier, which can be used if the armed timer must be
cancelled.
1-168 pSOSystem System Calls

pSOS+ System Calls tm_evevery

1

Error Codes

Notes

1. The maximum interval is 232-1 ticks.

2. A timer is counted down by successive tm_tick() calls. If no clock or timer is
provided, a timer does not expire.

3. A task must explicitly call ev_receive() to receive timer-triggered events
(which are like other events in every other way).

4. A task with active timers can be blocked or suspended. In either case, the
designated events are sent when the timer expires.

5. When a task with armed timers is restarted or deleted, its timers are
automatically cancelled.

6. The number of simultaneously active timers is fixed and defined by the
kc_ntimer entry in the pSOS+ Configuration Table.

Multiprocessor Considerations

None. This call affects only the calling task.

Callable From

■ Task

See Also

ev_receive, ev_send

Hex Mnemonic Description

0x4B ERR_NOTIMERS Exceeds the maximum number of
configured timers.
pSOSystem System Calls 1-169

tm_evwhen pSOS+ System Calls
tm_evwhen Sends events to the calling task at a specified time.

#include <psos.h>
unsigned long tm_evwhen(

unsigned long date, /* date of wakeup */
unsigned long time, /* time of wakeup */
unsigned long ticks, /* ticks at wakeup */
unsigned long events, /* event list */
unsigned long *tmid /* timer identifier */
)

Description

This system call enables the calling task to arm a timer so that it expires at the
appointed date and time, whereupon the pSOS+ kernel internally calls ev_send()
to send the designated events to the task. tm_evwhen() does not block the calling
task (unlike tm_wkwhen()). A task can use multiple tm_evwhen() calls to arm two
or more concurrent timers.

The tm_evwhen() call resembles tm_evafter() except that tm_evwhen() wakes
the caller at an appointed time rather than after a specified interval.

Arguments

date Specifies the clock date for event send. date is encoded as follows:

Field Bits

Year, A.D. 31-16

Month (1-12) 15-8

Day (1-31) 7-0

time Specifies the clock time for event send. time is encoded as follows:

Field Bits

Hour (0-23) 31-16

Minute (0-59) 15-8

Second (0-59) 7-0
1-170 pSOSystem System Calls

pSOS+ System Calls tm_evwhen

1

Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

1. A timer is counted down by successive tm_tick() calls. If no clock or timer is
provided, a timer does not expire.

2. A timer established by tm_evwhen() is affected by a tm_set() call if that call
changes the date and time. If a tm_set() advances the time past a scheduled
alarm, it triggers the ev_send() immediately. To detect this situation, the
application can check the time when it awakens and compare it with the
expected time.

3. A task must explicitly call ev_receive() to receive a timer-triggered event
(which is like any event in every other way).

ticks An optional count that begins after the last second of time has
elapsed. This parameter provides a finer resolution of time, if
needed.

events Specifies the events to deliver upon expiration of the timer. The
events are encoded into a long word with bits 31-16 reserved for
system use and bits 15 - 0 available for application use.

tmid Points to the variable where tm_evwhen() stores a timer identifier,
which can be used if the armed timer must be cancelled.

Hex Mnemonic Description

0x47 ERR_NOTIME System time and date are not yet set.

0x48 ERR_ILLDATE Date input is out of range.

0x49 ERR_ILLTIME Time of day input is out of range.

0x4A ERR_ILLTICKS Ticks input out of range.

0x4B ERR_NOTIMERS Exceeds maximum number of
configured timers.

0x4E ERR_TOOLATE Too late: input date and time are
already past.
pSOSystem System Calls 1-171

tm_evwhen pSOS+ System Calls
4. A task with active timers can be blocked or suspended. In either case, the
designated events are sent when the timer expires.

5. When a task with armed timers is restarted or deleted, its timers are
automatically cancelled.

6. The number of simultaneously active timers is fixed and defined by the
kc_ntimer entry in the pSOS+ Configuration Table.

Multiprocessor Considerations

None. This call affects the calling task only.

Callable From

■ Task

See Also

ev_receive, ev_send
1-172 pSOSystem System Calls

pSOS+ System Calls tm_get

1

tm_get Obtains the system’s current version of the date and time.

#include <psos.h>
unsigned long tm_get(

unsigned long *date, /* year/month/day */
unsigned long *time, /* hour:minute:second */
unsigned long *ticks /* ticks */
)

Description

This service call returns the system’s current version of the date and time-of-day. If
the system has no real-time clock, the returned values are meaningless.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

date Points to the variable where tm_get() stores the date. date is
encoded as follows:

Field Bits

Year, A.D. 31-16

Month (1-12) 15-8

Day (1-31) 7-0

time Points to the variable where tm_get() stores the time. time is
encoded as follows:

Field Bits

Hour (0-23) 31-16

Minute (0-59) 15-8

Second (0-59) 7-0

ticks Points to the variable where tm_get() stores the number of ticks
from the last second of the time argument.
pSOSystem System Calls 1-173

tm_get pSOS+ System Calls
Error Codes

Notes

1. The accuracy of the returned date and time depends on the precision of
tm_tick() activity and the moment that the most recent tm_set() call
occurred.

2. The algorithm for this call accounts for leap years.

Multiprocessor Considerations

None. This call can only be directed at the local processor node.

Callable From

■ Task

■ ISR

■ KI

■ Callout

See Also

tm_set, tm_tick

Hex Mnemonic Description

0x47 ERR_NOTIME System date and time not set.
1-174 pSOSystem System Calls

pSOS+ System Calls tm_set

1

tm_set Sets or resets the system’s version of the date and time.

#include <psos.h>
unsigned long tm_set(

unsigned long date, /* year/month/day */
unsigned long time, /* hour:minute:second */
unsigned long ticks /* clock ticks */
)

Description

This service call enables a task either to set or reset the system's version of the date
and time. If a meaningful date and time are required, this call should be made after
each system restart or power-on. Thereafter, the system maintains the date and
time based on incoming tm_tick() calls and the expected arrival frequency defined
in the pSOS+ Configuration Table.

Arguments

date Specifies the clock date. date is encoded as follows:

Field Bits

Year, A.D. 31-16

Month (1-12) 15-8

Day (1-31) 7-0

time Specifies the clock time. time is encoded as follows:

Field Bits

Hour (0-23) 31-16

Minute (0-59) 15-8

Second (0-59) 7-0

ticks Specifies the number of ticks from the last second of the time
argument.
pSOSystem System Calls 1-175

tm_set pSOS+ System Calls
Return Value

This system call returns 0 on success, or an error code on failure.

Error Codes

Notes

1. This implementation accurately reflects leap years and the current century. For
example, the value 0088 means 88 A.D., not 1988 A.D.

2. The pSOS+ kernel maintains a flag that indicates if the system time has been
initialized since the last system reboot. Startup clears the flag, and tm_set()
sets the flag.

3. If the input values are accurate when this call is made, the actual
synchronization of the system clock depends on such variables as the execution
time of tm_set() and the moment it arrives between two ticks. The accuracy is
within one or two ticks.

4. tm_set() has no effect on tasks that are either timing out or waiting after
tm_wkafter() or tm_evafter() calls because these pause intervals are in
clock ticks, not clock time.

Multiprocessor Considerations

None. This call can only be directed at the local processor node.

Hex Mnemonic Description

0x48 ERR_ILLDATE Date input out of range.

0x49 ERR_ILLTIME Time input out of range.

0x4A ERR_ILLTICKS Ticks input out of range.
1-176 pSOSystem System Calls

pSOS+ System Calls tm_set

1

Callable From

■ Task

■ ISR

See Also

tm_get, tm_tick
pSOSystem System Calls 1-177

tm_tick pSOS+ System Calls
tm_tick Announces a clock tick to the pSOS+ kernel.

#include <psos.h>
unsigned long tm_tick()

Description

This system call is used to inform the pSOS+ kernel of the arrival of a new clock
tick. The pSOS+ time manager uses it to update its time and date calendar, count
down tasks that are timing out, and track a running task's time-slice for round-
robin scheduling. Normally, the user's real-time clock ISR calls tm_tick() .

The frequency of tm_tick() calls is fixed and defined in the pSOS+ Configuration
Table as kc_ticks2sec . Thus, if the value is 100, the pSOS+ time manager
interprets 100 tm_tick() calls as one real-time second.

Return Value

This call always returns 0.

Error Codes

None

Notes

1. tm_tick() is very fast: it just notifies the system of the arrival of another clock
tick. Most other Time Manager actions that can result from this clock tick are
postponed until the pSOS+ kernel dispatches and do not run at the clock
interrupt level. This improves deterministic system interrupt response.

2. The system accumulates announced ticks when necessary, so no chance exists
for an overrun or missed tick. Typically, the accumulation never counts past 1.
However, if a system contains one or more lengthy ISRs that respond to high
frequency interrupt sources, they can monopolize the CPU enough to prevent
the pSOS+ kernel from processing a tick before the next one arrives. In such
rare cases, the pSOS+ kernel accumulates the ticks for subsequent accounting.

Multiprocessor Considerations

None. This call can only be directed at the local processor node.
1-178 pSOSystem System Calls

pSOS+ System Calls tm_tick

1

Callable From

■ Task

■ ISR

■ KI

■ Callout

See Also

tm_get, tm_set
pSOSystem System Calls 1-179

tm_wkafter pSOS+ System Calls
tm_wkafter Blocks the calling task and wakes it after a specified interval.

#include <psos.h>
unsigned long tm_wkafter(

unsigned long ticks /* clock ticks */
)

Description

This system call enables the calling task to block unconditionally for a specified
interval. This call resembles self-suspension (t_suspend(0)), except that
tm_wkafter() schedules an automatic resumption after the specified time interval
has lapsed. The interval is in system clock ticks. For example, if the system clock
frequency is 60 ticks per second and the caller requires a pause of 20 seconds, the
input specification should be 60x20 (ticks =1200).

Arguments

An interval of n ticks awakens the calling task on the nth next tick. Because
tm_wkafter() can happen anywhere between two ticks, the actual interval is
between n-1 and n ticks.

An interval of 0 ticks has a special function: if no ready tasks have the same priority
as the calling (or running) task, the calling task continues. On the other hand, if one
or more ready tasks with the same priority as the caller exist, the pSOS+ kernel
executes a round-robin by placing the caller behind all ready tasks of the same
priority and giving the CPU to one of those tasks. This provides a manual round-
robin technique to voluntarily give the CPU to another ready task of the same
priority.

Return Value

This call always returns 0.

Error Codes

None.

ticks Specifies the number of ticks to elapse during the block.
1-180 pSOSystem System Calls

pSOS+ System Calls tm_wkafter

1

Notes

1. The maximum interval is 232-1 ticks.

2. Each successive tm_tick() call counts down the specified delay interval. If no
clock or timer is provided, the delay interval does not expire.

3. A delayed task can additionally be suspended, and countdown continues
regardless. If not cancelled, suspension continues after expiration.

4. A paused task can be deleted.

5. tm_set() calls do not affect a pause established by tm_wkafter() because
the pause counter is not changed (even if the date and time are changed).

Multiprocessor Considerations

None. This call only affects the calling task.

Callable From

■ Task

See Also

tm_tick, tm_wkwhen
pSOSystem System Calls 1-181

tm_wkwhen pSOS+ System Calls
tm_wkwhen Blocks the calling task and wakes it at a specified time.

#include <psos.h>
unsigned long tm_wkwhen(

unsigned long date, /* year/month/day */
unsigned long time, /* hour:minute:second */
unsigned long ticks /* clock ticks */
)

Description

This call enables the calling task to block unconditionally until a specified time.

The tm_wkwhen() call resembles a self-suspension (t_suspend(0)), but
tm_wkwhen() schedules the task to resume at a specified time. This call also
resembles tm_wkafter() , which awakens the calling task after a specified interval.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

date Specifies the clock date. date is encoded as follows:

Field Bits

Year, A.D. 31-16

Month (1-12) 15-8

Day (1-31) 7-0

time Specifies the clock time. time is encoded as follows:

Field Bits

Hour (0-23) 31-16

Minute (0-59) 15-8

Second (0-59) 7-0

ticks Specifies the number of ticks within the last second of the time
argument.
1-182 pSOSystem System Calls

pSOS+ System Calls tm_wkwhen

1

Error Codes

Notes

1. A tm_set() call (which changes the date and time) directly affects the wakeup
established by tm_wkwhen() . If tm_set() advances the time past a scheduled
wakeup, it triggers the wakeup immediately. If necessary, the application can
detect this situation by checking the time when the task awakens and
comparing that time to the expected time.

2. A task can be suspended while it waits for wakeup. In this case, the wait
continues: if not cancelled, suspension continues after wakeup.

3. A task can be deleted while it waits for wakeup.

Multiprocessor Considerations

None. This call affects only the calling task.

Callable From

■ Task

■ ISR

See Also

tm_tick, tm_wkafter

Hex Mnemonic Description

0x47 ERR_NOTIME System time and date not yet set.

0x48 ERR_ILLDATE Date input out of range.

0x49 ERR_ILLTIME Time input out of range.

0x4A ERR_ILLTICKS Ticks input out of range.

0x4E ERR_TOOLATE Too late: input date and time already
past.
pSOSystem System Calls 1-183

tm_wkwhen pSOS+ System Calls
1-184 pSOSystem System Calls

2

2

pHILE+ System Calls
This chapter provides detailed information on each system call in the pHILE+
component of pSOSystem. The calls are listed alphabetically, with a multipage
section of information for each call. Each call’s section includes its syntax, the
volume types it applies to, a detailed description, its arguments, its return value,
and any error codes that it can return. Where applicable, the section also includes
the headings “Notes”, “Usage”, and “See Also”. “Notes” contains any important
information not specifically related to the call description, “Usage” provides detailed
usage information, and “See Also” indicates other calls that have related
information.

Structures described in this chapter are also defined in the file <phile.h> .
Structures must be word-aligned and must not be packed.

If you need to look up a system call by its functionality, refer to Appendix A, “Tables
of System Calls,” which lists the calls alphabetically by component and provides a
brief description of each call.

The following table shows the file systems that each pHILE+ call supports. If a call
supports a particular file system, the table entry is “yes.” Otherwise, the table entry
is the error message produced when a call is either incorrectly used on a file system
or attempted on an unsupported file system. Error codes are described in the call
descriptions within this chapter, and also in Appendix B, “Error Codes.”

TABLE 2-1 File Systems Supported by pHILE+ Calls

Syscall/
Filesystem

pHILE+ MS-DOS NFS CD-ROM

access_f E_FUNC E_BADMS yes E_BADCD

annex_f yes E_BADMS E_BADNFS E_BADCD
2-1

pHILE+ System Calls
cdmount_vol E_VALIEN E_VALIEN E_MNTED yes

change_dir yes yes yes yes

chmod_f E_FUNC E_BADMS yes E_RO

chown_f E_FUNC E_BADMS yes E_RO

close_dir yes yes yes yes

close_f yes yes yes yes

create_f yes yes yes E_RO

fchmod_f E_FUNC E_BADMS yes E_RO

fchown_f E_FUNC E_BADMS yes E_RO

fstat_f yes yes yes yes

fstat_vfs yes yes yes yes

ftruncate_f yes yes yes E_RO

get_fn yes yes E_BADNFS yes

init_vol yes yes E_MNTED E_RO

link_f E_FUNC E_BADMS yes E_BADCD

lock_f yes E_BADMS E_BADNFS E_BADCD

lseek_f yes yes yes yes

lstat_f E_FUNC E_BADMS yes E_BADCD

make_dir yes yes yes E_RO

mount_vol yes E_VALIEN E_MNTED E_VALIEN

move_f yes yes yes E_RO

nfsmount_vol E_MNTED E_MNTED yes E_MNTED

open_dir yes yes yes yes

open_f yes yes yes yes

open_fn yes yes E_BADNFS yes

TABLE 2-1 File Systems Supported by pHILE+ Calls (Continued)

Syscall/
Filesystem

pHILE+ MS-DOS NFS CD-ROM
2-2 pSOSystem System Calls

pHILE+ System Calls

2

pcinit_vol yes yes E_MNTED E_RO

pcmount_vol E_VALIEN yes E_MNTED E_VALIEN

read_dir yes yes yes yes

read_f yes yes yes yes

read_link E_FUNC E_BADMS yes E_BADCD

read_vol yes yes E_BADNFS yes

remove_f yes yes yes E_RO

stat_f yes yes yes yes

stat_vfs yes yes yes yes

symlink_f E_FUNC E_BADMS yes E_BADCD

sync_vol yes yes E_BADNFS E_RO

truncate_f yes yes yes E_RO

unmount_vol yes yes yes yes

utime_f E_FUNC E_BADMS yes E_RO

verify_vol yes E_VALIEN E_VALIEN E_VALIEN

write_f yes yes yes E_RO

write_vol yes yes E_BADNFS E_RO

TABLE 2-1 File Systems Supported by pHILE+ Calls (Continued)

Syscall/
Filesystem

pHILE+ MS-DOS NFS CD-ROM
pSOSystem System Calls 2-3

pHILE+ System Calls
2-4 pSOSystem System Calls

pHILE+ System Calls access_f

2

access_f Determines the accessibility of a file.

#include <phile.h>
unsigned long access_f(

char *name, /* file pathname */
int mode /* file mode to check */
)

Volume Types

NFS formatted volumes.

Description

access_f() checks the named file for accessibility according to mode.

Arguments

Return Value

This system call returns 0 on success, or an error code on failure.

name Points to a null-terminated pathname of a file to be checked.

mode Specifies the file mode to check. mode is the result of an OR operation
performed on the following constants (defined in <phile.h> .)

Hex Mnemonic Description

4 R_OK Test for read permission.

2 W_OK Test for write permission.

1 X_OK Test for execute/search permission.

0 F_OK Test for presence of file.
pSOSystem System Calls 2-5

access_f pHILE+ System Calls
Error Codes

Hex Mnemonic Description

0x2001 E_FUNC pHILE+ format volume; illegal
operation.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2025 E_IDN Illegal device name.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at remote site.

0x2055 E_EACCES Task does not have permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.
2-6 pSOSystem System Calls

pHILE+ System Calls access_f

2

See Also

chmod_f, stat_f, fstat_f

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-7

annex_f pHILE+ System Calls
annex_f Allocates contiguous blocks to a file.

#include <phile.h>
unsigned long annex_f(

unsigned long fid, /* file identifier */
unsigned long alloc_size, /* number of blocks to add */
unsigned long *blkcount /* number of blocks added */
)

Volume Types

pHILE+ formatted volumes.

Description

annex_f() extends the physical size of a file on a pHILE+ formatted volume by
adding a group of contiguous blocks.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

fid Identifies the file.

alloc_size Specifies the desired number of blocks to add to the file.

blkcount Points to the variable where annex_f() stores the number of
blocks actually allocated. This number can be less than
alloc_size , in which case blkcount represents the largest
group of contiguous blocks available on the volume.

Hex Mnemonic Description

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.
2-8 pSOSystem System Calls

pHILE+ System Calls annex_f

2

Notes

1. annex_f() expands the physical size of a file but does not change its logical
size or the end-of-file position.

2. read_f() and lseek_f() calls into annexed blocks are not allowed until the
logical length of the file is extended by writing data into the annexed blocks.

3. A volume full error occurs if no blocks can be added to the file.

4. Unless the blocks are merged into the file's last extent, a new extent descriptor
is added to the file as a result of an annex_f() call.

5. On volumes with separate control and data regions, the pHILE+ file system
manager automatically determines the type of block to be annexed (based on
the file type.) Directory files receive control blocks, and ordinary files receive
data blocks.

6. Annexes to BITMAP.SYS and FLIST.SYS are not allowed.

See Also

write_f, open_f, read_f, lseek_f

0x201A E_FIDBIG Invalid FID; exceeds maximum.

0x201B E_FIDOFF Invalid FID, file is closed.

0x201C E_ININFULL Index block is full.

0x201D E_VFULL Volume is full.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2050 E_BADNFS NFS volume; illegal operation.

0x2060 E_BADCD CD-ROM volume; illegal operation.

Hex Mnemonic Description
pSOSystem System Calls 2-9

cdmount_vol pHILE+ System Calls
cdmount_vol Mounts a CD-ROM volume.

#include <phile.h>
unsigned long cdmount_vol(

char *device, /* volume name */
unsigned long sync_mode /* synchronization mode */
)

Volume Types

CD-ROM formatted volumes that conform to ISO-9660 specification. Multi-volume
sets and interleaved files are not supported.

Description

cdmount_vol() mounts a CD-ROM volume. A volume must be mounted before file
operations can be applied to it.

Removable volumes can be mounted and unmounted as required. CD-ROM volumes
are read-only.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

device Points to the null-terminated name of the volume to be
mounted.

sync_mode Specifies the volume's write synchronization attribute. This
attribute is defined in <phile.h> and must be set to the value
shown below.

SM_READ_ONLY Read-only synchronization mode.
2-10 pSOSystem System Calls

pHILE+ System Calls cdmount_vol

2

Error Codes

Hex Mnemonic Description

0x2006 E_MNTFULL Attempted to mount too many
volumes.

0x2007 E_VALIEN Wrong volume format.

0x2008 E_MNTED Volume already mounted.

0x2021 E_ILLDEV Illegal device (exceeded maximum).

0x2024 E_FMODE Illegal synchronization mode.

0x2025 E_IDN Illegal device name.

0x2041 E_BUFSIZE Buffers not available for block size.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2061 E_NCDVOL Configuration Table shows no
CD-ROM volume in the system.

0x2062 E_CDMVOL Cannot support multivolume
CD-ROM set.

0x2063 E_CDBSIZE Volume not made with 2K block size.

0x2064 E_CDFMT Volume format not ISO-9660
compliant.
pSOSystem System Calls 2-11

cdmount_vol pHILE+ System Calls
Notes

1. A CD-ROM volume does not need volume initialization.

2. The number of volumes that can be mounted simultaneously in the system
cannot exceed the pHILE+ Configuration Table parameter fc_nmount .

3. The pHILE+ file system manager does not attempt verification or any other way
of determining volume ownership. Any task can perform a cdmount_vol() . A
mounted device does not retain a record of the task that mounted it. Therefore,
a volume is not automatically unmounted when the task that mounted it is
deleted. This and any other security measures, if desired, should be supported
by the user’s own layer of software.

4. To enable an application to mount an MS-DOS volume, you must set the mount
flag FC_MSDOS in sys_conf.h .

See Also

mount_vol, nfsmount_vol, pcmount_vol, unmount_vol
2-12 pSOSystem System Calls

pHILE+ System Calls change_dir

2

change_dir Changes the current directory.

#include <phile.h>
unsigned long change_dir(

char *name /* directory path */
)

Volume Types

All volume types.

Description

change_dir() changes the current directory of the calling task. After
change_dir() executes, all relative pathnames used by the calling task are relative
to the new current directory.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

name Points to the null-terminated pathname of the new current directory.

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x200B E_FNAME Filename not found.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x200E E_FORD Directory file expected.
pSOSystem System Calls 2-13

change_dir pHILE+ System Calls
0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCESS Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTEREDRemote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-14 pSOSystem System Calls

pHILE+ System Calls change_dir

2

Notes

1. The pHILE+ file system manager does not assume a default current directory.
Therefore, if a task uses relative pathnames, it must specify the current
directory at least once.

2. The input pathname for the new current directory can be a relative pathname.
In this case, it is relative to the current directory before the current directory is
changed.

3. The pHILE+ file system manager makes no attempt to verify that the current
directory corresponds to the intended entities. For example, if the current
directory is deleted or the volume containing the current directory is
unmounted, the results of operations by tasks using pathnames relative to the
invalid current directory are unpredictable.

See Also

get_fn(), stat_f()
pSOSystem System Calls 2-15

chmod_f pHILE+ System Calls
chmod_f Changes the mode of a named file.

#include <phile.h>
unsigned long chmod_f(

char *name, /* file pathname */
int mode /* new file mode */
)

Volume Types

NFS formatted volumes.

Description

chmod_f() changes mode of the named ordinary or directory file.

Arguments

name Points to a null-terminated pathname of a file.

mode Specifies the new file mode. mode is the result of an OR operation
performed on the following constants (defined in <phile.h>).

Mnemonic Description

S_ISUID Set user ID on execution.

S_ISGID Set group ID on execution.

S_ISVTX Save text image after execution (sticky bit.)

S_IREAD Read permission, owner.

S_IWRITE Write permission, owner.

S_IEXEC Execute/search permission, owner.

S_IRGRP Read permission, group.

S_IWGRP Write permission, group.

S_IXGRP Execute/search permission, group.

S_IROTH Read permission, other.

S_IWOTH Write permission, other.

S_IXOTH Execute/search permission, other.
2-16 pSOSystem System Calls

pHILE+ System Calls chmod_f

2

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

Hex Mnemonic Description

0x2001 E_FUNC pHILE+ format volume; illegal
operation.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x2025 E_IDN Illegal device name.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.
pSOSystem System Calls 2-17

chmod_f pHILE+ System Calls
See Also

fchmod_f, stat_f, fstat_f, open_f, chown_f, fchown_f

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-18 pSOSystem System Calls

pHILE+ System Calls chown_f

2

chown_f Changes the owner or group of a named file.

#include <phile.h>
unsigned long chown_f(

char *name, /* file pathname */
int owner, /* new user ID */
int group /* new group ID */
)

Volume Types

NFS formatted volumes.

Description

chown_f() changes the owner and group of a file specified by name.

Arguments

User ID and group ID are UNIX terms used to identify a user and a file access group
on a UNIX system.

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

name Points to a null-terminated pathname of either an ordinary file or
a directory file.

owner Specifies the user ID of the new owner.

group Specifies the group ID of the new group.

Hex Mnemonic Description

0x2001 E_FUNC pHILE+ format volume; illegal
operation.

0x200C E_IFN Illegal pathname.
pSOSystem System Calls 2-19

chown_f pHILE+ System Calls
0x200D E_NDD No default directory.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x2025 E_IDN Illegal device name.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

Hex Mnemonic Description
2-20 pSOSystem System Calls

pHILE+ System Calls chown_f

2

See Also

fchown_f, stat_f, fstat_f, chmod_f, fchmod_f, open_f

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-21

close_dir pHILE+ System Calls
close_dir Closes an open directory file.

#include <phile.h>
unsigned long close_dir(

XDIR *dir /* NFS directory handle */
)

Volume Types

All volume types.

Description

close_dir() closes the connection to a directory specified by the directory handle
dir .

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

See Also

open_dir

dir Points to an XDIR structure defined in <phile.h> .

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume.

0x201A E_FIDBIG Invalid FID, exceeds maximum.

0x201B E_FIDOFF Invalid FID, file closed.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2055 E_EACCES Task does not have access
permissions.
2-22 pSOSystem System Calls

pHILE+ System Calls close_f

2

close_f Closes an open file connection.

#include <phile.h>
unsigned long close_f(

unsigned long fid /* file identifier */
)

Volume Types

All volume types.

Description

close_f() closes the connection designated by the file identifier fid . If fid is 0,
close_f() closes all of the files opened by the calling task. If close_f()
terminates the last connection to a file, the file's FCB is deallocated.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

fid Specifies the file ID of the file connection to be closed.

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x201A E_FIDBIG Invalid FID, exceeds maximum.

0x201B E_FIDOFF Invalid FID, file closed.
pSOSystem System Calls 2-23

close_f pHILE+ System Calls
Notes

1. Because the total number of open files is limited for both tasks and the system
as a whole, close_f() should be used whenever a file connection is no longer
needed.

2. If the pREPC+ library is in use, close_f(0) should be called only after the
pREPC+ call fclose(0) . Otherwise, files that the pREPC+ library is using can
be unexpectedly closed.

3. If the task has opened one or more NFS files, close_f(0) must precede any
close(0) call to the pNA+ network manager by the same task.

See Also

open_f, open_fn
2-24 pSOSystem System Calls

pHILE+ System Calls create_f

2

create_f Creates a data file.

#include <phile.h>
unsigned long create_f(

char *name, /* pathname */
unsigned long expand_unit, /* expansion factor */
unsigned long mode /* access mode */
)

Volume Types

All volume types (except CD-ROM); however, expand_unit is meaningful only on
pHILE+ formatted volumes, and mode is meaningful only on NFS volumes.

Description

create_f() creates a new ordinary file.

Arguments

name Points to the null-terminated pathname of the file to create.

expand_unit For pHILE+ formatted volumes only, specifies the number of
contiguous blocks to add whenever the file is expanded
during a write_f() system call.

mode For NFS volumes only, specifies the access modes associated
with the file, and is the result of an OR operation performed
on the following constants (defined in <phile.h>).

Mnemonic Description

S_ISUID Set user ID on execution

S_ISGID Set group ID on execution

S_IRUSR Read permission, owner

S_IWUSR Write permission, owner

S_IXUSR Execute/search permission, owner

S_IRGRP Read permission, group

S_IWGRP Write permission, group
pSOSystem System Calls 2-25

create_f pHILE+ System Calls
Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

S_IXGRP Execute/search permission, group

S_IROTH Read permission, other

S_IWOTH Write permission, other

S_IXOTH Execute/search permission, other

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x200B E_FNAME Filename not found.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x200E E_FORD Directory file expected.

0x200F E_ASIZE Illegal expansion unit.

0x2010 E_NODE Null pathname.

0x2011 E_FEXIST File already exists.

0x2012 E_FLIST Too many files on volume.

0x2015 E_RO Operation is not allowed on read-only
system files, directories, or mounted
volumes.

0x201C E_ININFULL Index block is full.

0x201D E_VFULL Volume is full.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links are nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at remote site.
2-26 pSOSystem System Calls

pHILE+ System Calls create_f

2

Notes

1. If a file by the same name already exists, create_f() fails. An existing file
must first be explicitly deleted using remove_f() before the same name can be
used for a new file.

2. After a create_f() call, the new file is empty. Blocks are allocated as data is
written.

0x2055 E_EACCES Task does not have access
permissions.

0x2057 E_EQUOT Quota exceeded.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-27

create_f pHILE+ System Calls
3. create_f() creates only data files. Use make_dir() to create a directory file.

4. create_f() does not open a file: use an explicit open_f() .

5. For pHILE+ formatted volumes, the input parameter expand_unit should be
considered carefully because it can affect the data access efficiency of the file.

See Also

remove_f, make_dir, open_f
2-28 pSOSystem System Calls

pHILE+ System Calls fchmod_f

2

fchmod_f Changes the mode of a file specified by its file identifier.

#include <phile.h>
unsigned long fchmod_f(

unsigned long fid, /* file identifier */
int mode /* new file mode */
)

Volume Types

NFS formatted volumes.

Description

fchmod_f() functions the same as chmod_f() except that fchmod_f() changes
the mode of a file by its file identifier instead of its pathname. The file identifier is
first obtained with open_f() .

Arguments

fid Specifies the file identifier associated with the file.

mode Specifies the new file mode. mode is the result of an OR operation
performed on the following constants (defined in <phile.h>).

Mnemonic Description

S_ISUID Set user ID on execution.

S_ISGID Set group ID on execution.

S_ISVTX Save text image after execution (sticky bit).

S_IREAD Read permission, owner.

S_IWRITE Write permission, owner.

S_IEXEC Execute/search permission, owner.

S_IRGRP Read permission, group.

S_IWGRP Write permission, group.

S_IXGRP Execute/search permission, group.
pSOSystem System Calls 2-29

fchmod_f pHILE+ System Calls
Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

S_IROTH Read permission, other.

S_IWOTH Write permission, other.

S_IXOTH Execute/search permission, other.

Hex Mnemonic Description

0x2001 E_FUNC pHILE+ format volume; illegal
operation.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or
mounted volumes.

0x201A E_FIDBIG Invalid file ID; out of range.

0x201B E_FIDOFF Invalid file ID; file not open.

0x2023 E_BADFN Illegal or unused filename.

0x2025 E_IDN Illegal device name.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.
2-30 pSOSystem System Calls

pHILE+ System Calls fchmod_f

2

See Also

chmod_f, stat_f, fstat_f, open_f, chown_f, fchown_f

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-31

fchown_f pHILE+ System Calls
fchown_f Changes the owner or group of a file specified by its file identifier.

unsigned long fchown_f(
unsigned long fid, /* file identifier */
int owner, /* new user ID */
int group /* new group ID */
)

Volume Types

NFS formatted volumes.

Description

fchown_f() functions the same as chown_f() except it changes the owner or
group of a file by its file identifier instead of its pathname. The file identifier is first
obtained with open_f() .

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

fid Specifies the file identifier associated with the file.

owner Specifies the user ID of the new owner.

group Specifies the group ID of the new group.

Hex Mnemonic Description

0x2001 E_FUNC pHILE+ format volume; illegal
operation.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or
mounted volumes.
2-32 pSOSystem System Calls

pHILE+ System Calls fchown_f

2

0x201A E_FIDBIG Invalid file ID; out of range.

0x201B E_FIDOFF Invalid file ID; file not open.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_NODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-33

fchown_f pHILE+ System Calls
See Also

chown_f, stat_f, fstat_f, chmod_f, fchmod_f, open_f
2-34 pSOSystem System Calls

pHILE+ System Calls fstat_f

2

fstat_f Obtains the status of a file specified by its file identifier.

#include <phile.h>
unsigned long fstat_f(

unsigned long fid, /* file identifier */
struct stat *buf /* file status */
)

Volume Types

All volume types.

Description

fstat_f() functions the same as stat_f() except that fstat_f() obtains
information about a file by using the file identifier instead of the name. The file
identifier is first obtained with either open_f() or open_fn() .

Arguments

fid Specifies the file identifier associated with the file.

buf Points to a stat structure defined in <phile.h> , as follows:

struct stat {
mode_t st_mode; /* ownership/protection */
ino_t st_ino; /* file ID */
dev_t st_dev; /* device ID where the volume resides */
dev_t st_rdev; /* device ID, for character or

* block special files only */
nlink_t st_nlink; /* number of hard links to the file */
uid_t st_uid; /* user ID */
gid_t st_gid; /* group ID */
off_t st_size; /* total size of file, in bytes */
time_t st_atime; /* file last access time */
time_t st_mtime; /* file last modify time */
time_t st_ctime; /* file last status change time */
long st_blksize; /* optimal block size for I/O ops */
long st_blocks; /* file size in blocks */
};

This structure cannot be packed. mode_t , ino_t , dev_t , nlink_t ,
uid_t , gid_t , off_t , and time_t are defined as unsigned long in
<phile.h> .
pSOSystem System Calls 2-35

fstat_f pHILE+ System Calls
Return Value

This system call returns 0 on success or an error code on failure.

The following differences exist for local file systems (pHILE+, MS-DOS,
and CD-ROM):

rdev = dev, nlink = 1, uid = 0, gid = 0, atime = ctime
= mtime

The status information word st_mode consists of the following bits:

_IFMT 0170000 /* type of file */

_IFIFO 0010000 /* fifo special */

_IFCHR 0020000 /* character special */

_IFDIR 0040000 /* directory */

_IFBLK 0060000 /* block special */

_IFREG 0100000 /* regular file */

_IFLNK 0120000 /* symbolic link */

_IFSOCK 0140000 /* socket */

S_ISUID 0004000 /* set user ID on execution */

S_ISGID 0002000 /* set group ID on execution */

S_ISVTX 0001000 /* save swapped text even after use */

S_IRUSR 0000400 /* read permission, owner */

S_IWUSR 0000200 /* write permission, owner */

S_IXUSR 0000100 /* execute/search permission, owner */

S_IRGRP 0000040 /* read permission, group */

S_IWGRP 0000020 /* write permission, group */

S_IXGRP 0000010 /* execute/search permission, group */

S_IROTH 0000004 /* read permission, other */

S_IWOTH 0000002 /* write permission, other */

S_IXOTH 0000001 /* execute/search permission, other */
2-36 pSOSystem System Calls

pHILE+ System Calls fstat_f

2

Error Codes

Hex Mnemonic Description

0x201A E_FIDBIG Invalid file ID; out of range.

0x201B E_FIDOFF Invalid file IDE; file not open.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.
pSOSystem System Calls 2-37

fstat_f pHILE+ System Calls
See Also

stat_f, chmod_f, fchmod_f, chown_f, fchown_f, link_f, read_f,
read_link, truncate_f, ftruncate_f, remove_f, utime_f, write_f
2-38 pSOSystem System Calls

pHILE+ System Calls fstat_vfs

2

fstat_vfs Obtains statistics about a mounted volume specified by a file identifier.

#include <phile.h>
unsigned long fstat_vfs(

unsigned long fid, /* file identifier */
struct statvfs *buf /* volume statistics */
)

Volume Types

All volumes.

Description

fstat_vfs() functions the same as stat_vfs() except that fstat_vfs()
obtains the statistics about a volume by using the file identifier instead of the
pathname. The file identifier is first obtained with either an open_f() or an
open_fn() call to any file in the volume.

Arguments

file Specifies the file identifier of the file, which can be any file within the
mounted volume.
pSOSystem System Calls 2-39

fstat_vfs pHILE+ System Calls
Return Value

This system call returns 0 on success or an error code on failure.

buf Points to a statvfs structure defined in <phile.h> , as follows:

typedef struct {
long val[2];

} fsid_t;

struct statvfs {
unsigned long f_bsize; /* preferred volume block size */
unsigned long f_frsize; /* fundamental volume block size */
unsigned long f_blocks; /* total number of blocks */
unsigned long f_bfree; /* total number of free blocks */
unsigned long f_bavail; /* free blocks available to

* non-superuser */
unsigned long f_files; /* total # of file nodes

* (pHILE+ files only) */
unsigned long f_ffree; /* reserved (not supported) */
unsigned long f_favail; /* reserved (not supported) */
fsid_t f_fsid; /* reserved (not supported) */
char f_basetype[16]; /* reserved (not supported) */
unsigned long f_flag; /* reserved (not supported) */
unsigned long f_namemax; /* reserved (not supported) */
char f_fstr[32]; /* reserved (not supported) */
unsigned long f_fstype; /* file system type number */
unsigned long f_filler[15];/* reserved (not supported) */
};

This structure cannot be packed. Currently, the fields f_ffree ,
f_favail , f_fsid , f_basetype , f_flag , f_namemax , f_fstr and
f_filler are reserved and do not have values. For all volumes except
pHILE+ format, the field f_files is unused.

The field f_fstype identifies the type of file system format. The values
in <phile.h> are given below:

FSTYPE_PHILE pHILE+ format volume

FSTYPE_PCDOS MS-DOS format volume

FSTYPE_CDROM CD-ROM format volume

FSTYPE_NFS Client NFS volume

The return value for all unsupported fields is 0.
2-40 pSOSystem System Calls

pHILE+ System Calls fstat_vfs

2

Error Codes

Hex Mnemonic Description

0x201A E_FIDBIG Invalid file ID; out of range.

0x201B E_FIDOFF Invalid file ID; file not open.

0x2052 E_REMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.
pSOSystem System Calls 2-41

fstat_vfs pHILE+ System Calls
See Also

stat_vfs
2-42 pSOSystem System Calls

pHILE+ System Calls ftruncate_f

2

ftruncate_f Changes the size of a file specified by its file identifier.

#include <phile.h>
unsigned long ftruncate_f(

unsigned long fid, /* file identifier */
unsigned long length /* file size in bytes */
)

Volume Types

pHILE+, MS-DOS, and NFS formatted volumes.

Description

ftruncate_f() functions the same as truncate_f() except that
ftruncate_f() changes the size of a file by using the file identifier instead of the
pathname. The file identifier is first obtained with either open_f() or open_fn() .
Unlike annex_f() , this system call changes both the logical and the physical file
size. (annex_f() changes only the physical file size.)

On pHILE+ or MS-DOS volumes, the file must have been opened only once, that is
no other task has it open and the calling task has opened it only once. If this is
violated, the error E_FOPEN is returned.

On pHILE+ or MS-DOS volumes, if the file is truncated shorter than its L_ptr , the
L_ptr is changed to the new end-of-file.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

fid Specifies the file identifier associated with the file.

length Specifies the new file size. If the file was previously longer than
length , the extra bytes are truncated. If it was shorter, the bytes
between the old and new lengths are filled with 0’s.
pSOSystem System Calls 2-43

ftruncate_f pHILE+ System Calls
Error Codes

Hex Mnemonic Description

0x2001 E_FUNC Invalid function number.

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x201A E_FIDBIG Invalid file ID; out of range.

0x201B E_FIDOFF Invalid file ID; file not open.

0x201C E_ININFULL Index block full.

0x201D E_VFULL Volume is full. (This cannot happen
on NFS formatted volumes.)

0x2022 E_LOCKED Data is locked.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2057 E_EQUOT Quota exceeded.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.
2-44 pSOSystem System Calls

pHILE+ System Calls ftruncate_f

2

See Also

truncate_f, open_f, open_fn

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCHProgram version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTEREDRemote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-45

get_fn pHILE+ System Calls
get_fn Obtains the number of a file.

#include <phile.h>
unsigned long get_fn(

char *name, /* filename */
unsigned long *fn /* file number */
)

Volume Types

pHILE+, MS-DOS, and CD-ROM formatted volumes.

Description

get_fn() returns the file number associated with a file. The file number can then
be used with an open_fn() call or as part of an absolute filename.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

name Points to the null-terminated pathname of the file.

fn Points to the variable where get_fn() stores the file number.

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x200B E_FNAME Filename not found.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.
2-46 pSOSystem System Calls

pHILE+ System Calls get_fn

2
Usage

One usage of get_fn() is to get the current directory. In the example below, the
current directory’s FN is returned in dir_fn .

unsigned long dir_fn; /*current directory */

if (get_fn(“.”, &dir_fn) != 0) {

/*Insert some error processing here */;

}

The pseudocode below shows how to get the current directory’s full pathname,
rather than just the FN.

1. Get the directory’s FN in dir_fn with get_fn(“.”) as above.

2. Open the parent directory (“..”) with open_dir() .

3. Search the parent directory for the directory entry of the current directory.

a. Read a directory entry with read_dir() .

b. Compare the directory entry’s d_filno with the FN of the current directory.

c. Repeat steps a and b until they match.

d. Remember the matching directory entry’s d_name. It is the last component
of the current directory’s pathname.

4. Close the open directory with close_dir() .

5. Repeat steps 1-4 for the parent directory of the current directory, the
grandparent of the current directory, etc., until reaching the root directory. The
root directory is reached when either get_fn() of the parent directory is an
error, or get_fn() of the parent directory is the same as get_fn() of the
directory.

0x200E E_FORD Directory file expected.

0x2025 E_IDN Illegal device name.

0x2050 E_BADNFS NFS volume; illegal operation.

Hex Mnemonic Description
pSOSystem System Calls 2-47

get_fn pHILE+ System Calls
6. The answer is the concatenation of all the components found in step 3 d from
last to first.

As stated above, get_fn() is available for local volumes only (not NFS volumes.)

To obtain not only the current directory, but also the current device, see stat_f() .

See Also

open_fn, stat_f()
2-48 pSOSystem System Calls

pHILE+ System Calls init_vol

2

init_vol Initializes a pHILE+ formatted volume.

#include <phile.h>
unsigned long init_vol(

char *device, /* volume name */
struct INIT_VOL_PARAMS *params, /* parameters */
void *scratchbuf /* scratch buffer */
)

Volume Types

pHILE+ formatted volumes.

Description

init_vol() initializes a pHILE+ formatted volume with user-supplied parameters.
init_vol() performs a logical format of the volume, setting up the necessary
control structures and other information needed by the pHILE+ file system manager
for subsequent file operations on the volume. A volume must be initialized before it
can be mounted.

After a volume has been initialized, init_vol() can be used to quickly delete all
data on the volume.

init_vol() can be used for the first initialization of a volume (see Note 4).

Arguments

device Points to the null-terminated volume name.
pSOSystem System Calls 2-49

init_vol pHILE+ System Calls
params Points to an instance of the init_vol_params structure, which
contains parameters used to initialize the volume. This structure is
defined in <phile.h> as follows:

typedef struct init_vol_params {
char volume_label[12]; /* volume label */
unsigned long volume_size; /* number blocks in volume */
unsigned long num_of_file_descriptors;

/* number descriptors in
* FLIST */

unsigned long starting_bitmap_block_number;
/* first BITMAP block */

unsigned long start_data_block_number;
/* first data block */

}INIT_VOL_PARAMS;

This structure cannot be packed. The fields of the init_vol_params
structure are described below:

volume_label Contains a 12-byte volume label. The pHILE+
file system manager copies the label to the
volume's ROOTBLOCK but does not use it. (The
volume label is not the volume name. The
volume name contains the volume's major
and minor device numbers.)

volume_size The number of blocks on the volume. For
example, a value of 5000 indicates the
volume contains blocks 0 - 4999.

num_of_file_descriptors

The number of file descriptors in the volume's
FLIST . This is the number of files that can be
created on the volume.

starting_bitmap_block_number

The starting block for the volume's BITMAP.

start_data_block_number

The starting block for the volume's data
blocks. The pHILE+ file system manager
requires this parameter to be a multiple of 8.
2-50 pSOSystem System Calls

pHILE+ System Calls init_vol

2

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

Notes

1. All data stored on the volume is lost by execution of this call.

2. The volume's media must have been properly hardware formatted before this
call is executed.

3. A mounted volume cannot be initialized.

4. init_vol() can be used for the first initialization of a volume. It receives all
the information it needs in its parameters.

5. The pHILE+ file system manager stores the volume's label and time of
initialization in the volume's rootblock, but it does not use this information. The
user decides how to use this information, which can be examined by using
read_vol() to read the rootblock (block 2) directly.

6. The starting block of the bitmap also determines the starting block of the
FLIST , since the FLIST immediately follows the bitmap.

scratchbuf Points to a buffer that is used temporarily by
the pHILE+ file system manager during
initialization. The scratch buffer must be the
size of a pHILE+ block. The pHILE+
Configuration Table parameter fc_logbsize
(in the sys_conf.h file) determines this
block size.

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x2005 E_VINITPAR Illegal parameters to init_vol() .

0x2008 E_MNTED Volume is already mounted.

0x2021 E_ILLDEV Illegal device (exceeds maximum.)

0x2025 E_IDN Illegal device name.
pSOSystem System Calls 2-51

init_vol pHILE+ System Calls
See Also

mount_vol, pcinit_vol
2-52 pSOSystem System Calls

pHILE+ System Calls link_f

2

link_f Creates a hard link between two files on the same volume.

unsigned long link_f(
char *name1, /* an existing filename */
char *name2 /* a new directory entry to be created */
)

Volume Types

NFS formatted volumes.

Description

link_f() makes a hard link from name2 to name1. This increments the link count
for the file (see stat_f()). After this call, name1 and name2 are two alternate
names for the same file. Both files must be on the same volume.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

name1 Points to a null-terminated pathname of an existing file. Must not
refer to a directory.

name2 Points to a null-terminated pathname of a directory entry to be
created.

Hex Mnemonic Description

0x2001 E_FUNC pHILE+ volume; illegal operation.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2015 E_RO Requested operation not allowed on this
file.
pSOSystem System Calls 2-53

link_f pHILE+ System Calls
0x2025 E_IDN Illegal device name.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote site.

0x2055 E_EACCES Task does not have access permissions.

0x2057 E_EQUOT Quota exceeded.

0x2058 E_ESTALE Stale NFS file handle.

0x2059 E_XLINK Can’t close link.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCHProgram version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTEREDRemote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-54 pSOSystem System Calls

pHILE+ System Calls link_f

2

See Also

symlink_f, remove_f
pSOSystem System Calls 2-55

lock_f pHILE+ System Calls
lock_f Locks or unlocks part or all of an open file.

#include <phile.h>
unsigned long lock_f(

unsigned long fid, /* file identifier */
unsigned long startpos, /* starting lock position */
unsigned long bcount /* number of bytes to lock */
)

Volume Types

pHILE+ formatted volumes.

Description

lock_f() locks or unlocks part or all of an open file. Following a lock_f() system
call, only the task that set the lock can access the locked bytes and only through the
connection (the file identifier) used to set the lock.

A lock_f() call replaces any previous locks it set through the same connection
with the new lock. Thus, only one lock per connection can be set. lock_f() with
bcount = 0 is used to remove a lock.

A file can have as many locks as it has connections if the locks do not overlap. If a
task attempts to lock a region already locked through a different connection, an
error is returned, even if the two connections are from the same task.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

fid Specifies the file identifier of the file to lock.

startpos Specifies the starting byte of the locked region.

bcount Specifies the length of the locked region in bytes.
2-56 pSOSystem System Calls

pHILE+ System Calls lock_f

2

Error Codes

Notes

1. lock_f() enables the locked region to begin and/or end beyond the current
logical or physical end of the file. In such cases, new data that is appended to
the file in the locked region becomes locked.

2. lock_f() does not move the L_ptr .

3. When initially opened, a file connection has no locks.

4. When a connection to a file is closed, any lock it has on the file is removed.

5. A locked region of a file denies read, write, and truncate access to it by any
other file connection. However, annex_f() , which expands a file’s physical size
without changing its logical size, is allowed.

6. Directory and system files cannot be locked.

See Also

annex_f

Hex Mnemonic Description

0x2015 E_RO Requested operation not allowed on
this file.

0x201A E_FIDBIG Invalid FID; exceeds maximum.

0x201B E_FIDOFF Invalid FID; file closed.

0x2022 E_LOCKED Data locked.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2050 E_BADNFS NFS volume; illegal operation.

0x2060 E_BADCD CD-ROM volume; illegal operation.
pSOSystem System Calls 2-57

lseek_f pHILE+ System Calls
lseek_f Repositions for read or write within an open file.

#include <phile.h>
unsigned long lseek_f(

unsigned long fid, /* file identifier */
unsigned long position, /* relative seek vector */
long offset, /* offset */
unsigned long *old_lptr /* previous L_ptr */
)

Volume Types

All volume types.

Description

lseek_f() repositions the L_ptr associated with an open file connection. Each file
connection has its own L_ptr , and it points to the next byte to be read or written in
the file. Repositioning can be specified relative to the beginning of the file, the
current L_ptr , or the end of the file.

Arguments

fid Specifies the file identifier associated with the file.

position Defines how to reposition L_ptr and must have one of the
following values:

Value Meaning

0 Offset from beginning of file

1 Offset from current L_ptr

2 Offset from end of file

offset Specifies the number of bytes to move L_ptr . A negative
offset moves L_ptr backwards.

old_lptr Points to the variable where lseek_f() stores the previous
value of the L_ptr .
2-58 pSOSystem System Calls

pHILE+ System Calls lseek_f

2

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

Hex Mnemonic Description

0x200A E_DMOUNT Volume not mounted.

0x201A E_FIDBIG Invalid FID; exceeds maximum.

0x201B E_FIDOFF Invalid FID, file closed.

0x201E E_BADPOS Illegal position parameter.

0x201F E_EOF Seek past end of file.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error happened at remote site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTEREDRemote program is not registered.
pSOSystem System Calls 2-59

lseek_f pHILE+ System Calls
Usage

lseek_f() can be used to determine the current logical size of a file, as in this
example:

lseek_f(fid, 2, 0, &oldptr)
lseek_f(fid, 0, oldptr, &filesize)

The first call seeks to the end-of-file and saves the original position. The second call
restores the original position and obtains the end-of-file position. The end-of-file
position is also the file's logical size.

Notes

1. A separate L_ptr is associated with each file connection. lseek_f() affects
only the L_ptr associated with the specified file descriptor (fid).

2. Because L_ptr is unsigned, positioning it before the start of the file results in a
seek past end-of-file error.

3. Because L_ptr cannot be moved beyond the end of the file, it is not possible to
create a file with holes in it.

See Also

read_f, write_f

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-60 pSOSystem System Calls

pHILE+ System Calls lstat_f

2

lstat_f Gets the status of a symbolically linked file.

#include <phile.h>
unsigned long lstat_f(

char *name, /* file pathname */
struct stat *buf /* file status */
)

Volume Types

NFS volumes.

Description

lstat_f() is like stat_f() except when the named file is a symbolic link. For a
symbolic link, lstat_f() returns information about the link file, and stat_f()
returns information about the file to which the link refers.

Arguments

name Points to the null-terminated pathname of a file.

buf Points to a stat structure defined in <phile.h> , as follows:

struct stat {
mode_t st_mode; /* ownership/protection */
ino_t st_ino; /* file ID */
dev_t st_dev; /* dev ID where the volume resides */
dev_t st_rdev; /* dev ID for character or block

* special files only */
nlink_t st_nlink; /* number of hard links to the file */
uid_t st_uid; /* user ID */
gid_t st_gid; /* group ID */
off_t st_size; /* total size of file, in bytes */
time_t st_atime; /* file last access time */
time_t st_mtime; /* file last modify time */
time_t st_ctime; /* file last status change time */
long st_blksize; /* optimal block size for I/O ops */
long st_blocks; /* file size in blocks */
};
pSOSystem System Calls 2-61

lstat_f pHILE+ System Calls
The status information word st_mode consists of the following bits:

Return Value

This system call returns 0 on success or an error code on failure.

This structure cannot be packed. No time zone is associated with the
time values.

mode_t , ino_t , dev_t , nlink_t , uid_t , gid_t , off_t , and time_t
are defined as unsigned long in <phile.h> .

S_IFMT 0170000 /* type of file */

S_IFIFO 0010000 /* fifo special */

S_IFCHR 0020000 /* character special */

S_IFDIR 0040000 /* directory */

S_IFBLK 0060000 /* block special */

S_IFREG 0100000 /* regular file */

S_IFLNK 0120000 /* symbolic link */

S_IFSOCK 0140000 /* socket */

S_ISUID 0004000 /* set user ID on execution */

S_ISGID 0002000 /* set group ID on execution */

S_ISVTX 0001000 /* save swapped text even after use */

S_IREAD 0000400 /* read permission, owner */

S_IWRITE 0000200 /* write permission, owner */

S_IEXEC 0000100 /* execute/search permission, owner */

S_IRGRP 0000040 /* read permission, group */

S_IWGRP 0000020 /* write permission, group */

S_IXGRP 0000010 /* execute/search permission, group */

S_IROTH 0000004 /* read permission, other */

S_IWOTH 0000002 /* write permission, other */

S_IXOTH 0000001 /* execute/search permission, other */
2-62 pSOSystem System Calls

pHILE+ System Calls lstat_f

2

Error Codes

Hex Mnemonic Description

0x2001 E_FUNC pHILE+ volume; illegal operation.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2025 E_IDN Illegal device name.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.
pSOSystem System Calls 2-63

lstat_f pHILE+ System Calls
See Also

symlink_f, stat_f, fstat_f

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-64 pSOSystem System Calls

pHILE+ System Calls make_dir

2

make_dir Creates a directory file.

#include <phile.h>
unsigned long make_dir(

char *name, /* directory pathname */
unsigned long mode /* access permissions */
)

Volume Types

All volume types, except CD-ROM; however, mode is only meaningful for NFS
volumes.

Description

make_dir() creates a new directory file.

Arguments

name Points to the null-terminated pathname of the directory file to
create.

mode For NFS volumes only, specifies the access modes associated with
the file and is the result of an OR operation performed on the
following constants (defined in <phile.h>):

Mnemonic Description

S_ISUID Set user ID on execution.

S_ISGID Set group ID on execution.

S_IRUSR Read permission, owner.

S_IWUSR Write permission, owner.

S_IXUSR Execute/search permission, owner.

S_IRGRP Read permission, group.

S_IWGRP Write permission, group.

S_IXGRP Execute/search permission, group.

S_IROTH Read permission, other.
pSOSystem System Calls 2-65

make_dir pHILE+ System Calls
Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

S_IWOTH Write permission, other.

S_IXOTH Execute/search permission, other.

Hex Mnemonic Description

0x2001 E_FUNC Invalid function number.

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x200B E_FNAME Filename not found.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x200E E_FORD Directory file expected.

0x2010 E_NODE Null pathname.

0x2011 E_FEXIST File already exists.

0x2012 E_FLIST Too many files on volume.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x201C E_ININFULL Index block full.

0x201D E_VFULL Volume full.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error happened at remote site.

0x2055 E_EACCES Task does not have access
permissions.
2-66 pSOSystem System Calls

pHILE+ System Calls make_dir

2

Notes

1. If the specified filename already exists, the new file is not created. An existing
file must first be deleted by using remove_f() before its name can be used for
a new file.

2. make_dir() creates only directory files. create_f() creates an ordinary file.

See Also

create_f, remove_f, open_dir

0x2057 E_EQUOT Quota exceeded.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-67

mount_vol pHILE+ System Calls
mount_vol Mounts a pHILE+ formatted volume.

#include <phile.h>
unsigned long mount_vol(

char *device, /* volume name */
unsigned long sync_mode /* synchronization mode */
)

Volume Types

pHILE+ formatted volumes.

Description

mount_vol() mounts a pHILE+ formatted volume. A volume must be mounted
before any file operations can be applied to it. Permanent volumes (on non-
removable media) need mounting only once. Removable volumes can be mounted
and unmounted as required.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

device Points to the null-terminated name of the volume to be mounted.

sync_mode Specifies the volume's write synchronization attribute. The attribute
is defined in <phile.h> and must be set to one of the following
values.

SM_IMMED_WRITE Immediate-write synchronization mode

SM_CONTROL_WRITE Control-write synchronization mode

SM_DELAYED_WRITE Delay-write synchronization mode

SM_READ_ONLY Read-only synchronization mode
2-68 pSOSystem System Calls

pHILE+ System Calls mount_vol

2

Error Codes

Notes

1. mount_vol() proceeds as if the designated pSOS+ device were mountable. A
device is mountable if it is a true storage device that has been initialized by
init_vol() .

2. The number of volumes that can be mounted simultaneously in the system
cannot exceed the pHILE+ Configuration Table parameter fc_nmount .

3. The pHILE+ file system manager operates without regard for volume ownership.
Furthermore, any task can perform a mount_vol() , and a mounted device has
no record of the task that mounted it. Therefore, a volume is not automatically
unmounted when the task that mounted it is deleted. If these or any security
measures need to be addressed, the user’s own layer of software must do so.

See Also

init_vol, pcmount_vol, nfsmount_vol, cdmount_vol, unmount_vol

Hex Mnemonic Description

0x2006 E_MNTFULL Attempted to mount too many
volumes.

0x2007 E_VALIEN Wrong volume format.

0x2008 E_MNTED Volume already mounted.

0x2021 E_ILLDEV Illegal device (exceeded maximum.)

0x2024 E_FMODE Illegal synchronization mode.

0x2025 E_IDN Illegal device name.
pSOSystem System Calls 2-69

move_f pHILE+ System Calls
move_f Moves (renames) a file.

#include <phile.h>
unsigned long move_f(

char *oldname, /* old pathname */
char *newname /* new pathname */
)

Volume Types

All volume types, except CD-ROM; however, some behavioral differences exist and
are described here.

Description

move_f() changes the pathname associated with a file.

With one exception, the pHILE+ file system manager can move both ordinary and
directory files on all volume types. The exception is directory files on MS-DOS
formatted volumes, which cannot be moved. When a directory is moved, the
directory and all files in the directory's subtree are moved.

Conceptually, move_f() moves a file by changing control structures on the volume
(but no actual movement of data ever occurs). Therefore, oldname and newname
must be on the same volume.

Arguments

If oldname and newname are in the same directory, move_f() simply renames the
file. Otherwise, move_f() has the effect of moving the file to a different location
within the volume's directory tree. move_f() does not change the size or contents of
the file.

move_f() fails if newname already exists or if the move operation would create a
non-tree directory organization (for example, when a directory file is moved to its
own subtree.)

oldname Points to the null-terminated old pathname.

newname Points to the null-terminated new pathname.
2-70 pSOSystem System Calls

pHILE+ System Calls move_f

2

If oldname is open, the file can be moved on pHILE+ and NFS volumes. An open file
cannot be moved on MS-DOS volumes. Furthermore, no files can be moved on CD-
ROM volumes.

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x200B E_FNAME Filename not found.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x200E E_FORD Directory file expected.

0x2010 E_NODE Null pathname.

0x2011 E_FEXIST File already exists.

0x2012 E_FLIST Too many files on volume.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x2016 E_DIFDEV Operation must be on the same
volume.

0x2017 E_NOTREE move_f() would destroy directory
tree structure.

0x201C E_ININFULL Index block is full.

0x201D E_VFULL Volume is full.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links are nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.
pSOSystem System Calls 2-71

move_f pHILE+ System Calls
See Also

make_dir

0x2054 E_EIO A hard error happened at remote site.

0x2055 E_EACCES Task does not have access
permissions.

0x2056 E_EISDIR Illegal operation on a directory.

0x2057 E_EQUOT Quota exceeded.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCHProgram version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTEREDRemote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-72 pSOSystem System Calls

pHILE+ System Calls nfsmount_vol

2

nfsmount_vol Mounts a remote file system.

#include <pna.h> /* for htonl() */
#include <phile.h>
unsigned long nfsmount_vol(

char *device, /* volume name */
NFSMOUNT_VOL_PARAMS *params /* parameters */
)

Volume Types

NFS volumes.

Description

nfsmount_vol() mounts an NFS volume. A volume must be mounted before any
file operations can be conducted.

Arguments

device Points to a null-terminated name of the volume to be mounted. Unlike
the mount_vol() system call, the volume name provided does not
correspond to a true pSOS+ device but to a pseudo-device. A pseudo-
device does not necessarily correspond to any real device or device
driver in the pSOS+ system. Drivers for this device number may or
may not exist. In either case, the pHILE+ file system manager does not
call them while it is accessing the NFS volume.

params Points to an instance of the nfsmount_vol_params structure, which
contains parameters used for volume mounting and is defined in
<phile.h> as follows:

typedef struct nfsmount_vol_params {
unsigned long ipaddr;/* Internet address of NFS server

* NOTE: network byte order */
char *pathname; /* pathname of filesystem to mount */
unsigned long flags; /* reserved; set to 0*/
unsigned long reserved[6]; /* reserved; set to 0*/
} NFSMOUNT_VOL_PARAMS;
pSOSystem System Calls 2-73

nfsmount_vol pHILE+ System Calls
Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

This structure cannot be packed. The fields of
nfsmount_vol_params are defined as follows:

ipaddr The IP address of the NFS host that contains the file
system to mount. Since this is in network byte
order, it should be set as follows:

params −>ipaddr = htonl(address)

pathname Points to the pathname of the filesystem to mount.

flags Reserved for future use and must be 0.

reserved Reserved for future use and must be 0.

Hex Mnemonic Description

0x2006 E_MNTFULL Attempted to mount too many
volumes.

0x2008 E_MNTED Volume already mounted.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.
2-74 pSOSystem System Calls

pHILE+ System Calls nfsmount_vol

2

Notes

1. The major device number of the volume name can exceed the maximum allowed
device number in the pSOS+ Configuration Table because the device is virtual. A
virtual device does not correspond to any device driver.

2. The number of volumes that can be mounted simultaneously in the system
cannot exceed the pHILE+ Configuration Table parameter fc_nmount .

See Also

mount_vol, pcmount_vol, cdmount_vol, unmount_vol

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-75

open_dir pHILE+ System Calls
open_dir Opens a directory file.

#include <phile.h>
unsigned long open_dir(

char *dirname, /* name of the directory file */
XDIR *dir /* pointer to buffer to return directory handle*/
)

Volume Types

All volume types.

Description

open_dir() opens a designated directory file.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

dirname Points to a null-terminated pathname of a directory file.

dir Points to an XDIR structure, which is defined in <phile.h> .

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2018 E_OFULL Too many files open for task.

0x2019 E_NOFCB Too many files open in system.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.
2-76 pSOSystem System Calls

pHILE+ System Calls open_dir

2

See Also

close_dir, read_dir

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCHProgram version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTEREDRemote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-77

open_f pHILE+ System Calls
open_f Opens a file.

#include <phile.h>
unsigned long open_f(

unsigned long *fid, /* file identifier */
char *name, /* pathname */
unsigned long mode /* unused; set to zero */
)

Volume Types

All volume types.

Description

open_f() creates a connection between a file and the calling task and returns a file
identifier. The file identifier is used in subsequent operations on the file. open_f()
fails if the system is out of file control blocks or if the task is out of open file table
entries.

open_f() does not check for a file type. It opens ordinary files, directory files, or
system files. However, directory files and system files are read-only.

open_f() always positions the L_ptr at the first byte in the file.

For CD-ROM volumes, open_f() can be used to read the primary volume descriptor.
See “Primary Volume Descriptor,” under “Notes.”

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

fid Points to the variable where open_f() stores the file identifier.

name Points to the null-terminated pathname of the file to open.

mode Reserved for future use; should be set to 0 for future
compatibility.
2-78 pSOSystem System Calls

pHILE+ System Calls open_f

2

Error Codes

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x200B E_FNAME Filename not found.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x200E E_FORD Directory file expected.

0x2018 E_OFULL Too many files open for task.

0x2019 E_NOFCB Too many files open in system.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error happened at remote site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.
pSOSystem System Calls 2-79

open_f pHILE+ System Calls
Notes

Primary Volume Descriptor

As a special case on CD-ROM volumes, the filename _VOLUME.Y in the root
directory is used to read the primary volume descriptor, which is the starting point
for locating all information on the volume. When you read _VOLUME.Y, pHILE+
omits the fields from it that are unused by your processor and byte-swaps the
remaining fields to the proper order for the processor. Therefore, the primary volume
descriptor can be read into the structure type that follows.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTEREDRemote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-80 pSOSystem System Calls

pHILE+ System Calls open_f

2

/* CD-ROM Primary Volume Descriptor as read from _VOLUME.Y */
/***/

#define CDFS_NAMMAX 32 /* max node size (in bytes) */

/* CD File System Directory Record (internal format) */

typedef struct dir_cdfs {
USHORT dr_reclen; /* directory record length */
USHORT dr_xarlen; /* extended attribute record length */
ULONG dr_extent; /* number of first data block in file */
ULONG dr_fsize; /* byte size of file data space */
ULONG dr_cdate; /* date when created (pSOS+ format) */
ULONG dr_ctime; /* time when created (pSOS+ format) */
USHORT dr_flags; /* directory flags per iso_dirrec */
USHORT dr_namlen; /* byte length of name */
char dr_name[CDFS_NAMMAX + 1] /*the name */

} dir_cdfs_t;

/* CD File System Volume Descriptor template returned to user upon read of */
/* “_VOLUME.Y” virtual file */

typedef struct desc_cdfs {
UCHAR cd_type /* volume descriptor type */
UCHAR cd_id[5+1]; /* standard identifier */
UCHAR cd_vers; /* volume descriptor version */
UCHAR cd_flags; /* volume flags */
UCHAR cd_sysid[32+1]; /* system identifier */
UCHAR cd_volid[32+1]; /* volume identifier */
ULONG cd_volsize; /* volume space size */
UCHAR cd_escseq[32]; /* escape sequences */
USHORT cd_volsetsize; /* volume set size */
USHORT cd_volseqnum; /* volume sequence number */
USHORT cd_logblksize; /* logical block size */
ULONG cd_pathtabsize; /* path table byte size */
ULONG cd_pathtab; /* path table logical block */
ULONG cd_pathtabopt; /* opt path table log block */
struct dir_cdfs cd_rootdir; /* root directory */
UCHAR cd_volsetid[128+1]; /* volume set identifier */
UCHAR cd_pubid[128+1]; /* publisher identifier */
UCHAR cd_prepid[128+1]; /* data preparer identifier */
UCHAR cd_appid[128+1]; /* application identifier */
UCHAR cd_cpyrid[37+1]; /* copyright file identifier */
UCHAR cd_absfid[37+1]; /* abstract file identifier */
UCHAR cd_bibfid[37+1]; /* bibliographic identifier */
ULONG cd_cdate; /* volume create date (pSOS+ format) */
ULONG cd_ctime; /* volume create time (pSOS+ format) */
ULONG cd_mdate; /* modification time (pSOS+ format) */
ULONG cd_xdate; /* expiration date (pSOS+ format) */
ULONG cd_xtime; /* expiration time (pSOS+ format) */
ULONG cd_edate; /* effective date (pSOS+ format) */
UCHAR cd_svers; /* file structure version */
UCHAR cd_appdata[512]; /* application private */

}desc_cdfs_t;
pSOSystem System Calls 2-81

open_f pHILE+ System Calls
See Also

open_fn, close_f
2-82 pSOSystem System Calls

pHILE+ System Calls open_fn

2

open_fn Opens a file by its file identifier.

#include <phile.h>
unsigned long open_fn(

unsigned long *fid, /* file identifier */
char *device, /* volume name */
unsigned long fn, /* file number */
unsigned long mode /* unused, set to 0 */
)

Volume Types

pHILE+, MS-DOS, and CD-ROM formatted volumes.

Description

open_fn() functions identically to open_f() except that open_fn() opens a file
associated with a specified file number. The file number is first obtained with
get_fn() .

open_fn() is more efficient than open_f() when a particular file is frequently
opened, since open_fn() skips pathname parsing and directory searching.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

fid Points to the variable where open_fn() stores the file identifier.

device Points to the null-terminated name of the volume containing the
file.

fn The file number of the file.

mode Reserved for future use; should be set to 0 for future compatibility.
pSOSystem System Calls 2-83

open_fn pHILE+ System Calls
Error Codes

Notes

Primary Volume Descriptor

As a special case on CD-ROM volumes, the filename _VOLUME.Y in the root
directory is used to read the primary volume descriptor. Refer to the description of
open_f() on page 2-78 for details.

See Also

open_f, get_fn, close_f

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2018 E_OFULL Too many files open for task.

0x2019 E_NOFCB Too many files open in system.

0x2023 E_BADFN Illegal or unused filename.

0x2025 E_IDN Illegal device name.

0x2050 E_BADNFS NFS volume; illegal operation.
2-84 pSOSystem System Calls

pHILE+ System Calls pcinit_vol

2

pcinit_vol Initializes an MS-DOS volume.

#include <phile.h>
unsigned long pcinit_vol(

char *device, /* volume name */
void *scratch_buf, /* scratch buffer */
unsigned long dktype /* type of volume */
)

Volume Types

MS-DOS formatted volumes.

Description

pcinit_vol() initializes a volume in MS-DOS format. pcinit_vol() performs a
logical format of the volume, setting up the necessary control structures and other
information needed by the pHILE+ file system manager for subsequent file
operations on the volume. A volume must be initialized before it can be mounted.

After a volume has been initialized, pcinit_vol() can be used to quickly delete all
data on the volume.

pcinit_vol() cannot be used for the first initialization of a hard disk partition
(see Note 4).

Arguments

device Points to the null-terminated name of the volume to initialize.

scratch_buf Points to a 512-byte working buffer.

dktype Specifies the MS-DOS media format and must have one of the
following values:

Value Mnemonic Meaning

0 DK_HARD Hard disk

1 DK_360 360 Kbyte (5-1/4” double density)

2 DK_12 1.2 Mbyte (5-1/4” high density)
pSOSystem System Calls 2-85

pcinit_vol pHILE+ System Calls
Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

3 DK_720 720 Kbyte (3-1/2” double density)

4 DK_144 1.44 Mbyte (3-1/2” high density)

5 DK_288 2.88 Mbyte (3-1/2” high density)

6 DK_NEC 1.2 Mbyte (5-1/4” NEC)

7 DK_OPT Optical disks, 124.4 Mbyte (Fuji
M2511A OMEM)

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x2008 E_MNTED Volume already mounted.

0x2025 E_IDN Illegal device name.

0x2027 E_ILLMSTYP Illegal DOS disk type.

0x2051 E_MAXLOOP Symbolic links nested too deeply.
2-86 pSOSystem System Calls

pHILE+ System Calls pcinit_vol

2

Notes

1. All data stored on the volume is lost by execution of this call.

2. The volume's hardware media must have been formatted before this call is
executed.

3. A mounted volume cannot be initialized.

4. An MS-DOS volume must be formatted using the MS-DOS FORMAT utility or
another comparable utility provided by some SCSI Controller Board vendors,
not pcinit_vol() . After that, pcinit_vol() can be used to reinitialize the
volume. pcinit_vol() reads the partition’s boot record, not the master boot
record (which was written by FORMAT), to get the partition’s parameters.

See Also

pcmount_vol, init_vol
pSOSystem System Calls 2-87

pcmount_vol pHILE+ System Calls
pcmount_vol Mounts an MS-DOS volume.

#include <phile.h>
unsigned long pcmount_vol(

char *device, /* volume name */
unsigned long sync_mode /* synchronization mode */
)

Volume Types

MS-DOS formatted volumes.

Description

pcmount_vol() mounts an MS-DOS volume. A volume must be mounted before
file operations can be applied to it.

Permanent (non-removable media) volumes need mounting only once. Removable
volumes can be mounted and unmounted as required.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

device Points to the null-terminated name of the volume to be
mounted.

sync_mode Specifies the volume's write synchronization attribute. This
attribute is defined in <phile.h> and must be set to one of the
following values:

SM_IMMED_WRITE Immediate-write synchronization mode

SM_CONTROL_WRITE Control-write synchronization mode

SM_DELAYED_WRITE Delay-write synchronization mode

SM_READ_ONLY Read-only synchronization mode
2-88 pSOSystem System Calls

pHILE+ System Calls pcmount_vol

2

Error Codes

Notes

1. pcmount_vol() proceeds as if the designated pSOS+ device is mountable. A
device is mountable if it has been initialized by pcinit_vol() or by the
MS-DOS FORMAT command.

2. The number of volumes that can be mounted simultaneously in the system
cannot exceed the pHILE+ Configuration Table parameter fc_nmount (from
sys_conf.h).

3. The pHILE+ file system manager does not attempt verification or any other way
of determining volume ownership. Any task can perform a pcmount_vol() . A
mounted device does not retain a record of the task that mounted it. Therefore,
a volume is not automatically unmounted when the task that mounted it is
deleted. This and any other security measures, if desired, should be supported
by the user’s own layer of software.

4. For an application to mount an MS-DOS volume, the mount flag FC_MSDOS in
sys_conf.h must be set.

See Also

pcinit_vol, mount_vol, nfsmount_vol, cdmount_vol, unmount_vol

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x2006 E_MNTFULL Attempted to mount too many volumes.

0x2007 E_VALIEN Wrong volume format.

0x2008 E_MNTED Volume is already mounted.

0x2021 E_ILLDEV Illegal device (exceeded maximum).

0x2024 E_FMODE Illegal synchronization mode.

0x2025 E_IDN Illegal device name.

0x2029 E_NMSVOL Cannot mount MS-DOS volume.

0x2051 E_MAXLOOP Symbolic links nested too deeply.
pSOSystem System Calls 2-89

read_dir pHILE+ System Calls
read_dir Reads directory entries in a file system independent format.

#include <phile.h>
unsigned long read_dir(

XDIR *dir, /* a directory handle */

struct dirent *buf /* user structure to hold returned contents */

)

Volume Types

All volume types.

Description

read_dir() reads one directory entry at a time from a directory file in a file
system-independent format. The directory handle is first obtained with
open_dir() .

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

dir Points to the handle for the directory file, which has been returned by
open_dir() .

buf Points to the memory area that receives the data. The data returned
in *buf is a dirent structure defined in <phile.h> , as follows:

struct dirent {
unsigned long d_filno;
char d_name [MAXNAMLEN+1];
}

This structure cannot be packed. d_fileno contains a number that
is unique for each distinct file in the file system, and d_name
contains a null-terminated filename, where the size is in the range of
1 through MAXNAMLEN+1. MAXNAMLEN is set to 255.

When the last entry has been read, an end-of-file error is returned.
2-90 pSOSystem System Calls

pHILE+ System Calls read_dir

2

Error Codes

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x201F E_EOF Read past end-of-file.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote site.

0x2055 E_EACCES Task does not have access permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205A E_NAMETOOLONG Directory/filename too long.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.
pSOSystem System Calls 2-91

read_dir pHILE+ System Calls
Notes

Primary Volume Descriptor

As a special case on CD-ROM volumes, the filename _VOLUME.Y in the root
directory is used to read the primary volume descriptor. Therefore, _VOLUME.Y is
returned as one of the entries of the root directory. Refer to the description of
open_f() on page 2-78 for details.

See Also

open_dir, close_dir
2-92 pSOSystem System Calls

pHILE+ System Calls read_f

2

read_f Reads from a file.

#include <phile.h>
unsigned long read_f(

unsigned long fid, /* file identifier */
void *buffer, /* input buffer */
unsigned long bcount, /* byte read count */
unsigned long *tcount /* read count status */
)

Volume Types

All volume types.

Description

read_f() reads data from a file, beginning at the current position of the
connection's L_ptr .

After read_f() , the file's L_ptr is updated to point to the byte after the last byte
that was read.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

fid Specifies the file identifier associated with the file.

buffer Points to the memory area to receive the data.

bcount Specifies the number of bytes to read.

tcount Points to the variable where read_f() stores the number of
bytes actually read. The tcount value equals bcount unless the
end-of-file was reached or an error occurred.
pSOSystem System Calls 2-93

read_f pHILE+ System Calls
Error Codes

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x201A E_FIDBIG Invalid FID; exceeds maximum.

0x201B E_FIDOFF Invalid FID; file closed.

0x2022 E_LOCKED Data locked.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at remote site.

0x2055 E_EACCESS Task does not have the necessary
access permissions.

0x2056 E_EISDIR Illegal operation on a directory.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTEREDRemote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.
2-94 pSOSystem System Calls

pHILE+ System Calls read_f

2

Notes

1. On pHILE+, CD-ROM, and MS-DOS formatted volumes, read_f() operations
are more efficient if bcount equals an integral multiple of the block size and the
L_ptr is positioned at a block boundary.

2. On pHILE+, CD-ROM, and MS-DOS formatted volumes, if the requested data
includes entire blocks or a contiguous sequence of blocks and if such blocks are
not already in the buffer cache, the pHILE+ file system manager reads these
blocks directly into the caller's buffer (without going through the buffer cache).

3. read_f() automatically positions the L_ptr for sequential read operations. If
random reads are necessary, use lseek_f() to reposition the L_ptr .

See Also

lseek_f, read_vol

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-95

read_link pHILE+ System Calls
read_link Reads the value of a symbolic link.

unsigned long read_link(
char *name, /* a file containing the symbolic link */
char *buf, /* user buffer to hold the returned contents */
unsigned long *bufsize /* maximum buffer size */
)

Volume Types

NFS volumes.

Description

read_link() reads the contents of the symbolic link of a file. The returned data is
not null-terminated.

Arguments

If successful, read_link stores in *bufsize the length of the data stored in buf . If
this is the same as the maximum buffer size, only part of the data may have been
returned.

Return Value

This system call returns 0 on success or an error code on failure.

name Points to the null-terminated pathname of the file
containing the symbolic link.

buf Points to the memory area that receives the data.

bufsize Points to the maximum buffer size before the call, and the
length of the data returned in buf after the call.
2-96 pSOSystem System Calls

pHILE+ System Calls read_link

2

Error Codes

Hex Mnemonic Description

0x2001 E_FUNC pHILE+ format volume; illegal
operation.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2025 E_IDN Illegal device name.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.
pSOSystem System Calls 2-97

read_link pHILE+ System Calls
Usage

The following example is a typical call to read_link() with all the code necessary
for full error checking.

#define MAX_RESULT 100 /* Use 1 more than the longest
* expected result. */

{
char contents[MAX_RESULT+1]; /* Contents of symbolic link */
unsigned long size; /* Size of contents */

size = MAX_RESULT; /* Room available in contents */

if (read_link(“3.2/sym_link”, &contents[0], size) != 0)
/* Error processing for failed system call */;

contents[size] = ‘\0’; /* Null terminate the result */

if (size == MAX_RESULT) /* Possible partial result */
/* Error processing for possible partial result */;

}

See Also

lstat_f, symlink_f

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-98 pSOSystem System Calls

pHILE+ System Calls read_vol

2

read_vol Reads directly from a pHILE+ formatted volume.

#include <phile.h>
unsigned long read_vol(

char *device, /* volume name */
unsigned long block, /* base block */
unsigned long index, /* byte offset */
unsigned long bcount, /* number of bytes to read */
void *buffer /* input buffer */
)

Volume Types

pHILE+, MS-DOS, and CD-ROM formatted volumes.

Description

read_vol() reads data directly from a volume, bypassing the file system
organization imposed by the pHILE+ file system manager.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

device Points to the null-terminated name of the volume to read.

block Identifies the logical block number to begin reading.

index Specifies where to begin reading within the specified block.

bcount Specifies the number of bytes to read.

buffer Points to the memory area to receive the data.
pSOSystem System Calls 2-99

read_vol pHILE+ System Calls
Error Codes

Notes

1. If index is larger than the volume's block size, the read begins in a subsequent
block. For example, on a volume with a 1024-byte block size, a read of block 5,
index 1224, is the same as a read block 6, index 200.

2. CD-ROM volumes generally use a 2K block size.

3. read_vol() does not check for the end of the volume, so blocks beyond the
specified volume size can be read if they physically exist.

4. If the requested data includes either entire blocks or a contiguous sequence of
blocks and if such blocks are not already in the buffer cache, the pHILE+ file
system manager reads blocks directly into the buffer (without going through the
buffer cache). Therefore, read_vol() executes more efficiently when bcount
and index are equal to integral multiples of blocks.

See Also

write_vol

Hex Mnemonic Description

0x200A E_DMOUNT Volume not mounted.

0x2025 E_IDN Illegal device name.

0x2050 E_BADNFS NFS volume; illegal operation.
2-100 pSOSystem System Calls

pHILE+ System Calls remove_f

2

remove_f Deletes a file.

#include <phile.h>
unsigned long remove_f(

char *name /* pathname */
)

Volume Types

All volume types, except CD-ROM; however, functional differences exist and are
described here.

Description

remove_f() deletes a file from a volume. The file can be an ordinary file or a
directory file. All storage used by the file is returned to the system for reuse. The
file's entry in its parent directory is also deleted.

System files and non-empty directory files cannot be deleted. On pHILE+ and
MS-DOS formatted volumes, an open file cannot be deleted. An open file can be
deleted on an NFS volume. CD-ROM volumes are read-only.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

name Points to the null-terminated pathname of the file to delete.

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x200B E_FNAME Filename not found.
pSOSystem System Calls 2-101

remove_f pHILE+ System Calls
0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x200E E_FORD Directory file expected.

0x2010 E_NODE Null pathname.

0x2013 E_FOPEN Cannot remove an open file.

0x2014 E_DNE Directory not empty.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2053 E_PERM Task does not have ownership.

0x2054 E_EIO A hard error occurred at remote site.

0x2055 E_EACCES Task does not have access
permissions.

0x2056 E_EISDIR Illegal operation on a directory.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

Hex Mnemonic Description
2-102 pSOSystem System Calls

pHILE+ System Calls remove_f

2

See Also

create_f, make_dir

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-103

stat_f pHILE+ System Calls
stat_f Gets the status of a named file.

#include <phile.h>
unsigned long stat_f(

char *name, /* file pathname */
struct stat *buf /* file status */
)

Volume Types

All volumes.

Description

stat_f() returns information about the named file. This call does not need read,
write, or execute permission of the named file. It does need execute/search
permission of all the directories leading to the named file.

Arguments

name Points to the null-terminated pathname of the file.

buf Points to a stat structure defined in <phile.h> as follows:

struct stat {
mode_t st_mode; /* ownership/protection */
ino_t st_ino; /* file ID */
dev_t st_dev; /* device ID where the volume resides */
dev_t st_rdev; /* device ID, for character or block

* special files only */
nlink_t st_nlink; /* number of hard links to the file */
uid_t st_uid; /* user ID */
gid_t st_gid; /* group ID */
off_t st_size; /* total size of file, in bytes */
time_t st_atime; /* file last access time */
time_t st_mtime; /* file last modify time */
time_t st_ctime; /* file last status change time */
long st_blksize; /* optimal block size for I/O ops */
long st_blocks; /* file size in blocks */
};
2-104 pSOSystem System Calls

pHILE+ System Calls stat_f

2

Return Value

This system call returns 0 on success or an error code on failure.

This structure cannot be packed. mode_t , ino_t , dev_t , nlink_t ,
uid_t , gid_t , off_t , and time_t are defined as unsigned long in
<phile.h> . The following differences exist for local file systems
(pHILE+, MS-DOS, and CD-ROM):

rdev = dev, nlink = 1, uid = 0, gid = 0, atime = ctime
= mtime

The status information word st_mode contains the following bits:

_IFMT 0170000 /* type of file */

_IFIFO 0010000 /* fifo special */

_IFCHR 0020000 /* character special */

_IFDIR 0040000 /* directory */

_IFBLK 0060000 /* block special */

_IFREG 0100000 /* regular file */

_IFLNK 0120000 /* symbolic link */

_IFSOCK 0140000 /* socket */

S_ISUID 0004000 /* set user ID on execution */

S_ISGID 0002000 /* set group ID on execution */

S_ISVTX 0001000 /* save swapped text even after use */

S_IRUSR 0000400 /* read permission, owner */

S_IWUSR 0000200 /* write permission, owner */

S_IXUSR 0000100 /* execute/search permission, owner */

S_IRGRP 0000040 /* read permission, group */

S_IWGRP 0000020 /* write permission, group */

S_IXGRP 0000010 /* execute/search permission, group */

S_IROTH 0000004 /* read permission, other */

S_IWOTH 0000002 /* write permission, other */

S_IXOTH 0000001 /* execute/search permission, other */
pSOSystem System Calls 2-105

stat_f pHILE+ System Calls
Error Codes

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.
2-106 pSOSystem System Calls

pHILE+ System Calls stat_f

2

Usage

stat_f() can be used to determine both the current device and the current
directory of local volumes. Thus you can use stat_f() to return to a device and
directory after leaving them, or to construct absolute path names starting at the
current directory. Only the directory file number is available, not the full directory
path. To obtain the full directory path, see get_fn() .

/* Obtaining both the current device and the current directory */

ULONG rc; /* System call return code */
struct stat current_stat; /* stat_f() of "." */
ULONG device; /* Current device */
ULONG directory; /* Current directory */

if((rc = stat_f(".", ¤t_stat)) != 0)
/* Error processing */

device = current_stat.st_dev;
directory = current_stat.st_dev;

/* Returning to the above device and directory at a later time. */

char directory[29]; /* To change back */

sprintf(directory, "0x%04x.0x%02x.0x%02x.0x%08x/.",
device >> 16, /* Major device number */
(device >> 8) & 0xffU, /* Minor device number */
device & 0xffU, /* Partition number */
directory); /* File number to start at */

if((rc = change_dir(directory)) != 0)
/* Error processing */

/* Constructing absolute path name starting at the saved directory */

#define REL_PATH_LEN 8 /* Length of path below saved
* directory */

char path[28 + PATH_LEN]; /* Absolute path of file.txt */

sprintf(path, "0x%04x.0x%02x.0x%02x.0x%08x/%s",
device >> 16, /* Major device number */
(device >> 8) & 0xffU, /* Minor device number */
device & 0xffU, /* Partition number */

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-107

stat_f pHILE+ System Calls
directory, /* File number to start at */
"file.txt"); /* Relative path below saved directory */

See Also

fstat_f, chmod_f, fchmod_f, chown_f, fchown_f, link_f, read_f,
read_link, truncate_f, ftruncate_f, remove_f, utime_f, write_f
2-108 pSOSystem System Calls

pHILE+ System Calls stat_vfs

2

stat_vfs Gets statistics for a named volume.

#include <phile.h>
unsigned long stat_vfs(

char *name, /* file pathname */
struct statvfs *buf /* volume statistics */
)

Volume Types

All volume types.

Description

stat_vfs() returns information about a mounted volume.

Arguments

name Points to a null-terminated pathname of any file within the mounted
volume.

buf Points to a statvfs structure defined in <phile.h> , as follows:

typedef struct {
long val[2];
} fsid_t;

struct statvfs {
unsigned long f_bsize; /* preferred volume block size */
unsigned long f_frsize; /* fundamental volume block size */
unsigned long f_blocks; /* total number of blocks */
unsigned long f_bfree; /* total number of free blocks */
unsigned long f_bavail; /* free blocks available to

* non-superuser */
unsigned long f_files; /* total # of file nodes

* (pHILE+ files only) */
unsigned long f_ffree; /* reserved (not supported) */
unsigned long f_favail; /* reserved (not supported) */
fsid_t f_fsid; /* reserved (not supported) */
char f_basetype[16]; /* reserved (not supported) */
unsigned long f_flag; /* reserved (not supported) */
unsigned long f_namemax; /* reserved (not supported) */
char f_fstr[32]; /* reserved (not supported) */
unsigned long f_fstype; /* file system type number */
unsigned long f_filler[15];/* reserved (not supported) */
};
pSOSystem System Calls 2-109

stat_vfs pHILE+ System Calls
Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

This structure cannot be packed. Currently, the fields f_ffree ,
f_favail , f_fsid , f_basetype , f_flag , f_namemax , f_fstr and
f_filler are reserved and do not have values. For all volumes except
pHILE+ format, the field f_files is unused.

The field f_fstype identifies the type of file system format. The values
in <phile.h> are given below:

FSTYPE_PHILE pHILE+ format volume

FSTYPE_PCDOS MS-DOS format volume

FSTYPE_CDROM CD-ROM format volume

FSTYPE_NFS Client NFS volume

The return value for all unsupported fields is 0.

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.
2-110 pSOSystem System Calls

pHILE+ System Calls stat_vfs

2

See Also

fstat_vfs

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-111

symlink_f pHILE+ System Calls
symlink_f Creates a symbolic link to a file.

unsigned long symlink_f(
char *name1, /* a string used in creating the

* symbolic link */
char *name2 /* the name of the file to be created */
)

Volume Types

NFS volumes.

Description

symlink_f() creates a symbolic link name1 in the file name2. The files do not need
to be on the same volume.

The file to which the symbolic link points is used when an open_f() is performed
on the link. A stat_f() performed on a symbolic link returns the linked-to file
(whereas lstat_f() returns information about the link itself). read_link() can
be used to read the contents of a symbolic link.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

name1 Points to the null-terminated pathname of the symbolic link.

name2 Points to the null-terminated pathname of the file.

Hex Mnemonic Description

0x2001 E_FUNC Invalid function number.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.
2-112 pSOSystem System Calls

pHILE+ System Calls symlink_f

2

0x2025 E_IDN Illegal device name.

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2057 E_EQUOT Quota exceeded.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_TIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-113

symlink_f pHILE+ System Calls
See Also

read_link, link_f, remove_f
2-114 pSOSystem System Calls

pHILE+ System Calls sync_vol

2

sync_vol Synchronizes a volume.

#include <phile.h>
unsigned long sync_vol(

char *device /* volume name */
)

Volume Types

pHILE+ and MS-DOS formatted volumes.

Description

sync_vol() updates a mounted volume by writing all modified volume information
to the physical device. Updated files, descriptors, and all cache buffers that contain
physical blocks are flushed to the device.

This call enables manual updating of a volume and is irrelevant in relation to
immediate-write synchronization mode. CD-ROM volumes are read-only.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

device Points to the null-terminated name of the volume to
synchronize.

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200A E_DMOUNT Volume not mounted.

0x2025 E_IDN Illegal device name.

0x2050 E_BADNFS NFS volume; illegal operation.
pSOSystem System Calls 2-115

sync_vol pHILE+ System Calls
Notes

Because no inherent access restrictions exist with respect to a volume, any task can
call sync_vol() . sync_vol() keeps the volume busy during the update.

See Also

unmount_vol, mount_vol, pcmount_vol

0x2060 E_BADCD CD-ROM volume; illegal operation.

Hex Mnemonic Description
2-116 pSOSystem System Calls

pHILE+ System Calls truncate_f

2

truncate_f Changes the size of a named file.

#include <phile.h>
unsigned long truncate_f(

char *name, /* file pathname */
unsigned long length /* file size in bytes */
)

Volume Types

pHILE+, MS-DOS, and NFS volumes.

Description

truncate_f() causes the file specified by name to have a size (in bytes) equal to
length . If the file was previously longer than length , the extra bytes are
truncated. If it was shorter, the bytes between the old and new lengths are filled
with zeroes.

Unlike annex_f() , this system call changes both the logical and the physical file
size. (annex_f() changes only the physical file size.)

On pHILE+ or MS-DOS volumes, the file must not be open. If this is violated, the
error E_FOPEN is returned.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

name Points to the null-terminated pathname of the file.

length Specifies the new file size in bytes.
pSOSystem System Calls 2-117

truncate_f pHILE+ System Calls
Error Codes

Hex Mnemonic Description

0x2001 E_FUNC Invalid function number.

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x201C E_ININFULL Index block full.

0x201D E_VFULL Volume is full. (This cannot happen
on NFS volumes.)

0x2022 E_LOCKED Data is locked.

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2057 E_EQUOT Quota exceeded.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.
2-118 pSOSystem System Calls

pHILE+ System Calls truncate_f

2

See Also

ftruncate_f, open_f, open_fn

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-119

unmount_vol pHILE+ System Calls
unmount_vol Unmounts a volume.

#include <phile.h>
unsigned long unmount_vol(

char *device /* volume name */
)

Volume Types

All volume types.

Description

unmount_vol() unmounts a previously mounted volume. Unmounting a volume
causes it to be synchronized. Synchronization causes all memory-resident volume
data to be flushed to the device.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

device Points to the null-terminated name of the volume to unmount.

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x2009 E_MNTOPEN Files are open on volume.

0x200A E_DMOUNT Volume not mounted.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2025 E_IDN Illegal device name.
2-120 pSOSystem System Calls

pHILE+ System Calls unmount_vol

2

Notes

1. Any task can unmount a volume. If some security is needed, the user must
supply the bookkeeping software to keep track of volumes and tasks that
perform the mounts.

2. Conceptually, unmounting a volume is unnecessary unless it is physically
removed and a new volume is mounted on the same device. However, a limit
exists to the number of volumes that can be mounted simultaneously, and
unmounting frees entries in the volume mount table.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error happened at remote site.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-121

unmount_vol pHILE+ System Calls
3. unmount_vol() fails and returns an error if any open files exist on the volume.

4. Once unmounted, a volume is inaccessible.

See Also

mount_vol, pcmount_vol, nfsmount_vol, cdmount_vol
2-122 pSOSystem System Calls

pHILE+ System Calls utime_f

2

utime_f Sets the access and modification times of a file.

#include <phile.h>
unsigned long utime_f(

char *name, /* file pathname */
struct utimbuf *times /* file access and modification times */
)

Volume Types

NFS volumes.

Description

utime_f() sets the access and modification times of a file.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

name Points to the null-terminated pathname of the file.

times If times is NULL, the access and modification times are set to
the current time. Otherwise, times is interpreted as a pointer
to a utimbuf structure defined in <phile.h> as follows:

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */
};

This structure cannot be packed. No time zone is associated
with the time values.
pSOSystem System Calls 2-123

utime_f pHILE+ System Calls
Error Codes

Hex Mnemonic Description

0x2001 E_FUNC Invalid function number.

0x200C E_IFN Illegal pathname.

0x200D E_NDD No default directory.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x2025 E_IDN Illegal device name

0x2026 E_BADMS MS-DOS volume; illegal operation.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error occurred at a remote
site.

0x2055 E_EACCES Task does not have access
permissions.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_PROGVERSMISMATCH Program version mismatched.

0x2079 E_ECANTDECODEARGS Decode arguments error.
2-124 pSOSystem System Calls

pHILE+ System Calls utime_f

2

See Also

stat_f, fstat_f

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
pSOSystem System Calls 2-125

verify_vol pHILE+ System Calls
verify_vol Verifies a volume’s control structures.

#include <phile.h>
unsigned long verify_vol(

char *device, /* volume name */
VERIFY_VOL_PARAMS *params /* parameters */
)

Volume Types

pHILE+ formatted volumes.

Description

verify_vol() examines all control structures on a pHILE+ formatted volume.
Inconsistencies are reported to a user-supplied callout routine, which can relay
further instructions. The callout routine can then request verify_vol() to correct
the inconsistency.

Usage instructions for verify_vol are provided in “Usage” on page 2-129.

Arguments

device Points to the null-terminated name of the volume to be verified.

params Points to an instance of the verify_vol_params structure defined in
<phile.h> as follows:

typedef struct verify_vol_params {
void *pb_dataptr; /* work area pointer */
unsigned long pb_datalen; /* length of work area */
unsigned long pb_maxdepth; /* maximum depth of

* directory tree */
fault_desc_block *pb_fdbptr; /* fault descriptor block

* pointer */
unsigned long (*pb_faultp)(void); /* faultp function */
unsigned long *pb_badblkptr; /* bad block list */
} VERIFY_VOL_PARAMS;

This structure cannot be packed.
2-126 pSOSystem System Calls

pHILE+ System Calls verify_vol

2

The contents of the verify_vol_params fields are as follows:

pb_dataptr Points to a work area required by verify_vol() .
The size of this work area (in bytes) is given by the
formula:

96 + (4 * vsize) + (16 * nfd) + (38 * maxdepth)

where vsize is the size of the volume in blocks; nfd is
the number of file descriptors specified when the
volume was initialized; and maxdepth is the
maximum depth of the directory tree (it should be
equal to pb_maxdepth , below.) For example, on a
volume with:

vsize = 5000 blocks
nfd = 100 entries
maxdepth = 5 levels

a total of 96 + (4 * 5000) + (16 * 100) + (38 * 5) =
21886 bytes would be required. This work area can
be statically allocated, or it can be dynamically
allocated by a pSOS+ rn_getseg() call.

pb_datalen The size (in bytes) of the work area pointed to by
pb_dataptr . The verify_vol() call uses this
entry to confirm that the work area is large enough.

pb_maxdepth The maximum depth of the volume’s directory tree. If
any branch of the directory exceeds this depth,
verify_vol() terminates and returns an error
code to the calling task. The minimum value allowed
is 1, which indicates a flat directory (i.e., one
containing no subdirectories).

pb_fdbptr Points to a fault descriptor block (FDB) in the caller's
memory area. When a fault is detected,
verify_vol() places a detailed description of the
fault into the FDB. The FDB format is described on
page 2-132.

pb_faultp Points to the user-provided faultp() procedure
that is called each time verify_vol() detects a
fault. faultp() is responsible for processing the
fault. Refer to “faultp()” on page 2-131 for more
details.
pSOSystem System Calls 2-127

verify_vol pHILE+ System Calls
Target

verify_vol() calls a user-supplied function, faultp() , for status-checking (see
page 2-131). For each processor family, faultp() returns its return value in the
register specified below:

Return Value

This system call returns 0 on success or an error code on failure.

Error Codes

pb_badblkptr Points to a user-provided list of bad blocks on the
volume. A bad block is a block that cannot be read
and/or written and is therefore unusable by the
pHILE+ file system manager. This list is made up of
32-bit entries and is terminated with a 0 entry. The
entries need not be in any specific order.
verify_vol() can greatly simplify the handling of
bad blocks. Refer to “Bad Blocks” on page 2-139 for
information on this feature. If no bad block list is
provided, this entry must be 0.

On 68K processors, faultp() uses the D0.L register.

On PowerPC processors, faultp() uses the r3 register.

On 960 processors, faultp() uses the g0 register.

On x86 processors, faultp() uses the %eax register.

Hex Mnemonic Description

0x2007 E_VALIEN Wrong volume format.

0x2009 E_MNTOPEN Files are open on volume.

68K

PPC

960

x86
2-128 pSOSystem System Calls

pHILE+ System Calls verify_vol

2

Usage

verify_vol() can be used to perform the following actions:

Volume Integrity Verification — verify_vol() examines all volume control structures to
verify their consistency. Inconsistencies are reported and described in detail.

Volume Correction — Certain kinds of inconsistencies can be corrected.

Bad Block Elimination — Bad blocks can be marked as “in use” in the volume bitmap,
thus excluding them from allocation by pHILE+ file system manager.

verify_vol() can be used in two ways. First, it can be used to perform a simple
test of correctness, for example, at each power-on or system restart. Second, it can
be integrated into a volume repair utility with a user-supplied interface.

Under normal operating conditions, pHILE+ file system manager always maintains
the volume control structures in a correct and consistent state. verify_vol() is
most useful when used following a system error or failure that can corrupt the file
system, such as one of the following:

■ A power failure, or a CPU or disk controller crash. In such cases, pHILE+ file
system manager can be interrupted in the middle of a critical operation,
resulting in a corrupted file system.

■ A hard error or data corruption in one or more blocks containing volume control
structures.

■ Errors in the user-supplied physical disk driver.

■ Restarting a task in pHILE+ file system manager.

0x200A E_DMOUNT Volume not mounted.

0x2021 E_ILLDEV Illegal device (exceeded maximum).

0x2025 E_IDN Illegal device name.

0x2051 E_MAXLOOP Symbolic links nested too deeply.

0x2200 VF_INSUFF Insufficient working area provided.

0x2201 VF_MAXDEPTH Maximum depth exceeded on
directory traversal.

0x2202 VF_ABORT Verify routine aborted by user.

Hex Mnemonic Description
pSOSystem System Calls 2-129

verify_vol pHILE+ System Calls
Requirements and Restrictions

1. verify_vol() suspends all other I/O transactions to the designated volume.
Because of the time required to execute it, verify_vol() should be called
when the volume is idle.

2. Executing verify_vol() requires that the volume is mounted and no files are
open.

3. verify_vol() cannot be used on an MS-DOS, CD-ROM, or NFS volume.

Functional Description

On the specified volume, verify_vol() examines the volume’s control structures
and searches for faults. A fault is any inconsistency in the control structures. For
example, the volume’s bitmap may indicate a particular block is free, while in fact it
is being used. In all, there are 42 different kinds of faults detectable by
verify_vol() .
2-130 pSOSystem System Calls

pHILE+ System Calls verify_vol

2

verify_vol() examines the following volume control structures:

■ Root block

■ Bitmap

■ FLIST

■ All directories

■ All file indirect blocks

■ All file index blocks

verify_vol() stores a detailed description of the detected fault into a user-
provided fault descriptor block (FDB) and then calls the user-provided function
faultp() , described below.

faultp()

faultp() is called by verify_vol() without any parameters. faultp() is
responsible for additional processing of the fault.

verify_vol() calls faultp() with the following information:

■ The type of fault

■ A detailed description of the fault

■ An indication of whether or not the fault is correctable

faultp() performs its own check and returns a status code in the register
supported by pHILE+, which is processor-specific. The register used on each
processor family is specified in Target on page 2-128.

The status code faultp() returns must be one of the following:

If status = 1 is returned, verify_vol() makes modifications to the volume, which
correct the fault. In most cases, the obvious modification is made. Less obvious
modifications are described in “Bad Blocks” on page 2-139. Note that status = 1

Code Description

0 Continue volume verification without correcting the fault.

1 Correct fault and continue volume verification.

2 Terminate volume verification.
pSOSystem System Calls 2-131

verify_vol pHILE+ System Calls
(correct fault) should be returned only if the FDB indicates the fault is fixable (refer
to the FDB description below). If status = 1 is returned for a non-fixable fault, it is
ignored and verification continues.

If verify_vol() is being used simply to verify volume correctness, then, when
called, faultp() can return a status of 0, which continues the rest of volume
verification, or a status of 2, which terminates verify_vol() and returns an error
to the caller.

verify_vol() can also be integrated into a “volume repair” utility with an operator
interface. This utility should implement faultp() so that it will

■ Display each fault in detail;

■ Indicate if the fault is fixable;

■ And if so, ask the user if he wants it fixed;

■ And if so, return status = 1 to verify_vol() .

Faults that are not fixable may require additional user action. For example, you may
perform the following steps repeatedly:

1. Use verify_vol() to correct all fixable errors and obtain a list of non-fixable
errors.

2. Examine, copy, and delete the affected files, as required.

When step 1 produces no more faults, you can consider the volume corrected.

The Fault Descriptor Block (FDB)

The structure fault_desc_block defines the FDB in phile.h as follows:

typedef struct fault_desc_block {
unsigned long fdb_code; /* fault code */
unsigned long fdb_fn1; /* file number for file 1 */
unsigned long fdb_fn2; /* file number for file 2 */
char *fdb_path1; /* pathname for file 1 */
char *fdb_path2; /* pathname for file 2 */
unsigned long fdb_bn; /* block number */
unsigned long fdb_fixable;/* fault fixable indicator */
} FAULT_DESC_BLOCK;
2-132 pSOSystem System Calls

pHILE+ System Calls verify_vol

2

This structure cannot be packed. The contents of the fault_desc_block fields are
as follows:

Fault Types

Table 2-2 beginning on page 2-134 summarizes, for each fault type, the contents of
each field. An X indicates the field is used in describing the fault. The last column
indicates whether or not the fault is fixable.

NOTE: Footnotes a through f for Table 2-2 are all listed at the end of the table.

fdb_code Contains a fault code describing the type of fault.

fdb_fn1 Contains the file number of the file.

fdb_fn2 For faults involving two files, contains the file number of the
second file.

fdb_path1 Contains a pointer to the file’s complete pathname. This
pathname is constructed by verify_vol() within the
verify_vol() work area.

fdb_path2 For faults involving two files, contains a pointer to the second
file’s complete pathname.

fdb_bn For faults involving a specific block, contains the block
number of the affected block.

fdb_fixable Indicates whether the fault can be corrected by
verify_vol() , as follows:

fdb_fixable = 0 means fault is not fixable.

fdb_fixable = 1 means fault is fixable.
pSOSystem System Calls 2-133

verify_vol
pH

ILE+ System
 C

alls

2-134
pSO

System
 System

 C
alls

H1 PATH2 BN Fixable

N

N

N

N

N

N

N

N

N

Y

TABLE 2-2 Fault Summary

Mnemonic Description Hex FN1 FN2 PAT

VF_BMOFL The bitmap and FLIST a, as specified in
ROOTBLOCKb, overlap.

2101

VF_BMSIZ The bitmap size and volume size, as specified
in ROOTBLOCK, are inconsistent with one
another.

2102

VF_FLSIZ The FLIST size and number of file
descriptors, as specified in ROOTBLOCK, are
inconsistent with one another.

2103

VF_BMOVL The bitmap, as specified in ROOTBLOCK,
extends beyond the end of the volume.

2104

VF_FLOVL The FLIST, as specified in ROOTBLOCK,
extends beyond the end of the volume.

2105

VF_BMDA The bitmap, as specified in ROOTBLOCK,
overlaps the volume’s data area.

2106

VF_FLDA The FLIST, as specified in ROOTBLOCK,
overlaps the volume’s data area.

2107

VF_BMEXT The extent map in the bitmap FDc disagrees
with ROOTBLOCK.

2108

VF_FLEXT The extent map in the FLIST FD disagrees
with ROOTBLOCK.

2109

VF_NDRFD The FD for the ROOT directory does not
indicate it is a directory.

210A

pH
ILE+ System

 C
alls

verify_vol

pSO
System

 System
 C

alls
2-135

X N

N

Y

Y

Y

Y

Y

Y

Y

X N

X N

X N

Y

TH2 BN Fixable
2

VF_FDMU A FD is used by more than one file.
verify_vol() returns the FNd and
pathname of both files, although the FNs are
the same.

210B X X X

VF_FDFRE A FD that is in use is marked free. 210C X X

VF_FDUSE A FD that is not in use is marked as in use. 210D X

VF_NSSFD The FD of a non-system file indicates the file
is a system file.

2110 X X

VF_SNSFD The FD for a system file (ROOTBLOCK,
BITMAP, or FLIST) does not indicate the file
is a system file.

2111 X X

VF_PARFD The parent FN within a FD does not point to
the file’s parent directory.

2112 X X

VF_FCFD The file count within a FD for a directory is
incorrect.

2113 X X

VF_SIZFD A file’s FD indicates that its logical size is
greater than its physical size.

2114 X X

VF_ANXFD A file has an annex size of 0 in its FD. This
fault is corrected by setting the annex size to
1.

2115 X X

VF_EXTFD See “Extent Map Faults” on page 2-138. 2118 X X

VF_INFD See “Extent Map Faults” on page 2-138. 2119 X X

VF_IXFD See “Extent Map Faults” on page 2-138. 211A X X

VF_TBCFD See “Extent Map Faults” on page 2-138. 211B X X

TABLE 2-2 Fault Summary (Continued)

Mnemonic Description Hex FN1 FN2 PATH1 PA

verify_vol
pH

ILE+ System
 C

alls

2-136
pSO

System
 System

 C
alls

Y

Y

X N

X N

X Y

X N

X N

X N

X N

X Y

X Y

X X N

TABLE 2-2 Fault Summary (Continued)

H1 PATH2 BN Fixable
VF_LLBFD See “Extent Map Faults” on page 2-138. 211C X X

VF_LLBIN See “Extent Map Faults” on page 2-138. 211D X X

VF_EXTIN See “Extent Map Faults” on page 2-138. 211E X X

VF_INIX See “Extent Map Faults” on page 2-138. 211F X X

VF_LLBIX See “Extent Map Faults” on page 2-138. 2120 X X

VF_DBDA See “Extent Map Faults” on page 2-138. 2121 X X

VF_INDA See “Extent Map Faults” on page 2-138. 2122 X X

VF_IXDA See “Extent Map Faults” on page 2-138. 2123 X X

VF_DFDIR A directory contains the same filename more
than once. verify_vol() provides the FN
and pathname of both files, although in this
case the pathnames are identical.

2124 X X X

VF_IFDIR A directory entry contains an illegal filename.
verify_vol() provides the FN and
pathname of the file. Note that since the
filename is illegal, the last filename in the
pathname may not be ASCII. e

2125 X X X

VF_FNDIR A directory entry contains an illegal FN: one
that exceeds the allowed maximum. In this
case, fdb_path1 contains the file's
pathname while fdb_fn1 contains the illegal
FN. fdb_fn2 and fdb_path2 describe the
directory containing the illegal entry. f

2126 X X X

VF_BKMU A single block is used by more than one file. 2128 X X X

Mnemonic Description Hex FN1 FN2 PAT

 chapter ofSystem Concepts.

er ofstem Concepts.

ame toVFN_xxxxxxxx ,
le, if the file has an FN of 29

 zero (that frees the entry

X N

X Y

X Y

X Y

Y

Y

Y

TABLE 2-2 Fault Summary (Continued)

1 PATH2 BN Fixable
a. The file descriptor list, one of the management blocks described in the pHILE+

b. The root block, one of the management blocks described in the pHILE+ chaptSy

c. File descriptor.

d. File number.

e. If faultp() so requests,verify_vol() corrects this fault by changing the filen
where xxxxxxxx is the hexadecimal representation of the file's FN. For examp
(decimal), the filename is set toVFN_0000001D.

f. If faultp() so requests,verify_vol() corrects this fault by setting the FN to
for reuse).

VF_BBUSE A bad block is in use. 2129 X X

VF_BKFRE A block that is in use is also marked as free
in the volume bitmap.

212A X X

VF_BBFRE A bad block is marked as free in the volume
bitmap.

212B

VF_BKUSE An unused block is marked as in use in the
volume bitmap.

212C

VF_INSUFF Work area too small. 2200

VF_MAXDEPTH Directory depth exceeds maximum. 2201

VF_ABORT Verify routine aborted by user. 2202

Mnemonic Description Hex FN1 FN2 PATH

verify_vol pHILE+ System Calls
Extent Map Faults

The faults listed in Table 2-3 involve errors in the extent map of a particular file.
Recall that the extent map consists of:

■ Up to 10 extent descriptors within the file's FD.

■ Within the file's FD, an indirect block descriptor that describes an indirect block
containing additional extent descriptors.

■ Within the file's FD, an index block descriptor that describes an index block
containing additional indirect block descriptors.

verify_vol() checks for illegal blocks both within an extent and within an
indirect or index block descriptor. A block is illegal if its block number is equal to or
greater than the number of blocks on the volume. For example, on a volume
containing 1000 blocks, any block number greater than 999 is illegal.

A file can be viewed as a sequence of logical blocks numbered from 0. For example,
on a volume with 1K blocks, a 4.3 Kbyte file would consist of logical blocks 0
through 4 (logical block 4 being only partly filled.)

Every FD, every indirect block descriptor, and every index block descriptor contains
a last logical block (LLB) field that indicates the largest logical block number
addressed by the associated structure. For example, an indirect block descriptor
may have LLB = 200, meaning that the last block in the last extent in the indirect
block is the 200th block in the file. verify_vol() checks the LLB of every FD,
indirect block descriptor, and index block descriptor and reports any
inconsistencies.

TABLE 2-3 Extent Map Faults

VF_EXTFD An FD contains an extent containing an illegal block.

VF_INFD An FD contains an illegal indirect block number.

VF_IXFD An FD contains an illegal index block number.

VF_TBCFD The block count within the FD conflicts with the actual
number of blocks in the file.

VF_LLBFD The LLB in the FD (for the first 10 extents) is incorrect.

VF_LLBIN The LLB within an indirect block descriptor within an FD is
incorrect.
2-138 pSOSystem System Calls

pHILE+ System Calls verify_vol

2

Bad Blocks

A bad block is a block that cannot be read and/or written and therefore cannot be
used by pHILE+ file system manager. There are a number of possible strategies for
handling bad blocks. One strategy is to mask or redirect them at the driver level so
that pHILE+ file system manager never sees them. Another method, which is
described here in detail, involves “mapping out” those blocks in the volume’s
bitmap, so that they are never allocated by pHILE+ file system manager.
verify_vol() facilitates such modifications to the bitmap.

Recall that each volume contains a bitmap describing which blocks on the volume
are in use, and which are free. If the corresponding bit in the map is set to 1, the
block is considered to be in use; otherwise, it is considered to be available for
allocation by the pHILE+ file system manager when needed. If the bit corresponding
to a bad block can be set to 1 before the block is allocated, then the pHILE+ file
system manager will never allocate the block, and hence will never read or write it.

To facilitate bad block handling, verify_vol() accepts as an input parameter a
list of bad blocks. When examining the volume’s bitmap, verify_vol() expects
bits corresponding to these bad blocks to be set to 1, while at the same time
expecting the block to be unused. If a bad block is in use, or its corresponding bit is
not set, a fault is generated.

The remainder of this section gives a brief outline of a recommended method for
handling bad blocks.

There are two types of bad blocks:

Dead Blocks — These blocks are known to be bad prior to volume initialization. They
are normally the result of manufacturing defects. Typically, the device

VF_EXTIN An indirect block contains an extent containing an illegal
block.

VF_INIX An index block contains an illegal indirect block number.

VF_LLBIX Within an index block, the LLB associated with an indirect
block is incorrect.

VF_DBDA A directory block resides in the data area of the volume.

VF_INDA An indirect block resides in the data area of the volume.

VF_IXDA An index block resides in the data area of the volume.

TABLE 2-3 Extent Map Faults
pSOSystem System Calls 2-139

verify_vol pHILE+ System Calls
manufacturer provides a list of such blocks with each device. They can also be
detected by testing the device prior to its initialization.

Failed Blocks — These are blocks that fail some time after the volume has been
initialized. They are normally detected in the course of reading or writing the
affected block.

Dead blocks are much simpler to handle than failed blocks, because they are
detected before the pHILE+ file system manager has allocated them. To handle these
blocks, perform the following steps:

1. Initialize the volume, taking care not to place the bitmap or FLIST onto any dead
blocks (Note: blocks 2 and 3 must not be dead.)

2. Mount the volume and call verify_vol() , providing a bad block list
containing all dead blocks.

3. Have faultp() always return status = 1 (correct fault and continue) for
fdb_code == VF_BBFRE so that verify_vol() will mark the blocks as in use
(note that the “bad block is marked free” error is correctable).

Failed blocks are harder to handle because the block was already allocated by
pHILE+ file system manager before it failed. The block may or may not contain valid
data, depending on exactly when the failure occurred. However, since the block is
allocated, its corresponding bit is already set. To eliminate such bad blocks,
perform the following steps:

1. Add the failed block to the existing list of bad blocks.

2. Invoke verify_vol() , which will report VF_BBUSE, bad block is in use
by a particular file.

3. By whatever means, salvage as much of the file as possible, and then delete the
file. This returns the bad block to the free block pool and clears its
corresponding bit.

4. Invoke verify_vol() again. verify_vol() now reports VF_BBFRE, “bad
block is marked free” . Now have faultp() use return status = 1, to mark
the bad block as unavailable for allocation.

Step 3 may be complicated. For example, if a bad block occurs within a directory
page, then the entire directory must be deleted after saving as much of its contents
as possible.
2-140 pSOSystem System Calls

pHILE+ System Calls verify_vol

2

Note that if verify_vol() is to be used to maintain the bitmap in this manner,
then an updated list of all bad blocks on the volume must be kept. Integrated
Systems suggests that you store the bad block list itself as a file on the volume.

See Also

mount_vol
pSOSystem System Calls 2-141

write_f pHILE+ System Calls
write_f Writes to an open file.

#include <phile.h>
unsigned long write_f(

unsigned long fid, /* file identifier */
void *buffer, /* output buffer */
unsigned long bcount /* output byte count */
)

Volume Types

All volume types except CD-ROM.

Description

write_f() writes data into a file. It begins at the current position of the
connection's L_ptr .

After write_f() , the file's L_ptr is updated to point to the byte after the last byte
written.

This call overwrites the original content of the file. If necessary, write_f() expands
the file by allocating space to hold the written data.

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

fid Specifies the file identifier associated with the file.

buffer Points to the data to write.

bcount Specifies the number of bytes to write.
2-142 pSOSystem System Calls

pHILE+ System Calls write_f

2

Error Codes

Hex Mnemonic Description

0x2003 E_BADVOL Inconsistent data on volume; volume
corrupted.

0x2015 E_RO Requested operation not allowed on
this file.

0x201A E_FIDBIG Invalid FID; exceeds maximum.

0x201B E_FIDOFF Invalid FID; file closed.

0x201C E_ININFULL Index block is full.

0x201D E_VFULL Volume is full.

0x2022 E_LOCKED Data is locked.

0x2052 E_EREMOTE Too many levels of remote in path.

0x2054 E_EIO A hard error happened at remote site.

0x2055 E_EACCES Task does not have access
permissions.

0x2056 E_EISDIR Illegal operation on a directory.

0x2057 E_EQUOT Quota exceeded.

0x2058 E_ESTALE Stale NFS file handle.

0x205B E_ENXIO No such device or address.

0x205C E_ENODEV No such device.

0x2060 E_BADCD CD-ROM volume; illegal operation.

0x2070 E_EAUTH RPC authorization is not available.

0x2071 E_ENFS Portmap failure on the host.

0x2072 E_ETIMEDOUT NFS call timed out.

0x2074 E_ENOAUTHBLK No RPC authorization blocks are
available.

0x2075 E_ECANTSEND Failure in sending call.

0x2076 E_ECANTRECV Failure in receiving result.

0x2077 E_PROBUNAVAIL Program not available.

0x2078 E_EPROGVERSMISMATCH Program version mismatched.
pSOSystem System Calls 2-143

write_f pHILE+ System Calls
Notes

1. On pHILE+ and MS-DOS volumes, write_f() operations are more efficient if
bcount is an integral multiple of the block size and the L_ptr is positioned at a
block boundary.

2. On pHILE+ and MS-DOS volumes, if the requested data includes either entire
blocks or a contiguous sequence of blocks and if such blocks are not already in
the buffer cache, the pHILE+ file system manager writes these blocks directly
from the user’s buffer (without going through the buffer cache).

3. write_f() automatically positions the L_ptr for sequential write operations. If
random writes are needed, the lseek_f() call should be used to reposition the
L_ptr .

4. Writing to system or directory files is not allowed.

5. write_f() expands a file if space is needed to accommodate the new data.

6. CD-ROM volumes are read-only.

See Also

lseek_f, sync_vol, write_vol

0x2079 E_ECANTDECODEARGS Decode arguments error.

0x207A E_EUNKNOWNHOST Unknown host name.

0x207B E_EPROGNOTREGISTERED Remote program is not registered.

0x207C E_UNKNOWNPROTO Unknown protocol.

0x207D E_EINTR Call interrupted.

0x207E ERPC All other RPC errors.

Hex Mnemonic Description
2-144 pSOSystem System Calls

pHILE+ System Calls write_vol

2

write_vol Writes directly to a pHILE+ formatted volume.

#include <phile.h>
unsigned long write_vol(

char *device, /* volume name */
unsigned long block, /* base block */
unsigned long index, /* byte offset */
unsigned long bcount, /* number of bytes to write */
void *buffer /* output buffer */
)

Volume Types

pHILE+ and MS-DOS formatted volumes.

Description

write_vol() writes data directly to a pHILE+ formatted volume (bypassing the file
system organization imposed by the pHILE+ file system manager).

Arguments

Return Value

This system call returns 0 on success or an error code on failure.

device Points to the null-terminated name of the volume to read.

block Specifies the logical block number where writing begins.

index Specifies where to begin writing within the specified block.

bcount Specifies the number of bytes to write.

buffer Points to the memory area containing the data to write.
pSOSystem System Calls 2-145

write_vol pHILE+ System Calls
Error Codes

Notes

1. If index is larger than the volume's block size, the write begins in a subsequent
block. For example, on a volume with a 1024-byte block size, writing block 5,
index 1224, is the same as writing block 6, index 200.

2. write_vol() does not check for the end of the volume; blocks beyond the
specified volume size can be written if they physically exist.

3. If the requested data includes either entire blocks or a contiguous sequence of
blocks and if such blocks are not already in the buffer cache, the pHILE+ file
system manager writes the blocks directly to the volume (without going through
the buffer cache.) Therefore, write_vol() operations are more efficient when
bcount and index equal integral multiples of blocks.

4. write_vol() execution on any block is allowed, including blocks in system
files. Therefore, use this call cautiously.

5. CD-ROM volumes are read-only.

See Also

read_vol

Hex Mnemonic Description

0x200A E_DMOUNT Volume not mounted.

0x2015 E_RO Operation not allowed on read-only
system files, directories, or mounted
volumes.

0x2025 E_IDN Illegal device name.

0x2050 E_BADNFS NFS volume; illegal operation.

0x2060 E_BADCD CD-ROM volume; illegal operation.
2-146 pSOSystem System Calls

3

3

pREPC+ System Calls
This chapter provides detailed information on each system call in the pREPC+
component of pSOSystem. The calls are listed alphabetically, with a multipage
section of information for each call. Each call’s section includes its syntax, a
detailed description, its arguments, and its return value. Where applicable, the
section also includes the headings “Notes” and “See Also.” “Notes” provides
important information not specifically related to the call’s description, and “See
Also” indicates other calls that have related information.

If you need to look up a system call by its functionality, refer to Appendix A, “Tables
of System Calls,” which lists the calls alphabetically by component and provides a
brief description of each call.

pREPC+ error codes are listed in Appendix B, “Error Codes.” For practical reasons,
they are not listed here, because every pREPC+ system call can return most or all of
the pREPC+ error codes. In addition, errors in other pSOSystem components or
device drivers can be reported by pREPC+ system calls.
3-1

pREPC+ System Calls
3-2 pSOSystem System Calls

pREPC+ System Calls abort

3

abort Aborts a task.

#include <stdlib.h>
void abort (void);

Description

The abort() macro is used to terminate a task. abort() simply invokes the
exit() macro with an argument of zero. For further details, refer to the exit()
macro on page 3-28.

Return Value

If the task is successfully deleted, the abort() macro does not return to its caller. If
the task cannot be deleted successfully, abort() suspends the task indefinitely
and does not return to its caller unless the task is explicitly resumed by another
task in the system.

Error Codes

None.

Notes

Callable From

■ Task

See Also

exit()
pSOSystem System Calls 3-3

abs pREPC+ System Calls
abs Computes the absolute value of an integer.

#include <stdlib.h>
int abs (

int j /* long integer */
)

Description

The abs() function converts the integer j into its absolute value. If the result
cannot be represented, the behavior is undefined.

Arguments

Return Value

abs() returns the absolute value.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

See Also

labs

j Specifies the integer to be converted.
3-4 pSOSystem System Calls

pREPC+ System Calls asctime

3

asctime Converts the broken-down time to a string.

#include <time.h>
char *asctime (

const struct tm *timeptr /* broken-down time */
)

Description

The function asctime() converts the broken-down time pointed to by timeptr to
an equivalent string representation of the form:

Sun Jan 1 12:30:13 1995\n\0

Arguments

Return Value

The asctime() function returns a pointer to the calendar time string.

Error Codes

Refer to Appendix B.

Notes

This function is non-reentrant as it returns a pointer to a statically allocated data
area. The reentrant version of this function is asctime_r() .

Callable From

■ Task

See Also

asctime_r, ctime, mktime, time

timeptr Points to a tm structure that stores the broken-down time. The tm
structure is defined in the mktime() description on page 3-111.
pSOSystem System Calls 3-5

asctime_r pREPC+ System Calls
asctime_r (Reentrant) Converts the broken-down time to a string.

#include <time.h>
char *asctime_r (

const struct tm *timeptr,/* pointer to broken-down time */
char *buf, /* result buffer */
int buflen /* result buffer length */
)

Description

asctime_r() is the reentrant version of the ANSI function asctime() , as defined
by POSIX 1003.1c. It converts the broken-down time pointed to by timeptr to an
equivalent string representation of the form:

Sun Jan 1 12:30:13 1995\n\0

and stores the string in the buffer pointed to by buf , which is assumed to have
space for at most buflen characters. An error may be returned if the converted
string contains more than buflen characters.

Arguments

Return Value

Upon success, asctime_r() returns the value of buf . On failure, it returns NULL
and sets errno .

Error Codes

Refer to Appendix B.

timeptr Points to a structure of type tm that stores the broken-down time.
The tm structure is defined in the mktime() description on page 3-
111.

buf Points to the buffer where asctime_r() stores the result.

buflen Specifies the size of buf .
3-6 pSOSystem System Calls

pREPC+ System Calls asctime_r

3

Notes

Callable From

■ Task

See Also

asctime, ctime, ctime_r, mktime, time
pSOSystem System Calls 3-7

assert pREPC+ System Calls
assert Verifies that a program is operating correctly.

#include <assert.h>
void assert (

int expression /* test expression */
)

Description

The assert() macro, defined in the header file assert.h , writes error information
to stderr if the expression expression evaluates to zero. The error information
includes the text of the argument, the name of the source file, and the source line
number. The last two of these are respectively the values of the preprocessing
macros __FILE__ and __LINE__ .

If expression does not evaluate to zero, assert() does nothing.

Arguments

Return Value

The assert() macro returns no value.

Error Codes

None.

Notes

Callable From

■ Task

expression Specifies the expression to be evaluated.
3-8 pSOSystem System Calls

pREPC+ System Calls atof

3

atof Converts a string to a double.

#include <stdlib.h>
double atof(

const char *nptr /* string */
)

Description

This function converts the initial part of the string pointed to by nptr to a double
representation. Leading white spaces are ignored. The argument nptr can be in
scientific exponential form (for example, +123.45e+67, -123.45E+67). This function
stops parsing nptr when it detects a character inconsistent with a double data
type. If the first nonwhite space character is other than a sign, a digit or a decimal
point, a value of 0 is returned.

Except for the behavior on error, this call is equivalent to:

strtod(str, (char **)NULL);

Arguments

Return Value

This function returns the converted value. In the event of an error, errno is set to
indicate the condition.

Error Codes

Refer to Appendix B.

Notes

The pREPC+ library returns double values (including floating point) in the CPU
register pair designated by the compiler to receive a return value of type double
from a function call when a hardware floating point is not selected. Please refer to
your compiler manual for the register pair. Additionally, if the FPU bit is set in the
processor type entry of the Node Configuration Table, the pREPC+ library also

nptr Points to the string to be converted.
pSOSystem System Calls 3-9

atof pREPC+ System Calls
places the floating point value in the floating point register designated by the
compiler to receive a return value of type double when a hardware floating point is
selected.

Callable From

■ Task

See Also

strtod
3-10 pSOSystem System Calls

pREPC+ System Calls atoi

3

atoi Converts a string to an integer.

#include <stdlib.h>
int atoi(

const char *nptr /* string */
)

Description

The atoi() function converts the initial part of the string pointed to by nptr to an
int representation. Leading white spaces are ignored. The conversion terminates
when a nondigit character is detected. If the first nonwhite space character is not a
digit, a value of 0 is returned.

Except for the behavior on error, this call is equivalent to:

(int) strtol(str, (char **)NULL, 10);

Arguments

Return Value

This function returns the converted value. If an error occurs, errno is set to
indicate the condition.

Error Codes

Refer to Appendix B.

nptr Points to the string to be converted.
pSOSystem System Calls 3-11

atoi pREPC+ System Calls
Notes

Callable From

■ Task

See Also

strtol
3-12 pSOSystem System Calls

pREPC+ System Calls atol

3

atol Converts a string to a long integer.

#include <stdlib.h>
long atol(

const char *nptr /* string */
)

Description

The atol() function converts the initial part of the string pointed to by nptr to a
long int representation. Leading white spaces are ignored. The conversion
terminates when a nondigit character is detected. If the first non-whitespace
character is not a digit, a value of 0 is returned.

Except for the behavior on error, this call is equivalent to:

strtol(str, (char **)NULL, 10);

Arguments

Return Value

This function returns the converted value. If an error occurs, errno is set to
indicate the condition.

Error Codes

Refer to Appendix B.

nptr Points to the string to be converted.
pSOSystem System Calls 3-13

atol pREPC+ System Calls
Notes

Callable From

■ Task

See Also

strtol
3-14 pSOSystem System Calls

pREPC+ System Calls bsearch

3

bsearch Searches an array.

#include <stdlib.h>
void *bsearch(

const void *key, /* search key */
const void *base, /* start point */
size_t nmemb, /* number of members */
size_t size, /* member size */
int (*compar)(const void *, const void *)

/* comparison operator */
)

Description

The bsearch() function searches an array of nmemb objects, the initial element of
which is pointed to by base , for an element that matches the object pointed to by
key . The size of each element of the array is specified by size .

The array must be sorted in ascending order. A user supplied comparison function,
compar , is called by bsearch with two arguments. The first argument to compar is
a pointer to the key object, and the second is a pointer to an array member. The
compar function must return an integer that is either less than, equal to, or greater
than zero if key object is considered, respectively, to be less than, equal to, or
greater than the array member.

Arguments

Return Value

This function returns a pointer to the first matching member detected. If no match
is found, it returns a null pointer. In the event of an error, errno is set to indicate
the condition.

key Points to the object to be matched in the search.

base Points to the beginning of the array to be searched.

nmemb Specifies the number of members in the array.

size Specifies the size of each member in the array.
pSOSystem System Calls 3-15

bsearch pREPC+ System Calls
Error Codes

Refer to Appendix B.

Notes

The compar function can call a limited set of pREPC+ functions. These functions
consist of all character handling functions and all string handling functions except
strtok() . Other pREPC+ functions cannot be called from compar .

Callable From

■ Task

■ ISR

See Also

qsort
3-16 pSOSystem System Calls

pREPC+ System Calls calloc

3

calloc Allocates memory.

#include <stdlib.h>
void *calloc(

size_t nmemb, /* number of allocation units */
size_t size /* size of allocation unit */
)

Description

The calloc() function allocates memory for nmemb data objects, each of whose
size is specified by size . The allocated memory is initialized to 0.

Arguments

Return Value

This function returns a pointer to the memory allocated, or a null pointer if no
memory is allocated. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

1. calloc() calls the pSOS+ region manager to allocate the memory.

2. Memory is always allocated from Region 0.

3. The caller can be blocked if memory is not available and the wait option is
selected in the pREPC+ Configuration Table.

nmemb Specifies the number of data objects for which calloc()
allocates memory.

size Specifies the size of each data object.
pSOSystem System Calls 3-17

calloc pREPC+ System Calls
Callable From

■ Task

See Also

free, malloc, realloc
3-18 pSOSystem System Calls

pREPC+ System Calls clearerr

3

clearerr Clear’s a stream’s error indicators.

#include <stdarg.h>
#include <stdio.h>
void clearerr(

FILE *stream /* stream pointer */
)

Description

The clearerr() function clears the end-of-file and error indicators for the stream
pointed to by stream .

Arguments

Return Value

This function does not return a value. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-19

ctime pREPC+ System Calls
ctime Converts the calendar time to a string.

#include <time.h>
char *ctime (

const time_t *timer /* calendar time */
)

Description

The ctime() function converts the calendar time pointed to by timer to a string
representation of the form:

Sun Jan 1 12:30:13 1995\n\0

The time is represented in local time. This call is equivalent to:

asctime(localtime(timer))

The calendar time is generally obtained through a call to time() .

The buffer used by ctime() to hold the formatted output string is a statically
allocated character array and is overwritten each time the function is called. To save
the contents of the string, you need to copy it elsewhere.

Arguments

Return Value

The ctime() function returns the pointer to the converted calendar time string.

Error Codes

Refer to Appendix B.

Notes

This function is non-reentrant as it returns a pointer to a statically allocated data
area. The reentrant version of this function is ctime_r() .

timer Points to the calendar time.
3-20 pSOSystem System Calls

pREPC+ System Calls ctime

3

Callable From

■ Task

See Also

asctime, asctime_r, ctime_r, mktime, time
pSOSystem System Calls 3-21

ctime_r pREPC+ System Calls
ctime_r (Reentrant) Converts the calendar time to a string.

#include <time.h>
char *ctime_r (

const time_t *timer, /* calendar time */
char *buf, /* result buffer */
int buflen /* result buffer length */
)

Description

ctime_r() is the reentrant version of the ANSI function ctime() , as defined by
POSIX 1003.1c. It converts the calendar time pointed to by timer to a string
representation of the form:

Sun Jan 1 12:30:13 1995\n\0

The time is represented in local time. ctime_r() stores the string in the buffer
pointed to by buf , which is assumed to have space for at most buflen characters.
An error may be returned if the converted string contains more than buflen
characters.

The calendar time is generally obtained through a call to time() .

Arguments

Return Value

Upon success, asctime_r() returns the value of buf . On failure, it returns NULL
and sets errno .

Error Codes

Refer to Appendix B.

timer Points to the calendar time.

buf Points to the buffer where ctime_r() stores the result.

buflen Specifies the size of buf .
3-22 pSOSystem System Calls

pREPC+ System Calls ctime_r

3

Notes

Callable From

■ Task

See Also

asctime, asctime_r, ctime, mktime, time
pSOSystem System Calls 3-23

difftime pREPC+ System Calls
difftime Computes the difference between two calendar times.

#include <time.h>
double difftime (

time_t time1, /* finish time */
time_t time0 /* start time */
)

Description

The difftime() function computes the difference, in seconds, between two
calendar times: time1 - time0 .

Arguments

Return Value

The difftime() function returns the difference expressed in seconds as a double .

Error Codes

None.

Notes

Callable From

■ Task

See Also

time

time1 Specifies the finish time.

time0 Specifies the start time.
3-24 pSOSystem System Calls

pREPC+ System Calls div

3

div Performs a division operation on two specified integers.

#include <stdlib.h>
div_t div (

int numer, /* numerator */
int denom /* denominator */
)

Description

The div() function computes the quotient and remainder of the division of the
numerator numer by the denominator denom. If the division is inexact, the resulting
quotient is the integer of lesser magnitude that is the nearest to the algebraic
quotient. If the result cannot be represented, the behavior is undefined; otherwise,
quot * denom + rem is equal to numer .

Arguments

Return Value

The div() function returns a structure of type div_t . This structure is defined in
stdlib.h as follows:

typedef struct {
int quot; /* the quotient */
int rem; /* the remainder */
} div_t;

Error Codes

None.

numer Specifies the numerator.

denom Specifies the denominator.
pSOSystem System Calls 3-25

div pREPC+ System Calls
Notes

Callable From

■ Task

■ ISR

See Also

ldiv
3-26 pSOSystem System Calls

pREPC+ System Calls errno

3

errno The error number returned by the last failing system call.

#include <errno.h>
int errno;

Description

The errno is a macro which expands to a modifiable lvalue that has type int . Its
value can be set to a positive number by several library or system calls. The macro
is defined in the header file errno.h . It returns the error number from the last
failing system call or library function.

If the macro definition is suppressed (by using #undef pre-processor directive), or
an application defines an identifier with the name errno , the behavior is undefined.

The value of errno is zero at task startup, but is never set to zero by any library
function or system service.

Return Value

This macro returns the current value of errno for the calling task.

Error Codes

Refer to Appendix B.

Notes

errno generates a call to the pSOS+ errno_addr() system service.

Callable From

■ Task
pSOSystem System Calls 3-27

exit pREPC+ System Calls
exit Terminates a task.

#include <stdlib.h>
void exit(

int status /* termination status */
);

Description

The exit() macro terminates the task that invokes it. exit() prints an error
message on the task’s standard error stream if a non-zero status is passed to it. It
then executes the task exit sequence described in t_delete() on page 1-139, with
the exception that it does not automatically invoke “close” functions for pSOSystem
components other than pREPC+ (see Note). If the task cannot be deleted
successfully, exit() suspends the task indefinitely.

Arguments

Return Value

If the task is successfully deleted, the exit() macro does not return to its caller. If
the task cannot be deleted successfully, exit() suspends the task indefinitely and
does not return to its caller unless the task is explicitly resumed by another task in
the system.

Error Codes

None.

Notes

If you have pSOSystem components other than pREPC+ configured in your system,
you need to edit the definition of exit() in stdlib.h to uncomment the necessary
“close” functions in the task exit sequence. The “close” functions release any task-
specific resources held by pSOSystem components.

status Contains the termination status printed by the error
message.
3-28 pSOSystem System Calls

pREPC+ System Calls exit

3

Callable From

■ Task

See Also

abort
pSOSystem System Calls 3-29

fclose pREPC+ System Calls
fclose Closes a stream.

#include <stdarg.h>
#include <stdio.h>
int fclose(

FILE *stream /* stream pointer */
)

Description

The fclose() function first flushes the buffer associated with the stream pointed
to by stream and closes the associated file or I/O device. Any unwritten buffered
data is written to the associated file or I/O device, and any unread buffered data is
discarded. The stream is disassociated from the file or I/O device.

If the buffer was automatically allocated when the stream was opened, it is
reclaimed by the system. The user is responsible for returning user-supplied
buffers.

When invoked with a null stream pointer, fclose() has a special significance
under pREPC+. It causes pREPC+ to:

■ Close all streams opened by the calling task.

■ Reclaim all memory allocated by pREPC+ on behalf of the calling task, either
implicitly or explicitly by calls to malloc() or calloc() functions.

Arguments

Return Value

This function returns 0 if successful or end-of-file (EOF) if an error occurs. If an
error occurs, errno is set.

Error Codes

Refer to Appendix B.

stream Points to an open pREPC+ stream.
3-30 pSOSystem System Calls

pREPC+ System Calls fclose

3

Notes

1. pREPC+ calls the pSOS+ function de_close() if the stream was associated
with an I/O device.

2. pREPC+ calls the pHILE+ function close_f() if the stream was associated
with a disk file.

3. If a task uses any of the pREPC+ functions, it must call fclose(0) to release
all pREPC+ resources prior to deleting itself through a t_delete() system call.
Refer to the t_delete() call description on page 1-138 for the complete exit
sequence.

Callable From

■ Task

See Also

fopen
pSOSystem System Calls 3-31

feof pREPC+ System Calls
feof Tests a stream’s end-of-file indicator.

#include <stdarg.h>
#include <stdio.h>
int feof(

FILE *stream /* stream pointer */
)

Description

The feof() function tests the end-of-file indicator for the stream pointed to by
stream .

Arguments

Return Value

This function returns a nonzero number if the end-of-file indicator is set for stream
and zero if it is not set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

stream Points to an open pREPC+ stream.
3-32 pSOSystem System Calls

pREPC+ System Calls ferror

3

ferror Tests a stream’s error indicator.

#include <stdarg.h>
#include <stdio.h>
int ferror(

FILE *stream /* stream pointer */
)

Description

This function tests the error indicator for the stream pointed to by stream .

Arguments

Return Value

This function returns a nonzero number if the error flag is set and zero if it is not
set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-33

fflush pREPC+ System Calls
fflush Flushes the buffer associated with an open stream.

#include <stdarg.h>
#include <stdio.h>
int fflush(

FILE *stream /* stream pointer */
)

Description

The fflush() function writes any unwritten, buffered data associated with the
stream pointed to by stream to the file or I/O device. An error is returned if the
stream has not been opened for write or update. If stream is a null pointer, the
fflush() function performs the flushing action on all the streams open for write or
update.

Arguments

Return Value

This function returns 0 if successful or EOF on error. If an error occurs, errno is
set.

Error Codes

Refer to Appendix B.

Notes

1. If the write is to an I/O device, fflush() calls the pSOS+ I/O call
de_write() .

2. If the write is to a disk file, fflush() calls the pHILE+ call write_f() .

Callable From

■ Task

stream Points to an open pREPC+ stream.
3-34 pSOSystem System Calls

pREPC+ System Calls fgetc

3

fgetc Gets a character from a stream.

#include <stdarg.h>
#include <stdio.h>
int fgetc(

FILE *stream /* stream pointer */
)

Description

The fgetc() function reads the next character, as an unsigned char converted to
an int , from the input stream pointed to by stream and advances the associated
file position indicator for the stream, if defined. It is operationally equivalent to the
getc function.

Arguments

Return Value

This function returns the character that is read from the stream. If the end-of-file
condition is detected, the stream’s end-of-file indicator is set and EOF is returned. If
a read error occurs, the stream's error indicator is set, EOF is returned, and errno
is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-35

fgetpos pREPC+ System Calls
fgetpos Gets the current file position indicator for fsetpos .

#include <stdarg.h>
#include <stdio.h>
int fgetpos(

FILE *stream, /* stream pointer */
fpos_t *pos /* stream position */
)

Description

The fgetpos() function stores the current value of the file position indicator for
the stream pointed to by stream in the object pointed to by pos . This value can be
used by the fsetpos() function to reposition the file position indicator of the
stream to its position at the time of the call to the fgetpos() function.

Arguments

Return Value

If successful, this function returns a zero. If not successful or if stream references
an I/O device, this function returns an EOF and sets errno .

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

stream Points to an open pREPC+ stream.

pos Points to the object where fgetpos() stores the current file
position indicator.
3-36 pSOSystem System Calls

pREPC+ System Calls fgets

3

fgets Gets a string from a stream.

#include <stdarg.h>
#include <stdio.h>
char *fgets(

char *s, /* buffer */
int n, /* length */
FILE *stream /* stream pointer */
)

Description

The fgets() function reads at most one less than the number of characters
specified by n from the stream pointed to by stream . The characters go into the
user buffer pointed to by s . The function stops reading characters when a new-line
character (which is retained) or an end-of-file condition is detected. A null character
is written immediately after the last character is read into the user buffer.

If stream references a disk file, its position indicator is advanced.

Arguments

Return Value

This function returns s if successful. If a read error occurs or an end-of-file
condition is detected before any characters are read, a null pointer is returned and
errno is set.

Error Codes

Refer to Appendix B.

s Points to the user buffer where fgets() stores characters.

n Specifies the number of characters to read, plus one for the
null terminator.

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-37

fgets pREPC+ System Calls
Notes

Callable From

■ Task

See Also

fputs
3-38 pSOSystem System Calls

pREPC+ System Calls fopen

3

fopen Opens a file.

#include <stdarg.h>
#include <stdio.h>
FILE *fopen(

const char *filename, /* file name */
const char *mode /* access mode */
)

Description

The fopen() function opens a disk file or I/O device whose name is specified by the
string pointed to by filename and associates a stream with it.

fopen() allocates a FILE structure for the opened stream. It contains control
information for the opened I/O device or disk file. fopen() returns a pointer to the
allocated FILE structure that subsequent calls require to perform various I/O
operations on the I/O device or disk file (for example, for an fread or fwrite call).

Disk files have position indicators that determine where the next byte is read from
or written to in the file. Position indicators have no meaning for I/O devices.

Arguments

filename Points to the name of the disk file or I/O device to be opened.

mode Points to a string that specifies the mode in which the file is to be
opened. The mode string must begin with one of the following
sequences:

r Open text file for reading.

w Truncate to zero length or create text file for
writing.

a Append: open or create text file for writing at the
end-of-file.

rb Open binary file for reading.

wb Truncate to zero length or create binary file for
writing.
pSOSystem System Calls 3-39

fopen pREPC+ System Calls
Return Value

If the open operation is successful, this function returns a pointer to the FILE
object that must be used in subsequent calls to specify this opened stream. If the
operation fails, a null pointer is returned and errno is set.

ab Append: open or create a binary file for writing at
the end-of-file.

r+ Open text file for updating, reading and writing at
the current file position.

w+ Truncate to zero length or create text file for
updating, reading and writing at the current file
position.

a+ Append: open or create text file for updating,
reading at the current file position and writing at
the end-of-file.

r+b or rb+ Open binary file for updating, reading and writing
at the current file position.

w+b or wb+ Truncate to zero length or create binary file for
updating, reading and writing at the current file
position.

a+b or ab+ Append: open or create a binary file for updating,
reading at current file position and writing at the
end-of-file.

Opening a disk file with read mode (r as the first character in mode
argument) fails if the file does not exist or cannot be read.

Opening a disk file with append mode (a as the first character in
mode argument) causes all subsequent writes to the then current
EOF, regardless of intervening calls to the fseek function.

When a disk file is opened with update mode (+ as the second or
third character in mode argument) both read and write operations
may be performed on the associated stream. However, output may
not be directly followed by input, or vice-versa, without an
interviewing call to the fflush function or to a file positioning
function, via fseek , fsetpos and rewind . The only exception to
the above rule is a read operation that encounters end-of-file.
3-40 pSOSystem System Calls

pREPC+ System Calls fopen

3

Error Codes

Refer to Appendix B.

Notes

1. The disk files are managed by the pHILE+ file system manager and are
designated by pHILE+ pathnames (for example, 0.1/abc). The I/O devices are
identified by pSOS+ logical device numbers represented as a string of the form
M.N, where M is the major number and N is the minor number of the I/O device
(for example, 0.1). When reading or writing disk files, the pREPC+ library calls
the pHILE+ file system manager. When reading or writing I/O devices, the
pREPC+ library calls the pSOS+ I/O Supervisor directly.

2. fopen() internally makes a call to the pHILE+ open_f function when it opens
a disk file and the pSOS+ de_open function when it opens an I/O device.

3. If the volume is an NFS volume, two conditions can cause problems related to
the file mode. The conditions are as follows:

a. A file that did not previously exist is created in an NFS volume by the
fopen() call with a UNIX-like privilege mode automatically set to 0x180
(octal 600/rw for the user.) If, for example, the mode in the fopen() call is
manually specified as w, a conflict could result. The pREPC+ library allows
only file operations that are valid for the specified mode. Therefore (using
the preceding example), the pREPC+ library does not allow a read operation
on the following file:

fopen("0.0/file1.dat", "w");

b. The restrictions placed on file operations depend on the mode extended to
files that exist prior to the fopen() call. For example:

fopen("0.0/file2.dat", "r");

succeeds if file2.dat exists prior to the fopen() call. A subsequent read
operation would fail if that file had an access mode (under NFS) that did not
allow a user-read. Currently, no method exists under the pREPC+ library to
change the access mode of an NFS file.

4. Since the underlying mechanism (pHILE+ and pSOS+ I/O device manager) do
not, as of yet, support the concept of text files, pREPC+ treats text files as
binary files. However, for forward compatibility, you must specify the “b”
character in the mode string if the file being opened through fopen contains
pSOSystem System Calls 3-41

fopen pREPC+ System Calls
binary data that should be read or written without performing any translations
on it.

5. Though native MS-DOS systems differentiate between text and binary files, the
pHILE+ implementation of MS-DOS file system does not.

6. For I/O devices, the text streams are treated as binary streams.

7. For I/O devices, the operations of truncating, creating and appending are
meaningless. In modes starting with w or a, an error is returned if the device
being opened is not configured into the system. Also, the append mode is
treated the same as the write mode for I/O devices.

Callable From

■ Task

See Also

fclose, fseek
3-42 pSOSystem System Calls

pREPC+ System Calls fprintf

3

fprintf Prints formatted output to a stream.

#include <stdarg.h>
#include <stdio.h>
int fprintf(

FILE *stream, /* stream pointer */
const char *format, /* format control */
... /* arguments 1 through n */
)

Description

The fprintf() function writes output to the stream pointed to by stream . A
format control string, pointed to by format , specifies how the subsequent
arguments are converted for output.

Arguments

stream Points to an open pREPC+ stream.

format Points to the format control string. The format string consists of
ordinary characters (except the % character) and conversion
specifications. The ordinary characters are simply copied to the
output stream. The conversion specifications determine the form of
the arguments’ output. Each argument should have one conversion
specification.

Each conversion specification begins with a % character and ends
with a conversion specification character. One or more of the
following can be positioned between the % and ending specification
character, in the order specified below:

■ Zero or more flags (in any order) that modify the meaning of the
conversion specification.

■ An optional minimum field width. If the converted value has
fewer characters than the field width, it will be padded with
spaces (by default) on the left (or right, if the left adjustment
flag, described below, has been given) to the field width. The
field width takes the form of an asterisk * (described below) or a
decimal integer.
pSOSystem System Calls 3-43

fprintf pREPC+ System Calls
■ An optional precision that gives the minimum number of digits
to appear for the d, i, o, u, x, and X conversions, the number of
digits to appear after the decimal-point character for e, E, and f
conversions, the maximum number of significant digits for the g
and G conversions, or the maximum number of characters to be
written from a string in s conversion. The precision takes the
form of a period (.) followed either by an asterisk * (described
later) or by an optional decimal integer; if only the period is
specified, the precision is taken as zero. If a precision appears
with any other conversion specifier, the behavior is undefined.

■ An optional modifier h, l (ell), or L indicating the size of the re-
ceiving object. For instance, the conversion specifier d is pre-
ceded by h if the corresponding argument is a short int rather
than an int (the argument will have been promoted according
to the rules of integral promotions, and its value will be con-
verted to short int before printing.) A table of modifiers is pre-
sented below, under the list of conversion specifiers.

As noted above, a field width, or precision, or both, may be indicated
by an asterisk. In this case, an int argument supplies the field
width or precision. The argument specifying field width, or
precision, or both, should appear (in that order) before the argument
(if any) to be converted. A negative field width argument is taken as
a - flag followed by a positive field width. A negative precision
argument is taken as if the precision were omitted.

The flag characters and their meanings are:

- The result of the conversion will be left-justified within the
field. (It will be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a
plus or minus sign. (It will begin with a sign only when a
negative value is converted if this flag is not specified.)

space If the first character of a signed conversion is not a sign, or
if a signed conversion results in no characters, a space will
be prefixed to the result. If the space and + flags both
appear, the space flag will be ignored.
3-44 pSOSystem System Calls

pREPC+ System Calls fprintf

3

The result is converted to an “alternate form”. For o
conversion, it increases the precision to force the first digit
of the result to be a zero. For x (or X) conversion, a nonzero
result will have 0x (or 0X) prefixed to it. For e, E, f , g, and G
conversions, the result will always contain a decimal-point
character, even if no digits follow it. (Normally, a decimal-
point character appears in the result of these conversions
only if a digit follows it.) For g and G conversions, trailing
zeros will not be removed from the result. For other
conversions, the behavior is undefined.

0 For d, i , o, u, x, X, e, E, f , g, and G conversions, leading
zeros (following any indication of sign or base) are used to
pad the field width; no space padding is performed. If the 0
and - flags both appear, the 0 flag will be ignored. For d, i ,
o, u, x , and X conversions, if a precision is specified, the 0
flag will be ignored. For other conversions, the behavior is
undefined.

The conversion specifiers and their meanings are:

d or
i

The argument is assumed to be an int and is converted to
signed decimal notation. The precision specifies the
minimum number of digits that appear.

o The argument is assumed to be an unsigned int and is
converted to unsigned octal notation. The precision specifies
the minimum number of digits to appear.

u The argument is assumed to be an unsigned int and is
converted to unsigned decimal notation. The precision
specifies the minimum number of digits to appear.

x or
X

The argument is assumed to be an unsigned int and is
converted to hexadecimal notation. The precision specifies
the minimum number of digits to appear.

f The argument is assumed to be a double and is converted to
decimal notation in the form [-]ddd.ddd. The precision
specifies the number of digits to appear after the decimal
point. The default precision is six. If the precision is zero, no
decimal-point is printed. The value is rounded to the
appropriate number of digits.
pSOSystem System Calls 3-45

fprintf pREPC+ System Calls
e or
E

The argument is assumed to be a double and is converted to
decimal notation in the form [-]d.ddde(E)+dd. The precision
specifies the number of digits to appear after the decimal-
point. The default precision is six. If the precision is zero, no
decimal-point is printed. The value is rounded to the
appropriate number of digits.

g or
G

The argument is assumed to be a double and is converted to
decimal notation in the form of either e or f . This depends
on the value of the converted number. The f form is used
unless the exponent is less than -4 or greater than or equal
to the precision. The precision specifies the number of
significant digits. The decimal-point character appears only
if a digit follows it.

c The argument is assumed to be an int and is converted to
an unsigned char .

s The argument is assumed to be a pointer to a string.
Characters in the string are printed until a null character is
detected or until the number of characters indicated by the
precision is exhausted.

p The argument is assumed to be a pointer to a void and the
value of the pointer is printed as a hexadecimal number.

n The argument is assumed to be pointer to an integer into
which is written the number of characters written by this
call so far.

% A % character is written.

Below is a table of modifiers that can precede a conversion specifier.
If a modifier appears with any conversion specifier not listed, the
behavior is undefined.

Modifier Specifier Default Argument Type Modified Argument Type

h d,i int short int

h o,u,x,X unsigned int unsigned short

h n pointer to int pointer to short int

l d,i int long

l o,u,x,X unsigned int unsigned long

l n pointer to int pointer to long int

L e,E,f,g,G double long double
3-46 pSOSystem System Calls

pREPC+ System Calls fprintf

3

Return Value

This function returns the number of characters written. It returns a negative
number if a write error occurs and sets errno .

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

... Arguments 1 through n are written by fprintf() according to the
specifications contained in the format control string.
pSOSystem System Calls 3-47

fputc pREPC+ System Calls
fputc Writes a character to a stream.

#include <stdarg.h>
#include <stdio.h>
int fputc(

int c, /* character */
FILE *stream /* stream pointer */
)

Description

The fputc() function writes the character specified by c to the output stream
pointed to by stream after converting it to an unsigned char . This function
operates the same as the putc function.

If stream designates a disk file, its position indicator is advanced appropriately.

Arguments

Return Value

This function returns the character written. If a write error occurs, the stream's
error indicator is set, EOF is returned and errno is set.

Error Codes

Refer to Appendix B.

c Specifies the character to write.

stream Points to an open pREPC+ output stream.
3-48 pSOSystem System Calls

pREPC+ System Calls fputc

3

Notes

Callable From

■ Task

See Also

fgetc
pSOSystem System Calls 3-49

fputs pREPC+ System Calls
fputs Writes a string to a stream.

#include <stdarg.h>
#include <stdio.h>
int fputs(

const char *s, /* string */
FILE *stream /* stream pointer */
)

Description

The fputs() function writes the string pointed to by s to the stream pointed to by
stream . The terminating null character is not written.

Arguments

Return Value

This function returns zero if the operation succeeds and EOF if it fails. If an error
occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

fgets

s Points to the string to be written.

stream Points to an open pREPC+ stream.
3-50 pSOSystem System Calls

pREPC+ System Calls fread

3

fread Reads from a stream.

#include <stdarg.h>
#include <stdio.h>
size_t fread(

void *ptr, /* buffer */
size_t size, /* element size */
size_t nmemb, /* element count */
FILE *stream /* stream pointer */
)

Description

This function reads up to nmemb elements whose size is specified by size from the
stream pointed to by stream and puts them into the user buffer pointed to by ptr .
The file position indicator for the stream (if defined) is advanced by the number of
characters successfully read. If an error occurs, the resulting value of stream’s file
position indicator is indeterminate. If a partial item is read, its value is
indeterminate.

Arguments

Return Value

This function returns a count of the number of items successfully read. If an error
occurs, stream’s error indicator and errno are set. If size or nmemb is zero,
fread() returns 0 and the contents of the array and the state of the stream remain
unchanged.

Error Codes

Refer to Appendix B.

ptr Points to the user buffer where items are stored.

size Specifies the size of each item.

nmemb Specifies the number of items to read.

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-51

fread pREPC+ System Calls
Notes

Callable From

■ Task

See Also

fwrite, fopen
3-52 pSOSystem System Calls

pREPC+ System Calls free

3

free Deallocates memory.

#include <stdlib.h>
void free(

void *ptr /* pointer to memory segment */
)

Description

This function deallocates a specified memory segment (ptr). If the memory segment
was not previously allocated by calloc() , malloc() or realloc() , or if the space
has been deallocated by a call to free() or realloc() , the results are
unpredictable.

Arguments

Return Value

This function does not return a value. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

free() calls the pSOS+ region manager to deallocate the memory.

Callable From

■ Task

See Also

calloc, malloc, realloc

ptr Points to the memory segment to deallocate.
pSOSystem System Calls 3-53

freopen pREPC+ System Calls
freopen Reopens a file.

#include <stdarg.h>
#include <stdio.h>
FILE *freopen(

const char *filename, /* filename */
const char *mode, /* access mode */
FILE *stream /* stream pointer */
)

Description

The freopen() function first closes the file specified by stream . Then it opens the
file named by the string pointed to by filename and associates it with the stream
pointed to by stream . The file is opened in the mode specified by mode, which is
interpreted just as in fopen . The error and end-of-file indicators for the stream are
cleared.

If the close operation fails, filename is still opened and attached to stream .

This call can be used to rename stdin , stdout , and stderr .

Arguments

Return Value

This function returns a file pointer if the file specified by filename is opened, or it
returns a null pointer if it does not open the file. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

filename Points to the name of the file to be opened.

mode Points to the mode string, which specifies how to open the
file.

stream Points to an open pREPC+ stream.
3-54 pSOSystem System Calls

pREPC+ System Calls freopen

3

Notes

Callable From

■ Task

See Also

fopen, fclose
pSOSystem System Calls 3-55

fscanf pREPC+ System Calls
fscanf Reads formatted input from a stream.

#include <stdarg.h>
#include <stdio.h>
int fscanf(

FILE *stream, /* stream pointer */
const char *format, /* format control string */
... /* arguments 1 through n */
)

Description

The fscanf() function reads input from the stream specified by stream . As input
is read, it is divided into input fields. An input field is defined as a string of non-
white space characters. It extends either to the next white space character or up to
a specified field width. The input fields are handled in a manner determined by a
format control string. The input fields are converted to data items and stored in
variables pointed to by the remaining arguments. If insufficient arguments are
provided for format , the behavior is undefined. If format is exhausted while
arguments remain, the excess arguments are evaluated but are otherwise ignored.

Arguments

stream Points to an open pREPC+ stream.

format Points to the format control string. The format is a multibyte
character sequence, beginning and ending with its initial shift state.
It is composed of zero or more directives: one or more white-space
characters; an ordinary multibyte character (neither % nor a white-
space character); or a conversion specification. Each conversion
specification is introduced by the character %. After the %, the
following appear in sequence:

■ An optional assignment-suppressing character * .

■ An optional nonzero decimal integer that specifies the maximum
field width.
3-56 pSOSystem System Calls

pREPC+ System Calls fscanf

3

■ An optional modifier h or l (ell), indicating the size of the receiv-
ing object. For instance, the conversion specifier d is preceded
by h if the corresponding argument is a pointer to a short int
rather than a pointer to an int . A table of modifiers is presented
below, under the list of conversion specifiers.

■ A character that specifies the type of conversion to be applied.
The valid conversion specifiers are described below.

fscanf() executes each directive of the format in turn. If a
directive fails, as detailed below, fscanf() returns. Failures are
described as input failures (due to the unavailability of input
characters), or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by
reading input up to the first non-white-space character (which
remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by
reading the next characters of the stream. If one of the characters
differs from one comprising the directive, the directive fails, and the
differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of
matching input sequences, as described below for each specifier. A
conversion specification is executed in the following steps:

Input white-space characters (as specified by the isspace()
function) are skipped, unless the specification includes a [, c , or n
specifier.

An input item is read from the stream, unless the specification
includes an n specifier. An input item is defined as the longest
matching sequence of input characters, unless that exceeds a
specified field width, in which case it is the initial subsequence of
that length in the sequence. The first character, if any, after the
input item remains unread. If the length of the input item is zero,
the execution of the directive fails: this condition is a matching
failure, unless an error prevented input from the stream, in which
case it is an input failure.
pSOSystem System Calls 3-57

fscanf pREPC+ System Calls
Except in the case of a % specifier, the input item (or, in the case of a
%n directive, the count of input characters) is converted to a type
appropriate to the conversion specifier. If the input item is not a
matching sequence, the execution of the directive fails: this
condition is a matching failure. Unless assignment suppression was
indicated by a * , the result of the conversion is placed in the object
pointed to by the first argument following the format argument that
has not already received a conversion result. If this object does not
have an appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behavior is undefined.

The conversion specifier characters and their definitions are as
follows:

d, i An optionally signed decimal integer is expected. The
corresponding argument should be a pointer to an integer.

o An optionally signed octal integer is expected. The
corresponding argument should be a pointer to an integer.

u An optionally signed octal integer is expected. The
corresponding argument should be a pointer to an unsigned
long integer.

x An optionally signed hexadecimal integer is expected. The
corresponding argument should be a pointer to an integer.

e,f,g An optionally signed floating-point number is expected. The
corresponding argument should be a pointer to a float.

p An unsigned hexadecimal number is expected. The
corresponding argument should be a pointer to a pointer to
void.

s A sequence of non-white-space characters is expected. The
corresponding argument should be a pointer to a character
array large enough to accept the sequence and an added,
terminating null character.

c A sequence of characters is expected. The number of
characters in the sequence should be equal to the field
width. If the field width is not specified, one character is
expected. The corresponding argument should be a pointer
to a character array large enough to accept the sequence. A
terminating null character is not added.
3-58 pSOSystem System Calls

pREPC+ System Calls fscanf

3

Return Value

This function returns EOF and sets errno if an input failure occurs before any
conversion. Otherwise, it returns the number of input items assigned, which can be
fewer than provided, even zero, in the event of an early matching failure.

Error Codes

Refer to Appendix B.

[A sequence of characters is expected. Every character must
match one of the characters listed after the [character and
up to and including a] character. If the first character listed
after the initial [character is a circumflex (^) character, then
the characters read must not match the characters given in
the list. A character list beginning with [] or [^] is a special
case. If this occurs, the first] character does not end the list
and a second] character is needed. The corresponding
argument should be a pointer to a character array large
enough to accept the sequence and an added, terminating
null character.

n No input is read. The corresponding argument should be a
pointer to an integer that is loaded with the number of
characters read so far.

% A % character is expected. No assignment occurs.

Below is a table of the modifiers that can precede a conversion
specifier. If a modifier appears with any conversion specifier not
listed, the behavior is undefined.

Modifier Specifier Default Argument Type Modified Argument Type

h d,i,n pointer to int pointer to short

h o,x,u pointer to unsigned int pointer to unsigned
short

l d,i,n pointer to int long

l o,x,u pointer to unsigned int pointer to unsigned long

l e,f,g pointer to float pointer to double

The L modifier is not supported by fscanf() .

... Arguments 1 through n point to variables where input is stored.
pSOSystem System Calls 3-59

fscanf pREPC+ System Calls
Notes

Callable From

■ Task

See Also

scanf
3-60 pSOSystem System Calls

pREPC+ System Calls fseek

3

fseek Sets the file position indicator.

#include <stdarg.h>
#include <stdio.h>
int fseek(

FILE *stream, /* stream pointer */
long offset, /* file offset */
int whence /* relative file base */
)

Description

The fseek() function sets the file position indicator for the stream pointed to by
stream .

For a text stream, either offset should be zero, or offset should be a value
returned by an earlier call to ftell function on the same stream and base should
be SEEK_SET.

A successful call to fseek() clears the stream's end-of file indicator and undoes
any effect of ungetc function on the same stream.

If stream refers to an I/O device, this function does nothing and returns a zero.

Arguments

stream Points to an open pREPC+ stream.

offset For a binary stream, specifies the offset value, which will be added to
the position specified by whence to calculate the new value of the
position indicator.

whence Specifies the relative file base. whence can have one of the following
values:

Value Description

SEEK_SET Beginning of file

SEEK_CUR Current position in file

SEEK_END End of file
pSOSystem System Calls 3-61

fseek pREPC+ System Calls
Return Value

This function returns zero if the operation is successful or a nonzero number if
unsuccessful. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

ftell, fsetpos, fgetpos
3-62 pSOSystem System Calls

pREPC+ System Calls fsetpos

3

fsetpos Sets file position by using the fgetpos result.

#include <stdarg.h>
#include <stdio.h>
int fsetpos(

FILE *stream, /* stream pointer */
const fpos_t *pos /* stream position */
)

Description

The fsetpos() function sets the position indicator for the stream pointed to by
stream to the value of the object pointed to by pos .

A successful call to fsetpos function clears the EOF indicator for the stream and
undoes any effects of the ungetc function on the same stream.

Arguments

Return Value

This function returns a 0 if successful and a nonzero number if unsuccessful. If an
error occurs, errno is set.

Error Codes

Refer to Appendix B.

stream Points to an open pREPC+ stream.

If stream refers to an I/O device, this function does nothing
and returns a 0.

pos Points to an object that specifies the new value of the
position indicator. The object should contain a value
previously returned by the fgetpos() function on the same
stream.
pSOSystem System Calls 3-63

fsetpos pREPC+ System Calls
Notes

Callable From

■ Task

See Also

fgetpos
3-64 pSOSystem System Calls

pREPC+ System Calls ftell

3

ftell Gets the file position indicator.

#include <stdarg.h>
#include <stdio.h>
long ftell(

FILE *stream /* stream pointer */
)

Description

The ftell() function obtains the current value of the position indicator for the
stream pointed to by stream . This value can be passed to fseek() as an input
parameter.

For a binary stream, the position indicator is the number of characters from the
beginning of the file. For a text stream, the position indicator contains unspecified
information, usable by fseek function.

If stream refers to an I/O device, this function does nothing and returns a zero.

Arguments

Return Value

If successful, this function returns the current file position indicator. It returns EOF
if an error occurs, and sets the errno .

Error Codes

Refer to Appendix B.

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-65

ftell pREPC+ System Calls
Notes

Callable From

■ Task

See Also

fseek, fsetpos, fgetpos
3-66 pSOSystem System Calls

pREPC+ System Calls fwrite

3

fwrite Writes to a stream.

#include <stdarg.h>
#include <stdio.h>
size_t fwrite(

const void *ptr, /* output buffer */
size_t size, /* item size */
size_t nmemb, /* item count */
FILE *stream /* stream pointer */
)

Description

The fwrite() function writes, from the array pointed to by ptr , up to nmemb
elements whose size is specified by size to the stream pointed to by stream .

The file position indicator for the stream (if defined) is advanced by the number of
characters successfully written. If an error occurs, the resulting value of the file
position indicator for the stream is indeterminate.

Arguments

Return Value

This function returns the number of items written. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

ptr Points to the output buffer.

size Specifies the size of each item to write.

nmemb Specifies the number of items to write.

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-67

fwrite pREPC+ System Calls
Notes

Callable From

■ Task

See Also

fread
3-68 pSOSystem System Calls

pREPC+ System Calls getc

3

getc Gets a character from a stream.

#include <stdarg.h>
#include <stdio.h>
int getc(

FILE *stream /* stream pointer */
)

Description

This function is equivalent to the fgetc() function. It reads the next character
from a specified stream.

Arguments

Return Value

This function returns the character that is read. If an end-of-file condition is
detected, the stream's end-of-file indicator is set. If a read error occurs, the stream's
error flag is set. In both cases, EOF is returned. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

putc

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-69

getchar pREPC+ System Calls
getchar Gets a character from stdin .

#include <stdarg.h>
#include <stdio.h>
int getchar(

void
)

Description

The getchar() function reads the next character from the standard input device. It
is equivalent to getc(stdin) .

Return Value

This function returns the character that is read. If EOF is detected, the stdin EOF
flag is set. If a read error occurs, stdin 's error flag is set. In both cases, EOF is
returned. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

putchar, getc
3-70 pSOSystem System Calls

pREPC+ System Calls gets

3

gets Gets a string from stdin .

#include <stdarg.h>
#include <stdio.h>
char *gets(

char *s /* buffer */
)

Description

The gets() function reads characters from the standard input device into a user
buffer(s). It continues to read characters until a new-line character is read or an
end-of-file condition is detected. Any new-line character is discarded, and a null
character is added after the last character read into the user buffer.

Arguments

Return Value

If successful, the gets() function returns s . If a read error occurs or an end-of-file
condition is detected before any characters are read, a null pointer is returned. If an
error occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

puts, fgets

s Points to the user buffer.
pSOSystem System Calls 3-71

gmtime pREPC+ System Calls
gmtime Converts the calendar time to broken-down time.

#include <time.h>
struct tm *gmtime (

const time_t *timer /* calendar time */
)

Description

The gmtime() function converts the calendar time pointed to by timer into broken-
down time, expressed as Coordinated Universal Time (UTC).

The calendar time is generally obtained through a call to time() .

Arguments

Return Value

The gmtime() function always returns NULL, since the concept of UTC is not
supported by pREPC+.

Error Codes

None.

Notes

Callable From

■ Task

See Also

gmtime_r, time, localtime, localtime_r, mktime

timer Points to the calendar time.
3-72 pSOSystem System Calls

pREPC+ System Calls gmtime_r

3

gmtime_r (Reentrant) Converts the calendar time to broken-down time.

#include <time.h>
struct tm *gmtime_r (

const time_t *timer, /* calendar time */
struct tm *resultp /* result */
)

Description

gmtime_r() is the reentrant version of the ANSI function gmtime() , as defined by
POSIX 1003.1c. It converts the calendar time pointed to by timep into broken-down
time, expressed as Coordinated Universal Time (UTC). The broken-down time is
stored in the structure pointed to by resultp .

The calendar time is generally obtained through a call to time() .

Arguments

Return Value

gmtime_r() always returns NULL, since the concept of UTC is not supported by
pREPC+.

Error Codes

No error codes are returned.

timer Points to the calendar time.

resultp Points to the structure of type tm where gmtime_r() stores the
result. The tm structure is defined in the mktime() description on
page 3-111.
pSOSystem System Calls 3-73

gmtime_r pREPC+ System Calls
Notes

Callable From

■ Task

■ ISR

See Also

gmtime, time, localtime, localtime_r, mktime
3-74 pSOSystem System Calls

pREPC+ System Calls isalnum

3

isalnum Tests for an alphanumeric character.

#include <ctype.h>
int isalnum(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is an
alphanumeric character. An alphanumeric character is a character for which either
isdigit or isalpha is true.

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

See Also

isalpha, isdigit

c Specifies the value to be tested.
pSOSystem System Calls 3-75

isalpha pREPC+ System Calls
isalpha Tests for an alphabetic character.

#include <ctype.h>
int isalpha(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is an
uppercase or lowercase letter.

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

c Specifies the value to be tested.
3-76 pSOSystem System Calls

pREPC+ System Calls iscntrl

3

iscntrl Tests for a control character.

#include <ctype.h>
int iscntrl(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is an
ASCII control character. ASCII control characters are those whose values lie
between 0 and 31, inclusive, and the character 127 (DEL).

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

See Also

isprint

c Specifies the value to be tested.
pSOSystem System Calls 3-77

isdigit pREPC+ System Calls
isdigit Tests for a digit.

#include <ctype.h>
int isdigit(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is a
decimal digit (0 through 9).

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

c Specifies the value to be tested.
3-78 pSOSystem System Calls

pREPC+ System Calls isgraph

3

isgraph Tests for a graphical character.

#include <ctype.h>
int isgraph(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is an
ASCII graphical character. ASCII graphical characters are those whose values lie
from 33 (exclamation point) through 126 (tilde). This includes all of the printable
characters except the space (‘ ‘).

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

See Also

isprint

c Specifies the value to be tested.
pSOSystem System Calls 3-79

islower pREPC+ System Calls
islower Tests for a lowercase letter.

#include <ctype.h>
int islower(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is a
lowercase letter.

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

See Also

isupper, isalpha

c Specifies the value to be tested.
3-80 pSOSystem System Calls

pREPC+ System Calls isprint

3

isprint Tests for a printable character.

#include <ctype.h>
int isprint(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is an
ASCII printable character. An ASCII printable character is any character that is not
a control character. Their values lie between 32 (space) and 126 (tilde), inclusive.

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

See Also

isgraph, iscntrl

c Specifies the value to be tested.
pSOSystem System Calls 3-81

ispunct pREPC+ System Calls
ispunct Tests for a punctuation character.

#include <ctype.h>
int ispunct(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is an
ASCII punctuation mark character. An ASCII punctuation mark character is any
printing character that is neither a space nor a character for which isalnum is true.

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

See Also

isalnum, isprint, isalpha, isdigit

c Specifies the value to be tested.
3-82 pSOSystem System Calls

pREPC+ System Calls isspace

3

isspace Tests for a space.

#include <ctype.h>
int isspace(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is a
tab ('\t '), line-feed ('\n '), vertical tab ('\v '), form-feed ('\f '), carriage return ('\r '), or
space character (' ').

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

c Specifies the value to be tested.
pSOSystem System Calls 3-83

isupper pREPC+ System Calls
isupper Tests for an uppercase letter.

#include <ctype.h>
int isupper(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is an
uppercase letter.

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

See Also

isalpha, islower

c Specifies the value to be tested.
3-84 pSOSystem System Calls

pREPC+ System Calls isxdigit

3

isxdigit Tests for a hexadecimal digit.

#include <ctype.h>
int isxdigit(

int c /* character */
)

Description

This function tests the value in c (converted to an unsigned char) to see if it is a
hexadecimal digit. The hexadecimal digits are defined as the ASCII representation of
digits 0 through 9, lower case letters a through f and uppercase letters A through F.

Arguments

Return Value

This function returns a nonzero value if the test result is true. It returns a 0 if the
result is false.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

See Also

isdigit

c Specifies the value to be tested.
pSOSystem System Calls 3-85

labs pREPC+ System Calls
labs Computes the absolute value of a long integer.

#include <stdlib.h>
long labs (

long j /* long integer */
)

Description

The labs() function converts the long integer j into its absolute value. If the result
cannot be represented, the behavior is undefined.

Arguments

Return Value

labs() returns the absolute value.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

See Also

labs

j Specifies the long integer to be converted.
3-86 pSOSystem System Calls

pREPC+ System Calls ldiv

3

ldiv Performs a division operation on two specified long integers.

#include <stdlib.h>
ldiv_t ldiv (

long numer, /* numerator */
long denom /* denominator */
)

Description

The ldiv() function computes the quotient and remainder of the division of the
numerator numer by the denominator denom. If the division is inexact, the resulting
quotient is the integer of lesser magnitude that is the nearest to the algebraic
quotient. If the result cannot be represented, the behavior is undefined; otherwise,
quot * denom + rem is equal to numer .

Arguments

Return Value

The ldiv() function returns a structure of type ldiv_t . This structure is defined
in stdlib.h as follows:

typedef struct {
long quot; /* the quotient */
long rem; /* the remainder */
} ldiv_t;

Error Codes

None.

numer Specifies the numerator.

denom Specifies the denominator.
pSOSystem System Calls 3-87

ldiv pREPC+ System Calls
Notes

Callable From

■ Task

■ ISR

See Also

div
3-88 pSOSystem System Calls

pREPC+ System Calls localeconv

3

localeconv Obtains the current locale settings.

#include <locale.h>
struct lconv *localeconv(void)

Description

The localeconv() function obtains the current locale settings that relate to
numeric values, putting them into a statically allocated structure of type lconv . It
returns a pointer to that structure.

The members of lconv with type char * are pointers to strings, any of which
(except decimal_point) can point to “” , to indicate that the value is not available
in the current locale or is of zero length. The members with type char are
nonnegative numbers, any of which can be CHAR_MAX to indicate the value is not
available in the current locale.

The lconv structure is defined as follows:

struct lconv {
char *decimal_point; /* Decimal point character for

* non-monetary values */
char *thousands_sep; /* Thousands separator for

* non-monetary values */
char *grouping; /* Specifies grouping for

* non-monetary values */
char *int_curr_symbol; /* International currency symbol */
char *currency_symbol; /* The local currency symbol */
char *mon_decimal_point;/* Decimal point character for

* monetary values */
char *mon_thousands_sep;/* Thousands separator for

* monetary values */
char *mon_grouping; /* Specifies grouping for

* monetary values */
char *positive_sign; /* Positive value indicator

* for monetary values */
char *negative_sign; /* Negative value indicator

* for monetary values */
char int_frac_digits; /* Number of digits displayed

* to the right of the decimal
* point for monetary values
* displayed using international
* format */

char frac_digits; /* Number of digits displayed
* to the right of the decimal
* point for monetary values */
pSOSystem System Calls 3-89

localeconv pREPC+ System Calls
char p_cs_precedes; /* 1 if currency symbol precedes
* positive value, 0 if currency
* symbol follows value */

char p_sep_by_space; /* 1 if currency symbol is
* separated from value by a
* space, 0 otherwise */

char n_cs_precedes; /* 1 if currency symbol precedes
* a negative value, 0 if currency
* symbol follows value */

char n_sep_by_space; /* 1 if currency symbol is
* separated from a negative value
* by a space, 0 if currency symbol
* follows value */

char p_sign_posn; /* Indicates position of positive
* value symbol */

char n_sign_posn; /* Indicates position of negative
* value symbol */

};

The elements of grouping and mon_grouping are interpreted according to the
following:

The value of p_sign_posn and n_sign_posn is interpreted according to the
following:

Return Value

This function returns a pointer to the filled-in lconv structure. This structure must
not be changed by your program, but it may be overwritten by a subsequent call to

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the
remainder of the digits.

other The integer value is the number of digits that comprise the
current group. The next element is examined to determine
the size of the next group of digits before the current group.

0 Parentheses surround the quantity and currency_symbol .

1 The sign string precedes the quantity and currency_symbol .

2 The sign string succeeds the quantity and currency_symbol .

3 The sign string immediately precedes currency_symbol .

4 The sign string immediately precedes currency_symbol .
3-90 pSOSystem System Calls

pREPC+ System Calls localeconv

3

localeconv() . In addition, calls to setlocale() with categories LC_ALL,
LC_MONETARY, or LC_NUMERIC may overwrite the contents of the structure.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

See Also

setlocale
pSOSystem System Calls 3-91

localtime pREPC+ System Calls
localtime Converts the calendar time to broken-down time.

#include <time.h>
struct tm *localtime (

const time_t *timer /* calendar time */
)

Description

The localtime() function converts the calendar time pointed to by timer into
broken-down time. The time is represented in local time.

The calendar time is generally obtained through a call to time() .

Arguments

Return Value

The localtime() function returns a pointer to the tm structure that contains the
broken-down time. The tm structure is defined in the mktime() description on
page 3-111.

Error Codes

None.

Notes

Callable From

■ Task

See Also

localtime_r, time, gmtime, gmtime_r, mktime

timer Points to the calendar time.
3-92 pSOSystem System Calls

pREPC+ System Calls localtime_r

3

localtime_r (Reentrant) Converts the calendar time to broken-down time.

#include <time.h>
struct tm *localtime_r (

const time_t *timer, /* pointer to calendar time */
struct tm *resultp /* pointer to result */
)

Description

localtime_r() is the reentrant version of the ANSI function localtime() , as
defined by POSIX 1003.1c. It converts the calendar time pointed to by timep into
broken-down time and stores it in the structure pointed to by resultp . The time is
represented in local time.

The calendar time is generally obtained through a call to time() .

Arguments

Return Value

Upon success, localtime_r() returns the value of resultp . On failure, it returns
NULL; the only cause of failure is if timer points to a negative value.

Error Codes

No error codes are returned.

timer Points to the calendar time.

resultp Points to the tm structure where localtime_r() stores the result.
The tm structure is defined in the mktime() description on page 3-
111.
pSOSystem System Calls 3-93

localtime_r pREPC+ System Calls
Notes

Callable From

■ Task

■ ISR

See Also

localtime, time, gmtime, gmtime_r, mktime
3-94 pSOSystem System Calls

pREPC+ System Calls malloc

3

malloc Allocates memory.

#include <stdlib.h>
void *malloc(

size_t size /* element size */
)

Description

The malloc() function allocates memory for an object whose size is specified by
size and whose value is indeterminate. malloc() calls the pSOS+ region manager
to allocate the memory. The caller can be blocked if memory is not available and the
wait option is selected in the pREPC+ Configuration Table. Memory is allocated from
Region 0.

Arguments

Return Value

This function returns either a pointer to the allocated memory or a null pointer if no
memory is allocated. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

size Specifies the number of bytes to allocate.
pSOSystem System Calls 3-95

mblen pREPC+ System Calls
mblen Determines the number of bytes in a multibyte character.

#include <stdlib.h>
int mblen (

const char *s, /* character */
size_t n /* size of character */
)

Description

If s is not a null pointer, the mblen() function determines the number of bytes
contained in the multibyte character pointed to by s . Except that the shift state of
the mbtowc() function is not affected, it is equivalent to:

mbtowc((wchar_t *)0, s, n);

Arguments

Return Value

If s is a null pointer, this function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s
is not a null pointer, this function either returns 0 (if s points to the null character),
or returns the number of bytes that are contained in the multibyte character (if the
next n or fewer bytes form a valid multibyte character), or returns -1 (if they do not
form a valid multibyte character).

Error Codes

None.

s Points to the character to be examined.

n Specifies the size of s .
3-96 pSOSystem System Calls

pREPC+ System Calls mblen

3

Notes

Callable From

■ Task

■ ISR

See Also

mbtowc
pSOSystem System Calls 3-97

mbstowcs pREPC+ System Calls
mbstowcs Converts a multibyte character string into a wide character string.

#include <stdlib.h>
size_t mbstowcs (

wchar_t *pwcs, /* wide string */
const char *s, /* original multibyte string */
size_t n /* wide string length */

Description

The mbstowcs() function converts a sequence of multibyte characters that begins
in the initial shift state from the array pointed to by s into a sequence of
corresponding codes and stores not more than n codes into the array pointed to by
pwcs . No multibyte characters that follow a null character (which is converted into a
code with value zero) will be examined or converted. Each multibyte character is
converted as if by a call to the mbtowc() function, except that the shift state of the
mbtowc() function is not affected.

If copying takes place between objects that overlap, the behavior is undefined.

Arguments

Return Value

If an invalid multibyte character is encountered, mbstowcs() returns (size_t)-1 .
Otherwise, it returns the number of array elements modified, not including a
terminating zero code, if any.

Error Codes

None.

pwcs Points to the array where mbstowcs() stores the converted string.

s Points to the string to be converted.

n Specifies the length of pwcs .
3-98 pSOSystem System Calls

pREPC+ System Calls mbstowcs

3

Notes

Callable From

■ Task

■ ISR

See Also

mbtowc, wcstombs, wctomb
pSOSystem System Calls 3-99

mbtowc pREPC+ System Calls
mbtowc Converts a multibyte character into its wide character equivalent.

#include <stdlib.h>
int mbtowc (

wchar_t *pwc, /* result wide character */
const char *s, /* original multibyte character */
size_t n /* size of original character */
)

Description

If s is not a null pointer, the mbtowc() function determines the number of bytes
that are contained in the multibyte character pointed to by s . It then determines the
code for the value of type wchar_t that corresponds to that multibyte character.
(The value of the code corresponding to the null character is zero.) If the multibyte
character is valid and pwc is not a null pointer, the mbtowc() function stores the
code in the object pointed to by pwc. At most n bytes of the array pointed to by s will
be examined.

Arguments

Return Value

If s is a null pointer, this function returns a nonzero or zero value, if multibyte
codings, respectively, do or do not have state-dependent encodings. If s is not a null
pointer, this function either returns 0 (if s points to the null character), or returns
the number of bytes that are contained in the converted multibyte character (if the
next n or fewer bytes form a valid multibyte character), or returns -1 (if they do not
form a valid multibyte character).

In no case will the value returned be greater than n or the value of the MB_CUR_MAX
macro.

pwc Points to the array where mbtowc() stores the result character.

s Points to the multibyte character to be converted.

n Specifies the size of the multibyte character to be converted.
3-100 pSOSystem System Calls

pREPC+ System Calls mbtowc

3

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

See Also

mbstowcs, wctomb, wcstombs
pSOSystem System Calls 3-101

memchr pREPC+ System Calls
memchr Searches memory for a character.

#include <string.h>
void *memchr(

const void *s, /* target buffer */
int c, /* character key */
size_t n /* search length */
)

Description

This function searches for the first occurrence of the character c (converted to an
unsigned char) in the first n characters of the object pointed to by s .

Arguments

Return Value

This function returns a pointer to the located character, or a null pointer if the
character is not found.

Error Codes

None.

s Points to the buffer to be searched.

c Specifies the character to be searched for.

n Specifies the number of characters to search through.
3-102 pSOSystem System Calls

pREPC+ System Calls memchr

3

Notes

Callable From

■ Task

■ ISR

See Also

strchr
pSOSystem System Calls 3-103

memcmp pREPC+ System Calls
memcmp Compares two objects in memory.

#include <string.h>
int memcmp(

const void *s1, /* buffer 1 */
const void *s2, /* buffer 2 */
size_t n /* comparison length */
)

Description

This function compares n characters in the buffers pointed to by s1 and s2 .

Arguments

Return Value

This function returns a value that is either greater than, equal to, or less than zero.
The result depends on whether the object pointed to by s1 is greater than, equal to,
or less than the object pointed to by s2 .

Error Codes

None.

s1 Points to the first buffer.

s2 Points to the second buffer.

n Specifies the number of characters to be compared.
3-104 pSOSystem System Calls

pREPC+ System Calls memcmp

3

Notes

Callable From

■ Task

■ ISR

See Also

strcmp
pSOSystem System Calls 3-105

memcpy pREPC+ System Calls
memcpy Copies characters in memory.

#include <string.h>
void *memcpy(

void *s1, /* destination address */
const void *s2, /* source address */
size_t n /* source length */
)

Description

This function copies n characters from the object pointed to by s2 into the object
pointed to by s1 . If the memory areas overlap, the result is unpredictable.

Arguments

Return Value

This function returns the value of s1 .

Error Codes

None.

s1 Points to the source object.

s2 Points to the destination object.

n Specifies the number of characters to be copied.
3-106 pSOSystem System Calls

pREPC+ System Calls memcpy

3

Notes

Callable From

■ Task

■ ISR

See Also

memmove, strcpy, strncpy
pSOSystem System Calls 3-107

memmove pREPC+ System Calls
memmove Copies characters in memory.

#include <string.h>
void *memmove(

void *s1, /* destination address */
const void *s2, /* source address */
size_t n /* source length */
)

Description

This function copies a specified number of characters from one object into another.
memmove() copies the data correctly even if the memory areas overlap (unlike
memcpy()).

Arguments

Return Value

This function returns the value of s1 .

Error Codes

None.

s1 Points to the source object.

s2 Points to the destination object.

n Specifies the number of characters to be copied.
3-108 pSOSystem System Calls

pREPC+ System Calls memmove

3

Notes

Callable From

■ Task

■ ISR

See Also

memcpy, strcpy, strncpy
pSOSystem System Calls 3-109

memset pREPC+ System Calls
memset Initializes memory with a given value.

#include <string.h>
void *memset(

void *s, /* object address */
int c, /* initialization value */
size_t n /* number of characters */
)

Description

The memset() function copies the value of c (converted to an unsigned char) into
each of the first n characters in the object pointed to by s .

Arguments

Return Value

The function returns the value of s .

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s Points to the object where the character is to be copied.

c Specifies the value to be copied.

n Specifies the number of characters in the object to be
initialized.
3-110 pSOSystem System Calls

pREPC+ System Calls mktime

3

mktime Converts the broken-down time into calendar time.

#include <time.h>
time_t mktime (

struct tm *timeptr /* broken-down time */
)

Description

The mktime() function converts the broken-down time, expressed as local time, in
the structure pointed to by timeptr into calendar time with the same encoding as
the time() function. This function is primarily used to initialize the system time.
The elements tm_wday and tm_yday are set by the function, so they need not be
defined prior to the call. The original values of the other components are not
restricted to the normal ranges (see below).

Upon successful completion, the values of tm_wday and tm_yday are set
appropriately, and the other components are set to represent the specified calendar
time, but with their values forced to the normal ranges; the final value of tm_mday
is not set until tm_mon and tm_year are determined.

Arguments

timeptr Points to a structure of type tm that stores the broken-down time.
The tm structure is defined as follows. The semantics of the
members and their normal ranges are expressed in the comments.

struct tm {
int tm_sec; /* seconds after the minute [0,61] */
int tm_min; /* minutes after the hour [0,59] */
int tm_hour; /* hours since midnight [0,23] */
int tm_mday; /* day of the month [1,31] */
int tm_mon; /* months since January [0,11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday [0,6] */
int tm_yday; /* days since January 1 [0,365] */
int tm_isdst; /* Daylight Saving Time flag */
};

The range [0, 61] for tm_sec allows for up to two leap seconds. The
value of tm_isdst is positive if Daylight Saving Time is in effect,
zero if Daylight Saving Time is not in effect, and negative if the
information is not available.
pSOSystem System Calls 3-111

mktime pREPC+ System Calls
Return Value

The mktime() function returns the specified calendar time encoded as a value of
type time_t . If the calendar time cannot be represented, the function returns the
value (time_t) -1 .

Error Codes

None.

Example

What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>
static const char *const wday[] = {

“Sunday”, “Monday”, “Tuesday”, “Wednesday”,
“Thursday”, “Friday”, “Saturday”, “-unknown-”
};

struct tm time_str;

/* ... */

time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;

if (mktime(&time_str) == -1)
time_str.tm_wday = 7;

printf(“%s\n”, wday[time_str.tm_wday]);
3-112 pSOSystem System Calls

pREPC+ System Calls mktime

3

Notes

Callable From

■ Task

■ ISR

See Also

time, localtime, localtime_r
pSOSystem System Calls 3-113

perror pREPC+ System Calls
perror Prints a diagnostic message.

#include <stdarg.h>
#include <stdio.h>
void perror(

const char *s /* error string */
)

Description

The perror() function writes the string pointed to by s followed by a diagnostic
message to the standard error device. The diagnostic message is a function of the
calling task's errno value.

Arguments

Return Value

This function does not return a value.

Error Codes

No error codes are returned.

Notes

Callable From

■ Task

See Also

errno

s Points to the string to write (error message).
3-114 pSOSystem System Calls

pREPC+ System Calls printf

3

printf Prints formatted output to stdout .

#include <stdarg.h>
#include <stdio.h>
long printf(

const char *format, /* format control */
... /* arguments 1 through n */
)

Description

The printf() function is equivalent to fprintf() , except that the output is
directed to the standard output device instead of a file designated by an input
parameter.

Arguments

Return Value

This function returns either the number of characters written or EOF if a write error
occurs. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

format Points to the format control string. For more information,
see fprintf on page 3-43.

... Arguments 1 through n to be written according the
specifications of the control string.
pSOSystem System Calls 3-115

printf pREPC+ System Calls
Notes

Callable From

■ Task

See Also

scanf, fprintf
3-116 pSOSystem System Calls

pREPC+ System Calls putc

3

putc Writes a character to a stream.

#include <stdarg.h>
#include <stdio.h>
int putc(

int c, /* character */
FILE *stream /* stream pointer */
)

Description

The putc() function writes the character specified by c (converted to an unsigned
char) to the stream pointed to by stream . stream ’s position indicator (if defined) is
advanced on a successful write.

Arguments

Return Value

The putc() function returns c . If a write error occurs, the error flag for the stream
is set, EOF is returned, and errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

getc, putchar

c Specifies the character to write.

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-117

putchar pREPC+ System Calls
putchar Writes a character to stdout .

#include <stdarg.h>
#include <stdio.h>
int putchar(

int c /* character */
)

Description

The putchar() function writes the character c to the standard output stream after
converting it to an unsigned char .

Arguments

Return Value

The putchar() function returns letter . If a write error occurs, the error flag for
the standard output stream is set, EOF is returned, and errno is set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

getchar, putc

c Specifies the character to write.
3-118 pSOSystem System Calls

pREPC+ System Calls puts

3

puts Writes a string to a stream.

#include <stdarg.h>
#include <stdio.h>
int puts(

const char *s /* string */
)

Description

The puts() function writes a string to the standard output stream, and appends a
new-line character to the output. The terminating null character is not written.

Arguments

Return Value

The puts() function returns 0 if the operation is successful and EOF if the
operation fails. If an error occurs, the stream’s error indicator and errno are set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

gets, fputs

s Points to the string to write.
pSOSystem System Calls 3-119

qsort pREPC+ System Calls
qsort Sorts an array.

#include <stdlib.h>
void qsort(

void *base, /* array base */
size_t nmemb, /* array length */
size_t size, /* array element size */
int (*compar) (const void *, const void *)

/* comparison function */
)

Description

The qsort() function sorts an array of nmemb objects, the initial element of which
is pointed to by base . The size of each object is specified by size .

The array is sorted in ascending order according to the user-supplied function
pointed to by compar . The compar function is called with two arguments that point
to the objects being compared. The compar function must return an integer that is
less than, equal to, or greater than 0 if the first argument is considered less than,
equal to, or greater than the second argument, respectively. The compar function
can call all pREPC+ character handling functions and all pREPC+ string handling
functions except strtok() . Other pREPC+ functions cannot be called from
compar .

If two members of the array are equal, their order in the sorted array is unspecified.

Arguments

Return Value

This function does not return a value.

base Points to the beginning of the array.

nmemb Specifies the length of the array.

size Specifies the size of each member of the array.

compar Points to the user-supplied comparison function.
3-120 pSOSystem System Calls

pREPC+ System Calls qsort

3

Error Codes

None.

Notes

Callable From

■ Task

■ ISR, provided the compar function can be called from an ISR.

See Also

bsearch
pSOSystem System Calls 3-121

rand pREPC+ System Calls
rand Returns a pseudo-random number.

#include <stdlib.h>
int rand(

void
)

Description

The rand() function generates a pseudo-random integer number in the range 0
through 32,767. This function works in concert with srand() .

Return Value

This function returns the random number generated.

Error Codes

None.

Notes

Callable From

■ Task

See Also

srand
3-122 pSOSystem System Calls

pREPC+ System Calls realloc

3

realloc Allocates memory.

#include <stdib.h>
void *realloc(

void *ptr, /* pointer */
size_t size /* new size */
)

Description

The realloc() function changes the size of the object pointed to by ptr to the size
specified by size . The contents of the object remain unchanged up to the lesser of
the new or old sizes. If the new size is larger, the value of the newly allocated portion
of the object is indeterminate.

The caller can be blocked if memory is not available and the wait option is selected
in the pREPC+ Configuration Table.

Arguments

Return Value

This function returns a pointer to the possibly moved allocated memory or a null
pointer. If an error occurs, errno is set.

Error Codes

Refer to Appendix B.

ptr Points to the object whose size is to be changed.

If ptr is a null pointer, realloc() behaves like malloc() . If ptr
does not match a segment previously returned by calloc() ,
malloc() or realloc() , the result is unpredictable. If ptr is not a
null pointer and size is 0, the segment is deallocated.

size Specifies the new size of the object.
pSOSystem System Calls 3-123

realloc pREPC+ System Calls
Notes

Callable From

■ Task

See Also

calloc, malloc, realloc
3-124 pSOSystem System Calls

pREPC+ System Calls remove

3

remove Removes a file.

#include <stdarg.h>
#include <stdio.h>
int remove(

const char *filename /* file name */
)

Description

This function removes the file whose name is pointed to by filename . Before a file
can be removed, it must be closed. This restriction does not apply to files residing
on NFS volumes.

Arguments

Return Value

This function returns zero if the file is removed. If the file is not removed or if
filename specifies an I/O device, then a nonzero value is returned and errno is
set.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

filename Points to the string that contains the filename.
pSOSystem System Calls 3-125

rename pREPC+ System Calls
rename Renames a file.

#include <stdarg.h>
#include <stdio.h>
int rename(

const char *old, /* existing file name */
const char *new /* new file name */
)

Description

This function changes the name of a file from old to new. It applies only to pHILE+-
managed files. If a file new already exists, it is deleted. Certain error conditions
specific to the volume type can result, as follows:

■ If a file called new exists and is open, the call fails (except on NFS volumes).

■ If old is open, the call fails (DOS volumes only).

■ If old is a directory file, the call fails (DOS volumes only).

Arguments

Return Value

This function returns zero if the file is successfully renamed. If an error occurs,
errno is set, and a nonzero value is returned.

Error Codes

Refer to Appendix B.

old Points to the string that contains the old filename.

new Points to the string that contains the new filename.
3-126 pSOSystem System Calls

pREPC+ System Calls rename

3

Notes

Callable From

■ Task
pSOSystem System Calls 3-127

rewind pREPC+ System Calls
rewind Resets the file position indicator.

#include <stdarg.h>
#include <stdio.h>
void rewind(

FILE *stream /* stream pointer */
)

Description

The rewind() function sets the file position indicator for the stream pointed to by
stream to the beginning of the file. It is equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that the stream's error indicator is cleared.

Arguments

Return Value

This function does not return a value.

Error Codes

Refer to Appendix B.

stream Points to an open pREPC+ stream.

If stream refers to an I/O device, this function does nothing
and returns a 0.
3-128 pSOSystem System Calls

pREPC+ System Calls rewind

3

Notes

Callable From

■ Task

See Also

ftell, fgetpos, fsetpos, fseek
pSOSystem System Calls 3-129

scanf pREPC+ System Calls
scanf Reads formatted input from stdin .

#include <stdarg.h>
#include <stdio.h>
int scanf(

const char *format, /* format control */
... /* arguments 1 through n */
)

Description

The scanf() function is equivalent to fscanf() except that scanf() takes the
input from the standard input device.

Arguments

Return Value

This function returns EOF and sets errno if an input failure occurs before any
conversion. Otherwise, it returns the number of input items assigned, which can be
fewer than provided, even zero, in the event of an early matching failure.

Error Codes

Refer to Appendix B.

format Points to the format control string. For more information,
see fscanf on page 3-56.

... Arguments 1 through n point to variables where input is
stored.
3-130 pSOSystem System Calls

pREPC+ System Calls scanf

3

Notes

Callable From

■ Task

See Also

printf, scanf, sscanf
pSOSystem System Calls 3-131

setbuf pREPC+ System Calls
setbuf Changes a stream’s buffer.

#include <stdarg.h>
#include <stdio.h>
void setbuf(

FILE *stream, /* stream pointer */
char *buf /* I/O buffer */
)

Description

The setbuf() function causes a new buffer to be used for a specified stream
(instead of the buffer that is currently assigned).

The buffer is assumed to have a size equal to lc_bufsize , which is defined in the
pREPC+ Configuration Table.

The setbuf() function must be called after the specified stream has been opened
but prior to performing any read or write operation on the stream. If setbuf() is
called after a read or write operation, it has no effect.

You must use the setvbuf() call if you want additional control over buffering
options.

Arguments

Return Value

This function does not return a value.

stream Points to an open pREPC+ stream.

buf Points to the new buffer.

If buf is a null pointer, all input and output is unbuffered.
This effectively eliminates buffering. Otherwise, the stream
is set to fully buffered mode.
3-132 pSOSystem System Calls

pREPC+ System Calls setbuf

3

Notes

Callable From

■ Task

Error Codes

Refer to Appendix B.

See Also

setvbuf
pSOSystem System Calls 3-133

setlocale pREPC+ System Calls
setlocale Obtains or changes the program’s locale.

#include <locale.h>
char *setlocale (

int category /* localization category */
const char *locale /* locale */
)

Description

The setlocale() function allows you to query or set certain parameters that are
sensitive to the geo-political location where a program is used. For example, in
Europe, the comma is sometimes used in place of the decimal point.

To query the locale or a portion thereof, you set locale to point to NULL. To change
the locale, or a portion thereof, you set locale to point to a string that specifies the
desired value.

Arguments

category Specifies the localization category to be queried or changed, and
must be one of the following:

LC_ALL All categories.

LC_COLLATE Affects the behavior of strcoll() and
strxfrm() .

LC_CTYPE Affects the behavior of the character-handling
functions (isalnum() , etc.) and the multibyte
functions.

LC_MONETARY Affects the monetary formatting information
returned by localeconv() .

LC_NUMERIC Affects the decimal-point character for the
formatted input/output functions and the string
conversion functions, as well as the non-monetary
formatting information returned by
localeconv() .

LC_TIME Affects the behavior of strftime() .
3-134 pSOSystem System Calls

pREPC+ System Calls setlocale

3

Return Value

If a pointer to a string is given for locale and the selection can be honored,
setlocale() returns a pointer to the string associated with the specified category
for the new locale. If the selection cannot be honored, setlocale() returns a null
pointer and the program’s locale is not changed.

A null pointer for locale causes setlocale() to return a pointer to the string
associated with the category for the program’s current locale; the program’s locale
is not changed.

The pointer to string returned by setlocale() is such that a subsequent call with
that string value and its associated category will restore that part of the program’s
locale. The string pointed to will not be modified by the program, but may be
overwritten by a subsequent call to setlocale() .

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

See Also

localeconv, strcoll, strxfrm, strftime

locale Points to a string specifying the locale in which the program is used.
Only one value is supported by pREPC+:

“C” Specifies the minimal environment for C
translation.
pSOSystem System Calls 3-135

setvbuf pREPC+ System Calls
setvbuf Changes a stream’s buffering characteristics.

#include <stdarg.h>
#include <stdio.h>
int setvbuf(

FILE *stream, /* stream pointer */
char *buf, /* I/O buffer */
int mode, /* access mode */
size_t size /* buffer size */
)

Description

The setvbuf() function can be used to change either the buffer associated with a
stream, the size of a stream's buffer, or the method employed for buffering the
stream's data.

setvbuf() must be called after the specified stream has been opened, but prior to
reading or writing the file. If setbuf() is called after a read or write operation, it
has no effect.

pREPC+ allocates a buffer automatically if the buf parameter is NULL and a non-
zero size is specified.

Arguments

stream Points to an open pREPC+ stream.

buf Points to the new buffer to be associated with the stream.

mode Defines the method employed for buffering data. The possible modes
are as follows:

_IO_FBF Input/output is fully buffered.

_IO_LBF Input/output is line buffered.

_IO_NBF Input/output is not buffered.
3-136 pSOSystem System Calls

pREPC+ System Calls setvbuf

3
Return Value

This function returns a 0 if it succeeds and a negative number if it fails.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

setbuf

If a stream is fully buffered, it is flushed only when it is full. If it is
line buffered, the buffer is flushed either when it is full or a when a
new-line character is detected. _IO_NBF eliminates buffering; it is
functionally equivalent to defining size equal to 0 and buf equal to
NULL.

size Specifies the size of the buffer. size overrides the default buffer size
defined in the pREPC+ Configuration Table.
pSOSystem System Calls 3-137

sprintf pREPC+ System Calls
sprintf Writes formatted output to a buffer.

#include <stdarg.h>
#include <stdio.h>
int sprintf(

char *s, /* buffer */
const char *format, /* format control */
... /* arguments 1 through n */
)

Description

The sprintf() function is equivalent to fprintf() except that sprintf()
directs the output to a buffer pointed to by s .

Arguments

Return Value

This function returns the number of characters written in the buffer, not counting
the terminating null character.

Error Codes

None.

s Points to the buffer where output is directed.

format Points to the format control string. For more information,
see fprintf on page 3-43.

... Arguments 1 through n are written by sprintf() according
to the specifications of the format control string.
3-138 pSOSystem System Calls

pREPC+ System Calls sprintf

3

Notes

Callable From

■ Task

See Also

fprintf, printf, vsprintf
pSOSystem System Calls 3-139

srand pREPC+ System Calls
srand Sets the seed for the random number generator (rand).

#include <stdlib.h>
void srand(

unsigned int seed /* seed value */
)

Description

This function works in concert with rand() . The srand() function uses seed as a
seed for a new sequence of pseudo-random numbers to be returned by subsequent
calls to rand() .

For a given seed value, the sequence of random numbers generated is the same. By
default, a sequence of random numbers is generated using a seed value of 1.

Arguments

Return Value

This function does not return a value.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

rand

seed Specifies the seed value.
3-140 pSOSystem System Calls

pREPC+ System Calls sscanf

3

sscanf Reads formatted input from a string.

#include <stdarg.h>
#include <stdio.h>
int sscanf(

const char *s, /* string */
const char *format, /* format control */
... /* arguments 1 through n */
)

Description

The sscanf() function is equivalent to fscanf() , except that sscanf() takes the
input from the string pointed to by s .

Arguments

Return Value

This function returns the number of variable assignments. If an error occurs, the
function returns EOF and sets errno .

Error Codes

Refer to Appendix B.

s Points to the string to be read.

format Points to the format control string. For more information,
see fscanf on page 3-56.

... Arguments 1 through n point to variables where input is
stored.
pSOSystem System Calls 3-141

sscanf pREPC+ System Calls
Notes

Callable From

■ Task

See Also

scanf, fscanf
3-142 pSOSystem System Calls

pREPC+ System Calls strcat

3

strcat Appends one string to another string.

#include <string.h>
char *strcat(

char *s1, /* destination string */
const char *s2 /* source string */
)

Description

This function appends a copy of one string (s2) to the end of another string (s1). The
first character in the source string overwrites the terminating null character in the
destination string. If copying takes place between strings that overlap, the behavior
is undefined.

Arguments

Return Value

This function returns the value of s1 .

Notes

Callable From

■ Task

■ ISR

Error Codes

None.

s1 Points to the destination string.

s2 Points to the source string.
pSOSystem System Calls 3-143

strchr pREPC+ System Calls
strchr Searches a string for a character.

#include <string.h>
char *strchr(

const char *s, /* search string */
int c /* reference character */
)

Description

This function searches for the first occurrence of c (converted to an unsigned
char) in the string pointed to by s .

Arguments

Return Value

This function returns a pointer to the located character. If a character is not found,
it returns a null pointer.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s Points to the string to be searched.

c Specifies the reference character.
3-144 pSOSystem System Calls

pREPC+ System Calls strcmp

3

strcmp Compares two character strings.

#include <string.h>
int strcmp(

const char *s1, /* candidate string */
const char *s2 /* candidate string */
)

Description

This function compares two character strings and returns a value that reflects
whether the first string (s1) is greater than, equal to, or less than the second string
(s2).

Arguments

Return Value

This function returns a value greater than, equal to, or less than 0, depending on
whether the string pointed to by s1 is greater than, equal to, or less than the string
pointed to by s2 .

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s1 Points to the first string.

s2 Points to the second string.
pSOSystem System Calls 3-145

strcoll pREPC+ System Calls
strcoll Compares two character strings.

#include <string.h>
int strcoll (

const char *s1, /* candidate string */
const char *s2 /* candidate string */
)

Description

The strcoll() function compares the string pointed to by s1 to the string pointed
to by s2 . The comparison is performed relative to the current locale. (You can
specify the locale by using the setlocale() function. See setlocale() on
page 3-134.)

Arguments

Return Value

This function returns a value greater than, equal to, or less than 0, depending on
whether the string pointed to by s1 is greater than, equal to, or less than the string
pointed to by s2 .

Error Codes

None.

s1 Points to the first string.

s2 Points to the second string.
3-146 pSOSystem System Calls

pREPC+ System Calls strcoll

3

Notes

Callable From

■ Task

■ ISR

See Also

setlocale, strxfrm
pSOSystem System Calls 3-147

strcpy pREPC+ System Calls
strcpy Copies one string to another string.

#include <string.h>
char *strcpy(

char *s1, /* destination string */
const char *s2 /* source string */
)

Description

This function copies one string (s2) including the null character, into another string
(s1). strcpy() continues to copy characters until it detects a null terminator. If the
strings overlap, the result is unpredictable.

Arguments

Return Value

This function returns the value of s1 .

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s1 Points to the destination string.

s2 Points to the source string.
3-148 pSOSystem System Calls

pREPC+ System Calls strcspn

3

strcspn Calculates the length of a substring.

#include <string.h>
size_t strcspn(

const char *s1, /* candidate string */
const char *s2 /* reference string */
)

Description

This function calculates the length of the maximum initial segment of a string (s1)
which consists entirely of characters not in another string (s2).

Arguments

Return Value

This function returns the length of the segment.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s1 Points to the string to be examined.

s2 Points to the reference string.
pSOSystem System Calls 3-149

strerror pREPC+ System Calls
strerror Maps an error number to an error message string.

#include <string.h>
char *strerror (

int errnum /* error number */
)

Description

The strerror() function maps the error number in errnum to an error message
string.

Arguments

Return Value

The strerror() function returns a pointer to the string. The array pointed to must
not be modified by the program, but may be overwritten by a subsequent call to
strerror() .

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

See Also

perror, errno

errnum Specifies the error number.
3-150 pSOSystem System Calls

pREPC+ System Calls strftime

3

strftime Places formatted time and date information into a string.

#include <time.h>
size_t strftime (

char *s, /* string */
size_t maxsize, /* string length */
const char *format, /* format control string */
const struct tm *timeptr /* broken-down time */
)

Description

The strftime() function places time and date information into the string pointed
to by s as controlled by the string pointed to by format .

format contains conversion specifiers and ordinary multibyte characters. All
ordinary multibyte characters, including the terminating null character, are copied
unchanged into the array. If copying takes place between objects that overlap, the
behavior is undefined. No more than maxsize characters are placed in the array.

Arguments

s Points to the string where strftime() places the formatted
information.

maxsize Specifies the length of s .

format Contains zero or more conversion specifiers and ordinary multibyte
characters. A conversion specifier consists of a % character followed
by a character that determines the behavior of the conversion
specifier. Each conversion specifier is replaced by appropriate
characters as described in the following list. The appropriate
characters are determined by the LC_TIME category of the current
locale (see setlocale() on page 3-134) and by the values
contained in the structure pointed to by timeptr .

%a Replaced by the locale’s abbreviated weekday name.

%A Replaced by the locale’s full weekday name.

%b Replaced by the locale’s abbreviated month name.

%B Replaced by the locale’s full month name.
pSOSystem System Calls 3-151

strftime pREPC+ System Calls
%c Replaced by the locale’s appropriate date and time
representation.

%d Replaced by the day of the month as a decimal number
(01-31).

%H Replaced by the hour (24-hour clock) as a decimal
number (00-23).

%I Replaced by the hour (12-hour clock) as a decimal
number (01-12).

%j Replaced by the day of the year as a decimal (1-366).

%m Replaced by the month as a decimal number (01-12).

%M Replaced by the minute as a decimal number (00-59).

%p Replaced by the locale’s equivalent of the AM/PM
designations associated with a 12-hour clock.

%S Replaced by the second as a decimal number (00-61).

%U Replaced by the week of the year, where Sunday is the
first day of a week (0-52).

%w Replaced by the weekday as a decimal number (0-6),
where Sunday is 0.

%W Replaced by the week of the year, where Monday is the
first day (0-53).

%x Replaced by the locale’s appropriate date representation.

%X Replaced by the locale’s appropriate time representation.

%y Replaced by the year without century as a decimal
number (00-99).

%Y Replaced by the year with century as a decimal number.

%Z Replaced by the time zone name.

%% Replaced by the percent sign.

If a conversion specifier is not one of the above, the behavior is
undefined.

timeptr Points to the tm structure that contains the broken-down time. The
tm structure is defined in the mktime() description on page 3-111.
3-152 pSOSystem System Calls

pREPC+ System Calls strftime

3

Return Value

If the total number of resulting characters including the terminating null character
is not more than maxsize , strftime() returns the number of characters placed
into the array pointed to by s , not including the terminating null character.
Otherwise, zero is returned and the contents of the array are indeterminate.

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

setlocale, time, mktime, localtime, localtime_r
pSOSystem System Calls 3-153

strlen pREPC+ System Calls
strlen Computes string length.

#include <string.h>
size_t strlen(

const char *s /* string */
)

Description

The strlen() function determines the length of a string (s), not including the
terminating null character.

Arguments

Return Value

This function returns the computed length.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s Points to the string to be measured.
3-154 pSOSystem System Calls

pREPC+ System Calls strncat

3

strncat Appends characters to a string.

#include <string.h>
char *strncat(

char *s1, /* destination string */
const char *s2, /* source string */
size_t n /* source length */
)

Description

This function appends up to n characters from one string (s2) to the end of another
string (s1). The first character in the source string overwrites the terminating null
character in the destination string. A null character and characters that follow it in
the source string are not appended.

The resulting string is always null terminated. If the length of the source string is
greater than the number of characters specified in the call, only the specified
number of characters (not including the null termination character) is appended.

If copying takes place between objects that overlap, the behavior is undefined.

Arguments

Return Value

This function returns the value of s1 .

Error Codes

None.

s1 Points to the destination string.

s2 Points to the source string.

n Specifies the number of characters to append.
pSOSystem System Calls 3-155

strncat pREPC+ System Calls
Notes

Callable From

■ Task

■ ISR
3-156 pSOSystem System Calls

pREPC+ System Calls strncmp

3

strncmp Compares characters in two strings.

#include <string.h>
int strncmp(

const char *s1, /* first string */
const char *s2, /* second string */
size_t n /* comparison size */
)

Description

This function compares up to n characters in two strings and returns a value that
reflects whether the characters from the first string (s1) are greater than, equal to,
or less than the characters from the second string (s2). Characters that follow a null
character in the first string are not compared.

Arguments

Return Value

This function returns a value greater than, equal to, or less than 0, and the value
depends on whether the string pointed to by s1 is greater than, equal to, or less
than the string pointed to by s2 .

Error Codes

None.

s1 Points to the first string.

s2 Points to the second string.

n Specifies the number of characters to compare.
pSOSystem System Calls 3-157

strncmp pREPC+ System Calls
Notes

Callable From

■ Task

■ ISR
3-158 pSOSystem System Calls

pREPC+ System Calls strncpy

3

strncpy Copies characters from one string to another.

#include <string.h>
char *strncpy(

char *s1, /* destination string */
const char *s2, /* source string */
size_t n /* source length */
)

Description

This function copies up to n characters from one string (s2) to another string (s1). If
the length of the source string is less than the specified number of characters, null
characters are copied into the destination string until the specified number have
been written. If the length of the source string is greater than or equal to the
specified number of characters, no null characters are appended to s1 .

Arguments

Return Value

This function returns the value of s1 .

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

s1 Points to the destination string.

s2 Points to the source string.

n Specifies the number of characters write.
pSOSystem System Calls 3-159

strpbrk pREPC+ System Calls
strpbrk Searches a string for a character in a second string.

#include <string.h>
char *strpbrk(

const char *s1, /* search string */
const char *s2 /* reference string */
)

Description

This function locates the first occurrence in one string (s1) of any character in
another string (s2).

Arguments

Return Value

The function returns a pointer to the first matching character. If no character from
s2 is found in s1 , the function returns a null pointer.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s1 Points to the string to be searched.

s2 Points to the reference string.
3-160 pSOSystem System Calls

pREPC+ System Calls strrchr

3

strrchr Searches a string for a character.

#include <string.h>
char *strrchr(

const char *s, /* search string */
int c /* reference character */
)

Description

This function locates the last occurrence of c (converted to a char) in a string (s).
The terminating null character is considered part of the string.

Arguments

Return Value

This function returns a pointer to the character. If c is not found, the function
returns a null pointer.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s Points to the string to be searched.

c Specifies the reference character.
pSOSystem System Calls 3-161

strspn pREPC+ System Calls
strspn Calculates specified string length.

#include <string.h>
size_t strspn(

const char *s1, /* candidate string */
const char *s2 /* reference string */
)

Description

The strspn() function computes the length of the maximum initial segment of a
string (s1) that consists entirely of characters from another string (s2).

Arguments

Return Value

This function returns the length of the segment.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

s1 Points to the string to be examined.

s2 Points to the reference string.
3-162 pSOSystem System Calls

pREPC+ System Calls strstr

3

strstr Searches a string for specified characters in another string.

#include <string.h>
char *strstr(

const char *s1, /* search string */
const char *s2 /* reference string */
)

Description

The strstr() function locates the first occurrence in a string (s1) of the sequence
of characters (excluding the null terminator) in another string (s2).

Arguments

Return Value

The function returns a pointer to the located string or a null pointer if the string is
not found. If s2 points to a string with zero length, the function returns s1 .

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

■ ISR

s1 Points to the string to be searched.

s2 Points to the reference string.
pSOSystem System Calls 3-163

strtod pREPC+ System Calls
strtod Converts a string to a double.

#include <stdlib.h>
double strtod(

const char *nptr, /* input string */
char **endptr /* string conversion terminator */
)

Description

This function converts the initial portion of a string (nptr) to a double
representation. Leading white spaces are ignored. The string can be in scientific
exponential form (for example, +123.45e+67, -123.45E+67). The strtod() function
stops parsing the string when it detects a character that is inconsistent with a
double data type.

This function sets errno if the converted value is out of the supported range for
doubles.

Arguments

Return Value

This function returns either the converted value or 0 if no conversion occurs. No
conversion occurs if the first nonwhite space in str is neither a digit nor a decimal
point. If the correct value is outside the range of representable values, a plus or
minus HUGE_VAL is returned. If the correct value would cause underflow, 0 is
returned. If either of these two errors occurs, errno is set.

Notes

The pREPC+ library returns double values (including floating point) in the CPU
register pair designated by the compiler to receive a return value of type double
from a function call when a hardware floating point is not selected. Additionally, if

nptr Points to the string to be converted.

endptr An output parameter. If nptr is null, strtod() functions the same
as atof() . If nptr is not null, it points to a pointer to the character
in str that terminated the scan.
3-164 pSOSystem System Calls

pREPC+ System Calls strtod

3

the FPU bit is set in the processor type entry of the Node Configuration Table, the
pREPC+ library also places the floating point value in the floating point register
designated by the compiler to receive a return value of type double when a
hardware floating point is selected.

Callable From

■ Task

Error Codes

Refer to Appendix B.

See Also

atoi, atol, atof
pSOSystem System Calls 3-165

strtok pREPC+ System Calls
strtok Searches a string for tokens.

#include <string.h>
char *strtok(

char *s1, /* search string */
const char *s2 /* delimiter(s) */
)

Description

A series of calls to the strtok() function breaks a string (s1) into a sequence of
tokens, each of which is delimited by a character in a second string (s2). A token is
a sequence of one or more characters. The first call to strtok() has s1 as its first
argument, and is followed by calls with a null pointer as their first argument.

On the first call to strtok() , s1 is passed as a pointer to the string to be searched,
and s2 is passed as a pointer to the string that contains the delimiters. The first call
searches for the first character in s1 that is not found in the delimiter set. If such a
character is found, it is the start of the first token. If the first call fails to find a
character that is not a delimiter, there are no tokens, and a null pointer is returned.

The function then continues the search of s1 for a character that is contained in the
delimiter set. If no such character is located, the current token extends to the end of
s1 , and subsequent calls to the function return a null pointer. If a delimiter is
located, a null character that terminates the current token overwrites the delimiter.
The function saves the pointer to the character that follows. This is where the next
search for a token starts.

In subsequent calls, the first argument should be a null pointer. The search for the
next token begins from the saved pointer and behaves as described in the preceding
paragraph.

The search string s2 can be changed between calls. This allows strtok() to
continue to parse the string with a different set of delimiters.

Arguments

s1 Points to the string to be searched.

s2 Points to the string containing token delimiters.
3-166 pSOSystem System Calls

pREPC+ System Calls strtok

3

Return Value

The function returns a pointer to the first character of a token. If no token exists,
the function returns a null pointer.

Error Codes

None.

Notes

Callable From

■ Task
pSOSystem System Calls 3-167

strtol pREPC+ System Calls
strtol Converts a string to a long integer.

#include <stdlib.h>
long strtol(

const char *nptr, /* string */
char **endptr, /* string conversion terminator */
int base /* conversion base */
)

Description

The strtol() function converts the initial portion of a string (nptr) to long int
representation, according to the radix specified by base . This function ignores
leading white spaces, and the string can contain either a + or a -.

Arguments

Return Value

This function returns the converted value. If the conversion fails, this function
returns a 0 and sets errno .

Error Codes

Refer to Appendix B.

nptr Points to the string to be converted.

endptr An output parameter. If endptr is null, this function is equivalent to
the atol() function. If endptr is not null, it points to a pointer to the
character in str that terminated the scan.

base Specifies the base of the number system assumed by the function.
base must be either 0 or within the range 2 through 36. If it is 0, the
string itself is used to determine its base. If nptr begins with the
character 0, base eight is assumed; if nptr begins with 0x or 0X, base
sixteen is assumed; otherwise base ten is assumed.
3-168 pSOSystem System Calls

pREPC+ System Calls strtol

3

Notes

Callable From

■ Task

See Also

atoi, atof
pSOSystem System Calls 3-169

strtoul pREPC+ System Calls
strtoul Converts a string to an unsigned long.

#include <stdlib.h>
unsigned long strtoul(

const char *nptr, /* string */
char **endptr, /* string conversion terminator*/
int base /* conversion base */
)

Description

This function is equivalent to strtol() except that the minus sign (-) is not a valid
character to strtoul() and the string is converted to an unsigned long
representation.

Arguments

Return Value

This function returns the converted value. If an error occurs, this function returns a
0, and sets errno .

Error Codes

Refer to Appendix B.

nptr Points to the string to be converted.

endptr An output parameter. If endptr is null, this function is equivalent to
the atol() function. If endptr is not null, it points to a pointer to
the character in nptr that terminated the scan.

base Specifies the base of the number system assumed by the function.
base must be either 0 or within the range 2 through 36. If it is 0, the
string itself is used to determine its base. If nptr begins with the
character 0, base eight is assumed; if nptr begins with 0x or 0X,
base sixteen is assumed; otherwise base ten is assumed.
3-170 pSOSystem System Calls

pREPC+ System Calls strtoul

3

Notes

Callable From

■ Task

See Also

atol
pSOSystem System Calls 3-171

strxfrm pREPC+ System Calls
strxfrm Transforms a string so that it can be used by the strcmp() function.

#include <string.h>
size_t strxfrm (

char *s1, /* destination string */
const char *s2 /* source string */
size_t n /* destination string length */
)

Description

The strxfrm() function transforms the string pointed to by s2 and places the
resulting string into the array pointed to by s1 . The transformation is such that if
the strcmp() function is applied to two transformed strings, it returns a value
greater than, equal to, or less than zero, corresponding to the result of the
strcoll() function applied to the same two original strings. No more than n
characters are placed into the resulting array pointed to by s1 , including the
terminating null character. If n is zero, s1 is permitted to be a null pointer. If
copying takes place between objects that overlap, the behavior is undefined.

The main use for this function is in foreign language environments that do not use
the ASCII collating sequence.

Arguments

Return Value

The strxfrm() function returns the length of the transformed string (not including
the terminating null character.) If the value is n or more, the contents of the array
pointed to by s1 are indeterminate.

Error Codes

None.

s1 Points to the array where strxfrm() places the resulting string.

s2 Points to the string to be transformed.

n Specifies the number of characters to be placed in s1 .
3-172 pSOSystem System Calls

pREPC+ System Calls strxfrm

3

Notes

Callable From

■ Task

■ ISR

See Also

setlocale, strcoll, strcmp
pSOSystem System Calls 3-173

time pREPC+ System Calls
time Obtains the current calendar time.

#include <time.h>
time_t time (

time_t *timer /* buffer */
)

Description

The time() function determines the current calendar time, expressed as the
number of seconds since midnight January 1, 1970.

Arguments

Return Value

The time() function returns the implementation’s best approximation of the
current calendar time. The value (time_t) -1 is returned if the calendar time is
not available. If timer is not a null pointer, the return value is also assigned to the
object it points to.

Error Codes

Refer to Appendix B.

Notes

This function invokes the pSOS+ service call tm_get() to obtain the current time.

Callable From

■ Task

■ ISR

timer Points to the buffer where time() can store the current calendar time.
3-174 pSOSystem System Calls

pREPC+ System Calls time

3

See Also

tm_get, mktime, localtime, localtime_r
pSOSystem System Calls 3-175

tmpfile pREPC+ System Calls
tmpfile Creates a temporary file.

#include <stdarg.h>
#include <stdio.h>
FILE *tmpfile(

void
)

Description

The tmpfile() function creates a temporary file that is automatically removed
when it is closed or when the creating task calls exit() . Temporary files are
opened in mode wb+.

The name of the temporary file created is obtained by generating an internal call to
the pREPC+ function tmpname() .

Return Value

This function returns a pointer to the stream of the file or a null pointer if no file is
created. If an error occurs, the function sets errno .

Error Codes

Refer to Appendix B.

Notes

Callable From

■ Task

See Also

tmpname
3-176 pSOSystem System Calls

pREPC+ System Calls tmpnam

3

tmpnam Generates a temporary filename.

#include <stdarg.h>
#include <stdio.h>
char *tmpname(

char *s /* string root */
)

Description

The tmpnam() function generates a string that is intended to be used as a filename.
tmpname() generates up to 1000 unique names for each task. The pREPC+ library
does not maintain a list of tmpnames in use. After 1000 names have been
generated, the sequence starts over.

A file with a name generated by tmpnam() is not necessarily a temporary file. To be
treated as a temporary file, it must be created by tmpfile() .

Arguments

Return Value

This function returns a pointer to the generated name.

Error Codes

Refer to Appendix B.

s Points to the string where tmpname() stores the filename.

When tmpname() is called, s should consist of the initial part of a
valid pathname. tmpname() adds a slash (/), followed by a T (or G if
the creating task is global). The T (or G) is followed by the lower 16-
bits of the caller's task ID, which is followed by a decimal point and a
decimal number within the range 0 through 999.

For example, assume that s points to the string 0.0; the caller's tid is
00000002; and the caller has previously called tmpname() 12 times.
The generated name is 0.0/T0002.012 .
pSOSystem System Calls 3-177

tmpnam pREPC+ System Calls
Notes

Callable From

■ Task
3-178 pSOSystem System Calls

pREPC+ System Calls tolower

3

tolower Converts a character to lowercase.

#include <ctype.h>
int tolower(

int c /* character */
)

Description

This function converts an uppercase letter to lowercase.

Arguments

Return Value

This function returns the converted character. If c is not an uppercase character,
the function returns the character unchanged.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

c Specifies the character to be converted.
pSOSystem System Calls 3-179

toupper pREPC+ System Calls
toupper Converts a character to uppercase.

#include <ctype.h>
int toupper(

int c /* character */
)

Description

This function converts a lowercase letter to uppercase.

Arguments

Return Value

This function returns the converted character. If c is not a lowercase character, it is
returned unchanged.

Error Codes

None.

Notes

Callable From

■ Task

■ ISR

c Specifies the character to be converted.
3-180 pSOSystem System Calls

pREPC+ System Calls ungetc

3

ungetc Ungets a character.

#include <stdarg.h>
#include <stdio.h>
int ungetc(

int c, /* character */
FILE *stream /* stream pointer */
)

Description

The ungetc() function pushes a character (c), converted to an unsigned char ,
back to the specified stream. The character is returned on the next read operation
on the stream. A call to fseek() , fsetpos() , rewind() , or fflush() ignores the
character.

The stream’s position indicator is not changed by this call.

Arguments

Return Value

This function returns the contents of c . If an error occurs, the function returns EOF
and sets errno .

Error Codes

Refer to Appendix B.

c Specifies the character to be pushed.

stream Points to an open pREPC+ stream.
pSOSystem System Calls 3-181

ungetc pREPC+ System Calls
Notes

Callable From

■ Task

See Also

putc, getc
3-182 pSOSystem System Calls

pREPC+ System Calls vfprintf

3

vfprintf Writes formatted output to a stream.

#include <stdarg.h>
#include <stdio.h>
int vfprintf(

FILE *stream, /* stream pointer */
const char *format, /* format control */
va_list arg /* argument list */
)

Description

The vfprintf() function is equivalent to fprintf() , with the variable argument
list replaced by arg , which should have been initialized by the va_start macro
(and possibly subsequent va_arg calls). The vfprintf function does not invoke
the va_end macro.

Arguments

Return Value

This function returns the number of characters written. If a write error occurs, this
function returns a negative number and sets errno .

Error Codes

Refer to Appendix B.

stream Points to an open pREPC+ stream.

format Points to the format control string. For more information,
see fprintf on page 3-43.

arg A list of arguments to be written according to the
specifications of the format control string.
pSOSystem System Calls 3-183

vfprintf pREPC+ System Calls
Notes

Callable From

■ Task

See Also

fprintf, vprintf, vsprintf
3-184 pSOSystem System Calls

pREPC+ System Calls vprintf

3

vprintf Writes formatted output to stdout .

#include <stdarg.h>
#include <stdio.h>
int vprintf(

const char *format, /* format control */
va_list char arg /* argument list */
)

Description

The vprintf() function is equivalent to printf() , with the variable argument list
replaced by arg , which should have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vfprintf function does not invoke the
va_end macro.

Arguments

Return Value

This function returns the number of characters written. If a write error occurs, this
function returns a negative number and sets errno .

Error Codes

Refer to Appendix B.

format Points to the format control string. For more information,
see fprintf on page 3-43.

arg A list of arguments to be written according to the
specifications of the format control string.
pSOSystem System Calls 3-185

vprintf pREPC+ System Calls
Notes

Callable From

■ Task

See Also

printf, vfprintf, fprintf, vsprintf
3-186 pSOSystem System Calls

pREPC+ System Calls vsprintf

3

vsprintf Writes formatted output to a buffer.

#include <stdio.h>
#include <stdarg.h>
int vsprintf(

char *s, /* target buffer */
const char *format, /* format control */
va_list char arg /* argument list */
)

Description

The vsprintf() function is equivalent to sprintf() , with the variable argument
list replaced by arg , which should have been initialized by the va_start macro
(and possibly subsequent va_arg calls). The vfprintf function does not invoke
the va_end macro.

Arguments

Return Value

This function returns the number of characters written. If a write error occurs, this
function returns a negative number and sets errno .

Error Codes

Refer to Appendix B.

s Points to the buffer where output is directed.

format Points to the format control string. For more information,
see fprintf on page 3-43.

arg A list of arguments to be written according to the
specifications of the format control string.
pSOSystem System Calls 3-187

vsprintf pREPC+ System Calls
Notes

Callable From

■ Task

See Also

printf, sprintf, fprintf
3-188 pSOSystem System Calls

pREPC+ System Calls wcstombs

3

wcstombs Converts a wide character string into a multibyte character string.

#include <stdlib.h>
size_t wstombs (

char *s, /* result string */
const wchar_t *pwcs, /* wide string */
size_t n /* size of result string */
)

Description

The wcstombs() function converts a sequence of codes that correspond to
multibyte characters from the array pointed to by pwcs into a sequence of multibyte
characters that begins in the initial shift state and stores these multibyte characters
in the array pointed to by s , stopping if a multibyte character would exceed the limit
of n total bytes or if a null character is stored. Each call is converted as if by a call to
the wctomb() function, except that the shift state of the wctomb() function is not
affected.

No more than n bytes will be modified in the array pointed to by s . If copying takes
place between objects that overlap, the behavior is undefined.

Arguments

Return Value

If a code is encountered that does not correspond to a valid multibyte character, this
function returns (size_t -1.) Otherwise, it returns the number of bytes
modified, not including a terminating null character, if any.

Error Codes

None.

s Points to the array where wstombs() stores the converted string.

pwcs Points to the string to be converted.

n Specifies the size of s .
pSOSystem System Calls 3-189

wcstombs pREPC+ System Calls
Notes

Callable From

■ Task

■ ISR

See Also

wctomb, mbtowc, mbstowcs
3-190 pSOSystem System Calls

pREPC+ System Calls wctomb

3

wctomb Converts a wide character into its multibyte character equivalent.

#include <stdlib.h>
int wctomb (

char *s, /* result character */
wchar_t wchar /* wide character */
)

Description

The wctomb() function determines the number of bytes needed to represent the
multibyte character corresponding to the code whose value is wchar (including any
change in shift state). It stores the multibyte character representation in the array
object pointed to by s (if s is not a null pointer). At most MB_CUR_MAX characters are
stored. If the value of wchar is zero, the wctomb() function is left in its initial state.

Arguments

Return Value

If s is a null pointer, this function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. If s
is not a null pointer, this function returns -1 if the value of wchar does not
correspond to a valid multibyte character, or returns the number of bytes that are
contained in the multibyte character corresponding to the value of wchar .

In no case will the value returned be greater than the value of the MB_CUR_MAX
macro.

Error Codes

None.

s Points to the array where wctomb() stores the converted character.

wchar Points to the character to be converted.
pSOSystem System Calls 3-191

wctomb pREPC+ System Calls
Notes

Callable From

■ Task

■ ISR

See Also

mbtowc, wcstombs, mbstowcs
3-192 pSOSystem System Calls

4
 pNA+ System Calls
4

This chapter provides detailed information on each system call in the pNA+
component of pSOSystem. The calls are listed alphabetically, with a multipage
section of information for each call. Each call’s section includes its syntax, a
detailed description, its arguments, its return value, and any error codes that it can
return. Where applicable, the section also includes the headings “Notes,” “Usage,”
and “See Also.” “Notes” contains any important information not specifically related
to the call description; “Usage” provides detailed usage information; and “See Also”
indicates other calls that have related information.

Structures described in this chapter are also defined in the file <pna.h> . Structures
must be word-aligned and must not be packed.

If you need to look up a system call by its functionality, refer to Appendix A, “Tables
of System Calls,” which lists the calls alphabetically by component and provides a
brief description of each call.

For more information on error codes, refer to Appendix B, “Error Codes,” which lists
the codes numerically and shows which pSOSystem calls are associated with each
one.
4-1

accept pNA+ System Calls
accept Accepts a connection on a socket.

#include <pna.h>
long accept(

int s, /* socket descriptor */
struct sockaddr_in *addr, /* socket structure */
int *addrlen /* socket structure size */
)

Description

This call is used to accept a connection request that the specified socket receives
from a foreign socket. Servers use accept() with connection-oriented or stream
(TCP) sockets.

Before accept() is called, the socket must be set up to receive a connection
request by issuing the listen() system call. accept() extracts the first
connection request on the queue of pending connections; creates a new socket with
the same properties as the original socket; completes the connection between the
foreign socket and the new socket; and returns a descriptor for the new socket. The
new returned socket descriptor is used to read from and write data to the foreign
socket. It is not used to accept more connections. The original socket remains open
for accepting further connections.

If no pending connections exist on the queue and the socket is not marked as non-
blocking, accept() blocks the caller until a connection is present. If the socket is
marked non-blocking and no pending connections are present on the queue,
accept() returns an error.

Upon return, accept() stores the address of the connected socket in the specified
socket address structure.

Arguments

s Specifies the socket on which to accept a connection re-
quest.
4-2 pSOSystem System Calls

pNA+ System Calls accept

4

Return Value

If this call succeeds, it returns a non-negative integer that is a descriptor for the
accepted socket. It returns -1 on error.

Error Codes

See Also

bind, connect, listen, select, socket

addr Points to a structure of type sockaddr_in where accept()
stores the address of the connected socket. The structure
sockaddr_in is defined in the file <pna.h> and has the fol-
lowing format:

struct sockaddr_in {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero[8]; /* must be 0 */
};

This structure cannot be packed.

addrlen Points to an integer equal to 16, which is the size in bytes of
the sockaddr_in structure.

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5017 ENFILE An internal table has run out of
space.

0x5016 EINVALID An argument is invalid.

0x5023 EWOULDBLOCK This operation would block and the
socket is marked non-blocking.

0x5034 ECONNABORTED The connection has been aborted by
the peer.

0x5037 ENOBUFS An internal buffer is required but can-
not be allocated.

0x502D EOPNOTSUPP The requested operation is not valid
for this type of socket.
pSOSystem System Calls 4-3

add_ni pNA+ System Calls
add_ni Adds a network interface.

#include <pna.h>
long add_ni(

struct ni_init *ni /* network interface */
)

Description

This system call is used to dynamically add a network interface to the pNA+ network
manager. The characteristics of the network interface are specified in the data
structure pointed to by ni .

This routine calls the network interface driver's NI_INIT routine for driver
initialization.

Arguments

ni Points to an ni_init structure. The structure ni_init is defined in
the file <pna.h> and has the following format:

struct ni_init {
int (*entry)(); /* address of NI entry point */
int ipadd; /* IP address */
int mtu; /* maximum transmission length */
int hwalen; /* length of hardware address */
int flags; /* interface flags */
int subnetaddr; /* subnet mask */
int dstipaddr; /* Dest. address in Point-to Point NI */
int reserved[1]; /* reserved for future use */
};

This structure cannot be packed. The flags element can contain one
or more of the following symbolic constants (defined in pna.h), using
the syntax:

IFF_BROADCAST | IFF_RAWMEM

Symbolic Constant Description

IFF_BROADCAST NI can broadcast.

IFF_EXTLOOPBACK NI uses external loopback.

IFF_INITDOWN NI must be initialized in DOWN state. De-
fault is UP state.
4-4 pSOSystem System Calls

pNA+ System Calls add_ni

4
Return Value

This system call returns the pNA+ interface number of the new network interface if
successful; otherwise it returns -1.

Error Codes

See Also

Network Interfaces and Configuration Tables, pSOSystem Programmer’s Reference

IFF_MULTICAST NI supports multicast.

IFF_NOARP NI does not have ARP.

IFF_POINTTOPOINT NI is point-to-point driver.

IFF_POLL pNA+ polls NI at regular intervals

IFF_RAWMEM NI passes packets as mblks.

IFF_UNNUMBERED NI is an unnumbered link.

Hex Mnemonic Description

0x5016 EINVALID An argument is invalid.

0x5017 ENFILE An internal table has run out of
space.

0x5046 ENIDOWN NI_INIT returned -1.

0x5047 ENMTU The MTU is invalid.

0x5048 ENHWL The hardware length is invalid.
pSOSystem System Calls 4-5

bind pNA+ System Calls
bind Binds an address to a socket.

#include <pna.h>
long bind(

int s, /* socket descriptor */
struct sockaddr_in *addr, /* socket structure */
int addrlen /* structure size */
)

Description

This system call is used to assign (or bind) an address (a 32-bit internet address
and a 16-bit port number) to a socket. A socket is created without an address and
cannot be used to receive data until it is assigned one. Raw IP sockets are an
exception. If they are unbound then they receive all packets regardless of the
packet’s addresses.

To simplify address binding, a wildcard internet address is supported to free the
user from needing to know the local internet address. It also makes programs more
portable. When the internet address is specified as the symbolic constant
INADDR_ANY, pNA+ interprets it as any valid address. This allows the socket to
receive data regardless of its node's internet address. For example, if a socket is
bound to <INADDR_ANY, 10> and it resides on a node that is attached to networks
90.0.0.2 and 100.0.0.3, the socket can receive data addressed to <90.0.0.2, 10>
or <100.0.0.3, 10> .

Arguments

s Specifies the socket to which the address is bound.

addr Points to a structure of type sockaddr_in that stores the socket
attributes to be bound to the socket. The structure sockaddr_in is
defined in the file <pna.h> and has the following format:

struct sockaddr_in {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero[8]; /* must be 0 */
};

This structure cannot be packed.
4-6 pSOSystem System Calls

pNA+ System Calls bind

4

Return Value

This system call returns 0 if successful, otherwise it returns -1.

Error Codes

See Also

connect, getsockname, listen, socket

addrlen Specifies the size in bytes of the sockaddr_in structure and must
be 16.

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5016 EINVALID An argument is invalid.

0x5030 EADDRINUSE The specified address is already in
use.

0x5031 EADDRNOTAVAIL The specified address is not available.
pSOSystem System Calls 4-7

close pNA+ System Calls
close Closes a socket descriptor.

#include <pna.h>
long close(

int s /* socket descriptor */
)

Description

The close() call discards the specified socket descriptor. If it is the last descriptor
associated with the socket, the socket is deleted and, unless the SO_LINGER socket
option is set, any data queued at the socket is discarded. Refer to the
setsockopt() pNA+ call for a discussion of the SO_LINGER option.

As a special case, if the specified socket descriptor is equal to 0, close() closes all
socket descriptors that have been allocated to the calling task.

Arguments

Return Value

This system call returns 0 if successful, otherwise it returns -1.

Error Codes

See Also

socket, setsockopt

s Specifies the socket to be closed.

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5016 EINVALID An argument is invalid.
4-8 pSOSystem System Calls

pNA+ System Calls connect

4

connect Initiates a connection on a socket.

#include <pna.h>
long connect(

int s, /* socket descriptor */
struct sockaddr_in *addr, /* socket attributes */
int addrlen /* attribute size */
)

Description

This system call is used to establish an association between a local socket and a
foreign socket.

Generally, a stream socket connects only once. A datagram socket can use
connect() multiple times to change its association. A datagram socket can
dissolve the association by connecting to an invalid address, such as the null
address INADDR_ANY defined in pna.h .

If a stream socket is specified, connect() initiates a connection request to the
foreign socket. The caller is blocked until a connection is established, unless the
socket is non-blocking.

If a datagram socket is specified, connect() associates the socket with the socket
address supplied. This address is used by future send() calls to determine the
datagram's destination. This is the only address from which datagrams can be
received.

If a raw socket is specified, connect() associates the socket with the socket
address supplied. This address is used by future send() calls to determine the
datagram's destination. This is the only address from which datagrams can be
received.

Arguments

s Specifies the local socket.
pSOSystem System Calls 4-9

connect pNA+ System Calls
Return Value

This system call returns 0 if successful, otherwise it returns -1.

Error Codes

addr Points to a sockaddr_in structure that contains the address of the
foreign socket. The structure sockaddr_in is defined as follows:

struct sockaddr_in {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero[8]; /* must be 0 */
};

This structure cannot be packed.

addrlen Specifies the size in bytes of the sockaddr_in structure and must
be 16.

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5016 EINVALID An argument is invalid.

0x5024 EINPROGRESS The socket is non-blocking and the
connection cannot be completed im-
mediately.

0x5025 EALREADY The socket is non-blocking and a pre-
vious connection attempt has not yet
been completed.

0x502F EAFNOSUPPORT The sin_family member of
sockaddr_in isn’t AF_INET.

0x5030 EADDDRINUSE The address specified is already in
use.

0x5031 EADDRNOTAVAIL The specified address is not available.

0x5037 ENOBUFS An internal buffer is required but
can’t be allocated.

0x5038 EISCONN The socket s is already connected.

0x503C ETIMEDOUT Connection timed out.

0x503D ECONNREFUSED The attempt to connect was refused.
4-10 pSOSystem System Calls

pNA+ System Calls connect

4

See Also

accept, close, connect, getsockname, select, socket
pSOSystem System Calls 4-11

get_id pNA+ System Calls
get_id Gets a task’s user ID and group ID.

#include <pna.h>
long get_id(

long *userid, /* task user ID */
long *groupid, /* task group ID */
long *groups; /* must be zero */
)

Description

This system call obtains the user ID and group ID of the calling task. These IDs are
used for accessing NFS servers. The user ID and group ID are set by using the
set_id() call. Default values for these IDs are defined in the pNA+ Configuration
Table.

Arguments

Return Value

This system call returns 0 if successful, otherwise it returns -1.

Error Codes

None.

See Also

set_id

userid Points to a long variable where get_id() stores the calling
task’s user ID.

groupid Points to a long variable where get_id() stores the calling
task’s group ID.

groups Zero must be passed as a third argument (which is currently
ignored).
4-12 pSOSystem System Calls

pNA+ System Calls getpeername

4

getpeername Gets the address of a connected peer.

#include <pna.h>
long getpeername(

int s, /* socket descriptor */
struct sockaddr_in *addr, /* socket attributes */
int *addrlen /* socket structure size */
)

Description

The getpeername() call obtains the address of the peer connected to the specified
socket. The peer is the socket at the other end of the connection.

Arguments

Return Value

This system call returns 0 if successful, otherwise it returns -1.

s Specifies the original socket.

addr Points to a sockaddr_in structure in which getpeername()
stores the address of the peer socket. The structure sockaddr_in
is defined as follows:

struct sockaddr_in {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero[8]; /* must be 0 */
};

This structure cannot be packed.

addrlen Points to an integer equal to 16, which is the size in bytes of the
sockaddr_in structure.
pSOSystem System Calls 4-13

getpeername pNA+ System Calls
Error Codes

See Also

accept, bind, getsockname, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5037 ENOBUFS An internal buffer is required, but
cannot be allocated.

0x5039 ENOTCONN The socket is not connected.
4-14 pSOSystem System Calls

pNA+ System Calls getsockname

4

getsockname Gets the address that is bound to a socket.

#include <pna.h>
long getsockname(

int s, /* socket descriptor */
struct sockaddr_in *addr, /* socket attributes */
int *addrlen /* size of sockaddr_in */
)

Description

The getsockname() call obtains the address bound to the specified socket.

Arguments

Return Value

This system call returns 0 if successful, otherwise it returns -1.

s Specifies the socket.

addr Points to a sockaddr_in structure in which
getsockname() stores the address bound to the socket.
The sockaddr_in structure is defined as follows:

struct sockaddr_in {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero[8]; /* must be 0 */
};

This structure cannot be packed.

addrlen Points to an integer equal to 16, which is the size in bytes of
the sockaddr_in structure.
pSOSystem System Calls 4-15

getsockname pNA+ System Calls
Error Codes

See Also

bind, getpeername, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5037 ENOBUFS An internal buffer is required, but
cannot be allocated.
4-16 pSOSystem System Calls

pNA+ System Calls getsockopt

4

getsockopt Gets options on a socket.

#include <pna.h>
long getsockopt(

int s, /* socket descriptor */
int level, /* SOL_SOCKET, IPPROTO_IP, */

/* or IPPROTO_TCP */
int optname, /* retrieval option */
char *optval, /* return buffer */
int *optlen /* input/output buffer size */
)

Description

The getsockopt() system call obtains the status of options associated with the
specified socket. Socket level, IP protocol level, or TCP protocol level options may be
retrieved.

Arguments

s Specifies the socket.

level Specifies the level of the option to be queried and must be set to
SOL_SOCKET for socket level operations, IPPROTO_IP for IP
protocol level operations, or IPPROTO_TCP for TCP protocol
level operations.

optname Specifies the option to be queried, and uses a symbolic constant.
The symbolic constants available for each level are provided
below and in <pna.h> .

optval Points to a buffer where getsockopt() stores the value for the
requested option. For most options, an int is returned in the
buffer pointed to by optval . A nonzero value means the option
is set, and a 0 means the option is off.

optlen An input-output parameter. On input, it should contain the size
of the buffer pointed to by optval . On output, it contains the
actual size of the value returned in the optval buffer.
pSOSystem System Calls 4-17

getsockopt pNA+ System Calls
Socket Level Options

level must be set to SOL_SOCKET for socket level operations. The optname value
can be one of the following:

SO_BROADCAST Allows broadcast datagrams on a socket.

SO_DONTROUTE Indicates that the outgoing messages should not be routed.
Packets directed to unconnected networks are dropped.

SO_ERROR Returns the pending error and clears the error status.

SO_KEEPALIVE Keeps the connection alive by periodically transmitting a
packet over socket s .

SO_LINGER Controls the action taken when unsent messages are queued
on a socket and a close() is executed. If the socket is a
stream socket and SO_LINGER is set (l_onoff set to 1), the
calling task blocks until it can transmit the data or until a
timeout period expires. If SO_LINGER is disabled (l_onoff
set to 0), the socket is deleted immediately. SO_LINGER uses
the linger structure, which is defined as follows:

struct linger {
int l_onoff; /* on/off option */
int l_linger; /* linger time in secs.*/
}

This structure cannot be packed.

SO_OOBINLINE Requests that out-of-band data go into the normal data in-
put queue as received; it then is accessible with recv()
calls without the MSG_OOB flag.

SO_RCVBUF Adjusts the normal buffer size allocated for a socket input
buffer.

SO_REUSEADDR Indicates that local addresses can be reused in a bind()
call.

SO_REUSEPORT Indicates that local addresses can be reused in a bind()
call. For more information, see section 4.4.3 of the Network
Programming chapter in pSOSystem System Concepts.

SO_SNDBUF Adjusts the normal buffer size allocated for a socket output
buffer.

SO_TYPE Returns the type of socket.
4-18 pSOSystem System Calls

pNA+ System Calls getsockopt

4

TCP Level Option

level must be set to IPPROTO_TCP for TCP protocol level operations. The
argument optname can have the following value:

TCP_KEEPALIVE_
CNT

Number of Keepalive strobes. Upon expiration of the Kee-
palive idle timer TCP will send a number of strobes sepa-
rated by a fixed interval. If the other end fails to respond to
the strobes (special TCP segments) then the TCP connection
will be terminated. The default number of strobes in pNA+ is
set to 8. Only valid if the SO_KEEPALIVE option is set above.

TCP_KEEPALIVE_
IDLE

Keepalive idle time in TCP. If the connection has been idle for
this time, the timer will expire causing TCP to send a special
segment forcing the other end to respond. On demand-dial
links for example the timer may be set long enough so as not
to cause unnecessary traffic. The default in pNA+ is 120
minutes. The timer is in seconds. Only valid if the
SO_KEEPALIVE option is set above.

TCP_KEEPALIVE_
INTVL

Keepalive strobe interval. The strobes sent out by TCP upon
expiration of the Keepalive idle timer are separated by a fixed
time interval. The default interval between the strobes is set
to 75 seconds in pNA+. The time interval is in seconds. Only
valid if the SO_KEEPALIVE option is set above.

TCP_MSL Maximum Segment Lifetime in TCP. This controls the
TIME_WAIT or 2MSL timer in TCP which is set to twice the
value of the MSL. The timer is used to validate connection
termination and transmits remaining data in the send
queue. It is a safeguard against sequence numbers being
overlapped. If set to a low value it allows the sockets to be
quickly deleted. The default in pNA+ is 30 seconds. The
timer is in seconds.

TCP_NODELAY Disables delay acknowledgment algorithm. Data is sent im-
mediately over the network instead of waiting for the window
to be full.
pSOSystem System Calls 4-19

getsockopt pNA+ System Calls
IP Level Options

level must be set to IPPROTO_IP for IP protocol level operations. The argument
optname can have one of the following values:

Return Value

This system call returns 0 if successful, otherwise it returns -1.

IP_HDRINCL Specifies that the IP Header will be included in the output
packets. The following fields will be set by pNA+ if they are
set to 0 in the included IP header: IP identification num-
ber and IP source address. The fragmentation offset and
checksum fields are always computed by pNA+. The rest
of the IP header fields must be set appropriately.

IP_MULTICAST_IF Specifies the outgoing interface for multicast packets. For
this option, optval is a pointer to struct in_addr . If
set to INADDR_ANY then the routing table will be used to
select an appropriate interface.

IP_MULTICAST_INTF Specifies the outgoing interface for multicast packets. The
outgoing interface is defined by its interface number. The
optval is a pointer to a long. If set to -1 then the routing
table will be used to select an appropriate interface,
which is also the default case.

IP_MULTICAST_LOOP Specifies whether or not to loopback multicast packets.
optval is a pointer to an unsigned char. By default the
packets are looped back
(IP_DEFAULT_MULTICAST_LOOP.) A value of 0 disables
loopback.

IP_MULTICAST_TTL Specifies the time-to-live for outgoing IP multicast data-
grams. optval is a pointer to an unsigned char. The de-
fault is IP_DEFAULT_MULTICAST_TTL.
4-20 pSOSystem System Calls

pNA+ System Calls getsockopt

4

Error Codes

See Also

setsockopt, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x502A ENOPROTOOPT The optname or level is not valid.
pSOSystem System Calls 4-21

ioctl pNA+ System Calls
ioctl Performs control operations on a socket.

#include <pna.h>
long ioctl(

int s, /* socket descriptor */
int cmd, /* socket operation */
char *arg /* operation argument */
)

Description

The ioctl() system call is used to perform control operations on the specified
socket.

Arguments

Operations

System-Related Operations

s Specifies the socket.

cmd Specifies the operation and is a symbolic constant. All permissible
cmd values, except MIB-related operations, are defined in
<pna.h> . MIB-related cmd values are defined in <pna_mib.h> .
Operation descriptions are provided below.

arg Points to a data structure that is dependent on the value of cmd
and contains additional information needed by ioctl() to per-
form the operation.

Operation Description

FIOASYNC Controls whether or not the user-provided signal handler is
called when events related to the socket occur (for example,
if the socket receives urgent data). If the integer pointed to
by arg equals 1, signalling is enabled. If the integer pointed
by arg equals 0, signalling is disabled.

FIOGETOWN Identifies the owner of the socket. The task ID of the owner
task is returned in the integer variable pointed to by arg .
4-22 pSOSystem System Calls

pNA+ System Calls ioctl

4

NI-Related Operations

The following operations are available to access or modify the characteristics of a
Network Interface:

FIONBIO Sets the blocking mode of the socket. If the integer pointed to
by arg equals 1, the socket is set to operate in non-blocking
mode. If the integer pointed to by arg equals 0, the socket is
set to operate in blocking (default) mode. Normally, socket
operations that cannot be immediately completed cause the
task that initiated the operation to block. If a socket is
marked non-blocking, an operation request that cannot
complete without waiting does not execute, and an error is
returned.

FIOREAD Returns the number of bytes stored in the socket's input
buffer in the integer pointed to by arg .

FIOSETOWN Assigns an owner to the socket. The parameter arg should
point to an integer that provides the task ID (tid) of the
socket’s owner. This tid is passed as an input parameter to
the user signal handler.

SIOCATMARK Determines whether out-of-band is available. If the data
available at the socket is out-of-band data, the integer
pointed to by arg is set equal to 1. Otherwise, it equals 0
upon return.

SIOCSSBMAX Upon creation of a socket, pNA+ assigns a maximum total
default size of 128 Kbytes for send and receive socket buffer
queues. This operation changes the maximum total size.
This may be used to increase end-to-end throughput for fast
networks.

SIOCGSBMAX Gets the total maximum send and receive socket buffer
queue size that pNA+ assigns to newly created sockets.

Operation Description

SIOCSIFADDR Sets the interface address.

SIOCGIFADDR Gets the interface address.

SIOCSIFBRDADDR Sets the IP broadcast address of the NI.

SIOCGIFBRDADDR Gets the IP broadcast address of the NI.

Operation Description
pSOSystem System Calls 4-23

ioctl pNA+ System Calls
/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs that must
* know all accessible networks.)
*/
struct ifconf {

int ifc_len; /* size of associated buffer */
union {

char *ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
};

For all other NI-related operations, arg must point to the following structure:

struct ifreq {
long ifr_ifno; /* Interface number of the NI */
union {

struct sockaddr ifru_addr; /* IP address of the NI */
struct sockaddr ifru_dstaddr; /* Dest addr p-to-p link */
struct sockaddr ifru_broadaddr; /* NI broadcast address */
unsigned long ifru_flags; /* Flags for the NI */
int ifru_mtu; /* Maximum number of

SIOCSIFDSTADDR Sets point-to-point address for the interface.

SIOCGIFDSTADDR Gets point-to-point address for the interface.

SIOCSIFMTU Sets the maximum transmission unit of the NI.

SIOCGIFMTU Gets the maximum transmission unit of the NI.

SIOCSIFNETMASK Sets the network mask.

SIOCGIFNETMASK Gets the network mask.

SIOCSIFFLAGS Sets the interface flags field. If the interface is marked down,
any packets currently routed through the interface are re-
routed or dropped, resulting in a send error condition.
IFF_POLL , IFF_EXTLOOPBACK and IFF_UP flags can be set
by using this call.

SIOCGIFFLAGS Gets interface flags.

SIOCGIFCONF Gets the interface configuration list. When this command is
used, arg must point to an ifconf structure (see below).
The ifc_len field initially should be set to the buffer size
pointed to by ifc_buf . On return, ifc_len has the config-
uration list length in bytes.

Operation Description
4-24 pSOSystem System Calls

pNA+ System Calls ioctl

4

 * transmission units */
char *ifru_data; /* For private use */
} ifr_ifru;

#define ifr_addr ifr_ifru.ifru_addr /* Address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* Other end of */

/* p-to-p link */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* NI broadcast addr. */
#define ifr_mtu ifr_ifru.ifru_mtu /* Maximum number of

* transmission units */
#define ifr_data ifr_ifru.ifru_data /* NI private data */
#define ifr_flags ifr_ifru.ifru_flags /* Flags */

};

ifr_flags can contain one or more of the symbolic constants below (defined in
pna.h), in the following syntax:

IFF_BROADCAST | IFF_RAWMEM

Memory-Related Operations

Symbolic Constant Description

IFF_BROADCAST NI can broadcast.

IFF_EXTLOOPBACK NI uses external loopback.

IFF_INITDOWN Initialize an interface in the DOWN state. By default inter-
faces are installed in the UP state. This flag may only be
specified when initially adding an interface. Note that this
is not an attribute of the NI.

IFF_MULTICAST NI supports multicast.

IFF_NOARP NI does not have ARP.

IFF_POINTTOPOINT NI is point-to-point driver.

IFF_POLL pNA+ polls NI at regular intervals.

IFF_RAWMEM NI passes packets as mblks.

IFF_UNNUMBERED NI is an unnumbered link.

IFF_UP NI is UP.

SIOCGMBSTAT Gets the statistics for mblks (memory blocks) configured
in the system. A pointer to the mbstat structure is
passed via the arg parameter of the ioctl() call. mb-
stat is defined as follows:
pSOSystem System Calls 4-25

ioctl pNA+ System Calls
ARP-Related Operations

The following operations are available for accessing and modifying the ARP table:

For all ARP-related operations, arg must point to the following structure:

struct mbstat {
long mb_classes; /* Number of buffer classes */
long mb_mblks; /* Number of mblks configured */
long mb_free; /* Number of free mblks */
long mb_wait; /* Number of times task waited for mblk */
long mb_drops; /* Number of times mblks unavailable */

};

SIOCGDBSTAT Gets the statistics for buffers configured in the system. A
pointer to the dbreq structure is passed as the arg pa-
rameter. The dbs element must point to a buffer that can
hold at least size number of bytes. The buffer on return
contains a sequence of dbstat structures each of which is
filled in the statistics of the particular buffer size. It is rec-
ommended that the size of the dbs buffer be large enough
to contain all the buffer types configured in the system.
size is an input/output element that contains the size of
a buffer on input. On output the pNA+ network manager
returns the size of buffer used by the call. These struc-
tures are defined as follows in <pna.h> :

struct dbreq {
long size; /* Size of the buffer */
struct dbstat *dbs; /* Pointer to the buffer*/

};

struct dbstat {
long db_size; /* Size of buffer */
long db_nbuffers; /* Number of buffers configured*/
long db_free; /* Number of free buffers */
long db_wait; /* No. of times tasks waited for buffer */
long db_drops; /* No. of times buffer was unavailable */

};

Operation Description

SIOCSARP Sets an ARP entry.

SIOCGARP Gets an ARP entry.

SIOCDARP Deletes an ARP entry.
4-26 pSOSystem System Calls

pNA+ System Calls ioctl

4

struct arpreq {
struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */

};

The arp_pa structure is used to specify the host’s IP address. The address family
field in arp_pa must be AF_INET. The arp_ha structure is used to specify the
host’s hardware address. The arp_ha address field must be AF_UNSPEC.

arp_flags must be one of the following symbolic constants, defined in pna.h :

ATF_PERM makes the entry permanent if the ioctl() call succeeds. ATF_PUBL
specifies that the ARP protocol should respond to ARP requests coming from other
machines for the indicated host. This allows a host to act as an ARP server, which
might be useful in convincing an ARP-only machine to talk to a non-ARP machine.

Routing-Related Operations

The following operations are available for manipulating the Routing Table:

For all Routing-related operations, arg must point to struct rtentry . If a subnet
mask must be specified with the route, the rt_flags field must have the
RTF_MASK flag set and the rt_netmask field must be filled with the subnet mask.

The interface number of the route’s output interface can be specified. Usually this is
computed internally. But for unnumbered point-point links, for instance, you could
specify an interface. The rt_ifno field is ignored unless the RTF_INTF flag is set.

struct rtentry {
struct sockaddr rt_dst; /* Specifies the destination

* IP address of the route. */
struct sockaddr rt_gateway; /* Specifies the gateway

Symbolic Constant Description

ATF_PERM Permanent entry.

ATF_PUBL Publish (respond for other host.)

Operation Description

SIOCADDRT Adds a routing table entry.

SIOCDELRT Deletes a routing table entry.

SIOCMODRT Modifies a routing table entry.
pSOSystem System Calls 4-27

ioctl pNA+ System Calls
* IP address for the route. */
unsigned short rt_flags; /* Specifies the type of route*/
unsigned short reserved; /* Reserved */
unsigned long rt_netmask; /* netmask of route */
long rt_ifno; /* interface number */
unsigned long reserved2[2]; /* Reserved */

};

The rt_flags element can contain one or more of the symbolic constants below
(defined in pna.h), in the following syntax:

RTF_MASK | RTF_GATEWAY

Network Node ID Operations

The following operations are available for accessing the pNA+ Network Node ID. This
is also known as the Router ID. The Network Node ID may be equal to any one of the
IP addresses assigned to the node. To set or get the Network Node ID, arg must
point to an in_addr structure containing the IP address.

Setting the IP TTL

Each IP packet sent by pNA+ (TCP/UDP or Raw IP) is assigned a TTL value. pNA+
assigns a default TTL value of 64 for outgoing UDP and TCP packets as per RFC
1700. Note that this system wide default value affects all sockets. The system wide

Symbolic Constant Description

RTF_HOST Host entry (net otherwise).

RTF_GATEWAY Destination is a gateway.

RTF_UP Route is usable.

RTF_DYNAMIC Route is added dynamically using the ICMP Redirect mes-
sage.

RTF_MODIFIED Route is modified using the ICMP Redirect message.

RTF_INTF Route includes intf num.

RTF_MASK Route includes subnet mask.

Operation Description

SIOCSNNODEID Sets the Network Node ID.

SIOCGNNODEID Gets the Network Node ID.
4-28 pSOSystem System Calls

pNA+ System Calls ioctl

4

default TTL value may be accessed by the IP group MIB commands
SIOCGIPDEFAULTTTL and SIOCSIPDEFAULTTTL.

ICMP and Raw IP packets are assigned a fixed default TTL value for 255. This
system wide default TTL value cannot be changed.

For UDP/IP multicast packets the default TTL value is defined to be 1 but may be
modified using the setsockopt() call.

The following operations are available to change the TTL value on a per socket/
connection basis. Initially the per socket TTL is set as per the rules above. The TTL
value may be changed for each socket. To set or get the IP TTL value the arg
parameter must point to an integer. The TTL value must be non-negative.

UDP Checksum Operations

The following operations may be used to access or modify the UDP checksum
computation policy. By default, UDP checksum is not computed for outgoing UDP
packets. The arg parameter must point to an integer. The integer is set to 1 to
enable UDP checksum computation or 0 to disable the computation.

MIB-II Related Operations

The ioctl() call is used to access pNA+ MIB-II objects, defined in this subsection.
Refer to pSOSystem System Concepts for more details on set and get operations.

The operations described in the remainder of the ioctl() call description are
defined by symbolic constants in <pna_mib.h> :

Operation Description

SIOCSIPTTL Sets the IP TTL value of the socket.

SIOCGIPTTL Gets the IP TTL value of the socket.

Operation Description

SIOCSUDPCHKSUM Sets the UDP checksum computation flag.

SIOCGUDPCHKSUM Gets the UDP checksum computation flag.
pSOSystem System Calls 4-29

ioctl pNA+ System Calls
Definitions for Interface Group MIB Variables

GET Command Definitions

SIOCGIFNUMBER Total number of interfaces

SIOCGIFTABLE pNA+ Network Interface table

SIOCGIFDESCR Description of NI

SIOCGIFTYPE NI type

SIOCGIFMTUNIT NI maximum transmission unit (mtu)

SIOCGIFSPEED NI speed

SIOCGIFPHYSADDRESS NI physical address

SIOCGIFADMINSTATUS NI administration status

SIOCGIFOPERSTATUS NI operational status

SIOCGIFLASTCHANGE Last change in status of the NI

SIOCGIFINOCTETS Number of octets received by the NI

SIOCGIFINUCASTPKTS Number of unicast packets received by the NI

SIOCGIFINNUCASTPKTS Number of multicast packets received by the NI

SIOCGIFINDISCARDS Number of packets discarded by the NI

SIOCGIFINERRORS Number of error packets received by the NI

SIOCGIFINUNKNOWNPROTOS Number of packets discarded by the NI due to un-
known protocols

SIOCGIFOUTOCTETS Number of octets transmitted by the NI

SIOCGIFOUTUCASTPKTS Number of unicast packets sent by the NI

SIOCGIFOUTNUCASTPKTS Number of non-unicast packets sent by the NI

SIOCGIFOUTDISCARDS Number of outbound packets discarded by the NI

SIOCGIFOUTERRORS Number of outbound packets discarded by the NI
due to errors

SIOCGIFOUTQLEN Length of output packet queue of the NI

SIOCGIFSPECIFIC NI-specific parameter

SET Command Definitions

SIOCSIFADMINSTATUS Set interface administration status of the NI
4-30 pSOSystem System Calls

pNA+ System Calls ioctl

4

Definitions for IP Group MIB Variables

GET Command Definitions

SIOCGIPFORWARDING IP gateway indication variable

SIOCGIPDEFAULTTTL IP header default time-to-live value

SIOCGIPINRECEIVES Input datagrams received from interfaces

SIOCGIPINHDRERRORS Drops due to format errors

SIOCGIPINADDRERRORS Drops due to invalid addresses

SIOCGIPFORWDATAGRAMS IP datagrams forwarded

SIOCGIPINUNKNOWNPROTOS IP datagrams discarded due to unknown
protocol

SIOCGIPINDISCARDS Input datagrams discarded with no prob-
lems

SIOCGIPINDELIVERS Datagrams delivered to IP user-protocols

SIOCGIPOUTREQUESTS Datagrams supplied by IP user-protocols

SIOCGIPOUTDISCARDS Outbound datagrams discarded

SIOCGIPOUTNOROUTES IP datagrams dropped due to no routes

SIOCGIPREASMTIMEOUT IP reassembly queue timeout

SIOCGIPREASMREQDS IP fragments needing reassembly

SIOCGIPREASMOKS IP fragments reassembled

SIOCGIPREASMFAILS IP fragments reassembly failures

SIOCGIPFRAGOKS IP datagrams successfully fragmented

SIOCGIPFRAGFAILS IP datagram fragmentation failures

SIOCGIPFRAGCREATES IP fragments created

SIOCGIPROUTINGDISCARDS IP Routing entities discarded

SET Command Definitions

SIOCSIPFORWARDING IP gateway indication variable

SIOCSIPDEFAULTTTL IP header default time-to-live value

SIOCSIPREASMTIMEOUT IP fragmentation reassembly queue timeout
pSOSystem System Calls 4-31

ioctl pNA+ System Calls
Definitions for IP NI Address Table

Definitions for IP Route Table

Definitions for IP NET-TO-MEDIA Table

GET Command Definitions

SIOCGIPADDRTABLE pNA+ NI IP address table

SIOCGIPADENTADDR IP address of the NI

SIOCGIPADENTIFINDEX Interface number of NI

SIOCGIPADENTNETMASK Subnet mask of the NI

SIOCGIPADENTBCASTADDR Broadcast address of the NI

SIOCGIPADENTREASMMAXSIZE Maximum reassembly size of IP datagram

GET Command Definitions

SIOCGIPROUTETABLE IP routing table

SIOCGIPROUTEDEST Route destination IP address

SIOCGIPROUTEIFINDEX Interface number of the NI for the route

SIOCGIPROUTENEXTHOP IP address of next hop of this route

SIOCGIPROUTETYPE Type of this route

SIOCGIPROUTEPROTO Protocol used by the route

SIOCGIPROUTEMASK Network mask to be ANDed with destina-
tion address

SET Command Definitions

SIOCSIPROUTEDEST Route destination IP address

SIOCSIPROUTENEXTHOP IP addr of next hop of this route

SIOCSIPROUTETYPE Type of this route

GET Command Definitions

SIOCGIPNETTOMEDIATABLE IP Net-to-Media table
4-32 pSOSystem System Calls

pNA+ System Calls ioctl

4

SIOCGIPNETTOMEDIAIFINDEX Network Interface number of the NI for
which the entry is valid

SIOCGIPNETTOMEDIAPHYSADDRESSPhysical address of this entry

SIOCGIPNETTOMEDIANETADDRESS IP address of this entry

SIOCGIPNETTOMEDIATYPE Type of this entry

SET Command Definitions

SIOCSIPNETTOMEDIAPHYSADDRESSPhysical address of this entry

SIOCSIPNETTOMEDIANETADDRESS IP address of this entry

SIOCSIPNETTOMEDIATYPE Type of this entry

GET Command Definitions
pSOSystem System Calls 4-33

ioctl pNA+ System Calls
Definitions for ICMP Group MIB Variables

GET Command Definitions

SIOCGICMPINMSGS ICMP messages received

SIOCGICMPINERRORS ICMP messages with format errors

SIOCGICMPINDESTUNREACHS ICMP Destination Unreachable messages
received

SIOCGICMPINTIMEEXCDS ICMP Time Exceeded messages received

SIOCGICMPINPARAMPROBS ICMP Parameter Problem messages re-
ceived

SIOCGICMPINSRCQUENCHS ICMP Source Quench messages received

SIOCGICMPINREDIRECTS ICMP Redirect messages received

SIOCGICMPINECHOS ICMP Echo (request) messages received

SIOCGICMPINECHOREPS ICMP Echo Reply messages received

SIOCGICMPINTIMESTAMPS ICMP Timestamp (request) messages re-
ceived

SIOCGICMPINTIMESTAMPREPS ICMP Timestamp Reply messages received

SIOCGICMPINADDRMASKS ICMP Address Mask Request messages re-
ceived

SIOCGICMPINADDRMASKREPS ICMP Address Mask Reply messages re-
ceived

SIOCGICMPOUTMSGS ICMP messages this entity sent

SIOCGICMPOUTERRORS ICMP messages not sent due to ICMP prob-
lems

SIOCGICMPOUTDESTUNREACHS ICMP Destination Unreachable messages
sent

SIOCGICMPOUTTIMEEXCDS ICMP Time Exceeded messages sent

SIOCGICMPOUTPARAMPROBS ICMP Parameter Problem messages sent

SIOCGICMPOUTSRCQUENCHS ICMP Source Quench messages sent

SIOCGICMPOUTREDIRECTS ICMP Redirect messages sent

SIOCGICMPOUTECHOS ICMP Echo (request) messages sent

SIOCGICMPOUTECHOREPS ICMP Echo Reply messages sent
4-34 pSOSystem System Calls

pNA+ System Calls ioctl

4

SIOCGICMPOUTTIMESTAMPS ICMP Timestamp (request) messages sent

SIOCGICMPOUTTIMESTAMPREPS ICMP Timestamp Reply messages sent

SIOCGICMPOUTADDRMASKS ICMP Address Mask Request messages
sent

SIOCGICMPOUTADDRMASKREPS ICMP Address Mask Reply messages sent

GET Command Definitions
pSOSystem System Calls 4-35

ioctl pNA+ System Calls
Definitions for TCP Group MIB Variables

Definitions for UDP MIB Variables

GET Command Definitions

SIOCGTCPRTOALGORITHM TCP retransmission algorithm

SIOCGTCPRTOMIN TCP minimum retransmission timeout

SIOCGTCPRTOMAX TCP maximum retransmission timeout

SIOCGTCPMAXCONN TCP maximum simultaneous connections

SIOCGTCPACTIVEOPENS Number of direct transitions to SYN-SENT
state from the CLOSED state

SIOCGTCPPASSIVEOPENS Number of direct transitions to SYN-RCVD
state from the LISTEN state

SIOCGTCPATTEMPTFAILS Number of failed TCP connection attempts

SIOCGTCPESTABRESETS Number of TCP connections reset

SIOCGTCPCURRESTAB Number of current TCP connections

SIOCGTCPINSEGS Number of TCP segments received

SIOCGTCPOUTSEGS Number of TCP segments sent

SIOCGTCPRETRANSSEGS Number of TCP segments retransmitted

SIOCGTCPCONNTABLE TCP connection table

SIOCGTCPCONNSTATE State of this TCP connection

SIOCGTCPINERRS Number of TCP segments received in error

SIOCGTCPOUTRSTS Number of TCP segments sent with RST
flag

SET Command Definitions

SIOCSTCPCONNSTATE State of this TCP connection

GET Command Definitions

SIOCGUDPINDATAGRAMS UDP datagrams delivered to UDP users

SIOCGUDPNOPORTS UDP datagrams received for unknown
ports
4-36 pSOSystem System Calls

pNA+ System Calls ioctl

4

Return Value

This system call returns 0 if successful, otherwise it returns -1.

Error Codes

See Also

socket, setsockopt, getsockopt

SIOCGUDPINERRORS UDP datagrams received with other errors

SIOCGUDPOUTDATAGRAMS UDP datagrams sent from this entity

SIOCGUDPTABLE pNA+ UDP listener table

Hex Mnemonic Description

0x5006 ENXIO No such address

0x5009 EBADS Invalid socket descriptor

0x5011 EEXIST Requested to duplicate an existing en-
try

0x5016 EINVALID Invalid argument

0x502D EOPNOTSUPP Requested operation not valid for this
type of socket

0x504B ETID Invalid task ID

0x5037 ENOBUFS Insufficient resources available to in-
stall a new route

GET Command Definitions
pSOSystem System Calls 4-37

listen pNA+ System Calls
listen Listens for connections on a socket.

#include <pna.h>
long listen(

int s, /* socket descriptor */
int backlog /* packet queue depth */
)

Description

This system call sets up the specified socket to receive connections. Connection
requests are queued on the socket until they are accepted with the accept() call.
The maximum length of the queue of pending connections must be specified. If a
connection request arrives while the queue is full, the requesting client gets an
ECONNREFUSED error.

Arguments

Return Value

This system call returns 0 if successful, otherwise it returns -1.

Error Codes

See Also

accept, connect, socket

s Specifies the socket.

backlog Defines the maximum length of the queue of pending con-
nections.

Hex Mnemonic Description

0x5016 EINVALID An argument is invalid.

0x502D EOPNOTSUPP The requested operation isn’t valid for
this socket type.
4-38 pSOSystem System Calls

pNA+ System Calls pna_allocb

4

pna_allocb Allocates a message block.

#include <pna.h>
mblk_t *pna_allocb(size, pri)
int size;
int pri;

Description

pna_allocb allocates a message block with a data buffer of a specified size.

The pNA+ memory manager searches the buffer list for the size that best fits the
requested size. If a buffer of that size is not available, the call returns NULL.
pna_allocb uses the following algorithm to find the best fit:

1. The pNA+ memory manager first searches for an exact match.

2. If a match is not available, the pNA+ memory manager searches for the smallest
size able to contain the requested size.

3. If none is available, the maximum size configured in the pNA+ memory manager
is used.

The following example illustrates this algorithm:

Let buffers of sizes 0, 128, 1024, and 4096 bytes be configured in pNA+. If a buffer
of size 1024 is requested, the pNA+ memory manager allocates a buffer from the
1024-byte buffer list. A request for a 2048-byte buffer results in the pNA+ memory
manager allocating a buffer from the 4096-byte buffer list, and a request for a size
8192 buffer results in the allocation of a 4096-byte buffer.

Arguments

Return Value

This system call returns a pointer to the message block if successful; otherwise, it
returns a null pointer.

size Specifies the size of the data buffer.

pri Unused by the pNA+ memory manager.
pSOSystem System Calls 4-39

pna_allocb pNA+ System Calls
Error Codes

None.

See Also

pna_esballoc, pna_freeb, pna_freemsg
4-40 pSOSystem System Calls

pNA+ System Calls pna_esballoc

4

pna_esballoc Attaches a message block to the data buffer.

#include <pna.h>
mblk_t *pna_esballoc(buffer, size, pri, frtn)
unsigned char *buffer;
int size;
int pri;
frtn_t *frtn;

Description

pna_esballoc allocates and attaches a message block to the user-supplied data
buffer; it uses a zero-sized data block to attach the message block to the data buffer.

Arguments

Return Value

This system call returns a pointer to the message block if successful; otherwise, it
returns a null pointer.

buffer Points to the user-supplied data buffer.

size Specifies the size of buffer .

pri Unused by the pNA+ memory manager.

frtn Points to the free_rtn structure, which specifies a free routine
and an argument to the free routine. The free routine is called by
the pNA+ memory manager when the user-specified data buffer is
being freed. The free_rtn structure is defined in <pna.h> as fol-
lows:

struct free_rtn {
void (*free_func)(); /* User free routine */
void *free_arg; /* Argument to free routine */

};
typedef struct free_rtn frtn_t;
pSOSystem System Calls 4-41

pna_esballoc pNA+ System Calls
Error Codes

None.

See Also

pna_allocb, pna_freeb, pna_freemsg
4-42 pSOSystem System Calls

pNA+ System Calls pna_freeb

4

pna_freeb Frees a message block.

#include <pna.h>
void pna_freeb(bp)
mblk_t *bp;

Description

pna_freeb() deallocates a specified message block. This function decrements the
reference to the data buffer. It then deallocates the data block and the associated
data buffer when no more references to them exist. If the data buffer is user-
supplied [see pna_esballoc()], the user-supplied free routine is called when no
more references to the data buffer exist.

Arguments

Return Value

None.

Error Codes

None.

See Also

pna_allocb, pna_esballoc, pna_freemsg

bp Points to the message block to be deallocated.
pSOSystem System Calls 4-43

pna_freemsg pNA+ System Calls
pna_freemsg Frees all message blocks associated with a message.

#include <pna.h>
void pna_freemsg(bp)
mblk_t *bp;

Description

pna_freeb frees all the message blocks and data blocks associated with the
specified message. This routine calls the pna_freeb() routine to free individual
message blocks.

Arguments

Return Value

None.

Error Codes

None.

See Also

pna_allocb, pna_esballoc, pna_freeb

bp Points to the message to be freed.
4-44 pSOSystem System Calls

pNA+ System Calls recv

4

recv Receives data from a socket.

#include <pna.h>
long recv(

int s, /* socket descriptor */
char *buf, /* packet */
int len, /* packet length */
int flags /* packet attributes */
)

Description
The recv() system call is used to receive data from the specified socket. The
behavior of this system call depends on the socket type, as described under
“Arguments.”

The recv() system call returns the number of bytes received, and this value should
always be checked because this is the only way to detect the actual number of data
bytes stored in the user buffer.

Applications can use this call to receive messages from the pNA+ network manager
in a linked list of mblks (message blocks) by setting the MSG_RAWMEM flag. Using
mblks eliminates the data copy performed in the pNA+ network manager during the
data transfer between the application and the pNA+ network manager.

Arguments

s Specifies the socket from which data is received. s can be a stream,
a datagram, or a raw socket.

If s is a stream socket, recv() copies whatever data is available at
the socket to the user buffer and returns. recv() never copies more
than len bytes of data to the user buffer, but it can copy less, if less
than len bytes are available. Unless ioctl() was used to mark the
socket non-blocking, recv() blocks the caller if no data is available
at the socket. The caller is unblocked when data is received. If the
socket has been marked non-blocking, recv() returns immediately
whether or not data is received.
pSOSystem System Calls 4-45

recv pNA+ System Calls
Return Value

This system call returns either the number of bytes received or -1 if an error occurs.
When the receive is shutdown by either end of the connection, a value of 0 is
returned.

If s is a datagram socket, every recv() call receives one datagram.
The sender defines the size of the datagram. If the len parameter is
less than the size of the datagram, part of the datagram is discarded.
The next recv() call reads the next datagram received but not the
unread part of the previous datagram. Unless ioctl() was used to
mark the socket non-blocking, recv() blocks the caller until a dat-
agram is available at the socket. If the socket has been marked non-
blocking, recv() returns immediately whether or not datagrams are
received.

If s is a raw socket, every recv() call receives one raw datagram.
The size of the raw datagram is defined by the sender. If the len pa-
rameter is less than the size of the raw datagram, part of the raw da-
tagram is discarded. The next recv() call reads the next raw
datagram received, not the unread part of the previous raw data-
gram. Unless ioctl() was used to mark the socket non-blocking,
recv() blocks the caller until a raw datagram is available at the
socket. If the socket has been marked non-blocking, recv() returns
immediately whether or not raw datagrams are received. The packet
contains an IP header along with the packet body, if any.

buf Points to the user buffer where the data is stored.

len Specifies the size in bytes of the buffer.

flags Specifies usage options and is the result of an OR operation per-
formed on one or more of the following symbolic constants (defined
in <pna.h>). Can also be set to 0.

MSG_OOB Specifies that you want recv() to read any out-of-
band data present on the socket, rather than the
regular in-band data.

MSG_PEEK Specifies that you want recv() to peek at the data
present on the socket; the data is returned, but not
consumed, so that a subsequent receive operation
sees the same data.

MSG_RAWMEM Specifies that you have set buf to point to a linked
list of mblks and len to the total size of the mes-
sage.
4-46 pSOSystem System Calls

pNA+ System Calls recv

4

Error Codes

See Also

connect, recvfrom, recvmsg, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5016 EINVALID An argument is invalid.

0x5023 EWOULDBLOCK This operation would block and the socket
is marked non-blocking.

0x5036 ECONNRESET The connection has been reset by the peer.

0x5037 ENOBUFS An internal buffer is required but cannot
be allocated.

0x5039 ENOTCONN The socket is not connected.
pSOSystem System Calls 4-47

recvfrom pNA+ System Calls
recvfrom Receives data from a socket.

#include <pna.h>
long recvfrom(

int s, /* socket descriptor */
char *buf, /* packet buffer */
int len, /* packet buffer length */
int flags, /* packet attributes */
struct sockaddr_in *from, /* sender attributes */
int *fromlen /* number of bytes recieved */
)

Description

The recvfrom() system call is used to receive data from a socket. This system call
is almost identical to recv() . The difference is recvfrom() may also return the
address of the sender in the specified parameter.

Arguments

s Specifies the socket from which data is received. The behavior of
the system call depends on the socket type. Refer to recv() for
more information.

buf Points to the user buffer where data is stored.

len Specifies the size of the buffer in bytes.

flags Specifies usage options and is the result of an OR operation per-
formed on one or more of the following symbolic constants (de-
fined in <pna.h>). Can also be set to 0.

MSG_OOB Specifies that you want recvfrom() to read
any out-of-band data present on the socket,
rather than the regular in-band data.

MSG_PEEK Specifies that you want recvfrom() to peek at
the data present on the socket; the data is re-
turned, but not consumed, so that a subse-
quent receive operation sees the same data.
4-48 pSOSystem System Calls

pNA+ System Calls recvfrom

4

MSG_RAWMEM Specifies that you have set buf to point to a
linked list of mblks and len to the total size of
the message.

MSG_INTERFACESpecifies that you want the interface number of
the NI on which the packet arrived to be stored
in from .

from If from is not a NULL pointer, recvfrom() fills in the
sockaddr_in structure it points to with the address of the
received data's sender.

The structure sockaddr_in is defined in <pna.h> and has the
following format:

struct sockaddr_in {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero[8]; /* must be 0 */
};

This structure cannot be packed.

If flags includes the MSG_INTERFACE constant, then the struc-
ture pointed to by from is filled with the structure
sockaddr_intf . This is supported only for datagram sockets.
This feature is useful with unnumbered links where it may not be
clear which interface the packet arrived on.

The structure sockaddr_intf is defined in <pna.h> and has the
following format:

struct sockaddr_intf {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
long sin_ifno; /* 32-bit interface number */
char sin_zero[4]; /* must be 0 */
};

The field sin_ifno identifies the interface number of the incom-
ing message's receiving interface.

fromlen An input-output parameter. On input, it should point to an integer
equal to 16, which is the size in bytes of both struct
sockaddr_in and struct sockaddr_intf .
pSOSystem System Calls 4-49

recvfrom pNA+ System Calls
Return Value

This system call returns either the number of bytes received or -1 if an error
occurred. When the receive is shutdown by either end of the connection, a value of 0
is returned.

Error Codes

See Also

recv, recvmsg, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5016 EINVALID An argument is invalid.

0x5023 EWOULDBLOCK This operation would block and the
socket is marked nonblocking.

0x5036 ECONNRESET The connection has been reset by the
peer.

0x5037 ENOBUFS An internal buffer is required but can-
not be allocated.

0x5039 ENOTCONN The socket is not connected.
4-50 pSOSystem System Calls

pNA+ System Calls recvmsg

4

recvmsg Receives data from a socket.

#include <pna.h>
long recvmsg(

int s, /* socket descriptor */
struct msghdr *msg, /* packet */
int flags /* packet attributes */
)

Description

The recvmsg() system call is used to receive data from a socket. This system call is
similar to recvfrom() but requires fewer input parameters. Refer also to recv()
for more details. Note that the MSG_RAWMEM option is not supported by this call.

Arguments

s Specifies the socket from which data is received. The behavior of the
system call depends on the socket type. Refer to recv() for more in-
formation.

msg Points to the structure msghdr , which is defined in the file <pna.h>
with the following format:

struct msghdr {
char *msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
char *msg_accrights; /* access rights */
int msg_accrightslen; /* size of access rights buffer */
};

This structure cannot be packed. The contents of the msghdr fields
are described below.

msg_name If the socket is unconnected, can specify the
source from which it receives data.

msg_namelen Specifies the length of the buffer pointed to by
msg_name.
pSOSystem System Calls 4-51

recvmsg pNA+ System Calls
Return Value

This system call returns the number of bytes received, or it returns -1 if an error
occurs. When the receive is shutdown by either end of the connection, a value of 0 is
returned.

msg_iov Points to an array whose members
(msg_iov[0] , ..,msg_iov[msglen-1]) spec-
ify the buffers in which the received data is
stored. The iovec structure has the following
format:

struct iovec {
char *iov_base: /* base address */
int iov_len; /* buffer length */

};

This structure cannot be packed. Each iovec
entry specifies the base address and length of
an area in memory where data is stored.
recvmsg() always fills an area completely
before it goes to the next area.

msg_accrights Points to a buffer that receives the access
rights information sent along with a message.
This applies to messages that a UNIX host
sends.

msg_accrightslen Specifies the length of the buffer pointed to by
msg_accrights .

flags Specifies usage options and is the result of an OR operation per-
formed on one or more of the following symbolic constants (defined in
<pna.h>). It can also be set to 0.

MSG_OOB Specifies that you want recvmsg() to read
any out-of-band data present on the socket,
rather than the regular in-band data.

MSG_PEEK Specifies that you want recvmsg() to peek at
the data present on the socket; the data is re-
turned, but not consumed, so that a subse-
quent receive operation sees the same data.
4-52 pSOSystem System Calls

pNA+ System Calls recvmsg

4

Error Codes

See Also

recv, recvfrom, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5016 EINVALID An argument is invalid.

0x5023 EWOULDBLOCK This operation would block and the
socket is marked non-blocking.

0x5028 EMSGSIZE Message too long.

0x5036 ECONNRESET The connection has been reset by the
peer.

0x5037 ENOBUFS An internal buffer is required but can-
not be allocated.

0x5039 ENOTCONN The socket is not connected.
pSOSystem System Calls 4-53

select pNA+ System Calls
select Checks the status of multiple sockets.

#include <pna.h>
long select(

int width, /* largest descriptor list */
fd_set *readset, /* read descriptor list */
fd_set *writeset, /* write descriptor list
fd_set *exceptset, /* exception list */
struct timeval *timeout /* timeout for operation */
)

Description

This system call is used to multiplex I/O requests among multiple sockets. Three
sets of socket descriptors may be specified: a set of sockets from which to read, a set
to which to write and a set that may have pending exceptional conditions.

Each set is actually a structure containing an array of long integer bit masks. The
size of the array is set by the definition of FD_SETSIZE (in <pna.h> .) The array is
long enough to hold one bit for each FD_SETSIZE socket descriptor.

If select() returns successfully, the three sets indicate which socket descriptors
can be read, which can be written to, or which have exceptional conditions pending.
A timeout value may be specified.

Arguments

width Specifies the largest descriptor list given by readset , writeset ,
or exceptset .

readset Points to a set of sockets from which to read.

writeset Points to a set of sockets to which to write.

exceptset Points to a set of sockets that may have an exceptional condition
pending.
4-54 pSOSystem System Calls

pNA+ System Calls select

4

Usage

Macros

The status of a socket descriptor in a select mask can be tested with the
FD_ISSET(s , &mask) macro, which returns a non-zero value if s is a member of the
set mask, and 0 if it is not.

In addition, the macros FD_SET(s , &mask) and FD_CLEAR(s , &mask) are provided for
adding and removing socket descriptors to and from a set. s is the socket descriptor,
and mask points to a bit mask data structure. The macro FD_ZERO(&mask) is
provided to clear the set and should be used before the set is used.

These macros are defined in the file <pna.h> .

Example

The following example shows how to use select() to determine if two sockets have
available data:

fd_set read_mask;

struct timeval wait;

for (;;)
{

wait.tv_sec = 1; /* wait for 1 second */
wait.tv_usec = 0;

FD_ZERO (&read_mask);
FD_SET (s1, &read_mask);
FD_SET (s2, &read_mask);

nb = select (FD_SETSIZE, &read_mask, (fd_set *) 0,
(fd_set *) 0, &wait);

if (nb <= 0)
{

/* error occurred or timed out */

timeout Specifies a timeout option. If the fields in timeout are set to 0,
select() returns immediately. If the timeout is a null pointer,
select() blocks until a descriptor is selectable. The structure
timeval is defined in the file <pna.h> and has the following for-
mat:

struct timeval {
long tv_sec; /* number of seconds */
long tv_usec; /* number of microseconds */
pSOSystem System Calls 4-55

select pNA+ System Calls
}

if (FD_ISSET(s1, &read_mask))
{

/* socket 1 has data available */
}

if (FD_ISSET(s2, &read_mask))
{

/* socket 2 has data available */
}

}

If two tasks attempt to use select() on the same socket for the same conditions,
an error occurs.

Return Value

A -1 is returned if an error occurs and the socket descriptor masks remain
unchanged; a 0 is returned if a timeout occurs. On success a nonzero value is
returned that indicates the number of descriptors on which events have occurred.

Error Codes

See Also

accept, connect, recv, send

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x504A ECOLL Collision in select() ; these condi-
tions have already been selected by
another task.
4-56 pSOSystem System Calls

pNA+ System Calls send

4

send Sends data to a socket.

#include <pna.h>
long send(

int s, /* socket descriptor */
char *buf, /* packet */
int len, /* packet length */
int flags /* packet attributes */
)

Description

The send() system call is used to send data to a foreign socket.

If no buffer space is available at the socket to hold the data to be transmitted,
send() blocks the calling task unless the socket has been marked non-blocking.

Applications can use this call to pass messages to the pNA+ network manager in a
linked list of mblks (message blocks) by setting the MSG_RAWMEM flag (see
“Arguments,” below). Using mblks eliminates the data copy performed in the pNA+
network manager during the data transfer between the application and the pNA+
network manager.

Arguments

s Specifies the local socket, which must be in a connected state.

If s is a stream socket, the data is sent to the foreign socket that is
connected to s .

If s is a datagram socket, the data is sent to the socket that has been
associated with s through a previous connect() system call.

If s is a raw socket, the raw datagram is sent to the raw socket that
has been associated with s through a previous connect() system
call.

buf Points to a buffer containing the data to send. If s is a datagram
socket, the data that buf points to is a datagram.

len Specifies the number of bytes in buf .
pSOSystem System Calls 4-57

send pNA+ System Calls
Return Value

This system call returns the number of bytes sent or -1 if an error occurs.

Error Codes

flags Specifies usage options and is the result of an OR operation per-
formed on one or more of the following symbolic constants (defined in
<pna.h>). It can also be set to 0.

MSG_OOB Specifies that you want send() to send out-of-
band data, rather than the regular in-band data.

MSG_DONTROUTESpecifies that you want send() to turn on the
socket flag SO_DONTROUTE for the duration of the
send operation. The SO_DONTROUTE flag prohibits
routing of outgoing data from the socket. Packets
directed at unconnected nodes are dropped.

MSG_RAWMEM Specifies that you have set buf to point to a linked
list of mblks and len to the total size of the mes-
sage.

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x500D EACCESS The broadcast option is not set for
this socket.

0x5016 EINVALID An argument is invalid.

0x5020 EPIPE The connection is broken.

0x5023 EWOULDBLOCK This operation would block (and the
socket is marked non-blocking.)

0x5028 EMSGSIZE Message too long.

0x5033 ENETUNREACH Destination network can’t be reached
from this node.

0x5036 ECONNRESET The connection has been reset by the
peer.

0x5037 ENOBUFS An internal buffer is required but can-
not be allocated.

0x5039 ENOTCONN The socket is not connected.
4-58 pSOSystem System Calls

pNA+ System Calls send

4

See Also

sendto, sendmsg, socket

0x5041 EHOSTUNREACH The destination host could not be
reached from this node.

Hex Mnemonic Description
pSOSystem System Calls 4-59

sendmsg pNA+ System Calls
sendmsg Sends data to a socket.

#include <pna.h>
long sendmsg(

int s, /* socket descriptor */
struct msghdr *msg, /* packet structure */
int flags /* packet attributes */
)

Description

The sendmsg() system call is used to send data to a foreign socket. This system
call is similar to sendto() , but it requires fewer input parameters and uses the
structure msghdr . For a complete description of this system call, refer to the
sendto call description on page 4-62.

Note that the MSG_RAWMEM option is not supported by this call.

Arguments

s Specifies the local datagram socket.

msg Points to a msghdr structure. The msghdr structure is described
in the recvmsg call description on page 4-51.

flags Specifies usage options and is formed by ORing one or more of the
following symbolic constants (defined in <pna.h>). It can also be
set to 0.

MSG_OOB Specifies that you want sendmsg() to send
out-of-band data, rather than the regular in-
band data.

MSG_DONTROUTE Specifies that you want sendmsg() to turn
on the socket flag SO_DONTROUTE for the du-
ration of the operation. The SO_DONTROUTE
flag prohibits routing of outgoing data from
the socket. Packets directed at unconnected
nodes are dropped.
4-60 pSOSystem System Calls

pNA+ System Calls sendmsg

4

Return Value

This system call returns the number of bytes sent or -1 if an error occurred.

Error Codes

See Also

send, sendto, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x500D EACCESS The broadcast option is not set for
this socket.

0x5016 EINVALID An argument is invalid.

0x5020 EPIPE The connection is broken.

0x5023 EWOULDBLOCK This operation would block and the
socket is marked non-blocking.

0x5027 EDESTADDRREQ The destination address is invalid.

0x5028 EMSGSIZE The data cannot be transmitted as a
unit.

0x5031 EADDRNOTAVAIL The specified address is not available.

0x5033 ENETUNREACH The destination network cannot be
reached from this node.

0x5036 ECONNRESET The connection has been reset by the
peer.

0x5037 ENOBUFS An internal buffer is required, but
can’t be allocated.

0x5038 EISCONN The socket is in a connected state.

0x5039 ENOTCONN The socket is not connected.

0x5041 EHOSTUNREACH The destination host could not be
reached from this node.
pSOSystem System Calls 4-61

sendto pNA+ System Calls
sendto Sends data to a socket.

#include <pna.h>
long sendto(

int s, /* socket descriptor */
char *buf, /* packet */
int len, /* packet length */
int flags, /* packet attribute */
struct sockaddr_in *to, /* destination socket type */
int tolen /* size of sockaddr_in */
)

Description

The sendto() system call is used to send data to a foreign datagram socket.
Although it is possible to use this system call with stream, datagram, or raw
sockets, it is intended to be used only with datagram sockets or raw sockets.

If no buffer space is available at the socket to hold the datagram, sendto() blocks
the calling task unless the socket has been marked non-blocking.

Applications can use this call to pass messages to the pNA+ network manager in a
linked list of mblks (message blocks) by setting the MSG_RAWMEM flag. Using mblks
eliminates the data copy performed in the pNA+ network manager during the data
transfer between the application and the pNA+ network manager.

Arguments

s Specifies the local socket.

buf Points to a buffer that contains the data to send. The data pointed to
by buf is called a datagram.

len Specifies the number of bytes in buf .

flags Specifies usage options and is the result of an OR operation per-
formed on one or more of the following symbolic constants (defined
in <pna.h>). It can also be set to 0.

MSG_OOB Specifies that you want sendto() to send out-
of-band data, rather than the regular in-band
data.
4-62 pSOSystem System Calls

pNA+ System Calls sendto

4

MSG_DONTROUTE Specifies that you want sendto() to turn on
the socket flag SO_DONTROUTE for the duration
of the send operation. The SO_DONTROUTE flag
prohibits routing of outgoing data from the
socket. Packets directed at unconnected nodes
are dropped.

MSG_RAWMEM Specifies that you have set buf to point to a
linked list of mblks and len to the total size of
the message.

MSG_INTERFACE Specifies the outgoing interface of the message.
If no route is found to the destination, then the
interface number is specified in the argument
to , which is a pointer to the structure
sockaddr_intf . This is supported only for da-
tagram or raw sockets. This is helpful with un-
numbered links where there may not be a route
to the destination.

to Specifies the destination socket address and is a pointer to either the
sockaddr_in structure or the sockaddr_intf structure.
sockaddr_intf is used only if the MSG_INTERFACE option is set in
flags . These structures are defined in <pna.h> and have the fol-
lowing format:

struct sockaddr_in {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
char sin_zero[8]; /* must be 0 */
};

struct sockaddr_intf {
short sin_family; /* must be AF_INET */
unsigned short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit IP address */
long sin_ifno; /* 32-bit interface number */
char sin_zero[4]; /* must be 0 */
};

The field sin_ifno identifies the interface number of the outgoing
packet's output interface.

The above structures cannot be packed.

tolen Specifies the size in bytes of either struct sockaddr_in or struct
sockaddr_intf and must be 16.
pSOSystem System Calls 4-63

sendto pNA+ System Calls
Return Value

This system call returns the number of bytes sent and -1 if an error occurs.

Error Codes

See Also

send, sendmsg, select, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x500D EACCESS The broadcast option is not set for
this socket.

0x5016 EINVALID An argument is invalid.

0x5020 EPIPE The connection is broken.

0x5023 EWOULDBLOCK This operation would block, and the
socket is marked non-blocking.

0x5027 EDESTADDRREQ The destination address is invalid.

0x5028 EMSGSIZE Message too long.

0x5031 EADDRNOTAVAIL The specified address is not available.

0x5033 ENETUNREACH The destination network cannot be
reached from this node.

0x5036 ECONNRESET The connection has been reset by the
peer.

0x5037 ENOBUFS An internal buffer is required but
can’t be allocated.

0x5038 EISCONN The socket is in a connected state.

0x5039 ENOTCONN The socket is not connected.

0x5041 EHOSTUNREACH The destination host could not be
reached from this node.
4-64 pSOSystem System Calls

pNA+ System Calls set_id

4

set_id Sets a task’s user ID and group ID.

#include <pna.h>
long set_id(

long userid, /* user identity */
long groupid, /* group identity */
long *groups /* must be zero */
)

Description

This system call sets the user ID and group ID of the calling task. These IDs are
used for accessing NFS servers. Default values for the IDs are defined in the pNA+
Configuration Table.

Arguments

Return Value

This system call returns 0 if successful, otherwise it returns -1.

Error Codes

None.

See Also

get_id

userid Specifies the calling task’s user ID.

groupid Specifies the calling task’s group ID.

groups Zero must be passed as a third argument (it is currently ig-
nored).
pSOSystem System Calls 4-65

setsockopt pNA+ System Calls
setsockopt Sets options on a socket.

#include <pna.h>
long setsockopt(

int s, /* socket descriptor */
int level, /* SOL_SOCKET, IPPROTO_TCP */

/* or IPPROTO_IP */
int optname, /* retrieval access */
char *optval,/* modification data */
int optlen /* sizeof modification data */
)

Description

The setsockopt() system call sets options associated with the specified socket.
Socket level, IP protocol level, or TCP protocol level options can be set.

Arguments

s Specifies the socket whose options are to be set.

level Specifies the level of the option to be set. Must be SOL_SOCKET for
socket level operations, IPPROTO_TCP for TCP protocol level oper-
ations, or IPPROTO_IP for IP protocol level operations. These op-
tions are defined in <pna.h> .

optname Specifies the option to be set and uses a symbolic constant de-
fined in <pna.h> . The symbolic constants available for each level
are described below.

optval Points to a buffer in which the option's value is specified. Most op-
tions are 32-bit values. A nonzero value means the option should
be set, and a 0 means the option should be turned off.

optlen Specifies the size of the value pointed to by optval .
4-66 pSOSystem System Calls

pNA+ System Calls setsockopt

4

Socket Level Options

level must be set to SOL_SOCKET for socket level operations and the optname
value can be one of the following (defined in <pna.h>):

SO_BROADCAST Allows broadcast datagrams on a socket.

SO_DONTROUTE Indicates that the outgoing data should not be routed. Pack-
ets directed at unconnected nodes are dropped.

SO_KEEPALIVE Maintains a connection by periodically transmitting a packet
over socket s .

SO_LINGER Controls the action taken when unsent messages are queued on a
socket and a close() is executed. If the socket is a stream
socket and SO_LINGER is set (l_onoff set to 1), the calling task
blocks until it is able to transmit the data or until a timeout oc-
curs. If SO_LINGER is disabled (l_onoff set to 0), the socket is
deleted immediately. SO_LINGER uses the linger structure,
which is defined in <pna.h> as follows:

struct linger {
int l_onoff; /* on/off option */
int l_linger; /* linger time in seconds */
}

This structure cannot be packed.

SO_OOBINLINE Requests that out-of-band data be placed in the normal data
input queue as it is received; it becomes accessible through
recv() calls without the MSG_OOB flag.

SO_RCVBUF Adjusts the normal allocated input buffer size. The buffer
size can be increased for high-volume connections or de-
creased to limit the possible backlog of data. The pNA+ net-
work manager limits this value to 32 Kbytes.

SO_REUSEADDR Indicates that local addresses can be reused in a bind() call.

SO_REUSEPORT Indicates that local addresses can be reused in a bind()
call. For more information, see section 4.4.3 of the Network
Programming chapter in pSOSystem System Concepts.

SO_SNDBUF Adjusts the normal allocated output buffer size. The buffer
size can be increased for high-volume connections or de-
creased to limit the possible backlog of data. The pNA+ net-
work manager limits this value to 32 Kbytes.
pSOSystem System Calls 4-67

setsockopt pNA+ System Calls
TCP Level Option

level must be set to IPPROTO_TCP for TCP protocol level operations. The
argument optname can have the following value (defined in <pna.h >):

TCP_KEEPALIVE_CNT Number of Keepalive strobes. Upon expiry of the Kee-
palive idle timer TCP will send a number of strobes
separated by a fixed interval. If the other end fails to
respond to the strobes (special TCP segments) then
the TCP connection will be terminated. The default
number of strobes in pNA+ are 8. Only valid if the
SO_KEEPALIVE option is set above.

TCP_KEEPALIVE_IDLE Keepalive idle time in TCP. If the connection has been
idle for this time, the timer will expire causing TCP to
send a special segment forcing the other end to re-
spond. On demand-dial links for example the timer
may be set long enough so as not to cause unneces-
sary traffic. The default in pNA+ is 120 seconds (2
hrs). The timer is in seconds. Only valid if the
SO_KEEPALIVE option is set above.

TCP_KEEPALIVE_INTVL Keepalive strobe interval. The strobes sent out by TCP
upon expiration of the Keepalive idle timer are sepa-
rated by a fixed interval. The default interval between
the strobes is set to 75 seconds in pNA+. The timer is
in seconds. Only valid if the SO_KEEPALIVE option is
set above.

TCP_MSL Maximum Segment Lifetime in TCP. This controls the
TIME_WAIT or 2MSL timer in TCP which is set to
twice the value of the MSL. The timer is used to vali-
date connection termination and transmits remaining
data in the send queue. It is a safeguard against se-
quence numbers being overlapped. If set to a low
value it allows the sockets to be quickly deleted. The
default in pNA+ is 30 seconds. The timer is in sec-
onds.

TCP_NODELAY Disables delay acknowledgment algorithm. Data is
sent immediately over the network instead of waiting
for the window to be full.
4-68 pSOSystem System Calls

pNA+ System Calls setsockopt

4

IP Level Options

level must be set to IPPROTO_IP for IP protocol level operations. The argument
optname can have one of the following values (defined in <pna.h >):

IP_ADD_MEMBERSHIP Join a multicast group. For this option, optval is
a pointer to the ip_mreq structure (defined in
<pna.h>). The group multicast address must be
specified in the field imr_mcastaddr . This is a
CLASS-D IP multicast address. The
imr_interface parameter may be set to the IP
address of a specific interface for which group
membership will be enabled. The interface must
of course support multicasting. Optionally the
imr_interface parameter may be set to
INADDR_ANY in which case pNA+ will decide the
interface to join on (for example, if a route exists
for a matching multicast address that specifies
the interface). The maximum number of groups
that can be joined per multicast socket is defined
by the constant IP_MAX_MEMBERSHIPS in pna.h .

The structure below is defined in <pna.h> and
used with the IP_ADD_MEMBERSHIP option.

struct ip_mreq {
struct in_addr imr_mcastaddr;

/* IP multicast address of group */
struct in_addr imr_interface;

/* local IP address of interface */
};
pSOSystem System Calls 4-69

setsockopt pNA+ System Calls
IP_ADD_MEMBERSHIP_INTF Similar to IP_ADD_MEMBERSHIP above. The
optval is a pointer to the structure
ip_mreq_intf (defined in <pna.h>). The only
difference is that the interface is defined using
the interface number. If the interface number is
specified as -1 then pNA+ will select the interface
based upon the routing table. This option is use-
ful for unnumbered links because the IP address
of the interface is not enough to identify the inter-
face.

The structure below is defined in <pna.h> and
used with the IP_ADD_MEMBERSHIP_INTF option.

struct ip_mreq_intf {
struct in_addr imrif_mcastaddr;

/* IP multicast address of group */
 long imrif_ifno;

/* local interface number */
};

IP_DROP_MEMBERSHIP Leave a multicast group. optval is a pointer to
the ip_mreq structure (defined in <pna.h>). The
group multicast address to be dropped must be
specified in imr_mcastaddr . The interface ad-
dress could be set to INADDR_ANYunless it spec-
ifies the particular interface for which the group
membership must be dropped.

The structure below is defined in <pna.h> and
used with the IP_DROP_MEMBERSHIP option.

struct ip_mreq {
struct in_addr imr_mcastaddr;

/* IP multicast address of group */
struct in_addr imr_interface;

/* local IP address of interface */
};
4-70 pSOSystem System Calls

pNA+ System Calls setsockopt

4

IP_DROP_MEMBERSHIP_INTF Similar to IP_DROP_MEMBERSHIP above. The
optval is a pointer to the structure
ip_mreq_intf (defined in <pna.h>). The only
difference is that the interface is defined using
the interface number. If the interface number is
specified as -1 then pNA+ will select the interface
based upon the routing table. This option is use-
ful for unnumbered links because the IP address
of the interface is not enough to identify the inter-
face.

The structure below is defined in <pna.h> and
used with the IP_DROP_MEMBERSHIP_INTF
option.

struct ip_mreq_intf {
struct in_addr imrif_mcastaddr;

/* IP multicast address of group */
 long imrif_ifno;

/* local interface number */
};

IP_HDRINCL Specifies that the IP header will be included in the
output packets. The following fields will be set by
pNA+ if they are set to 0 in the included IP
header: IP identification number and IP source
address. The fragmentation offset and checksum
fields are always computed by pNA+. The rest of
the IP header fields must be set appropriately.

IP_MULTICAST_IF Specifies the outgoing interface for multicast
packets. optval is a pointer to struct in_addr .
If set to INADDR_ANY then the routing table will
be used to select an appropriate interface.

IP_MULTICAST_INTF Specifies the outgoing interface for multicast
packets. The outgoing interface is defined by its
interface number. The optval is a pointer to a
long. If set to -1 then the routing table will be
used to select an appropriate interface. This op-
tion is useful for unnumbered links because the
IP address of the interface is not enough to iden-
tify the interface.
pSOSystem System Calls 4-71

setsockopt pNA+ System Calls
Return Value

This system call returns 0 if successful, otherwise it returns -1.

Error Codes

See Also

getsockopt, socket

IP_MULTICAST_LOOP Specifies whether or not to loopback multicast
packets. optval is a pointer to an unsigned char.
By default the packets are looped back
(IP_DEFAULT_MULTICAST_LOOP). A value of 0
disables loopback.

IP_MULTICAST_TTL Specifies the time-to-live for outgoing IP multicast
datagrams. optval is a pointer to an unsigned
char. The default is
IP_DEFAULT_MULTICAST_TTL.

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5016 EINVALID An argument is invalid.

0x502A ENOPROTOOPT The optname or level is not valid.

0x5030 EADDRINUSE The multicast address is already in use.

0x5031 EADDRNOTAVAIL The multicast address was not available because
of one of the following: the multicast address was
not found, the interface could not be determined,
or the interface does not support multicast.

0x5037 ENOBUFS An internal buffer is required but cannot be allo-
cated.

0x503B ETOOMANYREFS Too many references; can’t splice. The per socket
maximum number of memberships has been ex-
ceeded. See section 3 of the pSOSystem Program-
mer’s Reference.
4-72 pSOSystem System Calls

pNA+ System Calls shr_socket

4

shr_socket Obtains a new socket descriptor for an existing socket.

#include <pna.h>
int shr_socket(

int s, /* socket descriptor */
int tid /* task identity */
)

Description

This system call is used to obtain a new socket descriptor for an existing socket. The
new socket descriptor can be used by the task with the specified ID to reference the
socket in question.

This system call is provided for applications that implement UNIX-style server
programs, which normally incorporate the UNIX fork() call.

Arguments

Return Value

This system call returns a socket descriptor if successful, otherwise it returns -1.

Error Codes

s Specifies the existing socket descriptor to be shared.

tid Specifies the task ID of a task that seeks to access the same
socket.

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is invalid.

0x5017 ENFILE An internal table has run out of
space.

0x504B ETID The task ID is not valid.
pSOSystem System Calls 4-73

shutdown pNA+ System Calls
shutdown Terminates all or part of a full-duplex connection.

#include <pna.h>
long shutdown(

int s, /* socket descriptor */
int how /* shutdown mechanism */
)

Description

This system call is used to terminate all or part of a full-duplex connection on a
specified socket. The socket may be shut down for sending, receiving, or both.

Arguments

Return Value

This system call returns 0 if successful, otherwise it returns -1.

s Specifies the socket to be shut down.

how Specifies the shutdown mechanism. Three options are available, as
follows:

0 No further receives are allowed on the socket.

1 No further sends are allowed on the socket.

2 No further sends or receives are allowed on the socket.
4-74 pSOSystem System Calls

pNA+ System Calls shutdown

4

Error Codes

See Also

connect, socket

Hex Mnemonic Description

0x5009 EBADS The socket descriptor is not valid.

0x5016 EINVALID An argument is not valid.

0x5039 ENOTCONN The socket is not connected.
pSOSystem System Calls 4-75

socket pNA+ System Calls
socket Creates a socket.

#include <pna.h>
int socket(

int domain, /* socket domain */
int type, /* socket type carrier */
int protocol /* socket protocol class */
)

Description

The socket() system call creates a new socket and returns its socket descriptor.
The socket is an endpoint of communication.

Arguments

Return Value

This system call returns a socket descriptor, or a -1 if an error occurs.

domain Specifies the socket domain and must be set to AF_INET.

type Specifies one of the following types of sockets (defined in the
<pna.h> file):

SOCK_STREAM Defines a stream socket, which uses TCP to
provide a reliable connection-based communi-
cation service.

SOCK_DGRAM Defines a datagram socket, which uses UDP to
provide a datagram service.

SOCK_RAW Defines a raw socket, which uses the protocol
specified by protocol for a raw datagram ser-
vice.

protocol Specifies the network protocol and can be 0, TCP, UDP, or any
other protocol. For raw sockets the protocol can have any value
except TCP or UDP. A protocol number of zero acts as a wildcard
for raw sockets, accepting any raw IP packet.
4-76 pSOSystem System Calls

pNA+ System Calls socket

4

Error Codes

See Also

accept, bind, close, connect, listen, setsockopt, getsockopt

Hex Mnemonic Description

0x5016 EINVALID An argument is invalid.

0x5017 ENFILE An internal table has run out of space.

0x5029 EPROTOTYPE Wrong protocol type for socket.

0x502C EPROTONOSUPPORT The protocol argument is not valid.

0x5037 ENOBUFS An internal buffer is required but cannot be
allocated.
pSOSystem System Calls 4-77

socket pNA+ System Calls
4-78 pSOSystem System Calls

5
 pRPC+ System Calls
5

This chapter provides information on the system calls in the pRPC+ component of
pSOSystem. Each call’s section includes its syntax, a description, its arguments, its
return value, and any error codes that it can return. Where applicable, the section
also includes the headings “Notes” and “See Also.” “Notes” provides any important
information not specifically related to the call’s description, and “See Also” indicates
other calls that have related information.

If you need to look up a system call by its functionality, refer to Appendix A, “Tables
of System Calls,” which lists the calls alphabetically by component and provides a
brief description of each call.

For more information on error codes, refer to Appendix B, “Error Codes,” which lists
the codes numerically and gives the pSOSystem calls that are associated with each
one.
5-1

pRPC+ System Calls
5-2 pSOSystem System Calls

pRPC+ System Calls

5

pRPC+ System Calls

The following list shows all of the services supported by the pRPC+ library. All
routines implement standard ONC RPC/XDR services, except for those marked with
an asterisk. The calls marked with an asterisk (*) are described in detail in this
chapter.

auth_destroy authnone_create authunix_create

authunix_create_default callrpc clnt_broadcast

clnt_call clnt_create clnt_destroy

clnt_freeres clnt_geterr clnt_perrno

clnt_perror clnt_sperrno clnt_sperror

clnt_control clnt_pcreateerror clntraw_create

clnt_spcreateerror clnt_udp_bufcreate clntudp_create

clnttcp_create get_fdset* pmap_getmaps

pmap_getport pmap_rmtcall pmap_set

pmap_unset registerrpc rpc_getcreateerr*

svcerr_auth svcerr_decode svcerr_noproc

svcerr_noprog svcerr_progvers svcerr_systemerr

svcerr_weakauth svcfd_create svcraw_create

svctcp_create svcudp_create svc_destroy

svc_fdset svc_freeargs svc_getargs

svc_getcaller svc_getreq svc_getreqset

svc_run svc_sendreply svc_register

svc_unregister xdrmem_create xdrrec_create

xdrrec_endofrecord xdrrec_eof xdrrec_readbytes

xdrrec_skiprecord xdrstdio_create xdr_accepted_reply

xdr_array xdr_authunix_parms xdr_bool

xdr_bytes xdr_callhdr xdr_callmsg

xdr_char xdr_destroy xdr_double

xdr_enum xdr_float xdr_free
pSOSystem System Calls 5-3

pRPC+ System Calls
xdr_getpos xdr_inline xdr_int

xdr_long xdr_opaque xdr_opaque_auth

xdr_pmap xdr_pmaplist xdr_pointer

xdr_reference xdr_rejected_reply xdr_replymsg

xdr_setpos xdr_short xdr_string

xdr_union xdr_u_char xdr_u_int

xdr_u_long xdr_u_short xdr_void

xdr_vector xdr_wrapstring xprt_register

xprt_unregister
5-4 pSOSystem System Calls

pRPC+ System Calls get_fdset

5

get_fdset

#include <rpc.h>
void get_fdset(

fd_set *read_mask /* server’s read file
/* descriptor bit mask */

)

Description

This pRPC+ service call provides access to the task-specific equivalent of the ONC
RPC svc_fdset global variable.

Arguments

Return Value

None.

Error Codes

None.

See Also

The svc_getreqset description in other ONC RPC documentation.

read_mask Points to the location where get_fdset() copies the contents
of the svc_fdset variable. Memory pointed to by read_mask
should be preallocated.

The returned read_mask can serve as the read descriptor list
argument to the pNA+ select() service call. The value that
select() returns in place of the input read descriptor list can
serve as an input argument to the pRPC+ svc_getreqset()
call.
pSOSystem System Calls 5-5

rpc_getcreateerr pRPC+ System Calls
rpc_getcreateerr

#include <rpc.h>
void rpc_getcreateerr(

struct rpc_createerr *err /* error buffer */
)

Description

This pRPC+ service call provides access to the task-specific equivalent of the ONC
RPC rpc_createerr global variable.

Arguments

Return Value

None.

Error Codes

None.

See Also

The clnt_pcreateerror and clnt_spcreateerror descriptions in other ONC
RPC documentation.

rpc_createerr Points to the location where rpc_getcreateerr() copies the
contents of the rpc_createerr variable.

The creation routines for the RPC client handle use
rpc_createerr to store the reason for a creation failure.
Application programs do not require access to this variable:
the standard routines clnt_pcreateerror() and
clnt_spcreateerr() return a textual description of the
failure.
5-6 pSOSystem System Calls

6
 pROBE+ and ESp
System Calls
6
This chapter provides detailed descriptions of the system calls supported by
pROBE+ and ESp. The calls are listed alphabetically, with a multipage section of
information for each call. Each call’s section includes its syntax, a detailed
description, its arguments, and its return value.

The ESp cross-system visual analyzer graphically displays your embedded
application’s activity on a host terminal and allows you to analyze the application’s
performance. ESp accepts one system call, log_event() , through its target-
resident application monitor, pMONT.

pROBE+ is pSOSystem’s target debugger and analyzer. pROBE+ accepts two system
calls: db_input() and db_output().

If you need to look up a system call by its functionality, refer to Appendix A, “Tables
of System Calls,” which lists the calls alphabetically by component and provides a
brief description of each call.

For more information on error codes, refer to Appendix B, “Error Codes,” which lists
the codes numerically and gives the pSOSystem calls that are associated with each
one.
6-1

pROBE+ and ESp System Calls
6-2 pSOSystem System Calls

pROBE+ and ESp System Calls db_input

6

db_input Prompts and gets input from the high-level debugger.

long db_input (
char *inbuf, /* user input buffer */
unsigned long inbuf_len, /* user input buffer length */
char *prompt, /* prompt string */
unsigned long prompt_len, /* prompt string length */
unsigned long *nbytes /* number of bytes written */
)

Description

This system call passes the string prompt to the high-level debugger (HLD) to be
printed on the output screen and waits for input back from the HLD. Upon receipt
of the input, it copies up to inbuf_len bytes into inbuf and writes inbuf ’s length
into nbytes .

Arguments

Target

Return Value

This call returns 0 on success and an error code on failure.

inbuf Points to the buffer in which db_input() writes input
from the HLD.

inbuf_len Specifies the number of bytes of input data to be written
in inbuf .

prompt Points to the string to be passed to the HLD as a prompt.

prompt_len Specifies the number of characters in prompt .

nbytes Points to the buffer in which db_input() writes the
actual length of inbuf .

For 68K processors with MRI host tools, this system call is not
supported.

68K MRI
pSOSystem System Calls 6-3

db_input pROBE+ and ESp System Calls
Error Codes

See Also

db_output

Hex Mnemonic Description

Not set at this time. None. Lost connection to host debugger.
6-4 pSOSystem System Calls

pROBE+ and ESp System Calls db_output

6

db_output Outputs a string to the high-level debugger.

long db_output (
char *str, /* string */
unsigned long length /* string length */
)

Description

This system call sends a character string to the high-level debugger (HLD) to be
printed on its output screen.

Arguments

Return Value

This call returns 0 on success and an error code on failure.

Error Codes

See Also

db_input

str Points to the string to be output to the HLD.

length Specifies the length of the string.

Hex Mnemonic Description

Not set at this time. None. Lost connection to host debugger.
pSOSystem System Calls 6-5

log_event pROBE+ and ESp System Calls
log_event Logs an event on ESp’s target-resident application monitor, pMONT.

unsigned long log_event (
unsigned long user_event_id, /* user-defined event ID */
unsigned long event_data /* user-defined event data */
)

Description

This call logs an event in pMONT’s trace buffer. The log_event() call takes effect
when the ESp data collection run begins.

Arguments

Return Value

This call always returns 0.

Error Codes

None.

Notes

Because pMONT uses pSOS+ objects for its functionality, some user-defined entries
in the pSOS+ configuration table affect pMONT behavior and can even increase the
likelihood of error messages. For example, an insufficient number of message
buffers may result in a sudden break in the host/target connection. The paragraphs
that follow explain this.

pMONT uses the system-wide buffer pool to post messages to its queues, so you
need to consider this when specifying kc_nmsgbuf in the pSOS+ configuration

user_event_id Specifies an ID number for the current call to log_event() .
The maximum allowable ID number is 0xff. Providing an ID
number for each call to log_event() helps you keep track of
user-events.

event_data An optional word or words you can use to store data
associated with the event.
6-6 pSOSystem System Calls

pROBE+ and ESp System Calls log_event

6

table. How much pMONT affects the specification of kc_nmsgbuf depends on the
monitoring demands that you expect pMONT to meet.

The rate at which the system-wide buffer pool is replenished depends on the
communication medium used to communicate with the host. With a network, for
example, pMONT replenishes the buffer relatively quickly. You can estimate the
requirements for the application by considering the following ESp behaviors:

● A message is posted to a queue every time an object is created or deleted.

● A message is posted to a queue every time pMONT receives a request.

● A message is posted when data collection ends under any of the buffer man-
agement options.

● Under the Transmit Buffer Management option, pMONT periodically sends
data to the host. Every time it does so, pMONT posts a message to a queue.
The rate at which this occurs depends on the data collection configuration
and the application.

● A message is posted to a queue at the end of every user-specified Perfmeter
update period.

● If the Stack Checking feature is on, a message is posted every time a stack
warning is generated.

If the trace buffer overflows because a large number of object creates or deletes
occur in a very short time, ERR_EV_FULL is generated, and pMONT disconnects
from the ESp tool. The way to prevent trace buffer overflow is to increase the buffer
size by increasing the kc_nlocobj entry in the pSOS+ configuration table.
However, this problem is not likely to occur in a time-critical environment.
pSOSystem System Calls 6-7

log_event pROBE+ and ESp System Calls
6-8 pSOSystem System Calls

A
 Tables of System Calls
A

This appendix is a collection of tables with information on pSOSystem system calls,
intended to help you locate a specific system call by its function rather than its
name. The first table lists all pSOSystem system calls alphabetically and provides
for each call a one-line description, the pSOSystem component it belongs to, and
the page number where you can find more information. The remaining tables alpha-
betically list the system calls for each component (i.e., pSOS+, pHILE+, etc.) and
provide for each call a one-line description and the page number where you can find
more information.

A.1 Table of All pSOSystem Calls

TABLE A-1 All pSOSystem System Calls

Name Component Description Page

abort pREPC+ Aborts a task. 3-3

abs pREPC+ Computes the absolute value of an integer 3-4

accept pNA+ Accepts a connection on a socket. 4-2

access_f pHILE+ Determines the accessibility of a file. 2-5

add_ni pNA+ Adds a network interface. 4-4

annex_f pHILE+ Allocates contiguous blocks to a file. 2-8

as_catch pSOS+ Specifies an asynchronous signal routine. 1-3

asctime pREPC+ Converts the broken-down time to a string. 3-5
A-1

All pSOSystem System Calls Tables of System Calls
asctime_r pREPC+ (Reentrant) Converts the broken-down time
to a string.

3-6

as_return pSOS+ Returns from an asynchronous signal rou-
tine.

1-7

as_send pSOS+ Sends asynchronous signals to a task. 1-9

assert pREPC+ Verifies that a program is operating cor-
rectly.

3-8

atof pREPC+ Converts a string to a double. 3-9

atoi pREPC+ Converts a string to an integer. 3-11

atol pREPC+ Converts a string to a long integer. 3-13

bind pNA+ Binds an address to a socket. 4-6

bsearch pREPC+ Searches an array. 3-15

calloc pREPC+ Allocates memory. 3-17

cdmount_vol pHILE+ Mounts a CD-ROM volume 2-10

change_dir pHILE+ Changes the current directory. 2-13

chmod_f pHILE+ Changes the mode of a named ordinary or
directory file.

2-16

chown_f pHILE+ Changes the owner or group of a named or-
dinary or directory file.

2-19

clearerr pREPC+ Clears a stream’s error indicators. 3-19

close pNA+ Closes a socket descriptor. 4-8

close_dir pHILE+ Closes an open directory file. 2-22

close_f pHILE+ Closes an open file connection. 2-22

connect pNA+ Initiates a connection on a socket 4-9

create_f pHILE+ Creates a data file. 2-25

ctime pREPC+ Converts the calendar time to a string. 3-20

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
A-2 pSOSystem System Calls

Tables of System Calls All pSOSystem System Calls

A

ctime_r pREPC+ (Reentrant) Converts the calendar time to a
string.

3-22

db_input pROBE+ Prompts and gets input from the high-level
debugger.

6-3

db_output pROBE+ Outputs a string to the high-level debugger. 6-5

de_close pSOS+ Closes an I/O device. 1-11

de_cntrl pSOS+ Requests a special I/O device service. 1-13

de_init pSOS+ Initializes an I/O device and its driver. 1-15

de_open pSOS+ Opens an I/O device. 1-17

de_read pSOS+ Reads data from an I/O device. 1-19

de_write pSOS+ Writes data to an I/O device. 1-21

difftime pREPC+ Computes the difference between two calen-
dar times.

3-24

div pREPC+ Performs a division operation on two speci-
fied integers.

3-25

errno pREPC+ The error number returned by the last fail-
ing system call.

3-27

errno_addr pSOS+ Obtains the address of the calling task’s in-
ternal errno variable.

1-23

ev_asend pSOS+ (pSOS+m kernel only) Asynchronously
sends events to a task.

1-25

ev_receive pSOS+ Allows a task to wait for an event condition. 1-27

ev_send pSOS+ Sends events to a task. 1-30

exit pREPC+ Terminates a task. 3-28

fchmod_f pHILE+ Changes the mode of an ordinary or direc-
tory file specified by its file identifier.

2-29

fchown_f pHILE+ Changes the owner or group of a file speci-
fied by its file identifier.

2-32

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
pSOSystem System Calls A-3

All pSOSystem System Calls Tables of System Calls
fclose pREPC+ Closes a stream. 3-30

feof pREPC+ Tests a stream’s end-of-file indicator. 3-32

ferror pREPC+ Tests a stream’s error indicator. 3-33

fflush pREPC+ Flushes the buffer associated with an open
stream.

3-34

fgetc pREPC+ Gets a character from a stream. 3-35

fgetpos pREPC+ Gets the current file position indicator for
fsetpos .

3-36

fgets pREPC+ Gets a string from a stream. 3-37

fopen pREPC+ Opens a file. 3-39

fprintf pREPC+ Prints formatted output to a stream. 3-43

fputc pREPC+ Writes a character to a stream. 3-48

fputs pREPC+ Writes a string to a stream. 3-50

fread pREPC+ Reads from a stream. 3-51

free pREPC+ Deallocates memory. 3-53

freopen pREPC+ Reopens a file. 3-54

fscanf pREPC+ Reads formatted input from a stream. 3-56

fseek pREPC+ Sets the file position indicator. 3-61

fsetpos pREPC+ Sets file position by using the fgetpos re-
sult.

3-63

fstat_f pHILE+ Obtains the status of a file specified by its
file identifier.

2-35

fstat_vfs pHILE+ Obtains statistics about a mounted volume
specified by a file identifier.

2-39

ftell pREPC+ Gets the file position indicator. 3-65

ftruncate_f pHILE+ Changes the size of a file specified by its file
identifier.

2-43

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
A-4 pSOSystem System Calls

Tables of System Calls All pSOSystem System Calls

A

fwrite pREPC+ Writes to a stream. 3-67

get_fdset pRPC+ Returns the bit mask that corresponds to
readable RPC sockets.

5-5

get_fn pHILE+ Obtains the file number of a file. 2-46

get_id pNA+ Gets a task’s user ID and group ID. 4-12

getc pREPC+ Gets a character from a stream. 3-69

getchar pREPC+ Gets a character from stdin . 3-70

getpeername pNA+ Gets the address of a connected peer. 4-13

gets pREPC+ Gets a string from stdin . 3-71

getsockname pNA+ Gets the address that is bound to a socket. 4-15

getsockopt pNA+ Gets options on a socket. 4-17

gmtime pREPC+ Converts the calendar time to broken-down
time.

3-72

gmtime_r pREPC+ (Reentrant) Converts the calendar time to
broken-down time.

3-73

init_vol pHILE+ Initializes a pHILE+ formatted volume. 2-49

ioctl pNA+ Performs control operations on a socket. 4-22

isalnum pREPC+ Tests for an alphanumeric character. 3-75

isalpha pREPC+ Tests for an alphabetic character. 3-76

iscntrl pREPC+ Tests for a control character. 3-77

isdigit pREPC+ Tests for a digit. 3-78

isgraph pREPC+ Tests for a graphical character. 3-79

islower pREPC+ Tests for a lowercase letter. 3-80

isprint pREPC+ Tests for a printable character. 3-81

ispunct pREPC+ Tests for a punctuation character. 3-82

isspace pREPC+ Tests for a space. 3-83

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
pSOSystem System Calls A-5

All pSOSystem System Calls Tables of System Calls
isupper pREPC+ Tests for an uppercase letter. 3-84

isxdigit pREPC+ Tests for a hexadecimal digit. 3-85

k_fatal pSOS+ Aborts and enters fatal error handling mode. 1-40

k_terminate pSOS+ Terminates a node other than the master
node.

1-42

labs pREPC+ Computes the absolute value of a long inte-
ger.

3-86

ldiv pREPC+ Performs a division operation on two speci-
fied long integers.

3-87

link_f pHILE+ Creates a hard link between two files on the
same volume.

2-53

listen pNA+ Listens for connections on a socket. 4-38

localeconv pREPC+ Obtains the current locale settings. 3-89

localtime pREPC+ Converts the calendar time to broken-down
time.

3-92

localtime_r pREPC+ (Reentrant) Converts the calendar time to
broken-down time.

3-93

lock_f pHILE+ Locks or unlocks part or all of an open file. 2-56

log_event ESp Logs an event on ESp’s target-resident ap-
plication monitor, pMONT.

6-6

lseek_f pHILE+ Repositions for read or write within an open
file.

2-58

lstat_f pHILE+ Gets the status of a symbolically linked file. 2-61

m_ext2int pSOS+ Converts an external address into an inter-
nal address.

1-44

m_int2ext pSOS+ Converts an internal address into an exter-
nal address.

1-46

make_dir pHILE+ Creates a directory file. 2-65

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
A-6 pSOSystem System Calls

Tables of System Calls All pSOSystem System Calls

A

malloc pREPC+ Allocates memory. 3-95

mblen pREPC+ Determines the number of bytes in a multi-
byte character.

3-96

mbstowcs pREPC+ Converts a multibyte character string into a
wide character string.

3-98

mbtowc pREPC+ Converts a multibyte character into its wide
character equivalent.

3-100

memchr pREPC+ Searches memory for a character. 3-102

memcmp pREPC+ Compares two objects in memory. 3-104

memcpy pREPC+ Copies characters in memory. 3-106

memmove pREPC+ Copies characters in memory. 3-108

memset pREPC+ Initializes a memory area with a given value. 3-110

mktime pREPC+ Converts the broken-down time into calen-
dar time.

3-111

mount_vol pHILE+ Mounts a pHILE+ formatted volume. 2-68

move_f pHILE+ Moves (renames) a file. 2-70

nfsmount_vol pHILE+ Mounts a remote file system. 2-73

open_dir pHILE+ Opens a directory file. 2-76

open_f pHILE+ Opens a file. 2-78

open_fn pHILE+ Opens a file by its file identifier. 2-83

pcinit_vol pHILE+ Initializes an MS-DOS volume. 2-85

pcmount_vol pHILE+ Mounts an MS-DOS volume. 2-88

perror pREPC+ Prints a diagnostic message. 3-114

pna_allocb pNA+ Allocates a message block. 4-39

pna_esballoc pNA+ Attaches a message block to the data buffer. 4-41

pna_freeb pNA+ Frees a message block. 4-43

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
pSOSystem System Calls A-7

All pSOSystem System Calls Tables of System Calls
pna_freemsg pNA+ Frees all the message blocks associated with
a message.

4-44

printf pREPC+ Prints formatted output to stdout . 3-115

pt_create pSOS+ Creates a memory partition of fixed-size
buffers.

1-48

pt_delete pSOS+ Deletes a memory partition. 1-51

pt_getbuf pSOS+ Gets a buffer from a partition. 1-53

pt_ident pSOS+ Obtains the identifier of the named parti-
tion.

1-55

pt_retbuf pSOS+ Returns a buffer to the partition from which
it came.

1-57

pt_sgetbuf pSOS+ Gets a buffer from a partition. 1-59

putc pREPC+ Writes a character to a stream. 3-117

putchar pREPC+ Writes a character to stdout . 3-118

puts pREPC+ Writes a string to a file. 3-119

q_asend pSOS+ (pSOS+m kernel only) Asynchronously posts
a message to an ordinary message queue.

1-61

q_aurgent pSOS+ (pSOS+m kernel only) Asynchronously posts
a message at the head of an ordinary mes-
sage queue.

1-63

q_avsend pSOS+ (pSOS+m kernel only) Asynchronously posts
a message to a variable-length message
queue.

1-65

q_avurgent pSOS+ (pSOS+m kernel only) Asynchronously posts
a message at the head of a variable-length
message queue.

1-68

q_broadcast pSOS+ Broadcasts identical messages to an ordi-
nary message queue.

1-71

q_create pSOS+ Creates an ordinary message queue. 1-74

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
A-8 pSOSystem System Calls

Tables of System Calls All pSOSystem System Calls

A

q_delete pSOS+ Deletes an ordinary message queue. 1-77

q_ident pSOS+ Obtains the queue ID of an ordinary mes-
sage queue.

1-79

q_receive pSOS+ Requests a message from an ordinary mes-
sage queue.

1-81

q_send pSOS+ Posts a message to an ordinary message
queue.

1-84

q_urgent pSOS+ Posts a message to the head of an ordinary
message queue.

1-86

q_vbroadcast pSOS+ Broadcasts identical variable-length mes-
sages to a variable-length message queue.

1-88

q_vcreate pSOS+ Creates a variable-length message queue. 1-91

q_vdelete pSOS+ Deletes a variable-length message queue. 1-94

q_vident pSOS+ Obtains the queue ID of a variable-length
message queue.

1-96

q_vreceive pSOS+ Requests a message from a variable-length
message queue.

1-98

q_vsend pSOS+ Posts a message to a specified variable-
length message queue.

1-101

q_vurgent pSOS+ Posts a message at the head of a variable-
length message queue.

1-104

qsort pREPC+ Sorts an array in ascending order. 3-120

rand pREPC+ Returns a pseudo-random number. 3-122

read_dir pHILE+ Reads directory entries in a file system inde-
pendent format.

2-90

read_f pHILE+ Reads from a file. 2-93

read_link pHILE+ Reads the value of a symbolic link. 2-96

read_vol pHILE+ Reads directly from a pHILE+ formatted vol-
ume.

2-99

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
pSOSystem System Calls A-9

All pSOSystem System Calls Tables of System Calls
realloc pREPC+ Allocates memory. 3-123

recv pNA+ Receives data from a socket. 4-45

recvfrom pNA+ Receives data from a socket. 4-48

recvmsg pNA+ Receives data from a socket. 4-51

remove pREPC+ Removes a file. 3-125

remove_f pHILE+ Deletes a file. 2-101

rename pREPC+ Renames a file. 3-126

rewind pREPC+ Resets the file position indicator. 3-128

rn_create pSOS+ Creates a memory region. 1-107

rn_delete pSOS+ Deletes a memory region. 1-110

rn_getseg pSOS+ Allocates a memory segment to the calling
task.

1-112

rn_ident pSOS+ Obtains the region identifier of the named
region.

1-115

rn_retseg pSOS+ Returns a memory segment to the region
from which it was allocated.

1-117

rpc_getcreateerr pRPC+ Returns the reason for an RPC client handle
creation failure.

5-6

scanf pREPC+ Reads formatted input from stdin . 3-130

select pNA+ Checks the status of multiple sockets. 4-54

send pNA+ Sends data to a socket. 4-57

sendmsg pNA+ Sends data to a socket. 4-60

sendto pNA+ Sends data to a socket. 4-62

set_id pNA+ Sets a task’s user ID and group ID. 4-65

setbuf pREPC+ Changes a stream’s buffer. 3-132

setlocale pREPC+ Obtains or changes the program’s locale. 3-134

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
A-10 pSOSystem System Calls

Tables of System Calls All pSOSystem System Calls

A

setsockopt pNA+ Sets options on a socket. 4-66

setvbuf pREPC+ Changes a stream’s buffering characteris-
tics.

3-136

shr_socket pNA+ Obtains a new socket descriptor for an ex-
isting socket.

4-73

shutdown pNA+ Terminates all or part of a full-duplex con-
nection.

4-74

sm_av pSOS+ (pSOS+m kernel only) Asynchronously re-
leases a semaphore token.

1-119

sm_create pSOS+ Creates a semaphore. 1-121

sm_delete pSOS+ Deletes a semaphore. 1-124

sm_ident pSOS+ Obtains a semaphore identifier. 1-126

sm_p pSOS+ Acquires a semaphore token. 1-128

sm_v pSOS+ Releases a semaphore token. 1-131

socket pNA+ Creates a socket. 4-76

sprintf pREPC+ Writes formatted output to a buffer. 3-138

srand pREPC+ Sets the seed for the random number gener-
ator (rand).

3-140

sscanf pREPC+ Reads formatted input from a string. 3-141

stat_f pHILE+ Gets the status of a named file. 2-104

stat_vfs pHILE+ Gets statistics for a named volume. 2-109

strcat pREPC+ Appends one string to another string. 3-143

strchr pREPC+ Searches a string for a character. 3-144

strcmp pREPC+ Compares two character strings. 3-145

strcoll pREPC+ Compares two character strings. 3-146

strcpy pREPC+ Copies one string to another string. 3-148

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
pSOSystem System Calls A-11

All pSOSystem System Calls Tables of System Calls
strcspn pREPC+ Calculates the length of a substring. 3-149

strerror pREPC+ Maps an error number to an error message
string.

3-150

strftime pREPC+ Places formatted time and date information
into a string.

3-151

strlen pREPC+ Computes string length. 3-154

strncat pREPC+ Appends characters to a string. 3-155

strncmp pREPC+ Compares characters in two strings. 3-157

strncpy pREPC+ Copies characters from one string to an-
other.

3-159

strpbrk pREPC+ Searches a string for a character in a second
string.

3-160

strrchr pREPC+ Searches a string for a character. 3-161

strspn pREPC+ Calculates specified string length. 3-162

strstr pREPC+ Searches a string for specified characters in
another string.

3-163

strtod pREPC+ Converts a string to a double. 3-164

strtok pREPC+ Searches a string for tokens. 3-166

strtol pREPC+ Converts a string to a long integer. 3-168

strtoul pREPC+ Converts a string to an unsigned long. 3-170

strxfrm pREPC+ Transforms a string so that it can be used
by strcmp() .

3-172

symlink_f pHILE+ Creates a symbolic link to a file. 2-112

sync_vol pHILE+ Synchronizes a volume. 2-115

t_create pSOS+ Creates a task. 1-133

t_delete pSOS+ Deletes a task. 1-138

t_getreg pSOS+ Gets a task’s notepad register. 1-141

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
A-12 pSOSystem System Calls

Tables of System Calls All pSOSystem System Calls

A

t_ident pSOS+ Obtains the task identifier of the named
task.

1-143

time pREPC+ Obtains the current calendar time. 3-174

t_mode pSOS+ Gets or changes the calling task’s execution
mode.

1-145

t_restart pSOS+ Forces a task to start over regardless of its
current state.

1-149

t_resume pSOS+ Resumes a suspended task. 1-152

t_setpri pSOS+ Gets and optionally changes a task’s prior-
ity.

1-154

t_setreg pSOS+ Sets a task’s notepad register. 1-156

t_start pSOS+ Starts a task. 1-158

t_suspend pSOS+ Suspends a task until a t_resume call is
made for the suspended task.

1-162

tm_cancel pSOS+ Cancels an armed timer. 1-164

tm_evafter pSOS+ Sends events to the calling task at periodic
intervals.

1-168

tm_evevery pSOS+ Sends events to the calling task at periodic
intervals.

1-168

tm_evwhen pSOS+ Sends events to the calling task at the spec-
ified time.

1-170

tm_get pSOS+ Obtains the system’s current version of the
date and time.

1-173

tm_set pSOS+ Sets or resets the system’s version of the
date and time.

1-175

tm_tick pSOS+ Announces a clock tick to the pSOS+ kernel. 1-178

tm_wkafter pSOS+ Blocks the calling task and wakes it after a
specified interval.

1-180

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
pSOSystem System Calls A-13

All pSOSystem System Calls Tables of System Calls
tm_wkwhen pSOS+ Blocks the calling task and wakes it at a
specified time.

1-182

tmpfile pREPC+ Creates a temporary file. 3-176

tmpname pREPC+ Generates a temporary filename. 3-177

tolower pREPC+ Converts a character to lowercase. 3-179

toupper pREPC+ Converts a character to uppercase. 3-180

truncate_f pHILE+ Changes the size of a named file. 2-117

ungetc pREPC+ Ungets a character. 3-181

unmount_vol pHILE+ Unmounts a volume. 2-120

utime_f pHILE+ Sets the access and modification times of a
file.

2-123

verify_vol pHILE+ Verifies a volume’s control structures. 2-126

vfprintf pREPC+ Writes formatted output to a stream. 3-183

vprintf pREPC+ Writes formatted output to stdout . 3-185

vsprintf pREPC+ Writes formatted output to a buffer. 3-187

wcstombs pREPC+ Converts a wide character string into a
multibyte character string.

3-189

wctomb pREPC+ Converts a wide character into its multibyte
character equivalent.

3-191

write_f pHILE+ Writes to an open file. 2-142

write_vol pHILE+ Writes data directly to a pHILE+ formatted
volume.

2-145

TABLE A-1 All pSOSystem System Calls (Continued)

Name Component Description Page
A-14 pSOSystem System Calls

Tables of System Calls pSOS+ System Calls

A

A.2 pSOS+ System Calls

Table A-2 provides an alphabetical listing of all pSOS+ system calls, a summary de-
scription for each call, and a reference to more details about the call.

TABLE A-2 pSOS+ System Calls

Name Description Page

as_catch Specifies an asynchronous signal routine. 1-3

as_return Returns from an asynchronous signal routine. 1-7

as_send Sends asynchronous signals to a task. 1-9

de_close Closes an I/O device. 1-11

de_cntrl Requests a special I/O device service. 1-13

de_init Initializes an I/O device and its driver. 1-15

de_open Opens an I/O device. 1-17

de_read Reads data from an I/O device. 1-19

de_write Writes data to an I/O device. 1-21

errno_addr Obtains the address of the calling task’s internal errno vari-
able.

1-23

ev_asend (pSOS+m kernel only) Asynchronously sends events to a task. 1-25

ev_receive Allows a task to wait for an event condition. 1-27

ev_send Sends events to a task. 1-30

i_enter Enters into an interrupt service routine. 1-33

i_return Provides an exit from an interrupt service routine. 1-35

k_fatal Aborts and enters fatal error handling mode. 1-40

k_terminate Terminates a node other than the master node. 1-42

m_ext2int Converts an external address into an internal address. 1-44

m_int2ext Converts an internal address into an external address. 1-46

pt_create Creates a memory partition of fixed-size buffers. 1-48

pt_delete Deletes a memory partition. 1-51
pSOSystem System Calls A-15

pSOS+ System Calls Tables of System Calls
pt_getbuf Gets a buffer from a partition. 1-53

pt_ident Obtains the identifier of the named partition. 1-55

pt_retbuf Returns a buffer to the partition from which it came. 1-57

pt_sgetbuf Gets a buffer from a partition. 1-59

q_asend (pSOS+m kernel only) Asynchronously posts a message to an
ordinary message queue.

1-61

q_aurgent (pSOS+m kernel only) Asynchronously posts a message at the
head of an ordinary message queue.

1-63

q_avsend (pSOS+m kernel only) Asynchronously posts a message to a
variable-length message queue.

1-65

q_avurgent (pSOS+m kernel only) Asynchronously posts a message at the
head of a variable-length message queue.

1-68

q_broadcast Broadcasts identical messages to an ordinary message queue. 1-71

q_create Creates an ordinary message queue. 1-74

q_delete Deletes an ordinary message queue. 1-77

q_ident Obtains the queue ID of an ordinary message queue. 1-79

q_receive Requests a message from an ordinary message queue. 1-81

q_send Posts a message to an ordinary message queue. 1-84

q_urgent Posts a message to the head of an ordinary message queue. 1-86

q_vbroadcast Broadcasts identical variable-length messages to a variable-
length message queue.

1-88

q_vcreate Creates a variable-length message queue. 1-91

q_vdelete Deletes a variable-length message queue. 1-94

q_vident Obtains the queue ID of a variable-length message queue. 1-96

q_vreceive Requests a message from a variable-length message queue. 1-98

q_vsend Posts a message to a specified variable-length message queue. 1-101

TABLE A-2 pSOS+ System Calls (Continued)

Name Description Page
A-16 pSOSystem System Calls

Tables of System Calls pSOS+ System Calls

A

q_vurgent Posts a message at the head of a variable-length message
queue.

1-104

rn_create Creates a memory region. 1-107

rn_delete Deletes a memory region. 1-110

rn_getseg Allocates a memory segment to the calling task. 1-112

rn_ident Obtains the region identifier of the named region. 1-115

rn_retseg Returns a memory segment to the region from which it was al-
located.

1-117

sm_av (pSOS+m kernel only) Asynchronously releases a semaphore
token.

1-119

sm_create Creates a semaphore. 1-121

sm_delete Deletes a semaphore. 1-124

sm_ident Obtains a semaphore identifier. 1-126

sm_p Acquires a semaphore token. 1-128

sm_v Releases a semaphore token. 1-131

t_create Creates a task. 1-133

t_delete Deletes a task. 1-138

t_getreg Gets a task’s notepad register. 1-141

t_ident Obtains the task identifier of the named task. 1-143

t_mode Gets or changes the calling task’s execution mode. 1-145

t_restart Forces a task to start over regardless of its current state. 1-149

t_resume Resumes a suspended task. 1-152

t_setpri Gets and optionally changes a task’s priority. 1-154

t_setreg Sets a task’s notepad register. 1-156

t_start Starts a task. 1-158

TABLE A-2 pSOS+ System Calls (Continued)

Name Description Page
pSOSystem System Calls A-17

pHILE+ System Calls Tables of System Calls
A.3 pHILE+ System Calls

Table A-3 provides an alphabetical listing of all pHILE+ system calls, a summary de-
scription for each call, and a reference to more details about the call.

t_suspend Suspends a task until a t_resume call is made for the sus-
pended task.

1-162

tm_cancel Cancels an armed timer. 1-164

tm_evafter Sends events to the calling task after a specified interval. 1-166

tm_evevery Sends events to the calling task at periodic intervals. 1-168

tm_evwhen Sends events to the calling task at the specified time. 1-170

tm_get Obtains the system’s current version of the date and time. 1-173

tm_set Sets or resets the system’s version of the date and time. 1-175

tm_tick Announces a clock tick to the pSOS+ kernel. 1-178

tm_wkafter Blocks the calling task and wakes it after a specified interval. 1-180

tm_wkwhen Blocks the calling task and wakes it at a specified time. 1-182

TABLE A-3 pHILE+ System Calls

Name Description Page

access_f Determines the accessibility of a file. 2-5

annex_f Allocates contiguous blocks to a file. 2-8

cdmount_vol Mounts a CD-ROM volume 2-10

change_dir Changes the current directory. 2-13

chmod_f Changes the mode of a named file. 2-16

chown_f Changes the owner or group of a named file. 2-19

close_dir Closes an open directory file. 2-22

TABLE A-2 pSOS+ System Calls (Continued)

Name Description Page
A-18 pSOSystem System Calls

Tables of System Calls pHILE+ System Calls

A

close_f Closes an open file connection. 2-22

create_f Creates a data file. 2-25

fchmod_f Changes the mode of a file specified by its file identifier. 2-29

fchown_f Changes the owner or group of a file specified by its file identi-
fier.

2-32

fstat_f Obtains the status of a file specified by its file identifier. 2-35

fstat_vfs Obtains statistics about a mounted volume specified by a file
identifier.

2-39

ftruncate_f Changes the size of a file specified by its file identifier. 2-43

get_fn Obtains the file number of a file. 2-46

init_vol Initializes a pHILE+ formatted volume. 2-49

link_f Creates a hard link between two files on the same volume. 2-53

lock_f Locks or unlocks part or all of an open file. 2-56

lseek_f Repositions for read or write within an open file. 2-58

lstat_f Gets the status of a symbolically linked file. 2-61

make_dir Creates a directory file. 2-65

mount_vol Mounts a pHILE+ formatted volume. 2-68

move_f Moves (renames) a file. 2-70

nfsmount_vol Mounts a remote file system. 2-73

open_dir Opens a directory file. 2-76

open_f Opens a file. 2-78

open_fn Opens a file by its file identifier. 2-83

pcinit_vol Initializes an MS-DOS volume. 2-85

pcmount_vol Mounts an MS-DOS volume. 2-88

read_dir Reads directory entries in a file system independent format. 2-90

TABLE A-3 pHILE+ System Calls (Continued)

Name Description Page
pSOSystem System Calls A-19

pREPC+ System Calls Tables of System Calls
A.4 pREPC+ System Calls

Table A-4 provides an alphabetical listing of all pREPC+ system calls, a summary
description for each call, and a reference to more details about the call.

read_f Reads from a file. 2-93

read_link Reads the value of a symbolic link. 2-96

read_vol Reads directly from a pHILE+ formatted volume. 2-99

remove_f Deletes a file. 2-101

stat_f Gets the status of a named file. 2-104

stat_vfs Gets statistics for a named volume. 2-109

symlink_f Creates a symbolic link to a file. 2-112

sync_vol Synchronizes a volume. 2-115

truncate_f Changes the size of a named file. 2-117

unmount_vol Unmounts a volume. 2-120

utime_f Sets the access and modification times of a file. 2-123

verify_vol Verifies a volume’s control structures. 2-126

write_f Writes to an open file. 2-142

write_vol Writes data directly to a pHILE+ formatted volume. 2-145

TABLE A-4 pREPC+ System Calls

Name Description Page

abort Aborts a task. 3-3

abs Computes the absolute value of an integer. 3-4

asctime Converts the broken-down time to a string. 3-5

TABLE A-3 pHILE+ System Calls (Continued)

Name Description Page
A-20 pSOSystem System Calls

Tables of System Calls pREPC+ System Calls

A

asctime_r (Reentrant) Converts the broken-down time to a string. 3-6

assert Verifies that a program is operating correctly. 3-8

atof Converts a string to a double. 3-9

atoi Converts a string to an integer. 3-11

atol Converts a string to a long integer. 3-13

bsearch Searches an array. 3-15

calloc Allocates memory. 3-17

clearerr Clears a stream’s error indicators. 3-19

ctime Converts the calendar time to a string. 3-20

ctime_r (Reentrant) Converts the calendar time to a string. 3-22

difftime Computes the difference between two calendar times. 3-24

div Performs a division operation on two specified integers. 3-25

errno The error number returned by the last failing system call. 3-27

exit Terminates a task. 3-28

fclose Closes a stream. 3-30

feof Tests a stream’s end-of-file indicator. 3-32

ferror Tests a stream’s error indicator. 3-33

fflush Flushes the buffer associated with an open stream. 3-34

fgetc Gets a character from a stream. 3-35

fgetpos Gets the current file position indicator for fsetpos . 3-36

fgets Gets a string from a stream. 3-37

fopen Opens a file. 3-39

fprintf Prints formatted output to a stream. 3-43

fputc Writes a character to a stream. 3-48

TABLE A-4 pREPC+ System Calls (Continued)

Name Description Page
pSOSystem System Calls A-21

pREPC+ System Calls Tables of System Calls
fputs Writes a string to a stream. 3-50

fread Reads from a stream. 3-51

free Deallocates memory. 3-53

freopen Reopens a file. 3-54

fscanf Reads formatted input from a stream. 3-56

fseek Sets the file position indicator. 3-61

fsetpos Sets file position by using the fgetpos result. 3-63

ftell Gets the file position indicator. 3-65

fwrite Writes to a stream. 3-67

getc Gets a character from a stream. 3-69

getchar Gets a character from stdin . 3-70

gets Gets a string from stdin . 3-71

gmtime Converts the calendar time to broken-down time. 3-72

gmtime_r (Reentrant) Converts the calendar time to broken-down time. 3-73

isalnum Tests for an alphanumeric character. 3-75

isalpha Tests for an alphabetic character. 3-76

iscntrl Tests for a control character. 3-77

isdigit Tests for a digit. 3-78

isgraph Tests for a graphical character. 3-79

islower Tests for a lowercase letter. 3-80

isprint Tests for a printable character. 3-81

ispunct Tests for a punctuation character. 3-82

isspace Tests for a space. 3-83

isupper Tests for an uppercase letter. 3-84

TABLE A-4 pREPC+ System Calls (Continued)

Name Description Page
A-22 pSOSystem System Calls

Tables of System Calls pREPC+ System Calls

A

isxdigit Tests for a hexadecimal digit. 3-85

labs Computes the absolute value of a long integer. 3-86

ldiv Performs a division operation on two specified long integers. 3-87

localeconv Obtains the current locale settings. 3-89

localtime Converts the calendar time to broken-down time. 3-92

localtime_r (Reentrant) Converts the calendar time to broken-down time. 3-93

malloc Allocates memory. 3-95

mblen Determines the number of bytes in a multibyte character. 3-96

mbstowcs Converts a multibyte character string into a wide character
string.

3-98

mbtowc Converts a multibyte character into its wide character equiva-
lent.

3-100

memchr Searches memory for a character. 3-102

memcmp Compares two objects in memory. 3-104

memcpy Copies characters in memory. 3-106

memmove Copies characters in memory. 3-108

memset Initializes a memory area with a given value. 3-110

mktime Converts the broken-down time into calendar time. 3-111

perror Prints a diagnostic message. 3-114

printf Prints formatted output to stdout . 3-115

putc Writes a character to a stream. 3-117

putchar Writes a character to stdout . 3-118

puts Writes a string to a stream. 3-119

qsort Sorts an array in ascending order. 3-120

rand Returns a pseudo-random number. 3-122

TABLE A-4 pREPC+ System Calls (Continued)

Name Description Page
pSOSystem System Calls A-23

pREPC+ System Calls Tables of System Calls
realloc Allocates memory. 3-123

remove Removes a file. 3-125

rename Renames a file. 3-126

rewind Resets the file position indicator. 3-128

scanf Reads formatted input from stdin . 3-130

setbuf Changes a stream’s buffer. 3-132

setlocale Obtains or changes the program’s locale. 3-134

setvbuf Changes a stream’s buffering characteristics. 3-136

sprintf Writes formatted output to a buffer. 3-138

srand Sets the seed for the random number generator (rand .) 3-140

sscanf Reads formatted input from a string. 3-141

strcat Appends one string to another string. 3-143

strchr Searches a string for a character. 3-144

strcmp Compares two character strings. 3-145

strcoll Compares two character strings. 3-146

strcpy Copies one string to another string. 3-148

strcspn Calculates the length of a substring. 3-149

strerror Maps an error number to an error message string. 3-150

strftime Places formatted time and date information into a string. 3-151

strlen Computes string length. 3-154

strncat Appends characters to a string. 3-155

strncmp Compares characters in two strings. 3-157

strncpy Copies characters from one string to another. 3-159

strpbrk Searches a string for a character in a second string. 3-160

TABLE A-4 pREPC+ System Calls (Continued)

Name Description Page
A-24 pSOSystem System Calls

Tables of System Calls pREPC+ System Calls

A

strrchr Searches a string for a character. 3-161

strspn Calculates specified string length. 3-162

strstr Searches a string for specified characters in another string. 3-163

strtod Converts a string to a double. 3-164

strtok Searches a string for tokens. 3-166

strtol Converts a string to a long integer. 3-168

strtoul Converts a string to an unsigned long. 3-170

strxfrm Transforms a string so that it can be used by strcmp() . 3-172

time Obtains the current calendar time. 3-174

tmpfile Creates a temporary file. 3-176

tmpname Generates a temporary file name. 3-177

tolower Converts a character to lowercase. 3-179

toupper Converts a character to uppercase. 3-180

ungetc Ungets a character. 3-181

vfprintf Writes formatted output to a stream. 3-183

vprintf Writes formatted output to stdout . 3-185

vsprintf Writes formatted output to a buffer. 3-187

wcstombs Converts a wide character string into a multibyte character
string.

3-189

wctomb Converts a wide character into its multibyte character equiva-
lent.

3-191

TABLE A-4 pREPC+ System Calls (Continued)

Name Description Page
pSOSystem System Calls A-25

pNA+ System Calls Tables of System Calls
A.5 pNA+ System Calls

Table A-5 provides an alphabetical listing of all pNA+ system calls, a summary de-
scription for each call, and a reference to more details about the call.

TABLE A-5 pNA+ System Calls

Name Description Page

accept Accepts a connection on a socket. 4-2

add_ni Adds a network interface. 4-4

bind Binds an address to a socket. 4-6

close Closes a socket descriptor. 4-8

connect Initiates a connection on a socket 4-9

get_id Gets a task’s user ID and group ID. 4-12

getpeername Gets the address of a connected peer. 4-13

getsockname Gets the address that is bound to a socket. 4-15

getsockopt Gets options on a socket. 4-17

ioctl Performs control operations on a socket. 4-22

listen Listens for connections on a socket. 4-38

pna_allocb Allocates a message block. 4-39

pna_esballoc Attaches a message block to the data buffer. 4-41

pna_freeb Frees a message block. 4-43

pna_freemsg Frees all the message blocks associated with a message. 4-44

recv Receives data from a socket. 4-45

recvfrom Receives data from a socket. 4-48

recvmsg Receives data from a socket. 4-51

select Checks the status of multiple sockets. 4-54

send Sends data to a socket. 4-57

sendmsg Sends data to a socket. 4-60
A-26 pSOSystem System Calls

Tables of System Calls pRPC+ System Calls

A

A.6 pRPC+ System Calls

Table A-6 provides an alphabetical listing of the pRPC+ system calls described in
this manual, a summary description for each call, and a reference to more details
about the call.

sendto Sends data to a socket. 4-62

set_id Sets a task’s user ID and group ID. 4-65

setsockopt Sets options on a socket. 4-66

shr_socket Obtains a new socket descriptor for an existing socket. 4-73

shutdown Terminates all or part of a full-duplex connection. 4-74

socket Creates a socket. 4-76

TABLE A-6 pRPC+ System Calls

Name Description Page

get_fdset Returns the bit mask that corresponds to readable RPC
sockets.

5-5

rpc_getcreateerr Returns the reason for an RPC client handle creation
failure.

5-6

TABLE A-5 pNA+ System Calls (Continued)

Name Description Page
pSOSystem System Calls A-27

pROBE and ESp System Calls Tables of System Calls
A.7 pROBE+ and ESp System Calls

Table A-7 provides an alphabetical listing of the system calls supported by pROBE+
and ESp. Each call listing includes the call name, the tool name, a summary de-
scription, and a reference to more details about the call.

TABLE A-7 pROBE and ESp System Calls

Name Tool Description Page

db_input pROBE+ Prompts and gets input from the high-level debug-
ger.

6-3

db_output pROBE+ Outputs a string to the high-level debugger. 6-5

log_event ESp Logs an event on ESp’s target-resident application
monitor, pMONT.

6-6
A-28 pSOSystem System Calls

B
 Error Codes
B

This appendix is a collection of tables of pSOSystem error codes, intended to help
you identify which system call returned a specific error code. Each table lists the
codes belonging to a single pSOSystem component (i.e., pSOS+, pHILE+, etc.) The
table entry for each code includes a hexadecimal number, a brief description (in-
cluding the error mnemonic), and a list of the system calls that can return the error.

pSOSystem components return error codes in two ways:

■ pSOS+ and pHILE+ return error codes as function return values.

■ pREPC+, pNA+, and pRPC+ load the error code into an internal variable that
can be read through the macro errno() . If the return value of a pREPC+,
pNA+, or pRPC+ system call indicates an error, your application should examine
the errno variable to determine the cause of the error. See the description of
errno() on page 3-27 for more information.

Table B-1 lists the error code ranges of pSOSystem components, libraries, and driv-
ers. Error code values are in hexadecimal notation, with a space inserted every byte
for readability.

TABLE B-1 Error Code Origins

Error Code Range Origin Defined in Refer to page

From To

00 00 00 01 00 00 0F FF pSOS+, pSOS+m <psos.h> B-4

00 00 10 00 00 00 1F FF (reserved)

00 00 20 00 00 00 2F FF pHILE+ <phile.h> B-15
B-1

Error Codes
00 00 30 00 00 00 3F FF pREPC+ <errno.h> B-38

00 00 40 00 00 00 4F FF (reserved)

00 00 50 00 00 00 5F FF pNA+, pRPC+ <pna.h> B-39

00 00 60 00 00 00 6F FF (reserved)

00 01 00 00 00 FF FF FF (reserved)

01 10 00 00 01 1F FF FF Networking libraries

01 20 00 00 01 20 00 FF MMUlib <mmulib.h>

01 20 01 00 01 20 01 FF Loader

01 20 02 00 00 FF FF FF (reserved for
pSOSystem libraries)

10 00 00 00 10 00 00 FF NI_SMEM driver <drv_intf.h> B-45

10 00 01 00 10 00 01 FF KI_SMEM driver <drv_intf.h> B-45

10 00 02 00 10 00 FF FF (reserved for drivers)

10 01 00 00 10 01 FF FF serial driver <drv_intf.h> B-46

10 02 00 00 10 02 FF FF tick timer driver <drv_intf.h> B-47

10 03 00 00 10 03 FF FF (reserved for drivers)

10 04 00 00 10 04 FF FF RAM disk driver <drv_intf.h> B-48

10 05 00 00 10 05 FF FF (reserved for drivers)

10 06 00 00 10 06 FF FF TFTP driver <drv_intf.h> B-48

10 07 00 00 10 07 FF FF SLIP driver

10 08 00 00 10 08 FF FF (reserved for drivers)

10 09 00 00 10 09 FF FF IDE driver B-49

10 0A 00 00 10 0A FF FF FLP driver B-49

TABLE B-1 Error Code Origins (Continued)

Error Code Range Origin Defined in Refer to page

From To
B-2 pSOSystem System Calls

Error Codes

B

10 0B 00 00 10 4F FF FF (reserved for drivers)

10 50 00 00 10 5F FF FF SCSI driver <drv_intf.h> B-50

10 60 00 00 1F FF FF FF (reserved for drivers)

20 00 00 00 FF FF FF FF (reserved for
application use)

TABLE B-1 Error Code Origins (Continued)

Error Code Range Origin Defined in Refer to page

From To
pSOSystem System Calls B-3

pSOS+ Error Codes Error Codes
B.1 pSOS+ Error Codes

All pSOS+ error codes are returned as function return values (rather than an errno
variable); they have a value between 0 and 0xfff.

Table B-2 lists all error codes returned by the pSOS+ component. Each listing in-
cludes the error code’s hexadecimal number, it’s mnemonic and description, and
the pSOS+ system calls that can return it. The error code mnemonics are also de-
fined in <psos.h> .

The term object represents the applicable service group type (task, partition,
queue, semaphore, and so on).

TABLE B-2 pSOS+ Error Codes

Hex Mnemonic and Description System Call(s)

0x01 ERR_TIMEOUT: Timed out; returned only if a tim-
eout was requested.

ev_receive,
q_receive,
q_vreceive,
rn_getseg. sm_p

0x03 ERR_SSFN: Illegal system service function num-
ber.

ev_asend, q_asend,
q_aurgent, q_avsend,
q_avurgent, sm_av

0x04 ERR_NODENO: Node specifier out of range. k_terminate,
pt_ident, q_ident,
q_vident, sm_ident,
t_ident
B-4 pSOSystem System Calls

Error Codes pSOS+ Error Codes

B

0x05 ERR_OBJDEL: object has been deleted. as_send, ev_asend,
ev_send, pt_delete,
pt_getbuf,
pt_retbuf,
pt_sgetbuf, q_asend,
q_aurgent, q_avsend,
q_avurgent,
q_broadcast,
q_delete, q_receive,
q_send, q_urgent,
q_vbroadcast,
q_vdelete,
q_vreceive, q_vsend,
q_vurgent,
rn_delete,
rn_getseg,
rn_retseg, sm_av,
sm_delete, sm_p,
sm_v, t_delete,
t_getreg, t_restart,
t_resume, t_setpri,
t_setreg, t_start,
t_suspend,

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-5

pSOS+ Error Codes Error Codes
0x06 ERR_OBJID: object_id is incorrect; failed valid-
ity check.

as_send, ev_asend,
ev_send, pt_delete,
pt_getbuf,
pt_retbuf,
pt_sgetbuf, q_asend,
q_aurgent, q_avsend,
q_avurgent,
q_broadcast,
q_delete, q_receive,
q_send, q_urgent,
q_vbroadcast,
q_vdelete,
q_vreceive, q_vsend,
q_vurgent,
rn_delete,
rn_getseg,
rn_retseg, sm_av,
sm_delete, sm_p,
sm_v, t_delete,
t_getreg, t_restart,
t_resume, t_setpri,
t_setreg, t_start,
t_suspend

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-6 pSOSystem System Calls

Error Codes pSOS+ Error Codes

B

0x07 ERR_OBJTYPE: object type doesn’t match
object ID; failed validity check.

as_send, ev_asend,
ev_send, pt_delete,
pt_getbuf,
pt_retbuf,
pt_sgetbuf, q_asend,
q_aurgent, q_avsend,
q_avurgent,
q_broadcast,
q_delete, q_receive,
q_send, q_urgent,
q_vbroadcast,
q_vdelete,
q_vreceive, q_vsend,
q_vurgent,
rn_delete,
rn_getseg,
rn_retseg, sm_av,
sm_delete, sm_p,
sm_v, t_delete,
t_getreg, t_restart,
t_resume, t_setpri,
t_setreg, t_start,
t_suspend

0x08 ERR_OBJTFULL: Node's object table full. pt_create, q_create,
q_vcreate,
rn_create,
sm_create, t_create,

0x09 ERR_OBJNF: Named object not found. pt_ident, q_ident,
q_vident, rn_ident,
sm_ident, t_ident

0x0D ERR_RSTFS: Informative; files may be corrupted
on restart.

t_restart

0x0E ERR_NOTCB: Exceeds node's maximum number
of tasks.

t_create

0x0F ERR_NOSTK: Insufficient space in Region 0 to cre-
ate stack or task started in user mode with no
user stack allocated.

t_create, t_start

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-7

pSOS+ Error Codes Error Codes
0x10 ERR_TINYSTK: Stack too small. t_create

0x11 ERR_PRIOR: Priority out of range. t_create

0x12 ERR_ACTIVE: Task already started. t_start

0x13 ERR_NACTIVE: Cannot restart; this task never
was started.

t_restart

0x14 ERR_SUSP: Task already suspended. t_suspend

0x15 ERR_NOTSUSP: The task was not suspended. t_resume

0x16 ERR_SETPRI: Cannot change priority; new prior-
ity out of range.

t_setpri

0x17 ERR_REGNUM: Register number out of range. t_getreg, t_setreg

0x18 ERR_DELFS: pHILE+ resources in use. t_delete

0x19 ERR_DELLC: pREPC+ resources in use. t_delete

0x1A ERR_DELNS: pNA+ resources in use. t_delete

0x1B ERR_RNADDR: Starting address not on long word
boundary.

rn_create

0x1C ERR_UNITSIZE: Illegal unit_size — unit size
not power of 2 or less than 16 bytes.

rn_create

0x1D ERR_TINYUNIT: length too large (for given
unit_size .)

rn_create

0x1E ERR_TINYRN: Cannot create; region length too
small to hold RNCB.

rn_create

0x1F ERR_SEGINUSE: Cannot delete; one or more seg-
ments still in use.

rn_delete

0x20 ERR_ZERO: Cannot getseg; request size of zero is
illegal.

rn_getseg

0x21 ERR_TOOBIG: Cannot getseg; request size is too
big for region.

rn_getseg

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-8 pSOSystem System Calls

Error Codes pSOS+ Error Codes

B

0x22 ERR_NOSEG: No free segment; only if RN_NOWAIT
attribute used.

rn_getseg

0x23 ERR_NOTINRN: Segment does not belong to this
region.

rn_retseg

0x24 ERR_SEGADDR: Incorrect segment starting ad-
dress.

rn_retseg

0x25 ERR_SEGFREE: Segment is already unallocated. rn_retseg

0x26 ERR_RNKILLD: Cannot getseg; region deleted
while waiting.

rn_getseg

0x27 ERR_TATRNDEL: Informative only; there were
tasks waiting.

rn_delete

0x28 ERR_PTADDR: Starting address not on long word
boundary.

pt_create

0x29 ERR_BUFSIZE: Buffer size not power of 2, or less
than 4 bytes.

pt_create

0x2A ERR_TINYPT: Length too small to hold PTCB. pt_create

0x2B ERR_BUFINUSE: Cannot delete; one or more buff-
ers still in use.

pt_delete

0x2C ERR_NOBUF: Cannot allocate; partition out of free
buffers.

pt_getbuf, pt_sgetbuf

0x2D ERR_BUFADDR: Incorrect buffer starting address. pt_retbuf

0x2F ERR_BUFFREE: Buffer is already unallocated. pt_retbuf

0x30 ERR_KISIZE : Global queue maxlen too large for
KI.

q_vbroadcast,
q_vcreate,
q_vreceive, q_vsend,
q_vurgent

0x31 ERR_MSGSIZ: Message too large. q_vsend, q_vurgent,
q_vbroadcast

0x32 ERR_BUFSIZ: Buffer too small. q_vreceive, pt_create

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-9

pSOS+ Error Codes Error Codes
0x33 ERR_NOQCB: Can’t allocate QCB: exceeds node's
active queue maximum.

q_create, q_vcreate

0x34 ERR_NOMGB: Cannot allocate private buffers; too
few available.

q_asend, q_aurgent,
q_create, q_send,
q_urgent, q_vcreate,
errno_addr

0x35 ERR_QFULL: Message queue at length limit. q_asend, q_aurgent,
q_avsend,
q_avurgent, q_send,
q_urgent, q_vsend,
q_vurgent

0x36 ERR_QKILLD: Queue deleted while task waiting. q_receive, q_vreceive

0x37 ERR_NOMSG: Queue empty: this error returns
only if Q_NOWAIT selected.

q_receive, q_vreceive

0x38 ERR_TATQDEL: Informative only: tasks were wait-
ing at the queue.

q_delete, q_vdelete

0x39 ERR_MATQDEL: Information only: messages were
pending in the queue.

q_delete, q_vdelete

0x3A ERR_VARQ: Queue is variable length. q_asend, q_aurgent,
q_broadcast,
q_delete, q_receive,
q_send, q_urgent

0x3B ERR_NOTVARQ: Queue is not variable length. q_vbroadcast,
q_vdelete,
q_vreceive, q_vsend,
q_vurgent, q_avsend,
q_avurgent

0x3C ERR_NOEVS: Selected events not pending: this er-
ror code is returned only if the EV_NOWAIT at-
tribute was selected.

ev_receive

0x3E ERR_NOTINASR: Illegal, not called from an ASR. as_return

0x3F ERR_NOASR: Task has no valid ASR. as_send

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-10 pSOSystem System Calls

Error Codes pSOS+ Error Codes

B

0x41 ERR_NOSCB: Exceeds node's maximum number
of semaphores.

sm_create

0x42 ERR_NOSEM: No semaphore: this error code re-
turns only if SM_NOWAIT was selected.

sm_p

0x43 ERR_SKILLD: Semaphore deleted while task
waiting.

sm_p

0x44 ERR_TATSDEL: Informative only; there were
tasks waiting.

sm_delete

0x47 ERR_NOTIME: System time and date not yet set. tm_evafter,
tm_evevery,
tm_evwhen, tm_get,
tm_wkwhen

0x48 ERR_ILLDATE: date input out of range. tm_evwhen, tm_set,
tm_wkwhen

0x49 ERR_ILLTIME : time input out of range. tm_evwhen, tm_set,
tm_wkwhen

0x4A ERR_ILLTICKS : ticks input out of range. tm_evwhen, tm_set,
tm_wkwhen

0x4B ERR_NOTIMERS: Exceeds maximum number of
configured timers.

tm_evafter,
tm_evevery, tm_evwhen

0x4C ERR_BADTMID: tmid invalid. tm_cancel

0x4D ERR_TMNOTSET: Timer not armed or already ex-
pired.

tm_cancel

0x4E ERR_TOOLATE: Too late; date and time input al-
ready in the past.

tm_evwhen, tm_wkwhen

0x53 ERR_ILLRSC: object not created from this
node.

pt_delete, q_delete,
q_vdelete,
sm_delete, t_delete,
t_restart, t_start

0x54 ERR_NOAGNT: Cannot wait; the remote node is
out of Agents.

q_receive, q_vreceive

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-11

pSOS+ Error Codes Error Codes
0x65 ERR_STALEID: object does not exist any more. ev_send, pt_getbuf,
pt_retbuf,
pt_sgetbuf, q_asend,
q_aurgent, q_avsend,
q_avurgent,
q_broadcast,
q_receive, q_send,
q_urgent,
q_vbroadcast,
q_vreceive, q_vsend,
q_vurgent, sm_p,
sm_v, t_getreg,
t_resume, t_setpri,
t_setreg,

0x66 ERR_NDKLD: Remote node is no longer in service. q_receive,
q_vreceive, sm_p

0x67 ERR_MASTER: Cannot terminate master node. k_terminate

0x101 ERR_IODN: Illegal device (major) number. de_close, de_cntrl,
de_init, de_open,
de_read, de_write

0x102 ERR_NODR: No driver provided. de_close, de_cntrl,
de_init, de_open,
de_read, de_write

0x103 ERR_IOOP: Illegal I/O function number. de_close, de_cntrl,
de_init, de_open,
de_read, de_write

0xF00 FAT_ALIGN: Region 0 must be aligned on a long
word boundary.

This error originates in
pSOS+ initialization.

0xF01 FAT_OVSDA: Region 0 overflow while making sys-
tem data area.

This error originates in
pSOS+ initialization.

0xF02 FAT_OVOBJT: Region 0 overflow while making
object table.

This error originates in
pSOS+ initialization.

0xF03 FAT_OVDDAT: Region 0 overflow while making de-
vice data area table.

This error originates in
pSOS+ initialization.

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-12 pSOSystem System Calls

Error Codes pSOS+ Error Codes

B

0xF04 FAT_OVTCB: Region 0 overflow while making task
structures.

This error originates in
pSOS+ initialization.

0xF05 FAT_OVQCB: Region 0 overflow while making
queue structures.

This error originates in
pSOS+ initialization.

0xF06 FAT_OVSMCB: Region 0 overflow while making
semaphore structures.

This error originates in
pSOS+ initialization.

0xF07 FAT_OVTM: Region 0 overflow while making timer
structures.

This error originates in
pSOS+ initialization.

0xF08 FAT_OVPT: Region 0 overflow while making parti-
tion structures.

This error originates in
pSOS+ initialization.

0xF09 FAT_OVRSC: Region 0 overflow while making RSC
structures.

This error originates in
pSOS+ initialization.

0xF0A FAT_OVRN: Region 0 overflow while making re-
gion structures.

This error originates in
pSOS+ initialization.

0xF0C FAT_ROOT: Cannot create ROOT task. This error originates in
pSOS+ initialization.

0xF0D FAT_IDLE : Cannot create IDLE task. This error originates in
pSOS+ initialization.

0xF0E FAT_CHKSUM: Checksum error. This error originates in
pSOS+ initialization.

0xF0F FAT_INVCPU: Wrong processor type. This error originates in
pSOS+ initialization.

0xF12 FAT_ILLPKT : Illegal packet type in the received
packet.

This error originates in
pSOS+ initialization.

0xF13 FAT_MIVERIF : Multiprocessor configuration
mismatch at system verify.

This error originates in
pSOS+ initialization.

0xF15 FAT_NODENUM: Illegal value for mc_nodenum. This error originates in
pSOS+ initialization.

0xF16 FAT_NNODES: Illegal value for mc_nnodes . This error originates in
pSOS+ initialization.

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-13

pSOS+ Error Codes Error Codes
0xF17 FAT_OVMP: Region 0 overflow while making mul-
tiprocessor structures.

This error originates in
pSOS+ initialization.

0xF18 FAT_KIMAXBUF: mc_kimaxbuf too small for
mc_nnodes .

This error originates in
pSOS+ initialization.

0xF19 FAT_ASYNCERR: Asynchronous RSC failure. This error originates in
pSOS+ initialization.

0xF1B FAT_DEVINIT : Error during auto-initialization of
a device.

This error originates in
pSOS+ initialization.

0xF20 FAT_JN2SOON: Join request denied — Node al-
ready in system.

This error originates in
pSOS+ initialization.

0xF21 FAT_MAXSEQ: Join request denied — Sequence
number at limit.

This error originates in
pSOS+ initialization.

0xF22 FAT_JRQATSLV: Join request sent to a slave
node instead of the Master node.

This error originates in
pSOS+ initialization.

TABLE B-2 pSOS+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-14 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

B.2 pHILE+ Error Codes

pHILE+ error codes are returned as function return values (rather than an errno
variable). Table B-3 lists all error codes returned by the pHILE+ component. Each
listing includes the error code’s hexadecimal number, it’s mnemonic and descrip-
tion, and the pHILE+ system calls that can return it. The error code mnemonics are
also defined in <phile.h> .

An asterisk next to an error code’s description indicates that it can represent an
NFS or RPC error. Sections B.2.2 and B.2.3 beginning on page B-35 provide tables
of the NFS and RPC error codes that are mapped to pHILE+ error codes.

TABLE B-3 pHILE+ Error Codes

Hex Mnemonic and Description System Call(s)

0x2001 E_FUNC: Invalid function number. The function
number passed to pHILE+ in register D0.L does
not contain a code corresponding to a valid
pHILE+ system call.

access_f, chmod_f,
chown_f, fchmod_f,
fchown_f,
ftruncate_f, link_f,
lstat_f, make_dir,
read_link,
symlink_f,
truncate_f, utime_f

0x2002 E_FAIL : pHILE+ failure. An internal error has
been detected by the pHILE+ file system man-
ager. Report this error condition to Integrated
Systems.

Should never happen.

0x2003 E_BADVOL: Inconsistent data on volume; volume
corrupted. The data structures on the volume
are inconsistent with each other. This is most
likely the result of a crash while the pHILE+ file
system manager was writing to the volume. On
MS-DOS volumes, it can also indicate that an
incorrect partition number has been specified.

change_dir,
close_dir, close_f,
create_f,
ftruncate_f, get_fn,
init_vol, make_dir,
move_f, open_dir,
open_f, open_fn,
pcinit_vol,
pcmount_vol,
read_dir, read_f,
remove_f, stat_f,
stat_vfs,
sync_vol,truncate_f,
unmount_vol, write_f
pSOSystem System Calls B-15

pHILE+ Error Codes Error Codes
0x2005 E_VINITPAR : Illegal parameters to
init_vol() . The parameters specified to an
init_vol() call are not consistent. One of the
following problems has been detected by the
pHILE+ file system manager.

■ The specified starting location of the bitmap
causes the FLIST to either extend beyond
the end of the volume or the end of the con-
trol block region (if the volume has been
partitioned into control and data block re-
gions.)

■ The specified starting block for the data
block region (SODATA) is not on a modulo 8
boundary, or it is beyond the end of the vol-
ume.

■ The bitmap begins in blocks 0-3.

init_vol

0x2006 E_MNTFULL: Attempt to mount too many vol-
umes. Attempt to mount more volumes than
specified by the pHILE+ Configuration Table pa-
rameter fc_nmount .

cdmount_vol,
mount_vol,
nfsmount_vol,
pcmount_vol

0x2007 E_VALIEN: Wrong volume format. The volume to
be mounted is not of the correct. Either it is the
wrong type, i.e. mounting an MS-DOS volume
with mount_vol() , or it has not been formatted
by the pHILE+ file system manager.

cdmount_vol,
mount_vol,
pcmount_vol,
verify_vol

0x2008 E_MNTED: Volume already mounted. This error
condition implies one of the following:

■ An attempt was made to mount a device
that is already mounted.

■ An attempt was made to initialize a
mounted volume.

cdmount_vol,
init_vol, mount_vol,
nfsmount_vol,
pcinit_vol,
pcmount_vol

0x2009 E_MNTOPEN: Cannot unmount volume; files
open. An attempt was made to unmount a vol-
ume when one or more of its files are still open.
All files must be closed before a volume can be
unmounted.

unmount_vol,
verify_vol

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-16 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x200A E_DMOUNT: Volume not mounted. Attempted to
reference an unmounted volume.

change_dir,
create_f, get_fn,
lseek_f, make_dir,
move_f, open_f,
open_fn, read_vol,
remove_f, sync_vol,
unmount_vol,
verify_vol,
write_vol

0x200B E_FNAME: Filename not found. One or more of
the filenames specified in a pathname cannot be
located. *

change_dir,
create_f, get_fn,
make_dir, move_f,
open_f, remove_f

0x200C E_IFN : Illegal pathname. The pathname as
specified is illegal. Possibilities are:

■ File name exceeds 12 characters.

■ Illegal character in a filename.

■ Illegal first character in a filename.

■ Incorrect pathname syntax. *

access_f,change_dir,
chmod_f, chown_f,
create_f, get_fn,
link_f, lstat_f,
make_dir, move_f,
open_dir, open_f,
open_fn, read_link,
remove_f, stat_f,
stat_vfs, symlink_f,
truncate_f,
unmount_vol, utime_f

0x200D E_NDD: No default directory. A relative path-
name has been entered, but the calling task has
never done a change_dir() call.

access_f,change_dir,
chmod_f, chown_f,
create_f, get_fn,
link_f, lstat_f,
make_dir, move_f,
open_dir, open_f,
open_fn, read_link,
remove_f, stat_f,
stat_vfs, symlink_f,
truncate_f,
unmount_vol, utime_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-17

pHILE+ Error Codes Error Codes
0x200E E_FORD: Directory file expected. An ordinary file
was specified where a directory file was re-
quired. Either of the following are possible:

■ A file in a pathname (except the last file) is
not a directory file.

■ The filename specified on a change_dir()
is not a directory file. *

change_dir,
create_f, get_fn,
make_dir, move_f,
open_f, remove_f

0x200F E_ASIZE: Illegal Expansion Unit. An expansion
unit of zero is illegal.

create_f

0x2010 E_NODE: Null pathname. A pathname with zero
characters was passed. This error code is also
returned when a pathname that does not end
with an actual filename has been passed to
create_f() or make_dir() , or to the new file-
name of a move_f() call. For example, a period
(.) would be a legal pathname for open_f() but
not for create_f() .

create_f, make_dir,
move_f, remove_f,

0x2011 E_FEXIST: Filename already exists. create_f, make_dir,
move_f

0x2012 E_FLIST : Too many files on volume. Attempt to
create a new file when the FLIST is full. You pro-
vide the size of the FLIST when the volume is
initialized.

create_f, make_dir,
move_f

0x2013 E_FOPEN: Cannot remove an open file. Attempt
to remove a file that is still open.

remove_f

0x2014 E_DNE: Cannot delete directory that has files.
Attempt to remove a directory that is not
empty.*

remove_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-18 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x2015 E_RO: Requested operation not allowed on this
file. This error implies one of the following:

■ An attempt was made to write to or lock
BITMAP.SYS, FLIST.SYS , or a directory
file.

■ Attempted to remove a system file.

■ Attempted to annex to BITMAP.SYS or
FLIST.SYS .

■ Attempted to write to a volume mounted
with sync_mode set to SM_READ_ONLY. *

annex_f, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
ftruncate_f, link_f,
lock_f, make_dir,
move_f, remove_f,
truncate_f, utime_f,
write_f, write_vol

0x2016 E_DIFDEV: move_f() across volumes. The old
and new pathnames specified on a move_f()
call are not on the same device.

move_f

0x2017 E_NOTREE: move_f() would destroy directory-
tree structure. Attempted to move a directory file
to a location within its own sub-tree. If allowed,
the volume's file system hierarchy would no
longer be a tree structure.

move_f

0x2018 E_OFULL: Too many files open for task. A task
attempted to open more files than specified by
the pHILE+ Configuration Table parameter
fc_ncfile .

open_dir, open_f,
open_fn,

0x2019 E_NOFCB: Too many files open in system. An
open_f() attempt will exceed the maximum
number of open files allowed in the system as
specified by the pHILE+ Configuration Table pa-
rameter fc_nfcb .

open_dir, open_f,
open_fn,

0x201A E_FIDBIG : Invalid FID, out of range. The FID
provided on a pHILE+ call has a value that could
not have been returned by an open_f() call.

close_dir() will return this error code only if
dd_fn in the XDIR has been corrupted.

annex_f, close_dir,
close_f, fchmod_f,
fchown_f, fstat_f,
fstat_vfs,
ftruncate_f, lock_f,
lseek_f, read_f,
write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-19

pHILE+ Error Codes Error Codes
0x201B E_FIDOFF: Invalid file ID, file not open. The file
ID provided on a pHILE+ call is not an open file.

annex_f, close_dir,
close_f, fchmod_f,
fchown_f, fstat_f,
fstat_vfs,
ftruncate_f, lock_f,
lseek_f, read_f,
write_f

0x201C E_ININFULL : Index block full. The physical size
of a file cannot be increased because the file's
index block is full, so that no more extent de-
scriptors can be added to the file. This error
code indicates that the file is badly scattered
across the device. The annex_f() call should
be used to produce more contiguity in the file
and reduce the number of extents. On NFS vol-
umes this error code is returned if a file is too
big.*

annex_f, create_f,
ftruncate_f,
make_dir, move_f,
truncate_f, write_f

0x201D E_VFULL: Volume full. No more free blocks of
the required type (control or data) are available
on the volume. This error can occur on a
write_f() call whenever the file is extended;
on a create_f() , make_dir() , or move_f() if
a directory must be extended; or on an
annex_f() call. *

annex_f, create_f,
ftruncate_f,
make_dir, move_f,
truncate_f, write_f

0x201E E_BADPOS: Illegal position parameter to
lseek_f() . The LSEEK position parameter
must be 0, 1, or 2.

lseek_f

0x201F E_EOF: Seek past end of file. The parameters
provided to lseek_f() would position the
L_ptr beyond the logical end of the file. Since
the L_ptr is viewed by the pHILE+ file system
manager as unsigned, this error can also occur
when an lseek_f() call positions the L_ptr
before the beginning of a file.

lseek_f, read_dir

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-20 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x2021 E_ILLDEV : Illegal device. The major device num-
ber specified in an init_vol() or
mount_vol() is larger than the maximum de-
vice number specified in the pSOS+ Configura-
tion Table.

cdmount_vol,
init_vol, mount_vol,
pcmount_vol,
verify_vol

0x2022 E_LOCKED: Data is locked. Attempt to access a
region of a file that is locked.

ftruncate_f, lock_f,
read_f, truncate_f,
write_f

0x2023 E_BADFN: Illegal or unused filename. The FN
passed to an open_fn() call is not legal. Either
it is not within the limits of the FLIST or the cor-
responding FD is not in use.

open_fn

0x2024 E_FMODE: Bad synchronization mode to
mount_vol() . The mount_vol() synchroniza-
tion mode must be 0, 1, or 2.

cdmount_vol,
mount_vol,
pcmount_vol

0x2025 E_IDN: Illegal device name. An illegal device
name was passed to a function requiring either
a device or pathname as input. Either the device
number was illegal (i.e., major/minor numbers
out of bounds) or it contained a syntax error.

access_f,
cdmount_vol,
change_dir, chmod_f,
chown_f, create_f,
get_fn, init_vol,
link_f, lstat_f,
make_dir, mount_vol,
move_f,
nfsmount_vol,
open_dir, open_f,
open_fn, pcinit_vol,
pcmount_vol,
read_link, read_vol,
remove_f, stat_f,
stat_vfs, symlink_f,
sync_vol,truncate_f,
unmount_vol,utime_f,
verify_vol,write_vol

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-21

pHILE+ Error Codes Error Codes
0x2026 E_BADMS: MS-DOS volume; illegal operation.
This function cannot be used with MS-DOS vol-
umes.

access_f, annex_f,
chmod_f, chown_f,
fchmod_f, fchown_f,
link_f, lock_f,
lstat_f, read_link,
symlink_f, utime_f,

0x2027 E_ILLMSTYP: Illegal DOS disk type. The
pcinit_vol() parameter dktype exceeds the
maximum allowable value.

pcinit_vol

0x2029 E_NMSVOL: Cannot mount MS-DOS volume. The
pHILE+ Configuration Table entry fc_msdos is
zero, indicating MS-DOS volumes cannot be
mounted.

pcmount_vol

0x2041 E_BUFSIZE: Buffers not available for block size. cdmount_vol

0x2050 E_BADNFS: NFS volume; illegal operation. This
function cannot be used with NFS volumes.

annex_f, get_fn,
lock_f, open_fn,
read_vol, sync_vol,
write_vol

0x2051 E_MAXLOOP: Symbolic links nested too deeply. A
pathname contains symbolic links nested more
than three levels deep.

access_f,
cdmount_vol,
change_dir, chmod_f,
chown_f, create_f,
link_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
pcinit_vol,
pcmount_vol,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,utime_f,
verify_vol

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-22 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x2052 E_REMOTE: “Too many levels of remote in path”
on server. *

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x2053 E_PERM: The task does not have the ownership
that is needed. The task does not have owner-
ship for the requested file operation. *

remove_f

0x2054 E_EIO: A hard error occurred at a remote site.
There was some hardware error, such as an I/O
error, at the server. Abort the operation. *

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-23

pHILE+ Error Codes Error Codes
0x2055 E_EACCES: The task does not have the neces-
sary access permissions. The task does not have
permission for the requested file operation. *

access_f,change_dir,
chmod_f, chown_f,
close_dir, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f, utime_f,
write_f

0x2056 E_EISDIR : Illegal operation on a directory. If
you attempt an operation on a directory as if it
were a data file, this error is reported.*

move_f, read_f,
remove_f, write_f

0x2057 E_EQUOT: Quota exceeded. The server enforces a
disk usage quota for each user. If this error is
reported, use the disk less, or remove files, or
have the quota raised. *

create_f,
ftruncate_f, link_f,
make_dir, move_f,
symlink_f,
truncate_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-24 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x2058 E_ESTALE: Stale file handle, file handle invalid.
When a server crashes, or there is some other
exceptional event, file handles no longer are
valid. Consider unmounting the file system and
remounting it. *

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x2059 E_XLINK: Can’t close link. link_f

0x205A E_NAMETOOLONG: Directory/filename too long. read_dir

0x205B E_ENXIO: “No such device or address” on
server.*

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-25

pHILE+ Error Codes Error Codes
0x205C E_ENODEV: “No such device” on server. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x2060 E_BADCD: CD-ROM volume; illegal operation. access_f, annex_f,
chmod_f, chown_f,
create_f, fchmod_f,
fchown_f,
ftruncate_f, link_f,
lock_f, lstat_f,
make_dir, move_f,
read_link, remove_f,
symlink_f, sync_vol,
truncate_f, utime_f,
write_f, write_vol

0x2061 E_NCDVOL: Not configured for CD-ROM vol-
umes.

cdmount_vol

0x2062 E_CDMVOL: Multi-volume CD-ROM not sup-
ported.

cdmount_vol

0x2063 E_CDBSIZE: Volume not made with 2K block
size.

cdmount_vol

0x2064 E_CDFMT: CD format not ISO 9660 compatible. cdmount_vol

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-26 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x2070 E_EAUTH: “Authentication error” on server. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x2071 E_ENFS: NFS error. “Portmap error” on server.* access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-27

pHILE+ Error Codes Error Codes
0x2072 E_ETIMEDOUT: NFS call timed out. A server did
not respond to a request. The requested NFS call
timed out. Network congestion, a server that is
down, or a hardware problem may be the
cause.*

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x2074 E_ENOAUTHBLK: No RPC authorization blocks
available.*

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-28 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x2075 E_ECANTSEND: Failure in sending call. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x2076 E_ECANTRECV: Failure in receiving result. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-29

pHILE+ Error Codes Error Codes
0x2077 E_PROGUNAVAIL: Program not available. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x2078 E_EPROGVERSMISMATCH: Program version
mismatched. *

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-30 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x2079 E_ECANTDECODEARGS: Decode arguments
error. *

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x207A E_EUNKNOWNHOST: Unknown host name. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-31

pHILE+ Error Codes Error Codes
0x207B E_EPROGNOTREGISTERED: Remote program is
not registered. *

access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x207C E_UNKNOWNPROTO: Unknown protocol. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-32 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x207D E_EINTR: Call interrupted. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x207E E_ERPC: All other RPC errors. * access_f,
change_dir, chmod_f,
chown_f, create_f,
fchmod_f, fchown_f,
fstat_f, fstat_vfs,
ftruncate_f, link_f,
lseek_f, lstat_f,
make_dir, move_f,
nfsmount_vol,
open_dir, open_f,
read_dir, read_f,
read_link, remove_f,
stat_f, stat_vfs,
symlink_f,
truncate_f,
unmount_vol,
utime_f, write_f

0x2200 VF_INSUFF: Insufficient working area provided.
Supply more memory for the data area pointed
to by pb_dataptr and increase pb_datalen .
Refer to page 2-127.

verify_vol

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-33

pHILE+ Error Codes Error Codes
B.2.1 pSOS+ Errors Related to pHILE+

When a task is deleted or restarted, pSOS+ may return errors related to pHILE+.
These error codes are listed in Table B-4.

0x2201 VF_MAXDEPTH: Maximum depth exceeded on
directory traversal. Increase the value of
pb_maxdepth . If needed, supply more memory
for pb_dataptr and increase pb_datalen .
Refer to page 2-127.

verify_vol

0x2202 VF_ABORT: Verify routine aborted by user. verify_vol

0x2F01 FAT_NORAM: Insufficient data area. This error originates in
pHILE+ initialization.

0x2F0E FAT_PHCSUM: Checksum error in the pHILE+ file
system manager.

This error originates in
pHILE+ initialization.

TABLE B-4 pSOS+ Errors Related to pHILE+

Hex Description System Call(s)

0x0D ERR_RSTFS: Possible file system corruption. A
task was restarted while executing pHILE+ code,
resulting in a possible inconsistency in the vol-
ume data structures. Following this error, use of
verify_vol() on the volume is recommended.

(pSOS+) t_restart

0x18 ERR_DELFS: Attempt to delete task using the
pHILE+ file system manager. A task that has
open files or is holding pHILE+ resources cannot
be deleted.

(pSOS+) t_delete

TABLE B-3 pHILE+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-34 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

B.2.2 Conversions of NFS Error Codes

All NFS errors received by pHILE+ are mapped to pHILE+ error codes. Table B-5
shows the conversions of these codes. If an NFS error not listed below is received, it
is mapped to the code E_FAIL 0x2002, “pHILE+ failure”. This should never happen,
unless a new NFS error code is defined at the server.

Codes whose second-to-last digit is not 5 can also represent errors from other file
systems.

TABLE B-5 pHILE+ Error Codes That Represent NFS Errors

pHILE+ Hex pHILE+ Description NFS Hex NFS Description

0x200B E_FNAME: Filename not
found.

0x02 No such file or directory.

0x200C E_IFN : Illegal pathname. 0x3f File name too long.

0x200E E_FORD: Directory file ex-
pected.

0x14 Not a directory.

0x2011 E_FEXIST: File already ex-
ists.

0x11 File exists.

0x2014 E_DNE: Directory not empty. 0x42 Directory not empty.

0x2015 E_RO: Illegal on system or di-
rectory file.

0x1e Read-only file system.

0x201C E_ININFULL : Index block
full.

0x1b File too large.

0x201D E_VFULL: Volume is full. 0x1c No space left on device.

0x2052 E_EREMOTE: Too many levels
of remote in path.

0x47 Too many levels of remote in
path.

0x2053 E_PERM: Task does not have
ownership.

0x01 Not owner.

0x2054 E_EIO: Hard error happened
at remote site.

0x05 I/O error.

0x2055 E_EACCESS: Task does not
have access permissions.

0x0d Permission denied.

0x2056 E_EISDIR : Illegal operation
on a directory.

0x15 Is a directory.
pSOSystem System Calls B-35

pHILE+ Error Codes Error Codes
B.2.3 Conversions of RPC Error Codes

All RPC errors received by pHILE+ are mapped to pHILE+ error codes. Table B-6
shows the conversions of these codes. If an RPC error code not listed below is re-
ceived, it is mapped to the code E_ERPC 0x207E, “All other RPC errors”.

0x2057 E_EQUOT: Quota exceeded. 0x45 Disc quota exceeded.

0x2058 E_ESTALE: Stale NFS file
handle.

0x46 Stale NFS file handle.

0x205B E_ENXIO: No such device or
address.

0x06 No such device or address.

0x205C E_ENODEV: No such device. 0x13 No such device.

TABLE B-6 pHILE+ Error Codes That Represent RPC Errors

pHILE+ Hex pHILE+ Description
RPC
Code

RPC Description

0x2070 E_EAUTH: RPC Authorization
is not available.

7 RPC_AUTHERROR: Authentication
error.

0x2071 E_ENFS: NFS error - pmap
failure.

14 RPC_PORTMAPFAILURE: The
pmapper failed in its call.

0x2072 E_ETIMEDOUT: NFS call timed
out.

5 RPC_TIMEDOUT: Call timed out.

0x2075 E_ECANTSEND: Failure in
sending call.

3 RPC_CANTSEND: Failure in send-
ing call.

0x2076 E_ECANTRECV: Failure in re-
ceiving result.

4 RPC_CANTRECV: Failure in receiv-
ing result.

0x2077 E_PROBUNAVAIL: Program
not available.

8 RPC_PROGUNAVAIL: Program not
available.

0x2078 E_EPROGVERSMISMATCH:
Program version mismatched.

9 RPC_PROGVERSMISMATCH: Pro-
gram version mismatched.

0x2079 E_ECANTDECODEARGS: De-
code arguments error.

11 RPC_CANTDECODEARGS: Decode
arguments error.

TABLE B-5 pHILE+ Error Codes That Represent NFS Errors

pHILE+ Hex pHILE+ Description NFS Hex NFS Description
B-36 pSOSystem System Calls

Error Codes pHILE+ Error Codes

B

0x207A E_EUNKNOWNHOST: Unknown
host name.

13 RPC_UNKNOWNHOST: Unknown
host name.

0x207B E_PROGNOTREGISTERED: Re-
mote program is not regis-
tered.

15 RPC_PROGNOTREGISTERED: Re-
mote program is not registered.

0x207C E_UNKNOWNPROTO: Unknown
protocol.

17 RPC_UNKNOWNPROTO: Unknown
protocol.

0x207D E_EINTR: Call interrupted. 18 RPC_INTR: Call interrupted.

0x207E E_ERPC: All other RPC errors. 1

2

6

10

12

16

RPC_CANTENCODEARGS: Can’t en-
code arguments.

RPC_CANTDECODERES: Can’t de-
code results.

RPC_VERSMISMATCH: RPC ver-
sions not compatible.

RPC_PROCUNAVAIL: Procedure
unavailable.

RPC_SYSTEMERROR: Generic
“other problem”.

RPC_FAILED

TABLE B-6 pHILE+ Error Codes That Represent RPC Errors

pHILE+ Hex pHILE+ Description
RPC
Code

RPC Description
pSOSystem System Calls B-37

pREPC+ Error Codes Error Codes
B.3 pREPC+ Error Codes

When a pREPC+ system call generates an error, an error code is loaded into an in-
ternal variable that can be read through the macro errno() . One errno variable
exists for each task. If the return value of a pREPC+ system call indicates an error,
your application should examine the errno variable to determine the cause of the
error. See the description of errno() on page 3-27 for more information.

Table B-7 lists the error codes of the pREPC+ library and component. Each listing
includes the error code’s hexadecimal number, its mnemonic, and a brief descrip-
tion. The error code mnemonics are also defined in <prepc.h> .

For practical reasons, system calls are not listed, because nearly every pREPC+ er-
ror code can be returned by all pREPC+ system calls. In addition, errors in other
pSOSystem components or device drivers can be reported by pREPC+ system calls.

TABLE B-7 pREPC+ Error Codes

Hex Mnemonic and Description

0x3001 EMOPEN: Maximum number of files are open.

0x3002 ERANGE: Converted value out of range.

0x3003 EBASE: Invalid radix base specified.

0x3005 EACCESS: File access violation.

0x3006 EMODE: Unrecognized mode specified.

0x3007 EINVAL: Operation not allowed on this type of file.

0x3008 EPHILE: Attempted a disk file operation without the pHILE+ file sys-
tem manager installed.

 0x3009 EINVTYPE: Invalid buffer type.

0x300a EINVSIZE : Invalid buffer size.

0x300b EPRRW: Previous read/write; cannot setvbuf.

0x300d ENAN: Invalid floating point number.

0x3F01 LC_FAT_CONFIG: Insufficient memory to hold pREPC+ data.

0x3F03 LC_FAT_STDIO: Cannot open standard I/O streams.

0x3F0E LC_FAT_CHKSUM: Corrupted ROM; checksum error.
B-38 pSOSystem System Calls

Error Codes pNA+ Error Codes

B

B.4 pNA+ Error Codes

When the pNA+ network manager generates an error, an error code is loaded into an
internal variable that can be read through the macro errno() . One errno variable
exists for each task. If the return value of a pNA+ system call indicates an error,
your application should examine the errno variable to determine the cause of the
error. See the description of errno() on page 3-27 for more information.

Table B-8 lists the error codes of the pNA+ network manager. Each listing includes
the error code’s hexadecimal number, its mnemonic and description, and the sys-
tem calls that can return it. The error code mnemonics are also defined in the file
<pna.h> .

TABLE B-8 pNA+ Error Codes

Hex Mnemonic and Description System Call(s)

0x5006 ENXIO: No such address. ioctl

0x5009 EBADS: The socket descriptor is invalid. accept, bind,
close, connect,
getpeername,
getsockname,
getsockopt,
ioctl, recv,
recvfrom,
recvmsg, select,
send, sendmsg
sendto,
setsockopt,
shr_socket,
shutdown

0x500D EACCESS: Permission denied. send, sendmsg,
sendto

0x5011 EEXIST: Duplicate entry exists. ioctl
pSOSystem System Calls B-39

pNA+ Error Codes Error Codes
0x5016 EINVALID : An argument is invalid. accept, add_ni,
bind,
chng_route,
close, connect,
ioctl, listen,
recv, recvfrom,
recvmsg, send,
sendmsg, sendto,
setsockopt,
shutdown, socket

0x5017 ENFILE : An internal table has run out of space. accept, add_ni,
chng_route,
shr_socket,
socket

0x5020 EPIPE: The connection is broken. send, sendmsg,
sendto

0x5023 EWOULDBLOCK: This operation would block, but
socket is non-blocking.

accept, recv,
recvfrom,
recvmsg, send,
sendmsg, sendto

0x5024 EINPROGRESS: The socket is non-blocking, and the
connection cannot be completed immediately.

connect

0x5025 EALREADY: The socket is non-blocking, and a previ-
ous connection attempt has not yet been completed.

connect

0x5027 EDESTADDRREQ: The destination address is invalid. sendmsg, sendto

0x5028 EMSGSIZE: Message too long. recvmsg, send,
sendmsg, sendto

0x5029 EPROTOTYPE: Wrong protocol type for socket. socket

0x502A ENOPROTOOPT: Protocol not available. getsockopt,
setsockopt

0x502B EPROTONOSUPPORT: Protocol not supported. socket

TABLE B-8 pNA+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-40 pSOSystem System Calls

Error Codes pNA+ Error Codes

B

0x502D EOPNOTSUPP: Requested operation not valid for this
type of socket.

accept, ioctl,
listen

0x502F EAFNOSUPPORT: Address family not supported. connect

0x5030 EADDRINUSE: Address is already in use. bind

0x5031 EADDRNOTAVAIL: Address not available. bind, connect,
sendmsg, sendto

0x5033 ENETUNREACH: Network is unreachable. chng_route,
send, sendmsg,
sendto

0x5035 ECONNABORTED: The connection has been aborted
by the peer.

accept

0x5036 ECONNRESET: The connection has been reset by the
peer.

recv, recvfrom,
recvmsg, send,
sendmsg, sendto

0x5037 ENOBUFS: An internal buffer is required but cannot
be allocated.

connect,
getpeername,
getsockname,
ioctl, send,
sendmsg, sendto,
setsockopt,
socket

0x5038 EISCONN: The socket is already connected. connect,
sendmsg, sendto

0x5039 ENOTCONN: The socket is not connected. getpeername,
recv, recvfrom,
recvmsg, send,
sendmsg, sendto,
shutdown

0x503B ETOOMANYREFS: Too many references: can't splice. setsockopt

0x503C ETIMEDOUT: Connection timed out. connect

0x503D ECONNREFUSED: The attempt to connect was re-
fused.

connect, listen

TABLE B-8 pNA+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-41

pNA+ Error Codes Error Codes
0x5041 EHOSTUNREACH: The destination host could not be
reached from this node.

send, sendto,
sendmsg

0x5046 ENIDOWN: NI_INIT returned -1. add_ni

0x5047 ENMTU: The MTU is invalid. add_ni

0x5048 ENHWL: The hardware length is invalid. add_ni

0x5049 ENNOFIND: The route specified cannot be found. chng_route

0x504A ECOLL: Collision in select call; these conditions have
already been selected by another task.

select

0x504B ETID : The task ID is invalid. ioctl, set_id,
shr_socket

0x5F01 FAT_INSUFFMEM: Insufficient memory allocated by
nc_datasize or Region 0 too small; increase
nc_datasize of Region 0 or reduce the number of
required data structures specified in the pNA+ Con-
figuration Table.

This error originates
in pNA+ initialization.

0x5F02 FAT_NRT: The number of initial routing table entries
specified exceeds nc_nroute . Increase nc_nroute .

This error originates
in pNA+ initialization.

0x5F03 FAT_NNI: The number of initial NI table entries
specified exceeds nc_nni . Increase nc_nni .

This error originates
in pNA+ initialization.

0x5F04 FAT_NIHSIZE : Invalid NI address. This error originates
in pNA+ initialization.

0x5F05 FAT_NIMTU: Invalid MTU for NI. This error originates
in pNA+ initialization.

0x5F06 FAT_PNAMEM: pNA+ memory error. This error originates
in pNA+ initialization.

0x5F07 FAT_PNATASK: PNAD task creation error. This error originates
in pNA+ initialization.

0x5F08 FAT_PNAINIT : pNA+ initialization error. This error originates
in pNA+ initialization.

TABLE B-8 pNA+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
B-42 pSOSystem System Calls

Error Codes pNA+ Error Codes

B

0x5F09 FAT_NIINIT : NI initialization error. This error originates
in pNA+ initialization.

0x5F0A FAT_RTINIT : Routing table initialization error. This error originates
in pNA+ initialization.

0x5F0B FAT_ARPINIT : ARP table initialization error. This error originates
in pNA+ initialization.

0x5F0C FAT_TIMERINIT : PNAD timer initialization error. This error originates
in pNA+ initialization.

0x5F0D FAT_EVENT: PNAD event error. This error originates
in pNA+ initialization.

0x5F0E FAT_CHKSUM: pNA+ checksum error. This error originates
in pNA+ initialization.

0x5F0F EINTERNAL: pNA+ detects an inconsistency in the
control information for network resources it man-
ages. In most cases, this error is caused by a cor-
ruption of the pNA+ data area by an errant user
task. Check pNA+ data configurations and memory
usage by tasks. For further advice, contact pSOSys-
tem technical support with information on pNA+
configuration and a dump of register contents.

This error can be de-
tected at several
points within pNA+.

0x5F10 FAT_NHT: The number of initial host table entries
specified exceeds nc_nhentry . Increase
nc_nhentry .

This error originates
in pNA+ initialization.

0x5F11 FAT_FUNC: An invalid system call code was passed
to pNA+. Check the pNA bindings file in pSOSystem.

This error originates
when a system call is
made.

TABLE B-8 pNA+ Error Codes (Continued)

Hex Mnemonic and Description System Call(s)
pSOSystem System Calls B-43

pRPC+ Error Codes Error Codes
B.5 pRPC+ Error Codes

When a pRPC+ system call generates an error, an error code is loaded into an inter-
nal variable that can be read through the macro errno() . One errno variable ex-
ists for each task. If the return value of a pRPC+ system call indicates an error, your
application should examine the errno variable to determine the cause of the error.
See the description of errno() on page 3-27 for more information.

Table B-9 lists the error codes of the pRPC+ subcomponent. Each listing includes
the error code’s hexadecimal number, its mnemonic and description, and the sys-
tem calls that can return it. The error code mnemonics are also defined in
<prpc.h> .

B.6 Driver Error Codes

The tables below list the error codes returned by pSOSystem drivers. Each driver’s
table lists all the error codes returned by that driver. Error code information in-
cludes hexadecimal numbers, mnemonics and descriptions.

Drivers return error codes through the pSOS+ Kernel-to-Driver Interface using the
out_retval element of the ioparms structure. The contents of out_retval are
copied to the variable pointed to by the service call input parameter retval . The
parameter retval is part of the Application-to-pSOS+ Interface. For example, any
driver errors resulting from a de_read() service call to a driver are returned at the
address pointed to by the retval argument using the following syntax:

err_code = de_read(dev, iopb, &retval);

See the chapter “I/O System” in pSOSystem System Concepts for more information
on the pSOS+ Kernel-to-Driver Interface and the Application-to-pSOS+ Interface.

TABLE B-9 pRPC+ Error Codes

Hex Mnemonic and Description System Call(s)

0x5101 FAT_PRPC_CHKSUM: Corrupted ROM. This error originates in pRPC+
initialization.

0x5102 FAT_PRPC_MEM: Insufficient memory to
hold pRPC+ data.

This error originates in pRPC+
initialization.

0x5104 FAT_PRPC_TASKCREATE: Cannot start
pmap.

This error originates in pRPC+
initialization.
B-44 pSOSystem System Calls

Error Codes Driver Error Codes

B

Aside from the service calls de_init() , de_open() , de_close() , de_read() ,
de_write() , and de_cntrl() , a system call can return a driver error code directly
through the return value of the system call. For example, the pHILE+ write_f()
system call can return the SCSI driver error code SCSI_W_PROTECTED
(0x1050001A) if a write is attempted on a write-protected drive.

B.6.1 Shared Memory Network Interface Driver Error Codes

The error codes listed in Table B-10 are returned by the Shared Memory Network
Interface (NI_SMEM) driver.

B.6.2 Shared Memory Kernel Interface Driver Error Codes

The error codes listed in Table B-11 are returned by the Shared Memory Kernel In-
terface (KI_SMEM) driver.

TABLE B-10 Shared Memory Network Interface Driver Error Codes

Hex Mnemonic and Description

0x10000001 NISMEM_FAT_IPA: Invalid IP address.

TABLE B-11 Shared Memory Kernel Interface Driver Error Codes

Hex Mnemonic and Description

0x10000101 KISMEM_FAT_NOPB: No packet buffers.

0x10000102 KISMEM_FAT_NOQ: No queue.

0x10000103 KISMEM_FAT_NOTSUPP: Service not supported.

0x10000104 KISMEM_FAT_BINSTALL: Can’t install bus error handler.

0x10000105 KISMEM_FAT_NOD: Number of nodes greater than maximum.
pSOSystem System Calls B-45

Driver Error Codes Error Codes
B.6.3 Terminal Interface Driver Error Codes

The error codes listed in Table B-12 are returned by the terminal interface driver.

TABLE B-12 Terminal Interface Driver Error Codes

Hex Mnemonic and Description

0x10010200 TERM_HDWR: Hardware error.

0x10010201 TERM_MINOR: Invalid minor device.

0x10010203 TERM_BAUD: Invalid baud rate.

0x10010204 TERM_NINIT: Driver not initialized.

0x10010205 TERM_DATA: Cannot allocate data area.

0x10010206 TERM_SEM: Semaphore error.

0x10010210 TERM_AINIT: Console already initialized.

0x10010211 TERM_CHARSIZE: Bad character size.

0x10010212 TERM_BADFLAG: Flag not defined.

0x10010213 TERM_NHWFC: Hardware flow not supported.

0x10010214 TERM_BRKINT: Terminated by a break character.

0x10010215 TERM_DCDINT: Terminated by a loss of DCD.

0x10010216 TERM_NBUFF: No buffers to copy characters (allocb failed).

0x10010217 TERM_NOPEN: Minor device not opened.

0x10010218 TERM_AOPEN: Channel already opened.

0x10010219 TERM_ADOPEN: Channel already opened by another driver.

0x10010220 TERM_CFGHSUP: Hardware does not support channel as con-
figured.

0x10010221 TERM_OUTSYNC: Out of sync with DISI.

0x10010222 TERM_BADMIN: MinChar is greater than RBuffSize .

0x10010223 TERM_LDERR: Lower driver error may be corrupted structure.

0x10010224 TERM_QUE: Queue error.

0x10010225 TERM_RXERR: Data receive error.
B-46 pSOSystem System Calls

Error Codes Driver Error Codes

B

B.6.4 Tick Timer Driver Error Codes

The error codes listed in Table B-13 are returned by the tick timer driver.

0x10010226 TERM_TIMEOUT: Timer expired for read or write.

0x10010227 TERM_CANON: CANON and MinChar and/or MaxTime set (can
only have CANON or have MinChar and/or MaxTime).

0x10010228 TERM_ROPER: Redirect operation error.

0x10010229 TERM_MARK: Received a SIOCMARK.

0x10010230 TERM_FRAMING: Framing error.

0x10010231 TERM_PARITY: Parity error.

0x10010232 TERM_OVERRUN: Overrun error.

0x10010233 TERM_NMBLK: No buffer headers (esballoc failed).

0x10010234 TERM_TXQFULL: Transmit queue is full (is returned only if
WNWAIT is set).

0x10010235 TERM_NWNCONF: MaxWTime and WNWAIT both set.

0x10010236 TERM_BADCONSL: Bad default console number.

0x10010237 TERM_WABORT: Write was aborted.

TABLE B-13 Tick Timer Driver Error Codes

Hex Mnemonic and Description

0x10020001 TIMR_TICKRATE: Unsupported rate for kc_ticks2sec .

TABLE B-12 Terminal Interface Driver Error Codes (Continued)

Hex Mnemonic and Description
pSOSystem System Calls B-47

Driver Error Codes Error Codes
B.6.5 RAM Disk Driver Error Codes

The error codes listed in Table B-14 are returned by the RAM disk driver.

B.6.6 TFTP Driver Error Codes

The error codes listed in Table B-15 are returned by the TFTP driver.

TABLE B-14 RAM Disk Driver Error Codes

Hex Mnemonic and Description

0x10040001 RDSK_BLOCK: Block number too large.

0x10040002 RDSK_SEM: Semaphore error.

0x10040003 RDSK_MEM: Memory error.

TABLE B-15 TFTP Driver Error Codes

Hex Mnemonic and Description

0x10060001 TFTP_PROTO: Protocol error detected, such as receipt of a
non-DATA packet or lack of an expected message acknowledg-
ment.

0x10060002 TFTP_TMOUT: TFTP server timed out while waiting for a re-
sponse from the TFTP client.

0x10060003 TFTP_SYNC: TFTP server out of sync with TFTP client.

0x10060004 TFTP_NOSPC: No more free socket IDs.

0x10060005 TFTP_INVAL: Channel number (minor number) exceeds the
maximum number of channels the driver can open.

0x10060006 TFTP_NOINIT : Call failed because the TFTP driver has not
been initialized and must be initialized before the call can be
made.
B-48 pSOSystem System Calls

Error Codes Driver Error Codes

B

B.6.7 IDE Driver Error Codes

The error codes listed in Table B-16 are returned by the IDE driver.

B.6.8 FLP Driver Error Codes

The error codes listed in Table B-17 are returned by the FLP driver.

TABLE B-16 IDE Driver Error Codes

Hex Mnemonic and Description

0x10090001 IDE_HDWR: Hardware error.

0x10090002 IDE_MINOR: Invalid minor device.

0x10090003 IDE_CTRL: Invalid function code for IDE_Ctrl() .

0x10090004 IDE_NINIT : Device not initialized.

0x10090005 IDE_DATA: Unable to allocate driver data area.

0x10090006 IDE_SEM: Semaphore error.

0x10090007 IDE_BBLK: Bad block.

0x10090008 IDE_UCOR: Uncorrectable error.

0x10090009 IDE_SNF: Sector not found.

0x1009000a IDE_TONF: Track 0 not found.

0x1009000b IDE_NDAM: Data address mark not found.

0x1009000c IDE_RANGE: Block range error.

0x1009F000 IDE_DRV: Drive-related error in the last byte.

TABLE B-17 FLP Driver Error Codes

Hex Mnemonic and Description

0x100A0001 FLP_MINOR: Invalid minor device.

0x100A0002 FLP_NINIT : Device not initialized.

0x100A0003 FLP_SEM: Semaphore error.

0x100A0004 FLP_QUEUE: Cannot create a message queue.
pSOSystem System Calls B-49

Driver Error Codes Error Codes
B.6.9 SCSI Driver Error Codes

The error codes listed in Table B-18 are returned by the SCSI driver.

0x100A0005 FLP_TASK: Cannot create the motor control task.

0x100A0006 FLP_RD: Floppy drive read failure.

0x100A0007 FLP_WR: Floppy drive write failure.

0x100A0008 FLP_DATA: Unable to allocate driver data area.

0x100AF000 FLP_DRV: Drive-related error in the last byte.

TABLE B-18 SCSI Error Codes

Hex Mnemonic and Description

0x10500003 SCSI_FSC: Failed to send SCSI command.

0x10500009 SCSI_CHP: Failed to init SCSI chip.

0x1050000B SCSI_UKC: Unknown de_ctnrl() function.

0x1050000C SCSI_ID_ERR: Bad SCSI ID de_ctnrl() .

0x1050000D SCSI_NULL_CDB: NULL SCSI Control block.

0x1050000E SCSI_PTR_CONFLICT: Both in and out data length given.

0x1050000F SCSI_DATA_PTR_NULL: NULL data pointer.

0x10500010 SCSI_NOT_INIT : SCSI Driver not initialized.

0x10500011 SCSI_ILLRECON: Bad reconnection (no disconnect).

0x10500012 ESDNOTTDIR: Incorrect device type for operation.

0x10500013 ESDNODEVICE: No such device on SCSI bus.

0x10500014 ESBLOCKOUTOFRANGE: Block given is beyond end of disk.

0x10500015 ESODDBLOCK: Block size is less than physical.

0x10500016 ESNO_CAPACITY: Capacity shows 0 (floppy not in drive).

0x10500017 SCSI_FORMAT_FAILED: Format command failed.

TABLE B-17 FLP Driver Error Codes (Continued)

Hex Mnemonic and Description
B-50 pSOSystem System Calls

Error Codes Driver Error Codes

B

0x10500018 SCSI_PART_NUM_BAD: Bad partition number.

0x10500019 SCSI_NOT_PARTITION: Device not partitioned.

0x1050001A SCSI_W_PROTECTED: Device is write-protected.

0x1050001B SCSI_NO_MEM: Need memory to complete command not avail-
able.

0x1050001C SCSI_NOT_OPEN: SCSI device not open.

0x1050001D ESDALLREADYOPEN: SCSI device is already open.

0x1050001E SCSI_END_OF_FILE: End of tape file encountered.

0x10510000 SCSI_ERR: General SCSI error code SCSI_ERR will be OR-ed
with actual SCSI error code.

0x10510001 STAT_CHECKCOND: Target wants to give some info.

0x10510002 STAT_ERR: SCSI error that may be retried.

0x10510003 STAT_TIMEOUT: Target selection timed out.

0x10510004 STAT_BUSY: Target busy try again.

0x10510005 STAT_SEMFAIL: Semaphore call failed.

0x10510006 STAT_NOMEM: No memory available for request.

0x10510007 STAT_RETRYEXC: Failed after allotted retries.

0x10510008 STAT_RESET: SCSI bus reset (should retry).

0x10510009 STAT_BADSIZE: Drive shows no blocks.

0x1051000A STAT_NOMEDIA: Removable disk not in drive.

0x1051000B STAT_BLANK: End of recorded data.

0x1051000C STAT_BAD_CMD: Target reports “Illegal Request.”

0x1051000D STAT_NO_SENSE: Request sense returned no sense.

TABLE B-18 SCSI Error Codes (Continued)

Hex Mnemonic and Description
pSOSystem System Calls B-51

Driver Error Codes Error Codes
B-52 pSOSystem System Calls

	pSOSystem System Calls
	Contents
	Using This Manual
	pSOS+ System Calls
	as_catch
	as_return
	as_send
	de_close
	de_cntrl
	de_init
	de_open
	de_read
	de_write
	errno_addr
	ev_asend
	ev_receive
	ev_send
	i_enter
	i_return
	k_fatal
	k_terminate
	m_ext2int
	m_int2ext
	pt_create
	pt_delete
	pt_getbuf
	pt_ident
	pt_retbuf
	pt_sgetbuf
	q_asend
	q_aurgent
	q_avsend
	q_avurgent
	q_broadcast
	q_create
	q_delete
	q_ident
	q_receive
	q_send
	q_urgent
	q_vbroadcast
	q_vcreate
	q_vdelete
	q_vident
	q_vreceive
	q_vsend
	q_vurgent
	r�n_create
	r�n_delete
	r�n_getseg
	r�n_ident
	r�n_retseg
	sm_av
	sm_create
	sm_delete
	sm_ident
	sm_p
	sm_v
	t_create
	t_delete
	t_getreg
	t_ident
	t_mode
	t_restart
	t_resume
	t_setpri
	t_setreg
	t_start
	t_suspend
	tm_cancel
	tm_evafter
	tm_evevery
	tm_evwhen
	tm_get
	tm_set
	tm_tick
	tm_wkafter
	tm_wkwhen

	pHILE+ System Calls
	access_f
	annex_f
	cdmount_vol
	change_dir
	chmod_f
	chown_f
	close_dir
	close_f
	create_f
	fchmod_f
	fchown_f
	fstat_f
	fstat_vfs
	ftruncate_f
	get_fn
	init_vol
	link_f
	lock_f
	lseek_f
	lstat_f
	make_dir
	mount_vol
	move_f
	nfsmount_vol
	open_dir
	open_f
	open_fn
	pcinit_vol
	pcmount_vol
	read_dir
	read_f
	read_link
	read_vol
	remove_f
	stat_f
	stat_vfs
	symlink_f
	sync_vol
	truncate_f
	unmount_vol
	utime_f
	verify_vol
	faultp()

	write_f
	write_vol

	pREPC+ System Calls
	abort
	abs
	asctime
	asctime_r
	assert
	atof
	atoi
	atol
	bsearch
	calloc
	clearerr
	ctime
	ctime_r
	difftime
	div
	errno
	exit
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	freopen
	fscanf
	fseek
	fsetpos
	ftell
	fwrite
	getc
	getchar
	gets
	gmtime
	gmtime_r
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldiv
	localeconv
	localtime
	localtime_r
	malloc
	mblen
	mbstowcs
	mbtowc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	perror
	printf
	putc
	putchar
	puts
	qsort
	rand
	realloc
	remove
	rename
	rewind
	scanf
	setbuf
	setlocale
	setvbuf
	sprintf
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	time
	tmpfile
	tmpnam
	tolower
	toupper
	ungetc
	vfprintf
	vprintf
	vsprintf
	wcstombs
	wctomb

	pNA+ System Calls
	accept
	add_ni
	bind
	close
	connect
	get_id
	getpeername
	getsockname
	getsockopt
	ioctl
	listen
	pna_allocb
	pna_esballoc
	pna_freeb
	pna_freemsg
	recv
	recvfrom
	recvmsg
	select
	send
	sendmsg
	sendto
	set_id
	setsockopt
	shr_socket
	shutdown
	socket

	pRPC+ System Calls
	get_fdset
	rpc_getcreateerr

	pROBE+ and ESp System Calls
	db_input
	db_output
	log_event

	Tables of System Calls
	A.1 Table of All pSOSystem Calls
	A.2 pSOS+ System Calls
	A.3 pHILE+ System Calls
	A.4 pREPC+ System Calls
	A.5 pNA+ System Calls
	A.6 pRPC+ System Calls
	A.7 pROBE+ and ESp System Calls

	Error Codes
	B.1 pSOS+ Error Codes
	B.2 pHILE+ Error Codes
	B.2.1 pSOS+ Errors Related to pHILE+
	B.2.2 Conversions of NFS Error Codes
	B.2.3 Conversions of RPC Error Codes

	B.3 pREPC+ Error Codes
	B.4 pNA+ Error Codes
	B.5 pRPC+ Error Codes
	B.6 Driver Error Codes
	B.6.1 Shared Memory Network Interface Driver Error...
	B.6.2 Shared Memory Kernel Interface Driver Error ...
	B.6.3 Terminal Interface Driver Error Codes
	B.6.4 Tick Timer Driver Error Codes
	B.6.5 RAM Disk Driver Error Codes
	B.6.6 TFTP Driver Error Codes
	B.6.7 IDE Driver Error Codes
	B.6.8 FLP Driver Error Codes
	B.6.9 SCSI Driver Error Codes

