
* Fermi National Accelerator Laboratory 

FERMILAB-Conf-89/131 

A Real Time Integrated Environment for 
Motorola 680xX-Based VME and FASTBUS Modules * 

David Berg, Peter Heinicke, Bryan MacKinnon, Tom Nicinski, and Gene Oleynik 
Fermi National Accelerator Laboratory 

P.O. Box 500, Batavia, Illinois 60510 U.S.A. 

May 1989 

* Presented at t’Rea1 Time Computer Applications in Nuclear, Particle, and Plasma Physics,” Williamsburg, Virginia, May 
16-19, 1989. 

z@J waled by Universilies Research Assoclalion, Inc., under contract wlth the United States Department of Energy 



A Real Time Integrated Environment for 
Motorola 680xx-based VME and FASTBUS Modules 

David Berg, Peter Heinicke, Bryan MacKinnon, 
Tom Nicinski, Gene Oleynik 

Online and Data Acquisition Software Groups 
Fermi National Accelerator Laboratory 

Batavia, IL 605 10 

Abstract 

The. Software Components Group pSOS (1) operating 
system kernel and pROBE (1) debugger have been extended to 
support the Fermilab PAN-DA system for a variety of 
Motorola 680Xx-based VME and FASTBUS modules. These 
extensions include: a multi-tasking, reentrant implementation 
of Micmtec (2) C/Pascal: a serial port driver for terminal I/O 
and data transfer; a message reporting facility: and enhanced 
debugging tools. 

I. INTRODUCTION 

Experiments at Fermilab require the development and 
maintenance of very flexible real time applications, including 
data acquisition systems. The entire suite of hardware and 
software, from the low-level data read-out systems to the top- 
level VAXs that provide the user interface. system control, 
and data monitoring, is the PAN-DA system 11.21. Within 
PAN-DA, a variety of Motorola 680x-based processor 
modules may be used at one or more levels and in VME or 
FASTBUS. Some of these applications are intended for a 
specific hardware environment, but most are designed to run 
in tncwe than one. 

In general, the design philosophy has been to code each 
component of the system at the highest appropriate level. 
This provides both flexibility and portability, while making 
efficient use of limited software resources. Consistent with 
this philosophy, we wanted a single software environment for 
all the microprocessor components of PAN-DA. We could 
not fmd a commercial product that, by itself, satisfied all OUT 
reqirements. We therefore purchased two products and 

(‘)sponsc%d by DOE Contract No.DE-ACO2-76CH03000 

(1) pSOS and pROBE nre trademarks of Software Components 
Group. Inc. 

(2) h4icmec is a registered trademark of Microtec Research Inc, 

integrated them into a softwaz environment that we call the 
SYSMIK product (31. (SYS68K is not restricted, however, to 
use within the PAN-DA system.) 

II. COMPONENTS OF SYS68K 

‘Ihe Figure illustrates a general application and the logical 
relationships~among its components. The scope of this paper 
includes the Systems Level as shown in the figure, plus the 



2 

Message Reporter System; the Remote Procedure Calls 
support package is the subject of a companion paper [41. 

The heart of the system is pSOS, a multi-tasking 
operating system kernel from Software Components Group 
(SCG). This provides the primitives for task end memory 
management, intenask communication and synchronization, 
and an I/O driver interface. It is essentially hardware 
independent (though currently limited to 680xx-based 
processors). To this we have added specific device drivers, 
support for higher level languages. debugging facilities, and 
system utilities. There is no command line interface (other 
than the pROBE debugger); the user interface to the 
application will reside on an external Host system (e.g., a 
VAX). There. is no file system; all software is either resident 
in ROM or downloaded from a host system. 

With pSOS we purchased from SCG a resident debugger, 
pROBE. that works in conjunction with pSOS. Through it, a 
programmer may access any processor memory location or 
register, obtain information about processes, exchanges, and 
other system structures, disassemble code and execute 
instruction steps, etc. Its primary utility lies in its intimate 
knowledge of pSOS internal data structures, and in turn, the 
debugging hooks from the kernel into pROBE. 

Boa code that initializes the module hardware and starts 
up pROBE, together with pSOS and pROBE themselves, is 
packaged into a ROM file in SYS68K. There is one such file 
for each supported module; it is used to bum EPROMs that 
are installed on the boards. Application code is downloaded 
from a Host system as required. using PROBE. 

The backbone of the system is a suite of CIOSS- 
development @ols from Microtec Research (MRI). including 
compilers, assembler, linker, librarian, and run-time libraries 
(RTL) for higher level languages. 

AI1 code managemer& compiling, and linking is done on 
our VAX cluster. Our applications are written mostly in C, 
some in Pascal, and little or none in assembler language. 
Even device drivers and intermpt service procedures are written 
mostly in higher level languages. Thus all levels of software 
depend upon the RTL. We have merged support for C and 
Pascal into a single RTL that is consistent with multi- 
tasking under pSOS. 

Two device drivers have currently been implemented in 
SYS68K: a serial pat driver, described in this paper, and a 
driver for the CMC ENP-10 Ethernet controller, described in a 
companion paper 151. 

III. RTL REENTRANCY AND PROCESS CONTEXT 

An application, consisting of one or more programs, is 
linked as a whole against the objects and libraries that 
comprise the environment. In particular, the Run Time 
Library, utility routines, interfaces to pSOS system services, 

device drivers, and other system code are shared among all 
processes. Concurrent processes may even be multiple 
invocations of the same program code. In a multi-tasking 
system, this multi-threaded code must be made reentrant. 

There are two reasons why portions of the RTL. as 
provided by MRI, were non-reentranr 

o ‘Ihe routine references global (or static) variables which 
are used for returning statuses or maintaining context 
between calls to the routine. For example, many 
mathematical routines, such as ACOS, use ERRNO 
to rmnn their statnsfs. 

o The routine uses heap or calls a routine which uses 
heap. The main culprits are the C routines MALLOC 
(and its cousins) and FREE. 

There is a close connection between reentmncy end process 
context. pSOS provides three callout routines to supplement 
its actions when it 

0 activates a process, 
o switches between process contexts, or 
o deletes a process. 

We used these callouts to make references to global 
variables and use of the Floating Point Coprocessor reentrant. 
at least with respect to context switches. This required only 
minor changes to a few of the RTL source modules. 

Non-reentrant use of heap storage was eliminated by 
implementing heap management using pSOS memory 
management primitives. This has the additional advantage 
that all dynamic memory use. whether system or process, is 
merged into a single region: this is more efficient use of 
limited memory resources. (For some processor modules, a 
single logical region may be composed of two physically 
disjoint regions.) 

The reentmncy provided is between processes; some 
restrictions apply to ISPs (interrupt service procedures). 
Furthermore, since the microprocessor component of the 
PAN-DA system is intended to be non-interactive, the file I/O 
routines in the RTL were not modified to make them 
reenmnt. 

A. Process Extended Context 

There is an extendable system data structure, the Process 
Control Block (PCB). that is maintained by pSOS for each 
process. Our PCB extension (FCBE) is the data snucture by 
which additional process context information is maintained. 
This includes storage space for RTL and Floating Point 
contexts, stack information used for debugging, control and 
status flags, and fields accessible u) support packages and ttser 
programs.’ Componenls of the SYS68K System use these 
fields to maintain their own per-process contexts. For 
example, RPX (a remote procedure call package) uses a PCBE 



field as a pointer to its own context block. The PCBE address 
is made easily available to programs through a global variable 
Ihat is loaded when a process is switched in. 

B. Process Activation 

When a process is activated (created) by pSOS, the callout 
routine performs three duties: 

o Allocate space for the PCBE (Process Control Block 
Extension). 

o Initialize PCBE entries for stack watching and 
optionally fill the per-process stacks with a high-water 
mark pattern. This facilitates the monitoring of stack 
usage. 

o Establish the initial process context. A prologue 
routine runs in each process the first time it is 
switched in. 

C. Process Context Switch 

pSOS schedules processes based on priority, with 
preemption. When a process becomes blocked (waits for a 
resource), pSOS will switch it out and switch in the highest 
priority process that is ready to run. Likewise, when a higher 
priority process becomes ready (a resource is now available), 
pSOS preempts the current process and switches the context. 
Our process context switching callout then performs the 
following duties: 

o Saves the out-switched urocess’ RTL context. This 
involves copying five &iables that are declared as 
global by the MRI compilers. The Floating-Point 
Coprocessor’s (MC6888x) context can also be 
optionally saved. 

0 Checks the out-switched process’ stacks for any 
violations. This involves checking whether the stack 
pointers are within the bounds of their respective 
stacks, and whether a stack ceiling pattern still exists. 

o Restores the in-switched process’ RTL context. The 
Floating-Point Coprocessor’s (MC6888x) context can 
also be optionally restored. 

Since Floating-Point context saving/restoration is quite 
time consuming. it is optional on a per-process basis. For 
processes that have not enabled Floating-Point context 
saving/restoration. the switching callout routine can be made 
to check whether the Floating-Point Coprocessor was used 
since the last time that process was switched in. 

D. Process Deletion 

When a process is deleted (terminated) by pSOS, the 
callout routine simply deallocates the PCBE. If this is the 
last active process, however, the pROBE debugger will be 
entered before the process terminates (otherwise, the system 

3 

would idle indefinitely). A process may cause itself to be 
deleted simply by returning from its top level routine. 

IV. THE SERIAL PORT DRIVER 

The Serial Port Driver (SPDRV) is the resident terminal 
driver for the SYS68K product. It was designed to provide an 
adequate set of functions for use in normal terminal dialog 
with the user and as a communication medium over an 
RS232 line. Its features include: 

o Fully intemtpt driven: Minimizes the impact on system 
ptTfOf”X3”Ce. 

o Device independence: SPDRV provides a standard set of 
functions via a standard interface so that applications 
coded for one type of serial hardware need not be 
modified to run on another. 

o Multitasking: Arbitration for multiple processes 
accessing a given port is automatically handled. 

o Multiport access: Designed to support any number of 
pat.5 on a single system. 

o User control: The user has control over how a particular 
port operates including echoing of input. line 
terminators, input line editing, flow control, 
intenxpting execution of the processor via a BREAK, 
and support for higher level language requirements. 

o Optimized path I/O: A higher speed, reduced 
functionality data path is provided through the driver 
for applications that require it. This enables an RS232 
line to be used as a data transfer medium while 
minimizing the impact on system performance. 

A. Integration 

SPDRV is well integrated into SYS68K and the MRI 
higher level language environment. Therefore. applications 
written in higher level languages such as MRI C and Pascal 
will have full access to SPDRV via standard language I/O 
(scanf, printf, writeln, readln). When using the SYS68K 
product, SPDRV is automatically incorporated into the 
application. However. if necessary, programs may bypass 
standard I/O and call the driver directly. 

B. Callable Procedures 

The driver procedures which may be called directly from a 
program arc: 

o spd-read: Reads a buffer of bytes. 
o spd-write: Writes a buffer of bytes. 
o spd-allot, spd~deallcc: Allocates, deallocates a port. 
o spd-set-mode, spd-enb-mode. spd-di-mode: Changes 

the mode mask (characteristics) of a pofi 
o spd-get-mode: Returns the current mode settings. 



o @-get-info: Returns information about a specified 
port. 

The standard language I/O functions are implemented using 
the spd-read and spd-write routines. 

C. Driver Structure 

SPDRV is organized into two code levels: device 
independent and device dependent. The device independent 
code, written in C, handles the vast majority of the driver’s 
work. The device dependent code, written in assembler, 
handles the interface between the device independent level and 
the hardware. The interface between the two levels is well 
defined; therefore, adding support for another type of serial 
hardware requires only writing the device dependent routines 
(seven in all). 

Functionally, SPDRV is partitioned into interrupt 
processing and non-intermpt processing. Output handling is 
done completely via interrupt processing. When the driver 
receives a buffer of bytes for output, the fust byte is written 
to the output port; when the driver is informed via an 
intermpt that output is complete, it immediately writes the 
next byte ant. This continues until all bytes have been 
written. 

Since input processing is signiIicantly more complex. it 
is not practical to provide all input functions during intermpt 
processing without seriously compromising system 
performance. Instead, the more complex functions such as 
echo and line editing are deferred to a pSOS process associated 
with the driver. Input operations that use the previously 
mentioned optimized path I/O are serviced entirely via 
intermpt processing. 

V. MESSAGE REPORTER SYSTEM 

The SYS68K Message Reporter System is a subroutine 
package that provides programs with a means for displaying 
informational and error messages on a local console or at a 
remote system. The message routines operate 
asynchronously: thus, important system components 
generating messages will not be delayed while waiting for a 
message to be displayed. Messages can be generated by 
processes, ISPs (interrupt service procedures), system 
initialization, etc. 

The Message Reporter System is an example of a packnge 
that builds upon the pSOS/Microtec environment extensions. 
It is written in C, uses pSOS system services, the Serial Port 
driver, the RPX system (which in turn uses the ENPIO 
driver), etc. 

VI. ENHANCED DEBUGGING TOOLS 

Good debugging tools are required not only during 
program development, but also after the product has been 

4 

released and is in use at experiments. SYS68K provides a 
number of tools, starting with the stack watching and 
Floating Point Coprocessor usage checking implemented as 
part of the process context switch callout described above. 
The Message Repotter System only logs messages; it is not a 
debugging tool. The facilities provided by pROBE, though 
extensive, have proved to be insufficient and cumbersome for 
onr purposes. Therefore, we have enhanced the debugging 
environment in three areas: 

o pROBE extensions 
o Run-Time tracing 
0 Postmortem analysis 

A. pROBE Extensions 

An application can easily incorporate additional pROBE 
commands, which are most useful during the code 
development stage. pROBE provides a mechanism to call a 
user-supplied routine whenever it cannot recognize a 
command; SYS68K supplies this routine. together with a 
mechanism for generating a table of such commands. The 
routine looks for the unrecognized command in the tnble. If 
the command is not located. control is returned to pROBE 
with an error. Otherwise, the command handling routine 
associated with the command in the table is called. 

SYS68K’s unrecognized pROBE command routine passes 
the remainder of the command line to tbe command handling 
routine after establishing a suitable context. The command 
handling routine can be written in a higher level language 
such as C. Terminal I/O routines that can be used at elevated 
IPL (interrupt priority level), including a version of C’s 
PRINTF, are provided. In addition, routines are provided with 
SYS68K to permit the parsing of tokens within the line. 
These tokens match the pROBE syntax. For example, an 
expression consisting of numbers and process registers, etc., 
can be evaluated, or a prccess identifier can be obtained. 

One extended pROBE command provided with SYS68K 
dumps the contents of a process control block, including our 
extensions, in a formatted fashion. Pert of this dump routine 
determines how much of a process’ user and supervisor mode 
stacks has been used and whether any stack overflows 
occurred; this information is not readily available using the 
standard pROBE commands. A HELP command is also 
supplied to produce a list of all available extended commands, 
with a brief description of each. 

B. Run-Time Tracing 

When control is transfemed to pROBE through a serial 
pat BREAK or some processor exception, the programmer 
may enter commands to examine the system. Alternatively, 

.the tracing facility allows the saving ofaprogram’s execution 
history at run-time without any interaction from the 
programmer. The program calls trace routines that place trace 
entries in a circular buffer. This buffer can, independent of the 



5 

program, be periodically dumped to determine which sections 
of the program had executed. 

The programmer decides the depth of tracing by the 
number of trace calls coded into the program. Trace entries 
also have activation levels associated with them. For 
example, the ENPlO driver permits multiple levels of tracing 
to be done, from scant trace entries for major operations to 
verbose details, all by changing only one value. 

C. Postmortem Analysis 

Once the initial stages of development and debugging are 
done, trace entries might not provide information about the 
overall system state sufficient for the detection of subtle 
bugs. pROBE can be quite cumbersome to use effectively, 
even with extended commands. Furthermore. it is most 
undesirable that a production system be unavailable while a 
failure is diagnosed. Instead, a postmortem analysis can be 
done using MRI’s XRAY68K (3) Symbolic Debugger on a 
Host system; after a postmortem dump is made, the 
production system may be brought back into operation 
immediately. 

An extended pROBE command is provided in SCG68K to 
permit the saving of one processor’s complete context, 
including pSOS and pROBE, in another processor’s memory. 
This information is then uploaded to a Host machine where 
XRAY68K is available. XRAY68K executes high-level 
source or assembly language programs. It also enables the 
programmer to control program execution. Since pSOS and 
pROBE were uploaded, pROBE commands and extensions can 
be used under XRAY68K to look at system data structures. 
processes, etc. XRAY68K’s major limitation is that it cannot 
easily recreate the I/O devices’ hardware environment. 

VII. IMFRESSIONS OF VENDOR SLJPPLIED 
SOFTWARE 

SYS68K utilizes products from two different vendors: 
Software Components Group, Inc. and Microtec Research, 
1°C. 

A. Software Components Group, Inc. 

We have found the products from Software Components 
Group, Inc., the pSOS operating system kernel and the 
pROBE debugger. to be of high quality. The documentation 
is well-written, complete in most areas, and accurate. When 
technical questions arose, we were able to contact Software 
Components directly via telephone and speak immediately 
with a technical person who gave quick. accurate answers. 
They have also been very responsive to bug reports 
(practically none) or suggestions that we might have. 

(3) XRAY68K is a trademark of Microtec Research, Inc. 

B. Microtec Research, Inc. 

The products from Microtec Research, Inc. have proved 
adequate. We use their C and Pascal compilers, assembler, 
linker, librarian, and XRAY68K debugger. Though we have 
been using their products for more than a year, we continue to 
encounter problems that take a significant amount of our 
resotnces to deal with. 

VIII. SUMMARY 

The SYS68K product provides a solid foundation upon 
which we can build a variety of applications for 680xx.based 
processor modules. These include, but are not limited to, data 
acquisition system components for PAN-DA. The integrated 
environment spans software development, debugging, and 
production running. and represents about two person-years of 
work. We currently support three modules: the Motorola 
MVME133(A), the CERN GPM-68000 (from CES), and the 
CERN GPM-68020 (from Struck). In the near future, we 
expect to support the Fermilab FSCC (FASTBUS Smart 
Crate Controller): we believe we can easily port the 
environment to additional modules, perhaps for other bus 
architectures (e.g., NuBus, Futurebus). 

Ix. REFERENCES 

[I] See accompanying Paper: Dan Pewwick. et al. ‘The PAN-DA 
Data Acquisition System” 

121 See accompanying paper: Ruth Pordes. et al, “Software for 
FASTBUS and Motorola 68K Based Readom Controllers far 
Data Acquisition” 

[31 David Berg. et al. “SYS68K Compound Product for 
pSOSl68K development”. Fennilab Computing Department 
Note PN-387. 

[4] See accompanying paper: Don Petravick. et al. “Remote 
Procedure Execution Software for Distributed Systems” 

[5] See accompanying Paper: Gene Oleynik. et al. “Uniform 
Communications Software Using TCP/Iv 


