
MICROSOFT UTILITY
SOFTWARE MANUAL

Order Number: 121797-001

; .

II
I

I I

U
D ®

L....-------------"'"I ~[FiJ

Copyright © 1979 MICROSOFT Inc.
Reprinted by permission

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager
CREDIT intel MCS
i Intelevision Megachassis
ICE Intellec Micromainframe
iCS iRMX Micromap
im iSBC Multibus
Insite iSBX Multimodule

CP 1M is a registered trademark of Digital Research Inc.

Z-80 is a registered trademark of Zilog, Inc.

Plug-A-Bubble
PROMPT
RMX!80
System 2000
UPI

IA492/11811 2K DDl

MICROSOFT UTILITY
SOFTWARE MANUAL

Order Number: 121797-001

Copyright © 1981 Intel Corporation
J Intel Corporation, 3065 Bowers Avtlnue, Santa Clara, California 95051 L

Copyright © 1979 MICROSOFT Inc.
Reprinted by permission

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel Library Manager
CREDIT intel MCS
i Intelevision Megachassis
ICE Intellec Micromainframe
iCS iRMX Micromap
im iSBC Multibus
[nsite iSBX Multimodule

CP 1M is a registered trademark of Digital Research Inc.

Z-SO is a registered trademark of Zilog, Inc.

Plug-A-Bubble
PROMPT
RMX/80
System 2000
UPI

iA492/11811 2K oD1

Microsoft

CONTENTS

CHAPTER 1 Introduction

CHAPTER 2 MACRO-80 Assembler

2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4 .. 2
2.4.3
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.S
2.6.9
2.6.10
2.6.11
2.5.12
2.6.13
2.6.14
2.6.15
2.6.16
2.6.17
2.6.1S
2.6.19
2.6.20
2.6.21
2.6.22
2.6.23
2.6.24
2.6.25
2.6.26

Running MACRO-SO
Command Format

Devices
Switches

Format of MACRO-SO Source Files
Statements
Symbols
Numeric Constants
Strings

Expression Evaluation
Arithmetic and Logical Operators
Modes
Externals

Opcodes as Operands
Pseudo Operations

ASEG
COMMON
CSEG
DB - Define Byte
DC - Define Character
DS - Define Space
DSEG
DW - Define Word
END
ENTRY/PUBLIC
EQU
EXT/EXTRN
INCLUDE
NAME
ORG - Define Origin
PAGE
SET
SUB TTL
TITLE
• COMMENT
.PRINTX
• RADIX
.ZSO
.8080
• REQUEST
Conditional Pseudo Operations

2.6.26 .. 1 ELSE
2.6.26.2 ENDIF
2.6.27 Listing Control Pseudo Operations

2.6.28 Relocation Pseudo Operations
2.6.28.1 ORG Pseudo-op
2.6.28.2 LINK-80
2.6.29 Relocation Before Loading
2.7 Macros and Block Pseudo Operations
2.7.1 Terms
2.7.2 REPT-ENDM
2.7.3 I RP-ENDM
2.7.4 I RPC-ENDM
2.7.5 MACRO
2.7.6 ENDM
2.7.7 EXITM
2.7.8 LOCAL
2.7.9 Special Macro Operators and Forms
2.8 Using Z80 Pseudo-ops
2.9 Sample Assembly
2.10 MACRO-80 Errors
2.11 Compatability with Other Assemblers
2.12 Format of Listings
2.12.1 Symbol Table Listing

CHAPTER 3 CREF-80 Cross Reference Facility

CHAPTER 4 LINK-80 Linking Loader

"it • .J..

4.2
4.2.1
4.2.2
4.3
4.4
4.5

J:\.UJU1.LUY .LI.LL'U\-O v

Command Format
LINK-80 Switches
Sample Link

Format of LINK Compatible
LINK-80 Error Messages
Program Break Information

CHAPTER 5 LIB-80 Library Manager

LIB-80 Commands
Modules

LIB-80 Switches
LIB-80 Listings
Sample LIB Session

Object Files

5.1
5.1.1
5.2
5.3
5.4
5.5 Summary of Switches and Syntax

CHAPTER 1

INTRODUC'l'ION

MACRO-80 is a relocatable macro assembler for 8080-based
microcomputer systems. It assembles 8080 assembly language
code on Intel's Microcomputer Development System running
under the CP/M operating system. The MACRO-80 package
includes the MACRO-80 assembler, the LINK-80 linking loader,
the LIB-80 library manager, and the CREF-80 cross reference
facility.

MACRO-80 incorporates almost all "big computer" assembler
features without sacrificing speed or memory space. The
assembler supports a complete, Intel standard macro
facility, including IRP, IRPC, REPEAT, local variables and
EXITM. Nesting of macros is limited only by memory. Code
is assembled in relocatable modules that are manipulated
with the flexible linking loader. Conditional assembly
capability is enhanced by an expanded set of conditional
pseudo operations that include testing of assembly pass,
symbol definition, and parameters to macros. Conditionals
may be nested up to 255 levels.

MACRO-80 I s linking loader provides a versatile array of
loader capabilities, which are executed by means of easy
command lines and switches. Any number of programs may be
loaded with one command, relocatable modules may be loaded
in user-specified locations, and external references between
modules are resolved automatically by the loader. The
loader also performs library searches for system subroutines
and generates a load map of m~mory showing the locations of
the main program and subroutines. The cross reference
facil i ty t'hat is .included in thi s package suppl ies a
convenient alphabetic list of all program variable names,
along with the line numbers where they are referenced and
def ined.

This manual is deSigned to serve as a reference guide to the
MACRO-80 package. It defines, explains and gives examples
of all the features in MACRO-80 in terms that should be
understandable to anyone familiar with assembly language
programming. It is not intended, however, to serve as
instructional material and presumes the user has substantial
knowledge of assembly language programming.. The user should
refer to instructional material available from a variety of
sources for additional tutorial information.

CHAPTER 2

MACRO-SO ASSEMBLER

2.1 RUNNING MACRO-SO

The command to run MACRO-SO is

MSO

MACRO-SO returns the prompt
accept commands.

2.2 COMMAND FORMAT

"*" indicating it lS ready to

A command to MACRO-SO consists of a string of filenames with
optional switches. All filenames should follow the
operating system's conventions for filenames and extensions.
The default extensions supplied by Microsoft software are as
follows:

File

Relocatab1e object file
Listing file
MACRO-SO source file
FORTRAN source file
COBOL source
Absolute file

REL
PRN
MAC
FOR
COB
COM

ISIS-II

REL
LST
MAC
FOR
COB

MACRO-SO ASSEMBLER PAGE 2-2

A command to MACRO-SO conveys the name of the source file to
be assembled, the names of the file(s) to be created, and
which assembly options are desired. The format of a
MACRO-SO command is:

objfile,lstfile=source file

Only the equal sign and the source file field are
to create a relocatable object file with the
(source) filename and the default extension REL.

required
default

Otherwise, an object file is created only if the objfile
field is filled, and a listing file is created only if the
lstfile field is filled.

To assemble the source file without producing an object file
or listing file, place only a comma to the left of the equal
sign. This is a handy procedure that lets you check for
syntax errors before assembling to an object file.

Examples:

*=TEST

TEST,TEST=TEST

*OBJECT=TEST

, OBJECT,LIST=TEST

MACRO-SO also
invocation and
example:

MSO ,=TEST

Assemble the source file TEST.MAC
and place the object file in TEST.REL.

n':;)':;)cllIU.LC I..UC ~UU1. \.,;\:: J. J...J..~ ".1".1:,,':'".1" .1Y!i-\\..

without creating an object or listing
file. Useful for error checking.

Assemble the source file TEST. MAC,
placing the object file in TEST.REL
and the listing file in TEST.PRN.
(With ISIS-II, the listing file is
TEST. LST.)

Assemble the source file TEST.MAC
and place the object file in
OBJECT.REL.

Assemble the source file TEST.MAC,
placing the object file in OBJECT.REL
and the listing file in LIST.PRN.
(With ISIS-II, the listing file is
LIST. LST.)

supports command lines; that is,
command may be typed on the same line.

the
For

MACRO-BO ASSEMBLER PAGE 2-3

2.2.1 Devices

Any field in the MACRO-BO command string can also specify a
device name. The default device name with the CP/M
operating system is the currently logged disk. The default
device name with the ISIS-II operating system is disk drive
O. The command format is:

dev:objfi1e,dev:1stfi1e=dev:source file

The device names are as follows:

Device ISIS-II

Disk drives A:, B:, C:, ••• : Fa :, : F1 :, : F2 :, •••
Line printer
Teletype or CRT
High speed reader

Examples:

LST:
TTY:
HSR

LST:
TTY:

*,TTY;~TEST Assemble the source file TEST.MAC
and list the program on the
console. No object code is
generated. Useful for error check.

*SMALL,TTY:=B:TEST Assemble TEST.MAC (found
on disk drive B), place
the object file in SMALL.REL,
and list the program on the console.

2.2.2 Switches

A switch is a letter that is appended to the command string,
preceded by a slash. It specifies an optional task to be
performed during assembly. More than one switch can be used,
but each must be preceded by a slash. All switches are
optional. The available switches are:

Switch Action

0 Octal listing

H Hexadecimal listing (default)

R Force generation of an object file

L Force generation of a listing file

C Force generation of a cross reference file

MACRO-SO ASSEMBLER PAGE 2-4

P Each IP allocates an extra 256 bytes of stack
space for use during assembly. Use IP if stack
overflow errors occur during assembly. Otherwise,
not needed.

M Initialize Block Data Areas. If the programmer
wants the area that is defined by the DS (Define
Space) speudo-op initialized to zeros, then the
programmer should use the 1M switch in the command
line. Otherwise, the space is not guaranteed to
contain zeros. That is, DS does not automatically
initialize the space to zeros.

x Usually used to
conditionals.
the Ix switch
technical terms.

suppress the listing of false
The following paragraph describes

more completely but in very

The presence or absence of IX in the command line
sets the initial current mode and the initial
value of the default for listing or suppressing
lines in false conditional blocks. IX sets the
current mode and initial value of default to
not-to-list. No Ix sets current mode and initial
value of default to list. Current mode determines
whether false conditionals will be listed or
suppressed. The initial value of the default is
used with the .TFCOND pseudo-op so that .TFCOND is
independent of .SFCOND and .LFCOND. If the
program contains .SFCOND or .LFCOND, IX has no
effect after .SFCOND or .LFCOND is encountered
until a .TFCOND is encountered in the file. SO IX
has an effect only when used with a file that
contains no conditional listing pseudo-ops or when
used with .TFCOND.

MACRO-80 ASSEMBLER PAGE 2-5

Examples:

*=TEST/L

*=TEST/L/O

*LAST=TEST/C

Assemble TEST. MAC, place the object file in
TEST.REL and a listing file in TEST.PRN.
(With ISIS-II, the listing file is
TEST.LST.)

Same as above, but listing file addresses
will be in octal.

Assemble TEST.MAC, place the object file in
LAST.REL and cross reference file in
TEST.CRF. (See Chapter 3.)

2.3 FORMAT OF MACRO-80 SOURCE FILES

Input source lines of up to 132 characters in length are
acceptable.

MACRO-SO preserves lower case letters in quoted strings and
comments. All symbols, opcodes and pseudo-opcodes typed in
lower case will be converted to upper case~

If the source file includes line numbers from an editor,
each byte of the line number must have the high bit on~
Line numbers from Microsoft's EDIT-80 Editor are acceptable.

2.3.1 Statements

Source files input to MACRO-80 consist of statements of the
form:

[labe 1: [:]] [operator] [arguments] [icomment]

With the exception of the ISIS assembler $ controls (see
Section 2.11), it is not necessary that statements begin in
column 1. Multiple blanks or tabs may be used to improve
readability.

If a label is present, it is the first item in the statement
and is immediately followed by a colon. If it is followed
by two colons, 1 t is declar-ed as PUBLIC (see ENTRY/PUBLIC,
Section 2.6.10). For exmple:

FOO:: RET

is equivalent to

PUBLIC FOO
FOO: RET

MACRo-ao ASSEMBLER PAGE 2-6

The next item after the label, or the first item on the line
if no label is present, is an operator. An operator may be
an aoa6 mnemonic, pseudo-op, macro call or expression. The
evaluation order is as follows:

1. Macro call

2. Mnemonic/Pseudo operation

3. Expression

Instead of flagging an expression as an error, the assembler
treats it as if it were a DB statement (see Section 2.6.4).

The arguments following the operator will, of course, vary
in form according to the operator.

A comment always begins with a semicolon and ends with a
carriage return. A comment may be a line by itself or it
may be appended to a line that contains a statement.
Extended comments can be entered using the .COMMENT pseudo
operation (see Section 2.6.20).

2.3.2 Symbols

MACRo-ao symbols may be of any length, however,
first six characters are significant. The
characters are legal in a symbol:

A-Z 0-9 $? @

only the
following

With Microsoft's aoao/zaO/aOa6 assemblers, the underline
character is also legal in a symbol. A symbol may not start
with a digit. When a symbol is read, lower case is
translated into upper case. If a symbol reference is
followed by ## it is declared external (see also the
EXT/EXTRN pseudo-op, Section 2.6.12).

2.3.3 Numeric Constants

The default base for numeric constants is decimal. This may
be changed by the .RADIX pseudo-op (see Section 2.6.22).
Any base from 2 (binary) to 16 (hexadecimal) may be
selected. When the base is greater than 10, A-F are the
digits following 9. If the first digit of the number is not
numeric the number must be preceded by a zero.

MACRO-80 ASSEMBLER PAGE 2-7

Numbers are l6-bit unsigned quantities. A number is always
evaluated in the current radix unless one of the following
special notations is used:

nnnnB
nnnnD
nnnnO
nnnnQ
nnnnH

X'nnnn'

Binary
Decimal
Octal
Octal
Hexadecimal
Hexadecimal

Overflow of a number beyond two bytes is ignored and the
result is the low order l6-bits.

A character constant is a string comprised of zero, one or
two ASCII characters, delimited by quotation marks, and used
in a non-simple expression. For example, in the statement

DB 'A' + 1

'A' is a character constant. But the statement

DB 'A'

uses 'A' as a string because it is in a simple expression.
The rules for character constant delimiters are the same as
for strings.

A character constant comprised of one character has
value the ASCII value of that character. That is,
order byte of the value is zero, and the low order
the ASCII value of the character. For example, the
the constant 'A' is 4lH.

as its
the high
byte is
value of

A character constant comprised of two characters has as its
value the ASCII value of the first character in the high
order byte and the ASCII value of the second character in
the low order byte. For example, the value of the character
constant "AB" is 4lH*256+42H.

2.3.4 Strings

A string is co~prised of zero or more characters delimited
by quotation marks. Either single or double quotes may be
used as string delimiters. The delimiter quotes may be used
as characters if they appear twice for every character
occurrence desired. For example, the statement

DB nr am ""great"" today"

stores the string

I am "great" today

MACRO-80 ASSEMBLER PAGE 2-8

If there are zero characters between the delimiters, the
string is a null string.

2.4 EXPRESSION EVALUATION

2.4.1 Arithmetic And Logical Operators

The following operators are allowed in expressions. The
operators are listed in order of precedence.

NUL

LOW, HIGH

*, I, MOD, SHR, SHL

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

~D

OR, XOR

Parentheses are used to change the order of precedence.
During evaluation of an expression, as soon as a new
operator is encountered that has precedence less than or
equal to the last operator encountered, all operations up to
the new operato~ are performed. That is, subexpressions
involving operators of higher precedence are computed first.

All operators except +, -, *, I must be separated from their
operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate the high or
low order 8 bits of an Absolute 16-bit value. If a
relocatable value is supplied as an operand, HIGH and LOW
will treat it as if it were relative to location zero.

2.4.2 Modes

All symbols used as operands in expressions are in one of
the following modes: Absolute, Data Relative, Program
(Code) Relative or COMMON. (See Section 2.6 for the ASEG,
CSEG, DSEG and COMMON pseudo-ops.) Symb9ls assembled under
the ASEG, CSEG (default), or DSEG pseudo-ops are in
Absolute, Code Relative or Data Relative mode respectively.

MACRO-BO ASSEMBLER PAGE 2-9

The number of COMMON modes in a program is determined by the
number of COMMON blocks that have been named with the COMMON
pseudo-oPe Two COMMON symbols are not in the same mode
unless they are in the same COMMON block. In any operation
other than addition or subtraction, the mode of both
operands must be Absolute.

If the operation is addition, the following rules apply:

1. At least one of the operands must be Absolute.

2. Absolute + <mode> = <mode>

If the operation is subtraction, the following rules apply:

1. <mode> - Absolute = <mode>

20 <mode> - <mode> = Absolute
where the two <mode>s are the same.

Each intermediate step in the evaluation of an expression
must conform to the above rules for modes, or an error will
be generated. For example, if FOO, BAZ and ZAZ are three
Program Relative symbols, the expression

FOO + BAZ - ZAZ

will generate an R error because the first step (FOO + BAZ)
adds two relocatable valuesc (One of the values must be
Absolute.) This problem can always be fixed by inserting
parentheses. So that

FOO + (BAZ - ZAZ)

is legal because the first step (BAZ ZAZ) generates an
Absolute value that is then added to the Program Relative
value, FOO.

2.4.3 Externals

Aside from its classification by mode, a symbol is either
External or not External. (See EXT/EXTRN, Section 2.6.l2.)
An External value must be assembled into a two-byte field.
(Single-byte Externals are not supported.) The following
rules apply to the use of Externals in expressions:

1. Externals are
subtraction.

legal only in addition and

2. If an External symbol is used in an expression, the
result of the expression is always External.

3. When the operation is addition, either operand (but
not both) may be External.

MACRO-80 ASSEMBLER PAGE 2-10

4. When the operation is subtraction, only the first
operand may be External.

2.5 OPCODES AS OPERANDS

8080 opcodes are valid one-byte operands. Note that only
the first byte is a valid operand. For example:

MVI A, (JMP)
ADI (CPI)
MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)
MVI C,MOV A,B

Errors will be generated if more than one byte is included
in the operand -- such as (CPI 5), LXI B,LABEL1) or (JMP
LABEL2) •

Opcodes used as one-byte operands need not be enclosed in
parentheses.

NOTE

Opcodes are not valid operands
in Z80 mode.

MACRO-80 ASSEMBLER PAGE 2-11

2.6 PSEUDO OPERATIONS

2.6.1 ASEG

ASEG

ASEG sets the location counter to an absolute segment of
memory. The location of the absolute counter will be that
of the last ASEG (default is 0), unless an ORG is done after
the ASEG to change the location. The effect of ASEG is also
achieved by using the code segment (CSEG) pseudo operation
and the /P switch in LINK-80. See also Section 2.6.28

2.6.2 COMMON

COMMON /<block name>/

COMMON sets the location counter to the selected common
block in memory. The location is always the beginning of
the area so that compatibility with the FORTRAN COYll~ON
statement is maintained. If <block name> is omitted or
consists of spaces, it is considered to be blank common.
See also Section 2.6.28.

2.6.3 CSEG

CSEG

CSEG sets the location counter to the code relative segment
of memory. The location will be that of the last CSEG
(default is 0), unless an ORG is done after the CSEG to
change the location. CSEG is the default condition of the
assembler (the INTEL assembler defaults to ASEG). See also
Section 2.6.28.

2.6.4 DB - Define Byte

DB <exp>[,<exp> •..]

DB <string>[<string> ••.]

The arguments to DB are either expressions or strings. DB
stores the values of the expressions or the characters of
the strings in successive memory locations beginning with
the current location counter.

MACRO-SO ASSEMBLER PAGE 2-12

Expressions must evaluate to one byte. (If the high byte of
the result is 0 or 255, no error is given; otherwise, an A
error results.)

Strings of three or more characters may not be used in
expressions (i.e., they must be immediately followed by a
comma or the end of the line). The characters in a string
are stored in the order of appearance, each as a one-byte
value with the high order bit set to zero.

Example:

0000'
0002'
0003'

41 42
42
41 42 43

DB
DB
DB

2.6.5 DC - Define Character

DC <string>

'AB'
'AB' AND OFFH
'ABC'

DC stores the characters in <string> in successive memory
locations beginning with the current location counter. As

as a one-byte value with the high order bit set ~o zero.
However, DC stores the last character of the string with the
high order bit set to one. An error will result if the
argument to DC is a null string.

2.6.6 DS - Define Space

OS <exp>

OS reserves an area of memory. The value of <exp> gives the
number of bytes to be allocated. All names used in <exp>
must be previously defined (i.e., all names known at that
point on pass 1). Otherwise, a V error is generated during
pass 1 and a U error may be generated during pass 2. If a U
error is not generated during pass 2, a phase error will
probably be generated because the DS generated no code on
pass 1.

2.6.7 DSEG

DSEG

DSEG sets the location counter to the Data Relative segment
of memory. The location of the data relative counter will
be that of the last DSEG (default is 0), unless an ORG is

MACRO-80 ASSEMBLER PAGE 2-13

done after the DSEG to change the location. See also
Section 2.6.28.

2.6.8 DW - Define Word

DW <exp>[,<exp> ••.]

DW stores the values of the expressions in successive memory
locations beginning with the current location counter.
Expressions are evaluated as 2-byte (word) values.

2.6.9 END

END [<exp>]

The END statement specifies the end of the program. If
<exp> is present, it is the start address of the program.
If <exp> is not present, then no start address is passed to
LINK-80 for that program.

NOTE

If an assembly language
program is the main program? a
start address (label) must be
specified. If not, LINK-80
will issue a "no start
address" error. If the
program is a subroutine to a
FORTRAN program (for example),
the start address is not
required because FORTRAN has
supplied one.

2.6.10 ENTRY/PUBLIC

ENTRY <name> [, < name> •••]
or

PUBLIC <name>[,<name> ...]

ENTRY or PUBLIC declares each name in the list as internal
and therefore available for use by this program and other
programs to be loaded concurrently. All of the names in the
list must be defined in the current program or a U error
results. An M error is generated if the name is an external
name or common-blockname.

MACRo-aD ASSEMBLER PAGE 2-14

2.6.11 EQU

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp> is
external, an error is generated. If <name> already has a
value other than <exp>, an M error is generated.

2.6.12 EXT/EXTRN

EXT <name>[,<name> •..]
or

EXTRN <name>[,<name> •••]

EXT or EXTRN declares that the name(s) in the list are
external (i.e., defined in a different program). If any
item in the list references a name that is defined in the
current program, an M error results. A reference to a name
where the name is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

INCLUDE <filename>

The INCLUDE pseudo-op applies only to CP/M versions of
MACRO-aD. The pseudo-ops INCLUDE, $INCLUDE and MACLIB are
synonymous.

The INCLUDE pseudo-op assembles source statements from an
alternate source file into the current source file. Use of
INCLUDE eliminates the need to repeat an often-used sequence
of statements in the current source file.

<filename> is any valid specification, as determined by the
operating system. Defaults for filename extensions and
device names are the same as those in a MACRo-aD command
line.

The INCLUDE file is opened and assembled into the current
source file immediately following the INCLUDE statement.
When end-of-file is reached, assembly resumes with the
statement following INCLUDE.

On a MACRO-aD listing, a plus sign is printed between the
assembled code and the source line on each line assembled
from an INCLUDE file. (See Section 2.12.)

Nested INCLUDEs are not allowed. If encountered, they will
result in an objectionable syntax error '0'.

MACRO-BO ASSEMBLER PAGE 2-15

The file specified in the operand field must exist. If the
file is not found, the error 'V' (value error) is given, and
the INCLUDE is ignored.

2.6.14 NAME

NAME ('modname')

NAME defines a name for the module. Only the first six
characters are significant in a module name. A module name
may also be de~ined with the TITLE pseudo-oPe In the
absence of both the NAME and TITLE pseudo-ops, the module
name is created from the source file name.

2.6.15 ORG - Define Origin

ORG <exp>

The location counter is set to the value of <exp> and the
assembler assigns generated code starting with that value.
All names used in <exp> must be known on pass 1, and the
value must either be absolute or in the same area as the
location counter.

2.6.16 PAGE

PAGE [<exp>]

PAGE causes the assembler to start a new output page. The
value of <exp>, if included, becomes the new page size
(measured in lines per page) and must be in the range 10 to
255. The default page size is 50 lines per page. The
assembler puts a form feed character in the listing file at
the end of a page.

2.6.17 SET

<name> SET <exp>

SET is the same as EQU, except no error is generated if
<name> is already defined.

MACRO-SO ASSEMBLER PAGE 2-16

2.6.1S SUBTTL

SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the line after
the title (see TITLE, Section 2.6.19) on each page heading.
<text> is truncated after 60 characters. Any number of
SUBTTLs may be given in a program.

2.6.19 TITLE

TITLE <text>

TITLE specifies a title to be listed on the first line of
each page. If more than one TITLE is given, a Q error
results. The first six characters of the title are used as
the module name unless a NAME pseudo operation is used. If
neither a NAME or TITLE pseudo-op is used, the module name
is created from the source filename.

2.6.20 . COMMENT

.COMMENT <delim><text><delim>

The first non-blank character encountered after .COMMENT is
the delimiter. The following <text> comprises a comment
block which continues until the next occurrence of
<delimiter> is encountered. For example, using an asterisk
as the delimiter, the format of the comment block would be:

. COMMENT *
any amount of text entered
here as the comment block

*
~return to normal mode

MACRo-ao ASSEMBLER PAGE 2-17

2.6.21 .PRINTX

.PRINTX <delim><text><delim>

The first non-blank character encountered after .PRINTX is
the delimiter. The following text is listed on the terminal
during assembly until another occurrence of the delimiter is
encountered. .PRINTX is useful for displaying progress
through a long assembly or for displaying the value of
conditional assembly switches. For example:

2.6.22 • RADIX

IF CPM
.PRINTX /CPM version/
ENDIF

NOTE

.PRINTX will output on both
passes. If only one printout
is desired, use the IFl or IF2
pseudo~op. For example:

IF2
IF CPM
.PRINTX /CPM version/
ENDIF
ENDIF

will only print if CPM is true
and MaO is in pass 2.

.RADIX <exp>

The default base (or radix) for all constants is decimal.
The .RADIX statement allows the default radix to be changed
to any base in the range 2 to 16. For example:

MOVI BX,OFFH
.RADIX 16
MOVI BX,OFF

The two MaVIs in the example are identical. The <exp> in a
. RADIX statement is always in decimal radix, regardless of
the current radix.

MACRO-80 ASSEMBLER PAGE 2-18

2.6.23 .Z80

.Z80 enables the assembler to accept Z80 opcodes. This is
the default condition when the assembler is running on a z80
operating system. Z80 mode may also be set by appending the
Z switch to the MACRO-80 command string -- see Section
2.2.2.

2.6.24 .8080

.8080 enables the assembler to accept 8080 opcodes. This is
the default condition when the assembler is running on an
aoao operating system. 8080 mode may also be set by
appending the I switch to the MACRO-aO command string -- see
Section 2.2.2.

2.6.25 . REQUEST

.REQUEST <filename>[,<filename> ••.]

.REQUEST sends a request to the LINK-aO loader to search the
filenames in the list for undefined globals. The filenames
in the list should be in the form of legal symbols. They
should not include filename extensions or disk
specifications. LINK-80 supplies a default extension and
assumes the default disk drive.

MACRO-80 ASSEMBLER PAGE 2-19

2.6.26 Conditional Pseudo Operations

The conditional pseudo operations are:

IF/1FT <exp>

IFE/IFF <exp>

IFI

IF2

IFDEF <symbol>

True

True

True

True

True

if

if

if

if

if

<exp> is not O.

<exp> is o.
pass 1.

pass 2.

<symbol> is defined
has been declared External.

or

IFNDEF <symbol> True if <symbol> is undefined
or not declared External.

IFB <arg>

IFNB <arg>

IFIDN <argl>,<arg2>

IFDIF <argl>,<arg2>

True if <arg> is blank. The
angle brackets around <arg>
are required.

True if <arg> is not blank.
Used for testing when dummy
parameters are supplied. The
angle brackets around <arg>
are required.

True if the string <argl> is
IDeNtical to the string
<arg2>.
The angle brackets around
<argl> and <arg2> are
required.

True if the string <argl> is
DIFferent from the string
<arg2>.
The angle brackets around
<argl> and <arg2> are
required.

All conditionals use the following format:

IFxx [argument]

[ELSE

ENDIF

MACRO-80 ASSEMBLER PAGE 2-20

Conditionals may be nested to any level. Any argument to a
conditional must be known on pass 1 to avoid V errors and
incorrect evaluation. For IF, 1FT, IFF, and IFE the
expression must involve values which were previously defined
and the expression must be absolute. If the name is defined
after an IFDEF or IFNDEF, pass 1 considers the name to be
undefined, but it will be defined on pass 2.

2.6.26.1 ELSE - Each conditional pseudo operation may
optionally~ used with the ELSE pseudo operation which
allows alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a given
IF, and an ELSE is always bound to the most recent, open IF.
A conditional with more than one ELSE or an ELSE without a
conditional will cause a C error.

2.6.26.2 ENDIF - Each IF must have a matching ENDIF to
terminate the conditional. Otherwise, an 'Unterminated
conditional' message is generated at the end of each pass.
An ENDIF without a matching IF causes a C error.

2.6.27 Listing Control Pseudo Operations

Output to the listing file can be controlled by two
pseudo-ops:

.LIST and .XLIST

If a listing is not being made, these pseudo-ops have no
effect. .LIST is the default condition. When a .XLIST is
encountered, source and object code will not be listed until
a .LIST is encountered.

The output of false conditional blocks is controlled by
three pseudo-ops: .SFCOND, .LFCOND, and .TFCOND.

These pseudo-ops give the programmer control over four
cases.

1. Normally list false conditionals
For this case, the programmer simply allows the
default mode to control the listing. The default
mode is list false conditionals. If the programmer
decides to suppress false conditionals, the IX
switch can be issued in the command line instead of
editing the source file.

MACRO-80 ASSEMBLER PAGE 2-21

2. Normally suppress false conditionals
For this case, the programmer issues the .TFCOND
pseudo-op in the program file. .TFCOND reverses
(toggles) the default, causing false conditionals
to be suppressed. If the programmer decides to
list false conditionals, the /X switch can be
issued in the command line instead of editing the
source file.

3. Always suppress/list false conditionals
For these cases, the programmer issues either the
.SFCOND pseudo-op to always suppress false
conditionals, or the .LFCOND pseudo-op to always
list all false conditionals.

4. Suppress/list some false conditionals
For this case, the programmer has decided for most
false conditionals whether to list or suppress, but
for some false conditionals the programmer has not
yet decided. For the false conditionals decided
about, use .SFCOND or .LFCOND. For those not yet
decided, use .TFCOND. .TFCOND sets the current and
default settings to the opposite of the default.
Initially, the default is set by giving /X or no /X
in the command line. Two subcases exist:

1. The programmer wants some false conditionals
not to list unless /X is given. The programmer
uses the .SFCOND and .LFCOND pseudo-ops to
control which areas always suppress or list
false conditionals. To selectively suppress
some false conditionals, the programmer issues
.TFCOND at the beginning of the conditional
block and again at the end of the conditional
block. (NOTE: The second .TFCOND should be
issued so that the default setting will be the
same as the initial se~ting. Leaving the
default equal to the initial setting makes it
easier to keep track of the default mode if
there are many such areas.) If the conditional
block evaluates as false, the lines will be
suppressed. In this subcase, issuing the /X
switch in the command line causes the
conditional block affected by .TFCOND to list
even if it evaluates as false.

MACRO-80 ASSEMBLER PAGE 2-22

below.

PSEUDO-OP

.SFCOND

.LFCOND

.TFCOND

2. The programmer wants some false conditionals to
list unless IX is given. Two consecutive
.TFCONDs places the conditional listing setting
in initial state which is determined by the
presence or absence of the Ix switch in the
command line (the first .TFCOND sets the
default to not initial; the second to
initial) • The selected conditional block then
responds to the IX switch: if a IX switch is
issued in the command line, the conditional
block is suppressed if false; if no Ix switch
is issued in the command line, the conditional
block is listed even if false.

The programmer then must reissue the .SFCOND or
.LFCOND conditional listing pseudo-op to
restore the suppress or list mode. Simply
issuing another .TFCOND will not restore the
prior mode, but will toggle the default
setting. Since in this subcase, the next area
of code is supposed to list or suppress false
conditionals always, the programmer must issue
.SFCOND or .LFCOND.

--- ----;;J J..--~--- -r- ,"""' ,-""-""

DEFINITION

Suppresses the listing of conditional blocks
that evaluate as false.

Restores the listing of conditional blocks that
evaluate as false.

Toggles the current setting which controls the
listing false conditionals. .TFCOND sets the
current and default setting to not default. If
a Ix switch is given in the MACRO-80 run
command line for a file which contains .TFCOND,
IX reverses the effect of .TFCOND.

MACRO-80 ASSEMBLER PAGE 2-23

The following chart illustrates the effects of the three
pseudo-ops when encountered under Ix and under no IX.

PSEUDO-OP

(none)

.SFCOND

.LFCOND

.TFCOND

.TFCOND

.SFCOND

.TFCOND

.TFCOND

.TFCOND

OFF

ON

OFF

ON

OFF

OFF
ON

OFF

OFF

OFF

ON

ON

OFF

OFF

ON
OFF

ON

The output of cross reference information is controlled by
.CREF and .XCREF. If the cross reference facility (see
Chapter 3) has not been invoked, .CREF and .XCREF have no
effect. The default condition is .CREF. When a .XCREF is
encountered, no cross reference information is output until
.CREF is encountered.

The output of MACRO/REPT/IRP/IRPC expansions is controlled
by three pseudo-ops: .LALL, .SALL, and .XALL. .LALLlists
the complete macro text for all expansions. .SALL
suppresses lsiting of all text and object code produced by
macros. .XALL is the default condition; a source line is
listed only if it generates object code:

MACRO-80 ASSEMBLER PAGE 2-24

2.6.28 Relocation Pseudo Operations

The ability to create relocatable modules is one of the
major features of Microsoft assemblers. Relocatable modules
offer the advantages of easier coding and faster testing,
debugging and modifying. In addition, it is possible to
specify segments of assembled code that will later be loaded
into RAM (the Data Relative segment) and ROM/PROM (the Code
Relative segment). The pseudo operations that select
relocatable areas are CSEG and DSEG. The ASEG pseudo-op is
used to generate non-relocatable (absolute) code. The
COMMON pseudo-op creates a common data area for every COMMON
block that is named in the program.

The default mode for the assembler is Code Relative. That
is, assembly begins with a CSEG automatically executed and
the location counter in the Code Relative mode, pointing to
location 0 in the Code Relative segment of memory. All
subsequent instructions will be assembled into the Code
Relative segment of memory until an ASEG or DSEG or COMMON
pseudo-op is executed. For example, the first DSEG
encountered sets the location counter to location zero in
the Data Relative segment of memory. The following code is
assembled in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. If a subsequent
Cb.J!iu 1.S encount:erea, t:ne .loca'C.l.on coun'C.er Wl..L.L lec.Ulll c.u Lue
next free location in the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have operands. If you
wish to alter the current value of the location counter, use
the ORG pseudo-oPe

2.6.28.1 ORG Pseudo-op - At any time, the value
of the location counter may be changed by use of the the ORG
pseudo-oPe The form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of the
location counter in the current mode. All names used in
<exp> must be known on pass 1 and the value of <exp> must be
either Absolute or in the current mode of the location
counter. For example, the statements

DSEG
ORG 50

set the Data Relative location counter to 50, relative to
the start of the Data Relative segment of memory.

MACRO-SO ASSEMBLER PAGE 2-25

2.6.2S.2 LINK-80 - The LINK-80 linking loader (see
Chapter 4-or-thIs manual) combines the segments and creates
each relocatable module in memory when the program is
loaded. The orIgIns of the relocatable segments are not
fixed until the program is loaded and the origins are
assigned by LINK-80. The command to LINK-80 may contain
user-specified origins through the use of the IP (for Code
Relative) and ID (for Data and COMMON segments) switches.

For example, a program that begins with the statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will always load
beginning at 800 unless the ORG statement is changed in the
source file. However, the same program, assembled in Code
Relative mode with no ORG statement, may be loaded at any
specified address by appending the IP:<address> switch to
the LINK-80 command string.

2.6.29 Relocation Before Loading

Two pseudo-ops,
located in one
specified area.

For example:

• PHASE
area,

and
but

.DEPHASE,
executed

allow code to be
only at a different,

DODO' . PHASE 100H
0100 E8 0003 FOO: CALL BAZ
0103 E9 FFOI ~P ZOO
0106 C3 BAZ: ~T

.DEPHASE
0007' E9 FFFB ZOO: ~P 5

All labels within a .PHASE block are defined as the absolute
value from the origin of the phase area. The code, however,
is loaded in the current area (i.e., from 0' in this
example) . The code within the block can later be moved to
100H and executed.

2.7 MACROS AND BLOCK PSEUDO OPERATIONS

The macro facilities provided by MACRO-80 include three
repeat pseudo operations: repeat (REPT), indefinite repeat
(IRP), and indefinite repeat character (IRPC). A macro
definition operation (MACRO) is also provided. Each of
these four macro operations is terminated by the ENDM pseudo
operation.

MACRo-ao ASSEMBLER

2.7.1 Terms

For the purposes of discussion of macros
operations, the following terms will be used:

PAGE 2-26

and block

1. <dummy> is used to represent a dummy parameter.
All dummy parameters are legal symbols that appear
in the body of a macro expansion.

2. <dummylist> is a list of <dummy>s separated by
commas.

3. <arglist> is a list of arguments separated by
commas. <arglist> must be delimited by angle
brackets. Two angle brackets with no intervening
characters «» or two commas with no intervening
characters enter a null argument in the list.
Otherwise an argument is a character or series of
characters terminated by a comma or >. with angle
brackets that are nested inside an <arglist>, one
level of brackets is removed each time the
bracketed argument is used in an <arglist>. See
example, Section 2.7.5.) A quoted string is an
acceptable argument and is passed as such. Unless
enclosed in brackets or a quoted string, leading

4. <paramlist> is used to represent a list of actual
parameters separated by commas. No delimiters are
required (the list is terminated by the end of line
or a comment), but the rules for entering null
parameters and nesting brackets are the same as
described for <arglist>. (See example, Section
2.7.5)

2.7.2 REPT-ENDM

REPT <exp>

ENDM

The block of statements between REPT and ENDM is repeated
<exp> times. <exp> is evaluated as a l6-bit unsigned
number. If <exp> contains any external or undefined terms,
an error is generated. Example:

SET 0
REPT 10
SET X+l
DB X
ENDM

;generates DB 1 - DB 10

MACRO-80 ASSEMBLER PAGE 2-27

2.7.3 I RP-ENDM

IRP <dummy>,<arglist>

ENDM

The <arglist> must be enclosed in angle brackets. The
number of arguments in the <arglist> determines the number
of times the block of statements is repeated. Each
repetition substitutes the next item in the <arglist> for
every occurrence of <dummy> in the block. If the <arglist>
is null (i.e., <», the block is processed once with each
occurrence of <dummy> removed. For example:

IRP X,<1,2,3,4,5,6,7,8,9,lO>
DB X
ENDM

generates the same bytes as the REPT example.

2.7.4 I RPC-ENDM

IRPC <dummy>,string (or <string»

ENDM

IRPC is similar to IRP but the arglist is replaced by a
string of text and the angle brackets around the string are
optional. The statements in the block are repeated once for
each character in the string. Each repetition substitutes
the next character in the string for every occurrence of
<dummy> in the block. For example:

IRPC X,Ol23456789
DB X+I
ENDM

generates the same code as the two previous examples.

MACRO-80 ASSEMBLER PAGE 2-28

2.7.5 MACRO

Often it is convenient to be able to generate a given
sequence of statements from various places in a program,
even though different parameters may be required each time
the sequence is used. This capability is provided by the
MACRO statement.
The form is

<name> MACRO <dummylist>

ENDM

where <name> conforms to the rules for forming symbols.
<name> is the name that will be used to invoke the macro.
The <dummy>s in <dummylist> are the parameters that will be
changed (replaced) each time the MACRO is invoked. The
statements before the ENDM comprise the body of the macro.
During assembly, the macro is expanded every time it is
invoked but, unlike REPT/IRP/IRPC, the macro is not expanded
when it is encountered.

The form of a macro call is

<name> <paramlist>

where <name> is the name supplied in the MACRO definition,
and the parameters in <paramlist> will replace the <dummy>s
in the MACRO <dummylist> on a one-to-one basis. The number
of items in <dummylist> and <paramlist> is limited only by
the length of a line. The number of parameters used when
the macro is called need not be the same as the number of
<dummy>s in <dummylist>. If there are more parameters than
<dummmy>s, the extras are ignored. If there are fewer, the
extra <dummy>s will be made null. The assembled code will
contain the macro expansion code after each macro call.

NOTE

A dummy parameter in a
MACRO/REPT/IRP/IRPC is always
recognized exclusively as a
dummmy parameter. Register
names such as A and B will be
changed in the expansion if
they were used as dummy
parameters.

MACRO-80 ASSEMBLER PAGE 2-29

Here is an example of a MACRO definition that defines a
macro called FOC:

Faa MACRO X
Y SET 0

REPT X
Y SET Y+l

DB Y
ENDM
ENDM

This macro generates the same code as the previous three
examples when the call

Faa 10

is executed.

Another example, which generates the same code, illustrates
the removal of one level of brackets when an argument is
used as an arglist:

FOO

When the call

MACRO
IRP
DB
ENDM
ENDM

x
Y,<X>
Y

FOO <1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this:

2.7.6 ENDM

IRP
DB
ENDM

Y,<1,2,3,4,5,6,7,8,9,10>
Y

Every REPT, IRP, IRPC and MACRO pseudo-op must be terminated
with the ENDM. pseudo-oPe Otherwise, the 'Unterminated
REPT/IRP/IRPC/MACRO' message is generated at the end of each
pass. An unmatched ENDM causes an a error.

2.7.7 EXITM

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC or
MACRO call. When an EXITM is executed, the expansion is
exited immediately and any remaining expansion or repetition
is not generated. If the block containing the EXITM is
nested within another block, the outer level continues to be
expanded.

MACRO-SO ASSEMBLER PAGE 2-30

2.7.S LOCAL

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler creates a
unique symbol for each <dummy> in <dummylist> and
substitutes that symbol for each occurrence of the <dummy>
in the expansion. These unique symbols are usually used to
define a label within a macro, thus eliminating
multiply-defined labels on successive expansions of the
macro. The symbols created by the assembler range from
.• 0001 to .. FFFF. Users will therefore want to avoid the
form •. nnnn for their own symbols. If LOCAL statements are
used, they must be the first statements in the macro
definition.

2.7.9 Special Macro Operators And Forms

& The ampersand is used in a macro expansion to
concatenate text or symbols. A dummy parameter that
is in a quoted string will not be substituted in the
expansion unless it is immediately preceded by &.

.. , ,

rn_ .1:_ ~__ - _,.., t ,-

~ - - - - •• , - '-.l ••• - - -

between them. For example:

ERRGEN MACRO
ERROR&X:PUSH

MOVI
JMP
ENDM

X
BX
BX, • &X·
ERROR

In this example, the call ERRGEN A will generate:

ERRORA: PUSH B
MOVI BX, • A'
JMP ERROR

In a block operation, a comment preceded by two
semicolons is not saved as part of the expansion
(i.e., it will not appear on the listing even under
.LALL) • A comment preceded by one semicolon,
however, will be preserved and appear in the
expansion.

When an exclamation point is used in an argument,
the next character is entered literally (i.e., 1;
and <;> are equivalent).

MACRO-80 ASSEMBLER PAGE 2-31

NUL NUL is an operator that returns true if its argument
(a parameter) is null. The remainder of a line
after NUL is considered to be the argument to NUL.
The conditional

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other than a
semicolon or carriage return. It is recommended
that testing for null parameters be done using the
IFB and IFNB conditionals.

The percent sign is used only in a macro argument.
% converts the expression that follows it (usually a
symbol) to a number in the current radix. During
macro expansion, the number derived from converting
the expression is substituted for the dummy. Using
the % special operator allows a macro call by value.
(Usually, a macro call is a call by reference with
the text of the macro argument substituting exactly
for the dummy.)

The expression following the % must conform to the
same rules as the DS (Define Space) pseudo-oPe A
valid expression returning a non-relocatable
constant is required.

EXAMPLE: Normally, LB, the argument to MAKLAB,
would be substituted for Y, the argument to MACRO,
as a string. The % causes LB to be converted to a
non-relocatable constant which is then substituted
for Y. Without the % special operator, the result
of assembly would be 'Error LB' rather than 'Er.ror
I', etc.

MAKLAB MACRO Y
ERR&Y: DB 'Error &Y' ,0

ENDM
MAKERR MACRO X
LB SET 0

REPT X
LB SET LB+l

MAKLAB %LB
ENDM
ENDM

When called by MAKERR 3, the assembler will
generate:

ERRl: DB 'Error l' ,0
ERR2: DB 'Error 2' ,0
ERR3: DB 'Error 3 • ,0

MACRO-80 ASSEMBLER PAGE 2-32

TYPE The TYPE operator returns a byte that describes two
characteristics of its argument: 1) the mode, and
2) whether it is External or not. The argument to
TYPE may be any expression (string, numeric,
logical) • If the expression is invalid, TYPE
returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two
bits are:

a the mode is Absolute
1 the mode is Program Relative
2 the mode is Data Relative
3 the mode is Common Relative

The high bit (SOH) is the External bit. If the high
bit is on, the expression contains an External. If
the high bit is off, the expression is local (not
External) •

The Defined bit is 20H. This bit is on if the
expression is locally defined, and it is off if the
~vnr,QC!C!;l"'\n ;C! I1nnpi=;np;t nr pvi-prn~' _ Tf npii-hpr hit -
is on, the expression is invalid.

TYPE is usually used inside macros, where an
argument type may need to be tested to make a
decision regarding program flow. For example:

FOO MACRO X
LOCAL Z

Z SET TYPE X
IF Z ..•

MACRO-80 ASSEMBLER PAGE 2-33

2.8 USING Z80 PSEUDO-OPS

When using the MACRO-80 assembler, the following Z80
pseudo-ops dre valid. The function of each pseudo-op is
equivalent to that of its counterpart.

Z80 pseudo-op

COND
ENDC
*EJECT
DEFB
DEFS
DEFW
DEFM
DEFL
GLOBAL
EXTERNAL

Equivalent pseudo-op

IFT
ENDIF
PAGE
DB
DS
DW
DB
SET
PUBLIC
EXTRN

The formats, where different, conform to the previous
format. That is, DEFB and DEFW are permitted a list of
arguments (as are DB and DW), and DEFM is permitted a string
or numeric argument (as is DB) .

MACRO-80 ASSEMBLER PAGE 2-34

2.9 SAMPLE ASSEMBLY

A>Mao

*EXMPLl,TTY:=EXMPLl

MAcao 3.2 PAGE 1

00100 :CSL3 (PI, P2)
00200 :SHIFT PI LEFT CIRCULARLY 3 BITS
00300 :RETURN RESULT IN P2
00400 ENTRY CSL3
00450 :GET VALUE OF FIRST PARAMETER
00500 CSL3:

0000' 7E 00600 MOV A,M
0001' 23 00700 INX H
0002' 66 00800 MOV H,M
0003' 6F 00900 MOV L,A

01000 :SHIFT COUNT
0004' 06 03 01100 MVI B,3
0006' AF 01200 LOOP: XRA A

01300 :SHIFT LEFT
0007' 29 01400 DAD H

"'1:"" • nrVT'l7\"'1:' T ' ~v DT",

0008' 17 01600 RAL
0009' 85 01700 ADD L
OOOA' 6F 01800 MOV L,A

01900 :DECREMENT COUNT
OOOB' 05 02000 OCR B

02100 :ONE MORE TIME
OOOC' C2 0006' 02200 JNZ LOOP
OOOF' EB 02300 XCHG

02400 : SAVE RESULT IN SECOND PARAMETER
0010' 73 02500 MOV M,E
0011' 23 02600 INX H
0012' 72 02700 MOV M,D
0013' C9 02800 RET

02900 END

MAC80 3.2 PAGE S

CSL3 OOOOI' LOOP 0006'

No Fatal error(s)

MACRO-SO ASSEMBLER PAGE 2-35

2.10 MACRO-SO ERRORS

MACRO-SO errors are indicated by a one-character flag in
column one of the listing file. If a listing file is not
being printed on the terminal, each erroneous line is also
printed or displayed on the terminal. Below is a list of
the MACRO-SO Error Codes:

A Argument error
Argument to pseudo-op is not in correct format or
is out of range (.PAGE 1; .RADIX 1; PUBLIC 1;
JMPS TOOFAR).

C Conditional nesting error
ELSE without IF, ENDIF without IF, two ELSEs on
one IF.

D Double Defined symbol
Reference to a symbol which is multiply defined.

E External error
Use of an external illegal in context (e.g., Faa
SET NAME##; MOVI AX,2-NAME##).

M Multiply Defined symbol
Definition of a symbol which is multiply defined.

N Number error
Error in a number, usually a bad digit (e.g., SQ).

o Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU or MACRO
without a name; bad syntax in an opcode; or bad
syntax in an expression (mismatched parenthesis,
quotes, consecutive operators, etc.).

P Phase error
Value of a label or EQU name is different on pass
2.

Q Questionable
Usually means a line is not terminated properly.
This is a warning error (e.g. MOV AX,BX,).

R Relocation
Illegal use of relocation in expression, such as
abs-rel. Data, code and COMMON areas are
relocatable.

U Undefined symbol
A symbol referenced in an expression is not
defined. (For certain pseudo-ops, a V error is
printed on pass 1 and a U on pass 2.)

MACRO-SO ASSEMBLER PAGE 2-36

V Value error
On pass 1 a pseudo-op which must have its value
known on pass 1 (e.g., .RADIX, . PAGE, DS, IF, IFE,
etc.), has a value which is undefined. If the
symbol is defined later in the program, a U error
will not appear on the pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing or it is
not parsed due to being in a false conditional,
unterminated IRP/IRPC/REPT block or terminated
macro.

'Unterminated conditional'
At least one conditional is unterminated at the
end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[xx] [No] Fatal error (s) [,xx warnings]
The number of fatal errors and warnings. The

.. - - - -- -' - --

2.11 COMPATIBILITY WITH OTHER ASSEMBLERS

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The dollar sign
must appear in column 1 only if spaces or tabs separate the
dollar sign from the control word. The control

$EJECT

is the same as the MACRO-SO PAGE pseudo-oPe
The control

$TITLE (, text')

is the same as the MACRO-SO SUB TTL <text> pseudo-oPe

The INTEL operands PAGE and INPAGE generate Q errors when
used with the MACRO-SO CSEG or DSEG pseudo-ops. These
errors are warnings; the assembler ignores the operands.

When MACRO-SO is entered, the default for the origin is Code
Relative O.

With the INTEL ISIS assembler, the default is Absolute O.

MACRO-SO ASSEMBLER PAGE 2-37

With MACRO-SO, the dollar sign ($) is a defined constant
that indicates the value of the location counter at the
start of the statement. Other assemblers may use a decimal
point or an aster1SK. Other constants are defined by
MACRO-SO to have the following values:

A=7
H=4

B=O
L=5

C=l
M=6

2.12 FORMAT OF LISTINGS

D=2
SP=6

E=3
PSW=6

On each page of a MACRO-SO listing, the first two lines have
the form:

[TITLE text]
[SUBTTL text]

where:

M80 3.3 PAGE x[-y]

1. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given in the source program.

2. x is the major page number, which is incremented
only when a form feed is encountered in the source
file. (When using Microsoft's EDIT-80 text editor,
a form feed is inserted whenever a page mark is
done.) When the symbol table is being printed, x =
S.

3. y is the minor page number, which is incremented
whenever the .PAGE pseudo-op is encountered in the
source file, or whenever the current page size ~as
been filled.

4. SUBTTL text is the text supplied with the SUBTTL
pseudo-op, if one was given in the source program.

Next, a blank line is printed, followed by the first line of
output.

A line of output on a MACRO-80 listing has the following
form:

[crf#] [error] loc#m Ixx I xxxx/ •.. source

If cross reference information is being output, the first
item on the line is the cross reference number, followed by
a tab.

A one-letter error code followed by a space appears next on
the line, if the line contains an error. If there is no
error, a space is printed. If there is no cross reference
number, the error code column is the first column on the
listing.

MACRO-80 ASSEMBLER PAGE 2-38

The value of the location counter appears next on the line.
It is a 4-digit hexadecimal number or 6-digit octal number,
depending on whether the /0 or /H switch was given in the
MACRO-80 command string.

The character at the end of the location
the mode indicator. It will be one
symbols:

"

<space>
*

Code Relative
Data Relative
COMMON Relative
Absolute
External

counter value is
of the following

Next, three spaces are printed followed by the assembled
code. One-byte values are followed by a space. Two-byte
values are followed by a mode indicator. Two-byte values
are printed in the opposite order they are stored in, i.e.,
the high order byte is printed first. Externals are either
the offset or the value of the pointer to the next External
in the chain.

If a line of output on a MACRO-80 listing is from an INCLUDE
file, the character 'e' is printed after the assembled code
on that line. If a line of output is part of a text
expansion (MACRO, REPT, IRP, IRPC) a plus sign '+' is
pr1ntea a~ter tne assemOLea eoae on tnat Llne.

The remainder of the line contains the line of source code,
as it was input.

Example:

OC49 3A A9IZ' C+ LDA LCOUNT

'C+' indicates this line is from an INCLUDE file and part of
a macro expansion.

MACRo-aD ASSEMBLER PAGE 2-39

2.12.1 Symbol Table Listing

In the symbol table listing, all the macro names in the
program are listed alphabetically, followed by all the
symbols in the program, listed alphabetically. After each
symbol, a tab is printed, followed by the value of the
symbol. If the symbol is Public, an I is printed
immediately after the value. The next character printed
will be one of the following:

U

C

*
<space>

"

Undefined symbol.

COMMON block name. (The "value" of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.}

External symbol.

Absolute value.

Program Relative value.

Data Relative value.

COMMON Relative value.

CHAPTER 3

CREF-SO CROSS REFERENCE FACILITY

In order to generate a cross reference listing, the
assembler must output a special listing file with embedded
control characters. The MACRO-SO command string tells the
assembler to output this special listing file. /C is the
cross reference switch. When the /e switch is encountered
in a MACRO-SO command string, the assembler opens a .CRF
file instead of a .LST file. (See Section 2.6.27 for the
.CREF and .XCREF pseudo-ops.)

Examples:

*=TEST/C

*T,U=TEST/C

Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF.

Assemble file TEST.MAC and
create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, run the cross reference
facility by typing CREFSO. CREFSO prompts the user with an
asterisk. CREF80 generates a cross reference listing from
the .CRF file that was created during assembly. The CREF80
command format is:

*listing file=source file

The default extension for the source file is .CRF.
are no switches in CREF80 commands.

There

CREF-80 CROSS REFERENCE FACILITY

Examples of CREF-80 command strings:

*=TEST

*T=TEST

Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

Examine file TEST.CRF and
generate a cross reference
listing file T.LST.

PAGE 3-2

Cross reference listing files differ from ordinary listing
files in that:

1. Each source statement is numbered with a cross
reference number.

2. At the end of the listing, variable names appear in
alphabetic order along with the numbers of the
lines on which they are referenced or defined.
Line numbers on which the symbol is defined are
flagged with 'i'.

CHAPTER 4

LINK-SO LINKING LOADER

4.1 RUNNING LINK-SO

The command to run LINK-SO is

LSD

LINK-SO returns the prompt
accept commands.

4.2 COMMAND FORMAT

n*n , indicating it is ready to

Each command to LINK-SO consists of a string of object
filenames separated by commas. These are the files to be
loaded by LINK-SO. The command format is:

objfilel,objfile2, ••• objfilen

The default extension for all filenames is REL. Command
lines are supported, that is, the invocation and command may
be typed on the same line.

Example:

LSD MYPROG,YRPROG

LINK-SO LINKING LOADER PAGE 4-2

Any filename in the LINK-SO command string can also specify
a device name. The default device name with the CP/M
operating system is the currently logged disk. The default
device with the ISIS-II operating system is disk drive o.
The format is:

devl:objfilel,dev2:objfile2, ••• devn:objfilen

The device names are as listed in Section 2.2.1.

Example:

LSO MYPROG,A:YRPROG

After each line is typed, LINK-SO will load the specified
files. After LINK finishes this process, it will list all
symbols that remained undefined followed by an asterisk.

Example:

*MAIN

DATA 0100 0200

SUBRl * (SUBRI is undefined)

*SUBRI

DATA 0100 0300

*
Typically, to execute a MACRO-SO program and subroutines,
the user types the list of filenames followed by /G (begin
execution). To resolve any external, undefined symbols, you
can first search your library routines (See Chapter 5,
LIB-SO) by appending the filenames, followed by IS, to the
loader command string.

*MYLIB/S

*/G

Searches MYLIB.REL for unresolved
global symbols

Starts execution

4.2.1 LINK-SO Switches

A number of switches may be given in the LINK-SO command
string to specify actions affecting the loading or execution
of the program{s). Each switch must be preceded by a slash
(/) .

LINK-80 LINKING LOADER PAGE 4-3

Switches may be placed wherever applicable in the command
string:

1. At command level. It is possible for a switch to
be the entire LINK-80 command, or to appear first
in the command string. For example:

*/G Tells LINK-80 to begin execution
of program(s) already loaded

*/M List all global references
from program(s) already loaded

*/P:200,FOO Load FOO, with program area
beginning at address 200

2. Immediately after a filename. An S or N switch may
refer to only one filename in the command string.
Therefore, when the S or N switch is required, it
is placed immediately after that filename,
regardless of where the filename appears in the
command string. For example:

*MYLIB/S,MYPROG
Search MYLIB.REL and load necessary
library modules, then load MYPROG~REL.

*MYPROG/N,MYPROG/E
Load MYPROG.REL, save MYPROG.COM
on disk and exit LINK-80.

3. At the end of the command string. Any required
switches that affect the entire load process may be
appended at the end of the command string. for
example:

*MYPROG/N,MYPROG/M/E
Open a CP/M COM file called
MYPROG.COM, load MYPROG.REL
and list all global refer­
ences. Exit LINK-80 and save
the COM file.

MYLIB/S,MYSUB,MYPROG/N,MYPROG/M/G
Search MYLIB.REL, load and link
MYSUB.REL and MYPROG.REL,
open a CP/M COM file
called MYPROG.COM, list
all global references, save the
COM file, and execute MYPROG.

LINK-SO LINKING LOADER PAGE 4-4

The available switches are:

Switch

R

E or E:Name

G or G:Name

N

Action

Reset. Put loader back in its initial state.
Use /R if you loaded the wrong file by
mistake and want to restart. /R takes effect
as soon as it is encountered in a command
string.

Exit LINK-SO and return to the operating
system. The system library will be searched
on the current disk to satisfy any existing
undefined globals. Before exiting, LINK-SO
prints three numbers: the start address, the
address of the next available byte, and the
number of 2S6-byte pages used. The optional
form E:Name (where Name is a global symbol
previously defined in one of the modules)
uses Name for the start address of the
program. Use /E to load a program and exit
back to the monitor.

Start execution of the program as soon as the
current command line has been interpreted.
",1-. _ _"'" __ L _.,...,... ~ _. '...., - 1

--- - -.J. - -_ ---- --.1 -- -,- ...,;'--....,"' ... \.,.."'"' ""'..... '- e

current disk to satisfy any existing
undefined globals if they exist. Before
execution actually begins, LINK-SO prints
three numbers and a BEGIN EXECUTION message.
The three numbers are the start address, the
address of the next available byte, and the
number of 2S6-byte pages used. The optional
form G:Name (where Name is a global symbol
previously defined in one of the modules)
uses Name for the start address of the
program.

If a <filename>/N is specified, the program
will be saved on disk under the selected name
(with a default extension of .COM for CP/M)
when a /E or /G is done. A jump to the start
of the program is inserted if needed so the
program can run properly (at IOOH for CP/M).

LINK-80 LINKING LOADER PAGE 4-5

P and D

u

M

S

/P and /D allow the origin(s) to be set for
the next program loaded. /P and /D take
effect when seen (not deferred), and they
have no effect on programs already loaded.
The form is /P:<address> or /D:<address>,
where <address> is the desired origin in the
current typeout radix. (Default radix is
hex. /0 sets radix to octal; /H to hex.)
LINK-80 does a default /p:<link origin>+3
(i.e., 103H for CP/M and 4003H for ISIS) to
leave room for the jump to the start address.
NOTE: Do not use /P or /D to load programs
or data into the locations of the loader's
jump to the start address (IOOH to 102H for
CP/M) unless it is to load the start of the
program there. If programs or data are
loaded into these locations, the jump will
not be generated.

If no /D is given, data areas are loaded
before program areas for each module. If a
/D is given, all Data and Common areas are
loaded starting at the data origin and the
program area at the program origin. Example:

*/P:200,FOO
Data 200 300
*/R
*/P:200 /D:400,FOO
Data 400 480
Program 200 280

List the origin and end of the program and
data area and all undefined globals as soon
as the current command line has been
interpreted. The program information is only
printed if a /D has been done. Otherwise,
the program is stored in the data area.

List the origin and end of the program and
data area, all defined globals and their
values, and all undefined globals followed by
an asterisk. The program information is only
printed if a /D has been done. Otherwise,
the program is stored in the data area.

Search the filename immediately preceding the
/S in the command string to satisfy any
undefined globals.

LINK-80 LINKING LOADER PAGE 4-6

4.2.2 CP/M LINK-80 Switches

The following switches apply to CP/M versions only.

x

Y

If a filename/N was specified, /X will cause
the file to be saved in Intel ASCII HEX
format with an extension of HEX.

Example: FOO/N/X/E will create an Intel
ASCII HEX formatted load module named
FOO.HEX.

If a filename/N was specified, /Y will create
a filename.SYM file when /E is entered. This
file contains the names and addresses of all
Globals for use with Digital Research's
Symbolic Debugger, SID and ZSID.

Example: FOO/N/Y/E creates FOO.COM and
FOO.SYM. MYPROG/N/X/Y/E creates MYPROG.HEX
and MYPROG.SYM.

4.2.3 Sample Links

LINK AND GO

A>L80
*EXAMPL,EXMPLI/G
DATA 3000 30AC
[304F 30AC 49]

[BEGIN EXECUTION]

A>

1792
14336

-16383
14

112

LINK AND SAVE

14336
-16383

14
112
896

A>L80
*EXAMPL,EXAMPLl,EXAM/N/E
DATA 3000 30AC
[304F 30AC 49]
A>

Loads and links EXAMPL.REL, EXMPLl.REL and creates
EXAM. COM.

LINK-80 LINKING LOADER

4.3 FORMAT OF LINK COMPATIBLE OBJECT FILES

NOTE

Section 4.3 is reference
material for users who wish to
know the load format of
LINK-80 relocatable object
files. Most users will want
to skip this section, as it
does not contain material
necessary to the operation of
the package.

PAGE 4-7

LINK-compatible object files consist of a bit stream.
Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below. Use of a bit stream
for relocatable object files keeps the size of object files
to a minimum; thereby decreasing the number of disk
reads/writes.

There are two basic types of load items: Absolute and
Relocatable. The first bit of an item indicates one of
these two types. If the first bit is a 0, the following 8
bits are loaded as an absolute byte. If the first bit is a
1, the next 2 bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16 bits
after adding the current Program base.

10 Data Relative. Load the following 16 bits after
adding the current Data base.

11 Common Relative. Load the following 16 bits
after adding the current Common base.

Special LINK items consist of the bit stream 100 followed
by:

a four-bit control field

an optional A field consisting of a two-bit
address type that is the same as the two-bit
field above except 00 specifies absolute address

an optional B field consisting of 3 bits that
give a symbol length and up to 8 bits for each
character of the symbol

LINK-80 LINKING LOADER PAGE 4-8

A general representation of a special LINK item is:

1 00 xxxx yy nn zzz + characters of symbol name

A field B field

xxxx
yy
nn
zzz

Four-bit control field (0-15 below)
Two-bit address type field
Sixteen-bit value
Three-bit symbol length .field

The following special types have a B-field only:

a "Entry symbol (name for search)
1 Select COMMON block
2 Program name
3 Request library search
4 Extension LINK items (see below)

The following special LINK items have both an A field and a
B field:

5 Define COMMON size
6 Chain external (A is head of address chain, B is

name of external symbol)
; no F'; .,., n n.,., +- ,... .. ~ "''''.;........ 17\ .; ~ -.riri,.....,........ n.;....... _ - ,

The following special LINK items have an A field only:

8 External - offset. Used for JMP and CALL to
externals

9 External + offset. The A value will be added to
the two bytes starting at the current location
counter immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain, replace all

entries in chain with current location counter.
The last entry in the chain has an address field
of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

LINK-aD LINKING LOADER PAGE 4-9

The following special Link item has neither an A nor a B
field:

15 End file

An Extension LINK item follows the general format of a
B-field-only special LINK item, but contents of the B-field
are not a symbol name. Instead, the symbol area contains
one character to identify the type of Extension LINK item,
followed by from 1 to 7 characters of additional
information.

Thus, every Extension LINK item has the format:

1 00 0100 zzz i jjjjjjj

where

zzz may be any three bit integer (with 000
representing a) ,

i is an eight bit Extension LINK item type
identifier, and

jjjjjjj are zzz-l eight bit characters of
information whose significance depends on i

At present, there is only one Extension LINK item:

i = X'35' COBOL overlay segment sentinel

zzz = 010 (binary)

j = COBOL segment number -49 (decimal)

When the overlay segment sentinel is encountered by the
linker, the current overlay segment number is set to the
value of j+49. If the previously existing segment
number was non-zero and a IN switch is in effect, the
data area is written to disk in a file whose name is the
current program name and whose extension is Vnn, where
nn are the two hexadecimal digits representing the
number j+49 (decimal).

LINK-SO LINKING LOADER PAGE 4-10

4.4 LINK-SO ERROR MESSAGES

LINK-SO has the following error messages:

?No Start Address

?Loading Error

?Out of Memory

?Command Error

?<file> Not Found

A /G switch was issued, but no main
program had been loaded.

The last file given for input was not a
properly formatted LINK-SO object file.

Not enough memory to load program.

Unrecognizable LINK-SO command.

<file>, as given in the command string,
did not exist.

%2nd COMMON Larger /XXXXXX/
The first definition of COMMON block
/XXXXXX/ was not the largest definition.
Reorder module loading sequence or
change COMMON block definitions.

%Mult. Def. Global YYYYYY
More than one definition for the global
I ,: "" ~, \ ,.. .. ",.... '"' , 'I: T'\7''l:7'1:.7' ",'U" • __ ,.. __ ._ _ _ .• _ . .:J . ~. - - - --
during the loading process.

%OVerlaYing { program} Area
Data

,Start = xxxx
,Public = <symbol name> (xxxx)
,External = <symbol name> (xxxx)
/P will cause already loaded
be destroyed.

?Intersecting

A /0 or
data to

{
program} Area
Data

The program and data area intersect and
an address or external chain entry is in
this intersection. The final value
cannot be converted to a current value
since it is in the area intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given, the
symbol specified was not defined.

LINK-SO LINKING LOADER PAGE 4-11

Or ig in f Above) Loader Memory, Move Anyway (Y or N)?
\ Below

After a IE or /G was given, either the
data or program area has an or1g1n or
top which lies outside loader memory
(i.e., loader origin to top of memory).
If a Y <cr> is given, LINK-SO will move
the area and continue. If anything else
is given, LINK-SO will exit. In either
case, if a IN was given, the image will
already have been saved.

?Can't Save Object File
A disk error occurred when the file was
being saved.

4.5 PROGRAM BREAK INFORMATION

LINK-80 stores the address of the first free location in a
global symbol caiiea $MEMRY 1r that symbol has been defined
by a program loaded. $MEMRY is set to the top of the data
area +1.

NOTE

If 10 is given and the data
or1g1n is less than the
program area, the user must be
sure there is enough room to
keep the program from being
destroyed. This is
particularly true with the
disk driver for FORTRAN-SO
which uses $MEMRY to allocate
disk buffers and FCB's.

CHAPTER 5

LIB-80 LIBRARY MANAGER

(CP/M Versions Only)

LIB-80 is the object time library manager for CP/M versions
of FORTRAN-80 and COBOL-80. LIB-80 will be interfaced to
other operating systems in future releases of FORTRAN-80 and
COBOL-80.

WARNING

Read this chapter carefully
and make a back-up copy of
your libraries before using
LIB. It is not difficult to
destroy a library with LIB-80.

5.1 LIB-80 COMMANDS

To run LIB-80, type LIB followed
LIB-80 will return the prompt "*"
accept commands. Each command
information about a library or
library under construction.

by a carriage return.
indicating it is ready to
in LIB-80 either lists
adds new modules to the

Commands to LIB-80 consist of an optional destination
filename which sets the name of the library being created,
followed by an equal sign, followed by module names
separated by commas. The default destination filename is
FORLIB.LIB. Examples:

*NEWLIB=FILEl <MOD2> , FILE3,TEST

*SIN,COS,TAN,ATAN

LIB-SO LIBRARY MANAGER PAGE 5-2

Any command specifying a set
modules selected onto the
filename given. Therefore,

of modules
end of the

concatenates the
last destination

*FILEl,FILE2 <BIGSUB>, TEST

is equivalent to

*FILEI
*FILE2 <BIGSUB>
*TEST

5.1.1 Modules

A module is typically a FORTRAN or COBOL subprogram,
program or a MACRO-SO assembly that contains
statements.

main
ENTRY

The primary function of LIB-SO is to concatenate modules in
.REL files to form a new library. In order to extract
modules from previous libraries or .REL files, a powerful
syntax has been devised to specify ranges of modules within
a .REL file.

The simplest way to specify a module within a file is simply
to use the name of the module. For example:

SIN

But a relative quantity plus or minus 255 may also be used.
For example:

SIN+l

specifies the module after SIN and

SIN-l

specifies the one before it.

Ranges of modules may also be specified by using two dots:

.• SIN means all modules up to and including
SIN.

SIN •. means all modules from SIN to the end
of the file.

SIN •• COS means SIN and COS and all the
modules in between.

LIB-SO LIBRARY MANAGER PAGE 5-3

Ranges of modules and relative offsets may also be used in
combination:

SIN+l •• COS=l

To select a given module from a file, use the name of the
file followed by the module(s) specified enclosed in angle
brackets and separated by commas:

FORLIB <SIN •• COS>

or

MYLIB.REL <TEST>

or

BIGLIB.REL <FIRST,MIDDLE,LAST>

etc.

If no modules are selected from a file, then
in the file are selected:

TESTLIB.REL

5.2 LIB-SO SWITCHES

NOTE

/E will destroy your current
library if there is no new
library under construction.
Exit LIB-SO using Control-C if
you are not revising the
library.

a " ~~ the modules

A number of switches are used to control LIB-SO operation.
These switches are always preceded by a slash:

/0 Octal - set Octal typeout mode for /L
command.

/H Hex - set Hex typeout mode for /L
command (default).

/U List the symbols which would remain
undefined on a search through the
file specified.

LIB-SO LIBRARY MANAGER

/L List the modules in the files specified
and symbol definitions they contain.

IC (Create) Throwaway the library under
construction and start over.

/E Exit to CP/M. The library under
construction (.LIB) is revised to .REL
and any previous copy is deleted.

NOTE

IE will destroy your current
library if there is no new
library under construction.
Exit LIB-SO using Control-C if
you are not revising the
library.

IR Rename - same as IE but does not exit
to CP/M on completion.

5.3 LIB-SO LISTINGS

PAGE 5-4

To list the contents of a file in cross reference format,
use IL:

*FORLIB/L

When building libraries, it is important to order the
modules such that any intermodule references are "forward."
That is, the module containing the global reference should
physically appear ahead of the module containing the entry
point. Otherwise, LINK-SO may not satisfy all global
references on a single pass through the library.

Use Iu to list the symbols which could be undefined in a
single pass through a library. If a module in the library
makes a backward reference to a symbol in another module, /U
will list that symbol. Example:

*SYSLIB/U

NOTE: Since certain modules in the standard FORTRAN and
COBOL systems are always force-loaded, they will be listed
as undefined by /U but will not cause a problem when loading
FORTRAN or COBOL programs.

Listings are currently always sent to the terminal; use
control-P to send the listing to the printer.

LIB-80 LIBRARY MANAGER

5.4 SAMPLE LIB SESSION

BUILDING A LIBRARY:

A>LIB
*TRANLIB=SIN,COS,TAN,ATAN,ACOG
*EXP
*/E
A>

LISTING A LIBRARY:

A>LIB *TRANLIB.LIB/U
*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

*Control-C
A>

5.5 SUMMARY OF SWITCHES AND SYNTAX

/0 Octal - set listing radix
/H Hex - set listing radix
/U List undefineds
/L List cross reference
/C Create - start LIB over
/E Exit - Rename .LIB to .REL and exit
/R Rename - Rename .LIB to .REL

module::=module name {+ or - number}

module sequence ::=

module I •• module I module •• I modulel •• module2

PAGE 5-5

file specification::=filename {<module sequence>{,<module sequence>}}

command::= {library filename=} {list of file specifications}
{list of switches}

$INCLUDE •
$MEMRY •

.COMMENT •

.CREF • • • •
• DEPHASE • • • •
• LALL • • •
.LFCOND •••••
.LIST •••••••
• PAGE • • • • • • • •
.PHASE •
.PRINTX ••••••

INDEX

• 2-14
• • • 4-11

• 2-16
• • • 2-23
• • • 2-25

• 2-23
• • • 2-20
• • • 2-20

• • 2-37
• • • 2-25

2-17
• RADIX • • •• 2-6, 2-17
.REQUEST • • • • • • • 2-18
.SALL • • • • • •• 2-23
• SFCOND • • • • 2-20
.TFCOND • •• • ••••• 2-20
.XALL • • • • • • • • • • 2-23
• XCREF • • • • • • 2-23
.XLIST • • • • • • • • 2-20

Absolute memory • • • • •
Arithmetic operators ••
ASEG • • • •

• • 2-8, 2-11, 2-38
• 2-8

• • 2-8, 2-11, 2-24

Block pseudo ops • • • •

Character constants
Code Relative
Command format • • • • •
Comments • • •
COMMON • • •

Conditionals • • •••
Constants • • • • •
CP/M • . • • •

• 2-25

• • 2-7
• 2-11, 2-24 to 2-25, 2-38
• 2-1, 3-1, 4-1, 5-1
• 2-6, 2-16

2-8, 2-11, 2-24 to 2-25,
2-38 to 2-39

• • 2-19
• 2-6

• •• 2-2 to 2-3, 4-4 to 4-6,
5-1, 5-4

Cross reference facility ••• 2-4, 2-23, 2-37, 3-1
CSEG • • • • • 2-8, 2-11, 2-24, 2-36

Data Relative

DB •
DC •
Define Byte • • • •
Define Character •
Define Origin
Define Space •
Define Word ••••••
os
DSEG • • • • • •
ow • . . . • •

• •• 2-8, 2-12, 2-24 to 2-25,
2-38

• 2-6, 2-11
• • • 2-12

• 2-6, 2-11
2-12

• 2-15
• 2-12

'1_1"l
• &"'-.J,...J

• • 2-12
• 2-8, 2-12, 2-24, 2-36

· • 2-13

EDIT-80 • 2-5, 2-37
ELSE • • • 2-20
END • • • . • 2-13
ENDIF • • • • • 2-20
ENDM • . • 2-25, 2-29
ENTRY • • • • • • 2-13, 5-2
EQU • . 2-14 to 2-15
Error codes ••••••••• 2-35, 2-37
Error messages • • •• 2-36, 4-10
EXITM • • • • • • • • • • • • 2-29
EXT • • • • • 2-14
Externals
EXTRN • • •

• • 2-9, 2-14, 2-35, 2-38
• 2-14

IF • • • 2-19
IF1 ••• • • • • • 2-19
IF2 ••• • • • • • 2-19
IFB • • • • • • • • • 2-19
IFDEF • • • • • • • • • 2-19
IFDIF • • • • • • • 2-19
IFE • • • • • • • • • • • • • 2-19
IFF • • • • 2-19
IFIDN • • • • • • • • • • • • 2-19
IFNB • • • • • • 2-19
1FT • • •• ••••••• 2-19
INCLUDE • • • • 2-14
INTEL • • • • • • • • • 2-36
IRP ••••••• 2-23, 2-25, 2-27
J..t'U::"\... • • • • •• ~-~~, ~-~~, ~-~I

ISIS-II • 2-2 to 2-3, 2-5, 4-5

LIB-80 • •
Library manager
LINK-80

Listings •

LOCAL • • •
Logical operators

MACLIB • • • • •

. 5-1
• • • 5-1

•••••• 2-11, 2-13,
4-1, 5-4

••••••• 2-14, 2-20,
3-2, 5-4

• • • • • • • 2-30
• • • • 2-8

2-18, 2-25,

2-37 to 2-38,

MACRO • • • • • • •
Macro operators
Modes

• • • • 2-14
••••• 2-23, 2-25 to 2-26, 2-28 to 2-29

Modules

NAME ••

Operators • • • •
ORG • • • •

• • • 2-30
· 2-8
· 5-2

• • 2-15

• • • • 2-8
· •• 2-11, 2-13, 2-15, 2-24

PAGE • • • • 2-15, 2-36
Program Relative • • • • • • • 2-8
PUBLIC. . ••••••• 2-5, 2-13, 2-39

REPT • • • 2-23, 2-25 to 2-26

SET • 2-15

Strings • • •
SUBTTL •
Switches
Symbol table •

2-7
• • 2-16, 2-36 to 2-37
• • 2-3, 3-1, 4-2, 5-3, 5-5
• • 2-37, 2-39

TITLE • 2-15 to 2-16, 2-37

MiCrOSOft Utility ::;oftware Manual
121797-001

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

NAME ________________________ __ DATE _____________ __

TITLE ___________________________________ ___

COMPANYNAME/DEPARTMENT ___________________________ __
ADDRESS __________________________________ __

CITY ______________ _ STATE ______ __ ZIP CODE ______ _

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS •••

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

