
EDIT REFERENCE MANUAL 

Copyright@ 1981, Intel Corporation 
Intel Corporation, 3065 ~owers t~venue, Santa Clara, California 95051 Order Number: 143587-001 





.. 

EDIT REFERENICE MANUAL 
Order Number: 143587-001 

Copyright © 1981 Intel Corporation 
1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I 



11 

REV. REVISION HISTORY PRINT 
DATE 

-001 Original Issue 8/81 

Additional copies of this manual or other Intel literature may be obtained from: 

Literature Department 
Intel Corporation 
3065 Bowers Avenue 
Santa Clara, CA B5051 

The information in this document is subject to change without notice. 

Intel Corporation makes no warranty of any kind with regard to this material, including, but 
not limited to, the implied warranties of merchantability and fitness for a particular purpose. 
Intel Corporation assumes no responsibility for any errors that may appear in this document. 
Intel Corporation makes no commitment to update nor to keep current the information 
contained in this document. 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry 
embodied in an Intel product. No other circuit patent licenses are implied. 

Intel software products are copyrighted by and shall remain the property of Intel 
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software 
license, or as defined in ASPR 7-104.9(a)(9). 

No part of this document may be copied or reproduced in any form or by any means without 
the prior written consent of Intel Corporation. 

The following are trademarks of Intel Corporation and its affiliates and may be used only to 
identify Intel products: 

BXP Intelevision Micromap 
CREDIT InteIlec Multibus 
i iRMX Multimodule 
ICE iSBC Plug-A-Bubble 
iCS iSBX PROMPT 
im Library Manal{er Promware 
INSITE MCS RMX/80 
Intel Megachassis System 2000 
Intel Micromainframe UPI 

}JScope 

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix. 



PREFACE 

This manual documents EDIT, an iRMX 86-based text editor which allows you to 
create and modify files. It contains introductory and tutorial material as well as 
detailed descriptions of all the EDIT commands. 

Reader Level 

This manual is intended for both the inexperienced and experienced EDIT user. 
The unfamiliar user may begin at the introduction, continue through the tutorial, 
and finally learn advanced editing techniques. 

On the other hand, the informed user can use the Command Dictionary and the 
alphabetically tabbed command chapter (Chapter 5) for quick reference. 

Conventions 

This manual contains examples of EDIT commands entered at the terminal. In the 
examples, the lines that you are supposed to enter are printed in boldface type. 
This distinguishes your input from EDIT's output. This manual also indicates an 
end-of-line with a (c/r) and tab spacing with a (T) for the first few examples. There­
after, the carriage return and tabs are not explicitly shown. 

Related Publication 

The following manual provides additional background and reference information. 

• iRMX 86™ Human Interface Reference Manual, 9803202 

III 



,....--------------------------------------..., 

CHAPTER 1 
INTRODlTCTION 

PAGE 
What is an Editor? ............................ 1-1 
What is EDIT? ................................ 1-1 
How Does EDIT Work? ........................ 1-1 
Pictorial Reprensentation of Syntax ........... 1-1 

CHAPTER 2 
TUTORIAL 
Invoking EDIT ................................ 2-1 
Error Message ................................. 2-1 
General Form .................................. 2-1 
Creating The Text - Appending .............. 2-1 
Adding Line Numbers ......................... 2-2 
Printing ....................................... 2-2 
Deleting ....................................... 2-4 
Inserting ...................................... 2-4 
Moving ........................................ 2-4 
,Joining ........................................ 2-4 
Using Line Numbers .......................... 2-5 
Substituting ................................... 2-6 
Ch anging ...................................... 2-7 
Text Copying .................................. 2-8 
Writing The Program Into A File .............. 2-8 
Quitting EDIT ................................. 2-9 
Re-Entering EDIT ............................. 2-9 
Searching ...................................... 2-10 

Forward Searching .......................... 2-10 
Forward Searching With Commands ........ 2-11 
Reverse Searching ........................... 2-11 

Global Editing ................................. 2-11 
Changing The File Name ...................... 2-13 
Exiting EDIT .................................. 2-13 

CHAPTEH 3 
INVOKING EDIT 
I<'ile Name ..................................... 3-1 
Echo Control .................................. 3-1 
Line Control ................................... 3-2 
Macro-Space Control ........................... 3-2 

iv 

CONTENTS 

CHAPTER 4 
SPECIAL CHARACTERS AND 
COMMANDS PAGE 
Period ......................................... 4-1 

Matching Using the Period .................. 4-2 
Dollar Sign .................................... 4-2 

Dollar Sign - End of Line .................. 4-2 
Carriage Return ............................... 4-3 
Forward Search ............................... 4-3 
Reverse Search ................................ 4-4 
lJ pArrow ..................................... 4-5 
Sq uare Brackets ............................... 4-5 
Asterisk ....................................... 4-7 
Alnpersand .................................... 4-7 
Backslash ..................................... 4-8 

CHAPTER 5 
COMMANDS 
Common Command Syntax .................... 5-1 

Addresses .................................... 5-1 
Separators ................................... 5-3 
Commands .................................. 5-4 
()ptions ...................................... 5-4 
I<'ile Name ................................... 5-4 
Pattern ...................................... 5-4 

Command Dictionary .......................... 5-5 
A - Append Or Add To ..................... 5-7 
B - Back One Screen ....................... 5-9 
C - Change ................................. 5-10 
D - Delete .................................. 5-11 
.E - Edit .................................... 5-12 
F - File Name .............................. 5-13 
G - Global .................................. 5-14 
H - Sets Tab Length ....................... 5-16 
I - Insert ................................... 5-17 
J - Join .................................... 5-18 
K - Marks A Line .......................... 5-19 
L - List Nonprinting ASCII Characters .... 5-20 
M - Move .................................. 5-21 
N - Number ................................ 5-22 
o - Over One Screen ....................... 5-23 
P - Print ................................... 5-24 
Q - Quit .................................... 5-26 
R - Read ................................... 5-27 
S - Substitute .............................. 5-28 
T - Text Copy .............................. 5-:n 
U - User Macro ............................ 5-:32 
V - Exclusive Global ....................... 5<3:3 
W - Write .................................. 5-34 
X - t:xit .................................... 5-:36 
(al - Command File ......................... 5-38 
C/R - Displaying A Specific Line .......... 5-:39 
* - Comment ............................... 5-40 



CONTENTS (Continued) 

CHAPTER 6 
ADVANCED EDITIN'G PAGE 
Command Files ................................ 6-1 

Command Files Within Command Files ..... 6-3 
The Macro Feature ............................ 6-3 

Defining A Macro ........................... 6-3 
Line-Range Macros .......................... 6-5 
Macros And Command F:iles ................ 6-5 
ED.MA.C ..................................... 6-6 
Macros Within Macros ....................... 6-7 
Disregarding Macros Within A Macro ....... 6-7 
Interpreting Commands In Macros .......... 6-9 

Special Interpretations ..................... 6-10 

APPENDIX A 
ASCII CODES 

APPENDIX B 
IMPLEMENTATION PROBLEMS 

TABLE TITLE PAGE 

A-1 ASCII Code List ..................... A-1 

TABLES 

v 





What Is An Editor? 

CHAPTER 1 
INTRODUCTION 

An editor is a program which allows you to create and modify files. All interactive 
computing systems have some form of editing facility; however, the features and 
editing capabilities can vary greatly. 

A typical line editor consists of a set of commands which you can use both for quick 
changes and for more complex editing functions. Line editors are generally stream­
lined products. They display only the text for which you specifically ask. Because a 
line editor is not dependent upon a screen, it is useful both in systems which have 
screens and in systems which have a hard-copy terminal such as a teletypewriter. 

What Is E[)IT? 

EDIT is an interactive line editor. It is not only streamlined but also very powerful. 
You can use it to create and modify text that can be anything from a document to a 
sophisticated program. The best way to learn EDIT is to read this manual while 
using EDIT to do the examples. You should also read the descriptions referenced in 
the Command Dictionary because not all the commands are included in the 
Tutorial. 

If you are already familiar with EDIT's basic commands you may wish to skip the 
Tutorial and use the Command Dictiona:ry exclusively. This dictionary tells you 
where to find the pictorial syntax and a detailed description of the desired 
command. This manual also includes chapters on Special Characters and 
Advanced Editing that describe more sophisticated editing techniques. 

How Does EDIT Work? 

The EDIT program saves your text on temporary, internal storage called a buffer. 
This buffer allows you to create and change text before you put it into more 
permanent storage. If you want to edit a file that is already in secondary storage, 
EDIT copies the contents of that file into the buffer. You can then begin to alter the 
text. However, the content of the file on secondary storage does not change until 
you execute one of the EDIT commands specifically designed to write the text in the 
buffer onto secondary storage. 

EDIT also maintains a marker which points to something called the "current line." 
EDIT keeps track of the line that you are editing (the current line) by moving the 
marker in response to the commands you type. The marker remains at this position 
until another command causes it to move. Some commands cause the marker to 
move whereas others do not. Chapter 5 describes the marker position for individual 
commands. 

Pictorial Representation of Syntax 

This manual uses a schematic device to illustrate the syntax of commands. The 
schematic consists of what looks like an arerial view of a model railroad setup, with 
syntactic entities scattered along the track. Imagine that a train enters the system 
at the upper left, drives around as much as it can or wants to (sharp turns and 
backing up are not allowed), and finally departs at the lower right. The command it 
generates in so doing consists of the syntactic entities that it encounters on its 
journey. The following pictorial syntax shows two ways (A or B) of reaching "C." 

1-1 



Introduction EDIT Reference Manual 

1-2 

x-116 

The schematics do get more complicated, but just remember that you can begin at 
any point on the left side of the track and take any route to get to the end as long as 
you do not back up. Trace the following track and note that there are many 
different combinations possible. 

x-111 



CHAPTER 2 
TUTORIAL 

This tutorial is designed to illustrate most of the EDIT commands by having you 
create and alter text. The text you will work with is a PL/M-86 program. This pro­
gram will make change for a dollar in the form of half dollars, quarters, dimes, 
nickels, and pennies. The text enclosed in the symbols" 1*----* I" is a comment in the 
PL/M language and is ignored by the PL/M-86 compiler. These comments are 
useful only as an aid in the reading of the program. However, you do not have to 
understand PL/M-86 if you treat the program simply as a document or as lines of 
prose. If you do know the language you may catch some mistakes as you type the 
following program. Do not correct the program as you type. The mistakes are 
intentional and you will correct them later with the EDIT commands. 

Invoking EI)IT 

Before you can create any text you must first invoke the EDIT program. The 
simplest way to enter EDIT is to type: 

ED (c/r) 

EDIT responds by identifying itself and giving you an asterisk (*) as a prompt. An 
example of a sign-on message is as follows. 

iRMX 86 Line Editor, V1.0 

* 
You can enter commands in upper- or lower .. case but to avoid confusion this manual 
will use upper-case. 

Error Mess;age 

If you type anything that EDIT doesn't understand, it will respond with a question 
mark (?). This is the only error message in the EDIT program. So whether you have 
made a syntactical error or a typographical error, EDIT will respond with a 
question mark. 

General Form 

A general form for a command in this manual consists of hyphenated words and a 
capitalized command letter. When you enter the command, you will substitute 
actual line numbers or symbols for the hyphenated words. In contrast, the 
command letter appears exactly as it should be entered. 

Creating The Text - Appending 

In order to create some text you will have to use the Append command (A). Append 
the following program as shown. You may use either tabs or blanks to obtain 
indentation. 

2-1 



Tutorial 

2-2 

*A (c/r) 
make$change: (c/r) 
(T) DO; 
(T) (T) DECLARE money(8) BYTE; (T) (T) 

DECLARE change BYTE; 
DECLARE change BYTE; 

next$money: (T) (T) (T) (T) 
(T) (T) (T) (T) DECLARE X BYTE; 

money(l) = X; 
(T) (T) (T) PROCEDURE(X); 

I = 1+1; 
change = change - X; 

END 
next$money; 

* 

change -= 100 -
I == 0; 
IF change >= SO THEN 

CALL next$money(SO); 
END; 
DO WHILE change >= 2S; 

CALL next$money(2S); 
DONE WHILE change >= 10; 

CALL next$money(10); 
END; 
DO WHILE change >= 1S; 

CALL next$money(S) 
END; 
DO WHILE change >= 1; 

CALL next$money(1); 
END; 
DO WHILE change >= 8; 

CALL next$money(O) 
END; 

END make$change; 

EDIT Reference Manual 

/*this is the result* / 
/*number to be converted*/ 
/*number to be converted* / 

/*thls is a procedure*/ 
/*X is specified * / 

/*wriye the cost here* / 
/*inltialize the Index index*/ 
/*half dollar* / 

/*quarters* / 

/*dimes*/ 

/*nickels* / 

/*pennies* / 

/*zero out rest of coins* / 

In order to stop appending you must type a period (.) followed by a carriage return 
on an otherwise blank line. 

Adding Line Numbers 

Now you can put line numbers on the buffer for easy reference during the rest of the 
EDIT sesion. To do this, type: 

*N 

EDIT numbers the lines but only displays the prompt. 

* 
Do not type another "N" command at this time. The Numbering command (N) can 
not only turn on the numbers but it can also turn them off. If you ever want to get 
rid of the numbers associated with your text, you can type the Numbering com­
mand (N) again and EDIT will delete them. These numbers are displayed with your 
text, but they are not actually part of the file. 

Printing 

To verify that the Numbering command was executed, you can use the Print 
command (P). The general form for Print (P) is: 

starting-line-number. ending-line-number P 

You already know the text started on line one but you might not be sure at which 
num ber it ended. You can use the dollar sign ($) to refer to the last line of the buffer. 



EDIT Reference Manual 

*1,$P (starting-line-number = 1, ending-line-number = $) 

The EDIT program responds by displaying the contents of the buffer followed by a 
prompt. 

1: make$change: 
2: DO; 
3: DECLARE money(8) BYTE; 
4: DECLARE change BYTE; 
5: DECLARE change BYTE; 
6: 
7: next$money: 
8: DECLARE X BYTE; 
9: money(l) = X; 
10: PROCEDlJRE(X); 
11: I = 1+1; 
12: change 0= change - X; 
13: END 
14: next$money; 
15: 
16: change = 100 -
17: I = 0; 
18: IF change >= 50 THEN 
19: CALL next$money(50); 
20: END; 
21: DO WHILE change >= 25; 
22: CALL next$money(25); 
23: DONE WHILE change >= 10; 
24: CALL next$money(10); 
25: END-
26: DO WHILE change >= 15; 
27: CALL next$money(5) 
28: END-
29: DO WHILE change >= 1; 
30: CALL next$money(1); 
31: END; 
32: DO WH I LE change >= 8; 
33: CALL next$money(O) 
34: END; 
35: END make$change; 
* 

/*th is is the result* / 
/*number to be converted*/ 
/*number to be converted*/ 

/*this is a procedure*/ 
/*X is specified */ 

/*wriye the cost here* / 
/*initialize the index index*/ 
/*half dollar*/ 

/*quarters*/ 

/*dimes*/ 

/*nickels*/ 

/*pennies*/ 

/*zero out rest of coins*/ 

You can use the Print command to display the entire buffer or just pieces of the text. 
Type a Print command any time you wish to check alterations to the text. Experi­
ment with different line numbers and the Print command (P). 

Examples: 

Type the following examples indicated by underlining. 

*1,3P 

EDIT displays lines 1 through :3. 

1: make$change: 
2: DO; 
3: DECLARE moneY(8) BYTE; 
* 

If you enter 

*10,13P 

EDIT displays lines 10 through 13. 

10 
11 
12 
13 

PROCEDURE(X); 
I = 1+1; 
change = change - X; 

END 

/*this is the result*/ 

Tutorial 

2-3 



Tutorial 

2-4 

EDIT Reference Manual 

Deleting 

Line 5 of the text is an unnecessary duplicatjon of line 4. Delete the line as follows: 

*50 

Delete has the same general form as Print, which allows you to delete multiple lines 
of the text as well as single lines. When you delete one or more lines, EDIT 
renumbers the remaining lines. Print lines 4, 5, and 6 so that you can verify that 
EDIT did renumber the lines. 

*4,6P 
4: 
5: 
6: 

Inserting 

DECLARE change BYTE; /*number to be converted*/ 

next$money: /*this is a procedure*/ 

Some text between lines 4 and 5 has been omitted. To insert the text type: 

*51 
5: 
6: 
* 

DECLARE 1 BYTE; /*index to money array* / 

The EDIT program automatically displays and adjusts the line numbers for you. 
You may insert any amount of text before the line indicated in the Insert command 
(0. As with the Append command, you must type a period after you have inserted 
the desired text. 

Moving 

Print lines 8 through 10 so you will be able to examine any errors closely. 

*8,10P 

EDIT answers with 

8: 
9: 
10: 
* 

DECLARE X BYTE; 
money(l) = X; 
PROCEDURE(X); 

/*X is specified */ 

l..ines 8 and 9 should come after line 10. Use the Move command (M) to rearrange 
the lines. 

*8,9M10 

The general form for this command is: 

starting-line-number, ending-line-number M 8.fter-this-line-number 

Joining 

Lines 13 and 14 of the buffer should be one line. The Join command (J) allows you 
to accomplish this using the same general form as Print. 

*13,14J 

Print lines 1 through 1:3 to see if your alterations are correct. Your display should 
look like this. 



EDIT Reference Manual 

1: make$change: 
2: DO; 
3: DECLARE money(8) BYTE; 
4: DECLARE change BYTE; 
5: DECLARE I BYTE; 
6: 
7: next$money: 
8: PROCEDURE(X); 
9: DECLARE X BYTE; 
10: rnoney(l) = X; 
11: I 1+1; 
12: change = change - )(; 
13: ENDnext$money; 

* 

/*this is the result*/ 
/*number to be converted*/ 
/*index to money array*/ 

/*th is is a procedu re* / 

/*X is specified * / 

Notice that EDIT has resequenced the line numbers for you. The EDIT program 
will resequence the line numbers after each command in which resequencing is 
necessary. You should print frequently after your alterations so that you can keep 
track of any changing line numbers. 

Using Line Numbers 

Now that lines 1 through 13 look fairly error free, you can concentrate on the next 
group of lines. Display the buffer again if necessary. If for some reason you lose 
track of the current line, type a period after the prompt. This causes the current line 
to be displayed. 

*. 

In this case EDIT responds with line 13. This is the current line because the 
preceding command (Print) ended with this line. 

13: ENDnext$money; 

The period may be used in place ofline numbers in most commands. It specifies the 
current line in the buffer. Arithmetic offers another alternative to line numbers. 
You can use plus (+) or minus (-) signs in conjunction with numbers to take the 
place of line numbers. For example, +5 refers to the the line which is 5 lines beyond 
the current line. The number -8 refers to the line which is 8 lines before the current 
line. 

Try using the period and some arithmetic to display the current line and the next 5 
lines. 

*.,+5P 

EDIT displays the current line (13) plus the next 5 lines (14-18) and moves the 
marker to the last line printed. 

13: 
14: 
15: 
16: 
17: 
18: 

ENDnext$money; 

change =:: 100 -
1= 0; 
IF change >= 50 THEN 

CALL next$money(50); 

/*wriye the cost here*/ 
/*initialize the index index*/ 
/*half dollar*/ 

If you execute the same command a second time, the results will be different. 

*.,+5P 

18: 
19: 
20: 
21 : 
22: 
23: 
* 

CALL next$money(50); 
END; 
DO WH I LE change >= 25; 

CALL next$money(25); 
DONE WHILE change >= 10; 

CALL next$money(10); 

/*quarters*/ 

/*dimes*/ 

Tutorial 

2-G 



Tutorial 

2-6 

EDIT Reference Manual 

EDIT responds differently this time because the period, acting as a marker, was at 
line 18 after the first execution of the command. For this reason, EDIT prints the 
current line (18) and the next 5 lines (19-23) in response to the second execution of 
the command. 

If you leave the comma out of a command that uses both arithmetic and a period 
you will get results very different to those you obtained in the ".,+5P" command. 
Type the following Print command. 

*.+4P 

The EDIT program displays the following line: 

28: END; 

You can see that it makes a big difference if the comma is left out of this type of 
command. Instead of printing the current line and the next five lines, EDIT 
responded by moving the marker 4 lines ahead and printing the line. 

You can also use arithmetic alone or with line numbers. If you had used the 
previous example without the period you would have gotten the same results. Try 
the following examples. 

Enter 

*-8P 

EDIT answers with 

20: DO WH I LE change >== 25; /*quarters* / 

EDIT's period or marker was on line 28. The previous command directed the EDIT 
program to subtract 8 from the current line and to print that line. 

Type 

*12+3P 

EDIT replies with line 15 because it is the line which equals 12 plus 3. 

15: change = 100 - /*wriye the cost here* / 

Substituting 

The general form for the Substitute command (S) is as follows. 

starting-line-number,ending-line-number S/wrong-word-or-phrase/replacement-word-or-phrase/ 

EDIT uses the first character after the "S" as a delimiter. EDIT reads this 
character as a delimiter and matches the word-or-phrase until it finds another of 
this same character. This allows you to replace the slashes with any other 
character. You might want to use another delimiter if the word-or-phrase contains a 
slash. However, to avoid confusion, this tutorial will use only the slash as a 
delimiter. 

Print the buffer to line 23. 

*1,23P 

1: make$change: 
2: DO; 
3: DECLARE money(8) BYTE; 
4: DECLARE change BYTE; 
5: DECLARE I BYTE; 
6: 

/*this is the result*/ 
/*number to be converted*/ 
/*index to money array*/ 



EDIT Reference Manual 

7: 
8: 
9: 
10: 
11 : 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 

next$rnoney: 

* 

PROCEDURE(X); 
DECLARE X BYTE; 

money(l) = X; 
1=1+1; 
change = change - X; 

ENDnext$money; 

change =100 -
1=0; 
IF change >= 50 THEN 

CALL next$money(50); 
END' 
DO WH I LE change >= 25; 

CALL next$money(25); 
DONE WHILE change >= 10;/*dimes*/ 

CALL next$money(10); 

/*this is a procedure*/ 

/*X is specified */ 

/*wriye the cost here* / 
/*initialize the index index*/ 
/*half dollar*/ 

/*q uarters* / 

There is a typographical error on line 15. The word "write" in the comments is 
misspelled. Use the Substitute command (S) to deal with this error. You may wish 
to add the Print option to the end of the Substitute command so that you can check 
the change immediately. 

*15S/wriye/write/P 

EDIT performs the substitution and displays the corrected line. 

15: change = 100 - I*write the cost here* 1 

If you examine the previously printed buffer, you will notice that line 13 has a 
spacing error. Invoke the Substitute command to correct the problem. 

*13S/ENDnext/END next/P 

EDIT displays the corrected version because the Print option is included. 

13: 

* 
END next$money; 

The Substitute command can also be used to delete a word or phrase within a single 
line or multiple lines. You can do this by substituting a "nothing" for the extra 
word or phrase. Line 16 has an unnecessary duplication of the word "index" in the 
comments. You can correct this mistake by using the Substitute command. Be sure 
to include the space before index so you do not end up with an extra space between 
"the" and "index." 

*16S1 indexllP 

The double slashes cause EDIT to substitute "nothing" for the first occurrence of 
"(space)index". This, in effect, deletes "index" from the line. EDIT then displays: 

16: 1=0; I*initialize the index*/ 

Changing 

Line 17 should be a DO WHILE statement rather than an IF THEN statement. The 
Change command (C) can correct this more quickly than the Delete and Insert 
commands you used earlier. The Change command is actually a combination of the 
Delete and Insert commands. 

*17C 
17: 
18: . 

[)O WHILE change >= 50 I*half dollar* I; 

You see that Change has the same general form as Print, Delete, and Insert. It also 
uses the period as do Append and Insert to inform EDIT that the operation is 
finished. 

Tutorial 

2-7 



Tutorial 

2-8 

EDIT Reference Manual 

Text Copying 

The next mistake is on line 22. The END statement for "quarters" is missing. You 
could correct this by inserting an END stat.ement after line 21 or you could copy 
another END statement from elsewhere in the program. Copying is similar to 
moving except that the lines you indicate w:ill not be moved, only duplicated. The 
general form for Text Copy (T) is the same as the general form for Move (M). 

starting-line number, ending-line-number T after-this-line-number 

Line 19 is an END statement. Copy line 19 to the line after 2l. 

*19T21 

Now, Print the corrected part of the program to verify that the Text Copy command 
worked. 

*1,22P 

1: make$change: 
2: DO; 
3: DECLARE money(8) BYTE; 
4: DECLARE change BYTE; 
5: DECLARE I BYTE; 
6: 
7: next$money: 
8: PROCEDURE(X); 
9: DECLARE X BYTE; 
10: money(l) = X; 
11: 1= 1+1; 
12: change = change - X; 
13: END next$money; 
14: 
15: change = 100 -
16: I ~= 0; 
17: DO WHILE change >= 50; 
18: CALL next$money(50); 
19: END; 
20: DO WH I LE change >= 25; 
21: CALL next$money(25); 
22: END; 
* 

Writing The Program Into A File 

I*this is the result*1 
I*number to be converted*1 
I*index to money array*1 

I*this is a procedure*1 

I*X is specified *1 

I*write the cost here* 1 
I*initialize the index*1 
I*half dollar* 1 

l*quarters*1 

Suppose you wish to stop editing for a while but you also want to save the text 
contained in the EDIT buffer. In order to save the text you must write it into a file 
on secondary storage. The general form for writing something into a file is: 

W file-name 

This manual will use an iRMX 86 file name for the sake of simplicity. Your file 
name may be different. Refer to the iRMX 86 HUMAN INTERFACE REFER­
A'NCE MANUAL for a description of iRMX 86 file names. 

You may call the file anything you want but this manual will refer to it as 
"program/money.plm". You can use the Wr:lte command (W) to place the contents 
of the buffer on secondary storage. 

*W program/money.plm 

EDIT responds with: 

program/money.plm: 35 lines, 929 bytes. 
* 



EDIT Reference Manual 

Quitting EI)IT 

The Quit command (Q) permits you to exit the EDIT program. If you quit EDIT 
before you have written the text into a file, you will delete all the text and the 
corrections to the text you have added during the editing session. The Quit 
command is always written as a single Ietter "Q". 

*0 

The EDIT program will no longer be in effect and your system will respond with its 
normal prompt. 

Re-Entering EDIT 

You could re-enter EDIT just as you originally invoked the program. 

*ED 

This way of entering EDIT doesn't automatically access the file "program/money. 
plm". To begin editing "program/money.plm" again you must use the Edit com­
mand (E). The general form for this command is the same as the general form for 
Write. 

E file-name 

If you were to enter the previous commands with "program/money.plm" as the file, 
EDIT would answer as follows: 

programlmoney.plm: 35 lines, 929 bytes. 
* 

You could then begin editing again. However, a simpler way to re-enter or to enter 
EDIT when you know the name of the file you wish to alter is to type: 

*ED file-name 

Invoke EDIT and specify the file "program/money.plm" at the same time. 

*ED program/money.plm 

EDIT gives the same response it would have given had you invoked EDIT and 
entered the file the long way. 

programlmoney.plm: 35 lines, 929 bytes. 
* 

Print the buffer. 

*1,$P 

EDIT displays the contents of the buffer. 

make$change: 
DO; 

DECLARE money(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

next$money: 
PROCEDURE(X); 

DECLARE X BYTE; 
money(l) = X; 
I = 1+1; 
change = change - X; 

END next$money; 
change == 100 -
I = 0; 
DO WHILE change >= 50; 

CALL next$money(50); 
END; 

I*this is the result*1 
I*number to be converted*1 
I*index to money array*1 

I*this is a procedure*1 

I*X is specified *1 

I*write the cost here* 1 
I*initialize the index*1 
I*half dollar*1 

Tutorial 

2-9 



Tutorial 

2-10 

* 

DO WH I LE change >= 25; 
CALL next$money(25); 

END; 
DONE WHILE change >= 10; 

CALL next$money(10); 
END; 
DO WH I LE change >= 15; 

CALL next$money(5) 
END; 
DO WHILE change >= 1; 

CALL next$money(1); 
END; 
DO WH I LE change >= 8; 

CALL next$money(O) 
END; 

END make$change; 

EDIT Reference Manual 

/*quarters*/ 

/*dimes*/ 

/*nickels*/ 

/*pennies*/ 

/*zero out rest of coins*/ 

Notice that the lines are no longer numbered. The Numbering command 
(N) is exclusively an EDIT feature. They are not part of the file and when 
you wrote the text into the file the numbers were not transferred. Of course, 
you could renumber the lines with the Number command (N), but it is not 
necessary for this editing session. 

Searching 

A Search command automatically looks through the text to locate the first 
instance of the a word or phrase which you indicate. The direction and 
starting line of the Search depend on the specific Search command. If you 
should search past the beginning or end of the buffer, EDIT "wraps 
around" and continues to search for the word-or-phrase in the direction you 
specify. 

Forward Searching 

The EDIT Forward Search looks through the text for the word or 
characters which you indicate. It begins at the line after the current line 
and searches toward the end of the file. This command consists of words or 
phrases enclosed in slashes (I). You must use slashes around the word-or­
phrase in the Forward Search command. FOJ~ example if you want to locate 
the first line which contains a DECLARE statement you would type: 

*/OECLARE/ 

In this case EDIT answers with: 

DECLARE moneY(8) BYTE; /*this is the result*/ 
* 

If you want to repeatedly search for a particular word, you would type double 
slashes after each instance of the word that search finds. Let's say you want to 
search for the word "change" more than one time. Type: 

*/change/ 

EDIT replies with the next line that conta.ins "change." 

DECLARE change BYTE; /*number to be converted*/ 
* 

If you want to continue to search for the next occurrence of "change" you should 
type a double slash (1/). 

*// 



EDIT Reference Manual 

Since EDIT remembers the last word or phrase, it responds with the next line that 
con tains "change." 

change = change - X; 
* 

Forward Searching With Commands 

These enclosed words or phrases can be used in place of line numbers in all 
commands that use line numbers. If you examine the previously displayed buffer 
you will see that the line identified as "dimes" is in error. The word DONE should 
be the word DO. Correct this with a Search and the Substitute command (S). 

* Idlmes/S/DONE/DOI 
* 

EDIT searched for a line containing dimes and it then changed DONE to DO in 
that line. 

Display the corrected version of the line. 

*P 

EDIT replies: 

DO WHILE change >= 10; l*dimes*1 

Reverse Searching 

The EDIT Reverse Search works very much like the Forward Search. It looks 
through the text for the word which you indicate. However, it begins at the line 
before current line and searches toward the beginning of the file. This command 
consists of words or phrases enclosed in question marks (?). Try the same examples 
for Reverse Search that you used for Forward Search and compare the results. 

Search, in reverse order, for the first occurrence of the word DECLARE 

*?DECLARE? 

EDIT responds with 

DECLARE X BYTE; I*X is specified *1 

This is the first line containing DECLARE that EDIT finds when looking in a 
reverse direction from the current line. 

If you want to continue the Reverse Search you would type double question marks 
(??) just as you typed the double slash marks for a continuing Forward Search. 

*?? 

EDIT answers with the next line backward which contains the word DECLARE. 

DECLARE I BYTE; I*index to money array*1 

Global Editing 

A Global Command searches out each instance of a word or phrase you specify. 
You can use the Global command (G) in combination with one or more EDIT 
commands. The EDIT commands perform their normal functions on a global or 
entire-file basis. 

Tutorial 

2-11 



Tutorial 

2-12 

EDIT Reference Manual 

The general form for the Global command (G) is a bit more complex than the 
previous general forms. A Global command can precede any other EDIT command 
except another G 10 bal command. 

starting-line-number, ending-line-number G/word-or-phrase/command 

Suppose you want to display all the lines between the marker and the end of the file 
that contain the word BYTE. Normally you would enter many commands to do this 
but with global editing you need only one command. 

*G/BYTE/P (G search-command Print-command)) 

EDIT responds with all lines that contain the word BYTE. 

DECLARE moneY(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

DECLARE X BYTE; 

/*this is the result*/ 
/*number to be converted*/ 
/*index to money array*/ 
/*X is specified */ 

The PL/M program you are altering deals with money, but "coins" is a more 
descriptive term. Change every occurrence of "money" to "coin" with a combina­
tion of the Substitute and Global commands. 

*G/money /S/ /coin/GP 

EDIT finds every line that contains, "money", substitutes the word "coin" for 
"money", and prints the corrected lines. 

* 

DECLARE coin(8) BYTE; 
DECLARE I BYTE; 
next$coin: 

coin(l) = X; 
END next$coin; 

CALL next$coin(50); 
CALL next$coin(25); 
CALL next$coin(10); 
CALL next$coin(5) 
CALL next$coin(1); 
CALL next$coin(O) 

/*this is the result*/ 
/*index to coin array*/ 
/*this is a procedure*/ 

/*zero out rest of coins*/ 

Print the buffer to remind yourself of the corrections you have already made and to 
spot any additional problems. 

make$change: 
DO; 

DECLARE coin(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

next$coin: 
PROCEDURE(X); 

DECLARE X BYTE; 
coin(l) = X; 
I = 1+1; 
change = change - X; 

END next$coin; 

change = 100 -
1=0; 
DO WHILE change >=: 50; 

CALL next$coin(50); 
END' 
DO WH I LE change >== 25; 

CALL next$coin(25); 
END' 
DO WH I LE change >= 10; 

CALL next$coin(10); 
END' 
DO WH I LE change >= 15; 

CALL next$coin(5) 
END; 

/*this is the result*/ 
/*number to be converted*/ 
/*index to coin array*/ 

/*this is a procedure*/ 

/*X is specified */ 

/*write the cost here*/ 
/*initialize the index*/ 
/*half dollar*/ 

/*quarters*/ 

/*dimes*/ 

/*nickels*/ 



EDIT Reference Manual 

DO WH I L.E change >= 1; 
CALI_ next$coin(1); 

END; 
DO WH I L.E change >= 8; 

CALI_ next$coin(O) 
END; 

END make$change; 
* 

Changing The File Name 

/*pennies*/ 

/*zero out rest of coins*/ 

Now that the text has been corrected, the file "program/money.plm" does not seem 
appropriately named. You can use the File Name command (F) to either display the 
current file name or to ehange it. If you type 

*F 

EDIT will display the file name it remembers. 

prog ram/money. pi m 

But, if you type 

*F program/coin.plm 

EDIT changes the remembered file name and displays the new file name. 

program/coin.plm 

If you have written the file into memory using the old name, you will still have a file 
on secondary st.orage with the old name. 

Exiting EDIT 

The Exit command (X) is a combination of the Write command (W) and the Quit 
command (Q). You must not use this command unless EDIT remembers a file name 
or you explicitly assign a file name to your text with the Exit command. This com­
mand writes the contents of the buffer into the last file EDIT remembers or the 
name you picked for the file. It then quits the EDIT program. 

Exit EDIT. 

*X 

Your system responds with the last file name it remembers. 

program/coin.plm: 35 lines, 929 bytes. 

The EDIT program will no longer be in effect and your system will respond with its 
normal prompt. 

Tutorial 

2-13/2-14 





CHAPTER 3 
INVOKING EDIT 

You know that you can invoke the EDIT program by typing 

*ED 

You also know that you can specify a file name when you invoke the EDIT program 
if you type: 

*ED file-name 

There are additional options, called controls, available to you when you invoke 
EDIT. This chapter provides a pictorial syntax of all possible invocations along 
with a description of each control. 

Controls allow you to change the defaults programmed into EDIT. EDIT has 4 
controls which change such things as the number of lines permitted in the buffer (­
L), the number of bytes to hold macro definitions (-M), the echoing of command file 
input (-E), and whether there is a file name. If you want to change the defaults, you 
can type one of the previously mentioned controls when you invoke EDIT. You 
must specify a decimal number with two of the controls. 

)..---.....--< file name ).-""" __ -.~-------------r-~-

File Name 

The File Name control allows you to specify a file name when you invoke the EDIT 
program. If the file already exist on secondary storage, EDIT reads the contents of 
the file into the buffer. If the file does not exist, EDIT uses the file name to label 
whatever you enter in the buffer. EDIT remembers this name so you do not have to 
enter it when you want to write the file onto secondary storage. 

Echo Control 

You can cause the EDIT program to echo any command file input when you use the 
-E control. Command file input is any command which you do not type directly on 
the terminal. The -E control causes EDIT to show you (echo) the automatic input 
from these files on your terminal. When you use the -E control, EDIT will also echo 
all commands performed by a special file called ED.MAC. Refer to Chapter 6 for a 
complete description of command files and ED.MAC. 

Example: 

Suppose you are ready to invoke the EDIT program and create a new file called 
"test.plm" on a device named ":f1:". You know that you will be using macros and 
command files extensively, and you want the automatic input displayed. Invoke 
EDIT, specifying the file name and -E controls. 

3-1 



Invoking EDIT EDIT Reference Manual 

3-2 

ED :11 :test.plm -E 

EDIT responds by displaying all the contents of ED.MAC and 

:f1 :test.plm: new file 

Line Control 

The -L control allows you to specify the size (in lines) of the buffer in which EDIT 
stores text. The EDIT program has a default lbuffer of 3000 lines. You can increase 
or decrease this limit with the -L control. 

Example: 

Suppose you have a file called "program/money.plm" that is going to go on device 
":f1:". If you know that this file is going to take at least 3050 lines you can use the-L 
control to expand EDIT's buffer capacity. 

ED :f1:program/money.plm -L4000 

EDIT will respond with a sign-on (not shown), the new file name, and a prompt. 

:f1 :program/moneY,plm: new file. 

* 
Although EDIT does not respond visibly to the -L control, it does allow for the extra 
lines. 

NOTE 
Even if you allow extra lines, you can overflow the buffer. Every time 
you alter lines of text, you consume EDIT buffer space because EDIT 
does not reclaim this space. If you use more buffer space than EDIT 
allows, EDIT creates temporary files on secondary storage to hold the 
text. EDIT will become slow in responding to some commands when this 
happens. To remedy the situation, write the program into secondary 
storage and use the edit command (E) to re-enter the file. 

Macro-Space Control 

The macro-space control (-M) allocates bytes to hold macro definitions. The EDIT 
program has a default of 1024 bytes specifically to hold macro definitions. You can 
increase or decrease this number with the -]M control. 

Example: 

You can use the -M control to give yourself more "space" for macro definitions. The 
following line tells EDIT to allow 2000 bytes of space for macro definitions. 

ED -m2000 

As with the -L control, EDIT responds only with a sign-on (not shown), and a 
prompt. 



r--- CHAPTER 4 
~IAL CHARACTERS AND COMMANDS 

This chapter describes the special characters and commands that EDIT recognizes. 
Special characters are those which are not in the alphabet and have a special 
meaning within the EDIT program. Special commands are commands which have 
a special meaning when you use them with a special character. They include: 

• period (.) 

• dollar sign ($) 

• carriage return (c/r) 

• forward search (lword-or-phrase/) 

• reverse search (?word-or-phrase?) 

• up arrow or circumflex (I) 

• square bracket ([]) 

• asterisk (*) 

• ampersand (&) 

• backslash (\ ) 

These characters can have different meanings to EDIT, depending upon the way in 
which you use them. This chapter describes each character in detail and gives 
examples of their functions in varied situations. 

Period 

The period (.) represents the current line of the text. When you use the period by 
itself, EDIT responds by displaying the current line of the file. In general, you can 
substitute a period in place of line numbers in EDIT commands. 

Examples: 

Suppose your file contains the following lines of text. The second line happens to be 
the current line. 

END NEXT$coin; 
CALL next$coin (50); 
CALL next$coin (25); 
CALL next$coin (10); 

If you type 

* 

EDIT answers with the current line, which in this case is 

CALL next$coin (50); 

You can use the period to display the CUrJlent line and the next 2 lines by typing 

*.,+2P 

EDIT replies with 

CALL next$coin (50) 
CALL next$coin (25) 
CALL next$coin (10) 

4-1 



Special Characters And Commands EDIT Reference Manual 

4-2 

Matching Using The Period 

You have already used the period (.) as a marker for the current line. This character 
does have another application. You can use the period to represent any character to 
be matched in a substitute, global, or search command. Suppose your file contains 
the following text. 

PROCEDURE(X); 
DECLARE X BYTE; /*X is specified when 
coin(l) = X; procedure is called*/ 
I = 1+1; 
change = change - X; 

END next$coin; 

Type the following line: 

*G/I.1/P 

The period between the "I" and the "I" means any character. The previous example 
searches for all three-character strings that have a first character "I" and a last 
character" 1". 

However, only one statement matches in your file. 

I = 1+1; 

If you had wanted to look for a longer string, with "I" as the first character, and "I" 
as the last character, you could have used additional periods for the middle 
characters. 

Dollar Sign 

The dollar sign ($) represents the last line of the text. When you use the dollar sign 
by itself, EDIT responds by displaying the last line of the buffer. You can also use 
the dollar sign in place of a line number in most EDIT commands. 

Examples: 

Suppose your file consists of the following lines. 

DO WHILE I < 8; 
CALL next$coin (5); 

END; 

If you type 

*$ 

EDIT will display the last line of the buffer. 

END; 

Use the dollar sign ($) and the print command (P) to display the entire buffer. 

*1,$P 

EDIT answers with 

DO WHILE I < 8; 
CALL next$coin (5); 

END; 

Dollar Sign - End of Line 

You already know that the dollar sign can represent the end of the file or buffer. 
The dollar sign ($) also signifies the end of a line. You can use this character with a 



EDIT Reference Manual Special Characters And Commands 

forward or reverse seareh, a substitute command, global command, or a "V" 
command (refer to Chapter 5 for a description of the "V" command). 

When you use a forward or reverse search with the dollar sign, EDIT finds the line 
which ends with the word or phrase you specified. 

Example: 

Suppose your fHe contains the following lines. 

next$coin: 
PROCEDURE (X); 
DECLARE X BYTE; 
coin (I) = X + coin 
I = 1+1; 

Substitute the second occurrence of "coin" in line four with the word "change" and 
a semicolon. Print the altered line. 

*4S/coin$/ch.mge;/P 

EDIT answers with 

coin (I) = X + change; 

Carriage Return 

You can use the carriage return as a special character. When you use it by itself, the 
carriage return allows you to step through a file one line at a time. This character 
causes EDIT to display the next line of the file each time you type it. 

Suppose your file consists of the following lines and your marker is at line one. 

DO WHILE 1<8 
CALL next$coin (5); 

END 

If you type 

*(c/r) 

EDIT answers 

CALL next$coin (5); 

If you enter another carriage return, EDIT responds with the next line of the file. 

END; 

Forward Search 

The forward search (lword-or-phrase/) is a special command. It begins at the line 
after the current line and looks through the text in a forward direction for the line 
which contains the word-or-phrase you specify. If you search past the end of the 
text, this command wraps around to the beginning of the file. If the word-or-phrase 
is not in the text, EDIT responds with an error message (?). 

You can use the forward search by itself to find the first occurrence of the line 
which contains the word-or-phrase you typed in the slashes. If you want to find the 
next line which contains the word-or-phrase, you can type double slashes (I I) after 
the EDIT prompt. 

In general, you can use a forward seareh in place of a line number in EDIT 
commands. 

4-:3 



Special Characters And Commands EDIT Reference Manual 

4-4 

Examples: 

Let's say your file consists of the following lines of text. 

make$change: 
DECLARE money(8) BYTE; 
DECLARE change BYTE; 

Do a forward search for the word "change". 

*/change/ 

EDIT responds with 

make$change: 

Use the double slashes to search for the next occurrence of "change". 

*// 

EDIT answers with the next line which contains the word "change". 

DECLARE change BYTE; 

Reverse Search 

The reverse search (?word-or-phrase?), like the forward search, is a special com­
mand. It begins at the line before the current line and looks through the text in a 
reverse direction for the line which contains lGhe word-or-phrase you specify. If you 
search past the beginning of the text, this command wraps around to the end of the 
file. If the word-or-phrase is not in the text, EDIT responds with an error message 
(?). 

When you use the reverse search by itself, EDIT searches backward and finds the 
first occurrence of the word or phrase you typed in the question marks. If you want 
to find the next line which contains the word or phrase, you can type double 
question marks (??) after the EDIT prompt. 

In general, you can use a reverse search in place of a line number in EDIT 
commands. 

Examples: 

Suppose your file is made up of the following text and your marker is at line one. 

make$change; 
DECLARE money(8) BYTE; 
DECLARE change BYTE; 

Do a reverse search for the word "change"" 

*?change? 

EDIT responds with the next previous line which contains the word. 

DECLARE change BYTE; 

Use the double question marks (??) to search for the next occurrence of "change". 

*?? 

EDIT answers with the following line. 

make$change; 



EDIT Reference Manual Special Characters And Commands 

Up Arrow 

The up arrow (1), which on some terminal is shown as a circumflex (A), signifies the 
beginning of a line. You can use this character as an address or with a Forward or 
Reverse Search, or a Substitute, Global, Move, Text Copy, and "V" command (refer 
to Chapter 5 for a description of the "V" command). 

When you use a forward or reverse search with the up arrow, EDIT finds the line 
which begins with the word or phrase you specify. An up arrow is equivalent to a 
minus sign (-) when you use it as an address. 

Example: 

Suppose your file contains the following lines. 

next$coin: 
PROCEDURE (X); 
DECLARE X BYTE; 
coin (I) = X; 
1 = 1+1; 

Print the line which contains "coin" as its first word. 

*/Icoin/ P 

EDIT answers with the following line. 

coin (I) = X; 

When you use the up arrow (1) with a substitute or global command, EDIT finds the 
word-or-phrase only if it is at the beginning of the line. 

Example: 

Suppose your file contains the following lines. 

next$coin: 
PROCEDURE (X); 
DECLARE X BYTE; 
coin (I) = coin + X; 
1 = 1+1; 

Substitute the first occurrence of "coin" in line four with the word "change" and 
print the altered line. 

*45/1 coin/money /P 

EDIT answers with 

money (I) = coin + X; 

Square Brackets 

You can use square braekets to denote a set of characters. If any character in the 
brackets is the same as any character in the file, EDIT displays that line. You can 
use these characters with a forward or reverse search, a substitute command, a 
global command, or a "V" eommand (refer to Chapter 5 for a description of the "V" 
command). 

When you use a forward or reverse search with the square bracket, EDIT finds the 
line which contains the any character you typed inside the brackets. 

4-5 



Special Characters And Commands EDIT Reference Manual 

4-6 

Example: 

Suppose your file contains the following lines of text. 

END next$coin; 
CALL next$coin (50); 
CALL next$coin (25); 
CALL next$coin (10); 

If you type 

*/[12]/ 

EDIT will find the "2" and display the following line. 

CALL next$coin (25); 

If you repeat the forward search request 

*// 

EDIT will display 

CALL next$coin (10); 

because it found the "I". 

When you use the square brackets with a sub8titute or global command, EDIT finds 
the line or lines which contain any of the characters inside the brackets. 

Example: 

Suppose your file contains the following lines of text. 

END next$coin; 
CALL next$coin (50); 
CALL next$coin (25); 
CALL next$coin (10); 

Substitute every occurrence of the numbers "0" and "5" with the number "I" using 
the square brackets with the substitute and global commands. 

*G/[05]/S/[05]/1/G 

Print the buffer to check your corrections. 

*1,$P 
END next$coin; 

CALL next$coin (11); 
CALL next$coin (21); 
CALL next$coin (11); 

Now, suppose your file contains the following lines of text. 

CALL next coin (50) 
CALL nexttcoin (60) 
CALL next coin (70) 

You can use the square brackets as part of a pattern to change "next coin" and 
"nexttcoin" to "next$coin". Type 

*G/xt[ t]co/S/xt[ t]co/xt$co/GP 

The previous command tells EDIT to find all lines containing either "xt co" or 
"xttco" and change both cases to "xt$co". EDIT answers with the corrected lines in 
response to the Global and Print options. 

CALL next$coin (50) 
CALL next$coin (60) 
CALL next$coin (70) 



EDIT Reference Manual Special Characters And Commands 

Suppose your file contains the following lines. 

make$change: 
DO; 

DECLARE money(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

/*this is the result*/ 
/*number to be converted*/ 
/*index to money array*/ 

You can use the square brackets and the Up Arrow (t) to represent "anything but 
the contents of these braekets." Suppose you want to print all statements that do 
not contain the word DECLARE. Type 

*G/[tDECLARI:]/GP 

~~DIT answers with 

make$change: 
DO; 

Asterisk 

The asterisk (*) means "any number of." For example "X*" means any number of 
X's. This character is useful for deleting- parts of a line when you use it in 
combination with the substitute command. 

Examples: 

Suppose your file consists of the following lines. 

DO WH I LE change = 10; 
CALL next$coin(10); 
END; 

/*dimes*/ 

Suppose you want to delete line 1 up to the word "change." You can do this by using 
the period (.), the asterisk (*), and the substitute command. You already know that 
the period matches anything and the asterisk means "any number of' so the 
following command means, "in line 1, delete any number of characters up to and 
including WHILE." 

*1S/.*WHILEI/ 

If you print the file you can see exactly what this command did. 

change >= 10; 
CALL next$coin(10); 
END; 

/*dimes*/ 

It deleted everything up to the space before the word "change". 

Ampersand 

You can use the ampersand (&) in two ways. Either way saves typing time. An 
ampersand can represent the word or phrase you chose to change in a substitute 
command. 

Suppose your file contains the following lines. 

1 : 
2: 
3: 
4: 
5: 

make$change: 
DO; 

DECLARE coin(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

/*this is the result*/ 
/*number to be converted*/ 
/*index to coin array*/ 

Suppose you want to put parentheses around the "make$change" statement. You 
could retype the statement or you could use the ampersand along with the period 
and the asterisk. 

4-7 



Special Characters And Comnlands EDIT Reference Manual 

4-8 

*1s/.*:/(&)/P 

The previous line tells EDIT to find everything in line 1 up to and including the 
colon, put parentheses around it, and print it. The ampersand represents the word 
or phrase you specified in the substitute command. So, EDIT responds with the 
altered line. 

1: (make$change:) 

The ampersand (&) is also a short-hand wa.y of saying, "do this operation on the 
lines which were previously addressed." 

For example, suppose your file consists of the following lines. 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

make$change: 
DO; 

DECLARE money(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

next$money: 
PROCEDURE(X); 

DECLARE X BYTE; 

Print lines 2 and 3. 

*2,3P 

EDIT answers with 

2: 
3: 

DO; 
DECLARE money(8) BYTE; 

/*this is the result*/ 
/*number to beconverted*/ 
/*index to money array*/ 

/*this is a procedure*/ 

/*X is specified */ 

/*this is the result*/ 

Now suppose you want to delete the previously printed lines. All you have to do is to 
use the ampersand (&) and the delete command (D) because EDIT remembers the 
addresses of the last command. 

*&0 

Print the buffer to verify that the ampersand did actually cause EDIT to execute the 
delete command on the previously addressed lines. 

*1,$P 

EDIT replies with 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 

make$change: 

Backslash 

DECLARE change BYTE; 
DECLARE I BYTE; 

next$rnoney: 
PROCEDURE(X); 

DECLARE X BYTE; 

/*number to beconverted*/ 
/*index to money array*/ 

/*this is a procedure*/ 

/*X is specified * / 

If you try to substitute for special characters, EDIT will respond with an error 
message (?). Since there are times when you may need to alter these characters, the 
EDIT program includes a character which ta.kes away all special meaning from the 
character. This character is the backslash(\). If you type a backslash before a 
special character you wish to change, you can alter it as you would any other 
character. 



EDIT Reference Manual Special Characters And Commands 

Examples: 

Suppose your file contains the following lines. 

DO WHILE change >= 1; 
CALL next&coin(1); 

END; 

l*pennies*1 

The word "next&coin" should read: next$coin. Since the ampersand has a special 
meaning in the EDIT program, you must use the backslash (\) in order to correct 
this line. Use the substitute command and the backslash character (\) to fix this 
error. 

*S/next\&coil11/next$coln/P 

EDIT answers with the corrected line. 

CALL next$coin(1); 

Now, suppose your file contains the following lines. 

9: 
10: 
11 : 
12: 
13: 

DECLARE X BYTE; 
money(l) = X; 
I = 1+1; 
change = change - X; 

ENDnext$money; 

I*X is specified *1 

If you want to split line 13 between END and "next" into two separate lines. You 
can do this by using the backslash to take away the special meaning of a carriage 
return. Normally after you type a carriage return, EDIT tries to execute a 
command. The following example has the carriage return displayed for illustration 
only. 

*13s/END next/END\ (c/r) 
nextl 

Print lines 13 and 14 to see that the command was executed correctly. 

*13,14P 

EDIT answers 

13: END 
14: next$money; 

4-9/4-10 





CHAPTER 5 
COMMANDS 

This chapter consists of three parts. It begins with some introductory material 
followed by a command dictionary. The balance of the chapter contains detailed 
command descriptions. The introductory material will help you to understand the 
detailed descriptions and pictorial syntax of the commands in the tabbed section. 
The commands are arranged in alphabetical order with one command on each 
tabbed page so you can refer to them easily. 

Common Command Syntax 

Here are three examples of typical command syntax. The following sections 
explain each of the syntax elements. 

command~....----,.. 

~ command 

Addresses 

Addresses are a way of specifying one or more lines of text. EDIT uses many types 
of addresses with the line number being the most common. 

NOTIE 
If you make an explicit reference to line number zero (0) EDIT will 
usually respond with an error message. However, zero is an acceptable 
address for the Append command and the Read command. 

EDIT finds everything between the first address and the second address and 
performs the command. You can use any of these wherever a command syntax calls 
for an address. 

no address 

line number 

period (.) 

dollar sign ($) 

If you type a command with no address, EDIT will execute 
the command on the current linc or set of lines. 

EDIT finds the line number you type. 

The period directs EDIT to find the current line. 

The dollar sign ($) tells EDIT to find the last line of the 
buffer. 

5-1 



Commands 

5-2 

plus sign (+) 
options 

minus sign (-) 
options 

EDIT Reference Manual 

When you address a line with a plus sign (+), EDIT begins at 
the current line and adds the number of plus signs to find the 
address. 

When you address a line with a plus (+) sign and an integer, 
EDIT begins at the current line and adds the integer to find 
the address. 

You can use any "plus sign option" with any address. EDIT 
begins at the address and adds the number of lines. 

When you address a line with a minus sign (-), EDIT begins 
at the current line and subtracts the number of minus signs 
to find the address. 

When you address a line with a minus (-) sign and aninteger, 
EDIT begins at the current line and subtracts the integer to 
find the address. 

You can use any "minm; sign option" with any address. 
EDIT begins at the address and subtracts the number of 
lines. 

'letter When you address a line with a quote sign and a letter, EDIT 
looks for a line you marked with the "K" command and the 
letter (see the "K" command). 

pattern A pattern is a sequence of characters, word, or phrases that 
you choose for EDIT to match. This manual calls a pattern a 
"word-or-phrase" in previous chapters to avoid confusion. 
When you use a pattern as an address, you must enclose it in 
either slashes (I) for Forward Searches, or question marks (?) 
for Reverse Searches. These enclosing characters are called 
"delimiters." 

/pattern/ EDIT does a Forward Search for the line which 
contains the pattern you type within the slashes (1/). 
Remember, the forward search begins after the current 
line. 

?pattern? EDIT does a Reverse Search for the line which contains 
the pattern you type within the question marks (??). 
Remember, the Reverse Search begins before the cur­
rent line. 

period (.) 

dollar sign($) 

up arrow (1) 

When you use a period as a part of a pattern, it 
represents any character. 

If you use a dollar sign ($) with a pattern, EDIT 
finds the line eontaining the pattern only if it is 
the last thing on the line. You must type the dollar 
sign immediately preceding the second delimiter, 
or EDIT will treat it as a normal character. 

If you use an up arrow (1) with a pattern, EDIT 
finds the line eontaining the pattern only if it is 
the first thing in a line. You must type the up 
arrow immediately after the first delimiter, or 
EDIT will treat it as a normal character. 



EDIT Reference Manual 

a8terisk (*) You can use the asterisk (*) to represent "any 
number of" the previous character in a pattern. 

[set-of­
characters] If you use a set of characters enclosed in square 

brackets a8 part of a pattern, EDIT finds the line 
containing one of the characters enclosed in the 
brackets. 

Separators 

The separator serves to divide the addresses. It can be either a comma or a 
semicolon. However, it is important to note that EDIT responds differently when 
you use a semicolon as a separator. 

If you use a comma as a separator between addresses, EDIT looks for both lines 
beginning at the line after the current line. In contrast, when you use a semicolon 
as a separator, EDIT moves the marker to the first addressed line. EDIT then looks 
for the second addressed line from this line. 

For example, suppose your file consists of the following lines. 

make$cllange: 
DO; 

DECLARE coin(8) BYTE; 
DECLAFtE change BYTE; 
DECLARE I BYTE; 

!"'this is the result"'! 
!"'number to be converted"'! 
!"'index to coin array"'! 

Suppose your marker is at the first line of this text and you want to delete the first 
and second DECLARE lines. Try using the Delete command with a comma as a 
separator. 

"'!DECLARE!,!DECLARE!D 

Print the buffer to verify your changes. 

"'1,$P 

EDIT answers with 

make$change: 
DO; 

DECLAF~E change BYTE; 
DECLARE I BYTE; 

!"'number to be converted*! 
!"'index to coin array"'! 

You can see that EDIT deleted only the first DECLARE statement. This is because 
the EDIT program found the first DECLARE statement for both addresses. Use the 
same text as in the first example (displayed below) and perform the same command 
using a semicolon rather than a comma as a separator. 

make$change: 
DO; 

DECLAf=tE coin(8) BYTE; 
DECLAf=tE change BYTE; 
DECLARE I BYTE; 

'" !DECLAR E!;!DECLARIE!D 

Print the buffer to verify your results. 

"'1,$P 

EDIT answers with the following lines. 

make$c:hange: 
DO; 

DECLARE I BYTE; 

!*th is is the result"'! 
!*number to be converted"'! 
!"'index to coin array"'! 

!"'index to coin array"'! 

Commands 

5-3 



Commands 

5-4 

EDIT Reference Manual 

NOTIE 
This manual uses a comma for the separator in all cases. Keep in mind 
that you can use a semicolon wherever there is a comma. 

Commands 

Commands are the one-letter or one-character instructions to which EDIT is 
programmed to respond. 

Options 

Options are commands which can be added to other commands. These are specific 
to individual commands and they are explained in the detailed descriptions of each 
command. 

File Name 

This manual will use iRMX 86 file names for the sake of simplicity. These file 
names consist of a logical name for the device, and an iRMX path. Your file name 
may be different. Refer to the iRMX 86 llUMAN INTERFACE REFERENCE 
MANUAL for a description of paths used in naming iRMX 86 files. 

Pattern 

You can also use patterns on the right side of some commands. This is especially 
useful when you want EDIT to execute a command on a particular word, phrase, 
character, or string of characters rather than on an entire line. Patterns on the 
right side of a command behave exactly the same as the patterns described in the 
"Addresses" section of this chapter with one exception: EDIT reads the first 
character after the command as the delimite:r so the slash (I) and the question mark 
(?) do not represent a Forward or Reverse Search. 

For example, EDIT reads the pattern "ltestl" as "delimiter pattern delimiter". It 
then tries to find an occurrence of "test". 



EDIT Reference Manual 

Command IJictionary 

Command Page 

DISPLAYS 

B - Back One Screen ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-9 

L - Lists Nonprinting ASCII Characters ................................ 5-20 

o - Over One Screen .................................................... 5-23 

P - Print ................................................................. 5-24 

ENTIRE LINE EDITING 

A - Append or Add To .................................................. 5-7 

C - Change ............................................................. 5-10 

D - Delete .......................... " .................................... 5-11 

I - Insert ................................................................ 5-17 

J - Join ................................................................. 5-18 

M - Move ............................................................... 5-21 

T - Text Copy ......... " ............................................... " 5-31 

WORD OR PHRASE EDITING 

S - Substitute 

UTILITY 

E - Edit 

5-28 

5-12 

F - File Name ...... " ................. " ......................... " ....... 5-13 

H - Sets Tab :Length "." ............... " ................................. 5-16 

K - Marks a l ... ine .................... " .................................. 5-19 

N - Number ............................................................. 5-22 

INPUT/OUTPUT 

Q - Quit ................................................................ 5-26 

R - Read ................................................................ 5-27 

W - Write ............................................................... 5-34 

X - Exit ................................................................. 5-36 

GLOBAL 

G - Global 

v - Exclusive Global 

MISCELLANEOUS 

5-14 

5-33 

U - User Macro ......................................................... 5-32 

Cal - Command File ...................................................... 5-38 

C/R - Displaying a Specific Line ....................................... 5-39 

* - Comment ............................................................ 5-40 

Commands 

5-5/5-6 





A - Append Or Add To 

The Append command (A) allows you to add text after a line. You can also create 
text to be written into a new file when you use the Apppend command with no 
address. 

~ __ c&1 .... __ T __ .... __ 

MARKER POSITION 

After executing this command, EDIT moves the marker to the last line you added. 

PARAMETERS 

no address 

address 

T (tab) 

EDIT finds the current line and waits for you to add text. 

EDIT finds the address you choose and waits for you to add 
text. Remember, you can use zero as an address with the 
Append command. 

When you use a Tab option (T) with the Append command, 
EDIT automatically begins your next line at the same tab 
setting you chose for the previous line. If you want to add 
another tab, simply press the TAB key. If you want to begin 
your next line at a lesser tab setting, type two periods ( .. ) 
followed by a carriage return on an otherwise blank line. 
This will set the tab back one from the previous line. EDIT 
will not include the periods in the file whereas the tabs 
become part of the file. 

You choose the location of the new text by means of the previously described 
parameters. After you have added all the text you wish, type a period (.) and a 
carriage return on a blank line to stop inserting. 

Examples: 

Assume that you have no text in the buffer. Append the following text to create a 
new file. 

*A 
DO WHILE 1<8; 

CALL next$coin (5); 
END; 

* 

EDIT adds this text to the buffer. Suppose you want to add another CALL state­
ment after the existing CALL statement in the text you just created. Your marker is 
at the last line of the buffer, so use a reverse search as your address and append the 
following statement. 

*?CALL?A 
CALL nel(t$coin (0); 

* 

5-7 



ArrtNU UH 
ADD TO 

5-8 

A - Append Or Add To (Continued) 

Suppose you have a file that consists of the following lines. 

1 : 
2: 
3: 
4: 
5: 

make$change: 
DO; 

DECLARE money(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

/*this is the result*/ 
/*number to beconverted*/ 
/*index to money array*/ 

If you use the Append command with the Tab option, you can keep track of your 
spacing more easily. Add the following text using Append and the Tab option as 
shown. Tabs are shown by (T). 

*5AT 
6: 
7: 
8: 
9: 
10: 
11 : 
12: 
12: 
12: 

next$money: 
(T) PROCEDURE(X); 

(T) DECLARE X BYTE; 
money(l) = X; 

1=1=1; 
change = change - X; 

.. 
END next$money; 

/*this Is a procedure* / 

/* X is speclfled* / 

EDIT remembered the tab setting from linc~ 5 and set line 6 to that setting. 



B - Back One Screen 

The "B" command (B) displays the current line of the file plus up to 22 previous 
lines. This command is equivalent to the Print command "-22,.P"; therefore it saves 
you keystrokes. As with the Print command, the lines are displayed in their 
original order. I 

MARKER POSITION 

This command moves the marker to the a.ddressed line. 

PARAMETERS 

no address 

address 

L (list) 

EDIT finds the current line and displays it plus up to 22 
previous lines. 

EDIT finds the address you choose and displays that line 
plus up to 22 previoUls lines. 

When you use a List option (L) with the "B" command, EDIT 
displays all characters, including nonprintable ASCII 
characters, in the line you addressed plus up to 22 previous 
lines. 

This command is more useful on a screen-type terminal than on a hard-copy or 
single-line terminal, since it displays the screen full of text preceding the line that 
you specify. 

5-9 



5-10 

C - Change 

This command permits you to change a line or several lines of text. The Change 
command (C) is equivalent to a combination of the Delete (D) and Insert (I) 
commands. 

__ --<~)--_...-oi~V)--..... --40)--,.c0=l---T--..... -
\ 1 J 

MARKER POSITION 

After executing this command, EDIT moves the marker to the last line you entered. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

T (tab) 

EDIT finds the current line and replaces it with the text that 
you type. 

EDIT finds the first address you specify. If this is the only 
address you specify, EDIT replaces this line with the text 
that you type. 

The comma separateB the first address from the second 
address. 

EDIT deletes all text between the first address and the 
second address, inclusive. It then inserts the text that you 
type. 

When you use a Tab option (T) with the Change command, 
EDIT automatically begins your next line at the same tab 
setting you chose for the previous line. If you want to add 
another tab, simply press the TAB key. If you want to begin 
your next line at a lesser tab setting, type two periods ( .. ) 
followed by a carriagEl return on an otherwise blank line. 
This will set the tab back one from the previous line. EDIT 
will not include the periods in the file whereas the tabs 
become part of the file. 

You choose the location of the new text by means of the previously described 
parameters. After you have replaced all the text you wish, type a period (.) and a 
carriage return on a blank line to stop changing. 

Examples: 
Suppose that part of your file looks like this. 

20: DO WHILE change >= 25; 
21: CALL next$money (25); 

Alter it with the Change command as follows. 

*20,21C 

20: IF change >= 50 THEN 
21: CALL next$money (50); 
22: 
* 

You do not have to type the line numbers in the new text. EDIT automatically 
displays the numbers if you have entered the number command (N) during the 
editing session. 



D - Delete 

The Delete command (D) lets you erase or delete text. You can use this command to 
delete one line or many lines as shown in the following pictorial syntax. 

-11111111 ..... --<Ev>--l.-~~'ss 2 
l~ __ ---'l _____ ----' 

MARKER POSITION 

After executing this command, EDIT moves the marker to the line after the last line 
you deleted. If you deleted the last line of the file, EDIT moves the marker to the 
new last line. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

L (list) 

P (print) 

EDIT finds the current line and deletes it. 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT deletes the addressed line. 

The comma separates the first address from the second 
address. 

EDIT deletes all text between the first address and the 
sec:ond address, inclusive. 

When you use a List option (L) with the Delete command , 
EDIT displays all characters, including nonprinting ASCII 
characters, which now occupy the line or lines you addressed. 

When you use a Print option (P) with the Delete command, 
EDIT displays all printing characters which now occupy the 
line or lines you addlressed. 

After you delete the text, EDIT automatic:ally resequences the numbers. 

Examples: 

Suppose that you have the following piece of text in your file. 

10: DO WHILE i > 8; 
11: CALL next$Goin (5); 
12: END; 

Delete line 10 and print the text which now occupies line 10. 

*10DP 

EDIT responds by listing the CALL statement. Notice that the line numbers 
automatically shifted after you deleted the DO WHILE statement. 

10: CALL next$coin (5); 

5-11 



5-12 

E - Edit 

The Edit command (E) allows you to edit files already written on secondary 
storage. The Edit command also allows you to create a new file. 

--0 1 ...... __ C ___ sp_a_c_0 __ .. ~ ____ fl_,e_n_am_v_e_:~~~J""--

MARKER POSITION 

If you are creating a new file, the marker will be at line zero. If the file already 
exists, the marker will be at the last line of the file. 

PARAMETERS 

space 

filename 

Examples: 

You must type a space between this command and the file 
name. 

If you do not type a file name, EDIT uses the file name it 
currently remembers. You must have used this name 
previously, when you invoked EDIT or in one of the 
following commands: E, F, W, or R. If EDIT does not 
remember any file names, it will return an error message (?). 

If you type the name of a file that already exists, EDIT 
answers with the file name and the number of lines and 
bytes in the file. EDIT brings the file from secondary storage 
and copies it into the buffer. 

[f you type a file name that does not exist, the EDIT program 
will respond with the file name followed by a colon and the 
words "new file." 

Suppose you are in the EDIT program and you wish to edit a file on a device called 
":f1:" with the file name "prog/samp.plm". You would type 

*E :f1 :prog/samp.plm 

EDIT responds with 

:f1 :prog/samp.plm: 23 lines, 857 bytes 
* 

This file happens to have 23 lines and 857 bytes. You can also use the Edit 
command to create new files. The following command creates a file called 
"prog/test.plm" on device 1. (Remember that the file will not be saved on secondary 
storage until you use the Write or Exit commands.) 

*E :f1 :prog/test.plm 

EDIT answers with 

:f1 :prog/test.plm: new file 
* 



F - File Name 

You can use this command to display or ehange the remembered file name. 

MARKER POSITION 

This command does not move the marker. 

PARAMETERS 

space 

filename 

Examples: 

You must type a space between this command and the file 
name. 

If you do not type a file name, EDIT responds with the file 
name it currently remembers. You must have used this name 
previously, when you invoked EDIT or in one of the 
following commands: E, F, W, or R. If EDIT does not 
remember any file names, it will display a blank line. 

If you type a file name different from the one EDIT remem­
bers, the EDIT program changes the remembered name. This 
command does not rename a file if you have already written 
to secondary storage; it simply changes the name EDIT 
remembers. 

Suppose you are currently editing a file called "prog/change.p86". Change the 
remembered name to "prog/coin.p86." 

*F prog/coin.p86 

EDIT responds by echoing the new file name. 

prog/coin.p86 
* 

5-13 



5-14 

G - Global 

The Global command directs EDIT to search the addressed text for every 
occurrence of the pattern you choose. It also tells EDIT to execute a command or 
several commands on each such line. The Gllobal command sets the marker to each 
line addressed and executes the command list. 

MARKER POSITION 

After executing this command, EDIT moves the marker wherever the last 
command in the command list executed by "G" left it. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

pattern 

command list 

Examples: 

EDIT assumes the address is the entire buffer (1,$), and it 
scans the text for every line that contains the pattern. 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT either displays the addressed line 
or it executes the commands in the command list on this line. 

The comma separates the first address from the second 
address. 

EDIT finds all text belGWeen the first address and the second 
address, inclusive. 

EDIT looks through the addressed text and finds scans the 
text for every line that does not contain the pattern you typed 
between the delimiter:3. 

You can use any command with the Global command except 
another Global or a "V." You should enter these commands 
as shown in their pictorial syntax. 

Suppose your file contains the following lines of text. 

END next$coin; 
CALL next$coin (50); 
CALL next$coin (25); 
CALL next$coin (10); 

If you want to print every line that contains the word CALL you would type 

*G/CALlIP 

EDIT displays every line in the file which contains the word CALL. 

CALL next$coin (50) 
CALL next$coin (25) 
CALL next$coin (10) 



G - Global (Continued) 

If you wanted to change every occurrence of COIN to MONEY you would use a 
Global command and specify Substitute and Print as the command list portion. 

*G/coln/S/ /money /GP 

This combination causes EDIT to replace "coin" with "money" throughout the 
entire buffer and print the changed lines. 

END next$money; 
CALL next$money (50); 
CALL next$money (25); 
CALL next$money (10); 

How Global Works 

The Global command tries to be transparent in that it temporarily saves the com­
mand list exactly as you typed it. (The only exception is a global which contains 
one or more backslashes with carriage returns. This is explained in the section on 
interpreting commands in Chapter 6.) It then finds the first line which contains the 
string you specified in the global part of the command and executes the saved 
command list. 

For example, suppose your file contains the following text. 

ED SCHMIDT. 77 NW DRIVE. NEWBURG 

JOHN SCHMIDT. 85 SW DRIVE. ORLANDO 

SALLY SCHMIDT. 99 NE DRIVE. SPOKANE 

SAMUEL SCHMIDT. 34 SE DRIVE. WOODVILLE 

If you want to replace all of the commas with semicolons, you can type: 

*G/,/S/ /;/G 

EDIT actually takes the command list (the Substitute portion) and temporarily 
saves it. EDIT then executes the first part of the command by finding the first 
comma. It then retrieves the command list and executes it. The EDIT program 
repeats this process for IBvery comma it finds. 

I GLOBAL 

5-15 



5-16 

H - Sets Tab Length 

You can use the "H" command to change the spacing of tab settings. This is 
especially convenient if you need to write a lprogram in different languages. For 
example an Assembler may expand tabs to eight spaces in the listing whereas a 
PL/M or PASCAL Compiler may use four spaces. 

--0-
EDIT automatically uses four spaces for the tab settings. If you type an "H" you 
change this spacing to eight. To reverse the process and get your tab settings back 
to four spaces, type the "H" command again. 

MARKER POSITION 

This command does not change the position of the marker. 

PARAMETERS 

The "H" command requires no parameters. 



I - Insert 

The Insert command (1) allows you to insert lines of text before the line you specify 
by your choice of address. 

MARKER POSITION 

After executing this command, EDIT moves the marker to the last line you 
inserted. 

PARAMETERS 

no address 

address 

T (tab) 

EDIT finds the current line and allows you to insert text 
before it. 

EDIT finds the address you choose and allows you to insert 
text before it. 

When you use a Tab option (T) with the Insert command, 
EDIT automatically begins your next line at the same tab 
setting you chose fDr the previous line. If you want to add 
another tab, simply press the TAB key. If you want to begin 
your next line at a lesser tab setting, type two periods ( .. ) 
fonowed by a carriage return on an otherwise blank line. 
This will set the tab back one from the previous line. EDIT 
will not include the periods in the file, whereas the tabs 
become part of the :file. 

You choose the location of the new text by means of the previously described 
parameters. After you have added all the text you wish, type a period (.) and a 
carriage return on an otherwise blank line to stop inserting. 

Examples: 

Suppose your file contains the following lines of text. 

21: END next$coin; 
22: CALL next$coin (50); 
23: CALL next$coin (25); 
24: CALL next$coin (10); 

Insert a CALL (75) statement before line 22. 

*221 
22: 
23: 

CALL next$coln (75); 

You do not have to type the line numbers in the new text. EDIT automatically 
writes the numbers if you have used the number command (N) during the editing 
session. 

5-17 



5-18 

J - Join 

You can use the Join command (J) to merge two or more lines which you specify by 
address. 

MARKER POSITION 

After executing this command, EDIT moves the marker to the line you just 
constructed with the Join command. 

PARAMETERS 

address 1 

comma (,) 

address 2 

L (list) 

P (print) 

Example: 

EDIT finds the first address you specify. 

The comma separates the first address from the second 
address. 

After you chose a first address, EDIT joins all text between 
the first address and the second address, inclusive. 

When you use a List option (L) with the Join command, 
EDIT displays all characters, including non printing ASCII 
characters, in the linE~ you constructed. 

When you use a Print option (P) with the Join command, 
EDIT displays all printing characters in the line you 
constructed. 

Suppose your file contains the following lines. 

12: change = change - x; 
13: END 
14: $next$money; 

Join lines 13 and 14 a.nd add the Print option so you can verify your changes. 

*13,14JP 

The corrected line looks like this 

13: END$next$money; 



K - Marks A Line 

The "K" command gives you another way of marking or referring to a line. You can 
specify a line and mark it with any letter of the alphabet. Once you specify a letter, 
as shown in the following syntax, you can find the line by typing a single-quote 
mark (') and the letter. 

~J 
Once you have marked a line, this mark is associated with the line even if EDIT 
resequences the line numbers. However, if you ever delete or substitute anything 
within a "marked" line, EDIT also deletes the "mark." 

MARKER POSITION 

The "K" command does not move the marker. 

PARAMETERS 

no address 

address 

letter 

Examples: 

EDIT finds the current line. 

EDIT finds the address you specify. 

EDIT marks the line you addressed with the letter you 
choose. 

Suppose your file is quite large but within it there is a line that you have to refer to 
repeatedly. You could mark it with the "K" command and refer to it whenever 
necessary. 

For example, suppose the following lines are part of a large file. If you had to go 
back to statement 8 often, you could save time by marking it with the "K" 
command 

8: PROCEDURE (X); 
9: MONEY (I); 

If you type 

*8Ka 

you can refer to this line with a single quote (') and the letter "a". 

By typing 

*'a 

you position the pointer at the PROCEDURE statement you marked with the "K" 
command. 

EDIT responds with 

8: PROCEDURE (X); 

5-19 



ISTS 
NON PRINTING 

SCII 
HARACTERS 

5-20 

L - List Nonprinting ASCII CharactE~rs 

The List command (L) displays all characters, including non printing ASCII char­
acters, between the lines you specify by address. The command is similar to Print 
except that it also displays nonprinting characters, such as tabs. Some of these 
characters appear as representations (such as horizontal arrows for tabs) and some 
appear as hexadecimal numbers preceded by a backslash (\). For example, a 
control-E prints as "\05". 

-"'1:~~~_~_a_d_d_re_s_s_1_:_ -_~"1:::_ .... _()-_, ___ ~ __ a_d_d_re_s_s_2 ___ .."J 0-

MARKER POSITION 

After executing this command, EDIT moves the marker to the last line you listed. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

Examples: 

EDIT finds the current line and displays it. 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT displays the addressed line. 

The comma separates the first address from the second 
address. 

EDIT displays all text between the first address and the 
second address, inclusive. 

Suppose your file contains the following lines. 

12: change = change - X; 
13: END; 
14: next$money; 

You need to know if there are any nonprinting ASCII characters which could be 
causing errors to occur when you compile the program. Enter: 

*12,14L 

Suppose EDIT then replies as follows. 

12: change = change - X; 
13: END 
14: next$mone\05y; 

You can see that you do have some undesirable ASCII characters. You can find out 
what the numbers mean by looking them up on the ASCII to HEX reference table in 
Appendix A. Delete the ASCII character using' the period to represent the "\05" in a 
substitute command. 

14S/mone.y Imoney IL 

EDIT will answer with the corrected line. 

14: next$money; 



M - Move 

This command (M) allows you to move one or more lines of text from one place in a 
file to another. You can specify which lines you want moved and where you want 
them placed by your choice of parameters. 

1~1 

MARKER POSITION 

After executini~ this command, EDIT moves the marker to the new position of the 
last line you moved. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

destination 
address 

Examples: 

EDIT finds the current line and moves it after the line 
specified in the destination address. 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT moves the line addressed after the 
line specified by the destination address. 

The comma separates the first address from the second 
address. 

EDIT finds all text between the first address and the second 
address, inclusive. It moves this text so that it follows the 
line specified by the destination address. 

EDIT finds the destination address you specify and moves 
the text identified by the second and/or first addresses after 
this line. 

Suppose your file contains the following lines of text. 

21: END next$coin; 
22: CALL next$coin (50); 
23: CALL next$coin (25); 
24: CALL next$coin (10); 

You can use the Move command to plaICe line 21 after the original line 24 

*21M24 

The text should read as follows. 

21: CALL next$coin (50) 
22: CALL next$coin (25) 
23: CALL next$coin (10) 
24: END next$coin; 

5-21 



5-22 

N - Number 

This command (N) tells EDIT to display the lJlne numbers asociated with the buffer 
or file being edited. If you have already used the Numbering command (N) and you 
type it again, EDIT will stop displaying the line numbers. 

--0-
You can use the Numbering command immediately after you invoke the EDIT 
program. This causes everything you append, alter, or create to have a visible line 
number associated with it. You can also invoke the Numbering command if you 
have been editing the file or buffer without numbers. These numbers are an EDIT 
feature and they are not saved when a you write a file onto secondary storage. 

MARKER POSITION 

This command does not change the marker position. 

PARAMETERS 

The Numbering command has no parameters. 

Examples: 

Suppose your file consists of the following lines. 

make$change: 
DO; 

DECLARE money(8) BYTE; 
DECLARE change BYTE; 
DECLARE change BYTE; 

You can number the lines by typing this command. 

*N 

If you print the buffer, you can see that the text now has visible line numbers to the 
far left. 

1: make$change: 
2: DO; 
3: DECLARE money(8) BYTE; 
4: DECLARE change BYTE; 
5: DECLARE change BYTE; 



o - Over One Screen 

The "0" command displays the current line of the file plus up to 22 more lines. This 
command is equivalent to the Print command ".,+22 P". Therefore it saves you 
keystrokes. As with the Print command, EDIT displays the lines in their original 
order. 

f G 

MARKER POSITION 

This command moves the marker to the last line displayed. 

PARAMETERS 

no address 

address 

L (list) 

EDIT finds the current line and displays it plus up to 22 
additional lines. 

EDIT finds the address you choose and displays that line 
plus up to 22 additional lines. 

When you use a List option (L) with the "0" command, EDIT 
displays all characters, including nonprinting ASCII 
characters, in the lines that it displays. 

This command lis more useful on a screen-type terminal than a hard-copy or single­
line terminal, since it displays the one screen full of text starting with the line you 
specify. 

5-23 



5-24 

P - Print 

You can use the Print command (P) to display the text between the lines you specify 
by address. 

-...... lP'--c~ 

MARKER POSITION 

After executing this command, EDIT moves the marker to the last line you printed. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

Examples: 

EDIT finds the current line and displays it. 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT displays the addressed line. 

The comma separates the first address from the second 
address. 

EDIT displays all text between the first address and the 
second address, inclusive. 

Suppose the following lines of text make up your file. 

1: make$change: 
2: DO; 
3: DECLARE money(8) BYTE; 
4: DECLARE change BYTE; 
5: DECLARE change BYTE; 
6: 
7: next$money: 
8: DECLARE X BYTE; 
9: money(l) X; 
10: PROCEDURE(X); 

Print the first 6 lines. 

*1,6P 

EDIT responds with 

1: make$change: 
2: DO; 
3: DECLARE money(8) BYTE; 
4: DECLARE change BYTE; 
5: DECL.ARE change BYTE; 
6: 
* 

Now, suppose that this same file has no numbers associated with it and you want to 
print the entire buffer. 

*1,$P 



EDIT responds with 

make$change: 
DO; 

* 

DECLARE DECLARE m
h
OneY(8) BYTE; 

DECLARE c ange BYTE; 
change BYTE; 

next$money: 
DECLARE X BYTE· 
money(l) = X· ' 
PROCEDURE(X); 

p - p. nnt (Continued) 

5-25 



5-26 

Q - Quit 

The Quit command (Q) lets you leave the EDIT program. 

--0-
This command quits the EDIT program and does not write the buffer to secondary 
storage (see the Write command). This is eBpecially useful if you have done some 
careless editing and want to start over. 



R - Read 

The Read command (R) allows you to add the contents of a file after a line in your 
buffer. 

-1IIIII1:~~:~ __ a_dd_r_eIJ_0 ___ Jf 0 ~ J 
MARKER POSITION 

After executing this command, EDIT moves the marker to the last line it read into 
the buffer. 

PARAMETERS 

no address 

address 

space 

filename 

Examples: 

When you do not specify an address, EDIT places the 
contents of the file you specify after the last line of the text. 

EDIT places the contents of the file you specify after the line 
you specify with this address. Remember, you can use zero as 
an address with the Append command. 

You must type a spaee between this command and the file 
name. 

This is the name of the file from which EDIT reads. EDIT 
finds the file you specify by a file name and places the entire 
contents after the address you choose. 

If you do not type a file name, EDIT responds with the file 
name it currently remembers. You must have used this name 
previously, when you invoked EDIT or in one of the 
following commands: E, F, W, or R,. If EDIT does not 
remember any file names, it will return an error message (?). 

Suppose the following lines compose a file called "samp.txt". 

DO WHILE 1<8; 
CALL next$coin (5); 

END; 

Your buffer contains the following lines. 

DO; 
DECLARE money(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

Use the Read command (R) to add "samp.txt" to the buffer. 

*R samp.txt 

EDIT responds with 

samp.txt: 3 lines, 43 bytes. 

Your buffer now contains the following text. 

DO; 
DECLARE money(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

DO WHILE I > 8; 
CALL ne)(t$coin (5); 

END; 

5-27 



5-28 

S - Substitute 

The Substitute command (S) allows you to ]['eplace the occurrences of a character, 
word or phrase in the line or lines which you specify by address. 

MARKER POSITIION 

After you execute this command, the marker will be at the last line in which you 
substituted for a pattern. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

delimiter 

pattern 

replacement­
pattern 

G (Global) 

L(list) 

P (print) 

EDIT finds the current line. 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT substitutes the replacement 
pattern for the pattern in the addressed line. 

The comma separates the first address from the second 
address. 

EDIT finds all text between the first address and the second 
address, inclusive. 

EDIT reads the first character after the "S" as the delimiter. 
EDIT considers every character after the delimiter as part of 
the pattern until it finds another instance of the delimiter. 

This is the character, word, or phrase you want to replace. 
You must type it between delimiters. 

This is the character, word, or phrase with which you replace 
the first pattern. You must type it between delimiters. 

When you use the Global option (G) with the substitute com­
mand, EDIT substitutes for all cases of the pattern in the 
lines you addressed. If you do not use the Global option, 
EDIT substitutes only for the first case of the pattern. 

When you use a List option (L) with the Substitute command, 
EDIT displays all characters, including non printing ASCII 
characters, in the last line EDIT actually substituted for the 
pattern. 

When you use a Print option (P) with the Substitute 
command, EDIT displays all printing characters in the last 
line EDIT actually substituted for the pattern. 



S - Substitute (Continued) 

Examples: 

Suppose your file consists of the following lines of text. 

1: make$money: 
2: DO; 
3: DECLARE moneY(8) BYTE; 
4: DECLARE change BYTE; 

Replace the first occurrence of "money" with "coin" in lines 1 through 3 using the 
Substitute command and Print the results. 

*1 ,3S/money /coln/P 

EDIT responds with the last line it changed. 

3: DECLARE coin (8) BYTE; 

Suppose your file contains the following lines. 

DECLARE coin(8) BYTE; 
DECLARE I BYTE; 
next$coin; 

/*this is the result*/ 
/*index to coin array*/ 
/*this is a procedure// 

The line beginning with NEXT$COIN has a. mistake in the comments portion. The 
second slash should be an asterisk (*). You can use the Substitute command to fix 
this, but if you use the slash as a delimiter, you will have problems. You can correct 
this line easily by using the another character as a delimiter. For example 

* /next/S1 procedure/1 procedure*1 P 

corrects the problem and treats the slash as a normal character. The Print option 
(P) directs EDIT to display the line. 

next$coin; /*this is a procedure*/ 

Now, suppose that you want to delete the word BYTE frorp line one of the previous 
file, but you don't want to delete the whole line. You can do this by substituting a 
"nothing" or no character in place of BYTE. . 

*1S/BYTE// 

Special Case 

You can rearrange the text within lines by using "\(" and "\)" as "tags" for the 
parts you want to move. Suppose you have a file consisting of the following names. 

Johnson, Edward 
Johnson, Edwin 
Joh nson, EI isa 
Jonas, Jessie 
Jonas, Robert 

N ow suppose that you want the last name to follow the first with no commas. You 
can do this with a series of EDIT commands but it can be tedious. However, you can 
"tag" the pieces of the pattern and rearrange these pieces. EDIT remembers the 
part of the pattern enclosed in the "\(" and the "\)" on the left side of the Substitute 
command so this part can be used on the right side. On the right side, the symbol 
"I" refers to whatever matches the first pair of "\( ... \)". The symbol "2" refers to 
the second pair of "\( ... \), and so on. 

I SUBSTITU 

5-29 



5-30 

S - Substitute (Continued) 

Type the following command. 

*1,$S/I\([I,]*\), *\(.*\)/\2\11 

Although this command is hard to read, it rearranges the text within the lines 
without typing many different EDIT commands. The first pair of "\( ... \)" matches 
any string up to the comma (the last name). The second pair of "\( ... \)" matches 
whatever follows the comma (the first name). So, the file now reads as follows. 

Edward Johnson 
Edwin Johnson 
Elisa Johnson 
Jessie Jonas 
Robert Jonas 



T - Text Copy 

The Text Copy eommand (T) allows you to copy one or more lines of text. You can 
specify which lines you want copied and where you want them placed by your 
choice of address. This command is similar to the Move command (M) except EDIT 
copies the lines rather than moving them. 

MARKER POSITION 

After executing this command, EDIT moves the marker to the new position of the 
last line you copied. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

destination 
address 

Examples: 

EDIT finds the cUrJrent line and copies it after the line 
specified in the destination address. 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT copies the line addressed after the 
line specified by the destination address. 

The comma separates the first address from the second 
address. 

EDIT finds all text between the first address and the second 
address, inclusive. It copies this text after the line specified 
by the destination address. 

EDIT copies the text identified by address and copies this 
text so that it follows the line specified by the destination 
address. 

Suppose your file contains the following lines. 

8: change = change - X; 
9: END 
10: $next$money; 

You can use the Text Copy command (T) to copy the "change" line and place it after 
"next$money" . 

*8T10 

If you print these lines they should read as follows. 

8: change = change - X; 
9: END 
10: $next$rnoney; 
11 : change = change - X; 

5-31 



5-32 

U - User Macro 

A macro is a set of statements to which you assign a name by means of the macro 
or "U" command. You can use the user-macro command (U) to define a macro, list 
the defined macro, and display the definition of a given macro. Refer to Chapter 6 
for examples and a more detailed explanation of macros. 

Defining a Macro 

Displaying the Defined Macro 

~~ 
Listing the Defined Macro 

---0--
Invoking a Macro 

MARKER POSITON 

The User Macro (U) command does not move the marker. 

PARAMETERS 

address 1 

comma (,) 

address 2 

letter 

delimiter 

text 

pound sign (#) 

exclamation 
point (!) 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT defines the macro to be this line. 

The comma separates the first address from the second 
address. 

EDIT finds all text between the first address and the second 
address, inclusive. It then defines the macro to be this text. 

EDIT specifies the macro by the letter you choose. 

EDIT reads the first character after the letter as the 
delimiter. EDIT considlers every character after the delimiter 
as part of the text until it finds anther instance of the 
delimiter. 

The text you enter becomes the contents of the Macro. 

The pound sign (#) and the letter you chose, invokes the 
macro specified by the letter. 

The exclamation point (!) and the letter you chose invokes the 
macro. However, it call1ses EDIT to ignore any nested macro 
invocations. 



v - Exclusive Global 

The "V" command directs EDIT to search the addressed text for every occurrence 
of a line that does not contain the pattern you choose. This command is like the 
Global command except that it uses lines that don't match. 

MARKER POSITION 

After executing this command, EDIT moves the marker wherever the last 
command in the command list executed by "V" left it. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

pattern 

command list 

Examples: 

EDIT assumes the address is the entire buffer, (1,$) and it 
scans the text for every line that does not contain the 
pattern. 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT either displays the line or 
performs the commands in the "command list" on the 
addressed line. 

The comma separates the first address from the second 
address. 

EDIT finds all text between the first address and the second 
address, inclusive and scans it for every line that does not 
contain the pattern you specify. 

EDIT looks through the addressed text and finds scans the 
text for every line that does not contain the pattern you typed 
between the delimiters. 

You can use any command with the Exclusive Global 
command (V) except another Exclusive Global or a "G." You 
should enter these commands as shown in their pictorial 
syntax. 

Suppose your file contains the following lines of text. 

END next$coin; 
CALL next$coin (50); 
CALL next$coin (25); 
CALL next$coin (10); 

If you want to print every line that does not contain the word CALL you would use 
the "V" command. 

*VlCALLlP 

EDIT displays every line in the file which does not contain the word CALL. 

END next$coin; 

* 

5-33 



5-34 

W - Write 

The Write command (W) allows you to write part or all of the contents of the buffer 
into a file on secondary storage. 

You can write pieces of the text into a file as well as the entire buffer. If the file 
already exists, it is replaced by the contents of the addressed lines. 

MARKER POSITION 

The Write command does not change the position of the marker. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

space 

filename 

Examples: 

EDIT assumes no address to be the contents of the entire 
buffer (1,$). 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT writes the addressed line onto 
secondary storage. 

The comma separates the first address from the second 
address. 

EDIT finds all text between the first address and the second 
address, inclusive. 

You must type a space between this command and the file 
name. 

If you do not type a file name, EDIT responds with the file 
name it currently remembers. You must have used this name 
previously, when you invoked EDIT or in one of the 
following commands: E, F, W, or R. If EDIT does not 
remember any file names, it will return an error message (?). 

If you type a file name, EDIT will write the contents of the 
buffer (or the addressed part) into secondary storage. It will 
then display the file name followed by the number of lines 
and the number of bytes in the file. 

If you type the name of a file that already exists, EDIT writes 
the contents of the buffer over the existing file thus 
destroying any contents previously contained in the file. 

Suppose you want to save the following lines of text. 

DO WHILE 18; 
CALL next$coin (5); 

END; 



W - Write (Continued) 

Write this text into a file on device 1 using the name "samp.txt". 

*W :f1 :samp. txt 

The EDIT program answers with 

:f1 :samp.txt: ~3 lines, 43 bytes. 
* 

Now,suppose your buffer consists of the following lines. 

1: make$change: 
2: DO; 
3: DECLAHE money(8) BYTE; 
4: DECLAF~E change BYTE; 
5: 
6: next$money: 
7: DECLARE X BYTE; 
8: money(l) = X; 
9: PROCEDURE(X); 

If you want to save only lines 1 through 5>, you can write them out to secondary 
storage. 

*1,5W :f1:change.plm 

EDIT answers with 

:f1 :change.plm: 5 lines, 69 bytes. 

5-35 



5-36 

x - Exit 

The Exit command (X) is equivalent to the "Trite commmand followed by the Quit 
command. This command writes the contentn of the buffer into the file you specify 
or into the last file it remembers. It then quits the EDIT program. 

-"J--(I~ \ 

MARKER POSITION 

The Exit command does not change the position of the marker. 

PARAMETERS 

no address 

address 1 

comma (,) 

address 2 

space 

filename 

Examples: 

EDIT assumes no address to be the contents of the entire 
buffer (1,$). 

EDIT finds the first address you specify. If this is the only 
address you choose, EDIT writes the addressed line onto 
secondary storage. 

The comma separates the first address from the second 
address. 

EDIT finds all text between the first address and the second 
address, inclusive. 

You must type a spacc~ between this command and the file 
name. 

If you do not type a file name, EDIT responds with the file 
name it currently remembers. You must have used this name 
previously, when you invoked EDIT or in one of the 
following commands: E, F, W, or R. If EDIT does not 
remember any file names, it will return an error message (?). 

If you type a file name, EDIT will write the contents of the 
buffer (or the addressed part) into secondary storage and 
display your file name along with the number of lines and 
bytes. It will then exit the EDIT program and your system 
will display its prompt. 

If you type the name of a file that already exists, EDIT writes 
the contents of the buffer over the existing file thus 
destroying any contents previously contained in the file. 

Suppose your buffer consists of the following lines. 

1: make$change: 
2: DO; 
3: DECLARE moneY(8) BYTE; 
4: DECLARE change BYTE; 
5: 
6: next$money: 
7: DECLARE X BYTE; 
8: money(I) = X; 
9: PROCEDURE(X); 



x - Exit (Continued) 

Write the contents of the buffer out to secondary storage and quit EDIT at the same 
time. 

*X :f1 :prog/text.plm 

EDIT responds with the following line and the prompt for your system. 

:f1:test.plm: 10 lines, 1:38 bytes. 

5-37 



5-38 

@ - Command File 

A command file is a series of EDIT commands to which you assign a name just as 
you would any other file. The EDIT program executes this file as a series of 
commands when you enter an "at" sign (@) followed by a file name. Refer to 
Chapter 6 for examples and a more detailed explanation of Command Files. 

MARKER POSITION 

The Command File command does not change the position of the marker. 

PARAMETERS 

filename After you type a file name, EDIT will execute the contents of 
the file as a series of EDIT commands. 



C/R - Displaying A Specific Line 

EDIT finds the addressed line and displays it. If you do not address a line (just type 
a carriage return), EDIT displays the next line. This is convenient if you want to 
look at the file a line at a time. 

MARKER POSITION 

After executing this command, EDIT moves the marker to the last line you 
displayed. 

PARAMETERS 

no address 

address 

Examples: 

If you type a carriage return on an otherwise blank line, 
EDIT displays the line after the current line. If the marker is 
at the last line of the buffer, EDIT displays nothing. 

EDIT displays addressed the line. 

Suppose your file consists of the following text and your marker is on line 1. 

1: make$change: 
2: DO; 
3: DECLAFIE money(8) BYTE; 
4: DECLARE change BYTE; 

If you want to examine the text line by line, type a carriage return on an otherwise 
blank line. 

*(c/r) 

EDIT responds as follows. 

2: DO; 

If you type another carriage return, EDIT answers with the next line. 

*(c/r) 
3: DECLAFIE money(8) BYTE; 

Now suppose that you want to see line 1. Type: 

*1 

EDIT answers with 

1: make$change: 

5-39 



5-40 

* - Comment 

The Comment command (*) tells EDIT to ignore the text which follows the asterisk. 
This command allows you to add comments to your edit session which may make it 
more readable. 

MARKER POSITION 

The Comment command (*) does not change the position of the marker. 

PARAMETERS 

text The text you enter is the comment. 

Example: 

This command is espeeially useful in Command Files (see Chapter 66) since EDIT 
reads them as a series of EDIT commands. Suppose your command file consists of 
the following text. 

G/BYTE/SI I ADDRESSI 
G/change/D 
$1 
END; 

You need to insert some comments so you don't forget what the file is supposed to 
do. 

*11 
*This Command File replaces BYTE with A[IDRESS and deletes all lines 
*contalnlng the word CHANGE. It also inserts the word END and a ";" before 
*the last line of the file. 
* 

The file now contains the following lines. 

*This Command File replaces BYTE with ADDRESS and deletes a" lines 
*containing the word CHANGE. It also inserts the word END and aU;" 
*before the last line of the file. 

* 
G/BYTE/SI I ADDRESS/P 
G/change/D 
$1 
END; 



CHAPTER 6 
ADVANCED EDITING 

This chapter describes how to use more powerful EDIT features such as command 
files and macros. 

• A command file is a series of EDIT commands to which you assign a name just 
as you would any other file. The EDIT program executes this file as a series of 
commands when you enter an "at" sign (@) followed by a file name. 

• A macro is text to which you assign a name by means of the macro or "u" 
command. The EDIT program inserts the contents of a macro wherever you 
type a pound sign (#) or an exclamation point (!) and the name of the macro. 

Command Files 

Command files are files you create especially for use in EDIT. You create them just 
as you would any other file. However, these files contain commands which the 
EDIT program automatically executes when you type an "@" and the file name 
during an editing session. 

The general form for this editing technique is as follows. 

You typically use command files for long command sequences that you execute 
often. Rather than entering a long series of EDIT commands, you call the 
predefined command file with a single command line. This facility speeds your 
work and reduces the typing errors usually associated with a long string of 
commands. 

Examples: 

Suppose you want to edit many files. Each file contains the word BYTE in 
numerous places and you must change it to ADDRESS and print the results. There 
are also numerous references to "change" which you must delete. And finally, you 
need to add "END;" before the last line of these files. 

First, you need to create a command file. This manual will refer to the command file 
as ":f1:assist/aid.cmd" where ":f1:" is the logical name for the device and 
"assist/aid.cmd" is the file name. Enter EDIT and create the commands as if you 
were executing them on a line. 

Type 

ED :f1 :asslst/S1ld.cmd 

EDIT responds with a sign-on (not shown) and an acknowledgment of your file 
name. 

:f1 :assist/aid.cmd: new file 

* 
In order to actually create this file you must append the commands you want in 
your command :file. . . 

6-1 



Advanced Editing EDIT Reference Manual 

6-2 

*a 
G/BYTE/S/ / ADDRESS/G P 
G/change/D 
$1 

(changes BYTE to ADDRESS and print) 
(deletes lines containing change) 
(inserts END; before 

END; the last line) 
x (holds place for period) 

EDIT answers with a prompt. 

* 
Before you write the text into the file, notice that the insert command (I) does not 
have a period after the END line to tell EDrr to stop inserting. Instead of a period, 
you typed an "x". If you had typed a period, EDIT would have stopped appending 
any commands into the file because it would have read the period as a signal to stop 
adding to the file. The letter "x" is holding a place for the period. Just use the 
substitute command to replace the "x" wit.h a period (.). 

5S/x/./ 

Now, write the file into secondary storage. EDIT will remember the file name you 
previously specified. 

*W 

EDIT responds 

:f1 :assistlaid.cmd: 5 lines, 46 bytes. 
* 

Your command file is now on secondary storage. 

Suppose "program/coin.plm" is one of the files you need to alter. If you did the 
examples in the tutorial, you already have this file in secondary storage. If you 
have not gone through the tutorial you can enter the following text and write it into 
a file called "program/coin.plm." 

make$change: 
DO; 

DECLARE coin(8) BYTE; 
DECLARE change BYTE; 
DECLARE I BYTE; 

next$coin: 
PROCEDURE(X); 

DECLARE X BYTE; 
coin(l) = X; 
I = I + 1; 
change = change - X; 

END next$coin; 

change = 100 -
1=0; 
DO WH I LE change >= 50; 

CALL next$coin(50); 
END; 
DO WHILE change >= 25; 

CALL next$coin(25); 
END; 
DO WHILE change >= 10; 

CALL next$coin(10); 
END' 
DO WH I LE change >= 15; 

CALL next$coin(5) 
END-
DO WH I LE change >= 1; 

CALL next$coin(1); 
END; 
DO WH I LE change >= 8; 

CALL next$coin(O) 
END; 

END make$change; 

/*this is the result*/ 
/*number to be converted*/ 
/*index to coin array*/ 

/*this is a procedure*/ 

/*X is specified*/ 

/*write the cost here* / 
/*initialize the index*/ 
/*half dollar*/ 

/*quarters* / 

/*dimes*/ 

I$nickels*/ 

I*pennies/* 

I*zero out rest of coins*/ 



EDIT Reference Manual Advanced Editing 

Enter the file through EDIT and use the command file to make the necessary 
changes. 

"'E program/coln.plm 

EDIT answers with 

program/coin.plm: 35 lines, 929 bytes. 

'" 
Now that you have entered the program that you want to alter, you can invoke the 
command file by typing. 

"'@ :f1:asslstlald.cmd 

EDIT executes the commands contained in ":f1:assist/aid.cmd" on the file 
"program/coin.plm". The following display is a result of the command file's first 
command which directed EDIT to print th,e corrected lines containing ADDRESS. 

* 

DECLARE coin(8) ADDRESS; 
DECLARE change ADDRESS; 
DECLARE I ADDRESS; 

DECl.ARE X ADDRESS; 

/*this is the result*/ 
I*number to be converted*/ 
/*index to coin array*/ 
I*X is specified* / 

The command file will :remain on secondary storage after you exit EDIT. 

Command Flies Within Command Files 

You can call command files within command files. EDIT finds the first command 
file and executes the contents up to the call for the second command file. It then 
finds the second command file and executes the contents and so on up to nine calls. 
As EDIT exhaust each file, it returns to the previous one. 

The Macro Feature 

EDIT macros, like command files, are another time saving feature. However, 
macros are not necessarily a series of EDIT commands. They can be used in a 
number of different ways. A macro can bE~ a group of lines that you refer to by a 
single name or a procedure you use often. Macros are stored in a temporary memory 
and EDIT expands them when you call them by name. 

Defining A Macro 

You can use the user macro command (U) to define a macro, to list the defined 
macros, and to display the definition of a given macro. 

To define a macro, you type the user macro command (U) followed by a letter of the 
alphabet that will serve as the name of the macro and the text of the macro 
enclosed in slashes (I I). The slashes are delimiters. EDIT reads the first character 
after the "letter" as the delimiter. You can use any character you wish as a 
delimiter, but to avoid confusion this manual will use a slash. 

The general form for defining a macro is 

6-3 



Advanced Editing EDIT Reference Manual 

6-4 

Suppose you want to create a macro of lines you may use often in writing programs. 
If you have to use the same DECLARE statements for several programs, you may 
find it useful to put these statements in a macro rather than typing them each time. 
Be sure to use a backslash before the carriage return so EDIT does not try to define 
an incomplete macro. 

*Uf/DECLARE X BYTE;\ 
DECLARE Y ADDRESS;\ 
DECLARE Z BYTE;/ 

Now, you have defined "f' as a macro. In order to display the contents of this 
macro, type 

*uf 

EDIT answers with 

DECLARE X BYTE; 
DECLARE Y ADDRESS; 
DECLARE Z BYTE; 

The general form for using a macro is 

Suppose you are creating a file that requires the DECLARE statements you just 
wrote into the macro "f'. To enter the lines contained in the previous macro, type a 
pound sign (#) and the letter "f' which represents the contents. Type the following 
example. 

*A 
maklng$change: 
DO; 
#f 
NEXT$coln; 

PROCEDURE (X); 

(this line writes the contents of macro "f" here) 

EDIT copies the text associated with the macro into the buffer where you typed the 
pound sign (#) and the letter "f." However, EDIT does not display the contents of 
the macro immediately; you must request BL display of the text by using another 
EDIT command. 

*1,$P 

EDIT answers with the complete file. 

making$change: 
DO; 
DECLARE X BYTE; 
DECLARE Y ADDRESS; 
DECLARE Z BYTE; 
next$coin; 

PROCEDURE (X); 

The display shows that the DECLARE statements are included in the buffer. This 
macro can be used repeatedly during the editing sessions as long as you do not Exit 
or Quit the EDIT program. The macro just described is not saved after you leave 
EDIT because it is not written on secondary storage. 



EDIT Reference Manual Advanced Editing 

Line-Range Macros 

The user macro command (U) allows you to define macros from the text in the 
buffer. For example, suppose your text consisted of the following lines: 

1: make$change: 
2: DO; 
3: DECLARE money(8) BYTE; 
4: DECLARE change BYTE; 
5: DECLARE I BYTE; 
6: 
7: next$money: 
8: PROCEDURE(X); 
9: DECLARE X BYTE; 
10: money(l) = X; 
11: 1=1+1; 
12: change = changEl - X; 

/*this is the result*/ 
/*number to beconverted*/ 
/*index to money array*/ 

/*this is a procedure*/ 

/*X is specified*/ 

Let's say that you know that you will need to use statements 11 and 12 often while 
writing this program. If you define a macro to be lines 11 and 12 of the buffer, you 
can save yourself typing time. 

The general form for a line-range macro is 

-~r-----C~~).-"l-~~S 2 l ___________ ......" 

So, to define lines 11 and 12 as a macro you would type 

*11,12Ua 

You can now use this macro any time you need to write the statements in lines 11 
and 12. You can use the macro by typing a pound sign (#) and the letter "a". 

*#a 

Macros And Command Files 

You can define a macro to be a command fille. This saves you even more time and 
reduces the chance of error. 

To define a macro to be a command file, you must first create and write the file into 
secondary storage. Then you assign the invocation of the command file to a macro 
just as you would a normal macro. Suppose you want to use the same command file 
you created earlier. Since you have already written the file into secondary storage, 
you can assign it to a macro and substituting the command file invocation for the 
text. 

*Uc;@:f1 :asslst/ald.cmd; 

Notice that the delimiters are semicolons beeause a slash is used in the file name. 

The previous EDIT statement defines the macro "c" to be the command file 
:f1:assistlaid.cmdl. Now, rather than typing 

*@:f1 :assist/aid.cmd 

you can type 

*#c 

and EDIT will execute the command file. 

6-5 



Advanced Editing EDIT Reference Manual 

6-6 

This macro can be used repeatedly during the editing sessions as long as you do not 
exit or quit the EDIT program. When you exit the EDIT program, the macro 
assignment is not saved because it is not written on secondary storage. 

ED.MAC 

You already know how to create, display, and execute macros and command files. 
But, up to this time, EDIT lost macro definitions when you left the EDIT program. 
ED.MAC is a special command file that EDIT executes automatically when you 
invoke the program. 

NOTI: 
EDIT actually scans and executes the commands in ED.MAC before it 
opens the file you specify. For this reason, you must be careful when you 
use text-dependent commands such as "l,$P". If ED.MAC contains a 
text-dependent command before ED.MAC places any text in the buffer, 
the EDIT program will respond with a question mark (?). EDIT then 
aborts ED.MAC and does not load the file you specified. 

You create this file just as you would any other command file. However, you must 
not use a prefix which designates a secondary storage device. This causes your 
system to put ED.MAC wherever it normally stores files when you do not specify a 
device. For example, iRMX 86 stores ED.lV[AC on the default directory. 

EDIT is programmed to recognize the name ED.MAC so that you can create a set of 
commands which EDIT executes at the time it signs on and before you see a 
prompt. You can also define macros in EDJ~AC so that you do not have to define 
them each time you invoke the EDIT program. 

Examples: 

Suppose you are ready to create an ED.MAC file. Think of some commands you 
have to execute each time you enter EDIT. You can include these commands in 
ED.MAC so that each time you invoke thE~ EDIT program these commands are 
executed automatically. The numbering command is a good example of this type of 
command. 

Place the numbering command (N) in ED.MAC and write it out to secondary 
storage. 

*E ED.MAC 
ED.MAC: new file 
*A 
N 

*W 
ED.MAC: 1 lines, 3 bytes. 

Now, each time you invoke EDIT, the lines of the text you are altering or creating 
will be numbered and you don't have to type anything. 

You can use the ED.MAC feature to define macros that you use often. Try placing 
the "f" macro you previously created into ED.MAC. 

*E ED.MAC 
ED.MAC: 1 lines, 3 bytes. 
*A 
2: 
3: 
4: 
5: 
* 

Uf/DECLARE X BYTE; 
DECLARE Y ADDRESS; 
DECLARE Z BYTE;/ 



EDIT Reference Manual Advanced Editing 

Now, write the macro onto ED.MAC. 

*W 

EDIT answers as follows. 

ED.MAC: 4 lines, 63 bytes. 

EDIT executes this macro only if you call it by entering a pound sign (#) and the 
letter "f" even though ED.MAC saves the macro. 

Macros Within Macros 

You can invoke macros within another rnacro up to nine times. For example, 
suppose you define the macro "g" to be the following lines. 

*Ug/make$change: 
00;/ 

Now, suppose that after you have written macro "g", you decide to include the 
contents of macro "g" in macro "y." If you don't want to rewrite macro "g", you can 
call it within macro "y." You must use a backslash before the pound sign (#) so 
EDIT won't try to expand the macro "g" while you are defining the macro "y." 

*Uy/\ #g 
DECLARE coln(8) BYTE; 
DECLARE change BYTE; 
DECLARE 1 BYTE;/ 

Suppose that the following lines make up your text. 

1: next$coin: 
2: PROCEDURE(X); 
3: DECLARE X BYTE; 
4: coin(l) == X; 

Insert the macro "y" before line 1 

*11 
1: #y 
6: 

* 
You can tell by the previous line numbers that EDIT has expanded the macros 
but you will have to display the buffer to make this expansion visible. 

*1,$P 
1: make$change: 
2: DO; 
3: DECLARE coin(8) BYTE; 
4: DECLARE changE~ BYTE; 
5: DECLARE I BYTE; 
6: next$coin: 
7: PROCEDURE(X); 
8: DECLARE X BYTE; 
9: coin(l) == X; 

Disregarding IMacros Within A Macro 

The exclamation point (!) followed by a letter referencing a macro tells EDIT to 
disregard any macro invocation within the macro. It also automatically takes 
away any meaning from a carriage return at the end of a line until EDIT find 
another delimiter. You can use the exclamation point and the letter defined to 
represent the macro in the same way you would pound sign (#) and the letter. 

Suppose you are editing a file similiar to that in the preceding example. However, 
this file already contains the contents of macro "g". 

6-7 



Advanced Editing EDIT Reference Manual 

6-8 

1: making$change: 
2: DO; 
3: next$coin: 
4: PROCEDURE(X); 
5: DECLARE X BYTE; 
6: coin(l) = X; 

Since the file already contains the contents of macro "g", you don't want to have it 
entered again. But you do want the rest of the contents of macro "y" expanded. The 
best thing to do is to insert the macro "y" and have EDIT disregard the call for 
macro "g". 

*31 
3: !y 
6: 
* 

When you display the text, EDIT does not expand the macro call within macro 
"y." 

1: make$change: 
2: DO; 
3: #g 
4: DECLARE coin (8) BYTE; 
5: DECLARE change BYTE; 
6: DECLARE I BYTE; 
7: next$coin: 
8: PROCEDURE(X); 
9: DECLARE X BYTE; 
10: coin(l) = X; 

You can now delete line 3 from the file if you wish. 

The exclamation point also allows you to examine each macro individually. For 
instance, suppose Macro "d" contains the following text. 

DECLARE X = Y; 
DECLARE Z = Y; 
DECLARE N = M; 
#b 

and the Macro "b" which contains the following lines. 

next$coin; 
PROCEDURE(X); 
DECLARE X BYTE; 
#e 

Macro "b" also contains a macro (e) that consists of the following lines. 

making$change: 
DO; 

Suppose you want to use the first set of hnes as a macro by itself. Rather than 
retyping the lines, you can append it to ED.MAC as follows (assuming you are 
editing ED.MAC). 

*A 
Id 

... 

Now when you invoke EDIT, ED.MAC expands the macro "d" without expanding 
the macros within "do" 



EDIT Reference Manual Advanced Editing 

Interpreting Commands In Macros 

As a general rule, EDIT uses the baekslash to remove special chara<:ter 
eharacteristics from the character immediately following the backslash. An 
example is: 

*S/end\./end,/ 

where "." tells edit you want to find the character string "end." rather than "end" 
followed immediately by any other character. Suppose your file contains the 
following lines. 

ED SCHMIDT, 77 NW DRIVE, NEWBURG 

JOHN SCHMIDT, 85 SW DRIVE, ORLANDO 

SALLY SCHMIDT, 99 NE DRIVE, SPOKANE 

SAMUEL SCHMIDT, 34 SE DRIVE, WOODVILLE 

If the cursor is at line one, and you want to replace all the commas with semicolons, 
you can type: 

*G;,;S;;; \;;G 

Your file now looks like this. 

ED SCHMIDT; 77 NW DRIVE; NEWBURG 

JOHN SCHMIDT; A85 SW DRIVE; ORLANDO 

SALLY SCHMIDT; 99 NE DRIVE; SPOKANE 

SAMUEL SCHMIDT; 34 SE DRIVE; WOODVILLE 

Remember, when you use the Global command with a command list, EDIT 
temporarily saves the command list exaetly as you typed it. In this case, EDIT 
saves the following command. 

S;;;\;; 

Now, if you wish to plaee the previous Global Substitute command in a macro, you 
must add another backslash in front of the first backslash. This is because when 
EDIT stores the Global Substitute command in a macro buffer, it takes away a 
backslash. 

Example 

If you want to place the command "G;,;S;;\;;" in a macro, you must add another 
backslash to the command. The command. in the macro internal buffer should look 
like the following illustration. 

Command entered to macro: 

*Um/S;,;s;;\ \;;1 

Command in macro buffer *G;;;S;;\;; 

NOTE 
If you get eonfused about the number of backslashes necessary in a macro, 
just examine the macro as follows. 

U letter 

6-9 



Advanced Editing EDIT Reference Manual 

6-10 

Special Interpretations 

The special character, carriage return (c/r): presents a unique exception to the 
general rule concerning macros and backslashes. In order to discuss the exception, 
we must go back to the previous example and use carriage returns. 

In general the Global command interprets the command list portion exactly as you 
typed it, but the carriage return complicates the process. The carriage return 
normally terminates the command list portion of the Global command. Therefore, 
Global must know if you intend to place a carriage return in the command list 
buffer "\(c/r/)" or if you are using a carriage return to terminate the command list. 
This special interpretation of carriage return requires an extra backslash. 

In other words, the Global command cannot pass a backslash and a carriage return 
to the buffer. This means a Global command with a command list intending to use 
"\(c/r)" must be written as "\ \ \(c/r)" so the Global command will interpret the 
command list as "\(c/r)". 

Example 

Suppose the following lines make up your file. 

ED SCHMIDT, 77 NW DRIVE, NEWBURG 

JOHN SCHMIDT, 85 SW DRIVE, ORLANDO 

SALLY SCHMIDT, 99 NE DRIVE, SPOKANE 

SAMUEL SCHMIDT, 34 SE DRIVE, WOODVILLE 

If you want to replace all commas with ca.rriage returns, you should type the 
following command. 

*G:,:S::\ \ \(c/r) 

EDIT actually saves "S::"(c/r):" in tempora:ry storage. This is because both the 
carriage return and its backslash require an extra backslash. The carriage return is 
just a special case that must have an extra backslash are executing a global 
command. 

If you want to put the previous command in a macro, the process is more complex. 
You must add a backslash in front of each existing backslash and in front of the 
carriage return in order for the macro to function properly. You should type 

* Ux/G:,:S::\ \ \ \ \ \ \ (c/r) 
:/ 

This command stores "G:,:S::\ \ \(c/r/)" in the macro buffer. 

NOTE 
If you get confused about the number of backslashes necessary in a macro, 
just examine the macro as follows. 

U letter 



Table A-I. ASCII Code List 

Hexa-
De'clmal Octal decijmal Character 

0 000 00 NUL 
1 001 01 SOH 
2 002 02 STX 
3 003 03 ETX 
4 004 04 EOT 
5 005 015 ENQ 
6 006 016 ACK 
7 007 017 BEL 
8 010 018 BS 
9 011 019 HT 

10 012 OA LF 
11 013 OB VT 
12 014 OC FF 
13 015 00 CR 
14 016 OlE SO 
15 017 OF SI 
16 020 10 OLE 
17 021 11 OC1 
18 022 12 OC2 
19 023 13 OC3 
20 024 14 OC4 
21 025 15 NAK 
22 026 16 SYN 
23 027 17 ETB 
24 030 18 CAN 
25 031 19 EM 
26 032 1A SUB 
27 033 1B ESC 
28 034 1C FS 
29 035 10 GS 
30 036 1E RS 
31 037 1F US 
32 040 ~!O SP 
33 041 ~?1 ! 
34 042 ~!2 " 
35 043 23 # 
36 044 ~?4 $ 
37 045 25 % 
38 046 ~?6 & 
39 047 ~?7 
40 050 ;?8 
41 051 ~?9 
42 052 ~!A * 43 053 ~!B + 
44 054 ~!C 
45 055 ~!O 
46 056 2E 
47 057 :2F / 
48 060 :30 0 
49 061 :31 1 
50 062 :32 2 
51 063 :33 3 
52 064 :34 4 
53 065 :35 5 
54 066 :36 6 
55 067 :37 7 
56 070 :38 8 
57 071 :39 9 
58 072 3A 
59 073 :38 , 
60 074 :3C < 

APPENDIX A 
ASCII CODES 

A-I 



Appendix A EDIT Reference Manual 

Table A-I. ASCII Cod.e List (Continued) 

HE!Xa-
Decimal Octal dec:lmal Character 

61 075 3D 
62 076 3E > 
63 077 3F ? 
64 100 40 @ 
65 101 41 A 
66 102 42 B 
67 103 43 C 
68 104 44 0 
69 105 45 E 
70 106 46 F 
71 107 47 G 
72 110 48 H 
73 111 49 I 
74 112 4,11. J 
75 113 49 K 
76 114 4(; L 
77 115 41J M 
78 116 4E N 
79 117 4F 0 
80 120 50 P 
81 121 51 Q 
82 122 52 R 
83 123 53 S 
84 124 54 T 
85 125 5.5 U 
86 126 516 V 
87 127 5'7 W 
88 130 5;9 X 
89 131 59 y 
90 132 5A Z 
91 133 513 [ 
92 134 5G \ 
93 135 5D ] 
94 136 51: A 

95 137 5F 
96 140 60 
97 141 6'1 a 
98 142 6:~ b 
99 143 6:~ c 

100 144 64 d 
101 145 61" ,) e 
102 146 6f) f 
103 147 67 9 
104 150 613 h 
105 151 6H 
106 152 6A j 
107 153 6B k 
108 154 6C I 
109 155 6[) m 
110 156 6E n 
111 157 6F 0 

112 160 70 P 
113 161 7~1 q 
114 162 7') ~. r 
115 163 7~1 s 
116 164 74 t 
117 165 7" .. I u 
118 166 7fi v 
119 167 7i' w 
120 170 78 x 
121 171 7~1 y 
122 172 7'" z 
123 173 7EI { 
124 174 7C 
125 175 7[1 
126 176 7E: 
127 177 7F DEL 

A-2 



APPENDIX B 
IMPLEMENTATION PROBLEMS 

Some systems dlo not respond to the tab key or the Tab option as depicted in 
previous chaptel's. Instea.d, you will not see the tabs as you type. Fear not! The tabs 
are included in the buffer but they do not become visible until you display the 
buffer. 

B-1/B-2 





The primary reference of each multiple-page topic is in boldface type. 

$ 2-2, 4-2 
& 4-7 
* 5-40 
@ 5-38, 6-1 

a 5-7 
add to 2-1, 5~7 
address 5-1 

asterisk 5-3 
dollar sign 5-1, 5-2 
letter 5-2 
line number 5-1 
minus sign 5-2 
pattern 5-2 
period 5-1, 5-2 
plus sign 5-2 
up arrow 5-2 

advanced editing 6-1 
ampersand 4-7 
append 2-1, 5-7 
arithmetic 2-5 
ascii 5-20 
asterisk 4-7, 5-3 

b 5-9 
back 5-9 
back one screen 5-9 
backslash 4-8 
buffer 1-1 
buffer overflow a-2 

c 5-10 
clr 5-39 
carriage return 4-3, 5-39 
change 2-7, 5-10 
comma 5-3 
command 

dictionary 5-5 
file 5-38, 6-1 
syntax 1-1, 5-1 

commands 5-4 
comment 5-40 
controls 3-1, 3-2 

echo 3-1 
file name 3-1 
line 3-2 
macro-space 3 .. 2 

copy 2-8, 5-31 
current line 4-1 

d 5-11 
delete 2-4, 5-11 
dollar sign 2-2, 4-2 

INDEX 

Index-! 



Index 

Index-2 

e 2·9, 5-12 
echo control 3-1 
ed.mac 3-1, 6-6 
edit 2-9, 5-12 
end of line 4·2 
error message 2-1 
exclusive global 5-33 
exit 2-13, 5-36 

f 5·13 
file name 2·13, 5·4, 5-13 
file name control 3-1 
forward search 4·3 

g 5-14 
general form 2-1 
global 2-11, 5-14 

h 5·16 

i 5-17 
insert 2·4, 5-17 
invocation 2-1, 3-1 

j 5-18 
join 2-4, 5-18 

k 5-19 

15·20 
line control 3-2 
line number 2-2, 2-5, 5·22 
list 5-20 

m 5·21 
macro 5-32, 6-1, 6-3 
macros 

and command files 6-5 
defining 6-3 
disregarding 6-7 
interpreting commands 6-9 
line range 6-5 
special interpretations 6-10 

macros (continued) 
using 6-4 
within macro 6-7 

macro-space control 3-2 
marker position 1-1 
marking a line 5-19 
message, error 2-1 
move 2-4, 5-21 

n 5-22 
number 5-22 

o 5-23 
options 5-4 
over 5-23 

p 2-2, 5-24 
pattern 5-4 
period 4-1, 4-2 
print 2-2, 5-24 

EDIT Reference Manual 



EDIT Reference Manual 

q 5-26 
question mark 4-4 
quit 2-9, 5-26 

r 5-27 
read 5-27 
reverse search 2-11, 4-4 

s 5-28 
search 2-10 

forward search 2-10 
forward search (command) 2-11 
reverse search !2-11 

semicolon 5-3 
separator 5-3 
slash 4-3, 2-10, 2-11 
special characters 4-1 

ampersand 4-7 
asterisk 4-7 
backslash 4-8 
carriage return 4-3 
circumflex 4-5 
dollar sign 4-2 
forward search 4-3 
period 4-1 
reverse search 4-4 
square bracket 4-5 
up arrow 4-5 

square bracket 4 .. 5 
substitute 2-6, 5-28 
syntax 1-1, 5-1 
t 5-31 
tabs 5-16 
text copy 2-8, 5-31 

u 5-32 
up arrow 4-5 
user macro 5-32 

v 5-33 

w 5-34 
write 2-8, 5-34 

x 5-36 

Index 

Index-3/Index-4 



INTEL COHPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 

I C" nnl. I., LV In...,O".. Il.Irn 



REQUEST FOR READER'S COMMENTS 

EDIT Reference Manua 
143587-00-

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form let!: 
you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _ 

NAME ___________ . DATE ________ _ 

TITLE ___________ . 

COMPANY NAME/DEPARTMENT _________________________ _ 

ADDRESS ___________________________________________________ ~ ______ __ 

CITY ____________ _ _ ____ STATE ___ ZIP CODE ____ _ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing Intel products. Your comments on the back of this form will help us 

produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and 

suggestions become the property of Intel Corporation. 

___ B_U_S_I_N __ E_SS ___ R_E_PL_Y ___ M_A_I_L __ J 
_ FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE VVILL BE PAID BY ADDRESSEE 

Intel Corporation 
5200 NE Elam Young Parkway 
Hillsboro OR 97123 

ISO-N TECHNICAL PUBLICATIONS 

NO POSTAGE 

NECESSARY 

IF MAILED 

INTHE 

U NITED STATES 


