
FORTRAN-SO
PROGRAMMING

MANUAL

Manual Order Number: 9800481 A

I
Copyright © 1978 Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 . I

ii

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Interproducts:

iSBC
ICE Library Manager
iCS MCS
In site Megachassis
Intel Micromap
Intellec Multibus

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

PROMPT
Promware
RMX
UPI
",Scope

PRINTED IN U.S.A./A151/1279/5K CP

PREFACE

This manual describes the Intel-developed FORTRAN language (FORTRAN-80)
for programming the 8080 and 8085 microcomputers. FORTRAN-80 is based on the
ANSI FORTRAN 77 subset. In some instances, it incorporates features from the
FORTRAN 77 full language; FORTRAN-80 also has features that exceed both ver­
sions of FORTRAN 77.

Appendix D lists FORTRAN-80 extensions to the FORTRAN 77 subset that can be
found in the FORTRAN 77 full set; it also lists those FORTRAN-80 superset
features that go beyond both versions of FORTRAN 77. In addition, these superset
features are clearly marked in the text of this manual (shadowed in grey) and should
not be used if you want to preserve total compatibility with FORTRAN 77 and por­
tability among processors.

The FORTRAN-80 language is described in its entirety in this manual. Limitations
or extensions related to a particular compiler are described in the operator's manual
for that compiler. They are summarized in Appendix F of this manual. The
operator's manual also includes considerations when running in different operating
system environments (such as ISIS-II and RMX-80).

The experienced FORTRAN programmer can possibly begin programming after
reviewing the summaries in the appendixes of this manual. The new programmer
should read it through from the beginning. While the manual is primarily written as
a programming reference, it does contain some instructional material.

Chapter 1 has a short program designed to provide an intuitive feel for the language.
Chapter 2 introduces FORTRAN concepts. Chapters 3-6 describe FORTRAN-80
statements in detail. These statements are grouped functionally and include brief il­
lustrative examples. Chapter 7 suggests some guidelines for improving FORTRAN
programming techniques and recommends sources for further study of programm­
ing as a science. We also suggest that the beginning programmer read one two FOR­
TRAN tutorials. Some recommended introductory texts are included in the
bibliography at the end of Chapter 7.

Finally, all users of this manual should refer to the following documents as
necessary:

ISIS-II FORTRAN-80 Compiler Operator's Manual

ISIS-II System User's Guide

X3.9-1977 FORTRAN

The latter document can be ordered from:

The American National Standards Institute, Inc.
1430 Broadway
New York, New York
10018

9800480

9800306

iii

PREF'ACE

GLOSSARY

CHAPTER 1
INTRODUCTION TO FORTRAN
1.1 An Introductory Example , 1-1

1.1.1 Comment Lines 1-1
1.1.2 Type Statement , 1-2
1.1.3 Input Statement , 1-2
1.1.4 Value Assignment 1-2
1.1.5 Output Statements. 1-2
L 1.6 Program Termination. 1-3

1.2 Summary Of FORTRAN-SO Statements. 1-3
1.2.1 Executable Statements. 1-3
1.2.2 Nonexecutable Statements. 1-3
1.2.3 Order of Statements 1-4

CHAPTER 2
FORTRAN CONCEPTS
2.1 FORTRAN Program Structure 2-1

2.1.1 Program units and Procedures 2-1
2.1.2 The PROGRAM Statement , 2-2
2.1.3 Statements and Lines. 2-2

2.2 FORTRAN Statement Elements. 2-3
2.2.1 Character Set. '2-3
2.2.2 Constants and Variables , 2-4
2.2.3 Arrays , 2-6
2.2.4 Expressions and Operators , 2-7
2.2.5 Scope of Symbols 2-12

2.3 Notational Conventions 2-13

CHAPTER 3
DEFINING VARIABLES, ARRA YS,AND
MEMORY
3.1 TypeStatements 3-1

3.1.1 REAL Type Statement ,..... 3-1
3.1.2 INTEGER Type Statement 3-1
3.1.3 LOGICAL Type Statement , 3-2
3.1.4 CHARACTER Type Statement. 3-3
3.1.5 IMPLICIT Statement , 3-3

3.2 Array Definition. .. 3-4
3.2.1 DIMENSION Statement , 3-5
3.2.2 Kinds of Array Declarators , 3-5
3.2.3 Properties of Arrays 3-6
3.2.4 Referencing Array Elements 3-6

3.3 Assignment Statements , 3-7
3.3.1 Arithmetic Assignmnt Statement. 3-S
3,,3.2 Logical Assignment Statement. 3-9
3.3.3 Character Assignment Statement. 3-9
3.3.4 ASSIGN Statement. 3-9
3.3 .5 DATA Statement. 3-10

CONTENTS I

3.4 Memory Definition. 3-11
3.4.1 EQUIVALENCE Statement 3-11
3.4.2 COMMON Statement 3-12
3.4.3 BLOCK DATA Subprograms 3-13
3.4.4 BLOCK DATA Statement 3-14

CHAPTER 4
PROGRAM EXECUTION CONTROLS
4.1 Transferring Program Control 4-1

4.1.1 Unconditional GO TO Statement 4-1
4.1.2 Computer GO TO Statement. 4-1
4.1.3 Assigned GO TO Statement. 4-2
4.1.4 Arithmetic IF Statement 4-2
4.1.5 Logical IF Statement. 4-3
4.1.6 IF, ELSE IF, and ELSE Blocks , 4-3
4.1.7 Block IF Statement 4-4
4.1.S ELSE IF Statement , 4-4
4.1.9 ELSE Statement 4-5
4.1.10 END IF Statement. 4-5

4.2 Loop Control Statements 4-6
4.2.1 Operation of a DO Loop. 4-6
4.2.2 DO Statement. 4-6
4.2.3 CONTINUE Statement. 4-7

4.3 Program Termination Statements. 4-7
4.3.1 PAUSE Statement. , 4-S
4.3.2 STOP Statement 4-S
4.3.3 END Statement , 4-S

CHAPTERS
FUNCTIONS AND SUBROUTINES
5.1 Intrinsic And Statement Functions 5-1

5.1.1 Intrinsic Functions 5-1
5.1.2 INTRINSIC Statement , 5-2
5.1.3 Statement Functions , 5-2

5.2 External Procedures , 5-4
5.2.1 FUNCTION Statement 5-4
5.2.2 Subroutines , 5-5
5.2.3 SUBROUTINE Statement. 5-6
5.2.4 RETURN Statement , 5-6
5 .2.5 SAVE Statement. 5-7
5.2.6 EXTERNAL Statement. 5-7
5.2.7 CALL Statement. 5-S

5.3 Arguments And Common Blocks Revisited ... , 5-S
5.3.1 Common Blocks 5-9
5.3.2 Dummy and Actual Arguments. 5-9
5.3.3 Association of Arguments 5-9

CHAPTER 6
INPUT/OUTPUT
6.1 Records, Files, And Units 6-1

6.1.1 Record Properties 6-1
6.1.2 File Properties , 6-1
6.1.3 Unit Properties. 6-3

v

6.2 File-Handling Statements. 6-4
6.2.1 OPEN Statement. 6-4
6.2.2 CLOSE Statement. " 6-8
6.2.3 BACKSPACE Statement. 6-9
6.2.4 REWIND Statement 6-10
6.2.S ENDFILE Statement. 6-10

6.3 Data-Transfer 110 Statements 6-10
6.3.1 READ Statement. 6-10
6.3.2 WRITEStatement 6-13
6.3.3 PRINT Statement 6-14

6.4 Formatted And Unformatted Data Transfer.. 6-14
6.4.1 Unformatted Data Transfer. 6-14
6.4.2 Formatted Data Transfer. , 6-1S
6.4.3 FORMAT Statement 6-16
6.4.4 List-Directed Formatting , 6-22

CHAPTER 7
PROGRAMMING GUIDELINES
7.1 Program Development " 7-1

7.1.1 Problem Definition. 7-1
7.1.2 Program Documentation. 7-1
7.1.3 Refining the Problem Definition. 7-2
7.1.4 Final Coding " 7-3

7.2 FORTRAN Coding. .. 7-4
7.2.1 Functions and Subroutines 7-4
7.2.2 GO TO Statement 7-4
7.2.3 Crossing Unit Lines " 7-4
7.2.4 Computing Variables and Constants. . .. 7-4
7.2.S Reminders........................ 7-S

7.3 References.... .. 7-S

APPENDIX A
FORTRAN-80 STATEMENT SUMMARY
A.I Statement Sequence , A-I
A.2 Statement Summary. A-I

APPENDIXB
INTRINSIC FUNCTIONS
B.l Intrinsic Function Summary. B-1
B.2 Notes On Intrinsic Functions. B-3

1-1 Batting Average Program 1-1
1-2 Order of FORTRAN Statements 1-4
2-1 Program Units 2-1
2-2 Type, Length, and Interpretation of

(OPI +OP2) 2-8

vi

APPENDIX C
HOLLERITH DATA TYPE
C.l Hollerith As A Data Type. C-I
C.2 The Hollerith Constant C-l

C.2.1 Hollerith Constants In DATA
Statements " C-l

C.2.2 Hollerith Constants In CALL
Statements C-l

C.3 Hollerith Format Specification. C-2.
C.4 'A' Editing Of Hollerith Data. C-2

APPENDIX D
EXTENSIONS TO ANSI FORTRAN
D.l Standard Extensions To 1977

Subset. .. D-l
D.2 Nonstandard Extensions To 1977

FORTRAN " D-l
D.3 More Specific Semantics Than 1977

FORTRAN. .. 0-2
D.4 Differences From 1966

FORTRAN. .. 0-2

APPENDIX E
ASCII CODES

APPENDIX F
8080/8085 PROCESSOR DEPENDENCIES
F.l Processor Limitations On Language " F-l
F.2 Compiler Extensions " F-l

F .2.1 Lowercase Letters " F-2
F .2.2 Port Input/Output. F-2
F .2.3 Reentrant Procedures " F-2
F .2.4 Free-form Line Format. F-2
F.2.S Interpretation of DO Statements " F-3
F .2.6 Default Data Lengths. F-3
F .2.7 Including Source Files " F-3
F .2.8 RECL Specification For Sequential

Files. .. F-4
F.2.9 Flexibility In Standard Restrictions ... " F-4

F.2.9.1 Association of Memory
Locations. .. F-4

F.2.9.2 Partially Initialized Arrays " F-4
F.2.9.3 Transfers Into An IF Block " F-4

F.3 Unit Preconnection " F-4

INDEX

ILLUSTRATIONS I

2-3 Type, Length, and Interpretation of
(OPI **OP2) " 2-8

2-4 Length of(OPI . OR. OP2) 2-11
3-1 Subscript Value. .. 3-7
3-2 Result of 'v = e' 3-8

GLOSSARY

Argument(s) - A collection of values and variables on which a computation is per­
formed. Functions and subroutines are usually defined with dummy arguments that
are replaced with actual values when the functions or subroutines are referenced.

Array - An ordered set of data that can be referenced collectively (by array name) or
selectively (by array element name).

Array Element - An individual item within an array.

Association - May refer to association of arguments, of memory locations, or of
symbols. Association of arguments is the replacement of dummy arguments with ac­
tuals when a procedure is referenced. Association of memory locations is the sharing
of memory by two or more items. The symbol names of the items sharing memory
are also said to be associated.

Common Memory - Memory shared by items in the same or different program
units.

Compiler - The software tool for translating FORTRAN source code into machine­
executable form.

Equivalenced Memory - Memory shared by items in the same program units.

Expression - A combination of operands, operators, and parentheses. May be
arithmetic, character, relational, logical, or Boolean.

File - A collection of data records. May be external (any ISIS-recognized file) or in­
ternal (a character variable or character array element). Records can be accessed se­
quentially or directly.

Function - A routine that returns a value to the calling statement when it is referenc­
ed. Functions are called 'intrinsic' (FORTRAN predefined), 'statement' (user­
defined, single-statement function), or 'external' (user-defined FUNCTION sub­
program).

Length of Data - The number of bytes occupied by a data item. This can be one,
two, or four bytes for integer and logical items and four bytes for real items.
Character data occupies one byte per character.

Main Program - The main program is the first part of an entire FORTRAN pro­
gram to be invoked. It may not have a FUNCTION, SUBROUTINE, or BLOCK
DATA statement as its first statement. It may have a PROGRAM statement as its
first statement.

Number Base - The representation used for numeric data. May be binary, octal,
decimal, or hexadecimal.

Procedure - Another term for a function or subroutine. FUNCTION and
SUBROUTINE subprograms are called 'external' procedures.

Program - The entire executable program includes the main program, all sub­
programs (FUNCTION, SUBROUTINE, BLOCK DATA) plus any compiler con­
trollines, library procedures, and included files.

vii

Glossary

viii

Program Unit - Another name for a main program or a subprogram. Every program
unit must be terminated by an END statement.

Record - A sequence of values or characters.

Statement - A sequence of syntactic items: statement label, keyword, arguments, ex­
pressions, etc. A statement has an 'initial' line and up to nine 'continuation' lines.

Statement Label- A 1-5 digit integer in columns 1-5 of a statement's initial line. Can
be given a symbolic name by the ASSIGN statement.

Subprogram - A tJlock of code having a FUNCTION, SUBROUTINE, or BLOCK
DA T A statement as its first statement and the END statement as its last statement.

Subroutine - A group of statements for performing a frequently-used operation. The
SUBROUTINE statement mllst be the first statement; the END statement must be
the last.

Unit - A logical way of referring to a file. Once connected, it is the same as a file.

FORTRAN-SO

CHAPTER 11
INTRODUCTION TO FORTRAN

This chapter opens with a short example intended to give the newcomer to FOR­
TRAN a feel for the language. The example is discussed in some d.etail. The chapter
also includes a summary of FORTRAN-80 statements and their proper coding se­
quence.

1.1 An Introductory Example

A FORTRAN program generally performs three basic operations: receiving input,
processing the data received, and returning output. The following short program,
drawn from the statistical world of the sports fan(atic), shows typical FORTRAN
statements for doing these operations.

The example calculates a baseball player's batting average using the equation:

HITS
AVERAGE =

TIMES AT BAT

The baseball statistician, sitting at his console terminal, enters the name of a player,
how often he has batted, and his total hits. The program returns a listing showing
the player's name and batting average. To keep this example simple, the calculation
is done only once.

1.1.1 Comment Lines

The first seven lines of the example are comment lines. Comment lines are used to
document a program. .

A comment line must have the letter 'C' or an asterisk (*) in column 1 followed by
any characters accepted by FORTRAN in the remainder of the line. A completely
blank line is considered a comment line also. For example, the 'C' need not be pre­
sent in line 7 of the example. Comment lines have no effect on program execution.

C CALCULATE BATTING AVERAGES
C VARIABLES USED-
C PNAME = PLAYER'S NAME
C AB = TIMES AT BAT
CHITS = TOTAL BASE HITS
C AVG = BATTING AVERAGE
C

CHARACTER*12 PNAME
READ 10, PNAME, AB, HITS

10 FORMAT (A, 2(2X, F3.0))
AVG = HITS/AB
PRINT 20, PNAME, AVG

20 FORMAT (A, 5X, F4.3)
END

Fig. 1-1 Batting Average Program

1-1

Introduction To FORTRAN

1-2

1.1.2 Type Statement

Every variable used in a FORTRAN program has a type - integer, real, logical,
character, or Hollerith. The CHARACTER type statement says that the variable
PNAME represents character data and may have up to 12 characters.

No type statement is needed for the other variables listed (AB, HITS, AVO). The
FORTRAN variable-naming convention tells us implicitly that these variables are to
be used to name real data. This convention is described later in section 2.2.2.1.

1.1.3 Input Statements

Following the CHARACTER statement in the example are two input statements.
The first tells the program to read input data; the second describes the format of the
input data.

The number 10 in the READ statement tells the program that the input format is
found in statement 10. The rest of the statement lists the variables whose values will
be specified by the person at the console. By default,thein,pu(is reaclfrOl11tbecori­
soleierlllinaL

The FORMAT statement (labeled statement 10) tells the program what kind of data
to expect. 'A' indicates the first field of data is a string of alphanumeric characters
having the length of PNAME, the player's name. '2(2X, F3.0)' is equivalent to

2X, F3.0, 2X, F3.0

and refers to the AB and HIT fields. '2X' indicates two blanks will be entered
followed by a 3-digit floating-point (F) number whose decimal portion contains '0'
digits. Clearly, no batter comes to the plate 79.3 times or has 22.8 hits.

One might ask at this point why we didn't specify these fields to be 'integer' data;
that is,

2(2X,13}

The reason is that FORTRAN truncates the remainder when one integer is divided
by another. Since AB ~ HITS, all averages would be '0' except for the rare player
batting 1.000.

1.1.4 Value Assignment Statement

The actual batting average calculation is done by the next statement:

AVG = HITS/AB

This is one form of assignment statement, in which the variable' AVO' is assign­
ed the value of the expression 'HITS/ AB.'

1.1.5 Output Statements

Following the calculation are two output lines. The first tells the program to write
output data; the next describes the format of the output.

In the PRINT statement, the number 20 indicates that the output format is found in
~t~teI11e~t?O:'.flN~¥.E'~nd'AV9' are the items whose values are to be printed. lly
Qefa;tllt~.theoutpqtis~xi~t~n. ~qtheconsoJe.

FORTRAN-SO

FORTRAN-SO Introduction To FORTRAN

Statement 20, the FORMAT statement, indicates the 'PNAME' field will be a string
of characters of variable length, as in the FORMAT statement labeled 10. The name
will be followed by five blanks (5X) and then the batting average will be printed. The
'A VG' field consists of four floating-point digits -- one integer digit and three
decimal digits.

1.1.6 Program Termination

The final statement terminates the program. The END statement is an indicator to
the FORTRAN compiler that it hasTeached the end of the program. Every program
unit must be terminated by an END statement.

1.2 Summary Of FORTRAN·SO Statements

The statements available in FORTRAN-80 are listed below according to their main
classifications. These include all statements available in the FORTRAN 77 subset
and some from the FORTRAN 77 full language. To simplify comparison, the
statements are listed in the same sequence as in Section 7 of the ANSI standard. All
chapter references are to this manual, however, not to the ANSI standard.

Statements are classified as executable or nonexecutable. Executable statements
do calculations, read or write 110 data, and control program execution. Nonex­
ecutable statements define the characteristics or value of data and define program
units.

1.2.1 Executable Statements

1. Arithmetic, logical, and character assignment statements; ASSIGN statement
(Chapter 3);

2. Unconditional, assigned, and computed GO TO statements (Chapter 4);

3. Arithmetic and logical IF statements (Chapter 4);

4. Block IF, ELSE IF, ELSE, and END IF statements (Chapter 4);

5. CONTINUE statement (Chapter 4);

6. STOP and PAUSE statements (Chapter 4);

7. DO statement (Chapter 4);

8. READ, WRITE, and PRINT statements (Chapter 6);

9. REWIND, BACKSPACE, ENDFILE, OPEN, and CLOSE statements
(Chapter 6);

10. CALL and RETURN statements (Chapter 5);

11. END statement (Chapter 4).

1.2.2 Nonexecutable Statements

1. PROGRAM (Chapter 2), BLOCK DATA (Chapter 3), FUNCTION, and
SUBROUTINE (Chapter 5) statements;

2. DIMENSION, COMMON, EQUIVALENCE, IMPLICIT (Chapter 3),
EXTERNAL, INTRINSIC, and SAVE (Chapter 5) statements;

3. INTEGER, REAL, LOGICAL, CHARACTER type statements (Chapter 3);

4. DATA statement (Chapter 3);

5. FORMAT statement (Chapter 6);

6. Statement function statement (Chapter 5).

1-3

Introduction To FORTRAN

1-4

1.2.3 Order of Statements

The following order must be observed in coding FORTRAN statements lines:

1. Comment lines can appear before or between statements. They cannot appear
after the END statement.

2. The PROGRAM statement can appear only as the first statement of a main
program. FUNCTION, SUBROUTINE, and BLOCK DATA can appear only
as the first statement of a subprogram (Section 2.1.1).

3. FORMAT statements can appear anywhere before the END statement.

4. IMPLICIT statements must precede all other specification statements.

5. All specification statements (lists 1 and 2 in section 1.2.2) must precede all
DATA statements, which must precede all statement function statements, which
must precede all executable statements.

6. The last line of a program unit must be the END statement.

The rules for ordering FORTRAN statements are summarized in Figure 1-2.

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
Statement

IMPLICIT Statements

Comment FORMAT Other Specification
Lines Statements Statements

DA T A Statements

Statement Function
Statements

Executable Statements

END Statement

Figure 1-2. Order of FORTRAN Statements

FORTRAN-SO

CHAPTER 2
FORTRAN CONCEPTS

The chapter discusses the concepts and terminology used to describe the structure
and elements of a FORTRAN program.

2.1 FORTRAN Program Structure

2.1.1 Program U nits and Procedures

The scope of many FORTRAN operations is defined to be a program unit. A pro­
gram unit is either a main program or a subprogram.

A main program can start with a PROGRAM statement, though it need not. Sub­
programs start with either a FUNCTION, SUBROUTINE, or BLOCK DATA state­
ment. A FORTRAN program must have one and only one main program and may
have any number of subprograms (Figure 2-1).

Subroutines and functions are called procedures. Subroutines and 'external' func­
tions are further defined to be external procedures. External procedures can be
created outside a FORTRAN program also; for example, a FORTRAN program can
call an external procedure written in PL/M-80 and stored in an ISIS-II system
library. Procedures are discussed in detail in Chapter 5.

MAIN
PROGRAM

[PROGRAM]

• • • •

END

SUBPROGRAMS

SUBROUTINE J
• P-'S~UB=R=OU=T=IN=E

•

FEN: • • •

END

FUNCTION J • FUNCTION

• • • • •
END

END
,...

1- BLOCK DATA J • BLOCK DATA

•
~ • • • •

END

END

-f' ~

'-----"
MISC.
EXTERNAL
PRO-
CEDURES

~

Fig. 2-1 Program Units

2-1

FORTRAN Concepts

2-2

2.1.2 The PROG RAM Statement

The PROGRAM statement is used to name a program. This statement is optional,
but when present must be the first statement of a main program. It has the format

PROGRAM name

where 'name' is the symbolic name of the program. Only one PROGRAM statement
is allowed per program. The main program can contain any other statement except
FUNCTION, SUBROUTINE, BLOCK DATA, SAVE, or RETURN.

The scope of symbolic names is discussed later in this chapter (section 2.5.5). For the
moment, suffice it to say that the program name is 'global' to the entire executable
program. It cannot be the same as the name of an external procedure, BLOCK
DATA subprogram, common block, or 'local' symbol name in the main program.

2.1.3 Statements and Lines

A FORTRAN-SO source program is made up of compiler controls and FORTRAN
statements.

Compiler controls direct the operation of a particular FORTRAN compiler, telling
it what kind of output to produce, the form of list output, etc. Controls are discuss­
ed in detail in the compiler operator's manual, and a few will be mentioned in this
manual where relevant. In general, controls can be embedded in FORTRAN source
code and are identified by a '$' in the first character position ('column' 1).

All but two types of FORTRAN statement begin with a keyword and are identified
by that keyword. For example, the PROGRAM statement just described begins with
the keyword 'PROGRAM.' Only 'assignment' and 'statement function' statements
do not begin with keywords. The 'AVG = HITS/AB' statement in Figure 1-1 is an
example of an arithmetic assignment statement.

2.1.3.1 Statement Labels. Any statement can be labeled; any statement to be
referenced from elsewhere in the program must be labeled. The label is a 1-5 digit,
unsigned, nonzero, integer constant written anywhere in columns 1-5 of a state­
ment's initial line. No two statements may have the same label within the same pro­
gram unit.

2.1.3.2 Line Format. A FORTRAN statement consists of one or more lines. The
first line of a statement is called the initial line; subsequent lines in the same state­
ment are called continuation lines.

A FORTRAN line can have up to 72 characters. The first six character positions
(referred to as 'columns' 1-6) contain information characterizing the line. The actual
statement begins in column 7. A statement can extend over nine continuation lines
(columns 7-72) for a total of 660 characters.

An integer anywhere in columns 1-5 is a statement label. If column 6 is blank or con­
tains a '0,' the line is an initial line; if column 6 contains any other character, the line
is a continuation line. Columns 1-5 of a continuation line must be blank.

Specific Intel FORTRAN compilers may allow exceptions to the standard line for­
mat. See Section F.2.4 of Appendix F for details.

FORTRAN-SO

FORTRAN-80 FORTRAN Concepts

2.2 FORTRAN Statement Elements

A FORTRAN statement can include the following elements:

• Statement identifier (keyword), such as PROGRAM or INTEGER

• Function identifiers, such as SQRT(A) or FLOA T(I)

• Constants, such as 3.142857 or 'STRING'

• Variables, such as A or AB

• Operators, such as * or .AND.

• Combinations of the above into value assignments, such as X = y*Z, or into
mathematical expressions, such as A *B + SQRT(C)

Statement and function identifiers are the subjects of Chapters 3-6. Constants,
variables, operators, and expressions are described in the remainder of this chapter
and in Chapter 3.

2.2.1 Character Set

The FORTRAN-80 character set consists of the alphabetic characters A-Z, the digits
0-9, and the special characters listed below. The set ofcnar&ctetsreptesentable in the
pr~5~ss~~1~9ItliJ~~t~~p:r~rl~iqg· •• ~ .. ~~ •• ~I.gr~l?hi¢s~A9th~blan~cryar~cter '. The·. col*
l~t~ng.sequ¢nce()fthe¢h~(actersisthat of~he ·AS~TTqhaT(\cter$et(Appendix· E).

SPECIAL CHRACTERS

Blank
= Equal Sign
+ Plus

Minus
* Asterisk
/ Slash
(Left Parenthesis
) Right Parenthesis

Comma
Period
Single Quote

$ Dollar Sign
#Pol.1ndSign

Generally, blanks have no meaning in a FORTRAN statement and should be used to
improve program readability. For example,

A = 8*C + (D* *2/E)

and

A 8*C + (D* *2/E)

are equivalent statements.

Blanks are counted in the total characters allowed in a FORTRAN statement,
however. They are also significant in character strings and in column 6 of the stan­
dard line format. They are not counted in the memory space occupied by a program.

2-3

:FORTRAN Concepts

2-4

2.2.2 Constants and Variables

The value of a constant does not change from one execution of a program to the
next. The value of a variable, on the other hand, is subject to change during pro­
gram execution or between runnings of the program. For example, in the statement

C=A**2+B

the '2' is constant, whereas A, B, and C are variable and may change as the result of
an earlier calculation or value assignment.

A constant appears as its actual value. A variable has a symbolic name that can be
1-6 alphanumeric characters. The first character must be alphabetic. Thus, all of the
following are valid variable names:

K
XYZ
B52
ERROR8
STEP3

Every constant and variable has a data type and length associated with it.
Arithmetic constants and variables also have an associated number base.

2.2.2.1 Data Types. Arithmetic constants and variables are of type integer or
real (sometimes called 'fixed point' and 'floating point').

An integer constant is written without a decimal point and can be preceded by a '+'
or '-' sign (0, 123, - 34, + 5). A '+' is assumed if no sign is present. Real constants
include a decimal point and optional sign (5., .5,0.5, .0005). An integer exponent
preceded by an 'E' may follow a real constant and, in this case, the real constant
ne.ed not have a decimal point (4E3). Again, the exponent may be signed.

4.2E3
4.2E+3
4.2E-3

(4.2 X 103 .or 4200)
(same as above)
(4.2 x 10-3 or .0042)

The internal representation, the precision, and the range of real values conforms to
the floating-point conventions established for the particular processor being used.
See section F.l.

An integer variable name begins with one of the alphabetic characters'!' through
'N.' Variables beginning with an alphabetic character other than I, J, K, L, M, or N
are assumed to be type real. This implicit naming convention can be circumvented
using Type statements, however (see section 3.1).

Constants and variables can also be of type logical or type character.

Logical data may have only the values 'true' or 'false.' The possible forms of a
logical constant are:

.TRUE .

. FALSE.

FORTRAN-SO

FORTRAN-80 FORTRAN Concepts

Character data is a string of any characters representable in the processor. The blank
character is valid and significant in a character constant. A character constant has
the form of a string of characters surrounded by apostrophes. An apostrophe within
the string is represented by a double apostrophe. A character constant can have
1-255 characters.

'ARITHMETIC OVERFLOW ERROR'
'MURPHY'S LAW'

For the sake of compatibility with earlier versions of FORTRAN, FORTRAN-80
also supports Hollerith type data under the guise of arithmetic/logical types. The
Hollerith type is summarized in Appendix C.

2.~~~.2~~t3Lellgth.ATeal v~lu~ alwij.yso¢cupies four hytesof memory (32
hitS).

Atlintegtrm~~pc¢upY?l1e,>~W9,.()rfout bytes.F?ran integervariahle, the length is
spe~ifiedw~eT\th,e"ariably, type is defined (section 3.1) Or by default (section F .2~6).
Jf~ou~rnberpas~jS'specified [or an integer constant, the ,constant is assumed to he
deciO}alaT\<lits'l~ngthist~e s~Ille;asthe jntegervaria,bIedefault length., If a number
base .,is speci~ied. for,an.i~teger,,~onstant (a$,des~rib:d j~ the, next ,'.subsection). the
~~n~t~js~~t~rmJned implicitly by the processor from the base and number of digits
pftlJeirrteger.

~~~.4.~~~~~e~.~~~~ .• ,<~()r .~ritliineti9·.· •• (irlte~~r~r/~~~~)c()nst~~tS'.and ',variables, 
th~~(#!il11ql~t),Illp:erb(l$.ei$assll~ed with.thefollQwi'Q8.e~(;eption~', ·,luteger •• constants 
can;bebinary,()etal~" or hexadecimal as well. 

2-5 



FORTRAN Concepts 

2-6 

The possibleJorms of aninteger constant are: 

[s]d" . 

or 

[sl#d ... b 

where: 

s is an optional + or -. sign 

d is a digitor.one of the letters A~F 

b designates the number base and is one of the letters D,B,O; Q, or H 

lfthe numher base specjfier is absent or is the letter >'D/thecharacler string 'd ... ' 
can contain only the digitsO~9artdjsinterpretedas a decimal number .. If the base 
specifier '8' is present, the character stringm ust contain only the digits o and 1 and 
is interpreted asa binary number. leo' or 'Q' is specified as thebase, the numper 
can·contain only the digits· 0-7 and is interpreted as an octal number .. If 'H' is 
spe¢ifiedas the base, the number can contain the digits 0-9 or the lettersA~Fand is 
interpreted as a hexadecimal number. 

The following are valid integer constants: 

o 
23 
+64101 
-#14010 
#100010108 
-#100010108 
-#4567Q 
+#AF2CH 

2.2.3 Arrays 

Frequently, the programmer will want to refer to a group of data by one name and 
still be able to refer individually to elements in the group as necessary. Such a group 
is called an array. 

An array name is the symbolic name assigned the array when it is defined in a 
DIMENSION statement, type statement, or COMMON statement (Chapter 3). An 
array element is one member in the group of data. An array element name is an ar~ 
ray name qualified by a subscript enclosed in parentheses. 

The following table could be produced by rewriting the program in Figure 1 ~ 1 to 
generate four 1 ~dimensional arrays. The table lists three players, times at bat, hits, 
and batting averages. Thus the array definitions for these four arrays could be 
PNAME(3), AB(3), HITS(3), and A VG(3). 

PNAME 
GEHRIG 
OTT 
RUTH 

AB 
49 
60 
54 

HITS 
14 
21 
18 

AVG 
.286 
.350 
.333 

We can refer to any element in these arrays by using a subscript. For example, the 
hits for 'OTT' can be referenced as HITS(2) and the batting average for RUTH as 
AVG(3). 

FORTRAN-SO 



FORTRAN-80 FORTRAN Concepts 

2.2.4 Expressions and Operators 

An expression is a combination of numbers, symbols, and operators. It may include 
parentheses and may also include functions (discussed in Chapter 5). Expressions 
appear in assignment statements (e.g., A = B + C) as controls in certain data pro­
cessing statements (e.g., IF FLAG .NE. 3 GO TO 250), and in subroutine calls 
(CALLSUB(X+l, Y). 

FORTRAN has four kinds of 

2.2.4.1 Character Expressions. A character expression consists of either a 
character constant, a character variable reference, or a character array element 
reference. The expression may be enclosed in parentheses. 

2.2.4.2 Arithmetic Expressions. An arithmetic expression performs a numeric 
computation. This computation is limited by the range and precision of numeric 
values representable in the processor (see section F.l). If any part of the computa­
tion produces values outside this range, the results are undefined. 

Arithmetic operands must identify values of type integer or real. 

2.2.4.2.1 Arithmetic Operators. The arithmetic operators are: 

Operator 

** 
/ 

* 
+ 

Meaning 

Exponentiation 
Division 
Multiplication 
U nary or binary addition 
Unary or binary subtraction 

The following expressions calculate the perimeter, area, and diagonal length of a 
square with side length'S.' 

SPERIM = 4*S 
SQAREA = S**2 
SQDIAG = SQRT (2*(S* *2)) 

2-7 



FORTRAN Concepts 

2-8 

Fig. 2w$ ·.type,. Length, andJnterpretatbin o~(O~1**QP2) 

As these figures indicate, mixed-mode arithmetic is done by converting both 
operands to the same type (the type of the result) before performing the operation. 
This conversion is unnecessary when a real number is raised to an integer power. 

In the case of an integer divided by another integer, the remainder is truncated. 

The value of 1/3 is 0 
The value of 8/3 is 2 
The value of -8/3 is -2 

If the magnitude of an arithmetic result is too large for the processor to represent in 
the number of bytes shown in these figures, the result is undefined. See section F.I. 

2.2.4.3 Relational Expressions 

Relational expressions compare two arithmetic or two character expressions and 
return a TRUE or FALSE result of type logical. 

2.2.4.3.1 Relational Operators. The relational operators are: 

Operator 

.LT. 

.LE. 

.EQ. 

.NE. 

.GT. 

.GE. 

Meaning 

Less than 
Less than or equal 
Equal 
Not equal 
Greater than 
Greater than or equal 

FORTRAN-80 



FORTRAN-SO f'ORTRAN Concepts 

Relational expressions are commonly used in the IF statement (Chapter 4). 

IF (NUMB .GT. 99) STOP 
IF (PNAME .EO. 'GEHRIG') PRINT 20, PNAME, AVG 

2.2.4.3.2 Interpretation of Arithmetic Relational Expressions. An arithmetic rela­
tional expression is TRUE if the values of the operands satisfy the relational condi­
tion set up by the operator, and is FALSE otherwise. 

If the operands are of different types, type conversion is similar to that of arithmetic 
expressions. The relational expression 

EXP1 operator EXP2 

is evaluated as if it were written 

(EXP1 - EXP2) operator 0 

where '0' is the same type as (EXPI - EXP2) and 'operator' is the same relational 
operator in both expressions. 

2.2.4.3.3 Interpretation of Character Relational Expressions. A character rela­
tional expression is TRUE if the values of the operands satisfy the relational condi­
tion set up by the operator, and is FALSE otherwise. 

If two character operands have different lengths, the shorter is 'extended' to the 
length of the longer by adding blanks on the right of the character string. The 
character expression EXP 1 is considered to be less than EXP2 if the value of EXP 1 
precedes the value of EXP2 in the ASCII collating sequence, and vice versa (Appen­
dix E). 

2.2.4.4 Logical Expressions. A logical expression performs a logical computa­
tion and returns a TRUE or FALSE result of type logical. This expression can be a 
single logical operand (logical constant, logical variable reference, logical array ele­
ment reference, logical function reference, or relational expression) or a combina­
tion of logical operands joined by logical operators and parentheses. 

2.2.4.4.1 Logical Operators. The logical operators are: 

Operator 

.NOT. 
.AND. 
.OR. 

.EQV. 
.NEQV. 

Meaning 

Logical negation 
Logical conjunction 
Logical inclusive disjunction 
Logical equivalence 
Logical nonequivalence 

2.2.4.4.2 Value and Length of Logical Expressions. The value of a logical operand 
involving .NOT. is as follows: 

OP1 .NOT.OP1 

TRUE FALSE 
FALSE TRUE 

The logical expression has the opposite value as its operand. 

2-9 



FORTRAN Concepts 

2-10 

The following example passes control to line 10 if the logical variable DONE is not 
true. Otherwise, execution stops. 

10 FLAG = FLAG + 1 

DONE = (FLAG .GT. 99) 
IF (.NOT. DONE) THEN 
GOTO 10 
ELSE 
STOP 
ENDIF 

The value when two logical operands are combined by .AND. is as follows: 

OP1 OP2 OP1 .AND. OP2 

TRUE TRUE TRUE 
TRUE FALSE FALSE 
FALSE TRUE FALSE 
FALSE FALSE FALSE 

If both operands are true, the logical expression is true. 

This example achieves the same effect as the last example. 

IF (FLAG .GT. 0 .AND. FLAG .LE. 99) GO TO 10 
STOP 

The value when two logical operands are combined by . OR. is as follows: 

OP1 OP2 OP1.0R.OP2 

TRUE TRUE TRUE 
TRUE FALSE TRUE 
FALSE TRUE TRUE 
FALSE FALSE FALSE 

If either operand is true, the logical expression is true. 

The following statement branches on either of two conditions. 

IF (FLAG .EO. 50 .OR. FLAG .LE. 10) GO TO 250 

The value when two logical operands are combined by .EQV. is as follows: 

OP1 OP2 OP1 .EQV. OP2 

TRUE TRUE TRUE 
TRUE FALSE FALSE 
FALSE TRUE FALSE 
FALSE FALSE TRUE 

If both operands are logically the same, the logical expression is true. 

FORTRAN-SO 



FORTRAN-80 FORTRAN Concepts 

The following statement returns whenever the two logical operands are logically 
equivalent. 

IF (FLAG1 .EQV. FLAG2) RETURN 

The value when two logical operands are combined by .NEQV. is as follows: 

OP1 OP2 OP1 .NEQV. OP2 

TRUE TRUE FALSE 
TRUE FALSE TRUE 
FALSE TRUE TRUE 
FALSE FALSE FALSE 

If both operands are logically different, the logical expression is true. 

The following statement continues execution if the two operands are not equivalent. 

IF (FLAG1 .NEQV. FLAG2) CONTINUE 

2.2.4.6 Precedence of Operators. 

Expressions are generally evaluated left to right. Operators with higher precedence 
are evaluated before other operators that immediately precede or follow them. 
When two operators have equal precedence, the leftmost is evaluated first. 

2-11 



.FORTRAN Concepts 

2-12 

Parentheses can be used to override normal rules of precedence. The part of an ex­
pression enclosed in parentheses is evaluated first. If parentheses are nested, the in­
nermost are evaluated first. 

15/3 + 18/9 = 5 + 2 = 7 
15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3 

The following lists the precedence of operators in descending order: 

• Parenthesized expressions 

• Exponentiation: ** 

• Multiplication/Division: *, / 

• Addition/Subtraction: +, - (unary and binary) 

• Relational Operators: .LT.,.LE.,.EQ.,.NE., .GT.,.GE. 

• Logical/Boolean .NOT. 

• Logical/Boolean .AND. 

• Logical/ Boolean. 0 R. 

• Logical/Boolean .EQV., .NEQV. 

Thus, the expression 

o .OR. A + 8 .GE. C 

is interpreted as though it were written 

o .OR. ((A + 8) .GE. C) 

One exception to the left-to-right rule is the case where two or more exponentiations 
occur together. 

A**8**C 

In this case, the exponentiation is interpreted right-to-Ieft as though it were written 

A * *(8 * *C) 

2.2.5 Scope of Symbols 

A symbolic name consists of one to six alphanumeric characters, the first of which 
must be alphabetic. Symbolic names may be global (that is, they may have a scope of 
the entire program) or they may be local to a program unit or statement function. A 
local symbol name can, therefore, represent different entities in different program 
units or in different statement functions. 

The following symbolic names are global to the entire program and cannot be used 
in a local context. 

• Main program name 

• Subroutine names 

• External function names 

• BLOCK DATA subprogram names 

The following symbolic names are local to the program unit in which they appear: 

• Array names 

• Variable names 

FORTRAN-SO 



FORTRAN-80 FORTRAN Concepts 

• Statement function names 

• Intrinsic function names 

• Dummy procedure names 

Variables appearing as dummy arguments in a statement function have a scope of 
that statement only. 

Common block names are generally global, but do admit exceptions. A common 
block name in a program unit may also be the name of any local entity other than an 
intrinsic function in a function subprogram. An intrinsic function name may be used 
as a common block name, however, if the program unit does not reference that 
function. If a name is used for both a common block and a local entity, its ap­
pearance identifies only the local entity except in COMMON and SAVE statements. 

2.3 Notational Conventions 

This manual uses the following notational conventions to describe FORTRAN-80 
statements and concepts: 

• Special characters from the FORTRAN character set, uppercase letters, and 
uppercase words (keywords) are to be written as shown, except where otherwise 
noted. 

• Lowercase letters and words indicate nonspecific arguments for which specific 
items must be substituted in actual statements. 

• Brackets [ ] are used to indicate optional items. 

• Ellipses ( ... ) indicate that the preceding optional items can appear one or more 
.times in succession. 

• Blanks are used to improve readability, but have no significance. 

As an example of the notation used, the description 

CALL sub [ ([arg[,arg] ... ] ) ] 

means the following forms of the CALL statement are permissible: 

CALL sub 
CALL sub ( ) 
CALL sub (arg) 
CALL sub (arg, arg) 
CALL sub (arg, arg, arg) 
etc. 

When the actual CALL statement is written, specific entities would be substituted 
for 'sub' and each 'arg.' 

CALL ROUT1(A, 3.72, 4.12) 

2-13 





CHAPTER 3 
DEFINING VARIABLES, 

ARRAYS, AND MEMORY 

This chapter describes the statements used to specify the types and lengths associated 
with symbolic names, how to assign values to these symbols, .how to structure 
memory, and how to assign values to a block of memory. The statements described 
are: 

• Type statements: REAL, INTEGER, LOGICAL, CHARACTER, IMPLICIT 

• Array definition statement: DIMENSION 

• Assignment statements: arithmetic, logical, and character assignment, 
ASSIGN, DATA 

• Memory definition statements: COMMON , EQUIVALENCE, BLOCK DATA 

3.1 Type Statements 

The type statements REAL, INTEGER, LOGICAL, and CHARACTER are used to 
confirm or override the type implied by a symbolic name (i.e., the convention that 
names beginning with the letters I-N refer to integers-Section 2.2.2.1). The conven­
tion itself can be confirmed or changed by the IMPLICIT statement. 

Type statements can also specify data length pr array dimension information. 

Specifying the symbolic name of a variable, array, external function, or statement 
function in a type statement establishes the type of that name for all appearances in 
the program unit. The type of a name cannot be specified explicitly more than once 
in a program unit. Program names and subroutine names cannot appear in a type 
statement. 

3.1.1 REAL Type Statement 

The REAL type statement has the format: 

REAL name [,name] ... 

where 'name' is the symbolic name of a real variable, array, array declarator, func­
tion, or dummy procedure. 

Examples: 

REAL TEMP 

REAL NUMB1, NUMB2, NUMB3 
C REAL OVERRIDES IMPLICITTYPING OF NUMB=INTEGER 

3.1.2 INTEGER Type Statement 

The INTEGER type statement has the format: 

INTEG ER.fm!@ti£;l) name [,name] ... 

3-1 



Defining Variables, Arrays, And Memory 

3-2 

where 'name' is one of the forms 

and 

v[*/en} 

ary[(d)][* len] 

v is an integer variable, function, or dummy procedure name 

ary is an array name 

ary( d) is an array declarator 

lenj.i~~~~l~9:!~~i*~~f¢~;0;(<trl·.ii)t~g~rV(l~i&l?1~·9t .·~rp~y¢l~w~#t, ••••. ~t$ 
• va,luernustuei{A, Qp4. . 

•.•.•......•....•............... : .•••••....••..••.•.•...•....••.... ..•.•..•..•.•• .•......•••....•...•...•..•••••.....•• ..•.• .. •...• ..• ..•.• ••.•.....•..•.. . ••...•.••....•...•..••.....•..•••.••......••..••.•.•.....••....•.•..••.•....••...•...•. : ...•..•........•..• '.. . •..••.•.•... : •..•...........•..•..•......•..•.• ~ .•. ~ .. : ...•..•. ~.;.:: : •...•........ : .•..•...•....•.•...•....• ~ ... ! ..•..•.•.•. :: ....•.•• : ...••.••.. : ..•... :.~ .••... ::: .... : •...•. :~ •......•.••.••. ;:.~ •... :" .. " . : .•. :............... ..••. ...... ...•.•.•..•......•.....•..........•........•. . .....••.•.•.•..............•.••....... :: ••..•.•......•..........• : ...•........•...•.....................•.•.• :. " •.......•. ::...... .' .. ' ..••......... :.............. .•.•. .•...•.....•.•••.••.••..••....•..•.......... ....•..•... . . ..•............•.•.....•.........•. .•.•........... ... . ..•..•.• .•... . ..... :.:. •...... .....•.•.. .......• ..•.... ........ • .'. : ..• : ....................•.. :". • ....... ": "' •.... 

X~~~~P~f.~· ••• ~p~~~ •• f~E~.~~.~~ •. ··.·.~.~ffi~.~~~~rl~.fP~~~~~.n~··.·~e~~e~~?rf;l.·.·~·fir~~B:.~ ••• ··~BRl~~~i~? 
~.~~.~ •.• · ••. ite~.·i~··· .. ·~J.1estttJe~.el1ttlp~n~yil1~ .. i~s •. 8'Y11\1~~~~~~pe9ifi~~tio~.~ •... ·.~ .. · •• ·ltl1gt~ 
sp~cifi9~tiqp;.·i~~;:~i~t.7~¥X~11Q~.i119· .• ~2·itGB'li§!er 1711gt~f:()~it~~t·i~~rn .?111~\ •• ~A~/.~~ 
:~l'r~~i/t~~ .• J~l1~tl)·~~p~j~~ •. ·.tQ •. ·• ~~p~~~rfty.·.~1~mel1t?J:f119.1e~~te:i~~R~fi~i~~~~9T$.~~rent 
def:~1l111efl.gthqf··(l~··.int~$~rvad~l?1~Ofar.r;:\y .. e1~rqentis.a;~SUlTIeg(s~ySeC!~Pfl.f,4~~). 

Examples: 

INTEGER TOTALS 

INTEGER*1 DIGITS(10} 

INTEGER*4 TOTALS, SUBS*2, DIGITS(10}*1 

3.1.3 LOGICAL Type Statement 

The LOGICAL type statement has the format: 

LOGICAL [*len[,]) name [,name] ... 

where 'name' is one of the forms 

v[*/en] 

a ry[ (d)][ * len] 

and 

v is a logical variable, function, or dummy procedure name 

ary is an array name 

ary(d) is an array declarator 

leit ~~~~~l~~~~~~ij~~~¢sgf#lg$!~#~y~~~~~~$qp~!t~y.~~~m*p.~.lt$¥~h!~ 
mu&tgf;lJ~,-·911::h .. . . . 

".: ," .: ...•. :::", ," .. " ..... ; ...... ~.::. '.:~ ... <., ... -.:.:' :".".: ::: :::,-.::".:,.\:.::. :.: .. :.:: .•.. ~ .. :.:.:.::.::: .. :: .....•• : ..•.•...... : ..•.......•............•...•...•.....• ' •..........•...•. :: .•.•........•..•......•..•.•....... : •.•. : .•..............•...................... : •..•.•.....•.....................••.••.........•. :: ...•.....................•..•.•..•...•............•..•...............•....•....••......................................•....•.•............ :: ............•..............•. : .... ;: ...... :: •...•.•..•........ : ...........•..............•.... : ..••....•.. :: .. ::: ..... : .. :: •.... : ......••....•.•.••..... :.:::.: ..•... :.: ... :. .. >:.: .. : . "." .....•... - ' .. 

~~~~<itel'tli~l .••.• tb!~'~f~~~nt[lQ~.·· •. ~~~i!!$i~s.~~P .. I~pj~~~~~~~~lR~~~~~;~.~~~w~~ 
s~:vifi~~t19rr.iPlnae~j~t~ly()n9W:il1g~n . i~enJ.i~t~el~ng~~fQ~~'a~r~t~tni~I1~>'.~9r~rt
ao'a~; .the,l~ngthi~ppHe$.. t().·.eacl1··a,rray.el~~ent ...•• If ~.~. ·~~ll~t~issp~~~f~e~yttl~current
default.· length . ofalOgical v~riable Of arrayelenlent .. is !l$$91l1eO,feeectiPfl.ll,2.(j).

FORTRAN-80

FORTRAN-SO Defining Variables t Arrayst And Memory

Examples:

LOGICAL *2 FLAG

LOGICAL* 1 FLAGS(10)

LOGICAL *4 FLAG1, FLAG2, SWITCH(5)*1

3.1.4 CHARACTER Type Statement

The CHARACTER type statement has the format:

CHARACTER [* len[,]] name [,name] ...

where 'name' is one of the forms:

and

v[* len]

ary[(d)][* len]

v

ary

ary(d)

len

is a variable name

is an array name

is an array declarator

is the length (number of characters) of a character variable or
character array element.

The length specification immediately following the keyword CHARACTER applies
to each item in the statement not having its own length specification. A length
specification immediately following an item is the length for that item only. For an
array, the length applies to each array element. If no length is specified, the standard
length of a character (one byte) is assumed.

Examples:

CHARACTER*15 STRING

CHARACTER*12 NAMES(50), CITIES(50), STATES(50)*5

CHARACTER LETTER

3.1.5 IMPLICIT Statement

An IMPLICIT statement defines the type and length for symbolic names (except in­
trinsic function names) that begin with the letter(s) specified by IMPLICIT. IM­
PLICIT types can be overridden, however, by type statements or by an explicit type
specification in a FUNCTION statement. The length specified in an IMPLICIT
statement can also be overridden by an INTEGER, LOGICAL, or CHARACTER
statement containing the same symbolic name.

3-3

Defining Variables, Arrays, And Memory

3-4

The IMPLICIT statement has the format:

IMPLICIT typ (let [,/et] ...) [,typ (let [,let]. ..)]. ..

where

typ is INTEGERf*bml , REAL, LOGICALt~lejz], or
CHARACTER[* len]

let is a single letter or a range of letters in alphabetical order
(e.g., C, I-M, N-Z)

The IMPLICIT statement applies only to the program unit in which it appears and
must precede all other specification statements in that program unit. The program
unit can have more than one IMPLICIT statement, but the same letter cannot be
specified more than once.

Example:

IMPLICIT REAL(A-B, D-H), CHARACTER (C)
IMPLICIT INTEGER (I-N), LOGICAL (O-l)

Unless these implicit definitions are overridden, the following symbols would have
the types indicated.

AVG

CNAME

FPNUM

INUM

PFLAG

(REAL)

(CHARACTER)

(REAL)

(INTEGER)

(LOGICAL)

3.2 Array Definition

An array is defined by assigning a symbolic name to the array and specifying its
dimensions. One way to do this is with type statements:

CHARACTER TICTAC(3,3)

LOGICAL TABLE(2,3,3)

Arrays can also be defined by the COMMON statement (section 3.4.2) and by the
DIMENSION statement.

In any case, a symbol can be used only once in a program unit as an array name in an
array declarator (section 3.2.1). The symbol 'TICTAC' in the example above could
not be defined in a DIMENSION statement as well as in the CHARACTER type
statement. The array name could, of course, appear as a reference or array element
name elsewhere:

TICTAC(3,2) = 'X'

FORTRAN-SO

FORTRAN-80 Defining Variables, Arrays, And Memory

By 'array element name' we mean an array name qualified by a subscript in paren­
theses as shown in the example above. An array name not qualified by a sUbscript
identifies the entire array, with one exception. In an EQUIVALENCE statement, an
array name not qualified by a subscript identifies the first element of the array.

An array name is local to the program unit in which it is declared.

3.2.1 DIMENSION Statement

The format of the DIMENSION statement is:

01 M ENSION ary(d) [,ary(d)]. ..

where each 'ary(d)' is an array declarator of the form

ary(d [,d])

and

ary is the symbolic name of the array

d is a dimension declarator

Dimension declarators are discussed in more detail below (section 3.2.3). In general,
they indicate the number of dimensions in the array and the number of elements (or
upper bound) of each dimension. The maximum number of dimensions is seven.

Examples:

LOGICAL TABLE
INTEGER ARRAY
DIMENSION TABLE(2,3), ARRAY(3,3,3)

3.2.2 Kinds of Array Declarators

An array declarator ('ary(d)' in the DIMENSION format) is either a constant, ad­
justable, or assumed-size array declarator.

In a constant array declarator, each of the dimension bounds is a constant. An ad­
justable array declarator contains one or more variables as bounds:

ARRAY(3,MI00LE,THIRD)

An assumed-size array declarator is either constant or adjustable, but the upper
bound of the last dimension is an asterisk.

ARRA Y(3,3, *)

An array name may be used as a dummy argument in a FUNCTION or
SUBROUTINE subprogram. Thus, a program can have actual array declarators
and dummy array declarators. An actual array declarator must be a constant array
declarator, whereas dummy array declarators may be constant, adjustable, or
assumed size. Like actual array declarators, dummy declarators are permitted in
DIMENSION or type statements, but unlike actuals, they cannot appear in COM­
MON statements. A variable name used as a dimension bound of an array must also
appear in the subprogram's dummy argument list or in a common block in the sub­
program. The latter requirements can be avoided using the asterisk feature for the
last dimension, thereby gaining some program efficiency.

3-5

Defining Variables, Arrays, And Memory

3-6

3.2.3 Properties of Arrays

The examples following the description of the DIMENSION statement specify the
types of the array names and, by implication, the types of the elements in the ar­
rays. They also specify (by default) the lengths of the elements.

The remaining properties of the array are determined from the dimension
declarator. These are:

• The number of dimensions in the array

• The size of each dimension

• The total number of array elements

The number of dimensions equals the number of dimension declarators in the array
declarator. Thus, the array

TABLE(4,4)

has two dimensions.

The size of a dimension is the same as the value 'd' in the array declarator format; it
is also the same as the 'upper dimension bound.' The lower dimension bound is
assumed to have the value one. The upper bound may be an asterisk in the case of
an assumed-size array declarator.

The size of an array can generally be computed as the product of the sizes of the
dimensions specified by the array declarator. Thus

ARRA Y(3,3,3)

would have 27 elements. The number of elements in an assumed-size dummy array
can be determined as follows:

• If the actual argument corresponding to the dummy array is an array name, the
size is that of the actual array;

• If the actual argument is an array element name with a subscript value of 'p' in
an array of size 'n,' the size of the dummy array is n + l-p.

Array elements are stored sequentially. For example, in the following sequence

DIMENSION TABLE(3,3)
TABLE(3,1) = 2.9
TABLE(2,3) = 7.3

'2.9' would be assigned to the third storage location in the block whose low address
is 'TABLE,' and '7.3' would be assigned to the eighth location.

(1,1)(2,1)2.9(1,2)(2,2)(3,2)(1,3)7.3(3,3)

The total number of bytes in an array is the number of elements in the array
multiplied by the number of bytes occupied by each element.

3.2.4 Referencing Array Elements

Array elements are referenced by qualifying an array name with a subscript in the
form

ary (s [,s] ...)

FORTRAN-SO

FORTRAN-80 Defining Variables, Arrays, And Memory

where 'ary' is an array name and's' is a subscript. The number of subscripts must
equal the number of dimensions in the array declarator.

Each subscript is an integer expression in the range 1 :5 s:5 upper-bound. If the upper
dimension bound of a dummy array is an asterisk, the value of the corresponding
subscript must not exceed the size of the corresponding actual array.

Examples:

ARRA Y(2,6) = A
ARRAY(I + J, 3) = 8
ARRAY(M,M + N,M-N) = A + SQRT(8)

Figure 3-1 can be used to calculate which element in the storage sequence of array
elements is being referenced. In this figure, 'n' is the number of dimensions
(1 :5 n:5 7), 'd' is the value of the upper dimension bound, and's' is the subscript ex­
pression.

Dimension Element
n Declarator Subscript Referenced

1 (d1) (s1) s1

2 (d 1 ,d2) (s1,s2) 1 + (81-1)
+ (s2-1)*d1

3 (d1,d2,d3) (s1,s2,s3) 1 + (s2-1)
+ (s2-1)*d2
+ (s3-1) * d2 * d 1

n (d1, ... ,dn) (s1, ... ,sn) 1 +(s1-1)
+(s2-1)*d1
+ (s3-1)*d1 *d2
+ ...
+(sn-1)*dn-1
+ dn-2* ... d1

Fig. 3-1 Subscript Reference

3.3 Assignment Statements

The type statements correlate a type and length with a symbolic name. The
statements described in this section assign values to variables, arrays, or array
elements.

Assignment statements are used to assign arithmetic, logical, or character values to
variables and array elements. These statements have no keyword.

The ASSIGN statement is used to assign a numerical statement label to an integer­
variable symbol name.

The DATA statement is used to initialize variables, arrays, and array elements to
specific values.

3-7

Defining Variables, Arrays, And Memory

3-8

3.3.1 Arithmetic Assignment Statement

The arithmetic assignment statement closely resembles a conventional arithmetic
formula. Its format is:

v = exp

where

v is the name of a variable or array element of type integer or real

I
exp is an arithmetic expression

The' =' in FORTRAN has the sense 'is assigned the value' rather than 'is equal to.'
Thus

I = 1+1

is a perfectly correct FORTRAN statement.

Execution of an arithmetic assignment statement causes evaluation of the expression
'exp' according to the rules listed in Chapter 2 (see Figures 2-2 and 2-3), conversion
of 'exp' to the type of 'v,' and definition and assignment of 'v' with the resulting
value, as shown in Figure 3-2. IFIX and FLOAT in this figure are intrinsic functons
for converting a real number to an integer and an integer to a real number, respec­
tively.

TYPE OF 'v' TYPE OF 'exp'

INTEGER

REAL

INTEGER

REAL

Example:

INTEGER

REAL

REAL

INTEGER

f'i~. 3-2 Result of 'v = exp'

1=3
C = I + SQRT(25.0)
C = C**2

RESULT

exp

exp

IFIX (exp)

FLOAT (exp)

C AS A RESULT OF THESE CALCULATIONS C = 64.0

If the value of 'exp' is too large to be assigned to 'v' the result is undefined. This
may happen when the length of 'v' is too short to contain the processor representa­
tion of the integer value (see section F.l).

If the length of 'v' is longer, the length of 'exp' is converted to the length of 'v' while
preserving its value.

Example:

INTEGER* 1 M(1000)
INTEGER*4 N
N = 65
M(200) = N

C LENGTH OF IN' IS CONVERTED TO ONE BYTE

FORTRAN-80

FORTRAN-SO Defining Variables, Arrays, And Memory

3.3.2 Logical Assignment Statement

The logical assignment statement assigns the value. TRUE. or .FALSE. to a logical
variable or array element. It has the format

v = exp

where

v is the name of a logical variable or logical array element

exp is a logical expression

Examples:

LOGICAL FLAG, TABLE(3,3)
FLAG = (INT1 .NE. 1 .AND. INT2 .EQ. 1)

C FLAG IS .TRUE.IF BOTH CONDITIONS ARE TRUE AND
C OTH ERWISE IS .FALSE.

TABLE(1,3) = .FALSE.
TABLE(1,2) = FLAG

3.3.3 Character Assignment Statement

The character assignment statement assigns a character constant, variable name, or
array element name to a character variable or array element. Its format is:

v = char

where

v is the name of a character variable or character array element

char is a character constant, character variable name, or character array
element name.

None of the character positions being defined in 'v' can be referenced in 'char.' The
two sides of the assignment may have different lengths, however. If 'v' is longer
than 'char,' the latter is padded on the right with blank characters. If 'v' is shorter,
'char' is truncated on the right until it fits into 'v.'

Examples:

CHARACTER*10 NAMES(4), MGR
MGR = 'STENGEL'
NAMES(1) = 'GEHRIG'
NAMES(2) = 'OTT'
NAMES(3) = 'RUTH'
NAMES(4) = MGR

3.3.4 ASSIG N Statement

The ASSIGN statement is the only way to assign a statement label to a symbolic
name. The symbolic name can then be referenced in a GO TO statement or as a for­
mat identifier in an input/output statement. To use the symbolic name in any other
context, it must first be redefined as an integer value in an arithmetic assignment
statement.

3-9

Defining Variables, Arrays, And Memory

3-10

The ASSIGN statement has the format:

ASSIGN stlTO name

where

stl is a statement label (1-5 digits)

name is an integer variable name

The statement label must be the label of an executable statement or a FORMA T
statement in the same program unit as the ASSIGN statement. The variable 'name'
must not be declared as length INTEGER * 1.

An integer variable defined with a statement label value may be redefined with the
same or a different statement label value, as well as with an integer value.

Examples:

ASSIGN 1010 TO LOOP1
GOTO LOOP1

GO TO LOOP1(1000, 1010, 1020)

IF(.NOT.DONE) THEN
ASSIGN 20 TO WRFORM
ELSE
ASSIGN 25 TO WRFORM
ENDIF
WRITE (6,WRFORM) PNAME, AVG

20 FORMAT .. .
25 FORMAT .. .

3.3.5 DATA Statement

The DATA statement gives the initial values of variables, arrays, and array
clements. Dummy arguments and functions cannot be initialized by DATA. Shared,
or 'common,' memory can be initialized by DATA statements if the DATA
statements are part of a BLOCK DATA subprogram (section 3.4.3).

The DATA statement must appear in a program unit after the specification
statements and before any statement function or executable statements.

The DATA statement has the format:

DATA nlist felistl [[,] nlist felistl] ...

where 'nlist' is a list of variable names, array names, and array element names, and
'clist' has the form:

[r*]c[,[r*]c] ...

where

c is a constant (including a Hollerith constant)

r is a 'repeat' character and is a nonzero, unsigned, integer constant;
'r*c' is equivalent to Or' successive repetitions of the constant 'c.'

FORTRAN-80

FORTRAN-80 Defining Variables, Arrays, And Memory

Items in DATA lists must agree in number, type, and length.

'Nlist' and 'elist' must have the same number of items, as the lists correspond one­
to-one. If 'nlist' contains an array name without a subscript, 'elist' must have one
constant for each element of that array (but see section F.2.9.2). Any subscript that
is specified must be an integer constant.

The type of a name specified in 'nlist' must agree with the type of the corresponding
constant in 'elist,' except that an item of any type can be initialized to a Hollerith
constant.

Given a length 'g' of a variable or array element in 'nlist,' then the length In' of its
corresponding initial Hollerith constant in 'elist' must be less than or equal to 'g.' If
'n' is less than' g,' the constant is padded on the right with blanks until the lengths
are equal. Note that initialization of a character in a variable or array element in­
itializes that entire item.

A variable or array element cannot be initialized more than once in a program. If
two symbols are associated, only one may be initialized.

Examples:

DATA I,J,K/10,20,301

CHARACTER*10 NAMES(3)
DATA NAMES/'GEHRIG', 'OTT', 'RUTH'I

INTEGER*1 ZEROS (10)
DATA ZEROS 110*0/1,J,K 110,20,301

&NAMES(2) I'OTT'I
C AMPERSAND USED TO CONTINUE STATEMENT

LOGICAL TABLE(3)
DATA TABLE I.TRUE., .TRUE., .FALSE.!

3.4 Memory Definition

The DATA and assignment statements assign values to specific items. FORTRAN
also ineludes three statements for establishing memory areas and initializing these
areas. These are the EQUIVALENCE, COMMON, and BLOCK DATA statements.

EQUIVALENCE is used to associate two or more items in memory, such as
associating a variable name with an array element. Its scope is the program unit in
which it appears. The COMMON statement can be used to associate items in dif­
ferent program units, allowing common use of data and memory through an entire
program (for example, a common data base or table). BLOCK DATA defines a
BLOCK DATA subprogram, which can assign initial values to items in common
memory.

3.4.1 EQUIVALENCE Statement

The EQUIVALENCE statement allows items in a program unit to share memory.
All entities listed in the EQUIVALENCE statement share the same start address in
memory (even if they are of unequal lengths).

The format of the EQUIVALENCE statement is:

EQUIVALENCE (nlist) [,(nlist)] ...

3-11

Defining Variables, Arrays, And Memory

3-12

where 'nlist' is a list of variable names, array names or array element names. The lat­
ter may only be subscripted by integer constants. The use of an array name un­
qualified by a subscript is the same as a reference to the first element of the array.
Function names and the names of dummy arguments may not be listed.

Equivalenced items may have different data types, although this is not recommend­
ed. The EQUIV ALENCE statement does no type conversion.

Example:

INTEGER* 1, ARRAY(3), LlST(6)
REAL FPNUMB
EQUIVALENCE (ARRAY,LlST), (LlST(4),FPNUMB)

The resulting memory allocation would be:

I A(1) I A(2) I A(3) I ARRAY

LIST L(1) I L(2) I L(3) I L(4) I L(S) I L(6) I

FPNUMB I LOW I I HIGH I

The EQUIV ALENCE statement must not cause the same storage item to occur more
than once in a memory sequence, nor can it result in the splitting of a memory se­
quence.

Examples:

C THE FOLLOWING EXAMPLES ARE INVALID
DIMENSION ARRAY(3)
EQUIVALENCE (ARRAY(1),FPNUM B),(ARRAY(2),FPNUMB)

C FPNUMB OCCURS MORE THAN ONCE IN MEMORY SEQUENCE
REAL TABLE(2), ROOTS(3)
EQU IV ALENCE (T ABLE(1), ROOTS(1)),(TABLE(2),

&ROOTS(3))
C MEMORY SEQUENCE IS SPLIT

3.4.2 COMMON Statement

Common memory blocks allow data and memory to be shared throughout an entire
program. The COMMON statement defines common blocks that may be either
named or unnamed (that is, 'blank').

The format of the COMMON statement is:

COMMON [/[eb]!] nlist [[,]/ [eb]! nlist] ...

where

cb is the name of a common block.

nlist is a list of variable names, array names, or array declarators.
Function names and the names of dummy arguments cannot be
listed.

FORTRAN-80

FORTRAN-80 Defining Variables, Arrays, And Memory

The items in 'nlist' following a common block name (or omitted name) are declared
to be in that block (or in blank common). If a common block name is omitted, the
statement refers to the blank common block. If the first common block name is
omitted in the above format, the slashes may be omitted also. The slashes must be
present, however, if blank common is specified as other than the first common
block.

The same common block name (or blank) can appear in other COMMON
statements, either in the same program unit or in other program units. This is how
items in different program units are associated in memory. All common blocks hav­
ing the same name also have the same starting address in memory. The same is true
of all declarations of blank common. Only one blank common can exist in the final
linked program.

3.4.2.1 Common Block Memory Sequence.

A common block memory sequence consists of the memory of all items listed in the
COMMON statement(s) for that common block, in the order of their appearance
within the COMMON statement(s).

An EQUIVALENCE statement may cause a common block to be extended. This is
done by adding memory beyond the highest location in the common block. An
EQUIV ALENCE statement must not cause two different common blocks in the
same program unit to be associated. Names associated with a name in a common
block are considered to be part of that common block.

3.4.2.2 Named and Blank Common Blocks.

Named and blank common blocks are treated differently in several respects.

• Within a program, all common blocks having the same name must also be the
same size. Blank common block-s may be different sizes.

• Executing a RETURN or END statement sometimes causes items in named
common blocks to become undefined. This cannot occur with blank common.

• DA TA statements in a BLOCK DATA subprogram can only initialize items in
named common blocks.

Examples:

COMMON IBLOCK1/A,B,ROOTS /I TABLES(3,3)
LOGICAL LOGICS(3,3),Z
COMMON X,Y,Z

C PREVIOUS STATEMENT EXTENDS BLANK COMMON
COMMON IBLOCK1/C

C 'BLOCK1' IS NOW EXTENDED BY LENGTH OF 'C'
EQUIVALENCE (Z,LOGICS(1, 1))

C BLANK COMMON EXTENDED AGAIN-BY 8 LOGICAL
C ARRAY ELEMENTS

3.4.3 BLOCK DATA Subprograms

BLOCK DATA subprograms are used to initialize variables and array elements in
named common blocks. The first statement of such a subprogram is the BLOCK
DATA statement, which mayor may not name the BLOCK DATA subprogram.
The last statement must be the END statement. The only other statements permitted
in a BLOCK DATA subprogram are IMPLICIT, DIMENSION, COMMON,
SA VE, EQUIVALENCE, DATA, and the type statements.

3-13

Defining Variables, Arrays, And Memory

3-14

3.4.4 BLOCK DATA Statement

The format of the BLOCK DATA statement is:

BLOCK DATA [name]

where 'name' is the symbolic name of the BLOCK DATA subprogram.

Since 'name' is global, it must not be the same as the name of an external procedure,
main program, common block, or another BLOCK DATA subprogram. Only one
unnamed BLOCK DATA subprogram is permitted per executable program.

J

Only an item in a common block may appear in a DIMENSION, EQUIVALENCE,
or type statement in a BLOCK DATA subprogram. Only an item in a named com­
mon BLOCK can be initialized in a BLOCK DATA subprogram.

If a named common block is initialized, all items in the block must be listed, even if
they are not all initialized. More than one named common block may have items in­
itialized in a single block data subprogram, but the same named common block may
not be specified in more than one block data subprogram.

Examples:

BLOCK DATA BLK1
LOGICAL FLAGS(3)
INTEGER ZEROS(10),RESULTS
COMMON /BLOCK1/ FLAGS,ZEROS,RESULT
DATA FLAGS/.TRUE., .TRUE., .FALSE.!

&ZEROS/1 0* 0/
END

FORTRAN-SO

CHAPTER 4
PROGRAM EXECUTION CONTROLS

FORTRAN includes 16 statements, or statement variations, for controlling program
execution. These are statements that transfer control (GO TO, IF, and their varia­
tions), regulate execution loops (DO, CONTINUE), and terminate program execu­
tion (PAUSE, STOP, END).

4.1 Transferring Program Oontrol

The statements in this group pass control to another part of the program, in some
cases only when a stated condition is meL These alternatives are usually referred to
as conditional and unconditional branching. Some statements also allow an alter­
native set of operations to be performed if.the stated conditions are not met.

The statements that transfer program control are:

Unconditional GO TO
Computed GO TO
Assigned GO TO
Arithmetic IF
Logical IF

4.1.1 Unconditional GO TO Statement

Block IF
ELSE IF
ELSE
END IF

The unconditional GO TO statement transfers control to the next statement to be ex­
ecuted. It has the format

GO TO stl

where 'stl' is the statement label of an executable statement in the same program unit
as the GO TO statement.

Example:

GO TO 1010

4.1.2 Computed GO TO Statement

The computed GO TO statement branches to one of several executable statements
based on the value of a controlling integer expression. The format of the computed
GOTO is

GO TO (stl [,stl] ...)[,]exp

where

exp is an integer expression

stl is the statement label of an executable statement in the same
program unit as the computed GO TO.

The same statement label may appear more than once in the statement. If the integer
expression has a value in the range 1::5 exp::5 n (where 'n' is the number of statement
labels in the list), control passes to the statement pointed to by 'exp.' If 'exp' is out­
side this range, execution continues with the statement following the GO TO.

4-1

Program Execution Controls

4-2

Examples:

GO TO (1010,1020,1030) K
C IF K = 2, FOR EXAMPLE, CONTROL PASSES TO STATEMENT
C 1020

INTEGER*1 SWITCH
SWITCH = K/J
GO TO (10,500,500,10,10) SWITCH

C NOTE THAT 'J' MUST BE .LE. 'K' IN THIS EXAMPLE
GO TO (10, 500, 600, 500) K * L + 1

4.1.3 Assigned GO TO Statement

The assigned GO TO statement is used with the ASSIGN statement. The assigned
GO TO is similar to the computed GO TO, but in this case the control is an integer
variable name. Before the assigned GO TO is executed, the variable name must be
defined with the value of a statement label by an ASSIGN statement in the same pro­
gram unit.

The format of the assigned GO TO statement is

GO TO name n,] (stl [,stl] ...)]

where

name

stl

is an integer variable name

is the statement label of an executable statement III the same
program unit as the assigned GO TO.

The same statement label may appear more than once in the statement. If the paren-.
thesized list of statement labels is present, the statement label assigned to 'name'
must be one of the labels in the list.

Examples:

ASSIGN 10TO START
GOTOSTART
ASSIGN 999 TO DONE
GO TO DON E (500, 600, 999)

4.1.4 Arithmetic I F Statement

The arithmetic IF statement behaves similarly to a computed GO TO. Control is
transferred to one of three possible statements based on the value of a controlling
expression. The format of the arithmetic IF is

IF(exp)s1,s2,s3

where

exp is an integer or real expression

s is the statement label of an executable statement in the same
program unit as the arithmetic IF.

The same statement label may appear more than once in the statement.

If the value of 'exp' is less than zero, control passes to the first statement listed; if it
equals zero, control passes to the second statement; if 'exp' is greater than zero, con­
trol passes to the third statement.

FORTRAN-SO

FORTRAN-SO Program Execution Controls

Examples:

IF(A + 8)1010,1020,1030

SWITCH = A**2 - 8**2
IF (SWITCH) 100,200,300

4.1.5 Logical I F Statement

We have given several examples of logical IF statements already in this manual. In
effect, if the logical expression evaluated is TRUE, a specified statement is executed
next. If the logical expression is FALSE, execution continues with the statement
following the logical IF statement.

The format of the logical IF statement is

IF (exp) stmt

where

exp is a logical expression

stmt is any executable statement except DO, a block IF, ELSE IF,
ELSE, END IF, END, or other logical IF

A function reference in the controlling logical expression is permitted to affect
parameters in the statement 'stmt.'

Examples:

IF (SWITCH .EO. 1) GO TO FINISH
IF (SWITCH .NE. 1) WRITE (6,20) TOTALS

LOGICAL DONE
DONE = (A * *2 .GT. 8**2)
IF (DONE) PAUSE
IF (.NOT. DONE) GO TO START

4.1.6 IF, ELSE IF, and ELSE Blocks

The block IF statement is used with the END IF statement and, optionally, the
ELSE IF and ELSE statements to control program execution.

Together with other executable FORTRAN statements, they can form 'IF blocks,'
'ELSE IF blocks,' or 'ELSE blocks,' the first statements of which must be IF, ELSE
IF, or ELSE, respectively.

These blocks may be 'nested.' For example, an IF block may contain another IF
block, which may contain another IF block, etc. These blocks may also be empty.
For example, there may be no executable statements at all between a block IF state­
ment and its corresponding END IF statement.

An IF block consists of all the executable statements after the block IF statement up
to, but not including, the next ELSE IF, ELSE, or END IF statement on the same
nesting level as the block IF statement.

An ELSE IF block consists of all the executable statements after the ELSE IF state­
ment up to, but not including, the nest ELSE IF, ELSE, or END IF statement that
has the same nesting level as the ELSE IF statement.

4-3

Program Execution Controls

4-4

An ELSE block consists of all the executable statements after the ELSE statement
up to, but not including, the next END IF statement that has the same nesting level
as the ELSE statement.

For each block IF statement, there must be a corresponding END IF statement in the
same program unit.

IF ...

ELSE IF ...
IIF BLOCK

ELSE IF BLOCK

IF ... =:J
: IF BLOCK

END IF

ELSE _______________ --,

IF ...

IF. . .] IF BLOCK

ENDIF

IF BLOCK ELSE BLOCK

END IF ________ _

END IF ______________ _

4.1.7 Block I F Statement

The format of the block IF is

IF (exp) THEN

where 'exp' is a logical expression.

If the value of 'exp' is TRUE, execution continues with the first statement of the IF
block. If the IF happens to be empty and 'exp' is TRUE, control passes to the next
END IF statement on the. same nesting level as the block IF statement. If 'exp' is
FALSE, control passes to the next ELSE IF, ELSE, or END IF on the same nesting
level as the block IF statement.

Control cannot be transferred into an IF block from outside the IF block (but see
section F.2.9.3).

If the last statement in the IF block does not transfer control to another executable
statement, control passes to the next END IF statement that has the same nesting
level as the block IF statement.

An example if shown following the description of the END IF statement.

4.1.8 ELSE I F Statement

The ELSE IF statement has the format

ELSE IF (exp) THEN

where 'exp' is a logical expression.

FORTRAN-SO

FORTRAN-80 Program Execution Controls

If 'exp' is TRUE, normal execution continues with the first statement of the ELSE
IF block. If 'exp' is FALSE, control passes to the next ELSE IF, ELSE, or END IF
statement having the same level as the ELSE IF statement.

Control cannot 'be transferred into an ELSE IF block from outside the block (but see
section F.2.9.3). The statement label, if any, of the ELSE IF statement cannot be
referenced by another statement.

If the last statement in the ELSE IF block does not pass control to another ex­
ecutable statement, control passes to the next END IF statement having the same
nesting level as the ELSE IF statement.

An example is shown following the description of the END IF statement.

4.1.9 ELSE Statement

Executing the ELSE statement has no effect; execution simply continues. Its format
is

ELSE

The ELSE block is terminated by an END IF statement of the same level as the
ELSE statement. This END IF statement must appear before the appearance of an
ELSE IF or another ELSE statement of the same nesting level.

Control cannot be transferred into an ELSE block from outside the block (but see
section F.2.9.3). The statement label, if any, of the ELSE statement cannot be
referenced by another statement.

An example is shown following the description of the END IF statement.

4.1.10 END IF Statement

Executing the END IF statement has no effect; normal execution continues. The
END IF statement acts as a terminator for IF, ELSE IF, and ELSE blocks. Each
block IF statement must have a corresponding END IF statement, that is, an END
IF statement of the same nesting level as the block IF statement.

The format of the END IF statement is

ENDIF

Example:

IF (FLAG .EO. 3) THEN
WRITE (6,20) NAME(3), PAY(3)

20 FORMAT ...
ELSE IF (FLAG .EO. 2) THEN

WRITE (6,40) FEDTAX
40 FORMAT ...

ELSE
WRITE(6,60) FICA

60 FORMAT ...
ENDIF

4-5

Program Execution Controls

4-6

4.2 Loop Control Statements

Frequently, a series of operations must be repeated several times (for example,
reading a series of entries from an input device and extracting information selective­
ly). Rather than repeat the statements to perform these operations for each entry,
one can create a loop that causes the same statements to be performed over and over
until all entries have been read and processed. This is the function of the DO state­
ment.

The CONTINUE statement described in this section is ordinarily used with the DO
statement, though it is not limited to this use.

4.2.1 Operation of a DO Loop

The first statement of a DO loop is the DO statement itself. The last statement is a
labeled statement whose label is specified in the DO statement. These two statements
define the range of the DO loop. The statements making up the body of the DO loop
are executed a specific number of times, as defined in the DO statement.

The DO statement includes three values: an initial loop index value, a loop termina­
tion value, and an amount by which the initial value is to be incremented or
decremented. Each time the loop is performed, a 'DO variable,' previously initializ­
ed to the initial index value, is increased or decreased by the incrementl decrement
value until the loop termination value is reached. Program execution then continues
with the statement following the last statement of the DO loop.

This sequence describes the most common operation of a DO loop. A DO loop can
also terminate operation as the result of a RETURN statement executed within the
loop, a transfer of control outside the loop, execution of a STOP statement in the
program, or program termination for any other reason.

Program control cannot be transferred into a DO loop.

4.2.2 DO Statement

The format of the DO statement is

DO sfl [,] var = e1, e2 [,e3]

where

stl is the statement label of an executable statement and is the label of
the last statement in the DO loop.

var is the name of an integer variable, called the 'DO variable.'

e is an integer expression.

In this format, 'eI' is the initial loop index value, 'e2' is the loop termination value,
and 'e3' is the loop incrementl decrement amount. If 'e3' is not specified, an incre­
ment of one is assumed. The values of 'eI' and 'e2' can be specified such that no
iterations are performed (but see the discussion of the 0077/0066 compiler con­
trols in section F.2.5).

The last statement of a DO loop, statement 'stl,' must not be an unconditional GO
TO, assigned GO TO, arithmetic IF, block IF, ELSE IF, ELSE, END IF,
RETURN, STOP, END, or DO statement. If the last statement of the DO loop is a
logical IF statement, it can contain any executable statement except a DO, block IF,
ELSE IF, ELSE, END IF, END, or another logical IF statement.

FORTRAN-80

FORTRAN-80 Program Execution Controls

DO loops may be nested, that is, a DO loop can contain another DO loop, etc. If a
DO statement appears within the range of another DO loop, the loop specified by
the second DO statement must be within the range of the outer DO loop. DO loops
can share the same last statement.

I f a DO statement lies within an IF block, ELSE IF block, or ELSE block, the range
of the DO loop must be entirely within that block.

I f a block IF statement is within the range of a DO loop, its corresponding END IF
statement must also be within the range of the DO loop.

Examples:

The first example demonstrates the looping process.

N=O
DO 100 I == 1,10
J = I
DO 100 K = 1,5
L=K

100 N = N + 1
110 CONTINUE

When looping is completed~ I = 11, J = 10, K = 6, L = 5, and N = 50. Note the
use of blanks to isolate the nested DO loop in this example.

The following example is another program to compute batting averages for 25
players (one team). Compare this program to Figure 1-1...

CHARACTER*12 PNAME
DO 30 1=1,25
READ 10, PNAME, AB, HITS

10 FORMAT (A12, 2(2X, F3.0))
AVG = HITS/AB
PRINT 20, PNAME, AVG

20 FORMAT (A12, 5X, F4.3)
30 CONTINUE

C LOOP CAN NOT TERM I NATE WITH STATEM ENT 20
C BECAUSE 'FORMAT' IS NONEXECUTABLE

4.2.3 CONTINUE Statement

The format of the CONTINUE statement is

CONTINUE

as shown in the preceding example.

This statement has no effect on program execution, which simply continues with the
next executable statement.

4.3 Program Termination Statements

FORTRAN provides three statements for halting or terminating program execution.
The PAUSE statement halts execution, but allows execution to resume. The STOP
statement terminates program execution. The END statement marks the end of a
program unit. It terminates a main program and acts as a RETURN from a sub­
program.

4-7

Program Execution Controls

4-8

4.3.1 PAUSE Statement

The format of the PAUSE statement is

PAUSE [msg]

where 'msg' is a string of not more than five digits, or is a character constant. At the
time the PAUSE is executed and program execution ceases, 'msg' is displayed on the
console terminal.

Program execution must be resumable following the pause. Resumption is not under
program control, however, and might be initiated, for example, by an external inter­
rupt such as a key being pressed. If execution is resumed, the normal execution se­
quence is continued with the statement following the PAUSE statement.

Examples:

PAUSE
PAUSE 1234
PAUSE 'BREAK 12'

4.3.2 STOP Statement

The format of the STOP statement is

STOP [msg]

where 'msg' is a string of not more than five digits, or is a character constant.

STOP terminates execution of the executable program. When this happens 'msg' is
displayed on the console terminal.

Examples:

STOP
STOP 22
STOP 'CHECK SUM'

4.3.3 EN 0 Statement

The format of the END statement is

END

The END statement marks the end of a program unit. If executed in a main pro­
gram, it terminates the program. If executed in a subprogram, it has the effect of a
RETURN statement and returns to the main program. The last line of every pro­
gram unit must be an END statement.

An END statement is written only in columns 7 through 72 of an initial line and
must not be continued. No other statement in a program unit can have an initial line
that appears to be an END statement.

FORTRAN-SO

CHAPTER 5
FUNCTIONS AND SUBROUTINES

Functions and subroutines reduce coding, break programs into readily-visible
logical structures, conserve storage, avoid the tedium and increased probability of
error in repetitive coding, and eliminate the coding of commonly-used mathematical
functions.

The term 'function' refers to a statement or subprogram that returns a value when it
is referenced. A subroutine is a subprogram that does not return a value, but may
alter the values of variables outside itself.

All functions and subroutines are called 'procedures.' These include:

• Intrinsic, or predefined, FORTRAN functions;

• Single-statement, user-defined functions (statement functions);

• User-defined function subprograms (external functions), which are identified
by their initial FUNCTION statement;

• Subroutine subprograms identified by their initial SUBROUTINE statement.

External functions and subroutines are referred to collectively as 'external pro­
cedures.' These may be FUNCTION or SUBROUTINE subprograms defined within
the program, or they may be procedures created elsewhere (e.g., PL/M and
assembly language procedures) and linked to the program where appropriate.

When a procedure is defined, it usually includes 'dummy arguments' used to hold
the place of 'actual arguments' to be substituted when the procedure is referenced or
called. The use of dummy and actual arguments will become clearer in the remainder
of this chapter.

5.1 Intrinsic and Statement Functions

5.1.1 Intrinsic Functions

FORTRAN provides a number of predefined functions for performing common
operations such as square root calculation, type conversion, trigonometric calcula­
tions, etc. The complete list of available intrinsic functions can be found in Appen­
dix B. This appendix shows the names of the various intrinsic functions, their func­
tion definitions, type of arguments, and type of results. For those intrinsic functions
that have more than one argument, all arguments must be of the same type. The IM­
PLICIT statement has no effect on the types of intrinsic functions.

An intrinsic function is referenced by specifying it in an expression.

A = 33 + SQRT(8)

The resulting value depends on the value of the actual argument(s) used in the
reference (for example, the actual value of 'B' in the expression above). The actual
arguments that constitute the argument list must agree in type, number, and order
with the specifications in Appendix B and may be any expression of the specified
type.

Arguments for which the result is not mathematically defined or which exceed the
numerical range of the processor cause results not defined in this manual. Restric­
tions on the range of arguments and results for intrinsic functions are listed in the
notes in Appendix B.

5-1

Functions And Subroutines

5-2

I f the name of an intrinsic function appears in the dummy argument list of a FUNC­
TION or SUBROUTINE subprogram, the name is considered to have no relation to
the intrinsic function within the scope of the program unit and the name itself loses
its intrinsic quality. The data type associated with the symbolic name is specified as
normal (by default or by a type statement).

If the name of an intrinsic function is to be used as an actual argument in an external
procedure reference, the name must first be specified in an INTRINSIC statement.

5.1.2 I NTRI NSIC Statement

The INTRINSIC statement confirms that a symbolic name represents an intrinsic
function and allows that name to be used as an actual argument. Only one ap­
pearance of a symbolic name in all of the INTRINSIC statements in a given program
unit is allowed. A symbolic name may not appear in an INTRINSIC statement and
an EXTERNAL statement in the same program unit.

The format of the INTRINSIC statement is

INTRINSIC tunc [,tunc] ...

where 'func' is an intrinsic function name.

The names of certain intrinsic functions cannot be used as actual arguments and,
therefore, cannot appear in INTRINSIC statements. These are the functions for
type conversion (lNT, IFIX, FLOAT, REAL, ICHAR) and the functions for choos­
ing a largest or smallest value (MAXO, AMAXI, AMAXO, MAXI, MINO, AMINI,
AMINO, MINI).

Examples:

INTRINSIC SQRT
INTRINSIC EXP, LOG, LOG10

5.1.3 Statement Functions

Straightforward mathematical functions like

f(x) = ax 2 + bx + c

are defined in FORTRAN using statement functions. These functions have no
keyword; the format is

tunc ([dum [,dum] ...]) = exp

where

June is the symbolic name of the statement function

dum is a dummy argument to be replaced by an actual argument when
the function is referenced

exp is an expression

As an example, the mathematical function above would be written

F(X) = A*(X**2)+ 8*X + C

Substituting the actual argument '3' for the dummy argument 'X' in this function
would result in the value '9A + 3B + C.'

FORTRAN-SO

FORTRAN-80 Functions And Subroutines

The statement function name and the expression 'exp' may be of different types.
The type of the value returned is as shown in Figure 3-2.

The dummy argument list indicates the order, number and type of arguments for the
statement function. The names of dummy arguments have a scope of the statement
function only, and each name may appear only once in the dummy argument list.
The type of a dummy argument name is the same as it would be if the name were
used outside the statement function.

The name of a dummy argument can be used to identify other dummy arguments of
the same type in other statement-function statements. The name can also be used to
identify a variable of the same type or a common block within the same program
unit, but they have no other relationship.

5.1.3.1 Referencing Statement Functions

A statement function is referenced by specifying its symbolic name (with any re­
quired actual arguments).

DATA A, B, C 110.0, 10.0, 3.81
FSUM(X) = A *(X* *2) + B*X + C
TOTAL = 33 + FSUM(3.0)

This operation substitutes the value '3.0' for every occurrence of 'X' in the
function definition. At the end of the operation, the value of 'TOTAL' is
'156.8.'

5.1.3.2 Statement Function Limitations

All statement functions must follow all specification statements and must precede all
executable statements.

The symbolic name of a statement function is local and cannot be a symbolic name
in any specification statement, except in a type statement or as the name of a com­
mon block in the same program unit. The name is also prohibited from being used in
an EXTERNAL statement or as an actual argument.

A statement function cannot be of type character. If it has a dummy argument of
type character, the length specification of that argument must be an integer cons­
tant.

Each operand in the statement function expression 'exp' must be one of the follow­
ing:

• A constant:
FPROD(C) = C*3.1412

• A variable reference:
FPROD(C) = C*3.1412+ AV12

• An array element reference:
FSUM(C) = C + 2ITABLE(1,3)

• An intrinsic function reference:
FHVP(A,B) = SQRT(A * *2 + B* *2)

• A reference to a statement function:
FTOTAL(C) = C/3 + FUNC(3.8)

• An external function reference:
FSU.B(C) = 3*C - EXFUN(3. 0, 3. 0,2. 5)

• A dummy procedure reference:
FSUB(C) = 3*C - EXFUN(X, Y,Z)

5-3

Functions And Subroutines

5-4

A statement function may be referenced only in the program unit where it is defined.
The statement function may not reference another statement function if that other
function is defined later in the program unit. Furthermore, a statement function in a
FUNCTION subprogram must not reference the name of the subprogram. A
reference to an external function in the expression of a statement function must not
cause a dummy argument of the statement function to become undefined or redefin­
ed.

5.2 External Procedures

This section desi:ribes external procedures, specifically procedures defined by
FUNCTION and SUBROUTINE subprograms. It also describes statements related
to external procedures: RETURN, SAVE, EXTERNAL, and the subroutine CALL.

5.2.1 FUNCTION Statement

The FUNCTION statement introduces a FUNCTION subprogram. The FUNC­
TION statement must always be the first statement of the subprogram and the sub­
program must be terminated with an END statement.

The format of the FUNCTION statement is

[typ] FUNCTION tunc ([dum [,dum] ...])

where

typ is either INTEGER [*Ien], REAL, or LOGICAL [*lenJ, len being
1,2, or 4.

June is the symbolic name of the subprogram and is an external function
name.

dum is a dummy argument and is either a variable, array, or dummy
procedure name.

The FUNCTION subprogram name, appearing as a variable within the subprogram,
must become defined or redefined each time the subprogram is executed. The value
of this variable when a RETURN or END is executed is the value of the function.
An external function in a subprogram may use dummy arguments to return values in
addition to the function value returned.

If 'typ' is not specified, the type and length of 'func' are determined by the default
conventions described in sections 2.2.2.1 and 2.2.2.2.

5.2.1.1 Referencing External Functions.

An external function is referenced by specifying its name in an expression (along
with all necessary actual arguments).

The actual arguments in the reference must agree in order, number, type, and length
with their corresponding dummy arguments. One exception is the use of a
subroutine name as an actual argument; subroutine names do not have an associated
type. Actual arguments must also be one of the following:

• An expression
• An array name
• An intrinsic function name
• An external procedure name
• A dummy procedure name

FORTRAN-80

FORTRAN-SO Functions And Subroutines

An actual argument may also be a dummy argument as long as the dummy is part of
a dummy argument list within the subprogram containing the external function
reference.

5.2.1.2 FUNCTION Subprogram Limitations

A FUNCTION statement may be used only as the first statement of a FUNCTION
subprogram. The subprogram itself can consist of any other statement except a
SUBROUTINE, BLOCK DATA, or PROGRAM statement.

The name of the FUNCTION subprogram is global and cannot be the same as any
other name in the subprogram, except for its use as a variable in the body of the sub­
program. Within the subprogram, the only nonexecutable statement in which the
name may appear is a type statement, and even this is not permitted if the type is
specified in the FUNCTION statement. A FUNCTION subprogram name may not
be type character.

The symbolic name of a dummy argument in a function subprogram is local to the
program unit and cannot be used in an EQUIVALENCE, SAVE, INTRINSIC,
DATA, or COMMON statement (except as a common block name).

A function specified by a subprogram can be referenced within any other external
procedure or in the main program. A function subprogram must.not reference itself,
however, either directly or indirectly (but see the description of the REENTRANT
compiler control in section F.2.3).

When an external function reference is executed, the function must be part of the
program. External functions created outside the program must be linked to the pro­
gram before it is executed. External procedure linkage is described in the FOR­
TRAN compiler operator's manual.

Example:

C THE FOLLOWING EXAMPLE TOTALS THE
C VALUES IN AN ARRAY OF LENGTH I

FUNCTION TOTAL(ARRAY, I)
DIMENSION ARRAY(I)
TOTAL = 0.0
DO 100 K = 1, I

TOTAL = TOTAL + ARRAY(K)
100 CONTINUE

RETURN
END

5.2.2 Subroutines

A subroutine is used primarily to avoid redundant blocks of code. A subroutine can
be called from anywhere in a program, with actual arguments substituted for the
dummy arguments specified in the subroutine definition. The subroutine performs
its operations, then returns control to the point of call.

The SUBROUTINE statement must be the fitst statement of a SUBROUTINE sub­
program. The subprogram (being a program unit) must be terminated by an END
statement and can contain any statement except anotqer SUBROUTINE statement,
or a FUNCTION, BLOCK DATA, or PROGRAM statement. At some point in the
subprogram, the RETURN statement can be specified to tell the subroutine when to
return control to the point of call.

5-5

Functions And Subroutines

5-6

The subroutine is called by the CALL statement.

PROGRAM

CALL .. SUBROUTINE

.~RETURN
CA.~END

END

Subroutines, being external procedures, can be defined outside the program. By the
time a program containing a CALL to the subroutine is executed, however, the
subroutine must be part of the calling program, either by SUBROUTINE sub­
program definition or by being linked to the program. External procedure linkage is
described in the FORTRAN compiler operator's manual.

5.2.3 SUBROUTINE Statement

The SUBROUTINE statement is used only as the first statement of a
SUBROUTINE subprogram. Its format is

SU BROUTI N E sub[([dum[,dum] ...])]

where

sub is the symbolic name of the subroutine.

dum is a dummy argument and is either a variable, array, or dummy
procedure name.

If no dummy arguments are specified, either of the forms 'SUBROUTINE sub' or
'SUBROUTINE subO' is acceptable.

The symbolic name of the subroutine is a global name and must not be the same as
any other name in the program unit.

The symbolic name of a dummy argument is local to the program unit and cannot be
used in an EQUIVALENCE, SAVE, INTRINSIC, DATA, or COMMON state­
ment, except as a common block name.

An example is shown following the RETURN statement.

5.2.4 RETU RN Statement

The RETURN statement returns control to the calling program unit. It may appear
only in a FUNCTION or SUBROUTINE subprogram. These subprograms may
have one or more RETURN statements, or they may have none at all. The END
statement terminating such a program unit has the same effect as a RETURN.

The format of the RETURN statement is simply

RETURN

FORTRAN-SO

FORTRAN-SO Functions And Subroutines

When a RETURN is executed in a FUNCTION subprogram, the value of the func­
tion must be available to the referencing program unit.

Whenever RETURN is executed, the association between the dummy arguments of
an external procedure and the current actual arguments is terminated (but see sec­
tion 5.2.5, the SA VE statement).

Example:

C TH REE N UM BERS ARE ADDED AN D TH E FLAG 'POSTor SET TO
C TO 11F THEIR TOTAL IS POSITIVE

SUBROUTINE POSTOT(A,B,C)
IF ((A + B + C) .GE. 0) THEN
POSTOT = 1
ELSE
POSTOT = 0
ENDIF

RETURN
END

5.2.5 SAVE Statement

The SAVE statement can be used to make sure that common variables within a
FUNCTION or SUBROUTINE subprogram do not become undefined when a
RETURN or END is executed.

The format of the SAVE statement is

SAVE lebl [,Iebl] ...

where 'cb' is a named common block. Naming the common block saves all items in
that block. A specific common bloj:k cannot be listed more than once in a single
SA VE statement. Entities in blank common never become undefined as the result of
executing RETURN or END.

Example:

SAVE IBLOCK1/,/BLOCK21

5.2.6 EXTERNAL Statement

The EXTERNAL statement confirms that a symbolic name represents an external or
dummy procedure and allows that name to be used as an actual argument.

The format of the EXTERNAL statement is

EXTERNAL proe [,proe] ...

where 'proc' is the name of an external or dummy procedure.

If an intrinsic function name is specified in an EXTERNAL statement, that name
can no longer be used to specify an intrinsic function in the program unit, but in­
stead becomes the name of an external procedure.

A symbolic name can be specified only once in all the EXTERNAL statements in a
program unit.

Example:

EXTERNAL HYP, POSTOT, SIN

5-7

Functions And Subroutines

5-8

5.2.7 CALL Statement

The CALL statement is used to reference a subroutine. A subroutine can be refer­
enced within any other external procedure or in the main program. A subprogram
must not reference itself either directly or indirectly (but see the description of the
REENTRANT compiler control in section F.2.3).

The format of the CALL statement is

CALL sub [([arg [,arg]. ..])]

where

sub is the symbolic name of a subroutine or dummy procedure.

arg is an actual argument.

The actual arguments in the CALL statement must agree in order, number, type,
and (if applicable) length with the corresponding dummy argument list of the
referenced subroutine. If the name of a subroutine is specified as an actual argu­
ment, the type conformity rule does not apply since subroutines do not have an
associated type.

Each actual argument must be one of the following:

• An expression
• An array name
• An intrinsic function name
• An external procedure name
• A dummy procedure name

An actual argument in a CALL statement may be a dummy argument name if that
name appears in a dummy argument list within the subprogram containing the
CALL.

Examples:

C THE FOLLOWING STATEMENTS COULD BE USED TO CALL
C THE SUBROUTINE DEFINED IN THE 'RETURN STATEMENT'
C EXAMPLE (SECTION 5.2.5)

CALL POSTOT(3.2,-2.7,0.08)
CALL POSTOT(X,5.2**I,-Y)

5.3 Arguments And Common Blocks Revisited

Arguments and common blocks are the means of communicating between pro­
cedures and statements referencing the procedures. Data can be passed to a state­
ment function or intrinsic function by an argument list. Data can be passed between
external procedures and other program units by argument lists or can be shared in
common blocks.

FORTRAN has a number of very specific rules governing the use of common blocks
and argument lists. We touched on the most important when function and
subroutine references were discussed. This section repeats those rules plus a number
of others related to arguments and common blocks.

FORTRAN-SO

FORTRAN-80 Functions And Subroutines

5.3.1 Common Blocks

Common blocks reduce storage requirements by allowing two or more subprograms
to share the same memory. This sharing may be limited by the rules for defining and
referencing data.

The variables and arrays in a common block can be defined and referenced in all
subprograms that contain a declaration of that common block. 'Association is by
memory location rather than by name, so the names of variables and arrays of a
given common block may be different in the different subprograms. However, the
data referenced and the common block name used to reference the data must be of
the same type.

An integer variable ASSIGNed a statement label can only be referenced in the pro­
gram unit containing its ASSIGN statement.

5.3.2 Dummy And Actual Arguments

A dummy argument is used in the argument list when defining a procedure. An ac­
tual argument is used in the corresponding argument list when the procedure is
referenced.

Dummy arguments are used by statement functions, FUNCTION subprograms, and
SUBROUTINE subprograms to specify the types of actual arguments and whether
the argument is a single value, array, or procedure. In the case of a statement func­
tion, the dummy argument must be a variable.

Dummy argument names can be used anywhere an actual name of the same 'class'
(that is, variable, array, or dummy procedure) and type can be used, unless explicitly
prohibited. Dummy argument names cannot appear in EQUIVALENCE, DATA,
SA VE, INTRINSIC, or COMMON statements (except as common block names). A
dummy name also cannot be the same as a FUNCTION, SUBROUTINE, or state­
ment function name declared in the same program unit.

Actual arguments list the entities to be associated with corresponding dummy
arguments for a particular procedure reference. Actual arguments may be constants,
function or subroutine references, or expressions, including parenthesized expres­
sions (if the associated dummy argument is not defined during execution of the ex­
ternal procedure). An actual argument cannot be the name of a statement function
defined later in the program unit containing the reference.

5.3.3 Association Of Arguments

When a procedure reference is executed, the actual and dummy arguments are
associated; the first actual argument replaces all occurrences of the first dummy
argument, etc. Therefore, the arguments must agree in order, number, type (except
when the actual argument is a subroutine name), and length (where applicable).

If an actual argument is associated with a dummy appearing in an adjustable dimen­
sion, the actual argument must be defined with an integer value when the procedure
is referenced.

If an actual argument is an expression, the expression is evaluated before associa­
tion. If the actual is an array element name, its subscript is evaluated before associa­
tion.

5-9

Functions And Subroutines

5-10

NOTE

The subscript value remains constant as long as the arguments are
associated, even if the subscript contains variables redefined during the
association.

Argument association can be carried through more than one level of procedure
reference. A valid association exists at the last level, however, only if the association
is maintained through all intermediate levels. The association normally terminates
when a RETURN or END is executed. The association is not retained from one pro­
cedure reference to the next.

5.3.3.1 Agreement Of Argument Lengths

If a dummy argument is type character, its actual argument must be the same type
and length. If the dummy is an array name, the length requirement applies to each
element in the array.

If the dllmmy argumentis type integer. the arguments must again agreeiu type and
lepgth~lfaninteger c()nstant is used as an actual argument, its length is deterInined
as shq""n in~ection 2.2.Z.2.That is, an integer without abas~suffix has the default
integer variable length;if the base of the integer constantisstated explicitly, tbe pro­
c~ssordetermines its length implicitly.

5.3.3.2 Variables As Dummy Arguments

A variable dummy argument can be associated with an actual variable, array ele­
ment, or expression. If the actual argument is a variable name or array element
name, its dummy argument can be defined or redefined within the subprogram.
Otherwise, if the actual argument is a constant, function reference, or expression, its
dummy argument must not be redefined within the subprogram.

5.3.3.3 Arrays As Dummy Arguments

An array dummy argument can be associated with an actual array name or array ele­
ment name. The number and size of dimensions in an actual argument array
declarator can be differept from the dimensions in its associated dummy array
declarator.

If the actual argument is an array name, the size of the dummy argument array must
not be greater than the size of the actual argument array.

If the actual argument is an array element name with a subscript 'p,' the dummy ar­
ray element with a subscript 'q' becomes associated with the actual array element
with the subscript value (p + q-l). The size of the dummy array must not be greater
than the size of the actual array plus one minus the subscript value of the array ele­
ment.

5.3.3.4 Procedures As Dummy Arguments

I f a dummy argument is used as if it were an external function, the associated actual
argument must be an intrinsic function, external function, or dummy procedure. If
a dummy argument appears in a type statement and an EXTERNAL statement, the
actual argument must be the name of a function or dummy procedure. If the dummy
argument is referenced as a subroutine, the actual argument must be the name of a
subroutine or dummy procedure and must not appear in a type statement or be
referenced as a function.

FORTRAN-80

FORTRAN-SO Functions And Subroutines

NOTE

In a given program unit, det~rmining whether a dummy procedure is
associated with a function or a subroutine may not be possible. If a pro­
cedure name appears only in a dummy argument list, an EXTERNAL
statement, and an actual argument list, examining the subprogram is not
enough to determine whether the symbolic name should be associated
with a subroutine or a function.

A dummy argument associated with an intrinsic function has no automatic type
association. Therefore, the type of the dummy argument must agree with the type of
the result of all actual arguments associated with it. An intrinsic function name used
as a dummy external function name loses its property as an intrinsic function within
the subprogram. A dummy argument associated with an intrinsic function and used
as a procedure name in a function reference must have arguments that agree in
number and type with those specified for the intrinsic function.

5.3.3.5 Argument Association Limitations

If dummy arguments in the same subprogram are associated as the result of a
reference to that subprogram, neither dummy can be redefined during execution of
the subprogram. For example, an external function beginning with

FUNCTION F(A,B,C)

could not be referenced by

F(X, Y, X)

because' A' and 'C' would become associated.

If a subprogram reference causes a dummy argument to become associated with an
item in a common block in the same subprogram, neither the dummy nor the com­
mon item can be redefined within the subprogram.

5-11

CHAPTER 61
INPUT/OUTPUT

The FORTRAN input/output (I/O) statements transfer data between a processor
and external units or within the processor itself. These statements can specify the ex­
ternal units to be used, the variables whose values are being entered or output, and
the format of I/O data.

The first group of I/O statements are the file-handling statements (OPEN, CLOSE,
BACKSPACE, REWIND, ENDFILE). As their names imply, these statements are
used for connecting and disconnecting files, positioning files, and marking the end
of a file.

The external unit to be used and the list of variables to be input or output is supplied
by the READ, WRITE, and PRINT data-transfer statements. When the input or
output is formatted, these statements are used with the FORMAT statement.

~~f:~~~~t~~~~~r.~~~~I~~.9:~~~~.~I~Btg1~<l~~t~.*P~~~2t:E~?P:S>~~i~~Intetf:9RjR~N
?~~~;~~~f~rp/~Ptq~$gt;l~~!pp.qr~lif:.~~~'~~Jl9.~~ffJf!J;Jff •• jq~ril1s~<:. su broutine~ ·in
s.ectionF.2,2. . .

Before any of these statements are discussed, the properties of records, files, and
units are reviewed. They can be described only in general here, however, since many
of the specifics related to them are dependent on the processor or operating environ­
ment.

6.1 Records, Files, And Units

6.1.1 Record Properties

A record is simply a sequence of values or characters. The length of a record is
generally the same as the sum (in bytes) of the items written into the record, unless it
is stated specifically in a record length specifier (section 6.2.1.8). Records are
classified as formatted or unformatted.

A formatted record can be any sequence of characters representable in the pro­
cessor (except escape, carriage return, or line feed characters). An unformatted
record can be a sequence of values containing both character and non character
data. These two kinds of records can only be read or written by formatted and un­
formatted I/O statements, respectively.

6.1.2 File Properties

The main properties of a file are:

• That is may exist;

• That it may have a name;

• That it has a position;

• That it may be external or internal to the processor;

• That it may be accessed sequentially or directly;

• That it may have records of specific length (for direct access files);

• That it may have formatted or unformatted contents.

6-1

Input/Output

6-2

6.1.2.1 File Existence

At the time an executable program is running, a certain set of files is available. These
files are said to exist, and the particular files that exist are determined by the
operating system or environment in which the program is running.

A file may exist without containing any data; an example would be a newly-created
file having only a name.

All FORTRAN I/O statements can refer to existing files. Some statements (OPEN,
CLOSE, WRITE, PRINT, and ENDFILE) can also refer to files that do not yet ex­
ist and are in the process of being created.

6.1.2.2 File Name

FORTRAN has no standard file-naming convention. Such conventions are system
dependent. For example, in the ISIS-II environment all of the following are valid file
names:

MYFILE
MYFILE.SRC
:LP:
:F1:PROG.OBJ

6.1.2.3 File Position

1-6 character file name
file name plus 1-3 character extension
device name, in this case line printer
device name plus file name plus extension

Once a file has been connected to a unit, it has a position. The 'initial point' of a file
is the position preceding the first record. Its 'terminal point' is the position just after
the last record. If the file is positioned within a record, that record is the 'current
record.'

Executing certain I/O statements affects the position of the file. Some circumstances
can cause the file position to become indeterminate.

6.1.2.4 External And Internal Files

An external file is a file that can be connected to an external unit. An internal file is a
character variable, character array, or character array element. Internal files allow
you to transfer data within processor memory.

An internal file cannot be specified by one of the file-handling statements (OPEN,
CLOSE, BACKSPACE, REWIND, ENDFILE). It can only be read or written by
sequential- access, formatted I/O statements that do not specify 'list-directed for­
matting.'

An internal file has the following properties:

• Each record is a character array element.

• The length of the file depends on its kind. If the file is a character variable or
array element, it is a single record whose length is the length of the variable or
array element. I f the file is a character array, every record has the same length as
an array element in the array and the file has as many records as array elements.

• A record may be read only if it has been defined. A variable or array element
record is defined by writing the record (or by making it the target in an assign­
ment statement). If the number of characters written is less than the length of
the record, the characters are left-adjusted in the record and the remainder of
the record is filled with blanks.

• An internal file is always positioned at its initial point before a data transfer.

FORTRAN-SO

FORTRAN-SO

6.1.2.5 File Access

An external file can be accessed sequentially or directly. An internal file can only
be accessed sequentially.

Some external files may be allowed more than one access method, depending on the
operating environment. The access method is determined when the file is connected
to a unit.

6.1.2.5.1 Sequential Access File. A file connected for sequential access has the
following characteristics:

• The records are a totally ordered set, having the order in which they were
written.

• The records are either all formatted or all unformatted.

If the file may also be connected for direct access, the order of a direct-access read is
the same as the order of the sequential write.

6.1.2.5.2 Direct Access Files. A file connected for direct access has the following
characteristics:

• The order of its records is the order of their record numbers. Its records can be
read or written in any order.

• Its records are either all formatted or all unformatted.

• Its records can be read or written only by direct-access 110 statements.
List-directed formatting cannot be used.

• All records of the file are the same length.

• Each record of the file has a unique record number, specified when the record is
written. A record cannot be deleted or its number changed, but is can be rewrit­
ten.

6.1.3 U nit Properties

A 'unit' is a logical way of referring to a file. Like files, units can exist or not for an
executable program. All FORTRAN 110 statements can refer to existing units. The
CLOSE statement can also refer to nonexistent units.

A unit has the property of being connected or disconnected. If connected, it
refers to a file. All 110 statements except OPEN and CLOSE must reference a unit
connected to a file.

Typically, a file is connected by the OPEN statement and disconnected by the
CLOSE statement. Depending on the operating environment, some units may also
be preconnected, meaning they can be referenced by 110 statements without first
having to be connected by the OPEN statement. A preconnected file becomes con­
nected the first time it is referenced by an 110 statement. For example, in the ISIS-II
environment the console output device and console input device are always precon­
nected. See the discussion of the UNIT run-time control in section F.3.

A unit must not be connected to more than one file at a time, and vice versa. A file
may, of course, be disconnected by the CLOSE statement and then reconnected to
the same or a different unit by the OPEN statement.

NOTE

The only way to refer to a disconnected file is by naming it in an OPEN
statement. Consequently, an unnamed file may not be able to be recon­
nected once it has been disconnected.

Input/Output

6-3

Input/Output

6-4

6.2 File-Handling Statements

6.2.1 OPEN Statement

The OPEN statement can be used to connect an existing file to a unit, create a
preconnected file, create a file and connect it to a unit, or change certain specifiers in
the file/unit connection.

The format of the OPEN statement is

OPEN (open-list)

where 'open-list' is a list of specifiers separated by commas. The list of specifiers is:

[UNIT =] unit
IOSTAT = stname
ERR = st/
FilE = fname
STATUS = stat
ACCESS = aee
FORM = fmat
RECl = ree/en
BLANK = b/nk
CARRIAGE::::; car

U nit specifier
II 0 status speci fier
Error specifier
File name specifier
File status specifier
Access method specifier
Formatting specifier
Record length specifier
Blank specifier
Carriage control specifier

The unit specifier 'unit' must be present and the unit specified must exist. All other
specifiers are optional except that the record length (REeL) must be specified if the
file is being connected for direct access. Some specifiers have default values.

The following sections 6.2.1.1 through 6.2.1.10 describe each of the 'open-list'
specifiers in detail.

6.2.1.1 Unit Specifier

The format of the unit specifier is

[UNIT =] unit

where 'unit' identifies an external unit. If the optional 'UNIT =' is omitted, the unit
specifier must be the first item in 'open-list.'

An external unit identifier must be an integer expression whose value is in the range
0:$unit:$255.

Examples:

OPEN (UNIT=3)
OPEN (4)

6.2.1.2 1/0 Status Specifier

The format of the input/ output status specifier is

IOSTAT = stname

where 'stname' is an integer variable or integer array element name.

FORTRAN-SO

FORTRAN-80

Executing an OPEN statement containing this specifier causes 'stname' to become
defined with a zero value if no error condition exists, or with a processor-dependent
positive integer value if an error condition does exist.

Example:

OPEN (4, IOSTAT = ERRFLG)

6.2.1.3 Error Specifier

The format of the error specifier is

ERR = stl

where 'st!' is the label of an executable statement in the same program unit as the
OPEN statement.

If the processor discovers an error condition while executing the OPEN statement,
the following steps occur:

1. The OPEN operation terminates;

2. The position of the file specified by OPEN becomes indeterminate;

3. If the OPEN statement has an IOSTAT specifier, 'stname' is set to reflect the
error condition;

4. Execution continues with the statement named by the ERR specifier.

Example:

OPEN (4, IOSTAT= ERRFLG,ERR= 1010)

6.2.1.4 File Name Specifier

The format of the file name specifier is

FILE = {name

where 'fname' is the name of the file to be connected, expressed as a character-type
constant or variable. The file name must be valid for the particular system in which
the program is executing. If FILE is omitted, the unit becomes connected to a
processor-determined file.

Example:

OPEN(UNIT=3, FILE= 'MVPROG.SRC')

6.2.1.5 File Status Specifier

The format of the file status specifier is

STATUS = stat

where 'stat' is a character expression evaluating to 'OLD', 'NEW', 'SCRATCH', or
'UNKNOWN'. If the STATUS specifier is omitted, the default value is
'UNKNOWN'.

Input/Output

6-5

Input/Output

6-6

If 'OLD' or 'NEW' is specified, the FILE specifier must be present also. An 'OLD'
file must exist already; a 'NEW' file cannot exist already.

The 'SCRATCH' option must not be specified with a named file. When it is
specified with an unnamed file, the file is connected to the specified unit for the
duration of program execution or until a CLOSE statement is issued for the same
unit.

If 'UNKNOWN' is specified, the file status is processor dependent.

Example:

OPEN (3, FllE= 'MYPROG.SRC', STATUS = 'NEW')

6.2.1.6 Access Method Specifier

The format of the access method specifier is

ACCESS = ace

where 'acc' is a character expression evaulating to 'SEQUENTIAL' or 'DIRECT'
(see section 6.1.2.5). If the ACCESS specifier is omitted, the default is 'SEQUEN­
TIAL'.

If the file already exists, the specified access method must be allowable for that file.
For a new file, the processor creates the file with the specified access method. If the
access method is 'DIRECT', the record length specifier (6.2.1.8) must also be pre­
sent in 'open-list.'

Example:

OPEN (3, FllE='MYPROG', STATUS='NEW',
& ACCESS = 'SEQUENTIAL')

6.2.1.7 Formatting Specifier

The formatting specifier states whether a file is being connected for formatted or un­
formatted input/ output. Its format is

FORM = (mat

where 'fmat' is a character expression evaluating to 'FORMATTED' or 'UN­
FORMATTED'. If the FORM specifier is omitted, the default value is 'UN­
FORMATTED' when the file is being connected for direct access, and 'FORMAT­
TED' when the file is being connected for sequential access.

If the file already exists, the specified formatting must be legal for that file. For a
new file, the processor creates the file with the specified formatting.

Example:

OPEN (3, FllE='MYPROG', STATUS='NEW',
& ACCESS = 'SEQUENTIAL', FORM = 'FORMATTED')

6.2.1.8 Record Length Specifier

The record length specifier identifies the length of each record in a file being con­
nected for direct access. Its format is

RECl = ree/en

where 'reelen' is a positive integer expression.

FORTRAN-SO

FORTRAN-80

If the file is being connected for formatted 110, 'reclen' is the number of characters.
If the file is being connected for unformatted 110, the length is measured in bytes.

If the file already exists, the length specified must be that used when the file was
created. In the case of a new file, the processor creates a file with the specified length
for each record.

The REeL specifier must be included in the OPEN statement when a file is being
connected for direct access.

Example:

OPEN (3, FILE='CARDS', STATUS='NEW', ACCESS='DIREcr,
& FORM = 'FORMATTED', RECL=80)

6.2.1.9 Blank Specifier

The format of the blank specifier is

BLANK = blnk

where 'blnk' is one of the character constants 'NULL' or 'ZERO'. If the BLANK
specifier is omitted, the default value is 'NULL'.

If 'NULL' is specified, all blanks in numeric formatted input fields are ignored, ex­
cept that a field of all blanks has the value zero. If 'ZERO' is specified, all blanks ex­
cept leading blanks have the value zero.

The specifier is permitted only for files being connected for formatted input/output.

Example:

OPEN (UNIT=3, FILE='TOTALS', STATUS='NEW',
& FORM='FORMATTED', BLANK='ZERO')

Input/Output

6-7

Input/Output

6-8

6.2.1.11 Opening A Connected Unit

The OPEN statement can be specified for a unit already connected to an existing
file. That existing file is assumed to be the value of 'fname' if the FILE specifier is
not included in the OPEN 'open-list.'

I f the file to be connected is the same as the connected file, the effect of OPEN
depends on whether or not the file was preconnected. If the file was not precon­
nected, or if it was preconnected and has already been referenced by an I/O state­
ment, only the BLANK specifier (and RECL for sequential files) may differ from
existing attributes. If the file was preconnected, but no I/O has been performed on
the file, the propetties specified in the OPEN statement become the properties of
connection. Subsequent OPEN statements can change only the BLANKS and RECL
attributes as described above.

I f the file to be connected is not the same as the file already connected, the currently
connected file is closed and the new file is opened with this unit. The connected file is
deleted if it was previously opened with status 'SCRATCH', but is not deleted if its
status is 'OLD', 'NEW', or 'UNKNOWN'.

I f a file is already connected to a unit, no OPEN statement connecting that file to a
different unit can be executed.

6.2.2 CLOSE Statement

The CLOSE statement is used to disconnect a particular file from a unit. Its format
IS

CLOSE (close-list)

where 'close-list' is a list of specifiers separated by commas. The list of specifiers is:

[UNIT =] unit
IOSTAT = stname
ERR = stl
STATUS = stat

U nit specifier
I/O status specifier
Error specifier
File disposition specifier

The unit specifier must be present; all other specifiers are optional and can be
specified only once.

The IOSTAT and ERR specifiers have the same interpretation as in sections 6.2.1.2
and 6.2.1. 3, respectively. The UNIT and STATUS specifiers are described in the
following sections.

6.2.2.1 Unit Specifier

The unit specifier has the same interpretation as in section 6.2.1.1. Execution of the
CLOSE statement containing this specifier need not occur in the same program unit
as its corresponding OPEN statement, however. If the specified file does not exist,
CLOSE has no effect.

Once a unit has been disconnected by the CLOSE statement, it may be reconnected
to the same file or a different file within the same program. Similarly, once a file has
been disconnected, it may be reconnected to the same or a different unit, so long as
the file still exists.

Example:

CLOSE (3, IOSTAT= ERRFLG, ERR= 1020)

FORTRAN-SO

FORTRAN-80

6.2.2.2 File Disposition Specifier

The format of the file disposition specifier is

STATUS = stat

where 'stat' is a character expression evaluating to 'KEEP' or 'DELETE'. If this
specifier is omitted, the default value is 'DELETE' for a file that previously had a
status of 'SCRATCH', and 'KEEP' otherwise. Under no circumstances can 'KEEP'
be specified for a file opened with 'SCRATCH' status.

If 'KEEP' is specified for an existing file, the file continues to exist after the CLOSE
statement is executed. Otherwise, 'KEEP' has no effect.

If 'DELETE' is specified, the file ceases to exist after the CLOSE statement is ex­
ecuted.

Following normal program termination, all connected units are closed. Scratch units
are deleted; all others are closed with disposition 'KEEP'.

Example:

CLOSE (3, ERR = 1020, STATUS =' KEEP')

6.2.3 BACKSPACE Statement

The BACKSPACE statement causes the file connected to the specified unit to be
positioned before the preceding record. Its possible formats are

BACKSPACE unit
BACKSPACE (arg-list)

where 'unit' is an external unit specifier and 'arg-list' is a list of arguments separated
by commas. The list of arguments is:

[UNIT =] unit
IOSTAT = stname
ERR = stl

External unit specifier
110 status specifier
Error specifier

The argument list must include an external unit specifier (section 6.2.1.1) and may
contain an 110 status specifier (section 6.2.1.2) and an error specifier (section
6.2.1.3). The file being backspaced must be connected for sequential access.

If the file has no preceding record, the BACKSPACE statement has no effect. If the
end-of-file condition has occurred, the file is positioned such that the last record of
the file becomes the preceding record.

Backspacing over a record written using list-directed formatting is not allowed.
Backspacing a nonexistent file or unit is prohibited also.

Examples:

BACKSPACE 3
BACKSPACE (3, ERR = 1020)

6.2.4 REWI N D Statement

The REWIND statement causes the file connected to the specified unit to be reposi­
tioned at its initial point. The file must be connected for sequential access. The
possible formats for the REWIND statement are

REWIND unit
REWI N D(arg-list)

Input/Output

6-9

Input/Output

6-10

where 'unit' is an external unit specifier and 'arg-list' is a list of arguments as
described for the BACKSPACE statement (section 6.2.3).

If the specified file is already positioned at its initial point, or if the file is connected
but does not exist, the REWIND statement has no effect. If an end-of-file condition
has occurred, the file can still be rewound.

Examples:

REWIND 3
REWIND (3, IOSTAT= ERRFLG, ERR= 1030)

6.2.5 ENDFILE Statement

When the ENDFILE statement is executed, the record preceding the ENDFILE
becomes the last record of the file. No data-transfer I/O statement can be executed
on the file without first issuing a BACKSPACE or REWIND statement. The file
must be connected for sequential access when ENDFILE is issued.

The possible formats of the ENDFILE statment are

ENDFILE unit
ENDFILE (arg-list)

where 'unit' is an external unit specifier and 'arg-list' is a list of arguments as
described for the BACKSPACE statement (6.2.3).

I f the file can be connected for direct access also, only those records appearing
before the end-of-file record can be read during subsequent direct access operations.

I f a file is preconnected to a unit but does not yet exist, specifying the unit in an
ENDFI LE statement causes the file to be created.

Examples:

ENDFILE 3
ENDFILE (3, ERR = 1040)

6.3 Data-Transfer 1/0 Statements

Once a file has been connected to a unit, data in the file can be read using the READ
statement, or data can be written into the file using the WRITE or PRINT
statements. Note that the keyword 'PRINT' does not imply that an output file is
connected to a line printer, nor does the keyword 'WRITE' imply that it is not.

6.3.1 READ Statement

The READ statement reads data from a specified unit. Its possible formats are

READ (ctl-list) [in-list]
READ f [,in-list]

where

etl-Iist

in-list

f

is a list of control information specifiers

is a list of the data to be read

is a format identifier, and is the same as the 'FMT = f'
specifier in 'ctl-list.'

FORTRAN-80

FORTRAN-SO

The list of control information specifiers is:

[UNIT =] unit
[FMT =] f
REC = recno
IOSTAT = stname
ERR = stl
END = stl

6.3.1.1 Control Information List

U nit specifier
Format specifier
Record number specifier
I/O status specifier
Error specifier
End-of-file specifier

The control information list must contain a unit specifier. If the second form of the
READ statement shown above is used (that is, if no unit is specified), the unit read is
the default unit.

The 'ctl-list' may contain, at most, one of each of the other specifiers.

The following sections 6.3.1.1.1 through 6.3.1.1.6 describe control list specifiers in
detail.

6.3.1.1.1 Unit Specifier. The unit specifier has the same interpretation as for the
OPEN statement (section 6.2.1.1). In addition, for data-transfer I/O statements,
'unit' may be an asterisk. If this is the case, the specifier identifies a particular
processor-determined external unit.

The unit specifier may also point to an internal file (that is, 'unit' may be the name
of a character variable, character array, or character array element name). In this
case, 'ctl-list' must contain a format identifier (other than asterisk) and may not
contain a record number specifier.

If the optional 'UNIT =' is omitted, the unit specifier must be the first item in 'ctl­
list.'

Example:

READ (2) PNAME, AB, HITS

6.3.1.1.2 Format Specifier. If 'ctl-list' contains a format specifier, the READ state­
ment is aformatted I/O statement; otherwise, it is an unformatted I/O statement.

The format of this specifier is

[FMT =]f

where 'f' is one of the following:

• The label of a FORMAT statement in the same program unit as the READ;

• An integer variable ASSIGNed the label of a FORMAT statement;

• A character array name, character variable name, or character expression
containing a format specification;

• An asterisk (*) specifying list-directed formatting (section 6.4.4);

• An integer, real, or logical array containing a format specification as Hollerith
data.

If the optional 'FMT =' is omitted, the format specifier must be the second item in
'ctl-list' and the first item must be the unit specifier without the optional characters
'UNIT =.'

Input/Output

6-11

Input/Output

6-12

I f the asterisk option is selected, 'ctl-list' must not include a record number specifier.
If the unit specifier is an internal file, the format specifier must be present, but can­
not be an asterisk.

Examples:

READ (2,25) PNAME, AS, HITS
25 FORMAT ...

READ 25, PNAM E, AS, HITS
25 FpRMAT ...

ASSIGN 25 TO INFMT
READ (2,INFMT) PNAME

25 FORMAT ...

READ (2, *) PNAM E

6.3.1.1.3 Record Number Specifier. The record number specifier is included in 'ctl­
list' if and only if the file to be read is connected for direct access. It has the format

REC = recno

where 'recno' is an integer expression whose value is positive. The value of this ex­
pression is the number of the record to be read.

Examples:

READ (2, REC = 20)
READ (2, REC = K)
READ (2, REC = K + 1)

6.3.1.1.4 Input/Output Status Specifier. The 110 status specifier, 10STAT, is
essentially interpreted as it was for the OPEN statement (section 6.2.1.2). In the case
of data-transfer 110 statements, however, the variable 'stname' is also assigned a
negative value at end-oF-file.

6.3.1.1.5 Error Specifier. The error specifier has the same interpretation as for the
OPEN statement (section 6.2.1.3).

6.3.1.1.6 End-Of-File Specifier. The format of the end-of-file specifier is

END = stl

where 'stl' is the label of an executable statement in the same program unit as the
statement containing this specifier.

When the end-of-file is detected during a read operation, execution of the READ
statement terminates, 'stname' is assigned a negative value (6.3.1.1.4), and execu­
tion continues with the statement specified by END.

If END is specified, the file must be connected for sequential access.

Example:

READ (2,25,IOSTAT=STFLG,ERR= 1200,END=860) A,S,C

FORTRAN-SO

FORTRAN-SO

6.3.1.2 Input List

The list 'in-list' in the READ statement identifies the items whose values are to be
read. An item in an input list must be a variable name, array name, or array element
name. If an array name is listed, the entire array is read in normal array element
ordering sequence. The name of an assumed-size dummy array must not appear in
the input list.

6.3.1.3 Implied-DO List

An implied-DO list embedded in the READ statement allows a range of subscripts to
be used for input list array elements. For example, half the items in an array can be
read without specifying each individual array element to be read. The format of the
implied-DO list is

(in-list, var = el, e2, e3)

where 'var, el, e2, and e3' have the same interpretation as for the DO statement
(section 4.2.2) and 'in-list' is a list of input items as described above. The list 'in-list'
may also contain additional implied-DO lists.

For READ statements, the DO variable 'var' must not appear as an item in 'in-list.'

Example:

CREAD ONLY THE ODD ELEMENTS IN ARRAY 'TABLE'
DIMENSION TABLE(60)
READ (2, 20) (TABLE(N), N = 1,59,2)

20 FORMAT ...

6.3.2 WRITE Statement

The WRITE statement outputs data to a specified unit. The format of the WRITE
statement is

WRITE (ctl-list) [out-list]

where

ctl-list

out-list

is a list of control information specifiers

is a list of the data to be written

The control information list is the same as for the READ statement (section 6.3.1.1
and following subsections) except that no END specifer is allowed. The output list
'out-list' is defined in the same manner as the 'in-list' portion of the READ state­
ment, including the implied-DO option (sections 6.3.1.2 and 6.3.1.3).

Like input list items, an output list item may be a variable name, array name, or ar­
ray element name. An output list item may also be an expression, including an ex­
pression involving operators or enclosed in parentheses.

Examples:

WRITE (6,120) PNAME, AVG
120 FORMAT ...

WRITE (6,120,IOSTAT= ERRFLG, ERR=2000)
&PNAME + I, AVG + I

120 FORMAT ...

DIMENSION PNAME(25), AVG(25)
C WRITE DOUBLE COLUMN PRINTOUT OF FIRST ITEMS OF
C EACH ARRAY

WRITE (6,120)(PNAME(K), AVG(K), K=1, 10)
120 FORMAT (1X, A, 5X, F4.3)

Input/Output

6-13

Input/Output

6-14

6.3.3 PRINT Statement

The PRINT statement outputs formatted data to the default write unit. It has the
format

PRI NT f [,out-list]

where

f is a format identifier

out-list is a list of the data to be written

Note that the keyword 'PRINT' does not necessarily imply the default unit is a line
printer or other print device.

The format specifier 'f' has the same meaning as for the READ statement (section
6.3.1.1.2). The list 'out-list' is defined for PRINT exactly as it is for WRITE (section
6.3.2).

Examples:

PRINT 120, PNAME, AVG
120 FORMAT ...

ASSIG N 120 TO OUTFMT
PRINT OUTFMT, PNAME, AVG

120 FORMAT ...

6.4 Formatted And Unformatted Data Transfer

In the description of the OPEN statement we saw that a file can be connected for
formatted or unformatted I/O (section 6.2.1.7). The defaults for the formatting
specifier are 'UNFORMATTED' if the file is connected for direct access and 'FOR­
MATTED' if the access method is sequential. The formatted or unformatted pro­
perty is confirmed by the presence or absence of the format specifier

[FMT =] f

in READ, WRITE, or PRINT statements. in the case of formatted 110, the I/O
statement is normally used with a FORMAT statement.

6.4.1 Unformatted Data Transfer

The unit specified in a data-transfer statement involving unformatted data must be
an external unit. Data is transferred without editing between the current record of
the connected file and items in the 110 list. Exactly one record is read or written.

The number of items in an input list must not exceed the number of values in the
record. The type of each value in the record must agree with the type of the cor­
responding input list item. The item and its value must also agree in length.

On output, if the file is connected for direct access and the values in the output list
do not fill the record, the remainder of the record is undefined.

FORTRAN-SO

FORTRAN-80

6.4.2 Formatted Data Transfer

During formatted data transfer, data is transferred with editing between the file and
the 110 list. The editing is directed by some kind of format specification. Format
specifications can be given:

• In FORMAT statements;

• As values of character arrays, character variables, or other character
expressions;

• As Hollerith values assigned to integer, real, or logical arrays.

I f the format specifier (section 6.3.1.1.2) in a formatted 110 statement is a character
array name, character variable name, or other character expression, the value
referenced must contain a valid format specification in its leftmost character posi­
tions. The format specification is described below (section 6.4.3). Character data
may follow the right parenthesis that ends the format specification with no effect on
the format specification itself. The same applies to Hollerith data in an integer, real,
or logical array.

6.4.2.1 Printing Formatted Records

If a formatted record is printed on some external listing device, the first character of
the record is not printed. It is used instead to indicate vertical spacing. The remain­
ing characters of the record are then printed beginning at the left margin.

When this convention is specified, the first character is interpreted as follows:

Character

Blank
o
I
+

Vertical Spacing

One line
Two lines
Ski p to next page
No advance

This-interpretation is requested by the CARRIAGE specifier of the OPEN statement
(section 6.2.1.10). If 'car' is specified as 'FORTRAN" the first character is inter­
preted as vertical spacing information and is not printed.

6.4.2.2 Format Control

The edit descriptors that make up the format specification list (section 6.4.3) are
classified as either repeatable or nonrepeatable.

Both the format specification list and its corresponding 110 list are scanned left to
right. One item in the 110 list corresponds to each repeatable edit descriptor. There
is no corresponding 110 list item for nonrepeatable edit descriptors, and format
control communicates directly with the 110 record. If a repeatable edit descriptor is
repeated, say five times, it corresponds to five consecutive I/O list items.

If a format specification list ends before the I/O list, it reverts to its beginning (or to
the left parenthesis matching the rightmost right parenthesis if the format specifica­
tion contains nested parentheses). Repeat specifications have the same effect as dur­
ing the first pass through the format specification list. A new record is begun each
time format reversion occurs.

Input/Output

6-15

Input/Output

6-16

6.4.3 FORMAT Statement

The form of the FORMAT statement is

stl FORMAT ([flist])

where

stl is a 1-5 digit statement label

JUst is a format specification list whose items are separated by commas

Each item in 'flist' must be a repeatable edit descriptor, a nonrepeatable edit
descriptor, or a parenthesized 'flist.' An edit descriptor is repeated by prefixing it
with a nonzero, unsigned integer constant called a 'repeat specification.' The entire
'flist' can also be prefixed by a repeat specification.

F5.3
5F5.3
X
3(2X,I5)

Repeatable descriptor
Repeatable descriptor prefixed with repeat specification' 5'
Nonrepeatable descriptor
Entire 'flist' prefixed with repeat specification '3'

Note that the FORMAT statement with no 'flist' specified, 'FORMAT (),' can be
used only if the 110 list is also empty. Conversely, if the 110 list is not empty, 'flist'
must have at least one repeatable edit descriptor.

6.4.3. t Edit Descriptors

6.4.3.1.1 Repeatable Edit Descriptors. Repeatable edit descriptors generally consist
of a letter indicating the type of data involved and a number indicating the size of
the data field and how it is to be divided. The repeatable edit descriptors are:

lw
Fw.d
Ew.d
Ew.dEe
Lw
A
Aw
Bw
Zw

where

I, F, E,
LandA

BandZ

w

d

e

Integer descriptor
Real number descriptor
Real number descriptor
Real number descriptor
Logical descriptor
Variable-length alphanumeric descriptor
Fixed-length alphanumeric descriptor
Binary descriptor
Hexadecimal descriptor

indicate the type of data being edited

indicate the number base of data being edited

is a nonzero, unsigned integer constant representing the width
of the entire edited field

is an unsigned integer constant representing the number of
digits that should follow the decimal point.

is a nonzero, unsigned integer constant representing the width
of the exponent field.

The I, F, and E edit descriptors are used to specify 110 of integer and real data. F
and E serve the same function on input; E allows output of real numbers in scientific
notation.

FORTRAN-SO

FORTRAN-80

Certain general remarks apply to all three of these numeric editing descriptors.

• On input, leading blanks are not significant. Other blanks are treated according
to the setting of the non repeatable descriptors BN and BZ and the value of the
BLANK sp~cifier in the OPEN statement (section 6.2.1.9).

• A decimal point in input data overrides the decimal point location specified by
an For E descriptor. The input field may also have more digits than are needed
for the processor to approximate the data's value.

• On output, values are right-justified. If necessary, the field is blank-filled on the
left.

• On output, if the number of characters exceeds the field width 'w,' or an
exponent has more than 'e' digits, the entire field is filled with asterisks.

The B and Z cdit descriptors specify data 110 in binary and hexadecimal notation,
respectively. The internal representation of the data is output (e.g., the 'Z' format of
'-1' is 'Ff').

Integer Editing

An I/O list item matched with an 'Iw' edit descriptor must be of type integer. The
input list item is defined with integer data; the output list item must already be defin­
ed with integer data. The integer constant read or written always consists of at least
one digit.

Examples:

PRINT 20, INTNUM
20 FORMAT (15)

READ (2,20) INTNM1, INTNM2, INTNM3
20 FORMAT (215,14)

<F' Descriptor Editing

An I/O list item matched with an 'Fw.d' descriptor must have a real value. If the in­
put to this descriptor contains no decimal point, the rightmost 'd' digits of the string
are interpreted as the fractional part of the input value.

On input, a string of digits by the basic 'F' descriptor can be followed by an expo­
nent consisting of a signed integer constant or the letter 'E' followed by an optional­
ly signed integer constant.

Output edited by the 'F' descriptor is rounded to 'd' fractional digits, and may be
modified by an established scale factor (see the description of the 'P' nonrepeatable
edit descriptor, section 6.4.3.1.2). Leading zeros are not generated unless the output
field would be blank otherwise.

Examples:

READ (2,20) REALN M
20 FORMAT (F5.3)

DIMENSION TABLE (10)
PRINT 20, TABLE

20 FORMAT 5(F5.3, 2X, F5.3)
CTHE TABLE WILL BE PRINTED OUT IN TWO COLUMNS

Input/Output

6-17

Input/Output

6-18

'E' Descriptor Editing

An I/O list item matched with an 'Ew.d' or 'Ew.dEe' descriptor must be a real
variable. The exponent 'e' has no effect on input data.

On output, the format of the output field for a scale factor (section 6.4.3.1.2) of
zero is:

[±] [0].x1 x2··· xd exP

where

± signifies a plus or minus

are the 'd' most significant digits of the data's value
after rounding

exp is a decimal exponent having one of the following forms
('y' is a digit):

Edit Descriptor Absolute value of 'exp' Form of 'exp'

lexpl:$ 99 ± OY1 Y2
Ew.d

99< lexpl:$ 999 ± Y1 Y2 Y3

Ew.dEe lexpl:$(10**e)-1 E ± Y1 Y2·· ·Ye

The sign in the exponent is always present. If the exponent is zero, it is prefixed by a
plus. The 'Ew.d' descriptor should not be used if exp exceeds 999.

Decimal normalization is controlled by the scale factor 'k' (section 6.4.3.1.2). If
-d<k:$O, the number output will have exactly Iklleading zeros and 'd - Ikl'
significant digits following the decimal point. If 0< k< d + 2, the number will have
exactly k significant digits to the left of the decimal point and 'd - k + 1, signifi­
cant digits to the right of the decimal point. Other values of k are not legal.

Examples:

READ (2,30) RLNUMB
30 FORMAT (E4.2)

WRITE (6,110) RLOUT
110 FORMAT (E6.5E6)

Logical Editing

An I/O item matched with an 'Lw' descriptor must be of type logical.

The input field includes an optional period followed by a 'T' (for TRUE) or 'F' (for
FALSE). These characters may be followed by additional characters. For example,
the logical constants' .TRUE.' and' .FALSE.' are acceptable inputs.

The output field consists of the letters 'T' or 'F,' based on the TRUE or FALSE
value of the internal data.

Examples:

DIMENSION TRUTH(4)
READ (3,50) TRUTH(1), TRUTH(4)

50 FORMAT (2L6)

WRITE (6,80) TRUTH(1)
80 FORMAT (L 1)

FORTRAN-SO

FORTRAN-80

A /phanumeric Editing

An 110 item matched with an 'A' or 'Aw' descriptor must have type character or be
defined with Hollerith data. If the field width 'w' is specified, the field consists of
'w' characters. Otherwise, the number of characters in the field is the length of the
110 list item.

On input, if the character string is longer than the specified width, the string is trun­
cated on the right. If the specified width exceeds the length of the character string,
the string is blank-filled on the right. The same is true on output, except that blank
filling is done on the left.

NumlJt!f Bast! Editing

A:nil1~lltit7ttiirp~t¢~~9~H~ .~. 'Bw' or':fw~?~~pr~~~Rt~tis~cpn~~sts onlyofbi~ary
()rht:x~d~cirnaldjg~ts;re~.l)ectiv7~Y' .. ·10 ,.p~rticula~,$tlpljaninput ·fi~ld cannot contain
either a sjgu ora letter indicatingthebas¢.

I··f··.O.n~." •. ()(••.• tne~~ .•..• 4~s;ct.iptors •.. ·i$ •.••• sP~.~i.fi.eq.· .·fo~ 9.HtJrM.t# ••. • •• ;.~.'.·'·~nat~Pt¢rs.· ••• are out pu t· •. io ·t~e
number~~se in~ic~ted.Leadiflk1Ter()$ar7 sup~Jie~~~9:utptltaI1Qacceptedon input,
tobe~ur7 th~rear~asrn~ny. digit~·pres~:n!~~~t7n.~~pedto represent' the data . For
exampletif~Fisa,~ingle-byteinn~ger wn¢se valuei~'4,' itisOlltput as 'bbb04 'under
a 'Z5'editdesctiptor.

The flum ber· hase edit descriptors can be specif\edfof tlataof any type.

6.4.3.1.2 Nonrepeatable Edit Descriptors. The nonrepeatable edit descriptors are:

'hlh2··· hn'

nHhl h2 ... hn

nX

/

kP

BN

BZ

$

Literal string descriptor

Hollerith string descriptor

Record position control descriptor

Record termination descriptor

Scale factor descriptor

Blank descriptor

Blank descriptor

Alternate record termination desc:riptor

where apostrophe C), H, X, slash (I), P, BN, BZ, and the dollar sign ($) indicate the
kind of editing and

h is any character representable on the processor

n is a nonzero, unsigned, integer constant

k is an optionally-signed integer constant representing a scale factor

Apostrophe Editing

The apostrophe edit descriptor can be used only for output. It causes the characters
enclosed in apostrophes to be written out literally. To indicate an apostrophe within
the character field, show it as two consecutive apostrophes.

Input/Output

6-19

Input/Output

6-20

The width of the field is the length of the character string.

Example:

WRITE (7,100) ITSTNO
100 FORMAT ('THIS IS THE TEST NUMBER', 2X, 12)

'H' Descriptor Editing

The Hollerith field descriptor is an alternate way to perform the same operation as
apostrophe editing. Like apostrophe editing, it is used only for output. The 'nH'
descriptor causes the In' characters following the 'H' to be written out (including
embedded blanks).

Because the Hollerith field descriptor relies on an accurate character count to pro­
duce the correct output, apostrophe editing is likely to be less error prone than this
method.

Example:

WRITE (7,100) ITSTNO
100 FORMAT (1 H1, 19HTHIS IS TEST NUMBER, 2X, 12)
C FIRST H DESCRIPTOR CAUSES SKIP TO NEW PAGE

'X' Descriptor Editing

The' nX' descriptor indicates that the next character transferred to or from a record
is the character "n' positions from the current record position. On output, the effect
is to insert In' blanks into the output record.

Example:

WRITE (7,100) ITSTNO
100 FORMAT (1X, 'THIS IS TEST NUMBER', 2X,12)

C FIRST X DESCRIPTOR CAUSES SINGLE SPACING BY
C INSERTING A BLANK AS THE FIRST CHARACTER OF
CTHE RECORD

Slash Editing

The slash (I) edit descriptor acts as an end-of-record indicator. On input, the re­
mainder of the current record is skipped or, if the file is positioned at the beginning
of a record, the entire record is skipped.

On output,· the current record is terminated and a new record is begun. The slash
edit descriptor may also be used to write an empty record, which is a convenient way
to provide blank lines on printed output.

The comma that normally separates format specification list items is not required
before or after a slash.

Example:

WRITE (7,100)
100 FORMAT (1 H1, ' PLAYER AVERAGE'!)
CTHIS SLASH CAUSES BLANK LINE FOLLOWING HEADING

WRITE (7,150) PNAME, AVG
150 FORMAT (1X, A12, 4X, F4.3)

FORTRAN-SO

FORTRAN-80

Scale Factor (P) Editing

A scale factor is established by the' kP' edit descriptor, where' k' represents the scale
factor. It is used with the 'F' and 'E' descriptors to edit real numbers. No comma is
needed between the 'P' descriptor and an immediately following 'F' or 'E.'

1 PE8.6E2

A scale factor of zero is assumed at the beginning of an 110 statement. Once it has
been changed by the' kP' edit descriptor, the new scale factor remains in effect until
the' kP' descriptor is issued again or until the end of the 110 statement.

On input, the scale factor has no effect if there is an exponent in the 'F' or 'E' edited
field. Otherwise, the effect of the scale factor is that the externally-represented
number equals the internally represented number multiplied by '10**k.' The same is
true of output with 'F' editing. On output with 'E' editing, the basic real constant
part of the quantity to be produced is multiplied by '10**k' and the exponent is
reduced by 'k.'

As we saw in the description of 'E' descriptor editing, the output range of a
multiplier printed in scientific notation with a scale factor of zero is 0.1 to 1.0.
Changing the scale factor to one changes the multiplier range to 1.0 - 10.0. Changing
the scale factor is useful for very large or very small 'E' edited numbers, but is
generally not desirable for 'F' edited numbers. Following specification of a nonzero
scale factor, the scale factor should probably be respecified as 'OP' before the next
occurrence of 'F' editing.

The following table of number representations illustrates instances where 'E' editing
and the use of the scale factor would be most applicable. The column headings show
the field descriptor used to produce each representation.

Real Number

4.32
7255000.0
0.0065

FS.2

4.32

0.01

E10.5

0.43200E + 01
O. 72550E + 07
0.65000E-02

1 PE10.4

4.3200E+00
7.2550E+06
6.5000E-03

Clearly, 'F' descriptor editing is preferable for simple numbers like '4.32.' Just as
clearly, 'F' descriptor editing is inadequate for very large or very small numbers like
'7255000' or '0.0065.'

'BN' and 'BZ' Editing

These two edit descriptors are used for input only and affect only numeric editing.
They can be used to specify the interpretation of blanks, other than leading blanks.
If 'BN' is specified, blanks are ignored except that a field of all blanks is treated as
zero. If 'BZ' is specified, blanks are regarded as zeros.

Until the 'BZ' or 'BN' descriptor is specified (or, if neither is specified), the BLANK
specifier in the OPEN statement (section 6.2.1.9) determines the interpretation of
blanks.

Example:

READ (2,50) INTNUM, FPNUM
50 FORMAT (BN, 15, 5X, F7.4)

Dollyt Sigfjl$ijitrrrg·

Th¢ ..• ~oll.~f •••. $~~·~ •••••• ~.~.).···.·e~l~ .••.•• (J~~pti~t?f .. · ••• ~.s· ·.~.~~~. ·.p~i~~t~l,~ •••. f~r~~~~r~~ti,~~ .• ilq ... t~r?Mgp.·L.a
c()nsoletYFl1l~l\l~LJtlea~~s.~·~l\tYF~inalfnlrs~r~tr~~~~§~~~~n~m,tn~~i~tel~fCl)~19\Ving
the I/Odataju~t pr()ces$ed;·rathe:rthant>egil1nill,gan1tw~ine~Ifthe·f{)r.i)lat·c()l1tTlpl

Input/Output

6-21

Input/Output

6-22

scanner encounters a dollarsign at the end of a format specification list, format con;.
trol terminates without positioning the file to the beginning of the next record. The
donar sign .edit descriptor has no effect on direct~accessfil¢s.

Example:

PAINT 25, PNAME
25 FORMAT (A20, $)

6.4.4 List·Directed Formatting
I

List-directed formatting is indicated by specifying an asterisk (*) in the format
specifier of a data-transfer 110 statement's control list (section 6.3.1.1.2). It allows
free form input and output, which is especially helpful if the 110 device is a console
terminal. No FORMAT statement is required as all necessary formatting is done for
the programmer.

A list-formatted file consists of a string of values and value separators. Each value is
either a constant, a null value, or a constant or null value prefixed by a repeat
specification in the form:

r*c
r*

The first form is equivalent to 'r' successive appearances of the constant 'c;' the se­
cond is equivalent to 'r' null values. A null value can also be specified as no
characters between value separators or no characters preceding the first value
separator in a record. The null value is not produced by list-directed output.

Value separators can be a comma, slash, or one or more blanks between constants or
following the last constant in a record. The slash separator is not produced on out­
put. When encountered during list-directed input, it terminates execution of the in­
put statement after assignment of the previous value. If the 110 list contains addi­
tional items, they are effectively assigned null values.

Any sequence of blanks is treated as a single blank except when it appears within a
character constant. An end-of-record has the same effect as a blank.

6.4.4.1 List-Directed Input

Input forms acceptable to format specifications for a given type are acceptable for
list-directed formatting with a few exceptions. Blanks are never treated as zeros, and
may not be embedded in constants (except character constants).

An input list item of type real is assumed to have no fractional part in its input form
unless a decimal point appears within the field. An input list item of type logical
must not include either slashes or commas in its input form.

An input list item of type character consists, in its input form, of a nonempty string
of characters enclosed in apostrophes. Character constants can be continued from
the end of one record to the beginning of the next. Though the end of a record nor­
mally has the effect of a blank in list-directed formatting, a blank is not inserted into
the character constant in this case. Character constants are transferred left-justified
and are truncated on the right if their length exceeds the width of the input list item.

A null value has no effect on a corresponding input list item. The item retains its
previous value or remains undefined, depending on its status before the null value
was encountered.

FORTRAN-SO

FORTRAN-80

6.4.4.2 List-Directed Output

The form of the values produced by list-directed output agrees in type with their cor­
responding output list items. The processor separates records as necessary, so long
as the end of a record does not fall within a constant (except a character constant)
and blanks are not embedded within constants.

Integer output constants are produced with the effect of 'Iw' formatting, for some
reasonable value of 'w.' Real constants are produced with the effect of 'F' or 'E'
editing, depending on the magnitude of the value. Where reasonable, a scale factor
of '1 P' is used. Logical constants are 'T' for TRUE and 'F' for FALSE. Character
constants are output simply as character strings without surrounding apostrophes.

Output records are single spaced.

Input/Output

6-23

CHAPTER 7
PROGRAMMING GUIDELINES

This chapter is by no means intended as an exhaustive discussion of programming
techniques. It is intended simply as a guideline, primarily for the novice program­
mer. For those who wish to go more deeply into the science of FORTRAN program­
ming, a number of references are listed in the bibliography at the end of the chapter.

The first section of this chapter deals with general guidelines applicable to program­
ming in any language. The second section lists suggestions for programming in
FORTRAN specifically.

7.1 Program Development

The recommended approach to program development is the so-called 'top-down'
method. Essentially, this means defining a program in the broadest possible terms
initially, and then working down through a series of increasingly detailed steps to
final code. At each level, debugging is performed to whatever extent possible before
going to the next level of refinement.

The first step in this approach is a thorough definition of the programming task.

7.1.1 Problem Definition

Before considering any actual programming, one must understand clearly and com­
pletely the problems involved. For example, a person may have to change the spark
plugs on his car. This is fine, but he will be better prepared if he knows that inserting
the new plugs by hand first and using a plug wrench only for final tightening reduces
the possibility of stripping threads. And he will be better advised still if he is told to
put a trace of 'anti-seize' compound on the threads first to make later removal
easier, and limit the chance of breaking a plug.

Similarly, knowing that a program must print out payroll statistics is insufficient. Is
it to print out only employee names and net pay? Is it to show taxes withheld
(federal, social security, state, city, ad infinitum)? Should it show other deductions
for the company's stock plan, pension plan, credit union, or whatever? Should it
show the hours worked, splitting out overtime, shift differential, holiday, or vaca­
tion pay? Should it show accrued sick or vacation leave? And what format should be
used to display all this information?

While the progammer need not state the specific algorithms to be used at this stage,
he at least needs to know in detail what input the program will be receiving and in
what form, and exactly what output the program is expected to produce.

7.1.2 Program Documentation

Every program should have good documentionfrom the beginning!

At the earliest stage of program development, documentation would normally be a
preliminary functional specification of the program. Ideally, this specification
should be reviewed by one's programming peers for constructive criticism. Not only
will gaps be filled in, but this review creates an environment for exchanging theories
of programming, for coworkers to familiarize themselves with each other's projects,
and for developing a feeling of teamwork within a programming group.

7-1

Programming Guidelines

7-2

As the development of a program becomes more detailed, the documentation should
become correspondingly detailed. The ultimate documentation is, of course, the
final program code, which should include numerous useful comments, have mean­
ingful mnemonic names for symbols, and make good use of blanks in statement
lines to improve program readability. If the program is not severely limited by pro­
cessor memory size, each program unit could be prefaced with a comment block.
These comments could include more than a description of the program unit's func­
tion; for example, it might say who coded this unit originally and who made the
latest changes.

7.1.3 Refining The Problem Definition

Once the problem is defined in detail, a series of refinements is begun, with each
level in the series being increasingly detailed.

For the sake of example, let's assume the payroll statistics printout task has been
defined as follows:

• The input will be a formatted file on diskette containing a record for each
employee. This record contains all information related to hours worked, pay
rates, deductions, etc.

• The program is to print out (on the line printer) only the employee's name (EMP
field), the hours worked (HRS), the gross pay (GRPA Y), and net pay (NET­
PAY).

• After the last record has been printed, the program is to print a summary
showing the total number of employees, the total hours worked, and the total
(gross) pay disbursed.

The first two levels of program development might look like:

Level One

Print out payroll statistics on line printer.

Initialize variables.

Open files.

Read input record.

If (last record) then

Else

Print totals
Close files

Print individual statistics
Update totals

Level Two

Go to 'read record' statement

Note in level two that we are still using essentially English sentences with a few
words here and there that begin to look like FORTRAN. The program structure is
beginning to take shape, but at this point we're more concerned with logic than
FORTRAN.code.

FORTRAN-80

FORTRAN-SO Programming Guidelines

The next pass is a more formal description of level two, introducing FORTRAN
statements for English sentences.

Level Three

C INITIALIZE VARIABLES NEEDED FOR TOTALS
DATA TOTEMP, TOTHRS, TOTPAY / 3*0.0/

C OPEN INPUT/OUTPUT FILES, READ EMPLOYEE RECORD
OPEN (input file)
OPEN (output file)

10 READ (unit, 20) EMP, HRS, GRPAY, NETPAY
20 FORMAT (flist)

C PRINT TOTALS IF NO MORE RECORDS
I F (no more records) TH EN
WRITE (unit, 40) TOTEM P, TOTH RS, TOTPA Y

40 FORMAT (flist)
CLOSE (input file)
CLOSE (output file)

C OTHERWISE PRINT EMPLOYEE DATA AND UPDATE TOTALS
ELSE
WRITE (unit, 60) EMP, HRS, GRPAY, NETPAY

60 FORMAT (flist)
TOTEMP = TOTEMP + 1
TOTH RS = TOTH RS + H RS
TOTPAY = TOTPAY +GRPAY

C READ NEXT EMPLOYEE RECORD
GOTO 10
ENDIF
END

A number of details remain to be specified, but each of these levels is in some sense
complete and can be debugged to the extent that it is complete. Thus we can confirm
the accuracy of the program's logic, then 110 interfaces and basic calculations, and
only at the end concern ourselves with such details as format specification.

7.1.4 Final Coding

At the level of detailed code, a number of steps can be taken to simplify writing and
debugging the program, or to simplify the task of another programmer updating the
program later.

• Take advantage of the built-in debugging aids available in the particular
programming language. For example, PAUSE, STOP, and WRITE statements
can be interspersed throughout initial FORTRAN code to trace program
execution paths. These can be removed in the final version of the program.

• Avoid tricky programming. Code conservatively!

• Concentrate initially on making the program work. Beautiful printouts can be
produced as a last step.

• Concentrate especially on getting the statement syntax correct the first time.
Syntax details can be particularly annoying to FORTRAN programmers, but
initial effort in this area can save a lot of grief in the long run.

• Again, use comment lines frequently. Use meaningful labels for variables. Use
blanks to improve program listing readability.

7-3

Programming Guidelines

7-4

This is just a 'starter' list. Certainly, any experienced programmer could add to this
checklist. Rereading such a list frequently, like rereading programming manuals, is a
good way to refresh or reconfirm programming knowledge.

7.2 FORTRAN Coding

Section 7.1 lists some general programming considerations. When coding in FOR­
TRAN specifically, other points should be kept in mind.

7.2.1 Functions And Subroutines

The first point has already been made in Chapter 5, but is worth repeating. Use
functions and subroutines in a program wherever it makes sense to do so. First of
all, they reduce the amount of coding to be done, saving time and reducing the
chance of error. They also save processor memory by allowing shorter programs.
And, most importantly, they break a program into units that can be separately pro­
grammed and debugged and that also clarify its logical structure, making it easier to
understand.

7.2.2 GO TO Statement

The GO TO statement should be used only when necessary. The ability to jump
around at will within a program can be a strong temptation to neglect logical plan­
ning. No painter would worry about painting himself into a corner if he could escape
by simply shouting 'go to exit.' When the GO TO seems necessary, consider first
whether an alternative solution that would improve the logical structure of the pro­
gram has been overlooked.

7.2.3 Crossing Unit Lines

The ability to divide a program into subprograms is a major benefit of FORTRAN.
It also has some potential pitfalls. Be careful when using global variables, external
procedures, and variables whose values have been computed outside the current pro­
gram unit! Take advantage of the capability provided by common memory, but be
aware of the interaction among all the program units that reference common
memory!

7.2.4 Computing Variables And Constants

Complex calculations can frequently be simplified by breaking them into several
steps and computing intermediate variables. This is particularly true if such
variables are used several times after their value has been computed. Program execu­
tion time can be reduced by using intermediate variables and the program is general­
ly more readable. Like most programming tools, however, the use of intermediate
variables can be abused and requires good judgement.

FORTRAN-SO

FORTRAN-SO Programming Guidelines

When calculating a value for use in a DO loop, be sure the value is computed before
the loop is entered. Otherwise, the program could compute the value again for each
iteration of the loop. Consider the following short Examples:

C EXAMPLE OF RECOMPUTED CONSTANT
INTEGER*1 R
DO 25 R = 1,60
X = (2217)*(r* *2)
WRITE (4) X, R

25 CONTINUE

C SAME EXAMPLE WITH PRECOMPUTED CONSTANT
INTEGER*1 R
PI = 2217
DO 25 R = 1,60
X = PI*(R**2)
WRITE (4) X, R

25 CONTINUE

In the first case, the value '22/7' would have to be computed 60 times!

7.2.5 Reminders

We've already mentioned the use of comments, good mnemonic names, and blanks
to improve program readability and understandability. We've also mentioned
debugging aids available in the FORTRAN language (such as the PAUSE, STOP,
and WRITE or PRINT statements). In addition, the programmer should explore
other debugging tools that might be available in his system environment, such as the
DEBUG command in Intel's ISIS-II or Intel's in-circuit emulator family, which in­
cludes ICE-80 and ICE-85 for the 8080 and 8085 microprocessors.

7.3 References

The following list suggests material for further reading. Some of the material, like
the books by Ledgard and McCracken or the article by Ogdin, is essentially tutorial.
Bear in mind that all of this material was written before FORTRAN 77 ~as specified
and FORTRAN 'limitations' discussed in these works may no longer be a problem
in the new version.

Dahl, 0.1., Dijkstra, E.W. and Hoare, C.A.R., Structured Programming,
Academic Press, New York, 1972.

Dijkstra, Edgar W., 'GO TO Statement Considered Harmful,' Communications of
the A CM, Vol. 15, No. 10, Oct. 1972.

Henderson, P., and Snowdon, R., 'An Experiment in Structured Programming,'
BIT 12, 1972.

Hilburn, 1.L., and lulich, P.M., Microcomputers/Microprocessors: Hardware,
Software, and Applications, Prentice-Hall, Inc., 1976.

Knuth, Donald E., The Art of Computer Programming, Vol. 1, Fundamental
Algorithms, Addison-Wesley, Reading, Mass., 1968.

Ledgard, Henry F., Programming Pro verbs for FORTRAN Programmers, Hayden,
Rochelle Park, N.l., 1975. .

7-5

Programming Guidelines

7-6

McCracken, Daniel A., A Simplified Guide to FORTRAN Programming, John
Wiley & Sons, New York, 1974.

Mills, Harlan B., Mathematical Foundations for Structured Programming,
Technical Report, FSC 72-6012, IBM Federal Systems Division, Gaithersburg, Md.,
1972.

Ogdin, Carol A., 'Software Design Course,' EDN, June 5, 1977.

Wirth, Niklaus, 'Program Development by Stepwise Refinement,' Communications
of the ACM, Vol. 14, No.4, April 1971.

FORTRAN-SO

APPENDIX A
FORTRAN-80 STATEMENT SUMMARY

A.1 Statement Sequence

The following order of statements and lines must be observed when coding a
FORTRAN program.

1. Comment lines can appear before or between statements, but cannot appear
after an END statement.

2. The PROGRAM statement, if used, must be the first statement of a main
program. The first statement of a subprogram must be a FUNCTION,
SUBROUTINE, or BLOCK DATA statement.

Within a program unit that permits the following statements:

3. FORMAT statements can appear before the END statement.

4. IMPLICIT statements must precede all other specification statements.

5. All specification statements must precede all DATA statements, which must
precede statement function statements, which must precede all executable
statements.

6. The last line of a program unit must be an END statement.

These rules are summarized in Figure 1-2.

A.2 Statement Summary

In the following summary, any format item enclosed in square brackets is optional.
Ellipses indicate the preceding item can be repeated indefinitely (within statement
length limits).

ASSIGN Statement

Category: Executable

Text Reference: Section 3.3.4

Format Function

ASSIGN stl TO name Assign statement label ' stl' to
integer variable 'name.'

Assignment Statement

Category: Executable

Types: Arithmetic, Character, Logical

Text Reference: Sections 3.3.1,3.3.2,3.3.3

Format Function

v = e Assign value of 'e' to 'v,' where 'v'
is type integer, real, logical, or
character.

A-l

FORTRAN-80 Statement Summary

A-2

BACKSP ACE Statement

Category: Executable

Text Reference: Section 6.2.3

Formats

BACKSPACE unit
BACKSPACE (arg-list)

Notes:

'unit' is unit specifier

'arg-list' is following argument list:

[UNIT =] unit
IOSTAT = stname
ERR = stl

Function

Position file connected
before preceding record.

unit specifier
110 status specifier
error specifier

BLOCK DATA Statement

Category: Nonexecutable

Text Reference: Sections 3.4.3,3.4.4

Format Function

to 'unit'

BLOCK DATA [name] Identify start of BLOCK DATA
subprogram; optionally name sub-
program 'name.'

CALL Statement

Category: Executable

Text Reference: Section 5.2.7

}'ormat Function

CALL sub [([a[,a] ...])] Call subroutine 'sub' with actual
argument(s) 'a.'

CHARACTER Statement

Category: Nonexecutable, specification, type

Text Reference: Section 3.1.4

Format Function

CHARACTER [*len['llname[,name] ... Specify name and length
character type variable or array.

FORTRAN-SO

for

FORTRAN-SO FORTRAN-80 Statement Summary

CLOSE Statement

Category: Executable

Text Reference:' Section 6.2.2

Format Function

CLOSE (close-list) Close file (disconnect unit)
described by 'close-list.'

Notes:

'close-list' can be following fields:

[UNIT =] unit
IOSTAT = stname
ERR = stl
STATUS = stat

unit specifier
110 status specifier
error specifier
file disposition specifier

Comment Line

Category: Nonexecutable

Text Reference: Section 1.1.1

Format Function

'c' or '*' in column 1; any ASCII Program documentation
character in columns 2-72

COMMON Statement

Category: Nonexecutable, specification

Text Reference: Section 3.4.2

Format Function

COMMON [/[cbJ!] nlist[[,]/[cbJ!nlist] Name and define
common block(s) 'cb.'

CONTINUE Statement

Category: Executable

Text Reference: 4.2.3

Format Function

contents

CONTINUE No effect unless this is terminal
statement of a DO loop; then action
depends on DO variable.

of

A-3

f'ORTRAN-80 Statement Summary FORTRAN-SO

DATA Statement

Category: Nonexecutable

Text Reference: Section 3.3.5

Format Function

DATA nlist/ clist/[[,) nlist/ elist/) ... Assign values in 'elist' to items in
'nlist.'

DIMENSION Statement

Category: Nonexecutable, specification

Text Reference: Section 3.2.1

Format Function

DIMENSION a(d) [,a(d)) ... Name array(s) 'a' and define
dimension(s) 'd.'

DO Statement

Category: Executable

Text Reference: Section 4.2.2

Format Function

DO stl [,) var = el, e2 [,e3) Define beginning of DO loop and
set up loop counters.

Notes:

stl label of last (executable) statement in DO loop
var DO variable
el initial loop index value
e2 loop termination value
e3 loop increment/ decrement amount

ELSE Statement

Category: Executable, block IF

Text Reference: Section 4.1.9

Format Function

ELSE Continue execution; provides
alternate execution path from IF or
ELSE IF.

A-4

FORTRAN-80 FORTRAN-80 Statement Summary

ELSE IF Statement

Category: Executable, Block IF

Text Reference: 'Section 4.1.8

Format Function

ELSE IF (exp) THEN Continue execution if expression
'exp' is TRUE

END Statement

Category: Executable

Text Reference: 4.3.1

Format Function

END Terminate main program; return
from subprogram; mark end of pro-
gram unit.

END IF Statement

Category: Executable, block IF

Text Reference: Section 4.1.10

Format Function

ENDIF Mark end of IF block; continue
execution.

ENDFILE Statement

Category: Executable

Text Reference: Section 6.2.5

Formats

ENDFILE unit
ENDFILE (arg-list)

Notes:

'unit' is unit specifier
'arg-list' is following argument list:

[UNIT =] unit
lOST A T = stname
ERR = stl

Function

Write end-of-file
connected to 'unit.'

unit specifier
110 status specifier
error specifier

record on file

A-5

FORTRAN-80 Statement Summary FORTRAN-80

EQUIVALENCE Statement

Category: Nonexecutable, specification

Text Reference: Section 3.4.1

Format Function

EQUIV ALENCE (nlist) [,(nlist)] ... Allow entities in 'nlist' to share the
same storage area.

EXTERNAL Statement

Category: Nonexecutable, specification

Text Reference: Section 5.2.6

Format Function

EXTERNAL proc [,proc] ... Allows name of external! dummy
procedure to be used as an actual
argument.

FORMAT Statement

Category: Nonexecutable

Text Reference: Section 6.4.3

Format Function

stl FORMAT ([flist]) Specify format of formatted 110
data.

Notes:

'flist' includes the following repeatable and nonrepeatable edit descriptors.

Repeatable Nonrepeatable

Iw integer 'string' literal
Fw.d real no. nHstring Hollerith
Ew.d real no. nX record position
Ew.dEe real & exponent / record termination
Lw logical kP scale factor
A alphanumeric BN blank
Aw alphanumeric BZ blank
Bw binary $ alternate record
Zw hexadecimal termination

A-6

FORTRAN-80 FORTRAN-80 Statement Summary

FUNCTION Statement

Category: Nonexecutable

Text Reference: Section 5.2.1

Format Function

[type] FUNCTION func ([d[,d] ... J) Name the FUNCTION subprogram
'func,' define its type and dummy
parameter(s) 'd.'

GO TO Statements

Category: Executable

Text Reference: Section 4.1.1,4.1.2,4.1.3

Formats Function

GOTOs Transfer control to statement
GO TO (s[,s] ...)[,]exp labeled 's' or ASSIGNED to
GO TO i [[,](s[,s] ...)] variable name 'i'.

Notes:

First format branches unconditionally.
Second format branches based on value of integer expression 'exp.'
Third format branches unconditionally, but statement label corresponding to 'i'
must be included in list.

IF Statements

Cagetory: Executable

Text Reference: Sections 4.1.4,4.1.5,4.1.6,4.1.7

Formats Function

IF (e) sl, s2, s3 Transfer control to a specified
IF (e) st statement or perform specified ac-
IF (e) THEN tion(s) based on the value of expres-

sion 'e'.

Notes:

In first format 'e' is an arithmetic expression and s 1, s2, s3 are standard labels; con­
trol passes to:

sl ife<O
s2 if e = 0
s3ife>O

In second format, statement 'st' is executed if logical expression 'e' is TRUE. Third
format introduces IF block; statements following IF-THEN are executed if logical
expression 'e' is TRUE.

A-7

FORTRAN-80 Statement Summary FORTRAN-SO

IMPLICIT Statement

Category: Nonexecutable, specification

Text Reference: Section 3.1.5

Format Function

IMPLICIT type (1[, 1] ...)[,type(1[,I] ...)] ... Define implicit typing for variable
names whose first letter is '1' or in
range '1,1.'

INTEGER Statement

Category: Nonexecutable, specification, type

Text Reference: Section 3.1.2

Format Function

INTEGER [* len [,]] name [,name] ... Define 'name' to be of type integer
with length 'len.'

INTRINSIC Statement

Category: Nonexecutable, specification

Text Reference: Section 5.1.2

. Format Function

INTRINSIC fune [,func] ... Allow intrinsic function(s) 'fune' to
be used as actual argument(s).

LOGICAL Statement

Category: Nonexecutable, specification, type

Text Reference: Section 3.1.3

,.'

Format Function

LOGICAL [* len [,]] name [,name] ... Define 'name' to be of type logical
with length 'len.'

A-8

FORTRAN-80 F'ORTRAN-80 Statement Summary

OPEN Statement

Category: Executable

Text Reference: Section 6.2.1

Format Function

OPEN (open-list) Open the specified file (connect file
to unit).

Notes:

'open-list' consists of the following specifiers:

[UNIT =] unit
IOSTAT = stname
ERR = stl
FILE = fname
STATUS = stat
ACCESS = acc
FORM = fmat
RECL = reden
BLANK = blnk
CARRIAGE = car

Category: Executable

Text Reference: Section 4.3.1

Format

PAUSE [msg]

Category: Executable

Text Reference: Section 6.3.3

Format

PRINT f [,o'utlist]

unit specifier
I/O status specifier
error specifier
file name specifier
file status specifier
access method specifier
formatting specifier
record length specifier
blank specifier
carriage control specifier

PAUSE Statement

Function

Halt program execution;
under control of external

resume
signal;

'msg' is 1-5 digits or a character
constant.

PRINT Statement

. -
Function

Output items in 'outlist' to
preconnected unit in format
specified by 'f.'

... -.. -.-.--

A-9

f'ORTRAN-80 Statement Summary

A-tO

PROGRAM Statement

Category: Nonexecutable

Text Reference: Section 2.1.2

Format Function

PROGRAM name Name main program 'name;' must
be first statement if used.

READ Statement

Category: Executable

Text Reference: Section 6.3.1

Formats Function

READ (ctl-list) [in list] Input items in 'inlist' as directed by
READ f [,inlist] specified controls.

Notes:

'ctl-list' includes the following specifiers:

[UNIT =] unit
[FMT =] f
REC = recno
lOST A T = stname
ERR = stl
END = stl

unit specifier
format specifier
record number specifier
110 status specifier
error specificr
end-of-file specifier

Second format is for preconnected units; 'f' is the format specifier.

REAL Statement

Category: Nonexecutablc, specification, type

Text Reference: Section 3.1.1

Format Function

REAL name [,name] ... Define 'name' to be of type real.

RETURN Statement

Category: Executable

Text Reference: Section 5.2.4

Format Function

RETURN Return from FUNCTION or
SUBROUTINE subprogram.

FORTRAN-SO

FORTRAN-80 FORTRAN-SO Statement Summary

REWIND Statement

Category: Executable

Text Reference: Section 6.2.4

Formats Function

REWIND unit Reposition file connected to 'unit'
REWIND (arg-list) at its initial point.

Notes:

'arg-list' includes the following specifiers:

[UNIT =] unit
lOST A T = stname
ERR = stl

unit specifier
110 status specifier
error specifier

SA VE Statement

Category: Nonexecutable, specification

Text Reference: Section 5.2.5

Format Function

SAVE /cb / [,/cb/] ... Save data in common block 'cb' on
return from subprogram.

Statement Function Statement

Category: Nonexecutable

Text Reference: Section 5.1.3

Format Function

func ([d[,d] ... J) = exp Define function 'func' with dummy
argument(s) 'd;' 'exp' is an expres-
sion.

STOP Statement

Category: Executable

Text Reference: Section 4.3.2

Format Function

STOP [msg] Terminate program execution;
'msg' IS 1-5 digits or a character
constant.

A-II

FORTRAN-80 Statement Summary

A-12

SUBROUTINE Statement

Category: Executable

Text Reference: Section 5.2.2, 5.2.3

.~ormat Function

SUBROUTINE sub [([d[,d] ...])] Define SUBROUTINE subprogram
'sub' with dummy argument(s) 'd.'

WRITE Statement

Category: Executable

Text Reference: Section 6.3.2

Format

WRITE (ctl-list) [outlist]

Notes:

'ctl-list' includes the following specifiers:

[UNIT =] unit
[FMT =] f
REC = recno
lOST A T = stname
ERR = stl

Function

Output item in 'outlist'
by controls in 'ctl-list.'

unit specifier
format specifier
record number specifier
I/O status specifier
error specifier

as directed

FORTRAN-80

APPENDIX B I
INTRINSIC FUNCTIONS

The following table lists the intrinsic (or predefined) functions available with
FORTRAN-SO. An intrinsic function is executed in an expression by referencing its
name followed by some argument in parentheses. If more than one argument is
needed, they are separated by commas and all arguments must be of the same type.
All angles are expressed in radians.

C = SQRT(A **2 + B**2)
= I + MOD(M, N) K

PAY = BASE*40.0 + (l.5*BASE)*(AMAXI(O.O,HOURS-40.0»

The list of functions is qualified by the notes following the list. See also the discus­
sion of intrinsic functions in section 5 .1.1.

B.1 Intrinsic Function Summary

TYPE OF

FORM CATEGORY FUNCTION ARGUMENTS FUNCTION

INT (a) Type conversion Convert a to type integer Real Integer
(note 1)

IFIX (a) Type conversion Convert a to type integer Real Integer
(note 1)

REAL (a) Type conversion Convert a to type real Integer Real
(note 2)

FLOAT (a) Type conversion Convert a to type real Integer Real
(note 2)

ICHAR (a) Type conversion Convert a to type integer Character Integer
(note 3)

AINT (a) Truncation Truncate a to integer value Real Real
(note 1)

ANINT(a) Rounding Round a to nearest whole Real Real
number

NINT (a) Rounding Round a to nearest integer Real Integer

lABS (a) Absolute value Return absolute value of a Integer Integer

ABS (a) Absolute value Return absolute value of a Real Real

MOD (aI, a2) Remaindering Return remainder from aI/a2 Integer Integer
(notes 1,4)

AMOD (aI, a2) Remaindering Return remainder from all a2 Real Real
(notes 1,4)

ISIGN (aI, a2) Sign transfer Transfer sign of a2 to al Integer Integer
(note 5)

-

B-1

Intrinsic Functions FORTRAN-80

TYPE OF

}<'ORM CATEGORY FUNCTION ARGUMENTS FUNCTION

SIGN (aI, a2) Sign transfer Transfer sign of a2 to al Real Real

(note 5)

101M (ai, a2) Positive difference Return al-a2 if >0; Integer Integer

otherwise 0

DIM (ai, a2) Positive difference Return al-a2 if >0; Real Real

otherwise 0

MAXO Laigest value Select largest value from list Integer Integer

(al, ... ,an)

AMAXI Largest value Select largest value from list Real Real

(al, ... ,an)

AMAXO Largest value Select largest value from list Integer Real

(al, ... ,an)

MAXI Largest value Select largest value from list Real Integer

(al, ... ,an)

MINO Smallest value Select smallest value from list Integer Integer

(al, ... ,an)

AMINI Smallest value Select smallest value from list Real Real

(al, ... ,an)

AMINO Smallest value Select smallest value from list Integer Real

(al ,an)

MINI Smallest value Select smallest value from list Real Integer

(al, ... ,an)

SQRT (a) Square root Return -JOfor a > 0 Real Real

EXP (a) Exponential Return e**a Real Real

ALOG (a) Natural logarithm Return log (a) for a> 0 Real Real

ALOGIO(a) Common logarithm Return log \0 (a) for a> 0 Real Real

SIN (a) Sine Return sine of a Real Real

(note 6)

COS (a) Cosine Return cosine of a Real Real

(note 6)

TAN (a) Tangent Return tangent of a Real Real

(note 6)

ASIN (a) Arcsine Return arcsine of a Real Real

(note 7)

ACOS (a) Arccosine Return arccosine of a Real Real

(note 8)

ATAN (a) Arctangent Return arctangent of a Real Real

(note 9)

ATAN2 (al,a2) Arctangent Return arctangent of all a2 Real Real

(note 9)

SINH (a) Hyperbolic sine Return hyperbolic sine of a Real Real

COSH (a) Hyperbolic cosine Return hyperbolic cosine of a Real Real

TANH (a) Hyperbolic tangent Return hyperbolic tangent of

a Real Real

B-2

FORTRAN-SO Intrinsic Functions

B.2 Notes On Intrinsic Functions

I. For an integer argument, 'int(a) = a.' For a real argument, two possibilities
exist. If lal < I, int(a) = 0; if lal ~ I, 'int(a)' is the integer whose magnitude is
the largest Integer that does not exceed the magnitude of 'a' and whose sign is
the same as the sign of 'a.' For example,

int(-12.8) = -12

For an argument of type real, 'IFIX(a)' is the same as 'INT(a).'

2. For a real argument, 'REAL(a)' is 'a.' For an integer argument, 'REAL(a)' is as
much precision of the significant part of 'a' as a real datum can contain.

For a real argument, 'FLOAT(a)' is the same as 'REAL(a).'

3. ICHAR provides a way to convert from characters to integers, based on the
position of the character in the processor collating sequence (Appendix E). The
first character in the collating sequence corresponds to position 0 and the last to
position 'n-I,' where 'n' is the number of characters in the collating sequence.

The value of ICHAR(a) is an integer in the range 0 :5 ICHAR(a) :5 n-I, where
'a' is an argument of type character and length one. The value of 'a' must be a
character capable of representation in the processor.

4. The result for MOD and AMOD is undefined when the value of the second
argument is zero.

5. If the value of the first argument of ISIGN or SIGN is zero, the result is zero
(which is neither positive nor negative).

6. The absolute value of the argument of SIN, COS, and TAN is not restricted to
be less than 2*PI.

7. The absolute value of the argument of ASIN must be :5 1. The range of the
result is -PII2 :5 result :5 PII2.

8. The absolute value of the argument of ACOS must be :5 I. The range of the
result is 0 :5 result :5 PI.

9. The range of the result for ATAN is -PII2 :5 result :5 PII2. If the value of 'aI'
is positive, the result is positive, and vice-versa. If the value of 'aI' is zero, the
result is zero if 'a2' is positive, and 'PI' if 'a2' is negative. If 'a2' is zero, the ab­
solute value of the result is PII2. Both arguments cannot be zero.

The range of the result for ATAN2 is -PI :5 result :5 PI.

B-3

APPENDIX C
HOLLERITH DATA TYPE

The Hollerith data type is a carryover from FORTRAN 66. Generally speaking, the
character data type provides a superior processing capability, and Hollerith has been
retained in FORTRAN-80 primarily for compatibility with the earlier standard.

C.1 Hollerith As A Data Type

Although Hollerith is a data type, a symbolic name cannot be of type Hollerith.
Hollerith data (other than Hollerith constants) are identified under the guise of an
integer, real, or logical type name. It cannot be identified as type character.

Integer, real, or logical items can be defined with a Hollerith value using either the
DA TA or READ statements. Totally associated items then become associated with
that Hollerith value also. When such a definition occurs, the defined item loses its
integer, real, or logical characteristic.

C.2 The Hollerith Constant

The format of a Hollerith constant is

where 'n' is a nonzero, unsigned, integer constant and 'h' is any character represen­
table in the processor. Blanks are significant in the character string following the
'H.'

Hollerith constants can appear only in a DATA statement and in the argument list
of a CALL statement.

C.2.1 Hollerith Constants In DATA Statements

A Hollerith constant may appear in the 'elist' of a DATA statement; the correspon­
ding entity in 'nlist' must have type integer, real, or logical.

Foran. entity ()~t~pe in:t~8~r , real, or logi9al,t?e~umbe~?fcharacters' Il'in the COP
responding Holleritnconstantmust belesstllanoreql;1{l:l to'~~'~here'g! .. ~s.the
len~thofthe~t{)r3'~e~~it()f:the ~ntity;· If 'n; j~ less thal1~.p,'t~~el'tity is jniti~lized
with the ~n'Hollepithch~rfl;ctersextended.ontherjghtwith 'g~ntljlank characters.

Each Hollerith constant initializes exactly one variable or array element.

C.2.2 Hollerith Constants In CALL Statements

An actual argument in a CALL statement can be a Hollerith constant, so long as the
corresponding dummy argument has type integer, real, or logical. This is an excep­
tion to the rule that actual and dummy arguments must agree in type.

C-l

Hollerith Data Type

C-2

C.3 Hollerith Format Specification

A format specification may be an array name of type integer, real, or logical. In this
case, the leftmost characters of the specified entity must contain Hollerith data con­
stituting a legal format specification. Blank characters may precede the format
specification and data may follow the right parenthesis ending the specification with
no effect.

A Hollerith format specification must not contain an apostrophe edit descriptor or
an 'H' edit descriptor.

C.4 'A' Editing Of Hollerith Data

The' Aw' edit descriptor can be used with Hollerith data if the corresponding 110
list item has type integer, real, or logical.

Editing is as described for' A' editing (section 6.4.3.1.1) of character data, except
that 'n' is the maximum number of characters that can be stored in the storage unit
of the list item.

FORTRAN-SO

APPENDIX D
EXTENSIONS TO ANSI FORTRAN

This appendix lists differences between FORTRAN-80 and ANSI FORTRAN 77.
Some of these are extensions to the FORTRAN 77 subset which are included in the
FORTRAN 77 full language. Other extensions go beyond both versions of the ANSI
standard. In two cases, the differences merely represent a tighter definition of
language semantics in FORTRAN-80 than in the ANSI standard.

Differences between FORTRAN-80 and 1966 ANSI FORTRAN are summarized at
the end of this appendix.

0.1 Standard Extensions To 1977 Subset

The following is a list of FORTRAN-80 extensions to the FORTRAN 77 subset that
are found in the full language.

1. Arrays with seven dimensions;

2. The logical operators .EQV. and .NEQV.;

3. The PRINT statement;

4. The BLOCK DATA statement and BLOCK DATA subprograms;

5. Integer expressions in computed GO TO and DO statements;

6. Full input/output capability of FORTRAN 77, except for the INQUIRE
statement;

7. List-directed formatting.

0.2 Nonstandard Extensions To 1977 FORTRAN

The following is a list of FORTRAN-80 extensions to the FORTRAN 77 subset that
are not found in the full language.

1. Binary, octal and hexadecimal base integer constants;

2. Integers with lengths other than the standard length (that is, lengths of one and
two bytes as well as four bytes);

3. Logical items with lengths other than the standard length (that is, one and two
bytes as well as four bytes);

4. Bitwise Boolean operations on bit strings under the guise of integer values;

5. Hollerith data type constants;

6. Implicit extension of the length of an integer or logical expression to the length
of the left-hand side in an assignment statement;

7. Hollerith format specifications in integer, logical, and real arrays;

8. A format descriptor ($) to suppress carriage return on a terminal output device
at end of record;

9. Mixtures of type and length within a memory sequence (partial association of
numbers in memory);

10. CARRIAGE specifier in OPEN statement for interpreting the first character of
a record;

11. Band Z (binary and hexadecimal) edit descriptors.

0-1

Extensions To ANSI Fortran

D-2

0.3 More Specific Semantics Than 1977 FORTRAN

In the following areas, the definition of FORTRAN-80 is more explicit than the AN­
SI standard.

1. The character set and its collating sequence include the ASCII character set.

2. The standard length for real, integer, and logical type data is four bytes, but a
particular processor can allow a different default size to be specified.

0.4 Differences From 1966 FORTRAN

The following lists summarize differences between 1966 ANSI FORTRAN and
FORTRAN-80. Most differences represent additions to 1966 FORTRAN (except
where indicated by an asterisk).

Data types:

Character constants, variables, and arrays
*No double precision constants, variables, arrays, or format specifiers
*No complex constants, variables, arrays, or format specifiers
Binary, octal, and hexadecimal notations for integer constants

Statements:

PROGRAM statement
BLOCK DATA statement with a subprogram name
END statement with a label
IMPLICIT statement
INTRINSIC statement
SA VE statement
Block IF THEN, ELSE IF, ELSE, END IF
PRINT statement
OPEN and CLOSE statements
CHARACTER type statement
INTEGER and LOGICAL type statements with length specifications

Input/Output:

*No G edit descriptor
Control information list in READ, WRITE, BACKSPACE, ENDFILE, and

REWIND statements
Asterisk as a unit identifier; character arrays and variables as internal units; in-

teger expressions for external units
General expressions in WRITE, PRINT
List-directed 110 (asterisk as format)
Character expression as format; Hollerith value in arithmetic array as format

identifier
Edit descriptors BZ; BN, Ew.dEc j $, Bw, Zw
General integer expressions in implied DOs

Expressions

Bit-wise Boolean operations on integers
.NEQV. and ,EQV.logical operators
Character expressions in assignments, output, relationals, and procedure

arguments

FORTRAN-SO

FORTRAN-80 Extensions To ANSI Fortran

Miscellaneous extensions:

Seven-dimensional arrays
Unsubscripted array names in DATA and EQUIVALENCE statements
Optional commas in COMMON, DO, assigned GOTO, and computed GOTO

statements
Character constant in a PAUSE or STOP statement
BLOCK DATA subprogram names in EXTERNAL statement
Integer expressions in a computed GOTO
Optional label in an assigned GOTO
Integer expressions in a DO statement
Asterisk in column 1 to identify a comment line

D-3

APPENDIX E I
ASCII CODES

The following table lists the ASCII characters representable on Intel processors and their collating sequence.

GRA
CO

PHICOR
NTROL

JL NL
SO
ST
ET
EO
EN
AC
8E
8S
HT
LF
VT
FF
CR
SO
SI
DL
DC
DC
DC
DC
NA
SY
ET
CA
EM
SU
ES
FS
GS
RS
US
SP

$
0/0

&

H
X
X
T
Q

K
L

E
1 (X-ON)
2 (TAPE)
3 (X-OFF)
4 (TAPE)
K
N
B
N

8
C

ASCII
(HEXADECIMAL)

00
01
02
03
04
05
06
07
08
09
OA
08
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
18
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A

ASCII CODES

GRAPHIC OR ASCII
CONTROL (H EXADECI MAL)

+ 28
, 2C
- 2D

2E
/ 2F
0 30
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39

3A
, 38
< 3C
= 3D
> 3E
? 3F
@ 40
A 41
8 42
C 43
D 44
E 45
F 46
G 47
H 48
I 49
J 4A
K 48
L 4C
M 4D
N 4E
a 4F
P 50
Q 51
R 52
S 53
T 54
U 55

GRAPHIC OR ASCII
CONTROL (HEXADECIMAL)

V 56
W 57
X 58
Y 59
Z 5A
[58
\ 5C
] 5D

1\ (1) 5E
-(-) 5F
\ 60
a 61
b 62
c 63
d 64
e 65
f 66
9 67
h 68
i 69
j 6A
k 68
I 6C
m 6D
n 6E
0 6F
P 70
q 71
r 72
s 73
t 74
u 75
v 76
w 77

x 78
Y 79
z 7A
{ 78
I 7C
} (ALT MODE) 7D
- 7E
DEL (RU8 OUT) 7F

--

E-I

APPENDIX F
8080/8085 PROCESSOR

DEPENDENCIES

Throughout this manual, aspects of the FORTRAN language have been said to be
'processor dependent' or 'compiler dependent.' This appendix summarizes the
limitations and extensions to the FORTRAN language assumed by the 8080/8085
processors and compiler. See the ISIS-II FORTRAN-80 Compiler Operator's
Manual for details.

F.1 Processor Limitations On Language

Most limitations imposed on the FORTRAN language are related to data lengths
and the permissible range of data values. The following indicates the range of values
possible for a given data length.

Length

INTEGER*1
INTEGER*2
INTEGER*4
LOGICAL*1
LOGICAL*2
LOGICAL*4
REAL

Value Range

-128 to + 127
- 32768 to + 32767
- 32768 to + 32767
.TRUE. or .FALSE.
.TRUE. or .FALSE.
.TRUE. or .FALSE.
Approximately -3.37E+38 to +3.37E+38. The handling
of magnitudes less than 1.17E - 38 is not defined.

If no length is specified, the compiler defaults are INTEGER *2 and LOGICAL * 1.

The maximum field width, 'w,' in the Fw.d, Ew.d, Iw, and Lw edit descriptors of
the FORMAT statement is 32,767.

The length and interpretation of integer expression values is determined as follows:

• Addition, subtraction, multiplication, division, or exponentation is performed
modulo 256 for two INTEGER * 1 operands and modulo 65536 otherwise.

• Assignment is performed modulo 256 if the variable whose value is being
assigned has type INTEGER * 1 and modulo 65536 otherwise.

• The length of the value of integer expressions used as actual arguments (but
which are not variables or array elements) is at least the default length of an in­
teger variable.

• Subscript expression values are taken modulo 2**16.

In all of the cases listed above, overflow is ignored.

F.2 Compiler Extensions

The ISIS-II FORTRAN-80 compiler provides a number of features in addition to
those defined as part of the FORTRAN language. Some of these features are provid­
ed by 'compiler controls.' This appendix mentions only those compiler controls that
affect interpretation of FORTRAN source code. Controls affecting compiler output
are not included here, but can be found in the compiler operator's manual.

F-l

SOSO/SOS5 Processor Dependencies

F-2

F .2.1 Lowercase Letters

Except within Hollerith and character constants, a lowercase letter is considered to
be identical to its corresponding uppercase letter.

F.2.2 Port Input/Output

The compiler provides two intrinsic subroutines for handling input/ output through
SOSO/SOS5 110 ports. When these subroutines are called, they generate SOSO IN and
OUT instructions.

The form of the subroutine calls is

CALL INPUT (port, var)
CALL OUTPUT (port, exp)

where

port is an integer constant in the range o~ port ~ 255

var is an integer variable

exp is an integer expression

The value read or written through the specified port is always a single-byte integer
(lNTEGER*l).

Examples:

CALL INPUT(1, TEST1)
CALL OUTPUT(2, 100)

F .2.3 Reentrant Procedures

External procedures can be made reentrant by setting the REENTRANT compiler
control. Reentrant procedures can call themselves directly or indirectly. Local
variables are allocated in stack storage when the procedure is entered, rather than
being statically allocated. Local variables and arrays must not be initialized by
DA T A statements in reentrant procedures.

The REENTRANT control precedes the entire program and is coded in the form

$REENTRANT

where the '$' must be in column 1.

F.2.4 Free-form Line Format

Normally, FORTRAN source file lines must be in the standard line format. To
simplify entering FORTRAN programs through a console terminal, however, the
FORTRAN-SO compiler allows 'free-form' lines. To use this feature, simply insert
the control line

$FREEFORM

into the program before the first program unit in the source file

FORTRAN-SO

FORTRAN-SO SOSO/SOS5 Processor Dependencies

If the FREEFORM compiler control is set, column 1 is interpreted as follows:

Column 1

Cor *
0-9
Space or TAB
&
$

Meaning

Comment line (same as standard)
Label followed by statement
Unlabeled initial line of statement
Continuation line of statement
Compiler control line

Note in this format that a statement label, if present must begin in column 1.
Statements can be written in columns 2-72. They can begin in column 1 if the first
letter of the statement is not a 'C.'

F .2.5 I nterpretation of DO Statements

The 1966 ANSI FORTRAN standard states that all DO loops must be executed at
least once. The 1977 ANS standard allows zero iterations, if so specified by the
values of the initial and terminal expressions ('el' and 'e2' in the DO statement for­
mat). The preferred interpretation can be specified by choosing either the D066
compiler control or the D077 compiler control in the form

$0077

If neither is specified, D077 is assumed by the compiler. If specified, this control
must precede all FORTRAN code.

F.2.6 Default Data Lengths

The STORAGE compiler control can be used to specify the default lengths (in bytes)
to be used for integer or logical variables, array elements, and constants. The default
can still be overriden by INTEGER or LOGICAL type statements or, in the case of
integer constants, by the number of digits in an explicit number base specification.
This compiler control is coded in the form

$STORAG E(I NTEG ER * length, lOG ICAl * length)

where

length can be 1,2, or 4

The '$' must appear in column one and the control must precede all program units in
the source file.

If no STORAGE control is specified, the compiler assumes the following defaults:

$STORAGE(INTEGER*2,lOGICAl *1)

These defaults do not conform to the ANSI standard memory allocation. To
be totally ANSI compatible, specify

$STORAGE(INTEGER*4,lOGICAl *4)

F.2.7 Including Source Files

Specified files can be included in a FORTRAN source file using the INCLUDE com­
piler control. This control causes subsequent source code to be input from the
specified 'file' until an end-of-file is reached. At end-of-file, input resumes from the
file being processed when the INCLUDE was encountered.

F-3

SOSO/SOS5 Processor Dependencies

F-4

The included file may itself contain INCLUDE controls, up to a total of six files. An
included file cannot contain an END statement, however. An INCLUDE control
must be the rightmost control when specified in a list of controls.

F.2.8 REel Specification For Sequential Files

To simplify terminal I/O, the FORTRAN-SO compiler allows both ACCESS = 'SE­
QUENTIAL' and 'RECL=reclen' to be specified in the same OPEN statement. In
this case, lines (records) shorter than 'reclen' are automatically extended with
blanks.

F.2.9 Flexibility In Standard Restrictions

The ANSI FORTRAN 77 standard prohibits certain constructions that cannot be
checked (or are uneconomical to check) by the compiler, or that cannot be im­
plemented by other processors. Although the FORTRAN-SO compiler generally
follows the standard in prohibiting these constructions, it does allow certain mean­
ingful constructions even though they are nonstandard. While this affords the pro­
grammer some additional flexibility, be aware that future compilers may implement
checks in these areas.

F .2.9.1 Association of Memory Locations. Character, logical, and numerical
items can be freely declared within the same common block and can be equiva­
lenced. In particular, the compiler does not check whether character variables of dif­
ferent lengths are associated.

F .2.9.2 Partially Initialized Arrays. The DATA statement can be used to in­
itialize arrays partially (starting at the first element). If the 'nlist' in the DATA state­
ment format contains several unsubscripted array names, initialization begins with
the first array and continues until all items in 'clisC have been used.

F .2.9.3 Transfers Into An If' Block. The SOSO/SOS5 FORTRAN compiler does
not check the formal restriction against transfers into an IF, ELSE IF, or ELSE
block.

F.3 Unit Preconnection

The UNIT run-time control is used to preconnect units to a program so they need not
be connected by the OPEN statement. This control is specified when the program is
loaded and has the form

UNIT n = device

where 'n' is in the range 0-255 and 'device' is any device recognized by ISIS-II.

Example:

-:F1:MYPROG UNIT4 :LP:, UNIT 5 :FO:SYSIN

FORTRAN-SO

INDEX I

The page numbers shown in italics in this index denote primary references.

ABS Intrinsic Function, B-1
ACCESS I/O Specifier, 6-6
Access Method Specifier, 6-6
ACOS Intrinsic Function, B-2
Actual Arguments, (see 'Arguments')
'A' Edit Descriptor, 6-16, 6-19, C-2
AINT Intrinsic Function, B-1
ALOG Intrinsic Function, B-2
ALOGlO Intrinsic Function, B-2
Alphanumeric Editing, 6-19
AMAXO Intrinsic Function, B-2
AMAX 1 Intrinsic Function, B-2
AMINO Intrinsic Function, B-2
AMINI Intrinsic Function, B-2
AMOD Intrinsic Function, B-1
ANINT Intrinsic Function, B-1
Apostrophe Editing, 6-19
Arguments, $-1,5-8
Arithmetic Assignment Statement,

3-8, A-I
Arrays, 2-6, 3-4 ii
ASCII Character Set, 2-3, D-2, B-1
ASIN Intrinsic Function, B-2
Assignment Statment, 1-2, 3-7 ii
ASSIGN Statement, 3-9, A-I
AT AN Intrinsic Function, B-2
AT AN2 Intrinsic Function, B-2

BACKSP ACE Statement, 6-9, A-2
'B' Edit Descriptor, 6-16, 6-19
Bibliography, 7-5
BLANK I/O Specifier, 6-7
BLOCK DATA Statement, 3-14, A-2
BLOCK DATA Subprograms, 3-13
Boolean Operations, 2-11

CALL Statement, 5-8, A-2
Carriage Control Specifier, 6-7
CARRIAGE I/O Specifier, 6-7
Character Assignment Statement,

3-9, A-I
Character Set, 2-3, D-2
CHARACTER Statement, 3-3, A-2
CLOSE Statement, 6-8, A-3
Comment Lines, 1-1, A-3
Common Memory Blocks,

3-11, 3-12 if, 5-8
COMMON Statement, 3-12, 4-3
Constants, 2-4 fi
CONTINUE Statement, 4-7, A-3
COS Intrinsic Function, B-2
COSH Intrinsic Function, B-2

Data Length, 2-5,3-1, F-3
DATA Statement, 3-10, A-3
Data - Transfer Statements, 6-10
Data Types, 2-4, 3-1
DIMENSION Statement, 3-5, A-3
DIM Intrinsic Function, B-2
Dollar Sign Editing, 6-19, 6-21
DO Loop, (see 'Loop Control')
DO Statement, 4-6, A-3, F-3
DO 66/DO 77 Compiler Controls, F-3
Dummy Arguments, (see 'Arguments')

Edit Descriptors,
Nonrepeatable, 6-19 ii
Repeatable, 6-16 fi

'E' Edit Descriptor, 6-16, 6-18
ELSE Block, 4-3
ELSE IF Block, 4-3
ELSE IF Statement, 4-4, A-4
ELSE Statement, 4-5, A-3
ENDFILE Statement, 6-10, A-4
END IF Statement, 4-5, A-5
END I/O Specifier, 6-11, 6-12
End-of-File Specifier, 6-12
END Statement, 4-8, A-5
EQUIVALENCE Statement, 3-11, A-6
ERR I/O Specifier, 6-5, 6-11, 6-12
Executable Statements, 1-3
EXP Intrinsic Function, B-2
Expressions,

Arithmetic, 2-7
Character, 2-7
Logical, 2-9
Relational, 2-8

External Procedures, 2-1, 5-4
EXTERNAL Statement, 5-7, A-6

'F' Edit Descriptor, 6-16, 6-17
File Disposition Specifier, 6-9
File - Handling Statements, 6-4 ii
FILE 1/0 Specifier, 6-5
File Name Specifier, 6-5
Files, 6-1ff
FLOAT Intrinsic Function, B-1
Format Control, 6-15 if
FORMAT Statement, 6-16, A-6
Formatted I/O, 6-1, 6-6, 6-14 if, 6-22
Formatting Specifier,

FORM, 6-6
FMT, 6-11, 6-14 ii

FORM I/O Specifier, 6-6
FMT I/O Specifier, 6-11, 6-13, 6-14 ii

Index-l

Index

Index-2

FREEFORM Compiler Control, F-2
Functions, 2-1, 5-1 ff
FUNCTION Statement, 5-4, A-7
FUNCTION Subprograms, 5-4

GO TO Statements,
Assigned, 4-2, A-7
Computed, 4-1, A-7
Unconditional, 4-1, A-7

'H' Edit Descriptor, 6-19, 6-20
Hollerith Data Type, C-1

lABS Intrinsic Function, B-1
ICHAR Intrinsic Function, B-1
IDIM Intrinsic Function, B-2
'I' Edit Descriptor, 6-16, 6-17
IF Block, 4-3
IFIX Intrinsic Function, B-1
IF Statements,

Arithmetic, 4-2, A-7
Block, 4-4, A-7
Logical, 4-3, A-7

IMPLICIT Statement, 3-3, A-8
Implied - DO List, 6-13
INCLUDE Compiler Control, F-3
INPUT Intrinsic Function, F-2
Input/Output, 1-2, 6-1 ff
Integer Editing, 6-17
INTEGER Statement, 3-1, A-8
INT Intrinsic Function, B-1
Intrinsic Functions, 5-1, B-1 ff
INTRINSIC Statement, 5-2, A-8
IOSTAT I/O Specifier, 6-4, 6-11, 6-12
ISIGN Intrinsic Function, B-1

'L' Edit Descriptor, 6-16, 6-18
Length of Data, (see 'Data Length')
Length of Record,

(see 'Record Length Specifier)
Limits on FORTRAN Language, F-1
Lines, 1-1, 2-2
Line Format, 2-2, F-2
List - Directed Formatting, 6-22
Logical Assignment Statement, 3-9, A-l
Logical Editing, 6-18
LOGICAL Statement, 3-2, A-8
Loop Control, 4-6
Lowercase Letters, F-2

Main Program, 2-1
MAXO Intrinsic Function, B-2
MAXI Intrinsic Function, B-2
Memory Definition, 3-11
MINO Intrinsic Function, B-2
MIN I Intrinsic Function, B-2
MOD Intrinsic Function, B-1

NINT Intrinsic Function, B-1
Nonexecutable Statements, 1-3

Notational Conventions, 2-13
Number Base, 2-5, 6-16, 6-19

OPEN Statement, 6-4, A-9
Operators,

Arithmetic, 2-7
Logical, 2-9
Precedence, 2-11
Relational, 2-8

Order of Statements, 1-4
OUTPUT Intrinsic Function, F-2

PAUSE Statement, 4-8, A-9
'P' Edit Descriptor, 6-19, 6-21
Port Input/Output, 6-1, F-2
PRINT Statement, 6-14, A-9
Procedures, 2-1, 5-1
Program,

Unit, 2-1
Structure, 2-1
Termination, 1-3, 4-7

Program Development, 7-1 ff
PROGRAM Statement, 2-1, 2-2, A-to

READ Statement, 6-10, A-to
REAL Intrinsic Function, B-1
Real Number Editing, 6-17, 6-18
REAL Statement, 3-1, A-I0
REC I/O Specifier, 6-11, 6-12, 6-13
RECL I/O Specifier, 6-6, F-4
Record Length Specifier, 6-6
Record Number Specifier, 6-12
Records, 6-1
REENTRANT Compiler Control, F-2
Reentrant Procedures, 5-5, F-2
References, iii, 7-5
RETURN Statement, 5-6, A-I0
REWIND Statement, 6-9, A-II

SAVE Statement, 5-7, A-11
Scale Factor Editing, 6-19, 6-21
SIGN Intrinsic Function, B-2
SINH Intrinsic Function, B-2
SIN Intrinsic Function, B-2
Slash Editing, 6-19, 6-20
SQRT Intrinsic Function, B-2
Statement Functions, 5-2, A-II
Statement Labels, 2-2
Statement Sequence,

(see 'Order of Statements')
Statement Syntax, 2-13
STATUS I/O Specifier,

OPEN, 6-5
CLOSE, 6-9

STOP Statement, 4-8, A-II
STORAGE Compiler Control, F-3
Subprograms, 2-1

BLOCK DATA, 3-13
FUNCTION, 5-4
SUBROUTINE, 5-5

FORTRAN-SO

FORTRAN-SO

Subroutines, 2-1, 5-5
SUBROUTINE Statement, 5-6, A-12
SUBROUTINE Subprograms, 5-5
Symbols, 2-4, 2-12

TANH Intrinsic Function, B-2
TAN Intrinsic Function, B-2
Type Statements, 1-2, 3-1

Unformatted I/O, 6-1, 6-6, 6-14
Unit Connection/Preconnection, 6-8, F-4
UNIT I/O Specifier,

Input, 6-4, 6-11
Output, 6-8, 6-13

UNIT Run-Time Control, F-4
Units

I/O, 6-1, 6-3
Program, 2-1

Variables,
Definition, 2-4
Types, 2-4, 3-1
Value Assignment, 3-7

WRITE Statement, 6-13, A-12

'X' Edit Descriptor, 6-19, 6-20

'Z' Edit Descriptor, 6-16, 6-19

Index

Index-3

NOTES

NOTES

inter SOFTWARE

SUBMITTED BY:

Name
Company
Address

Phone Date

CHECK ONE ITEM IN EACH CATEGORY

Product Product Type
o Software o Monitor o Simulator
o Manual o Assembler o Editor

o Compiler o Utility
0 ___ _

Exact Product/Manual Name

PROBLEM REPORT

FOR INTERNAL USE ONLY

No.
Date
Notes

Machine Line
04004/4040
0800S
08OS0
03000
0 ___ _

Fix Date
Vers/System

System
o Intellec
o Timeshare Co.

o In-House Computer

Ver~onNumber(lfnotknown,~vedateofrece~~~ ________________________ ~

PROBLEM:

REPLY:

PROBLEM DOCUMENTATION ATTACHED IS: o Output Listing o Paper Tape Program Sou re4
o Program Listing

o _____________ __

WE'D LIKE YOUR COMMENTS ...

This document is one of a lieries describing Intel products. Your comments on the back of this form will help
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of Intel Corporation.

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 621, SANTA CLARA, CA

Postage will be paid by Addressee:

Intel Corporation
Attn: Literature Department
3065 Bowers Avenue
Santa Clara, California 95051

111111
NO POSTAGE

NECESSARY IF MAILED
IN THE u.S.

FORTRAN·80 PROGRAMMING MANUAL
9800481 A

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME
__ DATE __________________________ __

TITLE __ _

COMPANYNAME/DEPARTMENT ___ __
ADDRESS ___ __

CITY _____________________________________ STATE ___________________ ZIPCODE __________________ _

Please check here if you require a written reply. 0

:'0 LIKE YOUR COMMENTS ...

is document is one of a series describing Intel software products. Your comments on the back of this
m will help us produce better software and manuals. Each reply will be carefully reviewed by the respon­
Ie person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 621, SANTA CLARA, CA

Postage will be paid by Addressee:

Intel Corporation
Attn: Literature Department
3065 Bowers Avenue
Santa Clara, California 95051

111111 NO POSTAGE
NECESSARY IF MAILED

IN THE U.S.

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

