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PREFACE

Two main purposes guided the creation of this book: the first was to teach this
language in easy steps of concepts and usage. In each section everything should be
understandable using information that is defined close-by or is immediately findable
via an explicit local reference to other sections in the text. Although the first steps
always seem too easy, a gradual approach usually helps you progress farther with
less effort.

The other purpose was to offer easy access to reference information. This purpose is
addressed via the figures, tables, glossary-index, and tab-type flag headings on the
top outer corners of reference pages.

Most chapters and sections begin with a brief explanation of their content, why and
when you need to use what is presented, plus prerequisite or related information and
where to find it.

This manual proceeds from general overview topics to a gradual development of the
specific features of this assembly language. Later in the book come the complete and
concise presentations of commands, permissible constructs, and other considera-
tions.

If you are an advanced assembly programmer, you may not require this careful and
gradual introduction to underlying concept and structure. You may choose to leap
ahead, learning as you go the similarities and differences of this language from your
prior knowledge/experience. However, at least one glance through might prove
beneficial as to new concepts, features or requirements.

For those with less experience, the manual attempts to prepare you in advance for
novel or complex concepts by supplying the motivation or rationale behind them.
This can help you to understand, for example, why some otherwise appealing short-
cuts are dangerous or disallowed.

Thus this manual gives an overview, first of certain programming considerations
and then of the 8086 architecture in terms of addressing, register sets, and memory
layout. It proceeds then to look briefly at this assembler’s commands, directives,
and automatic features, some of which are unusual in any assembler, particularly
for a microprocessor.

With these topics as background and introduction, the manual begins to teach the
details of the language in a conversational style, with many examples.

If your experience leads you to prefer to browse at random, you might benefit most
by reading the assembler features, skipping the tutorial sections, and studying the
later detailed discussions of the instructions and expressions. The frequent embedd-
ed references to discussions or explanations elsewhere in the manual will likely lead
to further browsing, gradually filling in the full story.
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CHAPTER 1
INTRODUCTION TO 8086
ASSEMBLY LANGUAGE

Assembly Language and Processors

Introduction

This book is about the 8086 Assembly Language. The instructions and directives in
this language use readily remembered abbreviations (e.g. MOV, ADD, EQU) for
programming operations and assembler control. A block of such instructions and
directives, intended for processing as a unit by the assembler, is called a source
module. The assembler translates a source module into relocatable object code.

Assembly language source modules must be in a machine-readable form when
passed to the assembler. The Intellec development system includes a text editor that
will help you maintain source programs as diskette files. You can then pass the
resulting source program file to the assembler. (The text editor is described in the
ISIS-I1 System User’s Guide.)

Most lines of source coding in an assembly language source program translate
directly into one machine instruction for a particular processor. The assembly
language programmer should be familiar with both the assembly language and the
processor for which he or she is programming. The 8086 architecture and registers
are described in this chapter. The instructions are summarized in Chapter 6.

What is an Assembler?

An assembler is a software tool — a program designed to simplify the task of writing
computer programs. If you have ever written a computer program directly in a
machine-recognizable form such as binary or hexadecimal code, you will appreciate
the advantages of programming in a symbolic assembly language. There is less to
remember. It is easier to verify the program’s validity and to correct it.

An assembly language is a step up from coding instructions directly in machine
language. How large an improvement it is depends on how much the assembler does
for you and how smart it is. This means how many correct decisions it can make
about what machine code to generate, based on inferences from the code you write
and any additional information you supply.

Thus a good assembler requires a minimum of source input lines written in a
language easily handled by humans, and generates the machine-instructions you
would otherwise laboriously code by hand if you had memorized the entire instruc-
tion set of the machine (plus, in the case of certain esoteric machines, wiring
diagrams).

What the 8086 Assembly Language Provides

Mnemonic Instructions

The language includes about 100 symbolic instructions, grouped into six classes.
From source input in this language, the assembler can generate over 3,800 distinct
machine-instructions. Data or addresses (user-defined variables and labels) would
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add to this total, requiring even more of your effort to manipulate and validate.
However, handling data and addresses by readily remembered names instead of
numbers is automatic in the 8086 assembler, which translates the assembly language
program into machine code.

Assembly language operation codes (opcodes) are easily remembered, e.g., MOV
for move instructions, JMP for jump. Using names for address labels and variables,
you can make them meaningful to the problem you are solving.

For example, if your program must manipulate a date as data, you can assign the
symbolic name DATE to its address e.g.

DATE DB '780704’

If your program contains a set of instructions used as a timing loop, (a set of instruc-
tions executed repeatedly until a specific amount of time has passed), you can name
the first instruction of the group TIMER, e.g.

TIMER: MOV AX,255

DATE is called a VARIABLE, because it is a name for a memory location whose
contents are used as data. TIMER is a LABEL because it names a memory location
whose contents are used as an instruction.

Typing

The 8086 assembly language is ‘‘strongly typed’’. This means it performs extensive
checks on your variables and labels, like DATE and TIMER. The assembler uses the
attributes which are derived implicitly when a variable or label is first declared
(defined). The assembler makes sure that each use of a symbol in later instructions
conforms to the usage defined for that symbol when it was declared. For example,
DATE has the type ‘‘byte’’ because DB was used to define/declare it. The typing
mechanism and means for overriding it are more fully explained in Chapters 2 and 5.

What these checks provide, of course, is an extra safeguard against unintended or
meaningless code arising from errors of omission or inconsistency. These errors can
sometimes slip into the middle of a complex, high-pressure project and be difficult
to discover until deep into the debugging process.

Enhanced Data Handling

Compared to earlier assembly languages, this one has substantially improved flex-
ibility in data definition and manipulation, which can significantly simplify coding.
Its capabilities allow very sophisticated goals to be achieved with a straightforward
use of the language.

Powerful string manipulation instructions permit direct transfers to or from
memory or the accumulator. They can be prefixed with a repeat operator for
repetitive execution with a count-down and a condition test. These operations
automatically increment or decrement the relevant indexes to memory, depending
on the direction flag, (DF). They also automatically decrement the count register,
(CX), after each repetition. This implicitly controls the number of iterations by ter-
minating the operation when CX = 0.

The assembler fully supports the 8086 addressing modes by providing for complex
expressions involving multiple indexes and field offsets. A powerful EQU facility
allows the use of simple synonyms for complicated expressions which may recur
throughout a module.
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What the Assembler Does

The Assembler performs the clerical task of translating your symbolic source code
into object code which can be executed by the 8086 microprocessor (after the reloca-
tion and linkage facilities assign absolute addresses). The major functions of the
assembler include assigning a value to each name you code, and later substituting
this value for every use of that name. Assembler input is your source file. The output
consists of three possible files:

1. the object-file containing your program which has been translated into object
code;

2. the list-file printout of your source code, the assembler-generated object code,
error messages, and the symbol table, and

3. a file containing only error messages and the source lines in which the errors

occurred.
PROGRAM
LISTING
SOURCE
PROGRAM »| ASSEMBLER OEfLEECT
FILE
ERROR
o FILE
Object Code

The object code is the form of the program ultimately executed (after intermodule
references are handled by LINK86 and absolute addresses are assigned by LOCS86 or
QRLS86). For most microcomputer applications, you probably will eventually load
the object program into some form of Read-Only Memory. This assembler produces
output modules in relocatable format. The ability to use the above-named Reloca-
tion and Linkage facilities (R&L) frees you from worrying about the eventual mix of
read only and random access memory in the application system; individual portions
of the program can be located as needed when the application design is final.

Also, the R&L linking facility allows a large program to be broken into a number of
separately assembled modules. Such modules are both easier to code and to test, and
can later be linked to function as a unit. A more thorough description of these ad-
vantages appears later in this chapter.

Program Listing

The program listing provides a permanent record of the source program, the object
code, and the assembly process. The program listing also shows the assembler’s
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diagnostic messages issued for programming errors. For example, if you specify a
16-bit value for an instruction that can use only an 8-bit value, the assembler tells
you that the value exceeds the permissible range. (See accompanying sample listing.)

LOC OBJ

0000 (128
00

)
0080 (10
?27?7?

)
0094

FFFO
FFF2
0000 3000

0002 2EBE1E0000
0007 2E8E160000
000C 8B269400

0010 E81900
0013 8AEO
0015 E80500
0018 E81E00
001B EBF3

001D BAF2FF
0020 EC
0021 2401
0023 74F8
0025 BAFOFF
0028 8AC4
002A EE
0028 C3

002C BAF2FF
002F EC
0030 2402
0032 74F8
0034 BAFOFF
0037 EC
0038 C3

0039

0039 32E4
003B 8BF0
003D FEO04
003F C3

0002

1-4

; THIS SDK86 PROGRAM ECHOS CHARACTERS FROM A KEYBOARD TO A CRT,
; AND GENERATES A FREQUENCY DISTRIBUTION OF CHARACTER OCCURRENCES.

SEGMENT AT 30H

128 DUP(0)

10 DUP(?)

WORD

SEGMENT AT 20H

;PLACE RAM SEGMENT AT 300H
;INITIALIZE OCCURRENCE COUNT ARRAY TO ZERO

;RESERVE AN AREA FOR THE STACK

;INITIAL STACK POINTER POSITION

;PLACE ROM SEGMENT AT 200H

ASSUME CS:ROMSEG,DS:RAMSEG,SS:RAMSEG,ES:NOTHING

LINE SOURCE

1

2

3

4 RAMSEG

5 FREQUENCY DB

6 DW

7 STKTOP  LABEL

8 RAMSEG  ENDS

9

10

11 ROMSEG

12

13

14 USARTDATA EQU
15 USARTSTAT EQU
16 SETSEG  DW
17

18 START: MOV
19 MoV
20 MOV
21

22 LOOP1: CALL
23 MoV
24 CALL
25 CALL
26 JMP
27

28 CO: MoV
29 IN

30 AND
3 Jz
32 MOV
33 MOV
34 ouT
35 RET
36

37 Cl: MOV
38 IN

39 AND
40 Jz
M MOV
42 IN

43 RET
44

45 COUNTIT  PROC
46 XOR
47 MOV
48 INC
49 RET
50 COUNTIT  ENDP
51

52 ROMSEG  ENDS
53

54 END

OFFFOH
OFFF2H
RAMSEG

DS,CS:SETSEG
SS,SETSEG

SP,OFFSET STKTOP

Cl

AH,AL
co
COUNTIT
LOOP1

DX,USARTSTAT
AL,DX

AL,1

co
DX,USARTDATA
AL,AH

DX,AL

DX,USARTSTAT
AL,DX

AL,2

Cl
DX,USARTDATA
AL,DX

NEAR

AH,AH

SI,AX
FREQUENCY/[SI]

START

;8251A DATA PORT ON SDK86
;8251A STATUS PORT

*SEGMENT ADDRESS OF BEGINNING OF RAMSEG

;SET UP DATA SEGMENT AS IN ASSUME
;SET UP STACK SEGMENT
;SETINITIAL STACK POINTER VALUE

;READ CHARACTERTO AL

;WRITE CHARACTER FROM AH

;COUNT OCCURRENCE OF CHARACTERIIN AL
;IF USART NOT READY FOR CHARACTER
;INPUT ABYTE INTO AL WITH PORT # IN DX

;THEN WAIT
;ELSE OUTPUT CHARACTER

;IF CHARACTER NOT READY

;THEN WAIT
;ELSE BRING IN CHARACTER

;EXPECTS CHARACTER IN AL

;ZERO AH

;16 BIT INDEX INTO FREQUENCY TABLE IN SI
;INCREMENT ARRAY INDEXED BY SI
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Line # Explanation See also chapter
1&2 Commentling ...t e e 2
4 Declaration for data segmentinRAM ..., 4
5 Array declaration of 100 zeroed bytes .................ociiiiiatn. 3
6 Declaration of 10 uninitializedwords ....................oiiiiiian, 3
7 Declaration of label for stackarea .................cccoiiiiiiiiin., 4
8 End of declarationof RAMsegment ..............coiiiiiiiiiia.. 4
1 Declaration forcode segmentinROM ..............coviniiininnn.. 4
12 Declaration to assembler of run-time segment register values ........ 4
14&15 Symbolic equivalences for hardware /O port number .............. 1,4
16 Address constantforusein18and19 ...t 3
18 Initialize DS register with address constantforROM ............... 1,5
19 Initialize SS register with address constantfromROM ................ 1
20 Move immediate address constantto SPregister .................... 1
22,24,25 Subroutinecalls ..........cooiiiiiii i e 1,6, ApD
28 Move immediate device address to DX (seeline15) .................. 6
29 Input byte to AL using l/O addressinDX ..............cciiiiinnn... 1
35 Subroutine return(toline25) ................ il 1,6,ApD
45 Procedure declaration of type NEAR (optional) .................... 1,4
48 Increment with indexed addressmode .................coviuennnn 1,5
50 End of procedure declaration .............. ... e, 4
52 End of segmentdeclaration ............ ... i, 4
54 Endof Program ...t e e e 4

NOTES: i) Segments can be located using ‘‘at’’ option as shown on lines 4 and 11
ii) Segment register and SP must be initialized (lines 19, 20)
iii) Explicit use of segment override prefix (line 18) Cs: was not required,
but shown for emphasis
iv) Procedure declaration not required but shown as example

Error File

The assembler detects a variety of errors, both syntactic (form) and semantic (mean-
ing). The error messages are listed in the Operator’s Manual. The discussions in the
present manual present the correct use of this assembly language and mention cer-
tain common errors that may occur.

Do You Need the Assembler?

The assembler is but one of several tools available for developing microprocessor
programs. Typically, choosing the most suitable tool is based on cost constraints
versus the required level of performance and support from the software tools you
choose. Your company and you must determine cost constraints; the required level
of performance and support depends on a number of variables:

¢ The number of programs to be written:

The greater the number of programs to be written, the more you need
development support. When your application has access to the power of a
microprocessor, you can provide clients with custom features through pro-
gram changes. Furthermore, you can add features with programming. Thus
your product can offer unique or more complete services, if the requisite
development support is available.

® The time allowed for programming:

As the time allowed for programming decreases, the need for programming
support tools increases.

Introduction
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® Thelevel of support for existing programs:

Sometimes programming errors are not discovered until the program has
been in field use for quite a while. Your need for programming support in-
creases if you agree to correct such errors for your clients. The number of
different supported programs in use can greatly multiply this requirement.
Also, program support is frequently subject to stringent time constraints.

¢ The complexity of the problem(s) to be solved.

If most of the support-needed factors listed above apply to you, you may also want
to explore the advantages of a higher-level language such as PLM86. PLMS86 is In-
tel’s compiler language for program development. Such languages are directed more
toward problem-solving than most assemblers, although ASM86 is closer to that
than most.

PLM86 may allow you to write programs more quickly than the assembly language.
On the other hand, the assembler offers greater flexibility and control in direct
manipulation of the 8086 and its operation. In many cases there are many ad-
vantages to a mixture of 80-90% PLM and 10-20% assembly language. Using PLM
for most of the code can cut development time, while the assembly language pro-
grams can be chosen to provide critical control and performance factors.

As an example of the compression of coding, the accompanying chart illustrates the
differences between most assembly languages and ASM86. The more typical code
would take about 18 bytes. The ASM86 code takes 8 bytes.

Assume that a program must move five characters from one location in memory to
another. The assembly language instructions are represented in a flowchart. The
PLM86 code is: CALL MOVE (NUMBERSOF$CHARS, SOURCE$STRING$AD-
DRESS, DESTINATIONSADDRESS).

TYPICAL ASSEMBLY
LANGUAGE CODING

ASM86
CODING

LOAD REGISTER
WITH NUMBER
OF CHARACTERS
TO BE MOVED

LOAD REGISTER
WITH ADDRESS
OF SOURCE

LOAD REGISTER
WITH ADDRESS OF
DESTINATION

LOAD ACCUMULTOR
WITH 1 BYTE FROM
SOURCE

MOVE CHARACTER FROM
ACCUMULATORTO DEST

INCREMENT SOURCE ADDRESS
INCREMENT DESTINATION ADDRESS
DECREMENT CHARACTER COUNT
CONTINUE IF CHAR. COUNT NON-ZERO

MOV CX, NUMBER__OF_CHARS

MOV SI, SOURCE__STRING__ADDRESS

MOV DI, DESTINATION_ADDRESS

I REP MOVS DESTINATION_ADDRESS, SOURCE__STRING__ADDRESS
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Programming, Debugging, and Designing

At many stages of problem definition it is easy to leap into programming, producing
modules or entire subsystems relatively soon after their functions are first described.

Problems arise, however, when these modules don’t work or are incomplete. They
will require expansion, modification, or integration with other modules. Some func-
tions may merge. Communication of parameters may change.

Reprogramming may be required again and again, to fit things in, to rework sec-
tions, and to retest everything.

Thus arises the idea of good design, to cope in advance with later change.

Change is costly in time and effort. The later it occurs, the greater the cost. How
may we minimize change? For unavoidable change, how may we minimize the
redesign, rework, and relearning resulting from changes or errors in specification?
in design? in implementation?

The answers lie in 4 main areas:

1. extremely clear and specific goals for the program, written down and explicitly
agreed upon by the designers, implementers, and users

2. isolation into separate modules of every non-trivial function of the system or
program, including the isolation of difficult design decisions

3. full and clearly understandable documentation for every module, including
liberal comments in the code

4. clearly written standards for implementation of modules, including conventions
for naming and passing parameters.

Study of this assembly language may not help you to choose your goals well, to for-
mulate them clearly, and to get everyone to agree on them. It can, however, aid you
in making your work modular, parameterized, and easier to document. This then
assists delegation of tasks, teamwork, ease of modification, and the sharing of
modules among tasks or teams without the usual cutting and stitching to make them
fit.

How This Assembler Helps

1. One of this assembler’s first contributions to successful projects is the use of
typed symbols. A variable is typed 1 or 2 or 4 bytes by the basic unit of its
declaration, being byte or word or doubleword, respectively. A label is typed
NEAR (usually within the same segment) unless you state FAR in its declaration
(types are discussed more in Chapters 2 through 5).

There are several reasons this helps. It allows one mnemonic (e.g. MOV, JMP)
to be used for one kind of function applied to several different kinds of data or
operands, even though there may be many hardware instructions to choose
from. The assembler can choose the correct hardware instruction based on the
type of the operands you supply in the source line. This reduces the amount and
complexity of what you must remember. It allows you to focus more on solving
your problem of creating the program, and less on conforming to too many
restrictions.

1-7
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One example of how typed symbols help keep things simple is the mnemonic
MOYV. It is used in the same form, MOV, for over 2 dozen different hardware
instruction cases. These cases cover the use of bytes, words, registers, memory,
and immediate data expressions, either as source or destination operands.

Examples:

MOV AL, BYTE__EXPRESSION ; low byte of accumulator as destination implies byte
source

MOV AX, WORD__EXPRESSION ; full-word accumulator implies word source

MOV BYTE__EXPRESSION, AL ; low byte of accumulator as source impiies byte

; destination

MOV BX, AX ; full word register to full word register

MOV MEM__BYTE, AL ; AL as source requires the destination to have type
; “byte””

MOV CL, MEM_BYTE__IMMEDIATE__VALUE ; register CL as destination

; requires a byte source

The use and implications of each of the above instructions and expressions are
further explained in the chapters that follow.

The assembler is built to assemble programs as collections of user-defined
segments, up to 64K bytes in each segment. This is a natural aid to modularizing
your code, grouping together related functions and/or data.

Examples:

INITIALIZATION_ROUTINE SEGMENT
[¢)
0; statements to initialize
o; tables from inputand
o; verify consistency, etc.
o]
o)
INITIALIZATION_ROUTINE ENDS

GET_5_TYPE_1_RECORDS SEGMENT
o
0; input and edit
(o}
GET_5_TYPE_1_RECORDS ENDS

PROCESS__FIRST_TYPE__1_REC SEGMENT

[¢)

o; begin analysis,

0; updating, reporting
PROCESS__FIRST__TYPE_1__REC ENDS

It supports procedures and code macro definition. These features make it easier
to break a problem down into separately programmable functions which are
easier to develop, test, and modify. Once they are created as generalized
routines, other team members and other projects can share their use. You can
create libraries of programs representing solved problems, problems that
needn’t again use up your time and manpower resources.
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4. The assembler is very flexible in allowing a large variety of address expressions,
which are used to refer to locations in memory. It has a very powerful name-
and synonym-capability using the EQU directive. This gives you the option to
use expressions and names that are meaningful to you in the context of your ap-
plication. It is an aid both to clearer thinking and greater readability of the pro-
gram. This in turn is heipful in writing, testing, and modifying that program.

Example:
CUR_PROJ EQU PAYROLL_REC [BX][SI]

The expression on the right could represent part of one employee’s payroll
record, out of the many such data records indexable in memory by registers BX
and SI. This kind of usage for base and index registers is called indexing or
subscripting. It is a commonly-used form of address-expression.

5. A number of operators are provided for use in expressions. They aid good
programming practices, the generality of the code, and the ease of modifying
that code. They enable you to refer to (or change) attributes of variables or
labels without coding those attributes explicitly.

Examples:
If you define an array of 50 words initialized to 0 via

RATE_TABLE DW 50 DUP (0)
then your instructions may later say

MOV CX, LENGTHRATE_TABLE
MOV SI,  SIZE RATE_TABLE
FILL: SUB SI,  TYPERATE_TABLE
MOV  AX, INPUT_ RATE[SI]
MOV  RATE_TABLE [SI], AX
LOOP FILL
NEXT:

thereby putting 50 into CX (the number of entries), 100 into SI (the number of
bytes in the word array), and decrementing SI for each iteration by 2 (the
number of bytes in each element). LOOP automatically decrements CX by 1 un-
til 0 is reached, halting the iterations and going on to the next sequential instruc-
tion, at NEXT.

Introduction to Relocation

Relocation means the ability to reassign addresses at the time the program is loaded
into memory, changing them from the relative addresses assigned during assembly.

This feature allows you to subdivide a complex program into a number of smaller,
simpler programs. After development and debugging of the component modules,
you can link them together, locate them as you choose and enter final testing with
much of the work behind you. (For information on this process of linking and
locating, see the 8086 Cross Development Utilities Operator’s Manual). Component
modules can often be allocated among members of a development team, and grow
into a library of solved problems for later use.

Introduction
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The relocation feature also has a major advantage at assembly-time: often, large
programs with many symbols cannot be assembled because of limited work space
for the symbol table. Such a program can be divided into a number of modules that
can be assembled separately and then linked together to form a single object
program.

Relocatability allows the programmer to code programs or sections of programs
without having to know the final arrangement of the object code in memory. This
offers developers of microcomputer systems advantages in two areas, memory
management and modular program development.

Modular Program Development

As an example, two programmers might take different approaches to solve the
following problem. Both programmers want to calculate the degree of spark ad-
vance that provides the best fuel economy with the lowest emissions. Programmer A
codes a single program that senses all inputs and calculates the correct spark ad-
vance. Programmer B uses a modular approach and codes separate programs for
each input plus one program to calculate spark advance.

Although programmer A avoids the need to learn to use the relocation feature (a
one-time cost), the modular approach used by programmer B has a number of
advantages:

¢ Simplified Program Development

It is generally easier to code, test, and debug several simple programs than one
complex program.

¢ Sharing the Programming Task

If programmer B finds that he or she is falling behind schedule, one or more
subprograms can be assigned to another programmer. Programmer A will prob-
ably have to complete the program alone, because of the single program
concept.

e Ease of Testing

Programmer B can test and debug most modules as soon as they are assembled;
programmer A must test the program as a whole. B has an extra advantage if the
sensors are being developed at the same time as the program: if one of the sen-
sors is behind schedule, programmer B can continue developing and testing pro-
grams for the sensors that are ready. Because programmer A cannot test the
program until all the sensors are developed, the testing schedule is dependent on
events beyond his or her control.

¢ Programming Changes

It is reasonable to expect some changes during product development. If a
change to one of the sensors requires a programming change, programmer A
must search through the entire program to find and alter the coding for that sen-
sor. The entire program must then be retested to be certain those changes do not
affect any of the other sensors. By contrast, programmer B need be concerned
only with the module for that one sensor.

Similarly, when a bug in some function is reported, programmer B is likely to
find it much sooner, because functions have been localized into modules. Pro-
grammer A may need to trace through the whole program to see the connections
leading to the error.

Modularity reduces development time and cost overall. It continues to be a major

advantage throughout the life of the program. Flaws are more readily found and
corrected. Enhancements are accomplished more quickly.

1-10



8086 Assembly Language Introduction

One disadvantage is the greater need for intermodule and interpersonal communica-
tion. Another is the need to manage a larger data base of current modules as they go
through changes and tests.

Overview of Hardware and Architecture

The rest of this chapter is devoted to the following topics:

e 8086 hardware, partial review (see 8086 User’s Manual for complete detail)
®  General Registers

* Memory

e Pointer and Index Registers

¢  Program counter (Instruction Pointer)

e Segment Registers

¢ Condition flags

e Stack and stack pointer

¢ Input/output ports

Hardware

The 8086 is a complete microprocessor for use in general-purpose computer systems
of widely varying levels of complexity. At its upper limit, it can be part of a multiple-
processor system, each of whose processors is capable of accessing up to 1 megabyte
of memory.

Memory transfers are handled in 8-bit bytes or in 16-bit words. Bit, byte, word, and
block (string) operations are accommodated in the instruction set. The 8086 per-
forms signed arithmetic and interruptible string operations, and can make use of
dynamically relocatable procedures, reentrant programming, and multiprocessing.

Access to memory and peripherals is accomplished through a 20-bit time- multiplex-
ed address and data bus. Internal configuration switching can adapt the processor to
the level of system complexity you desire.

The bus structure of the MCS-86 systems is compatible with MCS-80 and MCS-85
peripherals. This allows you to utilize pre-existing devices and hardware designs. Ex-
isting 8080 system software also is adaptable for use in the MCS-86 systems.

The 8086 uses a queue of prefetched instructions. This aids throughput, but the
calculation of expected execution times must take into account rebuilding the queue
in some circumstances. A jump or call typically forces building a new queue. Condi-
tional jumps (and loops) naturally only do this sometimes: when the jump is taken,
16 clock cycles are used, otherwise 4.

See the 8086 User’s Manual (9800722) for more information on all hardware and
timing data.
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GENERAL RELOCATION
REGISTERFILE REGISTERFILE

STATUS/
16-BIT SN
ARITHMETIC/ BUS goL',ﬂSSC;L
LOGIC UNIT INTERFACE
UNIT ADDRESS/
AT
PROGRAM
STATUS WORD (20LINES)
(FLAGS)
6-BYTE
INSTRUCTION
QUEUE
$
QUEUE
EVENT TEST —>} }— status
(2 LINES)
INTERRUPT
CONTROL —] CONTROL AND TIMING
(2LINES)
DIRECT-MEMORY-
ACCESS CONTROL <> —» LOCK
(2 LINES)

CONFIG- +5V
URATION GROUND
(MIN/MAX) (2 LINES)

CLOCK —1
RESET —]
READY —>
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Memory Organization

The 8086 uses a 20-line address bus to locate a byte or word in memory, and can
therefore access 2 to the 20th bytes (1 megabyte = 1,048,576 bytes). Each location so
addressed is a byte, 8 bits.

Words (16-bits) consist of 2 consecutive bytes, and can begin at even or odd ad-
dresses. Words in memory are stored with the least significant byte in the lower- ad-
dressed location and the most significant byte in the higher-addressed location.
When a word begins at an even address, access requires only 1 memory cycle. If it
begins at an odd address, access requires 2 memory cycles, with no other penalty.
Each hardware memory cycle is 4 clock cycles.

8086 MEMORY
ADDRESS
00000
SEGMENT ADDRESS XXXX0
64K
BYTE
SEGMENT
WORD ADDRESS N Y/ 1587 2|
WORD
N+1 MEB\
BYTE ADDRESS M }BYTE
FFFFF

8086 OPERATES ON 8-BIT BYTES and 16-BIT WORDS.

A BYTE OR WORD CAN ONLY BE ACCESSED BY THE CPU IF IT RESIDES IN
ONE OF FOUR CURRENT 64K SEGMENTS AS ADDRESSED BY THE SEGMENT
RELOCATION REGISTERS.

EVERY BYTE WITHIN A SEGMENT IS ADDRESSABLE USING A 16-BIT
ADDRESS.

WORDS OCCUPY TWO ADJACENT BYTES WITH THE MSB OF A WORD IN THE
HIGHER ADDRESSED MEMORY LOCATION. WORDS ARE ADDRESSED BY LSB
(LOWER) MEMORY ADDRESS.

Memory Addressing

Memory addresses must be 20-bits long to access unique bytes in the megabyte
memory. To achieve this using 16-bit words, the 8086 memory space is viewed as
consisting of 64K-byte segments. Within each 64K segment a 16-bit address is suffi-
cient to access any byte. This address is called the offset.

To specify which 64K segment contains the desired location, a second 16-bit address
is used, called the segment address, or simply, segment. This is used as a base- ad-
dress, moved by the user program into one of the four segment registers designed for
this purpose. It is useful to think of every address as such a pair of numbers, the seg-
ment and offset.

1-13
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0
EFFECTIVE ADDRESS O P REts

15 | 0 |

r—[ SEGMENT REGISTER 10 0 0 0] FESMENT
| |

ADDER

PHYSICAL
e MEMORY ADDRESS LATCH ADDRESS

The 8086 memory can be thought of as an arbitrary number of segments. A byte or
word within a segment is addressed with a 16-bit offset address. The 8086
automatically adds the offset address to the shifted 16-bit segment address, creating
a 20-bit physical address.

The hardware automatically forms a unique 20-bit address from these two words in
the following way:

The segment address is shifted left 4 bits in a special 20-bit register, leaving its lowest
4 bits zero. The other address word, the offset, is then added to that 20-bit number,
giving a unique 20-bit address as the result.

Example:

A location with segment word of 123AH and with an offset word of 341BH would
be addressable by the 20-bit number 157BBH, formed by adding the two words as
described above.

123AH becomes 123A0H, to which is added 341BH,
+341BH

157BBH

This design thus expects segments to begin at an address ending in 4 zeroes. Such ad-
dresses are called paragraph boundaries, and the 4 high-order hex digits are called
the paragraph number. A segment address, therefore, is always a paragraph number
in the assembly language.

One consequence of the above design is that every byte is accessible from many base-
addresses using different offsets. For example, the sample address above (157BBH)
can be reached with an offset of 0BH and a segment of 157BH, or an offset of 8BH
and a segment of 1573H. The 64K-byte segments can overlap, depending on their
beginning point.

Complete addresses are formed using the above technique, with the segment word
always placed in one of the 4 segment registers, called CS for code segment register,
DS for data segment register, SS for stack segment register, and ES for extra seg-
ment register.

These 4 segment-registers, discussed later in this chapter, are used as base addresses
for all references into memory, potentially a megabyte. Thus, you can address up to
one quarter of the megabyte, i.e., four 64K-byte physical segments, at any one time.
A new segment becomes addressable whenever the contents of one of these segment
registers is changed by your program.
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Registers

The 8086 processor contains three sets of four 16-bit registers and a set of nine one-
bit flags. The sets of registers are the GENERAL registers, the POINTER and IN-
DEX registers, and the SEGMENT registers. There is a 16-bit Instruction Pointer
(IP) which is not directly accessible; rather it is manipulated with control transfer in-
structions. (See figure below.)

Instruction Pointer. The Instruction Pointer keeps track of the next instruction
byte to be fetched from memory, which may be Read-Only-Memory or Random-
Access-Memory. Each time it fetches an instruction from memory, the processor in-
crements the IP by as many bytes as necessary to point to the next instruction.
Therefore, the IP always indicates the next instruction byte to be fetched. This pro-
cess continues as long as program instructions are executed sequentially.

To alter the flow of program execution as with a jump instruction or a call to a pro-
cedure, the processor overwrites the current contents of the IP with the address of
the new instruction. In the case of a call, the processor saves the old contents of the
IP on the hardware stack to enable the return from the procedure. The next instruc-
tion fetch occurs from the new address.

(If the new address is not in the 64K bytes above the current contents of the code seg-
ment register (CS), then the contents of CS must also be replaced by using an in-
tersegment jump. This is generated by the assembler when you transfer to a label or
procedure which you declared to be of type FAR. This point is discussed further in
several places: ADDRESSING, the ASSUME statement, and Chapter 6.)

Instruction Pointer Wraparound

All. addresses are the result of a positive offset address taken from a segment
register. It is generally not possible to access an address lower than the contents of a
given segment register using the segment register.

All offset arithmetic is 16-bit, done modulo 64K. One consequence is that if you add
1 to the highest possible offset, you get an offset of 0:

OFFFFH
+ 1

0000H

The carry out of the high-order bit is unused. Thus, one byte beyond the highest ad-
dress in a segment, you find yourself at the lowest possible address in that segment.
This is sometimes termed WRAPAROUND.

This fact is used in generating the displacement in certain self-relative jumps. For ex-
ample, a jump instruction located near the high end of a code segment, say at offset
OEFFDH, may need to transfer control to an instruction near the beginning of that
code segment, say at offset 5. The source line is written exactly the same as if the
target location were closer, say at only 257 bytes (= 0101H) bytes after the jump.

If TARGET_LABEL__NAME were 257 bytes after the jump, the instruction:
JMP TARGET_LABEL_NAME
would assemble as 0E90101H. When it is executed, the IP will already point to the

next sequential instruction at OFO00H, i.e., 3 bytes past OEFFDH where the JMP
begins.

1-15
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The 0101H is added to the IP, so that the instruction at offset OF101H is executed
next.

However, if TARGET__LABEL__NAME is located at offset 5, the assembler must
generate a ‘‘distance’’ which, when added to the Instruction Pointer, will cause the
IP to point correctly to the target location. It does this by adding the complement of
the IP to the offset of the target. This effectively generates the correct offset to the
base address in CS. This process is only necessary for JMPs within the same seg-
ment, which are self-relative, whereas intrasegment CALLS replace the IP rather
than add to it. (Intersegment calls or jumps, to a different segment, always replace
both CS and the IP.)

Example:

If CS holds the paragraph number 3456H, and the source line JMP
TARGET_LABEL__NAME occurs at relative location (offset) OEFFDH, and
TARGET_LABEL__NAME is at offset 5, then the assembler will generate a self-
relative distance of 1005H, making the instruction read JMP 1005H. The effect on
the Instruction Pointer is then:

Instruction Pointer = 0FO00H;
complement is OFFFH + 1 =
1000H

target’s offset = 0005H;
self-relative distance used = 1005H

because the carry-bit out of the high order sum is ignored.

Thus the true offset of the target label, relative to the segment’s base address in CS,
is generated correctly, since when 1005H is added to the IP during the JMP,
OFO000H, the target’s true offset from the segment’s base address is correctly
generated.

Your source line:
JMP TARGET_LABEL__NAME
is all you have to code. There is no complication of how you write programs. The

assembler automatically generates the correct displacement to reach your indicated
target, even when the ‘‘apparent distance’’ is very large, using the above mechanism.

INSTRUCTION POINTER REGISTER

CPU

PROGRAM
ADDRESSES
emory ) INSTRUCTION o
MEMORY
R Y NS AR _ INSTRUCTION
CONTAINING —__ > INSTRUCTION
INSTRUCTIONS A~
V\'\IJH!CH ARE READ =1 > INSTRUCTION
AND EXECUTED — — — »| 0PCODE/OPERAND
~ —
~_ ™ INSTRUCTION
~
-~ INSTRUCTION

INSTRUCTION
l OPERATION CODE I OPERAND I
WHATTO DO WHERE
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Segment Registers. The (CS, DS, SS, ES) register set, called the Segment Registers,
are used in ALL memory address computations (but not for I/0, as discussed at the
end of this chapter). The segment mnemonics are:

Cs: Code
DS: Data

SS: Stack
ES: Extra

The contents of a segment register is a word called the paragraph number or the
segment-base-address. It represents a unique address in the one million bytes the
8086 can access. The special handling given to the contents of a segment register was
explained above under Memory Addressing.

The paragraph number in the CS register defines the current CODE SEGMENT as
the 64K bytes of addresses higher than that paragraph number. All instruction
fetches are taken to be relative to CS, using the instruction pointer (IP) as an offset.

The paragraph number in the DS register defines the current DATA SEGMENT as
the 64K bytes of addresses higher than that paragraph number. Most data reference
hardware instructions use the DS register by default. One advantage to DS is that
slightly shorter code will be generated.

Most references to data can be forced to be relative to one of the other three segment
registers by preceding the data reference with a one-byte segment override prefix. In
ASMS86, the management of these prefixes is done automatically for you via the
ASSUME directive (see Chapter 4).

(There are three exceptions to the hardware’s assumption of DS. When either SP or
BP is used in an address-expression, the hardware assumes that register contains an
offset to the stack segment (SS register). In certain string instructions, DI is an offset
to the extra segments (ES register). BP can actually be used with any segment, using
an appropriate override byte, but SP does unalterably refer to SS. DI, in those cer-
tain instructions, does unalterably refer to ES.)

The current Stack Segment is defined as the 64K bytes of addresses higher than the
contents of the SS register. Data references involving SP (and typically BP) are
taken relative to SS. This includes all push and pop operations, including those
caused by CALL operations, interrupts, and RETurn operations. Data references
involving BP (but not SP) can be forced to be relative to one of the other segment
registers by using the special one-byte base prefix discussed below under Overrides.

The current Extra Segment is defined as the 64K bytes of addresses higher than the
contents of the ES register. The extra segment is usually created as an additional
data segment. String instructions which use DI apply its contents as an offset to the
base-address in ES.

Programs which do not load or manipulate the segment registers and do not contain
FAR labels or FAR procedures (see Chapter 2), are said to be dynamically
relocatable. Such a program may be interrupted, moved to a new location, and
restarted with new segment register values.

The uses of segment registers depends on the size of program code, data, as is il-
lustrated in the figures below.
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CS=DS=SS=ES —»
64K -
CS —» DS —>»
64K 64K
CODE DATA
CS —>» DS —» ES —»
64K 64K 64K
CODE DATA DATA
CS —> DS—> DS —> DS—>»
64K 64K 64K 64K
CODE DATA DATA DATA

DS DYNAMICALLY REPLACED DURING EXECUTION SO AS TO POINT TO NEW
64K DATA AREAS

CS DYNAMICALLY REPLACED DURING EXECUTION SO AS TO POINT TO NEW
64K CODE AREAS

CS—> CS—>» CS—>

64K 64K 64K
CODE CODE DATA

1-18
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In order for the automatic addressing described above (under Memory Addressing)
to occur properly, you must load the segment registers with the paragraph numbers,
i.e., the segment base-addresses, that you want used for each section of code. You
do this by using the name of your segment, e.g.,

MOV AX,SEGNAM4
MOV ES,AX

MOV AX,DATA_SEC__3
MOV DS, AX

The names SEGNAM4 and DATA__SEC__3 represent these segment base- ad-
dresses and are defined by your use of SEGMENT directive (discussed fully in
Chapter 4). The first such directive that the assembler saw bearing that name, i.e.,

SEGNAM4 SEGMENT
(o]
(o]

(o]
SEGNAM4 ENDS
DATA_SEC_3 SEGMENT

(o]

(0]

o
DATA_SEC_3 ENDS
ultimately defined the segment’s starting point.

NOTE

If you were to put consecutive paragraph numbers into some of the segment
registers, e.g.,

MOV AX, 1234H
MOV ES, AX

MOV AX, 1235H
MOV DS, AX

MOV AX, 1236H
MOV SS, AX

Then clearly many of the same addresses would be accessible using ES, DS,
or SS. For example, a variable at the address 12378H might be reached
using ES plus the offset 38H, or using DS plus the offset 28H, or using SS
plus the offset 18H. The segments would in this sense overlap.

On the other hand, if the addresses you used were 1234H, 3234H, and
5234H, then none of the addresses accessible using ES or DS or SS would be
the same. The segments would be disjoint, since the address 32340H is fur-
ther away from 12340H than the maximum possible offset of 64K —1 bytes
= OFFFFH. There are 16 disjoint segments making up the megabyte, and
65536 overlapping segments.

In the discussions that follow, here and throughout the manual, the words ‘‘seg-
ment’’ and ‘‘base-address’’ and ‘‘paragraph-number’’ will effectively be synonyms
whenever the text is referring to the beginning address of a segment.
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SI

DI

FLAGSH

> Cs

Ds

ES

ACCUMULATOR
BASE

COUNT

DATA

STACK POINTER
BASE POINTER
SOURCE INDEX
DESTINATION INDEX

INSTRUCTION POINTER
STATUS FLAGS

CODE SEGMENT
DATA SEGMENT

STACK SEGMENT
EXTRA SEGMENT

AX: AH

AL

BX: BH

BL

CX: CH

CL

DX: DH

DL

GENERAL
REGISTER
FILE

RELOCATION
REGISTER
FILE

General Registers. The (AX, BX, CX, DX) register set is called the General
Register, or HL group. The general registers can participate in the arithmetic and
logic operations of the 8086 without constraint. Some of the other 8086 operations
(such as the string operations) dedicate certain of the registers to specific uses. These
uses are indicated by the following mnemonic phrases:

AX: Accumulator

BX: Base
CX: Count
DX: Data

The general registers have a property that distinguishes them from the other
registers, namely that their upper and lower halves are separately addressable. Thus,
the general registers can be thought of as two sets of four 8-bit registers. These are
called H and L, for high-byte and low-byte, i.e. AH, BH, CH, DH, and AL, BL,

CL, DL.
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The accumulator has an additional property: you get more compact programs by us-
ing it as the target of your data transfer, arithmetic, and logic instructions than when
you use the other general-registers. Also, assembly language instructions whose
destination is the accumulator can be abbreviated.

The remainder of the registers in the 8086 processor must be accessed as if contain-
ing 16-bit words, whether or not both their high-order and their low-order bytes are
utilized.

Pointers and Indexes. The (SP, BP, SI, DI) register set is called the Pointer and In-
dex Register (P and I) Group. The registers in this group are similar in that they
generally contain offset or base addresses used for calculating addresses within some
segment. Like the general registers, the pointer and index registers can participate in
all the 16-bit arithmetic and logical operations of the 8086.

They are also similar in that they can enter into address computations, with one dif-
ference, however, which results in dividing this set into two groups, the P, or Pointer
Group (SP, BP) and the I, or Index Group (SI, DI).

The difference is that the offset addresses in the Pointers are assumed by the hard-
ware instructions to be relative to (use the base-address of) the current stack seg-
ment, and the offset addresses in the Indexes are assumed by the hardware to be
relative to (use the base-address of) the current data segment. (Certain string opera-
tions listed in Chapter 6 are exceptions, using DI relative to the ‘‘extra segment’’ in-
stead of the data segment).
The mnemonics associated with these registers are:

SP: Stack Pointer

BP: Base Pointer

SI:  Source Index

DI: Destination Index

MEMORY SEGMENTS
ADDRESS
00000
A
CS —>»
}cuanem CODE
SEGMENT ADDRESSED BY CS
« THE ONE MEGABYTE OF MEMORY IS PARTITIONED D
INTO FOUR CURRENT SEGMENTS.
o THE FOUR SEGMENT RELOCATION REGISTERS s —> \
DESIGNATE 64K BYTE “CURRENT”’ SEGMENTS WHICH CURRENT DATA
THE CPU CAN ACCESS FOR CODE, DATA AND STACK. ES —» SEGMENT ADDRESSED BY DS
ACCESSING OUTSIDE THESE SEGMENTS IS AC- H
COMPLISHED BY RELOADING A SEGMENT REGISTER CURRENT EXTRA MEGABYTE
WITH ANEW SEGMENT ADDRESS. SEGMENT ADDRESSED BY
ES (FOR DATA)
+ SEGMENTS START AT A “HEXADECIMAL BOUNDARY”
AND CAN OVERLAP.
SS —» -
\\\ N CURRENT STACK
NN SEGMENT ADDRESSED BY SS
FFFFFH /
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Flags Overview. The (AF, CF, DF, IF, OF, PF, SF, TF, ZF) register set is called
the Flag Register or F group. The flags in this group are all one bit in size, and are
used to record processor status information and to control processor operation. The
details of their interpretation are given in the next section. The flag register
mnemonics are:

AF: Auxiliary-carry PF: Parity
CF: Carry SF: Sign
DF: Direction TF: Trap
IF : Interrupt-enable ZF: Zero
OF: Overflow

The AF, CF, PF, and ZF flags are equivalent to 8080 flags, generally reflecting the
status of the latest arithmetic or logical operation. The 8086 adds to this group as
follows: The OF flag reflects the signed arithmetic overflow condition. The DF flag
controls the direction of the string manipulation instructions (auto-incrementing or
auto-decrementing). The IF flag enables or disables external interrupts. The TF flag
puts the processor into a single-step mode for program debugging. Interrupt and
trap mode are discussed in greater detail in the 8086 User’s Manual (9800722).

The flag registers are illustrated in the figures below in the format in which they are-
stored by push-flag operation (PUSHF). The bit positions marked X are undefined.
The figures show the equivalence of 8080 flags to those of 8086. An additional dif-
ference from the MCS-80 family is that the content of the accumulator is not
transferred to and from the stack by flag operations. Fuller detail on flag usage ap-
pears in Appendix C.

STATUS FLAGS

HIGH LOwW
0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1
Ledxfx]xfofofifrlsfzixjajxfr]xjc]

OVERFLOW

DIRECTION

INTERRUPT ENABLE

TRAP

SIGN —m—————

ZERO

AUXILIARY CARRY

PARITY

CARRY

AH AL
| 8086 FLAGS | soss/sosoFLAGS |

AF: AUXILIARY CARRY-BCD

CF: CARRYFLAG

PF: PARITY FLAG 8080 FLAGS
SF: SIGNFLAG

ZF: ZEROFLAG

DF: DIRECTION FLAG (STRINGS)
IF: INTERRUPT ENABLE F

OF: OVERFLOW FLAG 8086 FLAGS
TF: TRAP-SINGLE STEP FLAG
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Addressing Modes

The 8086 instruction set provides several different ways to address operands. In 2-
operand instructions, the source (rightmost) operand may generally be an
immediate-constant i.e., a value contained in the instruction itself. When an
immediate-constant is the source, then the destination (left) operand may be either a
register or a location in memory. Otherwise one of the 2 operands MUST be a
register. The other may be either a register or a location in memory.

The examples below illustrate these points. The first three statements define symbols
used in the 2-operand instructions below them.

MFG_DEPT__ID EQU 5§
EXMP SEGMENT

ON_HAND DB 0

DB 2

DB 4
ITEM_COUNT DB 0

DB 17

DB 19
REPORTING_DEPARTMENT DB 0

EXMP ENDS

MOV AL,4 ;destination, register AL, receives immediate-value 4

MOV ITEM_COUNT, 14 ;destination, memory location ITEM__COUNT,
; gets immediate-value 14

MOV BL,ITEM_COUNT ;register BL is filled
; with the contents of memory location ITEM_COUNT

ADD BL,ON_HAND ;contents of memory location ON_HAND
; are added onto the contents of register BL

MOV REPORTING_DEPT,MFG_DEPT_ID ; memory location
; REPORTING__DEPT is filled by immediate-value 5

Operands in memory may be addressed directly, e.g., by a simple name as above, or
indirectly using registers and/or subscripts. Direct reference involves a simple 16-bit
offset, automatically added by the hardware to the address in a segment register.

Indirect reference involves either one or two of the four registers allowed within
square brackets [indicating an indirect reference]: BX, BP, SI, or DI. (If a variable is
named too it must precede the square-brackets expression.) BX and BP are called
Base registers. SI and DI are called Index registers. An indirect reference may in-
volve a single base register alone, a single index register alone, or one base and one
index register. An indirect reference may also include an 8 or 16 bit displacement.

The assembly language address expressions which result in these 4 kinds of memory
access are described in Chapter 5 on Expressions. Only those address-expressions
which result in the feasible addressing modes (see Table below) are valid.

Operands residing in memory may be thus addressed in four ways:

e Direct 16-bit offset address
Example: MOV REPORTING_DEPARTMENT, AL

e Indirect through a base register, optionally summed with an 8- or 16-bit
displacement
Example: MOV ON__HAND [BX+2], AL
MOV BL,ON_HAND [BP]
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® Indirect through an index register, optionally summed with an 8- or 16-bit
displacement
Example: MOV CL, ITEM_COUNT [SI+1]
MOV ON__HAND [DI+1],CL

¢ Indirect through the sum of a base register and an index register, optionally
summed with an 8- or 16-bit displacement.
Example: MOV AH, ITEM_COUNT [BX +1][SI+1]
MOV ON_HAND [BX+1][DI+1],AH

The location of an operand in an 8086 register or in memory is specified in many in-
structions by up to three fields. These fields are the mode field (mod), the register
field (reg), and the register/memory field (r/m). When used, they occupy the second
byte of the instruction sequence. Any DISPlacement bytes (1 or 2) always come last.

The mod field occupies the two most significant bits of the byte, and specifies how
the r/m field is to be used.

The reg field occupies the next three bits following the mod field, and can specify
either an 8-bit register or a 16-bit register to be the location of an operand. In some
instructions it can further specify the instruction encoding instead of naming a
register.

The r/m field either can be the location of the operand (if in a register) or can specify
how the 8086 will locate the operand in memory, in combination with the mod field
as shown below.

These fields are set automataically by the assembler in generating your code. They
are discussed in greater detail in Chapter 7 on Code macros. The effective address
(EA) of the memory operand is computed according to the the mode and r/m fields:

if mod =00 then DISP = 0*, disp-low and disp-high are absent
if mod =01 then DISP = disp-low sign-extended to 16 bits, disp-high is absent
if mod =10 then DISP = disp-high: disp-low

if r/m =000then EA = (BX) + (Sl) + DISP

if r/m =001 then EA = (BX) + (DI) + DISP

ifr/m =010then EA = (BP) + (Sl) + DISP

ifr/m =011then EA = (BP) + (DI) + DISP

ifr/m =100then EA = (Sl) + DISP

if r’/'m =101 then EA = (DI) + DISP

if r/m =110then EA = (BP) + DISP*

ifr/m =111 then EA = (BX) + DISP

*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low. Instructions referencing
16-bit objects interpret EA as addressing the low-order byte; the word is addressed by
EA + 1,EA.
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TYPICAL MEMORY USAGE

CcPU MEMORY
INSTRUCTION
STORAGE AREA
P AND FIXED DATA
INSTRUCTION
POINTER ROM/PROM/EPROM/RAM
E > STACK AREA
STACK POINTER RAM
VARIABLE STORAGE AREA
DATA POINTER RAM

MOD R/M
| OPCODE | w[xx]res| vw-l 32 COMBINATIONS
(XX=11)
XX YYY
REGISTER MODE
MOD SELECTED MODE R/M | MEMORYMODE
BYTE | WORD
1 REGISTER MODE I (BX) BH DI
10 D16 DISPLACEMENT 110 (BP) DH si
o1 D8 DISPLACEMENT 101 (DI) cH BP
00 NO DISPLACEMENT 100 ) AH sP
011 (BP)+ (D) BL BX
010 (BP) +(S) DL DX
REGISTER TO REGISTER MODE 001 (BX) + (D) cL cx
USES 8 OF 32 COMBINATIONS
OF MODE - R/M. AND W BIT 000 {BX) +Sh AL AX
SELECTS BYTE OR WORD W=0 W=

ADDRESS MODE ENCODINGS FOR MOD AND R/M

MO

R/M 00 01 10 11

W=0 W=1
000 (BX) +(SI) (BX) +(SI)+ D8 (BX)+ (S +D16 AL AX
001 (BX) + (D) (BX)+(DI) + D8 (BX)+(DI)+ D16 CL CX
010 (BP)+(Sl) (BP)+(Sl)+ D8 (BP)+(Sl)+ D16 DL DX
011 (BP) +(D1) (BP)+(DI)+ D8 (BP)+(DI) + D16 BL BX
100 (S1) (S1)+ D8 (S)+ D16 AH SP
101 (D) (D) + D8 (D) + D16 CH BP
110 DIRECT ADDRESS (BP)+ D8 (BP)+ D16 DH SI
11 (BX) (BX)+D8 (BX)+ D16 BH DI

Introduction
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ADDRESS COMPUTATION REVIEW

DISPLACEMENT N 0, D8, D16
+

BASE REGISTER BX, BP
+

INDEX REGISTER Sl, DI
+

RELOCATION REGISTER CS, DS, ES, SS
MEMORY ADDRESS

TYPICAL 8086 INSTRUCTION FORMAT

REGISTER SELECT
BYTE 1 4[ — __ BytEs T BYTE 4
| | I | I I l l l DISPLACEMENT | DISPLACEMENT |
OP CODE D|w|MmMOD| REG R/M 1 ]
y y f ? —— e e ——— e ——
(5 BITS) ADDRESSING MODE-REGISTER OR MEMORY
BYTE/WORD DATA
DIRECTION TO/FROM REG !
OPERATION CODE (IMMEDIATE, # OF OPERANDS)
1
0 = FROM REG
= TO REG
# BYTES
; | T T I « INSTRUCTION SIZES VARY DEPENDING ON THE TYPE OF INSTRUCTION,
OPCODE ADDRESSING MODE USED, AND SIZE OF IMMEDIATE DATA.

SINGLE REGISTER
¢ A SPECIAL ONE BYTE PREFIX CAN BE USED THAT CHANGES THE WAY THE
2 rT T l T | T l v I INSTRUCTION FOLLOWING IT IS EXECUTED. THERE ARE FOUR SUCH
OPCODE MOD Rq R2 PREFIXES, REPRESENTING THE FOUR SEGMENT REGISTERS.
REGISTERTO REGISTER

1 rrrr.r T T T T T T T
3 I OPCODE l I R/M I DATA/DISP l
IMMEDIATE BYTE OR RELATIVE SHORT TRANSFER
LN R S B B B | B | ™ T T T T T T =TT
a I OPCODE l | R/M I LOW DATA/DISP I HI DATA/DISP ]
IMMEDIATE WORD TO REGISTER OR RELATIVE LONG TRANSFER
LI BN S S N S B B SN BN L L L L AL T
5 I OPCODE I MOD [ REG I R/M [ LOW DISP | HI DISP | DATA BYTE I
IMMEDIATE BYTE TO MEMORY (LONG DISP)
r-r-r-r-er-re e T L BN B S e B S B RN S B B S Euan S =TT T T T
6 [ OPCODE lMOD | REG I R/M | LOW DISP | HI DISP | DATA I DATA I

IMMEDIATE WORD TO MEMORY (LONG DISP)
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Segment-Register Defaults in the Hardware

General registers BX and pointer register BP may serve as base registers. When BX
is the base the operand by default resides in the current data segment and the DS
register is used to compute the physical address of the operand. When BP is the base
the operand by default resides in the current stack segment and the SS segment
register is used to compute the physical address of the operand.

When both base and index registers are used the operand by default resides in the
segment determined by the base register. When an index register alone is used, the
operand by default resides in the current data segment. As mentioned above, you
can override the above defaults through use of a segment prefix byte described in
Chapter 5 and later in this chapter. Three defaults that cannot be overriden are:

® execution is only performed on instructions accessed by the Instruction Pointer
acting as an offset to the CS register

® SP acts as an offset to the SS register only

¢ Those certain string instructions which use the ES register cannot use a different
segment register instead.

Segment Override Prefixes

Since every instruction that deals with memory uses a segment register, the
assembler must decide which one is appropriate for each reference. The address- ex-
pression in the source line determines this, as discussed in Chapter 5.

The physical address of most other memory operands is by default computed using
the DS segment register. These default segment register selections may be overridden
by your preceding the referencing instruction with a segment override prefix, or
allowing the assembler to do it for you, as discussed in Chapter 4.

The segment register selected by the reg field below is used by the 8086 to compute
the physical address for the instruction this prefix precedes. This prefix may be com-

bined with the LOCK and/or REP prefixes, although the latter may not return ap-
propriately from an interrupt if multiple prefixes are present.

Encoding:
001 reg 110

reg is assigned according to the following table:

Segment
00 ES
01 CS
10 SS
1 DS

¢ Overrides implied segment register in next instruction’s data reference.

INST

SEGMENT INST
OVERRIDE R
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* Interrupts are not accepted between prefix and next instruction.
®  Code fetch always made to CS (using IP).
e Stack fetch always made to SS (using SP).

Example:

MOV AL,ES:XYZ
MOV ES:PDQ, AL

Controlling Segment Override Prefixes. When a segment override is necessary, it
must be specified individually in each data reference. Or, segment override prefixes
can be declared once with an ASSUME statement, and all references will
automatically generate the correct prefix. The ASSUME directive is described fully
in Chapter 4.

The ASSUME declaration associates a segment register with a segment name. All

references to items in the named segment cause segment override prefixes to be
generated if necessary.

Example:

MORSTUFF SEGMENT

XYZ DB 1
PDQ DW 0
FOO DD 2

MORSTUFF ENDS

ASSUME ES:MORSTUFF
MOV AL,XYZ

is equivalent to: MOV AL, ES:XYZ

Segment override prefixes can be symbolic segment names, if the segment names ap-
pear in a prior ASSUME statement.

Example:

ASSUME ES:SEG1
MOV AL, SEG1:XYZ

is equivalent to:
MOV AL,ES:XYZ

See the discussion of the ASSUME directive in Chapter 4. and of the override
operator in Chapter 5.

Stack and Stack Pointer. A stack is an area of memory used for storing values
temporarily. It is available via its own segment register, SS. Thus the same stack can
be used by different code segments, which must use unique values in CS and often
also in DS and ES.
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The use of a stack segment depends on SP, the stack pointer. You must set SS to
hold that segment’s base-address, and set SP to the highest offset in the stack seg-
ment, e.g.,

MOV AX, STACK_SEG__NAME1
MOV SS, AX
MOV SP, LAST_WORD__SS1

This is because the stack expands by decrementing the stack pointer. As items are
added to the stack, via PUSH or CALL, the stack expands into memory locations
with lower addresses toward the stack’s base address. As items are removed from the
stack, via POP or RETurn, the stack pointer is incremented back toward its highest
value, furthest from the base-address. The most recent item on the stack is known as
the “‘top of the stack’’ (TOS).

STACK POINTER

cpu MEMORY
LOW ADDRESS
150
[ros} > DATA ORSF
STACK
POINTER DATA
DATA
DATA
DATA
DATA
A
HI ADDRESS alll

SP POINTS TO CURRENT TOS
PUSH

1. DECREMENT SP TO POINT TO NEW TOS
2. WRITE NEW DATA IN MEMORY

POP

1. READ OLD DATA

2. INCREMENT SP TO POINT TO NEW TOS

LAST-IN, FIRST-OUT (LIFO)

““‘Stack’’ is a most descriptive term because you can always put something on top of
the stack, like a dish stacker. You can PUSH a new dish (word) on top, or POP the
last one on top off into a destination you specify. In terms of programming, a pro-
cedure can call a procedure, and so on. The only limitations to the number of items
that can be added to the stack are the amount of RAM available and the 64K limit
on segments.

To appreciate the purpose and effectiveness of a stack, it is useful to explore this
concept of a procedure.
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Assume that your program requires a special routine several times. You can recode
this routine each time it is needed, but this can use a great deal of memory. Or, you

can code a procedure:
Inline Coding Use of Procedure

o ‘ 0
(o] o
o o]

inline-copy-of-PROC1 CALL PROCH
o] o}
o o]
0 o

inline-copy-of-PROC1 CALL PROCt
o o
0 o

The 8086 provides instructions you can use to CALL and RETurn from a procedure.
When the CALL instruction is executed, the address of the next instruction (the con-
tents of the instruction pointer) is automatically PUSHed onto the stack. The con-
tents of the instruction pointer are replaced by the address of the desired procedure.
At the end of the procedure, a RETurn instruction POPs that previously-stored ad-
dress off the stack and puts it back into the instruction pointer. Program execution
then continues as though the procedure had been coded inline. The mechanism that
makes this possible is a stack.

PROCEDURE PROGRAM FLOW

MAIN PROG
PROCEDURE
ENTRY PROC
1
CALL *
PROC4
STACK REMEMBERS CALLING
) POINT - ROUTE TO TAKE BACK
CALL EXIT PROC4
PROC
NESTED PROCEDURES
ENTRY
ENTRY PROC; PROC3
CALL
PROC,
Y
EXIT PROC3

* PROCEDURES REDUCE THE AMOUNT OF PROGRAM MEMORY SPACE USED,
BY ALLOWING COMMON SEQUENCES TO BE EXECUTED FROM DIFFERENT
POINTS IN THE PROGRAM.
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STACK POINTER

AH AL
BH BL
CH cL
DH DL
15 0
sp
BP
s
D
cPU MEMORY LOW ADDRESSES
150
>| TOS |— DATA (SBSOTTOM OF STACK)
POINTER DATA
DATA
DATA
S TS |
DATA
DATA

HIGH ADDRESSES

The stack is also used for temporary storage of parameters for use in such a pro-
cedure. Before the CALL, the calling routine can first PUSH the data onto the
stack. The called routine can then simply access the stack directly. Though this has
certain advantages, it leaves the data sitting on the stack, violating the normal expec-
tation that the RETurn will leave the stack as it was before the calling program used
it. In this situation the called routine can end with the statement:

RET 8

which causes the stack pointer to be incremented by that number, effectively skip-
ping over (‘‘popping off’’) those words (4 in this case) for any subsequent stack
operations. Since stack operations always involve WORDS, the number, if any,
placed on a RETurn instruction must be two times the number of items to be skip-
ped. Three parameters would mean a RET 6.

Stack Operations. As mentioned above, stack operations ttansfer sixteen bits of
data between memory and a destination register or destination memory word. The
two basic operations are PUSH, which adds data to the stack, and POP, which
removes data from the stack.

A CALL instruction PUSHes the contents of the instruction pointer (which contains
the address of the next instruction) onto the stack and then transfers control to the
desired procedure by placing its address in the instruction pointer. A RETurn in-
struction POPs the word off the top of the stack and places it in the instruction
pointer. This requires the programmer to keep track of what is in the stack. For ex-
ample, if you call a procedure and the procedure PUSHes data onto the stack, the
procedure must remove that data before executing a return instruction. Otherwise,
the return instruction POPs data from the stack and places it in the instruction
pointer. The results are unpredictable, of course, and probably not what you want.
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Saving Program Status. It is likely that a procedure requires the use of one or more
of the working registers. However, it is equally likely that the main program has
data stored in the registers, which it will need when control is returned to it. As a
general rule, a procedure should save the contents of a register before using it and
then restore the contents of that register before returning control to the main pro-
gram. The procedure can do this by PUSHing the contents of the registers onto the
stack and then POPping the data back into those registers before executing a return.
It is important to restore (POP) them in the opposite order from their saving, e.g.,

PUSH BX
PUSH CX

POP CX
POP CS

A pair of procedures could be written to do this, named, say, SAVE and RESTORE.
Then all other procedures could simply call SAVE at the beginning and RESTORE
at the end. See also Appendix D.

Input/Output. Input/output is done using addressable ports, either 1 byte or 1
word in size. There are 65536 such port addresses, reflecting the fact that I/0 space
is addressed using a 16-bit address. Segment registers are not used.

The input/output ports provide communication with the outside world of peripheral
devices. The IN and OUT instructions initiate data transfers.

The IN instruction latches the number of the desired port onto the address bus. As
soon as a byte (or word) of data is returned to the data bus latch, it is transferred in-
to the accumulator, AL (or AX).

The OUT instruction latches the number of the desired port onto the address bus
and latches the data in AL (or AX) onto the data bus.

Notice that the IN and OUT instructions simply initiate a data transfer. It is the
responsibility of the peripheral device to detect that it has been addressed. Notice
also that it is possible to dedicate any number of ports to the same peripheral device.
You might use a number of ports as control signals, for example.

Because input and output are almost totally application dependent, a discussion of
design techniques is beyond the scope of this manual. For additional hardware in-
formation, refer to the 8086 Microcomputer Systems User’s Manual(9800722).

The instructions IN and OUT each have 2 forms. You may specify DX, as in OUT
DX, AX or OUT DX, AL using the contents of the DX register as the address of the
port. Using DX you have 65536 ports.

Alternatively, you may specify an immediate byte operand as the address of the port
in which case you have 256 possible ports.

In either case the accumulator is the source for output or the destination for input.

When AX is specified, a word is input or output. When AL is specified, a byte is in-
put or output.
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I/0 Device Selection.

e IN/OUT port numbers can be designated with 8 bit literals in the instruction
(0-255).

* IN/OUT port numbers can be contained in a word register, (0-64K), DX.
e IN/OUT ports can transmit bytes (8 bits) or words (16 bits).

e Byte I/0 ports can communicate on the low (D0-D7) data bus lines or the high
(D8-D15) data bus lines.

* Evenaddressed I/0 ports transfer data on low (D0-D7) data bus lines.
¢ Odd addressed I/0 ports transfer data on high (D8-D15) data bus lines.

Care must be exercised that each register within an 8 bit peripheral chip is
addressed by all even or odd addresses.

Interrupt Procedures—(See also Appendix D)

The 8086 language supports two types of interrupts, external and internal. An exter-
nal interrupt is initiated by some peripheral asserting an interrupt request to the 8086
in the hardware (refer to the MCS-86 User’s Manual for details). An internal inter-
rupt is one initiated by the software the 8086 is executing. An interrupt represents a
transfer of program execution control. The type of transfer used in the 8086 is called
a vectored interrupt. An interrupt vector represents an address of a procedure which
services the interrupt.

In the 8086, all interrupts (both external and internal) perform a transfer by pushing
the flag registers onto the stack (as in PUSHF), and then performing an indirect call
(of the intersegment variety) through an element of an interrupt vector located at ab-
solute memory locations 0 through 3FFH. Each vector is a four byte element with
the first two bytes containing the offset of a procedure (or label) and the second two
bytes containing the paragraph number of the segment containing the procedure (or
label). There are 256 possible interrupt vectors. Within the 8086 assembly language,
each vector is given a number from 0 through 255. Intel Corporation reserves the use
of interrupts 0 through 31 (locations 0 through 7FH) for Intel hardware and soft-
ware products. Users who wish to maintain compatibility with present and future In-
tel products should not use these locations except as defined by Intel. Interrupts 0
through 4 (0 - 13H) currently have the dedicated hardware functions as defined
below.

Interrupt # Location Function
0 0-03H divide by zero
1 04H-07H single step
2 08H-0BH non-maskable interrupt
3 0CH-0FH one byte interrupt instruction (INT 3)
4 10H-13H interrupt on overflow

There are three interrupt transfer operations provided:

— INT pushes the flag registers, clears the TF and IF flags, and transfers control
with an indirect call through any of the 256 vector elements, i.e., INT 24 will do
an indirect call through interrupt vector 24 (location 96). A one byte form of this
instruction is available for interrupt type 3, INT 3.
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— INTO pushes the flag registers, clears the TF and IF flags, and transfers control
through vector element 4 if the OF flag is set (interrupt on overflow). If the OF
flag is cleared, then no operation takes place.

— IRET transfers control to the return address saved by a previous interrupt
operation and restores the saved flag registers.

The following example illustrates the means of setting up the interrupt vectors and
the procedures which service the interrupts. An absolute segment is defined at loca-
tion 0 which contains the interrupt vectors (see the chapter on data initialization and
directives for details concerning the following constructs.)

INT_VECTORS SEGMENT AT 0

ORG 0CH
DD TYPE_3_PROC ;interrupt type 3
ORG 14H
DD TYPE_5_PROC ' ;interrupttype5

INT_VECTORS ENDS

In the above example the DD TYPE__3__PROC will store the address (the offset
and paragraph number) of the procedure called TYPE__3__PROC.

The interrupt procedures themselves will then appear in another user-defined seg-
ment elsewhere in the program.

INT_PROCS SEGMENT

TYPE_3_PROC PROC FAR

*

* ;the code for the procedure
IRET
TYPE_3_PROC ENDP

TYPE_5_PROC PROC FAR

*
*

*

IRET
TYPE_5_PROC ENDP

INT_PROCS ENDS

Somewhere in the program you can then specify the following code.

*
*

INT 3 ;will cause the execution of TYPE_3_PROC

INT 5 ;will cause the execution of TYPE__5_PROC

*

For external interrupts, the peripheral device will request an interrupt from the 8086.
When the 8086 grants the interrupt, the device will supply a byte value on the data
bus which represents the type or number of the interrupt i.e., 0 through 255. The
8086 will read this value and then execute the interrupt through the vector. In the
above example the procedure TYPE__5__PROC can be executed either through the
instruction INT 5 in the software or by a device requesting an interrupt from the
8086 and then putting the value 05H on the data bus. (See also Appendix D.)



CHAPTER 2

BASIC CONSTITUENTS OF AN 8086

ASSEMBLY LANGUAGE PROGRAM

This chapter discusses the elements that constitute a program in the 8086 assembly

language. The topics include:

Introduction
ASMS86 Character Set
Syntactic Elements of ASM86
Tokens and Separators
Delimiters
Constants
Numeric Constants
Character Strings
Identifiers
Keywords
Symbols and their Attributes
Registers
Variables
Labels
Numbers
Other Symbols
Statements
Modules

Introduction

There is a legitimate distinction between the 8086 Assembly Language and the
ASMB86. The latter is a program that recognizes and translates the language into ob-
ject (machine) code. This manual, however, uses the two terms more or less inter-

changeably.

Programs in the 8086 Assembly Language are written free-form. That is, the input
(source) lines are column-independent and blanks may be freely inserted between the
elements of the program. The only exception is a continuation line, which must have
an ampersand (&) immediately following the terminator of the previous line.

ASM86 Character Set

The character set used in ASM86 is a subset of both ASCII and EBCDIC character

sets. The valid ASM86 characters consist of the alphanumerics:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqgrstuvwxyz

0123456789

along with these special characters

+=*1=0)[]<>;’.“, _:T"@%&

and the non-printing characters

space tab carriage-return line-feed




Basic Constituents

2-2

If an ASM86 program contains any character that is not in this set, the assembler
will treat the character as a blank. The combination of a carriage-return (or linefeed
or both) immediately followed by an ampersand represents a continuation line and is
treated as a blank (except within a character string or comment).

Upper- and lower-case letters are not distinguished from each other (except in string
constants—see below). For example, xyz and XYz are interchangeable. In this
manual, all ASM86 code is in upper-case letters to help distinguish it visually from
explanatory text.

Blanks are not distinguished from each other (except in string constants). Any blank
is considered to be the same as any other blank. Moreover, any unbroken sequence
of blanks is considered to be the same as a single blank.

Special characters and combinations of special characters have particular meanings
in an ASM86 program, as described in the remainder of this manual.

Syntactic Elements of ASM86
Tokens and Separators

A token is the smallest meaningful unit of a ASM86 source program, much as words
are the smallest meaningful units of a book in English. Separators are used to
separate two adjacent tokens so that they are not mistakenly thought to be one
longer token. The most commonly used separator is the blank ( ). Blanks are not
distinguished from each other (except in string constants). Any unbroken sequence
of blanks may be used wherever a single blank is allowed. Horizontal tabs are also
used as separators and are interpreted by the assembler identically to blanks except
that they may appear as multiple blanks in the list file (see operator’s manual). Any
illegal character, or character used in an illegal context, is also treated as a separator.

Blanks may thus be inserted freely around any token, without changing the meaning
of the ASM86 statement. Thus the statements:

MOV ITEM, [BX +3]
MOV ITEM,[BX+ 3]

are identical insofar as the meaning to the assembler is concerned.

Delimiters

Delimiters are special characters that serve to mark the end of a token and also have
a special meaning unto themselves (as opposed to separators, which merely mark the
end of a token). In the sample statements above, the comma, the plus-sign, and the
square brackets all serve as delimiters. When a delimiter is present, separators need
not be used; however, using separators often makes your programs easier to read
and, therefore, easier to understand in ASM86.

8086 Assembly Language
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The table below describes the special usages of the delimiters and separators in

Basic Constituents

ASMB6:
Character(s) English Name Use
20H blank or blanks Separate or terminate tokens; enhance program
09H horizontal tab readability
, comma Separate an operand from a preceding one when
more than one is present
L pair of single Delimit a character string
quotes
(...) pair of matched Delimit an expression or subexpression, often to
parentheses enhance program readability or to alter operator
precedence
0DH (CR) carriage-return Statement terminator (unless immediately followed
0AH (LF) line-feed by a’'&’)
CR-LF carriage-return/
line-feed pair
; semicolon Comment field delimiter
colon Delimiter for symbols used as labels, segment
overrides, macro specifiers, extrn types, assume
fields, record field definitions
period or dot Selector for a field from a record; only allowed
within codemacros
& ampersand Continuation line indicator, when immediately
following a statement terminator
<> pair of matched Indicates the enclosed values are to be used to
angle brackets initialize a record within a codemacro
$ dollar sign Shorthand notation for ‘“The present value of the
location counter”’
[...] pair of matched Encloses an index or pointer (subscript) expression
square brackets
= equal sign Separates field width specification from (optional)
default initial value
- minus sign Between 2 operands, indicates subtraction; alone
to the left of an operand, indicates negative value
+ plus sign Between 2 operands, indicates addition; alone to
the left of an operand, indicates positive value
* star, asterisk, Indicates multiplication
times sign
/ slash, division sign | Indicates division operation
? question mark Indicates an unspecified value to be used to
initialize storage; may also be used with other
characters to form identifiers
@ commercial at-sign | Used to form identifiers
- underscore Used to form identifiers

While many of the usages and terms used above may be new to you, they will be ex-
plained in subsequent chapters of this manual.
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Numeric Constants

A constant is a value known at assembly-time, which does not change during execu-
tion. A constant may either be a whole-number (integer) or a character string.
Whole-number constants may be expressed as a binary (base 2), octal (base 8),
decimal (base 10), or hexadecimal (base 16) number.

A binary number consists of a sequence of the digits (0, 1) terminated by a ““B”’.
Examples:

0B

1B

01101010101B

1111111111111111B
—0001000b

An octal number consists of a sequence of the digits (0,1,2,3,4,5,6,7) terminated by
an ‘“‘O’’ ora ““‘Q’’. Examples: '

12345670
-3Q

3770

0q

A decimal number consists of a sequence of the digits (0,1,2,3,4,5,6,7,8,9) ter-
minated by a “‘D’’ (or a blank). Examples:

10000
—-6d
65535

A hexadecimal number consists of a sequence of hexadecimal digits and letters
©,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) terminated by an ‘“H’’. Furthermore, the con-
stant must begin with a digit and not a letter in order to enable ASM86 distinguish it
from an identifier (see below). It is sufficient to place a ‘‘0’’ before the leading
character of a hexadecimal constant if it is a letter. Examples:

All numbers must be representable in 17-bits (including one bit for the sign of the
number), i.e.,

-1111111111111111B <= binary constant <=1111111111111111B
—-177777Q <= octal constant <=177777Q
—-65535 <= decimal constant <= 65535
—-0FFFFH <= hexadecimal constant<= 0FFFFH

Character Strings

Character strings are denoted by printable ASCII characters enclosed within
apostrophes (’). Blanks and horizontal tabs are also allowed within strings but
carriage-returns and line-feeds are not. The assembler represents the character string
as a sequence of bytes containing the ASCII code for each character within the
string. (The ASCII encoding consists of 7 bits.) Examples of character strings are:
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'ABCDEFG’

'This is a string’
'Let’’sincludea‘ '’ ' character’
'123456!‘ ‘#$%&()__—’

Notice that the third string includes two consecutive apostrophes within the string to
represent the presence of a single apostrophe.

Strings of length 1 translate to single-byte values; strings of length 2 translate to
word values. For example:

A’ is equivalent to 41H
’Ag’ is equivalent to 4167H
'# is equivalent to 23H

Character strings longer than two characters may only be used to initialize storage
(see Chapter 3). One-character strings may be used any place a one byte immediate
value may be used; two character strings may be used any place a one word
immediate-value may be used.

Strings may not exceed the maximum length described in the MCS-86 Assembler"
Operator’s Manual for ISIS-II Users (9800641).

‘I‘dentifiers

Identifiers are sequences of characters which have a special, symbolic meaning to the
assembler. All identifiers in ASM86 must obey the following rules:

1. The first character must be alphabetic (A,..,Z,a,...,z) or one of the special
characters, @, _, or ?. (The question mark, however, may not be used alone as
an identifier.)

2. Any subsequent characters can be either a character as mentioned in rule 1
above or a numeral (0, 1,..., 9).

3. Identifiers are unique within the first 31 characters; subsequent characters are
ignored.

Thus the following are examples of valid identifiers:

A

WORD

FFFFH

Third_Street__and__Main
Should_We__Jump?
@variable_number__1234567890123456
@variable_number__1234567890123457

Notice that the last two identifiers will be treated as the same identifier by the
assembler since they are identical in their first 31 characters.

Examples of invalid identifiers are:

First$ld (°$’ is not allowed as part of an identifier)

OFFFFH (this is a number since it begins with a number)

"Memphis’ (characters enclosed by apostrophes constitute a string, not an
identifier)
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Keywords

One of the examples of an identifier in the section above was WORD. This is a
keyword. A keyword is an identifier that has a pre-defined meaning to the
assembler. In general, keywords may only be used in their special context, unless
they are ‘‘purged”’ first, and not all keywords may be purged.

AX

Segment (remember, upper- and lower-case letters are equivalent)
END
MOV

For a complete list of keywords, see Appendix E.

Symbols and Their Attributes

A symbol is an identifier defined by you, the user, in order to represent certain loca-
tions in memory, or data, expressions, or code (or data) constructs. The assembler
also predefines the register set and one segment for you. (You may redefine register
symbols if you desire.) Symbol is used here in a very specific sense, and not
generically as a name for all tokens.

Symbols may be divided into five categories:
1. registers

2. variables

3. labels

4. numbers

5. others (segments, groups, records, record fields, codemacros, formal

parameters)

Each symbol carries with it certain attributes which allow the assembler to use that
symbol to represent the desired information and distinguish aspects of its intended
usage.

Registers

Each register belongs to a class as shown in Chapter 1. These classes determine
whether the register is considered to be a byte or word (two byte) register. The 8086
flags are also considered one-bit registers. The following table partitions all the
predefined 8086 registers:

REGISTERS

CLASS INCLUDED SIZE ALSO KNOWN AS

H AH 1byte Accumulator-High-Byte
BH " Base-RegisterHigh-Byte
CH ‘ Count-Register-High-Byte
DH " Data-Register-High-Byte

L AL ‘ Accumulator-Low-Byte
BL ” Base-Register-Low-Byte
CL ‘ Count-Register-Low-Byte
DL ” Data-Register-Low-Byte

X AX 2 bytes Accumulator (full word)
BX * Base Register "
CX “ Count Register "
DX “ Data Register "

P BP t Base Pointer
SP " Stack Pointer
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REGISTERS
CLASS INCLUDED SIZE ALSO KNOWN AS
| SI ‘ Source Index
DI ” Destination Index
S CS ‘ Code-Segment-Register
SS ” Stack-Segment-Register
DS “ Data-Segment-Register
ES ” Extra-Segment-Register
F AF 1 bit Auxiliary-Carry-Flag
CF “ Carry-Flag
DF ” Direction-Flag
IF ‘ Interrupt-Enable-Flag
OF ” Overflow-Flag
PF “ Parity-Flag
SF ” Sign-Flag
TF ¢ Trap Flag
ZF ” Zero Flag

General purpose registers (X, H, L classes) may be used as ‘‘source’’ or ‘‘destina-
tion”” for most instructions (see below and Chapter 6). Some registers have special
usages (e.g., BX is used in calculating addresses, CL is used as a count register for
some instructions, etc.). Flags are not individually addressable but may be altered
individually by the outcome of certain arithmetic, logical, or relational instructions;
or collectively, by the outcome of certain data transfer instructions.

Variables

Variables are used to identify data which is residing at a particular location or loca-
tions in memory. All variables have three attributes:

1. Segment (which segment was being assembled when this variable was defined)
2. Offset (how many bytes there are between the beginning of the segment and the
location of this symbol)

3. Type (how many bytes of data are manipulated when this variable is referenced)

As described in Chapter 1, segments start on any one of 64K segment boundaries.
One of these values is used as the segment part of the variable’s definition (although
this number may not be available at assembly time). The offset of a symbol may be
any number between 0 and 64K-1, inclusive. A variable must have one of the follow-
ing types:

BYTE (1 byte long)
WORD (2 bytes long)
DWORD (4 bytes long)

Variables are generally defined by:
1. Apearing as the name for a storage initialization directive; for example:
Variable_1 DBO0 (See Chapter 3)

2. Appearing as the name for a LABEL directive; for example:
Variable_2 LABEL BYTE (See Chapter4)

3. Appearing as the name for a EQU directive; for example:
Variable_3 EQU Another__variable (See Chapter4)

For a more detailed explanation of variables, see Chapter 3.
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Labels

Labels represent locations in memory which contain instruction code and are in-
tended to be referenced via jumps or calls. All labels have four attributes:

1. Segment (similar to the segment part of variables)
2. Offset (similar to the offset part of variables)

3. Distance (analogous to the type part of variables; indicates whether the label is
reachable using a two byte offset or whether a segment-offset pair is needed (4
bytes))

4. CS-Assume (indicates what was ASSUMEGd to be in the CS register when this
label was defined)

Labels and variables are similar in meaning to the assembler, except that the former
reference instruction code in memory, while the latter refer to data in memory. That
is why their attributes are similar. The segment and offset parts of labels are defined
similarly to those for variables. The distance part is one of two values:

NEAR: all references to this label use only a two byte, ‘‘self-relative’’ value, i.e.,
only the IP must be altered to reach this location and NOT the CS register’s
contents.

FAR: all references to this label require that both the IP and the CS registers be
altered and that all jumps or calls to this label must specify new values for
both.

Your choice of NEAR or FAR depends on whether this label is ever going to be
referred to by jumps or calls whose CS: assumption is different from this label’s CS:
assumption. This usually means a jump or call from outside the code segment (or
group) defining the label.

If all references use the same CS: assumption, then the label’s distance attribute
should be declared NEAR, otherwise FAR. If you say nothing, NEAR is assumed.

Choosing NEAR means you are telling the assembler that jumps to this label can
always reach it with a self-relative offset of at most 16-bits, whereas FAR will always
require such a reference to include a second word, giving the segment of this label as
well as an offset.

If the assembler finds a reference which requires a ‘‘long’’ jump or call to a label you
declared NEAR, it will flag an error.

Thus the CS-Assume attribute is crucial in the assembler’s determining what sort of
jumps and calls are required to transfer to the label. This concept is more fully ex-
plained under Label in Chapter 4.

Labels are generally defined by

1. Preceding an instruction, with a colon (:) between the label and instruction; for
example:
Label__1: ADD AX,BX

2. Appearing as a name to a LABEL directive; for example:
Label _2 LABEL FAR

3. Appearing as the name to an EQU directive; for example:
Label _3 EQU THIS NEAR

4. Appearing as the name on a matching PROC/ENDP pair; for example:
Label_4 PROC

Label_4 ENDP

For a more detailed explanation of labels, see Chapter 4.
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Numbers

A symbol may be defined to represent a pure number rather than representing a
register or a memory location (address). When this symbol is used, it is as if you had
explicitly coded the number it represents, e.g.,

Number_5 EQU 5
MOV AL, Number_5

is equivalent to writing:
MOV AL, 5

Number__5 has thus been defined as a symbol which does not represent a specific
memory address but rather the value S.

If a symbol is defined to be used as a number, it simply represents a 16-bit value (17
bits including sign bit during assembly). Operations on numbers are rather intuitive;
a full explanation of operations on numbers is presented in Chapter 5. Remember
that a one or two byte character string may also be used as the value of a number,
e.g.,

Initials EQU ‘AA’

MOV AX, Initials

is a perfectly legitimate usage of a number (4141H in this case).

For a further explanation of operators, expressions, and their relationship to
numbers, see Chapter 5.

Other Symbols

Other symbols may be defined by appearing as the name to an assembler directive.
The directives which require these symbols are:

SEGMENT/ENDS (defines a segment name)
GROUP (defines a group name)

RECORD (defines both a record name and the names of any record
fields contained within the record)

CODEMACRO (defines both a CodeMacro and the name of any formal
parameters used within the CodeMacro. Note that once a
symbol has been defined via a CodeMacro, it is no longer
considered an ordinary symbol but is considered an instruc-
tion mnemonic)

EQU (in addition to defining variables and labels, EQU may be
used to name expressions)

SEGMENT/ENDS, GROUP, RECORD, and EQU are all explained in detail in
Chapter 4; CODEMACRO is explained in detail in Chapter 7.

A facility for referencing symbols not defined locally is provided in the EXTRN
directive. This allows an arbitrary list of variables created in other modules to be
referenced in the current module, and it requires the type (i.e., BYTE, WORD,
DWORD, FAR, NEAR, or ABS—for numbers) to be specified with the name as
well. For example:

EXTRN little:BYTE, medium:WORD, bit:DWORD, close:NEAR, distance:FAR, x:ABS

For a further explanation of the EXTRN directive, and its usage in linking program
modules, see Chapter 4.
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Statements

Just as tokens may be seen as the assembly language counterparts to the English con-
cept of words, so may statements be viewed as analogous to sentences. A statement
is a specification to the 8086 assembler as to what action to perform. In fact, one
way of viewing a computer program is as a sequence of statements which, when
taken as an aggregate, is intended to perform a particular function. Statements may
be divided into two types:

Instructions: these are translated by the assembler into machine instruction code
which ““instruct’’ the 8086 to perform certain operations.

Directives: these are not translated into machine instruction code by the assembler
but rather ‘‘direct”’ the assembler itself to perform certain clerical functions.
(Note: the storage initialization directives DO cause information to be placed in
the 8086’s memory when the program is loaded; however, this is usually intended
to be used as data, e.g., to provide initial values for variables, and is not intended
to be “‘executed”’.)

Instruction mnemonics are either predefined by the assembler or defined by the
user via CodeMacro directives (see Chapter 7 and Appendix A). The assembler, in
fact, recognizes instructions ONLY if they have been so defined. Instruction
mnemonics may be changed, added to, redefined, or ‘‘purged’’ at any time. (See
Chapters4 and 7.)

Directives, on the other hand, are permanent, built-in features of the assembler.
They characterize ASM86 to a large degree. The assembler always takes the same,
specific action when it encounters a directive keyword. Directives may be neither
created nor destroyed.

Usually a statement will occupy one “line’’ in your source file. A ““line’’ is a se-
quence of characters ended by a terminator (carriage-return, line-feed, or carriage-
return/line-feed combination). However, ASM86 provides for ‘‘continuation lines’’
which allow a statement to occupy more than one physical line in your source file.
Any statement may be continued if the first character following the terminator is a
“&”’. (Symbols, however, may NOT be broken across continuation lines. Character
strings may not be continued across continuation lines; the string must be closed
with an apostrophe on one line and then reopened with an apostrophe on a subse-
quent continuation line, with an intervening ¢‘,”’. Comments are considered to be
ended by a terminator; if a comment is continued then the first non-blank character
following the “&’’ must be a ¢¢;”’.)

There are several directives which MUST be encoded on more than one line. These
are briefly described later in this section.

The format for encoding a statement is flexible in that (except for the restriction on
the ““&’’ used to denote continuation lines) tokens may appear anywhere on the
source line. However, it is useful to think of the statement in terms of its constituent
‘“‘fields’> where certain kinds of symbols are constrained to appear. Furthermore,
the general formats for instructions and directives are distinctive enough to require
different descriptions of their fields.

The INSTRUCTION statement format is:

label prefix mnemonic(opcode) operand(s) comment
where the fields are defined as:
label: a symbol followed by a ‘“:”’; defines a label at the current value of the

location counter in the current segment (see above and Chapter 4)
THIS FIELD IS ALWAYS OPTIONAL.
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prefix certain machine instructions may only be used as a prefix to other
instructions (e.g., LOCK, REP).
THIS FIELD IS ALWAYS OPTIONAL

mnemonic a symbol which has been previously defined via a CodeMacro
directive, either by the assembler or by the user. This field is optional;
however, if omitted, no operands may be present, although the other
fields may appear. The set of all instruction mnemonics recognized by
the assembler at any one time constitutes the assembler’s ‘‘instruction
set”’.

operand(s) an instruction mnemonic may require other symbols to follow it to be
the object of the actions called for by the machine instruction the
mnemonic represents. These symbols are called ‘‘operands’’. Instruc-
tions provided as part of ASM86 require zero, one, or two operands.
Users may define other instructions via CodeMacros that require more
than two operands. All operands after the first must be preceded by a
comma (,).

;comment  any semicolon (;) appearing outside of a character string begins a
comment, which is ended by a line terminator. Comments are used to
document and enhance the readability of programs. The liberal usage
of comments is strongly urged.

THIS FIELD IS ALWAYS OPTIONAL

Examples:

LAB1: MOV AX,BX

LAB2: MOV CX, ALF[SI]

The DIRECTIVE statement format is:
name directive operand(s) comment

where the fields are defined by:

name the name field of a directive MUST NOT BE CONFUSED with the
label field of a directive. This name is NEVER terminated with a ‘‘:”’.
Some directives require that a name be present (viz., SEGMENT,
ENDS, GROUP, RECORD, LABEL, EQU, PROC, ENDP); others
PROHIBIT the use of name (PURGE, NAME, ASSUME, ORG,
PUBLIC, EXTRN, END). Storage initialization directives (DB, DW,
DD) allow names to be optionally present. The Codemacro directive is
an exception to the above description of the directive statement and is
partially described below.

directive one of 20 keywords defined by the assembler to perform various
‘‘assembly-time>’ functions to assist the programmer in allocating
storage, communicating between modules, and manipulating
symbols.

operand(s) analogous to the operands to an instruction mnemonic. Some
directives allow an arbitrary list of operands (e.g., DB, DW, DD,
PUBLIC, EXTRN, PURGE). Others allow special keywords designed
to impart specific attributes to the entity being defined (e.g., SEG-
MENT, PROC). These operands may or may not be required,
depending upon the directive.

;comment  exactly as defined for instruction statements.
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Example:

RRR1 EQU AX

CODEMACRO is an exception to the above formulae. The proper form for a
CODEMACRUO definition is:

CODEMACRO name  operand(s) ;comment
Notice that the name appears AFTER the CODEMACRO keyword.

Some directives require certain other directives to be present. These matched pairs
are:

SEGMENT/ENDS
PROC/ENDP
CODEMACRO/ENDM

For both the SEGMENT/ENDS and PROC/ENDP pairs, the name that appears on
the first directive must also appear on the second. For example:

Seg__ 1 SEGMENT
requires a matéhing
Seg__1ENDS

ENDM directives may contain (but do not require) the name from the matching
CODEMACRO.

MODULES

A module is the unit of assembly, i.e., when you assemble your source file, your ob-
ject file defines a module. A program may span several modules (when you employ
the technique of ‘‘modular programming’’). These modules usually contain distinct
logical functions which are combined using the relocation and linkage programs of
the MCS-86 software family. (See the MCS86 Software Utilities manual.) Only one
module is produced per assembly.
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CHAPTER 3
VARIABLES AND INITIALIZATION

In designing a program or system, you must lay out the flow of control, i.e., the se-
quence of steps that the computer will follow in processing incoming commands or
data. The goal is to accomplish this definition in a fashion that is convenient for
several people: the designer, the programmer, and the person who may need to
modify or add to the code in the future.

In the very nature of programming (at least for machines with some limit on
memory), there are places and processes and data which are referred to multiple
times. Rather than using numeric addresses, it is most convenient to establish names
to stand for the addresses of these items:

a. LABELs, for references to chosen instructions (code), discussed in Chapter 4.
b. VARIABLES, for references to data.
c¢. NUMBERS, for references to immediate values.

d. EQUATED EXPRESSIONS, for references to indexed quantities, or more
complex expressions, discussed in Chapters 4 and 5.

Throughout this manual, the word label almost always means code, i.e. relative to
the CS (code segment) register only. The only exception occurs with a directive (in
Chapter 4) named LABEL. VARIABLE always means data, not restricted as to seg-
ment register, although DS is the normal register used.

These two types of names are distinguishable in several ways: labels must have a
distance attribute (see also Chapters 2 and 4) of NEAR or FAR, and can be defined
using a colon after the name. Variables have a type attribute e.g., BYTE, never a
distance attribute such as NEAR or FAR. Variables cannot be defined using a colon.

The convenience of names extends also to larger blocks of code in at least five ways:
1. in naming code-sequences as PROCEDUREs, defined once and then called into
execution from many different locations

2. in naming code-sequences as CODE MACROs, defined in terms of a few
varying parameters and reproduced in-line at each use of the name

3. incombining blocks of code

4. in checking for consistency in the use of names and registers, and

5. inlocalizing errors or omissions while testing the code for correctness.
SEGMENT-names are used to achieve the last three block-naming features.

Thus this chapter and related sections elsewhere in this book will discuss

1. how you establish such names

2. what default values automatically result as the meaning of such names in
subsequent expressions

3. what options you have for altering or adding to these automatic consequences
for names

4. how names are used.

Labels are discussed in Chapters 2, 4, and 5.
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Code Macros are discussed in Chapter 7.
Procedures are discussed in Chapter 4.
Segments are discussed in Chapter 4.

Data naming, storage allocation, and initialization are discussed below.

Variable Declaration and Initialization

Since data can be defined in terms of bits, bytes, words, double-words, or other
groupings, it is necessary to tell the assembler how much storage is required.

There are 3 kinds of storage allocation:

1. Dbytes — defined using DB

2. words — defined using DW
3. double-words — defined using DD

When you set up memory for data usage, you must specify its initial content. If you
don’t know or don’t care what the initial value of the location is, then the question
mark (?) should be used to indicate that no initialization is wanted (more about the
question mark later).

The DB, DW, and DD Directives

The DB, DW, and DD directives serve two purposes: (1) to initialize memory and (2)
to define variables. The acronyms stand for ‘‘define byte’’, ‘‘define word’’, and
““define double-word’’.

Variable Definition

A variable can be defined with a DB, DW, or DD directive. The desired variable
name appears to the left of the directive. As was mentioned in Chapter 2, variables
have three address components: SEGMENT, OFFSET, and TYPE. The directive
gives the type to the variable which appears to its left (i.e., BYTE for DB, WORD
for DW, and DWORD for DD). The assembly time offset of the variable is equal to
the number of bytes seen so far in the segment. The segment is the current segment.

In the case of a variable naming an array, the type is the number of bytes in a single
element of the variable.

Example:

TABLE_DATA  SEGMENT

TABLE DW 12
DW 34
NUM1 DB 5
TABLE_TWO DW 67
DW 89
DwW 1011
NUM2 DB 12
RATES DwW 1314
OTHER_RATES DD 1718

TABLE_DATA  ENDS
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The segment attribute for all the above variables is TABLE__DATA. DW defines a
word variable, 2 bytes, and DB defines a byte variable. The offset for
TABLE__TWO is 5, the number of bytes between the beginning of the segment and
that variable. The offset for RATES is 12.

The type of variables NUMI1 and NUM2 is 1, meaning byte. The type of
OTHER__RATES is 4, meaning doubleword. The type of all variables shown here
in TABLE__DATA is 2, meaning word.

IDENTIFIER SEGMENT ATTRIBUTES
OFFSET TYPE
TABLE TABLE_DATA 0 2
NUM1 TABLE__DATA 4 1
TABLE_TWO TABLE_DATA 5 2
NUM2 TABLE__DATA 1 1
RATES TABLE_DATA 12 2
OTHER_RATES TABLE_DATA 14 4

Memory Initialization

The DB, DW, and DD directives also serve to initialize storage. As seen above, an
expression may appear to the right of the directive. This has the effect of initializing
one ‘“‘unit’’ of storage to the value of the expression. A “‘unit’’ of storage is BYTE
for DB, WORD for DW, and DWORD for DD, that is 1 byte, 2 bytes, and 4 bytes
respectively.

Expressions

Expressions may be used to initialize storage. Expressions are discussed in Chapter
5. It will suffice here to say that there are two kinds of expressions, numeric and ad-
dress expressions. 5 is a numeric expression as is 4 * 50. A variable is an address ex-
pression as is a label. When an address expression is used to initialize storage, it may
only appear in a DW or DD directive, never in a DB. ““DW variable’’ will initialize a
word of memory with the offset of the variable from its segment. ‘DD variable’’
will initialize two words of memory with the segment and offset of the variable.

Example:
FOO SEGMENT AT 55H
ZERO DB 0 ; ONEBYTE OF 0
ONE DW ONE ; ONE WORD OF 1 (0001H)
TWO DD TWO ; LOWWORD OF 3 (0003H), HIGH WORD OF 55H (0055H)
FOUR DW FOUR + 5 ; ONE WORD OF 12 (000CH)
SIX DW ZERO-TWO ; ONE WORD OF -3 (OFFFDH)
ATE DB 5*6 ; ONE BYTE OF 30
FOO ENDS

The DD labelled TWO is very informative. Recall that the DD directive allocates 4
bytes. The first two were used as a word and filled with the offset of the variable
TWO (offset = 3). The second word was filled with the number 55H. This is the
paragraph number that the segment FOO is to begin on. Thus the two words in the
DD represent the absolute address of the symbol TWO, which is the primary reason
for the DD directive.
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34

No Initialization; the question mark:

A single question mark is a keyword in the assembly language (see Chapter 2 about
keywords). It may only be used in storage initializations, and means that it doesn’t
matter how the assembler initialized this location. What actually gets put into a loca-
tion initialized by the question mark is indeterminate.

Example:
DB ?
DwWw ?
DD ?

For these examples, 1, 2, and 4 bytes are reserved, but remain uninitialized.

The DUP Facility

The DUP facility allows for storage to be initialized by specifying an initial value (or
set of values) and the number of times these values should be repeated. This allows
for large storage areas to be initializedwith a small command. The form of the DUP
is

expression DUP (item)
where expression is a numeric expression evaluating to an absolute number greater

than zero. Item may be an expression (address or numeric), question mark, list of
items, or more DUP repetitions. Item must be enclosed in parentheses.

DB 100dup (0) ; 100 bytes of 0
DW 10dup (?) ; 10 words of unknown value
FOO DD 50DUP(FOO) ; 50 copies of the absolute address of
;  FOO (i.e., offset AND segment)
DB 10DUP (10 DUP (0)) ; 10 repetitions of 10 repetitions of 0
DW 35DUP (FOO, 0, 1) ; 35 repetitions of three words; the

; offsetof FOO, 0,and 1.

Lists

As seen in the above example, a parenthesized list of items may be DUPed in storage
initialization. The list (FOO, 0, 1) stands for a single entity to be repeated. Anything
that can appear by itself can also appear as a list member. This includes lists and str-
ings (explained below). Thus we have the following examples:

DB 5 DUP (1,2,4DUP (3),2DUP (1, 0))
This DB directive initializes 50 bytes, 5 copies of the bytes:

1,2,3,3,3,3,101,0
ALPHA DW 2 DUP (3 DUP(1,2dup(4,8),6),0)

This DW directive initializes 38 words. Two copies of the words with values:
1,4,8,4,8,6,1,4,8,4,8,6,1,4,8,4,8,6,0

A single list, not using the DUP facility, may not use parentheses. The following lists
achieve the same storage definition and initialization as the line of values above:

DW 1,4,8,4,8,6
DW 1,4,8,4,8,6
DW 1,4,8,4,8,6,0
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Character Strings

Variables and Initialization

A byte can also hold the ASCII representation of a character such as ’A’, ’9’. ‘ABC-

DE’ is a string of 5 characters run

together (‘‘concatenated’’).

If you wish to initialize storage with characters, you simply enclose them in single-
quote marks. Strings for storage allocation/initialization which are longer than 2
characters are legal ONLY in the DB command, and illegal in the DW and DD

commands.

For example, consider the sequence

PART1 DB "'THANKS’

PART2 DB 'LOT

LINE1 DB "THANKS A LOT’

BUFFER DB  128DUP(’’) ; INITIALIZE 128 BYTES TO BLANKS
LINES DB  80DUP(72DUP’’,0DH, 0AH) ;INITIALIZE 80 LINES, WHERE EACH

Recall that each character takes a

; LINE HAS 72 BLANKS AND ENDS
; IN ACARRIAGE RETURN, LINE
; FEED.

whole byte of memory. The above DB commands

have thus implicitly reserved and initialized multiple bytes: PARTI got 6 bytes,
PART?2 got 3 bytes, and LINEI got 12 bytes. DB is the only command in the
language that can accept strings longer than 2 bytes. If you were later to type

MOV PART1,’
MOV PART1+1,’B’

then the 6-byte string beginning at PART1 would say

)

BANKS’

The memory location PARTI, being only 1 byte, contains simply the blank you

moved in, but it also serves as the

beginning of this longer string if you were to need

to refer to it in later instructions. You would get the same result by typing

MOV WORD PTR PART1,'B

Examples:
INVENTORY__ACCESS
FILTER_1 EQU
SWITCH__1 DB
LEVELS__1 DB
ACCESS__1 bw
STORES__1 DW
SWITCH__2 DB
LEVELS_2 DB
ACCESS_2 DW
STORES__2 DW

INVENTORY__ACCESS

; 'B " because the bytes will

; bereversedin memory the

; PTR operator is discussed

; inChapter5

s

SEGMENT
4 ; FILTER__1isnowa
; name for the absolute number 4.
?
4DUP (?)
FILTER__1

FILTER_1DUP (0,1)

?

0,1,2,3

FILTER_1 + 2
(FILTER_1 + 2) DUP (1,2)
ENDS
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3-6

The first set of 4 commands, after the EQU above, allocates and initializes 23 bytes
of storage. SWITCH__1 allocates one byte, not initialized. LEVELS__1 allocates 4
bytes, not initialized. ACCESS__1 allocates one word, initialized to the set value of
FILTER__1, namely 4. STORES__1 allocates 8 words based on using the value of
FILTER__1 as a DUP-control expression. These 8 words are initialized to 0, 1, 0, 1,
0, 1, 0, 1, respectively.

The second set of commands allocates and initializes 31 bytes of storage.
SWITCH__2 allocates one uninitialized byte. LEVELS__2 initializes its byte to 0
and the successive 3 bytes to 1,2,3 respectively. ACCESS__2 allocates 1 word, in-
itialized to 2 more than the value of FILTER__1, i.e., 4 + 2 or 6. STORES__2
allocates 12 words or 24 bytes based on the value of this expression used as a DUP-
control. The word at STORES__2 is initialized to 1, and the succeeding 11 words are
initialized to 2,1,2,1,2,1,2,1,2,1,2 respectively.

VARIABLE TYPE LENGTH SIZE
SWITCH_-1 1 1 1
LEVELS__1 1 4 4
ACCESS__1 2 1 2
STORES__1 2 8 16
SWITCH__2 1 1 1
LEVELS_2 1 4 4
ACCESS_2 2 1 2
STORES__2 2 12 24

Words and Double-Words

DW creates 16-bit values, and DD creates 32-bit values.

EARLY EQU 3

MIDDLE EQU 1041 ;=0411H

FINAL EQU 28672 ; = 7000H

BLAST EQU EARLY * MIDDLE

HEAT1 DW EARLY * MIDDLE ; =0C33H

HEAT2 DW (FINAL + BLAST) * EARLY ; = 95385 = 17499H (ERROR)
HEAT3 DW (FINAL + BLAST)*EARLY/4 ; =95385 =17499H (ERROR)
HEAT4 DW (EARLY/4)*FINAL + BLAST ; NOT AN ERROR

The value computed to initialize HEAT1 will fit in a word (16-bits), being less than 2
to the 16th minus 1 = 1111 1111 1111 1111 B = OFFFFH. HEAT2 and HEAT3 are
errors because they exceed that value during evaluation. They will remain undefin-
ed. (If such a value resulted from a computation during execution, it would be
automatically truncated from its computed value of 17499H to 16-bits, becoming
the number 7499H.)

IT IS IMPORTANT TO NOTE that the Intel convention for storing words places
the least-significant byte in the lower-numbered memory location and the most-
significant byte in the next-higher memory location.

Similarly for double-words, the least-significant word is placed in the lower-
numbered memory location, and the most-significant word goes into the next-higher
word of memory.

Thus the initial value for HEATI1 will be stored as 33H OCH, and HEAT?2 will be
completely undefined.
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Furthermore, memory is typically presented left to right as increasing location ad-
dresses, OR top to bottom for increasing location addresses. Thus

DW 1234H
DW  5678H

becomes in memory: 34H 12H 78H 56H, or in vertical representation of memory
bytes,

34H
12H
78H
56H

Thus the above statement: the initial value for HEAT1 will be 33H OCH, stored as:

33H
0CH

Double-Words

In the case of DD, you are allocating 2 words in 1 command. One purpose for this
could be reserving room for later storing (during execution) both the segment and
offset values of a label or variable which is not in this segment.

Two words contain 4 bytes, and since each byte can store a 2-digit hexadecimal
number, a double-word could hold an 8-digit hex number. However, the largest con-
stant allowed by this assembler is a 17-bit (sign + 16) number, which is truncated in-
to 1 word. This is consistent with the 8086 architecture and machine instructions,
which permit manipulation of values no larger than 16 bits (except for multiplication
and division—see Chapter 5). The largest negative number possible is OFFFFH.

Thus if you write:

DD 1234H

the high order bits of the DD are assumed to be 0000H. The convention above is
followed, first by placing the least-significant half of the double-word in the lower-
addressed word, and then followed again by placing the least-significant byte of
each word in the lower-addressed byte of each word. Thus when you write:

DD 1234H

it is assumed you mean 0000H 1234H, which is the same as

DW 1234H
DW 0000H

since both become become stored as.

34H
12H
00H
00H

If you need to store 2 non-zero words, €.g., a constant or a segment/offset pair such
as 8765H 9423H, then 2 DW commands are needed:

DW 8765H
DW 9423H
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which is then stored as 65H 87H 23H 94H, or

65H
87H
23H
94H

in order of increasing addresses. (However, a name can be used, as shown early in
this chapter, under initializing with expressions.)

NOTE

The DD command is often used to create space for addresses, or rather that
pair of words called the offset and the segment, representing an 8086 ad-
dress (see Chapter 1 on addressing). By 8086 convention, a pair of words
representing an address always has the offset first and the segment last (e.g.,
as used by the LDS command, or PUSH of a “‘long’’ value). By convention,
then, 8765H in the pair of words above would be considered the offset value
of such an operation, and 9423H the segment value.

This reversal of bytes in memory is usually only important when reading dumps of
memory, e.g., in debugging. In most other cases, such as MOVing such quantities,
the hardware automatically compensates appropriately for this convention and you
need not pay any attention to it. For example, the sequence:

LOC1: MOV AX,’NO’

LOC2: MOV MEMWORD, AX
LOC3: MOV BX, MEMWORD
LOC4: MOV MORWORDS, BX

operates as follows:

At LOC1, AH is filled with 4E representing N, and AL gets 4F, representing O.

4E 4F
AH AL

At LOC2, the low-byte of MEMWORD is filled with 4F, high-byte gets 4E:

4FH
4EH

or
4F 4E
lo hi
MEMWORD

At LOC3, BH gets 4E and BL gets 4F.

4E 4F
BH BL

At LOC4, the low-byte of MORWORDS gets 4F and its high byte gets 4E:

4FH

4EH

4F 4E
lo hi

MORWORDS
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There is one kind of situation where it is important to remain aware of the memory
reversal: when you sometimes treat the 2 bytes in a word as individual bytes. For ex-
ample, the sequence:

VECTORB LABEL BYTE ; assigns a 2nd name to next
; location, but with type ‘‘byte’’ rather than type
; “‘word’’, permitting access by byte—(see Chapter 4)
VECTOR DW 1234H
o
o
o
MOV AL,VECTORB

will put 34H into AL, not 12H.

DW and DD Character String

2-byte strings (but none longer) can be used with DW or DD, but the convention of
reversed order must be remembered. An example:

SIGNAL1 DwW ‘GO’
SIGNAL2 Dw 'NO’

are each interpreted by the assembler as a 2-byte number, namely the ASCII value
for the characters. ASCII for G is 47H, for O is 4FH, N is 4EH. Thus the DW com-
mands above are equivalent to:

SIGNAL1 DW 474FH
SIGNAL2 DW 4E4FH

These will be stored with the least significant byte first in memory, at the lower-
addressed location: 4FH 47H 4FH 4EH, or ’OGON’.

When used in initializing word or double-word variables, one-character strings
follow the convention of being filled out by zeros, since they fill only 1 byte of the 2
byte (DW) or 4 byte (DD) field. For example:

SIGNAL3 DW 'K’
SIGNAL4 DD P’

are interpreted as being filled out with numeric zeros as above; the following pairs of
commands are totally equivalent to the pair above:

SIGNAL3 DW 4BH

SIGNAL4 DD 50H
OR

SIGNAL3 DW 004BH

SIGNAL4 DD 0050H

The convention is then followed, storing the least significant byte in the lower-
addressed location of each name, so that 4BH becomes 4BH 00H and SOH becomes,
for a double-word quantity, SOH 00H 00H 00H.
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Some Attribute Operators (Length, Size, Type)
Recall the definition of LINE1:
LINE1 DB 'THANKSALOT’

If you were constructing messages later on in your program, it could be important to
know the length of the string pointed at by LINE1. The operator LENGTH provides
this function, e.g. the instruction

MOV AX, LENGTH LINE1

would move 12, or 000CH, into the accumulator. (In many earlier assemblers,
the capability achieved in this one line would have required the use of 2 labels and a
subtraction.)

Similarly, after defining variables using DB, DW, and DD as in the examples above,
you will of course use them in instructions. In many cases it will be necessary to
know how they were originally defined, in terms of the unit of definition and how
many were defined there, in order to point to the correct locations for picking up
data or transferring control. Lists, loops, and arrays of various kinds will require
precise pointers to achieve your intentions.

Naturally, you could keep track of whether a name represented a byte or word quan-
tity by using a master list, or later in the project by using the listings to look up the
required information. However, the assembler tracks this automatically for you.

It uses the implicit type of your variables to select the correct machine instruction to
generate, and if you code instructions inconsistent with the data definitions used, the
assembler will flag this as an error. It also provides special operators for use in ex-
pressions which need type information.

These operators are especially useful when you are creating (or calling) generalized
procedures which are designed to provide the same process for whatever parameters
are sent.

It is also a better programming practice to use a name or an expression rather than
an explicit number in many contexts. A name is both easier to understand when
reading the listing, and easier to modify later if the need arises, since its single defini-
tion (or change) then applies to every usage in the program.

The assembler operators SIZE, LENGTH, and TYPE provide the above
capabilities. TYPE tells how many bytes are in the basic unit defined, i.e., TYPE
LINE]1 is 1 because the basic unit is a byte. TYPE SIGNALS3 is 2 because the basic
unit is a word, or 2 bytes. TYPE SIGNALA4 is 4, for the double-word unit.

SIZE tells how many bytes are defined by the entire line where the name is declared,
whereas LENGTH tells how many of the basic units were used. In the following
declaration,

PATH1 DW 1234H,5678H,0ABCDH

3 words are initialized, the first pointed to by the name PATHI.

TYPE PATHI is 2, meaning the basic unit is a word. LENGTH PATHI1 is 3,
because 3 units were allocated and initialized. SIZE PATHI1 is 6, since 6 bytes are re-
quired to store 3 words. For LINEI, defined in bytes, LENGTH LINEI1 = SIZ
LINEL. \
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The general formula is:
SIZE name = LENGTH name * TYPE name.

One use of SIZE is to check that an index or subscript does not exceed the extent of
the table or array it is used with.

One use of TYPE is to increment or decrement a loop counter or index by the correct
number of bytes to point to the next item in a list. In a list defined as bytes, i.e.,

LIST_EXMPL DB 500DUP (13,21,34)
the correct increment is 1. For words, it would be 2, for double-words, 4.
The DUP features enables one directive to declare and initialize multiple units of a
given storage type, e.g., LIST_EXMPL above. Three initial values are given, to be
duplicated 500 times, for a total of 1500 bytes. The name of the first byte is
LIST_EXMPL .
If you think of the 1500 bytes as a list or an array, then it makes sense to think of ac-
cessing list elements using an index or subscript. SI (or DI) is the usual index used
following the variable name, e.g.,

LIST_EXMPLJ[SI]

When SIis 0, the first byte is addressed.
When S is 5, the sixth byte is addressed.

The additional examples below may help clarify the operators used above, and also
further show the use of the DUP feature.

Examples:
1. ZERO_ARRAY DW 1000 Dup(0)

This initializes a block of 1000 words to 0, or 2000
Zeroes.

TYPE ZERO__ARRAY =WORD =2.

LENGTH ZERO__ARRAY =1000.
SIZE ZERO__ARRAY =2000.

2. BUFFER DB 256 DUP(’)

This causes BUFFER to be an array of 256 bytes, each
containing a blank.

3. FIB DW 1,1,100 DUP (?)
This initializes ‘‘FIB’’ to be a word array with initial
values 1, 1, 7, 7, .... with LENGTH FIB = 102 and

SIZE FIB = 204. As bytes, the values are
1,0,1,0,2,7,2,2,2,...

4. ALT DB 50 DUP (0,1)

This initializes ‘*‘ALT”’ to 50 repetitions of 0, 1;
ie.0,1,0,1,..... LENGTH ALT = 100.
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5.  Thesize operator is very useful for strings:

s1 DB size s1-1, 'this string has 29 characters’
s2 DB size(s2)-1,'123456789012345678901234567890’, ’32’

using the size operator allows for automatic initialization of the byte before
the string to the number of bytes in the string. Size sl is 30, size sl - 1 is 29. Size
s2 is 33, size s2 - 1 is 32.

Note: Recall that “LENGTH NAME?”’ is the length of the block in terms of its con-
stituent units. This is most useful for controlling loops, etc. It is sometimes useful,
however, to know the length of a block in terms of some standard units, usually
bytes. This is provided by the Size attribute.

Record Definition

Records may be used only in codemacros which are described in Chapter 7. They are
described here because they act to allocate storage in the codemacro. A record is a
map or template you define. You may then easily allocate and initialize storage later
in this format. The template itself has no storage allocated to it. When you use its
name as the operation field of an instruction, you cause storage to be allocated
there, at that time, according to the definition in the template. This may include
defaults to initialize each field individually when that field is not given a value in the
actual invocation of the record.

The format of the RECORD directive is:
name RECORD field_1,field__2,...

where the fieldnames have the form

fieldname: length__expression [ = other__expression ]

Such a declaration defines ‘‘name’’ to be a RECORD, packed into a byte or word
depending on the number of bits in the whole definition, i.e., the number of fields
and their length.

Each field is defined by coding its name, a colon, and an expression giving its length
in bits. The only optional parameter is the ‘‘= other__expression’’, which may be
specified after the field-length, to provide default initialization values. If the in-
itialization value provided is too large, an error is reported.

The maximum number of bits in a RECORD is 16, the minimum, 1 bit. The
operator WIDTH of a record gives its width in bits, i.e., the sum of the values of
each field-length expression. The SIZE of the RECORD is defined as the number of
bytes needed to hold it, as follows:

SIZE EXAMPLE__REC =

1if WIDTH EXAMPLE_REC is from 1to 8 bits
2 if WIDTH EXAMPLE__REC is from 9 to 16 bits

Once defined as above, the record’s ‘“‘name’’ can be used for allocating and initializ-
ing storage. The manner of doing this is similar to using DB, DW, or DD, with a few
extra options and consequences, as explored below.

Each ‘‘fieldname”’ can be used in expressions or instructions as the shift count
needed to right-justify the field. ‘““MASK fieldname” is defined as that mask
necessary to access the field in its original position. (The dot usage of record-
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fieldnames is not discussed here. This construction, NAME.RECFIELD, is
allowable only in CodeMacros and is discussed under that heading in Chapter 7.)
The examples may serve to make this clearer.

Examples:
HASH__ENT RECORD FREE:1, EMPTY:1, INDEX:14

The above RECORD declaration for HASH__ENT will result in creating symbol
values as follows:

FREE =15 MASK FREE = 8000H
EMPTY =14 MASK EMPTY = 4000H
INDEX= 0 MASK INDEX = 3FFFH

The values on the left are the shift counts you could use to right-justify those fields if
you were using them in subsequent instructions. The values on the right are the
masks needed to extract or test those fields directly from the record at VAR_ONE
using a logical AND or TEST instruction. Notice that WIDTH HASH__ENT = 16,
SIZE HASH__ENT = 2.

To store the EMPTY field of VAR__ONE in the empty field of VAR_TWO, you
could use the following instruction sequence:

MOV AX, VAR_ONE ; moves word at VAR__ONE into
accumulator

ANDs to accumulator

; 0100000000000000

AND AX, MASK EMPTY

MOV BX, VAR_TWO

AND BX, NOT MASK EMPTY ; cleans VAR_TWO’s EMPTY field
OR AX, BX preserves the new EMPTY field

and other prior contents

moves acc. contents into word

at VAR_TWO

MOV VAR_TWO, AX

The field named EMPTY can be tested by using:
TEST VAR_ONE, MASK EMPTY

This sets the zero-flag (ZF) to according to that field of VAR__ONE, i.e., ZF
becomes 1 if the field is zero.

The operators SIZE, WIDTH, MASK, plus the automatic definition of the
fieldnames as the shift counts, provide powerful capabilities that may not be im-
mediately evident. They permit record manipulation in loops without explicitly
coding a variety of specific numbers, such as the number of bytes holding the
record, or the position or width of individual fields, or of the entire record.

Instead of numbers, you code the names or ‘‘operator name’’, as in FREE or MASK
EMPTY or SIZE HASH__ENT. This saves figuring out such sizes or shifts or masks
for every field and record you use. It also creates code sequences which can apply to
records of widely varying content and structure, since the sizes, shifts, or masks do
not appear as fixed numbers but rather as operations which depend on the record
definitions.

This makes it much easier to construct generalized sequences or procedures which

can be used without modification in greatly dissimilar applications, i.e., those which
process greatly dissimilar data in functionally similar ways.
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CHAPTER 4
ASSEMBLER DIRECTIVES

This chapter describes the assembler directives used to control the 8086 assembler in
its generation of object code.

Generally, directives have the same format as instructions. Assembler directives are
grouped as follows:

¢ LOCATION COUNTER AND SEGMENTATION CONTROL
SEGMENT/ENDS
ORG
GROUP
ASSUME
PROC/ENDP
LABEL

* SYMBOL DEFINITION
EQU
PURGE

¢ PROGRAM LINKAGE

NAME
PUBLIC
EXTRN
END

¢ MEMORY RESERVATION AND DATA DEFINITION

DB (discussed in Chapter 3)
DW (discussed in Chapter 3)
DD (discussed in Chapter 3)
RECORD (discussed in Chapter 3)

Segment Definition:
The Segment and Ends Directives

Every instruction and every variable is contained in a block of locations called a seg-
ment. You create a segment and a segment-name with the segment directive, i.e.,

namel SEGMENT [align-type] [combine-type] [ ’classname’ ]

After such a SEGMENT directive, all instructions or data (except embedded
segments) are considered to be in the ’namel’ segment, until a directive of the form

name1l ENDS

is encountered. This ends the definition of segment ‘‘namel’’ for the moment. The
same name field is required on both directives. The parameters after SEGMENT
must be in the order shown. (Embedded segments are entirely separate, that is, their
instructions or data are not considered to be in the outer segment at all, but only in
the local embedded segment. Examples below.)

As shown above, there are 3 optional parameters in this directive, specifying at-
tributes of the segment:

1. analignment type, called align-type above, with 5 choices;
2. acombinability type, called combine-type above, with 5 choices; and
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3. aclassname of up to 40 characters which can be an arbitrary name you choose,
enclosed in single quotes. Segments with identical classnames will be located
together in memory unless more stringent controls are specified to LOC86 (or
QRLS6).

If more than one parameter is specified, they must be in the above order.

Alignment Choices:
PARA, BYTE, WORD, PAGE, INPAGE

Introductory Considerations

The choice of an alignment is essentially a directive to the locating facility. The
assembler must use this directive to create the information needed later by the link-
ing and locating facilities to align your segments in the manner you specify.

The 5 alignment types allow you to state the boundary where you want this segment
located. This boundary, like all addresses, has 2 parts—a paragraph number and an
offset. The paragraph number becomes the value of the segment name. (See Chapter
1 on Addressing.)

It is useful to think of every address as such a pair of numbers, i.e., 1234H, 0056 H
means the address 12396H, formed by first shifting the paragraph number left 4 bits
or 1 hex digit (1234H becomes 12340H), and then adding the offset of 0056H:

12340H + 0056H = 12396H.

The displacement of a segment boundary above the paragraph number requires
some explanation. To the assembler, a segment name automatically means the
paragraph number where the defined segment begins, i.e., there is no offset or the
offset is zero. In this manual, a segment name can sometimes also.mean the extent of
or the contents of the defined segment, going forward into higher memory addresses
for any number of bytes from 0 up to a maximum of 64K-1 bytes. For example, we
may speak of moving a segment into a segment register, meaning the paragraph
number where the segment begins, or we may ask whether some variable is in the
segment, meaning defined as part of that segment’s contents.

In your assembly language source program, all addresses in a segment are relative to
the segment’s beginning, i.e., a paragraph number with no offset. Each segment’s
beginning operates as relative-zero, so that subsequent definitions of labels or
variables within the segment occur at relative locations 0, 1, 2, ....

In your source code you must MOV the segment’s beginning into a segment register,
using its name as in:

MOV AX, SEGNAM44
MOV ES, AX

The 8086 hardware can then automatically form the correct complete addresses for
the variables or labels you have used in your program code. It combines the
paragraph number from the segment register with the offset of the variable or label,
using the built-in shift-and-add described in Chapter 1 on Addressing.

However, as LOCATE is putting your modules into memory, substituting absolute
addresses for relative addresses, segments of varying length will end at varying
locations.
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If the next segment to be LOCATEGA is placed on a paragraph boundary, i.e., with
no displacement, then all the relative addresses that were defined in the source code
for that segment are correct absolute offsets from that paragraph. There may be a
few bytes unused between the end of the last segment and the beginning of this one,
a loss of from O to 15 bytes since paragraphs occur every 16 bytes. This situation is
the normal default specification that you get if you say nothing, or which you may
code explicitly by writing PARA as your align-type on the SEGMENT directive.

The assembler makes it possible for you to instruct LOCATE to pack your code
more tightly into the memory space. Part of the job of the LOCATE program is to
fit logical segments into memory in the most space-efficient manner consistent with
your specified instructions to it.

The actual beginning of a segment could be made to be the very next byte after the
end of the previously located segment. (This will be the case if your align-type is
BYTE.) If this is done, the segment has one chance in 16 of falling exactly on a
paragraph boundary, and generally will not.

THIS IS WHERE THE DISPLACEMENT OF A SEGMENT COMES IN. The seg-
ment’s paragraph number will be the nearest paragraph boundary at or below its ex-
act location. Since the beginning is now NOT on a paragraph boundary, that begin-
ning place has a displacement (offset). This offset is the distance in bytes from the
selected (nearest-lower) paragraph number. Since paragraphs come every 16 bytes,
this offset will be a number between 0 and 15, inclusive.

The LOCATE program establishes the paragraph number and displacement for the
segment’s beginning. It then adds the segment’s displacement to the offset of every
location referenced within that segment. This achieves the desired result, that all ad-
dresses used within the segment are displacements from that segment’s paragraph
number. The value of the segment’s name is always that paragraph number.

Specific Align-Types

The default alignment type is PARA. The segment will begin at a location whose ad-
dress is divisible by 16 decimal, i.e., whose value in hexadecimal has a last digit of
zero. This implies an automatic, initial offset of zero for segname.

PAGE means the boundary address ends in hex 00, e.g., 76500H. This implies that
the paragraph number itself ends in zero and that the offset, as above for PARA, is
Zero.

BYTE would mean any offset is acceptable. WORD implies an even offset (lowest
bit of paragraph number =0) so that the full beginning address of the segment falls
on an even address. Accessing words on even boundaries requires only 1 memory
cycle, whereas if the boundary is odd, 2 cycles are needed to access word quantities.
If your word-variables within this segment are defined on even boundaries, i.e., hex
addresses ending in 0, 2, 4, 6, 8, A, C, or E, then every access to such a variable will
take only 1 cycle.

INPAGE means that this entire segment must be located between one page bound-
ary and the next, e.g., between 56700H and 56800H. It must not be allowed to
overlap a page boundary. Thus its size cannot exceed 256 bytes. This specification is
usually relevant only to converting some types of programs designed for earlier
INTEL microcomputers, using the 8080/8085 assembly language.

If you do specify an align-type, it should appear on the first definition of the seg-
ment. You can omit it on subsequent SEGMENT directives for this segment, but
you may not contradict that first specification.

If you omit it on the first SEGMENT directive for this segname, you automatically
invoke the default, PARA. Later SEGMENT directives for this segname may
specify this default, but naming any other explicit align-type will cause an error.
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4-4

Combinability Types: (NONE),PUBLIC, COMMON,
AT expression, STACK, MEMORY

The combine-type parameter on the SEGMENT directive gives information about
how this segment may be combined with others when linked and located into ab-
solute addresses.

If no combine-type is given, then no combining is performed, and the segment is
local to this module or program only. This is the default, and it has certain code op-
timization advantages as described in the section titled ‘‘Models of Computation’’,
Chapter 8.

If you do specify a combine-type, it should appear on the first definition of the seg-
ment. You can omit it on subsequent SEGMENT directives for this segment, but
you may not contradict that first specification. If you omit it on the first SEGMENT
directive for this segname, you automatically invoke the default. Later SEGMENT
directives for this segname may specify this default, but naming any other explicit
combine-type will cause an error.

There are 5 choices for combine-type, described in the paragraphs below.

PUBLIC

If PUBLIC is specified, then this segment will be concatenated with others of the
same name encountered during linkage with other modules, i.e. all such segments
will ultimately be contiguous. Their order is not affected by this directive but rather
by a Relocation and Linkage (R&L)-command or the R&L default, which uses their
order in the files being linked.

COMMON

Specifying COMMON causes this segment to share the identical memory locations
with all other segments of the same name from other modules. This means that dif-
ferent labels or variable names (from different modules) could be applied to the
same address.

For example, say in one module of your program (MODULEI) you declare a
segment:

GLOBAL__DATA SEGMENT COMMON
PARAM1 DB 34H
ASSOCH DB 82H
PARAM2 DB 61H
ASSOC2 DB 75H

GLOBAL__DATA ENDS

Then in another module, (MODULE2) assembled separately, you define
GLOBAL__DATA as:

GLOBAL__DATA SEGMENT COMMON

ITEM1 DwW ?
ITEM2 DW ?

GLOBAL__DATA ENDS
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Then exactly 4 bytes of memory will be allocated to GLOBAL__DATA, but how
they are accessed will depend on which name is referred to. Each set of names is
known only within its own module unless PUBLIC and EXTRN directives are used
(explained later in this Chapter).

A MOV of PARAMI1 or ASSOC2 in MODULE! will simply get the appropriate
byte, as you would expect, namely 34H or 75H respectively. However, a reference to
ITEM2 in MODULE?2 will pick up the full word 7561H (and a reference to WORD
PTR ASSOCI1 will pick up 6182H, as discussed in Chapters 3 and 5).

AT Expression

This phrase specifies that the segment is to be located at the paragraph number com-
puted by the assembler as the value of the expression. The pair of numbers express-
ing the absolute address of the segment will be <paragraph number,0> i.e., no offset
from that paragraph boundary. For example, if you wrote AT 1234H, the segment
would be located at absolute address 12340H. If you needed it to begin at absolute
12345H, the first line after this segment directive must be ORG 5. (See ORG in next
section.)

STACK

This combine-type is related to the 8080 STKLN directive. It will cause combining of
the segment with others of the same name in other modules by overlay rather than
concatenation. This means instead of one starting where the last one stopped, all
begin at the same base address. Stack segments are overlayed against high memory.
For example, suppose in one module you define:

STACK_SEG ~ SEGMENT STACK

DW 20 DUP (?)
STACK_TOP  LABEL WORD
STACK_SEG  ENDS

and in another you have:

STACK_SEG  SEGMENT STACK

DW 14 DUP (?)
TOP_STACK  LABEL WORD
STACK_SEG  ENDS

overlaying against high memory means that the locate program will combine these
two pieces of STACK__SEG as follows:

STACK _SEG—»} — — — — — — H<—ss
STACK 34 WORDS RANGE FOR SP
STACK_TOP —»p— — — — — — — <e— SP INITIALLY HERE

OFFFFFH
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Note that the length of the combined segment is 34 words, the sum of the lengths of
the pieces; but that the top-of-stack variables ‘‘stack__top’’ and ‘‘top__stack’’,
whose names are local to each module, are assigned the same offset (68D = 44H
bytes) at the high end of memory. You can set the stack segment base and the stack
pointer by the instructions (in module 1):

MOV  AX, STACK_SEG
MOV  SS, AX
MOV  SP,STACK__TOP

STACK is a special sort of segment, intended for use as temporary storage and
retrieval using PUSH, POP, CALL, and RETurn, for passing parameters and
return addresses of procedures and the like, working in a last-in-first-out (LIFO)
fashion.

During execution, stacks grow downward as they increase, from higher memory ad-
dresses to lower addresses. Their usage is a bit like a stack of dishes: PUSH SI puts
the word in SI on top of the stack, and POP DI pulls it off the top and puts it into
DI. (See also Appendix D)

The storage reserved for combined stack segments is the sum of the individual
segments, since the expected usage from each source could occur after the other had
filled its stack and not yet emptied it.

MEMORY

MEMORY works similarly to COMMON, but the segment is located above all other
segments in memory.

There should be only one segment with this combine-type per group of modules be-
ing linked together, since only the first one encountered by R&L will be given the
MEMORY interpretation. Thus if MEMSEG is the first segment with the
MEMORY combine-type encountered by R&L, it and any segment named
MEMSEG in other modules will be located above all others in high memory. Other
segments with MEMORY as their combine-type will be treated as if COMMON had
been specified instead, and will not be located above all others. A warning will be
issued by the LOCATE program.

NOTE

Although STACK and MEMORY are used as keywords above, they are still
available as user-variable-names. Programs written in earlier Intel assembly
languages used STACK to mean the first address of the stack, and
MEMORY to mean the first byte of memory past the end of the program.
Earlier assemblers passed along such keyword usage to the LOCATE pro-
gram which filled in the final addresses. In ASM86, these keywords cannot
be used for this identical function without additional coding.

Embedded Segments

If you use a segment name ‘‘namel’’ again after closing that segment with an ENDS
directive, the code and data you write then will automatically follow the lines written
earlier in segment ‘‘namel’’. One sequence that causes this is
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ROUTINE_FIRST

A:
ROUTINE__FIRST

OTHER_ROUTINES

OTHER_ROUTINES

ROUTINE__FIRST

ROUTINE_FIRST

SEGMENT
(o)
o ;
o ;
o
ENDS
SEGMENT
(o)
o ;
o ;
(o)
ENDS
SEGMENT
(o]
o )
o ;
o ;
ENDS

Assembler Directives

code here is in segment
ROUTINE__FIRST

code here is in segment
OTHER_ROUTINES

code here is in segment
ROUTINE_FIRST and
follows labei “A”’

Another way this implicit concatenation happens is with a new segment directive, a

sequence such as:

PROCESS__1

PROC1DATA

PROC1DATA

PROCESS__1

Z
O
(7]

SEGMENT
o]
o ;
o ;
o]
SEGMENT
(o]
o ;
o ’
o)
ENDS
(o]
o ;
o ;
o ;
o ;
o ;
o ;
o ;

; code here is in segment

PROCESS__1

; code here is in segment
; PROCG1DATA

code here is in segment
process__1and directly
follows the last line

of the PROCESS__1
block interrupted by
the definition of
PROC1DATA

An embedded segment must end before the outer segment ends. Thus if the

PROC1DATA ENDS

directive came AFTER the

PROCESS__1 ENDS

directive, this overlapping of segments would be flagged as an error.

Code outside such SEGMENT/ENDS pairs will automatically be put in the default
segment named ‘‘??SEG”’ defined by the assembler. (This segment is paragraph-

relocatable and PUBLIC.
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When used in other assembler instructions, e.g.,

MOV AX, Segnam
MOV ES, AX

this name will automatically have the value of the paragraph number where the seg-
ment begins. If a segment of identical name appears in another module that is later
linked together with your program, the segments will be combined.

ORG Directive

The assembler’s location counters perform a function during assembly similar to
that of the instruction pointer during execution, namely, to tell the assembler the
next memory location available to be assigned to instruction or data.

The first occurrence of the directive:
namei SEGMENT

defines the beginning of segment namel. A new location counter is established and
set to zero. This location counter is normally incremented automatically by 1 for
each byte assigned. An ENDS directive for this segment freezes this location counter
until the segment is re-opened, if ever, for continued assembly by a later ‘‘namel
SEGMENT?”’ directive. At that point this location counter again begins counting the
bytes assigned, beginning at the number last attained.

The currently active location counter can be altered by the ORG (origin) directive.

Code generated outside of all user-defined segments is placed in a special assembler-
defined segment called ??SEG, which is PUBLIC. ORG statements outside of user-
defined segments act upon the offset within that segment.

The ORG directive sets the location counter for the current segment being defined to
the value specified by the operand expression.

Opcode Operand
ORG expression

Note: This directive may NOT have a label, e.g., SWITCH: ORG 14 is
INVALID.

The location counter is set to the value of the operand expression, which may not be
negative. The operands may be absolute numbers or relocatable numbers in the cur-
rent segment. Assembly-time evaluation of ORG expressions always yields a modulo
64K address i.e., in the range 0 through 65,535. Any symbol in the expression must
be previously defined. The next instruction or data item is assembled at the specified
address.

In most modules, an ORG directive is unnecessary. If no ORG directive is included
before the first instruction or data byte in a segment, assembly begins at location
zero relative to the beginning of the segment.

Your program can include any number of ORG directives. Multiple ORG’s need not
specify addresses in ascending sequence, but if you fail to do so, you run the risk of
instructing the assembler to create a second block of code for the same addresses as
some previously assembled portion of the program. When loaded, one of the blocks
will have overwritten the other.

See also the discussion of the $ sign in Chapter 5.
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Example:

Assume that the current value of the location counter is OFH (decimal 15) when the
following ORG directive is encountered:

ORG OFFH ; ORG assembler to location
‘ ; OFFH (decimal 255)

The next instruction or data byte is assembled at location OFFH.

Group Definition

This directive informs the assembler that the segments named in the operand list are
intended to lie within the same 64K of memory. The group is given the specified
name, and this name can be used in the same fashion as a segment name. One ad-
vantage to using groups is tighter code generation, since jumps within the group, for
example, require only 16 bits even across segment boundaries. The assembler cannot
check that all the segments named will fit into 64K, since some may be external or
combined with others, but it causes such a check to be made by the Relocation and
Linkage (R&L) facility. If they don’t fit, you get the error then. This directive does
not influence where segments are loaded by LOC86 (or QRL86). The classname
parameter in the SEGMENT directive does that.

The form of this directive is:

name GROUP segnami,segnamz, ...

where segnam1 etc. can be either the name field of a SEGMENT command or the
expression ‘‘SEG variable-name’’, or ‘‘SEG label-name’’ which returns the segment
in which that name is defined. This is particularly useful for forward-referenced or
external names.

Example:
CODE__SET GROUP I_O_ROUTINES, INIT_PROC, SEG FIRST_RECS
DATA_SET GROUP INVOICE_REC, ACCT_REC, GEN_LDGR__DATA

When you load a segment register with a group name and put that information in a
nearby ASSUME statement, then symbols from all segments in that group can be
addressed using that one segment register. The offset used will be the distance from
the group base-address. That usually will not be the same offset as the symbol’s
original offset in its segment, due to (possibly) other segments in between. This
means the address you use for debugging will be from the LOCATE output, rather
than the assembly output.

The relevant ASSUME statement could be simply:

ASSUME CS:CODE__SET, DS:DATA__SET

The order of the segments in the group command is not necessarily the order in
which those segments will eventually be located in memory. Furthermore, a given
segment name can appear in more than one GROUP command. There is no
automatic method that guarantees an ordering which will satisfy all constraints im-
posed by various ASSUME and GROUP commands. You must exercise some care if
you choose to reference several segments as a named group, from a single register.
Special care is required to make multiple directives consistent.
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If what you are after is not so much that the segments be addressable from a single
segment register, but rather that they simply be near each other in memory (con-
tiguous), then the class-name feature of the SEGMENT command achieves this goal
more easily. However, it causes no check that the segments in the class lie within a
64K region of memory.

A further caution on groups is that they may NOT be forward-referenced (see
Chapter 8 for discussion of Forward-References).

Assume Directive

Form: ASSUME segreg:segnam [,segreg:segnam,...]
or
ASSUME NOTHING

where  segreg means one of: DS, ES, CS, SS
segnam means any segment name,
any previously defined group name,
the expression SEG variable__name or SEG label__name,
or the keyword NOTHING

Example:

ASSUME DS:DATAWORDS__SEGMENT__NAME,
& ES:STRING_SEGMENT_NAME,
& CS:NOTHING, CS:CODE__SEG__NAME

Note: This directive may NOT have a label, e.g.,
CASE1: ASSUME CS:S4is INVALID.

It is essential that the assembler be informed of the execution-time environment in
which the generated instructions will run. This environment consists of the expected
contents of all four segment registers. The ASSUME directive tells the assembler
what addresses will be there. The assembler uses this information to check that the
variables and labels you refer to are addressable via the segment registers and to
generate segment prefix bytes for variables whenever this is necessary.

The assembler-generated instructions depend on these expectations. Every memory
address is actually a pair of 16-bit numbers, the offset and the segment-base-address
(see Chapter 1). Nearly every instruction that refers to memory uses the offset only,
expecting the segment-base-address to come from a segment register. If the run-time
contents of that register are not as ASSUMEd at assembly-time, the correct run-time
memory address is unlikely to be computed using the specified offset with that
register. (That is, examples can be constructed wherein the correct address will be
used, but the vast majority of cases result in a wrong address.) Therefore, an
ASSUME directive is required before the use of segment registers, and before each
point in the program where a run-time change to a segment register will occur.

Any references to memory or stack will use the DS, ES, or SS registers. These
registers must therefore appear in an ASSUME prior to the code that will access
memory. Similarly, instruction labels (including procedure names) implicitly use the
CS register, which must therefore appear in an ASSUME statement prior to any
code that refers to labels. If a segment register will not be used in a module or a seg-

~ ment, then ASSUME NOTHING should be specified for that register.

This directive is especially critical in the case of CS, because the offsets of locations
containing instructions are always relative to CS. Instruction offsets are contained in
the Instruction Pointer (IP), which determines the next instruction to be executed. In
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most cases, it will only be valid if CS contains the segment-base-address ASSUMEd
during assembly for that instruction. (Exceptions include self-relative jumps and
register-only instructions.) If CS contains a different value, unexpected results are
very likely to occur, untraceable without great effort.

For this reason, the assembler keeps track of the CS: assumed value for each label
and instruction. It prohibits intrasegment/intragroup (NEAR) transfers to labels
with a CS: assumed value different from the transfer instruction’s CS: assumed
value.

However, this prohibition naturally does not apply if the transfer replaces the con-
tents of CS, as in an intersegment (‘‘long”’ or FAR) jump or call. All subsequent
uses of CS will then of course refer to the new value only. A new ASSUME directive
is required at the target label, to inform the assembler of the new values which will
have been placed in the segment registers during execution up to that point.

By informing the assembler as to the run-time contents of the segment registers, the
ASSUME directive also allows you largely to avoid coding explicit segment prefix
bytes.

In the absence of an ASSUME directive, all memory references to data must ex-
plicitly name the segment register to be used as the base address for accessing that
data. The assembler requires this information in order to generate any prefix bytes
necessary for the machine instructions it creates from your source code. For ex-
ample, if SOURCE and DEST are defined in segment GLOBAL and FILL in seg-
ment PARAMS, then to put DEST-SOURCE+ 1 into FILL, you write:

GLOBAL SEGMENT
SOURCE bw ?
DEST Dw ?

GLOBAL ENDS

PARAMS SEGMENT
FILL DW 2
PARAMS ENDS

CODE SEGMENT
ASSUME CS:CODE

MOV  AX, PARAMS
MOV DS, AX

MOV  AX,GLOBAL
MoV ES, AX

;following code assumes values were assigned to source and dest
MOV AX, ES:DEST
SuB AX, ES:SOURCE

INC AX
MOV DS:FILL, AX

CODE ENDS

As you can see, using explicit segment prefixes, ES points to GLOBAL and DS
points to PARAMS.
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The overrides ES: and DS: are required for every reference to variables in those
segments. Data in the stack or code segments would similarly require SS: or CS:
prefixes in your source lines.

The ASSUME directive allows you to tell the assembler once, rather than on each in-
“struction, which segment registers are to be used for such references to variables.
Thus the following sequence is equivalent to the above:

ASSUME CS:CODE, DS:PARAMS, ES:GLOBAL
MOV AX, PARAMS
MOV DS, AX

MOV AX,GLOBAL
Mov ES, AX

MOV  AX, DEST
SuB AX, SOURCE
INC AX

MOV  FILL, AX

As mentioned above, an ASSUME is needed in front of each block of instructions
where a segment- register is changed, since the flow of control during execution can
be quite different from the instruction sequence seen by the assembler at assembly
time in any one module.

This means you will not have to code an explicit segment-override byte for variables
whose segment base-address has been ASSUMEd into any segment register. Using
ASSUME correctly, you usually do not have to think about segment override bytes.
The assembler does it for you.

If the base-address needed for a reference to some variable has NOT been
ASSUMEd into some segment-register, and there is no explicit override, then the
assembler flags an error. The ASSUMEA content of each segment register controls
what is regarded as known and allowed versus unknown and an error.

Each reference to a data item (variable) or label (code instruction) is checked against
its initial-declaration-segment and the segments currently ASSUMEd in segment-
registers. If the segment containing the referent is ASSUMEd into any segment-
register, the assembler will generate the correct instruction to access that referent, in-
cluding a segment prefix-byte if necessary. The assembler’s choice of segment
registers depends on the address-expression.

The address-expression implies a segment register by its use of variables and
subscripts, i.e., pointer and/or index registers. This correspondence is discussed in
Chapters 1, 5, and 7 where overrides and the MODRM byte are discussed.

If a variable appears in the address-expression, then there must be a segment register
containing that variable’s segment-base-address. This is the register used as a prefix
if one is needed. If only registers are used in the address-expression, then the
MODRM table tells which segment register is implied (DS for most subscripts, SS
for those involving BP).

If that segment name, i.e., base-address, is ASSUMEAd in a different segment-
register from the default normally used by the relevant hardware instruction, then
the assembler knows a segment-override prefix-byte is necessary to correctly access
the given variable. If the needed base address is NOT assumed to be in any of the
segment-registers, i.e., has not been named in an ASSUME directive, an error is
reported (unless you coded an explicit prefix-byte as discussed below).
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One way to understand this checking runs as follows:
a) which segment contains this referent?

b) has that segment (or a group containing it) been ASSUMEd into a
segment-register, i.e. into SS, CS, DS, ES ?

¢) if not ASSUMEd, report an error unless the data reference has an
explicitly-coded segment prefix-byte.

d) if so ASSUMEdJ, is that segment-register the one normally used by the relevant
hardware instruction?

e) if the ASSUMEd register is the normal default, generate the normal code.
f) if not, is the default overridable or absolutely required?

g) if overridable, generate a prefix-byte first, so as to use the correct
segment-register, and then generate the normal code.

h) otherwise, report an error.

ASSUME NOTHING

The ASSUME NOTHING form of this directive removes all former assumptions as
to which segment-base-addresses were in which segment-registers. This turns off the
implicit generation of segment-overrides. The net result is to require you to code an
explicit segment prefix-byte for every operand.

If you do not provide the prefix-byte, the assembler will give an error since it is
unable to verify that the variable is addressable from any segment-register. If the
assembler were to generate an instruction which used the segment-registers inap-
propriately for your expected arrangement of data, you would get unintended, con-
fusing, and usually bad results.

For example, most hardware instructions for references to variables impicitly expect
to use the (contents of the) DS register as a base:

MOV AX,DATAWORD

MOV CX,ARRAY|[SI]

MOV DX,MATRIX[BX +7][SI]
The 8086 hardware would expect these all to use DS unless you code a segment
prefix-byte. The assembler cannot safely expect all your data to be currently ad-
dressable even from the DS register. In the absence of an explicit prefix-byte, the
assembler must check and supply it from the ASSUME. In the absence of an
ASSUME, and in the case of ASSUME NOTHING, you must code even the DS as
an explicit segment prefix-byte.

Therefore, under the ASSUME NOTHING condition, the correct code for the in-
structions above is:

ASSUME NOTHING

MOV AX,DS:DATAWORD

MOV CX,DS:ARRAYI[SI]

MOV DX, DS: MATRIX[BX + 7][SI]

Naturally, you would have earlier set BX and SI to the correct values such that they
pointed to the desired elements in the data segment when used here.
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Another example: if you know that DATAWORD is in a segment whose base ad-
dress is in SS, and the others are in a segment whose base address is in ES, then an
ASSUME directive could inform the assembler appropriately. Otherwise, in the
ASSUME NOTHING case, the instructions should appear as follows:

MOV AX,SS:DATAWORD
MOV CX,ES:ARRAY([SI]
MOV DX,ES:MATRIX[BX +7] [SI]

The string instructions provide another instructive illustration. In the case of MOVS
(see Chapter 6), the source operand is normally in the DS segment, and the destina-
tion operand must be in the ES segment, i.e., the ES cannot be overridden. Thus the
instruction sequence

ASSUME DS:SOURCE__STRING_SEGMENT, ES:DEST__STRING_SEGMENT

MOV DI, DEST_STRING__INDEX

MOV S|, SOURCE__STRING__INDEX

STD ; this sets the direction-flag

MOVS DEST__STRING, SOURCE__STRING

moves the byte (or word) pointed at by SOURCE__STRING indexed by SI, in DS,
to the byte (or word) pointed at by DEST__STRING indexed by DI, in ES, and then
increments DI and SI by 1 or 2.

(The indexing is implicit in MOVS. SI and DI are not explicitly named. In fact,
MOVS operates solely by using SI and DI, and doesn’t need even the string names,

but the assembler requires them in order to check type and addressability via the
ASSUME))

If the source string were actually in the stack segment, then a segment-override
prefix-byte would be necessary, giving the instruction:

MOVS DEST__STRING, SS:SOURCE__STRING

In the ASSUME NOTHING case, omitting that SS prefix-byte will cause an error
message from the assembler.

Since the ES default cannot be changed or overridden, only an ES: segment-override
is ever appropriate on the DEST__STRING referent. It is in fact required if the
variable’s segment is not ASSUMEd in ES.

If SS were the correct segment containing the source-string and the prior ASSUME
had said:

ASSUME SS:SOURCE__STRING_SEG

then the SS segment-override would have been generated automatically by the
assembler.

Explicit Segment Prefix-Bytes
Only 1 segment prefix-byte is permitted in an instruction.

If you code an explicit segment prefix-byte, e.g.

MOV AL, ES:DATABYTE
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then the assembler does what you tell it to, rather than checking if it makes sense.
This means it generates your specified instruction including the override byte you ex-
plicitly coded, rather than checking whether the data referent is truly accessible from
that segment register.

Example:

The hardware expects BP to point within the stack segment, i.e., expects to use the
contents of BP as an offset to the contents of SS in order to form an address. It is
permissible to use BP as a pointer into the data segment instead, but an override byte
(DS:) is required, to change which segment register is used to form the address.

The following code would cause the assembler to generate the needed override:

ASSUME DS:SEG ARRAY

o ; seg is described in Chapter 5.
o
MOV AX, ARRAY[BP]
o
o

but you might want the code to clearly reflect this usage upon even a casual reading,
by coding the override explicitly on all such instructions:

MOV AX, DS: ARRAY [BP]

Label Definition

Labels in the most general sense are names for any specific location in memory, i.e.,
for locations that contain instructions or that contain data. Throughout this manual
a distinction is maintained between ‘‘variables’’, meaning data, and ‘‘labels’’,
meaning instructions. NEAR and FAR are the two types of labels; the other choices
below are variable types.

The LABEL directive can create a name for any location, regardless of its contents
or intended use, and assign a type to that name. The type determines the legitimate
uses of the name:

If the type is NEAR or FAR, then the name is a label per this manual’s use of the
term. It can be used in jumps or calls but not in MOVs or other data manipulating
instructions. It may not be subscripted.

If the type is BYTE, WORD, DWORD, or some OTHER__VAR, then the name

is a variable. It is valid in MOVs etc., but never directly in jumps or calls. (An in-
direct jump or call can use a variable (of type 2 or 4). See Chapter 5.)

The LABEL directive creates a name for the current location of assembly, whether
data or instruction.
The format of this directive is:
name LABEL type
where ‘‘type’’ has 5 choices: BYTE, WORD, DWORD, NEAR, FAR

As discussed in Chapter 3, variables (i.e., data names) are created when a name is
placed on a storage allocation/initialization. For example,

4-15



Assembler Directives

PUFF LABEL BYTE
DB 21

is equivalent to

PUFF DB 21

Either choice names the current assembly address as PUFF, types it as a byte-
variable, and initializes it to 21.

Naming instructions on the same line requires a colon, e.g.

TRANS: MOV AX,CX

which is equivalent to

TRANS LABEL NEAR
MOV AX,CX

A label definition (i.e., for instruction code only, not variables) is allowed only when
the segment currently being assembled is ASSUMEdJ to be within reach of the CS
register. This means you must provide an ASSUME CS:NAME statement, where
““NAME”’ is either the name of this segment itself or the name of a group which con-
tains the segment. If a group name is ASSUMEd, the label’s offset in all references
will be from the base of the group, and the label’s paragraph number will be that of
the group. To write ‘‘name:’’ is the same as ‘‘name LABEL NEAR’’, due to the
colon. (See also the NOTE below re: NEAR.)

However, this colon construction is not legal on the same line as a storage initializa-
tion, i.e., ITEM: DW 0 is illegal. Without the colon this would simply define ITEM
as a word variable initialized to 0. If you need ITEM to be a label and not a variable,
you may put the definition on the prior line by itself, e.g.,

ITEM:
DW 0

or

ITEM LABEL NEAR
DW 0

The value of ‘‘name’’ on the LABEL directive will include the current segment and
offset, i.e., the pair of numbers defining this specific address. It will also carry the
attribute specified by ‘‘type’’, here NEAR.

This directive is usually used to attach a second name to a location so that it can be
referenced in different ways without using the PTR operator. For example, if you
needed to treat the same area of memory as both a byte and word array, the defini-
tion of the array could appear as

VECTORB LABEL BYTE
VECTOR DW 1000 DUP (0)

Future references to it as a byte array would say, e.g.,

ADD AL, VECTORB and for word usage would say
ADD AX, VECTOR
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This could also be achieved using the PTR operator if it were not too frequent to be
taxing, writing:

ADD AL, BYTE PTR VECTOR ; seeCh.5re PTR
which alters the type attribute for this reference only.

An example pertinent to code as opposed to data: you might wish to change the
distance attribute for a label. Take the case of a label referenced extensively within
this segment, but also referenced from outside this segment (and outside the group,
if any). The fact that any references from outside occur forces you to declare the
FAR attribute. You can, however, define a synonym within this segment with the
distance attribute NEAR, thereby saving a word for each local reference since only
the offset value would be needed, and not the segment value. The sequence would be

PROCESS__ITEMS LABEL FAR
LOCAL_NAME: MOV AX, FIRST_ITEM ; any instruction
o}
o
o

This objective could also be achieved using EQU, since at any point in an assembly,
the following statements are identical:

name LABEL X
name EQU THIS x

The operator THIS transmits to ‘‘name’’ the current segment/offset pair plus the at-
tribute specified by ‘‘x’’, which must be a ‘‘type’’ as above.

Thus in the example for code above you could have written:

PROCESS__ITEMS EQU THIS FAR
LOCAL__NAME: MOV AX,FIRST_ITEM ; any instruction

The main utility of the operator THIS lies in expression arithmetic on the current
location counter, €.g.:

STAR EQU (THIS FAR) + 1 ; see Ch.5re THIS

NOTE

In assembling your code, the assembler matches the type (of the operands
you supply) against the type specified in the codemacro definitions which
make up the legal operations in this language. A NEAR label will match the
specification Cw (meaning a 16-bit label expression) ONLY within code
assembled under the SAME CS: assumption as when the label was defined.
If this CS: assumption is not the same, the NEAR label will not match any
codemacro specification. See Chapter 2.

Procedure Definition

A procedure is a section of ASM86 code which can also be then activated from other
parts of the program as if it had been encountered sequentially. A CALL statement
activates the procedure, causing the procedure code to be executed out of normal
sequence. Program control is transferred from the point of activation to the beginn-
ing of the procedure code (or a label within it). The code is executed from that point,
and upon encountering a RETurn instruction in exit from the procedure code,
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program control is passed back to the next instruction beyond the point of activa-
tion. RET must be explicitly coded where desired. It is not an automataic function
of the procedure’s end, and there may be more than one point of return within a
procedure.

The use of procedures has the following advantages:

1. It forms the basis of modular programming,

2. It facilitates making and using program libraries,

3. [Iteases programming and documentation, and

4. Itreduces the amount of object code generated by a program.

The following paragraphs tell how to declare procedures, and how to activate
procedures.

name PROC NEAR | FAR

name ENDP

This pair of directives attaches a label to the entry point of a code sequence and
declares whether the procedure is NEAR or FAR. If you omit the type, NEAR is
used. The same name field is required on both directives of the pair, and there must
be only matching pairs in the assembly.

Using the PROC declarative is almost the same as if LABEL were used instead.
However, this pair is necessary for the use of CALL and RETURN. When you
CALL a procedure, before control is transferred to it, the address of the next se-
quential instruction is stored on the stack. This enables the RETURN statement at
the end of the procedure to return control to that next instruction after the call.

If the procedure is NEAR, the RETURN simply POPs the word at the top of the
stack into the Instruction Pointer (IP). If the procedure’s type is FAR, it POPs that
first word into IP and then POPs the next word into the CS, restoring the original
segment address.

RETurn can only work correctly if the return address stored by the CALL is at the
top of the stack. If the stack is used by this procedure (or any procedure it calls) for
temporary storage of parameters, such values must be POPped off the top of the
stack before RETurn is executed.

If multiple entry points into a procedure are required, this can be accomplished by
using LABEL directive. If the PROC is declared FAR, then multiple entry points
can only be achieved via the LABEL directive. Alternate entry points to a procedure
MUST have the same type (NEAR or FAR) or the returns will not work as needed.
RETurn instructions appearing outside of PROC-ENDP pairs are assumed to be
NEAR.

As with nearly all names in the symbol table, a procedure name can be purged. This
removes the earlier definition of the name from the symbol table (only), and makes
it possible to use the name for a new purpose.
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NOTE

JMPing out of a procedure leaves the return address (1 or 2 words) on the
stack. This must be taken into account if the stack is later used again.

RET need not be the physically last instruction in the source code of a PROC, but if
execution of the procedure allows control to simply fall through to the ENDP, there
is no automatic or implicit RET. A transfer to a RET is needed. There may be multi-
ple RETurn statements in a procedure.

Procedures and segments may be nested within one another, meaning one procedure
or segment may completely contain another. They may NOT overlap, i.e., the inner
procedure or segment must end before the outer one ends. For example, this se-
quence is valid:

STARTER SEGMENT

FIRST PROC NEAR
FIR_1: o
o
FIR_3: o
NEXT PROC NEAR
NEX_1: 0
MID SEGMENT
(o}
(o]
MID ENDS
NEX__44: RET
NEXT ENDP
FIR_77: 0
(o]
o
RET
FIRST ENDP

STARTER ENDS
The following sequence is invalid:

STARTER SEGMENT

FIRST PROC NEAR
[o]
0o
o
NEXT PROC NEAR
(o]
(o]
o
RET
FIRST ENDP
STARTER ENDS
(o}
o
o
RET
NEXT ENDP

Procedures are executable where they appear as well as when they are CALLed.
After a CALL FIRST instruction is executed, the instruction FIR__1 will be exe-
cuted. If we assume no jumps or calls occur in FIRST, then FIR__3 will be executed,
followed by NEX__1. If the instruction at NEX__44 were not a RETurn, then the
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instruction next executed would be FIR__77. One reason for emphasizing this is that
PLMS86 works differently: procedures in that language are not executed unless
CALLed, and embedded procedures are skipped over unless named explicitly in a
CALL.

EQU Directive

The assembler automatically assigns values to symbols that appear as instruction
labels or variable names. This value is the current setting of the location counter
when the line is assembled. (See ORG.)

You may define other symbols and assign them values by using the EQU directive.
Symbols defined using EQU cannot be redefined during assembly.

The name required in the label field of an EQU directive must not be terminated by a
colon.

Symbols defined by EQU have meaning throughout the remainder of the program
unless PURGEd.

EQU assigns the value of ’expression’ to the name specified.
Opcode Operand
name EQU equ__op

EQU defines ‘‘name’’ as a synonym either for another name in the symbol table or
for a constant value.

Equ__op may be a number, an expression, a register, or a macro name, €.g.:

¢ NUMBER THREE EQU 3

e ADDRESS EXPRESSION XYZ EQU ALPHA [SI}+3
¢ REGISTER COUNT EQU CX

¢ MACRO NAME RADD EQU ADDR

The required name field may not be terminated with a colon. This name cannot be
redefined by a subsequent EQU or another directive (unless it is PURGEGJ first). The ~
EQU expression cannot contain any external symbol. (External symbols are ex-
plained under EXTRN later in this chapter.)

Assembly-time evaluation of EQU expressions ‘always generates a modulo 64K ad-
dress, i.e., a value in the range —64KH to + 64K-1.

EXAMPLE: The following EQU directive enters the name ONES into the symbol
table and assigns the binary value 11111111 to it:

ONES EQU OFFH

The value assigned by the EQU directive can be recalled in subsequent source lines
by referring to its assigned name in subsequent expressions:

MOV AL, 25 ANDONES

It is also possible to use substitute names for more complex expressions or address-
expressions.

A EQU ARRAY [BX] [S]]

B EQU (ARM*7 + 44) AND MASK ONE

SUMMA EQU ARRAY_SUMMER
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After these EQU definitions, A and B may be used freely as synonyms for the ex-
pressions shown, possibly saving time and preventing coding errors in complicated
usage. This feature can also improve readability of programs by creating names
which have meaning to the application. For example, in a highway control project,
instead of A, you might use the name TRAFFIC. In a defense command and control
project, instead of B, you might code SAM__SELECT. SUMMA might be an
acceptable synonym for a procedure that sums arrays.

PURGE Directive

The PURGE directive allows names to be deleted from the symbol table. Once a
name is PURGEG it can be redefined and used in ways completely different from the
earlier usage, without assembler conflict or confusion. All occurrences of a name
after PURGing and redefinition will use the latest redefinition. If the name was
PURGEd and not redefined, a later use will be flagged as an undefined symbol
error.

PURGE name-1,name-2,...,name-n

This directive may not have a name, e.g., ALTER PURGE ADD is INVALID.

Program Linkage Directives

Modular programming and the relocation feature enable you to assemble and test a
number of separate modules that are to be joined together and executed as a single
program. Eventually, it becomes necessary for these separate modules to com-
municate information among themselves. Establishing such communication is the
function of the program linkage directives.

A module may share its data addresses and instruction addresses with other
modules. Only items having an entry in the symbol table can be shared with other
modules; therefore, the item must be assigned a name or label when it is defined in
the module. Segments with a combine-type of COMMON share the same locations.
Other items to be made available to other modules must be declared in a PUBLIC
directive.

Items needed from other modules must be declared in an EXTRN directive. Your
module could directly access data or instructions defined in another module if it
knew the actual address of the item, but this is unlikely when both modules use
relocation. By using a name, you allow the assembler to arrange that the address be
supplied by the Relocation and Linkage (R&L) programs. You thus gain access to
data or instructions declared PUBLIC in other modules.

However, the assembler normally flags as an error any reference to a name or label
that has not been defined in your program. To avoid this, you must provide the
assembler with a list of items used in your module, but defined in some other
module. The EXTRN directive does this.

Public Directive

The PUBLIC directive makes each of the symbols listed in the operand field
available for access by other modules.

Opcode Operand
PUBLIC name-list
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Note: This directive may NOT have name, e.g., PUB1 PUBLIC GETLIST is IN-
VALID.

Example:
PUBLIC SIN,COS,TAN,SQRT

Each item in the operand name-list must be a name assigned elsewhere in this pro-
gram to a number, variable, or label (including PROCs). When multiple names ap-
pear in the list, they must be separated by commas. Each name may be declared
PUBLIC only once in a program module. It may not be external too.

PUBLIC directives may appear anywhere within a program module.

When assembly is otherwise complete, if an item in the operand name-list has no
corresponding entry in the symbol table, it is undefined and is flagged as an error.

EXTRN Directive

The EXTRN directive provides the assembler with a list of symbols referenced in
this module but defined in another module. For these symbols, the assembler
establishes a linkage to outside this module and does not flag the undefined
references as errors.

Opcode Operands
EXTRN extrefl,extref2,...

where each extref has the form

name: type

Each item in the list identifies a symbol that may be referenced in this module but is
defined in another module. The type stated in EXTRN must be the same as that
definition. When multiple items appear on the list, they must be separated by
commas.

The ‘‘type’’ is required, and may be BYTE, WORD, DWORD, NEAR, FAR, or
ABS. ABS means a pure number and not a variable or label.

Note: This directive may NOT have a name, e.g., MOJL1 EXTRN V:BYTE is IN-
VALID.

Inside a user-declared segment, an external label or variable is assigned to that seg-
ment; outside of user segments (in the segment named ??SEG), it is assigned NOT to
?7SEG, but to no segment. If you want to refer to its segment, you must say ‘“‘SEG
name’’ (see Chapter 5), or use an explicit override where you know which segment
register will be correct at run-time.

If a symbol in the operand list is also defined in this module, the effect is the same as
defining the same symbol more than once in a program. The assembler flags this
error.

If a symbol is used without a definition in this module and without appearing in an
EXTRN directive, then the assembler flags it as undefined.

Although EXTRN directives may appear anywhere within a program module, it

is usually better to place them near the beginning, to avoid forward-reference
problems. (See Chapter 8.)
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A symbol may be declared external only once in a program module. There is no re-
quirement that it be used in this module. However, it may not be declared both -ex-
ternal and public.

Example:

EXTRN ENTRY:BYTE,ADDRTN:FAR,BEGIN:WORD,NUMBER:ABS

NAME Directive

The NAME directive assigns a name to the object module generated by this

assembly.
Opcode Operands
NAME module-name

The name directive requires the presence of a module-name in the operand field.
This name must conform to the rules for defining symbols. It may be identical to
symbols with other uses.

Module names are necessary so that you can refer to a module and specify the pro-
per sequence of modules when a number of modules are to be bound together.

The NAME directive may appear in the program at most once. It may NOT have a
name-field, e.g., MODNAM NAME RATES is INVALID.

If the NAME directive is coded erroneously or is missing from the program, the
assembler supplies a default NAME directive. The module-name is taken from the
root of the input file name: i.e., invoking the assembler by typing ASMS86
MYFILE.MD1 will create an object-module, MYFILE, in a disk file named
MYFILE.OBJ. This will cause an error if you later attempt to bind together several
object program modules with this name. This could occur if different programs
whose names differed only in extension were all assembled using the default name

e.g.:
MYFILE.MD2
MYFILE.AB6
MYFILE.QRX
all become
MYFILE.OBJ

if the default is invoked each time.

Example:
NAME MAIN

This name may be the same as symbols with other usages, e.g.:
NAME AX

is valid.

4-23



Assembler Directives

4-24

Assembler Termination END Directive

The END directive identifies the end of the source program and terminates each pass
of the assembler.

Opcode Operand
END optional-label

Only one END statement may appear in a source program, and it must be the last
source statement. If it is not the last, all the remaining statements cannot contribute
to the assembly, e.g., to match Segment or Procedure labels, or to provide defini-
tions for forware references. This will cause many statements to appear as errors.

If the optional label is present, its value is used as the starting address for program
execution. If no expression is given, there is no starting address, and this module is
assumed not to be the main module.

Whenever a number of separate program modules are to be joined together, only
one may specify a program starting address. The module with a starting address is
the main module.

8086 Assembly Language

SEREN



CHAPTER 5
EXPRESSIONS AND
ADDRESS EXPRESSIONS

ASMS86 allows many types of expressions. The rules for valid expressions and
address-expressions are precise. You can use them to determine the validity of
whatever expressions you may need.

This present section gives some general guidelines and examples from which you
may get a feel for the patterns of valid expressions.

To begin, definitions are needed:

VARIABLE means the name of a location whose contents are intended as
data. Its definition will NOT use a colon, e.g.

SOUP DW 2
SALAD LABEL BYTE

The relevant attributes of a variable are its segment, offset, and
type. (See Chapters 2, and 3, and the review later in this
chapter.)

LABEL means the name of a location whose contents are intended as an
instruction. Its definition will often use a colon, e.g.,

ADD__INGREDIENTS: MOV AX, SOUP
but not always, e.g.,

FOO PROC FAR
and
BAZ LABEL NEAR

are both labels. The four attributes of labels are segment, offset,
CS:value-assumed, and distance (i.e., NEAR or FAR). See also
Chapters 2, and 4, and the review later in this chapter.

NUMBER means simply a name for a numeric value, not a location, e.g., 7.
If a name has been given a strictly numeric value, e.g.,

DELTAEQU 77
or
B EQU 11

then DELTA and B are NUMBERs rather than variables or
labels.

The distinction between variables and labels on one hand, and numbers on the
other, is very important in this assembly language. Variables and labels fall into a
class of expressions called ADDRESS EXPRESSIONS.

An ADDRESS EXPRESSION is an expression which evaluates to a memory ad-
dress. Therefore, a variable is an address expression as is a label. An address expres-
sion has 3 components:
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1. The SEGMENT part

2. The OFFSET part

3. The TYPE

These three components are a necessary part of every legal address expression.

The other class of expressions is NUMERIC EXPRESSIONS or just NUMBERS.
Numeric expressions yield a result which is a number. 3 is a number as is 4 * §
(i.e., 20). Each component of an address expression is a number, but an address ex-
pression is NOT a number.

To make clear the distinction between address expressions and numeric expressions
consider the OFFSET operator (more completely defined later in this chapter): OFF-
SET of an address expression returns the offset component of the address expression
as a number.

The following example program uses the OFFSET operator to illustrate the distinc-
tion between address expressions and numeric expressions:

ASSUME CS: code, DS: data
data SEGMENT AT 55H

DB 0,1,2 ; 3 bytes
e__byteDB OFFH

data ENDS

code SEGMENT

start: MOV AX, data ; segment base address to AX (i.e., 55H)
MOV DS, AX ; and then to the DS register.

one: MOV AL,3 ; the number 3

two: MOV AL, e__byte ; address expression: e__byte

three: MOV AL, OFFSET e__byte ; the number3

code ENDS
END start

The two expressions which are most often confused are shown in the instructions
labeled “‘two:’’ and ‘‘three:”’,namely e__byte vs. OFFSET e__byte. E__byte is an
address expression. Instruction ‘‘two:”’ will move OFFH, the value in the memory
location whose address is e__byte, into the AL register. OFFSET e__byte is a
number. The MOV instruction labeled ‘‘three:’’ will move 3, the offset component

- of the address expression e__byte, into the AL register.

These two MOV instructions are very different; the first must fetch the source
(rightmost) operand from the byte of memory 3 bytes from paragraph 55H. The
source operand itself is OFFH. For the MOV labelled ‘three:’’ the source operand is
the immediate value, 3, which is part of the MOV instruction.

The instructions labeled ‘‘one:’’ and “‘three:’’ are identical.
From this example we see that using an address expression with an 8086 instruction

means that the operand will come from a memory location. Using a number means
that the number itself will be used as an immediate operand.
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The distinction between address expressions and numbers is important in other
places in the assembly language. The repetition count on a DUP construct (see
Chapter 3) and the paragraph number for absolute segments (see Chapter 4) must be
numbers, not address expressions.

Permissible Range of Values

The maximum range of values a number can have is -OFFFFH through OFFFFH.
All arithmetic operations are performed using signed two’s complement arithmetic.
Out of range values get an error message. The following list gives important
characteristics of the arithmetic performed by ASM86.

1. NOTOFFFFH =0

2. AND, OR, and XOR do not yield results which are out of range.
e.g., 0000FH AND OFFFOH =0.0FFFFH XOR OFFFFH =0.

3. All other operators give an overflow message if the result is out of the maximum
range.

Since an address expression has 3 numeric components, it is illegal if any component
goes out of range. An overflow message will be issued if this happens.

DB will accept values in the range —256 through 255. Any value between —256 and
—129 will be stored as a positive value between 1 and 127. The mapping is —129 =
127,...-255=1,-256=0.

DW will accept the entire range of values. Any value between —32,769 and —65,535
will be stored as a positive value between 0 and 32,767. The mapping is —32,769 =
32,767, ...-65,535=1.

Precedence of Operators
Expressions are evaluated left to right. Operators with higher precedence are

evaluated before other operators that immediately precede or follow them. When
two operators have equal precedence, the left-most is evaluated first. .

Parentheses can be used to override normal rules of precedence. The part of an ex-
pression enclosed in parentheses is evaluated first. If parentheses are nested, the
innermost are evaluated first. For example:

15/3 + 18/9=5 + 2=7
15/(3 + 18/9)=15/(3 + 2)=15/5=3
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The following list describes the classes of operators in order of increasing
precedence:

1. SHORT
2. Logical OR, XOR ; These 3 classes are bit-by-bit
; logical operators. Corresponding
3. Logical AND ; bits in the operands are operated
: ; on to give corresponding bits in
4. Logical NOT ; the result.
5. Relational Operators: EQ, LT, LE, GT, GE, NE
6. Addition/Subtraction: +, - (both unary and binary)
7. Multiplication/Division: *, /, MOD, SHL, SHR
8. HIGH, LOW

9. The operators to manipulate variables: ‘‘name:’’, PTR, OFFSET, SEG,
TYPE, THIS

10. Parenthesized expressions, LENGTH, SIZE, WIDTH, and square brackets.

In (9) and (10) the operands may include BYTE, WORD, DWORD, NEAR, FAR,
$, and address references of two types, i.e.

a symbolic name

name1 [subscript__expression]

Address-expressions may involve BX, BP, SI, or DI enclosed within square
brackets. The subscript expressions must evaluate to pure numbers or expres-
sions involving only these registers. Subscripts are discussed later in this
chapter.

Alphabetic operators must be separated from their operands by at least one
blank. This prevents their being seen as part of a symbolic name in your code.

General Introduction to Operator Classes

Certain high-precedence operators never operate on pure numbers. These 8 can only
be used on or with address-expressions: segment-override (‘‘name:’’) prefix, OFF-
SET, SEG, square brackets for subscript offsets, WIDTH, LENGTH, SIZE, and
TYPE. WIDTH is only for records.

The multiplicative and logical operators can work only with pure numbers.

The remaining 4 operator classes are the relational, additive, high/low, and pointer
(PTR). They can be used either with pure numbers, or with labels or variables from
the same segment (only). Subexpressions, such as those within parentheses, even-
tually evaluate to one or the other. Then you can judge the validity of the remaining
operations indicated by the full original expression.
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Two other operations are defined only to allow use of the current value of this seg-
ment’s program counter: ‘““THIS”’, and ¢‘$”’. The operator ‘‘THIS”’ is always used
with a “‘type’’, i.e., BYTE, WORD, DWORD, NEAR, or FAR. (There is a review
of attributes later in this chapter.) If you write:

A EQU THIS BYTE

you have defined A to be a VARIABLE of type BYTE. A’s address is this current
segment and this current offset within the segment, i.e., the program counter’s pre-
sent value at this line of code. An equivalent line is:

A LABEL BYTE
If you write:
B EQU THIS NEAR

you have defined B to be a LABEL of type NEAR, i.e., jumps or calls to B will be
expected to require at most a 1 word displacement. B’s address is again this segment
and this current offset in it. An equivalent line is:

B LABEL NEAR

The usage of § is explained later in this chapter.

Review of Attributes

A VARIABLE is the name of a memory location whose contents are intended for
use as data. Variables have 3 attributes: segment, offset, and type. Segment is the
name of the block of code in which the variable is defined. Offset is the number of
bytes from the beginning of that segment to the line defining the variable. Type is
the number of bytes in the basic unit used in that definition: 1 for byte, 2 for word, 4
for double-word. Chapter 3 describes variables in greater detail, particularly about
types. Chapter 1 describes segment and offset more fully.

A LABEL is the name of a memory location intended for use as an instruction. Its
first 3 attributes are segment, offset, and distance, where segment and offset mean
the same as the above for variables. Its final attribute is the CS:ASSUME value in
effect when the label was defined.

The distance attribute can be NEAR or FAR: NEAR means the label will be referred
to only in segments assembled under the same ASSUME CS:name as the label. Thus
all references will assemble into one-word displacements.

FAR means 2 words are needed to be able to access the label: the first is the offset of
the label within its segment (where it was defined), and the second is the segment ad-
dress itself, which must be (put) in CS for such access to occur. Such a replacement
of the current contents of CS is handled automatically by a long jump or long call
(“‘long”’ meaning intersegment, or FAR).

The CS:ASSUME attribute refers to the segment address (name) that you tell the
assembler to expect at run-time. This attribute is described more fully in Chapter 4
under the ASSUME directive. It is used by the assembler to define what labels are
accessible using the current CS: value (i.e., what labels are presently NEAR). Those
which are not so accessible are FAR, and can only be reached by a long jump or call,
which fills CS with the needed value.

5-5



Expressions 8086 Assembly Language

Additive Operators, + and -

These operators perform 17-bit arithmetic (sign plus 16-bit) integer addition and
subtraction between numbers, variables, and labels under certain rules:

1. Absolute numbers may always be added or subtracted from variables, or labels,
or absolute or relocatable numbers. When a number is added to a variable (or
label), the result is a variable (or label) whose offset is the sum of that number
and the original offset of the operand variable (or label).

2. Variables and labels may be subtracted only if they are in the same segment.
3. Variables and labels may never be added.
4. One base register and one index register may be added, e.g., [BX + SI]. Absolute

or relocatable numbers may be added or subtracted from such registers or
expressions. Registers may not be subtracted from numbers.

Examples:

1. MOV AX, ARRAY_START + 6
This moves the 4th word after ARRAY__START into AX.

2. TABLE2 DW NEW + 17 DUP (2); NEW must be absolute

Square Brackets and the Registers BX, BP, Sl and DI

The registers BX, BP, SI, and DI may be used as general purpose registers or as in-
dexing registers. When they are used as indexing registers, the value contained in the
register is used as an offset from some segment register. Square brackets distinguish
between the two possible usages of the indexing registers. If an indexing register ap-
pears in square brackets, then the contents of that register will be used to calculate

the offset.
Example:
MOV AX, BX ; move the contents of the BX register to AX
MOV AX, [BX] ; This moves a word from memory into AX. The

word is in the data segment, with segment
address in DS. The offset from DS is the
contents of register BX.

The assembly language allows [BX] to appear alone as a legal address expression,
even though only the offset is present, because there are defaults associated with
such usage to make the expression legal:

SEGMENT

REQISTER REGISTER USED TYPE
(BX] DS ?
(BP] ss ?
[sl] DS ?
[D1] DS ?
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Recall that every address expression has three components: SEGMENT, OFFSET,
and TYPE. The segment component of a bracketed indexing register is some seg-
ment register. The offset is the contents of the indexing register. The type is
unknown. ASM86 uses the type of the other operand in the instruction to determine
the type of the bracketed indexing register.

Square brackets have another use in the assembly language, which is described in the
section USING SQUARE BRACKETS AS SUBSCRIPTS. The current discussion
applies only to square-bracketed expressions appearing alone as address expressions.

Example:
MOV AX, [BX] ; since AX is a word, [BX] is given type WORD.
MOV CL, [DI] ; since CL is a byte, [DI] is given type BYTE.

Using the type of the other operand is only possible if
1. thereis another operand, and
2. the type of the other operand is unambiguous.

Therefore, the following examples do not contain sufficient information:

INC [BX] ; increment a byte or word? (There is no carry from
; 265 unless a word is being incremented)

MOV [SI], 3 ; move the byte 3 (8 bits) into the byte at offset [SI]
; or the word 3 (16 bits) into the word at offset[SI]?

JMP [BP] ; jump indirect INTER-segment or INTRA-segment
;i.e., is CS to be replaced?

and the assembler will issue the error “‘INSUFFICIENT TYPE INFORMATION
TO DETERMINE CORRECT INSTRUCTION.” See Chapter 7 for a precise
description of how the type is gleaned from the other operands.

In the explanation of the additive operators above, it was pointed out that one base
register and one index register may be added. Furthermore, absolute or relocatable
numbers may be added or subtracted from such registers or expressions. This may
only happen inside square brackets. The following rules govern what is legal inside
square brackets when the bracketed expression is to be used by itself as an address
expression.

1. Numbers may appear only if a base or index register appears.

2. BX and BP may never appear in the same expression. The same is true for SI
and DI.

3. BX or BP may appear alone, with numbers, and/or with SI or DI.
4. SIor DI may appear alone, with numbers, and/or with BX or BP.

5. Operations on numbers are unrestricted, but only additive operations can apply
to the base or index registers in this context.
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Thus the following expressions are all valid:

[BX + DI + (SIZE a) / 2]

[BP]

BX + 7]

7 + BP]

S| -100H] ; this is legal, but 100H - Sl is not
SI]

DI + BP]

BX + Sl

S| + OFFSET block]

But the expressions below are all invalid:

[BX * 7]

[BX + BP]
[BP-SI]

(3- BX]

[BX + DI * TYPE a]

The following rule determines the appropriate segment register:
If BP is in the expression Then SS is used, otherwise DS is used.

The TYPE of the bracketed expression is determined as described above when only a
single register appeared in brackets.

Expressions in square brackets allow for more sophisticated indexing than if just a
single base or index register appears in brackets. The address expression [BX + SI]
means that the sum of the contents of BX and SI will be used as an offset from the
DS register. [BP + 4] means that the 4 will be added to the contents of the BP
register and the sum will be used as an offset from the SS register. [BX - 40H] will
subtract 40H from the contents of the BX register. The result will be used as the off-
set from the DS register. Two sample programs follow.

Example:

Finding the maximum value in an array of at least one element. The program frag-
ment on the following page finds the maximum of an array of words. It uses the first
element of the array as a temporary maximum. It then compares each element to the
current temporary maximum. If the element in the array is larger than the temporary
maximum, it becomes the temporary maximum. When the program has looked at
every element in the array, the temporary maximum will be the maximum. The tem-
porary maximum is held in the AX register. The BX register is used to hold the off-
set of the next element in the array.
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ASSUME CS: code, DS: data

Expressions

data SEGMENT

values DW 2|00 DUP (?)

count DwW ?

data ENDS

code SEGMENT

start: ; initializes segment registers and

; reads numbers into the values array. Count
; will contain the number of values read.

MOV  BX, OFFSET values ; starting offset into BX
MOV  CX, count ; the number of values into CX
MOV  AX, [BX] ; move the first value into AX as a first guess.
JMP  testlp

find_max:
ADD BX,2 ; point BX at the next element of the array.
CMP  AX, [BX] ; Compare the current max with that next element.
JG testlp ; if AX is still the max, then try next value;
MOV  AX, [BX] ; else AX gets maximum found so far

testlp: LOOP find_max ; and we go to test the next value.

done:

code ENDS
END  start

Example:

The following procedure will print a string on the CRT. It calls the procedure
named CRT (defined external) with the character in AL. The string is ex-
pected to terminate with a null (0). Sl is expected to contain the offset of the

string from DS.

code

print

done:
print

code

ASSUME CS:code
SEGMENT PUBLIC

EXTRN crt: NEAR
PROC NEAR

MOV AL, [S]]

CALLcrt

CMP BYTEPTR[SI + 1],0
JE done

INC SI

JMP print

RET

ENDP
ENDS

; move next character to printinto AL
; print the character

; see if the next characteris 0

; ifitis, then go to exit

; else point to next character

; and go to beginning of the loop

5-9
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Variable-Manipulation Operators:
““name:’’, PTR, THIS, SEG, TYPE, OFFSET

Two of these six operators can change an attribute of a variable or label, usually for
the duration of one instruction only. These two operators are the segment prefix-
byte (‘‘name:’’), and the PTR operator.

Segment-Prefix

Every instruction that alters the flow of control or which writes or reads memory
(stack included) uses a segment register in computing the necessary memory address
(see Chapter 1). This excludes register-only operations.

The assembler decides which segment register to use. For each instruction, this
choice depends exclusively on the kind of address-expression you coded and the cur-
rent values ASSUMEd in the segment registers. The assembler has a fixed algorithm
(explained under ASSUME in Chapter 4) for analyzing that expression and deciding
which segment register is correct.

If there is more than one correct choice, e.g., because the same segment-base-
address is in more than one register, the assembler always chooses the shortest code,
i.e., no prefix byte if possible.

You may override the assembler’s choice. If you code an explicit override different
from the assembler’s choice, your choice is used.

A prefix byte is required (and supplied by the assemblér) if the desired memory loca-
tion is only accessible using a segment register different from the one used by hard-
ware default. That is:

1. if the desired memory location is accessible using the default segment register
for the specified expression, then no segment prefix byte is needed.

2. if it is not accessible using the current ASSUMEd contents of ANY segment
register, the reference is an error.

3. if it is accessible through a segment register different from the default, a
segment prefix byte is needed.

The rules for analyzing address expressions and hardware defaults are as follows:

1. Any address expression with type NEAR (i.e., labels) always use the CS register.
No override is legal.

2. Any address expression with type FAR will always result in the CS and IP
registers getting new values. No override is legal.

3. Instructions which use the SP register implicitly will always use the SS register.
No override is possible. These instructions include PUSH, POP, CALL, RET,
IRET.

4. 1If a string instruction uses the DI register to point to an operand, then the ES
register will always be used with that operand. No override is legal (see the
NOSEGFIX operator in Chapter 7).

ALL other cases involve data references to memory (i.e., address expressions with
type BYTE, WORD, or DWORD). The default may be overridden in these cases.

5. If the address expression uses the BP register (i.e., within brackets), then the
default segment register is SS. Otherwise it is the DS register.

5-10
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The expression ‘‘segreg:address expression’’, where segreg is a segment register,
creates a new address expression whose segment component is that segment register.
If “‘segreg” is the same as the default segment register for ‘‘address expression’’,
then no prefix byte is generated (since it would be redundant). If ‘‘segreg’’ is dif-
ferent from the default, then a prefix byte is generated.

Example:

ASSUME CS: code, DS: data

data SEGMENT
m_byte DB ?
data ENDS

code SEGMENT

MOV AL, [BP] ; SS is the default. [BP] has a segment component
; of SS. No segment prefix byte is generated.
MOV AL, DS: [BP] ; SS is the default. DS is explicitly used. A prefix
; byte is generated so that the DS register is used.
MOV AL, m__byte ; BP is not used, DS is the default. M__byte has a
; segment component of ‘‘data’’. ‘‘Data’’ is ASSUMEd
; inthe DS. No prefix is generated.
MOV AL, ES: m__byte; DS is the default. ES is explicitly used. A prefix
; byte is generated so that the ES register is used.

ASSUME DS: NOTHING, ES : data

MOV AL, m__byte ; DS is the default. ‘‘Data’’ is notin DS, butis in ES.
; A segment prefix byte for ES is generated.
MOV AL, DS: m__byte; DS is the default. Ds is explicitly used. No prefix
; byte is generated.
code ENDS

NOTE

The above example is meant to illustrate how the assembler decides when a
segment prefix is necessary. It is NOT an example of the proper use of the
ASSUME statement. Nor is it an example of when to use the segment over-
ride operator.

The following contexts are examples of when a segment register might be used to
override an address expression.

®  When using the BP register as an indexing register in a segment other than the
stack segmeént. The address expression ¢‘[BP]’’ has a segment component of SS.
If BP is used to index into some other segment, then a segment override must be
used (e.g., DS: [BP] will index into the current data segment).

® The string instructions which use SI to point to an operand. It is not uncommon
to have these operands in the current extra segment. This operand may be over-
ridden with an ES: override if that is the case.

e If a program uses data in the extra segment, then any use of a bracketed register
expression to reference the data will require a segment override. For example, in
the instruction MOV AX, [SI], the segment component of ‘‘[SI]”’ is the DS
register. ‘‘ES: [SI]’’ is necessary if SI is to work as an indexing register into the
extra segment. The only exception to this need for an ES: override is the DI
operand to string instructions, for which ES is always used.

If you find certain forward-references unavoidable, you may be using a variable
whose entire segment is defined later. In such a case, you can put the name of the
segment in the ASSUME statement and use it as an override in the relevant
instructions:
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ASSUME CS:CODE, DS:DATA, ES:LATER_SEG
: (o]
o
MOV AX, LATER_SEG
MOV ES, AX
o
[o]
MOV AX, LATER_SEG:LATER__VARIABLE
[o)
o
MOV DX, ES:LATER_VARIABLE
[o]
o]

Both references to LATER__VARIABLE are acceptable, though there is a slight ad-
vantage to using LATER__SEG as an override rather than ES in the above example.
If you were later to change your choice of segment register, i.e., to use DS instead of
ES, only one change (to the ASSUME) would handle all such references, whereas
using ES: would require a line-by-line modification. LATER__SEG must eventually
be seen as a segment-name...anything else is an error. The only time a segment-
override affects more than one instruction is in an EQU statement. When you say:

NEW1 EQU  ES:ARRAY[SI]

then every later use of NEW1 includes the fact that ES is the segment register used.

The use of groups requires some additional discussion here. If you have not yet
studied groups, or do not intend to use them, the next few paragraphs will be of
academic interest only. You may prefer to skip to the next section, on the PTR
operator.

A group allows one base-address to serve for the multiple segments in the group.
The maximum size of a group is naturally 64K bytes, as large a distance from the
base-address as can be expressed in a 16-bit offset. Thus the sum of the sizes of the
individual segments making up the group may not exceed 64K.

The ultimate order of these segments within the group is not known during
assembly. Thus the offset of a variable or address-expression from the group’s base-
address must be a relocatable quantity. The offset within the variable’s segment
must be added to the size of any segments in the group which may lie between the
base-address and the variable. This is handled automatically by the LOC86 program
using information provided by the assembler.

For your use of groups and overrides, you need to remember that variables or
address-expressions in a group are of necessity relocatable entities. For example, if
G is a group and S is one of the segments in G, and IDENT is a variable in S, then
G:IDENT is a relocatable entity whose segment attribute is G, whose offset will be
its displacement from the beginning of G, and whose type is the TYPE of IDENT.

The PTR Operator

The PTR operator creates a variable or label. The new variable has the same offset
(and segment, if any) of the operand on the right side of PTR, plus the attribute on
the left of PTR.



8086 Assembly Language Expressions

Examples:
After defining a 9 word array by coding:

WARRAY DW 9 DUP (0)

you may later wish to access the 18 bytes as bytes rather than as 9 words. Normally
an instruction like

MOV AL, WARRAY [SI]

would be illegal due to type conflict: the type of AL is BYTE, i.e., 1, and the type of
WARRAY is WORD, i.e., 2.

MOV AL, BYTE PTR WARRAY [SI]

is valid, because you have made it explicit that bytes are what you want despite the
original definition of WARRAY as words.

That original definition stands unchanged by such an instruction . The attribute
alteration applies only to that instruction containing it.

Similarly you can write:
JMP FAR PTR LABEL77

If you know LABEL77 will later be defined in a different segment from this JMP,
requiring 2 words of address in the JMP rather than the 1 word normally assumed.

If there will be more than a few instructions needing PTR to correctly access the
same target, you can define a synonym once, using EQU. Thereafter it is simpler to
use the synonym. For example:

BARRAY EQU BYTE PTR WARRAY

allows the same locations defined as words in WARRAY to bé accessed as bytes
when referred to as BARRAY, e.g., if SI=3 then:

MOV AH, BARRAY [SI]
puts the fourth byte of BARRAY into AH (4th because the first is BARRAY [0]).

If you use PTR with pure numbers, you create variables or labels with an offset
equal to the number, with the type you specify, and with a segment attribute of 0.
Such an expression is legal only when preceded by a segment prefix byte or by the
operators TYPE or OFFSET.

Example:

DS:BYTE PTR 77 could be used to temporarily define a byte variable of offset 77 in
the DS segment. Without an override, e.g., DS:, this expression would have no seg-
ment attribute and thus would be illegal.

MOV AL, DS: BYTE PTR 77 would put into AL the contents of the byte located 77
bytes past the beginning of the current data segment. This practice is deemed less
wise and less convenient than naming the desired location and using the name for
such a reference; but if the need arose, the expression is valid.

5-13
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Another example, only slightly more reasonable, might be the case of your knowing
from prior work that the offset of a desired word in segment ROUT?2 was the same
as the offset of the byte variable PATH1 in segment ROUT1. You could then write

ASSUME ES:ROUT2
MOV AX, ROUT2: WORD PTR OFFSET PATH1

Again, this is a valid construct whose convenience and clarity are questionable.

To round out the picture of PTR, it is also valid to write expressions of this sort:

NEAR PTR VARIABLE_NAME
or
BYTE PTR LABEL_NAME

The first enables a programmer to transfer execution control to an area originally
defined as data. This practice is usually a mistake (see Note).

The second allows code to be dynamically accessed and tested. Further, it permits a
programmer to vary the contents of instructions during execution. This too is
usually a mistake (see Note).

NOTE

But it can be done intentionally when there is a need for it, and without
disastrous results if extreme caution is observed.

PTR With Indexing Registers
A common use of the PTR operator is with bracketed indexing registers, as follows:

It is impossible to determine what the correct type of some bracketed expressions
must be. Recall that the following three uses of such expressions are illegal:

INC [Sl] ;incrementa byte or word?
MOV [DI], 3 ; move a byte with value 3 or a word with value 3?
JMP [BX] ;jump INTRA segment indirect or INTER segment indirect?

The PTR operator allows this situation to be remedied:

INC BYTE PTR [SI] ;incrementthe byte pointed to by S|
MOV WORD PTR [DI], 3 move 16 bits worth of 3 to the word at DI
JMP DWORD PTR [BX} perform anindirect INTER-segment jump.

The Operator “‘“THIS”’

As mentioned in the Introduction to this Section, the operator ‘“THIS’’ creates a
variable or label of the type you specify, whose offset and segment are the current
values of assembly.
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The definition of every variable or label includes a type-attribute, e.g.,

DATA_TABLES  SEGMENT

A

X

Y
LOCt1:
DATA_TABLE

PARA

DB
DwW
DD

o
o
0
ENDS

““DATACLASS”’

100 DUP (0)
300 DUP (47)
100 DUP (13)

Expressions

implicitly types A as an array of byte variables, X as an array of word variables, Y as
an array of double word variables, and LOC1 as a NEAR label.

““THIS”’ can be used, at the same place defining the original name, to define an
alternate name of different type. As discussed above under PTR, there may be times
you need to access locations as bytes when the original definition was words, or vice

versa.

The following definitions illustrate such alternate naming:

DATA_TABLES  SEGMENT
WA

LOC1:

A

XB
B

wy
YB
Y

o
(o]
00
oo

DATA_TABLES ENDS

PARA

EQU
DB

EQU
bW

EQU
EQU
DD

‘DATACLASS’

THIS WORD
100 DUP (0)

THIS BYTE
300 DUP (47)

THIS WORD
THIS BYTE
100 DUP (13)

WA allows pairs of bytes in A to be accessed as words. The offset and segment at-
tributes of A and WA are the same; they differ as shown in the table below.

Similarly, XB allows each byte of B to be individually accessed.

WY can be used to access each WORD in the Y array individually. YB allows every
BYTE to be directly addressed. WY, YB, and Y have identical segment and offset
attributes; they differ only in type, size, and length:

VARIABLE
WA
A

XB
B

WYy
YB
Y

LOC1

SEGMENT
DATA_TABLES
DATA_TABLES

DATA_TABLES
DATA_TABLES

DATA_TABLES
DATA_TABLES
DATA_TABLES

DATA_TABLES

OFFSET

0
0

100
100

700
700
700

1100

TYPE LENGTH

2 1

1 100

1 1
300
1

1 1
100

NEAR -

SIZE
2
100

1
600

400
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NOTE

““$”’ is an abbreviation for THIS NEAR; it was used in earlier INTEL
assemblers in self-relative jumps, i.e.,

JMP §+4

meant to transfer control from this point in the instruction sequence to the
instruction byte 4 bytes further on. This type of instruction is less useful in
the 8086. The generality of the assembler mnemonics allows different-
length machine instructions to be assembled from similar-looking source
code, depending on the attributes of the operands. Thus it is inconvenient
and dangerous for you to supply the precise number of bytes, e.g., 4 in the
above example. It is much easier to label the target location and put the
label in the jump command, i.e.

JMP SHORT @1 ;@ 1is target label
o
(]
0
@1: MOV AX,NEW_SEG__VAL
MOV ES, AX
o
o}

SEG, TYPE, and OFFSET

These operators create numbers, by separating out 1 of the 3 attributes of variables
or labels.

Since the variables defined above were all in segment DATA__TABLES, then SEG
A = SEG X = SEG Y = DATA__TABLES. This operator can be used in the
ASSUME statement or in building addresses, or in any expression you find useful.

TYPE of a variable gives the number of bytes in the unit of definition.

TYPEA=TYPEXB=TYPEYB=1
TYPEB=TYPEWA=TYPEWY =2
TYPEY=4

TYPE LOC1 = NEAR

In the last line, the type must be either NEAR or FAR because LOCI1 is a label rather
than a variable. NEAR is the default.

The offset of a variable or label (address-expression) means the distance in bytes
from the value of the segment-name to the location of that variable or label. The ac-
tual value assigned to a segment-name is always a paragraph number, as discussed in
Chapter 1, and in Chapter 4 under the Segment directive. However, the real beginn-
ing of that segment, i.e., the first byte assembled for it, can be assigned an address
up to 15 bytes higher by the LOCATE program. The determining factor is the align-
type on that Segment directive. This means the relative offset seen at assembly time
may be changed by the time final addresses are assigned and execution begins. If the
segment is PUBLIC, it is combined with other segments of the same name from dif-
ferent modules, possibly adding even more bytes to the offset.

Thus when you wish to refer to the offset of some variable or label, it is often incor-
rect to use the relative offset from the assembly — you must use the OFFSET
operator instead. The assembler then passes along information enabling LOCATE
to fill in the final correct offset without further attention on your part.
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One typical example is using the offset as the first address of an array, moving the
offset into a base register and accessing array members by an index register:

ASSUME DS:SEG B
o
o
o
MOV  BX, OFFSET B
MOV S|, 0
MORE: o
o
ADD AX, [BX + SI] ;equivalentis [BX][SI], see below.
o
0
0
JMP MORE

Although array B in DATA__TABLES has a relative offset of 100, the OFFSET
operator assures that even if B’s ultimate absolute offset is different from 100, ac-
cess to the B array will be made correctly.

It is also possible to use the OFFSET operator to generate correct offsets within a
group. Suppose you have a group G containing segments S1, S2, and S3, with VAR
a variable in S2. The expression OFFSET VAR will give you the offset of VAR
within S2, its segment. Since S2 is in G, you may need to refer on occasion to
G:VAR, the location VAR as seen from the base-address of the group G.

OFFSET G:VAR then gives you the current offset at execution time, after LOCATE
assigns absolute addresses to all the segments in G (S2 may be first or last or second).
The use of G: in this expression is absolutely necessary, since without it the OFFSET
operator will supply only the offset of VAR within the segment where it was defined.
(See also LEA in Chapter 6.)

Example:
(NOTE—you need not master the details in this example. The assembler and locate
facility handle it for you. These details are provided solely as a matter of more com-

.plete information, as to why and how the offset in a group is created.)

This is a picture of one way the OFFSET G:VAR might turn out.

00000H

SIZE S3

S1

SIZE S1

<M .
<M | <M 3>

S2

OFFSET VAR

OFFFFFH
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The value of OFFSET G:VAR will include the sum of the size of S3, the size of S1,
and OFFSET S2:VAR, but this sum must be adjusted for the align-types and ending
points of S3, S2, and S1.

Suppose S3 has the align-type BYTE and is 24 bytes long (18H), and S1 and S2 are
align-type WORD and are each 55 bytes long (37H). Suppose VAR is defined as the
fifth word in S2, i.e., its relative offset is 8. Suppose further that during LOCATE,
G and S3 are assigned the address 12343H, i.e., base-address 12340H (paragraph
number 1234H) and offset 3. (See Chapter 1 on addressing and Chapter 4 on the
Segment Directive).

Then the last byte of S3 falls at location 1235AH. S1 cannot begin at the next byte,
1235BH, because word alignment means the first byte of the segment falls at an even
address. Thus S1 begins at 1235CH, with 1235BH unused. Similarly, S2 begins at
12394H, with 12393H unused.

Now what is OFFSET G:VAR? It is:

the size of S3 + the size of S1 + OFFSET S2:VAR + adjustment, or

24 + 55 + 8 + 5=92, or SCH.

The 5 is added in to adjust for both the initial offset (3) of G (beyond its base address
12340H), and the 2 bytes left unused by aligning S1 and S2. Thus this offset, SCH,
plus the base-address of G, 12340H, gives the address of VAR, 1239CH, exactly 8
bytes past the beginning of S2.

Parentheses, Length, Size, Width, Square Brackets

These 5 operators have high precedence. WIDTH applies only to RECORDS and
fields thereof, and is discussed only in Chapter 3.

Parentheses in an expression indicates a subexpression which needs to be reduced to
a single number or variable before the other operators in the full expression can be |
done. In writing A * (B + C), you need the result of the addition before multiplying
by A.

The LENGTH operator tells how many units (of whatever type) were allocated by
the original line defining the variable. In the prior example of DATA__TABLES,

LENGTH A =300, LENGTH Y =100.

The SIZE operator tells how many bytes were defined by that original line of code.
This number is calculated from the units and the type, by the formula:

SIZE name = LENGTH name * TYPE name.

SIZE A=100
SIZE B = 600
SIZE Y =400

As an example of using some of these operators, the following code sequence clears
a block of storage in the ES segment, given that BLOCK was defined as a byte array.
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ASSUME ES:SEG BLOCK, CS: RE_INIT__SEG

MOV DI, 0

MOV  AX, SEGBLOCK

MOV  ES, AX

MOV  CX, LENGTHBLOCK
ZER: MOV  BLOCK [DI],0

ADD DI, 1

LOOP  ZER

(The LOOP instruction automatically decrements CX by 1 and transfers to ZER,
until CX becomes zero. See Chapter 6.)

If you wanted to use this sequence in several different modules to handle different
byte or word arrays, then instead of:

ADD DI,1
you would write:
ADD DI, TYPE BLOCK
the code then appears
ASSUME ES:SEG BLOCK, CS: RE__INIT_SEG

MOV DI, 0

Mov AX, SEGBLOCK

MoV ES, AX

MOV CX, LENGTHBLOCK
ZER: MoV BLOCK [DI], 0

ADD DI, TYPE BLOCK

LOOP  ZER

Then for each separate copy of this sequence, used with different arrays, the
assembler would generate the correct ‘‘move’’, and reset your DI pointer/subscript
by 1 or 2 depending on the type of block, i.e., the number of bytes per unit.

Although the following might take more execution time, it would be functionally
equivalent if you left the ADD as it was and made these 2 changes:

1. change LENGTH to SIZE
2. change BLOCK [DI]to BYTE PTR BLOCK [DI]
The code would then read

ASSUME ES: SEG BLOCK, CS: RE__INIT_SEG

MOV DI, 0

MOV AX, SEGBLOCK

MOV ES, AX

MOV CX, SIZE BLOCK
ZER: MoV BYTE PTR BLOCK [DI], 0

ADD DI, 1

LOOP ZER

Expressions
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(This would also handle DD arrays. Note that each copy of this sequence would use
a different array name corresponding to the particular definition. To avoid this and
have only one copy, you would have to make the sequence into a procedure: see
Chapter 4) The following is another way of achieving the same effects:

LEA DI, BLOCK
MOV AX,SEG BLOCK
MOV ES, AX
MOV CX, SIZE BLOCK
MOV AL, 0
CLD
REP STOS BYTE PTR BLOCK ; see Chapter on Instructions

Square Brackets Used As Subscripts

The usage of square brackets in the expression ‘““BLOCK[DI]”’ is different from
square brackets when used alone (e.g., just *[DI]”’). This new usage of square
brackets is called subscripting. It is similar, but not identical, to subscripting in a
higher level language like FORTRAN or PL/M. Using an expression in square
brackets as a subscript has the effect of adding the quantity in brackets to the offset
component of the address expression appearing to the left of the brackets. This ad-
dress expression may not appear to the right of the brackets.)

The value to the left of the subscript must be an address expression. The result of a
subscript operation is always an address expression and must have a data type (e.g.,
BYTE, WORD, or DWORD). It is not legal to subscript labels.

Thus we see that BLOCK([DI] is an address expression. Moreover, the offset compo-
nent of BLOCK|[DI] is the same as [OFFSET BLOCK + DI]. Also, the address
expression [BX][SI] is legal, since [BX] is a legal address expression using the
defaults discussed above. An equivalent expression to [BX][DI] is [BX + DI]. The
former involves subscripting, the latter does not. The result is the same.

The segment and type components of the new address expression are the same as
those components of the address expression to the left of the subscript.

Recall the first rule for legal expressions in square brackets:
Numbers may appear if at least one of the base or index registers appear.
This rule is relaxed in the case of subscripts; numeric expressions are allowed to

appear alone in square brackets if the brackets are used as a subscript. Since the
subscript is added BLOCK|[3] would be the same as BLOCK + 3.
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Examples:

For byte arrays of

the same size:

ASSUME CS: SWITCH__SEG, DS: DATA_TABLEs

MOV  CX, LENGTH ARRAY1
MOV  BX, OFFSET ARRAY2
MOV  SI,0

NEXT: MOV AL, ARRAY1[SI]
MOV BYTE PTR [BX][SI], AL
INC  SI
LOOP NEXT

This sequence above fills each byte of ARRAY2 with the contents of the respective
byte in ARRAY1. For byte or word arrays of the same size, you can change INC SI
to ADD SI, TYPE ARRAYI. If the sizes are different, the loop must run on the
smaller, i.e., both the MOV CX command and the one at NEXT must use the
smaller array name, putting the other name in the MOV BX command.

If the type are different, you may be making a mistake, but you can achieve your
goal using PTR and a separate index. Here are three examples, using the earlier
definitions in the segment DATA__TABLES:

DATA_TABLES SEGMENT PARA ‘DATACLASS’
A DB 100 DUP (0)
B DW 300 DUP (47)
Y DD 100 DUP (13)
[¢]
(o)
DATA_TABLES ENDS
SWITCH SEGMENT PARA ‘CODE1CLASS’
(o]
(o]
(o]
ASSUME CS:SWITCH, DS: DATA_TABLES
MOV CX,LENGTHA
MOV BX, OFFSET B
MOV SI, 0
MOV DI, 0
(EXAMPLE #1) NEXT: MOV AL, A[D]]
MOV  [BX][SI], AL
ADD SI, TYPEB
ADD DI, TYPEA
LOOP NEXT

This loop places each of A’s 100 bytes into the low-order byte of each of B’s first 100

words, such that A[#] = LOW B[#]

(EXAMPLE #2) NEXT: MOV

MoV
ADD
ADD
LOOP

AL, A[DI]
[BX][SI + 1], AL
SI,TYPE B
DI,TYPE A
NEXT

Expressions
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This performs similarly to Example 1 above but the high-bytes of B’s first 100 words
are filled instead, such that A[#] = HIGH B [#]

(EXAMPLE #3) NEXT: MOV  AX, WORD PTR A[DI]
MOV  [BX][Sl], AX
ADD SI, TYPEB
ADD DI, TYPEB

CMP DI, SIZEA
JGE A_USED_PROC

LOOP NEXT
A_USED_UP:  CALLNEW_PROC
o
o
(o]
SWITCH  ENDS

This makes the first 100 bytes of B identical with A’s 100 bytes. Instead of the com-
pare and conditional jump, you could have halved the size of A put into CX, i.e.,
the first line after ASSUME could have read

MOV CX, LENGTH A/2
or
MOV CX, LENGTH A SHR 1

Example 3 could be accomplished using the string block-move instructions in the
following two ways:

ASSUME CS:SWITCH,DS: DATA__TABLES,

& ES: DATA_TABLES ; the block-move
; requires ES
MOV CX, LENGTH A
LEA SI, A
LEA DI, B
OoLD
X3: REP MOVSBYTEPTRB, A
2.
ASSUME CS; SWITCH,DS: DATA_TABLES,
& ES; DATA_TABLES
MOV CX, LENGTHA/TYPEB
LEA SILA
LEA D|,B
CLD

X3: REP MOVS B, WORDPTRA ; halfthe number of moves
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Using Square Brackets in Transfers

(Indirect Transfers)

Square brackets do have another use, and it relies on an interpretation similiar to the
above. When [BX] is used, it is taken to mean ‘‘use (the data at) the location whose
offset is in BX’’. In the examples above, data was being stored into such a location,
but it is equally valid to write

MOV AH, DS: [BX] [SI]

This causes the accumulator’s high-byte to receive the data stored at the SIth byte
past the location whose offset is in BX, in the segment whose base-address is in DS.
(Effectively this amounts to the byte whose address is the contents of SI plus the
contents of BX plus 16 times the contents of DS.) If you were to write

MOV AX, DS:[BX] [SI]

then the full-word accumulator would be filled with the word in DS beginning at the
SIth byte past the location whose offset is in BX.

The OTHER use of square brackets is in jumps or calls. Jumps and calls are always
in the CS segment, i.e., using the contents of CS as the paragraph-number of the
segment-base-address. When you write

JMP  BX ;DIRECT JUMP

control is transferred to a location in the current CS segment using the contents of
BX as an offset from the current CS base-address. Thus if BX contains OC12H,
JMP BX transfers to the location 0C12H beyond the beginning of the CS segment.

If, however, you write
JMP WORD PTR [BX] ; INDIRECT JUMP

the square brackets mean ‘‘use the contents of the word whose offset is in BX.”’ This
usage automatically means the data is in the DS segment. Thus the contents of BX
are used as an offset (to the segment address in DS) to locate the indicated word.
Then that word’s contents are used for the transfer, replacing the Instruction
Pointer.

In the example above, BX contained 0C12H. When the instruction you code is JMP
WORD PTR [BX], the transfer does not use 0C12H as the offset to CS, but rather
uses the contents of DS:0C12H as the offset. If the word at 0C12H in the DS seg-
ment contains OFAFH, JMP WORD PTR [BX] transfers control to OFAFH in the
current CS segment.

The WORD PTR preceding [BX] indicates use of one word as an offset, leaving the
contents of CS unchanged as the segment address. The only other choice for this
construction is

JMP DWORD PTR [BX]
which would use two words at that address in DS. The first, as above, is the offset.

The next word is used to replace the contents of CS, making this an intersegment
jump (also called ¢‘long’’ or *“FAR”’).
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Subscripting such a reference is also legal, e.g.,
JMP WORD PTR [BX][SI]

which would replace the IP with the word beginning at the SIth byte post the loca-
tion whose offset is in BX. Similarly, it is valid to use a subscripted address expres-
sion in a jump, e.g.,

JMP TABLE [BX][DI]

where the type of entry in the table must be word or doubleword.

The remainder of this chapter discusses the following operators: SHORT, OR,
XOR, AND, NOT*, /, MOD, SHL, SHR, HIGH, and LOW. Relocatable numbers
and expressions are discussed in Appendix G.

All constants are stored internally as 17-bit numbers, that is, a left-most bit for the
sign of the constant (O=plus, 1=minus) and a 16-bit value. The signs of the operands
are affected by the logical and shifting operators, as is discussed in each case.

SHORT

Causes the assembler to expect only 1 byte to be enough to hold the ultimate value of
the expression. This means machine code will only be generated if the evaluation of
the expression yields a single byte value. If the result is larger than a byte, you will
get an error message. If an expression using SHORT undergoes further arithmetic,
the operator loses all effect. Applying SHORT to a backward reference has no
effect.

OR, XOR

Create the inclusive or exclusive logical ‘‘or’’ of the operands. Inclusive-or means
the result has a 1 in all bit positions where either operand had a 1. Exclusive-or
means the result has a 1 where only one operand had a 1 and the other had a 0, and
the result has a 0 where both operands had the same value, i.e., both 1s or both Os.

Examples:
11010110B 11010110B
OR 01010101B but XOR 01010101B
11010111B 10000011B

Showing these in a vertical format makes it easier to compare bit by bit, but the
usual form would be horizontal in an instruction, i.e.,

VALUE__D6H EQU 110101108 ; =0D6H
VALUE__55H EQU 01010101B ; =56H

MoV AX, VALUE__D6H OR VALUE__55H ; AX =D7H.
MOV BX, 11010110B XOR 01010101B ; BX =83H.



8086 Assembly Language Expressions

AND

Creates the logical conjunction of the 2 operands, meaning the result has a 1 only in
those bit positions where BOTH operandshad a 1.

Examples:

(actually, the sign bit is included, as above);

11010110B 1 11111111 11111011 (-5)
AND 01010101B AND 0 00000000 00010101 (21)
010101008 0 00000000 00 010001 =17

AND is sometimes used to select certain bits or a pattern of bits out of a larger value.
This is sometimes called masking the desired bits, or masking out the rejected bits. If
you use the mask 00001111B ANDed with some byte in memory, the result will be a
byte whose lower half is the same as the original, with an upper half of all zeroes:

10111101B 100101108
AND 00001111B AND 000011118
00001101B 00000110B

(See also discussion of Records in Chapter 3.)
When AND is combined with ‘“ORs’’, AND is done first:

MASK1 EQU 00001111B
1. MOV MEM_WORD, 10010111B AND MASK1 XOR 1110B
2. MOV MEM_WORD, 10010111B  XOR MASK1 AND 1110B

The instruction at (1) moves 00001001B into MEM__WORD, as follows:

10010111B 00000111B
AND 00001111B  XOR 00001110B
00000111B 00001001B

Whereas the instruction at (2) moves 10011000B into
MEM__WORD, as follows:

(MASK 1 =) 1111B 10010111B
AND 1110B XOR 00001110B
1110B 10011001B
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NOT

Forms the ‘“‘ones’’ complement of its operand, i.e., each original zero becomes a one
and each original one becomes a zero.

NOT 010110118 = 101001008
When NOT is combined with ANDs or ORs, NOT is done first:

MOV MEM_WORD,97H AND NOT MASK1
moves 10010000B into MEM__WORD, as follows:

NOT MASK1 = NOT 00001111B = 111100008

97H =10010111B AND 10010111B

: 100100008

MoV DX,97H AND NOT MASK1 XOR 1110B
moves 10011110B into DX, because XOR is done last.

MOV BX,97H XOR NOT MASK1 AND 1110B

moves 97H into BX. NOT is done first, AND second, XOR last. The AND produces
all zeros, so the XOR effectively duplicates the 97H.

((any__value OR 0 = any__value
any__value XOR 0 = any__value
any__value AND OFFFFH = any__value ))

NOTE: if NOT yields 10000H, it is converted to zero: NOT OFFFFH =0

Relational Operators: EQ, NE, LT, LE, GT, GE

These operators compare 2 operands, giving a result of all 1’s if the specified rela-
tion is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>