
MeS-86™
ASSEMBLY LANGUAGE CONVERTER

OPERATING INSTRUCTIONS
FOR ISIS-II USERS

Manual Order No. 9800642-02

Copyright © 1979 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products. are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9). ' .

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Prom ware
Insite Megachassis RMX
Intel Micromap UPI
Intelevision Multibus j./Scope
Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

A175/280/7.5 FL

PREFACE

This manual describes how the ISIS-II user who is familiar with 8080/8085 assembly
language can convert 8080/8085 source files to 8086 assembly language source files,
which can then be assembled, linked, located, and run to perform their equivalent
8080/8085 functions on the upwardly compatible, 16-bit 8086.

Chapter 1 describes the scope and environment of conversion.

Chapter 2 describes how to operate the converter program CONV86.

Chapter 3 describes how to edit converter output to obtain MCS-86 source files.

Appendices describe the instruction, operand (expression), and directive mappings;
reserved names; and sample conversions with 8080/8085 and MCS-86 Macro
Assembler listings of source and output files.

The following publications contain detailed information on 8080/8085 and MCS-86
software related to this manual: .

• 8080/8085 Assembly Language Programming Manual, Order No. 9800301

• ISIS-II 8080/8085 Macro Assembler Operator's Manual, Order No. 9800292

• ISIS-II User's Guide, Order No. 9800306

• 8086 Family User's Manual Order No. 9800722

• MCS-86™ Macro Assembly Language Reference Manual, Order No. 9800640

• MCS-86™ Macro Assembler Operating Instructions for ISIS-II Users, Order
No. 9800641

• MCS-86™ Software Development Utl1ities Operating Instructions for ISIS-II
Users, Order No. 9800639

• ISIS-II PL/M-86 Compiler Operator's Manual, Order No. 9800478

iii

CHAPTER 1 PAGE
AN OVERVIEW OF CONVERSION
Conversion and You. .. 1-1

What Is Conversion? 1-1
Why Convert? .. 1-1
What Preparation Does CONVS6 Require of

Source Code? .. 1-1
What About Macros? .. 1-3
What HardwarelSoftware Is Needed

for Conversion? .. 1-3
How Much Manual Editing of CONVS6

Output Is Necessary? 1-3
What Advantage Is There in Rewriting

Programs in SOS6 Assembly Language Rather
Than Converting? .. 1-3

Functional Mapping. .. 1-6
What Are the SOS6 Assembly Language

Prologues Generated by CONVS6? 1-6
What If a Converted Program Exceeds 64K? 1-7
How Does CONVS6 Handle the Stack? I-S
How Are the SOSO/SOS5 Registers Mapped

into S086 Registers? 1-8
How Are the S080 Flags. Mapped into S086 Flags? .. 1-9
How Are the S080/S0S5 Instructions Mapped

into S086 Instructions? .. 1-9
How Are SOSO Operands (Expressions) Converted

80S6 Operands (Expressions)? " 1-9
How Are Comments Mapped? 1-10
How Are S080/S085 Assembler Directives

Mapped into 8086 Assembler Directives? 1-10
How Are S080/8085 Assembler Controls Mapped? 1-10
How Does CONV86 Handle 8086 Reserved

Names? 1-10
Functional Equivalence 1-11

What Is Functional Equivalence? 1-11
What About Program Execution Time? 1-11
What Happens to Software Timing Delays

in Conversion? .. 1-11
Does the 8086 Code Produced Set Flags Exactly

as on the 8080? .. 1-11
How Does the EXACT Control Preserve

Flag Semantics?. 1-12
Editing CONVS6 Output for 80S6 Assembly 1-13

iv

What Output Files Does CONV86 Create? 1-13
What Are Caution Messages? 1-13
Does a Caution Message Necessarily Mean

a Manual Edit? 1-13
Do Caution Messages Identify All Manual Editing? 1-13

CONTENTS

CHAPTER 2 PAGE
OPERATING THE CONVERTER
Source File Requirements. .. 2-1
CONV86 Controls and Defaults 2-1
Examples 2-3

Example 1: Full Default Saves Flags and
Relocatability. .. 2-3

Example 2: Absolute Code with No Flags Saved. . .. 2-4
Example 3: Absolute Code with Flags Saved 2-4
Example 4: Relocatable Code with No Flags Saved. 2-4
Example 5: Prompting and Continuation Lines 2-5
Example 6: Overriding Controls. 2-5

Console Output. .. 2-5

CHAPTER 3
EDITING CONVERTER OUTPUT
Interpreting the PRINT File 3-1
SOS6 Checklist .. 3-2

Initializing Registers. .. 3-2
Absolute Addressing. .. 3-2
Relative Addressing 3-2
Interrupts. .. 3-3

PL/M-86 Linkage Conventions. 3-6
Case 1: When PL/M Calls. .. 3-6
Case 2: When Your Converted Program Calls 3-7

Caution Messages. .. 3-7
Caution Message Descriptions. 3-9

APPENDIX A
INSTRUCTION MAPPING

APPENDIXB
CONVERSION OF EXPRESSIONS IN
CONTEXT

APPENDIXC
ASSEMBLER DIRECTIVES MAPPING

APPENDIXD
RESERVED NAMES

APPENDIXE
MACRO CONSTRUCT CONVERSION

APPENDIXF
SAMPLE CONVERSION AND LISTINGS
APPENDIXG
RELOCATION AND LINKAGE
ERRORS AND WARNINGS

INDEX

TABLE

1-1
1-2

1-3
2-1
2-2

TITLE PAGE

SOSO/SOS6 Flag Correspondence. 1-9
Flag Settings That Change If

APPROX Is Specified. 1-12
CONVS6 Output Files 1-13
CONVS6 Controls and Defaults. 2-1
File-Types and File-Names in CONVS6

Fatal I/O Errors .. 2-6

FIGURE TITLE PAGE

1-1 From S080/S0S5 Assembly Language
Source File to 80S6 Execution 1-2

1-2 CONVS6 Input and Output Files 1-2
1-3 Sample PRINT File 1-4
1-4 Program Listings: OriginalS080, Converted

80S0, Original 8086 1-5
3-1 Annotated PRINT File 3-1
3-2 Converting Your Interrupt Procedures 3-4

TABLE

C-l
D-l
E-l
0-1

TABLES

TITLE PAGE

Assembler Directives Mapping C-l
Reserved Names D-l
Macro Construct Conversion E-l
MCS-S6 Relocation and Linkage

Warnings/Errors for Segment Overlap. .. 0-1

FIGURES

FIGURE TITLE PAGE

F-l SOSO Sort Routine Source File F-2
F-2 CONV86 PRINT File of Conversion of SOSO Sort

Routine F-5
F-3 MCS-S6 Macro Assembler Listing of

Conversion of S080 Sort Routine F-9
F-4 MCS-S6 Macro Assembler Listing of Originally

Coded S086 Sort Routine F-12

v

CHAPTER 1
AN OVERVIEW OF CONVERSION

Conversion and You

What Is Conversion?

Conversion is a way for you to obtain MCS-86 source files from your error-free
8080/8085 assembly-language source files. (Recall that an assembly-language source
file consists of assembler control statements, assembler directives, and assembly­
language instructions.)

Figure 1-1 shows the role of conversion in 8080/8085-to-8086 software development.
Conversion consists of two phases:

1. Operating the program CONV86 under ISIS-II. As shown in Figure 1-2,
CONV86 accepts as input an error-free 8080/8085 assembly-language source
file and optional controls, and produces as output optional PRINT and OUT­
PUT files. The OUTPUT file contains machine-readable 8086 assembly­
language source code generated by CONV86. The PRINT file is human­
readable and contains:

• Input 8080/8085 assembly-language source code-optionally controlled by
SOURCELIST /NOSOURCELIST converter control

• Output 8086 assembly-language source code with embedded diagnostic
("caution") messages

Chapter 2 describes how to operate CONV86 under ISIS-II.

2. Manually editing (using the ISIS-II text editor) the OUTPUT file as indicated by
the caution messages in the PRINT file. Chapter 3 describes how to edit
CONV86 output according to the caution messages generated. Some machine­
dependent sequences (such as software timing delays) are not detected by
CONV86, but still require manual editing. Recall that in going from the 8080 to
the 8086, both the instruction size (length) and time (clocks) change.

Figure 1-1 shows both phases of conversion, as well as subsequent assembling, link­
ing, and (absolute) loading required for execution of your program.

Figure 1-3 shows the format of the PRINT file, and highlights features of conver­
sion discussed here and elsewhere in this manual.

Why Convert?

If you want to capitalize on your software investment in the 8080/8085, and if your
8080/8085 source files are tried-and-true, then conversion may offer you a con­
siderable head-start in your software development effort for the upwardly­
compatible 8086.

What Preparation Does CONV86 Require of Source Code?

You must ensure that all 8080/8085 source files to be converted can be assembled
without error by the ISIS-II 8080/8085 assembler. No source line can be longer than
129 characters, excluding carriage-return and line-feed. If your program contains
more than 600 symbols, you must break your program down into smaller programs
(even if you have 64K RAM).

1-1

Overview of Conversion

USER INTERFACE TOOL FILES

SOFTWARE o ENGINEER

w-:;"=J~

REFERENCES

CHAPTER 2

CHAPTER 3

MCS-86
ASSEMBLER
OPERATING

I

INSTRUCTIONS
FOR ISIS·II

(ORDER NO.
9800641)

~
SERS

MCS-86
SOFTWARE

DEVELOPMENT
UTILITIES

FOR ISIS·II
USERS

(ORDER NO.
9800639)

Figure 1-1. From 8080/8085 Assembly Language Source File to 8086 Execution

MCS-86 OUTPUT
SOURCE FILE

FILE (EDIT UND.ER ISIS·II)

-'<i?-' 8080/8085

8080/85 SOURCE
FILE } ~'" . --- FILE

SOURCE r , MCS-86 (USE AS REFERENCE

FILE
I C(~~~:;;~)p I

SOURCE TO EDIT OUTPUT FILE)

WITH

L_.J CAUTIONS

Figure 1-2. CONV86 Input and Output Files

1-2

CONV86

CONV86 Overview of Conversion

What About Macros?

All macro definitions and calls will be converted to their 8086 equivalents. However,
macro-related constructs require special conversion. Appendix E lists all of these
constructs and shows how they are mapped.

NOTE
ASM86 may misinterpret metacharacters (070) or unmatched parentheses
appearing in comments as macro invocations.

What Hardware/Software Is Needed for Conversion?

You need an Intellec microcomputer development system with 64K bytes of RAM
and at least one diskette unit. The CONV86 program occupies a single diskette and
runs under ISIS-II. During execution, CONV86 creates a work file (CONV86. TMP)
which requires seven bytes for each line of 8080/8085 code processed. Upon normal
termination, CONV86 deletes this temporary file.

How Much Manual Editing of CONV86 Output Is Necessary?

Anywhere from none to a considerable amount, depending on the nature of the
8080/8085 source file. In general, the following kinds of source code are better
implemented on the 8086 by recoding from scratch in 8086 assembly language,
rather than by converting from 8080:

• "Tricky" code that modifies itself

• Code that uses operation mnemonics as opeJands (for example, the instruction
MVI C,(MOV A, B); the intent of this instruction is to load C with the opcode
for MOV A,B).

• Programs relying heavily on the 8085 instructions RIM and SIM (Read/Set
Interrupt Mask) should be recoded from scratch in 8086 rather than converted.
The 8086 has no functional counterparts for these instructions.

It is therefore recommended that source files not be blindly submitted for conver­
sion. Each source file under consideration for conversion should be carefully
examined for these problem areas.

What Advantage Is There in Rewriting Programs in 8086 Assembly Language
Rather Than Converting?

CONV86 converts most 8080/8085 assembly-language source programs adequately.
You can take advantage of the more powerful 8086 by coding some routines directly
in 8086 assembly language.

For example, Figure 1-4 shows assembled program listings for:

• 8080 Assembly of BCDBIN (13 bytes 8080 object code)

• MCS-86 Assembly of Conversion of BCDBIN (22 bytes 8086 object code)

• MCS-86 Assembly of BCDMCS Original 8086 Source (7 bytes 8086 object code)

(Recall that the PRINT file for the conversion of BCDBIN is shown in Figure 1-3.)

1-3

Overview of Conversion

1-4

•
•
•

ASH80 TO ASM36 CONVERTilR IBCD-TO-BINARY ROUTINE I

ISIS-II ASM30 TO ASMS5 CONVERSION OF fLE :Fl:BCDBIN.s3J
ASM85 nACED IN ,[>1:BCoBU.S85

R R 2 NVOUD B :
CONV :Fl:BCDBU.S 0 & 0 0 SOURCE: FEE
PRUT: :Fl:BCoBIl'I.CNV) & CONVERSION AND CAUTIONS

L...-...... ---!OUfPUTI'Fl'BCDBIN.S30) & 3085 COD;;; JENERAHD
• TIT:'E~'BCo-TO-BINARY aOUTINg') & MAK 39 CHAR3--I·-+--------.... ~--------l~

APPRO){ " ~ON'T CARE ABOUT F,Au SEMANTICS FOR THIS
ABS & DON'T CARE ABOUT RE;,OCArABLIrY OR ElM FOR THIS

• i 5 er 6 • 11 7
_.2 3
I!. 9 • I] 10

"a 11

i! 12 • iJ! 13

i 1 ~

• 0

•
These headings identify the source

~~:~~f.~~ Rr::ll:~~~~~R~~~I~~
control is in effect, the source
~R"~WI:~es not appear in the

•
•
•
•

;THIS
BCD TEN'S DIGIr IN ~Oil tlIBB~E Of B RIlG.
BCD UtHr' S oI3If U ~OilIlIBB:';;; OF eRE}.
HI}H IHBB:'ES OF BAND C ASSUM';:o TO B~ IRRi:~EVANr.

BINARY REs~~r :0-99) IS :'EFr IN ACCUMU:'ATOR.
ORG 4000H

BCDBrr~: MOV A,C
AN I OFH

;~lIrr's DI"IT & "ARBAGE TO ACC.
;MAS~ o~r aRBA}E

•

•
•
•
•
•
•
•
•

•
•

•

MOlT E, A ;SHE unr's DI}IT IN E :',011)
MOV A, B ; TilN' S DI"IT & }ARBAGE ro ACC.

; MAS~ OUT 3ARBA}E AN I JFtI
!10I 0, A ; SAVE TEN'S DIGI r I,; D : ',Oil)

;2'r~N'S ReC
R:'C
AD D
R~C

ADD
ilND

;4 I rEN'S
; 5.t r~~' S
; 10

'
TEN' 3

; lO'rEN' S • UNIT' 3 BIt'. REP. IN ACC.

A3113) fO ASI'13i CONnH,,~ laCJ-rJ-SIHH ROurINEI~-----------'

5
5
7
a
)

1 J
11
12
13
1'.
13
15
17
13
13

ASS~I~E DS, ABS_0, C.3: ABS_J
ABS 'J S"GMEtiT BUi> AT 'J
l~ :'ABE', BHE
POEFINg t REPT : il) ',OCA~S : BO

"DEnNil (MACRO) :'OCA~
HEPilAT :'11) :'MACRO)

,*DEFIN~ : IR~ :PARM,P',IST) i,OC
"DUINE : [HCRO) ",~CA'.

PDEFINg :',I3T) :H~IST
HF:LEN:P',ISrJ ~QJ

s:...sc: :

FI)

'DEFI,,8 : HARr1)
',~ACRO)

,~ACRO ~I3T

""1l~l"I1I~ : IRPC : PARM, rEAr) ~OCA',S : BODY» ',OCA~ !1ACRO ',Isr
"OEFUE :r1ACRO) ~OCAc L CLS : 'BODY)
"D~FI,E : ~ISrJ : nEXT)
UF :",~N: P~IST) ilQ J) T .N

'DEFL'.l : '?ARt~) :,)
'MACRO)

'WHL~ ,.E) :
R,1) :"SJBSTR:p~Isr,l,1)
T) ~ ,1'3UBSfR:P',IST,2,B93»

.. J!JI f' 3

MCS-88 As.embly Llngulge
SourceCCHle

Figure 1-3, Sample PRINT File

CONV86

CONV86 Overview of Conversion

• ASHBo :~1:BCDBIN.SBO

•
•
•
•
•
•
•
•
•
•

ISIS-II 9080/3065 MACRO ASStlMB'.ER, ~2.0

'.OC OBJ SEQ

3
4
5

4000 5
4000 n 7
4001 E50f 3
4003 5F 9
4004 78 10
4005 E50~ 11
400 T 57 12
4008 J7 13
4009 J 7 14
400A 32 15
400B 07 1 S
400C 83 17

13

PUB~ I C S'{I~BOc.S

EXTERNL S,{MBO~S

; THIS ROUrrtltl CON~ERTS BCD TO BINARY AS ~O'.~O.S:

BCD TE~' S DIGIT Ii< '.DW 1IIBB'.<: O~ B R~3.
BCD uNrr's DIGIT III ~ow NIBB~E O~ C RE3.
HI3t1 NIBB'.ES OF B A,;D C ASSUMZO TO Bg IRRE~tlVANT.

BINARY RESU'.T :0-39) IS ~tlt'T IN ACCUMU'.ATOR.
ORG 40JJH

BCDBIN: MO, A,C
ANI Jt'H
MO ~ E, A
MCl~ A, B
AH J~H

MO~

Rr.C
R'. C
ADD
R' ... C
AD 0
ilND

D, A

UNIT'S DIGIT & 3ARBAJi: TO ACC.
MAS~ OUT :;ARBA""
SH" UNIT'S DDIT Iii E : ~OW)
TEN'S DIGIT & "ARBA3tl TO ACC.
MASK ClUT :;ARBA,}tl
SAVE EN'S DI3IT I~ 0 :'.001)
2

'
rgN· S

4'TEN'S
SirEN- S
1a'TEN'S
10'TtlN'S + ~iIIT'S BIN. REP. IN ACC.

• UStlR S~:~BO~S
BCDBIN A 4000

•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

MCS-85 MACRO ASSEMB'. ER BCDBIN

ISIS-II MCS-~S MACRO ASSilMB'.ER ~2.Q ASSilMB~Y Oi' MODu'.,; BCDaL~
OBUCT ;tODU~~ P'.AC~D IN :r1:BCDBIN.OBJ
ASSEMB.ER IN~OKW a'{: As!'\80 :f1:BCDBIN.S% PRINT::i'1:BCDBI~.'.35)

'.:JC OBJ

o JOO

4000
4 DOO 3AC 1
4uO< 240f
~ 'J 0 4 3AOJ
~ 006 3ACS
ooS 24JF
400A gAr"]

" ooe DOCO
400e DOCO
~ J 1 0 J2C5
4012 OOCJ
4014 nC2

10
11
12
13
14
15
15
17
13
1)

20
21
22
23
24
~ 5

+ 1
+ 1

30iJnCE

ASSUM~ D3: ABS_), CS: AB3_l
ABS_) SEGMilNT BYTE AT)

c.AB~". BYTE

; TtiIS RClJTlNE CONERTS BCD TO BINARY AS i"O'.~J'S:

BCD TEN'S OI3IT IN '.OW NIBB'.i: OF B RE:;.
BCD HIT'S OI:;IT I,; '.ow NIBB~E O~ C RS:;.
HI}H ~IBB'.;;:S OF BAND C ASSUMeD
BI~ARY RESlLT :')-99) IS '.€FT IN

~H} 400)H

BCDBIN: :~O'J A~,C~

A~D L,Qi'"
110~ D'., A'.
:-la, L,CH
4ND L ,,)~H

101 9H,L
RO". A'., 1
RO!~ Af

.... 1
ADD A' •• DH
ao'. A' •• 1
ADD A.I D:"

,48S_) ~,;DS

~~:)

TJ BS LlRLg'ANf.
ACCUMU'. ATOR.

U;IIT'S DI:;I T & GARBAGE TO ACC.
MAS{ OUT 3ARBA;;E
SA'n UNI T' S DIGIT IN E : '.OW)
T€N' 3 DIGIT ~ }ARBAGE ro ACC.
MASK OUT JARBAGE
SAJtl Ti:N'.3 DIGIT IN D : '.OW)
21 rEN~ S
4" TEN'S
5'rgN'S
1 D' TEN'S
1)' fEN'S + UNIT'S BIN.

• A3SeI'!B'.Y COMLErE, riO EilR::J"S ~OUND

MtS-86 IHCRO ASSEMB~ Eil BCDMCS

13IS-I1 MCS-35 tiACRO ASSEilB'.i:R ~2.0 ASSoMB.Y Ji' ,1JOJ~'; aCDtiCS
ClBJ;:CT ,10DU~1: ?'.AC€D n :~1:BCD,~CS.OBJ
ASStlMB~ER IN~O<;:D BY: As,~35 : ~1: J3CD,~C3.335 PRUT:, <'1: BCD,~C3.'.3»

~OC

OJJ

400)
nJ2
nJ,)

OS] .IriE 3)JilC~

'>'83_)

; TtlIS

: fti[3
3ac 1
25Jt"'Jt"
1l5H 1)

11 ~ as) -
12

ASS0'1i: JS: A3S_), C3: A3S_)
SE~M".H ane: u)
Od'} It JJJd

" J J T IE AS 3 J ',I ~ 3 f " ~'.3) I J I r [,~ C H R c 3. '. o. .H a a". "
JoIlT'.3 DI]!T I~ c" EJ. ".01'1 :lIBB.i:
J,3.rldA:i!: .~·-,SCWl1~~~

"JilTI," 2.AC~:) aI~~Ri 9Ei'~i:3"HArrJ" :)-n) IN L 06,}.
DI AX,ex
:dD A\,Ji'Ji'n
AAD ;L <-- 1J'Atl + L
::,; J S
;:~ 0

Figure 1-4, Program Listings: Original 8080 (top); Converted 8080 (middle)
Original 8086 (bottom)

1-5

Overview of Conversion

1-6

Functional Mapping

What Are the 8086 Assembly Language Prologues Generated by CONV86?

The main source file of your SOSO/SOS5 program should be converted using the
(defaulted) control NOTINCLUDED. If NOTINCLUDED is in effect, the con­
verted file begins with a converter-generated prologue. The prologue generated by
the converter depends on whether the ABS or REL control is specified when
CONVS6 is run (REL is the default).

If the ABS control is specified (for subsequent absolute loading by SOS6 relocation
and linkage), CONVS6 generates as a prologue:

ASSUME DS:ABS_O,CS:ABS_O
ABS_O SEGMENT BYTE AT °
M LABEL BYTE
%*DEFINE (REPT (N) LOCALS (BODY» LOCAL MACRO (

%*OEFINE (MACRO) LOCAL %LOCALS (%BODY)
%REPEAT (%N) (%MACRO))

%*DEFINE (IRP (PARM,PLlST) LOCALS (BODY» LOCAL MACRO LIST (
% *OEFINE (MACRO) LOCAL %LOCALS (%BODY)
%*OEFINE (LIST) (%PLlST)
%IF (%LEN(% * LIST) EO 0) THEN (

%DEFINE (%PARM) (%0)
%MACRO)

ELSE (

FI)

%WHILE (%LEN(%*LlST) NE 0) (
%MATCH(%PARM,LlST) (%*LlST)
%MACRO»

%*DEFINE (lRPC (PARM,TEXT) LOCALS (BODY» LOCAL MACRO LIST (
%*DEFINE (MACRO) LOCAL %LOCALS (%BODY)
%*DEFINE (LIST) (% TEXT)
%IF (%LEN(%*LlST) EO 0) THEN (

%DEFINE (%PARM) (%0)
%MACRO)

ELSE (

FI)

%WHILE (%LEN(%*LlST) NE 0) (
%DEFINE (%PARM) (%*SUBSTR(%*LlST,1 ,1»
%DEFINE (LIST) (% *SUBSTR(% *LlST,2,9999»
%MACRO»

If the REL control is specified (for converting SOSO/SOS5 source files with
relocatability features, and/or for subsequent linking to PL/M-S6 modules)
CONVS6 generates as a prologue:

CGROUP GROUP ABS_O,CODE,CONST,DATA,STACK,MEMORY
DGROUP GROUP ABS_O,CODE,CONST, DATA,STACK, MEMORY

ASSUME DS:DGROUP,CS:CGROUP,SS:DGROUP
CODE SEGMENT WORD PUBLIC 'CODE'
CODE ENDS
CONST SEGMENT WORD PU BLiC 'CONST'
CONST ENDS
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS
STACK SEGMENT WORD STACK 'STACK'

DB n DUP(?)

CONV86

CONV86 Overview of Conversion

STACK_BASE LABEL BYTE
STACK ENDS
MEMORY SEGMENT WORD MEMORY 'MEMORY'
MEMORY_LABEL BYTE
MEMORY ENDS

SEGMENT BYTE AT 0
M LABEL BYTE
% *DEFINE (REPT (N) LOCALS (BODY)) LOCAL MACRO (

%*DEFINE (MACRO) LOCAL %LOCALS (%BODY)
%REPEAT (%N) (%MACRO))

%*DEFINE (IRP (PARM,PLlST) LOCALS (BODY)) LOCAL MACRO LIST (
%*DEFINE (MACRO) LOCAL %LOCALS (%BODY)
%*DEFINE (LIST) (%PLlST)
%IF (%LEN(%*LlST) EO 0) THEN (

%DEFINE (%PARM) (%0)
%MACRO)

ELSE(

FI)

%WHILE (%LEN(%*LlST) NE 0) (

%MATCH(%PARM,LlST) (%*LlST)
%MACRO))

%*DEFINE (lRPC (PARM,TEXT) LOCALS (BODY)) LOCAL MACRO LIST (
% *DEFINE (MACRO) LOCAL %LOCALS (%BODY)
% *DEFINE (LIST) (% TEXT)
%IF (%LEN(%*LlST) EO 0) THEN (

%DEFINE (%PARM) (%0)
%MACRO)

ELSE(

FI)

%WHILE (%LEN(%*LlST) NE 0) (

%DEFINE (%PARM) (%*SUBSTR(%*LlST,1 ,1))
%DEFINE (LIST) (%*SUBSTR(%*LlST,2,9999))
%MACRO))

The statement DB n DUP(?) in the STACK segment only appears when the 8080
source file contains a STKLN directive. In that case, n corresponds to the operand
of the 8080 STKLN directive.

These statements help to set up a pseudo-8080 environment, since an 8086 segment
cannot exceed 64K bytes. The register mappings help to complete the pseudo-8080
environment.

NOTE

If more than one module is linked, multiple ABS_O segments will cause
LINK86 to issue error messages concerning SEGMENT OVERLAP. These
errors are nonfatal and can be ignored, but you should check your 8080
ASEG (now the 8086 ABS_O segment) to make sure that you intend the
overlap to occur. See Appendix G for further details.

What If a Converted Program Exceeds 64K?

If your 8080 object file exceeds 50K bytes, then there is a chance that your converted
source file, when assembled, will exceed 64K bytes and therefore will be too large to
fit into a single 8086 segment. (To determine this, you must first convert your 8080
source file, including required manual editing of 8086 source code, and then assem­
ble under the MCS-86 Assembler. An error message will inform you if the resulting
MCS-86 object file exceeds 64K bytes.)

1-7

Overview of Conversion

1-8

If your converted program exceeds 64K bytes, you must reorganize your MCS-86
source code into two or more segments, or else optimize your converted program (by
recoding portions directly in more efficient MCS-86 source code).

To reorganize your converted program into two or more segments, you will need to
change the GROUP, SEGMENT, and ASSUME assembler directives as described in
the manual, MCS-86 Macro Assembly Language Reference Manual, Order No.
9800640.

If you need to reorganize your converted program, you can place your data in one
segment or group based at absolute location 0, and place your code in another seg­
ment or group located above the data segment (or group). You should pay particular
attention to absolute addresses and pointers (address values stored as data) in this
case, to ensure that your program accesses its data as originally intended.

How Does CONV86 Handle the Stack?

If present, "STKLN" is converted to "DB n DUP(?)" in the STACK segment,
where n is taken from the operand of STKLN. The reserved name STACK is con­
verted to STACK_BASE. (See also "Initializing Registers" under "8086
Checklist" in Chapter 3.)

How Are the 8080/8085 Registers Mapped into 8086 Registers?

Byte registers are mapped as follows:

8080/8085 8086

A AL
B CH
C CL
0 OH
E OL
H BH
L BL

Word registers are mapped as follows:

8080/8085 8086

PSW AX
B CX
0 OX
H BX

SP SP

CONV86

CONV86 Overview of Conversion

How Are the 8080 Flags Mapped into the 8086 Flags?

The 8080 flags correspond to a subset l of the 8086 flags as shown in Table 1-1:

Table 1-1. 8080-8086 Flag Correspondence

Flag Name 8080 8086
DeSignation Designation

Auxil iary-carry AC AF

Carry C CF

Zero Z ZF

Sign S SF

Parity P PF

1. Four 8086 flags do not concern us here: OF (direction), IF (interrupt-enable), OF (overflow),
and TF (trap).

How Are 8080/8085 Instructions Mapped into 8086 Instructions?

Appendix A shows how all instructions are mapped. But first, consider that it is not
enough simply to map an 8080 instruction mnemonic directly into an 8086 instruc­
tion mnemonic, because the instruction operands must be examined as well.

How Are 8080 Operands (Expressions) Converted to 8086 Operands (Expressions)?

8086 Assembly Language is a typed language, whereas 8080/8085 is not. Thus,
CONV86 must assign a type-BYTE, WORD, or NEAR-to each symbol en­
countered in your 8080/8085 source file. Each symbol is typed according to its most
frequent usage. After each symbol has been assigned a type (at the end of the first
pass of CONV86), CONV86 can explicitly override the type in 8086 source code
when necessary.

Appendix B describes the conversion of 8080 expressions into 8086 expressions as a
function of the context and the operand or expression type. For example, during its
first pass in converting your 8080 source file, CONV86 may find the symbol
LASZLO used in three different contexts:

8080

LOA LASZLO ;Load accumulator with byte at LASZLO.

LHLD LASZLO ;Load (H,L) with word at LASZLO.

JMP LASZLO ;Jump to symbolic location LASZLO.

1-9

Overview of Conversion

1-10

Since all three usages of the same symbol are permitted in SOSO/SOS5 assembly
language, but since SOS6 assembly language permits a symbol to be of only one
type-BYTE, WORD, or NEAR-then CONVS6 must assign a single type to
LASZLO. In this case, LASZLO is assigned type BYTE, and the remaining two
occurrences of LASZLO are overridden as follows:

8086

MOV AL, LASZLO ; Load AL with byte at LASZLO.

MOV BX,WORD PTR(LASZLO) ;Load BX with word at LASZLO.

JMP NEAR PTR(LASZLO) ;Jump to symbolic location LASZLO.

How Are Comments Mapped?

Comments are mapped unchanged. However, metacharacters (%) or unmatched
parentheses in SOSO source comments may be misinterpreted by AS~S6.

How Are 808018085 Assembler Directives Mapped Into 8086 Assembler
Directives?

Appendix C shows the assembler directive mapping.

Operands (expressions) of all directives are mapped according to Appendix B.

How Are 808018085 Assembler Controls Mapped?

CONVS6 deletes the MODS5, NOMACROFILE, COND, NOCOND,
MACRODEBUG and NOMACRODEBUG controls, and issues corresponding cau­
tion messages.

The MACROFILE (:Fn:) control, specified with its argument, will be converted to
WORKFILES (:Fn:,:Fn:). The MACROFILE control will not be converted cor­
rectly if you have not specified it with its optional argument. Such a control can be
deleted from the SOSO/SOS5 source file or from the converter output file. All other
SOSO/SOS5 assembler controls are copied unchanged to the SOS6 output file.

The only SOSO/SOS5 assembler control interpreted by the converter is the INCLUDE
control, which causes included files to be processed in the first pass. Included files
are neither listed nor converted when the main source file is converted; they are pro­
cessed in order to evaluate symbol definitions and attributes. The maximum nesting
level for included files is four.

How Does CONV86 Handle 8086 Reserved Names?

Whenever CONVS6 encounters an SOS6 reserved name (such as AL, TEST, or
LOOP) in an SOSO/SOS5 source file, CONVS6 appends an underscore to the name
(thus obtaining AL_, TEST_, or LOOP _). The only exception to this rule is
STACK, which is converted to STACK_BASE. As a result, you don't need to be
concerned about any SOS6 reserved names that might be hiding in your SOSO/SOS5
source files. Appendix D gives a complete list of SOS6 reserved names.

CONV86

CONV86 Overview of Conversion

Functional Equivalence

What Is Functional Equivalence?

The ideal conversion results in total functional equivalence, which means that the
converted 8086 source file, when assembled, linked, located, and run, performs the
equivalent function of the input 8080/8085 source file.

CONV86 cannot infer the intent of your source program.

While CONV86 cannot usually achieve total I functional equivalence on a per- pro­
gram basis, CONV86 can, in almost every instance, achieve functional equivalence
on a line-by-line basis. This means that CONV86 attempts to "map" each
8080/8085 instruction, directive, or control into its 8086 counterpart, if it exists.

U sing the instruction mapping of Appendix A, the operand (expression) mapping of
Appendix B, and the directive mapping of Appendix C, CONV86 achieves line-by­
line functional equivalence. Problems encountered in achieving program functional
equivalence arise from:

• Symbol-typing ambiguities - overridden symbol types might not yield the
desired 8086 source code. CONV86 flags potential problems of this sort with
caution messages.

• Machine-dependent sequences, such as software timing delays or other
sequences which depend on instruction length or clock periods.

What About Program Execution Time?

The 8086 assembly-language instructions produced by CONV86 require, in general,
more clock periods than did the original 8080/8085 instructions. Thus, the 8086
code produced is less efficient in terms of instruction cycles. However, since the 8086
can be driven by a faster clock, this loss of instruction-cycle efficiency is offset.

What Happens to Software Timing Delays in Conversion?

You should examine the 8086 code derived from timing delay loops. Then, taking in­
to. consideration the number of cycles for each 8086 instruction involved, as well as
the bandwidth (frequency) of your 8086 clock, you can manually edit the 8086
source code to preserve your timing delays. You should also take into account the
8086 instruction queue (pipeline), which contains six prefetched bytes of in-line
code.

Does the 8086 Code Produced Set Flags Exactly as on the 8080?

Yes, unless you specify the APPROX control when you run CONV86. Table 1-2
shows the five 8080 instructions whose 8086 counterparts set flags differently if AP­
PROX is specified. The EXACT control (a default) forces all flag settings to be
preserved.

ITotal functional equivalence on a per-program basis would constrain instruction sequence sizes and
clocks to be preserved.

1-11

Overview of Conversion

1-12

Table 1-2. Flag Settings That Change If APPROX Is Specified

Source Equivalent
8080 8080 Flags Affected 8086 8086 Flags Affected

Instruction Instruction

DAD CY ADD BX,_ AF ,CF, PF ,SF ,ZF

INX none INC AF,PF,SF,ZF

DCX none DEC AF,PF,SF,ZF

PUSH PSW none; saved in stack PUSH AX none

POPPSW Z,S,P,CY,AC POP AX [SEE NOTE 1]

[NOTE 1: No flags are set if APPROX is specified. EXACT sets AF, CF, PF, SF, and ZF (but not
OF).]

How Does the EXACT Control Preserve Flag Semantics?

By inserting the LAHF (load AH with flags) and SAHF (store flags from AH) in­
structions before and after the SOS6 counterpart of the 8080 instruction being con­
verted. For example, the 8080 instruction INX B increments the 16-bit register-pair
(B,C) without affecting any S080/S085 flags, whereas the S086 instruction INC CX
not only increments the 16-bit register CX on the S086, but also can affect four rele­
vant flags:

• Auxiliary-carry flag (A F)

• Parity flag (PF)

• Sign flag (SF)

• Zero flag (ZF)
If your program is not concerned with these flag settings, then the APPROX mapp­
ing will suffice:

8080 8086
INX B---(APPROX~ INC CX

However, if your program flow depends on the settings of any of the four flags men­
tioned, you will want to ensure that in your SOS6 program, these flags are saved
before INC CX is executed, and restored after INC CX is executed. The EXACT
control does this for you as follows:

8080 8086 COMMENTS
INX B---{EXACT)---+- LAHF ;Load flags into AH.

INCCX
SAHF ;Store flags from AH.

Similar flag-preserving code results from EXACT conversion of the SOSO/8085
instructions DCX, DAD, PUSH PSW and POP PSW.

When in doubt, let CONVS6 default to the EXACT control. More SOS6 source code
is generated than for APPROX, but the code can be counted on to preserve the flag­
setting semantics of your 8080/80S5 program.

CONV86

CONV86 Overview of Conversion

Editing CONV86 Output for 8086 Assembly

What Output Files Does CONV86 Create?

Table 1-3 shows CONV86 output files, their default extensions, and uses.

Table 1-3. CONV86 Output Files

File Designation in
Default File-Name Contents and Use Invoking Command

OUTPUT :Fs:source.A86 Machine-readable 8086 source file; to be
manually edited according to caution
messages in PRINT file.

PRINT :Fs:source.LST 1) Optional copy of 8080/8085 source.

2) Human-readable 8086 source file with
embedded caution messages for
manually editing OUTPUT file.

What Are Caution Messages?

In general, CONVS6 issues a caution message when it detects a potential problem in
the converted 80S6 source code. Caution messages can alert you to possible symbol
type ambiguities, such as a symbol used both as a byte and a word, or to possible dis­
placed references, such as JMP $ + (exp). In the latter case, the displacement (exp)
usually increases in going from the 80S0 to the SOS6. Chapter 3 describes caution
messages and identifies what, if anything, you need to do to your S086 source file.

Does a Caution Message Necessarily Mean a Manual Edit?

No. In some instances, such as displaced references, CONVS6 cannot be sure if an
error exists. In other instances, such as MODS5 CONTROL DELETED, the con­
verter is simply informing you of a deliberately omitted source file control. Never­
theless, all caution messages and the lines to which they apply demand scrutiny.

Do Caution Messages Identify All Manual Editing?

No. Since CONVS6 cannot infer the intent of a source program, you must be the
final judge as to whether the 80S6 source code produced will do a satisfactory job. In
particular, you should be alert to machine-dependent sequences of instructions,
bearing in mind that instruction sizes (lengths) and execution time (clocks) will
change in going from the S080/S0S5 to the S086.

Also, certain S080/S0S5 Assembly Language constructs, not valid in the MCS-S6
Macro Assembly Language, are not detected by CONVS6. These constructs are
flagged as errors by ASMS6. For example, a nested macro definition that uses the
same macro name (a valid construct in the S080/S0S5 Assembly Language) is invalid
in the MCS-S6 Macro Assembly Language. This construct is not detected by
CONVS6 but it is flagged as an error by ASMS6, alerting you about the problem.

The SOSO/SOS5 assembler control MACROFILE is not converted correctly if its
optional argument is not present. CONVS6 does not issue a caution for this condi­
tion and ASMS6 processing of the converter output file is terminated by a fatal
error, "BAD WORKFILE COMMAND." This problem can be corrected by editing
the converter output file or removing the MACROFILE control from the S080/8085
source file before it is converted.

1-l3

CHAPTER 2
OPERATING THE CONVERTER

Source File Requirements

Before operating the converter program CONV86, you should ensure that the main
source file and all included source files meet the following requirements:

1. The source file must be capable of being assembled without errors by the ISIS-II
8080/8085 Assembler.

2. Diskettes containing files INCLUDEd by the main source file must be mounted
on their indicated diskette drives. .

3. The maximum source line length is 129 characters, not including carriage­
return and line-feed characters. Longer lines are converted to comments and
flagged with a caution message.

4. The maximum number of symbols allowed per conversion is approximately 600.
Programs having more than 600 symbols must be divided into smaller
programs.

CONva6 Controls and Defaults

If the above requirements are met, you can invoke the converter under ISIS-II by
entering the command:

:Fn:CONV86 source controls

where source is the name of the file to be converted, and controls are as described in
Table 2-1.

Table 2-1. CONV86 Controls and Defaults

CONTROLS DEFAULTS

PRINT(path-name) I NOPRINT PRINT(:Fs:source.LST)

OUTPUT(path-name) I NOOUTPUT OUTPUT(:Fs:source.A86)

DATE('date') DATE(' ')

TITLE(,title') TITLE(' ')

PAGELENGTH(n) I NOPAGING PAGELENGTH(60)

PAGEWIDTH(n) PAGEWIDTH(120)

EXACT I APPROX EXACT

INCLUDED I NOTINCLUDED NOTINCLU OED

ABS/REL REL

WORKFILES(:Fn:) WORKFILES(:Fs:)

SOURCELIST I NOSOU RCELIST SOURCELIST

2-1

Operating the Converter

2-2

where:

Fs

specifies the diskette unit on which the source file resides.

PRINT

specifies an ISIS-II path-name (file or device designation) for a copy of
your SOSO/SOS5 source code together with generated SOS6 source code
and embedded caution messages.

NOPRINT

specifies that the PRINT file is not to be created.

OUTPUT

specifies an ISIS-II path-name for the output 80S6 source code. Refer to
Table 1-3, "CONVS6 Output Files."

NOOUTPUT

DATE

TITLE

specifies that the OUTPUT file is not to be created.

specifies a date (or other information) of up to nine characters to be
printed in the page header of the PRINT file.

specifies a title (or other information) of up to 40 characters to be printed
in the page header of the PRINT file.

PAGELENGTH(n)

specifies the number of lines per output page in the PRINT file. The
minimum is four lines per page; there is no effective maximum.

NOPAGING

specifies no forms control and is equivalent to PAGE LENGTH (65535).

PAGEWIDTH(n)

specifies the number of characters per output line in the PRINT file. The
minimum is 60 characters per line; there is no effective maximum.

EXACT

specifies that full flag-setting semantics are to be preserved in conver­
sion. This control affects conversion of the DAD, DCX, INX, POP
PSW, and PUSH PSW.

APPROX

specifies that full flag-setting semantics are not to be preserved for the
instructions DAD, DCX, INX, POP PSW, and PUSH PSW. Refer to

CONV86

CONV86 Operating the Converter

Chapter 1, "Functional Equivalence," for a description of flag
preservation.

INCLUDED

specifies that this module is included in another module for assembly.
This control suppresses generation of a standard prologue.

NOTINCLUDED

REL

ABS

specifies that this module is not included in another module for
assembly. The converter therefore generates a standard prologue. Refer
to Chapter 1, "Functional Mapping," for a description of prologues.

specifies that this module will subsequently be assembled in relocatable
format and/or linked to a PL/M-S6 module. If REL and
NOTINCLUDED are both specified or defaulted to (both are defaults),
the standard prologue generated is compatible with PL/M-S6, and
informs the converter that SOSO relocation capabilities are present in the
source file and must be mapped into SOS6 relocation features. See
"Functional Mapping" in Chapter 1.

specifies that this module is absolute and not relocatable (and hence not
to be linked to a PL/M-S6 module). If ABS and NOTINCLUDED are
both in effect (NOTINCLUDED is a default), then the standard pro­
logue generated is not compatible with PL/M-S6, but is compatible with
other 8086 assemblies. See "Functional Mapping" in Chapter 1 for a
description of standard prologues.

WORKFILES(:Fn:)

specifies that the single, temporary workfile CONV86.TMP is to be
created on (and subsequently deleted from) diskette unit :Fn:, where n
defaults to the source file diskette unit number if the WORKFILES con­
trol is omitted. The single work file created (the plural WORKFILES is
used for consistency with other programs) requires seven (7) bytes for
each source line.

SOURCELIST

specifies that the 8080/S085 source program is to be listed in the PRINT
file (overridden by NOPRINT).

NOSOURCELIST

specifies that the S080/80S5 source program is not to be listed in the
PRINT file.

Examples

Example 1. Full Default Saves Flags and Relocatability

Suppose CONV86 resides on diskette unit 0, and that the program to be converted is

2-3

Operating the Converter

2-4

named MY ASM.A80 and resides on diskette unit I. Then the command:

CONV86 :F1 :MYASM.A80

invokes the converter and results in the following controls:

• The 8080 source file and 8086 source file with embedded cautions are written to
the file :FI :MY ASM.LST

• The converted file (without embedded caution messages) is placed in the file
:FI:MYASM.A86

• Blanks appear in the title and date fields of page headers.

• Page lengths default to 60 lines per page.

• Page widths (line lengths) default to 120 characters, not including
carriage-return or line-feed.

• Flag-setting semantics are preserved for all instructions.

• The prologue generated in the OUTPUT file :FI :MYASM.A86 will cause the
MCS-86 Assembler to generate relocatable object modules suitable for linking
with other assemblies or PL/M-86 object modules.

• The temporary workfile CONV86.TMP is created on, and deleted from,
diskette unit I, the default.

Example 2: Absolute Code with No Flags Saved

If, in Example I, you had entered the command:

CONV86 :F1:MYASM.A80 ASS APPROX

then the results would differ as follows:

• Full flag-setting semantics are not preserved for DAD, DCX, INX, PUSH
PSW, or POP PSW.

• A standard 8086 assembly language absolute prologue is generated in the
converted code. This prologue is not compatible with PL/M-86, but is com­
patible with other 8086 assemblies. Your MCS-86 Assembler object file will not
be relocatable.

Example 3: Absolute Code with Flags Saved

The invoking command:

CONV86 :F1:MYASM.A80 ASS

generates an absolute prologue, and defaults to EXACT.

Example 4: Relocatable Code with No Flags Saved

The invoking command:

CONV86 :F1:MYASM.A80 APPROX

does not preserve flag semantics for the five instructions just mentioned, and
defaults to REL.

NOTE

In the following examples, the double asterisks (* *) indicating prompting
are generated internally, and not by the user.

CONV86

CONV86 Operating the Converter

Example 5: Prompting and Continuation Lines

You need not enter the entire invoking command on a single line. If you wish to con­
tinue the command on one or more subsequent lines, you must enter an ampersand
(&) as the last character of the current line. Characters entered following the amper­
sand and preceding the carriage-return are comments; they are echoed by CONV86
in the PRINT file header but are not processed. The converter then prompts for
more command input with a double asterisk:

CONVS6 :F1 :MYASM.ASO & source file is MYASM.ASO on disk drive 1

** DATE{'10/5/7S') & date cannot exceed 9 chars. excluding quotes

** TITLE('CONVERSION TEST 39, PROJECT AXOLOTL') & 40 chars.

The date and title are included in the PRINT file headers as shown in Figure 1-3,
Chapter 1. The remaining controls default as in Example 1.

Example 6: Overriding Controls

It may happen that you have entered a control incorrectly, or for some other reason
wish to override a previously entered control. You can override any previously
entered controls so long as prompting is in effect. Suppose you have entered the
following:

CONVS6 :F1 :MYASM.SO &

** DATE{'10/5/39') &

** TITLE('CONVERSION TEST 7S, PROJECT AXOLOTL') &

If you happen to notice at this point that the wrong information has been entered -
that is, the 39 and 78 have been interchanged, there is no problem, since prompting
is still in effect. On subsequent continuation lines, you can enter:

** DATE('10/5/7S') &

** TITLE('CONVERSION TEST 39, PROJECT AXOLOTL') &

Controls can be entered in any order and overridden in any order as many times as
necessary. For this reason, it is good practice to end every line with an unquoted
ampersand. When you are satisfied that the controls are correct, you can end the
command with the last line consisting of a lone carriage return.

Console Output

When you have entered the command invoking CONV86, the converter responds
with the message:

ISIS-II ASMSO TO ASMS6 CONVERTERVx.y

where x.y is the version designation.

Normal termination of the converter causes it to issue the message:

ASMSO TO ASMS6 CONVERSION COMPLETE

nnnnn CAUTIONS ISSUED

2-5

Operating the Converter

2-6

where nnnnn is the number of messages generated for the run. Caution messages are
described in Chapter 3.

CONV86 terminates abnormaly (aborts) if 110 or other fatal errors occur during
execution, or if CONV86 has not been properly invoked.

Fatal I/O console messages are of the form:

ASM80-TO-86 1/0 ERROR-

FILE: file-type

NAM E: file-name

ERROR: error-message

CONVERSION TERMINATED

Table 2-2 shows the relationship between file-type and file-name.

Table 2-2. File-types and File-names in CONV86 Fatal 1/0 Errors

FILE-TYPE FILE-NAME

LIST Specified by PRINT control
OUTPUT Specified by OUTPUT control (or default)
SOURCE Specified by source field of command
INCLUD Specified by ASM80 INCLUDE control
TEMP CONVS6.TMP-temporary work file
:CI: Refers to console input device

Error-message is one of the following:

04 -ILLEGAL FILENAME SPECIFICATION
05 -ILLEGAL OR UNRECOGNIZED DEVICE SPECIFICATION IN FILENAME
12 -ATTEMPTTOOPEN AN ALREADY OPEN FILE
13 - NO SUCH FILE
14 - FILE IS WRITE PROTECTED
19 - FILE IS NOT ON A DIRECT ACCESS DEVICE
22 - DEVICE NAME NOT COMPATIBLE WITH INTENDED FILE USE
23 - FILENAME REQUIRED ON DIRECT ACCESS FILE
28 - NULL FILE EXTENSION
254 - ATTEMPT TO READ PAST EOF

Fatal errors (other than 1/0) result in the following console display:

ASMSO-TO-86 FATAL ERROR-

message

CONVERSION TERMINATED

CONV86

CONV86 Operating the Converter

Messages corresponding to (non-I/O) fatal errors are as follows:

MESSAGE

CONDITIONALLY ASSEMBLED MACRO
CONDITIONALLY ASSEMBLED ENDM
INVALID FILENAME
INVALID CONTROL FORMAT
CONTROL STRING TOO LONG
INVALID CONTROL VALU E
INVOCATION COMMAND DOES NOT

END WITH <CR> <LF>
UNKNOWN CONTROL
INSUFFICIENT MEMORY FOR DICTIONARY

MAXIMUM MACRO NESTING LEVEL
EXCEEDED

ACTION

Remove conditional directives
Remove conditional directives
Examine, correct file name
Refer to beginning of Chapter 2
Reduce length(s) of DATA/TITLE strings
Refer to Controls description
Reenter with carriage return

Refer to Controls description
Reduce the number of symbols used in your
program
Check for recursive macro calls; reduce the
number of nested macro calls

2-7

CHAPTER 3
EDITING CONVERTER OUTPUT

Interpreting the PRINT File

After you have run CONVS6 and it has terminated normally, you should examine
the PRINT file. As shown in Figure 3-1, the PRINT file consists of:

• A copy of the SOSO/SOS5 assembly-language source file, unless the
NOSOURCELIST control was specified

• MCS-S6 assembly-language source code with embedded caution messages

Using the PRINT file as a reference, you can manually edit the OUTPUT file to
obtain SOS6 source code that can be assembled by the MCS-S6 Macro Assembler.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

ASH3.) TO ASH8S CONVeRTER 3JS:l BUAnY seARCH RQUUNE

ISIS-II AS"'~iJ TO A5M3.; CONI/ERSION Of FI'..t: ~f~:BUSCH.S~,)

~~:~~Ri~ ~c~~. a N I ~~~i~~ N~i ~. 53 5
cONlf86 : FlI: BINSCH. S80 ~ 3.)30 SOiJRCE F 1..E
PRINr::Fli:BINSCH.Cr.JV) &. CONVgRSION UD CAUTIONS
QUHur::Fli!BItlSCH.SS5) !.: Hes-36 SOURCE OILY
rr r;.E:"303J BIHAR'! SEARCH ~::JurIN;::') \. 3~ :HAR 'io\.(

::~R~X u~N~~N~~E~e~~'.~::~~B~~g~R~~D L IM- ~o r !H£RFACE

;B[NAR'{ SEARCH RQUrI.'le:
; E ,u::;, CONTAINS 3EARCH ARGUMENT
; 0 Re::;. CONTAUS tAB.E ".ENJtH 11-255) ; H'. REG. POINTr:~~"~~~~~~~~~~~~~~~:--" _________ ~'"

~ ; R £S U ~ r: R: - J L;. ,-"I '"-,'"""30,-T,-,,0-,',,,,5",,,3 S"-,,,C O",-,"',-"E"-'.'T""E ',----"3-,,-,08,,,-' --"B,-,,""""'-'-' -"S,,",".!!!'C~H --"R~O '"-,rrc::.' '"-l~ I

,~ :H ~:; •
11 ilAR •

~ ~ ~g; .~. A

15 i:~ ! .. " •
16 MO'" :',A

i~ ~~~ :.M •
19 JC '.0 ;

~~ ~~ ... ~~~c •
22 J~i> $.. 4

!~ ~~~ ~:~ •
~; ;6; ~+'I •

2 a 140.... (~. A

~~ ~~~ 6,0 •
31 cpr \

H ~H i~~J • H MATCH~ ~H A,1 •

33 •

~~~~~~r ~;~~B!r);CS: ABS_J 
I'! :.ABE·... BYT~ 

PDEFUt:: :t1.EPT ~tII) ... oeLS :SO:H» .. oeL ~ACRO: 
PJEt"JN£ :MACRO) ... DCL LOCL5 :1BODY) 
J.REPC:AT : 11'0 :'HACRO) ) 

PDeFIN€ !IR? :.'AJl:M,?:.IST) ... JCA..S :SODY» ... OCA. !HCRO '.IST I 
"'o)gFUle :i-lACRO) '.DCL '· ... OCLS :ldO!Hl 
PD€Frtl8 :' .. 151) :-'i':.rST) 
Ur- :" ... EN!·":.IS"f) c:~ ')} rrlEfIl : 

!:' ... Se: 

FI) 

SOULE : I:> A 1111) :0) 
'MACRO) 

SWHLC: :~' ... gN:P.ISTl <le): 
-'MATCH:&PARH.:.rSr) :' •• IST) 
'MACRO) ) 

PiJUIlf2; :IRPC :PARf'I,rEH) ·~OCA .. S !BODY» :'OCA'. tiACRO · .. Isr : 
'·DErI~e: : MACRO) :'OCA' .. LOCA"..S : 'BOO'tl ~ 
'·DUr.'l~ ::.rst) :Ue:Kr> 
IIF :, ... ENIP· .. IsT) e:Q) rHe:N: 

:::!.. S~ : 

'D Ef' I I~ t: t 1P A Rr~) :, J ) 
'MACRO) 

hi'HLE :Lt:N:p· ... 15T) .H): 
lDt::FIIII':: tlf'AR"I) :P3tJBSTR:S·· ... JST.l.1» 

i~i~~~~):I)r5T) : PSUBSTR:,·:.r,ST.2,9B9» 

... _----..... 
• 
• 
• 
• 
• 
• 

The siandard prologue (whether resulting from the REl orABS contr 01) has no 
line numbers 

If tt'le same input line is cOlWerted 10 severaloulpul lines. each oUlp ul line has 
the same number as the input line 

B .. ,A:' 
A..,,<B'<] 

~~~~~ .. 0 
~HJRT 'IAr:1i
!)ti.CrI
3liOnr ._~

': .. ,CH
A ... S ..

~~;~~ ._3
6rl
3:. ,A ..
L,DH
A .. ,C.

~~ ~ 1

<i ... J

:F!ES€f.
;CHe:C< [r '..I!"Irr::; Drfnil Sf 1

; ~I f?'::~:::~:'::} 1 '5J R'::P ::Ar rAd.::: :>JtEI r [5[)\I
; fI:': r J ~·I ~.:; J = 'l J r f J,J.~ 0

Embedded Clution m ge •• r. g.ner.ted only In th.1IOII code tor tM PRINT
fM •• nd ImmKl8t.ly foUow th.lln •• to whiCh they apply. (The Only .xc.ption to
thl. I, Clullon g. No. 10, which .ppl ... 10 'ymbol, deflned In IncludM
tH ••• C.ution ". No. 10 .ppurs .1 the .nd 01 Ih.1OII PRINT lI.tlng.)
e.ution m " •• do not .ppe.r In the OUTPUT

Figure 3-1. Annotated PRINT File

3-1

Editing Converter Output

3-2

8086 Checklist

Caution messages and the modifications they may require are described later in this
chapter. This section provides a list of items that you should check yourself.

1. Initializing Registers. Before your converted program can be assembled for
subsequent linking, locating, and execution, you must insert register initializa­
tion code at the entry point to your main program. The register initialization
code that you insert must be the first sequence of instructions executed by your
program. If you omit this code from your main program, neither the segment
registers nor the stack pointer (SP) can be depended on to contain meaningful
data, and the results are unpredictable.

The code that you insert follows. Note that expr should not be coded verbatim;
what you substitute for expr depends on whether you converted using the ABS
or REL control (REL is the default), and how your 8080/S085 program
initialized SP.

mainentrypoint:

where:

eLI

MOVAX,CS
MOVDS,AX
MOV ES,AX
MOVSS,AX
LEASP, expr
STI

;First instruction to be executed in your main
;program
;Use CS to initialize:
; -data segment register
; -extra segment register
; -stack segment register
;See below for what to code for expr
;Enable interrupts

mainentrypoint is the symbolic location of the first instruction to be executed
in your main program. If, in your original 8080 program
development, you used the 8080 LOCATE control
RESTARTO (to have the locater insert code to jump to the
entry point of your main module when the S080 was reset),
the corresponding LOC86 control is BOOTSTRAP.

expr is STACK_BASE if you converted using the REL control
and your original 8080 program used the STKLN directive to
set the stack size.

Otherwise expr is a constant, expression, or program label
that your originalS080 program used to set SP. For constants
or expressions, you should check that these values are really
what you want.

You should check every instance in your program where SP is loaded to ensure
that the stack reinitialization has the intended effect in your converted program.

2. Absolute Addressing. Absolute addresses should be checked for correctness.
This includes ORGs in the absolute segment, LHLD and LDA from a constant
location, and immediate operations such as LXI whose constant operands
represent addre~ses. Remember that 8086 instruction lengths are generally dif­
ferent from those of their S080/80S5 counterparts.

3. Relative Addressing. Relative addressing should be checked, since the number
of bytes between instructions will in general increase in going from S080/8085 to
8086. In some instances, CONV86 generates and inserts a label of the form
L_n for a displaced reference, as in the following:

CONV86

CONV86

7
(,

~
10
1 1
12
13

Editing Converter Output

8080 Source MCS-86 (CONV86-Generated) PRINT File

2 IVIOV D,S '= MOV Dh,eR
3 JNP $+4 3 JNP ShORT L_1
4 LO: NOV C,b 4 LO: MG'V CL,Ch
5 J.VlOV A,L 5 L 1: - , t-'lU V AL,BL

t-lOV
J Lvi f­
Db
DE
D\V
D ~~
NOT

In some instances, however, CONV86 does not generate such a label, as in the
following:

8080 Source MCS-86 (CONV86-Generated) PRINT File

7 NOV AL,CL MOV A,C
JNP ~+3*({3+2)*2-7)

& J ~lt' $+j-({3+2)*2-7)
CAUTION 017 *** ADDRESS ExPRESSION DB 78h
9 1b 7&li DB 10111101b

D~ OBAbAh 1 0 DB 10111101£

D\-W ObEACh 1 1 Dw OEADAh

CMA 12 Dw ObEACh
1 3 1'101 AL

CONVS6 does not attempt to evaluate the expression or insert a label, although
Caution Message 17 is issued for a possible displaced reference. Thus, it is up to
you to insert a label. At the same time, since the jump (forward) is less than 127
bytes, the SHORT label attribute can be used, as follows:

CONV86 OUTPUT File

AL,CL
$+3*«3+2)*2-7)
70&
10111101B
OEAEAh
ObEAC&

i'lU'\i
J lvj~
DB
Db
Dw
IJw

J...L,CL
SHORT LA~2.LO

78fi
10111101B
OLA£Ah
OEEACH

AL LAS2.LO: NOT AL

Before Your Edit After Your Edit

In general, you should check all relative addressing.

4. Interrupts. Figure 3-2 shows how interrupt service routines on the 8080/S085
can be converted to interrupt service routines on the 80S6.

The principal difference between the two schemes is that on the 8080/S085, con­
trol traps to location 8*N, where executable code resides; whereas on the 80S6,
control traps to the location pointed to by the 16-bit offset and 16-bit base
values stored at location 4*N.

3-3

Editing Converter Output

8080/8085 8086

� 1-----4 ByTES----I.~1

OH JMP

OSH

Figure 3-2. Converting Your Interrupt Procedures

3-4

CONV86

}

ABSOLUTE
LOCATIONS
OOH-7FH
ARE INTEL­
RESERVED
USER-INITIALIZED

}

OFFSET & BASE
VALUES POINT
TO CALLING
SEQUENCE

USER-INSERTED
CALLING SEQUENCE
INVOKES CONVERTED
USER-WRITTEN
INTERRUPT VECTOR
INSTRUCTION
SEQUENCE

CONVERTED INTERRUPT
VECTOR INSTRUCTION
SEQUENCE REQUIRES
USER-INSERTED
PROCEDURE
DEFINITION

CONV86 Editing Converter Output

You can convert your 8080 interrupt service routines as follows:

1. Insert, at a convenient place in your 8086 source code, the following calling
sequence, using your own label (be sure not to use a reserved name given in
Appendix D):

INTSEQ: PUSH ES
PUSH OS
PUSH AX
PUSH CX
PUSH OX
PUSH BX
PUSH SI
PUSH 01
CALL INTER ;INTER used here for example in Figure 3-2.
POP 01
POP SI
POP BX
POP OX
POP CX
POP AX
POP OS
POP ES
IRET ;Note that this is IRET, and not RET.

2. Insert the following initialization sequence for absolute location 4*N in the
ABS_O segment:

ORG 4*N

{

OD CGROUP:INTSEQ

OD INTSEQ

;N is the interrupt number on the 8086.
;INTSEQ used here for example above.

;If REL control was used. }

;If ABS control was used.

3. Sandwich the converted code from INTER (used here for example in Figure
3-2) between PROC and ENDP statements as follows:

INTER PROC NEAR ;Nothing special aboutthe word INTER.

[converted code]

INTER ENOP ;Nothing special about the word INTER.

While these steps are general enough to cover virtually any application, you
may find that as you become familiar with the 8086, you can recode your
interrupt service routines in MCS-86 Macro Assembly Language to obtain
optimal code more suited to your application.

3-5

Editing Converter Output

3-6

PL/M-86 Linkage Conventions

The only PL/M-86 model of computation relevant to conversion is the SMALL
model.

Case 1: When PL/M Calls

Converted assembly-language programs called from PL/M programs must be
changed if any parameters are passed, since PL/M-80 passes parameters in registers
and on the stack, and PL/M-86 passes all parameters on the stack. PL/M-86
parameter passing is as follows:

• Arguments are pushed on the stack in left-to-right order and therefore
occupy successively lower memory locations. The return address is pushed
on the stack last.

• Each argument occupies two bytes. One-byte arguments are passed in the
lower half (least significant byte) of a word.

Therefore, converted 8086 assembly language programs called from PL/M-86 pro­
grams need to access arguments from the stack, and not from registers. However,
since the calling PL/M-86 program has pushed the return address on the stack last,
the called 8086 assembly language program needs to:

1. POP the return address to any convenient word register, such as BX.

2. POP arguments as needed into their 8086 register counterparts, as follows:

• If no arguments are expected, POP no further. Go to Step 3 below.

• If one argument is expected, then it was originally expected in (B,C).
Therefore the converted assembly language program is accessing the single
argument from the 8086 CX register. This means that you need to insert the
instruction:

POP ex ;Retrieve only PLlM-86 argument.

immediately after POP BX (the return address) in order for the converted
8086 assembly language program to access the single argument as intended.

• If two arguments are expected, then they were originally expected in (B,C)
and (D,E). Therefore the converted assembly language program accesses its
arguments from the 8086 CX and DX registers. Since PL/M-86 passes these
arguments on the stack in order, this means that you need to insert the
instructions:

POP ox ; Retrieve second PL/ M-86 argument.
POP ex ;Retrieve first PLI M-86 argument.

immediately after POP BX (the return address) in order for the converted
8086 assembly language program to access the two arguments as intended.

• If more than two arguments are expected, the remainder are in the stack
(where the converted assembly language program expects them), and there
is no problem. The last two arguments are accessed as described in the
preceding paragraph.

3. PUSH the return address back on the stack immediately after accessing the
arguments as just described. If BX was used in Step 1 above to retain the return
address, then you need to insert the instruction:

PUSH BX ;Replace return address on stack.

immediately following your argument-accessing sequence of POPs.

4. PL/M-86 expects the return value (a one-word pointer or data item) of the
assembly language program to be in the AX register. If the return value is a
byte, it is expected in AL.

CONV86

CONV86 Editing Converter Output

Case 2: When Your Converted Program Calls

If your S080/S085 source program calls another routine (written either in MCS-86
Macro Assembly Language or PL/M-S6) which expects arguments to be passed on
the stack, you need to insert 8086 source code in your converted program.

If your original 80S0 source program passed only one argument to the CALLed
routine, that argument was passed in the (B,C) register-pair. Hence you need to
insert:

PUSH CX ;Push (B,C) argument on stack.

immediately before the CALL.

If your original 8080 source program passed two or more arguments to the CALLed
routine, those arguments were passed in the (B,C) register-pair, in the (D,E) register­
pair, and remaining arguments on the stack. Hence you need to insert:

PUSH CX
PUSH OX

;Push (B,C) argument on stack.
;Push (D,E) argument on stack.

immediately before the CALL. The remaining arguments (if any) are already on the
stack in the correct order. PL/M-86 return values are placed in AX or AL as
described in Case 1.

Caution Messages

Caution messages do not necessarily imply manual editing, but they do demand
scrutiny. In many cases, CONV86 cannot be sure if an error actually exists (as for
instance, in expression evaluation). This section lists all possible caution messages.
The next section lists caution message descriptions and indicates what manual
editing of the output file may be necessary.

The entire list of caution messages is as follows (note that caution messages 9, 15,
26, and 29 do not exist):

BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

6 EQU'D OR SET REGISTER SYMBOL USED IN BOTH BYTE AND WORD CONTEXTS

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE

8 UNKNOWN STATEMENT

10 TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION

11 TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS

12 TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS

13 8085-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

14 FORWARD REFERENCE TO A SYMBOL WHICH IS A REGISTER OR [BX] CANNOT
BE CORRECTLY ASSEMBLED

3-7

Editing Converter Output

3-8

16 EXPRESSION ASSUMED TO BE A VARIABLE

17 ADDRESS EXPRESSION MAY BE INVALID FOR 8086

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED

19 REGISTER USED IN UNKNOWN CONTEXT

20 OUTPUT LINE TOO LONG; TRUNCATED

21 LABEL ASSUMED TO BE NEAR

22 NOMACROFILE CONTROL DELETED

23 MOD85 CONTROL DELETED

24 SOURCE LINE TOO LONG; IGNORED

~ CURRENTSEGMENTUNKNOWN;CANNOTGENERATEENDS

27 SYMBOL NAME TOO LONG

28 CONDITIONAL ASSEMBLY GENERATED

30 UNKNOWN INSTRUCTION ASSUMED TO BE A MACRO

31 GENERATED LABEL MIGHT NEED TO BE DECLARED LOCAL

32 (NO) COND CONTROL DELETED

33 (NO) MACRODEBUG CONTROL DELETED

34 METACHARACTER OR PARENTHESIS FOUND IN IRPC STRING

35 EXPRESSION ASSUMEDTO BE A CONSTANT

36 SYMBOLIC EXPRESSION MAY BE CONTEXTUALLY INVALID FOR ASM86

CONV86

CONV86 Editing Converter Output

Caution Message Descriptions

BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

A register variable defined in an EQU directive or as a macro parameter has
been classed as BYTE or WORD according to its predominant usage. In this
statement, the register variable appears in the opposite context. This is
unacceptable for the 8086, since byte and word register mnemonics are dif­
ferent. You should insert the appropriate register mnemonic.

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

The parameter of this IRPC directive is used in a register context. Since 8086
register mnemonics are two characters long, you should change the IRPC direc­
tive (possibly to an equivalent IRP).

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER

One of the arguments of this macro is both concatenated and used as a register.
You may need to manually convert the mnemonics yourself.

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

One of the arguments of this macro is concatenated. You should examine
the resulting symbol and see if it corresponds to the intent of the SOSO/SOS5
source code. You should also check to see if the resulting concatenated name is
reserved. A list of reserved symbols appears in Appendix D.

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

A macro argument is used in both byte and word register contexts. Since the
argument can be of only one type, you should manually alter the macro or over­
ride the argument type.

6 EQU'D OR SET REGISTER SYMBOL USED IN BOTH BYTE AND WORD CONTEXTS

An EQU or SET symbol is used in both byte register and word register contexts.
You should manually insert the appropriate register mnemonic(s). You may
need to use two EQUs: one for byte usage, and one for word usage.

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPERTYPE

An EQU symbol has been multiply defined, perhaps due to conditional com­
pilation. You should eliminate the excess definition(s), and redefine as
necessary. CONVS6 may have assigned the wrong type.

8 UNKNOWN STATEMENT

The converter is unable to recognize this statement, possibly because its
mnemonic is a macro parameter. You should either recode the S080 source to
produce recognizable statements (legal instructions) and submit the recoded
SOSO file to CONV86, or else simply insert the appropriate 80S6 source code in
the OUTPUT file.

3-9

Editing Converter Output

3-10

10 TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION

The specified symbol is defined in an INCLUDE file. When the INCLUDE file
is converted, the usage of the symbol may not be the same as inferred by
CONV86 here. You should convert the INCLUDE file and examine the type
CONV86 has assigned to it there, and then ensure that both usages are the same.
If they are not, you should override the assigned usage in either file so as to
make their types identical.

11 TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS

An NOP instruction has been converted to XCHG AX,AX. This may not be the
desired mapping, as it assembles into a one-byte instruction (3 clocks).

12 TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS

An RST instruction has been converted to an INT instruction for the 8086. You
should verify that the original intent of the RST instruction was to cause an
interrupt. You should examine the operand carefully to ensure that the instruc­
tion traps to the desired absolute address, and that the intended routine to be
trapped to will be bound to (loaded at) that address.

13 80B5-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

The 8086 has no counterpart for RIM or SIM. You should recode according to
the 8086 interrupt scheme as described in the 8086 Family User's Manual under
"Interrupts."

14 FORWARD REFERENCE TO A SYMBOL WHICH IS-A REGISTER OR [BX] CANNOT BE
CORRECTLY ASSEMBLED

The 8086 assembler does not accept forward references to registers. You should
move your register EQUs to the beginning of your file.

16 EXPRESSION ASSUMED TO BE A VARIABLE

CONV86 has not been able to determine what type of expression is in this
instruction. CONV86 has assumed that the expression is a variable. If this
assumption is incorrect, you should examine the resulting 8086 statement and
recode the mapped expression to suit your intent. You may find it helpful to
insert additional labels.

17 ADDRESS EXPRESSION MAY BE INVALID FOR 8086

Case 1: Displaced Reference

CONV86 may not have mapped a displaced symbol reference (for instance,
$ + BAZ*(FOO-N» correctly. You can manually check the mapped displace­
ment. You may find it simpler (and safer) to insert additional labels or variables
rather than manually calculating displacements.

Case 2: HIGH/LOW Applied to Symbolic Address Expressions

You should check the symbols operated on by the HIGH/LOW functions to
ensure that their alignments in 8086 memory' correspond to their 8080 page
alignments.

CONV86

CONV86 Editing Converter Output

In addition, if you converted using the REL control (a default), you should
insert a group override prefix as follows:

Before Your Editing

LOW(expr)
HIGH(expr)

Case 3: Overly Complex Expressions

After Your Editing

LOW DGROUP:(expr')
HIGH DGROUP:(expr')

It is possible that an overly complex 8080 expression has resulted in unaccept­
able MCS-86 source code in your OUTPUT file. You should examine the
original 8080 expression carefully to determine its intent, and then hand­
translate the expression to a valid MCS-86 expression that corresponds to the
original intent.

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED

8080/8085 instructions are not permitted as operands in your source file.

19 REGISTER USED IN UNKNOWN CONTEXT

A register was used in an unknown context, such as:

REG EQU B

If this directive appears in an INCLUDE file which does not reference REG,
conversion of the INCLUDE file will result in a type ambiguity for B. That is,
CONV86 will not know at the time of the INCLUDE file's conversion whether
B maps into CH or CX. You should check to see whether you want B to map
into a byte register or a word register, and change the converter's mapping
accordingly.

20 OUTPUT LINE TOO LONG; TRUNCATED

An output line has exceeded 129 characters and has been truncated. You should
recode the line in 8086 accordingly.

21 LABEL ASSUMED TO BE NEAR

CONV86 has been unable to determine how this label is used; it is assumed to be
of type NEAR. Since CONV86 has no information on how to type this symbol,
you should check its usage and change its type accordingly.

22 NOMACROFILE CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

23 MOD85 CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

24 SOURCE LINE TOO LONG; IGNORED

The current source line exceeds 129 characters and has been mapped into a com­
ment in both 8080/8085 and 8086 output files. You can either recode the source
line and reconvert the source file using CONV86, or you can insert 8086 code in
the OUTPUT file to accomplish the intent of the source line.

3-11

Editing Converter Output

3-12

~ CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS

An END or SEG directive in 8086 implies a preceding ENDS directive to close
the currently open segment. This segment is unknown. You should insert an
ENDS directive of the appropriate type.

U SYMBOLNAMETOOLONG

Symbol names in 8086 cannot exceed 31 characters.

28 CONDITIONAL ASSEMBLY GENERATED

CONV86 has assumed that it is possible that the operand of this PUSH or POP
instruction is the PSW. Conditional assembler directives have been generated
to take this possibility into account. If you know the operand is the PSW, you
can substitute the appropriate mapping from Appendix A for:

• POP PSW (Using EXACT Control)

• POP PSW (Using APPROX Control)

• PUSH PSW (Using EXACT Control)

• PUSH PSW (Using APPROX Control)

On the other hand, if you know the operand is definitely not the PSW, you can
substitute the appropriate mapping from Appendix A for:

• POP rw

• PUSH rw

(Using either EXACT or APPROX)

(Using either EXACT or APPROX)

If you cannot determine whether the operand is the PSW, you should desk­
check or single-step your source program until you are able to make that deter­
mination. Otherwise, the conditional assembly statements placed by CONV86
in your OUTPUT file will not assemble under version V2.0 of the MCS-86
Macro Assembler.

30 UNKNOWN INSTRUCTION ASSUMED TO BE A MACRO

The converter is unable to recognize this statement and has assumed that it is a
macro call. You should verify this assumption and recode if necessary.

31 GENERATED LABEL MIGHT NEED TO BE DECLARED LOCAL

The converter has generated a label within a macro definition. This label must
be made local if the macro is invoked more than once.

32 (NO)COND CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

33 (NO)MACRODEBUG CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

34 METACHARACTER OR PARENTHESIS FOUND IN IRPC STRING

A '0J0,' '(' or ')' character was left in an IRPC string but will not be correctly
interpreted by the 8086 assembler. This requires your attention.

CONV86

CONV86 Editing Converter Output

35 EXPRESSION ASSUMED TO BE A CONSTANT

CONV86 has not been able to determine what type of expression is in this
instruction. CONV86 has assumed that the expression is a numeric constant. If
this assumption is incorrect, you should examine the resulting 8086 statement
and recode the mapped expression to suit your intent. You may find it helpful to
insert additional labels.

36 SYMBOLIC EXPRESSION MAY BE CONTEXTUALLY INVALID FOR ASM86

A symbolic expression has been encountered in a context in which the 8086
assembler allows expressions containing only two type of operands:

a. Numeric constants, and

b. Macro symbols (preceded or followed by a '070') that evaluate to numeric
constants.

If the expression contains symbols which do not conform to b, above, they must
be replaced by their numeric values or redefined via the 070 SET macro.

3-13

APPENDIX A
INSTRUCTION MAPPING

Following are instruction mappings from SOSO/SOS5 to 8086 assembly language.
Operands are mapped according to Appendix B. Operand designations are as
follows:

ib = byte immediate
iw = word immediate
mb = byte memory
mw = word memory

mn = near memory
rb = byte register
rw = word register

Similarly, ib' refers to the mapping of ib, iw' refers to the mapping of iw, and so on.
Thus, if B = rb, then rb' = CR. But if B = rw, then rw' = CX.

Constructs of the form L_n are generated internally by CONVS6 for use as labels in
mappings of conditional CALLs, conditional RETurns; conditional JMPs.

8080/8085 8086 Remarks

AClib ADCAL,ib'

ADCrb ADC AL,rb'

ADD rb ADD AL,rb'

ADlib ADDAL,ib'

ANArb ANDAL,rb'

ANlrb ANDAL,ib'

CALLmn CALL mn'

CCmn JNBSHORTLn (L_n inserted as label for
CALL mn' instruction following CALL)

CMmn JNSSHORTLn (L_n inserted as label for
CALL mn' instruction following CALL)

CMA NOTAL

CMC CMC

CMPrb CMPAL,rb'

CNCmn JNAE SHORT Ln (L_n inserted as label for
CALLmn' instruction following CALL)

CNZmn JZSHORTLn (L_n inserted as label for
CALL mn' instruction following CALL)

CPmn JSSHORTLn (L_n inserted as label for
CALLmn' instruction following CALL)

CPEmn JNPSHORTLn (L_n inserted as label for
CALL mn' instruction following CALL)

CPlib CMPAL,ib'

CPOmn JP SHORT L_n (L_n inserted as label for
CALL mn' instruction following CALL)

CZmn JNZSHORTLn (L_n inserted as label for
CALLmn' instruction following CALL)

A-I

Instruction Mapping CONV86

8080/8085 8086 Remarks

DAA DAA

DADrw ADD BX,rw' (Using APPROX Control)

DADrw LAHF (Using EXACT Control)
ADD BX,rw'
RCRSI,1
SAHF
RCLSI,1

DCR rb DEC rb'

DCXrw DEC rw' (Using APPROX Control)

DCXrw LAHF (Using EXACT Control)
DEC rw'
SAHF

DI eLi

EI STI

HLT HLT

IN ib INAL, ib'

INR rb INCrb'

INXrw INCrw' (Using APPROX Control)

INXrw LAHF (Using EXACT Control)
INCrw'
SAHF

A-2

CONV86 Instruction Mapping

8080/8085 8086 Remarks

JCmn JBSHORTmn' (For forward short branch)

JCmn JBmn' (For backward short branch)

JCmn JAE SHORT L_n (Otherwise)
JMP mn'

JM mn JSSHORTmn' (For forward short branch)

JM mn JSmn' (For backward short branch)

JM mn JNS SHORT L_n (Otherwise)
JMP mn'

JMPmn JMP SHORT mn' (For forward short branch)

JMPmn JMP mn' (Otherwise)

JNCmn JAE SHORT mn' (For forward short branch)

JNCmn JAE mn' (For backward short branch)

JNCmn JNAE SHORT L_n (Otherwise)
JMP mn'

JNZmn JNZ SHORT mn' (For forward short branch)

JNZmn JNZ mn' (For backward short branch)

JNZmn JZSHORTLn (Otherwise)
JMP mn'

JPmn JNS SHORT mn' (For forward short branch)

JP mn JNS mn' (For backward short branch)

JPmn JS SHORT L_n (Otherwise)
JMP mn'

JPEmn JPSHORTmn' (For forward short branch)

JPE mn JP mn' (For backward short branch)

JPE mn JNP SHORT L_n (Otherwise)
JMP mn'

JPOmn JNP SHORT mn' (For forward short branch)

JPOmn JNP mn' (For backward short branch)

JPOmn JPSHORTL_n (Otherwise)
JMP mn'

JZmn JZSHORT mn' (For forward short branch)

JZmn JZmn' (For backward short branch)

JZ mn JNZ SHORT L_n (Otherwise)
JMP mn'

A-3

Instruction Mapping CONV86

8080/8085 8086 Remarks

LDAmb MOVAL,mb'

LDAXrw MOVSI,rw'
LODS DS:M[SI]

LHLDmw MOV8X,mw'

LXI rw,iw MOVrw',iw' (When 2nd operand immed. or near)

LXI rw,iw LEA rw',iw' (When 2nd operand is byte or word)

MOV rb1,rb2 MOV rb1',rb2'

MOV M, rb MOV M[8X], rb'

MVI rb,ib MOVrb',ib'

MVIM,ib MOV M[8X], ib'

NOP NOP XCHG AX,AX (1 byte, 3 clocks)

ORArb OR AL,rb'

ORlib ORAL,ib'

OUTib OUTib', AL

PCHL JMP8X

POPrw POP rw' (For EXACT or APPROX when rw is
definitely not PSW)

POP PSW POP AX (Using APPROX Control)
XCHG AL.AH

POPPSW POP AX (Using EXACT Control)
XCHGAL,AH
SAHF

POPrw %IF(%EOS (Using APPROX when rw
(rw' ,AX» THEN(could be PSW)

POP rw'
XCHGAL,AH
)ELSE(
POP rw'
)FI

POPrw %IF(%EOS (Using EXACT Control when rw
(rw' ,AX» THEN(could be PSW)

POP rw'
XCHG AL, AH
SAHF
)ELSE(
POP rw'
)FI

A-4

CONV86

8080/8085

PUSHrw

PUSH PSW

PUSH PSW

PUSHrw

PUSHrw

RAL

RAR

RC

RET

RIM

RLC

RM

RNC

RNZ

RP

RPE

RPO

RRC

RSTib

RZ

8086

PUSH rw'

LAHF
XCHGAL,AH
PUSH AX
XCHGAL,AH

XCHGAL,AH
PUSH AX
XCHGAL,AH

%IF(%EOS
(rw' ,AX» THEN(

XCHGAL,AH
PUSH rw'
XCHGAL,AH
)ELSE(
PUSH rw'
)FI

%IF(%EOS
(rw' ,AX» THEN(

LAHF
XCHG AL,AH
PUSH rw'
XCHGAL,AH
)ELSE(
PUSH rw'
)FI

RCLAL,1

RCR AL,1

JNBSHORTLn
RET

RET

error

ROLAL,1

JNSSHORTLn
RET

JNAE SHORT L_n
RET

JZ SHORT Ln
RET

JS SHORT Ln
RET

JNPSHORTLn
RET

JP SHORT Ln
RET

RORAL,1

INTib'

JNZSHORTLn
RET

Instruction Mapping

Remarks

(For EXACT or APPROX when rw is
definitely not PSW)

(Using EXACT Control)

(Using APPROX Control)

(Using APPROX Control when rw
could be PSW)

(Using EXACT Control when rw
could be PSW)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

(L_n inserted as label for
instruction following RET)

A-5

Instruction Mapping CONV86

8080/8085 8086 Remarks

SBB rb SBB AL,rb'

SBlib SBB AL,ib'

SHLDmw MOVmw',BX

SIM * * * error* * *

SPHL MOVSP,BX

STAmb MOVmb',AL

STAXrw MOVDI,rw'
MOV DS:[DI],AL

STC STC

SUB rb SUB AL,rb'

SUlib SUB AL,ib'

XCHG XCHG BX,DX

XRArb XOR AL,rb'

XRlib XORAL,ib'

XTHL POPSI
XCHG BX,SI
PUSH SI

unknown expr unknown' expr'

A-6

APPENDIX B
CONVERSION OF EXPRESSIONS

IN CONTEXT

The following describes how SOSO/SOS5 expressions are converted to SOS6 expres­
sions according to the context in which an operand or expression occurs.
The context is simply what CONVS6 infers from the use of the operand in the
instruction:

ib = byte immediate
iw = word immediate
mb = byte memory
mw = word memory
mn = near memory
rb = byte register
rw = word register

M is defined to be a byte located at absolute location O. In contexts 3 and 5 below,
forward-referenced memory items are treated as "unknown."

1. Context = ib

• Operand = ib: expr -+ expr'

• Operand = iw: expr -+ LOW(expr')
• Operand = mn, mw, mb, or unknown: I 2

If REL control, then
expr - LOW DGROUP:(expr')

If ABS control, then
expr - LOW(expr')

2. Context = iw

• Operand = ib or iw: expr - expr'

• Operand = mb, mw, mn, or unknown2
:

If REL control, then
expr - OFFSET DGROUP:(expr')

If ABS control, then
expr - OFFSET(expr')

3. Context = mb

• Operand = mb: expr -+ expr'

• Operand = mn or mw or unknown: expr -+ BYTE PTR(expr')

• Operand = ib or iw: expr - M[expr']

4. Context = mn

• Operand = mn: expr -+ expr'

• Operand = mb or mw or unknown: expr -+ NEAR PTR(expr')

• Operand = ib or iw: expr - NEAR PTR M[expr']

5. Context = mw

• Operand = mw: expr -+ expr'

• Operand = mb or mn or unknown: expr -+ WORD PTR(expr')

• Operand = ib or iw: expr - WORD PTR M[expr']

1. mn, mw, and mb are illegal in SOSO in this context, but give an implicit LOW.

2. unknown generates Caution Message 17.

B-1

Conversion of Expressions in Context CONV86

6. Context = rb

• Operand = rb:

• A-AL

• B-CH

• C-CL

• D-DH

• E-DL

• H-BH

• L-BL

• Operand = mb:M - M[BX]

7. Context = rw

• Operand = rw:

• B-CX

• D-DX

• H-BX

• SP-SP

• PSW-AX

B-2

APPENDIX C
ASSEMBLER DIRECTIVES MAPPING

This appendix shows how 8080/8085 assembler directives are converted by CONV86
into 8086 assembler directives. Expression mapping is described in Appendix B.
Context symbols (for instance, "expr", "mn", and so on) used as directive
operands are mapped according to Appendix B.

In certain cases (EQU, IRP, macro call, and SET), it is possible to determine that an
assignment is being made to a byte or word register. In such cases, the appropriate
rb or rw expression conversion is performed. The STKLN expression is converted in
the prologue (see Chapter 1, "Functional Mapping").

Table C-l. Assembler Directives Mapping

8080/8085 8086 NOTES

ASEG prev-seg ENDS
A BS_O SEGMENT BYTE AT 0

CSEG prev-seg ENDS
CODE SEGMENT WORD PUBLIC 'CODE'

DB expr-list DB expr-list'

OS expr DB expr' DUP (?)

DSEG prev-seg ENDS
DATA SEGMENT WORD PUBLIC 'DATA'

DWexpr-list DWexpr-list'

END [mn] prev-seg ENDS
END [mn']

name EQU expr name' EQU expr'

EXTRN name-list EXTRN name:usage-list'

NAME name NAME name'

ORGmn ORG mn'

PUBLIC name-list PUBLIC name-list'

STKLN expr ***deleted*** If the REL control (a default) is
used, STKLN converts to informa-
tion in the prologue. Refer to
Chapter 1, "Functional Mapping."

aSETb % SET (a',b') If the symbol being defined is
never set to a non-constant.

1---- ------ -------
PURGEa' If the symbol being defined is ever

a' EQU b' set to a non-constant and the SET
is not self-relative.

1---- - ----- -------
T_a' EQU b' If the symbol being defined is ever

PURGEa' set to a non-constant and the set
a' EQU T_a' is self-relative, e.g., X SET X+5.

PURGET_a'

IFa %IF (a') THEN (

ELSE)ELSE(

ENDIF)FI

C-I

Assembler Directives Mapping CONV86

Table C-l. Assembler Directives Mapping (Cont'd.)

8080/8085 8086 NOTES

a MACRO b, ... %*DEFINE (a'(b' , ...)) All local labels for the macro (c' ...)
LOCALc' ... (are moved to the local list in the

macro definition, with blanks
replaci ng commas. LOCAL
statements disappear. The word
LOCAL is not produced if there are
no local labels.

The parentheses around b' , ... are
omitted when the parameter list is
null.

LOCALe, ... none

ENDM) If this directive closes a macro.
~- -- - - --- --- ----

)) If this directive closes a REPT, IRP
or IRPC definition.

mcall b, ... %mcall (b', ...) The parentheses are omitted
when the parameter list is null.

IRPa,b %IRP(a' ,b')c' ... (%(All local labels for the macro (c' ...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

IRPCa,b %IRPC(a' ,b')c' ... (%(All local labels for the macro (c' ...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

REPTa %REPT(a')c' ... (%(All local labels for the macro (c' ...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

EXITM %EXIT

C-2

APPENDIX D
RESERVED NAMES

A name appearing in an SOSO/SOS5 expression may have a special SOS6 interpreta-
tion (for instance, AL or TEST), or it may be reserved for a segment or group name
(for instance, CODE). Except for STACK, which is converted to STACK_BASE,
each such name is automatically converted by CONV86 by appending an underscore
to it (for instance, AL_ or TEST_). The 80SO reserved word MEMORY is treated
specially.

The following ASMS6 reserved names are modified by CONVS6:

Table D-l. Reserved Names

AAA CX IDIV JNO NEAR ROL
AAD DAS IMUL JNP NEG SAHF
AAM DO INC JNS NES SAL
AAS DEC INCHAR JO NIL SAR
ABS DEFINE INT JS NOSEGFIX SCAS
AH DH INTO LABEL NOTHING SEG
AL DIV IRET LAHF OFFSET SEGFIX
ASSUME DL JA LOS PARA SEGMENT
AT DUP JAE LEA POPF SHORT
AX DWORD JB LEN PREFX SI
BH OX JBE LENGTH PROC SIZE
BL ELSE JCXZ LES PROCLEN SS
BP ELSEIF JE LOCK PIR STD
BX ENDIF JG LODS PURGE STI
BYTE ENDM JGE LOOP PUSHF STOS
CBW ENDP JL LOOPE RCL STRUC
CH ENDS JLE LOOPNE RCR SUBSTR
CL EQS JNA LOOPNZ RECORD TEST
CLC ES JNAE LOOPZ RELB THIS
CLD ESC JNR LTS RELW TYPE
CLI EVAL JNBE MASK REP WAIT
CMPS EXIT JNE MATCH REPE WHILE
CODEMARCO FAR JNG METACHAR REPEAT WIDTH
COMMON GES JNGE MODRM REPNE WORD
CS GROUP JNL MOVS REPNZ XLAT
CWO GTS JNLE MUL REPZ

The names CGROUP, CODE, CONST, DATA, and DGROUP are reserved by
CONVS6 to set up a PL/M-S6 environment.

The assembler-reserved symbols? and ??SEG are not permitted as user mnemonics.

D-l

APPENDIX E
MACRO CONSTRUCT CONVERSION

All macro definitions and calls will be translated to their 8086 macro processing
language equivalents. However, macro related constructs require special conversion.

The following 8080/8085 macro constructs are converted to their 8086 equivalent as
shown:

8080
CONSTRUCT

..
"

!

NUL operand

<Jist>

(

)

%expression

symbol

symbol

%

&

Table E-l. Macro Construct Conversion

8086
EQUIVALENT

0/0'

%1

% EQS(operand' , %0)

%(Jist')

%1(

%1)

expression'

% (symbol')

%symbol'

%1%

%

NOTES

Within a macro definition body.

When quoted or within a list or IRPC string.

Within any expression.

Within any macro argument field, but '< >' is
stripped when surrounding an IRPC string.

Within < > or " in macro call parameter,
macro definition, IF expression or body, or
SET body.

Within < > or ' , in macro call parameter,
macro definition, IF expression or body, or
SET body.

Within macro argument field.

When symbol is a macro parameter and is
being passed to another macro in an argu­
ment field that does not use %.

When symbol is a parameter or local symbol
in a macro definition, a macro itself, or
defined with a SET directive.

Within quotes when not causing
concatenation.

Concatenation translation.

E-l

APPENDIX F
SAMPLE CONVERSION

AND LISTINGS

This appendix consists of:

• Figure F -1. 8080 Sort Routine Source File

• Figure F-2. CONV86 PRINT File of Conversion of 8080 Sort Routine

• Figure F-3. MCS-86 Macro Assembler Listing of Conversion of 8080 Sort
Routine

• Figure F-4. MCS-86 Macro Assembler Listing of Originally Coded 8086 Sort
Routine

Please note that the CONV86 OUTPUT file was edited before submitting it to
ASM86 for assembly. The OUTPUT file was edited as follows:

1. To retrieve PL/M-86 stack parameters, code (corresponding to lines 44-47 in
Figure F-3) was inserted as described in Chapter 3.

2. To correct incomplete register mapping due to mnemonics appearing in an
IRPC string, IRPC calls have been deleted at lines 69 and 85 in Figure F-2, and
the code has been expanded by hand to that at lines 91-94 and 132-133 in Figure
F-3. This edit is in response to the converter generated caution.

3. For space/time considerations, only the necessary LAHF /SAHF instructions
were retained from the OUTPUT file. Since the file was converted using the
(default) control EXACT, flag-preserving code for all occurrences of DAD,
DCX, INX, and PUSH/POP PSW was generated. You can determine which
flag-preserving code has been retained by comparing Figures F-2 and F-3

F-I

Sample Conversion & Listings

• MACROFr~g!:Fl~) NOOBJ~CT
;1 •••••••••••••••••• 1 ••••••••••••• , •••••••••••••••• ,.,III.

A P~/M callaole subroutine:
CA~~ SORT1.Al •• N)

Sorts the ar~ay Al. containing N wo~ds.
At entry BC points to the ar~ay Al. and
DE points to N. Two pointe!'s 1;0 ele;nents of Al ape
incremented in two loops. The outer loop steps Og
through the elements of Al. fhe inner loop steps
H~ through the elemenl;s of Al that follow D~. At
each step of the inner lOOD. the ite~s ~t H~ and DE
a~e eXChanged. if required. so that at the end of
the inne~ loop, the ite;n at D8 is lar!e~ tha all
the items that follow it. The ite~ at DE is then in
its proper position. so Di is inare~ented to

; compLete one iteration of the outs!' Loop.
, •••• , ••••••••••••••••• , ••• , ••• , ••••••••• JI ••••••• JI •• "'"

D~ta area follows
DSEJ

fiST: DS

CSEG
PUB:..rC SORT

SWAP MACRO
Tnis m~cro swaps two bytes pointed to by H~ and DE.

; fest
SOflT:

3NDM
adj,'ess of the

XCH·:;
~OV

INX
t-10i/
XCHG
DCX
DAD
o)AD
SH'.O

~DAX D
MOv C.M
MOV M.A
XCHG
i'101/
XCHG

last element of Al.

Yl.C

f is T = ; 1/ - 1) • 2 .. • A 1

".M
[j

9.M

EST

- 1)
J 2

... Al
r;:ST

Figure F -1 A. 8080 Sort Routine Source File

F-2

CONV86

CONV86

OUTER ~OOP~ DO DE
MOV'

ourTST:·
i~OV

:'DA
SUB
!. DA
saB
RC

INNER ~OOP~ DO H~

HOiT
140,{
RUT

ENDM

.A1 TO rEST BY 2.
E.G

D.B
HST

TEST .. 1
D

DE .. 2 ro rEST B~

:'.I!:
H.D

2
INX 3

; IF H~ > rEST THEN Joro o~rI~C
INTST~ :'OA TEST

SUB
~DA rEST .. 1
saa H
JC OUrINC

IF A1IH:') < A1IoE) THEN GOTO ININC

ac CONTAINS .A1

IP D3 > TEST THEN RgTURN

As a side effe~t. H~ and DE are in~re~ented by 1
to point to the nigh bytes of their array ele~ents.

:"DAX D
SUB M
IRt>G Z.DH

ENDM
:"DAX

I,H

SaB M
JNC INI~G

Figure F-IB. 8080 Sort Routine Source File

Sample Conversion & Listings

F-3

Sample Conversion & Listings

~xchange A:OE) with A:H~). ~eav8 H~ and D~
painting to HIGH bYGes.

SWAP
lRP Z.<O.H>

DGX
ENDt1

~xchange low bytes

SWAP
Point H~ and DE co high byG8s

IilPG Z,DH
nIX Z

ENDI"1

Put: Z) D and H ir. chei~ oLa:!e

; DE an Hf ...
; set OS
lNING:

point to HIGH bytes. Fo~ the next itenation.
?('evious DE:, lE, : 2 .. r('e'lious H".

DGX D
INK Ii
JMP INTST

; End of OUGe(' loop. Set D~ = D~ .. 2
OUTING: RE:PT 2

IPIX D
"NDM
J~P J~Tr3r

END

Figure F -1 C. 8080 Sort Routine Source File

F-4

CONV86

CONV86

ASM30 TO ASM35 CONVerlTER

ISIS-II ASM30 TO ASM35 CONVERSION O~ ~I~E ~~1:S0RT80
ASMBS P~ACED IN :~1:S0RT80.A86
CONVERTER V2.0 I.VOKED BY~

~Fl:CONV85 ~~1;SORT30 NOSOURCE~IST

3086 PROGRAM

$ WORKFI~ESI!Fl:.!Fl:) NOOBJECT
CGROUP GROUP ABS_O.CODE.CONST,DATA.STACK.MEMORY
DGROUP GROUP ABS_J.CODE,CONST.DATA.STACK.MEMORY

ASSUME DS:DGROUP,CS:CGROUP.SS,DGROUP
CONST SEGMENT WORD PUBLIC 'CaNST'
CONST ENDS
STACK SEGMENT WORD STACK 'STACK"
STACK_BASE ~ABE~ BYTE
STACK ENDS
MEMORY SEGMENT WORD MEMORY 'MEMORY'
MEMORY_ ~ABE4 BYTE
MEMORY ENDS
ABS~O SEGMENT BYTE AT °
M ~ABEl.. BYTE
J·DEFINE I REPT I N) ~OCA~S I BODY» !.OCA'. MACRO I

~·DEFINE IMACRO) ~OCA!. ~!,OCA~S r~BODY)
JREPEAT !%N) I~MACRO))

l·DEFINE IIRP IPARM.P!.IST) '.OCA!.S IBODY» !,OCA~ MACRO ~IST I
%.DEFINE {MACRO) ~OCA~ Jl..OCA~S I%BODY)
J·DEFINE 1[.IST) I~P'.IST)
~IF .%l..ENIJ*!.IST) EQ 0) THEN

%DE~INE I%PARM) ;£0)
~MACRO)

E'. SE I

FI)

%WHI:'E !%'.ENI%·~IST) WE 0) 1
%MATCHI%PARM,l.IST) 1%I:'IST)
~MACRO))

J·DEFINE 1IRPC lPARM,TEXT) ~OCA~S IBODY» ~OCAl.. MACRO l.IST
%IDEFINE IMACRO) :'OCA'. J!,OCA~S I~BODY)
~·DEFINE I!.IST) I%TEXT)
~IF !%l.ENl~·~IST) EQ 0) THEN

%DEFINE I%PARM) I~O)
:hIACRO)

E!.SE 1

FI)

%WHI1.E U!.ENU·!.IST) NE 0) I
'DEFINE I~PARM) !~.SUBSTRr%.!.IST.l.l»
SDEFINE I!.IST) IJ·SUBSTR!%·~IST.2,9999»
,MACRO))

2 ••••••••••••••••••• , ••••••••••••••• , •••••••••••••••••••••
3 A P:./M callable subroutine:
4 CA!.l. SORTI.Al,.N)
5 Sorts the array Al, containing N words.
6 At entry BC points to the array Al. and
7 DE points to N. Two pointers to elements of Al are
8 incremented in two loops. The outer loop steps DE
9 through the elements of Al. The inner loop steps

Sample Conversion & Listings

Figure F -2A. CONV86 PRINT File Conversion of 8080 Sort Routine

F-5

Sample Conversion & Listings

ASM30 TO ASM86 CONVERTER

F-6

10
11
12
13
14
15
16
17
18
19
19
20
21
22
22
23
24
25
26
26
27
28
29
30
31
32
33
34
35
36
36
36
37
38
39
39
39
40
40
40
40
40
41
41
41
41
41
42
43
44
45
46
47
48
49
50
50

H~ through the elements of Al that follow DE. At
each step of the inner loop. the items at H~ and DE
are exchanged, if requi~ed. so that at the end of
the inner loop, the item at DE is larger tha all
the items that follow it. The item at DE is then in
its proper position. so DE is incremented to

; complete one iteration of ~he outer loop.
; ••••••••••••••••••••••••••• , ••••••••••• , ••••• 1 ••••••••••••

; Data area follows
ABS_O ENDS
DATA SEGMENT WORD POB~IC "DATA"
TEST_ DB 2 DUP I?)

Begin code area
ENDS DATA

CODE SEGMENT WORD PUB~IC 'CODE"
POB!'IC SORT

S'DEFINE {SWAP)
S' This macro swaps two bytes pointed to by H~ and DE.

MOV SI,OX
i.. ODS OS'·M~ SI]
MOV C!., M~ BX]
MOV MIBX].A!.
XCHG BX,OX
MOV MiBX].CL
XCHG eX,DX
)

• Test = address of the last element of Al.
SORT: XCBG BX.OX ; TEST iN - 1) • 2 ... Al

MOV O:',M:BX]
~AH~

UC BX
SAH~

MOV OH.MIBX]
XCHG BX,OX !~
"AHF
DEC BX
SAH~ - 1)
'.AHF
ADD
RCR
SAHF
RC;'
:'AHF
ADD
RCR
SAHF
RC!.
MOV

BX,BX
SI,l

SI,l

BX,CX
SI,l

SI.l
WORD PrRt TEST_) ,BX

• 2

... OOrER !.OOP:,
MOV

DO DE = .Al ro rEST Bf 2;
Dr. ,C'. BC CONTAINS .Al

MOV DH,CH

+ .Al
TEST

OOTTST:- MOV
SOB
MOV
SBB
JNB
RET

A'., TEST_ IF DE > TEST THEN RETURN
AL,DL.
A!.. TEST_to 1
A!. ,DH
SHORT '._1

Figure F-2B. CONV86 PRINT File Conversion of 8080 Sort Routine

CONV86

CONV86

ASM80 TO ASM86 CONVERTER

50
51
52
53
54
55
55
55
56
57
58
59
60
61
62
63
64
65
66
67
67
68
69

!.._1:
; INNER !.OOP:­

MOV
MOV
UEH
!..AHF
INC
SAHF
»

DO H!.. = UE+2 TO TEST BY
B!..D!.
BH,DH
12) !U

BX

; IF H~ > TEST THEN GOTO OUT INC
INTST: MOV A!. ,TEST_

SUB A!.., B!.
MOV A~.TEST_+1

SBB Ai.., BH
JB SHORT OUTINC

IF A1IHL) < A11DE) THEN GOTO ININC

; HI.. DE +

As a side effect, H~ and DE are inc~emented by 1
to point to the nigh bytes of thei~ array elements.

MOV SI,DX
!.oODS OS: M~-SI]
SUB AI..MIBX]
SIRPC IZ,DH) :JI

... CAUTION
70

002 f.f 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING
!.AHF
INC
SAHF
»

70
70
71
72
72
'3
711
75
76
77
78
79
79
79
80
81
82
83
84
85

MOV SI,DX
:'ODS OS: M:6SI]
S.BB A:'. M~ BX]
JAE SHORT ININC

Exchange ArDE) with A!H~).
pointing to HIGH bytes.

SSWAP
J!RP
!.AHF
DEC
SAHF
»

IZ.J~DX,BX»

Exchange low bytes

SSWAP

Leave H!. and DE

III

S· Put IZ) D and H in their place

Point H!.. and DE to high bytes
SIRPC !Z.DH) !J!

••• CAUTION
86

002 ff. 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING
LAHF
INC
SAHF
»

86
86
81
88
89
90
90
90
91
91

; DE an H!.. point to
; set DE = Previous
IN INC: ~AHF

DEC
SAHF
LAHF
INC

Ox

BX

HIGH bytes. For the next iteration.
DE, H:' = 2 + Previous HL.

Sample Conversion & Listings

Figure F-2C. CONV86 PRINT File Conversion of 8080 Sort Routine

F-7

Sample Conversion & Listings CONV86

ASM80 TO ASM86 CONVgRTER

91 SAHF
92 JMP INTST
93 End of out.er' loop. Set DE DE +

911 OUTINC: %REPT .2) : J:
95 !.AHF
95 INC DX
95 SAHF
96 »
97 JMP OUTTST
9B CODE ENDS
98 END

2 CAUTIONIS)

END OF ASM80 TO ASM86 CONVERSION

Figure F-2D. CONV86 PRINT File Conversion of 8080 Sort Routine

F-8

CONV86 Sample Conversion & Listings

Mes-as MACRO ASSEMB~ER SORT3J

ISIS-II Mcs-a6 MACRO A3SEMB~ER V2.0 ASSEMB~Y O~ MODO~S so~r30
NO OBJECT MODU~E REQUESTED
ASSEMB~ER INVOKED BY: :F3:ASM35 ~rl:S0RT30.A35

~OC OBJ

0000

0000

0000

0000 12
11
)

0000
0000 5B
0001 59
0002 5A

:aINE

1
2
3
q
5
5
7
8
9

10
11
12
13
1 q
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
qO
41
42
43
44
45
46
41

+1
+1

SOURCE

$ WORKFILESI:F1:.:F1:) NOOBJECT
CGROUP GROUP ABS_O.CODE,CONST,DATA.STACK.MEMORY
DGROUP GROUP ABS_O.CODE.CONST,DATA.STACK.MEMORY

ASSUME DS~DGROUP.CS:CGROUP.SS~DGROUP

CONST SEGMENT WORD PUB:'IC 'CONST'
CONST ENDS
STACK SEGMENT WORD STACK 'STACK'
STACK_BASE !.ABE~ BYTE
STACK gNDS
MEMORY SEGMENT WORD MEMORY ~MEMORY'
MEMORY_ !.ABE!. BYTE
MEMORY gNDS
ABS_O SEGMENT BYTE AT a
M :'ABE:' BYTE

; •• * ••••••••••••
A P:./M callable sub~outine~

CAL!. SORTLA1 •• N)
Sorts the array Al, containing N wo~ds.
At entry BC points to the array Al. and
DE points to N. Two pointers to elements of Al are
incremented in two loops. The outer loop steps DE
through the elements of Al. The inner loop steps
HI. through the elements of Al that follow DE. At
each step of the inne~ loop. the items at H:' and DE
are exchanged. if requi~ed. so that at the end of

~ the inne~ loop, che item at DE is larger tha all
the items that follow it. The item at DE is then in
its proper pOSition. so DE is inc~emented to

; complete one iteration of the outer loop.
; •••••• f •••

• Data a~ea follOWS
ABS_O ENDS
DATA SEGMENT WORD PUB:'IC 'DATA'
TEST_ DB 2 DUP I?)

Begin code a~ea

DATA ENDS
CODg SgGMENT WORD POB:'IC 'CODE'

PUBLIC SORT

; Test = address of the last element of Al.
SORT:

POP BX
POP CX
POP OX

~ •••• CODE INSgRTED TO
•••• RgTRIgVg PL/M-86
•••• STACK PARAMgTERS

Figure F-3A. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

F-9

Sample Conversion & Listings

M S-86 MACRO ASSEMB~ER

"OC OBJ

0003 53
000~ S1Dfl
0006 SA970000
OOOA 43
OOOB 8AB70000
OOOF 87DA
0011 4B
0012 03DB
0014 0309
0016 891EOOOO

001A SADl
001C 8AF5
001E Aooooa
0021 2AC2
0023 A00100
0026 lAC6
0028 7301
002A C3
002B

002B 8ADfl
0020 8AFE

002F 43

0030 43

0031 AOOOOO
0034 2AC3
0036 A00100
0039 lAC7
003B 1242

0030 8BF2
003F AC
0040 2A870000
0044 9F
0045 42
0046 43
0047 9E
0048 SBF2
004A AC
004B lA870000
004F 732A

F-IO

SORT80

~UE

~8
49
50
51
52
53
54
55
56
51
58
59
60
61
62
63
54
65
66
57
68
69
70
71
72
73
74
15
76
77
78
73
80
81
82
83
84
85
86
81
88
89
90
91
92
93
94
95
96
91
98
99

100
101

SOURCE

PUSH BX ; •••• :'CHAPTER 3)
XCHG BX.OX TEST = IN - 1) • 2 .. .Al
MOV Dr... M:BX]
INC BX
MOV DH. M:·BX]
XCHG BX.DX ! N
DEC BX - 1)
ADD BX.BX • 2
ADD BX.CX + • fll
1'10'1 WORD prRlrEST_),BX TEST

OUTER 1.00P: DO DE = .A 1 TO TEST BY 2;
MOV DE., cr. BC CONTAINS • A 1
1'10'1 DH.CH

OUTTST: MOV A:". TEST_ IF DE > TEST THEN RETURN
SUB A:". D~
MOV fl:". TEST_+1
SSB A:".DH
JNB SHORT '.._1
RET

!.._1:
; INNER '..OOP:t DO H!.. = OE+2 ro rEST BY

1'10'1 B!...D!.
1'10'1 BH.DH

.. 1

.. 2

.. 3

.. 3 INC BX

.. 3

.. 3 INC BX

.. 3
: H~ DE: +

IF H" > rEST THEN GOTO OUT INC
INTST,. MOV A!... TEST_

SUB A'... B:'
1'10'1 A'... TEST_+1
SBB A'...BH
JB SHORT OUTINC

IF A 11 H!.) < flJI D!n THEN Goro ININC
As a side effect, H:' and DE are inc:"emented by 1
to point to the nigh bytes of their aC':"ay eLements.

MOV SI.DX
'..ODS DS'M:~SI]
SUB A'... Hi BX]
!.AHF •••• The IRPC invocation reguires manual
INC OX •••• The !.AHF and SAHF exact mapping
INC BX
SAHF
1'10'1 SI.DX
!.ODS DS~'H:'Sn
SBB A!... 1'1: BX]
JAE SHORT ININe

Exchange A:DE) with A! H!.). !..eave H!. and DE
pointing to HIGH bytes.

.. 1

Figure F-3B. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

is
editing

regui:-ed

CONV86

CONV86

MCS-86 MACRO ASSEMB~ER

'.OC OBJ

0051 8BF2
0053 AC
00511 8A8FOOOO
0058 88870000
005C 87DA
005E 888FOOOO
0062 87DA

0064 4A

0065 liB

0066 8BF2
0068 AC
0069 8A8FOOOO
0060 88870000
0071 87DA
0073 888FOOOO
0077 870A

0079 112
I IRPC caL L removed

007A 113
• .. Expanded by hand

007S
007B 4A
007C 43
0070 EBB2

007F

007F 112

0080 112

0081 EB9B

ASSEMB!.Y COMP!.ETE. HO

Sample Conversion & Listings

SORT80

:.INE SOURCE

102 +1 MOlT SI.DX
103 +1 '.005 DS:-M:·sIl
1011 +1 MOlT cr.. M:"BX)
105 +1 MOlT M:-BX). Ai.
106 +1 XCHG BX.OX
107 +1 MOlT M:~BX). Cl.
108 +1 XCHG BX.DX
109 +1
110 +1
111 +2
112 +2
113 +2
114 +4
115 +4
116 +11
11 7 +4 DEC OX
118 +4
119 +4
120 +4 DEC BX
121 Exchange low byt:.es
122 +1
123 +1 MOlT SI.DX
12li +1 '.005 OS: M: sIl
125 +1 MOlT C'..M:BX)
126 +1 MOlT M:BX).A!.
127 +1 XCHG BX.DX
128 +1 MOlT M~QBX). Cl-
129 +1 XCHG BX.OX
130 +1
131 Point H:' and DE to high byt:.es
132 INC OX

and
133 INC BX

134 • DE an H!. point to HIGH bytes. Fo!' t:.he next:. l.tet'at:.ion.
135 set:. DE = Pt'evious DE. H!. = 2 + P!'evious H!. •
136 ININC:
137 DEC OX
138 INC BX
139 JMP INTST
140 End of Qut:.et' Loop. Set DE DE +
141 +1 OUrINC:
142 +2
143 +3
144 +3 INC OX
145 +3
1116 +3 INC OX
147 +3
148 JMP OUTTST
149 CODE ENDS
150 END

ERRORS FOUHD

Figure F-3C. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

F-l1

Sample Conversion & Listings

M~S-86 MACRO ASSEMB~~a SORT36

ISIS-II MCS-S6 MACRO ASSEMa~ER V2.0 ASS~Ma~y O~ MODU~E SORrS6
OBJECT MODU~E ?~ACED IN ~fl:S0RTg5.0BJ
ASSEMB~ER INVOKED BY: :F3:ASM86 :Fl:S0RT35

~OC OBJ

0000
0006~']
0004I]

0000 55
0001 8BEC
0003 8B7606

0006 8B5EOII
0009 8BOF
oooa 03C9
OOOD 03CE
OOOF
OOOF 3BF1
0011 731B

0013 8D7C02
0016
0016 3BF9
0018 730F
OOH 8B04
001C 38"05
0018 7304
0020 8705
0022 8904
0024
0024 83C702
0027 EBED
0029

F-12

l.INE

1
2
3
II
5
5
7
8
9

10
11
12
13
14
15
16
17
1 B
19
20
21
22
23
211
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
112
113
114
45
116
47
48
49

SOURCE

; .. .
A Pl./M callable subroutine:

CA~l. SORTI.A1 •• N)
Sorts the array A1. containing N words.
At entry the address of N. and the address of A1
are on the stack. Two_ pointers to elements of A1
are kept in the SI and 01 registers. These pOinters
are incremented in two loops. The outer loop steps
SI through the elements of A1. The inner loop steps
01 through the elements of A1 that follow SI. At each

~ step of the inner loop. the item at SI is larger than
all the items that follow it. The item at SI is then in
its proper position, so SI is incremented to

; complete one iteration of the outer loop.
; •• 11 ••••••••••••

CGROUP GROUP CODE
; No OS ASSUME is needed, since this
; doesn't reference a DATA segment.

ASSUME ~S~CGROUP

routine

CODe: SEGMENT PUB:' IC • CODE'
PUBl.IC SORT

SORT PROC NEAR
ADDR_A1 EQU WORD PTR ~BP+6] fir st parameter

second parameter ADDR_N EQU WORD PTR :BP+4]
PUSH BP use BP to accesss parameters
MOV BP.SP
MOV SI~ADDR_A1

; Outer loop~ DO SI • A 1 BY WHI!.E SI < CX
MOV BX.ADDR_N
MOV CX.)BX] CX
ADD CX.CX

• 2 ADD CX.SI + • A 1
OUTTST:

CMP SI.CX ; IF SI >= CX THEN RETURN
JAE EXIT

~ Inner loop: DO 01 = SI+2 WHILE Dr < CX

INTST:

[NINC:

OUTINC:

~EA DI.~SI+2] ;01 = SI + 2

CMP
JAE
MOV
CMP
JNB
XCHG
MOV

OI.CX
OUTINC
AX. :··sI]
AX.:>DI]
ININC
AX. :'0 I]
iSI].AX

ADD 01.2
JMP INTST

; r F 01 >= CX
; THEN exit inner loop
;IF A1)SI]

< AlIDI]

THEN EXCHANGE A1IoI]
WITH A1~SI]

Figure F-4A. MCS-86™ Macro Assembler Listing
of Originally Coded 8086 Sort Routine

CONV86

CONV86 Sample Conversion & Listings

M s-86 MACRO ASSEMB~ER SOHT86

:'OC OBJ ~INE SOURCE

0029 33C702 50 ADD DI.2
002C EBE1 51 JMP OUITST
002E 52 EXIT.:"
002E 50 53 POP BP
002F C20~OO 5~ RET ~

55 SORT ENOP
56 CODE ENDS
57 END

ASSEMB:' Y COMP:' ETE. NO ERRORS FOUND

Figure F-4B. MCS-86™ Macro Assembler Listing
of Originally Coded 8086 Sort Routine

F-13

APPENDIX G
RELOCATION AND LINKAGE

ERRORS AND WARNINGS

Because of the way CONV86 sets up multiple segments beginning at absolute
location 0 (as described in Chapter 1 under "Functional Mapping"), MCS-86
linkage and relocation tools will issue warnings/errors as shown in Table 0-1. You
can safely ignore these warnings/errors when they specifically apply to intentional
segment overlap.

Table G-I. MCS-8~TM Relocation and Linkage Warnings/Errors
for Segrttent Overlap

R &L Tool Message 10 Message Text

WARNING14 GROUP ENLARGED
FILE: filename
GROUP: groupname

MCS-86 MODULE: modname

LINKER WARNING 28 POSSIBLE OVERLAP
FILE: filename
MODULE: modname
SEGMENT: ABS_O
CLASS:

G-I

ABS control (CONV86), 1-6, 2-3
absolute addressing, 3-2
APPROX control (CONV86), 1-11,2-2

caution messages, 1-13, 3-7
comments, mapping of, 1-10
continuation lines,

in CONV86 command, 2-5
in PRINT file, 3-1

controls (ASM80) mapping, C-l
controls (CONV86), 2-1
conversions, sample, 1-3,3-1, F-5
cross-development (8080/8085-

to-8086), 1-2

DATE control (CONV86), 2-2
directives mapping, C-l
displaced reference, 3-2, 3-3, 3-10

EXACT control (CONV86), 1-12,2-2
expressions, conversion of, B-1

files, CONV86, 1-2, 1-13
files, cross-development, 1-2
flags, mapping of, 1-9
flag semantics, 8080-8086 differences, 1-12
functional equivalence, 1-11
functional mapping, 1-6

INCLUDED control (CONV86), 2-3
instruction mapping, A-I
instruction queue (8086), 1-11
interrupts, 3-3

label insertion by CONV86, 3-2, A-I
label insertion by user, 3-3

macro call, 1-3
macro conversion, 1-3, E-l
macro definition, 1-3
MACROFILE control (ASM80), 1-10
manual editing, 1-3, 1-13,3-1, F-l
MOD85 control (ASM80), 1-10

INDEX

NOMACROFILE control (ASM80), 1-10
NOOUTPUT control (CONV86), 2-2
NOPAGING control (CONV86), 2-2
NOPRINT control (CONV86), 2-2
NOSOURCELIST control

(CONV86), 1-1,2-3
NOTINCLUDED control (CONV86), 2-3

operand mapping, B-1
OUTPUT control (CONV86), 2-2
overriding controls (CONV86), 2-5
overriding symbol types, 1-10,3-9,

3-10, 3-11

P AGELENGTH control (CONV86), 2-2
P AGEWIDTH control (CONV86), 2-2
pipeline (8086), 1-11
PL/M linkage conventions (8080 &

8086),3-6
PL/M parameter passing (8080 &

8086),3-6
PRINT control (CONV86), 2-2
PRINT file, sample, 1-4, 3-1
program listings, 1-5, F-2, F-5, F-9, F-12
prologues (8086), 1-6
prompting, 2-5

register initialization (8086), 3-2
register mapping, 1-8
REL control (CONV86), 1-6,2-3, 3-2,3-11
relative addressing, 3-2
relocation & linkage (8086)

errors/warnings, 1-6, G-l
requirements for conversion, 1-1, 1-3,3-1
reserved names, 1-10, D-l

SOURCELIST control (CONV86), 1-1,2-3
stack, CONV86 handling of, 1-8
stack segment (8086), 1-7
STKLN directive (8080), 1-7, C-l
symbol typing, 1-9

timing delays, software, 1-11
TITLE control (CONV86), 2-2

WORKFILES control (ASM80), 1-10
WORKFILES control (CONV86), 2-3

Index-l

Notes:

Notes:

Notes:

Notes:

Notes:

MCS-86™ Assembly Language Conve
Operating Instructions for ISIS-II U~

980064

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that m
the needs of all Intel product users. This form lets you partiCipate directly in the documentation procesl

Please restrict your comments to the usability, accuracy, readability, organization, and completenesl
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other type:
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ___ DATE ______________ __

TITLE __ ___

COMPANY NAME I DEPARTMENT __ __
ADDRESS __ __

CITY __ ------------------------ STATE ____________ _ ZIP CODE __________ __

Please check here If you require a written reply. 0

) LIKE YOUR COMMENTS ...

iocument is one of a series describing Intel products. Your comments on the back of this form will
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
lents and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

"""
NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U_S.A.

