MCS-86™
ASSEMBLY LANGUAGE CONVERTER
OPERATING INSTRUCTIONS
FOR ISIS-Il USERS

Manual Order No. 9800642-02

Copyright © 1979 Intel Corporation

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 1

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).)

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

i iSBC Multimodule
ICE . Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX

Intel Micromap UPI
Intelevision Multibus uScope

Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

A175/280/7.5 FL

PREFACE

This manual describes how the ISIS-II user who is familiar with 8080/8085 assembly
language can convert 8080/8085 source files to 8086 assembly language source files,
which can then be assembled, linked, located, and run to perform their equivalent
8080/8085 functions on the upwardly compatible, 16-bit 8086.

Chapter 1 describes the scope and environment of conversion.
Chapter 2 describes how to operate the converter program CONV86.
Chapter 3 describes how to edit converter output to obtain MCS-86 source files.

Appendices describe the instruction, operand (expression), and directive mappings;
reserved names; and sample conversions with 8080/8085 and MCS-86 Macro
Assembiler listings of source and output files.

The following publications contain detailed information on 8080/8085 and MCS-86
software related to this manual: '

e 8080/8085 Assembly Language Programming Manual, Order No. 9800301

e [SIS-11 8080/8085 Macro Assembler Operator’s Manual, Order No. 9800292
e |SIS-1I User’s Guide, Order No. 9800306

* 8086 Family User’s Manual Order No. 9800722

e MCS-86™ Macro Assembly Language Reference Manual, Order No. 9800640

* MCS-86™ Macro Assembler Operating Instructions for ISIS-II Users, Order
No. 9800641

* MCS-86™ Software Development Utilities Operating Instructions for ISIS-11
Users, Order No. 9800639

e JSIS-II PL/M-86 Compiler Operator’s Manual, Order No. 9800478

iii

CONTENTS

CHAPTER 1 PAGE
AN OVERVIEW OF CONVERSION
Conversionand You.........ovviiineinneneennnn. 1-1
What Is Conversion?coiiiinn, 1-1
Why Convert?ooiiiiiii i, 1-1
What Preparation Does CONV86 Require of
SourceCode?......ocviiiiiiiiiiii i 1-1
What About Macros?cooiiieiinininnnn. 1-3
What Hardware/Software Is Needed
for Conversion?........o, 1-3
How Much Manual Editing of CONV86
Output Is Necessary?coivenian... 1-3
What Advantage Is There in Rewriting
Programs in 8086 Assembly Language Rather
Than Converting? i 1-3
Functional Mappingcoieiuieneen .. 1-6
What Are the 8086 Assembly Language
Prologues Generated by CONV86?............. 1-6
What If a Converted Program Exceeds 64K?....... 1-7
How Does CONV86 Handle the Stack? 1-8
How Are the 8080/8085 Registers Mapped
into 8086 Registers?c.vvuiiieennnnne. 1-8

How Are the 8080 Flags. Mapped into 8086 Flags? .. 1-9
How Are the 8080/8085 Instructions Mapped

into 8086 Instructions? 1-9
How Are 8080 Operands (Expressions) Converted

8086 Operands (Expressions)? 19
How Are Comments Mapped? 1-10
How Are 8080/8085 Assembler Directives

Mapped into 8086 Assembler Directives?....... 1-10

How Are 8080/8085 Assembler Controls Mapped? 1-10
How Does CONV86 Handle 8086 Reserved

Names?. ...t it 1-10
Functional Equivalence 1-11
What Is Functional Equivalence? 1-11
What About Program Execution Time?.......... 1-11
What Happens to Software Timing Delays
mConversion?. i 1-11
Does the 8086 Code Produced Set Flags Exactly
asonthe80802........ iii... 1-11
How Does the EXACT Control Preserve
Flag Semantics?..........c.ciiviiiininnn.n. 1-12
Editing CONV86 Output for 8086 Assembly........ 1-13
What Output Files Does CONV86 Create? 1-13
What Are Caution Messages? 1-13
Does a Caution Message Necessarily Mean
aManualEdit? L. 1-13

Do Caution Messages Identify All Manual Editing? 1-13

iv

CHAPTER 2 PAGE

OPERATING THE CONVERTER

Source File Requirements. 2-1

CONV86 Controls and Defaults 2-1

Examplescovini i e 2-3
Example 1: Full Default Saves Flags and

Relocatability. ...t 2-3

Example 2: Absolute Code with No Flags Saved.... 2-4
Example 3: Absolute Code with Flags Saved 2-4
Example 4: Relocatable Code with No Flags Saved . 2-4
Example 5: Prompting and Continuation Lines 2-5
Example 6: Overriding Controls 2-5

ConsoleQutput.....covviiiii i 2-5

CHAPTER 3

EDITING CONVERTER OUTPUT

Interpreting the PRINTFile. 3-1

8086 Checklistoovniniiiiiin i, 3-2
Initializing Registerscoiiiaoan. 3-2
Absolute Addressing.ciiiiiiian 3-2
Relative Addressing 32
Interrupts . . ov vt e et 3-3

PL/M-86 Linkage Conventions. 3-6
Case l: WhenPL/MCalls...................... 3-6
Case 2: When Your Converted Program Calls. 3.7

Caution MesSages . . . cvvenet it 3-7

Caution Message Descriptions. 39

APPENDIX A

INSTRUCTION MAPPING

APPENDIX B

CONVERSION OF EXPRESSIONS IN
CONTEXT

APPENDIX C
ASSEMBLER DIRECTIVES MAPPING

APPENDIX D
RESERVED NAMES

APPENDIX E
MACRO CONSTRUCT CONVERSION

APPENDIX F
SAMPLE CONVERSION AND LISTINGS

APPENDIX G
RELOCATION AND LINKAGE
ERRORS AND WARNINGS

INDEX

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE
1-1 - 8080/8086 Flag Correspondence........... 1-9 C-1 Assembler Directives Mapping............ C-1
1-2 Flag Settings That Change If D-1 Reserved Names...........c.oevevennnn.. D-1
APPROX Is Specified 1-12 E-1 Macro Construct Conversion E-1
1- CONV86OutputFiles 1-13 G-1 MCS-86 Relocation and Linkage
2-1 CONVS86 Controls and Defaults 2-1 Warnings/Errors for Segment Overlap ... G-1
2-2 File-Types and File-Names in CONV86
Fatal I/OErrorscoovievnvinnn. 2-6
FIGURES
FIGURE TITLE PAGE FIGURE TITLE PAGE
1-1 From 8080/8085 Assembly Language F-1 8080 Sort Routine SourceFile............. F-2
Source File to 8086 Execution 1-2 F-2 CONV86 PRINT File of Conversion of 8080 Sort
1-2 CONVS86 Input and Output Files........... 1-2 Routinecoiiiiiiiian, F-5
1-3 Sample PRINTFile...................... 14 F-3 MCS-86 Macro Assembler Listing of
1-4 Program Listings: Original 8080, Converted Conversion of 8080 Sort Routine F-9
8080, Original8086.................... 1-5 F-4 MCS-86 Macro Assembler Listing of Originally
3-1 Annotated PRINTFile................... 3-1 Coded 8086 Sort Routine.............. F-12
3-2

Converting Your Interrupt Procedures. 3-4

CHAPTER 1
AN OVERVIEW OF CONVERSION

Conversion and You

What Is Conversion?

Conversion is a way for you to obtain MCS-86 source files from your error-free
8080/8085 assembly-language source files. (Recall that an assembly-language source
file consists of assembler control statements, assembler directives, and assembly-
language instructions.)

Figure 1-1 shows the role of conversion in 8080/8085-to-8086 software development.
Conversion consists of two phases:

1. Operating the program CONV86 under ISIS-II. As shown in Figure 1-2,
CONVS86 accepts as input an error-free 8080/8085 assembly-language source
file and optional controls, and produces as output optional PRINT and OUT-
PUT files. The OUTPUT file contains machine-readable 8086 assembly-
language source code generated by CONV86. The PRINT file is human-
readable and contains:

e Input 8080/8085 assembly-language source code—optionally controlled by
SOURCELIST/NOSOURCELIST converter control

* Output 8086 assembly-language source code with embedded diagnostic
(‘‘caution’’) messages

Chapter 2 describes how to operate CONV86 under ISIS-II.

2. Manually editing (using the ISIS-II text editor) the OUTPUT file as indicated by
the caution messages in the PRINT file. Chapter 3 describes how to edit
CONYV86 output according to the caution messages generated. Some machine-
dependent sequences (such as software timing delays) are not detected by
CONVS86, but still require manual editing. Recall that in going from the 8080 to
the 8086, both the instruction size (length) and time (clocks) change.

Figure 1-1 shows both phases of conversion, as well as subsequent assembling, link-
ing, and (absolute) loading required for execution of your program.

Figure 1-3 shows the format of the PRINT file, and highlights features of conver-
sion discussed here and elsewhere in this manual.

Why Convert?

If you want to capitalize on your software investment in the 8080/8085, and if your
8080/8085 source files are tried-and-true, then conversion may offer you a con-
siderable head-start in your software development effort for the upwardly-
compatible 8086.

What Preparation Does CONV86 Require of Source Code?

You must ensure that all 8080/8085 source files to be converted can be assembled
without error by the ISIS-II 8080/8085 assembler. No source line can be longer than
129 characters, excluding carriage-return and line-feed. If your program contains
more than 600 symbols, you must break your program down into smaller programs
(even if you have 64K RAM).

1-1

Overview of Conversion

1-2

USER INTERFACE TooL FILES REFERENCES
‘
8080/8085
ERROR-FREE]
SOURCE
o) FILE
INVOKE CHAPTER 2
1 controis
INTELLEC CONV8S
—
PRINT FILE
MCS-86
SOURCE
FILE
SOFTWARE
ENGINEER
9] WANUAL CHAPTER3
EDIT
WTELLEC | ey
\ —
SOURCE
FILE MCS-86
ASSEMBLER
O OPERATING
INVOKE INSTRUCTIONS
=" CONTROLS WoS 86 FORISIS-I
IN e
TELLEC ASSEMBLER USERS
e—— (ORDERNO.
\ 9800641)
MCS-86 I
0BJECT
FILE
O MCs-86
INVOKE MCS-86 SOFTWARE
T"T:::: CONTROLS | £ ge gcamion DEVELOPMENT
-
AND UTILITIES
— LINKAGE FOR ISIS-11
USERS
(ORDER NO.
Mes-86 9800639)
EXECUTABLE l
PROGRAM j

Figure 1-1. From 8080/8085 Assembly Language Source File to 8086 Execution

INCLUDE
FILE(S)

8080/85

8080/85

SOURCE
FILE

(o Y

Iconvasmp
(DELETED)

MCS-86
SOURCE
FILE

8080/8085
SOURCE
FILE

MCS-86
SOURCE
WITH

CAUTIONS

ouTPUT
FILE
(EDIT UNDER ISIS-11)

PRINT
FILE
(USE AS REFERENCE
TOEDIT OUTPUTFILE)

Figure 1-2. CONVS86 Input and Output Files

CONV86

CONYV86

Overview of Conversion

What About Macros?

All macro definitions and calls will be converted to their 8086 equivalents. However,
macro-related constructs require special conversion. Appendix E lists all of these
constructs and shows how they are mapped.

NOTE

ASMS86 may misinterpret metacharacters (%) or unmatched parentheses
appearing in comments as macro invocations.

What Hardware/Software Is Needed for Conversion?

You need an Intellec microcomputer development system with 64K bytes of RAM
and at least one diskette unit. The CONV86 program occupies a single diskette and
runs under ISIS-II. During execution, CONV86 creates a work file (CONV86.TMP)
which requires seven bytes for each line of 8080/8085 code processed. Upon normal
termination, CONV86 deletes this temporary file.

How Much Manual Editing of CONV86 Output Is Necessary?

Anywhere from none to a considerable amount, depending on the nature of the
8080/8085 source file. In general, the following kinds of source code are better
implemented on the 8086 by recoding from scratch in 8086 assembly language,
rather than by converting from 8080:

e “‘Tricky’’ code that modifies itself

® Code that uses operation mnemonics as operands (for example, the instruction
MVI C,(MOV A,B); the intent of this instruction is to load C with the opcode
for MOV A,B).

* Programs relying heavily on the 8085 instructions RIM and SIM (Read/Set
Interrupt Mask) should be recoded from scratch in 8086 rather than converted.
The 8086 has no functional counterparts for these instructions.

It is therefore recommended that source files not be blindly submitted for conver-
sion. Each source file under consideration for conversion should be carefully
examined for these problem areas.

What Advantage Is There in Rewriting Programs in 8086 Assembly Language
Rather Than Converting?

CONVS86 converts most 8080/8085 assembly-language source programs adequately.
You can take advantage of the more powerful 8086 by coding some routines directly
in 8086 assembly language.

For example, Figure 1-4 shows assembled program listings for:

* 8080 Assembly of BCDBIN (13 bytes 8080 object code)

* MCS-86 Assembly of Conversion of BCDBIN (22 bytes 8086 object code)

o MCS-86 Assembly of BCDMCS Original 8086 Source (7 bytes 8086 object code)
(Recall that the PRINT file for the conversion of BCDBIN is shown in Figure 1-3.)

1-3

Overview of Conversion

CONV86

———————————3»-[CONVERTER PRINT File, :F1:BCDBIN.CNV]
— —
[ASM80 TO ASM36 CONVERTER [BCD-TO-BINARY ROUTINE |«—(Titlefrom [d)
L] SM80 TO _ASM335 CONVERSION OF FILE :F1:BCDBIN.S3D
CED IN :Fi:BCOBIN,SB5
V2,0 INVOKED BY:
[] 7:BCDBIN.SB0 & 3080 SOURCE FILE —meme— 4_(Invoking Command)
1:BCOBIN.CNV) & CONVERSION AND CAUTTONS
F1:BCDBIN.SB85) & 3085 CODE GENERATED
[] TITLE{*BCD-TO-BINARY ROUTINE') % MAX 39 CHARS
APPROX & DON'T CARE ABOUT FLAG SEMANTICS FOR THIS
ABS & DON'T CARE ABOUT RELOCATABILITY OR PL/d FOR JTHIS
\ .
P
[J
8080 PROGRAM]
o 1] |iTHIS ROUTINE CONVERTS BCD TO BINARY AS FOLLOWS:
7 | 2| |: BCD IEA'S DIGIT IN LOW GIBELE OF B REG.
- 3] |5 BCD UNIT*S DIGIT IN LOW NIBBLE OF C REG. .
® |3 %1 1, HISH NIBBLES OF B AND C ASSUMED TO BE IRRELEVANT.
g 5| {i BINARY RESULT 10-99) IS LEFI IN ACCUMULATOR.
g2l {6 ORG 4000H
[33 7| |scoBIN: MoV a,cC SUNIT*S DIGIT & SARBAGE TO ACC.
£ 3 ANI OFH SMASX 0UT GARBASE
Se 3 MOV 2,4 $SAVE UNIT'S DIGIT IN E !LOW)
[] §§ 12 MOV A,B sTEN'S DIGIT & 3ARBAGE IO ACC.
LEIRER ANL OFH SMASK OUT 3ARBASE
§8| |2 MOV D,A ;SAVE TEN*S DISIT IN D [LOW)
@ |58 |3 RLC ;29TEN'S
z 11 RLC JURTEN'S
3 13 aDd D P34TEN'S
o 15 RLC S10%TEN'S
1" D £ S10#TEN*'S + UNIT'S BIN. REP. IN ACC.
13 ERD)
[
These headings identify the source
and output program listings in the
sg'l'ﬂm.“Lw:cr‘a‘c:'s::):w?cil.lsr ® ASM3D IO ASM35 CONVIATER [3CD-TO-BINARY ROUTINGE)-f
F’ ram does not appear in the
Bl fie. [3235 PROGRAM
GR A
® /Y
—1 | ASSUME DS:ABS_’),CS:ABS_JJ
[] ABS D SIGMENT BYTE AT 9
a CABE, BYTE
L*DSFINE (REPT i) LOCALS (BOM)) LOCAL WACRO |
[] L¥DEFINE [MACRO) LOCALY{#L0CALS :¥BODY)
® IREPEAT [3N) IEMACRO)
~ L#DEFING [IRP IPARM,PLIST) LOCA.S {BODY)) LOCAL MACRO LIST I
44DEFINE TMACRO) LOCAL KLOCALS I XBODY)
® B*DEFINE [LIST) IEPLIST
SIF IBLENIE*LIST) £Q O} THEW I
[] IDEFIWE [4PARM) N 1D)
[FMACRO)
ILSE
[] FWHILE [ALENIRALYST) 4E J) !
[SMATCHI3HARM, L IST) 1E%LIST)
1MACRO)
[] FI)
L*DSFINE [IRPC IPARM,TEXT) L0CALS|IBODY)) LOCAL MACRO LIS !
A#DEFINE IMACRO) LOCAL Bi{CALS 1BODY)
[] L#DEFINE !LIST) I3IEXT)
FIF (XLENIR*LIST) &Q J) rThed I
IDEFINC (32ARd) 1%
[J AMACRD)
iLse I
SWIILE DALENIASLIST) NE 9) I
[J 4DSFINE [4PARA) ! 5*SUBSTRIA*LIST,1,1))
$DEFINE [LI3T) {443UBSTRIA*LIST,2,3993))
EMACRO))
[] fr .
[[7] <THIS ROUTINZ COWVEZATS BCD IO BINAAY\AS FO..LOWS: A
2 ; 8CO TEN'S DISIT IN LOW NIBBLE OF \8 REG.
[] 3 BCD UNIT'S DIGIT IN LOW NIBBLE Of\ C RE3.
4 HI3d NIBBLES OF B AND C ASSUMED TP BZ [RAELIVANI.
° 5 BINARY RESULI_12-39) IS LEFT I4 A§CUMULATOR.
: <
V 1 JUAITTS DIGIT 3| 3ARBAGE T9 ACC.
Sequence Numbers Correspond 3 ASK OUT GARBAR:E s
to Source File Line Numbers E) $SAVE UNIT*S DIRIT IN 2 ILOW)
13 iTAN'S DISIT & BARBA3E TO ACC.
1 Absolute (ABS) | 3ARBALE
[] 12 8086 Segmentls |3 OIS[IT Id o l.ow)
13 Pseudo-8080
P14 Environment
[] 13 FERECRE]
13 ;1)*rENTS
1" $12%788%3 + JuIfe' 3 BIN. 4. IN ACC.
[J 13
L3 —_— ——
OUTPUT File [] MCS-86 Assembly Language)
:F1:BCDBIN.S86 H——3p»-[0 CAJI104L35)] Source Code
Should Assemble
[] S0 07 A343) 1D A3d433 COdVERSIO
[

Figure 1-3. Sample PRINT File

1-4

CONV86 Overview of Conversion

ASM80 :F1:BCDBIN.S30

ISIS-II 3080/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE

SEQ SOURCE STATEMENT

1 ;THIS ROUTIHE CONVERTS BCD TO BINARY A3 FOLLOWS:
23 BCD TEN'S DIGIT Id -OW NIBBLEZ OF B REG.
3 BCD UNIT*S DIGIT IH LOW NIBBLE OF C REG.
4 HIGH NIBBLES OF B AND C ASSUMED TI0 BS IRRELEVANT.
53 BINARY RESULT 10-33) IS LEFT IN ACCUMULATOR.
4000 5 ORG 40004
4000 73 ! BCDBIN: MOV A, C SUNIT'S DIGIT & GARBASE IO ACC.
4001 ES50F 3 ANT JFH iMASK QUT JARBASE
4003 5% 3 MOV E,A ;SAVE UNIT®S DISIT Id E {LOW)
4004 78 10 MoV A, B sTEN'S DIGIT & GARBASE TO ACC.
4005 E50F 11 ANT JFH $MASK OUT SARBAGE
4007 57 12 MOV D,A ;SAVE TEN'S DISID IN D {LOW)
40038 o7 13 RLC ;2¥TEN"S
4009 37 14 RLC JHETEN'S
4004 32 15 ADD bl J5*TEN'S
4008 07 15 RLC 310#TEN'S
400C 83 i ADD g ;10*TEN"S + UWIT*S BIN. REP. IN ACC.

END

PUBLIC 3YMBOLS

EXTERNAL SYMBO.S

USER SYMBOLS
BCDBIN A 4000

ASSEMBLY COMPLETE,

N0 IRRORS

MCS-86 MACRO ASSEMBLER BCDBIN

I[SIS-II MCS-35 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODJLZ BCDBIN
OBJECT MODULE PLACSD IN :F1:BCDBIN.OBJ
ASSEMBLER INVOKED BY: ASM85 :F1:BCDBIN.S35 PAINT[:F1:BCDBIN.L33)

L3C 084 LINe 300RCE

ASSUMZ D3:AB5_J,CS8:AB3)
ABS_) SEGMENT BYTE AT 0
“ LABEL BYTE

;THIS ROUTINE CONVZRIS BCD TO BINARY AS FOLLOWS:
: BCD TEN'S DIGIT IN LOW NIBB.LE OF B REd.
BCD JANIT*S DISIT Id LOW NIBBLE OF C .
HI3H NIBBLES OF B AND C ASSUMED I BE IR
BINARY RESULT [9-33) IS LEFT IN ACCUMULATOR.
9RS 40094
BCOBIN: H#0Y AL,cCl TUNIT'S DISIT % GARBAGE T0 ACC.
A4D AL,0FH iMASK OUT SARBAJE
oV DL, AL SSAVE UNIT'S DIGIT IN E {.OW)
ELY AL, CH STEN'S DISIT & GARBAGE TO ACC.
[EE) AL,0FH $MASK OUT 3ARBAGE
400 oH, AL $SAVE TEN®3 DIGIT IN D [.OW)
RO Au,t J2FTEN'S
a0L AL, 1 JUFTEN'S
and AL, DH I5*TEN'S
0% au, S10%TEN'S
ADD AL, DL J10%TEN'S + UNIT'S BIN. REP. IN
2403
2N

UiEWN 2 OWW~ U EW N - OWw—~ Ou Swin =

19 10 1V O I e e s s e

ASSEMBLY COMPLETE, NO ERROAS FOUND

AS3ZMB.LI COMP.2TE, NO ZARROR3 FIJAD

[M(S-85 MACRO ASSEMBLER BCDMCS
[J
35 MACRO ASSEMBLER V2.0 ASSEMBLY OF 0DULZ BCDUCS
T M0DULE SLACED IV :f1:BCDACS.08J
[J ASSEMBLER INVO BY: 43435 :F1:3CDACS.S535 PRINII:f1:BCDACS.L3S)
° Loc 08J LINZ EREEGE!
1 A
aam- 2 ABS_) 3E3
[] 4322 3 033
. 1 (THIS RDJTING ASS3UMES TEN'3 DISIT IN CH LOW 4133LE
5 : JNIT*S DISTT IV C. LOW ¥I8BLE
[] 5 ; 3ARBA3I ILSEWH
7 STA03 ROUTIE 2,ACES BINARL EPRES $3-33) IN 4. RS,
4203 38C1 3 E
[] 4332 25080¢ 3
1335 0594 19 DAL <-- 10%AH + A%
P 1 48S_)
[] 12
[

Figure 1-4. Program Listings: Original 8080 (top); Converted 8080 (middle)
Original 8086 (bottom)

1-5

Overview of Conversion

Functional Mapping

What Are the 8086 Assembly Language Prologues Generated by CONV86?

The main source file of your 8080/8085 program should be converted using the
(defaulted) control NOTINCLUDED. If NOTINCLUDED is in effect, the con-
verted file begins with a converter-generated prologue. The prologue generated by
the converter depends on whether the ABS or REL control is specified when
CONV86 is run (REL is the default).

If the ABS control is specified (for subsequent absolute loading by 8086 relocation
and linkage), CONV86 generates as a prologue:

ASSUME DS:ABS__0,CS:ABS_0

ABS_0 SEGMENTBYTEATO

M LABEL BYTE

%*DEFINE (REPT (N) LOCALS (BODY)) LOCAL MACRO (

%*DEFINE (MACRO) LOCAL %LOCALS (%BODY)
%REPEAT (%N) (%MACRO))

%*DEFINE (IRP (PARM,PLIST) LOCALS (BODY)) LOCAL MACRO LIST (
% *DEFINE (MACRO) LOCAL %LOCALS (%BODY)
%*DEFINE (LIST) (%PLIST)

%IF (% LEN(% *LIST) EQ 0) THEN (
%DEFINE (% PARM) (%0)
%MACRO)
ELSE (
Yo WHILE (%LEN(%*LIST) NE 0) (
%MATCH(%PARM,LIST) (%*LIST)
%MACRO))
Fl)
%*DEFINE (IRPC (PARM,TEXT) LOCALS (BODY)) LOCAL MACRO LIST (
%*DEFINE (MACRO) LOCAL %LOCALS (%BODY)
% *DEFINE (LIST) (% TEXT)
%IF (%oLEN(%*LIST) EQ 0) THEN (
%DEFINE (%PARM) (%0)
%MACRO)
ELSE (
%WHILE (% LEN(%*LIST) NE 0)
%DEFINE (%PARM) (%*SUBSTR(%*LIST,1,1))
%DEFINE (LIST) (%*SUBSTR(% *LIST,2,9999))
%MACRO))
Fl)

If the REL control is specified (for converting 8080/8085 source files with
relocatability features, and/or for subsequent linking to PL/M-86 modules)
CONV86 generates as a prologue:

CGROUP GROUP ABS__0,CODE,CONST,DATA,STACK,MEMORY
DGROUP GROUP ABS__0,CODE,CONST,DATA,STACK,MEMORY
ASSUME DS:DGROUP,CS:CGROUP,SS:DGROUP

CODE SEGMENT WORD PUBLIC 'CODE’
CODE ENDS

CONST SEGMENT WORD PUBLIC 'CONST’
CONST ENDS

DATA SEGMENT WORD PUBLIC 'DATA’
DATA ENDS

STACK SEGMENT WORD STACK *STACK’

DB n DUP(?)

CONV86

CONYVS86

Overview of Conversion

STACK_BASE LABEL BYTE

STACK ENDS

MEMORY SEGMENT WORD MEMORY 'MEMORY’

MEMORY__ LABEL BYTE

MEMORY ENDS

ABS_0 SEGMENT BYTEATO

M LABEL BYTE

%*DEFINE (REPT (N) LOCALS (BODY)) LOCAL MACRO (
%*DEFINE (MACRO) LOCAL %LOCALS (%BODY)
%REPEAT (%N) (%MACRO))

%*DEFINE (IRP (PARM,PLIST) LOCALS (BODY)) LOCAL MACRO LIST (
%*DEFINE (MACRO) LOCAL %LOCALS (%BODY)
%*DEFINE (LIST) (%PLIST)

%IF (%LEN(%*LIST) EQ 0) THEN (
%DEFINE (%PARM) (%0)
%MACRO)
ELSE (
%WHILE (%LEN(%*LIST) NE 0) (
%MATCH(%PARM,LIST) (%*LIST)
%MACRO))
Fl)

%*DEFINE (IRPC (PARM,TEXT) LOCALS (BODY)) LOCAL MACRO LIST (
%*DEFINE (MACRO) LOCAL %LOCALS (%BODY)
%*DEFINE (LIST) (%TEXT)

%IF (%LEN(%*LIST) EQ 0) THEN (
%DEFINE (%PARM) (%0)

%MACRO)
ELSE (
%WHILE (%LEN(%*LIST) NE 0) (
%DEFINE (%PARM) (%*SUBSTR(%*LIST,1,1))
%DEFINE (LIST) (%*SUBSTR(%*LIST,2,9999))
%MACRO))
Fl)

The statement DB n DUP(?) in the STACK segment only appears when the 8080
source file contains a STKLN directive. In that case, n corresponds to the operand
of the 8080 STKLN directive.

These statements help to set up a pseudo-8080 environment, since an 8086 segment
cannot exceed 64K bytes. The register mappings help to complete the pseudo-8080
environment.

NOTE

If more than one module is linked, multiple ABS__0 segments will cause
LINKS6 to issue error messages concerning SEGMENT OVERLAP. These
errors are nonfatal and can be ignored, but you should check your 8080
ASEG (now the 8086 ABS__0 segment) to make sure that you intend the
overlap to occur. See Appendix G for further details.

What If a Converted Program Exceeds 64K?

If your 8080 object file exceeds 50K bytes, then there is a chance that your converted
source file, when assembled, will exceed 64K bytes and therefore will be too large to
fit into a single 8086 segment. (To determine this, you must first convert your 8080
source file, including required manual editing of 8086 source code, and then assem-
ble under the MCS-86 Assembler. An error message will inform you if the resulting
MCS-86 object file exceeds 64K bytes.)

Overview of Conversion

1-8

If your converted program exceeds 64K bytes, you must reorganize your MCS-86
source code into two or more segments, or else optimize your converted program (by
recoding portions directly in more efficient MCS-86 source code).

To reorganize your converted program into two or more segments, you will need to
change the GROUP, SEGMENT, and ASSUME assembler directives as described in
the manual, MCS-86 Macro Assembly Language Reference Manual, Order No.
9800640.

If you need to reorganize your converted program, you can place your data in one
segment or group based at absolute location 0, and place your code in another seg-
ment or group located above the data segment (or group). You should pay particular
attention to absolute addresses and pointers (address values stored as data) in this
case, to ensure that your program accesses its data as originally intended.

How Does CONV86 Handle the Stack?

If present, ‘““STKLN”’ is converted to ‘““DB n DUP(?)”’ in the STACK segment,
where n is taken from the operand of STKLN. The reserved name STACK is con-
verted to STACK__BASE. (See also ‘‘Initializing Registers’> under ‘8086
Checklist’’ in Chapter 3.)

How Are the 8080/8085 Registers Mapped into 8086 Registers?

Byte registers are mapped as follows:

8080/8085 8086

AL
CH
CL
DH
DL
BH
BL

rImoOw?>»

Word registers are mapped as follows:

8080/8085 8086
PSW AX
B CX
D DX
H BX
SP SP

CONYV86

CONYVS86 Overview of Conversion

How Are the 8080 Flags Mapped into the 8086 Flags?
The 8080 flags correspond to a subset' of the 8086 flags as shown in Table 1-1:

Table 1-1. 8080-8086 Flag Correspondence

Flag Name Des?g::tion Des?:::tion
Auxiliary-carry AC AF
Carry c CF
Zero z ZF
Sign S SF
Parity P PF

1. Four 8086 flags do not concern us here: DF (direction), IF (interrupt-enable), OF (overflow),
and TF (trap).

How Are 8080/8085 Instructions Mapped into 8086 Instructions?

Appendix A shows how all instructions are mapped. But first, consider that it is not
enough simply to map an 8080 instruction mnemonic directly into an 8086 instruc-
tion mnemonic, because the instruction operands must be examined as well.

How Are 8080 Operands (Expressions) Converted to 8086 Operands (Expressions)?

8086 Assembly Language is a typed language, whereas 8080/8085 is not. Thus,
CONV86 must assign a type—BYTE, WORD, or NEAR—to each symbol en-
countered in your 8080/8085 source file. Each symbol is typed according to its most
frequent usage. After each symbol has been assigned a type (at the end of the first
pass of CONV86), CONVS86 can explicitly override the type in 8086 source code
when necessary.

Appendix B describes the conversion of 8080 expressions into 8086 expressions as a
function of the context and the operand or expression type. For example, during its
first pass in converting your 8080 source file, CONV86 may find the symbol
LASZLO used in three different contexts:

8080
LDA LASZLO ;Load accumulator with byte at LASZLO.
LHLD LASZLO ;Load (H,L) with word at LASZLO.
JMP LASZLO ;Jump to symbolic location LASZLO.

1-9

Overview of Conversion

1-10

Since all three usages of the same symbol are permitted in 8080/8085 assembly
language, but since 8086 assembly language permits a symbol to be of only one
type—BYTE, WORD, or NEAR—then CONV86 must assign a single type to
LASZLO. In this case, LASZLO is assigned type BYTE, and the remaining two
occurrences of LASZL.O are overridden as follows:

8086
MOV AL, LASZLO ;Load AL with byte at LASZLO.
MOV BX,WORD PTR(LASZLO) ;Load BX with word at LASZLO.
JMP NEAR PTR(LASZLO) ;Jump to symbolic location LASZLO.

How Are Comments Mapped?

Comments are mapped unchanged. However, metacharacters (%) or unmatched
parentheses in 8080 source comments may be misinterpreted by ASM86.

How Are 8080/8085 Assembler Directives Mapped Into 8086 Assembler
Directives?

Appendix C shows the assembler directive mapping.

Operands (expressions) of all directives are mapped according to Appendix B.

How Are 8080/8085 Assembler Controls Mapped?

CONV86 deletes the MOD85, NOMACROFILE, COND, NOCOND,
MACRODEBUG and NOMACRODEBUG controls, and issues corresponding cau-
tion messages.

The MACROFILE (:Fn:) control, specified with its argument, will be converted to
WORKFILES (:Fn:,:Fn:). The MACROFILE control will not be converted cor-
rectly if you have not specified it with its optional argument. Such a control can be
deleted from the 8080/8085 source file or from the converter output file. All other
8080/8085 assembler controls are copied unchanged to the 8086 output file.

The only 8080/8085 assembler control interpreted by the converter is the INCLUDE
control, which causes included files to be processed in the first pass. Included files
are neither listed nor converted when the main source file is converted; they are pro-
cessed in order to evaluate symbol definitions and attributes. The maximum nesting
level for included files is four.

How Does CONV86 Handle 8086 Reserved Names?

Whenever CONV86 encounters an 8086 reserved name (such as AL, TEST, or
LOOP) in an 8080/8085 source file, CONV86 appends an underscore to the name
(thus obtaining AL__, TEST__, or LOOP__). The only exception to this rule is
STACK, which is converted to STACK__BASE. As a result, you don’t need to be
concerned about any 8086 reserved names that might be hiding in your 8080/8085
source files. Appendix D gives a complete list of 8086 reserved names.

CONV86

CONVS86

Overview of Conversion

Functional Equivalence

What Is Functional Equivalence?

The ideal conversion results in total functional equivalence, which means that the
converted 8086 source file, when assembled, linked, located, and run, performs the
equivalent function of the input 8080/8085 source file.

CONVS86 cannot infer the intent of your source program.

While CONV86 cannot usually achieve total' functional equivalence on a per- pro-
gram basis, CONV86 can, in almost every instance, achieve functional equivalence
on a line-by-line basis. This means that CONV86 attempts to ‘‘map’ each
8080/8085 instruction, directive, or control into its 8086 counterpart, if it exists.

Using the instruction mapping of Appendix A, the operand (expression) mapping of
Appendix B, and the directive mapping of Appendix C, CONV86 achieves line-by-
line functional equivalence. Problems encountered in achieving program functional
equivalence arise from:

* Symbol-typing ambiguities — overridden symbol types might not yield the
desired 8086 source code. CONV86 flags potential problems of this sort with
caution messages.

® Machine-dependent sequences, such as software timing delays or other
sequences which depend on instruction length or clock periods.

What About Program Execution Time?

The 8086 assembly-language instructions produced by CONV86 require, in general,
more clock periods than did the original 8080/8085 instructions. Thus, the 8086
code produced is less efficient in terms of instruction cycles. However, since the 8086
can be driven by a faster clock, this loss of instruction-cycle efficiency is offset.

What Happens to Software Timing Delays in Conversion?

You should examine the 8086 code derived from timing delay loops. Then, taking in-
to. consideration the number of cycles for each 8086 instruction involved, as well as
the bandwidth (frequency) of your 8086 clock, you can manually edit the 8086
source code to preserve your timing delays. You should also take into account the

8086 instruction queue (pipeline), which contains six prefetched bytes of in-line

code.

Does the 8086 Code Produced Set Flags Exactly as on the 8080?

Yes, unless you specify the APPROX control when you run CONV86. Table 1-2
shows the five 8080 instructions whose 8086 counterparts set flags differently if AP-
PROX is specified. The EXACT control (a default) forces all flag settings to be
preserved.

'Total functional equivalence on a per-program basis would constrain instruction sequence sizes and
clocks to be preserved.

Overview of Conversion

1-12

Table 1-2. Flag Settings That Change If APPROX Is Specified

Source Equivalent
8080 8080 Flags Affected 8086 8086 Flags Affected

Instruction Instruction
DAD cY ADD BX,__ AF,CF,PF,SF,ZF
INX none INC AF,PF,SF,ZF
DCX none DEC AF ,PF,SF,ZF
PUSH PSW none; saved in stack PUSH AX none
POP PSW 2,8,P,CY,AC POP AX [SEENOTE 1]

[NOTE 1: No flags are set if APPROX is specified. EXACT sets AF, CF, PF, SF, and ZF {but not
OF).]

How Does the EXACT Control Preserve Flag Semantics?

By inserting the LAHF (load AH with flags) and SAHF (store flags from AH) in-
structions before and after the 8086 counterpart of the 8080 instruction being con-
verted. For example, the 8080 instruction INX B increments the 16-bit register-pair
(B,C) without affecting any 8080/8085 flags, whereas the 8086 instruction INC CX
not only increments the 16-bit register CX on the 8086, but also can affect four rele-
vant flags:

* Auxiliary-carry flag (AF)

e Parity flag (PF)

e Sign flag (SF)

e Zero flag (ZF)

If your program is not concerned with these flag settings, then the APPROX mapp-
ing will suffice:

8080 8086
INX B——APPROX)—»INC CX

However, if your program flow depends on the settings of any of the four flags men-
tioned, you will want to ensure that in your 8086 program, these flags are saved
before INC CX is executed, and restored after INC CX is executed. The EXACT
control does this for you as follows:

8080 8086 COMMENTS

INX B——EXACT)~—3» LAHF ;Load flags into AH.
INC CX
SAHF ;Store flags from AH.

Similar flag-preserving code results from EXACT conversion of the 8080/8085
instructions DCX, DAD, PUSH PSW and POP PSW.

When in doubt, let CONV86 default to the EXACT control. More 8086 source code
is generated than for APPROX, but the code can be counted on to preserve the flag-
setting semantics of your 8080/8085 program.

CONV86

CONVS86

Overview of Conversion

Editing CONV86 Output for 8086 Assembly

What Output Files Does CONV86 Create?

Table 1-3 shows CONV86 output files, their default extensions, and uses.

Table 1-3. CONV86 Output Files

File Designation in

Invoking Command Default File-Name Contents and Use

OUTPUT :Fs:source.A86 Machine-readable 8086 source file; to be
manually edited according to caution
messages in PRINT file.

PRINT :Fs:source.LST 1) Optional copy of 8080/8085 source.

2) Human-readable 8086 source file with
embedded caution messages for
manually editing OUTPUT file.

What Are Caution Messages?

In general, CONV86 issues a caution message when it detects a potential problem in
the converted 8086 source code. Caution messages can alert you to possible symbol
type ambiguities, such as a symbol used both as a byte and a word, or to possible dis-
placed references, such as JMP $ + (exp). In the latter case, the displacement (exp)
usually increases in going from the 8080 to the 8086. Chapter 3 describes caution
messages and identifies what, if anything, you need to do to your 8086 source file.

Does a Caution Message Necessarily Mean a Manual Edit?

No. In some instances, such as displaced references, CONV86 cannot be sure if an
error exists. In other instances, such as MOD85 CONTROL DELETED, the con-
verter is simply informing you of a deliberately omitted source file control. Never-
theless, all caution messages and the lines to which they apply demand scrutiny.

Do Caution Messages Identify All Manual Editing?

No. Since CONV86 cannot infer the intent of a source program, you must be the
final judge as to whether the 8086 source code produced will do a satisfactory job. In
particular, you should be alert to machine-dependent sequences of instructions,
bearing in mind that instruction sizes (lengths) and execution time (clocks) will
change in going from the 8080/8085 to the 8086.

Also, certain 8080/8085 Assembly Language constructs, not valid in the MCS-86
Macro Assembly Language, are not detected by CONV86. These constructs are
flagged as errors by ASM86. For example, a nested macro definition that uses the
same macro name (a valid construct in the 8080/8085 Assembly Language) is invalid
in the MCS-86 Macro Assembly Language. This construct is not detected by
CONV86 but it is flagged as an error by ASM86, alerting you about the problem.

The 8080/8085 assembler control MACROFILE is not converted correctly if its
optional argument is not present. CONV86 does not issue a caution for this condi-
tion and ASM86 processing of the converter output file is terminated by a fatal
error, “BAD WORKFILE COMMAND.”’ This problem can be corrected by editing
the converter output file or removing the MACROFILE control from the 8080/8085
source file before it is converted.

CHAPTER 2
OPERATING THE CONVERTER

Source File Requirements

Before operating the converter program CONV86, you should ensure that the main
source file and all included source files meet the following requirements:

1. The source file must be capable of being assembled without errors by the ISIS-II
8080/8085 Assembler.

. 2. Diskettes containing files INCLUDEd by the main source file must be mounted
on their indicated diskette drives.

3. The maximum source line length is 129 characters, not including carriage-
return and line-feed characters. Longer lines are converted to comments and
flagged with a caution message.

4. The maximum number of symbols allowed per conversion is approximately 600.
Programs having more than 600 symbols must be divided into smaller
programs.

CONV86 Controls and Defaults

If the above requirements are met, you can invoke the converter under ISIS-II by
entering the command:

:Fn:CONV86 source controls

where source is the name of the file to be converted, and controls are as described in
Table 2-1.

Table 2-1. CONV86 Controls and Defaults

CONTROLS DEFAULTS
PRINT(path-name) / NOPRINT PRINT(:Fs:source.LST)
OUTPUT(path-name) / NOOUTPUT OUTPUT(:Fs:source.A86)
DATE('date’) DATE(")

TITLE(title’) TITLE(*)
PAGELENGTH(n) / NOPAGING PAGELENGTH(60)
PAGEWIDTH(n) PAGEWIDTH(120)
EXACT / APPROX EXACT

INCLUDED / NOTINCLUDED NOTINCLUDED
ABS/REL : REL

WORKFILES(:Fn:) | | WORKFILES(:Fs:)
SOURCELIST/NOSOURCELIST SOURCELIST

Operating the Converter CONV86

where:

Fs
specifies the diskette unit on which the source file resides.

PRINT
specifies an ISIS-1I path-name (file or device designation) for a copy of
your 8080/8085 source code together with generated 8086 source code
and embedded caution messages.

NOPRINT
specifies that the PRINT file is not to be created.

OUTPUT
specifies an ISIS-1I path-name for the output 8086 source code. Refer to
Table 1-3, ““CONV86 Output Files.”

NOOUTPUT
specifies that the OUTPUT file is not to be created.

DATE
specifies a date (or other information) of up to nine characters to be
printed in the page header of the PRINT file.

TITLE
specifies a title (or other information) of up to 40 characters to be printed
in the page header of the PRINT file.

PAGELENGTH(n)
specifies the number of lines per output page in the PRINT file. The
minimum is four lines per page; there is no effective maximum.

NOPAGING

specifies no forms control and is equivalent to PAGELENGTH (65535).
PAGEWIDTH(n)

specifies the number of characters per output line in the PRINT file. The
minimum is 60 characters per line; there is no effective maximum.

EXACT
specifies that full flag-setting semantics are to be preserved in conver-
sion. This control affects conversion of the DAD, DCX, INX, POP
PSW, and PUSH PSW.

APPROX

specifies that full flag-setting semantics are not to be preserved for the
instructions DAD, DCX, INX, POP PSW, and PUSH PSW. Refer to

CONV86

Operating the Converter

Chapter 1, ‘“Functional Equivalence,”” for a description of flag
preservation.

INCLUDED

specifies that this module is included in another module for assembly.
This control suppresses generation of a standard prologue.

NOTINCLUDED

REL

ABS

specifies that this module is not included in another module for
assembly. The converter therefore generates a standard prologue. Refer
to Chapter 1, “Functional Mapping,’’ for a description of prologues.

specifies that this module will subsequently be assembled in relocatable
format and/or linked to a PL/M-86 module. If REL and
NOTINCLUDED are both specified or defaulted to (both are defaults),
the standard prologue generated is compatible with PL/M-86, and
informs the converter that 8080 relocation capabilities are present in the
source file and must be mapped into 8086 relocation features. See
“‘Functional Mapping’’ in Chapter 1.

specifies that this module is absolute and not relocatable (and hence not
to be linked to a PL/M-86 module). If ABS and NOTINCLUDED are
both in effect (NOTINCLUDED is a default), then the standard pro-
logue generated is not compatible with PL/M-86, but is compatible with
other 8086 assemblies. See ‘‘Functional Mapping’’ in Chapter 1 for a
description of standard prologues.

WORKFILES(:Fn:)

specifies that the single, temporary workfile CONV86.TMP is to be
created on (and subsequently deleted from) diskette unit :Fn:, where n
defaults to the source file diskette unit number if the WORKFILES con-
trol is omitted. The single workfile created (the plural WORKFILES is
used for consistency with other programs) requires seven (7) bytes for
each source line.

SOURCELIST

specifies that the 8080/8085 source program is to be listed in the PRINT
file (overridden by NOPRINT).

NOSOURCELIST

specifies that the 8080/8085 source program is not to be listed in the
PRINT file.

Examples

Example 1. Full Default Saves Flags and Relocatability
Suppose CONVS86 resides on diskette unit 0, and that the program to be converted is

2-3

Operating the Converter

named MYASM.AS80 and resides on diskette unit 1. Then the command:

CONV86 :F1:MYASM.A80

invokes the converter and results in the following controls:

The 8080 source file and 8086 source file with embedded cautions are written to
the file :F1:MYASM.LST

The converted file (without embedded caution messages) is placed in the file
:F1:MYASM.A86

Blanks appear in the title and date fields of page headers.

Page lengths default to 60 lines per page.

Page widths (line lengths) default to 120 characters, not including
carriage-return or line-feed.

Flag-setting semantics are preserved for all instructions.

The prologue generated in the OUTPUT file :F1:MYASM.A86 will cause the
MCS-86 Assembler to generate relocatable object modules suitable for linking
with other assemblies or PL/M-86 object modules.

The temporary workfile CONV86. TMP is created on, and deleted from,
diskette unit 1, the default.

Example 2: Absolute Code with No Flags Saved

If, in Example 1, you had entered the command:

CONV86 :F1:MYASM.A80 ABS APPROX

then the results would differ as follows:

Full flag-setting semantics are not preserved for DAD, DCX, INX, PUSH
PSW, or POP PSW.

A standard 8086 assembly language absolute prologue is generated in the
converted code. This prologue is not compatible with PL/M-86, but is com-
patible with other 8086 assemblies. Your MCS-86 Assembler object file will not
be relocatable.

Example 3: Absolute Code with Flags Saved

The invoking command:

CONV86 :F1:MYASM.A80 ABS

generates an absolute prologue, and defaults to EXACT.

Example 4: Relocatable Code with No Flags Saved

The invoking command:

CONV86 :F1:MYASM.A80 APPROX

does not preserve flag semantics for the five instructions just mentioned, and
defaults to REL.

NOTE

In the following examples, the double asterisks (**) indicating prompting
are generated internally, and not by the user.

CONYV86

CONYV86

Operating the Converter

Example 5: Prompting and Continuation Lines

Y ou need not enter the entire invoking command on a single line. If you wish to con-
tinue the command on one or more subsequent lines, you must enter an ampersand
(&) as the last character of the current line. Characters entered following the amper-
sand and preceding the carriage-return are comments; they are echoed by CONV86
in the PRINT file header but are not processed. The converter then prompts for
more command input with a double asterisk:

CONV86 :F1:MYASM.AB80 & source file is MYASM.A80 on disk drive 1

** DATE(’10/5/78’) & date cannot exceed 9 chars. excluding quotes

** TITLECCONVERSION TEST 39, PROJECT AXOLOTL’) & 40 chars.

The date and title are included in the PRINT file headers as shown in Figure 1-3,
Chapter 1. The remaining controls default as in Example 1.

Example 6: Overriding Controls
It may happen that you have entered a control incorrectly, or for some other reason
wish to override a previously entered control. You can override any previously
entered controls so long as prompting is in effect. Suppose you have entered the
following:

CONV86 :F1:MYASM.80 &

** DATE(10/5/39’) &

** TITLECCONVERSION TEST 78, PROJECT AXOLOTL’) &
If you happen to notice at this point that the wrong information has been entered —
that is, the 39 and 78 have been interchanged, there is no problem, since prompting
is still in effect. On subsequent continuation lines, you can enter:

** DATE(’10/5/78’) &

** TITLECCONVERSION TEST 39, PROJECT AXOLOTL’) &

* ok

Controls can be entered in any order and overridden in any order as many times as
necessary. For this reason, it is good practice to end every line with an unquoted
ampersand. When you are satisfied that the controls are correct, you can end the
command with the last line consisting of a lone carriage return.

Console Output

When you have entered the command invoking CONV86, the converter responds
with the message:

I1S1S-11 ASM80 TO ASM86 CONVERTER Vx.y
where X.y is the version designation.

Normal termination of the converter causes it to issue the message:
ASM80 TO ASM86 CONVERSION COMPLETE

nnnnn CAUTIONS ISSUED

2-5

Operating the Converter CONV86

where nnnnn is the number of messages generated for the run. Caution messages are
described in Chapter 3.

CONV86 terminates abnormaly (aborts) if I/O or other fatal errors occur during
execution, or if CONV86 has not been properly invoked.

Fatal 1/0 console messages are of the form:
ASMB80-TO-86 I/O ERROR—
FILE: file-type
NAME: file-name
ERROR: error-message

CONVERSION TERMINATED

Table 2-2 shows the relationship between file-type and file-name.

Table 2-2. File-types and File-names in CONV86 Fatal 1/0 Errors

FILE-TYPE FILE-NAME

LIST Specified by PRINT control

QUTPUT Specitied by OUTPUT control (or default)
SOURCE Specified by source field of command
INCLUD Specified by ASM80 INCLUDE control
TEMP CONV86.TMP—temporary work file

:Cl: Refers to console input device

Error-message is one of the following:

04 —ILLEGAL FILENAME SPECIFICATION

05 — ILLEGAL OR UNRECOGNIZED DEVICE SPECGIFICATION IN FILENAME
12 — ATTEMPT TO OPEN AN ALREADY OPEN FILE

13 —NOSUCHFILE

14 —FILE IS WRITE PROTECTED

19 — FILEIS NOT ON A DIRECT ACCESS DEVICE

22 — DEVICE NAME NOT COMPATIBLE WITH INTENDED FILE USE

23 — FILENAME REQUIRED ON DIRECT ACCESS FILE

28 — NULL FILE EXTENSION

254 — ATTEMPT TO READ PAST EOF

Fatal errors (other than I/0) result in the following console display:
ASMB80-TO-86 FATAL ERROR—
message

CONVERSION TERMINATED

CONV86

Operating the Converter

Messages corresponding to (non-1/0) fatal errors are as follows:

MESSAGE

CONDITIONALLY ASSEMBLED MACRO
CONDITIONALLY ASSEMBLED ENDM
INVALID FILENAME
INVALID CONTROL FORMAT
CONTROL STRING TOO LONG
INVALID CONTROL VALUE
INVOCATION COMMAND DOES NOT
END WITH <CR><LF>
UNKNOWN CONTROL
INSUFFICIENT MEMORY FOR DICTIONARY

MAXIMUM MACRO NESTING LEVEL
EXCEEDED

ACTION

Remove conditional directives

Remove conditional directives

Examine, correct file name

Refer to beginning of Chapter 2

Reduce length(s) of DATA/TITLE strings
Refer to Controls description

Reenter with carriage return

Refer to Controls description

Reduce the number of symbols used in your
program

Check for recursive macro calls; reduce the
number of nested macro calls

27

CHAPTER 3
EDITING CONVERTER OUTPUT

Interpreting the PRINT File

After you have run CONV86 and it has terminated normally, you should examine
the PRINT file. As shown in Figure 3-1, the PRINT file consists of:

e A copy of the 8080/8085 assembly-language source file, unless the
NOSOURCELIST control was specified

e MCS-86 assembly-language source code with embedded caution messages

* Using the PRINT file as a reference, you can manually edit the OUTPUT file to
obtain 8086 source code that can be assembled by the MCS-86 Macro Assembler.

ASM8) TO ASMB5 CONVERTER 3080 BINARY SBARCH ROUTINE

ISIS-I1 ASH3) TO ASM35 CONVERSION OF FILE :§%:BINSCH.S3D
ASMBE PLACED [N :F42BINSCH.S35
CONVERTER V2.0 IN

CONV8S : Fu: BINSCH. 980 8 3380 SOUACE FILE

TITLEI*308) BINARY SEARCH ROUTINE®) % 33 CHAR Max
ABS & DON*T WEED RELOCATABILITY OR P./M-35 INTERFACE
APPROX & DON'F NS0 FLAGS PRESERVED

If NOPAGING has not been requested in the invoking sta!
8282 PROGRAN begins with a heading. The mlunu-u(mu.nmmmmm.mm are
taken from n.o TITLE and DATE controis, H specified, of the invocation com-

of the
ot o BUTPUT file, and the Invoking command.

[]
L]
L]
L]
L]
* 1 :BINARY SEARCH ROUTINE
2 : £ RES. CONTAINS SEARCH ARGUMENT
3 i D REI. CONTAINS TABLE LENGTH [1-255) ;
[] 4D H. REG. POIN
LI BRI IS L
P9 I X {4530 70 ASHSS CONVERTER 3080 BINARY SEARCH ROUTINE
r G 19004
8 sche: wnco fog
° 3 v oAD 335 PROGRAM
12 apD C
" RAR ° ASSUAE a»nss 3, cs B5_3
° ' MOV 3,4 ABS.) ENT BY
13 ADD AB:
1 et | g K*DEFINE IREPT IN) LOCALS I809Y)) .OCA. MACRO !
° 15 TaR A $%DEFTNZ IMACRO) LOCA. 5.0CALS 5BODY)
15 MOV L, FREPEAT 1h4) 1iMACRO))
17 TS P 1A0EFINE ! } LOCALS 1BODY)) LOCA. MACRO -IST I
° 18 cHp 5 i MACHO) LOCK. §.0CK.S ! 580DY)
13 ac Lo) 18eLIsT)
20 i omicd o 23 9) rHEN I
° 21 ¥ov 0,8 TERAR) 11))
22 Jup B
3 L0 wovcs b og msg !
° 24 MOV AL DIRLIST) 4E))
25 508 8 Ha PARM,LIST) ©B4LIST)
26 e g | g Atk >
PY 21 2CR H FI)
23 R FUOEFINE LIR0C 1PARM,TEAD) LOCKLS 180DY)) OCAL MACRO LIST
23 wino | g eF IMACRO) LOCAL $L0CALS . $80DY)
° 30 SUB C NE ILIST) lRrEKT)
Ell cer 1 NLE%LIST) 29 3) THEN |
32 sz sorsd g SDEFIAS {BPARM) 133)
° 33 W0PE: MVI 4,0 IMACRD)
4 RET SE
33 matcs it | g IWHTLE 14l 1ST) 4E 3)
P 36 RET SFINT LXPARM) [E43UBSTRIE*LIST,1,1))
31 END EFINE ILIST) I U4SUBSTRIVP.IST,2,3939))
33 e1) IMACRO))
[]
[]
L]
PY ADEX 97 3. AR3. T¥ TABLE [0-251).
MENT NOT FRUHD.
{SET LOWER TNDEX LIMIT 1D 0
L LIMITS
o DDLE 1% B
$ADO START ADDRESS OF TABLE
SHORT ._1 THO CARRY TO SKILP §
L4 4
TRESTORE ,--H. NOW ?0I4T IO MID-TABLE
Py 1,080 CHAR FROM TAS.E
ISAME A3 SEARCH ARS?
A TR L
° MATIH : ATCH FIUND
w0, sodzat care 15
Py B SCURRINT INDEX BECOMIS LOWZR I4DSX
iREsr 3. To sTaaT
4 : I
P L3 u caRaY To scre 8
R e wrwres oreese s
Y ICAECK (7 LIMITS DIFFS 1
CZr1) AIPIAT TA3.E SJBIIVISION
A3 0 : NOT FONMD
SRETOAN A3 1 = FOUND
|rm CONVES PRINT liting ands wih » count of the number of caution
the same caution
) CAJTIONI 3] Im-mwmmnmuommonm-mgo
D 0F AS43) O ASYIS COWISRSIIA
®
The source and converted iles are sied separately. Each fin In the converled he 8086 code for the PRINT
listing is numbered the same as the source line from which it was derived. This
means that: {bis s Caullon Mexsags No. 0. which apples

bols detined In included
the 8088 PRINT listing.)

2!- Caution Message No.

resulting from the REL. ppoars.
g o1 ABS control) has no vesages ench sppe D

line numbers

. each outp:

the same number as the input line

Figure 3-1. Annotated PRINT File

3-1

Editing Converter Qutput

3-2

8086 Checklist

Caution messages and the modifications they may require are described later in this
chapter. This section provides a list of items that you should check yourself.

1.

Initializing Registers. Before your converted program can be assembled for
subsequent linking, locating, and execution, you must insert register initializa-
tion code at the entry point to your main program. The register initialization
code that you insert must be the first sequence of instructions executed by your
program. If you omit this code from your main program, neither the segment
registers nor the stack pointer (SP) can be depended on to contain meaningful
data, and the results are unpredictable.

The code that you insert follows. Note that expr should not be coded verbatim;
what you substitute for expr depends on whether you converted using the ABS
or REL control (REL is the default), and how your 8080/8085 program
initialized SP.

mainentrypoint: CLi ;Firstinstruction to be executed in your main
;program
MOV AX,CS ;Use CS to initialize:
MOV DS,AX ; —data segment register
MOV ES,AX ; —extra segment register
MOV S§,AX ; —stack segment register
LEASP,expr ;See below for what to code for expr
ST ;Enable interrupts
where:

mainentrypoint is the symbolic location of the first instruction to be executed
in your main program. If, in your original 8080 program
development, you used the 8080 LOCATE control
RESTARTO (to have the locater insert code to jump to the
entry point of your main module when the 8080 was reset),
the corresponding LOC86 control is BOOTSTRAP.

expr is STACK__BASE if you converted using the REL control
and your original 8080 program used the STKLN directive to
set the stack size.

Otherwise expr is a constant, expression, or program label
that your original 8080 program used to set SP. For constants
or expressions, you should check that these values are really
what you want.

You should check every instance in your program where SP is loaded to ensure
that the stack reinitialization has the intended effect in your converted program.

Absolute Addressing. Absolute addresses should be checked for correctness.
This includes ORGs in the absolute segment, LHLD and LDA from a constant
location, and immediate operations such as LXI whose constant operands
represent addresses. Remember that 8086 instruction lengths are generally dif-
ferent from those of their 8080/8085 counterparts.

Relative Addressing. Relative addressing should be checked, since the number
of bytes between instructions will in general increase in going from 8080/8085 to
8086. In some instances, CONV86 generates and inserts a label of the form
L__n for a displaced reference, as in the following:

CONV86

CONV86 Editing Converter Output

8080 Source MCS-86 (CONV86-Generated) PRINT File
P MGV D,B z MOV DH,Ch
3 JMP $+4 3 JMP SHORT L_1
y LO: BMMOV C,b y LG: MOV CL,ChH
5 MOV A,L 5 L_1: MOV AL,REL

In some instances, however, CONV86 does not generate such a label, as in the

following:
8080 Source MCS-86 (CONV86-Generated) PRINT File
7 MOV AL,CL
7 MOV A,C I, -
S . 6 Jip $+3%((3+2)%2-7)
I3 * 2)%2.
;’ éép .';gg ((3+2) 7 CAUTION 017 *%** ADDRESS EXPRESSION
9 LB T6h
10 CE 10111101b .
11 Dw OBABAK 10 DB 101111018
12 Dw OBEACH i Dw 0BABAH
13 CMA 12 Dw ObEACE
13 - NOT AL

CONVS86 does not attempt to evaluate the expression or insert a label, although
Caution Message 17 is issued for a possible displaced reference. Thus, it is up to
you to insert a label. At the same time, since the jump (forward) is less than 127
bytes, the SHORT label attribute can be used, as follows:

CONV86 OUTPUT File

MOV AL,CL ’ MOV KL, CL
JMP $+3%((3+2)%¥2-7) dlr SHORT LASZLG
Dk 76h DB 78H ,
DB 10111101B Db 10111101E
Dw OEAEAH Dw OLABAH
Dk OBEACH Dw OQEEACH
NOT AL LASzLO: NGT AL
Before Your Edit After Your Edit

In general, you should check all relative addressing.

4. Interrupts. Figure 3-2 shows how interrupt service routines on the 8080/8085
can be converted to interrupt service routines on the 8086.

The principal difference between the two schemes is that on the 8080/8085, con-
trol traps to location 8*N, where executable code resides; whereas on the 8086,
control traps to the location pointed to by the 16-bit offset and 16-bit base
values stored at location 4*N.

3-3

Editing Converter Output CONVS86
8080/8085 8086
EXTERNAL EXTERNAL
INTERRUPT N INTERRUPT N
< TRAP ’
| —a BYTES ————>|
oH| Jup oH | 16-BIT OFFSET | 16-BIT BASE ABSOLUTE
— — — — — — = 1| LocaTIONS
aH | 16-BIT OFFSET | 16-BIT BASE 00H.7TFH
— 8H | 1681 oA AREENVES
S USER-INITIALIZED
osH| mvi A [— — — — — — —\ OFFSET & BASE
RET < — —»4*N_l®16-BITOFFSET | 16-BIT BASE VALUES POINT
——— — — — — —/ TocaLLING
SEQUENCE

RVICE ROUTIN

$YYTUTTTTVOTUUD DUV
m,

00000000

INTER PROC NEAR

INTER EN

' |

Figure 3-2. Converting Your Interrupt Procedures

USER-INSERTED
CALLING SEQUENCE
INVOKES CONVERTED
USER-WRITTEN
INTERRUPT VECTOR
INSTRUCTION
SEQUENCE

CONVERTED INTERRUPT
VECTOR INSTRUCTION
SEQUENCE REQUIRES
USER-INSERTED
PROCEDURE
DEFINITION

CONV86 Editing Converter Output

You can convert your 8080 interrupt service routines as follows:

1. Insert, at a convenient place in your 8086 source code, the following calling
sequence, using your own label (be sure not to use a reserved name given in

Appendix D):

INTSEQ: PUSH ES
PUSH DS
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH SI
PUSH DI
CALL INTER ;INTER used here for example in Figure 3-2.
POP DI
POP Sl
POP BX
POP DX
POP CX
POP AX
POP DS
POP ES
IRET ;Note that this is IRET, and not RET.

2. Insert the following initialization sequence for absolute location 4*N in the
ABS__0 segment:

ORG 4*N ;N is the interrupt number on the 8086.
;INTSEQ used here for example above.

DD CGROUP:INTSEQ ;1f REL control was used.

DD INTSEQ ;If ABS control was used.

3. Sandwich the converted code from INTER (used here for example in Figure
3-2) between PROC and ENDP statements as follows:

INTER PROC NEAR ;Nothing special about the word INTER.

[converted code]

INTER ENDP ;Nothing special about the word INTER.
While these steps are general enough to cover virtually any application, you
may find that as you become familiar with the 8086, you can recode your

interrupt service routines in MCS-86 Macro Assembly Language to obtain
optimal code more suited to your application.

3-5

Editing Converter Output

3-6

PL/M-86 Linkage Conventions

The only PL/M-86 model of computation relevant to conversion is the SMALL
model.

Case 1: When PL/M Calls

Converted assembly-language programs called from PL/M programs must be
changed if any parameters are passed, since PL/M-80 passes parameters in registers
and on the stack, and PL/M-86 passes all parameters on the stack. PL/M-86
parameter passing is as follows:

e Arguments are pushed on the stack in left-to-right order and therefore
occupy successively lower memory locations. The return address is pushed
on the stack last.

e Each argument occupies two bytes. One-byte arguments are passed in the
lower half (least significant byte) of a word.

Therefore, converted 8086 assembly language programs called from PL/M-86 pro-
grams need to access arguments from the stack, and not from registers. However,
since the calling PL/M-86 program has pushed the return address on the stack last,
the called 8086 assembly language program needs to:

1. POP the return address to any convenient word register, such as BX.
2. POP arguments as needed into their 8086 register counterparts, as follows:
® If no arguments are expected, POP no further. Go to Step 3 below.

e If one argument is expected, then it was originally expected in (B,C).
Therefore the converted assembly language program is accessing the single
argument from the 8086 CX register. This means that you need to insert the
instruction:

POP CX ;Retrieve only PL/M-86 argument.

immediately after POP BX (the return address) in order for the converted
8086 assembly language program to access the single argument as intended.

e If two arguments are expected, then they were originally éxpected in (B,C)
and (D,E). Therefore the converted assembly language program accesses its
arguments from the 8086 CX and DX registers. Since PL/M-86 passes these
arguments on the stack in order, this means that you need to insert the
instructions:

POP DX ;Retrieve second PL/M-86 argument.
POP CX ;Retrieve first PL/M-86 argument.

immediately after POP BX (the return address) in order for the converted
8086 assembly language program to access the two arguments as intended.

¢ If more than two arguments are expected, the remainder are in the stack
(where the converted assembly language program expects them), and there
is no problem. The last two arguments are accessed as described in the
preceding paragraph.

3. PUSH the return address back on the stack immediately after accessing the
arguments as just described. If BX was used in Step 1 above to retain the return
address, then you need to insert the instruction:

PUSH BX ;Replace return address on stack.
immediately following your argument-accessing sequence of POPs.

4., PL/M-86 expects the return value (a one-word pointer or data item) of the
assembly language program to be in the AX register. If the return value is a
byte, it is expected in AL.

CONV86

CONV86

Editing Converter Output

Case 2: When Your Converted Program Calls

If your 8080/8085 source program calls another routine (written either in MCS-86
Macro Assembly Language or PL/M-86) which expects arguments to be passed on
the stack, you need to insert 8086 source code in your converted program.

If your original 8080 source program passed only one argument to the CALLed
routine, that argument was passed in the (B,C) register-pair. Hence you need to
insert:

PUSH CX ;Push (B,C) argument on stack.
immediately before the CALL.

If your original 8080 source program passed two or more arguments to the CALLed
routine, those arguments were passed in the (B,C) register-pair, in the (D,E) register-
pair, and remaining arguments on the stack. Hence you need to insert:

PUSH CX ;Push (B,C) argument on stack.
PUSH DX ;Push (D,E) argument on stack.

immediately before the CALL. The remaining arguments (if any) are already on the
stack in the correct order. PL/M-86 return values are placed in AX or AL as
described in Case 1.

Caution Messages

Caution messages do not necessarily imply manual editing, but they do demand
scrutiny. In many cases, CONV86 cannot be sure if an error actually exists (as for
instance, in expression evaluation). This section lists all possible caution messages.
The next section lists caution message descriptions and indicates what manual
editing of the output file may be necessary.

The entire list of caution messages is as follows (note that caution messages 9, 15,
26, and 29 do not exist):

1 BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA
2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING
3 MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER
4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED
5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS
6 EQU’DORSET REGISTER SYMBOL USED IN BOTH BYTE AND WORD CONTEXTS
7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE
8 UNKNOWN STATEMENT
10 TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION
11 TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS
12 TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS
13 8085-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

14 FORWARD REFERENCE TO A SYMBOL WHICH IS A REGISTER OR [BX] CANNOT
BE CORRECTLY ASSEMBLED

Editing Converter Qutput

3-8

16
17
18
19
20
2
22
23
24
25
27
28
30
31
32
33
34
35
36

EXPRESSION ASSUMED TO BE A VARIABLE

ADDRESS EXPRESSION MAY BE INVALID FOR 8086
INSTRUCTION AS OPERAND CANNOT BE TRANSLATED
REGISTER USED IN UNKNOWN CONTEXT

OUTPUT LINE TOO LONG; TRUNCATED

LABEL ASSUMED TO BE NEAR

NOMACROFILE CONTROL DELETED

MOD85 CONTROL DELETED

SOURCE LINE TOO LONG; IGNORED

CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS
SYMBOL NAME TOO LONG

CONDITIONAL ASSEMBLY GENERATED

UNKNOWN INSTRUCTION ASSUMED TO BE A MACRO
GENERATED LABEL MIGHT NEED TO BE DECLARED LOCAL
(NO) COND CONTROL DELETED

(NO) MACRODEBUG CONTROL DELETED

METACHARACTER OR PARENTHESIS FOUND IN IRPC STRING

EXPRESSION ASSUMED TO BE A CONSTANT

SYMBOLIC EXPRESSION MAY BE CONTEXTUALLY INVALID FOR ASM86

CONYV86

CONV86 Editing Converter Qutput

Caution Message Descriptions
1 BYTE REGISTER USED IN WORD CONTEXT OR VICE VERSA

A register variable defined in an EQU directive or as a macro parameter has
been classed as BYTE or WORD according to its predominant usage. In this
statement, the register variable appears in the opposite context. This is
unacceptable for the 8086, since byte and word register mnemonics are dif-
ferent. You should insert the appropriate register mnemonic.

2 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING

The parameter of this IRPC directive is used in a register context. Since 8086
register mnemonics are two characters long, you should change the IRPC direc-
tive (possibly to an equivalent IRP).

3 MACRO PARAMETER BOTH CONCATENATED AND USED AS PARAMETER

One of the arguments of this macro is both concatenated and used as a register.
Y ou may need to manually convert the mnemonics yourself.

4 EXPANDED NAME MAY BE RESERVED WHEN CONCATENATED

One of the arguments of this macro is concatenated. You should examine
the resulting symbol and see if it corresponds to the intent of the 8080/8085
source code. You should also check to see if the resulting concatenated name is
reserved. A list of reserved symbols appears in Appendix D.

5 MACRO PARAMETER USED IN BOTH BYTE AND WORD CONTEXTS

A macro argument is used in both byte and word register contexts. Since the
argument can be of only one type, you should manually alter the macro or over-
ride the argument type.

6 EQU’DORSET REGISTERSYMBOL USEDIN BOTH BYTE AND WORD CONTEXTS

An EQU or SET symbol is used in both byte register and word register contexts.
You should manually insert the appropriate register mnemonic(s). You may
need to use two EQUSs: one for byte usage, and one for word usage.

7 MULTIPLY DEFINED EQU MAY NOT BE ASSIGNED PROPER TYPE

An EQU symbol has been multiply defined, perhaps due to conditional com-
pilation. You should eliminate the excess definition(s), and redefine as
necessary. CONV86 may have assigned the wrong type.

8 UNKNOWN STATEMENT

The converter is unable to recognize this statement, possibly because its
mnemonic is a macro parameter. You should either recode the 8080 source to
produce recognizable statements (legal instructions) and submit the recoded
8080 file to CONVS86, or else simply insert the appropriate 8086 source code in
the OUTPUT file.

Editing Converter Output

3-10

10

"

12

13

14

16

17

TYPE ASSIGNED TO INCLUDED SYMBOL MAY NOT AGREE WITH DEFINITION

The specified symbol is defined in an INCLUDE file. When the INCLUDE file
is converted, the usage of the symbol may not be the same as inferred by
CONYV86 here. You should convert the INCLUDE file and examine the type
CONV86 has assigned to it there, and then ensure that both usages are the same.
If they are not, you should override the assigned usage in either file so as to
make their types identical.

TRANSLATION OF NOP MAY NOT YIELD DESIRED RESULTS

An NOP instruction has been converted to XCHG AX,AX. This may not be the
desired mapping, as it assembles into a one-byte instruction (3 clocks).

TRANSLATION OF RST MAY NOT YIELD DESIRED RESULTS

An RST instruction has been converted to an INT instruction for the 8086. You
should verify that the original intent of the RST instruction was to cause an
interrupt. You should examine the operand carefully to ensure that the instruc-
tion traps to the desired absolute address, and that the intended routine to be
trapped to will be bound to (loaded at) that address.

8085-SPECIFIC INSTRUCTION CANNOT BE TRANSLATED

The 8086 has no counterpart for RIM or SIM. You should recode according to
the 8086 interrupt scheme as described in the 8086 Family User’s Manual under
““Interrupts.”’

FORWARD REFERENCE TO A SYMBOL WHICH IS ‘A REGISTER OR [BX] CANNOT BE
CORRECTLY ASSEMBLED

The 8086 assembler does not accept forward references to registers. You should
move your register EQUs to the beginning of your file.

EXPRESSION ASSUMED TO BE A VARIABLE

CONYV86 has not been able to determine what type of expression is in this
instruction. CONV86 has assumed that the expression is a variable. If this
assumption is incorrect, you should examine the resulting 8086 statement and
recode the mapped expression to suit your intent. You may find it helpful to
insert additional labels.

ADDRESS EXPRESSION MAY BE INVALID FOR 8086

Case 1: Displaced Reference

CONV86 may not have mapped a displaced symbol reference (for instance,
$+ BAZ*(FOO-N)) correctly. You can manually check the mapped displace-
ment. You may find it simpler (and safer) to insert additional labels or variables
rather than manually calculating displacements.

Case 2: HIGH/LOW Applied to Symbolic Address Expressions

You should check the symbols operated on by the HIGH/LOW functions to
ensure that their alignments in 8086 memory correspond to their 8080 page
alignments.

CONYV86

CONV86 N Editing Converter Output

In addition, if you converted using the REL control (a default), you should
insert a group override prefix as follows:

Before Your Editing After Your Editing
LOW(expr) LOW DGROUP:(expr’)
HIGH(expr) HIGH DGROUP:(expr’)

Case 3: Overly Complex Expressions

It is possible that an overly complex 8080 expression has resulted in unaccept-
able MCS-86 source code in your OUTPUT file. You should examine the
original 8080 expression carefully to determine its intent, and then hand-
translate the expression to a valid MCS-86 expression that corresponds to the
original intent.

18 INSTRUCTION AS OPERAND CANNOT BE TRANSLATED
8080/808S instructions are not permitted as operands in your source file.

19 REGISTER USED IN UNKNOWN CONTEXT
A register was used in an unknown context, such as:

REGEQUB

If this directive appears in an INCLUDE file which does not reference REG,
conversion of the INCLUDE file will result in a type ambiguity for B. That is,
CONVS86 will not know at the time of the INCLUDE file’s conversion whether
B maps into CH or CX. You should check to see whether you want B to map
into a byte register or a word register, and change the converter’s mapping
accordingly.

20 OUTPUT LINE TOO LONG; TRUNCATED

An output line has exceeded 129 characters and has been truncated. You should
recode the line in 8086 accordingly.

21 LABEL ASSUMED TO BE NEAR
CONYVS86 has been unable to determine how this label is used; it is assumed to be
of type NEAR. Since CONV86 has no information on how to type this symbol,
you should check its usage and change its type accordingly.

22 NOMACROFILE CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

23 MOD85 CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

24 SOURCE LINE TOO LONG; IGNORED
The current source line exceeds 129 characters and has been mapped into a com-
ment in both 8080/8085 and 8086 output files. You can either recode the source

line and reconvert the source file using CONV86, or you can insert 8086 code in
the OUTPUT file to accomplish the intent of the source line.

3-11

Editing Converter Output

3-12

25

27

28

30

31

32

33

34

CURRENT SEGMENT UNKNOWN; CANNOT GENERATE ENDS

An END or SEG directive in 8086 implies a preceding ENDS directive to close
the currently open segment. This segment is unknown. You should insert an
ENDS directive of the appropriate type.

SYMBOL NAME TOO LONG
Symbol names in 8086 cannot exceed 31 characters.
CONDITIONAL ASSEMBLY GENERATED

CONYV86 has assumed that it is possible that the operand of this PUSH or POP
instruction is the PSW. Conditional assembler directives have been generated
to take this possibility into account. If you know the operand is the PSW, you
can substitute the appropriate mapping from Appendix A for:

s POPPSW (Using EXACT Control)
e POPPSW (Using APPROX Control)
e PUSH PSW (Using EXACT Control)
¢ PUSHPSW (Using APPROX Control)

On the other hand, if you know the operand is definitely not the PSW, you can
substitute the appropriate mapping from Appendix A for:

e POPrw (Using either EXACT or APPROX)
e PUSH w (Using either EXACT or APPROX)

If you cannot determine whether the operand is the PSW, you should desk-
check or single-step your source program until you are able to make that deter-
mination. Otherwise, the conditional assembly statements placed by CONV 86
in your OUTPUT file will not assemble under version V2.0 of the MCS-86
Macro Assembler.

UNKNOWN INSTRUCTION ASSUMED TO BE A MACRO

The converter is unable to recognize this statement and has assumed that it is a
macro call. You should verify this assumption and recode if necessary.

GENERATED LABEL MIGHT NEED TO BE DECLARED LOCAL

The converter has generated a label within a macro definition. This label must
be made local if the macro is invoked more than once.

(NO)COND CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

(NO)MACRODEBUG CONTROL DELETED

No corresponding control exists for the 8086 assembler. No manual editing is
required for this caution.

METACHARACTER OR PARENTHESIS FOUND IN IRPC STRING

A ‘%%, ‘C or ‘) character was left in an IRPC string but will not be correctly
interpreted by the 8086 assembler. This requires your attention.

CONV86

CONV86 Editing Converter Output

35 EXPRESSION ASSUMED TO BE A CONSTANT

CONV86 has not been able to determine what type of expression is in this
instruction. CONV86 has assumed that the expression is a numeric constant. If
this assumption is incorrect, you should examine the resulting 8086 statement
and recode the mapped expression to suit your intent. You may find it helpful to
insert additional labels.

36 SYMBOLIC EXPRESSION MAY BE CONTEXTUALLY INVALID FOR ASM86

A symbolic expression has been encountered in a context in which the 8086
assembler allows expressions containing only two type of operands:

a. Numeric constants, and

b. Macro symbols (preceded or followed by a ‘%’) that evaluate to numeric
constants.

If the expression contains symbols which do not conform to b, above, they must
be replaced by their numeric values or redefined via the % SET macro.

APPENDIX A
INSTRUCTION MAPPING

Following are instruction mappings from 8080/8085 to 8086 assembly language.

Operands are
follows:

mapped according to Appendix B. Operand designations are as

ib = byte immediate mn = near memory
iw = word immediate rb = byte register
mb = byte memory rw = word register

mw = word memory

Similarly, ib’ refers to the mapping of ib, iw’ refers to the mapping of iw, and so on.

Thus, if B=rb,

then rb’ = CH. But if B = rw, then rw’ = CX.

Constructs of the form L__n are generated internally by CONV86 for use as labels in
mappings of conditional CALLs, conditional RETurns; conditional JMPs.

8080/8085 8086 Remarks

AClib ADC AL,ib’

ADC rb ADC AL,rb’

ADDrb ADD AL,rb’

ADIib ADD AL,ib’

ANATb AND AL,rb’

ANIrb AND AL,ib’

CALL mn CALL mn’

CCmn JNBSHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CMmn JNSSHORT L__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CMA NOT AL

CMC CMC

CMP rb CMP AL,rb’

CNC mn JNAE SHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CNZ mn JZSHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CP mn JSSHORTL__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CPEmn JNPSHORT L__n (L_n inserted as label for
CALL mn’ instruction following CALL)

CPlib CMP AL,ib’

CPO mn JPSHORT L __n (L_n inserted as label for
CALL mn’ instruction following CALL)

CZmn JNZSHORTL _n (L_n inserted as label for
CALL mn’ instruction following CALL)

Instruction Mapping
8080/8085 8086 Remarks
DAA DAA
DADrw ADD BX,rw’ (Using APPROX Control)
" DADrw LAHF (Using EXACT Control)
ADD BX,rw’
RCR SI,1
SAHF
RCL S1,1
DCRrb DECrb’
DCX rw DEC rw’ (Using APPROX Control)
DCX rw LAHF (Using EXACT Control)
DEC rw’
SAHF
DI CLI
El STI
HLT HLT
IN ib IN AL, ib’
INRrb INCrb’
INX rw INC rw’ (Using APPROX Control)
INX rw LAHF (Using EXACT Control)
INC rw’
SAHF

CONV86

CONV86

Instruction Mapping

8080/8085 8086 Remarks
JCmn JBSHORT mn’ (For forward short branch)
JC mn JBmn’ (For backward short branch)
JCmn JAE SHORT L_n (Otherwise)

JMP mn’
JM mn JS SHORT mn’ (For forward short branch)
JMmn JSmn’ (For backward short branch)
JM mn JNS SHORT L__n (Otherwise)

JMP mn’
JMP mn JMP SHORT mn’ (For forward short branch)
JMP mn JMP mn’ (Otherwise)
JNC mn JAE SHORT mn’ (For forward short branch)
JNC mn JAE mn’ (For backward short branch)
JNC mn JNAE SHORTL__n (Otherwise)

JMP mn’
JNZ mn JNZ SHORT mn’ (For forward short branch)
JNZ mn JNZ mn’ (For backward short branch)
JNZ mn JZSHORTL__n (Otherwise)

JMP mn’
JP mn JNS SHORT mn’ (For forward short branch)
JP mn JNS mn’ (For backward short branch)
JPmn JSSHORTL_n (Otherwise)

JMP mn’
JPEmn JP SHORT mn’ (For forward short branch)
JPE mn JP mn’ (For backward short branch)
JPE mn JNP SHORTL__n (Otherwise)

JMP mn’
JPO mn JNP SHORT mn’ (For forward short branch)
JPOmn JNP mn’ (For backward short branch)
JPOmn JPSHORT L__n (Otherwise)

JMP mn’
JZmn JZ SHORT mn’ (For forward short branch)
JZmn JZmn’ (For backward short branch)
JZmn JNZSHORTL__n (Otherwise)

JMP mn’

A-3

Instruction Mapping

8080/8085 8086 Remarks
LDA mb MOV AL,mb’
LDAX rw MOV Si,rw’
LODS DS:M(Sl]
LHLD mw MOV BX,mw’
LXIrw,iw MOV rw’,iw’ (When 2nd operand immed. or near)
LXIrw,iw LEA rw’,iw’ (When 2nd operand is byte or word)
MOV rb1,rb2 MOV rb1’,rb2’
MOV M, rb MOV M[BX], rb’
MVIrb,ib MOV rb’,ib’
MVIM, ib MOV M[BX], ib’
NOP NOP XCHG AX,AX (1 byte, 3 clocks)
ORATb ORAL,rb’
ORIlib ORAL,ib’
OUTib OUT ib’, AL
PCHL JMP BX
POP rw POP rw’ (For EXACT or APPROX when rw is
definitely not PSW)
POP PSW POP AX (Using APPROX Control)
XCHG AL, AH
POP PSW POP AX (Using EXACT Control)
XCHG AL, AH
SAHF
POP rw % IF (%EQS (Using APPROX when rw
(rw’,AX)) THEN(could be PSW)
POP rw’
XCHG AL, AH
JELSE(
POP rw’
JFI
POP rw %I|F (%EQS (Using EXACT Control when rw
(rw’,AX)) THEN(could be PSW)
POP rw’
XCHG AL, AH
SAHF
JELSE(
POP rw’

)FI

CONYV86

CONV86

Instruction Mapping
8080/8085 8086 Remarks
PUSH rw PUSH rw’ (For EXACT or APPROX when rw is
definitely not PSW)
PUSH PSW LAHF (Using EXACT Control)
XCHG AL, AH
PUSH AX
XCHG AL, AH
PUSH PSW XCHG AL, AH (Using APPROX Control)
PUSH AX :
XCHG AL, AH
PUSH rw %IF (%EQS (Using APPROX Control when rw
(rw’,AX)) THEN(could be PSW)
XCHG AL, AH
PUSH rw’
XCHG AL, AH
JELSE(
PUSH rw’
YFI
PUSH rw %IF (%EQS (Using EXACT Control when rw
(rw’,AX)) THEN(could be PSW)
LAHF
XCHG AL, AH
PUSH rw’
XCHG AL, AH
YELSE(
PUSH rw’
YFi
RAL RCL AL,1
RAR RCR AL,1
RC JNBSHORT L_n (L_n inserted as label for
RET instruction following RET)
RET RET
RIM ***error***
RLC ROL AL,1
RM JNSSHORTL__n (L_n inserted as label for
RET instruction following RET)
RNC JNAE SHORTL__n (L_n inserted as label for
RET instruction following RET)
RNZ JZSHORT L _n (L_n inserted as label for
RET instruction following RET)
RP JSSHORTL_n (L_n inserted as label for
RET instruction following RET)
RPE JNPSHORTL__.n (L_n inserted as label for
RET instruction following RET)
RPO JPSHORTL_n (L_n inserted as label for
RET instruction following RET)
RRC ROR AL,1
RSTib INT ib’
RZ JNZSHORT L_n (L_n inserted as label for
RET instruction following RET)

A5

Instruction Mapping

A-6

8080/8085 8086 Remarks
SBBrb SBBAL,rb’
SBlib SBBAL,ib’
SHLD mw MOV mw’,BX
SIM **rerror***
SPHL MOV SP,BX
STAmb MOV mb’,AL
STAX rw MOV DI, rw’

MOV DS:[Di],AL
STC STC
SuUBrb SUB AL,rb’
SUlib SUB AL,ib’
XCHG XCHG BX,DX
XRA b XORAL,rb’
XRlib XORAL,ib’
XTHL POP SI

XCHG BX,SI

PUSH SI

unknown expr

unknown’ expr’

CONV86

APPENDIX B
CONVERSION OF EXPRESSIONS
IN CONTEXT |

The following describes how 8080/8085 expressions are converted to 8086 expres-
sions according to the context in which an operand or expression occurs.
The context is simply what CONV86 infers from the use of the operand in the
instruction:

ib = byte immediate

iw = word immediate

mb = byte memory

mw = word memory

mn = near memory

rb = byte register

rw = word register

M is defined to be a byte located at absolute location 0. In contexts 3 and 5 below,
forward-referenced memory items are treated as ‘‘unknown.”’

1. Context=ib
e Operand = ib: expr = expr’
¢ Operand = iw: expr = LOW(expr’)

¢ Operand = mn, mw, mb, or unknown: ' ?
If REL control, then
expr => LOW DGROUP:(expr’)
If ABS control, then
expr =~ LOW(expr’)

2. Context=iw
e Operand = ib or iw: expr = expr’

¢ Operand = mb, mw, mn, or unknown?:
If REL control, then
expr > OFFSET DGROUP:(expr’)
If ABS control, then
expr = OFFSET(expr’)

3. Context=mb
e Operand = mb: expr = expr’
® Operand = mn or mw or unknown: expr = BYTE PTR(expr’)
e Operand = ib or iw: expr = M[expr’]

4. Context=mn
e Operand = mn: expr = expr’
¢ Operand = mb or mw or unknown: expr = NEAR PTR(expr’)
e Operand = ib or iw: expr > NEAR PTR M[expr’]

5. Context = mw
® Operand = mw: expr = expr’
e Operand = mb or mn or unknown: expr = WORD PTR(expr’)
e Operand = ib or iw: expr > WORD PTR M[expr’]

1. mn, mw, and mb are illegal in 8080 in this context, but give an implicit LOW.

2. unknown generates Caution Message 17.

B-1

Conversion of Expressions in Context

B-2

Context =rb

Operand = rb:

A— AL

B—> CH

C—-CL

D - DH

E - DL

H — BH

L—>BL

Operand = mb:M - M[BX]

Context = rw

Operand = rw:
B—>CX

D -+ DX

H - BX

SP — SP

PSW = AX

CONVS86

APPENDIX C
ASSEMBLER DIRECTIVES MAPPING

This appendix shows how 8080/8085 assembler directives are converted by CONV86
into 8086 assembler directives. Expression mapping is described in Appendix B.
Context symbols (for instance, ‘“‘expr’’, ‘“mn’’, and so on) used as directive
operands are mapped according to Appendix B.

In certain cases (EQU, IRP, macro call, and SET), it is possible to determine that an
assignment is being made to a byte or word register. In such cases, the appropriate
rb or rw expression conversion is performed. The STKLN expression is converted in
the prologue (see Chapter 1, ‘‘Functional Mapping’’).

Table C-1. Assembler Directives Mapping

EXTRN name-list

EXTRN name:usage-list’

NAME name

NAME name’

ORG mn

ORG mn’

PUBLIC name-list

PUBLIC name-list’

8080/8085 8086 NOTES
ASEG prev-seg ENDS
ABS_0 SEGMENTBYTEATO
CSEG prev-seg ENDS
CODE SEGMENT WORD PUBLIC 'CODE’
DB expr-list DB expr-list’
DS expr DB expr’ DUP (?)
DSEG prev-seg ENDS
DATA SEGMENT WORD PUBLIC 'DATA’
DW expr-list DW expr-list’
END [mn] prev-seg ENDS
END [mn’]
name EQU expr name’ EQU expr’

STKLN expr ***deleted*** If the REL control (a default) is
used, STKLN converts to informa-
tion in the prologue. Refer to
Chapter 1, ‘‘Functional Mapping.”

aSETb % SET (a’,b%) If the symbol being defined is
never set to a non-constant.

PURGE a’ If the symbol being defined is ever
aEQU b’ set to a non-constant and the SET
is not self-relative.
T_a'EQUb’ If the symbol being defined is ever
PURGE a’ set to a non-constant and the set
a’' EQUT__a’ is self-relative, e.g., X SET X +5.
PURGET_a’

IFa %IF (a’) THEN (

ELSE)ELSE (

ENDIF)FI

Assembler Directives Mapping

C-2

Table C-1. Assembler Directives Mapping (Cont’d.)

8080/8085

8086

NOTES

aMACROWD,...

%*DEFINE (@'(b’,...))
LOCALc ... (

All local labels for the macro (c’...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear. The word
LOCAL is not produced if there are
no local labels.

The parentheses around b’,... are
omitted when the parameter list is
null.

LOCALc, ...

ENDM

If this directive closes a macro.

or IRPC definition.

mcallb, ...

%mcall (b’, ...)

The parentheses are omitted
when the parameter list is null.

IRPa,b

%IRP(a’,b’)c’ .. .(%(

All local labels for the macro (c’...)
are moved to the local list in the
macro definition, with bianks
replacing commas. LOCAL
statements disappear.

IRPCa,b

%IRPC(a’,b’)c’...(%(

All local labels for the macro (c’...)
are moved to the local list in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

REPT a

%REPT(a’)c’...(%(

All local labels for the macro (c’...)
are moved to the local fist in the
macro definition, with blanks
replacing commas. LOCAL
statements disappear.

EXITM

YBEXIT

CONV86

APPENDIX D
RESERVED NAMES

A name appearing in an 8080/8085 expression may have a special 8086 interpreta-
tion (for instance, AL or TEST), or it may be reserved for a segment or group name
(for instance, CODE). Except for STACK, which is converted to STACK__BASE,
each such name is automatically converted by CONV86 by appending an underscore
to it (for instance, AL__ or TEST__). The 8080 reserved word MEMORY is treated

specially.

The following ASM86 reserved names are modified by CONV86:

AAA
AAD
AAM
AAS
ABS

AH

AL
ASSUME
AT

AX

BH

BL

BP

BX
BYTE
CBW
CH

CL

CLC
CLD

CLI
CMPS
CODEMARCO
COMMON
Cs
CWD

CX
DAS
DD
DEC
DEFINE
DH

DIv

DL
bup
DWORD
DX
ELSE
ELSEIF
ENDIF
ENDM
ENDP
ENDS
EQS
ES
ESC
EVAL
EXIT
FAR
GES
GROUP
GTS

IDIV
IMUL
INC
INCHAR
INT
INTO
IRET
JA
JAE
JB
JBE
JCXZ
JE
JG
JGE
JL
JLE
JNA
JNAE
JNR
JNBE
JNE
JNG
JNGE
JNL
JNLE

JNO
JNP
JNS

JO

JS
LABEL
LAHF
LDS
LEA
LEN
LENGTH
LES
LOCK
LODS
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
LTS
MASK
MATCH
METACHAR
MODRM
MOVS
MUL

Table D-1. Reserved Names

NEAR
NEG
NES

NIL
NOSEGFIX
NOTHING
OFFSET
PARA
POPF
PREFX
PROC
PROCLEN
PIR
PURGE
PUSHF
RCL
RCR
RECORD
RELB
RELW
REP
REPE
REPEAT
REPNE
REPNZ
REPZ

ROL
SAHF
SAL
SAR
SCAS
SEG
SEGFIX
SEGMENT
SHORT
Sl
SIZE
SS
STD
STl
STOS
STRUC
SUBSTR
TEST
THIS
TYPE
WAIT
WHILE
WIDTH
WORD
XLAT

The names CGROUP, CODE, CONST, DATA, and DGROUP are reserved by
CONV86 to set up a PL./M-86 environment.

The assembler-reserved symbols ? and ??SEG are not permitted as user mnemonics.

APPENDIX E
MACRO CONSTRUCT CONVERSION

All macro definitions and calls will be translated to their 8086 macro processing
language equivalents. However, macro related constructs require special conversion.

The following 8080/8085 macro constructs are converted to their 8086 equivalent as

shown:

Table E-1. Macro Construct Conversion

8080 8086

CONSTRUCT EQUIVALENT NOTES

i %’ Within a macro definition body.

! %1 When quoted or within a list or IRPC string.

NUL operand %EQS(operand’,%0) Within any expression.

<list> %(list’) Within any macro argument field, but ‘< >’ is
stripped when surrounding an IRPC string.

(%1(Within < > or ‘’ in macro call parameter,
macro definition, IF expression or body, or
SET body.

) %1) Within < > or ‘’ in macro call parameter,
macro definition, IF expression or body, or
SET body.

Y%expression expression’ Within macro argument field.

symbol %(symbol’) When symbol is a macro parameter and is
being passed to another macro in an argu-
ment field that does not use %.

symbol %symbol’ When symbol is a parameter or local symbol
in a macro definition, a macro itself, or
defined with a SET directive.

% %1% Within quotes when not causing
concatenation.

& % Concatenation translation.

E-1

APPENDIX F
SAMPLE CONVERSION
AND LISTINGS

This appendix consists of:

Figure F-1. 8080 Sort Routine Source File
Figure F-2. CONV86 PRINT File of Conversion of 8080 Sort Routine

Figure F-3. MCS-86 Macro Assembler Listing of Conversion of 8080 Sort
Routine

Figure F-4. MCS-86 Macro Assembler Listing of Originally Coded 8086 Sort
Routine

Please note that the CONV86 OUTPUT file was edited before submitting it to
ASMSB86 for assembly. The OUTPUT file was edited as follows:

1.

To retrieve PL/M-86 stack parameters, code (corresponding to lines 44-47 in
Figure F-3) was inserted as described in Chapter 3.

To correct incomplete register mapping due to mnemonics appearing in an
IRPC string, IRPC calls have been deleted at lines 69 and 85 in Figure F-2, and
the code has been expanded by hand to that at lines 91-94 and 132-133 in Figure
F-3. This edit is in response to the converter generated caution.

For space/time considerations, only the necessary LAHF/SAHF instructions
were retained from the OUTPUT file. Since the file was converted using the
(default) control EXACT, flag-preserving code for all occurrences of DAD,
DCX, INX, and PUSH/POP PSW was generated. You can determine which
flag-preserving code has been retained by comparing Figures F-2 and F-3

F-1

Sample Conversion & Listings

CONYV86

3 MACROFILEI:Ff1:) NOOBJECT

CERRFRRBARRERARRRR SRR AR AR AR ABARATRRERRDRNRRERERR AR S

A PL/M callable subroutine:
CALL SORTI{.A1,.N)

Data area follows

T R T I TR

Socts the acray A1, containing N words,

At entey BC points to the array At, and

DE points to N. Two pointers to eleaments of A1 are
incremented in two loops. The outer loop steps D&
through the elements of At1. Tne innec lLoop steps

HL through the elements of A1 that follow DE. At
each step of the iuner loop, the items at HL and DE
ace excnanged, if required, so that at the end of
the innes loop, the item at DE is larger tha all

the items that follow it. The iteam at DZ is then in
its proper position, so D& is increnented to
complete one iteration of the outer loop.
EEZRBARRABEBEATRERIRRRSRARARRREARRRERERRRTILAERIRABRIRNTRALLE

DSES
TEST: DS 2
s Bezin code area
CSEG
PUBLIC SORT
SWAP MACRO
HH Inis macso swaps two bytes pointad to by HL and DE.
LDAX D
MoV c,M
MOV M, A
XCHG
MOV M,C
XCHS
INDM
; Test = addreess of tne last =2lement of At.
SORT: KCH3 3 TEST = Ta - 1) % 2 &+ A%
MoV .M
INK H
MoV .M
XCHG H N
ocX d H -1
DAD E ; ¥ 2
DAD 3 H + WA
SHLD TIST H = T&EST

Figure F-1A. 8080 Sort Routine Source File

F-2

CONVS86 Sample Conversion & Listings

H OUTER %J0P: DO D& = .A1 TO TEST BY 2;

MOV E,C ;3 BC CONTAINS .A1
M0V D,B
OUTTST=: “DA TEST ; IF DS > TEST THEN RETURN
SUB B -
LDA TEST + 1
SBB D
RC
; INNER L00P:x DO HL = DE+2 [0 TEST BY 2
oV L E
Mov H4,D
REPT 2
INX 4
ENDM
tHL = DE & 2
; IF HL > TEST THEN G0TO OQUTINC
INTST> LDA TEST
SUB A
LDA TSST + 1
SBB H
JC OUTINC

s IF A1{H.) < A1{DE) THEN GOTO ININC
s As a side effect, HL and DE are incrcemented by 1
; to point to the nigh bytes of their ascay elements.

LDAK D
SUB M
IRPC Z,DH
14X z
ENDM
LDAX [}
s88 M
JNe ININC

Figure F-1B. 8080 Sort Routine Source File

Sample Conversion & Listings

CONV86

; Exchange AIDE) with AIHLZ). Leave H. aad DE
. pointing to HIGH bytes.

; Point HL

; DE an HY
; set DI =
ININC:

gxchange low

; 2nd of outer loop.

QUTINC:

SWAP
IRP Z,<D,H>
aCX Z ;¢ Put {Z) D and H in tneir plaze
ZNDM
bytes
SWAP
and DE to high bytes
IRPC Z,DH
INX Z
ENDM
point to HIGH bytes. For the next itsration,
Pcevious D&, HL = 2 #+ Previous Hi.
DeCx D
INX H
Jup INTST
3et DE = DI + 2
REPT 2
INX D
ENDM
JMue JUTTIST
END

Figure F-1C. 8080 Sort Routine Source File

CONV86

Sample Conversion & Listings

ASM30 TO ASM35 CONVZRTER

ISIS-II ASM80 TO A3M85 CONVERSION OF FILE :F1:SORT80
ASM36 PLACED IN :F1:SORT80.486

CONVERTER V2.0 [NVOKED BY:

*F12CONV8S5 :F1:SORT30 NOSOURCELIST

8086 PROGRAM

1

W RNV EWN

$ WORKFILES{:F1:,:F1:) NOOBJECT
CGROUP GROUP ABS_0,CODE,CONST,DATA,STACK,MEMORY
DGROUP GROUP ABS_),CODE,CONST,DATA, STACK, MEMORY
ASSUME DS:DGROUP,CS:CGROUP,SS»DGROUP
CONST SEGMENT WORD PUBLIC *CONST*
CONST ENDS
STACK SEGMENT WORD STACK "STACK®*
STACK_BASE L ABEL BYTE
STACK ENDS
MEMORY SEGMENT WORD MEMORY *MEMORY®
MEMORY_ LABEL BYTE
MEMORY ENDS
ABS_0 SEGMENT BYTE AT 0
M L ABEL BYTE
4*DEFINE IREPT [N) .OCALS [BODY)) LOCAL MACRO [
F*DEFINE {MACRO) LOCAL 3L0CALS [%$BODY)
$REPEAT '3N) [$MACRO))
$*DEFINE [IRP [PARM,PLIST) LOCALS [BODY)) LOCAL MACRO LIST [
%%DEFINE [MACRO) LOCAL 3L0CALS !%BODY)
$®#DEFINE [LIST) [APLIST)
FIF {FLEN{F®*LIST) £Q 0) THEN |
ADEFINE [#PARM) [%0)
$MACRO)
ELSE |
SWHILE I$LEN[%LIST) NE 0) [
AMATCHl 3PARM,LIST) [3¥.IST)
$MACRO))
)
$*DEFINE [IRPC {PARM,TEXT) L0CALS [BODY)) LOCAL MACRO LIST |
F*OEFINE [MACRO) LOCAL %LOCALS [$BODY)
%*DEFINE [LIST) [#TEXT)
$IF [JLEN{#¥®LIST) £Q O) THEN !
EZDEFINE [%PARM) [%0)
EMACRO)
ELSE {
SWHILE [%LEN[%#%LIST) NE 0) [
¥DEFINE [4PARM) I[2#*SUBSTRI $*LIST,1,1))
4DEFINE [LIST) [#*SUBSTRIX%.IST,2,9999))
FMACRO))

EEERERAAR AR R AR IR AR AR RN R RN IR R B RN RN RN AR R AR RN AR RN R
A PiL/M callable subroutine:

CALL SORTI.A1,.N)
Sorts the array A1, containing N words.
At entey BC points to the array A1, and
DE points to N. Two pointers to elements of A1 are
incremented in two loops. The outer loop steps DE
through the elements of At. The inner loop steps

s ap as we as a0 ae A

Figure F-2A. CONV86 PRINT File Conversion of 8080 Sort Routine

Sample Conversion & Listings

CONV86

ASM30 TO ASM86 CONVERTER

10
11
12
13
14

HL theough the elements of At that follow DE. At
each step of the ianer loop, the items at H. and DE
are exchanged, if required, so that at the end of
the innes loop, the item at DE is larger tha all
the items that follow it. The item at DE is then in
its proper position, so DE is incremented to
complete one itecation of the outer loop.
SEARRRE AR R R RN R R R AN R PR SRR R RN BRI B R AN ANRAANRRNNRENRE R
bata area follows
ABS_0O ENDS
DATA SEGMENT WORD PUBLIC *DATA?
TEST_ DB 2 pue [?)
H Begin code acrea
DATA ENDS
CODE SEGMENT WORD PUBLIC *CODE®
PUBLIC SORT
$*DEFINE [SWAP) |
%* This macro swaps two bytes pointed to by HL and DE.

P TR T Y]

MoV SI,DX
u0DS DS=MISI]
MOV CL,MIBX]
MoV MIBX1,AL
XCHG BX, DX

MOV M{BX],CL

XCHG BX, DX

)
Test = address of the last element of Afl.
RT:

v

ORT XCHG BX, DX ; TEST = {N - 1) % 2 + .a1
MOV DL ,MIBX]
LAHF
INC BX
SAHF
MOV DH,MIBX]
XCHG BX, DX H o
LAHF
DEC BX
SAHF H - 1)
LAHF
ADD BX , BX
RCR SI,1
SAHF
RCu SI,1 : * 2
LAHF
ADD BX,CX
RCR SI,1
SAHF
RCL ST, 1 : + WAl
MOV WORD PTRITEST_),BX : = TEST
& OUTER LOOP= DO DE = .A1 TO TEST BY 2;
MOV DL, CL ; BC CONTAINS LAt
MOV DH,CH
OUTTST» MOV AL, TEST_ ; IF DE > TEST THEN RETURN
SUB AL , DL
MOV AL, TEST_+1
SBB AL, DH
JNB SHORT &L_1
RET

Figure F-2B. CONV86 PRINT File Conversion of 8080 Sort Routine

CONVS86 Sample Conversion & Listings

ASM80 TO ASM86 CONVERTER

50 L_1:
51 : INNER LOOP> DO HL = DE+2 TO TEST BY 2
52 MOV BL, DL
53 MOV BH, DH
Sy 4REPT [2) %1
55 YAHF
55 INC BX
55 SAHF
56))
57 ¢HL = DE + 2
58 ; IF HL > TEST THEN GOTO OUTINC
59 INTST: MOV AL, TEST_
60 5UB %, BL
61 MOV AL, TEST_+1
62 SBB AL, BH
63 JB SHORT OUTINC
64 s IF At{HL) < A1{DE) THEN GOTO ININC
65 : As a side effect, HL. and DE arfe incremented by 1
66 : to point to the nigh bytes of their array elements.
67 MOV SI,DX
67 LODS DS:zMiST)
68 SUB AL, MIBX]
69 $IRPC {Z,DH) (%I
#%% CAUTION 002 ###%# 3030 REGISTER MNEMONIC APPEARING IN IRPC STRING
70 LAHF
70 INC } ¥
70 SAHF
71))
72 MOV SI,DX
12 L0DS DS:M#SI]
73 SBB AL, M. BX]
14 JAE SHORT ININC
75 ;s Exchange AIDE) with AlHi). Leave HL and DE
76 ; pointing to HIGH bytes.
17 4SWAP
78 3IRP 12,3{Dx,BX)) 1%
79 LAHF
79 DEC | ¥
79 SAHF 4* Put !Z) D and H in their place
80 N
81 ; Exchange Low bytes
82 H
83 £SWAP

84 ; Point HY and DE to high bytes
$IRPC (Z,DH) (%!
#&% CAUTION 002 ##% 8080 REGISTER MNEMONIC APPEARING IN IRPC STRING
86

LAHF
86 INC %z
86 SAHF
87))

: DE an HL point to HIGH bytes. For the next iteration,
89 : set DE = Previous DE, HiL = 2 + Previous HL.
90 ININC: LAHF

30 DEC DX
90 SAHF
91 LAHF
91 INC BX

Figure F-2C. CONV86 PRINT File Conversion of 8080 Sort Routine

F-7

Sample Conversion & Listings

CONV86

ASMB80 TO ASM86 CONVERTER

91
92
93

SAHF
JMp

INTST

; End of outer loop. Set DE = DE + 2

OUTINC:

CODE

2 CAUTIONIS)

$REP
LAHF
INC
SAHF
))
JMP
ENDS
END

T i2) (K

DX

QUTTST

END OF ASM80 TO ASM86 CONVERSION

Figure F-2D. CONV86 PRINT File Conversion of 8080 Sort Routine

CONV86 Sample Conversion & Listings

MCS-35 MACRO ASSEMBLER SORT3D

ISIS-II MCS-35 MACRO ASSEMBLER V2.0 ASSEMBLY 0F MODULE SOAT30
NO OBJECT MODULE REQUESTED
ASSEMBLER INVOXED BY: :F3:ASM35 =rf1:S0RT30.A35

.0C O0BJ LINE SOURCE

$ WORKFILES{:F1:,:F1:) NOOBJECT

CGROUP GROUP ABS_0,CODE,CONST,DATA, STACK,MEMORY

DGROUP GROUP ABS_0,CODE,CONST,DATA, STACK,MEMORY
ASSUME DS=>DGROUP,CS:CGROUP, SS=DGROUP

CONST SEGMENT WORD PUBLIC *CONST®

CONST ENDS

STACK SEGMENT WORD STACK *STACK'

RPN
VMEWN=2OWE~NOV FWN -

0000 STACK_BASE LABEL BYTE
———— STACK ENDS
-———— MEMORY SEGMENT WORD MEMORY *MEMORY®
0000 MEMORY__ L ABEL BYTE
- MEMORY ENDS
- ABS_0 SEGMENT BYTE AT 0
0000 M LABEL BYTE
16 +1
17 +1
18 SERERER AR AR AR AR RS R R R AR AR R RN R RN R R R IR R RN RRANRED
19 ; A PL/M callable subroutinex
20 ; CALL SORT!.A1,.N)
21 : Sorts the array A1, containing N woeds.
22 ; At entey BC points to the acray A1, and
23 ; DE points to N. Two pointers to elements of At are
24 « incremented in two loops. The outer loop steps DE
25 ; through the elements of At. The inner loop steps
26 s HL through the elements of At that follow DE. AL
27 ; each step of the inner loop, the items at HL and DE
28 ;s are exchanged, if cequired, so that at the end of
29 + the inner loop, the item at DE is lacger tha 3all
30 s the items that follow it. The item at DE is then in
31 s its proper position, so DE is incremented to
32 ; complete one iteration of the outer loop.
33 SEEEERERE IR RR AR RN AR R R R AR NN R AR R AR NN AR RA RO RN RN R
34 H Data area follows
EE 35 ABS_0 ENDS
ma— 36 DATA SEGMENT WORD PUBLIC *DATA*
0000 [2 37 TEST_. DB 2 pue I?)
??
)
38 B Begin code area
———- 39 DATA ENDS
———— 40 CODE SEGMENT WORD PUBLIC *CODE*
41 PUBLIC SORT
42
43 ; Test = address of the Last element of Al.
0000 44 SORT:
0000 5B 45 pPoP BX > *%#%% CODE INSERTED TO
0001 59 46 poPpP CcX ; ##%% RETRIEVE PL/M-86
0002 5A u7 poe DX ; %%EE® STACK PARAMETERS

Figure F-3A. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

Sample Conversion & Listings

CONV86

M S-86 MACRO ASSEMBLER SORT30
L0C OBJ LINE SOURCE
0003 53 48 PUSH BX ; ¥#%% LCHAPTER 3)
0004 87DA 49 XCHG BX, DX s TEST = IN - 1) * 2 + .A%
0006 84970000 R 50 MOV DL,MZBX]
0004 43 51 INC BX
000B 8AB70000 R 52 MOV DH,M>»BX 1]
O00F 87DA 53 XCHG BX, DX H N
0011 4B 54 DEC BX H - 1)
0012 03DB 55 ADD BX, BX H * 2
0014 03D9 56 ADD BX,CX H + oA
0016 891E0000 R 57 MoV WORD PTRITEST_),BX H = TEST
58 OUTER L0OO0P: DO DE = .A1 TO TEST BY 23
001A 8AD1 539 MoV DL ,C4L ; BC CONTAINS .A1
001C B8AF5 60 MoV DH,CH
0J01E A00009 R 61 QUTTST: MOV AL, TEST_. 3 IF DE > TEST THEN RETURN
0021 2acC2 62 SUB AL, DL
0023 A00100 R 63 MOV AL ,TEST _+1
0026 1ACS 54 SBB %.DH
0028 7301 65 JNB SHORT L_t
002a C3 66 RET
002B 57 L
68 ¢« INNER L00P» DO HL = DE+2 TO T&ST BY 2
002B B8ADA 69 MoV BL, DL
002D B8AFE 70 MOV BH, DH
7t +1
72 +2
13 +3
002F 43 74 +3 INC BX
75 +3
0030 43 16 +3 INC BX
17 +3
78 sHL = DE + 2
79 ; [F HL > TEST THEN GOTO OUTINC
0031 A00000 R 80 INTST» MOV AL, TEST_
0034 2ac3 81 SUB AL, BL
0036 A00100 R 82 MOV L,TEST_+1
0039 tACT 83 SBB AL ,BH
003B 7242 8y JB SHORT QUTINC
85 : IF A1[HL) < A1[DE) THEN GOTO ININC
35 : As a side effect, H. and DE are incremented by 1
87 ;3 to point to the nigh bytes of theirs acray elements.
003D 8BF2 88 MOV SI,DX
003F AC 83 .0DS DS¥M*SI]
0040 24870000 R 90 SUB AL MIBX]
0044 9F 91 LAHF ; ®%#% The TRPC invocation reguires manual editing
0045 42 92 INC DX #%#3¥% The LAHF and SAHF exact mapping is reguired
o046 43 93 INC BX
0047 9E 94 SAHF
0048 8BF2 95 MOV SI,DX
004A AC 96 LODS DS™MISI}
004B 14870000 R 97 SBB AL, MIBX]
004F 7324 98 JAE SHORT ININC
99 ; Bxchange AIDE) with A{HL). Leave HL and DE
100 ; pointing to HIGH bytes.
101 +1

Figure F-3B. MCS-86™ Macro Assembler Listing

of Conversion of 8080 Sort Routine

F-10

CONV86 Sample Conversion & Listings

MCS-86 MACRO ASSEMBLER SORT80
L0C 0BJ “INE SOURCE
0051 8BF2 102 +1 MOV ST DX
0053 AC 103 +1 LODS DSrM*SI]
0054 8ABF0000O R 104 +1 MoV ChL M BX]
0058 88870000 R 105 +1 MoV ~BX1,AL
005C 87DA 106 +1 XCHG BX, DX
005E 888F0000 R 107 +1 MOV M*BX1,CL
0062 87DA 108 +1 XCHG BX, DX

109 +1

110 +1

111 +2

112 +2

113 +2

114 +4

115 +4

116 +4
00564 4A 117 +4 DEC DX

118 +4

119 +4
0065 4B 120 +4 DEC BX

121 H Exchange Low bytes

122 +1
0066 8BF2 123 +1 MOV SI,DX
0068 AC 124 +1 L0DS DS:MISI]
0069 B8A8F0000 R 125 +1 Mov L, MIBX]
006D 88870000 R 126 +1 MoV MIBX1,AL
0071 87DA 127 +1 XCHG BX, DX
0073 B888F0000 R 128 +1 MOV M™BX],CL
0077 87DA . 129 +1 XCHG BX, DX

130 +1

131 s Point HL and DE to high bytes
0079 42 132 INC DX
TRPC call removed and
0074 43 133 INC BX
=% gxpanded by hand

134 s DE an HL point to HIGH bytes. For the next iteration,

135 ; set DE = Previous DE, HY = 2 + Previous HL.
0078 136 ININC: ’
007B 4A 137 DEC DX
007C 43 138 INC BX
007D EBB2 139 JMP INTST

140 ; End of outer loopsi Set DE = DE + 2
007F 141 +1 OUTINC:

142 +2

143 +3
O0TF 42 144 +3 INC DX

145 +3
0080 42 146 +3 INC DX

147 +3
0081 EBY9B 148 JMP OUTTST
- 149 CODE ENDS

150 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure F-3C. MCS-86™ Macro Assembler Listing
of Conversion of 8080 Sort Routine

F-11

Sample Conversion & Listings

CONV86

MCs-85 MACRO ASSEMBLER SORT36

ISIS-II MCS-36 MACRO ASSEMBLER V2.0 AS3EMBLY OF JODULE SORI8S
OBJECT MODULE PLACED IN :F1:S0RT35.0BJ
ASSEMBLER INVOKED BY: :F3:ASM856 :F1:SORT35

L0C 0BJ LINE SOURCE

1 ;lllllllll"lll.lllllll"llllil!lllﬂlll!llll)lllllillll'll
2 ;s A PL/M callable subroutine:

3 B CALL SORT!.A1,.N)

4 : Sorts the array At, containing N words.

5 : At euntry the address of N, and the address of Af

5 ; are on the stack. Two_pointers to elements of A1

7 s are kept in the SI and DI registers. These pointers

8 ; are incremented in two loops. The outer Lloop steps

9 s SI theough the elements of At. The inner loop steps

10 3+ DI through the elements of A1 that follow SI. At each
11 » step of the inne¢ loop, the item at SI is targer than
12 ; all the items that follow it. The item at SI is then in
13 : its proper position, so SI is incremented to
14 ;s complete one iteration of the outer loop.

15 SEARRERRE RN EFRBRERAR IR RBRR RS AL F AR AR B RS RNBEAIARRARABENIRRR

H
16 CGROUP GROUP CODE
17 ; No DS ASSUME is needed, since this foutine
18 ; doesn't reference a DATA segment.
19 ASSUME ‘CSaCGROUP
EEE S 20 cope SEGMENT PUBLIC *CODE®
21 PUBLIC SORT
0000 22 SORT PROC NEAR
00062] 23 ADDR_A1 EQU WORD PTR IBP+6] ; first pacameter
000411 24 ADDR_N EQU WORD PTR _BP+4] ; second parameter
0000 55 25 PUSH Bp ; use BP to accesss parameters
0001 8BEC 26 MoV BP,SP
0003 8B7606 27 Mov SI,ADDR_A1
28 3 Outer loopr DO SI = .A1 BY 2 WHILE SI < CX
0006 8BSEOY 29 MOV BX,ADDR_N
0009 8BOF 30 MOV CX,¥BX] s CX = N
000B 03C9 31 ADD CX,CX H L]
000D O3CE 32 ADD CX,sSI H + WAl
000F 33 OUTTST:
000F 3BFt 34 cMp SI,CX ; IF SI >= CX THEN RETURN
0011 731B 35 JAE EXIT
36 & Inner loop:z DO DI = SI+2 WHILE DI < CX
0013 8b7co2 37 LEA DI,>SI+2] ;DI = ST + 2
0016 38 INTST:
0016 3BF9 39 cMp DI,CX ¢ IF DI >= CX
0018 730F 30 JAE OUTINC ; THEN exit inner loop
001A 8BOY4 41 MoV AX,>SI] ;IF A13SI]
001C 3B05 42 cMP AX,3DI] ; < a1ipId
001E 7304 43 JNB ININC
0020 8705 by XCHG AX,¥DI] ; THEN EXCHANGE A1IDI]
0022 8904 45 Mov [SI],AX ; WITH A1ISI]
0024 46 ININC:
0024 83C702 47 ADD DI,2
0027 EBED 48 JMP INTST
0029 49 QUTINC:

Figure F-4A. MCS-86™ Macro Assembler Listing
of Originally Coded 8086 Sort Routine

F-12

CONVS86 Sample Conversion & Listings

M S-86 MACRO ASSEMBLER SORT86
.0C OBJ LINE SOURCE
0029 83cC702 50 ADD DI, 2
002C EBE1 51 JMe OUTTST
002E 52 EXIT
0028 5D 53 poP BP
002F C20400 Si RET §

55 SORT ENDP
- 56 CODE ENDS

57 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure F-4B. MCS-86™ Macro Assembler Listing
of Originally Coded 8086 Sort Routine

F-13

APPENDIX G

RELOCATION AND LINKAGE
ERRORS AND WARNINGS

Because of the way CONVS86 sets up multiple segments beginning at absolute
location 0 (as described in Chapter 1 under ‘‘Functional Mapping’’), MCS-86
linkage and relocation tools will issue warnings/errors as shown in Table G-1. You
can safely ignore these warnings/errors when they specifically apply to intentional

segment overlap.
Table G-1. MCS-86™ Relocation and Linkage Warnings/Errors
for Segment Overlap
R &L Tool Message ID Message Text
WARNING 14 GROUP ENLARGED
FILE: filename
GROUP: groupname
MCS-86 MODULE: modname
LINKER WARNING 28 POSSIBLE OVERLAP
FILE: filename
MODULE: modname
SEGMENT: ABS_0
CLASS:

INDEX

ABS control (CONV86), 1-6, 2-3
absolute addressing, 3-2
APPROX control (CONV86), 1-11, 2-2

caution messages, 1-13, 3-7
comments, mapping of, 1-10
continuation lines,

in CONV86 command, 2-5

in PRINT file, 3-1
controls (ASM80) mapping, C-1
controls (CONV86), 2-1
conversions, sample, 1-3, 3-1, F-5
cross-development (8080/8085-

t0-8086), 1-2

DATE control (CONVS86), 2-2
directives mapping, C-1
displaced reference, 3-2, 3-3, 3-10

EXACT control (CONV86), 1-12, 2-2
expressions, conversion of, B-1

files, CONV86, 1-2, 1-13

files, cross-development, 1-2

flags, mapping of, 1-9

flag semantics, 8080-8086 differences, 1-12
functional equivalence, 1-11

functional mapping, 1-6

INCLUDED control (CONV86), 2-3
instruction mapping, A-1

instruction queue (8086), 1-11
interrupts, 3-3

label insertion by CONV86, 3-2, A-1
label insertion by user, 3-3

macro call, 1-3

macro conversion, 1-3, E-1

macro definition, 1-3

MACROFILE control (ASM80), 1-10
manual editing, 1-3, 1-13, 3-1, F-1
MODSS control (ASM80), 1-10

NOMACROFILE control (ASM80), 1-10
NOOUTPUT control (CONV86), 2-2
NOPAGING control (CONVS86), 2-2
NOPRINT control (CONV86), 2-2
NOSOURCELIST control

(CONVS86), 1-1, 2-3
NOTINCLUDED control (CONV86), 2-3

operand mapping, B-1

OUTPUT control (CONV86), 2-2

overriding controls (CONV86), 2-5

overriding symbol types, 1-10, 3-9,
3-10, 3-11

PAGELENGTH control (CONVS86), 2-2
PAGEWIDTH control (CONVS86), 2-2
pipeline (8086), 1-11
PL/M linkage conventions (8080 &
8086), 3-6
PL/M parameter passing (8080 &
8086), 3-6
PRINT control (CONV86), 2-2
PRINT file, sample, 1-4, 3-1
program listings, 1-5, F-2, F-5, F-9, F-12
prologues (8086), 1-6
prompting, 2-5

register initialization (8086), 3-2

register mapping, 1-8

REL control (CONV86), 1-6, 2-3, 3-2, 3-11

relative addressing, 3-2

relocation & linkage (8086)
errors/warnings, 1-6, G-1

requirements for conversion, 1-1, 1-3, 3-1

reserved names, 1-10, D-1

SOURCELIST control (CONVS86), 1-1, 2-3
stack, CONV86 handling of, 1-8

stack segment (8086), 1-7

STKLN directive (8080), 1-7, C-1

symbol typing, 1-9

timing delays, software, 1-11
TITLE control (CONVS86), 2-2

WORKFILES control (ASM80), 1-10
WORKFILES control (CONV86), 2-3

Index-1

Notes:

Notes:

Notes:

Notes:

Notes:

- ® MCS-86™ Assembly Language Conve
l Operating Instructions for ISIS-1 Us
980064

REQUEST FOR READER’S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that m
the needs of all Intel product users. This form lets you participate directly in the documentation proces:

Please restrict your comments to the usability, accuracy, readability, organization, and completenes:
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other type:
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CiTY STATE ZIP CODE

Please check here if you require a written reply. O

) LIKE YOUR COMMENTS ...

locument is one of a series describing Intel products. Your comments on the back of this form will
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All

1ents and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTA CLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

NO POSTAGE
NECESSARY
IF MAILED
INU.S.A.

intgl
INTEL CORPORATION, 3065 Bowers Avenue, Santa Ciara, CA 95051 (408) 987-8080

Printed in U.S.A.

