
MUL TI_ICETM
--

OPERATING INSTRUCTIONS
FOR ISIS-II USERS

Manual Order Number: 9800672-02 Rev. 8

Copyright © 1979,1980 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

hitel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX
Intel Micromap UPI
Intelevision Multibus ,..Scope
Intel\ec

and the combination of ICE, iCS, iSBC, MeS, or RMX and a numerical suffix.

A163/0180/10K FL

Preface I

This manual describes Multi-ICE, a set of enhancements to Intel's In-Circuit
Emulator (ICE) products.

The manual assumes that you are familiar with at least one standard ICE such as
ICE-85 or ICE-49, and with the Intellec system facilities including ISIS-II. Informa­
tion on these topics can be found in the following Intel documents:

Manual Title

ICE-85 Operating Instructions for ISIS-II Users
ICE-49 Operating Instructions for ISIS-II Users
Intellec Series II Hardware Reference Manual
Intellec Series II Interface Manual
Intellec Series II Installation and Service Manual
ISIS-II User's Guide

Here is a brief summary of the chapter contents of the manual:

Order Number

9800463
9800632
9800462
9800555
9800559
9800306

Chapter 1 introduces the Multi-ICE product and describes the hardware required to
operate a Multi-ICE system. Additionally, the chapter suggests ways to use the
manual and explains the notation system used to present command syntax.

Chapter 2 introduces the user to the Multi-ICE system with a brief example of a
debugging task involving two ICE-85's.

Chapter 3 describes the construction of arithmetic and boolean expressions to be
used in Multi-ICE commands.

Chapter 4 presents a set of commands that can be executed by any ICE in a Multi­
ICE system; the commands include loops, conditional blocks, macros, and display
commands.

Chapter 5 presents a set of commands that can be executed by any ICE-85 in a
Multi-ICE system.

Chapter 6 describes the three basic Multi-ICE commands, and offers a simple model
of Multi-ICE operation to help explain how these commands work.

Chapters 7 and 8 present additional Multi-ICE synchronization commands.

Chapter 9 contains a discussion of the overall operation of a Multi-ICE system, and
systematically describes the interrelationships among the system components and
commands.

Appendix A is a·summary of command syntax and keywords particular to the Multi­
ICE product.

Appendix B contains instructions for installing a Multi-ICE system in an Intellec
Series II system, Model 220 or 230.

Appendix C is a summary of error messages particular to Multi-ICE.

Appendix D contains suggestions for operating Multi-ICE so as to avoid inadvertent
errors. The appendix also discusses both the limitations of Multi-ICE as compared
to standard-ICE products and ways to use Multi-ICE capabilities to compensate for
these limitations.

iii

iv

CHAPTER!
INTRODUCTION

PAGE

The Multi-ICE Product 1-1
Multi-ICE Program Names 1-1
About This Manual. 1-2
Notation Used In This Manual 1-4

Basic Definitions. .. 1-4
Notational Forms and Examples. 1-5

CHAPTER 2
GETTING STARTED WITH MULTI-ICE
Sample Programs 2-1
Installation and Configuration Summary 2-1
Sample Multi-ICE Session 2-5

CHAPTER 3,
EXPRESSIONS
Operands .. 3-1
Numbers 3-1
Primaries 3-1

Numeric Constants. .. 3-2
String Constants .. 3-2
Direct References 3-3

Operators. .. 3-4
Classes of Operators. .. 3-4
Arithmetic Operators 3-4
Content Operators 3-6
Relational Operators. 3-7
Logical Operators .. 3-7

Environment Controls 3-8
How Expressions Are Evaluated. 3-9
"Case Studies" in Evaluating Expressions. 3-9
Command Contexts 3-10

CHAPTER 4
ICE-INDEPENDENT COMMANDS
Compound Commands 4-1
Local and Global Defaults. 4-1
REPEAT Command. .. 4-2

Discussion .. 4-3
COUNT Command. .. 4-5

Discussion • • 4-6
IF Command. .. 4-8

Discussion .. 4-9
Nesting Compound Commands 4-10
Macro Commands. .. 4-11
DEFINE MACRO Command. 4-12
Macro Call Command 4-12
Display Macro Definition Command. 4-13
Display Macro Directly Command. 4-13
REMOVE MACRO Command 4-13
Put Macro On File Command.. 4-14
INCLUDE From File Command 4-14

CONTENTS I

PAGE

Defining and Invoking Macros 4-14
Formal and Actual Parameters 4-16
Details on Macro Expansion .. 4-18
Macro Table Commands. 4-18
Saving Macros. .. 4-20
IN~LUDING Commands From Files 4-20
Further Examples 4-21

ICE-85 Macro Examples 4-21
ICE-49 Macro Examples 4-23

BOOL Display Command .. 4-25
Discussion .. 4-25

WRITE Command. .. 4-26
Discussion .. 4-26

Multiple Display Commands. 4-27
ICE-Indepen!ent Symbol Table Commands. 4-27
Symbolic Display of Addresses 4-28

Discussion .. 4-28

CHAPTERS
ICE-8S DEPENDENT COMMANDS
SEARCH Command 5-1
DOMAIN Commands 5-3
NESTING Command. .. 5-3
LINES Command. .. 5-3
MODULES Command. .. 5-4
FLAG Keyword 5-4
REMOVE MODULE Command 5-4
LIMIT and LOWER ~ 5-4

Sample Mapping Sequences. 5-6

CHAPTER 6
BASIC MULTI-ICE COMMANDS
SWITCH Commands. .. 6-1
ACT IV ATE Command.. 6-1
KILL Commands .. 6-2

Discussion .. 6-3
Details on SWITCH Commands. 6-4
Details on ACT IV ATE. .. 6-5
Details on KILL '.' 6-5
Using the ESC Key to Kill a Process. 6-5
Summary of Multi-ICE Messages 6-6

CHAPTER 7
MULTI-ICE SYNCHRONIZATION
COMMANDS
SUSPEND Commands. .. 7-1
CONTINUE Commands. .. 7-2
WAIT Command 7-2
SUSPEND Commands and CONTINUE Command.. 7-3
WAIT Command 7-3

v

CHAPTERS PAGE
BREAK AND LOCK COMMANDS
BREAK Command. .. 8-1
LOCK Command .. 8-1

Discussion 8-2

CHAPTER 9
MULTI-ICE THEORY OF OPERATION
Components of a Dual-ICE System 9-1
Processes and Process Status ,9-2

HOST and ICE Processes. .. 9-2
Process Status 9-3
Querying Process Status. .. 9-3

HOST parsing and Execution Environment. 9-3
Tasks and Task Status 9-4
The HOST parser .. 9-5

Obtaining a Prompt .. 9-5
Entering Commands. .. 9-5
Intermediate and Final Carriage Return 9-6
Parser Task Status 9-6

HOST Execution Process. .. 9-8
Commands to the HOST .. 9-8
HOST Process Status and Task Status. 9-9

The ICE Process 9-11
Commands to the ICE Processes 9-11

vi

PAGE

ICE Process Status and Task Status 9-11
The Dispatcher 9-14

Dispatch Table 9-16
Console and Hardware Interrupts 9-16
Allocating Task Slices 9-18

Summary .. 9-20

APPENDIX A
SUMMARY OF MULTI-ICE COMMANDS
AND KEYWORDS
Expressions A-I
Commands A-I
Keywords A-4

APPENDIXB
INSTALLATION PROCEDURES FOR
INTELLEC SERIES II SYSTEMS

APPENDIXC
MULTI-ICE ERROR MESSAGES

APPENDIXD
OPERATING HINTS AND LIMITATIONS

TABLE

1-1
2-1
3-1
3-2

3-3
34
3-5
3-6
3-7
3-8
4-1
4-2
5-1

TITLE PAGE

Multi-ICE Commands. 1-3
Basic Multi-ICE Keywords 2-5
Elements of Numeric Constants 3-2
ASCII Printing Characters and

Codes (20H-7EH) .. 3-3
Enhanced-ICE Operators 3-5
Classes of Operators. 3-6
Content Operators 3-7
Representative Cases of Expressions 3-11
Conditions and Notations for Examples ... 3-11
Command Contexts 3-17
Tracking a COUNT Command. 4-7
ICE4X Stack Pointer Locations. 4-23
ICE-85 Memory Control Keywords 54

FIGURE TITLE PAGE

2-1
2-2
3-1
4-1
4-2
4-3
5-1
5-2
9-1
9-2

PROG 1 Program Listing 2-2
PROG2 Program Listing. 2-4
A Simple Mode of Evaluation 3-10
MCS-85 PSW Instruction. 4-22
MCS-48 Stack Format 4-24
MCS-48 Program Status Word (PSW) 4-24
Intellec Shared MemoryAt Initialization. . .. 5-5
Memory Allocation for Dual ICE-85/4X 5-7
Components of a Dual-ICE System 9-1
A Generalized Execution Process 9-2

TABLE

5-2
9-1
9-2
9-3
9-4

9-5
9-6
9-7
9-8
B-1
B-2
D-l
D-2

FIGURE

9-3
9-4

9-5
9-6
9-7
B-1

B-2
B-3

TABLES I

TITLE PAGE

ICE-85 Memory Blocks for Mapping 5-5
Process and Environment Keywords. 9-2
Process Status Keywords 9-3
HOST Parser Task Status 9-6
HOST Execution Process Status and

Task Status. .. 9-9
ICE Process Status and Task Status. 9-11
How an ICE Process Becomes DORMANT 9-13
Dispatch Table. .. 9-16
Current Process and Next Process 9-19
Multi-ICE Device Codes B-1
ICE-85 Replacement PROM Locations B-1
PROM Transfer Commands. D-l
PROM Compare Commands. D-l

ILLUSTRATIONS I

TITLE PAGE

HOST Parser Task Status 9-7
HOST Execution Process Status and

Task Status 9-10
ICE Process Status and Task Status 9-12
Dispatcher Functional Diagram 9-15
Polling Sequence for processes 9-20
Intellec Series II Model 220/230

Dual-ICE Installation B-2
ICE Boards in Dual-Auxiliary Connector. .. B-3
Ribbon Cable Routing Diagram. B-4

vii

CHAPTER 1
INTRODUCTION

The Multi-ICE Product
The Multi-ICE produce extends the capabilities of many of Intel's In-Circuit
Emulator (ICE) products. The commands described in this manual permit the asyn­
chronous debugging of a multi-processor design by operating two ICE hardware
modules from one Intellec Microcomputer Development System.

Multi-ICE also contains commands that enhance the operation of each of the two
ICEs combined in a multi-ICE configuration.

Additionally, Multi-ICE includes facilities for defining test suites on- and off-line
using diskette files, and executing the test suites in later sessions, directly from files.
Thus, you can construct 'automated' test sequences that can be stored permanently
or modified at will.

The manual assumes that you are familiar with the operation of at least one of the
standard ICE products such as ICE-85 or ICE-49. Most of the examples in the
manual are based on ICE-85.

The Multi-ICE 'package' contains:

• The Multi-ICE software diskette (single- and double-density versions). This
diskette contains the combinations of ICE software that are currently sup­
ported. Each combination includes all standard ICE commands for .the two
ICEs, all new ICE-dependent commands, and all new ICE-independent com­
mands. Thus, one load step is all you need to have a complete multi-ICE soft­
ware package at your disposal.

• A set of three replacement PROMs for the ICE-85 component of the multi-ICE
system, or for one ICE-85 in an 85/85 combination. Installation instructions for
these chips are given in appendix B.

• The Multi-ICE Operating Instructions (this manual).

Multi-ICE operation requires the following hardware and documentation:

• An Intellec MDS-800 system with 64K RAM, two diskette drives, console, and
room for two pairs of ICE boards, or

• An Intellec Series II Model 220 or 230 system with two diskette drives, expander
chassis, and 64K RAM. Installation instructions are given in appendix B.

• Two sets of ICE hardware boards with cabling, corresponding to the multi-ICE
combination you wish to use.

• A standard ICE manual for each kind of ICE you are using (see preface for a list
of manuals).

Multi-ICE Program Names
The Multi-ICE software diskette contains the software for all supported combina­
tions of ICEs.

1-1

Introduction

1-2

To invoke any combination, you must know the name of the (ISIS-II) file that con­
tains it. The filename is made up of the numbers of the two ICEs, with the higher
number first. Thus, for example, the filename for a combination of ICE-85 and
ICE-49 is "8549", and the invocation from ISIS-II (assuming drive 1) would be:

-:F1 :8549

For a combination of two ICE-85's, the filename is "8585".

All Multi-ICE filenames follow this naming convention.

About this Manual
The multi-ICE manual contains descriptions of all the commands and keywords that
are particular to the multi-ICE software system. Refer to the standard ICE manual
for other commands.

Here is a brief summary of the manual's contents:

Chapter 2 is designed to introduce the main features that are particular to the multi­
ICE 'environment'. It demonstrates how to invoke the multi-ICE software, enter
commands to the HOST process, and pass command blocks to the two ICE pro­
cesses.

Chapter 3 presents the details on expressions and how they are evaluated
arithmetically and as TRUE/FALSE values. Expressions in Multi-ICE can contain
more kinds of operators and operands than expressions available in any standard
ICE; boolean (TRUE/FALSE) expressions especially are required to permit condi­
tional execution of commands.

Chapter 4, 5, 6, 7, and 8 present the syntax and brief discussions of the new com­
mands offered by the multi-ICE system. Table 1-1 summarizes these commands.

The commands in chapter 4 can be executed by any kind of process, HOST or ICE,
and by any ICE (85 or 49) that is part of a multi-ICE combination. Here are brief
descriptions of some of these commands.

The REPEAT command establishes a loop. The commands in the loop are executed
iteratively. You can use an UNTIL or WHILE clause to specify when the loop is to
terminate.

The COUNT command establishes a bounded loop. With this command, you can
specify how many iterations of the included command sequence are to be perform­
ed. The COUNT command can also include UNTIL and WHILE clauses to exit the
loop on condition, before the count is completed.

The IF command establishes conditional execution of a command sequence. The
command can include ORIF and ELSE clauses to construct a branched command or
test sequence.

The REPEAT, COUNT, and IF commands can be nested, that is, they can include
each other.

Macros are command blocks that can be defined on-line, that is, while the ICE soft­
ware is running. You can call up any defined macro by name to cause it to begin ex­
ecuting. The macro definition can include formal parameters; the user supplies the
actual parameters when the macro is called.

Multi-ICE

-I
~

Chapter
Executed By

ANY PROCESS

Any ICE-85 Process

HOST Process
only (must be
outside ACTIVATE
block)

ICE Process
only (must be
inside ACTIVATE
block)

4

REPEAT Command
COUNT Command
IF Command
MACRO Commands
BOOL Command
IND Symbol Commands
Symbolic Display
Commands

Multiple Display
Commands

WRITE Command

3:
E-
rr· -g

Table 1-1. Multi-ICE Commands

5 6 7&8

SWITCH Display LOCK Command
Command

SEARCH Command
DOMAIN Commands
NESTING Commands
LINES Command
MODULES Commands
FLAG Keyword
LIMIT, LOWER Keywords

SWITCH=ENn Command SUSPEND PRn Command
ACTIVATE PRn Command CONTINUE PAn
KILL PRn Command

WAIT PAn Command
BREAK PRn Command

KILL Command SUSPEND Command

I
R
~

g'

Introduction

1-4

The INCLUDE command, combined with the PUT macro command enables the
user to define macros on- and off-line, save them on diskette, and call them up for
modification or execution at a later time.

The commands in chapter 5 can be executed by any ICE-85 process. Here are brief
descriptions of some of these commands.

The SEARCH command allows you to search memory for the address containing
the value you specify.

The DOMAIN command restricts the scope of a statement-number reference to the
current module, eliminating the need to include the moduie name in each subsequent
reference.

The NESTING command displays the level of procedure nesting in the user program
as executed so far.

Chapters 6, 7, 8, and 9 present the multi-ICE commands. Chapter 6 describes the
three basic multi-ICE commands, SWITCH, ACTIVATE, and KILL. This chapter,
along with the example in chapter 2, provides a good introduction to the "world" of
multi-ICE.

Chapters 7 and 8 present the rest of the multi-ICE synchronization commands.

Chapter 9 gives an extended presentation of how the multi-ICE system operates.
Refer to this chapter for details on the effects of the multi-ICE commands.

The four appendices provide information for reference.

Notation Used in this Manual
The manual uses a notation system to convey the basic syntax and optional features
of the commands.

Basic Definitions

For discussion of the notation, we define the following terms; examples appear later
on in the discussion.

token

field

entry

command

menu

keyword

user-name

meta-term

One or more contiguous characters delimited by blanks
or by context.

A sequence of tokens that must be included (or omitted)
as a unit.

A token or field.

A sequence of entries terminated by a final carriage
return.

A choice of entries presented as a vertical arrangement.

A token that is defined by the system (up to the first
three characters); a command literal.

A token that is defined by the user.

A word or hyphenated phrase that represents a class of
entries.

Multi-ICE

Multi-ICE

Notational Forms and Examples

1. Keywords are shown in ALL CAPS. For example, in the following command
syntax description:

EVALUATE expression SYMBOLIC
The entries 'EVALUATE' and 'SYMBOLIC' are keywords and must be entered
as given (up to the first three characters, 'EVA' and 'SYM' respectively).

2. Meta-terms and user-names are shown in lower-case italic. In the example just
given, the entry 'expression' is a meta-term representing the class of all
arithmetic and boolean expressions possible in Multi-ICE. As another example:

DEFINE MACRO macro-name
The entry 'macro-name' represents a token whose form (character sequence in
this case) is specified by the user.

As special cases of this notational form, the entry 'ENn' means one of the
tokens 'ENl' or 'EN2', and 'PRn' means one of the tokens 'PRl' or 'PR2'.
(See chapter 2 for the use of these tokens.)

Additionally, the entry 'cr' represents an intermediate carriage return, ending
an inner line of a multi-line command. Final carriage returns are not shown in
the syntax.

3. A pair of brackets [] enclosing a single entry means that entry is optional. For
example:

REMOVE MACRO [macro-list]
The field represented by 'macro-list' can be omitted, leaving a valid command.
Of course, omitting an entry can change the effect of the command when it is
executed.

4. A pair of brackets enclosing a single entry and followed by an ellipsis (three
periods) means that entry may be omitted, used once, or repeated indefinitely.
For example:

ACTIVATE PRn
[command cr] ...
ENDACTIVATE

The entry 'command cr' means that this field can be omitted ('null' command),
or one command can be entered with an intermediate carriage return, or as
many such commands as desired, until the ENDACTIV ATE keyword is entered
to signal the termination of the command block.

S. A pair of brackets around a menu of entries means 'select none or one-not
more than one'. For example,

SEARCH [SINGLE] partition [mask-field] FOR value
DOUBLE

In this command, the entries 'SINGLE' and 'DOUBLE' are mutually exclusive.
One or the other can be used, or neither-but not both.

6. A pair of brackets around a menu of entires and followed by the ellipsis means
'select none, one, or more than one, in any order'. There are two exceptions to
this convention; both are noted below. As an example of the majority rule:

REPEATcr

[
command cr]
WH I LE boolean-expression cr ...
UNTIL boolean-expression cr

ENDREPEAT
In this compound command, the body can consist of any number of commands,
WHILE fields, and UNTIL fields, in any order.

Introduction

1-5

Introduction

1-6

Exceptions: the same notational symbols are used with the WRITE command
and the multiple displays. These commands require at least one entry be selected
from the menu to produce a valid command. The syntaxes are:

WRITE [:~~~~ssion] [, ...]
BOOl boolean-expression

[
keYWOrd-referenCe]
content-expression

7. The symbol:

[, .,,]

[, ...]

After an entry or menu means, 'if repeated, use commas to separate entries' .

Multi-ICE

CHAPTER 2
GETTING STARTED WITH MULTI-ICE

This chapter contains a brief example of multi-ICE operation, and introduces a few
of the basic multi-ICE commands.

Sample Programs
The example involves 'debugging' two programs, PROG 1 and PROG2. Each is
written in PL/M-80, to be run on an MCS-85 system such as an iSBC 80/30 with
multi-ICE-85.

PROGI is listed in figure 2-1, and PROG2 is shown in figure 2-2.

The 'user' hardware configuration for this example ('ould consist of two iSBC 80/30
boards (let's call then 'board I' and 'board 2') with an external console attached to
the serial I/O port (connector J3) of board I.

PROG I and PROG2 demonstrate a rudimentary form of handshaking between two
processors. For simplicity, we'll assume PROGI is running on board I and PROG2
on board 2; they communicate through a common external memory (RAM) board.

PROGI reads a character from the console connected to board I, and sets a flag
when it has finished reading a character. PROG2 checks the flag, changes the
character into either a lower case character or a question mark, and sets another
flag. PROGI checks this second flag; when the second flag is set, PROGI displays
the resulting character on the external console, then prompts for another character.

In our example, location 8000H stores the character both as input and as changed by
PROG2. Location 800IH contains the flags; bit I is the "character input" flag from
PROG I to PROG2 (1 = set) , and bit 0 is the' 'output character" flag from PROG2 to
PROGI.

As shown in figure 2-2, PROG 2 has "bugs" in procedure START2: PI should be
8000H and P2 should be 800IH. We shall "find" and patch these bugs in the sample
ICE session.

Other details on PROG I and PROG2 are given as comments in the listings; these
details are of no importance to the command examples.

Installation and Configuration Summary
Installation steps are given in full in Appendix B; we summarize them briefly for this
example.

The multi-ICE system we are using is 85/85, that is, a combination of two ICE-85's.
• Selecting one set of ICE-85 boards "at random" to be the "first ICE", we

install the three replacement PROMs and set the device code to 10H, both on
the Controller board of the first ICE.

• We install the first set of ICE boards in the main chassis of an Intellec Series II
model 230.

2-1

Getting Started With Multi-ICE

2-2

PROG1:
DO;

'* PROG1

*'

THIS PROGRAM EXECUTES IN A 80'30 BOARD ENVIRONMENT. THE
PROGRAM READS INPUT FROM EXTERNAL CONSOLE AND STORES INPUT IN
OFF BOARD RAM (LOCATION BOOO). A FLAG BIT IS SET (BIT 1 IN BYTE B001 H)
SIGNIFYING THAT CHARACTER HAS BEEN READ. ANOTHER PROGRAM
(PROG2) WHICH IS EXECUTING IN ANOTHER BO'30 ENVIRONMENT CHECKS
THIS FLAG WAITING FOR CHARACTER READY STATE (BIT 1 ON IN BYTE 8001).

'*PROGRAM DECLARATIONS*'

2 DECLARE FOREVER LITERALLY 'WHILE1';
3 DECLARE CR LITERALLY 'ODH';
4 DECLARE LF LITERALLY 'OAH';
5 DECLARE (P1,P2) ADDRESS;
6 DECLARE CHAR BASED P1 BYTE;
7 DECLARE CNTRL BASED P2 BYTE;

'* CONSOLE OUTPUT ROUTINE
OUTPUTS CHARACTERS TO TERMINAL

*'
8 1 OUT:

PROCEDURE(CHAR);
9 2 DECLARE CHAR BYTE;

10 2 WT:
IF (INPUT(OEDH) AND 01 H) = 0 THEN GOTO WT;
'*WAIT UNTIL OUTPUT BUFFER IS EMPTY*'

12 2 OUTPUT (OECH) = CHAR;
13 2 END OUT;

'* CONSOLE INPUT ROUTINE
READS CHARACTERS FROM CONSOLE

*'
14 1 IN:

PROCEDURE BYTE;
'* OEDH -STATUS PORT OF 8251 IN BO'30, OECH - DATA PORT*'

15 2 WT:
IF (INPUT(OEDH) AND 2H) = 0 THEN GOTO WT;

'*WAIT UNTIL CHAR IS PRESENT*'
17 2 RETURN (lNPUT(OECH) AND 7FH); '*RETURN CHAR INPUT*'
18 2 END IN;

Figure 2-1. PROG 1 Program Listing

Multi-ICE

Multi-ICE Getting Started With Multi-ICE

1*
END OF LINE PROCEDURE, OUTPUT CARRIAGE RETURN AND L1NEFEED

*1

19 1 ENDLlNE:
PROCEDURE;

20 2 CALL OUT(CR);
21 2 CALL OUT(LF);
22 2 END ENDLlNE;

1*
START OF PROGRAM PROG1
THE CONSOLE IS MONITORED FOR ANY USER INPUT

*1

I*THE FOLLOWING OUTPUT COMMANDS ARE 80/30 DEPENDENT
AND ARE USED TO INITIALIZE THE BAUD RATE CLOCK AND 8251 CHIP* I

23 DISABLE;
24 OUTPUT(OEDH) = 4FH; I*MODE INSTRUCTION TO USART: 64X, 8 BITS LONG

NO PARITY, 1 STOP BIT* I
25 OUTPUT(OEDH) = 27H; I*COMMAND TO USART* I
26 OUTPUT(ODFH) = OB6H; I*SET COUNTER 2 TO MODE 3 BAUD RATE

GENERATOR* ,
27 1 OUTPUT(ODEH) = 08H; 1*8H WILL MAKE COUNTER 3GENERATE CLOCK

28 1 OUTPUT(ODEH) = 0 ;

29

30
31

1 START1:
P1 = SOOOH;
P2= S001H;
CNTRL=O

32 1 DO FOREVER;

33
34
35

2 CALL OUT('* ')
2 CHAR= IN ;
2 CNTRL=2H;

36 2 CALL ENDLINE ;

37 2 WAIT:

PULSES FOR 2400 BAUD* I

I * IN ITIALIZE CNTRL TO 0* I

I*OUTPUT TERMINAL PROMPT CHARACTER* I
I*GET KEYBOARD INPUT, PUT IN LOCATION SOOOH*'
'*INPUT CHARACTER READY BIT SET IN

HANDSHAKING BUFFER, PROG2 RUNNING IN
SECOND 80/30 IS WAITING FOR THIS BIT TO BE SET
SO IT CAN READ CHARACTER INPUT WHICH IS IN
DATA BUFFER*'

IF (CNTRL AND 1 H) = 0 THEN GOTO WAIT; 1* LOOP UNTIL OUTPUT BIT SET IN
eNTRl1 iN BiT 1 MEANS THERE
IS CHARACTER TO OUTPUT * I

39 2 CALL OUT(CHAR) '*OUTPUT CHARACTER PASSED FROM OTHER SO/30
PROGRAM*'

40 2 CALL ENDLINE '*OUTPUT CARRIAGE RETURN LlNEFEED* I

41
42

2 END;
1 END PROG1

I*END DO FOREVER, LOOP BACK FOR MORE INPUT* I
'*END OF MODULE*'

Figure 2-1. PROGI Program Listing (Cont'd.)

2-3

Getting Started With Multi-ICE

2-4

PROG2:
DO;

'* PROG2

*'

THIS PROGRAM EXECUTES IN A 80/30 BOARD WHICH SENDS AND RECEIVES
DATA FROM ANOTHER 80/30 THROUGH LOCATIONS 8000H AND 8001H WHICH
ARE IN COMMON MEMORY. LOCATION 8000H CONTAINS A CHARACTER
READ FROM EXTERNAL CONSOLE BY PROG1 AND LOCATION 8001 H IS A
CHARACTER FLAG BYTE BIT 0 ON (OF LOCATION 8001 H) MEANS THERE IS A
CHARACTER TO OUTPUT, BIT 1 ON (OF LOCATION 8001 H) MEANS THERE IS A
CHARACTER TO READ. IF CHARACTER IS UPPERCASE LEITER PROG2 CON­
VERTS CHARACTER TO LOWER CASE AND SETS BIT 0 (8001 H) ON. IF
CHARACTER INPUT FROM EXTERNAL CONSOLE BY PROG1 AND IN LOCA­
TION BOOOH IS NOT UPPERCASE LETTER THEN SET CHARACTER TO ?
CHARACTER IS THEN READ BY PROG1 AN 0 OUTPUT TO CONSOLE.

'*PROGRAM DECLARATlONS*'

2 DECLARE FOREVER LITERALLY 'WHILE 1';
3 DECLARE (P1, P2) ADDRESS; '*LOCATIONS OF INPUT CHARACTER AND

CHARACTER FLAG BIT* ,
4 DECLARE CHARACTER BASED P1 BYTE;
5 DECLARE CONTROL BASED P2 BYTE;

6 1 START2:
P1 = 3000H; '*3001H AND 3000H SHOULD BE 8000H AND 8001H BUT ARE HERE

AS BUGS*I
7 1 P2 = 3001H;

8 DO FOREVER;

9 2 LOOP:
IF (CONTROL AND 2H) = 0 THEN GOTO LOOP; '*WAIT FOR CHARACTER

INPUT* I
11 2 IF CHARACTER >= 41 H AND CHARACTER <= 5AH THEN CHARACTER =

CHARACTER + 20H;
13 2 ELSE CHARACTER = "?';
14 2 CONTROL = 1 H ; '*SET CONTROL FOR OUTPUT CHAR READY*'
15 2 END; /*END FOREVER* /

16 1 END PROG2; '*END OF MODULE* /

Figure 2-2. PR002 Program Listing

Multi-ICE

Multi-ICE Getting Started With Multi-ICE

• We set the device code of the "second ICE" to I1H, and install it in the
expander chassis attached to the Intellec system.

• We turn on the power to the Intellec system and diskette drive.

• We insert an ISIS-II system diskette in drive 0 and the diskette containing both
the multi-ICE software and our test programs (PROGI and PROG2) into drive
1.

This completes the installation. Now we proceed to the debugging session.

Sample Multi-ICE Session
Boot ISIS-II by pressing the RESET button on the Intellec front panel, and obtain
the hyphen prompt.

Enter the drive and filename containing the multi-ICE-85 software:

-:F1 :8585

Multi-ICE signals readiness with the sign-on message:

ISIS-II MULTI-ICE 85/85, Vx.x
PR1 IS ICE-85 DEVICE CODE 10H, PR21S ICE-85 DEVICE CODE 11 H
*

The asterisk prompt tells us we can enter ICE commands. Before getting to the com­
mands, let's introduce the multi-ICE keywords we shall use (table 2-1).

Table 2-1. Basic Multi-ICE Keywords

Keyword Meaning

HOST Default execution process.

PR1 Execution process for ICE with lowest device code.
Executes commands within" ACTIVATE PR1" block.

PR2 Execution process for ICE with highest device code.
Executes commands within "ACTIVATE PR2" block.

EN1 PR1 's parsing and execution environment, available to
HOST via SWITCH command.

EN2 PR2's parsing and execution environment, available to
HOST via SWITCH command.

SWITCH Keyword to display or change HOST's environment.

ACTIVATE Keyword to begin block of commands to be executed by
ICE process (PR1 or PR2).

ENDACTIVATE End of command block for ICE process.

KILL Command to halt processing by PR1 or PR2 (or both),
and discard that process current command block.

ALL Keyword meaning "both PR1 and PR2".

2-5

Getting Started With Multi-ICE

2-6

Any commands we enter at this time are executed by the default process, called the
"HOST process," or just HOST. The HOST can use hardware and software
resources of either of the two ICEs.

At initialization, the HOST is in the "environment" of the first ICE-85. This ICE is
to execute PROGI, and we can map and load this program for ENI, where it is
available to the HOST and to PRI.

The map and load sequence for PROGI is as follows:

*MAP 4000 =USER
*MAP 8000 = USER
*MAP 100 TO FF = USER
*LOAD :F1:PROG1
*SYMBOL
MODU LE .. PROG1
.MEMORY=409CH
.P1=4097H
.P2=4099H
.OUT=4055H
.CHAR=409BH
.WT=4059H
.IN=406BH
.WT=406BH
.ENDLlNE=407CH
.START1 =4018H
.WAIT=4038H
*

We display the symbol table for PROG I to verify that the program loaded.

Now, let's do the same thing for PROG2. First, we SWITCH to EN2, the environ­
ment of PR2, the second ICE-85; this ICE is going to execute PROG2.

*SWITCH = EN2
*MAP 4000 = USER
* MAP 8000 = USER
*LOAD :F1:PROG2
*SYMBOL
MODULE .. PROG2
.MEMORY=405BH
.P1=4057H
.P2=4059H
.ST ART2=4003H
. LOOP=400DH
*

We display PROG2's symbol table to verify program load.

Now, even though the "current SWITCH" is EN2, we can start PRI emulating by
entering the following commands.

* ACTIVATE PR1
.*GO
.*ENDA
PR1 EMULATION BEGUN

When the HOST encounters the ACTIVATE PRI. .ENDA block, it passes the com­
mands inside the block to PRI for execution. In this case, the block had only the one
"GO" command; PRI executes this command and signals "EMULATION
BEGUN".

Multi-ICE

Multi-ICE Getting Started With Multi-ICE

Now, since PRI is executing a command block, the prompt is suppressed. This hap­
pens when any process is executing. You can always press the ESC key to abort pro­
cessing, erase the command or command block being executed, and get the prompt.

However, when either PRIor PR2 (not the HOST) is executing or emulating, you
can press the spacebar to get the prompt without erasing any commands. If either
ICE process is emulating (' 'GO" command) when the spacebar is pressed, it con­
tinues emulating; otherwise, execution halts after the current command and remains
halted until the final carriage return is entered.

We want PRI to continue emulating, so we press the spacebar to get the HOST's at­
tention, and start PR2 emulating:

*ACTIVATE PR2 ;SPACE BAR WAS PRESSED TO GETTHE PROMPT
.*GO
.*ENDA
PR2 EMULATION BEGUN
PR2 ERR 42:GUARDED ACCESS

PR2 signals "EMULATION BEGUN", then encounters an address that is outside
the mapped area. The attempt to access this "GUARDED" location terminates
PR2's emulation, but PRI is not affected.

However, we want to stop PRI so we don't have to press the spacebar every time we
want a prompt.

We press the spacebar and obtain the prompt. Now we enter the command:

*KILL PR1 ;AGAIN, SPACE BAR WAS PRESSED.
PR1 EMULATION TERMINATED, PC= .. PROG1#16
*

The KILL PRI command halts PRI and discards its command block. PRI signals
"EMULATION TERMINATED", and displays the current PC at the end of
emulation (PC is the next instruction that would be executed if emulation begins
again).

Note that the PC value is displayed "symbolii:ally", in this case by displaying the
module and line number corresponding to the address currently in PC. This kind of
symbolic display is the default under multi-ICE, for a number of address-type
displays.

After PRI 's message, the prompt appears automatically.

We're talking to the HOST again; we display the HOST's environment by entering:

*SWITCH
EN2 (ICE-8S)

Now to examine the trace buffer of PR2 to see where the GUARDED ACCESS oc­
curred. Since we're in EN2, the HOST can perform the display:

*;EXAMINE WHAT CAUSED THE GUARDED ACCESS.
*PRINT ALL
HOST/EN2:

AD DR INSTR UCTION ADDR-S-DA ADDR-S-DA ADDR-S-DA
0001: 4000 LXI S P, 4057
0007: 4003 LXI H, 3000
0013: 4006 SHLD 4057 4057-W-00 4058-W-30

2-7

Getting Started With Multi-ICE

2-8

0023: 4009 INX H
0025: 400A SHLD 4059
0035: 4000 LHLD 4059
0045: 4010 MVI A,02
0049: 4012 ANA M
*

4059-W-01
4059-R-01

3001-R-OO

405A-W-30
405A-R-30

*;LlNE6IN PROG2SHOULD BE "P1 =8000;"

We see in frame 0049 that address 3001H appears; this is the guarded location.

Let's look at the contents of "code memory" to see where a "patch" might be in­
serted. Refer to figure 2-2 for the source code.

*;LlNE 61N PROG2 SHOULD BE "P1 = 8000;"
*BYTE.START2 LENGTH 10
.. PROG2.ST ART2
4003H=21 H OOH 30H 22H 57H 40H
.. PROG2#7
4009H=23H 22H 59H 40H
.. PROG2.LOOP
4000H=2AH 59H 40H 3EH 02H A6H
* BYTE 4005 = 80
*

We request 16 contiguous bytes (lOH = 16 decimal). The display gives the addresses
in hexadecimal, unless an exact match to a symbol is encountered; exact matches are
displayed as the symbol or line number, then the corresponding hex address on the
next line.

The display involves three symbolic locations in PROG2 (.START2, #7, and
.LOOP).

By inspection, we note the address "3000H" in bytes 4004 and 4005; we want to
change this to "8000H", and do so by setting "BYTE 4005 = 80". Later on, we'll
edit the source listing and recompile.

Now we can start the parallel emulation again; this time we begin from the main
loop in each program.

* ACTIVATE PR1
.*GO FROM .START1
.*ENOA
PR1 EMULATION BEGUN
*ACTIVATE PR2 ;SPACEBAR WAS PRESSED
.*GO FROM .START2
.*ENOA
PR2 EMULATION BEGUN

This listing does not show the input to or output from PROG 1, since they involve a
terminal external to the Intellec system.

Assuming that the desired effect is obtained, we request the prompt, KILL both PRI
and PR2, and EXIT from multi-ICE back to ISIS-II. The session is completed.

*KILL ALL ;SPACE BAR WAS PRESSED.
PR1 EMULATION TERMINATED, PC= .. PROG1.1N
PR2 EMULATION TERMINATED, PC= .. PROG2. LOOP+0003H
*EXIT

Refer to chapters 6, 7, 8, and 9 for the details on all the multi-ICE commands.
Chapters 3, 4, and 5 describe extensions to the multi-ICE command set that are
available in multi-ICE systems.

Multi-ICE

CHAPTER 31
EXPRESSIONS

An expression is a formula that evaluates to a number. The formula can contain
operands, operators, and parentheses. Depending on the command context, the
resulting number is interpreted either as an integer value or as a logical state
(TRUE IF ALSE).

This chapter shows you how to construct expressions by presenting the types of
operands and operators that can be used, and by giving rules and examples to ex­
plain how expressions are evaluated. The chapter also describes numeric and logical
(boolean) command contexts and various other contexts for interpreting numeric
results.

Operands
Operands are numeric values. Numeric values in expressions are represented by
primaries; a primary is a constant or reference. ICE "resolves" each primary
operand into a numeric operand by some form of "lookup" before evaluation
proceeds.

The next several sections discuss numbers under Multi ICE and review the types of
primaries that can be entered as operands in expressions.

Numbers
Under Multi ICE, all numbers are unsigned binary constants. In most cases, expres­
sions operate on and result in 16-bit numbers, with all operations treated
modulo 65536 (2 16

); thus, 65535 + 1 = 0, and 0 - 1 = 65535.

A numeric operand obtained by looking up a primary is forced to 16 bits for evalua­
tion. If the number has more than 16 bits, the high-order bits after the sixteenth are
discarded; if the number has fewer than 16 bits, the high-order bits are filled with
zeros.

Primaries
Aprimary is one of the following types of tokens:

constants:
numeric constant
string constant

direct references:
keyword-reference
symbolic-reference
statement-reference
process-reference

All these entities can be resolved into numeric operands without using any
operators. The next several paragraphs give details on the various types of
primaries.

3-1

Expressions

3-2

Numeric Constants

A numeric constant is simply a way of representing a number in an ICE command.
A numeric constant consists of one or more digits, and (optionally) a one-character
explicit radix to identify the number base. The elements of numeric constants are
summarized in table 3-1.

Table 3-1. Elements of Numeric Constants

Number Base Valid Digits Explicit Radix Example

Binary (base 2) 0,1 Y 11110011Y
Octal (base 8) 0-7 Q,O 363Q
Decimal (base 10) 0-9 T 243T
Hexadecimal (base 16) 0-9, A- F H OOF3H
Decimal Multiple of 1024T 0-9 K 4K

Numeric constants with explicit radix K (decimal multiple of 1024T) can be used
in expressions; however, the implicit radix cannot be set to K with the SUFFIX
command.

A numeric constant with an explicit radix entered from the console is interpreted ac­
cordingly. If the constant contains any digits that are invalid for that radix, an error
occurs.

A numeric constant without an explicit radix entered from the console is interpreted
according to the implicit radix that applies to the context. In most contexts, the im­
plicit radix is initially hexadecimal (H); in these contexts, the implicit radix can be set
to Y, Q, T, or H by using the SUFFIX command. Refer to the standard ICE
manuals for details on the SUFFIX command.

Certain contexts assume an implicit decimal (T) radix. In these contexts, any
numeric constant entered without an explicit radix is interpreted as a decimal
number. The COUNT command described in this manual is one such context; others
(for examples, the COUNT clause after STEP; PRINT; MOVE; statement­
numbers; and channel-group names) are discussed in the standard ICE manuals.
The SUFFIX command has no effect on these contexts. More details on command
contexts appear later in this chapter.

In this manual, most numeric constants are shown with explicit radixes for clarity.
Numbers without explicit radixes are decimal (for example, 65536), except for the
numbers 0 and 1, to which any radix can apply.

String Constants

Anyone of the ASCII characters (ASCII codes OOH through 7FH) can be entered as
a string constant by enclosing the character in single quotes. The operand value of a
string constant is a 16-bit number with the nine high-order bits set to 0, and the 7-bit
ASCII code in the low-order seven bits. For example, the string constant 'A' has the
value OOOOOOOOO 1 ()()()()() 1 Y (0041 H).

In data communications usage, an ASCII-coded character consists of seven low­
order data bits (bits 0 - 6), and a parity bit (bit 7). Thus, another way to describe the
operand value of an ASCII string constant is as a two-byte number; the high byte is
all zeros, and the low byte contains the 8-bit ASCII value with the parity bit set to O.

Multi-ICE

Multi-ICE

Table 3-2 gives the printing ASCII characters with their corresponding hexadecimal
codes (codes 20H through 7EH). Note that some console keyboards output upper
case ASCII characters only, or lack keys for some of the non-printing ASCII codes.

Table 3-2. ASCII Printing Characters and CODES (20H-7EH)

Character Hex Code Character Hex Code Character Hex Code

Space (SP) 20 @ 40 60
! 21 A 41 a 61
" 22 B 42 b 62
1# 23 C 43 c 63
$ 24 0 44 d 64
% 25 E 45 e 65
&: 26 F 46 f 66 , 27 G 47 9 67
(28 H 48 h 68
) 29 I 49 i 69
* 2A J 4A j 6A
+ 2B K 4B k 6B
, 2C L 4C I 6C
- 20 M 40 m 60

2E N 4E n 6E
I 2F 0 4F 0 6F
0 30 P 50 P 70
1 31 Q 10 q 71
2 32 R 52 r 72
3 33 S 53 s 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w n
8 38 X 58 x 78
9 39 Y 59 y 79

3A Z 5A z 7A
, 3B] 5B 7B
< 3C I 5C I 7C
= 3D [50 70
> 3E A (t) 5E 7E
? 3F -(-) 5F

Direct References

A direct reference is a keyword reference, symbolic reference, statement-number
reference, or process reference. All these references produce a numeric operand
value through some form of "lookup". Direct references differ from numeric and
string constants in one important aspect. If the expression containing a direct
reference is evaluated more than once (for example, in a loop), the direct reference
can have a different value each time the expression is evaluated.

Keyword References
A keyword reference is the name of a register, buffer, or flag accessible to ICE.
When a keyword reference is entered as an arithmetic operand, the current content
or setting of the register is used in the evaluation.

Symbolic References
A symbolic reference points to an entry in some ICE symbol table. Corresponding to
each symbol table entry is a number that represents an address or other value. When
a symbolic reference is entered as an arithmetic operand, its corresponding value is
obtained from the appropriate symbol table and used in the evaluation.

Expressions

3-3

Expressions

3-4

Statement-Number References
Under ICE-85, an entry such as " '56" in an expression causes the address of the
first instruction at that line number in the source code to be used as an operand.

With ICE-85, statement-number information for each module of high-level code
(PL/M, FORTRAN, or other high-level language) is stored in tables, one for each
module of code loaded. Since the LINK process combines different modules, each
with its own set of statement numbers, the reference may require a module iden­
tifier; the above example might become " .. CAR'56" to distinguish the reference
from line number 56 in another module. Statement numbers are interpreted in
decimal radix if they have no explicit suffix. Refer to the DOMAIN command in
Chapter 5, and to the ICE-85 manual for details.

Statement numbers are invalid in ICE-49 and ICE-41.

Process References
This form of primary occurs in multi-ICE operations. A process reference has the
form process-status process. Process is a token of the form PRn, where n is the
logical number of the ICE whose status is to be examined (examples: PRl, PR2), or
the keyword HOST. Process-status means one of the keywords ACTIVE,
SUSPENDED, or DORMANT. If the indicated ICE process is currently in the
specified status, the operand value of the process reference is TRUE (FFFFH);
otherwise it is FALSE (0).

Operators
An expression can contain any combination of unary and binary operators. Table
3-3 describes all the operators available under Multi-ICE. The operators are ranked
in order of precedence from highest (1) to lowest (9); other things being equal, the
operator with the highest precedence is evaluated first. The operators are shown in
the table as they are to be entered in expressions. The class of content- operators has
too many details to fit in the table; see table 3-5. The table identifies each operator as
unary or binary; a unary operator takes one operand, and a binary operator takes
two operands. The brief descriptions of the operations in the table are supplemented
by the text.

Classes of Operators

For discussion, the operators are classed as shown in table 3-4.

Arithmetic Operators

The ICE scanner distinguishes unary "+" and "-" from binary "+" and "-" by
context. Unary "+" is superfluous, since all numbers are assumed to be positive.

The unary "-" has two meanings in ICE commands. In the MOVE and PRINT
commands, "-" means "toward the top (earliest entry) in the trace buffer"; in this
context, "-" is a command token rather than an operator. In all other contexts, a
unary "-" means "2's complement modulo 65536"; in other words, (-N) evaluates
to (65536 - N).

Binary "+" results in the arithmetic sum of its two operands; the result is treated
modulo 65536 (any high-order bits after the sixteenth bit are dropped). Binary "-"
results in the arithmetic difference of its two operands; this result is also treated
modulo 65536, so that a "negative" result (-N) ends up as (65536 - N).

Multi-ICE

Multi-ICE

Precedence
Class 1

2

3

4

5

6

7

8

9

Notes:

Operator

+

MOD

+

MASK

content­
operator4

>
<

<>
>=
<=

NOT

AND

OR

XOR

Table 3-3. Enhanced-ICE Operators

Unary
Binary2

u

u

b

b

b

b

b

b

u

b

b

b

b

b

b

u

b

b

b

Unary plus.

Unary minus. (-N) means (65536-N), the 2's
complement of N, module 216

Integer multiplication.

Integer division. The result is the integer quotient;
the remainder (if any) is lost.

Modulo reduction. The remainder after division,
expressed as an integer.

Addition.

Subtraction.

Bitwise AND. Higher precedence than identical
operation AN 0 (see below).

Treats operand as memory or port address, returns
the content of that address.

Is equal to. Result is either TRUE (FFFFH) or FALSE
(0).

Is greater than. Result is TRUE or FALSE.

Is less than. Result is TRUE or FALSE.

Is not equal to. Result is TRUE or FALSE.

Is greater than or equal to. Result is TRUE or FALSE.

Is less than or equal to. Result is TRUE or FALSE.

Unary Logical (1 's) complement. 1 becomes 0, 0
becomes 1; TRUE becomes FALSE, FALSE becomes
TRUE.

Bitwise AND. If both corresponding bits are 1's,
result has 1 in that bit; else o. TRUE AND TRUE yields
a TRUE result; any other combination is FALSE.

Bitwise inclusive OR. If either corresponding bit is a
1, result has 1 in that bit; else O. If either operand is
TRUE, result is TRUE; else FALSE.

Bitwise exclusive OR. If corresponding bits are
different, result has 1 in that bit; else O. If one operand
is TRUE and the other is FALSE, result is TRUE; if
both are TRUE or both are FALSE, result is FALSE.

11 ;:::; highest precendence (evaluated first), 9 = lowest precedence.

2U = unary, b = binary.

JRefer to text for additional details.

4content-operator is one of the tokens BYTE, IBYTE, WORD, IWORD, PORT, CBYTE,
DBYTE, or X BYTE. See text and table 3-5.

Expressions

3-5

Expressions

3-6

Table 3-4. Classes of Operators

Class Operators

(Numeric)
Arithmetic

unary +,-
binary *, /, MOD, +, -, MASK

Content
unary content-operators

(Boolean)
Relational

binary =, >, <, >=, <=, <>
Logical

unary NOT

binary AND,OR,XOR

Unary +, -, content-operators
NOT

Binary *, /, MOD, +, -, MASK,
relational-operators,
AND,OR,XOR

Binary "*,, results in the multiplication of its two operands, truncated to the low­
order 16 bits.

Binary "/" divides the first operand by the second. The result is the integer quo­
tient; the remainder, if any, is lost. Thus, (5/3) evaluates to (1).

Binary "MOD" returns the remainder after division as an integer result, and the
quotient part of the division is lost. Thus, (5 MOD 3) evaluates to (2), the remainder
of (5/3).

Binary "MASK" performs a bitwise logical AND on its two operands. If either cor­
responding bit is aI, or if both are l' s, the result has 1 in that bit; if both are 0, the
result has 0 in that bit. MASK is identical to the boolean "AND" operator, except
that MASK has higher precedence.

Unary "-" has highest precedence of the arithmetic operators. Binary "*", "/",
and "MOD" have equal precedence, lower than unary "-". Binary "+" and "-"
have equal precedence, lower than "*", "/", and "MOD". "MASK" has lowest
precedence of the arithmetic operators.

Content Operators

The content operators are keywords that refer to the contents of memory addresses
and I/O ports. In expressions, they function as unary operators with precedence
next lower after "MASK" . Each ICE has its own set of content operators. Table 3-5
summarizes the content operators for ICE-85, ICE-49, and ICE-41. Refer to the
standard ICE manuals for more detail.

To be used in an expression, a content operator must precede a single operand that
can be interpreted as a valid address. A partition of addresses (using a keyword such
as TO or LENGTH) cannot be used in an expression. Furthermore, the address
given must be accessible (not GUARDED) if it uses the memory map. Refer to the
standard ICE manuals for details on addresses, partitions, and memory mapping.

Multi-ICE

Multi-ICE

Table 3-5. Content Operators
-

Operator Content Returned ICEs

BYTE Byte at address in mapped memory. 85
WORD Word (two consecutive bytes) at address in mapped

memory. 85
IBYTE Byte at address in Intellec shared memory. 85
IWORD Word at address in Intellec shared memory. 85
PORTI Byte content of addressed port, as mapped. 85
CBYTE Byte at address in user code memory. 49,41
DBYTE Byte at address in user data memory. 49,41
XBYTE Byte at address in user external data memory. 49

Note:
1. ICE-49 and ICE-41 use keywords such as PO and P1 to refer to 1/0 port contents.

Relational Operators

A relational operator calls for a comparison of the values of its two operands. The
six possible comparisons are shown in Table 3-3. Each comparison is either true
when the expression is evaluated, or it is false; the result is correspondingly TRUE
(FFFFH) or FALSE (0).

Logical Operators

The "NOT" operator results in aI's complement of its operand; a 16-bit operand is
assumed. Here are some examples:

NOT 0 -+ FFFFH
NOT 1 -+ FFFEH
NOT11110110Y -+ 1111111100001001Y
NOT FFFFH -+ 0

The result of "AND" on any pair of corresponding bits in its two operands is as
follows:

Examples:

o ANDO -+ 0

bit 1

o
o
1
1

1010Y AND 1001Y -+ 1000Y
FFFFH AND 0 -+ 0
FFFFH AN D FFFFH -+ FFFFH
1ANDO-+O

bit 2

o
1
o
1

Result

o
o
o
1

Expressions

3-7

Expressions

3-8

The result of an "OR" operation on any pair of corresponding bits in its two
operands is as follows:

Examples:

o OR 0 -+ 0
1 OR 0 -+ 1

bit 1

o
o
1
1

1010Y OR 1001Y -+ 1011Y
FFFFH OR 0 -+ FFFFH
FFFFH OR FFFFH -+ FFFFH

bit 2

o
1
o
1

The result of an "XOR" operation is as follows:

Examples:

OXORO-+O
1 XOR 0 -+ 1

bit 1

o
o
1
1

1010Y XOR 1001Y -+ 11Y
FFFFH XOR 0 -+ FFFFH
FFFFH XOR FFFFH -+ 0

Environment Controls

bit 2

o
1
o
1

Result

o
1
1
1

Result

o
1
1
o

An environment control is one of the keywords EN! or EN2. When an environment
control is used in an expression. ICE uses that environment for all references. There
are two ways to use an environment control:

(1) ENn primary

(2) ENn (expression)

With the first form, the environmental control applies only to the primary
(reference) that immediately follows. Thus, the scope of an environmental control
without parenthesis is the next primary.

Parentheses can be used to extend the scope of an environmental control to an ex­
pression. The parentheses also control the order of evaluation.

Environmental controls are useful when one ICE wants to access a reference to the
other ICE from within an ACTIVATE list (see Chapter 6 for more details).

An environmental control is treated like a unary operator with highest precedence.

Multi-ICE

Multi-ICE

How Expressions are Evaluated

Here is a simple conceptual model of how ICE evaluates an expression. The model
involves a loop that scans the expression iteratively (figure 3-1). The loop terminates
in two ways:

• When nothing remains except a single number.

• When a syntax error (or other error) occurs.

ICE goes through the scan loop once for each operator in the expression. On each
scan, the operator (unary or binary) that must be applied next is identified. The next
operator is always:

• the leftmost operator

• with highest precedence (table 3-3)

• that is enclosed in the innermost pair of parentheses.

If this next operator is unary, and has a numeric operand, the operation is perform­
ed on the operand to produce a numeric result. If the next operator is binary, and
has a pair of numeric operands, the operation is performed on the pair of operands
to prodlice a numeric result. If the next operator does not have the required number
of numeric operands, a syntax error results, and the loop terminates.

A pair of parentheses is "cleared" when it contains just a single number; that is:

(number) -+ number

After performing any operation, the numeric result becomes an operand for the next
scan. Parentheses are cleared before the next scan begins.

"Case Studies" in Evaluating Expressions

Here are some respresentative cases of expressions showing how they are evaluated.
In some examples, the steps in evaluation are shown, but most show just the overall
result. Table 3-6 summarizes the cases. The EVALUATE (EVA) command used in
these examples performs the evaluation and displays the result in the four numeric
radixes (Y, Q, T, and H), plus the ASCII printing equivalent (if any) in single
quotes. The examples in this section assume the initial conditions shown in table 3-7.
This table also describes the special notation used in some of the examples. The ex­
amples also assume SUFFIX = T; that is, any number without an explicit radix is
decimal.

Case 1: EVALUATE primary

An expression can be just a single primary, requiring at most a lookup to produce a
numeric result.

Examples:

EVA 10
1010Y 12Q 10T AH "

EVA PC
1000000000000Y 10000Q 4096T 1000H "

EVA.AA
10000000000000Y 20000Q 8192T 2000H "

Expressions

3-9

Expressions

YES

182-1

3-10

PERFORM THE
OPERATION;

RESULT IS
ANUMBER

NOG

Figure 3-1. A Simple Model of Evaluation

Multi-ICE

Multi-ICE Expressions

Case 2: EVALUATE unary-operator primary

A unary operator with a single primary operand evaluates to a number.

Examples:

EVA-2
1111111111111110Y 1777760 65534T FFFEH 't'

EVA BYTE .AA
100011Y 430 35T 23H 'I'

EVA NOT PC
1110111111111111Y 1677770 61439T EFFFH '0'

Table 3-6. Representative Cases of Expressions

Case Expression Precedence Result of Lookup
Plus One Scan

1 primary None number

2 unary-operator primary Any number

3 primary binary-operator primary Any number

4 primary b1 primary b2 primary b1 >= b2 number b2 number (case 3)
b2» b1 number b1 number (case 3)

5 primary b1 (primary b2 primary) b1 »b2 number b1 number (case 3)
b2» b1 number b1 number (case 3)

6 u1 primary b1 primary u1» b1 number b1 number (case 3)
b1 »u1 u1 number (case 2)

7 primary b1 u1 primary u1 »b1 number b1 number (case 3)
b1 »u1 ERROR (See case 8)

8 primary b1 (u1 primary) u1 »b1 number b1 number (case 3)
b1» u1 number b1 number (case 3)

9 u1 u2 primary u2 >= u1 u1 number (case 2)
u1» u2 ERROR (See case 10)

10 u1 (u2 primary) u2» u1 u1 number (case 2)
u1» u2 u1 number (case 2)

Table 3-7. Conditions and Notations for Examples

Conditions

All memory locations are accessible (none are GUARDED).
SUFFIX = T (implicit radix is decimal).
PC= 1000H
DEFINE .AA = 2000H
DEFINE. BB = FFFFH
BYTE 1000H = 3EH
BYTE 2000H = 23H

Notation

- evaluates to.
» has higher precedence than.
»= has higher or equal precedence.
u1,u2, ... u nary operators
b1,b2, ... binary operators

3-11

Expressions

3-12

Case 3: EVALUATE primary binary-operator primary

The binary operator is applied to its two primary operands, to produce a numeric
result.

Examples:

EVA 10 + 20
11110Y 360 30T 1 EH "

EVA .AA>10
1111111111111111Y 1777770 65535T FFFFH "

EVA.AAORPC
11000000000000Y 300000 12288T 3000H '0'

Case 4: EVALUATE primary bI primary b2primary

The binary operator with highest precedence is evaluated first. If they have equal
precedence, bI (the leftmost) is evaluated first.

A. bI »= b2

Examples:

EVA 10+ .AA - PC
1000000001010Y 100120 4106T 100AH "

EVA 10 * .AA - PC
11000000000000Y 300000 12288T 3000H '0'

EVA PC = .AA OR .BB
1111111111111111Y 177n70 65535T FFFFH "

EVA 1 +2-3
OY 00 OT OH "

EVA 3 * 2+1
111Y 70 7T 7H "

B. b2»bl

Examples:

EVA2+3 * 4
1110Y 160 14T EH "

EVA .BB OR .AA AND PC
1111111111111111Y 17n770 65535T FFFFH "

EVA 1 OR 2AND3
11Y 30 3T 3H "

Multi-ICE

Multi-ICE

Case 4 also fits expressions of any length that use only binary operators. Here is an
example showing the steps in the evaluation.

Step Operation Result

o
1
2
3
4
5
6

Expression
Lookup
MOD

.BB OR PC = .AA AND AFAFH XOR .AA MOD 2n
FFFFH OR 1000H = 2000H AND AFAFH XOR 2000H MOD 2n
FFFFH OR 1000H = 2000H AND AFAFH XOR 9FH
FFFFH OR 0 AND AFAFH XOR 9FH

AND
OR
XOR

More examples:

FFFFH OR 0 XOR 9FH
FFFFH XOR 9FH
FF60H

EVA 2 XOR 32 MASK 41 MOD 33
10Y 20 2T 2H "

EV A 2 * 3 + 5 I 3 I 4 + 7
1101 Y 150 13T 0 H "

EVA2 + 3 * 5 + 7
11000Y 300 24T 18H "

Case 5: EVALUATE primary bI (primary b2primary)

Binary operator b2 is evaluated first, even if it has lower precedence than bl. Use
parentheses when b2 must be evaluated before bl.

Examples:

EVA 2 * (3 + 5)
10000Y 200 16T 10H "

EVA .BB I (.AA MASK AFAFH)
111Y 70 7T 7H "

This case can be generalized to include any number of binary operators and any
arrangement of parentheses. Here is an example:

Step Operation Result

0 Expression 10 * (44 + (17 * 15 - 6) 17)
1 2nd* 10* (44+(255-6) 17)
2 10 * (44 + (249) 1 7)
3 Clear () 10 * (44 + 249 1 7)
4 1 10 * (44 + 35)
5 + 10 * (79)
6 Clear() 10 * 79
7 1st* 790

Expressions

3-13

Expressions

3-14

Case 6: EVALUATE ul primary bI primary

Precedence decides which operator is evaluated first.

A. ul »bI

Examples:

EVA -10 + 22
1100Y 140 12T CH "

EVA BYTE .AAOR .BB
1111111111111111Y 1777770 65535T FFFFH "

EVA NOT .BB AND AFAFH
OY 00 OT OH "

B. bI »uI

Examples:

EVA BYTE .AA -1000H
111110Y 760 62T 3EH "

EVA NOT .BB 123
1111010011011110Y 1723360 62686T F4DEH 'Tt'

Case 7: EVALUATE primary bI ul primary

The unary operator must have higher precedence than the binary operator.

A. ul > > bI is valid.

Examples:

EVA 10 *-2
1111111111101100Y 1777540 65516T FFECH 'L'

EVA .AA AND NOT .BB
OY 00 OT OH "

B. bI» ul produces an error. Operator bI must be evaluated next, and
requires two operands, but ul primary has not yet been evaluated to a
numeric result.

Examples:

EVA 10 + BYTE .AA
HOST/EN1 ERR 80: SYNTAX ERROR

EVA .AA MASK NOT. BB
HOST/EN1 ERR 80: SYNTAX ERROR

Multi-ICE

Multi-ICE

Case 8: EVALUATE primary bI (ul primary)

Unary operator ul is evaluated first, even if it has lower precedence than binary
operator bl. Parentheses must be used when ul has lower precedence than bl.

Examples:

EVA 10 + (BYTE .AA)
101101Y 550 45T 2DH '-'

EVA .AA MASK (NOT. BB)
OY 00 OT OH "

Case 9: EVALUATE ul u2primary

Unary operator u2 must have higher precedence than ul to evaluate without an
error.

A. u2» ul is valid

Examples:

EVA BYTE -EFFFH
10000000Y 2000 128T SOH "

EVA NOT BYTE .AA
1111111111011100Y 1777340 65500T FFDCH "

B. u 1 > >= u2 results in an error.

Examples:

EVA BYTE NOT .AA
HOST IEN1 ERR 80: SYNTAX ERROR

EVA - BYTE .AA
HOST/EN1 ERR 80: SYNTAX ERROR

EVA BYTE BYTE 1000H
HOST/EN1 ERR SO: SYNTAX ERROR

EVA--5
HOST/EN1 ERR 80: SYNTAX ERROR

Case 10: EVALUATE ul (u2primary)

Unary operator u2 is evaluated first, even if it has lower precedence than ul. Paren­
theses must be used when u2 has lower precedence than ul.

Examples:

EVA BYTE (NOT .AA)
111101Y 750 61T 3DH '='

EVA - (BYTE .AA)
1111111111011101Y 1777350 65501T FFDDH ']'

EVA BYTE (BYTE 1000H)
11111110Y 376Q 254T FEH It'

EVA - (- 5)
101Y 50 5T 5H "

Expressions

3-15

Expressions

3-16

Two other "cases" can be diagrammed as:

primary b1 b2 primary
primary u1 b2 primary

Both forms produce an error no matter which operator has higher precedence, and
no arrangement of parentheses can resolve the error.

These examples show the basic ways to control evaluation with and without paren­
theses. Parentheses must be used when two operators are concatenated and the se­
cond operator has lower precedence than the first.

Command Contexts

All expressions produce numbers as results. The interpretation or use of the result
depends on the command that contains the expression.

The term numeric-expression means an expression in a numeric command context.
Numeric command contexts treat the result as an integer value; all bits are im­
portant. In the standard ICE manuals, all expressions are numeric.

The term boolean-expression means an expression in a boolean command context.
Boolean command contexts test only the least significant bit (LSB) of the result, to
obtain a TRUE or FALSE value. The result of a boolean expression is TRUE if its
LSB is 1, FALSE if its LSB is O. Thus, any number can have a boolean interpreta­
tion. In this manual, the command keywords IF, ORIF, WHILE, UNTIL, and
BOOL establish boolean contexts; all other commands establish numeric contexts.

The BOOL command can be used instead of the EVALUATE command to display
the evaluation of an expression as TRUE or FALSE.

A boolean expression uses relational and logical operators to manipulate
TRUE/FALSE values. When a relational operator is evaluated, the result is always
either 0 (FALSE) or FFFFH (TRUE). These results can have a numeric interpreta­
tion, but relational operators have limited usefulness in numeric contexts.

When logical operators are applied to TRUE/FALSE values, the results are also
boolean. Specifically:

NOT:

AND:

OR:

XOR:

NOT FALSE -+ TRUE
NOT TRUE -+ FALSE

TRUE AND TRUE -+ TRUE
TR UE AND FALSE -+ FALSE
FALSE AND TRUE -+ FALSE
FALSE AND FALSE -+ FALSE

TRUE OR TRUE -+ TRUE
TRUE OR FALSE -+ TRUE
FALSE OR TRUE-+TRUE
FALSE OR FALSE -+ FALSE

TRUE XOR TRUE -+ FALSE
TRUE XOR FALSE -+ TRUE
FALSE XOR TRUE -+ TRUE
FALSE XOR FALSE -+ FALSE

Multi-ICE

Multi-ICE

In addition to numeric and boolean contexts, there are several other contexts that
control the interpretation or use of a number or expression. These contexts are sum­
marized in table 3-8 for reference.

Table 3-8. Command Contexts

Type of Entry Contexts Interpretation limitations Example of Use

Numeric expression Set and change com- 16-bit unsigned All primaries and PC = .AA * 256T + 10FFH
mands, etc. number; may be operators allowed.

forced to fit destina- Numeric constants
tion. without suffix is in-

terpreted in current
default radix.

Boolean expression BOOl, WHilE, lSB = 0 FALSE All primaries and WHilE PC< .BB+ .OFFSET
UNTil, IF, OR IF lSB =1 TRUE operators allowed.

Numeric constants
without suffix is in-
terpreted in current
default radix.

Count COUNT command, 16-bit positive All primaries and COUNT10
STEP COUNT, clock number operators allowed.
rates all constants without

suffix are decimal.

Address FROM, context- 16-bit (or lower) ad- Only arithmetic GO FROM .CC + .OFFSET
operator, Partition, dress in memory or operators are allow-
MAP, SAVE, DUMP 1/0. ed outside paren-

theses. Constants
without suffix are in-
terpreted in current
default radix.

Decimal number statement-number, positive number No operators are PRINT 10
MOVE,PRINT allowed outside

parentheses. All
constants without
suffix are decimal.

Decimal constant channel-number Positive decimal Single constant, no DEFINEGROUPX=1, 9, 17
(ICE-85) constant. suffix allowed.

Expressions

3-17

CHAPTER 4
ICE-INDEPENDENT COMMANDS

The ICE-independent commands described in this chapter can be executed by the
HOST in either environment (ENl or EN2) and by either ICE process (PRl or PR2).

The commands are as follows:

Loop and Branch Commands

REPEAT command
COUNT command
IF command

Macro Commands

DEFINE MACRO command
Call macro command
Display macro command
Display macro directory command
REMOVE MACRO command
PUT macro command
INCLUDE command

Display Commands

BOOl command
WRITE command
Multiple displays
Symbolic displays
IN 0 symbol commands
Define IND symbol command
Remove IND symbol command
Display IN 0 symbol commands

Compound Commands
A compound command is a control structure that contains zero or more commands.
The compound commands discussed in this chapter are the REPEAT, COUNT, IF,
and DEFINE MACRO commands. Two other compound commands~ ACTIVATE I
and LOCK, apply to multiple-ICE operations and are discussed in later chapters. As.
the command titles indicate, REPEAT ·and COUNT are looping commands, IF
establishes conditional execution, and DEFINE MACRO establishes a named com­
mand block.

Local and Global Defaults
Several of the system defaults can have "local" settings within a compound com­
mand; these defaults are as follows:

Default

SUFFIX

SWITCH

LOCK

Refers to:

Default radix for console input.

Default ICE environment to be used for any reference without an
explicit environment operator.

The process that currently is executing a LOCK command block.

4-1

ICE-Independent Commands

4-2

When a compound command executes, the current "global" settings of SUFFIX,
SWITCH, and LOCK are saved so that they can be restored after the command
finishes executing. Each of these global defaults continues in effect within the block
unless and until a new (local) default is set with a SUFFIX, SWITCH, or LOCK
command in the compound command. Defaults other than these are changed
globally when they are set within a block.

When the command block finishes executing, the previous SUFFIX, SWITCH and
LOCK defaults are restored. Thus, any of these three defaults that is set within a
block has no effect after that block has terminated.

Here is an (artificial) example of a macro block with a local default:

DEF MACSETO
SUFFIX= H
BYTE 0 TO 10 = 0

EM

Without the local SUFFIX command, the range of addresses to be set would depend
on the global SUFFIX in effect when the macro SETO is called. The global SUFFIX
is restored after SETO exits.

REPEAT Command

REPEATer

[

command cr J
WH I LE boolean-expression cr
UNTIL boolean- expression cr

ENDREPEAT

Examples:

REPEAT
GO FROM.STARTTILL BRO

ENDREPEAT

REPEAT
WHILE .VAR < .TOTAL
STEPCOUNT1
PRINT-1

ENDR

REPEAT
.COUNTER = .COUNTER + 1
WRITE 'COUNTER = I, BYTE .COUNTER
UNTIL .COUNTER > .MAXIMUM

END

REPEAT Command keyword identifying the beginning of the
command block to be repeated.

CI

command

Intermediate carriage return.

Any ICE command, simple or compound, except
DEFINE MACRO.

Multi·ICE

Multi-ICE ICE-Independent Commands

WHILE

boolean-expression

UNTIL

ENDREPEAT

Discussion

Command keyword introducing a "while true"
clause.

An expression that is TRUE when the least
significant bit (LSB) = 1 and FALSE when the LSB =
O.

Command keyword introducing an "until true"
clause.

Command keyword identifying the end of the
command block.

The REPEAT command executes zero or more ICE commands in a loop; the loop
can also contain zero or more logical conditions for termination.

The REPEAT command consists of the REPEAT keyword, zero or more com­
mands of any type, zero or more exit conditions using WHILE or UNTIL, and the
keyword END. Enter each of these elements on its own line of the console display;
terminate each input line with an intermediate carriage return (shown as cr in the
command syntax).

After each intermediate carriage return, ICE begins the next line with a period (giv­
ing an indented appearance), then the asterisk prompt to signal readiness to accept
the next element. After the END keyword, enter a final carriage return to begin the
sequence of execution. The final carriage return after END is not shown in the syn­
tax, since all commands terminate with a final carriage return. The END keyword
can be entered as EN DR or ENDREPEAT; the characters after END serve as a form
of "comment" to indicate which loop is being terminated.

The elements to be repeated are shown in brackets in the syntax. Each element can
be a command,a WHILE clause, or an UNTIL clause. You can mix these elements
in any order, using any number of each type of element. If no elements are entered,
the REPEAT is a "null" command.

Each command is executed when it is encountered on each iteration. After the com­
mand has been completely executed, the loop proceeds to the next element.

The WHILE and UNTIL keywords introduce exit clauses. The WHILE clause ter­
minates execution of the loop when its boolean-expression evaluates FALSE. The
UNTIL clause terminates the loop when its boolean-expression evaluates TRUE.

In both the WHILE and UNTIL clauses, the boolean-expression is evaluated each
time the clause is encountered; that is, once per iteration. Evaluation at each itera­
tion involves looding up the values of any references in the exprression. Thus, the
result can change with each evaluation. Refer to Chapter 3 for an explanation of
how expressions are evaluated.

The choice of WHILE or UNTIL is usually a matter of convenience -- there is
always a way to convert one into the other. For example, "WHILE bool-expr" is
equivalent to "UNTIL NOT (bool-expr)" .

4-3

ICE-Independent Commands

4-4

NOTE
To terminate execution of a REPEAT (or COUNT) loop, press the ESC key
at the console. The ICE command currently executing halts wherever it hap­
pens to be; if you are emulating, the current instruction is completed before
the break. ICE responds to the ESC with the asterisk prompt when no ICE
process is ACTIVE.

An exit can be made only when a condition is tested, not when it occurs. To cause an
exit, the test must be placed at the point in the loop where the condition occurs. For
example, consider the following command sequence:

PC= .START
REPEAT

UNTIL PC = 1000H
STEPCOUNT1

ENDR

In this command the condition PC = lOOOH is tested after every STEP. If the se­
quence of STEPs reaches PC = lOOOH as the next instruction, the loop will ter­
minate. By contrast, consider this example:

PC= .START
REPEAT

UNTIL PC = 1000H
STEP COUNT 10

ENDR

In the second example, the condition PC = lOOOH is tested after every ten STEPs.
The loop exits only if PC = lOOOH occurs at the end of some group of ten instruc­
tions. If PC = lOOOH occurs during one of the groups of ten STEPs, the loop does
not terminate because that condition is changed by subsequent STEPs before the test
can be made.

If the command has more than one exit clause, each exit clause is tested when it is en­
countered. If the result at the moment of the test causes an exit, the loop terminates;
otherwise, the loop proceeds to the next element.

The loop exits only when the current test causes it, even though some other clause in
the loop would cause an exit if it could be tested at that moment. Consider this (ar­
tificial) example:

DEFINE .ZZ = 0
PC=O
REPEAT

UNTIL PC> 10H
STEPCOUNT10
PRINT -10
WHILE .ZZ=O
.ZZ= .ZZ+1

ENDR

Assume for this example that the code being emulated (with STEP) contains only
one-byte instructions. Then, after the first time through the loop, PC = OAH (lOT)
and .ZZ = 1. On the second iteration, the test PC > lOH is FALSE when it is en­
countered, so the STEP and PRINT commands are executed again. At this point,
PC > lOH is TRUE but since it is not tested, no exit occurs. Instead, the condition
.ZZ = 0 is tested, found to be FALSE, and the loop exits.

Multi-ICE

Multi-ICE ICE-Independent Commands

Here are some brief examples of the REPEAT command.

Example 1: Generate an ASCII table similar to Table 3-2.

DEFINE .TEMP = 40H
REPEAT

WHILE. TEMP <= 7EH
EVALUATE .TEMP
.TEMP = .TEMP + 1

ENDR

Example 2: Single-step through the user program and display the trace data col­
lected for each instruction until a repetitious routine (.DELAY) is reached.

TRACE = INSTRUCTIONS
PC= .START
REPEAT

UNTIL PC = .DELAY
STEPCOUNT1
PRINT -1

ENDR

Example 3: Using a complex combination of conditions in the boolean expression.
Note that a combination like this cannot appear in a TILL clause after STEP, since
parentheses and the XOR operator are not allowed with TILL.

REPEAT
UNTIL (PC> .END XOR BYTE .VAR1 = 0) AND (.TEMP > 0 XOR .VAR2 = 1)
STEPCOUNT1
REGISTERS

ENDR

Example 4: Emulate from the start of the program (.START) until a breakpoint
(LOCATION lOOOH EXECUTED) is reached, display status registers, then con­
tinue emulating, halting, and displaying status until a terminating condition (BYTE
. V AR = 2) is reached.

PC= .START
REPEAT

GO TILL LOCATION 1000H EXECUTED
REGISTERS
UNTIL BYTE .VAR = 2

ENDR

COUNT Command

COUNTcountcr

[
command cr]
WHILE boolean-expression cr
UNTIL boolean-expression cr

ENDCOUNT

4-5

ICE-Independent Commands

4-6

Examples:

COUNT10
GO FROM.STARTTILL BRa

ENDCOUNT

COUNT .TESTTIMES + 50T
WHILE .VAR < .TOTAL
STEPCOUNT1
PRINT -1

ENDC

COUNT BYTE.COUNTER
WRITE 'COUNTER = ' BYTE.COUNTER

END

COUNT

count

cr

command

WHILE

boolean-expression

UNTIL

ENDCOUNT

Discussion

Command keyword marking the beginning of a
bounded loop.

A number (implicitly decimal if entered without
radix) or expression specifying the maximum number
of iterations of the commands in the block.

Intermediate carriage return.

Any simple or compound ICE command, except
DEFINE MACRO.

Command keyword introducing a "while true" exit
condition.

A number or expression that evaluates to TRUE if its
least significant bit (LSB) = 1, and to FALSE if its
LSB=O.

Command keyword introducing an "until true" exit
condition.

Command keyword marking the end of the
command block in the loop. May be abbreviated to
END.

Like REPEAT, the COUNT command sets up a loop. In addition to the WHILE
and UNTIL clauses discussed under REPEAT, COUNT includes a loop counter that
terminates the loop if no exit condition is met before the counter runs out.

The count after COUNT controls the (maximum) number of iterations to be per­
formed. If a numeric constant is used (for example, COUNT 10), ICE interprets it in
implicit decimal radix; in other words, any number entered after COUNT without
an explicit radix is interpreted as a decimal number.

Multi-ICE

Multi-ICE ICE-Independent Commands

If the entry after COUNT is an arithmetic expression, it is evaluated to give the
number of iterations. The COUNT expression is evaluated once, before any loop
elements are encountered. It is not evaluated again on any iteration. The COUNT
expression uses the values of any references it contains as they stand at the time of
evaluation. For example, consider the following command sequence:

DEFINE .XX = 2
COUNT .XX

.XX= .XX+1
END

This loop goes through two iterations, although .XX has value 4 when the loop ter­
minates.

The loop terminates when the number of iterations given by the COUNT expression
has been performed or when an exit condition is tested and causes exit, whichever
comes first. The following example illustrates this concept.

DEFIN E .XX = 1
COUNT5

.XX= .XX+1
WHILE .XX<5

END

To show that the loop terminates on the WHILE condition before the COUNT ex­
pression is exhausted, we can "track" the loop in operation. Table 4-1 shows the
track.

Table 4-1. Tracking a COUNT Command

Iteration .XX .XX<5

1 2 TRUE
2 3 TRUE
3 4 TRUE
4 5 FALSE

The loop terminates during the fourth iteration, when .XX < 5 becomes FALSE.

Conversely, the COUNT expression specifies the maximum number of iterations to
be performed in case no exit clause produces an exit on any iteration. For example:

TRACE = INSTRUCTION
PC= .START
COUNT10

UNTIL PC = . DELAY
STEPCOUNT1
PRINT-1

END

In this command, the COUNT expression specifies a maximum of ten STEPs, in
case the first instruction at .DELAY is not reached during any iteration.

4-7

ICE-Independent Commands

4-8

With a REPEAT or COUNT command that includes one or more exit-clauses, there
may be no direct way to tell how many iterations occurred before the loop ter­
minated. For these cases, you can insert a loop counter as a loop element. For exam­
ple, to obtain table 4-1 as a display (or LIST file output) you could use the following
sequence.

BASE=T
DEFINE. ITER = 0
DEFINE. XX = 2
COUNT10

.xx = .xx + 1

.ITER = .ITER + 1

.ITER

.XX
BOOl.XX<5
WHILE .XX<5

END

The command BOOL .XX < 5 produces a display of TRUE or FALSE. The BOOL
display command is discussed later in this chapter.

The following example emulates to a breakpoint, displays status registers, then con­
tinues emulating, breaking, and displaying status for a definite number of iterations:

PC= .START
COUNT10

GO TILL lOCATION 1000H EXECUTED
REGISTERS

END

IF Command
IF boolean-expression [THEN] cr

[commandcr] ...

r ORIF boolean-expression [THEN] cr]

L [command cr] ...

rELSEcr]
L [command cr] ...

ENDIF

Examples:

IF PC> 1000H THEN
GOTILL BRO

ENDIF

IF PC >= 0 AND PC < 1000H
GOTllL BRO

ENDIF

IF PC >= 0 AND PC < 1000H
GO TILL BRO

ORIF PC >= 1000 AND PC < 2000H
GOTllL BR1

ELSE
GOTllLSYO

END

Multi-ICE

Multi-ICE ICE-Independent Commands

IF

boolean-expression

THEN

cr

command

ORIF

ELSE

ENDIF

Discussion

Command keyword marking the beginning of the
first block of commands in the conditional com­
mand.

A number or expression that evaluates to TRUE
when its least-significant bit (LSR) is 1, or to FALSE
when its LSB is o.
Optional command keyword.

Intermediate carriage return.

Any simple or compound ICE command except
DEFINE MACRO. The block of commands in the
first IF or ORIF clause with a TRUE boolean expres­
sion are executed.

Command keyword marking the beginning of an
additional block of commands to be executed when
the ORIF condition is TRUE.

Command keyword marking the beginning of a
block of commands to be executed when none of the
IF or ORIF conditions is TRUE.

Command keyword marking the end of the IF
command. May be abbreviated to END.

The IF command permits conditional execution in a command sequence. The com­
mand must have the IF clause; the ORIF and ELSE clauses are optional. The com­
mand can include as many ORIF clauses as desired. The IF and ORIF clauses each
contain a single condition (boolean expression). Any clause can contain none, one,
or more commands. A clause with no commands simply produces an exit when its
condition is TRUE.

ICE examines each boolean expression in turn, clause by clause, looking for the first
TRUE condition. If a TRUE condition is found, the commands in that clause are ex­
ecuted and the IF command terminates. If none of the conditions is TRUE, the com­
mands in the ELSE clause are executed and the IF command terminates. If the
ELSE clause is omitted and no condition is TRUE, the IF command terminates with
no commands executed.

The ENDIF keyword is required to close off the IF command; it can be abbreviated
to END.

Here is an example of the IF command.

BASE=T
PC=1
IF PC< 1

EVALUATE 1
ORIFPC<2

EVALUATE 2
ORIFPC<3

EVALUATE 3
ELSE

EVALUATE 4
END

4-9

ICE-Independent Commands

4-10

This example displays the result of EVALUATE 2 and then terminates. The first
condition (IF PC < 1) is FALSE, so EVALUATE 1 is skipped. The second condition
(ORIF PC < 2) is TRUE, so EVALUATE 2 is executed and the IF command ter­
minates. The third condition (ORIF PC < 3) is not tested, even though it happens to
be TRUE.

In practice, however, the IF command is useful when it is nested in a REPEAT or
COUNT loop rather than appearing at the "top" level. The reason for this is that
you want to test conditions that can change (due to other commands in the loop),
whereas at the top level the TRUE or FALSE state of any condition is known, or can
be determined with the BOOL command. Thus, the result from the previous exam­
ple can be obtained with fewer steps:

BOOl PC < 1 (Displays FALSE)
BOOl PC < 2 (Displays TRUE)
EVALUATE 2

Nesting Compound Commands

The REPEAT, COUNT, and IF commands can be nested to provide a variety of
control structures.

Each nested compound command must have its own END keyword. When entering
a nested command sequence, you may wish to use the keywords ENDR, ENDC; and
END IF, to help you keep straight which command you intend to close off. ICE does
not check nesting levels at entry, and if an END is omitted, the resulting error makes
it necessary to enter the entire command again.

Each nested REPEAT or COUNT command can contain its own exit clauses
(WHILE or UNTIL). Each such exit clause can terminate the loop that contains it,
but has no effect on any outer loops or commands.

As an example of nesting, suppose you want to STEP through a program with trace
display, but skip a repetitive timeout routine, .DELA Y, that is CALLed several
times during program execution. One way to achieve this effect (in ICE-85) is with
the following command sequence:

TRACE = INSTRUCTION
PC= .START
REPEAT

IF PC = .DElAY
PC=WORDSP
SP = SP + 2

ENDIF
STEPCOUNT1
PRINT-1

ENDR

At each CALL to .DELA Y in the program, the return address for the call is pushed
on the stack. The keyword SP refers to the stack pointer, the address of the top of
the stack where the return address is stored. The effects of the commands PC =
WORD SP and SP = SP + 2 are to load the return address back into PC and reset
the stack pointer just as if the RET (return) instruction at the end of .DELA Y had
been executed. (This command sequence for "popping" the stack works with
ICE-85 only; a sample sequence to accomplish the same thing for ICE-49 is given as
a macro later in this chapter.)

Multi-ICE

Multi-ICE ICE-Independent Commands

As another example of nesting, suppose the user code at statements #21 and #22 is
incorrect or not written yet. The following sequence emulates to the point where
substitute code is to be inserted, inserts the code (equivalent to "IF MARK> 0 then
PTR = PTR + 2" in PL/M), then continues emulating beginning with statement #23
(the insertion is made any time emulation reaches statement #21):

GO FROM .STARTTILL#21 EXECUTED
REPEAT

IF BYTE. MARK> 0
WORD .PTR = (WORD .PTR) + 2

ENDIF
GO FROM #23 TILL #21 EXECUTED

ENDR

As a last example of nesting, the following sequence keeps track of the procedure
level in the user code, displays any CALL or RET (return) instruction, and ter­
minates when the outermost procedure returns.

PC= .START
SR=COUNT1
DEFINE .LEVEL = 1
REPEAT

STEP
IF OPCODE = OCDH OR OPCODE MASK 3070 = OC4H ;CALL

.LEVEL = .LEVEL + 1
PRINT -1
.LEVEL ;display level

ORIF OPCODE = OC9H OR OPCODE MASK 3070 = OCOH ;RETURN
.LEVEL = .LEVEL -1
PRINT -1
.LEVEL ;display level

ENDIF
WHILE. LEVEL >= 1

ENDR

Macro Commands

A macro is a named block of commands. When a block of commands is defined as a
macro, it is stored on diskette so that it can be executed more than once without hav­
ing to enter the commands each time. The macro commands described in this
chapter allow you to perform the following functions:

• Define a macro, specifying the macro name, the command block, and any
formal parameters (points where text can be filled in at the time of the macro
call).

• Invoke (call) a macro by name, giving actual parameters to fill in the blank
fields in the macro definition, to begin the execution of the command block.

• Display the text of any macro as it was defined.

• Display the names of all macros currently defined.

• Remove one or more macros.

• Save one or more macro definitions on an ISIS-II file.

• Bring one or more macro definitions (or other commands) in from a file for use
in the current test sequence.

The syntax summaries of the macro commands are presented as a group, followed
by a discussion with examples.

4-11

ICE-Independent Commands

4-12

DEFINE MACRO Command

DEFINE MACRO macro-name cr

[command cr]

EM
Examples

DEFINE MACRO LOOK
WRITE '.VAR1 =', BYTE .VAR1
WRITE '.VAR2 =', BYTE .VAR2

EM

DEF MAC EMUL
GO FROM.STARTTILL BRO
PRINT -10
REPEAT

STEP COUNT %0
PRINT -%0
UNTIL PC = 0101

ENDR
EM

DEFINE MACRO Command keywords for macro definition block.

macro-name

cr

command

EM

The user-assigned name of the macro being defined.
May not duplicate an existing macro-name.

Intermediate carriage return.

Any simple or compound ICE command except
DEFINE MACRO and REMOVE MACRO.

Command keywords marking the end of the
definition block.

Macro Call Command

:macro-name [acfual-paramefer-lisf]

Examples:

:LOOK

:EMUL 10, .END

Command token for macro call.

macro-name The name of the macro to be expanded and executed.

actual-parameter-list A list of parameter values or strings to be substituted
for formal parameters ("700 .. "709) in the macro
definition to form the expanded (executable) macro.

Multi-ICE

Multi-ICE ICE-Independent Commands

Display Macro Definition Command

MACRO [macro-name]

Examples:

MACRO LOOK
MACROEMUL

MACRO

macro-name

Command keyword for displaying the definition
block of the macro named in the command.

The name of the macro to be displayed. If macro­
name is omitted, all macro definitions are displayed.

Display Macro Directory Command

DIRECTORY MACRO

Examples:

DIRECTORY MACRO
DIR MAC

DIRECTORY MACRO Command keywords requesting display of the names
of all macros correctly defined, in the order they were
defined.

REMOVE MACRO Command

REMOVE MACRO

Examples:

REMOVE MACRO
REM MAC LOOK

[macro-list]

REM MACRO LOOK, EMUL

REMOVE MACRO

macro-list

Command keywords to remove (delete) one, several,
or all macro names and definitions.

The names of one or more macros separated (if more
than one) by commas. Macros in the list are deleted;
if macro-list is omitted, all macros are removed.

4-13

ICE-Independent Commands

4-14

PUT Macro On File Command

PUT :drive : filename MACRO [macro-list]

Examples:

PUT :F1 :UTIL.MAC MACRO

PUT :F1:INIT1.INC MACRO LOOK, EMUL

PUT .. MACRO

:drive :fiJename

macro-list

Command keywords to open named file for input
and copy one, several, or all macro definitions to that
file.

The diskette drive number and user filename for the
file that is to receive the macro definitions. If
filename already exists on the given drive, the
previous content of that file are overwritten (lost)
when the current macros are put in the file.

One or more macro names, separated by commas if
more than one. If macro-list is omitted, all macros
currently defined are put in the file.

INCLUDE From File Command

INCLUDE :drive:filename

Examples:

INCLUDE :F1 :UTIL.MAC

INCLUDE :F1 :INIT.INC

INCLUDE

:drive : filename

Command keywords to read commands (especially
but not limited to macro definitions) from the named
file, up to the end-of-file.

The diskette drive number and filename of the file
that contains the commands to be included.

Defining and Invoking Macros
Each macro is defined once in the test session.

Once it is defined, you can invoke (call) a macro as often as desired.

The macro definition command causes the macro name and the block of commands
to be stored in a table of macro definitions in a temporary ISIS-II file named
MAC. TMP. (This file is removed by the ICE EXIT command).

Multi-ICE

Multi-ICE ICE-Independent Commands

·;%'iB"d'
If you have a file on the ICE diskette named MAC. TMP it will be lost
when any macros are defined during the test session.

A macro-name must begin with an alphabet letter, or with one of the characters' '?"
or "@". The characters after the first character can be alphabet letters, "?", "@",
or numeric digits. The macro name must not duplicate a previously-defined macro
name.

A macro definition may not appear within any other command (REPEAT,
COUNT, IF, ACTIVATE, LOCK, or another macro definition). The command
block in the macro definition can include any command except another DEFINE
MACRO command or a REMOVE MACRO command.

The macro name in the macro invocation must be the name of a previously-defined
macro. The form of actual-parameter-list is discussed later in this chapter.

Here is a simple macro definition:

DEFMACGOER
REPEAT

GO FROM .STARTTILL BRO
END

EM

To invoke this macro and cause its command block to begin executing, enter the
macro name preceded by a colon (:). For example:

:GOER

A macro definition can include commands that define user symbols and other iden­
tifiers such as channel group names. Macros that include user definitions can be
used for initialization purposes. For example, suppose you have the eighteen ICE-85
user probes attached to a 40-pin clip that is to be moved from one chip to another
during the test session. You can define a macro for each pin configuration; each
time you move the clip, you call the appropriate macro to define groups for trace
display. Each such macro begins with the REMOVE GROUP command to avoid an
error. The following macros serve as illustrations:

DEF MAC CHIP1
REMOVE GROUP
DEFGROUP INPUT = 8,7,6,5,4,3,2,1 IN Y
DEF GROUP OUTPUT = 16,15,14,13,12,11,10 IN Y

EM

DEF MAC CHIP2
REMOVE GROUP
DEF GROUP INPUT = 16,15,6,5,4,10,9,8 IN Y
DEFGROUP OUTPUT = 14,13,1,3,2,11,7,12IN Y

EM

The fact that the groups are defined in each macro makes it possible to use the
macros in any order.

You should use some caution in placing user definitions within macro definitions,
however, since multiple definitions cause errors.

4-15

ICE-Independent Commands

4-16

A macro definition can include calls to other macros, but a macro cannot call itself
recursively. A macro that calls itself in its command block expands indefinitely when
the outer macro is called, without ever executing any commands (press ESC to ter­
minate such an infinite expansion). Any macros called from within a macro must
have been defined when the calling macro is invoked. Macro calls can be nested; i.e.,
one macro calls another, which calls another, and so on. The level of nesting is
limited only by the memory space required to contain the macro expansions and
"stack" the macro calls.

When a macro is called as an outer level command the following operations occur:

• System defaults (SUFFIX, SWITCH, LOCK) are saved in case new defaults are
set inside the macro.

• The text of each actual parameter in the call is substituted for the corresponding
formal parameter in the definition.

• The expanded command block is executed if all commands are valid as
expanded.

• When the last command has finished, the former system defaults are restored.

• The macro exits. Control returns to the console (asterisk prompt).

The next several sections provide details on these operations; system defaults are
discussed earlier in this chapter.

Formal and Actual Parameters
A formal parameter marks a place in a macro definition where variable text can be
"filled in" when the macro is called. A formal parameter can represent part of a
token or a field of one or more tokens. A macro definition can contain up to ten for­
mal parameters. A formal parameter has the form:

%n

where n is a decimal digit, 0 to 9.

Formal parameters can appear in the macro definition in any order, and each one
can appear any number of times. In most cases, the formal parameters form a com­
plete numeric sequence with %0 as the lowest numbered parameters (even if 0700 is
not the first parameter to appear). However, one or more parameters can be omitted
from the sequence; the effect of omitting a formal parameter from the sequence is to
ignore the actual parameter in the call that corresponds to the omitted formal
parameter.

The macro call can contain as many actual parameters as desired. Enter multiple
parameters as a list, with entries separated by commas. The first actual parameter in
the list is substituted at all points that %0 appears in the macro definition; the se­
cond parameter substitutes for % 1, and so on.

An actual parameter can be "null", causing ICE to substitute a null for the formal
parameter to which it corresponds. You can pass a null parameter to a macro in two
ways:

• Enter no actual parameter between consecutive commas.

• Omit one or more parameters from the end of the list.

If too few actual parameters are entered, ICE supplies nulls for the extra formal
parameters. If too many actual parameters are entered, the extra actual parameters
are ignored. However, if more than ten actual parameters are entered, an error
occurs and the call is aborted.

Multi-ICE

Multi-ICE ICE-Independent Commands

If any actual parameter contains a carriage return, a comma, or a single quote mark,
the entire parameter must be enclosed in single quotes to identify it as a single actual
parameter. In other words, parameters with these characters must be entered as
strings. A single quote within a string is entered as (").

Here are some examples to demonstrate the use of formal and actual
parameters:

Example 1:

DEFMACMEM
%OBYTE 0/01

EM

In the call to this macro, parameter %0 can become "C", "D", or "X" (under
ICE-48), or "I" or null (under ICE-85). Parameter % 1 can be any valid address or
partition. Examples of calls to this macro:

(lCE-48)

Macro call

:MEM X,20H
:MEM D,20H LEN 5H

(ICE-85)

Macro call

:MEM I, 1000H
:MEM, 1000H TO 100FH

Example 2:

DEF MAC RPT
REPEAT

0/00
%1
0/02
0/03
0/04
0/05
0106
0/07
%8
0/09

END
EM

Expansion

XBYTE 20H
DBYTE 20H LEN 5H

Expansion

IBYTE 1000H
BYTE 1000H TO 100FH

Macro RPT can accept up to ten commands to be repeated. For example:

:RPT GO TILL BRO, PRINT -1, REGISTERS, GO TILL BR1, PRINT -10

If fewer than ten commands are given, as in the example above, the extra formal
parameters are ignored (treated as nulls).

4-17

ICE-Independent Commands

4-18

Example 3:

DEF MAC BRS
BR%O = 0/01

EM

Use of macro BRS may require parameters entered as strings, since some ways to set
breakpoints involve embedded commas. For example (lCE-85):

: BRS 0, LOCATION 1000H EXECUTED

This parameter is valid, but this one:

:BRS 0, FFH, 101Y ON ADDR, STS

results in the expansion:

BRO = FFH

To obtain the correct expansion, make the parameter a string:

:BRS 0, 'FFH, 101Y ON ADDR, STS'

This results in the expansion:

BRO = FFH, 101Y ON ADDR, STS

Details on Macro Expansion
The syntax and semantics of commands in a macro block are ignored at the point of
definition; they are not determined until invocation, and may be different on each
invocation through the use of formal parameters.

When a macro is called, its definition is expanded by adding the text of any actual
parameters in the call at the points indicated by formal parameters in the definition.
If the expanded macro contains any calls to other macros, the text of any such
macro is also expanded, forming in effect one overall block of commands. The
results of expansion are displayed at the console. Expansion continues until the last
EM is reached. If the expansion results in a set of complete, valid commands, the
commands are executed. An error results if any command is incomplete or invalid
after expansion.

A macro invoked in a REPEAT, COUNT, or IF command is expanded immediately
after the macro call command is entered. Thus, a macro called in a REPEAT or
COUNT command is expanded only once, and a macro called in an IF command is
expanded whether the condition in the IF or 0 RIF clause that contains the macro
call is TRUE or FALSE.

Macro Table Commands
The macro table contains the name and text of all macros currently defined. The text
is stored as it is defined, and does not contain any expansions.

The DEFINE MACRO command adds the macro defined to the end of the table.

The REMOVE MACRO command removes one or more macro definitions from the
table.

Multi-ICE

Multi-ICE ICE-Independent Commands

If the list of macro-names is omitted, all macros are removed. The REMOVE
MACRO command may not appear within any other command.

The display macro command displays the name and definition of one or more
macros from the macro table. If the list of macro-names is omitted the definitions of
all macros in the table are displayed.

The macro directory command displays the names of all macros in the table.

Here are some examples of these commands (assume that the table contains all the
macro examples defined thus far in this chapter):

Example 1:

*DIR MAC
GOER
CHIP1
CHIP2
MEM
RPT
BRS

Example 2:

*MACGOER
DEFMACGOER

REPEAT

(command)
(dispILY)

(command)
(display)

GO FROM .STARTTILL BRO
END

EM

Example 3:

*REM MAC BRS

Example 4:

*DIR MAC
GOER
CHIP1
CHIP2
MEM
RPT

ExampleS:

*DEF MAC NULL
*EM

Example 6:

*DIR MAC
GOER
CHIP1
CHIP2
MEM
RPT
NULL

(command)

(command)

(command)

(command)
(display)

4-19

ICE-Independent Commands

4-20

Saving Macros
The PUT MACRO command causes one or more macro definitions to be copied
from the temporary file to a "permanent" file.

If any macro names are entered, those macro definitions are saved. If no list of
macro names is given, all macros in the macro table are saved. The definitions in the
temporary file MAC. TMP containing the macro table are not affected by the
operation.

The file containing the saved macro can later be edited or brought into another ses­
sion with the INCLUDE command, discussed below.

If the named file does not exist, it is created by the PUT command. if the file does
exist on the diskette, the file is opened for input and the macros in the list are written
on the file, destroying the previous contents of that file.

INCLUDING Commands From Files
The macro definition files created with the PUT command can be read into the ICE
temporary macro table with the INCLUDE command. For example, suppose we
had defined a macro INIT as follows:

*OEFINE MACRO INIT
e*MAP 3000 LEN 4K = USER
e*LOAD :F1:PROG1
e*EM

Suppose further that we had saved this macro definition with a PUT command as
follows:

*PUT :F1 :INIT.INC MACRO INIT

Then, in a subsequent session we bring this macro definition from the file with the
command:

*INCLUDE :F1 :INIT.INC

The result of the INCLUDE is to read in the definition of INIT as given earlier. ICE
issues a prompt at the beginning of each input line (Le., the prompts are not saved
on the file).

Although the PUT command can be used only to save macro definition, the IN­
CLUDE command can refer to a file containing any valid ICE commands. For ex­
ample, the file could contain macro invocations as well as definitions. To have an
INCLUDE file contain commands other than macro definitions, edit the file with
the ISIS text editor. Each command that you "edit in" should start at the left
margin (do not "edit in" the prompt), and should terminate with a carriage return.

The INCLUDE command can be nested within any other command, including a
macro definition.

Multi-ICE

Multi-ICE ICE-Independent Commands

Further Examples
Here are a few more examples of macros. These macros simulate stack operations,
calls, and returns in ICE-85 and ICE-49.

A stack is an area of memory, indexed (addressed) by a register called the stack
pointer (SP). The stack is used to save status information required for an orderly
return from a procedure call.

ICE-as Macro Examples

In ICE-85, the stack is in mapped memory. The bottom (first available location) is
the highest address in the stack area; the stack expands as needed into successively
lower addresses. The stack pointer points to the address (byte) at the top of the
stack; this address contains the last item pushed on the stack. As each new byte is
pushed on the stack., SP is decremented to point to the new top address. Most of the
values that need to be saved on the stack are 16-bit values. The high byte is stored in
the address pointed to by (SP - I), and the low byte is stored in the next lower ad­
dress (equivalent to SP - 2).

The MCS-85 assembly language PUSH Ip instruction sets SP to the next available
pair of bytes, then stores the content of the given register pair in adjacent addresses
at that position. We can simulate this action with a macro, as follows:

DEF MAC PUSH85
SP = SP - 2T ;decrement SP.
WORD SP = %0 ;Iow byte in low address, high byte in high address.

EM

The formal parameter %0 lets us use PUSH85 to save any register pair or other 16-
bit value; for examples:

:PUSH85PC
:PUSH85RBC
:PUSH85RDE
:PUSH85 RHL
:PUSH85PSW

;save program counter.
;save register pair BC.
;save register pair DE
;save register pair HL
;save RA and RF

NOTE

The keyword PSW was inadvertently omitted from the ICE-85
Operator's Manual. Please refer to figure 4-1 for a description of the
MCS-85 Push PSWinstruction.

The complementary MCS-85 POP Ip instruction copies the contents of the two top
bytes back into the given register pair, then increments SP to the new top of the
stack. A macro for this function is :

DEF MAC POP85
%0 = WORD SP
SP= SP+2T

EM

Here are some calls to POP85, corresponding to the PUSH85 calls given earlier:

:POP85 RHL
:POP85 ROE
:POP85 RBC
:POP85 PC
:POP85 PSW

4-21

ICE-Independent Commands

4-22

782·2

(BITS)

SP-

SP·1-

SP·2 -

KEY:

7

ACCUMULATOR (RA)

X UNDEFINED
CY CARRY FLAG
PY PARITY FLAG

ACY AUXILIARY CARRY FLAG
Z ZERO FLAG

SN SIGN FLAG

Figure 4-1. M CS-85™ PWS Instruction

Here are some macros that use PUSH85 and POP85.

1. Macro to "call" a procedure:

DEF MACCALL85
:PUSH85PC
GO FROM %0

EM

o

This macro can be invoked with or without a halt condition:

:CALL85 . PROC
:CALL85 .PROC TILL BRO

2. Macro to "return" from a procedure:

DEF MAC RET85
:POP85 PC
GO 0/00

EM
To invoke this macro:

:RET85
:RET85 TILL BRO

3. Macro to single-step through user code, skipping over a specified procedure
whenever that procedure is called from the user program.

DEF MACRO SKIP
SR=COUNT1
REPEAT

IFPC=%O
:POP85 PC

ENDIF
STEP
PRINT -1

ENDR
EM

Multi-ICE

Multi-ICE ICE-Independent Commands

Suppose the user program contains a repetitive timer routine named DELAY that is
called from several places in the program. The following macro invocation causes
ICE to step through the program without emulating the timer routine:

:SKIP .DELAY

ICE-49 Macro Examples

In ICE-49, the stack is located in the on-chip DATA memory. Accessing the stack in
ICE-4X is somewhat more involved than in ICE-85, due to the way stack data is
formatted.

The stack is 16 bytes long, allowing up to eight levels of nesting. The stack pointer
(SP) takes values from 1 to 7, corresponding to data memory locations as shown in
table 4-2. Each SP value points to the next available pair of locations in data RAM;
the pair consists of a low (even) byte and a high (odd) byte. We want to access each
of these locations separately, given a current value of SP. The decimal location of
the low (EVEN) byte equals (SP * 2 + 8), and the decimal location of the high (odd)
byte equals (SP * 2 + 9), the low location plus one. For example, when SP equals 5,
the locations are (5 * 2 + 8 = 18) and (5 * 2 + 9 = 19). We'll use this approach in our
"push" and "pop" macros, but there are a few more details to consider.

The MCS-48 assembly language CALL instruction pushes the 12-bit program
counter (PC) and bits 4 to 7 of the program status word (PSW) on the stack, using
the format shown in figure 4-2. The full structure of the PSW is shown in figure 4-3.

The content of the high (odd) byte is bits 8 to 11 of the PC and bits 4 to 7 of the
PSW. The following command achieves this bit assignment:

DBYTE (SP*2+9) = (PSW MASK FOH) + (PC/100H)

Table 4-2. ICE-4X™ Stack Pointer Locations

SP Data Memory Locations (Decimal)

0 8-9
1 10-11
2 12-13
3 14-15
4 16-17
5 18-19
6 20-21
7 22-23

The formula (pSW MASK FOH) produces a byte consisting of zeros in bits 0 to 3
and bits 4 to 7 of PSW unchanged. The formula (PC/l00H) shifts the 12-bit PC to
the right a total of eight bit positions; thus bits 8 to 11 of PC are shifted into bits 0 to
3 of the result. When these two partial results are added together, the overall result is
as shown in figure 4-2.

The content of the low (even) byte is the low 8 bits of the PC. The following com­
mand performs this assignment:

DBYTE (SP * 2 + 8) = PC

The DBYTE assignment takes the low eight bits of PC and ignores the rest.

4-23

ICE-Independent Commands

4-24

782-3

782-4

4 3

HIGH(ODD) 7 PSW 4 11 ~C J I I I

7 PIC I 4 3 I P.c I
LOW (EVEN)

Figure 4-2. MC-48™ Stack Format

7 4 3 0

I CY I ACY I FLO I BS I 1 I SP21 SP1 I SPO I
KEY:

SPO·SP2 = STACK POINTER
1 = BIT4ALWAYS1

BS = REGISTER BANK SWITCH
FLO = CONTROL FLAG ZERO

ACY = AUXILIARY CARRY FLAG
CY = CARRY FLAG

o

8
I

I 0

Figure 4-3. MCS-48™ Program Status Word (PSW)

We can now write a marcro to handle the ICE-4X push operation, as follows:

DEF MAC PUSH4X
SUFFIX = H
DBYTE (SP*2+8) = PC
OSYTE (SP*2+9) = (PSW MASK FO) + (PC/100)
SP=SP+1
EM

;numbers in the macro are hex.
;Iow stack byte.
;high stack byte.
;new top of stack.

The complementary "pop" macro is simply the reverse of PUSH4X:

DEF MAC POPR4X
SUFFIX= H
SP= SP-1
PSW = (PSW MASK OF) + ((DBYTE SP*2+9) MASK FO)
PC = (DBYTE SP*2+8) + (((DBYTE SP*2+9) MASK OF) * 100)
EM

To simulate the MCS-48 CALL instruction:

DEF MAC CALL4X
:PUSH4X
GO FROM %0

EM

Sample invocations:

:CALL4X .ADDR
:CALL4X .ADDR TILL BRO

Multi-ICE

Multi-ICE ICE-Independent Commands

The MCS-48 RETR instruction returns with the PSW restored. To obtain this effect:

DEF MACRO RETR4X
:POPR4X
GO 0/00

EM

Sample invocations:

:RETR4X
:RETR4X Till BRO

To simulate the MCS-48 RET instruction (return without restoring PSW):

DEF MAC RET4X
SUFFIX = H
SP=SP -1
PC = (DBYTE SP*2+8) + «(DBYTE SP*2+9) MASK OF) * 100)
GO 0/00

EM

Sample invocations:

:RET4X
:RET4X Till BRO

BOOl Display Command

BOOl boolean-expression

Examples:

BOOl PC> 1000H

BOOl ACTIVE PR1

BOOl PC > 1000 OR ACTIVE PR1

BOOL

boolean-expression

Discussion

Command keyword to have the expression evaluated
as TRUE when the least-significant bit (LSB) of the
result is aI, and FALSE when the LSB is a 0, and
display the result as "TRUE" or "FALSE".

Any number or expression.

The BOOL command is a display command, parallel to the EVALUATE command.

To display the result of any expression as boolean TRUE or FALSE, enter a com­
mand of the form:

BOOl expression

ICE evaluates the expression, and displays TRUE if the least significant bit (LSB) of
the result is a 1 or displays FALSE if the LSB is a O. Refer to Chapter 3 for details on
how expressions are evaluated.

4-25

ICE-Independent Commands

4-26

WRITE Command

WRITE [string]
expression
BOOl boolean-expression

[....]
Examples:

WRITE 'THE VALUE IS', .VAlUE

WRITE 'THE NEW VALUE IS', .VAlUE * 3/2

WRITE 'IT IS', BOOl ACTIVE PR1, 'THAT PR11S ACTIVE'

WRITE Command keyword to: display text or data on
the Intellec console device.

string A sequence of characters enclosed in single
quotes.

expression Any number or expression; the result after
evaluation is displayed.

BOOL boolean-expression The keyword BOOL followed by any number~
or expression. The boolean value "TRUE" is
displayed when the number or result has its
least significant bit (LSB) equal to 1, and
, 'FALSE" is displayed when the result has its
LSB equal to O.

Discussion
The WRITE command displays one or more elements on the console. If a list device
(printer file) is enabled, the elements are sent to the list file as well.

For example, if the content of the variable .TIME is 15, the following command:

WRITE BYTE .TIME ' SECONDS ELAPSED.'

produces the following display:

15 SECON DS ELAPSED

The WRITE command can display a string, a number, the result of evaluating a
numeric expression, or the result of evaluating a boolean expression; or a combina­
tion of any of these kinds of elements.

All the elements following WRITE are displayed on one line if possible; if the next
element doesn't fit the remaining character space on the line, ICE inserts a carriage
return/line feed. No spaces are inserted between elements on the same line; if you
want spaces before or after a text message, put spaces in the string.

A string is displayed just as you enter it.

A numeric constant is displayed as entered, using the current BASE when the
WRITE command is created.

Multi-ICE

Multi-ICE ICE-Independent Commands

An expression is evaluated, and the result is displayed in the current BASE.

An element of the form "BaaL boolean-expression" produces a display of
"TRUE" when the least-significant bit of the expression (after evaluation) is a 1,
and ' 'FALSE" when the LSB is a 0.

Multiple Display Commands

Keyword references and content expressions can be combined in one-line multiple
display commands. The form of this command can be shown as:

display-reference ~ ...]

A display reference is either a keyword reference or a content expression. A
keyword reference is the name of any processor register (such as PC), or an ICE
status register (such as BUFFERSIZE). Emulation registers (such as BRO, CRO, or
QRO) cannot be used in multiple displays. Symbolic references (such as .TEMP) are
invalid in multiple displays (except in content-expressions).

A content expression consists of a content-operator (see table 3-5), followed by an
expression that evaluates to a single valid address. A partition (using TO or
LENGTH) cannot appear in a mUltiple display.

Here is an example of a multiple display; the values shown are arbitrary.

·PC, SP, BYTE .AA (Command)
PC=36C3H SP=5000H 1000H=1 FH (Display)

ICE-Independent Symbol Table Commands
Under Multi-ICE, each of the two ICEs has its own symbol table. In addition, there
is an independent symbol table that can be accessed by the HOST and either ICE
using the keyword IND.

To define a symbol in the IND symbol table:

DEFINE IND .symbol-name = address/value

To refer to an IND symbol (that is, to obtain the address corresponding to that
symbol):

IN 0 .symbol-name

To remove a symbol from the IND symbol table:

REMOVE INO .symbol-name

To display the IND symbol table:

SYMBOLIND

To remove the entire IND symbol table:

REMOVE SYMBOL IND

The IND symbol table forms one "module". New modules cannot be defined for
the IND symbol table.

4-27

ICE-Independent Commands

4-28

Symbolic Display of Addresses

Example:

ENABLE SYMBOLIC
DISABLE SYMBOLIC

EVALUATE expression SYMBOLIC

ENABLE SYMBOLIC
DISABLE SYMBOLIC
EVALUATE PC + 10 SYMBOLIC

ENABLE SYMBOLIC Command keywords to have addresses that are displayed
by certain ICE commands appear as symbolic displays
rather than the default radix.

DISABLE SYMBOLIC Command keywords to have all addresses displayed by
ICE commands appear in the default radix.

EVALUATE expression After the EVALUATE command, the keyword
SYMBOLIC SYMBOLIC causes the result to appear as a symbolic

display rather than in the four radixes.

Discussion

When ENABLE SYMBOLIC is in effect (SYMBOLIC is initially ENABLED), ad­
dresses displayed by many types of commands are displayed as symbolic displays
rather than in the default radix.

DISABLE SYMBOLIC restores all address displays to their default radixes.

Examples of commands affected by SYMBOLIC are GO and STEP (display of PC
after emulation termination), and displays of memory contexts. Displays of symbol
tables are not affected.

A symbolic display has the format:

symbolic-reference [+ numeric-constant H]

where symbolic-reference can be any of the following:

. symbol-name
statement-number
.. module-name.symbol-name
.. module-name # statement-number

The symbolic reference displayed is the earliest entry in the symbol (or statement­
number) table whose corresponding value is CLOSEST TO BUT NOT GREATER
THAN the address-value given. Only the table accessible to the current SWITCH
are searched; the IND symbol table is not searched.

Where the display involves a sequence of addresses, the symbolic displays appear
only where an address exacdy matches a symbol value. Otherwise, the difference is
displayed as a numeric constant, always in hexadecimal radix.

Multi-ICE

Multi-ICE ICE-Independent Commands

If no symbol has a value lower than or equal to the target address, the default radix
is used.

When SYMBOLIC appears after EVALUATE, the result of evaluating to expres­
sion is shown as a symbolic display, or a single hexadecimal value if no symbol has a
value lower than or equal to the target value.

4-29

CHAPTER 5
ICE-85 DEPENDENT COMMANDS

The commands and keywords in this chapter extend the capability of the ICE-85
component of a multi-ICE system; they are valid with ICE-85 only. The commands
and keywords are as follows:

Commands:

SEARCH comma.nd
DOMAIN command
NESTING command
LIN ES command
MODULES command

Keywords

FLAG
LOWER and LIMIT

SEARCH Command

The SEARCH (SEA) command displays addresses that contain a target value. The
command is valid only with ICE-85. The syntax is:

SEARCH [OOU BlE] partition [WITH MASK mask~value]FOR target-value
[SINGLE]

ICE searches the partition looking for an address whose contents (when masked)
match the target-value. The address and its content are displayed. If more than one
address has matching contents, all such addresses and their contents are displayed,
one per line of the display.

The examples in this section assume memory contents as follows. SUFFIX = H is
also assumed (numbers in commands entered are hexadecimal without explicit
radix); The explicit radix appears in the display as shown in the examples.

Address Content Address Content

0100H OH 0106H OH
0101H 11H 0107H 11H
0102H 22H 0108H 02H
0103H 33H 0109H FFH
0104H 44H 010AH FFH
0105H 55H

If DOUBLE is omitted (or if the optional keyword SINGLE is used), the search
looks at single addresses, matching on byte (8-bit) contents.

SEARCH 100 TO 109 FOR 55
0105H=55H

SEA 100 TO 109 FOR 0
0100H=00H
0106H=00H

(Command)
(Display)

5-1

ICE-8S-Dependent Commands

5-2

SEARCH DOUBLE looks at overlapping pairs of addresses, matching on a 16-bit
target value. The high byte of the target value is compared to the content of the
higher of the pair of addresses, and the low byte to the content of the lower of the
pair of addresses.

SEARCH DOUBLE 100 TO 109 FOR 5544
0104H=5544

SEA DOU 100 TO 109 FOR 1100
0100H=1100H
0106H=1100H

SEARCH DOUBLE looks one address past the last address in the partition.

SEA DOU 100 TO 108 FOR FF02
0108=FF02

The WITH MASK mask-value clause allows you to mask certain bits in the target
value. The mask value is ANDed both with the target value and with the content of
each address examined. Any "0" bits in the mask value thus represent "don't-care"
bits in the match. The display gives all addresses whose (masked) contents match the
(masked) target value, and their (unmasked) contents.

SEA 100 TO 109 WITH MASK OF FOR 2
0102H=22H
0108H=02H

SEA 100 TO 109 WITH MASK OF FOR 22
0102H=22H
0108H=02H

SEA 100 TO 109 WITH MASK OF FOR F2
0102H=22H
0108H=02H

SEA DOU 100 TO 109 WITH MASK FOFO FOR 1100
0100H=1100H
0106H=1100H

SEA DOU 100 TO 109 WITH MASK 1 FOR 1
0101 H=2211 H
0103H=4433H
0105H=0055H
01 07H =0211 H
0109H=FFFFH

SEA DOU 100 TO 109 WITH MASK 1 FOR F
0101H=2211H
0103H=4433H
0105H=0055H
01 07H =0211 H
0109H=FFFFH

SEA DOU 100 TO 109 WITH MASK 1 FOR 0
0100H=1100H
0102H=3322H
0104H=5544H
0106H=1100H
0108H=FF02H

Multi-ICE

Multi-ICE ICE-8S-Dependent Commands

The target value and mask value can be numeric constants as shown in the examples;
they can also be any reference or expression.

DOMAIN Commands

The DOMAIN (DOM) command allows you to specify the module to use for look­
ing up statement-number references that are entered without an explicit module
name. (Module names and statement numbers are valid only ICE-85.) The syntax is:

DOM .. module-name

The module-name is entered with two leading periods. For example, to restrict the
search for statement numbers to a module named CARS, use:

DOM .. CARS

The module named must exist in the table or an error results.

To reset the domain to the entire statement-number table, use the command:

RESET DOMAIN

In addition the domain is reset to the entire table when the module that is the current
domain is removed.

The DOMAIN command is useful where two or more modules with identical or
overlapping statement numbers have been loaded. Note that LINK combines dif­
ferent modules, each with its own set of statement numbers. The DOMAIN com­
mand allows you to enter statement number references for a selected module
without repeating the module name on each reference; this facility is very useful
when your attention is focused on debugging a particular module.

NESTING Command

If the user code contains any call and return instructions (including conditional calls
and returns), you can display the calls that were in-effect when emulation last halted
by entering the display keyword NESTING (NES). The NES command is valid only
in ICE-85.

The display shows the address of each call instruction for which a matching return
has not yet been executed, and the address of each called procedure. The most recent
call (that is, the most deeply nested call) is the top line of the display, and the earliest
call (least nested but still active) is the lowest line of the display. As each return in­
struction is executed, the most recent call is removed from the display. if no calls
were active at the last halt in emulation, nothing is displayed.

The format of each display line is:

address of call CALL address of procedure

LINES Command

Under ICE-85, the display command LINES (LIN) causes a display of the statement
number table.

5-3

ICE-8S-Dependent Commands

5-4

MODULES Command

Under ICE-85, the display command MODULES (MOD) causes a display of all
module names with symbol tables currently loaded.

FLAG Keyword

The display keyword FLAG displays the 8085 status flags. The format of the display
is:

SN=b Z=b XX=O ACY=b XX=O PY=b XX=O CY=b

where: SN is the sign flag, Z is the zero flag, ACY is the auxiliary carry flag, PY is
the parity flag, CY is the carry flag, XX are inactive bits, and b is the current value
(0 or 1) of each of the flags.

REMOVE MODULE Command

Under ICE-85, to remove one or more modules (symbols and statement numbers)
from the tables, use the command:

REMOVE MODULE .. module-name [, .. module-name] ...

The modules named in the list must exist in the tables, or an error results. Modules
not named in the list of module-names are not affected. The REMOVE MODULE
command affects the symbol and line number tables only; code is not affected.

LIMIT and LOWER

To assist in mapping to Intellec shared memory, Multi-ICE ICE-85 includes three
keywords (UPPER, LOWER, LIMIT) that refer to significant locations in the
shared memory space. They are summarized in table 5-1. Refer to figure 5-1 for
diagram, and to table 5-2 for a summary of memory blocks.

Table 5-1. ICE-85™ Memory Control Keywords

Keyword Location Referenced How Set or Changed

UPPER Lowest address in ICE Set and changed by ICE;
workspace. Read-only to user.

LOWER Lowest block name higher than Set by ICE and held constant for
highest location occupied by ICE any software combination; Read-
software. (I.e., lowest block free only to user.
for mapping.)

LIMIT Lowest address available to ICE Set by ICE initially equal to
for expanding workspace. An er- LOWER; can be reset by the user
ror occurs if LIMIT is greater than to protect user space.
UPPER.

Multi-ICE

Multi-ICE ICE-8S-Dependent Commands

MONITOR

ICE WORKSPACE
r------------ ~UPPER

USER SPACE

r------------~ LOWER, LIMIT

ICE SOFTWARE

1515·11

762-5
Figure 5-1. Intellec® Shared Memory At Initialization

Table 5-2. ICE-85™ Memory Blocks for Mapping

Block No.
Lowest Address Highest Address

Hex Hex

31 62K F800H FFFFH
30 60K FOOOH F7FFH
29 58K E800H EFFFH
28 56K EOOOH E7FFH
27 54K 0800H DFFFH
26 52K DOOOH D7FFH
25 SOK C800H CFFFH
24 48K COOOH C7FFH
23 46K B800H BFFFH
22 44K BOOOH B7FFH
21 42K A800H AFFFH
20 40K AOOOH A7FFH
19 38K 9800H 9FFFH
18 36K 9000H 97FFH
17 34K 8800H 8FFFH
16 32K 8000H 87FFH
15 30K 7800H 7FFFH
14 28K 7000H nFFH
13 26K 6800H 6FFFH
12 24K 6000H 67FFH
11 22K 5800H 5FFFH
10 20K 5000H 57FFH
9 18K 4800H 4FFFH
8 16K 4000H 47FFH
7 14K 3800H 3FFFH
6 12K 3000H 37FFH
5 10K 2800H 2FFFH
4 8K 2000H 27FFH
3 6K 1800H 1FFFH
2 4K 1000H 17FFH
1 2K 0800H OFFFH
0 OK OOOOH 07FFH

5-5

ICE-8S-Dependent Commands

5-6

ICE issues a warning under the following conditions:

1. A MAP command refers to an address higher than UPPER (for example,
"MAP F800H = INTELLEC F800H"); you are mapping into current ICE
workspace or over Monitor.

2. A MAP command refers to an address lower than LOWER (for example,
"MAP 0 = INT 0"); you are mapping over ICE or over ISIS.

3. A MAP command refers to an address lower than UPPER and higher than
LIMIT (for example, "MAP 3000H = INT EOOOH); you are mapping into the
area to be used for expanding the ICE workspace.

Initially, any MAP memory command receives a warning. The MAP command is
executed in any event. Note that you cannot write to any location higher than
UPPER or lower than LOWER; mapping these areas gives you read-only access to
ISIS or Monitor routines. You can also reset LIMIT to avoid the warning message
and protect your user code from being overwritten by the expanding ICE
workspace.

The ICE workspace contains symbol and statement number tables and space for
processing ICE commands, including macro expansions. It grows dynamically to ac­
commodate larger symbol tables and command structures. As workspace grows,
ICE resets UPPER to lower and lower addresses. UPPER always reflects the largest
space required for command processing during each test session; it does not
"shrink" dynamically to accommodate smaller commands. UPPER is reset to
higher locations when you remove any symbols, modules, or lines from the tables.

ICE workspace can expand until UPPER equals LIMIT. Whenever an expansion of
workspace results in UPPER less than LIMIT, an error occurs, the command is not
executed, and control returns to the ICE command level.

If LIMIT remains equal to LOWER, as at initialization, the workspace can expand
into the area mapped for user code without producing any error or warning
message. This expansion may result in user code being overwritten.

You can set LIMIT so as to prevent the workspace from overwriting any user code.
If LIMIT is reset before the user area is mapped, the warning message does not ap­
pear since this area is no longer part of the system area.

Sample Mapping Sequences

Here are some sample MAP command sequences to demonstrate some of the ways
to use UPPER, LOWER, and LIMIT. As shown in figure 5-2, the sample multi-ICE
configuration leaves three 2K memory blocks (6K in all) for the user space.

Multi-ICE

Multi-ICE ICE-8S-Dependent Commands

31 F800 MONITOR
30 FOOO ICE WORKSPACE--UPPER
~9 - -EFFFH- 1---------

28 USER SPACE
27 D800H

26 D7FFH f--------- ...-- LOWER, LIMIT

25
24
23
22
21
20
19
18
17 ICE SOFTWARE
16
15
14
13
12
11
10
9

8
7
6 3000H

5 2FFFH
4
3 ISIS·II
2
1
0 OOOOH

762-6
Figure 5-2. Memory Allocation for Dual-ICE85/4XTM

Example 1:

The user program is LOCATEd so as to begin at location 36COH and is about 2K in
length. It thus requires two consecutive memory blocks. This can be mapped very
simply with the following command:

* MAP 3000H LENGTH 4K = INT LOWER
HOST IEN1 WARN C1 :MAPPING OVER SYSTEM

When you don't think the workspace will ever expand down to the top of your code
space and you don't mind receiving the warning message you can simply map your
code to Intellec memory starting at the loction given by the keyword LOWER. After
this, you load your code in the normal manner.

Example 2:

The user program is LOCATED to start at address 2000H and is about 6K in length.
The file containing the code is named "PROG" . The commands are:

*LOAD :F1 :PROG NOCODE ;Ioad symbol tables only
*LlMIT = (UPPER/2K)*2K ;set LIMIT to the bottom of workspace
* MAP 2000H LEN 6K = INT LOWER
*LOAD :F1 :PROG NOSYMBOLS NOLINES ;Ioad the code

5-7

ICE-8S-Dependent Commands

5-8

This kind of sequence is the one to use when you want to maximize the amount of
user space available, since the command

LIMIT = UPPER/2K*2K

limits the workspace to the rest of the block that it partially occupies at present
(UPPER/2K*2K is the number of the block that contains the UPPER address). For
example, consider the following command sequence:

*UPPER
UPP=F5FCH ;Iowest address in workspace.
*LOWER
LOW=D800H ;Iowest free block.
*LlMIT
LlM=D800H ;Iowest address available for expanding workspace.
* LOAD :F1 :PROG NOCODE ;Ioad symbol tables into workspace.
*UPPER
UPP=F450H ;the workspace has expanded.
* EVALUATE UPPER/2K*2K
1111000000000000Y 1700000 61440T FOOOH 'p' ; lowest address in

current block
*LlMIT=FOOOH ;Iimit workspace expansion to current block.
* MAP 2000 LEN 6K = INT LOWER

Example 3:

The user program starts at 3000H and is about 4K in length. The file containing the
code is named "PROG 1 ". The following sequence allocates the lowest 4K (two
blocks) to user code and the remaining 2K to workspace expansion:

* LIMIT = LOWER + 4K
*MAP 3000H LEN 4K = INT LOWER
*LlMIT
LlM=E800H
*LOWER
LOW=D800H
*LOAD :F1:PROG1

The new LIMIT (E800H in our example) is the number of the lowest block above the
area mapped for user code (see figure 5-2).

Example 4:

The user program starts at 3000H and is just less than 3K iIi length; the file is
"PROG2". The following sequence maps the lower two blocks to user code as in ex­
ample 3, setting LIMIT just above the user code space. In contrast to example 3,
that point is now in the middle of a block instead of at a block boundary.

* LIMIT = LOWER + 3K
* MAP 3000H LEN 4K = INT LOWER
HOST IEN1 WARN C1 :MAPPING OVER SYSTEM
*LOWER
LOW=D800H
*LlMIT
LlM=E400H

Note that we still receive the warning message since we are mapping higher than
LIMIT. You must map in terms of the 2K blocks; however, LIMIT can be set to any
address. In this case, LIMIT has been set so as to maximize the amount of
workspace available to ICE.

Multi-ICE

CHAPTER 6
BASIC MULTI-ICE COMMANDS

Chapters 6, 7, 8, and 9 present the multi-ICE commands. In chapter 6 we describe
the three basic multi-ICE com-mands (SWITCH, ACTIVATE, and KILL), and
give a simple model of multi-ICE operation to help explain what the commands
do. Chapters 7 and 8 introduce the synchronization commands (SUSPEND,
CONTINUE, WAIT, BREAK, and LOCK), and add refinements to the basic model
to help describe the effects of these commands. The full model is presented in
chapter 9.

Chapter 6 is organized as follows:

• Syntax descriptions of the SWITCH, ACTIVATE, and KILL commands

• A simple model of multi-ICE operation

• Details on the SWITCH command

• Details on the ACTIV ATE command

• Details on the KILL command

• System Displays and Messages

SWITCH Commands

Examples:

SWITCH

=

ENn

SWITCH = ENn

SWITCH

SWITCH = EN1

SWITCH = EN2

SWITCH

HOST-only command keyword that sets or displays HOST's
current parsing and execution environment.

The assignment operator, to change the SWITCH.

One of the keywords EN 1 or EN2.

ACTIVATE Command

ACTIVATE PRn cr

[ice-command crJ ...

ENDACTIVATE

6-1

Basic Multi-ICE Commands

6-2

Example:

ACTIVATE

PRn

cr

ice-command

ACTIVATE PR1
REPEAT
STEPCOUNT1
PRINT -1
UNTIL OPCODE = .RET
ENDREPEAT
REGISTERS

ENDACTIVATE

HOST-only command keyword; compound command block
becomes PRn's command list, and PRn is set ACTIVE
READY.

One of the keywords PRIor PR2.

Intermediate carriage return.

Any simple or compound command that is valid for PRn; (refer
to table -).

ENDACTIV ATE Command keyword that terminates the compound command
block; may be abbreviated END.

KILL Commands

Examples:

KILL

PRn

ALL

By HOST: 1) KILL PRn
2) KILL ALL

By ICE: KILL

KILL PR1

KILL PR2

KILL ALL

ACTIVATE PR1
REPEAT

IF PC = .DELAY THEN
KILL

ENDIF
STEP COUNT
PRINT -1
UNTIL OPCODE = .RET

ENDREPEAT
REGISTERS

ENDACTIVATE

Command keyword; sets designated ICE process(es) to
DORMANT (erases command list).

One of the keywords PRIor PR2.

Keyword meaning "both PRI and PR2" .

Multi-ICE

Multi-ICE Basic Multi-ICE Commands

Discussion

The multi-ICE system consists of three processes, the HOST process and the two
ICE processes PRI and PR2, and two HOST parsing and execution environments,
ENI andEN2.

All three processes can execute commands. The HOST controls the entry of all com­
mands from the console (or file).

PRI always executes in environment ENl, and PR2 always executes in EN2. The
HOST executes in either EN! or EN2 as set by the current SWITCH.

The HOST process accepts commands through a parser. The HOST parser uses the
keywords and syntax rules from either ENI or EN2, as set by the current SWITCH.

The SWITCH commands set or display the parsing and ex~cution environment
for the HOST process. Details on SWITCH appear later in this chapter and in
chapter 9.

Each process has a command buffer that can contain one or more commands called
the "command list" for that process; the buffer can also be empty (has no
commands).

A process is ACTIVE when it has a command list to execute and DORMANT when
its buffer is empty.

The HOST executes any commands that are not within an ACTIVATE block; com­
mands within an ACTIVATE block are executed by the ICE process (PRIor PR2)
named in the ACTIVATE command, as discussed later on.

The HOST process can execute any of the standard ICE emulation and interrogation
commands. By SWITCHing the HOST back and forth you can operate the two
ICEs in sequence through the HOST.

When the HOST is ACTIVE, (executing or emulating), the prompt is suppressed
and you cannot enter any commands. When the HOST process finishes executing its
command list, the HOST becomes DORMANT. You can also abort the HOST's
command list by pressing the ESC key; the HOST becomes DORMANT.

The ACTIVATE command is used to pass a command list to the command buffer of
one of the two ICE processes, making that process ACTIVE. The ACTIVATE com­
mand is a compound command, as shown in the syntax description earlier in the
chapter; the keywords ACT IV ATE and ENDACTIV A TE mark the beginning and
end of the block.

An ACTIVATE is executed by the HOST process. When you enter the command
ACTIVATE PRI cr; the following occurs:

• The current SWITCH is saved, so that it can be restored after the end of the
ACTIVATE block.

• PRI 's parsing and execution environment are automatically in effect.

• The prompt is issued, with a period to show that the subsequent commands are
inside a block (that is, nested).

You can now enter the commands to be executed by PRI. The commands must be
valid for PRl; details are given later in the chapter. The block terminates with
'ENDACTIVATE' (can be abbreviated to 'END').

6-3

Basic Multi-ICE Commands

6-4

When you enter 'ENDACTIVATE', the HOST transfers the command list that is
within the ACTIVATE command (we can also call this the 'ACTIVATE list') to the
command buffer of PRI; PRI becomes ACTIVE and begins to execute the com­
mands in its ACTIV ATE list.

While either PRIor PR2 is ACTIVE, the prompt is suppressed. You can interrupt
an ICE process (not the HOST) without aborting its command list by pressing the
spacebar. After the spacebar is pressed, the prompt is issued and you may enter a
command. When you enter the final carriage return to terminate the entering of the
command, the process that was interrupted resumes executing where it left off.
Pressing the spacebar while an ICE process is emulating obtains the prompt without
breaking emulation.

Using ACTIVATE commands, you can start both ICEs emulating at the same time.
There are two ways to do this; the following two sequences produce equivalent
results (note use of spacebar SP to obtain prompt):

I. *ACTIVATE PR1
e*GO FOREVER
e*ENDA
PR1 EMULATION BEGUN

SP * ACTIVATE PR2
e*GOTILL BRO
e*ENDA
PR2 EMULATION BEGUN

2. * ACTIVATE PR1
e*GO FOREVER
e*ENDA
PR1 EMULATION BEGUN

SP *SW1=EN2
*GOTILL BRO
HOST/EN2 EMULATION BEGUN

Thus, when two processes are emulating, the two emulations are simultaneous (but
asynchronous) .

When two or three processes are executing commands other than GO (but including
single steps), they alternate execution; after each process finishes its current simple
command, the next process starts executing the next simple command in its com­
mand list. (Refer to chapter 9 for details.)

Details on SWITCH Commands

The initial environment is EN I.

The current SWITCH remains in effect until one of the following occurs:

e Another SWITCH command is entered to the HOST, not nested within any
block.

e An ACTIVATE block is entered. ACTIVATE brings in the environment of the
ICE process named; that environment remains in effect until ENDACTIVATE.

e An environment control is encountered in an expression. An environment
control has one of the following two forms (see chapter 3):

ENnprimary
ENn (expression)

An environment control sets the parsing environment for the primary or paren- "'
thesized expression it precedes.

Multi-ICE

Multi-ICE Basic Multi-ICE Commands

• If a SWITCH command appears in a block (REPEAT COUNT, IF, DEFINE
MACRO, LOCK), it remains in effect until the end of the block or until another
SWITCH command is encountered in the same block.

Details on ACTIVATE

The ACTIVATE command may not contain any of the following HOST -only com­
mands:

SWITCH =ENn
ACTIV ATE PRn
KILL PRn
KILL ALL
SUSPENDPRn
SUSPEND ALL
CONTINUE PRn
CONTINUE ALL
WAITPRn
WAIT ANY
BREAK PRn
BREAK ALL

If you try to activate a process that is already ACTIVE, an error occurs and the com­
mand is ignored.

Details on KILL

Initially, both PRI and PR2 are DORMANT; their command buffers have no
commands. An ICE process becomes DORMANT (from another state) when
one of the following occurs:

• The process kills itself by executing the last commands in its command list.

• The process kills itself by executing a KILL command in its command list.

• The user kills the process through the HOST by entering a KILL PRn or KILL
ALL command.

• The user kills the process by pressing ESC and answering "Y" to the query
"KILL PRn?".

Using the ESC Key to Kill a Process

An ESC entered when the prompt is displayed aborts the command that is being
entered. ESC does not terminate the parser's task, however, and another prompt is
issued automatically. Pressing the ESC key while any process is ACTIVE (prompt is
suppressed) invokes an abort routine to perform the following actions:

• The HOST process is set DORMANT if it is not already DORMANT.

• The message "HOST PROCESSING ABORTED" is displayed.

• If PRI is ACTIVE (not SUSPENDED or DORMANT), the system displays the
query "KILL PRl?" To set PRI DORMANT, enter "Y" followed by cr. To
allow PRI to remain ACTIVE, press cr immediately. (Entering any character
other than "Y" also allows PRI to remain ACTIVE.)

• If PR2 is ACTIVE, the system asks "KILL PR2?". Enter "Y" cr to set PR2
DORMANT, or enter cr to allow PR2 to remain ACTIVE.

6-S

Basic Multi-ICE Commands

6-6

Summary of Multi-ICE Messages

ERRORS

Error message from HOST (parser or process)

HOST/ENn ERRxx: description of error

ERROR message from ICE process

PRn ERR xx: description of error

EXECUTION-when commands produce console displays (except for EMUL).

Header is displayed when the current process is different from the one that produced
the previous display.

HOST IENn: cr Ilf if HOST executes display command

PRn: crllf if ICE executes display command

EMULATION:

HOST/ENn EMULATION BEGUN
HOST IENn EMULATION TERMINATED, DC = address

PRn EMULATION BEGUN
PRn EMULATION TERMINATED, PC = address

ABORT:

HOST PROCESSING ABORTED
KILL PRn?

Multi-ICE

CHAPTER 7
MULTI-ICE SYNCHRONIZATION

COMMANDS

This chapter presents the SUSPEND, CONTINUE, and WAIT commands. These
commands control the synchronization of two or three ACTIVE processes by insert­
ing a SUSPENDED state that remains in effect until the process is continued by
command or by condition.

When a process (HOST or ICE) is SUSPENDED, it retains its command list but
cannot execute any commands. If the process was EMULATING when suspended,
emulation breaks on the next instruction. When the process is subsequently con­
tinued, emulation begins again at the current PC.

The two ICE processes can be suspended with the SUSPEND commands, and con­
tinued with the CONTINUE command. The HOST process can be suspended with a
WAIT command; the HOST continues when the process named in the WAIT com­
mand is no longer ACTIVE.

SUSPEND Commands

Examples:

SUSPEND

PRn

ALL

By HOST: 1) SUSPEND PRn

2) SUSPEN D ALL

By ICE: SUSPEND

SUSPEND PR1

SUSPEND PR2

SUSPEND ALL

ACTIVATE PR1
SUSPEND
GOTILL BRO
PRINT ALL

ENDACTIVATE

Command keyword that halts execution or emulation, sets PRn
to SUSPENDED status.

One of the keywords PRIor PR2.

Command keyword meaning "both PRI and PR2".

7-1

Multi-ICE Synchronization Commands

7-2

CONTINUE Commands

Examples:

CONTINUE

PRn

ALL

1) CONTINUE PRn

2) CONTINUE ALL

CONTINUE PRl

CONTINUE PR2

CONTINUE ALL

HOST -only command keyword; causes designated ICE
process(es) to resume executing or emulation from
SUSPENDED status.

One of the keywords PRl or PR2.

Keyword meaning "both PRl and PR2" .

WAIT Command

Examples:

WAIT

PRn

ANY

1) WAIT PRn

2) WAIT ANY

WAIT PRl

WAITPR2

WAIT ANY

HOST-only command keyword; causes HOST to become
SUPENDED until designated ICE process is no longer
ACTIVE.

One of the keywords PRl or PR2.

Keyword meaning "either PRl or PR2" .

Multi-ICE

Multi-ICE Multi-ICE Synchronization Commands

SUSPEND Commands and CONTINUE Command

The SUSPEND command has two forms: one form can be executed only by
the HOST and the other can be executed only by an ICE process as part of its
ACT IV ATE list. The two forms have the following syntaxes:

SUSPEND by HOST:

(1) SUS PEN D PRn
(2) SUSPEN D ALL

SUSPEN D by ICE:

SUSPEND

The effect of either form of SUSPEND command is to set the ICE process (both
processes with SUSPEND ALL) to the SUSPENDED status. The process cannot
execute any more of the commands in its ACTIV ATE list until the HOST executes a
CONTINUE command. The syntax of the CONTINUE command is:

(1) CONTINUE PRn
(2) CONTINUE ALL

If the designated process in a SUSPEND command is in any process status other
than ACTIVE, an error message is displayed, and no action is taken. Similarly, the
process named in a CONTINUE command must be SUSPENDED for the command
to be valid.

WAIT Command

The WAIT command has one of two forms:

WAITPRn
WAIT ANY

Both forms are HOST-only (must be outside ACTIVATE).

When WAIT PR1 (for example) is executed, the HOST process becomes
SUSPENDED if PR1 is ACTIVE, and remains SUSPENDED until PR1 becomes
DORMANT or SUSPENDED.

With WAIT ANY, the HOST continues as soon as either PRIor PR2 is no longer
ACTIVE.

If WAIT is entered while the named process is not ACTIVE, the command has no
effect.

Example with SUSPEND, CONTINUE, and WAIT

To check the 8 bit wide data bus in a system with two iSBC 80/30 boards, we can
command the 1st iSBC 80/30 system to write OOH, 01H, 03H, 07H, OFH, 1FH,
3FH, 7FH and 1FFH into location 8000H (the lst byte in the iSBC 032 memory card
accessable from both 80/30s) and command the 2nd iSBC 80/30 system to read that
location after each value is written and verify it. PR1 and PR2 will be synchronized
by the host process.

7-3

Multi-ICE Synchronization Commands

7-4

MAP 8000 = USER
SWITCH=EN2
MAP 8000 = USER
SWITCH=EN1
,
DEFINE IND.I = 0
DEFINE IND.J = 0
DEFINE IND.K = 0
ACTPR1

COUNT9
SUSPEND
BYTE 8000 = IND.I

ENDC
ENDA
*

ACTPR2
COUNT9

SUSPEND
IND.J = BYTE 8000 ; PR2 READS COMMON MEMORY LOCATION 8000
IF IND .1 < > IND .J
WRITE 'SHARED MEMORY DATA ERROR:'
WRITE 'EXPECTED =', IND .1,', ACTUAL =', IND.J
IND.K = IND .K+1 ; IF ERROR INCREMENT ERROR COUNTER K
ENDIF
IND.I = IND.I *2 + 1

ENDC
ENDA
,
REPEAT

CONTINUE PR1
WAITPR1
CONTINUE PR2
WAITPR2
UNTIL DORMANT PR1 AND DORMANT PR2

ENDR
WRITE IND .K,' ERRORS OCCURRED'

Multi-ICE

CHAPTER 8
BREAK AND LOCK COMMANDS

The BREAK and LOCK commands presented in this chapter allow you to break
emulation without aborting the command list, and to have a process gain exclusive
control of the console. These commands can be combined with the multi-ICE
commands presented in chapters 6 and 7 to allow close control of the multi-ICE
operation.

BREAK Command

Examples:

BREAK

PRn

ALL

1) BREAK PRn
2) BREAK ALL

BREAK PR1

BREAK PR2

BREAK ALL

HOST -only command keyword; causes designated ICE process
to break emulation, resume execution with next command in
command -list.

One of the keywords PRIor PR2.

Keyword meaning "both PRI and PR2".

LOCK Command

Examples:

LOCKer

[command erJ ...

ENDLOCK

LOCK
REPEAT

STEPCOUNT1
PRINT-1

ENDREPEAT
REGISTERS

ENDLOCK

ACTIVATE PR2
LOCK

REPEAT
STEPCOUNT1
PRINT -1

ENDREPEAT
ENDLOCK

ENDACTIVATE

8-1

BREAK and LOCK Commands Multi-ICE

8-2

LOCK Command keyword; compound command block cannot be
pre-empted by another process until all commands in the block
have been executed.

cr Intermediate carriage return.

command Any simple or compound command except WAIT and
SUSPEND.

ENDLOCK Command keyword terminating the compound command block;
can be abbreviated to END.

Discussion

BREAK Commands

The BREAK commands are HOST -only (must appear outside ACTIV ATE). They
cause the named ICE process (or both ICE processes with 'BREAK ALL') to ter­
minate emulation and continue executing the next command in its command list.

Consider the following sequence:

ACTIVATE PR1
GO FOREVER
REGISTERS

EN 0 ACTIVATE

When this block executes, PRI enters emulation and continues in emulation
"FOREVER", that is until terminated manually. During PRl's emulation, you can
press the spacebar to obtain the prompt.

After obtaining the prompt, you can issue the KILL command to abort both the
emulation and the rest of PRl's command list or, you can SUSPEND PRI halting
emulation; when you subsequently CONTINUE PRl, however, emulation resumes
at the current PC. Either way, the REGISTERS command in the ACTIV ATE block
is never executed.

The BREAK command allows you to break emulation through the HOST and con­
tinue executing the commands in the process' command list. Using the previous ex­
ample, when the ACTIV ATE block begins, we can request the prompt, then enter
the command 'BREAK PRl'. PRI breaks emulation, then executes the
REGISTERS command.

If BREAK is entered when the designated ICE process is ACTIVE but not
emulating, the command has no effect.

An ICE process can be SUSPENDED while emulating; when such a process is subse­
quently CONTINUED, emulation resumes with the current PC. However, if you
enter a BREAK command before CONTINUE, the process resumes executing the
next command in its list after the emulation command.

LOCK Command

LOCK is a compound command; the block begins with LOCK and ends with
'ENDLOCK'.

Multi-ICE BREAK and LOCK Commands

The LOCK command block can contain any commands other than SUSPEND or
WAIT commands.

LOCK can appear at any level (in or out of ACTIVATE).

The commands within the current LOCK block are executed exclusively; the LOCK
command suppresses the console-sharing that normally occurs under Multi-ICE
when more than one process is ACTIVE.

8-3

CHAPTER 9
MULTI-ICE THEORY OF OPERATION

This chapter describes the concepts and commands that allow you to control and
coordinate the operations of two ICEs from one Intellec system.

To provide a framework for understanding how the commands work, we provide a
model of a multi-ICE system such as 85/85 or 85/49. This model is conceptual in
nature; it does not describe exactly how a given feature is implemented in the ICE
software. However, the model is consistent with the software implementation, and
for that reason can be used to predict what will happen under most conditions that
arise during system operation.

Refer to Chapters 6, 7, and 8 for the details on the multi-ICE commands (syntax,
examples).

Components of a Dual-ICE System
A dual-ICE system has the following software components (figure 9-1):

762-7

•

•

EN1
PARSE
TABLES

SWITCH = EN1

COMMAND

CODE

SWITCH = EN2

EN2
PARSE

TABLES

PR1
COMMAND

BUFFER

ACTIVATE PR1

HOST PROCESS

EN1
EXECUTION

ENVIRONMENT

SWITCH = EN1

COMMAND 1----.......
BUFFER

ACTIVATE PR2

PR2
COMMAND

BUFFER

SWITCH=EN2

EN2
EXECUTION

ENVIRONMENT

Figure 9-1. Components of a Dual-ICE™ System

The HOST parser issues the console prompt, receives commands from the
console or from a file, parses the commands into command code using the parse
tables from the HOST's current environment (EN! or EN2), and loads the com­
mand code into the HOST's command buffer.

The HOST execution process (keyword: HOST) executes commands from its
command code buffer using the execution software and hardware of the
HOST's current environment (ENI or EN2) as required.

9-1

Multi-ICE Theory of Operation

9-2

• The two ICE execution processes (keywords: PR1, PR2) execute commands
from their command code buffers in their own environments (PRI in EN1, PR2
inEN2).

• The dispatcher polls available tasks (commands to parse or execute) in a fixed
sequence and uses the current status of each task when polled to decide whether
to allow that task to be performed or to skip it and poll the next task.

Table 9-1 summarizes the keywords used to refer to the HOST and ICE processes
and to the two parsing and execution environments. The parser and the dispatcher
do not have any associated keywords.

Table 9-1. Process and Environment Keywords

Keyword Meaning

HOST HOST execution process
PR1 First ICE execution process (e.g., ICE-85 in dual ICE 85/49)
PR2 Second ICE execution process (e.g., ICE-49 in 85/49)
EN1 Parsing and execution environment of the first ICE.
EN2 Parsing and execution environment of the second ICE.

Processes and Process Status

HOST and ICE Processes
A process is a conceptual entity that can directly execute certain ICE commands
("software commands") and can call upon designated ICE hardware through a
hardware interface to execute other ("hardware") cQmmands. There are three pro­
cesses in a dual-ICE system: the HOST process and the two ICE processes (table
9-1). In this manual the term "PRn" is used to mean "either PRIor PR2"; PRn is
1'ot a keyword.

A process uses a command code buffer and an execution environment. Figure 9-2
diagrams a generalized execution process.

COMMAND
LIST

(ACTIVATE
LIST)

COMMAND
CODE

BUFFER

SOFTWARE FIRMWARE HARDWARE ICE
REGISTERS REGISTERS INTERFACE HARDWARE

y
EXECUTION ENVIRONMENT

Figure 9-2. A Generalized Execution Process

Each process has its own command code buffer. A command code buffer can con­
tain one or more commands. Commands are parsed into command codes by the
parser, loaded into the HOST's command code buffer, and then are either executed
by the HOST or transferred to the buffer of one of the two ICE processes for execu­
tion. The contents of a command code buffer are called a "command list." For an
ICE process the contents are also called an " ACTIVATE list" because they are
passed to the ICE process with an ACTIV ATE command~ as discussed later in this
chapter.

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

An execution environment includes ICE software registers, a set of ICE "firmware
registers", the hardware interface, and the ICE hardware. ICE firmware is ROM­
based ICE code that is on the ICE boards. "Firmware registers" are RAM-based
registers used directly by the firmware to control the hardware interface; many of
these are copies of corresponding software registers. In most situations the details of
the execution environment are invisible tothe user.

Each of the two ICE processes operates within its own execution environment. The
environment of PRl is identified by the keyword ENl, and keyword EN2 identifies
the environment of PR2. The HOST process can operate in the execution environ­
ment of one of the two ICE processes. The HOST's shared execution environment
can be switched by command from one ICE to the other; switching the HOST's exe­
cution environment also switches the HOST's parsing environment, as discussed
later on.

Process Status

Associated with each process is a process status; refer to table 9-2 for a summary of
process status keywords. The HOST execution process is ACTIVE when its com­
mand buffer contains one or more commands; it is DORMANT when its buffer is
empty; it is SUSPENDED when a WAIT command is pending.

An ICE process is DORMANT when its command code buffer is empty; it is
ACTIVE when its buffer contains one or more commands and that ICE process has
not been suspended by command; it is SUSPENDED when its buffer contains one
or more commands and the process has been suspended by command.

Table 9-2. Process Status Keywords

Keyword Meaning

DORMANT Process' command buffer empty.

ACTIVE Process' command buffer has commands and process is not
suspended by command.

SUSPENDED Process is suspended by command while emulating or
executing.

Querying Process Status

The process status keywords ACTIVE, DORMANT, and SUSPENDED can be used
to query the system regarding the status of any process. A BOOL command with the
form:

BOOl process-status process

displays "TRUE" if the given process (HOST, PRl, PR2) is currently in the given
process-status (ACTIVE, SUSPENDED, DORMANT); otherwise, the command
displays "FALSE".

HOST Parsing and Execution Environment

The HOST parser and HOST execution process can use the resources of either of the
two ICEs. These resources include the execution environment discussed earlier, and
the parsing environment: a set of parse tables used to specify the valid keywords and
syntax for any ICE-dependent commands.

9-3

Multi-ICE Theory of Operation

9-4

The SWITCH command (described in detail in Chapter 6) sets the parsing and ex­
ecution environment for the HOST parser and process. Both aspects (parser and ex­
ecution process) of the HOST are always in the same environment, termed the "cur­
rent SWITCH" .

Initially (after initial program load from ISIS), the current SWITCH is ENl. Com­
mands are parsed using the parse tables of the first ICE and the HOST executes its
commands in the execution environment of the first ICE. From the initial state, if
you enter the command:

SWITCH = EN2

the parse tables of the second ICE are read in, unless the two ICEs are the same kind
(for example 85/85). The next HOST execution will use the execution resources of
that ICE; even if the two ICEs are of the same kind, their execution resources are
independent.

If you subsequently enter:

SWITCH = EN1

you are back in the parsing and execution environment of the first ICE.

Tasks and Task Status
A task-slice is the time required for one of the following actions to be completed:

• A process executes one simple command.

• A process emulates one instruction in single-step mode.

• A process enters real-time emulation.

• The parser parses one complete simple or compound command and encounters
the final cr.

A task is a process (or parser) that requires a task-slice to perform its next action.

At any given time, there may be one or more tasks requiring scheduling. The dispat­
cher polls the possible tasks in a particular sequence; the polling sequence is describ­
ed in detail later in this chapter.

Associated with each task is its task status. At the moment the dispatcher polls a
task, that task is either READY or NOT READY. If an execution process is
READY when polled, it is allowed to perform its next action. If the parser is
READY when polled, a prompt is issued. We now describe the conditions under
which a given task is READY or NOT READY.

NOTE
The task statuses READY and NOT READY are shown in upper case in
this manual, following the common convention for logic states that is also
used for TRUE and FALSE. However, READY and NOT READY are not
ICE keywords; they cannot be used in commands. The status of any task
cannot be queried directly, but must be inferred from the sequence of com­
mands previously entered and executed.

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

The HOST Parser
The HOST parser processes all input from the console or from files. The parser
signals its readiness to accept a command by issuing an asteriskk prompt (*).

Obtaining a Prompt

Here are some guidelines for obtaining a prompt. Details are given in succeeding
paragraphs.

• The prompt is issued automatically if the HOST process is DORMANT and the
ICE processes are either DORMANT or SUSPENDED.

• If the HOST process is DORMANT and one or both ICE processes are
ACTIVE, press the spacebar to obtain a prompt after the current task is
completed.

• If the HOST process is ACTIVE, and both ICE processes are either
DORMANT or SUSPENDED, press the ESC key to abort the HOST (HOST
becomes DORMANT); the prompt is now issued automatically.

• If the HOST process is ACTIVE and one or both ICE processes are ACTIVE:

1. Press ESC to set the HOST process DOR~Y1ANT.

2. The system asks you if you want to kill the ACTIVE ICE process(es);
(killing them sets them DORMANT).

3. If you kill all ACTIVE ICE processes, the prompt is issued automatically.

4. If you don't kill all ACTIVE processes, press the spacebar to obtain the
prompt after the current task is completed.

NOTE

If you press any character keys while the parser is suppressed, the characters
are ignored. The systems outputs a "BELL" character (producing a
"beep" at most CRT terminals) to inform you that a character key is being
ignored; you must request a prompt to enter your command.

Entering Commands

When the parser is dispatched, it issues a prompt and waits for a command to be
entered. While the parser is thus waiting, no process can begin executing any com­
mand. If a process is emulating when the parser is dispatched, the process keeps
emulating; however, if the process breaks emulation (reaches a breakpoint) it cannot
display "EMULATION TERMINATED" at the console until the parser completes
its action.

The parser completes its action when you enter a final CI (carriage return), or when a
parser error (such as SYNTAX ERROR or INVALID TOKEN) occurs.

At the completion of a parser action, the encoded command is loaded into the
HOST's command buffer (HOST process becomes ACTIVE), the HOST process'
task status is set READY, and the parser's task status is set NOT READY.

9-5

Multi-ICE Theory of Operation

9-6

Intermediate and Final Carriage Return

A command can contain intermediate cr's in addition to the final cr. A final cr
means one of the following:

• A cr entered immediately after the prompt, or with only blanks preceding the cr
(in other words, a "null" command).

• A cr entered after a single-line simple command that is not inside any compound
command.

• A cr entered after the END keyword of a compound command that is not inside
any other compound command.

• A cr entered at the end of a continuation line (that is, a cr not preceded by the
continuation character "&" on the same line).

An intermediate cr means one of the following:

• A cr preceded by the continuation character "&" on the same line. The system
acknowledges the continuation by displaying a double prompt (**) on the next
line.

• A cr that ends a simple or compound command that is nested inside a
compound command (REPEAT, COUNT, IF, ACTIVATE, LOCK or
DEFINE MACRO command). The parser informs you of the nesting level by
prefixing the prompt with one period (.) for each level of nesting. The outer
level is level zero (no period).

Parser Task Status

Refer to figure 9-3 and table 9-3. In the preceding sections, we described how to ob­
tain a prompt (get the parser dispatched) and how to terminate a command
(complete the parser's action). These discussions emphasized the user's point of
view. This section describes the parser as "seen" by the dispatcher.

The dispatcher periodically polls the parser. If the parser is READY when polled,
it is dispatched (given control of the console). If the parser is NOT READY when
polled, the dispatcher skips the parser and looks for a process to dispatch. The next
paragraphs describe the conditions under which the parser is READY or NOT
READY.

Table 9-3. HOST Parser Task Status

Task HOST Execution ICE Process Spacebar INCLUDE or
Status Process Status Status Pressed SUBMIT

NOT READY ACTIVE or
SUSPENDED - - -

DORMANT One or both
NO NO ACTIVE

READY DORMANT One or both YES NO ACTIVE

DORMANT One or both
YES ACTIVE -

DORMANT NoPRn
ACTIVE - -

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

NO

NO

YES

YES NO

Figure 9-3. HOST Parser Task Status

READY

The parser is set READY under anyone of the following conditions:

• The HOST process is DORMANT and both ICE processes are either
DORMANT or SUSPENDED.

• The HOST process is DORMANT and one or both ICE processes are ACTIVE,
and the user has requested the prompt by pressing the spacebar.

• The HOST process is DORMANT and one or both ICE processes are ACTIVE,
and commands are being read (input) from a diskette file using the ISIS-II SUB­
MIT command.

NOT READY

The parser is NOT READY when any process is ACTIVE and either the user has not
requested any service (spacebar or ESC) or input is not coming from a file.

Thus, the user always receives the prompt after initialization and at any other time
that no execution process is ACTIVE.

The prompt is suppressed whenever the HOST process is ACTIVE or SUSPENDED
(buffer has commands), since any new input would erase the commands currently in
the buffer. To get a prompt when the HOST is ACTIVE, you must set the HOST
DORMANT by pressing the ESC key.

9-7

Multi-ICE Theory of Operation

9-8

If the HOST process is DORMANT but one or both ICE processes are ACTIVE, the
prompt is suppressed. However, you can obtain the prompt after the current task is
completed by pressing the spacebar; this does not change the ACTIVE status of the
process that was pre-empted.

The ISIS SUBMIT command causes ICE to take its input from a diskette file rather
than from the keyboard. Under file control, the prompt is issued after each task exe­
cuted by an ICE process unless the HOST process is active. When the HOST process
is ACTIVE the prompt is suppressed, even under file control. The remainder of this
chapter assumes that il}put is from the console rather than from a file.

HOST Execution Process
The HOST process executes commands in its command list. The HOST's command
list contains any commands transferred by the parser into the HOST's command
code buffer that are not inside an ACTIVATE block. As discussed later, the HOST
executes an ACTIVATE command by passing the commands inside the ACTIVATE
block to the given ICE process for execution.

Commands to the HOST
The HOST can execute three kinds of commands,. as follows:

1. HOST-only multi-ICE commands:

ACTIVATE PR1
ACTIVATE PR2
ENDACTIVATE
SUSPEND PR1
SUSPEND PR2
SUSPEND ALL
CONTINUE PR1
CONTINUE PR2
CONTINUE ALL
BREAK PR1
BREAK PR2
BREAK ALL
KILL PR1
KILL PR2
KILL ALL
WAIT PR1
WAITPR2
WAIT ANY
SWITCH = EN1
SWITCH = EN2

Details on these commands appear later in this chapter.

2. ICE-independent single-ICE commands, specifically:

REPEAT commands
COUNT commands
IF commands
BOOL expression
MACRO commands
LOCK command
Commands that reference the IN 0 symbol table
WRITE command

REPEAT, COUNT, IF, BaaL, MACRO, and WRITE commands are described in
chapter 6.

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

3. ICE-dependent single-ICE commands, if the ICE on which the commands
depend is the current SWITCH.

For example, if the current SWITCH is an ICE-85 environment, the HOST can
execute any of the commands described in Chapter 7 (SEARCH, DOMAIN,
NESTING, LINE, MODULE, FLAG, IMASK), as well as any of the standard
ICE-85 commands from the ICE-85 operator's manual.

The HOST can perform the same debugging operations that an ICE process can per­
form. One main difference noted so far is that an ICE process can be pre-empted
with the spacebar without erasing its command list, whereas the HOST process can
only be interrupted with the ESC key, erasing the HOST's command list.

HOST Process Status and Task Status

Refer to figure 9-4 and table 9-4.

Table 9-4. HOST Execution Process Status and Task Status

Process Task Command In Real-Time Waiting On
Status Status Buffer Emulation ACTIVATE PRn

DORMANT NOT READY Empty - -
ACTIVATE NOT READY Has

YES NO Commands

READY Has
NO NO Commands

SUSPENDED NOT READY Has
NO YES Commands

DORMANT

Initially, the HOST process is DORMANT; its buffer is empty of commands. When
the HOST process is DORMANT, its task status is NOT READY.

The HOST process becomes DORMANT when it finishes executing its command list
or when the user presses the ESC key.

ACTIVE READY (Executing)

When the parser completes its input task, it passes the commands to the HOST's
command buffer and sets the HOST process ACTIVE READY. (The parser
becomes NOT READY and remains so as long as the HOST is ACTIVE.) When the
HOST process is subsequently polled by the dispatcher, it executes the first com­
mand in its buffer; that task can be one of the following:

• Execute one simple command other than STEP or GO.

• Emulate one instruction in single-step mode (that is, one COUNT of a STEP
command).

• Begin real-time emulation. A GO command begins execution by issuing a
"begin emulation" directive to the hardware controlled by the current
SWITCH. A GO command completes execution when the hardware reports
"emulation terminated".

After performing any task other than entering real-time emulation, the HOST pro­
cess remains ACTIVE READY until it has exhausted its command list or the user
presses ESC.

9-9

Multi-ICE Theory of Operation

9-10

DORMANT
®

ACTIVE
EXECUTING

8
ACTIVE

EMULATING

f:::\
V

<D HOST p'arser transfers a command list to the HOST

C
rocess' command buffer and sets HOST process READY

parser set NOT READY).
@ HOST process' buffer empty; last command in buffer

executed or user pressed ESC-key.
@ HOST begins emulation.
@) HOST process breaks emulation.
@) HOST executes a WAIT command while the designated ICE

process is ACTIVE.
(§) WAIT command terminates because designated ICE

process is no longer ACTIVE.
(j) User presses ESC key.
@ User presses ESC key.

SUSPENDED

~
V

762-10
Figure 9-4. HOST Execution Process Status and Task Status

ACTIVE NOT READY (Emulating)

When the HOST begins executing a GO command, it remains ACTIVE but becomes
NOT READY; it is waiting for the hardware to signal "emulation terminated" and
cannot be dispatched for another task. The HOST remains in this state until a break­
point is reached (assuming the user has specified a halt condition other than
FOREVER) or the user presses ESC. After a breakpoint, the HOST becomes
ACTIVE READY; after ESC, the HOST becomes DORMANT.

If the halt condition is FOREVER (or if for some reason the breakpoints are never
reached), the ESC key is the only way to terminate the HOST's emulation. Pressing
the ESC key has the "side effect" of erasing the HOST's entire command buffer. If
the GO FOREVER command is in a block with other commands, the commands
that appear later than the GO command can never be executed. Thus for the HOST
process, GO FOREVER should be the last command in a block. By contrast, emula­
tion by an ICE process can be broken from the console using the BREAK command
without erasing anything, thus allowing execution to continue.

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

SUSPENDED

The HOST process becomes SUSPENDED NOT READY when it executes a WAIT
PRn or WAIT ANY command. Under WAIT PRn, the HOST remains sus­
PENDED NOT READY until PRn is no longer ACTIVE; under WAIT ANY, the
HOST remains SUSPENDED NOT READY until either process becomes
SUSPENDED or DORMANT.

The ICE Processes

The two ICEs in a multi-ICE system are referred to with the keywords PRI and
PR2. In effect, each ICE process is assigned a "logical" number; the assignment is
fixed for a given multi-ICE module. For example, in the dual-ICE system consisting
of ICE-85 and ICE-49, PRI always refers to the ICE-85 and PR2 always refers to
the ICE-49.

Commands to the ICE Processes

An ICE process executes any commands within the ACT IV ATE list it receives from
the HOST. ICE process PRl uses the ENl execution environment, and PR2 uses the
EN2 environment. An ICE process can execute three kinds of commands, as
follows:

I. ICE-only multi-ICE commands, specifically:

SUSPEND
KILL

As discussed later in this chapter, SUSPEND causes the ICE to "pause" until it is
continued by the HOST, and KILL erases the ICE's command buffer, setting the
ICE process to DORMANT.

2. ICE-independent single-ICE commands; these commands are the same as the
ones given for the HOST process in this category.

3. ICE-dependent single-ICE commands, if they depend on the given ICE.
Actually, the parser detects invalid commands in an ACTIVATE list and issues
an error message immediately; thus an ICE process never tries to execute any
commands that are not valid for it.

ICE Process Status and Task Status

Refer to figure 9-5 and table 9-5.

Table 9-5. ICE™ Process Status and Task Status

Process Task Command In Real-Time Suspended
Status Status Buffer Emulation By Command

-

DORMANT NOT READY Empty - -
SUSPENDED NOT READY Has NO YES (Executing) Commands

SUSPENDED
NOT READY Has Was Emulating YES (Emulating) Commands When Suspended

ACTIVE NOT READY Has YES NO (Emulating) Commands

ACTIVE READY Has NO NO (Executing) Commands

9-11

Multi-ICE Theory of Operation

9-12

782-11

ACTIVE
EXECUTING

8

ACTIVE
EMULATING

(;;\
V

®

®

DORMANT

~
V

®

CD HOST executes ACTIVATE command.
® Buffer empty; last command executed or PRn was killed.

® PRn enters real-time emulation.
@ PRn breaks emulation or HOST executes BREAK

command while PRn's buffer is not empty.
® PRn suspended by command while not in emulation.
® PRn continued bl command, was not emulating when

:~Sfr:~d~u~t~~. AK PRn executed while PRn suspend.

(j) PRn suspended while in emulation.
® PRn continued, and was emulating when suspended.

® PRn was killed, or BREAK command leaves buffer empty.

@ PRn killed by HOST command.

@ PRn killed by HOST command.

@ BREAK PRn executed while PRn SUSPENDED from
emulation.

Figure 9-5. ICE™ Process Status and Task Status

DORMANT (NOT READY)

SUSPENDED
EXECUTING

~
\:J

SUSPENDED
EMULATING

~
\:J

Initially, both PRI and PR2 are DORMANT; their command buffers have no com­
mands. An ICE process becomes DORMANT (from another state) when one of the
following occurs:

• The process kills itself by executing the last command in its command list.

• The process kills itself by executing a KILL command in its command list.

• The user kills the process through the HOST by entering a KILL PRn or KILL
ALL command.

• The user kills the process by pressing ESC and answering "Y" to the query
"KILL PRn?".

An ICE process can be set DORMANT from any other state (ACTIVE READY,
ACTIVE NOT READY, or SUSPENDED). However, the actions that can set a pro­
cess DORMANT depend to some degree on its current state, and on whether the
ICE process is currently executing commands from within a LOCK block. Table 9-6
summarizes the conditions that can set an ICE process DORMANT.

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

Table 9-6. How an ICE™ Process Becomes DORMANT

Current State Actions That Set Process DORMANT
Of Process From Current State

ACTIVE READY • Process executes last command in buffer.

• Process executes KILL command.

• HOST executes KILL PRn or KILL ALL command.

• User kills process through ESC.

ACTIVE NOT READY • Process breaks emulation, finds buffer empty.

• HOST executes KILL PRn or KILL ALL command.

• User kills process through ESC.

SUSPENDED • HOST executes KILL PRn or KILL ALL command.

Executing LOCK • Process executes last command in buffer.
Block (ACTIVE) • Process executes KILL command.

• Process breaks emulation, finds buffer empty.

• User kills process through ESC.

ACTIVE READY (Executing)

When the HOST process executes an ACTIVATE PRn command, the commands
in the ACT IV ATE list are transferred to PRn's command buffer and PRn is set
ACTIVE READY. The next time the dispatcher polls PRn, the first task from its list
is executed; the task can be one of the following:

• Execute one simple command other than STEP or GO.

• Emulate one instruction in single-step mode.

• Enter real-time emulation.

After executing any task other than entering emulation, the ICE process remains
ACTIVE READY if it still has commands in its buffer.

ACTIVE NOT READY (Emulating)

When an ICE process executes a GO command, it remains ACTIVE but is set NOT
READY; it is waiting for the hardware to report "emulation terminated". The pro­
cess cannot execute any further commands until emulation terminates. If a break
condition has been enabled, emulation can terminate on the break condition. If no
breakpoints have been set (or if none are ever encountered during emulation),
emulation continues until one of the following occurs:

• An error is encountered during emulation (for example, GUARDED ACCESS).

• The user breaks emulation by entering a BREAK PRn or BREAK ALL
command through the HOST; the BREAK command sets the ICE process
ACTIVE READY if the process has any commands left, or DORMANT if no
commands remain.

• The user breaks emulation by entering a SUSPEND PRn or S.USPEND ALL
command; the process becomes SUSPENDED. If the process is continued by
the HOST, emulation resumes where it broke off and the process becomes
ACTIVE NOT READY again.

• The user kills the process by entering a KILL PRn or KILL ALL command; the
process becomes DORMANT.

• The user kills the process by pressing ESC and answering "Y" to the query
"KILL PRn?"; the process becomes DORMANT.

9-13

Multi-ICE Theory of Operation

9-14

SUSPENDED (NOT READY)

You can suspend an ACTIVE process through the HOST by entering a SUSPEND
PRn command. If both ICE processes are ACTIVE, you can suspend them both
with a SUSPEND ALL command. An ICE process can suspend itself by executing a
SUSPEND command in its ACTIVATE list.

SUSPENDED (Executing)

If the process was executing (ACTIVE READY) when suspended, it finishes its cur­
rent action, then is set SUSPENDED (Executing). It can resume executing when you
enter a CONTINUE PRn or CONTINUE ALL command through the HOST.

SUSPENDED (Emulating)

If the process was emulating (ACTIVE NOT READY) when suspended, emulation
is terminated between instructions and the "EMULATION TERMINATED"
message is displayed. The process is set SUSPENDED (Emulating). If the process is
subsequently continued, emulation resumes with the instruction pointed to by the
program counter and the "EMULATION BEGUN" message is displayed.

A suspended process can be killed (set to DORMANT) by entering a KILL PRn or
KILL ALL command to the HOST. A process that is SUSPENDED (Emulating)
can be set to SUSPENDED (Executing) by the BREAK command.

The Dispatcher
The dispatcher is a piece of software that is called when one of the following occurs:

• A process (HOST or ICE) completes the execution of a simple command,
emulates one instruction in single-step mode, or enters real-time emulation.

• The parser encounters a final CI.

• An error occurs; the dispatcher is called after the error message is displayed.

The dispatcher has two main functions:

• Check for interrupts (ESC key, spacebar, hardware emulation terminated,
hardware error).

• Allocate a task slice to the next READY task, and exit the dispatcher.

The operation of the system depends on two sequences:

• The sequence in which interrupts occur, certain interrupts are processed,
multi-ICE commands are executed, and the dispatcher is called. This sequence is
external to the dispatcher.

• The dispatcher's internal sequence of checking and processing certain interrupts
and selecting the next task to dispatch.

The external sequence of interrupt processing and command execution can affect the
dispatcher by altering a "dispatch table" between polls. The dispatch table is
discussed in the next section.

The dispatcher's internal sequence of interrupt processing and task selection is
diagrammed in figure 9-6. The next several sections give the details on this sequence
and how it interacts with the external sequence of interrupts and commands.

Multi-ICE

Multi-ICE

182-12

CHECK
FOR
INTERRUPTS

DISPATCH
NEXT
TASK
SLICE

Multi-ICE Theory of Operation

Figure 9-6. Dispatcher Functional Diagram

9-15

Multi-ICE Theory of Operation

9-16

Dispatch Table

The dispatcher refers to a table that contains the current task status (READY INOT
READY) and LOCK status of the HOST process, PRl, and PR2, and the task status
of the HOST parser. The conditions that govern the task status of these four com­
ponents are discussed earlier in this chapter; LOCK status must now be introduced
to complete the picture of the dispatcher's decision mechanism.

A process is LOCKed when it is executing or emulating from within a LOCK com­
mand block. The parser cannot be locked. When a locked process is dispatched, the
process retrains control of the dispatching mechanism and no other process can be
dispatched until the locked process becomes unlocked again. Details on how the
dispatcher treats a locked process are given later in this chapter.

Table 9-7 summarizes the conditions that affect task status and LOCK. You can
imagine that the table used by the dispatcher does not contain the conditions
themselves as shown in table 9-7, but can contain TRUE or FALSE values depend­
ing on which combinations of conditions are currently TRUE when the dispatcher
checks the table (polls a task).

Table 9-7. Dispatch Table

Task READY NOT READY LOCKED

HOST • ACTIVE and not • DORMANT. • ACTIVE and executing
Process emulating. • ACTIVE and emulating. or emulating from

within a LOCK block.
• ACTIVE and waiting on

ACTIVE ICE process.

PR1 • ACTIVE and not • DORMANT. • ACTIVE and executing
emulating. • ACTIVE and emulating. or emulating from

within a LOCK block.
• SUSPENDED.

PR2 • ACTIVE and not • DORMANT. • ACTIVE and executing
emulating. • ACTIVE and emulating. or emulating from

within a LOCK block.
• SUSPENDED.

Parser • No process ACTIVE. • Any process ACTIVE. -

Console and Hardware Interrupts

The system is prepared to process two categories of interrupts:

1. Interrupts from the ~onsole (spacebar, ESC, CTRL S, CTRL Q).

2. Interrupts from the hardware (emulation terminated or hardware error report).

Console Interrupts

Interrupts from the console are enabled unless an interrupt is currently being
processed.

Spacebar

A space entered when the prompt is displayed is of course treated as a space
character. To produce an interrupt, the spacebar must be pressed when the parser is
suppressed by one or both ACTIVE ICE processes. Under this condition, pressing
the spacebar invokes an interrupt routine that sets a "prompt" flag to TRUE. The

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

parser is set READY when "prompt" is TRUE and the HOST process is DOR­
MANT. The dispatcher is not involved in setting the "prompt" flag or in setting the
parser READY; these actions update the dispatch table without calling the dis­
patcher. However, the next time the dispatcher polls the parser and finds it READY,
the parser is dispatched and the prompt is issued.

CTRL S, CTRL Q
Control S (CTRL S) and Control Q (CTRL Q) are also handled as console inter­
rupts; they do not affect the dispatch table.

CTRL S halts all processing except emulation-in-progress and causes any display to
pause between characters. CTRL Q continues any processing that was halted with
CTRL S and lets the display continue with the next characters.

While the system is halted on CTRL S, the dispatcher cannot be called. As a result,
no task can be dispatched. In addition, recognition of hardware interrupts is sup­
pressed; thus, if an emulating process breaks emulation during a CTRL S halt, the
"EMULATION TERMINATED" message cannot be displayed until you continue
the system with CTRL Q.

ESC Key
While the prompt is displayed, the ESC key aborts the command that is being
entered; ESC does not terminate the parser's task, however, and another prompt is
issued automatically. Pressing the ESC key while the parser is suppressed (some pro­
cess is ACTIVE) invokes an interrupt routine that sets an "aborted" flag to TRUE.
When the dispatcher is called, it checks the flag; if "aborted" is TRUE, the dis­
patcher calls an abort routine to perform the following actions:

• The HOST process is set DORMANT (NOT READY) if it is not already
DORMANT.

• The message "HOST PROCESSING ABORTED" is displayed.

• If PRI is ACTIVE (not suspended or dormant), the system displays the query
"KILL PRl?". To set PRI DORMANT, enter "Y" followed by cr. To allow
PRI to remain ACTIVE press cr immediately (entering any character other than
"Y" also allows PRI to remain ACTIVE).

• If PR2 is ACTIVE, the system asks "KILL PR?". Enter "Y" cr to set PR2
DORMANT, or enter cr to allow PR2 to remain ACTIVE.

After performing these actions, the abort routine returns control to the dispatcher.
The dispatch table has been updated to include the effects of the abort (HOST DOR­
MANT) and of the user's responses to the "KILL PRn?" queries. Specifically, if no
process remains ACTIVE upon return, the parser has been set READY.

Hardware Interrupts

When an ICE hardware module breaks emulation or encounters an error condition,
it informs the software of the condition through an interrupt.

Hardware interrupts are enabled only when the software is able to handle interrupt
smoothly. One of these places is during the dispatcher's internal sequence, since the
dispatcher is called when a task is completed and the next task has not yet been
dispatched. The effect is the same no matter where the interrupt is checked. This
discussion assumes that the dispatcher is checking the hardware interrupts; figure
9-6 shows the place in the dispatcher's internal sequence where the hardware inter­
rupts are checked.

9-17

Multi-ICE Theory of Operation

9-18

Emulation Terminated
Emulation terminates on a breakpoint, an error, or after a BREAK, SUSPEND, or
KILL command. When the dispatcher checks the interrupt and detects any break
other than a hardware error, it calls an interrupt routine to take the following
actions:

• The message "EMULATION TERMINATED, PC = address" is displayed.
The value of PC points to the address of the next instruction to be emulated; the
address is displayed in the current BASE, or symbolically if SYMBOLIC
displays are enabled (see chapter 4).

• The process and task status of the process that broke emulation are changed to
new settings. The new setting depends on the condition that broke emulation
and on the commands that remain to be executed in the process' command list,
as discussed earlier in this chapter.

After these actions have been completed, control returns to the dispatcher; the
dispatch table has been updated to reflect the new status of the process that broke
emulation.

Hardware Errors

If a hardware error occurs during emulation or while any other command is being
executed, the error is detected when the dispatcher checks for hardware interrupts.
In this case, an error message is displayed to identify the error type to the user.
When the error occurs during emulation, emulation terminates but no termination
message is displayed; the status of the process is also updated to reflect the break in
emulation. When a command other than emulation produced the error, the status of
the process that executed the command is changed to DORMANT if its command
list is exhausted; if it still has commands, it remains ACTIVE READY.

After displaying the error message and updating the dispatch table as necessary, the
system returns control to the dispatcher to resume its internal sequence.

Referring to figure 9-6, the dispatcher reaches this point when it has finished check­
ing for interrupts. Its next function is to determine whether any tasks are ready to be
dispatched, and if so which task to dispatch.

Allocating Task Slices

A task slice is the segment of time required for a process or the parser to complete a
task. When a process (HOST or ICE) is dispatched (allocated a task slice), it can exe­
cute one simple command, emulate one instruction in single-step mode, or enter
real-time emulation. At the completion of any of these actions the process calls the
dispatcher to allocate the next task slice. When the parser is dispatched, it issues a
prompt and waits for a final cr. When the parser encounters a final cr, its action is
completed and it calls the dispatcher to dispatch the next task. The dispatcher is also
called after a parsing or execution error.

Current Process
At the time the dispatcher is called, the current process is the process (HOST, PRI,
or PR2) most recently dispatched. The "value" of current process is not changed by
any actions external to the dispatcher.

The dispatcher uses current process in two ways:

• As a marker indicating where the dispatching sequence left off, so that the
dispatcher can check for a LOCK condition.

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

• As a moveable pointer into the first three rows of the dispatch table. If the
current process is not LOCKed and the parser is not READY, the dispatcher
continues its poll with the next process in its polling sequence for processes; we
shall examine that sequence in a moment.

Current Process LOCKed

The Dispatcher first checks to see if the current process is LOCKed; a process is
locked when it is executing commands in a LOCK command block. The exact syntax
of the LOCK command is given in chapter 5. Its effect on the dispatcher is easy to
describe: if the locked current process is READY, it is dispatched; if it is NOT
READY (that is, emulating), the dispatcher loops back to begin checking for inter­
rupts again. Thus, no other processes can be dispatched until the END of the lock
command block is reached. If the locked process is emulating, nothing can occur un­
til either that process breaks emulation or the user presses the ESC key. Pressing the
spacebar has no effect, since the LOCK condition is checked before the parser can
be dispatched (figure 9-6).

If the 'current process is not locked, the dispatcher proceeds to check the parser.

Parser READY

If the parser is READY when polled by the dispatcher, the parser is dispatched. If
the parser is NOT READY, the dispatcher proceeds to check the three execution
processes.

Polling Sequence for Processes

The dispatcher polls the three processes in a fixed sequence, diagramed in figure 9-7.
For any given current process, the "next process" is defined as shown in table 9-8.

Table 9-8. Current Process and Next Process

If the current Then the next
process Is: process Is:

HOST process PR1
PR1 PR2
PR2 HOST process

Current Process READY
The dispatcher first updates current process as a pointer into the dispatch table; the
process that was the next process becomes the current process. The dispatcher then
looks at the dispatch table entry corresponding to that current process. If the current
process is READY, it is dispatched. If the current process is NOT READY, the
dispatcher updates the current process again (next process becomes current process)
and repeats the READY test. If the process that is now the current process is
READY, it is dispatched. If the current process is NOT READY, the dispatcher
again updates the current process to point to the remaining process (the first two
were NOT READY). If this process is READY, it is dispatched. If it is NOT
READY (that is, no processes were READY) current process is updated once more,
so that it now points to the process that was the current process when the dispatcher
was called. Thus if no process is READY, current process in effect remains
unchanged.

If nothing was dispatched, the dispatcher jumps back and begins checking for inter­
rupts again.

9-19

Multi-ICE Theory of Operation

9-20

HOST
PROCESS

PR2 PR1

782-13
Figure 9-7. Polling Sequence for Processes

Summary
Dual-ICE operation involves the simultaneous testing of many conditions, as shown
in the several status tables presented thus far. Rather than restating these conditions,
we can summarize the main effects as follows (neglecting interrupts and LOCK for
simplicity):

1. When no process is emulating or executing, the prompt is issued.

2. When only one process is executing, it receives every available task slice and,
except for a slight delay for the dispatcher, behaves like a standard single ICE.
When the process runs out of commands it stops and the system issues a
prompt.

3. When one process is emulating, the system waits for emulation to break, again
like a standard single ICE.

4. A process can be pre-empted after it enters real-time emulation so that another
task can be dispatched.

5. Two different processes can emulate simultaneously (parallel emulation) if they
are using different sets of hardware.

6. Two or more processes can have tasks to execute. Each process executes one
action as it is assigned a task slice; after each action is completed, the next pro­
cess in the sequence is assigned the next task slice.

Multi-ICE

APPENDIX A
SUMMARY OF MULTI-ICE COMMANDS

AND KEYWORDS

This appendix contains a summary of the syntax of expressions in multi-ICE, the
syntax of each of the commands, and an alphabetical list of all multi-ICE keywords.

Expressions
expression == operand [binary-operator operand] ...

operand == primary 1 (expression 1 process-status process I
unary-operator operand 1 (operand) 1
environment-control primary 1
environment-control (expression)

primary == numeric-constant 1 string-constant 1
symbolic-reference 1 statement reference 1
keyword-reference

binary-operator == + 1 - 1 * 1 MOD 1 MASK 1 = I> 13/4 1<> 1
> = I < = 1 AN D 1 OR I XOR

unary-operator == + 1 - 1 BYTE IIBYTE I CBYTE 1 DBYTE I XBYTE I
WORD IIWORD 1 NOT

process-status == ACTIVE I DORMANT I SUSPENDED I

process == HOST 1 PR1 1 PR2

environment-contro/ == EN1 1 EN2

Commands

1. Multi-ICE Commands

lAo Host-only (outside ACTIVATE block)

ACTIVATE PRn cr
[command cr] ...

ENDACTIVATE
BREAK ALL
BREAK PAn
CONTINUE ALL
CONTINUE PRn
KILL ALL
KILL PRn
SUSPENDALL
SUSPEND PRn
SWITCH = ENn
WAIT ANY
WAITPRn

A-I

Summary of Multi-ICE Keywords and Commands

A-2

lB. ICE-only (inside ACTIVATE block)

KILL
SUSPEND

I C. Any process

LOCK
[commandcr] ...

ENDLOCK
SWITCH

2. Single-ICE commands, any process

2A. Block commands

REPEATcr

[
command cr J
U NTI L boolean-expression cr
WHILE boolean-expression cr

ENDREPEAT

COUNT count cr

[
command cr]
UNTILboole. an-expression cr
WHILE boolean-expression cr

ENDCOUNT

IF boolean-expression [THEN] cr
[commandcr] ...

[
ORIF boolean-expression [THEN] cr]
[commandcr] ...

[
ELSEcr]
[command cr] ...

ENDIF
2B. Macro commands

DEFINE MACRO macro-name
[command cr] ...

EM

:macro-name

MACRO macro-name (macro-list?)

DIRECTORY MACRO

REMOVE MACRO [macro-list]

PUT :drive:filename MACRO [macro-list]

INCLUDE :drive:filename
2C. Display Commands

ENABLE SYMBOLIC

DISABLE SYMBOLIC

EVALUATE expression SYMBOLIC

Multi~ICE

Multi-ICE Summary of Multi-ICE Keywords and Commands

BOOl boolean-expression

[:~~~~sSion J [, ... J
BOOl boolean expression

WRITE

[
keYWOrd-referenCe] []
con fen f ... expression J •••

2D. IND Symbol-Table Commands

DEFINE IND .symbol-name = address I value

IN 0 .symbol-name

SYMBOllND

REMOVE IND .symbol-name

REMOVE SYMBOL INO

3. ICE-85-0nly Commands and Keywords

SEARCH .rOOUBLE] partition [WITH MASK mask-value] FOR target-value
LSINGLE

3A. Commands

DOMAIN

DOMAIN = .. module-name

RESET DOMAIN

NESTING

LINES

MODULES

REMOVE MODULES

3B. Keywords

FLAG

LIMIT

lOWER

A-3

Summary of Multi-ICE Keywords and Commands Multi-ICE

Keywords

Any keyword can be abbreviated to its first three characters.

ACTIVATE LEVEL
ACTIVE LIMIT %
ALL LINES =
AND LOCK >
ANY LOWER <

>=
BOOL MACRO <=
BREAK MASK <>

MOD
CONTINUE MODULES
COUNT

NESTING
DEFINE NOT
DIRECTORY
DOMAIN OR
DORMANT ORIF
DOUBLE

PR1
EDGE PR2
ELSE PUT
ENDACTIVATE
ENDCOUNT REMOVE
ENDIF REPEAT
ENDLOCK
ENDREPEAT SEARCH
EN1 SINGLE
EN2 SUSPEND

SUSPENDED
FOR SWITCH

SYMBOLIC
HOST

UNTIL
IF
INCLUDE WAIT
IND WHILE

KILL XOR

A-4

APPENDIX B
INSTALLATION PROCEDURES FOR

INTELLEC SERIES II SYSTEMS

This appendix contains procedures for installing two ICE hardware modules
(lCE-85, ICE-49, or ICE-4lA) in one Intellec Series II Microcomputer Development
Systems, Models 220 and 230.

NOTE
To install dual-ICE in an Intellec MDS-800 system, follow the pro­
cedures for each ICE given in the standard ICE manual for that product.
The MDS-800 chassis has enough extra slots for the two pairs of circuit
boards.

The procedure for Intellec Models 220 and 230 is as follows:

1. Install expansion chassis following procedure in the Intellec Series II
Installation and Service Manual. Do not replace the front panels yet.

2. Figure B-1 shows the recommended locations for the two ICEs (two boards for
each ICE) in a Model 220 or 230 system. One ICE module is in the main chassis
and the other is in the expander chassis. Both occupy the middle two slots so
that the flat ribbon cables can fit inside the chassis with the front cover installed.

3. Set the device codes on the two ICE controller boards to identify PRI and PR2.
Table B-1 shows the device codes to use for various combinations of ICEs. The
ICE with the lower numbered device code is PRI in all combinations.

Table B-1. Multi-ICE™ Device Codes

Combination PR1 PR2

85/85 10H 11H

85/49 10H 23H

85/41A 10H 24H

In general, when the two ICEs are different (e.g., 85/49 or 85/4lA) the stan­
dard device code for each ICE should be used. You should verify the device
code settings; refer to the standard ICE manuals for details.

4. The multi-ICE package includes three replacement PROMs for one IGE-85
Controller Board. Install the three PROMs as shown in table B-2. Do not
replace the PROM in socket All.

Table B-2. ICE-85™ Replacement PROM Locations

Socket Old Part New Part
Number Number Number

A8 9100139 9100229
A9 9100140 9100230
A10 9100141 9100231

B-1

Installation Procedures for Intellec Series II Systems

762-14

B-2

DUAL AUXILIARY
CONNECTOR

220/230 MAIN CHASSIS

EXPANDER CHASSIS

Figure B-1. Intellec® Series II Models 220/230 Dual-ICE™ Installation

Multi-ICE

Multi-ICE

782-15

Installation Procedures for Intellec Series II Systems

NOTE
(Note Deleted)

5. Insert a pair of ICE boards into an iSBC dual auxiliary connector (pIN
1000751). Refer to figure B-2 for a diagram showing the orientation of the two
boards and the locations of the four ribbon cable connectors X, Y, V, and T.

a. For a permanent installation, the dual auxiliary connector can be bolted to
the backplane before installing the ICE boards.

6. Insert the boards and connector into the main chassis, in the middle two slots as
shown in figure B-1.

NOTE
The cable slots at the right side of the main chassis are larger than the
corresponding slots on the expander chassis. Inspect the flat ribbon
cables and install the ICE with the wider cables in the main chassis.

7. Attach the ribbon cables from the cable modules (X to X, V to V, Y to Y, and T
to T) as shown in figure B-3. Hold cables X, V, and Y together with the ribbed
side toward the main chassis. Insert the connectors, then fold the cables to the
right. Guide the ribbon connector with connector T (from the trace module)
around the left end of cable Y and make the connection.

8. Guide the flat cables through the slot at the right side of the main chassis and
replace the front panel on the main chassis.

9. Repeat steps 5 through 9 to install the other ICE in the expander chassis. Curl
the flat cables as necessary to fit the exit slot at the right of the chassis.

10. Apply power to the system, load diskettes, boot ISIS-II, and invoke the
multi-ICE software. The installation is complete.

DUAL AUXILIARY
CONNECTOR

v

Figure B-2. ICE™ Boards in Dual Auxiliary Connector

B-3

Installation Procedures for Intellec Series II Systems

B-4

v

YI_~_- __ ~ __ Ix

teD ®

182-18

'-----x

-----------------v
~-----------------------------------Y
---T

Figure B-3. Ribbon Cable Routing Diagram

Multi-ICE

APPENDIX C
MULTI-ICE ERROR MESSAGES

This appendix contains a listing and explanation of the ICE error messages that are
particular to the commands in this manual or that have a different interpretation
under these commands from that given for the standard ICE commands. Refer to
the standard ICE manuals for explanations of other ICE error messages.

ERR 88: MACRO PARAMETER ERROR

A macro call contained more than ten actual parameters. Enter the command with
ten or fewer actual parameters.

ERR 90: MEMORY OVERFLOW

ICE workspace has expanded to the maximum permitted by the value of LIMIT.
This can happen when the symbol table grows very large and when a macro expan­
sion requires more workspace than that available. The command that produced the
overflow is aborted, but the memory already written in the Intellec by that command
is not restored. Memory below LIMIT is not changed.

ERR 96: INVALID WITHIN ACTIVATE

An ACT IV ATE block may not contain a HOST -only command (W AIT PRn,
WAIT ANY, CONTINUE PRn, CONTINUE ALL, SUSPEND PRn, SUSPEND
ALL, KILL PRn, KILL ALL, BREAK PRn, BREAK ALL), another ACTIVATE
command, a macro definition command, or a SWITCH command that refers to the
other ICE environment (e.g., SWITCH = PR2 inside an ACTIVATE PRI block).
The invalid command is ignored, but the ACTIVATE block is not aborted. Enter
another command.

ERR 9F: PROCESS ALREADY ACTIVE

The process named in an ACTIV ATE command is already executing or emulating a
command list from an ACTIVATE block. The extra ACTIVATE command is ig­
nored. Enter another command, or KILL the active process before entering another
ACTIV ATE command for that process.

ERR A3: PROCESS DORMANT

The process named in a CONTINUE command is DORMANT. The CONTINUE
command is ignored. Enter another command.

ERR A4: MACRO FILE FULL

The temporary file MAC.TMP on the multi-ICE diskette has used all the available
space on that diskette, and there is no room for any more macro definitions. Save
and remove one or more macros to make room for more, using the PUT MACRO
and REMOVE MACRO commands in multi-ICE.

C-l

Error Messages

C-2

ERR AF: ILLEGAL HOST COMMAND

A SUSPEND or CONTINUE command was entered to the HOST process (that is,
not within an ACTIVATE block) that either had no process name or had an
unrecognizable process name following the initial command keyword. The com­
mand is ignored; enter another command.

ERR BO: LIMIT HIGHER THAN UPPER

LIMIT, the lowest address available to the ICE memory manager for expanding ICE
workspace, cannot be set to a higher address than the value of UPPER, the lowest
address currently used by ICE workspace. The command that attempted to change
LIMIT was ignored. Refer to chapter 5, ICE-85 Dependent Commands, for details
on LIMIT and UPPER.

ERR B1: INVALID WITH LOCK ON

A LOCK block may not contain a SUSPEND or WAIT command. The invalid com­
mand was ignored, but the LOCK block is not aborted. Enter another command.

ERR B4: POTENTIAL BUS LOCKOUT

In a dual ICE-85 system both ICE-85's may not be mapped to Intellec memory. Two
ICE-85's emulating (GO FOREVER) from Intellec memory can produce a bus
lockout condition requiring a hardware reset in the Intellec system, unless one of
them can break emulation. This condition can be avoided by mapping at least one
ICE-85 to USER.

WARN C1: MAPPING OVER SYSTEM

Under ICE-85, you are warned when memory mapped to INTELLEC contains ad­
dresses in one of the following areas of memory:

• Monitor (highest block)
• ICE workspace (UPPER points to lowest address in ICE workspace).

• Potential ICE workspace (LIMIT points to the lowest address available for
expanding ICE workspace).

• ICE software (LOWER points to the lowest address in the next free block higher
than the ICE software).

• ISIS-II (the lowest blocks).

Initially, LIMIT = LOWER; any memory mapped to INTELLEC at this time
receives a warning. You can reset LIMIT to the highest address occupied by user
code; if LIMIT is reset before the area is mapped, the warning is not issued. The
warning has no effect on the command.

WARN C2: HARDWARE MISSING

This message is preceded by the device code that Multi-ICE was looking for. This
warning indicates that Multi-ICE cannot communicate with the indicated ICE hard­
ware. Most commonly, the hardware is not installed in the Intellec chassis. Alter­
nately, check the device code setting for the 'missing' ICE (see Appendix B). The
warning is not fatal. The ICE software for the missing ICE can still be run, but of
course no hardware commands can execute.

Multi-ICE

Multi-ICE Error Messages

WARN C3: MULTIPLE HARDWARE

Both ICEs have the same device code setting. Reset the device code setting (see Ap­
pendix B) of one of the ICEs and re-install.

C-3

APPENDIX D
OPERATING HINTS AND LIMITATIONS

This appendix contains suggestions on operating multi-ICE, procedures for backing
up the multi-ICE PROMs, and brief descriptions of known limitations of this
product when compared to standard ICE systems.

1. Perform all LOAD, SAVE, LIST, and MAP commands through the HOST
rather than within ACTIVATE. SWITCH environments as needed.

2. Enter all macro definitions through the HOST. Macros can be called by any
process, and are not limited to the current environment at definition time.

3. While an ICE process is in emulation the HOST can be in interrogate mode in
the same environment. Avoid commands that affect emulation and trace while
in this situation; these commands include those that affect the MAP, the 00-
register, breakpoints, the trace buffer, the program counter, qualifier registers,
code memory, and hardware registers. The result of any of these commands in
this situation will not be useful to you.

4. Backing up Replacement PROMs for Testing

Using an Intel UPP PROM programmer and 2716 personality module attached
to the Intellec system you can transfer the contents of the three replacement
PROMs furnished with multi-ICE to diskette for comparison in case of a
suspected PROM failure.

To ISIS-II enter the command sequence (prompts are furnished by the system):

-UPM
*TYPE*2716
Insert each PROM in the programmer socket in turn, and transfer its contents
with the appropriate transfer command as shown in table 0-1.

Table D-l. PROM Transfer Commands

PROM Installed Transfer Command

9100229 TRANSFER FROM 0 TO 7FFH
9100230 TRANSFER FROM SOOH TO OFFFH
9100231 TRANSFER FROM 1000H TO 17FFH

Finally, enter the command:

*WRITE FILE :F1 :85 PROM.BAK FROM 0 TO 17FFH HEX

This completes the backup procedure. To make the comparison test, enter the
command:

*READ FILE :F1:85PROM.BAK INTO 0

Inserteach PROM in the programmer socket in turn, and compare its contents
with the backup as shown in table 0-2.

Table D-2. PROM Compare Commands
PROM Installed Compare Command

9100229 COMPARE FROM 0 TO 7FFH
9100230 COMPARE FROM SOOH TO OFFFH
9100231 COMPARE FROM 1000H TO 17FFH

D-l

Operating Hints and Limitations

D-2

This completes the comparison procedure.

5. Under ICE-85, use of the monitor routines CO and CI for console display from
within user code interferes· with Multi-ICE's interrupt handling routines. Thus,
you should no map 1/0 to the IntelJec system.

Instead, use the WRITE command to have ICE produce simulated output
whenever a display is required.

6. Under ICE-85, the EXECUTE command is omitted in Multi-ICE. Use the
INCLUDE command instead.

7. Under ICE-85, the performance characteristics of the SYI line do not allow you
to synchronize trace collection between two ICEs.

8. Under ICE-85, the replacement PROMs furnished with Multi-ICE change the
performance of SYO OUT by adding two control keywords, EDGE and
LEVEL. The syntax of the ENABLE SYO OUT command becomes:

ENABLE SYO OUT [E. DGE]
LEVEL

LEVEL is the default, and is the performance condition for the standard
ICE-85. Under this condition, SYO goes from high to low within 1.3-2.3 ms
after a breakpoint register matches.

When EDGE is specified, the SYO line goes from high to low within 30-200 lAs
after a breakpoint match, stays low for a brief period, returns high to finish the
last instruction (and some internal 'bookkeeping'), then goes low and stays low.
EDGE is useful when the external device to be controlled by SYO OUT is edge­
triggered, or when you wish to have a faster response than LEVEL can give.
Specifically, EDGE should be used when the external device is another ICE; the
external ICE halts emulation immediately on receiving the first high-to-Iow
edg~. (That is, halts 30-200 lAS after the sending ICE has halted emulation.)

When SYO is used to control the start of emulation, emulation begins approx­
imately 800 lAs after SYO goes high. This brief delay is characteristic of both the
sending ICE and the receiving ICE; thus, SYO does not produce a simultaneous
start of emulation by two ICEs.

When SYO out is enabled in the sending ICE-85, a reference using BYTE,
WORD, or PORT, or a single STEP emulation produces a momentary pulse on
SYO OUT. If the receiving ICE has SYO IN enabled, it will start emulation then
halt on the first falling edge.

With SYO OUT enabled, a RESET HARDWARE command by the sending
ICE-85 causes SYO to go high and remain high for 1.8 seconds.

9. Under ICE-85, the CAUSE command does not give the correct cause of
breaking emulation.

10. If the Multi-ICE software is invoked from a SUBMIT file under ISIS-II V3.4,
the control E feature for switching input between the console and the SUBMIT
file is not fully supported.

11. ICE-85 containing Multi-ICE firmware now supports a Hold/Hold
Acknowledge protocol while not in emulation. The EMUL (active HIG H) signal
provided in the buffer assembly indicates when the Hold/Hold Acknowledge
protocol is fully supported. When EMUL is false (LOW), ICE-85 may not res­
pond to a Hold Request with a Hold Acknowledge for up to 1 msec. Thus, if
ICE-85 requires the use of the user system bus to retrieve or restore emulation
data, it sets EMUL low indicating that the Hold/Hold Acknowledge protocol is
not fully supports.

12. Under ICE-85, the operations of the EMUL output differs from the standard
ICE-85 output. In the standard ICE-85 EMUL indicates emulation in progress,
while in Multi-ICE-85 EMUL indicates that ICE-85 does not have control of the
user system bus.

Multi-ICE

ACTIVATE command, 2-5, 2-6, 2-7, 6-1,
6-2 to 6-4,6-5,9-12

ACTIVATE list
See Command list

ACTIVE status, 6-3, 9-3, 9-9, 9-10,
9-11,9-12

ALL keyword, 2-5; (see SUSPEND, KILL,
CONTINUE, and BREAK commands)

AND operator, 3-5,3-7
ANY keyword

See WAIT command
Arithmetic operators, 3-4, 3-5, 3-6

Binary Operators, 3-4, 3-6, 3-11 ff
BOOL command, 4-1,4-25,9-3
Boolean expression, 3-16, 3-17
BREAK command, 8-1, 8-2,9-12,9-13,

9-14

Classes of operators, 3-4, 3-5, 3-6
Command buffer, 9-1,9-2,9-5,9-10
Command code buffer

See Command buffer
Command contexts, 3-16, 3-17
Command list, 9-2, 9-11, 9-12, 9-13
Compound commands, 4-1, 9-6
Console interrupts, 9-16, 9-17
Content-operator, 3-5, 3-6, 3-7
CONTINUE commands, 7-2, 7-3, 7-4,9-14
COUNT command, 4-1, 4-5 to 4-8
CTRLQ,9-17
CTRLS, 9-17
Current process, 9-18 to 9-20
Current SWITCH, see Environment

DEFINE MACRO command, 4-12, 4-14 to
4-16

Direct references, 3-3, 3-4
Dispatcher, 9-14 to 9-20
Dispatch table, 9-16
Display macro command, 4-1, 4-13, 4-18,

4-19
Display macro directory command, 4-1,

4-13,4-19
DOMAIN commands, 5-1, 5-3
DORMANT status, 6-3, 6-5, 9-3, 9-9, 9-11,

9-12
DOUBLE

See SEARCH command

EDGE keyword, D-2
ENl,EN2

See Environment
Environment, 2-5, 6-1, 6-3, 6-4,9-1,9-3,

9-4,9-11
Environment controls, 3-8, 6-4
Error messages, C-l to C-3
ESC key, 2-7, 6-3, 6-5, 9-9, 9-17

INDEX

Evaluating expressions, 3-9 to 3-16
Execution process, 9-2
Expression, 3-1

FLAG keyword, 5-4

Hardware interrupts, 9-16, 9-17, 9-18
HOST execution process

See HOST process
HOST-only commands, 1-3,9,.8
HOST parser, 9-1, 9-3, 9-5 to 9-8,9-15,

9-16,9-19
HOST process, 2-5, 2-6, 6-3 to ~-6, 9-1,9-2,

9-3,9-8 to 9-11, 9-19, 9-20

ICE-independent commands, 4-1, 9-8, 9-11
ICE process, 2-5, 6-3, 6-4, 6-5, 9-2, 9-3,

9-11 to 9-14,9-18,9-19,9-20
IF command, 4-1, 4-8 to 4-10
INCLUDE command, 4-1, 4-14, 4-20
IND symbol commands, 4-1, 4-27
Installation, 2-1,2-2,2-5, Appendix B
Intermediate carriage return, 9-6
Invoking ICE software, 1-1, 2-5

Keyword reference, 3-3
KILL commands, 2-5, 2-7, 2-8, 6-2, 6-5,

9-11,9-12,9-13

LEVEL keyword, D-2
LIMIT keyword, 5-4 to 5-8
LINES command, 5-3
Local and global defaults, 4-1, 4-2
LOCK command, 8-1, 8-2, 8-3, 9-15, 9-16,

9-19
LOCKED status, 9-15, 9-16,9-19
Logical operators, 3-5, 3-6, 3-7, 3-8
LOWER keyword, 5-4 to 5-8

Macro call command, 4-1, 4-12, 4-14ff
MACRO command (display macro), 4-1,

4-13,4-18 to 4-19
Macro commands, 4-11 to 4-25
Macro invocation, see Macro call

command
MASK operator, 3-5, 3-6
Messages, 6-6
MOD operator, 3-5,3-6
MODULES command, 5-4
Multiple displays, 4-1, 4-27

NESTING command, 5-3
Nesting compound commands, 4-10, 4-11
NOT operator, 3-5, 3-7
NOT READY

See Task Status
Numbers, 3-1
Numeric constants, 3-2
Numeric expression, 3-16, 3-17

Index-l

Operands, 3-1
Operators, 3-4 to 3-8, 3-9
OR operator, 3-5,3-8

Parsing and execution environment
See Environment

Parser
See HOST parser

PRl, PR2
See ICE process

Precedence of operators, 3-4, 3-5, 3-6, 3-9
to 3-16

Primaries, 3-1
Process references, 3-4
Process status, 3-4,6-3,9-3,9-9,9-10,9-11

to 9-14
PROGI (sample user program), 2-1, 2-2,

2-3,2-6
PROG2, 2-1, 2-4, 2-6, 2-8
Prompt, 9-5; see HOST parser
PUT macro command, 4-1, 4-14, 4-20

READY
See Task status

Relational operators, 3-5, 3-6, 3-7
REMOVE MACRO command, 4-1, 4-13,

4-18,4-19
REMOVE MODULE command, 5-4

Index-2

REPEAT command, 4-1, 4-2 to 4-5
Replacement PROMs, 1-1, B-1, D-l

SEARCH command, 5-1 to 5-3
SINGLE

See SEARCH command
Spacebar, 2-7, 6-4, 9-5, 9-16, 9-17
Statement-number references, 3-4, 4-28
String constants, 3-2, 3-3
SUSPEND command, 7-1, 7-3,7-4,9-11,

9-12,9-13, 9-14
SUSPENDED status, 7-1, 7-2, 7-3,9-3,

9-11,9-12, 9-13, 9-14
SWITCH commands, 2-5, 6-1, 6-3, 6-4, 6-5
Symbolic displays, 4-1, 4-28, 4-29
Symbolic references, 3-3, 4-27, 4-28

Tasks, 9-4,9-14,9-18
Task-slice, 9-4, 9-14, 9-15, 9-18 to 9-20
Task status, 9-4, 9-6, 9-7, 9-8, 9-9,9-10 to

9-14,9-19

Unary operators, 3-4, 3-6, 3-11ff

WAIT command, 7-2, 7-3,7-4,9-10,9-11
WRITE command, 4-1, 4-26, 4-27

XOR operator, 3-5,3-6,3-8

Multi-ICETM Operating Instructions for ISIS-II
980(

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that
the needs of all Intel product users. This form lets you participate directly in the documentation proce

Please restrict your comments to the usability, accuracy, readability, organization, and completene
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestior
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other typ
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ ___ DATE ______________ _
TITLE __ __

COMPANYNAME/DEPARTMENT __ _
ADDRESS __ _

CITY ______________________ _ STATE ____________ _ ZIP CODE __________ _

Please check here if you require a written reply. 0

LIKE YOUR COMMENTS .•.

ocument is one of a series describing Intel products. Your comments on the back of this form will
IS produce better manuals. Each reply will be carefully reviewed by the responsible person. All
ents and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

