
8089 ASSEMBLER
USER'S GUIDE

Manual Order Number: 9800938-01

(

Copyright © 1979 Intel Corporation
L-______ ----'I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 11....--______ ----'

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this materia.!, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX
Intel Micromap UPI
Intelevision Multibus)JScope
Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

A97/0879/10K FL

PREFACE

This manual is intended for software engineers who are familiar with assembly
language programming. The contents of this manual are meant to:

•

•

•

Introduce the purpose, features and terminology of the Intel 8089 lOP (I/O
Processor)

Provide reference information on the syntax and semantics of the 8089
Assembly Language, including 8089 assembler controls

Give examples of the use of the 8089 Assembly Language, including the 8089
assembler controls

The manual is organized as follows:

Chapter 1: An Overview of 8089 Operation and Programming

Description of lOP operation
Introduction to task block programs

Chapter 2: Operands

Description of the types and forms of 8089 Assembly Language operands

Chapter 3: The Instruction Set

Instruction set overview
Alphabetized description of each instruction (for quick reference)

Chapter 4: Assembler Directives

Description and examples of assembler directives

Chapter 5: Assembler Controls and Operation

Assembler invocation and controls

Chapter One presents basic information referred to throughout the manual. It
should be read before attempting to write task block programs.

Each of the remaining chapters, Chapters Two through Five, deals with a single ele­
ment of the 8089 Assembly Language or its assembler, ASM89. More experienced
assembly language programmers may find the information in Appendices A, B, C,
and D sufficient for their needs, referencing Chapters Two through Five when a
more thorough explanation is needed. These chapters provide detailed descriptions
and examples, meant to familiarize a programmer with writing 8089 task block pro­
grams in the 8089 Assembly Language.

iii

iv

Reference Publications

The following publications provide helpful reference information:

ISIS-II User's Guide, Order No. 9800306, for information on the ISIS-II operating
facilities.

MCS-86 User's Manual, Order No. 9800722, for 8089 hardware information and
design considerations.

MCS-86 Software Development Utilities Operating Instructions for ISIS-II Users,
Order No. 9800639, for information on the linkage and relocation utilities LINK86
and LOC86.

MCS-86 Assembly Language Reference Manu-aI, Order No. 9800640, for 8086
Assembly Language information.

MCS-86 Absolute Object File Formats, Order No. 9800821, for MCS-86 absolute
object file formats.

CHAPTER 1
AN OVERVIEW OF
8089 OPERATION
AND PROGRAMMING

PAGE

Introduction 1-1
The 8089110 Processor 1-1
8089 System Configurations 1-2
Task Block Programs 1-4
The 8089 Assembly Language Assembler - ASM89 ... 1-5

Object File 1-:-6
List File 1-6

8089/Host Processor Communication 1-6
The TP Pointer IRegister and Task Block Programs . 1-11
8089 Initialization 1-11
Registers 1-13
8089 Addressing Scheme 1-15
DMA Transfer 1-16
Interrupts 1-18
A Sample Task Block Program 1-18

CHAPTER 2
OPERANDS
Introduction 2-1
Operand Overview 2-1
Register Operands ' .. 2-3
Pointer /Register Operands 2-4
Immediate Data Operands 2-5

Expressions 2-5
Symbols 2-5
Labels and Names 2-6
Numeric Constants 2-6
Character String Constants Containing

One or Two Characters 2-8
Location Counter Reference 2-8
Assembly Time Operators 2-8

Permissible Range of Values 2-9
Program Location Operands 2-10

Instruction Labels•........... 2-10
Numeric Constants 2-10
Relative Instruction Addresses 2-10

Data Memory Operands 2-11
Data Memory Bit Operands 2-12

CHAPTER 3
THE INSTRUCTION SET
Introduction 3-1
Instruction Source Statement Format 3-1
Assembled Instructions 3-2
Instruction Mnemonics by Functional Group 3-4

CONTENTS

PAGE
Data Transfer Instructions 3-5
Control Transfer Instructions 3-6

Displacements 3-6
Short and Long 3-7
Short Form Errors 3-7

Arithmetic and Logical Instructions 3-8
Bit Manipulation and Test Instructions 3-10
Special and Miscellaneous Instructions 3-10

Encyclopedia of Instructions 3-11

CHAPTER 4
ASSEMBLER DIRECTIVES
Introduction 4-1
Assembler Directive Source Statement Format 4-1
Symbol Definition Directive 4-3

EQU Directive 4-3
Data Definition and Memory

Reservation Directives 4-4
DB Directive 4-4
DW Directive 4-5
o D Directive 4-6
OS Directive 4-7

Structure Definition Directives 4-7
STRUC/ENDS Directives 4-7

Location Counter Control Directives 4-9
ORG Directive 4-9
EVEN Directive 4-9

Program Linkage Directives 4-9
NAME Directive 4-10
SEGMENT/ENDS Directives 4-10
PUBLIC Directive 4-11
EXTRN Directive 4-11

. Assembler Termination Directive 4-12
END Directive 4-12

CHAPTERS
ASSEMBLER CONTROLS
AND OPERATION
Source File Format 5-1
Invocation Command, Controls and Defaults 5-2

Summary of Controls 5-2
Primary Control Descriptions 5-3
General Control Descriptions 5-4

Examples 5-5
Example 5-1 Full Default 5-5
Example 5-2 Partial Default 5-5
Example 5-3 Continuation Lines and Prompting .. 5-5

Format of Listing File 5-6

v

GLOSSARY

APPENDIX A
OPERAND SUMMARY

APPENDIXB
INSTRUCTION SET SUMMARY

APPENDIXC
ASSEMBLER DIRECTIVES SUMMARY

APPENDIXD
ASSEMBLER CONTROLS SUMMARY

APPENDIXE
ASCII CHARACTER SET CHART

APPENDIXF
DECIMAL/HEXADECIMAL
CONVERSION

vi

CONTENTS (CONT'D.)

APPENDIXG
RESERVED SYMBOLS

APPENDIXH
SAMPLE PROGRAM

APPENDIXJ
ASSEMBLER ERROR MESSAGES/
USER ACTIONS

APPENDIXK
8089 INSTRUCTIONS IN
HEXADECIMAL ORDER

INDEX

FIGURE TITLE PAGE

1-1
1-2
1-3
1-4A

1-4B

1-5

1-6
1-7
1-8
1-9

I-lOA

I-lOB

TABLE

1-1

2-1
3-1

A Typical Host Processor/8089 Task Flow 1-1
Generalized LOCAL Configuration 1-2
Generalized REMOTE Configuration 1-3
8089 REMOTE Configuration Address
Space. 1-4
8089 LOCAL Configuration Address
Space. 1-4
A Conceptual View of the 8089110
Processor 1-5
ASM89 Output Files 14 6
The Channel Control Block (CB) 1-7
The Channel Control Word (CCW) 1-8
The Formation of 20-Bit Addresses by the
8089 Hardware 1-9
The Loading of a Local (110) Space Task
Block Program Address Into the TP
Pointer/Register 1-10
The Loading of a System (Memory) Space
Task Block Program Address Into the TP
Pointer/Register 1-10

TITLE PAGE

Registers Used by DMA Transfer
Operations 1-16
Operand Types 2-1
8089 Instruction Fetch Times (in clocks) ... 3-1

ILLUSTRATIONS

FIGURE TITLE PAGE

1-11

1-12

1-13
1-14
1-15
1-16
1-17
1-18

1-19

3-1
3-2
3-3

3-4
5-1

TABLE

5-1

5-2

Loading a Stored Task Block Program
Address Into TP When Channel Operation
is Resumed Following a Channel HALT
AND SAVE Command (CCW=llOB) 1-11
8089 Initialization and Communication
Blocks 1-12
An 8089 Channel's Register Set 1-14
The Channel Control Register 1-17
Example Task Block Program List File ... 1-19
Stage One-System Memory Map 1-20
Stage Two-Host Processor Preparations .. 1-21
Stage Three-Channell Begins Task Block
Program Execution 1-23
Stage Four-Task Block Program
Execution Ended 1-25
8089 Assembled Instruction Format 3-3
Assembled Encoding of ADD IX,[PP].24 .. 3-4
Assembled Encoding of MOVI
[GB].8,4A27H 3-4
Control Transfer Jump Target Range 3-6
List File Format 5-6

TABLES

TITLE PAGE

8089 Assembly Language Source File
Parameters 5-1
ASM89 Controls and Defaults 5-2

vii

CHAPTER 1
AN OVERVIEW OF 8089 OPERATION

AND PROGRAMMING

Introduction
This manual is about the 8089 Assembly Language. An 8089 programmer must be
familiar with this symbolic language and the operation of the 8089-this chapter
provides an introduction to both.

The 80891/0 Processor
The 8089 brings the mainframe and mInICOmputer liD channel to the micro­
computer world. 110 operations, which previously required large amounts of CPU
supervision and therefore limited its data processing time, can now be independently
managed and maintained by the 8089. 110 channels, by relieving the burden of 110
processing from the CPU, significantly improve system throughput.

Figure 1-1 illustrates the advantage of using an liD channel to handle liD opera­
tions. At the request of the host processor, the liD channel initializes an liD device,
starts the 110 operation, and checks for a successful completion. In the meantime,

HOST PROCESSOR PROGRAM

T
I

M
E

DEPOSIT TASK
MESSAGE

I
I
I
I
I
I

+
r--07H;R---'

L ":~:;~:G_ .J
I
I
I
I
I
I
I
t

INSPECT
MESSAGE

8089 TASK BLOCK PROGRAM

CHANNELATIENTION INSPECT MSG.
FETCH PARMS.

INITIALIZE
I/O DEVICE

BEGIN I/O
OPERATION

CHECK STATUS
(RETRY)

(HARDWARE INTERRUPT)

I ,
[-;';~:-J --T--

Figure 1-1. A Typical Host Processor 18089 Task Flow

~

1-1

An Overview of 8089 Operation and Programming 8089 Assembler

1-2

the host processor is free to do other processing. If the operation does not complete
successfully, the channel takes corrective action, signalling the host processor when
the 110 operation is completed or error correction routines have finished executing.

8089 System Configurations

The 8089 may appear in two system configurations-LOCAL and REMOTE. In the
LOCAL configuration, the 8089 shares the system bus with a host processor. In the
REMOTE configuration, the 8089 shares the system bus with a host processor and
also has its own remote bus, not accessible by the host processor.

Figure 1-2 shows a generalized LOCAL configuration. A common bus interface is
shared by the two processors (see shaded area), whose use is controlled by means of
the request/grant (RQ/GT) circuitry. The shared system bus can be an 8- or 16-bit
bus. All the system's resources are accessible by both processors. The 8089 can
address a megabyte of memory and 64k of 110 addresses. The width of the system
bus and bus access control via the request/grant circuitry are established during 8089
initialization, discussed later in this chapter.

A generalized REMOTE configuration is shown in figure 1-3. The 8089 has its own
remote bus, not accessible by the host processor (see shaded area). This remote bus
may be an 8- or 16-bit bus-it need not be the same width as the system bus, e.g., the
remote bus could be 8-bits and the system bus could be 16-bits. The 8089 also
accesses a shared system bus by means of a MUL TIBUS™ interface and an 8289 Bus
Arbiter, which controls its access to the system bus. A 64k address space is available
to the 8089 over its remote bus. One megabyte of address space is available to the

SYSTEM BUS

8284
CLOCK GENERATOR

READY RESET ClK

3 x 8282
LATCH AG-19 11.,.> ! I I ~---t PROM

ClK

RESET

READY

ClK

RESET

READY

8088
CPU

RQ/GT

J 3
f

~ ... c<looiii< ... 2_X ... 82 ... 88_~I<A::D=G-=15=::: ~r:I i"1'..:.<~RANS. '" ~L:....J

I
RQ/GT

ADo-AD151<"~m~m~ ' , 1
~

8089
lOP

DMQ1 EXT1

.'f---'\.~) ~
SERIAL

I/O
(8251)

I/O
PERIPHERAL

t t

Figure 1-2. Generalized LOCAL Configuration

-I IN

CJ

I/O
PERIPHERAL

CONTROllER

8284
CLOCK

GENERATOR

8288
BUS

CONTROLLER

MULTIBUS

INT

DMA REQ

CLK

I .. CONTROL • I
SIGNALS

R
REMOTE,T

RAM

MULTI·PROCESSOR SHARED SYSTEM BUS

HOST CPU

8086
CPU

ClK 8284

~
288

MUlTIBUS
~CONTROL-­

SIGNALS

c:JG
Figure 1-3. Generalized REMOTE Configuration

00 o
00
\0

> I:Il
I:Il
~

:3
a'
0-
"'1

> = o
<
~
<
(D'
~
o
~

00 o
00
\0

o
"0
~
"'1

~
0' =
~ = Po
I-d
"'1 o

(JQ
"'1

53
8
S'

(JQ

An Overview of 8089 Operation and Programming 8089 Assembler

1-4

8089 over the system bus. The 8089 can use its remote bus without affecting the use
of the system bus by other processors. If the the remote bus is shared with another
processor, the request! grant circuitry may be used to control access to it. The size of
the 8089's remote bus is specified during 8089 initialization.

In this manual, the addresses available to the 8089 over its remote bus (in the
REMOTE configuration) are referred to as "local space addresses" or addresses in
the 64k "local address space" (see figure 1-4A). In LOCAL configurations (the 8089
has no remote bus), this 64k address space is used for 110 addressing (see figure 1-
4B). The term "local (110) address" in this manual refers to the 64k 8089 address
space which can be either addresses on its remote bus (REMOTE configuration) or
110 addresses (LOCAL configuration).

The terms "system space address" or "system address space" refer to the 8089's one
megabyte address space. In REMOTE configurations, this is the space addressed
over the system bus, which is shared with other processors. In LOCAL configura­
tions, these addresses are used to access memory. The term "system (memory)
address" refers to the one megabyte lOP address space-system addresses in a
REMOTE configuration (see figure 1-4A) and memory addresses in a LOCAL con­
figuration (see figure 1-4B).

Task Block Programs

The 8089 has two independent I/O channels that operate concurrently. Each chan­
nel has a separate set of registers and individual external interrupt, DMA request
and external terminate pins. Figure 1-5 shows, conceptually, the 8089's two I/O
channels.

64K LOCAL
ADDRESS SPACE

(REMOTE BUS)

1 MEGABYTE
SYSTEM ADDRESS

SPACE
(SYSTEM BUS)

Figure 1-4A. 8089 REMOTE Configuration Address Space

64K 1/0
ADDRESS

SPACE

1 MEGABYTE
MEMORY
ADDRESS

SPACE

Figure 1-4B. 8089 LOCAL Configuration Address Space

8089 Assembler An Overview of 8089 Operation and Programming

CHANNEL 1 CHANNEl2

• REmSTER SET • REGISTER SET
• TASK BLOCK PROGRAM • TASK BLOCK PROGRAM
• DMA REQUEST • DMA REQUEST
• EXTERNAL INTERRUPT • EXTERNAL INTERRUPT
• EXTERNAL TERMINATE • EXTERNAL TERMINATE

PROCESSOR

• TASK BLOCK PROGRAM EXECUTION

• DMA TRANSFER
• BUS INTERFACE

Figure 1-5. A Conceptual View of the 8089 I/O Processor

A task block program, written in 8089 Assembly Language, is executed for each
channel. Task block programs manage and control the 110 operations performed by
an 110 channel. The 8089 Assembly Language instruction set contains specialized
110 and general-purpose data processing instructions for simple and efficient con­
trol of 110 operatons:

• Bit manipulation and test instructions.

• Memory-to-memory, peripheral-to-memory, and peripheral-to-peripheral data
transfer operations.

• Simple arithmetic and logical operation instructions.

• Conditional, unconditional, and bit test control transfer instructions.

• Special instructions for interrupt control, DMA initialization, and a semaphore
test and set mechanism.

Task block programs vary in size and complexity, depending on I/O system design
and the 110 operation being conducted. There is a great deal of flexibility in the use
of task block programs to manage and control 110 operations. A modular technique
may be employed, using a number of simple, well-defined task block programs,
linked in sequence, to perform 110 operations.

The 8089 Assembly Language Assembler-ASM89

ASM89 is the assembler for the 8089 Assembly Language. Its output, shown in
Figure 1-6, consists of two possible files:

• An object file containing the source file translated into object code.

• A list file showing the input source statements, the assembler-generated object
code, error messages, and (optionally) a symbol table.

Note that the 8089 Assembly Language source file can contain numerous task block
programs. The number of task block programs contained in a single 8089 Assembly
Language source file is limited by the size of the segment defined in the source file,
which cannot exceed 64k consecutive byte addresses.

1-5

An Overview of 8089 Operation and Programming 8089 Assembler

1-6

TASK BLOCK PROGRAM 1

TASK BLOCK PROGRAM 2

TASK BLOCK PROGRAM 3

,r- ,r-

ASM89

TASK BLOCK PROGRAM N

8089 ASSEMBLY LANGUAGE SOURCE FILE

Figure 1-6. ASM89 Output Files

Object File

r:::\
V

The assembly of an 8089 Assembly Language source file generates an object
module, containing the object code generated by ASM89. A single, relocatable seg­
ment must be defined in each object module. This segment has a maximum size of
64k (65,536) consecutive bytes. LINK86 is used to resolve intermodule references;
LOC86 is used to assign absolute addresses to the object module. (See MCS-86 Soft­
ware Development Utilities Operating Instructions for ISIS-II User's, Order No.
9800639 for information on LINK86 and LOC86 operation.)

The relocatable segment defined in an ASM89 object module is paragraph aligned,
i.e., when located it begins at an address which is divisible by sixteen (the last digit of
the address, in hexadecimal, is a zero). This segment is not combinable. Unlike 8086
segments, the segment in an 8089 object module cannot be combined with other
segments to form a single segment when linked and located.

List File

The list file provides a record of the source file, the assembler-generated object code,
and the assembly process, including the assembler invocation command and error
messages issued by the assembler. A symbol table, giving information on user­
defined symbols in the source file, may also be included in the list file. (See "Format
of Listing File" in Chapter 5 of this manual for more information.)

8089/Host Processor Communication

The 8089 and its host processor communicate through messages placed in blocks of
shared memory. The host processor sets up these communication blocks and sup­
plies their addresses to the 8089. There are two such blocks: the Channel Control
Block and the Command Parameter Block.

The address of the Channel Control Block (CB) is supplied to the 8089 during
system initialization (see "8089 Initialization" later in this chapter). The Channel
Control Block contains two identical sets of pre-defined fields, one for each channel
(figure 1-7). Each set of fields is composed of six bytes: a one-byte Channel Control
Word (CCW) used to issue commands to the 1/0 channel; a one-byte channel BUSY
flag, indicating the activity status of the channel; and two words used to supply the
offset and segment address of the channel's Command Parameter Block.

8689 Assembler An Overview of 8089 Operation and Programming

7 MSB o 7 LSB o

BUSY I CCW If CB

PB OFFSET VALUE If CB+2

CHANNEL 1

PB SEGMENT ADDRESS .. CB+4

RESERVED

BUSY I CCW .. CB+8

PB OFFSET VALUE .. CB+10

CHANNEL2

PB SEGMENT ADDRESS .. CB+12

RESERVED

Figure 1-7. The Channel Control Block (CB)

The Channel Control Block is inspected by the appropriate channel, as specified by
the SEL (select) input pin, whenever a channel attention (CA) is received by the 8089
(other than the first CA after a reset). Examination of the CCW by a channel is
transparent to its operation.

Figure 1-8 shows the CCW. It contains four fields, each controlling some aspect of
the 110 channel's operation. The three bit Command Field (CF), bits 0-2, directs the
channel's operation, optionally:

• starting task block program execution (from a task block program located in
system (memory) or local (110) address space)

• suspending channel operation (task block program pointer and Program Status
Word (PSW) saved)

• continuing channel operation (stored task block program pointer and PSW
restored)

• halting channel operation (task block program pointer and PSW not saved)

The Interrupt Control Field (ICF) is used in conjunction with the task block pro­
gram SINTR instruction to supply interrupts to the host processor's interrupt hard­
ware. Each channel has its own interrupt pin, SINTR-1 and SINTR-2 respectively,
to provide the hardware interrupt signal. The host processor enables, acknowledges,
or disables interrupts from a channel through the ICF.

The Bus Load Limit field (B) limits task block program instruction execution for a
channel to one instruction every 128 lOP clock cycles. This bus load limit field
applies to task block programs residing in either system (memory) or local (110)
space.

The Priority field (P) of the CCW is used to resolve conflicts that arise when both
channels request service for operations of equal priority in the 8089's operation
hierarchy. If the P field values are the same for both channels, service cycles alter­
nate between them. If the two channels have different P field values, the channel
with P = 1 is serviced first. (See "DMA Transfer" later in this chapter and also the
MCS-86 User's Guide for more information on 8089 channel priorities.)

1-7

An Overview of 8089 Operation and Programming 8089 Assembli!r

1-8

I P I 0 I B I IdF I I CF I

I I I
--..-

L-.. CF COMMAND FIELD

000 NO CHANNEL COMMAND GIVEN; EXAMINE OTHER FIELDS
001 START CHANNEL; TB PROGRAM IS IN LOCAL (1/0) SPACE
010 RESERVED
011 START CHANNEL; TB PROGRAM IS IN SYSTEM (MEMORY) SPACE

100 RESERVED
101 CONTINUE CHANNEL PROCESSING BY RELOADING TP, TAG BIT AND PSW

FROM PB. IF CHANNEL WAS HALTED WHILE IN TANSFER MODE, EXECU­
TION RESUMES AT THE SAME POINT IN THE DMA TRANSFER CYCLE. DO
NOT EXAMINE OTHER CCW FIELDS.

110 HALT CHANNEL; CLEAR BUSY FLAG AND SAVE CURRENT TP, ITS TAG
AND THE PROGRAM STATUS WORD (PSW) IN THE FIRST 4 BYTES OF PB.
DO NOT EXAMINE OTHER CCW FIELDS.

111 HALT CHANNEL; CLEAR BUSY FLAG BUT DO NOT SAVE TP. DO NOT
EXAMINE OTHER CCW FIELDS.

L..-______ ICF FIELD INTERRUPT CONTROL FIELD

00 NO EFFECT
01 ACKNOWLEDGE INTERRUPT; CLEAR THE SINTR LINE BY CLEARING THE

INTERRUPT SERVICE FLIP FLOP.
10 ENABLE INTERRUPTS FROM THIS CHANNEL; SET THE INTERRUPT

CONTROL (IC) FLIP FLOP.
11 DiSARM INTERRUPTS FROM THIS CHANNEL; CLEAR THE IC AND

INTERRUPT SERVICE FLIP FLOPS. ANY PENDING INTERRUPT IS
DISCARDED.

L..-_________ B BUS LOAD LIMIT

NONE; NO BUS LOAD LIMIT

LIMIT BUS ACCESS; AFTER EACH TASK BLOCK PROGRAM INSTRUCTION
EXECUTION, AT LEAST 128 lOP CLOCK CYCLES OCCUR BEFORE THE
NEXT TBP INSTRUCTION IS EXECUTED. TASK BLOCK PROGRAMS CAN
RESIDE IN LOCAL (1/0) OR SYSTEM (MEMORY) SPACE AND THE BUS
LOAD LIMIT STILL APPLIES.

1--___________ RESERVED

L..-____________ P CHANNEL PRIORITY

NO PRIORITY
PRIORITY

Figure 1-8. The Channel Control Word (CCW)

The channel BUSY flag byte indicates a channel's activity status. Following the first
CA after reset, during 8089 initialization, "00" (hex) is written to channel one's
BUSY flag byte by the 8089 hardware when initialization has been completed. On
any subsequent CA, the 8089 hardware sets the BUSY flag byte to "FF" (hex) if the
CCW starts or continues a channel; to "00" if the CCW halts or suspends a channel.
The BUSY flag byte is also cleared to "00" by a task block program HL T
instruction.

The four bytes following the CCW and BUSY flag byte contain the offset and seg­
ment address of a channel's Command Parameter Block (bytes 2-5 of the CB for
channell; bytes 8-11 of the CB for channel 2). When a channel start command is
issued through the CCW, the 20-bit address of the Command Parameter Block is
formed from the offset and segment address values (see figure 1-9) and stored in the
channel's PP register.

The Command Parameter Block (PB) is of variable, user-defined size. It contains
two pre-defined fields: bytes 0-1 contain either the 16-bit address of a local (I/O)
space task block program or the 16-bit offset value of a system (memory) task block
program; bytes 2-3 contain the 16-bit segment address of a task block program
located in system (memory) space. These two fields are also used by the 8089 hard­
ware to store a channel's PSW (see below), and its TP pointer/register and tag bit
when a channel's operation is suspended.

8089 Assembler An Overview of 8089'Operation and Programming

115\14\13\12\11 \10 \ 9 \ 8 \ 7 \6 \ 5 \4 \ 3 \2 \1 \ 0 1 f--------~:H~~~~5~~~~! :ggl~~~~S)

,15114 113112 111 110 1 9 1 8 1 7 1 6 I 5 1 4 I 3 1 2 11 1 0 1....--16.BIT OFFSET VALUE

+

119\18117116115114113112111 110 1 9 1 8 1 7 I 6 1 5 I 4 I 3 I 211 I 0 1....-- RESULTING 20·BIT ADDRESS

NOTE:

1. THIS METHOD IS IDENTICAL TO THAT USED BY THE 8086 TO FORM 20·BIT ADDRESSES.

2. ALL 20·BIT ADDRESSES ARE FORMED BY THE lOP ACCORDING TO THE ABOVE METHOD.
ONCE A 20·BIT ADDRESS HAS BEEN FORMED, IT CANNOT BE DISASSEMBLED INTO ITS
16·BIT OFFSET VALUE AND SEGMENT ADDRESS COMPONENTS. THE 8089 CAN BOTH
STORE AND RESTORE 20·BIT ADDRESSES. (SEE THE MOVP INSTRUCTION DESCRIPTION
IN CHAPTER 3.)

Figure 1-9. The Formation of 20-Bit Addresses by the 8089 Hardware

The size of the PB following the above four bytes is user-defineable. This area may
be used to pass messages between the host processor and the 8089. The STRUC
assembler directive creates a template of offset values which can be used to access
blocks of parameters and 110 control information in this area, using the PP register
as a base address. (See the section "Data Memory Operands" in Chapter 2 and the
STRUC assembler directive in Chapter 4.)

When a channel is started by the host processor, the Command Field of the CCW
specifies where the channel's task block program is located .. If the task block pro­
gram is in local (110) space, a 16-bit address from the first word (2 bytes) of the PB
is loaded into the TP pointer/register. TP's tag bit is set to logical one (see figure
1- lOA). If the task block program is in system (memory) space, a 20-bit address is
formed from a 16-bit offset value in the first word of the PB and a segment address
contained in the second. TP's tag bit is set to logical zero. (See figure I-lOB.)

When a channel's operation is suspended by a HALT AND SAVE command issued
through the CCW (Command Field (CF) contains 110 binary, HALT AND SAVE),
the 20-bit TP pointer/register, its tag bit, and the channel's PSW are stored in the
first four bytes of the PB:

7 o

TP15·8 TP7·0 ~PB

o 0 ~PB+2

t = TP'S TAG BIT

FORMAT OF THE STORED TP POINTER/REGISTER,
TAG BIT AND CHANNEL PSW, SAVED WHEN A
HALT COMMAND IS ISSUED THROUGH THE CCW

The Program Status Word (PSW) is a byte containing information on a channel's
status. It is continuously updated by the 8089 but is not directly accessible by task
block programs. It can only be examined when a channel's operation has been
suspended, at which time it is stored in the fourth byte of the channel's PB by the
8089 hard ware.

1-9

An Overview of 8089 Operation and Programming 8089 Assembler

7 0

CCW = I x I 0 I x I x I x I 0 I 0 11 I
PB =

15

~~~~~~~~~~~~~O 
2 

19 16 TP POINTER/REGISTER 

I x I x I x I x I 
[:J TP'S TAG BIT 

~ INDICATES A 16-BIT LOCAL (I/O) SPACE ADDRESS 

X-BIT 15 OF ADDRESS EXTENDED INTO UPPER FOUR BITS 

Figure I-lOA. The Loading of a Local (I/O) Space Task Block Program 
Address Into the Pointer/Register 

7 0 

CCW = I X I 0 I x I x I x I 0 11 11 I 

1-10 

20-BIT ADDRESS FORMED BY THE 8089 HARDWARE 

19 TP POINTER/REGISTER 

[!] TP'STAG BIT 

~ INDICATES A 20-BIT SYSTEM (MEMORY) SPACE ADDRESS 

Figure I-lOB. The Loading of a System (MEMORY) Space Task Block 
Program Address Into the TP Pointer/Register 

The PSW contains the following fields: 

7 0 

I P I XF I B 115 IIC I TB I SiD I 
PSWFORMAT 

P: PRIORITY FIELD (CCW) 
XF: CHANNEL IN ACTIVE TRANSFER STATE 
B: BUS LOAD LIMIT FIELD (CCW) 
IS: INTERRUPT SERVICE (REQUEST) FLIP FLOP 
IC: INTERRUPT CONTROL FLIP FLOP 
TB: CHANNEL EXECUTING TASK BLOCK INSTRUCTIONS 
S: SOURCE WIDTH IS 8/16 (0/1) 
D: DESTINATION WIDTH IS 8/16 (0/1) 

o = SET 1 = NOT SET 

When channel operations are resumed following their suspension (lOIB in the Com­
mand Field of the CCW), the stored TP pointer/register and tag bit are restored 
from the PB by the 8089 hardware. Any changes to the PSW while it was stored will 
be in effect when channel operation resumes. (See figure 1-11.) 

o 

o 



8089 Assembler An Overview of 8089 Operation and Programming 

RESUMING CHANNEL OPERATIONS FOLLOWING A CHANNEL HALT COMMAND (CCW = 110B) 

7 0 

CCW = I x 1 0 1 x I x 1 X 11 I 0 11 I 

19 16 TP POINTER/REGISTER 

I 1 1 1 1 1 1 1 I 
o TP'S TAG BIT 

Figure 1-11. Loading a Stored Task Block Program Address Into TP 
When Channel Operation is Resumed Following a Channel 
HALT AND SAVE Command (CCW=110B) 

The TP Pointer/Register and Task Block Programs 

A channel's TP pointer/register functions as the task block program instruction 
pointer. TP points to the location of the task block program instruction to be 
executed. 

TP is normally loaded by the 8089 hardware from a channel's Command Parameter 
Block when task block program "execution is started. The Command Field of a chan­
nel's CCW specifies the location of a task block program and determines the value 
of TP's tag bit. If a local (I/O) space task block program is specified, the tag bit is 
set to a logical one and TP is loaded with a 16-bit address from the PB. If a system 
(memory), task block program is specified, the tag bit is set to a logical zero and TP 
is loaded with a 20-bit address from the PB. 

When a channel's operation is suspended by a command in the CCW; rp and its tag 
bit are stored in the first three bytes of the channel's PB. A task block program 
CALL instruction also stores the TP pointer/register and tag bit, at a location 
specified by a CALL instruction operand. 

8089 Initialization 

A linked list of data memory blocks is prepared by the host processor in shared data 
memory and used to initialize the 8089. Each block in the chain specifies certain 
system parameters and points to the location of "the next block in the sequence. 
Figure 1-12 shows the initialization sequence. 

o 

1-11 



An Overview of 8089 Operation and Programming 8089 Assembler 

1-12 

FOLLOWING THE FIRST CA AFTER RESET THE lOP READS =::J 
7 07 0 

I LOCATION 
RESERVED SYS BUS } OFFFF6H 

SYSTEM SCB OFFSET 
CONFIGURATION 

POINTER SCB SEGMENT J 
SYSTEM } 

~~~~~::~O~ __________________________ ~j_'~:£~~;li~~ 
g~~~~6t { I BLOCK

SUBSEQUENT CHANNEL
CAs 1

RESERVED I SOC

CBOFFSET

CB SEGMENT

BUSY I CCW

PBOFFSET

PBSEGMENT

RESERVED

BUSY I CCW

PB'OFFSET
COMMAND
PARAMETER
BLOCK

PBSEGMENT
ICHA~NE'

RESERVED
TPADDRESS/OFFSET }

~------t --------,

f

(TP SEGMENT)

USER-DEFINED r
L.:.--------ASSEMBLED 8089

ASSEMBLY LANGUAGE
TASK BLOCK PROGRAM

Figure 1-12. 8089 Initialization and Communication Blocks

The first memory block in the sequence, the System Configuration Pointer (SCP), is
the only block whose location is fixed. It must be located in system (memory) space
at address OFFFF6H. This block is inspected by the lOP following the first channel
attention (CA) it receives after a reset. The first byte of the SCP defines the width of
the system (memory) bus to the 8089.

w = 0 SYSTEM BUS IS 8-BITS WIDE
W = 1 SYSTEM BUS IS 16-BITS WIDE

SYSBUS FORMAT

The second byte of the SCP is reserved. Bytes two through five point to the location
of the System Configuration Block (SCB), the next block in the initialization
sequence. The SCB's offset value is contained in the first two bytes; its segment
address is contained in the next two 'bytes. The 20~bit address of the SCB is formed
from the offset value and the segment address.

8089 Assembler An Overview of 8089 Operation and Programming

The SCB is a six byte block that may be located anywhere in system (memory) space.
The block contains information regarding request/ grant circuitry operation and also
specifies the width of a remote bus, if one is present. The first byte of the block con­
tains the system operation command (SOC):

SYSTEM OPERATION COMMAND (SOC)

I = 0 THE REMOTE BUS IS 8 BITS WIDE R = 0 \ RQ/GT CIRCUITRY OPERATION
I = 1 THE REMOTE BUS IS 16 BITS WIDE R = 1 J

where:

"I" defines the width of a remote bus to the 8089. The width of this bus may differ
from that of the system (memory) bus. In a LOCAL configuration, where there is no
remote bus, 'I' should specify the bus width for the system bus, given in the SCP.

"R" specifies the mode of request! grant circuitry operation when the RQ/GT line is
used to control access to a bus shared between two processors. One processor is a
MASTER, the other is a SLAVE. The 8089 is designated a MASTER or a SLAVE
by a hardware input (the SEL pin) from the host processor during initialization.

A MASTER controls the bus on initialization and grants control to the SLAVE
upon request. If the bus is shared with an 8086 or 8088 host processor, the lOP must
be a SLAVE and the value of "R" must be logical zero. The lOP, through the
RQ/GT circuitry, requests the bus from the MASTER and automatically returns
bus control to the MASTER when it is finished.

If two 8089s share a bus, their "R" values must be the same. If "R" is a logical one,
the SLAVE requests the bus from the MASTER as above but does NOT relinquish
bus control when it is finished. The MASTER must request the bus from the SLAVE
if he wishes to use it. Bus control alternates between the lOPs, each requesting the
bus if it does not control it.

The SCB contains the offset and segment address of the Channel Control Block
(CB). The 16-bit offset value is located in bytes two and three of the SCB. Bytes four
and five contain the 16-bit segment address. The 20-bit address of the CB is formed
from the offset value and segment address by the 8089 hardware.

After the SCB has been read, the 8089 hardware writes OOH to the BUSY flag byte of
channell in the Channel Control Block, iridicating the end of lOP initialization.
The SCB may now be used to initialize other 8089s in the system, if they are present.

Registers

There are two identical sets of registers in the 8089, one for each channel. The
registers are used by 8089 Assembly Language task block programs and DMA
transfer operations. Figure 1-13 shows a channel's register set.

1-13

An Overview of 8089 Operation and Programming 8089 Assembler

1-14

TAG 19 o

~
GA G.P. POINTER/REGISTER

GB G.P. POINTER/REGISTER

GC G.P. POINTER/REGISTER

TP TASK BLOCK PROGRAM POINTER

TAG = 0 20·BIT SYSTEM (MEMORY) SPACE ADDRESS
= 116·BIT LOCAL (I/O) SPACE ADDRESS

15 o
BC BYTE COUNT

IX INDEX

CC CHANNEL CONTROL

MC MASK I COMPARE

READ ONLY, NON·PROGRAMMABLE

19 0
PPI~ _______________________ PB_P_O_IN_T_ER ______________________ ~I

Figure 1-13. An 8089 Channel's Register Set

GA, GB, GC, and TP are 20-bit pointer/registers. Each pointer/register has an
associated tag bit and is used, primarily, to address data. The value of the tag bit
indicates whether the pointer/register contains a 16-bit local (I/O) space address or a
20-bit system (memory) space address (see "8089 Addressing Scheme" later in this
chapter). Pointer/registers can also be used as 16-bit general purpose registers in
task block programs. When used as a 16-bit register, the upper four bits of a
pointer /register are filled with the sign bit (bit IS or bit 7)-ofdata.

There are four 16-bit registers: BC, IX, CC, and MC. Registers BC, IX, and MC can
be used as general purpose registers. IX and MC have specific uses in the 8089
Assembly Language: IX can supply an index value in data memory operands (see
"Data Memory Operands" in Chapter 2); MC supplies mask/compare bytes in
JMCE and JMCNE conditional transfer instructions (see Chapter 3). BC, IX, and
MC also play special roles in DMA transfer operations. Register CC is only used to
control chained task block program instruction execution and DMA transfer opera­
tions. The section on DMA transfer later in this chapter describes CC's role in an
8089 channel's operation.

One register, PP, is read only, non-programmable. It contains the address of a chan­
nel's Command Parameter Block, which is automatically loaded when the channel is
issued a start command through its CCW.

The following lists the features and function of each register:

GA, GB: GA and GB are 20-bit pointer/registers, each with an associated tag bit.
In task block programs, they are used to point to data. In DMA
transfers, they provide the source and destination addresses, as specified
in register CC. GA and GB also may be used as 16-bit general purpose
registers in task block programs.

GC: A 20-bit pointer/register with an associated tag bit, GC is used to point
to data in task block programs. In the translate mode of DMA transfer,
GC contains the base address of a 256-byte translation table. It also may
be used as a 16-bit general purpose register in task block programs.

8089 Assembler An Overview of 8089 Operation and Programming

PP:

IX:

BC:

MC:

TP:

CC:

PP is a 20-bit read only, non-programmable register contammg the
address of a channel's PB. This address is automatically loaded when a
channel is started and always points to system (memory) space. PP is
used as a base address to access the user-defined portion of the PB.

IX is a 16-bit general purpose register. In some memory addressing
modes, IX is added to a base pointer/register to access data.

BC is a 16-bit general purpose register, used as a byte counter during
DMA transfers. BC is decremented by one after each transfer from an
8-bit soure; by two after each transfer from a 16-bit source.

A 16-bit general purpose register, MC supplies mask and compare bytes
used by the task block program instructions JMCE and JMCNE, and
also in DMA transfer mask/compare operations.

A 20-bit pointer/register with an associated tag bit, TP is equivalent io a
conventional program counter in task block program execution, i.e., it
points to the location of the next instruction to be executed. TP is loaded
from the PB when task block program execution is started or resumed.

A 16-bit register, CC controls DMA transfers and chained task block
program instruction execution.

8089 Addressing Scheme

All data in task block programs, except for instructions using immediate data, is
addressed indirectly, i.e., all data is pointed to by a pointer/register containing a
base address; offset and index values can optionally be added to this base address.
(See "Data Memory Operands" in Chapter 2.)

8089 addresses are physically 20 bits in length. There are two distinct types of
addresses:

• 20-bit system (memory) addresses (1 megabyte)

• 16-bit local (110) addresses (64k bytes)

In the hardware, these address types correspond to the 20-bit memory and 16-bit
110 addresses of the 8086. However, unlike the 8086, the 8089 does not have
separate instructions for memory and 110 operations. Instead, the 8089 uses the
pointer/register tag bits to indicate 16-bit local (110) addresses (tag bit = 1) and
20-bit system (memory) addresses (tag bit = 0).

Both 20- and 16-bit addresses may be needed in a task block program, whether the
8089 has its own remote bus (REMOTE configuration) or shares a bus with a host
processor (LOCAL configuration). In a REMOTE configuration, 16-bit addresses
are used to access the 8089's remote bus and 20-bit addresses are used to access the
shared system bus. in a LOCAL configuration with an 8086, 16-bit addresses access
110 ports and 20-bit addresses access memory. A programmer must know the type
of address (16- or 20-bit) needed when accessing a system's resources.

1-15

An Overview of 8089 Operation and Programming 8089 Assembler

1-16

DMA Transfer

The 8089 is designed to manage and maintain high speed DMA transfers between the
following:

• Memory - 110 port

• I/O port - 110 port

• Memory - Memory

DMA transfers are initiated by a special task block program instruction and use
some of a channel's registers in their operation. Table 1-1 shows these registers and
their role in DMA transfer operations.

Table 1-1. Registers Used by DMA Transfer Operations

REGISTER ROLE IN DMA TRANSFER

GA,GB Specify DMA Source and Destination

GC Provides base address of 256 byte translate table

BC Byte counter-decremented by byte or word

MC Contains mask/compare byte for data testing

CC Specifies DMA transfer control parameters

Register CC specifies control parameters governing DMA transfers. Figure 1-14
shows th~ fields it contains and the parameters they specify.

Register CC also controls chained task block program instruction execution by a
channel (bit eight). Normally, the 8089 observes the following priorities when servic­
ing the 8089's two channels:

• (highest priority) DMA transfers

• Channel Attentions (CA's)

• Task block program instruction execution

• (lowest priority) Idle cycles

When both channels request service, the channel with the higher priority task is ser­
viced first. In the nonchained mode, no task block program instruction execution
occurs on a channel if a DMA transfer is being performed on the other channel. In
chained mode, the priority of task block program instruction execution equals that
of DMA transfer, possibly allowing a channel's task block program to execute con­
currently with DMA transfers on the other channel (depending on "P" in the
CCW).

NOTE

The above discussion of priorities in 8089 channel operation is overly­
simplified. Caution should be observed when using chained task block pro­
gram instruction execution. For a complete explanation of channel
priorities in the 8089, see the MCS-86 User's Manual, Order No. 9800722.

8089 Assembler An Overview of 8089 Operation and Programming

15

CHANNEL CONTROL REGISTER

F FUNCTION CONTROL

00 PORT TO PORT GS -+ GD
01 BLOCK TO PORT (GS)+ -+ GO
10 PORT TO BLOCK GS -+ (GD) +
11 BLOCK TO BLOCK (GS)+ -+ (GD)+

GS AND GO ARE THE SOURCE/DESTINATION
POINTERS AS SELECTED BY THE S FIELD. BLOCK
(MEMORY) POINTERS ARE POST AUTO­
INCREMENTED (BYTE/WORD), INDICATED BY
(GS)+ OR (GD)+.

TR TRANSLATE MODE

o NO EFFECT
TRANSLATE INCOMING DATA; THE INCOMING
BYTE IS ADDED AS A POSITIVE DISPLACEMENT
TO REGISTER GC. THE ADDRESS FORMED IS
USED TO FETCH A BYTE WHICH IS TREATED AS
THE NORMALLY FETCHED DATA.

TRANSLATE MODE IS ONLY ALLOWED WHEN BOTH
SOURCE AND DESTINATION LOGICAL WIDTHS, AS
SET BY THETBP WID INSTRUCTION, ARE EIGHT.

SYN SYNCHRONIZATION CONTROL

00 NONE; TRANSFERS ARE AUTOMATIC
01 SOURCE; TRANSFERS ARE SYNCHRONIZED

WITH DMA REQUESTS FROM THE SOURCE.

10 DES TIN A T ION; T RAN S FER S ARE
SYNCHRONIZED WITH DMA REQUESTS FROM
THE SPACE DESTINATION.

11 (RESERVED)

S SOURCE/DESTINATION FIELD

o GA IS SOURCE POINTER; GB IS DESTINATION

GB IS DESTINATION POINTER; GA IS SOURCE

L LOCK CONTROL

o NO LOCK
LOCK ACTIVATED; DURING TRANSFERS, THE
lOP'S LOCK PIN IS ACTIVATED UPON THE
RECEIPT OF THE FIRST DMA REQUEST UNTIL
THE COMPLETION OFTHE LAST TRANSFER.

C CHAINING CONTROL

o NO CHAINING MODE
CHAINING MODE; SET THE PRIORITY OF TBP
PROCESSING EQUAL TO THE PRIORITY OF
DMA PROCESSING.

TS SINGLE TRANSFER

o NO EFFECT
SINGLE BYTE OR WORD TRANFERS, AS
SPECIFIED BY THE WID TASK BLOCK PRO­
GRAM INSTRUCTION. DMA TRANSFER IS TER­
MINATED AFTER EACH TRANSFER. TPB EXECU­
TION RESUMES AT TP.

IN SINGLE TRANSFER MODE, THE SOURCE AND
DESTINATION LOGICAL WIDTHS, AS SET BY THE
WID INSTRUCTION MUST BE EQUAL.

TX EXTERNAL TERMINATE

00 NO EFFECT
01 TERMINATE DMA TRANSFERS WHEN THE

EXTERNAL TERMINATE PIN IS TRUE; RESUME
TBP EXECUTION ATTP.

10 SAME AS 01 ABOVE; RESUME TBP EXECUTION
ATTP + 4.

11 SAME AS 01 ABOVE; RESUME TBP EXECUTION
ATTP + 8.

TBC BYTE COUNT TERMINATION

00 NO EFFECT
01 TERMINATE DMA TRANSFERS WHEN REGISTER

BC = 0; RESUME TBP EXECUTION AT TP.
10 SAME AS 01 ABOVE; RESUME TBP EXECUTION

ATTP + 4.
11 SAME AS 01 ABOVE; RESUME TBP EXECUTION

ATTP + 8.

TSH MASK/COMPARE TERMINATION

000 SEARCH INCOMING BYTES UNTIL A MATCH IS
FOUND. DMA TRANSFER IS TERMINATED AND
THE MATCHING BYTE IS THE LAST BYTE
TRANSFERRED. RESUME TBP EXECUTION AT
TP.

010 SAME AS 001 ABOVE; RESUME TBP 'EXECUTION
ATTP + 4.

001 SAME AS 001 ABOVE; RESUME TBP EXECUTION
ATTP + 8.

100 NO EFFECT
101 SEARCH INCOMING BYTES DURING DMA

TRANSFERS WHILE MATCHING OCCURS. DMA
TRANSFER IS TERMINATED AND THE NON­
MATCHING BYTE IS THE LAST BYTE TRANS­
FERRED. RESUME TBP EXECUTION AT TP.

110 SAME AS 101 ABOVE; RESUME TBP EXECUTION
ATTP + 4

111 SAME AS 101 ABOVE; RESUME TBP EXECUTION
ATTP + 8.

Figure 1-14. The Channel Control Register

The WID and XFER task block program instructions are directly associated with
DMA transfer. WID sets the logical width of the DMA source and destination.
These logical widths determine what type of data assembly/disassembly occurs dur­
ing DMA transfers. (See the MCS-86 User's Manual for information on
assembly/disassembly operations in the 8089.)

The XFER task block program instruction initiates DMA transfer. DMA transfer
mode is entered after the execution of the instruction following the XFER instruc­
tion. This allows a task block program to pass information to a peripheral with the
channel ready to accept DMA transfer requests immediately. To insure correct
DMA transfer operation, the instruction following the XFER instruction must not
load the pointer/registers GA or GB, or register CC.

1-17

An Overview of 8089 Operation and Programming 8089 Assembler

1-18

Interrupts

A channel uses the SINTR task block program instruction to generate interrupts to
the external system interrupt hardware. Each channel has its own hardware pin,
SINTR-l and SINTR-2, for this function.

The host processor uses the ICF of the CCW in the Channel Control Block to con­
trol interrupts from the lOP's channels. Interrupts must be enabled in the ICF for
the external system to detect them. Otherwise, SINTR task block program instruc­
tions have no effect. The ICF is also used by a host processor to acknowledge or
disable channel interrupts.

A Sample Task Block Program

The following example task block program was written to conduct a simple 110
operation in a REMOTE configuration system, i.e., the lOP has its own remote bus.
The task block program performs a DMA transfer from data memory in lOP local
address space to data memory in system address space.

Figure 1-15 is a copy of the list file from ASM89's processing of the 8089 Assembly
Language source program MOVBUF .SRC. The NAME assembler directive assigns
the name EXAMPLE_PROGRAM to the object module, which is placed by the
assembler in the object file MOVBUF.PRG on device :Fl:. The SEGMENT
assembler directive assigns the name SEG89 to the segment defined in the object
module.

In the beginning of the source file, a section of data memory is reserved for the
DMA transfer source data, SOURCE. A double word of data memory is also
reserved to contain the offset value and segment address of the external symbol
INPUT _DAT A, the DMA transfer destination in 20-bit system address space. The
offset and segment address values of INPUT_DATA are supplied by LINK86 pro­
cessing of the object module. The example task block program starts at the location
labeled STRT@TB@PRGI.

The following pages trace the execution of this sample task block program through
four stages. Note that either lOP channel could execute the program, provided the
appropriate preparations are made, i.e., the program's address is present in the
channel's Command Parameter Block when the channel is issued a start or resume
task block program execution command.

Stage One

A memory map of the host processor/lOP system is shown in figure 1-16. The
system is in a REMOTE configuration, i.e., the lOP has its own remote bus, not
accessible by the host processor. The one megabyte of system memory is accessed by
the lOP over the shared system bus (pointer/register tag bit = 0). The 64k bytes of
local lOP memory is accessed over the remote bus (pointer/register tag bit = 1).

The segment defined in the example source program's object module (SEG89) has
been located by LOC86 at address OH in the lOP's local memory. In this example,
then, the assembler's location counter values, given in the printed listing, corres­
pond to the absolute addresses assigned by LOC86.

The assembly language source program DD directive reserves four bytes (a double
word) for the offset value and segment address of the external symbol
INPUT _DAT A. LINK86 and LOC86 processing of the assembler-generated object
module supply these values (see Stage 2).

8089 Assembler An Overview of 8089 Operation and Programming

8089 ASSEMBLER PAGE

ISIS-II 8089 ASSEMBLER Vl.0 ASSEMBLY OF MODULE EXAMPLE_PROGRAM
OBJECT "ODULE PLACED IN :Fl :MOVBUF .PRG
ASSEMIlLER INVOKED BY :F HASM89 :F J:MOVBUF .SRC PRINH:F1 :MOVBUF .PRH OBJECTI:n :MOVBUF .PRG)

0000

ooeo

C408

0000

0080 bOOOOOOO

008~ 5130 8000

0088 018A

008A 3130 0000

008E ['130 OBC4

8089 A55EMliLER

0092 8000

0094 6000

009Eo 6830 80

0099 ,,048

0098

1 .. .

2 '" * 3 '" THE lOP HAS ITS OWN REMOTE BUS IN THIS SYSTEM .REMOTE COfllFlGURATION) ...
~ '* THIS TASK BLOCK PROGRAM PERFORMS A DMA TRANSFER OPERATION TO MOVE
5 '" DATA FROM DATA MEMORY ACCESSED BY THE REMOTE BUS. TO DATA MEMORY
6 '" SHARED WITH .. HOST PROCESSOR VIA THE SYSTEM BUS.
T ,,,
e ,
9 ,

10 I
11
)2 ,

13 SEG89
1~

15
16
11
18 ;
1"J
20
21
zz ;
23 HUFCNT
24 ;

filA III E

SEGMENT

EQU 1<'8

25 CHANNEL CNTRL EOU OC~08H
26 ;
27 SOURCE.:
28
29 ;

05 128

30 DESTINATION: DO INPUT_OAT"
31
32
33
34 ;
35 STRTaT8aPRGl: ~OVI GC.DoSTIN"TION
3Eo
37
38
39
~O ;
41 lPD G". (GC)
4<'
43
44
45
4Eo ;
~ 7 MOV I GR. SOURCE
48
49
50
51
S2
53 MOVI CC. CHANNEL_CNTRl
54 ;

S5
S6
57
58
59
r.o ;
Eol
Eo2
63
6<1
65
66
67
6B
69
70
71
7i'
73 I
74
75
7Eo
77
78
79
80 I
81 SEG89
82 I
83

olIO II. 8

XFE.R

140VBI BC. 8UFCP;T

HLT

ENDS

END

USSIGNS A NAME TO THE OBJECT 1II0DULE.

;THIS SEGMENT DIRECTIVE NAMES THE HI(
ISEGMENT THAT WI LL CONlA IN THE
IASSEMBLER-GENERAT~D OBJECT CODE.
HHIS SEGMENT NAME IS USED BY LOC8Eo
no LOCATE THE THE OBJECT MODULE.

IlDEfIIlIFY THE SYMBOL INPUT_DATA AS A
'SYMBOL DEF INED IN AfIIOTHER ASSEMBL Y
JOR COMPILATION.

;RESERVE 128 ByTES OF DATA MEMORY FOR
UHE INPUT BUFFER.

'DEFINES A DOUBLE "'ORD CONTAINING
nHE OFFSET AfIID SEGMENT ,.DDRESS
10F THE DMA TRANSFER DESTIN,.nON IN
ISHARED SYSTEM DATA ME.MORY.

;LOAD THE AO)RESS OF THE DATA MEMORY
;LOCATIO~ IN LOCAL SPACE THAT
'CONTAINS THE OfFSET AND SEGMENT
aDDRESS OF THE DMA TRANSFER
IDES TINA TI ON INTO Ge.

;FORM A 20 -al T ADDRESS FROM THE
10FFSET AND SEGMENT ,.DDRESS ST ORED
;AT (GCI. GAtS TAG BIT IS SET TO
;LOGICAL 'Ot. INDICATING A 20-BIT
;SYSTEM SPACE ADDRESS.

ILOAD THE 16-an ADDRESS OF THE DMA
;TRANSFER SOURCE INTO G8.
IGBtS TAG BIT IS SET TO A LOGICAL tl'
UfIIDICATING A 16-BIT LOCAL SPACE
IADDRESS.

PAGE

;SET DMA TRANSFER SOURCE AND
;DESTINATION LOGICAL WIDTHS TO a­
;BITS. THE LOGICAL WIDTH DETERMINES
;DATA ASSEMBLY/DISASSEMBLY DURING
;DMA TRANSFERS.

'BEGIN DMA TRANSFER OPERATION
HOLLOWING THE EltECUTION OF THE NEH
IINSTRUCTlON.

;SET BYTE COUNT TO 12B. THE \IlL
IINSTRUCTION SPECIFIES ,.N a-6IT
ISOURCE SO REGI STER BC IS
10ECRlMEfIITED BY 1 AFTER EACH
lTRANSFER. IF WID SPECIFIES A 16-
IBIT SOURC[. REGISTER BC IS
IDECREME.NTED BY 2 AFYE. R f ACH
;TRANSFER.

H ASK BLOCI< PROGR,.M [)(ECUTION RESUME S
IHERE FOLLOWING THE DMA TRANSFER
lOPE RATION. TASK BLOCK. PROGRAM
ILXECUTION ENDS AND THE CHANNEL BUSY
IBYT[IN THE CHANNEL CONTROL BLOCt<
I IS CLEARED.

ITHE END OF THE SEGMENT.

UHE END Of THE SOURCE PROGRAM.

Figure 1-15. Example Task Block Program List File

1-19

An Overview of 8089 Operation and Programming 8089 Assembler

OH

40000H

40010H

4001DH

40020H

40100H

4017FH

OFFFFFH

1-20

SYSTEM MEMORY-1 MEGABYTE

BEGINNING OF SEGMENT --------------

CCW-CHANNEL 1

BUSY FLAG BYTE CHANNEL 1

PB OFFSET (LOW·ORDER) "

PB OFFSET (HIGH·ORDER) "

PB SEGMENT (LOW·ORDER)"

PB SEGMENT (HIGH·ORDER "

RESERVED

CCW-CHANNEL 2

BUSY FLAG BYTE CHANNEL 2

PB OFFSET (LOW·ORDER) "

PB OFFSET(HIGH·ORDER)"

PB SEGMENT (LOW·ORDER)"

PB SEGMENT (HIGH·ORDER)"

TBP ADDRESS/OFFSET (LOW)

TBP ADDRESS/OFFSET (HIGH)

TBP SEGMENT (LOW·ORDER)

TBP SEGMENT (HIGH·ORDER)

USER·DEFINED

DMA TRANSFER
DESTINATION

-
C
H
A
N
N
E
L

C
o
N
T
R
o
L

B
L
o
C
K

C HANNEL 1'5
OMMAND
ARAMETER
LOCK

C
P
B

I

o H

____ 3 H

80 H

83 H

84 H

OFFFF H

lOP LOCAL MEMORY-64K BYTES

7

INPUT BUFFER

INPUT_DATA OFFSET (LOW)

INPUT _DATA OFFSET (HIGH)

INPUT _DATA SEGMENT (LOW)

INPUT _DATA SEG MENT (HIGH)

TASK BLOCK PROGRAM 1

CHANNEL 1'S TP POINTER/REGISTER

O~
SOURCE

DESTINATION

STRT@TB@PRG1

19 0 TAG BIT

I I 0
CHANNEL 1'S PP REGISTER

19 o

Figure 1-16. Stage One-System Memory Map

The blocks of shared memory for host processor- lOP communications (Channel
Control Block and Command Parameter Block) are contained in a segment located
at address 40000H in system memory.

This example assumes that the host processor has the address of the task block pro­
gram to be executed (Task Block Program 1), possibly supplied by LINK86.

8089 Assembler An Overview of 8089 Operation and Programming

7
OH

40000H

40010H

Stage Two

Figure 1-17 shows the preparations made by the host processor' before task block
program execution by channell is started.

SYSTEM MEMORY-1 MEGABYTE

o
o H

7F H -----
80 H

BEGINNING OF SEGMENT

83 H -----

lOP LOCAL MEMORY-64K BYTES

INPUT BUFFER

OOH

01H

OOH

40H

o LABELS
SOURCE

DESTINATION

84 H STRT@TB@PRG1

\

CHANNEL
CONTROL

~~~~~~~~~~~~~BLOCKAREA 

r--- ~~CHANNEL1 

I'"'""~~"""~~"""'"""""""""""+-------

CHANNEL 1'S 
COMMAND 

~-----------------~ PARAMETER 
~ __________________ ~ BLOCK 

4001DH 1--_________________ --+_ - - - - -

40020H 

40100H 

~ .... -----
USER-DEFINED 

DMA TRANSFER 
DESTINATION 

4017FH J----------------I 

OFFFFFH ..... ___________ -' 

OFFFF H 

TASK BLOCK PROGRAM 1 

CHANNEL 1'S TP POINTER/REGISTER 

1 .. 9 ___________ -..ii0 TAG BIT 

..... 1 ___ --....1 0 
CHANNEL 1'S PP REGISTER 

19 o 

Figure 1-17. Stage Two-Host Processor Preparations 

1-21 



An Overview of 8089 Operation and Programming 8089 Assembler 

1-22 

The channel control word (CCW) for channell, placed in the Channel Control 
Block, specifies: 

7 0 

ccw = I 0 1 0 1 0 11 I 0 1 0 I 0 11 I (11 H) 

NO CHANNEL PRIORITY 

RESERVED 

NO BUS LOAD LIMIT 

INTERRUPTS ARE ENABLED 

START TASK BLOCK PROGRAM 
EXECUTION; PROGRAM IS ...------------' 
LOCATED IN LOCAL (1/0) 
SPACE 

Channell's BUSY flag byte contains OOH, indicating that the channel is presently 
inactive. 

The address of channell's Command Parameter Block (PB) has been placed in 
bytes 2-5 of the Channel Control Block. Bytes 2-3 contain the CP's offset value. 
Bytes 4-5 contain the PB's segment address. 

The address of the task block program to be executed by channell has been placed 
in its Command Parameter Block. Since the CCW specifies a local (16-bit address) 
task block program location, only the first two bytes are accessed when channel 1 
loads the task block program address into its TP pointer/register. 

Stage Three 

The host processor activates channell via a channel attention and the SEL input pin 
value: 

I HOST PROCESSOR I~___ 8089 

: 

CA 

'------II~I SEL (LOW) 

The 8089 hardware reads channell's CCW and: 

• Computes the 20-bit address of its Command Parameter Block and stores it in 
channell's PP register 

• Loads the task block program address into channell's TP pointer/register and 
sets TP's tag bit to logical 1, indicating a local space task block program, as 
specified in the CCW 

• Writes OFFH to channell's BUSY flag byte in the Channel Control Block. 

Task block program execution starts at the instruction beginning at the address in 
channell's TP pointer/register (84H in local lOP memory-see figure 1-18). The 
address of the data memory location in local lOP space containing the offset and 
segment address of the DMA transfer destination, INPUT _DATA, is loaded into 
pointer/register GC. A 20-bit address is formed from the offset and segment data 
and placed in pointer/register GA by the LPD GA, [GC] instruction. GA's tag bit is 
set to logical 0, indicating a 20-bit system space address. 



8089 Assembler 

SYSTEM MEMORY-1 MEGABYTE 

OH r---------------------~ 

40000H 

40010H 

BEGINNING OF SEGMENT 

~----------~CHANNEL 

CONTROL 
~-----------~BLOCKAREA 

CHANNEL 1 

4001DH 1-___________ -1-- ____ _ 

..... ------------1------
40020H 

CHANNEL 1'S 

..... ----------~~~:A~E~~R 
BLOCK ..... ----------~ 

1------------+------
USER-DEFINED 

40100H ..... ----------~ INPUT_DATA 

DMA TRANSFER 
DESTINATION 

4017FH ~ ___ -----_--~ 

OFFFFFH 

An Overview of 8089 Operation and Programming 

lOP LOCAL MEMORY-64K BYTES .----------, 

7 0 LABELS 
OHr---------------------~SOURCE 

INPUT BUFFER 

7FH - - - - - -1--------------1 
BOH OOH 

01H 

OOH 

____ .23;.;..H~ _____ 4_0_H _____ --1 

B4H 

TASK BLOCK PROGRAM 1 

OFFFFH ____________________ _ 

CHANNEL 1'S TP POINTER/REGISTER 

CHANNEL l'S PP REGISTER 

19 

DESTINATION 

STRT@TB@PRG1 

TAG BIT 

Figure 1-18. Stage Three-Channell Begins Task Block Program Exection 

Pointer/register GB is loaded with the 16-bit local space address of the DMA 
transfer source by the MOVI GB, SOURCE instruction. GB's tag bit is set to logical 
1, indicating a 16-bit local lOP space address. 

1-23 



An Overview of 8089 Operation and Programming 8089 Assembler 

1-24 

Register CC is loaded with DMA transfer control information by the MOVI CC, 
CHANNEL_CNTRL instruction. Register CC specifies 

15 0 

cc = 11 11 1 0 1 0 1 0 11 1 0 I 0 1 0 1 0 1 0 1 0 11 I 0 1 0 I 0 1 (OC408H) 

I 
IL---.---~~: NO MASK/COMPARE TERMINATION 

'----------,l-~ TERMINATE DMA WHEN BC = 0 

NO EXTERNAL TERMINATION 

'-----------....... NOT SINGLE TRANSFER 

'------------~ NO CHAINING MODE 

~-------------.NOBUSLOCK 

'---------------...... ~~ I~ g:~ i~~~~~~~ ~~~~I~~TlON 
'--_______________ ...... AUTOMATIC DMA TRANSFER 

NO SYNCHRONIZATION 

'-------------------...... NO TRANSLATE MODE 

'---------------------....... MEMORYTO MEMORY TRANSFER 

The DMA source and destination logical widths are specified by the WID 8, 8 
instruction. (The lOP optimizes DMA transfers by data assembly/disassembly 
operations, depending on the WID instruction values and the source data address 
[odd or even].) 

DMA transfer begins following the execution of the MOVI BC, BUFCNT instruc­
tion, the instruction following the XFER instruction. Data in local lOP memory is 
transferred to system memory, according to the DMA control parameters in register 
CC. When 128 bytes have been transferred, DMA transfer is terminated (byte count 
termination-register BC = 0) and task block program execution resumes at the HL T 
instruction. 

Stage Four 

Task block instruction execution has ended, following the execution of the task 
block program HLT instruction (see figure 1-19). The HLT instruction has cleared 
channell's BUSY flag byte to DOH, indicating that channell is now inactive. The 
TP pointer/register contains the next sequential address following the HL T 
instruction. 



8089 Assembler 

SYSTEM MEMORY-1 MEGABYTE 

OH P-______________________ ~O 

40000H 

40010H 

4001DH 

40020H 

40100H 

4017FH 

BEGINNING OF SEGMENT 

1-------------01------

CHANNEL 1----------------4 CONTROL 
BLOCK AREA 1----------------4 CHANNEL 1 

-----

-----
84H 

CHANNEL 1'S 
COMMAND 
PARAMETER 
BLOCK 

-----

USER-DEFINED 

INPUT_DATA 

DMA TRANSFER 
DESTINATION 

OFFFFFH .... ___________ ....... 

An Overview of 8089 Operation and Programming 

lOP LOCAL MEMORY-64K BYTES 

7 0 LABELS 
OH i-------------------------. SOURCE 

INPUT BUFFER 

7FH 

80H DESTINATION 

40H ____ ...,!.3;.;.H+ ____________ -I 
84H STRT@TB@PRG1 

TASK BLOCK PROGRAM 1 

OFFFFH .... ______________________ ...... 

CHANNEL 1'S TP POINTER/REGISTER 

TAG BIT 

EI 
CHANNEL 1'S PP REGISTER 

19 0 

I 40020H I 

Figure 1-19. Stage Four-Task Block Program Execution Ended 





CHAPTER 2 
OPERANDS 

I ntrod uction 
This chapter describes the types and forms of operands for assembly language 
instructions. Assembly language instructions are dealt with in Chapter Three, "The 
Instruction Set." 

Most assembly language instructions require one or more operands. The most 
general form of these instructions is: 

[LABEL] OPERATION OPERAND1, OPERAND2, OPERAND3 [COMMENT] 

where 'OPERATION' is a specific processor activity and .. 'OPERANDI', 
'OPERAND2' and 'OPERAND3' are the items that participate in the activity. 

For those already acquainted with an assembly language a more familiar form is: 

[LABEL] MNEMONIC OPERAND1, OPERAND2, OPERAND3 [COMMENT] 

where mnemonic is the assembler defined symbolic name for some operation. 

Suppose we wish to move an item of data from a register to a data memory location. 
Using the two-operand general form this is expressed as: 

[LABEL] MOVE DATA MEMORY LOCATION, MACHINE REGISTER 
(OPERATION) (OPERAND1) (OPERAND2) 

or, (again for those familiar with an assembly language) 

MEM: MOV M, R ;Move register to memory 
(LABEL) (MNEMONIC) (OPERAND1) (OPERAND2) ;(COMMENT). 

The mnemonic MOV is the assembler-recognized symbolic name for the operation 
we desire. M and R are symbols for Memory and Register. By convention the source 
item for a move is given as the rightmost operand and the destination of a move is 
given as the leftmost operand. This convention is followed throughout this assembly 
language. 

Operand Overview 
8089 machine instructions operate on various kinds of items. Table 2-1 summarizes 
these items and their associated operand types. 

Table 2-1. Operand Types 

ITEM OPERAND TYPE EXAMPLES 

MACHINE REGISTERS REGISTER IX, MC,CC 

MACHINE POINTER/REGISTERS POINTER/REGISTER GA,GB,GC 

IMMEDIATE DATA VALUES IMMEDIATE DATA OFFH, ADTAB + 4 

LOCATIONS WITHIN A PROGRAM PROGRAM LOCATION $ + 6, START 

DATA IN MEMORY DATA MEMORY [GAl. [GB].S 

BITS OF MEMORY DATA DATA MEMORY BIT 0,1,7 

2-1 



Operands 

2-2 

8089 Assembler 

Most instructions require that one or more data items be supplied as operand(s). In 
the 8089 assembly language, this means that most operation mnemonics require one 
or more symb~lic expressions as operands. 

For example, to add the contents of a data memory location to a register we must 
specify the register and the data memory location-ADD IX, [GA]. Or, to logically 
AND a register with an immediate value we must again specify the the items to be 
operated on-AND GC, TOTAL. In these two examples IX, [GAl, GC and TOTAL 
are assembly language instruction operands. 

Examples: 

1. Suppose we wish to add register BC, containing 1215H (1215 hexadecimal), to a 
word of data memory containing 2312H. 

BC is the assembly language symbol for register BC. 

[GB] is an assembly language expression for the word of data memory 
beginning at the address contained in pointer Iregister GB. 

REGISTER BC 

1215H 

REGISTER GB 

OOFFH 

7 
OH 

I----... OFFH 

100H 

~h 

INSTRUCTION: ADD [GBI, BC 
OPERATION: [GBI ..... 2312H + 1215H 
RESULT: 

REGISTER BC 

1215H 

REGISTER GB 

OOFFH 

7 
OH 

t------'.~ OFFH 

100H 

,h 

MEMORY 
o 

12H 

23H 

r-

o 

27H 

35H 

~"'I 

2. The instruction JBT [GA+IXl, 5, ERROR_ROUTINE tests bit five of the 
data memory byte located at GA + IX and jumps to the instruction labeled 
ERROR_ROUTINE if the bit is true (equal to logical one). 



8089 Assembler 

7 
MEMORY 

o 
o H 

REGISTER GA 

1000H I-----~. 1000 H 

REGISTER IX 

BIT FIVE OF GA + IX -----, ... 1200 H X X X X X X X x 

1 
.. r 

J 

.. r-

The remainder of this chapter deals with each operand type individually. 

Register Operands 

Register operands are a group of symbols recognized by the assembler which repre­
sent registers. These symbols are reserved and cannot be redefined. (For a complete 
list of reserved symbols see Appendix G). 

The register operands are: 

SYMBOL REGISTER NAME SYMBOL REGISTER NAME 

BC Byte Count GC General Purpose C 

CC Channel Control IX Index Register 

GA General Purpose A MC Mask/Compare 

GB General Purpose B TP Task Pointer 

PP also is a register symbol, representing the read-only, non-programmable 
Parameter Block Pointer Register. PP can be used only in data memory operands. 
(See DATA MEMORY operands later in this chapter). 

Certain registers, as indicated by their names, play specific roles in lOP channel 
operations (see Chapter One and the MCS-86 User's Manual, order number 
9800722). 

Examples: . 

MOVI MC,7FOOH 

OR [GAJ, CC 

JNZ BC, REPEAT 

;Move immediate value 7FOOH to register MC. 

;Logically OR register CC to the word of data 
;memory beginning (low-order byte) at location 
;[GA]. 

;Jump to program location labeled REPEAT if 
;register BC is not zero. 

Operands 

2-3 



Operands 

2-4 

8089 Assembler 

It is possible to assign another name to a register through the EQU assembler 
directive. 

Example: 

SOURCE EQU GA 

INC SOURCE 

;Oefine symbol SOURCE for register 
;represented by GA. 

;Same as INC GA. 

SOURCE may be used in the same contexts as GA. 

Invalid uses of register operands: 

BC: DB 1AH 

IX: NOP 

JBT MC, 5, TARGET 

MOVI [G8], GA + 9 

;Attempts to redefine BC as the label of a data 
;memory byte location. 

;Attempts to redefine IX as the label of an 
;assembly language instruction. 

;MC used in an invalid context (memory 
;operand required). 

;GA used in an expression, an invalid context. 

Pointer IRegister Operands 

Pointer /register operands represent 20-bit registers and their associated tag bits. 
They are used to point to data memory and 110 space in a system. (For more detail 
on the use of pointer/registers see the section entitled "DATA MEMORY 
OPERANDS" in this chapter and also Chapter One.) 

Pointer/registers can also be used as regular 16-bit registers, hence the inclusion of 
their assembler-recognized symbols under register operands in the previous section. 

Pointer/registers are: 

SYMBOL NAME SYMBOL NAME 

GA General Purpose A GC General Purpose C 

GB General Purpose B TP Task Pointer 

Like any register symbol, a pointer/register symbol is reserved and cannot be 
redefined. Also, the EQU assembler directive can be used to assign an alternate 
name to a pointer/register. 

Examples: 

MOVP [PP].4, TP 

LPDI GA, ADOR 

LPD GC, [GB] 

;Move 20-bit TP pOinter/register and tag bit to 
;data memory. 

;Load pOinter/register GA with 20-bit address 
;formed from four bytes of immediate data. 

;Load pOinter / register GC with 20-bit address 
;formed from four bytes of data memory 
;beginning at location [GB]. 



8089 Assembler 

Invalid uses of pointer/register operands: 

GA: DB OE2H 

JMP GC 

MOVI [GC], TP 

Immediate Data Operands 

;Attempts to redefine GA as the label of a data 
;memory byte. 

;Pointer/register operands not allowed in this 
;context. 

;Invalid context; TP not allowed in immediate 
;data value expressions. 

An immediate data operand is an expression representing: 

• A data memory location 

Example: 

DATA@TABLE: OS 128 

MOVI GB, DATA@TABLE 

• A program location 

Example: 

LPDI TP, SUB1 

• An 8- or 16-bit value 

Example: 

ORI GB, OD5BH 

Expressions 

Expressions are composed of: 

• symbols 

• numeric constants 

;Reserve 128 bytes of data memory with the 
;first byte labeled DATA@TABLE. 

;Move the address of the first byte of data table 
;to pOinter/register GB. 

;Load the TP pOinter/register with the address 
;of the instruction labeled SUB1. 

;OR the contents of pointer/register GB with 
;the 16-bit immediate value OD5BH. 

• character string constants of one or two characters 

• the location counter reference ($) 

• the assembly time operators + and -

Symbols 

A symbol consists of 1 to 31 alphabetic, numeric or special characters, the first of 
which must be an alphabetic or special character. The special characters allowed in 
a symbol are: 

? @ 

Operands 

2-5 



Operands 

2-6 

8089 Assembler 

Symbols longer than 31 characters are truncated to 31 characters and flagged as 
errors. 

VALID SYMBOLS INVALID SYMBOLS 

INPUT? INPUT/OUTPUT 

THIS ITEM 

STEP_4.1 

ROUTINE@1 

Labels and Names 

"/" invalid special character. 

Embedded space is an 
invalid character. 

Symbol cannot begin with a 
numeric. 

" ." invalid special character. 

User-defined symbols are one of two types: labels or names. A symbol followed 
immediately by a colon (:) defines a label. These symbols are assigned the value of 
the assembler's location counter where they are defined. Labels normally appear in 
instruction or assembler directive source statements, but they can also appear alone, 
allowing the same location to be referenced by more than one symbolic name. 

Examples: 

LABEL1 : 

LABEL2: 

LABEL3: ADD BC, [GA] 

START: MOV GA, [GB] 

DATA_ T DB OFFH 

;LABEL 1, LABEL2, and LABEL3 all reference 
;the same location. 

;An instruction label. 

;An assembler directive label. 

A name is defined by the appearance of a symbol, NOT followed by a colon, in the 
label-field of certain assembler directives. The value of the symbol depends on the 
assembler directive used. 

Examples: 

ELEVEN EQU 11 

lOP_CODE SEGMENT 

Numeric Constants 

A numeric constant can be specified in one of four number systems: Binary, 
Decimal, Hexadecimal or Octal. The first character of any numeric constant must be 
a decimal digit (0, 1, ... 9). The digit '0' is always acceptable for this purpose. Any 
number not specifically identified as binary, hexadecimal or octal is assumed to be 
decimal. Negative numbers appear in two's complement form. 



8089 Assembler 

Binary Constants 

ORBI GA,10110111B 

ADDBI [GB], 11011110B 

Decimal Constants 

MOVI BC,30500 

ANDI CC,17526D 

Hexadecimal Constants 

ORI GA,OFEH 

MOVI [GB+ IX], 271 FH 

Octal Constants 

ADDBI [GA).7,360 

MOVI eC,13520 

One or more binary digits (0, 1) followed 
immediately by the letter B. 

;OR GA with immediate binary value. 

;ADD immediate binary value to data memory 
;byte at address specified by GB. 

One or more decimal digits (0, I, ... 9) 
optionally followed immediately by the 
letter D. 

;Load register BC with immediate decimal 
;value. 

;AND register ce with immediate decimal 
;value. 

One or more hexadecimal digits (0, 1, ... 
9, A, B, C, D, E, F) followed immediately 
by the letter H. Note that the first digit 
must be a decimal digit (0, 1, ... 9). 

;OR register GA with immediate hexadecimal 
;value. 

;Move immediate hexadecimal value to a word 
;of data memory beginning (low-order byte) at 
;[GB+IX). 

One or more octal digits (0, 1, ... 7) 
followed immediately by the letter 0 or 
the letter Q. 

;ADD immediate octal value to data memory 
;byte. 

;Move immediate octal value to register CC. 

The section in this chapter entitled "Permissible Range of Expression Values" 
describes the maximum numeric values allowed by the assembler. 

Invalid Numeric Constants 

01210B ;2 not a binary digit. 

F?12H ; First digit is not a decimal digit (0, 1, ... 9). 

1A?0 ;A is not an octal digit. 

OF? ; F is not a decimal digit. 

Operands 

2-7 



Operands 

2-8 

8089 Assembler 

Character String Constants Containing One or Two Characters 

A character string constant ,consists of one or more printable ASCII characters 
enclosed in single-quote marks ('). Each single-quote mark within a character string 
must be represented as two successive single-quote marks ("). 

A character string constant consisting of only one or two characters can be used as a 
numeric constant in an expression. 

Examples: 

ADDI GB, 'Eh' ;ADD immediate value 4568H to register GB. 

MOVI [PP).7, '*' ;Move immediate value 2AH to data memory. 

A character string constant which contains more than two characters can only be 
used to define character string data with the DB assembler directive. 

Location Counter Reference 

Within an expression the current (at the beginning of the statement) value of the 
assembler's location counter can be referenced using the dollar sign ($) special 
character. 

Example: 

MOVI BC,128 

LOOP: MOV GB, [GA) 

DEC BC 

JZ BC, $ + 6 

JMP LOOP 

LPD GC, [PP).8 

Assembly Time Operators 

;Load immediate value 128 (decimal) into 
;register BC. 

;Move 16-bits of data memory to register GB. 

;Decrement BC. 

;Jump around the unconditional jump if 
;register BC = O. 

;Fall through to here if BC <> O. 

;Instruction executed when BC = O. 

The following assembly time operations can be performed: 

OPERATOR 

+ 

OPERATION 

Unary or binary addition. 

Unary or binary subtraction. 

The assembler sign-extends (bit 7) 8-bit values to 16-bits. Operations within expres­
sions are performed on 16-bit quantities to yield a 16-bit result. Operators are 
executed in left to right order; they have equal precedence. 

External symbols, which can only appear in expressions used in a DD assembler 
directive or an LPDI instruction, must be added (not subtracted) within the expres­
sion. Only one external symbol is allowed per expression. 



8089 Assembler 

Parentheses '()' are NOT allowed in expressions. 

Examples: 

EXTRN OUT_MOD 

7FH 

;Assembler directive indicating symbol 
;OUT _MOD is defined in some other 
;program. 

;Assembler directive defining symbol 
;DATA_1 as the label of a data memory 
;Iocation: (the value of DATA_1 is not 07FH­
;it is the value of the assembler's location 
;counter at the time DATA_1 is defined). 

LPDI GB, OUT _MOD-7 ;Load pointer/register with immediate value. 

MOVI BC,DATA_1 + 4 ;Load register with immediate value. 

Invalid expressions using assembly time operators: 

EXTRN RECD1 

LPDI GB,4-RECD1 

ADDI MC, (MASK + 2) 

;Identify RECD1 as a symbol defined in some 
;program. 

;External symbols cannot be subtracted within 
;expressions. 

;Parentheses not allowed in expressions. 

Permissible Range of Expression Values 

Hexadecimal values can range from OH to OFFFFH or 0 to 65,535 decimal. Negative 
values are expressed in two's complement form. 

All arithmetic operations are performed using two's complement arithmetic. Results 
are modulo 64K-the assembler performs no overflow detection. 

Expressions used as immediate byte operands are evaluated modulo 256 (decimal 
256 is equal to zero). 

Examples: 

ADDI GA,65635 

MOVBI [GC],-4 

ORBI CC,OC7H 

Examples of immediate data operands: 

ORBI [GB], 11 

ADDBI [GA + IX], TOTAL 

MOVI BC,INPUT_CNT 

LPDI GC, MAIN_MEM 

MOVBI GA, STATUS + 5 

;ADD an immediate word value of 99 or 63H 
;(65635 modulo 64K) to register GA. 

;Move OFCH (two's complement of 4) to data 
;memory byte location specified by 
;pointer/ register GC. 

;OR register CC with immediate byte value 
;OC7H. 

Operands 

2-9 



Operands 

2-10 

8089 Assembler 

Program Location Operands 

Both conditional and unconditional control transfer instructions require a program 
location operand to specify the jump target. This operand is an expression (usually a 
label) representing the jump target's location in the program. 

Locations within a program can be specified by three general types of expressions: 

• an expression containing an instruction label 

• an expression containing only numeric constants 

• an expression containing a relative instruction address, i.e. one containing the 
location counter reference $ 

Instruction Labels 

An instruction label is most commonly used to specify a jump target. In an expres­
sion, a label can be combined with an offset value to specify the jump target. 

Examples: 

TARGET: MOV GA, [GB] 

JMP TARGET 

;An instruction labeled TARGET. 

;Unconditional jump to instruction with the 
;Iabel TARGET. 

JMCE [GA].5, TARGET + 2 ;Conditional jump (mask/compare result equal 
;to zero) to instruction following TARGET. 

JZ 

Numeric Constants 

BC, TARGET - 3 ;Conditional jump (register BC equals zero) to 
;instruction 3 bytes before TARGET. 

A numeric constant can be used to specify the jump target. This address is NOT an 
absolute address; it represents a displacement from the beginning of the (maximum) 
64k program segment. 

Examples: 

JMP 4004H 

Relative Instruction Addresses 

;Unconditional jump to the instruction located 
;a displacement of 4004H from the beginning 
;of the program segment. 

A relative instruction address expresses the jump target relative to the control 
transfer instruction's address. The special character dollar sign ($), representing the 
value of the assembler's location counter at the beginning of the instruction, is used. 

Example: 

JBT [G8], 4, $ - 6 ;Conditional jump (bit four equal to a logical 
;one) to the instruction six bytes before the 
;beginning of this instruction. 



8089 Assembler 

Data Memory Operands 

The contents of data memory are always addressed indirectly, that is, through a 
pointer/register (GA, GB, or GC) or the PP register. Both 20-bit system (memory) 
space and 16-bit local (I/O) space can be accessed. 

When the lOP has its own remote bus (REMOTE configuration), the shared system 
bus is accessed using 20-bit addresses loaded into GA, GB or GC by the LPD or 
LPDI instructions. The pointer/register's tag bit is set to logical zero. In systems 
where the lOP shares the local bus with a host processor (LOCAL configuration), 
20-bit addresses, again loaded through LPD or LPDI instructions, may be used to 
access data memory. 

In REMOTE configurations, the lOP accesses its remote bus with 16-bit addresses 
loaded into GA, GB, or GC by the MOV, MOVB, MOVBI or MOVI instructions. 
The pointer/register's tag bit is set to logical one. In LOCAL configurations, these 
16-bit addresses may be used to access 110. 

The 20-bit PP (parameter pointer) register contains the address of a channel's 
Command Parameter Block. This address always points to system (memory) space. 
It is loaded into the PP register automatically, whenever a channel is started. The 
contents of the register cannot be altered by a task block program. In data memory 
operands it is used to access the user-defined portions of the Command Parameter 
Block. 

See Chapter One and the MCS-86 User's Manual for information on lOP system 
configurations. 

Examples: 

LPD GA, [PP].8 

MOV GC, [GB] 

OATA_T: OS 200 

MOVI 

;Load pointer/register GA with a 20-bit address 
;formed from four bytes of the Command 
;Parameter Block. GA's tag bit is set to logical 
;zero. 

;Move 16-bits of data memory from the address 
;given by pOinter/register GB to 
;pointer/register GC. GC's tag bit is set to 
;Iogicalone. 

;Define a label DATA_ T, the beginning 
;address of 200 bytes of reserved data memory. 

; Load pointer / register GA with the 16-bit 
;address of the reserved data memory bytes. 
;GA's tag bit is set to logical one. 

Data memory operands have four forms, as follows: 

[PREG] (base address only) PREG can be the pointer/register GA, GB, 
GC or the PP register. PREG contains the data memory 
address. 

MOV 

ADD 

ORB 

CC, [GB] 

[GAJ, BC 

[PPJ, MC 

;Move 16-bits of data memory, beginning at the 
;address in GB, to registerCC. 

;Add register BC to the word of data memory 
;beginning (low-order byte) at location [GA]. 

;OR register Me to the first byte of the 
;Command Parameter Block. 

Operands 

2-11 



Operands 

2-12 

[PREG].d 

[PREG+IX] 

(base address plus an unsigned 8-bit offset) d is an expression 
evaluated modulo 256 to form an 8-bit offset value. If d is 
greater than 255 an error me.ssage is issued by the assembler. 

AND MC, [GA].4 

NOT [GC].4108 

;AND register MC with the word of data 
;memory beginning (low-order byte) at location 
;GA + 4. 

;Complement the word of data memory 
;beginning (low-order byte) at location GC + 12 
;(4108 modulo 256). The assembler would flag 
;this instruction as an error since d is greater 
;than 255. 

(base address plus the Index register) The data memory address 
is formed by adding the Index register and the base address. The 
base address and Index register are not changed. 

MOV [GB + IX], BC ;Move register BC to data memory, low-order 
;byte at address GB + IX. 

NOTB [PP + IX] ;Complement the byte PP + IX. 

[PREG + IX + ] (base address plus the Index register; the Index register is post 
auto-incremented by byte or word (lor 2» The data memory 
address is formed by adding the Index register and the base 
address. At the end of the instruction the Index register is 
automatically incremented by the size of the operand (one for 
byte operands, two for word operands). The base address is 
unchanged. 

MOV [GA], [GB+ IX+] ;Move a word of data memory, beginning at 
;GB + IX, to the word of data memory 
;beginning at GA. The Index register is post 
;auto-incremented by two (a word). 

DEC [GC+IX+] 

ORBI [PP + IX + ], 26 

;Decrement the word of data memory 
;beginning at GC + IX. The Index register is 
;post auto-incremented by two (a word). 

;OR immediate byte value to a location within 
;the Command Parameter Block. The Index 
;register is post auto-incremented by one (a 
;byte). 

Data Memory Bit Operands 

Instructions that set and clear bits (SETB, CLR) or conditional jump instructions 
that test bits (JBT, JNBT) require operands that specify which bit of a data memory 
byte is accessed. A data memory bit operand provides this information. 

The bits in a data memory byte are numbered, right to left, as follows: 

MSB LSB 

Ixxxxxxxxi 
7 6 543 2 1 0 

8089 Assembler 



8089 Assembler 

The bit number is the operand used in an instruction to specify the referenced bit. 

Example: 

DB OFFH ;Define a symbol D_MEM_BYTE as the label 
;of a data memory byte with an initial value of 
;OFFH. 

The data memory byte at D_MEM_BYTE contains: 

7 0 

1111111111 

CLR [GA],5 

; Load address of data memory byte into 
;register GA. 

;Clear bit five of the data memory byte 
;Iocated at GA. 

The data memory byte at D_MEM_BYTE now contains: 

7 0 

11 011111 (ODFH) 

Operands 

2-13 





CHAPTER 3 
THE INSTRUCTION SET 

Introduction 

Most of this chapter is an alphabetized collection of instruction mnemonics. For 
each mnemonic, the coding format and operands of the instruction are given, along 
with symbolic and prose descriptions of the instruction's operation. An example of 
the use of each instruction and the format of the assembled instruction are also 
included. A fold-out page at the end of this chapter contains helpful operand and 
instruction decoding information. 

In oases where the coding format of the operands makes a significant difference in 
the instruction's operation, separate listings are given for each coding format of the 
mnemonic. For example, the mnemonic ADDB has two listings: ADDB R, M and 
ADDBM, R. 

The execution time, in clock timings, is listed for each instruction. One clock timing, 
as obtained from a 5 MHZ clock, is 200 nanoseconds. When 16 bits of data memory 
are used by an instruction, two execution times are given, reflecting the effect of bus 
size and odd/even data memory addresses on instruction execution times. 

Instruction fetch time must be added to the given instruction execution time to deter­
mine the total time required to execute an instruction. Table 3-1 summarizes the 
instruction fetch times: 

Table 3-1. 8089 Instruction Fetch Times (in clocks) 

2 3 4 

NO NO 
Q Q Q Q Q 

E / 14 / 18 / 

0 / 14 / 18 / 

E / 7 / 14* / 

0 11* 14* 11 14 15* 

L Even/odd starting boundary 

*-Next byte loaded into Queue 

5 ~No.ofb ytes to be fetched 

NO NO 
Q Q Q .. Is data in Queue? 

22 / 26 
} Task Block Pr 

22 / 26 
ogram on 8-bit bus 

14 I 18* 
Task Block Pr ogram on 16-bit bus 

18* 15 18 

The above reference to a queue refers to an internal one byte queue the lOP main­
tains to minimize instruction fetch time. For further details on lOP instruction 
fetching, see the MCS-86 User's Manual, order number 9800722. 

A description of instruction source statements and assembled instruction formats as 
well as a breakdown of the instruction set by function precedes the instruction set 
encyclopedia. 

Instruction Source Statement Format 

The general format of an instruction source statement is: 

[LABEL] MNEMONIC [OPERAN D(S)] [;COMMENT] 

3-1 



The Instruction Set 8089 Assembler 

3-2 

Items enclosed within brackets ([ ]) are optional. A label is never required but is 
optional on all instructions. Not all instructions require operands. A comment, any 
printable ASCII character(s) preceded by an unquoted semicolon (;), is optional on 
all source lines. All characters from the semicolon to the end of the line are ignored 
by the assembler but will appear in the assembly listing. 

An instruction source statement is made up of one or more source lines terminated 
by an uncontinued end-of-line. A source line consists of zero or more characters ter­
minated by an end-of-line, indicated by one of the following: 

• CR a carriage return (ODH) 

• LF a line-feed (OAH) 

• CRLF a carriage return followed by a line-feed (ODOAH) 

A source statement is continued by placing an ampersand (&) as the first character 
of the next source line. The sequence end-of-line& is treated like a blank by the 
assembler. Character string constants cannot be continued to the next source line. 

The assembler compresses each source statement as follows: all comments and the 
final end-of-line are deleted; tabs, and all sequences of unquoted blanks, and end­
of-line&'s are reduced to single blanks; all quoted quotes are changed into single 
quotes. The maximum number of characters in one compressed source statement is 
256. 

Examples: 

BEGIN: 

& 
& 

NOP 

HLT 

LPD GA,[GB] 

MOV 
GA, 

[GC] 

;This is a comment. 

;BEGIN: is a label 

;This source statement 
;is made up of 
;three source lines. 

Assembled Instructions 

Each 8089 instruction is at least two bytes in length. Up to three additional bytes can 
also be generated, specifying offset data, displacement, and immediate values. 
Figure 3-1 shows the general format of an assembled instruction. 

If an offset value is used to specify a data memory address (AA field in low order 
. assembled instruction byte = 01), an unsigned 8-bit offset field immediately follows 
the first two assembled instruction bytes: 

7 0 7 0 7 0 

I b/R/P W B A A wlo PC 0 DE M M loffset if AA=011 

(low order byte) (high order byte) 

If the instruction source statement includes an immediate byte or word valUe, an 8-
or 16-bit immediate value field follows the first two assembled instruction bytes and 
the offset field, if it is present: 

7 07 07 07 07 0 

I b/R/P W B A A W 10 PC 0 DE M M loffset if AA=011 i-value (low) I i-value (high) I 
(low order byte) (high order byte) 



8089 Assembler The Instruction Set 

I Rib I P IW I B I A I A I Wi 0 I pic I 0 I DIE I M I M I -..------

L
' BAS;O~~M,.°RY ADDRESS SELECT 

L.... 01-GB 
10-GC 
11-PP 

OPERATION CODE 

MEMORY DATA WIDTH 
0-1 BYTE 
1-2 BYTES (WORD) 

MEMORY ADDRESS MODE 
~O-BASE ADDRESS ONLY 
01-BASE ADDRESS + 8-BIT OFFSET 
10-BASE ADDRESS + INDEX REGISTER 
11-BASE ADDRESS + INDEX REGISTER; 

INDEX REGISTER POST AUTO-INCREMENTED 

NO. OF IMMEDIATE/DISPLACEMENT VALUE BYTES 
OO-RESERVED 
01-1 BYTE 
10-2 BYTES (WORD) 
11-TSLINSTRUCTION ONLY 

REGISTER, BIT, OR POINTER/REGISTER SELECT 
RRR bbb PPP 

OOO-GA 
001-GB 
010-GC 
011-BC 
100-TP 
101-IX 
110-CC 
111-MC 

OOO-BIT 0 (LSB) 
001-BIT1 
010-BIT2 
011-BIT3 
100-BIT4 
101-BIT 5 
110-BITS 
111-BIT 7 (MSB) 

OOO-GA 
001-GB 
010-GC 
100-TP 

Figure 3-1. 8089 Assembled Instruction Format 

Control transfer instructions have a signed one-or-two byte displacement value 
included in their assembled instructions. An 8- or 16-bit field containing the 
displacement value follows the first two bytes of the assembled instruction and the 
offset field if it is present: 

7 07 07 07 07 0 

! b/R/P W B A A W 10 PC 0 D EM M loffset if AA=01! sdisp-Iow ! sdisp-high I 
(low order byte) (high order byte) 

Two exceptions to the preceding rules for additional bytes in assembled instructions 
should be noted. The TSL instruction has an 8-bit immediate value field and an 8-bit 
signed displacement field. These two fields follow, in the given order, the first two 
bytes of the assembled instruction and the offset· field, if it is present. (See the TSL 
instruction mnemoniC description.) 

The assembled instructions for memory to memory move operations are a minimum 
of four bytes in length. A maximum of six bytes can be generated by the assembler if 
two offset fields are present. (See the MOV and MOVB instruction mnemonic 
descriptions.) 

Examples: 

1. Figure 3-2 shows the assembled instruction ADD IX, [PP).24 

2. Figure 3-3 shows the assembled instruction MOVI [GB).8, 4A27H 

3-3 



The Instruction Set 8089 Assembler 

3-4 

7 0 7 0 7 0 

110110010111110100 0 1 1 11000110001 --- -- ----- --
:: 

OFFSET FIELD CONTAINING 1SH (240) 

'-----------.. BASE MEMORY ADDRESS IS IN PP REGISTER 

'---------------... - ADD OPERATION CODE 

'--------------------...MEMORYDATAIS2BYTES(WORD) 

'--___________________ ~~~~~~~~g~R~~~~~~~FFSET 

L------------------------l~NO IMMEDIATE/DISPLACEMENT VALUE DATA 

'--------------------------.REGISTER IX SELECTED 

Figure 3-2. Assembled Encoding of ADD IX, [PP] .24 

07 07 07 0 

1001101000010000010011101001010 

TWO BYTE IMMEDIATE VALUE FIELD 
'----------...,-:., (NOTE LOW-ORDER BYTE '27' IS FIRST) 

'--------------____ -- OFFSET FIELD CONTAINING OSH (SO) 

'--__________________ • BASE MEMORY ADDRESS IS IN GB 

L...-______________________ __. MOVI OPERATION CODE 

'----------------------------~MEMORYDATAIS2BYTES(WORD) 

'--___________________________ ~ BASE + UNSIGNED8-BITOFFSET 

MEMORY ADDRESS MODE 

'-------------------------------___ • ., 2 BYTES OF IMMEDIATE VALUE DATA 

L...... ________________________________ --..- NOT USED - INSTRUCTION HAS 

NO REGISTER, BIT, OR 
POINTER/REGISTER OPERAND 

Figure 3-3. Assembled Encoding of MOVI [GB].8, 4A27H 

Instruction Mnemonics by Functional Group 

The instruction mnemonics are described in this section in five functional groups: 

Data Transfer 

Control Transfer 

Arithmetic and Logical 

Bit Manipulation and Test 

Special and Miscellaneous 



8089 Assembler The Instruction Set 

Data Transfer Instructions 

There are four distinct types of internal (excluding I/O operations) data transfer 
operations: 

• Load/store 20-bit pointer/registers 

• Load/store 16-bit registers 

• Move immediate data to memory or register 

• Move memory-to-memory 

20-bit pointer/registers, GA, GB, GC or TP, can be loaded with 20-bit addresses by 
the LPD and LPDI instructions. LPD loads an address formed from four bytes of 
data memory; LPDI loads an address formed from four bytes of immediate data. 
An external symbol can appear in an LPDI instruction. Both of these instructions 
set the pointer/register's tag bit to logical zero. 

A 20-bit pointer/register and its tag bit are stored in or restored from three bytes of 
data memory via the MOVP instruction. See the MOVP instruction mnemonic 
description later in this chapter for the format of a stored pointer/register and tag 
bit. 

The 16-bit registers can be loaded with 8- or 16-bit data using the MOV, MOVB, 
MOVI, and MOVBI instructions. MOV and MOBV load a register from 16 and 
8 bits of data memory respectively. MOVlloads a register with 16 bits of immediate 
data; MOVBI loads a register with 8 bits of immediate data. When a byte (memory 
or immediate) is loaded into a register, it is sign-extended (bit 7) into the high order 
byte. 

MOV is used to store 16-bit registers in data memory. The MOVB instruction stores 
the low order byte of a register in data memory. 

NOTE 

20-bit pointer/registers can be used as registers in the MOV, MOVB, 
MOVI, and MOVBI instructions. The sign bit (bit 15 or bit 7) is sign- ex­
tended into the high order bits. The pointer/register's tag bit is set to logical 
one by these instructions. 

Memory data or immediate data can be moved to a memory location using the 
MOV, MOVB, MOVI and MOVBI instructions. The assembled instruction for 
MOV and MOVB in this case is at least four bytes long. 

MNEMONIC OPERATION 

LPD Load 20-bit pointer/register from data memory 

LPDI Load 20-bit pointer/register from immediate data 

MOVP Move 20-bit pointer / register to (store) or from (restore) memory 

MOV Move 16-bits of data memory to/from data memory or register 

MOVB Move 8-bits of data memory tolfrom data memory or register 

MOVI Move 16-bits of immediate data to data memory or register 

MOVBI Move 8-bits of immediate data to data memory or register 

3-5 



The Instruction Set 8089 Assembler 

3-6 

Control Transfer Instructions 

Call and jump instructions alter the normal sequential execution of task block pro­
gram instructions and transfer control to another, non-sequential instruction within 
the program. This instruction is called the jump target. One operand within a con­
trol transfer instruction is an expression specifying the location of the jump target. 

Displacements 

Jumps are made by adding a signed byte or word displacement value (sign-extended 
to 20 bits) to the 20-bit TP pointer/register to form the jump target address. Jump 
targets within -128, + 127 bytes of the end of a control transfer instruction can be 
reached with a signed byte displacement value. Jump targets within -32,768, 
+ 32,767 bytes of the end of a control transfer instruction require a signed word 
displacement value. 

All jump targets must be within a -32,768, +32,767 byte range of the end of a con­
trol transfer instruction. There is NO wraparound from the end of the (maximum) 
64k program instruction space to the beginning. Figure 3-4 shows the range of jump 
target locations for signed byte and signed word displacement values. 

SHORT 
= JUMP/CALL 

RANGE 

LONG 
= JUMP/CALL 

RANGE 

THERE*-... 

OFFFFH �oo_ _____ ...... 

SEGMENT (64K BYTES) 

·YOU CAN'T GET 'THERE' FROM 'HERE'. 

HERE·SOH 

HERE + 7FH 

Figure 3-4. Control Transfer Jump Target Range 



8089 Assembler The Instruction Set 

Short and Long 

Control transfer instruction mnemonics have two forms: a short form and a long 
form. The long form is constructed by adding an 'L' prefix to the short form of the 
control transfer instruction mnemonic. 

Examples: 
SHORT 

CALL 
JBT 
JMP 

LONG 

LCALL 
LJBT 
LJMP 

When the short form of a control transfer instruction mnemonic is coded, the 
assembler generates a signed byte or word displacement value. If the expression 
specifying the jump target contains only symbols previously defined to the assembler 
(this includes the special character $, the location counter reference), the minimum 
size displacement value necessary to reach the jump target is generated. 

The long form of a control transfer instruction mnemonic always generates a signed 
word displacement value, regardless of the actual distance to the jump target. 

Short Form Errors 

If the short form of a control transfer instruction mnemonic is coded and the jump 
target address cannot be determined by the assemb"ler on its first pass (i.e., the 
expression specifying the jump target contains a forward reference), a signed byte 
displacement value is assumed to be sufficient. If later the assembler determines that 
a signed word displacement is necessary, the short form instruction will be flagged as 
an error. The long form of the instruction mnemonic must be coded in its place. 

Examples: 
J_ TARGET: MOV [GA].4, [PP).12 ;An instruction labeled J_ TARGET. 

(200 bytes of assembled source program) 

JZ [GB], $ + 16 

;The address of the jump target J_ TARGET 
;can be determined by the assembler on its 
;first pass. A signed word displacement value 
;is generated by the assembler. 

;$ + 16 is NOT a forward reference. The 
;expression specifying the jump target 
;contains only symbols defined to the 
;assembler when the JZ instruction is 
;processed on its first pass. A signed byte 
;displacement value is generated. 

CALL [GC).4, SUB_RT ;A short CALL instruction whose jump target 
;SUB_RT is not yet defined to the assembler 
;on its first pass. 

(200 bytes of assembled source program) 

ADDI MC, 722H ;The CALL instruction's jump target. 

The above CALL instruction will be flagged as an error by the assembler, having 
determined that the jump target requires a signed word displacement value rather 
than the signed byte displacement value it assumed. An LCALL will have to be 
coded in place of the CALL mnemonic. 

3-7 



The Instruction Set 8089 Assembler 

3-8 

Unconditional Control Transfer Instructions: 

MNEMONIC OPERATION 

CALL / LCALL Store TP pOinter/register and tag bit; Jump 

JMP / LJMP Jump 

Conditional Control Transfer Instructions: 

MNEMONIC OPERATION 

JMCE / LJMCE Jump on mask/compare equal 

JMCNE / LJMCNE Jump on mask/compare not equal 

JNZ / LJNZ Jump on nonzero register or data memory word 

JNZB / LJNZB Jump on nonzero data memory byte 

JZ / LJZ Jump on zero register or data memory word 

JZB / LJZB Jump on zero data memory byte 

Arithmetic and Logical Instructions 

Arithmetic and logical operations can be performed on registers and 8- or 16-bit 
data. The ADDB, ADDBI, ANDB, ANDBI, ORB, and ORB I instructions operate 
on registers and 8-bit memory or immediate data. DECB, INCB, and NOTB operate 
on 8-bit memory data only. 

All 8-bit immediate or memory data is sign-extended to 16-bits in arithmetic and 
logical operations. It cannot be assumed that the high order byte of a register is 
unaffected by an 8-bit operation. 

Example: 

Register MC contains 8351H: 

7 0 7 0 

110000011 I 01010001 1 

The following instruction is executed: 

ANDBI MC,47H ;The immediate byte data is sign-extended 
;(bit 7) to 16-bits. The 16-bit result of the AND 
;operation is placed in register MC. 

Register MC now contains 41H (not 8341H). 

7 0 7 0 

00000000 101000001 I 



8089 Assembler The Instruction Set 

To preserve the high order byte of the MC register the 16-bit form of the instruction, 
ANDI, must be used: ANDI MC, OFF41H. 

The instructions ADD, ADDI, AND, ANDI, DEC, INC" OR, ORI, and NOT 
operate on registers and 16-bit memory or immediate data. 

When 20-bit pointer/registers are used as registers in arithmetic and logical opera­
tions, bit 15 of 16-bit quantities and bit 7 of 8-bit quantities are sign-extended into 
the high-order bits. The upper four bits (bits 16-19) of a pointer/register are 
undefined following all arithmetic and logical operations except addition. ADD, 
ADDI, ADDB, ADDBI can carry into the high order bits of a pointer/register. 

Example: 

Pointer/register GA contains 2E200H. The following instruction adds 32,765 
(decimal) to pointer/register GA: 

ADDI GA, 32765 

Pointer/registerGA now contains 361FDH. 

MNEMONIC OPERATION 

ADD ADD register and 16-bit memory data 

ADDB ADD register and 8-bit memory data 

ADDBI ADD register or 8-bit memory data and 8-bit immediate data 

ADDI ADD register or 16-bit memory data and 16-bit immediate data 

AND AND register with 16-bit memory data 

ANDB AND register with 8-bit memory data 

ANDBI AND register or 8-bit memory data with 8-bit immediate data 

ANDI AND register or 16-bit memory data with 16-bit immediate data 

DEC Decrement register or 16-bit memory data 

DECB Decrement 8-bit memory data 

INC Increment register or 16-bit memory data 

INCB Increment 8-bit memory data 

OR OR register and 16-bit memory data 

ORB OR register and a-bit memory data 

ORBI OR register or a-bit memory data with a-bit immediate data 

ORI OR register or 16-bit memory data with 16-bit immediate data 

NOT Complement register or 16 .. bit memory data 

NOTB Complement 8-bit memory data 

3-9 



The Instruction Set 8089 Assembler 

3-10 

Bit Manipulation and Test Instructions 

These instructions clear, set, or test a particular data memory bit. 

The result of a bit test determines whether or not a jump occurs to some other 
instruction within the task block program. The bit test instructions require three 
operands: a data memory operand specifying the address of the data memory byte in 
which the bit to be tested is located; a data memory bit operand specifying the bit to 
be tested; and a program location operand specifying the jump target. Bit test 
instructions, since they are control transfer instructions, have both a short and long 
form. (See "Control Transfer Instructions" in this chapter for more on short and 
long control transfer instructions.) 

Examples: 

JBT [GA].4, 3, TARGET ;Test bit three of the data memory byte at 
;GA + 4. Jump to the instruction labeled 
;TARGET if the tested bit equals a logical 
;one. 

LJNBT [GC+IXJ, 0, ERROR_FIX ;Test bit zero of the data memory byte at 
;GC + IX. Jump to the instruction labeled 
;ERROR_FIX if the tested bit does not 
;equal a logical one. 

MNEMONIC OPERATION 

SETB Set selected data memory bit to logical one 

CLR Clear selected data memory bit to logical zero 

JBT I LJBT Jump on data memory bit true (bit = logical one) 

JNBT I LJNBT Jump on data memory bit not true (bit < > logical one) 

Special and Miscellaneous Instructions 

This group contains those instructions that specifically pertain to 110 processing by 
the 8089. It also includes the NOP (no operation) instruction. 

A full understanding of the use of the special lOP instructions requires a knowledge 
of 8089 operation. The MCS-86 User's Manual is the best source for such infoflpa­
tion. The operation of each of these instructions is explained under its mnemonic in 
the following encyclopedia. 

MNEMONIC OPERATION 

HLT END task block program instruction execution. 

NOP No operation. 

SINTR Set interrupt service flip flop. 

TSL Test and set data memory byte while system bus is locked. 

WID Set DMA source and destination logical widths. 

XFER Begin DMA transfer following the execution of the next instruction. 



Add Memory Word to Register 

Add Register to Memory Word 

Mnemonic: ADD 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (OP1) - (OP1) + (OP2) 

Coding Format: ADD R, M 
ADD M, R 

A word of data memory, with low order byte at location 'M', is added to the con­
tents of register 'R'. The 16-bit result is placed in the leftmost operand, 'OPl'. 

If 'OPl' is a 20-bit pointer/register (GA, GB, GC or TP) the memory data is sign­
extended (bit 15) to 20-bits. A carry can occur into the upper bits, bits 16-19, of the 
pointer /register. 

Examples: 

ADD GA, [G8] 

ADD [GC], IX 

;Register G8 points to the first (low order) byte of the word of 
;memory data which is added to the contents of register GA. 

;The contents of the Index register are added to the word of 
;memory data which begins at the address contained in 
;register GC. 

Assembled Instruction: 

ADD R, M (ADD TO REGISTER FROM MEMORY WORD) 

7 0 7 0 7 0 

I R R ROO A A 1 11 01 000 M M loffset if AA=011 

Execution Time: 

11 clocks bus width = 16 bits and address is even 
15 clocks bus width = 8 bits or bus width = 16 bits and address is odd 

ADD M, R (ADD TO MEMORY WORD FROM REGISTER) 

7 0 7 0 7 0 

I R R ROO A A 1111 01 00 M M loffset if AA=011 

Execution Time: 

16 clocks bus width = 16 bits and address is even 
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) When the results of an arithmetic or logic operation are placed in a 
20-bit pointer/register the upper four bits, bits 16-19, are undefined 
following the operation, except when addition is performed. In this 
case, there can be a carry into the upper four bits of the 
pointer /register. 

ADD 

3-11 



ADDB R, M 

3-12 

Add Memory Byte to Register 

Mnemonic: ADDB Coding Format: ADDB R, M 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (R) +- (R) + sign-extended (M) 
*two 16-bit operands; 16-bit resu1t* 

The data memory byte at location 'M' is sign extended (bit 7) to a 16-bit quantity 
and added to the register, 'R'. The 16-bit result is placed in register 'R'. 

If 'R' is a 20-bit pointer/register (GA, GB, GC or TP) the memory data is sign- ex­
tended (bit 7) to 20-bits. A carry can occur into the upper bits, bits 16-19, of the 
pointer /register. 

Example: 

ADDS GA, [GB] ;Add byte at [GB] to register GA. 

Assembled Instruction: 

ADDB R, M (ADD TO REGISTER FROM MEMORY BYTE) 

7 0 7 0 7 0 

I R R ROO A A 111 01 000 M M loffset if AA=011 

Execution Time: 

11 clocks 

NOTE 1) When the results of an arithmetic or logic operation are placed in a 
20-bit pointer/register the upper four bits, bits 16-19, are undefined 
following the operation, except when addition is performed. In this 
case, there can be a carry into the upper four bits of the 
pointer /register. 



ADDB M, R 
Add Register to Memory Byte 

Mnemonic: ADDS Coding Format: ADDS M, R 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (M) +- (M) + low-order byte (R) 

The data memory byte at location 'M' is added to the low-order byte of register 'R'. 
The 8-bit result is placed in data memory at location 'M'. 

Examples: 

SOME_OFFSET EQU 5H 
ADDB [Ge].SOME_OFFSET, Be 

Assembled Instruction: 

;Add the low-order byte of 
;register Be to data memory 
;byte at [Ge] + 5. The 8-bit 
;result is placed in [GC] + 5. 

ADDS M, R (ADD TO MEMORY BYTE FROM REGISTER) 

7 0 7 0 7 0 

1 R R ROO A A 111 1 0 1 0 0 M M §ffset if AA=o11 

Execution Time: 

116 clocks 

3-13 



ADDBI R, I 

3-14 

Add Immediate Byte to Register 

Mnemonic: ADDBI Coding Format: ADDBI R, I 
Operands: 'R' is a register symbol 

'I' is an expression evaluated modulo 256 

Operation: (R) +- (R) + sign-extended (i-value) 
*two 16-bit operands; 16-bit result* 

An immediate byte value is sign extended (bit 7) to a 16-bit quantity and added to the 
contents of the register, 'R'. The 16-bit result is placed in register, 'R'. 

If 'R' is a 20-bit pointer/register (GA, GB, GC or TP) the immediate value is sign­
extended (bit 7) to 20-bits. A carry can occur into the upper bits, bits 16-19, of the 
pointer Iregister. 

Example: 

ADDBI BC, 37 ;The immediate value '37' (decimal) is added to register BC. 

Assembled Instruction: 

ADDBI R, I (ADD IMMEDIATE BYTE TO REGISTER) 

7 0 7 0 7 0 

I R R R 0 1 000 I 001 00000 I i-value 

Execution Time: 

3 clocks 

NOTE 1) When the results of an arithmetic or logic operation are placed in a 
20-bit pointer/register the upper four bits, bits 16-19, are undefined 
following the operation, except when addition is performed. In this 
case, there can be a carry into the upper four bits of the 
pointer Iregister. 



ADDBI M, I 
Add Immediate Byte to Memory Byte 

Mnemonic: ADDBI Coding Format: ADDBI M, I 

Operands: 'M' is a data memory expression 
'I' is an expression evaluated modulo 256 

Operation: (M) - (M) + i-value 

The expression'!' is evaluated modulo 256 to an immediate signed byte, 'i-value'. 
This immediate signed byte value is added to the data memory byte at location 'M'. 
The result is placed in the data memory location 'M'. 

Example: 

ADDSI [Ge], 45H ;The immediate value '45H' is added to the memory byte at [GC). 

Assembled Instruction: 

ADDBI M, I (ADD IMMEDIATE BYTE TO MEMORY BYTE) 

7 07 07 07 0 

I 00001 A A 0 111 0000 M M IOffset if AA=011 i-value 

Execution Time: 

16 clocks 

3-15 



ADDI 

3-16 

Add Immediate Word to Register 

Add Immediate Word to Memory Word 

Mnemonic: ADDI Coding Format: ADDI R, 
ADDI M, 

Operands: 'R' is a register symbol 
'M' is a data memory expression 
'I' is an expression evaluated modulo 64k 

Operation: (OP1) +- (OP1) + i-value 

The expression 'I' is evaluated modulo 64k to an immediate signed word value, 
'i-value'. This immediate word value is added to the contents of register, 'R', or the 
word (16 bits) of memory data whose low order byte is located at 'M'. The result is 
placed in the specified register or memory location, 'OP 1'. 

If 'OP1' is a 20-bit pointer/register (GA, GB, GC or TP) the immediate value is 
sign-extended to 20-bits. A carry can occur into the upper bits, bits 16-19, of the 
pointer / register. 

Examples: 

ADDI GA, 7F09H 

ADDI [GB], 57421Q 

;The immediate word value '7F09H' is added to the contents of 
;register GA. 

;The immediate word value '57421' (Octal) is added to the word 
;of memory whose low order byte is at the address contained 
;in register GB. 

Assembled Instruction: 

ADDI R, (ADD IMMEDIATE WORD TO REGISTER) 

7 07 07 07 0 

I R R R 1 00011 001 00000 I i-value (low) I i-value (high) I 
Execution Time: 

3 clocks 

ADDI M, (ADD IMMEDIATE WORD TO MEMORY WORD) 

7 07 07 07 07 0 

I 00 Q 1 0 A A 1 111 0000 M M 'offset if AA=01! i-value (low) ! i-value (high) I 
Execution Time: 

16 clocks bus width = 16 bits and address is even 
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) When the results of an arithmetic or logic operation are placed in a 
20-bit pointer/register the upper four bits, bits 16-19, are undefined 
following the operation, except when addition is performed. In this 
case, there can be a carry into the upper four bits of the 
pointer / register. 



And Register With Memory Word 

And Memory Word With Register 

Mnemonic: AND 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (OP1) - (OP1) AND (OP2) 

Coding Format: AND R, M 
AND M, R 

A word, low order byte at location 'M', is fetched from data memory and logically 
ANDed with the specified register, 'R'. A logical AND returns a logical '1' in each 
bit position where both input bits are a logical '1'. Otherwise a logical '0' is 
returned. The result is placed in the leftmost operand, 'OP1'. 

If a 20-bit pointer/register (GA, OB, OC or TP) is used as an operand in this instruc­
tion the upper four bits, bits 16-19, are undefined following instruction execution. 

Example: 

AND GA, [GB+IX] ;The Index register is added to register G B, forming the 
;address of the first (low order) byte of a word of data memory 
;which is ANDed with register GA. The result is placed 
;in register GA. 

Assembled Instruction: 

AND R, M (AND REGISTER WITH MEMORY WORD) 

7 0 7 0 7 0 

1 R R ROO A A 111 01 0 10M M loffset if AA=o11 

Execution Time: 

11 clocks bus width = 16 bits and address is even 
15 clocks bus width = 8 bits or bus width = 16 bits and address is odd 

AND M, R (AND MEMORY WORD WITH REGISTER) 

7 0 7 0 7 0 

1 R R ROO A A 1111 011 0 M M loffset if AA=011 

Execution Time: 

16 clocks bus width = 16 bits and address is even 
26 clocks bus width = 8 bits or bus width = 16 and address is odd 

AND 

3-17 



AND 

3-18 

NOTES 1) A logical AND of two operands examines their corresponding bit 
positions and returns a logical' l' if both bits are a logical' l' . A logical 
'0' is returned otherwise. 

Example: AND 0101 1110 (5EH) with 01100110 (66H) 

0101 
AND 0110 

Result 0100 

1110 
0110 

0110 (46H) 

2) See ANDB instruction on following page for logical AND with byte 
data. 

3) When the results of an arithmetic or logic operation are placed in a 
20-,bit pointer/register the upper four bits, bits 16-19, are undefined 
following the operation, except when addition is performed. In this 
case, there can be a carry into the upper four bits of the 
pointer /register. 



ANDB R,M 
And Memory Byte to Register 

Mnemonic: ANDB Coding Format: ANDB R, M 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: 1) The data memory byte located at 'M' is sign-extended to 16-bits 

2) (R) - (R) AND sign-extended (M) 
*two 16-bit quantities* 

A byte is fetched from data memory location 'M' and sign-extended (bit 7) to 16 
bits. The sign-extended byte is logically ANDed with the register, 'R'. In each bit 
position a logical' l' is returned if both input bits are a logical' 1'. Otherwise, a 
logical '0' is returned. The result is placed in the register 'R'. 

If 'R' is a 20-bit pointer/register (GA, GB, GC or TP) its upper four bits, bits 16-19, 
are undefined following instruction execution. 

Examples: 

ANDB Be, [GAl ;The data memory byte at location [GAl is ANOed with the 
;contents of register Be. The result is placed in register Be. 

Assembled Instruction: 

ANDB R, M (AND MEMORY BYTE TO REGISTER) 

7 0 7 0 7 0 

\ R R ROO A A 011 0 1 0 10M M \offset if AA=01\ 

Execution Time: 

11 clocks 

NOTES 1) A logical AND of two operands compares each of their corresponding 
bit positions and returns a logical '1' if both bits are a logical '1'. A 
logical '0' is returned otherwise. 

Example: AND 1101 1010 (ODAH) with 01111010 (7AH) 

1101 
AND 0111 

Result 0101 

1010 
1010 
1010 (5AH) 

2) When the results of an arithmetic or logic operation are placed in a 
20-bit pointer/register the upper four bits, bits 16-19, are undefined 
following the operation, except when addition is performed. In this 
case, there can be a carry into the upper four bits of the 
pointer /register. 

3-19 



ANDB M, R 

3-20 

And Register to Memory Byte 

Mnemonic: ANDB M, R Coding Format: ANDB M, R 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (M) - (M) AND low-order byte (R) 

A byte is fetched from data memory location 'M' and logically ANDed with the low­
order byte of register 'R'. In each bit position, a logical' l' is returned if both input 
bits are a logical' 1 '. Otherwise, a logical '0' is returned. 

The 8-bit result is placed in data memory location 'M'. 

Example: 

ANDB [GA], GC ;The data memory byte at [GAl is ANDed with the low-order 
;byte of register GC. The 8-bit result is placed in the data 
;memory location [GAl. 

Assembled Instruction: 

ANDB M, R (AND REGISTER TO MEMORY BYTE) 

7 0 7 0 7 0 

I R R ROO A A 1111 011 0 M M loffset if AA=011 

Execution Time: 

16 clocks 

NOTE 1) A logical AND of two operands compares compares each of their 
corresponding bit positons and returns a logical '1' if both bits are a 
logical '1'. A logical '0' is returned otherwise. 

Example: AND 0010 1010 (2AH) with 1111 0001 (OF1 H) 

0010 
AND 1111 

Result 0010 

1010 
0001 

0000 (20H) 



ANDBI 
And Immediate Byte to Register 

Mnemonic: ANDBI Coding Format: ANDBI R, 

Operands: 'R' is a register symbol 
'I' is an expression evaluated modulo 256 

Operation: (R) - (R) AND sign-extended (i-value) 
*two 16-bit quantities; a 16-bit result* 

The expression 'I' is evaluated modulo 256 to an immediate signed byte value, 
'i-value'. This immediate signed byte value is sign-extended (bit 7) to 16-bits and 
ANDed with register 'R'. A logical one is output where each input bit is a logical 
one. A logical zero is output otherwise. The 16-bit result is placed in register 'R'. 

If 'R' is a 20-bit pointer/register (GA,GB, GC or TP) the upper four bits, bits 16-19, 
are undefined following instruction execution. 

Example: 

ANDBI IX, OFDH 

Assembled Instruction: 

ANDBI R, 

;The contents of register IX are ANDed with the immediate byte 
;value 'OFDH'. The 16-bit result is placed in register IX. 

(AND IMMEDIATE BYTE TO REGISTER) 

7 0 7 0 7 0 

I R R R 01 000 I 001 01 000 i-value 

Execution Time: 

3 clocks 

NOTE 1) When the results of an arithmetic or logic operation are placed in a 
20-bit pointer/register the upper four bits, bits 16-19, are undefined 
following the operation, except when addition is performed. In this 
case, there can be a carry into the upper four bits of the 
poin ter / register. 

R, I 

3-21 



ANDBI M, I 

3-22 

And Immediate Byte to Memory Byte 

Mnemonic: ANDBI Coding Format: ANDBI M, 

Operands: 'M' is a data memory operand 
'I' is an expression evaluated modulo 256 

Operation: (M) - (M) AND (i-value) 

The expression 'I' is evaluated modulo 256 to an immediate signed byte value, 
'i-value'. The data memory byte at location 'M' is ANDed with the immediate 
signed byte value. A logical one is output when both input bits are a logical one. 
Otherwise a logical zero is output. The result is placed in the data memory location 
'M'. 

Example: 

ANDBI [G8], 73H 

Assembled Instruction: 

ANDBI M, 

;The data memory byte at location [G8] is ANDed with the 
;immediate byte value 73H. 

(AND IMMEDIATE BYTE TO MEMORY BYTE) 

7 07 07 07 0 

1 00001 A A 0111 001 0 M M 'offset if AA=011 i-value I 
Execution Time: 

16 clocks 



ANDI 
And Immediate Word to Register 

And Immediate Word to Memory Word 

Mnemonic: AN 01 Coding Format: ANDI R, 
ANDI M, 

Operands: 'R' is a register symbol 
'M' is a data memory operand 
'I' is an expression evaluated modulo 64k 

Operation: (OP1) +- (OP1) AN 0 i-value 

The expression'!' is evaluated modulo 64k to an immediate signed word value, 
'i-value'. The immediate word value is ANDed with the contents of the specified 
register 'R', or the word of data memory whose low order byte is located at 'M'. A 
logical '1' is returned in each bit position where both input bits are a logical' 1'. 
Otherwise, a logical '0' is returned. The result is returned to the leftmost operand, 
'OP1'. 

If 'OP l' is a 20-bit pointer/register (GA, GB, GC or TP) the upper four bits, bits 
16-19, are undefined following instruction execution. 

Examples: 

ANDI CC, OFFF7H 

ANDI [GA], 2222H 

;The contents of register CC are ANDed with the immediate 
;word value 'OFFF7H'. The result is placed in register CC. 

;The word of data memory whose low order byte is pOinted to 
;by register GA is ANDed with the immediate word value 
;'2222H'. The result is placed in two bytes of data memory 
;beginning at the given memory location. The low order byte of 
;the result is placed in the first memory byte; the high order 
;byte is placed in the second. 

Assembled Instruction: 

ANDI R, (AND REGISTER WITH IMMEDIATE WORD) 

7 07 07 07 0 

1 R R R 1 00011 001 01 000 1 i-value (low) 1 i-value (high) 1 

Execution Time: 

3 clocks 

ANDI M, (AND MEMORY WORD WITH IMMEDIATE WORD) 

7 07 07 07 07 0 

I 0001 0 A A 1 111 001 0 M M loffset if AA=011 i-value (low) I i-value (high) I 
Execution Time: 

16 clocks bus width = 16 bits and address is even 
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd 

3-23 



ANDI 

3-24 

NOTE 1) When the results of an arithmetic or logic operation are placed in a 
20-bit pointer/register the upper four bits, bits 16-19, are undefined 
following the operation, except when addition is performed. In this 
case, there can be a carry into the upper four bits of the 
poin ter / register. 



CALL 
Call 

Mnemonic: CALL Coding Format: CALL M, L 

Operands: 'L' is an expression representing the jump target 
'M' is a data memory expression 

Operation: 1) (M) - (TP) + tag bit 

2) (TP) - (TP) + sdisp 

The TP pointer/register, which contains the address of the next sequential instruc­
tion following the CALL instruction, and its tag bit, indicating a system or local 
space task block program, are saved in 3 bytes of data memory beginning at loca­
tion, 'M'. (See Note 4 below for the format of the stored 20-bit TP pointer/register 
and tag bit.) 

'L' is the jump target, a location within the program. If the address of the jump 
target can be determined when the assembler processes this instruction on its first 
pass, a signed byte (-128, +127) or word (-32,768, +32,767) value, 'sdisp', the 
distance, in bytes, from the end of the CALL instruction to the jump target, is 
generated. If the address cannot be determined on the first pass (as is the case when 
'L' contains a forward reference) the assembler generates a one byte displacement­
field, assuming that the jump target address, resolved in a subsequent pass, is within 
a -128, + 127 byte displacement from the end of the instruction (see Note 1 below). 

The signed displacement, 'sdisp' is added to the TP pointer/register, which contains 
the address of the next sequential instruction (the stored TP pointer/register value), 
to form the jump target address. 

Examples: 

Suppose the following source lines were assembled: 

J_TARGET: MOVI MC,1279H 

... (source lines resulting in 191 bytes of object code) 
CALL [PP].12, J_TARGET 

The address of the jump target, '1_ TARGET', has been determined by the 
assembler when the 'CALL' instruction is found on its first pass. A displacement 
outside a range of -128, +127 bytes is required to reach the jump target, so a signed 
word displacement value is generated, the distance from the end of the 'CALL' in­
struction to the jump target. In this case the signed word displacement value would 
be -200, OFF38H, since the 'CALL' instruction is 5 bytes in length: two bytes 
followed by a byte containing the address offset value 12, OCH, followed by the two 
byte signed displacement value. 

The assembled instruction bytes would be: 939F OC 38FF: 

7 07 07 07 07 0 

110010011110011111100001100 100111000 111111111 I 
low order byte high order byte 

Note that the low order byte of the signed word displacement value, 38H, comes 
first in the assembled instruction, followed by OFFH. 

3-25 



CALL 

3-26 

Let's now suppose that the task block program of which the above instruction is a 
part, is located in local memory space (tag bit therefore equals a logical' 1 ') and that 
the address at the beginning of the assembled 'CALL' instruction is 7E31H. When 
the 'CALL' instruction is executed by the lOP, the TP pointer/register, containing 
the address of the next sequential instruction (7E36), and the tag bit are stored in 
three bytes of system memory ('PP' always points to system memory space) beginn­
ing at address PP + 12 as follows: 

7 0 7 0 7 0 

100110110 r 01111110 100001000 I 
low order byte high order byte 

Since the Task block program was located in local memory space (a maximum of 
64K in size) bits 4-7 of the third memory byte are a logical '0'. Bit 3 of the third byte 
is a logical' 1', the value of the TP pointer/register's tag bit. 

To return instruction execution to the next instruction following the 'CALL' a 
'MOVP', not 'MOV', would be required: 

CALL_RETURN: MOVP TP, [PP].12 
;restore TP pointer I register and tag bit from memory 

Assembled Instruction: 

7 07 07 07 0 

11 00 W B A A 111 00111 M M loffset if AA=01lsdisp (1-2 bytes)1 

Execution Time: 

17 clocks bus width = 16 bits and address is even 
23 clocks bus width = 8 bits or bus width = 16 bits and address is odd 

NOTES 1) If the address of the jump target is known to the assembler when a 
control transfer instruction is found on the assembler's first pass, a 
signed byte or word displacement, as required to reach the jump target, 
will be generated by the assembler. A signed byte displacement is 
generated if the jump target is within -128, + 127 bytes of the end of the 
control transfer instruction; a signed word displacement, -32,768, 
+32,767, is generated if the target is outside the byte displacement 
range. The jump target cannot be outside a range of -32,768, +32,767 
bytes of the end of the control transfer instruction. 

If the address of a jump target cannot be determined by the assembler 
on its first pass (the case where 'L' contains a forward reference), the 
jump target is assumed to be within a -128, + 127 byte range of the end 
of the control transfer instruction and a one byte displacement-field is 
generated to contain the signed displacement value when it is later 
determined. However, if it is later determined that a signed word 
displacement value is necessary to reach the jump target, the assembler 
flags the control transfer instruction as an error and the long form of 
the instruction must be coded i.e. an 'L' prefix added to the instruction. 

2) A return from a CALL is made via a MOVP instruction where TP is 
specified as the destination register and the memory location operand is 
the same as that used in the initial CALL instruction. See MOVP. 



7 

CALL 
3) The memory location where the TP pointer/register and tag bit are to 

be stored cannot be specified with a post auto incremented Index 
register, i.e., the AA field of the instruction may not be '11' . 

4) Stored Task Pointer Format: 

o 7 o 7 0 

TP (low) I TP (high) I 19181716tb 000 I 

a) The low order byte of the TP pointer/register is stored first, 
followed by the next sequential byte (high), bits 8-15. The upper 4 
bits, 16-19, are stored in the third byte in bit positions 4-7. The tag 
bit is stored in the third bit position with the unused bits, 0-2, set to 
logical '0' . 

3-27 



CLR 

3-28 

Clear Selected Bit to Logical Zero 

Mnemonic: CLR Coding Format: CLR M, b 

Operands: 'b' is the bit in the data memory byte (0 <= 'b' <= 7) 
'M' is a data memory expression 

Operation: Bit 'b' +- 0 

The selected bit of a specified data memory byte located at 'M' is cleared to logical 
'0'. 

Examples: 

The memory byte located at the address formed by adding 17 to the contents of 
register GA contains '7DH': 

7 0 

101111101 I 
The following instruction is executed: 

CLR [GA].17,5 

The memory byte at GA + 17 now contains '5DH': 

7 0 

1010111011 

Assembled Instruction: 

7 0 7 0 7 0 

1 b b bOO A A 011 1 1 110M M loffset if AA=011 

Execution Time: 

16 clocks 

NOTES 1) Register bits cannot be cleared using this instruction. 

2) 'b' is evaluated modulo 8. If 'b' > 7 or 'b' < 0 the assembler issues an 
error message. 

3) Bit positions within a data memory byte are specified as follows: 

MSB LSB 

bit positions 1 7654321 0 1 



Decrement Register Word 

Decrement Memory Word 

Mnemonic: DEC 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (OP1) +- (OP1) - 1 

Coding Format: DEC R 
DEC M 

In a 16-bit operation, one is subtracted from the contents of the specified register 'R' 
or the word of data memory whose low order byte is located at 'M'. 

If 'R' is a 20-bit pointer/register (GA, GB, GC or TP) a 20-bit subtraction is per­
formed. (20000H decrements to 1 FFFFH) 

Examples: 

DEC BC 

DEC [GB+ IX+ 1 

;One is subtracted from the contents of register BC. 

;One is subtracted from the word of data memory whose low 
;order byte is located at the address formed by adding the Index 
;register to GB. Note that the Index register is post 
;auto-incremented by two. 

Assembled Instruction: 

DEC R (DECREMENT REGISTER) 

7 0 7 0 

IRRROOOool00111100 

Execution Time: 

3 clocks 

DEC M (DECREMENT MEMORY WORD) 

7 0 7 0 7 0 

I 00 00 0 A A 1 111 1 0 11 M M rffset if AA=01! 

Execution Time: 

16 clocks bus width = 16 bits and address is even 
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd 

NOTES 1) To decrement data memory bytes use the DECB instruction. 

2) Individual register bytes may NOT be decremented. 

3) Decrementing zero returns OFFFFH unless a pointer/register is 
operated on. In that case, decrementing zero results in OFFFFFH. 

DEC 

3-29 



DECB 

3-30 

Decrement Memory Byte 

Mnemonic: DECB Coding Format: DECB M 

Operands: 'M' is a data memory expression 

Operation: (OP1) - (OP1)-1 

The contents of the data memory byte located at 'M' are reduced by 1. 

Examples: 

DECB [GA + IX] 

Assembled Instruction: 

;The contents of the index register are added to register GA 
;to form the address of a data memory byte from which 
;one is su btracted. 

7 0 7 0 7 0 

I 0 0 0 0 0 A A 0 111 1 0 11M M loffset if AA=o11 

Execution Time: 

16 clocks 

NOTES 1) Decrementing a byte value of zero results in OFFH. 

2) Individual register bytes cannot be decremented. 

3) To decrement a register or memory word use the DEC instruction. 



Halt Channel Program Execution; 

Clear Channel Busy Flag in Channel Control Block 

Mnemonic: H L T Coding Format: HLT 

Operands: This instruction has no operands 

Operation: None 

Task block program execution is stopped and the respective channel BUSY flag byte 
(channel one or channel two) in the Channel Control Block is cleared. 

Examples: 

HLT ;Task block program execution for the channel ceases. 
;Channel activity is resumed through a command in the 
;channel's CCW. 

Assembled Instruction: 

7 a 7 a 
I 00100000 I 01001000 I 
Execution Time: 

11 clocks 

NOTES 1) A task block program halt instruction must not be confused with a 
channel halt command issued to a channel through the Channel Con­
trol Word (CCW) in the Channel Command Block (CB). Specifically, 
the task block program halt instruction, 'HLT', does NOT save the TP 
pointer/register and tag bit or the channel's program status word. 

2) By clearing the channel busy flag in the Channel Control Block, the 
channel indicates that it is now idle. No other activity takes place on the 
channel until it is restarted through a command in its CCW. The HL T 
instruction does NOT generate any hardware interrupt signals. Inter­
rupt signals can be generated by a task block program using the SINTR 
instruction, providing that interrupts have been enabled from the chan­
nel in the Channel Control Word (CCW). 

HLT 

3-31 



INC 

3-32 

Increment Register 

Increment Memory Word 

Mnemonic: INC 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (OP1) - (OP1) + 1 

Coding Format: INC R 
INC M 

In a 16-bit operation, one is added to the contents of the specified register 'R', or the 
word of of data memory whose low order byte is located at 'M'. 

If 'R' is a 20-bit pointer/register (GA, GB, GC or TP), a 20-bit increment is 
performed. An increment can result in a carry into the upper four bits, bits 16-19), 
of the pointer/register. (lFFFFH increments to 20000H) 

Examples: 

INC Be 

INC [GA) 

;One is added to register BC. 

;One is added to the word of data memory whose low order 
;byte is located at [GA). 

Assembled Instruction: 

INC R (INCREMENT REGISTER) 

7 0 7 0 

IRRROOOOO 1001110001 

Execution Time: 

3 clocks 

INC M (INCREMENT MEMORY WORD) 

7 0 7 0 7 0 

1 0 0 0 0 0 A A 1 11 1 1 0 10M M loffset if AA=011 

Execution Time: 

16 clocks bus width = 16 bits and address is even 
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd 

NOTES 1) To increment a memory byte use the INCB instruction. 

2) Incrementing OFFFFH results in OH unless a pointer/register is 
operated on. In a pointer/register OFFFFH is incremented to IOOOOH. 



Increment Memory Byte 

Mnemonic: INCB Coding Format: INCB M 

Operands: 'M' is a data memory expression 

Operation: (OP1) - (OP1) + 1 

One is added to the contents of the data memory byte at location 'M'. 

Examples: 

INCB [GB] ;One is added to the data memory byte at location [GB]. 

Assembled Instruction: 

7 0 7 0 7 0 

1 00000 A A 0 1111 01 0 M M pffset if AA=011 

Execution Time: 

16 clocks 

NOTES 1) Individual register bytes can not be incremented. To increment a 
register or a memory word use the INC instruction. 

2) Incrementing OFFH results in OOH. 

INCB 

3-33 



JBT 

3-34 

Jump On Bit True 

Mnemonic: J BT Coding Format: JBT M, b, L 

Operands: 'L' is an expression representing the jump target 
'b' is the bit in the data memory byte (0 <= 'b' <= 7) 
'M' is a data memory expression 

Operation: IF bit 'b' = 1 
then (TP) -- (TP) + sdisp 

ELSE next instruction 

'L', the jump target, is an expression representing a location within the program. If 
the address of the jump target can be determined by the assembler when it 
encounters the 1BT instruction on its first pass, a one or two byte signed displace­
ment value, 'sdisp', is generated. This signed displacement value represents the 
distance in bytes from the end of the 1BT instruction to the jump target. If the jump 
target is within a range of -128, + 127 bytes, a signed byte displacement is generated. 
Otherwise a signed word displacement, -32,768, +32,767, is generated. Jump 
targets outside the signed word displacement range are not allowed. 

If the address of the jump target cannot be determined when the assembler finds the 
JBT instruction on its first pass (the case when 'L' contains a forward reference), a 
signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is necessary, the JBT instruction is flagged as an error and an 
LJBT instruction must be coded in its place. 

The specified bit, b, of the data memory byte located at 'M', is tested. If the bit is a 
logical' 1', the signed displacement (sign-extended to 20-bits) is added to the con­
tents of the TP pointer/register, forming the jump target address. Program control 
is passed to the instruction at that address. (The address of the next sequential 
instruction is in the TP pointer/register when the jump target address is formed.) 

If the tested bit is not a logical' l' the next sequential instruction is executed. 

Example: 

The JBT instruction allows a programmer to alter the sequence of task block pro­
gram instruction execution based upon the value of a specific bit in a data memory 
byte. 

In this example 'COMPLETION_CODE' is the name of a data memory byte in 
local (16-bit) address space. (If it were in system, space an LPD or LPDI instruction 
would be necesssary in place of the 'MOVI GB, COMPLETION_CODE' instruc­
tion.) An I/O device writes a status code to this byte upon the completion of some 
task. Bit five of the status code is an error indication bit, set by an abnormal task ter­
mination. The task block program checks this bit in 'COMPLETION_CODE' and 
jumps to an error routine if it is set, i.e., a logical' l' . 

COMPLETION_CODE: DB OOH ;Defines the name of a data memory 
;byte with an initial value of 'OOH'. 



;Device activity initiated; 
;upon completion a status code is 
;written to 'COMPLETION_CODE'. 
;'COMPLETION_CODE' is then 
;examined by the task block program to 
;check for an abnormal termination. 

ERROR_CHECK: MOVI GB, COMPLETION_CODE 
;Move address of 
;COMPLETION_CODE to register GB. 

JBT [GB], 5, ERROR_ROUTINE 

Assembled Instruction: 

; Bit five of the data memory byte 
;'COMPLETION_CODE' is tested. 
;If the bit is a logical '1', indicating 
;an error, the program jumps to the 
;program location 'ERROR_ROUTINE'. 
;If the bit is not a logical '1' the next 
;sequential instruction is executed. 

7 07 07 07 0 

I b b b W B A A 011 01111 M M loffset if AA=01lsdiSp (1-2 bytes)l 

Execution Time: 

14 clocks 

NOTES 1) Register bits cannot be tested. 

2) Jump targets cannot be outside a range of -32,768, +32,767 bytes from 
the end of a control transfer instruction. There is NO wraparound from 
the end of the 64k program address space to the beginning. 

3) The bits in a data memory byte are specified as follows: 

Example: 

MSB LSB 

I 76543210 I 

7 0 

10100010 I 
bit position 76 5 4 3 2 1 0 

JBT 

3-35 



JMCE 

3-36 

Jump On Mask Compare Equal 

Mnemonic: JMCE Coding Format: JMCE M, L 

Operands: 'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: 1) (compare-result) - (low order byte of MC register) XOR (M) 

2) (mask-result)-
(high order byte of MC register) AND (compare-result) 

3) IF (mask-result) = 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

ELSE next instruction 

'L', the jump target, is an expression representing a location within the program. If 
the address of the jump target can be determined by the assembler when it en­
counters the JMCE instruction on its first pass, a one or two byte signed displace­
ment, 'sdisp', is generated. This signed displacement represents the distance in bytes 
from the end of the JMCE instruction to the jump target. If the jump target is within 
a range of -128, + 127 bytes, a signed byte displacement results. Otherwise, a signed 
word displacement, -32,768, +32,767, is generated. 

If the address of the jump target cannot be determined when the assembler finds the 
JMCE instruction on its first pass (the case when 'L' contains a forward reference), 
a signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is required the JMCE instruction is flagged as an error and an 
LJMCE instruction must be coded in its place. 

The low order byte of the MC register is used as a compare byte; the high order byte 
is used as a mask byte. The data memory byte located at 'M' is XORed with the 
compare byte. The result is then ANDed with the mask byte. If the mask-result is 
equal to zero, the signed displacement (sign~extended to 20-bits) is added to the TP 
pointer /register, formimg the jump target address. (The address of the next sequen­
tial instruction is in the TP pointer/register when the jump target address is formed.) 
Task block program execution resumes at the instruction whose address is now in 
TP. 

If the mask-result is not zero the next sequential instruction is executed. 

Example: 

The JMCE instruction allows a task block program to use the result of a mask com­
pare operation to alter the sequence of task block program instruction execution. 
This instruction is useful in device control programs, providing a mask and test type 
operation within a single instruction. 

In this example, an unknown number of local data memory bytes are being moved 
to system memory space. The block of data being moved, however, ends with an 
ASCII 'ETX' character (03H). The· MC register is loaded with a (low order) 
compare byte and (high order) mask byte to detect the 'ETX' character. Upon detec­
tion of the 'ETX' character, data movement ends and a jump is taken to 
'NEXT _TASK_BLOCK', where task block program execution resumes. 



JMCE 
EXTRN START_OF _DESTINATION 

MOVI IX, OOH 

MOVI MC, OFF03H 

;Identify 'START_OF _DESTINATION' 
;as a symbol defined in 
;another program. 

; Reserve 40960 bytes of space 
;with name 
; 'ST ART _OF _BLOCK_SOU RCE' . 

;Load index register with initial value 
;of OOH. 

;Load mask and compare bytes into 
;MC register. 

MOVI GA, START_OF _BLOCK_SOURCE ;Load registerGAwith starting address 
;of data block to be moved. 

LPDI GB, START_OF _DESTINATION 

LOOP: JMCE [GA+IX], NEXT_TASK_BLOCK 

MOVB [GB+ IX], [GA+ IX+] 

JMP LOOP 

NEXT _TASK_BLOCK: 

Assembled Instruction: 

;Load GB as a pOinter to the 
;destination in system memory space. 

;Test the data byte for 'ETX' (03H) 
;and jump to 'NEXT_TASK_BLOCK' 
;if found. 

;Move the data memory byte at location 
;[GA+IX+] to location [GB+IX]. 
;The Index Register is post 
;auto-incremented. 

;Return to JMCE instruction, check 
;next data byte for 'ETX'. 

;Instruction where task block program 
;execution resumes when the 'ETX' 
;character is found. 

7 07 07 07 0 

1000 W B A A 011 011 00 M M loffset if AA=01lsdiSp (1-2 bytes)l 

Execution Time: 

14 clocks 

3-37 



JMCNE 

3-38 

Jump On Mask Compare Not Equal 

Mnemonic: JMCNE Coding Format: JMCNE M, L 

Operands: 'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: 1) (compare-result) - (low order byte of MC register) XOR (M) 

2) (mask-result)-
(high order byte of MC register) AND (compare-result) 

3) If (mask -result) <> 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. If 
the address of the jump target can be determined by the assembler when it en­
counters the JMCNE instruction on its first pass, a one or two byte signed displace­
ment, 'sdisp', is generated. This signed displacement represents the distance in bytes 
from the end of the JMCNE instruction to the jump target. If the jump target is 
within a range of -128, + 127 bytes a signed byte displacement results. Otherwise, a 
signed word displacement, -32; 768, +32,767, is generated. 

If the address of the jump target cannot be determined when the assembler finds the 
J~ICNE instruction on its first pass (the case when 'L' contains a forward reference) 
a signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is required, the JMCNE instruction is flagged as an error and an 
LJMCNE instruction must be coded in its place. 

The low order byte of the MC register is used as a compare byte; the high order byte 
is used as a mask byte. The data memory byte located at 'M' is XORed with the 
compare byte. The result is then ANDed with the mask byte. If the mask-result is 
not equal to zero, the signed displacement (sign-extended to 20-bits) is added to the 
TP pointer/register, formimg the jump target address. (The address of the next se­
quential instruction is in the TP pointer/register when the jump target address is 
formed.) Task block program execution resumes at the instruction whose address is 
now in TP. 

If the mask-result is zero the next sequential instruction is executed. 

Example: 

The JMCNE instruction allows a task block program to use the result of a mask 
compare operation to alter the sequence of task block program instruction 
execution. 

In this example the data memory byte 'TERMINATE_CONDITION' contains a 
completion code. When bit four of 'TERMINATE_CONDITION' is a logical zero 
and bit seven is a logical one, a catastrophic error is indicated. (Catastrophic only 
when both conditions are present, i.e. bit four is a logical zero and bit seven is a 
logical one.) Using the JMCNE instruction the following code tests for the 
catastrophic error and jumps to 'ANOTHER_BLOCK_OF _CODE' if it is not 
found. If it is found, the next sequential instruction 'ERROR_ROUTINE' is 
executed. 



JMCNE 
TERMINATE_CONDITION: DB OOH ;Oefine a data memory byte location 

;named'TERMINATE __ CONDITION'. 

MOVE GA, TERMINATE_CONDITION ;Load register GA with address of data 
;memory byte to be tested. 

MOVI MC, OB080H ;Load MC register with compare and 
;mask bytes. 

JMCNE [GAJ, ANOTHER_BLOCK_OF _CODE ;Mask compare data memory byte at 
;Iocation [GAl. Jump to 
;'ANOTHER_BLOCK_OF _CODE' if 
;mask compare result is not equal to 
;zero. If result is zero 
;'ERROR_ROUTINE' is the next 
;instruction executed. 

ERROR_ROUTINE: 

Assembled Instruction: 

;Label of instruction executed if mask 
;compare result is zero. 

;Label of instruction executed if mask 
;compare result is not zero. 

7 07 07 07 0 

I 000 W B A A 011 011 01 M M loffset if AA=01lsdisp (1-2 bytes)1 

Execution Time: 

14 clocks 

NOTE 1) Jump targets must be within a range of -32,768, +32,767 bytes from 
the end of a control transfer instruction. There is NO wraparound from 
the end of the 64k range of task block program instruction addresses to 
the beginning. 

3-39 



JMP 

3-40 

Jump Unconditional 

Mnemonic: JMP Coding Format: JMP L 

Operands: 'L' is an expression representing the jump target 

Operation: (TP) - (TP) + sdisp (sign-extended to 20-bits) 

'L', the jump target, is an expression representing a location within the program. If 
the address of the jump target can be determined by the assembler when it 
encounters the JMP instruction on its first pass, a one or two byte signed displace­
ment, 'sdisp', is generated. This signed displacement represents the distance in bytes 
from the end of the JMP instruction to the jump target. If the jump target is within a 
range of -128, +127 bytes, a signed byte displacement results. Otherwise, a signed 
word displacement, -32,768, +32,767, is generated. 

If the address of the jump target cannot be determined when the assembler finds the 
JMP instruction on its first pass (the case when 'L' contains a forward reference) a 
signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is required, the JMP instruction is flagged as an error and an 
LJMP instruction must be coded in its place. 

The signed displacement, 'sdisp', is sign extended to 20-bits and added to the TP 
pointer/register forming the jump target address. (The address of the next sequen­
tial instruction is in the TP pointer/register when the jump target address is formed.) 
Program control passes to the instruction at that address. 

Example: 

The JMP instruction unconditionally alters the sequence of task program instruc­
tion execution. In this example a JMP instruction is coded at the end of an error 
routine to pass program control to a statement, 'CONTINUE', where normal pro­
cessing resumes after execution of the error routine. 

ERROR_ROUTINE: 

JMP CONTINUE 

CONTINUE: 

Assembled Instruction 

;The beginning of a section of code 
; used to correct an error condition 
;detected while processing. 

;Return program control to instruction 
;Iabeled 'CONTINUE' after executing 
;the error routine. 

;The instruction executed after JMP 
;instruction. 

JMP L (SIGNED BYTE DISPLACEMENT) 

7 0 7 0 7 0 

I 1 0001 000 I 001 00000 I sdisp I 



Execution Time: 

3 clocks 

JMP L (SIGNED WORD DISPLACEMENT) 

7 0 7 0 7 070 
I 1 001 0001 I 001 00000 sdisp-Iow I sdisp-high I 
Execution Time: 

3 clocks 

NOTE 1) Jump targets must be within a range of -32,768, +32,767 bytes of the 
end of a control transfer instruction. There is NO wraparound from the 
end of the 64k instruction address space to the beginning. 

JMP 

3-41 



JNBT 

3-42 

Jump If Bit Not True 

Mnemonic: J N BT Coding Format: JNBT M, b, L 

Operands: 'L' is an expression representing the jump target 
'b' is the bit in the data memory byte (0 <= b <= 7) 
'M' is a data memory expression 

Operation: If bit 'b' <> 1 
then TP +- (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. If 
the address of the jump target can be determined by the assembler when it 
encounters the JNBT instruction on its first pass, a one or two byte signed displace­
ment, 'sdisp', is generated. This signed displacement represents the distance in bytes 
from the end of the JNBT instruction to the jump target. If the jump target is within 
a range of -128, +127 bytes, a signed byte displacement results. Otherwise, a signed 
word displacement, -32,768, +32,767, is generated. 

If the address of the jump target cannot be determined when the assembler finds the 
JNBT instruction on its first pass (the case when 'L' contains a forward reference) a 
signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is required the JNBT instruction is flagged as an error and an 
LJNBT instruction must be coded in its place. 

The selected bit, 'b', of the data memory byte at location 'M' is tested. If the bit is 
not a logical one the signed displacement, 'sdisp', is sign-extended to 20-bits and 
added to the TP pointer/register to form the address of the jump target, 'L'. (The 
address of the next sequential instruction is in the TP pointer/register when the 
jump target address is formed.) 

If the tested bit is a logical one the next sequential instruction is executed. 

Example: 

The JNBT instruction enables the value of a specified bit in a data memory byte to 
alter the sequence of task block program instruction execution. 

In this example bit four of a data memory byte 'ERROR_?' is tested by the JNBT 
instruction. If the bit is not a logical one, program control jumps to the statement at 
'GOOD_RESUL T'. If the bit is a logical one the next sequential instruction, 
'BAD_RESUL T', is executed. 

ERROR_?: DB OOH 

MOVI GA, ERROR_? 

JNBT [GA], 4, GOOD_RESULT 

;Define a data memory byte named 
;'ERROR_?' with an initial value of 
;OOH. 

; Load register GA with adddress of 
;data memory byte 'ERROR_?'. 

;Test the fourth bit of the data memory 
;byte located at [GA] and jump to 
;'GOOD_RESUL T' if it is not a logical 
;one else execute the next sequential 
;instruction, 'BAD_RESULT'. 



JNBT 

Assembled Instruction: 

;If the fourth bit of 'ERROR_?' is a 
;Iogical one this instruction is 
;executed. 

;If the fourth bit of 'ERROR_?' is not a 
;Iogical one, program control jumps to 
;this instruction. 

7 07 07 07 0 

! b b b W B A A 0 11 0111 0 M M loffset if AA=01!sdiSp (1-2 bytes}1 

Execution Time: 

14 clocks 

NOTES 1) Register bits cannot be tested using the JNBT instruction~ 

2) The jump target of a control transfer instruction must be within a range 
of -32,768, +32,767 bytes from the end of the instruction. There is NO 
wraparound from the end of the 64k instruction address range to the 
beginning. 

3) The bits in a data memory byte are specified according to the following 
format: 

Example: 

bit position 

MSB LSB 

I 76543210 I 

10100010 

76543210 

3-43 



JNZ 

3-44 

Jump On Nonzero Register Or Memory Word 

Mnemonic: JNZ 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Coding Format: JNZ R, L 
JNZ M, L 

'L' is an expression representing the jump target 

Operation: If (OP 1) <> 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. If 
the address of the jump target can be determined by the assembler when it 
encounters the JNZ instruction on its first pass, a one or two byte signed displace­
ment, 'sdisp', is generated. This signed displacement represents the distance in bytes 
from the end of the JNZ instruction to the jump target. If the jump target is within a 
range of -128, + 127 bytes a signed byte displacement results. Otherwise, a signed 
word displacement, -32,768, +32,767, is generated. 

If the address of the jump target cannot be determined when the assembler finds the 
JNZ instruction on its first pass (the case when 'L' contains a forward reference) a 
signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is required the JNZ instruction is flagged as an error and an 
LJNZ instruction must be coded in its place. 

The contents of the specified register 'R' or the word of data memory whose low 
order byte is located at 'M' are examined. If the contents are not logical zero the 
signed displacement, 'sdisp', is sign-extended to 20-bits and added to the TP 
pointer/register, forming the address of the jump target, 'L'. (The address of the 
next sequential instruction is in the TP pointer/register when the jump target 
address is formed.) 

This instruction performs a 16-bit test. If 'R' is a 20-bit pointer/register (GA, GB, 
Ge, or TP), the contents of its upper four bits, bits 16-19, cannot be determined 
using this instruction. 

If the contents of OPI are equal to logical zero the next sequential instruction is 
executed. 

Example: 

JNZ Be, $ + 17 

JNZ [Ge], RETRY 

;If register Be is not zero jump ahead 
;17 bytes from the beginning of this 
;instruction. 

;If the word of data memory beginning 
;(low order byte) at location [Ge] is 
;not zero jump to instruction labeled 
;'RETRY'. 



Assembled Instruction: 

JNZ R, L (JUMP IF REGISTER NOT EQUAL TO LOGICAL ZERO) 

7 0 7 0 7 0 

I R R R W BOO 0 I 0 1 00 0 0 M M IsdiSp (1-2 bytes)1 

Execution Time: 

5 clocks 

JNZ M, L (JUMP IF MEMORY WORD NOT EQUAL TO LOGICAL ZERO) 

7 07 07 07 0 

1000 W B A A 11111 000 M M loffset if AA=01lsdiSp (1-2 bytes)1 

Execution Time: 

12 clocks if bus width = 16 bits and address is even 
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) Jump targets must be within a range of -32,768, +32,767 bytes of the 
end of a control transfer instruction. There is NO wraparound from the 
end of the 64k program instruction space to the beginning. 

JNZ 

3-45 



JNZB 

3-46 

Jump On Nonzero Memory Byte 

Mnemonic: JNZB Coding Format: JNZB M, L 

Operands: 'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: If (M) <> 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. If 
the address of the jump target can be determined by the assembler when it 
encounters the JNZB instruction on its first pass, a one or two byte signed displace­
ment, 'sdisp', is generated. This signed displacement represents the distance in bytes 
from the end of the JNZB instruction to the jump target. If the jump target is within 
a range of -128, + 127 bytes a signed byte displacement results. Otherwise, a signed 
word displacement, -32,768, +32,767, is generated. 

If the address of the jump target cannot be determined when the assembler finds the 
JNZB instruction on its first pass (the case when 'L' contains a forward reference) a 
signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is required the JNZB instruction is flagged as an error and an 
LJNZB instruction must be coded in its place. 

The contents of the data memory byte at loc~tion 'M' are examined. If the contents 
are not equal to logical zero the signed displacement, 'sdisp', is sign-extended to 20-
bits and added to the TP pointer/register, forming the address of the jump target, 
'L'. (The address of the next sequential instruction is in the TP pointer/register 
when the jump target address is formed.) 

If the contents of the data memory byte are equal to logical zero the next sequential 
instruction is executed. 

Example: 

JNZB [GA].4, RECOVERY 

Assembled Instruction: 

;If the data memory byte at location 
;[GA] + 4 is not equal to logical zero 
;a jump is made to the instruction 
;Iabeled 'RECOVERY'. 

7 07 07 07 0 

1000 W B A A 0\111 000 M M \offset if AA=01lsdisp (1-2 bytes)1 

Execution Time: 

12 clocks 

NOTE 1) Jump targets must be within a range of -32,768, +32,767 bytes of the 
end of a control transfer instruction. There is NO wraparound from the 
end of the 64k program instruction address space to the beginning. 



Jump On Zero Register Or Memory Word 

Mnemonic: JZ 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Coding Format: JZ R, L 
JZ M, L 

'L' is an expression representing the jump target 

Operation: If (OP1) = 0 
then (TP) +- (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing some location within the pro­
gram. If the address of the jump target can be determined by the assembler when it 
encounters the JZ instruction on its first pass, a one or two byte signed displace­
ment, 'sdisp', is generated. This signed displacement represents the distance in bytes 
from the end of the JZ instruction to the jump target. If the jump target is within a 
range of -128, +127 bytes a signed byte displacement results. Otherwise, a signed 
word displacement, -32,768, +32,767, is generated. 

If the address of the jump target cannot be determined when the assembler finds the 
JZ instruction on its first pass (the case when 'L' contains a forward reference) a 
signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is required, the JZ instruction is flagged as an error and an LJZ 
instruction must be coded in its place. 

The contents of the specified register 'R' or the word of data memory whose low 
order byte is located at 'M' are examined. If they equal logical zero the signed 
displacement, 'sdisp', is sign-extended to 20-bits and added to the TP 
pointer/register forming the address of the jump target, 'L'. (The address of the 
next sequential instruction is in the TP pointer/register when the jump target 
address is formed.) 

This instruction performs a 16-bit test. If 'R' is a 20-bit pointer/register (GA, OB, 
GC, or TP), the contents of its upper four bits, bits 16-19, cannot be determined 
using this instruction. 

If the contents are not logical zero the next sequential instruction is executed. 

Examples: 

JZ IX, MOVE_ROUTINE+5 

JZ [PP].12, ALTERNATE 

;If the contents of the Index register 
;are equal to logical zero a jump is 
;made to the instruction at location 
;MOVE_ROUTINE + 5. 

;If the word of data memory beginning 
;(Iow order byte) at location [PP] + 12 is 
;zero ajump is made to ALTERNATE. 

JZ 

3-47 



JZ 

3-48 

Assembled Instruction: 

JZ R, L (JUMP IF REGISTER EQUAL TO LOGICAL ZERO) 

7 0 7 0 7 0 

I R R R W BOO 0 I 01 0001 00 ISdiSp (1-2 bytes)1 

Execution Time: 

5 clocks 

JZ M, L (JUMP IF MEMORY WORD EQUAL TO LOGICALZERO) 

7 07 07 07 0 

1000 W B A A 11111 001 M M loffset if AA=011sdiSp (1-2 bytes)1 

Execution Time: 

12 clocks if bus width = 16 bits and address is even 
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) Jump targets must be within a range of -32,768, +32,767 bytes of the 
end of a control transfer instruction. There is NO wraparound from the 
end of the 64k program instruction space to the beginning. 



Jump On Zero Memory Byte 

Mnemonic: JZB Coding Format: JZB M, L 

Operand Format: 'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: If (M) = 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. If 
the address of the jump target can be determined by the assembler when it 
encounters the JZB instruction on its first pass, a one or two byte signed displace­
ment, 'sdisp', is generated. This signed displacement represents the distance in bytes 
from the end of the JZB instruction to the jump target. If the jump target is within a 
range of -128, +127 bytes a signed byte displacement results. Otherwise, a signed 
word displacement, -32,768, +32,767, is generated. 

If the address of the jump target cannot be determined when the assembler finds the 
JZB instruction on its first pass (the case when 'L' contains a forward reference) a 
signed byte displacement is assumed. Should it later be determined that a signed 
word displacement is required the JZB instruction is flagged as an error and an 
LJZB instruction must be coded in its place 

If the contents of the data memory byte located at 'M' are a logical zero the signed 
displacement, 'sdisp', is sign-extended to 20-bits and added to the TP 
pointer/register, forming the address of the jump target, 'L'. (The address of the 
next sequential instruction is in the TP pointer /register when the jump target 
address is formed.) 

If the contents are not logical zero the next sequential instruction is executed. 

Example: 

JZB [GA + IX], NEXT_BLOCK 

Assembled Instruction 

;If the data memory byte at the location 
;[GA+ IX] is equal to logical zero a jump 
;is made to the instruction labeled 
;'NEXT_BLOCK'. 

7 07 07 07 0 

1000 W B A A 01111 001 M M loffset if AA=01lsdisp (1-2 bytes)1 

Execution Time: 

12 clocks 

NOTE 1) Jump targets must be within a range of -32,768, +32,767 bytes from 
the end of a control transfer instruction. There is NO wraparound from 
the end of the 64k program instruction space to the beginning. 

JZB 

3-49 



LCALL 

3-50 

Long Call 
(Store TP Pointer/Register and Tag Bit; JUMP) 

Mnemonic: LCALL Coding Format: LCALL M, L 

Operand Format: 'L' is an expression representing the jump target 
'M' is a data memory expression 

Operation: 1) (M) -- (TP) + tag bit 

2) (TP) -- (TP) + sdisp (sign-extended to 20-bits) 

. The TP pointer/register, containing the address of the next sequential instruction, 
and the TP pointer/register tag bit, indicating a system or local space task block pro­
gram location, are saved in 3 bytes of data memory beginning at location 'M'. 

'L', the jump target, is an expression representing a location within the program. 
Unlike the CALL instruction, which can generate a one or two byte displacement 
value, the LCALL instruction forms a signed word displacement value, regardless of 
the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LCALL instruc­
tion to the jump target. A displacement in the range -128, +127 bytes results in a 
signed word displacement value whose high order byte is OOH or OFFH. 

The LCALL instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a CALL instruction is found on its first 
pass and (2) the required displacement to the jump target is outside a range of -128, 
+ 127 bytes from the end of the assembled instruction. 

The signed word displacement, 'sdisp', is sign-extended to 20-bits and added to the 
contents of the TP pointer/register forming the jump target address. (The TP 
pointer/register contains the address of the next sequential instruction when the 
LCALL target address is formed.) Program control passes to the instruction whose 
address is now in the TP pointer/register (the jump target). 

See note 4 below for the format of the stored TP pointer/register and tag bit. 

Example: 

The LCALL instruction stores the TP pointer/register and tag bit in memory and 
unconditionally branches to another location within the program. Return is made 
from the jump by restoring the stored TP pointer/register and tag bit with a MOVP 
instruction. 

In this example a jump is made to an instruction labelled 'SOME_ROUTINE?'. 
The TP pointer/register and tag bit are stored in three bytes of data memory begin­
ning at the location named 'STORED_POINTER'. 

A return is made from the jump to 'SOME_ROUTINE?' via a 'MOVP' instruc­
tion. The TP pointer/register and tag bit are restored from 'STORED_POINTER'. 

STORED_POINTER: OS 3 ;Reserve 3 bytes of data memory 
;named 'STORED_POINTER' in which 
;the TP pointer! register and tag bit 
;are saved. 



LCALL 
MOVI GC, STORED_POINTER 

LCALL [GC], SOME_ROUTINE? 

MOVI GA, STORED_POINTER 

MOVP TP, [GA] 

Assembled Instruction: 

; Load the data memory address of the 
; location where the TP pOinter / register 
;and tag bit will be stored into GC. 

;Store TP pointer/register and tag bit 
;at address contained in GC· 
;('STORED_POINTER'); branch to 
;instruction at 'SOME __ ROUTINE?' 

; Load data memory address of stored 
;TP pointer/register and tag bit into 
;GA. 

;Return from jump, restore TP 
;pointer/ register value and tag bit 
;from 'STORED_POINTER'. 

7 07 07 07 07 0 

11 001 0 A A 1 11 00111 M M loffset if AA=011 sdisp-Iow sdisp-high 1 

Execution Time: 

17 clocks if bus width = 16 bits and address is even 
23 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) A return from an LCALL instruction is made via a MOVP instruction 
where 'TP' is specified as the destination register and the data memory 
location is the same as that used in the initial LCALL instruction. See 
MOVP. 

2) Jump targets must be within a -32,768, +32,767 byte range of the end 
of a control transfer instruction. There is NO wraparound from the end 
of the 64k program instruction space to the beginning. 

3) The memory location where the TP register and tag bit are stored 
cannot be specified using a post auto incremented Index register 
([PREG+IX+]), i.e., the AA field of the instruction cannot be '11'. 

4) Stored Task Pointer Format: 

7 o 7 070 

TP (low) I TP (high) 1 19181716tb 0 0 0 1 

a) The low order byte of the TP pointer/register is stored first, 
followed by the next sequential byte (high), bits 8-15. The upper 4 
bits, 16-19, are stored in the third byte in bits 4-7. The tag bit is 
stored in bit 3 and the unused bits, 0-2, set to logical '0'. 

3-51 



LJBT 

3-52 

Long Jump On Bit True 

Mnemonic: LJBT Coding Format: LJBT M, b, L 

Operands: 'L' is an expression representing the jump target 
'b' is the bit in the data memory byte (0 <= b <= 7) 
'M' is a data memory expression 

Operation: If bit 'b' = 1 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. 
Unlike the JBT instruction, which can generate a one or two byte displacement 
value, the LJBT instruction forms a signed word displacement value, regardless of 
the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LJBT instruction 
to the jump target. A displacement in the range -128, + 127 bytes results in a signed 
word displacement value whose high order byte is OOH or OFFH. 

The LJBT instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a JBT instruction is found on its first 
pass and (2) the required displacement to the jump target is outside a range of -128, 
+ 127 bytes from the end of the assembled instruction. 

The specified bit, 'b', of the data memory byte located at 'M', is tested. If the bit is a 
logical '1' the signed word displacement, 'sdisp', is sign-extended to 20-bits and 
added to the contents of the TP pointer/register, forming the address of the jump 
target, 'L'. Program control is passed to the instruction at that address. (The ad­
dress of the next sequential instruction is in the TP pointer/register when the jump 
target address is formed.) 

If the tested bit is not a logical' 1 ' the next sequential instruction is executed 

Example: 

The LJBT instruction allows a programmer to alter the sequence of task block pro­
gram instruction execution based upon the value of a specific bit in a data memory 
byte. The jump target of the LJBT instruction is within a range of - 32, 768, +32,767 
bytes of the end of the assembled LJBT instruction. 

In this example the user defined area of the Parameter Block (PB) contains a 
parameter byte whose contents are used to direct the lOP channel's operation. Here 
the task block program checks bit 7 of the parameter byte and jumps to an instruc­
tion labeled 'Delay' if the bit is a logical '1'. If the bit is not a logical '1' the instruc­
tion labeled 'ALL_SET' is executed. 

Note that the LJBT instruction is required in this case since (1) the address of 
'DELA Y' is not known to the assembler when the LJBT instruction is found on its 
first pass and (2) a signed word displacement value is required because 'DELAY' is 
outside a -128, + 127 byte range of the end of the instruction. 

LJBT [PP).27, 7, DELAY ;Test bit 7 of parameter byte in user 
;defined area of the Parameter Block; 
;jump to instruction labeled 'DELAY' if 
;bit is a logical '1'. 



MOVI CC, DMA_INFO ;This instruction executed if tested bit 
;is not a logical '1'. An immediate word 
;value is loaded into the CC (Channel 
;Control) register. 

(25,000 bytes of assembled source program statements) 

DELAY: MOVBI BC, TIMER 

Assembled Instruction: 

;If tested bit is a logical '1' program 
;control jumps to this instruction. 

7 07 07 07 o 7 0 

1 b b b 1 0 A A 0 11 0 11 11M M loffset if AA=011 sdisp-Iow sdisp-high I 
Execution Time: 

14 clocks 

NOTE 1) Register bits cannot be tested. 

2) Jump targets must be within a -32,768, +32,767 byte range of the end 
of a control transfer instruction. There is NO wraparound from the end 
of the 64k program instruction space to the beginning. 

3) The bits of a data memory byte are specified as follows: 

Example: 

MSB LSB 

I 76543210 I 

10100010 

bit positions 7654321 0 

LJBT 

3-53 



LJMCE 

3-54 

Long Jump On Mask Compare Equal 

Mnemonic: LJMCE Coding Format: LJMCE M, L 

Operands: 'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: 1) (compare-result) -- (low order byte of MC register) XOR (M) 

2) (mask-result) -- (high order byte of MC) AND (compare-result) 

3) If (mask-result) = 0 
then (TP) -- (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. 
Unlike the JMCE instruction, which can generate a one or two byte displacement 
value, the LJMCE instruction forms a signed word displacement value, regardless of 
the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LJMCE instruc­
tion to the jump target. A displacement in the range -128, +127 bytes results in a 
signed word displacement value whose high order byte is OOH or OFFH. 

The LJMCE instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a JMCE instruction is found on its first 
pass and (2) the required displacement to the jump target is outside a range of -128, 
+ 127 bytes from the end of the assembled instruction. 

The low order byte of the MC register is used as a compare byte; the high order byte 
is used as a mask byte. The data memory byte at location 'M' is XORed with the 
compare byte. The result is then ANDed with the mask byte. If the mask-result is 
equal to zero 'sdisp' is added to the TP pointer/register, forming the jump target 
. address. Task block program execution resumes at the instruction whose address is 
now in TP (the jump target). The address of the next sequential instruction is in the 
TP pointer/register when the jump target address is formed. 

If the mask-result is not zero the next sequential instruction is executed. 

Example: 

The LJMCE instruction allows a task block program to use the result of a mask 
compare operation to alter the sequence of task block program instruction execu­
tion. The jump target of the LJMCE instruction is within a range of -32,768, 
+32,767 bytes of the end of the instruction. 

In this example an I/O device writes a status code to a data memory byte labeled 
'OK?'. The following bit pattern in 'OK?' indicates to the task block program that 
an error has occured in the device's operation and corrective action must be taken: 

7 0 

11 X01X1Xoi 

An 'X' in a bit position indicates that the bit can be either a logical' l' or a logical '0' 
in other words, the program doesn't care what value is present when checking for an 
error. In the remaining bit positions an error is indicated only if the indicated values 
are present. If any of the values is not as specified no error has occured. 



LJMCE 
The task block program loads the MC register with a compare and a mask value to 
detect the above error code. Using the LJMCE instruction the program is able to 
jump to a routine labeled 'FIX_IT' when an error has occured. 

OK?: DB OOH ;Oefine a byte of data memory with the name 
;'OK?' and an initial value of OOH. 

MOVI GC, OK? 

MOVI MC, OB594H 

;Load register GC with the address of the data 
;memory byte containing the device status. 

;Load MC register with mask and compare 
;values to detect the error code. 

PROCESS_LOOP: LJMCE [GC], FIX_IT ;Check device status-if no error indicated 
;instruction labeled 'OUT _STEP _1' 

MOV GA, [PP].22 

;is executed. 

; Load register GA with 16-bits of data from the 
;user-defined portion of the Parameter Block. 

(start 1/0 device operation) 

JMP PROCESS_LOOP ;The end of 1/0 device operation. Assuming 
;that the 1/0 device has written its error code in 
;data memory at 'OK?' and that register GC still 
;contains the address of the data memory byte, 
;the task block program jumps to the LJMCE 
;instruction to check for an error. This 
;processing loop continues until either an error 
;occurs or the channel is interrupted I halted by 
;a channel command in the Channel Control 
;Word (CCW). 

(14,000 bytes of assembled program instructions) 

SINTR ;The interrupt service flip-flop for the channel 
;is set indicating to the main system hardware 
;the occurance of the 1/0 device error. 
;(Assuming channel interrupts have been 
;enabled.) 

Note that the LJMCE instruction must be coded in this case since (1) the address of 
the jump target 'FIX_IT' is not known by the assembler when it encounters the 
LJMCE instruction on its first pass and (2) the jump target is outside a -128, +127 
byte range from the end of the LJMCE instruction. If a JMCE instruction is coded 
here it will be flagged as an error by the assembler since it assumes a one byte signed 
displacement when the jump target address is not known on the assembler's first 
pass and a two byte (word) displacement is required here. 

Assembled Instruction: 

7 07 07 07 07 0 

I 0001 0 A A 0 11 011 00 M M loffset if AA=011 sdisp-Iow I sdisp-high I 
Execution Time: 

14 clocks 

NOTE 1) Jump targets must be within a range of -32,768, +32,767 bytes of the 
end of a control transfer instruction. There is NO wraparound from the 
end of the 64k program instruction space to the beginning. 

3-55 



LJMCNE 

3-56 

Long Jump On Mask Compare Not Equal 

Mnemonic: LJMCNE Coding Format: LJMCNE M, L 

Operands: 'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: 1) (compare-result) - (low order byte of MC register) XOR (M) 

2) (mask-result) - (high order byte of MC) AND (compare-result) 

3) If (mask-result) <> 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. 
Unlike the JM CNE instruction, which can generate a one or two byte displacement 
value, the LJMCNE instruction forms a signed word displacement value, regardless 
of the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LJMCNE instruc­
tion to the jump target. A displacement in the range -128, +127 bytes results in a 
signed word displacement value whose high order byte is OOH or OFFH. 

The LJMCNE instruction must be coded only when: (1) the address of the jump 
target cannot be determined by the assembler when a JMCNE instruction is found 
on its first pass. (2) The required displacement to the jump target is outside a range 
of -128, + 127 bytes from the end of the assembled instruction. 

The low order byte of the MC register is used as a compare byte; the high order byte 
is used as a mask byte. The data memory byte at location 'M' is XORed with the 
compare byte. The result is then ANDed with the mask byte. If the mask-result is 
not equal to zero, 'sdisp' is added to the TP pointer/register, forming the jump 
target address. Task block program execution resumes at the instruction whose 
address is now in TP (the jump target). (The address of the next sequential instruc­
tion is in the TP pointer/register when the jump target address is formed.) 

If the mask-result is equal to zero, the next sequential instruction is executed. 

Example: 

The LJM CNE instruction allows a task block program to use the result of a mask 
compare operation to alter the sequence of task block program instruction execu­
tion. The jump target of the LJMCNE instruction is within a range of -32,768, 
+32,767 bytes. 

In this example, each source byte is inspected for a logical '1' in bit position seven 
and a logical '0' in bit position zero before it is processed. If the byte does not con­
form to the above format, a jump occurs to the instruction labeled 
'AL T _PROCESS'. If the byte does conform to the format, the instruction'labeled 
'NML_PROCESS' is executed. 

MOVI MC, 8180H ;Load mask and compare bytes into 
;register MC. 



LJMCNE 
LJMCNE [GB], ALT _PROCESS ;The byte to be tested is at the address 

;contained in register GB. If the byte has 
;a logical '1' in bit position seven and a 
;Iogical zero in bit position zero, the 
;instruction labeled 'NML_PROCESS' is 
;executed.lf the byte is not in the above 
;format a jump is made to the instruction 
;Iabeled 'AL T _PROCESS'. 

NML_PROCESS: MOVB [GA+ IX+], [GB] ;Move the byte at address GB to the 
;Iocation addressed by GA + IX (post 
;auto-increment IX). 

(200 bytes of assembled program instructions) 

ALT _PROCESS: NOTB [GB] Form the one's complement of the byte 
;addressed by GB. 

Note that the LJMCNE instruction is required here since (1) the address of the jump 
target, 'ALT_PROCESS' is not known by the assembler when it finds the 
LJMCNE instruction on its first pass and (2) the jump target is outside a -128, +127 
byte range of the end of the instruction. A JMCNE instruction would be flagged as 
an error if coded here because the assembler would assume a displacement within a 
-128, + 127 byte range on its first pass when the jump target is unknown. Later the 
displacement is found to be outside the assumed range, resulting in an error. 

Assembled Instruction: 

7 07 07 07 07 0 

I 0 0 0 1 0 A A 0 11 011 0 1 M M loffset if AA=011 sdisp-Iow . I sdisp-high I 
Execution Time: 

14 clocks 

NOTE 1) A jump target must be within a range of -32,768, +32,767 bytes of the 
end of a control transfer instruction. There is NO wraparound from the 
end of the 64k program instruction space to the beginning. 

3-57 



LJMP 

3-58 

Long Jump Unconditional 

Mnemonic: LJMP Coding Format: LJMP L 

Operands: 'L' is an expression representing the jump target 

Operation: (TP) - (TP) + sdisp (sign-extended to 20-bits) 

'L', the jump target, is an expression representing a location within the program. 
Unlike the JMP instruction, which can generate a one or two byte displacement 
value, the LJMP instruction forms a signed word displacement value, regardless of 
the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LJMP instruction 
to the jump target. A displacement in the range -128, + 127 bytes results in a signed 
word displacement value whose high order byte is OOH or OFFH. 

The LJMP instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a JMP instruction is found on its first 
pass and (2) the required displacement to the jump target is outside a range of -128, 
+127 bytes from the end of the assembled instruction. 

The signed word displacement, 'sdisp', is added to the TP pointer/register, forming 
the jump target address. Program control passes to the instruction at that address. 
(The TP pointer register contains the address of the next sequential instruction when 
the jump target address is formed.) 

Example: 

LJMP ERR_TYPE + 3 ;Unconditional jump to an instruction three 
;bytes beyond an instruction labeled 
;'ERR_TYPE'. 

(1,253 bytes of assembled source program statements) 

ERR_TYPE: ADD Be, [PP).12 ;Jump target is three bytes beyond this 
;instruction. 

Note that the LJMP instruction is required here since (1) the address of the jump 
target, 'ERR_TYPE' is not known by the assembler when it finds the LJMP 
instruction on its first pass and (2) the jump target is outside a -128, + 127 byte range 
of the end of the instruction. A JMP instruction would be flagged as an error if 
coded here because the assembler would assume a displacement within a -128, + 127 
byte range on its first pass when the jump target is unknown. Later the displacement 
is found to be outside the assumed range, resulting in an error. 

Assembled Instruction: 

7 0 7 0 7 o 7 o 
I 10010001 I 00100000 sdisp-Iow sdisp-high I 
Execution Time: 

3 clocks 

NOTE 1) A jump target must be within a -32,768, +32,767 byte range of the end 
of a control transfer instruction. There is NO wraparound from the end 
of the 64k program instruction space to the beginning. 



LJNBT 
Long Jump If Bit Not True 

Mnemonic: LJNBT Coding Format: LJNBT M, b, L 

Operands: 'L' is an expression representing the jump target 
'b' is the bit in the data memory byte (0 <= b <= 7) 
'M' is a data memory expression 

Operation: If bit 'b' <> 1 
then TP - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. 
Unlike the JNBT instruction, which can generate a one or two byte displacement 
value, the LJNBT instruction forms a signed word displacement value, regardless of 
the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LJNBT instruction 
to the jump target. A displacement in the range -128, +127 bytes results in a signed 
word displacement value whose high order byte is OOH or OFFH. 

The LJNBT instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a JNBT instruction is found on its first 
pass and (2) the required displacement to the jump target is outside a range of -128, 
+127 bytes from the end of the assembled instruction. 

The selected bit, 'b', of the data memory byte located at 'M' is tested. If the bit is 
not a logical one, 'sdisp' is sign-extended to 20-bits and added to the TP 
pointer/register to form the address of the jump target, 'L'. (The address of the next 
sequential instruction is in the TP pointer/register when the jump target address is 
formed.) 

If the tested bit is a logical one, the next sequential instruction is executed. 

Example: 

The LJNBT instruction enables the value of a specified bit in a data memory byte to 
alter the sequence of task block program instruction execution. The jump target of 
the LJNBT instruction is within a range of -32,768, +32,767 bytes. 

LJNBT [PP].STATUS, 3, MAX 

MIN: MOVIB Be, 100 

; Bit three of a byte located at offset value 
;'STATUS' from the beginning of the Parameter 
;Block is tested. If the bit is not a logical one, a 
;jump is made to the statement labeled 'MAX'; 
;otherwise the next sequential instruction, 
;'MIN', is executed. 

; Load register Be with immediate byte value of 
;100 (decimal). 

(15,000 bytes of assembled source program statements) 

MAX: MOVI Be, 10000 ; Load register Be with immediate word value of 
;10,000 (decimal). 

3-59 



LJNBT 

3-60 

Note that the LJNBT instruction is required here since (1) the address of the jump 
target, 'MAX', is not known by the assembler when it finds the LJNBT instruction 
on its first pass, and (2) the jump target is outside a -128, + 127 byte range of the end 
of the instruction. A JNBT instruction would be flagged as an error if coded here 
because the assembler would assume a displacement within a -128, + 127 byte range 
on its first pass when the jump target is unknown. Later the displacement is found to 
be outside the assumed range, resulting in an error. 

Assembled Instruction: 

7 07 07 07 07 0 

1 b b b 1 0 A A 0 11 0111 0 M M loffset if AA=011 sdisp-Iow 1 sdisp-high 1 

Execution Time: 

14 clocks 

NOTES 1) Register bits cannot be tested using the LJNBT instruction. 

2) A jump target must be within a range of -32,768, +32,767 bytes of the 
end of a control transfer instruction. There is NO wraparound from the 
end of the 64k program instruction space to the beginning. 

3) The bits in a data memory byte are specified as follows: 

Example: 

bit positions 

MSB LSB 

176543210 I 

7 0 

1101000101 

76543210 



Long Jump On Nonzero Register Or Memory Word 

Mnemonic: lJNZ 

Operands: 'R' is a register symbol 

Coding Format: lJNZ R, l 
lJNZ M, l 

'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: If (OP1) <> 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. 
Unlike the JNZ instruction, which can generate a one or two byte displacement 
value, the LJNZ instruction forms a signed word displacement value, regardless of 
the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LJNZ instruction 
to the jump target. A displacement in the range -128, + 127 bytes results in a signed 
word displacement value whose high order byte is OOH or OFFH. 

The LJNZ instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a JNZ instruction is found on its first 
pass and (2) the required displacement to the jump target is outside a range of -128, 
+ 127 bytes from the end of the assembled instruction. 

The contents of the specified register 'R' or the word of data memory whose low 
order byte is located at 'M' are examined. If the contents are not logical zero, the 
signed word displacement, 'sdisp', is sign-extended to 20-bits and added to the TP 
pointer /register, forming the address of the jump target, 'L'. (The address of the 
next sequential instruction is in the TP pointer/register when the jump target 
address is formed.) 

This instruction performs a 16-bit test. If 'R' is a 20-bit pointer/register (GA, GB, 
GC, or TP), the contents of its upper four bits, bits 16-19, cannot be determined 
using this instruction. 

If the contents of OP1 are a logical zero, the next sequential instruction is executed. 

Examples: 

LJNZ IX, FAR_AHEAD 

LJNZ [GB], NEXT_1 

Assembled Instruction: 

;If the IX register does not equal zero a jump is 
;made to the instruction labeled 
;'FAR_AHEAD' . 

;If the word of data memory beginning (low 
;order byte) at address contained in GB is not 
;zero, a jump is made to the instruction labeled 
;'NEXT_1'. 

lJNZ R,l (JUMP IF REGISTER NOT EQUAL TO lOGICAL ZERO) 

7 0 7 0 7 07 0 
I RRR100001 01000000 I sdisp-Iow I sdisp-high ·1 

LJNZ 

3-61 



LJNZ 

3-62 

Execution Time: 

5 clocks 

LJNZ M, L (JUMP IF MEMORY WORD NOT EQUAL TO LOGICALZERO) 

7 07 07 07 o 7 0 

I 0001 0 A A 1 1111 000 M M loffset if AA=011 sdisp-Iow 1 sdisp-high I 
Execution Time: 

12 clocks if bus width = 16 bits and address is even 
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) A jump target must be within a range of -32,768, +32,767 bytes of the 
end of a control transfer instruction. There is NO wraparound from the 
end of the 64k program instruction space to the beginning. 



LJNZB 
Long Jump on Nonzero Memory Byte 

Mnemonic: LJNZB Coding Format: LJNZB M, L 

Operands: 'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: If (M) <> 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the progtam. 
Unlike the JNZB instruction, which can generate a one or two byte displacement 
value, the LJNZB instruction forms a signed word displacement value, regardless of 
the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LJNZB instruction 
to the jump target. A displacement in the range -128, + 127 bytes results in a signed 
word displacement value whose high order byte is OOH or OFFH. 

The LJNZB instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a JNZB instruction is found on its first 
pass, and (2) the required displacement to the jump target is outside a range of -128, 
+127 bytes from the end of the assembled instruction. 

The contents of the data memory byte located at 'M' are examined. If the contents 
are not equal to logical zero, the signed word displacement, 'sdisp', is sign-extended 
to 20-bits and added to the TP pointer/register, forming the address of the jump 
target, 'L'. (The address of the next sequential instruction is in the TP 
pointer/register when the jump target address is formed.) 

If the contents of the memory byte are equal to logical zero, the next sequential 
instruction is executed. 

Example: 

COUNT: DB 25 

PROCESS1: MOVI IX, 300H 

;Define a byte of data memory labeled 
;'COUNT' with an initial value of 25 (deCimal). 

;Move immediate word value to register IX. 

(150 bytes of assembled source program statements) 

MOVI GC, COUNT ;Ioad address of data memory byte into register 
;GC 

3-63 



LJNZB 

3-64 

AGAIN 

LJNZB [GC], AGAIN ;If the data memory byte addressed by GC 
;('COUNT') is not zero, a jump is made to the 
;Iocation represented by the expression 
;'AGAIN'. 

EQU PROCESS1 ;Define a symbol 'AGAIN' as a synonym forthe 
;Iabel 'PROCESS1'. 

Note that the LJNZB instruction is required here: (1) the address of the jump target, 
represented by the expression 'AGAIN', is not known to the assembler on its first 
pass, and (2) the assembler assumes a displacement within a -128, + 127 byte range 
of the end of the instruction if a JNZB instruction is coded; the displacement is later 
determined to be outside the -128, +127 byte range, resulting in the flagging of the 
JNZB instruction as an error. 

Assembled Instruction: 

7 07 07 07 07 0 
I 0001 0 A A 0 11 11 000 M M loffset if AA=o11 sdisp-Iow I sdisp-high I 
Execution Time: 

12 clocks 

NOTE 1) A jump target must be within a -32,768, +32,767 byte range of the end 
of a control transfer instruction. There is NO wraparound from the end 
of the 64k program instruction space to the beginning. 



Long Jump on Zero Register Or Memory Word 

Mnemonic: LJZ 

Operands: 'R' is a register symbol 

Coding Format: LJZ R, L 
LJZ M, L 

'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: If (OPt) = 0 
then (TP) - (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. 
Unlike the JZ instruction, which can generate a one or two byte displacement value, 
the LJZ instruction forms a signed word displacement value, regardless of the size of 
the displacement necessary to reach the jump target. This signed word displacement, 
'sdisp', is the distance in bytes from the end of the LJZ instruction to the jump 
target. A displacement in the range -128, + 127 bytes results in a signed word 
displacement value whose high order byte is OOH or OFFH. 

The LJZ instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a JZ instruction is found on its first 
pass and (2) the required displacement to the jump target is outside a range of -128, 
+ 127 bytes from the end of the assembled instruction. 

The contents of the specified register 'R' or the word of data memory whose low 
order byte is located at 'M' are examined. If they equal logical zero, the signed word 
displacement, 'sdisp', is sign-extended to 20 bits and added to the TP 
pointer/register forming the address of the jump target, 'L'. (The address of the 
next sequential instruction is in the TP pointer/register when the jump target 
address is formed.) 

This instruction performs a 16-bit test. If 'R' is a 20-bit pointer/register (GA, GB, 
GC, or TP), the contents of its upper four bits, bits 16-19, cannot be determined 
using this instruction. 

If the contents of OPI are not logical zero, the next sequential instruction is 
executed. 

Examples: 

CNCLUDE: 

LJZ BC, CNCLUDE 

LJZ [PP].16, CNCLUDE 

;If register Be equals zero, ajump is made 
;to the instruction labeled 'CNCLUDE'. 

;If the word of data memory beginning (low 
;order byte) at PP + 16 is zero, a jump is 
;made to the instruction labeled 
;'CNCLUDE'. 

(200 bytes of assembled source program statements) 

MOVBI [PP].12, OFFH ;The jump target. 

LJZ 

3-65 



LJZ 

3-66 

Note that the LJZ instruction is required in both of the above instructions: (1) the 
address of the jump target 'CNCLUDE' is not known to the assembler when it 
encounters the LJZ instruction on its first pass, and (2) the displacement to the jump 
target is outside a -128, + 127 byte range. A JZ instruction would be flagged as an 
error if it were coded here since the assembler assumes a -128, + 127 byte displace­
ment range when the jump target address is not known. 

Assembled Instruction: 

LJZ R, L (JUMP IF REGISTER EQUAL TO LOGICAL ZERO) 

7 0 7 0 7 o 7 0 

I R R R 1 0 00 0 I 0 1 00 0 1 0 0 I sd isp-Iow I sdisp-high I 
Execution Time: 

5 clocks 

LJZ M, L (JUMP IF MEMORY WORD EQUAL TO LOGICAL ZERO) 

7 0 7 0 7 07 07 0 

I 0001 0 A A 1 1111 001 M M loffset if AA=011 sdisp-Iow sdisp-high I 
Execution Time: 

12 clocks if bus width = 16 bits and address is even 
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) A jump target must be within a -32,768, +32,767 byte range of the end 
of a control transfer instruction. There is NO wraparound from the end 
of the 64k program instruction space to the beginning. 



Long Jump on Zero Memory Byte 

Mnemonic: LJZB Coding Format: LJZB M J L 

Operands: 'M' is a data memory expression 
'L' is an expression representing the jump target 

Operation: If (M) = 0 
then (TP) +- (TP) + sdisp (sign-extended to 20-bits) 

Else next instruction 

'L', the jump target, is an expression representing a location within the program. 
Unlike the JZB instruction, which can generate a one or two byte displacement 
value, the LJZB instruction forms a signed word displacement value, regardless of 
the size of the displacement necessary to reach the jump target. This signed word 
displacement, 'sdisp', is the distance in bytes from the end of the LJZB instruction 
to the jump target. A displacement in the range -128, +127 bytes results in a signed 
word displacement value whose high order byte is OOH or OFFH. 

The LJZB instruction must be coded only when: (1) the address of the jump target 
cannot be determined by the assembler when a JZB instruction is found on its first 
pass, and (2) the required displacement to the jump target is outside a range of -128, 
+127 bytes from the end of the assembled instruction. 

If the contents of the specified memory byte, M, are a logical zero, the signed word 
displacement, 'sdisp', is sign-extended to 20 bits and added to the TP 
pointer/register, forming the address of the jump target, 'L'. (The address of the 
next sequential instruction is in the TP pointer/register when the jump target 
address is formed.) 

If the contents of the data memory byte are not logical zero, the next sequential 
instruction is executed. 

Example: 

LOOP1: MOVI ee, UNIT1_INIT ;An instruction labeled 'LOOP1' which loads an 
;immediate word value (the value of the symbol 
;'UNIT1_INIT') into register ce. 

(305 bytes of assembled source program statements) 

LJZB [PP].9, REPEAT ;If the byte located nine bytes from the 
;beginning of the Parameter Block is zero, a 
;jump is made to the jump target represented 
;by the expression 'REPEAT'. 

REPEAT EOU LOOP1 ;Define a symbol 'REPEAT' with the value of 
;'LOOP1'. 'REPEAT"references the same 
;instruction as 'LOOP1'. 

LJZB 

3-67 



LJZB 

3-68 

Note that the LJZB instruction is required in the above instruction: (1) the address 
of the jump target represented by the expression 'REPEAT' is not known to the 
assembler when it encounters the LJZB instruction on its first pass and (2) the 
displacement to the jump target is outside a -128, +127 byte. A JZB instruction 
would be flagged as an error if it were coded here since the assembler assumes a 
-128, + 127 byte displacement range when the jump target address is not known. 

Assembled Instruction: 

7 07 07 07 o 7 0 

1 00 0 1 0 A A 0 111 1 0 0 1 M M 'offset if AA=011 sd isp-Iow I sdisp-high I 
Execution Time: 

12 clocks 

NOTE 1) A jump target must be within a range of -32,7678, +32,767 bytes from 
the end of a control transfer instruction. There is NO wraparound from 
the end of the 64k program instruction space to the beginning. 



Load Pointer From Memory 

Mnemonic: LPD Coding Format: LPD P, M 

Operands: 'P' is a pointer/register symbol 
'M' is a data memory expression 

Operation: 1) 20-bit address - (M) 
*low order word offset; high order word segment* 

2) (P) - 20-bit address 

3) P's tag bit - 0 

A 20-bit address is formed from two consecutive words of data memory beginning at 
'M'. The first memory word, an offset value is added to the second (segment) word, 
which is shifted left four bit positions, in the same manner a 20-bit address is formed 
from a 16-bit offset and a 16-bit segment address by the 8086. The 20-bit address is 
loaded into pointer/register 'P'. 

The pointer/register's tag bit is cleared to zero, indicating a 20-bit system (memory) 
space address. 

Example: 

In this example, the pointer/register GA is loaded with a 20-bit address formed from 
two consecutive words of data memory located in the Parameter Block and pointed 
to by an offset from the PP register. 

LPD GA, [PP].12 

Assembled Instruction: 

;Four consecutive bytes beginning at location 
; [PP] + 12 are used to form a 20-bit address that 
;is loaded into GA (GA's tag bit is 
;cleared to zero). 

7 0 7 0 7 0 

! P P P 0 0 A A 1!1 0 0 0 10M M !offset if AA=01! 

Execution Time: 

20 clocks if address is even 
28 clocks if address is odd 

NOTES 1) The LPD instruction is used to form a 20-bit address from a 16-bit 
offset value and a 16-bit segment address. Once the 20-bit address has 
been created, it cannot be disassembled into the two 16-bit values used 
to create it. 

2) Twenty bit addresses can be stored in and restored from memory using 
the 'MOVP' instruction. 

LPD 

3-69 



LPDI 

3-70 

Load Pointer From Immediate Data 

Mnemonic: LPDI Coding Format: LPDI P, 

Operands: 'P' is a pointer/register symbol 
'1' is an expression which may contain external symbol 

Operation: 1) 20-bit address -- (I) + 16-bit segment address 

2) (P) -- 20-bit address 

3) P's tag bit -- 0 

'I' is an expression which can contain an external symbol. An external symbol 
appearing in 'I' must be added (not subtracted) in the expression. 

The expression 'I' is evaluated modulo 641 and supplies a 16-bit offset value. This 
offset value is added to a 16-bit segment address, which is shifted left four bit posi­
tions, in the same manner that a 20-bit address is formed by the 8086. 

If 'I' contains an external symbol, the 16-bit offset value and segment address are 
resolved by relocate and link (LOC86, LINK86) processing of the object module. If 
'I' does not contain any external symbols, the 16-bit segment address, supplied by 
LOC86, is the load origin of the 8089 program. 

Note that the assembler allocates four bytes for the offset and segment data when 
the LPDI instruction is processed. The contents of these four bytes are not defined 
until the object module has been linked, if necessary, and located. 

The pointer/register's tag bit is cleared to logical '0', indicating a 20-bit system 
(memory) space address. 

Examples: 

EXTRN DATA_TABLE 

LPDI GB, DATA_TABLE 

LPDI GC, 237FH 

;Assembler directive identifying 
;DATA_TABLE ;as a symbol defined as 
;public in another module. 

;A 20-bit adc;tress formed from 16-bit offset and 
;segment data provided by relocate and link 
;processing of the external symbol 
;'DATA_ TABLE' is loaded into 
;pointer/register GB. 

;Load pointer/register GC with a 20-bit address 
;formed using 237FH as the offset value and the 
;Ioad origin of the 8089 program as the 
;segment address. 



LPDI 
Assembled Instruction: 

7 07 0 7 07 07 07 0 

, p P P 1 0001 I 00001 000 , offset (low) I offset (high) 'segment (low) (segment (high)1 

Execution Time: 

12 clocks if instruction begins on even address 
16 clocks if instruction begins on odd address 

NOTES 1) Once a 20-bit address has been formed it cannot be disassembled again 
into its two 16-bit components. 

2) A 20-bit pointer Iregister and tag bit can be stored in, or restored from, 
data memory using the 'MOVP' instruction. 

3-71 



MOV 

3-72 

Move Register to Memory Word 
Move Memory Word to Register 
Move Memory Word to Memory Word 

Mnemonic: MOV 

Operands: 'R' is a register symbol 

Coding Format: MOV M, R 
MOV R, M 
MOV M, M 

'M' is a data memory expression 

Operation: a) (OPI) - (OP2) 

b) If OPI = GA, GB, GC or TP *pointer/registers* 
then (OPI) - sign-extended (OP2) *two 20-bit quantities* 

OPI 's tag bit - I 

A word (l6-bits) is copied from OP2 to OPl. The source data, (OP2), remains 
unchanged. 

If a pointer/register (GA, GB, GC, or TP) is used as the destination operand, OPI, 
the sign bit, bit-IS, is extended into the upper four bits (bits 16-19) of the 
pointer/register. The pointer/register's tag bit is also set to a logical one, indicating 
a local (110) space, 16-bit address. 

If a 20-bit pointer/register is used as a source operand, 'OP2', only bits 0-15 are 
copied to memory. The high order bits, bits 16-19, are ignored. 

Examples: 

Mav GB, [GC].2 

Mav [GC], IX 

Mav [GB+ IX+], [GA+ IX] 

Assembled Instruction: 

;Move the word of data memory beginning 
;(low-order byte) at [GC] + 2 to pointer/register 
;GB. 

;Move the contents of the Index register to the 
;memory location pointed to by the contents of 
;[GC]. 

;Move the word of data memory beginning 
;(Iow-order byte) at the location specified by 
;register GA + the Index register to the 
;Iocation specified by register GB + the Index 
;register; Index register post auto-incremented 
;by 2 (word operation). 

MOV M, R (MOVE REGISTER TO MEMORY WORD) 

7 0 7 0 7 0 

I R R ROO A A 111 00 0 0 1 M M loffset if AA=011 



Execution Time: 

10 clocks if bus width = 16 bits and address is even 
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

MOV R, M (MOVE MEMORY WORD TO REGISTER) 

7 0 7 0 7 0 

1 R R ROO A A 111 00000 M M loffset if AA=011 

Execution Time: 

8 clocks if bus width = 16 bits and address is even 
12 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

MOV M, M (MOVE MEMORY WORD TO MEMORY WORD) 

MOV 

7 0 7 0 7 07 07 07 0 

1 00000 A A 1 11 001 00 M M loffset if AA=011 00000 A A 1 111 0011 M M loffset if AA=011 

(SOU RCE) (DESTINATION) 

Execution Time: 

18 clocks if bus width = 16 bits and address is even 
28 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) 20-bit pointer/registers and their tag bits can be stored in, or restored 
from, memory using the 'MOVP' instruction. 

3-73 



MOVB M,R 

3-74 

Move Register to Memory Byte 

Mnemonic: MOVB Coding Format: MOVB M, R 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (M) - truncated (R) *high order register byte truncated* 

The high order byte of register 'R' (high order byte plus four bits in the case of 
pointer/registers GA, GB, GC or TP) is truncated and the least significant byte is 
placed in the data memory byte at location 'M'. 

Example: 

MOVB [G B], BC 

Assembled Instruction: 

MOVB M, R 

;Move least significant byte of register BC to 
;data memory byte pOinted at by GB. 

(MOVE REGISTER TO MEMORY BYTE) 

7 0 7 0 7 0 

1 R R ROO A A 011 0 0 0 0 1 M M loffset if AA=011 

Execution Time: 

10 clocks 

NOTES I) Use the 'MOV' instruction for 16-bit data. 

2) 20-bit pointer/registers and their tag bits can be stored in or restored 
from memory using the 'MOVP' instruction. 



Mova R, 
Move Memory Byte to Register 

Mnemonic: MOVB Coding Format: MOVB R, M 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: ) (R) - sign-extended (M) 

b) If OPI = GA, GB, GC, or TP *pointer/registers* 
then (OP1) +- sign-extended (OP2) *two 20-bit quantities* 

OPI 's tag bit +- 1 

The data memory byte located at 'M' is sign-extended (bit 7) to 16 bits. The sign­
extended quantity is copied to the specified register 'R'. 

If 'R' is a 20-bit pointer/register, the data is sign-extended to 20 bits and copied to 
'R'. The pointer/register's tag bit is set to logical one, indicating a 16-bit local (I/O) 
space address. 

Example: 

MOVB MC, [GC + IX] 

Assembled Instruction: 

MOVB R, M 

;Register MC is loaded with a sign-extended 
;copy of the byte at location [GC + IX]. 

(MOVE MEMORY BYTE TO REGISTER) 

7 0 7 0 7 0 

, R R ROO A A 0'1 00 0 0 0 M M 'offset if AA=011 

Execution Time: 

8 clocks 

NOTES 1) Use the 'MOV' instruction for 16-bit data. 

2) 20-bit pointer/registers and their tag bits can be stored in or restored 
from memory using the 'MOVP' instruction. 

M 

3-75 



MOVB M, M 

3-76 

Move Memory Byte to Memory Byte 

Mnemonic: MOVB Coding Format: MOVB M, M 

Operands: 'M' is a data memory expression 

Operation: (OP1) - (OP2) 

The contents of the data memory byte source, OP2, are copied to the data memory 
byte destination, OP 1. 

Example: 

MOVB [GB], [GC+IX] 

Assembled Instruction: 

MOVB M, M 

;The data memory byte at [GC + IX] is copied to 
;the data memory location [GB]. 

(MOVE MEMORY BYTE TO MEMORY BYTE) 

7 0 7 07 07 07 07 0 

I 00000 A A 0 11 001 00 M M loffset if AA=011 00000 A A 0 111 0011 M M loffset if AA=011 

(SOURCE) (DESTINATION) 

Execution Time: 

18 clocks 

NOTES 1) Use the 'MOV' instruction for 16-bit data. 

2) 20-bit pointer/registers and their tag bits can be stored in or restored 
from memory using the 'MOVP' instruction. 



MOVBI 
Move Immediate Byte to Register 

Mnemonic: MOVBI Coding Format: MOVBI R, 

Operand Format: 'R' is a register symbol 
'I' is an expression evaluated modulo 256 

Operation: 1) (R) - sign-extended (i-value) 

2) If OPI = GA, GB, GC, TP *pointer/registers* 
then (OPl) - sign-extended (OP2) *two 20-bit quantities* 

OPI 's tag bit - 1 

The expression 'I' is evaluated modulo 256 to an immediate signed byte value, 
'i-value'. This value is sign-extended (bit 7) to 16-bits, or, if 'R' is a pointer/register 
(GA, GB, GC or TP), to 20-bits. The sign extended value is placed in the specified 
register, 'R'. 

If 'R' is a 20-bit pointer/register (GA, GB, GC or TP), its tag bit is set to a logical 
one, indicating a 16-bit local (110) space address. 

Example: 

MOVBI BC, -128 

Assembled Instruction: 

MOVBI R, I 

;Place 80H (-128 decimal in two's complement 
;form) in register BC. 

(MOVE IMMEDIATE BYTE TO REGISTER) 

7 0 7 0 7 0 

I R R R 0 1 000 I 0011 0000 I i-value I 
Execution Time: 

3 clocks 

NOTE 1) Use the 'MOVI' instruction for 16-bit immediate values. 

R, I 

3-77 



MOVBt M, t 

3-78 

Move Immediate Byte to Memory Byte 

Mnemonic: MOVBI Coding Format: MOVBI M, I 

Operands: 'M' is a data memory expression 
'I' is an expression evaluated modulo 256 

Operation: (M) +- i-value 

The expression 'I' is evaluated modulo 256 to an immediate signed byte value, 
'i-value'. This value is placed in the data memory byte located at 'M'. 

Example: 

MOVBI [GGj.7,15 

Assembled Instruction: 

MOVBI M, 

;OFH is placed in the data memory byte at 
;Iocation [Gel + 7. 

(MOVE IMMEDIATE BYTE TO MEMORY BYTE) 

7 07 07 07 0 

, 00001 A A 0 '01 0011 M M 'offset if AA=01' i-value I 
Execution Time: 

12 clocks 

NOTE 1) Use the 'MOVI' instruction for 16-bit immediate values. 



Move Immediate Word to Register 
Move Immediate Word to Memory Word 

Mnemonic: MOVI Coding Format: MOVI R, 
MOVI M, 

Operands: 'R' is a register symbol 
'M' is a data memory expression 
'I' is an expression evaluated modulo 64k 

Operation: a) (OPl) +- i-value 

b) If OPI is a pointer/register (GA, GB, GC or TP) 
(OPl) +- sign-extended (i-value) *sign-extended to 20-bits* 

OPI 's tag bit +- 1 

The expression 'I' is evaluated modulo 64k to an immediate signed word value, 
'i-value'. The immediate signed word value is placed in the specified register 'R' or 
the word of data memory beginning (low-order byte) at location 'M'. 

If 'OPl' is a 20-bit pointer/register, (GA, GB, GC or TP), the 'i-value' is sign 
extended (bit 15) into the upper four bits (16-19) . The pointer/register's tag bit is set 
to a logical one, indicating a 16-bit local (110) space address. 

Examples: 

INPUT_COUNT EQU 1500H ;Define an 'INPUT_COUNT' and assign 
;it a value of 1500H. 

MOVI BC, INPUT_COUNT ;Move the value 1500H into register BC. 

MOVI [GB].4,32555 ;Move the value 32555 into the word of 
;data memory beginning (low-order byte) 
;at [GB] + 4. 

Assembled Instruction: 

MOVI R, I (MOVE IMMEDIATE WORD TO REGISTER) 

7 07 07 07 0 

I R R R 1 0001 I 0011 0000 I i-value (low) I i-value (high) I 
Execution Time: 

3 clocks 

MOVI M, (MOVE IMMEDIATE WORD TO ,MEMORY WORD) 

7 0 7 0 7 07 07 0 

I 0001 0 A A 1 101 0011 M M loffset if AA=01! i-value (low) I i-value (high) ! 

Execution Time: 

12 clocks if bus width = 16 bits and address is even 
18 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTE 1) Use the 'MOVBI' instruction for immediate byte values. 

MOVI 

3-79 



MOVP M, P 

3-80 

Move Pointer to Memory (Store) 

Mnemonic: MOVP Coding Format: MOVP M, P 

Operands: 'P' is a pointer/register symbol 
'M' is a data memory expression 

Operation: 1) (M) - (P) 

2) (M) - P's tag bit 

The contents of the specified 20-bit pointer/register and its tag bit are stored in three 
consecutive data memory bytes beginning at the given memory location, 'M'. (See 
NOTES below for the format of the stored pointer/register). 

Example: 

POINTER_STORE: OS 3 ;Reserve three bytes of data memory 
;with the name 'POINTER_STORE'. 

MOVI GA, POINTER_STORE ;Load location of 'POINTER_STORE' 
;into register GA. 

MOVP [GAJ, TP ;Move 'TP' to [GA]. 

Assembled Instruction: 

MOVP M, P (MOVE POINTER/REGISTER TO MEMORY) 

7 0 7 0 7 0 

1 P P PO 0 A A 111 0011 0 M M loffset if AA=011 

Execution Time: 

16 clocks if bus width = 16 bits and address is even 
22 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTES 1) The pointer/register and tag bit are stored in the following format: 

7 0 7 0 7 0 

I pointer-low I pointer-high I 19181716tb 0001 

The low order byte of the pointer/register, 'pointer-low', is stored in 
the first memory byte. The next byte of the pointer/register, 'pointer­
high', is stored in the second memory byte. The four high order bits of 
the pointer/register, bits 16-19, are stored in bits 4-7 of the third 
memory byte. The tag bit is stored in bit 3 of the third memory byte. 
Bits 0-2 of the third memory byte are cleared to zero. 



MOVP P, 
Move Memory to Pointer (Restore) 

Mnemonic: MOVP Coding Format: MOVP P, M 

Operands: 'P' is a pointer/register symbol 
'M' is a data memory expression 

Operation: 1) (P) - (M) 

2) P's tag bit - stored tag bit 

A stored 20-bit pointer/register and tag bit value are restored to pointer/register 'P' 
from three consecutive bytes of data memory beginning at memory location 
'M' .(See NOTES below for the format of the stored pointer/register). 

Example: 

STORE_POINTER DS 3 ;Reserve three bytes of data memory named 
;'STORE_POINTER'. 

MOVI GB, STORE_POINTER ;Load GB with address of three data memory 
;bytes named 'STORE_POINTER'. 

MOVP [GBJ, GA ;Store 20-bit pOinter I register GA and tag bit 
;in three bytes of data memory beginning at 
;Iocation [GBJ. 

MOVP GA, [GBJ ;Restore pointer/registerGA and tag bit 
;from three bytes of data memory beginning 
;at location [GB]. 

Assembled Instruction: 

MOVP P, M (MOVE MEMORY TO POINTERI REGISTER) 

7 0 7 0 7 0 

1 P P P 0 0 A A 111 00011 M M 'offset if AA=011 

Execution Time: 

19 clocks if even address 
27 clocks if odd address 

M 

3-81 



MOVP P, M 
NOTES 1) The pointer/register and tag bit are stored in the following format: 

3-82 

7 0 7 0 7 0 

I pointer-low I pointer-high I 19181716tb 000 I 
The low order byte of the pointer/register, 'pointer-low', is stored in 
the first memory byte. The next byte of the pointer/register, 'pointer­
high', is stored in the second memory byte. The four high order bits of 
the pointer/register, bits 16-19, are stored in bits 4-7 of the third 
memory byte. The tag bit is stored in bit 3 of the third memory byte. 
Bits 0-2 of the third memory byte are cleared to zero. 



NOP 
No Operation 

Mnemonic: NOP Coding Format: NOP 

Operands: This instruction has no operands. 

Operation: None 

This instruction takes four clock cycles but performs no operation. 

Example: 

NOP ;No operation performed, four clock cycles are used. 

Assembled Instruction: 

7 0 7 0 

I 00000000 I 00000000 I 
Execution Time: 

4 clocks 

3-83 



NOT 

3-84 

Complement Register 
Complement Memory Word 
Complement Memory Word; Put Result in Register 

Mnemonic: NOT 

Operands: 'R' is a register symbol 

Coding Format: NOT R 
NOT M 
NOT R, M 

'M' is a data memory expression 

Operation: a) (OP1) +- NOT (OP1) 
OR 

b) (R) +- NOT (M) 

The contents register 'R' or the word of data memory beginning (low-order byte) at 
location 'M' are complemented. Any logical '1' becomes a logical '0'. Any logical 
'0' becomes a logical '1'. 

The result of complementing a data memory word may be placed in a register rather 
than returned to the original memory location. Two operands are then required: a 
register operand 'R', the destination (OPl), and a data memory operand 'M', 
(OP2). 

If 'R' is a 20-bit pointer/register the upper four bits, bits 16-19, of the result are 
undefined following its complement. Any data placed in a pointer/register is sign­
extended to 20 bits. 

Examples: 

NOT IX 

NOT [G8] 

NOT GA, [GC + IX] 

Assembled Instruction: 

;Complement register 'IX'. 

;Complement word of data memory beginning 
;(Iow-order byte) at location [G8]. 

;Complement the word of data memory 
;beginning (low-order byte) at [GC + IX] and 
;put result in register GA. 

NOT R (COMPLEMENT REGISTER) 

7 0 7 0 

IRRROOOOO 100101100 I 

Execution Time: 

3 clocks 

NOT M (COMPLEMENT MEMORY WORD) 

7 0 7 0 7 0 

I 0 00 0 0 A A 1 11 1 0 1 11M M loffset if AA=011 



Execution Time: 

16 clocks if bus width = 16 bits and address is even 
26 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOT R, M (COMPLEMENT MEMORY WORD; PUT RESULT IN REGISTER) 

7 0 7 0 7 0 

1 R R ROO A A 111 0 1 01 1 M M loffset if AA=011 

Execution Time: 

11 clocks if bus width = 16 bits and address is even 
15 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTES 1) The complement operation sets any logical zero in the input data to a 
logical one. Any logical one in the input data is cleared to a logical zero. 

Example: 

Complement OADH 

Before complement: 

After complement: 

7 0 

1101011011 

7 0 

I 0 1 0 1 0 0 1 0 1 (52 H) 

2) The two's complement of a register or a word of data memory can be 
formed by adding' l' to the result of a NOT instruction. 

3) The ability to complement a word of memory data and place the result 
in a register can save bus cycles, especially when doing two's comple­
ment arithmetic, since one instruction can be eliminated. 

Example: 

OPERAND: DW 2314H ;Define a word of data memory which will 
;supply an operand in a two's 
;complement operation. 

MOVI GA, OPERAND ; Load address of data memory operand 
;into GA. 

NOT GC, [GA] ;Form one's complement of operand in 
;memory. 

INC GC ;GC now contains two's complement of 
; memory operand. 

NOT 

3-85 



NOTB 

3-86 

Complement Memory Byte 
Complement Memory Byte; Put Result In Register 

Mnemonic: NOTB 

Operands: 'R' is a register symbol 

Coding Format: NOTB M 
NOTB R, M 

'M' is a data memory expression 

Operation: a) (M) - NOT (M) 
OR 

b) (R) - sign-extended NOT (M) 

The data memory byte located at 'M' is complemented. Any logical one is cleared to 
logical zero. Any logical zero is set to logical one. 

The result of the complement can be put in a register, 'R', rather than returned to 
the original memory location. The complement result is sign extended (bit 7) to 
16-bits, or, if 'R' is a pointer/register, to 20-bits, and placed in the specified register. 

Examples: 

NOTB [PP).8 

NOTB MC, [GA) 

Assembled Instruction: 

;Complement data memory byte at 
:Iocation [PP] + 8. 

;Complement data memory byte at 
:[GA); put result in register Me. 

NOTB M (COMPLEMENT MEMORY BYTE) 

7 0 7 0 7 0 

, 0 0 0 0 0 A A 0 11 1 0 1 11M M 'offset if AA=011 

Execution Time: 

16 clocks 

NOTB R, M (COMPLEMENT MEMORY BYTE; PUT RESULT IN REGISTER) 

7 0 7 0 7 0 

, R R ROO A A 011 0 1 0 11M M 'offset if AA=011 

Execution Time: 

11 clocks 

NOTES 1) The complement operation sets any logical zero in the input data to a 
logical one. Any logical one in the input data is cleared to a logical zero. 



NOTB 
Example: 

Complement 3BH 

Before complement: 

After complement: 

7 0 

100111011 I 

7 0 

I 11 0001 00 I (OC4H) 

2) The two's complement of a data memory byte can be formed by adding 
'1' to the result of a NOTB instruction. 

3) Use the 'NOT' instruction to complement a register or a word of data 
memory. 

4) The ability to complement a byte of memory data and place the result in 
a register can save bus cycles, especially when doing two's complement 
arithmetic since one instruction can be eliminated. 

Example: 

OPERAND: DB OB7H ;Define a byte of data memory which will 
;supply an operand in a two's 
;complement operation. 

MOVI GA, OPERAND ; Load address of data memory operand 
;intoGA. 

NOTB GC, [GA] ;Form one's complement of operand in 
;memory. 

INC GC ;GC now contains two's complement of 
; memory operand. 

3-87 



OR 

3-88 

OR Memory Word to Register 
OR Register to Memory Word 

Mnemonic: OR 

Operands: 'R' is a register symbol 

Coding Format: OR R, M 
OR M, R 

'M' is a data memory expression 

Operation: (OP1) - (OP1) OR (OP2) 

The corresponding bit positions of the 16-bit input data are logically ORed. A 
logical '1' results if either or both input bit positions are a logical '1'. A logical '0' 
results if neither input bit position contains a logical '1'. The result is placed in the 
leftmost operand, OP 1. 

If the destination, OPl, is a 20-bit pointer/register (GA, GB, GC or TP) the upper 
four bits, bits 16-19, of the result are undefined following this operation. 

Examples: 

OR MG, [GBl 

OR [GAl.12, IX 

;OR register MG with the word of data memory 
;beginning (low-order byte) at [GBl. The result 
;is placed in register MG. 

;OR the word of data memory beginning 
;(Iow-order byte) at [GAl + 12 with the IX 
;register. The result is placed in data memory 
;beginning (low-order byte) at location [GAl 
; + 12. 

Assembled Instruction: 

OR R, M (OR MEMORY WORD TO REGISTER) 

7 0 7 0 7 0 

1 R R ROO A A 111 0 1 0 0 1 M M loffset if AA=011 

Execution Time: 

11 clocks if bus width = 16 bits and address is even 
15 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

OR M, R (OR REGISTER TO MEMORY WORD) 

7 0 7 0 7 0 

1 R R ROO A A 111 1 0 1 0 1 M M loffset if AA=011 

Execution Time: 

16 clocks if bus width = 16 bits and address is even 
26 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTES 1) A logical OR of two binary digits outputs a logical one if either or both 
input binary digits is a logical one. A logical zero is output if neither 
input binary digit is a logical one. 



OR 
Example: 

OR OEBH and 91 H 

OEBH 11101011 

OR 

91 H 1 0 0 1 0 0 0 1 

RESULT 11111011 OFBH 

2) See ORB instruction for logical OR with byte data. 

3-89 



ORB 

3-90 

R, M 
OR Memory Byte to Register 

Mnemonic: ORB Coding Format: ORB R, M 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (R) - (R) OR sign-extended (M) 

The data memory byte located at 'M' is sign-extended (bit 7) to 16-bits. The sign­
extended memory byte is ORed with the specified register 'R'. A logical one is out­
put where one or both input bits are a logical one. A logical zero is output if both 
input bits are a logical zero. The 16-bit result is placed in register 'R'. 

If 'R' is a 20-bit pointer/register (GA, OB, GC or TP) the upper four bits (bits 
16-19) are undefined following this operation. 

Examples: 

OR MC, [G8).4 ;OR register MC with data memory byte at [G8) + 4. 

Assembled Instruction: 

ORB R, M (OR MEMORY BYTE TO REGISTER) 

7 0 7 0 7 0 

1 R R ROO A A 011 01 001 M M loffset if AA=011 

Execution Time: 

11 clocks 

NOTES I) A logical OR of two binary digits outputs a logical one if either or both 
input binary digits is a logical one. A logical zero is output if neither 
input binary digit is a logical one. 

Example: 

OR 1 DH and 24H 

1DH 00011101 

OR 

24H 0 0 1 001 00 

RESULT 00111101 3DH 

2) See 'OR' instruction for logical OR with a register and 16-bit memory 
data. 



ORB M, 
OR Register To Memory Byte 

Mnemonic: ORB Coding Format: ORB M, R 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Operation: (M) - (M) OR low-order byte (R) 

The data memory byte located at 'M' is ORed with the low-order byte of 'R'. A 
logical one is output where either or both input bits are a logical one. A logical zero 
is output if both input bits are a logical zero. The 8-bit result is placed in data 
memory at location 'M'. 

Examples: 

ORB [Gel. IX ;OR data memory byte at [Gel with the low-order byte of register IX. 

Assembled Instruction: 

ORB M, R (OR REGISTER TO MEMORY BYTE) 

7 0 7 0 7 0 

1 R R ROO A A 0111 01 01 M M loffset if AA=011 

Execution Time: 

16 clocks 

NOTES 1) A logical OR of two binary digits outputs a logical one if either or both 
input binary digits is a logical one. A logical zero is output if neither 
input binary digit is a logical one. 

Example: 

OR 5CH and 8BH 

5CH 01011100 

OR 

8BH 1 000 1 0 11 

RESULT 11011111 ODFH 

2) See OR instruction for logical OR with a register and a 16-bit memory 
data. 

R 

3-91 



ORBI R, I 

3-92 

OR Immediate Byte To Register 

Mnemonic: ORBI Coding Format: ORBI R, I 

Operands: 'R' is a register symbol 
'I' is an expression evaluated modulo 256 

Operation: (R) - (R) OR sign-extended (i-value) 

The expression'!' is evaluated modulo 256 to an immediate signed byte value, 
'i-value', (-128 <= i-value <= + 127). 'i-value' is sign-extended (bit 7) to 16-bits and 
ORed with the specified register 'R'. A logical one is output where one or both input 
bits are a logical one. A logical zero is output if both input bits are a logical zero. 
The 16-bit result is placed in register 'R'. 

If 'R' is a 20-bit pointer/register (GA, GB, GC or TP) the upper four bits, bits 
16-19, are undefined following this operation. 

Example: 

ORBI ee,7FH ;OR register ec with 7FH. 

Assembled Instruction: 

ORBI R, (OR IMMEDIATE BYTE TO REGISTER) 

7 0 7 0 7 0 

I R R R 0 1 000 I 001 001 00 I i-value I 
Execution Time: 

3 clocks 

NOTES I) A logical OR of two binary digits outputs a logical one if either or both 
input binary digits is a logical one. A logical zero is output if neither 
input binary digit is a logical one. 

Example: 

OR 51 Hand 4AH 

51 H 0 1 0 1 0 0 0 1 

OR 

4AH 01 001 01 0 

RESULT 01011011 5BH 

2) See 'OR!' instruction for logical OR with 16-bit immediate values. 



ORBI 
OR Immediate Byte to Memory Byte 

Mnemonic: ORBI Coding Format: ORBI M, 

Operands: 'M' is a data memory expression 
'I' is an expression evaluated modulo 256 

Operation: (M) - (M) OR i-value 

The expression 'I' is evaluated modulo 256 to an immediate signed byte value 
'i-value', (-128 <= i-value <= +127). 'i-value' is ORed with the data memory byte 
located at 'M'. A logical one is output where one or both input bits are a logical one. 
A logical zero is output if both input bits are a logical zero. The result is placed in the 
data memory byte at location 'M'. 

Examples: 

ORBI [GAl. 25 ;OR the data memory byte at [GAl with 25. 

Assembled Instruction: 

ORBI M, (OR IMMEDIATE BYTE TO MEMORY BYTE) 

7 07 07 07 0 

I 00001 A A 0 111 0001 M M loffset if AA=011 i-value 1 

Execution Time: 

16 clocks 

NOTES 1) A logical OR of two binary digits outputs a logical one if either or both 
input binary digits is a logical one. A logical zero is output if neither 
input binary digit is a logical one. 

Example: 

OR 95H and 17H 

95H 1 0 0 1 0 1 0 1 

OR 

17H 0 0 0 1 0 1 1 1 

RESULT 10010111 97H 

2) See 'ORI' instruction for logical OR with 16-bit immediate data. 

M, I 

3-93 



ORI 

3-94 

OR Immediate Word to Register 
OR Immediate Word to Memory Word 

Mnemonic: ORI 

Operands: 'R' is a register symbol 
'M' is a data memory expression 

Coding Format: ORI R, 
ORI M, 

'I' is an expression evaluated modulo 64k 

Operation: (OP1) - (OP1) OR i-value 

The expression'!' is evaluated modulo 64k to an immediate signed word value, 
'i-value', (-32,768 <= i-value <= +32,767). 'i-value' is ORed with the register 'R' or 
the word of data memory beginning (low-order byte) at 'M'. A logical one is output 
where one or both input bits are a logical one. A logical zero is output if both input 
bits are a logical zero. The result is placed in OPI, the register 'R' or the word of 
data memory beginning (low-order byte) at 'M' . 

If 'R' is a 20-bit pointer/register (GA, GB, GC or TP), the upper four bits (bits 
16-19) are undefined following this operation. 

Examples: 

ORI BC, 2D4EH ;OR register BC with 2D4EH. 

ORI [GB], 9091 H ;OR word of data memory beginning (low-order 
;byte) at [GB] with 9091H. 

Assembled Instruction: 

ORI R, I (OR IMMEDIATE WORD TO REGISTER) 

7 0 7 0 7 07 0 

1 R R R 1 00011 001 001 00 1 i-value (low) 1 i-value (high) 1 

Execution Time: 

3 clocks 

ORI M, (OR IMMEDIATE WORD WITH MEMORY WORD) 

7 07 07 07 07 0 

1 0001 0 A A 1 111 0001 M M 'offset if AA=011 i-value (low) I i-value (high) I 
Execution Time: 

16 clocks if bus width = 16 bits and address is even 
26 clocks if bus width = 8 bits or bus width = 16 bits and address is odd 

NOTES 1) A logical OR of two binary digits outputs a logical one if either or both 
input binary digits is a logical one. A logical zero is output if neither 
input binary digit is a logical one. 



Example: 

OR 09H and 42H 

09H 

OR 

42H 

RESULT 

00001001 

1010000101 

1 0 1 001 011 1 4BH 

2) See 'ORB!' instruction for logical OR with immediate byte data. 

ORI 

3-95 



SETB 

3-96 

Set Selected Bit to Logical 1 

Mnemonic: SETB Coding Format: SETB M, b 

Operands: 'b' is the bit position in the data memory byte (0 <= b <= 7) 
'M' is a data memory expression 

Operation: b +- 1 

The selected bit of a data memory byte located at 'M' is set to logical one. 

Examples: 

SETB [PP].14,5 ;Set bit 5 of [PP] + 14 to logical one. 

Assembled Instruction: 

7 0 7 0 7 0 

I b b bOO A A 011111 01 M M 'offset if AA=011 

Execution Time: 

16 clocks 

NOTES 1) Bit positions within a data memory byte are specified as follows: 

MSB LSB 

bit positions 1 7654321 0 I 



SINTR 
Set Interrupt Service Flip-Flop 

Mnemonic: SINTR Coding Format: SINTR 

Operands: This instruction has no operands. 

Operation: Interrupt service flip-flop +- 1 

Set the interrupt service flip-flop. If interrupts from this channel are enabled, the 
external SINTR space pin for the channel (SINTR 1 or SINTR 2) is activated. Chan­
nel interrupts are enabled through the Interrupt Control Field (lCF) in the Channel 
Control word (CCW), located in the Channel Control Block. 

Example: 

In conjunction with the Interrupt Control Field of the Channel Control Word 
(CCW), located in the Channel Control Block, the SINTR instruction can be used to 
indicate to the main system interrupt hardware the occurence of user defined events. 

In this example a status byte is set to 'OFFH' by an 110 device upon the suuccessful 
completion of an operation. The task block program checks the status byte for 
'OOH' indicating the unsuccessful completion of an operation by the 110 device. If 
'OOH' is detected, a jump is made to an error routine which places an error message 
in' a byte located in the user-defined area of the Parameter Block and, using the 
SINTR instruction, sets the channel's interrupt service flip-flop. (This example 
assumes that interrupts for the channel have been enabled.) 

GOOD??: 

ERROR 

DB OOH 

EQU 7FH 

;Define a byte in data memory named 
;'GOOD??' where the 1/0 device will place its 
;completion status. 

;Define a name 'ERROR' with a value of 7FH. 

(A status byte is written to data memory 
location named 'GOOD??' by an 1/0 device 
upon the completion of some operation.) 

MOVI GB, GOOD?? ;Load address of data memory byte named 
;'GOOD??' into register GB. 

LJZB [GBl, E_ROUT ;Test status byte for 'OOH'; jump to instruction 
;Iabeled 'E_ROUT' if 'OOH' found. 

(12,000 bytes of assembled source program statements.) 

3-97 



SINTR 

3-98 

MOVBI [PP].18, ERROR ;Place 7FH in Parameter Block byte at [PP] 
; + 18. 

SINTR 

Assembled Instruction: 

7 0 7 0 

I 01000000 I 00000000 I 
Execution Time: 

4 clocks 

;Set interrupt service flip-flop; the error 
;message in the Parameter Block can be read 
;by the interrupt service routine and the 
;necessary action taken. 



Test and Set While Locked 

Mnemonic: TSL Coding Format: TSL M, I, L 

Operands: 'M' is a data memory expression 
'I' is an expression evaluated modulo 256 
'L' is an expression representing the jump target which is within a 

range of -128, + 127 bytes of the next instruction 

Operation: 1) System bus remains locked during instruction execution 

2) If (M) = 0 
then (M) - i-value 

Else (TP) - (TP) + sdisp (sign-extended to 20-bits) 

'L', the jump target, is an expression representing a location within the program. 'L' 
is converted to a signed byte displacement, 'sdisp', the distance (in bytes) from the 
end of this instruction to the jump target. The value of 'sdisp' ranges from -128 to 
+127. 

The expression 'I' is evaluated module 256 to an immediate signed byte value, 
'i-value', (-128 <= i-value <= + 127). 

The contents of a data memory byte located at 'M' are examined. If equal to logical 
zero, the immediate value, 'i-value', is placed in the data memory byte location, 
'M'. If the contents of the byte are not equal to logical zero, a jump is made to 'L' 
by adding the signed byte displacement, 'sdisp', to the TP register, forming the 
jump target address. (The address of the next sequential instruction is in the TP 
register when the jump target address is formed.) 

The system bus remains locked throughout the entire instruction execution. A sim­
ple semaphore mechanism can be implemented using this instruction. 

Example: 

In systems with shared resources, mechanisms for controlling access to these 
resources are necessary. Such a mechanism can be provided using the TSL instruc­
tion to implement a simple semaphore. The following is an example of how such a 
mechanism might function. 

Two I/O channels share a data table containing blocks of control parameters read 
and updated by each channel. To prevent one channel from reading the control 
parameter blocks while another is updating them, a data memory byte is used to 
signal when the data table is being used (OFFH in data memory byte) or is free (OOH 
in data memory byte). Before accessing the data table, each channel tests the data 
memory byte. If it is in use, the channel loops until the data table is free. When the 
data table is found free, i.e. OOH is in the data memory byte, OFFH is written to the 
data memory byte and the data table is accessed. By locking the system bus, the TSL 
instruction insures that the other channel will not begin to use the data table between 
the time it is found free and the time the in-use condition is signalled. 

TSL 

3-99 



TSL 

3-100 

BUSY: DB OOH ;Define a data memory byte named 'BUSY' 
;used to signal the availability of the data table. 

DATA_TABLE: DS 200 ;Reserve 200 bytes of data memory named 
;'DATA_TABLE'. 

MOVI GB, BUSY ;Load register GB with address of data memory 
;byte. 

FREE?: TSL [GB], OFFH, LOOP ;Test data memory byte; if equal to OOH (free) 
;move OFFH to the data memory byte, 
;otherwise jump to instruction labeled 'LOOP'. 

LOOP: JMP FREE? ;Retry test of data memory byte. 

Assembled Instruction: 

7 07 07 07 07 

I 00011 A A 0 11 001 01 M M loffset if AA=011 i-value I sdisp 

Execution Time: 

14 clocks if the data memory byte, located at 'M', does not equal zero 
16 clocks if the data memory byte, located at 'M', does equal zero 

o 

NOTE 1) There is NO wraparound from the end of the 64k program instruction 
space to the beginning. 



Set Source and Destination Logical Widths 

Mnemonic: WID Coding Format: WID S, D 

Operands: 'S' is a value indicating the DMA source logical width (8 or 16) 
'D' is a value indicating the DMA destination logical width (8 or 16) 

Operation: Source Logical Width +- (OP1) 
Destination Logical Width +- (OP2) 

The WID instruction specifies the source and destination logical widths (in bits) for 
DMA transfer. The 8089 optimizes DMA transfers by assembling or disassembling 
transferred bytes depending upon these logical widths (and also even/odd address 
boundaries). Logical widths and even/odd address boundaries determine the 
number of bytes transferred during a DMA transfer cycle. 

In the assembled instruction a '1' for'S' or for 'D' indicates a 16-bit device width is 
specified. A '0' for'S' or for 'D' indicates an 8-bit device width is specified. 

Example: 

WID 16, 8 

Assembled Instruction: 

7 0 7 0 

11 S 000000 I 00000000 1 

Execution Time: 

4 clocks 

;Source logical width for DMA transfer is 
;16-bits; destination logical width is 8-bits 

NOTE 1) If any value other than '8' or '16' is used for'S' or 'D' in this 
instruction, the value '8' is assumed and an error message is issued by 
the assembler. 

Example: 

WID 0, 0 ;The logical source and destination widths are 
;both 8-bits. The assembly flags this instruction 
;as an error. 

WID 

3-101 



XFER 

3-102 

Enter DMA Transfer Mode 
After Execution of Next Instruction 

Mnemonic: XFER Coding Format: XFER 

Operands: This instruction has no operands. 

Operation: None 

DMA transfer mode is entered following the execution of the next instruction. To 
ensure the correct operation of the DMA transfer mode, the next instruction must 
not load the GA, GB or CC registers. 

Example: 

It is important to ensure that the channel is ready to transfer data as soon as a 
peripheral is granted permission to issue DMA requests. Some 8080 type peripherals 
may start issuing DMA requests upon receipt of their last parameter. The XFER 
instruction is designed to handle such situations by forcing the channel into the 
transfer mode after the execution of the next sequential instruction. This allows the 
program to supply the last parameter to the peripheral immediately before entering 
DMA transfer mode. 

Assembled Instruction: 

7 0 7 0 

I 01100000 I 00000000 

Execution Time: 

4 clocks 



8089 Assembler The Instruction Set 

ASSEMBLED INSTRUCTION DECODING INFORMATION 

RRR 

OOO-GA 100-TP 
001-GB 101-IX 
010-GC 110-CC 
011-BC 111-MC 

WB 

OO-Reserved 
01-0ne immediate/displacement value byte 
10-Two immediate/displacement value bytes 
11-TSL Instruction only 

bbb PPP 

OOO-BitO (LSB) OOO-GA 
001-Bit 1 001-GB 
010-Bit 2 010-GC 
011-Bit3 100-TP 
100-Bit4 
101-Bit5 
110-Bit6 
111-Bit 7 (MSB) 

AA Memory Address Mode 

~O-Base Address only [PREG] 
01-Base Address + 8-bit offset[PREG].d 
10-Base Address + Index Register [PREG + IX] 
11-Base Address + Index Register; 

Index Register post auto-incremented [PREG + IX + 1 

MM Base Memory Address 

OO-GA 
01-GB 
10-GC 
11-PP 

OPERANDS 

REGISTER SYMBOLS DATA MEMORY BIT SYMBOLS 

0 (LSB) 
BC GC 1 
CC IX 1 
GA MC 3 
GB TP 4 

5 
6 
7 (MSB) 

DATA MEMORY EXPRESSIONS 

[PREGl - Base Address only 
PREG can be GA, GB, GC, or PP 

[PREG].d - 'd' is an expression, evaluated modulo 256 
PREG + d = address 

(PREG + IX] - Base Address plus the Index Register 
PREG + IX = address 

[PREG + IX +] - Base Address plus the Index Register 
PREG + IX = address 
IX is post al,lto-incremented by 1 (byte) or 2 (word) 

POINTER/REGISTER SYMBOLS 

GA GC 
GB TP 

3-103/104 





CHAPTER 41 
ASSEMBLER DIRECTIVES 

Introduction 

This chapter describes the directives used to control the 8089 assembler in its genera­
tion of object code. The assembler directives discussed in this chapter are grouped as 
follows: 

• Symbol Definition 

EQU 

• Data Definition and Memory Reservation 

DB 

DW 

DD 

DS 

• Structure Definition 

STRUC I ENDS 

• Location Counter Control 

ORG 

EVEN 

• Program Linkage 

NAME 

SEGMENT I ENDS 

PUBLIC 

EXTRN 

• Assembler Termination 

END 

Assembler Directive Source Statement Format 

Assembler directive source statements have the following general format: 

[LABEL] MNEMONIC [OPERAND(S)] [;COMMENT] 

Items within brackets are not valid or required in every assembler directive. The 
description of each directive, found in the following sections, shows its required and 
optional elements, with optional items appearing in brackets. Comments are 
optional on any source line. 

Assembler directive source statements, like instruction source statements, are made 
up of one or more source lines. A comment is optional on all source lines. An 
assembler directive source statement can be continued by placing an ampersand (&) 
as the first character of the next source line. Character string constants cannot be 
continued on another source line. 

4-1 



Assembler Directives 8089 Assembler 

4-2 

The assembler compresses each source statement as follows: all comments and the 
final end-of-line are deleted; tabs, and all sequences of unquoted blanks and end-of­
line&'s are reduced to single blanks; all quoted quotes are changed into single 
quotes. The maximum number of characters in one compressed source statement is 
256. 

Examples: 

DATA_TABLE: 

lOP_CODE 

ELEVEN 
& 
& 

OS 128 

SEGMENT 

EQU 
11 

;DATA_TABLE isa label. 

;IOP _CODE is a name. 

;This assembler 
;directive covers 
;three source lines. 

The assembler directive mnemonics are symbolic names for the various operations 
the assembler can be directed to perform. These mnemonics are reserved symbols 
and cannot be redefined. (For a complete list of reserved symbols see Appendix G.) 

The following lists the assembler directive mnemonics and the operations they 
perform: 

MNEMONIC OPERATION 

EQU Defines a symbol and assigns a value to it. 

DB Defines byte(s) of data memory with 8-bit value(s). 

OW Defines word(s) of data memory with 16-bit values. 

DO Defines double word(s) of data memory for 20-bit address loading. 

OS Reserves bytes of data memory. 

STRUC Creates a template of offset values; no storage is allocated. 

ORG Sets the assembler's location counter to a specified integer value. 

EVEN Insures that the next instruction/directive begins on an even address 
boundary. 

NAME ASSigns a name to the assembler-generated object module. 

SEGMENT Assigns a name to the segment (~64k) containing the object code 
generated by the assembler. 

PUBLIC Identifies symbols defined in this program that are available to 
separately assembled or compiled programs. 

EXTRN Identifies symbols within this program which are defined and declared 
PUBLIC in separately assembled or compiled programs. 

ENDS Indicates the end of a SEGMENT or STRUC assembler directive. 

END Indicates the end of a source program. 



8089 Assembler Assembler Directives 

Symbol Definition Directives 

Symbols are often defined by appearing as a label to an assembly language instruc­
tion or assembler directive. The value of the assembler's location counter when the 
instruction or directive is assembled is automatically assigned to these symbols by 
the assembler. The assembler's location counter begins with a value of zero and is 
automatically incremented by the length of each instruction or the number of data 
memory bytes used by each data definition or memory reservation assembler 
directive. 

The EQU assembler directive allows a programmer to define symbols and assign 
them values, which may differ from the assembler's location counter. 

EQU Directive 

The EQU assembler directive allows a user to define symbols and assign them 
values. Its format is: 

name EQU expression 

A name is required in the EQU directive. It must not be previously defined and can­
not be redefined in the program. 

The expression in an EQU directive cannot contain a forward reference; i.e., all 
. symbols must be defined (in the lexical sense) when the directive is processed on the 

first assembler pass. Note that the special location counter reference symbol ($) is 
predefined to the assembler and is not a forward reference. 

External symbols are not allowed in EQU expressions. 

Examples: 

TEN EQU 10 

RECORD EQU DATA_BUFF 

RECORD2 EQU DATA_BUFF + 2 

START EQU $ 

ASCII_ V EQU' AL' 

;Define a symbol TEN with a value of ten 
;(decimal). 

;Define a symbol RECORD with the same value 
;as the symbol DATA_BUFF. 

;Define a symbol RECORD2 with the value of 
;symbol DATA_BUFF + 2. 

;Define a symbol START whose value is the 
;current value of the assembler's location 
;counter (equivalent to the statement START:). 

;Define a symbol ASCII_V with the ASCII value 
;of AL (414CH) as its value. 

The EQU directive can also be used to define a synonym for a register name. Sym­
bols defined as synonyms for register names can only appear in the same contexts 
that the register name is allowed. 

Examples: 

SOURCE EQU GA ;Define a symbol SOURCE synonymous with 
;pointer/register symbol GA. 

;Define a symbol PARAM_B synonymous with 
;register symbol PP. 

4-3 



Assembler Directives 8089 Assembler 

4-4 

Assembly time evaluation of EQU expressions is modulo 64k. Negative values are 
expressed in two's complement form. Values range from 0 to OFFFFH or 0 to 65,535 
decimal. 

Examples: 

LARGEST EOU 65535 

MOD_64k EOU 122421 

;Define a symbol MINUS_1 with a value of 
;OFFFFH (two's complement form of -1). 

;Define a symbol LARGEST with a value of 
;OFFFFH. 

;Define a symbol MOD_64k with the value 
;ODE35H (122421 modulo 64k). 

Data Definition and Memory Reservation Directives 

The DB, DW and DD directives initialize data memory. The DS directive reserves 
data memory but does not initialize it. 

A label is optional on all data definition and memory reservation directives. 

DB Directive 

The DB (define byte) directive stores the specified 8-bit values in consecutive data 
memory locations, starting at the current value of the location counter. It has the 
form: 

(symbol:] DB dl[, d2, ... , dn] 

where'd' is an expression or a character string constant. More than one expression 
or-character string constant can be specified; each must be separated by a comma. 

If the optional label is present, it is assigned the value of the assembler's location 
counter where the DB directive begins. It thus references the first byte stored by the 
DB directive. 

Expressions are evaluated modulo 256. Negative values are expressed in two's com­
plement form: Values range from 0 to OFFH or 0 to 255 decimal. 

The size of a character string constant is limited only by the size of the compressed 
source statement. 

Examples: 

Label (optional) Operands Assembled Code (Hex) 

DAT A_TABLE: DB 1,240,15 01140F 

DB 'CHAR_string' 434841525F737472696E67 

MARGIN: DB RATE + 10 (value of symbol RATE + 10) 

NEGATIVE: DB -12 F4 (two's complement of -12) 

DB 1000 E8 (1000 decimal modulo 256) 



8089 Assembler Assembler Directives 

NOTES: 1. The label DATA_TABLE references the first data memory byte stored by the 
DB directive, the data memory byte containing 01 (hexadecimal). 
DATA_TABLE + 1 references the data memory byte containing 14 (hexa­
decimal), the value of 24 octal. 

2. The expression in the second DB directive contains a character string 
constant. Eleven bytes of data memory are initialized, each containing (in 
sequence) the ASCII code for a character. The assembler only distinguishes 
between upper- and lower-case letters within a character string. At all other 
times, upper- and lower-case letters are not differentiated. 

OW Directive 

The DW (define word) directive stores the 16-bit values specified by an expression 
list in fields of two consecutive bytes, starting at the current value of the location 
counter. The format of the DW directive is as follows: 

[symbol:] OW d1[, d2, ... dn] 

where'd' is an expression. Expressions in an expression list must be separated by a 
comma. 

If the optional label is present, it is assigned the value of the assembler's location 
counter where the DW directive begins. It thus references the low-order byte of the 
first 16-bit value stored by the DW directive. 

Expressions in DW directives are evaluated modulo 64k. Negative values are 
represented in two's complement form. Values range from 0 to OFFFFH or 0 to 
65,535 decimal. 

Character string constants containing one or two printable ASCII characters can 
appear in an expression list. The ASCII code for two characters is stored in reverse 
order (see example below). 

The least significant byte (8 bits) of a 16-bit value is stored in the first data memory 
location. The most significant byte is stored in the next higher data memory loca­
tion. If an expression evaluates to a single byte value it is assumed to be the low­
order byte of a 16-bit value whose high-order byte is all zeros. 

A sixteen bit local (I/O) address is stored low-order byte followed by high-order byte 
in data memory by the MOV instruction. The DW directive can be used to define a 
16-bit address con"stant to be loaded into a pointer/register with the MOV 
instruction. 

Examples: 

LABEL (OPTIONAL) OPERANDS ASSEMBLED CODE 

LARGE_COUNT: OW 5280H 8052 

SOME?VALUE: OW 31 1FOO 

ZERO: OW 65536 0000 (65,536 modulo 64k) 

COMPLEMENT: OW -1 FFFF (two's complement of -1) 

TWO@CHARACTERS: OW 'AB' 4241 (ASCII values of characters) 

4-5 



Assembler Directives 8089 Assembler 

4~ 

NOTES: 1. The label LARGE_COUNT references the first memory byte stored by the 
OW directive. In this example LARGE_COUNT references the data memory 
byte containing 80H, the low-order byte of the 16-bit value 5280H. 

2. The OW directive above labeled TWO@CHARACTERS has an expression 
containing a character string constant of two characters. Note the reverse 
order in which the ASCII values are stored for AS: 42H is the ASCII code for B; 
41 H is the ASCII code for A. 

DO 0 irective 

The 00 (define double-word) directive initializes four consecutive bytes (a double­
word) of data memory, starting at the current value of the location counter. It has 
the form: 

[symbol:] DO dl[, d2, ... , dnl 

where'd' is an expression. 

If the optional label is present, it is assigned the value of the assembler's location 
counter when the DO directive is assembled. The label thus references the low-order 
byte of the first of two words stored by the DD directive. 

The DO directive defines four bytes of data which can be used to load a 
pointer /register (GA, GB, GC or TP) with a 20-bit system (memory) address via the 
LPD instruction. The first word of data stored is a 16-bit offset value. The second 
word isa 16-bit segment address. 

An external symbol may appear in a DO directive expression, alone or with other 
(non-external) symbols and numeric constants. The external symbol must be added, 
NOT subtracted, in the expression. The expression is evaluated modulo 64k, with 
the external symbol valued at zero. The 16-bit result is stored in the first word of 
data memory. The value OOH is stored in the second word. 

LINK86 must process the assembler's object module to resolve the external 
reference. When LOC86 assigns absolute addresses to the LINK86 output module, 
the external symbol's offset value is added to the the contents of the first word 
defined by the DO directive; its segment address is placed in the second word. 

Example: 

Label (optional) Operands 

EXTRN EXTERNAL 

Assembled Code (Hex) 

(identify EXTERNAL as a symbol 
defined in some other program) 

EXTERNAL@SYMSOL: DO EXTERNAL + 10 OAOOOOOO 

After the assembler's object module has been processed by LINK86, LOC86 adds 
the offset value of EXTERNAL to the word containing I O(OAOOH) , and places 
EXTERNAL's segmen( address in the next word. EXTERNAL's 20-bit address, 
formed from the 16-bit offset value and the 16-bit segment address, can now be 
loaded into a pointer/register via the LPO instruction. 



8089 Assembler Assembler Directives 

DS Directive 

The DS directive reserves bytes of data memory. Its format is: 

[SYMBOL:] os expression 

The assembler's location counter is incremented by the value of. the expression, 
thereby reserving space in memory. There is no initialization of the data memory 
bytes reserved by the DS directive. Their contents are unknown when program exe­
cution begins. 

Any symbol appearing in the expression must be defined, in the lexical sense, to the 
assembler when the DS directive is processed. A forward reference, i.e., a reference 
to an as yet undefined symbol, is flagged as an error. 

Expressions are evaluated modulo 64k. Negative values are expressed in two's com­
plement form. Values range from OH to OFFFFH, or 0 to 65,535 decimal. An 
expression value of zero reserves no memory space but does assign the value of the 
location counter to the optional label if it present. 

Note that 

RESERVE: DS 128 

is equivalent to (see definition of ORO below) 

RESERVE EQU $ 
ORO $+ L28 

The optional label, if present, is assigned the value of the assembler's location 
counter when the DS directive is assembled. It thus references the first data memory 
byte reserved. 

Example: 

OS 122 ;Reserves 122 bytes of 
;memory. 

The label DATA_BUFFER references the first reserved byte; DATA_BUFFER 
+ 1 'references the second. The contents of the reserved memory bytes are unknown 
at the start of program execution. 

Structure Definition 

The STRUC/ENDS Directives 

The STRUC and ENDS directives define a template of offset values, used in con­
junction with the address mode "[PREO].d" (base plus unsigned 8-bit offset). This 
template provides a convenient means for addressing blocks of data memory. A 
structure does not reserve data memory or generate object code. 

A structure is defined as follows: 

name STRUC 

name ENOS 

4-7 



Assembler Directives 8089 Assembler 

4-8 

A name is required and must be the same in both the STRUC and concluding ENDS 
directive. This name is defined as a symbol whose value is zero. It must not have 
been previously defined and may not be subsequently redefined. 

Any instruction or assembler directive, with the exception of PUBLIC, EXTRN, 
EVEN, NAME, STRUC, ENDS and END, can appear between the STRUC and 
ENDS directives. 

A STRUC directive stores the value of the assembler's location counter and sets it to 
zero. The following directives and instructions cause the location counter to be 
incremented in the normal fashion, but no object code is generated. 

The ENDS directive restores the saved value of the location counter and normal 
assembler operation resumes. Once closed, a structure cannot be redefined or 
extended. 

Example of the use of a structure: 

The following structure creates a template of offset values to access a block of I/O 
control parameters written into data memory by a host processor. 

STRUCTURE DEFINITION STATEMENTS OFFSET VALUE 

I?O_INFO_BLOCK STRUC 

CONTROL_PARAMETERS: DB 0 0000 

NEW_STATUS: DB 0 0001 

INPUT _ADDRESS: DO 0 0002 

OUTPUT _ADDRESS: DO 0 0006 

RESULT _CODE: DB 0 OOOA 

RETRY _COUNT: OS 0 OOOB 

I?O_IN FO_BLOCK ENDS 

The control information can now be accessed using the pointer/registers GA, GB, or 
GC, loaded with the control paramter block's base address, and the template offset 
values: 

MOV GA, [G8].INPUT_ADDRESS 

MOVB IX, [GC].RETRY_COUNT 

;The 16-bits of data beginning at GB + 2 
;are moved to GA (GA's tag bit is set 
;to logical one). 

;The byte at GC + 11 is moved to the 
;index register. 

If the block of control parameters is written into the channel's Command Parameter 
Block, the PP register can be used as the base address to access the block: 

MOV81 [PP].RESULT_CODE,OFFH ;Here information is being written into the 
;control block at the address PP + 10. 



8089 Assembler Assem bier Directives 

Location Counter Control Directive 

The assembler's location counter begins with a value of zero and is automatically 
incremented by the length of each instruction or the number of data memory bytes 
used by each data definition or memory reservation assembler directive. 

ORG Directive 

The location counter can be set to a specific integer value by the ORO directive: 

ORG expression 

The assembler's location counter is set to the value (in hexadecimal) of the expres­
sion. The expression is evaluated modulo 64k and negative values are expressed in 
two's complement form. Expressions are defined in Chapter 2 under "Immediate 
Data Operands." 

Symbols in the expression must be defined, in the lexical sense, to the assembler 
when the ORG directive is processed. Forward references cause the directive to be 
flagged as an error. 

Example: 

ORG 1000H ;The location counter is set to 1000. 

ORG 16 ;The location counter is set to 0010. 

EVEN Directive 

System performance can be improved by placing some data and some instructions 
on even address boundaries. The EVEN assembler directive insures that the 
assembly language instruction or data memory initialization/reservation directive 
immediately following it begins at an even value of the assembler's location counter. 

If the value of the assembler's location counter is odd when the assembler finds an 
EVEN directive, a three-byte no-op is generated by the assembler. If the location 
counter's value is even when an EVEN directive is found, the assembler takes no 
action and continues on to the next source statement. 

The EVEN directive has the following form: 

EVEN 

Example: 

EVEN 
IN_BUFF: OS 128 

The value of IN_BUFF, the address of the first reserved data memory byte, is even. 

Program Linkage Directives 

The assembler produces a single segment, a maximum size of 64k bytes, origined at 
zero. This segment can be relocated using the relocation tool LOC86. The segment is 
aligned on a paragraph boundary; i.e., it begins at an address whose value in hexa­
decimal has a last digit of zero. The SEGMENT/ENDS directives define this seg­
ment and assign it a name. This name is used by LOC86 to relocate the segment. 

4-9 



Assembler Directives 8089 Assembler 

4-10 

8089 programs can share symbol table entries with other programs through the use 
of the PUBLIC and EXTRN directives. LINK86 and LOC86 are used to resolve 
such external references. 

The NAME directive allows a unique name to be assigned to each object module 
generated by the assembler. 

Refer to the publication MCS-86 Software Development Utilities Operating Instruc­
tions for ISIS-II Users, order number 9800639, for details of LOC86 and LINK86. 

NAME Directive 

The NAME directive assigns a name to the object module generated by an assembly. 
It has the form: 

NAME module-name 

The module-name must conform to the rules for forming a symbol; i.e., it can have 
1 to 31 alphabetic, numeric or special characters ( ? _ @ ), the first of which must 
be alphabetic or special. 

A program can contain at most one NAME directive. If there is no NAME directive, 
the default name assigned by the assembler is the source file name without any 
extension. 

The module-name appears in the header lines of the listing banner of the list file. 

Example: 

NAME DEVELOPM ENT _PROG RAM_ V001 

SEGMENT lENDS Directives 

The object code generated by ASM89 is contained in a single segment, a maximum 
of 64k consecutive bytes in size, defined as follows: 

name SEGMENT 

name ENDS 

A name is required and must be the same in both the SEGMENT and ENDS 
directives. 

Every source program must define exactly one segment with the SEGMENT lENDS 
directives. If a segment is not defined, no object file is generated by the assembler. 

All assembly language instructions and assembler directives which affect the 
assembler's location counter or define labels, as well as the EQU directive, must 
follow the SEGMENT directive and precede the ENDS directive. 



8089 Assembler Assembler Directives 

Example: 

lOP_CODE SEGMENT 

lOP_CODE ENDS 

PUBLIC Directive 

The PUBLIC directive makes symbols defined in this program available for access 
by other separately assembled or compiled programs. It has the form: 

PUBLIC symbol1 [symboI2, ... ,symboln] 

Symbols in a list must be separated by a comma. A symbol can be declared PUBLIC 
only once in a program. Reserved and external symbols cannot be declared 
PUBLIC. 

Symbols declared PUBLIC but not defined in a source program are flagged as errors 
by the assembler. PUBLIC directives may appear before the SEGMENT directive 
and anywhere else within the program, except within a structure. 

Example: 

PUBLIC DATA_LIST, PARM@BLOCK, I/O?DEVICE 

EXTRN Directive 

The EXTRN directive provides the assembler with a list of symbols referenced in 
this program but defined in other separately assembled or compiled programs. It has 
the form: 

EXTRN symbol1 [, symbol2, ... , symboln] 

Symbols in a list must be separated by a comma. 

A symbol can be declared EXTRN only once in a program. It cannot be defined 
within the program nor can it be declared PUBLIC. 

The EXTRN directive can appear before the program's SEGMENT directive and 
anywhere else in the program, except in a structure. 

Example: 

EXTRN DEVICE1, DEVICE2, OAT A_TABLE 

4-11 



Assembler Directives 8089 Assembler 

4-12 

Assembler Termination 

EN D Directive 

The END directive identifies the end of the source program and terminates each pass 
of the assembler. It has the form: 

END 

Only one END directive may appear in a source program and it must be the last 
source statement. The END directive must not appear in an INCLUDE file. Any 
source statements following the END directive are ignored by the assembler and 
cause an error message to be issued to the assembler. 



Introduction 

CHAPTER 5 
ASSEMBLER CONTROLS 

AND OPERATION 

This chapter describes the following aspects of ASM89, the ISIS-II 8089 assembler: 

• Source file format 
• Invocation command, controls, and defaults 
• Output files-program list file and object file 

A complete list of Error Messages and corresponding user actions (where applicable) 
appears in Appendix J. 

Source File Format 
The source file input to ASM89 must reside on a random access device. INTELLEC 
development systems include a text editor that can be used to create and maintain 
8089 Assembly Language source files as diskette files. The ASCII horizontal tab 
character (09H) is replaced by sufficient blank characters (always at least one) to 
position to the next tab- stop. Tab stops are preset at columns 9, 17, 25, .... 

Source files contain three elements: 

• 8089 Task Block Programs, composed of 8089 assembly language instructions, 
described in Chapter 3 of this manual. 

• Assembler directives, described in Chapter 4 of this manual. 
• Assembler controls lines, described later in this chapter. 

Table 5-1 summarizes important source file parameters. 

Table 5-1. 8089 Assembly Language Source File Parameters 

ITEM LIMIT 

Characters/ compressed* source statement 256 characters. 

Characters/ symbolic name 31; symbolic names greater than 32 
characters are flagged as errors. 

Symbols/module 300 (approximately); relative to the length of 
the symbolic names used. 

INCLUDE'd files No assembler imposed limit on the number 
of INCLUDEd files, but nested INCLUDEs 
(INCLUDE controls in an INCLUDEd file) are 
not allowed. INCLUDEd files must not con­
tain an END directive. 

Segment definition 

END directive 

A single segment, a maximum of 64k bytes 
in size, must be defined via the SEGMENT / 
ENDS directives. 

A single END directive must appear in a 
source file. 

* The assembler compresses each source statement by deleting all comments, and the 
final end-of-line, changing all unquoted sequences of blanks and tabs into single blanks, 
changing unquoted end-of-line&'s into single blanks, and changing all quoted quotes into 
single characters. 

5-1 



Assembler Controls and Operation 8089 Assembler 

5-2 

Invocation Command, Controls, and Defaults 

You can invoke ASM89 from ISIS-II by entering the command: 

:Fn :ASM89 source controls 

where: 

:Fn: 

designates the drive on which ASM89 resides. If n=O, you can omit the 
drive designation. 

source 

designates the drive and file (for example, :Fl :PROG.SRC) containing the 
source statements to be assembled. 

controls 

is a (possibly empty) list of controls, separated by blanks. This field of the 
invocation command is called the command tail. 

You can continue the invocation command to one or more additional lines by enter­
ing an unquoted ampersand (&) in place of a blank. Since anything following the 
ampersand on that line is echoed, but otherwise ignored, you can thus comment 
your invocation lines; they are echoed in the listing. On subsequent lines, ASM89 
prompts you for the remainder of the invocation command by issuing a double 
asterisk followed by a blank (** ). Refer to Example 5-3, "Continuation Lines and 
Prompting," in this chapter. 

Summary of Controls 

Table 5-2 provides a summary of ASM89 controls and defaults. There are two 
classes of controls: Primary (P) and General (G). Both classes of controls can be 
specified in the command tail and in separate control lines within the source file, 
except the general controls EJECT and INCLUDE, which can only appear in source 
file control lines. A control line is an assembler source line having a dollar sign ($) as 
its first character. 

Primary and general controls differ as follows: 

• Primary controls establish global modes of operation, and if specified must 
appear in the command tailor prior to any non-control lines in the source file. If 
conflicting primary controls are specified (e.g. PRINT and NOPRINT), the last 
valid control is used. 

• General controls may appear in the command tailor in any line of the source 
file. General controls may be respecified at any time. 

Table 5-2. ASM89 Controls and Defaults 

CONTROL PIG DEFAULT PURPOSE 

OBJECT(file) P OBJECT(file.OBJ) Name and/or place the object file 

NOOBJECT P OBJECT(file.OBJ) Don't create object file 

PRINT(fiIe) P PRINT(file.LST) Name the listing file 



8089 Assembler Assembler Controls and Operation 

Table 5-2. ASM89 Controls and Defaults (Cont'd.) 

CONTROL PIG DEFAULT PURPOSE 

NOPRINT P PRINT(file.LST) Don't create listing file 

SYMBOLS P SYMBOLS List symbol table 

NOSYMBOLS P SYMBOLS Don't list symbol table 

PAGEWIDTH(n) P PAGEWIDTH(120) Charslline in listing 

PAGELENGTH(n) P PAGELENGTH(62) Lines/page in listing 

PAGING P PAGING Separate pages in listing 

NOPAGING P PAGING Continuous listing 

DATE('ddddddddd') P DATE(' ') Appears in header 

TITLE('t... t') P TITLE(' ') Appears in header 

LIST G LIST Turn on listing 

NOLIST G LIST Turn off listing 

EJECT G Start new listing page 

INCLUDE(file) G Assemble a side file here 

Primary Control Descriptions 

OBJECT(filename) 

Specifies that an object file is to be created and gives the location and name 
of the file. If the file specification is missing, the object file is placed in a file 
with the same device and name as the source file, and with the extension 
OBJ. 

NOOBJECT 

Specifies that no object file is to be produced. 

PRINT(filename) 

Specifies that a listing file is to be created and names the file. If the file 
specification is missing, the listing file is placed in a file with the same device 
and file name as the source file, and with the extension LST. 

NO PRINT 

Specifies that no listing file is to be created. 

SYMBOLS 

Specifies that a formatted listing of the symbol table is to be created and 
appended to the listing file. 

NOSYMBOLS , 
Specifies that a formatted listing of the symbol table is not to be created. 

5-3 



Assembler Controls and Operation 

54 

P AGEWIDTH(n) 

Specifies the width of the listing page in number of characters per line. The 
range for n is from 72 - 132 inclusively. 

P AGELENGTH(n) 

Specifies the length of the listing page in number of lines per page. The 
range for n is 10 - 255 inclusively. 

PAGING 

Specifies that the listing is to be formatted as separate pages. 

NOPAGING 

Specifies that the listing is not to be formatted as separate pages; that is, the 
listing is continuous. 

DATE('ddddddddd') 

Supplies a field of up to 9 characters in the header of each listing page for 
the user-specified date (or other information). 

TITLE('t. .. 1') 

Supplies a variable length field of characters to appear in the header of each 
page in the listing. The length of the title field depends on the 
P AGEWIDTH and the presence or absence of a DATE control. Titles 
exceeding the field width are truncated. 

General Control Descriptions 

LIST 

Turns on the source statement listing mechanism. 

NO LIST 

Turns off the source statement listing mechanism. Statements in error and 
error messages are still listed if PRINT is specified. 

EJECT 

Causes an eject (by issuing a form-feed to the listing file) to a new page. 

INCLUDE(filename) 

Specifies that the named file is to be included for assembly. When ASM89 
encounters the INCLUDE control, the source input is switched to the 
specified file and remains there until an end-of-file condition is 
encountered. The included file(s) must not contain either another 
INCLUDE control (that is, no nesting of included files is permitted) or an 
END directive. The end-of-file condition is the only terminator recognized 
for the included ·file, regardless of the presence of carriage-returns, line­
feeds, or continued lines. 

8089 Assembler 



8089 Assembler Assembler Controls and Operation 

Examples 

Example 5-1. Full Default 

Suppose the following: 

I. ASM89 resides on disk drive 0 

2. Your source file, CHAN.TST, resides on disk drive 1 

Then the invocation command: 

ASM89 :FI:CHAN.TST 

calls the assembler into operation and results in the following: 

• The object file is placed in :FI :CHAN .OB] 

• The listing file is placed in :FI :CHAN .LST 

• A formatted listing of the symbol table is placed in the listing file. 

• No line in the listing file exceeds 120 characters. 

• The listing file is paged; no page in it exceeds 62 lines. 

• The Title and Date fields in the listing file header are blank. 

Example 5-2. Partial Default 

If, in Example 5-1, the invocation command is replaced by: 

ASM89 :FI :CHAN.TST OBJECT(:FI:NETCAT.DRV) PRINT(:TO:) DATE('6/21/79') 

then the results differ as follows: 

• The object file is placed in :Fl:NETCAT.DRV 

• The listing file is printed on the teletypewriter, provided one is attached, 
powered ON, and set to "LINE" mode. 

• The string 6/21/79 (without quotes) appears in the DATE field in the header on 
each page of the listing. 

Example 5-3. Continuation Lines and Prompting 

You can continue the invocation line using an unquoted ampersand. Since ASM89 
ignores characters appearing between the ampersand and the end of the line, you can 
use this field to document your invocation line. ASM89 prompts you for more 
information by issuing a double-asterisk followed by a blank, as follows: 

ASM89 :F1 :CHN3N4.TST 
** OBJECT(:F3:LlNK34.001) 
** PRINT(:F4:LlNK34.DQC) 
** NOSYMBOLS 
** PAGEWIDTH(132) 
** NOPAGING 
** DATE('8/15/79') 
** TITLE('Fire Up N3-N4') 

& ISIS-II 8089 Assembly of source file CHN3N4.TST 
& Object file 
& Listing file 
& No symbol table printout this time 
& Max. line length is 132 chars. 
& No form feeds; continuous print-out 
& 1 st day network integration 
& Physical link checkout between nodes 3 and 4 

Processing begins following your carriage-return after the last prompt. The 
invocation command and its comments are echoed in the listing file, in this case 
:F4:LINK34.DOC. 

5-5 



Assembler Controls and Operation 8089 Assembler 

5-6 

Format of the Listing File 

Each page of the assembler-generated list file begins with a header: 

8089 ASSEMBLER [title] [date] PAGEX 

Items enclosed in brackets, [ ], are optional. The TITLE control places a user- defin­
ed title in the header; the DATE control adds a user-specified date. The page 
number, beginning with one, is included in the header. 

On the first page of the listing file, the header is followed by the listing banner: 

ISIS-II 8089 ASSEMBLER version ASSEMBLY OF MODULE module-name 
OBJECT MODULE PLACED IN object file name 
ASSEMBLER INVOKED BY invocation command 

The body of the list file contains the following four fields of information: 

Location Counter Object Code Line Number Source Line 

All source lines appear, in order, in the body of the list file. 

EQU directive values are indented two positions from the first location counter 
digit. When registers or pointer/registers are assigned alternate names through an 
EQU directive, the followi'ng appears as the EQU value in the list file (see figure 
5-1): 

REG = register or pointer/register 

8089 ASSEMBLER LIST FILE FORMAT ..... f-----------HEADER-----------. 0?/01nZ P~GE 

ISIS-II 8089 ASC,U4BLE.i< Vl.O ASSEMBLY OF MOOlt.E LlST8fOR~.T } 
a B-JECT I'OOULE PLACED IN :Fl :OBJECT .OUT LISTING BANNER 
ASSEMBlFR INVOKED BY :fI=ASM89 :fl:LIST 08JECTI:fl:0BJECT.OUTI DATE IOOZI0112z o 1 

0000 

SPRINT I:f I:L IS I.PRT) 
SPAGE WID TI1 I I2S I 
HillE "lIST FILE FORMAl') 

1 ; 

" ; 
3 
4 SEGB9 
5 ; 

NAME lIS TafOQM •. T 
SEGMENT 

b ; rREGISTER OR POINTER/REGISTER EaU 

~I R~E~G~=~GA~:::::::::::::::::::::::!~~S~OU~R~Cf:E:::::::~~~~~~L~I~C:::~!:PI O~K 1P 1. TEl OCK 1P2 . 
REG-Gt' 9 LESTIN [~U Gil SPLIT 
COb8 10DMA?CNIRl EOU OCObBI1 UN R[GISTER CC. THIS VALUE SPECIFIES THE PA/}LlSTING 

11 ; -RAME TERS FOR • OMA TRANSFE.r; OPU;ATlON. LINE 

0000 
10080 CI 02 03 04 OS Db 01 08 

0000 00 
0001 CO 
0002 00000000 
OOOb 

OOBA rooD 

12 ; 
13 INaBUFF: 
14 
15 COM"l'N?BlK 
Ib PARMS: 
17 STATUS: 
18 ADDR: 
19 COMMUN?BlK 
ZO ; 
Z. ; 
Z2 TBlOCK?P I: 
73 

OS 
DB 
STRUC 
DB 
DB 
OJ 
['ilLS 

WIr 

lZB ;RESERVE IZB BY TES FOR AN I"IPUT BUFFER. 
1. Z. 3. 4. S. b. 1. 8. 9. 10 I~ 

lb. Ib 

L 10 DATA BYTES DEFINED 
8 DATA BYTES LISTED 

;SET DI'A TRANSfER SOURCE A'IID DESTlNATIO\l 
;LOGICAL WIDTHS. 

008C 0130 0000 Z4 MJVI CC. D"A?CNTL IPUI D'4A CONTROL PARA"ETERS IN CG. 
1r..;.;.~E]R~RO~R~67~:~D~M~A~?C~NaTIl~W~AIsJN~E~VE~H~DEUF~I~NEUD~;::~~DmRE~S~S~A~S~S~U~~E~D;Z~E]~~o]I ... ~~~~=:~~~~~l 
'-5090 1130 0000 Z5 I'JVI SOURCE. INaBUFF LASSEMBLER GENERATED 
0094 i'3E18 0<' <'b LPL L:f.STIN. [PP].~IJl·R ERROR MESSAGE 
0091 6000 27 
0099 1130 BODO Z8 
009D 2048 Z9 

30 
31 

X'-[R 
'4lVI 
HLT 

SlNCLIJ()[ ,:F I:SINTRP) 

009f 
OOAZ 
OOAb 
00A8 

OOAA 

LOCATION 
COUNTER 

f!39B OZ 
OAtof 01 01 
4000 
2048 

1

-
SOURCE : 
LINES = 
FROMAN = 
INCLUDE'D = 
FILE 

OBJECT 
CODE 

32 ; 
33 ; 
34 TBlOCK?PZ: 
35 
36 
37 

"':>VP 
"JVBI 
SJII.TP 
HLT 

-OPER A:nON. 
38 ; 
39 ; 
40 SEG89 
41 

LINE 
NUMBER 

ENDS 
[NO 

BC. IZ8 

[PP).ADDR. TP ;STORE TP POI'ITER/PEGISTER. 
[PPI.STATUS. IIPLACE STATUS CODE IN PARA"ElER BLOC~. 

;SET INTlRRUPT SERVICE FLIP-FLOP. 
;STOP TBP tXECUIION-WAIT fOP HOST TO TAKE P'll 

SOURCE LINE 

Figure 5-1. List File Format 



8089 Assembler Assembler Controls and Operation 

8089 ASSEMBLER LIST FILE FORMAT 02/07/22 PAGE 

SYMBOL UBLE 
---------

OEFN VALUE TYPE NAME 
----- ----- ----

18 OOOL' SYM ADDR 
I~ 0000 STR COMMUIII?BLK 

9 GB REG DESTIN 
0000 SYM OMA?CNTL • .-.-----SOURCE FILE SYMBOL NOT DEFINED IN THE FILE 

10 C06B SYM PMA?CNTRL 
13 0000 SYM IN.BUFF 
lb 0000 SYM PARMS 

4 0000 SYM SEG89 
8 GA REG SOUQCE 

17 0001 SYM STATUS 
22 OOBA PUB TBLOCK1Pl 
3 .. 009F PUB TBLOCK?P2 

ASSEMBL Y COMPLETE I I ERROR FOUND • _---LAST LIST FILE LINE CONTAINING ERROR COUNT 

Figure 5-1. List File Format (Cont'd.) 

Figure 5-1 shows the listing file of a sample program coded in 8089 assembly 
language. 

The object field contains the assembler-generated object code for each source file 
instruction. The data generated by data-generating source file directives also appears 
in the object code field. Note that while data-generating directives can generate any 
number of data bytes, only the first eight bytes generated appear in the listing. (See 
figure 5-1.) 

Source lines that do not fit on a single list file line are split. A '/' at the end of a list 
file line indicates a split source line. A '-' at the beginning of a list file line indicates 
that the line is a continuation of the previous list file line. (See figure 5-1.) Source 
lines from an INCLUDEd file are masked by an '=' character, which appears before 
the line number and list file line. 

Error messages generated by the assembler are -placed in the list file immediately 
following the source statement which provokes the error. (See figure 5-1.) A com­
plete list of error messages is given in Appendix J. 

The list file may also include a symbol table. The symbol table appears at the end of 
the list file, under the heading: 

SYMBOL TABLE 

Symbol information appears under the following headings: 

DEFN VALUE TYPE NAME 

DEFN 

VALUE 

Contains the list file line number -where file symbol is defined. 
,-----, under DEFN indicates that the symbol was found in the 
source file input but never defined. 

Indicates the value assigned to the symbol by the assembler. 
Symbols defined as an alternate name for a register or 
pointer/register have the Register Symbol listed as their value. 
External symbols are numbered, starting with one, in the symbol 
table. This number appears in the value field. 

5-7 



Assembler Controls and Operation 8089 Assembler 

5-8 

TYPE Indicates the kind of symbols defined: 

SYM - A user-defined symbol (label or name). 

REG - An alternate name for a register or a pointer register. 

PUB A symbol declared PUBLIC in the source file. 

EXT A symbol declared EXTRN in the source file. 

STR The name of a structure defined in the source file. 

NAME The user-defined symbol. 

The list file concludes with the following line, listing the number of errors found by 
the assembler: 

ASSEMBLY COMPLETE; number of errors found 



GLOSSARY 

This glossary contains terms specifically related to the operation of the Intel 8089 
110 Processor. 

ASM89-the assembler for the 8089 Assembly Language. 

BC-a predefined symbol for the general purpose 16-bit register that is used as a 
byte counter during DMA transfers. 

Bus Load Limit-an 8089 control, specified in the Channel Control Word, that 
limits task block program instruction execution for a channel. 

BUSY flag byte-a byte in the Channel Control Block (CB+ 1 for channel one; 
CB+9 for channel two) indicating the activity status of a channel. 

CC-a predefined symbol for the 16-bit register used to specify controls for a chan­
nel's 110 operations. 

Chained task block program instruction execution-the priority of task block 
program instruction execution is equal to that of DMA transfer; task block program 
instruction execution on one channel may interleave with DMA transfer operations 
on the other channel, depending on the P value in the CCW of both channels. 

Channel attention-a hardware input to the 8089 used to begin 8089 initialization 
and initiate communication between a host processor and the 8089's two I/O 
channels. 

Channel Control Block (CB)-a block of shared system memory used for com­
munication between a host processor and the 8089's two 110 channels. 

Channel Control Word (CCW)-a byte in the Channel Control Block (CB for 
channel one; CB+8 for channel two) used to issue commands and specify operation 
parameters for an 8089 channel. 

Command Field (CF)-a three-bit field in the CCW used to issue commands to an 
8089 channel. 

Command Parameter Block (PB)-a block of shared system memory used for 
communication between a host processor and an 8089 channel. The address of a 
channel's task block program is contained in PB. 

DMA transfer-a high-speed direct memory access data transfer operation. 

GA, GB-predefined symbols for the 20-bit general purpose pointer/registers and 
their associated tag bits, used in task block programs to access data memory and, in 
DMA transfers, to specify source/destination addresses. 

GC-a predefined symbol for the 2P-bit general purpose pointer/register and its 
associated tag bit, used in task block programs to access data memory and, in DMA 
tranfers in the translate mode, to specify the base address of a 256 byte translation 
table. 

Indirect addressing-a data memory location is accessed via a pointer/register con­
taining the address of the desired data memory location. 

Glossary 1 



Glossary 

Glossary 2 

8089 Assembler 

Interrupt Control Field (ICF)-a two-bit field in the CCW used to control inter­
rupts from an 8089 channel. 

IX-a predefined symbol for the 16-bit general purpose register used in some data 
memory expression forms to provide an index value which is added to a base 
pointer/register; in the data memory expression from [PREG+IX+], IX is post 
auto-incremented by 1 (byte datum) or 2 (word datum). 

Jump target-a location containing the instruction to which program control is 
passed as a result of a control transfer instruction. 

LINK86-an MCS-86 software development utility which resolves inter-module 
references. 

LOC86-an MCS-86 software development utility which assigns absolute addresses 
to object modules. 

LOCAL configuration-an 8089 and a host processor share a single bus. 

Local (I/O) space-the 64k byte address space which accesses an 8089's remote bus 
in a REMOTE configuration or 110 addresses in a LOCAL configuration. 

Logical width-the width, in bits, of the DMA transfer source or destination. 
Logical widths, specified by a task block program WID instruction, may differ from 
a system's physical bus widths. For example, a DMA transfer source or destination 
on a 16-bit bus can have a logical width of eight bits. Certain logical widths are 
required by the 8089 during DMA transfers for data translation and testing 
operations. 

Long jump or call-an "L" prefix is attached to the short form of a control 
transfer instruction. A signed word displacement (-32,768, +32,767), used to form 
the jump target's address, is generated by the assembler. 

Mask/Compare-an exclusive OR is performed on a data byte and a compare byte. 
The result is logically ANDed with a mask byte. The result of the logical AND is 
checked for zero (mask/compare is equal). 

MASTER-when the RQ/GT circuitry is used to control access to a bus shared by 
two processors, one processor is designated a MASTER and controls the bus follow­
ing system initialization. 

MC-a predefined symbol for the 16-bit general purpose register that provides 
mask/compare bytes for certain 8089 Assembly Language instructions and DMA 
transfer operations. 

Offset, offset value-a 16-bit value added to a 16-bit segment address (shifted left 
four bit positions) to form a 20-bit address. (See MCS-86 Assembly Language 
Reference Manual, Order Number 9800640, for more information.) 

Paragraph aligned-the segment in an ASM89 object-module is located by LOC86 
on a paragraph boundary, i.e., it begins at an address divisible by sixteen. (See 
MCS-86 Assembly Language Reference Manual, Order Number 9800640, for more 
information.) 

Pointer/Register-a 20-bit register with an associated tag bit used to point to 16-bit 
local (I/O) space or 20-bit system (memory) space. 

PP-a predefined symbol for the read-only, non-programmable 20-bit register 
which contains the address of a channel's Command Parameter Block (PB). 



8089 Assembler 

Program Status Word (PSW)-an 8-bit value stored in the fourth byte of a chan­
nel's PB (PB+3) when a channel's operation is suspended by a HALT AND SAVE 
command in the CCW. The PSW contains channel status information. 

Remote bus-the bus in a REMOTE configuration not accessible by a host pro­
cessor, accessed by the 8089 with 16-bit local (I/O) addresses. 

REMOTE configuration-the 8089 has its own remote bus, inaccessible to a host 
processor and accessed by 16-bit local (110) space addresses. The 8089 also accesses 
a shared system bus via 20-bit system (memory) space addresses. 

RQ/GT -a hardware pin and its associated circuitry used to control access to a bus 
shared by two processors. 

Segment, Segment address-a 16-bit value shifted left four bit positions and added 
to a 16-bit offset value to form a 20-bit address. (See the MCS-86 Assembly 
Language Reference Manual, Order Number 9800640, for more inforation.) 

Short jump or call-a control transfer instruction without an "L" prefix. A signed 
byte (-128, +127) or a signed word (-32,768, +32,767) displacement value can be 
generated by a short control transfer instruction. If a forward reference is used in 
the expression specifying the jump target, the assembler assumes a signed byte 
displacement value is needed. 

SLAVE-when the RQ/GT circuitry is used to control access to a bus shared by two 
processors, one processor is designated a SLAVE. A SLAVE requests the bus from 
the MASTER following system initialization. The "R" value in the System Opera­
tion Command specifies the way in which the bus is shared between a MASTER and 
a SLAVE processor. 

SYSBUS-the first byte in the System Configuration Pointer, SYSBUS specifies the 
width of the system bus. 

System bus-the bus in a REMOTE configuration accessed by the 8089 using 20-bit 
addresses. In LOCAL configurations this is the bus shared by the 8089 and a host 
processor. 

System Configuration Block (SCB)-the second block in a linked list of shared 
data memory blocks used to initialize the 8089. The SCB is pointed to by the System 
Configuration Pointer and contains the SOC and the Channel Control Block 
address. 

System Configuration Pointer (SCP)-the first block in a linked list of shared data 
memory blocks used to initialize the 8089. The SCP must begin at address 
OFFFF6H. It contains the SYSBUS byte and points to the System Configuration 
Block. 

System (memory) space-the one-megabyte address space which accesses 
the system bus in a REMOTE configuration and data memory in a LOCAL 
configuration. 

System Operation Command (SOC)-the first byte in the System Configuration 
Block, the SOC specifies the width of the remote bus, if one is present. It also 
specifies the mode of RQ/GT circuitry operation. 

Tag bit-a bit associated with a 20-bit pointer/register. A tag bit's value indicates 
whether the pointer/register contains a 16-bit local (110) address (tag bit=1) or a 
20-bit system (memory) address (tag bit=O). 

Task block program (TBP)-a program written in 8089 Assembly Language which 
manages and controls a channel's I/O operations. 

TP-a predefined symbol for the 20-bit pointer/register and its associated tag bit, 
used as an instruction pointer for a channel's task block programs. 

Glossary 

Glossary 3 





APPENDIX A 
OPERAND SUMMARY 

8089 Assembly Language instruction operands specify the various kinds of items 
used in each operation. Table A-I summarizes these items and their associated 
operand types: 

Table A-I. Data Items and Associated Operand Types 

ITEM OPERAND TYPE EXAMPLES 

Machine registers Register IX, MC, BC 

Machine Pointer/Registers Pointer / Register GA,GB, GC 

Immediate Data Values Immediate Data OFFH, ADTAB + 4 

Locations Within a Program Program Location $ + 6, START 

Data in Memory Data Memory [GAJ, [GB].5 

Bits of Memory Data Data Memory Bit 0,1,7 

Register Operands 

SYMBOL REGISTER NAME SYMBOL REGISTER NAME 

BC Byte Count GC General Purpose C 

CC Channel Control IX Index Register 

GA General Purpose A MC Mask/Compare 

GB General Purpose B TP Task Pointer 

Pointer IRegister Operands 

SYMBOL REGISTER NAME SYMBOL REGISTER NAME 

GA General Purpose A GC General Purpose C 

GB General Purpose B TP Task Pointer 

Immediate Data Operands 

Immediate data operands are expressions composed of: 

• Symbols 

• Numeric constants 

• Character string constants of one or two characters 

• The special location counter reference symbol $ 

• The assembly time operators + and -

Immediate data operands can represent a data memory location, an instruction loca­
tion, or an 8- or I6-bit value. 

A-I 



Operand Summary 8089 Assembler 

A-2 

Program Location Operands 

Locations within a program can be specified by three general types of expressions: 

• An expression containing an instruction label (e.g. ROUTINEl) 

• An expression containing only numeric constants (a displacement from the 
beginning of the program segment-NOT an absolute address) 

• An expression containing a relative instruction address (i.e., an expression 
containing the special location counter reference symbol $) 

Data Memory Operands 

Data memory is accessed indirectly, using the contents of the pointer/registers GA, 
GB, or GC or the PP register as a base address. Data memory operands have four 
forms: 

[PREG] 

[PREG].d 

- Base address only 

'PREG' can be the pointer/register GA, GB, GC, or the PP 
register. 'PREG' contains the data memory address. 

- Base address plus an unsigned 8-bit offset 

'd' is an expression evaluated modulo 256. 

[PREG+IX] - Base address plus the Index register. 

The data memory address is formed by adding the contents of 
the Index register and the base address. The contents of the 
Index register and the base address are not changed. 

[PREG+ IX +] - Base address plus the Index register; 
Index register post auto-incremented 

The data memory address is formed by adding the contents of 
the Index register and the base address. At the end of the 
instruction, the Index register is automatically incremented by 
the size of the memory data (by one for byte data, by two for 
word data). The base address is unchanged. 

Data Memory Bit Operands 

The bits in a data memory byte are numbered, right to left, as follows: 

7 o 

Ix X X X X X X xl 
7 6 543 2 1 0 

The bit number is the operand used in an 8089 Assembly Language instruction, 
where applicable, to specify the r~ferenced bit. 



APPENDIX B 
INSTRUCTION SET SUMMARY 

Decoding information: 

R-a register symbol 

M-a data memory expression 

P-a pointer/register symbol 

b-a data memory bit symbol 

I-an expression specifying an immediate value 

L-an expression specifying a program location (e.g., a label) 

See Appendix A, "Operand Summary," for a description of each of the above 
items. 

RS -Specifies the low-order byte of a 16-bit register. When 'RS' is the destination 
(left-most) operand of a data transfer instruction, the data is sign-extended 
(bit 7) to 16 bits. If 'R' is a 20-bit pointer/register, the data is sign extended to 
20 bits and the pointer/register's tag bit is set to logical one. All data is sign­
extended to 16 bits when arithmetic and logical operations are performed. 
The high-order byte of 'R' is, therefore, affected by 8-bit operations. If 'R' is 
a 20-bit pointer/register, the upper four bits (bits 16-19) are undefined 
following all arithmetic and logical operations, except addition. Addition to 
a pointer/register can result in a carry into its upper four bits. 

R16 -The entire 16-bit register is used in the operation. When a 20-bit 
pointer /register is the destination (left-most) operand of a data transfer 
instruction, the data is sign-extended (bit 15) to 20 bits. The pointer/register's 
tag bit is set to logical one. If 'R' is a 20-bit pointer/register, the upper four 
bits (16-19) are undefined following all arithmetic and logical operations, 
except addition. Addition to a pointer/register can result in a carry into the 
upper four bits. 

MS -a byte (S bits) of data memory 

M16-a word (16 bits) of data memory 

M24-three bytes of data memory 

M32-four bytes of data memory 

IS -an S-bit immediate value 

116 -a 16-bit immediate value 

NOTE 
A label is optional on all assembly language instructions. 

Data Transfer Instructions 

INSTRUCTION FORMAT OPERATION 

LPD 

LPDI 

MOVP 

MOV 

P, M32 Load 20-bit pOinter/register from data memory 

P, 116 Load 20-bit pOinter/register from immediate data 

M24, P Move 20-bit pOinter/register to (store) or from (restore) memory 
P, M24 

R16, M16 Move 16-bits of data memory tolfrom data memory or register 
M16, R16 
M16, M16 

B-1 



Instruction Set Summary 

B-2 

MOVS 

MOVI 

MOVSI 

R8, M8 
M8, R8 
M8, M8 

R16, 116 
M16, 116 

R8, 18 
M8, 18 

Move 8-bits of data memory to/from data memory or register 

Move 16-bits of immediate data to data memory or register 

Move 8-bits of immediate data to data memory or register 

Control Transfer Instructions 

Unconditional Control Transfer Instructions: 

INSTRUCTION FORMAT 

CALL 
LCALL 

JMP 
LJMP 

M24, L 

L 

OPERATION 

Store TP pointer/register and tag bit; Jump 

Jump 

Conditional Control Transfer Instructions: 

INSTRUCTION FORMAT OPERATlON 

JMCE M8, L Jump on mask/compare equal 
LJMCE 

JMCNE M8, L Jump on mask/compare not equal 
LJMCNE 

JNZ R16, L Jump on nonzero register or data memory word 
LJNZ M16, L 

JNZS M8, L Jump on nonzero data memory byte 
LJNZS 

JZ R16, L Jump on zero register or data memory word 
LJZ M16, L 

JZS M8, L Jump on zero data memory byte 
LJZS 

Arithmetic and Logical Instructions 

INSTRUCTION FORMAT OPERATION 

ADD R16, M16 ADD register and 16-bit memory data 
M16, R16 

ADDS R8, M8 ADD register and 8-bit memory data 
M8, R8 

ADDSI R8, 18 ADD register or 8-bit memory data and 8-bit immediate data 
M8, 18 

ADDI R16, 116 ADD register or 16-bit memory data and 16-bit immediate data 
M16, 116 

AND R16, M16 AND register with 16-bit memory data 
M16, R16 

ANDS R8, M8 AND register with 8-bit memory data 
M8, R8 

8089 Assembler 



8089 Assembler Instruction Set Summary 

ANDBI 

ANDI 

DEC 

DECB 

INC 

INCB 

OR 

ORB 

ORBI 

ORI 

NOT 

NOTB 

R8, 18 
M8, 18 

R16, 116 
M16, 116 

R16 
M16 

M8 

R16 
M16 

M8 

R16, M16 
M16, R16 

R8, M8 
M8, R8 

R8, 18 
M8, 18 

R16, 116 
M16, 116 

R16 
M16 
R16, M16 

M8 
R8, M8 

AND register or 8-bit memory data with 8-bit immediate data 

AND register or 16-bit memory data with 16-bit immediate data 

Decrement register or 16-bit memory data 

Decrement 8-bit memory data 

Increment register or 16-bit memory data 

Increment 8-bit memory data 

OR register and 16-bit memory data 

OR register and 8-bit memory data 

OR register or 8-bit memory data with 8-bit immediate data 

OR register or 16-bit memory data with 16-bit immediate data 

Complement register or 16-bit memory data; 
(optionally place complemented memory data in register) 

Complement 8-bit memory data; 
(optionally place complemented memory data in register) 

Bit Manipulation and Test Instructions 

INSTRUCTION FORMAT OPERATION 

SETB M8, b Set selected data memory bit to logical one 

CLR M8, b Clear selected data memory bit to logical zero 

JBT M8, b, L Jump on data memory bit true (bit = logical one) 
LJBT 

JNBT M8, b, L Jump on data memory bit not true (bit <> logical one) 
LJNBT 

Special and Miscellaneous Instructions 

INSTRUCTION FORMAT OPERATION 

HL T Halt task block program execution; 
channel's BUSY flag byte in the CB cleared to OOH 

NOP No operation 

SINTR Set interrupt service flip flop 

TSL M8, 18, L Test and set data memory byte while system bus is locked 

WID S, D Set DMA source and destination logical widths 

XFER Begin DMA transfer following the execution of the next 
instruction 

B-3 





APPENDIX C 
ASSEMBLER DIRECTIVES SUMMARY 

NOTE 

Items enclosed in brackets, [], are optional. 

Symbol Definition 

DIRECTIVE FORMAT OPERATION 

name EQU expression Defines a symbol and assigns it a value. 

Data Definition and Memory Reservation 

DIRECTIVE FORMAT 

[symbol:] DB d1 *[, d2, ... dn] 

[symbol:] OW d1[, d2, ... dn] 

[symbol:] DD d1 [, d2, ... dn] 

[symbol:] OS expression 

Structure Definition 

DIRECTIVE FORMAT 

name STRUC 

name ENDS 

Location Counter Control 

DIRECTIVE FORMAT 

ORG expression 

EVEN 

OPERATION 

Defines byte(s) of data memory with 8-bit 
values. 

Defines word(s) of data memory with 16-bit 
values. 

Defines double word(s) of data memory for 
20-bit address loading. 

Reserves bytes of data memory. 

OPERATION 

Creates a template of offset values. 

OPERATION 

Sets the assembler's location counter to a 
specified integer value. 

Insures that the next instruction or directive 
begins at an even assembler location counter 
value. 

*dx is an expression, evaluated modulo 256 in DB directives and modulo 64k in OW, DO, 
and OS directives. 

*sx is a symbol. 

C-l 



Assembler Directives Summary 

Program Linkage 

DIRECTIVE FORMAT 

NAME module-name 

name SEGMENT 

name ENDS 

PUBLIC s1 **[, s2, ... sn] 

EXTRN s1 [, s2, ... sn] 

Assembler Termination 

DIRECTIVE FORMAT 

END 

C-2 

OPERATION 

Assigns a name to the assembler-generated 
object module. 

Assigns a name to the segment containing the 
assembler-generated object code. 

Identifies symbols defined in this source 
program that can be referenced by separately 
assembled or compiled programs. 

Identifies symbols within this source program 
which are defined and declared PUBLIC in 
separately assembled or compiled programs. 

OPERATION 

Indicates the end of a source program. 

8089 Assembler 



CONTROL 

OBJECT(file) 

NOOBJECT 

PRINT(file) 

NOPRINT 

SYMBOLS 

NOSYMBOLS 

PAGEWIDTH(n) 

PAGELENGTH(n) 

PAGING 

NOPAGING 

APPENDIX 0 
ASSEMBLER CONTROLS SUMMARY 

Table D-l. ASM89 Controls and Defaults 

PIG DEFAULT PURPOSE 

P OBJECT(file.OBJ) Name and/or place the object file 

P OBJECT(file.OBJ) Don't create object file 

P PRINT(file.LST) Name the listing file 

P PRINT(file.LST) Don't create listing file 

P SYMBOLS List symbol table 

P SYMBOLS Don't list symbol table 

P PAGEWIDTH(120) Charslline in listing 

P PAGELENGTH(62) Lines/page in listing 

P PAGING Separate pages in listing 

P PAGING Continuous listing 

DATE('ddddddddd') P DATE(' ') Appears in header 

TITLE('t...t') P TITLE(' ') Appears in header 

LIST G LIST Turn on listing 

NOLIST G LIST Turn off listing 

EJECT G Start new listing page 

INCLUDE(file) G Assemble a side file here 

D-l 





APPENDIX E 
ASCII CHARACTER SET CHART 

ASCII CODES 

The 8089 assembler uses the seven bit ASCII code, with the high-order eighth bit 
(parity bit) always reset. 

GRAPHIC OR ASCII GRAPHIC OR ASCII GRAPHIC OR ASCII 
CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) 

NUL 00 + 2B V 56 
SOH 01 2C W 57 
STX 02 2D X 58 
ETX 03 2E Y 59 
EOT 04 2F Z 5A 
ENQ 05 0 30 [ 5B 
ACK 06 1 31 \ 5C 
BEL 07 2 32 1 5D 
BS 08 3 33 1\ (t) 5E 
HT 09 4 34 - (+-} 5F 
LF OA 5 35 60 
VT OB 6 36 a 61 
FF OC 7 37 b 62 
CR OD 8 38 c 63 
SO OE 9 39 d 64 
SI OF 3A e 65 
DLE 10 3B f 66 
DCl (X-ON) 11 < 3C 9 67 
DC2 (TAPE) 12 3D h 68 
DC3 (X-OFF) 13 > 3E 69 
DC4 (=FAPE 14 3F j 6A 
NAK 15 @ 40 k 6B 
SYN 16 A 41 6C 
ETB 17 B 42 m 6D 
CAN 18 C 43 n 6E 
EM 19 D 44 0 6F 
SUB lA E 45 p 70 
ESC lB F 46 q 71 
FS lC G 47 72 
GS lD H 48 73 
RS lE I 49 74 
US 1F J 4A u i5 
SP 20 K 4B v 76 

21 L 4C w 77 
22 M 40 x 78 

# 23 N 4E y 79 
$ 24 0 4F z 7A 
% 25 P 50 { 7B 
& 26 Q 51 I 7C 

27 R 52 : (ALT MODE) 7D 
28 S 53 7E 
29 T 54 DEL (RUB OUT) 7F 
2A U 55 

E-l 





APPENDIX F 
DECIMAL/HEXADECIMAL 

CONVERSION 

POWERS OF TWO 

2n 
n in 

1 a 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4 096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 
33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0000 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 0000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
2 199 023 255 552 41 0.000 000 000 000 4~4 747 350 886 464 118 957 519 531 25 
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0.000 000 000 000056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 624 50 0.000 000000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
2 251 799 813 685 248 51 0.000 000 noo 000 000 444 089 209 850 062 616 169 452 667 236 j28 125 

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0000 000 000 000 000 111 022' 302 462 515 654 042 363 166 809 082 031 25 

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 
36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 501 812 5 

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 561 676 950 125 
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469446 951 953614 188 823848 962 783 813416 562 5 
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5 
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 111 142 578 125 

F-l 



Decimal/Hexidecimal Conversion 8089 Assembler 

POWERS OF 16 (IN BASE 10) 
16"· " 16·n 

1 0 0.10000 00000 00000 00000 x 10 

16 1 0.62500 00000 00000 00000 X 10- 1 

256 2 0.39062 50000 00000 00000 x 10-2 

4 096 3 0.24414 06250 00000 00000 x 10-3 

65 536 4 0.15258 78906 25000 00000 x 10-4 

1 048 576 5 0.95367 43164 06250 00000 x 10-6 

16 777 216 6 0.59604 64477 53906 25000 x 10-7 

268 435 456 7 0.37252 90298 46191 40625 x 10-8 

4 294 967 296 8 0.23283 06436 53869 62891 )( 10-9 

68 719 476 736 9 0.14551 91522 83668 51807 x 10- 10 

099 511 627 776 10 0.90949 47017 72928 23792 x 10- 12 

17 592 186 044 416 11 0.56843 41886 08080 14870 )( 10-13 

281 474 976 710 656 12 0.35527 13678 80050 09294 )( 10-14 

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10- 15 

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10- 16 

1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10- 18 

POWERS OF 10 (IN BASE 16) 

10" n 10·n 

1 0 1.0000 0000 0000 0000 
A 1 0.1999 9999 9999 999 A 

64 2 0.28F5 C28F 5C28 F5C3 x 16- 1 

3E8 3 0.4189 374B C6A7 EF9E )( 16-2 

2710 4 0.6S0B SBAC 710C B296 )( 16-3 

1 86AO 5 0.A7C5 AC47 lB47 8423 )( 16-4 

F 4240 6 0.10C6 F7AO B5EO S037 )( 16-4 

98 96S0 7 0.lA07 F29A BCAF 4858 )( 16-s 

5F5 El00 S 0.2AF3 10C4 6118 73BF )( 16-6 

3B9A CAOO 9 0.44BS 2FAO 9B5A 52CC )( 16-7 

2 540B E400 10 0.60F3 7F67 SEF6 EAOF )( 16-8 

17 4876 ESOO 11 O.AFEB FFOB CB24 AAFF )( 16-9 

E8 04A5 1000 12 0.1197 9981 20EA 1119 )( 16-9 

918 4E72 AooO 13 0.lC25 C26S 4976 81C2 )( 16- 10 

5AF3 107A 4000 14 0.2009 3700 4257 3604 )( 16- 11 

3 S07E A4C6 8000 15 0.480E BE7B 9058 5660 )( 16- 12 

23 8652 6FCl 0000 16 0.734A CA5F 6226 FOAE )( 16- 13 

163 4578 508A 0000 17 0.B877 AA32 36A4 B449 )( 16- 14 

OEO B6B3 A764 0000 lS 0.1272 5001 0243 ABAl )( 16- 14 

8AC7 2304 89E8 0000 19 0.1083 C94F B602 AC35 )( 16- 15 

F-2 



8089 Assembler DecimallHexidecimal Conversion 

HEXADECIMAL-DECIMAL INTEGER CONVERSION 

The table below provides for direct conversions between hexadecimal integers in the range O·FFF and decimal integers in the 
range 0·4095. For conversion of larger integers, the table values may be added to the following figures: 

Hexadecimal Decimal Hexadecimal Decimal 

01000 4096 20000 131 072 
02000 8 192 30000 196608 
03000 12288 40000 262 144 
04 000 16384 50000 327680 
05000 20480 60000 393216 
06000 24576 70000 458 752 
07000 28672 80000 524288 
08000 32768 90000 589824 
09000 36864 AOOOO 655360 
OAOOO 40960 BOOOO 720896 
OB 000 45056 CO 000 786432 

OCOOO 49 152 00000 851 968 

00000 53248 EO 000 917 504 

DE 000 57344 FO 000 983040 

OF 000 61440 100000 1 048576 

10000 65536 200 000 2097 152 

11000 69632 300000 3 145728 

12000 73728 400 000 4 194304 

13000 77 824 500000 5242880 
14000 81 920 600000 6291 456 
15000 86016 700 000 7 340032 
16000 90112 800000 8388608 
17000 94208 900000 9437 184 
18000 98304 ADO 000 10485760 
19000 102400 BOO 000 11 534336 
lAOoo 106496 COO 000 12582912 
lB 000 110592 000000 13631 488 
1C 000 114688 EOO 000 14680064 
10000 118 784 FOO 000 15728640 
lE 000 122880 1 000000 16777 216 
lF 000 126976 2000000 33554 432 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 

090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 

OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 
080 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 

000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 

F-3 



Decimal/Hexidecimal Conversion 8089 Assembler 

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F 

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
.110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335 
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

180 0384 0385 0386 0387 03ad 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
180 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
1 FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0501 0508 0509 0510 0511 

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527 
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
280 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831 

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
300 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

F-4 



8089 Assembler Decimal/Hexidecimal Conversion 

HEXADECIMAL·DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4BO 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 r306 1307 1308 1309 1310 1311 
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 . 
580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
500 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

600 1536 1537 1538 1539 1540 1541 154~ 1543 1544 1545 1546 1547 1548 1549 1550 1551 
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
660 1632 1633 1634 1635 16;16 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6EO 1760 1761 1762 1763 1764 1765 1766 1767·· 1768 1769 1170 1771 1772 1773 1774 1775 
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1190 1791 

F-5 



DecimallHexidecimal Conversion 8089 Assembler 

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F 

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 191Ei 1917 1918 1919 

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 ,2171 2172 2173 2174 2175 

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8BO 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2256 
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
990 2448 2449 2450 2451 2452 2453 -2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9BO 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

F-6 



8089 Assembler Decimal/Hexidecimal Conversion 

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A 8 C D E F 
Aoo 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767 
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
810 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B20 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895 
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 ·2927 
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 
13'00 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 

-. 

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 
C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
CSO 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 
C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

F-7 



DecimallHexidecimal Conversion 8089 Assembler 

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd) 

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
020 3360 3361 3362 3363 3364 3365 3366 3367 , 3368 3369 3370 3371 3372 3373 3374 3375 
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 ·3389 3390 3391 

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
050 3408 3409 34.10 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
090 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
OAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
000 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
El0 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E20 3616 3617 3618 3619 3620· 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EOO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

F-8 



APPENDIX G I 
RESERVED SYMBOLS 

The following symbols are predefined and cannot be used as user symbols. 

ADD JZB 
ADDB LCALL 
ADDBI LJBT 
ADDI LJMCE 
AND LJMCNE 
ANDB LJMP 
ANDBI LJNBT 
ANDI LJNZ 
BC LJNZB 
CALL LJZ 
CC LJZB 
CLR LPD 
DB LPDI 
DD MC 
DEC MOV 
DECB MOVB 
DS MOVBI 
DW MOVI 
END MOVP 
ENDS NAME 
EQU NOP 
EVEN NOT 
EXTRN NOTB 
GA OR 
GB ORB 
GC ORBI 
HLT ORG 
INC ORI 
INCB PP 
IX PUBLIC 
JBT SEGMENT 
JMCE SETB 
JMCNE SINTR 
JMP STRUC 
JNBT TP 
JNZ TSL 
JNZB WID 
JZ XFER 

0-1 





APPENDIX H 
SAMPLE PROGRAM 

The following pages show a complete 8089-8086 family program example. The exe­
cution vehicles used are an 86/12 Single Board Computer and an 8089 Prototype 
Board interfaced via the Intel Multibus. In this example, the 8089 unburdens the 
8086 by handling message transfers to a CRT and processing message requests. Five 
messages and a menu (which shows all the message titles) are available for display 
and selection. . 

The program listings are shown, the 8086 code compiled in PLM86 and the 8089 
code assembled by ASM89. The combination of both these programs should fully 
explain the initialization and communication protocol between the 8086 and the 
8089. Note that the 86/12 Dual Port RAM was set up to appear as upper memory to 
the 8089 on the Multibus while to the 8086 it appears as lower memory. Further 
operation is explained throughout the two program listings. 

H-l 



Sample Program 

H-2 

PlIPt-86 COfIlLE.R 8889 PROTOTYPE DEfI) 

ISIS- II Pl.t-'"-86 Vii COtP1LATION (J' fIDllE PROTOT't'PE89 
OOJECT fO)llE Pl.OCEJ) 1N :f1:PROTS9. OOJ 
COtPILtR I~ BY: PlJI86 :F1:PROT89. SkC 

$TITLE('S889 PROTOTYPE ~') L~~ orTI"I21(2) 
1 PROTOTYrE~'9: 00; 

.... , 1 

1********:tc**11:*******~,********************************************:)*********1 
~ ~ 

1* [)EMO FOR 8089 PROTOTYPE K n *1 
~ ~ 

/**********************>'r"*****************lI:*******=I=*******************-"{:*****I 

1******************************:4:************************************":******1 
~ ~ 

LITERAl DECLARATIONS 
~ ~ 

/*************~:*************:t:*************~:*******************":***********":1 

/* ~"'59A LIlERALS :.:/ 

DECUiRE 

I Nl ~'111T$Pt~~T LITERALL\' 'eC0H', 
I NUMtlSKt:PORT LllERr.t.L" lOC2~:;" 

INT$ICWl LITERHLL), °ElY .. 
INUICW2 LITERAlL',' ,0SQH', 

INUICW4 LITERI1LL\, "'0n:; .. 
INT$t1ftSK LIl ERRLL'l' "eFEW; 

/:f: I,:AM LOCATIONS FOR THE :::~8f~ *i 

~ 1 DECLrI/(E 

~INT$BA5E 

SC[)$BASC 
CEmA~,E 

f'B$Bfl5E 
rStBAS[ 
MSG$£;fISE 
lNTR$T\'PE:. 

LITE~'ALL \' 
LI1EI(PoLLV 
LITERALLY 
lHEf<:AlLV 
lllERfllL'l' 
LlRRAlL'T' 
LlTERAlL'l' 

'7FfGW .. /* S,'~,T[M lNrrP'U,ffflON BLOCI( *1 
/ 7~ E0H' .' /:.:: S¥STEM CONTROL ewe/( *1 
7FD0W ' /* COMMP.ND t:LOCK */ 
... 7000H' .. /* F'Il~:m1HER BLOCK *1 
... 70F0H'" .. /* 1 ASK BLOCK */ 
'?200W .. /* DISPLnY MESSAti( BLHCR *l 
/0148H' ,; /!: INTr:.RRUPT VECTOR TriBLE >1/ 

/* ROM LOCRTIONS FOR THE 8089 *l 

4 1 u(ClARE 

SCE.189 
CI:I$~9 

PB$89 
TOt-89 
1'ISG$8<) 

LITERnLlV 
lIlERALl,' 
LlTERALlY 
LlTERALU' 
LI1ERAll\' 

'9FrrE9W .. /* ~YSTEM CONTROL BLOCK *l 
'8FFFD0W, /* COMMAND LilOCl( *1 
'0FF900H' , /* pr~I1tTER [)LOCK *1 
'9FF0F9W .' /* TASK £;lOCK *1 
'0FF208W ,; 1* DISPlfW I1ESSAGE BUfTI::R *1 

8089 Assembler 

PH£ 1 



8089 Assembler 

Pl~ ... 8C COI'IPILER 88119 rROTOT't'r>E DOlO 

S 1 DECLARE 

RST$CCIal 

INlnccw 

DSI-'$CCW 

6 1 DECUiRE 

SOC$CPlD 
S','SBlIS$CMD 

LI"lCRALL \' 

L1TERALLV 

LITEPAlL'l' 

LI"fERALL'r 
LITERALL" 

/* 8tt8S CHfJ-ML IlTTENTION *i 

{' 1 Dl:CLARE 

CHAN$ATT LIH:RALLY 

1* I'IISCELLANEOUS DECLRRRTIONS */ 

~l 1 DECLA~.E 

£,1JSYSTAnJS LITERALLY 
TRUE LlTERPtlU' 
FAlSE LI1ERALLV 
NIIiR$I1S1' LIlERfLLY 
CR LITERALLV 
LF LITERfUY 
ESC L I ltRfl.L \' 
E LIlERfllY 
EOT III ERfl.L\' 

i l0W , /* I~ES[f eCIal *1 
/ll: ENABLE lNTERRUP1S */ 

"13W .. . l* I/O INITI1Ll2m ION tcw */ 
/* ENflBLE INTERRUPTS */ 
lll: I::~'ECI)TE TIlSK BLOCK IN */ 
/* S\'STEM I'IEIf.lRY *1 

"'saw ; l* D1SPLHY MESSflGE Cl:W *1 
/:f< REst T INl ERrWf'l *1 
/:l: EXECUTL TASK BLOCK */ 
/* IN S'r'STE.M I'IEMORY */ 

"0aH' .. /* 8 BIl 1/0 BIJ~ */ 
~01W .; /* 16 ~n 5YSTlM BUS */ 

loot·,... ; 

i8FTIf', 
'grrn', 
'~', 
·'97W .. 
J'0I)H', 

'0ffV, 
"iSH', 
'45W .. 
'S4W; 

Sample Program 

H-3 



Sample Program 

F1At-SG COfIILER 8889 PROTOTYPE DOO 

9 1 

10 1 

11 1 

H-4 

1***********************************************************************1 
~ ~ 

RAI't DEClARfrt IONS *l 

*1 
1**************************************************~:**li:***************1 

DECLARE 

DECLARE 

DEClr.~~E 

SINT STRUCTURE (SVSCUS WORD., StB$PTR POINTER) m (SINUOfISl); 

1**************************************************/ 
/* \ SYSBIJS COttIAND */ 
/***************:{:***:l:******~"****~"********'l,*********i 
1* 5CB OFFSET *1 
/***************************************:~:**********/ 
/:1< sec SEGMENT */ 

/******************:t-***********************:l:******l\:i 

SCB STRUCTURE (~OC WORD., CB$PT!\ POINIER) AT (SCB$CfI:::Ej; 

I***:{:******:j:**~<********:{::j;*************::{:***************/ 
/* \ SOC COMMfft,l() */ 

/****************************************************:1:/ 
/* I))MMANI> 8LOCI( on SET :1:/ 

/*******~::*******~:*****~.*************}':*:{:**:i::f.***:.::1:**:/:***/ 
/:1: cot'1MnNO E.:LOCK ~EGMENT *1 
/*:I:**-!,***l/::j:***********,::lj:},::I·:t:t:****:I::I,*****:1:*:·:·::.::1::1:**:(;******/ 

C8(2) STRUCTURE (CGW m'TE.. BUS',' 8YTL PE$PT~~ I '/J INTER, 
OUt1I1~' WORD) AT (CB$BIlSD; 

/*************************************:J<*************J.:*1 
/* 1J1j~',' Flflti \ CCW */ 

I****************~<*****************lj:******************/ 
/:l< r'ARAMETEI< I:JLOCK OFr~'[T :{:/ 

/~:****'l'************************:/:**:I<******:{:~,*******::{:***1 
/* PARAMETER BLOCK Sl:.fjt1~Nl 

/****************************************************>::/ 
/:1< l>ljMf1\r' WORD *1 
/***********,,:*,,:********,,:*************:{::-}::.:**************/ 

THE ABOVE CMIAND BLOCK FORI1AT IS THE STRIJC"IJRE FORr1fil 
THE CB ARRAY CONTAINS TWO STRUCTURES.; ONE FOR DOl 
CHANNEl Of nlE 8089. 

8089 Assembler 



8089 Assembler 

~86 CCWILER 8889 PROTOTYf'{ DOO 

12 1 

13 1 

14 1 

15 1 

16 1 

17 1 

DEClARE 

DECLARE 

uEClfll<E 

DEClt1RE 

D[CLfiR[ 

PB 

fB 

STRUCTIJR( <TB$PTR POINTER, ~...G$PTR POINTER, 
LEYEL BYTE, CI ME) AT (MBASE); 

/************************l/:****************~:**~::(:*******/ 
It TASK BLOCK OfFSEl */ 

1*****************************************************1 
l* TASK BLOCK SEGMENT */ 
/******~:***********lI:**~:lf:************:j:*************:jc***1 
l* I'tESSAGE BurrER OFFSET *1 
1****************l1*{:**********************************1 
1* MESSAGE BIJFrER SEGMENT *1 
/*************:{:~:******:4:*~,*************************~:*1I::jc/ 
/* CHARACTER FROM CRT \ DISPLAY LEVEL CPIO TO lOP */ 

/"'****************************************************1 

(512) B\'TE flT CI t:$BflS[): 

/******************************************:{:l/!:{::{:****:{:**/ 
/* RAM BlIFfER FOR TASK BLOCK PROGRAt1 */ 

/****~:**lj:*****lj:******:l:*****,l:*l\*jc***:l:**********l:*******/ 

/**********:j:**'::*************:~:$***;l;***:{:****:{:****~:*~:***! 
/~: DISF'lA'l MESSAGE 8L1FFE~~ :i:/ 

/**:.::{:**:I:***:I::I;**:t::::***********':::f<:I:*:t:***********,l,****~;***/ 

INTR$VEC$8'3 f'OIN·IEr~ m (lNTRHVf'E): 

I NTRt-IP$80 WORD 

/***************************************************************:::*****~:**I 
~ ~ 

l* ROM DECL~ATION HNO INITIALI~m ION *1 
~ ~ 

/**************:1:******************************************~:**~~"/:**~:*******I 

DECLARE I1ENUE(lI:) BYTE I>fHA «;R, tF, [SC, E, 

***********************************;,CR,LF, 
* *'., CR,Lf .. 
* 0886/~ PROTOTYPE KIT DE.MO *", CR, LF, 
* t",CR,LF, 

~:*************~:********************".' CR, LF, 

Sample Program 

H-S 



Sample Program 

H-6 

PLItH6 alFlLER 9889 PROlOTVPE DElI) 

SElECTI~ 

1 
2 
:5 
4 
5 

l(FIC~, CIt LF,LF, 
Wlfn 15 11£ 8889 IOP~,CR,LF,LF, 
WIfIT IS H£ S289 rus ARSn Ef.:' , CR, LF, LF 1 

ABOOT nils DeIONSTRATIa.~,CR,Lf,LF, 
8989 IUITFlLIZRTION PROTOC(L'" 1 (;R, LF, LF, 
8089 CO"UUtRTlON ~'RfJIOCOL', CR, LF, LF, 

FOR AOOIHONAL INFORMATION ON HI( fIEOVl TOPICS', CR, u:, 
PLf.ASE SELECT TIlE APPROPRIATE ENTR',' (1 .. 2,3/4, !:D - /, £:'OT); 

18 1 DECLARE MSG1<*) BYTE OOTR(CR.. U, E5C, [. 

19 1 

8089 I/O P~OCtSSOR"' .. 
(;~, LF, IF,U, 

mE B089 I/O PROCESSOR IS A tIRST OF ITS KINO S'T'51[1'15 COMPONENT. 1 T'· .• 
CR,lF,U· .. 
"USES TI·IE CONCEPT OF A CHAttEL CONTROlLER, COMMON IN MmNf-I\~MI:.s .. TO SOLYE:.', 
CR,LF, LF, 
.... fHE I/O PROC£:.SSING AND HIGH FU~FORMfiN(;E DMfl 1<~f.:QlJlRlMENTS OF MICRuF·I{(I(:ESSO:~'· .. 
CR, L/., LF .. 
!~'T'STEMS. THE 8089 CAN BE USED IN CON.)IJNCllON WITH 1 HE 88BC (16 CIT 8US) I .• 

CR .. LF .. LF .. 
"OR seSB (3 BIT BUS) t1NU 8 OF.: 16 Sri PE:RI PHERRLS10 SIGNIFICANTLY t.NtlANCE! .. 
GR, LF .. lF .. 
;~SSTEM PERFORMANCE. THE 80S9 OFFLOI1DS I/O FI<OM lHE HOST J}'U fiND rROCE~SES;, 
CR.. LF .. U:, 
"CONCIJRRENTL',' WIlH CPU ACTIVIW flLSO, HIE 008~ fll)l)5 HflELLlGENGE TO THE i

, 

CR. LF.. LF. 
'PERIPHERnt. SIJBS'61 EM WHILE MODl..lflRldNG fiNe, 5IMPLiFING H:E S'l'STtI'l I/O. I, 

eft' .. U" Lt .. 
.. [fICH lOP ~:HS '1 WO I/O CIIANNELS THAT CIlN PROV WE DMA m 1. ~5 tif:.GBB¥H:.lSEC, ..... 
CK. LF.. Lf. 
"PROClSS INDEPENDENT PROGRRMS .. mK> ~:m~llLE t1IJLTIPLL I/O DEVICE.S .... 
CK.LF .. LF. 

TO SElE.CT FlNO'I HER ~lE5St1GE T\'PE 1,-'-' .. ten); 

DHUtF.'E ~15G2(:i:) B'{fE DATF: (cr:. Lf .. ESC .. L 
THE 8289 OtiS t1RCIlER" .. 

C~ .. Lf-. LF. LF. 
THE 8289 GUS ARBITER PROV1DES 'IHE Ht1RD~4nRl MECHAN1St15 fOR WIEr.~· " .. 

CR .. Lr.. LF .. 
"PROCESSOR COt1MUNICATION AND SHflRED ~tSiJURCES lN F: MUL TIPLl CPU SYS·IEM. H:r:.' .. 
CR, U= .. LF. 
'8289 FEATURES SEVERAL USER DEFINABLE r'RIo~~n Izrn WN flND I;:IJ~ CONF I (]UF.:ATI ONS. " .. 
CR., LF .. Lt, 
"DEMONS'I ~:ATED Ht.~E, 1 HE: RESO t10Dl S[PERfl rES 86/12' pf<IVm E RESOUR(;lS r- ~:OI'I/ } 
CR,U ,LF .. 
~S'T'STEM 8L1S SHARED RESOURClS .• WHILE THE lOB I'IOOE DIVIDb H:E 808~ IlO t<US' .. 
CR,lF .. LF .. 
'FROI'I 1 HE SYSTEM BUS. IN BOlH CfiSES THE 8289 COMF'LHEL '" ARBIl kAlES S,,'SlHr, 
CR, Lr .. LF, 
'BUS USnGE TO MANflGE MULTIPLE PROl:£SSOR CONTf:.NTlON. i, 
CR, LF .. LF .. 

lHE 8086 rAMIL\' fiND I1lILTIBU5 CONCErT ALLOWS PflRTIl IONING Ilrf'U(;ATlONS", 
CR, LF .• LF, 

8089 Assembler 

Pfl£ 5 



8089 Assembler 

PIAt-.8f; 'COt'ILER S889 PROTOTYPE DEIfJ 

21 1 

'UITO SIft..lH fIRE IftfaJEfIU TASkS. TIllIS, OODING tel FUNCTIONS ~ LPGRAOING', 
CR,LF,LF, 
'EXISTING ONES WILL HAVE "INIMAL EFFECT ON THE ~IGINAl DESIGN. " 

10 SELECT fNlTHER IESSAGE T't'PE ~I_ •• " Eon; 

DECLARE ~J(*) BYTE DATA(CR,Lr,E9C,E, 
ABOUT THIS DEMONSIRATIOr.' .. 

t'R,LF,LF,LF .. 
"/0 OCPlONSTRIlTE THE 8086 f-AMILV crtHOP CONCEPT.. AN St:C &'6/12 AND AN 0089', 

CR, Lr .. LF, 
'PROTOTVPE BOARD ARE nnERrAl..ED VIA mE INTEL MlJlTIBtr.;. IN THIS DEMO TP.E 8089' .. 
CR, LF, LE. 
""l..INBUR[)EN~ THE 8386 EY HANDLING MESSAGE TRflNSFH~S TO THE CRT AND PROCESSING'· .• 
t'R, LF, LF.. 
'I'I(SSf:GE REQUESTS. OPERATION IS AS FOllOWS: IJSING P, CHf:NNl:.L fn TENTION (CFt) Hili .. 
CR, LF..U: .• 
'8006 lNIT IALIZf:5 1 HE 8I!J89 AND CAUSES IT TO El<EClJTE 11 1 FISK BLOCK I 0 PI<OGRAM'· .• 
CR .. LF.. Lr .. 
!111E PERIPHERfiL DEVICES ON as LOCAL t:US. mE b'0~9 THEN INTERI\~IJPTS n:E 898£/ .. 
CR .• LF .. LF .. 
i,O REQUEST A t1ESSAGE rOR DISPLliY. RESPOND 1 NG.. lHE 808G SETS UP LINKnGE Hr· 
CR,LF .• LF .. 
-'THE TASK BlOCK PROGRflt'l RND ISSUES A CA TO THE 8089. AFTER EFICH CA mE 8989·', 
CR .. lF.. LF.. 
lDISPLAYS THE MESSAGE .. POLLS THE CH TERMINflL FOR H VAUD ME5Siff RLQUES·j f:ND ..... 
CR .• Lr .. Lr .. 
···THEN mn:.RRlJPTS TilE 808G. 1·llNeHORTH THE C\'CLE IS RE:rEllTED ...... 
CR..LF, LF .. 

TO SELECT ANOrHm MtSSFIGE TlyH. '{-'", Em ).; 

DECU1RE MSG4<*) [:',ITE rJOTA (CR.lF .. ESC .. E.. 

GR,Lr .. LF .. Lf .. 
"'S\,STEM INITALIlATION 
CR .. LF .. 

I.:R .. LF .. 

CR .. LF .' 

CI~, LF, 

(;R .. LF, 
"'SVSTEM CONTROl BLOCK 
CR,LL 

CR,Lf .. 

CR,LF, LF, LF, 

t:~39 INITIi·:LI2mWN P~OTOCAL"' .. 

.; ++H+H+HHHHH HHHH -I HHHH HH -I ~ H-H' .. 

+ ~.YSBIJS toHMfIND +', 

+1 +H++++++H++++H+++fH ++t+H +++++++H+H {H;, 

SI11STEM CONlK'Ol CLOCK RDlJRESS +.' , 

-:--I H+H H+++H++++H H·HH HH-I +i+H +-1+++++-:-++ l. 

HHi Hf++++++++H+t·:·HH H+++{i iHHi i ++H++i l .. 

+", 

H++ I ++++++++-4'1i fH H+++++HH+++++H++++H··H +.' .. 

COIttAND I3lOCK ADDRESS 

HHH++++H oj ++HH++++++H HH +HHH++++++f +.' .. 

ON THE FIRST CHflNNI:.1. HHENTION fiFTER R[SET .. THE I(w REAl>S THESE l 
.. 

Sample Program 

H-7 



Sample Program 

~86' alFILER 8889 PROTOTYPE DOl) 

22 1 

23 1 

24 1 

H-8 

CR,. LF, LF, 
'CONTR(l BlOCKS TO DETErmINE TIE WIDTH (F fiE SYSlEl1 BUS (8 OR 16)1 n£ '. 
CR.LF.LF, 
'110 BUS WIDTH (8 OR lG), PRIORll\' HFORIftTIOH. AN) IfBE TO FIN> INF~TIOH". 
CR. Lf.LF, 
'DEfINING SI.Jtr"...[QtINT QINEL ATTENTIONS (THE (,1JIfH) lLOCK) .... , 
CR.LF,LF. 

TO SELECT ANOTHER I1ESSAGE WP[ ,'. I, EOl ) i 

DEClARE jIIC.J35 (>I:) 81r'l E 
~lTA(I)R,LF,ESC,E, 

8989 lASK CMlUNICATlON PROTOCOl', 
CR .. IF .. lr, lE. 

H+H+i ++++HHH·! +++HHH of+++++++HH H-H HtH of ....... 

CR, IF.. 
,. COItf'.ND BLOCK "" BIJ~N FlAG {- CHHNNEL COHMflND WORD t '., 

m,LF, 
(ONE PER CHfiNEU +HH+'!'++++HH-!'+HH++++HHHHHH+++H+I-++++H / , 

CR,lF, 

C(I.:,lF. 
... PARAI1ETER BlotK 
CI< .. lF.. 

CR,lF .. 

CR .. lF, 

CR. Lr.. 

CI< .. lF, 
I Tr.SK EtOCK 
GR .. LF .. 

CR.. LF, 

CR, LF. LF, 

f'AkrflETER ClOCK AOORESS +'., 

H; H+++; H·; HHH f+of H +++++ lH H +-1 HHH+H H ++++ .' , 

++++H~ H+++ ·H+H +++++HH H+HH+H H+++H++++; H f , 

'1 !lSK BLOCK Ar,DRESS 

H+HH of H+++'!; H H'HH-I ++++'HHH-I i+Hi HH i +·H HI .. 

IJSER DCFINt.Li r'lESSFIGE RREfI ",,' .. 

+++++++++H1 +++H H·H++++++++-I ++-!.~ 1 ++1 ++++~ ++++-1 H ...... 

H+++++H++++H HH +HHH++++Hi -I +++"'++'H~-I HHH( .• 

;. TASK F'ROfj~At1 ',0 BE EXECUTED EY H:E ~~8~) +/ .. 

+; +H++HH++H+++of +++H1 HH+HH +++++++-1'1 +HHt-:J ,_ 

AFTER fI CHRNNEL flTTENTION, THE t~'39 R[flI)S TlIlSE E!LOCI(S TO SEE. WHAT HP .. 
CR, Lf .. LF, 
'CPU WANTS (CHANNEl COt1MAND WORO;' mID WHERE TO FlNO ffOOll IONAl I NFORMftTI OW .. 
CR, LF, Lr, 
'(F'ARAMETER BlOCK). THE PftRAMCTER BLOCK GIVES THE TASK F'ROGRI1t1 ADDRESS AND", 
CR, LF .. LF, 
'PARIlIETERS TO ElE PASSED. '10 ~.e:LECT ANOTHER MESSAGE WPE V-',lOT)i 

DEClARE INITTl;(68) EYTE EXTERNflL 

DEClARE PROGTB(129) BYTE EXTERNAl.; 

1* TB TO INITI~L1ZE 
1* 8251A & 8253 

1* TB rOR MESsnGE D ISPlR'l' *1 

8089 Assembler 

fftE 7 



8089 Assembler 

PI..IfH6 COFILER 8889 PROTOTYPE DElI) 

~5 1 

26 2 

2(' " 
"" 

28 3 
2~ 3 
jij .") 

.) 

31 2 

32 3 
33 .~ 

.) 

34 4 
35 4 
36 4 
.,.., 
.)i 4 
:)'8 4 
39 4 
40 

., 

.) 

41 ~ 

42 2 
4i ') 

I:. 

44 2 
45 2 

46 2 

47 ') 
I:. 

48 2 

1************* .. *********. _"*""***************11'********.****************1 
1* lHIS IS THE fftIN PROGRfm I.neu INITfLIZES TI£ e889 FRCIt RESET All> *1 
1* HEN ISSLES 1l£ 89 A en TO EXECUTE R TASK I:LOCI< IIUCH INITRllZES 11£ *1 
1* 8251A AN) THE 8251 ArTER AlL INITFlLlZfl r ION IS COIREl E.. ., HE PR~ *1 
l* IS TOTAlLY INTERRlPT DRlYEN FROtt mE 8889. HE 89S9 INTERRlPTS n£ *1 
1* 89S6 TO REQUEST A NEW /llESSAGE r(R DlSPLfiY. TO ss..'VICI:: TIlt INT~T, *1 
1* THE 888C WAW'.:fERS TIE NEW I'IESSfIGE FROP1 ROM TO n~ I1:.S~ oorrll<, sus *1 
1* LP THE APPROPRIATE TASK BlOC!( rROGRffl ANI) ISSLlS A Pl.W CA TO lHE lOP TO *1 
/* ALLOW IT TO DISPLfIV THE NEW IlfESSnGE. "!HE 8086 WILL HALT AFTER ISSUEING *1 
1* THE CIIANNEL ATIENTION AN£) WfU1 FOR THE NEXT MESSAGE REQUEST. *1 
1* AFTER EACH CA, HE 8889 WILL L>ISPLfty nlE R[QU[S1ED MESSAGE THlN POLL *1 
1* FOR A NEXT MESSAGE REQUEST ENTERED RT THE CRT. UPON ~[(;EIVING fI YfUD *1 
/* REQUEST THE 80fj9 RETURNS lHE REQUEST TO mE 8086J lSSUlS fiN lNTERRlfT */ 
/* TO THE 8986 ANI) HftU~ ITS CURRENT 10 EXECUHON. THE 8089 PERfORMS NO Iii 
1* OHlER ACTIVn IES UNTIL AWfIKENED 8',1 THE CA FROM 1 HE 8086 TO DISPLflY THE *1 
/* NEXT MESSAGE. ~i 

/*****************************************):::f:***:f:**lj:**~:********:1:*************1 

MSGDSPL: PROCLDU~f INTERRUPT (:0 POEtIC; 

n· PB. CI = "T" THEN 

DO; 

END.; 

t::LSE [>0; 

Cr.LL MOVB(@M£NIJE.· @l'lSG$BUFJ SIZE(t'1ENlJl); 
PB. LEVEL = fflL5L 

po. LEVEL = TRUE; 
DO CASE (PB.CI AND NMBR$MSK)-1; 

END; 

CALL MOVl$ <:@I1SG1.· ~(j$E)Ur. 5 I2[ (MSG1)).; 
CflLL MOVB (@MSC2.. ~~1S(j$BlJf:. SIZE (M5G2) ).; 
CALL MOVE (@t'I5G:5 .. @I'ISI3$BIJF .• SIZE (M5G3»).; 
CALL MOVB <:@MSG4.. @MSG$£.lIJf.. S I 2E (MSG4)).; 

CI1LL MOVB (@t~5C5.. I~SIj$BIJF J ~; I 21:. (MSG5 ) ) .. 

CP.LL MOve (@PROGTO,@TIJ .. SIZE (PROGTB)!.; 

fiB. TB$PT~~ = T8$89.; 
fOB. I'ISGtf'U: = MSG$89.; 

CB(8). CCW = DSP$CCW; 
CB(8). PBSPTR = F'Bre9; 

OUTPUT (CHAN$ATT)=0E1ti.; 

RETURN; 

ENO I'ISGDSrL 

Sample Program 

H-9 



Sample Program 8089 Assembler 

PfG:: 9 

49 1 START: DISf1Bl..E; 

59 1 INTRSYECM = 1MSGDSPl; 
51 1 INTRSIP$88 = INTR$IP$88 .• 27; 

52 1 OUTPUHINTmRT$PORT) = INUICWi; 
53 1 OUTPUT(INTMlSKmRT) = INTSIOO 
54 1 OUTPUT<INTfPtASK$PORT) = INUICW4i 
5!) 1 OIJTf'UH INT$JIIfI$K$PORT) = INT$MASJ(; 

56 1 SINT.SYSBUS = SVCJBUS$C?Vi 
57 1 SINT. SCB$PTR = SCB$h~i 

5:J 1 SGB. SOC = SOCtCMD; 
59 1 seB. CC$PlR = "CB$89 .• 

68 1 CB(0) CCW = kSnCCW; 
61 1 CP.(tt). BUS'! = BlJ5YSTATUS.; 

62 1 OUTPUHCBAN$AT"D :-: 0; 

63 1 DO WHILE CB(9). ['./JSY = BIJ5'1'5TATUS; 
64 2 END; 

65 1 CfllL PIO\IB(@INIT1B .. @TE..SIlE(INITH}»; 
66 1 CE(9). CCW = INITlCCWi 
6"( 1 CB(8). PB$PTR = PB$89.' 
68 1 PO. TB$PTR = TE~J~; 
69 1 OIJTrUT(CHflN$ATT) = ~; 

/0 1 ENABLL 
(i 1 00 ~JKILE TRUE {) FALS[. 
?2 .") END .• t:. 

t1ODUU: 1 NFORMATI ON: 

CODE fiREA 51 ZE = 193211 64590 
CONSTRNT AREf1 SIZE = 0800H 00 
','ARIflBLE AREA SIZE = 008~1 00 
Mf)X I ~JM ~ TACK S I Z[ = 00221 I 340 
488 LINES REnD 
o PROGRfirl ERRO~~(S) 

E.ND OF ~'l/M-86 COI1PILATION 

H-IO 



8089 Assembler Sample Program 

ISIS·· I I 88S9 ASSBILER v 1.B ASses. \' OF IO>llE DEI039 
OOJEeT I'tOOUlE P\JlCEI) IN : F1: 89DEt.1J. OO-J 
ASSEPIBLER INYOKED BY ASI't89 :F1:89DEI1O. SRC PflGElUIiTH(G]) 

COO9 
C"991 
80CA 
0949 
0025 
E:ee] 
8037 
[099 

8865 -0059 
~9 

9894 
Fr04 
9098 
H59 
F837 
FE3(' 
FbO 

0099 
9994 
098'1 
0009 
9988 
0e9E 
9019 
9012 
~15 

9917 
8919 
891C 
90tr 
9023 
W~ 

8929 

9021) 

992F 

313991C9 
9841)·CA 
0090 
0900 
9841) 40 
~ 

9899 
984D CA 
9998 
9900 
9S4D 25 
Q840 37 
3139 99E9 
8840 ~ 
8840 00 
8t14F 09 S9 

4M 
284S 

1 ; ************:C:*:(:******************************************~-*********** 
2.;11: 

3 .• * 
4 .• l!: 

* 
* 
* 

:5 .f :fc**~:t************:t:********":lj,***********.*****l!:**********:(:******lj,******* 
6 ; 
7 ~ DEMOS9 
t: DEMO SEGMENT 
9.f 

10 PUBLIC INITTS 
11 PUBLIC PROGTB 
12 ; 
13 .; [QUflTES 
14 ; 
15 DAOORESS_8251 t~ 

16 CADDRESS_8251 [QU 
17 MOOE_V2~1 [QU 
18 ~~T_8251 ~~I 

19 COMMAND_S251 [QU 
20 I'If:D[)F::E5S_8~J 1I1U 
21 MODE_8253 cQU 
Zd COA(~)RESS_S153 EQU 
23 COUNT9L~'[L825j I:.QU 
24 COUNT0MSB_8253 EQU 
25 'f EQU' 
26 CI mu 
27 M.S(LPOINTCR EQU 
28 tOT_Cr~nRE ~~J 

29 L[V Eoo 
38 'f _COHf'HRE lWJ 
31 MSG_CQMPP.RE lYU 
32 SIX_SEV_COMPORE tQU 
:n ZLJ.'o_COPIPf:RE EQU 
34; 
J5 ;lflSK1 - INTItIlIZATION 
36 .; 

0C099H 
0C0911i 
ttf.JII-: 
491f 
25H 
~8t13H 

:S711 
0EOO9H 

9H 
4H 
0FF04H 
81-: 
eFF59H 
0f837IJ 
8FE37H 
~l'39H 

37 INITTI.:: I10VI 
.38 !'IOYBI 

u'B, CfIDl)Rf:.SS_~~51 

[ GE I, 1'100E-0251 
j9 

40 
41 
42 
43 
44 
45 
46 
47 
4S 
49 
59 
51 
52 
53 
:>4 
S5 

HOP 
NOP 
Jll)'JI:Il 
t«)P 

NOr 
I10YBI 
NOP 
NOP 
PIOVBI 
I'tOYBI 
lIlY I 
IfJYBI 
I'IOVBI 
I'INCI 

SINTR 
HLT 

[GE 1. MOOL8251 

tGB1, COMMAND_8251 
L 6B l, t10DL8253 
138, C8fWRESS_8253 
[GB 1, COIJn9L5B_~3 
LGtiJ, COUNl~B_8253 
[Pr1 Cis \' 

.. INn lALI~ 8251 

; 2 ~TOf', (;HAR LENGTH 7, X16 

.; REC AN) TRl1N E.Nt'.81ED 
; CNT 0, I'IOOE 3, BCD 

.;l5B = 65 
;if.£=8 
; II TO CI BY'IE IN PAk'fKTER BLOCK 
; TO SELEtT tUUE HJR'DISPLAY 

.; INTERklPT 8886 
;~IT H)R CH 

H-ll 



Sample Program 8089 Assembler 

8889 ASSEfB..ER 

:)6; 

57 ;'1 ASK2 - Stll) JllESSAGE AN> ron TOR (;()tf"AE 
58; 

9831 5138 a1C8 ~9 PROGTB: MOVI (iC, CflI)DRlS~_~1 ; 8251 STR rus AOOR 
9835 3138 00C0 68 I'l0\l1 68, DtIDORESS_~1 ; 8251 001 A AOOR 
8939 eJSe 94 61 SEND: LF'D GA, (PPl.~OlNl~R j S£Nl) rESSfKiE 10 CRT ~lIL EOl 
893C B1309008 62 /1OVI lX, 0 
e048 F13884FF 63 t10VI 11(;, EOT _COI'IPrtRl ; MASK COI'IPflRE FOR EOT 
9844 9CB0 9A (;4 EOTCOM: JMCE [GA+IX), LEVEL jE01'? 
0047 800U FD 65 TXRDV2: JN8T [Gel, 0, TXRDY2 ,; TRf'.N'.JI1l ~EAOY ? 
004A 0690 00CD 66 MOW lGB), lGH+IX+) ; ~ND UiARACTERI 0 8251 
904E 88'~ n 6l JII\P EOTCOM 
8851 0AE7 08 14 C8 LEVEL: JZB [prJ. LEV, MSG'"';"£L .; CH[CK LEVIJ. BYH. IN 1·'t~TLR BLOCK, 

69 i 11E.NUL OR ME.S~.uE ? 
00S5 Fn0 59FF 70 MENSEL: I10VI I'IC .. ~'_COMPfiRE .; MASK COIf"'fiRE FOR V 
0059 28Bii FD 71 RXRD~'1: ')NET [Gel. 1.. RXRD~'1 .; REC( 1 VE READY ? 
e05(: 08CS rA 72 JMCNE [i.JB 1. RXRDVl .;~' ~, 

OOJF 004F 09 ~:J 73 MOVE I [PPJ. CI, V .; V TO CI B\'TE IN f'f,RAME'i [101 l::LOCK 
006] 084D 59 74 MOVBI lGB1. '.( .;lGHO 
0066 8820 ~5 75 .JMP lNTR86 
0069 F110 J7f::: ?6 MSGSEL: MOVI Me .' MSiLL:OMPARE .; ~1ASI~ COMPf:RE FOR MESSf:6l SELle', 
006D 2BBA FI) 17 RXIW/2: JNBT [GC], L RXRDY2 .; REt£l VE RtflD'!' . ." 
00('9 0091 02::r es .;-:.-

• 1.1 MOve [PPJ. (:1. [68] .; MESSHGl SELLen ON W C 1 CI{ll 
;:'9 .; IN F'!1RAMll ER BLOCK 

00"('5 BAB? €t9 F4 80 .JMCNE [r.'l C1.. RXRD\'2 .; 0 TU~IJ ? .,,' 

00"19 F130 17FE 81 I'l0\l1 Me .. S I ;<_5E:. V _(;OMPfI~~1:. .; r1ASK COMPARE FOR t. OR {' 
00('0 aRB] 1!.l9 [8 {l') 

v.:. .JMC.E [rpJ. [:1.. MSGSCL .;6UR7? 
~381 FB0 3BFF 83 MOV1 Me, £H~O_COMf'fiF.I .; MAS/( COMPA~::' FOR 0 
~0S5 aHB3 39 EI3 84 .JMCE [PPJ (:1, M5GSEL .;0 .) 

!:less a29~ 09 00CI) 85 MOVE [681. [l"PJ (;l .;LCflO 
!(j@SE 40€tf! BG INWS6: SINW ; IN1U~RIJI-'T :~es6 
13090 21348 0-' 

'.J( HU ;WHlI i·IJi·: en 
88; 

i:l092 89 I)[MO lNDS 
90 END 

H-12 



Sample Program 8089 Assembler 

8889 ASSEPIl.ER 

~"YI9ll 1 ABlE 
-------

DEFU VfllUE WPE NAI1E 
_._--- ._._._--

22 E990 5),1'1 C0AOORESS_8253 
16 C901 S~" CAOORESS_~l 

26 0089 5'J'I'I Cl 
19 9925 S\'fo1 COI'IMAND_8251 
23 0065 S't'M COIJNT0LSB_8253 
24 0999 5','1'1 COIJNT9I1SEL8253 
15 1:000 S~'M DAI)DRESS_~251 

:3 0000 WM DEMO 
64 0044 S'l'M lOTCOM 
28 FF04 Svt1 WT_COJIIPARE 
37 'J000 f'UB lNUTB 
36 008E 5','1'1 INTR8€. 
29 0098 S"M LEV 
6t} 0051 S'l't1 LEVEL 
29 [003 SYM MtIDDRESS_8253 
70 f10.5.5 SYJII MtNSEL 
17 ~19(:fl S','M t10DL8251 
21 0937 51-,'M MODE_8253 
16 0€169 SVM M5G~'[L 

31 F81~'" S'r't1 MSG_COMPARE 
2'" i 0004 S','M tV.LPOINTER 
59 0011 r'UB P~;OGTE 

1~ l:ffj49 S'-.'M RST_:J251 
71 0059 ~N~1 r.~<RDY1 
?7 0£16D S'1'M I{XRl)'t2 
61 0039 SYM SEN[) 

32 FE37 5""1 5 I iL5H'_COMPfiPE 
65 004" . ( SYM ',XR£N2 
,·c 
tf...J 0059 ~XM \' 

39 rF59 SWot ','_COMPARE 
:n ~n0 5'/M ZERO_COMPnRE 

ASSD1Sl. Y COMPLETE.; NO ERROR~ J-OUND 

H-13 





APPENDIX J 
ASSEMBLER ERROR 

MESSAGES/USER ACTIONS 

ASM89 error messages are numbered according to the following general scheme: 

• 1 - 120 User-provoked errors-Nonfatal 

• 121 - 150 Command tail/controlline errors-Fatal/Nonfatal 

• 151 - 200 Source statement errors-Statement processing abandoned 

• 201 - 240 Assembler errors-Not user-provoked 

• 241 - 255 Fatal errors-Assembly terminated 

Nonfatal errors place an error message or error messages in the list file immediately 
following the source statement which provoked the error. The format of nonfatal 
error messages is: 

*** ERROR <n>: <error text> 

where "n" is the error number. The assembly of subsequent source statements is not 
affected by nonfatal errors. 

Fatal errors terminate the assembler's processing of the source file and return system 
control to ISIS. There are two types of fatal errors: 

• Fatal 1/0 errors 

• All other fatal errors 

Fatal 1/0 errors provoke the following console message: 

ASM89 1/0 ERROR-

FILE: <filename> 

ERROR: <description> 

ASSEMBLY TERMINATED 

All other fatal errors provoke the console message: 

ASM89 FATAL ERROR-<description> 

Assembler errors should never occur. If you get one of these error messages, please 
notify Intel Corporation via a Problem Report Form (Part Number 9800035). 

The construct (X) in any message is replaced by a statement-dependent error con­
struct; it may be a number, a quoted string, a register-almost anything. Error con­
structs in the same error message may differ if the message is provoked by two 
different source statements. 

Most assembler error messages are self-explanatory. Where necessary, a brief error 
explanation and a description of the action to be taken by the user follows the error 
message. 

J-l 



Assembler Error Messages/User Actions 8089 Assembler 

J-2 

*** ERROR 1: PASS ONE ENCOUNTERED (X) FURTHER ERRORS IN THIS STMT 

This error message is issued after eight errors are found in a source statement 
on the assembler's first pass. Pass two errors are listed before pass one errors 
for a given statement. 

*** ERROR 2: PASS TWO ENCOUNTERED (X) FURTHER ERRORS IN THIS STMT 

This error message is issued after eight errors are found in a source statement 
on the assembler's second pass. Pass two errors are listed before pass one 
errors for a given statement. 

*** ERROR 3: (X) WAS DECLARED PUBLIC, BUT NEVER DEFINED; NOT WRITTEN TOOBJECT 

The symbol X is declared public in a PUBLIC directive but not defined in the 
source file. Information normally written to the object file for public symbols 
is not written for X. A source statement defining X should be added to the 
source file or X should be deleted from the PUBLIC directive it appears in. 

*** ERROR 4: SOURCE TEXT FOLLOWS "END" STATEMENT; IGNORED 

Any source file statements following the END directive are ignored by the 
assembler. To be processed by the assembler, such statements must be placed 
before the END directive. 

*** ERROR 5: NO SEGMENT WAS DEFINED; NO OBJECT FILE WILL BE PRODUCED 

Every 8089 Assembly Language source file must define exactly one segment, 
using the SEGMENT lENDS assembler directives. If such a segment is not 
defined in the source file, no object code is generated by the assembler. Any 
existing object files are retained. 

*** ERROR 6: "END" STATEMENT IN INCLUDED FILE 

An INCLUDEd file contains an END directive. The assembler accepts the 
statement and all source statements following the END directive are ignored 
by the assembler. Only one END directive is allowed per source file; 
INCLUDEd files are terminated by an end-of-file condition. 

*** ERROR 7: STATEMENT TOO COMPLEX; OPERANDS IGNORED STARTING WITH #(X) 

The expression list for a DB, DW, or DD assembler directive contains more 
expressions than the assembler can process. The directive should be broken up 
into two or more statements. Should this error message be generated by a 
single expression, a simpler expression must be coded in its place. 

*** ERROR 11: SEGMENT (X) IS LONGER THAN 64K BYTES 

The segment contained in an ASM89 object module can be a maximum of 64k 
contiguous byte addresses in length. This error message indicates that the 8089 
Assembly Language source program attempts to generate an object module 
which exceed this limit. The following source file is an example: 

SEG89 SEGMENT 

ORG OFFFFH 

DATA: OS 128 

SEG89 ENDS 

END 

The user should check ORG directives for errors. If more than 64k contiguous 
byte addresses are neccessary, two 8089 Assembly Language source files, a dif­
ferent segment defined in each, must be created. 



8089 Assembler Assembler Error Messages/User Actions 

*** ERROR 12: NAME/LABEL IS FORBIDDEN 

A label or name precedes an assembler directive which cannot be labeled or 
named. For example: 

FINISHED: END 

The END, ORG, EVEN, NAME, PUBLIC, and EXTRN directives cannot be 
labeled or named. 

*** ERROR 13: LABEL USED IN NAME CONTEXT; NAME ASSUMED 

*** ERROR 14: NAME USED IN LABEL CONTEXT; LABEL ASSUMED 

*** ERROR 15: (X) IS DECLARED BOTH PUB AND EXT; ORIGINAL DEFN USED 

The symbol X appears in both a PUBLIC and an EXTRN assembler directive. 
The first directive is used; the second is ignored. For example: 

PUBLIC FOO 

EXTRN FOO 

The symbol Faa is assumed to be public by the assembler. Symbols cannot be 
declared both public (PUBLIC) and external (EXTRN). 

*** ERROR 16: (X) HAS ALREADY BEEN DECLARED PUBLIC 

A symbol can be declared public (PUBLIC) only once in a source file. Addi­
tional public declarations of (X) should be deleted. 

*** ERROR 17: (X) HAS ALREADY BEEN DECLARED EXTERNAL 

A symbol can be declared external (EXTRN) only once in a source file. Addi­
tional external declarations of (X) should be deleted. 

*** ERROR 18: (X) HAS ALREADY BEEN DECLARED LOCAL; EXT IGNORED 

This message appears after an EXTRN directive which includes a symbol 
already defined as a label or a name in the source file. The external declaration 
is ignored. 

*** ERROR 19: NAME MISMATCH WHEN CLOSING <construct> 

The <construct> is either SEGMENT (X) or STRUCTURE (X). The wrong 
name in an ENDS statement, or trying to close a SEGMENT directive while a 
STRUCTURE directive is still open will provoke this message. For example: 

THIS STRUCTURE 

THAT ENDS 

The second statement is assumed to read "THIS ENDS". 

*** ERROR 20: "ENDS" ASSUMED TO CLOSE <construct> 

The <construct> is SEGMENT (X), STRUCTURE (X), or UNNAMED 
STRUCTURE. This error message follows an ENDS directive which has no 
name. 

*** ERROR 21: <construct> IS ASSUMED TO CLOSE AT "END" 

The <construct> is SEGMENT (X), or STRUCTURE (X), or UNNAMED 
STRUCTURE. An END directive was found before the ENDS closing an 
active segment or structure. 

J-3 



Assembler Error Messages/User Actions 8089 Assembler 

*** ERROR 24: BAD PARAMETER TO PSEUDO-OP; IGNORED 

Provoked by undefined or invalid operands to DS and ORG assembler direc­
tives. For example: 

OS GA 

ORG 'ABCDEF' 

os ZZZ 

In the last example, this error is provoked if ZZZ has not been defined to the 
assembler when the DS directive is processed. 

*** ERROR 25: TOO MANY OPERANDS; IGNORED BEGINNING WITH #(X) 

An 8089 Assembly Language source statement contains too many operands. 
For example: 

JMP TARGET, ANOTHER 

The JMP instruction only requires one operand. 

*** ERROR 26: "EQU" DOES NOT ALLOW REGISTER EXPRESSIONS; FIRST REG IS USED 

Provoked by such things as the following: 

REG EQU GA+GB 

REG2 EQU 

Everything following the first register is ignored. The above statements are 
equivalent to: 

REG EQU GA 

REG2 EQU GB 

*** ERROR 27: OPERAND OF "EQU" IS AS YET UNDEFINED; ASSUMED ZERO 

The operand of an EQU directive is undefined when the EQU is found on the 
assembler's first pass. The operand's value is assumed to be zero. For 
example: 

ENDJ EQU LAST 

LAST: HLT 

The value of LAST is assumed to be zero when the EQU directive is processed. 
ENDJ is assigned the value zero. 

*** ERROR 28: MODULE NAME IS ALREADY (X); STATEMENT IGNORED 

A source file contains two NAME directives. Only one NAME directive is 
allowed per source file. 

*** ERROR 29: ILLEGAL OPERAND TO PUBLlC/EXTRN 

*** ERROR 30: NULL OPERAND IS ASSUMED ZERO 

An instruction requires more operands than are contained in the source state­
ment. For example, 

ADD GA, 

The missing operand is assumed to be zero. 



8089 Assembler Assembler Error Messages/User Actions 

*** ERROR 31: (X) IS AN INVALID BASE-(X) DIGIT; (X) IS ASSUMEDZERO 

This error message is provoked by such source statements as the following: 

DB OF7 

OF7 is assumed to be decimal and F is an invalid decimal digit. The digit in 
error must be changed or the correct suffix for the desired number system must 
be added to the number. 

*** ERROR 32: SYMBOL IS LONGER THAN 31 CHARACTERS; TRUNCATED TO 31 

Symbols can be a maximum of 31 characters in length. Symbols which exceed 
this limit are truncated by the assembler. The entire symbol does, however, 
appear in the list file. 

*** ERROR 33: TOKEN IS LONGER THAN 255 CHARACTERS; TRUNCATED TO 255 

*** ERROR 34: OPERATION DOES NOT ALLOW AN EXTERNAL SYMBOL; EXTERNAL ASSUMED ZERO 

External symbols are only allowed in DD assembler directives and LPDI 
instructions. 

*** ERROR 35: ILLEGAL EXPRESSION; ZERO USED 

Assembler error-contact Intel Corporation. 

*** ERROR 36: NO "END" STATEMENT 

The source file does not contain an END directive. The assembler acts as if an 
END directive immediately precedes the end of the source file. 

*** ERROR 37: ILLEGAL OPERAND TO DATA-GENERATING OP; IGNORED 

This error message is provoked by invalid operands to DB, DW, DD, and DS 
assembler directives. For example: 

DB [GAl 
The invalid operand must be changed or deleted. 

*** ERROR 38: STRINGS LONGER THAN 2 CHARS ARE FORBIDDEN; IGNORED 

*** ERROR 39: BIT SELECTOR IS OUT OF RANGE; VALUE MOD 81S USED 

The value of a data memory bit operand in an instruction ranges from 0-7. 
Values outside this range are taken modulo eight by the assembler. For 
example: 

SETB [GA], 11 

The assembler assumes bit 3 (11 modulo eight) is specified. 

*** ERROR 40: UNRECOGNIZED MEMORY REFERENCE IS ASSUMED REGISTER DIRECT 

Assembler error-contact Intel Corporation. 

*** ERROR 41: NON-REGISTER (X) IS ASSUMED TO BE REGISTER GA 

Nonregister symbols used in place of register operands provoke this error 
message. For example: 

OR GD, [PP].CNTRL 

GD is assumed by the assembler to be GA. 

J-5 



Assembler Error Messages/User Actions 8089 Assembler 

J-6 

*** ERROR 42: NON-POINTER REGISTER (X) IS ASSUMED TO BE REGISTER GA 

This error message is provoked when an instruction requires a pointer register 
operand and a non-pointer register operand is coded. For example: 

LPD BC, [PP].ADDRESS 

Be is assumed to beGA by the assembler, so the above is equivalent to: 

LPD GA, [PP] .ADDRESS 

*** ERROR 43: ILLEGAL SOURCE WIDTH; ASSUMED 8 

The source operand in the WID instruction can be 8 or 16. Any other value is 
assumed by the assembler to be 8. The destination operand in the WID instruc­
tion is checked separately by the assembler, so two incorrect logical width 
operands generate two error messages. Example: 

WID 12,16 

The above statement is treated as WID 8, 16 (not WID 8, 8). 

*** ERROR 44: ILLEGAL DESTINATION WIDTH; ASSUMED 8 

The destination operand in the WID instruction can be 8 or 16~ Any other 
value is assumed by the assembler to be 8. The source operand is checked 
separately by the assembler, so two incorrect logical width operands generate 
two error messages. Example: 

WID 16,18 

The assembler assumes the above to be WID 16,8 (not WID 8, 8). 

*** ERROR 45: JUMP TARGET IS OUTSIDE 1-BYTE WINDOW; WRAPAROUND 

The one-byte window is the range of the jump target's address from the end of 
a control transfer instruction (next instruction address - 128, next instruction 
address + 127). When the short form of a control transfer instruction is coded, 
this error occurs when the assembler cannot determine the address of the jump 
target on its first pass (i.e., the expression giving the jump target's location 
contains a forward reference). The assembler assumes a signed byte displace­
ment value (of the above range) is required to reach the jump target. If it later 
determines that a signed word displacement is needed, the short form of the 
control transfer instruction is flagged as an error. 

The user must either: code the long form of the control transfer instruction in 
place of the short form or eliminate the forward reference in the expression 
specifying the jump target's location. 

NOTE: WRAP AROUND means that the required displacement value has 
wrapped around within the signed byte value. Thus, the value 
generated by the assembler is incorrect. For example, if a displace­
ment value of + 140 is required the assembler generates a value -116. 

*** ERROR 46: JUMP TARGET IS OUTSIDE 2-BYTE WINDOW; WRAPAROUND 

The two-byte window is the range of the jump target's address from the end of 
a control transfer instruction (next instruction address - 32,768, next instruc­
tion address + 32,767). All 8089 Assembly Language control transfer instruc­
tion jump targets must be in the above range. 

The user must move the location of the jump target inside the above range 
(next instruction- 32,768, next instruction + 32,767). If, in the control 
transfer instruction, the expression specifying the jump target's location does 



8089 Assembler Assembler Error Messages/User Actions 

not contain a forward reference, the short form of the control transfer instruc­
tion can be coded and the assembler will generate a signed byte or word 
displacement as is necessary. (Note that $ + 7 is not a forward reference.) If the 
expression does contain a forward reference and the jump target is outside a 
-128, +127 byte range, the long form of the instruction is required. 

NOTE: WRAPAROUND means that the displacement value wraps around 
within a signed word. The assembler does not generate the correct 
displacement value. For example, a displacement of +65000 
generates a displacement value of -536. 

*** ERROR 47: MEMORY REFERENCE OFFSET IS > 255; VALUE MOD 256 IS USED 

The value of 'd' in the data memory expression form [PREG].d cannot be 
greater than 255. Example: 

MOV GA, [PP] .300 

The offset value 300 is evaluated modulo 256 and the above expression is 
treated as: 

MOV GA, [PP] .44 

*** ERROR 48: (X) IS ALREADY DEFINED; REDEFINITION IS IGNORED 

This message is provoked when a symbol is defined more than once in a source 
file. Example: 

Foa EQU OFFH 

FOO: DB 8 

The second use of Faa (as a label) provokes this error. This error might also 
occur if an INCLUDEd file defines a symbol already defined in the main 
source file (e.g., Faa is used as an instruction label in both the main source 
file and an INCLUDEd file). Additional definitions of (X) must be eliminated. 

*** ERROR 49: EXPRESSION HAS MORE THAN ONE EXTERNAL; (X) IS ASSUMEDZERO 

A single external symbol can appear in an expression used in an LPDI instruc­
tion or DD directive. Example: 

EXTRN DOG,CAT 

DD DOG + CAT 

The assembler assumes the value of CAT, and any other external symbols in 
the expression, to be zero. 

Note that the following is valid: 

EXTRN DOG,CAT 

DD DOG,CAT 

In this case, the external symbols appear in two different expressions. 

*** ERROR 50: STATEMENT BEGINS WITH CONTINUATION 

A source statement cannot begin in an INCLUDEd file and continue in the 
main source file, i.e., the first source line following an INCLUDE control line 
cannot begin with an &. The source statement must be contained in either the 
INCLUDEd file or the main source file. It cannot be continued from one to 
the other. 

J-7 



Assembler Error Messages/User Actions 8089 Assembler 

1-8 

*** ERROR 51: END-OF-FILE WITHIN QUOTED STRING 

This error message is provoked by source files ending with the following state­
ment (no end-of-line at end of statement): 

DB 'ABC 

The quoted string is assumed to end at the end-of-file. 

*** ERROR 52: END-OF-FILE DOES NOT OCCUR ON A LINE BOUNDARY 

This error message is generated by an END statement not followed by an end­
of-line. 

*** ERROR 53: LINE ENDS BEFORE QUOTED STRING 

A quoted string cannot contain an end-of-line (a single carriage-return (CR), a 
single linefeed, or a CR/LF sequence). 

*** ERROR 54: ILLEGAL CHARACTER ENCOUNTERED 

The assembler accepts all printing characters of the standard ASCII character 
set. The non-printing characters horizontal tab (09H), carriage-return (ODH) 
and line-feed (OAH) may also be lised with assembler-defined meanings (tab 
and end-of-line). Invalid characters are treated as a blank by the assembler. 

*** ERROR 55: LINE/STATEMENT ENDS BEFORE QUOTED STRING 

The quoted string is assumed to close at the end-of-line or end-of-statement. 

*** ERROR 56: (X) IS NOT A MEMORY REFERENCE REGISTER; REF BECOMES [GA]; 
SKIP TO COMMA OR END-OF-L1NE 

Pointer/registers GA, GB, or GC and the PP register can be used in memory 
reference expressions. This error is provoked by the following kind of 
statement: 

NOT [BC] 

BC must be replaced with GA, GB, GC or PP. 

*** ERROR 57: INDEXING ASSUMED VIA IX, NOT (X); SKIP TO COMMA OR END-OF-L1NE 

Expressions of the form: 

MOV GA, [PP + BC] 

provoke this error. The second operand is assumed to read [PP+ IX]. 

*** ERROR 58: VALUE OF REGISTER (X) IN EXPRESSION SET TO ZERO 

The following type of expression provokes this error: 

ADD MC, [GB].IX 

IX is not a valid offset. The assembler assumes a zero offset value. 

*** ERROR 59: NOT ENOUGH OPERANDS IN AN EXPRESSION 

This error message is provoked by the following kind of expression: 

GOO EQU $ + 

The assembler expects an operand following the + sign. An operand should be 
provided or the + sign removed from the statement. 



8089 Assembler Assembler Error Messages/User Actions 

*** ERROR 60: OPERATOR OR DELIMITER EXPECTED BEFORE'(X); 
SKIP TO COMMA OR END-OF-LiNE 

An operator, + or -, or a delimiter, , or ;, has been forgotten or mistyped. 
This error message is provoked by statements of the form: 

JMP TARGET 5 

AND GA, [GC] THIS IS AN AND INSTRUCTION. 

The assembler skips to the next comma or end-of-line. 

*** ERROR 63: (X) (ILLEGAL IN EXPRESSION) IS ASSUMED TO BE ZERO 

*** ERROR 64: DOT IS ILLEGAL IN THIS CONTEXT; SKIP TO COMMA OR END-OF-LiNE 

*** ERROR 65: "STRUCTURE" EXPECTS A NAME; UNNAMED STRUCTURE GENERATED 

*** ERROR 66: OPERATION (X) IS ILLEGAL AFTER AN OPERATION; 
SKIP TO COMMA OR END-OF-L1NE 

*** ERROR 67: (X) WAS NEVER DEFINED; ADDRESS ASSUMED ZERO 

*** ERROR 68: "(X)" IS ILLEGAL IN THIS CONTEXT; SKIP REST OF STMT 

While the assembler does accept all printing ASCII characters, they are not 
valid in all contexts. For example: 

STOO EQU ($ + 5) 

The open parenthesis character is not allowed in this context and provokes this 
error message. The remainder of the source statement is skipped by the 
assembler. 

*** ERROR 69: INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [GA] 

*** ERROR 70: INCOMPLETE MEMORY REFERENCE IS ASSUMEDTO BE [REGISTER] 

*** ERROR 71: INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [REGISTER+ IX] 

*** ERROR 72: INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [REGISTER+IX+] 

*** ERROR 73: (X) IS ILLEGAL IN A MEMORY REFERENCE; REF BECOMES [GA]; 
SKIP TO COMMA OR END-OF-L1NE 

*** ERROR 74: (X) IS ILLEGAL IN A MEMORY REFERENCE; "]" ASSUMED TO PRECEDE IT; 
SKIP TO COMMA OR END-OF-L1NE 

*** ERROR 75: (X) IS ILLEGAL IN A MEMORY REFERENCE AFTER "]"; 
SKIP TO COMMA OR END OF LINE 

*** ERROR 76: (X) IS ILLEGAL IN A MEMORY REFERENCE AFTER" +"; 
INDEXED REF ASSUMED; SKIP TO COMMA OR END-OF-LiNE 

*** ERROR 77: (X) IS ILLEGAL IN A MEMORY REFERENCE AFTER" + IX"; 
"]" ASSUMED TO PRECEDE IT; SKIP TO COMMA OR END-OF-FILE 

*** ERROR 78: (X) IS ILLEGAL IN A MEMORY REFERENCE AFTER" + IX + It; 
"]" ASSUMED TO PRECEDE IT; SKIP TO COMMA OR END-OF-L1NE 

*** ERROR 79: OPENING "]" ASSUMED TO BE [GA]; SKIP TO COMMA OR END-OF-L1NE 

J-9 



Assembler Error Messages/User Actions 8089 Assembler 

J-lO 

*** ERROR 80: "(X) EQU $" IS ASSUMED «X) IS ALREADY GLOBAL) 

Public symbols cannot be equated to a register symbol. For example: 

PUBLIC REG 

REG EOU GA 

The above EQU statement is assumed by the assembler to be: 

REG EOU $ 

*** ERROR 81: DELIMITER EXPECTED BEFORE (X); SKIP TO COMMA OR END-OF-UNE 

A comma or end-of-line sequence is missing before (X). Everything fol­
lowing (X), until the next delimiter, is ignored. A delimiter must be inserted 
before (X). 

*** ERROR 82: OPERAND (X) FAILS IN PASS 2; ZERO USED 

Assembler error-contact Intel Corporation. 

*** ERROR 83: ZERO INSERTED BEFORE (X) 

The assembler turns the sequences ++; +-, -+, and -- into +0+, 
+0-, -0+, and -0-. This message reports that this has occurred. 

"** ERROR 84: MAXIMUM "INCLUDE" NESTING EXCEEDED 

Nested INCLUDEs are not allowed by the assembler. For example: 

SEG89 SEGMENT 

$INCLU DE(: F1: PROG1) 

SEG89 ENDS 

END 

The above included file (PROG 1) cannot contain any INCLUDE controls. 

*** ERROR 85: PRIMARY CONTROL FOLLOWS A NON-CONTROL STATEMENT 

A control line containing a primary control follows a non-control statement. 
The primary control, and any controls following it in the control line, are 
ignored. The primary control must be placed before the first non-control line 
in the source file. 

*** ERROR 86: STRUCTURE (X) IS LONGER THAN 64K BYTES 

*** ERROR 87: (X) (ILLEGAL IN EXPRESSION) IS ASSUMED TO BE ZERO; 
SKIP TO COMMA OR ENO-OF-UNE 

*** ERROR 88: NON-PROGRAMMABLE REGISTER (X) IS ASSUMED TO BE GA 

The PP register is non-programmable and can only be used in data memory 
expressions. This error message is provoked by the following . kind of 
statements: 

MOVI PP,1234H 

The assembler assumes the above to read MOVI GA, 1234H. 

*** ERROR 89: NO OPERAND PRESENT; STATEMENT IGNORED 

A DB, DW, DD, DS, NAME, ORG, PUBLIC, or EXTRN directive has no 
operands. An operand should be added to the source statement or the state­
ment should be deleted. 



8089 Assembler Assembler Error Messages/User Actions 

*** ERROR 90: SOURCE STATEMENT IS TOO LONG; ADDITIONAL CHARACTERS IGNORED 

The maximum size of a compressed 8089 Assembly Language source statement 
is 256 characters. Additional characters are ignored but do appear in the list 
file. 

*** ERROR 91: ILLEGAL USE OF EXTERNAL; VALUE ASSUMED ZERO 

This error message is provoked by an external symbol appearing in the 
operand field of an EQU directive: 

EXTRN PARM 

CNTRL EQU PARM 

A value of zero is assigned to the symbol CNTRL by the assembler. 

*** ERROR 92: EXTERNAL SYMBOL (X) IS ILLEGAL IN THIS CONTEXT; ASSUMED ZERO 

An external symbol appears in an expression in a statement other than an 
LPDI instruction or DD directive. The value of the external symbol is assumed 
to be zero. For example: 

EXTRN SUM 

ADm GA, SUM + 22 

The assembler assumes the value of SUM to be zero and generates an 
immediate value of 22. 

*** ERROR 93: ILLEGAL POST-AUTO-INCREMENT IS IGNORED 

A CALL instruction cannot have a data memory expression which uses the 
post auto-increment form. For example: 

CALL [GA+IX+], TARGET 

The data memory expression form [GA+IX+] is not allowed. Another data 
memory expression form must be used in its place. 

*** ERROR 94: FORWARD REFERENCE TO REGISTER SYMBOL (X) IS ASSUMED ZERO 

Symbols created as alternate register names are only allowed in the same con­
texts that the register symbol is allowed in. This error message is provoked by 
the following kind of statement: 

DB X 

X EQU BC 

The value of X in the DB directive is assumed to be zero. 

*** ERROR95: ILLEGAL OPERAND #(X) IS ASSUMEDZERO 

Operand number (X) in a DB, DW, DD, or EQU directive is a data memory 
expression or a register symbol. 

* ** ERROR 121: INVALID DIGIT IN CONTROL FIELD 

*** ERROR 122: LINE ENDS BEFORE QUOTED STRING IN CONTROL 

*** ERROR 123: CONTROL REQUIRES PARENTHESIZED VALUE 

*** ERROR 124: CONTROL REQUIRES QUOTED STRING 

*** ERROR 125: RIGHT PARENTHESIS EXPECTED 

J-ll 



Assembler Error Messages/User Actions 8089 Assembler 

1-12 

*** ERROR 126: CONTROL STRING IS TOO LONG 

*** ERROR 127: CONTROL VALUE IS TOO LARGE 

*** ERROR 128: CONTROL VALUE IS TOO SMALL 

*** ERROR 129: UNRECOGNIZED CONTROL 

*** ERROR 130: CONTROL REQUIRES NUMERIC VALUE 

*** ERROR 131: (X) IS USED ILLEGALLY 

*** ERROR 151: NAME REQUIRED; STATEMENT IGNORED 

*** ERROR 152: LABEL REQUIRED; STATEMENT IGNORED 

*** ERROR 153: ILLEGAL OUTSIDE SEGMENT; STATEMENT IGNORED 

*** ERROR 154: ILLEGAL INSIDE STRUCTURE; STATEMENT IGNORED 

*** ERROR 155: SYMBOL EXPECTED; TWO NO-OPS GENERATED 

*** ERROR 156: TOO MANY EXTERNALS; BALANCE IGNORED 

A maximum of 32,767 external symbols may be declared in a source file, pro­
vided there is sufficient room in the dictionary. Two separate source files must 
be created if more than 32,767 external symbols are needed. 

*** ERROR 157: "ENDS" HAS NO ANTECEDENT; STATEMENT IGNORED 

*** ERROR 158: ATTEMPTED 1-BYTE BRANCH T02-BYTE TARGET; 
TWO NO-OPS GENERATED 

The jump target of a TSL instruction is outside the range next instruction 
-128, next instruction + 127. The jump target must be relocated inside this 
range. 

*** ERROR 159: ILLEGAL COMBINATION OF OPERANDS; TWO NO-OPS GENERATED 

*** ERROR 160: "NAME" DOES NOT ALLOW EXPRESSIONS; STATEMENT IGNORED 

*** ERROR 161: SEGMENT (X) IS ALREADY DEFINED; STATEMENT IGNORED 

*** ERROR 162: "SEGMENT" REQUIRES A NAME; STATEMENT IGNORED 

*** ERROR 163: STRUCTURES MAY NOT BE NESTED; STATEMENT IGNORED 

*** ERROR 164: UNRECOGNIZED OPERATION (X); STATEMENT IGNORED 

*** ERROR 201: FAILURE DURING STATEMENT SCAN (REMAP) 

*** ERROR 202: SYNTAX FAILURE AFTER INITIAL EVALUATION 

*** ERROR 203: FAILURE DURING OPERAND CLASSIFICATION 

*** ERROR 204: POINTER FAILURE IN PASS 2; GA ASSUMED 

*** ERROR 205: DESTINATION LOST BETWEEN PASSES; WIDTH ASSUMED 8 

*** ERROR 206: ATTEMPT TO SKIP TO NONEXISTENT OPERAND 



8089 Assembler Assembler Error Messages/User Actions 

*** ERROR 207: OPERAND #(X) FAILS IN PASS ONE; STATEMENT IGNORED 

*** ERROR 208: (X) WAS PREVIOUSLY MADE A NON-SYMBOL 

*** ERROR 209: UNRECOGNIZED CONSTRUCT WHILE EMPTYING META-TEXT 

*** ERROR 210: REWRITTEN EXPRESSION FAILURE 

*** ERROR 211: META POINTER IS PAST END OF META TEXT 

*** ERROR 212: META POINTER IS BEFORE START OF META TEXT 

*** ERROR 213: META NOTE OVERFLOW 

*** ERROR 214: META NOTE UNDERFLOW 

*** ERROR 215: ATTEMPT TO PLANT UNRECOGNIZED META CHARACTER 

*** ERROR 216: ATTEMPT TO PLANT UNRECOGNIZED OBJECT CONSTRUCT 

*** ERROR 217: UNRECOGNIZED CONSTRUCT WHILE SKIPPING IN META-TEXT 

*** ERROR 218: FAILURE OF OPEN/CLOSE QUOTE META 

*** ERROR 220: INVALID META FOUND IN INTERMEDIATE TEXT 

*** ERROR 221: UNRECOGNIZED TOKEN TYPE; SKIP TO COMMA OR END-OF-L1NE 

*** ERROR 222: CONTROL FAILURE IN PASS 2 

*** ERROR 247: USED ILLEGALLY 

*** ERROR 248: CONTROL IS INVALID IN COMMAND TAIL 

*** ERROR 249: INVOCATION DOES NOT END WITH <CR><LF> 

*** ERROR 250: INVOCATION LINE IS TOO LONG 

*** ERROR 251: INPUT MUST BE FROM A RANDOM-ACCESS FILE 

*** ERROR 252: TYPE <n>: <concise message for ISIS error <n> > 

*** ERROR 253: LENGTH ERROR ON READ 

*** ERROR 254: NOT ENOUGH SPACE FOR ERROR CONSTRUCTS 

*** ERROR 255: PASS FAILURE DURING STATEMENT ABANDON 

*** ERROR <m>: INTERNAL PROCESSING ERROR 

Assembler failure-contact Intel Corporation. 

***ERROR <n>: UNKNOWN ERROR TYPE 

Assembler failure-contact Intel Corporation. 

J-13 





APPENDIX K 
8089 INSTRUCTIONS IN 
HEXADECIMAL ORDER 

Each 8089 instruction generates a mllllmum of two bytes of object code. The 
following lists the hexadecimal values for the second assembled instruction byte, 
containing the operation code and the base memory address fields. 

A "B" appearing in brackets in an instruction mnemonic is coded for the byte form 
of the instruction. 

For example: 

20H is generated by both ADDI R, I and ADDBI R, I. An "L" appearing in 
brackets in a control transfer instruction mnemonic is coded for the long form of the 
instruction. 

For example: 

40H is generated by both JNZ R, Land L-JNZ R, L. 

See Chapter 3 for the format of the first assembled instruction byte. 

HEX 

00 
00 
00 
00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
00 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
1B 
1C 
10 
1E 
1F 
20 
20 
21 
22 

BINARY 

00000000 
00000000 
00000000 
00000000 
00000001 
00000010 
00000011 
00000100 
00000101 
00000110 
00000111 
00001000 
00001001 
00001010 
00001011 
00001100 

. 00001101 
00001110 
00001111 
00010000 
00010001 
00010010 
00010011 
00010100 
00010101 
00010110 
00010111 
00011000 
00011001 
00011010 
00011011 
00011100 
00011101 
00011110 
00011111 
00100000 
00100000 
00100001 
00100010 

INSTRUCTION 

NOP 
SINTR 
WID S, 0 
XFER 

LPOI P, I 

ADO[B]I R, 
[L]JMP L 

BASE ADDRESS 

K-l 



8089 Instructions in Hexadecimal Order 8089 Assembler 

HEX BINARY INSTRUCTION BASE ADDRESS 

23 00100011 
24 00100100 OR[S]I R, I 
25 00100101 
26 00100110 
27 00100111 
28 00101000 AND[S]I R, I 
29 00101001 
2A 00101010 
28 00101011 
2C 00101100 NOT R 
20 00101101 
2E 00101110 
2F 00101111 
30 00110000 MOV[8]1 R, I 
31 00110001 
32 00110010 
33 00110011 
34 00110100 
35 00110101 
36 00110110 
37 00110111 
38 00111000 INC R 
39 00111001 
3A 00111010 
38 00111011 
3C 00111100 DEC R 
3D 00111101 
3E 00111110 
3F 00111111 
40 01000000 [L]JNZ R, L 
41 01000001 
42 01000010 
43 01000011 
44 01000100 [L]JZ R, L 
45 01000101 
46 01000110 
47 01000111 
48 01001000 HLT 
49 01001001 
4A 01001010 
48 01001011 
4C 01001100 MOV[8]1 M, GA 
40 01001101 MOV[8]1 M, GS 
4E 01001110 MOV[8]1 M, GC 
4F 01001111 MOV[B]I M, pp 
50 01010000 
51 01010001 
52 01010010 
53 01010011 
54 01010100 
55 01010101 
56 01010110 
57 01010111 
58 01011000 
59 01011001 
5A 01011010 
58 01011011 
5C 01011100 
50 01011101 
5E 01011110 
5F 01011111 
60 01100000 
61 01100001 
62 01100010 
63 01100011 
64 01100100 
65 01100101 
66 01100110 
67 01100111 
68 01101000 

K-2 



8089 Assembler 8089 Instructions in Hexadecimal Order 

HEX BINARY INSTRUCTION BASE ADDRESS 

69 01101001 
6A 01101010 
6B 01101011 
6C 01101100 
60 01101101 
6E 01101110 
6F 01101111 
70 01110000 
71 01110001 
72 01110010 
73 01110011 
74 01110100 
75 01110101 
76 01110110 
77 01110111 
78 01111000 
79 01111001 
7A 01111010 
7B 01111011 
7C 01111100 
70 01111101 
7E 01111110 
7F 01111111 
80 10000000 MOV[B] R, M GA 
81 10000001 MOV[8] R, M G8 
82 10000010 MOV[8] R, M GC 
83 10000011 MOV[8] R, M PP 
84 10000100 MOV[8] M, R GA 
85 10000101 MOV[8] M, R G8 
86 10000110 MOV[B] M, R GC 
87 10000111 MOV[8] M, R PP 
88 10001000 LPO P, M GA 
89 10001001 LPO P, M G8 
8A 10001010 LPO P, M GC 
88 10001011 LPO P, M PP 
8C 10001100 MOVP P, M GA 
80 10001101 MOVP P, M GB 
8E 10001110 MOVP P, M GC 
8F 10001111 MOVP P, M PP 
90 10010000 MOV[8] M, M GA 
91 10010001 MOV[8] M, M G8 
92 10010010 MOV[B] M, M GC 
93 10010011 MOV[8] M, M PP 
94 10010100 TSL M, I, L GA 
95 10010101 TSL M, I, L GB 
96 10010110 TSL M, I, L GC 
97 10010111 TSL M, I, L PP 
98 10011000 MOVP M, P GA 
99 10011001 MOVP M, P G8 
9A 10011010 MOVP M, P GC 
98 10011011 MOVP M, P PP 
9C 10011100 [L]CALL M, L GA 
90 10011101 [L]CALL M, L G8 
9E 10011110 [L]CALL M, L GC 
9F 10011111 [L]CALL M, L PP 
AO 10100000 AOO[B] R, M GA 
A1 10100001 AOD[B] R, M G8 
A2 10100010 AOO[B] R, M GC 
A3 10100011 AOO[B] R, M PP 
A4 10100100 OR[B] R, M GA 
A5 10100101 OR[8] R, M G8 
A6 10100110 OR[B] R, M GC 
A7 10100111 OR[B] R, M PP 
A8 10101000 ANO[B] R, M GA 
A9 10101001 ANO[B] R, M G8 
AA 10101010 ANO[B] R, M GC 
A8 10101011 ANO[B] R, M PP 
AC 10101100 NOT[B] R, M GA 
AO 10101101 NOT[B] R, M G8 
AE 10101110 NOT[B] R, M GC 

K-3 



8089 Instructions in Hexadecimal Order 8089 Assembler 

HEX BINARY INSTRUCTION BASE ADDRESS 

AF 10101111 NOT[B] R, M pp 
BO 10110000 [L]JMCE M, L GA 
B1 10110001 [L]JMCE M, L GB 
B2 10110010 [L]JMCE M, L GC 
B3 10110011 [L]JMCE M, L pp 
B4 10110100 [L]JMCNE M, L GA 
B5 10110101 [L]JMCNE M, L GB 
B6 10110110 [L]JMCNE M, L GC 
B7 10110111 [L]JMCNE M, L pp 
B8 10111000 [L)JNBT M, b, L GA 
B9 10111001 [L]JNBT M, b, L GB 
BA 10111010 [L]JNBT M, b, L GC 
BB 10111011 [L]JNBT M, b, L pp 
BC 10111100 [L] JBT M, b, L GA 
BD 10111101 [L]JBT M, b, L GB 
BE 10111110 [L]JBT M, b, L GC 
BF 10111111 [L] JBT M, b, L pp 
CO 11000000 ADD[B]I M, I GA 
C1 11000001 ADD[B)I M, I GB 
C2 11000010 ADD[B]I M, I GC 
C3 11000011 ADD[B]I M, I pp 
C4 11000100 OR[B]I M, I GA 
C5 11000101 OR[B]I M, I GB 
C6 11000110 OR[B]I M, I GC 
C7 11000111 OR[B]I M, I pp 
C8 11001000 AND[B]I M, I GA 
C9 11001001 AND[B]I M, I GB 
CA 11001010 AND[B]I M, I GC 
CB 11001011 AND[B]I M, I pp 
CC 11001100 
CD 11001101 
CE 11001110 
CF 11001111 
DO 11010000 ADD[B] M, R GA 
D1 11010001 ADD[B] M, R GB 
D2 11010010 ADD[B] M, R GC 
D3 11010011 ADD[B] M, R pp 
D4 11010100 OR[B] M, R GA 
D5 11010101 OR[B] M, R GB 
D6 11010110 OR[B] M, R GC 
D7 11010111 OR[B) M, R pp 
D8 11011000 AND[B] M, R GA 
D9 11011001 AND[B] M, R GB 
DA 11011010 AND[B] M, R GC 
DB 11011011 AND[B] M, R pp 
DC 11011100 NOT[B] M GA 
DD 11011101 NOT[B] M GB 
DE 11011110 NOT[B] M GC 
DF 11011111 NOT[B] M pp 
EO 11100000 [L]JNZ[B] M, L GA 
E1 11100001 [L)JNZ[B] M, L GB 
E2 11100010 [L]JNZ[B] M, L GC 
E3 11100011 [L]JNZ[B] M, L pp 
E4 11100100 [L]JZ[B] M, L GA 
E5 11100101 [L]JZ[B] M, L GB 
E6 11100110 [L]JZ[B] M, L GC 
E7 11100111 [L)JZ[B] M, L pp 
E8 11101000 INC[B] M GA 
E9 11101001 INC[B] M GB 
EA 11101010 INC[B] M GC 
EB 11101011 INC[B] M pp 
EC 11101100 DEC[B] M GA 
ED 11101101 DEC[B] M GB 
EE 11101110 DEC[B] M GC 
EF 11101111 DEC[B] M pp 
FO 11110000 
F1 11110001 
F2 11110010 
F3 11110011 
F4 11110100 SETB M, b GA 

K-4 



8089 Assembler 

HEX 

F5 
F6 
F7 
F8 
F9 
FA 
FB 
Fe 
FD 
FE 
FF 

BINARY 

11110101 
11110110 
11110111 
11111000 
11111001 
11111010 
11111011 
11111100 
11111101 
11111110 
11111111 

INSTRUCTION 

SETB M, b 
SETB M, b 
SETB M, b 
CLR M, b 
CLR M, b 
CLR M, b 
CLR M, b 

8089 Instructions in Hexadecimal Order 

BASE ADDRESS 

GB 
GC 
pp 
GA 
GB 
GC 
pp 

K-5 





INDEX 

The entries in this index are shown as they appear in the text of the book, i.e., lower­
case words are lowercase in the text, uppercase words are uppercase in the text. 
When more than one reference is given for an entry, the primary reference is listed 
first. 

SYMBOLS 

$ 

& 

+ 

/ 

? 

@ 

** 

location counter reference, 2-8 
in relative instruction addresses, 2-10 
in assembly control lines, 5-2 

continuing source statements, 3-2 
continuing assembler invocation lines, 5-2 

assembly time operator, unary or binary addition, 2-8 

assembly line operator, unary or binary addition, 2-8 
in the list file, 5-7 

symbol special character, 2-5 

in the list file, 5-7 

in label definition, 2-6 

in commentf:, 3-2 

in list file, 5-7 

symbol special character, 2-5 

symbol special character, 2-5 

assembler prompt, continue invocation line, 5-2 

in symbol table, 5-7 

[PREG] data memory operand, 2-11 

[PREG].d data memory operand, 2-12,4-7 

[PREG+IX] data memory operand, 2-12 

[PREG+IX+] data memory operand, 2-12 

8086 
addresses 

110, 1-15 
Memory, 1-15 

formation of 20-bit addresses, 1-9 
host processor and RQ/GT, 1-13 

8088 
host processor and RQ/GT, 1-13 

Index-l 



A 

AA, field in assembled instructions 
in CALL and LCALL instructions, 

3-27, 3-51 
memory address mode, 3-2, 3-3 

ADD, 3-11, 3-9 
ADDB,3-8 

AD DB M, R, 3-13 
ADDB R, M, 3-12 

ADDBI,3-8 
ADDBI M, I, 3-15 
ADDBI R, I, 3-14 

ADDI, 3-16, 3-9 
addition, 3-8, 3-9 

ADD, 3-11, 3-9 
ADDB, 3-12, 3-13, 3-8 
ADDBI, 3-14, 3-15, 3-8 
ADDI, 3-16, 3-9 
and 20-bit pointer/registers, 3-9 

addresses (physical length), 1-15 
addressing data. See also data memory 

operands 
indirect, 1-15,2-11 
Local (110) addresses, 1-15, 2-11 
LOCAL configuration address space, 1-4 
REMOTE configuration address 

space, 1-4 
system (memory) addresses, 1-15,2-11 
tag bit in, 1-15 

ampersand (&) 
in continuing source statements, 3-2 
in continuing the assembly invocation 

line, 5-2 
AND, 3-17, 3-18, 3-9 
ANDB,3-8 

ANDB M, R, 3-20 
ANDB R, M, 3-19 

ANDBI,3-8 
ANDBI M, I, 3-22 
ANDBI R, I, 3-21 

ANDI, 3-23, 3-24,3-9 
arithmetic and logical instructions, 3-8, 3-9 

ADD, 3-11, 3-9 . 
ADDB, 3-12, 3-13, 3-8 
ADDBI, 3-14, 3-15, 3-8 
ADDI, 3-16, 3-9 
AND, 3-17, 3-18, 3-9 
ANDB, 3-19, 3-20, 3-8 
ANDBI, 3-21, 3-22, 3-8 
ANDI, 3-23, 3-24, 3-9 
DEC, 3-29, 3-9 
DECB, 3-30, 3-8 
INC, 3-32, 3-9 
INCB, 3-33, 3-8 
NOT, 3-84, 3-85, 3-9 
NOTB, 3-86, 3-87, 3-8 
OR, 3-88, 3-89,3-9 
ORB, 3-90, 3-91,3-8 
ORBI, 3-92, 3-93, 3-8 
ORI, 3-94, 3-95, 3-9 
registers affected by 8-bit 

operations, 3-8 
using pointer/registers in, 3-9 

ASM89,1-5 

Index-2 

compression of source statements, 
3-2,4-2 

controls 
DATE, 5-4 
EJECT,5-4 
INCLUDE,5-4 
LIST,5-4 
NOLIST,5-4 
NOOBJECT,5-3 
NOPAGING,5-4 
NOPRINT, 5-3 
NOSYMBOLS, 5-3 
OBJECT,5-3 
PAGING,5-4 
PAGELENGTH, 5-4 
PAGEWIDTH, 5-4 
PRINT, 5-3 
SYMBOLS, 5-3 
TITLE, 5-4 

default controls, table 5-2, 5-5 
displacements generated by 

short control transfer instructions, 3-7 
long control transfer instructions, 3-7 

double asterisk prompt, 5-2, 5-5 
invocation, 5-2, 5-5 
list file, 5-6thru5-8, 1-5, 1-6 
location counter, 4-3, 2-8 
object file, 1-5, 1-6 
primary versus general controls, 5-2 
source file, 5-1, 1-5 

assembled instructions, 3-2 thru 3-4 
additional assembled bytes 

displacement value field, 3-2, 3-3 
immediate value field, 3-2 
offset field, 3-2, 3-3 

format of initial two bytes, 3-3 
memory to memory move 

operations, 3-72 thru 3-76, 3-3 
TSL instruction, 3-99, 3-100, 3-3 

assembler. See ASM89 
assembler control defaults, Table 5-2, 

5-5 
assembler control lines, 5-2 
assembler directives 

Assembly Termination 
END,4-12 

Data Definition and Memory 
Reservation 

DB, 4-4, 4-5 
DD,4-6 
DS,4-7 
DW, 4-5, 4-6 

list of, 4-2 
Location Counter Control 

EVEN,4-9 
ORG,4-9 

Program Linkage 
EXTRN,4-11 
NAME,4-1O 
PUBLIC, 4-11 
SEGMENT/ENDS, 4-10, 4-11 

source statement format, 4-1 
structure definition 

STRUC/ENDS, 4-7, 4-8 
symbol definition 

EQU, 4-3, 4-4 



assembler invocation, 5-2, 5-5 
Assembler Termination directive 

END,4-12 
assembler's location counter, 4-3 

and DS directive, 4-7 
and EVEN directive, 4-9 
and ORG directive, 4-9 
and STRUC/ENDS directive, 4-8 
location counter reference symbol 

($),2-8 
value assigned to labels, 4-3 

assembly language instructions. See also 
instruction mnemonics 

assembled instructions, 3-2 thru 3-4 
by functional group, 3-4 thru 3-10 
execution time, 3-1 
fetch time, 3-1 
in encyclopedia of instructions, 3-1 
operands, 2-1, 2-2 
source statement format, 3-1, 3-2 

assembly time operators, 2-8 

B 

base address. See data memory operands 
base memory address select. See MM field 

(of assembled instructions) 
BC 

channel register, 1-14 
functions, 1-15 
in DMA transfer, 1-16, 1-14 
register operand, 2-3 

binary constants, 2-7 
Bit Manipulation and Test Instructions, 

3-10. See also Data Memory Bit 
Operands 

CLR,3-28 
JBT, 3-34,3-35 
JNBT, 3-42, 3-43 
LJBT, 3-52, 3-53 
LJNBT, 3-59,3-60 
SETB,3-96 

Bus Load Limit (BLL), 1-7 
BUSY flat byte 

c 

in Channel Control Block, 1-6 
in 8089 initialization, 1-8, 1-13 
indicating a channel's activity status, 1-8 

call instruction 
CALL, 3-25 thru 3-27 
LCALL, 3-50, 3-51 

carriage return (ODH) 
terminates source line, 3-2 

carriage return followed by line-feed 
(ODOAH) 

terminates source line, 3-2 
CC 

and chained task block program instruc-
tion execution, 1-16 

channel register, 1-14 
function, 1-15 
register operand, 2-3 
role in DMA transfer, 1-16, 1-17 
use of, example, 1-18 thru 1-25 

chained task block program instruction 
execution 

control by CC register, 1-16, 1-17 
operation, 1-16 

channel attention (CA) 
first CA after reset, 1-12 
in 8089/host processor communica­

tions, 1-7 
use of, example, 1-22 

Channel Control Block (CB) 
address of, 1-6 
BUSY flag byte, 1-6 
Channel Con.trol Word, 1-6 
format, 1-7 
inspection by a channel, 1-7 
use of, example, 1-18 thru 1-25 

Channel Control Word (CCW), 1-6, 
figure 1-8 

Bus Load Limit, 1-7 
Command Field, 1-7 
inspected by a channel, 1-7 
Interrupt Control Field, 1-7 
Priority Field, 1-7 
use of, example, 1-18 thru 1-25 

character string constants, 2-8 
cannot be continued on another 

source line, 3-2 
containing one or two characters 

as numeric constants, 2-8 
in DW directives, 4-5 

in DB directives, 4-4 
clear data memory bit, 3-28 
CLR, 3-28 
Command Field (CF) 

continue (resume) channel operation 
command, 1-8, 1-11 

halt channel command, 1-8, 1-7 
in Channel Control Word, 1-8 
start channel command, 1-7 thru 1-10 
suspend (HALT and SAVE) channel 

operation command, 1-7 thru 1-11 
Command Parameter Block, 1-8, 1-6 

accessing user-defined area through 
PP,2-11,1-9 

address placed in PP register, 1-8 
format, 1-8 
use of, example, 1-18 thru 1-25 
used by channel HALT and SAVE 

command, 1-8, 1-9 
user-definable area, 1-9 

comments 
in assembler invocation lines, 5-2, 5-5 
in source lines, 3-2 

commerical at (@) 
symbol special character, 2-5 

communication. See also (sample task 
block program), 1-18 thru 1-25 

channel attention in, 1-7, 1-12 
Channel Control Block in, 1-6 
Channel Parameter Block in, 1-6 
8089/host processor, 1-6 

complement 
data memory byte, 3-86, 3-87 
NOT, 3-84, 3-85 
NOTB, 3-86, 3-87 
register or data memory word, 3-84, 3-85 

Index-3 



conceptual view of the 8089 II 0 processor, 
1-5 

constants. See numeric constants 
control defaults, table 5-2, 5-5 
control lines, 5-2 
Control Transfer Instructions 

and TP pointer/register, 3-6 
conditional instructions, 3:-8 

JMCE, 3-36, 3-37 
JMCNE, 3-38, 3-39 
JNZ, 3-44, 3-45 
JNZB,3-46 
JZ, 3-47, 3-48 
JZB,3-49 
LJMCE, 3-54, 3-55 
LJMCNE, 3-56, 3-57 
LJNZ, 3-61, 3-62 
LJNZB, 3-63, 3-64 
LJZ, 3-65, 3-66 
LJZB, 3-67, 3-68 

j urn p targets 
operand form, 2-10 
range, 3-6, 3-7 

short and long forms, 3-7 
short form errors, 3-7 
unconditional instructions 

CALL, 3-25 thru 3-27 
JMP, 3-40, 3-41 
LCALL, 3-50, 3-51 
LJMP, 3-58 

CR (ODH), 3-2 
CRLF (ODOAH), 3-2 

D 

Data Definition and Memory Reservation 
Directives 

DB, 4-4, 4-5 
DD,4-6 
DS,4-7 
DW,4-5,4-6 
labels in, 4-4 

Data Memory Bit Operands, 2-12,2-13 
Data Memory Operands, 2-11,2-12 

forms of 
[PREG],2-11 
[PREG].d,2-12 
[PREG+IX],2-12 
[PREG+IX+], 2-12 

indirect addressing, 2-11, 1-15 
post auto-incremented, 2-12 

data memory reservation. See DS directive 
Data Transfer Instructions, 3-5 

and 20-bit pointer/registers, 3-5 
LPD,3-69 
LPDI, 3-70, 3-71 
MOV, 3-72, 3-73 
MOVB, 3-74 thru 3-76 
MOVBI, 3-77, 3-78 
MOVI,3-79 
MOVP, 3-80 thru 3-82 

date 
DATE control, 5-4, 5-5 
in list file header line, 5-6 

DATE assembler control, 5-4 thru 5-6 
DB directive, 4-4, 4-5 

Index-4 

character string constants in, 4-4 
expressions in, 4-4 
format of, 4-4 

DD directive 
expressions in, 4-6 
external symbols in, 4-6 
format of, 4-6 
LINK86 and LOC86 processing of, 4-6 

DEC, 3-29 
DECB,3-30 
decimal constants, 2-7 
decrement 

data memory byte, 3-30 
DEC, 3-29 
DECB,3-30 
register or data memory word, 3-29 

define byte. See DB directive 
define double word. See DD directive 
define word. See DW directive 
DEFN,5-7 
directive mnemonics 

list of, 4-2 
DB, 4-4, 4-5 
DD,4-6 
DS,4-7 
DW, 4-5, 4-6 
END,4-12 
ENDS, 4-7,4-8,4-10,4-11 
EQU, 4-3, 4-4 
EVEN,4-9 
EXTRN, 4-11 
NAME,4-10 
ORG,4-9 
PUBLIC, 4-11 
SEGMENT, 4-10,4-11 
STRUC, 4-7, 4-8 

displacement value 
and control transfer instructions 

long form, 3-7 
short form, 3-7 

and TP pointer/register, 3-6 
and WB field of assembled instruction, 

3-3 
in assembled instruction, 3-2, 3-3 
in TSL instruction, 3-100, 3-3 

displacement value field 
in assembled instruction, 3-2, 3-3 
in TSL instruction, 3-100, 3-3 

DMA transfer, 1-16 
CC register'S role in, 1-16, 1-17 
channel registers used in, 1-16 
example, 1-18 thru 1-25 
initiation, 1-17 
special task block program instructions 

WID, 3-101,1-17 
XFER, 3-102, 1-17 

dollar sign ($) 
in assembler control line, 5-2 
in relative instruction addresses, 2-1 ° 
location counter reference symbol, 2-8 

double asterisk prompt (**), 5-2, 5-5 
DS directive 

expressions in, 4-7 
format of, 4-7 
memory reservation, 4-7 

DW directive 



E 

character strings of one or two characters 
in, 4-5 

expressions in, 4-5 
format of, 4-5 
storage of 16-bit addresses, 4-5 
storage order of 16-bit values, 4-5 

EJECT,5-4 
END directive, 4-12 

and included files, 4-12,5-1,5-4 
format of, 4-12 
within a source program, 4-12 

ENDS directive, 4-2 
EQU directive 

defining register name synonyms 
with,4-3 

expressions in 4-4 
format of, 4-3 

error messages. See Appendix J 
in list file, 5-7 

EVEN directive, 4-9 
execution time (instruction), 3-1 
expressions, 2-5 

assembly time operators, 2-8, 2-9 
character string constants containing one 

or two characters, 2-8 
external symbols allowed in 

DD directive, 4-6 
LPDI instruction, 3-70 

location counter reference, 2-8 
numeric constants, 2-6, 2-7 
permissible range of values, 2-9 
symbols, 2-5, 2-6 

EXT,5-8 
EXTRN directive, 4-11 

format of, 4-11 
within a source file, 4-11 

F 

fetch time (instruction), 3-1 
use of one byte queue, 3-1 

formation of 20-bit addresses by 8089 
hardware, 1-9. See also segment 
address and offset value 

G 

GA 
channel pointer/register, 1-14 
function, 1-14 
in data memory operands, 2-11 
in DMA transfer operations, 1-16 
pointer / register operand, 2-4 
register operand, 2-3 

GB 
channel pointer/register, 1-14 
function, 1-14 
in data memory operands, 2-11 
in DMA transfer operations, 1-16 
pointer/register operand, 2-4 
register operand, 2-3 

GC 
channel pointer/register, 1-14 
function, 1-14 
in data memory operands, 2-11 
in DMA transfer operations, 1-16 
pointer/register operand, 2-4 
register operand, 2-3 

general controls, 5-4 
defaults, table 5-2, 5-5 

H 

primary versus general controls, 5-2 
EJECT,5-4 
INCLUDE,5-4 
LIST,5-4 
NOLIST,5-4 

hexadecimal constants, 2-7 
HLT,3-31 

I 

immediate data operands, 2-5 thru 2-9 
expressions, 2-5 

assembly time operators 
character string constants containing 

one or two characters, 2-8 
location counter reference, 2-8 
numeric constants, 2-6, 2-7 
permissible range of values, 2-9 
symbols, 2-5, 2-6 

external symbols in 
LPDI instruction, 3-70 

immediate value 
and WB field of assembled instruction, 

3-3 
in assembled instruction, 3-2 
in TSL instruction, 3-99, 3-3 

immediate value field 
in assembled instruction, 3-2 
in TSL instruction, 3-99,3-3 

INC, 3-32 
INCB,3-33 
INCLUDE control, 5-4 

included source lines in listing file, 5-7 
increment 

data memory byte, 3-33 
INC, 3-32 
INCB,3-33 
post auto-incremented data memory 

operands 
[PREG+IX+], 2-12 

register or data memory word, 3-32 
indirect addressing, 2-11, 1-15 
initialization (of 8089), I-II, figure 1-12 

indication of completion,· 1-13 
initializing multiple 8089s, 1-13 
linked list, 1-11 
System Configuration Block, 1-13 
System Configuration Pointer, 1-12 

instruction labels. See labels 
instruction mnemonics, 2-1 

by functional group, 3-4 thru 3-10 
Arithmetic and Logical, 3-8, 3-9 
Bit Manipulation and Test, 3-10 
Control Transfer, 3-6 

Index-S 



Data Transfer, 3-5 
Special and Miscellaneous, 3-10 

instruction opcodes 
in assembled instructions, 3-3 

instructions. See assembly language 
instructions 

instruction set, 1-5 
encyclopedia, 3-11 thru 3-102 

Interrupt Control Field (lCF) 
enable, acknowledge, disable interrupts, 

1-7,1-8,1-18 
in Channel Control Word, 1-7,1-8 
use with SINTR task block program 

instruction, 1-7, 1-18 
interrupts, 1-18 

and Interrupt Control Field, 1-7, 1-8, 
1-18 

and SINTR task block program 
instruction, 1-7, 1-18 

enabled, acknowledged, disabled, 1-7, 
1-8, 1-18 

invocation line, 5-2, 5-5 
continuation of, 5-2, 5-5 

110 channel, 1-1, 1-4 
IX 

J 

channel register, 1-14 
function, 1-15 
in data memory operands, 2-12 
post auto-increments, 2-12 
register operand, 2-3 

JBT 
JBT (short form), 3-34, 3-35 
LJBT (long form), 3-52, 3-53 

JMCE 
JMCE (short form), 3-36, 3-37 
LJMCE (long form), 3-54, 3-55 

JMCNE 
JMCNE (short form), 3-38, 3-39 
LJMCNE (long form), 3-56, 3-57 

JMP 
JMP (short form), 3-40, 3-41 
LJMP (long form), 3-58 

JNBT 
JNBT (short form), 3-42, 3-43 
LJNBT (long form), 3-59, 3-60 

JNZ 
JNZ (short form), 3-44, 3-45 
LJNZ (long form), 3-61, 3-62 

JNZB 
JNZB (short form), 3-46 
LJNZB (long form), 3-63, 3-64 

jump instructions. See Control Transfer 
Instructions 

jump target 
program location operands, 2-10 
range for 

JZ 

long form control transfer 
instructions, 3-6, 3-7 

short form control transfer 
instructions, 3-6, 3-7 

JZ (short form), 3-47, 3-48 
LJZ (long form), 3-65, 3-66 

Index-6 

JZB 
JZB (short form), 3-49 
LJZB (long form), 3-67, 3-68 

L 

labels 
as jump targets, 2-10 
defined,2-6 
on instructions, 3-2, 4-3 
on data definition and memory reserva­

tion directives, 4-4 
LF (OAH), 3-2 
line-feed (OAH) 

terminates source line, 3-2 
LINK86, 1-6, 4-10 

and DD directive, 4-6 
and LPDI instruction, 3-70 

LIST,5-4 
list file, 1-5, 1-6 

assembler controls for 
DATE,5-4 
EJECT,5-4 
LIST INOLIST, 5-4 
P AGELENGTH, 5-4 
P AGEWIDTH, 5-4 
PAGING/NOPAGING, 5-4 
PRINT INOPRINT, 5-3 
SYMBOLS/NOSYMBOLS, 5-3 
TITLE,5-4 

error messages in, 5-6 
format of, 5-6 thru 5-8 

date, 5-6 
header, 5-6 
listing banner, 5-6 
title, 5-6 

source lines from an included file in, 5-7 
split listing lines in, 5-7 
symbol table in, 5-7, 1-5, 1-6 

listing banner, 5-6 
LOC86, 1-6,4-9,4-10 

and 8089 segments, 1-6,4-9 
and DD directive, 4-6 
and LPDI instruction, 3-70 

LOCAL configuration, 1-2 
addresses in, 2-11, 1-15 
address space, figure 1-4B 

local (1/0) addresses, 1-4, 1-15 
and data memory operands, 2-11 
stored in data memory, 4-5 

location counter. See assembler's location 
counter 

location counter control directives 
EVEN,4-9 
ORG,4-9 

location counter reference ($),2-8 
in assembly control lines, 5-2 
in relative instruction addresses, 2-10 

logical instructions, 3-8, 3-9 
AND, 3-17, 3-18, 3-9 
ANDB, 3-19, 3-20, 3-8 
ANDBI, 3-21, 3-22, 3-8 
ANDI, 3-23, 3-24, 3-9 
NOT, 3-84, 3-85, 3-9 
NOTB, 3-86, 3-'87, 3-8 



OR, 3-88, 3-89, 3-9 
ORB, 3-90, 3-91, 3-8 
ORBI, 3-92, 3-93, 3-8 
ORI, 3-94, 3-95,3-9 
registers affected by 8-bit operations, 3-8 
using pointer/registers in, 3-9 

logical widths. See entry in Glossary 
long (form) control transfer instructions, 

3-7 
assembler-generated displacements, 3-7 
coded in place of short form, 3-7 
jump targets, 3-6, 3-7 

LPD, 3-69, 3-5 
and data memory operand, 2-11 
and pointer/register tag bits, 3-5 

LPDI, 3-70,3-71,3-5 
and data memory operands, 2-11 
and pointer /register tag bits, 3-5 

M 

MASTER 
designating an 8089 as, 1-13 
in request! grant circuitry operation, 1-13 

MC. See also JMCE, JMCNE 
channel register, 1-14 
function, 1-15 
in DMA transfer operations, 1-16 

memory address mode 
and AA field in assembled instruction, 

3-2,3-3 
in CALL instructions, 3-27 
in LCALL instructions, 3-51 

memory-to-memory move operations. See 
also MOV, MOVB 

assembled instructions, 3-3 
MM field (of assembled instructions) 

base memory address select, 3-3 
mnemonic. See instruction mnemonics and 

directive mnemonics 
MOV, 3-72, 3-73 

and data memory operands, 2-11 
MOVB, 3-74 thru 3-76 

and data memory operands, 2-11 
MOVBI, 3-77, 3-78 

and data memory operands, 2-11 
move instructions, 3-5 

and data memory operands, 2-11 
and 20-bit pointer/registers, 3-5 
MOV, 3-72, 3-73 
MOVB, 3-74 thru 3-76 
MOVBI, 3-77, 3-78 
MOVI,3-79 
MOVP, 3-80 thru 3-82 

MOVI,3-79 
and data memory operands, 2-11 

MOVP, 3-80 thru 3-82 
MUL TIBUS interface, 1-2, 1-3 

N 

name 
defined,2-6 

NAME (in list file symbol table), 5-8 

NAME directive, 4-10 
format of, 4-10 
in the list file listing banner, 5-6 
use of, example, 1-18 thru 1-25 
valid module-names, 4-10 

negative numbers (values) 
in numeric constants, 2-6 
in expressions, 2-9 

NOLIST,5-4 
NOOBJECT, 5-3 
NOP, 3-83 
NOPAGING, 5-4, 5-5 
NOPRINT, 5-3 
NOSYMBOLS, 5-3, 5-5 
NOT, 3-84, 3-85 
NOTB, 3-86,3-87 
numeric constants 

as program location operands, 2-10 
binary number system, 2-7 
character string constants of one or two 

o 

characters, 2-8 
decimal number system, 2-7 
hexadecimal number system, 2-7 
negative numbers, 2-7,2-9 
octal number system, 2-7 
permissible range of values, 2-9 

OBJECT, 5-3, 5-5 
object file, 1-5, 1-6 

assembler controls 
OBJECT/NOOBJECT,5-3 

octal constants, 2-7 
offset field (in assembled instructions), 3-2, 

3-3 
offset value 

and STRUC/ENDS assembler directives, 
4-7,4-8 

in 20-bit addresses, figure 1-9, 4-6 
in assembled instructions, 3-2, 3-3 
in Command Parameter Block, 1-9 
in data memory operands 

[PREG].d,2-12 
template of, 4-7, 4-8 

opcodes, See instruction opcodes 
operands 

general form, 2-1 
types, 2-1 

data memory, 2-11,2-12 
data memory bit, 2-12, 2-l3 
immediate data, 2-5 thru 2-9 
pointer/register, 2-4, 2-5 
program location, 2-1 ° 
register, 2-3, 2-4 

OR, 3-88, 3-89 
ORB 

ORB M, R, 3-91 
ORB R, M, 3-90 

ORB I 
ORBI M, I, 3-93 
ORBI R, 1,3-92 

ORG directive, 4-9 
ORI, 3-94, 3-95 

Index-7 



p 

P AGELENGTH, 5-4 
P AGEWIDTH, 5-4, 5-5 
PAGING,5-4 
permissible range of expression 

values, 2-9 
pointer/registers, 1-14 

and tag bits, 1-14, 1-15 
as 16-bit registers, 1-14 
GA, 1-14,2-11 
GB, 1-14,2-11 
GC, 1-14,2-11 
in arithmetic and logical operations, 

3-9 
in data memory addressing, 1-15, 

2-11 
TP, 1-14 

pointer/register operands, 2-4, 2-5 
post auto-incremented. See data 

memory operands 
PP, 1-14, 1-15 

in data memory operands, 2-11 
loaded by a start channel command, 

1-8, 1-14 
use, example of, 1-18 thru 1-25 
used to access user-defined portion 

of PB, 2-11, 1-9 
primary controls, 5-3, 5-4 

DATE 
defaults, table 5-2, 5-5 
NOPAGING 
NOOBJECT 
NOPRINT 
NOSYMBOLS 
OBJECT 
PAGELENGTH 
PAGEWIDTH 
PAGING 
primary versus general controls, 5-2 
PRINT 
SYMBOLS 
TITLE 

PRINT, 5-3, 5-5 
Priority field 

in Channel Control Word, 1-7 
use in resolving conflicting channel 

requests, 1-7 
Program Linkage Directives 

EXTRN,4-11 
NAME,4-1O 
PUBLIC, 4-11 
SEGMENT/ENDS, 4-10, 4-11 

Program Location Operands 
instruction labels, 2-10 
jump targets, 2-10 
numeric constants, 2-lO 
relative instruction addresses, 2-10 

Program Status Word (PSW) 
changes to, 1-9, 1-10 
format of, l-lO 
stored by suspend (HALT and SAVE) 

channel command, 1-9 
PUB,5-8 
PUBLIC directive, 4-11 

within a source program, 4-11 

Index-8 

Q 

question mark (?) 
symbol special character, 2-5 

R 

REG,5-8 
register operands, 2-3 
registers, 1-13 

Be, 1-14, 1-15 
CC, 1-14, 1-15 
GA, 1-14 
GB,I-14 
GC, 1-14 
in 8-bit arithmetic and logical opera-

tions, 3-8 
IX, 1-14, 1-15 
MC, 1-14, 1-15 
PP, 1-14,1-15 
synonyms defined using EQU direc­

tive, 4-3 
TP, 1-14, 1-15 
used in DMA transfer operations, 

1-16 
relative instruction address, 2-10 

See also dollar sign ($) 
REMOTE configuration, 1-2, 1-3 

addresses in, 1-15,2-11 
address space, figure 1-4A 

request/grant (RQ/GT) circuity, 1-2 
MASTER/SLAVE, 1-13 
operation mode specified in SOC, 

1-13 
resume channel operation command, 

1-7, 1-8, figure 1-11 

S 

segment 
defined in 8089 source program, 4-10, 

4-11 
LOC86 and, 1-6, 4-9 
paragraph aligned, 4-9, 1-6 

segment address 
in 20-bit addresses, figure 1-9, 4-6 

SEGMENT/ENDS directives, 4-10,4-11 
placement in source file, 4-lO 

set bit, 3-96 
SETB, 3-96 
short (form) control transfer instructions, 

3-7 
assembler-generated displacements, 3-7 
jump targets, 3-6, 3-7 
short form errors, 3-7 

single quote (') 
delimiting character string constants, 2-8 
within character string constants, 2-8 

SINTR, 3-97, 3-98 
and Interrupt Control Field, 1-7, 1-18 

slave 
designating an 8089 as, 1-13 
in request! grant circuitry operation, 1-13 

source file, 1-5 
END directive in, 4-12 
elements in, 5-1 



end of, 4-12 
INCLUDE control, 5-4 
must reside on, 5-1 
placement of SEGMENT/ENDS 

directives in, 4-10 
task block programs in, 1-5, figure 1-6 

source line, 3-2 
first character an ampersand (&), 3-2 
from an included file, 5-4 
in list file, 5-6, 5-7 
termination, 3-2 

source program. See source file 
source statements 

assembler compression of, 3-2 
assembler directive format, 4-1 
assembler instruction format, 3-1 
continuing, 3-2 
maximum number of characters in, 3-2, 

5-1 
special and miscellaneous instructions 

HLT,3-31 
NOP, 3-83 
SINTR, 3-97, 3-98 
TSL, 3-99, 3-100 
WID,3-101 
XFER,3-102 

split source file line, 5-7 
start channel command, 1-7, 1-8 

task block program in 
local (I/O) space, 1-9, 1-10 
system (memory) space, 1-9, 1-10 

STR,5-8 
STRUC/ENDS directives, 4-7, 4-8, 1-9 

and the assembler's location counter, 4-8 
format of structures, 4-7 
instructions/ directives not allowed 

in, 4-8 
no object code generated by, 4-8 

structure definition 
STRUC/ENDS directives, 4-7, 4-8 

Structures 
defined. See STRUC/ENDS directives 
use of, 1-9 

suspend (HALT and SAVE) channel 
operation command, 1-7, 1-8 

stores TP, tag bit and PSW, 1-9 
SYM,5-8 
SYMBOLS, 5-3 
symbols. See list at beginning of this Index 
symbols, 2-5,2-6,4-3 

external symbols, 4-11 
in list file symbol table 
label,2-6 
name, 2-6 
reserved, See Appendix G 
user-defined 

instruction or directive label, 4-3 
by EQU directive, 4-3, 4-4 

Symbol table. See also SYMBOLS and 
NOSYMBOLS 

DEFN,5-7 
NAME,5-8 
TYPE 

EXT,5-8 
PUB,5-8 
REG,5-8 

STR,5-8 
SYM,5-8 

VALUE,5-7 
format in rist file, 5-7, 5-8 

SYSBUS byte, 1-12 
system bus, 1-12 

defined in SYSBUS byte of SCP, 1-12 
System Configuration Block, 1-13 

System Operating Command in, 1-13 
System Configuration Pointer 

address of System Configuration Block 
in, 1-12 

inspected by the 8089, 1-12 
location, 1-12 
SYSBUS byte in, 1-12 

system configurations 
LOCAL configuration, 1-2 
REMOTE configuration, 1-2, 1-3 

system (memory) address, 1-15, 1-4 
and data memory operands, 2-11 
defined via a DD directive, 4-6 

System Operation Command (SOC), 1-13 
and remote bus width, 1-13 

T 

and request/grant circuitry operation, 
1-13 

tab character (09H), 5-1 
tag bit 

and data memory operands, 2-11 
and LPD, LPDI instructions, 3-5 
and MOV, MOVB, MOVBI, MOVI 

instructions, 3-5 
and pointer/registers, 1-14 
in addressing data memory, 1-15,2-11 

task block program, 1-5. See also Appendix 
H 

16- and 20-bit addresses in, 1-15 
example program, 1-18 thru 1-25 
in source file, 1-5 

template of offset values 
STRUC/ENDS directives, 4-7 
used in data memory operands, 2-12 

TITLE, 5-4 
title (in assembler list file), 5-4 thru 5-6 
TP pointer/register 

and control transfer instruction, 3-6 
channel pointer/register, 1-14 
function, 1-11, 1-15 
loaded by a start channel 

task block program in local (110) 
space, 1-9 thru 1-11 

task block program in system 
(memory) space, 1-9 thru 1-11 

pointer/register operand, 2-4 
register operand, 2-3 
restored 

by MOVP command, 3-80 thru 3-82 
by resume channel operation 

command, 1-10, 1-11 
stored 

by CALL and LCALL instructions, 
3-25 thru 3-27, 3-50, 3-51, 1-11 

by suspend (HALT and SAVE) 
channel command, 1-8, 1-9 

Index-9 



use of, example, 1-18 thru 1-25 
TSL, 3-99, 3-100 
TYPE (in list file symbol table), 5-8 

u 

underline (_) 
special symbol character, 2-5 

v 

VALUE,5-7 

Index-lO 

w 

WB field (of assembled instruction) 
and displacement values, 3-3 
and immediate values, 3-3 

WID,3-101 
word value storage order, 4-5 

x 

XFER,3-102 

z 

09H,5-1 



REQUEST FOR READER'S COMMENTS 

8089 Assembler Users Guide 
9800938-01 

The Microcomputer Division Technical Publications Department attempts to provide documents that meet 
the needs of all Intel product users. This form lets you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of 
this document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of 
documents are needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. 

NAME ____________________ _ DATE ____________ _ 

TITLE _____ _ 

COMPANY NAME/DEPARTMENT ________________________ _ 

ADDRESS _________________ __ 

CITY _____________ _ STATE ____ , ZIP CODE ______ _ 

Please check here if you require a written reply. [J 



WE'D LIKE YOUR COMMENTS ... 

This document is one of a series describing Intel products. Your comments on the back of this form will 
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All 
comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
Attn: Technical Publications MIS 6-2000 
3065 Bowers Avenue 
Santa Clara, CA 95051 

111111 NO POSTAGE 
NECESSARY 

IF MAILED 
IN U.S.A. 





INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987·8080 

Printed in U.S.A. 


