8089 ASSEMBLER
USER’S GUIDE

Manual Order Number: 9800938-01

Copyright © 1979 Inte!l Corporation

i Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX

Intel Micromap UPI
Intelevision Multibus uScope

Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

[Ao7i0879/10K FL |

PREFACE

This manual is intended for software engineers who are familiar with assembly
language programming. The contents of this manual are meant to:

® Introduce the purpose, features and terminology of the Intel 8089 10P (I/0O
Processor)

* Provide reference information on the syntax and semantics of the 8089
Assembly Language, including 8089 assembler controls

* Give examples of the use of the 8089 Assembly Language, including the 8089
assembler controls

The manual is organized as follows:

Chapter 1: An Overview of 8089 Operation and Programming

Description of IOP operation
Introduction to task block programs

Chapter 2: Operands

Description of the types and forms of 8089 Assembly Language operands

Chapter 3: The Instruction Set

Instruction set overview
Alphabetized description of each instruction (for quick reference)

Chapter 4: Assembler Directives

Description and examples of assembler directives

Chapter 5: Assembler Controls and Operation

Assembler invocation and controls

Chapter One presents basic information referred to throughout the manual. It
should be read before attempting to write task block programs.

Each of the remaining chapters, Chapters Two through Five, deals with a single ele-
ment of the 8089 Assembly Language or its assembler, ASM89. More experienced
assembly language programmers may find the information in Appendices A, B, C,
and D sufficient for their needs, referencing Chapters Two through Five when a
more thorough explanation is needed. These chapters provide detailed descriptions
and examples, meant to familiarize a programmer with writing 8089 task block pro-
grams in the 8089 Assembly Language.

il

iv

Reference Publications
The following publications provide helpful reference information:

ISIS-1I User’s Guide, Order No. 9800306, for information on the ISIS-II operating
facilities.

MCS-86 User’s Manual, Order No. 9800722, for 8089 hardware information and
design considerations.

MCS-86 Software Development Utilities Operating Instructions for ISIS-1I Users,
Order No. 9800639, for information on the linkage and relocation utilities LINK86

and LOCS6.

MCS-86 Assembly Language Reference Manual, Order No. 9800640, for 8086
Assembly Language information.

MCS-86 Absolute Object File Formats, Order No. 9800821, for MCS-86 absolute
object file formats.

CONTENTS

CHAPTER 1 PAGE
AN OVERVIEW OF
8089 OPERATION
AND PROGRAMMING
Introductionc.ciiriiiiiin e 1-1
The 8089 I/O Processorccoeierenennnnnns 1-1
8089 System Configurationsc.cvueus 1-2
Task Block Programs 1-4
The 8089 Assembly Language Assembler - ASM89 ... 1-5
ObjectFilecoiiiiiiiiiii i, 1-6
ListFile ..ot i it iie et 1-6
8089/Host Processor Communication 1-6
The TP Pointer/Register and Task Block Programs . 1-11
8089 Initialization cciiiiiiiann.. 1-11
RegiSters ...ttt ittt ittt 1-13
8089 Addressing Scheme 1-15
DMA Transferccoeiiinininiiiiinnnnnn. 1-16
Interrupts ..ot et 1-18
A Sample Task Block Program 1-18
CHAPTER?2
OPERANDS
Introductionc.cuiviiiiinieinennennnann. 2-1
Operand Overviewc..viiiiiinenennennnns 2-1
Register Operandso 2-3
Pointer/Register Operands 2-4
Immediate DataOperands 2-5
ExXpressionscoeiiiiiiiiiiiiiiiieien., 2-5
Symbols ... 2-5
Labelsand Names 2-6
NumericConstantsccccunn... 2-6
Character String Constants Containing
One or Two Characters 2-8
Location Counter Reference 2-8
Assembly Time Operators 2-8
Permissible Rangeof Values 29
Program LocationOperands 2-10
InstructionLabels 0., 2-10
NumericConstantsccccevenn.. 2-10
Relative Instruction Addresses 2-10
Data MemoryOperandscovvuvennnn. 2-11
Data Memory BitOperands 2-12
CHAPTER 3
THE INSTRUCTION SET
Introductioncoieiiiiiieiiiennnannnnn 3-1
Instruction Source Statement Format 3-1
Assembled Instructions, 3-2
Instruction Mnemonics by Functional Group 34

PAGE
Data Transfer Instructions 3-5
Control Transfer Instructions 3-6
Displacements, 3-6
ShortandLong il 3-7
Short Form Errorscooiviiiiiinnnnn. 3-7
Arithmetic and Logical Instructions 3-8
Bit Manipulation and Test Instructions 3-10
Special and Miscellaneous Instructions 3-10
Encyclopedia of Instructions 3-11
CHAPTER 4
ASSEMBLER DIRECTIVES
Introduction i .. 4-1
Assembler Directive Source Statement Format 4-1
Symbol Definition Directive 4-3
EQUDirectiveccoiviiiiiiiniiiniennn. 4-3
Data Definition and Memory
Reservation Directives 4-4
DBDirectiveiiiii i 4-4
DWDirectivecoiiiiiiiniiiiiininnnnn, 4-5
DD Directive ...t e 4-6
DS Directivecitii ittt e 4-7
Structure Definition Directives 4-7
STRUC/ENDS Directivesc.c.cou.... 4-7
Location Counter Control Directives 4-9
ORGDirectivecoviiiiiiiiiiiiinnnnn 4-9
EVEN Directiveccoiiiiiinnnnn.. 4-9
Program Linkage Directives 4-9
NAMEDirectivecciiviiniiiinnennnnn. 4-10
SEGMENT/ENDS Directives 4-10
PUBLICDirectivecovviviiniiiiinninnenns 4-11
EXTRNDirectivecoiviiinnnnnnnnn... 4-11
-Assembler Termination Directive 4-12
END Directivecoviiininiinnnnnnnn. 4-12
CHAPTER 5
ASSEMBLER CONTROLS
AND OPERATION
SourceFileFormatciian. 5-1
Invocation Command, Controls and Defaults 5-2
SummaryofControlsccciiiienn.. 5-2
Primary Control Descriptions 5-3
General Control Descriptions 5-4
Examplescociiniiiiiiiii it i 5-5
Example 5-1 Full Default 5-5
Example 5-2 Partial Default 5-5
Example 5-3 Continuation Lines and Prompting 5-5
Format of Listing File 5-6

CONTENTS (CONT’D.)

GLOSSARY

APPENDIX A
OPERAND SUMMARY

APPENDIX B
INSTRUCTION SET SUMMARY

APPENDIX C
ASSEMBLER DIRECTIVES SUMMARY

APPENDIX D
ASSEMBLER CONTROLS SUMMARY

APPENDIX E
ASCII CHARACTER SET CHART

APPENDIX F
DECIMAL/HEXADECIMAL
CONVERSION

vi

APPENDIX G
RESERVED SYMBOLS

APPENDIX H
SAMPLE PROGRAM

APPENDIX J
ASSEMBLER ERROR MESSAGES/
USER ACTIONS

APPENDIX K
8089 INSTRUCTIONS IN
HEXADECIMAL ORDER

INDEX

ILLUSTRATIONS

FIGURE TITLE PAGE FIGURE TITLE PAGE
1-1 A Typical Host Processor/8089 Task Flow . 1-1 1-11 Loading a Stored Task Block Program
1-2 Generalized LOCAL Configuration 1-2 Address Into TP When Channel Operation
1-3 Generalized REMOTE Configuration 1-3 is Resumed Following a Channel HALT
1-4A 8089 REMOTE Configuration Address AND SAVE Command (CCW=110B) 1-11
Space ... e 1-4 1-12 8089 Initialization and Communication
1-4B 8089 LOCAL Configuration Address Blocks ..o 1-12
SPACE vttt e 1-4 -13 An 8089 Channel’s Register Set 1-14
1-5 A Conceptual View of the 8089 I/0 -14 The Channel Control Register 1-17
PrOCESSOT .« uvvee et ettt 1-5 1-15 Example Task Block Program List File ... 1-19
1-6 ASMB9 Output Files 1-6 -16 Stage One—System MemoryMap 1-20
1-7 The Channel Control Block (CB) 1-7 - Stage Two—Host Processor Preparations .. 1-21
1-8 The Channel Control Word (CCW) 1-8 - Stage Three—Channel 1 Begins Task Block
1-9 The Formation of 20-Bit Addresses by the Program Execution 1-23
8089 Hardware 19 1-19 Stage Four—Task Block Program
1-10A The Loading of a Local (I/0) Space Task ExecutionEnded 1-25
Block Program Address Into the TP 3-1 8089 Assembled Instruction Format 3-3
Pointer/Register 1-10 3-2 Assembled Encoding of ADD IX,[PP].24 3-4
1-10B The Loading of a System (Memory) Space 3-3 Assembled Encoding of MOVI
Task Block Program Address Into the TP [GB].8,4A27TH 3-4
Pointer/Register 1-10 3-4 Control Transfer Jump Target Range 3-6
5-1 List File Format 5-6
TABLES
TABLE TITLE PAGE TABLE TITLE PAGE
1-1 Registers Used by DMA Transfer 5-1 8089 Assembly Language Source File
OpErationsovveereeerneennnnnnn 1-16 Parametersc.coiiiiiiiiin... 5-1
2-1 Operand Typesccviiiiiennnnnn.. 2-1 5-2 ASMZ89 Controls and Defaults 5-2
3-1 8089 Instruction Fetch Times (in clocks) 3-1

vii

CHAPTER 1
AN OVERVIEW OF 8089 OPERATION
AND PROGRAMMING

Introduction

This manual is about the 8089 Assembly Language. An 8089 programmer must be
familiar with this symbolic language and the operation of the 8089—this chapter
provides an introduction to both.

The 8089 1/0 Processor

The 8089 brings the mainframe and minicomputer I/0 channel to the micro-
computer world. 170 operations, which previously required large amounts of CPU
supervision and therefore limited its data processing time, can now be independently
managed and maintained by the 8089. 1/0 channels, by relieving the burden of 1/0
processing from the CPU, significantly improve system throughput.

Figure 1-1 illustrates the advantage of using an I/O channel to handle 1/0 opera-
tions. At the request of the host processor, the I/0O channel initializes an I/0 device,
starts the I/O operation, and checks for a successful completion. In the meantime,

HOST PROCESSOR PROGRAM 8089 TASK BLOCK PROGRAM
DEPOSIT TASK
MESSAGE
\J
START CHANNEL ATTENTION INSPECT MSG.
8089 CHANNEL FETCH PARMS.
I
|
| y
I INITIALIZE
Y | 1/0 DEVICE
T |
| |
M
E y
I_ OTHER BEGIN i/0
L PROCESSING OPERATION

[

: y

I CHECKSTATUS |— >
|

|

I

(RETRY) l« —
|/ /
INSPECT ___ (HARDWARE INTERRUPT) DEPOSIT
MESSAGE STATUS MSG.

l |
|
Y I A

Figure 1-1. A Typical Host Processor/8089 Task Flow

1-1

An Overview of 8089 Operation and Programming 8089 Assembler

the host processor is free to do other processing. If the operation does not complete
successfully, the channel takes corrective action, signalling the host processor when
the 170 operation is completed or error correction routines have finished executing.

8089 System Configurations

The 8089 may appear in two system configurations—LOCAL and REMOTE. In the
LOCAL configuration, the 8089 shares the system bus with a host processor. In the
REMOTE configuration, the 8089 shares the system bus with a host processor and
also has its own remote bus, not accessible by the host processor.

Figure 1-2 shows a generalized LOCAL configuration. A common bus interface is
shared by the two processors (see shaded area), whose use is controlled by means of
the request/grant (RQ/GT) circuitry. The shared system bus can be an 8- or 16-bit
bus. All the system’s resources are accessible by both processors. The 8089 can
address a megabyte of memory and 64k of I/0 addresses.The width of the system
bus and bus access control via the request/grant circuitry are established during 8089
initialization, discussed later in this chapter.

A generalized REMOTE configuration is shown in figure 1-3. The 8089 has its own
remote bus, not accessible by the host processor (see shaded area). This remote bus
may be an 8- or 16-bit bus—it need not be the same width as the system bus, e.g., the
remote bus could be 8-bits and the system bus could be 16-bits. The 8089 also
accesses a shared system bus by means of a MULTIBUS™ interface and an 8289 Bus
-Arbiter, which controls its access to the system bus. A 64k address space is available
to the 8089 over its remote bus. One megabyte of address space is available to the

SYSTEM BUS
v
[s— 1
8284 ADg-ADys | A A1 NI A PROM
- CLOCK GENERATOR ubrtnd ¢ il
T READY RESET _CLK
R——
CLK 8086
cPU
RESET D015
<:_—_ <:"‘_") RAM
READY 3052 14
RQ/GT
RQ/GT
ADg-AD15 | A
CLK Ate-A9
|
RESET 8089
10P 14 (V 1 4 (8251)
READY 5052
DMQ1 EXT1
]
Vo
PERIPHERAL

: b

Figure 1-2. Generalized LOCAL Configuration

€1

Iy

1/0 DEVICE !
y |
I
|
NT | HOST CPU
i PROM !
PERIPHERAL RAM
CONTROLLER |PMAREQG :
|
|
REMOTE BUS {
|
} !
i e | oy TRANS, : 8086
1 1 . LK
D CE%BéK CLK CLK LATCHES (OPTIONAL) | CPU c 8284
—_— | GENERATOR | .
8089 ar | +
10P |
A |
8288 -9 N - =
BUS : 52,51.S0
CONTROLLER 52,515 !
| r— [
2 | NS
8289 |
BUS LATCHES TRANS. { LATCHES TRANS. 8289 8288
ARBITER I
MULTIBUS MULTIBUS
- CONTROL : ~——CONTROL —>|
SIGNALS SIGNALS

Figure 1-3. Generalized REMOTE Configuration

MULTI-PROCESSOR SHARED SYSTEM BUS

I

PROM

I[QUIBSSY 6308

d pue uoneradQ 6808 JO MIAAIAQ UY

Surmuwreidol

An Overview of 8089 Operation and Programming

14

8089 over the system bus. The 8089 can use its remote bus without affecting the use
of the system bus by other processors. If the the remote bus is shared with another
processor, the request/grant circuitry may be used to control access to it. The size of
the 8089’s remote bus is specified during 8089 initialization.

In this manual, the addresses available to the 8089 over its remote bus (in the
REMOTE configuration) are referred to as ‘‘local space addresses’’ or addresses in
the 64k ‘‘local address space’’ (see figure 1-4A). In LOCAL configurations (the 8089
has no remote bus), this 64k address space is used for 1/0 addressing (see figure 1-
4B). The term ‘‘local (I/0) address’’ in this manual refers to the 64k 8089 address
space which can be either addresses on its remote bus (REMOTE configuration) or
1/0 addresses (LOCAL configuration).

The terms ‘‘system space address’’ or ‘‘system address space’’ refer to the 8089’s one
megabyte address space. In REMOTE configurations, this is the space addressed
over the system bus, which is shared with other processors. In LOCAL configura-
tions, these addresses are used to access memory. The term ‘‘system (memory)
address’’ refers to the one megabyte IOP address space—system addresses in a
REMOTE configuration (see figure 1-4A) and memory addresses in a LOCAL con-
figuration (see figure 1-4B).

Task Block Programs

The 8089 has two independent 1/0 channels that operate concurrently. Each chan-
nel has a separate set of registers and individual external interrupt, DMA request
and external terminate pins. Figure 1-5 shows, conceptually, the 8089’s two 1/0
channels.

8089
op

/ \

1MEGABYTE
SYSTEM ADDRESS
SPACE
(SYSTEM BUS)

64K LOCAL
ADDRESS SPACE
(REMOTE BUS)

Figure 1-4A. 8089 REMOTE Configuration Address Space

8089

10P
\i y
1MEGABYTE
84K1/9 MEMORY
ADDRESS
SPACE ADDRESS
SPACE

Figure 1-4B. 8089 LOCAL Configuration Address Space

8089 Assembler

8089 Assembler

An Overview of 8089 Operation and Programming

CHANNEL 1

* REGISTER SET

¢ TASK BLOCK PROGRAM
* DMA REQUEST

¢ EXTERNAL INTERRUPT
* EXTERNAL TERMINATE

CHANNEL 2

¢ REGISTER SET

* TASK BLOCK PROGRAM
* DMA REQUEST

* EXTERNAL INTERRUPT
* EXTERNAL TERMINATE

3 A

PROCESSOR

¢ TASK BLOCK PROGRAM EXECUTION
¢ DMATRANSFER
¢ BUS INTERFACE

Figure 1-5. A Conceptual View of the 8089 I/0 Processor

A task block program, written in 8089 Assembly Language, is executed for each
channel. Task block programs manage and control the I/O operations performed by
an I/0 channel. The 8089 Assembly Language instruction set contains specialized
I/0 and general-purpose data processing instructions for simple and efficient con-
trol of I/0 operatons:

¢ Bit manipulation and test instructions.

® Memory-to-memory, peripheral-to-memory, and peripheral-to-peripheral data
transfer operations.

¢ Simple arithmetic and logical operation instructions.
¢ Conditional, unconditional, and bit test control transfer instructions.

e Special instructions for interrupt control, DMA initialization, and a semaphore
test and set mechanism.

Task block programs vary in size and complexity, depending on 1/0 system design
and the I/0 operation being conducted. There is a great deal of flexibility in the use
of task block programs to manage and control I/O operations. A modular technique
may be employed, using a number of simple, well-defined task block programs,
linked in sequence, to perform I/0 operations.

The 8089 Assembly Language Assembler—ASM89

ASMB89 is the assembler for the 8089 Assembly Language. Its output, shown in
Figure 1-6, consists of two possible files:

® An object file containing the source file translated into object code.

* A list file showing the input source statements, the assembler-generated object
code, error messages, and (optionally) a symbol table.

Note that the 8089 Assembly Language source file can contain numerous task block
programs. The number of task block programs contained in a single 8089 Assembly
Language source file is limited by the size of the segment defined in the source file,
which cannot exceed 64k consecutive byte addresses.

1-5

An Overview of 8089 Operation and Programming

1-6

TASK BLOCK PROGRAM 1

TASK BLOCK PROGRAM 2

TASK BLOCK PROGRAM 3

> ASM89

TASK BLOCK PROGRAM N

— 8089 ASSEMBLY LANGUAGE SOURCE FILE

Figure 1-6. ASM89 Output Files

Object File

The assembly of an 8089 Assembly Language source file generates an object
module, containing the object code generated by ASM89. A single, relocatable seg-
ment must be defined in each object module. This segment has a maximum size of
64k (65,536) consecutive bytes. LINK86 is used to resolve intermodule references;
LOCS86 is used to assign absolute addresses to the object module. (See MCS-86 Soft-
ware Development Utilities Operating Instructions for ISIS-II User’s, Order No.
9800639 for information on LINK86 and LOC86 operation.)

The relocatable segment defined in an ASM89 object module is paragraph aligned,
i.e., when located it begins at an address which is divisible by sixteen (the last digit of
the address, in hexadecimal, is a zero). This segment is not combinable. Unlike 8086
segments, the segment in an 8089 object module cannot be combined with other
segments to form a single segment when linked and located.

List File

The list file provides a record of the source file, the assembler-generated object code,
and the assembly process, including the assembler invocation command and error
messages issued by the assembler. A symbol table, giving information on user-
defined symbols in the source file, may also be included in the list file. (See ‘‘Format
of Listing File’’ in Chapter 5 of this manual for more information.)

8089/Host Processor Communication

The 8089 and its host processor communicate through messages placed in blocks of
shared memory. The host processor sets up these communication blocks and sup-
plies their addresses to the 8089. There are two such blocks: the Channel Control
Block and the Command Parameter Block.

The address of the Channel Control Block (CB) is supplied to the 8089 during
system initialization (see ‘8089 Initialization’’ later in this chapter). The Channel
Control Block contains two identical sets of pre-defined fields, one for each channel
(figure 1-7). Each set of fields is composed of six bytes: a one-byte Channel Control
Word (CCW) used to issue commands to the I/0 channel; a one-byte channel BUSY
flag, indicating the activity status of the channel; and two words used to supply the
offset and segment address of the channel’s Command Parameter Block.

8089 Assembler

86;59 Assembler An Overview of 8089 Operation and Programming

7 MSB 07 LSB 0
BUSY cCcw ~«—CB
PB OFFSET VALUE -«—— CB+2
CHANNEL 1
PB SEGMENT ADDRESS -«—— CB+4
RESERVED
BUSY CcCcw ~-———— CB+8
PB OFFSET VALUE <-—— CB+10
CHANNEL 2
PB SEGMENT ADDRESS ~———— CB+12
RESERVED

Figure 1-7. The Channel Control Block (CB)

The Channel Control Block is inspected by the appropriate channel, as specified by
the SEL (select) input pin, whenever a channel attention (CA) is received by the 8089
(other than the first CA after a reset). Examination of the CCW by a channel is
transparent to its operation.

Figure 1-8 shows the CCW. It contains four fields, each controlling some aspect of
the 1/0 channel’s operation. The three bit Command Field (CF), bits 0-2, directs the
channel’s operation, optionally:

* starting task block program execution (from a task block program located in
system (memory) or local (I/O) address space)

* suspending channel operation (task block program pointer and Program Status
Word (PSW) saved)

* continuing channel operation (stored task block program pointer and PSW
restored)

¢ halting channel operation (task block program pointer and PSW not saved)

The Interrupt Control Field (ICF) is used in conjunction with the task block pro-
gram SINTR instruction to supply interrupts to the host processor’s interrupt hard-
ware. Each channel has its own interrupt pin, SINTR-1 and SINTR-2 respectively,
to provide the hardware interrupt signal. The host processor enables, acknowledges,
or disables interrupts from a channel through the ICF.

The Bus Load Limit field (B) limits task block program instruction execution for a
channel to one instruction every 128 IOP clock cycles. This bus load limit field
applies to task block programs residing in either system (memory) or local (1/0)
space.

The Priority field (P) of the CCW is used to resolve conflicts that arise when both
channels request service for operations of equal priority in the 8089’s operation
hierarchy. If the P field values are the same for both channels, service cycles alter-
nate between them. If the two channels have different P field values, the channel
with P = 1 is serviced first. (See ““DMA Transfer’’ later in this chapter and also the
MCS-86 User’s Guide for more information on 8089 channel priorities.)

An Overview of 8089 Operation and Programming

l—> CF COMMAND FIELD

000 NO CHANNEL COMMAND GIVEN; EXAMINE OTHER FIELDS

001 START CHANNEL; TB PROGRAM IS IN LOCAL (1/0) SPACE

010 RESERVED

011 START CHANNEL; TB PROGRAM IS IN SYSTEM (MEMORY) SPACE

100 RESERVED

101 CONTINUE CHANNEL PROCESSING BY RELOADING TP, TAG BIT AND PSW
FROM PB. IF CHANNEL WAS HALTED WHILE IN TANSFER MODE, EXECU-
TION RESUMES AT THE SAME POINT IN THE DMA TRANSFER CYCLE. DO
NOT EXAMINE OTHER CCW FIELDS.

HALT CHANNEL; CLEAR BUSY FLAG AND SAVE CURRENT TP, ITS TAG
AND THE PROGRAM STATUS WORD (PSW) IN THE FIRST 4 BYTES OF PB.
DO NOT EXAMINE OTHER CCW FIELDS.

HALT CHANNEL; CLEAR BUSY FLAG BUT DO NOT SAVE TP. DO NOT
EXAMINE OTHER CCW FIELDS.

"

=]

1"

e

L e > ICFFIELD INTERRUPT CONTROL FIELD

00 NOEFFECT

01 ACKNOWLEDGE INTERRUPT; CLEAR THE SINTR LINE BY CLEARING THE
INTERRUPT SERVICE FLIP FLOP.

10 ENABLE INTERRUPTS FROM THIS CHANNEL; SET THE INTERRUPT
CONTROL (IC) FLIP FLOP.

11 DISARM INTERRUPTS FROM THIS CHANNEL; CLEAR THE IC AND
INTERRUPT SERVICE FLIP FLOPS. ANY PENDING INTERRUPT IS
DISCARDED.

B BUSLOAD LIMIT

0 NONE; NO BUS LOAD LIMIT

1 LIMIT BUS ACCESS; AFTER EACH TASK BLOCK PROGRAM INSTRUCTION
EXECUTION, AT LEAST 128 IOP CLOCK CYCLES OCCUR BEFORE THE
NEXT TBP INSTRUCTION iS EXECUTED. TASK BLOCK PROGRAMS CAN
RESIDE IN LOCAL (1/0) OR SYSTEM (MEMORY) SPACE AND THE BUS
LOAD LIMIT STILL APPLIES.

RESERVED

» P CHANNEL PRIORITY

0 NOPRIORITY
1 PRIORITY

Figure 1-8. The Channel Control Word (CCW)

The channel BUSY flag byte indicates a channel’s activity status. Following the first
CA after reset, during 8089 initialization, ‘00’ (hex) is written to channel one’s
BUSY flag byte by the 8089 hardware when initialization has been completed. On
any subsequent CA, the 8089 hardware sets the BUSY flag byte to ““FF”’ (hex) if the
CCW starts or continues a channel; to ‘00’ if the CCW halts or suspends a channel.
The BUSY flag byte is also cleared to ‘00>’ by a task block program HLT
instruction.

The four bytes following the CCW and BUSY flag byte contain the offset and seg-
ment address of a channel’s Command Parameter Block (bytes 2—35 of the CB for
channel 1; bytes 8—11 of the CB for channel 2). When a channel start command is
issued through the CCW, the 20-bit address of the Command Parameter Block is
formed from the offset and segment address values (see figure 1-9) and stored in the
channel’s PP register.

The Command Parameter Block (PB) is of variable, user-defined size. It contains
two pre-defined fields: bytes 0—1 contain either the 16-bit address of a local (I/0)
space task block program or the 16-bit offset value of a system (memory) task block
program; bytes 2—3 contain the 16-bit segment address of a task block program
located in system (memory) space. These two fields are also used by the 8089 hard-
ware to store a channel’s PSW (see below), and its TP pointer/register and tag bit
when a channel’s operation is suspended.

8089 Assemblér

8089 Assembler An Overview of 8089 Operation and Programming

1< 16-BIT SEGMENT ADDRESS
|15|“ |13 |12 |" I1° I 8 I 8 I 7 l 5 | 5 |4T3 l 2 I 1 I 0 |- (SHIFTED LEFT 4 POSITIONS)

[1s]1a]13]r2]nnfrwofo]s]7]|e|[s]a]3]2]1]o]e—n1saTorrservaue

I19|18]17l16[15]14I13I12[11 lﬂ)l 9 l 8 | 7 [6 | 5[4 I 3 I 2 I 1 l 0]4—RESULTING20-BITADDRESS

NOTE:
1. THISMETHOD IS IDENTICAL TO THAT USED BY THE 8086 TO FORM 20-BIT ADDRESSES.

2. ALL 20-BIT ADDRESSES ARE FORMED BY THE IOP ACCORDING TO THE ABOVE METHOD.
ONCE A 20-BIT ADDRESS HAS BEEN FORMED, IT CANNOT BE DISASSEMBLED INTO ITS
16-BIT OFFSET VALUE AND SEGMENT ADDRESS COMPONENTS. THE 8089 CAN BOTH
STORE AND RESTORE 20-BIT ADDRESSES. (SEE THE MOVP INSTRUCTION DESCRIPTION
IN CHAPTER 3.)

Figure 1-9. The Formation of 20-Bit Addresses by the 8089 Hardware

The size of the PB following the above four bytes is user-defineable. This area may
be used to pass messages between the host processor and the 8089. The STRUC
assembler directive creates a template of offset values which can be used to access
blocks of parameters and 170 control information in this area, using the PP register
as a base address. (See the section ‘‘Data Memory Operands’’ in Chapter 2 and the
STRUC assembler directive in Chapter 4.)

When a channel is started by the host processor, the Command Field of the CCW
specifies where the channel’s task block program is located.. If the task block pro-
gram is in local (I/0) space, a 16-bit address from the first word (2 bytes) of the PB
is loaded into the TP pointer/register. TP’s tag bit is set to logical one (see figure
1- 10A). If the task block program is in system (memory) space, a 20-bit address is
formed from a 16-bit offset value in the first word of the PB and a segment address
contained in the second. TP’s tag bit is set to logical zero. (See figure 1-10B.)

When a channel’s operation is suspended by a HALT AND SAVE command issued
through the CCW (Command Field (CF) contains 110 binary, HALT AND SAVE),
the 20-bit TP pointer/register, its tag bit, and the channel’s PSW are stored in the
first four bytes of the PB:

7 07
| | | L]
TP15-8 TP7-0 <«—pB
I N N I I I
rr 1 1T 1T 1T 1 T 1
PSW TP19-16 t{o]o|oJe—prB+2
Y IS [[T I 1 1 1

t=TP'STAGBIT

FORMAT OF THE STORED TP POINTER/REGISTER,
TAG BIT AND CHANNEL PSW, SAVED WHEN A
HALT COMMAND i$ ISSUED THROUGH THE CCW

The Program Status Word (PSW) is a byte containing information on a channel’s
status. It is continuously updated by the 8089 but is not directly accessible by task
block programs. It can only be examined when a channel’s operation has been
suspended, at which time it is stored in the fourth byte of the channel’s PB by the
8089 hardware.

An Overview of 8089 Operation and Programming 8089 Assembler

7 0
cow =[xJofxfx]xfolo]]

15 0

PB = 16-BIT ADDRESS 7 7 0
2

l USER-DEFINED
8 o)
TP POINTER/REGISTER 0

OOOOEEEEEEEEEEEEEEEE S
ETP’STAGBIT

1— INDICATES A 16-BIT LOCAL (1/0) SPACE ADDRESS
X—BIT 15 OF ADDRESS EXTENDED INTO UPPER FOUR BITS

Figure 1-10A. The Loading of a Local (I1/0) Space Task Block Program
Address Into the Pointer/Register

Iilolxlxixlolilfl

0
P8 o801 OFFRET VALOE 0 20-BIT ADDRESS FORMED BY THE 8089 HARDWARE
~J6 BIT SEGMENT ADDRESS 2

ccw

]

USER-DEFINED

TP POINTER/REGISTER

[(TTTITTIITIITITITITIIIT]-
ETP’STAGBIT

f— INDICATES A 20-BIT SYSTEM (MEMORY) SPACE ADDRESS

Figure 1-10B. The Loading of a System (MEMORY) Space Task Block
Program Address Into the TP Pointer/Register

The PSW contains the following fields:

IP Ixr[B IISIICITBI s | D
PSW FORMAT

P: PRIORITY FIELD (CCW)

XF: CHANNEL IN ACTIVE TRANSFER STATE

B: BUS LOAD LIMIT FIELD (CCW)

1S: INTERRUPT SERVICE (REQUEST) FLIP FLOP

IC: INTERRUPT CONTROL FLIP FLOP

TB: CHANNEL EXECUTING TASK BLOCK INSTRUCTIONS
S: SOURCEWIDTHIS8/16(0/1)

D: DESTINATION WIDTH IS 8/16 (0/1)

0 = SET 1 = NOT SET

When channel operations are resumed following their suspension (101B in the Com-
mand Field of the CCW), the stored TP pointer/register and tag bit are restored
from the PB by the 8089 hardware. Any changes to the PSW while it was stored will
be in effect when channel operation resumes. (See figure 1-11.)

1-10

8089 Assembler An Overview of 8089 Operation and Programming

RESUMING CHANNEL OPERATIONS FOLLOWING A CHANNEL HALT COMMAND (CCW = 110B)

7 0
con - L T[]

15
PB = TP 15-8 TP 7-0 0
PSW /I' P 19-16: t 30 010 2

USER-DEFINED

.

—
16 TP POINTER/REGISTER

19 0
HEEEEERE HEEEEEE .
—>D TP’STAG BIT

Figure 1-11. Loading a Stored Task Block Program Address Into TP
When Channel Operation is Resumed Following a Channel
HALT AND SAVE Command (CCW=110B)

The TP Pointer/Register and Task Block Programs

A channel’s TP pointer/register functions as the task block program instruction
pointer. TP points to the location of the task block program instruction to be
executed.

TP is normally loaded by the 8089 hardware from a channel’s Command Parameter
Block when task block program execution is started. The Command Field of a chan-
nel’s CCW specifies the location of a task block program and determines the value
of TP’s tag bit. If a local (1/0) space task block program is specified, the tag bit is
set to a logical one and TP is loaded with a 16-bit address from the PB. If a system
(memory), task block program is specified, the tag bit is set to a logical zero and TP
is loaded with a 20-bit address from the PB.

When a channel’s operation is suspended by a command in the CCW,; TP and its tag
bit are stored in the first three bytes of the channel’s PB. A task block program
CALL instruction also stores the TP pointer/register and tag bit, at a location
specified by a CALL instruction operand.

8089 Initialization

A linked list of data memory blocks is prepared by the host processor in shared data
memory and used to initialize the 8089. Each block in the chain specifies certain
system parameters and points to the location of ‘the next block in the sequence.
Figure 1-12 shows the initialization sequence.

An Overview of 8089 Operation and Programming

8089 Assembler

FOLLOWING THE FIRST CA AFTER RESET THE IOP READS

7 07

0

__ LOCATION
RESERVED L syseus |<toCel
SYSTEM
CONFIGURATION SCB OFFSET -
POINTER SCB SEGMENT
RESERVED | SOC -
SYSTEM CB OFFSET
CONFIGURATION _
BLOCK CB SEGMENT
_ INITALIZATION
—— = ————= COMPLETE
CHANNEL BUSY L ccw -
CONTROL
BLOCK
SUBSEQUENT PB OFFSET CHANNEL
CAs PB SEGMENT 1
RESERVED
BUSY cew
PB OFFSET
COMMAND CHANNEL
PARAMETER PB SEGMENT 2
BLOCK Jy
RESERVED
TP ADDRESS/OFFSET
(TP SEGMENT) {
- 2 ~
[USER-DEFINED il 7 o’ ©< % 3
A assEmsiLEDsoss

ASSEMBLY LANGUAGE
TASK BLOCK PROGRAM

Figure 1-12. 8089 Initialization and Communication Blocks

The first memory block in the sequence, the System Configuration Pointer (SCP), is
the only block whose location is fixed. It must be located in system (memory) space
at address OFFFF6H. This block is inspected by the IOP following the first channel
attention (CA) it receives after a reset. The first byte of the SCP defines the width of
the system (memory) bus to the 8089.

oo o]]w

= 0SYSTEM BUS IS 8-BITS WIDE
= 1SYSTEMBUS IS 16-BITS WIDE

w
w

SYSBUS FORMAT

The second byte of the SCP is reserved. Bytes two through five point to the location
of the System Configuration Block (SCB), the next block in the initialization
sequence. The SCB’s offset value is contained in the first two bytes; its segment
address is contained in the next two bytes. The 20-bit address of the SCB is formed
from the offset value and the segment address.

8089 Assembler

The SCB is a six byte block that may be located anywhere in system (memory) space.
The block contains information regarding request/grant circuitry operation and also
specifies the width of a remote bus, if one is present. The first byte of the block con-
tains the system operation command (SOC):

iololololololn |

SYSTEM OPERATION COMMAND (SOC)

= 0THE REMOTEBUSIS8BITSWIDE R =0
1=1THEREMOTEBUSIS 16 BITSWIDE R =1 } RQ/GT CIRCUITRY OPERATION

where:

“I”’ defines the width of a remote bus to the 8089. The width of this bus may differ
from that of the system (memory) bus. In a LOCAL configuration, where there is no
remote bus, ‘I’ should specify the bus width for the system bus, given in the SCP.

“R”’ specifies the mode of request/grant circuitry operation when the RQ/GT line is
used to control access to a bus shared between two processors. One processor is a
MASTER, the other is a SLAVE. The 8089 is designated a MASTER or a SLAVE
by a hardware input (the SEL pin) from the host processor during initialization.

A MASTER controls the bus on initialization and grants control to the SLAVE
upon request. If the bus is shared with an 8086 or 8088 host processor, the IOP must
be a SLAVE and the value of ““R’ must be logical zero. The IOP, through the
RQ/GT circuitry, requests the bus from the MASTER and automatically returns
bus control to the MASTER when it is finished.

If two 8089s share a bus, their ‘‘R’’ values must be the same. If “‘R”’ is a logical one,
the SLAVE requests the bus from the MASTER as above but does NOT relinquish
bus control when it is finished. The MASTER must request the bus from the SLAVE
if he wishes to use it. Bus control alternates between the IOPs, each requesting the
bus if it does not control it.

The SCB contains the offset and segment address of the Channel Control Block
(CB). The 16-bit offset value is located in bytes two and three of the SCB. Bytes four
and five contain the 16-bit segment address. The 20-bit address of the CB is formed
from the offset value and segment address by the 8089 hardware.

After the SCB has been read, the 8089 hardware writes 00H to the BUSY flag byte of
channel 1 in the Channel Control Block, indicating the end of IOP initialization.
The SCB may now be used to initialize other 8089s in the system, if they are present.

Registers

There are two identical sets of registers in the 8089, one for each channel. The
registers are used by 8089 Assembly Language task block programs and DMA
transfer operations. Figure 1-13 shows a channel’s register set.

An Overview of 8089 Operation and Programming

An Overview of 8089 Operation and Programming

8089 Assembler

TAG 19
GA [G.P. POINTER/REGISTER
GB G.P. POINTER/REGISTER
GC G.P. POINTER/REGISTER
TP TASK BLOCK PROGRAM POINTER

TAG = 020-BIT SYSTEM (MEMORY) SPACE ADDRESS
= 116-BIT LOCAL (I/0) SPACE ADDRESS

5
BC BYTE COUNT
1X INDEX
cc CHANNEL CONTROL
mMC MASK] COMPARE

READ ONLY, NON-PROGRAMMABLE
9

PP PB POINTER

Figure 1-13. An 8089 Channel’s Register Set

GA, GB, GC, and TP are 20-bit pointer/registers. Each pointer/register has an
associated tag bit and is used, primarily, to address data. The value of the tag bit
indicates whether the pointer/register contains a 16-bit local (I/0) space address or a
20-bit system (memory) space address (see ‘8089 Addressing Scheme’’ later in this
chapter). Pointer/registers can also be used as 16-bit general purpose registers in
task block programs. When used as a 16-bit register, the upper four bits of a

pointer/register are filled with the sign bit (bit 15 or bit 7)-of data.

There are four 16-bit registers: BC, I1X, CC, and MC. Registers BC, IX, and MC can
be used as general purpose registers. IX and MC have specific uses in the 8089
Assembly Language: IX can supply an index value in data memory operands (see
‘“‘Data Memory Operands’’ in Chapter 2); MC supplies mask/compare bytes in
JMCE and JMCNE conditional transfer instructions (see Chapter 3). BC, IX, and
MC also play special roles in DMA transfer operations. Register CC is only used to
control chained task block program instruction execution and DMA transfer opera-
tions. The section on DMA transfer later in this chapter describés CC’s role in an

8089 channel’s operation.

One register, PP, is read only, non-programmable. It contains the address of a chan-
nel’s Command Parameter Block, which is automatically loaded when the channel is

issued a start command through its CCW.

The following lists the features and function of each register:

GA, GB: GA and GB are 20-bit pointer/registers, each with an associated tag bit.
In task block programs, they are used to point to data. In DMA
transfers, they provide the source and destination addresses, as specified
in register CC. GA and GB also may be used as 16-bit general purpose

registers in task block programs.

GC: A 20-bit pointer/register with an associated tag bit, GC is used to point
to data in task block programs. In the translate mode of DMA transfer,
GC contains the base address of a 256-byte translation table. It also may

be used as a 16-bit general purpose register in task block programs.

8089 Assembler

PP: PP is a 20-bit read only, non-programmable register containing the
address of a channel’s PB. This address is automatically loaded when a
channel is started and always points to system (memory) space. PP is
used as a base address to access the user-defined portion of the PB.

IX: IX is a 16-bit general purpose register. In some memory addressing
modes, I1X is added to a base pointer/register to access data. '

BC: BC is a 16-bit general purpose register, used as a byte counter during
DMA transfers. BC is decremented by one after each transfer from an
8-bit soure; by two after each transfer from a 16-bit source.

MC: A 16-bit general purpose register, MC supplies mask and compare bytes
used by the task block program instructions JMCE and JMCNE, and
also in DMA transfer mask/compare operations.

TP: A 20-bit pointer/register with an associated tag bit, TP is equivalent to a
conventional program counter in task block program execution, i.e., it
points to the location of the next instruction to be executed. TP is loaded
from the PB when task block program execution is started or resumed.

CC: A 16-bit register, CC controls DMA transfers and chained task block
program instruction execution.

8089 Addressing Scheme

All data in task block programs, except for instructions using immediate data, is
addressed indirectly, i.e., all data is pointed to by a pointer/register containing a
base address; offset and index values can optionally be added to this base address.
(See “‘Data Memory Operands’’ in Chapter 2.)

8089 addresses are physically 20 bits in length. There are two distinct types of
addresses:

® 20-bit system (memory) addresses (1 megabyte)
¢ 16-bit local (1/0) addresses (64k bytes)

In the hardware, these address types correspond to the 20-bit memory and 16-bit
I/0 addresses of the 8086. However, unlike the 8086, ‘the 8089 does not have
separate instructions for memory and 1I/0O operations. Instead, the 8089 uses the
pointer/register tag bits to indicate 16-bit local (I/0) addresses (tag bit = 1) and
20-bit system (memory) addresses (tag bit =0).

Both 20- and 16-bit addresses may be needed in a task block program, whether the
8089 has its own remote bus (REMOTE configuration) or shares a bus with a host
processor (LOCAL configuration). In a REMOTE configuration, 16-bit addresses
are used to access the 8089’s remote bus and 20-bit addresses are used to access the
shared system bus. in a LOCAL configuration with an 8086, 16-bit addresses access

170 ports and 20-bit addresses access memory. A programmer must know the type

of address (16- or 20-bit) needed when accessing a system’s resources.

An Overview of 8089 Operation and Programming

An Overview of 8089 Operation and Programming 8089 Assembler

DMA Transfer

The 8089 is designed to manage and maintain high speed DMA transfers between the
following:

* Memory > I/0 port
e /0 port—= 1/0 port
* Memory = Memory

DMA transfers are initiated by a special task block program instruction and use
some of a channel’s registers in their operation. Table 1-1 shows these registers and
their role in DMA transfer operations.

Table 1-1. Registers Used by DMA Transfer Operations

REGISTER ROLE IN DMA TRANSFER

GA,GB Specify DMA Source and Destination

GC Provides base address of 256 byte translate table
BC Byte counter-decremented by byte or word

MC Contains mask/compare byte for data testing
CcC Specifies DMA transfer control ﬁaramete’rs

Register CC specifies control parameters governing DMA transfers. Figure 1-14
shows the fields it contains and the parameters they specify.

Register CC also controls chained task block program instruction execution by a
channel (bit eight). Normally, the 8089 observes the following priorities when servic-
ing the 8089’s two channels:

* (highest priority) DMA transfers

* Channel Attentions (CA’s)

® Task block program instruction execution
® (lowest priority) Idle cycles

When both channels request service, the channel with the higher priority task is ser-
viced first. In the nonchained mode, no task block program instruction execution
occurs on a channel if a DMA transfer is being performed on the other channel. In
chained mode, the priority of task block program instruction execution equals that
of DMA transfer, possibly allowing a channel’s task block program to execute con-
currently with DMA transfers on the other channel (depending on ‘““P’’ in the
CCW).

NOTE

The above discussion of priorities in 8089 channel operation is overly-
simplified. Caution should be observed when using chained task block pro-
gram instruction execution. For a complete explanation of channel
priorities in the 8089, see the MCS-86 User’s Manual, Order No. 9800722.

8089 Assembler

An Overview of 8089 Operation and Programming

5

T T 1 T T T
f ITRl SYN I S l L I Cc |TS| TIX | T?C I l'l'SH
1 1

CHANNEL CONTROL REGISTER

F FUNCTION CONTROL

00 PORTTO PORT GS—GD

01 BLOCKTO PORT (GS)+ ~ GD

10 PORT TO BLOCK GS— (GD)+

11 BLOCKTOBLOCK (GS)+ — (GD)+

GS AND GD ARE THE SOURCE/DESTINATION
POINTERS AS SELECTED BY THE S FIELD. BLOCK
(MEMORY) POINTERS ARE POST AUTO-
INCREMENTED (BYTE/WORD), INDICATED BY
(GS)+ OR(GD)+.

TR TRANSLATE MODE

0 NOEFFECT

1 TRANSLATE INCOMING DATA; THE INCOMING
BYTE IS ADDED AS A POSITIVE DISPLACEMENT
TO REGISTER GC. THE ADDRESS FORMED IS
USED TO FETCH A BYTE WHICH IS TREATED AS
THE NORMALLY FETCHED DATA.

TRANSLATE MODE IS ONLY ALLOWED WHEN BOTH
SOURCE AND DESTINATION LOGICAL WIDTHS, AS
SET BY THE TBP WID INSTRUCTION, ARE EIGHT.

SYN SYNCHRONIZATION CONTROL

00 NONE; TRANSFERS ARE AUTOMATIC

01 SOURCE; TRANSFERS ARE SYNCHRONIZED
WITH DMA REQUESTS FROM THE SOURCE.

10 DESTINATION; TRANSFERS ARE
SYNCHRONIZED WITH DMA REQUESTS FROM
THE SPACE DESTINATION.

11 (RESERVED)

S SOURCE/DESTINATION FIELD

0 GAIS SOURCEPOINTER; GB IS DESTINATION
1 GB IS DESTINATION POINTER; GA IS SOURCE

L LOCKCONTROL

0 NOLOCK

1 LOCK ACTIVATED; DURING TRANSFERS, THE
IOP’S LOCK PIN IS ACTIVATED UPON THE
RECEIPT OF THE FIRST DMA REQUEST UNTIL
THE COMPLETION OF THE LAST TRANSFER.

C CHAINING CONTROL

0 NO CHAINING MODE

1 CHAINING MODE; SET THE PRIORITY OF TBP
PROCESSING EQUAL TO THE PRIORITY OF
DMA PROCESSING.

TS SINGLE TRANSFER

0 NOEFFECT

1 SINGLE BYTE OR WORD TRANFERS, AS
SPECIFIED BY THE WID TASK BLOCK PRO-
GRAM INSTRUCTION. DMA TRANSFER IS TER-
MINATED AFTER EACH TRANSFER. TPB EXECU-
TION RESUMES AT TP.

IN SINGLE TRANSFER MODE, THE SOURCE AND
DESTINATION LOGICAL WIDTHS, AS SET BY THE
WID INSTRUCTION MUST BE EQUAL.

TX EXTERNAL TERMINATE

00 NO EFFECT

01 TERMINATE DMA TRANSFERS WHEN THE
EXTERNAL TERMINATE PIN IS TRUE; RESUME
TBP EXECUTION AT TP.

10 SAME AS 01 ABOVE; RESUME TBP EXECUTION
ATTP + 4.

11 SAME AS 01 ABOVE; RESUME TBP EXECUTION
ATTP + 8.

TBC BYTE COUNT TERMINATION

00 NO EFFECT

01 TERMINATE DMA TRANSFERS WHEN REGISTER
BC = 0; RESUME TBP EXECUTION AT TP.

10 SAME AS 01 ABOVE; RESUME TBP EXECUTION
ATTP + 4.

11 SAME AS 01 ABOVE; RESUME TBP EXECUTION
ATTP + 8.

TSH MASK/COMPARE TERMINATION

000 SEARCH INCOMING BYTES UNTIL A MATCH IS
FOUND. DMA TRANSFER IS TERMINATED AND
THE MATCHING BYTE IS THE LAST BYTE
TRANSFERRED. RESUME TBP EXECUTION AT
P.

010 SAME AS 001 ABOVE; RESUME TBP EXECUTION
ATTP + 4.

001 SAME AS 001 ABOVE; RESUME TBP EXECUTION
ATTP + 8.

100 NO EFFECT

101 SEARCH INCOMING BYTES DURING DMA
TRANSFERS WHILE MATCHING OCCURS. DMA
TRANSFER IS TERMINATED AND THE NON-
MATCHING BYTE IS THE LAST BYTE TRANS-
FERRED. RESUME TBP EXECUTION AT TP.

110 SAME AS 101 ABOVE; RESUME TBP EXECUTION
ATTP + 4

111 SAME AS 101 ABOVE; RESUME TBP EXECUTION
ATTP + 8.

Figure 1-14. The Channel Control Register

The WID and XFER task block program instructions are directly associated with
DMA transfer. WID sets the logical width of the DMA source and destination.
These logical widths determine what type of data assembly/disassembly occurs dur-
ing DMA transfers. (See the MCS-86 User’s Manual for information on

assembly/disassembly operations in the 8089.)

The XFER task block program instruction initiates DMA transfer. DMA transfer
mode is entered after the execution of the instruction following the XFER instruc-
tion. This allows a task block program to pass information to a peripheral with the
channel ready to accept DMA transfer requests immediately. To insure correct
DMA transfer operation, the instruction following the XFER instruction must not

load the pointer/registers GA or GB, or register CC.

1-17

An Overview of 8089 Operation and Programming 8089 Assembler

Interrupts

A channel uses the SINTR task block program instruction to generate interrupts to
the external system interrupt hardware. Each channel has its own hardware pin,
SINTR-1 and SINTR-2, for this function.

The host processor uses the ICF of the CCW in the Channel Control Block to con-
trol interrupts from the IOP’s channels. Interrupts must be enabled in the ICF for
the external system to detect them. Otherwise, SINTR task block program instruc-
tions have no effect. The ICF is also used by a host processor to acknowledge or
disable channel interrupts.

A Sample Task Block Program

The following example task block program was written to conduct a simple 1/0
operation in a REMOTE configuration system, i.e., the IOP has its own remote bus.
The task block program performs a DMA transfer from data memory in IOP local
address space to data memory in system address space.

Figure 1-15 is a copy of the list file from ASM89’s processing of the 8089 Assembly
Language source program MOVBUF.SRC. The NAME assembler directive assigns
the name EXAMPLE__ PROGRAM to the object module, which is placed by the
assembler in the object file MOVBUF.PRG on device :Fl:. The SEGMENT
assembler directive assigns the name SEG89 to the segment defined in the object
module.

In the beginning of the source file, a section of data memory is reserved for the
DMA transfer source data, SOURCE. A double word of data memory is also
reserved to contain the offset value and segment address of the external symbol
INPUT_DATA, the DMA transfer destination in 20-bit system address space. The
offset and segment address values of INPUT__DATA are supplied by LINK86 pro-
cessing of the object module. The example task block program starts at the location
labeled STRT@TB@PRGI.

The following pages trace the execution of this sample task block program through
four stages. Note that either IOP channel could execute the program, provided the
appropriate preparations are made, i.e., the program’s address is present in the
channel’s Command Parameter Block when the channel is issued a start or resume
task block program execution command.

Stage One

A memory map of the host processor/IOP system is shown in figure 1-16. The
system is in a REMOTE configuration, i.e., the IOP has its own remote bus, not
accessible by the host processor. The one megabyte of system memory is accessed by
the IOP over the shared system bus (pointer/register tag bit = 0). The 64k bytes of
local IOP memory is accessed over the remote bus (pointer/register tag bit = 1).

The segment defined in the example source program’s object module (SEG89) has
been located by LOCS86 at address OH in the IOP’s local memory. In this example,
then, the assembler’s location counter values, given in the printed listing, corres-
pond to the absolute addresses assigned by LOC86.

The assembly language source program DD directive reserves four bytes (a double
word) for the offset value and segment address of the external symbol
INPUT__DATA. LINK86 and LOC86 processing of the assembler generated object
module supply these values (see Stage 2).

1-18 -

8089 Assembler

An Overview of 8089 Operation and Programming

8089 ASSEMBLER

ISIS-I1 8089 ASSEMBLER V1.0 ASSEMBLY OF MODULE EXAMPLE_PROGRAM

OBJECT MODULE PLACED IN

3F1:MOVBUF o PRG

PAGE 1

ASSEMBLER INVOKED BY 2F13ASMB9 :=F]1:MOVBUF SRC PRINT(:F]:MOVBUF.PRT)} OBJECT (3F]) :MOVBUF .PRG)

0000

oogo

c408
0000
0080 40000000
0084 5130 8000
ooss 018A
008a 3130 0000
00BE ¢330 08C4
8089 ASSEMBLER
0092 8000
0094 6000
0096 6830 80
0099 z048
009@

jenasses ause anues

3.

3

OVONCUN 2WN -

3
10 3

11 NAME EXAMPLE _PROGRAM

3
13 SE689 SEGMENT

19 EXTRN INPUT_DATA

22 3
23 BUFCNT E£QuU 1ze
24 3

25 CHANNEL _CNTRL EQU 0Ca08H

3
27 SOURCE: oS 128

3
30 DESTINATION: [s10) INPUT _DATA

34 3

3
35 STRISTBSPRGL: ¥DVI 6Cs DESTINATION

41 LPD GAs LGCY
47 MOVI

GEs SOURCE

53 MovI

61 XFER

65 MOVBI BCs BUFCNT

3
8) SEG89 ENDS

83 END

CCy CHANNEL _CNTRL

R e Y YT T)

-
$= THE JOP HAS ITS OWN REMOTE BUS IN THIS SYSTEM (REMOTE CONFIGURATION), *
3* THIS TASK BLOCK PROGRAM PERFORMS A DMA TRANSFER OPERATION TO MOVE -
3¢ DAVA FROM DATA MEMORY ACCESSED BY THE REMOTE BUS» TO DATA MEMORY -
$* SHARED WITH A HOST PROCESSOR VIA THE SYSTEM BuS. -

-

-

Ly S Y L r Y Y T T T T Oy PP R ¥

$ASSIGNS A NAME YO THE OBJECT MODULE.

STHIS SEGMENT DIRECTIVE NAMES THE €4K
SSEGMENT VHAT WILL CONTAIN THE
SASSEMBLER-GENERATED OBJECT CODE.
$THIS SEGMENT NAME IS USED BY LOCB6E
370 LOCATE THE THE OBJECT MODULE.

SIDENTIFY THE SYMBOL INPUT_DATA AS A
$SYMBOL DEFINED IN ANOTHER ASSEMBLY
$0R COMPILATION.

3RESERVE 128 BYTES OF DATA MEMORY FOR
$THE INPUT BUFFER.

SDEFINES A DOUBLE WORD CONTAINING
$THE OFFSET AND SEGMENT ADDRESS
30F THE DMA TRANSFER DESTINATION IN
$SHARED SYSTEM DATA MEMORY.

SLOAD THE ADDRESS OF THE DATA MEMORY
SLOCATION IN LOCAL SPACE THAT
$CONTAINS THE OFFSET AND SEGMENT

3 ADDRESS OF THE DMA TRANSFER
3DESTINATION INTO GCe

SFORM A 20-8BIT ADDRESS FROM THE
SOFFSET AND SEGMENT ADDRESS STORED
$AY [GCJ. GA®S TAG BIT IS SET TO
SLOGICAL '0%, INDICATING A 20-BIT
$SYSTEM SPACE ADDRESSe

SLOAD THE 16-B1T ADDRESS OF THE DMA
$TRANSFER SOURCE INTO GB.

36B*S TAG BIT IS SET TO A LOGICAL 1
3INDICATING A 16-817 LOCAL SPACE
SADDRESS.

PAGE 2

$SET DMA TRANSFER SOURCE AND
SDESTINATION LOGICAL WIDTHS TO 8-
5BITS. YHE LOGICAL WIDTH DETERMINES
$DATA ASSEMBLY/DISASSEMBLY DURING
5DMA TRANSFERS.

$BEGIN DMA TRANSFER OPERATION
SFOLLOWING THE EXECUTION OF THE NEXT
SINSTRUCTION.

$SET BYTE COUNT TO 128 THE WIL
$INSTRUCTION SPECIFIES AN 8-BIT
3SOURCE SO REGISTER BC IS
SDECREMENTED BY 1 AFTER EACH
3TRANSFERS IF WID SPECIFIES A 16—
3BIT SOURCEs REGISYER BC IS
SDECREMENTED BY 2 AFTER EACH
STRANSFER.

$TASK BLOCK PROGRAM EXECUTION RESUMES
3HERE FOLLOWING YHE DMA TRANSFER
JOPERATION. TASK BLOCK PROGRAM
SEXECUTION ENDS AND THE CHANNEL BUSY
$BYTE IN THE CHANNEL CONTROL BLOCK
31S CLEARED.

$THE ENC OF THE SEGMENT.

3THE END OF THE SOURCE PROGRAM.

Figure 1-15. Example Task Block Program List File

1-19

An Overview of 8089 Operation and Programming 8089 Assembler

SYSTEM MEMORY—1 MEGABYTE IOP LOCAL MEMORY—64K BYTES

7 0 7 LABELS
oH oH SOURCE

INPUT BUFFER
Y—— __ __ _TFH

______________ 80H INPUT__DATA OFFSET (LOW) DESTINATION
40000H BEGINNING OF SEGMENT

INPUT_DATA OFFSET (HIGH)

INPUT_DATA SEGMENT (LOW)

40010H CCW—CHANNEL1 83H INPUT__DATA SEGMENT (HIGH)

84H STRT@TB@PRG1

BUSY FLAG BYTE CHANNEL 1

PB OFFSET (LOW-ORDER) "
TASK BLOCK PROGRAM 1

PB OFFSET (HIGH-ORDER) ”

PB SEGMENT (LOW-ORDER) "

RESERVED

CCW—CHANNEL 2 OFFFFH

BUSY FLAG BYTE CHANNEL 2

PB OFFSET (LOW-ORDER) "

PB OFFSET (HIGH-ORDER) "

PB SEGMENT (LOW-ORDER) "

- —————
[
H
A
N
N
E
L
c

PB SEGMENT (HIGH-ORDER " g
T
R
[¢]
L
B
L
[o]
C
K

4001DH PB SEGMENT (HIGH-ORDER) "

40020H TBP ADDRESS/OFFSET (LOW)

TBP ADDRESS/OFFSET (HIGH) CHANNEL 1'S
COMMAND CHANNEL 1°S TP POINTER/REGISTER

PARAMETER
TBP SEGMENT (LOW-ORDER) BLOCK 19 TAG BIT

0
TBP SEGMENT (HIGH-ORDER) | j

USER-DEFINED CHANNEL 1’S PP REGISTER

19
40100H INPUT__DATA I

DMA TRANSFER
DESTINATION

Sd ©

4017FH

OFFFFFH

Figure 1-16. Stage One—System Memory Map

The blocks of shared memory for host processor—IOP communications (Channel
Control Block and Command Parameter Block) are contained in a segment located
at address 40000H in system memory.

This example assumes that the host processor has the address of the task block pro-
gram to be executed (Task Block Program 1), possibly supplied by LINK86.

1-20

8089 Assembler An Overview of 8089 Operation and Programming

Stage Two

Figure 1-17 shows the preparations made by the host processor before task block
program execution by channel 1 is started.

SYSTEM MEMORY—1MEGABYTE 10P LOCAL MEMORY—64K BYTES
7 0 7 o LABELS
OH (] SOURCE
INPUT BUFFER
o _FH
—————————————— 80H 00H DESTINATION
40000H BEGINNING OF SEGMENT
—————————————— 01H
00H
40010H 3y 43H A0H
7 om // . — e 84N STRT@TB@PRG1
e CHANNEL
o Coggﬁok TASK BLOCK PROGRAM 1
7] BLOCK AREA
7 0M) cHANNEL1
//// Z ////%//0,0H// //////’//////
7 a7
OFFFFH
CHANNEL 1°S
COMMAND
PARAMETER
BLOCK
4001DH e —
L 40020H 84H
00H .
— CHANNEL 1°S TP POINTER/REGISTER
98 9 0 TAGSBIT
00H
USER-DEFINED CHANNEL 1’S PP REGISTER
9 0
40100H INPUT_DATA J
DMA TRANSFER
DESTINATION
4017FH
OFFFFFH

Figure 1-17. Stage Two—Host Processor Preparations

1-21

An Overview of 8089 Operation and Programming 8089 Assembler

The channel control word (CCW) for channel 1, placed in the Channel Control
Block, specifies:

7 0
CCW=|0|0I0|1]010|0I1 (11H)

[—

NO CHANNEL PRIORITY <—|
RESERVED

NO BUS LOAD LIMIT

INTERRUPTS ARE ENABLED -

START TASK BLOCK PROGRAM
EXECUTION; PROGRAM IS -
LOCATED IN LOCAL (1/0)

SPACE

Channel 1’s BUSY flag byte contains O0H, indicating that the channel is presently
inactive.

The address of channel 1’s Command Parameter Block (PB) has been placed in
bytes 2-5 of the Channel Control Block. Bytes 2-3 contain the CP’s offset value.
Bytes 4-5 contain the PB’s segment address.

The address of the task block program to be executed by channel 1 has been placed
in its Command Parameter Block. Since the CCW specifies a local (16-bit address)
task block program location, only the first two bytes are accessed when channel 1
loads the task block program address into its TP pointer/register.

Stage Three

The host processor activates channel 1 via a channel attention and the SEL input pin
value:

MR ha

HOST PROCESSOR 8089

l—> SEL (LOW)

The 8089 hardware reads channel 1’s CCW and:

* Computes the 20-bit address of its Command Parameter Block and stores it in
channel 1’s PP register

* Loads the task block program address into channel 1’s TP pointer/register and
sets TP’s tag bit to logical 1, indicating a local space task block program, as
specified in the CCW

¢ Writes OFFH to channel 1’s BUSY flag byte in the Channel Control Block.

Task block program execution starts at the instruction beginning at the address in
channel 1’s TP pointer/register (84H in local IOP memory—see figure 1-18). The
address of the data memory location in local IOP space containing the offset and
segment address of the DMA transfer destination, INPUT__DATA, is loaded into
pointer/register GC. A 20-bit address is formed from the offset and segment data
and placed in pointer/register GA by the LPD GA, [GC] instruction. GA’s tag bit is
set to logical 0, indicating a 20-bit system space address.

1-22

8089 Assembler

An Overview of 8089 Operation and Programming

I0P LOCAL MEMORY—64K BYTES €¢——

SYSTEM MEMORY—1 MEGABYTE
7 ; o LABELS
OH OH SOURCE
INPUT BUFFER
o __ _1FH
______________ 80H 00H DESTINATION
40000H BEGINNING OF SEGMENT
————————————— +-——— 01H
00H
40010H 11H/f o _ _83H 40H
/ % e B8aH STRT@TB@PRG1
2on TASK BLOCK PROGRAM 1
00H
00H
CHANNEL
40H CONTROL
BLOCK AREA
CHANNEL 1
OFFFFH
4001DH —————
= 40020H 84H
o CHANNEL 1’S
COMMAND CHANNEL 1°S TP POINTER/REGISTER
PARAMETER
00H BLOCK 19 o TAGBIT
00H 00084H % %
USER-DEFINED CHANNEL 1'S PP REGISTER
19 0
40100H INPUT__DATA %
DMA TRANSFER “°°2°H
DESTINATION
4017FH
OFFFFFH

Figure 1-18. Stage Three—Channel 1 Begins Task Block Program Exection

Pointer/register GB is loaded with the 16-bit local space address of the DMA
transfer source by the MOVI GB, SOURCE instruction. GB’s tag bit is set to logical
1, indicating a 16-bit local IOP space address.

1-23

An Overview of 8089 Operation and Programming 8089 Assembler

Register CC is loaded with DMA transfer control information by the MOVI CC,
CHANNEL__CNTRL instruction. Register CC specifies

cc =]olo]ol1|o[olo|o|olo|1|o|olo(oc4oaH)

5
1 |1
e ot e et et e el e e et e e p s s et et

l I—* NO MASK/COMPARE TERMINATION
TERMINATE DMA WHEN BC = 0

—» NO EXTERNAL TERMINATION

—» NOT SINGLE TRANSFER

—» NO CHAINING MODE

—» NO BUS LOCK

—» GB IS DMATRANSFER SOURCE
GA IS DMA TRANSFER DESTINATION

—» AUTOMATIC DMA TRANSFER
NO SYNCHRONIZATION

» NO TRANSLATE MODE

» MEMORY TO MEMORY TRANSFER

The DMA source and destination logical widths are specified by the WID 8, 8
instruction. (The IOP optimizes DMA transfers by data assembly/disassembly
operations, depending on the WID instruction values and the source data address
[odd or even].)

DMA transfer begins following the execution of the MOVI BC, BUFCNT instruc-
tion, the instruction following the XFER instruction. Data in local IOP memory is
transferred to system memory, according to the DMA control parameters in register
CC. When 128 bytes have been transferred, DMA transfer is terminated (byte count

termination—register BC = 0) and task block program execution resumes at the HLT
instruction.

Stage Four

Task block instruction execution has ended, following the execution of the task
block program HLT instruction (see figure 1-19). The HLT instruction has cleared
channel 1’s BUSY flag byte to O00H, indicating that channel 1 is now inactive. The
TP pointer/register contains the next sequential address following the HLT
instruction.

1-24

8089 Assembler An Overview of 8089 Operation and Programming

SYSTEM MEMORY—1MEGABYTE 10P LOCAL MEMORY—64K BYTES
; o 7 o LABELS
oH OH SOURCE
INPUT BUFFER
o _FH
e e —— - 80H 00H DESTINATION
40000H BEGINNING OF SEGMENT
e —— e —] 01H
00H
40010H 11H o _s3H A40H
00H 7 . 84H STRT@TB@PRG1
20H TASK BLOCK PROGRAM 1
00H
00H
40H >
CHANNEL
CONTROL
BLOCK AREA
CHANNEL 1
OFFFFH
4001DH —— e —
40020H 84H
o0H CHANNEL 1'S
COMMAND CHANNEL 1°S TP POINTER/REGISTER
PARAMETER
00H BLOCK 9 0 TAG BIT
L
oo . wesen
USER-DEFINED CHANNEL 1°S PP REGISTER
19 0
40100H INPUT__DATA I 40020H
DMA TRANSFER
DESTINATION
4017FH
OFFFFFH

Figure 1-19. Stage Four—Task Block Program Execution Ended

CHAPTER 2
OPERANDS

Introduction

This chapter describes the types and forms of operands for assembly language
instructions. Assembly language instructions are dealt with in Chapter Three, ‘“The
Instruction Set.”’

Most assembly language instructions require one or more operands. The most
general form of these instructions is:

[LABEL] OPERATION OPERAND1, OPERAND2, OPERAND3 [COMMENT]

where ‘OPERATION’ is a specific processor activity and .‘OPERANDI’,
‘OPERAND?2’ and ‘OPERAND?3’ are the items that participate in the activity.
For those already acquainted with an assembly language a more familiar form is:

[LABEL] MNEMONIC OPERAND1, OPERAND2, OPERAND3 [COMMENT]

where mnemonic is the assembler defined symbolic name for some operation.

Suppose we wish to move an item of data from a register to a data memory location.
Using the two-operand general form this is expressed as:

[LABEL] MOVE DATA MEMORY LOCATION, MACHINE REGISTER
(OPERATION) (OPERAND?1) (OPERAND2)

or, (again for those familiar with an assembly language)

MEM: - MoV M, R ;Move register to memory
(LABEL) (MNEMONIC) (OPERAND1) (OPERAND2) ;(COMMENT).

The mnemonic MOV is the assembler-recognized symbolic name for the operation
we desire. M and R are symbols for Memory and Register. By convention the source
item for a move is given as the rightmost operand and the destination of a move is
given as the leftmost operand. This convention is followed throughout this assembly
language.

Operand Overview

8089 machine instructions operate on various kinds of items. Table 2-1 summarizes
these items and their associated operand types.

Table 2-1. Operand Types

ITEM OPERAND TYPE EXAMPLES
MACHINE REGISTERS REGISTER IX, MC, CC
MACHINE POINTER/REGISTERS POINTER/REGISTER GA,GB,GC
IMMEDIATE DATA VALUES IMMEDIATE DATA OFFH, ADTAB + 4
LOCATIONS WITHIN A PROGRAM PROGRAM LOCATION $ + 6, START
DATA IN MEMORY DATA MEMORY [GA], [GB).5

BITS OF MEMORY DATA DATA MEMORY BIT 0,1,7

Operands

8089 Assembler

Most instructions require that one or more data items be supplied as operand(s). In
the 8089 assembly language, this means that most operation mnemonics require one
or more symbolic expressions as operands.

For example, to add the contents of a data memory location to a register we must
specify the register and the data memory location—ADD 11X, [GA]. Or, to logically
AND a register with an immediate value we must again specify the the items to be
operated on—AND GC, TOTAL. In these two examples IX, [GA], GC and TOTAL
are assembly language instruction operands.

Examples:

1. Suppose we wish to add register BC, containing 1215H (1215 hexadecimal), to a
word of data memory containing 2312H.

BC is the assembly languagé symbol for register BC.

[GB] is an assembly language expression for the word of data memory
beginning at the address contained in pointer/register GB.

MEMORY
7 0
REGISTER BC OH
l 1215H 1
REGISTER GB
[00FFH j-——> OFFH 12H
100H 23H
[N o} ~
INSTRUCTION: ADD [GB], BC
OPERATION: (GB] « 2312H + 1215H
RESULT:
7 0
oH
REGISTER BC
I 1215H I
REGISTER GB
L 00FFH I———> OFFH 27H
100H 35H
g N Q)

2. The instruction JBT [GA+IX], 5, ERROR_ROUTINE tests bit five of the

data memory byte located at GA + IX and jumps to the instruction labeled
ERROR__ROUTINE if the bit is true (equal to logical one).

8089 Assembler Operands

, MEMORY
oH
REGISTER GA
l 1000H]———_—> 1000H
REGISTER IX

200H
L 0200H J—_—_" BYTES

BITFIVEOFGA + IX ——————— - 1200H] X X X X X X X X

N o) g

The remainder of this chapter deals with each operand type individually.

Register Operands

Register operands are a group of symbols recognized by the assembler which repre-
sent registers. These symbols are reserved and cannot be redefined. (For a complete
list of reserved symbols see Appendix G).

The register operands are:

SYMBOL REGISTER NAME SYMBOL REGISTER NAME
BC Byte Count GC General Purpose C
CC Channel Control 1X Index Register
GA General Purpose A MC Mask/Compare
GB General Purpose B TP Task Pointer

PP also is a register symbol, representing the read-only, non-programmable
Parameter Block Pointer Register. PP can be used only in data memory operands.
(See DATA MEMORY operands later in this chapter).

Certain registers, as indicated by their names, play specific roles in IOP channel
operations (see Chapter One and the MCS-86 User’s Manual, order number

9800722).
Examples: -
MOVI MC, 7F00H ;Move immediate value 7F00H to register MC.
OR [GA], CC ;Logically OR register CC to the word of data
;memory beginning (low-order byte) at location
J[GA].
JNZ BC, REPEAT ;Jump to program location labeled REPEAT if

;register BC is not zero.

Operands 8089 Assembler

It is possible to assign another name to a register through the EQU assembler
directive.

Example:

SOURCE EQU GA ;Define symbot SOURCE for register
;represented by GA.

INC SOURCE ;Same as INC GA.
SOURCE may be used in the same contexts as GA.
Invalid uses of register operands:

BC: DB 1AH ;Attempts to redefine BC as the label of a data
;memory byte location.

IX: NOP ;Attempts to redefine IX as the label of an
;assembly language instruction.

JBT MC, 5 TARGET ;MC used in an invalid context (memory
;operand required).

MOVI [GB],GA +9 ;GA used in an expression, an invalid context.

Pointer/Register Operands

Pointer/register operands represent 20-bit registers and their associated tag bits.
They are used to point to data memory and I/0 space in a system. (For more detail
on the use of pointer/registers see the section entitled “DATA MEMORY
OPERANDS” in this chapter and also Chapter One.)

Pointer/registers can also be used as regular 16-bit registers, hence the inclusion of
their assembler-recognized symbols under register operands in the previous section.

Pointer/registers are:

SYMBOL NAME SYMBOL NAME
GA General Purpose A GC General Purpose C
GB General Purpose B TP Task Pointer

Like any register symbol, a pointer/register symbol is reserved and cannot be
redefined. Also, the EQU assembler directive can be used to assign an alternate
name to a pointer/register.

Examples:

MOVP [PP].4,TP ;Move 20-bit TP pointer/register and tag bit to
;data memory.

LPDI GA, ADDR ;Load pointer/register GA with 20-bit address
;formed from four bytes of immediate data.

LPD GC, [GB] ;Load pointer/register GC with 20-bit address

;formed from four bytes of data memory
;beginning at location [GB].

24

8089 Assembler

Invalid uses of pointer/register operands:

GA: DB O0E2H ;Attempts to redefine GA as the label of a data

;memory byte.

JMP GC ;Pointer/register operands not allowed in this
;context.
MOVI [GC], TP ;Invalid context; TP not allowed in immediate

;data value expressions.

Immediate Data Operands

An immediate data operand is an expression representing:

A data memory location

Example:
DATA@TABLE: DS 128 ;Reserve 128 bytes of data memory with the
;first byte labeled DATA@TABLE.
MOVI GB, DATA@TABLE ;Move the address of the first byte of data table

;to pointer/register GB.
A program location
Example:

LPDI TP, SUB1 ;Load the TP pointer/register with the address
;of the instruction fabeled SUBT.

An 8- or 16-bit value

Example:
ORI GB, 0D5BH ;OR the contents of pointer/register GB with
;the 16-bit immediate value 0D5BH.
Expressions

Expressions are composed of:

[]

symbols

numeric constants

character string constants of one or two characters
the location counter reference ($)

the assembly time operators + and —

Symbols

A symbol consists of 1 to 31 alphabetic, numeric or special characters, the first of
which must be an alphabetic or special character. The special characters allowed in
a symbol are:

@

Operands

Operands 8089 Assembler

Symbols longer than 31 characters are truncated to 31 characters and flagged as

errors.

VALID SYMBOLS INVALID SYMBOLS

INPUT? INPUT/OUTPUT ““I’” invalid special character.

INITIAL__VALUE THISITEM Embedded space isan
invalid character.

POINTER__STORE 752__WILSON__STREET Symbol cannot begin with a
numeric.

ERROR__CODE STEP__ 4.1 ‘*."" invalid special character.

ROUTINE@1 ANY__SET__OF__VALID__CHARACTERS__THIS__LONG

Labels and Names

User-defined symbols are one of two types: labels or names. A symbol followed
immediately by a colon (:) defines a label. These symbols are assigned the value of
the assembler’s location counter where they are defined. Labels normally appear in
instruction or assembler directive source statements, but they can also appear alone,
allowing the same location to be referenced by more than one symbolic name.

Examples:
LABEL1:
LABEL2:
LABELS3: ADD BC, [GA] ;LABEL1, LABEL2, and LABEL3 all reference
;the same location.
START: MOV GA, [GB] ;An instruction label.
DATA_T DB OFFH ;An assembler directive label.

A name is defined by the appearance of a symbol, NOT followed by a colon, in the
label-field of certain assembler directives. The value of the symbol depends on the
assembler directive used.

Examples:
ELEVEN EQU 11

IOP_CODE SEGMENT

Numeric Constants

A numeric constant can be specified in one of four number systems: Binary,
Decimal, Hexadecimal or Octal. The first character of any numeric constant must be
a decimal digit (0, 1, ... 9). The digit ‘0’ is always acceptable for this purpose. Any
number not specifically identified as binary, hexadecimal or octal is assumed to be
decimal. Negative numbers appear in two’s complement form.

2-6

8089 Assembler

Binary Constants

ORBI GA, 101101118

ADDBI [GB], 110111108

Decimal Constants

MOVI BC, 30500

ANDI CC,17526D

Hexadecimal Constants

ORI GA, OFEH

MovVI {GB+IX], 271FH

Octal Constants

ADDBI [GA].7,360

MOVl CC,1352Q

Operands

One or more binary digits (0, 1) followed
immediately by the letter B.

;OR GA with immediate binary value.

;ADD immediate binary value to data memory
;byte at address specified by GB.

One or more decimal digits (0, 1, ... 9)
optionally followed immediately by the
letter D.

;Load register BC with immediate decimal
;value.

;AND register CC with immediate decimal
;value.

One or more hexadecimal digits (0, 1, ...
9, A, B, C, D, E, F) followed immediately
by the letter H. Note that the first digit
must be a decimal digit (0, 1, ... 9).

;OR register GA with immediate hexadecimal
;value.

;Move immediate hexadecimal value to a word
;of data memory beginning (low-order byte) at
;[GB + I1X].

One or more octal digits (0, 1, ... 7)
followed immediately by the letter O or
the letter Q.

;ADD immediate octal value to data memory
;byte.

;Move immediate octal value to register CC.

The section in this chapter entitled ‘‘Permissible Range of Expression Values’
describes the maximum numeric values allowed by the assembler.

Invalid Numeric Constants
01210B
F712H
1A7Q

0F7

;2not a binary digit.
;Firstdigit is not a decimal digit (0, 1, ...9).
;Ais not an octal digit.

;F is not a decimal digit.

2-7

Operands 8089 Assembler

Character String Constants Containing One or Two Characters

A character string constant consists of one or more printable ASCII characters
enclosed in single-quote marks (’). Each single-quote mark within a character string
must be represented as two successive single-quote marks (*’).

A character string constant consisting of only one or two characters can be used as a
numeric constant in an expression.

Examples:
ADD! GB, ‘Eh’ ;ADD immediate value 4568H to register GB.
Movi [PP}.7,*’ ;Move immediate value 2AH to data memory.

A character string constant which contains more than two characters can only be
used to define character string data with the DB assembler directive.

Location Counter Reference

Within an expression the current (at the beginning of the statement) value of the
assembler’s location counter can be referenced using the dollar sign ($) special

character.
Example:
MOVI BC, 128 ;Load immediate value 128 (decimal) into
;register BC.
LOOP: MOV GB, [GA] ;Move 16-bits of data memory to register GB.
DEC BC ;Decrement BC.
Jz BC,$ + 6 ;Jump around the unconditional jump if

;register BC =0.
JMP LOOP ;Fall through to here if BC <> 0.

LPD GC,[PP].8 ;Instruction executed when BC = 0.

Assembly Time Operators

The following assembly time operations can be performed:

OPERATOR OPERATION

+ Unary or binary addition.

- Unary or binary subtraction.

The assembler sign-extends (bit 7) 8-bit values to 16-bits. Operations within expres-
sions are performed on 16-bit quantities to yield a 16-bit result. Operators are
executed in left to right order; they have equal precedence.

External symbols, which can only appear in expressions used in a DD assembler
directive or an LPDI instruction, must be added (not subtracted) within the expres-
sion. Only one external symbol is allowed per expression.

8089 Assembler Operands

Parentheses ‘()’ are NOT allowed in expressions.

Examples:
EXTRN OUT_MOD ;Assembler directive indicating symbol
;OUT_MOD is defined in some other
;program.
DATA_1: DB 7FH ;Assembler directive defining symbol

;DATA__1 as the label of a data memory
;location: (the value of DATA__1is not07FH—
;itis the value of the assembler’s location
;counter at the time DATA _1 is defined).

LPDI GB, OUT_MOD-7 ;Load pointer/register with immediate value.

MOVI BC,DATA_1+ 4 ;Load register withimmediate value.

Invalid expressions using assembly time operators:

EXTRN RECD1 ;ldentify RECD1 as a symbol defined in some
;program.
LPDI GB, 4—RECD1 ;External symbols cannot be subtracted within

;expressions.

ADDI MC, (MASK + 2) ,Parentheses not allowed in expressions.

Permissible Range of Expression Values

Hexadecimal values can range from OH to OFFFFH or 0 to 65,535 decimal. Negative
values are expressed in two’s complement form.

All arithmetic operations are performed using two’s complement arithmetic. Results
are modulo 64K—the assembler performs no overflow detection.

Expressions used as immediate byte operands are evaluated modulo 256 (decimal
256 is equal to zero).

Examples:
ADDI GA, 65635 ;ADD an immediate word value of 99 or 63H
;(65635 modulo 64K) to register GA.
MOVBI [GC], -4 ;Move 0FCH (two’s complement of 4) to data

;memory byte location specified by
;pointer/register GC.

ORBI CC, 0C7H ;OR register CC with immediate byte value
;0C7H.

Examples of immediate data operands:
ORBI [GB], 11

ADDB! [GA+IX], TOTAL
MOVI BC, INPUT_CNT
LPDI GC, MAIN_MEM

MOVBI GA, STATUS + 5

29

Operands 8089 Assembler

Program Location Operands

Both conditional and unconditional control transfer instructions require a program
location operand to specify the jump target. This operand is an expression (usually a
label) representing the jump target’s location in the program.

Locations within a program can be specified by three general types of expressions:
* anexpression containing an instruction label
® anexpression containing only numeric constants

®* an expression containing a relative instruction address, i.e. one containing the
location counter reference $

Instruction Labels

An instruction label is most commonly used to specify a jump target. In an expres-
sion, a label can be combined with an offset value to specify the jump target.

Examples:
TARGET: MOV GA, [GB] ;An instruction labeled TARGET.
JMP TARGET ;Unconditional jump to instruction with the
;label TARGET.

JMCE [GA].5, TARGET + 2 ;Conditional jump (mask/compare result equal
;to zero) to instruction following TARGET.

JZ BC, TARGET -3 ;Conditional jump (register BC equals zero) to
;instruction 3 bytes before TARGET.

Numeric Constants

A numeric constant can be used to specify the jump target. This address is NOT an
absolute address; it represents a displacement from the beginning of the (maximum)
64k program segment.

Examples:

JMP 4004H ;Unconditional jump to the instruction located
;adisplacement of 4004H from the beginning
;of the program segment.

Relative Instruction Addresses

A relative instruction address expresses the jump target relative to the control
transfer instruction’s address. The special character dollar sign ($), representing the
value of the assembler’s location counter at the beginning of the instruction, is used.

Example:
JBT {GB],4,$-6 ;Conditional jump (bit four equal to a logical

;one) to the instruction six bytes before the
;beginning of this instruction.

2-10

8089 Assembler Operands

Data Memory Operands

The contents of data memory are always addressed indirectly, that is, through a
pointer/register (GA, GB, or GC) or the PP register. Both 20-bit system (memory)
space and 16-bit local (I1/0) space can be accessed.

When the IOP has its own remote bus (REMOTE configuration), the shared system
bus is accessed using 20-bit addresses loaded into GA, GB or GC by the LPD or
LPDI instructions. The pointer/register’s tag bit is set to logical zero. In systems
where the IOP shares the local bus with a host processor (LOCAL configuration),
20-bit addresses, again loaded through LPD or LPDI instructions, may be used to
access data memory.

In REMOTE configurations, the IOP accesses its remote bus with 16-bit addresses
loaded into GA, GB, or GC by the MOV, MOVB, MOVBI or MOVI instructions.
The pointer/register’s tag bit is set to logical one. In LOCAL configurations, these
16-bit addresses may be used to access 1/0.

- The 20-bit PP (parameter pointer) register contains the address of a channel’s
Command Parameter Block. This address always points to system (memory) space.
It is loaded into the PP register automatically, whenever a channel is started. The
contents of the register cannot be altered by a task block program. In data memory
operands it is used to access the user-defined portions of the Command Parameter
Block.

See Chapter One and the MCS-86 User’s Manual for information on IOP system
configurations.

Examples:

LPD GA, [PP].8 ;Load pointer/register GA with a 20-bit address
;formed from four bytes of the Command
;Parameter Block. GA’s tag bit is set to logical
;Zero.

MOV GC, [GB] ;Move 16-bits of data memory from the address
;given by pointer/register GB to
;pointer/register GC. GC’s tag bitis set to
;logical one.

DATA_T: DS 200 ;Define alabel DATA__T, the beginning
;address of 200 bytes of reserved data memory.

MOVI GA,DATA_T ;Load pointer/register GA with the 16-bit
;address of the reserved data memory bytes.
;GA’s tag bit is set to logical one.

Data memory operands have four forms, as follows:

[PREG] (base address only) PREG can be the pointer/register GA, GB,
GC or the PP register. PREG contains the data memory
address.

MOV CC, [GB] ;Move 16-bits of data memory, beginning at the
;address in GB, to register CC.

ADD [GA], BC ;Add register BC to the word of data memory
;beginning (low-order byte) at location [GA].

ORB [PP],MC ;OR register MC to the first byte of the
;Gommand Parameter Block.

2-11

Operands

2-12

8089 Assembler

[PREG].d (base address plus an unsigned 8-bit offset) d is an expression
evaluated modulo 256 to form an 8-bit offset value. If d is
greater than 255 an error message is issued by the assembler.

AND MC, [GA].4 ;AND register MC with the word of data
;memory beginning {low-order byte) at location
;GA + 4.

NOT [GC].4108 ;Complement the word of data memory
;beginning (low-order byte) at location GC + 12
;(4108 modulo 256). The assembler would flag
;this instruction as an error since d is greater
;than 255.

[PREG +iX] (base address plus the Index register) The data memory address
is formed by adding the Index register and the base address. The
base address and Index register are not changed.

MOV [GB+1X],BC ;Move register BC to data memory, low-order
;byte at address GB + IX.

NOTB [PP+!X] ;Complement the byte PP + 1X.

[PREG+IX+] (base address plus the Index register; the Index register is post
auto-incremented by byte or word (1 or 2)) The data memory
address is formed by adding the Index register and the base
address. At the end of the instruction the Index register is
automatically incremented by the size of the operand (one for
byte operands, two for word operands). The base address is
unchanged.

MOV [GA], [GB+IX+] ;Move a word of data memory, beginning at
;GB + IX, to the word of data memory
;beginning at GA. The Index register is post
;auto-incremented by two (a word).

DEC [GC+IX+] ;Decrement the word of data memory
;beginning at GC + IX. The Index register is
;post auto-incremented by two (a word).

ORBI [PP+IX+], 26 ;OR immediate byte value to a location within
;the Command Parameter Block. The index
;register is post auto-incremented by one (a
;byte).

Data Memory Bit Operands

Instructions that set and clear bits (SETB, CLR) or conditional jump instructions
that test bits (JBT, JNBT) require operands that specify which bit of a data memory
byte is accessed. A data memory bit operand provides this information.

The bits in a data memory byte are numbered, right to left, as follows:

MSB LSB

[X XXX XX XX
76543210

8089 Assembler

The bit number is the operand used in an instruction to specify the referenced bit.

Example:
D_MEM__BYTE: DB OFFH ;Define a symbol D_MEM__BYTE as the label
;of a data memory byte with an initial value of
;0FFH.

The data memory byte at D__MEM__BYTE contains:

7 0
11111111
MOowvi GA, D_MEM_BYTE ;Load address of data memory byte into
;register GA.
CLR [GA]5 ;Clear bit five of the data memory byte

Jlocated at GA.
The data memory byte at D__MEM__BYTE now contains:

7 0
11011111 | (ODFH)

Operands

2-13

CHAPTER 3
THE INSTRUCTION SET

Introduction

Most of this chapter is an alphabetized collection of instruction mnemonics. For
each mnemonic, the coding format and operands of the instruction are given, along
with symbolic and prose descriptions of the instruction’s operation. An example of
the use of each instruction and the format of the assembled instruction are also
included. A fold-out page at the end of this chapter contains helpful operand and
instruction decoding information.

In cases where the coding format of the operands makes a significant difference in
the instruction’s operation, separate listings are given for each coding format of the
mnemonic. For example, the mnemonic ADDB has two listings: ADDB R, M and
ADDB M, R.

The execution time, in clock timings, is listed for each instruction. One clock timing,
as obtained from a 5 MHZ clock, is 200 nanoseconds. When 16 bits of data memory
are used by an instruction, two execution times are given, reflecting the effect of bus
size and odd/even data memory addresses on instruction execution times.

Instruction fetch time must be added to the given instruction execution time to deter-

mine the total time required to execute an instruction. Table 3-1 summarizes the
instruction fetch times:

Table 3-1. 8089 Instruction Fetch Times (in clocks)

2 3 4 5 -«——— No. of bytes to be fetched

Q NQO Q NQO Q NQO Q '\:]O e |S data in Queue?

/ 14 / 18 / 22 / 26

Task Block Program on 8-bit bus
/ 14 / 18 / 22 / 26

/ 7 / 14* / 14 / 18*

Task Block Program on 16-bit bus

O|lm|Oo|m

11 | 14* " 14 15* | 18* 15 18

L— Even/odd starting boundary
*—Next byte loaded into Queue

The above reference to a queue refers to an internal one byte queue the IOP main-
tains to minimize instruction fetch time. For further details on IOP instruction
fetching, see the MCS-86 User’s Manual, order number 9800722.

A description of instruction source statements and assembled instruction formats as

well as a breakdown of the instruction set by function precedes the instruction set
encyclopedia.

Instruction Source Statement Format

The general format of an instruction source statement is:

[LABEL] MNEMONIC [OPERAND(S)] [;COMMENT]

The Instruction Set 8089 Assembler

Items enclosed within brackets ([]) are optional. A label is never required but is
optional on all instructions. Not all instructions require operands. A comment, any
printable ASCII character(s) preceded by an unquoted semicolon (), is optional on
all source lines. All characters from the semicolon to the end of the line are ignored
by the assembler but will appear in the assembly listing.

An instruction source statement is made up of one or more source lines terminated
by an uncontinued end-of-line. A source line consists of zero or more characters ter-
minated by an end-of-line, indicated by one of the following:

e CR a carriage return (ODH)
e LF aline-feed (0AH)
* CRLF a carriage return followed by a line-feed (0DOAH)

A source statement is continued by placing an ampersand (&) as the first character
of the next source line. The sequence end-of-line& is treated like a blank by the
assembler. Character string constants cannot be continued to the next source line.

The assembler compresses each source statement as follows: all comments and the
final end-of-line are deleted; tabs, and all sequences of unquoted blanks, and end-
of-line&’s are reduced to single blanks; all quoted quotes are changed into single
quotes. The maximum number of characters in one compressed source statement is

256.
Examples:
NOP
HLT ;Thisis a comment.
BEGIN: LPD GA, [GB] ;BEGIN: is a label
MOV ;This source statement
& GA, ;is made up of
& [GC] ;three source lines.

Assembled Instructions

Each 8089 instruction is at least two bytes in length. Up to three additional bytes can
also be generated, specifying offset data, displacement, and immediate values.
Figure 3-1 shows the general format of an assembled instruction.

If an offset value is used to specify a data memory address (AA field in low order
.assembled instruction byte = 01), an unsigned 8-bit offset field immediately follows
the first two assembled instruction bytes:

7 07 07 0
b/R/IPWBAAW|OPCODEM M[offset if AA=01]
(low order byte) (high order byte)

If the instruction source statement includes an immediate byte or word varue, an 8-
or 16-bit immediate value field follows the first two assembled instruction bytes and
the offset field, if it is present:

7 07 07 07 07 0
[b/RIPWBAAW [0 P CODEMMoffset if AA=01] i-value (low) [i-value (high) |
(low order byte) (high order byte)

3-2

8089 Assembler The Instruction Set

IRIbIPIWIB|AIA|W|O|PIClOlDIEIMIMI

Se—— BASE MEMORY ADDRESS SELECT

OPERATION CODE

MEMORY DATAWIDTH
—>- 0—1BYTE
1—2BYTES (WORD)

MEMORY ADDRESS MODE
00—BASE ADDRESS ONLY
> 01—BASE ADDRESS + 8-BIT OFFSET
10—BASE ADDRESS + INDEXREGISTER
11—BASE ADDRESS + INDEX REGISTER;
INDEX REGISTER POST AUTO-INCREMENTED

NO. OF IMMEDIATE/DISPLACEMENT VALUE BYTES
> 00—RESERVED

01—1BYTE

10—2 BYTES (WORD)

11—TSL INSTRUCTION ONLY

REGISTER, BIT, OR POINTER/REGISTER SELECT

RRR bbb PPP
000—GA 000—BITO(LSB) 000—GA
> 001—GB 001—BIT 1 001—GB
010—GC 010-BIT2 010—-GC
011—BC 011—BIT3 100—TP

100—TP 100—BIT 4
101—1X 101—-BIT S
110—CC 110—-BIT6
111—-MC 111—BIT 7 (MSB)

Figure 3-1. 8089 Assembled Instruction Format

Control transfer instructions have a signed one-or-two byte displacement value
included in their assembled instructions. An 8- or 16-bit field containing the
displacement value follows the first two bytes of the assembled instruction and the
offset field if it is present:

7 07 07 07 07 0
[b/RIPWBAAW [OPCODEMM]offsetif AA=01] sdisp-low [sdisp-high |
(low order byte) (high order byte)

Two exceptions to the preceding rules for additional bytes in assembled instructions
should be noted. The TSL instruction has an 8-bit immediate value field and an 8-bit
signed displacement field. These two fields follow, in the given order, the first two
bytes of the assembled instruction and the offset field, if it is present. (See the TSL
instruction mnemonic description.)

The assembled instructions for memory to memory move operations are a minimum
of four bytes in length. A maximum of six bytes can be generated by the assembler if
two offset fields are present. (See the MOV and MOVB instruction mnemonic
descriptions.)

Examples:
1. Figure 3-2 shows the assembled instruction ADD IX, [PP].24
2. Figure 3-3 shows the assembled instruction MOVI [GB].8, 4A27H

The Instruction Set 8089 Assembler

7 07 07 0
[+ 0o 1JooJo +f1}1 0 1 0 0 0f1 1]o 00 1 1 00 0]
S — o ot e S—p—

l————b OFFSET FIELD CONTAINING 18H (24D)

» BASE MEMORY ADDRESS IS IN PP REGISTER

» ADD OPERATION CODE

> MEMORY DATA IS 2BYTES (WORD)

» BASE + UNSIGNED 8-BIT OFFSET
MEMORY ADDRESS MODE

» NO IMMEDIATE/DISPLACEMENT VALUE DATA

» REGISTER IX SELECTED

Figure 3-2. Assembled Encoding of ADD IX, [PP].24

7 07 07 07 07 0
Jo o of1 ofo 1f1]o 1 0 01 1]Jo 1o 0o 0 0 1 00 o0foo 100 11 1]Jo1 00 101 0]

[———— ~——

[» TWO BYTE IMMEDIATE VALUE FIELD
(NOTE LOW-ORDER BYTE ‘27’ IS FIRST)

/

OFFSET FIELD CONTAINING 08H (8D)

BASE MEMORY ADDRESS IS IN GB

Y

> MOVI OPERATION CODE

MEMORY DATA IS 2 BYTES (WORD)

o BASE + UNSIGNED 8-BIT OFFSET
" MEMORY ADDRESS MODE

2BYTES OF IMMEDIATE VALUE DATA

\]

Y

» NOT USED - INSTRUCTION HAS
NO REGISTER, BIT, OR
POINTER/REGISTER OPERAND

Figure 3-3. Assembled Encoding of MOVI [GB].8, 4A27H

Instruction Mnemonics by Functional Group
The instruction mnemonics are described in this section in five functional groups:
Data Transfer
Control Transfer
Arithmetic and Logical
Bit Manipulation and Test

Special and Miscellaneous

3-4

8089 Assembler

Data Transfer Instructions

There are four distinct types of internal (excluding I/O operations) data transfer
operations:

¢ Load/store 20-bit pointer/registers

e Load/store 16-bit registers

* Move immediate data to memory or register
* Move memory-to-memory

20-bit pointer/registers, GA, GB, GC or TP, can be loaded with 20-bit addresses by
the LPD and LPDI instructions. LPD loads an address formed from four bytes of
data memory; LPDI loads an address formed from four bytes of immediate data.
An external symbol can appear in an LPDI instruction. Both of these instructions
set the pointer/register’s tag bit to logical zero.

A 20-bit pointer/register and its tag bit are stored in or restored from three bytes of
data memory via the MOVP instruction. See the MOVP instruction mnemonic
description later in this chapter for the format of a stored pointer/register and tag
bit.

The 16-bit registers can be loaded with 8- or 16-bit data using the MOV, MOVB,
MOVI, and MOVBI instructions. MOV and MOBYV load a register from 16 and
8 bits of data memory respectively. MOVI loads a register with 16 bits of immediate
data; MOVBI loads a register with 8 bits of immediate data. When a byte (memory
or immediate) is loaded into a register, it is sign-extended (bit 7) into the high order
byte.

MOV is used to store 16-bit registers in data memory. The MOVB instruction stores
the low order byte of a register in data memory.

NOTE

20-bit pointer/registers can be used as registers in the MOV, MOVB,
MOVI, and MOVBI instructions. The sign bit (bit 15 or bit 7) is sign- ex-
tended into the high order bits. The pointer/register’s tag bit is set to logical
one by these instructions.

Memory data or immediate data can be moved to a memory location using the
MOV, MOVB, MOVI and MOVBI instructions. The assembled instruction for
MOYV and MOVB in this case is at least four bytes long.

MNEMONIC OPERATION
LPD Load 20-bit pointer/register from data memory
LPDI Load 20-bit pointer/register from immediate data
MOVP Move 20-bit pointer/register to (store) or from (restore) memory
MOV Move 16-bits of data memory to/from data memory or register
MovB Move 8-bits of data memory to/from data memory or register
MOVI Move 16-bits of immediate data to data memory or register
MOVBI Move 8-bits of immediate data to data memory or register

The Instruction Set

The Instruction Set 8089 Assembler

Control Transfer Instructions

Call and jump instructions alter the normal sequential execution of task block pro-
gram instructions and transfer control to another, non-sequential instruction within
the program. This instruction is called the jump target. One operand within a con-
trol transfer instruction is an expression specifying the location of the jump target.

Displacements

Jumps are made by adding a signed byte or word displacement value (sign-extended
to 20 bits) to the 20-bit TP pointer/register to form the jump target address. Jump
targets within —128, +127 bytes of the end of a control transfer instruction can be
reached with a signed byte displacement value. Jump targets within —32,768,
+32,767 bytes of the end of a control transfer instruction require a signed word
displacement value.

All jump targets must be within a —32,768, +32,767 byte range of the end of a con-
trol transfer instruction. There is NO wraparound from the end of the (maximum)
64k program instruction space to the beginning. Figure 3-4 shows the range of jump
target locations for signed byte and signed word displacement values.

HERE - 80H

SHORT
JUMP/CALL
RANGE

LONG
= JUMP/CALL
RANGE

HERE + 7FH

SEGMENT (64K BYTES)

THERE* ——»

OFFFFH

*YOUCAN’T GET ‘THERE’ FROM ‘HERE’.

Figure 3-4. Control Transfer Jump Target Range

3-6

8089 Assembler The Instruction Set

Short and Long

Control transfer instruction mnemonics have two forms: a short form and a long
form. The long form is constructed by adding an ‘L’ prefix to the short form of the
control transfer instruction mnemonic.

Examples:
SHORT LONG
CALL LCALL
JBT LJBT
JMP LJMP

When the short form of a control transfer instruction mnemonic is coded, the
assembler generates a signed byte or word displacement value. If the expression
specifying the jump target contains only symbols previously defined to the assembler
(this includes the special character $, the location counter reference), the minimum
size displacement value necessary to reach the jump target is generated.

The long form of a control transfer instruction mnemonic always generates a signed
word displacement value, regardless of the actual distance to the jump target.

Short Form Errors

If the short form of a control transfer instruction mnemonic is coded and the jump
target address cannot be determined by the assembler on its first pass (i.e., the
expression specifying the jump target contains a forward reference), a signed byte
displacement value is assumed to be sufficient. If later the assembier determines that
a signed word displacement is necessary, the short form instruction will be flagged as
an error. The long form of the instruction mnemonic must be coded in its place.

Examples:
J_TARGET: MOV [GA].4, [PP].12 ;Aninstruction labeled J__TARGET.
(200 bytes of assembled source program)

JMP J_TARGET ;The address of the jump target J__TARGET
;can be determined by the assembier on its
;first pass. A signed word displacement value
;is generated by the assembler.

JZz [GB],$ + 16 ;$ + 16 is NOT a forward reference. The
;expression specifying the jump target
;contains only symbols defined to the
;assembler when the JZ instruction is
;processed onits first pass. A signed byte
;displacement value is generated.

CALL [GC].4,SUB_RT ;A shortCALL instruction whose jump target
;SUB__RT is not yet defined to the assembler
;on its first pass.

(200 bytes of assembled source program)

SUB_RT: ADDI MC, 722H ;The CALL instruction’sjumbtarget.

The above CALL instruction will be flagged as an error by the assembler, having
determined that the jump target requires a signed word displacement value rather
than the signed byte displacement value it assumed. An LCALL will have to be
coded in place of the CALL mnemonic.

3-7

The Instruction Set 8089 Assembler

3-8

Unconditional Control Transfer Instructions:

MNEMONIC OPERATION
CALL / LCALL Store TP pointer/register and tag bit; Jump
JMP / LUMP Jump

Conditional Control Transfer Instructions:

MNEMONIC OPERATION

JMCE / LUIMCE Jump on mask/compare equal

JMCNE / LUMCNE Jump on mask/compare not equal

JNZ / LUNZ Jump on nonzero register or data memory word
JNZB / LUNZB Jump on nonzero data memory byte

JZ /1 1LJz Jump on zero register or data memory word
JZB / LJZB Jump on zero data memory byte

Arithmetic and Logical Instructions

Arithmetic and logical operations can be performed on registers and 8- or 16-bit
data. The ADDB, ADDBI, ANDB, ANDBI, ORB, and ORBI instructions operate
on registers and 8-bit memory or immediate data. DECB, INCB, and NOTB operate
on 8-bit memory data only.

All 8-bit immediate or memory data is sign-extended to 16-bits in arithmetic and
logical operations. It cannot be assumed that the high order byte of a register is
unaffected by an 8-bit operation.

Example:

Register MC contains 8351H:

7 07 0
[10000011 [01010001

The following instruction is executed:
ANDBI MC, a7H ;The immediate byte data is sign-extended
;(bit 7) to 16-bits. The 16-bit result of the AND
;operation is placed in register MC.

Register MC now contains 41H (not 8341H).

7 07 0
00000000 | 01000001 |

8089 Assembler

The Instruction Set

To preserve the high order byte of the MC register the 16-bit form of the instruction,
ANDI, must be used: ANDI MC, 0FF41H.

The instructions ADD, ADDI, AND, ANDI, DEC, INC,-OR, ORI, and NOT
operate on registers and 16-bit memory or immediate data.

When 20-bit pointer/registers are used as registers in arithmetic and logical opera-
tions, bit 15 of 16-bit quantities and bit 7 of 8-bit quantities are sign-extended into
the high-order bits. The upper four bits (bits 16-19) of a pointer/register are
undefined following all arithmetic and logical operations except addition. ADD,

ADDI, ADDB, ADDBI can carry into the high order bits of a pointer/register.

Example:

Pointer/register GA contains 2E200H. The following instruction adds 32,765
(decimal) to pointer/register GA:

ADDI GA,

Pointer/register GA now contains 361FDH.

MNEMONIC

ADD

ADDB

ADDBI

ADDI

AND

ANDB

ANDBI

ANDI

DEC

DECB

INC

INCB

OR

ORB

ORBI

ORI

NOT

NOTB

OPERATION
ADD register and 16-bit memory data
ADD register and 8-bit memory data
ADD register or 8-bit memory data and 8-bit immediate data
ADD register or 16-bit memory data and 16-bit immediate data
AND register with 16-bit memory data
AND register with 8-bit memory data
AND register or 8-bit memory data with 8-bitimmediate data
AND register or 16-bit memory data with 16-bit immediate data
Decrement register or 16-bit memory data
Decrement 8-bit memory data
Increment register or 16-bit memory data
Increment 8-bit memory data
ORregister and 16-bit memory data
ORregister and 8-bit memory data
ORregister or 8-bit memory data with 8-bit immediate data
OR register or 16-bit memory data with 16-bitimmediate data
Complement register or 16:bit memory data

Complement 8-bit memory data

The Instruction Set 8089 Assembler

Bit Manipulation and Test Instructions
These instructions clear, set, or test a particular data memory bit.

The result of a bit test determines whether or not a jump occurs to some other
instruction within the task block program. The bit test instructions require three
operands: a data memory operand specifying the address of the data memory byte in
which the bit to be tested is located; a data memory bit operand specifying the bit to
be tested; and a program location operand specifying the jump target. Bit test
instructions, since they are control transfer instructions, have both a short and long
form. (See ‘‘Control Transfer Instructions’’ in this chapter for more on short and
long control transfer instructions.)

Examples:
JBT [GA].4, 3, TARGET ;Test bit three of the data memory byte at
;GA + 4. Jump to the instruction labeled
;TARGET if the tested bit equals a logical
;one.
LUNBT [GC+IX], 0, ERROR__FIX ;Test bit zero of the data memory byte at
;GC + IX. Jump to the instruction labeled
;ERROR__FIX if the tested bit does not
;equal a logical one.
MNEMONIC OPERATION
SETB Set selected data memory bit to logical one
CLR Clear selected data memory bit to logical zero
JBT / LUBT Jump on data memory bit true (bit = logical one)
JNBT / LUNBT Jump on data memory bit not true (bit < > logical one)

Special and Miscellaneous Instructions

This group contains those instructions that specifically pertain to 1/0 processing by
the 8089. It also includes the NOP (no operation) instruction.

A full understanding of the use of the special IOP instructions requires a knowledge
of 8089 operation. The MCS-86 User’s Manual is the best source for such informa-
tion. The operation of each of these instructions is explained under its mnemonic in
the following encyclopedia.

MNEMONIC OPERATION

HLT END task block program instruction execution.

NOP No operation.

SINTR Setinterrupt service flip flop.

TSL Test and set data memory byte while system bus is locked.

WID Set DMA source and destination logical widths.

XFER Begin DMA transfer following the execution of the next instruction.

ADD

Add Memory Word to Register
Add Register to Memory Word

Mnemonic: ADD Coding Format: ADD R, M
ADD M, R

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression

Operation: (OP1) < (OP1) + (OP2)

A word of data memory, with low order byte at location ‘M’, is added to the con-
tents of register ‘R’. The 16-bit result is placed in the leftmost operand, ‘OP1’.

If ‘OP1I’ is a 20-bit pointer/register (GA, GB, GC or TP) the memory data is sign-
extended (bit 15) to 20-bits. A carry can occur into the upper bits, bits 16-19, of the
pointer/register.

Examples:
ADD GA, [GB] ;Register GB points to the first (low order) byte of the word of
;memory data which is added to the contents of register GA
ADD [GC], IX ;The contents of the Index register are added to the word of
;memory data which begins at the address contained in
;register GC.

Assembled Instruction:
ADD R, M (ADD TO REGISTER FROM MEMORY WORD)

7 07 07 0
[RRRO0AA1[101000M M Joffset if AA=01

Execution Time:

11 clocks bus width =16 bits and address is even
15 clocks bus width =8 bits or bus width = 16 bits and address is odd

ADD M,R (ADD TO MEMORY WORD FROM REGISTER)

7 07 07 0
[RRROOAAT110100M M]offset if AA=01]

Execution Time:

16 clocks bus width =16 bits and address is even
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd

NOTE 1) When the results of an arithmetic or logic operation are placed in a
20-bit pointer/register the upper four bits, bits 16-19, are undefined
following the operation, except when addition is performed. In this
case, there can be a carry into the upper four bits of the
pointer/register.

3-11

ADDB R, M

3-12

Add Memory Byte to Register

Mnemonic: ADDB Coding Format: ADDB R, M

Operands: ‘R’ is aregister symbol
‘M’ is a data memory expression

Operation: (R) < (R) + sign-extended (M)
two 16-bit operands; 16-bit result

The data memory byte at location ‘M’ is sign extended (bit 7) to a 16-bit quantity
and added to the register, ‘R’. The 16-bit result is placed in register ‘R’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP) the memory data is sign- ex-
tended (bit 7) to 20-bits. A carry can occur into the upper bits, bits 16-19, of the
pointer/register.
Example:

ADDB GA, [GB] ;Add byte at [GB] to register GA.
Assembled Instruction:

ADDB R, M (ADD TO REGISTER FROM MEMORY BYTE)

7 07 07 0
[RRROOAA1/101000M M [offset if AA=01

Execution Time:
11 clocks

NOTE 1) When the results of an arithmetic or logic operation are placed in a
20-bit pointer/register the upper four bits, bits 16-19, are undefined
following the operation, except when addition is performed. In this
case, there can be a carry into the upper four bits of the
pointer/register.

ADDB M, R

Add Register to Memory Byte

Mnemonic: ADDB Coding Format: ADDB M, R

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression

Operation: (M) < (M) + low-order byte (R)

The data memory byte at location ‘M’ is added to the low-order byte of register ‘R’.
The 8-bit result is placed in data memory at location ‘M.

Examples:

SOME__OFFSET EQU 5H
ADDB [GC].SOME__OFFSET, BC ;Add the low-order byte of
;register BC to data memory
;byte at [GC] + 5. The 8-bit
;resultis placed in [GC] + 5.

Assembled Instruction:

ADDB M, R (ADD TO MEMORY BYTE FROM REGISTER)

7 07 07 0
RRRO0OAA1[110100M M pffset if AA=01|
Execution Time:
16 clocks

3-13

ADDBI R, |

Add Immediate Byte to Register

Mnemonic: ADDBI Coding Format: ADDBI R, |
Operands: ‘R’ is a register symbol
‘I’ is an expression evaluated modulo 256

Operation: (R) < (R) + sign-extended (i-value)
two 16-bit operands; 16-bit result

An immediate byte value is sign extended (bit 7) to a 16-bit quantity and added to the
contents of the register, ‘R’. The 16-bit result is placed in register, ‘R’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP) the immediate value is sign-
extended (bit 7) to 20-bits. A carry can occur into the upper bits, bits 16-19, of the
pointer/register.

Example:

ADDBI BC, 37 ;The immediate value ‘37’ (decimal) is added to register BC.

Assembled Instruction:

ADDBI R, | (ADDIMMEDIATE BYTE TO REGISTER)
7 07 07 0
RRR01000[00100000 | i-value
Execution Time:
3 clocks i

NOTE 1) When the results of an arithmetic or logic operation are placed in a
20-bit pointer/register the upper four bits, bits 16-19, are undefined
following the operation, except when addition is performed. In this
case, there can be a carry into the upper four bits of the
pointer/register.

ADDBI M, |

Add Immediate Byte to Memory Byte

Mnemonic: ADDBI Coding Format: ADDBI M,

Operands: ‘M’ isa data memory expression
‘I’ is an expression evaluated modulo 256

Operation: (M) < (M) + i-value

The expression ‘I’ is evaluated modulo 256 to an immediate signed byte, ‘i-value’.
This immediate signed byte value is added to the data memory byte at location ‘M’.

The result is placed in the data memory location ‘M’.
Example:
ADDBI [GC], 45H ;The immediate value ‘45H’ is added to the memory byte at [GC].

Assembled Instruction:

ADDBI M, | (ADDIMMEDIATE BYTE TO MEMORY BYTE)
7 07 07 07 0
| 00001AA0[110000MM offsetif AA=01] i-value |
Execution Time:

16 clocks

3-15

ADDI

3-16

Add Immediate Word to Register
Add Immediate Word to Memory Word

Mnemonic: ADDI Coding Format: ADDI R, |
ADDI M, |

Operands: ‘R’is aregister symbol
‘M’ is a data memory expression
‘I’ is an expression evaluated modulo 64k

Operation: (OP1) < (OP1) + i-value

The expression ‘I’ is evaluated modulo 64k to an immediate signed word value,
‘i-value’. This immediate word value is added to the contents of register, ‘R’, or the
word (16 bits) of memory data whose low order byte is located at ‘M’. The result is
placed in the specified register or memory location, ‘OP1’.

If ‘OP1’ is a 20-bit pointer/register (GA, GB, GC or TP) the immediate value is
sign-extended to 20-bits. A carry can occur into the upper bits, bits 16-19, of the
pointer/register.

Examples:
ADDI GA, 7F09H ;The immediate word value ‘7F09H’ is added to the contents of
;register GA.
ADDI [GB], 57421Q ;The immediate word value ‘57421’ (Octal) is added to the word

;of memory whose low order byte is at the address contained
;in register GB.

Assembled Instruction:

ADDI R, | (ADDIMMEDIATE WORD TO REGISTER)
7 07 07 07 0
[RRR10001{ 00100000 | i-value (low) | i-value (high) |
Execution Time:
3 clocks
ADDI M, | (ADDIMMEDIATE WORD TO MEMORY WORD)
7 07 07 07 07 0

[00010AA1[110000MM Joffset if AA=01] i-value (low) [i-value (high) |

Execution Time:

16 clocks bus width = 16 bits and address is even
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd

NOTE 1) When the results of an arithmetic or logic operation are placed in a
20-bit pointer/register the upper four bits, bits 16-19, are undefined
following the operation, except when addition is performed. In this
case, there can be a carry into the upper four bits of the
pointer/register.

AND

And Register With Memory Word
And Memory Word With Register

Mnemonic: AND Coding Format: AND R, M
AND M, R

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression

Operation: (OP1) < (OP1) AND (OP2)

A word, low order byte at location ‘M’, is fetched from data memory and logically
ANDed with the specified register, ‘R’. A logical AND returns a logical ‘1’ in each
bit position where both input bits are a logical ‘1’. Otherwise a logical ‘0’ is
returned. The result is placed in the leftmost operand, ‘OP1°.

If a 20-bit pointer/register (GA, GB, GC or TP) is used as an operand in this instruc-
tion the upper four bits, bits 16-19, are undefined following instruction execution.

Example:
AND GA, [GB+IX] ;The Index register is added to register GB, forming the
;address of the first (low order) byte of a word of data memory
;which is ANDed with register GA. The result is placed
;in register GA.
Assembled Instruction:
AND R, M (AND REGISTER WITH MEMORY WORD)

7 07 07 0
RRRO0OAA1101010MM foffset if AA=01]

Execution Time:

11 clocks bus width =16 bits and address is even
15 clocks bus width = 8 bits or bus width =16 bits and address is odd

AND M, R (AND MEMORY WORD WITH REGISTER)

7 07 07 0
RRRO0OAA1110110MM [offset if AA=01|

Execution Time:

16 clocks bus width = 16 bits and address is even
26 clocks bus width = 8 bits or bus width = 16 and address is odd

3-17

AND

3-18

NOTES 1)

2)

3)

A logical AND of two operands examines their corresponding bit
positions and returns a logical ‘1’ if both bits are a logical ‘1°. A logical
‘0’ is returned otherwise.

Exampie: AND 0101 1110 (5EH) with 0110 0110 (66H)

0101 1110
AND 0110 0110

Result 0100 0110 (46H)

See ANDB instruction on following page for logical AND with byte
data.

When the results of an arithmetic or logic operation are placed in a
20-bit pointer/register the upper four bits, bits 16-19, are undefined
following the operation, except when addition is performed. In this
case, there can be a carry into the upper four bits of the
pointer/register.

ANDB

And Memory Byte to Register

Mnemonic: ANDB Coding Format: ANDB R, M

Operands: ‘R’ isa register symbol
‘M’ is a data memory expression

Operation: 1) The data memory byte located at ‘M’ is sign-extended to 16-bits

2) (R) < (R) AND sign-extended (M)
two 16-bit quantities

A byte is fetched from data memory location ‘M’ and sign-extended (bit 7) to 16
bits. The sign-extended byte is logically ANDed with the register, ‘R’. In each bit
position a logical ‘1’ is returned if both input bits are a logical ‘1’. Otherwise, a
logical ‘0’ is returned. The result is placed in the register ‘R’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP) its upper four bits, bits 16-19,
are undefined following instruction execution.

Examples:

ANDB BC, [GA] ;The data memory byte atlocation [GA] is ANDed with the
;contents of register BC. The resultis placed in register BC.

Assembled Instruction:

ANDB R, M (AND MEMORY BYTE TO REGISTER)

7 07 07 0
RRRO0OAAO0[101010MM foffset if AA=01

Execution Time:
11 clocks

NOTES 1) A logical AND of two operands compares each of their corresponding
bit positions and returns a logical ‘1’ if both bits are a logical ‘1’. A
logical ‘O’ is returned otherwise.

Example: AND 1101 1010 (ODAH) with 01111010 (7AH)

1101 1010
AND 0111 1010
Result 0101 1010 (5AH)

2) When the results of an arithmetic or logic operation are placed in a
20-bit pointer/register the upper four bits, bits 16-19, are undefined
following the operation, except when addition is performed. In this
case, there can be a carry into the upper four bits of the
pointer/register. '

R,M

ANDB M, R

3-20

And Register to Memory Byte

Mnemonic: ANDB M, R Coding Format: ANDB M, R

Operands: ‘R’ isa register symbol
‘M’ is a data memory expression

Operation: (M) < (M) AND low-order byte (R)
A byte is fetched from data memory location ‘M’ and logically ANDed with the low-
order byte of register ‘R’. In each bit position, a logical ‘1’ is returned if both input
bits are a logical ‘1’. Otherwise, a logical ‘O’ is returned.
The 8-bit result is placed in data memory location ‘M’.
Example:

ANDB [GA],GC ;The data memory byte at [GA] is ANDed with the low-order

;byte of register GC. The 8-bit result is placed in the data
;memory location [GA].

Assembled Instruction:

ANDB M, R (AND REGISTER TO MEMORY BYTE)

7 07 07 0
RRROOAA1110110MM [offset if AA=01
Execution Time:
16 clocks

- NOTE 1) A logical AND of two operands compares compares each of their

corresponding bit positons and returns a logical ‘1’ if both bits are a
logical ‘1’. A logical ‘0’ is returned otherwise.

Example: AND 0010 1010 (2AH) with 1111 0001 (OF1H)

0010 1010
AND 1111 0001

Result 0010 0000 (20H)

ANDBI

And Immediate Byte to Register

Mnemonic: ANDBI Coding Format: ANDBI R, |

Operands: ‘R’ is a register symbol
‘I’ is an expression evaluated modulo 256

Operation: (R) < (R) AND sign-extended (i-value)
two 16-bit quantities; a 16-bit result

The expression ‘I’ is evaluated modulo 256 to an immediate signed byte value,
‘i-value’. This immediate signed byte value is sign-extended (bit 7) to 16-bits and
ANDed with register ‘R’. A logical one is output where each input bit is a logical
one. A logical zero is output otherwise. The 16-bit result is placed in register ‘R’.

If ‘R’ is a 20-bit pointer/register (GA,GB, GC or TP) the upper four bits, bits 16-19,
are undefined following instruction execution.

Example:

ANDBI X, OFDH ;The contents of register IX are ANDed with the immediate byte
;value ‘OFDH’. The 16-bit result is placed in register IX.

Assembled Instruction:

ANDBI R, | (AND IMMEDIATE BYTE TO REGISTER)
7 07 07 0
RRR01000]00101000 | i-value
Execution Time:
3 clocks

NOTE 1) When the results of an arithmetic or logic operation are placed in a
20-bit pointer/register the upper four bits, bits 16-19, are undefined
following the operation, except when addition is performed. In this
case, there can be a carry into the upper four bits of the
pointer/register.

R, |

3-21

ANDBI M, |

3-22

And Immediate Byte to Memory Byte

Mnemonic: ANDBI Coding Format: ANDBI M, |

Operands: ‘M’ is a data memory operand
‘I’ is an expression evaluated modulo 256

Operation: (M) < (M) AND (i-value)

The expression ‘I’ is evaluated modulo 256 to an immediate signed byte value,
‘i-value’. The data memory byte at location ‘M’ is ANDed with the immediate
signed byte value. A logical one is output when both input bits are a logical one.
Otherwise a logical zero is output. The result is placed in the data memory location
‘M’

Example:

ANDBI [GB], 73H ;The data memory byte at location [GB] is ANDed with the
;immediate byte value 73H.

Assembled Instruction:

ANDBI M, | (ANDIMMEDIATE BYTE TO MEMORY BYTE)
7 07 07 07 0
00001AA0[110010M M [offsetif AA=01| i-value |
Execution Time:
16 clocks

ANDI

And Immediate Word to Register

And Immediate Word to Memory Word

Mnemonic: ANDI Coding Format: ANDI R, |

ANDI M, |
Operands: ‘R’ isaregister symbol

‘M’ is a data memory operand
‘I’ is an expression evaluated modulo 64k

Operation: (OP1) < (OP1) AND i-value

The expression ‘1’ is evaluated modulo 64k to an immediate signed word value,
‘i-value’. The immediate word value is ANDed with the contents of the specified
register ‘R’, or the word of data memory whose low order byte is located at ‘M’. A
logical ‘1’ is returned in each bit position where both input bits are a logical ‘1’.
Otherwise, a logical ‘0’ is returned. The result is returned to the leftmost operand,
‘OPI’.

If ‘OP1’ is a 20-bit pointer/register (GA, GB, GC or TP) the upper four bits, bits
16-19, are undefined following instruction execution.

Examples:
ANDI CC, OFFF7H ;The contents of register CC are ANDed with the immediate
;word value ‘OFFF7H’. The result is placed in register CC.
ANDI [GA], 2222H ;The word of data memory whose low order byte is pointed to

;by register GA is ANDed with the immediate word vaiue
;'2222H’ . The result is placed in two bytes of data memory
;beginning at the given memory location. The low order byte of
;the resultis placed in the first memory byte; the high order
;byte is placed in the second.

Assembled Instruction:

ANDI R, | (AND REGISTER WITH IMMEDIATE WORD)
7 07 07 07 0
RRR10001| 00101000 | i-value (low) | i-value (high) |
Execution Time:
3 clocks
ANDI M, | (AND MEMORY WORD WITH IMMEDIATE WORD)
7 07 07 07 07 0
00010AA1 [110010MM offset if AA=01] i-value (low) [i-value (high) |
Execution Time:
16 clocks bus width = 16 bits and address is even a

26 clocks bus width = 8 bits or bus width = 16 bits and address is odd

3-23

ANDI

NOTE 1) When the results of an arithmetic or logic operation are placed in a
20-bit pointer/register the upper four bits, bits 16-19, are undefined
following the operation, except when addition is performed. In this
case, there can be a carry into the upper four bits of the

pointer/register.

3-24

CALL

Call

Mnemonic: CALL Coding Format: CALL M, L

Operands: ‘L’ is an expression representing the jump target
‘M’ is a data memory expression

Operation: 1) (M) < (TP) + tag bit
2) (TP) < (TP) + sdisp

The TP pointer/register, which contains the address of the next sequential instruc-
tion following the CALL instruction, and its tag bit, indicating a system or local
space task block program, are saved in 3 bytes of data memory beginning at loca-
tion, ‘M’. (See Note 4 below for the format of the stored 20-bit TP pointer/register
and tag bit.)

‘L’ is the jump target, a location within the program. If the address of the jump
target can be determined when the assembler processes this instruction on its first
pass, a signed byte (—128, +127) or word (32,768, +32,767) value, ‘sdisp’, the
distance, in bytes, from the end of the CALL instruction to the jump target, is
generated. If the address cannot be determined on the first pass (as is the case when
‘L’ contains a forward reference) the assembler generates a one byte displacement-
field, assuming that the jump target address, resolved in a subsequent pass, is within
a —128, +127 byte displacement from the end of the instruction (see Note 1 below).

The signed displacement, ‘sdisp’ is added to the TP pointer/register, which contains
the address of the next sequential instruction (the stored TP pointer/register value),
to form the jump target address.

Examples:
Suppose the following source lines were assembled:
J_TARGET: MOVI MC, 1279H

... (source lines resulting in 191 bytes of object code)
CALL [PP].12,J_TARGET

The address of the jump target, ‘J_TARGET’, has been determined by the
assembler when the ‘CALL’ instruction is found on its first pass. A displacement
outside a range of —128, +127 bytes is required to reach the jump target, so a signed
word displacement value is generated, the distance from the end of the ‘CALL’ in-
struction to the jump target. In this case the signed word displacement value would
be —200, OFF38H, since the ‘CALL’ instruction is 5 bytes in length: two bytes
followed by a byte containing the address offset value 12, 0CH, followed by the two
byte signed displacement value.

The assembled instruction bytes would be: 939F 0C 38FF:

7 07 07 07 07 0
10010011 10011111|00001100 00111000 | 11111111
low order byte high order byte

Note that the low order byte of the signed word displacement value, 38H, comes
first in the assembled instruction, followed by OFFH.

3-25

CALL

3-26

Let’s now suppose that the task block program of which the above instruction is a
part, is located in local memory space (tag bit therefore equals a logical ‘1’) and that
the address at the beginning of the assembled ‘CALL’ instruction is 7E31H. When
the ‘CALL’ instruction is executed by the IOP, the TP pointer/register, containing
the address of the next sequential instruction (7E36), and the tag bit are stored in
three bytes of system memory (‘PP’ always points to system memory space) beginn-
ing at address PP + 12 as follows:

7 07 07 0
[00110110] 01111110 [00001000
low order byte high order byte

Since the Task block program was located in local memory space (a maximum of
64K in size) bits 4-7 of the third memory byte are a logical ‘0’. Bit 3 of the third byte
is alogical ‘1’, the value of the TP pointer/register’s tag bit.

To return instruction execution to the next instruction following the ‘CALL’ a
‘MOVP’, not ‘MOV’, would be required:

CALL__RETURN: MOVP TP, [PP].12
;restore TP pointer/register and tag bit from memory

Assembled Instruction:

7 07 07 07 0
100WBAA1100111MM joffset if AA=01|sdisp (1-2bytes)]

Execution Time:

17 clocks bus width = 16 bits and address is even
23 clocks bus width = 8 bits or bus width = 16 bits and address is odd

NOTES 1) If the address of the jump target is known to the assembler when a
control transfer instruction is found on the assembler’s first pass, a
signed byte or word displacement, as required to reach the jump target,
will be generated by the assembler. A signed byte displacement is
generated if the jump target is within —128, +127 bytes of the end of the
control transfer instruction; a signed word displacement, —32,768,
+32,767, is generated if the target is outside the byte displacement
range. The jump target cannot be outside a range of —32,768, +32,767
bytes of the end of the control transfer instruction.

If the address of a jump target cannot be determined by the assembler
on its first pass (the case where ‘L’ contains a forward reference), the
jump target is assumed to be within a —128, +127 byte range of the end
of the control transfer instruction and a one byte displacement-field is
generated to contain the signed displacement value when it is later
determined. However, if it is later determined that a signed word
displacement value is necessary to reach the jump target, the assembler
flags the control transfer instruction as an error and the long form of
the instruction must be coded i.e. an ‘L’ prefix added to the instruction.

2) A return from a CALL is made via a MOVP instruction where TP is
specified as the destination register and the memory location operand is
the same as that used in the initial CALL instruction. See MOVP.

CALL

3) The memory location where the TP pointer/register and tag bit are to
be stored cannot be specified with a post autoincremented Index
register, i.e., the AA field of the instruction may not be ‘11°.

4) Stored Task Pointer Format:

07 07 0

TP(low) | TP(high) [19181716tb000]

a) The low order byte of the TP pointer/register is stored first,
followed by the next sequential byte (high), bits 8-15. The upper 4
bits, 16-19, are stored in the third byte in bit positions 4-7. The tag

bit is stored in the third bit position with the unused bits, 0-2, set to
logical ‘0’.

3-27

CLR

3-28

Clear Selected Bit to Logical Zero

Mnemonic: CLR Coding Format: CLR M, b

Operands: ‘b’ is the bit in the data memory byte (0 <= ‘b’ <=7)
‘M’ is a data memory expression

Operation: Bit‘b’ <0

The selected bit of a specified data memory byte located at ‘M’ is cleared to logical
‘0.

Examples:

The memory byte located at the address formed by adding 17 to the contents of
register GA contains ‘7DH’:

7 0
01111101 |

The following instruction is executed:
CLR [GA].17,5
The memory byte at GA + 17 now contains ‘SDH’:

7 0
[01011101]

Assembled Instruction:

7 07 07 0
[bbb00AAO[111110M M offsetif AA=01|
Execution Time:

16 clocks

NOTES 1) Register bits cannot be cleared using this instruction.

2) ‘D’ is evaluated modulo 8. If ‘b’ > 7 or ‘b’ < 0 the assembler issues an
€rror message.

3) Bit positions within a data memory byte are specified as follows:

MSB LSB
bit positions | 76543210

DEC

Decrement Register Word

Decrement Memory Word

Mnemonic: DEC Coding Format: DEC R
DEC M

Operands: ‘R’ isaregister symbol
‘M’ is a data memory expression

Operation: (OP1) < (OP1) -1

In a 16-bit operation, one is subtracted from the contents of the specified register ‘R’
or the word of data memory whose low order byte is located at ‘M’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP) a 20-bit subtraction is per-
formed. (20000H decrements to 1 FFFFH)

Examples:
DEC BC ;One is subtracted from the contents of register BC.
DEC [GB+IX+] ;One is subtracted from the word of data memory whose low

;order byte is located at the address formed by adding the Index
;register to GB. Note that the index register is post
;auto-incremented by two.
Assembled Instruction:
DEC R (DECREMENT REGISTER)

7 07 0
RRR00000[00111100

Execution Time:
3 clocks
DEC M (DECREMENT MEMORY WORD)

7 07 07 0
{ 00000AA1[111011 MM Joffsetif AA=01]

Execution Time:

16 clocks bus width =16 bits and address is even
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd

NOTES 1) To decrement data memory bytes use the DECB instruction.
2) Individual register bytes may NOT be decremented.

3) Decrementing zero returns OFFFFH unless a pointer/register is
operated on. In that case, decrementing zero results in OFFFFFH.

3-29

DECB

Decrement Memory Byte

Mnemonic: DECB Coding Format: DECB M

Operands: ‘M’ is a data memory expression

Operation: (OP1) < (OP1) -1

The contents of the data memory byte located at ‘M’ are reduced by 1.

Examples:

DECB [GA+IX] ;The contents of the index register are added to register GA

;to form the address of a data memory byte from which
;one is subtracted.

Assembled Instruction:

7 07 07 0
00000AA0({111011MM [offset if AA=01]

Execution Time:
16 clocks
NOTES 1) Decrementing a byte value of zerovresults in OFFH.
2) Individual register bytes cannot be decremented.

3) To decrement a register or memory word use the DEC instruction.

3-30

HLT

Halt Channel Program Execution;

Clear Channel Busy Flag in Channel Control Block

Mnemonic: HLT Coding Format: HLT
Operands: This instruction has no operands
Operation: None

Task block program execution is stopped and the respective channel BUSY flag byte
(channel one or channel two) in the Channel Control Block is cleared.

Examples:
HLT ;Task block program execution for the channel ceases.
;Channel activity is resumed through a command in the

;channel’s CCW.

Assembled Instruction:

7 07 0
00100000 | 01001000 |
Execution Time:
11 clocks

NOTES 1) A task block program halt instruction must not be confused with a
channel halt command issued to a channel through the Channel Con-
trol Word (CCW) in the Channel Command Block (CB). Specifically,
the task block program halt instruction, ‘HLT’, does NOT save the TP
pointer/register and tag bit or the channel’s program status word.

2) By clearing the channel busy flag in the Channel Control Block, the
channel indicates that it is now idle. No other activity takes place on the
channel until it is restarted through a command in its CCW. The HLT
instruction does NOT generate any hardware interrupt signals. Inter-
rupt signals can be generated by a task block program using the SINTR
instruction, providing that interrupts have been enabled from the chan-
nel in the Channel Control Word (CCW).

3-31

INC

Increment Register

Increment Memory Word

Mnemonic: INC Coding Format: INC R
INC M

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression

Operation: (OP1) < (OP1) + 1

In a 16-bit operation, one is added to the contents of the specified register ‘R’, or the
word of of data memory whose low order byte is located at ‘M”’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP), a 20-bit increment is
performed. An increment can result in a carry into the upper four bits, bits 16-19),
of the pointer/register. (1IFFFFH increments to 20000H)

Examples:
INC BC ;One is added to register BC.
INC [GA] ;One is added to the word of data memory whose low order
;byte is located at [GA].
Assembled Instruction:

INC R (INCREMENT REGISTER)

7 07 0
RRR00000 [00111000

Execution Time:
3 clocks
INC M (INCREMENT MEMORY WORD)

7 07 07 0
00000AA1[111010MM Joffset if AA=01|

Execution Time:

16 clocks bus width = 16 bits and address is even
26 clocks bus width = 8 bits or bus width = 16 bits and address is odd

NOTES 1) To increment a memory byte use the INCB instruction.

2) Incrementing OFFFFH results in OH unless a pointer/register is
operated on. In a pointer/register OFFFFH is incremented to 10000H.

3-32

INCB

Increment Memory Byte

Mnemonic: INCB Coding Format: INCB M
Operands: ‘M’ is a data memory expression
Operation: (OP1) < (OP1) + 1
One is added to the contents of the data memory byte at location ‘M’.
Examples:
INCB ([GB] ;One is added to the data memory byte at location [GB].

Assembled Instruction:

7 07 07 0
00000AA0[111010M M offset if AA=01]
Execution Time:
16 clocks

NOTES 1) Individual register bytes can not be incremented. To increment a
register or a memory word use the INC instruction.

2) Incrementing OFFH results in 00H.

3-33

JBT

3-34

Jump On Bit True

Mnemonic: JBT Coding Format: JBT M, b, L

Operands: ‘L’is an expression representing the jump target
‘b’ is the bit in the data memory byte (0 <= ‘b’ <=7)
‘M’ is a data memory expression

Operation: IF bit‘b’ =1
then (TP) < (TP) + sdisp

ELSE next instruction

‘L’, the jump target, is an expression representing a location within the program. If
the address of the jump target can be determined by the assembler when it
encounters the JBT instruction on its first pass, a one or two byte signed displace-
ment value, ‘sdisp’, is generated. This signed displacement value represents the
distance in bytes from the end of the JBT instruction to the jump target. If the jump
target is within a range of —128, +127 bytes, a signed byte displacement is generated.
Otherwise a signed word displacement, —32,768, +32,767, is generated. Jump
targets outside the signed word displacement range are not allowed.

If the address of the jump target cannot be determined when the assembler finds the
JBT instruction on its first pass (the case when ‘L’ contains a forward reference), a
signed byte displacement is assumed. Should it later be determined that a signed
word displacement is necessary, the JBT instruction is flagged as an error and an
LJBT instruction must be coded in its place.

The specified bit, b, of the data memory byte located at ‘M’, is tested. If the bit is a
logical ‘1°, the signed displacement (sign-extended to 20-bits) is added to the con-
tents of the TP pointer/register, forming the jump target address. Program control
is passed to the instruction at that address. (The address of the next sequential
instruction is in the TP pointer/register when the jump target address is formed.)

If the tested bit is not a logical ‘1’ the next sequential instruction is executed.
Example:

The JBT instruction allows a programmer to alter the sequence of task block pro-
gram instruction execution based upon the value of a specific bit in a data memory
byte.

In this example ‘COMPLETION__CODE’ is the name of a data memory byte in
local (16-bit) address space. (If it were in system, space an LPD or LPDI instruction
would be necesssary in place of the ‘MOVI GB, COMPLETION__CODE’ instruc-
tion.) An I/0 device writes a status code to this byte upon the completion of some
task. Bit five of the status code is an error indication bit, set by an abnormal task ter-
mination. The task block program checks this bit in ‘COMPLETION__CODE’ and
jumps to an error routine if it is set, i.e., a logical ‘1°.

COMPLETION__CODE: DB 00H ;Defines the name of a data memory
;byte with an initial value of ‘00H’.

JBT

;Device activity initiated;

;upon completion a status code is
;written to ‘COMPLETION__CODE'.
;*COMPLETION__CODE’ is then
;examined by the task block program to
;check for an abnormal termination.

ERROR_CHECK: MOVI GB, COMPLETION__CODE
:Move address of
;COMPLETION__CODE to register GB.

JBT [GB], 5, ERROR_ROUTINE

;Bit five of the data memory byte
;"COMPLETION__CODE’ is tested.
;If the bitis a logical ‘1’, indicating
;an error, the program jumps to the
;program location ‘ERROR_ROUTINE’.
;I the bitis notalogical ‘1’ the next
;sequential instruction is executed.

Assembled Instruction:

7 07 07 07 0
bbbWBAAO[101111MM [offset if AA=01[sdisp (1-2 bytes)|

Execution Time:
14 clocks
NOTES 1) Register bits cannot be tested.
2) Jump targets cannot be outside a range of —32,768, +32,767 bytes from
the end of a control transfer instruction. There is NO wraparound from
the end of the 64k program address space to the beginning.

3) The bits in a data memory byte are specified as follows:

MSB LSB
[76543210 |

Example:

7 0
| 10100010 |
bit position 76543210

3-35

JMCE

3-36

Jump On Mask Compare Equal

Mnemonic: JMCE Coding Format: JMCE M, L

Operands: ‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: 1) (compare-result) < (low order byte of MC register) XOR (M)

2) (mask-result) <
(high order byte of MC register) AND (compare-result)

3) IF (mask-result) =0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

ELSE next instruction

‘L’, the jump target, is an expression representing a location within the program. If
the address of the jump target can be determined by the assembler when it en-
counters the JMCE instruction on its first pass, a one or two byte signed displace-
ment, ‘sdisp’, is generated. This signed displacement represents the distance in bytes
from the end of the JMCE instruction to the jump target. If the jump target is within
a range of —128, +127 bytes, a signed byte displacement results. Otherwise, a signed
word displacement, —32,768, +32,767, is generated.

If the address of the jump target cannot be determined when the assembler finds the
JMCE instruction on its first pass (the case when ‘L’ contains a forward reference),
a signed byte displacement is assumed. Should it later be determined that a signed
word displacement is required the JMCE instruction is flagged as an error and an
LJMCE instruction must be coded in its place.

The low order byte of the MC register is used as a compare byte; the high order byte
is used as a mask byte. The data memory byte located at ‘M’ is XORed with the
compare byte. The result is then ANDed with the mask byte. If the mask-result is
equal to zero, the signed displacement (sign-extended to 20-bits) is added to the TP
pointer/register, formimg the jump target address. (The address of the next sequen-
tial instruction is in the TP pointer/register when the jump target address is formed.)
Task block program execution resumes at the instruction whose address is now in
TP.

If the mask-result is not zero the next sequential instruction is executed.
Example:

The JMCE instruction allows a task block program to use the result of a mask com-
pare operation to alter the sequence of task block program instruction execution.
This instruction is useful in device control programs, providing a mask and test type
operation within a single instruction.

In this example, an unknown number of local data memory bytes are being moved
to system memory space. The block of data being moved, however, ends with an
ASCII ‘ETX’ character (03H). The - MC register is loaded with a (low order)
compare byte and (high order) mask byte to detect the ‘ETX’ character. Upon detec-
tion of the ‘ETX’ character, data movement ends and a jump is taken to
‘NEXT__TASK__BLOCK’, where task block program execution resumes.

EXTRN START__OF__DESTINATION

JMCE

;Jidentify ‘START_OF__DESTINATION’
;as a symbol defined in
;another program.

START_OF_BLOCK__SOURCE: DS 4096D ;Reserve 4096D bytes of space

LOOP:

;with name
;*START_OF_BLOCK__SOURCE’.

MOVI IX, 00H ;Load index register with initial value
;0f 00H.

MOVI MC, OFFO3H ;Load mask and compare bytes into
;MG register.

MOVI GA, START__OF_BLOCK__SOURCE ;Load register GA with starting address
;of data block to be moved.

LPDI GB, START_OF__DESTINATION ;Load GB as a pointer to the
;destination in system memory space.

JMCE [GA +IX], NEXT_TASK_BLOCK ;Test the data byte for ‘ETX’ (03H)
;and jump to ‘NEXT_TASK__BLOCK’
;if found.

MOVB [GB+ IX], [GA+IX+] ;Move the data memory byte at location
;IGA +1X+] to location [GB + IX].
;The Index Register is post
;auto-incremented.

JMP LOOP ;Return to JMCE instruction, check
;nextdata byte for ‘ETX’.

NEXT_TASK__BLOCK: R ;Instruction where task block program

;execution resumes when the ‘ETX’
;character is found.

Assembled Instruction:

7 07 07 07 0
000WBAAO[101100M M |offset if AA=01|sdisp (1-2 bytes)|
Execution Time:
14 clocks

3-37

JMCNE

3-38

Jump On Mask Compare Not Equal

Mnemonic: JMCNE Coding Format: JMCNE M, L

Operands: ‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: 1) (compare-result) < (low order byte of MC register) XOR (M)

2) (mask-result) <
(high order byte of MC register) AND (compare-result)

3) If (mask-result) <>0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program. If
the address of the jump target can be determined by the assembler when it en-
counters the JMCNE instruction on its first pass, a one or two byte signed displace-
ment, ‘sdisp’, is generated. This signed displacement represents the distance in bytes
from the end of the JMCNE instruction to the jump target. If the jump target is
within a range of —128, +127 bytes a signed byte displacement results. Otherwise, a
signed word displacement, —32,768, +32,767, is generated.

If the address of the jump target cannot be determined when the assembler finds the
JMCNE instruction on its first pass (the case when ‘L’ contains a forward reference)
a signed byte displacement is assumed. Should it later be determined that a signed
word displacement is required, the JMCNE instruction is flagged as an error and an
LJMCNE instruction must be coded in its place.

The low order byte of the MC register is used as a compare byte; the high order byte
is used as a mask byte. The data memory byte located at ‘M’ is XORed with the
compare byte. The result is then ANDed with the mask byte. If the mask-result is
not equal to zero, the signed displacement (sign-extended to 20-bits) is added to the
TP pointer/register, formimg the jump target address. (The address of the next se-
quential instruction is in the TP pointer/register when the jump target address is
formed.) Task block program execution resumes at the instruction whose address is
now in TP.

If the mask-result is zero the next sequential instruction is executed.

Example:

The JMCNE instruction allows a task block program to use the result of a mask
compare operation to alter the sequence of task block program instruction
execution.

In this example the data memory byte ‘TERMINATE__CONDITION’ contains a
completion code. When bit four of ‘TERMINATE__CONDITION’ is a logical zero
and bit seven is a logical one, a catastrophic error is indicated. (Catastrophic only
when both conditions are present, i.e. bit four is a logical zero and bit seven is a
logical one.) Using the JMCNE instruction the following code tests for the
catastrophic error and jumps to ‘ANOTHER_BLOCK_OF__CODE’ if it is not
found. If it is found, the next sequential instruction ‘ERROR_ROUTINE’ is
executed.

TERMINATE__CONDITION: DB 00H

MOVE GA, TERMINATE__CONDITION

MOVI MC, 0B080H

JMCNE [GA], ANOTHER_BLOCK__OF__CODE

ERROR_ROUTINE:

ANOTHER_BLOCK_OF_CODE:

Assembled Instruction:

07 07

JMCNE

;Define a data memory byte location
;named ‘TERMINATE__CONDITION’.

;Load register GA with address of data
;memory byte to be tested.

;Load MC register with compare and
;mask bytes.

;Mask compare data memory byte at
;location [GA]. Jump to
;*ANOTHER_BLOCK_OF__CODE’ if
;mask compare result is not equal to
;zero. lf resultis zero

;' ERROR_ROUTINE’ is the next
;instruction executed.

;Label of instruction executed if mask
;compare result is zero.

;Label of instruction executed if mask
;compare result is not zero.

07 0

000WBAA0101101MM Joffset if AA=01]sdisp (1-2 bytes)]

Execution Time:

14 clocks

the beginning.

NOTE 1) Jump targets must be within a range of —32,768, +32,767 bytes from
the end of a control transfer instruction. There is NO wraparound from
the end of the 64k range of task block program instruction addresses to

3-39

JMP

3-40

Jump Unconditional

Mnemonic: JMP Coding Format: JMP L
Operands: ‘L’ isan expression representing the jump target
Operation: (TP) < (TP)+sdisp (sign-extended to 20-bits)

‘L’, the jump target, is an expression representing a location within the program. If
the address of the jump target can be determined by the assembler when it
encounters the JMP instruction on its first pass, a one or two byte signed displace-
ment, ‘sdisp’, is generated. This signed displacement represents the distance in bytes
from the end of the JMP instruction to the jump target. If the jump target is within a
range of —128, +127 bytes, a signed byte displacement results. Otherwise, a signed
word displacement, —32,768, +32,767, is generated.

If the address of the jump target cannot be determined when the assembler finds the
JMP instruction on its first pass (the case when ‘L’ contains a forward reference) a
signed byte displacement is assumed. Should it later be determined that a signed
word displacement is required, the JMP instruction is flagged as an error and an
LJMP instruction must be coded in its place.

The signed displacement, ‘sdisp’, is sign extended to 20-bits and added to the TP
pointer/register forming the jump target address. (The address of the next sequen-
tial instruction is in the TP pointer/register when the jump target address is formed.)
Program control passes to the instruction at that address.

Example:

The JMP instruction unconditionally alters the sequence of task program instruc-
tion execution. In this example a JMP instruction is coded at the end of an error
routine to pass program control to a statement, ‘CONTINUE’, where normal pro-
cessing resumes after execution of the error routine.

ERROR__ROUTINE: - ;The beginning of a section of code
;used to correct an error condition
;detected while processing.

JMP CONTINUE ;Return program control to instruction
;labeled ‘CONTINUE’ after executing
;the error routine.

CONTINUE: - ;The instruction executed after JMP
;instruction.

Assembled Instruction
JMP L (SIGNED BYTE DISPLACEMENT)

7 07 07 0
10001000 [00100000 sdisp |

JMP

Execution Time:
3 clocks
JMP L (SIGNED WORD DISPLACEMENT)

7 07 07 07 0
10010001 [00100000 | sdisp-low | sdisp-high

Execution Time:
3 clocks
NOTE 1) Jump targets must be within a range of —32,768, +32,767 bytes of the

end of a control transfer instruction. There is NO wraparound from the
end of the 64k instruction address space to the beginning.

3-41

JNBT

3-42

Jump If Bit Not True

Mnemonic: JNBT Coding Format: JNBT M, b, L

Operands: ‘L’isan expression representing the jump target
‘b’ is the bit in the data memory byte (0 <=b <=7)
‘M’ is a data memory expression

Operation: If bit ‘b’ <> 1
then TP < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program. If
the address of the jump target can be determined by the assembler when it
encounters the JNBT instruction on its first pass, a one or two byte signed displace-
ment, ‘sdisp’, is generated. This signed displacement represents the distance in bytes
from the end of the JNBT instruction to the jump target. If the jump target is within
a range of —128, +127 bytes, a signed byte displacement results. Otherwise, a signed
word displacement, —32,768, +32,767, is generated.

If the address of the jump target cannot be determined when the assembler finds the
JNBT instruction on its first pass (the case when ‘L’ contains a forward reference) a
signed byte displacement is assumed. Should it later be determined that a signed
word displacement is required the JNBT instruction is flagged as an error and an
LJINBT instruction must be coded in its place.

The selected bit, ‘b’, of the data memory byte at location ‘M’ is tested. If the bit is
not a logical one the signed displacement, ‘sdisp’, is sign-extended to 20-bits and
added to the TP pointer/register to form the address of the jump target, ‘L’. (The
address of the next sequential instruction is in the TP pointer/register when the
jump target address is formed.)

If the tested bit is a logical one the next sequential instruction is executed.
Example:

The JNBT instruction enables the value of a specified bit in a data memory byte to
alter the sequence of task block program instruction execution.

In this example bit four of a data memory byte ‘ERROR__?’ is tested by the INBT
instruction. If the bit is not a logical one, program control jumps to the statement at
‘GOOD__RESULT". If the bit is a logical one the next sequential instruction,
‘BAD__RESULT’, is executed.

ERROR_?: DB O00H ;Define a data memory byte named
;' ERROR__?’ with an initial value of
;00H.

MOVI GA, ERROR_? ;Load register GA with adddress of

:data memory byte ‘ERROR__?".

JNBT [GA], 4, GOOD_RESULT ;Test the fourth bit of the data memory
;byte located at [GA] and jump to
;"GOOD__RESULT' if it is not a logical
;one else execute the next sequential
sinstruction, ‘BAD_RESULT’.

BAD__RESULT: e ;1f the fourth bit of ‘ERROR__?’isa
;logical one this instruction is
;executed.

GOOD__RESULT: . ;if the fourth bit of ‘ERROR__?" is nota

;logical one, program control jumps to
;this instruction.

Assembled Instruction:

7 07 07 07 0
bbbWBAAQ|101110MM [offsetif AA=01lsdisp (1-2 bytes)l
Execution Time:
14 clocks

NOTES 1) Register bits cannot be tested using the JNBT instruction.

2) The jump target of a control transfer instruction must be within a range
of —32,768, +32,767 bytes from the end of the instruction. There is NO
wraparound from the end of the 64k instruction address range to the
beginning.

3) The bits in a data memory byte are specified according to the following
format:

MSB LSB
| 76543210 |

Example:

[10100010 |
bit position 76543210

JNBT

3-43

JNZ

3-44

Jump On Nonzero Register Or Memory Word

Mnemonic: JNZ Coding Format: JNZ R, L
JNZ M,L

Operands: ‘R’isaregister symbol
‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: If (OP1)<>0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program. If
the address of the jump target can be determined by the assembler when it
encounters the JNZ instruction on its first pass, a one or two byte signed displace-
ment, ‘sdisp’, is generated. This signed displacement represents the distance in bytes
from the end of the JNZ instruction to the jump target. If the jump target is within a
range of —128, +127 bytes a signed byte displacement results. Otherwise, a signed
word displacement, —32,768, +32,767, is generated.

If the address of the jump target cannot be determined when the assembler finds the
JNZ instruction on its first pass (the case when ‘L’ contains a forward reference) a
signed byte displacement is assumed. Should it later be determined that a signed
word displacement is required the JNZ instruction is flagged as an error and an
LIJINZ instruction must be coded in its place.

The contents of the specified register ‘R’ or the word of data memory whose low
order byte is located at ‘M’ are examined. If the contents are not logical zero the
signed displacement, ‘sdisp’, is sign-extended to 20-bits and added to the TP
pointer/register, forming the address of the jump target, ‘L’. (The address of the
next sequential instruction is in the TP pointer/register when the jump target
address is formed.)

This instruction performs a 16-bit test. If ‘R’ is a 20-bit pointer/register (GA, GB,
GC, or TP), the contents of its upper four bits, bits 16-19, cannot be determined
using this instruction.

If the contents of OP1 are equal to logical zero the next sequential instruction is
executed.

Example:
JNZ BC,$ +17 ;if register BC is not zero jump ahead
;17 bytes from the beginning of this
;instruction.
JNZ [GC], RETRY ;If the word of data memory beginning

;(low order byte) at location [GC] is
;not zero jump to instruction labeled
;'RETRY’.

JNZ

Assembled Instruction:

JNZ R, L (JUMP IF REGISTER NOT EQUAL TO LOGICAL ZERO)

7 07 07 0
RRRWB000[010000M M |sdisp (1-2 bytes)|
Execution Time:
5 clocks

JNZ M, L (JUMPIFMEMORY WORDNOT EQUAL TO LOGICAL ZERO)

7 07 07 07 0
[ooowBAA1[111000M M |offset if AA=01[sdisp (1-2 bytes)]

Execution Time:

12 clocks if bus width = 16 bits and address is even
16 clocks if bus width =8 bits or bus width = 16 bits and address is odd

NOTE 1) Jump targets must be within a range of —32,768, +32,767 bytes of the

end of a control transfer instruction. There is NO wraparound from the
end of the 64k program instruction space to the beginning.

3-45

JNZB

3-46

Jump On Nonzero Memory Byte

Mnemonic: JNZB Coding Format: JNZB M, L

Operands: ‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: If(M)<>0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program. If
the address of the jump target can be determined by the assembler when it
encounters the JNZB instruction on its first pass, a one or two byte signed displace-
ment, ‘sdisp’, is generated. This signed displacement represents the distance in bytes
from the end of the JNZB instruction to the jump target. If the jump target is within
a range of —128, +127 bytes a signed byte displacement results. Otherwise, a signed
word displacement, —32,768, +32,767, is generated.

If the address of the jump target cannot be determined when the assembler finds the
JNZB instruction on its first pass (the case when ‘L’ contains a forward reference) a
signed byte displacement is assumed. Should it later be determined that a signed
word displacement is required the JNZB instruction is flagged as an error and an
LJINZB instruction must be coded in its place.

The contents of the data memory byte at location ‘M’ are examined. If the contents
are not equal to logical zero the signed displacement, ‘sdisp’, is sign-extended to 20-
bits and added to the TP pointer/register, forming the address of the jump target,
‘L’. (The address of the next sequential instruction is in the TP pointer/register
when the jump target address is formed.)

If the contents of the data memory byte are equal to logical zero the next sequential
instruction is executed.

Example:
JNZB [GA}.4, RECOVERY ;If the data memory byte at location
;IGA] + 4is not equal to logical zero
;a jump is made to the instruction

;labeled ‘RECOVERY'.

Assembled Instruction:

7 07 07 07 0
000WBAAO0[111000MM Joffset if AA=01]sdisp (1-2 bytes)|
Execution Time:
12 clocks

NOTE 1) Jump targets must be within a range of —32,768, +32,767 bytes of the
end of a control transfer instruction. There is NO wraparound from the
end of the 64k program instruction address space to the beginning.

Jump On Zero Register Or Memory Word

Mnemonic: JZ Coding Format: JZ
JZ

Operands: ‘R’ isa register symbol
‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: If (OP1)=0
: then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing some location within the pro-
gram. If the address of the jump target can be determined by the assembler when it
encounters the JZ instruction on its first pass, a one or two byte signed displace-
ment, ‘sdisp’, is generated. This signed displacement represents the distance in bytes
from the end of the JZ instruction to the jump target. If the jump target is within a
range of —128, +127 bytes a signed byte displacement results. Otherwise, a signed
word displacement, —32,768, +32,767, is generated.

If the address of the jump target cannot be determined when the assembler finds the
JZ instruction on its first pass (the case when ‘L’ contains a forward reference) a
signed byte displacement is assumed. Should it later be determined that a signed
word displacement is required, the JZ instruction is flagged as an error and an LJZ
instruction must be coded in its place.

The contents of the specified register ‘R’ or the word of data memory whose low
order byte is located at ‘M’ are examined. If they equal logical zero the signed
displacement, °‘sdisp’, is sign-extended to 20-bits and added to the TP
pointer/register forming the address of the jump target, ‘L’. (The address of the
next sequential instruction is in the TP pointer/register when the jump target
address is formed.)

This instruction performs a 16-bit test. If ‘R’ is a 20-bit pointer/register (GA, GB,
GC, or TP), the contents of its upper four bits, bits 16-19, cannot be determined
using this instruction.

If the contents are not logical zero the next sequential instruction is executed.

Examples:
JZ IX, MOVE_ROUTINE+5 ;If the contents of the Index register
;are equal to logical zero ajump is
;made to the instruction at location
;MOVE_ROUTINE + 5.
JZ [PP].12, ALTERNATE ;If the word of data memory beginning

;(low order byte) at location [PP] + 12is
;zero ajump is made to ALTERNATE.

JZ

3-47

JZ

3-48

Assembled Instruction:

JZ R, L (JUMP IF REGISTER EQUAL TO LOGICAL ZERO)

7 07 07 0
RRRWB000| 01000100 [sdisp (1-2 bytes)|
Execution Time:
5 clocks

JZ M, L (JUMP IF MEMORY WORD EQUAL TO LOGICAL ZERO)

7 07 07 07 0
000WBAA1{111001MM |offset if AA=01[sdisp (1-2 bytes)|

Execution Time:

12 clocks if bus width = 16 bits and address is even
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTE 1) Jump targets must be within a range of —32,768, +32,767 bytes of the
end of a control transfer instruction. There is NO wraparound from the
end of the 64k program instruction space to the beginning.

JZB

Jump On Zero Memory Byte

Mnemonic: JZB Coding Format: JZB M, L

Operand Format: ‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: If(M)=0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program. If
the address of the jump target can be determined by the assembler when it
encounters the JZB instruction on its first pass, a one or two byte signed displace-
ment, ‘sdisp’, is generated. This signed displacement represents the distance in bytes
from the end of the JZB instruction to the jump target. If the jump target is within a
range of —128, +127 bytes a signed byte displacement results. Otherwise, a signed
word displacement, —32,768, +32,767, is generated.

If the address of the jump target cannot be determined when the assembler finds the
JZB instruction on its first pass (the case when ‘L’ contains a forward reference) a
signed byte displacement is assumed. Should it later be determined that a signed
word displacement is required the JZB instruction is flagged as an error and an
LJZB instruction must be coded in its place

If the contents of the data memory byte located at ‘M’ are a logical zero the signed
displacement, ‘sdisp’, is sign-extended to 20-bits and added to the TP
pointer/register, forming the address of the jump target, ‘L’. (The address of the
next sequential instruction is in the TP pointer /register when the jump target
address is formed.)

If the contents are not logical zero the next sequential instruction is executed.
Example:
JZB [GA+1X], NEXT_BLOCK ;If the data memory byte at the iocation

;[GA +1X] is equal to logical zero a jump
;is made to the instruction labeled

;‘NEXT_BLOCK'.
Assembled Instruction
7 07 07 07 0
000WBAAO[111001MM Joffset if AA=01]sdisp (1-2 bytes)|
Execution Time:
12 clocks

NOTE 1) Jump targets must be within a range of —32,768, +32,767 bytes from
the end of a control transfer instruction. There is NO wraparound from
the end of the 64k program instruction space to the beginning.

3-49

LCALL

3-50

Long Call
(Store TP Pointer/Register and Tag Bit; JUMP)
Mnemonic: LCALL Coding Format: LCALL M, L

Operand Format: ‘L’ is an expression representing the jump target
‘M’ is a data memory expression

Operation: 1) (M) < (TP) + tag bit

2) (TP) < (TP) + sdisp (sign-extended to 20-bits)

"The TP pointer/register, containing the address of the next sequential instruction ,

and the TP pointer/register tag bit, indicating a system or local space task block pro-
gram location, are saved in 3 bytes of data memory beginning at location ‘M’.

‘L’, the jump target, is an expression representing a location within the program.
Unlike the CALL instruction, which can generate a one or two byte displacement
value, the LCALL instruction forms a signed word displacement value, regardless of
the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LCALL instruc-
tion to the jump target. A displacement in the range —128, +127 bytes results in a
signed word displacement value whose high order byte is 00H or OFFH.

The LCALL instruction must be coded only when: (1) the address of the jump target
cannot be determined by the assembler when a CALL instruction is found on its first
pass and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

The signed word displacement, ‘sdisp’, is sign-extended to 20-bits and added to the
contents of the TP pointer/register forming the jump target address. (The TP
pointer/register contains the address of the next sequential instruction when the
LCALL target address is formed.) Program control passes to the instruction whose
address is now in the TP pointer/register (the jump target).

See note 4 below for the format of the stored TP pointer/register and tag bit.
Example:

The LCALL instruction stores the TP pointer/register and tag bit in memory and
unconditionally branches to another location within the program. Return is made
from the jump by restoring the stored TP pointer/register and tag bit with a MOVP
instruction.

In this example a jump is made to an instruction labelled ‘SOME__ROUTINE?’.
The TP pointer/register and tag bit are stored in three bytes of data memory begin-
ning at the location named ‘STORED__POINTER’.

A return is made from the jump to ‘SOME__ROUTINE?’ via a ‘MOVP’ instruc-
tion. The TP pointer/register and tag bit are restored from ‘STORED__POINTER’.

STORED__POINTER: DS 3 ;Reserve 3 bytes of data memory
;named ‘STORED__POINTER’ in which
;the TP pointer/register and tag bit
;are saved.

LCALL

MOVI GC, STORED__POINTER ;Load the data memory address of the
;location where the TP pointer/register
;and tag bit will be stored into GC.

LCALL {GC], SOME__ROUTINE? ;Store TP pointer/register and tag bit
;at address contained in GC*
;(‘'STORED__POINTER’); branch to
;instruction at ‘SOME__ROUTINE?’

MOVI GA, STORED__POINTER ;Load data memory address of stored
;TP pointer/register and tag bit into
;GA.

MOVP TP, ([GA] ;Returnfrom jump, restore TP

;pointer/register value and tag bit
;from ‘STORED__POINTER’.

Assembled Instruction:

7 07 07 07 07 0
10010AA1 |[100111MM]offset if AA=01| sdisp-low sdisp-high]

Execution Time:

17 clocks if bus width =16 bits and address is even
23 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTE 1) A return from an LCALL instruction is made via a MOVP instruction
where ‘TP’ is specified as the destination register and the data memory
location is the same as that used in the initial LCALL instruction. See
MOVP.

2) Jump targets must be within a —32,768, +32,767 byte range of the end
of a control transfer instruction. There is NO wraparound from the end
of the 64k program instruction space to the beginning.

3) The memory location where the TP register and tag bit are stored
cannot be specified using a post autoincremented Index register
([PREG+IX+)), i.e., the AA field of the instruction cannot be ‘11°.

4) Stored Task Pointer Format:

7 07 07 0
[TP(ow) [TP(high) [19181716tb000]

a) The low order byte of the TP pointer/register is stored first,
followed by the next sequential byte (high), bits 8-15. The upper 4
bits, 16-19, are stored in the third byte in bits 4-7. The tag bit is
stored in bit 3 and the unused bits, 0-2, set to logical ‘0’.

3-51

LJBT

3-52

Long Jump On Bit True

Mnemonic: LJBT Coding Format: LJBT M, b, L

Operands: ‘L’ is an expression representing the jump target
‘b’ is the bit in the data memory byte (0 <=b <=7)
‘M’ is a data memory expression

Operation: Ifbit‘b’ =1
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JBT instruction, which can generate a one or two byte displacement
value, the LJBT instruction forms a signed word displacement value, regardless of
the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LJBT instruction
to the jump target. A displacement in the range —128, +127 bytes results in a signed
word displacement value whose high order byte is 00H or OFFH.

The LIBT instruction must be coded only when: (1) the address of the jump target
cannot be determined by the assembler when a JBT instruction is found on its first
pass and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

The specified bit, ‘b’, of the data memory byte located at ‘M’, is tested. If the bitis a
logical ‘1’ the signed word displacement, ‘sdisp’, is sign-extended to 20-bits and
added to the contents of the TP pointer/register, forming the address of the jump
target, ‘L’. Program control is passed to the instruction at that address. (The ad-
dress of the next sequential instruction is in the TP pointer/register when the jump
target address is formed.)

If the tested bit is not a logical ‘1’ the next sequential instruction is executed
Example:

The LIBT instruction allows a programmer to alter the sequence of task block pro-
gram instruction execution based upon the value of a specific bit in a data memory
byte. The jump target of the LJBT instruction is within a range of —32,768, +32,767
bytes of the end of the assembled LIBT instruction.

In this example the user defined area of the Parameter Block (PB) contains a
parameter byte whose contents are used to direct the IOP channel’s operation. Here
the task block program checks bit 7 of the parameter byte and jumps to an instruc-
tion labeled ‘Delay’ if the bit is a logical ‘1°. If the bit is not a logical ‘1’ the instruc-
tion labeled ‘ALL__SET’ is executed.

Note that the LIBT instruction is required in this case since (1) the address of
‘DELAY’ is not known to the assembler when the LIBT instruction is found on its
first pass and (2) a signed word displacement value is required because ‘DELAY’ is
ouiside a —128, +127 byte range of the end of the instruction.

LJBT [PP].27,7, DELAY ;Test bit 7 of parameter byte in user
;defined area of the Parameter Block;
;jump to instruction labeled ‘DELAY’ if
;bitis alogical ‘1’.

ALL__SET: MOVI CC, DMA_INFO ;This instruction executed if tested bit
;is notalogical ‘1’. Animmediate word
;value is loaded into the CC (Channel
;Control) register.

(25,000 bytes of assembled source program statements)

DELAY: MOVBI BC, TIMER ;If tested bit is a logical ‘1’ program
;control jumps to this instruction.

Assembled Instruction:

7 07 07 07 07 0
bbb10AAO0[101111MM Joffsetif AA=01] sdisp-low [sdisp-high
Execution Time:
14 clocks

NOTE 1) Register bits cannot be tested.
2) Jump targets must be within a —32,768, +32,767 byte range of the end
of a control transfer instruction. There is NO wraparound from the end
of the 64k program instruction space to the beginning.

3) The bits of a data memory byte are specified as follows:

MSB LSB
[76543210 |

Example:

{ 10100010 |
bit positions 76543210

LJBT

3-53

LIMCE

3-54

Long Jump On Mask Compare Equal

Mnemonic: LJMCE Coding Format: LJMCE M, L

Operands: ‘M’ isa data memory expression
‘L’ is an expression representing the jump target

Operation: 1) (compare-result) < (low order byte of MC register) XOR (M)
2) (mask-result) < (high order byte of MC) AND (compare-result)

3) If (mask-result) =0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JMCE instruction, which can generate a one or two byte displacement
value, the LIMCE instruction forms a signed word displacement value, regardless of
the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LIMCE instruc-
tion to the jump target. A displacement in the range —128, +127 bytes results in a
signed word displacement value whose high order byte is 00H or OFFH.

“The LIMCE instruction must be coded only when: (1) the address of the jump target

cannot be determined by the assembler when a JMCE instruction is found on its first
pass and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

The low order byte of the MC register is used as a compare byte; the high order byte
is used as a mask byte. The data memory byte at location ‘M’ is XORed with the
compare byte. The result is then ANDed with the mask byte. If the mask-result is
equal to zero ‘sdisp’ is added to the TP pointer/register, forming the jump target

.address. Task block program execution resumes at the instruction whose address is

now in TP (the jump target). The address of the next sequential instruction is in the
TP pointer/register when the jump target address is formed.

If the mask-result is not zero the next sequential instruction is executed.
Example:

The LIMCE instruction allows a task block program to use the result of a mask
compare operation to alter the sequence of task block program instruction execu-
tion. The jump target of the LJMCE instruction is within a range of —32,768,
+32,767 bytes of the end of the instruction.

In this example an 1/0 device writes a status code to a data memory byte labeled
‘OK?’. The following bit pattern in ‘OK?’ indicates to the task block program that
an error has occured in the device’s operation and corrective action must be taken:

7 0
[1X01X1X0

An ‘X’ in a bit position indicates that the bit can be either a logical ‘1’ or a logical ‘0’
in other words, the program doesn’t care what value is present when checking for an
error. In the remaining bit positions an error is indicated only if the indicated values
are present. If any of the values is not as specified no error has occured.

LIMCE

The task block program loads the MC register with a compare and a mask value to
detect the above error code. Using the LIMCE instruction the program is able to
jump to a routine labeled ‘FIX__IT’ when an error has occured.

OK?: DB 00H ;Define a byte of data memory with the name
;‘OK?’ and an initial value of 00H.

MOVI GC, OK? ;Load register GC with the address of the data
;memory byte containing the device status.

MOVI MC, 0B594H ;Load MC register with mask and compare
;values to detect the error code.

PROCESS__LOOP: LJMCE [GC], FIX_IT ;Check device status—if no error indicated
;instruction labeled ‘OUT_STEP__1’
;is executed.

OUT_STEP__1: MOV GA, [PP].22 ;Load register GA with 16-bits of data from the
;user-defined portion of the Parameter Block.

(start 1/ O device operation)

JMP PROCESS__LOOP ;Theend of I/0 device operation. Assuming
;that the 1/ O device has written its error code in
;data memory at ‘OK?’ and that register GC still
;contains the address of the data memory byte,
;the task block program jumps to the LUMCE
;instruction to check for an error. This
;processing loop continues until either an error
;occurs or the channel is interrupted/halted by
;achannel command in the Channe! Control
;Word (CCW).

(14,000 bytes of assembled program instructions)

FIX_IT: SINTR ;The interrupt service flip-flop for the channel
;is set indicating to the main system hardware
;the occurance of the 1/0 device error.
;(Assuming channel interrupts have been
;enabled.)

Note that the LIMCE instruction must be coded in this case since (1) the address of
the jump target ‘FIX__IT’ is not known by the assembler when it encounters the
LIJMCE instruction on its first pass and (2) the jump target is outside a —128, +127
byte range from the end of the LIMCE instruction. If a JMCE instruction is coded
here it will be flagged as an error by the assembler since it assumes a one byte signed
displacement when the jump target address is not known on the assembler’s first
pass and a two byte (word) displacement is required here.

Assembled Instruction:
7 07 07 07 07 0
00010AA0 [101100MM [offsetif AA=01] sdisp-low | sdisp-high |

Execution Time:

14 clocks

NOTE 1) Jump targets must be within a range of —32,768, +32,767 bytes of the
end of a control transfer instruction. There is NO wraparound from the
end of the 64k program instruction space to the beginning.

3-55

LIMCNE

3-56

Long Jump On Mask Compare Not Equal

Mnemonic: LJMCNE Coding Format: LIMCNE M, L

Operands: ‘M’is a data memory expression
‘L’ is an expression representing the jump target

Operation: 1) (compare-result) < (low order byte of MC register) XOR (M)
2) (mask-result) < (high order byte of MC) AND (compare-result)

3) If (mask-result) <>0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JMCNE instruction, which can generate a one or two byte displacement
value, the LIMCNE instruction forms a signed word displacement value, regardless
of the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LIMCNE instruc-
tion to the jump target. A displacement in the range —128, +127 bytes results in a
signed word displacement value whose high order byte is 00H or OFFH.

The LIMCNE instruction must be coded only when: (1) the address of the jump
target cannot be determined by the assembler when a JMCNE instruction is found
on its first pass. (2) The required displacement to the jump target is outside a range
of —128, +127 bytes from the end of the assembled instruction.

The low order byte of the MC register is used as a compare byte; the high order byte
is used as a mask byte. The data memory byte at location ‘M’ is XORed with the
compare byte. The result is then ANDed with the mask byte. If the mask-result is
not equal to zero, ‘sdisp’ is added to the TP pointer/register, forming the jump
target address. Task block program execution resumes at the instruction whose
address is now in TP (the jump target). (The address of the next sequential instruc-
tion is in the TP pointer/register when the jump target address is formed.)

If the mask-result is equal to zero, the next sequential instruction is executed.
Example:

The LJMCNE instruction allows a task block program to use the result of a mask
compare operation to alter the sequence of task block program instruction execu-
tion. The jump target of the LYMCNE instruction is within a range of —32,768,
+32,767 bytes.

In this example, each source byte is inspected for a logical ‘1’ in bit position seven
and a logical ‘O’ in bit position zero before it is processed. If the byte does not con-
form to the above format, a jump occurs to the instruction labeled
‘ALT_PROCESS’. If the byte does conform to the format, the instruction{abeled
‘NML__PROCESS’ is executed.

MOVI MC, 8180H ;Load mask and compare bytes into
;register MC.

LIMCNE

LJMCNE [GB], ALT_PROCESS ;The byte to be tested is at the address
;contained in register GB. If the byte has
;alogical ‘1’ in bit position seven and a
;logical zero in bit position zero, the
sinstruction labeled ‘NML__PROCESS’ is
;executed. If the byte is notin the above
;format a jump is made to the instruction
;labeled ‘ALT_PROCESS'.

NML__PROCESS: MOVB [GA+I1X+], {GB] ;Move the byte at address GB to the
;location addressed by GA + IX (post
;auto-increment IX).

(200 bytes of assembled program instructions)

ALT_PROCESS: NOTB [GB] Form the one’s complement of the byte
;addressed by GB.

Note that the LIMCNE instruction is required here since (1) the address of the jump
target, ‘ALT__PROCESS’ is not known by the assembler when it finds the
LIJMCNE instruction on its first pass and (2) the jump target is outside a —128, +127
byte range of the end of the instruction. A JMCNE instruction would be flagged as
an error if coded here because the assembler would assume a displacement within a
—128, +127 byte range on its first pass when the jump target is unknown. Later the
displacement is found to be outside the assumed range, resulting in an error.

Assembled Instruction:

7 07 07 07 07 0
00010AA0 [101101MM [offsetif AA=01| sdisp-low | sdisp-high |
Execution Time:
14 clocks

NOTE 1) A jump target must be within a range of —32,768, +32,767 bytes of the
end of a control transfer instruction. There is NO wraparound from the
end of the 64k program instruction space to the beginning.

3-57

LJMP

3-58

Long Jump Unconditional

Mnemonic: LJMP Coding Format: LJMP L
Operands: ‘L’ is an expression representing the jump target
Operation: (TP) < (TP) + sdisp (sign-extended to 20-bits)

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JMP instruction, which can generate a one or two byte displacement
value, the LIMP instruction forms a signed word displacement value, regardless of
the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LIMP instruction
to the jump target. A displacement in the range —128, +127 bytes results in a signed
word displacement value whose high order byte is 00H or OFFH.

The LIJMP instruction must be coded only when: (1) the address of the jump target
cannot be determined by the assembler when a JMP instruction is found on its first
pass and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

The signed word displacement, ‘sdisp’, is added to the TP pointer/register, forming
the jump target address. Program control passes to the instruction at that address.
(The TP pointer register contains the address of the next sequential instruction when
the jump target address is formed.)

Example:
LIMP ERR_TYPE + 3 ;Unconditional jump to an instruction three
;bytes beyond an instruction labeled
‘ERR_TYPE'.
(1,253 bytes of assembled source program statements)
ERR_TYPE: ADD BC, [PP].12 ;Jump target is three bytes beyond this

;instruction.

Note that the LYMP instruction is required here since (1) the address of the jump
target, ‘ERR_TYPE’ is not known by the assembler when it finds the LIMP
instruction on its first pass and (2) the jump target is outside a —128, +127 byte range
of the end of the instruction. A JMP instruction would be flagged as an error if
coded here because the assembler would assume a displacement within a —128, +127
byte range on its first pass when the jump target is unknown. Later the displacement
is found to be outside the assumed range, resulting in an error.

Assembled Instruction:
7 07 07 07 0
[10010001 00100000 sdisp-low l sdisp-high

Execution Time:

3 clocks

NOTE 1) A jump target must be within a —32,768, +32,767 byte range of the end
of a control transfer instruction. There is NO wraparound from the end
of the 64k program instruction space to the beginning.

LIJNBT

Long Jump If Bit Not True

Mnemonic: LJNBT Coding Format: LJNBT M, b, L

Operands: ‘L’ is an expression representing the jump target
‘b’ is the bit in the data memory byte (0 <=b <=7)
‘M’ is a data memory expression

Operation: If bit ‘b’ <> 1
then TP < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JNBT instruction, which can generate a one or two byte displacement
value, the LINBT instruction forms a signed word displacement value, regardless of
the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LINBT instruction
to the jump target. A displacement in the range —128, +127 bytes results in a signed
word displacement value whose high order byte is 00H or OFFH.

The LINBT instruction must be coded only when: (1) the address of the jump target
cannot be determined by the assembler when a JNBT instruction is found on its first
pass and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

The selected bit, ‘b’, of the data memory byte located at ‘M’ is tested. If the bit is
not a logical one, ‘sdisp’ is sign-extended to 20-bits and added to the TP
pointer/register to form the address of the jump target, ‘L.’. (The address of the next
sequential instruction is in the TP pointer/register when the jump target address is
formed.)

If the tested bit is a logical one, the next sequential instruction is executed.
Example:

The LINBT instruction enables the value of a specified bit in a data memory byte to
alter the sequence of task block program instruction execution. The jump target of
the LINBT instruction is within a range of —32,768, +32,767 bytes.

LIJNBT [PP].STATUS, 3, MAX ;Bit three of a byte located at offset value
;*STATUS’ from the beginning of the Parameter
;Block is tested. If the bit is not alogical one, a
;jump is made to the statement labeled ‘MAX’;
;otherwise the next sequential instruction,
;*MIN’ | is executed.

MIN: MOviB BC, 100 ;Load register BC with immediate byte value of
;100 (decimal).

(15,000 bytes of assembled source program statements)

MAX: MOVI BC, 10000 ;Load register BC with immediate word value of
;10,000 (decimal).

3-59

LIJNBT

3-60

Note that the LINBT instruction is required here since (1) the address of the jump
target, ‘MAX’, is not known by the assembler when it finds the LINBT instruction
on its first pass, and (2) the jump target is outside a —128, +127 byte range of the end
of the instruction. A JNBT instruction would be flagged as an error if coded here
because the assembler would assume a displacement within a —128, +127 byte range
on its first pass when the jump target is unknown. Later the displacement is found to
be outside the assumed range, resulting in an error.

Assembled Instruction:

7 07 07 07 07 0
bbb10AAO[101110MM E)ffset if AA=01] sdisp-low sdisp-high
Execution Time:

14 clocks

NOTES 1) Register bits cannot be tested using the LYNBT instruction.
2) A jump target must be within a range of —32,768, +32,767 bytes of the
end of a control transfer instruction. There is NO wraparound from the

end of the 64k program instruction space to the beginning.

3) The bits in a data memory byte are specified as follows:

MSB LSB
| 76543210 |

Example:
7 0

[10100010 |
bit positions 76543210

LIJNZ

Long Jump On Nonzero Register Or Memory Word

Mnemonic: LJNZ Coding Format: LJNZ R, L
LINZ M, L

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: If (OP1)<>0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JNZ instruction, which can generate a one or two byte displacement
value, the LINZ instruction forms a signed word displacement value, regardless of
the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LINZ instruction
to the jump target. A displacement in the range —128, +127 bytes results in a signed
word displacement value whose high order byte is 00H or OFFH.

The LINZ instruction must be coded only when: (1) the address of the jump target
cannot be determined by the assembler when a JNZ instruction is found on its first
pass and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

The contents of the specified register ‘R’ or the word of data memory whose low
order byte is located at ‘M’ are examined. If the contents are not logical zero, the
signed word displacement, ‘sdisp’, is sign-extended to 20-bits and added to the TP
pointer/register, forming the address of the jump target, ‘L’. (The address of the
next sequential instruction is in the TP pointer/register when the jump target
address is formed.)

This instruction performs a 16-bit test. If ‘R’ is a 20-bit pointer/register (GA, GB,
GC, or TP), the contents of its upper four bits, bits 16-19, cannot be determined
using this instruction.

If the contents of OP1 are a logical zero, the next sequential instruction is executed.

Examples:
LINZ IX, FAR_AHEAD ;i the IX register does not equal zero ajump is
;made to the instruction labeled
;‘FAR_AHEAD’.
LIJNZ [GB], NEXT__1 ;1f the word of data memory beginning (low

;order byte) at address contained in GB is not
;zero, a jump is made to the instruction labeled
CNEXT__1°.
Assembled Instruction:
LUNZ R,L (JUMP IF REGISTER NOT EQUAL TO LOGICAL ZERO)

7 07 07 07 0
RRR10000| 01000000 | sdisp-low | sdisp-high |

3-61

LIJNZ

Execution Time:
5 clocks
LINZ M, L (JUMPIF MEMORY WORD NOT EQUAL TO LOGICAL ZERO)

7 07 07 07 07 0
[00010AA1[111000MM [offsetif AA=01] sdisp-low | sdisp-high |

Execution Time:

12 clocks if bus width = 16 bits and address is even
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTE 1) A jump target must be within a range of —32,768, +32,767 bytes of the

end of a control transfer instruction. There is NO wraparound from the
end of the 64k program instruction space to the beginning.

3-62

LJNZB

Long Jump on Nonzero Memory Byte

Mnemonic: LJNZB Coding Format: LJNZB M, L

Operands: ‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: If M)<>0
~ then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JNZB instruction, which can generate a one or two byte displacement
value, the LINZB instruction forms a signed word displacement value, regardless of
the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LINZB instruction
to the jump target. A displacement in the range —128, +127 bytes results in a signed
word displacement value whose high order byte is 00H or OFFH.

The LINZB instruction must be coded only when: (1) the address of the jump target
cannot be determined by the assembler when a JNZB instruction is found on its first
pass, and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

The contents of the data memory byte located at ‘M’ are examined. If the contents
are not equal to logical zero, the signed word displacement, ‘sdisp’, is sign-extended
to 20-bits and added to the TP pointer/register, forming the address of the jump
target, ‘L’. (The address of the next sequential instruction is in the TP
pointer/register when the jump target address is formed.)

If the contents of the memory byte are equal to logical zero, the next sequential
instruction is executed.

Example:
COUNT: DB 25 ;Define a byte of data memory labeled
;*COUNT’ with an initial value of 25 (decimal).
PROCESS1: MOVI IX, 300H ;Move immediate word value to register IX.

(150 bytes of assembled source program statementS)

MOVI GC, COUNT ;load address of data memory byte into register
;GC

3-63

LJNZB

3-64

LJNZB [GC], AGAIN ;If the data memory byte addressed by GC
;(CCOUNT’) is not zero, a jump is made to the
;location represented by the expression
;‘AGAIN’.

AGAIN EQU PROCESSH1 ;Define a symbol ‘AGAIN’ as a synonym for the
;label ‘PROCESST’.

Note that the LINZB instruction is required here: (1) the address of the jump target,
represented by the expression ‘AGAIN’, is not known to the assembler on its first
pass, and (2) the assembler assumes a displacement within a —128, +127 byte range
of the end of the instruction if a JNZB instruction is coded; the displacement is later
determined to be outside the —128, +127 byte range, resulting in the flagging of the
JNZB instruction as an error.

Assembled Instruction:

7 07 07 07 07 0
[00010A A0 [111000M M [offsetif AA=01| sdisp-low | sdisp-high
Execution Time:

12 clocks

NOTE 1) A jump target must be within a —32,768, +32,767 byte range of the end
of a control transfer instruction. There is NO wraparound from the end
of the 64k program instruction space to the beginning.

Long Jump on Zero Register Or Memory Word

Mnemonic: LJZ Coding Format: LJZ R, L
Lz M, L

Operands: ‘R’ isa register symbol
‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: If (OP1)=0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JZ instruction, which can generate a one or two byte displacement value,
the LJZ instruction forms a signed word displacement value, regardless of the size of
the displacement necessary to reach the jump target. This signed word displacement,
‘sdisp’, is the distance in bytes from the end of the LJZ instruction to the jump
target. A displacement in the range —128, +127 bytes results in a signed word
displacement value whose high order byte is 00H or OFFH.

The LJZ instruction must be coded only when: (1) the address of the jump target
cannot be determined by the assembler when a JZ instruction is found on its first
pass and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

The contents of the specified register ‘R’ or the word of data memory whose low
order byte is located at ‘M’ are examined. If they equal logical zero, the signed word
displacement, ‘sdisp’, is sign-extended to 20 bits and added to the TP
pointer/register forming the address of the jump target, ‘L’. (The address of the
next sequential instruction is in the TP pointer/register when the jump target
address is formed.)

This instruction performs a 16-bit test. If ‘R’ is a 20-bit pointer/register (GA, GB,
GC, or TP), the contents of its upper four bits, bits 16-19, cannot be determined
using this instruction.

If the contents of OP1 are not logical zero, the next sequential instruction is
executed.

Examples:

LJZ BC, CNCLUDE ;If register BC equals zero, a jump is made
;to the instruction labeled ‘CNCLUDE’.

LJZ [PP].16, CNCLUDE ;¥ the word of data memory beginning (low
;order byte) at PP + 16 is zero,ajump is
;made to the instruction labeled
;*CNCLUDE’.

(200 bytes of assembled source program statements)
CNCLUDE: MOVBI [PP].12, OFFH ;The jump target.

LJZ

3-65

LJZ

Note that the LJZ instruction is required in both of the above instructions: (1) the
address of the jump target ‘CNCLUDE’ is not known to the assembler when it
encounters the LJZ instruction on its first pass, and (2) the displacement to the jump
target is outside a —128, +127 byte range. A JZ instruction would be flagged as an
error if it were coded here since the assembler assumes a —128, +127 byte displace-
ment range when the jump target address is not known.

Assembled Instruction:

LZ R, L (JUMP IF REGISTER EQUAL TO LOGICAL ZERO)

7 07 07 07 0
RRF’HOOOOI 01000100 sdisp-low sdisp-high]
Execution Time:
5 clocks

Lz M, L (JUMP IF MEMORY WORD EQUAL TO LOGICAL ZERO)

7 07 07 07 07 0
[00010AA1 [111001 MM |offsetif AA=01] sdisp-low | sdisp-high |

Execution Time:

12 clocks if bus width = 16 bits and address is even
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTE 1) A jump target must be within a —32,768, +32,767 byte range of the end

of a control transfer instruction. There is NO wraparound from the end
of the 64k program instruction space to the beginning.

3-66

LJZB

Long Jump on Zero Memory Byte

Mnemonic: LJZB Coding Format: LJZB M, L

Operands: ‘M’ is a data memory expression
‘L’ is an expression representing the jump target

Operation: If(M)=0
then (TP) < (TP) + sdisp (sign-extended to 20-bits)

Else next instruction

‘L’, the jump target, is an expression representing a location within the program.
Unlike the JZB instruction, which can generate a one or two byte displacement
value, the LJZB instruction forms a signed word displacement value, regardless of
the size of the displacement necessary to reach the jump target. This signed word
displacement, ‘sdisp’, is the distance in bytes from the end of the LJZB instruction
to the jump target. A displacement in the range —128, +127 bytes results in a signed
word displacement value whose high order byte is 00H or OFFH.

The LJZB instruction must be coded only when: (1) the address of the jump target
cannot be determined by the assembler when a JZB instruction is found on its first
pass, and (2) the required displacement to the jump target is outside a range of —128,
+127 bytes from the end of the assembled instruction.

If the contents of the specified memory byte, M, are a logical zero, the signed word
displacement, ‘sdisp’, is sign-extended to 20 bits and added to the TP
pointer/register, forming the address of the jump target, ‘L’. (The address of the
next sequential instruction is in the TP pointer/register when the jump target
address is formed.)

If the contents of the data memory byte are not logical zero, the next sequential
instruction is executed.

Example:

LOOP1: MOVI CC, UNIT1__INIT ;An instruction labeled ‘LOOP1’ which loads an '
;immediate word value (the value of the symbol
;‘UNIT1__INIT’) into register CC.

(305 bytes of assembled source program statements)

LJZB [PP].9, REPEAT ;If the byte located nine bytes from the
;beginning of the Parameter Block is zero, a
;jump is made to the jump target represented
;by the expression ‘REPEAT’.

REPEAT EQU LOOP1 ;Define a symbol ‘REPEAT’ with the value of
;‘LOOPT’. ‘REPEAT references the same
;instruction as ‘LOOP1’.

3-67

LJZB

3-68

Note that the LJZB instruction is required in the above instruction: (1) the address
of the jump target represented by the expression ‘REPEAT’ is not known to the
assembler when it encounters the LJZB instruction on its first pass and (2) the
displacement to the jump target is outside a —128, +127 byte. A JZB instruction
would be flagged as an error if it were coded here since the assembler assumes a
—128, +127 byte displacement range when the jump target address is not known.

Assembled Instruction:

7 07 07 07 07 0
[00010AA0{111001MM Joffsetif AA=01| sdisp-low | sdisp-high
Execution Time:

12 clocks

NOTE 1) A jump target must be within a range of —32,7678, +32,767 bytes from
the end of a control transfer instruction. There is NO wraparound from
the end of the 64k program instruction space to the beginning.

LPD

Load Pointer From Memory

Mnemonic: LPD Coding Format: LPD P, M

Operands: ‘P’ is a pointer/register symbol
‘M’ is a data memory expression

Operation: 1) 20-bit address < (M)
low order word offset; high order word segment

2) (P) < 20-bit address
3) P’stagbit < 0

A 20-bit address is formed from two consecutive words of data memory beginning at
‘M’. The first memory word, an offset value is added to the second (segment) word,
which is shifted left four bit positions, in the same manner a 20-bit address is formed
from a 16-bit offset and a 16-bit segment address by the 8086. The 20-bit address is
loaded into pointer/register ‘P’.

The pointer/register’s tag bit is cleared to zero, indicating a 20-bit system (memory)
space address.

Example:

In this example, the pointer/register GA is loaded with a 20-bit address formed from
two consecutive words of data memory located in the Parameter Block and pointed
to by an offset from the PP register.

LPD GA,[PP].12 ;Four consecutive bytes beginning at location
;[PP] + 12 are used to form a 20-bit address that
;isloaded into GA (GA's tag bit is
;cleared to zero).

Assembled Instruction:

7 07 07 0
PPPOOAA1{100010MM 0ffsetifAA=01]

Execution Time:

20 clocks if address is even
28 clocks if address is odd

NOTES 1) The LPD instruction is used to form a 20-bit address from a 16-bit
offset value and a 16-bit segment address. Once the 20-bit address has
been created, it cannot be disassembled into the two 16-bit values used
to create it.

2) Twenty bit addresses can be stored in and restored from memory using
the ‘MOVP’ instruction.

3-69

LPDI

Load Pointer From Immediate Data

Mnemonic: LPDI Coding Format: LPDI P, |

Operands: ‘P’ is a pointer/register symbol
‘I’ is an expression which may contain external symbol

Operation: 1) 20-bit address < (I) + 16-bit segment address
2) (P) < 20-bit address
3) P’stagbit <0

‘I’ is an expression which can contain an external symbol. An external symbol
appearing in ‘I’ must be added (not subtracted) in the expression.

The expression ‘I’ is evaluated modulo 641 and supplies a 16-bit offset value . This
offset value is added to a 16-bit segment address, which is shifted left four bit posi-
tions, in the same manner that a 20-bit address is formed by the 8086.

If ‘I’ contains an external symbol, the 16-bit offset value and segment address are
resolved by relocate and link (LOC86, LINK86) processing of the object module. If
‘I’ does not contain any external symbols, the 16-bit segment address, supplied by
LOCS86, is the load origin of the 8089 program.

Note that the assembler allocates four bytes for the offset and segment data when
the LPDI instruction is processed. The contents of these four bytes are not defined
until the object module has been linked, if necessary, and located.

The pointer/register’s tag bit is cleared to logical ‘0’, indicating a 20-bit system
(memory) space address.

Examples:

EXTRN DATA_TABLE ;Assembler directive identifying
;DATA_TABLE ;as a symbol defined as
;public in another module.

LPDI GB, DATA_TABLE ;A 20-bit address formed from 16-bit offset and
;segment data provided by relocate and link
;processing of the external symbol
;'DATA_TABLE’ is loaded into
;pointer/register GB.

LPD! GC, 237FH ;Load pointer/register GC with a 20-bit address
;formed using 237FH as the offset value and the
;load origin of the 8089 program as the
;segment address.

3-70

LPDI

Assembled Instruction:

7 07 07 07 07 07 0
[PPP10001] 00001000 | offset(low) | offset(high) [segment (low)[segment (high)|

Execution Time:

12 clocks if instruction begins on even address
16 clocks if instruction begins on odd address

NOTES 1) Once a 20-bit address has been formed it cannot be disassembled again
into its two 16-bit components.

2) A 20-bit pointer/register and tag bit can be stored in, or restored from,
data memory using the ‘MOVP”’ instruction.

3-71

MOV

Move Register to Memory Word
Move Memory Word to Register
Move Memory Word to Memory Word

Mnemonic: MOV Coding Format: MOV M, R
MOV R,
MOV M, M

Operands: ‘R’ is aregister symbol
‘M’ is a data memory expression

Operation: a) (OP1) < (OP2)

b) If OP1 = GA, GB, GCor TP *pointer/registers*
then (OP1) <« sign-extended (OP2) *two 20-bit quantities*

OP1I’stag bit < 1

‘A word (16-bits) is copied from OP2 to OP1. The source data, (OP2), remains
unchanged.

If a pointer/register (GA, GB, GC, or TP) is used as the destination operand, OP1,
the sign bit, bit-15, is extended into the upper four bits (bits 16—19) of the
pointer/register. The pointer/register’s tag bit is also set to a logical one, indicating
alocal (1/0) space, 16-bit address.

If a 20-bit pointer/register is used as a source operand, ‘OP2’, only bits 0-15 are
copied to memory. The high order bits, bits 16-19, are ignored.

Examples:

MOV GB, [GC].2 ;Move the word of data memory beginning
;(low-order byte) at [GC] + 2 to pointer/register
:GB.

MOV [GC], IX ;Move the contents of the Index register to the
;memory location pointed to by the contents of
;IGCI.

MOV [GB+IX+], [GA+I1X] ;Move the word of data memory beginning

;(low-order byte) at the location specified by
;register GA + the Index register to the
;location specified by register GB + the Index
;register; Index register post auto-incremented
;by 2 (word operation).

Assembled Instruction:
MOV M, R (MOVE REGISTER TO MEMORY WORD)

7 07 07 0
RRRO0AA1[100001MM offset if AA=01]

3-72

MOV

Execution Time:

10 clocks if bus width = 16 bits and address is even
16 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

MOV R, M (MOVE MEMORY WORD TO REGISTER)

7 07 07 0
RRRO0OAA1[100000M M [offset if AA=01]

Execution Time:

8 clocks if bus width = 16 bits and address is even
12 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

MOV M, M (MOVE MEMORY WORD TO MEMORY WORD)

7 07 07 07 07 07 0

[00000AA1 [100100MM |offsetif AA=01| 00000AA1 [110011 MM [offset if AA=01
(SOURCE) (DESTINATION)

Execution Time:

18 clocks if bus width = 16 bits and address is even
28 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTE 1) 20-bit pointer/registers and their tag bits can be stored in, or restored
from, memory using the ‘MOVP’ instruction.

3-73

MOVB M,R

3-74

Move Register to Memory Byte

Mnemonic: MOVB Coding Format: MOVB M, R

Operands: ‘R’ is aregister symbol
‘M’ is a data memory expression

Operation: (M) < truncated (R) *high order register byte truncated*

The high order byte of register ‘R’ (high order byte plus four bits in the case of
pointer/registers GA, GB, GC or TP) is truncated and the least significant byte is
placed in the data memory byte at location ‘M.

Example:

MOVB [GB}, BC ;Move least significant byte of register BC to
;data memory byte pointed at by GB.

Assembled Instruction:

MOVB M, R (MOVE REGISTER TO MEMORY BYTE)

7 07 07 0
[RRROOAAOQ[100001MM Joffset if AA=01
Execution Time:

10 clocks

NOTES 1) Usethe ‘MOV’ instruction for 16-bit data.

2) 20-bit pointer/registers and their tag bits can be stored in or restored
from memory using the ‘MOVP’ instruction.

MOVB R, M

Move Memory Byte to Register

Mnemonic: MOVB Coding Format: MOVB R, M

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression

Operation:) (R) < sign-extended (M)

b) If OP1=GA, GB, GC, or TP *pointer/registers*
then (OP1) < sign-extended (OP2) *two 20-bit quantities*

OP1’s tag bit < 1

The data memory byte located at ‘M’ is sign-extended (bit 7) to 16 bits. The sign-
extended quantity is copied to the specified register ‘R’.

If ‘R’ is a 20-bit pointer/register, the data is sign-extended to 20 bits and copied to
‘R’. The pointer/register’s tag bit is set to logical one, indicating a 16-bit local (1/0)
space address.

Example:

MOVB MC, [GC+IX] ;Register MC is loaded with a sign-extended
;copy of the byte at location [GC + IX].

Assembled Instruction:
MOVB R, M (MOVE MEMORY BYTE TO REGISTER)

7 07 07 0
RRRO0OAAOQ[100000M M Joffset if AA=01

Execution Time:
8 clocks
NOTES 1) Use the ‘MOV’ instruction for 16-bit data.

2) 20-bit pointer/registers and their tag bits can be stored in or restored
from memory using the ‘MOVP’ instruction.

3-75

MOVB M, M

Move Memory Byte to Memory Byte

Mnemonic: MOVB Coding Format: MOVB M, M
Operands: ‘M’ isa data memory expression
Operation: (OP1) < (OP2)

The contents of the data memory byte source, OP2, are copied to the data memory
byte destination, OP1.

Example:

MOVB [GB], [GC+IX] ;The data memory byte at [GC +iX] is copied to
;the data memory location [GB].

Assembled Instruction:

MOVB M, M (MOVE MEMORY BYTE TO MEMORY BYTE)

7 07 07 07 07 07 0
[00000A A0 [100100MM Joffsetif AA=01| 00000AA0 [110011M M [offset if AA=01]
(SOURCE) (DESTINATION)
Execution Time:
18 clocks

NOTES 1) Usethe ‘MOV’ instruction for 16-bit data.

2) 20-bit pointer/registers and their tag bits can be stored in or restored
from memory using the ‘MOVP’ instruction.

3-76

MOVBI R, |

Move Immediate Byte to Register

Mnemonic: MOVBI Coding Format: MOVBI R, |

Operand Format: ‘R’is a register symbol
‘I’ is an expression evaluated modulo 256

Operation: 1) (R) < sign-extended (i-value)

2) If OP1=GA, GB, GC, TP *pointer/registers*
then (OP1) < sign-extended (OP2) *two 20-bit quantities*

OP1’stagbit < 1
The expression ‘I’ is evaluated modulo 256 to an immediate signed byte value,
‘i-value’. This value is sign-extended (bit 7) to 16-bits, or, if ‘R’ is a pointer/register
(GA, GB, GC or TP), to 20-bits. The sign extended value is placed in the specified
register, ‘R’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP), its tag bit is set to a logical
one, indicating a 16-bit local (1/0) space address.

Example:

MOVBI BC, —128 ;Place 80H (—128 decimal in two’s complement
;form) in register BC.

Assembled Instruction:

MOVBI R, | (MOVE IMMEDIATE BYTE TO REGISTER)
7 07 07 0
RRR01000| 00110000 [i-value
Execution Time:
3 clocks

NOTE 1) Use the ‘MOVY’ instruction for 16-bit immediate values.

3-71

MOVBI M, |

3-78

Move Immediate Byte to Memory Byte

Mnemonic: MOVBI Coding Format: MOVBI M, |

Operands: ‘M’ is a data memory expression
‘I’ is an expression evaluated modulo 256

Operation: (M) < i-value

The expression ‘I’ is evaluated modulo 256 to an immediate signed byte value,
‘i-value’. This value is placed in the data memory byte located at ‘M’.

Example:

MOVBI [GC].7,15 ;OFH is placed in the data memory byte at
;location [GC] + 7.

Assembled Instruction:

MOVBI M, | (MOVEIMMEDIATE BYTE TO MEMORY BYTE)
7 07 07 07 0
| 00001AA0{010011MM Joffsetif AA=01] i-value |
Execution Time:

12 clocks

NOTE 1) Usethe ‘MOVT instruction for 16-bit immediate values.

MOVI

Move Immediate Word to Register
Move Immediate Word to Memory Word

Mnemonic: MOVI Coding Format: MOVI R, |
MOVI M, |

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression
‘I’ is an expression evaluated modulo 64k

Operation: a) (OP1) < i-value

b) If OP1 is a pointer/register (GA, GB, GC or TP)
(OP1) < sign-extended (i-value) *sign-extended to 20-bits*
OPI’stagbit < 1

The expression ‘I’ is evaluated modulo 64k to an immediate signed word value,
‘i-value’. The immediate signed word value is placed in the specified register ‘R’ or
the word of data memory beginning (low-order byte) at location ‘M’.

If ‘OP1’ is a 20-bit pointer/register, (GA, GB, GC or TP), the ‘i-value’ is sign
extended (bit 15) into the upper four bits (16-19) . The pointer/register’s tag bit is set
to a logical one, indicating a 16-bit local (1/0) space address.

Examples:

INPUT_COUNT EQU 1500H ;Define an ‘INPUT_COUNT’ and assign
;itavalue of 1500H.

MOVI BC, INPUT_COUNT ;Move the value 1500H into register BC.

MOVI [GB].4, 32555 ;Move the value 32555 into the word of
;data memory beginning (low-order byte)
;at [GB] + 4.

Assembled Instruction:
MOVI R, | (MOVE IMMEDIATE WORD TO REGISTER)

7 07 07 07 0
[RRR10001] 00110000 | i-value (low) |i-value (high) |

Execution Time:
3 clocks
MOVI M, | (MOVE IMMEDIATE WORD TO MEMORY WORD)

7 07 07 07 07 0
[00010AA1[010011MM foffsetif AA=01{ i-value (low) [i-value (high) |

Execution Time:

12 clocks if bus width =16 bits and address is even
18 clocks if bus width =8 bits or bus width = 16 bits and address is odd

NOTE 1) Usethe ‘MOVBP instruction for immediate byte values.

3-79

MOVP M, P

3-80

Move Pointer to Memory (Store)

Mnemonic: MOVP Coding Format: MOVP M, P

Operands: ‘P’ is a pointer/register symbol
‘M’ is a data memory expression

Operation: 1) M) < (P)

2) (M) < P’staghbit
The contents of the specified 20-bit pointer/register and its tag bit are stored in three
consecutive data memory bytes beginning at the given memory location, ‘M’. (See
NOTES below for the format of the stored pointer/register).

Example:

POINTER_STORE: DS 3 ;Reserve three bytes of data memory
;with the name ‘POINTER__STORE’.

MOVI GA, POINTER_STORE ;Load location of ‘POINTER_STORE’
;into register GA.

MOVP [GA], TP :Move ‘TP’ to [GA].
Assembled Instruction:
MOVP M, P (MOVE POINTER/REGISTER TO MEMORY)

7 07 07 0
[PPPO0AA1[100110M M offset if AA=0T]

Execution Time:

16 clocks if bus width = 16 bits and address is even
22 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTES 1) The pointer/register and tag bit are stored in the following format:

7 07 07 0
[pointer-low | pointer-high [19181716tb 000

The low order byte of the pointer/register, ‘pointer-low’, is stored in
the first memory byte. The next byte of the pointer/register, ‘pointer-
high’, is stored in the second memory byte. The four high order bits of
the pointer/register, bits 16-19, are stored in bits 4-7 of the third
memory byte. The tag bit is stored in bit 3 of the third memory byte.
Bits 0-2 of the third memory byte are cleared to zero.

MOVP P, M

Move Memory to Pointer (Restore)

Mnemonic: MOVP Coding Format: MOVP P, M

Operands: ‘P’ is a pointer/register symbol
‘M’ is a data memory expression

Operation: 1) (P) < (M)

2) P’stag bit < stored tag bit
A stored 20-bit pointer/register and tag bit value are restored to pointer/register ‘P’
from three consecutive bytes of data memory beginning at memory location
‘M’.(See NOTES below for the format of the stored pointer/register).

Example:

STORE_POINTER DS 3 ;Reserve three bytes of data memory named
;'STORE_POINTER’.

MOVI GB, STORE_POINTER ;Load GB with address of three data memory
;bytes named ‘STORE__POINTER’.

MOVP [GB], GA ;Store 20-bit pointer/register GA and tag bit
;inthree bytes of data memory beginning at
;location [GB].

MOVP GA, [GB] ;Restore pointer/register GA and tag bit

;from three bytes of data memory bedinning
;at location [GB].

Assembled Instruction:

MOVP P, M (MOVE MEMORY TO POINTER/REGISTER)

7 07 07 0
[PPPO0OAA1[100011MM Joffsetif AA=01|

Execution Time:

19 clocks if even address
27 clocks if odd address

3-81

MOVP P, M

NOTES 1) The pointer/register and tag bit are stored in the following format:

7 07 07 0
| pointer-low | pointer-high |19181716tb000

The low order byte of the pointer/register, ‘pointer-low’, is stored in
the first memory byte. The next byte of the pointer/register, ‘pointer-
high’, is stored in the second memory byte. The four high order bits of
the pointer/register, bits 16-19, are stored in bits 4-7 of the third
memory byte. The tag bit is stored in bit 3 of the third memory byte.
Bits 0-2 of the third memory byte are cleared to zero.

3-82

NOP

No Operation

Mnemonic: NOP Coding Format: NOP
Operands: This instruction has no operands.
Operation: None
This instruction takes four clock cycles but performs no operation.
Example:

NOP ;No operation performed, four clock cycles are used.
Assembled Instruction:

7 07 0
00000000 [00000000 |

Execution Time:

4 clocks

3-83

NOT

3-84

Complement Register
Complement Memory Word
Complement Memory Word; Put Result in Register

Mnemonic: NOT Coding Format: NOT R
‘ NOT M
NOT R, M

Operands: ‘R’ is aregister symbol
‘M’ is a data memory expression

Operation: a) (OP1) < NOT (OP1)
OR
b) (R) < NOT (M)

The contents register ‘R’ or the word of data memory beginning (low-order byte) at
location ‘M’ are complemented. Any logical ‘1’ becomes a logical ‘0’. Any logical
‘0’ becomes a logical ‘1°.

The result of complementing a data memory word may be placed in a register rather
than returned to the original memory location. Two operands are then required: a
register operand ‘R’, the destination (OP1), and a data memory operand ‘M’,
(OP2). ,

If ‘R’ is a 20-bit pointer/register the upper four bits, bits 16-19, of the result are
undefined following its complement. Any data placed in a pointer/register is sign-
extended to 20 bits.

Examples:
NOT IX | ;Complement register ‘IX’.
NOT [GB] ;Complement word of data memory beginning
;(low-order byte) at location [GB].
NOT GA, [GC+IX] ;Complement the word of data memory

;beginning (low-order byte) at [GC +1X] and
;put resultin register GA.

Assembled Instruction:
NOT R (COMPLEMENT REGISTER)

7 07 0
[RRR00000| 00101100

Execution Time:
3 clocks
NOT M (COMPLEMENT MEMORY WORD)

7 07 07 0
[00000AA1{110111MM Joffset if AA=01]|

NOT

Execution Time:

16 clocks if bus width =16 bits and address is even
26 clocks if bus width = 8 bits or bus width =16 bits and address is odd

NOT R, M (COMPLEMENTMEMORY WORD; PUT RESULT IN REGISTER)

7 07 07 0
[RRROOAA1{101011M M [offset if AA=01

Execution Time:

11 clocks if bus width = 16 bits and address is even
15 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTES 1) The complement operation sets any logical zero in the input data to a
logical one. Any logical one in the input data is cleared to a logical zero.

Example:
Complement 0ADH
Before complement:
7 0
[10101101 |
After complement:
7 0

[01010010 | (52H)

2) The two’s complement of a register or a word of data memory can be
formed by adding 1’ to the result of a NOT instruction.

3) The ability to complement a word of memory data and place the result
in a register can save bus cycles, especially when doing two’s comple-
ment arithmetic, since one instruction can be eliminated.

Example:
OPERAND: DW 2314H ;Define aword of data memory which will
;supply an operand in a two’s

;complement operation.

MOVI GA, OPERAND ;Load address of data memory operand

;into GA.

NOT ' GC, [GA] ;Form one’s complement of operand in
;memory.

INC GC ;GC now contains two’s complement of
;memory operand.

3-85

NOTB

3-86

Complement Memory Byte
Complement Memory Byte; Put Result In Register

Mnemonic: NOTB Coding Format: NOTB M
NOTB R, M

Operands: ‘R’is aregister symbol
‘M’ is a data memory expression

Operation: a) (M) < NOT (M)
OR
b) (R) < sign-extended NOT (M)

The data memory byte located at ‘M’ is complemented. Any logical one is cleared to
logical zero. Any logical zero is set to logical one.

The result of the complement can be put in a register, ‘R’, rather than returned to
the original memory location. The complement result is sign extended (bit 7) to
16-bits, or, if ‘R’ is a pointer/register, to 20-bits, and placed in the specified register.

Examples:
NOTB ([PP].8 ;Complement data memory byte at
:location [PP] + 8.
NOTB MC, [GA] ;Complement data memory byte at
:[GA]; put result in register MC.
Assembled Instruction:

NOTB M (COMPLEMENT MEMORY BYTE)

7 07 07 0
[00000AA0[110111MM Jofset if AA=01|
Execution Time:

16 clocks

NOTB R, M (COMPLEMENT MEMORY BYTE; PUT RESULT IN REGISTER)

7 07 07 0
RRROOAAQ101011MM [offset if AA=01
Execution Time:
11 clocks

NOTES 1) The complement operation sets any logical zero in the input data to a
logical one. Any logical one in the input data is cleared to a logical zero.

Example:

NOTB

Complement 3BH

Before complement:

7 0
[00111011 |

After complement:

7 0
[11000100 | (0CaH)

2) The two’s complement of a data memory byte can be formed by adding
‘1’ to the result of a NOTB instruction.

3) Use the ‘NOT’ instruction to complement a register or a word of data

memory.

4) The ability to complement a byte of memory data and place the result in
a register can save bus cycles, especially when doing two’s complement
arithmetic since one instruction can be eliminated.

Example:

OPERAND:

DB 0B7H ;Define a byte of data memory which will
;supply an operand in a two’s
;complement operation.

MOV!I GA, OPERAND ;lLoad address of data memory operand

;into GA.

NOTB GC, [GA) ;Form one’s complement of operand in
;memory.

INC GC ;GC now contains two’s complement of
;memory operand. ‘

3-87

OR

3-88

OR Memory Word to Register
OR Register to Memory Word

Mnemonic: OR Coding Format: OR R, M
OR M, R

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression

Operation: (OP1) < (OP1) OR (OP2)

The corresponding bit positions of the 16-bit input data are logically ORed. A
logical ‘1’ results if either or both input bit positions are a logical ‘1’. A logical ‘0’
results if neither input bit position contains a logical ‘1’. The result is placed in the
leftmost operand, OP1.

If the destination, OP1, is a 20-bit pointer/register (GA, GB, GC or TP) the upper
four bits, bits 16-19, of the result are undefined following this operation.

Examples:
OR MC, [GB] ;OR register MC with the word of data memory
;beginning (low-order byte) at [GB]. The result
;is placed in register MC.
OR [GA].12,IX ;OR the word of data memory beginning

;(low-order byte) at [GA] + 12 with the IX
;register. The result is placed in data memory
;beginning (low-order byte) at location [GA]
T+ 12.

Assembled Instruction:
OR R, M (OR MEMORY WORD TO REGISTER)

7 07 07 0
RRROOAA1|101001MM offset if AA=01

Execution Time:

11 clocks if bus width = 16 bits and address is even
15 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

OR M, R (OR REGISTER TO MEMORY WORD)

7 07 07 0
RRRO0OAA1[110101MM [ofiset if AA=01|

Execution Time:

16 clocks if bus width = 16 bits and address is even
26 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTES 1) A logical OR of two binary digits outputs a logical one if either or both
input binary digits is a logical one. A logical zero is output if neither
input binary digit is a logical one.

OR

Example:
OROEBH and 91H
OEBH [11101011 |
OR
91H [10010001 |

RESULT [11111011 | oFBH

2) See ORB instruction for logical OR with byte data.

3-89

ORB R, M

OR Memory Byte to Register

Mnemonic: ORB Coding Format: ORB R, M

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression

Operation: (R) < (R) OR sign-extended (M)

The data memory byte located at ‘M’ is sign-extended (bit 7) to 16-bits. The sign-
extended memory byte is ORed with the specified register ‘R’. A logical one is out-
put where one or both input bits are a logical one. A logical zero is output if both
input bits are a logical zero. The 16-bit result is placed in register ‘R’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP) the upper four bits (bits
16-19) are undefined following this operation.

Examples:
OR MC, [GB].4 ;OR register MC with data memory byte at [GB] + 4.
Assembled Instruction:

ORB R, M (ORMEMORY BYTE TO REGISTER)

7 07 07 0
[RRROOAAO[101001MM ofiset if AA=01
Execution Time:

11 clocks

NOTES 1) A logical OR of two binary digits outputs a logical one if either or both
input binary digits is a logical one. A logical zero is output if neither
input binary digit is a logical one.

Example:
OR 1DH and 24H

1DH | 00011101 |
OR
24H [00100100 |

RESULT [00111101 | 3DH

2) See ‘OR’ instruction for logical OR with a register and 16-bit memory
data.

ORB M, R

OR Register To Memory Byte

Mnemonic: ORB Coding Format: ORB M, R

Operands: ‘R’ is aregister symbol
‘M’ is a data memory expression

Operation: (M) < (M) OR low-order byte (R)
The data memory byte located at ‘M’ is ORed with the low-order byte of ‘R’. A
logical one is output where either or both input bits are a logical one. A logical zero
is output if both input bits are a logical zero. The 8-bit result is placed in data
memory at location ‘M’.
Examples:

ORB [GC], IX ;OR data memory byte at [GC) with the low-order byte of register IX.
Assembled Instruction:

ORB M, R (OR REGISTER TO MEMORY BYTE)

7 07 07 0
RRROOAAO0[110101MM [ofiset if AA=01|

Execution Time:
16 clocks
NOTES 1) A logical OR of two binary digits outputs a logical one if either or both
input binary digits is a logical one. A logical zero is output if neither
input binary digit is a logical one.

Example:

OR 5CH and 8BH

5CH [01011100 |
OR
8BH [10001011 |

RESULT [11011111 | ODFH

2) See OR instruction for logical OR with a register and a 16-bit memory
data.

3-91

ORBI R, |

3-92

OR Immediate Byte To Register

Mnemonic: ORBI Coding Format: ORBI R, |

Operands: ‘R’is a register symbol
‘I’ is an expression evaluated modulo 256

Operation: (R) < (R) OR sign-extended (i-value)

The expression ‘I’ is evaluated modulo 256 to an immediate signed byte value,
‘i-value’, (—128 <= i-value <= +127). ‘i-value’ is sign-extended (bit 7) to 16-bits and
ORed with the specified register ‘R’. A logical one is output where one or both input
bits are a logical one. A logical zero is output if both input bits are a logical zero.
The 16-bit result is placed in register ‘R’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP) the upper four bits, bits
16-19, are undefined following this operation.

Example:
ORBI CC, 7FH ;OR register CC with 7FH.
Assembled Instruction:
ORBI R, | (ORIMMEDIATE BYTE TO REGISTER)
7 07 07 0

RRR01000{ 00100100 | i-value

Execution Time:
3 clocks
NOTES 1) A logical OR of two binary digits outputs a logical one if either or both
input binary digits is a logical one. A logical zero is output if neither
input binary digit is a logical one.

Example:

OR 51H and 4AH

51H [01010001 |

OR

4AH { 01001010]
RESULT [01011011] 5BH

2) See ‘ORI instruction for logical OR with 16-bit immediate values.

ORBI M, |

OR Immediate Byte to Memory Byte

Mnemonic: ORBI Coding Format: ORBI M, |

Operands: ‘M’ is a data memory expression
‘I’ is an expression evaluated modulo 256

Operation: (M) < (M) OR i-value
The expression ‘I’ is evaluated modulo 256 to an immediate signed byte value
‘i-value’, (—128 <= i-value <= +127). ‘i-value’ is ORed with the data memory byte
located at ‘M’. A logical one is output where one or both input bits are a logical one.
A logical zero is output if both input bits are a logical zero. The result is placed in the
data memory byte at location ‘M’.
Examples:

ORBI [GA], 25 ;OR the data memory byte at [GA] with 25.
Assembled Instruction:

ORBI M, | (ORIMMEDIATE BYTE TO MEMORY BYTE)

7 07 07 07 0
00001AA0[110001 MM [offsetif AA=01] i-value |

Execution Time:
16 clocks
NOTES 1) A logical OR of two binary digits outputs a logical one if either or both

input binary digits is a logical one. A logical zero is output if neither
input binary digit is a logical one.

Example:
OR 95H and 17H
95H | 10010101 |
OR
17H [00010111 |
RESULT [10010111 | 97H

2) See ‘ORI’ instruction for logical OR with 16-bit immediate data.

3-93

ORI

3-94

OR Immediate Word to Register
OR Immediate Word to Memory Word

Mnemonic: ORI Coding Format: ORI R, |
ORI M, |

Operands: ‘R’ is a register symbol
‘M’ is a data memory expression
‘I’ is an expression evaluated modulo 64k

Operation: (OP1) < (OP1) ORi-value

The expression ‘I’ is evaluated modulo 64k to an immediate signed word value,
‘i-value’, (—32,768 <= i-value <= +32,767). ‘i-value’ is ORed with the register ‘R’ or
the word of data memory beginning (low-order byte) at ‘M’. A logical one is output
where one or both input bits are a logical one. A logical zero is output if both input
bits are a logical zero. The result is placed in OP1, the register ‘R’ or the word of
data memory beginning (low-order byte) at ‘M”’.

If ‘R’ is a 20-bit pointer/register (GA, GB, GC or TP), the upper four bits (bits
16-19) are undefined following this operation.

Examples:
ORI BC, 2D4EH ;OR register BC with 2D4EH.
OR! [GB],9091H ;OR word of data memory beginning (low-order
;byte) at [GB) with 9091H.
Assembled Instruction:
ORI R, | (ORIMMEDIATE WORD TO REGISTER)
7 07 07 07 0
[RRR10001][00100100 [i-value (low) [i-value (high) |
Execution Time:
3 clocks
ORI M, | (ORIMMEDIATE WORD WITH MEMORY WORD)
7 07 07 07 07 0

[00010AA1]110001MM [offset if AA=01] i-value (low) [i-value (high)]

Execution Time:

16 clocks if bus width = 16 bits and address is even
26 clocks if bus width = 8 bits or bus width = 16 bits and address is odd

NOTES 1) A logical OR of two binary digits outputs a logical one if either or both
input binary digits is a logical one. A logical zero is output if neither
input binary digit is a logical one.

ORI

Example:
OR 09H and 42H
09H [00001001 |
OR
42H [01000010 |

RESULT [01001011 | 4BH

2) See ‘ORBI’ instruction for logical OR with immediate byte data.

3-95

SETB

Set Selected Bit to Logical 1

Mnemonic: SETB Coding Format: SETB M, b

Operands: ‘b’ is the bit position in the data memory byte (0<=b<=7)
‘M’ is a data memory expression

Operation: b < 1
The selected bit of a data memory byte located at ‘M’ is set to logical one.
Examples:

SETB [PP].14,5 ;Set bit 5 of [PP] + 14 to logical one.

Assembled Instruction:

7 07 07 0
[bbb00OAAO[111101MM Joffset if AA=01]
Execution Time:

16 clocks

NOTES 1) Bit positions within a data memory byte are specified as follows:

MSB LSB
bit positions | 76543210 |

3-96

SINTR

Set Interrupt Service Flip-Flop

Mnemonic: SINTR Coding Format: SINTR
Operands: This instruction has no operands.
Operation: Interrupt service flip-flop < 1

Set the interrupt service flip-flop. If interrupts from this channel are enabled, the
external SINTR space pin for the channel (SINTR 1 or SINTR 2) is activated. Chan-
nel interrupts are enabled through the Interrupt Control Field (ICF) in the Channel
Control word (CCW), located in the Channel Control Block.

Example:

In conjunction with the Interrupt Control Field of the Channel Control Word
(CCW), located in the Channel Control Block, the SINTR instruction can be used to
indicate to the main system interrupt hardware the occurence of user defined events.

In this example a status byte is set to ‘OFFH’ by an I/0 device upon the suuccessful
completion of an operation. The task block program checks the status byte for
‘00H’ indicating the unsuccessful completion of an operation by the 1/0 device. If
‘O0H’ is detected, a jump is made to an error routine which places an error message
in" a byte located in the user-defined area of the Parameter Block and, using the
SINTR instruction, sets the channel’s interrupt service flip-flop. (This example
assumes that interrupts for the channel have been enabled.)

GOOD??: DB 00H ;Define a byte in data memory named
;‘GOOD??’ where the I/0 device will place its

;completion status.

ERROR EQU 7FH ;Define a name ‘ERROR’ with a value of 7FH.

(A status byte is written to data memory
location named ‘GOOD??’ by an I/O device
upon the completion of some operation.)

MOVI GB, GOOD?? ;Load address of data memory byte named
;*GOOD?7?’ into register GB.

LJZB [GB], E_ROUT :Test status byte for ‘00H’; jump to instruction
;labeled ‘E__ROUT' if ‘00H’ found.

(12,000 bytes of assembled source program statements.)

SINTR

3-98

E_ROUT: MOVBI [PP].18, ERROR

SINTR

Assembled Instruction:

7 07 0
{ 01000000 | 00000000 |
Execution Time:

4 clocks

;Place 7FH in Parameter Block byte at [PP]
;+ 18,

;Setinterrupt service flip-flop; the error
;message in the Parameter Block can be read
;by the interrupt service routine and the
;necessary action taken.

Test and Set While Locked

Mnemonic: TSL CodingFormat: TSL M, |, L

Operands: ‘M’ is a data memory expression
‘I’ is an expression evaluated modulo 256
‘L’ is an expression representing the jump target which is within a
range of —128, +127 bytes of the next instruction

Operation: 1) System busremains locked during instruction execution

2) If(M)=0
then (M) < i-value

Else (TP) < (TP) + sdisp (sign-extended to 20-bits)

‘L’, the jump target, is an expression representing a location within the program. ‘L’
is converted to a signed byte displacement, ‘sdisp’, the distance (in bytes) from the
end of this instruction to the jump target. The value of ‘sdisp’ ranges from —128 to
+127.

The expression ‘I’ is evaluated module 256 to an immediate signed byte value,
‘i-value’, (—128 <=i-value <= +127).

The contents of a data memory byte located at ‘M’ are examined. If equal to logical
zero, the immediate value, ‘i-value’, is placed in the data memory byte location,
‘M’. If the contents of the byte are not equal to logical zero, a jump is made to ‘L’
by adding the signed byte displacement, ‘sdisp’, to the TP register, forming the
jump target address. (The address of the next sequential instruction is in the TP
register when the jump target address is formed.)

The system bus remains locked throughout the entire instruction execution. A sim-
ple semaphore mechanism can be implemented using this instructicon.

Example:

In systems with shared resources, mechanisms for controlling access to these
resources are necessary. Such a mechanism can be provided using the TSL instruc-
tion to implement a simple semaphore. The following is an example of how such a
mechanism might function.

Two 1/0 channels share a data table containing blocks of control parameters read
and updated by each channel. To prevent one channel from reading the control
parameter blocks while another is updating them, a data memory byte is used to
signal when the data table is being used (OFFH in data memory byte) or is free (OOH
in data memory byte). Before accessing the data table, each channel tests the data
memory byte. If it is in use, the channel loops until the data table is free. When the
data table is found free, i.e. 00H is in the data memory byte, OFFH is written to the
data memory byte and the data table is accessed. By locking the system bus, the TSL
instruction insures that the other channel will not begin to use the data table between
the time it is found free and the time the in-use condition is signalled.

TSL

3-99

TSL

BUSY: DB 00H ;Define a data memory byte named ‘BUSY’
;used to signal the availability of the data table.
DATA_TABLE: DS 200 ;Reserve 200 bytes of data memory named
;'DATA_TABLE’.
MOVI GB, BUSY ;Load register GB with address of data memory
;byte.
FREE?: TSL [GB], 0FFH, LOOP ;Test data memory byte; if equal to 00H (free)

;move OFFH to the data memory byte,
;otherwise jump to instruction labeled ‘LOOP’.

LOOP: JMP FREE? ;Retry test of data memory byte.

Assembled Instruction:

7 07 07 07 07 0
[00011AA0[100101MM |oifsetif AA=01] i-value | sdisp

Execution Time:

14 clocks if the data memory byte, located at ‘M’, does not equal zero
16 clocks if the data memory byte, located at ‘M’, does equal zero

NOTE 1) There is NO wraparound from the end of the 64k program instruction
space to the beginning.

WID

Set Source and Destination Logical Widths

Mnemonic: WID Coding Format: WID S, D

Operands: ‘S’ is a value indicating the DMA source logical width (8 or 16)
‘D’ is a value indicating the DMA destination logical width (8 or 16)

Operation: Source Logical Width < (OP1)
Destination Logical Width < (OP2)

The WID instruction specifies the source and destination logical widths (in bits) for
DMA transfer. The 8089 optimizes DMA transfers by assembling or disassembling
transferred bytes depending upon these logical widths (and also even/odd address
boundaries). Logical widths and even/odd address boundaries determine the
number of bytes transferred during a DMA transfer cycle.

In the assembled instruction a ‘1’ for ‘S’ or for ‘D’ indicates a 16-bit device width is
specified. A ‘0’ for ‘S’ or for ‘D’ indicates an 8-bit device width is specified.

Example:

WID 16, 8 ;Source logical width for DMA transferis
;16-bits; destination logical width is 8-bits

Assembled Instruction: -

7 07 0
[15D00000 [00000000

Execution Time:
4 clocks
NOTE 1) If any value other than ‘8 or ‘16’ is used for ‘S’ or ‘D’ in this

instruction, the value ‘8’ is assumed and an error message is issued by
the assembler.

Example:
WID 0, 0 ;The logical source and destination widths are
;both 8-bits. The assembly flags this instruction
,<asanerror.

3-101

XFER

3-102

Enter DMA Transfer Mode
After Execution of Next Instruction

Mnemonic: XFER Coding Format: XFER
Operands: This instruction has no operands.
Operation: None

DMA transfer mode is entered following the execution of the next instruction. To
ensure the correct operation of the DMA transfer mode, the next instruction must
not load the GA, GB or CC registers.

Example:

It is important to ensure that the channel is ready to transfer data as soon as a
peripheral is granted permission to issue DMA requests. Some 8080 type peripherals
may start issuing DMA requests upon receipt of their last parameter. The XFER
instruction is designed to handle such situations by forcing the channel into the
transfer mode after the execution of the next sequential instruction. This allows the
program to supply the last parameter to the peripheral immediately before entering
DMA transfer mode.

Assembled Instruction:

7 07 0
[01100000 | 00000000 |

Execution Time:

4 clocks

8089 Assembler

The Instruction Set

ASSEMBLED INSTRUCTION DECODING INFORMATION

RRR bbb PPP
000—GA 100—TP 000—Bit0 (LSB) 000—GA
001—GB 101—IX 001—Bit1 001—GB
010—GC 110—CC 010—Bit 2 010—GC
011—BC 111—MC 011—Bit 3 100—TP

100—Bit 4
101—Bit5
110—Bit 6
111—Bit7 (MSB)
WB AA Memory Address Mode

00—Reserved

01—One immediate/displacement value byte
10—Two immediate/displacement value bytes

11—TSL Instruction only

00—Base Address only [PREG]

01—Base Address + 8-bit offset [PREG].d
10—Base Address + Index Register [PREG + 1X]

11—Base Address + Index Register;
Index Register post auto-incremented [PREG + IX +]

MM Base Memory Address

00—GA
01—GB
10—GC
11—PP
OPERANDS
REGISTER SYMBOLS DATA MEMORY BIT SYMBOLS POINTER/REGISTER SYMBOLS
0 (LSB)
BC GC 1 GA GC
cC IX 1 GB TP
GA MC 3
GB TP 4
5
6
7 (MSB)
DATA MEMORY EXPRESSIONS
[PREG] — Base Address only
PREG can be GA, GB, GC, or PP
[PREG].d — ‘d’ is an expression, evaluated modulo 256
PREG + d=address
{[PREG +1X] — Base Address plus the Index Register
PREG + IX=address
[PREG +1X+] — Base Address plus the Index Register

PREG + IX =address
IX is post ayto-incremented by 1 (byte) or 2 (word)

3-103/104

CHAPTER 4
ASSEMBLER DIRECTIVES

Introduction

This chapter describes the directives used to control the 8089 assembler in its genera-
tion of object code. The assembler directives discussed in this chapter are grouped as
follows:

¢ Symbol Definition

EQU

e Data Definition and Memory Reservation
DB
DW
DD
DS

e Structure Definition
STRUC /| ENDS

e Location Counter Control
ORG
EVEN

¢ Program Linkage
NAME
SEGMENT / ENDS
PUBLIC
EXTRN

¢ Assembler Termination
END

Assembler Directive Source Statement Format
Assembler directive source statements have the following general format:
[LABEL] MNEMONIC [OPERAND(S)] [;COMMENT]

Items within brackets are not valid or required in every assembler directive. The
description of each directive, found in the following sections, shows its required and
optional elements, with optional items appearing in brackets. Comments are
optional on any source line.

Assembler directive source statements, like instruction source statements, are made
up of one or more source lines. A comment is optional on all source lines. An
assembler directive source statement can be continued by placing an ampersand (&)
as the first character of the next source line. Character string constants cannot be
continued on another source line.

Assembler Directives

4-2

The assembler compresses each source statement as follows: all comments and the
final end-of-line are deleted; tabs, and all sequences of unquoted blanks and end-of-
line&’s are reduced to single blanks; all quoted quotes are changed into single
quotes. The maximum number of characters in one compressed source statement is
256.

Examples:
DATA__TABLE: DS 128 ;DATA_TABLE is alabel.
I0P_CODE SEGMENT ;IOP__CODE is a name.
ELEVEN ;This assembler
& EQU ;directive covers
& 1A ;three source lines.

The assembler directive mnemonics are symbolic names for the various operations
the assembler can be directed to perform. These mnemonics are reserved symbols
and cannot be redefined. (For a complete list of reserved symbols see Appendix G.)

The following lists the assembler directive mnemonics and the operations they
perform:

MNEMONIC OPERATION

EQU Defines a symbol and assigns a value to it.

DB Defines byte(s) of data memory with 8-bit value(s).

DW Defines word(s) of data memory with 16-bit values.

DD Defines double word(s) of data memory for 20-bit address loading.

DS Reserves bytes of data memory. |

STRUC Creates a template of offset values; no storage is allocated.

ORG Sets the assembler’s location counter to a specified integer value.

EVEN Insures that the next instruction/directive begins on an even address
boundary.

NAME Assigns a name to the assembler-generated object module.

SEGMENT Assigns a name to the segment (<64k) containing the object code
generated by the assembler.

PUBLIC Identifies symbols defined in this program that are available to
separately assembled or compiled programs.

EXTRN Identifies symbols within this program which are defined and declared
PUBLIC in separately assembled or compiled programs.

ENDS Indicates the end of a SEGMENT or STRUC assembler directive.

END Indicates the end of a source program.

8089 Assembler

8089 Assembler Assembler Directives

Symbol Definition Directives

Symbols are often defined by appearing as a label to an assembly language instruc-
tion or assembler directive. The value of the assembler’s location counter when the
instruction or directive is assembled is automatically assigned to these symbols by
the assembler. The assembler’s location counter begins with a value of zero and is
automatically incremented by the length of each instruction or the number of data
memory bytes used by each data definition or memory reservation assembler
directive.

The EQU assembler directive allows a programmer to define symbols and assign
them values, which may differ from the assembler’s location counter.

EQU Directive

The EQU assembler directive allows a user to define symbols and assign them
values. Its format is:

name EQU expression

A name is required in the EQU directive. It must not be previously defined and can-
not be redefined in the program.

The expression in an EQU directive cannot contain a forward reference; i.e., all

. symbols must be defined (in the lexical sense) when the directive is processed on the
first assembler pass. Note that the special location counter reference symbol ($) is
predefined to the assembler and is not a forward reference.

External symbols are not allowed in EQU expressions.

Examples:
TEN EQU 10 ;Define a symbol TEN with a value of ten
;(decimal).
RECORD EQU DATA_BUFF ;Define a symbol RECORD with the same value

;as the symbol DATA_BUFF.

RECORD2 EQU DATA_BUFF +2 ;Define a symbol RECORD?2 with the value of
;symbol DATA_BUFF + 2.

START EQU §$;Define a symbol START whose value is the
;current value of the assembler’s location
;counter (equivalent to the statement START:).

ASCIV EQU ‘AL’ ;Define a symbol ASCII_V with the ASCIi value
;of AL (414CH) as its value.

The EQU directive can also be used to define a synonym for a register name. Sym-
bols defined as synonyms for register names can only appear in the same contexts
that the register name is allowed.

Examples:
SOURCE EQU GA ;Define a symbol SOURCE synonymous with
;pointer/register symbol GA.
PARAM_B EQU PP ;Define a symbol PARAM__B synonymous with

;register symbol PP.

4-3

Assembler Directives 8089 Assembler

4-4

Assembly time evaluation of EQU expressions is modulo 64k. Negative values are
expressed in two’s complement form. Values range from 0 to OFFFFH or 0 to 65,535
decimal.

Examples:
MINUS_1 EQU -1 ;Define a symbol MINUS__1 with a value of
;OFFFFH (two’s complement form of —1).
LARGEST EQU 65535 ;Define a symbol LARGEST with a value of
;OFFFFH.
MOD__64k EQU 122421 ;Define a symbol MOD__64k with the value

;ODE35H (122421 modulo 64k).

Data Definition and Memory Reservation Directives

The DB, DW and DD directives initialize data memory. The DS directive reserves
data memory but does not initialize it.

A label is optional on all data definition and memory reservation directives.

DB Directive

The DB (define byte) directive stores the specified 8-bit values in consecutive data
memory locations, starting at the current value of the location counter. It has the
form:

[symbol:] DB dif,d2, ..., dn]

where ‘d’ is an expression or a character string constant. More than one expression
or-character string constant can be specified; each must be separated by a comma.

If the optional label is present, it is assigned the value of the assembler’s location
counter where the DB directive begins. It thus references the first byte stored by the
DB directive.

Expressions are evaluated modulo 256. Negative values are expressed in two’s com-
plement form. Values range from 0 to OFFH or 0 to 255 decimal.

The size of a character string constant is limited only by the size of the compressed
source statement.

Examples:
Label (optional) Operands Assembled Code (Hex)
DATA_TABLE: DB 1, 24Q, 15 01140F
DB ‘CHAR__string’ 434841525F737472696E67
MARGIN: DB RATE + 10 (value of symbol RATE + 10)
NEGATIVE: DB -12 F4 (two’s complement of —12)
MOD__256: DB 1000 E8 (1000 decimal modulo 256)

8089 Assembler

NOTES: 1. The label DATA__TABLE references the first data memory byte stored by the
DB directive, the data memory byte containing 01 (hexadecimal).
DATA_TABLE + 1 references the data memory byte containing 14 (hexa-
decimal), the value of 24 octal.

2. The expression in the second DB directive contains a character string
constant. Eleven bytes of data memory are initialized, each containing (in
sequence) the ASCIl code for a character. The assembler only distinguishes
between upper- and lower-case letters within a character string. At all other
times, upper- and lower-case letters are not differentiated.

DW Directive

The DW (define word) directive stores the 16-bit values specified by an expression
list in fields of two consecutive bytes, starting at the current value of the location
counter. The format of the DW directive is as follows:

{symbol:] DW di1f, d2, ...dn]

where ‘d’ is an expression. Expressions in an expression list must be separated by a
comma.

If the optional label is present, it is assigned the value of the assembler’s location
counter where the DW directive begins. It thus references the low-order byte of the
first 16-bit value stored by the DW directive.

Expressions in DW directives are evaluated modulo 64k. Negative values are
represented in two’s complement form. Values range from 0 to OFFFFH or 0 to
65,535 decimal.

Character string constants containing one or two printable ASCII characters can
appear in an expression list. The ASCII code for two characters is stored in reverse
order (see example below).

The least significant byte (8 bits) of a 16-bit value is stored in the first data memory
location. The most significant byte is stored in the next higher data memory loca-
tion. If an expression evaluates to a single byte value it is assumed to be the low-
order byte of a 16-bit value whose high-order byte is all zeros.

A sixteen bit local (I/0O) address is stored low-order byte followed by high-order byte
in data memory by the MOV instruction. The DW directive can be used to define a
16-bit address constant to be loaded into a pointer/register with the MOV
instruction.

Examples:
LABEL (OPTIONAL) OPERANDS ASSEMBLED CODE
LARGE__COUNT: DW 5280H 8052
SOME?VALUE: DW 3 1F00
ZERO: DW 65536 0000 (65,536 modulo 64Kk)
COMPLEMENT: DW -1 FFFF (two’s complement of —1)
TWO@CHARACTERS: DW ‘AB’ 4241 (ASCli values of characters)

Assembler Directives

4-5

Assembler Directives

4-6

NOTES: 1. The label LARGE__COUNT references the first memory byte stored by the
DW directive. In this example LARGE__COUNT references the data memory
byte containing 80H, the low-order byte of the 16-bit vaiue 5280H.

2. The DW directive above labeled TWO@CHARACTERS has an expression
containing a character string constant of two characters. Note the reverse
order in which the ASCll values are stored for AB: 42H is the ASCII code for B;
41H is the ASCllI code for A.

DD Directive

The DD (define double-word) directive initializes four consecutive bytes (a double-
word) of data memory, starting at the current value of the location counter. It has
the form:

[symbol:] DD di[,d2,...,dn]
where ‘d’ is an expression.

If the optional label is present, it is assigned the value of the assembler’s location
counter when the DD directive is assembled. The label thus references the low-order
byte of the first of two words stored by the DD directive.

The DD directive defines four bytes of data which can be used to load a
pointer/register (GA, GB, GC or TP) with a 20-bit system (memory) address via the
LPD instruction. The first word of data stored is a 16-bit offset value. The second
word is a 16-bit segment address.

An external symbol may appear in a DD directive expression, alone or with other
(non-external) symbols and numeric constants. The external symbol must be added,
NOT subtracted, in the expression. The expression is evaluated modulo 64k, with
the external symbol valued at zero. The 16-bit result is stored in the first word of
data memory. The value O0H is stored in the second word.

LINK86 must process the assembler’s object module to resolve the external
reference. When LOCS86 assigns absolute addresses to the LINK86 output module,
the external symbol’s offset value is added to the the contents of the first word
defined by the DD directive; its segment address is placed in the second word.

Example:
Label (optional) Operands Assembled Code (Hex)
EXTRN EXTERNAL (identify EXTERNAL as a symbol
defined in some other program)
EXTERNAL@SYMBOL: DD EXTERNAL + 10 0A000000

After the assembler’s object module has been processed by LINK86, LOC86 adds
the offset value of EXTERNAL to the word containing 10(0A00H), and places
EXTERNAL'’s segment, address in the next word. EXTERNAL’s 20-bit address,
formed from the 16-bit offset value and the 16-bit segment address, can now be
loaded into a pointer/register via the LPD instruction.

8089 Assembler

8089 Assembler Assembler Directives

DS Directive

The DS directive reserves bytes of data memory. Its format is:
[SYMBOL:] DS expression

The assembler’s location counter is incremented by the value of the expression,
thereby reserving space in memory. There is no initialization of the data memory
bytes reserved by the DS directive. Their contents are unknown when program exe-
cution begins.

Any symbol appearing in the expression must be defined, in the lexical sense, to the
assembler when the DS directive is processed. A forward reference, i.e., a reference
to an as yet undefined symbol, is flagged as an error.

Expressions are evaluated modulo 64k. Negative values are expressed in two’s com-
plement form. Values range from OH to OFFFFH, or 0 to 65,535 decimal. An
expression value of zero reserves no memory space but does assign the value of the
location counter to the optional label if it present.

Note that
RESERVE: DS 128

is equivalent to (see definition of ORG below)

RESERVE EQU §
ORG $+ 128

The optional label, if present, is assigned the value of the assembler’s location
counter when the DS directive is assembled. It thus references the first data memory
byte reserved.

Example:

DATA_BUFFER: DS 122 ;Reserves 122 bytes of
;memory.

The label DATA__BUFFER references the first reserved byte; DATA__BUFFER
+ 1 references the second. The contents of the reserved memory bytes are unknown
at the start of program execution.

Structure Definition

The STRUC/ENDS Directives

The STRUC and ENDS directives define a template of offset values, used in con-
junction with the address mode ““[PREG].d’’ (base plus unsigned 8-bit offset). This
template provides a convenient means for addressing blocks of data memory. A
structure does not reserve-data memory or generate object code.

A structure is defined as follows:
name STRUC

name ENDS

4-7

Assembler Directives 8089 Assembler

A name is required and must be the same in both the STRUC and concluding ENDS
directive. This name is defined as a symbol whose value is zero. It must not have
been previously defined and may not be subsequently redefined.

Any instruction or assembler directive, with the exception of PUBLIC, EXTRN,
EVEN, NAME, STRUC, ENDS and END, can appear between the STRUC and
ENDS directives.

A STRUC directive stores the value of the assembler’s location counter and sets it to
zero. The following directives and instructions cause the location counter to be
incremented in the normal fashion, but no object code is generated.

The ENDS directive restores the saved value of the location counter and normal

assembler operation resumes. Once closed, a structure cannot be redefined or
extended.

Example of the use of a structure:

The following structure creates a template of offset values to access a block of 1/0
control parameters written into data memory by a host processor.

STRUCTURE DEFINITION STATEMENTS OFFSET VALUE
170_INFO__BLOCK STRUC
CONTROL__PARAMETERS: DB 0 0000
NEW__STATUS: DB 0 0001
INPUT_ADDRESS: DD 0 0002
OUTPUT__ADDRESS: DD 0 0006
RESULT__CODE: DB 0 000A
RETRY_COUNT: DS 0 0008
170__INFO__BLOCK ENDS

The control information can now be accessed using the pointer/registers GA, GB, or
GC, loaded with the control paramter block’s base address, and the template offset
values:

MOV GA, [GB].INPUT__ADDRESS ;The 16-bits of data beginningat GB + 2
;are moved to GA (GA’s tag bit is set
;to logical one).

MOVB IX, [GC].RETRY_COUNT ;The byte at GC + 11 is moved to the
;index register.

If the block of contro! parameters is written into the channel’s Command Parameter
Block, the PP register can be used as the base address to access the block:

MOVBI [PP].RESULT__CODE, OFFH ;Here information is being written into the
;control block at the address PP + 10.

4-8

8089 Assembler Assembler Directives

Location Counter Control Directive

The assembler’s location counter begins with a value of zero and is automatically
incremented by the length of each instruction or the number of data memory bytes
used by each data definition or memory reservation assembler directive.

ORG Directive
The location counter can be set to a specific integer value by the ORG directive:
ORG expression

The assembler’s location counter is set to the value (in hexadecimal) of the expres-
sion. The expression is evaluated modulo 64k and negative values are expressed in
two’s complement form. Expressions are defined in Chapter 2 under ‘‘Immediate
Data Operands.”’

Symbols in the expression must be defined, in the lexical sense, to the assembler
when the ORG directive is processed. Forward references cause the directive to be
flagged as an error.

Example:
ORG 1000H ;The location counter is set to 1000.
ORG 16 ;The location counter is set to 0010.

EVEN Directive

System performance can be improved by placing some data and some instructions
on even address boundaries. The EVEN assembler directive insures that the
assembly language instruction or data memory initialization/reservation directive
immediately following it begins at an even value of the assembler’s location counter.

If the value of the assembler’s location counter is odd when the assembler finds an
EVEN directive, a three-byte no-op is generated by the assembler. If the location
counter’s value is even when an EVEN directive is found, the assembler takes no
action and continues on to the next source statement.

The EVEN directive has the following form:

EVEN
Example:
EVEN
IN__BUFF: DS 128

The value of IN_BUFF, the address of the first reserved data memory byte, is even.

Program Linkage Directives

The assembler produces a single segment, a maximum size of 64k bytes, origined at
zero. This segment can be relocated using the relocation tool LOC86. The segment is
aligned on a paragraph boundary; i.e., it begins at an address whose value in hexa-
decimal has a last digit of zero. The SEGMENT/ENDS directives define this seg-
ment and assign it a name. This name is used by LOCS86 to relocate the segment.

49

Assembler Directives 8089 Assembler

8089 programs can share symbol table entries with other programs through the use
of the PUBLIC and EXTRN directives. LINK86 and LOC86 are used to resolve
such external references.

The NAME directive allows a unique name to be assigned to each object module
generated by the assembler.

Refer to the publication MCS-86 Software Development Utilities Operating Instruc-
tions for ISIS-II Users, order number 9800639, for details of LOC86 and LINK86.

NAME Directive
The NAME directive assigns a name to the object module generated by an assembly.
It has the form:

NAME module-name

The module-name must conform to the rules for forming a symbol; i.e., it can have
1 to 31 alphabetic, numeric or special characters (? _ @), the first of which must
be alphabetic or special.

A program can contain at most one NAME directive. If there is no NAME directive,
the default name assigned by the assembler is the source file name without any
extension.

The module-name appears in the header lines of the listing banner of the list file.

Example:

NAME DEVELOPMENT__PROGRAM__V001

SEGMENT/ENDS Directives

The object code generated by ASM89 is contained in a single segment, a maximum
of 64k consecutive bytes in size, defined as follows:

name SEGMENT

name ENDS

A name is required and must be the same in both the SEGMENT and ENDS
directives.

Every source program must define exactly one segment with the SEGMENT/ENDS
directives. If a segment is not defined, no object file is generated by the assembler.

All assembly language instructions and assembler directives which affect the

assembler’s location counter or define labels, as well as the EQU directive, must
follow the SEGMENT directive and precede the ENDS directive.

4-10

8089 Assembler Assembler Directives

Example:
|IOP_CODE SEGMENT
|IOP_CODE ENDS
PUBLIC Directive

The PUBLIC directive makes symbols defined in this program available for access
by other separately assembled or compiled programs. It has the form:

PUBLIC symbol1[symbol2, . .., symboln]

Symbols in a list must be separated by a comma. A symbol can be declared PUBLIC
only once in a program. Reserved and external symbols cannot be declared
PUBLIC.

Symbols declared PUBLIC but not defined in a source program are flagged as errors
by the assembler. PUBLIC directives may appear before the SEGMENT directive
and anywhere else within the program, except within a structure.

Example:

PUBLIC DATA__LIST, PARM@BLOCK, 1/0?DEVICE

EXTRN Directive

The EXTRN directive provides the assembler with a list of symbols referenced in
this program but defined in other separately assembled or compiled programs. It has
the form:

EXTRN symbolt], symbol2,, symboin]
Symbols in a list must be separated by a comma.

A symbol can be declared EXTRN only once in a program. It cannot be defined
within the program nor can it be declared PUBLIC.

The EXTRN directive can appear before the program’s SEGMENT directive and
anywhere else in the program, except in a structure.

Example:

EXTRN DEVICE1, DEVICE2, DATA_TABLE

4-11

Assembler Directives 8089 Assembler

Assembler Termination

END Directive

The END directive identifies the end of the source program and terminates each pass
of the assembler. It has the form:

END
Only one END directive may appear in a source program and it must be the last
source statement. The END directive must not appear in an INCLUDE file. Any

source statements following the END directive are ignored by the assembler and
cause an error message to be issued to the assembler.

4-12

Introduction

This chapter describes the following aspects of ASM89, the ISIS-II 8089 assembler:

¢ Source file format
¢ Invocation command, controls, and defaults
¢ Output files—program list file and object file

A complete list of Error Messages and corresponding user actions (where applicable)
appears in Appendix J.

Source File Format

The source file input to ASM89 must reside on a random access device. INTELLEC
development systems include a text editor that can be used to create and maintain
8089 Assembly Language source files as diskette files. The ASCII horizontal tab
character (09H) is replaced by sufficient blank characters (always at least one) to
position to the next tab stop. Tab stops are preset at columns 9, 17, 25,

Source files contain three elements:

e 8089 Task Block Programs, composed of 8089 assembly language instructions,
described in Chapter 3 of this manual.

* Assembler directives, described in Chapter 4 of this manual.

® Assembler controls lines, described later in this chapter.

Table 5-1 summarizes important source file parameters.

Table 5-1. 8089 Assembly Language Source File Parameters

ITEM LIMIT

Characters/compressed* source statement | 256 characters.

Characters/symbolic name 31; symbolic names greater than 32
characters are flagged as errors.

Symbols/module 300 (approximately); relative to the length of
the symbolic names used.

INCLUDE'd files No assembler imposed limit on the number
of INCLUDEd files, but nested INCLUDEs
(INCLUDE controls in an INCLUDEG file) are
not allowed. INCLUDEGJ files must not con-
tain an END directive.

Segment definition A single segment, a maximum of 64k bytes
in size, must be defined via the SEGMENT/
ENDS directives.

END directive A single END directive must appear in a
source file.

* The assembler compresses each source statement by deleting all comments, and the
final end-of-line, changing all unquoted sequences of blanks and tabs into single blanks,
changing unquoted end-of-line&’s into single blanks, and changing all quoted quotes into
single characters.

5-1

Assembler Controls and Operation 8089 Assembler

Invocation Command, Controls, and Defaults
You can invoke ASM89 from ISIS-II by entering the command:
:Fn:ASM89 source controls
where:
:Fn:

designates the drive on which ASM89 resides. If n=0, you can omit the
drive designation.

source

designates the drive and file (for example, :F1:PROG.SRC) containing the
source statements to be assembled.

controls

is a (possibly empty) list of controls, separated by blanks. This field of the
invocation command is called the command tail.

You can continue the invocation command to one or more additional lines by enter-
ing an unquoted ampersand (&) in place of a blank. Since anything following the
ampersand on that line is echoed, but otherwise ignored, you can thus comment
your invocation lines; they are echoed in the listing. On subsequent lines, ASM89
prompts you for the remainder of the invocation command by issuing a double
asterisk followed by a blank (**). Refer to Example 5-3, ‘“‘Continuation Lines and
Prompting,’” in this chapter.

Summary of Controls

Table 5-2 provides a summary of ASM89 controls and defaults. There are two
classes of controls: Primary (P) and General (G). Both classes of controls can be
specified in the command tail and in separate control lines within the source file,
except the general controls EJECT and INCLUDE, which can only appear in source
file control lines. A control line is an assembler source line having a dollar sign () as
its first character.

Primary and general controls differ as follows:

* Primary controls establish global modes of operation, and if specified must
appear in the command tail or prior to any non-control lines in the source file. If
conflicting primary controls are specified (e.g. PRINT and NOPRINT), the last
valid control is used.

® General controls may appear in the command tail or in any line of the source
file. General controls may be respecified at any time.

Table 5-2. ASM89 Controls and Defaults

CONTROL P/G DEFAULT PURPOSE
OBJECT(fiIe) P OBJECT(file.OBJ) Name and/or place the object file
NOOBJECT P OBJECT(file.OBJ) Don’t create object file
PRINT(file) P PRINT(file.LST) Name the listing file

8089 Assembler

Assembler Controls and Operation

Table 5-2. ASM89 Controls and Defaults (Cont’d.)

CONTROL P/G DEFAULT PURPOSE
NOPRINT P PRINT(file.LST) Don’t create listing file
SYMBOLS P SYMBOLS List symbol table
NOSYMBOLS P SYMBOLS Don’tlist symbol table
PAGEWIDTH(n) P PAGEWIDTH(120) Chars/line in listing
PAGELENGTH(n) P PAGELENGTH(62) Lines/page in listing
PAGING P PAGING Separate pages in listing
NOPAGING P PAGING Continuous listing
DATE(‘ddddddddd’) P DATE(*’) Appears in header
TITLE(‘t...t") P TITLE(") Appears in header
LIST G LIST Turnon listing
NOLIST G LIST Turn off listing
EJECT G Start new listing page
INCLUDE(file) G Assemble a side file here

Primary Control Descriptions

OBJECT((filename)
Specifies that an object file is to be created and gives the location and name
of the file. If the file specification is missing, the object file is placed in a file
with the same device and name as the source file, and with the extension
OBJ.

NOOBJECT
Specifies that no object file is to be produced.

PRINT(filename)
Specifies that a listing file is to be created and names the file. If the file
specification is missing, the listing file is placed in a file with the same device
and file name as the source file, and with the extension LST.

NOPRINT
Specifies that no listing file is to be created.

SYMBOLS

Specifies that a formatted listing of the symbol table is to be created and
appended to the listing file.

NOSYMBOLS
~
Specifies that a formatted listing of the symbol table is not to be created.

5-3

Assembler Controls and Operation 8089 Assembler

PAGEWIDTH(n)

Specifies the width of the listing page in number of characters per line. The
range for n is from 72 - 132 inclusively.

PAGELENGTH(n)

Specifies the length of the listing page in number of lines per page. The
range for n is 10 - 255 inclusively.

PAGING
Specifies that the listing is to be formatted as separate pages.
NOPAGING

Specifies that the listing is not to be formatted as separate pages; that is, the
listing is continuous.

DATE(‘ddddddddd’)

Supplies a field of up to 9 characters in the header of each listing page for
the user-specified date (or other information).

TITLE(‘t...t")

Supplies a variable length field of characters to appear in the header of each
page in the listing. The length of the title field depends on the
PAGEWIDTH and the presence or absence of a DATE control. Titles
exceeding the field width are truncated.

General Control Descriptions
LIST
Turns on the source statement listing mechanism.
NOLIST

Turns off the source statement listing mechanism. Statements in error and
error messages are still listed if PRINT is specified.

EJECT
Causes an eject (by issuing a form-feed to the listing file) to a new page.
INCLUDE(filename)

Specifies that the named file is to be included for assembly. When ASM89
encounters the INCLUDE control, the source input is switched to the
specified file and remains there until an end-of-file condition is
encountered. The included file(s) must not contain either another
INCLUDE control (that is, no nesting of included files is permitted) or an
END directive. The end-of-file condition is the only terminator recognized
for the included file, regardless of the presence of carriage-returns, line-
feeds, or continued lines.

5-4

8089 Assembler Assembler Controls and Operation

Examples

Example 5-1. Full Default

Suppose the following:
1. ASMB9 resides on disk drive 0
2. Your source file, CHAN.TST, resides on disk drive 1

Then the invocation command:
ASM89 :F1:CHAN.TST

calls the assembler into operation and results in the following:

® The object file is placed in :F1:CHAN.OBJ

¢ The listing file is placed in :F1:CHAN.LST

¢ A formatted listing of the symbol table is placed in the listing file.
® No line in the listing file exceeds 120 characters.

* The listing file is paged; no page in it exceeds 62 lines.

¢ The Title and Date fields in the listing file header are blank.

Example 5-2. Partial Default

If, in Example 5-1, the invocation command is replaced by:
ASMS89 :F1:CHAN.TST OBJECT(:FI:NETCAT.DRV) PRINT(:TO:) DATE(’6/21/79")

then the results differ as follows:
* The object file is placed in :F1:NETCAT.DRV

* The listing file is printed on the teletypewriter, provided one is attached,
powered ON, and set to ““LINE’’ mode.

® The string 6/21/79 (without quotes) appears in the DATE field in the header on
each page of the listing.

Example 5-3. Continuation Lines and Prompting

You can continue the invocation line using an unquoted ampersand. Since ASM89
ignores characters appearing between the ampersand and the end of the line, you can
use this field to document your invocation line. ASM89 prompts you for more
information by issuing a double-asterisk followed by a blank, as follows:

ASMB89 :F1:CHN3N4.TST & 1S1S-1i 8089 Assembly of source file CHN3N4.TST
** OBJECT(:F3:LINK34.001) & Objectfile
** PRINT(:F4:LINK34.DOC) & Listing file

**NOSYMBOLS & No symbol table printout this time

** PAGEWIDTH(132) & Max. line length is 132 chars.

** NOPAGING & No form feeds; continuous print-out

** DATE(‘8/15/79’) & 1st day network integration

** TITLE(‘Fire Up N3-N4’) & Physical link checkout between nodes 3 and 4

* %

Processing begins following your carriage-return after the last prompt. The
invocation command and its comments are echoed in the listing file, in this case
:F4:LINK34.DOC.

5-5

Assembler Controls and Operation 8089 Assembler

Format of the Listing File

Each page of the assembler-generated list file begins with a header:

8089 ASSEMBLER [title] [date] PAGEX
Items enclosed in brackets, [], are optional. The TITLE control places a user- defin-
ed title in the header; the DATE control adds a user-specified date. The page
number, beginning with one, is included in the header.
On the first page of the listing file, the header is followed by the listing banner:

1SIS-11 8089 ASSEMBLER version ASSEMBLY OF MODULE module-name
OBJECT MODULE PLACED IN object file name
ASSEMBLER INVOKED BY jnvocation command

The body of thelist file contains the following four fields of information:
Location Counter Object Code Line Number Source Line

All source lines appear, in order, in the body of the list file.

EQU directive values are indented two positions from the first location counter
digit. When registers or pointer/registers are assigned alternate names through an
EQU directive, the following appears as the EQU value in the list file (see figure
5-1):

REG =register or pointer/register

8089 ASSEMBLER LISY FILE FORMAT HEADER » 02/07/22 PAGE 1

1SIS-I1 8089 ASSEMBLER V1.0 ASSEMBLY OF MODULE LISTWFORMAT
0BJECT MODULE PLACED IN =FI30EJECT.OUT LISTING BANNER
ASSEMELER INVOKED BY =F1:ASM89 3F1:LIST OBJECT (:F1:0BJECT.OUT) DATE (902/07/22%)

SPRINT(:F1:LIST.PRT)
SPAGEWIDTH(X25)
STITLE (*LISTY FILE FORMAT®)

13
2
3 NAME LISTSFORMAT
0000 4 SEGB9 SEGMENT
54
6 3 REGISTER OR POINTER/REGISTER EQU
7 PUBLIC FELOCK ZP1s TELOCK 2P2 I
|R£6=Gb 8 _SOQURCE LQU GAI
REG=GE 9 LESTIN Eau GE SPLIT
co68 10 DMAZCNTRL o 0C068H $IN REGISTER CCs THIS VALUE SPECIFIES THE pA/}LIS"NG
~RAMETVERS FOR A DMA TRANSFER OPERATION.
n i LINE
12 3
0000 13 INGBUFF: DS 128 SRESERVE 128 BYTES FOR AN INPUT BUFFER.
[0080_¢i 6z 03 0% 05 06 07 08 14 DB Ys 2y 35 4y Se 6 7s By 95 10]
MMUNZBL K STRI
0000 00 1o peyeL saue 10 DATA BYTES DEFINED
0001 00 17 STATUS: c3 0 8 DATA BYTES LISTED
0002 00000000 18 ADDR: (23] 0
0006 19 COMMUN?BLK ENLS
20 3
21 3
00BA E000 22 TBLOCK?PIz wit 16s 16 $SET DMA TRANSFER SOURCE AND DESTINATION
23 SLOGICAL WIDTHS.
008C D130 0000 2% MVl CC» DMAZCNTL 3PUT CMA CONTROL PARAMETERS IN CG.
[*** ERROR 67: DMAZCNIL WAS NEVEK DEFINEDS ADDRESS ASGUMED ZERD |-e—
5090 1130 0000 25 ¥ov1 SOURCE » IN®BUFF L__ASSEMBLERGENERATED
0094 #388 02 26 LPL CESTINs {PP1,ADLR ERROR MESSAGE
0097 6000 27 XFER
0099 7130 8000 28 wIVI BCe 128
0090 2048 29 HLT
30 3
313
SINCLUGE (2F1:SINTRP)
= 32 3
= 33 3
00SF R39B 02 SOURCE = 34 TBLOCK?P2: MavP [PP1.ADDR, TP 3STORE TP POINTER/REGISTER.
00A2 0A4F 01 0) LINES = 35 MIVBI [PP}.STATUSs 13PLACE STATUS CODE IN PARAMETER BLOCK.
00A6 4000 FROM AN = 36 SINTR $SET INTERRUPT SERVICE FLIP-FLOP.
00AB 2048 INCLUDE'D | = 37 HLT 3STOP TBP EXECUTION-WAIT FOR HOST TO TAKE PR/
FILE -O0PER ACTION.
= 38 3
= 39 3
00AA 40 SEG89 ENDS
41 END
S—— —
LOCATION OBJECT LINE SOURCE LINE
COUNTER CODE NUMBER

Figure 5-1. List File Format

5-6

8089 Assembler

Assembler Controls and Operation

8089 ASSEMBLER

SYMBOL TABLE

LISY FILE FORMAT 02707722 PAGE 2

18 0002
15 0000
9 6B
————— 0000
10 coes
13 0000
16 0000
4 0000
8 GA
17 0001
22 008A
34 009F

SYM
STR
REG
SYM
SYM
SYM
SYM
SYM
RE G
SYM
PUB
PuB

ADDR
COMMUN ZBL K
DESTIN
DMAZCNTL <———————————— SOURCE FILE SYMBOL NOT DEFINED IN THE FILE
DMAZCNTRL
INaBUFF
PARMS
SEG8S
SOURCE
STATUS
TBLOCKZP1
TBLOCKZP2

ASSEMBLY COMPLETE3 1 ERROR FOUND ¢—————— LASTLIST FILE LINE CONTAINING ERROR COUNT

Figure 5-1. List File Format (Cont’d.)

Figure 5-1 shows the listing file of a sample program coded in 8089 assembly

language.

The object field contains the assembler-generated object code for each source file
instruction. The data generated by data-generating source file directives also appears
in the object code field. Note that while data-generating directives can generate any
number of data bytes, only the first eight bytes generated appear in the listing. (See
figure 5-1.)

Source lines that do not fit on a single list file line are split. A ‘/’ at the end of a list
file line indicates a split source line. A ‘—’ at the beginning of a list file line indicates
that the line is a continuation of the previous list file line. (See figure 5-1.) Source
lines from an INCLUDEJ(file are masked by an ‘=’ character, which appears before
the line number and list file line.

Error messages generated by the assembler are-placed in the list file immediately
following the source statement which provokes the error. (See figure 5-1.) A com-
plete list of error messages is given in Appendix J.

The list file may also include a symbol table. The symbol table appears at the end of
the list file, under the heading:

SYMBOL TABLE

Symbol information appears under the following headings:

DEFN VALUE TYPE NAME

DEFN

Contains the list file line number .where file symbol is defined.
‘-----> under DEFN indicates that the symbol was found in the
source file input but never defined.

VALUE Indicates the value assigned to the symbol by the assembler.

Symbols defined as an alternate name for a register or
pointer/register have the Register Symbol listed as their value.
External symbols are numbered, starting with one, in the symbol
table. This number appears in the value field.

Assembler Controls and Operation 8089 Assembler

TYPE Indicates the kind of symbols defined:
SYM — A user-defined symbol (label or name).
REG — An alternate name for a register or a pointer register.
PUB — A symboldeclared PUBLIC in the source file.
EXT — A symboldeclared EXTRN in the source file.
STR — The name of a structure defined in the source file.

NAME The user-defined symbol.

The list file concludes with the following line, listing the number of errors found by
the assembler:

ASSEMBLY COMPLETE; number of errors found

5-8

GLOSSARY

This glossary contains terms specifically related to the operation of the Intel 8089
170 Processor.

ASMB89—the assembler for the 8089 Assembly Language.

BC—a predefined symbol for the general purpose 16-bit register that is used as a
byte counter during DMA transfers.

Bus Load Limit—an 8089 control, specified in the Channel Control Word, that
limits task block program instruction execution for a channel.

BUSY flag byte—a byte in the Channel Control Block (CB+1 for channel one;
CB+9 for channel two) indicating the activity status of a channel.

CC—a predefined symbol for the 16-bit register used to specify controls for a chan-
nel’s I/0 operations.

Chained task block program instruction execution—the priority of task block
program instruction execution is equal to that of DMA transfer; task block program
instruction execution on one channel may interleave with DMA transfer operations
on the other channel, depending on the P value in the CCW of both channels.

Channel attention—a hardware input to the 8089 used to begin 8089 initialization
and initiate communication between a host processor and the 8089’s two 1/0
channels.

Channel Control Block (CB)—a block of shared system memory used for com-
munication between a host processor and the 8089’s two 1/0 channels.

Channel Control Word (CCW)—a byte in the Channel Control Block (CB for
channel one; CB+8 for channel two) used to issue commands and specify operation
parameters for an 8089 channel.

Command Field (CF)—a three-bit field in the CCW used to issue commands to an
8089 channel.

Command Parameter Block (PB)—a block of shared system memory used for
communication between a host processor and an 8089 channel. The address of a
channel’s task block program is contained in PB.

DMA transfer—a high-speed direct memory access data transfer operation.

GA, GB—predefined symbols for the 20-bit general purpose pointer/registers and
their associated tag bits, used in task block programs to access data memory and, in
DMA transfers, to specify source/destination addresses.

GC—a predefined symbol for the 20-bit general purpose pointer/register and its
associated tag bit, used in task block programs to access data memory and, in DMA
tranfers in the translate mode, to specify the base address of a 256 byte translation
table.

Indirect addressing—a data memory location is accessed via a pointer/register con-
taining the address of the desired data memory location.

Glossary 1

Glossary 8089 Assembler

Interrupt Control Field (ICF)—a two-bit field in the CCW used to control inter-
rupts from an 8089 channel.

IX—a predefined symbol for the 16-bit general purpose register used in some data
memory expression forms to provide an index value which is added to a base
pointer/register; in the data memory expression from [PREG+IX+], IX is post
auto-incremented by 1 (byte datum) or 2 (word datum).

Jump target—a location containing the instruction to which program control is
passed as a result of a control transfer instruction.

LINK86—an MCS-86 software development utility which resolves inter-module
references.

LOC86—an MCS-86 software development utility which assigns absolute addresses
to object modules.

LOCAL configuration—an 8089 and a host processor share a single bus.

Local (I/0) space—the 64k byte address space which accesses an 8089’s remote bus
in a REMOTE configuration or I/0 addresses in a LOCAL configuration.

Logical width—the width, in bits, of the DMA transfer source or destination.
Logical widths, specified by a task block program WID instruction, may differ from
a system’s physical bus widths. For example, a DMA transfer source or destination
on a 16-bit bus can have a logical width of eight bits. Certain logical widths are
required by the 8089 during DMA transfers for data translation and testing
operations.

Long jump or call—an ‘‘L’’ prefix is attached to the short form of a control
transfer instruction. A signed word displacement (—32,768, +32,767), used to form
the jump target’s address, is generated by the assembler.

Mask/Compare—an exclusive OR is performed on a data byte and a compare byte.
The result is logically ANDed with a mask byte. The result of the logical AND is
checked for zero (mask/compare is equal).

MASTER—when the RQ/GT circuitry is used to control access to a bus shared by
two processors, one processor is designated a MASTER and controls the bus follow-
ing system initialization.

MC—a predefined symbol for the 16-bit general purpose register that provides
mask/compare bytes for certain 8089 Assembly Language instructions and DMA
transfer operations.

Offset, offset value—a 16-bit value added to a 16-bit segment address (shifted left
four bit positions) to form a 20-bit address. (See MCS-86 Assembly Language
Reference Manual, Order Number 9800640, for more information.)

Paragraph aligned—the segment in an ASM89 object-module is located by LOC86
on a paragraph boundary, i.e., it begins at an address divisible by sixteen. (See
MCS-86 Assembly Language Reference Manual, Order Number 9800640, for more
information.)

Pointer/Register—a 20-bit register with an associated tag bit used to point to 16-bit
local (I/0) space or 20-bit system (memory) space.

PP—a predefined symbol for the read-only, non-programmable 20-bit register
which contains the address of a channel’s Command Parameter Block (PB).

Glossary 2

8089 Assembler Glossary

Program Status Word (PSW)—an 8-bit value stored in the fourth byte of a chan-
nel’s PB (PB+3) when a channel’s operation is suspended by a HALT AND SAVE
command in the CCW. The PSW contains channel status information.

Remote bus—the bus in a REMOTE configuration not accessible by a host pro-
cessor, accessed by the 8089 with 16-bit local (I/0) addresses.

REMOTE configuration—the 8089 has its own remote bus, inaccessible to a host
processor and accessed by 16-bit local (I/0) space addresses. The 8089 also accesses
a shared system bus via 20-bit system (memory) space addresses.

RQ/GT—a hardware pin and its associated circuitry used to control access to a bus
shared by two processors.

Segment, Segment address—a 16-bit value shifted left four bit positions and added
to a 16-bit offset value to form a 20-bit address. (See the MCS-86 Assembly
Language Reference Manual, Order Number 9800640, for more inforation.)

Short jump or call—a control transfer instruction without an ‘‘L’’ prefix. A signed
byte (—128, +127) or a signed word (—32,768, +32,767) displacement value can be
generated by a short control transfer instruction. If a forward reference is used in
the expression specifying the jump target, the assembler assumes a signed byte
displacement value is needed.

SLAVE—when the RQ/GT circuitry is used to control access to a bus shared by two
processors, one processor is designated a SLAVE. A SLAVE requests the bus from
the MASTER following system initialization. The ‘‘R”’ value in the System Opera-
tion Command specifies the way in which the bus is shared between a MASTER and
a SLAVE processor.

SYSBUS—the first byte in the System Configuration Pointer, SYSBUS specifies the
width of the system bus.

System bus—the bus in a REMOTE configuration accessed by the 8089 using 20-bit
addresses. In LOCAL configurations this is the bus shared by the 8089 and a host
processor.

System Configuration Block (SCB)—the second block in a linked list of shared
data memory blocks used to initialize the 8089. The SCB is pointed to by the System
Configuration Pointer and contains the SOC and the Channel Control Block
address.

System Configuration Pointer (SCP)—the first block in a linked list of shared data
memory blocks used to initialize the 8089. The SCP must begin at address
OFFFF6H. It contains the SYSBUS byte and points to the System Configuration
Block.

System (memory) space—the one-megabyte address space which accesses
the system bus in a REMOTE configuration and data memory in a LOCAL
configuration.

System Operation Command (SOC)—the first byte in the System Configuration
Block, the SOC specifies the width of the remote bus, if one is present. It also
specifies the mode of RQ/GT circuitry operation.

Tag bit—a bit associated with a 20-bit pointer/register. A tag bit’s value indicates
whether the pointer/register contains a 16-bit local (I/0) address (tag bit=1) or a
20-bit system (memory) address (tag bit=0).

Task block program (TBP)—a program written in 8089 Assembly Language which
manages and controls a channel’s I/0O operations.

TP—a predefined symbol for the 20-bit pointer/register and its associated tag bit,
used as an instruction pointer for a channel’s task block programs.

Glossary 3

APPENDIX A

OPERAND SUMMARY

8089 Assembly Language instruction operands specify the various kinds of items
used in each operation. Table A-1 summarizes these items and their associated

operand types:

Table A-1. Data Items and Associated Operand Types

OPERAND TYPE EXAMPLES
Machine registers Register IX, MC, BC
Machine Pointer/Registers Pointer/Register GA,GB, GC
Immediate Data Values Immediate Data OFFH, ADTAB + 4
Locations Within a Program Program Location $ + 6, START
Data in Memory Data Memory [GA], [GB].5
Bits of Memory Data Data Memory Bit 0,1,7

Register Operands
SYMBOL REGISTER NAME
BC Byte Count
CcC Channel Control
GA General Purpose A
GB General Purpose B

SYMBOL

GC

IX

mMC

TP

Pointer/Register Operands

SYMBOL

GA

GB

REGISTER NAME
General Purpose A

General Purpose B

SYMBOL

GC

TP

Immediate Data Operands

Immediate data operands are expressions composed of:

¢ Symbols

* Numeric constants
® Character string constants of one or two characters
* The special location counter reference symbol $

¢ The assembly time operators + and —

REGISTER NAME
General Purpose C
Index Register
Mask/Compare

Task Pointer

REGISTER NAME
General Purpose C

Task Pointer

Immediate data operands can represent a data memory location, an instruction loca-
tion, or an 8- or 16-bit value.

Operand Summary 8089 Assembler

Program Location Operands

Locations within a program can be specified by three general types of expressions:
* Anexpression containing an instruction label (e.g. ROUTINE1)

* An expression containing only numeric constants (a displacement from the
beginning of the program segment—NOT an absolute address)

* An expression containing a relative instruction address (i.e., an expression
containing the special location counter reference symbol $)

Data Memory Operands

Data memory is accessed indirectly, using the contents of the pointer/registers GA,
GB, or GC or the PP register as a base address. Data memory operands have four

forms:
[PREG] — Base address only
‘PREG’ can be the pointer/register GA, GB, GC, or the PP
register. ‘PREG’ contains the data memory address.
[PREG].d — Base address plus an unsigned 8-bit offset

‘d’ is an expression evaluated modulo 256.

[PREG+IX] — Base address plus the Index register.

The data memory address is formed by adding the contents of
the Index register and the base address. The contents of the
Index register and the base address are not changed.

[PREG+1X+] — Base address plus the Index register;
Index register post auto-incremented

The data memory address is formed by adding the contents of
the Index register and the base address. At the end of the
instruction, the Index register is automatically incremented by
the size of the memory data (by one for byte data, by two for
word data). The base address is unchanged.

Data Memory Bit Operands

The bits in a data memory byte are numbered, right to left, as follows:

7 0

X X X X X X X X

7 6 5§ 4 3 2 1 0

The bit number is the operand used in an 8089 Assembly Language instruction,
where applicable, to specify the referenced bit.

A-2

APPENDIX B
INSTRUCTION SET SUMMARY

Decoding information:

R—a register symbol P—a pointer/register symbol

M—a data memory expression b—a data memory bit symbol

I—an expression specifying an immediate value

L—an expression specifying a program location (e.g., a label)

See Appendix A, ‘“‘Operand Summary,”” for a description of each of the above

items.

R8 —Specifies the low-order byte of a 16-bit register. When ‘R8’ is the destination

R16 —

(left-most) operand of a data transfer instruction, the data is sign-extended
(bit 7) to 16 bits. If ‘R’ is a 20-bit pointer/register, the data is sign extended to
20 bits and the pointer/register’s tag bit is set to logical one. All data is sign-
extended to 16 bits when arithmetic and logical operations are performed.
The high-order byte of ‘R’ is, therefore, affected by 8-bit operations. If ‘R’ is
a 20-bit pointer/register, the upper four bits (bits 16-19) are undefined
following all arithmetic and logical operations, except addition. Addition to
a pointer/register can result in a carry into its upper four bits.

The entire 16-bit register is used in the operation. When a 20-bit
pointer/register is the destination (left-most) operand of a data transfer
instruction, the data is sign-extended (bit 15) to 20 bits. The pointer/register’s
tag bit is set to logical one. If ‘R’ is a 20-bit pointer/register, the upper four
bits (16-19) are undefined following all arithmetic and logical operations,
except addition. Addition to a pointer/register can result in a carry into the
upper four bits.

M8 —a byte (8 bits) of data memory

Mi6—

a word (16 bits) of data memory

M24—three bytes of data memory

M32—

four bytes of data memory

I8 —an 8-bit immediate value

116 —a 16-bit immediate value

NOTE

A label is optional on all assembly language instructions.

Data Transfer Instructions

INSTRUCTION FORMAT OPERATION

LPD P, M32 Load 20-bit pointer/register from data memory

LPD1 P, 16 Load 20-bit pointer/register from immediate data

MOVP M24, P Move 20-bit pointer/register to (store) or from (restore) memory
P, M24

MOV R16, M16 Move 16-bits of data memory to/from data memory or register
M16, R16
M16, M16

Instruction Set Summary

B-2

MOVB R8, M8 Move 8-bits of data memory to/from data memory or register
M8, R8
M8, M8

MOVI R16, 116 Move 16-bits of immediate data to data memory or register
M16, (16

MOVBI RS, 18 Move 8-bits of immediate data to data memory or register
M8, 18

Control Transfer Instructions

Unconditional Control Transfer Instructions:

INSTRUCTION FORMAT OPERATION

CALL M24, L Store TP pointer/register and tag bit; Jump
LCALL

JMP L Jump
LIMP

Conditional Control Transfer Instructions:

INSTRUCTION FORMAT OPERATION
JMCE M8, L Jump on mask/compare equal

LJMCE

JMCNE M8, L Jump on mask/compare not equal
LJMCNE

JNZ R16, L Jump on nonzero register or data memory word
LINZ M16, L

JNZB M8, L Jump on nonzero data memory byte

LJNZB

Jz R16, L Jump on zero register or data memory word
LJz M16, L

JZB M8, L Jump on zero data memory byte

LJZB

Arithmetic and Logical Instructions

INSTRUCTION FORMAT OPERATION

ADD R16, M16 ADD register and 16-bit memory data
M16, R16

ADDB R8, M8 ADD register and 8-bit memory data
M8, RS

ADDBI R8, 18 ADD register or 8-bit memory data and 8-bit immediate data
M8, 18

ADDI R16, 16 ADD register or 16-bit memory data and 16-bitimmediate data
M16, 116

AND R16, M16 AND register with 16-bit memory data
M16, R16

ANDB R8, M8 AND register with 8-bit memory data
M8, RS

8089 Assembler

8089 Assembler

ANDBI

ANDI

DEC

DECB
INC

INCB
OR

ORB

ORBI

ORI

NOT

NOTB

RS,
M8,

R16,
M16,

R16
M16

M8

R16
M16

M8

R16,
M18,

RS,
M8,

RS,
M8,

R16,
M18,

R16
M16
R16,

M8
R8,

18
18

116
116

M16
R16

M16

M8

Instruction Set Summary

AND register or 8-bit memory data with 8-bit immediate data

AND register or 16-bit memory data with 16-bit inmediate data

Decrement register or 16-bit memory data

Decrement 8-bit memory data

Increment register or 16-bit memory data

Increment 8-bit memory data

OR register and 16-bit memory data

OR register and 8-bit memory data

OR register or 8-bit memory data with 8-bit immediate data

OR register or 18-bit memory data with 16-bit immediate data

Complement register or 16-bit memory data;
(optionally place complemented memory data in register)

Complement 8-bit memory data;
(optionally place complemented memory data in register)

Bit Manipulation and Test Instructions

INSTRUCTION FORMAT

SETB
CLR

JBT
LJBT

JNBT
LJNBT

M8,
M8,
M8,

M8,

OPERATION

Set selected data memory bit to logical one
Clear selected data memory bit to logical zero

Jump on data memory bit true (bit = logical one)

Jump on data memory bit not true (bit <> logical one)

Special and Miscellaneous Instructions

INSTRUCTION FORMAT

HLT

NOP
SINTR
TSL
WID
XFER

OPERATION

Halt task block program execution;
channel’s BUSY flag byte in the CB cleared to 00H

No operation

Setinterrupt service flip flop

Test and set data memory byte while system bus is locked
Set DMA source and destination logical widths

Begin DMA transfer following the execution of the next
instruction

APPENDIX C
ASSEMBLER DIRECTIVES SUMMARY

NOTE
Items enclosed in brackets, [], are optional.

Symbol Definition
DIRECTIVE FORMAT OPERATION

name EQU expression Defines a symbol and assigns it a value.

Data Definition and Memory Reservation

DIRECTIVE FORMAT OPERATION
[symbol:] DB di1*[,d2,...dn] Defines byte(s) of data memory with 8-bit
values.
[symbol:] DW di1[, d2, ... dn] Defines word(s) of data memory with 16-bit
values.
[symbol:] DD di1f,d2, ... dn] Defines double word(s) of data memory for

20-bit address loading.

[symbol:] DS expression Reserves bytes of data memory.

Structure Definition
DIRECTIVE FORMAT OPERATION

name STRUC Creates a template of offset values.

name ENDS

Location Counter Control
DIRECTIVE FORMAT OPERATION

ORG expression Sets the assembler’s location counter to a
specified integer value.

EVEN Insures that the next instruction or directive
begins at an even assembler location counter
value.

*dx is an expression, evaluated modulo 256 in DB directives and moduio 64k in DW, DD,
and DS directives.

*sx is a symbol.

C-1

Assembler Directives Summary 8089 Assembler

Program Linkage
DIRECTIVE FORMAT OPERATION

NAME module-name Assigns a name to the assembier-generated
object module.

name SEGMENT Assigns a name to the segment containing the
assembler-generated object code.

name ENDS

PUBLIC s1**[, s2, ... snj] Identifies symbols defined in this source
program that can be referenced by separately
assembled or compiled programs.

EXTRN s1[, s2, ... sn] Identifies symbols within this source program
which are defined and declared PUBLIC in
separately assembled or compiled programs.

Assembler Termination
DIRECTIVE FORMAT OPERATION

END Indicates the end of a source program.

APPENDIX D
ASSEMBLER CONTROLS SUMMARY

Table D-1. ASM89 Controls and Defaults

CONTROL P/G DEFAULT PURPOSE
OBJECT(file) P OBJECT(file.OBJ) Name and/or place the object file
NOOBJECT P OBJECT(file.OBJ) Don’t create object file
PRINT(file) P PRINT(fite.LST) Name the listing file
NOPRINT P PRINT(file.LST) Don’t create listing file
SYMBOLS P SYMBOLS List symbol tabie
NOSYMBOLS P SYMBOLS Don’t list symbol table
PAGEWIDTH(n) P PAGEWIDTH(120) Chars/line in listing
PAGELENGTH(n) P PAGELENGTH(62) Lines/page in listing
PAGING P PAGING Separate pages in listing
NOPAGING P PAGING Continuous listing
DATE(‘ddddddddd’) P DATE("’) Appears in header
TITLE(‘t...t) P TITLE(*) Appears in header
LIST G LIST Turn on listing
NOLIST G LIST Turn off listing
EJECT G Start new listing page
INCLUDE(file) G Assemble a side file here

D-1

APPENDIX E
ASCIil CHARACTER SET CHART

ASCII CODES

The 8089 assembler uses the seven bit ASCII code, with the high-order eighth bit
(parity bit) always reset.

GRAPHIC OR ASCII GRAPHIC OR ASCHi GRAPHIC OR ASCII
CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL)
NUL 00 + 2B \Y 56
SOH 01 , 2C w 57
STX 02 - 2D X 58
ETX 03) 2E Y 59
EOT 04 / 2F b4 5A
ENQ 05 0 30 [58
ACK 06 1 31 \ 5C
BEL 07 2 32] 5D
BS 08 3 33 A 5E
HT 09 4 34 - (4 5F
LF 0A 5 35 ' 60
vT 0B 6 36 a 61
FF oc 7 37 b 62
CR oD 8 38 c 63
SO]= 9 39 d 64
S oF : 3A e 65
DLE 10 ; 3B f 66
DC1 (X-ON) 1 < 3C g 67
DC2 (TAPE) 12 = 3D h 68
DC3 {X-OFF) 13 > 3E i 69
DC4 (FARE) 14 ? 3F j 6A
NAK 15 @ 40 k 6B
SYN 16 A 41 | 6C
ETB 17 B 42 m 6D
CAN 18 c 43 n 6E
EM 19 D 44 o 6F
suB 1A E 45 P 70
ESC 1B F 46 q 71
FS 1c G 47 r 72
GS 1D H 48 s 73
RS 1E | 49 t 74
us 1F J 4A u 75
SP 20 K 4B v 76
! 21 L 4c w 77
" 22 M 4D x 78
23 N 4E y 79
$ 24 o 4F z 7A
% 25 P 50 { 7B
& 26 Q 51 | 7C
’ 27 R 52 \ (ALT MODE) 7D
{ 28 S 53 ~ 7E
) 29 T 54 DEL (RUB OUT) 7F
* 2A u 55

OHeN -

223

W AN~

17
35
70
140

281
562
125
251

503
007
014
028

057
115
230
460

921
843
686
372

797

752

036

APPENDIX F|
DECIMAL/HEXADECIMAL
CONVERSION

186
372
744
488

976
953

813

627
254

018

037
075
151
303

606
213
427
854

POWERS OF TWO

-
DO -

32

65
131
262
524

048
097
194
388

777
554

217

435
870
741
483

967
934
869
738

476
953

813

627
255
511
022

044

177
355

710
421
842
685

370
740
481
963

927
855
7
423

846
693
387
775

AN =

16

128

256
512
024

192
384
768

536
072
144
288

576
152

608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776
552
104
208

416
832
664
328

656
312
624
248

496
992
984
968

936
872
744
488

976
952

808

e g—y
—~OWwW VwOuUhs WN~O

T e g gy
WOV UVawNn

20

0.000

0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

25

125
562
281

140
070
035
517

258
629
814
907

953
476

119
059

007

000

25

625
312

578
789

697
348

674
837
418
209

604
802
am
450

725

25
1286

062
531

632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915

25
125

781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701
350
675
837

418
709
854
427

713

178
089

044
022
511

755

877
938
469
734

867
433
216
108

25

625
312
656
828

914
957

‘478

739

869
934
467
733

366
183
N
545

772
886
443
721

860
430
715
357

678
839
419
209

604
302
151
575

787
893
446
723

361
680
840
420

25
125

062
031
515
257

628
814
407
703

851
425
n2
856

928
464
232
616

808
404
202
601

800
400
700
850

925
462
231
615

807
903
951
475

737

434
217

25
625
812

906
453
226
613

806
903
951
475

237
118
059
029

014
007
003
001

500
250
125
062

031
515
257
628

814
907
953
976

988

497
248

25

125
562
281

640
320
660
830

915
957
478
739

869
434
77
858

929
464
232
616

308
654
827
913

456
228
614
807

403
201
100
550

25

625
312
156
078

039
519
759
379

689
844
422
FAR

355
677
338
169

084
042
o
510

755
377
188

547
773
886
443

25
125

062 5

531 25
765 625
882 812

941 406
970 703
485 351
242 675

621 337
810 668
905 334
452 667

726 333

181 583
§90 791

295 395

823 848
411 924

205 962
602 981
801 490
400 745

5

25

125
562
781

890

472
236

618

404
702

851
925

481

240
120

280

125

062 5

031 25
015 625
507 812

253 906
676 950
813 476
906 738

953 369
976 684
988 342
994 17N

5

25

125
562 §
281 25

140 625

570 312 §
285 156 25
142 578 125

F-1

Decimal/Hexidecimal Conversion 8089 Assembler

POWERS OF 16 (IN BASE 10)

16" n 16"
1 0 0.10000 00000 00000 00000 x 10
16 1 062500 00000 00000 00000 x 10~
256 2 039062 50000 00000 00000 x 1077
4 096 3 024414 06250 00000 00000 x 1073
66 536 4 0.15258 78906 25000 00000 x 107*
1 048 576 5 095367 43164 06250 00000 x 107°
16 777 216 6 059604 64477 53906 25000 x 107
268 435 456 7 037252 90298 46191 40625 x 107°
4 204 967 296 8 023283 06436 53869 62891 x 107°
68 719 476 736 9 014561 91522 83668 51807 x 107'°
1 099 511 627 776 10 090949 47017 72928 23792 x 107"
17 592 186 044 416 11 056843 41886 08080 14870 x 107"
281 474 976 710 656 12 035527 13678 80050 09284 x 107
4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 107'°
72 057 594 037 927 936 14 013877 78780 78144 56755 x 10°'¢
1 152 921 504 606 846 976 15 0.86736 . 17379 88403 54721 x 10 '8
POWERS OF 10 {IN BASE 16)
10" 107"
1 0 10000 0000 0000 0000
A 1 01999 9999 9999 999A
64 2 028F5 C28F 5C28 F5C3 x 167"
38 3 04189 374B C6A7 EF9E «x 1672
2710 4 068DB 8BAC 710C B296 x 167°
86A0 5 0.A7C5 AC47 1B47 8423 x 1674
F 4240 6 010C6 F7A0 BSED 8D37 x 167*
98 9680 7 O0.1AD7 F29A BCAF 4858 x 167°
SF5 E100 8 O0.2AF3 1DC4 6118 73BF «x 167°
3B9A CAO0 9 04488 2FA0 O9BSA 52CC x 1677
2 540B E400 10 O06DF3 7F67 SEF6 EADF x 167°
17 4876 EBO0 11 OAFEB FFOB CB24 AAFF x 167°
E8 D4A5 1000 12 0.1197 9981 2DEA 1119 x 167°
918 4E72 AD00 13 0.1C25 C268 4976 81C2 x 167'°
5AF3 107A 4000 14 02009 370D 4257 3604 x 167"
3 8D7E A4C6 8000 15 0480E BE7B 9D58 566D x 167"
23 8652 6FC1 0000 16 0.734A CASF 6226 FOAE x 167"
163 4578 SDBA 0000 17 0B877 AA32 36A4 B449 x 167"
DEO B6B3 A764 0000 18 0.1272 SDD1 D243 ABA1 x 167
8AC7 2304 89ES8 0000 19 01083 C94F B6D2 AC35 x 167 'S

F-2

8089 Assembler Decimal/Hexidecimal Conversion

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the
range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal Decimal Hexadecimal Decimal
01 000 4 096 20 000 131072
02 000 8 192 30 000 196 608
03 000 12 288 40 000 262 144
04 000 16 384 50 000 327 680
05 000 20480 60 000 393 216
06 000 24576 70 000 458 752
07 000 28672 80 000 524 288
08 000 32768 90 000 589 824
09 000 36 864 AD 000 655 360
0A 000 40 960 BO 000 720 896
08B 000 45 056 CO 000 786 432
0C 000 49 152 DO 000 851 968
0D 000 53 248 EO 000 917 504
0OE 000 57 344 FO 000 983 040
OF 000 61440 100 000 1048 576
10 000 65 536 200 000 2097 152
11 000 69 632 300 000 3145 728
12 000 73728 400 000 4194 304
13 000 77 824 500 000 5 242 880
14 000 81920 600 000 6 291 456
15 000 86 016 700 000 7 340 032
16 000 90112 800 000 8 388 608
17 000 94 208 900 000 9437 184
18 000 98 304 A00 000 10 485 760
19 000 102 400 800 000 11534 336
1A 000 106 496 €00 000 12 582 912
18 000 110 592 D00 000 13 631 488
1C 000 114 688 EQ0 000 14 680 064
1D 000 118 784 F00 000 15 728 640
1E 000 122 880 1 000 000 16 777 216
1F 000 126 976 2 000 000 336554 432
0 1 2 3 4 5 6 7 8 9 A B C D E F

000 | 0000 0007 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 {0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048 0043 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 | 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091t 0092 0093 0094 0095
060 {0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 Q107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 | 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 (0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0A0 {0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0BO (0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 019

0CO (0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0D0 | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
0EQ | 0224 0225 0226 02277 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

F-3

Decimal/Hexidecimal Conversion

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont’'d)

8089 Assembler

D

0 1 2 3 4 5 6 7 8 9 A B [E_F
100 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 | 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0208 0299 0300 0301 0302 0303
130 | 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1C0 | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
1D0 | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO | 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
200 | 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 | 0544 0545 0546 0547 0548 0549 0550 0551 0652 0553 0554 0565 (0556 0557 0558 0559
230 | 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 | 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0613 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
280 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 | 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A0 | 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2B0 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 | 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 | 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
260 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F0 | 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
300 | 0768 0769 0770 077t 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 | 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 | 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 | 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 | 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 | 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 (0892 0893 0894 0895
380 | 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 | 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 | 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 | 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 (0956 0957 0958 0959
3C0 | 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 (0972 0973 0974 0975
300 | 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0087 0988 0989 0990 0991
3E0 | 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

8089 Assembler Decimal/Hexidecimal Conversion

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B c D E F

400 11024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 | 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 | 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 [1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1085 1096 1097 1098 1099 1100 1101 1102 1103
450 [1104 1105 1106 1107 1108 1109 11110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 | 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 [1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 | 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 | 1168 1169 1170 1N 172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4C0 (1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E0 | 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F0 | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 | 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 | 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 | 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 | 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 | 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 137§
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
5§70 | 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

680 | 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
690 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SA0 | 1440 14471 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5BO | 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

6CO | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D0 | 1488 1489 1490 149 1492 1493 1404 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E0 | 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F0 | 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 | 1536 1637 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 | 1552 1563 1564 1556 1556 1557 1558 156@ 1560 1561 1562 1563 1564 1565 1566 1567
620 | 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 | 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1506 1597 1598 1599

640 | 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 | 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 | 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 [1648 1649 1650 1651 1652 1653 1654 1656 1656 1657 1658 1659 1660 1661 1662 1663

680 | 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 | 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A0 | 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 | 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D0 | 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO [1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 17270 1771 1772 1773 1774 177§
6F0 [1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

F-5

Decimal/Hexidecimal Conversion

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

8089 Assembler

0 1 2 3 4 5 6 7 8 9 A B C D E F
700 (1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 | 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 | 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 { 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
740 | 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 | 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 | 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 | 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
780 | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 [1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A0 | 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7C0 { 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D0 | 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E0 { 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
800 | 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 | 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 | 2096 2097 2008 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 | 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 | 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 .2171 2172 2173 2174 2175
880 | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 | 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A0 | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B0 | 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8CO | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D0 | 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 | 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
900 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 | 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 | 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
880 | 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
A0 | 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9CO | 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D0 | 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EQ | 2528 2529 2530 2531 2532 2533 2634 2535 2536 2537 2538 2539 2540 2541 2542 2543
OF0 | 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

F-6

8089 Assembler Decimal/Hexidecimal Conversion

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

AOO | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A10 | 2576 2577 2678 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 | 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 | 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

ABO | 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA0 | 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO | 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEOQ | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 | 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 | 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 | 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 | 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2008 2909 2910 2911
B60 | 2912 2913 2914 2915 2916 2917 2918 2919 2920 2021 2922 2923 2924 2925 2926 - 2927
B70 | 2928 2029 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2040 2941 2942 2943

BBO | 2944 2945 2046 2947 2948 2949 2950 2951 2952 2953 2954 2055 2066 2057 2958 2959
B90 | 2960 2961 2962 2963 2964 2965 2966 2967 2968 2069 2970 2971 2972 2973 2974 2975
BAO | 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2088 2089 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
8RO | 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO | 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

C00 | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 | 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 | 3152 3153 3154 3156 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 | 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 | 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3278 3229 3230 3231
CA0 | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO | 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO | 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

F-7

Decimal/Hexidecimal Conversion 8089 Assembler
HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)
0 1 2 3 4 5 6 7 8 9 A B Cc D E F

DOO | 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 [3360 336t 3362 3363 3364 3365 3366 3367 . 3368 3369 3370 3371 3372 3373 3374 3375
D30 {3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 | 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 | 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 34217 3422 3423
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D80 | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO | 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DCO | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO | 35636 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO | 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO | 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EOO | 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 | 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

| E20 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 | 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ES0 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3874 3675 3676 3677 3678 3679
E6O- | 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
EB0 | 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 | 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO | 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO | 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 377%
ECO | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO | 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
FOO | 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
F10 | 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 | 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 | 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F40 | 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
FS0 | 3020 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 | 3936 3937 3938 3939 3940 3941 3942 3943 3944 3045 3946 3947 3948 3949 3050 3951
F70 | 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
FB0 | 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 | 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FCO | 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO | 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO | 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

F-8

RESERVED SYMBOLS

APPENDIX G

The following symbols are predefined and cannot be used as user symbols.

ADD
ADDB
ADDBI
ADDI
AND
ANDB
ANDBI
ANDI
BC
CALL
cC
CLR
DB
DD
DEC
DECB
DS
Dw
END
ENDS
EQU
EVEN
EXTRN
GA
GB
GC
HLT
INC
INCB

JBT
JMCE
JMCNE
JMP
JNBT
JNZ
JNZB
Jz

JzB
LCALL
LJBT
LIMCE
LIMCNE
LIMP
LINBT
LINZ
LINZB
Lz
LJzZB
LPD
LPDI
MC
MOV
MOVB
MOVBI
MoV
MOVP
NAME
NOP
NOT
NOTB
OR
ORB
ORBI
ORG
ORI

PP
PUBLIC
SEGMENT
SETB
SINTR
STRUC
TP
TSL
WID
XFER

G-1

APPENDIX H
SAMPLE PROGRAM

The following pages show a complete 8089-8086 family program example. The exe-
cution vehicles used are an 86/12 Single Board Computer and an 8089 Prototype
Board interfaced via the Intel Multibus. In this example, the 8089 unburdens the
8086 by handling message transfers to a CRT and processing message requests. Five
messages and a menu (which shows all the message titles) are available for display
and selection. '

The program listings are shown, the 8086 code compiled in PLM86 and the 8089
code assembled by ASM89. The combination of both these programs should fully
explain the initialization and communication protocol between the 8086 and the
8089. Note that the 86/12 Dual Port RAM was set up to appear as upper memory to
the 8089 on the Multibus while to the 8086 it appears as lower memory. Further
operation is explained throughout the two program listings.

Sample Program

PL/M-86 COMPILER 8889 PROTOTYPE DEMO

ISIS-1I PL/M-86 ¥1 1 COMPILATION OF MODULE PROTOTYPESS

0BJECT MODULE PLACED IN :F1:PROTSS.

i)

COMPILER INVOKED BY: PLMSS :F1:PROTS9. SKC

$TITLE(/5689 PROTOTYPE DEMO‘) LRRGE OPFTIMIZE(2)

1 PROTOTYPESSS: DO:
4 /
/% */
/x DEMQ FOR £889 FROTOTYPL K11 ¥/
Sk */
I /
/ 7
/% */
/% LITERAL DECLRRATIONS ¥/
ik */
/ 4

/% 82390 LITERALS +/

2 1 DECLFRE

INTSSTATSPORT LITERRLLY
INTEMASKSPORT LITERALLY

INTSICKL
INT$1CN2
INTSICH4
INTHMASK

“BCBH",
a2k,
LITERALLY 13
LITERALLY “58H7
LITERALLY BFH .
LITERALLY "BFERY;

s& AM LOCATIONS FOR THE ZB8¢% +/

1 DECLARE

SINTSBASE
SCE$BASC
CBYBARLE
PhEBASE
[BYBASE
MSGSBASE
INTRETYRE

LITERALLY TFREH”
LITERRLLY ‘THEER
LITERALLY TFDBH
LITERALLY ‘Ta8RH" .

LITERALLY TOFaH’

LITERALLY TY2BRH” .
LITERALLY ‘B148E°

/¥ FN# LOCATIONS FOR THC 3889 7

4 1 DECLARE

S0B489
CHsg
PESE)
Th¢89
MoGs8Y

H-2

LITERALLY ‘OFFFEBH” .
LIVERALLY “BFFFDOH” .
LITERALLY ‘BFFegeH’ .

LITERALLY ‘OFFBFEH”
LIVERALLY ‘@FF 208’

A% SYSTEM INITRLIZRTION BLOCK #/
~4 SYSTEM CONTROL BLUCK #/

A% COMMAND LLOCK 7

7% FRERMETER BLOCK */

» Ok TASK BLOCK +/

A% DISPLAY MESSAGE BUFFLR */

A4 INTERRUFT VECTOR THELE */

/% LYSTEM CONTROL BLUCK +/
/% COMMAND LLOCK +/

/% PARAMETER BLOCK */

/% TRSK BLUCK */

i /% DISPLAY MESSAGE BUFFLR */

8089 Assembler

PHGE 1

8089 Assembler Sample Program

PL/M-8C COMPILER £889 PROTOTYPE DEMO PHGE 2

* 5883 CCH'S +/

5 1 DECLARE

RSTSCCW LITCRALLY “ABHT . /% RESET UCW +/
/4 ENRBLE INTERRUFIS */

INIT$COM LITERALLY AR, S+ L0 INITRLIZRTION COW */
7% ENRBLE INTERRUPTS */
A% EXECUTE TRSK BLUCK IN #/
4 SYETEM MEMORY */

DSRECCH LITERALLY BBHT & /4 DISPLRY MESSAGE UKW »/

J% RESET INTERRUFT */
A% EXECUTL TASK BLUCK #/
A& IN SYSTEM MEMORY

i 5889 INITIRLIZATION COMMANDS */

61 DECLARE
SOCSCHD LITERALLY ‘@eH’ . A 8 BIT 140 BUS 7
SYSBUSSCHD LITERALLY ‘BIHT ¢ S+ 16 BIT SYSTLM BUS #/
7k UHES CHRNNEL RTTENTION #/
Vol DECLARE
CHANSATT LITERALLY ‘BH
/% MISCELLANEOUS DECLRRATIONG #/
3 1 DECLARE
CUSYSTATUS LITERALLY ‘BFFH’
TRUE LITERALLY ‘UFFH’
FALSE LIERALLY ‘goH"
NMBREMSK LITERALLY ‘@R’
R LITERALLY ‘00H»
LF LITERRLLY ‘8RH’,
EsC LITERALLY “1BH’,
£ LITERALLY 4.
EOT LITERALLY iC

Sample Program

FL/-8G COMPILER 8889 PROTOTYPE DEMO

/ /
/% %/
/% RAM DECLARRTIONS %/
/% ¥/
/ /

9 1 DECLARE

@ 1 DECLARE

1 1 UECLARE

/%
/%
/%

H-4

SINT STRUCTURE (SNSEUS WORD. SUBSPTR FOINTER) 1 (SINT4BASE):

/ "
/% 5 SYSBUS. COMMAND */
/% SCe OFFSET */
£ ¥
¥ SCB SEGHENT ¥/
/ /

LB STRUCTURE (50C WORD, CB$FTR POINICRY AT (SCESBRSED;

e y
% hN SO COMMANG */
/ ¥
/% LOMMAND BLOCK F SET v
P COMMAND BLOCK SEGMENT e

CB(2) SIRUCTURE (CCW BVTE, BUSY EVTE, PESPTK POINTER,

DUMMY WORDY AT (CESBASEY;
l' "J
A BUSY LG \ CoH *
Ak /
o PRRAMETER BLOCK OFFSET
/ y
/% PARAMETER BLOCK SEGMENT */
,‘ x-l
* DUMMY WORD ¥/
7 P

THE RBOVE COMMAND BLOCK FORMAT 15 THE STRUCTURE FORMAY
THE CB RRRAY CONTAINS TWO STRUCTURES: ONE FOR EACH
CHANNEL OF THE 9885.

*/
&/
*/

8089 Assembler

PHGE 3

8089 Assembler

PL/M-86 COMPILER 8889 PROTOTYFL DEMO

12

[y
)

15

17

Sample Program

FRGE 4

1 DECLARE PB STRUCTURE (TESPTR POINTER, MSGSPTR POINTER.
LEVEL BYTE, CI BYIE) AT (PESBRSE);
y .
N TASK BLOCK OFFSE] ¥/
2 /
pn TRSK BLOCK SEGHMENT %/
/ /
% MESSRGE BUFTER OFFSET */
2 7
’ MESSAGE BUFFER SEGMENT */
/! /
/% CHARACTER FROM CRT \ DISPLAY LEVEL CMD T0 IOF #/
Fd ¢
1 OECLARE TE (512) BNTE AT (1ES$BASEY:
/% RAM EUFFER FOR TRSK BLOCK PROGRAM W
/ # 7
1 CECLOKE MSGSBUF (S12) BYIE RT (HSGIBASE);
e DISFLAY MESSAGE EUFFER w
2)
1 DCCLARE INTREVECSS® FPOINIER M (INTRSTYPEY:
1 DLCLHRC INTREIPSSD WORD R CINTREIYHE:
/' ’)
’ w0
7 ROM DECLARATION AND INITIALIZIN ION 0
/% */
4 /
1 DECLARE MEMUEC®) BYTE DAIA (CK,LF,ESC/E,
‘ *, R LF,
. * #*, R, LF.
‘ * 9886/4489 PROTOTYPE KIT DEMO %7, CR,LF,
s %* *Jl CRI Lf;
4 l.' CRI LF'

H-5

Sample Program

H-6

PL/M-86 COMPILER 8889 PROTOTYPE DEMO

18

CR, LF, LF.

SELECTION T0PIC’, CR; LF, LF,

WHAT 1S THE 8889 10P/,CR, LF,LF,

WHAT IS THE 8269 BUS ARBITER’, CR, LF,LF,
ABOUT THLS DEMONSTRATION’, CR,LF,LF,
9889 INITALIZATION PROTOCOL’, LR, LF,LF,
8905 COMMUNICATION FRO10COL’, CR, LF, LF,

U e W e

=
o

FOR RDDIVIONAL INFORMATION ON THE ABOVE TOP1CS,CR.LF,
PLEASE SELECT THE APPROPRIATE ENTRY (1,2,3,4,%5) - “, EUT)

DN T T T SN

DECLARE MSGA(*) BYTE DRTRCLR. LI, ESC. E.
‘ 8889 1/0 PROCESSOR’.
CR: LF. LR LE,

THE €839 10 PROCESSOR IS A FIRST OF ITS KIND SYSTEMS COMPONENT. 177,
CR.LF. L,
‘USES THE CONCEFY OF £ CHANNEL CONTROLLER, COMMON IN MRINFRRMES. TO SOLVE",
CR, L. LF,

“THE 1/0 PROCESSING AND HIGH FLRFORMANCE DM REQUIREMENTS OF MICRUFROCESSOR”.

UR; Lk LF,

“LYSTEWS. THE S899 CAN BE USED IN CONJUNCTION WITH THE 888G (16 DIT BUSY'.

LR LR LF,

‘OR £@82 (2 BIT BUSY AND 8 OR 15 BIY PERIPHERALS 10 SIGNIFICHNTLY ENHANCE®.

CR. LF. LF,

“SYSTEM PERFORMANCE. THE 9889 OFFLORDS 1/0 FiOM YHE HOST CHU RN TROCELSESS,

CR.LF. LF,

“CONCURRENTLY WITH CPU RCTIVITY RLSD. THE 8489 ADLS INTELLIGENCE TO THE®,

CR L. LF,

‘PERIPHERAL SUBSYS1EM WHILE MODULARIZING RND SIMPLIFING THE SVSTRM 14007,

Gk LE. LF,

"EACH 0P KRS TWO I/ CHANNELS THRT CHN PROVIDE DMA RT 1. 25 MEGRBYIE/SLL, 7.

Ch LR LF

“PROCESS INDEPENDENT PROGRAMS. BND HFMOLE MULTIPLL I/0 DEVICES. <.

CRLF.LF.
! T0) SELECT ANOTHER MESSAGE TYPE Y-, RN

DECLARE HSG2(+ BYTE DHYR CCR.LF.ESCE
: THE 3289 BUS AREIVER'.
CRyLFSLF.LF.
THE 8289 BUS ARBITER PROVIDES THE HRRDWARE MECHHNLSMS FOR IMIER- .
CR.ULF,

‘PROCESSOR COMMUNICATION AND SHARED RUSOURCES IN R MULTIPLL CPY SYSIEM. HES.

CRLF.LF

‘5289 FEATURES SEVERAL USER DEFINABLE PRIORYTIZATION FND 6US CONFIGURATIONS. .

LR, LF.LF,

DEMONSTRRTED HEKE. THE RESB MODE SCPERATES 56/12 PRIVAIE RESOURCLS [hUR‘,
CR,LE,LF.

“SYSTEM bUS SHARED RESOURLLS, WHILE THE 10B MODE DIVIDES 1HE 3883 170 bUS’.
CR,LF.LF,

‘FROM THE SYSTEM BUS. IN BOTH CRSES THE 8289 COMPLETELY RRBITRAYES SYSTEM,
CR, L. LF.

‘BUS USNGE TO MANAGE MULTIFLE PROCESSOR CONTENTION, 7,

CR, LF.LF,

’ THE 8986 FRMILY HND MULTIBUS CONCEPT ALLUKWS PARTIVIONING APFLICATIONS',

CR, LF.LF,

8089 Assembler

PAGE 5

8089 Assembler Sample Program

PL/M-86 COMPILER £869 PROTOTYPE DEM) PRGE 6

“INTO SMALLER MORE MANFGERBLE TARSKS. THUS. HDDING NEW FUNCTIONS OR UPGRRDING',
CR, LF, LF,

‘EXISTING ONES WILL HAVE MINIMAL EFFECT ON THE ORIGINAL DESIGN. /,

CR,LF, LF,
‘ 10 SELECT ANOTHER MESSAGE TYPE Y-, EOT):

% 1 DECLARE MSG3(*> BYTE DATACCR, LF. ESC, E,
! RBOUT THIS DEMONSTRATION’.

CR.LF. LF.LF,

7 10 DCMONSTRATE THE 588¢ FAMILY CTU-IOP CONCEPT. AN SEC $6/12 AND AN 88897,
E%Pl!il;ﬂ#:’;{ BOARD ARE INTERFACED VIR THE INTEL MULTIBUZ. IN THIS DEMO THE S@e9°.
Em& THE £88¢ BY HANDLING MESSAGE TRANSFERS TO THE CRY RND I'ROCESSING .
Cﬁélg?ﬁgg REQUESTS. UPERATION IS AS FOLLOMS: USING £ CHANNEL FITENTION (CR» THE'.
L\géls.g, ll-;,lTIﬂLIZES THE 8459 AND CAUSES IT TO EXECUTE 3 1RZK BLOCK 10 PRUGRAM.
'Z?;lII:'F;"EE}Pi{ERHL DEYICES ON 1TS LUCAL BUS. THE 8889 THEN INTERRUPTS THE 88t&”.
:'T?DLE"E&EST A MESSRGE I'0R DISFLRY. RESFONDING. THE S@86 SETS UP LINKAGE 107,

CR, LF, LF.

“THE TRSK BLUCK PROGRAM AND ISSUES A CR V0 THE %983 AFTER EACH CA THE 88897,
CR.LF,LF,
‘DISPLAYS THE MESSRGE. FOLLS THE CRT TERMINAL FOR £ YALID MESSAGE REGUEST FND”:

LRALF:LF,
‘THEN INTERRUPTS THE &B8G. HENCERORTH THE CYCLE IS REPERTED. .
LRy LFLF,
¢ 10 SELECT ANOTHER MECSHGE TYPL W7, EOTH

21 1 DECLARE HEL4(%) EVTE DATR (CR.LF. ESC. E
4 902 INITIALIZATION PRUTOCALS.
CRALF.LR. L, .
‘GNSTEM INITALIZATION 3ttt e A
LR, LF.
! 4 + LYSBUS COMMAND +7,
LR LF,
! R R R A
CR.LF,
! + SYSTEM CONTROL BLOCK RDLRESS +,
CRy LF,
¢ H At S R R R R R
CR: LF,
“CVSTEM CONTROL BLOCK L4 44 A
CR, LF,
! + 4+ 50C COMMAND +,
CR.LF,
’ 44 T R R R
CR, LF,
! + COMMAND BLOCK ADDRESS +7,
LR, LF,
4 Tt A S R R
CR, LF:LF,LF, .
! ON THE FIRST CHANMEL RTVENTION HFTER RCSCT. THE IOP READS THESE',

H-7

Sample Program

H-8

PL/M-86' COMPILER 8889 PROTOTYPE DEMO

3

24

CR, LF, LF,

/CONTROL BLOCKS T0 DETERMINE THE WIDTH OF THE SYSTEM BUS (8 OR 16), THE',

CR,LF, LF,

170 BUS WIDTH (8 OR 16>, FRIORITY INFORMATION, AND WHERE TO FIND INFORMATION,

CR:LFs LF,

‘DETINING SUBSEGUENT CHANNEL ATTENTIONS (THE COMMAND LLOCK). 7.

CR, LF, LF,
! T0 SELECT ANOTHER MESSRGE TYPL ¥ /. EOV);

DECLARE MEGS0E) BYIE

DATA(CR. LF, ESCL E.
’ 8989 TASK COMMUNICRTION FROTOCOL'.
CR.LF, LF. LF.
/ HAHH PR D R R R
LR LF.
" COMMAND BLOCK + BUSY FLAG + CHANNEL COMMAND WORD +/.
Ck: LF,

Y (ONE PER CHANNEL) HHHididtttibi bt d brid b d bt bbb e
LR, LF, .
’ 1 FARAMETER CLOCK ADORESS +s

LR LF,
4 I A A S A R e,
CR: LF,

PARAMETER BLOCK R an e e R N e S sh sl
R LFs
‘ + MSK BLUCK RADDRESS 4,
LR, LF.
4 B R R R R e s e SRR e e E S S e L 2 B R S i
LR LF,
‘ + USER DOFINEL MECSAGE RRER +,
LR LTS
’ B R aamaneal sl S N S A E R PR R SR R R E R N
LR LF.

TRSK BLOCK FE T e R T e R s e s o o n i
LR LF,
! 4+ TASK FROGRAM 10 BE EXECUTED EBY THE &489 o
CR: LF,
! Ea R R N aanaaan ke SRR R R S S R R SR R S T T o
LR, LF, LF,

’ HFTER H CHENNEL HTTENTION, THE 2839 RCADS THRESE BLOCKES TO SEE WHAT THE'.
LR, LF.LF,

“CPU WANTS (CHANNEL COMMAND WORD) HND WHERE TO FIND HDDITIONAL INFORMATION'.
CR:LF. LT,

(PARAMETER BLOCK>. THE PARAMCTER BLOCK GIVES THE TASK FROGRAM RDDRESS BNDY
CR, LF. LF,

‘PARAMETERS TO BE PASSED. 10 SELECT ANOTHER MESSRGE TYPL ¥-7.LOTY;
DECLRRC INITTEC6@) BYTE EXTERNAL: /% TB TO INITIALIZE */
/% 8251R & 8253 */

DECLARE FROGTB(128) BYTE EXTERNAL: /% TB FOR MESSAGE DISFLRY »/

8089 Assembler

FAGE 7

8089 Assembler Sample Program

PL/H-86 COMPILER 8889 PROTOTYPE DEMO PHGE 8

,‘ 'I
/% THIS 1S THE MAIN PROGRAM WHICH INITALIZES THE £089 FROM RESET AND #/
/% THEN ISSUES THE 89 A CA TO EXECUTE R TASK BLOCK WHICH INITRLIZES THE %/
/% 8251A AND THE 8253 AFTER ALL INITALIZATION IS COMPLETE. THE PRUGRRM */
/% IS TOTALLY INTERRUPT DRIVEN FROM 1HE 868%. THE 8889 INTERRUPTS THE */
/% £886 T0 REQUEST A NEW MESSAGE FOR DISPLHY. 10 SERVICE THt INTERRUPT. #/
/% THE 8886 1RANSFERS THE NEW MESSAGE FROM ROM TO THE MESSAGE BUFTER, SEYS #/
/% UP THE APPROPRIPTE TASK BLOCK PROGRMM AND ISSUES R NEW CA TO THE IOP T0 */
/% ALLON IT TO DISPLAY THE NEW MESSNGE. THE 8886 WILL HALT AFTER ISSUEING */
/% THE CHANNEL ATTENTION AND WR1Y FOR THE NEXT MESSAGE REQUEST. */
/% AFTER ERCH CA, THE 8883 WILL DISPLAY THE REQUESIED MESSRAGE THEN POLL %/
/% FOR R NEXT MESSRGE REQUEST ENTERED RY THE CRT. UPON RCUEIVING R YALID */
/% REGUEST THE £869 RETURNS THE REQUEST TD THE 8886, 1SSUES AN INTERRUPT +/
/% TO THE 8886 AND HALTS ITS CURRENT 10 EXECUIION. THE 6689 PERFORMS NG #/
#% OTHER ACTIVITIES UNTIL ANAKENED BY THE CA FROM THE 3885 10 DISPLAY THE +/
/% NEXT MESSAGE. %/

/

f

a1 MSGDSPL - PROCLDURL INTERRUPT L@ PUELIC;

2% 2 IF PB LI1='%" THEN

2 2 b

28 3 CRLL MOVB(BMENUE. BMSGS$ELF, SIZCCMENUE)):
249 3 FB LEVEL = FALSE:

EC END;

1 2 ELSE DO;

23 PL. LEVEL = TRUE:

33 03 PO CRSC (PB.CI AND NMER$MSK)-1:

4 4 CALL MOVE ¢@MSCL. @MSGSBUF, SIZC (MSGLH):
H 4 CALL MOV (BMSG2. @MSGSBUF. SIZE (MSG2)):
€ 4 CALL MOVE (BMSGs, BMSGEBUF. SIZE (MLG3)):
74 CRLL MOVE (@MSG4. BMSC$BUF. SIZE (MSGAYM:
B 4 CRLL MOVE (@MSGS. @MSUSBUF. SIZb (MSGS) ¥
32 4 END:

48 3 END:

4 2 CALL MOVB (@FROGTC, BTC. SIZE (PROGTE))

42 2 PB. TB$PTR = T1B$8%:

43 2 FB. MSGEPTR = MSG$E9:

4 2 CB(8). CCW = DSPSCCK;

43 2 LB(8). PBSFIR = FESED:

46 2 OUTPUTCCHANSATT Y=BisH;

47 2 RETURN;

48 2 END MSGDSPL;

H-9

Sample Program

H-10

PLA-86 CONPILER 8889 FROTOIYPE DEMD

49

50
b |

LIS

&

b4
59

58
b1

62

63

£5
86
4
68
£9

1 START: DISABLE;

1 INTRSVECSS0 = @MSGDSPL;

1 INTRSIPS60 = INTREIPSS9 - 27;

1 OUTPUTCINTSSTRISPORT) = INTSICHL:
1 DUTPUTCINTSHASKSPORT) = INTSICH2:
1 OUTPUTCINTSHASKSPORT) = INTSICHd:
1 OUTPUTCINTSHASKSPORT) = INTSHASK:
1 SINT. SYSBUS = SYSBUSSCND;

1 SINT. SCB$PTR = SCBSYD;

1 S0B. S0C = SOCSCHD;

1 SCB. CESFIR = CBS8Y:

1 CB(B) COM = KSTICTH;

1 UR(S). BUSY = BAISYSTATUS:

1 QUTPUTCCHANSATT) = B

1 DO WHILE CE(). BUSY = BUSYSTATUS;
2 END:

1 CALL MOVB(RINITIB. 8TE, SIZECINITIE) %
1 CECB). LW = INITSCOW:

1 CB(D). PBEFTR = PESES:

1 FC. TESPTR = TESYY;

1 OUTPUTCCHANSATT) = i

1 ENHELE.:

1 B0 WHILE TRUE <> FALSE:

2 END:

1 END PROTOTYPESSY:

HODULE INFORMATION:

CODE AREA SIZE = 19324 458D
CONSTRANT ARER SIZE = B@8eH 8
YARIRBLE RRER SIZE = 9@edH 8D
MEXIMUM STRCK SIZC = ge22h 340
486 LINES RERD

3 FROGRHM ERROR(S)

END OF HL/M-86 COMPILATION

8089 Assembler

PAGE 9

8089 Assembler

8899 RSSEMBLER

ISIS-11 8969 ASSEMBLER ¥ 1.8 ASSEMBLY OF MODULE DEMOSS
OBJECT MODULE PLNCED IN :F1:8SDENO. 0EJ
RSSEMBLER INVOKED BY ASMS9 :F1:89DEMO. SRC PRGELENGTH(G3)

Ldba
ep1
88CR
2849

€693
37
222

#8335
¥Bas

Fraq

Fi59
F837
FES?
Frid

8887
boas

8oi0
a8tz
8615
8917
8619
@81

8623
va26

3138 81C8
8840 .CA

Sample Program

1

2% *
3 8489 DEMU PROGRAM *
L X *
5

6

7 NRME DEMDBS

G DEMO SEGMENT

9 .

18 PUBLIC INITTE
11 PUELIC FROGTE

12 :

13 EQUATES

14

15 DADDRESS.8251 Ewl 8Co08H
16 CRDDRESS_8231
17 MUDE.S21

18 RET_8251

15 COMMAND_S231
28 MRDDRESS 8204
21 MODE_t253

22 CORDURESS_8252
23 COUNTBLIE_829%
24 COUNTEMIb_8233

2y

26 L1

27 M5U_POINTER
22 ELT_COMPARE

28 LY

38 Y_CONFRRE

31 MSG_COMPARE
32 SIX.SEY_COMPIRE EQU BFE37H
33 2ERO_LONPRRE

34

Lay 6Caaiy
Loy 0
bl 484
£ &
£au BEBUSH
LQU 3
Equ BEHBH
Loy &3H
EQU 8

e 59H
Eou 9H

EQU 4H

Eal) BFFB4H
EQuU &

i) UFFS5R
Loy 237

EQU BrY30H

39 S THSKE - INTIALIZATION

36

37 INITTE:
.38

39
49
41
42
43
44
43
46
47
48
49
50
b |
32
R
b
»N

MOVI
MOVBI
NOP
NOP
MOVB1
NOP
NOP
HOVB
NOP
NOF
MOVBI
MOVBI
MOv1
MOvEI
MOVEI
MOVCI

SINTR
HT

GB, CRDDRESS.4251
(GBI, MODE-G6231

LCR), RET_E251

[GE]. MODE.8231

LGB COMMAND_B251
L GBJ, MODE_6253

GB, CBADDRESS.8253
[GB], COUNTBLSB_B8293
LGsJ, COUNTBMLB_B233
[PPICL ¥

S INITIRLIGE 8251

i SOFTHARE RESET

FREC AND TRIN ENRBLED
;CNT 8, MODE 3, BCD

iLSB = 69

iME =8

;¥ T0 CI BYIE IN PRRAMETER BLOCK
 TO SELECT MENUE +OR DISPLAY

i+ INTERRUPT £886

FWAIT FOR CH

Sample Program

H-12

8839 RSSEMBLER

8831 5130 eice
8835 3130 vecs
9039 638E 94
BA3C B130 ewes
0840 F139 84FF
9044 6CBB OA
8e47 @8bn FD
B04R 8699 BalD
BB4E 5820 F3
8851 @RE? 98 14

8055 Fi38 SSFF
@859 2883 FD
B3 B8ES FA
WaOF BRdF 89 09
#363 B84 59
BR66 2820 &5
u36e F138 X7
886D 280A D

Bave BWSl A2CF A

BvS BRBT @3 F4
#3r3 F138 37FE
570 BRBZ U9 B8
9881 F139 8P
#al3 AKBI 35 LA
wegs A293 @9 @act
WASE 4ann

3s%e 2n4n

9% ;

8089 Assembler

S7 i 1RSK2 - SEND MESSAGE AND MONITOR CONSOLE

36 i
99 PROGTD:

&4 EQTCONM:
63 TXRDV2:
66
&7
68 LEVEL:
63
78 MENSEL:
71 R¥RDY1:

72

A

MSGSEL
RERDYZ

-
-4 o

=)

=i

P e R = R]
[POURE OSSN

oo
DN <

INTkSE:

o0 CG 00 O3 OO
Q0 = O

£% DEMD
92 END

Co)
(o]

MOVl
MOVI
LFD

MOvI
MOVI
JHCE
JNBT
MOVB
Jup

JZB

HOVI
JNET
JHMCNE
MOVB1
MOYBI
Jup
MOVI:
INBT
HOVE

JHCNE
Hov1
JWCE
oY1
JHCE
HCYE
SINTR
HLY

LNDS

GC, CADDRESS.6251
GB, DHDDRESS_8251
GA, [PP) MSG_PUINIER
14 8

MC, EOT_COMPFRE
[GA+IX], LEVEL

[6C1, 8 TARDY2
LGB LGHHIXH]
EOTCOM

[PPY LEV, MSGSEL

MC. Y_COMPARE
{6C): 1. KaRDYL
{81 KXRDYL
[PFICL ¥

LGBL ¥

INTREE

ML, MSL_COMPARE
[GC 1, RXRDYZ
[PPYCI. LGBY

(PP CL. RARDYZ
MC. SIX_SEV_COWPARE
[PPYCI. MSGSCL
HC. ZERO_COMPRRE
[PPY I, MSGIEL
LGB, [FPL LI

; 8251 STRIUS ADDR
;6251 DHIR RDDR
5 SEND MESSAGE 10 CRT UNTIL EU

;MASK. COMPRRE FOR EOT
SEOT 2

- TRANSMIT RERDY ?

+ SEND CHRRACTER 10 8251

sCHECK LEYEL BYIE IN FARRMETLR BLOCIK,
s MENUL OF MESSAGE 7

iMRSK COMPHRE FOR Y

+RECEIYE RERDY 7

Y7

% TO CI BYTE IN PARAMETER BLOCK

i LCHD

MRS COMPRRE FOR MESSRGE SELECH
SRELEIVE RERDY 7

PMESSHGL SELLCTION 10 Ci BYiL
» IN PRARAMLIER BLOCK

8 THRU ¥ ¢

i MASK CUMPARE FOR & OR 7

i MASK COMPRRE FOR @

>

JECHD

; INTERRIPT SH86

FWRLY FUR LR

Sample Program

8889 ASCEMBLER

SYMBOL TRBLE

DEFN VALUE TVPE

22 EeBR SYM
16 (@81 -
26 @882 SV
15 9825 S5\
PEQEE S
24 8888 M
15 C@88 S\
5 0B SYM
b4 BBd4d4 SvH
26 Frad o
37 wadg pUB
a6 BBBE SYM
29 0e8t S
60 B@3l S5V
28 Az Sy
70 Besy Lye
7 odatE SYM
21 ¥e37 Se
h HEE3 SWM
3 OFSTY S
27 vBed S
96 8e1 UE
16 4840 v
71 4839 LM
7 #aeh SYH
61 883% v
32 FEIF o
63 8847 S¥M
25 B8R39 oM
3\ FF32 S\
33 OHF38 S

HOSCMBLY COMPLETE: NOU ERRORS FOUND

NAME

CBRDDRESS_8253
CRDDRESS_ 8251
Ll

COMMAND 8251
COUNTBLSB_8253
CULNT@MSE_8253
DRODRESS 5251
bEMD

LOTCOM
EOT_COMPRRE
INITTB

INTRBE

LEV

LEVEL

MADGRESS @232
MENSEL
MODE_851
MODE_5232
MSGEEL
MSG_COMPARE
MLG_POINTER
FROGTE
RET_5251
RXRDYL

RERUYS

SEND
SIA_SEV_COMPRRE
T8REY2
Y'_COMPARE
ZERO_COMPRRE

8089 Assembler

H-13

APPENDIX J
ASSEMBLER ERROR

MESSAGES/USER ACTIONS

ASMB89 error messages are numbered according to the following general scheme:

1-120 User-provoked errors—Nonfatal

¢ 121-150 Command tail/control line errors—Fatal/Nonfatal

e 151-200 Source statement errors—Statement processing abandoned
® 201-240 Assembler errors—Not user-provoked

e 241 -255 Fatal errors—Assembly terminated

Nonfatal errors place an error message or error messages in the list file immediately
following the source statement which provoked the error. The format of nonfatal
error messages is:

*** ERROR <n>: <error text>

where ‘‘n’’ is the error number. The assembly of subsequent source statements is not
affected by nonfatal errors.

Fatal errors terminate the assembler’s processing of the source file and return system
control to ISIS. There are two types of fatal errors:

e Fatall/Oerrors
e All other fatal errors

Fatal 170 errors provoke the following console message:

ASM89 |/O ERROR—
FILE: <filename>
ERROR: <description>

ASSEMBLY TERMINATED

All other fatal errors provoke the console message:

ASMB89 FATAL ERROR—<description>

Assembler errors should never occur. If you get one of these error messages, please
notify Intel Corporation via a Problem Report Form (Part Number 9800035).

The construct (X) in any message is replaced by a statement-dependent error con-
struct; it may be a number, a quoted string, a register—almost anything. Error con-
structs in the same error message may differ if the message is provoked by two
different source statements.

Most assembler error messages are self-explanatory. Where necessary, a brief error
explanation and a description of the action to be taken by the user follows the error
message. ‘

J-1

Assembler Error Messages/User Actions 8089 Assembler

*** ERROR 1: PASS ONE ENCOUNTERED (X) FURTHER ERRORS IN THIS STMT

This error message is issued after eight errors are found in a source statement
on the assembler’s first pass. Pass two errors are listed before pass one errors
for a given statement.

*** ERROR 2: PASS TWO ENCOUNTERED (X) FURTHER ERRORS IN THIS STMT

This error message is issued after eight errors are found in a source statement
on the assembler’s second pass. Pass two errors are listed before pass one
errors for a given statement.

*** ERROR 3: (X) WAS DECLARED PUBLIC, BUT NEVER DEFINED; NOT WRITTEN TO OBJECT

The symbol X is declared public in a PUBLIC directive but not defined in the
source file. Information normally written to the object file for public symbols
is not written for X. A source statement defining X should be added to the
source file or X should be deleted from the PUBLIC directive it appears in.

*** ERROR 4: SOURCE TEXT FOLLOWS ““END’’ STATEMENT; IGNORED

Any source file statements following the END directive are ignored by the
assembler. To be processed by the assembler, such statements must be placed
before the END directive.

*** ERROR5: NO SEGMENT WAS DEFINED; NO OBJECT FILE WILL BE PRODUCED

Every 8089 Assembly Language source file must define exactly one segment,
using the SEGMENT/ENDS assembler directives. If such a segment is not
defined in the source file, no object code is generated by the assembler. Any
existing object files are retained.

*** ERROR6: “END’’ STATEMENT IN INCLUDED FILE

An INCLUDEJd file contains an END directive. The assembler accepts the
statement and all source statements following the END directive are ignored
by the assembler. Only one END directive is allowed per source file;
INCLUDECA files are terminated by an end-of-file condition.

*** ERROR7: STATEMENT TOO COMPLEX; OPERANDS IGNORED STARTING WITH #(X)

The expression list for a DB, DW, or DD assembler directive contains more
expressions than the assembler can process. The directive should be broken up
into two or more statements. Should this error message be generated by a
single expression, a simpler expression must be coded in its place.

*** ERROR 11: SEGMENT (X) IS LONGER THAN 64K BYTES

The segment contained in an ASM89 object module can be a maximum of 64k
contiguous byte addresses in length. This error message indicates that the 8089
Assembly Language source program attempts to generate an object module
which exceed this limit. The following source file is an example:

SEG89 SEGMENT

ORG OFFFFH
DATA: DS 128
SEG89 ENDS

END

The user should check ORG directives for errors. If more than 64k contiguous
byte addresses are neccessary, two 8089 Assembly Language source files, a dif-
ferent segment defined in each, must be created.

J-2

8089 Assembler Assembler Error Messages/User Actions

*** ERROR 12: NAME/LABEL IS FORBIDDEN
A label or name precedes an assembler directive which cannot be labeled or
named. For example:

FINISHED: END

The END, ORG, EVEN, NAME, PUBLIC, and EXTRN directives cannot be
labeled or named.

*** ERROR 13: LABEL USED IN NAME CONTEXT; NAME ASSUMED
*** ERROR 14: NAME USED IN LABEL CONTEXT; LABEL ASSUMED

*** ERROR 15: (X) IS DECLARED BOTH PUB AND EXT; ORIGINAL DEFN USED
The symbol X appears in both a PUBLIC and an EXTRN assembler directive.
The first directive is used; the second is ignored. For example:

PUBLIC FOO

EXTRN FOO

The symbol FOO is assumed to be public by the assembler. Symbols cannot be
declared both public (PUBLIC) and external (EXTRN).

“** ERROR 16: (X) HAS ALREADY BEEN DECLARED PUBLIC

A symbol can be declared public (PUBLIC) only once in a source file. Addi-
tional public declarations of (X) should be deleted.

*** ERROR 17: (X) HAS ALREADY BEEN DECLARED EXTERNAL

A symbol can be declared external (EXTRN) only once in a source file. Addi-
tional external declarations of (X) should be deleted.

*** ERROR 18: (X) HAS ALREADY BEEN DECLARED LOCAL; EXT IGNORED

This message appears after an EXTRN directive which includes a symbol
already defined as a label or a name in the source file. The external declaration
is ignored.

*** ERROR 19: NAME MISMATCH WHEN CLOSING <construct>

The <construct> is either SEGMENT (X) or STRUCTURE (X). The wrong
name in an ENDS statement, or trying to close a SEGMENT directive while a
STRUCTURE directive is still open will provoke this message. For example:

THIS STRUCTURE
THAT ENDS
The second statement is assumed to read ‘““THIS ENDS”’.

*** ERROR 20: ‘‘ENDS’’ ASSUMED TO CLOSE <construct>

The <construct> is SEGMENT (X), STRUCTURE (X), or UNNAMED
STRUCTURE. This error message follows an ENDS directive which has no
name.

*** ERROR 21: <construct>IS ASSUMED TO CLOSE AT “END”

The <construct> is SEGMENT (X), or STRUCTURE (X), or UNNAMED
STRUCTURE. An END directive was found before the ENDS closing an
active segment or structure.

J-3

Assembler Error Messages/User Actions 8089 Assembler

*** ERROR 24: BAD PARAMETER TO PSEUDO-OP; IGNORED

Provoked by undefined or invalid operands to DS and ORG assembler direc-
tives. For example:

DS GA
ORG ‘ABCDEF’
DS zZZ

In the last example, this error is provoked if ZZZ has not been defined to the
assembler when the DS directive is processed.
*** ERROR 25: TOO MANY OPERANDS; IGNORED BEGINNING WITH #(X)
An 8089 Assembly Language source statement contains too many operands.
For example: :
JMP TARGET, ANOTHER
The JMP instruction only requires one operand.

*** ERROR 26: ‘'‘EQU’’ DOES NOT ALLOW REGISTER EXPRESSIONS; FIRST REG IS USED
Provoked by such things as the following:

REG EQU GA+GB

REG2 EQU GB-1
Everything following the first register is ignored. The above statements are
equivalent to:

REG EQU GA

REG2 EQU GB

*** ERROR 27: OPERAND OF ““EQU’’ IS AS YET UNDEFINED; ASSUMED ZERO

The operand of an EQU directive is undefined when the EQU is found on the
assembler’s first pass. The operand’s value is assumed to be zero. For

example:
ENDJ EQU LAST
LAST: HLT

The value of LAST is assumed to be zero when the EQU directive is processed.
ENDJ is assigned the value zero.

*** ERROR 28: MODULE NAME IS ALREADY (X); STATEMENT IGNORED

A source file contains two NAME directives. Only one NAME directive is
allowed per source file.

*** ERROR 29: ILLEGAL OPERAND TO PUBLIC/EXTRN

*** ERROR 30: NULL OPERAND IS ASSUMED ZERO

An instruction requires more operands than are contained in the source state-
ment. For example,

ADD GA,
The missing operand is assumed to be zero.

J-4

8089 Assembler Assembler Error Messages/User Actions

*** ERROR 31: (X) IS AN INVALID BASE-(X) DIGIT; (X) IS ASSUMED ZERO
This error message is provoked by such source statements as the following:

DB O0F7
OF7 is assumed to be decimal and F is an invalid decimal digit. The digit in
error must be changed or the correct suffix for the desired number system must
be added to the number.
*** ERROR 32: SYMBOL IS LONGER THAN 31 CHARACTERS; TRUNCATED TO 31

Symbols can be a maximum of 31 characters in length. Symbols which exceed
this limit are truncated by the assembler. The entire symbol does, however,
appear in the list file.

*** ERROR 33: TOKEN IS LONGER THAN 255 CHARACTERS; TRUNCATED TO 255

*** ERROR 34: OPERATION DOES NOT ALLOW AN EXTERNAL SYMBOL; EXTERNAL ASSUMED ZERO
External symbols are only allowed in DD assembler directives and LPDI
instructions.

*** ERROR 35: ILLEGAL EXPRESSION; ZERO USED
Assembler error—contact Intel Corporation.

*** ERROR 36: NO ““END”” STATEMENT
The source file does not contain an END directive. The assembler acts as if an
END directive immediately precedes the end of the source file.

*** ERROR 37: ILLEGAL OPERAND TO DATA-GENERATING OP; IGNORED

This error message is provoked by invalid operands to DB, DW, DD, and DS
assembler directives. For example:

DB [GA]
The invalid operand must be changed or deleted.

*** ERROR 38: STRINGS LONGER THAN 2 CHARS ARE FORBIDDEN; IGNORED

*** ERROR 39: BIT SELECTORIS OUT OF RANGE; VALUE MOD 8IS USED

The value of a data memory bit operand in an instruction ranges from 0-7.
Values outside this range are taken modulo eight by the assembler. For
example:

SETB [GA], 11
The assembler assumes bit 3 (11 modulo eight) is specified.

*** ERROR 40: UNRECOGNIZED MEMORY REFERENCE IS ASSUMED REGISTER DIRECT
Assembler error—contact Intel Corporation.

*** ERROR 41: NON-REGISTER (X) IS ASSUMED TO BE REGISTERGA

Nonregister symbols used in place of register operands provoke this error
message. For example:

OR GD, [PP].CNTRL
GD is assumed by the assembler to be GA.

Assembler Error Messages/User Actions 8089 Assembler

*** ERROR 42: NON-POINTER REGISTER (X) IS ASSUMED TO BE REGISTER GA

This error message is provoked when an instruction requires a pointer register
operand and a non-pointer register operand is coded. For example:

LPD BC, [PP].ADDRESS
BC is assumed to be GA by the assembler, so the above is equivalent to:

LPD GA, [PP].ADDRESS

*** ERROR 43: {LLEGAL SOURCE WIDTH; ASSUMED 8

The source operand in the WID instruction can be 8 or 16. Any other value is
assumed by the assembler to be 8. The destination operand in the WID instruc-
tion is checked separately by the assembler, so two incorrect logical width
operands generate two error messages. Example:

WID 12,16
The above statement is treated as WID 8, 16 (not WID 8, 8).

*** ERROR 44: ILLEGAL DESTINATION WIDTH; ASSUMED 8

The destination operand in the WID instruction can be 8 or 16. Any other
value is assumed by the assembler to be 8. The source operand is checked
separately by the assembler, so two incorrect logical width operands generate
two error messages. Example:

WID 16,18
The assembler assumes the above to be WID 16, 8 (not WID 8, 8).

*** ERROR 45: JUMP TARGET IS OUTSIDE 1-BYTE WINDOW; WRAPAROUND

The one-byte window is the range of the jump target’s address from the end of
a control transfer instruction (next instruction address — 128, next instruction
address + 127). When the short form of a control transfer instruction is coded,
this error occurs when the assembler cannot determine the address of the jump
target on its first pass (i.e., the expression giving the jump target’s location
contains a forward reference). The assembler assumes a signed byte displace-
ment value (of the above range) is required to reach the jump target. If it later
determines that a signed word displacement is needed, the short form of the
control transfer instruction is flagged as an error.

The user must either: code the long form of the control transfer instruction in
place of the short form or eliminate the forward reference in the expression
specifying the jump target’s location.

NOTE: WRAPAROUND means that the required displacement value has
wrapped around within the signed byte value. Thus, the value
generated by the assembler is incorrect. For example, if a displace-
ment value of +140 is required the assembler generates a value —116.

*** ERROR 46: JUMP TARGET IS OUTSIDE 2-BYTE WINDOW; WRAPAROUND

The two-byte window is the range of the jump target’s address from the end of
a control transfer instruction (next instruction address — 32,768, next instruc-
tion address + 32,767). All 8089 Assembly Language control transfer instruc-
tion jump targets must be in the above range.

The user must move the location of the jump target inside the above range

(next instruction — 32,768, next instruction + 32,767). If, in the control
transfer instruction, the expression specifying the jump target’s location does

J-6

8089 Assembler Assembler Error Messages/User Actions

not contain a forward reference, the short form of the control transfer instruc-
tion can be coded and the assembler will generate a signed byte or word
displacement as is necessary. (Note that $ + 7 is not a forward reference.) If the
expression does contain a forward reference and the jump target is outside a
—128, +127 byte range, the long form of the instruction is required.

NOTE: WRAPAROUND means that the displacement value wraps around
within a signed word. The assembler does not generate the correct
displacement value. For example, a displacement of +65000
generates a displacement value of ~536.

*** ERROR 47: MEMORY REFERENCE OFFSET IS > 255; VALUE MOD 256 IS USED

The value of ‘d’ in the data memory expression form [PREG].d cannot be
greater than 255. Example:

MOV GA, [PP].300
The offset value 300 is evaluated modulo 256 and the above expression is
treated as:

MOV GA, [PP].44

*** ERROR 48: (X) IS ALREADY DEFINED; REDEFINITION IS IGNORED

This message is provoked when a symbol is defined more than once in a source
file. Example:

FOO EQU OFFH

FOO: DB 8

The second use of FOO (as a label) provokes this error. This error might also
occur if an INCLUDEGA file defines a symbol already defined in the main
source file (e.g., FOO is used as an instruction label in both the main source
file and an INCLUDEU(file). Additional definitions of (X) must be eliminated.

*** ERROR 49: EXPRESSION HAS MORE THAN ONE EXTERNAL; (X) IS ASSUMED ZERO
A single external symbol can appear in an expression used in an LPDI instruc-
tion or DD directive. Example:

EXTRN DOG, CAT

DD DOG + CAT

The assembler assumes the value of CAT, and any other external symbols in
the expression, to be zero.

Note that the following is valid:
EXTRN DOG, CAT

DD DOG, CAT
In this case, the external symbols appear in two different expressions.

*** ERROR 50: STATEMENT BEGINS WITH CONTINUATION

A source statement cannot begin in an INCLUDEJ file and continue in the
main source file, i.e., the first source line following an INCLUDE control line
cannot begin with an &. The source statement must be contained in either the
INCLUDEGJ file or the main source file. It cannot be continued from one to
the other.

J-7

Assembler Error Messages/User Actions 8089 Assembler

*** ERROR 51: END-OF-FILE WITHIN QUOTED STRING

This error message is provoked by source files ending with the following state-
ment (no end-of-line at end of statement):

DB ‘ABC
The quoted string is assumed to end at the end-of-file.

*** ERROR 52: END-OF-FILE DOES NOT OCCUR ON A LINE BOUNDARY
This error message is generated by an END statement not followed by an end-
of-line.
*** ERROR53: LINE ENDS BEFORE QUOTED STRING
A quoted string cannot contain an end-of-line (a single carriage-return (CR), a
single linefeed, or a CR/LF sequence).
*** ERROR 54: ILLEGAL CHARACTER ENCOUNTERED
The assembler accepts all printing characters of the standard ASCII character
set. The non-printing characters horizontal tab (09H), carriage-return (0DH)
and line-feed (OAH) may also be used with assembler-defined meanings (tab
and end-of-line). Invalid characters are treated as a blank by the assembler.
*** ERROR55: LINE/STATEMENT ENDS BEFORE QUOTED STRING
The quoted string is assumed to close at the end-of-line or end-of-statement.
*** ERROR56: (X)IS NOT A MEMORY REFERENCE REGISTER; REF BECOMES [GA];
SKIP TO COMMA OR END-OF-LINE

Pointer/registers GA, GB, or GC and the PP register can be used in memory
reference expressions. This error is provoked by the following kind of
statement:

NOT [BC] ;
BC must be replaced with GA, GB, GC or PP.

*** ERROR 57: INDEXING ASSUMED VIA IX, NOT (X); SKIP TO COMMA OR END-OF-LINE
Expressions of the form:

MOV GA, [PP+BC]
provoke this error. The second operand is assumed to read [PP+IX].

*** ERROR 58: VALUE OF REGISTER (X) IN EXPRESSION SET TO ZERO
The following type of expression provokes this error:

ADD MC, [GB].IX
IX is not a valid offset. The assembler assumes a zero offset value.

*** ERROR 59: NOT ENOUGH OPERANDS IN AN EXPRESSION
This error message is provoked by the following kind of expression:

GOO EQU $+

The assembler expects an operand following the + sign. An operand should be
provided or the + sign removed from the statement.

J-8

8089 Assembler Assembler Error Messages/User Actions

**+ ERROR 60: OPERATOR OR DELIMITER EXPECTED BEFORE'(X);
SKIP TO COMMA OR END-OF-LINE

An operator, + or —, or a delimiter, , or ;, has been forgotten or mistyped.
This error message is provoked by statements of the form:

JMP TARGET 5

AND GA,[GC}] THISIS AN AND INSTRUCTION.
The assembler skips to the next comma or end-of-line.

*** ERROR 63: (X) (ILLEGAL IN EXPRESSION) IS ASSUMED TO BE ZERO

*** ERROR 64: DOT IS ILLEGAL IN THIS CONTEXT; SKIP TO COMMA OR END-OF-LINE

*** ERROR 65:

*** ERROR 66:

*** ERROR 67:

*** ERROR 68:

“STRUCTURE” EXPECTS A NAME; UNNAMED STRUCTURE GENERATED

OPERATION (X) IS ILLEGAL AFTER AN OPERATION;
SKiP TO COMMA OR END-OF-LINE

(X) WAS NEVER DEFINED; ADDRESS ASSUMED ZERO

“(X)” IS ILLEGAL IN THIS CONTEXT; SKIP REST OF STMT

While the assembler does accept all printing ASCII characters, they are not
valid in all contexts. For example:

STOO EQU ($+5)

The open parenthesis character is not allowed in this context and provokes this
error message. The remainder of the source statement is skipped by the
assembler.

*** ERROR 69: INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [GA]

*** ERROR 70:

***ERROR71:

*** ERROR 72:

***ERROR 73:

*** ERROR 74:

*** ERROR 75:

*** ERROR 76:

***ERRORT7T:

*** ERROR 78:

*** ERROR 79:

INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [REGISTER]
INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE {[REGISTER +1X]
INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [REGISTER + X +]

(X) IS ILLEGAL IN A MEMORY REFERENCE; REF BECOMES [GA];
SKIP TO COMMA OR END-OF-LINE

(X) IS ILLEGAL IN AMEMORY REFERENCE; ““]"' ASSUMED TO PRECEDE IT;
SKIP TO COMMA OR END-OF-LINE

(X) IS ILLEGAL IN A MEMORY REFERENCE AFTER “‘]’;
SKIP TO COMMA OR END OF LINE ’

(X) IS ILLEGAL IN A MEMORY REFERENCE AFTER ** + ",
INDEXED REF ASSUMED; SKIP TO COMMA OR END-OF-LINE

(X) IS ILLEGAL IN A MEMORY REFERENCE AFTER ““ +IX"";
1" ASSUMED TO PRECEDE IT; SKIP TO COMMA OR END-OF-FILE

(X) IS ILLEGAL IN A MEMORY REFERENCE AFTER ““ +1X +’;
“]’ ASSUMED TO PRECEDE IT; SKIP TO COMMA OR END-OF-LINE

OPENING ¢}’ ASSUMED TO BE [GA]; SKIP TO COMMA OR END-OF-LINE

J-9

Assembler Error Messages/User Actions 8089 Assembler

*** ERROR 80: ‘“(X) EQU $’ IS ASSUMED ((X) IS ALREADY GLOBAL)
Public symbols cannot be equated to a register symbol. For example:

PUBLIC REG

REG EQU GA
The above EQU statement is assumed by the assembler to be:

REG EQU $

*** ERROR 81: DELIMITER EXPECTED BEFORE (X); SKIP TO COMMA OR END-OF-LINE
A comma or end-of-line sequence is missing before (X). Everything fol-
lowing (X), until the next delimiter, is ignored. A delimiter must be inserted
before (X).

*** ERROR 82: OPERAND (X) FAILS IN PASS 2; ZERO USED
Assembler error—contact Intel Corporation.

*** ERROR 83: ZERO INSERTED BEFORE (X)
The assembler turns the sequences ++, +—, —+, and —— into +0+,
+0—, —0+, and —0—. This message reports that this has occurred.
*** ERROR 84: MAXIMUM ““INCLUDE’’ NESTING EXCEEDED
Nested INCLUDES are not allowed by the assembler. For example:

SEG89 SEGMENT
$INCLUDE(:F1:PROG1)
SEG89 ENDS

END
The above included file (PROG1) cannot contain any INCLUDE controls.

*** ERROR 85: PRIMARY CONTROL FOLLOWS A NON-CONTROL STATEMENT

A control line containing a primary control follows a non-control statement.
The primary control, and any controls following it in the control line, are
ignored. The primary control must be placed before the first non-control line
in the source file.

*** ERROR 86: STRUCTURE (X) IS LONGER THAN 64K BYTES

*** ERROR 87: (X)(ILLEGAL IN EXPRESSION) IS ASSUMED TO BE ZERO;
SKIP TO COMMA OR END-OF-LINE

*** ERROR 88: NON-PROGRAMMABLE REGISTER (X) IS ASSUMED TO BE GA

The PP register is non-programmable and can only be used in data memory
expressions. This error message is provoked by the following kind of
statements:

MOVI PP, 1234H '

The assembler assumes the above to read MOVI GA, 1234H.

*** ERROR 89: NO OPERAND PRESENT; STATEMENT IGNORED

A DB, DW, DD, DS, NAME, ORG, PUBLIC, or EXTRN directive has no
operands. An operand should be added to the source statement or the state-
ment should be deleted.

J-10

8089 Assembler Assembler Error Messages/User Actions

*** ERROR 90: SOURCE STATEMENT IS TOO LONG; ADDITIONAL CHARACTERS IGNORED
The maximum size of a compressed 8089 Assembly Language source statement
is 256 characters. Additional characters are ignored but do appear in the list
file.

*** ERROR91: ILLEGAL USE OF EXTERNAL; VALUE ASSUMED ZERO
This error message is provoked by an external symbol appearing in the
operand field of an EQU directive:

EXTRN PARM

CNTRL EQU PARM
A value of zero is assigned to the symbol CNTRL by the assembler.

*** ERROR92: EXTERNAL SYMBOL (X) IS ILLEGAL IN THIS CONTEXT; ASSUMED ZERO

An external symbol appears in an expression in a statement other than an
LPDI instruction or DD directive. The value of the external symbol is assumed
to be zero. For example:

EXTRN SuMm

ADDI GA, SUM + 22

The assembler assumes the value of SUM to be zero and generates an
immediate value of 22.

*** ERROR 93: ILLEGAL POST-AUTO-INCREMENT IS IGNORED

A CALL instruction cannot have a data memory expression which uses the
post auto-increment form. For exampile:

CALL [GA+IX +], TARGET

The data memory expression form [GA+IX+] is not allowed. Another data
memory expression form must be used in its place.

*** ERROR94: FORWARD REFERENCE TO REGISTER SYMBOL (X) IS ASSUMED ZERO
Symbols created as alternate register names are only allowed in the same con-
texts that the register symbol is allowed in. This error message is provoked by
the following kind of statement:

DB X

X EQU BC
The value of X in the DB directive is assumed to be zero.

*** ERROR95: ILLEGAL OPERAND #(X) IS ASSUMED ZERO

Operand number (X) in a DB, DW, DD, or EQU directive is a data memory
expression or a register symbol.

“** ERROR 121: INVALID DIGIT IN CONTROL FIELD

*** ERROR 122: LINE ENDS BEFORE QUOTED STRING IN CONTROL
*** ERROR 123: CONTROL REQUIRES PARENTHESIZED VALUE

*** ERROR 124: CONTROL REQUIRES QUOTED STRING

*** ERROR 125: RIGHT PARENTHESIS EXPECTED

Assembler Error Messages/User Actions

J-12

*** ERROR 126:

*** ERROR127:

*** ERROR 128:

*** ERROR 129:

*** ERROR 130:

*** ERROR131:

*** ERROR151:

*** ERROR 152:

*** ERROR 153:

*** ERROR 154:

*** ERROR 155:

*** ERROR 156:

CONTROL STRING IS TOO LONG

CONTROL VALUE IS TOO LARGE

CONTROL VALUE IS TOO SMALL

UNRECOGNIZED CONTROL

CONTROL REQUIRES NUMERIC VALUE

(X)ISUSED ILLEGALLY

NAME REQUIRED; STATEMENT IGNORED

LABEL REQUIRED; STATEMENT IGNORED

ILLEGAL OUTSIDE SEGMENT; STATEMENT IGNORED
ILLEGAL INSIDE STRUCTURE; STATEMENT IGNORED
SYMBOL EXPECTED; TWO NO-OPS GENERATED

TOO MANY EXTERNALS; BALANCE IGNORED

8089 Assembler

A maximum of 32,767 external symbols may be declared in a source file, pro-
vided there is sufficient room in the dictionary. Two separate source files must

be created if more than 32,767 external symbols are needed.

*** ERROR 157: ‘‘ENDS’’ HAS NO ANTECEDENT; STATEMENT IGNORED

*** ERROR 158:

ATTEMPTED 1-BYTE BRANCH TO 2-BYTE TARGET;
TWO NO-OPS GENERATED

The jump target of a TSL instruction is outside the range next instruction
—128, next instruction + 127. The jump target must be relocated inside this

range.

*** ERROR 159:

*** ERROR 160:

*** ERROR 161:

*** ERROR 162:

*** ERROR 163:

*** ERROR 164:

*** ERROR 201:

*** ERROR 202:

*** ERROR 203:

*** ERROR 204:

*** ERROR 205:

*** ERROR 206:

ILLEGAL COMBINATION OF OPERANDS; TWO NO-OPS GENERATED
“NAME’’ DOES NOT ALLOW EXPRESSIONS; STATEMENT IGNORED
SEGMENT (X) IS ALREADY DEFINED; STATEMENT IGNORED
““SEGMENT’’ REQUIRES A NAME; STATEMENT IGNORED
STRUCTURES MAY NOT BE NESTED; STATEMENT IGNORED

UNRECOGNIZED OPERATION (X); STATEMENT IGNORED

FAILURE DURING STATEMENT SCAN (REMAP)
SYNTAX FAILURE AFTER INITIAL EVALUATION
FAILURE DURING OPERAND CLASSIFICATION

POINTER FAILURE IN PASS 2; GA ASSUMED

DESTINATION LOST BETWEEN PASSES; WIDTH ASSUMED 8

ATTEMPT TO SKIP TO NONEXISTENT OPERAND

8089 Assembler

*** ERROR 207:

*** ERROR 208:

*** ERROR 209:

*** ERROR 210:

*** ERROR 211:

*** ERROR 212:

*** ERROR 213:

*** ERROR 214:

*** ERROR 215:

*** ERROR 216:

*** ERROR 217:

*** ERROR 218:

*** ERROR 220:

*** ERROR 221:

*** ERROR 222:

*** ERROR 247:

*** ERROR 248:

*** ERROR 249:

*** ERROR 250:

*** ERROR 251:

*** ERROR 252:

*** ERROR 253:

*** ERROR 254:

*** ERROR 255:

Assembler Error Messages/User Actions

OPERAND #(X) FAILS IN PASS ONE; STATEMENT IGNORED
(X) WAS PREVIOUSLY MADE A NON-SYMBOL
UNRECOGNIZED CONSTRUCT WHILE EMPTYING META-TEXT
REWRITTEN EXPRESSION FAILURE

META POINTER IS PAST END OF META TEXT

META POINTER IS BEFORE START OF META TEXT

META NOTE OVERFLOW

META NOTE UNDERFLOW

ATTEMPT TO PLANT UNRECOGNIZED META CHARACTER
ATTEMPT TO PLANT UNRECOGNIZED OBJECT CONSTRUCT
UNRECOGNIZED CONSTRUCT WHILE SKIPPING IN META-TEXT
FAILURE OF OPEN/CLLOSE QUOTE META

INVALID META FOUND IN INTERMEDIATE TEXT
UNRECOGNIZED TOKEN TYPE; SKIP TO COMMA OR END-OF-LINE
CONTROL FAILURE IN PASS 2

USED ILLEGALLY

CONTROL IS INVALID IN COMMAND TAIL

INVOCATION DOES NOT END WITH <CR><LF>

INVOCATION LINE IS TOO LONG

INPUT MUST BE FROM A RANDOM-ACCESS FILE

TYPE <n>: <concise message for ISIS error <n>>

LENGTH ERROR ON READ

NOT ENOUGH SPACE FOR ERROR CONSTRUCTS

PASS FAILURE DURING STATEMENT ABANDON

*** ERROR<m>: INTERNAL PROCESSING ERROR
Assembler failure—contact Intel Corporation.

*** ERROR <n>: UNKNOWN ERROR TYPE
Assembler failure—contact Intel Corporation.

J-13

APPENDIX K
8089 INSTRUCTIONS IN
HEXADECIMAL ORDER

Each 8089 instruction generates a minimum of two bytes of object code. The
following lists the hexadecimal values for the second assembled instruction byte,
containing the operation code and the base memory address fields.

A “‘B”’ appearing in brackets in an instruction mnemonic is coded for the byte form
of the instruction.

For example:

20H is generated by both ADDI R, I and ADDBI R, I. An ‘L’ appearing in
brackets in a control transfer instruction mnemonic is coded for the long form of the
instruction.

For example:

40H is generated by both INZ R, L and L-INZ R, L.

See Chapter 3 for the format of the first assembled instruction byte.

HEX BINARY INSTRUCTION BASE ADDRESS
00 00000000 NOP

00 00000000 SINTR

00 00000000 WD S, D
00 00000000 XFER

01 00000001

02 00000010

03 00000011

04 00000100

05 00000101

06 00000110

07 00000111

08 00001000 LPDI P, |
09 00001001

0A 00001010

08 00001011

oc 00001100

0D - 00001101

0E 00001110

OF 00001111

10 00010000

11 00010001

12 00010010

13 00010011

14 00010100

15 00010101

16 00010110

17 00010111

18 00011000

19 00011001

1A 00011010

1B 00011011

1C 00011100

1D 00011101

1E 00011110

1F 00011111

20 00100000 ADD[B]l R, |
20 00100000 [LJJMP L
21 00100001

22 00100010

K-1

8089 Instructions in Hexadecimal Order 8089 Assembler

HEX BINARY INSTRUCTION BASE ADDRESS
23 00100011

24 00100100 OR[B]l R, |
25 00100101

26 00100110

27 00100111

28 00101000 AND[B]I R, |
2 00101001

2A 00101010

28 00101011

2C 00101100 NOT R

2D 00101101

2E 00101110

2F 00101111

30 00110060 MOV[B]l R, |
31 00110001

32 00110010

33 00110011

34 00110100

35 00110101

36 00110110

37 00110111

38 00111000 INC R

39 00111001

3A 00111010

38 00111011

3C 00111100 DEC R

3D 00111101

3E 00111110

3F 00111111

40 01000000 [LIUNZ R, L
41 01000001

42 01000010

43 01000011

44 01000100 LWz R, L
45 01000101

46 01000110

47 01000111

48 01001000 HLT

49 01001001

4A 01001010

4B 01001011

4C 01001100 MOV[B]l M, ! GA
4D 01001101 MOV[B]I M, 1 GB
4E 01001110 MOV[B]l M, | GC
4F 01001111 MOV([B]l M, | PP
50 01010000

51 01010001

52 01010010

53 01010011

54 01010100

55 01010101

56 01010110

57 01010111

58 01011000

59 01011001

5A 01011010

58 01011011

5C 01011100

5D 01011101

5E 01011110

5F 01011111

60 01100000

61 01100001

62 01100010

63 01100011

64 01100100

65 01100101

66 01100110

67 01100111

68 01101000

K-2

8089 Assembler

HEX

69
6A
6B
6C
6D
6E
6F
70
7
72
73
74
75
76
7
78
79
7A
7B
7C
7
7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
Al
A2
A3
A4
A5
Ab
A7
A8
A9
AA
AB
AC
AD
AE

BINARY

01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
011111
10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011

10010100

10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110

INSTRUCTION

MOV(B]
MOV/[B]
MOV([B]
MOV(B]
MOV([B]
MOV(B]
MOV(B]
MOV(B]
LPD P,
LPD P,
LPD P,
LPD P,
MOVP P, M
MOVP P, M
MOVP P, M
MOVP P, M
MOV[B] M
MOV[B] M,
MOV([B] M,
MOV[B] M
TSL M, |
TSL M, |

I

|

DODOIBZIZZEZ

ZZZTZZZTZZIVDD

3

’

TSL M,
TSL M,
MOVP M,
MOVP M,
MOVP M,
MOVP M,
[LICALL M,
[LICALL M,
[LICALL M,
[LICALL M,
ADD[B] R,
ADD[B] R,
ADD[B] R,
ADD[B] R,
OR[B] R
OR[B] R,
OR[B] R,
OR[B] R
AND[B]
AND[B]
AND[B]
AND[B]
NOT|B]
NOT(B]
NOT(B]

TMOVTVTO
e rrrrzz=zx

]

DIDBDDDD”
E:E:E:E:E:E:E:E:E:E:E:E:E:E:E:

BASE ADDRESS

GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC

8089 Instructions in Hexadecimal Order

8089 Instructions in Hexadecimal Order

K-4

HEX

AF
BO
B1

B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
Co
C1

c2
C3
C4
C5
Cé
C7
C8
C9
CA
cB
cC
CD
CE
CF
DO
D1

D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
E1

E2
E3
E4
E5
E6
E7
ES8
E9
EA
EB
EC
ED
EE
EF
FO
F1

F2
F3
F4

BINARY

10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100

INSTRUCTION

NOT[B] R, M
JMCE
JMCE
JMCE
JMCE
JMCNE

M
JMCNE M,
M
M

’

=
e

rFrererEEEEEECEET

JMCNE
JMCNE
JNBT M, b,
JNBT M, b,
JNBT M, b,
JNBT M, b
JBT M,
JBT M,
JBT M,
JBT M,
ADD[B]I M,
ADD[B]l M,
ADD[B]l M,
ADD[B]I M,
OR[B]! M, |
OR[B]l M, |
|
!

———

————pDoTOoUT

OR[B]I M,
OR[B]I M,
AND[B]l M
AND[B]l M,
AND(B]l M,
AND(B]l M

’

)

ADD[B] M, R
ADD[B] M, R
ADD[B] M, R
ADD[B] M, R
OR[B]
OR([B]
OR[B]
OR[B]
AND(B]
AND(B]
AND[B]
AND(B]
NOT|B]
NOTI[B]
NOTIB]
NOT[B]
(LJUNZ(B]

UNZ[B]

pNnB]

zzzzzgsz;;;;
IDVIOD

’

L)JZ[B] M,
LJZ[B] M,
[LIJZ[B] M,
INC[B] M
INC[B] M
INC[B] M
INC[B] M
DEC[B] M
DEC[B] M
DEC[B] M
DEC[B] M

(L
v
%]JZ[B] M,
[

mrrrrr

SETB M, b

zzzx
rrrrr

L
L
L
L

rrrr

rrrr

BASE ADDRESS

PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GG
PP
GA
GB
GC
PP

GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP
GA
GB
GC
PP

GA

8089 Assembler

8089 Assembler 8089 Instructions in Hexadecimal Order

HEX BINARY INSTRUCTION BASE ADDRESS
F5 11110101 SETB M, b GB
F6 11110110 SETB M, b GC
F7 11110111 SETB M, b PP
F8 11111000 CLR M, b GA
F9 11111001 CLR M, b GB
FA 11111010 CLR M, b GC
FB 11111011 CLR M, b PP
FC 11111100
FD 11111101
FE 11111110
FF 11111111

K-5

INDEX

The entries in this index are shown as they appear in the text of the book, i.e., lower-
case words are lowercase in the text, uppercase words are uppercase in the text.
When more than one reference is given for an entry, the primary reference is listed
first.

SYMBOLS
$ location counter reference, 2-8
in relative instruction addresses, 2-10
in assembly control lines, 5-2
& continuing source statements, 3-2
continuing assembler invocation lines, 5-2
+ assembly time operator, unary or binary addition, 2-8
- assembly line operator, unary or binary addition, 2-8
in the list file, 5-7
- symbol special character, 2-5
/ in the list file, 5-7
in label definition, 2-6
; in comments, 3-2
= in list file, 5-7
? symbol special character, 2-5
@ symbol special character, 2-5
** assembler prompt, continue invocation line, 5-2
- in symbol table, 5-7
[PREG] data memory operand, 2-11
[PREG].d data memory operand, 2-12, 4-7

[PREG+IX] data memory operand, 2-12
[PREG+IX+] data memory operand, 2-12

8086
addresses
1/0, 1-15
Memory, 1-15
formation of 20-bit addresses, 1-9
host processorand RQ/GT, 1-13
8088
host processor and RQ/GT, 1-13

Index-1

A

AA, field in assembled instructions
in CALL and LCALL instructions,
3-27, 3-51
memory address mode, 3-2, 3-3
ADD, 3-11, 3-9
ADDB, 3-8
ADDB M, R, 3-13
ADDB R, M, 3-12
ADDBI, 3-8
ADDBI M, 1, 3-15
ADDBI R,], 3-14
ADDI, 3-16, 3-9
addition, 3-8, 3-9
ADD, 3-11, 3-9
ADDB, 3-12, 3-13, 3-8
ADDBI, 3-14, 3-15, 3-8
ADDI, 3-16, 3-9
and 20-bit pointer/registers, 3-9
addresses (physical length), 1-15
addressing data. See also data memory
operands
indirect, 1-15, 2-11
Local (I/0) addresses, 1-15, 2-11
LOCAL configuration address space, 1-4
REMOTE configuration address
space, 1-4
system (memory) addresses, 1-15, 2-11
tag bit in, 1-15
ampersand (&)
in continuing source statements, 3-2
in continuing the assembly invocation
line, 5-2
AND, 3-17, 3-18, 3-9
ANDB, 3-8
ANDB M, R, 3-2
ANDB R, M, 3-1
ANDBI, 3-8
ANDBI M, I, 3-22
ANDBI R, I, 3-21
ANDI, 3-23, 3-24,3-9
arithmetic and logical instructions, 3-8, 3-9
ADD, 3-11, 3-9
ADDB, 3-12, 3-13, 3-8
ADDBI, 3-14, 3-15, 3-8
ADDI, 3-16, 3-9
AND, 3-17, 3-18, 3-9
ANDB, 3-19, 3-20, 3-8
ANDBI, 3-21, 3-22, 3-8
ANDI, 3-23, 3-24, 3-9
DEC, 3-29, 3-9
DECSB, 3-30, 3-8
INC, 3-32,3-9
INCB, 3-33, 3-8
NOT, 3-84, 3-85, 3-9
NOTB, 3-86, 3-87, 3-8
OR, 3-88, 3-89, 3-9
ORB, 3-90, 3-91, 3-8
ORBI, 3-92, 3-93, 3-8
ORI, 3-94, 3-95, 39
registers affected by 8-bit
operations, 3-8
using pointer/registers in, 3-9
ASMB89, 1-5

0
9

Index-2

compression of source statements,
3-2,4-2
controls
DATE, 5-4
EJECT, 5-4
INCLUDE, 5-4
LIST, 54
NOLIST, 5-4
NOOBIJECT, 5-3
NOPAGING, 5-4
NOPRINT, 5-3
NOSYMBOLS, 5-3
OBJECT, 5-3
PAGING, 5-4
PAGELENGTH, 5-4
PAGEWIDTH, 5-4
PRINT, 5-3
SYMBOLS, 5-3
TITLE, 5-4
default controls, table 5-2, 5-5
displacements generated by
short control transfer instructions, 3-7
long control transfer instructions, 3-7
double asterisk prompt, 5-2, 5-5
invocation, 5-2, 5-5
list file, 5-6 thru 5-8, 1-5, 1-6
location counter, 4-3, 2-8
object file, 1-5, 1-6
primary versus general controls, 5-2
source file, 5-1, 1-5
assembled instructions, 3-2 thru 3-4
additional assembled bytes
displacement value field, 3-2, 3-3
immediate value field, 3-2
offset field, 3-2, 3-3
format of initial two bytes, 3-3
memory to memory move
operations, 3-72 thru 3-76, 3-3
TSL instruction, 3-99, 3-100, 3-3
assembler. See ASM89
assembler control defaults, Table 5-2,
5-5
assembler control lines, 5-2
assembler directives
Assembly Termination
END, 4-12
Data Definition and Memory
Reservation
DB, 4-4,4-5
DD, 4-6
DS, 4-7
DW, 4-5, 4-6
list of, 4-2
Location Counter Control
EVEN, 4-9
ORG, 4-9
Program Linkage
EXTRN, 4-11
NAME, 4-10
PUBLIC, 4-11
SEGMENT/ENDS, 4-10, 4-11
source statement format, 4-1
structure definition
STRUC/ENDS, 4-7, 4-8
symbol definition
EQU, 4-3, 44

assembler invocation, 5-2, 5-5
Assembler Termination directive
END, 4-12
assembler’s location counter, 4-3
and DS directive, 4-7
and EVEN directive, 4-9
and ORG directive, 4-9
and STRUC/ENDS directive, 4-8
location counter reference symbol
($)y 2-8
value assigned to labels, 4-3
assembly language instructions. See also
instruction mnemonics
assembled instructions, 3-2 thru 3-4
by functional group, 3-4 thru 3-10
execution time, 3-1
fetch time, 3-1
in encyclopedia of instructions, 3-1
operands, 2-1, 2-2
source statement format, 3-1, 3-2
assembly time operators, 2-8

B

base address. See data memory operands
base memory address select. See MM field
(of assembled instructions)
BC
channel register, 1-14
functions, 1-15
in DMA transfer, 1-16, 1-14
register operand, 2-3
binary constants, 2-7
Bit Manipulation and Test Instructions,
3-10. See also Data Memory Bit
Operands
CLR, 3-28
JBT, 3-34, 3-35
JNBT, 3-42, 3-43
LJBT, 3-52, 3-53
LJNBT, 3-59, 3-60
SETB, 3-96
Bus Load Limit (BLL), 1-7
BUSY flat byte
in Channel Control Block, 1-6
in 8089 initialization, 1-8, 1-13
indicating a channel’s activity status, 1-8

C

call instruction
CALL, 3-25 thru 3-27
LCALL, 3-50, 3-51
carriage return (ODH)
terminates source line, 3-2
carriage return followed by line-feed
(0ODOAH)
terminates source line, 3-2
CcC
and chained task block program instruc-
tion execution, 1-16
channel register, 1-14
function, 1-15
register operand, 2-3
role in DMA transfer, 1-16, 1-17
use of, example, 1-18 thru 1-25

chained task block program instruction
execution
control by CC register, 1-16, 1-17
operation, 1-16
channel attention (CA)
first CA after reset, 1-12
in 8089/host processor communica-
tions, 1-7
use of, example, 1-22
Channel Control Block (CB)
address of, 1-6
BUSY flag byte, 1-6
Channel Control Word, 1-6
format, 1-7
inspection by a channel, 1-7
use of, example, 1-18 thru 1-25
Channel Control Word (CCW), 1-6,
figure 1-8
Bus Load Limit, 1-7
Command Field, 1-7
inspected by a channel, 1-7
Interrupt Control Field, 1-7
Priority Field, 1-7
use of, example, 1-18 thru 1-25
character string constants, 2-8
cannot be continued on another
source line, 3-2
containing one or two characters
as numeric constants, 2-8
in DW directives, 4-5
in DB directives, 4-4
clear data memory bit, 3-28
CLR, 3-28
Command Field (CF)
continue (resume) channel operation
command, 1-8, 1-11
halt channel command, 1-8, 1-7
in Channel Control Word, 1-8
start channel command, 1-7 thru 1-10
suspend (HALT and SAVE) channel
operation command, 1-7 thru 1-11
Command Parameter Block, 1-8, 1-6
accessing user-defined area through
PP, 2-11, 1-9
address placed in PP register, 1-8
format, 1-8
use of, example, 1-18 thru 1-25
used by channel HALT and SAVE
command, 1-8, 1-9
user-definable area, 1-9
comments
in assembler invocation lines, 5-2, 5-5
in source lines, 3-2
commerical at (@)
symbol special character, 2-5
communication. See also (sample task
block program), 1-18 thru 1-25
channel attention in, 1-7, 1-12
Channel Control Block in, 1-6
Channel Parameter Block in, 1-6
8089/host processor, 1-6
complement .
data memory byte, 3-86, 3-87
NOT, 3-84, 3-85
NOTB, 3-86, 3-87
register or data memory word, 3-84, 3-85

Index-3

conceptual view of the 8089 1/0 processor,
1-5
constants. See numeric constants
control defaults, table 5-2, 5-5
control lines, 5-2
Control Transfer Instructions
and TP pointer/register, 3-6
conditional instructions, 3-8
JMCE, 3-36, 3-37
JMCNE, 3-38, 3-39
JNZ, 3-44, 3-45
JNZB, 3-46
JZ,3-47, 3-48
JZB, 3-49
LIJMCE, 3-54, 3-55
LIMCNE, 3-56, 3-57
LINZ, 3-61, 3-62
LINZB, 3-63, 3-64
LJZ, 3-65, 3-66
LJZB, 3-67, 3-68
jump targets
operand form, 2-10
range, 3-6, 3-7
short and long forms, 3-7
short form errors, 3-7
unconditional instructions
CALL, 3-25 thru 3-27
JMP, 3-40, 3-41
LCALL, 3-50, 3-51
LIMP, 3-58
CR (ODH), 3-2
CRLF (0DOAH), 3-2

D

Data Definition and Memory Reservation
Directives
DB, 4-4, 4-5
DD, 4-6
DS, 4-7
DW, 4-5, 4-6
labels in, 4-4
Data Memory Bit Operands, 2-12, 2-13
Data Memory Operands, 2-11, 2-12
forms of
[PREG], 2-11
[PREG].4, 2-12
[PREG+IX], 2-12
[PREG+IX+], 2-12
indirect addressing, 2-11, 1-15
post auto-incremented, 2-12
data memory reservation. See DS directive
Data Transfer Instructions, 3-5
and 20-bit pointer/registers, 3-5
LPD, 3-69
LPDI, 3-70, 3-71
MOV, 3-72, 3-73
MOVB, 3-74 thru 3-76
MOVBI, 3-77, 3-78
MOVI, 3-79
MOVP, 3-80 thru 3-82
date
DATE control, 5-4, 5-5
in list file header line, 5-6
DATE assembler control, 5-4 thru 5-6
DB directive, 4-4, 4-5

Index-4

character string constants in, 4-4
expressions in, 4-4
format of, 4-4
DD directive
expressions in, 4-6
external symbols in, 4-6
format of, 4-6
LINKS86 and LOC86 processing of, 4-6
DEC, 3-29
DECB, 3-30
decimal constants, 2-7
decrement
data memory byte, 3-30
DEC, 3-29
DECB, 3-30
register or data memory word, 3-29
define byte. See DB directive
define double word. See DD directive
define word. See DW directive
DEFN, 5-7
directive mnemonics
list of, 4-2
DB, 4-4, 4-5
DD, 4-6
DS, 4-7
DW, 4-5, 4-6
END, 4-12
ENDS, 4-7, 4-8, 4-10, 4-11
EQU, 4-3,44
EVEN, 4-9
EXTRN, 4-11
NAME, 4-10
ORG, 4-9
PUBLIC, 4-11
SEGMENT, 4-10, 4-11
STRUC, 4-7, 4-8
displacement value
and control transfer instructions
long form, 3-7
short form, 3-7
and TP pointer/register, 3-6
and WB field of assembled instruction,
3-3
in assembled instruction, 3-2, 3-3
in TSL instruction, 3-100, 3-3
displacement value field
in assembled instruction, 3-2, 3-3
in TSL instruction, 3-100, 3-3
DMA transfer, 1-16
CC register’s role in, 1-16, 1-17
channel registers used in, 1-16
example, 1-18 thru 1-25
initiation, 1-17
special task block program instructions
WID, 3-101, 1-17
XFER, 3-102, 1-17
dollar sign ($)
in assembler control line, 5-2
in relative instruction addresses, 2-10
location counter reference symbol, 2-8
double asterisk prompt (**), 5-2, 5-5
DS directive
expressions in, 4-7
format of, 4-7
memory reservation, 4-7
DW directive

character strings of one or two characters
in, 4-5

expressions in, 4-5

format of, 4-5

storage of 16-bit addresses, 4-5

storage order of 16-bit values, 4-5

E

EJECT, 5-4
END directive, 4-12
and included files, 4-12, 5-1, 5-4
format of, 4-12
within a source program, 4-12
ENDS directive, 4-2
EQU directive
defining register name synonyms
with, 4-3
expressions in 4-4
format of, 4-3
error messages. See Appendix J
in list file, 5-7
EVEN directive, 4-9
execution time (instruction), 3-1
expressions, 2-5
assembly time operators, 2-8, 2-9
character string constants containing one
or two characters, 2-8
external symbols allowed in
DD directive, 4-6
LPDI instruction, 3-70
location counter reference, 2-8
numeric constants, 2-6, 2-7
permissible range of values, 2-9
symbols, 2-5, 2-6
EXT, 5-8
EXTRN directive, 4-11
format of, 4-11
within a source file, 4-11

F

fetch time (instruction), 3-1
use of one byte queue, 3-1
formation of 20-bit addresses by 8089
hardware, 1-9. See also segment
address and offset value

G

GA
channel pointer/register, 1-14
function, 1-14
in data memory operands, 2-11
in DMA transfer operations, 1-16
pointer/register operand, 2-4
register operand, 2-3

GB
channel pointer/register, 1-14
function, 1-14
in data memory operands, 2-11
in DMA transfer operations, 1-16
pointer/register operand, 2-4
register operand, 2-3

GC
channel pointer/register, 1-14
function, 1-14
in data memory operands, 2-11
in DMA transfer operations, 1-16
pointer/register operand, 2-4
register operand, 2-3

general controls, 5-4
defaults, table 5-2, 5-5
primary versus general controls, 5-2
EJECT, 54
INCLUDE, 5-4
LIST, 5-4
NOLIST, 5-4

H

hexadecimal constants, 2-7
HLT, 3-31

I

immediate data operands, 2-5 thru 2-9
expressions, 2-5
assembly time operators
character string constants containing
one or two characters, 2-8
location counter reference, 2-8
numeric constants, 2-6, 2-7
permissible range of values, 2-9
symbols, 2-5, 2-6
external symbols in
LPDI instruction, 3-70
immediate value
and WB field of assembled instruction,
3-3
in assembled instruction, 3-2
in TSL instruction, 3-99, 3-3
immediate value field
in assembled instruction, 3-2
in TSL instruction, 3-99, 3-3
INC, 3-32
INCB, 3-33
INCLUDE control, 5-4
included source lines in listing file, 5-7
increment
data memory byte, 3-33
INC, 3-32
INCB, 3-33
post auto-incremented data memory
operands
{PREG+IX+], 2-12
register or data memory word, 3-32
indirect addressing, 2-11, 1-15
initialization (of 8089), 1-11, figure 1-12
indication of completion, 1-13
initializing multiple 8089s, 1-13
linked list, 1-11
System Configuration Block, 1-13
System Configuration Pointer, 1-12
instruction labels. See labels
instruction mnemonics, 2-1
by functional group, 3-4 thru 3-10
Arithmetic and Logical, 3-8, 3-9
Bit Manipulation and Test, 3-10
Control Transfer, 3-6

Index-5

Data Transfer, 3-5
Special and Miscellaneous, 3-10
instruction opcodes
in assembled instructions, 3-3
instructions. See assembly language
instructions
instruction set, 1-5
encyclopedia, 3-11 thru 3-102
Interrupt Control Field (ICF)
enable, acknowledge, disable interrupts,
1-7,1-8, 1-18
in Channel Control Word, 1-7, 1-8
use with SINTR task block program
instruction, 1-7, 1-18
interrupts, 1-18
and Interrupt Control Field, 1-7, 1-8,
1-18
and SINTR task block program
instruction, 1-7, 1-18
enabled, acknowledged, disabled, 1-7,
1-8, 1-18
invocation line, 5-2, 5-5
continuation of, 5-2, 5-5
1/0 channel, 1-1, 1-4
IX
channel register, 1-14
function, 1-15
in data memory operands, 2-12
post auto-increments, 2-12
register operand, 2-3

J

JBT
JBT (short form), 3-34, 3-35
LIBT (long form), 3-52, 3-53
JMCE
JMCE (short form), 3-36, 3-37
LJMCE (long form), 3-54, 3-55
JMCNE
JMCNE (short form), 3-38, 3-39
LIMCNE (long form), 3-56, 3-57
JMP
JMP (short form), 3-40, 3-41
LIMP (long form), 3-58
JNBT '
JNBT (short form), 3-42, 3-43
LINBT (long form), 3-59, 3-60
INZ
JNZ (short form), 3-44, 3-45
LINZ (long form), 3-61, 3-62
JNZB
JNZB (short form), 3-46
LINZB (long form), 3-63, 3-64
jump instructions. See Control Transfer
Instructions
jump target
program location operands, 2-10
range for
long form control transfer
instructions, 3-6, 3-7
short form control transfer
instructions, 3-6, 3-7
JZ
JZ (short form), 3-47, 3-48
LJZ (long form), 3-65, 3-66

Index-6

JZB
JZB (short form), 3-49
LJZB (long form), 3-67, 3-68

L

labels
as jump targets, 2-10
defined, 2-6
on instructions, 3-2, 4-3
on data definition and memory reserva-
tion directives, 4-4
LF (0AH), 3-2
line-feed (0AH)
terminates source line, 3-2
LINKS6, 1-6, 4-10
and DD directive, 4-6
and LPDI instruction, 3-70
LIST, 5-4
list file, 1-5, 1-6
assembler controls for
DATE, 54
EJECT, 54
LIST/NOLIST, 5-4
PAGELENGTH, 5-4
PAGEWIDTH, 54
PAGING/NOPAGING, 5-4
PRINT/NOPRINT, 5-3
SYMBOLS/NOSYMBOLS, 5-3
TITLE, 54
error messages in, 5-6
format of, 5-6 thru 5-8
date, 5-6
header, 5-6
listing banner, 5-6
title, 5-6
source lines from an included file in, 5-7
split listing lines in, 5-7
symbol table in, 5-7, 1-5, 1-6
listing banner, 5-6
LOCS86, 1-6, 4-9, 4-10
and 8089 segments, 1-6, 4-9
and DD directive, 4-6
and LPDI instruction, 3-70
LOCAL configuration, 1-2
addresses in, 2-11, 1-15
address space, figure 1-4B
local (1/0) addresses, 1-4, 1-15
and data memory operands, 2-11
stored in data memory, 4-5
location counter. See assembler’s location
counter
location counter control directives
EVEN, 4-9
ORG, 4-9
location counter reference ($), 2-8
in assembly control lines, 5-2
in relative instruction addresses, 2-10
logical instructions, 3-8, 3-9
AND, 3-17, 3-18, 3-9
ANDB, 3-19, 3-20, 3-8
ANDBI, 3-21, 3-22, 3-8
ANDI, 3-23, 3-24, 3-9
NOT, 3-84, 3-85, 3-9
NOTB, 3-86, 3-87, 3-8

OR, 3-88, 3-89, 3-9
ORB, 3-90, 3-91, 3-8
ORBI, 3-92, 3-93, 3-8
ORI, 3-94, 3-95, 3-9
registers affected by 8-bit operations, 3-8
using pointer/registers in, 3-9
logical widths. See entry in Glossary
long (form) control transfer instructions,
3-7
assembler-generated displacements, 3-7
coded in place of short form, 3-7
jump targets, 3-6, 3-7
LPD, 3-69, 3-5
and data memory operand, 2-11
and pointer/register tag bits, 3-5
LPDI, 3-70, 3-71, 3-5
and data memory operands, 2-11
and pointer/register tag bits, 3-5

M

MASTER
designating an 8089 as, 1-13
in request/grant circuitry operation, 1-13
MC. See also IMCE, IMCNE
channel register, 1-14
function, 1-15
in DMA transfer operations, 1-16
memory address mode
and AA field in assembled instruction,
3-2,3-3
in CALL instructions, 3-27
in LCALL instructions, 3-51
memory-to-memory move operations. See
also MOV, MOVB
assembled instructions, 3-3
MM field (of assembled instructions)
base memory address select, 3-3
mnemonic. See instruction mnemonics and
directive mnemonics
MOV, 3-72, 3-73
and data memory operands, 2-11
MOVB, 3-74 thru 3-76
and data memory operands, 2-11
MOVBI, 3-77, 3-78
and data memory operands, 2-11
move instructions, 3-5
and data memory operands, 2-11
and 20-bit pointer/registers, 3-5
MOV, 3-72, 3-73
MOVB, 3-74 thru 3-76
MOVBI, 3-77, 3-78
MOVI, 3-79
MOVP, 3-80 thru 3-82
MOVI, 3-79
and data memory operands, 2-11
MOVP, 3-80 thru 3-82
MULTIBUS interface, 1-2, 1-3

N

name
defined, 2-6
NAME (in list file symbol table), 5-8

NAME directive, 4-10
format of, 4-10
in the list file listing banner, 5-6
use of, example, 1-18 thru 1-25
valid module-names, 4-10

negative numbers (values)
in numeric constants, 2-6
in expressions, 2-9

NOLIST, 5-4

NOOBIJECT, 5-3

NOP, 3-83

NOPAGING, 5-4, 5-5

NOPRINT, 5-3

NOSYMBOLS, 5-3, 5-5

NOT, 3-84, 3-85

NOTB, 3-86, 3-87

numeric constants
as program location operands, 2-10
binary number system, 2-7
character string constants of one or two

characters, 2-8

decimal number system, 2-7
hexadecimal number system, 2-7
negative numbers, 2-7, 2-9
octal number system, 2-7
permissible range of values, 2-9

O

OBJECT, 5-3, 5-5
object file, 1-5, 1-6
assembler controls
OBJECT/NOOBJECT, 5-3
octal constants, 2-7
offset field (in assembled instructions), 3-2,
3-3
offset value
and STRUC/ENDS assembler directives,
4-7, 4-8
in 20-bit addresses, figure 1-9, 4-6
in assembled instructions, 3-2, 3-3
in Command Parameter Block, 1-9
in data memory operands
[PREG].d, 2-12
template of, 4-7, 4-8
opcodes, See instruction opcodes
operands
general form, 2-1
types, 2-1
data memory, 2-11, 2-12
data memory bit, 2-12, 2-13
immediate data, 2-5 thru 2-9
pointer/register, 2-4, 2-5
program location, 2-10
register, 2-3, 2-4
OR, 3-88, 3-89
ORB
ORB M, R, 3-91
ORB R, M, 3-90
ORBI
ORBI M, I, 3-93
ORBI R, 1, 3-92
ORG directive, 4-9
ORI, 3-94, 3-95

Index-7

P

PAGELENGTH, 5-4
PAGEWIDTH, 5-4, 5-5
PAGING, 54
permissible range of expression
values, 2-9
pointer/registers, 1-14
and tag bits, 1-14, 1-15
as 16-bit registers, 1-14
GA, 1-14, 2-11
GB, 1-14, 2-11
GC, 1-14, 2-11
in arithmetic and logical operations,
3-9
in data memory addressing, 1-15,
2-11
TP, 1-14
pointer/register operands, 2-4, 2-5
post auto-incremented. See data
memory operands
PP, 1-14, 1-15
in data memory operands, 2-11
loaded by a start channel command,
1-8, 1-14
use, example of, 1-18 thru 1-25
used to access user-defined portion
of PB, 2-11, 1-9
primary controls, 5-3, 5-4
DATE
defaults, table 5-2, 5-5
NOPAGING !
NOOBJECT
NOPRINT
NOSYMBOLS
OBJECT
PAGELENGTH
PAGEWIDTH
PAGING
primary versus general controls, 5-2
PRINT
SYMBOLS
TITLE
PRINT, 5-3, 5-5
Priority field
in Channel Control Word, 1-7
use in resolving conflicting channel
requests, 1-7
Program Linkage Directives
EXTRN, 4-11
NAME, 4-10
PUBLIC, 4-11
SEGMENT/ENDS, 4-10, 4-11
Program Location Operands
instruction labels, 2-10
jump targets, 2-10
numeric constants, 2-10
relative instruction addresses, 2-10
Program Status Word (PSW)
changes to, 1-9, 1-10
format of, 1-10

stored by suspend (HALT and SAVE)

channel command, 1-9
PUB, 5-8
PUBLIC directive, 4-11
within a source program, 4-11

Index-8

Q

question mark (?)
symbol special character, 2-5

R

REG, 5-8
register operands, 2-3
registers, 1-13
BC, 1-14, 1-15
CC, 1-14, 1-15
GA, 1-14
GB, 1-14
GC, 1-14
in 8-bit arithmetic and logical opera-
tions, 3-8
IX, 1-14, 1-15
MC, 1-14, 1-15
PP, 1-14, 1-15
synonyms defined using EQU direc-
tive, 4-3
TP, 1-14, 1-15
used in DMA transfer operations,
1-16
relative instruction address, 2-10
See also dollar sign ($)
REMOTE configuration, 1-2, 1-3
addresses in, 1-15, 2-11
address space, figure 1-4A
request/grant (RQ/GT) circuity, 1-2
MASTER/SLAVE, 1-13
operation mode specified in SOC,
1-13
resume channel operation command,
1-7, 1-8, figure 1-11

S

segment
defined in 8089 source program, 4-10,
4-11
LOC86 and, 1-6, 4-9
paragraph aligned, 4-9, 1-6
segment address
in 20-bit addresses, figure 1-9, 4-6
SEGMENT/ENDS directives, 4-10, 4-11
placement in source file, 4-10
set bit, 3-96
SETB, 3-96
short (form) control transfer instructions,
3-7
assembler-generated displacements, 3-7
jump targets, 3-6, 3-7
short form errors, 3-7
single quote (*)

delimiting character string constants, 2-8

within character string constants, 2-8
SINTR, 3-97, 3-98

and Interrupt Control Field, 1-7, 1-18
slave

designating an 8089 as, 1-13

in request/grant circuitry operation, 1-13

source file, 1-5
END directive in, 4-12
elements in, 5-1

end of, 4-12
INCLUDE control, 5-4
must reside on, 5-1
placement of SEGMENT/ENDS
directives in, 4-10
task block programs in, 1-5, figure 1-6
source line, 3-2
first character an ampersand (&), 3-2
from an included file, 5-4
in list file, 5-6, 5-7
termination, 3-2
source program. See source file
source statements
assembler compression of, 3-2
assembler directive format, 4-1
assembler instruction format, 3-1
continuing, 3-2
maximum number of characters in, 3-2,
5-1
special and miscellaneous instructions
HLT, 3-31
NOP, 3-83
SINTR, 3-97, 3-98
TSL, 3-99, 3-100
WID, 3-101
XFER, 3-102
split source file line, 5-7
start channel command, 1-7, 1-8
task block program in
local (I70) space, 1-9, 1-10
system (memory) space, 1-9, 1-10
STR, 5-8
STRUC/ENDS directives, 4-7, 4-8, 1-9
and the assembler’s location counter, 4-8
format of structures, 4-7
instructions/directives not allowed
in, 4-8
no object code generated by, 4-8
structure definition
STRUC/ENDS directives, 4-7, 4-8
Structures
defined. See STRUC/ENDS directives
use of, 1-9
suspend (HALT and SAVE) channel
operation command, 1-7, 1-8
stores TP, tag bit and PSW, 1-9
SYM, 5-8
SYMBOLS, 5-3
symbols. See list at beginning of this Index
symbols, 2-5, 2-6, 4-3
external symbols, 4-11
in list file symbol table
label, 2-6
name, 2-6
reserved, See Appendix G
user-defined
instruction or directive label, 4-3
by EQU directive, 4-3, 4-4
Symbol table. See also SYMBOLS and
NOSYMBOLS
DEFN, 5-7
NAME, 5-8
TYPE
EXT, 5-8
PUB, 5-8
REG, 5-8

STR, 5-8
SYM, 5-8
VALUE, 5-7
format in list file, 5-7, 5-8
SYSBUS byte, 1-12
system bus, 1-12
defined in SYSBUS byte of SCP, 1-12
System Configuration Block, 1-13
System Operating Command in, 1-13
System Configuration Pointer
address of System Configuration Block
in, 1-12
inspected by the 8089, 1-12
location, 1-12
SYSBUS byte in, 1-12
system configurations
LOCAL configuration, 1-2
REMOTE configuration, 1-2, 1-3
system (memory) address, 1-15, 1-4
and data memory operands, 2-11
defined via a DD directive, 4-6
System Operation Command (SOC), 1-13
and remote bus width, 1-13
and request/grant circuitry operation,
1-13

T

tab character (09H), 5-1
tag bit
and data memory operands, 2-11
and LPD, LPDI instructions, 3-5
and MOV, MOVB, MOVBI, MOVI
instructions, 3-5
and pointer/registers, 1-14
in addressing data memory, 1-15, 2-11
task block program, 1-5. See also Appendix
H
16- and 20-bit addresses in, 1-15
example program, 1-18 thru 1-25
in source file, 1-5
template of offset values
STRUC/ENDS directives, 4-7
used in data memory operands, 2-12
TITLE, 5-4
title (in assembler list file), 5-4 thru 5-6
TP pointer/register
and control transfer instruction, 3-6
channel pointer/register, 1-14
function, 1-11, 1-15
loaded by a start channel
task block program in local (I/0)
space, 1-9 thru 1-11
task block program in system
(memory) space, 1-9 thru 1-11
pointer/register operand, 2-4
register operand, 2-3
restored
by MOVP command, 3-80 thru 3-82
by resume channel operation
command, 1-10, 1-11
stored
by CALL and LCALL instructions,
3-25 thru 3-27, 3-50, 3-51, 1-11
by suspend (HALT and SAVE)
channel command, 1-8, 1-9

Index-9

use of, example, 1-18 thru 1-25
TSL, 3-99, 3-100
TYPE (in list file symbol table), 5-8

§)

underline (_)
special symbol character, 2-5

A

VALUE, 5-7

Index-10

W

WB field (of assembled instruction)
and displacement values, 3-3
and immediate values, 3-3

WID, 3-101

word value storage order, 4-5

X

XFER, 3-102

V4

09H, 5-1

- ® 8089 Assembler Users Guide
I“U 9800938-01
REQUEST FOR READER’S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

ciTYy STATE ZIP CODE

Please check here if you require a written reply. [

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

I Teroes

NECESSARY
IF MAILED
INU.S.A.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTACLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

intgl
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

