A guide 1o

INTELLEC"
MICROCOMPUTER
DEVELOPMENT
SYSTEMS

BY DANIEL D. McCRMCKEN

R W il

ABOUT THE AUTHOR

Daniel D. McCracken is a leading author of textbooks on computer programming. His
Digital Computer Progr ing (1957) was the first text on the subject. Among his 15 titles
are standard works on Fortran (1961, 1965, 1972, and 1974), Algol (1962), COBOL (1963,
1970, and 1976), and numerical methods (1964 and 1972). His latest book is A Guide to PL/M
Programming for Microcomputer Applications (Addison-Wesley, 1978).

He graduated in 1951 from Central Washington University with degrees in mathematics
and chemistry. After seven years with the General Electric Company in a variety of assign-
ments in computer applications programming and programiner training, he spent a year at the
New York University Atomic Energy Computing Center, then went into full time consulting
and writing on computer subjects. His clients have included Honeywell, The RAND Corpo-
ration, Shell Oil, IBM, ana Intel.

He writes frequently for Datamation and other leading publications in data processing.

He is vice president of the Association for Computing Machinery, has been chairman of
the ACM Committee on Computers and Public Policy, and is a three-time ACM National

—,

Lecturer. He occasionally teaches a course at Columbia University. .

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

CHAPTER 7:

APPENDIX I:

APPENDIX II:

A GUIDE TO INTELLEC
MICROCOMPUTER DEVELOPMENT SYSTEMS

Page

AN OVERVIEW OF INTELLEC MICROCOMPUTER
DEVELOPMENT SYSTEMS.ttt ittt iiia e 1
THE MONITOR AND 1818ottt ettt et e 5
THE TEXT EDITO R . . . oo o oottt ettt et et e i e e e 13
THE PUM LANGUAGE ANDCOMPILER. s 23
THE ASSEMBLE RSo ottt ittt i iee ettt ia it a e 31
IN-CIRCUIT EMULATIONottt ettt e e et it 41
AN APPLICATION ILLUSTRATION o ettt 57
INTELLEC SERIES Il SYSTEM CONFIGURATIONS s 77
INTELLEC SERIES Il AND RELATED DOCUMENTATION 79

Intel, Intellec, INSITE, Library Manager, MCS, UPI-41, ICE-85, ICE-48, {CE-30 and MULTIBUS are trademarks of Intel

Corporation.

Copyright © 1978 Intel Corporation

Chapter 1
AN OVERVIEW OF INTELLEC

MICROCOMPUTER DEVELOPMENT SYSTEMS

A4 IThmivV ¥

INTRODUCTION: A WORD TO THE READER

This manual is for the person who wants an easy introduction to the Intellec Series Il Microcomputer Development
System: why it is needed, what it does for you, what its major components are (hardware and software), with simple ex-
amples that will help you get a rapid start using it.

We assume that you have some basic knowledge of microprocessors and their applications, but few demands are
made on that knowledge. We assume that you have had some minimum exposure to programming, but we do not
assume famitiarity with any particular language.

The intent of the manual is to give you a clear idea of what an Intellec Microcomputer Development System can do for
you, and, if you aiready have one, gei you off to a fast start using it effectively in your own work.

2 CHAPTER 1

ABOUT THIS MANUAL

After this introductory chapter, which gives you a bird’s-eye view of the system, the bulk of the manual is devoted to
five chapters giving you brief sketches of the major components.

Chapter 2 covers the monitor, ISIS, and files; Chapter 3 deals with the text editor; Chapter 4 is a brief introduction to
PL/M; Chapter 5 is devoted to the MCS-80/MCS-85 macro assembler; Chapter 6 explains the basic concepts of in-
circuit emulation. Chapter 7 then walks through the complete development cycle with a small application.

In every case there are numerous examples. In four chapters an illustrative console session is reproduced. In all
chapters there is material that you can try yourself, without any other manuals, if you wish. (Of course, before running
these examples you must install your system according to the instructions in Intellec Series Il Installation and Service
Manual.) The simple example in the next chapter lets you have something running on your system with a minimum of
effort and background.

In other words, this manual will help you get off to a running start. Naturally, you will need the manuals listed in Appen-
dix Il also, but this manual contains enough of the basics to let you get your feet on the ground, and serves as a road-
map to the other manuals.

Good reading!

THE MICROCOMPUTER DEVELOPMENT PROCESS

Designing a product containing a microcomputer requires close coordination of two separate but highly interdepend-
ent design efforts, hardware development and software development. Hardware development involves planning the in-
teraction of the microprocessor chip itself, the associated memory and peripheral circuits, and the specialized input/
output circuits and chips. Software development involves programming the microprocessor, using instructions that
will eventually be stored in the product’s memory, to correctly perform the required tasks.

These two development efforts might — in the abstract — be carried out independently. In practice, it is usual — and
highly preferable — for them to be carried out in parallel. Both to save time and to achieve good system integration,
software debugging must usually begin long before there is completed prototype hardware on which to test it.

THE FUNCTIONS OF A MICROCOMPUTER DEVELOPMENT SYSTEM

To carry out the various tasks of the microcomputer development cycle effectively and efficiently, it is necessary to
have supporting development tools, both hardware and software. There must be a computer system on which to write
programs, compile or assemble them, and store them during development. Entering programs and other text files re-
quires a text editor, and there need be facilities for maniputating files in various other ways. There has to be some way
to test programs as they are being written, at a time when prototype hardware may be incomplete or not available at all.

The Intellec Series Il Microcomputer Development System answers these needs, providing you all the tools you need
to bring your microcomputer application to successful operation in as short a time as possible. Key features include:

¢ The Intellec Series Il system provides all the hardware and software support you need to implement products
using the Intel MCS-80, MCS-85, and MCS-48 microprocessor families. It will support future Intel microproces-
sors as they are introduced.

* The Intellec Series Il system contains its own microprocessor, memory, high-speed peripherals, a diskette-based
operating system, and development software; together they provide everything you need to design and debug
your software.

¢ In-circuit emulation makes it possible to debug your hardware with the help of fiexible software debugging aids,
and lets you — through sharing of Intellec hardware resources — debug your software while the prototype hard-
ware is still being designed and built.

AN OVERVIEW OF INTELLEC MICROCOMPUTER DEVELOPMENT SYSTEMS 3

« The Intellec Series Il product line is modular in configuration so that you can tailor your system to your particular
needs and budget, then expand it easily when you choose.

IN-CIRCUIT EMULATION

The single feature providing you the greatest ease and versatility in developing your product is an In-Circuit Emulator
(ICE) module. ICE modules let you test your software using however much of your hardware — including none — that
is available at each stage of the development process. Using ICE, you can begin testing your software before any pro-
totype hardware even exists. Then as portions become available you can use them, “borrowing” resources (memory,
input/output) from the Intellec system to fill in for prototype hardware not yet ready. When all prototype hardware is
running, you can use ICE for a thorough debugging of it.

In-circuit emulation modules are available to support systems based on the 8080, 8085, 8048, and Series 3000 micro-
processors. As new CPUs are developed, matching in-circuit emulation packages will be made available. However, due
to processor differences, not all of the features in the following general description are available in every ICE system.

With in-circuit emulation, you control, interrogate, revise, and completely debug your product in its own environment.
When you plug ICE into your system in place of its processor, you gain all the diagnostic power and flexibility built in-
to the Intellec system.

You don't need to build your own specia! display or debugging hardware to support development, since these are in-
tegral parts of the Intellec system. You can use Intellec memory and inputioutput facilities in the early phases of
testing your prototype. Then, on a step-by-step basis, you replace shared resources with prototype-resident memory
and l/O.

In-circuit emulation allows you to set hardware and software conditions under which program execution is to be
stopped; these are called breakpoints. External breakpoint probes are provided to attach to any logic signal on a proto-
type board to detect hardware conditions not directly accessible to the microprocessor bus.

In-circuit emulation provides the capability to examine and aiter CPU registers, main memory, pin and flag values, and
automatically collect and store address, data and status information for machine cycles emulated. You can examine
and modify your program using symbolic references instead of absolute values.

As you will see in Chapters 6 and 7, this symbolic debugging is one of the key features of Intellec Microcomputer

Development Systems. In essence, it lets you debug your program at the source program level, that is, in terms of the
program as you wrote it. There is no need to be constantly converting your symbois to absolute machine addresses.

THE OPERATING SYSTEM
Intel System Implementation Supervisor (ISIS) is a diskette-based package of development software and file han-
dling facilities designed for use with the Intellec system and specifically tailored to the needs of microcomputer
development. Key features include:

e The ISIS text editor provides string search, substitution, insertion, and deletion commands.

¢ The 8080/8085 macro assembler generates relocatable code.

o The LINK program permits object programs, written in any Intel programming language, to be combined, resolv-
ing external references in the process.

e The LOCATE program converts a relocatable object program to specific memory locations, with full control over
where the program code, stack, and storage areas of a program are placed.

e The Library Manager simplifies use of object program libraries in the devetopment of large programs.

4 CHAPTER 1

In other words, programs can be created, edited, assembled, debugged and executed — all without paper tape han-
dling. Program listings can be directed to diskette for later use, or printed on the line printer.

ISIS is standard with all Intellec Series Il Model 220 and 230 Systems. For Model 210 users a ROM-based monitor/
editor/assembler provides all necessary system functions.

THE PL/M LANGUAGE AND COMPILER

PUM is a high-level language that is particularly well suited for use in system programming. It has a number of advan-
tages over programming in the language of the microprocessor itself. Programs written in PUM are generally faster
and less expensive to develop, more reliable, easier to understand and check out, and simpler to maintain. A modern
macro assembler is provided for those who choose to program in assembly language, but increasing numbers of users
of Intel MCS-80 and MCS-85 microprocessors are turning to PL/M to gain these advantages.

The PL/M compiler runs directly on the Intellec system using the ISIS operating system, producing efficient
relocatable code which can be easily linked with other PL/M and/or assembly language programs.

With PL/M you can create, compile, moditfy, link, relocate and debug programs entirely on the Intellec system itself
with no requirements for large in-house computers or time-sharing services.

THE FORTRAN-80 LANGUAGE AND COMPILER

Fortran is a high-level language that is particularly well suited to application programs. Intel’s Fortran-80 compiler im-
plements the ANSI Fortran-77 standard. To the various advantages of PL/M-80 just cited, it adds powerful arithmetic
processing capability and a variety of facilities for handling formatted input and output.

Fortran-80 can be used both as a development tool, while programs are being tested and run in the Intellec environ-
ment, and for application programming. In either case, one is free to develop modules in whatever language (8080/8085
Macro Assembler, PL/IM-80, or Fortran-80) has the greatest strengths for a given portion of the task; ISIS provides the
facilities for linking together the object programs produced by the assembler and compilers.

IN SUMMARY

Using the Intellec Series Il Microcomputer Development System, hardware and software development converge as
early in the development cycle as possible. The various software tools (the text editor, the MCS-80, MCS-85, or MCS-48
macro assemblers or the PL/M or Fortran compilers, the file management modules) allow you to develop your software
in a quick, convenient manner. Hardware tools, such as in-circuit emulation, allow you to debug your software and
hardware together.

Your configure your Intellec system to meet your needs. The Intellec product line ranges from a simple ROM-based
system to a highly sophisticated combination of advanced hardware and software. You can begin with whatever level
meets your present needs, then easily migrate to more complete versions as your changing needs require.

Chapter 2
THE MONITOR AND ISIS

The hardware of the Intellec system can’t do anything by itself — it needs software to tell it what to do. We are speak-
ing now of the software provided by Intel as part of the total package, not the programs you write for your application.
In order for the Intellec system to help you develop your programs, there have to be other programs already in the
system, so to speak, to make it run.

The system software comes in two parts, the monitor and /SIS (intel System Implementation Supervisor).

THE MONITOR

The monitor is a program that controls the central processing unit (CPU) of the Intellec system at the most elementary
level. The monitor program is supplied as a ROM chip set; it is permanently installed in the Intellec chassis, ready to
go to work when you turn on the equipment and carry out the simple operations to get things started. It carries out
functions such as these:

« Control of input and output. The monitor provides software to interface with all standard Intellec peripherals.

» Displaying and/or modifying the contents of inteliec memory.

 Displaying and/or modifying the contents of internal CPU registers.

¢ Loading other software that is described below.

e Executing any program in Intellec memory, either RAM or ROM.

Telling the monitor what we want it to do is a matter of typing simple commands at the system console, once the
system has been initialized.

For example, reading a paper tape in hexadecimal format from the paper tape reader is as simple as typing the com-
mand,

RO
where R is the coded command for READ, and the zero has a function that is not important to us.

Another example of a monitor function is the Display command. Suppose we wish to see the contents of memory loca-
tions 2000 through 2010, both numbers being hexadecimal. We enter the command,

D2000,2010

There are various other commands for carrying out the functions sketched at the beginning of this chapter.

6 CHAPTER 2

AN ILLUSTRATIVE MONITOR SESSION

The best way to get a rapid idea of what the monitor does, is to see it in action. To that end, we present the following

- sample terminal session, in which a small program is entered into Intellec memory and executed. You are encouraged
to enter the program yourself; with reasonable care and a bit of luck with your typing, you can have your system doing
something visible under your control, within 20 minutes!

The program that we shall enter is in fact the program shown in Fig. 5-1, which sends the letter X to the system console
once each second until interrupted from the Intellec front panel. The program as shown there is relocatable, which
means that it can be set up to execute from any part of Intellec memory, using the LOCATE command that will be dis-
cussed later. We shall work with the program as located to run from memory locations 4000H-4021H.

The dialog of the session is shown on the facing page, with explanatory comments keyed to bold face numbers in the
margin of the terminal printout.

1. linitialize the system, which requires only turning on the Intellec components. (In the Model 220 and Model 230
the disk drive doors must be open to run this example.) The monitor responds with an identifying message and
a “dot prompt,” meaning that it prints a dot (period or decimal point, if you prefer) to announce that it is ready to
accept commands.

2. | will want to enter the program using the Substitute command, which is a bit less confusing if the previous
contents of the memory locations being changed are all zero. Accordingly, | specify that memory locations
4000 through 4FFF (both numbers always hexadecimal) be filled with zeros, using the Fill command. There was
no real need to fill so much memory, but the operation is so fast one doesn’t worry about the time wasted.

3. Using the Substitute command four times | enter the program, one byte at a time. After the letter S (for Substi-
tute) | give the starting location of the program, 4000. When | press the space bar the monitor prints the current
contents of location 4000, which is zero because of the prior Fili operation; | type 31, which is the hex represen-
tation of the byte | want substituted for the zero. When | press the space bar again, the monitor prints the con-
tents of location 4001, which | replace with 30. Proceeding in this way I enter the first ten bytes of the program,
then press carriage return and start again with 400A, the next hex location after the one at the end of the previ-
ous line. All 34 bytes of the program are entered in the same way.

4. | tell the monitor to begin executing instructions at 4000 (always hexadecimal), which is the start of the program
| just entered. It does so, sending the letter X to the system console once each second.

5. To stop the program, | press the Interrupt 0 key on the Intellec front panel. When this is done, the instruction
then being executed is completed, the CPU registers are stored, and control of the system is given to the
monitor. The hex address after the crosshatch (#) is that of the next instruction to be executed. (If you run the
program, you may get a different address because the program is in a different place when you interrupt it.)

6. Using the X command, | ask for the contents of all CPU registers. The letters A through E are the registers with
those names; F is the program flag byte; H and L are the memory address registers; | is the 8080 interrupt mask;
M is the combination of the H and L registers; P is the program counter, giving the location of the instruction to
be executed next; S is the stack pointer. | observe that the program counter is the same as that given when [in-
terrupted the program.

7. 1 say Go, without specifying an instruction address. Program execution is continued from where it left off. X's
are again sent to the CRT.

8. | again interrupt the program — sooner this time — which stops at the same location as before. (As it happens,
the program spends most of its time in a small loop at this location.)

9. lagain ask for the register contents, some of which are now different because of the accident of when the pro-
gram was interrupted.

10. Using the Substitute command, | change the contents of a memory location. The effect will be to ring the bell in
the system console instead of printing an X.

o,

0 6 ~N

-

THE MONITOR AND ISIS 7

MDS MONITOR, V2.0

.F4LQ00,4FFF,00

.SLO0O 00-31 00-30 00-40 00-16 00-32 00-3E 00-C8 00-CD 00-16 00-40
"SLOQA 00-15 00-C2 00-05 00-40 00-0E 00-58 00-CD 00-0G5 00-F8 00-C3
.S4014 00-03 60-46 60-06 00-0C 00-48 00-0D 00-C2 00-19 00-4%0 00-3D
.S4LO1E 00-C2 00-18 00-40 00-C9

.G400O0

XXXﬁQ019

X
A=A3 B=0C C=04 D=09 E=EE F=12 H=12 I1=FE L=34 M=1234 P=4019 S=h02E
XXX#4019Q

.G
VYYYYY
AAAAANANNS
. X

A=35 B=0C C=04 D=1C E=EE F=12 H=12 I=FE L=34 M=1234 P=4019 S=402E
.S4LOOF 58-07

8 CHAPTER 2

e

1

12

13.

14.

15.

16.

17.

18.

19.

20.

21,

22.

- The program is started from where it was interrupted. The bell dutifully rings once each second.
An interrupt again catches the program at the same instruction as before.
| use the Display command to get a copy of the entire program, 16 numbers to a line.

Using the Assign command I specify that the listing device should be the line printer on my system, rather than
the console device which is the default.

Now, when | ask for the program to be displayed, it is printed on the line printer.
| substitute a different byte for the one at 4004.

I use the Go command with a breakpoint. The command says to start at 4000, but to stop just before executing
the command at 4007.

The program stops as ordered.

I want to see if the registers have the values | expect, knowing what | want the first three instructions to do.
Everything is in order.

| say Go, without a breakpoint; execution begins with the instruction at 4007, where we stopped. The effect of
the last change ws to slow the program down so it rings the bell once each five seconds.

I interrupt the program, which this time stops at a different instruction.

With nothing else to do, | turn off power on the Intellec components.

THE ISIS SYSTEM

The Intel System Implementation Supervisor (ISIS) is a collection of programs that facilitate the development of micro-
computer software. It is supplied on diskette. Among the functions of ISIS are the following, most of which are dis-
cussed later in this manual and more fully in other Intel publications,

All of the functions of the monitor are still available.

Commands for moving, renaming, deleting, and listing names of files, a file being any named program or collec-
tion of data. Examples of ISIS file commands follow at the end of this chapter.

A complete system called the text editor, which is used to create files — such as programs — as well as to
modify them in a variety of ways.

The 8080/8085 Macro Assembler translates programs written in assembly language to the machine language of
the Intel MCS-80/MCS-85 family. The assembler is itself a program, which is brought into the Intellec memory
from diskette when you type the command ASM80 and give the name of the file containing the assembly lan-
guage program to be translated to machine language.

Two programs named LINK and LOCATE that greatly facilitate program development, making it possible to com-
bine programs and to prepare them for execution from any memory location. Their functions are discused in con-
nection with the assembler and PLUM, in Chapters 4, 5, and 7.

The Library Manager, which makes it possible to place the object code for frequently used programs into a
library, then specify the name of the library for the LINK operation instead of having to name all the individual
programs.

1"
12
13

14
15
16
17
18
19

21
22

THE MONITOR AND ISIS 9

.G

#4019

.DL4000,4021

4000 31 30 40 16 32 3E C8 CD 16 40 15 C2 05 40 O0E 07
4010 CD 09 F8 C3 03 40 06 0C 48 0D C2 19 40 3D C2 18
4020 40 C9

JAL=L
.D4000,4021
.S4004 32-FF
.GL000 -4007
#4007

X

A=C8 B=0C C=01 D=FF E=EE F=12 H=12 I=FE L=34 M=1234 P=4007 S=4030
.G
#401A

v

10 CHAPTER 2

ISIS OPERATIONS WITH FILES

In all of your work with the Intellec system, you will be dealing with files and using certain ISIS commands heavily. We
accordingly present further information about files and the ISIS commands for handling them.

An ISIS file is any named collection of bytes. A file is usually stored on diskette in an Intellec system, but it can also be
a set of data coming from a peripheral device. Examples of files:

* A program that you enter using the text editor (described in the next chapter).
* A set of sample data, also prepared with the text editor.
* The output of a program, written to diskette.

¢ The contents of a paper tape, whether a program or data, that you borrowed with the permission of someone
else.

Usually, a file is a program, in any of several forms, as we shall discuss later.

You will most commonly create a file using the text editor. One of the ISIS commands is EDIT, which must state the
name we want the file'to have. The complete name consists of three parts; a device identifier enclosed in colons, the
name, and an optional extension separated from the name by a period.

Example of file names:

:F1:2FURN.SRC
:F1:2FURN.OBJ
:F1:ONESEC
:F2:ANDER6.LST

EXAMPLES OF ISIS FILE COMMANDS,

The COPY command permits you to move a file from one place in the Intellec system to another. Perhaps you want to
print a file on your line printer, using this command:

COPY :F1:ONESEC.LST TO :LP:

Or perhaps you wish to have a second copy of the file, with a different extension, on diskette:
COPY :F1:ONESEC.SRC TO :F1:ONESEC.SAV

The RENAME command lets you change the name of a file on diskette, as in this example:
RENAME:F1:ONESEC.SRC TO :F1:1SEC2.SRC

The DELETE command lets you remove files from diskette, making the storage space available for other files, as in
this example:

DELETE :F1:ONESEC.SRC
The DIR command displays a directory of all of the files on a diskette, as in this example, which refers to diskette 1:

DIR 1

THE MONITOR AND ISIS 11

The LINK command combines files of object programs into a new — and also reiocatable — object program. For an ex-
ample, suppose you have a program named :F1:MAIN.OBJ that refers to a subprogram named :F1:SUB.OBJ and which
needs to borrow ISIS procedures that are in a library named SYSTEM.LIB. You want to name the combined file
:F1:PROG.OBJ. The ISIS command:

LINK :F1:MAIN.OBJ, :F1:SUB.OBJ, SYSTEM.LIB TO :F1:PROG.OBJ
As you can see, the LINK facility makes it possibie to combine programs — possibly written by different programmers
— with procedures in libraries (either ISIS or those you create yourself using the Library Manager). This can be heipful
even in writing small programs, and is essential in a large project with many programmers.
The LOCATE Program converts a reiocatabie object program into absoiute form, that is, it assigns aii of the parts of
the program to fixed memory locations. If we don’t care where the program is placed, as will often be the case during
program development, the command can be as simple as

LOCATE :F1:PROG.OBJ

The output is a new file having no extension: :F1:PROG. On the other hand, an application program going into hard-
ware having several different types of memory might use some of the flexibility of the command, as in this example:

LOCATE :F1:PROG.OBJ CODE(4000H) DATA(6000H) STACK(6200H)

Even more flexibility is available.

SUMMARY
The monitor, which is permanentiy availabie in ROM, provides basic capabilities for using your system. iSiS, which
can be used on any Intellec system having disk drives, greatly extends the range and power of system software.

Chapter 3
THE TEXT EDITOR

The Intellec text editor lets you create and edit files of text. Examples of text files are source programs written in
assembly language or PL/M, tables to be used in a computation, or project documentation. You will probably use the
text editor most commonly to prepare and correct programs.

Before we delve into some of the details, here is an overview of how the text editor is used. After the equipment has
been turned on you initiate execution of the editor. You type in your program, making changes and corrections as you
go; when vou are finished creating the file you store it on diskette (or punch it onto paper tape in the Model 210). The
text file can now be used however you wish: you can assemble or compile it, if it is a program, or you can ask for a
listing on the console or line printer if you have one, or you can call on the text editor again and make changes in the
file.

THE POINTER

Once you have entered some text, all further operations depend on a pointer to the text. Since the text editor is
character-oriented, the pointer locates a character that is to be acted upon. The pointer may be positioned before the
first character of the text, between two characters, or after the last character. The pointer is never positioned directly
at a particular character, but always between two characters. When text is entered it is placed at a point immediately
following the pointer. As each character is entered, the pointer is moved to a position immediately following that
character.

You can move the pointer to any position in your text, using commands that are illustrated below. Pointer movement
may be in terms of characters or complete lines. Considering text in terms of lines is convenient because most text is
divided into lines.

COMMANDS AND COMMAND STRINGS

Each editor command consists of a single letter. Certain commands take arguments. Commands may be entered one
at a time or may be combined into command strings. The text editor signals its readiness to accept commands by
printing a prompting asterisk in the leftmost column of the system console device. Command strings must be termi-
nated with a pair of ALT MODE (alternate mode) or ESC (escape) characters (depending on the type of the console
device.)

EXAMPLES OF COMMANDS

The following three examples show first a typical command, then a command string, and finally a command string
combined with a text string. In each case the dollar signs show where the ALT MODE or ESC key was pressed.

13

14 CHAPTER3

*10T$$

COMMAND TERMINATOR

COMMAND

COMMAND ARGUMENT

PROMPT CHARACTER FROM EDITOR .

*B20K5T$S

COMMAND TERMINATOR

I
COMMAND WITH ARGUMENT

COMMAND WIiTH ARGUMENT

COMMAND

PROMPT CHARACTER FROM EDITOR

*SOLD DATASREPLACEMENTSS

COMMAND TERMINATOR

TEXT STRING

TEXT TERMINATOR

TEXT STRING

COMMAND

PROMPT CHARACTER FROM EDITOR

EDITOR COMMANDS

This command prints ten lines of text on the system
console device.

This command string moves the pointer to the begin-
ning of the text, deletes 20 lines of text, and prints the
following five lines on the system console device. The
command terminator is placed at the end of the com-
mand string; the individual commands do not need ter-
minators.

This command string searches for the string OLD DATA
in the text. When found, it is deleted and the text string
REPLACEMENT is used as a replacement. The single
dollar sign shows where the ESC key was used as the
text terminator for OLD DATA; the two dollar signs
represent two ESC characters used as the command ter-
minator.

Editor commands are provided to perform four groups of operations: text input/output, pointer manipulation, text

modification, and string search and substitution.

THE TEXT EDITOR 15

B — BEGINNING OF TEXT

The B command moves the pointer to the beginning of the text. It is useful in several ways, such as:
* Defining a starting point when the entire text is to be typed out;
e Moving the pointer to the start of the text prior to starting a search for a selected text string;

+ Inserting text at the beginning of the text, ahead of text already there.

Z — END OF TEXT

The Z command positions the pointer immediately following the last character in the text. This command is used
mainly to position the pointer so that new text can be inserted after the end of old text.

| — INSERT TEXT
The | command is used to enter text from the system console device, beginning where the pointer is positioned.

Entering a carriage return character causes a line feed character to be generated by the text editor and appended to
the carriage return character. Thus, the entry of a carriage return character causes a pair of characters to be stored.

After recognizing the letter | as a command, the text editor accepts all subsequent input as text (including carriage
returns and appended line feed characters) until ALT MODE, ESC, or Control and C keys are pressed. The ALT MODE
or ESC character specifies the termination of the text string; the Control C character cancels the command (and in-
sefts no text).

T — TYPE OUT TEXT
The T command types as many lines of text as the value of the argument written in front of it, as follows:

*nnnnnT3$$ nnnnn represents any decimal number from — 65,535 to
+ 65,534

If the argument is positive, typing starts at the pointer; the argument vaiue specifies the number of iines to be typed. if
the argument is negative, typing begins at the pointer minus the number of lines specified by the argument value; typ-
ing continues until the pointer is reached. If the argument value is zero, typing starts at the beginning of the current
line; all characters up to the pointer are typed. If no argument value is specified, a default value of 1 is assumed.

EXAMPLES OF EDITING USING B, Z, I, AND T COMMANDS

Suppose you have entered text using the | command, and now wish to type out the entire text. The following command
string may be used.

*B500T$$ The B command moves the pointer to the beginning of
the text. The 500T command types out 500 lines of text.
The argument 500 is assumed to be larger than the
number of lines of text; this being the case, the T com-
mand is terminated when the end of the text is reached,
even though the full count has not been reached. The
dollar signs stand for the ALT MODE or ESC character.

Suppose you are entering a source program, using the | command, and have already entered a large number of text
lines. For some reason the | command is terminated and the pointer is moved to some other location. When you wish

16 CHAPTER 3

to resume entering the source file, you simply move the pointer to the end of the text and use the | command again. A
typical command string will be as follows:

*ZITEXT STRING----------- $$ The new text will be inserted following the old text.

If you are entering text and wish to see the previous five lines, without moving the pointer, the following command may
be used:

*-5T$$ The five lines before the current line (the one within
which the pointer is located) are printed on the system
console device. The current line is printed up to the
position of the pointer.

The following command may be used to print the current line of text, without moving the pointer:
*0TT$S The 0T part of the command prints from the beginning

of the line up to the pointer. The following T command
prints from the pointer to the end of the line.

L — LINE
The L command moves the pointer as many lines as the value of the argument written in front of it, as follows:
*nnnnnL$$ nnnnn represents any decimal number from — 65,535 to
+ 65,534

The line feed character serves as the delimiter between lines. A line of text is defined as any text string having a line
feed character as its last character. (Recall that a line feed is automatically generated by the text editor when we press
carriage return.)

When the argument value is 1 or no argument is used (default value of 1 assumed), the pointer is advanced to the start
of the next line. A positive argument value advances the pointer to the beginning of the nth line following the current
line. A negative argument value moves the pointer back to the beginning of the nth line preceding the current line.
When the argument value is — 1, or just —, the pointer is moved back to the beginning of the line preceding the current
line. Finally, if the argument is 0, the pointer is moved to the beginning of the current line.

The command string OLT finds frequent use. It moves the pointer to the beginning of the current line, and then types
the entire line.

K — KILL

The K command deletes as many lines of text as the value of an argument that is placed in front of it, as follows:

*nnnnnK$$ nnnnn represents any decimal number from — 65,535 to
+ 65,534

A negative argument deletes lines prior to the tine containing the pointer. A positive argument deletes lines following
the line containing the pointer. If the argument is zero, the characters from the start of the current line up to the buffer
pointer are deleted. If the argument is 1 (actual or default), the characters from the pointer, up to and including the line
feed character which is used to terminate the line, are deleted.

A — APPEND

The A command reads text from diskette or paper tape into the area in Intellec memory where it is processed. it reads
at most 50 lines of text, so it must be issued several times for large files.

F — FIND TEXT STRING

The F command searches for a text string of up to 16 characters. Its format is:

*FXXXXXXXX$ where XXXXXXXX is any text string of up to 16
characters.

The search begins at the pointer, and terminates either upon finding the first occurrence of the string or upon reaching
the end of the text without finding a match. If a match is found, the pointer is positioned after the end of the matching
string. If a match is not found, the following message is printed:

CANNOT FIND “XXXXXXXX”

BREAK

The string searched for must be terminated in the command with an ALT MODE or ESC character. Other commands
may follow in the same string.

S — SUBSTITUTE TEXT STRING

The heavily used S command combines the actions of the Find command with a substitution if a match is found. The
format:

*SOLD STRINGSREPLACEMENT STRINGS$

If a match with OLD STRING is found, it is replaced with REPLACEMENT STRING, and the

the end of the replacement. Each of the strings must be terminated by an ALT MODE or ES
is included, the old string is simply deleted.

p
C.i

E — EXIT AFTER WRITING TEXT TO OUTPUT FiLE

The E command writes text from Intellec memory to diskette or punches it into paper tape for later use. It is ordinarily
used at the end of ail text editing sessions.

Examples of these commands are found in the sample text editing session that follows.

18 CHAPTER 3

A SAMPLE TEXT EDITING SESSION

To demonstrate some of the features of the text editor in operation, let us enter a small program and then make some
changes to it. The dialog of the session is shown on the facing page with explanatory comments keyed to bold face
numbers in the margin.

1.

10.

11.

12.

14.

I initialize the system by turning on power and pressing the Reset key on the Intellec front panel. The system
responds with the ISIS identification and the ISIS hyphen prompt.

. | enter the ISIS EDIT command, specifying a file on diskette unit 1 named ONESEC and having an extension of

SRC (for source). (Model 210 users enter the editor from the monitor, by typing the command GA800 in
response to a dot prompt.)

. The text editor identifies itself and notes that since there is no file with this name on diskette 1 this is a new

file.

. The editor prompts with an asterisk. Using the | (Insert) command, | enter a simple assembly language program

(which will be taken up again in the section on the assembler). The | command continues until | hit ESC twice,
as shown by the two dollar signs after the END, which is identifed as step 7.

In entering the program text | make free use of the tab feature: any time | simultaneously press Control and the
letter |, the system responds as a typewriter would to the tab key, with automatic tab stops every eight posi-
tions.

- | type DEALY where | meant DELAY. Noticing the mistake before going on, I press the rubout key three times;

the three wrong characters are echoed back as they are erased. | then type the correct characters. To be sure |
have the made the correction properly, before hitting carriage return to enter the line | press the Control key and
R together, which repeats the line as corrected. Since it appears to be correct, | press carriage return and con-
tinue entering the program.

. 1 get aline so badly messed up that | decide to start over. Pressing Control and X causes the entire line to be

erased; the crosshatch (#) indicates that this was done.

. | press ESC twice, once to terminate the input string and a second time to terminate the | command.

. Now there are errors to correct. Using the B command | move the pointer to the beginning of the text, then use

the S (substitute) command to correct the spelling of ASSEMBLY. The OLT combination prints the modified
line, which is now correct.

. luse the F (find) command to locate the label L2, which | entered without the colon. The T (type) command types

from where the pointer is positioned after the F; this is to assure myself that | am where | want to be.
| insert the colon, then type the entire line.
I notice that | have entered an instruction twice, so | use the F to find it.

The K (kill) command removes the entire line; to be doubly sure that | removed what | wanted to, | type the three
lines before and the three lines after the current position of the pointer.

. I notice that there is an instruction missing in the subroutine; the missing line should be immediately after the

one having the label L3, which means that the pointer must be positioned at the start of the following line, so i
use the F command to find the operation code of the following instruction. But there was another JNZ before
the one | wanted.

I use the L (line) command to move the pointer past the JNZ that | don’t want, and use F again. This time the
desired instruction is found.

-

~

10

n

12

13

14

1815-11, V2.2
-EDIT :F1:ONESEC.SRC
1SIS-11 TEXT EDITOR, V1.6
NEW FILE
21 ; AN ASSEMLBY LANGUAGE PROGRAM TO SEND THE LETTER 'X!
; TO THE CONSOLE OUTPUT DEVICE, ONCE EACH SECOND
’
co EQU OF80SH ; PROVIDE ADDRESS OF CO ROUTINE IN MONITOR
CSEG ; MAKE THE SEGMENT RELOCATABLE
STKLN 2 ; SET STACK LENGTH
START: LXI SP,STACK : INITIALIZE STACK POINTER
L1: MV D,50 ; WILL CALL DELAY SUBROUTINE 50 TIMES
L2 MV A,200 ; SUBROUTINE PARAMETER
CALL DEALYYLALAY ; INVOKE SUBROUTINE
CALL DELAY ; INVOKE SUBROUTINE
DCR D
DCR D
INZ L2 ; 50 TIMES AROUND THIS LOOP = 1 SEC
rd
MV I C,'xt ; SEND 'X' TO CONSOLE OQUTPUT DEVICE
CALL co ; MONTIRC CONSOLE#
CALL co ; MONITOR CONSOLE OUTPUT ROUTINE
JMP L1 ; AROIUND THE LOGOP INDEFINITELY
2
; THE DELAY SUBROUTINE
7’
DELAY: MVI B,12
L3: MOV c,B
JNZ Lk
DCR A
JINZ L3
RET
2
o END START ; PROGRAM EXECUTION BEGINS WITH SYMBOL 'START!
XBSLBYSBLYSOLTSS
; AN ASSEMBLY LANGUAGE PROGRAM TO SEND THE LETTER 'X!
XFL25TSS
MV I A,200 ; SUBROUTINE PARAMETER
RI:50LTSS
L2: MV A,200 ; SUBROUTINE PARAMETER
#FDCRSOLTSS
DCR D
®K-3T3T$S
L1: MV D,50 ; WILL CALL DELAY SUBROUTINE 50 TIMES
L2: MV A,200 ; SUBROUTINE PARAMETER
CALL DELAY ; INVOKE SUBROUTINE
DCR D
JNZ L2 ; 50 TIMES AROUND THIS LOOP = 1 SEC
2
#FUNZSOLTSS
JINZ L2 ; 50 TIMES AROUND THIS LOOP = 1 SEC
®LFJUNZSOLTSS
JUNZ Ly

i

w0

20 CHAPTER 3

15.

16.

17.

18.

I insert the entire line, including a carriage return, then hit ESC twice.

Now | notice an error earlier in the program. | could use L with a negative argument to back up, but the program
is short enough that there is no time penalty in simply going back to the beginning and then using an S. (l am
reasonably sure that the combination AROIU does not occur elsewhere in the program.)

Now | move the pointer to the beginning again and ask for 50 lines to be typed. | don’t really know how many
lines there are, but certainly less than 50, so | get the entire program.

All seems to be in order, so | use the E (exit) command to store the program on diskette (under the name used
with the ISIS EDIT command at the beginning), and return to ISIS. (On the Model 210, a paper tape is punched by
the E command.)

Why not try it yourself?

Here is a checklist of things you will need to do.

If you have a Model 220 or Model 230:

1.

2.

Turn on the Intellec components. Insert an ISIS system diskette in drive 0 and a blank diskette in drive 1.
Press the Reset key on the inteliec consoie and release it. After a brief interval the message
ISIS-11, Vx.y

will be produced at the console, where x.y will be numbers indicating the Version number of your ISIS system.
(New versions of most programs are issued from time to time.) ISIS will then produce a dash, telling you it is
ready to accept a command. Only ISIS prompts with a dash, so any time you see a dash prompt you know you
are dealing with ISIS, not the monitor, text editor, ICE, or the Library Manager, which use different prompt
characters.

. Type in the command

— FORMAT MYDISK.DDM

Actually you may use any combination of six or fewer characters before the dot and any combination of three or
fewer after. What comes after the dot might be your initials or the date or anything else you please.

. Proceed with the operations shown at the beginning of the text editing session.

- Save your work on diskette, since the program will be used in Chapter 5.

If you have a Model 210:

. Turn on the Intellec components.
. After a brief interval a dot prompt will appear on your console device.

. Enter the command GA800. This gives control of your Intellec system to the text editor, which in the Model 210

is in a ROM chip set.

. Proceed with the operations shown at the beginning of the text editing session.

. If you wish to use the program in connection with the console session on the assembler in Chapter 5, do not

turn off the power. Your program will be available when you wish to try the later console session.

As you use your Intellec system you will become very familiar with the text editor, including a few commands that we
have not discussed here.

15

16

17

THE TEXT EDITOR

ILL: DCR C
$$
*BSAROIUSAROQUSOLTSS
JMP L1 ; AROUND THE LOOP INDEFINITELY
®B50TSS

AN ASSEMBLY LANGUAGE PROGRAM TO SEND THE LETTER 'X'
TO THE CONSOLE OUTPUT DEVICE, ONCE EACH SECOND

;
;

2’
Cco EQU 0F809H . ; PROVIDE ADDRESS OF CO ROUTINE IN MONITOR
CSEG ; MAKE THE SEGMENT RELOCATABLE
STKLN 2 ; SET STACK LENGTH
START: LXI SP,STACK ; INITIALIZE STACK POINTER
L1t MVI D,50 ; WILL CALL DELAY SUBROUTINE 50 TIMES
L2: MVI A,200 ; SUBROUTINE PARAMETER
CALL DELAY ; INVOKE SUBROUTINE
DCR D
JNZ L2 ; 50 TIMES AROUND THIS LOOP = 1 SEC
4
MV I c, X! ; SEND 'X' TO CONSOLE OUTPUT DEVICE
CALL co ; MONITOR CONSOLE OUTPUT ROUTINE
JMP L1 ; AROUND THE LOOP INDEFINITELY

;
; THE DELAY SUBROUTINE

2
DELAY: MVI B,12
L3: MOV c,B
Lb: DCR c
INZ Lb
DCR A
INZ L3
RET
2’
END START ; PROGRAM EXECUTION BEGINS WITH SYMBOL 'START!

21

Chapter 4
THE PL/IM LANGUAGE AND COMPILER

The user of microcomputer equipment in the Intel MCS-80 and MCS-85 families has a choice between program-
ming in assembly language, which is somewhat similar to the language of the machine itself, resident FORTRAN-80
(an Intel implementation of ANS FORTRAN 77), or in the high level ianguage called PL/M. In the past the majority of
users have relied on assembly{anguage, but increasing numbers are turning to PLUM because of the variety of advan-
tages it offers in many circumstances.

PL/M is a simpie ianguage that is easy to iearn, understand, and use. it is powerfui, in that it gives access to the fuil
power of the microcomputer, but uses a compact notation for expressing the desired processing.

PL/M provides a means of writing a program that:
— often reduces the time and cost of programming
— increases software reliability
— improves documentation

— facilitates software maintenance

All of these advantages are in part a result of the fact that PL/M permits us to write programs that are easy to under-
stand.

PL/M-80 is an Intellec-resident compiler of the PLUM language for the Intel 8080 and 8085 microcomputers.

In this section we shall present only fairly simple examples of programs written in PL/M. Separate tutorial and refer-
ence manuals are available if you wish to use the language in your work.*

A PL/IM PROGRAM

The simple program that we shall study first is required to read values of two binary variables and produce an output
variable that is the “AND"” function of the two inputs. For the sake of realism we assume that the inputs describe the
status of a door and a switch in some kind of manufacturing process. We assume that these devices have been wired
to the inputs of the microcomputer so as to have the following meanings:

For the door:
0 means that the door is closed
1 means that the door is open

*See Appendix Il.

23

24 CHAPTER 4

For the switch:
0 means that the switch is off
1 means that the switch is on

The specifications say that in order to put the process into operation, the door must be open and the switch must be
on. In numeric terms, both values must be one before the process can start.

THE GENERAL CHARACTERISTICS OF A PL/M PROGRAM

Figure 4-1 shows a program that will fulfill these specifications. Let us look first at its overall characteristics before
studying the details.

/* A PROGRAM THAT ANDS TWO INPUTS TO PRODUCE AN OUTPUT ¥/

ANDER:

DO;
DECLARE DOORS1 BYTE;
DECLARE SWITCHS$1 BYTE;
DECLARE START$PROCESS BYTE;

DOORS$1 = INPUT(1);

SWITCHS$1 = INPUT(5);

STARTSPROCESS = DOORS1 AND SWITCHS1;
OUTPUT(1) = STARTS$PROCESS;

END;

FIGURE 4-1

We see at the beginning a comment, which is any string of characters that begins with /* and ends with */. We have
used a comment here to provide a descriptive heading for the program. Actually, comments may be used anywhere
that PL/M permits a space. We occasionally use comments within a program to describe what is being done, when the
statements themselves are not obvious. A comment is reproduced verbatim in a program listing but has no effect on
the operation of the program.

We see that the program proper begins with a name followed by a colon and that all of the rest of the program is
enclosed between the words DO and END. The fact that the entire program is enclosed in the DO block defined by this
DO-END pair, is signified by indenting ail of the statements between the DO-END pair a consistent amount. This inden-
tation is not required by the language and no meaning is derived from it by the computer. It is a very significant aid to
human understanding of the program, however.

STATEMENTS

The program consists of a number of statements. Every statement ends with a semicolon. For the sake of clarity we
never put more than one statement on a line, although the language specifications do permit it. Statements are some-
times written on more than one line, either for clarity or because they are too long to fit on one line.

THE DECLARE STATEMENTS

Every variable used in a PL/M program must appear in a DECLARE statement and all the DECLARE statements in a DO
block must appear at the beginning of the block. Each of the DECLARESs here contains just one variable and each is

specified to be a BYTE variable. This means that the representation of the variable within the computer program will be
one byte consisting of eight bits. There is also a second type of variable, the ADDRESS type, consisting of 16 bits.

In these DECLARE statements we see that the names of variables, more precisely called identifiers, may consist of let-
ters, digits, and doilar signs. The first character of an identifier must be a letter. The dollar sign is used only to improve
readability and is ignored by the compiler.

After the DECLARE statements we see a blank line, which we inserted to help clarify the structure of the program,
separating the declarations from the statements that specify what processing is to be done.

THE ASSIGNMENT STATEMENT

The statement
DOORS$1 = INPUT(1);

is an example of an assignment statement. The general form of the assignment is
variable = expression;

The statement means:

“Evaluate the expression on the righthand side of the equal sign and assign that value to the variable written on the
lefthand side of the equal sign.”

In many cases the expression on the righthand side will be quite simple, as here, but expressions can be more com-
piex.

In the assignment statement just shown, the operation specified is to obtain a byte of data from the input port that has
been assigned the number 1. The number of ports available and the identifying numbers associated with them is a mat-
ter of system hardware architecture. Not every microcomputer system would necesssarily have ports with the
numbers shown here.

The input operation obtains a complete byte of eight bits from the port identified by the number within the paren-
theses. We assume a problem specification which says that the rightmost bit coming in from this port wiii be eithera
zero or a one depending on the status of the door. It is also specified that all of the other bits of this byte will be zeros.

Similarly, the byte obtained from input port 5 consists of either a zero oraone in the rightmost bit position and zeros in
the other seven bit positions.

THE “AND” OPERATION

Now we come to the statement that is the primary function of the program: to establish whether the door is open and
the switch on. This is done with the logical operator AND, which operates on all eight pairs of bits of the two bytes
specified on the left and right of the AND. For each pair of bits, the result of the AND is a one if both bits are one, and
zero otherwise. Thus in the seven bit positions in which each bit of the pair is a zero, the result of the AND will also be
a zero. In the rightmost bit position, the result will be a one if the door is open and the switch is on; it will be a zero
otherwise.

The result of this operation is therefore either a byte of eight zero bits or a byte of seven zero bits and a one. This value,
whichever it is, is assigned to the variable having the identifier STARTSPROCESS.

Finally we send this byte to the output port having the number 1, where we assume that process control hardware has
been wired to bit zero of that port, which will start the process. Note that output port 1 has no relation to input port 1.

26 CHAPTER4

This completes the action required of this extremely simple program, which would halt operation upon reaching the
END statement. No realistic applications program would ever stop in just this way. The language elements required to
make the program repeat will be seen in the next example.

COMPILATION

The program shown in Fig. 4-1 is a PUM source program. To be executable by the Intel 8080 or 8085 it must be com-
piled into an object program of machine instructions.

The PL/M compiler is itself a large program. It is called into operation from diskette. When we enter a command such
as

PLM80 :F1:DOORS.SRC

the PL/M compiler is brought into the intellec system from its storage on the ISIS-II diskette.

THE SOURCE PROGRAM LISTING

One of the outputs of compilation is a listing of the program with certain information added; Fig. 4-2 shows the listing
produced when the program of Fig. 4-1 was compiled. We see that the compiler has added a statement number in the
leftmost position for each statement and a nesting level indicator in the next position. The meaning of the latter will
become clear in our next example. If there had been errors in the source program, such as missing semicolons at the
end of statements, references to variables that had not been declared, or any of a wide variety of errors in the syntax of
statements, these errors would have been noted with a brief diagnosis.

/% A PROGRAM THAT ANDS TWO INPUTS TO PRODUCE AN QUTPUT ¥/

1 ANDER:
DO;
2 1 DECLARE DOORS1 BYTE;
3 DECLARE SWITCHS$1 BYTE;
4 1 DECLARE STARTSPROCESS BYTE;

DOORS1 = INPUT(1);
SWITCH$1 = INPUT(5);
START$PROCESS = DOORS$1 AND SWITCHS1;
OUTPUT(1) = STARTSPROCESS;
END;

O oo~NOoOwm
- e e

FIGURE 4-2

A RAMP FUNCTION

For another example of a simple PUM program, suppose that we are required to produce what is commonly called a
ramp function, which in this case outputs a value increasing from 20 to 99 in steps of 1 every half-second. We can
imagine that this might be required to increase the speed of a large motor or something of the sort.

The program to do this, shown in Fig. 4-3, introduces two new PUM features: the iterative DO and a supplied pro-
cedure.

The iterative DO in statement 3 says to increase the value of the variable named CURRENT from 20 to 99; since we did
not specify otherwise, an increment of 1 is assumed by default. For each of these values of CURRENT, all of the state-
ments between the iterative DO in statement 3 and its matching END in statement 8 are carried out,

THE PL/M LANGUAGE AND COMPILER 27

/® A PROGRAM TO PRODUCE A RAMP FUNCTION %/

1 RAMP:

~DO;
2 1 DECLARE (CURRENT, COUNTER) BYTE;
3001 0 CURRENT = 20 TO 99; iy
42 o COUNTER = 1 TO 25; ey A0 000ys | X
5 3 rCALL TIMEC280); = (WV%X(-’“'}' R
6 3 . LEND, —
7 2 GEJUTPUT(I) = CURRENT)
g 2 ! ND;
9 1 \LEND;

FIGURE 4-3

The first statement in this range, statement 4, is another iterative DO, this time increasing the variable named
COUNTER from 1 to 25. COUNTER is not used otherwise, so the effect is simply to execute statement 5, 25 times.

TIME is the name of a procedure, a PL/IM procedure being a portion of a program that carries out some specific task
when called into action. The procedure TIME is supplied as part of the PL/M system; you can also write your own pro-
cedures as part of your program.

The effect of the procedure TIME is to delay program execution for a number of microseconds equal to 100 times the
argument (the expression written in parentheses). If the argument is 1, the delay is just 100 us; if the argument is 2, the
delay is 200 us; with an argument of 200, as here, the delay is 20,000 us. When the procedure is called 25 times as the
result of the iterative DO, the total delay is 25 x 20,000 us = 0.5 sec.

When this inner DO has been carried out the required 25 times, the value of CURRENT is sent to an output port. Then
as a result of the iterative DO in statement 3 the value of CURRENT is increased by 1 and the whole process is
repeated.

We see in this program how the nesting level indicators show the depth of nesting of statements. Statements 2 and 3,
for example, are nested within one DO, statement 4 is nested within two DOs, and statement 5 within three. The END
for each DO is given a level number as though included in the range of its matching DO. If the number of DOs and
ENDs match, as they must in a correct program, the final END will have a level of 1. Level.numbers can be. a useful
diagnostic, tool in finding program errors.

pEt

THE RAMP FUNCTION WITH CONSOLE OUTPUT

Let us now see what modifications to this program would be required to make it run on the Intellec system.

The main thing needed is a way to send the value of CURRENT to the consol edevice rather than sending it to an out-
put port. This will require converting the internal representation of the value of CURRENT, which is pure binary, into a
decimal number with proper ASCII representation of each digit for use by the external device. We will then need to be
able to call upon a procedure to send this number to the console device. Finally, it will be good to provide a way to
return control of the system to I1SIS when the program has finished its work.

The program in Fig. 4-4 embodies these modifications. The first new feature is the declaration of two procedures that
the program will use. The procedure named CO (for console output) takes a BYTE argument and sends the character

28 CHAPTER 4

/% A PROGRAM TO PRODUCE A RAMP FUNCTION AND SEND RESULTS TO CRT */

1 RAMP:

DO;
2 1 DECLARE (CURRENT, COUNTER) BYTE;
3 1 co:

PROCEDURE(CHAR) EXTERNAL;

4 2 DECLARE CHAR BYTE;

5 2 END;

6 1 EXIT:

PROCEDURE EXTERNAL;

7 2 END EXIT;

8 1 DO CURRENT = 20 TO 99;

9 2 DO COUNTER = 1 TO 25;
10 3 CALL TIME(200);
11 3 END;
12 2 CALL CO(C (CURRENT / 10) OR 30H); /% TEN'S DIGIT TO CONSOLE OQUTPUT (CO) ¥/
13 2 CALL CO(C (CURRENT MOD 10) OR 30H); /¥ UNIT'S DIGIT ¥/

14 2 CALL CO(CODH); /# CARRIAGE RETURN %/
15 2 END;

16 1 CALL EXIT; /% RETURN TO ISIS #/

171 END;

FIGURE 4-4

represented by that byte to the console output device. The procedure CO is declared to be EXTERNAL, which means
that it is not contained in this program, but must be obtained from some other source. As it happens in this case, the
procedure will be obtained from an ISIS library of programs, using the LINK operation; we shall see in the application
example in Chapter 7 how such a procedure could also be one that we have programmed, either in PL/M or assembly
languge.

The procedure EXIT, also EXTERNAL, simply returns control to ISIS. It does not require an argument.

The two iterative DOs are as before. Now, however, when we want to send the value of CURRENT to the console output
device, we must convert from binary to decimal, and also convert the digits to the form the console expects. The con-
version of a binary number that has a decimal representation no larger than two digits can be handled as shown. The
quotient on division by 10, with the remainder ignored, is the tens digit. We add two bits as required by the ASCil repre-
sentation of a digit, using the OR operation, and send the digit to the system console using the CO Procedure. The
MOD function gives the remainder upon division. As used here, it provides the units digit. A final call of CO sends a

carriage return. No line feed is sent, so the two-digit values of CURRENT will all appear in the same place on the CRT
screen.

When all the values of CURRENT have been produced, the CALL EXIT returns control of the system to ISIS, which will
then issue a prompt, waiting for whatever command we may wish to enter next.

THE LINK AND LOCATE OPERATIONS

This program can be compiled as before. If the name of the file containing this program is
:F1:RAMPCO.SRC

then the command would be:

PLM80 :F1:RAMPCO.SRC

THE PUM LANGUAGE AND COMPILER 29

The compilation produces two new files, differing from the source file in their extensions. The file
:F1:RAMPCO.LST
contains the listing file, which is the form shown in Fig. 4-4. The file
:F1:RAMPCO.0BJ
contains the object file, which is a program of 8080 instructions ready to be combined with any other programs that
are needed for its execution. In our case, it is necessary to obtain the procedures TIME, CO, and EXIT, which are found
in two libraries named SYSTEM.LIB and PLM80.LIB. This can be done with the ISIS command LINK:

LINK :F1:RAMPCO.0BJ, SYSTEM.LIB, PLM80.LIB TO :F1:RAMPCO.LNK

The extension LNK is meant to suggest “link output,” but actually you may use any extension you please so long as it
is not OBJ. The output of this operation is the file named

:F1:RAMPCO.LNK

which now has all the procedures in it, but stilt in relocatable form so that we can decide later exactly where it goes in
memory. To accomplish this in the simplest way, we use the command:

LOCATE :F1:RAMPCO.LNK

We could specify exactly where we want the program to go in memory, but since we don’t really care, for our purposes
here, we leave the LOCATE program to pick a location that does not conflict with ISIS functions.

The output of the LOCATE is a final file named
:F1:RAMPCO

i.e., having no extension. We can now type that file name, just as though it were a command — which, in fact, it now is.
The program will execute, producing the number from 20 to 99 on the system console, once every half-second.

If you have the PL/M compiler, why not try it? Use the text editor to enter the program, then type the PLM80, LINK, and
LOCATE commands as just shown.

SUMMARY

Naturally, there is much more to the PUM story than it is possible to tell here. Other manuals are available to tell you
about these features and how they are useful. Some additional topics are taken up in the PLUM program in Chapter 7.

Chapter 5
THE ASSEMBLERS

Using the Intellec assemblers, you can write programs at the level of the basic microcomputer instructions, and yet
gain the advantages of various features that go well beyond the basic machine language, such as:

e Symbolic addressing

s Program relocation, which means that an assembled segment can be placed anywhere in memory (8080/8085
only).

e Macros, which let you tailor a piece of code to multiple uses (ISIS-Il assemblers only).

* The INCLUDE facility, by which you can bring pre-written code sections, including macro definitions, from disk
into the program (1SIS-1l assemblers only).

available for the MCS-48 family of microprocessors. Not all assemblers have all the features discussed here.

In this section we shall sketch some of these facilities in terms of a simple illustrative program that is related to the
last PL/M example in the previous chapter, and parts of which will be utilized in the application example in Chapter 7.

It is not the intention here to teach assembly language programming or to provide a tutorial on microprocessor in-
structions and organization. The reader not familiar with these matters is not expected to be able to understand the
details of the illustrative program.

AN ASSEMBLY LANGUAGE PROGRAM TO SEND
OUTPUT TO THE SYSTEM CONSOLE

The simple program that we shall study is required only to send the letter ‘X’ to the system console, once every sec-
ond. This is about the simplest program that has any output, but it will let us see many of the features of the assembler
in action. A second version will bring out the essentials of macros.

A listing of the program is shown in Fig. 5-1. You may recognize it, since it was the example in the illustrative monitor
and text editing sessions. This version is the listing produced by the assembler, which contains the assembled
machine language instructions and line numbers, as well as everything that was in the source program as we entered
it. We shall study the program from this listing version; it will be more meaningful to discuss the assembly process
after that.

The headings above the program are: LOC is the location where the assembled instruction would be loaded if the pro-
gram started at location zero; OBJ is the assembled object program instruction; SEQ is the sequence number, which

31

32 CHAPTER S5

ISIS-11 8080/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE 1
LOC 0BJ SEQ SOURCE STATEMENT
1 ; AN ASSEMBLY LANGUAGE PROGRAM TO SEND THE LETTER 'X'
2 ; TO THE CONSOLE OUTPUT DEVICE, ONCE EACH SECOND
3 ;
F809 4 co EQU 0F809H ; PROVIDE ADDRESS OF CO ROUTINE IN MONITOR
5 CSEG ; MAKE THE SEGMENT RELOCATABLE
6 STKLN 2 ; SET STACK LENGTH
0000 310000 S 7 START: LXI SP,STACK ; INITIALIZE STACK POINTER
0003 1632 8 L1: MV D,50 ; WILL CALL DELAY SUBROUTINE 50 TIMES
0005 3ECS8 9 L2: MVI A,200 ; SUBROUTINE PARAMETER
0007 CD1600 C 10 CALL DELAY ; INVOKE SUBROUTINE
000A 15 11 DCR D
0008 C20500 C 12 JUNZ L2 5 50 TIMES AROUND THIS LOOP = 1 SEC
13 H
000E 0ES58 14 MVI C,'x ; SEND 'X' TO CONSOLE OUTPUT DEVICE
0010 CDOYF8 15 CALL co ; MONITOR CONSOLE OUTPUT ROUTINE
0013 C30300 C 16 JMP L1 ; AROUND THE LOOP INDEFINITELY
17 H
18 ; THE DELAY SUBROUTINE
19 ;
0016 060C 20 DELAY: MVI B,12
0018 48 21 L3: MOV c,8
0019 0D 22 Lb4: DCR c
001A C21900 C 23 JNZ L4
001D 3D 24 DCR A
001E C21800 C 25 JUNZ L3
0021 C9 26 RET
27 ;
0600 [28 END START ; PROGRAM EXECUTION BEGINS WITH SYMBOL 'START'
PUBLIC SYMBOLS
EXTERNAL SYMBOLS
USER SYMBOLS
co A FB809 DELAY C 0016 L1 C 0003 L2 C 0005 L3 C 0018 L4 C 0019 START C 0000

ASSEMBLY COMPLETE, NO ERRORS

FIGURE 5-1

we more commonly call the line number; SOURCE STATEMENT is what we wrote, reproduced exactly from the source
program.

On every line, anything after a semicolon is taken as a comment. It is carried along to the listing, but has no effect on
the assembly. Thus, any line that begins with a semicolon is entirely a comment. We see that no code is ever gener-
ated for such a line.

Line 4, the first one that has any effect on the assembler, establishes a meaning for the symbol CO, which is the entry
point for the Console Output routine in the monitor. With the symbol CO equated to the hex address 0F809, any ap-
pearance of that symbol in the program will be replaced with the numerical address. We see that this has been done in
the CALL instruction on line 15.

Line 5 says that this entire program is to be a code segment (CSEG) which means that it can be relocated. In brief, it
will be possible, using the LOCATE command, to put the assembled program anywhere in memory that we please. This
is very useful in product development, when we may not know — as the program is being written — where the different
segments will fit — or, indeed, even how much memory there wili be.

Line 6 is a final preliminary instruction to the assembler, this time giving the maximum length of the 8080 stack so that
appropriate memory space can be allocated. In this extremely simple program, the stack is never more than two bytes
in length, so we specify that stack length.

Line 7 is the first instruction. In its label field we see START; we will be able later (line 28) to refer to this location sym-
bolically without having any idea now what the actual memory iocation of the instruction may turn out to be. The
operation code LX| means Load Register Pair Immediate, and in the operand field we see that the stack pointer is

THE ASSEMBLERS 33

being loaded with the stack origin address using the reserved word STACK. Following the semicolon, a comment ex-
plains the purpose of the instruction.

The instructions on lines 8 and 9 also have labels since we need to refer to them from elsewhere in the program, but
the CALL instruction in line 10 does not. The CALL invokes the subroutine named DELAY, which starts in line 20,
transferring control to that jocation after placing on the stack the information necessary for the RET (return) instruc-
tion at the end of the subroutine to get back to the instruction after the CALL.

The rest of the program follows similar patterns.

The last line of the program is an END, which must always be present to inform the assembler that nothing else
follows. The START in its operand field causes program execution to begin with the instruction having that iabei, when
the program is loaded.

THE ASSEMBLY PROCESS

When we began editing the program, we gave it the name :F1:ONESEC.SRC. The :F1: specifies diskette unit 1;
ONESEC is the name of the file; SRC is the extension, which stands for source. When we want to assemble the pro-
gram, we use the ISIS command for the assembler we want, ASM80, ASM48, etc., depending on the microprocessor on
which the program will run. We might use the command

ASMB80 :F1:ONESEC.SRC

There are two output files from this process, both on the same diskette as the source program, and both having the
same name, but different extensions. The file :F1:ONESEC.LST is the listing file, which is what was shown in Fig. 5-1.
On the left side of this listing are the machine instructions assembled from the source program, in relocatable form
since we made a CSEG (code segment) of the program. The insiructions that wiii have to be modified when the pro-
gram is relocated are marked with a C.

Users of the Intellec Series Il Model 210 call the assembler into operation by typing the command GB800 in response
to a dot prompt from the monitor. The Model 210 assembler produces absolute code and does not have the macro
facility.

RELOCATION

The second file that results from assembly is :F1:ONESEC.OBJ which contains the object program instructions —
essentially what we see on the left side of the listing, formatted to be acceptable by the LOCATE program (and the
LINK program, as we shall consider later). In other words, the output of assembly is called an object program, but it is
not quite ready for execution. (Assembly language programs can be written that do not require use of the LOCATE pro-
gram, but only at the expense of deciding at the time of assembly the absolute location in main storage where they
should be loaded, which is seldom desirable.)

Converting the relocatable object program into an absolute version ready to be executed is the function of the ISIS
program called LOCATE. In our case we might enter the ISIS command

LOCATE :F1:ONESEC.OBJ CODE (4000H)
This identifies the file to be processed, and specifies that the program is to be prepared for loading into absolute
memory location 4000 hexadecimal. If needed, we could also specify the absolute location of the stack, the data (of

which we have none in this program), and the free memory area (ditto). The output of this command is a final file, iden-
tified as

:F1:ONESEC

34 CHAPTERS

i.e., it has no extension. This file is now ready to be executed simply by entering its name, which makes it, in effect, a
command.

Why not try it? If you entered the program while studying the text editor section, all you need do is enter the com-
mands just described.

Here are the steps to follow in running the program.

If you have a Model 220 or 230:

10.

. Turn on the Intellec components. Insert an ISIS system diskette in drive 0 and the diskette containing the

source program in drive 1.

. Press the Reset key on the Intellec front panel and release it.
. ISIS will respond with a sign-on message and a dash prompt to indicate that it is ready to execute commands.

. Enter the command

ASMB80 :F1:ONESEC.SRC

or whatever other file name you have used.

. You can get a program listing — if you have a printer — with the command

COPY :F1:ONESEC.LST TO :LP:
If you do not have a printer, you can use the console output device to study the listing, with
COPY :F1:ONESEC.LST TO :CO:

Output to the CRT will be much too fast to read; you can stop the output by pressing Control and S, and start it
again by pressing Control and Q.

. To correct errors in the program, if any are reported by the assembler, edit the program using

EDIT :F1:ONESEC.SRC

Remember to start with an Append command to the text editor, and remember to terminate the text editing ses-
sion with an Exit to get the modified program back on diskette.

. After you have a correct assembly (no errors reported) execute the command

LOCATE :F1:ONESEC.OBJ CODE(4000H)

. Now execute the command

:F1:ONESEC

X’s should start appearing on your system console. If not, there is most likely a typing error in the source pro-
gram that happens not to be diagnosable by the assembler. Check the listing carefully.

. To return control to ISIS, press the Interrupt 1 key on the Intellec front panel.

Remove the diskettes and turn off the power.

THE ASSEMBLERS 3§

If you have a Model 210:

1. Turn on the Intellec components.

2. Press the Reset key on the Intellec front panel and release it. The monitor will respond with a dot prompt.
Naturally, if you left the power on from the text editing session in Chapter 3, you omit these steps.

3. Type the command GA800 to enter the text editor.

4. Make the following changes in the program:
a. Replace the CSEG in line 5 with the instruction

ORG 1400

b. Delete line 6.
c. Inline 7, change STACK to 1422.

5. To assemble the program, enter the command GB800. The assembler, after a brief period, will type the
characters P=. Type a 1 and press carriage return. When the characters P= are typed again, enter 2. The third

time, enter 3. (These are the three passes of your assembler, which in the Model 210 is in a ROM chip set.)

6. To correct any errors in the program, which will be reported to your console device, enter the text editor again
by typing GA800, and reassemble.

7. Enter the command G1400 to begin execution of your program. X's should start appearing on your system con-
soie. if noi, there is most iikeiy a typing error in the source program that happens not to be diagnosabie by the
assembler. Check the listing carefully, then use the text editor to correct any errors and reassemble.

8. To return control to the monitor, press the Interrupt 0 key on the Intellec front panel.

9. Turn off the power.

THE MACRO ASSEMBLER

Suppose now that we expand the requirement on the program, so that the amount of delay between characters is
variable within certain limits and so that it is to be convenient to send any character to the CRT, rather than just the let-
ter X. What we wish to do, specifically, is to send the numeral zero to the system console with a 1.5 second delay,
followed by a plus sign after a 0.25 second delay, and then repeat these two operations indefinitely.

Naturally, we could write a program to do all this using the same techniques as before. However, there is a better solu-
tion, especially if there were a need for further flexibility in these operations. The solution is to make a macro of the
code needed to generate a given time delay, which means that a simple symbol — the marco name — stands for a
complete group of instructions. The source program in Fig. 5-2 shows how this is done, using the ISIS macro assem-
bler. (The listing is shown later.)

First of all, it is the same assembler, which we invoke with the same command (ASM80, ASM48, etc.) as before.
However, to tell the assembler that we will have macros in the program, we begin with the line $SMACROFILE. The
doltar sign identifies this as an assembler control. (There are others.) Use of $MACROFILE requires 48K bytes of
Intellec memory.

The program begins with the CSEG operation, as before, but this time we are handling the symbol CO differently, iden-
tifying it as external (EXTRN). This tells the assembler that the value of this symbol will be supplied later, in the LINK
operation.

36 CHAPTERS

SMACROFILE
; MACRO VERSION OF THE PROGRAM TO SEND 'X' TO CONSOLE OUTPUT
; DEVICE, ONCE EACH SECOND.
; THIS VERSION MAKES THE DELAY VARIABLE, AND SENDS ANY CHARACTER.

7’
CSEG ; MAKE THE SEGMENT RELOCATABLE
EXTRN co ; CONSOLE OUTPUT ADDRESS SUPPLIED IN LINK
STKLN 2 ; SET STACK LENGTH
’
TIME MACRO 11,72
LOCAL L1
MVI D,T1 ; LOAD FIRST PARAMETER INTO D REG
L1: MVI A,T2 ; LOAD SECOND PARAMETER INTO A REG
CALL DELAY ; INVOKE SUBROUTINE
DCR D
JNZ L1
ENDM

;
; THIS ENDS THE MACRO DEFINITION - NOW COMES THE PROGRAM

’
START: LXI SP,STACK ; INITIALIZE THE STACK POINTER
L1: TIME 100,150 ; MACRO REFERENCE - 1.5 SEC
MVI c,'o! ; SEND ZERO TO CONSOLE OUTPUT DEVICE
CALL co ; CONSOLE OQUTPUT ROUTINE IN MONITOR
TIME 50,50 ; MACRO REFERENCE - 0.25 SEC
MVI C,"+! ; SEND PLUS SIGN TO CONSOLE OUTPUT DEVICE
CALL co
JMP L1 ; AROUND THE LOOP INDEFINITELY

;
; THE DELAY SUBROUTINE

?
DELAY: MVI B,12
L3: MOV c,B
Lb: DCR C
JNZ Lk
DCR A
JNZ L3
RET
’
END START ; PROGRAM EXECUTION BEGINS AT LABEL 'START!

FIGURE 5-2

After giving the stack length information, which is as before, we have the definition of the macro named TIME. The
code defined in the macro utilizes the subroutine named DELAY, but with two parameters that make the delay variable.

The amount of the delay is controlled by the immediate data in the two MVI instructions. The DELAY subroutine delays
a number of microseconds equal to 100 times the value of the number in the A register when it is called. The program
is arranged to call DELAY repeatedly. To be precise, and describing it in terms of the parameters used in the MACRO
assembler directive, we wish to call the DELAY subroutine T1 times, and place in the A register the number T2 when it
is called.

The assembler directive MACRO tells the assembler that what follows is not to be assembled, but rather is a definition
of what is to be assembled when the macro is later referenced. We see that in the two MV! instructions there are no
actual numbers, but only the parameters T1 and T2.

Since this macro will be referenced twice in the executable instructions that follow, we could face a problem with the
label L1, which the assembler would reject as multiply-defined. To prevent this, we have the pseudo operation LOCAL,
which tells the macro assembler that the label L1 has separate meaning within each reference to TIME.

THE ASSEMBLERS 37

The ENDM (end macro) assembler directive tells the assembler that we have completed the definition of the macro.

None of what we have discussed so far results in the generation of any code. This is only the macro definition. Now we
come to the program itself, in which this definition is referenced. The line with the label L1 is one such: it references
the macro TIME, specifying that for the parameter T1 the assembler should substitute 100, and that for the parameter
T2 it should substitute 150. Now we are ready to place the desired character in the C register and calt CO. Next comes
another reference to TIME, with different parameters.

As with the earlier version, the program loops indefinitely.
The DELAY subroutine is as before.

The listing in Fig. 5-3 was produced from this program by the assembler. Look at line 22, which is the first reference to
the macro TIME. We see that there is no code on this line, but following it are the instructions of the macro definition,
“particularized” with the parameters specified in the reference. All instructions generated from the macro have plus
signs after the line number. We see that 100 has been substituted for T1 and 150 for T2. The L1 from the macro defini-
tion has become 2?7?0001, which is treated as entirely different from the symbol L1 in line 22 and from the symbol
2?0002 in line 32.

Looking at line 30 we see that the same macro as before, TIME, now has different parameters, which have been prop-
erly substituted into the instructions.

if you wish, you may use the text editor to modify the earlier program along these lines. Either enter the entire pro-
gram, with a new name, or modify the earlier program. In the process, you may as well as use different delays and
characters, or expand the program to send a variety of characters to the system console. Your only limits are that you
cannot go faster than your system console can accept characters, and the largest values you may use for the two
parameters in TIME are 255, since these are BYTE values that must fit in MVI instructions.
After you have assembled the program successfully, it will be necessary to obtain the value of the symbol CO, which
was declared in the program to be external. This is what the ISIS LINK program does for us, using the following com-
mand with a new file named ONEMAC:

LINK :F1:ONEMAC.OBJ, SYSTEM.LIB TO :F1:ONEMAC.LNK
As noted before, LNK is not a required extension; you may use any extension you please so long as it is not OBJ. |
Now the LOCATE operation must be applied to the linkage output:

LOCATE :F1:ONEMAC.LNK

The result is a program named :F1:ONEMAC (no extension), which you can run by entering its name when ISIS in-
dicates — by typing a hyphen prompt — that it is ready to accept a command.

THE INCLUDE FACILITY

it can happen in writing programs that a piece of code turns up in many different situations, making it desirable to be
able to write the code, test it, and then place it on diskette for use whenever needed. This is what the INCLUDE facility
provides.

Whenever we want a piece of code inserted into the program, we write the line

$INCLUDE filename

giving the name under which the code was stored on diskette.

38 CHAPTER S5

ASM80 :F1:ONEMAC.SRC DEBUG

ISIS-11 8080/8085 MACRO ASSEMBLER, V2.0 MODULE PAGE 1
LOC 08Y SEQ SOURCE STATEMENT
1 $MACROFILE
2 ; MACRO VERSION OF THE PROGRAM TO SEND 'X' TO CONSOLE QUTPUT
3 ; DEVICE, ONCE EACH SECOND.
4 ; THIS VERSION MAKES THE DELAY VARIABLE, AND SENDS ANY CHARACTER.
5 ;
6 CSEG ; MAKE THE SEGMENT RELOCATABLE
7 EXTRN co ; CONSOLE OUTPUT ADDRESS SUPPLIED IN LINK
8 STKLN 2 ; SET STACK LENGTH
9 5
10 TIME MACRO 11,72
11 LOCAL L1
12 MVI D,T1 ; LOAD FIRST PARAMETER INTO D REG
13 L1 MVI A,T2 ; LOAD SECOND PARAMETER INTO A REG
14 CALL DELAY ; INVOKE SUBROUTINE
15 DCR D
16 JINZ L1
17 ENDM
18 ;
19 ; THIS ENDS THE MACRO DEFINITION - NOW COMES THE PROGRAM
20 ;
0000 310000 S 21 START: LXI SP,STACK ; INITIALIZE THE STACK POINTER
22 L1: TIME 100,150 ; MACRO REFERENCE - 1.5 SEC
0003 1664 23+ MVI D,100 ; LOAD FIRST PARAMETER INTO D REG
0005 3E96 244220001: MvI A,150 ; LOAD SECOND PARAMETER INTO A REG
0007 CD2600 C 25+ CALL DELAY ; INVOKE SUBROUTINE
000A 15 26+ DCR D
0008 C20500 C 27+ JUNZ 220001
000E OE30 28 MVI c,'0! ; SEND ZERO TO CONSOLE OUTPUT DEVICE
0010 CDOOOO E 29 CALL co ; CONSOLE OUTPUT ROUTINE IN MONITOR
30 TIME 50,50 ; MACRO REFERENCE - 0.25 SEC
0013 1632 31+ MVI D,50 ; LOAD FIRST PARAMETER INTO D REG
0015 3E32 32+220002: MVI A,50 ; LOAD SECOND PARAMETER INTO A REG
0017 CD2600 C 33+ CALL DELAY ; INVOKE SUBROUTINE
001A 15 by DCR D
0018 C21500 C 35+ JINZ 220002
001E 0E28B 36 MV I C,"+! ;3 SEND PLUS SIGN TO CONSOLE OUTPUT DEVICE
0020 CDOOOG E 37 CALL co
0023 C30300 C 38 JMP L1 ; AROUND THE LOOP INDEFINITELY
39 ;
40 ; THE DELAY SUBROUTINE
41 3
0026 060C 42 DELAY: Mvi B,12
0028 48 43 L3: MOV c,B
0029 0D b L4 DCR C
002A C22900 C 45 JUNZ Ly
002D 3D 46 DCR A
002E C22800 c 47 JNZ L3
0031 C9 48 RET
49 5
0000 C 50 END START ; PROGRAM EXECUTION BEGINS AT LABEL 'START®
FIGURE 5-3

Suppose, for example, that we are writing a series of programs, many of which require a time delay. We could place the
TIME macro on diskette, giving it the name

:F1:TIMEM.SRC
(the name doesn’t really matter — it doesn’t have to be the same as the macro although it may be). Then, instead of ac-
tually typing in the macro using the text editor — which is time consuming and error prone — we instead type in the
line

$INCLUDE :F1:TIMEM.SRC

and the job is done.

THE ASSEMBLERS 39

The INCLUDE facility is used to obtain source code for inclusion in a PL/M or assembly language program, prior to
compilation or assembly. This is distinguished from the Library Manager, which is used to obtain object code seg-
ments during the LINK operation.

CONCLUSION

As noted at the beginning of this section, it isn’'t possible (or really appropriate) to try to give the whole story on the
assembler in a manual of this type. When you are ready, the manuals are there. (See the Guide to Other Manuals at the
back of the book.) We trust this sketch has given you some idea of the power of the ISIS macro assembler, and whetted
your appetite to Know more.

Chapter 6
IN-CIRCUIT EMULATION

WHAT IS IN-CIRCUIT EMULATION?

In-circuit emulation is a tool for developing products designed around the Intel 8080, 8085, 8048, and Series 3000
CPUs. lts flexible debugging commands and resource lending allow you to diagnose your prototype system’s hard-
ware and software in the earliest stages of development, even before a prototype is built, or while the prototype isin
development and its memory and inputfoutput (I/O) facilities are incomplete.

In-circuit emulation allows you to perform this diagnosis, for the most part, through console dialogue. The program-
mer needs no separate software environment, such as simulation with a time-shared computer; the engineer needs no
laboratory model equipped with specially-built diagnostic aids.

Not all of the features in the foilowing general description are available in every ICE system.

IN-CIRCUIT EMULATION HARDWARE

The in-circuit emulation hardware consists of printed circuit boards that are inserted into the Intellec cabinet. In-
circuit emulation can be used as a software development tool prior to the building of a prototype. If a prototype exists,
an umbilical cable connects the in-circuit emulation circuitry in the Intellec cabinet to your prototype. A 40-pin plug at
the end of this cable plugs into your prototype system in place of its CPU, allowing the in-circuit emulation hardware
to emulate all the functions of the CPU. This connection between ICE and a prototype is shown in Fig. 6-1.

IN-CIRCUIT EMULATION SOFTWARE

The in-circuit emulation software commands are your interface to in-circuit emulation. These are easy-to-use com-
mands that you enter from the Inteliec console to communicate with the in-circuit emulation hardware. The in-circuit
emulation software is loaded into Intellec memory from diskette. We shall survey the function of the in-circuit emula-
tion software shortly.

WHAT DOES IN-CIRCUIT EMULATION DO FOR YOU?

In-circuit emulation can help you develop your prototype system in two ways. First, it provides a wide range of diag-
nostic commands, enabling you to debug your prototype hardware and software. Second, it lets you “borrow” the
physical resources of the Intellec system, and use them as if they were resident in your prototype system, until such
time as your own prototype is complete.

41

42 CHAPTER 6

FIGURE 6-1

RESOURCE LENDING

The in-circuit emulation hardware 40-pin connection to your prototype system allows it to emulate the prototype’s
CPU. Also, some or all of your prototype system’s storage can be emulated by Intellec memory. Similarly, you don’t
need to attach special debugging peripherals to your prototype, because with in-circuit emulation your prototype may
share all Intellec peripherals.

In-circuit emulation has an address mapping facility (described later) for handling the addressing of borrowed
resources. Whenever the emulated CPU makes a memory or I/0 port reference, in-circuit emulation first consults its
address map to determine whether the specified memory exists and, if so, whether it is in the prototype or is being bor-
rowed from the Intellec system. In the latter case any needed address translation is made.

One of your first tasks in an in-circuit emulation debugging session is to set up memory and I/O port address mapping
in accordance with the needs of your software. This is done using the in-circuit emulation mapping command, which
allows you to define and display memory and /O port mapping.

DEBUGGING

Prototype system software can be loaded into borrowed memory, prototype memory, or any combination of the two,
and run as if it were resident in the prototype, thus emulating your eventual production system. You can perform this
emulation at real-time speed (to check out prototype system timing, for example) or in single- or multiple-instruction
steps. You can stop emulation manually at any time to examine system status, or you can specify “‘break conditions”
as part of the emulation command. Emulation halts automatically when a break condition is satisfied, after which you
can have in-circuit emulation perform additional operations and resume emulation automatically if you like.

IN-GIRCUIT EMULATION 43

Break conditions can be specified in many ways. For example, you can specify that emulation is to continue until a
register contains a specified value, or until a given memory location is read or written, or there is an input or output
operation for a particular port, or the instruction at a given location is executed. There are many other stopping condi-
tions, leading to a highly flexible debugging package.

In-circuit emulation debugging power can also be seen in the commands for changing and displaying information
describing the state of your prototype system. The specific items defining the state are:

¢ CPU pins, registers, and flags
¢ The contents of the stack
* The contents of memory
¢ The contents of I/O ports
In addition, you can request information on:

* The address or the operation code of the last instruction emulated

* A trace of the most recently emulated instructions, machine cycles, or 18 lines of system status data of your
choice.

e Current subroutine nesting
Remember, the CPU being interrogated is, in effect, the CPU of your prototype system. In-circuit emulation lets you
emulate all of your CPU functions, even though your CPU is not installed, and even if your prototype has not been built

yet. In short, it is a powerful development tool for debugging hardware and software, at any stage of the development
process for your microcomputer-based product.

SYMBOLIC DEBUGGING
One of the most important features of in-circuit emulation is that you can refer to symbols and locations in a program
entirely in symbolic terms. You don’t have to know where a variable is located, for example, or where the code corre-
sponding to a PL/IM line number or assembler label is; you simply use the symbols directly. For example, we can issue
the ICE-85 command

GO TILL .CYCLE EXECUTED

Assuming that CYCLE is a label or PL/M procedure name, emulation continues until the instruction at that location
has been executed. Or we could say

GO TILL .CARSSWAITING WRITTEN

which says to stop emulation when the program stores anything at the location corresponding to the PL/M symbol
CARSSWAITING.

PL/M line numbers can also be referred to:
GO FROM .START TILL #56 EXECUTED

This says to begin emulation with the instruction at the symbolic location START, and continue until the instruction
corresponding to the PL/M line number 56 has been executed.

Actual machine locations can of course also be used when more convenient, but symbolic debugging offers such
power and flexibility that it will much more commonly be employed. Further examples will be found in the console
sessions at the end of this chapter and at the end of Chapter 7.

44 CHAPTER 6

A SKETCH OF THE IN-CIRCUIT EMULATION COMMANDS

Entering in-circuit emulation is a simple matter of typing the SIS command
ICE85 (or ICE80 or ICE48 or whatever system you have).

The ICE system prompts with an asterisk.

Once the system is under the control of the ICE software, you may use any command by typing in its name or abbrevia-
tion. For an overview of these commands, they may be divided into three categories: emulation, interrogation, and util-

ity.

In the rest of this material, and in the terminal session at the end of the chapter, we shall describe in-circuit emulation
in terms of ICE-85.

EMULATION COMMANDS

Using the ICE-85 GO command, you can emulate the prototype system at real-time speed. Using the STEP command,
emulation can be performed in single- or multiple-instruction steps. In either case, emulation of the prototype program
can be started at any instruction.

The GO command allows you to specify up to two break conditions for halting emulation or emitting an oscilloscope
synchronization pulse when the condition occurs. A break condition can be satisfied by executing a specified instruc-
tion (location or operation code), by referencing a specified location or /O port (read or write), or by referencing a
specified data value. The ICE-85 hardware provides you with an additional break capability, an 18-channel external
trace module. This causes a break whenever a specified system signal or combination of signals changes. The STEP
command breaks after a specified number of instructions have been executed or a condition is satisfied.

Emulation commands are summarized in Table 6-1.

TABLE 6-1. ICE-85 EMULATION COMMANDS

ICE-85 COMMAND DESCRIPTION
GO Causes emulation to run until a break condition is satisfied.
STEP Causes emulation to run for a specified number of instructions or

until a software condition is satisfied.

CALL Permits emulation of interrupt service routines.

INTERROGATION COMMANDS

With ICE-85 at command level following a break in emulation, you can display the items listed earlier and alter the con-
tents of some of these items. The ICE-85 commands used in these interrogation operations are summarized in Table
6-2.

UTILITY COMMANDS

The ICE-85 command language also provides for various utility operations such as loading or saving program files,
defining symbols, or returning to IS!S control. These utility commands are summarized in Table 6-3.

TABLE 6-2. ICE-85 INTERROGATION COMMANDS

ICE-85 COMMAND DESCRIPTION
BASE Establishes base of displayed data (decimal, octal, hexadecimal,
etc.).
SUFFIX Establishes default base for numbers entered from the console.
Display Various items can be displayed by typing in their names.
Change Contents of a specified item can be altered by entering its name

followed by a value.

SEARCH Causes memory locations containing specified contents to be
displayed.
PRINT Causes trace information to be displayed.

TABLE 6-3. ICE-85 UTILITY COMMANDS

ICE-85 COMMAND DESCRIPTION
LOAD Feiches object code and symboi tabie from input medium.
SAVE Causes symbol table and object code to be reproduced on output
medium.
LIST Specifies list file used for output of terminal dialog.
DEFINE Enters additional symbols and their values into symbol table.
EXIT Causes program control to return to ISIS.

MEMORY MAPPING
ICE-85 commands can reference:
* Prototype system memory.
¢ [ntellec memory substituting for prototype system memory.

To understand how ICE-85 distinguishes among these two, we must first define the terms /ogical and physical as used
in the in-circuit emulation context. For the sake of illustration, suppose | send an annual Christmas card to an oid
friend at his 1000 H Street address. Last year he moved to 3000 H Street without telling me, so | continue addressing
my cards to his former location. Logically, my friend still resides at 1000 H, but physically he is located at 3000 H. This
presents no problem as long as my Christmas card finds its way through the post office’s letter-forwarding (address-
mapping) mechanism.

46 CHAPTER 6

Similarly, one can map (logical) program addresses into physical intellec memory locations. The addresses have not
changed as far as the program knows, and ICE-85 will take care of the address mapping details. Using ICE-85’s MAP
command, you can specify prototype memory and I/O ports to be /ogically nonexistent (GUARDED), logically and
physically existing in the prototype system’s memory (USER), or logically existing in your system while physically
existing in Intellec memory (INTELLEC). The initial setting for all blocks is GUARDED. Any reference to a guarded
memory location or /O port causes an error to be issued; this is a useful software debugging feature.

Logical addresses in your program may range from 0 to 65,535 (64K) and are partitioned into 32 blocks of 2K bytes.
Each logical memory biock can reside physically in your own system or in any unused 2K block of inteilec memory.

/0 PORT MAPPING

Logical I/O ports range from 0 to 255 and are partitioned into 32 blocks of 8 ports each. Each block of logical I/O ports
can reside physically in your own or the Intellec system. Unlike memory, /O port numbers cannot be altered when they
are mapped physically into the Intellec memory. The physical I/O port number must be the same as the logical /O port
being mapped.

PRODUCT DEVELOPMENT SEQUENCE

The interaction between you as the designer of a new product, the Intellec system, and in-circuit emulation can be
summarized in the following product development sequence:

1. The prototype system design specification and initial software and hardware design are completed.

2. Prototype software is written in PL/M, Fortran, or assembly language and an object file is prepared.

3. Using in-circuit emulation, program debugging can begin, with memory and 1/O resources borrowed from the
Intellec system, even though no prototype hardware exists.

4. Skeleton prototype hardware is built. The skeleton must include as a minimum a socket for the CPU and a user
bus.

5. The in-circuit emulation umbilical cable is attached to your prototype equipment. The in-circuit emulation soft-
ware is loaded into memory.

6. Peripherals and memory not present in your skeleton prototype are mapped into the Intellec system.
7. Prototype hardware and software are exercised with the in-circuit emulation commands.

8. Memory, I/Q, and peripheral hardware are added to the prototype system as they are developed. The corre-
sponding resources are no longer “borrowed” from the Intellec system.

9. The in-circuit emulation umbilical cable is unplugged and replaced with your own CPU chip.

At no point in this development sequence have you had to provide extraneous hardware diagnostic equipment or
specialized software debugging aids for prototype system development.

AN IN-CIRCUIT EMULATION TERMINAL SESSION

As we have done before with the monitor and the text editor, we shall tie these ideas together with an illustrative ter-
minal session. The vehicle will be the assembly language program of Chapter 5 to send the letter X to the console out-
put device, once per second, plus a modified version that contains a coding error. The version we shall work with first
is shown in Fig. 6-2; this is identical to Fig. 5-1.

1S1S-11 8080/8085 MACRO

LoC 0BuJ

F809

0000 310000
0003 1632
0005 3EC8
0007 CD1600
000A 15
000B C20500

000E 0ES8
0010 CDO9F8
0013 C30300

0016 060C
0018 48
0019 0D
001A C21900
001D 3D
001E C21800
0021 C9

0000

PUBLIC SYMBOLS

FXTERNAL SYMBOLS

USER SYMBOLS
co A F809

ASSEMBLY COMPLETE,

SEQ

—
O W 0NN F NN

[Y
CWPNOV EWN -

21
22

24
25
26
27
28

DELAY

NO

ASSEMBLER, V2.

MODULE PAGE 1

SOURCE STATEMENT

AN ASSEMBLY LANGUAGE PROGRAM TO SEND THE LETTER 'X!'
; TO THE CONSOLE OUTPUT DEVICE, ONCE EACH SECOND

;
co EQU
CSEG
STKLN
START: LXI
L1: MV
L2: MVI
CALL
DCR
JNZ
;
MV 1
CALL
JMP

0F809H ; PROVIDE ADDRESS OF CO ROUTINE IN MONITOR
; MAKE THE SEGMENT RELOCATABLE

2 ; SET STACK LENGTH
SP,STACK ; INITIALIZE STACK POINTER
D,50 ; WILL CALL DELAY SUBROUTINE 50 TIMES

A,200 ; SUBROUTINE PARAMETER
DELAY ; INVOKEL SUBROUTINE

D

L? ; 50 TIMES AROUND THIS LOOP = 1 SEC
c,'x! ; SEND 'X' TO CONSOLE OUTPUT DEVICE
co ; MONITOR CONSOLE OUTPUT ROUTINE

Ll ; AROUND THE LOOP INDEFINITELY

;
; THE DELAY SUBROUTINE

;
DELAY: MVI
L3: MOV
Lh: DCR

JUNZ
DCR
INZ
RET

;
END

C 0016 L1

ERRORS

B,12
c,B
C

L

A

L3

START ; PROGRAM EXECUTION BEGINS WITH SYMBOL 'START!

C 0003 L2 C 0005 L3 C 0018 Lb C 0019 START C 0000

FIGURE 6-2

b NOILVINWI 1INOHIONI

48 CHAPTER 6

We shall see the central concepts of In-Gircuit Emulation, including storing the program in the memory of prototype
hardware, but without attempting to illustrate all of the very extensive capabilities of ICE-85. As before, the paragraph
numbers are keyed to the bold face numbers on the terminal session printout on facing pages.

1.

Prior to the operation shown here, | execute the ISIS command ICE85. ICE-85 responds with a prompting aster-
isk. | execute the ICE-85 command

LIST :F1:ONESEC.ICE

which causes alt subsequent terminal material, whether typed by me or produced by ICE-85, to be sent to the
listing file named. I later print this file.

| use the MAP command to specify that the block starting at the logical address 2000 (hex assumed by default)
is to be placed in Intellec memory starting at 7000. Since | don’t specify otherwise, this is a 2K block. | also map
a block of specified length, FO00 to FFFF, into the same addresses in Intellec memory, since my program uses
the monitor, and likewise map the block starting at zero. ICE-85 warns me that | am mapping over the system,
but since it is precisely the system | am trying to get at anyway, I'm not worried. The I/O ports that are used by
the CO routine which my program calis are mapped to the Intellec; | have no option to map these into any other
port numbers.

Note that anything following a semicolon is treated as a comment, just as with the assembler.

. 1 use the LOAD command to bring my program (ONESEC) in from the diskette on drive 1.

. | use the SYMBOLS command to see the symbols (and their corresponding values, memory addresses in this

case) that were brought in with the program when it was loaded. These symbols are available because | used
the DEBUG option when | assembled the program. The line MODULE ..MODULE means that the name of the-
object program module is “MODULE"; this was assigned as a default name because | didn’t specify otherwise
in the LOCATE operation.

- | ask to see the value of the program counter (PC). It should have been loaded with the value of the symbol

START, because | put that symbol on the END operation in my program. It has indeed been loaded as desired.

- I say GO, which is the simplest possible emulation command. My program runs as expected, at full speed, pro-

ducing X’s on the CRT (which is the console output device on the Microcomputer Development System | am
using). Since this is program output rather than ICE-85 dialog, it does not show on the listing.

- | press the ESC (escape) key on the console. ICE-85 resonds with the address (in the PC) of the next instruction

that would have been executed if | had not interrupted the program.

- lask to see the registers as they stand at this point. The program counter is as noted; the stack pointer is two

less than its starting value, which is right since there had been one PUSH in connection with the CALL; the A
register has been decremented from its starting value; the flags | don’t care about; the B register contains the
12 (decimal) placed in it at the beginning of the DELAY subroutine; the E, H, and L registers have not been used;
the interrupt register | don’t care about.

. ldefine a new symbol, L2A, to be an address in the program at which | would like to terminate a later emulation.

Note that a period must appear before every symbol, and that expressions may be used in defining symbols.

- Now when | ask to see my symbols the new one is there. It is shown at the beginning of the listing to indicate

that it is not among the symbols brought in with the module.

. | ask for a display of the bytes beginning with the byte at the symbol just defined, with a length of two bytes.

The purpose is to be sure that | defined the symbol properly, and that it does point to the instruction I intended.
All is in order.

10

IN-CIRCUIT EMULATION 49

¥MAP 2000 = INTELLEC 7000 ; LOWEST INTELLEC ADDRESS ALLOWED

XMAP F000 TO FFFF = INTELLEC FO000 ; MONITOR
XMAP 0 = INTELLEC 0 ; MONITOR NEEDS THIS
WARN C1:MAPPING OVER SYSTEM
X“MAP IO FO TO FF = INTELLEC
®_OAD :F1:ONESEC

®*SYMBOLS

MODULE ..MODULE

.CO=F809H

.DELAY=2016H

.L1=2003H

.L2=2005H

.L3=2018H

.L4=2019H

.START=2000H

“PC ; LOADED FROM FILE?

2000H

26O

EMULATION BEGUN

EMULATION TERMINATED, PC=2019H
PROCESSING ABORTED

“REGISTERS

P=2019H S=202EH A=07H F=14H B=0CH C=0AH D=27H E=00H H=00H L=00H I=00H

®DEFINE .L2A = .DELAY - 8
%; THAT'S A LABEL ON "MVI
*SYMBOLS

.L2A=200EH

MODULE ..MODULE

.CO=F809H

.DELAY=2016H

.L1=2003H

.L2=2005H

.L3=2018H

.L4=2019H

.START=2000H

C Tytn
L, A

“BYTE .L2A LENGTH 2 ; DISPLAY INSTRUCTION AT THAT ADDRESS

200EH=0EH 58H

50 CHAPTER6

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Now | begin emulation again, telling ICE-85 to begin execution with the instruction at START rather than pick-
ing up where the program was interrupted earlier, and to stop when the instruction beginning at L2A has been
executed.

When emulation is terminated, the program counter (PC) is pointing at the instruction after the one at L2A.

The command RC displays the contents of the C register, which should just have been loaded with the letter X.
ICE-85 responds with the hex value.

I could look this up, but instead) change the base to ASCII, so that the character will be printed out in its
external form.

Now when | ask for the contents of the C register, | get the letter X as such.
| restore the base to hex.

| ask for the 20 instructions most recently executed to be printed. (I could also have asked for the last 20
machine cycles, or machine states; instructions is the default). ICE-85 responds with the instructions, oldest
listed first, in “disassembled” form, that is, with mnemonic operation codes and register names rather than
just hex bytes. The numbers at the extreme left are the trace buffer addresses, which don’t concern us. The
locations of the instructions and their mnemonic operation codes are shown. When a jump condition was satis-
fied the jump address appears, and otherwise not. For any instruction having a memory reference, the address
and contents are shown, together with an indication whether the memory reference was a read (R), input (1), out-
put (0), or write (W). The only memory references in this trace are to the stack, in the RET at 2021; we see that
the return address (200A) was retrieved from the stack (202E and 202F).

| ask to begin again at the beginning, and stop after the instruction at DELAY is executed.
Emuvlation stops as requested.

I ask to see the stack pointer and the word at the top of the stack. That word is pointing to the instruction after
the CALL of DELAY, as it shouid.

To prepare for what | want to do next, | set the contents of D register to 50 decimal (T for base ten).

| enable the DUMP operation, specifying that | want to dump the state of the machine after each CALL and
RETURN.

In order to permit the testing and displaying that are required in the DUMP operation, the program will have to
be able to run one STEP at a time. Such execution is much slower than real time. To speed up the program, |
change the parameter in the DELAY call. Note the use of an expression in naming a byte to be changed, with
enclosing parentheses.

For every CALL and RETURN executed until the contents of the D register have been reduced below 47, DUMP
gives me the information shown. Note that the contents of the D register start at 32H = 50 decimal, and work
down to 2FH = 47 decimal, as desired.

11

12
13

14
15

16
17

*GO FROM .START TILL .L2A EXECUTED
EMULATION BEGUN

EMULATION TERMINATED, PC=2010H

#RC ; SHOULD HAVE JUST LOADED 'X'

58H

®BASE = ASCII ; LET'S SEE IT IN ASCII
%RC

X

®BASE = H

XPRINT -20 ; LOOK AT TRACE

IN-CIRCUIT EMULATION 51

ADDR INSTRUCTION ADDR-S-DA ADDR-S-DA ADDR-S-DA ADDR-S-DA

0947: 2019 DCR C

0949: 201A JUNZ 2019

0955: 2019 DCR C

0957: 201A JNZ 2019

0963: 2019 DCR C

0965: 201A UNZ 2019

0971: 2019 DCR C

0973: 201A JNZ 2019

0979: 2019 DCR C

0981: 201A JUNZ 2019

0987: 2019 DCR C

0989: 201A JUNZ 2019

0995: 2019 DCR C

0997: 201A JUNZ

1001: 201D DCR A

1003: 201E JNZ

1007: 2021 RET 202E-R-0A 202F-R-20

1013: 200A DCR D

1015: 200B JNZ

1019: 200E MVI C, 58

®GO FROM .START TILL .DELAY EXECUTED

EMULATION BEGUN

EMULATION TERMINATED, PC=2018H

“WORD SP ; WORD AT TOP OF STACK

202EH=200AH

®*; 200AH IS RETURN ADDRESS OF 'DELAY?

¥RD = 507

XENABLE DUMP CALL RETURN

®BYTE (.L2+1) = 2 ; CHANGE DELAY PARAMETER

®STEP FROM .START TILL RD < 47T

EMULATION BEGUN
2007-E-CD 2008-R-16 2009-R-20 202F-W-20 202E-W-0A

P=2016H S=202EH A=02H F=54H B=0CH C=58H D=32H E=00H
2021-E-C9 202E-R-0A 202F-R-20

P=200AH S=2030H A=00H F=54H B=0CH C=00H D=32H E=00H
2007-E-CD 2008-R-16 2009-R-20 202F-W-20 202E-W-0A

P=2016H S=202EH A=02H F=10H B=0CH C=00H D=31H E=00H
2021-E-C9 202E-R-0A 202F-R-20

P=200AH S$=2030H A=00H F=54H B=0CH C=00H D=31H E=00H
2007-E-CD 2008-R-16 2009-R-20 202F-W-20 202E-W-0A
P=2016H S$S=202EH A=02H F=14H B=0CH C=00H D=30H E=00H
2021-E-C9 202E-R-0A 202F-R-20

P=200AH $=2030H A=00H F=54H B=0CH C=00H D=30H E=00H
2007-E-CD 2008-R-16 2009-R-20 202F-W-20 202E-W-0A
P=2016H S=202EH A=02H F=00H B=0CH C=00H D=2FH E=00H
2021-E-C9 202E-R-0A 202F-R-20

P=200AH S=2030H A=00H F=54H B=0CH C=00H D=2FH E=00H

EMULATION TERMINATED, PC=200BH

H=00H

H=00H

H=00H

H=00H

H=00H

H=00H

H=00H

H=00H

L=00H

L=00H

L=00H

L=00H

L=00H

L=00H

L=00H

L=00H

I=00H

1=00H

I=-00H

I=00H

I=00H

1=00H

1=00H

[=00H

52 CHAPTER 6

25.

26.

27.

28.

29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Now | want to transfer my program to prototype memory. | decide to check the memory mapping. All blocks are
guarded (not defined) except the four blocks | mapped to Intellec memory.

| plug the ICE-85 umbilical cable into an SDK-85 board, which contains enough memory for my program. This
can be thought of as a prototype system. Connecting the cable requires resetting the hardware, which means
to let ICE-85 re-initialize its description of the hardware configuration.

| map the 2K block at 2000 to user memory.

| transfer the program from Inteliec memory (actual physical location) to my “user memory” on the SDK-85
board, in actual locations 2000 and following, which is where this version of the program was LOCATEGd to run.
The memory mapping now shows that the block at 2000 is user memory. The memory corresponding to the
Intellec monitor is still being borrowed from the intellec memory, and the input and output facilities are still
borrowed.

Not quite convinced, | ask to see the contents of the memory locations where my program should be. It’s there.

| start the program, which is now executing from a combination of user and Intellec memory.

The program stops under the same condition as given in step 24, which ICE-85 remembers, to save me the
trouble of repeating the condition if | want it to apply again.

But | don’t, so | give the GO command with a FOREVER to wipe out the previous stopping condition.

The program works just fine, except that the X's are sent out much too rapidly. use the ESC key to abort emula-
tion.

The problem is the DELAY parameter that | changed in step 23. | put it back to its original value.
Starting at the beginning now gives the expected behavior of one X per second.
I’'m done, so | interrupt the program.

And exit from ICE-85. The next thing printed, which is not shown here because it was not done by ICE-85, was
the ISIS message and a hyphen prompt.

| now want to debug a program named ONEERR, which is related to the previous but contains a coding error.
The intent is to send the characters A through Z to the system console, once each second, instead of just the
letter X. (The program makes no provision for stopping after Z.) The erroneous program is shown in Figure 6-3.
| do the necessary memory mapping, taking into account that this program was LOCATEd to run in 4000.

| load the program.

| ask for the program symbols.

| start the program.

25

26

N
4

B8

30

31

37

88

40
4

“MAP

SHARED

0000=1 0000 0800=G 1000=G
2000=I 7000 2800=G 3000=G
4000=G 4800=G 5000=G
6000=G 6800=G 7000=G
8000=G 8800=G 9000=6G
A000=G A800=G B000=G
C000=G C800=G D000=6G
E000=G E800=G F000=I FQOOO

*

1800=G
3800=G
5800=6G
7800=G
9800=G
B800=G
D800=G
F800=I F800

®RESET HARDWARE ; WE CHANGED ICE HARDWARE CONFIGURATION, NOW USING SDK-85

e en

waAN nNnann
£ IMAC LUUU = UoLR

®BYTE 2000 = IBYTE 7000 TO 7023 ; MOVE PROGRAM FROM INTELLEC TO SDK MEMORY

“MAP

SHARED

0000=I 0000 0800=G 1000=G
2000=U 2800=G 3000=6G
4000=G 4800=G 5000=6G
6000=G 6800=6 7000=G
8000=6G 8800=G 9000=G
A000=G A800=6G B000=G
C000=G C800=6G D000=G
E000=G E800=6G F000=I FOOO
#;STILL BORROWING INTELLEC MEMORY FOR MONITOR
®BYTE 2000 TO 2023 ; VERIFY MOVE WORKED

1800=6G
3800=G
5800=G
7800=G
9800=G
B800=G
D800=G
F800=1 F800

2000H=31H 30H 20H 16H 32H 3EH 02H CDH 16H 20H 15H C2H 05H 20H 0EH 58H
2010H=CDH 09H F8H C3H 03H 20H 06H OCH 48H 0DH C2H 19H 20H 3DH C2H 18H

2020H=20H C9H O0AH 72H

#GO FROM .START

EMULATION BEGUN

EMULATION TERMINATED, PC=002i4H
*GO FROM .START FOREVER
EMULATION BEGUN

EMULATION TERMINATED, PC=2018H
#*GO FROM .START FOREVER
EMULATION BEGUN

EMULATION TERMINATED, PC=2019H
PROCESSING ABORTED

¥BYTE (.L2+1) = 200T ;RESTORE DELAY PARAMETER
%GO FROM .START

EMULATION BEGUN

EMULATION TERMINATED, PC=2019H
PROCESSING ABORTED

REXIT

XMAP 4000 = INTELLEC 7000

®MAP FO000 TO FFFF = INTELLEC FQO0O0
®*MAP 0 = INTELLEC 0

WARN C1:MAPPING OVER SYSTEM
X¥MAP 10 FO TO FF = INTELLEC
“LOAD :F1:ONEERR

#SYMBOLS

MODULE ..MODULE

.CO=F809H

.CHAR=4028H

.DELAY=401CH

.L1=4006H

.L2=4008H

.L3=401EH

.L4=401FH

.START=4000H

%GO

EMULATION BEGUN

54 CHAPTERS6

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

The program works, after a fashion: the letter A is followed by random characters having no obvious relation to
one another.

Detective work is required. | decide to stop emulation at the nearest convenient point after the loading of the
character into the C register on line 18; execution of CO will do.

Execution terminates with the program counter in high memory, which is the monitor where CO is located.

| ask to see the three most recently executed instructions. The interesting one is the MOV, which read (R) from
4028 and obtained 41 hex, which is an A. All seems to be in order.

| say GO, without naming a break condition; the previous one (TILL .CO EXECUTED) is still in effect.

The MOV instruction now is highly suspicious: it obtains a character from 4029, whereas my intention in writing
the program was that it should obtain a modified character from 4028. What is going on?

Try again.
The MOV address is still being modified.

If the program is really doing this, the H and L registers should contain 402B the next time around this loop.
Let’s STEP through the program until the combined registers contain this address.

There it is! Time for a hard look at the program. Sure enough, I've written it to modify the contents of the HL
register instead of the contents of the address pointed to by the HL register. The old programming 101 confu-
sion between address and contents!

To see if this reaily is the trouble, | program a four-byte fix in hex and enter the change in absoiute. Naturaily, I’li
later go back and correct the source program and reassemble.

| start the corrected program.
Everything works as intended. | interrupt emulation.

And exit from ICE-85.

45

47

419

50

51

52

EMULATION TERMINATED, PC=4020H
PROCESSING ABORTED
¥; CHARACTERS CAME OUT,
%GO FROM .START TILL
EMULATION BEGUN
EMULATION TERMINATED,

XPRINT -3

PC=FD1DH

IN-CIRCUIT EMULATION 55

BUT ALL WRONG
.CO EXECUTED

ADDR-S-DA ADDR-S-DA ADDR-S-DA

4035-W-15

ADDR INSTRUCTION ADDR-S-DA
1003: 4011 MOV C,M 4028-R-41
1007: 4012 CALL F809 4036-W-40
1017: F809 JMP FDI1D
%GO ; SAME BREAK CONDITION AS BEFORE

EMULATION BEGUN
EMULATION TERMINATED,
XPRINT -3

ADDR INSTRUCTION ADDR-S-DA

PC=FD1DH

ADDR-S-DA ADDR-S-DA ADDR-S5-DA

4035-W-15

1003: 4011 MOV C,M 4029-R-00
1007: 4012 CALL F809 L4036-W-40
1017: F809 JMP FDID

%GO ; SAME BREAK CONDITION AS BEFORE

EMULATION BEGUN

EMULATION TERMINATED, PC=FDI1DH
HPRINT -3

ADDR INSTRUCTION ADDR-S-DA
1603: 4011 MOV C,M 4629-R-00
1007: 4012 CALL F809 4036-W-L0
1017: F809 JMP FDID
GO
EMULATION BEGUN
EMULATION TERMINATED, PC=FDI1DH

XPRINT -3

ADDR INSTRUCTION ADDR-S-DA
1003: 4011 MOV C,M 402A~R-00
1007: 4012 CALL F809 L4LO36-W-40
1017: F809 JMP FDID
®STEP TILL RHL = 402B
EMULATION BEGUN
EMULATION TERMINATED, PC=4019H
#PRINT -5

ADDR INSTRUCTION ADDR-S-DA
0359: FD43 MOV A,C
1001: FD&44 OUT F6 F6F6-0-00
1007: FD46 RET 4035-R-15
1013: 4015 LXI B, 0001
1019: 4018 DAD B
®BYTE 4015 = €6,01,77,00 ;

®GO FROM .START FOREVER
EMULATION BEGUN
EMULATION TERMINATED,

PROCESSING ABORTED
REXIT

PC=4O1FH

ADDR-S-DA ADDR-S-DA ADDR-S-DA

Lp35-W-15

ADDR-S-DA ADDR-S5-DA ADDR-S-DA

4035-W-15

ADDR-S-DA ADDR-S-DA ADDR-S-DA

4036-R-40

PATCH THE FIX

1S1S-11 8080/8085 MACRO

LOC 08J

7809

0000 310000 S
0003 212800 C
0006 1632

0008 3EC8

000A CD1COO C
000D 15

000E C20800 C

0011 &4E

0012 CDO9F8
0015 010100
0018 09

0019 C30600 C

001C 060C

001E 48

001F 0D

0020 C21F00 C
0023 3D

0024 C21E00 C
0027 C9

0028 41
0oo0o C

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER SYMBOLS
CHAR C 0028 co
START C 0000

ASSEMBLY COMPLETE,

v
m
Pel

co

WOONDN E NN~

10 START:

12 L1:
13 12

26 DELAY:
27 L3:
28 L4:

34 CHAR:

A F809

NO ERRORS

ASSEMBLER, V2.0

MODULE PAGE 1

SOURCE STATEMENT

;
;
B
;

;
EQU
CSEG
STKLN
LXI
1.X1
MV T
MVI
CALL
DCR
UNZ
MOV
CALL
LXI
DAD
JMP

;

AN ASSEMBLY LANGUAGE PROGRAM TO SEND THE LETTER
TO THE CONSOLE OUTPUT DEVICE, ONCE EACH SECOND
A REVISED VERSION, INTENDED TO SEND THE CHARACTERS A THRU Z
TO THE CONSOLE, ONE PER SECOND

THIS PROGRAM CONTAINS DELIBERATE ERRORS!

X

OF809H ; PROVIDE ADDRESS OF CO ROUTINE IN MONITOR

MAKE THE SEGMENT RELOCATABLE
2 ; SET STACK LENGTH
SP,STACK ; INITIALIZE STACK POINTER

H,CHAR ; LOAD H AND L WITH ADDRESS OF 'A!
D,50 ; WILL CALL DELAY SUBROUTINE 50 TIMES
A,200 ; SUBROUTINE PARAMETER

DELAY ; INVOKE SUBROUTINE

D

L2 ; 50 TIMES AROUND THIS LOOP = 1 SEC
C,M ; MOVE CURRENT CHARACTER TO C REG

co ; MONITOR CONSOLE OUTPUT ROUTINE

8,1 ; GET A CONSTANT 1 INTC B AND C

B ; ADD TO H AND L

L1 ; AROUND THE LOOP INDEFINITELY

; THE DELAY SUBROUTINE

;
MVI
MOV
DCR
JNZ
DCR
JNZ
RET
7
bB
;

END

DELAY

TA! ;5 THE CHARACTER SENT TO CONSOLE -

INITIALLY A

START ; PROGRAM EXECUTION BEGINS WITH SYMBOL

C 601cC L1 C 0006 L2 C 0008

FIGURE 6-3

L3

'START!

C 001E

LG

C 001F

3]

I HILdVHD

Chapter 7
AN APPLICATION ILLUSTRATION

We shall now take a small, but representative, application and carry it through all of the steps of development to show
how the pieces of the Intellec system and ISIS come into play. In the process of doing so, we shall provide a rudimen-
tary roadmap of the operations carried out in getting a simple program running. The reader may find it useful to actu-
ally run the program — following this roadmap — before trying a program of his own.

The application we shall use is a simple traffic light controller. We imagine an intersection of a main street and a side
street. The desired operation is that the light should stay green on the main street until a decision rule involving the ar-
rival of cars on the side street and the amount of time they have been waiting has been satisfied. We suppose that
there is a sensor in the pavement on the side street that sends an interrupt to the computer when a car arrives. We
shall not include the control of a yellow caution light on either street; addition of this feature is one of several “exer-
cises” that will be suggested at the end of the chapter.

Associated with each street is a time called the cycle length. In the program the variable named SIDE$SCYCLESLENGTH
controls the fixed length of time that the light is green on the side street when that cycle is called into action. Even
though the light stays green on the main street until the decision rule is satisfied, we need a variable named
MAINSCYCLE$SLENGTH that is involved in the decision rule.

The decision rule is as follows. The side street gets a green cycle if either of the following conditions is satisfied:

1. Two or more cars are waiting on the side street and the main street has been green for a period of time greater
than or equal to MAINSCYCLESLENGTH.

2. One car is waiting on the side street and the main street has been green for a period of time greater than or
equal to two times MAINSCYCLESLENGTH.

THE SYSTEM ORGANIZATION
The system has one input and one output. The input is a signal that a car has arrived since the last time we sampled
the input. The output goes to the traffic light controlter; we assume that sending it a 1 makes the light on the main
street green and the light on the side street red, and that sending it zero makes the light on the main street red and the
light on the side street green.
A FIRST CUT AT THE PROGRAM DESIGN
Our first step in writing a program for this application is to think about the overail sequence of operations required,

without at this stage getting enmeshed in details. One way to approach this is with pseudocode, as shown in Fig. 7-1.
We see that the essential operations are described at a rather abstract level with the details left for later. This is

57

58 CHAPTER7

DO FOREVER;
Display time since last change
Add 1 to MAIN$TIME

IF decision rule satisfied THEN

DO;
Cycle lights
Set count of cars waiting to zero
Set MAIN$TIME to zero
END;
END;

FIGURE 7-1

clearly not a program, but it lets us organize our thinking about the required sequence of operations and lets us begin
considering how to organize the parts of the program.

What has been shown here are the essentials of what is called the main program loop, which is the part of the program
that repeats indefinitely as long as the system is in operation. This description of the main program assumes the exist-
ence of an interrupt procedure that is called into action when the arrival of a car on the side street causes an external
interrupt of whatever is happening at that time in the program. When the interrupt procedure is invoked, all it has to do
is add one to the count of cars waiting on the side street.

For the main program to do its job it will need to call upon several procedures — bodies of code that carry out specific
functions. In the program that follows we shall use procedures from three different sources:

1. Some procedures will be programmed and compiled as part of our PLUM program.

2. One procedure will be coded in assembly language, assembled in a separate operation, and then linked with the
compiled PL/M program.

3. One procedure that is needed only for development purposes and which would not be part of an operational
program will be “borrowed” from the monitor.

This modular organization of a program into procedures is recommended; it saves the time and trouble of writing any
procedures that are already available, tends to simplify program checkout, and facilitates breaking large programs into
manageable pieces that can be programmed in parallel by several programmers. PL/M procedures can be compiled
separately and then LINKed together when needed, or LINKad with Fortran or assembly language modules.

AN APPLICATION iLLUSTRATION 53

THE TRAFFIC LIGHT CONTROLLER PROGRAM

The PL/M portion of the program for this application is shown in Fig. 7-2. We can study it by taking a look first at the
declarations, then noting the main program, then examining the procedures in the sequence in which they appear.

The declarations at the beginning contain two features of some interest. Statement 6 contains a PLUM macro, which is
somewhat similar in concept but quite different in detail from an assembler macro. The declaration means that
anywhere the identifier FOREVER appears in our program, it will be replaced — before compitation — by WHILE 1. The
program listing will continue to show the FOREVER, aiding understandability, but what the compiler sees will be the
syntactically correct form. Much more elaborate constructions are possible.

Statements 7-9 are messages that will be sent to the CRT for developmental purposes, during program checkout.
Since we really don’t need to know how many characters there are in these messages, we use the asterisk notation in
declaring them to be arrays of bytes, and let the compiler count them in order to allocate memory.

The main program begins, in statements 50-54, with some operations required to initialize the interrupt logic in the
intellec Microcomputer Development System. Any production system would probably require some such operations,
but the details are not of interest to us here.

The remaining part of the main program, statements 55-67, is very similar to the pseudocode already displayed.

The first procedure, in statements 10-13, is entered automatically when — and only when — the external interrupt
number 4 is detected. For developmental purposes we shall use the interrupt key on the front panel of the Intellec
chassis; in the final product the interrupt would of course come from the street sensor. When the interrupt is sensed
by the Intellec circuitry the instruction then being executed is completed and control of the microprocessor is turned
over to the interrupt procedure. The interrupt procedure saves all register contents. When the interrupt procedure has
finished its work the registers are restored and the program that was being executed when the interrupt arrived is
resumed. There is considerabiy more to the fuii story, but that’s ihe basic idea.

It will be convenient in this program to have a procedure that delays for 0.01 second times the value of the argument,
rather than the 100 us of the PL/M procedure named TIME that we saw in Chapter 4. This is best coded in assembly
language, and later combined with the compiled PL/M program. This program, which is shown in Fig. 7-3, is called
DELAY. We see that it contains a notification to the assembler that the name DELAY is “public,” that is, it needs to be
known outside of this program. Correspondingly, in the PL/M program, in statement 13 we tell the compiler that
DELAY is “external” to that program, that is, defined elsewhere. The LINK program will later use this information to
puli the pieces together. As we write these programs we have no idea where they will eventualily reside in the product’s
memory, which is a significant advantage.

The procedure named CO defined in statements 17-19 as being external to the PL/M program, is in fact permanently
available in the monitor, at the high end of the Intellec memory. We will later use the LINK operation to tell the com-
piled PLUM program where it is.

The procedure named DISPLAY, defined in statements 20-39, presents information about the traffic light process that
will be needed to check out the program. Notice that it has its own declarations, which are accordingly focal to this
procedure: the variables declared here are not ““known” outside of this procedure. On the other hand, the variables
declared at the beginning of the entire program are global to this procedure and are known within the procedure. The
local/global mechanism can be used to good advantage to limit unwanted interactions between procedures written by
several programmers.

The iterative DO statements (24, 27, and 34) that send the characters of the three messages to the CRT use the built-in
procedure LAST, which supplies the element number of the last character of the named array. This built-in procedure
is in a library named PLMB80.LiB that is provided with the compiler, and which is brought in either automatically or at
the LINK stage, depending on details that don't interest us.

The CYCLE procedure, in statements 40-49, runs the traffic light through its side-green cycle for the length of time
specified by the value of the variable named SIDESCYCLESLENGTH.

60 CHAPTER7

/% TRAFFIC LIGHT CONTROLLER PROGRAM #/

CARS:
DO;

—

DECLARE (MAINSTIME, SIDESTIME) BYTE;

DECLARE MAINSCYCLESLENGTH BYTE DATA(8), SIDESCYCLESLENGTH BYTE DATA(5);
DECLARE CARSSWAITING BYTE;

DECLARE LIGHT$STATUS BYTE;

DECLARE FOREVER LITERALLY 'WHILE 1°';

DECLARE MAINSGREENSMESSAGE(#*) BYTE DATA('MAIN GREEN, SIDE RED');
DECLARE SIDESGREENSMESSAGE(®*) BYTE DATA('SIDE GREEN, MAIN RED');
DECLARE TIMESMESSAGE(*) BYTE DATA(' SECS SINCE LIGHT CHANGE');

WO oOo~NOWM F W N
e

/% FOLLOWING PROCEDURE ENTERED ONLY BY INTERRUPT ¥/
10 1 SIDESSTREETSCAR:
PROCEDURE INTERRUPT 4;

11 2 CARSSWAITING = CARSSWAITING + 1;
12 2 OUTPUT(COFDH) = 20H; /* RESTORE INTELLEC INTERRUPT LOGIC %/
13 2 END SIDESSTREETS$CAR;

/* FOLLOWING PROCEDURE CODED IN ASSEMBLY LANGUAGE AND LINKED IN ¥/
14 1 DELAY:
PROCEDURE(TIMESHUNDREDTHS) EXTERNAL;

15 2 DECLARE TIMESHUNDREDTHS BYTE;
16 2 END DELAY;

/* FOLLOWING PROCEDURE BORROWED FROM THE MONITOR ¥/
17 1 co:

PROCEDURE(CHAR) EXTERNAL ;
18 2 DECLARE CHAR BYTE;
19 2 END CO;
20 1 DISPLAY:

PROCEDURE (CYCLESTIME);
21 2 DECLARE CYCLESTIME BYTE;
22 2 DECLARE 1 BYTE;
23 2 IF LIGHT$STATUS = 0 THEN
24 2 DO I = 0 TO LAST(SIDESGREENSMESSAGE);
25 3 CALL CO(SIDESGREENSMESSAGE(I));
26 3 END;

ELSE

27 2 DO I = 0 TO LAST(MAINSGREENSMESSAGE);
28 3 CALL COCMAINSGREENSMESSAGE(I));
29 3 END;
30 2 CALL CO(CODH); /% CARRIAGE RETURN ¥/
31 2 CALL CO(C0AH); /% LINE FEED ¥/
32 2 CALL COC (CYCLESTIME / 10) OR 30H); /¥* TEN'S DIGIT %/
33 2 CALL COC (CYCLESTIME MOD 10) OR 30H); /* UNIT'S DIGIT ¥/
32 DO I = 0 TO LAST(TIME$MESSAGE);
35 3 CALL CO(TIMESMESSAGE(I));
36 3 END;
37 2 CALL CO(CODH); /% CARRIAGE RETURN */
38 2 CALL COC0AH); /% LINE FEED %/
39 2 END DISPLAY;

FIGURE 7.2 (Sheet 1 of 2)

40

41
42
43
INA
45
46
47

49

50
51
52
53
54

55
56
57
58
59

0
Y

61

62
63
64
65
66

57
S/

68

—

N RWWWWNNNN

ROR R N = e

RO W W N W N

—

AN APPLICATION ILLUSTRATION &1
CYCLE:
PROCEDURE;
LIGHT$STATUS = 0; /% MAIN RED, SIDE GREEN #/
SIDESTIME = 0;
DO WHILE SIDESTIME <= SIDESCYCLESLENGTH;
CALL DISPLAY(SIDESTIMED;
CALL DELAY(100);
SIDESTIME = SIDESTIME + 1;
END;
LIGHT$STATUS = 1; /% MAIN GREEN, SIDE RED ¥/
END CYCLE;
/% MAIN PROGRAM -- EXECUTION BEGINS HERE %/
/% PREPARE INTELLEC INTERRUPT LOGIC ¥/
DISABLE;
OUTPUT(OFDH) = 12H; /% INITIALIZE INTELLEC INTERRUPT LOGIC ¥/
OUTPUT(OFCH) = 0; /% DITTO ¥/ ,
OUTPUT(OFCH) = 0EOH; /% ACCEPT INTERRUPTS 0-k /WSS
ENABLE;
CARSSWAITING = 0;

MAINSTIME = 0;

DO FOREVER;
CALL DISPLAY(MAINSTIME);
CALL DELAY(100);

MATNGSTIME —

MA LN

IF

DO;

TIMc

(CARSSWAITI
OR (CARSSWAITI

MA TN

MA LT

CALL CYCLE;
CARSSWAITING = 0;

MAINSTIME

END;

END CARS;

NS

;
) AND (MAINSTIME >=

ZZ A
—
N

0;

FIGURE 7-2 (Sheet 2 of 2)

MAT
AND (MAINSTIME >z 2 %

N
N

M

$
A

CYCLESLENGTH)

INSCYCLESLENGTH) THEN

ASM80 :F1:DELAY.SRC

ISIS-11

LOC

0000
0001
0003
0004
0005
0008
000B
000E
0011
0012
0015

0002

PUBLIC
DELAY

EXTERNAL SYMBOLS

USER SYMBOLS

DELAY

ASSEMBLY COMPLETE,

8080/8085 MACRO ASSEMBLER,
0By SEQ
1
2
3
4
79 5 DELAY:
06FF 6
48 7 LAB1:
0D 8 LAB2:
221600 C 9
221600 C 10
221600 C 11
C20400 C 12
3D 13
€20300 C 14
c9 15
16
17 TEMP:
18
SYMBOLS
C 0000
C 0000 LAB1 C 0003
NO ERRORS

V2.0

SOURCE STATEMENT

MODULE PAGE 1

; TIME DELAY SUBROUTINE - DELAYS 0.01 SEC TIMES NUMBER IN A REG

’
CSEG
PUBLIC
MOV
MV1
MOV
DCR
SHLD
SHLD
SHLD
JNZ
DCR
JNZ
RE1
;

DS
END

LAB?2

DELAY
A,C
B,255
c,B

c
TEMP
TEMP
TEMP
LAB2
A
LAB1

C ooo4

PL/M LINKAGE CONVENTION PUTS ARGUMENT IN C REG
NOTE CHANGED PARAMETER TO GET LONGER DELAY

WASTE 14 CYCLES
DITTO
DITTO

PLACE TO STORE H AND L -- CONTENTS NEVER USED

TEMP C 0016

FIGURE 7-3

L H3LdVHO 29

AN APPLICATION ILLUSTRATION

o
W

THE STEPS IN ENTERING AND RUNNING A PROGRAM

To help you through the steps of getting your first program running on the Microcomputer Development System we
shall walk through the operations necessary to get this program running. The approach here will be in a somewhat
cookbook fashion to help you get started. As you become familiar with the various ISIS operations, you will quickly
branch out. Here then is what you need to do.

1. Turn on the Intellec components. Insert an ISIS system diskette in drive 0 and a blank diskette in drive 1.
2. Press the Reset key on the Intellec console and release it. After a brief interval the message
ISIS-II, Vx.y

will be produced at the console, where x.y will be numbers indicating the Version number of your ISIS system.
(New versions of most programs are issued from time to time.) ISIS will then produce a dash, telling you it is
ready to accept a command. Only ISIS prompts with a dash, so any time you see a dash prompt you know you
are dealing with ISIS, not the monitor, text editor, ICE, or the Library Manager, which use different prompt
characters.

3. Type in the command

Actually you may use any combination of six or fewer characters before the dot and any combination of three or
fewer after. What comes after the dot might be your initials or the date or anything eise you please. (If you are
working with a disk already formatted from use with previous chapters, of course skip this step.)

4. Type in the command
EDIT :F1:CARS.SRC

The name CARS is your choice, but the rest must be as shown. After identifying the text editor version and giv-
ing a notification that this is a new file, the system will respond with an asterisk prompt, which tells you that
you are dealing with the text editor. You may now enter any text editor command that you wish. Since you are
dealing with a new file, the only command that makes any sense is Insert. You accordingly type an | and then as
much of the text of the program as vou wish. When you wish to end the insert command, hit the ESC or ALT
MODE key twice, which will be echoed to you as two dollar signs. During this input you can use the rubout key
to erase the immediately preceding character, which will be echoed back to you. You may use Control-R to geta
new copy of the present line minus any deletions. You may use Control-X to delete the present line altogether
and make a fresh try.

Once you have escaped from the Insert command, whether or not you have typed in the entire program, you may
use the various other text editor commands to alter the program as described in Chapter 3. It is not necesssry
to learn everything about the text editor, but do familiarize yourself with Find and Search commands since they
are so useful. Remember that the pointer always resides between two characters. If you want to insert a new
line you must be pointing at the beginning of the line after the point where you want the insertion.

If you have typed in only part of the program and want to enter some more of it, use the Z command to get to the
end of the file before beginning with a new Insert.

When you have finished entering the program, or if you need to stop for any reason, use the E to exit from the
text editor, which automatically stores the file on diskette under the name given in the EDIT command.

Any time you wish to modify this file, such as when compiler diagnostics point out typing errors to you or
whatever, you once again type the command

EDIT :F1:CARS.SRC

64 CHAPTER7
Now when the text editor comes into play it will not inform you this is a new file. In order to work on your file
you must get it into the text editor's memory area using the Append command.

Recall that this command brings in a maximum of 50 lines. You can always see whether you have gotten in your
entire file by using the sequence Z-LT to see whether the line produced is the last one in the file on diskette.

To study your program — if you have a line printer — you can get a hard copy of it by entering the ISIS com-
mand

COPY :F1.CARS.SRC TO :LP:

{You must Exit from the text editor to do this.) If you don’t have a line printer you can send the program to the
console device by typing in the I1SIS command

COPY :F1:CARS.SRC TO :CO:

(Remember that if your output device is a CRT, this will be much too fast for you to read. You can stop the out-
put with Control-S and start it again with Control-Q.)

5. When you are satisfied that your program is correct you can compile it with the ISIS command
PLM80 :F1:CARS.SRC. DEBUG

This will take a minute or two. At the end of the compilation you will get a message noting the completion and
specifying how many errors were detected by the compiler.

Two new files will have been created by the compilation, having file names

:F1:CARS.OBJ and :F1:CARS.LST
OBJ stands for object; this file is the program ready to be combined with ISIS procedures to produce a program
that can actually run. LST stands for list and is a file that contains the statement numbers, page numbers, etc.,
that have been shown in the PLUM programs in this manual. If you want a copy of the listing enter the command

COPY :F1:CARS.LST TO :LP:

1f you don’t have a line printer or if you simply want to see what the diagnostic error messages are, you can see
the listing file on the system console by entering

COPY :F1:CARS.LST TO :CO:

6. If the compiler has detected errors you can use the diagnostic error messages in the listing to see what they are
and determine what changes need to be made in the source program. Make these changes using the text editor.
When you have edited the program, the operation of executing the text editor command E will save the previous
version of that file on a file named

:F1:CARS.BAK
for safety.
Now you recompile, etc., eventually arriving at a compilation showing zero errors. This of course does not prove

there aren't any logic errors or simple typographical errors that would not create any error conditions, but you
will at least be ready to give the program a try.

7. Again using the text editor, create a file named :F1:DELAY.SRC containing the assembly language program
shown earlier.

N APPLICATION iLLUSTRATI

8. Assemble it using the command
ASMB80 :F1:DELAY.SRC DEBUG

8. Get a copy of the listing file with the command
COPY :F1:DELAY.LST TO :LP:

10. If there are any errors, you can use the diagnostic messages in the listing to see what your typing errors were,
correct them using the text editor, and reassemble. (An assembler error message appears as a single letter in
the left margin of the listing.)

11. To combine your object programs with the ISIS routines that you have specified and certain other routines such
as procedures for doing multiplication and division that are not present in the 8080 CPU, we now carry out the
LINK operation.

Type the command

LINK :F1:CARS.OBJ, :F1:DELAY.OBJ, SYSTEM.LIB, PLM80.LIB TO :F1:CARS.LNK

Actually you can type almost anything you please where we have shown LNK, except it must be different from
OBJ.

12. The file named :F1:CARS.LNK now contains your program almost ready to run. The only remaining operation is
to place the program and data in actual memory locations to convert them from the relative form in which they
occur now. This assignment can be done with a great deal of flexibility as described in the manuals. For our
purposes all we need to do is type the command

LOCATE :F1:CARS.LNK
The output of this operation is a file having the name :F1:CARS, with no extension following the file name.
13. You can now run your program simply by typing in
:F1:CARS
That name, all by itself, is now a command to execute the program. If everything has been done correctly, your

program will now begin to run. In the case of the traffic light controller, it will give the status of the system
every second. Push interrupt 4 on the Intellec console and see what happens.

AN ICE SESSION

We may now see how in-circuit emulationcould be used to check out this program. To make the process interesting,
we shall insert some errors in the program and see how ICE-85 might help us find them. Figure 7-4 shows the program
of Fig. 7-2, modified in two ways. First, it has two deliberate errors, which we shall find using ICE-85. Second, the
statements used in connection with the Intellec interrupt logic have been removed; these make it impossible to use
ICE-85, so we shall handle the interrupt in another way. (You can, of course, use ICE-85 with interrupts in your pro-
totype.)

In particular, the procedure
SIDE$STREETSCAR

no longer has the INTERRUPT attribute, and the main program no longer has the steps to initialize the Inteliec inter-
rupt logic.

66 CHAPTER7

—

WOoo~N W F NN

10

11
12

13

14
15

16

19

20
21

22
23
24
25

26
27
28
29
30
31

= s e

W NN ~

RN N W N

/% TRAFFIC LIGHT CONTROLLER PROGRAM ¥/

/% THIS PROGRAM CONTAINS DELIBERATE ERRORS! #/
CARS:

DO;

DECLARE (MAINSTIME, SIDESTIME) BYTE;

DECLARE MAINSCYCLESLENGTH BYTE DATA(8), SIDESCYCLESLENGTH BYTE DATA(5);
DECLARE CARSSWAITING BYTE;

DECLARE LIGHT$STATUS BYTE;

DECLARE FOREVER LITERALLY 'WHILE 1°';

DECLARE MAINSGREENSMESSAGE(*) BYTE DATA('MAIN GREEN, SIDE RED');
DECLARE SIDESGREENSMESSAGE(®) BYTE DATA(C'SIDE GREEN, MAIN RED');
DECLARE TIMESMESSAGE(®) BYTE DATA(' SECS SINCE LIGHT CHANGE');

/% IN EARLIER VERSION, THIS PROCEDURE WAS ENTERED ONLY BY INTERRUPT ¥/
/% NOW, IT IS ENTERED THROUGH AN ICE CALL */
/% ALSO, THE INTELLEC LOGIC RESTORATION HAS BEEN DELETED %/
SIDESSTREETSCAR:
PROCEDURE;

SIDESTIME = SIDESTIME + 1;
END SIDE$STREETSCAR;

/% FOLLOWING PROCEDURE CODED IN ASSEMBLY LANGUAGE AND LINKED IN #/
DELAY:
PROCEDURE(TIMESHUNDREDTHS) EXTERNAL ;
DECLARE TIME$HUNDREDTHS BYTE;
END DELAY;

/% FOLLOWING PROCEDURE BORROWED FROM THE MONITOR ¥/
co:
PROCEDURE(CHAR) EXTERNAL;
DECLARE CHAR BYTE;
END CO;

DISPLAY:

PROCEDURE (CYCLESTIME)D;
DECLARE CYCLESTIME BYTE;
DECLARE 1 BYTE;

I[F LIGHT$STATUS = 0 THEN

DO I = 0 TO LAST(SIDESGREENSMESSAGE);
CALL CO(SIDESGREENSMESSAGE(I));

END;

ELSE

DO I = 0 TO LAST(MAINSGREENSMESSAGE);
CALL CO(MAINSGREENSMESSAGE(I));

END;
CALL COCODH); /% CARRIAGE RETURN 3/
CALL COCO0AH); /% LINE FEED %/

CALL COC (CYCLESTIME / 10) OR 30H); /® TEN'S DIGIT ¥/

FIGURE 7-4 (Sheet 1 0f 2)

32
33
34
35
36
37
38

39

40
41
42
43
bl
45
46
47
48

— NRNRWWNON

RN RNWWWW NN

NR R N = =

N W W W W N

—

AN APPLICATION ILLUSTRATION 67

CALL €COC (CYCLESTIME MOD 10) OR 30H); /% UNIT'S DIGIT %/
DO I = 0 TO LAST(TIMESMESSAGE);
CALL CO(TIMESMESSAGEC(CI));

END;
CALC COCODH); /% CARRIAGE RETURN ¥/
CALL COCO0AH); /¥ LINE FEED %/

END DISPLAY;

CYCLE:
PROCEDURE;
LIGHTS$STATUS = 0; /* MAIN RED, SIDE GREEN */
SIDESTIME = 0;
DO WHILE SIDESTIME <= SIDESCYCLESLENGTH;
CALL DISPLAY(SIDESTIME);
CALL DELAY(100);
SIDESTIME = SIDESTIME + 1;
END;
LIGHT$STATUS = 1; /% MAIN GREEN, SIDE RED #/
END CYCLE;

® MAIN PROGRAM -- EXECUTION BEGINS HERE ¥/

INTELLEC LOCIC INITIALIZATION HAS BEEN DELETED */

CARSSWAITING
MAINSTIME = 0
LIGHT$STATUS
DO FOREVER;

CALL DISPLAY(MAINSTIME);

CALL DELAY(100);

MAINSTIME = MAINSTIME + 1;

IF (CARSSWAITING >= 2) AND (MAINSTIME >= MAINSCYCLESLENGTHD
AND (CARSSWAITING = 1) AND (MAINSTIME >= 2 * MAINSCYCLESLENGTH) THEN
DO;

0;

~

1; /% MAIN GREEN INITIALLY 3/

CALL CYCLE;
CARSSWAITING = 0;
MAINSTIME = 0;
END;
END;

END CARS;

FIGURE 7-4 (Sheet 2 of 2)

68 CHAPTER7

1.

10.

1.

12.

13.

14,

15.

17.

| map memory and I/O as required for my program. Note the use of abbreviations: LEN for LENGTH, INT for IN-
TELLEC. All ICE-85 words can be abbreviated to three letters, and to one or two in some cases.

| load my program.

. PC (the program counter) has been loaded with the starting address of the program; | give a symbol named

START this value so that | can later restart the program from the beginning.

. We will be referring many times to the routine named SIDE$STREET$CAR, which is a lot of typing. | define a

shorter symbol to have the same value.

. | ask for the symbols, which are printed in two groups, one for the PL/M program and one for the assembly lan-

guage subroutine.

. | start emulation.
. Emulation is stopped with the ESC key. The output to the CRT had been correct.

. The ICE-85 command CALL brings the former interrupt routine into play, just as though it had been entered by

an interrupt. In other words, after the procedure has been executed, control returns to whatever had been going
on when | pressed the ESC key.

. | interrupt emulation with the ESC key again.

A second CALL represents a second car.

The light did not cycle, even though enough time had passed for the decision rule to have been satisfied with
two cars. What is happening?

What is the value of CARSSWAITING? It should be 2 after two calls of SIDE$STREET$CAR. But it's zero!
Well, let's see if the procedure CYCLE is ever entered.
It isn't.

Let's see if the IF statement embodying the decision rule is ever executed. This was statement 56 in the pro-
gram.

. Yes it is. That's not the trouble.

Curious, | ask again for the value of CARSSWAITING. It still isn’t being incremented.

AN APPLICATION iLLUSTRATION 69

1%MAP 3000 LEN 4K = INT 7000 ; PROGRAM LOCATED AT 3680H
“MAP 0 = INT 0 ; MONITOR VARIABLES
WARN C1:MAPPING OVER SYSTEM
“MAP F800 = INT F800 ; MONITOR
“MAP IO FO TO FF = INTELLEC
2%LOAD -:F1:CARSS
3%DEFINE .START = PC ; START ADDRESS
4%DEFINE .I4 = .SIDESSTREETSCAR ; SIMULATED INTERRUPT &4 ROUTINE
5*SYMBOLS
.START=36C3H
.I4=3729H
MODULE ..CARS
.MEMORY=3882H
.MAINTIME=387CH
.SIDETIME=387DH
.MAINCYCLELENGTH=3680H
.SIDECYCLELENGTH=3681H
.CARSWAITING=387EH
.LIGHTSTATUS=387FH
.MAINGREENMESSAGE=3682H
.SIDEGREENMESSAGE=3696H
. TIMEMESSAGE=36AAH
.SIDESTREETCAR=3729H
.DISPLAY=372EH
.CYCLETIME=3880H
.1=3881H
.CYCLE=37E2H
MODULE ..MODULE
.DELAY=380FH
.LAB1=3812H
.LAB2=3813H
.TEMP=3829H
6 %GO
EMULATION BEGUN
7 EMULATION TERMINATED, PC=3820H
PROCESSING ABORTED
;MAIN GREEN
8 X*CALL .I4 ; FIRST CAR
EMULATION BEGUN
9 EMULATION TERMINATED, PC=381AH
PROCESSING ABORTED
;MAIN GREEN
10 *CALL .I4 ; SECOND CAR
EMULATION BEGUN
11 EMULATION TERMINATED, PC=381DH
PROCESSING ABORTED
®;STILL MAIN GREEN, EVEN AFTER 2 CARS
12 %BYTE .CARSSWAITING ; SHOULD BE 2
387EH=00H
13 %GO TILL .CYCLE EXECUTED ; DO WE REACH CYCLE?
EMULATION BEGUN
14 EMULATION TERMINATED, PC=3814H
PROCESSING ABORTED
%;NO. STILL MAIN GREEN
15 %G T #56 E ; DO WE REACH DECISION POINT? (NOTE USE OF ABBREVIATiONS)
EMULATION BEGUN
16 EMULATION TERMINATED, PC=36ES8H
“;YES. WHY DID WE NOT REACH CYCLE?
17 ¥BYTE .CARSSWAITING ; SHOULD BE 2
387EH=00H

70 CHAPTER7

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Now | want to see if CARSSWAITING is ever written, which it should be in the ‘“interrupt” procedure
SIDE$SSTREET$CAR.

Since this procedure will be entered with a CALL and there is no way to say “CALL TILL .CARSSWAITING WRIT-
TEN,” | set a breakpoint.

| CALL the procedure.

Emulation did not stop; CARSSWAITING is never being written.

Let's look at the code for the assignment statement. The expression #11 gives the address of the first byte of
statement 11. The expression #12-1 gives the address of the byte before the start of statement 12, which is the
last byte of the code generated for statement 11. The code is seen to consist of four bytes. The middle two

bytes are an address, 387DH. This should be the address of CARS$WAITING.

Now we finally notice that the assignment statement 11 is wrong: it says to increment SIDE$TIME instead of
CARSSWAITING. To confirm this, we ask to see the address of SIDE$TIME, which is indeed 387DH.

I change this word to the address of CARSSWAITING.

I check to be sure the change was made correctly. The address has been changed to 387EH.
This is indeed the address of CARSSWAITING.

Try it.

Interrupt with ESC.

First car.

Interrupt with ESC.

Second car.

Now what? It still doesn’t cycle.

Well, has CARSSWAITING been incremented? Yes, it has.

| decide to give up for the day, but want to save the program as it now stands, i.e., with the patched change and
with the symbols | defined.

| exit from ICE-85.

Coming back the next day, | must do the mapping again.

. | load the program, as modified in yesterday’s session.

18
19

“GR =
®CALL
EMULAT

TILL .CARSSWAITING WRITTEN ; SET UP BREAKPOINT

LIh
ION BEGUN

20 EMULATION TERMINATED,

21

22

23

24

25

26

27

28

31

32

33

35

36

PROCES

SING ABORTED

PC=3813H

#;,1T DIDN'T GET WRITTEN.
XBYTE #11 TO (#12-1) ;
3729H=21H 7DH 38H 34H

®.SIDE
387DH
#; CHAN
“WORD

#.CARS
387EH
®GO FR
EMULAT

$TIME

GE

'SIDESTIME!

EXAMINE CURRENT CODE

TO 'CARSSWAITING!'

(#11+1) = .CARSSWAITING
¥BYTE #11 TO (#12-1) ;
3729H=21H 7EH 38H 3L4H

SWAITING

VERIFY

OM .START FOREVER ; TRY IT OUT

ION BEGUN

EMULATION TERMINATED,

PROCES
#;MAIN
®CALL

EMULAT
EMULAT
PROCES
#;MAIN
®CALL

EMULAT

SING ABORTED
GREEN

.I4 ; FIRST CAR

ION BEGUN

ION TERMINATED,

SING ABORTED
GREEN

.I4 ; SECOND CAR

ION BEGUN

EMULATION TERMINATED,

PROCES
®;STIL
“BYTE

387EH=

SING ABORTED
L MAIN GREEN

PC=381DH

PC=3820H

PC=381AH

.CARSSWAITING ; SHOULD BE 2

02H

#;THE PATCH SEEMS CORRECT. WHY DOESN'T IT CYCLE?
®;LET'S SAVE WHAT WE'VE DONE AND CONTINUE DEBUGGING LATER

®SAVE
REXIT
XMAP 3
XMAP 0

:F1:CARS5.SAV

000 LENGTH 4K
= INT 0

INTELLEC 7000

WARN C1:MAPPING OVER SYSTEM
800 = INT F800

XMAP F
XMAP T
%LOAD

0 F0O TO FF =
:F1:CARSS5.SAV

INT

’

LOAD WHAT WE SAVED EARLIER

72 CHAPTER 7

37.

38.

39.

40.

41,

42,

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54,

| am curious to see if the new symbols are there. They are. Note that 14 has the same value as
SIDE$STREET$CAR.

| try an emulation.

And interrupt.

First car.

Interrupt.

Has CARSSWAITING been incremented? Yes, so yesterday's patch must be in the program.
Second car.

Interrupt. The light didn't cycle.

Is CARSSWAITING right? Yes.

Is the IF statement that implements the decision rule being entered?
Yes.

Do we get past that statement, and if so, to where?

Emulation stops — but on which following statement? PC contents shown give the address of the next instruc-
tion; 1 want to know what was previously executed.

PPC gives the previous program counter contents.

OK, what is the address of the first byte of code for statement 627 Since it is the same as the value of PPC, we
must just have executed statement 62. Therefore we are getting past the IF statement.

So what is the value of CARSSWAITING? It's 2!

How about MAINSTIME? OBH is 11 decimal. With 2 cars waiting and 11 seconds having passed, the decision
rule should have been satisfied.

| have now narrowed the trouble area down to the IF statement. ICE-85 can do no more to tell me what is wrong,
when a syntactically correct statement simply gives wrong results. With my attention forced to focus on this
one statement, | eventually will see that the logic is wrong; the AND at the beginning of the second line of the
statement should be an OR.

The solution is to recompile the program. which must be done eventually anyway. Machine language patches
have their limits, and this error would be rather hard to patch.

| exit from ICE-85, correct the program, and try it again. It works correctly.

37 ¥SYMBOLS
MODULE ..CARS
.START=36C3H
.I4=3729H
.MEMORY=3882H
.MAINTIME=387CH
.SIDETIME=387DH
.MAINCYCLELENGTH=3680H
.SIDECYCLELENGTH=3681H
.CARSWAITING=387EH
.LIGHTSTATUS=387FH
.MAINGREENMESSAGE=3682H
.SIDEGREENMESSAGE=3696H
. TIMEMESSAGE=36AAH
.SIDESTREETCAR=3729H
.DISPLAY=372EH
.CYCLETIME=3880H
.1=3881H
.CYCLE=37E2H
MODULE . .MODULE
.DELAY=380FH
.LAB1=3812H
.LAB2=3813H
.TEMP=3829H

¥;NOTICE ALL SYMBOLS ARE THERE, INCLUDING THOSE DEFINED

38 ¥GO
EMULATION BEGUN
39 EMULATION TERMINATED, PC=3817H
PROCESSING ABORTED
¥;MAIN GREEN
40 ¥CALL .14
EMULATION BEGUN
EMULATION TERMINATED, PC=3817H
PROCESSING ABORTED
%¥;MAIN GREEN
42 *XBYTE .CARSSWAITING
387EH=01H
#;HENCE PATCH WORKED
43 XCALL .I4
EMULATION BEGUN
44 EMULATION TERMINATED, PC=381AH
PROCESSING ABORTED
¥;STILL MAIN GREEN
45 *BYTE .CARSSWAITING
387EH=02H
46 %GO TILL #56 E ; RIGHT BEFORE DECISION POINT
EMULATION BEGUN
47 EMULATION TERMINATED, PC=36E8H
48 *GO TILL #57 E OR #62 E
EMULATION BEGUN
49 EMULATION TERMINATED, PC=36D5H
50 *PPC ; LAST INSTRUCTION EXECUTED
3724H
51 %462
3724H

4

-

IN PREVIOUS

®;S0 WE BRANCHED AROUND, THE IF CONDITION WAS NOT SATISFIED

52 *BYTE .CARSSWAITING
387EH=02H

53 *BYTE .MAINSTIME
387CH=0BH

#;IT IS A LOGIC PROBLEM IN IF CONDITION. MUST RECOMPILE

54 XEXIT

SESSION

THINGS TO TRY

If you want to use this program for some practice in using the Intellec system, here are some modifications you might
make.

1. Change the cycle times.
2. Change the decision rule.

3. Provide a green cycle for the side street on some minimum schedule even if no cars have been detected. (There
might be sports cars!)

4. Provide yellow caution lights on one or both streets.

5. Modify the program so that it doesn’t lose a car that arrives during the caution cycle and then stops. (Recall that
the main program loop sets CARSSWAITING to zero.)

6. Provide for an interrupt from a sensor in the main street as well as the side street. Keep moving averages on the
traffic rates for the last five minutes on both streets, and adjust the cycle times to refiect relative demand. (This
is a fairly sizeable project.)

APPENDIX I

INTELLEC SERIES I
SYSTEM CONFIGURATIONS

MODEL 210

The Model 210 provides you with the minimum system required for the rapid and efficient development of microcom-
puter software, while allowing you the option of easily upgrading to a diskette-based system as your performance
needs and budget allow. The Model 210’s new ROM-based Editor/Assembler combination allows the development of
small 8080 or 8085 programs completely in RAM memory — minimizing your usage of paper tape. An optional
MCS-48™ ROM Assembler/Editor provides the same capability for the Intel MCS-48 family of single-chip microcom-
puters. The compact new system has 32K bytes of RAM, 24K bytes of ROM and its own microprocessor. A self-test
diagnostic capability is built into the system. The Model 210 interfaces to your own terminal to get you started on your
microcomputer development project — with a minimum of inconvenience and an extremely low price!

MODEL 220

The Model 220 provides you complete access to a variety of essential microcomputer development toois while using
an absolute minimum of valuable laboratory bench space. Its unique packaging combines a 2000-character CRT, full-
sized 256K-byte floppy diskette drive and 6-slot MULTIBUS cardcage in a single, compact unit. The design is made
possible by extensive use of Intel’s high-technology LS| microcomputer components, including an 8080A CPU, 8271
floppy disk controiier, 8275 CRT controiier and 186K RAM memories. The Modei 220 has 32K bytes of RAM and 4K bytes
of ROM as standard equipment. Powerful I1SIS-Il Diskette Operating System software with its relocating 8080/8085
assembler provides you with the perfect environment for a medium-scale system development effort. And the Model
220 interfaces directly to all the Intel In-Circuit and “In-System” Emulator modules.

MODEL 230

The most powerful member of the new Intellec Series Il family is the Model 230. It includes two double density floppy
diskettes and 64K bytes of RAM, an integrated CRT display and a detachable, typewriter-style keyboard with upper and
lower case characters and cursor controls. The powerful ISIS-Il Diskette Operating System and its relocatable and
linkable software is standard with the new system, allowing you the use of Intel’s high-level programming languages
— including PL/M-80 and FORTRAN 80, pius the industry’s most comprehensive line of macro assemblers. More than
1 million bytes of on-line diskette storage is included, and the system will support up to 2.5 million total bytes. The
standard Intellec System Monitor, provided in ROM memory, contains a “Self-Test” system diagnostic. Interfaces are
provided for a printer, paper tape reader/punch and universal PROM programmer. The system is compatible with all
Intellec and MULTIBUS™ modules. The Model 230 provides access to all the tools needed for microprocessor-based
development work . . . software development tools including editors, assemblers, compilers and debuggers . .. and
system development tools including all In-Circuit Emulators plus the world’s first “in-System Emulator,” ICE-85™ and
its 18-channei External Trace Modute.

77

APPENDIX Il

INTELLEC SERIES II
AND RELATED DOCUMENTATION

A Guide to PLIM Programming for Microcomputer Applications, by Daniel D. McCracken, Addison-Wesley, 1978.
y Intellec Series Il Model 210 User’s Guide, 98-558, which describes the use of the Model 210.

« Intellec Series Il Installation and Service, 98-557, which describes how to install all models and options of intellec
Series |l, and how to perform minor service (including operation of diagnostic routines).

. Inteilec Series Il Hardware Reference Manual, 98-556, which describes the operation of the system modules and in-
cludes high-level functional descriptions of each.

Intellec Series Il Schematic Drawings, 98-5654, which contains the schematic drawings for Models 210, 220, and 230,

- ISIS-Il User’s Guide, 98-306, which describes the operation of the diskette operating system.

- 8080/8085 Assembly Language Programming Manual, 98-301, which describes the assembly language for the
MCS-80/85 family of microprocessors.

ISIS-11 8080/8085 Assembler Operator’s Manual, 98-292, which describes how to assemble an MCS-80/85 assembly
language program under ISIS-II.

MCS-48/UPI-41 Assembly Language Manual, 98-255, which describes the assembly language for the MCS-48 and
UPI-41 family of microprocessors and describes how to assemble programs written in those languages.

PL/M-80 Programming Manual, 98-268, which describes the source statements of the PL/M-80 language.
ISIS-1I PL/M-80 Compiler Operator’s Manual, 98-300, which describes how to compile a PL/M-80 program using ISIS-II.

FORTRAN-80 Programming Manual, 98-481, which describes the source statements of the 8080/8085 ANS FORTRAN
compiler, which implements the FORTRAN-77 ANS standard.

ISIS-1l FORTRAN-80 Compiler Operator’s Manual, 98-480, which describes how to compile a FORTRAN-80 program
using ISIS-II.

ICE-80 Operator's Manual, 98-185, which describes the installation and use of the ICE-80 in-circuit emulation module.
ICE-85 Operator's Manual, 98-463, which describes the installation and use of the ICE-85 in-circuit emulation module.

ICE-48 Operator’s Manual, 98-464, which describes the installation and use of the ICE-48 in-circuit emulation module.

Contact Intel Literature Department, 3065 Bowers Ave., Santa Clara, CA 95051 for ordering information.

79

intal

INTEL CORPORAT!ON, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A/B32/478/50K CP

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	xBack

