ISIS-II
FORTRAN-80 COMPILER
OPERATOR’S MANUAL

Manua! Order Number: 98004808

Copyright © 13978 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

[

ii

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE LIBRARY MANAGER PROMPT
INSITE MCS RMX
INTEL MEGACHASSIS UPI
INTELLEC MICROMAP uSCOPE
iSBC MULTIBUS

| Printed in U.S.A./A106/0879/5K BL

PREFACE

This manual describes operating procedures for the ISIS-I FORTRAN-80 Compiler
and run-time libraries. The compiler translates FORTRAN-80 source code into
relocatable object code for the 8080 and 8085 microprocessors. The manual also
describes the steps needed to execute the compiled program including all necessary
linkage, relocation, and run-time requirements.

Manual Organization

Chapters 1 through 4 of this manual apply to all users, and describe compiler
features and the general procedures for linking, locating, and execution of pro-
grams. The subsequent chapters (5-7) provide instructions applicable to particular
run-time environments. The Appendices supply reference information pertinent to
all systems.

The manual contains the following chapters and appendices:
““Chapter 1. Compiler Overview,”’ which gives a general description of the com-
piler, its input and output files, and the run-time libraries provided with the com-
piler, plus a step-by-step outline of the compilation, linking, locating, and execution
of a small sample program.

“‘Chapter 2. Compiler Controls,”’ which describes each of the controls that may be
used to modify the interpretation of source files, the use of compiler resources, and
the format and content of output files.

“Chapter 3. Listing Formats,”” which explains each part of the listed output
available from the compiler.

“Chapter 4. Program Linkage, Relocation, and Execution,’”” which gives general
instructions for linking, locating, and executing programs.

““Chapter 5. iSBC 310 Interface,’” which gives special instructions for using the run-
time software interface that allows an iSBC 310 High-Speed Math Unit to be used
for greater speed in performing floating-point operations.

‘“‘Chapter 6. Preparing Programs to Run Under RMX/80,”” which provides
information applicable to running FORTRAN programs in the RMX/80
environment,

“Chapter 7. Preparing Programs to Run Without ISIS-II or RMX/80,”” which
gives instructions needed in non-ISIS, non-RMX run-time environments, including
instructions for programming custom low-level 1/0 drivers.

“Appendix A. The Compiler and the FORTRAN Language,’”’ which summarizes
the limitations and extensions to the standard FORTRAN language assumed by the
FORTRAN-80 compiler.

““Appendix B. Error Messages,’’ which lists the error messages and error codes
which may occur at compile time and at run time, including (for reference) errors
that may be detected by ISIS-II, RMX/80, and the LINK and LOCATE programs.
Information is also provided on how to program custom error handlers for floating-
point operations.

iif

iv

“Appendix C. Number Formats,’’ which explains the internal formats for integer
and floating-point numbers assumed by the FORTRAN compiler, together with the
schemes used for rounding floating-point numbers and exponent wraparound.

“Appendix D. Summary of LINK Options,”” which provides a diagram of all
libraries that may be specified for various run-time environments, in the order in
which they must be given in the LINK command.

““Appendix E. Execution Speeds and Stack Requirements for Floating-Point
Operations,”” which lists the execution speed and minimum stack requirement for
each FORTRAN operation and intrinsic function that involves floating-point
(REAL) numbers.

““Appendix F. Providing Reentrancy for Non-RMX Floating-Point Libraries,”’
which explains how two library procedures can be called to effect reentrancy for
floating-point operations in non-RMX environments.

Related Publications

No discussion of the FORTRAN programming language is provided here. Please
refer to the document

FORTRAN-80 Programming Manual 9800481

Use of the compiler and run-time libraries requires the ISIS-II software. (ISIS-II is
the diskette operating system facility of Intel’s Intellec or Intellec Series II
Microcomputer Development System). This facility is described in the document

ISIS-1I User’s Guide 9800306

Object modules produced by the compiler may be run in the ISIS-II environment,
under the iISBC 80 Real-Time Multitasking Executive (RMX/80), or without either
operating system. The ISIS-II User’s Guide, referenced above, provides all
necessary information on the ISIS-II run-time environment. Use of RMX/80 is
described in the document

RMX/80 User’s Guide 9800522 (Rev. B or later)
If you are using the iSBC 310 High-Speed Math Unit interface option for faster

floating-point operations, you-will find information on the operation of this unit in
the document

ISBC 310 High-Speed Mathematics Unit 9800410
Hardware Reference Manual

For further information on linking FORTRAN and non-FORTRAN procedures
together, refer to the document

How to use FORTRAN with other Intel
Languages 9800778

(Application Note AP-44)

CONTENTS

CHAPTER] PAGE
COMPILER OVERVIEW
Compile-Time Environment 1-1
Run-Time Environmentcooviiiinnn 1-2
Input/Qutput Fileso ieiiii i 1-2
Source Filest e e I-2
ObjectFileo 1-2
ListFile. ... e 1-2
Compiler Overlay/Scratch Files 1-3
FORTRAN Librariescvcvvivinininnn.. 1-3
Preparing FORTRAN System Diskettes............. 1-4
Sample Program Development 1-8
CHAPTER 2
COMPILER CONTROLS
Specifying Compiler Controls 2-1
Controls Specified at Compile-Time.............. 2-1
Control Lines. . ..ot 2-2
Primary and General Controls..................... 2-2
Summaryof Controls.............cociiiiiininnn. 2-2
ObjectFileControls ..., 2-3
OBJECT/NOOBJECT Controls 2-3
DEBUG/NODEBUG Controls.................. 2-3
OPTIMIZE Controlscoovvviviiiiiennns 2-3
Compiler Listing Controlsoooiiiinn, 2-4
PRINT/NOPRINT Controls. 2-4
LIST/NOLIST Controlscvviivniinnnen. 2-4
SYMBOLS/NOSYMBOLS Controls............. 2-4
CODE/NOCODE Controls.coouee... 2-5
XREF/NOXREF Controlsc.... 2-5
Listing Format Controls.............. ...t 2-5
PAGING/NOPAGING Controls................ 2-5
PAGELENGTH Control..............ooini.n. 2-6
PAGEWIDTH Controlovivenn 2-6
DATE Control.o 2-6
TITLECONIOl v 2-6
EJECTControl...........coo i, 2-7
Source File Controls ...t 2-7
REENTRANT Controlc.cvviinninnn 2-7
D077/D066 Controls ..o, 2-7
STORAGE Control, 2-8
FREEFORM/NOFREEFORM Controls.......... 2-8
INCLUDEControl.....c.oovviiiiriniiinann... 2-8
Compiler Resource Controlscovvviineenn.n. 2-9
WORKFILES Controlcoovvvvevinnen, 2-9
SAVE CONtrol....vvvvininiiiiienneeeeaennn. 2-9
RESTORE Control.............. .o, 29
Default Control Settings.cc.ooveeerenen. 2-10
CHAPTER 3
LISTING FORMATS
Program Listing ccoiiveiiivennn. 3-1
PageHeading...................ccoiiiiini o, 3-1
Compilation Introductory Lines 3-1

PAGE

Assembly-Language Listing. 3-2
FORTRAN Source Listing.ov.... 32
Symbol and Cross-Reference Listings. 34
Compilation Summary and Signoff 3-4

CHAPTER 4
PROGRAM LINKAGE, RELOCATION,
AND EXECUTION

Building An Executable Program 4-1
Memory Allocation.................coiiiieaa... 4-1
Linking Object Modules..........coovviveevnennn.. 4-2
LINK and SUBMIT Commands 4-2
FORTRAN Library FROISS.LIB................. 4-4
FORTRAN Library FSORMX.LIB............... 4-4
Linking with non-FORTRAN
Procedures..........ccoviiiiiiiiiiiinnn., 4-4
Object Module Relocationcoovvvnnvnnn.. 4-6
ORDERControlcoiiiiiin i, 4-6
Base AddressControlsoooinn.. 4-6
Program Execution and Unit Preconnection......... 4-7
CHAPTER §
iSBC 310 INTERFACE
Dedicated Use of iSBC310........................ 5-1
I/0 Base Address and Memory Base Address 5-1
ErrorHandling it 5-2
Activation and Deactivation of iSBC 310
MemoryMappingcooiiiiiii i, 5-2
Use of iSBC 310 Interface in iSBC 80-Based Systems .. 5-3
LINKCommand...............oovviiiiiin... 5-3
CHAPTER 6

PREPARING PROGRAMS TO RUN
UNDER RMX/80

Program Structure Under RMX/80 6-1
Initialization and Termination..................... 6-1
Inputand Qutput i, 6-3
Using the iISBC 310 Option Under RMX/80 6-4
Configuration Requirements...................... 6-4
LINKCommand................coiiiiiiiiiin., 6-5
Unresolved External References 6-7
Exampleo e 6-7
CHAPTER 7

PREPARING PROGRAMS TO RUN
WITHOUT ISIS-II OR RMX/80

Initializationo i 7-1
InputandQutputcciiiiiiiian. 7-1
Providing 1/0 Capabilities for Files 7-2
Directly Callable /O Drivers.............co.v.... 7-7
LINKCommand................cooiiiiii..., 7-9

APPENDIX A PAGE

THE COMPILER AND THE

FORTRAN LANGUAGE

Compiler Limitations on Language................ A-1
Statement Functionscoovvuninnan.. A-1

Compiler Extensions to Language A-2
Lowercase Lettersoovvviiiennnnne.. A-2
Record length Specifier for Sequential Access Files. A-2
Port Input/Output.........coviiiiiiniennn.. A-2
Reentrant Proceduresoovvveennn... A-2
Freeform Line Format.coovvvvvivne... A-3
Interpretation of DO Statements A-3
Including Source Files, A-3

Flexibility in Standard Restrictions A-3
Association of Storage Units A-3
Partially Initialized Arrays A-4
Transfersinto IF Blocks A-4

Unit Preconnectionccoiiiineenininn. A4

Interrupt Processingcoovvviiiiiinan... A-4

APPENDIX B

ERROR MESSAGES

FORTRAN Compiler Error Messages.............. B-1
Source Program Error Messages. B-1
Compiler Control Error Messages B-6
Input/Output Error Messages. B-6
Insufficient Memory Error Messages............. B-6
Compiler Failure Errors. B-7

FORTRAN Run-Time Error Messages B-7
Run-Time Arithmetic Errors. B-7
Run-Time [/OErrors...............coivvunn. B-11

vi

PAGE

‘ERR’ Specifier...........ooviiii .. B-16
‘TOSTAT’ Specifier ..o viin i B-16

[SIS-IT Error Messages.oovvveeinnnnennann. B-16

RMX/80ErrorCodesoovvivvinnnaennn B-18

LINK Error Messagescovvivveiununnenn B-20

LOCATEErrorMessages.........covveveevnnnn. B-20

APPENDIX C

NUMBER FORMATS

Floating-Point Number.......................... C-1
Floating-Point Standard C-1
Floating-Point Zero..........coovveieiininnn.. C-1
Invalid Numbers................ooiviiiinnn. C-1
Floating-Point Number Format C-1
Rounding.........ooiiinii i C-2
Exponent Wraparound C-2

IEegETS .« oottt e e e C-2

APPENDIX D

SUMMARY OF LINK OPTIONS

APPENDIX E

SPEEDS AND STACK

REQUIREMENTS FOR FLOATING-

POINT OPERATIONS

APPENDIX F

PROVIDING REENTRANCY FOR NON-
RMX FLOATING-POINT LIBRARIES

INDEX

ILLUSTRATIONS

FIGURE TITLE PAGE
1-1 Directory Listing of a Standard ISIS-I1
Version 3.4 System Diskette., 1-5
“1-2 SUBMIT File to Create a System
FORTRAN Compile Diskette and Directory
Listing of the Resulting Diskette........... 1-6
1-3 SUBMIT File to Create a System FORTRAN

Run-Time Library Diskette, and
Directory Listing of the Resulting Diskette .. 1-7

FIGURE TITLE PAGE
3-1 Sample Program Listing. 3-3
3-2 Sample Symbol-Attribute and

Cross-Reference Listing 3-5
3-3 Sample Compilation Summary 3-5
C-1 Floating-Point Number Format C-1
C-2 Integer Formatscovveneinennennn. C-3

vil

CHAPTER 1
COMPILER OVERVIEW

The ISIS-II FORTRAN-80 Compiler converts FORTRAN source code into
machine-executable form. It translates FORTRAN program units into relocatable
object code modules for the 8080 and 8085 processors and (depending on the output
options selected) can produce the object code module, a listing of the source and
compiled code, and a symbol cross-reference listing.

NOTE

Relocatable object modules produced by version 1.0 of FORTRAN-80 are
not compatible with this release. All program units must be recompiled us-
ing version 2.0 of the compiler before being linked with the current FOR-
TRAN libraries and with other program units compiled using version 2.0.

The compiler runs under the ISIS-II operating system. Object modules produced by
the compiler may be run in the ISIS-II environment, under the iSBC 80 Real-Time
Multitasking Executive (RMX/80), or in a stand-alone environment without either
operating system. Supporting the compiler is a set of relocatable library modules
that supply a run-time environment including floating-point arithmetic and
mathematical functions, sequential or direct access input/output (with or without
formatting), and elementary interaction with ISIS-IT or RMX/80. Floating-point
operations may be performed by software routines supplied with the compiler or,
alternatively, via a software interface provided for the iSBC 310 High-Speed
Mathematics Unit.

Because of the variety of hardware and software configurations in which
FORTRAN-80 programs can be run, a number of different run-time support
libraries are provided. Which libraries you select at link time will depend upon your
particular run-time environment.

In discussing FORTRAN-80, it is important to distinguish between the compile-
time environment—that in which the FORTRAN compiler runs to translate your
source program segments (and in which the resulting relocatable object program is
linked and located) and the run-time environment in which your linked and located
object program is executed. These two environments are defined in the following
paragraphs.

Compile-Time Environment

No matter what your final application, the following environment is required to
compile, link, and locate your FORTRAN programs:

e An Intellec or Intellec Series 11 Microcomputer Development System with 64K
RAM Memory

® Console Device (TTY or CRT)
® Diskette unit with at least two drives
¢ The ISIS-II software

1-1

Overview

1-2

FORTRAN-80 Compiler

Run-Time Environment

Once your program modules have been compiled, linked, and located, you may run
them on any 8080- or 8085-based system that is appropriate to your application.
Your run-time environment may be an Intellec system and ISIS-II (the same en-
vironment in which your programs are compiled); an iSBC 80/10, 80/20, or 80/30
system running under RMX/80; or an 8080- or 8085-based iSBC or custom-designed
system with no operating system software at all. Any of these environments can op-
tionally be configured to include an iSBC 310 High-Speed Math Unit for faster
floating-point operations. All that is required at run time is an 8080 or 8085 pro-
cessor with hardware support and enough memory for your application.

Input/Output Files

Source File

The compiler expects a diskette-resident source file consisting of one or more
program units. A program unit may be a main program or a BLOCK DATA,
FUNCTION, or SUBROUTINE subprogram. The source file can also contain com-
piler controls embedded in the FORTRAN source code. These controls direct the ex-
act operation of the compiler. In addition to the source file, the compiler will read
any files specified by INCLUDE compiler controls (see Chapter 2).

A FORTRAN program, as defined in the FORTRAN-80 Programming Manual,
consists of one and only one FORTRAN main program and any number of FUNC-
TION, SUBROUTINE, and/or BLOCK DATA subprograms. Under some cir-
cumstances, however, you may not need a FORTRAN main program at all—for in-
stance, if your main program is in assembly language or PL/M, or if you are coding
FORTRAN tasks to run under RMX/80. The FORTRAN-80 compiler does not re-
quire that your source file include a main program.

Object File

The primary output from the FORTRAN compiler is a file containing the
relocatable object code. This file is linked with the FORTRAN run-time library
routines (as well as user-supplied relocatable files) to produce a single, relocatable
object file. This file is then located to form an absolute module ready for execution.

Each source file submitted to the compiler produces one object file. Each program
unit in the source file produces one object module in the object file. Object modules
have the same name as their corresponding input program unit. In the case of an un-
named main program or BLOCK DATA subprogram, the module names assigned
are @ MAIN and @ BLOCKDATA, respectively.

List File

The compiler list file consists of the program listing and symbol cross-reference
listing. The program listing can include introductory headings, a pseudo assembly-
language listing of the object code, the source-code listing, symbol and cross-
reference listings, and error messages. List file data is broken out separately for each

program unit and is directed to the file or device specified by the PRINT compiler
control (Chapter 2).

FORTRAN-80 Compiler Overview

If you specify the CODE compiler control, the program listing includes a pseudo
assembly-language version of all relocatable object code generated by the compiler.
The source text is listed if the LIST control is active. Error messages are listed unless
the NOPRINT control has suppressed all printed output. (If an error is detected
within a specific source statement, that statement is printed even if the NOLIST
compiler control is in effect.) The attributes of symbols are listed if the SYMBOLS
control is active.

If you specify the XREF compiler control, a symbol cross-reference listing is pro-
duced. This is followed by the compilation summary.

See Chapter 2 for more complete descriptions of the various compiler controls, and
Chapter 3 for details of the listing format.

Compiler Overlay/Scratch Files

In general, you need not concern yourself with the format of the compiler’s overlay
files or temporary scratch files. You must be aware of their existence, however, so
you do not accidentally use one of these reserved file names for a file of your own.

The FORTRAN compiler is invoked by calling file ‘FORTS80,’ which is the first
phase of the compiler. This phase initializes the compiler and then calls other phases
as overlays. These overlays are named ‘FORT80.0Vn,’ where ‘n’ is a digit 0-4.

Compiler scratch files are deleted automatically by the compiler when they are no
longer needed. The file names reserved for them are:

FORTT1.TMP
FORTT2.TMP

FORTXR.TMP
FORTAT.TMP
FORTER.TMP

FORTRAN Libraries

Several FORTRAN libraries are provided to do various mathematical and input/
output operations. Those libraries appropriate to your particular run-time environ-
ment are to be linked to your program after it is compiled, using either the LINK
command or the SUBMIT command. See the sample program development in the
next subsection for an example. The libraries and various linking strategies are
discussed in detail in Chapter 4. The following are the libraries provided:

FSORUN.LIB Integer arithmetic, array indexing, and miscellaneous
routines (all environments)

F80ISS.LIB Input/output for the non-RMX environment (ISIS-II or
stand-alone environment)

F8ONIO.LIB External reference library for programs using no
FORTRAN input or output except port I/O (all en-
vironments)

FPEF.LIB Floating-point intrinsic functions (all environments)
FPSOFT.LIB Floating-point arithmetic library for the non-RMX
(ISIS-II or stand-alone) environment
FPHARD.LIB Floating-point interface to the iSBC 310 math unit for the

non-RMX (ISIS-II or stand-alone) environment

FPNULL.LIB External reference library for programs using no

floating-point operations (all environments)

1-3

Overview

1-4

FORTRAN-80 Compiler

PLM80.LIB Support for library modules coded in PL/M (all
environments)

A separate package, the FORTRAN-80 Run-Time Package for RMX/80 Systems
(iSBC 801), contains the additional libraries necessary to run FORTRAN programs
in the RMX/80 environment. These libraries are described in detail in Chapter 6.
The following libraries are included:

FSORMX.LIB Input/output for the RMX/80 environment

FPSFTX.LIB Floating-point arithmetic library for the RMX/80
environment

FPHRDX.LIB Floating-point interface to the iSBC 310 math unit for
RMX/80, iSBC 80/20 and 80/30 systems

FPHX10.LIB Floating-point interface to the iSBC 310 math unit for
RMX/80, iSBC 80/10 systems

FSONTH.LIB External reference library for systems running under
RMX/80 without the Terminal Handler

FS8ONDS.LIB External reference library for systems running under

RMX/80 without the Disk File System

Procedures in run-time support libraries have names that begin with either ‘FQO’ or
FQF.’ You should avoid using program unit names beginning with these characters.

Preparing FORTRAN System Diskettes

The FORTRAN-80 compiler and libraries as delivered do not reside on system
diskettes. Before following the procedure given in the next section to develop the
sample program, you will generally want to create one or two FORTRAN system
diskettes by deleting some other programs from existing ISIS-IT system diskettes,
then copying onto the diskettes the FORTRAN compiler files and run-time libraries.
(The compiler can be run from a diskette on :F1: with an ISIS-II system diskette on
:FO:, but this practice is usually inconvenient unless you have more than two diskette
drives.) If you are using single-density diskettes, you will need two system diskettes,
one for the compiler and one for the run-time libraries; for double-density diskettes,
you can fit the compiler and other libraries on the same system diskette.

Figures 1-1, 1-2, and 1-3 show how you might create two single-density system
diskettes suitable for use in compiling, linking, and locating FORTRAN programs.
Figure 1-1 shows the directory listing for a standard ISIS-II (version 3.4) system
diskette. Figure 1-2 shows an ISIS-IT SUBMIT file that could be used to delete files
from and add files to the standard system diskette, producing a system diskette con-
taining the FORTRAN compiler; the figure also shows a directory listing of the files
on the resulting diskette. Figure 1-3 shows a SUBMIT file that similarly converts
another standard system diskette to one suitable for linking and locating programs
with the FORTRAN libraries, and a directory listing of the files on the resulting
diskette. Both SUBMIT files assume that a copy of the FORTRAN compiler and
run-time libraries—e.g., the product as delivered—is on drive :F1:.

In both cases, you may either copy the whole SUBMIT file onto one of your disk-
ettes and execute it with an ISIS-II SUBMIT command or enter the ISIS-II com-
mands in the SUBMIT file one by one from the console. Either way, before you
begin it is a good idea to prepare back-up copies of all your diskettes.

The two diskettes thus created may be used in the sample program development
outlined in the following section. A similar SUBMIT file can be used to convert a
single standard double-density diskette into one containing the FORTRAN com-
piler, run-time libraries, LINK, and LOCATE.

.

FORTRAN-80 Compiler

DIRECTORY OF

NAME
IS1S
1SIS
ISIS
ISIS
ISIS
ISIS
ASMBO
ASM80
ASM80
. ASMB0
A ASMBO .
N ASXREF
ATTRIB
BINOBJ
CoPY
DELETE
DIR
EDIT
FORMAT
HEXOBJ
IDISK
LIB
LINK
LINK
LOCATE
OBJHEX
RENAME
SUBMIT
FPAL
PLM8O
SYSTEM.

.EXT BLKS
.DIR 26
.MAP 3
.TO 24
.LAB 2
.BIN 94
.CLI 21
107

.0vVo 20
.0V1 19
.ov2 18
ov3 188
35

38

28

65

37

46

56

49

35

50

82

114

.0VL 29
108

27

21

38

.LIB 71
.L1B 45
LIB 24
1520

LENGTH
3200
256
2944
128
11740
2548
13374
2321
2280
2091
23679
4239
4682
3399
8042
4506
5733
6999
6093
4281
6239
10227
14298
3491
13505
3284
2487
4629
8712
5615
2846

1520/2002 BLOCKS USED

Figure 1-1. Directory Listing of a Standard ISIS-II Version 3.4 System Diskette

:FO:ISO00AS.SYS

ATTR
IF

SI1F
SIF

WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI
WSI1
WS

WS

WS

Overview

1-5

Overview FORTRAN-80 Compiler

ATTRIB ¥*.% WO

DELETE LINK.*,LOCATE,LIB

DELETE ASM80.%* ASXREF

DELETE BINOBJ,HEXOBJ,0BJHEX,IDISK

DELETE *.LIB

COPY :F1:FORT80.% TO *.#%

ATTRIB FORT80.0V* I1

ATTRIB *.®* W1 -

DIRECTORY OF :F0:IS00AS.SYS
NAME .EXT BLKS LENGTH ATTR

ISIS .DIR 26 3200 W IF
ISIS .MAP 3 256 W IF
ISIS .TO 24 2944 W IF
ISIS .LAB 2 128 W IF
1SIS .BIN 94 11740 WSIF
ISIS .CLI 21 2548 WSIF
FORT80 36 4394 W
FORT80.0V0 259 32478 W I
FORT80.0V1 54 6752 W 1
FORT80.0V2 241 30333 W I
FORT80.0V3 155 19412 W I
FORTB80.0V4 156 19523 W I
ATTRIB 38 4682 WSI
COPY 65 8042 WSI
DELETE 37 4506 WSI
DIR 46 5733 WSI
EDIT 56 6999 WSI
FORMAT 49 6093 WSI
RENAME 21 2487 wSI
SUBMIT 38 4629 WSI
1421

142172002 BLOCKS USED

Figure 1-2. SUBMIT File to Create a System FORTRAN Compile Diskette, and
Directory Listing of the Resulting Diskette

FORTRAN-80 Compiler

ATTRIB

WO

DELETE ASM80.% 6 ASXREF

DELETE
DELETE

ATTRIB

BINOBJ ,HEXOBJ OBJHEX,IDISK

* LIB
COPY :F1:%.LIB TO *.*
COPY :F1:FLINK TO ¥

DIRECTORY OF

NAME
ISIS
ISIS
ISIS
ISIS
ISIS
I3Is
FB0ISS

FBORUN
FPEF
FPHARD

FPNULL.

ATTRIB

FPSOFT.

copPy
DELETE
DIR
EDIT
FORMAT
PLMEO
LIB
LINK
LINK
LOCATE
RENAME
SUBMIT

EXT

.DIR
.MAP
.TO

.LAB
.BIN
.CLI
.LIB
FBONIO.
.LIB
.LIB
.LIB

LIB

LIB

LIB

.OVL

W1

BLKS
26
3
24
2
94
21
420
5
119
100
84
3
38
109
65
37
46
56
49
45
82
114
29
108
21
38
1738

LENGTH
3200
256
294y
128
11740
2548
52835
416
14936
12538
10402
212
4682
13638
8042
4506
5733
6999
6093
5615
10227
14298
3491
13505
2487
4629

173672002 BLOCKS USED

Figure 1-3. SUBMIT File to Create a System FORTRAN Run-Time Library
Diskette (for Linking and Locating), and Directory Listing of the Resulting

Diskette

:FO:IS00AS.3YS

ATTR
W IF
W IF
W IF
W IF
WSIF
WSIF
W

51

FEFETEEIEE

WSI
W31
W31
W31
W31

WSI
W31
WSI
W31
WSI
WSI

Overview

1-7

Overview

FORTRAN-80 Compiler

Sample Program Development

The following example shows the normal sequence of operations used to develop a
FORTRAN program from system bootstrap to eventual program execution. The
steps involved are as follows:

Power up the Intellec hardware.

Insert an ISIS-I1 system diskette containing the compiler into Drive 0.
Insert a second (data) diskette into Drive 1.

Bootstrap the ISIS-II operating system.

Enter your source program on Drive 1 using ISIS-II’s EDIT program.
Compile the program with the FORTRAN compiler.

Exchange the compiler system diskette with a system diskette containing LINK,
LOCATE, and the FORTRAN libraries. (This step is not necessary if you have
a double-density diskette system.)

AT R N -

8. Link and locate the resulting object code program on Drive 1.
9. Execute your program.

Refer to the ISIS-II User’s Guideto perform the first five steps in the above se-
quence. This manual explains how to compile, link, and locate programs.

The interactive sequence that follows is assumed to take place at your console ter-
minal. The text in lower case represents your input to the system. The comments on
the right are for clarification only, and do not represent material to be entered. This
example shows how to create, compile, load, and execute a complete FORTRAN
program for the ISIS-II run-time environment using the software floating-point
routines.

The sample program assumes that the FORTRAN compiler and run-time libraries
have been copied onto ISIS-IT system diskettes (two diskettes for single density or
one for double density) as described in the previous section. FLINK is an ISIS-II
SUBMIT file that automatically links your object file (‘myprog.obj’ in the example)
to the FORTRAN libraries required when the run-time environment is ISIS-II and
the software floating-point routines (i.e., no iSBC 310 unit) are used.

Begin by bootstrapping ISIS-II.

ISI§-I¥, YB.“ The system identifies itself.
-edit :fl:myprog.src Call the ISIS editor.

ISIS-II TEXT EDITOR, V1.6
i FILE Create program.

PROGRAM GREETS

PRINT 10
10 FORMAT ('INTEL DELIVERS FORTRAN-80')
. END ‘$’ is escape key.
tess Exit editor.
~fort80 :f1:myprog.srec Invoke the compiler.

ISIS-II FORTRAN COMPILER V2.0
0 PROGRAM ERROR(S) IN PROGRAM UNIT GREETS
0 TOTAL PROGRAM ERROR(S) .
FORTRAN COMPILATION COMPLETE Compilation over; exchange

compiler diskette with second
system diskette if single-
density system.

FORTRAN-80 Compiler Overview

-submit flink{(:fl:myprog.obj,:f1:myprog.1lnk) The program is linked to

-LINK :F1:MYP . F . : :
..FBOISS?L?E’?ggF?E‘IJé,BQRUN L1B, & all FORTRAN libraries. . .

“¥FPSOFT.LIB,PLM80.LIB &

**T0 :F1:MYPROG.LNK

ISIS~II LINKER V2.1

-:FO:SUBMIT RESTORE :FO:FLINK.CS(:VI:)

-locate :f1:myprog.lnk .. Jocated. . .
ISIS-I1 LOCATER V2.1
-:ifl:imyprog . . .and executed.

INTEL DELIVERS FORTRAN-80

The compilation list and object files are written by default to a diskette file on the
same diskette as the source file (:F1: in this case). By default, they have the same
name as the source file except for the extensions LST and OBJ. Thus
:F1:MYPROG.LST contains the compilation list file and :FI:MYPROG.OBJ con-
tains the object code produced by compiling :F1:MYPROG.SRC.

This example provides enough information to use the compiler in its normal mode
of operation (when your run-time environment is ISIS-IT and you are using the soft-
ware floating-point routines). The remainder of this manual describes additional
features of the compiler, linker, and locater and the preparation of programs for
other run-time environments.

CHAPTER 2
COMPILER CONTROLS

Operation of the compiler is directed by compiler controls. For example, these con-
trols tell the compiler what kind of listing is to be produced or whether an object file
is to be generated. While a large number of controls are available with the FOR-
TRAN compiler, few need be specified for a typical compilation. Most control op-
tions have default values corresponding to the most common use of the compiler.

Specifying Compiler Controls
Compiler controls can be specified in two ways:

¢ As part of the ISIS-II command used to invoke the compiler (that is, at
compile-time)

® Ascontrol lines in your source file

Controls Specified At Compile-Time

The FORTRAN compiler (FORT80) is invoked by an ISIS-II command. This com-
mand includes the name of your source file and any compiler controls you wish to
specify. The format of the compiler invocation is

[drive] FORT80 source-file [control-list]

where the bracketed items are optional.

The ‘drive’ specified is the diskette drive containing FORTS80. If ‘drive’ is not
specified, ‘:F0:’ is assumed.

The ‘source-file’ specified is the name of the file containing your sequence of FOR-
TRAN program units. This file must reside on a diskette. The name specified can be
a 1-6 character file name, a file name followed by a period and 1-3 character exten-
sion, or an ISIS-II diskette drive followed by a file name or extended file name.

Examples:
FILE20 (filename)
PROG.SRC (filename.extension)
:F1:ASSMB.SRC (:drive:filename.ext)

The ‘control-list’ indicates the compiler controls needed for this compilation. These
controls are separated by blanks. The control itself consists of a control name,
sometimes followed by a parenthesized control parameter.

Examples:

-FORT80 :F2:FPROG.SRC CODE XREF DATE (1978JAN15)
-:F1:FORT80 :F2:MYPROG SYMBOLS NOPAGING

Compiler Controls } FORTRAN-80 Compiler

Control Lines

Control lines embedded in your source file allow selective control over sections of
your program. For example, you might want to suppress the compiler listing for cer-
tain sections of your program, or to cause page ejects at specific places.

Control lines are recognized in your source file by a dollar sign ($) in column 1.

Examples:

$NOCODE XREF PAGELENGTH(50)
$EJECT CODE

Primary And General Controls

Controls are classified as either primary or general. Both classes of controls can be
specified when the compiler is invoked or in source file control lines. Control lines
containing primary controls must precede all program units in the source file,
however, and primary controls cannot be changed within a source program unit.
Control lines containing only general controls can appear anywhere in your source
file; general controls can be respecified at any time.

Summary Of Controls

The following list shows the controls available, the basic functions they control, and
whether they are primary or general (P/G). Default controls are italicized. The re-
mainder of this chapter describes each control in detail.

Controls P/G Function Area
OBJECT (source.OBJ))NOOBJECT P Object File
DEBUG/NODEBUG P Object File
OPTIMIZE(0)/ OPTIMIZE(1) P Object File

PRINT (source.LST)/NOPRINT P Compiler Listing
LISTINOLIST G Compiler Listing
SYMBOLS/NOSYMBOLS P Compiler Listing
CODE/NOCODE G Compiler Listing
XREF! NOXREF P Cross-Reference Listing
PAGING/INOPAGING P Listing Format
PAGELENGTH(60) P Listing Format ¢
PAGEWIDTH(7120 P Listing Format

DATE P Listing Format

TITLE P Listing Format ’
EJECT G Listing Format
REENTRANT P Procedure Reentrancy
DO77/DO66 P DO Loop Interpretation
STORAGE(INTEGER* 2 LOGICAL* 7 P Default Data Length
FREEFORM/ NOFREEFORM G Source Line Format
INCLUDE G Source File Inclusion
WORKFILES(:F71:,:F1) P Devices for Scratch Files
SAVE G Save Control Settings
RESTORE G Restore Control Settings

2-2

FORTRAN-80 Compiler Compiler Controls

Object File Controls

These controls determine what type of object file is to be produced and where it is to
be produced. The controls are:

OBJECT/NOOBJECT
DEBUG/ NODEBUG
OPTIMIZE(0)/OPTIMIZE(1)

OBJECT/NOOBJECT Controls

Type: Primary
Form: OBJECT(file)
NOOBIJECT

Default: OBJECT(source-file.OBJ)

The OBJECT control specifies that one or more object modules are to be created
during the compilation. The parameter ‘file’ is the object file name (an ISIS file
name optionally preceded by a drive name as described earlier in this chapter). The
NOOBIJECT control specifies that no object modules are to be produced.

If neither control is specified, the default is as shown above. In this case, the file
name is the same as the name of the source file with the extension OBJ, and the ob-
ject file is created on the same drive used for the source file.

Example: OBJECT(:F1:FPROG.OBJ)

This example causes the object file FPROG.OBJ to be created on diskette drive :F1:.

DEBUG/NODEBUG Controls

Type: Primary
Form: DEBUG
NODEBUG

Default: NODEBUG

If an object file has been requested, the DEBUG control specifies that the object
module is to contain the name and relative address of each symbol whose address is
known at compile-time, plus the statement number and relative address of each
source program statement. This information can be used later for symbolic debugg-
ing of the source program using the 8080/8085 in-circuit emulators, ICE-80 and
ICE-85.

The NODEBUG control specifies that this symbolic debugging information is not to
be included in the object module.

OPTIMIZE Controls
Type: Primary
Form: OPTIMIZE(0)
OPTIMIZE(1)

Default: OPTIMIZE(1)
The OPTIMIZE(1) control specifies that the compiler is free to perform certain time
and/or space optimizations on the object program (such as eliminating repetitive
evaluation of identical expressions where side effects cannot occur).

The OPTIMIZE(0) control specifies that the compiler is not to perform such op-
timizations.

2-3

Compiler Controls

2-4

Compiler Listing Controls

These controls determine what types of listings are to be produced, what they are to
contain and on which device they are to appear. The controls are:

PRINT/NOPRINT
LIST/NOLIST
SYMBOLS/NOSYMBOLS
CODE/NOCODE
XREF/NOXREF

PRINT/NOPRINT Controls

Type: Primary
Form: PRINT(file)
NOPRINT

Default: PRINT(source-file.LST)

The PRINT control specifies that printed output is to be produced and names the
file or output device to receive the printed output. The ‘file’ specified can be any
name acceptable to ISIS-II. The NOPRINT control specifies that no printed output
is to be produced, and overrides the LIST, SYMBOLS, CODE, XREF, and EJECT
controls.

If neither control is specified, the default is as shown above. In this case, the file
name is the same as the name of the source file with the extension LST, and printed
output is directed to the diskette drive used for source input.

Example: PRINT(:LP:)

This example causes printed output to be directed to the line printer.

LIST/NOLIST Controls
Type: General
Form: LIST

NOLIST

Default: LIST

The LIST control specifies that listing of the source program is to begin or resume
with the next source line read. The NOLIST control suppresses listing of the source
program until the next occurrence of a LIST control.

When LIST is in effect, all input lines from the source file or from an INCLUDE
file, including control lines, are listed. When NOLIST is in effect, only source lines
associated with error messages are listed.

The NOPRINT control overrides the LIST control. If NOPRINT is in effect, no
listing whatsoever is produced.

SYMBOLS/NOSYMBOLS Controls

Type: Primary
Form: SYMBOLS
NOSYMBOLS

Default: NOSYMBOLS

FORTRAN-80 Compiler

FORTRAN-80 Compiler Compiler Controls

The SYMBOLS control specifies that a listing of all symbols (and their attributes) in
the subsequent program unit(s) be printed. The NOSYMBOLS control suppresses
this listing.

The NOPRINT control overrides the SYMBOLS control.

CODE/NOCODE Controls
Type: General
Form: CODE
NOCODE

Default: NOCODE

The CODE control causes the compiler to print a listing of the object code generated
by the compiler in a form resembling 8080/8085 assembly language. The listing
begins with the object code generated by the next following FORTRAN statement.
The NOCODE control suppresses printing of the listing until the next occurrence of
a CODE control.

The NOPRINT control overrides the CODE control.

XREF/NOXREF Controls
Type: Primary
Form: XREF

NOXREF

Default: NOXREF

The XREF control specifies that a cross-reference listing of all symbols, with their
attributes and the locations at which they are referenced in the subsequent source
program unit(s), is to be produced. The NOXREF control suppresses the cross-
reference listing.

The NOPRINT control overrides the XREF control.

Listing Format Controls
These controls determine the format of the compiler output listing. The controls are:

PAGING /NOPAGING
PAGELENGTH
PAGEWIDTH

DATE

TITLE

EJECT

PAGING/NOPAGING Controls

Type: Primary
Form: PAGING
NOPAGING

Default: PAGING

2-5

Compiler Controls

2-6

The PAGING control specifies that printed output is to be formatted onto pages
separated by page ejects. The pages are headed with the compiler identification, a
page number, and possibly a user-specified title and/or date. Page numbering begins
at ‘1’ for each program unit.

The NOPAGING control specifies that page ejection, page heading, and page
numbering is not to be performed, except at the beginning of the listing. Thus the
listing appears on one long ‘page,’ as would be suitable for a slow printer without a
page-eject mechanism. NOPAGING nullifies the effect of the EJECT control.

PAGELENGTH Control
Type: Primary
Form: PAGELENGTH(length)

Default: PAGELENGTH(60)
The PAGELENGTH control specifies the maximum number of lines to be printed
per page (if the PAGING control is set). ‘Length’ is a nonzero, unsigned, decimal in-
teger; ‘4’ is the minimum length that can be specified.

The number of lines specified is assumed to include page headings.

PAGEWIDTH Control
Type: Primary
Form: PAGEWIDTH(width)

Default: PAGEWIDTH(120)

The PAGEWIDTH control specifies the maximum line width to be used for listed
output. ‘Width’ is a nonzero, unsigned, decimal integer; its minimum value is 60 and
its maximum value is 132.

DATE Control
Type: Primary
Form: DATE(date)
Default: None

The DATE control specifies the date to be included in the page heading if the PAG-
ING control is active. The ‘date’ parameter is any sequence of nine or fewer
characters not containing parentheses.

Example: DATE(25 JAN 78)

TITLE Control
Type: Primary
Form: TITLE(‘title’)
Default: None

The TITLE control specifies the title to be printed in the first line of page headings.
‘Title’ can be any sequence of printable ASCII characters except the apostrophe
(although an apostrophe can be printed by putting two consecutive apostrophes into
the ‘title’ string).

The title is truncated on the right, if necessary, to fit the PAGEWIDTH specified.

Example: TITLE(‘SUBROUTINE TO PRINT TOTALS’)

FORTRAN-80 Compiler

FORTRAN-80 Compiler Compiler Controls

‘ EJECT Control
Type: General
Form: EJECT
Default: None

The EJECT control causes the current control line and subsequent source lines to
start printing at the next page. If the NOPRINT, NOLIST, or NOPAGE control is
in effect, the EJECT control is ignored.

Source File Controls

These controls affect the interpretation of FORTRAN source code. The controls
are:

REENTRANT
. DO77/DO66
STORAGE ’

FREEFORM/NOFREEFORM
INCLUDE

REENTRANT Control

Type: Primary
Form: REENTRANT
Default: None; that is, subprogram is not reentrant

. unless this control is specified.

The REENTRANT control specifies that all SUBROUTINE or FUNCTION sub-
programs following it are to be reentrant. BLOCK DATA subprograms are not af-
fected by this control. Main programs are not affected by this control; its use in a
main program causes a warning message.

Local variables contained in reentrant subprograms are allocated dynamically on the
stack (at run time); no statically-allocated storage (allocated at load time) is used.
Local variables and arrays must not be initialized by DATA statements in reentrant
subprograms. References to COMMON variables are allowed, but must be used

. with care.

If you want to specify reentrancy for selected subprograms only, compile those sub-
programs separately from the rest of the program.

DO77/D0O66 Controls
Type: Primary
Form: DO77

DO66

Default: DO77

If the DO77 control is specified, DO loops in the FORTRAN source program con-
form to the explicit standards of the ANSI FORTRAN 77 subset. DO66 specifies
that the 1966 ANS FORTRAN standard is in effect.

In particular, the 1966 standard implies that all DO loops must be executed at least
once when encountered during program execution. The 1977 standard allows zero
iterations to be specified by the values of initial and terminal expressions.

2-7

Compiler Controls

STORAGE Control
Type: Primary
Form: STORAGE(INTEGER*length, LOGICAL*length)

Default: STORAGE(INTEGER*2,LOGICAL*1)

The STORAGE control specifies the default lengths (in bytes) to be used for integer
or logical variables, array elements, or constants. The default can be overridden by
FORTRAN INTEGER or LOGICAL type statements or, in the case of integer con-
stants, by an explicit number base specification.

‘Length’ can be 1, 2, or 4, If the STORAGE compiler control is not specified, the
defaults are ‘2’ for INTEGER and ‘1’ for LOGICAL. INTEGER and LOGICAL
lengths can also be specified separately in the form

STORAGE(INTEGER*Iength)

The default lengths for this control do not conform to the ANSI standard ‘numeric
storage unit’ allocation. To be totally ANSI compatible, specify

STORAGE(INTEGER*4,LOGICAL*4)

FREEFORM/NOFREEFORM Controls

Type: General
Form: FREEFORM
NOFREEFORM

Default: NOFREEFORM

If the NOFREEFORM control is in effect, source code lines must be in the standard
FORTRAN format. That is, comment line indicators are in column 1, statement
labels in columns 1-5, continuation line indicators in column 6, and statements in
columns 7-72.

The FREEFORM control allows you to begin statements in column 2 instead of col-
umn 7, simplifying console input of FORTRAN source programs. If FREEFORM is
specified, statement labels must begin in column 1 and continuation lines must have
an ampersand (‘&’) in column 1. Comments are indicated as in standard
FORTRAN, that is, by a ‘C’ or ‘*’ in column 1. If a statement does not contain a ‘C’
or ‘*’ as its first character, it may actually begin in column 1.

INCLUDE Control
Type: General
Form: INCLUDE(file)
Default: None

The INCLUDE control causes subsequent source code to be input from the specified
‘file’ until an end-of-file is reached. At end-of-file, input resumes from the file being
processed when the INCLUDE was encountered. The included file may not contain
an END statement.

The included file may itself contain INCLUDE controls, up to a total of six files
(that is, INCLUDE controls can be nested to a depth of five).

An INCLUDE control must be the rightmost control on a command line or control
line.

FORTRAN-80 Compiler

‘

FORTRAN-80 Compiler Compiler Controls

The ‘file’ specified can be the name of any diskette-resident file.
Example: INCLUDE(:FI:TRIG.TWO)

This example causes the file ‘TRIG.TWO,’ located on diskette drive ‘:F1:,’ to be in-
cluded in the FORTRAN source file.

Compiler Resource Controls

These controls specify work files to be used by the compiler and also handle the sav-
ing/restoring of certain compiler controls. The controls are:

WORKFILES
SAVE
RESTORE
WORKFILES Control
Type: Primary
Form: WORKFILES (device, device)

Default: WORKFILES(:F1:,:F13)

The WORKFILES control specifies two diskette devices to be used as the compiler’s
temporary work files. For example, possible parameters are :F0:, :FI:, :F2:, and
:F3:.

The parameters need not specify different devices. If only one parameter is
specified, the effect is the same as specifying the same drive for both parameters.

SAVE Control
Type: General
Form: SAVE
Default: None

The SAVE control stacks the current settings of the FREEFORM, LIST, and CODE
controls (though the current settings remain valid until explicitly changed).

Controls can be stacked to eight levels.

RESTORE Control
Type: General
Form: RESTORE
Default: None

The RESTORE control reestablishes the control settings saved on the top of the
SAVE stack. The restored settings are then removed from the stack.

2-9

Compiler Controls FORTRAN-80 Compiler

Default Control Settings

The FORTRAN compiler assumes the following defaults if the corresponding con-
trols are not selected:

OBJECT(source-file.OBJ)
NODEBUG

OPTIMIZE(1)
PRINT(source-file.LST)
LIST

NOSYMBOLS °
NOCODE

NOXREF

PAGING

PAGELENGTH(60)
PAGEWIDTH(120)

DO77
STORAGE(INTEGER*2,LOGICAL*1)
NOFREEFORM
WORKFILES(:F1:,:F1:)

2-10

CHAPTER 3
LISTING FORMATS

The compiler list file contains a variety of information. This chapter describes the
information gathered in this file and the format in which it is listed.

Program Listing

Page Heading

During compilation a program listing may be produced. Unless the NOPAGING
compiler control is active, each page of the listing has a numbered page heading
identifying the compiler and optionally including a user-supplied title and/or date.
If NOPAGING has been specified, only the first page of the listing contains this
heading. The format of the page heading is

FORTRAN COMPILER [title] [date] PAGE nnn
where

title is the string specified by the most recent TITLE compiler control

date is the most recent date specified by the DATE compiler control

nnn is the page number (beginning at 1 for each program unit).

The title is truncated on the right, if necessary, to fit the current PAGEWIDTH con-
trol setting, or is extended on the right with blanks to right-justify the date and page
fields. The page heading line is followed by two blank lines.

Compilation Introductory Lines

The first part of the program listing acts as an introduction to the compilation begin-
ning with the compiler identification and the name of the FORTRAN source module
being compiled. For example:

ISIS-Il FORTRAN-80 V2.0 COMPILATION OF PROGRAM UNIT MYPROG

The next line names the file receiving the object code. For example:
OBJECT MODULE PLACED IN :F1:MYPROG.OBJ

Finally, the command line used to invoke the compiler is reproduced. For example:
COMPILER INVOKED BY: FORT80 :F1:MYPROG.SRC CODE

The listing of the program itself follows this compilation summary information.

3-1

Listing Formats

3-2

Assembly-Language Listing

If the CODE compiler control was specified, the next item in the program listing is
the assembly-language equivalent of the object code generated. The assembly-
language listing for each program unit begins a new page.

This part of the program listing has the form of a pseudo assembly-language listing
resembling the output of the 8080/8085 assembler. The code listing for each pro-
gram unit precedes the source text for that program unit. It appears in six columns
of information conforming to the standard assembly language format:

Relocatable location counter (hexadecimal notation)
Resultant binary code (hexadecimal notation)

Label field

Symbolic operation code

Symbolic arguments

[= JL V. T~ PSR & R

Comment field

Not all six of these columns will appear on any one line of the code listing.

The assembly-language code generated from each FORTRAN source statement is
preceded by a comment line indicating the internal statement number of the source
statement. Compiler-generated labels (e.g., those which mark the beginning and
ending of a DO loop) are preceded by ‘@’; source program statement labels are
preceded by ‘?’ to distinguish them from numeric constants. The comments appear-
ing on PUSH and POP instructions indicate the stack depth associated with the
stack instruction.

Figure 3-1 shows a portion of the CODE listing for a sample FORTRAN program,
followed by the source code from which it was generated.

FORTRAN Source Listing

The source listing contains a copy of the source input plus additional information.

Columns 1-4 are a sequential numbering of FORTRAN statements. Error messages,
when present, refer to these internal numbers, not to statement labels coded as part
of the FORTRAN program.

Columns 5-7 indicate whether the source line was included in the program with the
INCLUDE control. If so, column S contains an equal sign (=). If the text was in-
cluded as the result of a nested INCLUDE, the column contains a digit indicating
the level of nesting.

The remainder of the line contains a copy of the source text, as coded, except that
ASCII TAB characters are expanded with multiple blanks, as necessary, to the next
character position that is a multiple of eight.

The sequence number in columns 1-4 is not applied to comment, control, and con-
tinuation lines. If a FORTRAN source line must be continued on another line in the
listing because of a PAGEWIDTH limitation, the continued line has a hyphen (-) in
column 7.

FORTRAN-80 Compiler

FORTRAN-80 Compiler Listing Formats

. FORTRAN COMPILER PAGE 1

ISIS-II FORTRAN-80 V2.0 COMPILATION OF PROGRAM UNIT @MAIN
OBJECT MODULE PLACED IN :F1:STOCKS.OBJ
COMPILER INVOKED BY: FORT80 :F1:STOCKS.SRC CODE XREF PAGEWIDTH(67)

; STATEMENT # 2

0067 310000 LXI SP,8STACK$ORIGIN
006A CDO0O0OO CALL FQO0GO
; STATEMENT # 3
006D 210600 LXI H,6H
0070 221600 SHLD éI0PB
0073 210400 LXI H,?10
0076 221A00 SHLD @IOPB+U4H
0079 210000 LXI H,OH
007C 221C00 SHLD 6I0PB+6H
007F 212800 LXI H,ISTAT
0082 222000 SHLD @IOPB+0AH
0085 218000 LXI H,B80H
. 0088 221E00 SHLD 6I0PB+8H
012C 110100 LXI D,1H
012F 010400 LXI B,4H
0132 <CD00O0O CALL FQO164
0135 110100 LXI D,1H
0138 010E00 LXI B,CLOSE
013B CD0O0OO CALL FQ0162
013E 110100 LXI D,1H
0141 011200 LXI B,CHNG
0144 CDOO0OO CALL FQ0162
0147 CDO0O0OO CALL FQ0167
; STATEMENT # 10
014A C39400 JMP 715

. FORTRAN COMPILER PAGE 3

C PRINT FORMATTED LIST OF SELECTED STOCKS SHOWING
C NAME, EXCHANGE, CLOSING PRICE, AND CHANGE FROM
C PREVIOUS CLOSE

c
1 CHARACTER STOCK®10,EXCH¥4
2 REAL CLOSE,CHNG
3 WRITE(6,10,I0STAT=ISTAT)
y 10 FORMAT(*1',*STOCK',7X,
&'EXCHANGE CLOSING PRICE CHANGE'//)
5 15 READ 20,STOCK,EXCH,CLOSE,CHNG
6 20 FORMAT(A10,1X,A4,F6.2,F5.2)
7 IF(STOCK.EQ.'DONE') STOP
8 WRITE(6,30) STOCK,EXCH,CLOSE,CHNG
9 30 FORMAT(1X,A10,9X,A4,F14.2,F12.2)
10 GO TO 15
11 END
’ Figure 3-1. Sample Program Listing

3-3

Listing Formats

34

If an error is detected in the source code during compilation, a message is inserted
into the source listing in the following format:

***ERROR m, STATEMENT n, [NEAR symbol,] message
where

m is the error number

n is the sequential number of the statement containing the error
symbol is a pointer to the position of the error within the statement
message is the error message.

Example:
***ERROR #71, STATEMENT #33, NEAR ‘OP1’, OPERAND EXPECTED

See Figure 3-1 for an example of a source listing. Error handling and error messages
are discussed in greater detail in Appendix B.

Symbol And Cross-Reference Listings

A summary of symbol usage follows the program listing if either the SYMBOLS or
XREF compiler control was specified. An entry is printed for each variable, array,
function, subroutine, and statement label mentioned in each program unit of the
source text. Each entry includes:

¢ The program identifier for the symbol

¢ The symbol’s attributes and the relative hexadecimal address of the symbol (if
meaningful)

o If XREF is active, a list of the statements in which the symbol is referenced or
defined

The attributes for each symbol are:
e Its type (Integer, Real, Logical, Character, or none)

e [ts length (the length in bytes or characters if appropriate; the length of an
element for arrays)

e Its kind (variable, array, label, common block, intrinsic, statement function,
program unit)

¢ Its scope (external, local, dummy parameter, common block name)

Figure 3-2 shows the symbol attribute and cross-reference listing for the sample pro-
gram of Figure 3-1.

Compilation Summary And Signoff

For each program unit compiled, a compilation summary follows the program and
symbol listings. The information provided in the summary is

¢ Code area size. The size in bytes of the code segment of the output module.
* Variable area size. The size in bytes of the data segment of the output module.

¢ Maximum stack size. The size in bytes of the stack segment allocated for the
output module.

FORTRAN-80 Compiler

FORTRAN-80 Compiler

Listing Formats

FORTRAN COMPILER

CROSS-REFERENCE LISTING

DEFN ADDR SIZE NAME,
4 0004H 10
5 0094H 15
6 0038H 20
9 OOUDH 30
0016H 18 @l0PB
0012H 4 CHNG
000EH 4 CLOSE
000AH 4 EXCH
0028H 2 ISTAT
0000H 10 STOCK

ATTRIBUTES,

AND REFERENCES

LABEL

3 4
LABEL

5 10
LABEL

5 6
LABEL

8 9
INTEGER*2 DIMENSIONED

3
REAL®Y

2 5 8
REAL®Y

2 5 8
CHARACTER®*Y

1 5 8
INTEGER®*2

3

CHARACTER*10
1 5 7 8

Figure 3-2. Sample Symbol-Attribute and Cross-Reference Listing

¢ Linesread. The number of source lines processed by the compiler.

* Program errors. The number of errors detected in this module.

All size information is shown in both hexadecimal and decimal. This summary is
printed for each program unit unless the NOPRINT compiler control is in effect.
Figure 3-3 shows the compilation summary for the sample program of Figure 3-1.
Refer to the following chapter for a discussion of the various segment types.

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
16 LINES READ

0 PROGRAM ERROR(S)

014DH
002AH
000AH

333D
42D
10D

IN PROGRAM UNIT €MAIN

0 TOTAL PROGRAM ERROR(S)
END OF FORTRAN COMPILATION

Figure 3-3. Sample Compilation Summary

3-5

Listing Formats FORTRAN-80 Compiler

3-6

The summary listing of the last program unit is followed by the message

nTOTAL PROGRAM ERROR(S)
END OF FORTRAN COMPILATION

where ‘n’ is the total number of errors in all program units in the source file.

The program error summaries and the “‘END OF FORTRAN COMPILATION”
message are also directed to the system console, regardless of the state of the
PRINT/NOPRINT control.

CHAPTER 4
PROGRAM LINKAGE, RELOCATION,
AND EXECUTION

Building An Executable Program

Once your FORTRAN program has been compiled, two tasks remain before it can
be executed. First, your object module must be linked to the FORTRAN run-time
libraries and any other required modules. The modules that make up your final pro-
gram need not be translated from the same language. FORTRAN, PL/M, or
assembly language can be used depending on your program needs. Relocatable
modules produced by the FORTRAN-80 compiler, PL/M compiler, or 8080/8085
assembler can be input to LINK to build a program.

After all modules and libraries have been linked to form a new relocatable module,
the relative addresses created in this module must be given absolute memory ad-
dresses by the LOCATE program.

The following software is needed to build your FORTRAN program:

e [SIS-II, version 3.0 or later, which includes:
— LINK, version 2.1 or later
— LOCATE, version 2.1 or later

¢ Selected FORTRAN-80 run-time libraries, from the standard set provided with
the compiler, which include:
— F8ORUN.LIB
— F80ISS.LIB
— F8ONIO.LIB
— FPEF.LIB
— FPSOFT.LIB
— FPHARD.LIB
— FPNULL.LIB
— PLMS80.LIB

¢ For RMX/80 users, selected run-time libraries from the FORTRAN-80

Run-Time Package for RMX/80 Users, which includes:

— FS8ORMX.LIB

— FPSFTX.LIB

— FPHRDX.LIB

— FPHX10.LIB

— F8ONTH.LIB

— F8ONDS.LIB

Memory Allocation

Memory for each compiled FORTRAN program unit is allocated in several indepen-
dent, relocatable segments. These are called CODE, DATA, STACK, BLANK
COMMON, NAMED COMMON, MEMORY, and ABSOLUTE segments.

Executable object code and data constants are placed in the CODE segment. This in-
cludes real, integer, Hollerith, character, and logical scalar constants and formats
from FORMAT statements.

All local variables (except those in subprograms compiled while the REENTRANT
control is in effect) are allocated memory in the DATA segment. Compiler-
generated temporary storage for intermediate values and for copies of argument ad-
dresses are placed in the DATA segment also.

4-1

Linkage Relocation and Execution FORTRAN-80 Compiler

Memory for local arrays, variables, and compiler-generated intermediate values of
reentrant subprograms is dynamically allocated at run time in the STACK segment. .
Subprogram calls passing more than two argument (or result) addresses allocate

memory for them in the STACK segment as well.

All variables and arrays in blank common are allocated to the BLANK COMMON
segment. In the case of named common, all variables and arrays are allocated to a
NAMED COMMON segment corresponding to that name.

The MEMORY segment is assigned to RAM memory that is not allocated to CODE,
DATA, STACK, or COMMON segments.

In addition to CODE, DATA, STACK, COMMON, and MEMORY segments, a
relocatable object module can contain code or data with absolute addresses already
assigned. These may be modules originally created in assembly language using the
ASEG directive, modules created in PL/M using the AT attribute, or modules pro-
duced by an earlier LOCATE operation.

Linking Object Modules

The ISIS-II LINK program lets you combine object modules from several input files
into one object module in one output file. While combining modules, LINK adjusts
all addresses so they are relative to the beginning of the segments in the new output
module. LINK also searches libraries for modules that resolve external references in
the modules being combined and includes them in the new output module. If any
unresolved external references remain in the output module, LINK puts a message in
its link map.

The output module must be processed by LOCATE before it can be executed.
LOCATE assigns absolute memory locations to the object module. The output
module can also be used as input to LINK to be combined with other modules into a
new and expanded output module.

FORTRAN modules can be linked using either the LINK command, listing in-
dividually the libraries and other modules to be linked, or the SUBMIT command
(to access the FORTR AN submit file, FLINK.CSD, which is described in the follow-
ing section). LINK and SUBMIT are described in detail in the ISIS-II User’s Guide
and are simply summarized here. Linking FORTRAN libraries, particularly
F80ISS.LIB, does require some special considerations, however, and these are
highlighted below.

LINK and SUBMIT Commands

The LINK program is invoked by entering the LINK command at the ISIS command
level. The syntax of the LINK command is:

LINK input-list TO link-file [link-controls]
Your ‘input-list’ must include all required FORTRAN libraries in the sequence: d

RMX8xx.LIB(START), object-files,FBORUN.LIB,&

FPSOFT.LIB
F80ISS.LIB EEQ?PXDLIIEB
F8ORMX.LIB ¢ ,FPEF.LIB, rpoprpx Lig { : RMX-files,PLM80.LIB
FSONIO.LIB FPHX10.LIB
FPNULL.LIB

42

FORTRAN-80 Compiler Linkage Relocation and Execution

where braces { } indicate a choice of items and shading indicates items required only
under RMX/80. (Four of the libraries in braces—F8ORMX.LIB, FPSFTX.LIB,
FPHRDX.LIB, and FPHXI10.LIB—are to be selected only by RMX/80 users;
however, these library names are not shaded here, because one selection from each
group in braces is required for any environment.)

e ‘xx’in ‘RMX8xx.LIB’ stands for 20, 30, or 10, for systems based on the iSBC
80/20, 80/30, and 80/10 respectively. (This is explained further in the RMX/80
User’s Guide and is of no concern to the non-RMX user.)

* ‘object-files’ are one or more files containing the modules produced by
compiling your FORTRAN program, plus other modules (if any) translated
from PL/M or assembly language code. For RMX/80 systems, ‘object-files’
must include your configuration module.

¢ Use F8OISS.LIB if your program is to run under ISIS-II and perform 1/0 other
than port [0, FSORMX.LIB if your modules are to run under RMX/80 and
perform 1/0 other than port 170, or FSONIO.LIB if only port I/0 (or no I/0)
is used in FORTRAN.

¢ Link in FPSOFT.LIB to use software floating-point for non-RMX sys-
tems, FPHARD.LIB to use the iSBC 310 interface for non-RMX systems,
FPSFTX.LIB to use software floating-point under RMX/80, FPHRDX.LIB to
use the iISBC 310 interface under RMX/80 on an iSBC 80/20 or 80/30, FPHX-
10.LIB to use the iSBC 310 interface under RMX/80 on an iSBC 80/10, or
FPNULL.LIB if no floating-point operations are used.

o ‘RMX-files” are other files required for RMX/80 systems. These are explained
in Chapter 6.

The library modules included must be listed in the exact order shown. Any BLOCK
DATA subprograms residing in a library must be linked explicitly also. They are not
linked automatically with the programs that use them.

The ‘link-controls’ allowed in the LINK command are MAP, NAME, and PRINT,
as described in the ISIS-1I User’s Guide.

The following is an example of a LINK command you might give if your program is
to run under ISIS-II and use the software floating-point libraries.

-LINK :F1:FPROG.OBJ, F8ORUN.LIB, F80ISS.LIB, FPEF.LIB, &
**FPSOFT.LIB, PLM80.LIB TO FPROG.LNK MAP

(Note: The double asterisks are prompts issued by the LINK command.)

If you plan to link only your object file and the five FORTRAN libraries normally
required for execution under ISIS-II with software floating-point (i.e.,
FS8ORUN.LIB, F80ISS.LIB, FPEF.LIB, FPSOFT.LIB, and PLM80.LIB), and do
not plan to use any of the LINK command controls, you can simplify the link opera-
tion by entering the following SUBMIT command at the ISIS command level.

-SUBMIT FLINK(object-file, link-file[, lib-drive])
where ‘object-file’ and ‘link-file’ are ISIS file-names and ‘lib-drive’ is of the form
:Fx:, x being the number of the drive on which LINK and the FORTRAN run-time
libraries reside. (‘Lib-drive’ may be omitted; the default is :F0:.)

This option was selected in the sample program development in Chapter 1, where
linkage was performed by the command:

-SUBMIT FLINK(:F1:MYPROG.OBJ, :F1:MYPROG. LNK)

4-3

Linkage Relocation and Execution

4-4

The LINK program uses a temporary file with the name LINK.TMP. The
diskette drive used is the same specified by the output file. If you have a file
with this name on the same drive as the output file, your file will be
destroyed.

FORTRAN Library F80ISS.LIB

In certain situations you may want to avoid linking library F80ISS.LIB, which con-
sists of input/output routines for the ISIS-II environment. You may be running on
an Intellec system but prefer to call PL/M or assembly-language routines or the
monitor to invoke ISIS directly and avoid the overhead of FORTRAN 1/0.
F80ISS.LIB can typically add 8,000-15,000 bytes to your program, depending on the
operations used. Depending on your needs, you may be able to avoid linking this
library entirely or, by judicious use of FORTRAN 1/0 statements within your pro-
gram, to reduce the number of F80ISS.LIB modules actually linked.

If you use no standard FORTRAN 1/0 statements (READ, WRITE, PRINT,
OPEN, CLOSE, BACKSPACE, REWIND, ENDFILE), and no STOP or PAUSE
statements, you may omit F80ISS.LIB completely and substitute FSONIO.LIB, as
described previously in the LINK command discussion.

Alternatively, you can reduce the space taken up by F80ISS.LIB by limiting the
types of 170 operations your FORTRAN program performs, since only those
modules actually required by your program are linked in. For instance, the total I/O
system with all capabilities requires 18,000 bytes of storage; if you use only sequen-
tial, formatted 1/0, you need 15,000 bytes.

FORTRAN Library FEBORMX.LIB

For RMX/80 systems, you can often reduce the number of modules linked in from
F80RMX.LIB (or avoid using FSORMX.LIB at all) by coding your 170 judiciously,
just as you would for F80ISS.LIB.

If you use no standard FORTRAN I/0 statements (READ, WRITE, PRINT,
OPEN, CLOSE, BACKSPACE, REWIND, ENDFILE) and no STOP or PAUSE
statements, you may omit F80ISS.LIB completely and substitute FSONIO.LIB, as
described previously in this discussion.

Alternatively, you can reduce the space taken up by FSORMX.LIB by limiting the
types of I/0 operations your FORTRAN program performs, since only those
modules actually required by your program are linked in. For instance, under
RMX/80 the total 170 system with all capabilities requires 21,000 bytes of storage;
if you use only sequential, formatted I/0, you need 16,000 bytes.

Linking with non-FORTRAN Procedures

The relocatable object modules produced by the ISIS-II FORTRAN-80 compiler are
compatible with those produced by the ISIS-II PL/M compiler and the 8080/8085
macro assembler. Modules written in the three languages can be linked together.
This compatibility allows you to use FORTRAN to code those segments of your ap-
plication to which the features of FORTRAN are particularly well suited—
multidimensional arrays, formatted 1/0, floating-point arithmetic, and/or FOR-
TRAN intrinsic functions— and write other segments in PL/M or assembly
language if you desire.

FORTRAN-80 Compiler

FORTRAN-80 Compiler Linkage Relocation and Execution

The FORTRAN-80 compiler implements procedure (function and subroutine) calls
in the same manner as PL/M-80. This allows FORTRAN program units to call
PL/M procedures and vice-versa. FORTRAN-80 passes its arguments by reference
(that is, by address). Furthermore, the FORTRAN-80 convention for calling a func-
tion with n arguments is to pass n+/ addresses to the function routine (where the
first address is a location for storing the result). Function and subroutine arguments
are passed in the same locations as in PL/M, that is:

* For a single-argument function or subroutine, the argument address is passed in
registers B (high-order byte) and C (low-order byte) of the 8080/8085;

* Yor atwo-argument function or subroutine, the first argument address is passed
as above and the second in registers D (high) and E (low);

* For a function or subroutine of more than two arguments, the last two
argument address are passed as described above (next to last in B and C, last in
D and E), and the remainder are passed on the stack (pushing them onto the
stack in order from left to right in the argument list).

The relocatable modules produced by the ISIS-II FORTRAN-80 compiler are com-
patible with those produced by the ISIS-II PL/M compiler and the 8080/8085 macro
assembler. Modules written in the three languages can be linked together. This com-
patibility allows you to use FORTRAN to code those segments of your application
in which you need the features of FORTRAN—multidimensional arrays, formatted
170, floating-point arithmetic, and/or FORTRAN intrinsic functions—and write
other segments in PL/M or assembly language if you desire.

A CHARACTER argument in a FORTRAN procedure call is treated as two
arguments in the generated object code. The first argument is the address of the
character data; the second is a 2-byte integer value (passed by value, not by
reference) indicating the length of the character string.

When using FORTRAN and non-FORTRAN program segments together, note that
FORTRAN and non-FORTRAN I/O on the same file may interact improperly. You
should use one of the other only on any given file.

If your main program is written in PL/M or assembly language rather than in FOR-
TRAN and it calls FORTRAN subprograms, your FORTRAN subprograms must
include calls to special procedures from F8ORUN.LIB that perform initialization
and termination actions for the FORTRAN arithmetic and input/output routines.
(These calls are generated automatically by the compiler for a FORTRAN main pro-
gram.) Before your program performs any floating-point operations or FORTRAN
I/0, it must call the external procedure FQOGO, which takes no parameters. Before
exiting, it must call the external procedure FQOEND, which likewise takes no
parameters.

For further information on linking FORTRAN and non-FORTRAN procedures
together, refer to Intel Application Note AP-44, How to Use FORTRAN with Other
Intel Languages.

4.5

Linkage Relocation and Execution

4-6

Example:

SUBROUTINE CRUNCH (ARG1,ARG2)
REAL ARG1,ARG2

REAL XTEMP,YTEMP

CALL FQOGO

C ARITHMETIC AND FORMATTED I/O OPERATIONS GO HERE

RETURN

Object Module Relocation

The ISIS LOCATE program takes as input a relocatable object module and pro-
duces an output file containing the same object module with addresses fixed to ab-
solute locations. The format of the LOCATE command is:

LOCATE input-file [TO output-file] [locate-controls]

Operation of the LOCATE program is described in Chapter 4 of the ISIS-II User’s
Guide. This section describes specific considerations when locating FORTRAN ob-
ject modules.

ORDER Control

The ORDER control, which can be specified as part of the LOCATE command syn-

tax, allows you to dictate the sequence of segment types in memory. The format of
the ORDER control is:

ORDER(segids)

where ‘segids’ is some combination of the segment names CODE, DATA, /common
name/,// (for blank common), MEMORY, and STACK. If ORDER is not
specified, module segments are located sequentially in memory in the following
order: CODE, STACK, COMMONs, DATA, and MEMORY, where the term
‘COMMONSs’ means all COMMON segments in an arbitrary order.

The ORDER list may be partial; all module segments need not be listed. In this case,
all segments specified in the ORDER control are taken in the order specified. The re-

maining segments are taken in the default order, after the modules specified in the
ORDER control.

Base Address Controls

Segments can be explicitly located in memory by the base address controls. These
controls assign an address for the first byte of the segment. The controls are:

CODE(addr)
DATA(addr)
STACK(addr)

MEMORY (addr)
/common name/{(addr)
/ I(addr)

FORTRAN-80 Compiler

FORTRAN-80 Compiler Linkage Relocation and Execution

The last two controls refer to NAMED COMMON segments and the BLANK COM-
MON segment, respectively.

If you plan to locate some segments at specific addresses and let LOCATE place the
others, you should use the ORDER control to modify the default sequence so the
segments will be located in coordination with the specified base addresses. Also,
be sure to specify the MAP control, which is your only notification of resulting
conflicts.

When you locate FORTRAN common segments to specific addresses, you should
also locate the MEMORY segment to an address above the top of the highest com-
mon segment. LOCATE handles common segments in an arbitrary order. Unless the
MEMORY segment is located specifically using the ORDER control, it will follow
the last common segment handled (which could be at a low memory address) and
will conflict with all segments above the common segment.

Program Execution and |/0 Unit Preconnection

Your linked and relocated program can now be loaded and executed by entering its
name at the ISIS command level. For example:

—MYPROG

As discussed in the FORTRAN-80 Programming Manual, FORTRAN [/0
statements operate on units that are connected to files on a one-to-one basis. A unit-
file connection can be made when the file is opened (by the OPEN statement) or by
preconnecting the unit and file via the UNIT run-time control.

As part of FORTRAN run-time conventions in the ISIS environment, two units are
preconnected and need not be connected by the FORTRAN OPEN statement. These

are:
Unit Device
5 Console input
6 Console output

If you are running your programs under ISIS-II and wish to preconnect other units
or override these default preconnections, you can specify the UNIT run-time control
at the time you call your program for execution. The format of the UNIT control is

UNIT n = device

where ‘n’ is a number in the range 0-255 and ‘device’ is any device name recognized
by ISIS-II.

Examples:

TRIG UNIT 4 =:LP:
TRIG.LOC UNIT1 =:Cl;, UNIT0 = :CO:

Note that the preconnection feature applies only to FORTRAN programs pre-
pared to run under ISIS-II; preconnection is not available for the RMX/80 run-time
environment.

4-7

CHAPTER 5
iSBC 310 INTERFACE

To improve the speed of floating-point (REAL) arithmetic in your FORTRAN pro-
gram, you may configure an iSBC 310 High-Speed Mathematics Unit in your system
and use it, by means of the interface libraries provided with FORTRAN-80, to aid in
performing floating-point arithmetic. This chapter provides instructions for using
the FORTRAN software interface to the iSBC 310 unit.

All of the floating-point operations of the iSBC 310 are used via the interface pro-
vided in the appropriate floating-point run-time library. When the interface is used,
the following operations will be performed with the aid of the iSBC 310 hardware:
floating-point addition, subtraction, multiplication, division, square root, com-
parison, and conversions between floating-point and integer formats. The results of
arithmetic operations are the same whether the all-software floating-point routines
or the iSBC 310 interface is used. The iSBC 310 interface is designed to maximize
concurrency between the CPU and the iSBC 310, to maximize overall execution
speed, and to maintain a consistent error handling strategy.

Use of the interface requires only that you link in the appropriate run-time library
and observe several hardware and software constraints. If these constraints are
heeded, your FORTRAN programs will run with either the software floating-point
routines or the iSBC 310 interface.

b cluron

When installing the iSBC 310 in an Intel Intellec Microcomputer Develop-
ment System (Model 800 or 888), the Intellec CPU board must be recon-
figured to generate a Qualified Write signal. (Refer to the Intellec
Microcomputer Development System Hardware Reference Manual) This
modification is not necessary for Intellec Series II systems.

Dedicated Use of iSBC 310

When using the FORTRAN-R80 interface to the iSBC 310 unit, you should consider
the iSBC 310 to be dedicated to use by FORTRAN only. Making other {direct) use
of the 310 board in your system may cause the results of FORTRAN floating-point
operations to be unreliable.

In non-RMX systems, this situation applies because the iSBC 310 unit is a non- reen-
trant resource. In RMX/80 systems, provision is made for saving the board’s
registers and memory work area so that one task using the board may interrupt
another task that uses it. However, use of the iSBC 310 board under RMX/80 must
be limited to FORTRAN tasks within the RMX/80 system.

I/0 Base Address and Memory Base Address

The software interface routines assume that the iSBC 310 170 base address is set
manually (via switch on the 310 board) to 98H—which, of course, cannot be
duplicated for any other device. The iSBC 310 memory base address will be assumed
to be contained in the public address variable FQFMBA. This memory base address
is set up at initialization by the routine FQOGO (which is automatically called in a
FORTRAN main program and must be called explicitly by your own program if you
have no FORTRAN main program), so you, the user, need not be concerned with
this address.

5-1

iSBC 310 Interface

Error Handling

When using the FORTRAN interface, you should wire-wrap the iSBC 310 unit so
that it initiates no interrupt request on completion of an operation with or without
an error. FORTRAN-80 provides a means to transfer control to its own default
error handler, to an ISIS-oriented error reporting routine, or to a user-supplied error
routine. Refer to ‘Run-Time Arithmetic Errors’ in Appendix B for details.

An error handler (either one of the two error handlers provided in the run-time
libraries, or a user-supplied error handler) is called whenever a floating-point opera-
tion signals an error and whenever an invalid floating-point result is not handled by
the routine in which it has occurred. When the iSBC 310 interface is used, if the er-
ror handler is called it will be called just before the next floating-point operation is
started on the iSBC 310 board, unless the function that produced the error was a
test, comparison, or fix. In the case of a test, comparison, or fix error, the error
handler is called right after the floating-point operation is performed on the board
and before the test, comparison, or fix routine returns.

Activation and Deactivation
of iISBC 310 Memory Mapping

The iSBC 310 unit communicates directly with an area of RAM memory. The star-
ting address of this memory area is specified by the iSBC 310 interface software;
however, your program must activate the memory mapping on the 310 board as part
of system initialization, and deactivate it before exiting. For systems using the iSBC
310 interface, the initialization procedure FQOGO (in FSORUN.LIB) includes a call
to a routine that activates the iSBC 310 memory mapping, and the termination pro-
cedure FQOEND (also in FSORUN.LIB) includes a call to deactivate the memory
mapping. For a FORTRAN main program, the compiler automatically generates
calls to FQOGO and FQOEND. However, if your main program is not a FORTRAN
progsam, you should call FQOGO before performing any floating-point operations,
and call FQOEND before exiting. (These two procedures take no parameters.)

For instance, a PL./M main procedure might be written in this form:

PLMAIN:

DO;
/* DECLARATIONS OF VARIABLES AND ARRAYS */
/* DECLARATIONS OF EXTERNAL PROCEDURES */
{*INITIALIZATION OPERATIONS*/

CALL FQOGO;
/* arithmetic, I/O, and other operations*/

CALL FQOEND:
END PLMAIN:

If the iISBC 310 memory mapping is not deactivated and is subsequently reactivated,
some data in memory may be destroyed. For this reason, if you supply your own er-
ror handling routines (see ‘Run-Time Arithmetic Errors’ in Appendix B), it is impor-
tant that these routines also include a call to FQOEND in case of a fatal error. If you
exit to ISIS-II during program debugging, you can deactivate the iSBC memory
mapping by simply re-BOOTing the system.

FORTRAN-80 Compiler

FORTRAN-80 Compiler iSBC 310 Interface

NOTE

In an iSBC 80/20-based system installed in a System 80/20 chassis, re-
BOOTing the system as described above will deactivate the memory map-
ping only if the iSBC 80/20 unit is installed in the bottom slot of the
cardcage. (This restriction does not apply to CPU boards other than the
iSBC 80/20, or to iSBC 80/20 boards installed in chassis other than the
System 80/20.)

Use of iSBC 310 Interface in iSBC 80-Based Systems
(With or Without RMX/80)

In an iSBC 80/20, 80/30, or 80/10-based system, the iSBC 310 unit cannot be
memory-mapped onto on-board RAM. You should take this into account when
designing and coding your system. You can use LINK and LOCATE commands to
ensure that the 310 is mapped onto existing off-board RAM; refer to the following
section (‘LINK Command’) for details.

Under RMX/80, a user-supplied interrupt service (RQSETV) routine must not have
access to the iSBC 310 unit—i.e., if you are using the iSBC 310 interface option,
your RQSETYV routines cannot perform any floating-point operations.

Also note that in an RMX/80 system, the iSBC 310 interface package disables inter-
rupts for brief periods during floating-point operations. You must take this situa-
tion into account when programming interrupt-driven tasks.

LINK Command

When you use the iSBC 310 interface, you link in the same run-time libraries as if
you were using the software floating-point routines, except that the floating-point
arithmetic library will be different. Library FPHARD.LIB is provided to support
the use of the iSBC 310 unit to perform floating-point arithmetic in the non-RMX
(ISIS-II or stand-alone hardware) run-time environment. This library substitutes for
FPSOFT.LIB. Two additional libraries are provided in the FORTRAN-80 Run-
Time Package for RMX/80 Systems (iSBC 801) to perform the same functions
under RMX/80: FPHRDX.LIB for iSBC 80/20 and 80/30 systems, and FPHX-
10.LIB for iSBC 80/10 systems. You select one of these libraries in place of
FPSFTX.LIB. For the order of all libraries in the LINK command, refer to Chapter
4 or Appendix D.

The following is an example of a LINK command that could be given to link FOR-
TRAN programs for a system that runs under ISIS-II and includes an iSBC 310 unit
dedicated to FORTRAN use.

-LINK :F1:FPROG.OBJ,F80RUN.LIB,F80ISS.LIB,FPEF.LIB,&
**FPHARD.LIB,PLM80.LIB TO FPROG.LNK MAP

(Note: The double asterisks are prompts issued by the LINK command.)
This example is identical to the one given in Chapter 4 except that the iSBC 310 in-
terface is specified. For an example of a LINK command for an RMX/80 system in

which FORTRAN tasks use the iSBC 310 interface, refer to ‘Link Command’ in
Chapter 6.

5-3

iSBC 310 Interface

54

In most cases, the LINK command above will result in correct memory mapping
of the iSBC 310 unit onto existing on-board RAM. You can examine the LINK
map to check that the mapping is correct—i.e., that the segment FPR.ABS has been
mapped onto existing on-board RAM. If this LINK command does not result in cor-

rect memory mapping, you can assign a specific address for the 310 mapping by giv-
ing the following commands, in order:

LINK FPHARD.LIB (FPR) TO FPR.REL
LOCATE FPR.REL TO FPR.ABS DATA(address) STACKSIZE(0)

where ‘address’ is the address of a 16-byte segment of on-board RAM (the address
must be on a 16-byte boundary). After giving these commands, you link all libraries
together with a LINK command of the form

—LINK :F1: FPROG.OBJ, FBORUN.LIB, F80ISS.LIB, FPEF.LIB, &
**FPR.ABS, FPHARD.LIB, PLM80.LIB TO FPROG.LNK MAP

—i.e., the LINK command you would normally give, but with the addition of the
“FPR.ABS”’ segment between FPEF.LIB and FPHARD.LIB.

FORTRAN-80 Compiler

CHAPTER 6
PREPARING PROGRAMS
TO RUN UNDER RMX/80

This chapter describes the use of the special facilities provided to support FOR-
TRAN programs in the RMX/80 run-time environment—specifically the
FORTRAN-80 Run-Time Package for RMX/80 Systems (iSBC 801). Use of
RMX/80 itself is covered only to the extent necessary to explain how to interface
with it; for complete instructions, refer to the RMX/80 User’s Guide.

Under RMX/80, FORTRAN-80 input and output operations normally use the full
or minimal Terminal Handler and the Disk File System, rather than the ISIS-II func-
tions used in the ISIS-II run-time environment. Alternatively, you can omit the Ter-
minal Handler and/or Disk File System and use port input and output, or even write
your own I/0 device drivers for use with the FORTRAN 1/0 statements. (Instruc-
tions for doing the latter are provided in Chapter 7.) The RMX/80 run-time environ-
ment for FORTRAN offers the advantage of full interrupt capabilities.

Program Structure Under RMX/80

Recall that under RMX/80, programs run as a series of tasks under the control of
the RMX/80 Nucleus, and that tasks communicate with each other by sending
messages. You may use FORTRAN to code those tasks (or subroutines callable by
tasks) that make use of formatted 1/0, floating-point arithmetic, and other FOR-
TRAN features. Tasks written in FORTRAN should be coded as SUBROUTINE
subprograms. (Just as there must be no PL/M main procedure under RMX/80,
there must be no FORTRAN main program.)

However, note that FORTRAN, since it has no address variables, cannot interface
directly with RMX/80. All sending and waiting for messages must be done by tasks
coded in PL/M or assembly language; likewise, the configuration module must be
coded in PL/M or assembly language. If you wish to have one task perform
floating-point arithmetic and send and/or wait for messages, you can do so by
writing a short ‘‘skeleton”’ task in assembly language or PL/M to do the send and
wait operations, and having it call one or more FORTRAN subroutines to perform
the bulk of the processing.

Initialization and Termination

For FORTRAN main programs, the compiler automatically generates calls to per-
form the necessary initialization and termination actions for the FORTRAN library
routines. In an RMX/80 system, however, there can be no FORTRAN main pro-
gram, so these calls must be included in your code. Initialization must be performed
once for the whole system and (when floating-point operations are used) for in-
dividual tasks.

All the required system initialization, including initialization of the floating- point
and input-output routines, is performed by the external procedure FQOGO, which
resides in FSORUN.LIB. You can initialize your system by including in it a small,
high- priority task that calls FQOGO (which takes no parameters), then suspends
itself by calling the RMX/80 procedure RQSUSP. This task must have a high
enough priority to ensure that it runs before any floating-point arithmetic or FOR-
TRAN I/0 is performed.

6-1

Preparing Programs RMX/80

6-2

It is presumed that FQOGO will not be invoked twice. Unpredictable (and
usually disastrous) results may occur if this assumption is violated.

In addition, each task that uses floating-point (REAL) operations or intrinsic func-
tions must call FQFSET, which resides in the selected floating-point arithmetic
library, before doing any REAL operations. This routine initializes the internal er-
ror handler address field. The calling sequence for FQFSET is:

CALL FQFSET(A,ERRH) from a FORTRAN program or
CALL FQFSET(.A,.ERRH) fromaPL/M program

A is a two-byte integer and ERRH is the name of an error-handling routine. The
least significant bit of the high-order byte of A is a flag which, when set to 1, in-
dicates that a user-supplied routine at the address given in ERRH is now to serve as
the floating-point error handler; if this flag is 0, the error handler named FQFERH
will be activated. (Two error handlers by this name, a default error handler and an
alternate one, are supplied in the FORTRAN run-time libraries.) The low-order byte
of A will become the new value (normally 0) of the Error Field maintained internally
by the floating-point arithmetic routines. Thus the standard settings for A are 0 and
#100H. The routine FQFSET is identical to the FQFRST routine described under
‘Run-Time Arithmetic Errors’ in Appendix B, except that FQFSET also clears inter-
nal floating-point working accumulators and should be called only once per task.

To use the default or the alternate error handler, simply call FQFSET(0,ADDR),
where the value of ADDR does not matter (e.g., it can be zero). Arithmetic error
handlers are discussed in detail under ‘Run-Time Arithmetic Errors’ in Appendix B;
refer to this section in Appendix B if you wish to supply your own error-handling
routine.

The following table summarizes the meanings of the possible values of the ‘A’
parameter.

High-Order Byte of A | Low-Order Byteof A Meaning

Low-order bit =1 Zero Use error handler at address ERRH,

(01H, 3FH, C7H, etc.) and set Error Field* to zero

Low-order bit=0 Zero Use FQFERH** as error handler, and

(O0H, 3EH, C6H, etc.) set Error Field* to zero

Low-order bit =1 Nonzero Use error handier at address ERRH,
and set Error Field* to value of low-
order byte of A

Low-order bit=0 Nonzero Use FQFERH** as error handler, and
set Error Field* to value of low-order
byte of A

*For a description of the Error Field, see ‘Error Monitoring’ under ‘Run-Time Arithmetic Errors’
in Appendix B.

**Either the default or the ISIS- oriented error handler, depending upon the options specified
in the LINK command. (See ‘Run-Time Arithmetic Errors’ in Appendix B for details.)

Calls to FQFSET are not required for non-RMX run-time environments, but these
calls will not cause errors in such environments. This feature contributes to the por-
tability of FORTRAN code between RMX and non-RMX systems.

FORTRAN-80 Compiler

FORTRAN-80 Compiler Preparing Programs RMX/80

Any routines that may terminate system operation, such as error handlers, should
also call the termination routine FQOEND. (FQOEND also resides in FSORUN.LIB
and takes no parameters.) This will ensure that all input and output files are closed
and that the memory mdapping on the iSBC 310 math unit, if any, is deactivated. In
addition, FQOEND in F8ORMX.LIB calls a user-defined routine named FQOXIT,
which you must supply as part of your code. This routine should perform any
system exit functions that you desire, and must not return.

Input and Output

The RMX/80 run-time input/output support library, FSORMX.LIB, allows you to
code regular FORTRAN statements (OPEN, CLOSE, READ, WRITE, PRINT,
BACKSPACE, REWIND, ENDFILE) for input and output to the Terminal
Handler and Disk File System. No sending of request messages to the Terminal
Handler or DFS is required; this is all done by the routines in FSORMX.LIB.

The unit/file preconnection feature available in FORTRAN under ISIS-1I cannot be
used under RMX/80. As part of its initialization, the RMX/80 input/output library
automatically connects :CI; (the terminal input file) to unit § and :CO: (the terminal
output file) to unit 6. Any other connections must be specified in OPEN statements.
(Note that the connections of :CI: to unit § and :CO: to unit 6 can be overridden by
OPEN statements in your program.)

To read from or write to the terminal, you specify unit 5 in a READ statement or
unit 6 in a WRITE statement. To perform 1/0 operations on a diskette file, you
specify whatever unit number and file name you decide to assign to that file. The file
name must be of the form :device:filename.ext, where ‘device’ is any two
alphanumeric characters, ‘filename’ is from one to six alphanumeric characters, and
‘ext’ is from one to three alphanumeric characters. (This is identical to the form of
an ISIS path-name.) Besides the unit specifier and the file name, you should also
always include an error specifier in every 1/0 statement and provide an error action
routine. Otherwise, if an error occurs, the I/0 library routines will suspend the task
performing the 1/0.

The following ‘‘stub’’ example shows how you might code a routine to read in an 80-
character unformatted direct-access record from a diskette file on :F1: called
DATAL.

$FREEFORM
PROGRAM READIN
C DECLARATIONS OF VARIABLES AND ARRAYS GO HERE

OPEN (3,lI0STAT = ERRFLG,ERR=10,FILE= ":F1:DATA1',STATUS='0OLD’,
& ACCESS='DIRECT',RECL =80)

10 CALL OPNERR

C VALUEOF M MUST BE SET HERE
READ(3,REC=M,IOSTAT=ERRFLG,ERR=20)

20 CALLRDERR
END

6-3

Preparing Programs RMX/80

C ““OPEN’ ERROR ACTION ROUTINE
C CHECKS ERRFLG AND PERFORMS ACTION DEPENDING ON ITS VALUE
SUBROUTINE OPNERR

END

C ‘“READ” ERROR ACTION ROUTINE
C CHECKS ERRFLG AND PERFORMS ACTION DEPENDING ON ITS VALUE
SUBROUTINE RDERR

END

The RMX-based input/output library is a non-reentrant shared resource; generally,
only one FORTRAN 1/0 operation can be in progress at a time anywhere in your
system. While one task’s input or output is in progress, a software lock (as described
in Chapter 3 of the RMX/80 User’s Guide) prevents any other task from performing
FORTRAN 1/0. The second task will wait until the first task’s input or output has
finished. As a consequence, tasks that handle interrupts must not perform FOR-
TRAN I/0. This is not a serious restriction; since tasks that handle interrupts must
be as short and speedy as possible, it is not advisable to do FORTRAN 170 in an
interrupt-handling task anyway.

An exception to the non-reentrancy rule arises in the case of terminal input. A delay
in terminal input—which may often occur, for instance when the operator leaves the
console—will not halt disk input or output indefinitely. In this case, the Terminal
Handler input buffers will be saved and the software lock on the I/0 system will be
removed, allowing other tasks to perform disk 1/0.

Note that the non-reentrancy restriction applies only to regular FORTRAN 1/0;
port input and output (coded in FORTRAN, PL/M, or assembly language) may be
performed concurrently with formatted 1/0. However, FORTRAN and non-FOR-
TRAN 1/0 on the same file may interact improperly; use one or the other only for
any given file.

Using the iSBC 310 Option Under RMX/80

When using the iSBC 310 interface for FORTRAN floating-point operations under
RMX/80, note that the iSBC 310 unit cannot be memory-mapped onto on-board
RAM. You should take this into account when designing and coding your system.
You can use LINK and LOCATE commands to ensure that the 310 is mapped onto
existing OFF-board RAM; refer to ‘LINK Command’ in Chapter 5 for details.

A user-supplied interrupt service (RQSETV) routine under RMX/80 may not have
access to the iSBC 310 unit—i.e., if you are using the iSBC 310 interface option,
your RQSETYV routines must not perform any floating-point operations.

Configuration Requirements

When you are using FORTRAN modules in your RMX/80 system, three types of re-
quirements are imposed on your configuration module: enlarged Task Descriptors
for floating-point operations, task stack requirements for floating-point routines,
and Terminal Handler and Disk File System tasks and exchanges.

FORTRAN-80 Compiler

FORTRAN-80 Compiler Preparing Programs RMX/80

Each task in your system that performs any operations involving floating-point
numbers must have a larger Task Descriptor than is usual for an RMX/80 task. If
the software floating-point routines are used, 18 extra bytes must be added to the
end of the Task Descriptor; if the iSBC 310 is used, 13 extra bytes. If you are coding
your configuration module manually in PL/M, you need simply add these extra
bytes when you declare your Task Descriptors. If you are using the assembly-
language configuration macros, you must use the optional parameter tdxtra for the
STD macro to specify the number of bytes to be added to the Task Descriptor for
each task: 18 for software floating-point or 13 for hardware (iSBC 310) floating-
point. Note that if you are supplying a value for tdxtra but are not providing a value
for the preceding optional parameter, the initial exchange address exch, you must
insert a comma to denote a null value for exch, as in this example:

STD FPTASK,60,150,,18

As discussed in Chapter 3 of the RMX/80 User’s Guide, you must determine the
stack size requirement for each of your tasks. For tasks written in FORTRAN that
perform floating-point operations, you must take into account the bytes of stack re-
quired for the floating-point arithmetic operations and intrinsic functions you use.
For a list of the stack requirements for all floating-point operations and intrinsic
functions, refer to Appendix E. In addition, any task that uses FORTRAN 1/0
statements and/or STOP or PAUSE statements must include an extra 800 bytes of
stack for [/O routines.

If you are using FORTRAN I/0 for terminal input and/or output, your configura-
tion module must include the input-output Terminal Handler and the exchanges
RQINPX and RQOUTX. If you are doing FORTRAN 1/0 to disk files, you need
the DFS services OPEN, READ, WRITE, SEEK, CLOSE, RENAME, and
DELETE, and the exchanges RQOPNX, RQRNMX, RQDELX, and RQDSKX.
{(Note that the SEEK service is specified at link time and does not affect the con-
figuration module.) Refer to Chapters 4 and 7 of the RMX /80 User’s Guide for task
names and other particulars. In addition, if you use any FORTRAN I/0 at all you
must declare the public exchange FQOLOK, which is used by the FORTRAN 1/0
system, and include it in the Initial Exchange Table.

LINK Command

To run FORTRAN programs under RMX/80, you need libraries selected from two
packages: the standard FORTRAN package and the RMX/80 run-time libraries.
The RMX/80 package provides six libraries to support FORTRAN programs run-
ning under RMX/80:

FPSFTX.LIB Software floating-point routines for the RMX/80
environment

FPHRDX.LIB Routines to interface with the iSBC 310 math unit in
iSBC 80/20 and 80/30 systems under RMX/80

FPHXI10.LIB Routines to interface with the iSBC 310 math unit in
iSBC 80/10 systems under RMX/80

FSORMX.LIB FORTRAN input/output routines for the RMX/80
environment

FS8ONTH.LIB External reference library for RMX/80 systems that do

not include the Terminal Handler

F8ONDS.LIB External reference library for RMX/80 systems that do
not include the Disk File System.

6-5

Preparing Programs RMX/80 FORTRAN-80 Compiler

Remember that even when you are using RMX/80 rather than ISIS-II at run time,
you must first link your program segments together and locate them on an Intellec
or Series II system using ISIS-II, which provides the LINK and LOCATE programs.
If you are preparing your programs to run under RMX/80, your ‘input-list’ to the
LINK command must include all required libraries in the sequence:

RMX8xx.LIB(START),object-file,FSORUN.LIB,&

®
FPSOFT.LIB
FPHARD.LIB
F80ISS.LIB
FPSETX.LIB DFS-libs .
ESSE?%X'L%EB -FPEF.LIB, 9 FrHRDX.LIB ,’FSONDS.LIB] &
' FPHX10.LIB
FPNULL.LIB
TH-libs
mini-TH-libs + ,[ext-libs,]JRMX8xx.LIB,UNRSLV.LIB,PLM80.LIB
FSONTH.LIB

where braces { } indicate a choice of items and brackets [] indicate optional items.

¢ ‘xx’ in ‘RMX8xx.LIB(START)’ and ‘RMX8xx.LIB’ stands for 20, 30, or 10,
for systems based on the iSBC 80/20, 80/30, and 80/10 respectively.

* ‘object-files’ are one or more files containing the modules produced by
compiling your FORTRAN program, plus other modules (if any) translated
from PL/M or assembly language code. For RMX/80 systems, ‘object-files’
must include your configuration module.

¢ Use F80ISS.LIB if your program is to run under ISIS-II and perform 1/0 other
than port 170, FSORMX.LIB if your modules are to run under RMX/80 and
perform I/0 other than port I/0, or FSONIO.LIB if only port 1/O (or no I/0)
is used in FORTRAN.

¢ Link in FPSOFT.LIB to use software floating-point for non-RMX systems,
FPHARD.LIB to use the iSBC 310 interface for non-RMX systems, FPSFTX-
.LIB to use software floating-point under RMX/80, FPHRDX.LIB to use the
iSBC 310 interface under RMX/80 on an iSBC 80/20 or 80/30, FPHX10.LIB to
use the iISBC 310 interface under RMX/80 on an iSBC 80/10, or FPNULL.LIB
if no floating-point operations are used.

¢ If FORTRAN input or output is performed from or to a terminal, the libraries
for the full input-output Terminal Handler (‘TH-libs’) or the minimal input-
output Terminal Handler (‘mini-TH-libs’) must be linked in. Refer to Chapter 4
of the RMX/80 User’s Guide for the names of these libraries. If the Terminal
Handler is not needed, substitute FSONTH.LIB to resolve external references.

¢ If FORTRAN 1/0 is performed on disk files, include the ‘DFS-libs’ needed for
the services OPEN, READ, WRITE, SEEK, CLOSE, RENAME, and
DELETE. Refer to Chapter 7 of the RMX/80 User’s Guide for the names of ¢
these libraries. If no disk I/0 is performed, substitute FSONDS.LIB to resolve
external references.

o ‘Ext-libs’ are libraries for any other RMX/80 extension services, such as the ®
Free Space Manager or analog I/0, that you may need in your system.

For further information, refer to Appendix D.

The following sample LINK command links together an RMX/80 system that runs
on an iSBC 80/20. This particular system uses the iSBC 310 interface, does FOR-
TRAN /0 to the minimal Terminal Handler and to diskette files, and also requires
the RMX/80 Free Space Manager. All the FORTRAN libraries, including
PLMS80.LIB, are on drive 0; the RMX/80 and user code libraries are on drive 1.

6-6

FORTRAN-80 Compiler Preparing Programs RMX/80

USRCOD.OBJ contains the translated code for the configuration module and all
user tasks. CAMMOD.OBJ contains the translated controller-addressable memory
module, which is described in Chapter 7 of the RMX/80 User’s Guide.

-LINK :F1:RMX820.LIB(START),:F1:USRCOD.OBJ,F80RUN.LIB,&
**F80RMX.LIB,FPEF.LIB,FPHRDX.LIB,:F1:MT1820.L1B,:F1:MT0820.LIB,&
**:F1:DFSDIR.LIB(SEEK,DIRECTORY,DELETE,RENAME),:F1:DIO820.LIB ,&
**:F1:DFSUNR.LIB,:F1:CAMMOD.OBJ,:F1:TSK820.LIB,&
**:F1:RMX820.LIB,:F1:UNRSLV.LIB,PLM80.LIB TO :F1:USRCOD.LNK

(Note: The double asterisks are prompts issued by the LINK command.)

Unresolved External References

The LINK and LOCATE programs, ICE-80, and ICE-85 will generate ‘error’
messages for unused interrupt exchanges, as described in Chapter 3 of the RMX/§0
User’s Guide. These messages can be ignored. You should check, however, to make
sure these messages refer only to interrupt exchanges and not to other unresolved ex-
ternal references that may be due to errors in your programs or in linking your
system.

Example

The following pages provide listings of the program code for a simple RMX/80
system that displays pairs of numbers to be added, allows the user to type in answers
from the terminal keyboard, checks the answers, and times the user’s responses for
those answers that were correct. Incorrect answers are logged on disk. At the end of
the exercise, the problems missed are printed out for review, along with the average
response time for correct answers.

The hardware environment is an iSBC 80/20-based system including a terminal and
two disk drives (FO and F1) on one controller (CNO) using interrupt level 2. The
software environment includes the RMX/80 Nucleus, full Terminal Handler, and
Disk File System.

Two user tasks are provided: TESTER, written in FORTRAN, which performs the
arithmetic and I/0; and ITIMER, written in PL/M, which performs the interval
timing for TESTER by means of the RMX/80 timed wait operation. Another PL/M
module, called ITIMERINTERFACE, consists of two procedures (STARTT and
STOPT) that are called by TESTER and that interface with ITIMER by sending
messages to it to start or stop the timer.

The configuration module and the controller-addressable memory module have
been written in both PL/M and assembly language; either version may be used when
the programs are run. Listings of both versions are provided following the listings of
TESTER, ITIMERINTERFACE, and ITIMER.

The last listing page gives the SUBMIT file used to link and locate the example
system.

6-7

Preparing Programs RMX/80 FORTR AN-80 Compiler

FORTRAN COMPILER Arithmetic Testing Program

ISI1S-II FORTRAN-80 V2.0 COMPILATION OF PROGRAM UNIT TESTER
OBJECT MODULE PLACED IN :Fl:tester.OBJ
COMPILER INVOKED BY: fort80 :Fl:tester.ftn

1 $date(78-Sep-14) title('Arithmetic Testing Program')
2 $freeform
3 subroutine Tester
B e e e e o e o o o e e o . e e e e e
#.--This Fortran-implemented RMX task prints 2 numbers to be
*_-_-.added by the user, who must type an answer. Several
#--~such pairs are typed and the number of correct answers is
#_.--counted. 1Incorrect answers are logged for later review.
#_._-Correct answers are timed, and the average time is printed.
B e e e e e e e e e e e o o e o
4 external Fq0Go, FqfSet, StartT, StopT, GetNum
B e e e e e e e o 2 2 e 2 e 7 e 2 2 A o 1 o o T e 2 oo o am
#..-Fq0Go and FqfSet are i/o0 and math initialization routines.
#_._.-StartT and StopT are PL/M routines to communicate to the timer.
#..-GetNum is a routine to generate the numbers for the test.
B e e e e e e e e e e et an o m ot 1 70 om0 70 e T T T
5 integer N1, N2, Ans, Corect, NTries, Log
6 real TotalT, Intrvl
B e e e o e o o e e o e T T . = = . o A= - - e = e - e - - - - — - -
#_-.-Log is the number of the i/o unit for logging wrong answers.
#_---TotalT and Intrvl are the accumulated and individual times
#.-- for responses.
¥---The rest of the variables are used in the problem itself.
B e e e e e e e e e e e e e —————————————————————
*---Initialize system transput (i/o) and system floating point:
7 call FqO0Go
#__-Initialize this task's floating point register:
8 call FqfSet (0,0)
9 1 write (*,2)
10 2 format (///"This programs tests your ability to add pairs of numbers.'
& /'As soon as you see two numbers, add them and type your'
& /'answer. The number of correct answers as well as the average'
¢ / response time will be determined. Type RETURN to start.)
11 read (*, *'()*', errz1)
12 Log = 99
13 open (Log, filez':fO:test.log', form='unformatted' err=1)
14 Corect = 0
15 NTries = 20
16 TotalT = 0.0
17 do 3, IthTry = 1, NTries
¥..-Get two numbers for the example, print them, & start timer.
18 call GetNum (N1)
19 call GetNum (N2)
20 write (®*,'(//16/1h+,1i5)*) N1, N2

FORTRAN-80 Compiler Preparing Programs RMX/80

FORTRAN COMPILER Arithmetic Testing Program
21 call StartT
#_---Get response, stop timer, check answer, & log bad response.
22 read (*, '(16)', err = 13) Ans
23 13 call StopT (Intrvl)
24 if (N1+N2 .eq. Ans) then
25 Corect = Corect + 1
26 TotalT = TotalT + Intrvl
27 else
28 write (Log) N1, N2, Ans
29 end if
30 3 continue
#.--Print results of the exercise. Print problems missed.
31 write (®, '(////''End of exercise.'')!')
32 if (Corect .eq. NTries) then
33 write(#®, *(''All ',i4,'' answers were correct! Very goodl!'')') Corect
34 else
35 write(%*, '(i3,'' problem(s) wrong out of ',il4)') NTries-Corect, NTries
36 write(®, '(//'"'Review the following problems:'')"')
37 rewind (Log)
38 do 5, IthTry = 1, NTries-Corect
39 read (Log) N1, N2, Ans
40 write (*,4) N1, N2, N1+N2, Ans
41 y format (/i9/2h +,i7/2h =,1i7,' not',i8)
42 5 continue
43 end 1if
#__-Print average response time for correct answers:
44 write (#,6) TotalT / Corect
45 6 format (//' Your average time per correct answer was ,f8.3, sec.')
46 close (Log, status='delete')
#_.--Begin agaln:
47 go to 1
48 end

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
87 LINES READ

05CDH 1485D
0042H 66D
0004H 4D

0 PROGRAM ERROR(S) IN PROGRAM UNIT TESTER

6-9

Preparing Programs RMX/80 FORTRAN-80 Compiler

FORTRAN COMPILER Arithmetic Testing Program

ISIS-II FORTRAN-80 V2.0 COMPILATIUN OF PROGRAM UNIT GETNUM
OBJECT MODULE PLACED IN :Fi:tester.OBJ
COMPILER INVOKED BY: fort80 :Fl:tester ftn

[

1 subroutine GetNum (N)
#.--This Fortran subroutine naively generates some numbers for Tester.
)

2 integer N, LastN
3 common LastN
y LastN = iabs(mod(13%LastN+1,1999))
5 N = LastN
6 end

MODULE INFORMATION:

CODE AREA SIZE = 0027H 39D
VARIABLE AREA SIZE = 0002H 2D
MAXIMUM STACK SIZE = 0002H 2D

12 LINES READ
0 PROGRAM ERROR(S) IN PROGRAM UNIT GETNUM

0 TOTAL PROGRAM ERROR(S)
END OF FORTRAN COMPILATION

6-10

FORTRAN-80 Compiler Preparing Programs RMX/80

PL/M-80 COMPLLEK INTERVAL TIMEk INTEKEACE

1518-1I1 vL/M=-00C V3.1 COMPILATIUN OF MODULE ITIMERINTERFACE
ObBJECT mODULE PLACED IMN :t2:testt.Obd
COMPLLER INVOKED BY: plmd0 :FeZ:testt.plm

$date('78-5ep~12c') title(*Interval Timer Interface')

1 ITimerlnterface: do;
/R R R R R R R R RN R R R R R R R R R R RN R RN R RN R RN RN RN RN RN RRRRRNRRRRRRRS
/% This PL/M module interfaces the Fortran subroutine Tester %to the
/% interval timer. This module takes care of *he KMX/80 message
/* sending/receiving for the tortran subroutine.

/i

/% This module/task sends the following messages:

/% sends MSG T0 VIA COMMENTS

/* StartTimer ITimer 1¢ntrl Signals timer to start

/% StopTimer ITimer T¢ntrl Signals timer to stop

VA

/* This module/task waits for the following wessages:

/% recetives MSG FROM VIA COMMENTS

/% (ref'd by MsgAdr) 1ITimer TRslts Indicates timer running

/% (ref'd by Msghdr) ITimer THslts Returns elapsed seconds (KEAL)

VARA R X R R R R R R R R N R S R R R R N R R R R N R R R R R R RN NN RS RR RN

$include (:f1:Synch.Ext)

< 1 z RC(SEND:
= PROCEDUKE (EXCHANGE$POINTER,MESSAGE{POLNTEK) EXTEKNAL;
3 Z = DECLARE (EXCHANGE$PUGINTER,MESSAGE$POINTER) ADDRESS;
4 2 H END RGSEND;
5 1 = RUWAIT:
= PROCEDURE (EXCHANGE$POINTER,DELAY) ADDKESS EXTEKNAL;
[2 = DECLARE (EXCHANGE$POINTER,DELAY) ADDRESS;
7 2 = END RCWAIT;
o] 1 = KGACPT:
= PROCEDURE (EXCHANGE$POINTZR) ADDRESS EXTEKNAL;
9 2 = DECLARE EXCHANGE$POINTEK ADDRESS;
10 2 = END RGACPT;
11 1 = KGISND:
= PROCEDUKE (I1ED$PTH) EXTERNAL;
12 2 = DECLARE 1lED$PTh ADLRESS;
13 2 = END RQISND;
$include (:f1:Exch.Elt)
14 1 DECLARE EXChANGL$DESCRIPTOR LITERALLY *STRUCTURE (

MESSAGE$HEAD ADDRESS,
MESSAGE$TAIL ADDRESS,
TASK$HEAD ADDRESS,
TASK$TAIL ADDRESS,
EXCHANGE$LINK ADDRESS)';
$include (:f1:Msg.Elt)

Preparing Programs RMX/80 FORTRAN-80 Compiler

PL/M=80 COMPILER INTERVAL TIMEK INTERFACE

15 1 DECLAKE MSG$hDR LITERALLY
LINK ADDRESS,
LENGTH ADDRESS,
TYPE BYTE,
HOME$EACHANGE ADDRESS,
RESPONSE$EXCHANGE ADDRESS';

DECLARE MSG$DESCRIFTOR LITERALLY '"STRUCTUKRE(™
MSG$hDE,
REMAINDER(1) BYTR)';

L2 L I O T I TR T I TN [()

17 1 declare ™

integeré literally ‘'address’,
real literally '(2)address',
TMsg structure {

Msgé$hdr,

Duration real) /%*-Message for communicating with timer=-%/,
Tkslts Exchange$Descriptor public /%-kxchange for interval timer results-%/,
TCntrl Exchange$bDescriptor external /%~Exchange to start/stop timer,.,-%/,
MsgAdr address /*-Pointer to 'result' message -%/;

18 1 declare /%*-.Message types-¥/
StartTimer literally '101°',
StopTimer literally '100';

19 1 StartT: procedure public;

/% This PL/M procedure is called from the Fortran subroutine Tester when
/% the interval timer is to be started. This procedure forms the ‘'start?
/* message, sends i% to the exchange (TCntrl) controlling the timer, and
/% waits for an acknowledgement before returning to Tester.

20
21
z2
23

TMsg.Length = 13;
Thsg.Type = StartTimer;
TMsg.kesponsejkxchange = .Thslts;
call RgSend (.TCntrl, ,TMsg);
/%~ Send the message and wait for acknowledgement.-%/
24 Msghdr = KkqWait (.Thslts, 0);
25 2 end StartT;

A DR

n

26 1 StopT: procedure {(SecondsAdr) public;

/* This PL/M procedure is called from the Fortran subroutine Tester in
/% order to stop the interval timer and %o ob%taln the elapsed %“ime since
/% the timer was started. This procedure forms the 'stop' message,

/®* sends it to the exchange controlling %he timer, and walts for

/% the resultant elapsed time (a floating-poin%t, or REAL, value) to be
/* returned.

27

N

declare SecondsAdr address,
Seconds based SecondsAdr real;
Trsg.Type = StopTimer;
call KqSend (.TCntrl, .TMsg);
MsgAdr = Rqwai%t (.TRslts, 0);
Seconds(0) = TMsg.Duration(0); Seconds(1) = TMsg.Duration(1);

26
29
30
31

LBV RV)

FORTRAN-80 Compiler Preparing Programs RMX/80

PL/M=80 COMPILER INTERVAL TIMER INTEKFACE
33 2 end StopT;
34 1 end lTimerlnterface;

MODULE INFORMATION:

CGDE AREA SIZL = 006eh 9860
VARLABLE AKEA S1ZE = 001bkL 27D
MAX1IMUM STACK SIZLE = 0002H eb

111 LINES READ
0 PROGKAM EKRCK(S)

ERD OF PL/M~80 CCMPILATION

6-13

Preparing Programs RMX/80 FORTRAN-80 Compiler

YL/M-60 COMPILEK INTERVAL TIMER TASK

1515-11 ¢PL/M=-80 V3.1 COMPILATIUN OF MODULE INTEhVALTIMER
UBJECT MODULE PLACED IN :F2:1timer.OUbd
COMPILER INVUKED bBY: plmb0 :F2:1itimer.plm

$date(78 Aug) title(‘'lnterval Timer Task')

1 Intervallimer: do;
/AR R RN R R RN RN N B R N RN R BN R RSO N R R RN RN O NN RO RR RN RN RN
/* This ¥FL/M procedure {s the main procedure of a task that performs
/% interval timing for the Fortran subprogram Tester which runs as -
/®* another task. The timing is simply performed by using the time-out
/% facility of the RMX/00 walt operation., (The wait waits at an
/% exchange %0 which no messages are send,)

/7*

/* This task/procedure receives the following messages:

/% receives MSG FhOM VIA CGMMENT

/% StartTimer Tester TCntrl Starts operation of timer

/* StopTimer Tester TCntrl Requests elapsed time

iz

/% This task/procedure sends (returns) the following messages:

/* sends MSG FEOM VIia LOMMENT

/% (acknowledge Start) Tester (resp.exch) Keturns message as confirmation
/* (acknowledge Stop) Tester (resp.exch) Keturns message with time in 1t

VAR R R X R R R SR R R R R R R R RN R R R R RN RRRREEEZEZEZEERZZREEENRSERRE NS R 2)

$include (:f1:Exch.klt)
DECLAhE EXACHANGEYLESCKIPTOR LITERALLY ‘*'STRUCTUKRE (
MESSAGE$HEAD ADDRESS,
MESSAGE$TAIL ADDRESS,
TASK$HEAD ADDRESS,
TASK$TALIL ADDRESS,
EXCHANGE$SLINK ADDRESS)';
$include (:f1:Msg.klt)
DECLAKE MSG$HDR LITERALLY '
LINK ADDRESS,

LENGTH ADDRESS,

TYPE BYTE,

HOME$EXCHANGE ADDRESS,
RESPONSES$SEXCHANGE ADDRESS';

LI LI TR [Tl 1}

DECLARE MSG$DESCRLIPTOR LITERALLY 'STRUCTURE(
MSG$HDH,
REMAINDER(1) BYTE)';

H NN HHE D NN NN

5 1 declare
zero address data (0),
integerz literally 'address',
real literally '(2)address’';

6 1 declare /%*Exchanges®/
Ticker Exchange$Descriptor public,
TCntrl Exchange$Descriptor public;

7 1 declare /®mMessages®/
ControlMsgAdr address,

6-14

FORTRAN-80 Compiler

PL/M-bU COUNMPILLER INTERVAL TIMER TASK

23
24

25

Preparing Programs RMX/80

Controlksg vased ControlMsgAdr structure (

msgHdr,
buration real),
TickMsgAdr address;

declare /%*Message types®*/
StartTimer literally '101°',
StopTimer literally '100';

ToSecs: /%*Coversion routine for
procedure (K,M,S) external;
declare (K,M,S) address; end;

FqfSet: /*Task's floating point
procedure (F,E) external;
declare (f,L) address; end;

$include (:f1:Synch.kxt)
RQSEND:

time format®/

initialization®#/

PROCEDURE (EXCHANGE$POINTER,MESSAGE$POINTER) EXTERNAL;
DECLARE (EXCHANGE$POLINTEK,MESSAGE$POINTER) ADDRESS;

END RGSEND;

HUWAIT:

PROCELUKE (EXChHANGE$POLINTER,DELAY) ADDRESS EXTERNAL;
DECLARE (EXCHANGE$POINTckK,DELAY) ALDRESS;

END KGWAILT;

RGACPT:

PROCEDURE (LXCHANGE$SPOINTER) ADDRESS EXTERNAL;
DECLARE BAChANGE$POLNTER ADDRESS;

END RQACPT;
KRQISND:
PROCEDUKE (IED¢fTh) EXTERNAL;
DECLARE IEL$F¥TR ADDRESS;

END KGQLlSND;

6-15

Preparing Programs RMX/80 FORTRAN-80 Compiler

PL/M-80 CCMPILER INTERVAL TIMER TASK ‘
$eject
27 1 ITimer: procedure public;

/AR RN RN R B R R AR RN R R SRR RN R R RN RN RN B RN NN NA RO RN
/®* This procedure is the entry point of “he interval timer task.
/% 1t is used %to clock a period of time with a resolution of 50 msec
/% (under KMX/80/20 or 80/30). 1he duration of such a period is

/% returned as a real (floating-poin%) value measured in seconds,
A I L R R RN N N N R R R N RN N R R N R R R N R R R R R R N R TN NN R R N -

26 2 declare
(Minutes, TwentiethSecs) {integer2;

/%*Initialize tloating point for this task®/

29 2 call FqfSet {(.zero,.zero);
30 2 do while 1;
/%%ait for some request %o start#/
31 3 ControlMsgAdr = kgwait (.TCntrl, 0};
32 3 TwentiethSecs = 0; Minutes = 0;
34 3 ControlMsg.Duration(0) = 0; Cont%trolksg.Duration(1) = 0;
36 3 call FqSend (Controlksg.hesponse$Exchange, ControlMsghdr);
37 3 ControlMsgAdr = 0;
38 3 do while ControlMsghdr = 0;
39 4 TickMsghAdr = hqWait (.Ticker, 1); /®*0.05 seconds on 80/20%/
40 4 TwentiethSecs =z TwentiethSecs + 1;
41 4 if TwentiethSecs =z 1200 then do;
43 5 Minutes = Minutes + 1; TwentiethSecs = 0; end;
46 iy ControlMsgAdr = RqAcpt (.TCntrl);
47] end;
4y 3 call ToSecs (.ControlMsg.luration, .Minutes, .TwentiethSecs);
49 3 call RqSend (ControlMsg.ResponseExchange, ControlMsghdr);
50 3 end;
51 2 end ITimer;
5¢ 1 end IntervalTlimer;

MODULE INFORMATION:

CUDE AREA SIZk = 00k9h 165D
VAKRIABLE AKEA SIZE = 001Cn 2bD
MAXIMUM STACK SIZE = 0O0O04H 4D

127 LINES READ
0 PROGRAM EKKOR(S)

END OF PL/M-80 COMPILATION

6-16

FORTRAN-80 Compiler Preparing Programs RMX/80

FURTHhAN CUMPLLER tonversion rou%ine for lnterval Timer

I1515~11 FORTHKAN-bO Vz.0 COMPILATION CF PhOGKAM UNIT TOSECS
ObJELT MODULE PLACED IN :F1:ToSecs,OBJ
COMPILER INVOGRED BY: fortd80 :rl1:ToSecs.fn

—_

ydate(T8 Aug 9) title(‘'Conversion routine for lnterval Timer')

2 real function ToSecs (Min, Sec20)

.+.This Fortran-b0 function subprogram converts a pair of integer
..values representing some number of minutes and some multiple of
. ..twentieths of a second to a real value representing seconds.

3 integer®*Z Min, Sec20
4 ToSecs = 60.0 * Min + Sec20 / 20.0
5 end

MOLULE INFORMATIGN:

CULE AREA S1LE = 004Ch 7oL
VAKLIAELE AKEA S1Zk = 0006H 60
MAX1INUM STACK SIZE = 0006H 60

8 LINES KbALD
0 PROGHAM ERROR(S) Ik PhOGKAM UNIT TOSECS

0 TOTAL PKOGRAM ERKOK(S)
END OF FORTKAN COMPLLATION

Preparing Programs RMX/80 FORTRAN-80 Compiler

PL/M~80 COmMFILER

1S15-«11 PL/M=80 V3,1 COMPLLATION OF MOUULE COMFIGURATIONMODULE
OBJECT MODULE PLACED 1N :Fz:config.OBJ
COMPILER INVOKED EY: plmb0 :F2:config.plm

1 COM1GUKRATION$SMODULE: DG;

AAA SR R R R R R R R R AR R A R R R R R R R A R R R R A R A R A R R R R AR RR2RR]

/% This contiguration module describes the hardware environment to #/
/% EKMX/80. 1The environmen®t assumed includes two disk drives, FO and

/% F1, on one controller ChO using interrupt level 2 on an iSEC 80/20. -
/% Also included is a terminal driven by %the full terminal handler,
/e

/% The software environment assumed includes the Fortran-80 Run-time
/% for RMX/80 Systems which uses the F(OLUK exchange. Two user

/% tasks are also specitied, which use three exchanges.
A L N R R R RN R N R R N R Y N I N Y Y R RN TN YY)

2 1 DECLARE FPYTASK$DESCKIPTOR LITERALLY

/R SRR NN RN R C N RN RN A RN RN RN
/% Note this new kind of TL for tasks #/
/% performing floating~-point math L¥4
/AR B RN NN RN RN B R NRE B ENNRNOR, YSTRUCTURE(

DELAY$LINK$SFORWAKRD ADDKESS,

DELAYSLINKS$BACK ADDKESS,

THREAL ADDEKESS,

DELAY ADDRESS,

EXCHANGE$ADDRESS ADDKESS,

SP ADDRESS,

MARKER ADDHESS,

PRIGRITY EYTE,

STATUS BYTE,

NAME$PTR ADDKESS,

TASK$LINK ALLRESS,

FPR(18)BYTE) *;

$nolist

/ERad8 task entry polnts #edday
11 1 KGTHDL: PROCEDURE EXTERNAL; END; /U%% verminal handler %&#/
13 1 RGPDSk: PROCEDURE eXTERNAL; END; /%%% disk input/output 88y
15 1 RQGPDEL: PROCELURE EXTERNAL; EWD; /%% file delete service #&#,
17 1 RGPUIR: PROCEDURE EXTERNAL; END; /%%% 4d{sk directory service ¥##y,
19 1 KGPRNM: PROCEDURE EXTERNAL; END; /%%% fi{le rename service #i8y
21 1 hQhD1: FROCELUkE EXTERNAL; ENnD; /%%8% coptroller for disks #éy
23 1 ITIMER: PROCEVUKE EXTERNAL; END; /%%% interval timer &#&y
25 1 i TESTEK: PKOCEDUKE EXTERNAL; END; /2%% yser main task #¥e#y
27 1 DECLAKE /#%&%% t55k stack lengths Hédwy

THSTKLEN LITERALLY '36°,

DSKSThLEN LITEKRALLY '4b&°',
DELSTKLEN LITERALLY '64°,

6-18

FORTRAN-80 Compiler Preparing Programs RMX/80

' PL/%~B80 COMPILER

LIRSTKLeN LITEsALLY 'H4&',
RNM$STKSLEN LITEHALLY '64°',
CNOSTKLEN LITERALLY °60°',

ITIMER$STKSLEN LITERALLY '300°',
TESTERSTKLEN LITERALLY '1000';

Fx} 1 DECLAKE /%%®%% tagk stacks #wi#s/
Th$STK (Th$STR$LEN) BYTE,

DSK$STK (DSK$STKYLEN) BYITE,
DEL$STk (DEL$STK$LEn) BYTE,
DIH$STK (DIRSSTK$LEN) BYTe,
ENM$STK (HNK$STKSLEN) BYTE,
ChOySTK (CNOYSTK$LEN) BYTE EXTERNAL,

ITIMER$STK (ITIMER$STK$LEN) EYTE,
TESTEH$STK (TESTER$STKELEN) BYTE;

29 1 DECLARE /%###% task priorities #éssu/
Th$Phl LITEHALLY '112°,

DSKyPR1 LITERALLY '129°
DEL$PKI LITEKALLY *140°
UIK$PRI LITEKRALLY *135°
RNmMyPRI LITERALLY '145°
CNOGPRI LITERALLY ' 33°

- % e e e

ITIMER$PhI LITERALLY *100°',
TESTER$PKI LITeRALLY '200°';

30 1 DECLAKE /®*%e# task descriptors ##¥/
Th$TD TASK$DESCKIPTOGR,
DSKh$TC TASK$DESCRIPICR,
JEL$TD TASKIDESCRIPIOR,
DIK$TD TASKkgDESCRIPTOK,
EnNM$TD TASK$DESCRIPTIOR,
CNOSTD TASK$LESCHIPICR,

ITIMER$TD FPYTASK$DESCRIPTOK,
TESTER$TL FP$TASK$LESCRIPTOK;

31 1 DECLARE /%#88 gratic task descriptors ###s,
N$TASKS LITERALLY ‘&',
INITIAL$TASK$TABLE (N$TASKkS) STATIC$TASK$DESCKIPTOR DATA(
/*_name procedure___stack stack_size___priority__default__TD_addr_%*/

/%888 std for input-ocutput terminal handler Stt#y
'RGTHDTY, «RQTHDI, +Th$STK, Tu§STk$LEN, TH$PRI, LRGQOUTX, .TH$TD,

/%888 gtds for disk file system services ###d/
'VISKIO', .HGPDSK, .DSKSTK, DSKSTKLEN, DSKPRI, .RKGDSKX, .DSK$TD,

6-19

Preparing Programs RMX/80 FORTRAN-80 Compiler

PL/M-80 COMPILER

32 1 DE

33 1 DE

34 1 Db

35 1 DE

36 1 DE

37 1 DE

6-20

*DELETE', .hWPDEL, .DELSTK, DELSTKLEN, DELPR1, .KQDELX, .DiL.$7TD,
*LIRSVC', JKGQPUDIK, .D1K$STK, DIK4STK$LEN, LIR$PRI, .RQDIRX, .DIR$TD,
*RENAME', JRGPEMM, JHKNMSTK, KNMSTKLEN, KNMPKI, RCRNMX, .RENMS$TD,
'DC2014', .RGHD1, .CNOSTK, CNOSTK$LEN, CNOSPRI, .CNOX, .CNOS$TD,

/®%88 gtds for user tasks #8&s8y
*ITIMER',.1T1MEk, .ITIMER$STK, ITIMER$STK$LEN, ITIMER$PRI, .TICKER, .ITIMERS$TD,
*TESTER',.TESTER, .TESTER$STK, TESTER$STK$LEN, TESTER$PRI, O , +TESTER$TD) ; .

CLARE /%#%#% system exchange descriptors %%eé&y,
(KQINPX, RQOUTX
, RQDBUG, RQWAKE, RQALRM) EXCHANGE$DESCRIPTOR EXTEKRNAL /%% terminal %8/,
(RCDSKX, KQDELX, RQDIRX, RGRNMX) EXCHANGE$DESCKIPTOR EXTEKNAL /%% disk #¢/,
(CNOX) EXCHANGE$DESCRIPTOR /%% exchange for disk controller ##/,
(RQUL2EX) INT$EXCHANGE$DESCRIPTOK PUBLIC,
(RGLOEX,RQL3&X,KGL4EX,RQL5EX) INT$EXCHANGE$DESCRIPTOR PUBLIC AT (.RQL2EX),
(RQLOEX, RGLTEX) INT$EXCHANGE$LESCRIPTOR EXTERNAL /%% interrupts #¢/,
FQOLOK EXCHANGE$DESCHIPTOR PUBLIC /%% fortran i/0 interlock ®#/;

CLARE /%%##%% yser exchange descriptors #hss/
(TICKER, TCNTRL, TRSLTS) EXCHANGE$DESCRIPTOR EXTEKNAL;

CLARE /%%##%#% ipjtial exchange table %##8,

NSEXCHANGES LITERALLY '17°',

INITIAL$EXCHANGES$STABLE (N$EXCHANGES) ADDKESS DATA(
+RQINPX, .HRQOUTX, .RGDBUG, .RQUWAKE, .KQALRM, /%% terminal handler %%/
+RUDSkX, .RQDELX, .RQDIKX, .RQRNMX, /%% disk service exchanges ##/
«RQL2EX, RQL6EX, .RQLTEX, /%% interrupt exchanges %%/
.CNOX, /%% controller exchanges ##/
.FQOLOK, /%% fortran i/0 interlock exchange ##/
.TICKER, .TCNTRL, .TRSLTS) /%% user exchanges %%/,

CLARE /%%%8% create table ###8/

RGCRTE CKEATE$TABLE PUBLIC DATA(
JINITIAL$TASK$TABLE, N$TASKS,
INITIAL$EXCHANGE$TABLE, N$EXChANGES);

CLAKE /(%888 controller specification table ®#¥##y
SBC201 LITERALLY '0' /%% device type ##/,
RQCST (1) CST$ENTRY PUELIC DATA(
SBC¢01, /%port®/ 78H, /%*int.level®/ 2, /%int.exchange®/ ,RQL2EX
., /%request exchange®/ .CNOX);

CLARE /%%%8% device configuration table %888,
RGNDEV ADDRESS PUBLIC DATA (2) /%% 2 drives %%/,
RGDCT (2) DCT$ENTRY PUBLIC DATA(
'*FO', SBC201, /%controller®*/ 0, /%unit®*/ 0,
'*F1', SBC201, 0. 1);

FORTRAN-80 Compiler

PL/M-80 COMPILER

Preparing Programs RMX/80

38 1 DECLARE /®%##% puffer allocation block ####/
EUFPOL (3200) BYTE EXTERNAL,
RQBAE BAB$ENTRY PUBLTC DATA(

0, O, /%n files%*/ 8,

.BUFPOL)

39 1 DECLARE /®##% pyplic data *h¥#/
KGRATE ADDRESS PUBLIC DATA (28) /%% Z400 baud *%*/;

40 1 END CONFIGURATION$SMODULE;

MODULE INFORMATION:

CODE AREA S1ZE = 00CCH
VARIABLE AREA SIZE = 06FFH
MAXIMUM STACK SIZE = 0000k

255 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M~-80 COMPILATION

204D
1791D
oD

/%% statically allocated buffers #%/;

6-21

Preparing Programs RMX/80 FORTRAN-80 Compiler

PL/M-80 CCMPILER

I1SIS-I1 PL/M-80 V3,1 COMPILATION OF MODULE CONTROLLERACCESSMEMOURY
OBJECT MODULE PLACED IN :F2:cammod.OBJ
COMPILER INVOKED BY: plm80 :F2:cammod.plm

1 CONTROLLERSACCESS$MEMOKY: DO;
/RN R AR RN RN R R RN N RN R RO R RN NN NN RN AR RN R NA R RRRNNNRRRRERRRARN,
/®* This module describes a data area which must be in contoller
/®* accessable memory. That is, the data segment of this module must

/% be located for off-board memory (e.g. OF000h).
R L L I R R N RN T T NN I LY,

F 1 DECLARE /%888 gstgack for controller task B&&#y
CNOSTKSIZE LITERALLY '60°',
CNO$STK (80) BYTE PUBLIC;

3 1 DECLARE /®%%ad phyuffer for DIRSVC directory services fésdy
KGDBUF (T700)bYTE PUBLIC;

] 1 DECLARE /%%%8 pyuffers for up to 8 open files as#any
BUFPOL (3200)BYTE PUBLIC;

5 1 END CONTROLLER$ACCESS$MEMOKY;

MODULE INFORMATION:

CODE AREA SI1Zbk = 0000H 0D
VAKIABLE AKEA SIZE = OFbCH 3960D
MAXIMUM STACK SIZE = 0000h 0D

22 LINES READ
0 PROGRAM ERKOK(S)

END OF PL/M-bO COMPILATION

6-22

FORTRAN-80 Compiler Preparing Programs RMX/80

asmb0 :fz:config.asm
‘ 1515-11 6080/8G85 MACRO ASSEMELER, V2.0 CUNF1G PAGE 1

LOC GBJ SEG SOQURCE STATEMENT

$MACHROFILE
$NCGEN

NAME CUNFIG
X IR R R R R R R R R X R R R R E R RS R RS R R RRE RS X RSN NREREZRERZRRENEEZEEREREZSENNN R)
This configuration module describes the hardware environment to
RMX/80. 1The environment assumed includes two disk drives, F0O and
F1, on one controller CNO using interrupt level 2 on an iSbBC 80/20
Also included is a terminal driven by the full terminal handler.

The software environment assumed includes the Fortran-80 Run-time
for RMX/80 Systems which used the FQOLUK exchange., 1Two user

tasks are also specified, which use three exchanges.,

R R R R X R R X R R R R SRR R R R XS R R R R EERE R R R R XX RS RS R R RN SR REEXEXEEEEEERX]

CSEG

L
*
’
L
¥
.
L}
.
’
’
’
1

INCLUDE MACROS

we we e

- b ah —d s b b
CNOWMEWNOWOVWOONOWMEWN =

$nolise
394 $list
395 ;
396 ;
0000 397 NTASK SET 0
0000 398 NEXCH SET 0
0000 399 NDEV SET 0
0000 400 NCCNT SET 0
401 ;
40z ;
403 ;
404
qos ;IQIIiil.IlililiiiiliiiiiiiiilIiiiilliilliiiilliiiliiiiliiiiiliiiliii
406 ; Static task descriptors:
407 ;
408 STD RGTHDO1,36,192,RQOUTX ; terminal handler
0000 52515448 501+ Db "RQTHDI'
0004 4449 +
0006 0000 E 512+ D KCTHDI
0006 0000 b 513+ D 770001
000A 2400 514+ Dw 36
000C 70 515+ DB 112
000D 0000 E 516+ D RCOUTX+0
000F 1806 D 517+ Dh TDEASE+TDAREA ;¥888% CHANGED FROM RMX V1.3
0001 518+NTASK SET NTASK+1
0014 519+TDAKEA SET +20+TDAREA ;##88 CHANGED FROM RMX V1,3
520 ;
521 STD RQPDSK, 48,129 ,RQDSKX ; disk input/output services
. 522+ EXTRN RQPDSK
523+ CSEG
528+ DSEG
0030 529+7?70002: DS 48
530+ CSEG
0011 52515044 614+ DB 'RQGPLSK"
0015 534B +

6-23

Preparing Programs RMX/80

ISIs~11 B080/6085 MACKG ASSEMBLLER, VZ.0

LocC

0017
0019
001B
001D
001E
0020
0002
0028

0030

0033
0037
003¢%
0035b
003D
003F
0040
o042
000u
0050

0040

oouy
oous
0044
004C
004E
0050
0051
0053
0005

6-24

ObJ

0000
2400
3000
81

0000
2C06

52515044
us4C
0000
5400
4000

8C

0000
4006

52515044
4952
0000
9400
3000

87

0000
5406

52515052
4E4D
0000
C400
4000

91

0000
6806

SEG

625+
626+
627+
626+
629+
630+
631+NTASK
632+TDAKEA
633
634+
635+
640+
641+770003:
6lU2+
726+

+
737+
736+
739+
T40+
T4+
T42+
TU3I+NTASK
T4U+TDAREA
745
TUb+
T4T+
752+
753+2720004:
754+
638+

+
849G+
8§50+
851+
852+
853+
854+
855+NTASK
856+ TDAREA
857
858+
859+
E64+
865+220005:
866+
950+

+
961+
96c+
963+
964«
965+
966+
96T+NTASK

CONFIG

SOURCE STATEMENT

SET

RCPDSK

770002

48

129

RQDSKX+0
TDBASE+TDAREA
NTASK+1
+20+TDAREA

RQPDEL,64,140,RQGDELX H

RQPDEL

64
'RQPDEL’

KQPDEL

720003

64

140

RQGDELX+0
TDBASE+TDAREA
NTASK+1
+20+TDAREA

RGPDIR, 48,135,RQDIRX ;

RQPDIR

48
'RQPDIR’

KQPDIR

220004

48

135

RGDIRX+0
TDBASE+TDAREA
NTASK+1
+20+TDAREA

RGPRNK,64,145, RQRNMX H

KGPHNM

64
"RQPRNM'

RCGPRNM

220005

64

145

RQRNMX+0
TDBASE+TDAREA
NTASK+1

FORTRAN-80 Compiler

PAGE 2

;8888 CHANGED FROM RMX V1.3

;#88® CHANGED FROM RMX V1.3
file delete service

;#8088 CHANGED FROM RMX V1.3

;#%88% CHANGED FROM KMX V1,3
disk directory service

;#9888 CHANGED FROM RMX V1.3

;#8088 CHANGED FROM RMX V1,3
file rename service

;#8808 CHANGED FROM RMX V1.3

FORTRAN-80 Compiler Preparing Programs RMX/80

‘ ISIS-11 6060/8085 MACRO ASSEMBLER, V2.0 CONFI1G PAGE 3
LOC OBJ SEQ SOURCE STATEMENT
0064 966+TDAREA SET +20+TDAREA ;#&88% CHANGED FROM RMX V1.3
969 EXTRN RQHD ; controller for disks
970 CONSTD CNTRL1,R(HD1,80,CNOSTK,33,CNOX
0055 U43UESU52 1062+ DE *CNTRL1®
0059 4C31 +
005B 0000 E 1073+ Dw RQHD1
005D 0000 E 1074+ DW CNOSTK
005F 5000 1075+ Dw 80
0061 21 1076+ DE 33
® 0062 DCO6 D 1077+ Dw CNOX+0
0064 7CO06 D 1078+ Dw TDBEASE+TDAREA ;#%%8% CHANGED FROM RMX V1.3
1083 ;
1064 STD ITIMER,300,100,TICKER, 18 ; interval timer user task
1085+ EXTRN ITIMER
1086+ CSEG
1091+ DSEG
012cC 1092+270006: DS 300
1093+ CSEG
. 0066 495449LD 1177+ DB "ITIMER®
006A 4552 +
006C 0000 E 1188+ Dw ITIMER
006E 0401 D 1189+ DW 720006
0070 2€C01 1190+ Dw 300
0072 64 1191+ Db 100
0073 0000 E 1192+ DW TICKEK+0
0075 9006 D 1193+ Dw TDRASE+TDAKEA ;#8888 CHANGED FROM RMX V1.3
0007 1194 +NTASK SET NTASK+1
009E 1195+TDAREA SET 18+20+TDAKEA ;#888% CHANGED FROM KMX V1.3
1196 STD TESTER,1000,200,,16 : user main taask
1197+ EXTHN TESTER
1198+ CSEG
1203+ DSEG
03E8 1204+7270007: DS 1000
. 1205+ CSEG
Q00TT 54455354 126G+ DB *TESTER®
007TE 4552 +
007D 0000 E 1300+ Dw TESTER
007F 3002 D 1301+ Dw 220007
0081 E803 1302+ Dw 1000
0083 C8 1303+ DB 200
00b4 0000 1304+ D +0
0086 B606 D 1305+ Dw TDBASE+TDAREA ;#&4%8 CHANGED FROM RMX V1.3
0008 1306+ NTASK SET NTASK+1
00CH 1307+TDAREA SET 18420+TDAREA ;@888 CHANGED FROM RMX V1.3
1308 GENTD
1309+ DSEG
ooCcy 1310+TDEASE: DS TDAREA ;#8888 CHANGED FROM RMX V1.3
. 13114 CSEG
1312 ;
1313 ;!I|.I.I.I..II..lll.lIlllI..i.|II..'.II....I....I...I..ll....l...li.l
1314 ; Exchanges for disk contrcller and interrupts
1315 ;
1310 XCH CNOX
1317+ DSEG
1316+ PUBLIC CNOX

6-25

Preparing Programs RMX/80

151S-11 6060/80b65 MACKO ASSEMBLEK, V2.0

Loc

0004

0004
0005

06E6
06ED
06LE6
06L6

0004A

008b
0001

006A
0002

008¢C
0003

008E
0004

00390
0005

0092
0006

6-26

ObJd

0000

0000

0000

0000

0000

0000

cooce

SEG

1319+CNOX:
1320

1321+
1322+
1323+

1324 +KQL2EX:

1325+

1326

1327 HQL3EX
1326 RQLYEX
1329 RGLSEX
1330 RQLOEX
1331

DS
INTXCH
XCh
DSEG

EQU

i
1332 ; Exchange for

1333
1334+
1335+

13364+FCOLOK:

1337 3

XCh

DSEG

PUELI1C
s

SOURCE STATLMENT

10
RQLZEX

RUL2EX

RQGLZEX
10
5

HQL3EX ,KQLYEX,RQGLSEX,RQLOEX

RQLZEX
KQL2EX
KQL2EX
RQL2EX

Fortran
FQOLOK
FGOLOK

10

CONFIG PAGE

i/0 system:

FORTRAN-80 Compiler

1338 AR s R R R R RN A X R R R R N R N R R R R N XX R X R SR RS XN X X X XXX XXX}
1339 ; Initial exchange table:

1340

13414
1342+
134441ET:
13406+
134T+ NEXCH
1348

1349+
1350+
1354+
1355+NEXCH
1356

1357+
1358+
1362+
1363+NEXCH
1364

1365+
1366+
1370+

1379+NEXCH
1380 ;
1361

13682+
1363+
1387+
1388+NEXCH
1389

1390+

XChADR
EXThN
CSEG

Cw
SET
XChADR
EXTEN
CSEG
DW

SET
XCHADR
EXThN
CSEG
Dw

SET
XCHADR
EXTRN
CSEG
Dw

SET
XCHADR
EXTEN
CSEG
Dw

SET

XCHADR
EXTHKN
CSEG
Dw

SET
XCHADK
EXTRN

RGINPX
RQINPX

KRQINPX
NEXCH+1
RQOUTX
RQOUTX

RQOUTX
NEXCH+1
RUWAKE
RQWAKE

RUWAKE
NEXCH+1
RQDBUG
RQDBUG

RQDBUG
NEXCH+1
RQALRM
RUALRM

KHQGALRM
NEXCH+1

RQDSKX
RQDSKX

RUDSKX
NEXCH+1
RCDELX
RGDELX

FORTRAN-80 Compiler

ISIS-11 8060/8065 MACKO ASSEMBLER, 42.0

Loc

0094
0007

0096
0006

00986
0009

0094
000A

009C
000E

009E
000C

0040
000D

00A2

000E

O0Ak
000F

00Ab
0010

00Ab
0011

OkJ

0000

0000

0000

E606

0000

0000

DCO6

F506

0000

0000

0000

[

SEG

1391+
1395+
1396+NEXCH
1397

1398+
1399+
1403+
1404+ NEXCH
1405

1406+
1407+
1411+
1412+NEXCH
1413 ;
1414

1416+
14204+NEXCH
1421

1422+
1423+
1427+
1426+ NEXCH
1429

1430+
1431+
1435+
1436+ NEXCH
1437 ;
1438

1443+

1444 +NEXCH
1445 ;
14406

1451+
14524 NEXCH
1453 ;
1454

1455+
1456+
1460+
1461+ NEXCH
1462

1463+
1464+
1466+
1469+ NEXCH
1470

1471+
1472+
1476+
1477+NEXCH
1478 ;

SOURCE STATEMENT

CSEG
DW

SET
XCHADR
EXTEN
CSEG
Dw

SET
XCHADR
EXTRN
CSEG
Dw

SET

PUBXCH
D

SET
XCHADR
EXTKN
CSEG
Dw

SET
XCHADR
EXTKN
CSEG
Dw

SET

PUBXCH
Dw
SET

PUBXCH
Dw
SET

XCHADR
EXTRN
CSEG
D

SET
XCHADR
EXTRN
CSEG
Dw

SET
XCHADR
EXTHKN
CSEG
Dw

SET

KQDELX
NEXCH+1
RQDIRX
RQDIRX

RQDIRX
NEXCH+1
RGRENMX
RGRNMX

RQRNMX
NEXChL+1

RQLzEX
RQL2EX
NEXCH+1

RQLGEX

RUL6EX

RQLGEX
NEXCH+1
RQLTEX
RQLTEX

RGLTEX
NEXCH+1

CNOX
CNOX
NEXCH+1

FGOLOK
FQOLOK
NEXCh+1

TICKER
TICKER

TICKER
NEXCH+1
TCNTRL
TCNTRL

TCNTRL
NEXCH+1
TRSLTS
TRSLTS

TRSLTS
NEXCH+1

CONFIG

PAGE

5

Preparing Programs RMX/80

1“79 AR X R X R R R R R R ERREREEENZERENSERRR]

1480 ; Create table:

1461

CRTAB

6-27

Preparing Programs RMX/80 FORTRAN-80 Compiler

IS1S-11 b080/5085 MACRO ASSEMBLEK, V2.0 CONFIG PAGE 6
LOC ObJ SEQ SOURCE STATEMENT
1482+ CSEG
1483+ PUBLIC KQCRTH
1484 +RQCRTE:
00AA 0000 C 1465+ DW ITT
00AC 08 148664+ Db NTASK
00AD 8800 C 1467+ Dhw IET .
00AF 11 14884+ DB NEXCH
1489 ;
1]‘90 ;lIIl.II.Il..........I..IIIQQII.IIIIIIIIIIIIIIIIIII.IIII.I!III..IIIII
1491 ; Device configuration table: [4
1492
1493 LCT F0,0,0,0 s unit 0, 1iSkC-201, controller 0
1497+ CSEG
1498+ PUBLIC RQDCT
1499+KGDCT:
00LO U6 1530+ DB Ch1,CH2,0,0,0
00B1 30 +
00b2 00 +
0083 00 +
00b4 00 +
1534 DCT F1,0,0,1 i unit 1, ...
00E5 46 1571+ Db CH1,Ch2,0,0,1
00B6 31 +
0067 00 +
00B6 00 +
00Eg 01 +
1575 ;
1576 ;II.IIlI.IIIIIIIIIIIIIIIIIIIIIIIIIIIIII.IIIIIIII.IIIII.IIIIIIIIIII.II
1577 ; Controller specification table:
1578 ;
1579 CST 0,78H,2,KQL2EX,CNOX
1583+ PUBLIC RQNDEV
00BA 02 1584+ RGNDEV: DB NDEV
1585+ PUBLIC RGCST
1586+RQCST:
00BB 00 . 1590+ DB 0,78H,2
00LC 78 +
OOBD 02 +
OOBE E606 D 1591+ Dh HQCL2EX,CNOX
00CO0 DCO6 D +
1595 ;
1596 ;IIIIII.IIIIIIIIII.IIIIIIII.'.IIIIIIIIII.IIIIIIII.I.IIIIII.IIIIIIIIIII
1597 ; Bbuffer allocation block:
1598 ;
1599 BAB 8,BUFPOL
1600+ CSEG
1611+ PUBL1C RQBAE
00C2 0000 1612+RQBAB: D 0,0
00C4 0000 +
00C6 08 1613+ DB 8
1614« EXTRN BUFPOL
00C7 0000 E 1615+ DWw BUFPOL
1619 ;
1620 ;.I..IiI!.IIIIIIIIIIIIIIIIIIII!II'..IIIIIIIIDIII!IIIIIIIIIII.IIIIII...I.
1621 ; Public data

6-28

FORTRAN-80 Compiler

IS1S-11 8060/65085 MACRO ASSEMBLER, V2.0
LoC o0OBJ SEQ SOURCE STATEMENT
1622 ;
1623 PUBLIC RQRATE
00C9 1C00 1624 RQRATE: DW 28

1625 ;

1626 END
PUBLIC SYMBOLS
CNOX D 06DC FQOLOK D 06F5 RQbBAB C 00C2
RQLZEX D O06E® RQL3EX D O6E6 RQLYUEX D O6EG
EXTEKNAL SYMBOLS
burpPOL E 0000 CNOSTK E 0000 ITIMER E 0000
RGDSKX E 0000 RGHD1 E 0000 RQ1NPX E 0000
RGPDIKR E 0000 RQPDSK & 0000 KQPRNM E 0000
TESTER £ 0000 TICKEK E 0000 TRSLTS E 0000
USER SYMBOLS
ADDCHR + 00O0OC BAb + 0000 BUFPOL E 0000
CONSTD + 0012 CRTAB + 0006 CST + 000D
GENDRC + 001D GENTD + 0007 IET C 0088
NCONT A 0001 NDEV A 0002 NEXCH A 0011
RQCRTB C 00AA RQCST € 00bB RCDBUG E 0000
kKQGHD1 E 0000 RCINPX E 0000 RQLOEX D O06E®6
RQLGEX E 0000 RQLTEX & 0000 RCNDEV C 00BA
RQPENM E 0000 RQKATE C 00C9 RQRNMX E 0000
TDAREA A 00CH TDBASE D 0618 TESTER E 0000
ASSEMBLY COMPLETE, NO ERRORS

CONFIG

; 2400 ba

RCCRTE
RGLSEX

RQALRM
RQLEEX
KQRNMX

Chi
CTR
INTXCH
NTASK
RGDCT
RQL2EX
RQOULTX
RQTHDI
TICKER

PAGE T

ud

IeRo B R-Nel J N N J

terminal

00AA
06E6

0000
0000
0000

0046
0002
0009
0008
00BO
06E6
0000
0000
0000

RQCST
RCNDEYV

RQDBUG
RQLTEX
RCTHDI

Chz

DCT

ITIMER
PUBXCH
RQDELX
RQL3IEX
RQPDEL
RQWAKE
TRSLTS

c

E

MmO m+e M+ >

00BB
00BA

0000
0000
0000

0031
0010
00dQ0
000A
0000
06E6
0000
0000
0000

Preparing Programs RMX/80

RGDCT
RQRATE

RQDELX
RQOUTX
RQWAKE

CNOSTK
DRCH
ITT
RQALRM
RCDIRX
RQLAEX
RQPDIR
STD
XCH

c

00B0
00CS

0000
0000
0000

0000
001¢C
0000
0000
0000
06E6
0000
0000
0000

RQLOEX

RQDIRX
RQPDEL
TCNTRL

ChNOX
FQOLOK
LITCHA
RQBAB
RGDSKX
RQLSEX
RQPDSK
TCNTRL
XCHADR

E

+ MmO O+ OO

06ES

0000
0000
0000

06DC
06F5
0008
00C2
0000
06E6
0000
0000
0000

6-29

Preparing Programs RMX/80 FORTRAN-80 Compiler

asm80 :f2:cammod.asm

ISIS-11 8080/8085 MACRO ASSEMBLER, V2.0 CAMMGD PAGE 1
LOC ObJ SEQ SGURCE STATEMENT
1 NAME CAMMOD
2 ;l!l..llIl.lI!.lll!..l..l.lIll.l..ll.l.l.l!ll......l.lllll.l!lll.l.l.
3 ; This assembly language module describes a data area which must be in .
4 ; controller accessible memory., That 1is, the data segment of this
5 ; module must be located for off-board memory.
6 ;l.l..!.I.II.D.IIII!lll.llll.i.l.IIIIIIIII............'I.......ll..!.
7 DSEG Py
8 PUBLIC CNOSTK,RQDEUF,BUFPOL
9
0050 10 CNOSTK: DS 80 ; stack for controller task
11 ;
02EC 12 RQGDBUF: DS 700 ; buffer for DIRSVC directory services
13
0CcH0 14 BUFPOL: DS 3200 : butfers for up to 8 open files
15 ’
16 END
PUELIC SYMBOLS
bUFPOL D 030C CNOSTK D 0000 KQDEBUF D 0050
EXTERNAL SYMBOLS
USER SYMEOLS
BUFPOL D 030C CNOSTK D 0000 RQDBUF D 0050

ASSEMBLY COMPLETE, NO ERRORS

6-30

FORTRAN-80 Compiler

$MACKRCGF1LE
$NOGEN

NAME CONFIG
AR R L R R R R R Ry Ny Y
3 This configuration module describes the hardware environment to
; EMX/60. The environmen*® assumed includes two disk drives, FO and
s F1, on one controller CNO using interrupt level 2 on an 1iSEC 80/20
3+ Also included is a terminal driven by %he full terminal handler.
*
*
?
L
1

The software environment assumed includes the Fortran-b0 Run-%ime
for RMX/60 Systems which usea *the F(OLOK exchange. Two user
tasks are also specified, which use three exchanges,
IR RS R R RN R ER R R R R R R R R X R R R R R ENE R R R R R RXEEEEEREESREEREREEERNREREERE X J
CSEG
H
H

INCLUDE MACRGS

1]

§nolise
$1INCLUDE(:F1:STL.MAC)
$INCLUDE(:F1:XCHADK.MAC)
$INCLUDE(:F1:CHTAB.MNAC)
$INCLUDE(:F1:GENTD.NAC)
$INCLUDE(:F1:KNXACh.MAC)
$INCLUDE(:F1:DFSCFG.MAC)
$list

L

NTASK SET
NEXCH SET
WDEV SET
NCONT SET

[=NoNoNe)

H

;IiilOIIIIIIIIillllilili.IIIIIIIIIlIIIIIIIIIIIIIIilIIIIIQQIIIIIIIIIII
; Static task descriptors:
H

ST RGTHDI, 36,112, RGOULTX
terminal handler
’

STD RGPDSK,H48,129 ,RGDSKA
disk input/output services

STD RUPDEL,64,140,hC(DELX
3 f'ile delete service

STD KGPD1R, 48,135, HQUIKX
;3 disk directory service

STD RUPANM 64,145, KQRNMX

; file rename service
EXTRN RGHD1
; controller for disks
CONSTD CNTRL1,hCHD1,80,CNOSTK,33,CNOX

STD ITIMER,300,100,TICKER, 18
interval timer user t%task

STy TESTEK,1000,200,,18
user main task

GENTD

[A A R R R R R R E R R R R R R R R R R R R R R R AR R R R X R R R X RN AR R R R R ZE RN EREE XXX
Exchanges for disk controller and interrupts

.. ws ws we

XCH CNOX
INTACH RGL2ZEX
PUBL1C RQL3bx, AQLEEX, KQL5EX , KGLOEX

KQL3EX EQU RQLZEX
RQL4EX EQU HQLZeX
KQLSEX EQU RGLZEX
KQGLOEX EQU RGL2EX

H
s Exchange tor Fortran i/0 system:
ACH FQOLOK

Preparing Programs RMX/80

6-31

Preparing Programs RMX/80 FORTRAN-80 Compiler

; Initial exchange table:
XCHADR RQ1INPX
XCHADR RGOGUTX
XCHADR HQWAKE
XCHADK RQULBUG
XCHADK RQALERM

;|||.II|.iIIII|IIllllllli.llllli.illlIlIllllllliIIII.IIIIHII!IIIIIII. .

XCHALKR RQDSKX
XCHADR RQDELX
XChADR RQDIARX .
XCHADR RQENMX

PUBXCh RQL2EX

XChADK RQL6GEX *®
XCHADR RQLTEX

PUBXCH CNOX

PUBXCH FQOLOK

XCHADKk TICKEh
XCHADR TCNTRL
XCHADK TRSLTS

[EX 2 X RS R RS R R R R SRR R R ES YRR ESRESRESRSRES RIS R RASE SRR 84

Create table:
CRTAB

e e we

([E X R R R R X S R X R EE R XS R E X R F X R E F X X S XX EX X SR E SR X EEEEZEEEXEEXEEXEREERE NI
Device configuration table:

e ws ws we

bCT ¥0,0,0,0 ; unit 0, 1iSEC-201, controller 0O
DCT F1,0,0,1 ; unit 1

.. we

R X2 R E R R R R E R R E RS XXX XXX X R XSRS EES R RIS RS RS SRR RN Z SRS SRS RS SRERR R
Controller specification table:

“s weo

CST 0,78H,2,RQL2EX,CNOX

[X X R R R R N R R E R R R R Y N SR R F X X N SR X RS R R R RS SRR RS RS RS RE X}
Euffer allocation block:

s wo wms s

BAE 8,BUFPOL

[Z X RS R R A R R Y R Y F Y R X R R R Y R E R R R Y F R X R RN F R R X SRS RS ERTNERREEXERRY]
Public data

s wa e we

PUBLIC RGRATE
RGRATE: Dw 28 ; 2400 baud terminal

END

6-32

FORTRAN-80 Compiler

NAME CAMMGD

A R R N I A L I I N N R N N R N R N R RN R Y]
This assembly language wmodule describes a data area which must be in

module must be located for off-board memory.
(X Y R R R N R R R R R RN R R R R R R R N R R R N N N RN N RS N R R ISR Y)

H
H
; controller accessible memory. That is, the data segmen® of this
H
H

'
CNOSTK:
i
RGDbBUF :

1
bUFPOL:

DSEG

PUELIC CNOSTK,RG(DEUF,bUFPOL

LS 80 ; stack for controller task

DS 700 ; buffer for DIKSVC directory services
DS 3200 ; buffers for up %o 8 open files

END

Preparing Programs RMX/80

6-33

Preparing Programs RMX/80 FORTRAN-80 Compiler

;LLTest(source_drive, RMX_library_drive, Fortran_library_drive) ‘

Locate :%0:CAMMod.Obj to :%0:CAMMod.Abs Data(OF000h) Publics Map StackSize(0)

Link :%1:RMX820.Lib(Start), :%$0:CAMMod.Abs, :%$0:Config.0Obj,&
:$0:Tester.0bj, :%0:TestT.Obj, :%0:ITimer.Obj, :%0:ToSecs.Obj,&
:%$2:F80Run.Lib, :%2:FBORMX.Lib, :%2:FPEF.Lib, :%2:FPSftx.Lib,&
:%$1:THiB20,.Lib, :%1:THo820.Lib,&
:$1:DFSDir.Lib{(Directory,Seek,Delete,Rename), :%$1:Dio820.Lib, :%1:DFSUnr.Lib,&
:%$1:RMX820.Lib, :%1:Unrslv.Lib, :%2:PLM80.Lib &
to :%$0:Tester.Rel

Locate :%0:Tester.Rel to :%0:Tester Print(:%0:Tester.Map) Map Symbols RestartOé& L4
Code(1000h) StackSize(0)

Delete :%0:Tester.Rel

6-34

CHAPTER 7
PREPARING PROGRAMS TO RUN
WITHOUT ISIS-Il OR RMX/80

For some applications, you may wish to run FORTRAN programs in a strictly hard-
ware (iSBC or custom-wired) environment, without either ISIS-II or RMX/80. In
this type of run-time environment, there are two parts of your programming task
that will differ from programming for other environments: initialization and in-
put/output. This chapter will provide the information you need on these topics, and
also the libraries required in the LINK command for this environment.

Initialization

Under ISIS-IT or RMX/80, the operating system performs all the required initializa-
tion of hardware features and devices such as interrupts and timers. In a stand-alone
iSBC or custom-wired system, user-supplied code must perform this initialization.
Some of this may have to be done in assembly language and/or PL/M, since FOR-
TRAN does not have the capability to communicate this directly with hardware.

Input and Output

ISIS-II and RMX/80 both provide considerable I/0-handling software facilities. In
the absence of these facilities, there are several ways you can perform 1/0. One is to
use port 1/0 exclusively; this entails doing your own buffering and formatting, but
it may be practical in cases where the data to be handled is relatively simple in form.

A second method, one which allows you to gain some of the advantages of format-
ted I/0, is to use internal files, which are discussed in Chapter 6 of the
FORTRAN-80 Programming Manual. However, a formatted READ to or WRITE
from an internal file merely formats the data; port 1/0, or a separate PL/M pro-
cedure or assembly language subroutine, must be used to perform the actual data
transfer from or to an external device, making every 1/0 operation a two-step pro-
cess.

A third method is to write your own I/0 drivers to provide the basic low-level I/0
functions—those which are most environment-specific. The standard library
routines that provide these capabilities represent only a small part of the I/0 system
software; by writing your own drivers to replace them and interfacing these with the
rest of the I/0 software, you can take advantage of the bulk of the I/0 system. This
method allows you to then code formatted [/O statements to transfer data directly
to and from external files.

In order to write your own I/0 drivers, you need to know how these drivers com-
municate with the rest of the I/0 system. This information is provided in the follow-
ing paragraphs. In this discussion, the term ‘‘the I/0O system’” is used to refer to the
bulk of the FORTRAN 1/0 routines, with which your drivers are to interface.

FORTRAN I/0 involves more than transferring blocks of data between memory
and an external device. The bulk of FORTRAN 1/0 processing concerns such ac-
tions as scanning format strings, converting the internal binary representation of
numbers to strings of digits and vice versa, and keeping track of the file referenced
in the program. The actual transfer of data between memory and external devices is
actually a small part of I/0 processing.

7-1

Preparing Programs without ISIS-1I or RMX/80

7-2

The procedures which actually transfer data and communicate with the external
devices in other ways (e.g., SEEKing on a diskette file, OPENing a new file) are call-
ed drivers. The FORTRAN 1/0 system assumes that each file has eight basic ac-
tions, or capabilities, that can be performed on it. The mnemonics for these
capabilities are OPEN, CLOSE, READ, WRITE, FBACKI, REWIND, MV2REC,
and MAKEOF. The OPEN, CLOSE, READ, WRITE, and REWIND capabilities
perform the operations required by the FORTRAN statements of the same names.
FBACKI backspaces a sequential-access file one byte. MV2REC positions a direct-
access file immediately before the specified relative record in preparation for a
READ or WRITE operation. MAKEOF marks the current position as being the end
of the file, deleting any part of the file beyond that point. A detailed discussion of
each of these capabilities is included later in this chapter.

Associated with each open file is a set of eight routines, one for each of the eight
capabilities. These associated routines are supplied dynamically (i.e., under program
control) at run time. Both F80ISS.LIB and FSORMX_.LIB include drivers that will be
associated with each file by default. These drivers are part of their respective
libraries. However, it is also possible for the user to supply custom-written drivers
that will be used in place of the library-supplied drivers. Such special drivers can be
supplied for just one particular file or for a number of different files.

Because the I/0 system requires that addresses (procedure entry points) be
manipulated as data, you will need to write these drivers in PL/M or assembly
language rather than in FORTRAN.

Providing I/0 Capabilities for Files

If you wish the FORTRAN I/0 system to use special drivers for some or all of your
files, you must:

* write a routine called FQOLVL that recognizes each filename for which you are
supplying drivers and gives the entry points of its drivers; and

* write the drivers themselves.
The following sections supply the information you need to do both these steps.

FQOLVL Procedure

When a unit/file connection is first established by the OPEN statement, the
memory record that represents that connection is initialized with the starting ad-
dress for those routines that implement the eight basic I/O capabilities for that
file. In doing this, the I/0 system calls the routine named FQOLVL:

PL/M-80 ASM80
FQOLVL: CSEG
PROCEDURE(FILENAMESPTR,BUFFERSPTR) PUBLIC FQoLVL
BYTE PUBLIC; FQOLVL: ;FILENAME ADDR
DECLARE(FILENAMESPTR,BUFFERSPTR) /IS IN BC REGS
ADDRESS; ;BUFFER ADDR S
;IN DE REGS
END; END;

FILENAMESPTR and BUFFER$PTR are both address values. FQOLVL returns
a byte value. FILENAMES$PTR is the starting address of the name of a file. This
file name must be a string of 1 to 15 ASCII characters, the last character being a

FORTRAN-80 Compiler

FORTRAN-80 Compiler Preparing Programs without ISIS-II or RMX/80

‘0%’ symbol that serves as a delimiter. BUFFERSPTR is the starting address of a
16-byte buffer that is to become defined with the starting addresses of the routines
implementing the eight basic 1/O capabilities for this file. If you wish to supply
1/0 drivers for some or all of your files, you can do so by linking in an FQOLVL
procedure that examines the file name and determines whether this file is one for
which you are supplying drivers. If you do wish to supply the drivers for a given
file, your FQOLVL must do the following upon recognizing the filename:

* Copy the starting addresses of the procedures supplying the eight 1/0
capabilities into the buffer pointed to by BUFFERS$PTR. The addresses must be
stored in this order: OPEN, CLOSE, READ, WRITE, FBACK1, MV2REC,
REWIND, and MAKEOF.

* Return the value 255 to indicate that the drivers have been supplied for this file.

If you do not wish to supply the drivers for this file, FQOLVL should return the
value 0. In this case the system will use the default drivers which are supplied as
part of the I/0 library.

If you do not specifically link in an FQOLVL procedure, a default version will be
linked in from the I/0 library. This default version does nothing but return 0. This
causes the default drivers to be used for every file.

I/0 Drivers

The user-supplied drivers for the capabilities OPEN, CLOSE, READ, WRITE,
FBACKI, MV2REC, REWIND, and MAKEOF must be defined with the calling
sequence conventions that are presumed by the I/0 system. The calling sequences
and general functional descriptions for these operations are given below.

The parameter list, in order, for the OPEN capability is:
(STATUSSPTR,OWNS$PTR,FILENAMESPTR,MODE,EXISTS)

STATUSSPTR is the address of a two-byte variable in which the status of the
operation is to be returned upon completion. Allowed status values will be explain-
ed later. OWNSPTR is the starting address of an 8-byte block of memory that will
always be associated with this file. The address of this block of memory will always
be passed to any driver, either default or user-supplied. These memory locations
are not manipulated by the 170 system; they are totally devoted to the routines
which implement the 1/0 capabilities for this file. As an example of how this block
of memory may be used, in F80ISS.LIB two bytes of this area are used to hold the
ISIS-II active file number (AFTN). In FSORMX.LIB, two bytes of this area are us-
ed to hold the address of the appropriate exchange for a diskette file.
FILENAMESPTR is the starting address of the name of the file to be opened. This
name must be a string of from 2 to 15 characters, the last of which must be a ‘%’
delimiter. MODE is a single- byte value of 1, 2, or 3, indicating that the file is to be
opened in READ only mode, WRITE only mode, or UPDATE mode, respective-
ly.

EXISTS is a byte with a value of 0, 1, or 2, indicating respectively whether a file
with this name may not already exist, that it must already exist, or that it does not
matter. The OPEN driver should initialize a file so that subsequent I/O operations
can access the file. The OPEN operation can return a status value of 0, 1, or 2. 0
means that the operation was successful; 1 means that the OPEN was unsuccessful
because the EXISTS parameter could not be accommodated—e.g., EXISTS was 0
but there was already a file with this name. A status of 2 means that the EXISTS
parameter could be accommodated, but that the OPEN was still unsuccessful.

7-3

Preparing Programs without ISIS-II or RMX/80

7-4

The CLOSE capability has the following parameter list:
(STATUS$PTR,OWNS$PTR,DELETE)

The STATUSSPTR and OWNSPTR values are the same as for the OPEN capa-
bility. DELETE is a byte value which is 255 if the file should be deleted after being
closed, and 0 otherwise. The CLOSE driver should undo the initialization actions
performed by the OPEN driver, so that [/O operations can no longer access the
file. The status value returned is O if the operation finished correctly and non-zero
otherwise.

The READ capability has the following parameter list:
(STATUS$PTR,OWNSPTR, TARGET,LEN)

STATUSSPTR and OWNSPTR are the same as for the OPEN capability.
TARGET and LEN are address values. TARGET specifies the starting address of
a buffer which is LEN bytes long. The READ operation should transfer the next
LEN bytes from the file to the buffers. The possible values for the returned status
are 0 if the operation finished correctly, —1 if an end-of-file was encountered, and
some other value otherwise.

The parameter list for the WRITE capability is as follows:
(STATUSS$PTR,OWNS$PTR ,SOURCE,LEN)

STATUSSPTR and OWNSPTR are the same as for the OPEN capability.
SOURCE and LEN are address values. SOURCE is the starting address of a buffer
which is LEN bytes long. The WRITE driver should transfer these LEN bytes to
the file. A returned status of 0 indicates that the WRITE operation was successful;
a non-zero status indicates an error.

FBACKI1 has the following parameter list:
(STATUSS$PTR,OWNSPTR)

STATUSSPTR and OWNSPTR are the same as for the OPEN capability. This
capability must position the file backwards one byte. A returned status of 0 in-
dicates that the operation was successful, a status of —1 indicates that the file was
already positioned at the front, and any other non-zero status indicates an error.
This capability is used only for backspacing a file.

MYV2REC has this parameter list:
(STATUSSPTR,OWNSPTR,RELSREC,RECSLEN)

STATUSSPTR and OWNSPTR are the same as for the OPEN capability.
RELSREC and REC$LEN are address values. The file is assumed to be divided in-
to equal-length records, each having the length given in the value addressed by
RECSLEN. The MV2REC driver must position the file immediately before the
relative record addressed by REL$REC, where the beginning of the file is relative
record 0. The returned status value is 0 for a successful operation and non-zero
otherwise. MV2REC is used only for direct-access READ or WRITE operations
on a file.

FORTRAN-80 Compiler

FORTRAN-80 Compiler Preparing Programs without ISIS-II or RMX/80

. The parameter list for REWIND is as follows:
(STATUS$PTR,OWNSPTR)

STATUSSPTR and OWNSPTR are the same as for the OPEN capability. This
capability must cause the file to be positioned at its beginning. The returned status
is 0 for a successful operation and non-zero otherwise. REWIND is used only for
implementing a FORTRAN REWIND statement.

- MAKEQF has the following parameter list:
(STATUSS$PTR,OWNSPTR)

STATUSSPTR and OWNSPTR are the same as for the OPEN capability. This

operation must mark the current position as being the end of the file, with any part

of the file after that current position being deleted. The returned status value is 0
. for a successful operation and non-zero otherwise.

If you are certain that some capability will never be used for a particular file—e.g.,
REWIND for a line printer—then you need not supply the corresponding starting
address to the I/O system; i.e., that position in the list of starting addresses need
not be defined. However, the results may be disastrous if that capability is in-
advertently referenced for this file. A better alternative is to supply a null routine,

or a routine which signals an error, as the driver for such a (supposedly) unused
capability.

The following sample FQOLVL procedure and set of ‘‘stub’’ drivers, written in
PL/M, shows how you might implement custom [/O drivers for a direct-access
diskette file called D1. Note that since backspacing, rewinding, and end-of-fiie
capabilities apply only to sequential-access files, no drivers are needed for
FBACKI, REWIND, or MAKEOF. As a safeguard against errors, we have includ-
ed dummy drivers for these capabilities; these ‘‘drivers’’ print an error message
and then return.

FQOLVL: PROCEDURE(FILENAMESPTR,BUFFER$PTR) BYTE PUBLIC;
DECLARE(FILENAMESPTR,BUFFERSPTR) ADDRESS;
DECLARE(BUFFER BASED BUFFERS$PTR) (8) ADDRESS;
DECLARE(FILENAME BASED FILENAMESPTR) (15) BYTE;

IF FILENAME = ‘D1’ THEN DO;
BUFFER(0) = .OPND1;

BUFFER(1) = .CLSD1;
BUFFER(2) = .RDD1;
BUFFER(3) = .WRTDf1,
BUFFER(4) = .FBKDfT;
BUFFER(S) = .MVD1;
BUFFER(6) = .REWD1;
BUFFER(7) = .EOFDT,;
RETURN(255);

END;

[*OPERATIONS TO PROCESS OTHER FILENAMES AND
TO DETECT UNKNOWN FILENAMES GO HERE*/

END FQOLVL;

7-5

Preparing Programs without ISIS-I1I or RMX/80 FORTRAN-80 Compiler

OPND1: PROCEDURE(STATUSSPTR,OWNS$PTR,FILENAMESPTR,MODE ,EXISTS,);
DECLARE(STATUSPTR,OWNPTR,FILENAMESPTR) ADDRESS;
DECLARE(MODE,EXISTS)BYTE;

/* OPERATIONS TO OPEN FILE GO HERE */

END OPND1;

CLSD1: PROCEDURE(STATUS$PTR,OWNS$PTR,DELETE); v
DECLARE(STATUS$PTR,OWNS$PTR) ADDRESS;
DECLARE DELETE BYTE;
/* OPERATIONS TO CLOSE FILE GO HERE */ .

END CLSD1,

RDD1: PROCEDURE(STATUSSPTR,OWNS$PTR,TARGET,LEN);
DECLARE(STATUS$PTR,OWNS$PTR,TARGET,LEN) ADDRESS;
/* OPERATIONS TO READ FROM FILE GO HERE */

END RDD1;

WRTD1: PROCEDURE(STATUSPTR,OWNFTR,SOURCE,LEN);
DECLARE(STATUSSPTR,OWN$PTR SOURCE LEN) ADDRESS;
/" OPERATIONS TO WRITE TO FILE GO HERE */

END WRTDf1,

FBKD1: PROCEDURE(STATUSSPTR,OWNSPTR);
DECLARE(STATUS$PTR,OWNS$PTR) ADDRESS;
[* STATEMENTS TO PRINT ERROR MESSAGE GO HERE */

END FBKDf;

MVD1: PROCEDURE(STATUS$PTR,OWNS$PTR,RELSREC,RECSLEN);
DECLARE(STATUSSPTR,OWN$PTR,RELSREC,RECSLEN) ADDRESS;
/* OPERATIONS TO POSITION FILE BEFORE SPECIFIED RECORD GO
HERE */

END MVD1;

REWD1: PROCEDURE(STATUSSPTR,OWNS$PTRY);
DECLARE(STATUS$PTR,OWNS$PTR) ADDRESS;
[* STATEMENTS TO PRINT ERROR MESSAGE GO HERE */

END REWD1;

EOFD1: PROCEDURE(STATUSSPTR,OWNS$PTR);
DECLARE(STATUS$PTR,OWNSPTR) ADDRESS;
[* STATEMENTS TO PRINT ERROR MESSAGE GO HERE */

END EOFD1;

7-6

FORTRAN-80 Compiler Preparing Programs without ISIS-IT or RMX/80

If you do not wish to use the library supplied default file capabilities (i.e., those in
F80ISS.LIB or FSORMX.LIB) for any of your files, you can avoid linking in the
module that contains these capabilities. Since this is a sizeable module—i.e., greater
than 4K bytes—you will probably wish to do so. To avoid linking in this module,
you must code a routine called FQODLO, which must return a value of zero in the A
register, and cause it to be unconditionally linked in before F80ISS.LIB or
F8ORMX.LIB is linked. (If you include this module in the same library file with the
rest of your code, the LINK command order of libraries prescribed at the end of this
chapter will cause it to be linked in correctly.) The effect of these actions is to make
the 1/0 library (F80ISS.LIB or FSORMX.LIB) recognize only those file names for
which you have explicitly supplied device drives—i.e., no default device drivers are
recognized.

FQODLO will never be called so long as you supply I/0 drivers for all files in your
system.

Directly Callable 1/0 Drivers

The purpose of separating out the drivers from the rest of the 1/0 libraries is to
make the libraries as environment-independent as possible. There are other func-
tions of FORTRAN I/0, besides communication with user files, that depend heavily
on the run-time environment of the program. These functions include processing a
STOP statement, processing a PAUSE statement, handling fatal errors, and specify-
ing preconnections. Each of these functions is performed by a particular publicly
defined procedure. If the procedure included in the library is unsuited to the en-
vironment in which your program must run, it is a simple matter to write an
environment-specific driver which correctly performs the function of any one of
these procedures. The following paragraphs provide a more detailed explanation of
these four routines.

FQO007 is the routine for processing STOP statements. A user routine could be writ-
ten as follows:

PL/M-80 ASM80
FQ0007: GSEG

PROCEDURE(MSGS$PTR,MSGSLEN)PUBLIC; PUBLIC FQ0007

DECLARE(MSG$PTR,MSGSLEN)ADDRESS; FQ0007: ;MESSAGE ADDR
;IS IN BC REGS
;MESSAGE LENGTH
;IS INDE

END FQ0007; END

Both parameters are address values. The first parameter is a pointer to the beginning
of a character string; the second parameter is the length of that character string. This
string is the message which was in the STOP statement. Control must not return to
the user program from this routine.

7-7

Preparing Programs without ISIS-II or RMX/80 FORTRAN-80 Compiler

FQO008 is the routine for processing PAUSE statements. A user routine could be
written as follows:

PL/M-80 ASM80
FQO008: CSEG

PROCEDURE(MSGSPTR,MSGSLEN)PUBLIC; PUBLIC FQO007

DECLARE(MSGS$PTR,MSGSLEN)ADDRESS; FCI0008: ;MESSAGE ADDR IS IN BC
;REGS -
;MESSAGE LENGTH IS IN DE

. . e

END FQ0008; END

where the parameters are the same as for FQ0007. 1t is legitimate for control to
return to the user program from FQO0008.

FQOFER is the routine for handling fatal errors. A user routine could be written as

follows:
PL/M-80 ASM80
FQOFER: CSEG
PROCEDURE(ERRNUM,CALLEDFROM)PUBLIC; PUBLIC FQOFER
DECLARE(ERRNUM,CALLEDFROM)ADDRESS; ;ERRNUM IS IN BC REGS
;CALLEDFROMIS IN DE
END FQOFER; END

ERRNUM is a byte value which is the FORTRAN run-time error number (as listed
in Appendix B). CALLEDFROM is an address value which is an address near the
code for that FORTRAN 1/0 statement which is in error. Control must not return
to the calling program from FQOFER.

FQOPRC is a routine which specifies unit/file pairs which are to be preconnected. A
user routine could be written as follows:

PL/M-80 ASM80

FQOPRC: CSEG
PROCEDURE(BUFFERSPTR)PUBLIC; PUBLIC FQOPRC
DECLARE BUFFERSPTR ADDRESS; FQOFRC: ;BUFFER ADDR IS IN BC REGS
END FQOPRC; END

BUFFERS$PTR is the starting address of an eight-element array of structures. Each
structure in the array has a two-byte UNIT field and a 15-byte FILENAME fieid. *
The PL/M declaration of this structure is:

DECLARE BUFFER (8) STRUCTURE (.
UNIT ADDRESS,
FILENAME (15) BYTE);

FQOPRC should fill in those unit/filename pairs that are to be preconnected. The
first entry whose UNIT field is 65,535 indicates that this entry and all later entries
are to be ignored; i.e., they are not filled in. If there is a conflict between the precon-
nections specified (two or more different entries have identical UNIT or
FILENAME fields), then only the last of the conflicting specifications will be used.
(The *“last’’ entry is that entry with the greatest index in BUFFER.)

7-8

FORTRAN-80 Compiler Preparing Programs without ISIS-II or RMX/80

‘ LINK Command

Remember that even when you are not using ISIS-II or RMX/80 at run time, you
must first link your program segments together and locate them on an Intellec or In-
tellec Series II System using ISIS-II, which provides the LINK and LOCATE pro-
grams.

If you are running your FORTRAN programs in a non-ISIS, non-RMX environ-
ment, your ‘input-list’ to the LINK command must still include F80ISS.LIB if you
perform any FORTRAN I/0 statements (other than port 1/0), since this library
- contains I/0 routines with which your drivers must interface. For a non-ISIS, non-
RMX system, three possibilities exist:

® Your program uses FORTRAN I/0 statements on external files, and/or STOP
or PAUSE statements. In this case, you include your own drivers in the library
with the rest of your code, then link in F80ISS.LIB as the 170 library (between
F80RUN.LIB and FPEF.LIB in the LINK command).

‘ * Your program uses FORTRAN I/0 statements, but only to internal files, and
no STOP or PAUSE statements. In this case, you need supply no drivers of
your own, but should link in both FSONIO.LIB and F80ISS.LIB (F80NIO.LIB

first) between FSORUN.LIB and FPEF.LIB in the LINK command.

® Your program uses no FORTRAN I/0 statements (except port 1/0) and no
STOP or PAUSE statements. In this case, you simply link in FSONIO.LIB be-
tween FSORUN.LIB and FPEF.LIB in the LINK command.

To supply floating-point arithmetic routines, link in FPSOFT.LIB to use the soft-
ware floating-point operations, FPHARD.LIB to use the iSBC 310 interface, or
FPNULL.LIB if no floating-point operations are needed. For the order in which all
‘ libraries must be specified to the LINK command, refer to Chapter 4 or Appendix B.

Example:

-LINK :F1:FPROG.OBJ,F80RUN.LIB,F80ISS.LIB,FPEF.LIB,&
**FPSOFT.LIB,PLM80.LIB TO FPROG.LNK MAP

(Note: The double asterisks are prompts issued by the LINK command.)
This LINK command is identical to the example given in Chapter 4. For the non-
‘ ISIS, non-RMX environment, you include your own I/O driver routines in

FPROG.OBJ, and the LINK command will automatically substitute these for the
corresponding default routines in FS8OISS.LIB.

7-9

APPENDIX A
THE COMPILER AND
THE FORTRAN LANGUAGE

The language translated by the FORTRAN-80 compiler includes the ANSI FOR-
TRAN 77 subset, as defined in the FORTRAN-80 Programming Manual. In the
programming manual, several aspects of the language were said to be ‘processor
dependent’ or ‘compiler dependent.” This chapter summarizes the limitations and
extensions to the FORTRAN language assumed by the FORTRAN-80 compiler.

Compiler Limitations On Language

Most constraints imposed on the FORTRAN language are related to data lengths
and the permissible range of data values. The following indicates the range of values
possible for a given variable or array element length.

Length Value Range

INTEGER*1 ~128 to +127

INTEGER*2 —-32,768 to +32,767

INTEGER*4 —32,768 to +32,767

LOGICAL*1 .TRUE. or .FALSE.

LOGICAL*2 .TRUE. or .FALSE.

LOGICAL*4 .TRUE. or .FALSE.

REAL Approximately —3.37E+38 to +3.37E+38 (The
handling of magnitudes less than 1.17E-38 is not
defined.)

If no length is specified, the compiler defaults are INTEGER*2 and LOGICAL*1.

The maximum field width, ‘w,” in the Fw.d, Ew.d, Iw, and Lwedit descriptors of
the FORMAT statement is 32,767. The maximum length of the format string,
‘flist’,in a FORMAT statement is 255 characters.

The length and interpretation of integer expression values is determined as follows:

¢ Addition, subtraction, multiplication, division, or exponentiation is performed
modulo 256 for two INTEGER*1 operands and modulo 65536 otherwise.

® Agssignment is performed modulo 256 if the variable whose value is being
assigned has type INTEGER*1 and modulo 65536 otherwise.

¢ The length of the value of integer expressions used as actual arguments (but
which are not variables or array elements) is at least the default length of an in-
teger variable.

® Subscript expression values are taken modulo 65536.
In all of the cases listed above, overflow is ignored.

Statement Functions

The FORTRAN-80 compiler does not support statement functions. Functions must
be coded as FUNCTION subprograms.

A-1

Compiler and FORTRAN Language FORTRAN-80 Compiler

Compiler Extensions To Language

The FORTRAN compiler provides a number of features that extend the capabilities
of the FORTRAN language.

Lowercase Letters

Except within Hollerith and character constants, a lowercase letter is considered to
be identical to its corresponding uppercase letter.

Record Length Specifier for Sequential Access Files

The compiler provides an additional feature for input from sequential access files. If
the record length specifier is given in an OPEN statement for a sequentialaccess file,
whenever that file is READ the input line is extended with blanks as necessary to
provide the specified record length. This means, for instance, that if the record
length is specified as 80 but the line read in has fewer than 80 characters, the line will
be extended with blanks to make it 80 characters long, and no error will be
registered. This feature applies to input only; output to such a sequential file is not
affected.

Port Input/Output

The compiler provides two intrinsic subroutines for handling input/output through
8080/8085 1/0 ports. When these subroutines are called, they generate 8080 IN and
OUT instructions.

The form of the subroutine call is

CALL INPUT(port, var)
CALL OUTPUT(port, exp)

where
port is an integer constant in the range 0 < port < 255
var is an integer variable
exp is an integer expression

The value read or written through the specified port is always a single-byte integer
(INTEGER*1).

Examples:

CALL INPUT(1, TEST1) -
CALL OUTPUT(2, 100)

Reentrant Procedures

External procedures can be defined to be reentrant by setting the REENTRANT
compiler control (Chapter 2). When this control is used, local variables are allocated
dynamically on the stack when the procedure is entered, rather than being statically
allocated.

A-2

FORTRAN-80 Compiler Compiler and FORTRAN Language

‘ Freeform Line Format

Normally, FORTRAN source file lines must be in the standard format. If the
FREEFORM compiler control (Chapter 2) is set, however, the following rules

apply:

e [f a statement has a label, the label must begin as the first character of the
statement’s initial line.

¢ The first character of a continuation line must be an ampersand (&).
. ¢ Control lines must have a dollar sign ($) as their first character.
e Statements can begin in column 2, or in columnn 1 if the first character is not ‘C.’

Comment lines are the same in both formats. The first character must be a ‘C’ or an
asterisk (*).

‘ The freeform line format simplifies entering FORTRAN programs through a con-
sole terminal.

Interpretation Of DO Statements

The 1966 ANSI FORTRAN standard implies that all DO loops must be executed at
least once when encountered during program execution. The 1977 ANSI standard
allows zero iterations, if so specified by the values of the initial and terminal expres-
sions in the DO statement format. You can select the interpretation you prefer by

‘ specifying either the DO66 compiler control or the DO77 compiler control (Chapter
2).

Including Source Files

You can ‘include’ specified files in your source file using the INCLUDE compiler
control (Chapter 2). This control causes subsequent source code to be input from the
specified ‘file’ until an end-of-file is reached. At end-of-file, input resumes from the
file being processed when the INCLUDE was encountered.

Flexibility In Standard Restrictions

The ANSI FORTRAN 77 standard prohibits certain constructions that cannot be
checked (or are not economical to check) by the compiler, or that cannot be im-
plemented by other processors. Although the FORTRAN-80 compiler generally
follows the standard in prohibiting these constructions, it does allow certain mean-
ingful constructions even though they are nonstandard. While this affords the pro-

o grammer some additional flexibility, be aware that future compilers may implement
checks in these areas.
Association Of Storage Units

‘ Character, logical, and numerical items can be freely declared within the same com-
mon block and can be equivalenced. In particular, the compiler does not check

whether character variables of different lengths are associated.

A-3

Compiler and FORTRAN Language

A-4

Partially Initialized Arrays

The DATA statement can be used to initialize arrays partially (starting at the first
element). If the ‘nlist’ in the DATA statement format contains several unsubscripted
array names, initialization begins with the first array and continues until all items in
‘clist’ have been used.

Transfers Into IF Blocks

The compiler does not check the formal restriction against transfers into an IF,
ELSE IF, or ELSE block.

Unit Preconnection

The UNIT run-time control (Chapter 4) is used to preconnect units to your program
so they need not be connected by the OPEN statement. Two units, the console input
and output devices, are preconnected automatically to unit numbers 5 and 6,
respectively.

Interrupt Processing

Interrupt processing for the. 8080 and 808S is not supported by FORTRAN. To pro-
cess interrupts, you must write separate assembly language or PL/M drivers and call
your FORTRAN program as a subroutine.

In the ISIS-II run-time environment, no FORTRAN subprogram that uses floating-
point (REAL) arithmetic operatons (or intrinsic functions involving REAL
numbers) may interrupt another FORTRAN subprogram that also uses floating-
point operations. Users who need to do this should consider operating in the
RMX/80 environment, where fuller interrupt capabilities are supported.

FORTRAN-80 Compiler

APPENDIX B
ERROR MESSAGES

This appendix lists all error messages produced by the FORTRAN-80 compiler as
well as run-time errors encountered when your program is executed. Error messages
and codes issued by ISIS-1I, RMX/80, LINK, and LOCATE are also summarized
here for your convenience. ISIS-II, LINK, and LOCATE errors are explained in
detail in the ISIS-II User’s Guide, RMX/80 errors, in the RMX/80 User’s Guide.

FORTRAN Compiler Error Messages

The compiler may issue five kinds of error messages.
e FORTRAN source program €rrors

¢ Compiler control errors

e Input/output errors

¢ Insufficient memory errors

¢ Compiler failure errors

Source Program Error Messages

Source program errors are not fatal. The error messages are interspersed in the pro-
gram listing at the points of error. They are listed in the format:

***ERROR m, STATEMENT n, NEAR symbol, message

where
m is the error number from the list below
n is the sequential number of the statement where the
error occurred
symbol is the source text near the point of error
message is the error explanation from the list below

Source program error totals are summarized at the end of the program listing for
each program unit as shown in Figure 3-3.

NOTE
Some error numbers —e.g., 126 through 149— do not appear in this list.

No errors corresponding to these numbers exist, and they should never
appear in an error message.

Error No. Message

FIRST LINE OF ASTATEMENT IS A CONTINUATION LINE
TOO MANY CONTINUATION LINES

END OF FILE ENCOUNTERED ON SOURCE INPUT
ALINE IN THIS STATEMENT IS TOO LONG

NON-DIGIT IN STATEMENT NUMBER FIELD

O bW =

B-1

Error Messages FORTRAN-80 Compiler

Error No. Message
6 TOO MANY NESTED INCLUDES
7 SYNTAX PRECLUDES STATEMENT CLASSIFICATION
8 BLANK STATEMENT
9 STATEMENT HAS UNBALANCED FARENS
10 STATEMENT CONTAINS UNCLOSED CHARACTER CONSTANT .
11 STATEMENT IS OF UNKNOWN TYPE '
12 INVALID EXPLICIT LENGTH .
13° “END’’ STATEMENT MISSING—CANNOT PROCESS NEXT LINE - ‘.
14 STATEMENT IS OUT OF PLACE : :
15 STATEMENT IS INCORRECTLY NESTED WITH RESPECT TO A
HDO”
16 STATEMENT CANNOT END A *‘DO”’
17 “DO” OR*'IF’’ BLOCK NOT CLOSED AT END OF PROGRAM UNIT
18 STATEMENT NOT PROCESSED AS DO’S OR BLOCK-IF’S ARE TOO
DEEPLY NESTED "
19 “THEN’’ CLAUSE MISSING
20 TOO MANY LABELS IN LABEL LIST
2 THREE LABELS MUST FOLLOW ARITHMETIC-IF
22 NO PRIOR ““IF"”
23 A DO-LOOP IS STILL OPEN
24 MAY NOT FOLLOW AN ““ELSE”’
25 MISSING PROGRAM UNIT NAME
26 PROGRAM UNIT NAME LONGER THAN S!IX CHARACTERS
27 COMMON BLOCK NAME MUST BE AN IDENTIFIER
28 VARIABLE IS ALREADY IN A COMMON BLOCK
29 CANNOT PUT APARAMETER INTO COMMON
30 DIMENSION LIST REQUIRED
31 ALREADY DECLARED ‘‘EXTERNAL"’
32 PREVIOUSLY DECLARED IN ANOTHER CONTEXT
33 PARAMETER LIST REQUIRED
34 MISSING TYPE SPECIFICATION
35 INCORRECT LETTER RANGE
36 DUPLICATE IMPLICIT
37 SINGLE LETTER EXPECTED
38 NOT AN INTRINSIC FUNCTION
39 ALREADY ASSIGNED A MODE
40 MORE THAN SEVEN DIMENSIONS
41 ALREADY DIMENSIONED
42 DUPLICATE PARAMETERS
43 IDENTIFIER EXPECTED
44 NON-ZERO, UNSIGNED, INTEGER CONSTANT LESS THAN 32,768
REQUIRED
45 VARIABLE NAME REQUIRED
46 ILLEGAL PUNCTUATION *
47 NUMERIC CONSTANT REQUIRED AFTER '+ OR “‘~"’
48 CONSTANT EXPECTED IN VALUE LIST .
49 “TO’ MISSING -
50 INTEGER SCALAR VARIABLE REQUIRED
51 LABEL REQUIRED
52 LABEL MUST NOT BE LARGER THAN FIVE DIGITS
53 LABEL MUST NOT BE ZERO
54 FORMAT STATEMENTS MUST BE LABELLED
55 DUPLICATE LABEL
56 FORMAT STATEMENT BODY MUST BEGIN WITH “*("’
57 FORMAT STATEMENT IS TOO LONG
58 STATEMENT NOT ALLOWED IN BLOCK DATA PROGRAM UNIT

B-2

FORTRAN-80 Compiler

Error No.

59
60

61

62
63
64
65
66
67
68
69

70
7
72

73
74
75
76
7
78
79
80
81
82
83

84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107

Error Messages

Message

STATEMENT NOT ALLOWED AS PART OF LOGICAL-IF

SYNTAX ERROR—PROCESSING TERMINATED BEFORE END OF
STATEMENT

ASSIGNMENT STATEMENT DOES NOT START WITH AN
IDENTIFIER

TERMINAL LABEL OF *'‘DO’’ ALREADY DEFINED

ILLEGAL PAUSE OR STOP VALUE

EXPECTED KEYWORD MISSING IN I/O CONTROL LIST

UNKNOWN KEYWORD IN |/O CONTROL LIST

ILLEGAL KEYWORD IN I/O CONTROL LIST

REQUIRED KEYWORD MISSING IN I/O CONTROL LIST
SUBSCRIPTING A NON-ARRAY '
FUNCTION USED IN A CONTEXT WHICH REQUIRES A
SUBROUTINE

ILLEGAL USE OF RELATIONAL OPERATOR

OPERAND EXPECTED

SUBROUTINE USED IN A CONTEXT WHICH REQUIRES A
FUNCTION

ILLEGAL AS A FUNCTION

INCORRECT NUMBER OF ARGUMENTS

PROCEDURE USED WITHOUT ARGUMENTS

SUBSCRIPT EXPRESSION MUST BE INTEGER

INCORRECT NUMBER OF SUBSCRIPTS

INCORRECT MODE FOR ARGUMENT OF AN INTRINSIC
EXPRESSION IS TOO COMPLEX

ILLEGAL MIXED MODE EXPRESSION

CALL STATEMENT MUST BEGIN WITH AN IDENTIFIER
PROCEDURE NAME REQUIRED IN THIS CONTEXT

MISSING OR ILLEGAL ARGUMENT LIST FOR “INPUT” OR
“OUTPUT”

INVALID LEFTHAND SIDE OF AN ASSIGNMENT

EQUAL SIGN MISSING WHERE EXPECTED

ARRAY NAME USED WITHOUT SUBSCRIPTS

INTEGER EXPRESSION REQUIRED

LOGICAL EXPRESSION REQUIRED

STATEMENT IS TOO COMPLEX TO PROCESS

TOO MANY IDENTIFIERS

ASSUMED-SIZE ARRAY CANNOT BE TRANSMITTED IN AN 1/O
STATEMENT

TOO MANY EXTERNALS

INSUFFICIENT SPACE TO DISPLAY ALL ERROR MESSAGES
FORMAT STATEMENT MUST END WITH ©)”’

ILLEGAL EXPONENT FORMAT

ZERO COUNT FOR HOLLERITH CONSTANT IS ILLEGAL

END OF STATEMENT INSIDE HOLLERITH CONSTANT
NON-FORTRAN CHARACTER

UNPRINTABLE ASCIICHARACTER

END OF STATEMENT INSIDE CHARACTER CONSTANT

ILLEGAL USE OF **.”’

NON-ALPHANUMERIC INSIDE PRESUMED KEYWORD

ENDOF STATEMENT IN PRESUMED KEYWORD

IDENTIFIER, CONSTANT, OR KEYWORD LONGER THAN 255
CHARACTERS

ILLEGAL MACHINE-BASED CONSTANT

STATEMENT NOT YET IMPLEMENTED

UNKNOWN KEYWORD

B-3

Error Messages

Error No.

108
109
110
LR
112
113
114
115
116
17
118
119
120

121
122
123
124
125
150
151
152
133
154
155

156
167
158
159
160
161
162

163

164
166
167

168

172

173

175

FORTRAN-80 Compiler

DUPLICATE STATEMENT NUMBER

TOO MANY COMMON BLOCKS

QUOTED STRING REQUIRED IN CONTROL

CONTROL LINE ENDS INSIDE QUOTED STRING

QUOTED STRING IS TOO LONG

NON-DECIMAL DIGIT IN CONTROL VALUE

INCORRECT DEVICE FOR INCLUDE CONTROL

FILE NAME IS TOO LONG

ILLEGAL VALUE FOR OPTIMIZE CONTROL

ILLEGAL VALUE FOR PAGELENGTH OR PAGEWIDTH VALUE
ILLEGAL “STORAGE’ SPECIFICATION

UNKNOWN CONTROL

PRIMARY CONTROLS MUST OCCUR BEFORE FIRST
NON-CONTROL LINE

PRIMARY CONTROLS CANNOT BE CHANGED ONCE SET

TARGET OF ““ASSIGN’’ MUST NOT BE INTEGER*1

ILLEGAL ITEM IN{/O LIST

ILLEGAL USE OF A PROCEDURE NAME

QUOTED STRING MAY NOT BE NULL

NUMBER OF ARRAY ELEMENTS EXCEEDS 65,535

SIZE OF AN ARRAY EXCEEDS 65,535 BYTES

PROGRAM UNIT USES TOO MANY EXTERNAL PROCEDURES
PROGRAM UNIT HAS TOO MANY COMMON BLOCKS

ATTEMPT TO EXTEND A COMMON BLOCK ON THE LEFT
ATTEMPT TO EQUIVALENCE A NAME TO TWO DIFFERENT
LOCATIONS

ATTEMPT TO EQUIVALENCE NAMES IN DIFFERENT COMMON
BLOCKS

AN EQUIVALENCE LIST MUST HAVE AT LEAST TWO VALID
ENTRIES

CANNOT USE A DUMMY ARGUMENT IN AN EQUIVALENCE LIST
IMPROPER SUBSCRIPT VALUE

RUN-TIME STORAGE OVERFLOW

THIS STATEMENT CANNOT BE REACHED

THE FORMAT STRING DOES NOT LOGICALLY END BEFORE THE
PHYSICAL END OF THE STRING

A REPETITION FACTOR (BEFORE A REPEATABLE EDIT
DESCRIPTOR OR BEFORE A PARENTHESIZED FORMAT SUB-
STRING) IS ZERO

THE FIRST NON-BLANK CHARACTER OF A FORMAT STRING IS
NOT ‘('

THIS FORMAT STRING CONTAINS NESTED FORMAT
SUBSTRINGS WHICH ARE NESTED MORE THAN THREE DEEP

A SIGN (‘+' OR ‘-’) IS NOT FOLLOWED BY A STRING OF ONE OR
MORE DIGITS IN THIS FORMAT STRING

THIS FORMAT STRING CONTAINS A SIGNED NUMBER WHICH IS
NOT IMMEDIATELY FOLLOWED BY A SCALE FACTOR EDIT
DESCRIPTOR (‘P’)

AN EDIT DESCRIPTOR IN THIS FORMAT STRING IS NOT
IMMEDIATELY FOLLOWED BY EITHER ‘,’OR */' OR Y’

IN THIS FORMAT STRING, A FIELD WIDTH SPECIFIER (W =
UNSIGNED, POSITIVE INTEGER) DOES NOT IMMEDIATELY
FOLLOW AN IW, LW , BW, ZW, FW.D, EW.D OR EW.DEE
REPEATABLE EDIT DESCRIPTOR

IN THIS FORMAT STRING, A PERIOD (‘') DOES NOT
IMMEDIATELY FOLLOW THE FIELD WIDTH SPECIFIER (W) IN A
FW.D, EW.D, OR EW.DEE REPEATABLE EDIT DESCRIPTOR

FORTRAN-80 Compiler

Error No.

176

177

179

180

181

182

193
194

195
196
197
198
199
200
201

203
206
209
210
211
220
221

222
223
224
225
226
227
228
229
230
246

247
248

Message

IN THIS FORMAT STRING, A DECIMAL FRACTION WIDTH
SPECIFIER (D = UNSIGNED, POSITIVE INTEGER) DOES NOT IM-
MEDIATELY FOLLOW THE PERIOD (‘.") IN A FW.D, EW.D OR
EW.DEE REPEATABLE EDIT DESCRIPTOR

IN THIS FORMAT STRING, A REPEATABLE EDIT DESCRIPTOR
WAS NOT FOUND WHERE ONE WAS EXPECTED

IN THIS FORMAT STRING, AN EXPONENT FIELD WIDTH
SPECIFIER (UNSIGNED, POSITIVE INTEGER) DOES NOT IM-
MEDIATELY FOLLOW THE ‘E’' IN AN EW.DEE REPEATABLE EDIT
DESCRIPTOR

IN THIS FORMAT STRING, THE DECIMAL FRACTION WIDTH
SPECIFIER (D) IS GREATER THAN THE FIELD WIDTH SPECIFIER
(W) FOR AN FW.D, EW.D OR EW.DEE REPEATABLE EDIT
DESCRIPTOR

IN THIS FORMAT STRING, THE FIELD WIDTH SPECIFIER (W) IS
NOT LARGE ENOUGH FOR THE SPECIFIED DECIMAL FRACTION
SUB-FIELD WIDTH (D) AND THE EXPONENT SUB-FIELD (E) IN AN
EW.DEE REPEATABLE EDIT DESCRIPTOR

THE FORMAT STRING ENDS LOGICALLY BEFORE THE LAST
NONBLANK CHARACTER

INTEGER VARIABLE REQUIRED AS I/O KEYWORD ARGUMENT
CHARACTER EXPRESSION REQUIRED AS /O KEYWORD
ARGUMENT

INTEGER EXPRESSION REQUIRED AS |/O KEYWORD ARGUMENT
NOT A FORMAT STATEMENT NUMBER

ILLEGAL FORMAT SPECIFICATION

ILLEGAL UNIT SPECIFICATION

ILLEGAL COMBINATION OF I/O KEYWORDS

STATEMENT TOO LONG FOR BUFFER

THE NATURE OF OTHER ERRORS PROHIBITS OBJECT
PRODUCTION FOR THIS PROGGRAM UNIT

TOO MANY NESTED CALLS

UNDEFINED LABEL

A MAIN PROGRAM MAY NOT BE DECLARED REENTRANT
CONSTANT TOO LARGE

THE CODE SEGMENT LENGTH EXCEEDS 65,535 BYTES
SUBSCRIPT ON A NON-ARRAY IN A DATA STATEMENT
INCORRECT NUMBER OF SUBSCRIPTS FOR AN ARRAY IN A
DATA STATEMENT

SUBSCRIPT LARGER THAN DIMENSION OF ARRAY IN A DATA
STATEMENT

ATTEMPT TO INITIALIZE A LOCAL VARIABLE IN A REENTRANT
PROGRAM UNIT

ATTEMPT TO INITIALIZE A LOCAL REENTRANT VARIABLE IN A
DATA STATEMENT

NUMBER OF INITIAL VALUES IN A DATA STATEMENT EXCEEDS
NUMBER OF DESTINATIONS

TYPE OF VARIABLE DOES NOT MATCH INITIAL VALUE IN A DATA
STATEMENT

CHARACTER STRING LENGTH LONGER THAN SIZE OF
DESTINATION

REAL NUMBER OUT OF RANGE

TOO MANY NESTED SAVE CONTROLS

NO ACTIVE SAVE CONTROL FOR THIS RESTORE CONTROL
INTERNAL UNIT CANNOT BE USED

ILLEGAL USE OF HOLLERITH CONSTANT

SYMBOL IS LONGER THAN 6 CHARACTERS

Error Messages

B-5

Error Messages FORTRAN-80 Compiler

Error No. Message
249 AN END STATEMENT MAY NOT APPEAR ON AN INCLUDE FILE
250 ADJUSTABLE DIMENSION MUST BE INTEGER SCALAR DUMMY
ARGUMENT OR IN COMMON
251 ADJUSTABLE ARRAY MUST BE A DUMMY ARGUMENT
252 INTEGER OR REAL EXPRESSION REQUIRED
253 1/0 DO’S ARE TOO DEEPLY NESTED
254 APPARENT END OF I/O LIST INSIDE I/O DO

Compiler Control Error Messages

If an error is detected in a compiler control (whether in a control line or in the com-
mand tail of the compiler invocation), the compilation may be terminated and an er-
ror message is issued to the console and list file. The form of the message is

***FORTRAN COMPILATION TERMINATED. message
where ‘message’ is one of the following:

ILLEGAL COMMAND TAIL SYNTAX

ILLEGAL OR INCORRECT OPTION IN COMMAND TAIL
INCORRECT DEVICE SPEC

INVOCATION COMMAND DOES NOT END WITH <CR><LF>
SOURCE FILE EXTENSION INCORRECT

SOURCE FILE NAME INCORRECT

SOURCE FILE NOT A DISKETTE FILE

WORKFILES ALREADY OPEN

Input/Output Error Messages

Fatal input/output errors occur if you should incorrectiy specify a file or device
name for compiler input or output. The error messages issued are:

ATTEMPT TO OPEN AN ALREADY OPEN FILE

ATTEMPT TO READ PAST EOF

DEVICE TYPE NOT COMPATIBLE WITH INTENDED USE

FILEIS NOT ON A DISKETTE

FILE IS WRITE PROTECTED

FILENAME REQUIRED ON A DISKETTE FILE

ILLEGAL FILENAME SPECIFICATION

ILLEGAL OR UNRECOGNIZED DEVICE SPECIFICATION IN
FILENAME

NO SUCH FILE

NULL FILE EXTENSION

insufficient Memory Error Messages

A fatal error occurs if the system configuration does not have enough RAM memory
to support the compiler. The error messages issued in this case are as follows:

DYNAMIC STORAGE OVERFLOW
NOT ENOUGH MEMORY FOR COMPILATION

B-6

FORTRAN-80 Compiler Error Messages

Compiler Failure Errors

Fatal compiler failure errors are internal errors that should never occur. If you en-
counter one of these errors, please report it to Intel Corporation, 3065 Bowers
Avenue, Santa Clara, California 95051, Attention: Software Marketing Department

The two errors falling into this category are:

208 COMPILER ERROR: AN OPERAND HAS A DISALLOWED FORM
214 COMPILER ERROR: SOME OPERATOR CAN'T GETITS
OPERANDS INTO AN ACCEPTABLE FORM

FORTRAN Run-Time Error Messages

Certain run-time errors like floating-point overflow, improper format specification,
and inappropriate I/O operations invoke error routines. Unless specified otherwise
by the program, the error routines are library routines that output an error message
to the console and return control to ISIS. The form of such a message is

***EXECUTION ERROR. message

The asterisks are separated by ASCII BELL characters.

Run-Time Arithmetic Errors

Errors in operations and intrinsic functions involving floating-point (REAL)
numbers are normally handled by a PUBLIC error-handling routine named
FQFERH. Two error handlers by that name are provided in the FORTRAN run-
time libraries: a default error handler included in all the non-null arithmetic libraries
(FPSOFT.LIB, FPHARD.LIB, FPSFTX.LIB, FPHRDX.LIB, and FPHX10.LIB),
and an alternate error handler in F80ISS.LIB. You can use the default error handler,
select the alternate routine by linking it in explicitly, or provide your own error
handler if you wish.

The arithmetic libraries recognize the following error codes:

Attempted division by zero

Argument range exceeded

Overflow (value too large to represent internally)
Underflow (value too small to represent
internally)

First argument is invalid

Second argument is invalid

W —

[« V.]

The following codes are used to denote the operations and intrinsic functions that
use floating-point (REAL) numbers:

Addition

Subtraction

Multiplication

Division

Conversion of real to 32-bit integer
Comparison of two values
Comparison of a single value to zero

NN AW N =

Error Messages

B-8

8 Negation (sign complementation)
9 Absolute value
10 Square root
11 Conversion of real to 16-bit integer
101 SIGN
102 DIM
103 AINT
104 ANINT
105 NINT
106 AMOD
108 EXP
109 ALOG
110 ALOGI0
111 SIN
112 COS
113 TAN
114 ASIN
115 ACOS
116 ATAN
117 ATAN2
118 SINH
119 COSH
120 TANH

Operations 101-120 are intrinsic functions from the list in Appendix B of the
FORTRAN-80 Programming Manual. The other operations are floating-point
library routines.

Default Error Handler

The default error handler will attempt to recover from an error and continue. If
‘argl’ and ‘arg2’ represent the first and second arguments, respectively, the recovery
action of the default error handler can be represented as follows:

On attempted division by zero (error 1), argl:= indefinite.

On argument range exceeded (error 2), argl:= indefinite.

On overflow (error 3) for a real number, argl:=sign (argl) real MAX.
On overflow (error 3) for an integer, argl:= sign (argl) integer MAX .
On underflow (error 4), argl:=0.

On invalid operand(s) (error 5 and/or 6), no action will be taken.

Upon return from the error handler, ‘argl’ contains a (possibly new) REAL result
for any operation other than 5 or 11, and ‘arg2’ contains an INTEGER result for
operation 5or 11.

F80ISS.LIB Error Handler

If you prefer to have all floating-point errors trapped and reported to the console
(:CO: device), you may use the alternate error handler provided in F80ISS.LIB.
When this error handler is linked in explicitly and an error in a floating-point
(REAL) arithmetic operation or intrinsic mathematical function occurs, the FOR-
TRAN program stops. Control returns to ISIS-II if ISIS controls the run-time en-
vironment, and the following message is sent to the console:

***EXECUTION ERROR. REAL ARGUMENT ERROR m IN FUNCTION n.

FORTRAN-80 Compiler

FORTRAN-80 Compiler Error Messages

where

m s a digit indicating the error code
n isan integer indicating the operator or function

These error and operation codes are as listed previously under “FORTRAN Run-
Time Error Messages.”’

To link in the alternate error handler (for the ISIS-II run-time environment and soft-
ware floating-point routines), use the following LINK command:

LINK input-list, FSOISS .LIB(FQFERH),F80RUN.LIB,&
F80ISS.LIB,FPEF.LIB,FPSOFT.LIB,PLMS80.LIB,&
TO link-file

If the iSBC 310 interface is to be used, substitute FPHARD.LIB for FPSOFT.LIB
in the LINK command above. The alternate error handler may be used only in the
ISIS-II run-time environment.

User-Supplied Error Handlers

If you prefer not to use either of the error-handling routines provided in the run-
time libraries, you may write your own error handler. (Note that the same error
handler may be used whether you are performing arithmetic via software routines or
via the iSBC 310 and interface.) Your error handler can interface with the FOR-
TRAN floating-point routines in one of two ways:

¢ It can be labeled with the public name FQFERH and linked before the
arithmetic library, thus substituting for the FORTRAN-provided error
handlers.

¢ In addition, error handling can be ‘‘reset’” dynamically (i.e., another error
handler can be substituted during execution) by inserting into your FORTRAN
code a call to the external subroutine FQFRST, as described below.

The calling sequence for FQFRST is:

CALL FQFRST(A,ERRH)

where A is a two-byte integer variable and ERRH is the address of your error- handl-
ing routine. The least significant bit of the high-order byte of A is a flag which, when
set to 1, indicates that the user-supplied subroutine designated by ERRH will now be
used as the floating-point error handler; if this flag is reset to 0, then the error
handler named FQFERH will be activated. The low-order byte of A will become the
new value (normally 0) of the Error Field, a byte which is explained more fully later
under “‘Error Handling.”” Thus the standard settings of A are 0 and #100H. Note
that by using FQFRST, you may change the error handler more than once, and at
execution time rather than at link time.

Under RMX/80, each task must initialize the internal error handler address field by
calling the external subroutine FQFSET. This routine is identical to FQFRST except
that it also clears internal floating-point working accumulators and should be called
only once per task. By using combinations of FQFSET and FQFRST, you can
dedicate (and re-dedicate) error handlers to individual tasks or groups of tasks.

The error handler takes four parameters, in the order (ARG1, ARG2, OPCODE,
ERRORSCODE). ARG1 and ARG2 are the REAL arguments of the floating-point
operation. OPCODE and ERRORS$CODE are one-byte INTEGER values represen-
ting the operation code and the error code as listed previously.

Error Messages FORTRAN-80 Compiler

The following is an example of a routine you might supply in place of FQFERH to
handle floating-point arithmetic errors. You can establish this error-handling
routine as the arithmetic error handler dynamically at run time by using the follow-
ing statement in your FORTRAN program:

CALL FQFRST(#100H,ALTERH)

$REENTRANT
.

A SAMPLE USER-SUPPLIED FORTRAN MATH ERROR HANDLER.
SUBROUTINE ALTERH(ARG1,ARG2,FNCODE,ERCODE)

REAL ARG1,ARG2

INTEGER®1 FNCODE,ERCODE
REAL RTEMP

INTEGER#*2 I2TEMP
EQUIVALENCE (RTEMP,I2TEMP)

CASE 1: Square-root of a negative number (domain error).
Return the negative square-root of the argument s absolute value.
IF ((ERCODE.EQ.2).AND.(FNCODE.EQ.10)) THEN
ARG1 = -SQRT(ABS(ARG1))

® CASE 2: Overflow on multiply or divide.
Return a very large real number, positive if ARG1 and ARG2
d have the same sign, negative otherwise.
ELSE IF ((ERCODE.EQ.3) .AND. ((FNCODE.EQ.3).0OR.(FNCODE.EQ.4))) THEN
ARG1 = SIGN(3.4E+38,ARG1) * SIGN(1.0 ARG2)

®# CASE 3: Too big a number to fix to a two-byte integer (overflow error)
o Return 7FFFH, the largest two-byte positive integer, to the low
" two bytes of ARG2 when ARG1 is non-negative, and 8000H, the
» largest two-byte negative integer, otherwise. (Note that
L4 this is a particularly tricky situation. You want to over-
. write the low-addressed two bytes of ARG2 with 7FFFH or 8000H
without destroying the data in the high-addressed two bytes
of ARG2. To do this, use the equivalenced REAL and INTEGER®*2
* temporary variables, RTEMP and I2TEMP.)
ELSE IF ((ERCODE.EQ.3).AND.(FNCODE.EQ.11)) THEN
RTEMP = ARG2
1F (ARG1.GE.O0) THEN
I2TEMP = #7FFFH
ELSE
I2TEMP = #8000H

END IF

ARG2 = RTEMP
* CASE 4: Domain error on ATAN2 (i.e., ARG1 = ARG2 = 0).
* Return O.

ELSE IF ((ERCODE.EQ.2).AND.(FNCODE.EQ.117)) THEN

ARG1 = O
* CASE 5: Division by zero.
. Return ARG1 divided by a very small number. (Note that such a
* division may result in an overflocw causing this error handler
"

to be reinvoked for CASE 2 -- thus the REENTRANCY requirement)
ELSE IF (ERCODE.EQ.1) THEN
ARG1 = ARG1 / 1.2E-38

* End of error-handling examples. Note that no action will be taken on

* errors that do not fall into one of the above cases. .
ENDIF r
RETURN
END

B-10

FORTRAN-80 Compiler

Error Monitoring

The arithmetic routines maintain, as part of an internal floating-point record, a one-
byte Error Field containing flags to indicate the occurrence of the various types of
errors. Independently of the error handler, you can monitor accumulated error in-
formation between successive initializations of this Error Field by means of the ex-
ternal integer function FQFERR. FQFERR returns the current value of the Error
Field byte, which is interpreted as shown below.

7 [} 5 4 3 2 1 0
Bit Interpretation
IE Invalid argument
OE Overflow
UE Underflow
ZE Attempted division by zero
DE Domain error (argument range exceeded)

Bits 0, 1, and 2 are currently unused. Setting any of these bits to one causes unde-
fined results.

The Error Field byte reflects the floating-point error situation since the last time the

Error Field was cleared, which will generally be since the last call to FQFRST or
FQFSET.

Run-Time 1/0 Errors

If an ISIS I/0 error occurs at run-time, the message from the ISIS ‘ERROR’ routine
precedes the FORTRAN ‘EXECUTION ERROR’ message. The ISIS message lists
the ISIS-supplied STATUS for the I/0 operation causing the error.

In the ISIS-II run-time environment, FORTRAN [/O error routines can issue the
following message at run time:

***EXECUTION ERROR. FORTRAN {/O ERROR nnn
NEAR LOCATION xxxH

In the RMX/80 environment, the error message is as follows:

***EXECUTION ERROR. FORTRAN {/C ERROR nnn TASK = taskname

The error message gives the memory location of the current instruction being ex-
ecuted (for ISIS-II) or the name of the active task (for RMX/80) at the time the error
occurred.

Error Messages

Error Messages FORTRAN-80 Compiler

The 170 error number ‘nnn’ is also returned as the value of the symbol designated
by IOSTAT, if the IOSTAT specifier is included in a FORTRAN READ or WRITE
statement. I/0 error numbers are given in the following list.

NOTE
Some error numbers —e.g., 117, 122, 123—are omitted from this list. No
errors corresponding to these numbers exist, and they should never ap- J
pear in an error message.
«
Error No. Message
112 A syntax error exists in a formatted binary or hexadecimal input
field.
113 A syntax error exists in a list-directed alphanumeric input field.
114 A syntax error exists in a formatted or list-directed logical input
field.
115 A syntax error exists in a formatted or list-directed real input field.
116 A syntax error exists in a formatted or list-directed integer input
field.
118 The RECL specifier is invalid in an OPEN statement for a

sequential, unformatted connection.

119 The STATUS = ‘SCRATCH’ specifier is invalid in an OPEN
statement with a named FILE.

120 The string supplied for the FILE specifier of an OPEN statement or
for the device specifier in the UNIT preconnection control is not a
valid ISIS path-name.

121 An illegal string has been passed as the CARRIAGE specifier of an
OPEN statement.
124 A WRITE statement is attempting to write too many characters to

arecord in an internal file.

125 A READ or WRITE statement is attempting to read from or write
to more records than were specified to be in the internal file.

126 A READ statement is attempting to read too many characters from .
arecord in an internal file.

128 An ISIS, RMX/80 Terminal Handler, or RMX/80 Disk File <
System error has occurred during a WRITE operation.

129 An ISIS, RMX/80 Terminal Handler, or RMX/80 Disk File
System error has occurred during a READ operation.

130 The specified unit is not connected.

131 The unit specified by a formatted READ or WRITE is not

connected with the proper ACCESS and FORMAT attributes.

B-12

FORTRAN-80 Compiler

Error No.
132

134

135

136

141

142

143

144

145

146

152

155

156

158

160

162

163

164

166

Message

No BACKSPACE or REWIND has occurred since an ENDFILE
was specified for the unit selected by a sequential READ or
WRITE.

A READ statement is attempting to read from a unit whose
CARRIAGE attribute is ‘CONSOLE’.

A READ statement is attempting to read from a unit whose
CARRIAGE attribute is ‘FORTRAN’.

The edit descriptor in the format string matches a variable in the
170 list whose type is inappropriate for this descriptor.

An ISIS or RMX/80 Disk File System error has occurred while
closing a pre-existing file whose length was shortened during the ex-
ecution of this program. The file cannot be copied.

An ISIS or RMX/80 Disk File System error has occurred during a
BACKSPACE operation.

An ISIS or RMX/80 Disk File System error has occurred during a
REWIND operation.

An ISIS or RMX/80 Disk File System error has occurred during a
OPEN operation.

An ISIS or RMX/80 Disk File System error has occurred when
attempting to move to the beginning of a record during a direct-
access READ or WRITE.

An ISIS or RMX/80 Disk File System error has occurred when
ending an output record for a sequential disk file.

An ISIS or RMX/80 Disk File System error has occurred during a
CLOSE operation.

An error has occurred while attempting to OPEN, in update or
read mode, a file whose STATUS = ‘OLD’.

The OPEN statement cannot specify STATUS = ‘OLD’ for a
nonexistent file.

An error has occurred while trying to OPEN, in update or write
mode, a file whose STATUS = ‘NEW”’.

The OPEN statement cannot specify STATUS = ‘NEW?’ for a file
that already exists,

The physical end of the format string occurs before the logical end
of the format string.

A repetition specifier preceding a repeatable edit descriptor or
parenthesized format substring cannot be zero.

The format string must start with ‘(.

The nesting of parenthesized format substrings cannot exceed three
levels.

Error Messages

Error Messages

B-14

Error No.

167
168

171

172

173

175
176
177

179

180

181

182

191

192

193

194

196

198

200

201

202

FORTRAN-80 Compiler

Message

A nondigit follows a ‘+’ or ‘=’ in the format string.
A ‘P’ must follow a ‘+’ <number> in the format string.

The substring of the format string that should be used to revert
format control does not contain any repeatable edit descriptor.

A ‘,’or ‘) or ‘/’ is expected to terminate an edit descriptor.

An I, L, F, E, B, or Z edit descriptor is not followed by a field
width specification.

A period must follow the field width in an E or F edit descriptor.
A number must follow the period in an E or F edit descriptor.
An expected repeatable edit descriptor is missing.

A number must follow the exponent field specifier ‘E’ in an E edit
descriptor.

The fraction specifier is greater than the field-width specifier in an
E or F edit descriptor.

The width specified for an E edit descriptor is not large enough for
the specified fraction and exponent fields.

The format string ends logically before the last non-blank
character.

A filename must be specified in the OPEN statement for a file
whose STATUS = ‘OLD’.

A filename must be specified in the OPEN statement for a file
whose STATUS = ‘NEW’.

An error has occurred while trying to OPEN a file in update mode
whose STATUS = ‘SCRATCH’. The file is known to be nonexis-
tent.

The program is trying to OPEN an existing file with STATUS =
‘SCRATCH’.

An ISIS error has occurred while trying to OPEN a file whose
STATUS = ‘UNKNOWN’,

A syntax error exists in preconnection specifications in the
command tail.

A CLOSE statement specifies STATUS = ‘KEEP’ for a file whose
current STATUS = ‘SCRATCH’.

The STATUS specifier for a CLOSE statement must be either
‘KEEP’ or ‘DELETE’.

The UNIT specifier in an OPEN statement cannot have a value
greater than 255.

FORTRAN-80 Compiler

Error No.

203

204

205

206

207

208

209

210

211

217

221

222

225

232

233

234

235

238

242

Message

The FILE named in an OPEN statement is already connected to a
different unit.

An OPEN statement requires a new connection but the connection
table is full.

An OPEN statement for a direct-access file is missing a RECL
specifier (or RECL = 0).

The string passed in the ACCESS specifier of an OPEN statement
isillegal.

The string passed in the FORMAT specifier of an OPEN statement
is illegal.

The string passed in the BLANK specifier of an OPEN statement is
illegal.

An OPEN statement referencing a file connected for unformatted
I/0 cannot include a BLANK specifier.

The string passed in the STATUS specifier of an OPEN statement
is illegal.

An OPEN statement is attempting to change the attributes of a
previously-connected file. Only the BLANK attribute for a format-
ted file or the RECL attribute for a sequential, formatted file may
be changed.

A formatted READ statement is attempting to read more
characters than are present in the record.

An end-of-file has occurred on the file being read and no END
specifier has been supplied.

A Hollerith or literal edit descriptor cannot appear in the format
string matching an input list.

An invalid scale factor has been found when trying to write a real
value.

A READ or WRITE statement is attempting to read from or write
to a direct-access file that is not on diskette.

A WRITE statement is attempting to write to a unit that cannot be
written to; e.g., :CI:.

A READ statement is attempting to read from a unit that cannot be
read from; e.g., :LP:.

The program has tried to REWIND, BACKSPACE, or ENDFILE
a unit not connected for sequential I/0.

The attempted REWIND is inappropriate for this file.

The attempted BACKSPACE is inappropriate for this file.

Error Messages

B-15

Error Messages

B-16

250 A direct-access READ statement is attempting to read more bytes
than are present in the record.

251 An unformatted READ statement is attempting to read more bytes
than are present in the record.

252 A <CR, LF> has been found in the middle of a formatted,
direct-access record.

253 A direct-access, formatted record must be terminated with a <CR,
LF>.

255 A direct-access WRITE statement is trying to write more data than

will fit into a single direct-access record.

‘ERR’ Specifier

If a FORTRAN 1/0 statement includes the ERR specifier in its control list, control
is transferred to the statement designated by ERR when an error is detected. No
library routine is invoked in this case.

‘I1OSTAT’ Specifier

If a FORTRAN I/0 statement includes the IOSTAT specifier in its control list, I/0
operations return a numerical code as the value of a symbol designated by IOSTAT.
This code is the same number shown in the ‘FORTRAN I/0 ERROR’ message (0
means no error detected). See ‘Run-Time I/0 Errors’ above.

ISIS-Il Error Messages

The following error messages are discussed in more detail in the ISIS-II User’s
Guide, but are summarized here for your convenience. By convention, error
numbers 1-99 are reserved for errors that originate in or are detected by the resident
routines of ISIS-II or by RMX/80. In the following list an asterisk precedes fatal er-
rors. The other errors are generally nonfatal unless they are issued by the CONSOL
system call.

No error detected.

Insufficient space in buffer area for a required buffer.
AFTN does not specify an open file.

Attempt to open more than six files simultaneously.
Illegal filename specification.

Ilegal or unrecognized device specification in filename.
Attempt to write to a file open for input.

Operation aborted; insufficient diskette space.t

»
NN AW —=O

»

t Error number 7 (insufficient diskette space) may sometimes occur when it
appears that there should be enough space on the disk. This happens because
when a file has been truncated in the course of processing (e.g., via a
BACKSPACE followed by an ENDFILE), the FORTRAN 1/0 routines copy
that file onto a scratch file called FTCHOP.TMP, which consumes additional
disk space.

FORTRAN-80 Compiler

FORTRAN-80 Compiler

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

Error Messages

Attempt toread from a file open for output.

No more room in diskette directory.

Filenames do not specify the same diskette.
Cannot rename file; name already in use.
Attempt to open a file already open.

No such file.

Attempt to open for writing (output or update) or to delete or rename a
write-protected file.

Attempt to load into ISIS area or buffer area.
Incorrect ISIS binary format.

Attempt to rename or delete a file not on diskette.
Unrecognized system call.

Attempt to seek in a file not on diskette.

Attempt to seek backward past beginning of file.
Attempt to rescan a file not line edited.

Illegal ACCESS parameter to OPEN or access mode impossible for file
specified (input mode for :LP:, for example).

No filename specified for a diskette file.
Input/output error on diskette (see below).
Incorrect specification of echo file to OPEN.
Incorrect SWID parameter in ATTRIB system call.
Incorrect MODE parameter in SEEK system call.
Null file extension.

End of file on console input.

Drive not ready.

Attempted seek on file open for output.

Can’t delete an open file.

Illegal system call parameter.

Bad RETSW parameter to LOAD.

Attempt to extend a file opened for input by seeking past end-of-file.
Unrecognized switch.

Unrecognized delimiter character.

Invalid command syntax.

Premature end of file.

Illegal diskette label.

No END statement found in input.

Checksum error.

Illegal record sequence in object module file.
Insufficient memory to complete job.

Object module record too long.

Bad object module record type.

Hlegal fixup specified in object module file.

Bad parameter in a SUBMIT file.

Argument too long in a SUBMIT file.

Too many parameters in a SUBMIT file.

Object module record too short.

Illegal object module record format.

Phase error.

No end of file record in object module file.
Segment exceeds 64K bytes.

Unrecognized record in object module file,
Fixup record pointer is incorrect.

Illegal record sequence in object module file.
Illegal module name specified.

Module name exceeds 31 characters.

Command syntax requires left parenthesis.
Command syntax requires right parenthesis.
Unrecognized control specified in command.
Duplicate symbol found.

File already exists.

B-17

Error Messages

B-18

232
233
234
235
236
237
238
239
240

When error number 24 occurs, an additional message is sent to the console:

Unrecognized command.

Command syntax requires a ‘““TO’’ clause.

File name illegally duplicated in command.

File specified in command is not a library file.
More than 249 common segments in input files.
Specified common segment not found in object file.
INegal stack content record in object file.

No module header in input object file.

Program exceeds 64K bytes.

FDCC = 00nn

where nnis a hexadecimal number with the following meaning:

01 Deleted record.
02 CRC error (data field).
03 Invalid address mark.
04 Seek error.
08 Address error.
0A CRC error (ID field).
OE No address mark.
OF Incorrect data address mark.
10 Data overrun or data underrun.
20 Write protect.
40 Write error.
80 Not ready.
RMX/80 Error Codes

FORTRAN-80 Compiler

The following error codes are discussed in more detail in the RMX/80 User’s Guide,
but are summarized here for your convenience. By convention, error numbers 1-99
are reserved for errors that originate in or are detected by the resident routines of
ISIS-II or by RMX/80. On completion of a requested service, RMX/80 indicates
errors by returning the appropriate error code in the low-order byte of the STATUS
field of the response message.

The following error codes may be returned by the RMX/80 Disk File System. Many
of these errors correspond to ISIS-II errors; in these cases, the codes are the same.
Note, however, that errors considered fatal in ISIS are not so considered in DFS.

~1 N v O

No error detected.

Illegal FILENAME specified in File Name Block.
DEVICENAME in File Name Block not in Device Configuration Table.
Attempt to write to a file opened for input.
No more space on disk.*

* Error number 7 (no more space on disk) may sometimes occur when it appears
that there should be enough space on the disk. This happens because when a file
has been truncated in the course of processing (e.g., via a BACKSPACE fol-
lowed by an ENDFILE), the FORTRAN I/O routines copy that file onto a
scratch file called FTCHOP.TMP, which consumes additional disk space.

FORTRAN-80 Compiler

8 Attempt to read a file opened for output.
9 No moreroom in disk directory.
10 File Name Blocks in RENAME request do not specify same device.
11 Cannot rename file; name already in use.
12 File already open.
13 No such file.

14 Attempt to open a write-protected file for output or update, or attempt to delete
or rename a write-protected file.

16 Incorrect object program format.

18 Unrecognized message TYPE.

20 Attempt to seek backwards past beginning of file.
22 Illegal ACCESS in OPEN message.

24 Input/output error on disk.

26 Illegal SWID in ATTRIB message.

27 Illegal MODE in SEEK message.

30 Drive not ready.

31 Attempt to seek on file open for output.

32 Attempt to delete an open file.

35 Attempt to seek past end of file opened for input.
40 Request sent to wrong exchange.

41 Insufficient free memory space to open file.

42 DRIVE specified in DISKIO request is not in Device Configuration Table.

43 Drive timeout—the drive has not responded to an I/0 request within a set
period of time (10 seconds for iSBC 80/20 or 80/30 systems; for 80/10 systems,
refer to RMX/80 User’s Guide).

44 SEEK request with SEEK not present in system.
45 Format driver missing.

If error 24 (input/output error) occurs, DFS places one (or more, if multiple errors
occur) hexadecimal codes in the high-orderbyte of STATUS in the response message
to identify the type of I/0 error, as follows:

01 Deleted record.

02 Cyclic Redundancy Check character error (data field).
03 Invalid address mark.

04 Seek error.

08 Address error.

0A Cyclic Redundancy Check character error (ID field).
OE No address mark.

OF Incorrect data address mark.

10 Data overrun or underrun.

20 Write protect.

40 Write error.

80 Not ready.

The RMX/80 Terminal Handler returns only one possible error code: 18, which
denotes an invalid read or write request message type. For error codes returned by
other RMX/80 extensions (e.g., Free Space Manager or Analog Handlers), refer to
the RMX/80 User’s Guide.

Error Messages

Error Messages FORTRAN-80 Compiler

LINK Error Messages

The following LINK error messages indicate a fatal error has occurred and generally
require you to recompile and relink your program.

filename, BAD FIXUP RECORD
filename, BAD RECORD SEQUENCE
filename, CHECKSUM ERROR
filename, ILLEGAL RECORD FORMAT :
filename, NOT LIBRARY

filename, PHASE ERROR

filename, PREMATURE EOF ®
filename, RECORD TOO LONG

filename, RECORD TOO SHORT

filename, RELO FILE SEQUENCE ERROR
filename, SEGMENT TOO LARGE

filename, TOO MANY COMMON SEGMENTS
INSUFFICIENT MEMORY

The following messages indicate nonfatal errors. They do not prevent LINK from
performing its assigned tasks, but the messages are reported as warnings.

MORE THAN ONE MAIN MODULE
modname-MODULE NOT FOUND IN LIBRARY

name, COMMON/PUBLIC/EXTERNAL NAME CLASH
name, HAS DIFFERING TYPES

name, MULTIPLE DEFINITION

name, UNEQUAL COMMON LENGTHS

For a detailed discussion of these error messages, see Chapter 4 of the ISIS-II User’s
Guide.

LOCATE Error Messages

The following LOCATE error messages indicate a fatal error has occurred.
LOCATE terminates and returns control to ISIS-II.

filename, CHECKSUM ERROR

common name, COMMON NOT FOUND
filename, FIXUP BOUNDS ERROR

filename, ILLEGAL RELO RECORD

filename, ILLEGAL STACK CONTENT RECORD
filename, INSUFFICIENT MEMORY

token, INVALID SYNTAX

filename, NO MODULE HEADER RECORD
filename, PREMATURE EOF .
filename, PROGRAM EXCEEDS 64K

filename, RECORD TOO LONG

The following messages indicate nonfatal errors. LOCATE completes processing
before returning to ISIS-II.

INPAGE SEGMENT COERCED TO PAGE RELTYP
MEMORY CONFLICT FROM aaaaH THROUGH aaaaH
UNSATISFIED EXTERNAL REFERENCE AT aaaaH

See Chapter 4 of the ISIS-II User’s Guide for a detailed discussion of these
messages.

B-20

APPENDIX C
NUMBER FORMATS

This appendix provides definitions related to the internal representation of numbers
in the 8080 or 8085 memory, along with the strategy used for rounding floating-
point values and exponent wraparound.

Floating-Point Numbers

Floating-Point Standard

Floating-point number representations and floating-point arithmetic conform to the
Intel floating-point standard, which is described in the following article:

Palmer, John F., ‘“The Intel Standard for Floating-Point Arithmetic,”’
Proceedings of the First International Computer Software and Applications
Conference (Chicago: IEEE Computer Society), November 1977, pp. 107-112.

Floating-Point Zero

The format with all bits equal to zero is defined as the unique floating-point zero.
No other form for floating-point zero is supported.

Invalid Numbers
For floating-point numbers, all bit patterns are valid except those described here.

The first set of invalids are those whose exponent field is set to all ones. This set is
used for infinities, indefinites, pointers, etc. Infinities are defined as:

+INF ‘s’ bit = 0; all other bits =1
—INF all bits =1

The indefinite form is:
IND ‘s’ = 0; exponent bits all = 1; fraction bits =0

A second set of bit patterns is currently defined as invalid. These are numbers whose
exponent field is zero with at least one other bit set to one.

Floating-Point Number Format

The format of floating-point numbers in memory is as shown in Figure C-1.

HIGH ADDRESS S eg e7 eg es5 eq e3 e2
eq 122 21 f20 f19 18 f17 18
f15 f14 t3 f12 f11 f10 te fs

LOW ADDRESS f

woiNTERvaLUE) | 7 6 15 fa 3 f2 ft o

Figure C-1. Floating-Point Number Format

C-1

Number Formats

C-2

The address of the number (pointer value) is the low address. The three fields within
the floating-point format are:

) Sign bit. Sign-magnitude representation where s=0 means positive and s=1
means negative.

e Exponent bits. The exponent is offset by 2’—1. All zeros and all ones in the
exponent field are currently reserved for the floating-point zero and the invalid
numbers respectively described above.

f Fraction bits. When the exponent is nonzero, a one bit is assumed at the left of
the fraction; the binary point is between the assumed bit and the explicit frac-
tion bit.

The number base is binary. The value of a given binary representation (where ‘s’ is

the sign bit, ‘e’ is a binary exponent value, and ‘f’ is a binary fraction value) can be
formulated as:

(—1)s.2e-27-1).(1 .+ .f) wheree#0and e # FF

Example: 3F800000 is equivalent to 1.

Rounding

If rounding is required to produce the final result of a floating-point operation, ‘un-
biased’ rounding is used. With this typeof rounding, the result is rounded up or
down depending on whether the first bit beyond the last bit being retained is I or 0.
In the ambiguous case where the true result es exactly midway between two floating-
point numbers, the nearest ‘even’ number is returned (that is, the last bit retained is
forced to a zero). Therefore, if no error occurs, the result is the floaing-point
number closest to the true result.

Example: 40490FDB is the floating-point representation of n.

Exponent Wraparound

When overflow or underflow occurs during floating-point operations, the correct
fraction results but the exponent is ‘wrapped around.’ This is consistent with the
philosophy that no information should be lost and that you, the user, should be able
to decide what you want to do when an overflow/underflow exception occurs.

A ‘wrapped around’ exponent is defined to be ey where the true (offset) exponent et
can be derived from ew by considering an expanded range of exponents and

on overflow et=ew+(3*2¢-2)
on underflow et=ew—(3*2°-2)

Example: 00800001 —00800000 = 54000000.

Integers

Integers in FORTRAN-80 are signed two’s-complement numbers; they may be 1, 2,
or 4 bytes long. Unless the STORAGE compiler control is used to specify a different
default, the default length for integer variables is 2.

FORTRAN-80 Compiler

FORTRAN-80 Compiler Number Formats

The format of 1-, 2-, and 4-byte integers in memory is shown in Figure C-2. In this
figure, s is the sign bit and i is the low-order bit. The address of the number (pointer
value) is the low address.

HIGH ADDRESS| S [i31]i30} --- HIGH ADDRESS | S | i15

LOW ADDRESS RS |
(POINTER VALUE)

2-BYTE INTEGER

LOW ADDRESS i ADDRESS| o | ;7 | i
(POINTER VALUE) : (POINTER VALUE)

4-BYTE INTEGER 1-BYTE INTEGER

Figure C-2. Integer Formats

C-3

APPENDIXD
SUMMARY OF LINK OPTIONS

The syntax of the LINK command is:
LINK input-list TO link-file [link-controls]

The diagram below shows the FORTR AN-80 run-time libraries from which you may

. choose when linking your program(s) or RMX/80 system and the order (from left to
right) in which they must be given in the ‘input-list’ to the LINK command. Except
where otherwise specified, one and only one item mustbe selected from each block
in the diagram.

Definitions of the libraries that appear in the diagram are given on the following

page.
FORTRAN-80 LINKING OPTIONS
FPSOFT.LIB
(For RMX/80- User or (For RMX/80-
based modules FPHARD.LIB based
systems and F80ISS.LIB of systems
only) program or FPSFTX.LIB onty)
Fo‘;‘“T“RSAN F80RUN.LIB | F80RMX.LIB FPEF.LIB or PLM8O.LIB
RMX/80 PL/M-80, o, FPHRDX.LIB | RMX/80
linking and FBONIO.LIB or linking
option assembly FPHXI0.LIB option
{see below) language of (see below)
FPNULL.LIB
— - \
\ ~ o AN
~ RMX/80 LINKING OPTIONS P AN
AN ~ —_ N
~ o
AN ~ - N
‘ input-output
TH
DFS libraries other
configura- Pl or extension
R;“T":;’;E'.B tion libraries input-output libraries RMX8xx.LIB** | UNRSLV.LIB
() module*** or mini-TH (it
F8ONDS.LIB libraries desired)
or
F8ONTH.LIB

Note that you must notlink in FBONIO.LIB if your program includes any STOP or PAUSE
statements; doing so may cause the 8080 processor to enter a halt state. Aiso note that in
some cases when running in a stand-alone {(non-ISIS, non-RMX) environment, both
F8ONIO.LIB and F80ISS.LIB should be linked in (in that order). Refer to ‘Linking and
Locating’ in Chapter 7.

‘xx’ is 20, 30, or 10 for iISBC 80/20, 80/30, or 80/10 systems respectively.

*** Your configuration module may actually be included anywhere in the ‘user modules and
program units’ section; it need not precede ail cther user-coded modules. It is separated
outin this diagram merely to show that it is unique to programs running under RMX/80.

T3

D-1

Summary of Link Options

FORTRAN-80 Compiler

Library Description

F8ORUN.LIB Integer arithmetic, array indexing, and miscellaneous routines

F80ISS.LIB Input/output for the ISIS-Il environment

F80RMX.LIB Input/output for the RMX/80 environment

F8ONIO.LIB External reference library for programs using no FORTRAN /O
exceptport /0

FPEF.LIB Floating-point intrinsic functions

FPSOFT.LIB Floating-point arithmetic library for the non-RMX (ISIS-Il or
stand-alone) environment

FPHARD.LIB Ftoating-point arithmetic library using the iSBC 310 math unit for the
non-RMX (iSIS-Il or stand-alone) environment

FPSFTX.LIB Floating-point arithmetic library for the RMX/80 environment

FPHRDX.LIB Fioating-poipt arithmetic library using the iSBC 310 math unit for
RMX/80, iISBC 80/20 and 80/30 systems

FPHX10.LIB Floating-point arithmetic library using the iSBC 310 math unit for
RMX/80, iSBC 80/10 systems

FPNULL.LIB External reference library for programs using no floating-point
operations

PLM80.LIB Support for library modules coded in PL/M

RMX8xx.LIB Library containing the RMX/80 Nucleus (RMX820.L1B, RMX830.LIB or
RMX810.LiIB); the START module in this library must be linked
explicitly at the beginning of ‘input-list’, as shown in the diagram

F8ONDS.LIB External reference library for programs running under RMX/80
without the Disk File System

F8ONTH.LIB Externa! reference library for programs running under RMX/80
without the Terminal Handler

UNRSLV.LIB External reference library for resolving unsatisfied references made

by RMX8xx.LIB

The RMX/80 linking options—including Disk File System (DFS) libraries, Terminal
Handler (TH) libraries, minimal Terminal Handler (mini-TH) libraries, and other
extension libraries—are described in detail in the RMX/80 User’s Guide.

Note that these libraries come from different software products. FSORUN.LIB,
F80ISS.LIB, F8ONIO.LIB, FPEF.LIB, FPSOFT.LIB, FPHARD.LIB,
FPNULL.LIB, and PLMS80.LIB are provided in the basic FORTRAN-80 package.
FS8ORMX.LIB, FPSFTX.LIB, FPHRDX.LIB, FPHX10.LIB, FRONDS.LIB, and
FS80ONTH.LIB are supplied in the FORTRAN-80 Run-Time Package for RMX/80
Systems (iSBC 801). RMX8xx.LIB, UNRSLV.LIB, the DFS libraries, the TH
libraries, the mini-TH libraries, and the other extension libraries are part of the
RMX/80 software package. (RMX/80 also includes PLM80.LIB.)

D-2

APPENDIX E|
SPEEDS AND STACK REQUIREMENTS FOR
FLOATING-POINT OPERATIONS

The following table gives execution speeds and minimum stack requirements for
FORTRAN floating-point operations and intrinsic functions as implemented by the
floating-point libraries for various run-time environments.

Execution times are given in milliseconds, and stack requirements (parenthesized)

. are given in bytes. Stack sizes do not take into account the extra stack required to
process a floating-point error (20 bytes if the default arithmetic error handler is us-
ed.) Timings were determined on an Intellec Microcomputer Development System in
which one clock cycle is 0.576 usec. Execution times for software addition and sub-
traction are normalizing-dependent, and the times listed are ‘‘typical.”’ Execution
times for the RMX libraries assume that the previous floating-point operation was
performed within the same task.

. You can estimate the amount of stack space required for your floating-point opera-
tions in each program module by finding, in the table, the maximum stack require-

ment for any one floating-point operation you use, then adding 10-20% extra to that
as a “‘safety factor.”

Operation or FPSOFT.LIB | FPSFTX.LIB |FPHARD.LIB ([FPHRDX.LIB*
Intrinsic
Function msec|(bytes) | msec | (bytes) | msec |(bytes)| msec | (bytes)
addition 1.0 (32) 1.1 (32) 018 | (6) 0.35] (10)
subtraction 0.8 (32) 083 (32) 0.18 | (6) 0.35| (10)
multiplication 1.7 | (40) 1.8 (40) 018 | (6) 0.35((10)
division 38 (36) 39 (36) 0.18 | (6) 035 (10)
negation 0.15] (10) 018 | (10 014} (4 0.30| (10)
square root 14. (26) 114. (26) 011] (4 0.26 | (10)
square 2.2 (42) 2.3 (42) 0091 (4 0.24| (10
comparison (two 0.36| (16) 0.38 1 (16) 0.83 | (24) 1.8 (28)
negative arguments)
comparison (two 0.35] (0) 0.3 (0) 026 | (0) 062 (0
positive arguments)
comparison (positive or 0.15] (8) 018] (8 009 (2 0.26| (8)
negative argument
. to zero)
load internal 0.26| (16) 0.29 | (186) 016 | (6) 0.33| (10)
floating-point record
store internal 0.231 (14 025 (14) 014 | (6) 0.30 | (10)
floating-point record
¢ converting 32-bit 0.717 (22) 0.73] (22) 015 | (6 032} (10)
integer to float
converting 16-bit integer 1.0 (36) 1.1 (36) 017 | (8 0.321 (10)
™ to float
converting float to 16-bit 1.1 (18) 1.2 (18) 0.67 | (24) 1.1 (30)
integer
converting float to 32-bit 0.55] (8) 0.56 | (10) 0.85 | (26) 1.4 (30)
integer
converting binary to decimalf — (93) — (93) — (77) — (91)
converting decimal to binary] — (27) — (27) — (27) — (27)
. *Stack requirements for FPHX10.LIB are the same as for FPHRDX.LIB. Execution times may be

slightly slower.

E-1

Requirements for Floating Point

FORTRAN-80 Compiler

Operation or FPSOFT.LIB | FPSFTX.LIB | FPHARD.LIB {FPHRDX.LIB*

Intrinsic

Function msec |(bytes) | msec |(bytes) | msec |(bytes)| msec [(bytes)
AINT (a) 3.1 (30) 3.2 (32) 1.3 (30) 2.3 (36)
ANINT (a) 4.7 (32) 49 (34) 1.8 (32) 3.3 (38)
NINT (a) 3.1 (64) 3.2 (62) 1.3 {66) 2.3 (78)
ABS (a) 0.14 | (10) 017 | (10) 014 | (4 0.30 | (10)
MOD (a1,a2) 13.2 (54) 13.7 (54) 3.4 (38) 6.4 (44)
SIGN (a1,a2) 1.9 (40) 2.1 (50) 1.4 (30) 2.6 (34)
DIM (a1,a2) 2.8 (38) 3.1 (38) 1.4 (28) 2.8 (32)
EXP (a) 30. (80) | 31. (82) 77 (76) | 14. (94)
ALOG (a) 28. (82) | 28. (82) 4.6 (38) 8.6 (44)
ALOG10 (a) 28. (82) | 28. (82) 4.6 (38) 8.7 (44)
SIN (a) 68. (96) | 71. (96) | 20. (70) | 37. (76)
COS (a) 70. 96) | 73. (96) | 21. (70) | 38. (76)
TAN (a) 57. (90) | 959. (90) | 15. (66) | 27. (78)
ASIN (a) 55. (84) | 56. (84) 9.4 (50) | 17. (54)
ACOS (a) 62. (86) | 63. (86) | 10. (52) | 18. (56)
ATAN (a) 30. (78) | 30. (80) 6.6 66)] 11. (76)
ATAN2 (a) 38. (88) | 38. (90) | 10. (80) | 18. (94)
SINH (a) 37. (90) |[39. 90) }11. (66) | 20. (72)
COSH (a) 34. (82) |35. (82) 9. (58) |17. (64)
TANH (a) 37. (90) | 39. (90) | 11. 66) | 21. (72)

*Stack requirements for FPHX10.LIB are the same as for FPHRDX.LIB. Execution times may be

slightly slower.

APPENDIX F
PROVIDING REENTRANCY FOR
NON-RMX FLOATING-POINT LIBRARIES

The non-RMX floating-point libraries, FPSOFT.LIB and FPHARD.LIB, are not
reentrant. However, two routines, FQFSAV and FQFRES, are included in these
libraries to enable the user to effect reentrancy. If it is possible for a floating-point
operation in a non-RMX system to be interrupted, FQFSAV and FQFRES should
be called from any interrupt routine that may use floating-point operations or which
may call another routine that uses floating-point operations.

FQFSAYV should be called at the start of the interrupt handler, since it saves the
floating-point status, and FQFRES should be called at the end, since it restores the
previous status. There is no limitation on the number of levels in which these calls
may be nested, other than the amount of stack space available.

F-1

INDEX

Primary references are italicized in this
index.

Arithmetic Errors, B-7
Base Address Locate Controls, 4-6

CLOSE Capability, 7-2, 7-4

CODE Compiler Control, 1-3, 2-5

Compile-Time Environment, /-1

Compiler Control Errors, B-6

Compiler Controls, 2-1ff

Compiler Failure Errors, B-7

Compiler Invocation, 1-8, 2-1

Compiler Output, 1-1, 1-2

Cross-Reference File, (see Symbol Cross-
Reference File)

Data Lengths, A-1

DATE Compiler Control, 2-6
DEBUG Compiler Control, 2-3
Default Compiler Controls, 2-2, 2-10
Device Drivers, 7-2ff

EJECT Compiler Control, 2-7

ERR Specifier, B-16

Error Handling, B-1ff
Arithmetic, 5-2, B-7ff

Error Messages, B-1ff

Error Monitoring, B-11

Execution Speeds (Floating-Point
Operations), E-1

Floating-Point Error Handler, B-7ff
FBACK!1 Capability, 7-2, 7-4
Floating-Point Numbers, C-1ff
Floating-Point Operations
Execution Speeds, E-1ff
Reentrancy,F-1
Stack Requirements, E-Iff
FPEF.LIB, 1-3, 4-2, 5-3, 6-6, 7-9, D-1ff
FPHARD.LIB, 1-3, 4-2, 4-3, 5-3, D-iff,
E-1ff, F-1
FPHRDX.LIB, 1-4, 4-2, 4-3, 5-3, 6-5ff,
D-Iff, E-1ff
FPHXI10.LIB, 1-4, 4-2, 4-3, 5-3, 6-5ff,
D-Iff, E-1ff
FPNULL.LIB, 1-3, 4-2, 4-3, D-Iff
FPSFTX.LIB, 1-3, 4-2, 4-3, 5-3, 6-5ff,
D-iff, E-1ff
FPSOFT.LIB, 1-3, 4-2, 4-3, 5-3, D-1ff,
E-1ff, F-1
FQFRST, 6-2, B-9
FQFSET, 6-2, B-9

FQODLO, 7-7

FQOEND, 4-5, 5-2, 6-3

FQOFER, 7-8

FQO0GO, 4-5, 5-1, 5-2, 6-1

FQOLVL, 7-2ff

FQOPRC, 7-8

FQO0007, 7-7

FQO0008, 7-8

FREEFORM Compiler Control, 2-8, A-3

F80ISS.LIB, 1-3, 4-2, 4-3, 4-4, 79, D-1ff

F8ONDS.LIB, 1-4, 4-2, 6-5ff, D-1ff

F80NIO.LIB, 1-3, 4-2, 4-3, 4-4, D-Iff

F8ONTH.LIB, 1-4, 4-2, 6-5{f, D-1ff

F8ORMX.LIB, 1-4, 4-2, 4-3, 4-4, 6-5ff,
D-1ff

F80RUN.LIB, 1-3, 4-2, 5-3, 6-6, 7-9, D-1ff

INCLUDE Compiler Control, 2-8, A-3
Initialization, 4-5, 5-1, 5-2, 6-1, 7-1
Input/Output Capabilities, 7-2ff
Input/Output Drivers, 7-2ff
Input/Output Errors

Compile Time, B-6

Run Time, B-11ff
Input/Output Routines, 4-4
Input to Compiler, 1-1, 1-2
INPUT Subroutine, A-2
Integer Formats, C-2ff
Interrupt Handling, 5-3, 6-1, A-4
IOSTAT Specifier, B-16
iSBC 310

Interface, 5-1ff

Memory Mapping, 5-2
ISIS Errors, B-16ff

Libraries
Description, 1-3ff
Linking, 4-2ff, 5-3ff, 6-6ff, 7-9, D-1ff
LINK Command, 1-8ff, 4-2ff, 5-3ff, 6-6ff,
7-9, D-1ff
LINK Errors, B-20
LIST Compiler Control, 1-3, 2-4
List File
Controls, 2-4ff
Definition, /-2
Formats, 3-1ff
LOCATE Command, 1-8ff, 4-1, 4-6
LOCATE Errors, B-20
Lowercase Letters, A-2

MAKEOQF Capability, 7-2, 7-5
Memory Allocation, 4-1ff
Memory Errors, B-6

Index-1

Memory Segments, 4-1ff
Module Names, -2
MV2REC Capability, 7-2, 7-4

NOCODE Compiler Control, 2-5
NODEBUG Compiler Control, 2-3
NOFREEFORM Compiler Control, 2-8
NOLIST Compiler Control, 2-4
NOOBIJECT Compiler Control, 2-3
NOPAGING Compiler Control, 2-5ff
NOPRINT Compiler Control, 2-4
NOSYMBOLS Compiler Control, 2-4ff
NOXREF Compiler Control, 2-5
Number Formats

Floating-Point C-1ff

Integer, C-2ff

OBIJECT Compiler Control, 2-3
Object File

Controls, 2-3

Definition, /-2

Linkage, 4-1, 4-2

Relocation, 4-6ff
OPEN Capability, 7-2, 7-3
OPTIMIZE Compiler Controls, 2-3
ORDER Locate Control, 4-6
OUTPUT Subroutine, A-2

PAGING Compiler Control, 2-5ff

PAGELENGTH Compiler Control, 2-6

PAGEWIDTH Compiler Control, 2-6

PLMS80.LIB, 1-3, 4-2, 5-3, 6-6, 7-9, D-1ff

Port Input/Output, A-2

Preparing FORTRAN System Diskettes,
1-4ff

PRINT Compiler Control, 1-2, 2-4

Procedure Linkage, 4-4ff

Program Development, I-8ff, 4-1

Program Execution, 1-8ff, 4-7

Program Listing, 3-1ff

Index-2

READ Capability, 7-2, 7-4
Record Length Specifier, A-2
Reentrancy

Floating-Point Operations, F-1

1/0 under RMX/80, 6-4
REENTRANT Compiler Control, 2-7

RESTORE Compiler Control, 2-9
REWIND Capability, 7-2, 7-5
RMX/80 Errors, B-18ff

RMX/80 Interface, 6-1ff
Run-Time Environment, /-2

SAVE Compiler Control, 2-9
Source File, 1-2
Source Program Errors, B-1ff
Stack Requirements, E-1ff
Statement Functions, A-1
Stand-Alone Environment, 1-1, 1-2, 7-1ff
STORAGE Compiler Control, 2-8
SUBMIT Command, 1-8ff
Symbol Cross-Reference File
Definition, 1-3
Format, 3-4ff
XREF Control, 2-5
SYMBOLS Compiler Control, 2-4ff

Termination, 4-5, 5-2, 6-3
TITLE Compiler Control, 2-6

UNIT Run-Time Control, 4-7
Unit Preconnection, 4-7, A-4

WORKFILES Compiler Control, 2-9
WRITE Capability, 7-2, 7-4

XREF Compiler Control, 2-5

