
•
,

• ISIS-II
FORTRAN-80 COMPILER
OPERATOR'S MANUAL

• Manual Order Number: 98004808

•

•
..

•
Copyright 1978 Intel Corporation

I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel O'lrporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE
INSIlE
IKTEL
INTEI.LEC
iSBC

L1IlRARY MAKAGER
MCS
MEGACHASSIS
MJCRO\1AP
MliLTlBUS

PROMPT
RMX
UPI
~SCOPE

Printed in U.S.A./A106/0879/5K BL

•

•

•

•

•

•

•

•

•
•

•

PREFACE

This manual describes operating procedures for the ISIS-II FORTRAN-SO Compiler
and run-time libraries. The compiler translates FORTRAN-SO source code into
relocatable object code for the SOSO and SOS5 microprocessors. The manual also
describes the steps needed to execute the compiled program including all necessary
linkage, relocation, and run-time requirements.

Manual Organization

Chapters 1 through 4 of this manual apply to all users, and describe compiler
features and the general procedures for linking, locating, and execution of pro­
grams. The subsequent chapters (5-7) provide instructions applicable to particular
run-time environments. The Appendices supply reference information pertinent to
all systems.

The manual contains the following chapters and appendices:

"Chapter 1. Compiler Overview," which gives a general description of the com­
piler, its input and output files, and the run-time libraries provided with the com­
piler, plus a step-by-step outline of the compilation, linking, locating, and execution
of a small sample program.

"Chapter 2. Compiler Controls," which describes each of the controls that may be
used to modify the interpretation of source files, the use of compiler resources, and
the format and content of output files.

"Chapter 3. Listing Formats," which explains each part of the listed output
available from the compiler.

"Chapter 4. Program Linkage, Relocation, and Execution," which gives general
instructions for linking, locating, and executing programs.

"Chapter 5. iSBC 310 Interface," which gives special instructions for using the run­
time software interface that allows an iSBC 310 High-Speed Math Unit to be used
for greater speed in performing floating-point operations.

"Chapter 6. Preparing Programs to Run Under RMX/SO," which provides
information applicable to running FORTRAN programs in the RMX/SO
environment.

"Chapter 7. Preparing Programs to Run Without ISIS-II or RMX/SO," which
gives instructions needed in non-ISIS, non-RMX run-time environments, including
instructions for programming custom low-level I/O drivers .

"Appendix A. The Compiler and the FORTRAN Language," which summarizes
the limitations and extensions to the standard FORTRAN language assumed by the
FORTRAN-SO compiler.

"Appendix B. Error Messages," which lists the error messages and error codes
which may occur at compile time and at run time, including (for reference) errors
that may be detected by ISIS-II, RMX/SO, and the LINK and LOCATE programs.
Information is also provided on how to program custom error handlers for floating­
point operations.

iii

IV

"Appendix C. Number Formats," which explains the internal formats for integer
and floating-point numbers assumed by the FORTRAN compiler, together with the
schemes used for rounding floating-point numbers and exponent wraparound.

"Appendix D. Summary of LINK Options," which provides a diagram of all
libraries that may be specified for various run-time environments, in the order in
which they must be given in the LINK command.

"Appendix E. Execution Speeds and Stack Requirements for Floating-Point
Operations," which lists the execution speed and minimum stack requirement for
each FORTRAN operation and intrinsic function that involves floating-point
(REAL) numbers.

"Appendix F. Providing Reentrancy for Non-RMX Floating-Point Libraries,"
which explains how two library procedures can be called to effect reentrancy for
floating-point operations in non-RMX environments.

Related Publications
No discussion of the FORTRAN programming language is provided here. Please
refer to the document

FORTRAN-SO Programming Manual 9800481

Use of the compiler and run-time libraries requires the ISIS-II software. (ISIS-II is
the diskette operating system facility of Intel's Intellec or Intellec Series II
Microcomputer Development System). This facility is described in the document

ISIS-II User's Guide 9800306

Object modules produced by the compiler may be run in the ISIS-II environment,
under the iSBC SO Real-Time Multitasking Executive (RMX/SO), or without either
operating system. The ISIS-II User's Guide, referenced above, provides all
necessary information on the ISIS-II run-time environment. Use of RMX/SO is
described in the document

RMXISO User's Guide 9S00522 (Rev. B or later)

If you are using the iSBC 310 High-Speed Math Unit interface option for faster
floating-point operations, you will find information on the operation of this unit in
the document

iSBC 310 High-Speed Mathematics Unit
Hardware Reference Manual

9800410

For further information on linking FORTRAN and non-FORTRAN procedures
together, refer to the document

How to use FORTRAN with other Intel
Languages 9800778

(Application Note AP-44)

•
•

•

•

•

•

•
•

•

•

•
•

•

CHAPTER 1 PAGE

COMPILER OVERVIEW
Compile-Time Environment I-I
Run-Time Environment 1-2
Input/Output Files. .. 1-2

Source Files. .. 1-2
Object File. .. 1-2
List File \-2

Compiler Overlay/Scratch Files 1-3
FORTRAN Libraries 1-3
Preparing FORTRAN System Diskettes. 1-4
Sample Program Development. 1-8

CHAPTER 2
COMPILER CONTROLS
Specifying Compiler Controls 2-1

Controls Specified at Compile-Time 2-1
Control Lines. .. 2-2

Primary and General Controls. 2-2
Summary of Controls. .. 2-2
Object File Controls. .. 2-3

OBJECT/NOOBJECT Controls 2-3
DEBUG/NODEBUG Controls. 2-3
OPTIMIZE Controls 2-3

Compiler Listing Controls. .. 2-4
PRINT /NOPRINT Controls. 2-4
LIST INOLIST Controls. .. 2-4
SYMBOLS/NOSYMBOLS Controls 2-4
CODE/NOCODE Controls 2-5
XREF/NOXREF Controls 2-5

Listing Format Controls. .. 2-5
PAGING/NOPAGINGControls 2-5
PAGELENGTH Control 2-6
PAGEWIDTH Control 2-6
DATE Control. .. 2-6
TITLE Control. .. 2-6
EJECT Control. .. 2-7

Source File Controls. .. 2-7
REENTRANT Control 2-7
0077 /0066 Controls 2-7
STORAGE Control 2-8
FREEFORM/NOFREEFORM Controls. 2-8
INCLUDE Control 2-8

Compiler Resource Controls. .. 2-9
WORKFILES Control 2-9
SA VE Control. .. 2-9
RESTORE Control. .. 2-9

Default Control Settings 2-10

CHAPTER 3
LISTING FORMATS
Program Listing 3-1

Page Heading 3-1
Compilation Introductory Lines. 3-\

CONTENTS

PAGE
Assembly-Language Listing 3-2
FORTRAN Source Listing 3-2

Symbol and Cross-Reference Listings. 3-4
Compilation Summary and Signoff 3-4

CHAPTER 4
PROGRAM LINKAGE, RELOCATION,
AND EXECUTION
Building An Executable Program 4-1
Memory Allocation. .. 4-1
Linking Object Modules. .. 4-2

LINK and SUBMIT Commands. 4-2
FORTRAN Library F80ISS.LIB 4-4
FORTRAN Library F80RMX.LIB 4-4
Linking with non-FORTRAN

Procedures 4-4
Object Module Relocation. .. 4-6

ORDER Control. .. 4-6
Base Address Controls. .. 4-6

Program Execution and Unit Preconnection. 4-7

CHAPTERS
iSBC 310 INTERFACE
Dedicated Use of iSBC 310 5-1
I/O Base Address and Memory Base Address 5-1
Error Handling .. 5-2
Activation and Deactivation of iSBC 310

Memory Mapping. .. 5-2
Use of iSBC 310 Interface in iSBC 80-Based Systems.. 5-3
LINK Command. .. 5-3

CHAPTER 6
PREPARING PROGRAMS TO RUN
UNDER RMX/80
Program Structure Under RMX/80 6-1
Initialization and Termination. 6-1
Input and Output 6-3
Using the iSBC 310 Option Under RMX/80 6-4
Configuration Requirements. .. 6-4
LINK Command 6-5
Unresolved External References. 6-7
Example. .. 6-7

CHAPTER 7
PREP ARING PROGRAMS TO RUN
WITHOUT ISIS-II OR RMX/80
Initialization 7-1
Input and Output 7-1

Providing I/O Capabilities for Files. 7-2
Directly Callable I/O Drivers 7-7

LINK Command. .. 7-9

v

APPENDIX A PAGE
THE COMPILER AND THE
FORTRAN LANGUAGE
Compiler Limitations on Language. A-I

Statement Functions A-I
Compiler Extensions to Language. A-2

Lowercase Letters .. A-2
Record length Specifier for Sequential Access Files. A-2
Port Input/Output. .. A-2
Reentrant Procedures. .. A-2
Freeform Line Format. .. A-3
Interpretation of DO Statements. A-3
Including Source Files. .. A-3

Flexibility in Standard Restrictions. A-3
Association of Storage Units A-3
Partially Initialized Arrays. A-4
Transfers into IF Blocks. .. A-4

Unit Preconnection .. A-4
Interrupt Processing .. A-4

APPENDIXB
ERROR MESSAGES
FORTRAN Compiler Error Messages B-1

Source Program Error Messages B-1
Compiler Control Error Messages. B-6
Input/Output Error Messages. B-6
Insufficient Memory Error Messages. B-6
Compiler Failure Errors 8-7

FORTRAN Run-Time Error Messages 8-7
Run-Time Arithmetic Errors B-7
Run-Time I/O Errors B-Il

vi

PAGE
'ERR' Specifier. B-16
'lOSTAT' Specifier B-16

ISIS-II Error Messages. .. 8-16
RMX/SO Error Codes 8-1S
LINK Error Messages 8-20
LOCA TE Error Messages. .. B-20

APPENDIXC
NUMBER FORMATS
Floating-Point Number C-I

Floating-Point Standard C-I
Floating-Point Zero. .. C-I
Invalid Numbers. .. C-J
Floating-Point Number Format C-I
Rounding. .. C-2
Exponent Wraparound. .. C-2

Integers. .. C-2

APPENDIXD
SUMMARY OF LINK OPTIONS

APPENDIXE
SPEEDS AND STACK
REQUIREMENTS FOR FLOA TING­
POINT OPERATIONS

APPENDIXF
PROVIDING REENTRANCY FOR NON­
RMX FLOATING-POINT LIBRARIES

INDEX

•
•

•

•

•

•

•
FIGURE TITLE PAGE

1-\ Directory Listing of a Standard ISIS-II
Version 3.4 System Diskette \-5

1-2 SUBMIT File to Create a System .. FORTRAN Compile Diskette and Directory
Listing of the Resulting Diskette 1-6

1-3 SUBMIT File to Create a System FORTRAN
Run-Time Library Diskette, and
Directory Listing of the Resulting Diskette .. 1-7

•

•

•
•

•

ILLUSTRATIONS

FIGURE TITLE PAGE

3-1
3-2

3-3
C-I
C-2

Sample Program Listing 3-3
Sample Symbol-Attribute and
Cross-Reference Listing. 3-5
Sample Compilation Summary. 3-5
Floating-Point Number Format C-l
Integer Formats. .. C-3

vii

•
t

•

•

•
,

•

•
•

•

•

•

•

CHAPTER 1
COMPILER OVERVIEW

The ISIS-II FORTRAN-80 Compiler converts FORTRAN source code into
machine-executable form. It translates FORTRAN program units into relocatable
object code modules for the 8080 and 8085 proCt~ssors and (depending on the output
options selected) can produce the object code module, a listing of the source and
compiled code, and a symbol cross-reference listing .

NOTE

Relocatable object modules produced by version 1.0 of FORTRAN-80 are
not compatible with this release. All program units must be recompiled us­
ing version 2.0 of the compiler before being linked with the current FOR­
TRAN libraries and with other program units compiled using version 2.0.

The compiler runs under the ISIS-II operating system. Object modules produced by
the compiler may be run in the ISIS-II environment, under the iSBC 80 Real-Time
Multitasking Executive (RMX/80), or in a stand-alone environment without either
operating system. Supporting the compiler is a set of relocatable library modules
that supply a run-time environment includiing floating··point arithmetic and
mathematical functions, sequential or direct access input! output (with or without
formatting), and elementary interaction with ISIS-II or RMX/80. Floating-point
operations may be performed by software routines supplied with the compiler or,
alternatively, via a software interface provided for the iSBC 310 High-Speed
Mathematics Unit.

Because of the variety of hardware and software configurations in which
FORTRAN-80 programs can be run, a number of different run-time support
libraries are provided. Which libraries you select at link time will depend upon your
particular run-time environment.

In discussing FORTRAN-80, it is important to distinguish between the compile­
time environment-that in which the FORTRAN compiler runs to translate your
source program segments (and in which the resulting relocatable object program is
linked and located) and the run-time environme:nt in which your linked and located
object program is executed. These two environments are defined in the following
paragraphs.

Compile-Time Environment
No matter what your final application, the following environment is required to
compile, link, and locate your FORTRAN programs:

• An Intellec or Intellec Series II Microcomputer Development System with 64K
RAM Memory

• Console Device (TTY or CRT)

• Diskette unit with at least two drives

• The ISIS-II software

1-1

Overview

1-2

FORTRAN-SO Compiler

Run-Time Environment

Once your program modules have been compiled, linked, and located, you may run
them on any 8080- or 8085-based system that is appropriate to your application.
Your run-time environment may be an Intellec system and ISIS-II (the same en­
vironment in which your programs are compiled); an iSBC 80110, 80/20, or 80/30
system running under RMX/80; or an 8080- or 8085-based iSBC or custom-designed
system with no operating system software at all. Any of these environments can op­
tionally be configured to include an iSBC 310 High-Speed Math Unit for faster
floating-point operations. All that is required at run time is an 8080 or 8085 pro­
cessor with hardware support and enough memory for your application.

Input/Output Files

Source File

The compiler expects a diskette-resident source file consisting of one or more
program units. A program unit may be a main program or a BLOCK DATA,
FUNCTION, or SUBROUTINE subprogram. The source file can also contain com­
piler controls embedded in the FORTRAN source code. These controls direct the ex­
act operation of the compiler. In addition to the source file, the compiler will read
any files specified by INCLUDE compiler controls (see Chapter 2).

A FORTRAN program, as defined in the FORTRAN-SO Programming Manual,
consists of one and only one FORTRAN main program and any number of FUNC­
TION, SUBROUTINE, and/or BLOCK DATA subprograms. Under some cir­
cumstances, however, you may not need a FORTRAN main program at all-for in­
stance, if your main program is in assembly language or PL/M, or if you are coding
FORTRAN tasks to run under RMX/80. The FORTRAN-80 compiler does not re­
quire that your source file include a main program.

Object File

The primary output from the FORTRAN compiler is a file containing the
relocatable object code. This file is linked with the FORTRAN run-time library
routines (as well as user-supplied relocatable files) to produce a single, relocatable
object file. This file is then located to form an absolute module ready for execution.

Each source file submitted to the compiler produces one object file. Each program
unit in the source file produces one object module in the object file. Object modules
have the same name as their corresponding input program unit. In the case of an un­
named main program or BLOCK DATA subprogram, the module names assigned
are @MAIN and @ BLOCKDA T A, respectively.

List File

The compiler list file consists of the program listing and symbol cross-reference
listing. The program listing can include introductory headings, a pseudo assembly­
language listing of the object code, the source-code listing, symbol and cross­
reference listings, and error messages. List file data is broken out separately for each
program unit and is directed to the file or device specified by the PRINT compiler
control (Chapter 2).

•
•

•

•

•

•

•
•

•

•

•

•

FORTRAN-80 Compiler

If you specify the CODE compiler control, the program listing includes a pseudo
assembly-language version of all relocatable object code generated by the compiler.
The source text is listed if the LIST control is active. Error messages are listed unless
the NOPRINT control has suppressed all printed output. (If an error is detected
within a specific source statement, that statement is printed even if the NOLIST
compiler control is in effect.) The attributes of symbols are listed if the SYMBOLS
control is active.

If you specify the XREF compiler control, a symbol cross-reference listing is pro­
duced. This is followed by the compilation summary .

See Chapter 2 for more complete descriptions of the various compiler controls, and
Chapter 3 for details of the listing format.

Compiler Overlay/Scratch Files

In general, you need not concern yourself with the format of the compiler's overlay
files or temporary scratch files. You must be aware of their existence, however, so
you do not accidentally use one of these reserved file names for a file of your own.

The FORTRAN compiler is invoked by calling file 'FORTSO,' which is the first
phase of the compiler. This phase initializes the compiler and then calls other phases
as overlays. These overlays are named 'FORT80.()Vn,, where 'n' is a digit 0-4.

Compiler scratch files are deleted automatically by the compiler when they are no
longer needed. The file names reserved for them are:

FORTT1.TMP
FORTT2.TMP
FORTXR.TMP
FORTAT.TMP
FORTER.TMP

FORTRAN Libraries

Several FORTRAN libraries are provided to do various mathematical and input/
output operations. Those libraries appropriate to your particular run-time environ­
ment are to be linked to your program after it is compiled, using either the LINK
command or the SUBMIT command. See the sample program development in the
next subsection for an example. The libraries and various linking strategies are
discussed in detail in Chapter 4. The following are the libraries provided:

F80RUN.LIB

F80ISS.LlB

F80NI0.LlB

FPEF.LlB

FPSOFT.LlB

FPHARD.LlB

FPNULL.LlB

Integer arithmetic, array indexing, and miscellaneous
routines (all environme:nts)

Input/output for the non-RMX environment (ISIS-II or
stand-alone environment)

External reference l:lbrary for programs using no
FORTRAN input or output except port 110 (all en­
vironments)

Floating-point intrinsic functions (all environments)

Floating-point arithmetic library for the non-RMX
(ISIS-II or stand-alone) environment

Floating-point interface to the iSBC 310 math unit for the
non-RMX (ISIS-II or stand-alone) environment

External reference liibrary for programs using no
floating-point operations (all environments)

Overview

1-3

Overview

1-4

PLMBO.LlB

FORTRAN-SO Compiler

Support for library modules coded in PLiM (all
environments)

A separate package, the FORTRAN-SO Run-Time Package for RMX/SO Systems
(iSBC 801), contains the additional libraries necessary to run FORTRAN programs
in the RMX/SO environment. These libraries are described in detail in Chapter 6.
The following libraries are included:

FBORMX.LlB

FPSFTX.LlB

FPHRDX.LlB

FPHX10.LlB

FBONTH.LlB

FBONDS.LlB

Input! output for the RMX/SO environment

Floating-point arithmetic library for the RMX/SO
environment

Floating-point interface to the iSBC 310 math unit for
RMX/SO, iSBC S0120 and SO/30 systems

Floating-point interface to the iSBC 310 math unit for
RMX/SO, iSBC SO/lO systems

External reference library for systems running under
RMX/SO without the Terminal Handler

Externai reference library for systems running under
RMX/SO without the Disk File System

Procedures in run-time support libraries have names that begin with either 'FQO' or
FQF.' You should avoid using program unit names beginning with these characters.

Preparing FORTRAN System Diskettes

The FORTRAN-80 compiler and libraries as delivered do not reside on system
diskettes. Before following the procedure given in the next section to develop the
sample program, you will generally want to create one or two FORTRAN system
diskettes by deleting some other programs from existing ISIS-II system diskettes,
then copying onto the diskettes the tuRTRAN compiler files and run-time libraries.
(The compiler can be run from a diskette on :Fl: with an ISIS-II system diskette on
:FO:, but this practice is usually inconvenient unless you have more than two diskette
drives.) If you are using single-density diskettes, you will need two system diskettes,
one for the compiler and one for the run-time libraries; for double-density diskettes,
you can fit the compiler and other libraries on the same system diskette.

Figures 1-1, 1-2, and 1-3 show how you might create two single-density system
diskettes suitable for use in compiling, linking, and locating FORTRAN programs.
Figure 1-1 shows the directory listing for a standard ISIS-II (version 3.4) system
diskette. Figure 1-2 shows an ISIS-II SUBMIT file that could be used to delete files
from and add files to the standard system diskette, producing a system diskette con­
taining the FORTRAN compiler; the figure also shows a directory listing of the files
on the resulting diskette. Figure 1-3 shows a SUBMIT file that similarly converts
another standard system diskette to one suitable for linking and locating programs
with the FORTRAN libraries, and a directory listing of the files on the resulting
diskette. Both SUBMIT files assume that a copy of the FORTRAN compiler and
run-time libraries-e.g., the product as delivered-is on drive :Fl:.

In both cases, you may either copy the whole SUBMIT file onto one of your disk­
ettes and execute it with an ISIS-II SUBMIT command or enter the ISIS-II com­
mands in the SUBMIT file one by one from the console. Either way, before you
begin it is a good idea to prepare back-up copies of all your diskettes.

The two diskettes thus created may be used in the sample program development
outlined in the following section. A similar SUBMIT file can be used to convert a
single standard double-density diskette into one containing the FORTRAN com­
piler, run-time libraries, LINK, and LOCATE.

•
•

•

•

•

•

FORTRAN-80 Compiler Overview

• DIRECTORY OF :FO:ISOOAS.SYS
NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 26 3200 IF
ISIS .MAP 3 256 IF
ISIS .TO 24 2944 IF
ISIS .LAB 2 128 IF
ISIS .BIN 94 117 40 SIF
ISIS .CLI 21 2548 SIF
ASM80 107 13374 IISI
ASM80 .OVO 20 .2321 IISI
ASM80 .OV1 19 2280 IISI
ASM80 .OV2 18 2091 WSI
ASM80 .on 188 23679 WSI

• ASXREF 35 4239 IISI
ATTRIB 38 4682 WSI
BINOBJ 28 3399 IISI
COPY 65 8042 WSI
DELETE 37 4506 WSI
DIR 46 5733 WSI
EDIT 56 6999 WSI
FORMAT 49 6093 WSI
HEXOBJ 35 4281 \<is I • IDISK 50 6239 \<is I
LIB 82 10227 WSI
LINK 114 14298 WSI
LINK .OVL 29 3491 IISI
LOCATE 108 13505 WSI
OBJHEX 27 3284 WSI
RENAME 21 2487 WSI
SUBNIT 38 4629 WSI
FPAL .LIB 71 8712 WS
PLM80 . LIB 45 5615 WS
SYSTEM.LIB 24 2846 WS

1520
1520/2002 BLOCKS USED

• Figure 1-1. Directory Listing of a Standard ISIS-II Version 3.4 System Diskette

•

•
1-5

Overview

1-6

ATTRIB •.• WO
DELETE LINK .• ,LOCATE,LIB
DELETE ASM80.*,ASXREF
DELETE BINOBJ,HEXOBJ,OBJHEX,IDISK
DELETE ·.LIB
COpy :F1:FORT80.* TO •.•
ATTRIB FORTBo.DVM 11
ATTRIB •. M W1

DIRECTORY OF :FO:ISOOAS.SYS
NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 26 3200 W IF
ISIS .MAP 3 256 W IF
ISIS .TO 24 2944 W IF
ISIS .LAB 2 128 W IF
ISIS .BIN 94 11740 WSIF
ISIS .CLI 21 2548 WSIF
FORT80 36 4394 W
FORTBO.OvO 259 3247B W I
FORT80.0V1 54 6752 W I
FORTBO.OV2 241 30333 W I
FORT80.0V3 155 19412 W I
FORTBO.DV4 156 19523 W I
ATTRIB 38 4682 WSI
COpy 65 8042 WSI
DELETE 37 4506 WSI
DIR 46 5733 WSI
EDIT 56 6999 WSI
FORMAT 49 6093 WSI
RENAME 21 24B7 WSI
SUBMIT 38 4629 WSI

1421
1421/2002 BLOCKS USED

FORTRAN-80 Compiler

Figure 1-2. SUBMIT File to Create a System FORTRAN Compile Diskette, and
Directory Listing of the Resulting Diskette

•
•

•

•

•
..

•

•
•

•

•

•
..

•

FORTRAN-80 Compiler

ATTRIB *.* WO
DELETE ASM50. it ,ASXREF
DELETE BINOBJ,hEXOBJ,OBJHEX,IDISK
DELETE *.LIB
COPY :F1:*.LIB TO it.it

COpy :F1:FLINK TO ;0

ATTRIB it." W1

DIRECTORY OF :FO:ISOOAS.SYS
NAME EllT BLKS LENGTH ATTR
ISIS .DIR 26 3200 W IF
ISIS .MAP 3 256 W IF
ISIS .TO 24 2944 W IF
ISIS .LAB 2 125 W IF
ISIS .BIN 94 11740 WSIF
ISIS .CLI 21 2548 WSIF
F80ISS.LIB 420 52835 W
F50NIO.LIB 5 416 W
F80RUN.LIB 1 19 14936 w
FPEF ,LIB 100 12538 W
FPHARD.LIB 84 10402 W
FPNULL.LIB 3 212 W
ATTRIB 38 4682 WSI
FPSOFT.LIB 109 13638 W
COpy 65 8042 WSI
DELETE 37 4506 WSI
DIR 46 5733 WSI
EDIT 56 6999 WSI
FORMAT 49 6093 WSI
PLMtlO .LIB 45 5615 W
LIB 52 10227 WSI
LINK 114 14298 WSI
LINK .OVL 29 3491 WSI
LOCATE 108 13505 WSI
RENAME 21 2487 WSI
SUBMIT 35 4629 WSI

1731:l
173812002 BLOCKS USED

Figure 1-3. SUBMIT File to Create a System FORTRAN Run-Time Library
Diskette (for Linking and Locating), and Directory Listing of the Resulting

Diskette

Overview

1-7

Overview

1-8

FORTRAN-80 Compiler

Sample Program Development
The following example shows the normal sequence of operations used to develop a
FORTRAN program from system bootstrap to eventual program execution. The
steps involved are as follows:

1. Power up the Intellec hardware.

2. Insert an ISIS-II system diskette containing the compiler into Drive O.

3. Insert a second (data) diskette into Drive 1.

4. Bootstrap the ISIS-II operating system.

5. Enter your source program on Drive 1 using ISIS-II's EDIT program.

6. Compile the program with the FORTRAN compiler.

7. Exchange the compiler system diskette with a system diskette containing LINK,
LOCATE, and the FORTRAN libraries. (This step is not necessary if you have
a double-density diskette system.)

8. Link and locate the resulting object code program on Drive 1.

9. Execute your program.

Refer to the ISIS-II User's Guide to perform the first five steps in the above se­
quence. This manual explains how to compile, link, and locate programs.

The interactive sequence that follows is assumed to take place at your console ter­
minal. The text in lower case represents your input to the system. The comments on
the right are for clarification only, and do not represent material to be entered. This
example shows how to create, compile, load, and execute a complete FORTRAN
program for the ISIS-II run-time environment using the software floating-point
routines.

The sample program assumes that the FORTRAN compiler and run-time libraries
have been copied onto ISIS-II system diskettes (two diskettes for single density or
one for double density) as described in the previous section. FLINK is an ISIS-II
SUBMIT file that automatically links your object file ('myprog.obj' in the example)
to the FORTRAN libraries required when the run-time environment is ISIS-II and
the software floating-point routines (i.e., no iSBC 310 unit) are used.

Begin by bootstrapping ISIS-II.

ISIS-II, V3.4
-edit :f1:myprog.src

ISIS-II TEXT EDITOR, v1.6
NEw fILE
*i

PROGRAM GREETS
PRINT 10

10 fORMAT ('INTEL DELIVERS FORTRAN-80')
END

$$
*e$$
-fort80 :f1:myprog.src

ISIS-II fORTRAN COMPILER V2.0
o PROGRAM ERROR(S) IN PROGRAM UNIT GREETS
o TOTAL PROGRAM ERROR(S)

fORTRAN COMPILATION COMPLETE

The system identifies itself.
Call the ISIS editor.

Create program.

'$' is escape key.
Exit editor.
Invoke the compiler.

Compilation over; exchange
compiler diskette with second
system diskette if single­
density system.

•
•

•

•

•

•

•

•

•

•
•

•

FORTRAN-80 Compiler

-submit flink(:fl:myprog.obj,:fl:myprog.lnk)
-LINK :Fl :MYPROG.OBJ,F80RUN.LIB, &
**F80ISS.LIB,FPEF.LIB, &
*·FPSOFT.LIB,PLM80.LIB &
.·TO :Fl :MYPROG.LNK
ISIS-II LINKER V2.1
-:FO:SUBMIT RESTORE :FO:FLINK.CS(:VI:)
-locate :fl:myprog.lnk
ISIS-II LOCATER V2.1
-:fl:myprog
INTEL DELIVERS FORTRAN-80

The program is linked to
all FORTRAN libraries ...

, . .located ...

... and executed.

The compilation list and object files are written by default to a diskette file on the
same diskette as the source file (:Fl: in this case). By default, they have the same
name as the source file except for the extensions LST and OBJ. Thus
:Fl :MYPROG .LST contains the compilation list file and :Fl :MYPROG .OBJ con­
tains the object code produced by compiling :Fl :MYPROG .SRC.

This example provides enough information to use the compiler in its normal mode
of operation (when your run-time environment is ISIS-II and you are using the soft­
ware floating-point routines). The remainder of this manual describes additional
features of the compiler, linker, and locater and the preparation of programs for
other run-time environments.

Overview

1-9

•
•

•
I
I

•

•
•

•

•

•

•

•

•

CHAPTER 2
COMPILER CONTROLS

Operation of the compiler is directed by compiler controls. For example, these con­
trols tell the compiler what kind of listing is to be produced or whether an object file
is to be generated. While a large number of controls are available with the FOR­
TRAN compiler, few need be specified for a typical compilation. Most control op­
tions have default values corresponding to the most common use of the compiler.

Specifying Compiler Controls

Compiler controls can be specified in two ways:

• As part of the ISIS-II command used to invoke the compiler (that is, at
compile-time)

• As control lines in your source file

Controls Specified At Compile-Time

The FORTRAN compiler (FORTSO) is invoked by an ISIS-II command. This com­
mand includes the name of your source file and any compiler controls you wish to
specify. The format of the compiler invocation is

[drive] FORT80 source-file [control-list]

where the bracketed items are optional.

The 'drive' specified is the diskette drive containing FORTSO. If 'drive' is not
specified, ':FO:' is assumed.

The 'source-file' specified is the name of the file containing your sequence of FOR­
TRAN program units. This file must reside on a diskette. The name specified can be
a 1-6 character file name, a file name followed by a period and 1-3 character exten­
sion, or an ISIS-II diskette drive followed by a file name or extended file name.

Examples:

FILE20
PROG.SRC
:F1 :ASSMB.SRC

(filename)
(filename. extension)
(:drive: filename. ext)

The 'control-list' indicates the compiler controls needed for this compilation. These
controls are separated by blanks. The control itself consists of a control name,
sometimes followed by a parenthesized control parameter.

Examples:

-FORT80 :F2:FPROG.SRC CODE XREF DATE (1978JAN15)
-:F1 :FORT80 :F2:MYPROG SYMBOLS NOPAGING

2-1

Compiler Controls FORTRAN-SO Compiler

2-2

Control Lines

Control lines embedded in your source file allow selective control over sections of
your program. For example, you might want to suppress the compiler listing for cer­
tain sections of your program, or to cause page ejects at specific places.

Control lines are recognized in your source file by a dollar sign ($) in column 1.

Examples:

$NOCODE XREF PAGELENGTH(50)
$EJECT CODE

Primary And General Controls

Controls are classified as either primaryor general. Both classes of controls can be
specified when the compiler is invoked or in source file control lines. Control lines
containing primary controls must precede all program units in the source file,
however, and primary controls cannot be changed within a source program unit.
Control lines containing only general controls can appear anywhere in your source
file; general controls can be respecified at any time.

Summary Of Controls

The following list shows the controls available, the basic functions they control, and
whether they are primary or general (P /G). Default controls are italicized. The re­
mainder of this chapter describes each control in detail.

Controls

OBJECT (sDurce.OBJ)INOOBJECT
DEBUGINODEBUG
OPTIMIZE(O)/OPTIMIZE(1)
PRINT (sDurce.LST)INOPRINT
L1STlNOLIST
SYMBOLSINOSYMBOLS
CODE/NOCODE
XREF 1 NOXREF
PAGING/NOPAGING
PAGELENGTH(6~
PAGEWIDTH(120)
DATE
TITLE
EJECT
REENTRANT
0077/0066
STORAGE(INTEGER* 2, LOGI CAL * 1)
FREEFORM/NOFREEFORM
INCLUDE
WORKFILES(:F1:,:F1.~
SAVE
RESTORE

P /G Function Area

P Object File
P Object File
P Object File
P Compiler Listing
G Compiler Listing
P Compiler Listing
G Compiler Listing
P Cross-Reference Listing
P Listing Format
P Listing Format
P Listing Format
P Listing Format
P Listing Format
G Listing Format
P Procedure Reentrancy
P DO Loop Interpretation
P Default Data Length
G Source Line Format
G Source File Inclusion
P Devices for Scratch Files
G Save Control Settings
G Restore Control Settings

•
•

•

•

•
•

•

•

•

•

•

•

FORTRAN-80 Compiler Compiler Controls

Object File Controls

These controls determine what type of object file is to be produced and where it is to
be produced. The controls are:

OBJECT INOOBJECT
DEBUG/NODEBUG
OPTIMIZE(O)/OPTIMIZE(1)

OBJECT INOOBJECT Controls
Type:
Form:

Default:

Primary
OBJECT(file)
NOOBJECT
OBJECT(source-file.OBJ)

The OBJECT control specifies that one or more object modules are to be created
during the compilation. The parameter 'file' is the object file name (an ISIS file
name optionally preceded by a drive name as described earlier in this chapter). The
NOOBJECT control specifies that no object modules are to be produced.

If neither control is specified, the default is as shown above. In this case, the file
name is the same as the name of the source file with the extension OBJ, and the ob­
ject file is created on the same drive used for the source file.

Example: OBJECT(:F1 :FPROG.OBJ)

This example causes the object file FPROG.OBJ to be created on diskette drive :Fl:.

DEBUG/NODEBUG Controls

Type:
Form:

Default:

Primary
DEBUG
NODE BUG
NODE BUG

If an object file has been requested, the DEBUG control specifies that the object
module is to contain the name and relative address of each symbol whose address is
known at compile-time, plus the statement number and relative address of each
source program statement. This information can be used later for symbolic debugg­
ing of the source program using the SOSO/SOS5 in-circuit emulators, ICE-SO and
ICE-S5.

The NODEBUG control specifies that this symbolic debugging information is not to
be included in the object module.

OPTIMIZE Controls

Type:
Form:

Default:

Primary
OPTIMIZE(O)
OPTIMIZE(1)
OPTIMIZE(1)

The OPTIMIZE(1) control specifies that the compiler is free to perform certain time
and/or space optimizations on the object program (such as eliminating repetitive
evaluation of identical expressions where side effects cannot occur) .

The OPTIMIZE(O) control specifies that the compiler is not to perform such op­
timizations.

2-3

Compiler Controls FORTRAN-SO Compiler

2-4

Compiler Listing Controls
These controls determine what types of listings are to be produced, what they are to
contain and on which device they are to appear. The controls are:

PRINT/NOPRINT
LIST I NOLIST
SYMBOLS/NOSYMBOLS
CODE/NOCODE
XREF/NOXREF

PRINT INOPRINT Controls

Type:
Form:

Default:

Primary
PRINT(file)
NOPRINT
PRINT(source-file.LST)

The PRINT control specifies that printed output is to be produced and names the
file or output device to receive the printed output. The 'file' specified can be any
name acceptable to ISIS-II. The NOPRINT control specifies that no printed output
is to be produced, and overrides the LIST, SYMBOLS, CODE, XREF, and EJECT
controls.

If neither control is specified, the default is as shown above. In this case, the file
name is the same as the name of the source file with the extension LST, and printed
output is directed to the diskette drive used for source input.

Example: PRINT(:LP:)

This example causes printed output to be directed to the line printer.

LIST INOLIST Controls

Type:
Form:

Default:

General
LIST
NO LIST
LIST

The LIST control specifies that listing of the source program is to begin or resume
with the next source line read. The NO LIST control suppresses listing of the source
program until the next occurrence of a LIST control.

When LIST is in effect, all input lines from the source file or from an INCLUDE
file, including control lines, are listed. When NOLIST is in effect, only source lines
associated with error messages are listed.

The NOPRINT control overrides the LIST control. If NOPRINT is in effect, no
listing whatsoever is produced.

SYMBOLS/NOSYMBOLS Controls

Type:
Form:

Default:

Primary
SYMBOLS
NOSYMBOLS
NOSYMBOLS

•
•

•

•

•

•

•

•

•

•
•

•

FORTRAN-80 Compiler Compiler Controls

The SYMBOLS control specifies that a listing of all symbols (and their attributes) in
the subsequent program unit(s) be printed. The NOSYMBOLS control suppresses
this listing.

The NOPRINT control overrides the SYMBOLS control.

CODE/NOCODE Controls

Type:
Form:

Default:

General
CODE
NOCODE
NOCODE

The CODE control causes the compiler to print a listing of the object code generated
by the compiler in a form resembling 8080/8085 assembly language. The listing
begins with the object code generated by the next following FORTRAN statement.
The NOCODE control suppresses printing of the listing until the next occurrence of
a CODE control.

The NOPRINT control overrides the CODE control.

XREF INOXREF Controls

Type:
Form:

Default:

Primary
XREF
NOXREF
NOXREF

The XREF control specifies that a cross-reference listing of all symbols, with their
attributes and the locations at which they are referenced in the subsequent source
program unit(s), is to be produced. The NOXREF control suppresses the cross­
reference listing.

The NOPRINT control overrides the XREF control.

Listing Format Controls

These controls determine the format of the compiler output listing. The controls are:

PAGING INOPAGING
PAGELENGTH
PAGEWIDTH
DATE
TITLE
EJECT

PAGING/NOPAGING Controls

Type:
Form:

Default:

Primary
PAGING.
NOPAGING
PAGING

2-5

Compiler Controls FORTRAN-SO Compiler

2-6

The PAGING control specifies that printed output is to be formatted onto pages
separated by page ejects. The pages are headed with the compiler identification, a
page number, and possibly a user-specified title and/or date. Page numbering begins
at '1' for each program unit.

The NOPAGING control specifies that page ejection, page heading, and page
numbering is not to be performed, except at the beginning of the listing. Thus the
listing appears on one long 'page,' as would be suitable for a slow printer without a
page-eject mechanism. NOPAGING nullifies the effect of the EJECT control.

PAGELENGTH Control

Type:
Form:
Default:

Primary
P AGE LENGTH (length)
P AGELENGTH(60)

The PAGE LENGTH control specifies the maximum number of lines to be printed
per page (if the PAGING control is set). 'Length' is a nonzero, unsigned, decimal in­
teger; '4' is the minimum length that can be specified.

The number of lines specified is assumed to include page headings.

PAGEWIDTH Control

Type:
Form:
Default:

Primary
P AGEWIDTH(width)
PAGEWIDTH(l20)

The PAGEWIDTH control specifies the maximum line width to be used for listed
output. 'Width' is a nonzero, unsigned, decimal integer; its minimum value is 60 and
its maximum value is 132.

DATE Control

Type:
Form:
Default:

Primary
DATE(date)
None

The DATE control specifies the date to be included in the page heading if the P AG­
ING control is active. The 'date' parameter is any sequence of nine or fewer
characters not containing parentheses.

Example: DA TE(25 JAN 78)

TITLE Control

Type:
Form:
Default:

Primary
TITLE('title')
None

The TITLE control specifies the title to be printed in the first line of page headings.
'Title' can be any sequence of printable ASCII characters except the apostrophe
(although an apostrophe can be printed by putting two consecutive apostrophes into
the 'title' string).

The title is truncated on the right, if necessary, to fit the PAGEWIDTH specified.

Example: TITLE('SUBROUTINE TO PRINT TOTALS')

•
•

•

•

•
•

•

•

•

•

•

•

•

FORTRAN-80 Compiler Compiler Controls

EJECT Control

Type:
Form:
Default:

General
EJECT
None

The EJECT control causes the current control line and subsequent source lines to
start printing at the next page. If the NOPRINT, NOLIST, or NOPAGE control is
in effect, the EJECT control is ignored.

Source File Controls

These controls affect the interpretation of FORTRAN source code. The controls
are:

REENTRANT
0077/0066
STORAGE
FREE FORM 1 NOFREEFORM
INCLUDE

REENTRANT Control

Type:
Form:
Default:

Primary
REENTRANT
None; that is, subprogram is not reentrant
unless this control is specified.

The REENTRANT control specifies that all SUBROUTINE or FUNCTION sub­
programs following it are to be reentrant. BLOCK DATA subprograms are not af­
fected by this control. Main programs are not affected by this control; its use in a
main program causes a warning message.

Local variables contained in reentrant subprograms are allocated dynamically on the
stack (at run time); no statically-allocated storage (allocated at load time) is used.
Local variables and arrays must not be initialized by DATA statements in reentrant
subprograms. References to COMMON variables are allowed, but must be used
with care.

If you want to specify reentrancy for selected subprograms only, compile those sub­
programs separately from the rest of the program.

0077/0066 Controls

Type:
Form:

Default:

Primary
D077
D066
D077

If the D077 control is specified, DO loops in the FORTRAN source program con­
form to the explicit standards of the ANSI FORTRAN 77 subset. D066 specifies
that the 1966 ANS FORTRAN standard is in effect.

In particular, the 1966 standard implies that all DO loops must be executed at least
once when encountered during program execution. The 1977 standard allows zero
iterations to be specified by the values of initial and terminal expressions.

2-7

Compiler Controls FORTRAN-SO Compiler

2-8

STORAGE Control

Type:
Form:
Default:

Primary
STORAGE(INTEGER *length,LOGICAL *Iength)
STORAGE(INTEGER*2,LOGICAL*1)

The STORAGE control specifies the default lengths (in bytes) to be used for integer
or logical variables, array elements, or constants. The default can be overridden by
FORTRAN INTEGER or LOGICAL type statements or, in the case of integer con­
stants, by an explicit number base specification.

'Length' can be I, 2, or 4. If the STORAGE compiler control is not specified, the
defaults are '2' for INTEGER and '1' for LOGICAL. INTEGER and LOGICAL
lengths can also be specified separately in the form

STORAG E(INTEG ER* length)

The default lengths for this control do not conform to the ANSI standard 'numeric
storage unit' allocation. To be totally ANSI compatible, specify

STORAGE(lNTEGER*4,LOGICAL*4)

FREEFORM/NOFREEFORM Controls

Type:
Form:

Default:

General
FREEFORM
NOFREEFORM
NOFREEFORM

If the NOFREEFORM control is in effect, source code lines must be in the standard
FORTRAN format. That is, comment line indicators are in column 1, statement
lab eM; in columns 1-5, continuation line indicators in column 6, and statements in
columns 7-72.

The FREEFORM control allows you to begin statements in column 2 instead of col­
umn 7, simplifying console input of FORTRAN source programs. If FREEFORM is
specified, statement labels must begin in column 1 and continuation lines must have
an ampersand ('&') in column 1. Comments are indicated as in standard
FORTRAN, that is, by a 'C' or '*' in column I. If a statement does not contain a 'c'
or '*' as its first character, it may actually begin in column 1.

INCLUDE Control

Type:
Form:
Default:

General
INCLUDE(file)
None

The INCLUDE control causes subsequent source code to be input from the specified
'file' until an end-of-file is reached. At end-of-file, input resumes from the file being
processed when the INCLUDE was encountered. The included file may not contain
an END statement.

The included file may itself contain INCLUDE controls, up to a total of six files
(that is, INCLUDE controls can be nested to a depth of five).

An INCLUDE control must be the rightmost control on a command line or control
line.

•

•

•

•

•

•

•

•

•

•

FORTRAN-SO Compiler Compiler Controls

The 'file' specified can be the name of any diskette-resident file.

Example: INCLUDE(:FI :TRIG.TWO)

This example causes the file 'TRIG.TWO,' located on diskette drive ':FI:,' to be in­
cluded in the FORTRAN source file.

Compiler Resource Controls

These controls specify work files to be used by the compiler and also handle the sav­
ing/restoring of certain compiler controls. The controls are:

WORKFILES
SAVE
RESTORE

WORKFILES Control

Type:
Form:
Default:

Primary
WORKFILES (device, device)
WORKFILES(:FI :,:FI:)

The WORKFILES control specifies two diskette devices to be used as the compiler's
temporary work files. For example, possible parameters are :FO:, :FI:, :F2:, and
:F3:.

The parameters need not specify different devices. If only one parameter is
specified, the effect is the same as specifying the same drive for both parameters.

SAVE Control

Type:
Form:
Default:

General
SAVE
None

The SAVE control stacks the current settings of the FREEFORM, LIST, and CODE
controls (though the current settings remain valid until explicitly changed).

Controls can be stacked to eight levels.

RESTORE Control

Type:
Form:
Default:

General
RESTORE
None

The RESTORE control reestablishes the control settings saved on the top of the
SAVE stack. The restored settings are then removed from the stack.

2-9

Compiler Controls FORTRAN-SO Compiler

2-10

Default Control Settings

The FORTRAN compiler assumes the following defaults if the corresponding con­
trols are not selected:

OBJECT(source-file.OBJ)
NODE BUG
OPTIMIZE(1)
PRINT(source-file.LST)
LIST
NOSYMBOLS
NOCODE
NOXREF
PAGING
PAGELENGTH(60)
PAGEWIDTH(120)
D077
STORAGE(lNTEGER*2,LOGICAL*1)
NOFREEFORM
WORKFILES(:F1 :,:F1:)

•

•

•

•
•

•

•

•

•

•
..

•

•

CHAPTER 3
LISTING FORMATS

The compiler list file contains a variety of information. This chapter describes the
information gathered in this file and the format in which it is listed.

Program Listing

Page Heading

During compilation a program listing may be produced. Unless the NOPAGING
compiler control is active, each page of the listing has a numbered page heading
identifying the compiler and optionally including a user-supplied title and/or date.
If NOPAGING has been specified, only the first page of the listing contains this
heading. The format of the page heading is

FORTRAN COMPILER [title] [date] PAGEnnn

where

title
date
nnn

is the string specified by the most recent TITLE compiler control
is the most recent date specified by the DATE compiler control
is the page number (beginning at 1 for each program unit).

The title is truncated on the right, if necessary, to fit the current PAGEWIDTH con­
trol setting, or is extended on the right with blanks to right-justify the date and page
fields. The page heading line is followed by two blank lines.

Compilation Introductory Lines

The first part of the program listing acts as an introduction to the compilation begin­
ning with the compiler identification and the name of the FORTRAN source module
being compiled. For example:

ISIS-II FORTRAN-80 V2.0 COMPILATION OF PROGRAM UNIT MYPROG

The next line names the file receiving the object code. For example:

OBJECT MODULE PLACED IN :F1:MYPROG.OBJ

Finally, the command line used to invoke the compiler is reproduced. For example:

COMPILER INVOKED BY: FORT80 :F1 :MYPROG.SRC CODE

The listing of the program itself follows this compilation summary information.

3-1

Listing Formats FORTRAN-80 Compiler

3-2

Assembly-Language Listing

If the CODE compiler control was specified, the next item in the program listing is
the assembly-language equivalent of the object code generated. The assembly­
language listing for each program unit begins a new page.

This part of the program listing has the form of a pseudo assembly-language listing
resembling the output of the 8080/8085 assembler. The code listing for each pro­
gram unit precedes the source text for that program unit. It appears in six columns
of information conforming to the standard assembly language format:

1. Relocatable location counter (hexadecimal notation)

2. Resultant binary code (hexadecimal notation)

3. Label field

4. Symbolic operation code

5. Symbolic arguments

6. Comment field

Not all six of these columns will appear on anyone line of the code listing.

The assembly-language code generated from each FORTRAN source statement is
preceded by a comment line indicating the internal statement number of the source
statement. Compiler-generated labels (e.g., those which mark the beginning and
ending of a DO loop) are preceded by '@'; source program statement labels are
preceded by'?' to distinguish them from numeric constants. The comments appear­
ing on PUSH and POP instructions indicate the stack depth associated with the
stack instruction.

Figure 3-1 shows a portion of the CODE listing for a sample FORTRAN program,
followed by the source code from which it was generated.

FORTRAN Source Listing

The source listing contains a copy of the source input plus additional information.

Columns 1-4 are a sequential numbering of FORTRAN statements. Error messages,
when present, refer to these internal numbers, not to statement labels coded as part
of the FORTRAN program.

Columns 5-7 indicate whether the source line was included in the program with the
INCLUDE control. If so, column 5 contains an equal sign (=). If the text was in­
cluded as the result of a nested INCLUDE, the column contains a digit indicating
the level of nesting.

The remainder of the line contains a copy of the source text, as coded, except that
ASCII TAB characters are expanded with multiple blanks, as necessary, to the next
character position that is a multiple of eight.

The sequence number in columns 1-4 is not applied to comment, control, and con­
tinuation lines. If a FORTRAN source line must be continued on another line in the
listing because of a PAGEWIDTH limitation, the continued line has a hyphen (-) in
column 7.

•
•

•

•

•
•

•

•

•

•

•
•

•

FORTRAN-80 Compiler

FORTRAN COMPILER

ISIS-II FORTRAN-80 V2.0 COMPILATIUN OF PROGRAM UNIT @MAIN
OBJECT MODULE PLACED IN :F1:STOCKS.OBJ

PAGE

COMPILER INVOKED BY: FORT80 :F1 :STOCKS.SRC CODE XREF PAGEWIDTH(671

; STATEMENT /I 2
0067 310000 LXI SP,@STACK$ORIGIN
006A COOOOO CALL FQOGO

; STATEMENT /I 3
006D 210600 LXI H,6H
0070 221600 SHLD @IOPB
0073 210400 LXI H,710
0076 221AOO SHLD @IOPB+4H
0079 210000 LXI H,OH
007C 221COO SHLD @IOPB+6H
OOH 212800 LXI H,ISTAT
0082 222000 SHLD @IOPB+OAH
0085 218000 LXI H,80H
0088 221EOO SHLD @IOPB+8H

012C 110100 LXI D,1H
012F 010400 LXI B,4H
0132 CDOOOO CALL FQ0164
0135 110100 LXI D, 1 H
0138 010EOO LXI B,CLOSE
013B CDOOOO CALL FQ0162
013E 110100 LXI D, 1 H
0141 011200 LXI B,CHNG
0144 CDOOOO CALL FQ0162
0147 CDOOOO CALL FQ0167

STATEMENT /I 10
014A C39400 JMP 715

FORTRAN COMPILER PAGE 3

C PRINT FORMATTED LIST OF SELECTED STOCKS SHOWING
C NAME, EXCHANGE, CLOSING PRICE, AND CHANGE FROM
C PREVIOUS CLOSE
C

CHARACTER STOCK*10,EXCH*4
2 REAL CLOSE,CHNG
3 WRITE(6,10,IOSTAT=ISTAT)
4 10 FORMAT('1','STOCK',7X,

&'EXCHANGE CLOSING PRICE CHANGE'//)
5 15 READ 20,STOCK,EXCH,CLOSE,CHNG
6 20 FORMAT(A10,1X,A4,F6.2,F5.2)
7 IF(STOCK.EQ. 'DONE') STOP
8 WRITE(6,30) STOCK,EXCH,CLOSE,CHNG
9 30 FORMAT(1X,A10,9X,A4,F14.2,F12.2)

10 GO TO 15
11 END

Figure 3-1. Sample Program Listing

Listing Formats

3-3

Listing Formats FORTRAN-SO Compiler

3-4

If an error is detected in the source code during compilation, a message is inserted
into the source listing in the following format:

***ERROR m, STATEMENT n, [NEAR symbol,] message

where

m is the error number
n is the sequential number of the statement containing the error
symbol is a pointer to the position of the error within the statement
message is the error message.

Example:

***ERROR #71, STATEMENT #33, NEAR 'OP1', OPERAND EXPECTED

See Figure 3-1 for an example of a source listing. Error handling and error messages
are discussed in greater detail in Appendix B.

Symbol And Cross-Reference Listings
A summary of symbol usage follows the program listing if either the SYMBOLS or
XREF compiler control was specified. An entry is printed for each variable, array,
function, subroutine, and statement label mentioned in each program unit of the
source text. Each entry includes:

• The program identifier for the symbol

• The symbol's attributes and the relative hexadecimal address of the symbol (if
meaningful)

• If XREF is active, a list of the statements in which the symbol is referenced or
defined

The attributes for each symbol are:

• Its type (Integer, Real, Logical, Character, or none)

• Its length (the length in bytes or characters if appropriate; the length of an
element for arrays)

• Its kind (variable, array, label, common block, intrinsic, statement function,
program unit)

• Its scope (external, local, dummy parameter, common block name)

Figure 3-2 shows the symbol attribute and cross-reference listing for the sample pro­
gram of Figure 3-1.

Compilation Summary And Signoff

For each program unit compiled, a compilation summary follows the program and
symbol listings. The information provided in the summary is

• Code area size. The size in bytes of the code segment of the output module.

• Variable area size. The size in bytes of the data segment of the output module.

• Maximum stack size. The size in bytes of the stack segment allocated for the
output module.

•
•

•

•

•
•

•

•

•
..

•

•

•
•

•

FORTRAN-80 Compiler Listing Formats

fORTRAN COMPILER

CROSS-RE:FERENCE LISTING

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES

4 0004H 10 LABEL
3 4

5 0094H 15 LABEL
5 10

6 0038H 20 LABEL
5 6

9 004DH 30 LABEL
8 9

0016H 11l !'!lOPB INTEGER*2 DIMENSIONED
3

0012H 4 CHNG REAL*4
2 5 8

OOOEH 4 CLOSE REAL*4
2 5 8

OOOAH 4 EXCH CHARACTER*4
5 8

002tlH 2 ISTAT INTEGER*2
3

OOOOH 10 STOCK CHARACTER*10
1 5 7 8

Figure 3-2. Sample Symbol-Attribute and Cross-Reference Listing

• Lines read. The number of source lines processed by the compiler.

• Program errors. The number of errors detected in this module .

All size information is shown in both hexadecimal and decimal. This summary is
printed for each program unit unless the NOPRINT compiler control is in effect.
Figure 3-3 shows the compilation summary for the sample program of Figure 3-1.
Refer to the following chapter for a discussion of the various segment types .

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
16 LINES READ

014DH
002AH
OOOAH

333D
42D
10D

o PROGRAM ERROR(S) IN PROGRAM UNIT @MAIN

o TOTAL PROGRAM ERROR(S)
END OF FORTRAN COMPILATION

Figure 3-3. Sample Compilation Summary

3-5

Listing Formats FORTRAN-SO Compiler

3-6

The summary listing of the last program unit is followed by the message

n TOTAL PROGRAM ERROR(S)
END OF FORTRAN COMPILATION

whereon' is the total number of errors in alI program units in the source file.

The program error summaries and the "END OF FORTRAN COMPILATION"
message are also directed to the system console, regardless of the state of the
PRINT INOPRINT control.

•
•

•

•

•
•

•

•

•
•

•

•

•

•

CHAPTER 4
PROGRAM LINKAGE, RELOCATION,

AND EXECUTION

Building An Executable Program
Once your FORTRAN program has been compiled, two tasks remain before it can
be executed. First, your object module must be linked to the FORTRAN run-time
libraries and any other required modules. The modules that make up your final pro­
gram need not be translated from the same language. FORTRAN, PLlM, or
assembly language can be used depending on your program needs. Relocatable
modules produced by the FORTRAN-SO compiler, PLiM compiler, or SOSO/S085
assembler can be input to LINK to build a program.

After all modules and libraries have been linked to form a new relocatable module,
the relative addresses created in this module must be given absolute memory ad­
dresses by the LOCATE program.

The following software is needed to build your FORTRAN program:

• ISIS-II, version 3.0 or later, which includes:
- LINK, version 2.1 or later
- LOCATE, version 2.1 or later

• Selected FORTRAN-SO run-time libraries, from the standard set provided with
the compiler, which include:
- FSORUN .LIB
- FSOISS.LIB
- FSONIO.LIB
- FPEF.LIB
- FPSOFT.LIB
- FPHARD.LIB
- FPNULL. LIB
- PLMSO.LIB

• For RMX/SO users, selected run-time libraries from the FORTRAN-80
Run-Time Package for RMX/SO Users, which includes:
- FSORMX.LIB
- FPSFTX.LIB
- FPHRDX.LIB
- FPHXlO.LIB
- FSONTH.LIB
- F80NDS.LIB

Memory Allocation

Memory for each compiled FORTRAN program unit is allocated in several indepen­
dent, relocatable segments. These are called CODE, DATA, STACK, BLANK
COMMON, NAMED COMMON, MEMORY, and ABSOLUTE segments.

Executable object code and data constants are placed in the CODE segment. This in­
cludes real, integer, Hollerith, character, and logical scalar constants and formats
from FORMAT statements.

All local variables (except those in subprograms compiled while the REENTRANT
control is in effect) are allocated memory in the DATA segment. Compiler­
generated temporary storage for intermediate values and for copies of argument ad­
dresses are placed in the DATA segment also.

4-1

Linkage Relocation and Execution FORTRAN-SO Compiler

4-2

Memory for local arrays, variables, and compiler-generated intermediate values of
reentrant subprograms is dynamically allocated at run time in the STACK segment.
Subprogram calls passing more than two argument (or result) addresses allocate
memory for them in the STACK segment as well.

All variables and arrays in blank common are allocated to the BLANK COMMON
segment. In the case of named common, all variables and arrays are allocated to a
NAMED COMMON segment corresponding to that name.

The MEMORY segment is assigned to RAM memory that is not allocated to CODE,
DATA, STACK, or COMMON segments.

In addition to CODE, DATA, STACK, COMMON, and MEMORY segments, a
relocatable object module can contain code or data with absolute addresses already
assigned. These may be modules originally created in assembly language using the
ASEG directive, modules created in PUM using the AT attribute, or modules pro­
duced by an earlier LOCATE operation.

Linking Object Modules

The ISIS-II LINK program lets you combine object modules from several input files
into one object module in one output file. While combining modules, LINK adjusts
all addresses so they are relative to the beginning of the segments in the new output
module. LINK also searches libraries for modules that resolve external references in
the modules being combined and includes them in the new output module. If any
unresolved external references remain in the output module, LINK puts a message in
its link map.

The output module must be processed by LOCATE before it can be executed.
LOCATE assigns absolute memory locations to the object module. The output
module can also be used as input to LINK to be combined with other modules into a
new and expanded output module.

FORTRAN modules can be linked using either the LINK command, listing in­
dividually the libraries and other modules to be linked, or the SUBMIT command
(to access the FORTRAN submit file, FLINK.CSD, which is described in the follow­
ing section). LINK and SUBMIT are described in detail in the ISIS-II User's Guide
and are simply summarized here. Linking FORTRAN libraries, particularly
F80ISS.LIB, does require some special considerations, however, and these are
highlighted below.

LINK and SUBMIT Commands

The LINK program is invoked by entering the LINK command at the ISIS command
level. The syntax of the LINK ~ommand is:

LINK input-list TO link-file [link-controls]

Your 'input-list' must include all required FORTRAN libraries in the sequence:

RMX~**.qB(ST.ARO'f); object-files, FBORU N. LI B,&

{
FBOISS.L1B }
FBORMX.L1B ,FPEF.LlB,
FBONIO.LlB

FPSOFT.LlB
FPHARD.LlB
FPSFTX.L1B ,RMX .. fiIes, PLMBO.L1B
FPHRDX.LlB
FPHX10.L1B
FPNULL.LlB

•
•

•

•

•
•

•

•

•

•

•

•
..

•

FORTRAN-SO Compiler Linkage Relocation and Execution

where braces { } indicate a choice of items and shading indicates items required only
under RMX/SO. (Four of the libraries in braces-FSORMX.LIB, FPSFTX.LIB,
FPHRDX.LIB, and FPHXIO.LIB-are to be selected only by RMX/SO users;
however, these library names are not shaded here, because one selection from each
group in braces is required for any environment.)

• 'xx' in 'RMXSxx.LIB' stands for 20, 30, or 10, for systems based on the iSBC
so 120 , S0/30, and SO/lO respectively. (This is explained further in the RMXI80
User's Guide and is of no concern to the non-RMX user.)

• 'object-files' are one or more files containing the modules produced by
compiling your FORTRAN program, plus other modules (if any) translated
from PLiM or assembly language code. For RMX/SO systems, 'object-files'
must include your configuration module.

• Use FSOISS.LIB if your program is to run under ISIS-II and perform I/O other
than port I/O, FSORMX.LIB if your modules are to run under RMX/SO and
perform I/O other than port I/O, or FSONIO.LIB if only port I/O (or no I/O)
is used in FORTRAN.

• Link in FPSOFT.LIB to use software floating-point for non-RMX sys­
tems, FPHARD.LIB to use the iSBC 310 interface for non-RMX systems,
FPSFTX.LIB to use software floating-point under RMX/SO, FPHRDX.LIB to
use the iSBC 3tO interface under RMX/SO on an iSBC S0120 or S0/30, FPHX­
to.LIB to use the iSBC 310 interface under RMX/SO on an iSBC S0I10, or
FPNULL.LIB if no floating-point operations are used.

• 'RMX-files' are other files required for RMX/SO systems. These are explained
in Chapter 6.

The library modules included must be listed in the exact order shown. Any BLOCK
DAT A subprograms residing in a library must be linked explicitly also. They are not
linked automatically with the programs that use them.

The 'link-controls' allowed in the LINK command are MAP, NAME, and PRINT,
as described in the ISIS-II User's Guide.

The following is an example of a LINK command you might give if your program is
to run under ISIS-II and use the software floating-point libraries.

-LINK :F1 :FPROG.OBJ, F80RUN.LlB, F80ISS.LlB, FPEF.LlB, &
**FPSOFT.LlB, PLM80.LlB TO FPROG.LNK MAP

(Note: The double asterisks are prompts issued by the LINK command.)

If you plan to link only your object file and the five FORTRAN libraries normally
required for execution under ISIS-II with software floating-point (Le.,
FSORUN.LIB, FSOISS.LIB, FPEF.LIB, FPSOFT.LIB, and PLMSO.LIB), and do
not plan to use any of the LINK command controls, you can simplify the link opera­
tion by entering the following SUBMIT command at the ISIS command level.

-SUBMIT FLlNK(object-file, link-file[, lib-drive])

where 'object-file' and 'link-file' are ISIS file-names and 'lib-drive' is of the form
:Fx:, x being the number of the drive on which LINK and the FORTRAN run-time
libraries reside. ('Lib-drive' may be omitted; the default is :FO:.)

This option was selected in the sample program development in Chapter 1, where
linkage was performed by the command:

-SUBMIT FLlNK(:F1 :MYPROG.OBJ, :F1 :MYPROG. LNK)

4-3

Linkage Relocation and Execution FORTRAN-SO Compiler

4-4

.,.
The LINK program uses a temporary file with the name LINK. TMP. The
diskette drive used is the same specified by the output file. If you have a file
with this name on the same drive as the output file, your file will be
destroyed.

FORTRAN Library FBOISS.LlB

In certain situations you may want to avoid linking library F80ISS.LIB, which con­
sists of input/output routines for the ISIS-II environment. You may be running on
an Intellec system but prefer to call PUM or assembly-language routines or the
monitor to invoke ISIS directly and avoid the overhead of FORTRAN 110.
FSOISS.LIB can typically add 8,000-15,000 bytes to your program, depending on the
operations used. Depending on your needs, you may be able to avoid linking this
library entirely or, by judicious use of FORTRAN 110 statements within your pro­
gram, to reduce the number of FSOISS.LIB modules actually linked.

If you use no standard FORTRAN 110 statements (READ, WRITE, PRINT,
OPEN, CLOSE, BACKSPACE, REWIND, ENDFILE), and no STOP or PAUSE
statements, you may omit FSOISS.LIB completely and substitute FSONIO.LIB, as
described previously in the LINK command discussion.

Alternatively, you can reduce the space taken up by FSOISS.LIB by limiting the
types of 110 operations your FORTRAN program performs, since only those
modules actually required by your program are linked in. For instance, the total 110
system with all capabilities requires IS,OOO bytes of storage; if you use only sequen­
tial, formatted 110, you need 15,000 bytes.

FORTRAN Library FBORMX.LlB

For RMX/SO systems, you can often reduce the number of modules linked in from
FSORMX.LIB (or avoid using FSORMX.LIB at all) by coding your 110 judiciously,
just as you would for FSOISS.LIB.

If you use no standard FORTRAN 110 statements (READ, WRITE, PRINT,
OPEN, CLOSE, BACKSPACE, REWIND, ENDFILE) and no STOP or PAUSE
statements, you may omit FSOISS.LIB completely and substitute FSONIO.LIB, as
described previously in this discussion.

Alternatively, you can reduce the space taken up by FSORMX.LIB by limiting the
types of 110 operations your FORTRAN program performs, since only those
modules actually required by your program are linked in. For instance, under
RMX/SO the total 110 system with all capabilities requires 21,000 bytes of storage;
if you use only sequential, formatted I/O, you need 16,000 bytes.

Linking with non-FORTRAN Procedures

The relocatable object modules produced by the ISIS-II FORTRAN-SO compiler are
compatible with those produced by the ISIS-II PUM compiler and the SOSO/SOS5
macro assembler. Modules written in the three languages can be linked together.
This compatibility allows you to use FORTRAN to code those segments of your ap­
plication to which the features of FORTRAN are particularly well suited­
multidimensional arrays, formatted 110, floating-point arithmetic, and/or FOR­
TRAN intrinsic functions- and write other segments in PUM or assembly
language if you desire.

•
•

•

•

•
•

•

•

•
..

•

•

•
•

•

FORTRAN-SO Compiler Linkage Relocation and Execution

The FORTRAN-SO compiler implements procedure (function and subroutine) calls
in the same manner as PLiM-SO. This allows FORTRAN program units to call
PLiM procedures and vice-versa. FORTRAN-SO passes its arguments by reference
(that is, by address). Furthermore, the FORTRAN-SO convention for calling a func­
tion with n arguments is to pass n + 1 addresses to the function routine (where the
first address is a location for storing the result). Function and subroutine arguments
are passed in the same locations as in PLlM, that is:

• For a single-argument function or subroutine, the argument address is passed in
registers B (high-order byte) and C (low-order byte) of the SOSO/SOS5;

• For a two-argument function or subroutine, the first argument address is passed
as above and the second in registers D (high) and E (low);

• For a function or subroutine of more than two arguments, the last two
argument address are passed as described above (next to last in Band C, last in
D and E), and the remainder are passed on the stack (pushing them onto the
stack in order from left to right in the argument list).

The relocatable modules produced by the ISIS-II FORTRAN-SO compiler are com­
patible with those produced by the ISIS-II PLiM compiler and the S080/8085 macro
assembler. Modules written in the three languages can be linked together. This com­
patibility allows you to use FORTRAN to code those segments of your application
in which you need the features of FORTRAN-multidimensional arrays, formatted
110, floating-point arithmetic, and/or FORTRAN intrinsic functions-and write
other segments in PLiM or assembly language if you desire.

A CHARACTER argument in a FORTRAN procedure call is treated as two
arguments in the generated object code. The first argument is the address of the
character data; the second is a 2-byte integer value (passed by value, not by
reference) indicating the length of the character string.

When using FORTRAN and non-FORTRAN program segments together, note that
FORTRAN and non-FORTRAN 110 on the same file may interact improperly. You
should use one of the other only on any given file.

If your main program is written in PLiM or assembly language rather than in FOR­
TRAN and it calls FORTRAN subprograms, your FORTRAN subprograms must
include calls to special procedures from F80RUN .LIB that perform initialization
and termination actions for the FORTRAN arithmetic and input/output routines.
(These calls are generated automatically by the compiler for a FORTRAN main pro­
gram.) Before your program performs any floating-point operations or FORTRAN
110, it must call the external procedure FQOGO, which takes no parameters. Before
exiting, it must call the external procedure FQOEND, which likewise takes no
parameters.

For further information on linking FORTRAN and non-FORTRAN procedures
together, refer to Intel Application Note AP-44, How to Use FORTRAN with Other
Intel Languages.

4-5

Linkage Relocation and Execution FORTRAN-SO Compiler

4-6

Example:

SUBROUTINE CRUNCH (ARG1 ,ARG2)
REAL ARG1 ,ARG2
REALXTEMP,YTEMP
CALLFQOGO

C ARITHMETIC AND FORMATTED 1/0 OPERATIONS GO HERE

RETURN

Object Module Relocation
The ISIS LOCATE program takes as input a relocatable object module and pro­
duces an output file containing the same object module with addresses fixed to ab­
solute locations. The format of the LOCATE command is:

LOCATE input-file [TO output-file] [locate-controls]

Operation of the LOCATE program is described in Chapter 4 of the ISIS-II User's
Guide. This section describes specific considerations when locating FORTRAN ob­
ject modules.

ORDER Control

The ORDER control, which can be specified as part of the LOCATE command syn­
tax, allows you to dictate the sequence of segment types in memory. The format of
the ORDER control is:

ORDER(segids)

where 'segids' is some combination of the segment names CODE, DATA, Icommon
namel,11 (for blank common), MEMORY, and STACK. If ORDER is not
specified, module segments are located sequentially in memory in the following
order: CODE, STACK, COMMONs, DATA, and MEMORY, where the term
'COMMONs' means all COMMON segments in an arbitrary order.

The ORDER list may be partial; all module segments need not be listed. In this case,
all segments specified in the ORDER control are taken in the order specified. The re­
maining segments are taken in the default order, after the modules specified in the
ORDER control.

Base Address Controls

Segments can be explicitly located in memory by the base address controls. These
controls assign an address for the first byte of the segment. The controls are:

CODE(addr)
DATA(addr)
STACK(addr)
MEMORY(addr)
Icommon name/(addr)
II (addr)

•
1#

•

•

•
•

•

•

•
..

•

•

•

•
..

••

FORTRAN-SO Compiler Linkage Relocation and Execution

The last two controls refer to NAMED COMMON segments and the BLANK COM­
MON segment, respectively.

If you plan to locate some segments at specific addresses and let LOCATE place the
others, you should use the ORDER control to modify the default sequence so the
segments will be located in coordination with the specified base addresses. Also,
be sure to specify the MAP control, which is your only notification of resulting
con flicts .

When you locate FORTRAN common segments to specific addresses, you should
also locate the MEMORY segment to an address above the top of the highest com­
mon segment. LOCATE handles common segments in an arbitrary order. Unless the
MEMORY segment is located specifically using the ORDER control, it will follow
the last common segment handled (which could be at a low memory address) and
will conflict with all segments above the common segment.

Program Execution and 1/0 Unit Preconnection

Your linked and relocated program can now be loaded and executed by entering its
name at the ISIS command level. For example:

-MYPROG

As discussed in the FORTRAN-80 Programming Manual, FORTRAN I/O
statements operate on units that are connected to files on a one-to-one basis. A unit­
file connection can be made when the file is opened (by the OPEN statement) or by
preconnecting the unit and file via the UNIT run-time control.

As part of FORTRAN run-time conventions in the ISIS environment, two units are
preconnected and need not be connected by the FORTRAN OPEN statement. These
are:

Unit Device

5 Console input
6 Console output

If you are running your programs under ISIS-II and wish to preconnect other units
or override these default preconnections, you can specify the UNIT run-time control
at the time you call your program for execution. The format of the UNIT control is

UNIT n = device

where "n' is a number in the range 0-255 and 'device' is any device name recognized
by ISIS-II.

Examples:

TRIG UNIT 4 = :LP:
TRIG.LOC UNIT1 = :CI:, UNITO = :CO:

Note that the preconnectiol1 feature applies only to FORTRAN programs pre­
pared to run under ISIS-II; preconnection is not available for the RMX/SO run-time
environment.

4-7

.'
•

•

•

•
•

•

•
..

•

•

•
•

•

•

CHAPTER 5
iSBC 310 INTERFACE

To improve the speed of floating-point (REAL) arithmetic in your FORTRAN pro­
gram, you may configure an iSBC 310 High-Speed Mathematics Unit in your system
and use it, by means of the interface libraries provided with FORTRAN-SO, to aid in
performing floating-point arithmetic. This chapter provides instructions for using
the FORTRAN software interface to the iSBC 310 unit.

All of the floating-point operations of the iSBC 310 are used via the interface pro­
vided in the appropriate floating-point run-time library. When the interface is used,
the following operations will be performed with the aid of the iSBC 310 hardware:
floating-point addition, subtraction, multiplication, division, square root, com­
parison, and conversions between floating-point and integer formats. The results of
arithmetic operations are the same whether the all-software floating-point routines
or the iSBC 310 interface is used. The iSBC 310 interface is designed to maximize
concurrency between the CPU and the iSBC 310, to maximize overall execution
speed, and to maintain a consistent error handling strategy.

Use of the interface requires only that you link in the appropriate run-time library
and observe several hardware and software constraints. If these constraints are
heeded, your FORTRAN programs will run with either the software floating-point
routines or the iSBC 310 interface . ..

When installing the iSBC 310 in an Intel Intellec Microcomputer Develop­
ment System (Model SOO or SSS), the Intellec CPU board must be recon­
figured to generate a Qualified Write signal. (Refer to the InteJIec
Microcomputer Development System Hardware Reference Manual.) This
modification is not necessary for Intellec Series II systems.

Dedicated Use of iSBC 310

When using the FORTRAN-SO interface to the iSBC 310 unit, you should consider
the iSBC 310 to be dedicated to use by FORTRAN only. Making other (direct) use
of the 310 board in your system may cause the results of FORTRAN floating-point
operations to be unreliable.

In non-RMX systems, this situation applies because the iSBC 310 unit is a non- reen­
trant resource. In RMX/SO systems, provision is made for saving the board's
registers and memory work area so that one task using the board may interrupt
another task that uses it. However, use of the iSBC 310 board under RMX/SO must
be limited to FORTRAN tasks within the RMXIBO system.

I/O Base Address and Memory Base Address

The software interface routines assume that the iSBC 310 110 base address is set
manually (via switch on the 310 board) to 9SH-which, of course, cannot be
duplicated for any other device. The iSBC 310 memory base address will be assumed
to be contained in the public address variable FQFMBA. This memory base address
is set up at initialization by the routine FQOGO (which is automatically called in a
FORTRAN main program and must be called explicitly by your own program if you
have no FORTRAN main program), so you, the user, need not be concerned with
this address.

5-\

iSBC 310 Interface FORTRAN-SO Compiler

5-2

Error Handling

When using the FORTRAN interface, you should wire-wrap the iSBC 310 unit so
that it initiates no interrupt request on completion of an operation with or without
an error. FORTRAN-80 provides a means to transfer control to its own default
error handler, to an ISIS-oriented error reporting routine, or to a user-supplied error
routine. Refer to 'Run-Time Arithmetic Errors' in Appendix B for details.

An error handler (either one of the two error handlers provided in the run-time
libraries, or a user-supplied error handler) is called whenever a floating-point opera­
tion signals an error and whenever an invalid floating-point result is not handled by
the routine in which it has occurred. When the iSBC 310 interface is used, if the er­
ror handler is called it will be called just before the next floating-point operation is
started on the iSBC 310 board, unless the function that produced the error was a
test, comparison, or fix. In the case of a test, comparison, or fix error, the error
handler is called right after the floating-point operation is performed on the board
and before the test, comparison, or fix routine returns.

Activation and Deactivation
of iSBC 310 Memory Mapping

The iSBC 310 unit communicates directly with an area of RAM memory. The star­
ting address of this memory area is specified by the iSBC 310 interface software;
however, your program must activate the memory mapping on the 310 board as part
of system initialization, and deactivate it before exiting. For systems using the iSBC
310 interface, the initialization procedure FQOGO (in F80RUN .LIB) includes a call
to a routine that activates the iSBC 310 memory mapping, and the termination pro­
cedure FQOEND (also in F80RUN .LIB) includes a call to deactivate the memory
mapping. For a FORTRAN main program, the compiler automatically generates
calls to FQOGO and FQOEND. However, if your main program is not a FORTRAN
prog);am, you should call FQOGO before performing any floating-point operations,
and call FQOEND before exiting. (These two procedures take no parameters.)

For instance, a PL/M main procedure might be written in this form:

PLMAIN:
DO;

1* DECLARATIONS OF VARIABLES AND ARRAYS * 1
1* DECLARATIONS OF EXTERNAL PROCEDURES * 1
I*INITIALIZATION OPERATIONS* 1

CALL FOOGO;
1* arithmetic, 110, and other operations* I

CALL FOOEND;
END PLMAIN;

If the iSBC 310 memory mapping is not deactivated and is subsequently reactivated,
some data in memory may be destroyed. For this reason, if you supply your own er­
ror handling routines (see 'Run-Time Arithmetic Errors' in Appendix B), it is impor­
tant that these routines also include a call to FQOEND in case of a fatal" error. If you
exit to ISIS-II during program debugging, you can deactivate the iSBC memory
mapping by simply re-BOOTing the system.

•
•

•

•

•

•
•

•

•

•
III

•

•

•
•

•

•

FORTRAN-80 Compiler iSBC 310 Interface

NOTE

In an iSBC S0/20-based system installed in a System S0/20 chassis, re­
BOOTing the system as described above will deactivate the memory map­
ping only if the iSBC S0/20 unit is installed in the bottom slot of the
cardcage. (This restriction does not apply to CPU boards other than the
iSBC S0/20, or to iSBC S0/20 boards installed in chassis other than the
System S0/20.)

Use of iSBC 310 Interface in iSBC SO-Based Systems
(With or Without R MX/SO)

In an iSBC S0/20, SO/30, or SO/lO-based system, the iSBC 310 unit cannot be
memory-mapped onto on-board RAM. You should take this into account when
designing and coding your system. You can use LINK and LOCATE commands to
ensure that the 310 is mapped onto existing off-board RAM; refer to the following
section ('LINK Command') for details.

Under RMX/SO, a user-supplied interrupt service (RQSETV) routine must not have
access to the iSBC 310 unit-i.e., if you are using the iSBC 310 interface option,
your RQSETV routines cannot perform any floating-point operations.

Also note that in an RMX/SO system, the iSBC 310 interface package disables inter­
rupts for brief periods during floating-point operations. You must take this situa­
tion into account when programming interrupt-driven tasks .

LINK Command
When you use the iSBC 310 interface, you link in the same run-time libraries as if
you were using the software floating-point routines, except that the floating-point
arithmetic library will be different. Library FPHARD.LIB is provided to support
the use of the iSBC 310 unit to perform floating-point arithmetic in the non-RMX
(ISIS-II or stand-alone hardware) run-time environment. This library substitutes for
FPSOFT.LIB. Two additional libraries are provided in the FORTRAN-SO Run­
Time Package for RMX/SO Systems (iSBC SOl) to perform the same functions
under RMX/SO: FPHRDX.L1B for iSBC S0/20 and SO/30 systems, and FPHX-
1O.L1B for iSBC SO/lO systems. You select one of these libraries in place of
FPSFTX.LIB. For the order of all libraries in the LINK command, refer to Chapter
4 or Appendix D .

The following is an example of a LINK command that could be given to link FOR­
TRAN programs for a system that runs under ISIS-II and includes an iSBC 310 unit
dedicated to FORTRAN use .

-LINK :F1 :FPROG.OBJ,F80RUN.LlB,F80ISS.LlB,FPEF.LlB,&
**FPHARD.LlB,PLM80.LlB TO FPROG.LNK MAP

(Note: The double asterisks are prompts issued by the LINK command.)

This example is identical to the one given in Chapter 4 except that the iSBC 310 in­
terface is specified. For an example of a LINK command for an RMX/SO system in
which FORTRAN tasks use the iSBC 310 interface, refer to 'Link Command' in
Chapter 6.

5-3

iSBC 310 Interface FORTRAN-SO Compiler

5-4

In most cases, the LINK command above will result in correct memory mapping
of the iSBC 310 unit onto existing on-board RAM. You can examine the LINK
map to check that the mapping is correct-Le., that the segment FPR.ABS has been
mapped onto existing on-board RAM. If this LINK command does not result in cor­
rect memory mapping, you can assign a specific address for the 310 mapping by giv­
ing the following commands, in order:

LINK FPHARD.LIB (FPR) TO FPR.REL
LOCATE FPR.REL TO FPR.ABS DATA(address) STACKSIZE(O)

where 'address' is the address of a 16-byte segment of on-board RAM (the address
must be on a 16-byte boundary). After giving these commands, you link all libraries
together with a LINK command of the form

-LINK :Fl: FPROG.OBJ, F80RUN.LIB, F80ISS.LIB, FPEF.LIB, &
**FPR.ABS, FPHARD.LIB, PLM80.LIB TO FPROG.LNK MAP

-i.e., the LINK command you would normally give, but with the addition of the
"FPR.ABS" segment between FPEF.LIB and FPHARD.LIB.

•

•

•

•

•
•

•

•
..

•

•

•

•

CHAPTER 6
PREPARING PROGRAMS

TO RUN UNDER RMX/SO

This chapter describes the use of the special facilities provided to support FOR­
TRAN programs in the RMX/SO run-time environment-specifically the
FORTRAN-SO Run-Time Package for RMX/SO Systems (iSBC SOl). Use of
RMX/SO itself is covered only to the extent necessary to explain how to interface
with it; for complete instructions, refer to the RMXISO User's Guide .

Under RMX/SO, FORTRAN-SO input and output operations normally use the full
or minimal Terminal Handler and the Disk File System, rather than the ISIS-II func­
tions used in the ISIS-II run-time environment. Alternatively, you can omit the Ter­
minal Handler and/or Disk File System and use port input and output, or even write
your own 110 device drivers for use with the FORTRAN 110 statements. (Instruc­
tions for doing the latter are provided in Chapter 7.) The RMX/SO run-time environ­
ment for FORTRAN offers the advantage of full interrupt capabilities.

Program Structure Under RMX/SO

Recall that under RMX/SO, programs run as a series of tasks under the control of
the RMX/SO Nucleus, and that tasks communicate with each other by sending
messages. You may use FORTRAN to code those tasks (or subroutines callable by
tasks) that make use of formatted 110, floating-point arithmetic, and other FOR­
TRAN features. Tasks written in FORTRAN should be coded as SUBROUTINE
subprograms. (Just as there must be no PLiM main procedure under RMX/SO,
there must be no FORTRAN main program.)

However, note that FORTRAN, since it has no address variables, cannot interface
directly with RMX/SO. All sending and waiting for messages must be done by tasks
coded in PLiM or assembly language; likewise, the configuration module must be
coded in PLiM or assembly language. If you wish to have one task perform
floating-point arithmetic and send and/or wait for messages, you can do so by
writing a short "skeleton" task in assembly language or PL/M to do the send and
wait operations, and having it call one or more FORTRAN subroutines to perform
the bulk of the processing.

Initialization and Termination

For FORTRAN main programs, the compiler automatically generates calls to per­
form the necessary initialization and termination actions for the FORTRAN library
routines. In an RMX/SO system, however, there can be no FORTRAN main pro­
gram, so these calls must be included in your code. Initialization must be performed
once for the whole system and (when floating-point operations are used) for in­
dividual tasks.

All the required system initialization, including initialization of the floating- point
and input-output routines, is performed by the external procedure FQOGO, which
resides in FSORUN .LIB. You can initialize your system by including in it a small,
high- priority task that calls FQOGO (which takes no parameters), then suspends
itself by calling the RMX/SO procedure RQSUSP. This task must have a high
enough priority to ensure that it runs before any floating-point arithmetic or FOR­
TRAN 110 is performed.

6-1

Preparing Programs RMX/80 FORTRAN-80 Compiler

6-2

It is presumed that FQOGO will not be invoked twice. Unpredictable (and
usually disastrous) results may occur if this assumption is violated.

In addition, each task that uses floating-point (REAL) operations or intrinsic func­
tions must call FQFSET, which resides in the selected floating-point arithmetic
library, before doing any REAL operations. This routine initializes the internal er­
ror handler address field. The calling sequence for FQFSET is:

CALL FOFSET(A,ERRH)
CALL FOFSET(.A,.ERRH)

from a FORTRAN program or
from a PLiM program

A is a two-byte integer and ERRH is the name of an error-handling routine. The
least significant bit of the high-order byte of A is a flag which, when set to 1, in­
dicates that a user-supplied routine at the address given in ERRH is now to serve as
the floating-point error handler; if this flag is 0, the error handler named FQFERH
will be activated. (Two error handlers by this name, a default error handler and an
alternate one, are supplied in the FORTRAN run-time libraries.) The low-order byte
of A will become the new value (normally 0) of the Error Field maintained internally
by the floating-point arithmetic routines. Thus the standard settings for A are 0 and
#100H. The routine FQFSET is identical to the FQFRST routine described under
'Run-Time Arithmetic Errors' in Appendix B, except that FQFSET also clears inter­
nal floating-point working accumulators and should be called only once per task.

To use the default or the alternate error handler, simply call FQFSET(O,ADDR),
where the value of AD DR does not matter (e.g., it can be zero). Arithmetic error
handlers are discussed in detail under 'Run-Time Arithmetic Errors' in Appendix B;
refer to this section in Appendix B if you wish to supply your own error-handling
routine.

The following table summarizes the meanings of the possible values of the 'A'
parameter.

High-Order Byte of A Low-Order Byte of A Meaning

Low-order bit = 1 Zero Use error handler at address ERRH,
(01H, 3FH, C7H, etc.) and set Error Field" to zero

Low-order bit = 0 Zero Use FQFERH"' as error handler, and
(OOH, 3EH, C6H, etc.) set Error Field' to zero

Low-order bit = 1 Nonzero Use error handler at address ERRH,
and set Error Field" to value of low-
order byte of A

Low-order bit = 0 Nonzero Use FQFERH" as error handler, and
set Error Field" to value of low-order
byte of A

'For a description of the Error Field, see 'Error Monitoring' under 'Run-Time Arithmetic Errors'
in Appendix B.

"Either the default or the ISIS- oriented error handler, depending upon the options specified
in the LINK command. (See 'Run-Time Arithmetic Errors' in Appendix B for details.)

Calls to FQFSET are not required for non-RMX run-time environments, but these
calls will not cause errors in such environments. This feature contributes to the por­
tability of FORTRAN code between RMX and non-RMX systems.

•
•

•

•

•

•
•

•

•
..

•

•

•
•

•

•

FORTRAN-SO Compiler Preparing Programs RMX/SO

Any routines that may terminate system operation, such as error handlers, should
also call the termination routine FQOEND. (FQOEND also resides in F80RUN.LIB
and takes no parameters.) This will ensure that all input and output files are closed
and that the memory mdPping on the iSBC 310 math unit, if any, is deactivated. In
addition, FQOEND in F80RMX.LIB calls a user-defined routine named FQOXIT,
which you must supply as part of your code. This routine should perform any
system exit functions that you desire, and must not return .

Input and Output
The RMX/80 run-time input/output support library, F80RMX.LIB, allows you to
code regular FORTRAN statements (OPEN, CLOSE, READ, WRITE, PRINT,
BACKSPACE, REWIND, ENDFILE) for input and output to the Terminal
Handler and Disk File System. No sending of request messages to the Terminal
Handler or DFS is required; this is all done by the routines in F80RMX.LIB .

The unit/file preconnection feature available in FORTRAN under ISIS-II cannot be
used under RMX/SO. As part of its initialization, the RMX/80 input/output library
automatically connects :CI: (the terminal input file) to unit 5 and :CO: (the terminal
output file) to unit 6. Any other connections must be specified in OPEN statements.
(Note that the connections of :CI: to unit 5 and :CO: to unit 6 can be overridden by
OPEN statements in your program.)

To read from or write to the terminal, you specify unit 5 in a READ statement or
unit 6 in a WRITE statement. To perform 110 operations on a diskette file, you
specify whatever unit number and file name you decide to assign to that file. The file
name must be of the form :device:filename.ext, where 'device' is any two
alphanumeric characters, 'filename' is from one to six alphanumeric characters, and
'ext' is from one to three alphanumeric characters. (This is identical to the form of
an ISIS path-name.) Besides the unit specifier and the file name, you should also
always include an error specifier in every 110 statement and provide an error action
routine. Otherwise, if an error occurs, the I/O library routines will suspend the task
performing the I/O.

The following "stub" example shows how you might code a routine to read in an 80-
character unformatted direct-access record from a diskette file on :FI: called
DATAL

$FREEFORM
PROGRAM READIN

C DECLARATIONS OF VARIABLES AND ARRAYS GO HERE

OPEN (3,IOSTAT= ERRFLG,ERR= 10,FILE = ':F1 :DATA1' ,STATUS='OLD',
& ACCESS= 'DIRECT',RECL=80)

10 CALL OPNERR

C VALUE OF M MUST BE SET HERE
READ(3,REC=M,IOSTAT=ERRFLG,ERR=20)

20 CALL RDERR

END

6-3

Preparing Programs RMX/SO FORTRAN-SO Compiler

6-4

C "OPEN" ERROR ACTION ROUTINE
C CHECKS ERRFLG AND PERFORMS ACTION DEPENDING ON ITS VALUE

SUBROUTINE OPNERR

END

C "READ" ERROR ACTION ROUTINE
C CHECKS ERRFLG AND PERFORMS ACTION DEPENDING ON ITS VALUE

SUBROUTINE RDERR

END

The RMX-based input/output library is a non-reentrant shared resource; generally,
only one FORTRAN 110 operation can be in progress at a time anywhere in your
system. While one task's input or output is in progress, a software lock (as described
in Chapter 3 of the RMXISO User's Guide) prevents any other task from performing
FORTRAN 1/0. The second task will wait until the first task's input or output has
finished. As a consequence, tasks that handle interrupts must not perform FOR­
TRAN I/O. This is not a serious restriction; since tasks that handle interrupts must
be as short and speedy as possible, it is not advisable to do FORTRAN I/O in an
interrupt-handling task anyway.

An exception to the non-reentrancy rule arises in the case of terminal input. A delay
in terminal input-which may often occur, for instance when the operator leaves the
console-will not halt disk input or output indefinitely. In this case, the Terminal
Handler input buffers will be saved and the software lock on the I/O system will be
removed, allowing other tasks to perform disk 1/0.

Note that the non-reentrancy restriction applies only to regular FORTRAN I/O;
port input and output (coded in FORTRAN, PUM, or assembly language) may be
performed concurrently with formatted I/O. However, FORTRAN and non-FOR­
TRAN I/O on the same file may interact improperly; use one or the other only for
any given file.

Using the iSBC 310 Option Under RMX/SO
When using the iSBC 310 interface for FORTRAN floating-point operations under
RMX/80, note that the iSBC 310 unit cannot be memory-mapped onto on-board
RAM. You should take this into account when designing and coding your system.
You can use LINK and LOCATE commands to ensure that the 310 is mapped onto
existing OFF-board RAM; refer to 'LINK Command' in Chapter 5 for details.

A user-supplied interrupt service (RQSETV) routine under RMX/80 may not have
access to the iSBC 310 unit-i.e., if you are using the iSBC 310 interface option,
your RQSETV routines must not perform any floating-point operations.

Configuration Requirements
When you are using FORTRAN modules in your RMX/80 system, three types of re­
quirements are imposed on your configuration module: enlarged Task Descriptors
for floating-point operations, task stack requirements for floating-point routines,
and Terminal Handler and Disk File System tasks and exchanges.

•
•

•

•

•
•

•

•

•

•

•
..

I)

•

FORTRAN-SO Compiler Preparing Programs RMX/SO

Each task in your sy~tem that performs any operations involving floating-point
numbers must have a larger Task Descriptor than is usual for an RMX/SO task. If
the software floating-point routines are used, IS extra bytes must be added to the
end of the Task Descriptor; if the iSBC 310 is used, 13 extra bytes. If you are coding
your configuration module manually in PUM, you need simply add these extra
bytes when you declare your Task Descriptors. If you are using the assembly­
language configuration macros, you must use the optional parameter tdxtra for the
STD macro to specify the number of bytes to be added to the Task Descriptor for
each task: IS for software floating-point or 13 for hardware (iSBC 31O) floating­
point. Note that if you are supplying a value for tdxtra but are not providing a value
for the preceding optional parameter, the initial exchange address exch, you must
insert a comma to denote a null value for exch, as in this example:

STD FPTASK,60,150,,18
As discussed in Chapter 3 of the RMXISO User's Guide, you must determine the
stack size requirement for each of your tasks. For tasks written in FORTRAN that
perform floating-point operations, you must take into account the bytes of stack re­
quired for the floating-point arithmetic operations and intrinsic functions you use.
For a list of the stack requirements for all floating-point operations and intrinsic
functions, refer to Appendix E. In addition, any task that uses FORTRAN I/O
statements and/or STOP or PAUSE statements must include an extra SOO bytes of
stack for I/O routines.

If you are using FORTRAN I/O for terminal input and/or output, your configura­
tion module must include the input-output Terminal Handler and the exchanges
RQINPX and RQOUTX. If you are doing FORTRAN I/O to disk files, you need
the DFS services OPEN, READ, WRITE, SEEK, CLOSE, RENAME, and
DELETE, and the exchanges RQOPNX, RQRNMX, RQDELX, and RQDSKX.
(Note that the SEEK service is specified at link time and does not affect the con­
figuration module.) Refer to Chapters 4 and 7 of the RMXISO User's Guide for task
names and other particulars. In addition, if you use any FORTRAN I/O at all you
must declare the public exchange FQOLOK, which is used by the FORTRAN I/O
system, and include it in the Initial Exchange Table.

LIN K Command
To run FORTRAN programs under RMX/SO, you need libraries selected from two
packages: the standard FORTRAN package and the RMX/SO run-time libraries .
The RMX/SO package provides six libraries to support FORTRAN programs run­
ning under RMX/SO:

FPSFTX.LIB

FPHRDX.LIB

FPHXlO.LIB

FSORMX.LIB

FSONTH.LIB

FSONDS.LIB

Software floating-point routines for the RMX/SO
environment

Routines to interface with the iSBC 310 math unit in
iSBC S0/20 and SO/30 systems under RMX/SO

Routines to interface with the iSBC 310 math unit in
iSBC SO/lO systems under RMX/SO

FORTRAN input/output routines for the RMX/SO
environment

External reference library for RMX/SO systems that do
not include the Terminal Handler

External reference library for RMX/SO systems that do
not include the Disk File System.

6-5

Preparing Programs RMX/80 FORTRAN-80 Compiler

6-6

Remember that even when you are using RMX/SO rather than ISIS-II at run time,
you must first link your program segments together and locate them on an Intellec
or Series II system using ISIS-II, which provides the LINK and LOCATE programs.
If you are preparing your programs to run under RMX/SO, your 'input-list' to the
LINK command must include all required libraries in the sequence:

RMX8xx. LI B(START),object-file, F80RUN. LlB,&

{
FBOISS.LlB }
FBORMX.LlB
FBONIO.LlB

,.FPEF.LlB,

FPSOFT.LlB
FPHARD.LlB
FPSETX.LlB
FPHRDX.LlB
FPHX10.LlB
FPNULL.LlB

{ DFS-libs }
, FBONDS.LlB ,&

{~7~li~~~-libS} ,[ext-libs,]RMXBxx.LlB,UNRSLV.LlB,PLM80.LlB
FBONTH.L1B

where braces {} indicate a choice of items and brackets [] indicate optional items.

• 'xx' in 'RMXSxx.LIB(ST ART)' and 'RMXSxx.LIB' stands for 20, 30, or 10,
for systems based on the iSBC S0I20, SO/30, and SO/lO respectively.

• 'object-files' are one or more files containing the modules produced by
compiling your FORTRAN program, plus other modules (if any) translated
from PUM or assembly language code. For RMX/SO systems, 'object-files'
must include your configuration module.

• Use FSOISS.LIB if your program is to run under ISIS-II and perform 110 other
than port 110, FSORMX.LIB if your modules are to run under RMX/SO and
perform 110 other than port 110, or FSONIO.LIB if only port 110 (or no 110)
is used in FORTRAN.

• Link in FPSOFT .LIB to use software floating-point for non-RMX systems,
FPHARD.LIB to use the iSBC 310 interface for non-RMX systems, FPSFTX­
.LIB to use software floating-point under RMX/SO, FPHRDX.LIB to use the
iSBC 310 interface under RMX/SO on an iSBC so 120 or S0/30, FPHXlO.LIB to
use the iSBC 310 interface under RMX/SO on an iSBC S0/10, or FPNULL.LIB
if no floating-point operations are used.

• If FORTRAN input or output is performed from or to a terminal, the libraries
for the full input-output Terminal Handler ('TH-libs') or the minimal input­
output Terminal Handler (,mini-TH-libs') must be linked in. Refer to Chapter 4
of the RMX/SO User's Guide for the names of these libraries. If the Terminal
Handler is not needed, substitute FSONTH.LIB to resolve external references.

• If FORTRAN 110 is performed on disk files, include the 'DFS-libs' needed for
the services OPEN, READ, WRITE, SEEK, CLOSE, RENAME, and
DELETE. Refer to Chapter 7 of the RMX/SO User's Guide for the names of
these libraries. If no disk 110 is performed, substitute FSONDS.LIB to resolve
external references.

• 'Ext-libs' are libraries for any other RMX/SO extension services, such as the
Free Space Manager or analog 110, that you may need in your system.

For further information, refer to Appendix D.

The following sample LINK command links together an RMX/SO system that runs
on an iSBC S0I20. This particular system uses the iSBC 310 interface, does FOR­
TRAN 110 to the minimal Terminal Handler and to diskette files, and also requires
the RMX/SO Free Space Manager. All the FORTRAN libraries, including
PLMSO.LIB, are on drive 0; the RMX/SO and user code libraries are on drive 1.

•
•

•

•

•

•
•

•

•
,.

•

•

•

•

FORTRAN-SO Compiler Preparing Programs RMX/SO

USRCOD.OBJ contains the translated code for the configuration module and all
user tasks. CAMMOD.OBJ contains the translated controller-addressable memory
module, which is described in Chapter 7 of the RMXISO User's Guide.

-LINK :F1 :RMX820.LlB(START),:F1 :USRCOD.OBJ,F80RUN.LlB,&
* * F80RMX. LlB,FPEF. LlB,FPHRDX. LlB,:F1 :MT1820. LIB,: F1 :MT0820. LIB,&:
**:F1 :DFSDIR.LlB(SEEK,DIRECTORY,DELETE,RENAME),:F1 :DI0820.LlB,&
**:F1 :DFSUNR.LlB,:F1 :CAMMOD.OBJ,:F1 :TSK820.LlB,&
**:F1 :RMX820.LlB,:F1 :UNRSLV.LlB,PLM80.LlB TO :F1 :USRCOD.LNK

(Note: The double asterisks are prompts issued by the LINK command.)

Unresolved External References
The LINK and LOCATE programs, ICE-80, and ICE-85 will generate 'error'
messages for unused interrupt exchanges, as described in Chapter 3 of the RMXISO
User's Guide. These messages can be ignored. You should check, however, to make
sure these messages refer only to interrupt exchanges and not to other unresolved ex­
ternal references that may be due to errors in your programs or in linking your
system.

Example
The following pages provide listings of the program code for a simple RMX/80
system that displays pairs of numbers to be added, allows the user to type in answers
from the terminal keyboard, checks the answers, and times the user's responses for
those answers that were correct. Incorrect answers are logged on disk. At the end of
the exercise, the problems missed are printed out for review, along with the average
response time for correct answers.

The hardware environment is an iSBC 80120-based system including a terminal and
two disk drives (FO and Fl) on one controller (CNO) using interrupt level 2. The
software environment includes the RMX/80 Nucleus, full Terminal Handler, and
Disk File System.

Two user tasks are provided: TESTER, written in FORTRAN, which performs the
arithmetic and lIO; and ITlMER, written in PLlM, which performs the interval
timing for TESTER by means of the RMX/80 timed wait operation. Another PLiM
module, called ITIMERINTERFACE, consists of two procedures (ST ARTT and
STOPT) that are called by TESTER and that interface with ITIMER by sending
messages to it to start or stop the timer.

The configuration module and the controller-addressable memory module have
been written in both PLiM and assembly language; either version may be used when
the programs are run. Listings of both versions are provided following the listings of
TESTER, ITIMERINTERF ACE, and ITIMER.

The last listing page gives the SUBMIT file used to link and locate the example
system .

6-7

Preparing Programs RMX/SO

FORTRAN COHPlLER Arithmetic Testing Program

ISIS-II FORTRAN-80 V2.0 COMPILATION OF PROGRAM UNIT TESTER
OBJECT MODULE PLACED IN :F1:tester.OBJ
COMPILER INVOKED BY: fort80 :F1:tester.ftn

2
$date(78-Sep-14) title('Arithmetic Testing Program')
$freeform

3 subroutine Tester

._---
'---This Fortran-implemented RMX task prints 2 numbers to be
·---added by the user, who must type an answer. Several
'---such pairs are typed and the number of correct answers is
.---counted. Incorrect answers are logged for later review.
'---Correct answers are timed, and the average time is printed.

*---
4 external FqOGo, FqfSet, Start!, StopT, GetNum

._--
'---FqOGo and FqfSet are ilo and math initialization routines.

FORTRAN-SO Compiler

'---StartT and StopT are PL/M routines to communicate to the timer.
*---GetNum is a routine to generate the numbers for the test.
--

5 integer N1, N2, Ans, Corect, NTries, Log
6 real TotalT, Intrvl

7

*---
'---Log is the number of the ilo unit for logging wrong answers.
*---TotaIT and Intrvl are the accumulated and individual times
.--- for responses.
I---The rest of the variables are used in the problem itself.

._--
'---Initialize system trans put (i/o) and system floating point:

call FqOGo
·---Initialize this task's floating point register:

call FqfSet (0,0)

9 1 write (1,2)
10 2 format CIII~This programs tests your ability to add pairs of numbers.'

& l'As soon as you see two numbers, add them and type your'
& I·answer. The number of correct answers as well as the average'
& I'response time will be determined. Type RETURN to start.)

1 1
12
13
14
15
16

read (I, '()', err:l)
Log : 99
open (Log, file=' :fO:test.log', form:'unformatted'
Corect 0
NTries 20
TotalT 0.0

17 do 3, IthTry = 1, NTries

err=l)

'---Get two numbers for the example, print them, & start timer.
18 call GetNum (N1)
19 call GetNum (N2)
20 write CI,'(f/i6/1h+,i5)') N1, N2

6-8

•
•

•

•
.1

•
•

•

•
•

•

•

•

•

FORTRAN-SO Compiler Preparing Programs RMX/SO

FORTRAN COMPILER Arithmetic Testing Program

21

22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
3b
39
40
'11
42
43

call StartT

----Get response, stop timer, check
read (*, '(i6)', err = 13) Ans

13 call StopT (Intrvl)
if (N1+N2 .eq. Ans) then

Corect Corect + 1
TotalT = TotalT + Intrvl

else
write (Log) N1, N2, Ans

end if
3 continue

answer, & log bad response.

*---Print results of the exercise. Print problems missed.
write (*, '(llllflEnd of exercise.")I)
if (Corect . eq. NTries) then

write(*, '(IIAII ',i4," answers were correct! Very good!")') Corect
else

write(*, '(i3," problem(s) wrong out of ',i4)') NTries-Corect, NTries
write(·, '(II"Review the following problems:")')
rewind (Log)
do 5, I thTry = 1, NTries-Corect

read (Log) N 1, N2, Ans
write (1,4) N1, N2, N1+N2, Ans

4 format (/i9/2h +,i7/2h =,i7,' not',i8)
5 continue

end if

----Print average response time for correct answers:
44 write (*,6) TotalT I Corect
45 6 format (II' Your average time per correct answer was ,f8.3, sec. ')
46 close (Log, status='delete')

47
48

*---Begin again:
go to 1
end

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
87 LINES READ

05CDH
0042H
0004H

1'l85D
66D

4D

o PROGRAM ERROR(S) IN PROGRAM UNIT TESTER

6-9

Preparing Programs RMX/SO

FORTRAN COMPILER Arithmetic Testing Program

ISIS-II FORTRAN-BO V2.0 COMPILATION OF PROGRAM UNIT GETNUM
OBJECT MODULE PLACED IN :F1:tester.OBJ
COMPILER INVOKED BY: fort80 :F1:tester ftn

subroutine GetNum (N)

FORTRAN-80 Compiler

----This Fortran subroutine naively generates some numbers for Tester.

2 integer N, LastN
3 common LastN

4 LastN = iabs(mod(13-LastN+1,1999»
5 N = LastN
b end

MODULE INFORMATION:

6-10

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
12 LINES READ

0027H
0002H
0002H

39D
2D
2D

o PROGRAM ERROR(S) IN PROGRAM UNIT GETNUM

o TOTAL PROGRAM ERROR(S)
END OF FORTRAN COMPILATION

•
•

•

•

•

•
•

•

•
..
•

•

•

•
•

•

FORTRAN-SO Compiler Preparing Programs RMX/80

PL/~I-(jO ClJ~dlLch 1~1E"\AL TIMEh IhTEhfACE

ISIS-II I'L/M-60 V3.1 ~0HI'ILATIO~ Of MODULE ITIMEhI~TERfACE

ObJECT MODULE PLACED I~ :f2:testt.ObJ
COMPILER I~VUktU BY: plmbO :~~:testt.plm

<: =
=

3 " =

4 2 =

5

b 2

7 2 =

II

9 2

10 2 =

1 1 =
=

12 2

13 2

14

=

=
=

~date('7(j-~ep-l<:') title('Interval Timer Interface')

ITimerlnterface: ao; ,
I· This PLIM module interfaces the fortran subroutine Tester to the
I" interval timer. This module takes care of the hMX/llO message
If< sendinglreceiving tor the fortran subroutine.
If<
I" This module/task sends the following messages:
I" sends MSG TO VIA COKME~TS
I" StartTimer ITimer lLntrl Signals timer to start
I· StopTimer ITimer T~ntrl Signals timer to stop
I·
I· This moduleltask waits for the following messages:
1* receives MSG fROM VIA COMMENTS
1* (ref'd by MsgAdr) ITimer TRslts Indicates timer running
1* (ref'd by MsgAdr) ITimer Thslts Returns elapsed seconds (REAL)

I··· •• ··.·······1
~include (:fl:Synch.Ext)
R("SEt.D:

PROCEDURE (EXCHANGE$POINTER,MESSAGEiPOINTER) EXTERNALj
DECLARE (EXCHANGE$POI~TER,MESSAGE$POIt.TER) ADDRESSj

E~J) RI.iSENDj

H(";,AIT:
PROCEDURE (EXChANGE$POINTER,J)ELAY) ADDRESS EXTERNALj

DECLARE (EXCHANGE$POIt.TER,DELAY) ADDRESS;

END Rl..lIAlTj

kI..ACPT:
PROCEDURE (EXCHANGE$POINTER) ADDRESS EXTER~ALj

DECLAnE EXCHA~GE$POI~TER AJ)DRESS;

END RQACPT;

IH;IS~D:

PROCEDURE (IED$PTn) EXTERNALj
DECLARE lED~PTR ADDRESSj

END RQISNDj
$include (:fl:Exch.Elt)
DECLARE EXChANGE$DESCRIPTOR LIIERALLY 'STRUCTURE (

MESSAGE$HEAD ADDRESS,
MESSAGE$TAIL ADDRESS,
TASK~HEAD ADDRESS,
TASK~TAIL ADDRESS,
EXCHA~GE$LINK ADDRESS)'j
~include (:fl:Msg.Elt)

6-11

Preparing Programs RMX/80 FORTRAN-80 Compiler

PL'.-l-&O CO .. d'ILEIi I~TERVAL TIMER INTERFACE

15

16

11

lb

19

20
21
~2

23

24
25

26

27

2b
29
30
31

6-12

~

2
2
2

2
2

2

2
2
~

2

=
=

=

=

=

DECLARE MSG*hDR LITERALLY
LINK ADDRESS,
LENGTH ADDRESS,
TYPE BYTE.,
hOME'E~CHANGE ADDRESS,
RESPONSE$EXChANCE ADDRESS';

DECLARE MSG~DESCRIPTOR LITERALLY 'STRUCTURE(
MSG~hDR.

IiEMAINDER(1) BYTE)';

declare
integer2 literally 'address',
real literally '(2)address',
TMsg structure (

Msg$hdr,
Duration real) ,I-Message for communicating with timer-I"

TRslts Exchange$Descriptor public ,I-Exchange for interval timer results-I"
TCntrl Exchange~Descriptor external ,I-Exchange to start' stop timer.- I "
MsgAdr address '.-Pointer to 'result' message -I,;

declare 'I-Message types-I,
StartTimer literally '101',
StopTimer literally '100';

StartT: procedure public; '1 ___ _
,I This PL'M procedure is called from the Fortran subroutine Tester when ,I the interval timer is to be started. This procedure forms the 'start' ,I message, sends it to the exchange (TCntrl) controlling the timer, and
/. waits for an acknowledgement before returning to Tester.
'1 ______ --______________ 1/

TMsg.Length = 13;
Thsg.Type = StartTimer;
TMsg.hesponse,Exchange = .TRslts;
call RG&end (.TCntrl, .THsg); '1- Send the message and wait for acknowledgement.- I /
MsgAdr = Rqwait (.TRslts, 0);
end StartT;

StopT: procedure (SecondsAdr) public; '1 ______ --_______________ _
/1 This 'L'M procedure is called from the 'ortran suoroutine Tester in
/1 order to stop the interval timer and to obtain the elapsed time since ,I the timer was started. This procedure forms the 'stop' message,
/1 sends it to the exchange controlling the timer, and waits for
/. the resultant elapsed time (a floating-point, or REAL, value) to be
,I returned. /5 __ e/

declare SecondsAdr address,
Seconds based SecondsAdr real;

TMsg.Type = Stop11mer;
call RqSend (.TCntrl, .TMsg);
MsgAdr = Rqwait (.TRslts, 0);
Seconds(O) = TMsg.Duration(O); Seconds(l) TMsg.Duratton(l);

•
•

•

•

•

•
•

•

•
•

•

•

•

•

•

FORTRAN-SO Compiler

PL/N-BO CO~lI'ILER INTERVAL TIhER l~TERFACE

33 2 end StopT;

34 end ITimerinterface;

MODULE I~FORMATION:

CODE AREA SIZE = 0062h
VA~lABLE AREA SIZE = 00lbh
MAliMUM STACl SItE 0002H
111 LaES READ
o PkOGkAM ERROR(S)

E~D OF PL/M-bO CCMPILATIO~

9bD
27D

2D

Preparing Programs RMX/SO

6-13

Preparing Programs RMX/SO FORTRAN-80 Compiler

"'L/M-bO LOHt'ILEIi IhT~RVAL TIMER TAS~

ISIS-II t'L/N-bO V3.1 COMt'ILATI~. or MOD~LE I~TEh~ALTIMER
UbJECT hOD~LE t'LACtD IN :~2:ttlmer.ObJ

LOMt'ILth I.~UKED b): plmtiO :F2:lttmer.plm

2
=
=
=
=

3
=

=
=
=
=

4 =
=
=

5

6

7

6-14

$datel7b Aug ~) title('lnterval Timer Task')

IntervalTimer: do;
I····································u•..•..•••.•.••.••••••••••
I' This t'L/M procedure Is the main procedure of a task that performs
/. interval timin~ tor the Fortran subpro~ram Tester which runs as
I' another taSk. The timin~ is simply performed by usin~ the time-out
I' facility of the Rhl/oO ~alt operation. (The wait ~alts at an
I' exchange to which no messages are send.)
I'

I'
I"
I'
I·
I'

This tasklprocedure receives the following messages:
receives MSG fhOM VIA COMMENT

StartTimer Tester TCntrl Starts operation of timer
StopTimer Tester TCntrl Requests elapsed time

I' This task/procedure sends (returns) the following messages:
I' sends hSC 'hOM VIA LOMMEhT
I' (acknowledge Start) Tester (resp.exch) Returns message as confirmation
I' (acknowledge Stop) Tester (resp.exch) keturns message with time in it

I·· •• ···•· •• ··.1
'include (:f1:Exch.Elt)
DECL~nE ElCHA~GE'DESChIPTOk LITERALLY 'STRUCTUHE (

hESSAGE$HEAD ADDRESS,
hESSAG~'TAIL ADDhESS,
TASL~HEAD ADDRESS,
TASK~TAIL ADDRESS,
ElChANCE$LINL ADDRESS)';

$incluae (:f1:Hsg.Elt)
DECLARE MSG~HLk LIT~RALL~ ,

LIN/(ADDRESS,
LEl\CTIi ADDRESS,
TUt; ene,
HOHE~EXCHANGE ALDR~SS,

RESPOhSE$EXChANGe ADDRESS';

LECLARE MSCtDESCRIPTOR LITERALLY 'STRUCTURE(
MSG$hDli,
REMAINDER(1) blTE)';

declare
zero aodress data (0),
integer2 literally 'address',
real literally '(2)address';

declare I' Exchanges' I
Ticker Exchange$Descriptor public,
TCntrl Exchange$Descriptor public;

declare 1'~essages.1
ControlMsgAdr address,

•
•

•

•

•
•

•

•

•

•

•

•
•

•

•

FORTRAN-SO Compiler

PLIf,.-bU C(;/'d'lLeR I~TiRVAL TIhER TASK

9

10 2

12

13 2

15

16 ,
17 " =
1 b

19 " =
20 2 =

" 1

22 " =
=

23 2

24

2 =
=

26 2 =

ControlHs~ cased LontrolMsgAdr structure (
Msghar,
Duration real),

TickMsgAdr address:

declare /-Message types l /
StartTtmer literally '101',
StopTimer literally '100':

ToSecs: /ICoversion routine for time format l /
procedure (R,h,S) external;
declare (R,h,S) address; end;

FqfSet: /.Task's floating point initializationl/
procedure (r,i) external;
declare (F,i) address: end;

$include (:f1:Synch.ixt)
hf,iSi/'.iJ):

PROCeDURE (EAChANGi$POINIER,MESSAGe~POlNTER) eXTERNAL;
DiCLARE (EXCHAN~i'POlNTiR,HESSAGE$POINTiR) ADDRESS;

I';ND IH.,iSEND:

Rf,i~AlT :
PROCI';DuRI'; (iALhANGE~POl~T~~,DELA1) ADDRESS EXTERNAL:

DECLARe (ElCHANGE$POINTeR,DELAl) ADDRESS:

I';ND R(';IoAIT:

Rf,iACPT:
PROCiDURE (eXChAhGE$POlNTEH) ADDRiSS EXTERNAL:

DiCLARE eAChANGe$POlNTER ADDRESS;

END Rc.;ACPT:

ItQISND:
PROCEDURE (IED'rTh) E1T~RhAL:

DECLARe IeD$PTrl ADDReSS;

iND It{,jlSND:

Preparing Programs RMX/SO

6-15

Preparing Programs RMX/80 FORTRAN-80 Compiler

PL/M-SO COMPILER IhTERVAL TIMER TASK

27

28 2

29 2
30 2

31 3
32 3
34 3
36 3
37 3
38 3
39 4
40 4
41 4
43 5
46 4
47 4

4tl 3
49 3
50 3
51 2

5,

$eject
ITimer: procedure public;

I···
I' This procedure is the entry point of the interval timer task.
I' It is used to clock a period of time with a resolution of 50 msec
I' (under RMXlbO/20 or 80130). lhe duration of such a period is
I' returned as a real (floatin~-Doint) value measured in seconds.

I··· •••• · •• 1
declare

(Minutes, TwentiethSecs) inte~er2;

l'Initialize floatin~ point for this task' I
call FQfSet (.zero"zero);
do while 1;

I'~ait for some request to start'l
ControlMsgAdr : BQ~ait (.TCntrl, O);
TwentiethSecs : 0; Minutes: 0;
ControlMsg.Duration(O) = 0; Controlhsg.Duration(1) : 0;
call iQSend (Controlksg.HesponselExchange, ControlMsgAdr);
Controlks~Adr : 0;
do while ControlMs~Adr : 0;

TickMsgAdr : hQwait (.Ticker, 1); 1'0.05 seconds on 80/20'1
TwentiethSecs = TwentiethSecs + 1;
if TwentiethSecs = 1200 then do;

Minutes = Minutes + 1; TwentiethSecs 0; end;
ControlMsgAdr = RQAcpt (.TCntrl);
end;

call ToSecs (.ControlMsg.Luration, .Minutes, .TwentiethSecs);
call RqSend (ControlMsg.HesponseExchange, ControlMsgAdr);
end;

end ITimer;

end IntervalTimer;

MOD~LE IhfOkMATION:

= OOb9h CuDE AHt.A S12.1:.
VAHIAbLE AHEA SIZI:.
MAAIMUM STACK SIZE :
127 LINES HAD
o ~ROGHAM EhnOk(S)

I:.ND 0' fL/M-tlO COMfILATIOh

6-16

OOlCh
0004h

165D
2bD

4D

•
•

•

•

•
•

•

•

•

•

•

•
•

•

FORTRAN-80 Compiler Preparing Programs RMX/80

Conversion routine for Interval Timer

ISIS-II fORTRAN-bO V~.O COMPILATIOh GF PhOGRAM ~~11 TUS~CS

ObJlLT MOD~LE PLAClD lk :Fl:ToSecs.OBJ
COMPILER IhVO~~D Bl: forttiO :rl:ToSecs.ttn

2

3
II
5

~date(7b Aug 9) title('Conversion routine for Interval Timer')
real function ToSecs (Min, Sec20)

•
•
•

•• This fortran-bO function subprogram converts a pair of integer
•• values representing some number of minutes and some multiple of
•• twentieths of a second to a real value representing seconds.
integer·2 Min, Sec20
ToSecs = bO.O • Min + Sec20 I 20.0
end

MUDULt INfORMATIO~:

Cvut AHA SIn
VARIABLE AhEA SIZE
MAXIMUM STAC~ SIZl
Ii LINtS HAD

OOIlCh
:: 0006H

OOa6H

7bD
60
6D

o PROGhAM lRROH(S) l~ PROGRAM UNIT TOSEeS

o TOTAL PROGRAM ERkOR(S)
hND Of 'ORTRA~ COMPILATION

6-17

Preparing Programs RMX/SO FORTRAN-SO Compiler

PL/M-80 COMk'lLER

ISIS-II ~L'M-80 \3.1 COM~lLATIO. OF MODULE CO.FIG~RATIO~MODULE
OBJECT MODULE PLACED IN :F2:config.OBJ
COM~ILEh I~VOKED bY: plmbO :F2:config.plm

2

1 1

1 3
1 5
1 7
19
2 1

23
25

27

6-18

CONfIGUhATION,MODULE: DO;

, .. ,
/. This configuration module describes the hardware environment to ./
/. hMX/BO. The environment assumed includes two disk drives, FO and
/. Fl. on one controller CNO using interrupt level 2 on an iSbC 80/20.
/. Also included is a terminal driven by the full terminal handler. ,.
,. The software environment assumed includes the Fortran-BO Run-time
/. for RMl/80 Systems which uses the F~OLOK exchange. Two user
/. tasks are also specified. which use three exchanges.
/ .. /
DECLARE FP,TASK$DESCRIPTOR LITERALLY

/ /
/. Note this new kind of TO for tasks ./
/. performin~ floatin~-point math ./
/ •••••••••••••••••••••••••••••••••••••• , 'STRUCTUhE(

DELAY$LINK~FOR~ARD ADDhESS,
DELAY$LI~K.bACK ADDRESS,
ThkEAIJ ADDRESS,
DUAY ADDRESS.
EXCHANGEiADDRESS ADDRESS,
SP ADDRESS.
MAIiKER ADDRESS,
PhlORITY EYTE.
STATUS EHE,
NAME$PTR ADDRESS,
TASK$LINK ADDRESS.
HR(l!l)BYTE)';

~nolist

/ ••••• task entry points ••••• /
k~THDI: PROCEDuRE EXTERNAL; END;

RI.;PDSK:
RQPDEL:
R"PI;IR:
R"~RNM:
hQIlD 1:

PROCED~RE ~XTER~AL;

PROCEDURE EXTERNAL;
PROCEDURE hXTER~AL;
PROCEDURE EXTER~AL;
PROCEI;Uhh EXTERNAL;

END;
EI,D;
EhD;
END;
Er.D;

IT1~ER: PROCED~hE EITERNAL; END;
TESTER: ~ROCEDUHE EXTERhAL; END;

, ••• terminal handler "'/

,ti •• disk input/output "./
/ ••• file delete service ••• /
/, •• disk directory service .,'/
/ ••• file rename service , •• /
, ••• controller for disks ••• /

/ ••• interval timer •• ,/
Itt. user main task ••• /

DECLARE / •••• task stack lengths •••• ,
TH~STK~LEN LITERALLY '3&'.

DSK~ST~$LEN LITEhALL~ '4b',
DiLSTKLEN LIIERALLi '64',

•
..

•

•

•
•

•

•

•
•

•

•

•
•

•

FORTRAN-SO Compiler Preparing Programs RMX/SO

l'L/"1-80 C.OI1i'lI..ER

30

31

~Ifi'STI$L~~ LITErlALLY '48',
R~M'ST'¥LEN LITtRALLI '64',
CNO$STK'L~~LITERALLY 'SO',

ITIMEfi~STK$LEN LITERALLY '300',
TESTtRiSTK.LE~ LITERALLY '1000';

DECLARE / •••• task stacks •••• /
ThiSTI (Th~ST~~LE~) BYTE,

OSK$STI (OSK~STK~LE~) biTE,
DEL~STK (DEL'STK'LE~) B1TE,
OIR$STK (OIR~STK'LE~) bYT~,
fiNM'STK (RNM'STK$LE~) biTE,
CNO,STK (CNO,STI,LEN) BJTE EATERNAL,

ITIMERiSTK (ITIMER'STK'LE~) bIlE,
TESlER,STK (l~STER'STI~LEN) ElTE;

OECLARE / •••• task priorities •••• /
Ih$PhI LI1EkALLl '112',

DSK'~fil LITEfiALLI '129',
DEL$i'hi LIURALLY '140',
DUIPhI LlhRALU '135',
R1'<I'IIjiPhI LIT~HLLl '145',
Ct.O~PhI LI'IEHALLI ' 33'.

ITIMER$Phl LITEhALLl '100',
TESTtR$i'kl LIT~RALLY '~OO';

D~CLAhE / •••• task descriptors •••• /
ThlTO TASK'DESC.filP'IOR,

DSK$TD TASK~OESCRIPTOR,
~EL$TO TASK~DtSCRIPI0R,
OIR$TO TASK,DESCRIPTOR,
fiRM$TO TASK$OESCRIPTOR,
C~O'TO TASK'DESCRIP10R,

ITIMEk$TD FP,TASKiOESChIPTOR,
TESTERiTO Ff,TASK$DESCRIPTOh;

DECLARE / •••• static task descriptors •••• /
N$TASKS LltERALLl '8',
INITIAL$IAS'ITAbLE (N,TASkS) STATIC$TASK'D~SC~IPTOH DATA(

/._name ____ procedure ___ stacK ____ stack_size ___ priority __ default __ TD_addr_·/

/ •••• std for input-output terminal handler •••• /
'~~ThDI', .R~ThDI, .Th.STI, TblS1K$L£N, TH$PRI, .~QOUTX, .TH$TD,

/ •••• stds for disk file system services •••• /
'uISKIO', .Ri;l'OSK, .l!SKSTK, OSKSTI'.$L\,;r.. DSK$PRI, .fiQDSKX •• DSK$TD •

6-19

Preparing Programs RMX/SO FORTRAN-80 Compiler

PL/M-BO CO~PIL~R

32

33

35

36

37

6-20

'Dt-LETt.' ,
'j)IRS~C' ,
'RENAME.' ,
'DC201A',

• hl.l'DI:.L,
.IiQPDlR,
.RC;Phf'<M,
.RQhD1,

.DEL$STK, DI:.L$STKLEN, DELPRI, .kQDELX,

.DlhSTK, DlkSTKLEh, DIRPRI, .RQDIRX,

.RNM~STK, kN~lSTKLE", hNM$Phl, .Rl;RhMX,

.CNDSTK, CNO,STKLEN, CNO$PRI, .CNOX,

• DLl.$TD,
.DIR$TD,
.IiIiM~TD,

.CNO$TD,

I ••• • stds for user tasks •••• ,
'ITIMER',.ITlhEh,.ITIMER~STK,ITIHERSTKLEN,ITIME.R$PRI,.TICKER,.lTIMER$TD,

'TESTE.R',.TESTiR,.TESTER$STK,TESTE.R$STK$LE.N,TESTER$PRI, 0 ,.TESTER$TD);

DECLARE I···· system exchange descriptors •••• ,
(RQINPX, RQOUTX

, RQDbUG, RQ~AKE, RQALkM) EXChANGE$DESCRIPTOR EXTERhAL I.' terminal "/,
(RCDSKX, IiQDELX, RQDIRX, RQRNMX) EXCHANGE' DESCRIPTOR EXTEhNAL I" disk "1,
(CNOX) EXCHANGE$DESCRIPTOR I" exchange for disk controller "',
(RQL2EX) INT$EXCHANGE$DESCHIPTOR PUbLIC,

(RQLOEX,RQL3EX,RQL4EX,RQL5EX) INT$EXChANGE$DESCRIPTOR PUbLIC AT (.RQL2EX),
(RQLbEX, RQL7EX) INT~EXCHANGE$DE.SCRIPTOR EXTERNAL I" interrupts "1,

FQOLOK EXCHANGE~DESChlPTOR PUBLIC I" fortran ilo interlock "1;

DECLARE I •••• user exchange descriptors •••• ,
(TICKER, TCNTRL, ThSLTS) EXChANGE$DESCRIPTOR EXTERNAL;

D~CLARE I •••• initial exchange table •••• ,
N$EXChANGES LlTERALL~ '17',
lNlTlAL$EICHANGE$TABLE (N$EXCHANGES) ADDRESS DATA(

.RQINPX, .R~OUTX, .RQDBUG, .RQIoAKE, .RQALRM, I'. terminal handler ,.,

.RQDSKX, .RQDELX, .RQUlRI, .RQRNMI, I·. disk service exohanges ,.,

.hQL2EI, .RQL6E.X, .RQL7EI, I'· interrupt exchanges .'1

.CNOX, I·' controller exchanges ,.,

.FQOLOK, , •• fortran ilo interlock exchange "1

.TICKER, .TCNTRL, .TRSLTS) I·. user exchanges .'1;

DECLARE I···· create table •••• ,
RQCRTb CREATE$TAELE rUBLIC DATA(

.1~lTIAL$TASK$TABLE, N~TASKS,

.lNITIAL$EXChANGE$lABLE, N$EXChA~GES);

DECLARE , •••• controller speoification table •••• ,
SBC201 LITERALL~ '0' I" device type "1,
RQCST (1) CST$ENTRY PUbLIC DATA(

SBC~01. l'port'l 78h, l'lnt.level·' 2, I·int.exchange" .RQL2EX
, I'request exchange'l .CNOX);

DECLARE I.· .. device configuration table •••• ,
RQNDEV ADDRESS PUBLIC DATA (2) I'. 2 drives ,."
RQDeT (2) DCT$ENTRY PUBLIC DATA(

'FO', SBC201, '·controller.' 0, "unit., 0,
'Fl', S8C201, 0, 1);

•
•

•

•

•
•

••

•

•
•

•

•

•
•

•

•

FORTRAN-80 Compiler

PL/M-80 COMPILEH

38 DECLARE / •••• buffer allooation blook •••• /
EUFPOL (3200) B~TE EXTERNAL,
RQBAB BAB$ENTRY PUBL!C DATA(

Preparing Programs RMX/80

0, 0, /'n files'l 8, .BUFPOL) / •• statically allocated buffers "1;

39 DECLARE I •••• public data •••• /
R~RATE ADDRESS PUBLIC DATA (28) / •• 2400 baud •• /;

40 END CONFIGURATION$MODULE;

MODULE INFORMATION:

CODE AREA SIZE : OOCCH
~ARIABLE AREA SIZE : 06FFH
MAXIMUM STACK SIZE = OOOOh
255 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

204D
1791D

OD

6-21

Preparing Programs RMX/SO

PL/M-80 COMPILER

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE CONTROLLERACCESSMEMORY
OBJECT MODULE PLACED IN :F2:ca~mod.OBJ
COMPILER INVOK~D BY: plm80 :F2:cammod.pIm

CONTROLLER,ACCESS$MEMORY: DO;

FORTRAN-80 Compiler

I········· .. ·· · ~ · · .. ···············1

2

3

4

5

I' This module describes a data area which must be in con toller
I. accesbable memory. That is, the data segment of this module must
I· be located for off-board memory (e.g. OFOOOh).
I··· 1
DECLARE I •• •• stack for controller task •• ··1

CNOSTKSIZE LITERALLY '00',
C~O$STK (~O) BYT~ PUBLIC;

DECLARE I •••• buffer for DIRSVC directory services •••• ,
RQDBuF (700)bYT~ PUbLIC;

DECLARE I ••• • buffers for UP to 8 open files •••• ,
BUFPOL (3200)bYT£ PUBLICi

~ND CONTROLLER$ACCESS$MEMORYi

MODULE INFORMATIO~:

CODE AHA SlZ<.
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
22 LINj"S READ
a PROGRAM ERROh(S)

= OOOOH
= OFbCh

OOOOh

END OF PL/M-bO COMPILATION

6-22

00
3900D

00

•
•

•

•

•
•

•

•

•
•

•

•

•
..

•

•

FORTRAN-80 Compiler Preparing Programs RMX/SO

asmaO :f£:config.asm

l~lS-ll b080/bOb5 ~ACfiO ASSihBL~R, '2.0 CONinG l'AGi

LOC ObJ

0000
0000
0000
0000

0000 525154411
0004 4449
0006 0000 i
0000 0000 II
OOOA 21100
OOOC 70
0000 0000 ~

OOOf 1006 D
0001
0014

0030

0011 52515044
0015 53A1B

Slii;;

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
10
17
Hi

394
395
396
397
390
399
lIOO
401
402
403
40ll
405
lI06
lI07
408
501+

+
512+
513+
514+
515+
51b+

SOURCE STATEkENT

$~lAChGFILE
$/ljOGIiN

hAkE COIH"lU
;•................................

This configuration module describes the hardware environment to
RHX/80. The environment assumed includes two disk drives, Fa and
Fl, on one controller C~O using interrupt level 2 on an iShC 80/20
Also included is a terminal driven by the full terminal handler.

the software environment assumed includes the Fortran-80 Run-time
for hH~/80 Systems which used the FQOLOK exchange. Two user

; tasks are also specified, which use three exchanges.
; .. .

CSIiG

INCLUDE MACROS
;
$nol1.st
$l1st

NTASK
N/:;X~H

td!E V
NeOIl!

;

SE.T
SET
S~T

~"T

o
o
a
a

;•..............................•...............
Static task descriptors:

S'lO
Db

R"T~DI,36,112,RgOUTX
'RQTHOI'

II"ThDI
??0001
36
112
Ri;;OUTX+O

terminal handler

517+
518+NTASK
519+TOAREA
520 ;

Dw
DIo.
Dli
Oil
D~

DI<
S .. T
SET

1 DEASE+T OAHU
IITASK+l
+20+TOAREA ••••• ,

; •••• CHANGED FROM RMX V1.3

ChANGED FROM IIkX Vl.3

521
522+
523+
52b+
529+??0002:
530+
614+

+

STD
/:;XTRN
(.S/:;G
IISEG
OS
CSEG
DB

R~l'DSK,lI8,129,RQDSKX
R(;;I'DSK

46

'RQPDSK'

; disk inputloutput services

6-23

Preparing Programs RMX/SO FORTRAN-80 Compiler

ISI~-lI B080lb085 MACIiO ASSEMbLt::R, 112.0 COi'4FIG PAGE 2 • LOC ObJ SEQ SOURCE STAHMENT

0017 0000 E 625+ Djj R"PDSK
0019 21100 D 626+ Dw 770002
001B 3000 627+ DW 118
001D 81 62!>+ Db 129
001E 0000 E 029+ DW RQDSKX+O
0020 2C06 D 630+ Dlol TDBASE+TDAREI. ; •••• CHANGED FROM RMX Vl.3
0002 631+NlASK SET ~TASK+l
0028 632+TDAliEA SE.T +20+TDAREA ••••• CHANGED FROM RMX Vl.3 ,

633 STD RQPDEL,64,l110,RODELX ; file delete 5ervice
634+ HTRt. RQPDEL .. 035+ CSEG
640+ DSEG

00110 641+710003: DS 611
642+ CSEG

0022 52515044 726+ DB 'RQPDEL'
0026 1I511C +
002ll 0000 E 737+ Dw ROi'DI:.L
002A 51100 D 738+ Dw 770003
002C 11000 739+ DII 64 • 0021:. dC 7110+ Db 140
002r' 0000 E 741+ Dw RQD£LX+O
0031 4006 D 7112+ Dw TDBASI:.+TDAREA j •••• CHANGED FROM RMX Vl.3
0003 743+NTASK SET NTASK+l
003C 7411+TDAIIEA SET +20+TDAREA ••••• CHANGED FROM kMX Vl.3 ,

745 sTD R~PDIR,1I0,135,RQDIRX ; disk directory 5ervice
746+ EXTRN RQPDIR
7117+ CSEG
752+ DSEG

0030 753+110001l: DS 1I8
7511+ CSEG

0033 525150114 838+ DB 'RQPDIR'
0037 11952 +
0039 0000 E 849+ DW IiOPDIR • 003B 9400 D !S50+ DW 170004
003D 3000 B51+ DW lib
003F B7 852+ DB 135
0040 0000 I:: 853+ DW RQDIRX+O
00112 51106 D 8511+ Dil TDBASE+TDAREA ; •••• CHANGED FROM RMX Vl.3
0004 855+I<TASK SET t.TASK+1
0050 856+TDAREA SET +20+TDAREA ••••• CHANGED FROM RMX V1.3 ,

1157 STD RQPRI<M,64.145,RQRI<MX ; file rename service
858+ EATftN ROPRNM
859+ CSEG
8611+ DSEG

0040 865+170005: DS 611
866+ CSEG

0044 52515052 950+ DB 'RQPRNM'
0048 IIE4D + • 004A 0000 E 961+ Dw RQPRN~J

004C C400 D 962+ Dill ?70005
004E 11000 963+ DW 611
0050 91 964+ DB 145
0051 0000 E 965+ Dw RORt.MX+O
0053 6806 D 966+ Dw TDbASE+TDAREA ••••• CHANGED FROM RMX Vl.3 .
0005 967+I<TASK SET NTASK+l

•

•

•
6-24

•
•

•

•

•
•

•

FORTRAN-SO Compiler Preparing Programs RMXJSO

ISIS-II 0060/BOo5 MACRO AS~EMBLER, V2.0 CONFlG PAGE 3

LOC OEJ

00b4

0055 434E5452
0059 4C31
005B 0000 E
005D 0000 E
005F 5000
OObl 21
0062 DC06 D
00b4 7C06 D

012C

0066 4954494D
OObA 4552
006e 0000 E
OObE 0401 D
0070 2COl
0072 64
0073 0000 E
0075 9006 D
0007
009E

03E8

0077 54455354
0076 4552
007D 0000 E
OOH' 3002 D
OOtll Etl03
00B3 CIl
0064 0000
OOBb B606 D
0008
00C4

OOC4

SEQ

966+TDAHA
969
970

1062+
+

1073+
1074+
1075+
1076+
1077+
1076+
1063 ;
1084
1085+
1086+
1091+
1092+??0006:
1093+
1177+

+
118B+
1189+
1190+
1191+
1192+
1193+
1194+NTASK
1195+TDAREA
1196
1197+
119B+
1203+
1204+??0007:
1205+
1289+

+
1300+
1301+
1302+
1303+
1304+
1305+
1306+NTASK
1307+TDAREA
1308
1309+
1310+TObASE:
1311 +

SOURCE STATEMENT

SET
EXTRN
CONSTD
DB

Ow
Ow
Ow
OB
D\oI
DW

STD
EXTRN
CSEG
OSEG
OS
CSEG
DB

Dw
OW
Ow
Of,
OW
Dw
SET
SET
STD
Ell. T fiN
CSEG
DSEG
OS
CSEG
DB

Ow
Dw
Dw
DE
0\0;
Ow
SET
SET
GENTD
DSEG
OS
CSEG

+20+TDAREA ; •••• CHANGED FROM RMX Vl.3
R~HOl ; controller for disks
CNTRL1,R~HD1,80,CNOSTK,33.CNOX

'CNTRLl '

RQHDl
CNOSTK
80
33
OOX+O
TDbASE+TDAREA ; •••• CHANGED FROM RMX Vl.3

ITIMER,300.100,TICKER,18
ITHiER

interval timer user task

300

'ITIMER'

!TIMER
??0006
300
100
TICKER+O
TDBASE+TDAREA ; •••• CHANGED FROM RMX Vl.3
NTASK+l
18+20+TDAREA ; •••• CHANGED FROM RNa Vl.3
TESTER,1000,200,.18 ; user main task
TESTER

1000

'TESTER'

TESTER
?10007
1000
200
+0
l'DBASE+TDUEA
t.TASK+l
18+20+TDARE.A

; •••• ChANGED FROM RMX Vl.3

; •••• ChANGED FROM RMX Vl.3

l'DAliEA ; •••• CHANGED FROM RMa Vl.3

1312
131 3
1 31 4
1315
131 b

••
Exchanges for disk controller and interrupts

1317+
131b+

XCh
DSEG
PUBLIC

CNOX

CNOX

6-25

Preparing Programs RMX/80 FORTRAN-80 Compiler

ISIS-11 8080/8085 ~.ACRO AS.sel1bLEk. V2.0 (;(JNr'IG PAGE 4

LOC ObJ S r;1./ SOURCE SlATiMENT • OOOA 1319+CNOll.: OS 10
1320 hUCH kQLaX
1321+ XCh RQL2il1.
1322+ OSiG
1323+ PUbLIC kOLax

OOOA 13211+IiQL2EX: u.s 10
0005 1325+ DS 5

1320 PUbLIC HQL3EX.R~L4EX.RQL5EX.RQLOEX
06E6 D 1327 kQL 3F;X EQU RQL2EX
061:.6 D 1328 liQL4EX iCo/U k~L2I::X
06Eo D 1329 RQL5f.X Ii.I./U IiQL2H • 001:;6 D 1330 HOLOEX t;QU RQL2EX

1331
1332 Kxchange for Fortran ilo system:
1333 lI.Ch HOLOK
1334+ OSeG
1335+ PUbLIC HiOLOK

OOOA 1336+Fc;.OLOK: lJS 10
1337 . • 133!l ; ..
1339 ; Initial exchanp;e table:
13110 XChAlJli IiQlNl'X
1341+ HlhN RG It; I'J(
1342+ ('SEG
13411+IET:

00118 0000 E 1340+ D~ HOINPX
0001 1347+NEXCH SET NEXCH+l

134!l XChADR RQOUTX
13119+ E>. T ItN ROOUTX
1350+ CSEG

OOIlA 0000 E 13511+ DI; RQOUTX
0002 1355+I<EXCH :SET NEXCh+1

1356 XCHADR RQ"AKE
1357+ EXTkN RQwAKE • 1351l+ CSEG

OOtH, 0000 E 1362+ DI. RI:/IoiAKE
0003 1363+NEXCH SET NEXCH+l

13611 XCHADR RQDhllG
13b5+ EXTRN RQDbUG
1366+ CSEG

008E 0000 Ii. 1370+ Dio RQDbUG
0004 1371+NEXCH SET NEX(;H+1

1372 XCHADR IiQALRN
1373+ EXTRN R!;IALRM
13711+ CSEG

0090 0000 E 1378+ Dw RQALRM
0005 1379+NF.XCH SET NI::XCH+l

1380 ; • 13bl lI.CHADR RQDSKX
1382+ EXTRN RQDSKX
1303+ CSEC

0092 0000 E 1387+ DI. RI./DSKX
0006 131l8+NF.XCH SET NEXCH+l

1389 XChADIt RQDELX
1390+ I:;XTRN R"DELX

•

•
6-26

FORTRAN-SO Compiler Preparing Programs RMX/SO

1SI5-11 BObO/80b~ MACIIO ASSEMbLER, ~2.0 CONFIG PAGE 5 • LaC ObJ SE(.i SOURCE STATEMENT

1391+ CSEG
0094 0000 E 1395+ Oil IiQDELX
0007 1396+NEXCH SET NEXCH+l

1397 XChAOR RQOIRX
139B+ EXTRN RQOIRX
1399+ CSEG

0096 0000 E 1403+ Oli RQDIRX
0008 1404+l<EXCH SET NEXCH+l

1405 XCI1ADR R'-'RNMX
1406+ EURN R(.;RNMX • 1407+ CSEG

0098 0000 E 1411 + Dli RQRl<MX
0009 1412+NEXCIi SET l<EXCh+l

1413 ;
1414 PUBXCH RQL2l:;X

009A E606 D 1419+ 010 RQL2EX
OOOA 1420+NEXCIi SlT l<EXCH+l

1421 XCHAOR RQLbEX

• 1422+ EXlRN RQL6EX
1423+ CSEG

009C 0000 E 1427+ DI< RQL6EX
OOOIl 1428+l<EXCIi SI::T NEXCIi+1

1429 XCIiAOR RQL7EX
1430+ EXTRN RCL7£li.
1431+ CSEG

009E 0000 E 14'35+ Ow R(.;L 7 Ell
oooe 1436+NEXCIi SET NEXCIi+l

1437 ;
1438 I'UbXCH CNOX

OOAO DC06 0 1443+ Ow CNOX
0000 1444+NEXCH SET NEXCIi+l

1445 j
144b PUI:ili.CH FC.OLOK • 00A2 F506 D 1451+ Ow r'QOLOK

OOOE 1452+NEXCH SET NI:.XCIi+l
1453 ;
1454 XCIiAOR TICKt;H
1455+ E.X TRh TICKER
1456+ CSEG

00A4 0000 E 14bO+ o. TICKER
OOOF 1461+NEXCH SET IIEXCH+ 1

1462 XChAOR TCNTRL
1463+ EXTRN TChTRL
1464+ CSEQ

00A6 0000 I:. 1466+ O. 'lCNTRL
0010 1469+NEXCIi SET NEXCH+1

1470 XCHAOR TRSLTS

• 1471+ EXTIIN TRSLTS
1472+ ('SEC

00A8 0000 E 1476+ Dlit TRSLTS
0011 1477+NEXCH SET NEli.CIi+l

1471l j
1479 ••• • 1460 Create table:
1461 CRTAB

•

•

•
6-27

Preparing Programs RMX/SO FOR TRAN-SO Compiler

ISIS-II b080/6065 hAtHO ASSEMbLER, V2.0 t0tH IG PAGE 6

LOC ObJ

OOAA 0000
OOAC 06
OOAD 8600
OOAF 11

OObO 46
OOBI 30
00b2 00
00B3 00
00b4 00

00b5 46
00b6 31
00b7 00
OOBB 00
00b9 01

OOBA 02

OOBB 00
OObC 78
OObD 02
OObE E606
OOCO OC06

00(;2 0000
00C4 0000
00C6 08

00C7 0000

6-28

t

C

0
D

SEQ SOURCE STATF.MENT

1482+ CSEG
1483+ PubLIC ItQCRTb
1484+RQ(;RTb:
14b5+ DW ITT
1466+ Db hTASK
1487+ Dj, IET
1488+ OB NHCH
1409
1490 i···••.. 1491 Device configuration table:
1492
1493 DCT 1"0,0.0,0 unit 0, i8bC-201, controller 0
1497+ CSEG
1498+ PUbLIC RQDCT
1499+RGDCT:
1530+ DB thl.CH2.0.0.0

+
+
+
+

1534 OCT Fl. 0.0.1 unit 1. . ..
1571+ Db (;Hl.CH2.0.0.1

+
+
+
+

1575
1576 i··· 1577 Controller lSpecification table:
1578
1579 CST 0.76H.2.ltQL2EX.CNOX
1583+ PUBLIC HQI'oDEV
1584+RC;NDEV: Db NDEV
1585+ PUBLIC RC/CST
1586+RQ(;ST:
1590+ DB 0.78H.2

+
+

1591+ Dj, R(,.L2EX.CNOX
+

1595 ;
1596 ; •••
1597 buffer allocation block:
1598
1599
1600+
1611 +
1612+RQBAB:

+
1613+
1614+

bAB
CSEG
PUBLIC
Ow

Db
E.X T RN

8.bUFPOL

RQBAD
0.0

8
bUFPOL

E 1615+ Dk BUI'I'OL
1619
1620 •••
1621 Public data

•
•

•

•

•
•

•

FORTRAN-80 Compiler Preparing Programs RMX/SO

• I~IS-II 80bOlb085 ~lACRO ASSEIIBLER, V2.0 CONnG PAGE 1

LOC OB. SEQ SOURCE STATEMENT

1622
1623 PUBLIC RQRATE

00C9 lCOO 1624 RQRATE: OW 28 2_00 baud t.erminal
1625
1626 END

PUBLIC SYMbOLS
CNOX D 06DC FQOLOK D 0bf'5 RQbAB C 00C2 HCCRTB C OOAA RQCST C OOBB RQDCT C OObO RQLOEX D 06E6 • HQL~~X D ObEb RQL3EX 0 06E6 RQL4n D 06E6 R<;L5EX D 06E6 ReNDEV C OOBA ReRATE C 00C9

EliTEhNAL SYMBOLS
bUHOL E 0000 C~OSTK E 0000 I TIMER E 0000 ReHRM E 0000 ReDBUG 0000 HI/DELX E 0000 RQOIRX E 0000

• R~OSKX ~ 0000 ReHOl E 0000 RQINPA E 0000 RCL6E;X E 0000 RQL7EX E 0000 ReOUTX E 0000 RQi'DEL E 0000
RQPDlh E 0000 RQPOSK E 0000 hQi'RNM 0000 RQRNMX E 0000 RQTHDI 0000 HI/.AKE E 0000 TCN1RL E 0000
Tt.ST~R E 0000 TlCKEJi E 0000 TRSLTS E 0000

USER SYMBOLS
ADDCHR + 0000 BAl> • 0000 BUFPOL ~ 0000 Chl A 0046 CH2 A 0031 CNOSTK E 0000 ehOX D 06DC
CONSTD + 0012 CRUb • 0006 CST + OOOD CTR A 0002 OCT • 0010 DHC4 • 001C FQOLOK D 06f'5
GEhDRe • 0010 GEnO + 0007 lET C 0088 lHTHH • 0009 !TIMER E 0000 ITT C 0000 LITCHA • OOOb
heOHT A 0001 NDH A 0002 NEXeH A 0011 HUSK A 0008 PUBXCH • 0001. RQURM E 0000 RQBAB C 00C2
hl/CRrb C OOAA RCCST C OObB RQOBUG E 0000 RQDCT C OOBO RCOELX E 0000 RCDIRI E 0000 RQOSKl E 0000

• fiQItOl E 0000 R~lNPli E 0000 RCLon D 06EI> RCL2EX 0 ObE6 RCL3EX 0 06E6 R!lLIlEX D 06E6 RQL5EX 0 06E6
R<iL6f;X E 0000 R"L7EX ~ 0000 RQNOEV C OOBA RQOIlTX E 0000 RQPDEL E 0000 RQPDIR E 0000 RCPDSk E 0000
RQPJi~M E 0000 RQkATE C 00C9 RQR""1 E 0000 RQTHOI E 0000 RQIiAKE E 0000 STD • 0000 TCNTRL E 0000
TDARE! A OOC~ TDBASE 0 0618 TESTER E 0000 TICKER E 0000 TRSLTS E 0000 XCH • 0000 XCHAOR • 0000

ASSEMBLY COMPLETE, NO ERRORS

•

•

•
6-29

Preparing Programs RMX/SO FORTRAN-SO Compiler

~sm80 :f2:cammod.asm

ISIS-II 8080/8085 MACRO ASSE~bLER, V2.0 CAMM0D PACE

LaC ObJ

0050

02bC

OC80

PUbLIC SYMBOLS
bUFPOL D 030C

EXTERNAL SYMBOLS

USER SHlbOLS
BUFPOL D 030C

SEQ SOURCE STATEMENT

1 NAME CAMMOD
2 i ••••••••••••• • ••••• ••• ••••••••••••••••••• • ••••••••••••••••••••••••••

3
Ii
5
6
1
8
9

10
11
12
13
14
15
16

i This assembly language module describes a data area whlch must be in
i controller accessible memory. That 15, the data segment of this
i module must be located for off-board memory.

i···
DSEG
PUBLIC CNOSTK,fiCOBUF,BUFPOL

i
CNOSTK: DS 80 stack for controller task

RQOBUF: OS 700 buffer for DIRSVC directory serv1ces
i
BUHOL: OS 3200 buffers for up to 8 open files

END

CNOSTK 0 0000 RQObUF' D 0050

CNOSTK D 0000 RQDBUF 0 0050

ASSEMBL~ COMPLETE. NO ERRORS

6-30

•
•

•

•

•

•
•

•

•
•

•

•

•
•

•

FORTRAN-SO Compiler

$/',ACIiOF'lLt.
~/jOGto.r.

;
This configuration module describes the hardware environment to
hMA/bO. The environmen .. assumed includes two disk drives. Fa and
F'l. on one controller C~O usin~ interrupt level 2 on an iSBL 80/20
Also included is a terminal driven by the full terminal handler.

The software environment assumed includes the Fortran-bO Run-time
tor RMX/SO Systems which usea the F~OLOK exchange. Two user

; tasks are also specified. which use three exchanges.
; ...•....................

CSto.G

It,CLUDI:. MACROS

~nolist

$1~CLUDE(:Fl:ST~.MAC)
$lNCLUH(:n :AChADR .~jAC)
'l~LLUDI:.(:~l:CHTAb.NAC)

$INCLUDE(:Fl:LI:.NTD.NAL)
,lNCLUDE(:F1:IiKXACh.MAC)
$INCLUDE(:Fl:DFSCFG.MAC)
~list

NTAS!\.
NElICtt
t<DI:.~

NCONT

,

SET
SI:.T
SET
SET

o
o
o
o

;•...•.................•.................
StatiC task descriptors:

ST~ IiQTttDI,36.112.R~O~TX
terminal handler

STn R~PDSK.48.129.R~DSK}.
disk input/output services

STD R~~DEL.64.140.n~DELX
file delete service

STD R~PDIR.48.135.R~DIRX

disk directory service
STu R~PRt.M.b4.145.RQRt.MX

file rename service
EITRI; Rf.ttDl

controller for disks
COt.S1D Ct.TRL1.hr..hDl.80.C~OSTK.33.CNOA

STD ITIMER.300.100.TICKEh.18
interval timer user task

STD TESTl:.h.l000.200 •• 18
user main task

GI:.t.TD
;
;

I:.xchanges for disk controller ana interrupts

i1f.L3I:.X
i1I.;L4I:.X
i1QL5~lI

IlQLOElI

lI.CH
INTllCi1
PUbLIC
l:.~U

~QU

l:.(.JU
t:;QU

l.NOX
li"L2I:.lI
lif.L3cll.,h~L4I:.lI,i1~L'I:.A.h"LOtll
li\;L2I:.lI
R"L2cA
HQL2EX
R~L2EJ(

exchange tor ~ortran i/o system:
lICh FQOLOK

Preparing Programs RMX/SO

6-31

Preparing Programs RMX/SO

;

;

Initial exchange table:
XChADIi RQlNPX
lI.CHADR RI./OUn
XCI!ADR li(,jwAKt.
XCliADIi R(,:l.iblJG
lI.CI!ADh hQALRM

XCHAuR RQDSn
XChADli R(,juHX
XChADR RQDHX
XChADR hGkl'<MX

I'UbXCh k(,jL2EX
J{ChADI(RC;LbEX
XCI!AlJR RQL7E>.

PUbXCh CI,OX

J?U BXCh t;'(;';OLOK

llChADh TICII.f.R
XCHADH TCI'<TRL
XChADR 1'II::iL1S

j ••

Create table:
CRTAB

;
;

;

Device configuration table:

DCT
DCT

FO,O,C,O
~'1,O,O,1

unit 0, iSbC-201, controller 0
uni~ 1,

;
Controller specification table:

CST O,78H,2,RQL2EX,CNOX
;
; .. .

huffer allocation block:

;
;•...................................... ,

Public data

PUBLIC
RQRA'I'E: Dw

END

6-32

R<.RATE
28 2400 baud terminal

FORTRAN-SO Compiler

•
•

•

•

•

•
•

•

FORTRAN-80 Compiler Preparing Programs RMX/SO

• NHIE CAt1l'WD
i···
i This assembly language module describes a data area which must be in
; controller accessible memory. That is, the data seg~en~ of this
; module must be located for off-board memory.
;

IlSEG
PUbLIC CNOSTK,R~DE~F,bUFPOL

ChOS,!'K: ['S 80 stack for controller task
;
R(,;llb~F: DS 700 buffer for DIRSVC oirectory services
;
bUFl'OL: DS 3200 butters for up ~o 8 open files ..

l:.t.D

•

•

•

•
6-33

Preparing Programs RMX/SO FORTRAN-SO Compiler

Locate :%O:CAMMod.Obj to :%O:CAMMod.Abs Data(OFOOOh) Publics Map StackSize(O)
Link :%1:RMX820.Lib(Start), :%O:CHIMod.Abs, :%O:Confi.g.Obj,&

:%O:Tester.Obj, :%O:TestT.Obj, :%O:ITimer.Obj, :%O:ToSecs.Obj,&
:%2:F80Run.Lib, :%2:F80RMX.Lib, :%2:FPEF.Lib, :%2:FPSftx.Lib,&
:%1:THi820.Lib, :%1:THo820.Lib,&
:%1:DFSDir.Lib(Direct-ory,Seek,Delete,Rename), :%1:Dio820.Lib, :%l:DFSUnr.Lib,&
:%1:RMX820.Lib, :%1:Unrslv.Lib, :%2:PLM80.Lib &
to :%O:Tester.Rel

Locat-e :%O:Test-er.Rel to :%D:Tester Print(:%O:Tester.Map) Map Symbols RestartO&
Code(1000h) StackSize(O)

Delete :%O:Tester.Rel

6-34

•
•

•

•

•

•
•

•

•

•

•

•
•

•

CHAPTER 7
PREPARING PROGRAMS TO RUN

WITHOUT ISIS-II OR RMX/SO

For some applications, you may wish to run FORTRAN programs in a strictly hard­
ware (iSBC or custom-wired) environment, without either ISIS-II or RMX/SO. In
this type of run-time environment, there are two parts of your programming task
that will differ from programming for other lenvironments: initialization and in­
put/output. This chapter will provide the information you need on these topics, and
also the libraries required in the LINK command for this environment.

Initialization
Under ISIS-II or RMX/SO, the operating system performs all the required initializa­
tion of hardware features and devices such as interrupts and timers. In a stand-alone
iSBC or custom-wired system, user-supplied code must perform this initialization.
Some of this may have to be done in assembly language and/or PUM, since FOR­
TRAN does not have the capability to communicate this directly with hardware.

Input and Output

ISIS-II and RMX/SO both provide considerabl€: I/O-handling software facilities. In
the absence of these facilities, there are several ways you can perform I/O. One is to
use port I/O exclusively; this entails doing your own buffering and formatting, but
it may be practical in cases where the data to be handled is relatively simple in form.

A second method, one which allows you to gain some of the advantages of format­
ted I/O, is to use internal files, which are discussed in Chapter 6 of the
FORTRAN-SO Programming Manual. Howeve:r, a formatted READ to or WRITE
from an internal file merely formats the data; port I/O, or a separate PUM pro­
cedure or assembly language subroutine, must be used to perform the actual data
transfer from or to an external device, making every I/O operation a two-step pro­
cess.

A third method is to write your own I/O drivers to provide the basic low-level I/O
functions-those which are most environment-specific. The standard library
routines that provide these capabilities represent only a small part of the I/O system
software; by writing your own drivers to replac1e them and interfacing these with the
rest of the I/O software, you can take advantage of the bulk of the I/O system. This
method allows you to then code formatted I/O statements to transfer data directly
to and from external files.

In order to write your own I/O drivers, you need to know how these drivers com­
municate with the rest of the I/O system. This information is provided in the follow­
ing paragraphs. In this discussion, the term "the I/O system" is used to refer to the
bulk of the FORTRAN I/O routines, with which your drivers are to interface.

FORTRAN I/O involves more than transferring blocks of data between memory
and an external device. The bulk of FORTRAN I/O processing concerns such ac­
tions as scanning format strings, converting the internal binary representation of
numbers to strings of digits and vice versa, and keeping track of the file referenced
in the program. The actual transfer of data between memory and external devices is
actually a small part of I/O processing.

7-1

Preparing Programs without ISIS-II or RMX/SO FORTRAN-SO Compiler

7-2

The procedures which actually transfer data and communicate with the external
devices in other ways (e.g., SEEKing on a diskette file, OPENing a new file) are call­
ed drivers. The FORTRAN 110 system assumes that each file has eight basic ac­
tions, or capabilities, that can be performed on it. The mnemonics for these
capabilities are OPEN, CLOSE, READ, WRITE, FBACKl, REWIND, MV2REC,
and MAKEOF. The OPEN, CLOSE, READ, WRITE, and REWIND capabilities
perform the operations required by the FORTRAN statements of the same names.
FBACKI backspaces a sequential-access file om: byte. MV2REC positions a direct­
access file immediately before the specified relative record in preparation for a
READ or WRITE operation. MAKEOF marks the current position as being the end
of the file, deleting any part of the file beyond that point. A detailed discussion of
each of these capabilities is included later in this c:hapter.

Associated with each open file is a set of eight routines, one for each of the eight
capabilities. These associated routines are suppli€:d dynamically (Le., under program
control) at run time. Both FSOISS.LIB and FSORMX.LIB include drivers that will be
associated with each file by default. These drivers are part of their respective
libraries. However, it is also possible for the uSI~r to supply custom-written drivers
that will be used in place of the library-supplied drivers. Such special drivers can be
supplied for just one particular file or for a number of different files.

Because the 110 system requires that addresses (procedure entry points) be
manipulated as data, you will need to write these drivers in PUM or assembly
language rather than in FORTRAN.

Providing I/O Capabilities for Files

If you wish the FORTRAN 110 system to use special drivers for some or all of your
files, you must:

• write a routine called FQOL VL that recognizes each filename for which you are
supplying drivers and gives the entry points of its drivers; and

• write the drivers themselves.

The following sections supply the information you need to do both these steps.

FQOL VL Procedure
When a unit/file connection is first established by the OPEN statement, the
memory record that represents that connection is initialized with the starting ad­
dress for those routines that implement the eight basic 110 capabilities for that
file. In doing this, the 110 system calls the routine named FQOLVL:

FOOLVL:

PL/M-80

PROCEDURE(FILENAME$PTR,BUFFERSPTR)

BYTE PUBLIC;

DECLARE(FILENAMESPTR,BUFFERSPTR)

ADDRESS;

END;

ASM80

FOOLVL:

CSEG

PUBLIC

END;

FOOLVL

;FILENAME ADDR

;IS IN BC REGS

;BUFFER ADDR IS

;IN DE REGS

FILENAME$PTR and BUFFER$PTR are both address values. FQOLVL returns
a byte value. FILENAME$PTR is the starting address of the name of a file. This
file name must be a string of 1 to 15 ASCII characters, the last character being a

•
•

•

•

•

•

•

•
•

•

•

•
•

•

FORTRAN-SO Compiler Preparing Programs without ISIS-II or RMX/SO

'070' symbol that serves as a delimiter. BUFFER$PTR is the starting address of a
16-byte buffer that is to become defined with the starting addresses of the routines
implementing the eight basic I/O capabilities for this file. If you wish to supply
I/O drivers for some or all of your files, you can do so by linking in an FQOLVL
procedure that examines the file name and determines whether this file is one for
which you are supplying drivers. If you do wish to supply the drivers for a given
file, your FQOL VL must do the following upon recognizing the filename:

• Copy the starting addresses of the procedures supplying the eight I/O
capabilities into the buffer pointed to by BUFFER$PTR. The addresses must be
stored in this order: OPEN, CLOSE, READ, WRITE, FBACKI, MV2REC,
REWIND, and MAKEOF .

• Return the value 255 to indicate that the drivers have been supplied for this file.

If you do not wish to supply the drivers for this file, FQOL VL should return the
value O. In this case the system will use the default drivers which are supplied as
part of the I/O library.

If you do not specifically link in an FQOL VL procedure, a default version will be
linked in from the 110 library. This default version does nothing but return O. This
causes the default drivers to be used for every fille.

110 Drivers

The user-supplied drivers for the capabilities OPEN, CLOSE, READ, WRITE,
FBACKl, MV2REC, REWIND, and MAKEOF must be defined with the calling
sequence conventions that are presumed by the I/O system. The calling sequences
and general functional descriptions for these operations are given below.

The parameter list, in order, for the OPEN capability is:

(STATUSPTR,OWNPTR,FILENAME$PTR,MODE,EXISTS)

ST A TUS$PTR is the address of a two-byte variable in which the status of the
operation is to be returned upon completion. Allowed status values will be explain­
ed later. OWN$PTR is the starting address of an 8-byte block of memory that will
always be associated with this file. The address of this block of memory will always
be passed to any driver, either default or user-supplied. These memory locations
are not manipulated by the I/O system; they are totally devoted to the routines
which implement the I/O capabilities for this file. As an example of how this block
of memory may be used, in F80ISS.LIB two bytes of this area are used to hold the
ISIS-II active file number (AFTN). In F80RMX.LIB, two bytes of this area are us­
ed to hold the address of the appropriate exchange for a diskette file.
FILENAME$PTR is the starting address of the name of the file to be opened. This
name must be a string of from 2 to 15 characters, the last of which must be a '%'
delimiter. MODE is a single- byte value of 1, 2, or 3, indicating that the file is to be
opened in READ only mode, WRITE only mode, or UPDATE mode, respective­
ly.

EXISTS is a byte with a value of 0, 1, or 2, indicating respectively whether a file
with this name may not already exist, that it must already exist, or that it does not
matter. The OPEN driver should initialize a file so that subsequent 1/0 operations
can access the file. The OPEN operation can return a status value of 0, 1, or 2. 0
means that the operation was successful; 1 means that the OPEN was unsuccessful
because the EXISTS parameter could not be accommodated-e.g., EXISTS was 0
but there was already a file with this name. A status of 2 means that the EXISTS
parameter could be accommodated, but that the OPEN was still unsuccessful.

7-3

Preparing Programs without ISIS-II or RMX/80 FORTRAN-80 Compiler

7-4

The CLOSE capability has the following parameter list:

(STATUSPTR,OWNPTR,DELETE)

The ST ATUS$PTR and OWN$PTR values are the same as for the OPEN capa­
bility. DELETE is a byte value which is 255 if the file should be deleted after being
closed, and 0 otherwise. The CLOSE driver should undo the initialization actions
performed by the OPEN driver, so that 110 operations can no longer access the
file. The status value returned is 0 if the operation finished correctly and non-zero
otherwise.

The READ capability has the following parameter list:

(STATUSPTR,OWNPTR, TARGET,LEN)

STATUS$PTR and OWN$PTR are the same as for the OPEN capability.
TARGET and LEN are address values. TARGET specifies the starting address of
a buffer which is LEN bytes long. The READ operation should transfer the next
LEN bytes from the file to the buffers. The possible values for the returned status
are 0 if the operation finished correctly, -I if an end-of -file was encountered, and
some other value otherwise.

The parameter list for the WRITE capability is as follows:

(STATUSPTR,OWNPTR ,SOU RCE, LEN)

STATUS$PTR and OWN$PTR are the same as for the OPEN capability.
SOURCE and LEN are address values. SOURCE is the starting address of a buffer
which is LEN bytes long. The WRITE driver should transfer these LEN bytes to
the file. A returned status of 0 indicates that the WRITE operation was successful;
a non-zero status indicates an error.

FBACKI has the following parameter list:

(ST ATUSPTR ,OWNPTR)

STATUS$PTR and OWN$PTR are the same as for the OPEN capability. This
capability must position the file backwards one byte. A returned status of 0 in­
dicates that the operation was successful, a status of -1 indicates that the file was
already positioned at the front, and any other non-zero status indicates an error.
This capability is used only for backspacing a file.

MV2REC has this parameter list:

(STATUSPTR,OWNPTR,RELREC,RECLEN)

ST A TUS$PTR and OWN$PTR are the same as for the OPEN capability.
REL$REC and REC$LEN are address values. The file is assumed to be divided in­
to equal-length records, each having the length given in the value addressed by
REC$LEN. The MV2REC driver must position the file immediately before the
relative record addressed by REL$REC, where the beginning of the file is relative
record O. The returned status value is 0 for a successful operation and non-zero
otherwise. MV2REC is used only for direct-access READ or WRITE operations
on a file.

•
•

•

•

•
•

•

•
•

•

•

•
•

•

FORTRAN-SO Compiler Preparing Programs without ISIS-II or RMX/SO

The parameter list for REWIND is as follows:

(STATUSPTR,QWNPTR)

STATUS$PTR and OWN$PTR are the same as for the OPEN capability. This
capability must cause the file to be positioned at its beginning. The returned status
is 0 for a successful operation and non-zero otherwise. REWIND is used only for
implementing a FORTRAN REWIND statement.

MAKEOF has the following parameter list:

(STATUSPTR,OWNPTR)

STATUS$PTR and OWN$PTR are the same as for the OPEN capability. This
operation must mark the current position as being the end of the file, with any part
of the file after that current position being deleted. The returned status value is 0
for a successful operation and non-zero otherwise.

If you are certain that some capability will neve:r be used for a particular file-e.g.,
REWIND for a line printer-then you need not supply the corresponding starting
address to the I/O system; i.e., that position in the list of starting addresses need
not be defined. However, the results may be disastrous if that capability is in­
advertently referenced for this file. A better alternative is to supply a null routine,
or a routine which signals an error, as the driver for such a (supposedly) unused
capability.

The following sample FQOLVL procedure and set of "stub" drivers, written in
PL/M, shows how you might implement custom I/O drivers for a direct-access
diskette file called Dl. Note that since backspacing, rewinding, and end-of-file
capabilities apply only to sequential-access files, no drivers are needed for
FBACKl, REWIND, or MAKEOF. As a safeguard against errors, we have includ­
ed dummy drivers for these capabilities; these "drivers" print an error message
and then return .

FQOLVL: PROCEDURE(FILENAME$PTR,BUFFER$PTR) BYTE PUBLIC;
DECLARE(FILENAME$PTR, BU FFER$PTR) ADDRESS;
DECLARE(BUFFER BASED BUFFER$PTR) (8) ADDRESS;
DECLARE(FILENAME BASED FILENAME$PTR) (15) BYTE;
IF FILENAME = '01' THEN DO;
BUFFER(O) = .OPND1;
BUFFER(1) = .CLSD1;
BUFFER(2) = .RDD1;
BUFFER(3) = WRTD1;
BUFFER(4) = .FBKD1;
BU FFER(5) = .MVD1;
BUFFER(6) = .REWD1;
BUFFER(7) = .EOFD1;
RETURN(255);
END;
"OPERATIONS TO PROCESS OTHER FILENAMES AND
TO DETECT UNKNOWN FILENAMES GO HERE"

END FQOLVL;

7-5

Preparing Programs without ISIS-II or RMX/SO FORTRAN-SO Compiler

7-6

OPND1:

CLSD1:

RDD1:

WRTD1:

FBKD1:

MVD1:

PROCEDURE(STATUSPTR,OWNPTR,FILENAME$PTR,MODE,EXISTS,);
DECLARE(STATUSPTR,OWNPTFl,FILENAME$PTR) ADDRESS;
DECLARE(MODE ,EXISTS) BYTE;
'* OPERATIONS TO OPEN FILE GO HERE *'

ENDOPND1;

PROCEDU RE(ST ATUSPTR,OWNPTR, DELETE);
DECLARE(ST ATUSPTR,OWNPTFt) ADDRESS;
DECLARE DELETE BYTE;
'* OPERATIONS TO CLOSE FILE GO HERE *'
ENDCLSD1;

PROCEDURE(STATUSPTR,OWNPTR,TARGET,LEN);
DECLARE(ST ATUSPTR,OWNPTR,T ARGET ,LEN) ADDRESS;
'* OPERATIONS TO READ FROM FILE GO HERE *'

END RDD1;

PROCEDU RE(ST ATUSPTR,OWNPTR,SOURCE,LEN);
DECLARE(ST ATUSPTR,OWNPTR ,SOURCE,LEN) ADDRESS;
'* OPERATIONS TO WRITE TO FILE GO HERE *'

ENDWRTD1;

PROCEDU RE(ST ATU SPTR ,OWNF'TR);
DECLARE(STATUSPTR,OWNPTR:~ ADDRESS; '* STATEMENTS TO PRINT ERROR MESSAGE GO HERE *'

END FBKD1;

PROCEDURE(STATUSPTR,OWNPTR,RELREC,RECLEN);
DECLARE(ST ATUSPTR,OWNPTR,RELREC, RECLEN) ADDRESS; '* OPERATIONS TO POSITION FIL.E BEFORE SPECIFIED RECORD GO

HERE *'
END MVD1;

REWD1: PROCEDU RE(ST ATUSPTR,OWNPlrR);
DECLARE(STATUSPTR,OWNPTR) ADDRESS;

EOFD1:

'* STATEMENTS TO PRINT ERROR MESSAGE GO HERE *'

END REWD1;

PROCEDU RE(ST ATUSPTR,OWNPTR);
DECLARE(ST ATUSPTR,OWNPTR) ADDRESS;
'* STATEMENTS TO PRINT ERROR MESSAGE GO HERE * /

END EOFD1;

•
• i

•

•

•
..

•

•
•

•

•

•

•

FORTRAN-SO Compiler Preparing Programs without ISIS-II or RMX/SO

If you do not wish to use the library supplied default file capabilities (Le., those in
FSOISS.LIB or FSORMX.LIB) for any of your files, you can avoid linking in the
module that contains these capabilities. Since this is a sizeable module-i.e., greater
than 4K bytes-you will probably wish to do so. To avoid linking in this module,
you must code a routine called FQODLO, which must return a value of zero in the A
register, and cause it to be unconditionally linked in before FSOISS.LIB or
FSORMX.LIB is linked. (If you include this module in the same library file with the
rest of your code, the LINK command order of libraries prescribed at the end of this
chapter will cause it to be linked in correctly.) The effect of these actions is to make
the 1/0 library (FSOISS.LIB or FSORMX.LIB) recognize only those file names for
which you have explicitly supplied device drives-Le., no default device drivers are
recognized.

FQODLO will never be called so long as you supply 110 drivers for all files in your
system.

Directly Callable I/O Drivers

The purpose of separating out the drivers from the rest of the 110 libraries is to
make the libraries as environment-independent as possible. There are other func­
tions of FORTRAN 110, besides communication with user files, that depend heavily
on the run-time environment of the program. These functions include processing a
STOP statement, processing a PAUSE statement, handling fatal errors, and specify­
ing preconnections. Each of these functions is performed by a particular publicly
defined procedure. If the procedure included in the library is unsuited to the en­
vironment in which your program must run, it is a simple matter to write an
environment-specific driver which correctly p1erforms the function of anyone of
these procedures. The following paragraphs provide a more detailed explanation of
these four routines.

FQ0007 is the routine for processing STOP statements. A user routine could be writ­
ten as follows:

FOOOO7:

PL/M-80

PROCEDURE(MSGPTR,MSGLEN)PUBLlC;

DECLARE(MSGPTR,MSGLEN)ADDRESS;

END F00007;

ASM80

CSEG

PU BUC F00007

FQ0007: ;MESSAGE ADDR

;IS IN BC REGS

;MESSAGE LENGTH

;ISIN DE

END

Both parameters are address values. The first parameter is a pointer to the beginning
of a character string; the second parameter is the length of that character string. This
string is the message which was in the STOP statement. Control must not return to
the user program from this routine.

7-7

Preparing Programs without ISIS-II or RMX/SO FORTRAN-SO Compiler

7-8

FQ0008 is the routine for processing PAUSE statements. A user routine could be
written as follows:

PL/M-80 ASM80

FOOOO8: CSEG

PROCEDURE(MSGSPTR,MSG$LEN)PUBLlC; PUBLIC FOOOO7

DECLARE(MSGSPTR,MSG$LEN)ADDRESS; FCIOOO8: ;MESSAGE ADDR IS IN BC

;REGS

;MESSAGE LENGTH IS IN DE

END FOOOO8; END

where the parameters are the same as for FQ0007. It is legitimate for control to
return to the user program from FQ0008.

FQOFER is the routine for handling fatal errors. A user routine could be written as
follows:

FOOFER:

PL/M-80

PROCEDURE(ERRNUM,CALLEDFROM)PUBLlC;

DECLARE(ERRN U M ,CALLEDFROM)ADDRESS;

END FOOFER;

ABM80
CSEG

PUBLIC FOOFER

END

;ERRNUM IS IN BC REGS

;CALLEDFROM IS IN DE

ERRNUM is a byte value which is the FORTRAN run-time error number (as listed
in Appendix B). CALLEDFROM is an address value which is an address near the
code for that FORTRAN I/O statement which is in error. Control must not return
to the calling program from FQOFER.

FQOPRC is a routine which specifies unit/file pairs which are to be preconnected. A
user routine could be written as follows:

PL/M-80 ASM80

FOOPRC: CSEG

PROCEDURE(BUFFER$PTR)PUBLlC; PUBLIC FOOPRC

DECLARE BUFFERSPTR ADDRESS; FOOPRC: ;BUFFER ADDR IS IN BC REGS

END FOOPRC; END

BUFFER$PTR is the starting address of an eight-element array of structures. Each
structure in the array has a two-byte UNIT field and a IS-byte FILENAME field,
The PUM declaration of this structure is:

DECLARE BUFFER (8) STRUCTURE (
UNIT ADDRESS,
FILENAME (15) BYTE);

FQOPRC should fill in those unit/filename pairs that are to be preconnected. The
first entry whose UNIT field is 65,535 indicates that this entry and all later entries
are to be ignored; i.e., they are not filled in. If there is a conflict between the precon­
nections specified (two or more different entries have identical UNIT or
FILENAME fields), then only the last of the conflicting specifications will be used.
(The "last" entry is that entry with the greatest index in BUFFER.)

•
•

•

•

•
•

•

•
•

•

•

•

•

FORTRAN-SO Compiler Preparing Programs without ISIS-II or RMX/SO

LIN K Command
Remember that even when you are not using ISIS-II or RMX/SO at run time, you
must first link your program segments together and locate them on an Intellec or In­
tellec Series II System using ISIS-II, which provides the LINK and LOCATE pro­
grams.

If you are running your FORTRAN programs in a non-ISIS, non-RMX environ­
ment, your 'input-list' to the LINK command must still include F80ISS.LIB if you
perform any FORTRAN I/O statements (other than port I/O), since this library
contains I/O routines with which your drivers must interface. For a non-ISIS, non­
RMX system, three possibilities exist:

• Your program uses FORTRAN I/O statements on external files, and/or STOP
or PAUSE statements. In this case, you include your own drivers in the library
with the rest of your code, then link in F80ISS.LIB as the I/O library (between
F80RUN .LIB and FPEF.LIB in the LINK command).

• Your program uses FORTRAN I/O statements, but only to internal files, and
no STOP or PAUSE statements. In this case, you need supply no drivers of
your own, but should link in both F80NIO,LIB and F80ISS.LIB (F80NIO.LIB
first) between F80RUN.LIB and FPEF.LIB in the LINK command.

• Your program uses no FORTRAN I/O statements (except port I/O) and no
STOP or PAUSE statements. In this case, you simply link in F80NIO.LIB be­
tween F80RUN.LIB and FPEF.LIB in the LINK command.

To supply floating-point arithmetic routines, link in FPSOFT.LIB to use the soft­
ware floating-point operations, FPHARD.LIB to use the iSBC 310 interface, or
FPNULL.LIB if no floating-point operations are needed. For the order in which all
libraries must be specified to the LINK command, refer to Chapter 4 or Appendix B.

Example:

-LINK :F1 :FPROG.OBJ,F80RUN.LlB,F80ISS.LlB,FPEF.LlB,&
**FPSOFT.LlB,PLM80.LlB TO FPROG.LNK MAP

(Note: The double asterisks are prompts issued by the LINK command.)

This LINK command is identical to the example given in Chapter 4. For the non­
ISIS, non-RMX environment, you include your own 110 driver routines in
FPROG.OBJ, and the LINK command will automatically substitute these for the
corresponding default routines in FSOISS.LIB .

7·9

•
•

•

•

•
•

•

.-
..

•

•

•
•

•

APPENDIX A
THE COMPILER AND

THE FORTRAN LANGUAGE

The language translated by the FORTRAN-80 compiler includes the ANSI FOR­
TRAN 77 subset, as defined in the FOR TRAN-80 Programming Manual. In the
programming manual, several aspects of the language were said to be 'processor
dependent' or 'compiler dependent.' This chapter summarizes the limitations and
extensions to the FORTRAN language assumed by the FORTRAN-80 compiler .

Compiler Limitations On Language

Most constraints imposed on the FORTRAN language are related to data lengths
and the permissible range of data values. The following indicates the range of values
possible for a given variable or array element length.

Length

INTEGER*!
INTEGER*2
INTEGER*4
LOGICAL*!
LOGICAL*2
LOGICAL*4
REAL

Value Range

-128 to +127
- 32, 768 to +32,767
-32,768 to +32,767
.TRUE. or .FALSE.
.TRUE. or .FALSE.
.TRUE. or .FALSE.
Approximately -3.37E+38 to +3.37E+38 (The
handling of magnitudes less than 1.!7E-38 is not
defined.)

If no length is specified, the compiler defaults are INTEGER *2 and LOGICAL *1.

The maximum field width, 'w,' in the Fw.d, Bw.d, [w, and Lwedit descriptors of
the FORMAT statement is 32,767. The maximum length of the format string,
'flist' ,in a FORMAT statement is 255 characters .

The length and interpretation of integer expression values is determined as follows:

• Addition, subtraction, multiplication, division, or exponentiation is performed
modulo 256 for two INTEGER *! operands and modulo 65536 otherwise.

• Assignment is performed modulo 256 if the variable whose value is being
assigned has type INTEGER *1 and modulo 65536 otherwise.

• The length of the value of integer expressions used as actual arguments (but
which are not variables or array elements) is at least the default length of an in­
teger variable .

• Subscript expression values are taken modulo 65536.

In all of the cases listed above, overflow is ignored.

Statement Functions

The FORTRAN-80 compiler does not support statement functions. Functions must
be coded as FUNCTION subprograms.

A-I

Compiler and FORTRAN Language FORTRAN-SO Compiler

A-2

Compiler Extensions To Language
The FORTRAN compiler provides a number of features that extend the capabilities
of the FORTRAN language.

Lowercase Letters

Except within Hollerith and character constants, a lowercase letter is considered to
be identical to its corresponding uppercase letter.

Record Length Specifier for Sequential Access Files

The compiler provides an additional feature for input from sequential access files. If
the record length specifier is given in an OPEN statement for a sequential access file,
whenever that file is READ the input line is extended with blanks as necessary to
provide the specified record length. This means, for instance, that if the record
length is specified as 80 but the line read in has fc!wer than 80 characters, the line will
be extended with blanks to make it SO characters long, and no error will be
registered. This feature applies to input only; output to such a sequential file is not
affected.

Port Input/Output

The compiler provides two intrinsic subroutines for handling input/output through
80S0/S085 I/O ports. When these subroutines are called, they generate 8080 IN and
OUT instructions.

The form of the subroutine call is

CALL INPUT(port, var)
CALL OUTPUT(port, exp)

where

port
var
exp

is an integer constant in the range 0 ~ port ~ 255
is an integer variable
is an integer expression

The value read or written through the specified port is always a single-byte integer
(INTEGER*!).

Examples:

CALL INPUT(1, TEST1)
CALL OUTPUT(2, 100)

Reentrant Procedures

External procedures can be defined to be reentrant by setting the REENTRANT
compiler control (Chapter 2). When this control is used, local variables are allocated
dynamically on the stack when the procedure is entered, rather than being statically
allocated.

•
•

•

•

•

•

•

•

•

•

•

FORTRAN-80 Compiler Compiler and FORTRAN Language

Freeform Line Format

Normally, FORTRAN source file lines must be in the standard format. If the
FREEFORM compiler control (Chapter 2) is set, however, the following rules
apply:

• If a statement has a label, the label must begin as the first character of the
statement's initial line.

• The first character of a continuation line must be an ampersand (&).

• Control lines must have a dollar sign ($) as their first character.

• Statements can begin in column 2, or in column 1 if the first character is not 'C.'

Comment lines are the same in both formats. Th,e first character must be a 'C' or an
asterisk (*).

The free form line format simplifies entering FORTRAN programs through a con­
sole terminal.

Interpretation Of DO Statements

The 1966 ANSI FORTRAN standard implies that all DO loops must be executed at
least once when encountered during program execution. The 1977 ANSI standard
allows zero iterations, if so specified by the valu(~s of the initial and terminal expres­
sions in the DO statement format. You can sekct the interpretation you prefer by
specifying either the D066 compiler control or the D077 compiler control (Chapter
2).

Including Source Files

You can 'include' specified files in your source file using the INCLUDE compiler
control (Chapter 2). This control causes subsequent source code to be input from the
specified 'file' until an end-of-file is reached. At end-of-file, input resumes from the
file being processed when the INCLUDE was em:ountered .

Flexibility In Standard Restrictions
The ANSI FORTRAN 77 standard prohibits cc~rtain constructions that cannot be
checked (or are not economical to check) by the compiler, or that cannot be im­
plemented by other processors. Although the FORTRAN-SO compiler generally
follows the standard in prohibiting these constructions, it does allow certain mean­
ingful constructions even though they are nonstandard. While this affords the pro­
grammer some additional flexibility, be aware that future compilers may implement
checks in these areas.

Association Of Storage Units

Character, logical, and numerical items can be freely declared within the same com­
mon block and can be equivalenced. In partic:ular, the compiler does not check
whether character variables of different lengths are associated.

A-3

Compiler and FORTRAN Language FORTRAN-SO Compiler

A-4

Partially Initialized Arrays

The DATA statement can be used to initialize arrays partially (starting at the first
element). If the 'nlist' in the DATA statement format contains several unsubscripted
array names, initialization begins with the first array and continues until all items in
'e1ist' have been used.

Transfers Into IF Blocks

The compiler does not check the formal restriction against transfers into an IF,
ELSE IF, or ELSE block.

Unit Preconnection

The UNIT run-time control (Chapter 4) is used to preconnect units to your program
so they need not be connected by the OPEN statement. Two units, the console input
and output devices, are preconnected automatically to unit numbers 5 and 6,
respectively.

Interrupt Processing

Interrupt processing for the. 8080 and 8085 is not supported by FORTRAN. To pro­
cess interrupts, you must write separate assembly language or PL/M drivers and call
your FORTRAN program as a subroutine.

In the ISIS-II run-time environment, no FORTRAN subprogram that uses floating­
point (REAL) arithmetic operatons (or intrinsic functions involving REAL
numbers) may interrupt another FORTRAN subprogram that also uses floating­
point operations. Users who need to do this should consider operating in the
RMX/SO environment, where fuller interrupt capabilities are supported.

•
•

•

•

•
..

•

•

•

•

•
'"

•

APPENDIX B
ERROR MESSAGES

This appendix lists all error messages produced by the FORTRAN-SO compiler as
well as run-time errors encountered when your program is executed. Error messages
and codes issued by ISIS-II, RMX/SO, LINK, and LOCATE are also summarized
here for your convenience. ISIS-II, LINK, and LOCATE errors are explained in
detail in the ISIS-II User's Guide; RMX/SO errors, in the RMXI80 User's Guide.

FORTRAN Compiler Error Messages
The compiler may issue five kinds of error messages .

• FORTRAN source program errors

• Compiler control errors

• Input/output errors

• Insufficient memory errors

• Compiler failure errors

Source Program Error Messages

Source program errors are not fatal. The error messages are interspersed in the pro­
gram listing at the points of error. They are listed in the format:

***ERROR m, STATEMENT n, NEAR symbol, message

where

m

n

is the error number from the list below

is the sequential number of the statement where the
error occurred

symbol is the source text near the point of error

message is the error explanation from the list below

Source program error totals are summarized at the end of the program listing for
each program unit as shown in Figure 3-3.

NOTE

Some error numbers -e.g., 126 through 149- do not appear in this list.
No errors corresponding to these numbers exist, and they should neve!'
appear in an error message.

Error No. Message

1
2
3
4
5

FIRST LINE OF A STATEMENT IS A CONTINUATION LINE
TOO MANY CONTINUATION LINES
END OF FILE ENCOUNTERED ON SOURCE INPUT
A LINE IN THIS STATEMENT IS TOO LONG
NON-DIGIT IN STATEMENT NUMBER FIELD

B-1

Error Messages FORTRAN-SO Compiler

Error No. Message

B-2

6 TOO MANY NESTED INCLUDES
7 SYNTAX PRECLUDES STATEMENT CLASSIFICATION
8 BLANK STATEMENT
9 STATEMENT HAS UNBALANCED PARENS

10 STATEMENT CONTAINS UNCLOSED CHARACTER CONSTANT
11 STATEMENT IS OF UNKNOWN TYPE
12 INVALID EXPLICIT LENGTH
13 ' "END" STATEMENT MISSING-CANNOT PROCESS NEXT LINE
14 STATEMENT IS OUT OF PLACE
15 STATEMENT IS INCORRECTLY NESTED WITH RESPECT TO A

16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58

"DO"
STATEMENT CANNOT END A "DO"
"DO" OR "IF" BLOCK NOT CLOSED AT END OF PROGRAM UNIT
STATEMENT NOT PROCESSED AS DO'S OR BLOCK-IF'S ARE TOO
DEEPLY NESTED
"THEN" CLAUSE MISSING
TOO MANY LABELS IN LABEL LIST
THREE LABELS MUST FOLLOW ARITHMETIC-IF
NO PRIOR "IF"
A DO-LOOP IS STILL OPEN
MAY NOT FOLLOW AN "ELSE"
MISSING PROGRAM UNIT NAME
PROGRAM UNIT NAME LONGER n~AN SIX CHARACTERS
COMMON BLOCK NAME MUST BE AN IDENTIFIER
VARIABLE IS ALREADY IN A COMMON BLOCK
CANNOT PUT A PARAMETER INTO COMMON
DIMENSION LIST REQUIRED
ALREADY DECLARED "EXTERNAL"
PREVIOUSLY DECLARED IN ANOTHER CONTEXT
PARAMETER LIST REQUIRED
MISSING TYPE SPECIFICATION
INCORRECT LEITER RANGE
DUPLICATE IMPLICIT
SINGLE LEITER EXPECTED
NOT AN INTRINSIC FUNCTION
ALREADY ASSIGNED A MODE
MORE THAN SEVEN DIMENSIONS
ALREADY DIMENSIONED
DUPLICATE PARAMETERS
IDENTIFIER EXPECTED
NON-ZERO, UNSIGNED, INTEGER CONSTANT LESS THAN 32,768
REQUIRED
VARIABLE NAME REQUIRED
ILLEGAL PUNCTUATION
NUMERIC CONSTANT REQUIRED AFTER "+" OR "-"
CONSTANT EXPECTED IN VALUE LIST
"TO" MISSING
INTEGER SCALAR VARIABLE REQUIRED
LABEL REQUIRED
LABEL MUST NOT BE LARGER THAN FIVE DIGITS
LABEL MUST NOT BE ZERO
FORMAT STATEMENTS MUST BE LABELLED
DUPLICATE LABEL
FORMAT STATEMENT BODY MUST BEGIN WITH "("
FORMAT STATEMENT IS TOO LONG
STATEMENT NOT ALLOWED IN BLOCK DATA PROGRAM UNIT

•
'.

•

•

•
..

.'

•

•

•

•

•
..

•

•

FORTRAN-80 Compiler

Error No. Message

59 STATEMENT NOT ALLOWED AS PART OF LOGICAL-IF
60 SYNTAX ERROR-PROCESSING TERMINATED BEFORE END OF

STATEMENT
61 ASSIGNMENT STATEMENT DOES NOT START WITH AN

IDENTIFIER
62 TERMINAL LABEL OF "DO" ALREADY DEFINED
~ ILLEGAL PAUSEOR STOP VALUE
64 EXPECTED KEYWORD MISSING IN 1/0 CONTROL LIST
65 UNKNOWN KEYWORD IN 1/0 CONTROL LIST
66 ILLEGAL KEYWORD IN I/O CONTROL LIST
67 REQUIRED KEYWORD MISSING IN I/O CONTROL LIST
68 SUBSCRIPTING A NON-ARRAY
69 FUNCTION USED IN A CONTEXT WHICH REQUIRES A

SUBROUTINE
70 ILLEGAL USE OF RELATIONAL OPERATOR
n OPERAND EXPECTED
72 SUBROUTINE USED IN A CONTEXT WHICH REQUIRES A

FUNCTION
73 ILLEGAL AS A FUNCTION
74 INCORRECT NUMBER OF ARGUMENTS
75 PROCEDURE USED WITHOUT ARGUMENTS
76 SUBSCRIPT EXPRESSION MUST BE INTEGER
77 INCORRECT NUMBER OF SUBSCRIPTS
78 INCORRECT MODE FOR ARGUMENT OF AN INTRINSIC
79 EXPRESSION IS TOO COMPLEX
80 ILLEGAL MIXED MODE EXPRESSION
81 CALL STATEMENT MUST BEGIN WITH AN IDENTIFIER
82 PROCEDURE NAME REQUIRED IN THIS CONTEXT
83 MISSING OR ILLEGAL ARGUMENT LIST FOR "INPUT" OR

"OUTPUT"
84 INVALID LEFTHAND SIDE OF AN ASSIGNMENT
85 EQUAL SIGN MISSING WHERE EXPECTED
86 ARRAY NAME USED WITHOUT SUBSCRIPTS
87 INTEGER EXPRESSION REQUIRED
88 LOGICAL EXPRESSION REQUIRED
89 STATEMENT IS TOO COMPLEX TO PROCESS
90 TOO MANY IDENTIFIERS
91 ASSUMED-SIZE ARRAY CANNOT BE TRANSMITTED IN AN 110

STATEMENT
92 TOO MANY EXTERNALS
93 INSUFFICIENT SPACE TO DISPLAY ALL ERROR MESSAGES
94 FORMATSTATEMENTMUSTENDWITH ")"
% ILLEGAL EXPONENT FORMAT
96 ZERO COUNT FOR HOLLERITH CONSTANT IS ILLEGAL
97 END OF STATEMENT INSIDE HOLLERITH CONSTANT
98 NON-FORTRAN CHARACTER
99 UNPRINTABLE ASCII CHARACTER

100 END OF STATEMENT INSIDE CHARACTER CONSTANT
101 ILLEGAL USE OF "."
102 NON-ALPHANUMERIC INSIDE PRESUMED KEYWORD
103 END OF STATEMENT IN PRESUMED KEYWORD
104 IDENTIFIER, CONSTANT, OR KEYWORD LONGER THAN 255

CHARACTERS
105 ILLEGAL MACHINE-BASED CONSTANT
106 STATEMENT NOT YET IMPLEMENTED
107 UNKNOWN KEYWORD

Error Messages

B-3

Error Messages FORTRAN-SO Compiler

Error No. Message

B-4

108 DUPLICATE STATEMENT NUMBER
109 TOO MANY COMMON BLOCKS
110 QUOTED STRING REQUIRED IN CONTROL
111 CONTROL LINE ENDS INSIDE QUOTED STRING
112 QUOTED STRING IS TOO LONG
113 NON-DECIMAL DIGIT IN CONTROL VALUE
114 INCORRECT DEVICE FOR INCLUDE CONTROL
115 FILE NAME IS TOO LONG
116 ILLEGAL VALUE FOR OPTIMIZE CONTROL
117 ILLEGAL VALUE FOR PAGELENGTH OR PAGEWIDTH VALUE
118 ILLEGAL "STORAGE" SPECIFICATION
119 UNKNOWN CONTROL
120 PRIMARY CONTROLS MUST OCCUR BEFORE FIRST

NON-CONTROL LINE
121 PRIMARY CONTROLS CANNOT BE CHANGED ONCE SET
122 TARGET OF "ASSIGN" MUST NOT BE INTEGER*l
123 ILLEGAL ITEM IN I/O LIST
124 ILLEGAL USE OF A PROCEDURE NAME
125 QUOTED STRING MAY NOT BE NULL
150 NUMBER OF ARRAY ELEMENTS EXCEEDS 65,535
151 SIZE OF AN ARRAY EXCEEDS 65,535 BYTES
152 PROGRAM UNIT USES TOO MANY EXTERNAL PROCEDURES
153 PROGRAM UNIT HAS TOO MANY COMMON BLOCKS
154 ATTEMPT TO EXTEND A COMMON BLOCK ON THE LEFT
155 ATTEMPT TO EQUIVALENCE A NAME TO TWO DIFFERENT

LOCATIONS
156 ATTEMPT TO EQUIVALENCE NAMES IN DIFFERENT COMMON

BLOCKS
157 AN EQUIVALENCE LIST MUST HAVE AT LEAST TWO VALID

ENTRIES
158 CANNOT USE A DUMMY ARGUMENT IN AN EQUIVALENCE LIST
159 IMPROPER SUBSCRIPT VALUE
160 RUN-TIME STORAGE OVERFLOW
161 THIS STATEMENT CANNOT BE REACHED
162 THE FORMAT STRING DOES NOT LOGICALLY END BEFORE THE

PHYSICAL END OF THE STRING
163 A REPETITION FACTOR (BEFOIRE A REPEATABLE EDIT

DESCRIPTOR OR BEFORE A PARENTHESIZED FORMAT SUB­
STRING) IS ZERO

164 THE FIRST NON-BLANK CHARACTER OF A FORMAT STRING IS
NOT '('

166 THIS FORMAT STRING CONTAINS NESTED FORMAT
SUBSTRINGS WHICH ARE NESTED MORE THAN THREE DEEP

167 A SIGN ('+' OR '-') IS NOT FOLLOWED BY A STRING OF ONE OR
MORE DIGITS IN THIS FORMAT STRING

168 THIS FORMAT STRING CONTAINS A SIGNED NUMBER WHICH IS
NOT IMMEDIATELY FOLLOWED BY A SCALE FACTOR EDIT
DESCRIPTOR ('P')

172 AN EDIT DESCRIPTOR IN THIS FORMAT STRING IS NOT
IMMEDIATELY FOLLOWED BY EITHER ',' OR ',' OR ')'

173 IN THIS FORMAT STRING, A FIEL.D WIDTH SPECIFIER (W =
UNSIGNED, POSITIVE INTEGER) DOES NOT IMMEDIATELY
FOLLOW AN IW, LW , BW, ZW, FW.D, EW.D OR EW.DEE
REPEATABLE EDIT DESCRIPTOR

175 IN THIS FORMAT STRING, A PERIOD ('.') DOES NOT
IMMEDIATELY FOLLOW THE FIELD WIDTH SPECIFIER (W) IN A
FW.D, EW.D, OR EW.DEE REPEATABLE EDIT DESCRIPTOR

•
.,

•

•

•
..

•

•
•

•

•

•
•

•

FORTRAN-SO Compiler

Error No. Message!

176 IN THIS FORMAT STRING, A DECIMAL FRACTION WIDTH
SPECIFIER (D = UNSIGNED, POSITIVE INTEGER) DOES NOT IM­
MEDIATELY FOLLOW THE PERIOD ('.') IN A FW.D, EW.D OR
EW.DEE REPEATABLE EDIT DESCRIPTOR

177 IN THIS FORMAT STRING, A REPEATABLE EDIT DESCRIPTOR
WAS NOT FOUND WHERE ONE WAS EXPECTED

179 IN THIS FORMAT STRING, AN EXPONENT FIELD WIDTH
SPECIFIER (UNSIGNED, POSITIVE INTEGER) DOES NOT IM­
MEDIATELY FOLLOW THE 'E' IN AN EW.DEE REPEATABLE EDIT
DESCRIPTOR

180 IN THIS FORMAT STRING, THE DECIMAL FRACTION WIDTH
SPECIFIER (D) IS GREATER THAN THE FIELD WIDTH SPECIFIER
(W) FOR AN FW.D, EW.D OFt EW.DEE REPEATABLE EDIT
DESCRIPTOR

181 IN THIS FORMAT STRING, THE FIELD WIDTH SPECIFIER (W) IS
NOT LARGE ENOUGH FOR THE SPECIFIED DECIMAL FRACTION
SUB-FIELD WIDTH (D) AND THE EXPONENT SUB-FIELD (E) IN AN
EW.DEE REPEATABLE EDIT DESCRIPTOR

182 THE FORMAT STRING ENDS LOGICALLY BEFORE THE LAST
NONBLANKCHARACTER

193 INTEGER VARIABLE REQUIRED AS 110 KEYWORD ARGUMENT
194 CHARACTER EXPRESSION REQUIRED AS 110 KEYWORD

ARGUMENT
195 INTEGER EXPRESSION REQUIRED AS 110 KEYWORD ARGUMENT
196 NOT A FORMAT STATEMENT NUMBER
197 ILLEGAL FORMAT SPECIFICATION
198 ILLEGAL UNIT SPECIFICATION
199 ILLEGAL COMBINATION OF 110 KEYWORDS
200 STATEMENT TOO LONG FOR BUFFER
201 THE NATURE OF OTHER ERRORS PROHIBITS OBJECT

PRODUCTION FOR THIS PROGGFIAM UNIT
203 TOO MANY NESTED CALLS
206 UNDEFINED LABEL
209 A MAIN PROGRAM MAY NOT BE DECLARED REENTRANT
210 CONSTANT TOO LARGE
211 THE CODE SEGMENT LENGTH EXCEEDS 65,535 BYTES
220 SUBSCRIPT ON A NON-ARRAY INI A DATA STATEMENT
221 INCORRECT NUMBER OF SUBSCRIPTS FOR AN ARRAY IN A

DATA STATEMENT
222 SUBSCRIPT LARGER THAN DIMENSION OF ARRAY IN A DATA

STATEMENT
223 ATTEMPT TO INITIALIZE A LOCAL VARIABLE IN A REENTRANT

PROGRAM UNIT
224 ATTEMPT TO INITIALIZE A LOCAL REENTRANT VARIABLE IN A

DATA STATEMENT
225 NUMBER OF INITIAL VALUES IN A DATA STATEMENT EXCEEDS

NUMBER OF DESTINATIONS
226 TYPE OF VARIABLE DOES NOT MATCH INITIAL VALUE IN A DATA

STATEMENT
227 CHARACTER STRING LENGTH LONGER THAN SIZE OF

DESTINATION
228 REAL NUMBER OUT OF RANGE
229 TOO MANY NESTED SAVE CONTROLS
230 NO ACTIVE SAVE CONTROL FOR THIS RESTORE CONTROL
246 INTERNAL UNIT CANNOT BE USED
247 ILLEGAL USE OF HOLLERITH CONSTANT
248 SYMBOL IS LONGER THAN 6 CHARACTERS

Error Messages

B-5

Error Messages FORTRAN-SO Compiler

B-6

Error No. Message

249 AN END STATEMENT MAY NOT APPEAR ON AN INCLUDE FILE
250 ADJUSTABLE DIMENSION MUST BE INTEGER SCALAR DUMMY

ARGUMENT OR IN COMMON
251 ADJUSTABLE ARRAY MUST BE A DUMMY ARGUMENT
252 INTEGER OR REAL EXPRESSION REQUIRED
253 I/O DO'S ARE TOO DEEPLY NESTED
254 APPARENT END OF I/O LIST INSIDE I/O DO

Compiler Control Error Messages

If an error is detected in a compiler control (whether in a control line or in the com­
mand tail of the compiler invocation), the compilation may be terminated and an er­
ror message is issued to the console and list file. The form of the message is

***FORTRAN COMPILATION TERMINATED. message

where 'message' is one of the following:

ILLEGAL COMMAND TAIL SYNTAX
ILLEGAL OR INCORRECT OPTION IN COMMAND TAIL
INCORRECT DEVICE SPEC
INVOCATION COMMAND DOES NOT END WITH <CR><LF>
SOURCE FILE EXTENSION INCORRECT
SOURCE FILE NAME INCORRECT
SOURCE FILE NOT A DISKETTE FILE
WORKFILES ALREADY OPEN

Input/Output Error Messages

Fatal input/output errors occur if you should incorrectly specify a file or device
name for compiler input or output. The error messages issued are:

ATTEMPT TO OPEN AN ALREADY OPEN FILE
ATTEMPT TO READ PAST EOF
DEVICE TYPE NOT COMPATIBLE WITH INTENDED USE
FILE IS NOT ON A DISKETTE
FILE IS WRITE PROTECTED
FILENAME REQUIRED ON A DISKETTE FILE
ILLEGAL FILENAME SPECIFICATION
ILLEGAL OR UNRECOGNIZED DEVICE SPECIFICATION IN

FILENAME
NOSUCH FILE
NULL FILE EXTENSION

Insufficient Memory Error Messages

A fatal error occurs if the system configuration does not have enough RAM memory
to support the compiler. The error messages issued in this case are as follows:

DYNAMIC STORAGE OVERFLOW
NOT ENOUGH MEMORY FOR COMPILATION

•

•

•

•
..

•

•

•
•

•

•

•
•

•

FORTRAN-80 Compiler Error Messages

Compiler Failure Errors

Fatal compiler failure errors are internal errors: that should never occur. If you en­
counter one of these errors, please report it to Intel Corporation, 3065 Bowers
Avenue, Santa Clara, California 95051, Attention: Software Marketing Department

The two errors falling into this category are:

208 COMPILER ERROR: AN OPERAND HAS A DISALLOWED FORM
214 COMPILER ERROR: SOME OPERATOR CAN'T GET ITS

OPERANDS INTO AN ACCEPTABLE FORM

FORTRAN Run-Time Error Messages

Certain run-time errors like floating-point overflow, improper format specification,
and inappropriate I/O operations invoke error routines. Unless specified otherwise
by the program, the error routines are library routines that output an error message
to the console and return control to ISIS. The form of such a message is

***EXECUTION ERROR. message

The asterisks are separated by ASCII BELL characters.

Run-Time Arithmetic Errors

Errors in operations and intrinsic functions involving floating-point (REAL)
numbers are normally handled by a PUBLIC error-handling routine named
FQFERH. Two error handlers by that name are provided in the FORTRAN run­
time libraries: a default error handler included in all the non-null arithmetic libraries
(FPSOFT.LIB, FPHARD.LIB, FPSFTX.LIB, FPHRDX.LIB, and FPHXI0.LIB),
and an alternate error handler in F80ISS.LIB. You can use the default error handler,
select the alternate routine by linking it in explicitly, or provide your own error
handler if you wish.

The arithmetic libraries recognize the following error codes:

1
2
3
4

5
6

Attempted division by zero
Argument range exceeded
Overflow (value too large to represent internally)
Underflow (value too small to represent
internally)
First argument is invalid
Second argument is invalid

The following codes are used to denote the operations and intrinsic functions that
use floating-point (REAL) numbers:

1
2
3
4
5
6
7

Addition
Subtraction
Multiplication
Division
Conversion of real to 32-bit integer
Comparison of two values
Comparison of a single value to zero

B-7

Error Messages FORTRAN-SO Compiler

B-8

8
9

10
11

101
102
103
104
105
106
108
109
110
111
112
113
114
115
116
117
118
119
120

Negation (sign c:omplementation)
Absolute value
Square root
Conversion of real to 16-bit integer

SIGN
DIM
AINT
ANINT
NINT
AMOD
EXP
ALOG
ALOGlO
SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2
SINH
COSH
TANH

Operations 101-120 are intrinsic functions from the list in Appendix B of the
FORTRAN-80 Programming Manual. The other operations are floating-point
library routines.

Default Error Handler

The default error handler will attempt to recover from an error and continue. If
'argl' and 'arg2' represent the first and second arguments, respectively, the recovery
action of the default error handler can be represented as follows:

On attempted division by zero (error 1), argl:= indefinite.

On argument range exceeded (error 2), argl:= indefinite.

On overflow (error 3) for areal number, argl:=sign (argl) real MAX.

On overflow (error 3) for an integer, argl:= sign (argl) integer MAX

On underflow (error 4), argl:=O.

On invalid operand(s) (error 5 and/or 6), no action will be taken.

Upon return from the error handler, 'argl' contains a (possibly new) REAL result
for any operation other than 5 or 11, and 'arg2' contains an INTEGER result for
operation 5 or 11.

F80ISS.LIB Error Handler

If you prefer to have all floating-point errors trapped and reported to the console
(:CO: device), you may use the alternate error handler provided in F80ISS.LIB.
When this error handler is linked in explicitly and an error in a floating-point
(REAL) arithmetic operation or intrinsic mathematical function occurs, the FOR­
TRAN program stops. Control returns to ISIS-II if ISIS controls the run-time en­
vironment, and the following message is sent to the console:

***EXECUTION ERROR. REAL ARGUMENT ERROR m IN FUNCTION n.

•
..

•

•

•

•

•
...

•

•

•

•

FORTRAN-80 Compiler Error Messages

where

m is a digit indicating the error code
n is an integer indicating the operator or function

These error and operation codes are as listed previously under "FORTRAN Run­
Time Error Messages."

To link in the alternate error handler (for the ISIS-II run-time environment and soft­
ware floating-point routines), use the following LINK command:

LINK input-list,F80ISS.LIB(FQFERH),F80RUN .LIB,&
F80ISS.LIB,FPEF .LIB,FPSOFT .LIB,PLMSO.LIB,&
TO link-file

If the iSBC 310 interface is to be used, substitute FPHARD.LIB for FPSOFT.LIB
in the LINK command above. The alternate e:rror handler may be used only in the
ISIS-II run-time environment.

User-Supplied Error Handlers

If you prefer not to use either of the error-h:andling routines provided in the run­
time libraries, you may write your own error handler. (Note that the same error
handler may be used whether you are perform:ing arithmetic via software routines or
via the iSBC 310 and interface.) Your error handler can interface with the FOR­
TRAN floating-point routines in one of two ways:

• It can be labeled with the public name FQFERH and linked before the
arithmetic library, thus substituting for the FORTRAN-provided error
handlers.

• In addition, error handling can be "reset" dynamically (i.e., another error
handler can be substituted during execution) by inserting into your FORTRAN
code a call to the external subroutine FQFRST, as described below.

The calling sequence for FQFRST is:

CALL FQFRST(A,ERRH)

where A is a two-byte integer variable and ERRH is the address of your error- handl­
ing routine. The least significant bit of the high-order byte of A is a flag which, when
set to 1, indicates that the user-supplied subroutine designated by ERRH will now be
used as the floating-point error handler; if this flag is reset to 0, then the error
handler named FQFERH will be activated. The low-order byte of A will become the
new value (normally 0) of the Error Field, a byte which is explained more fully later
under "Error Handling." Thus the standard settings of A are ° and 'IOOH. Note
that by using FQFRST, you may change the error handler more than once, and at
execution time rather than at link time.

Under RMX/SO, each task must initialize the internal error handler address field by
calling the external subroutine FQFSET. This routine is identical to FQFRST except
that it also clears internal floating-point working accumulators and should be called
only once per task. By using combinations of FQFSET and FQFRST, you can
dedicate (and re-dedicate) error handlers to individual tasks or groups of tasks.

The error handler takes four parameters, in the order (ARGl, ARG2, OPCODE,
ERROR$CODE). ARGI and ARG2 are t.he REAL arguments of the floating-point
operation. OPCODE and ERROR$CODE are one-byte INTEGER values represen­
ting the operation code and the error code as lilsted previously.

B-9

Error Messages FORTRAN-80 Compiler

8-10

The following is an example of a routine you might supply in place of FQFERH to
handle floating-point arithmetic errors. You can establish this error-handling
routine as the arithmetic error handler dynamically at run time by using the follow­
ing statement in your FORTRAN program:

CALL FQFRST(#100H,AL TERH)

$REENTRANT
•
• A SAMPLE USER-SUPPLIED FORTRAN MATH ERROR HANDLER.

SUBROUTINE ALTERH(ARG1,ARG2,FNCODE,ERCODE)

REAL ARG 1, ARG2
INTEGER.1 FNCODE,ERCODE
REAL RTEMP
INTEGER*2 I2TEMP
EQUIVALENCE (RTEMP,I2TEMP)

it CASE 1: Square-root of a negative number (domain error).
• Return the negative square-root of the argument s absolute value.

•
•
it

it

•
'*
Ii

Ir

•
•
•
it

it

;/

Ir

II

it ..

it

•

IF «ERCODE.EQ.2).AND.(FNCODE.EQ.10» THEN
ARG1 = -SQRT(ABS(ARG1»

CASE 2: Overflow on multiply or divide.
Return a very large real number, positive if ARG1 and ARG2
have the same sign, negative otherwise.

ELSE IF «ERCODE.EQ.3) .AND. «FNCODE.EQ.3).OR.(FNCODE.EQ.4») THEN
ARG1 = SIGN(3.4E+38,ARG1) • SIGN(1.0,ARG2)

CASE 3: Too big a number to fix to a tWO-byte integer (overflow error)
Return 7FFFH, the largest two-byte positive integer, to the low
two bytes of ARG2 when ARG1 is non-negative, and 8000H, the
largest tWO-byte negative integer, otherwise. (Note that
this is a particularly tricky situation. You want to over­
write the low-addressed two bytes of ARG2 with 7FFFH or 8000H
without destroying the data in the high-addressed two bytes
of ARG2. To do this, use the equivalenced REAL and INTEGER it 2
temporary variables, RTEMP and I2TEMP.)

ELSE IF «ERCODE.EQ.3).AND.(FNCODE.EQ.11» THEN
HTEMP = ARG2
IF (ARG1.GE.O) THEN

I2TEMP '7FFFH
ELSE

I2TEMP = ,8000H
END IF
ARG2 = RTEMP

CASE 4: Domain error on ATAN2 (i.e., ARGl = ARG2 = 0).
Return O.

ELSE IF «ERCODE.EQ.2).AND.(FNCODE.EQ.117» THEN
ARG 1 = 0

CASE 5: Division by zero.
Return ARG1 divided by a very small number. (Note that such a
division may result in an overflow causing this error handler
to be reinvoked for CASE 2 -- thus the REENTRANCY requirement)

ELSE IF (ERCODE.EQ.1) THEN
ARG1 = ARG1 / 1.2E-38

End of error-handling examples. Note that no action will be taken on
errors that do not fall into one of the above cases.

ENDIF

RETURN
END

.'
•

•

•

•

•

•
•

•

•

•

•

FORTRAN-80 Compiler Error Messages

Error Monitoring

The arithmetic routines maintain, as part of an internal floating-point record, a one­
byte Error Field containing flags to indicate the~ occurrence of the various types of
errors. Independently of the error handler, you can monitor accumulated error in­
formation between successive initializations of this Error Field by means of the ex­
ternal integer function FQFERR. FQFERR returns the current value of the Error
Field byte, which is interpreted as shown below .

7 6 5 4 3 2 o

Bit Interpretation

IE Invalid argument

OE Overflow

UE Underflow

ZE Attempted division by zero

DE Domain error (argument range exceeded)

Bits 0, 1, and 2 are currently unused. Setting any of these bits to one causes unde­
fined results.

The Error Field byte reflects the floating-point t~rror situation since the last time the
Error Field was cleared, which will generally be since the last call to FQFRST or
FQFSET.

Run-Time 1/0 Errors

If an ISIS I/O error occurs at run-time, the message from the ISIS 'ERROR' routine
precedes the FORTRAN 'EXECUTION ERROR' message. The ISIS message lists
the ISIS-supplied STATUS for the I/O operation causing the error.

In the ISIS-II run-time environment, FORTRAN I/O error routines can issue the
following message at run time:

***EXECUTION ERROR. FORTRAN 1/0 ERROR nnn

NEAR LOCATION xxxH

In the RMX/SO environment, the error message is as follows:

***EXECUTION ERROR. FORTRAN 1/0 ERROR nnn TASK = taskname

The error message gives the memory location of the current instruction being ex­
ecuted (for ISIS-II) or the name of the active task (for RMX/SO) at the time the error
occurred.

B-ll

Error Messages FORTRAN-80 Compiler

B-12

The I/O error number 'nnn' is also returned as the value of the symbol designated
by 10STAT, if the lOST AT specifier is included in a FORTRAN READ or WRITE
statement. I/O error numbers are given in the following list.

NOTE

Some error numbers -e.g., 117, 122, 123-are omitted from this list. No
errors corresponding to these numhers exist, and they should never ap­
pear in an error message.

Error No. Message

112 A syntax error exists in a formatted binary or hexadecimal input
field.

113 A syntax error exists in a list-directed alphanumeric input field.

114 A syntax error exists in a formatted or list-directed logical input
field.

115 A syntax error exists in a formatted or list-directed real input field.

116 A syntax error exists in a formatted or list-directed integer input
field.

118

119

The RECL specifier is invalid in an OPEN statement for a
sequential, unformatted connection.

The STATUS = 'SCRATCH' sp,ecifier is invalid in an OPEN
statement with a named FILE.

120 The string supplied for the FILE specifier of an OPEN statement or
for the device specifier in the UNIT preconnection control is not a
valid ISIS path-name.

121 An illegal string has been passed as the CARRIAGE specifier of an
OPEN statement.

124 A WRITE statement is attempting to write too many characters to
a record in an internal file.

125 A READ or WRITE statement is attempting to read from or write
to more records than were specified to be in the internal file.

126 A READ statement is attempting to read too many characters from
a record in an internal file.

128 An ISIS, RMX/80 Terminal Handler, or RMX/80 Disk File
System error has occurred during a WRITE operation.

129 An ISIS, RMX/80 Terminal Handler, or RMX/80 Disk File
System error has occurred during a READ operation.

130 The specified unit is not connected.

131 The unit specified by a formatted READ or WRITE is not
connected with the proper ACCESS and FORMAT attributes.

•

•

•

•

•

•

•

••

•

•

FORTRAN-SO Compiler

Error No. Message

132 No BACKSPACE or REWIND has occurred since an ENDFILE
was specified for the unit selected by a sequential READ or
WRITE.

134 A READ statement is attempting to read from a unit whose
CARRIAGE attribute is 'CONSOLE'.

135 A READ statement is attempting to read from a unit whose
CARRIAGE attribute is 'FORTRAN'.

136 The edit descriptor in the format string matches a variable in the
110 list whose type is inappropriat1e for this descriptor.

141

142

An ISIS or RMX/SO Disk File System error has occurred while
closing a pre-existing file whose length was shortened during the ex­
ecution of this program. The file cannot be copied .

An ISIS or RMX/SO Disk File System error has occurred during a
BACKSPACE operation.

143 An ISIS or RMX/SO Disk File System error has occurred during a
REWIND operation.

144 An ISIS or RMX/SO Disk File System error has occurred during a
OPEN operation.

145 An ISIS or RMX/SO Disk File System error has occurred when
attempting to move to the beginning of a record during a direct­
access READ or WRITE.

146 An ISIS or RMX/SO Disk File System error has occurred when
ending an output record for a sequential disk file.

152 An ISIS or RMX/SO Disk File System error has occurred during a
CLOSE operation.

155 An error has occurred while attl!mpting to OPEN, in update or
read mode, a file whose STATUS = 'OLD' .

156 The OPEN statement cannot specify STATUS = 'OLD' for a
nonexistent file.

15S An error has occurred while trying to OPEN, in update or write
mode, a file whose STATUS = 'NEW' .

160 The OPEN statement cannot spedfy STATUS = 'NEW' for a file
that already exists.

162 The physical end of the format string occurs before the logical end
of the format string.

163 A repetition specifier preceding a repeatable edit descriptor or
parenthesized format substring cannot be zero.

164 The format string must start with '(' .

166 The nesting of parenthesized format substrings cannot exceed three
levels.

Error Messages

B-13

Error Messages FORTRAN-SO Compiler

Error No. Message

B-14

167 A nondigit follows a '+' or '-' in the format string.

168 A 'P' must follow a '+' <number> in the format string.

171 The substring of the format string that should be used to revert
format control does not contain any repeatable edit descriptor.

172 A ',' or ')' or 'I' is expected to terminate an edit descriptor.

173 An I, L, F, E, B, or Z edit descriptor is not followed by a field
width specification.

175 A period must follow the field width in an E or F edit descriptor.

176 A number must follow the period in an E or F edit descriptor.

177 An expected repeatable edit descriptor is missing.

179 A number must follow the exponent field specifier 'E' in an E edit
descriptor.

180 The fraction specifier is greater than the field-width specifier in an
E or F edit descriptor.

181 The width specified for an E edit de:scriptor is not large enough for
the specified fraction and exponent fields.

182 The format string ends logically before the last non-blank
character.

191 A filename must be specified in the OPEN statement for a file
whose STATUS = 'OLD' .

192 A filename must be specified in the OPEN statement for a file
whose STATUS = 'NEW' .

193 An error has occurred while trying to OPEN a file in update mode
whose STATUS = 'SCRATCH'. The file is known to be nonexis­
tent.

194 The program is trying to OPEN an existing file with STATUS =
'SCRATCH'.

196 An ISIS error has occurred while trying to OPEN a file whose
STATUS = 'UNKNOWN'.

198 A syntax error exists in preconnection specifications in the
command tail.

200 A CLOSE statement specifies ST AT'US = 'KEEP' for a file whose
current STATUS = 'SCRATCH' .

201 The STATUS specifier for a CLOSE statement must be either
'KEEP' or 'DELETE'.

202 The UNIT specifier in an OPEN statement cannot have a value
greater than 255.

•

•

•

•
•

•

•

•

•

•
•

•

FORTRAN-SO Compiler

Error No. Message

203 The FILE named in an OPEN statement is already connected to a
different unit.

204 An OPEN statement requires a new connection but the connection
table is full.

205 An OPEN statement for a direct-access file is missing a RECL
specifier (or RECL = 0).

206 The string passed in the ACCESS specifier of an OPEN statement
is illegal.

207

208

The string passed in the FORMAT specifier of an OPEN statement
is illegal.

The string passed in the BLANK specifier of an OPEN statement is
illegal.

209 An OPEN statement referencing a file connected for unformatted
110 cannot include a BLANK spe<Cifier.

210 The string passed in the STATUS specifier of an OPEN statement
is illegal.

211 An OPEN statement is attempting to change the attributes of a
previously-connected file. Only the BLANK attribute for a format­
ted file or the RECL attribute for a sequential, formatted file may
be changed.

217 A formatted READ statement is attempting to read more
characters than are present in the record.

221 An end-of-file has occurred on the file being read and no END
specifier has been supplied.

222 A Hollerith or literal edit descriptor cannot appear in the format
string matching an input list.

225 An invalid scale factor has been found when trying to write a real
value.

232 A READ or WRITE statement is attempting to read from or write
to a direct-access file that is not on diskette.

233 A WRITE statement is attempting to write to a unit that cannot be
written to; e.g., :CI: .

234 A READ statement is attempting to read from a unit that cannot be
read from; e.g., :LP:.

235 The program has tried to REWIND, BACKSPACE, or ENDFILE
a unit not connected for sequentia.l I/O .

238 The attempted REWIND is inappropriate for this file.

242 The attempted BACKSPACE is inappropriate for this file.

Error Messages

B-15

Error Messages FORTRAN-80 Compiler

B-16

250 A direct-access READ statement is attempting to read more bytes
than are present in the record.

251 An unformatted READ statement is attempting to read more bytes
than are present in the record.

252 A <CR, LF> has been found in the middle of a formatted,
direct-access record.

253 A direct-access, formatted record must be terminated with a <CR,
LF>.

255 A direct-access WRITE statement is trying to write more data than
will fit into a single direct-access record.

'ERR'Specifier

If a FORTRAN I/O statement includes the ERR specifier in its control list, control
is transferred to the statement designated by ERR when an. error is detected. No
library routine is invoked in this case.

'IOSTAT'Specifier

If a FORTRAN I/O statement includes the IOSTAT specifier in its control list, I/O
operations return a numerical code as the value of a symbol designated by lOST AT.
This code is the same number shown in the 'FORTRAN 1/0 ERROR' message (0
means no error detected). See 'Run-Time I/O Errors' above.

ISIS-II Error Messages

The following error messages are discussed in more detail in the ISIS-II User's
Guide, but are summarized here for your convenience. By convention, error
numbers 1-99 are reserved for errors that originate in or are detected by the resident
routines of ISIS-II or by RMX/SO. In the following list an asterisk precedes fatal er­
rors. The other errors are generally nonfatal unless they are issued by the CONSOL
system call.

o No error detected.
* 1 Insufficient space in buffer area for a required buffer.

2 AFTN does not specify an open file.
3 Attempt to open more than six files simultaneously.
4 Illegal filename specification.
5 Illegal or unrecognized device specification in filename.
6 Attempt to write to a file open for input.

* 7 Operation aborted; insufficient diskette space. t

t Error number 7 (insufficient diskette space) may sometimes occur when it
appears that there should be enough space on the disk. This happens because
when a file has been truncated in the course of processing (e.g., via a
BACKSPACE followed by an ENDFILE), the FORTRAN I/O routines copy
that file onto a scratch file called FTCHOP. TMP, which consumes additional
disk space.

•

•

•

•
•

•

•
...

•

•

•
•

•

FORTRAN-80 Compiler

8
9

10
11
12
13
14

*15
*16

17
18
19
20
21
22

23
*24

25
26
27
28

*29
*30

31
32
33
34
35

201
202
203
204
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

Error Messages

Attempt to read from a file open for output.
No more room in diskette directory.
Filenames do not specify the same diskette.
Cannot rename file; name already in use.
Attempt to open a file already open.
No such file.
Attempt to open for writing (output or update) or to delete or rename a
write-protected file.
Attempt to load into ISIS area or buffer area.
Incorrect ISIS binary format.
Attempt to rename or delete a file not on diskette.
Unrecognized system call.
Attempt to seek in a file not on diskette.
Attempt to seek backward past beginning of file.
Attempt to rescan a file not line edited.
Illegal ACCESS parameter to OPEN or access mode impossible for file
specified (input mode for :LP:, for example).
No filename specified for a diskette file.
Input/output error on diskette (see b!:low).
Incorrect specification of echo file to OPEN.
Incorrect SWID parameter in ATTRIB system call.
Incorrect MODE parameter in SEEK system call.
Null file extension.
End of file on console input.
Drive not ready.
Attempted seek on file open for output.
Can't delete an open file.
Illegal system call parameter.
Bad RETSW parameter to LOAD.
Attempt to extend a file opened for input by seeking past end-of-file.
Unrecognized switch.
Unrecognized delimiter character.
Invalid command syntax.
Premature end of file.
Illegal diskette label.
No END statement found in input.
Checksum error.
Illegal record sequence in object module file.
Insufficient memory to complete job.
Object module record too long.
Bad object module record type.
Illegal fixup specified in object module file.
Bad parameter in a SUBMIT file.
Argument too long in a SUBMIT file:.
Too many parameters in a SUBMIT file.
Object module record too short.
Illegal object module record format.
Phase error.
No end of file record in object module file.
Segment exceeds 64K bytes.
Unrecognized record in object module file.
Fixup record pointer is incorrect.
Illegal record sequence in object module file.
Illegal module name specified.
Module name exceeds 31 characters.
Command syntax requires left parenthesis.
Command syntax requires right parenthesis.
Unrecognized control specified in command.
Duplicate symbol found.
File already exists.

B-17

Error Messages FORTRAN-SO Compiler

B-18

232
233
234
235
236
237
238
239
240

Unrecognized command.
Command syntax requires a "TO" clause.
File name illegally duplicated in command.
File specified in command is not a library file.
More than 249 common segments in input files.
Specified common segment not found in object file.
Illegal stack content record in object file.
No module header in input object file.
Program exceeds 64K bytes.

When error number 24 occurs, an additional message is sent to the console:

FOCC =OOnn

where nnis a hexadecimal number with the following meaning:

01
02
03
04
08
OA
OE
OF
10
20
40
80

Deleted record.
CRC error (data field).
Invalid address mark.
Seek error.
Address error.
CRC error (10 field).
No address mark.
Incorrect data address mark.
Data overrun or data underrun.
Write protect.
Write error.
Not ready.

RMX/80 Error Codes

The following error codes are discussed in more detail in the RMXISO User's Guide,
but are summarized here for your convenience. By convention, error numbers 1-99
are reserved for errors that originate in or are detected by the resident routines of
ISIS-II or by RMX/SO. On completion of a requested service, RMX/SO indicates
errors by returning the appropriate error code in the low-order byte of the STATUS
field of the response message.

The following error codes may be returned by thle RMX/SO Disk File System. Many
of these errors correspond to ISIS-II errors; in these cases, the codes are the same.
Note, however, that errors considered fatal in ISIS are not so considered in DFS.

*

o No error detected.

4 Illegal FILENAME specified in File Name Block.

5 DEVICENAME in File Name Block not in Device Configuration Table.

6 Attempt to write to a file opened for input.

7 No more space on disk. *

Error number 7 (no more space on disk) may sometimes occur when it appears
that there should be enough space on the disk. This happens because when a file
has been truncated in the course of processing (e.g., via a BACKSPACE fol­
lowed by an ENDFILE), the FORTRAN I/O routines copy that file onto a
scratch file called FTCHOP. TMP, which consumes additional disk space.

•
•

•

•

•
•

•

•

•

•

•
•

•

FORTRAN-SO Compiler Error Messages

8 Attempt to read a file opened for output.

9 No more room in disk directory.

10 File Name Blocks in RENAME request do not specify same device.

11 Cannot rename file; name already in use.

12 File already open.

13 No such file.

14 Attempt to open a write-protected file for output or update, or attempt to delete
or rename a write-protected file.

16 Incorrect object program format.

18 Unrecognized message TYPE.

20 Attempt to seek backwards past beginning of file.

22 Illegal ACCESS in OPEN message.

24 Input/output error on disk.

26 Illegal SWIO in ATTRIB message.

27 Illegal MODE in SEEK message.

30 Drive not ready.

31 Attempt to seek on file open for output.

32 Attempt to delete an open file.

35 Attempt to seek past end of file opened for input.

40 Request sent to wrong exchange.

41 Insufficient free memory space to open file.

42 DRIVE specified in DISKIO request is not in Device Configuration Table.

43 Drive timeout-the drive has not responded to an 110 request within a set
period of time (10 seconds for iSBC 80120 or SO/30 systems; for SO/10 systems,
refer to RMXISO User's Guide).

44 SEEK request with SEEK not present in system.

45 Format driver missing.
If error 24 (input/output error) occurs, DFS pllaces one (or more, if multiple errors
occur) hexadecimal codes in the high-order byte: of STATUS in the response message
to identify the type of 110 error, as follows:
01 Deleted record .

02 Cyclic Redundancy Check character error (data field).

03 Invalid address mark.

04 Seek error.

08 Address error.

OA Cyclic Redundancy Check character error (10 field).

OE No address mark.

OF Incorrect data address mark .

10 Data overrun or underrun.

20 Write protect.

40 Write error.

80 Not ready.

The RMX/SO Terminal Handler returns only one possible error code: IS, which
denotes an invalid read or write request message type. For error codes returned by
other RMX/SO extensions (e.g., Free Space Manager or Analog Handlers), refer to
the RMXISO User's Guide.

B-19

Error Messages FORTRAN-80 Compiler

B-20

LIN K Error Messages
The following LINK error messages indicate a fatal error has occurred and generally
require you to recompile and relink your program.

filename, BAD FIXUP RECORD
filename, BAD RECORD SEQUENCE
filename, CHECKSUM ERROR
filename, ILLEGAL RECORD FORMAT
filename, NOT LIBRARY
filename, PHASE ERROR
filename, PREMATURE EOF
filename, RECORD TOO LONG
filename, RECORD TOO SHORT
filename, RELO FILE SEQUENCE ERROR
filename, SEGMENT TOO LARGE
filename, TOO MANY COMMON SEGMENTS
INSUFFICIENT MEMORY

The following messages indicate nonfatal errors. They do not prevent LINK from
performing its assigned tasks, but the messages are reported as warnings.

MORE THAN ONE MAIN MODULE
modname-MODULE NOT FOUND IN LIBRARY
name, COMMON/PUBLIC/EXTERNAL NAME CLASH
name, HAS DIFFERING TYPES
name, MULTIPLE DEFINITION
name, UNEQUAL COMMON LENGTHS

For a detailed discussion of these error messages" see Chapter 4 of the ISIS-II User's
Guide.

LOCATE Error Messages
The following LOCATE error messages indicate a fatal error has occurred.
LOCATE terminates and returns control to ISIS·.£I.

filename, CHECKSUM ERROR
common name, COMMON NOT FOUND
filename, FIXUP BOUNDS ERROR
filename, ILLEGAL RELO RECORD
filename, ILLEGAL STACK CONTENT RECORD
filename, INSUFFICIENT MEMORY
token, INVALID SYNTAX
filename, NO MODULE HEADER RECOFlD
filename, PREMATURE EOF
filename, PROGRAM EXCEEDS 64K
filename, RECORD TOO LONG

The following messages indicate nonfatal errors. LOCATE completes processing
before returning to ISIS-II.

INPAGE SEGMENT COERCED TO PAGE RELTYP
MEMORY CONFLICT FROM aaaaH THROUGH aaaaH
UNSATISFIED EXTERNAL REFERENCE AT aaaaH

See Chapter 4 of the ISIS-II User's Guide for a detailed discussion of these
messages.

•

•

•

•
•

•

•
•

•

•

•
•

•

APPENDIX C
NUMBER FORMATS

This appendix provides definitions related to the internal representation of numbers
in the 8080 or 8085 memory, along with the strategy used for rounding floating­
point values and exponent wraparound.

Floating-Point Numbers

Floating-Point Standard

Floating-point number representations and floating-point arithmetic conform to the
Intel floating-point standard, which is described in the following article:

Palmer, John F., "The Intel Standard for Floating-Point Arithmetic,"
Proceedings of the First International Computer Software and Applications
Conference (Chicago: IEEE Computer Society), November 1977, pp. 107-112.

Floating-Point Zero

The format with all bits equal to zero is defined as the unique floating-point zero.
No other form for floating-point zero is supported.

Invalid Numbers

For floating-point numbers, all bit patterns are valid except those described here.

The first set of invalids are those whose exponent field is set to all ones. This set is
used for infinities, indefinites, pointers, etc. Infinities are defined as:

+INF 's' bit = 0; all other bits = 1
-INF all bits = 1

The indefinite form is:

INO 's' = 0; exponent bits all = 1; 'fraction bits = 0

A second set of bit patterns is currently defined as invalid. These are numbers whose
exponent field is zero with at least one other bit set to one.

Floating-Point Number Format

The format of floating-point numbers in memory is as shown in Figure C-1.

HIGH ADDRESS S es e7 es es e4 e3 e2

el 122 121 120 119 118 117 116

115 114 113 112 111 110 19 18

LOW ADDRESS 17 16 15 14 13 12 11 10
(POINTER VALUE)

Figure C-1. Floating-Point Number Format

C-I

Number Formats FORTRAN-80 Compiler

C-2

The address of the number (pointer value) is the low address. The three fields within
the floating-point format are:

s Sign bit. Sign-magnitude representation where s=O means positive and s=1
means negative.

e Exponent bits. The exponent is offset by 2'-1. All zeros and all ones in the
exponent field are currently reserved for the floating-point zero and the invalid
numbers respectively described above.

f Fraction bits. When the exponent is nonzero, a one bit is assumed at the left of
the fraction; the binary point is between the assumed bit and the explicit frac­
tion bit.

The number base is binary. The value of a given binary representation (where 's' is
the sign bit, 'e' is a binary exponent value, and 'f' is a binary fraction value) can be
formulated as:

(-1)S·2e-(27-1)·(1.+.f) where e -:f. 0 and e -:f. FF

Example: 3F800000 is equivalent to 1.

Rounding

If rounding is required to produce the final result of a floating··point operation, 'un­
biased' rounding is used. With this typeof rounding, the result is rounded up or
down depending on whether the first bit beyond the last bit being retained is 1 or O.
In the ambiguous case where the true result es exactly midway between two floating­
point numbers, the nearest 'even' number is returned (that is, the last bit retained is
forced to a zero). Therefore, if no error occurs, the result is the floaing-point
number closest to the true result.

Example: 40490FDB is the floating-point representation of n.

Exponent Wraparound

When overflow or underflow occurs during floating-point operations, the correct
fraction results but the exponent is 'wrapped around.' This is consistent with the
philosophy that no information should be lost and that you, the user, should be able
to decide what you want to do when an overflow/underflow exception occurs.

A 'wrapped around' exponent is defined to be ew where the true (offset) exponent et
can be derived from ew by considering an expanded range of exponents and

on overflow

on underflow

Example: 00800001-00800000 = 54000000.

Integers

Integers in FORTRAN-80 are signed two's-complement numbers; they may be 1, 2,
or 4 bytes long. Unless the STORAGE compiler control is used to specify a different
default, the default length for integer variables is 2.

•
•

•

•

•
•

•

•
•

•

•

•
•

•

FORTRAN-SO Compiler Number Formats

The format of 1-, 2-, and 4-byte integers in memory is shown in Figure C-2. In this
figure, s is the sign bit and i1 is the low-order bit. The address of the number (pointer
value) is the low address.

HIGH ADDRESS

LOW ADDRESS
(POINTER VALUE)

S 1 i31 1 i30 I· ..

2-BYTE INTEGER

···1 i1 (POINTE')f~:L~SE~ I S I i71··· I i1 I
~~~-1--B-YT~E-IN-T~EG-E-R--~--4-BYTE INTEGER 

Figure C-2. Integer Formats 

C-3 



• 
• 

• 

• 

• 
• 

• 



• 
• 

• 

• 

• 

• 

APPENDIX D 
SUMMARY OF LINK OPTIONS 

The syntax of the LINK command is: 

LINK input-list TO link-file [link-controls] 

The diagram below shows the FORTRAN-SO run-time libraries from which you may 
choose when linking your program(s) or RMX/SO system and the order (from left to 
right) in which they must be given in the 'input-list' to the LINK command. Except 
where otherwise specified, one and only one item mustbe selected from each block 
in the diagram. 

Definitions of the libraries that appear in the diagram are given on the following 
page. 

FORTRAN-80 LINKING OPTIONS 

(For RMX/80· User 
based modules 

systems and F80ISS.LlB 
only) program or 

units: F80RUN.LlB FBORMX.LIB FPEF.LIB 
FORTRAN, 

RMX/80 PL/M·80, or 

linking and F80NIO.LIB' 
option assembly 

(see below) language 

----" ""-'\ ---- RMX/80 LINKING OPTIONS 
'\ .................. 

"~----~~--------~ 

RMX8xx.LlB 
(START)" 

configura· 
tion 

module·" 

~ 

DFS 
libraries 

or 
F80NDS.LIB 

input .. output 
'!rH 

libraries 
or 

input·output 
mini·TH 
libraries 

or 
FSONTH.LlB 

FPSOFT.LIB 
or (For RMX/80· 

FPHARD.LlB based 
or systems 

FPSFTX.LlB 
only) 

or PLM80.LIB 

FPHRDX.LlB RMX/80 
or linking 

FPHXIO.LIB option 
or (see below) 

FPNULL.LlB 

-~ " 

other 
extension 
libraries RMX8xx.LlB" UNRSLV.LlB 

(if 
desired) 

• Note that you must not link in F80NIO.LlB if your program includes any STOP or PAUSE 
statements; doing so may cause the 8080 processor to enter a halt state. Also note that in 
some cases when running in a stand-alone (non-ISIS, non-RMX) environment, both 
F80NIO.LlB and F80ISS.LlB should be linked in (in that order). Refer to 'Linking and 
Locating' in Chapter 7. 

'xx' is 20, 30, or 10 for iSBC 80/20,80/30, or 80/10 llystems respectively . 

Your configuration module may actually be included anywhere in the 'user modules and 
program units' section; it need not precede all other user-coded modules. It is separated 
out in this diagram merely to show that it is unique to programs running under RMX/80. 

D-l 



Summary of Link Options FORTRAN-SO Compiler 

D-2 

Library 

FBORUN.LlB 

FBOISS.LlB 

FBORMX.LlB 

FBONIO.LlB 

FPEF.LlB 

FPSOFT.LlB 

FPHARD.LlB 

FPSFTX.LlB 

FPHRDX.LlB 

FPHX10.LlB 

FPNULL.LlB 

PLMBO.LlB 

RMXBxx.LlB 

FBONDS.LlB 

FBONTH.LlB 

UNRSLV.LlB 

Description 

Integer arithmetic, array indexing, and miscellaneous routines 

Inputloutput for the ISIS-II environment 

Inputloutput for the RMXIBO environment 

External reference library for programs using no FORTRAN 110 
except port 1/0 

Floating-point intrinsic functions 

Floating-point arithmetic library for the non-RMX (ISIS-II or 
stand-alone) environment 

Floating-point arithmetic library using the iSBC 310 math unit for the 
non-RMX (ISIS-II or stand-alone)1 environment 

Floating-point arithmetic library for the RMX/80 environment 

Floating-poiot arithmetic library using the iSBC 310 math unit for 
RMXIBO, iSBC BO/20 and 80/30 systems 

Floating-point arithmetic IIbrar~( using the iSBC 310 math unit for 
RMX/80, iSBC 80/10 systems 

External reference library for programs using no floating-point 
operations 

Support for library modules cod led in PLiM 

Library containing the RMX/80 Nucleus (RMX820.LlB, RMX830.LIB or 
RMX810.LlB); the START module in this library must be linked 
explicitly at the beginning of 'input-list', as shown in the diagram 

External reference library for programs running under RMX/80 
without the Disk File System 

External reference library for programs running under RMX/80 
without the Terminal Handler 

External reference library for resolving unsatisfied references made 
by RMX8xx.LlB 

The RMX/SO linking options-including Disk File System (DFS) libraries, Terminal 
Handler (TH) libraries, minimal Terminal Handler (mini-TH) libraries, and other 
extension libraries-are described in detail in the RMXI80 User's Guide. 

Note that these libraries come from different software products. FSORUN.LIB, 
FSOISS.LIB, FSONIO.LIB, FPEF.LIB, FPSOFT.LIB, FPHARD.LIB, 
FPNULL.LIB, and PLMSO.LIB are provided in the basic FORTRAN-SO package. 
FSORMX.LIB, FPSFTX.LIB, FPHRDX.LIB, FPHXlO.LIB, FSONDS.LIB, and 
FSONTH.LIB are supplied in the FORTRAN-SO Run-Time Package for RMX/SO 
Systems (iSBC SOl). RMXSxx.LIB, UNRSLV.LIB, the DFS libraries, the TH 
libraries, the mini-TH libraries, and the other extension libraries are part of the 
RMX/SO software package. (RMX/SO also includes PLMSO.LIB.) 

• 
• 

• 

• 

• 
• 

• 



• 
.. 

• 

• 

• 
• 

• 

APPENDIX E 
SPEEDS AND STACK REQUIREMENTS FOR 

FLOATING-POINT OPERATIONS 

The following table gives execution speeds and minimum stack requirements for 
FORTRAN floating-point operations and intrinsic functions as implemented by the 
floating-point libraries for various run-time environments. 

Execution times are given in milliseconds, and stack requirements (parenthesized) 
are given in bytes. Stack sizes do not take into account the extra stack required to 
process a floating-point error (20 bytes if the ddault arithmetic error handler is us­
ed.) Timings were determined on an Intellec Mic:rocomputer Development System in 
which one clock cycle is 0.576 !-,sec. Execution times for software addition and sub­
traction are normalizing-dependent, and the times listed are "typical." Execution 
times for the RMX libraries assume that the previous floating-point operation was 
performed within the same task. 

You can estimate the amount of stack space required for your floating-point opera­
tions in each program module by finding, in thl~ table, the maximum stack require­
ment for anyone floating-point operation you use, then adding 10-20% extra to that 
as a "safety factor." 

Operation or FPSOFT.LlB FPSFTX.LIB FPHARD.L1B FPHRDX.L1B* 
Intrinsic 
Function msec (bytes) msec (bytes) msec (bytes) msec (bytes) 

addition 1.0 (32) 1.1 (32) 0.18 ( 6) 0.35 (10) 
subtraction 0.8 (32) 0.83 (32) 0.18 ( 6) 0.35 (10) 
multiplication 1.7 (40) 1.8 (40) 0.18 ( 6) 0.35 (10) 
division 3.8 (36) 3.9 (36) 0.18 ( 6) 0.35 (10) 
negation 0.15 (10) 0.18 (10) 0.14 ( 4) 0.30 (10) 
square root 14. (26) 14. (26) 0.11 ( 4) 0.26 (10) 
square 2.2 (42) 2.3 (42) 0.09 ( 4) 0.24 (10) 

comparison (two 0.36 (16) 0.38 (16) 0.83 (24) 1.8 (28) 
negative arguments) 

comparison (two 0.35 ( 0) 0.38 ( 0) 0.26 ( 0) 0.62 ( 0) 
positive arguments) 

comparison (positive or 0.15 ( 8) 0.18 ( 8) 0.09 ( 2) 0.26 ( 8) 
negative argument 
to zero) 

load internal 0.26 (16) 0.29 (16) 0.16 ( 6) 0.33 (10) 
floating-point record 

store internal 0.23 (14) 0.25 (14) 0.14 ( 6) 0.30 (10) 
floating-point record 

converting 32-bit 0.71 (22) 0.73 (22) 0.15 ( 6) 0.32 (10) 
integer to float 

converting 16-bit integer 1.0 (36) 1 .1 (36) 0.17 ( 8) 0.32 (10) 
to float 

converting float to 16-bit 1.1 (18) 1.2 (18) 0.67 (24) 1.1 (30) 
integer 

converting float to 32-bit 0.55 ( 8) 0.56 (10) 0.85 (26) 1.4 (30) 
integer 

converting binary to decimal - (93) - (93) - (77) - (91 ) 
converting decimal to binary - (27) - (27) - (27) - (27) 

'Stack requirements for FPHX10.L1B are the same as for FPHRDX.L1B. Execution times may be 
slightly slower. 

E-l 



Requirements for Floating Point FORTRAN-SO Compiler 

E-2 

Operation or FPSOFT.LIB FPSFTX.LIB FPHARD.LIB FPHRDX.LIB* 
Intrinsic 
Function msec (bytes) msec (bytes) msec (bytes) msec (bytes) 

AINT(a) 3.1 (30) 3.2 (32) 1.3 (30) 2.3 (36) 
ANINT(a) 4.7 (32) 4.9 (34) 1.8 (32) 3.3 (38) 
NINT(a) 3.1 (64) 3.2 (62) 1.3 (66) 2.3 (78) 
ABS(a) 0.14 (10) 0.17 (10) 0.14 ( 4) 0.30 (10) 
MOD (a1,a2) 13.2 (54) 13.7 (54) 3.4 (38) 6.4 (44) 
SIGN (a1,a2) 1.9 (40) 2.1 (50) 1.4 (30) 2.6 (34) 
DIM (a1,a2) 2.8 (38) 3.1 (38) 1.4 (28) 2.8 (32) 

EXP (a) 30. (80) 31. (82) 7.7 (76) 14. (94) 
ALOG (a) 28. (82) 28. (82) 4.6 (38) 8.6 (44) 
ALOG10 (a) 28. (82) 28. (82) 4.6 (38) 8.7 (44) 

SIN (a) 68. (96) 71. (96) 20. (70) 37. (76) 
COS (a) 70. (96) 73. (96) 21. (70) 38. (76) 
TAN (a) 57. (90) 59. (90) 15. (66) 27. (78) 

ASIN (a) 55. (84) 56. (84) 9.4 (50) 17. (54) 
ACOS(a) 62. (86) 63. (86) 10. (52) 18. (56) 
ATAN (a) 30. (78) 30. (80) 6.6 (66) 11. (76) 
ATAN2 (a) 38. (88) 38. (90) 10. (80) 18. (94) 

SINH(a) 37. (90) 39. (90) 11. (66) 20. (72) 
COSH (a) 34., (82) 35. (82) 9. (58) 17. (64) 
TANH (a) 37, (90) 39. (90) 11. (66) 21. (72) 

'Stack requirements for FPHX10.LlB are the same as for FPHRDX.LlB. Execution times may be 
slightly slower. 

• 
• 

• 

• 

• 
• 

• 

• 



• 
• 

• 

• 

• 
• 

• 

• 

APPENDIX F 
PROVIDING REENTRANCY FOR 

NON·RMX FLOATING·POINT LIBRARIES 

The non-RMX floating-point libraries, FPSOFT.LIB and FPHARD.LIB, are not 
reentrant. However, two routines, FQFSA V and FQFRES, are included in these 
libraries to enable the user to effect reentrancy. If it is possible for a floating-point 
operation in a non-RMX system to be interrupted, FQFSAV and FQFRES should 
be called from any interrupt routine that may USI! floating-point operations or which 
may call another routine that uses floating-point operations . 

FQFSAV should be called at the start of the interrupt handler, since it saves the 
floating-point status, and FQFRES should be called at the end, since it restores the 
previous status. There is no limitation on the number of levels in which these calls 
may be nested, other than the amount of stack space available. 

F-J 



• 

• 

• 

• 
• 

• 

• 



• 

• 

• 

• 
• 

• 

Primary references are italicized in this 
index. 

Arithmetic Errors, B-7 

Base Address Locate Controls, 4-6 

CLOSE Capability, 7-2, 7-4 
CODE Compiler Control, 1-3,2-5 
Compile-Time Environment, 1-1 
Compiler Control Errors, B-6 
Compiler Controls, 2-lff 
Compiler Failure Errors, B-7 
Compiler Invocation, 1-8,2-1 
Compiler Output, 1-1,1-2 
Cross-Reference File, (see Symbol Cross-

Reference File) 

Data Lengths, A-I 
DATE Compiler Control, 2-6 
DEBUG Compiler Control, 2-3 
Default Compiler Controls, 2-2,2-10 
Device Drivers, 7-2ff 

EJECT Compiler Control, 2-7 
ERR Specifier, B-16 
Error Handling, B-1 ff 

Arithmetic, 5-2, B-7ff 
Error Messages, B-lff 
Error Monitoring, B-l1 
Execution Speeds (Floating-Point 

Operations), E-l 

Floating-Point Error Handler, B-7ff 
FBACKI Capability, 7-2, 7-4 
Floating-Point Numbers, C-lff 
Floating-Point Operations 

Execution Speeds, E-l ff 
Reentrancy,F-1 
Stack Requirements, E-lff 

FPEF.LIB, 1-3,4-2,5-3,6-6,7-9, D-lff 
FPHARD.LIB, 1-3,4-2,4-3,5-3, D-1ff, 

E-lff, F-l 
FPHRDX.LIB, 1-4,4-2,4-3,5-3, 6-5ff, 

D-lff, E-Jff 
FPHXlO.LIB, 1-4,4-2,4-3,5-3, 6-5ff, 

D-lff, E-Jff 
FPNULL.LIB, 1-3,4-2,4-3, D-lff 
FPSFTX.LIB, 1-3,4-2,4-3,5-3, 6-5ff, 

D-lff, E-lff 
FPSOFT.LIB, 1-3,4-2,4-3,5-3, D-lff, 

E-lff, F-I 
FQFRST, 6-2, B-9 
FQFSET, 6-2, B-9 

INDEX 

FQODLO, 7-7 
FQOEND,4-5, 5-2, 6-3 
FQOFER,7-8 
FQOGO, 4-5, 5-1, 5-2, 6-1 
FQOLVL,7-2ff 
FQOPRC, 7-8 
FQOOO7,7-7 
FQOOO8,7-8 
FREEFORM Compiler Control, 2-8, A-3 
F80ISS.LIB, 1-3,4-2,4-3,4-4,7-9, D-l ff 
F80NDS.LIB, 1-4,4-2, 6-5ff, D-lff 
F80NIO.LIB, 1-3,4-2,4-3,4-4, D-lff 
F80NTH.LIB, 1-4,4-2, 6-5ff, D-lff 
F80RMX.LIB, 1-4,4-2,4-3,4-4, 6-5ff, 

D-lff 
F80RUN.LIB, 1-3,4-2,5-3,6-6,7-9, D-lff 

INCLUDE Compiler Control, 2-8, A-3 
Initialization, 4-5, 5-1,5-2,6-1,7-1 
Input/Output Capabilities, 7-2ff 
Input/Output Drivers, 7-2ff 
Input/Output Errors 

Compile Time, B-6 
Run Time, B-llff 

Input/Output Routines, 4-4 
Input to Compiler, I-I, 1-2 
INPUT Subroutine, A-2 
Integer Formats, C-2ff 
Interrupt Handling, 5-3, 6-1, A-4 
lOST AT Specifier, B-16 
iSBC 310 

Interface,5-lff 
Memory Mapping, 5-2 

ISIS Errors, B-16ff 

Libraries 
Description, 1-3ff 
Linking,4-2ff, 5"3ff, 6-6ff, 7-9, D-lff 

LINK Command, 1-8ff, 4-2f[, 5-3ff,6-6ff, 
7-9, D-lff 

LINK Errors, B-20 
LIST Compiler Control, 1-3,2-4 
List File 

Controls,2-4ff 
Definition, 1-2 
Formats,3-lff 

LOCATE Command, 1-8ff, 4-1, 4-6 
LOCATE Errors, B-20 
Lowercase Letters, A-2 

MAKEOF Capability, 7-2, 7-5 
Memory Allocation, 4-lff 
Memory Errors, B-6 

Index-I 



Memory Segments, 4-1 ff READ Capability, 7-2, 7-4 • Module Names, 1-2 Record Length Specifier, A-2 
MV2REC Capability, 7-2, 7-4 Reentrancy 

Floating-Point Operations, F-1 
NOCODE Compiler Control, 2-5 I/O under RMX/80, 6-4 
NODE BUG Compiler Control, 2-3 REENTRANT Compiler Control, 2-7 
NOFREEFORM Compiler Control, 2-8 
NOLIST Compiler Control, 2-4 RESTORE Compiler Control, 2-9 
NOOBJECT Compiler Control, 2-3 REWIND Capability, 7-2, 7-5 
NOPAGING Compiler Control, 2-5ff RMX/80 Errors, B-18ff 
NOPRINT Compiler Control, 2-4 RMX/80 Interface, 6-lff 
NOSYMBOLS Compiler Control, 2-4ff Run-Time Environment, 1-2 • 
NOXREF Compiler Control, 2-5 
Number Formats 

Floating-Point C-lff SA VE Compiler Control, 2-9 

Integer, C-2ff Source File, 1-2 
Source Program Errors, B-1 ff 
Stack Requirements, E-lff • OBJECT Compiler Control, 2-3 Statement Functions, A-I 

Object File Stand-Alone Environment, 1-1, 1-2, 7-lff 
Controls, 2-3 STORAGE Compiler Control, 2-8 
Definition, 1-2 SUBMIT Command, 1-8ff 
Linkage, 4-1,4-2 Symbol Cross-Reference File 
Relocation, 4-6ff Definition, 1-3 

OPEN Capability, 7-2, 7-3 Format,3-4ff 
OPTIMIZE Compiler Controls, 2-3 XREF Control, 2-5 
ORDER Locate Control, 4-6 SYMBOLS Compiler Control, 2-4ff 
OUTPUT Subroutine, A-2 

Termination, 4-5, 5-2, 6-3 • P AGING Compiler Control, 2-5ff TITLE Compiler Control, 2-6 
P AGELENGTH Compiler Control, 2-6 
P AGEWIDTH Compiler Control, 2-6 
PLM80.LIB, 1-3,4-2, 5-3, 6-6, 7-9, D-lff UNIT Run-Time Control, 4-7 

Port Input/Output, A-2 Unit Preconnection, 4-7, A-4 

Preparing FORTRAN System Diskettes, 
1-4ff 

PRINT Compiler Control, 1-2,2-4 WORKFILES Compiler Control, 2-9 

Procedure Linkage, 4-4ff WRITE Capability, 7-2, 7-4 

Program Development, I-Sff, 4-1 
Program Execution, 1-8ff, 4-7 • Program Listing, 3-1ff XREF Compiler Control, 2-5 

9 

• 

• 
Index-2 


