INTELLEC® SERIES I
MICROCOMPUTER
DEVELOPMENT SYSTEM
HARDWARE INTERFACE MANUAL

Manual Order Number: 9800555-02 Rev. B

Copyright © 1979, 1980 Intel Corporation

] Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 |

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

BXP Intellec Multibus
CREDIT iSBC Multimodule
i iSBX PROMPT
ICE Library Manager Promware
iCS MCS RMX

Insite Megachassis uPI

Intel Micromap uScope
Intelevision

and the combination of ICE, iCS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

A217/680/10K FL

PREFACE

This manual provides detailed information for users who require a comprehensive
knowledge of the internal and external interfaces of the Intellec Series 11 Microcom-
puter Development System. The information contained in this manual includes
definitions of the internal interface commands and their functions, descriptions of
the system ‘‘firmware’’ (i.e., ROM-resident programs), and definitions of inter-
processor protocol. The intent of this manual is to describe existing interfaces and to
explain how these interfaces may be accessed to meet specific user requirements.
Readers of this manual are assumed to have a prior knowledge of real-time
microcomputer systems and an intimate familiarity with the functional organization
of Intellec development system hardware and software. This manual duplicates, in
condensed form, information contained in other Intel manuals and also provides a
compilation of system and interface information not otherwise available. The
manual is divided into the following five chapters:

Chapter 1—Overview. A review of the Intellec Series II development system as
it relates to user-accessible interfaces.

Chapter 2—Multibus Interface. A description of the primary user-interface to
the development system including ROM and RAM expansion, 1/0 port
assignments, bus priorities and interrupt assignments.

Chapter 3—Serial 1/0 Interfaces. A description of the two serial 1/0 channels
of the Integrated Rrocessor Board (IPB) or Integrated Processor Card (IPC)
and how the channels can be modified to meet user requirements.

Chapter 4—10C 1/0 Int.é‘rfaces. Descriptions of the program interfaces to the
integral CRT, keyboard and:integral diskette of the I/O Controller (10C) and
of the protocol required for communications between a master processor and
the IOC.

Chapter 5—PI10O Subsystem Interfaces. Descriptions of the program interfaces
to the standard parallel 1/0 devices (paper tape reader/punch, line printer and
PROM programmer) of the Parallel Input/Output (PIO) subsystem and of the
protocol required for communications between a master processor and the P10
subsystem.

Appendixes A, B, C and D. Program examples of an Interrupt Routine, Basic
Input Driver Routine, Basic Output Driver Routine and Diskette Read/Write
Routine.

Appendix E. Interface connector pin assignments and dc signal specifications
for the Multibus interface and peripheral interfaces.

The level of descriptions in this manual assume a familiarity with the Intellec Series
II development system structure, with the software interfaces of programmable Intel
chips, and with the Multibus interface. This prerequisite information can be found
in the following Intel manuals:

Intellec Series II Microcomputer Development System Hardware Reference
Manual, 9800556

Intellec Series II Model 22X/23X Installation Manual, 9800559

Intellec Series II Microcomputer Development System Schematic Drawings,
9800554

ISIS-1I User’s Guide, 9800306

Intel Multibus Specification, 9800693
Intel Component Data Catalog

Intel Peripheral Design Handbook

iii

CONTENTS

CHAPTER 1 PAGE

OVERVIEW

System Capabilities 1-1

Modifiable Hardware Logic 1-1

Programming Considerations 1-2
Resident Master Programs 1-2
Non-Resident Master Programs 1-3
User System Programs 1-3

170 Device Interfacesccooviiean.. 1-3
Firmware Versus System Software 1-3
[/O0 Device Driversc.ciiiiinnnnn.. 1-3
Drivers/System Software Interfaces 1-4
Types of Device Interface Modifications 1-5
Device Signal Timing 000 1-5

Electrical Considerations 1-5
Grounding i i e 1-6
Power Supply Reserve Current 1-6

CHAPTER 2

THE MULTIBUS INTERFACE

Memory Configurations 2-1
ROMExpansionccoviiiiiiinainnn. 2-1
RAMExpansion iviiennnnn. 2-2

[/O0 DeviceUsageoiiiiiiniivnnann. 2-4

Interrupt Mechanisms 2-5

Multibus Priority Logic 2-6

Real Time Processingcooiin.... 2-7
Useof Interruptsooiiiiiiiinnnnnn... 2-7
Use of Slave Processors vvuunn. 2-7
Parallel Processors 2-7

CHAPTER 3

SERIAL I/0 INTERFACES

Software Alterationscc.cviiinn. 3-1

Hardware Alterationsc.ccuvuninn. 3-2

Inter-System Communications 3-2

CHAPTER 4 PAGE

IOC1/0 INTERFACES

10C/Master Processor Protocol 4-1

Data Bus Buffer [4-1

IOCCommandscciiiiiiiiinnnnn.. 4-3
System Commandsccviieinn.... 4-3
CRTCommandscciiiiivin.. 4-5
Keyboard Commands 4-6
Integral Diskette Commands 4-7

CHAPTER 5

PIO SUBSYSTEM INTERFACES

P10/Master Processor Protocol 5-1

PIOCommandsciiiiiiinnnnnn. 5-2
System Commandscoveriinniiinn.. 5-2
Paper Tape Reader Commands 5-5
Paper Tape Punch Commands 5-6
Printer Commands oL, 5-7
PROM Programmer Commands 5-8

APPENDIX A

INTERRUPT ROUTINE EXAMPLE

APPENDIX B
BASIC INPUT DRIVER EXAMPLE

APPENDIX C
BASIC OUTPUT DRIVER EXAMPLE

APPENDIX D
DISKETTE READ/WRITE EXAMPLE

APPENDIX E
CONNECTOR PIN ASSIGNMENTS

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE
1-1 Power Supply Current Ratings 1-6 4-1 IOCCommandSet 43
2-1 IPB1/0O Port Addresses 2-4 4-2 Typical Diskette Read and Write Command
2-2 IPC1/0 Port Addresses 2-4 Sequences ... 4-8
2-3 Dedicated and Reserved 170 Port Addresses 2-5 4-3 Diskette Operation Codes 4-11
3-1 Asynchronous/Synchronous Jumper 5-1 PIO CommandSet 5-3
Configurations 3-2
FIGURE TITLE PAGE FIGURE TITLE PAGE
1-1 Interface Regulating System Elements 1-4 2-4 Address-Controlled Expanded RAM 2-3
2-1 Expansion of ROM Address Space 2-1 2-5 Logic-Controlled Expanded RAM 2-3
2-2 ROM Bank Switching 2-2 3-1 Data Set Simulator Cable 3-3
2-3 OverlayROM ccoiiiiine, 2-2

CHAPTER 1
OVERVIEW

1.1 SYSTEM CAPABILITIES

Intellec Series 11 Microcomputer Development
System, as delivered, is a stand-alone system that can
be upgraded by the addition of numerous hardware
and software options. Performance of the develop-
ment system ranges from generation and editing of
simple paper tape-based programs to a hard disk-
based system capable of supporting assembly or com-
pilation of relocatable library supported code, sym-
bolic debugging of user hardware/software systems,
and selective programming of validated user software
into PROM. Without modification, the Intellec
Series 11 development system is capable of supporting
product development from design inception to the
end of the product’s life cycle.

There are three basic development system models in
the series: The Model 220, the Model 225 and the
Model 230. Additionally, there are two variations of
each of the basic models according to the operating
voltage configuration. For example, a basic Model
220 development system that is configured at the fac-
tory for 115 volt operation is designated a Model 220,
while a basic Model 220 that is configured for 230
volt operation is designated a Model 221. All models
in the series feature an integral video display and an
attached keyboard, an integral power supply, a six-
slot Multibus-compatible card cage and either one or
two flexible disk drives. The development system
itself is made up of three microprocessor-based com-
puting elements that are contained on two printed
circuit board assemblies. One assembly (either an
Integrated Processor Board or an Integrated Pro-
cessor Card) is inserted into the uppermost slot of the
card cage and incorporates the master processor. The
other assembly (the Input/Output Controller) is
mounted on the inside of the rear panel. This
assembly contains the Input/Output Controller
(IOC) processor and the Parallel Input/Output (P10)
subsystem processor. Both the Model 220 and the
Model 225 include an integral single-density diskette
drive and differ only by the circuit board assembly
installed in the card cage (the Model 220 uses the
8080-based Integrated Processor Board or ‘‘IPB,”’
and the Model 225 uses the 8085-based Integrated
Processor Card or “IPC’’). The Model 230 is sup-
plied with a separate chassis that contains two
double-density diskette drives in lieu of the integral
diskette drive common to the Models 220 and 225.
The card cage of the Model 230 includes an 8080-
based IPB, a 32k RAM board and a two-board
double-density diskette controller (to support the two
double-density diskette drives).

The high efficiency and cost effectiveness of the
Intellec Series II development system, in each of its
many configurations are made possible through the
use of general-purpose hardware and task-oriented,
diskette-based software. This delegation of system
personality to software not only simplifies upgrading
of development capabilities, but also allows altera-
tion or even replacement of basic system processes.
The Intellec Series II development system may thus
be viewed as a relatively rigid framework of general-
purpose hardware that can be user programmed to
meet the needs of a wide variety of applications.

The generation of any resident software requires a
knowledge of the system environment within which
the software will operate. This manual delineates the
Intellec Series 11 development system environment in
terms of the various interfaces between the develop-
ment system and its subordinate devices and/or
external systems.

1.2 MODIFIABLE HARDWARE LOGIC

Although most modifications of Intellec Series 1I
system functions are accomplished by the replace-
ment of software, there are a few hardware changes
that may be concurrently necessary. The following
text defines changes of this type.

One general rule to be observed when modifying an
Intellec Series II development system is that most
existing hardware cannot be changed. Aside from
reconfiguration of jumpers and replacement of ROM
chips, changes to hardware will not only void the
system warranty, but may also adversely affect the
operation of the supplied software. Furthermore,
any hardware rework, including rejumpering or
ROM replacement, must meet Intel workmanship
standards to maintain warranty provisions. Full war-
ranty rights are preserved only if written permission
is obtained from Intel prior to hardware alterations.

Prohibition of hardware changes is not as restrictive
as it might first appear. For one thing, the prohibi-
tion, whether stated or not, is imposed by the system
design which employs buses for communication
between intelligent preprogrammed chips. Another
factor negating the need for hardware changes is that
the Intellec Series II development system hardware
was designed in anticipation of other user applica-
tions. The Multibus interface and the serial 1/0
channels are true general-purpose interfaces that can
be used for specific applications required by the user.

1-1

Overview

The following is a list of hardware circuit elements,
the use of which may be initiated or altered subse-
quent to system delivery (usually in conjunction with
software changes).

®* The IOC ROM may be expanded from 8k to 16k.

* The IOC RAM may be expanded from 8k to 16k.
This change requires replacement of 2108 chips
with 2116/2117 chips and the repositioning of
two jumpers that allow application of a 14-bit
address to the RAM.

AF* The serial I/0 channels are associated with a
number of jumpers that determine the routing
and use of data, clock pulses, and control signals
for various terminal and data set configurations.
The jumpers, located on both the IPB/IPC and
IOC boards, are discussed in Chapter 3.

® The 8253 timer of the IPB/IPC uses one counter
as a real-time clock that is accessible to user pro-
grams executed by the IPB/IPC. The initial
count is set via I/O port address F2, and the
mode of the 8253 is established via I/0O port
address F3. On powerup or reset, the real time
clock is initialized for a 1ms rate. The clock can
be used in conjunction with the local interrupt
controller to generate a level 7 system interrupt.

1.3 PROGRAMMING
CONSIDERATIONS

A simple description of user programming activities
is hindered by two factors. The first of these factors
has to do with the large variety of potential applica-
tions. Not only does each application dictate a par-
ticular minimum of user programming, but in many
cases there is a tradeoff between modification of
existing software and the creation of new programs
or routines. The second factor affecting the user pro-
grammer is that Intel-supplied software is physically
distributed within RAM and ROM. These two fac-
tors make it difficult to detail the software required
for a ‘‘typical”’ application without first defining the
types of software associated with the Intellec Series 11
development system. The types of programs to be
discussed in the following text are:

* Resident Master Programs — Programs that are
executed by the IPB/IPC master processor and
provide overall control of the Intellec Series 11
development system.

®* Non-Resident Master Programs — Programs
that are executed by another master processor on
the Multibus interface and are able to utilize the
system resources of the Intellec Series 1I develop-
ment system.

® User System Programs — User programs that are
being developed to be executed by and to control
user-designed hardware systems. Such programs

1-2

Intellec Series 11

are able to utilize system resources of the
development system through the facilities of an
In-Circuit Emulator (an Intel supplied non-
resident Multibus master).

1.3.1 RESIDENT MASTER PROGRAMS

Resident master programs are usually bootstrap
loaded from diskette and executed from system
RAM. These programs can also be loaded from
paper tape to system RAM or executed directly from
ROM. Typical Intel supplied resident master pro-
grams are the ROM-based Monitor, the diskette-
based ISIS-II diskette operating system, and the
diskette-based 8080/8085 assembler. Each of these
programs is controlled by specific command entries
from the CRT keyboard or system console device
that establishes a particular operator interface with
the system.

Each of the resident master programs follows the
protocol necessary to accomplish data transfer to or
from the 1/0 devices of the development system.
However, most Intel-supplied programs employ calls
to the Monitor and/or ISIS-II to accomplish 1/0
transfers. The Monitor provides byte transfers to or
from any device (except diskette) whereas ISIS-II
accomplishes block transfers to or from any diskette.
ISIS-IT does not entirely replace the Monitor, but
often provides higher-level commands that make use
of multiple Monitor calls to simplify operator
sequences. The use of Monitor and ISIS-II calls by
other programs (including user-designed programs)
reduces the program’s concern with /O operations.
In effect, the call executes a subroutine within
Monitor or ISIS-II that follows the protocol required
by the specified device. When the transfer is com-
plete, the calling program continues from the point at
which the call was made. Refer to the ISIS-II System
User’s Guide for additional information.

Within the Intellec Series II development system, the
protocol for any device involves the use of dedicated
I/0 port addresses. Furthermore, if the device is
subordinate to the IOC or PIO, the protocol requires
the issuance of specific commands that control the
transfer of data, status, and control bytes between
the 1/0 device controller hardware and the 1/0
device firmware. Details of the protocol required for
each device are discussed in Chapters 3 through 5. A
general discussion of protocol is provided in
paragraph 1.4.3.

Hardware interrupts may be employed by user pro-
grams, but if they are, their use must not conflict
with the hardware interrupts of existing circuit
boards such as in-circuit emulators. Interrupt level 7
is used by internal circuits within the development
system, normally masked off by the Monitor and

Intellec Series 11

ISIS-II since these programs use service requests in
lieu of hardware interrupts. Interrupt switches 0 and
1 are used for resetting the Monitor and ISIS-II,
respectively.

1.3.2 NON-RESIDENT
MASTER PROGRAMS

Non-resident master programs are programs that are
executed by Multibus interface master processors
other than the IPB/IPC master processor. The exter-
nal hardware involved must include provisions for
interface to the Multibus.

The non-resident master processor has direct access
to most of the system resources of an Intellec Series
II development system including the Monitor, all of
system RAM, and all 1/0 facilities and devices of the
IOC and the PIO. Notable exclusions from the
preceding list are the serial I/0 channels of the IPB
and the IPB’s real-time clock and interrupt con-
trollers. These resources on the IPC, with the excep-
tion of the system interrupt controller, are available
to other bus masters.

The interrupt controllers on the IPB/IPC continue to
accept interrupts when another master assumes con-
trol of the Multibus interface. The local interrupt
controller accepts service requests from external
sources (i.e., PIO and 10C) as well as internal
sources, and generates a level 7 system interrupt that
can be sensed by any master on the bus.

1.3.3 USER SYSTEM PROGRAMS

User system programs are programs that are: 1)
assembled or compiled using an Intellec Series 11
development system; 2) debugged using the com-
bined facilities of the development system and an
in-circuit emulator; and 3) programmed into PROM
for execution within a user-designed system. In most
cases, the physical connection between the user
system and the Intellec Series II development system
exists only while the user system is being debugged
via an in-circuit emulator. However, the in-circuit
emulator may also be employed to debug hardware
or software that is to directly interface with the
Intellec Series II development system.

1.4 1/0 DEVICE INTERFACES

Most existing I/0O device interfaces are established
using hardware and software of the IPB/IPC, the
10C, and the PIO as shown in figure 1-1. Each of the
subsystems employs a different combination of hard-
ware and software to accomplish I/0O data transfers
and to control the subordinate devices. However, the

Overview

IOC and PIO have several common attributes. The
general discussions of 1/0 device interfaces in the
following paragraphs are supported by further
details in Chapters 3 through 5.

A second type of I/0 device interface is implemented
via the Multibus interface. In this case, the hardware
controlling the device is not part of the basic Intellec
Series 1I development system and there is some trade-
off between the hardware and the driver software
executed by the IPB/IPC processor. However, most
drivers associated with external 1/0 device interface
hardware make use of Monitor or ISIS-II calls to
simplify software design. In any event, any discus-
sion of this type of I/0 device interface is more con-
cerned with Multibus interface protocol than with the
interprocessor protocol and related topics within this
chapter. Refer to Chapter 2 for discussions of 1/0
device interfaces implemented via the Multibus
interface.

1.4.1 FIRMWARE VERSUS
SYSTEM SOFTWARE

The term ‘“‘firmware’’ is used throughout the com-
puter industry to identify ROM-based microcode
that establishes the instruction sets of computers.
Within Intellec Series 11 development systems, the
instructions sets of CPUs are fixed, and the term
“firmware’’ identifies ROM-based software. The
term ‘‘system software’’ denotes resident and non-
resident programs that interpret operator-generated
commands. Typical firmware of Intellec Series II
development systems includes the I/0 device driver
programs executed by the I0C and PIO
microprocessors.

1.4.2 1I7/0 DEVICE DRIVERS

The complexity of any I/0O device firmware is
dependent on: 1) the complexity of the hardware
interface with the device; and 2) the intelligence of
the hardware between the driver and the device. The
more complex device interfaces (the serial /0 chan-
nels, the integral CRT, and the integral diskette)
make use of highly-intelligent programmable chips
that tend to reduce driver complexity. However, use
of programmable chips imposes a different type of
complexity on the associated firmware: the need to
include code to initialize the programmable chips
during system startup and/or immediately prior to
device data transfers. This initialization is required
because the operating parameters of the program-
mable chips must be preselected to meet the specific
needs of the system and/or the device being driven.

It would appear that the division of responsibilities

among the device driver, the startup routine, and the
device interface hardware is highly variable among

1-3

Overview Intellec Series 11
[PIO]
| pi0 READER -
REAL SOFTWARE l PAPER TAPE
cioe | | " oeuce, F— o, Lo
SOFTWARE HARDWARE « DIAG- PORTS PRINTER
BOOTSTRAP | NOSTICS | prOM
. T
+ DIAGNOSTICS L N PROGRAMMER
1PB/IPC
PEVSTEM. USERTTY
PROGRAMS (OR DATA SET)
1o sERiAL
: MONITOR PORTS HARDWARE
GENERAL PURPOSE
+ ASSEMBLERS RS-232
10¢
MULTIBUS™ INTERFACE ' |
| CRT | INTEGRAL
HARDWARE T~ CRT
SYSTEM l loc |
EXTENSIONS SOFTWARE
| Y, DISKETTE | INTEGRAL
+ 32K RAM* | * DEVICE PORTS HARDWARE I~ DISKETTE
i, L gieRe] ¢
« DISKETTE | NOSTICS l
HARD Bisk
L]
MODULE e
KEYBOARD
PROCESSOR KEYBOARD
SOFTWARE
*USED AS RAM EXTENSION ONLY WITH IPB.

Figure 1-1. Interface Regulating System Elements

555-01

devices. However, one basic criterion employed in
the design of the Intellec Series II development
system is the maximum simplification of system soft-
ware /0 processes. The resulting arrangement is
such that system software, including ISIS-II, ICE
drivers, and user-generated master programs, need
only specify the device and either furnish or accept
the data to be transferred. Provision is also made to
advise the system software when each byte transfer is
completed. Some additional complexity occurs with
disk transfers in which case the disk controller must
be advised of the size of the file to be transferred. In
any event, the device drivers have the relatively sim-
ple task of passing data bytes between the system

1-4

software and device interface hardware. The device
interface hardware and the startup routines share
most of the responsibility for meeting the unique
initialization requirements of any 1/0 device.

1.4.3 DRIVERS/SYSTEM SOFTWARE
INTERFACES

There are two types of I/0 driver interfaces with the
system software. One uses the Monitor interface to
accomplish serial 1/0 transfers. The second type of
interface is via the 1/0 ports of the IPB/IPC master
processor and is used by all other 1/0 device drivers.

Intellec Series 11

The 170 device driver used for serial 1/0 transfers
(i.e., Monitor) is accessed by means of the CALL
instruction. The CALL instruction itself merely
specifies the proper calling location within the
Monitor. Parameters required by the Monitor are
placed within the B, C, and (if necessary) the D, E,
H, L registers prior to execution of the CALL
instruction. System software commands that result in
Monitor CALLs often elaborate on the preceding
procedure. For example, ISIS-II calls can specify a
string of data bytes, and the PL/M statements allow
use of the stack to pass additional parameters.
However, the resulting process is often a simple
reiteration of the CALL instruction.

The second type of driver/system software interface
is used to communicate with the IOC and the PIO
subsystems of the development system. Each sub-
system is accessed via an I/0O port address of the
IPB/IPC master processor. Each access involves the
transfer of a single byte interprocessor command that
may be followed by a data byte transfer to or from
the subsystem processor. The interprocessor com-
mand byte coding informs the subsystem processor if
a data byte transfer is to follow and initiates a
specific action within the subsystem processor. The
command may cause a system level response that
affects all subordinate devices of the subsystem or a
device level response that affects a specific 170 device
and its associated driver and interface hardware.

The system level interprocessor commands initiate
actions such as subsystem reset, the return of status
concerning the results of a preceding device level
command, the enabling or disabling of interrupts, or
the return of diagnostic test results. The device level
interprocessor commands are used to pass data to or
from the device, or to return device status. The
sequence of interprocessor commands required to
control the subsystem and/or one of its subordinate
devices constitutes the interprocessor protocol for
that subsystem or device.

1.4.4 TYPES OF DEVICE
INTERFACE MODIFICATIONS

The interprocessor command sequence between the
IPB/IPC and the IOC or PIO has been generalized to
the extent that minor changes of the device/driver
interface do not require changes to the protocol. In
other words, use of a different printer could require
changes to the associated device driver without the
necessity for changes to the Monitor, ISIS-II, or any
other system software. It is, of course, assumed that
the existing hardware interface is compatible with the
non-standard printer.

1.4.5 DEVICE SIGNAL TIMING

The interprocessor protocol establishes a relatively
loose coupling between the system software of the
IPB/IPC and the IOC/PIO device drivers. In

Overview

general, the system software initiates an 1/0 opera-
tion and then periodically requests I/0 status to
determine when the operation is completed. This
technique relieves the system software of concern
with 170 device timing.

The implementation of user-designed 1/0 drivers
and/or resident master programs must take into
account the timing of all system elements. For exam-
ple, hardware interrupts may be employed, but they
should be used only to signify the termination of an
operation,

High-speed 1/0 devices, such as disk or diskette
drives, require relatively complex hardware and
relatively large data storage capacities. Because of
this, only one diskette drive is supported by the I0C;
the remaining drives employ a disk or diskette con-
troller on the Multibus interface. Furthermore, the
integral diskette, the integral CRT, and the
refreshing of RAM use a substantial portion of the
10C processor’s bandwidth. These factors must be
considered when changes to the IOC driver are
anticipated.

The lower-speed devices of the PIO make less strin-
gent demands on the PIO processor, but in this case
RAM and ROM capacitiecs are more restricted.
However, the PROM programmer interface of the
PIO is a general-purpose interface that assumes the
existence of intelligence external to Intellec Series I1.
If this intelligence is in the form of a microprocessor,
it is possible to establish efficient communications
that do not tax the bandwidth or storage limitations
of the PIO. Furthermore, such communications can
be implemented without changes to the PROM pro-
grammer driver. The PROM programmer interface is
thus a prime candidate for implementation of a chan-
nel to non-standard I/0 devices. Refer to Chapter 5
for further information on use of the PROM pro-
grammer interface.

The Multibus interface may also be used to com-
municate with non-standard 1/0 devices. Refer to
Chapter 2 for details on use of the Multibus
interface.

1.5 ELECTRICAL CONSIDERATIONS

The Intellec Series II development system, as
delivered, is capable of accepting almost any com-
bination of Intel circuit boards. Each development
system chassis employs an internal power supply that
provides a tie point for circuit grounding and that has
adequate reserve power for optional circuit boards.
Under normal circumstances, user-designed hard-
ware may be installed either within or attached to the
development system chassis without difficulty.
However, user-designed hardware must employ com-
patible grounding techniques and must not exceed
the reserve current specification.

1-5

Overview

1.5.1 GROUNDING

Three types of grounds exist within Intellec Series 11
development system. The first type of ground is
chassis ground that interconnects all metallic
enclosures and devices of the system. Chassis ground
is routed through the I0C and PIO connectors to
provide for grounding of I1/0 devices. Chassis
ground is also used for all cable shields.

The second type of ground is ac ground. This ground
is derived from the third (green) wire of the ac power
cord. The ac ground is tied to chassis ground at a
single point within each power supply.

DANGER

Removal of ac ground from chassis ground
can cause hazardous potentials to exist at
metallic surfaces of devices and enclosures.

The third type of ground is signal ground. This
ground is used as a common reference for all dc
voltages and is the ground employed by logic circuits.
Signal ground is tied to chassis ground and ac ground
at the common tie point within the power supplies.

NOTE

Any Intellec Series 11 development system
incorporating an expansion chassis contains
two power supplies, each with its own com-
mon tie point for grounding.

User-designed circuit boards are required to use
signal ground as a reference for all logic circuits.
Chassis ground is used only if the user circuit board is
associated with an external enclosure or device
(chassis ground is tied to all shielded cables and
external metallic structures). Signal and chassis
grounds should be isolated on the user circuit board
or within the external enclosure or device (if such
isolation is possible) to prevent the formation of
ground loops.

Intellec Series 11

User-designed systems connected to an Intellec Series
11 development system via an in-circuit emulator
should ideally have independent signal and chassis
grounds that may be disconnected from each other
when connected to the in-circuit emulator. If user
signal ground is permanently tied to user chassis
ground, a ground loop will exist. In some cases, this
ground loop will cause unwanted currents to flow
through the in-circuit emulator signal ground and
may result in electrical noise on data, address, and
control lines.

Total elimination of ground loops may not be feasi-
ble if the system contains peripherals that tie signal
ground to chassis ground. When the signal and
chassis grounds cannot be separated, a lower-
resistance path through the chassis ground wiring
should be provided. The installation of heavy (large
surface area) straps between the development system
chassis and the user system chassis can reduce noise
on the signal lines.

1.5.2 POWER SUPPLY RESERVE
CURRENT

Two basic power supplies are used in the Intellec
Series 11 development systems: the internal power
supply in the development system chassis and a
smaller supply in the optional expansion chassis.
Both supplies provide regulated voltages of +5, +12,
—12 and —-10 volts that are available on the
backplane. The supply in the development system
chassis also provides internal, regulated voltages of
+15 and +24 volts for the integral CRT and diskette
drive.

The current ratings for each voltage and the amount
of reserve current available for optional boards are
listed in table 1-1. Note that the expansion chassis
contains no circuit boards when delivered, and the
current ratings for its four regulated supplies are
available for use by optional or user-designed circuit
boards installed within the expansion chassis.

Table 1-1. Power Supply Current Ratings

Development System Chassis +5V +12V -12v -10V +15V +24V
Capacity 30.0 2.5 0.3 1.0 1.5 1.7
Model 220 Load 8.2 0.4 0.1 0.02 1.5 1.7
Model 220 Reserve 21.8 21 0.2 1.98 0 0
Model 225 Load 8.5 1.5 0.2 0.03 1.5 1.7
Model 225 Reserve 21.5 1.0 0.1 0.97 0 0
Model 230 Load 14.45 0.8 0.1 0.17 1.5 0
Model 230 Reserve 15.55 1.7 0.2 0.83 0 1.7
Expansion Chassis +5V +12V -12V -10V +15V +24V
Reserve 20.0 2.0 0.3 0.8 N/A N/A

1-6

THE MULTIBUS INTERFACE

CHAPTER 2

The Multibus interface is documented in detail by the
Intel Multibus Specification and is also described in
the Intellec Series Microcomputer Development
System [II Hardware Reference Manual. The
information within this chapter does not duplicate
the content of these other manuals, but rather defines
the Multibus interface characteristics in terms appro-
priate to Intellec Series II development system users
who are writing master programs. In effect, this
chapter does not define the Multibus interface as
such, but rather describes implementation and/or
utilization of system resources via the Multibus
interface.

2.1 MEMORY CONFIGURATIONS

The uses of RAM and ROM within a multiprocessor
system are varied. Slave processors such as the IOC
can use RAM and ROM as local private memory for
data and special purpose programs. ROM can also be
used to perform logic functions wherein the selection
of a given address generates a specified control
signal. The above uses do not involve the Multibus
interface and do not provide memory that can be
shared by other master processors in the system. The
following text is concerned only with system memory
that is accessible from the Multibus interface.

The size of the Intellec Series II system memory (32k
or 64k) is usually more than adequate for most
applications. Also, the availability of disk and
diskette storage can often reduce the need for addi-
tional memory. If, however, the memory size is
inadequate, there are means of expanding both ROM
and RAM as discussed in the following text.

2.1.1 ROM EXPANSION

When delivered, the Intellec Series II development
system contains 4k of ROM. Expansion of ROM is
possible through the installation of a Multibus-
compatible circuit board using one of two methods.
Note that regardless of the method used to expand
ROM, the Monitor RAM workspace is always the
last (top) 320 bytes of available RAM memory, and
care must be taken not to overlay or occupy these
locations (refer to the ISIS-II User’s Guide for
detailed information regarding Monitor address
spacing). The first method (figure 2-1) simply assigns
ROM memory address space. This method reduces
the size of the RAM that can be accessed while
executing the program out of ROM and is useful

when a large ROM-resident program is used to pro-
cess a relatively small, on-line data base. (The total
data base for the system may be very large and stored
off-line on diskette.)

NOTE

If several ROM-resident programs are
employed, each program should be capable
of being separately accessed so that the loss
of the corresponding RAM address space
during program execution is limited only to
the address space occupied by the program.

FFFFH

MONITOR

F800H
MONITOR RAM MONITOR RAM
(320 BYTES) LOCATION IN 64K SYSTEM

LARGE
USER
PROGRAM
(ROM)

8000H
TFFFH MONITOR RAM } MONITOR RAM LOCATION

(320 BYTES) IN 32K SYSTEM
ON-LINE
DATA «—> DISKETTE
(RAM) DRIVES
5000H f— — — —
ISIS-Il BUFFERS
3000H
1S18-11
(RAM)

0000H

555-02
Figure 2-1. Expansion of ROM Address Space

2-1

The Multibus Interface

The second method of ROM expansion, known as
bank switching (figure 2-2), occupies a limited
amount of address space, but allows ROM expansion
beyond 64k. With this method, the user-implemented
circuit board(s) contains I/0O port address decoding
logic to select and deselect specific ROM banks. The
decoding logic latches the 1/0 port address and
inhibits the selection of more than one memory bank.
A typical memory system might contain eight banks
of system address space. This system could have a
library of relatively-large permanent programs
available for immediate execution with minimum
reliance on external program storage.

The implementation of either of the preceding ROM
expansion methods requires the inclusion of logic
that inhibits RAM when the program is being exe-
cuted out of ROM (INH1) and inhibits ROM when
the RAM is being accessed (INH2). The 1/0 port
addresses assigned must be other than those reserved
by the IPB/IPC and other circuit boards of the
system. For additional information regarding inhibit
timing, refer to the Intel Multibus Specification.

The bootstrap/diagnostic program is located at
addresses ESOOH through EFFFH and overlays RAM
as well as any ROM at these memory locations during

Intellec Series 11

initialization and execution of the diagnostic. The
selection logic of the IPB/IPC ensures that the
initialization routine is executed, without interven-
tion, after start-up or system reset. Comparable
techniques (figure 2-3) can be used to execute critical
user programs in any memory space except the loca-
tions occupied by the Monitor and the bootstrap/
diagnostic program. Execution of overlay ROM pro-
grams can be initiated via an 1/0 port address or on
exit from the bootstrap/diagnostic program. Use of
the ROM overlay technique must not be used simply
as a means of ROM expansion, and user hardware
would be required to generate INH1 and INH2.

2.1.2 RAM EXPANSION

The 64k RAM available with Intellec Series II
development systems is the maximum address space
that can be accessed by the master processor of the
I[PB/IPC. Other master processors on the Multibus
interface can employ larger memories wherein the
IPB/IPC RAM is but one segment.

The most obvious candidate for a large memory pro-
cessor is the Intel 8086 microprocessor that uses a
20-bit address to access a full megabyte of memory

FFFFH
F800 H

MONITOR

USER J
PROGRAM

0 =
{ROM) - BANK
SELECTION
LOGIC

— (1/0 PORT)

TOTAL ROM = 240K

8000H MONITOR RAM
(320 BYTES)

5000H b— —— — —o

ISIS-11 BUFFERS

3000H

IS18-11
(RAM)

0000 H

Figure 2-2. ROM Bank Switching sss03

START UP/
FFFFH
F800H MONITOR RESET LOGIC
MONITOR RAM
(320 BYTES)
[] - BOOTSTRAP EFFFH
DIAGNOSTIC
- - EB00 H
USER
OVERLAY
ROM
PROGRAM
USER _———— D000 H
DATA
(RAM) T
SELECTION
LOGIC
8000 H
USER
PROGRAM
(RAM)
ISIS-Il BUFFERS
3000H
151511
(RAM)
0000 H
Figure 2-3. Overlay ROM 555-04

2-2

Intellec Series 11

(see figure 2-4). The Multibus interface is fully com-
patible with 8086 system components, but any
8080/8085 type system, including the Intellec Series
II development system, must make allowances for
the expanded address capabilities of the 8086. With
respect to memory addressing, the allowances center
on the decoding of the four high-order address bits
(ADR10/-ADR13/) of the Multibus interface.
Accessing of the RAM segment on the IPB by the
8086 is restricted to byte transfers, while accessing of
the IPC’s RAM segment by the 8086 does not have
this restriction since the RAM on the IPC can be
externally accessed in 16-bit words.

The Intellec Series 11 development systems contain
logic on the IPB/IPC that determines when a 20-bit
address is being used. This logic assigns addresses OH

The Multibus Interface

through FFFFH to the 64k RAM segment of the
IPB/IPC and disables this segment for all addresses
greater than 64k. Pull-up resistors associated with
the ADR10/-ADRI13/ extended address lines are
included on the IPB/IPC to ensure access to its RAM
segment when an 8086 type processor is not con-
nected to the Multibus interface.

Use of the 8086 is not the only way to expand RAM.
User systems that employ 8080/8085 hardware to
select memory segments through logical control of
the high order address lines can also be used. For
example, a user master processor can employ a
latched 1/0 port to set the high-order address lines
(see figure 2-5). The user processor can then access
either the IPB/IPC RAM segment or other 64k-
segments that are inaccessible to the IPB/IPC.

IPB/IPC
PROCESSOR

>
o
ow
x

ESS J OFFFF

MULTIBUS™ INTERFACE

USER
8086

20-BIT 00000-
ADDRESS § FFFFF

INTELLEC USER RAM USER RAM USER RAM
SERIESH SEGMENT 1 SEGMENT2 SEGMENT 3
RAM (64K) (64K) (64K)
(84K)
Figure 2-4. Address-Controlled Expanded RAM 555.05
I/0PORT | RAMBLOCK
IPB/IPC USER
PROCESSOR 8080 ADDRESS SELECT
ADDRESS [§ 00000- 0000- ADDREsS [oxxxx
LsB'S W FFFF FFFF MSB'S [FXXXX

MULTIBUS™ INTERFACE

INTELLEC

SERIES 1| USER RAM
RAM SEGMENT 1
(64K) (64K)

USER RAM USER RAM
SEGMENT 2 SEGMENT 3
(64K) (64K)

Figure 2-5. Logic-Controlled Expanded RAM

§55-06

The Multibus Interface

2.2 1/0 DEVICE USAGE

Communications between a processor and its 1/0
devices are performed similarly to communications
between a processor memory in that I/O port
addresses access the device or logic associated with
the device. These communications become more evi-
dent when considering programmable device con-
troller chips with specific registers that are accessed
via unique I/0 port addresses.

With programmable controllers, the low-order 1/0
port address bits are used to distinguish between data
registers and control functions, and thus a block of
170 port addresses is reserved for each device. The
high-order bits are used to select the individual pro-
grammable chips. Within the IPB/IPC, 10C and

Table 2-1. IPB 1/0 Port Addresses

Intellec Series 11

P10, the I/O port addresses are preassigned and
fixed by hardware design. These addresses must be
used by user-designed hardware to access the shared
system resources.

Table 2-1 lists the 170 port addresses used by IPB,
and table 2-2 lists the 1/0 port addresses used by the
IPC. Note that the I/0 port addresses are identical
for both the IPB and the IPC; only the port
accessibility function (shared resource or IPB/IPC
accessible-only resource) differs.

A number of Intel products that can be used with the
Intellec Series 11 development systems have dedicated
or reserved 1/0 ports. Table 2-3 lists the current I/0
port assignments used by Intel.

Table 2-2. IPC 1/0 Port Addresses

Shared System Resources Shared System Resources
A dF:ior:ss Function A dF:;iorre‘ss Function
Cco 10C data Cco 10C data
C1 I0C command and status C1 10C command and status
C2 Reserved for lOC C2 Reserved for 10C
C3 Reserved for IOC C3 Reserved for IOC
F8 PIO data FO Serial I/O channel 0 baud rate clock
F9 P10 command and status F1 Serial I/O channel 1 baud rate clock
F2 Real time clock
IPB Only Resources F3 Timer mode select
Fa Serial /O channel 0 data
Port . F5 Serial I/0O channel 0 command and status
Address Function F6 Serial I/0 channel 1 data
F7 Serial I/0 channel 1 command and status
FO Serial I/O channel 0 baud rate clock F8 PIO data
F1 - Serial /O channel 1 baud rate clock F9 PIO command and status
F2 Real time clock FA Local interrupt controller
F3 Timer mode select FB Local interrupt controller
F4 Serial I/O channel 0 data
F5 Serial /O channel 0 command and status IPC Only Resources
F6 Serial 1/0 channel 1 data
F7 Serial I/O channel 1 command and status Port Function
FA Local interrupt controller Address
FB Local interrupt controller
FC System interrupt controller FC System interrupt controller
FD System interrupt controller FD System interrupt controller
FE Reserved FE Reserved
FF Control Port FF Control Port

Intellec Series 11

The Multibus Interface

Table 2-3. Dedicated and Reserved I/0O Port Addresses

Device

1/0 Port Addresses

ICE-80 In-Circuit Emulator

iSBC 80/05 Single Board Computer
iSBC 80/10A Single Board Computer
iSBC 80/20-4 Single Board Computer

iSBC 80/30 Single Board Computer

iSBC 86/12A Single Board Computer

Disks
First Floppy Diskette Controller
Second Floppy Diskette Controller
Hard Disk Controller

Other ICE Modules (ICE-85, ICE-86, ICE-88, etc.)

iSBC 544 Intelligent Communications Controller

0EOH-0E3H
080H-083H

00H-05H
0E4H-0EFH

0D4H-0DFH,
0E4H-0EFH

0D8H-0DFH,
O0E4H-0EFH

0COH-0CFH,
0DOH-0DFH

0DOH-0DFH,
O0E4H-0EFH

078H-07FH
088H-08FH
068H-06FH

Future Intel products may require 1/0 port addresses
other than the addresses specified in table 2-3. To
prevent possible incompatibility with future Intel
products, all user-device 1/0O port addresses should
be switch or jumper selectable.

The use of 1/0 port addresses to access user-designed
hardware is the most common technique employed
within Intellec Series II development systems. A
second technique, called ‘‘memory-mapped 1/0,”’
may also be employed to access user hardware. With
memory-mapped 1/0, a block of memory addresses
is assigned to the device and/or its controller. The
major advantage of memory-mapped 1/0 is addi-
tional programming flexibility; any instruction that
references memory can be used to access an 1/0 port
located in the memory space. For example, the MOV
(move) instruction can transfer data between any
8080/8085 register and a port or any of the logical
instructions can be used to manipulate individual bits
within 170 device registers. The simplest implemen-
tation of a memory-mapped I/0 device is in a system
that has unused address space (i.e., a Model 220 with
32k bytes of RAM) in which case the 1/0 device
addresses would be assigned within the 32k to 62k
address range. However, in systems containing 64k
of RAM (i.e., the Models 225 and 230), the I/0
device addresses must replace either RAM or ROM.
RAM replacement is impractical as it would
necessitate the physical removal of RAM. ROM
replacement requires 1/0 device control logic that
generates INH1/ (to inhibit RAM) when the 1/0
device is being used. Since most memory-mapped

I/0 devices require very few addresses, ROM
replacement is the most widely used method for
memory-mapped 1/0. However, programmers must
be aware that the addresses assigned to an 1/0 device
are no longer accessible in RAM.

2.3 INTERRUPT MECHANISMS

The standard definition of an interrupt is the process
whereby an asynchronous device-generated signal
causes program branching to a routine that services
the needs of the device (usually the handling of I/0
data). However, the reason for employing interrupts
is that I/0 devices (or other real-time system
elements) often involve synchronous operations that
cannot be delayed while the processor is performing a
lengthy processing task. An interrupt service routine
is used to quickly complete the 170 data transfer and
then allow continuation of the interrupted process.
At a later time, the program processes the data
accepted by the service routine or prepares new data
for output to the device. Without interrupts, input
data could be lost or output data could be
unavailable when required.

There are two reasons why the preceding real-time
hardware interrupts are not required when an Intellec
Series II development system is executing many of
the Intel-supplied resident master programs
(Monitor, ISIS, etc.). The first reason is that 1I/0
operations are program controlled to be performed
in sequence (e.g., if diskette data is to be printed, the
diskette operations are completed before printing

2-5

The Multibus Interface

operations begin). The second reason is that interac-
tions with high-speed 1/0 devices are provided by
means of controller chips that perform many of the
tasks (including temporary data storage) that would
otherwise be performed by interrupt service routines.
The master program is never concerned with multi-
tasking or with close synchronization of I/0 device
operations. Note that while some input (e.g.,
keyboard entry), is not program controlled, its data
entry rate is slow enough to allow temporary data
storage by hardware while the processor is occupied.

In place of hardware interrupts, the hardware
elements of the Intellec Series II development system
use service requests (specified bits within status bytes)
to determine when a device requires attention. The
status bytes are returned to the master processor of
the IPB/IPC on demand. The transfer of status bytes
from the IOC or the PIO to the IPB/IPC constitutes
a major segment of the interprocessor traffic.
Although hardware interrupts are not widely used by
Intel-supplied resident master programs, interrupt
handling circuits exist within the Intellec Series II
development system. These circuits establish
priorities for the interrupt switches, for interrupts
from the Multibus interface and for interrupts from
internal hardware elements of the IPB/IPC, I0C,
and PIO. The interrupt circuits also apply interrupt
switch and internal hardware interrupts to the
Multibus interface. Interrupt masking by resident
programs inhibits sensing of interrupts by the
IPB/IPC master processor. All interrupts generated
by internal hardware elements are handled by a local
interrupt controller that operates in the polled mode
as a slave to the system interrupt controller. All inter-
nal interrupts are processed by the local interrupt
controller and generate a level 7 interrupt to the
system controller. Resident master programs must
then poll the local interrupt controller to determine
the source of the internal interrupt. An example of an
interrupt routine used to service an interrupt
originating from a device associated with the local
interrupt controller is shown in Appendix A. Inter-
rupt level assignments for the local interrupt con-
troller are as follows (level 0 has the highest priority):

Intellec Series 11

the location of the vector address block. The vector
addresses reserved for system interrupts are as
follows:

Interrupt | Vector Vector
Level Address Usage

0 00H Monitor
1 08H ISIS-11
2 10H Disk Controller
3 18H
4 20H ICE-80 Module
5 28H
6 30H ICE Modules
7 38H Local Interrupt Controller

Level Function
0 | Serial I/0 Channel 0 Input Data Ready
1 Serial 170 Channel 0 Output Data Ready
2 | Serial I/0 Channel 1 Input Data Ready
3 Serial I/0 Channel 1 Output Data Ready
4 Ims Real Time Clock Interrupt
S PIO Subsystem Interrupt
6 | IOC Interrupt
7 Not Used

The system interrupt controller operates in the fully-
nested mode and is initialized with a call address
interval of eight and a base address of OH to establish

2-6

 CiuTon 2

Reprogramming the 8259’s call address
interval from eight to four will cause
undefined system operation.

The local and system interrupt controllers of the IPB
and the system interrupt controller of the IPC cannot
be programmed or polled by a non-resident master
program (the local interrupt controller of the IPC
can be accessed by another bus master). When
another bus master assumes control of the bus, both
the local and system interrupt controllers maintain
any current interrupt request and latch any subse-
quent interrupt request (when the IPB/IPC regains
bus access, any pending interrupt request is serviced).
Since all system interrupts can be sensed by another
bus master via the Multibus interface, all IPB/IPC
local interrupts can also be sensed (any local inter-
rupt causes a level 7 system interrupt).

2.4 MULTIBUS PRIORITY LOGIC

To avoid conflicts that may arise when two or more
bus masters simultaneously require bus access, the
IPB/IPC includes parallel priority resolution logic.
This logic accepts individual bus request inputs from
up to nine bus masters that may be installed in the
backplane (five available slots in the development
system chassis and four slots in the expansion
chassis) and returns an individual bus priority input
to all but the bottom slot of the expansion chassis
(the bottom slot has the highest priority and its bus
priority input is permanently enabled). The parallel
priority logic samples all of the bus request (BREQ)
inputs and generates an individual bus priority in
(BPRN) output to the highest priority bus master
requesting the bus. Following Multibus interface pro-
tocol, when the requesting master receives its bus
priority in signal, it examines the common bus busy
(BUSY) bidirectional line to determine when the bus
becomes available and, when the bus is available,
activates bus busy to indicate to all other bus masters

Intellec Series 11

that the bus is in use. Note that a bus master main-
tains bus access until it either releases the bus (i.e.,
the bus master executes a halt instruction) or until a
higher-priority bus master requests the bus.

Bus priority within the Intellec development system
(including the expansion chassis) is assigned in a
bottom-up sequence with the top slot (the IPB/IPC)
having the lowest priority and the bottom (tenth) slot
having the highest priority. The use of parallel prior-
ity logic (rather than serial priority logic) allows the
priority of any bus master (except the IPB/IPC) to be
readily changed by relocating the board in the back-
plane and allows ‘‘slave’’ boards (boards that do not
request the bus) to be positioned anywhere in the
backplane without affecting bus priority. When posi-
tioning bus masters in the backplane, boards that
have high-speed transfer rates or high data volume
functions (e.g., disk controllers) should be placed in
the lower (higher priority) slots, and low-speed device
controllers should be placed in the higher (lower
priority) slots.

2.5 REAL-TIME PROCESSING

Prior discussions in subsection 2.3 describe how an
Intellec Series II development system performs its
tasks in serial fashion so that the IPB/IPC master
program devotes its full attention to the current
operation. For 1/0O devices, this sequential process-
ing approach is more than adequate since the 1/0
operation appears to the operator to be immediately
performed. However, when an Intellec Series II
development system is employed in a real-time
environment, the techniques used with the 1/0
devices may or may not suffice. The following
paragraphs define the capabilities and limitations of
real-time techniques that may be employed by the
user.

2.5.1 USE OF INTERRUPTS

Anyone having prior familiarity with real-time,
interrupt-driven systems might be prone to design a
master program that makes use of asynchronous
interrupt requests in place of the service requests that
are currently used by Intel-supplied software. This
design would make the system more responsive to
real-time events. However, the user-designed pro-
gram must employ interrupt service routines with
execution speeds that do not interfere with normal
operation of high-speed 1/0 devices. Furthermore,
drastic program alterations, such as the implementa-
tion of concurrent 1/O operations, would be ill-
advised because of the impact that the alteration
might have on existing operating systems, 1/O
drivers, and 1/0 interface hardware. The alternative
methods discussed in the following paragraphs
should be seriously considered before attempting
extensive use of real-time interrupts.

The Multibus Interface

2.5.2 USE OF SLAVE PROCESSORS

In some cases, the occurrence of an external real-time
event requires the immediate initiation of a relatively
long program sequence, but does not require immedi-
ate interaction with other elements of the system. In
such cases, the task may be assigned to a user-
designed slave processor subsystem.

Two examples of slave processor subsystems are the
IOC and PIO. The IOC and PIO are functionally
limited in that they perform most of their operations
only in response to commands from the IPB/IPC
(CRT and RAM refresh within the 10OC are contin-
uous, but are implemented by special-purpose hard-
ware). User-designed slave processor subsystems can
use software that continually interacts with the exter-
nal interface and can use interrupts to signify when
the slave processor requires service from the master
processor.

Implementation of a user-designed slave processor
subsystem can be accomplished without physical
alteration of the Intellec Series 11 development
system. (The slave processor would contain I/0 port
address decoding logic that monitors the address
lines of the Multibus interface; the 1/0 port
addresses employed must be among those not
reserved by Intellec Series II development system
functions.) The slave processor subsystem is, in some
respects, equivalent to a hardware-implemented
interrupt service routine in that it allows asyn-
chronism between the control of real-time operations
and the timing of IPB/IPC processing. However, the
slave processor has the distinct advantage of per-
forming complex operations without the necessity of
borrowing time from other IPB/IPC operations. A
slave processor tends to increase the bandwidth of
the entire system. The services of the slave processor
are equally available to the IPB/IPC and any other
master processor on the Multibus interface. Note
that with any user-designed slave processor, some
form of synchronization protocol must be estab-
lished among all master processors that use the slave
processor in order to prevent concurrent access of the
slave by more than one master.

2.5.3 PARALLEL PROCESSORS

The use of parallel processors substantially increases
system bandwidth by permitting two or more master
processors to simultaneously execute system level
programs.

The 8086 microprocessor is ideal for parallel pro-
cessor configurations since its architecture directly
supports the interfacing of two independent buses
(any microprocessor can drive two buses). A typical
arrangement within an Intellec Series 11 development
system might use one of the buses to communicate

2-7

The Multibus Interface

with the IPB/IPC that would be used to control 1/0
operations. The second bus would then be used to
execute master programs residing in unshared RAM
or ROM. Both buses could be the Multibus interface
or two types of buses could be implemented in much
the same way as the IOC processor interfaces with
both the Multibus interface and its own I0C bus.
The number of possible implementations is limited
only by the imagination of the designer.

Major decisions in the design of a parallel processor
system are the allocation of tasks to the processors
and the establishment of interprocessor communica-
tions. These two decision areas are interrelated in
that the division of responsibilities between the pro-
cessors determines the amount of data and status that
is exchanged. If large amounts of data must be
exchanged, the two processors could use a shared
RAM that the user processor accesses via the

2-8

Intellec Series 11

Multibus interface. If smaller amounts of data are
exchanged, a hardware-implemented data bus buffer
(DBB) could be used (refer to IOC description within
the Intellec Series II Microcomputer Development
System Hardware Reference Manual). In using a
DBB, the user processor appears to be a slave pro-
cessor to the IPB/IPC, Interrupts can be employed,
and the status bytes returned by the user processor
can redirect IPB/IPC operations and thereby assume
control of the system. The use of a DBB is somewhat
limited by its low data-transfer rate.

The preceding information is provided only to
outline some of the possible methods of implement-
ing parallel processor configurations, and many
details are omitted. Nevertheless, parallel processing
can be implemented without modification of Intellec
Series I development system hardware or firmware.

CHAPTER 3
SERIAL 1/0 INTERFACES

The two serial 1/0 channels are the only 1/0 inter-
faces of the Intellec Series I1 development system that
can be directly accessed by the IPB/IPC. All logic
associated with the serial I/O channels is incor-
porated on the IPB/IPC or within its associated soft-
ware and firmware. The connection between the
serial 1/0 channels and the serial device connectors
on the rear panel is accomplished by etched traces on
the IOC board assembly (the IOC includes a number
of alterable jumper links that are used to configure
connector signal routing).

The direct path between the IPB/IPC and the serial
1/0 devices has the advantage that in terms of overall
operation, the omission of an intervening slave pro-
cessor (i.e., the IOC or PIO) can make the system
more responsive to serial 1/0 events. However, if
interrupts are masked-off or disabled (normal con-
figuration), the response time of the system to any
serial 170 input is still dependent on the frequency at
which the IPB/IPC software polls the serial 1/0
interface. Polling is continually performed since
most serial 170 devices (teletypewriters, video ter-
minals and modems) provide input that cannot be
anticipated by local programming. The polling rate
employed is sufficient to support synchronous com-
munications at rates of up to 64k baud.

3.1 SOFTWARE ALTERATIONS

The Intel-supplied software associated with the serial
I/0 channels is part of the system software (ROM-
resident Monitor and bootstrap/diagnostic pro-
grams). ISIS-II has the ability to indirectly initiate
data transfers via a serial I/O channel (ISIS uses the
facilities of the Monitor to accomplish 1/O
transfers). With the IPB, all other system software
must use Monitor (or ISIS) calls to access the serial
170 channels. With the IPC, the serial 1/0O channels
are defined as system resources and can be directly
accessed by another bus master.

The Monitor can only access a serial 1/0O channel
when the channel is defined as the system console. By
default, the integral CRT and keyboard are defined
as the console device when the system is initialized,
and the I/0 ports associated with the serial I/O chan-
nels are unused. Note that once the system has been
initialized, the Monitor’s A (assign) command can be
used to assign a device connected to one of the serial
170 ports as the console device. Access to a serial 1/0
channel that is not defined as the system console is
possible only through a user-designed 1/0 driver.

The bootstrap/diagnostic program initializes the
serial 1/0 channel hardware during start-up and
following system reset. The initialization sequence is
simply the transfer of operating parameters to the
8251 universal synchronous/asynchronous receiver
transmitters (USARTSs) and the 8253 programmable
interval timer. Specifically, both the channel 0 and
channel 1 USARTSs are initialized for asynchronous
operation with two stop bits, an 8-bit character
length and a baud rate factor of 16X. The 8253 inter-
val timer consists of three separate counters that are
used to determine both the baud rate clock frequen-
cies for the USARTSs and the real time clock fre-
quency. All three counters are initialized for Mode 3
(square wave) operation with a two-byte count
register. The counter register values provided to each
counter when the timer is initialized are as follows:

Counter Function Counter | Counter

i Value Frequency
0 Channel 0 Clock 698 1.74 kHz
1 Channel 1 Clock 32 38.4 kHz
2 1 ms Real Time Clock 1229 1kHz

Note that the channel 0 and channel 1 clock signals
are subsequently divided by 16 (baud rate factor 16X)

by the USARTSs to provide baud rates of 110 and g
2400 baud, respectively. _

Alteration of the ROM-based bootstrap/diagnostic
program to change the baud rate or operating mode
is not necessary since the serial /0 channel hardware
(the 8251s and the 8253) can be reinitialized by a user-
designed initialization routine that is executed
following the bootstrap/diagnostic program. An
example of a routine that modifies the I/O channel
baud rate is provided in Appendix B of the Intellec
Series II Model 22X/23X Installation Manual. For
asynchronous 1/0 devices, the modifiable param-
eters include character length, the number of stop
bits, parity enable/disable and odd/even parity selec-
tion as well as baud rate. For synchronous 1/0
devices, the modifiable parameters include character
length, parity enable/disable, odd/even parity selec-
tion, sync in/out and single/double sync character
selection. (Refer to the Intel Peripheral Design Hand-
book for details on programming the 8251 USART.)
Note that when reprogramming the 8251, the mode
instruction is recognized only after the 8251 has been
reset (external rest or 8251 command instruction with
internal reset bit set). Since the command instruction
is used to define the states of the serial 1/0 channel
control lines, this instruction is normally output prior

3-1

Serial I/0 Interfaces

to the transfer of serial 1/0 data. If the internal reset
bit is inadvertently set or if a mode instruction does
not immediately follow each use of the internal reset
bit, the serial I/0 channel will be inoperative until it
is again initialized.

3.2 HARDWARE ALTERATIONS

Hardware alterations associated with the serial 1/0
channels are limited to changes of jumpers on the
IPB/IPC and the I0C circuit boards. This limitation
is imposed not only to maintain functional integrity
of the Intel-supplied circuit boards, but also because
the circuit board designs are dictated by requirements
of the 8251 and 8253 chips.

The 8251 chip has two control lines (RTS and DTR)
that are, in reality, program-controlled general-
purpose output signals. Similarly, DSR is a general-
purpose input signal that can be used to signify a
variety of conditions at the external device. With
appropriate programming, the serial 1/0 channels
are compatible with many types of serial devices and,
since the RS-232 interface is used by most data sets,
the serial device can be remote from the development
system site (i.e., telephone lines can be used). Also,
with the possible addition of some external hard-
ware, the serial I/0 channels can be compatible with
any TWX or TELEX network.

The jumpers on the I0OC circuit board are used to
interconnect or crossover signals to and from the
serial I/0O channels on the IPB/IPC to conform to
the pin assignments of the 1/0 device. to be inter-
faced. All of the functions performed by the I0C
jumpers can be implemented within the 1I/0 device
cabling; the jumpers eliminate the need to rewire the
device cable/connector. To determine the jumper
positions required for any I/0 device, refer to
Appendix A of the Intellec Series Il Models 22X/23X
Installation Manual and match the pin assignments
of the I/0 device with the rear panel connector (J2
and J3) pin assignments. Note that' when interfacing
a serial I/0 device to the SERIAL CH 2 connector
(J3), the transmit and receive data lines may have to
be reversed (remove W7 jumpers A-B and C-D and

Intellec Series 11

install W7 jumpers A-C and B-D). Also, if the serial
170 device does not generate CTS (clear to send),
remove W1 jumpers A-B and C-D and install a single
W1 jumper at A-C to connect the RTS (request to
send) output to the CTS input.

The jumpers located on the IPB/IPC circuit board
are used to establish the source of the receive and
transmit clock signals for both serial I/0 channels.
The jumpers installed at the factory configure both
channels for asynchronous operation by routing the
CHO CLK and CH1 CLK signals from the 8253 pro-
grammable interval timer to the receive clock (RXC)
and transmit clock (TXC) inputs of the USARTS.
For synchronous communications, the jumpers must
be repositioned so that the RXC and TXC signals
originate from the serial 1/0 device through the serial
170 connector. Table 3-1 defines the jumper posi-
tions for both asynchronous (factory installed) and
synchronous communications.

3.3 INTER-SYSTEM
COMMUNICATIONS

It is sometimes advantageous to couple two Intellec
Series I1 development systems together to allow shar-
ing of system resources or to meet the need for inter-
system communications. If the two systems are
remote from one another, the use of data sets is
necessary. However, if the two systems are in close
proximity, a pseudo data set can be implemented in
the form of an interconnecting cable. Jumpers within
each system are configured so that the clock for syn-
chronous communications is derived from the
transmitting system.

Figure 3-1 shows the jumpering and cable wiring
necessary for intersystem communications. The data-
set simulator cable shown is for serial 1/0 channel 0
(SERIAL CH 1 connector) of both systems. In this
case, the external transmit clock is routed via pin 24
of connector J2. (When current loops are employed,
pin 24 is used as a return for the receive data signal
RXD RETURN.) The illustrated arrangement can be
used for serial I/0 channel 1 (SERIAL CH 2 connec-
tor), but in this case the jumper for the external TX
clock is located on the I0OC circuit board.

Table 3-1. Asynchronous/Synchronous Jumper Configurations

Asynchronous Operation

Synchronous Operation

Function
Channel 0 Channel 1 Channel 0 Channel 1
14-15 1-2 13-14 1-3 Transmit Clock
11-12 4-5 10-11 5-6 Receive Clock
7-8* N/A 8-9 A-B** External Transmit Clock

*TTY Receive Data Return

**Install jumper W3 (A-B) on IOC circuit board.

3-2

Intellec Series I1

Serial 1/0 Interfaces

SYSTEM A SYSTEM B
T T Tweec T T ~ 7 owe A weric " T T
1J2 2
JUMPERS | -1 case 1 JUMPERS
RXC 17 17 RXC
1 10 | 10 M
|
8251 1 | 8251
! | 14
TXC | | TXC
14 15 | | 15
|
| |
| 1

Figure 3-1. Data Set Simulator Cable

b— CHO CLK

555-07

CHAPTER 4
IOC 1/0 INTERFACES

The 10C consists of the hardware and software that
are used to establish interfaces between a master pro-
cessor and both the integral CRT terminal and the
integral diskette drive. Modification of the IOC is
unnecessary since most IOC functions are integrated
with Intel-supplied system software. This chapter
provides details of IOC-master processor protocol as
a basis for user-designed master programs.

4.1 I0C/MASTER PROCESSOR
PROTOCOL

All communications between the I0C and the master
processor are accomplished via the data bus buffer
(DBB) of the I0C. The DBB is essentially an inter-
bus communications facility that stores one input
byte, one output byte, and one byte of DBB status.
The DBB status bits indicate the presence of data in
the input and output buffers, the busy status of the
IOC processor relative to command processing, and
the type of byte (command or data) present in the
input/output buffer.

When the I0OC is not busy processing a previously
issued command, it is idle only in the sense that the
10C processor is not concerned with inter-processor
communications. During this time, RAM refresh and
CRT refresh cycles continually occur. Also, if any
keyboard entries are made, the character bytes are
saved by the keyboard processor. The master pro-
cessor must periodically poll the IOC to determine if
keyboard entries have occurred and then command
the IOC to transfer the keyboard characters to the
master via the IOC’s DBB.

The commands used to input keyboard characters are
functionally similar to commands used to update the
CRT display or to accomplish diskette data transfers
in that any command must be completely processed
by the I0C before a new command can be issued.
However, keyboard entries may occur at any time
irrespective of 1/0 activities initiated by the master.
Any program controlling the IOC must allow time
for the acceptance of new keyboard entries during
the execution of any 1/0 operation of long duration.
The frequency of keyboard input commands must be
sufficient to match the keystroke rate of a fast typist;
the keyboard processor provides temporary storage
for up to eight characters. Keyboard entries must be
handled as unscheduled real-time events by the con-
trolling resident or non-resident program.

4.2 DATA BUS BUFFER

The IPB/IPC (or any other master processor) uses
two 1/0 ports for communications with the 10C.
The first of these ports (port CO) is a data port that
provides for single byte transfers to or from the 10C.
The bytes may contain data to or from a device,
status from the IOC or one of its devices, or
diagnostic instructions or results from the IOC. The
second port (port C1) is a control port that provides
for command transfers to the IOC and the return of
DBB status. The commands directly control the 10C
and identify the type of data, status, or diagnostic
information that is to be transferred via the data
port. All transfers via the data port require prior
master processor issuance of a command to the IOC
control port. However, a command does not
necessarily result in a data port transfer.

The preceding arrangement allows for the following
types of transfers to and from the IOC:

¢ Direct transfer of DBB status without IOC
participation.

* Direct control of the IOC by means of
commands that do not result in a data transfer.

e Data transfers to or from a device on command.

e Status transfers from the IOC or a device on
command.

* Diagnostic data transfers from the 10C on
command.

Two important factors are associated with transfers
between a master processor and the IOC. The first
factor is that most commands cause the transfer of
only one byte of data, status, or diagnostic informa-
tion via the data port. If a block of information
(other than diskette data) is to be transferred, a
separate command is required for each byte of the
block. The diskette data transfer commands (read
and write) cause the transfer of a block of data to or
from the master processor. The second factor is that
the master processor maintains total control of
transfers via the data port. The IOC, when respond-
ing to a read command, sets the FO flag while it is
executing the command and then sets the output buf-
fer full (OBF) flag to indicate when the requested
byte can be read by the master processor. Accord-
ingly, the master processor must repeatedly access
the DBB status byte to determine when the the input
data is ready. Similarly, when the IOC is responding
to a write command, it sets the FO flag while it is
executing the command and clears the input buffer
full (IBF) flag when it accepts the byte (the master

4-1

10C 1/0 Interfaces

processor sets the IBF flag when it writes the byte to
the input buffer). The DBB status byte must also be
accessed prior to issuing any command to ensure that
the 10C is ready to accept the command (i.e., IOC
busy flag FO must be tested).

The format of the DBB status byte returned during
an I70 read of port Cl is as follows:

MSB LsB
Lrlefsfafe]a]r]o]
OBF
IBF
Fo
c/D
RESERVED

OBF Output Buffer Full. The OBF flag is
automatically set (to a ‘1’ state) by the
10C processor when the IOC writes a data
byte to the output buffer. The OBF flag is
automatically cleared (to a “‘0°’ state) when
the master processor reads the byte from
the output buffer.

IBF Input Buffer Full. The IBF flag is
automatically set by the master processor
when it writes a data byte to the input buf-
fer. The IBF flag is automatically cleared
when the IOC processor reads the byte
from the input buffer.

FO FO flag. The FO flag is set by the 10C
processor on receipt of a command from
the master processor in order to lockout
additional command entry. On completion
of the command, the IOC processor clears
the FO flag. The master processor monitors
the FO flag to determine when a command
has been accepted (FO flag set) and when
command processing is complete (FO flag
clear).

C/D Command/Data. The C/D flag reflects
the state of the master processor’s low-
order port address bit to differentiate
between_the writing of a data byte to port
CO (C/D = 0) and the writing of a com-
mand byte to port Cl1 (C/D = 1). The
I0C processor examines this flag to deter-
mine if the byte in the input buffer is a

42

Intellec Series I1

command or data. The IOC processor also
controls this flag to inform the master pro-
cessor of the contents of the output buffer
(if C/D = 0, the output buffer contains
the requested data byte; if C/D = 1, the
output buffer contains a status byte).

Command bytes transferred to the I0C during an
I/0 write to port Cl have the following general
format:

MSB LSB

Lrfelsfefofef]o]
L

COMMAND
CODE

RESERVED

REQUEST INTERRUPT

Command Code is a 5-bit binary value that uniquely
identifies each of the commands that may
be issued by the master processor.

Request Interrupt is a control bit that informs the
[OC that an interrupt is expected at the
completion of the operation specified by
the command. Commands that make use
of the request interrupt bit include all com-
mands that pass data to or from the CRT
and the integral diskette.

Data, status and diagnostic bytes transferred via I/0
port CO have no specific format except as required by
the associated command. Data bit mnemonics are as
follows:

MSB LSB

Lrlefsfafafafrfo]
DO
D1
D2
D3
D4
D5
D6
D7

Intellec Series 11

4.3 IOC COMMANDS

Specific commands are used with the diskette drive,
the CRT, and the keyboard. The status byte returned
by the individual I/O devices serves to verify proper
operation of the device. Other commands are not
used by a specific device and are known as system
commands (all diagnostic commands are system
commands). A complete listing of the IOC com-
mands is provided in table 4-1.

4.3.1 SYSTEM COMMANDS

Eleven of the commands that may be issued by a
master processor to the IOC are used to control or
test subsystem functions that are common to all of
the IOC devices. These system commands permit
program-controlled hardware resetting, provide for
the return of device and subsystem status, control
enabling and resetting of interrupts, and enable

10C 1/0 Interfaces

diagnostic testing of IOC facilities. The following
text describes each of the system commands and
defines the format of data bytes that are transferred
as a result of command execution.

NOTE

Command bit 7 has no function within the
system commands (i.e., interrupts cannot be
generated by the IOC on execution of a
system command).

The PACIFY command is a software reset that ter-
minates any pending 1/0 operation and reinitializes
the IOC hardware and software. No data byte
transfer is associated with this command. 10C
initialization requires a minimum of 100 milli-
seconds, and no subsequent commands should be
issued during this period.

The ERESET command is intended for use with an
I/0 device that requires a hardware error reset to
clear an error condition within the device. Since the

Table 4-1. I0OC Command Set

Type Cocr:norgznd Mnemonic Function

00000 PACIFY Resets |OC and its devices.
00001 ERESET Resets device-generated error (not used by standard devices).
00010 SYSTAT Returns subsystem status byte to master.
00011 DSTAT Returns device status byte to master.
00100 SRQDAK Enables input of device interrupt acknowledge mask from master.
00101 SRQACK Clears I0C subsystem interrupt request.

System 00110 SRQ Tests ability of IOC to forward an interrupt request to the master.
00111 DECHO Tests ability of I0C to echo data byte sent by master.
01000 CSMEM Requests I0C to checksum on-board ROM. Returns pass/fail.
01001 TRAM Requests IOC to test on-board RAM. Returns pass/fail.
01010 SINT Enables specified device interrupt from 10C.
01011 —
thru Reserved, causes illegal command error.
01111 —

CAT 10000 CRTC Requests data byte output to the CRT monitor.
10001 CRTS Returns CRT status byte to master.
10010 KEYC Requests data byte input from the keyboard.

Keyboard 10011 KSTC Returns keyboard status byte to master.
10100 — Reserved.
10101 WPBC Enables input of first of five bytes that define current diskette operation.
10110 WPBCC Enables input of each of four bytes that follow WPBC.
10111 WDBC Enables input of diskette write bytes from master.
11000 — Reserved.

Integral 11001 RDBC Enables output of diskette read bytes to master.

Diskette 11010 — Reserved.
11011 RRSTS Returns diskette result byte to master.
11100 RDSTS Returns diskette device status byte to master.
11101 —
thru Reserved, causes illegal command error.
11111 —

4-3

10C 1/0 Interfaces

standard devices of the IOC do not require an error
reset signal, the ERESET command is not imple-
mented by IOC firmware.

The SYSTAT command causes the IOC processor to
load the system status byte into the output data buf-
fer of the DBB. The IOC processor sets the OBF flag
and clears the C/D flag to inform the master pro-
cessor that system status byte can be read from the
data port. The format of the system status byte is as
follows:

nooaoann
L

RESERVED

ILLEGAL INTERRUPT MASK

ILLEGAL DATA TRANSFER

ILLEGAL COMMAND

DEVICE ERROR

Illegal Interrupt Mask is set when the interrupt
reset mask transferred by a SRQDAK com-
mand does not correspond to the interrupt
bit set in the device status byte. The illegal
interrupt mask bit is cleared when the master
processor reads the system status byte from
the output buffer.

Illegal Data Transfer is set when the master pro-
cessor loads a data byte into the DBB input
buffer without a preceding command. The
data byte is not accepted by the IOC. The
illegal data transfer bit is cleared when the
master processor reads the system status
byte from the output port.

Illegal Command is set when the master processor
loads an undefined command code into the
DBB input buffer (see table 4-1). The com-
mand is not executed by the I0C. The
illegal command bit is cleared when the
master processor reads the system status
byte from the output buffer.

Device Error is set when a device fails to respond to a
command. The master processor must issue
a DSTAT command to determine the indi-
vidual device responsible for the error. The
device error bit is cleared by the DSTAT
command.

4-4

Intellec Series 11

The DSTAT command causes the 10C processor to
load the device status byte into the output data buffer
of the DBB. The 10C processor sets the OBF flag
and clears the C/D flag to inform the master pro-
cessor that the device status byte can be read from the
data port. The format of the device status byte is as
follows:

MSB LSB
[7le]sea]sf2]r]o]
l-—CRT
EV
KEYBOARD - DEWICE oy
DISKETTE
}RESERVED
CRT
DEVICE
KEYBOARD DEVICE
DISKETTE

A Device Interrupt bit is when the operation
specified by a command has been com-
pleted and interrupts for the device have
been enabled (request interrupt bit in the
command byte set or device interrupt
previously enabled by a SINT command).
A device interrupt bit is cleared by a
SRQDAK or SRQACK command.

A Device Error bit is set when the specified device
fails to respond to a command issued by
the master processor. A device error bit is
cleared when the master processor reads
the device status byte. More detailed error
information is provided by the CRTS com-
mand (for CRT errors), the KSTC com-
mand (for keyboard errors) or the RDSTS
command for diskette errors).

The SRQDAK command is used to clear a device
interrupt. The subsequent data byte from the master
processor to the input data buffer is as follows:

Doooooan
l—CRT

KEYBOARD | RrGnRUPT
DISKETTE
RESERVED

Intellec Series 11

An Interrupt Reset bit, when set, clears the corre-
sponding interrupt bit in the device status
byte (see DSTAT command). Attempting
to reset an interrupt bit that is not set
causes the illegal interrupt mask bit to be
set in the system status byte. Note that the
SRQDAK command also clears the hard-
ware interrupt to the IPB/IPC.

The SRQACK command causes the IOC to reset all
of the interrupt bits in the device status byte and the
hardware interrupt to the IPB/IPC. A data byte
transfer is not associated with the SRQACK
command.

The SRQ command causes the IOC to generate a
hardware interrupt to the IPB/IPC. The interrupt
bits of the device status byte are not affected, and a
data byte transfer is not initiated. This diagnostic
command allows any master processor to test the
IOC interrupt request line when all other local inter-
rupts of the IPB/IPC are reset. The I0C interrupt
request causes a level 7 interrupt request on the
Multibus interface. The interrupt request is cleared
by a SRQACK command.

The DECHO command causes the IOC processor to
accept and return (in complemented form) the next
data byte input from the master processor. Although
the data byte is sent and received via 170 port CO, the
path within the IOC includes a software-controlled
transfer of the data byte from the DBB input data
buffer to the DBB output data buffer. The entire
action constitutes a fairly comprehensive test of the
master processor-IOC interface. The IOC response
to a DECHO command requires approximately two
milliseconds.

The CSMEM command causes the IOC processor to
checksum the contents of the IOC ROM and thereby
perform a confidence test on the IOC firmware. If
the checksum test passes, the IOC processor sets the
C/D flag to zero and returns a data byte of all
zeroes; if the checksum test fails, the IOC processor
sets the C/D flag to one and returns a data byte of
all ones. Command execution requires approximately
100 milliseconds.

The TRAM command causes the IOC processor to
perform read-after-write testing of IOC RAM. If a
RAM location is found to be faulty, the test is ter-
minated, and the IOC processor sets the C/D flag
to one and returns a data byte of all ones. If the test
passes, the IOC processor sets the C/ D flag to zero
and returns a data byte of all zeros. Faulty locations
are not identified. Command execution requires
approximately 100 milliseconds.

10C 1/0 Interfaces

The SINT command causes the 10C processor to
accept an interrupt enable byte at the input data buf-
fer of the DBB. The enabling of any interrupt bit also
enables the hardware interrupt line (IOC interrupt) to
the IPB/IPC. The interrupt enable bits perform a
function identical to the request interrupt control bit
(bit 7) of a command byte. Note that once an inter-
rupt is enabled, it remains enabled until a subsequent
SINT command is issued to clear the interrupt enable
bit. The format of the interrupt enable byte is as
follows:

MsB LsB
Lrlefsfefalzfe]o]
CRT
L KEYBOARD | [NTERRUPT
DISKETTE
RESERVED

An Interrupt Enable bit, when set, enables the inter-
rupt from the corresponding 10C device.
The format of the interrupt enable byte is
identical to that of the interrupt reset byte
of the SRQDAK command. Note that
when any of the interrupts are enabled, the
IOC interrupt to the IPB/IPC is also
enabled.

4.3.2 CRT COMMANDS

All timing and formatting of the integral CRT
display is established by the IOC firmware and the
8275 programmable CRT controller. The pre-
sentation of data is accomplished by transferring
data from IOC RAM tables to the CRT character
generating circuits. Commands from the master pro-
cessor merely update the data tables. A single type of
command is used to write keyboard inputs and to
program responses on the CRT. A second CRT-
associated command returns CRT status to the
master processor.

The CRTC command causes the I0OC to use the next
data byte appearing at the DBB input data buffer as
an input to the CRT display tables located in 10C
RAM. The occurrence of the command is totally
asynchronous with respect to CRT display raster tim-
ing. Furthermore, positioning of characters on the
CRT screen is determined solely by a pointer that is
maintained by the IOC firmware. Operator keyboard

4-5

IOC 170 Interfaces

entries can alter the pointer for editing purposes, but
the interpretation of the special characters used for
this purpose (or any other purpose) is a function of
the IOC firmware. The character codes employed are
those of the ASCII set.

When operating under ISIS or Monitor, the
IPB/IPC polls the DBB to determine when the IOC
has accepted the CRT character byte, and interrupts
are not employed (the request interrupt bit of the
command byte is notset). When the request interrupt
bit (bit 7) of the CRTC command byte is set (or if
CRT interrupts have been previously enabled by a
SINT command), the IOC processor will set the CRT
interrupt bit in the device status byte when it writes
the CRT character byte into IOC RAM and, unless
10C interrupts have been masked out by the master
processor, the IOC will interrupt the IPB/IPC. In an
interrupt-driven environment, the master processor
should clear the CRT interrupt (SRQDAK or
SRQACK command) before the next CRT character
byte is written.

NOTE

Interrupt-driven programs that make use of
the 1IOC interrupt must access the device
status byte (DSTAT command) to determine
the source of the interrupt.

The CRTS command causes the IOC processor to
load the CRT status byte into the output data buffer
of the DBB and to clear the CRT device error bit in
the device status byte. The CRTS command is nor-
mally issued only in response to a CRT error as
indicated by the setting of the device error bit in the
system status byte and the setting of the CRT error
bit in the device status byte. The format of the CRT
status byte is as follows:

MSB Ls8
Lrlelsfafofe]r]o]
CRT PRESENT
RESERVED
ILLEGAL DATA
ILLEGAL STATUS
RESERVED

CRT Present is set during initialization and indi-
cates that the I0C is operational (i.e., able
to respond to commands from a master
processor).

4-6

Intellec Series 11

Illegal Data is set when the master processor loads
a data byte into the DBB input buffer
without a preceding CRTC command. The
illegal data bit is cleared when the master
processor reads the CRT status byte.

Illegal Status is set when the request interrupt bit
(bit 7) of the CRTS command byte is
erroneously set by the master processor. (A
master processor cannot legally request an
interrupt at the completion of a status
accessing operation.) The illegal status bit
is cleared when the master processor reads
the CRT status byte.

4.3.3 KEYBOARD COMMANDS

Two commands are used with the keyboard; one
command is used to access keyboard entries, and the
other command is used to access keyboard status.

The KEYC command causes the IOC processor to
access an ASCII character byte from the keyboard
processor and to place this byte in the output data
buffer. The KEYC command is the only I0C data
transfer command that does not make use of the
request interrupt bit in the command byte (to enable
keyboard interrupts, the SINT command must be
used). The format for the keyboard character bytes is
established by the ASCII standard.

The KSTC command causes the I0C to access the
keyboard status byte and to place this byte in the out-
put data buffer of the DBB. When operating in the
polled mode (interrupts disabled), the master pro-
cessor first uses the KSTC command to determine
when a character has been entered at the keyboard
(by testing the data ready bit) and then uses the
KEYC command to access the character byte. The
KSTC command is also issued in response to a
keyboard error (indicated by the setting of the device
error bit in the system status byte and the setting of
the keyboard device error bit in the device status
byte). The format of the keyboard status byte is as
follows:

MSB LSB
Lrlelsfefsfz]r]o]
DATA READY
KEYBOARD PRESENT
RESERVED
ILLEGAL STATUS REQUEST

DEVICE TIMEOUT

Intellec Series 11

Data Ready is set when a character byte is available
from the keyboard processor as a result of
keyboard entry.

Keyboard Present is set when the keyboard is
connected to the development system. The
IPB/IPC examines this bit during initial-
ization to assign the system console device
(if the keyboard present bit is set, the
keyboard and integral CRT are assigned as
the system console; if the keyboard present
bit is clear, the device attached to one of
the serial I/0 channels is assigned as the
system console).

Illegal Status Request is set when the request inter-
rupt bit in the KSTC command byte is set
(a master processor cannot legally request
an interrupt at the completion of a status-
access operation) and is cleared when the
master processor reads the keyboard status
byte.

Device Timeout is set when a KEYC command is
issued when a character byte is not
available from the keyboard processor
(data ready bit clear). The device timeout
bit is cleared when the master processor
reads the keyboard status byte..

4.3.4 INTEGRAL DISKETTE
COMMANDS

The integral diskette of the Intellec Series II develop-
ment system is a random-access, mass-storage media
on which information is formatted to simplify access
and to utilize available storage space. Accordingly, a
significant amount of control information must be
passed to the diskette and its control circuits. Some
control information such as sector size may be fixed
and can be established during system initialization.
Other information, such as the size of a file to be
recorded and the availability of storage space, can
only be determined immediately prior to recording
the file and requires active participation on the part
of the master program.

The need to provide for master program control of
diskette recording plus the fact that data transfers
occur in two directions (diskette read or write)
substantially increases the number of commands that
must be issued to the IOC. Furthermore, two types of
status bytes are returned by the IOC processor; one
to indicate the success of I0C/master interactions
and the other to indicate the results of 10C/diskette
drive interactions. The six commands required to
transfer diskette control, data, and status bytes are
listed in table 4-1.

I0C 170 Interfaces

Most of the control information supplied to the IOC
is provided in the form of five bytes that are referred
to as the 1/0 parameter block (IOPB). These bytes
specify the diskette operation to be performed and
provide formatting information including the
number of records (sectors) to be transferred and the
track and sector addresses.

The diskette commands are associated with two inter-
faces; the interface between the IOC and a master
processor and the interface between the IOC pro-
cessor and the diskette. The diskette read and write
commands (RDBC and WDBC) transfer data
between the master processor and I0C RAM. Con-
versely, the parameter block write commands
(WPBC and WPBCC) load the 1/0 parameter block
into IOC RAM; the contents of the parameter block
are used to define and initiate data transfers between
IOC RAM and the diskette. The read drive status
command (RDSTS), in addition to defining the cur-
rent status of the drive, indicates incorrect command
entry or execution. The read result status command
(RRSTS) is used to verify the result of a diskette
operation.

Diskette data transfers must be viewed as two
separate operations; the transfer of the data block
between a master processor and IOC RAM and the
transfer of the data block between IOC RAM and the
diskette. Data block transfers between IOC RAM
and the diskette are automatically initiated when the
last byte of the 1/0O parameter block is written into
I0C RAM. Accordingly, in order to write data on
the diskette, the data block must first be written into
IOC RAM before the parameter block is written.
Conversely, in order to read a data block from the
diskette, the parameter block must precede the
reading of the data block from IOC RAM. Typical
command sequences for diskette read and write
operations are outlined in table 4-2.

The WPBC command causes the IOC processor to
accept the next data byte at the DBB input data buf-
fer as the first (channel word) byte of a parameter
block. The I0C processor writes this data byte into a
preassigned location in IOC RAM. The request inter-
rupt bit of the command byte, if set, causes a diskette
device interrupt to be generated when the byte is writ-
ten into RAM. The format and function of the first
parameter block byte are discussed following the
description of the WPBCC command.

The WPBCC command causes the IOC processor to
accept the next data byte at the DBB input data buf-
fer as one of the subsequent 1/0O parameter block
bytes. The IOC processor writes the byte into 10C
RAM and, if the request interrupt bit is set in the

4-7

10C 170 Interfaces

Intellec Series 11

Table 4-2. Typical Diskette Read and Write Command Sequences

Read Sequence

Command

Action

RDSTS

Determine if drive is ready
WPBC Input IOPB Channel Word byte

WPBCC
WPBCC
WPBCC
WPBCC
RDSTS
RRSTS

WPBCC Input IOPB Diskette instruction byte

WPBCC Input IOPB Sector Count byte

WPBCC Input IOPB Track Address byte

WPBCC Input IOPB Sector Address byte

RDSTS Determine when operation is complete (polled mode)

RRSTS Determine if operation was successful

RDBC Output data block from IOC RAM
Write Sequence

Command Action

RDSTS Determine if drive is ready

WDBC Input data block to I0C RAM

WPBC Input IOPB Channel Word byte

Input IOPB Diskette Instruction byte

Input IOPB Sector Count byte

Input IOPB Track Address byte

Input IOPB Sector Address byte

Determine when operation is complete (polied mode)
Determine if operation was successful

NOTE:

1. First byte of data block input to IOC from master processor contains sector count that is multiplied
by 128 by the IOC to determine the number of bytes to be transferred.

command byte, generates a diskette device interrupt
when the byte is written. The data byte being written
into IOC RAM is either the second, third, fourth or
fifth byte of the 1/0 parameter block. The byte writ-
ten and the IOC RAM location selected are deter-
mined by the occurrence of the WPBC command and
any subsequent WPBCC command. In other words,
the WPBC command serves as a reference for the
1/0 parameter block and the following four WPBCC
commands load the four remaining parameter bytes
in consecutive RAM locations. Accordingly, the
parameter block bytes must be presented in sequence,
and any detected error requires reentry of the entire
I/0 parameter block. The sequence in which 1/0
parameter block bytes are input is indicated in table
4-2.

NOTE

Further details on programming diskette
operations are provided in the 8271 Pro-
grammable Floppy Disk Controller data
sheet.

48

The format of the I/O parameter block Channel
Word byte (byte 1) associated with the WPBC com-
mand is as follows:

MsB LsB
Lrlefs]efofe]e]e]
Ly
% RESERVED
y
SECTOR SEQUENCE
RESERVED

The sector sequence bit (bit 6) is only examined when
a format track operation is specified in the diskette
instruction byte (byte 2) of the I/O parameter block.
When the sector sequence bit.is set, the ‘“‘random”’
sector format is selected, and the diskette controller

Intellec Series 11

accesses a format table in IOC RAM to determine the
order in which logical sector addresses are assigned
when formatting the track. The format table consists
of 26 data byte pairs. The first byte of each pair is a
sector address ranging from 1 to 26 (01H-1AH); the
second byte can contain any value and is required
only to maintain compatibility with the Intel two-
board diskette controllers. The format table must be
written into I0OC RAM (using the WDBC command)
prior to initiating the format track operation. The
format table itself begins at the same predefined loca-
tion in IOC RAM that is used to temporarily store
diskette data. The first entry in the table is the sector
count byte (see WDBC command description) and
contains a value of 01H (the IOC processor multi-
plies the sector count value by 128 to determine the
number of consecutive RAM locations to be written
by the WDBC command). During the format track
operation, the diskette controller writes the first sec-
tor address entry from the table into the ID field of
physical sector 01 (the first sector following the index
mark), the second sector address table entry into
physical sector 02, etc., until all 26 sectors have been
written. The track address written into the ID field is
taken directly from the track address byte (byte 4) of
the 1/0 parameter block. The sector data marks,
CRC characters and gaps are supplied by the diskette
controller, and the data field of each sector is filled
with 128 bytes of OESH.

When the sector sequence bit is clear, the ‘‘sequen-
tial”> sector format is selected. The format track
operation follows the random sector format descrip-
tion of the previous paragraph with the exception
that the sector addresses are assigned in sequential
order (i.e., physical sector 01 is assigned logical sec-
tor address 01, physical sector 02 is assigned logical
sector 02, etc.) by the diskette controller, and a for-
mat table is not required.

The format of the I/O parameter block Diskette
Instruction byte (byte 2) is as follows:

poonooan
L

OPERATION CODE

RESERVED
(MUST BE ZERO)

(MUST BE ZERO)

] DRIVE ADDRESS

RESERVED
(MUST BE ZERO)

10C 1/0 Interfaces

Drive Address. Bits 4 and 5 specify the drive address.
The integral drive is assigned unit 0, and
bits 4 and 5 must both be zero.

Operation Code. Bits 0, 1 and 2 specify the diskette
operation to be performed. Operation code
functions are outlined in table 4-3.

The format of the /O parameter block Sector Count
byte (byte 3) is as follows:

MSB LSB
Lrlefsfefsfe]r]o]
SECTOR
COUNT
RESERVED
(MUST BE ZERO)

The Sector Count byte specifies the number of sec-
tors to be accessed during a diskette read,
write or verify operation. The combined
value of the sector count and the (starting)
sector address (byte 5 of the I/0 parameter
block) cannot be greater than 26 (1AH).
Note that if the sector count value is OH,
one sector is transferred.

The format of the I/O parameter block Track
Address byte (byte 4) is as follows:

MSB LSB

Lrlefsfafe]o]r]o]

a

TRACK
ADDRESS

S

RESERVED
(MUST BE ZERO)

The Track Address byte specifies the track to be
accessed during a subsequent diskette seek,
read or write operation. Since a diskette
has 77 tracks, legal values range from 00H
to 4CH (tracks O through 76).

IOC I/0 Interfaces

The format of the 1/O parameter block Sector
Address byte (byte 5) is as follows:

MsB LsB
[’|°|5|‘|3|2|‘|‘U
SECTOR ADDRESS
e
RESERVED
(MUST BE ZERO)

The Sector Address byte specifies the sector or the
first of a series of sectors to be accessed
during a subsequent diskette read, write or
verify operation. Legal values range from
O01H to 1AH (1-26).

The WDBC command causes the 10C processor to
read-in a block of data bytes through the DBB input
data buffer and to write the data bytes into sequential
locations in I0C RAM. The WDBC command is
used prior to a write data or format track (random
format only) diskette operation to load the data to be
written on the diskette into IOC RAM. The first byte
transferred by the WDBC command is a count byte
that specifies the number of 128-byte blocks to
follow (the count byte is not written into RAM; the
I0C multiplies the value by 128 to determine the
extent of the transfer). Note that while the format
table associated with the format track operation only
requires 52 byte entries, 128 bytes are transferred by
the WDBC command. The request interrupt bit of
the WDBC command byte, when set, causes a
diskette device interrupt to be generated when the
specified number of data bytes have been written into
IOC RAM.

The RDBC command causes the 10C processor to
place sequential data bytes from I0C RAM into the
DBB output data buffer and is issued following a
read data diskette operation to allow a master pro-
cessor to access the data read from the diskette. The
number of bytes transferred by a RDBC command is
dependent on the number of sectors read during the
previous read data operation (specified by byte 3 of
the associated 1/0 parameter block). When the
request interrupt bit is set in the RDBC command
byte, a diskette device interrupt is generated when the
master processor reads-in the last data byte from the
DBB output data buffer.

4-10

Intellec Series I1

The RRSTS command is issued when a diskette
device error is indicated in the device status byte and
causes the IOC processor to place the diskette con-
troller’s result byte in the DBB output data buffer.
The diskette device error bit is cleared when the
master processor reads the result byte. The individual
bits of the result byte are defined as follows:

MSB LSB
L]
DELETED RECORD
CRC ERROR
SEEK ERROR
ADDRESS ERROR
DATA OVERRUN/UNDERRUN ERROR

WRITE PROTECT

NOT USED
(ZERO RETURNED)

NOTREADY

Deleted Record is set when an attempt is made to
read or verify a deleted sector (a sector that
has previously been rewritten with a deleted
data mark at the beginning of its data
field). If the deleted record bit is set, the
data is not transferred or verified.

CRC Error is set when the CRC character computed
for a read data or verify CRC operation
does not match the CRC character
generated when the sector was written.
Since this error is not detected until the sec-
tor is read, the data in IOC RAM must be
considered invalid.

Seek Error is set during a read, write or verify opera-
tion when the addressed sector cannot be
located within one complete revolution or
when the track address specified does not
match the track address read. If the seek
error bit is set, no data is transferred, and a
recalibrate operation should be performed
to position the drive’s read/write head at a
known location.

Address Error is set when:

* the track address specified is greater
than 76 (4CH).

® asector address of 00H is specified.

® asector address greater than 26 (1AH)
is specified.

® the sector address and the number of
sectors specified is greater than 26
(1AH).

Intellec Series 11

10C 170 Interfaces

Table 4-3. Diskette Operation Codes

Function

Operation Code o "

Bit2 Bitt Bit0 peration

0 0 0 No Operation

0 0 1 Seek

0 1 0 Format Track

0 1 1 Recalibrate

1 0 0 Read Data

1 0 1 Verify CRC

1 1 0 Write Data

1 1 1 Write Deleted

Data

No operation. The diskette controller immediately sets the operation
complete status bit in the diskette device status byte when the last 1/0O
parameter block is written.

Initiates a seek operation to the track address specified in byte 4 of the
I/O parameter block and sets the operation complete status bit in the
diskette device status byte.

Initiates a seek operation to the track address specified in byte 4 of the
I1/O parameter block. When the complete track has been formatted, the
diskette controller sets the operation complete status bit.

Steps the diskette drive’s read/write head out until a track 0 indication is
received from the drive. When track 0 is located, the diskette controller
sets the operation complete status bit.

Initiates a seek operation to the track address specified in byte 4 of the
/O parameter block and begins reading the sector iD fields until the sec-
tor addressed in byte 5 of the |/O parameter block is located. When the
addressed sector is located, transfer the data contents of the number of
sectors specified by byte 3 of the |/O parameter block to IOC RAM. When
the transfer is complete, the diskette controller sets the operation com-
plete status bit.

Identical to the read data operation except that no data is transferred to
I0C RAM. If an error is detected (i.e., if the data read does not match the
data previously written), the diskette controller sets the CRC error bit in
the result status byte. The operation complete status bit is set when the
operation is complete (or if an error is detected).

Initiates a seek operation to the track address specified in byte 4 of the
I/0 parameter block and begins reading the sector ID fields until the sec-
tor addressed in byte 5 of the |/O parameter block is located. When the
addressed sector is located, reads in the data from IOC RAM and serially
writes the data into the sector’s data field. When the number of sectors
specified by byte 3 of the |/O parameter block have been written, the
diskette controller sets the operation complete status bit.

Identical to the write data operation except that a deleted data mark is
written in place of the data address mark at the beginning of the data
field.

Data Overrun/Underrun Error is set when the disk-
ette controller is unable to write a data byte
to RAM before it is overwritten or when
the requested data byte is not received from
RAM in time to be written on the diskette.

Write Protect is set when an attempt is made to for-
mat or write to a write-protected diskette.
When this bit is set, the operation is
prevented, and no data is written on the
diskette.

Not Ready is set when the diskette drive is not ready
to perform a seek, read or write operation
(i.e., the door is open or a diskette is not
installed).

The RDSTS command causes the 10C processor to
place the diskette status byte in the DBB output data
buffer. The RDSTS command is used prior to a
diskette operation to determine if the drive is ready

IOC 1/0 Interfaces

and is used in the polled mode (interrupts disabled) to
determine when the operation has been completed.
The format of the diskette status byte is as follows:

MsB LSB

Lrlefs]efs]a]r]o]

RESERVED

READY 0

OPERATION COMPLETE

PRESENT

RESERVED

ILLEGAL DATA
ILLEGAL STATUS

RESERVED

Ready O is set when the diskette is ready to perform
a seek, read or write operation (i.e., the
diskette is in place and up to speed).

4-12

Intellec Series 11

Operation Complete is set when the specified
operation has been completed or when the
operation cannot be completed as a result
of an error condition. When this bit is set,
the device status byte and/or the con-
troller’s result byte should be examined.

Present is set when the integral diskette drive is
physically connected to the IOC circuit
board.

Illegal Data is set when the master processor loads
a data byte into the DBB input data buffer
without a preceding integral diskette
command.

Illegal Status is set when the request interrupt bit
(bit 7) of an RDSTS or RRSTS command is
set by a master processor (a master pro-
cessor cannot request an interrupt at the
completion of a status-access operation).

PIO SUBSYSTEM INTERFACES

CHAPTER 5

The Parallel Input Output (PIO) subsystem consists
of the hardware and software that are used to
establish interfaces between a master processor and
the standard parallel-byte peripheral devices of the
Intellec Series 1I development systems. The standard
peripherals consist of a line printer, a paper tape
punch, a paper tape reader, and an Intel PROM
programmer.

The interfaces for the printer and paper tape
reader/punch are somewhat specialized, but may be
modified to meet the requirements of similar devices.
The bidirectional PROM programmer interface is
more adaptable and can be modified to meet the
parallel communication needs of a wide variety of
intellegent devices, subsystems, and systems.

The PIO subsystem is, in several respects, similar to
the IOC. The PIO subsystem includes a data bus buf-
fer (DBB) that is functionally identical to the IOC’s
DBB; the PIO system commands are identical in
function to the IOC system commands, and the P1O
device commands are comparable to the I0C com-
mands that control the CRT and keyboard. The
device interfaces of the two subsystems differ,
however, due to the specific requirements of the
devices. All PIO functions are implemented within
an Intel 8041 PI1O processor. The 8041 chip contains
the DBB as well as all data and program memory
required for peripheral device control. Conversely,
the PI1O subsystem does not use intelligent hardware
in the form of special- purpose programmable chips;
all device signal timing and control are established by
the PIO. The PIO is more flexible in terms of the
special I/0 device interfaces that may be
implemented.

All communications between the PIO and a master
processor are accomplished via the DBB. The DBB is
essentially an interbus communications facility that
stores one input byte or output byte and one byte of
DBB status. The DBB status bits indicate the
presence of data in the input and output buffers, the
busy status of the PIO processor relative to com-
mand execution, and the type of byte (command/
status or data) in the input or output buffer.

5.1 PIO/MASTER PROCESSOR
PROTOCOL

The IPB/IPC (or any other master processor) uses
two 1/0 ports for communications with the P1O pro-
cessor’s data bus buffer. One port (port F8) is a
bidirectional data port that provides single byte
transfers to or from the PIO processor’s data bus
buffer. The byte transferred may contain data to or
from a device, status from the PIO processor or one
of its devices, or diagnostic information from the
PIO processor. The other port (port F9) is a control
port that is used to transfer commands to the PIO
processor or to return DBB status to the master pro-
cessor. All transfers via the data port must be pre-
ceded by the issuance of a command to the PIO’s
control port, although a command does not
necessarily result in a data port transfer.

Two facts should be noted regarding transfers
between a master processor and the PIO processor.
The first fact is that most commands transfer only
one byte of data, status or diagnostic information via
the data port, and in order to transfer a block of
information, a separate command must be issued for
each byte of the block (the PROM programmer read
and write commands transfer three bytes). The
second fact is that the master processor maintains
complete control of all transfers via the data bus buf-
fers; the P1O processor can only write to the DBB
output data buffer when requested by a master
processor.

The PIO processor, when responding to a command
specifying a read operation, sets the FO flag while it is
executing the command and then sets the output buf-
fer full (OBF) flag to indicate when the requested
byte can be read by the master processor. Unless
interrupts are employed, the master processor must
repeatedly access (poll) the DBB status byte to deter-
mine when the requested input data is available.
Similarly, when the PI1O processor is responding to a
command specifying a write operation, it sets the FO
flag while it is executing the command and clears the
input buffer full (IBF) flag when it accepts the byte
(the master processor sets the IBF flag when it writes
the byte to the input buffer). The DBB status byte
must also be examined prior to issuing any command
to ensure that the PIO processor is ready to accept
the command (i.e., PIO busy flag FO must be tested).

5-1

P1O Subsystem Interfaces

The format of the DBB status byte returned during
an 1/0 read of port F9 is as follows.

MsB LSB
Llefslefa]zfr]o]
0BF
1BF
Fo
c/D
RESERVED

OBF Output Buffer Full. The OBF flag is
automatically set (to a ‘“1”’ state) by the PIO
processor when it writes a data byte to the out-
put buffer. The OBF flag is automatically
cleared (to a “‘0’’ state) when the master pro-
cessor reads the byte from the output buffer.

IBF Input Buffer Full. The IBF flag is
automatically set by the master processor
when it writes a data byte to the input buffer.
The IBF flag is automatically cleared when the
PIO processor reads the byte from the input
buffer.

FO FO flag. The FO flag is set by the PIO
processor on receipt of a command from the
master processor in order to lock out addi-
tional command entry. On completion of the
command, the PIO processor clears the FO
flag. The master processor monitors the FO
flag to determine when a command has been
accepted (FO flag set) and when command
processing is complete (FO flag clear).

C/D Command/Data. The C/D flag reflects the
state of the master processor’s low-order port
address bit to differentiate between_ the
writing of a data byte to port F8 (C/D=0)
and the writing of a command byte to port F9
(C/D=1). The PIO processor examines this
flag to determine if the byte in the input buf-
fer is a command or data. The PIO processor
also controls this flag to inform the master
processor of the contents of the output buffer
(if C/D=0, the output buffer contains the
requested data byte; if C/D=1, the output
buffer contains a status byte).

5-2

Intellec Series 11

Command bytes transferred to the PIO processor
during an 1/0 write to port F9 have the following
general format:

MSB LSB
Llefsfefe]e] I'l’_l
| COMMAND
CODE
CONTROL
CODE

REQUEST INTERRUPT

Command Code is a 5-bit binary value that uniquely
identifies each of the commands that may
be issued by the master processor.

Control Code is a two-bit code that provides addi-
tional control of PIO paper tape reader
operations.

Request Interrupt is a control bit that informs the
PIO that an interrupt is expected at the
completion of the operation specified by
the command. Commands that use the
request interrupt bit are the paper tape
reader, paper tape punch and line printer
control commands.

5.2 PIO COMMANDS

Specific commands are used to transfer data between
the master processor and the peripheral devices
associated with the PIO subsystem and to return
status bytes from the individual devices. Other com-
mands are not used by any specific device and are
defined as system commands. A complete list of the
PIO commands is provided in table 5-1.

5.2.1 SYSTEM COMMANDS

There are eleven commands available to a master
processor that are used to control or test system func-
tions common to the PIO subsystem. These system
commands are identical in function to the eleven
system commands of the IOC and permit a program-
controlled reset function, return device and sub-
system status, control the enabling and disabling of
interrupts and permit diagnostic testing of the PIO

Intellec Series 11

PIO Subsystem Interfaces

Table 5-1. PIO Command Set

Command . .
Mnemonic Function
Type Code
00000 PACIFY Resets PIO and its devices.
00001 ERESET Resets device-generated error (not used by standard devices).
00010 SYSTAT Returns subsystem status byte to master processor.
00011 DSTAT Returns device status byte to master processor.
00100 SRQDAK Inputs device interrupt acknowledge mask from master processor.
System 00101 SRQACK Clears PIO subsystem interrupt request.
00110 SRQ Requests PIO to forward an interrupt request to the master processor.
00111 DECHO Requests PIO to echo data byte sent by master processor.
01000 CSMEM Requests PIO to checksum internal ROM. Returns pass/fail.
01001 TRAM Requests PIO to test internal RAM. Returns pass/fail.
01010 SINT Enables specified device interrupt from P1O.
01011 —
thru Reserved, causes illegal command error.
01111 —
Reader 10000 RDRC Moves tape one frame forward/reverse or returns paper tape reader data byte.
10001 RSTC Returns paper tape reader status byte.
Punch 10010 PUNC Transfers data byte to paper tape punch.
10011 PSTC Returns paper tape punch status byte.
10100 LPTC Transfers data byte to printer.
S 10101 LSTC Returns printer status byte.
Printer 10110 WPPC Transfers two address/control bytes and one write data byte to PROM
programmer.
10111 RPPC Transfers two address/control bytes to PROM programmer and one read data
byte from PROM programmer.
11000 RPSTC Transfers two PROM programmer status bytes to master.
PROM 11001 RDPDC Transtfers read data byte from PROM programmer.
Programmer 11010 —
thru Reserved, causes illegal command error.
11111 - :

facilities. The following text describes each of the
system commands and defines the format of the data
bytes transferred as a result of command execution.

NOTE

Bit 7 of the command byte is not used in
system commands (i.e., an interrupt cannot
be generated by the PIO on completion of a
system command).

The PACIFY command is a software reset that ter-
minates any pending 1/0 opertion and reinitializes
the PIO hardware and software. There is no data
byte transfer associated with the PACIFY command,
and a minimum of 100 milliseconds is required to
complete the initialization sequence.

The ERESET command is intended for use with a
peripheral device that requires a hardware error reset
to clear an error condition within the device. Since
the standard devices of the PIO do not require an
error reset signal, the ERESET command is not
implemented by PIO firmware.

The SYSTAT command causes the PIO processor to
load the system status byte into the output data buf-
fer of the DBB. The PI1O processor sets that OBF flag

and clears the C/D flag to inform the master pro-
cessor that the system status byte can be'read from
the data port. The format of the system status byte is
as follows:

MSB LSB

Lrls]sfefofe]r]o]
L

RESERVED

ILLEGAL INTERRUPT MASK

ILLEGAL DATA TRANSFER

ILLEGAL COMMAND

DEVICE ERROR

Illegal Interrupt Mask is set when the interrupt reset
mask transferred by a SRQDAK command
does not correspond to the interrupt bit set
in the device status byte. The illegal inter-
rupt mask bit is cleared when the master
processor reads the system status byte from
the DBB output buffer.

5-3

PIO Subsystem Interfaces

Illegal Data Transfer is set when a master processor
loads a data byte into the DBB input buffer
without a preceding command. The byte is
not accepted by the PIO. The illegal data
transfer bit is cleared when the master pro-
cessor reads the system status byte from the
DBB output buffer.

Illegal Command is set when a master processor
loads an undefined command code into the
DBB input buffer (see table 5-1). The com-
mand byte loaded is not executed by the
PIO. The illegal command bit is cleared
when the master processor reads the system
status byte.

Device Error is set when a device fails to respond to a
command. The master processor must issue
a DSTAT command to determine the indi-
vidual device responsible for the error and
to clear the device error bit from the system
status byte.

The DSTAT command causes the PIO processor to
load the device status byte into the DBB output data
buffer. The PIO processor sets the OBF flag and
clears the C/D flag to inform the master processor
that the device status byte can be read from the data
port. The format of the device status byte is as
follows:

MsB LsB
[7le]sfe]afa]r]o]
PAPER TAPE PUNCH
PRINTER INTERRUPT
PAPER TAPE READER
RESERVED
PAPER TAPE PUNCH
PRINTER DEVICE
PAPERTAPE READER [ERROR
PROM PROGRAMMER

A Device Interrupt bit is set when the operation
specified by a command that has its request
interrupt bit set has been completed. The
device interrupt bit is cleared by a subse-
quent SRQDAK or SRQACK command.

A Device Error bit is set when the specified device is
unable to comply with a command issued
by the master processor. A device error bit
is cleared when the master processor reads
the device status byte. More detailed error
information is provided by the individual
device status bytes (see RSTC, PSTC and
LSTC command descriptions).

5-4

Intellec Series 11

The SRQDAK command is used to clear a device
interrupt. The subsequent data byte from the master
processor to the DBB input data buffer is as follows:

MSB LSB

Lrlefsfefs]a]r]o]

PAPER TAPE
PUNCH
LINE INTERRUPT

—__ PRINTER RESET

PAPER TAPE
READER

RESERVED

An Interrupt Reset bit, when set, clears the cor-
responding device interrupt bit in the
device status byte (see DSTAT command
description). Attempting to reset an inter-
rupt bit that is not set causes the illegal
interrupt mask bit to be set in the system
status byte. Note that the SRQDAK com-
mand also clears he PIO hardware inter-
rupt signal to the IPB/IPC.

The SRQACK command causes the PIO processor to
reset all of the device interrupt bits in the device
status byte and the PIO hardware interrupt signal to
the IPB/IPC. A data byte transfer is not associated
with the SRQACK command.

The SRQ command causes the PIO to generate a
hardware interrupt to the IPB/IPC. The device inter-
rupt bits of the device status byte are not affected and
a data byte transfer is not initiated. This diagnostic
command allows a master processor to test the PIO
hardware interrupt signal when all other local inter-
rupts of the IPB/IPC are reset. The PIO interrupt
signal causes a level 7 interrupt request on the
Multibus interface. The interrupt signal is cleared by
a subsequent SRQACK command.

The DECHO command causes the PIO processor to
accept and return (in complemented form) the next
data byte input from the master processor. Although
the data byte is sent and received via I/0 port F8, the
internal path within the P1O processor includes a
software-controlled transfer of the data byte from
the DBB input data buffer to the DBB output data
buffer. The DECHO command represents a fairly
comprehensive test of the master processor—PI1O
interface. The PIO response to a DECHO command
requires approximately two milliseconds.

Intellec Series 11

The CSMEM command causes the PIO processor to
checksum the contents of the PIO internal ROM and
thereby perform a confidence test of the PIO firm-
ware. [f the checksum test passes, the P10 processor
clears the C/D flag to zero and returns a data byte
of all zeroes; if the checksum test fails, the P10 pro-
cessor sets the C/D flag to one and returns a data
byte of all ones. Command execution requires
approximately 100 milliseconds.

The TRAM command causes the PIO processor to
perform read-after-write testing of PIO internal
RAM. If a RAM location cannot be successfully
written and read-back, the test is immediately ter-
minated, and the PIO processor sets the C/D flag
to one and returns a data byte of all ones. If the test
passes, the PIO processor clears the C/D flag to
zero and returns a data byte of all zeroes. Command
execution requires approximately 100 milliseconds.

The SINT command causes the PIO processor to
accept an interrupt enable byte at the DBB input data
buffer. A bit set within the byte enables the cor-
responding device interrupt and also enablés the P1O
hardware interrupt signal to the IPB/IPC. The inter-
rupt enable bits perform a function identical to the
interrupt request bit of a command byte. Note that
once a device interrupt is enabled, it remains enabled
until a subsequent SINT command is issued to reset
the interrupt enable bit. The format of the interrupt
enable byte is as follows:

MSB LSB
L7lefslafafz]r]o]

PAPER TAPE

PUNCH

LINE INTERRUPT

PRINTER ENABLE

PAPER TAPE

READER

RESERVED

An Interrupt Enable bit, when set, enables the inter-
rupt from the corresponding device. The
format of the interrupt enable byte is iden-
tical to the interrupt reset byte of the
SRQDAK command. Note that when any
of the individual interrupt enable bits is set,
the PIO interrupt line to the IPB/IPC is
also enabled.

P10 Subsystem Interfaces

5.2.2 PAPER TAPE READER
COMMANDS

The standard 200 character/second paper tape reader
is pulsed to move one frame forward (to the right) or
reverse (to the left). Two control signals are used by
the reader: DR (drive right) and DL (drive left). The
paper tape reader supplies two device status signals:
DATA READY and SYSTEMS READY. The
DATA READY signal indicates that tape movement
has been completed and that a valid data byte is being
presented to the PIO. The SYSTEMS READY signal
indicates that the reader is connected to the PIO and
that power is applied to the reader.

Commands to the P10 include the RDRC reader con-
trol command and the RSTC reader status com-
mand. The reader control command is able to either
move the tape one frame or to enable PIO acceptance
of the data byte (concurrent tape movement and data
reading is not implemented). If the PIO detects an
error condition during a read operation, the reader
status byte is returned in place of the data byte. The
PIO informs the master processor that a status byte is
being presented by setting the command/data bit of
the DBB status byte, and the operation is comparable
to the PIO’s execution of the RSTC reader status
command.

The RDRC command uses bits 5 and 6 of the com-
mand byte to define the direction of tape movement,
and either to select tape movement or to enable data
byte reading. Note that if data byte reading is
specified, the tape direction bit (bit 5) has no
significance. The combinations of bits 5 and 6 are as
follows:

Bit
Operation
6 5
0 0 Read data byte
0 1 Read data byte
1 0 Move tape forward one frame
1 1 Move tape reverse one frame

When the request interrupt bit (bit 7) of the com-
mand byte is set, a PIO interrupt is generated at the
completion of command processing and the paper
tape reader device interrupt bit is set in the device
status byte. When the RDRC command specifies tape
movement (bit 6 of the command byte set), the inter-
rupt is generated following tape movement (when the
paper tape reader generates DATA READY). When
the command specifies a data byte read operation,
the interrupt is generated when the PIO processor
places the requested data byte in the DBB output
data buffer. Note that if an error is detected during
command execution, the interrupt is generated when
the PIO processor places the reader status byte in the
DBB output data buffer.

5-5

P10 Subsystem Interfaces

The RSTC command causes the PIO processor to
place the reader status byte in the DBB output data
buffer and to clear the paper tape reader device error
bit in the device status byte. The format of the reader
status byte is as follows:

MSB LSB
Lrlefslafofe]r]o]
DATA READY
SYSTEMS READY
RESERVED
ILLEGAL STATUS REQUEST
READER TIMEOUT

Data Ready is set when the paper tape reader has a
character in its output buffer and is cleared
when the P10 processor executes an RDRC
command to access the character byte.
When operating in the polled mode (inter-
rupts disabled), a master processor tests the
data ready bit following a tape movement
command to determine when the character
can be accessed by a subsequent RDRC
read data byte command.

Systems Ready is set when both primary power is
applied to the paper tape reader and the
reader is connected to its corresponding
connector on the rear panel of the develop-
ment system.

Illegal Status Request is set when the request inter-
rupt bit is set in the RSTC command byte
(a master processor cannot legally request
an interrupt at the completion of a status
access operation). The illegal status request
bit is cleared when the master processor
reads the paper tape reader status byte
from the DBB output data buffer.

Reader Timeout is set if the paper tape reader is not
connected or has remained in a not ready
condition (data ready=0) for more than 260
milliseconds following a tape movement
command. The timer is reinitialized with
every RDRC command.

5-6

Intellec Series I1

5.2.3 PAPER TAPE PUNCH COMMANDS

The standard 75 character/second paper tape punch
responds to a single control signal (PUNCH COM-
MAND) that causes the punch to perforate a
character on the tape and to advance the tape to the
next frame position. The PUNCH COMMAND
signal is generated by the PIO following receipt of a
PUNC command from a master processor. The
associated paper tape punch data byte is placed on
the data output lines to the paper tape punch prior to
the generation of the PUNCH COMMAND signal to
the paper tape punch. Status regarding paper tape
punch operations is supplied by the P1O processor to
the master processor on receipt of a PSTC command.
Status lines from the paper tape punch consist of
PUNCH READY (operation complete) and
SYSTEMS READY.

NOTE

The INPUT MODE SELECT and OUTPUT
MODE SELECT control lines of the
standard paper tape punch are disabled
(grounded) at the interface connector on the
chassis rear panel, and the DIRECTION
control line is connected to +5 volts to only
enable forward tape motion.

The PUNC command causes the PIO processor to
accept the subsequent data byte at the DBB input
data buffer as the character byte to be punched on
the paper tape. The PI1O processor delays the genera-
tion of the PUNCH COMMAND/ control signal
until the character byte has stabilized on the output
data lines to the paper tape punch. If the request
interrupt bit of the PUNC command byte is set, the
PIO processor sets the paper tape reader device inter-
rupt bit in the device status byte and generates a P10
interrupt to the IPB/IPC when the paper tape reader
returns a PUNCH READY status indication.

The PSTC command causes the PIO processor to
place the paper tape punch status byte in the DBB
output data buffer and to clear the paper tape punch
device error bit of the device status byte. The format
of the paper tape punch status byte is as follows:

Iooooonn

l— PUNCH READY

SYSTEMS READY

RESERVED

ILLEGAL COMMAND

ILLEGAL STATUS REQUEST

PUNCH TIMEOUT

Intellec Series 11

Punch Ready is set when the paper tape punch is
ready to receive a new punch command
(i.e., after a character is punched and the
tape is advanced one frame). When
operating in the polled mode (interrupts
disabled), a master processor tests the
punch ready bit following a PUNC com-
mand to determine when the operation has
been completed and the next character can
be punched.

Systems Ready is set when both primary power is
applied to the paper tape punch and the
punch is connected to its corresponding
connector on the development system’s
rear panel.

lllegal Command is set when a PUNC command is
followed by a subsequent command byte
(C/D=1). When this bit is set, the PUNC
command is not executed (a character is
not punched). The illegal command bit is
cleared when the master processor reads
the paper tape punch status byte from the
DBB output data buffer.

Illegal Status Request is set when the request inter-
rupt bit is set in the PSTC command byte (a
master processor cannot legally request an
interrupt at the completion of a status
access operation). The illegal status request
bit is cleared when the master processor
reads the paper tape punch status byte
from the DBB output data buffer.

Punch Timeout is set if the paper tape punch is not
connected or has remained in a not ready
condition (punch ready=0) for more than
260 milliseconds following a PUNC com-
mand. The timer is reinitialized with every
PUNC command.

5.2.4 PRINTER COMMANDS

Two PIO commands are used to control the standard
60 character per second dot matrix printer. One com-
mand transfers ASCII character and control codes
from a master processor to the line printer (both
character and control codes are output to the printer
as parallel bytes), and the other command returns the
printer status byte to the master processor. The PIO
processor uses a single control line (LPT DATA
STROBE/) to transfer both control and character
codes to the printer. The ASCII characters trans-
ferred are stored in the printer’s input character buf-
fer until either 80 characters have been received or a
carriage return or line feed control code is
encountered to terminate the line. When a character
line is complete, the printer initiates its print cycle.

P10 Subsystem Interfaces

The line printer returns three status signals to the
PIO processor: SELECT, BUSY and ACKNOWL- .
EDGE. The SELECT signal is active when the line
printer is placed on-line, and the BUSY signal is
active during a print cycle. The ACKNOWLEDGE
signal, when active, indicates that a character or con-
trol code has been accepted. The duration of the
ACKNOWLEDGE signal returned by the standard
printer is too short to be detected by the PIO pro-
cessor; the PIO processor assumes that all character
and control codes are accepted.

The LPTC command causes the PIO processor to
accept the subsequent data byte at the DBB input
data buffer as an ASCII character or control code to
the line printer. The PIO processor delays the genera-
tion of the data strobe pulse (LPT DATA STROBE/)
to the line printer until the ASCII code byte has stabi-
lized on the output data lines to the printer. If the
request interrupt bit (bit 7) of the LPTC command
byte is set, the PIO processor sets the printer device
interrupt bit in the device status byte and generates a
PIO interrupt to the IPB/IPC when the associated
character line is printed (i.e., when BUSY returns to
an inactive level).

The LSTC command causes the PIO processor to
place the printer status byte in the DBB output data
buffer and to clear the printer device error bit in the
device status byte. The format of the printer status
byte is as follows:

MSB LsB

Lrlefs]efofz]rTo]

PRINTER READY

PRINTER PRESENT
——————— PRINTER SELECTED

} RESERVED

ILLEGAL COMMAND
ILLEGAL STATUS REQUEST

PRINTER TIMEOUT

Printer Ready is set whenever the printer is on-line
and is not performing a print cycle (i.e.,
when BUSY is inactive). Since a character
or control code is not accepted during a
print cycle, the printer ready bit is exam-
ined prior to every LPTC command.

Printer Present is set when the printer is connected,
powered-on and has been placed off-line,
the printer present bit remains active.

5-7

PIO Subsystem Interfaces

Printer Selected is set when the printer is placed
on-line (i.e., when SELECT is active) and
remains set until the printer is placed off-
line.

Illegal Command is set when a LPTC command is
followed by a subsequent command byte
(C/D=1). When the illegal command bit
is set, the LPTC command is not executed
(a data strobe pulse is not generated). The
illegal command bit is cleared when the
master processor reads the printer status
byte from the DBB output data buffer.

Illegal Status Request is set when the request inter-
rupt bit is set in the LSTC command byte (a
master processor cannot legally request an
interrupt at the completion of a status
access operation). The illegal status request
bit is cleared when the master processor
reads the printer status byte from the DBB
output data buffer.

Printer Timeout is set when the printer fails to com-
plete a print cycle within 3.5 seconds. The
cycle timer is reinitialized at the beginning
of every print cycle when BUSY goes
active.

5.2.5 PROM PROGRAMMER
COMMANDS

The following information pertains to the PROM
programmer interface of the Intellec Series 11
development system. The text provides details on
each of the commands and describes the functions of
bits within the currently implemented data and status
bytes. The PIO processor does not examine the con-
tents of any PROM programmer data byte.

One factor common to all PROM programmer com-
mands is that the PIO processor initiates a three
millisecond timeout each time a command is
received. For the WPPC write command, the timeout
error simply causes a PROM programmer timeout bit
to be set in the device status byte. However, for the
RPPC and RDPDC read commands and the RPSTC
status command, a special action is taken since it is
assumed that a valid data or status byte could not be
accessed from the PROM programmer. This special
action consists of setting the C/ D flag of the DBB
status byte and loading an all ones byte (FFH) into
the DBB output data buffer. The master program
recognizes this DBB response as an indication that
the PROM programmer was unable to provide the
requested data or status byte.

5-8

Intellec Series 11

The WPPC command causes the PIO to transfer
three bytes in sequence from the DBB input data buf-
fer to the PROM programmer interface write data
lines (PWDO-PWD7). Concurrently, the PIO pro-
cessor sequentially activates control lines PPWC2,
PPWC]1, and PPWCO in order to synchronize accep-
tance of the three bytes by the PROM programmer.
The PROM programmer responds to each control
signal by generating PPACK (PROM Programmer
Acknowledge) to acknowledge acceptance of the
associated byte. PPACK, since it cannot be detected
at the P10 processor’s data port due to its short dura-
tion, is additionally coupled to the TEST 1 input
where it is tested using the appropriate branch
instruction.

The three bytes transferred to the PROM program-
mer by the WPPC command are described in the
following text in the order of their occurrence.

The first of the three write bytes is clocked by
PPWC2 and is known as the low address byte. The
format of the low address byte is as follows:

MSB LsB

Ioononnn

A0

Al
A2

A3 LOW-ORDER
PROM
A4 ADDRESS

A5

A6

A7 _J

The second of three write bytes is clocked by PPWC1
and is known as the high address byte. The format of
the high address byte is as follows:

MSB LSB

Lrlefsfafe]o]r]o]

|— A8

A9 HIGH-ORDER
PROM

A10 ADDRESS

A1

NIBBLE SELECT

SOCKET

START READ

CONTROL BIT

Intellec Series I1

High-Order PROM Address is defined by the control
bit (bit 7) of the high address byte. When
the control bit is clear, the four low-order
bits of the byte contain PROM address bits
A8 through A1l (4k address range). When
the control bit is set, the four low-order bits
contain PROM address bits A12 through
A15 (64k maximum address range).

Nibble Select is only applicable when programming
4-bit PROMs. When the nibble select bit is
set, the four data bits to be programmed
are contained in the high-order four bits of
the data byte (D7-D4), and when clear, the
four data bits are contained in the low-
order four bits of the data byte (D3-DO0).
The nibble select bit is ignored when pro-
gramming 8-bit PROMs. When reading a
4-bit PROM, the data is always returned in
the four low-order bits of the data byte.

Socket Select, when set, specifies PROM pro-
gramming operations on the PROM device
installed in Socket 1 and, when clear,
specifies PROM programming operations
on the PROM device in Socket 2.

Start Read is only applicable during PROM pro-
grammer read operations (see RPPC and
RDPDC read command descriptions).

Control Bit defines the four address bits of the high
address byte. When set, the high-order
PROM address bits correspond to address
bits A12 through A15 and when clear, the
high-order PROM address bits correspond
to address bits A8 through All. Note that
since the PIO firmware only issues one high
address byte with any read or write com-
mand, when address bits A12 through A15
are required (e.g., when programming a
2764 EPROM), the master processor must
perform a ‘‘dummy read”’ (with the control
bit set) to load address bits A12 through
A1S5 prior to programming (or reading) the
PROM.

The third of the three write bytes is clocked by
PPWCO and is the data byte to be written into the
PROM address specified by the low and high address
bytes.

The RPPC command is used to read the contents of a
PROM that has been previously programmed. The
action of the PI1O processor in response to an RPPC
command is similar to that of the WPPC command
in that the low and high address bytes are transferred
to the PROM programmer by sequential generation
of PPWC2 and PPWCI. If the start read bit of the
high address byte is clear, the PIO processor

P10 Subsystem Interfaces

generates PPRCO in place of PPWCO to cause the
PROM programmer to transfer the data contents of
the addressed PROM location to the PIO processor’s
input data port. The PROM programmer signals the
PIO processor when the data byte is available
(PPACK), and the PIO processor sets the OBF flag
in the DBB status byte when it transfers the byte to
the DBB output data buffer for access by the master
processor.

If the start read bit of the high address byte is set, the
“read polling mode’’ is selected, and the PROM pro-
grammer initiates the read operation when the high
address byte is received (i.e., on receipt of PPWC1).
Note that in the read polling mode, the low address
byte must precede the high address byte. The master
processor monitors the Busy bit in the operation
status byte (using the RPSTC command) to deter-
mine when the PROM programmer has accessed the
addressed data byte. When the byte has been
accessed (when the Busy bit clears), the master pro-
cessor must issue an RDPDC command to access the
data byte. Note that if the data byte returned by an
RPPC or RDPDC command is invalid, the PIO pro-
cessor sets the command/data flag (C/D=1) and
returns a data byte of all ones.

The RDPDC command is only valid when a prior
RPPC command specifies read polling mode opera-
tion (start read bit set in the high address byte). The
RDPDC command, as previously explained, is issued
by the master processor when it determines that the
PROM programmer has accessed the data byte
addressed by the RPPC command. In response to the
RDPDC command, the PIO processor generates
PPRCO to enable the byte onto the PROM program-
mer’s read data lines (the byte is accepted on receipt
of PPACK from the PROM programmer) and then
transfers the byte from its input data port to the DBB
output data buffer for access by the master
processor.

The RPSTC command causes the P10 processor to
transfer two status bytes to the master processor. On
receipt of the RPSTC command, the PIO processor
generates PPRCI to access the operation status byte
from the PROM programmer. The accessing of the
operation status byte is simplified in that this byte is
continuously applied to the read data lines (PRDO-
PRD7) except when the PROM programmer receives
a read data command. On receipt of PPACK from
the PROM programmer, the PIO processor transfers
the operation status byte to the DBB output data buf-
fer and then monitors the DBB output buffer full
(OBF) flag to determine when the master processor
accepts the status byte. When the byte is accepted
(when the OBF flag is cleared), the PIO processor
places the PROM programmer device status byte in
the DBB output data buffer and again sets the OBF
flag.

PIO Subsystem Interfaces

The format of the PROM programmer operation
status byte is as follows:

MsB LsB
Lrlefsfefa]z]rfo]
BUSY
OPERATION COMPLETE
FAILED TO PROGRAM PROM

PROGRAMMING ERROR

ADDRESS ERROR

HARDWARE FAILURE
BOARD SENSE ERROR

PROM PROGRAMMER TIMEOQUT

Busy is set while the PROM programmer is perform-
ing any operation specified by a data read
or write command. Note that the remaining
status bits are only valid when the PROM
programmer is not busy (i.e., when the
busy bit is clear).

Operation Complete is set at the completion of any
data read or write operation.

Failed to Program PROM is set when the PROM
programmer is unable to successfully pro-
gram the PROM.

Programming‘ Error is set when an attempt is made to
reprogram a fused location (e.g., attempt-
ing to reprogram a bipolar PROM).

Address Error is set when an attempt is made to pro-
gram or read a non-existent PROM
location.

Hardware Failure is set when a hardware fault is
detected (e.g., programming voltage not
present, PROM incorrectly programmed).

Board Sense Error is set when a personality module is
not installed for the socket specified.

5-10

Intellec Series 11

PROM Programmer Timeout is a personality
module-dependent status bit (e.g., the
UPP-848 personality module sets this bit if
the 8748 device is incorrectly oriented in the
socket).

The format of the PROM programmer device status
byte is as follows:

MSB LSB

noOoDnnn

READY

PROM PROGRAMMER PRESENT

RESERVED

ILLEGAL COMMAND REQUEST
RESERVED

PROM PROGRAMMER TIMEOUT

Ready is set when the PIO processor completes
execution of a command.

PROM Programmer Present is set when the PROM
programmer is connected to its cor-
responding rear panel connector and
primary power is applied to the PROM
programmer.

Illegal Command Request is set when the master pro-
cessor issues a new command and the
previous command has not been
completed.

PROM Programmer Timeout is set if the PROM
Programmer is not present or primary
power is not enabled, or if command
execution is not completed within three
milliseconds (i.e., the ready bit remains
clear for more than three milliseconds).

v

S1S-11 B8BBB/388S MACRO

LoC o8y

| LEd]
.14]
88FC
BBFD

aB28
asac

B87E
88BF

Baa4
(L]]

WWONGDARNN ™

ASSENBLER, v2.8 KEYINT PAGE 1

e e e e e

T Me Ve Ne % % e e e be % be br e We S be be % b b Ma W %e b

SOURCE STATEMENT

HANE KEYINT
ASEG

THIS PROGRAN IS AN EXAMPLE OF AN INTERRUPT ROUTINE TG BE USED

VHEH ENABLING AND SERVICING INTERRUPTS ORIGIHATING FROM THE DEVICES
ATTACHED TO THE LOCAL IMTERRUPT CONTROLLER (IOC.PIO,USART1,USART2 ETC)
OF A SERIES II PROCESSOR.

THIS SPECIFIC EXAMPLE 1S FOR A KEYBOARD INTERRUPT FROM THE SERIES II

MODEL 228 OR 238. THE LINES OF CODE WHICH DD NOT CHANGE FROM DEVICE TO DEVICE
ARE SHOYN BITH AH ASTERIK(*)>. THE LINES WHICH CHANGE BASED DN THE

DEVICE IS SHOUN WITH A DOUBLE ASTERIK(ss).

THE FOLLOWIHG STEPS ARE PERFORMED
INITIALIZATION:
1) UNHASK INTERRUPT LEVEL B.7 OF SYSTEM 8239
2) UNMASK INTERRUPT LEVEL 6 OF LOCAL 825%
3) ENABLE KEYBOARD IKTERRUPT OF I0C

INTERRUPT SERVICING:

1) POLL LOCAL 8259 (NUST BE DOME)

2) READ CHARACTER FROM I8C KEYBOARD

3) ACKHOWLEDGE IHTERRUPT TO I0C LOGIC

4) ACKKOBLEDGE INTERRUPT (EOI) TO SYSTEM/LOCAL 8259

THE ROUTIHE WHEN STARTED FROM LOCATION B1BBH ENABLES KEYBBARD INTERRUPTS
AND ECHOS THE KEYBOARD CHARACTER TO THE CONSOLE DURING THE SERVICE
ROUTINE FOLLOBED BY RETURHING TO THE EXECUTING ROUTINE WHICH

IN THIS CASE IS A LOOP ON A HALT IKSTRUCTION.

8239 INTERRUPT CONTROLLER INTERFACE CONSTANTS

EQU SF AR 3 LOCAL INTERRUPT COMTROL PORY ®

EQU BFBH 3 LOCAL INTERRUPT COHTROL/DATA PORT 1
EQU BFCH 3 SYSTEM INTERRUPT CONTROL PORT 8

EQL BFDH 5 SYSTEM IHTERRUPTY CONTROL/DATA PORT 1t
EQU 828H 3 END OF INTERRUPT

EQU 8acCH 5 OPERATION COMNTROL WORD <POLL CONMAND)

SYSTEM IHTERRUPT CONSTANTS

EQU B7EH i MASK FOR ENABLIHG SYSTEM INTERRUPTS @,7
EQU 8BFH i MASK FOR ENABLIHG JOC INTERRUPT

I10C INTERFACE CONSTANTS

EQU BB4H) TNTERRUPT ACKHOULEDGE COMMAND
EQU Bdan 3 BYSTEN INTERRUPT ENRBLE/DISABLE COMNNAND

37dINVX3 INILNOY LdNHYILNI

V XION3ddV

toC 9083 SEQ SOURCE STATEMENT
8812 33 KEYD EQU 81284 3 KEYBOARD DATA COMMAND
BB8@2 S4 KNSK EQU as24 3 KEYBOARD MASK
33
36 NOHITOR IHTERFACE CONSTANTS
37
F8@a9 38 co EQU BF3B9H 5 COHSOLE OUT ENTRY POINT
F821 39 10COR1 EQU 8F821H 3 10C QUTPUT DRIVER
F844 68 I0COR2 EQU BF 8444 5 I0C INPUT DRIVYER
61
62 3
63 INTERRUPT 7 ROUTIHE
64 3
8838 63 ORG B38H
8838 3EAC 66 MYl A,0Cw 3 s OUTPUT POLL COMMAND TO LOCAL 8239
B33a D3FB [14 ouT LICcP1 3 e»
B883C DBFB 69 I8 LICPL 5 ®% INPUT HIGHEST PRIORITY IKTERRUPT AND
69 ; DISCARD IF DESIRED
B33E B612 7a Lias B, KEYD 3 # LOAD IOC KEYBOARD COMMAND
8848 CD2iF8 71 caLL I0CDR1 3 ® THPUT KEYBOARD DATA
2843 4F 72 nov C.A 3 SET UP FOR OUTPUT TO COHSOLE ROUTINE
BA44 CDA9FSB 73 CALL co 3 OUTPUT CHARARCTER
8047 BeB¢ 74 nel B, IACK 3 % LOAD IOC INTERRUPT ACKNOULEDGE COMMAND
8849 BESZ2 73 nvi1 C,KHSK 3 & LOAD KEYBOARD ACKHOWLEDGE COMSTANT
BB4B CD44F8 76 CALL I0CDR2 5 & CUTPUT ACKNOWLEDCE
BB4E 3E28 7? nvI A,EDI ; #= DUTPUT EOI TO LOCAL/SYSTEM INTERRUPT CONTROLLERS
8a838 D3FB ’e ouT LICPL i e
BB32 D3FD 79 ouT SICP1 3 s
8834 FB 98 El 3} s ENABLE INTERRUPTS
2835 C9 81 RET ;s
82 3
a3 : MAIN PROGRAN
84
gige 83 ORGC 8188H
B188 3E7E 86 NVl @, SINSK 3 e OUTPUT SYSTEM INTERRUPT MASK
8182 D3FC 87 ouT sI1cPa] e
B1B4 3EBF 88 Li2] A, 10CIN 3 *» OUTPUT LOCAL INTERRUPT MASK
8186 D3FA 89 ouT Licre 1 ee
8188 B6EA 98 MYl B8, SINT 3 & LOAD SYSTEX INTERRUPT COMMAND
Bi18R BEB2 91 Nl C,KNSK 5 & LOAD KEYBOARD ENABLE CONSTANT
B1BC CD44F8 92 catL 10CDR2 3 & DUTPUT TO 10C LOGIC
93 LOOP:
B1BF 76 94 HLT
8118 C38rFg81 93 JNP Loorp
96 ERD

PUBLIC SYNBOLS

EXTERHAL SYMBOLS

USER SYMBOLS

co A F8BS EOI A BB28 IACK & BB84
KNSK A 8882 LICP® A BBFA LICPL A BABFB
SINSK A RA7E SINT A BoaA

I0CDR1 A F821 T10CDR2 A FB844 10CIN A 888F KEYD

A B1BF ocy A aaac SICPE A ABFC SICPY

A 8812
A BAFD

ordwexq sunnoy 1dniiajug

11 SOLISG 99[[9IU]

1-4

asHsl

4888
4888

aaag
aags
88FF
agca
aaca
g8C1
gaci
gag4
gaa2
aagi
:1:1:H]

4383
4885

4887
48892
4888
488E
4848F

4811
4813
4215
4817
4814
481C
48 1E

4821
4823
4825
4828
4829

tFL;IDRVR.SRC OBJECTC:Fi:IDRYR _DBJ) PRINT(:F1:IDRYR . LST}

i BEB@/8635 HACRO ASSEWBLER, ¥2.8@ AOBULE PAGE H
oBdJ SEQ SOURCE STATEMENT
i ORG 4HB88H i Arbitrary origin point
£33b48 2 JHP START i Brench to start of example
I e it E L e B P
4
S ; BASIC INPUT DRIVER EXAMPLE
6 i
7 i This is an exanple of an input driver to the IOC It is cailed
8 ; with the following input parameters:
9 D-register contains the <{device stafus commgnd>?
i8 E-register contaeins the {device output command)
11 ; Upon exiting from this driver, the date input from the device
12 5 ¢itl b2 in the A-register
13
14 ; An input driver to the PID is similar to this driver to the IDC
15 ; except that the I/0 port essignments are changed
16
D i it e T TP
18 ;
i9 DISABL EQU #20H ; Disable interrupts
28 ENABL EQU 85H ; Enable interrupts
21 CPUC EQuU aFFH ; Control port
22 IoCl EQY 8ceH 5 I/0 Controller input datae <(from DBB) port
23 I0CO EQU acaH 5 I/0 Controller output date (to DBB) port
24 I0CS Eguy BCiH 3 1/0 Controller input DBB status port
25 IBCC EQUY BC1H 5 I/0 Controller output control command port
26 FO EQU gapaaiaas 5 Flag B - slave is busy. mester is locked out
27 IBF EQY gaBagaiae 5 Slave input buffer is full
28 OBF EBU agREEaR 186 ; Slave output buffer is full
29 DEW¥RDY EBU fa8BBERA B ; Device ready
38 INDRV¥R:
JEad 3i MY 1 A, DISABL 3 Block all interrupts
D3FF 32 QuT cPUC
33 LOOPL:
DBC1 34 I I10CS 5 Input DBB status
E6B? 35 AN FO OR IBF OR OBF; Test for slave processor idle
c2arv48 36 JNZ LOOPE ; Loop until it is idle
78 3?7 Hov A, D } Loed the device status command
p3ci 38 ouT 10cCcC 5 Butput the command to the IOC control port
39 LOOP2:
DBC1 48 IN 10Cs 5 Input DBB status
E6d? 41 ANI FO OR IBF OR 0BF: Mask off status flags
FEAL 42 cPI 0BF 5 Test for slave dona; something for the master
c21148 43 dN2 LOOP2 5 Loop until slave is ready
bece 44 IN 10ct ; Otherwise device from DBB
Es@t 45 ANI DEVYRDY i Is tha device ready?
cagz4g 46 42 LOOP1 s Loop until it is
47 LOOP3:
pBCt 43 IN 10Cs ; Input DBB status
€687 49 AN FQ OR IBF OR OBF; Test for slave processor idle
c22148 38 JIN2 LOOP3 3 Loop until it is idle
I4:] 51 Moy A, E 5 Loed the device output command
D3Ci 52 ouT 10CC 5 Dutput the command to the PID control port

J7dINVYX3 H3AIHA LNdNI OISvE

8 XIdN3ddV

d

ISIS-11 8HB88/8885 MACRO ASSEMBLER, v2.8 HODULE
Lec oBd SEQ SOURCE STATEMENT
S3 LDoOP4:
4828 DBCI S4 IN Iocs
4820 E6@7 55 AN FO OR IBF OR OBF
482F FERY 56 cPI 0BF
4831 C22848 3?7 dNZ LooP4
4834 DBCE 58 In 10CI
4836 FS 59 PUSH PSUY
4837 3€8S [T} HYI A, ENABL
4839 D3FF 61 guT cPUC
4838 F1 62 POP PSU
483C C9 63 RET
65
66 ; This is on example keyboard dr
67 ; generalized input driver
68 ; Characters are input from the
69 ; buffer of size 122. Input is
78 ; return is input or the buffer
721
?3
aai2 74 KEYL EQu 812H
aai3 7S5 KSTS EQu d13H
?6 START:
4830 215948 ?? L&l H.BUFFER
4848 @674 ?’8 L33 8,122
79 LOOP:
4842 1613 EL LED D.,KSTS
4844 1E12 8t L L E.KEYC
4846 COA348 82 CALL IHDRYR
4849 7?7 83 Moy %, 48
4844 FEBD 84 CPI 8DH
484C CAS84m 8s 42 EXIT
484F 23 -1 INX H
48352 @s 8?7 DCR L}
4831 CAS74R 88 Jz OVFL
4854 C34248 89 JHP Looe
98 OVFL:
4887 7¢ 91 HLT
92 EXIT:
4238 78 93 HLT
adza 94 BUFFER: 0S8 122
4230 93 END START

PUBLIC SYmMBoOLS

EATERNAL SYMBOLS

USER SYMDOLS

BUFFER A 4859 CRUC A BRAFF GEVRDY A @@@1 b1sRB
18F A @EA2 INDRYR A 4d@3 toce A BACH 10c!
L& E A @813 Loop R 4d42 LOOPE A 4887 LogP2

gYFL A 4857 STRRT A 4d30

ASSEMBLY COMPLETE, MO ERRORS

PAGE 2

; Input DBB status

; Mesk off status flags

; Test for sleve done; something for the master
Loop until it is ready

Otherwise input the data from the DBE

Save the data

Eneble the interrupts

[,

i Return the data in the m-register

B4 e e e e e e

iver which calls the above

keyboard and stored into a
halted vhen either & carriage
is full

; Keybosard input date command
i Keybnard device status command

i Set up buffer size counter of 122

; Load keyboard status command
;i Load keyboard input data command

5 Call the input driver routine

i Store the input byte in the buffer

5 Is it a carriage return?

i Branch to EXIT if we have just input a carriage return
i Otherwise move the buffer pointer

; and decremant the buffer count

i 1f buffer full, jump to overflow code

i Othervise get the next character

; Overflow code

L A BEAD ENABL A Q@A@Y EXIT A 4853 Fo A Baas4
A Bace toco A @gace 10C8 A gact KEYC A Bat2
A 4811 LGOP2 a 4821 LOQP4 A 4828 QBF R Qagt

ardwexy 10ALI(T Induj siseg

II SALIdS 23[[2IU]

-0

asnge

tF1:0DRYR.SRC OBJECTC:F1:0DRYR OBJ) PRINT(:F1:0DR¥R LST)

ISIS-1I 8@8@/8RB8S MACRO

Loc

4188
4188

aaap
anas
8aFf
agre
2BFg
aar9
BaF9
aegs
daaz
gag1
gad1

4183
4185

4187
4189
4188
416€E
418F

4111
4113
41195
4117
4114
411C
411E

4121
4123
4125
4128
4129

084

£33a41

3JEBD
D3FF

DBF9
Eed?
c2@741
[£
D3F9e

DBF9
E6B7
FE@1
cat141
OBFS
E6@1
CAB741

DBF9
E6B7
£22141
78
B3F9

SEQ

WONSU B NN -

ASSEMBLER, v2.8 MODULE PAGE 1

SOURCE STATEMENT
ORG 4188H i Arbitrary origin point
JNP START : Branch to start of exasple
e e e e e e e e e
5 BASIC OUTPUT DRIVER EXAMPLE
5 This is an examnple of an output driver to the PID It is catled
i with the following input parameters:
i C-register contains the byte data to be output
H D-register contains the {device status command}
H E-register contains the {device output command}
i An output driver to the IOC is similar to this driver to the PID
i except that the I/0 port assignments are changed
DISABL EQU aoH : Disable interrupts
ENABL EQy asH ; Enable interrupts
cpPuc EQu BFFH } Control port
PIDI EQu 8F 8H ¢ Parallel 1/0 input data (froas DBE) port
PIOO EQU 8F8H ; Parallel 1/0 output dats (%o DBB) port
PI10S EQU gFoH ; Parallel I/9 input DBE status port
PICC EQy 8F2H ; Parallal I/0 output control command port
9 EQY d8aggi88E ; Flag B - slave i35 busy, master is locked out
I8F EQY agRBaEd 1B : Slave input buffer is full
GBF EQYy aggagag1e 5 Slave output buffer i3 full
DEYRDY EQU ggaeaegie ; Device ready
QUTDV¥R:
MYI @.DISABL ; Block all interrupts
ouTt cPuUC
LOOPL:
IN PIOS : Input DBE status
RN1 FO OR IBF OR 0BF: Test for slave processor idls
JHZ LOOP1 i Loop ountil it is idle
Moy A, 0 ; Load the device status command
ourT PI0OC ¢ Output the command to the PIO zontrol port
Loer2:
IN PIOS ; Input DBB status
AN FOD OR IBF OR 0BF; Mask off status flags
cPI 08F i Test for slave done; someth.ng for the maste
JHZ Loop2 i Loop until slave is ready
IN PIDI ;i Otherwise device from ES
ANI DEVYRDY i Is the device ready?
4z LOOPR1 3 Loop until it i3
LCOP3:
IN P10S 5 Input DBB status
ANI FD GR IBF OR DBF; Test for slawe processor (dle
INZ LooP3 ;o Loop until it is idle
nevy 8, E 5 Load the device output commarnd
2uT P10C ; Butput the command to tha PID contrel part
LOGPY:

r

J1dINVX3 H3IAIHA LNndlnO JIsve

O XIdN3ddV

(49

ISIS-1I 2B8EB/8BE5 MACRO ASSEMBLER., v2.@

toc

4128
4120
412F
41322
4132
4135
4137
4139

284z
aatd4
2a1s

4134

4130
413€
4148
4142
4143
414¢
4142
4148
414¢C

41 4F
4158
4154
4138
415¢C
4168
4164
4168
4169
4164
4168
4138

PUBLIC

EXTERNAL SYMBOLS

084

DBF?2
£687
ca22e41
79
D3Fg
3EBS
D3FF
co9

213841

4E
1615
1E14
co@d3st
79
FEB3
CR4F 4L
23
c33p41

76
4C494E45
28585249
4E544552
28584 34F
2845584 ¢
4D3B4C45
28
ar
8a
a2

SYMBOLS

USER SYMBOLS

BUFFER
FQ
LPTC

A 4158
A 0B84
A Ba14

SEQ

53
S4
55
Sé
57
38
32
6Q
61
62
63
64
63
66
67
[:3:]
69
7a
71
T2
73
74
(4]
76
77
78
79
2]
g1
82
83
84
e3

86 BUFFELR:

87

IN

AN
JNZ
Mov
ouT
Mv1
ouT
RET

SOURCE STATEMENT

Pl10S

FG OR IB
LooP4
&, C

Pl100

A, ENRBL
CPUC

MODULE PRGE 2

; Input DEBR status

F OR OBF; Test for slave processer ready
i Loop until it is ready

Load data to ba writtan

Qutput date to the DSE

Enable the interrupts

H
: This is an example line printer driver which calls the abowe generalized
i output driver

i The contents of the array BUFFER are output to the line printer
H

EXIT:

A BAFF
4 0aa2
A 8415

EQU
EQU
EQU

LRI

MOV
MVI
Ml
caLt
MOY
CPI
42
INX
JHP

HLT
be

END

a3y
B14H
B15H

H.BUFFER

c.n
D,LSTC
E.LPTC
QUTDVR
Q. C
ETX
EXIT

H

LooP

‘LINE PR

START

DEVRDY A BBA!

LOaP
DBF

A 413D
& gaEat

End-of -file
Line printer output data command
Lina printer device status command

; Move data to b2 ouiput to the C-ragister
; Load printer status command

5 Load printer output data command

5 Call the output driver routine

; Brench to EXIT if we havwe just autput an ETZ

INTER PIO EX&MPLE ‘ .@BDH.BRH.ETH

DISABL n @BED ENRBL @& BEBES ETx A BBg:z EXIT] 414F
LOOP1 & 4187 LBR2 w410 LOOP3 R 4121 LOOrY A 4128
QUTDYR n 4183 PI0f A BASY erol 4 pBF=a FIOQ A BEFS

srdurexq I9ALI 1ndinQ siseq

11 SoLI9G da[[AIU]

€0

ISIS-1I 2828/8885 MALRD ASSEMBLER,

PIOS A Bare START A 4134

ASSEMBLY COMPLETE, HO ERRORS

¥2 B8

MODULE

PAGE

[

I1 SOLIaG d9[[AIU]

sjdurexq 19ALI(T IndinQ diseg

-a

ASMEA :F1:DISK.SRC QOBJECTC:F1:DISK DBJ)> PRINTC:FL1:DISK.LST)

ISIS-II 8PM58/8ABS MACRO ASSEMBLER, ¢2 @ HMODULE PAGE 1

Loc 9BJ

oy
m
=

SOURCE STRTEMERT

A L T T eIt nmn,
S

i® THIS SINPLE EXAMPLE READS TWO SECTORS FROM THE DISK (TRACK 28H,

i* SECTORS 7 AWD 8) INTO 4 BUFFER IN RAM IT THEN WRITES THE

i# CONTENTS OF THAT BUFFER BACK TO THE DISK AT TRACK 4BH. SECTORS

i* 1BH AND 19H

je

R e Y L e

s
H

e R e,
WONNAAWN - EDONRA NN -

LT ORG 6BAAH ; AREITRARY ORIGIN POINHT
CLEAR:

6888 COD661 CaLL DKSTAT } GET CURRENT DISK STATUS

6883 E6B4 T 4H } DPERATION COMPLETE? U

6BE5 Called 92 BEGIN : BRANCH IF PREVIOUS GPERATION COMPLETE —

6888 CDE261 cALL RTYPE } OTHERWISE, CLEAR THE DISK OF

68E8 CODC61 caLL RBYTE ; OPERATIONS (¢))

688E C38B6R Jup CLEAR =

BEGIN:

6811 B11E68 LX1 B.RIOPE ; LOAD ADDRESS OF RIDPB IN B.C REGISTERS m

6814 CO2C61 28 caLL 1SDDR

6817 B12568 21 LXI 8.WI10PB ; LODAD ADDRESS OF WIDPB -

6814 Ch2C61 22 cALL ISDDR |

6810 76 23 HLT
24 m
25 RIOPB: ; IDPB FOR READ

sB1E B8 28 o8] ; 10 CONTROL WORD

681F B4 27 08 READ } READ INSTRUCTION - v |

6828 @2 28 o8B 2 ; HUNBER OF SECTORS

6821 28 29 P8 294 i TRA4CK ADDRESS m

6822 87 38 P8 7 } SECTDR ADDRESS >

6823 2C68 31 oY BUFFER + BUFFER ADDRESS
32 WIOPB: ; IDPB FOR WRITE U

6825 BE 33 08 g 5 10 CONTROL WORD

6826 B6 34 08 WRITE ; WRITE INSTRUCTION ~,

6827 B2 35 DB 2 ; NUMBER OF SECTORS

6828 48 36 P8 48H ; TR4CK ADDRESS E

6829 19 37 0B 184 } SECTOR ADDRESS

6824 2068 38 oW BUFFER } BUFFER ADDRESS o v)

aige 39 BUFFER: DS 256 -—
48
41 ;*i***‘*****t**&'*iﬂ*“**#******idliﬁ*‘!*t*’h****t*i*****-ﬁ*i***3****** q >
42 3%
43 ;+ PROCEDURE NAME: ISDDR (INTEGRATED SINGLE DENSITY DISK DRIVER) m U
44 :x PROCESS: TRANSMIT THE IOPB, DNE BYTE AT & TIME. T4 THE IS0 'o
45 ;% IF THE [NSTRUCTION TO THE DISK 15 R GATA TRAHSFER m
45 ;% <I E READ DATA, FORMAT. WRITE DATA, WRITE DELETED m
47 w DATA) THEN TRAHSFER THE DATA. ONE BYTE AT @ TIME ><
48 i+ TO/FROM THE ISD > 2
49 5 INPUT: B-REG CONTAINS MSB OF I0PB
S8 i+ C-REG CONTAINS LSB DF IOPR g U
S1 ;% OUTPYT: THE IOPB IS TRANSMITTED T0O THE IS0 DATA IS TRANSFERED —
52 ;% TO/FROM THE ISD AS REQUIRED O ><

r

-d

ISIS-11 BHBR/8H8S MACRO

Lec

BEC1
gaci
gace
aece
aan4
aana2
aga1
BE15
gaie
BE17
gaise
aa19
ga14a
ga1g
gatc

a8ao
a8as
BBFF

aeal
asa2
aaa3
aag4
a8as
agge
aaar

612C
6120
612E
612F
6131
6134

6135
6136
6137
6138

0BdJ

cs

a3

:0]
FEA4
C26551
EL

ES
23
23
56

SEQ

53
54
5%
56
57
S8
59
68
61
62
63
64
(3
(13
67
68
69
78
71
72
73
74
-]
76
(&4
72
79
88
81
82
83
84
85
96
87
88
89
94
91
922
93
94

ASSEMBLER v¥2

i

MORULE

SOURCE STATEMENT

PRE 2

R R L T g
i 10C INTERFACE COMMANDS

I0CS EqQu dC1H

1occ EQU AC1H

I0CI EQuU acaH

10Co EQU BCBH

Fa EQU paREB1 888
1BF EQU BABABA 168
0BF EQU BaBRaARE 1B
[1:4:29 EQu 15H

¥PCC EQu 16H

L D2:1 EQU I17H

HDEL EQu 18H

RDBC EQu 194

RDCC EQu 1AH

RRSTS EQu 1BH

RDSTS EQu 1CH

; PSEUDO INTERRUPT INSTRUCTIONS
DISABL EQU B0H

EHABL EQY B5H

CPUC EQy AFFH

; DISK INSTRUCTIONS

SEEK EQY 1H

FORMAT EQU 2H

RECALB EQU 3K

RERD EQu 4H

VERIFY EQU SH

WRITE EQU 6H

WRITED EQU 7H

INC INPUT DBEB ST
IBC QUTPUT CONTR
I0C INPUT DATA ¢
INC DUTPUT DATH
FLAG B - SLAVE I
SLAYE INPUY BUFF
SLAYE OUTPUT BUF
WRITE PARAMETER
WRITE PHRAMETER
WRITE DATH BLOCK
RESERYED

READ DATA BLOCK
RESERVED

READ RESULT STAT
READ DEVICE STAT

DISABLE INTERRUP
ENKBLE INTERRUPT
PORT FOR THESE i

SEEK INSTRUCTION
FORMAT INSTRUCTI
RECALIBRATE INST
READ DATA INSTRU
YERIFY CRC IHSTR
WRITE DATA IHSTR
WRITE DELETED D

LAYOUT OF THE I/0 PARAMETER BLOCK (10PB)}

ATUS PORT

OL COMMAND PORT

FROM DBB> PORT

¢TO DBEB) PORT

3 BUSY. MASTER IS LOCKED QUT
ER IS FULL

FER IS FULL

BLOCK COMMANED

BLOCK COMMAHD CONTINUATION
COMMARD

COMMAND

HS COMMAND
Us COMMAND

T8
3
NSTRULTIONS

OH

RUCTION

CTION

UCTION

UCTION

T4 INSTRULTION

ONLY THE FIRST FIVE BYTES OF THE IOPB ARE TRANSMITTED TO THE ISD
BYTE CHANNEL WORD
BYTE DISKETTE IHSTRUCTION

1ocw
IBINS
HSECL
THDR
SabR
BUF

PUSH
INX
LDAR
P
INZ
POP

PUSH
IRX
INX
Ho¥

BYTE NUHBER OF SECTORS
8YTE TRACK ADDRESS
BYTE SECTOR ADDRESS

ADDRESS BUFFER ADDRESS

SAYE B.,C ¢(I1.E. A
BL PORINTS TO ini
A-REG CONTAINS I
IS IT A4 RE4D INS
JUMP IF IT ISN'T
OTHERWISE, PROCE
HL CONTAINS 10PE
SAYE THE ADDRESS

SAYE THE NUMBER

DORESS DF I0PB>
HS BYTE

DINS

TRUCTIDN?

SS THE READ COMMAND

ADDRESS
OF THE 10PE

OF SECTORS IN D-REG

ardurexd a1IA /peay 210YsIg

11 SO1I9G 23[23u]

€-d

ISIS-11 8E8HE/8HEBS MACRN ASSEMBLER, v2 8

Loc

6132
5130
5138
613E

613F
6148
5141
6142
6143
6145
6148

6149

65148
6140
614F
6151
6154
6156
6137
6158
6159
615C

515D
5168
6162
6164

6165
6167
(327
6160
616F
6171

6174
6175
5176
6177
6178
6174
6178
S517E

617F

6182

0Bd

El
DS
ChBAG 1
23

SE

23

56

EB
8619
cpace2
D3}

1£88

pecCt
E6d?
FEB1
C24B61
peca
77

23

10
C24B61
15

24981
3€8S
D3FF
co

FEB2
CA7461
FEB6
CA7461
FEB7
C2RDG1

C38461

BEBL

SEQ

188
149
118
111
112
113
114
119
116
117
118
119
128 ROLPL:
121
122 ROLP2:
123
124
129
126
127
128
129
138
131
132
133
134
133
136
137
138
139
148 1501
141
142
143
144
145
146
147
148
149 1S02:
158
151
152
193
154
135
156
157
158
159
168
161 1SD2a:
té2

MIDULE

SOURCE STATEMEHT

POP
PUSH
catL
INK

HoY
INX
Moy
ZCHG
M¢1
CaLL
POP

M¥1

I

AN
cPI
JINZ
IN

nov
INX
DCR
JINZ
DCR

cel
IR2Z

PopP
PUSH
INY
MOV
cPl
INX
4z
HOY

JHP

AV

H
0
TRIOPB
H

E. N

H

b.N
8.RDBC

IoccoM
4

E,128

10cs

F@ GR IBF OR 0BF
OBF

RDLP2

10CI

M.q

L]

E

RDOLP2

D

RDLPL
A, ENABL
CPUC

FORMAT
1502
WRITE
I1sp2
WRITED
1sD3

Mo v e me me e me e e he ae e

H

PREGE 3

HL HO¥ POINTS TQ BEGINNING OF THE [0PP
SAVE THE NUMBER OF SECTORS
TRANSHMIT THE I0PB
HL HOW POINTS TD BUFFER ADDRESS

ENTRY OF THE I0PB
E COWNTAINS LSB OF BUFFER ADDRESS
HL HOW CONTAINS LSB OF BUFFER ADDRESS
D CONTAINS MSB 0OF BUFFER ADDRESS
HL NOW POINTS TD THE BUFFER ITSELF
LOAD THE READ DATA BLOCK COMMAHD
DUTPUT IT
D-REG CONTAINS NUMBER DF SECTORS TD BE TRANSFERRED

SET COUNTER FDR NUMBER OF BYTES PER SECTOR

INPYT DBB STATUS

HASK OFF STATHS FLAGS

TEST FOR SLAVE DONE: SOMETHING FOR THE MASTER

LOOP UNTIL SLAYE IS READY

DTHERWISE, IRPUT THE DATA FROM THE 0BS

STORE THE DATA IN MEMORY AT THE BUFFER LOCATION

HL POINTS TD THE NEXT BYTE IN THE BUFFER

DECREMENT THE LENGTH REMAINING IN OHE SECTOR

CONTINUE RERDING UNTIL WHOLE SECTOR REARD

ALL OF 4 SECTOR HAS BEEH RERD DECREMENT THE
COUNT OF THE TOTAL HUMBER OF SECTORS
REMAINING TO BE READ

REARD THE NEXT SECTOR

ENABLE INTERRUPTS

RETURN: READ DISK OPERATION COMPLETED

WE KNOW IT IS NOT A RERD INSTRUCTION
A-REG CONTAINS THE IDINS

IS IT A FORMAT INSTRULCTION

JUMP IF IT IS

I3 IT & WRITE DATA INSTRULULCTION?

JUMP IF IT IS

IS IT A WRITE DELETED DATA IHSTRUCTION®

JURP IF IT ISH'T (THEREFORE. THE INSTRUCTIONW IS &
SEEK. RECALB. OR YERIFY)

A DATA TRANSFER IHSTRUCTION INVOLVING A
WRITE 7O THE DISKETTE

HL CONTAINS THE IOPB ADDRESS

SAYE THE IDPB ADDRESS

HL HOW PODINTS TD IODINS

A-REG CONTRINS THE INSTRUCTION

IS IT A FORHMAT INSTRUCTION

HL NOW PDINTS TO HSEC

JUNP IF IT IS 4 FORMAT INSTRUCTION

WOYE NUMCER OF SECTORS 7O B-REG IF NODT 4
FORHAT IHSTRUCTIGHN

SKIP FORMAY STUFF

SINCE I7 IS A FORMAT INSTRUCTION. MOVE A 1 TO

11 S9LI9G I9[[2uU]

sjdurexy a1Ip /PeaY 919)SI

1S1S-11 5B88B/8H8S MACRO ASSEMBLER., V2 8 RODULE PALGE 4
Loc o8y SEQ SOURCE STATEMENT
163 H THE £-REG (EXPLANARTION: FOR THO BOARD DISK
164 i CONTROLLERS. IT IS POSSIBLE T HAYE AN INVALID
1695 H VALUE IH THE NUMBER OF SECTORS BYTE OF THE
166 i 10PB AND THIS WILL HOT AFFECT THE OPERATION
167 H OF THE CONTROLLERS. FOR THE 8271.HOWEVER,
168) WE HUST HAYE A YALID YALUE.)
169 Isbae:
6184 23 178 INX H : HL HOW POINTS TO THE TADR
6185 23 171 INX H ; HL HOW POINYS TO SADR
6186 23 172 INX H + HL NOW POINYS TO BUFFER ADDRESS
6187 SE 1?73 nov E.n ; LOAD THE LSB 0F BUFFER ADORESS INTD E
6188 23 174 INX H : HL NHOW POINTS TD MSB 0OF BUFFER RODRESS
61689 56 175 MO [P} } LOAD THE MSB OF BUFFER ADDRESS INTO D
618a EB i7e XCHG ; HL HOW POINTS TO FIRST BYTE OF THE BUFFER
6186 @617 177 el 8,WDBC ; LOAD THE WRITE OATA BLOCK COHMAND
6180 C0BC62 178 CALL 1occon ; DUTPUT THE COMMAND
€198 CDB261t i79 CALL I0CRDY ; MAKE SURE 0BB IS CLEAR AND SLAYE IS IDLE
6193 79 188 "oV a,C ; LOAD HUMBER OF SECTORS TGO BE WRITTEH
€194 Dp3CE 181 auT 10c0 3 OUTPUT DaTa TG THE OBB
182 WRLPI1:
6196 FS 183 PUSH [£:1) 5 SAYE THE COUKT OF THE HUMBER OF SECTORS
6197 1688 194 Mvi 0128 ; SET D-REG COUNTER TO NUMBER OF BYTES/SECTOR
185 NRLP2:
6199 CDB261 186 CALL TOCRDY ; MAKE SURE DBB IS CLEAR AND SLAVE IS5 IOLE
€19C 7€ 187 MOV a:n ; LOAD DATA TO BE WRITTEN
€190 D3CH ig8 auT 16C0 ; DUTPUT DATA TO THE DBR
619F 23 189 INX L4 ; POINT TO THE NEXY BYYE OF DATA
éLAl 19 198 DCR 0 ; ARE WE ONHE TRANSFERRING A SINGLE SECTOR?
61Al C29961 191 JNZ WRLP2 } JUMP BACK IF NOT
€1a4 F1 192 POP PSW 3 RESTORE COUNT 0OF HUMBER OF SECTORS
£1A4S5 30 193 DCR Q } ARE WE DONE TRANSFERRING ALL THE SECTORS?
61A6 C29¢61 194 INZ URLP1 3 JUNP BACK IF NOT
&A% 3EBS 19§ H¥ 1 @/ ENABL ; ENABLE IWNTERRUPTS
61A8 D3FF 196 auT cPucC
197 18D3: i ANY DISKETTE INSTRUCTION EXCEPT & READ
198 H IN ANY CASE. TRANSMIT THE I[OPE HOW
61AD EI 199 pop H ; HL CONTAINS THE ADDRESS OF THE I[OPB
¢14E CDBARL 288 CALL TRIOPB } TRANSAHIT THE [0PB
€101 €9 281 RET i RETURN
282 i------
283 IOCRDY:
€182 pBC1 284 IN 10Cs 3 IHPUT 0BB STATUS
61B4 E£A7 285 AN Fd OR DBF OR IBF: TEST FOR SLAVE PROCESSOR RERDY
61Bé6 C2B261 286 IN2Z I0CRODY ; CONTIWUE TO LOOP UNTIL IT IS READY
6189 C9 287 RET
Zas 3 okede ok sk o e e ol i ol ok ok kool ol e sk ok ol o ok ok ok sl ol o o ok e ke i sk vk ol o sk ok ok ol o ok ok o ol ok o oie e sk ol sk ol ol ol Ok e o i ok ok ol ke ol ok ok sk ok
289 :+*
218 :+ PROCEDURE NAME: TRIOPB (TRANSMIT I10PB TO ISD
211 ;% PROCESS: TRANSMIT THE IOPB 7O THE 8271 INTEGRATED SINGLE ODENSITY
212 i+ CONTROLLER THIS PRDCEDURE 1S CALLED ONLTY BY PROCEDURE I[SDDR
213 % INPUT: HL COMTAINS ARDDRESS OF THE IOPB
214 ;* QUTPUT: TRANSMIT THE [OPB
215 i+ HL POINTS TO SADR OF [0PB
216 :+ MODIFIED: A. FLAGS. B, C, D. HL
217 1+

ardurexg 911 /PeaY S12YSIA

11 S9LI2S 23[9

ISIS-II 8d8A/3A85 MACRO

LoC 9By

61BA 4E
61BB B615
61BD CDFAsL
61CE 1684

6iC2 23
61C3 4E

61C4 @616
€1C€ CDFAat
e1L3 19
61CA C2C261

41C0 CDD661

61D E6A4
61D2 CaCD61
€105 €9

6106 B61C
€108 CDESH1
6108 C9

610C BeiB
¢1DE CDESE1
61EL L9

§-a

SEeQ

218
219
228
221
222
223
224
2295
226
227
228
229
238
231
232
233
234
235
236
237
238
239
248
241
242
243
244
245
248
247
243
249
258
251
252
253
254
295
256
257
258
259
268
261
262
263
264
269
266
267
268
269
278
271
272

ASSEMBLER, v2.8 MOGULE PAGE 5

SOURCE STATEMEHWT

;t**l‘*‘***t‘&’i&*“ti#tit#*‘liti***ﬁ‘t*t*tkt********t**t***************

TRIOPB:

MOY c.n : C-REG CONTAINS IDCW
MY B.WPBC i LOARD WRITE PARAMETER BLOCK COMMAHD
CALL 10CDR2 5 ISSUE THE COMMAND ARD I0CHW
NVI D. 4 ! D-REG CORTAINS COUNTER OF 4
TRLOQP:
INX H i HL PDINHTS TD HEXT BYTE IN 10PB
Ho¥ c.n ; T-REG CONTAINS NEXT BYTE IH IOPB
;OWHEN D = 4, € =2 IDINS
3 D = 3, € = HSEC
H b =2, £ = TADR
H b= 1, €L = SADR
BYI 8. WPCC i LOAD CONTINUGTION COMHMAND
CALL 10CDR2 ; ISSUE THE COMMAND AND THE DATh
DCR o
ANZ TRLOOP 5 JUMP IF WE HAYEN’'T FINISHED
TRUAIT: : WAIT FOFR RETURN OF STATUS BYTE
CAaLL DKSTAT ; SEE IF THE BIT INDICATING OPERATION
i COMPLETE IS TURNED OK
ANI 4H
42 TRWAIT i KEEP LOOPING UKNYIL DPERATION COHPLETED
RET ; RETURN DTHERWISE

Bk Rk kR Kk kR R ok R R AR R KRR KR Kk Rk ok ke ko R K K ok ek ok ke ek kR K
Pk

i* PROCEDURE NAME: DK$STAT (DISK STATUS)

t¥ PROCESS: RETURN THE DISK DEYICE STATUS

e INPUT:

i% QUTPUT: A-REG CONTAINS THE STATUS BTYTE

e

ARk Akt OBk ok ok ke ko o ok ok N ok o ok R ek ok ko ek ok Rk Rk
DKSTaAT!

MYl B, RDSTS : LORD THE RDSTS COMMAND
CALL I0CDRI
RET ¢ RETURN WITH THE ISC STATHS BYTE

Bk ko kok ek ko ko ok R ko ok ok ook ok ks ook kR AR o o sk ok ok ok R E Ok R
3

;* PROCEDURE NAME: R$BYTE

;# PROCESS: RETURH WITH THE RESULT BYTE OF & DISK 14D DPERATION

ie INPOT:

i* QUTPUT: A-REG CONTAINS THE RESULT BYTE

e

Aok sk sk ok ek ok ol ok o ok ok o R Ok ok sk o ek ok ook K ok ok 3 ok e ok e ook ok ok KOk

RBYTE:

Hei 8. RRSTS } LOAD THE READ RESULT STATUS COMM&ND

CaLL I0CDRI

RET ¢ RETURK WITH THE ISD RESULT STATUS BYTE
IR R A T e Y T T L L L LT T T T,

i*
;¥ PROCEDURE NARME: R$TYPE

P¥ PROCESS: RETURM THE RESULT TYPE OF 4 DISK DPERATION

¢ IRPUT:

;% DUTPUT: A-REC CONTAINS THE RESULT TYPE

I*

AR L I nmmr

11 SOLISG d9[[oIU]

sdwrexy LI /Py NdYSIQ

9-a

ISIS-11 888@/8885 MACRO

Loc

61E2
61E4

61ES

61ED
61EM
61EC
£1EE
€1F1
61F3
€1F4
61F6
61F8
61F9

é1Fa

e1FD
61FF
6281
6284
6285
6287
6289
6288

0Bd

3ege
ce

cbaCH2

pBC1
E687
FEBL
C2EB61
pece
FS
3EE8S
D3FF
Fi

c9

chace2

pect
E6B?7
C2FD61
79
D3ca
3EHBS
DIFF
co

SEQ

273
274
275
276
277
278
279
288
281
282
293
204
299
286
287
208
289
298
291
292
293
294
295
296
297
298
299
a8
3a1
382
383
3a4
3ds
3ge
38z
3ds
3a9
318
311
312
313
314
31S
316
317
318
319
328
321
322
323
324
329
326
327

ASSEMBLER, ¥2 B MODBULE PAGE 6

SOURCE STATEMENT

RTYPE:
nvi A, 8 ; RETURN & ZERO SINCE ISD DOES NOT REALLY HAVE A RESULT TYPE
RET

R T T T T T T T T Y

J®

e PROCEDURE NAME: [OCDRt

% PROCESS: GET DEVICE STATUS OR DATA FROM DISK

% INPUT: B CONTAINS THE I0C COMMAND (STATUS REQUES OR INPUT

A4 0ATA REQUEST

1* QUTPUT) A-REG CONTAINS THE REQUESTED INFORMATION

t* MODIFIED: A.FLAGS.B

R L L T Ly L T T T P T T
I0CDR1:
OUTPUT °®GET GEYICE STATUS COMMAND" OR

CALL 1gccon J
! “INPUT DATAR COMMAND" TO I0C CONTROL PORT

I0CXKX)
IN iocs ; IHPUT DBB STATUS
ANIT I8F OR OBF OR FH) MASK OFF STATUS FLAGS
cePl 08F ! TEST FOR SLAVE DOME: SOMETHING FOR THE MASTER
JN2 TO0CKKX i IF HOT, CONTINUE TO LOOP
IN 10CI ; OTHERWISE, INPUT THE DATA FROM THE DBB
PUSH PSW ! SAVYE A-REG
net A, EHABL) EHABLE INTERRUPTS
T CPUC
PoP PSW ; RESTORE A-REG
RET
L R T T Ty P T T T T
je

i« PROCEDURE NAME: IOCDR2
;% PROCESS: DUTPUT DATA TO THE DISK
s# INPUT! B CONTARINS THE COMMAND TO OUTPUT THE DATA

ie C CONMTAINS THE DATA TO BE OUTPUT
te QUTPUT:

i« MODIFIED: A,FLAGS.B.C

Y

L T T e T T T
I0CDR2:
DUTPUT “DUTPUT DATA COMMAND" TO 100

CALL 1occom ;
i COHTROL PORT

1oCyYYyY:
IN 10Cs » INPMT DBB STATUS
AN1 IBF OR FB OR O0BF; TEST FOR SLAYE PROCESSOR READY
JNZ 10CYYY } CONTINUE TO LOOP UHTIL IT IS REARDY
MoV f.,C i LOAD DATA TO BE WRITTEH
ouT 10C0 i DUTPUT DARTA TN THE DBB
NV I A/ ENABL ; ENRBLE INTERRUPTS
ouT cPuUC
RET

3ok oo e ok ok ok i ol b o ol o ok ok o ok b o o oo ol oo o e o ok ok o o ool e o o e o ok o o o i sk ol e e o R K

i« PROCEDUYRE MNAME:@ [O0CCOM

i* PROCESS: OUTPUT COMMAND TO THE 10C
s« INPUT: B COMTAINS THE COMMAND

i® QUTPUT:

ardwexs a1LIA /PRy SMANSI

I1 SALIOS 299Ul

L-a

ISIS-I1 B8BGRB/B8A85 MACRO

Loc

628C
62BE

6218
6212
6214
8217
6218
6214

6888

PUBLIC

0Bd

3EBD
D3IFF

DBC1
E6B7
c21862

Dp3C1
co

SYMBOLS

EXTERNAL SYMBOLS

JSER SYMBOLS

BEGIN A 6811
Fa A 8884
toci A @ece
1801 R 6165
RBYTE A 61DC
RECALD & 0883
TRUAIT A €1CO
WRITE +« 20486
ASSEMBLY COMPLETE,

SEQ SOURCE STATEMENT
328 ;« MODIFIED: A.FLAGS
329 =
338
331 ioccom:

332 MV i A:DISABL

333 ouY cPuUC

334 10CZ22:

335 IR I10CS

336 AN

337 JHZ i0czz2z

338 Mo¥ a,8

339 ouT IoCcc

348 RET

341

342 END CLEAR
BUFFER A 6B2C CLEAR A ecBBE
FORMAT A 8R@2 IBF A B882
10c0 A BacaE IOCRDY A 6182
18D2 A 6174 1SD2R A 6182
ROBC A 8819 RDCC A BBLA
RIOPB A 681E RRSTIS @& HB1B
YERIFY A @@8s WOBC A 8817
WRITED A 88@7 WRLPL A 6195

NO ERRORS

ASSEMBLER, v2.8

HODULE

PRGE

A A L L I ™™™,

FB OR IBF OR OBF

H

BLOCK ALL INTERRUPTS

INPUT DBB STATUS
TEST FOR SLAVE PROCESSOR IDLE
LOOP UNTIL IT IS IDLE
LOAD THE COMMAND

QUTPUT COMMAND TO IOC COGNTROL PORT

A AR R A L R Y T S RSttt I I mmMmT,

cPUC
iocc
1ocs
1spa2s
RDPLP1
RTYPE
woCeC
WRLP2

A

R

PODDDPD

88FF
Bact
gBcy
6184
6143
61E2
Baig
6199

DISABL
roccom
IOCXXY
1803
RDLP2
SEEK
vIioeg

DD DD

apap
628C
6lES
61 AD
6148
Baai
6825

DKSTAT
I0CDR!
IDCYYY
ISDDR
RDSTS
TRIOPB
WPBC

P>DO®P D DD

6106
61ET
81FD
6t2C
gaic
616A
ae1s

ENABL
10CDR2
1o0czzz
0BF
READ
TRLOOP
¥PCC

agaes
61FA
6218
aae1
BBB 4
61C2
agte

II S9LIOG 93[[9IU]

apdurexy 231Ip /PeIY 3119YST

CONNECTOR PIN ASSIGNMENTS

APPENDIX E

This appendix identifies the pin assignments for all
user-interface connectors for the Intellec Series II
Microcomputer Development System and defines the
dc drive and load characteristics for the individual
signals. The Multibus interface is internal to the
development system and is available on connectors
J2 through J6 of the card cage. Table E-1 identifies

the Multibus interface pin assignments and tables E-2
and E3 define the Multibus interface dc signal
characteristics for the IPB and IPC, respectively.
Tables E-4 through E-9 define the pin assignments
and dc characteristics for the rear panel peripheral
connectors (J2 through J7).

E-1

Connector Pin Assignments

Intellec Series I1

Table E-1. Multibus Interface Pin Assignments

Board Component Side Board Circuit Side
Pin Mnemonic Description Pin Mnemonic Description
1 GND Signal ground 2 GND Signal ground
3 +5 +5VDC 4 +5 +5VDC
5 +5 +5VDC 6 +5 +5VDC
7 +12 +12VDC 8 +12 +12VDC
9 -5 -5vDC 10 -5 -5VDC
11 GND Signal ground 12 GND Signal ground
13 BCLK/ Bus Clock 14 INIT/ Initialize
15 BPRN/ Bus Priority In 16 BPRO/* Bus Priority Out
17 BUSY/ Bus Busy 18 BREQ/ Bus Request
19 MRDC/ Memory Read Command 20 MWTC/ Memory Write Command
21 IORC/ 1/0 Read Command 22 IOWC/ 1/0 Write Command
23 XACK/ Transfer Acknowledge 24 INH1/ Inhibit (disable) RAM
25 AACK/ Advanced Acknowledge 26 INH2/ Inhibit (disable) ROM
27 BHEN/ Byte High Enable 28 ADR10/ Address
29 CBRQ/** Common Bus Request 30 ADR11/ Extension
31 CCLK/ Constant Clock 32 ADR12/ Lines
33 INTA/* Interrupt Acknowledge 34 ADR13/
35 INT6/ 36 INT7/
37 INT4/ 38 INT5/
39 INT2/ Interrupt Requests 40 INT3/ Interrupt Requests
41 INTO/ 42 INT1/
43 ADRE/ 44 ADRF/
45 ADRC/ 46 ADRD/
47 ADRA/ 48 ADRB/
49 ADRS8/ . 50 ADR9/ .
51 ADR6/ Address Lines 59 ADR7/ Address Lines
53 ADR4/ 54 ADR5/
55 ADR2/ 56 ADR3/
57 ADRO/ 58 ADR1/
59 DATE/ 60 DATF/
61 DATC/ 62 DATD/
63 DATA/ 64 DATB/
65 DAT8/) 66 DAT9/ .
67 DAT6/ Data Lines 68 DAT?/ Data Lines
69 DAT4/ 70 DAT5/
Il DAT2/ 72 DAT3/
73 DATO/ 74 DAT1/
75 GND Signal ground 76 GND Signal ground
77 -10 -10VDC 78 -10 -10VDC
79 -12 -12VDC 80 -12 -12VDC
81 +5 +5VDC 82 +5 +5VDC
83 +5 +5VDC 84 +5 +5VDC
85 GND Signal ground 86 GND Signal ground

* Notimplemented on IPB/IPC
** Only implemented on IPC

Intellec Series 11

Table E-2.

IPB Signal DC Characteristics

Connector Pin Assignments

Current Drive

Current Load

Signal Mnemonic Type Termination
Low (lgy) High (lon) Low (I)) High (1,4)
AACK/ 20mA N/A ~4mA 100uA Open Collector 370Q pullup
ADRO0/-ADR7/ 24mA =15mA —-0.5mA 70uA Three-State 2.2kQ pullup
ADRS8/-ADRF/ 24mA —-15mA —0.45m A 30uA Three-State 2.2kQ pullup
ADR10/-ADR13/ N/A N/A N/A N/A N/A 2.2kQ pullup
BCLK/, CCLK/ 60mA =-3mA -0.5mA 100uA TTL 220/330Q on backptane*
BHEN/ N/A N/A N/A N/A N/A 2.2kQ pullup
BPRN1/-BPRN9/ 20mA -1mA 0 0 TTL None
BREQ1/-BREQ9/ N/A N/A -3.2mA 80uA N/A 1k pullup
BUSY/ 20mA N/A 0 0 Open Collector 1kQ pullup
DATO/-DAT?/ 25mA -10mA -0.5mA 80uA Three-State 2.2k pullup
DAT8/-DATF/ N/A N/A N/A N/A N/A 2.2kQ pullup
INH1/ 15mA N/A -1.6mA 40uA TTL 1kQ puliup
INH2/ 15mA N/A 0 0 TTL 1kQ pullup
INIT/ 60mA —-3mA 0 0 TTL None
INTO/-INT?7/ 40mA N/A -0.2mA 20uA Open Collector 1kQ pullup
IORC/,10WC/ 32mA —-2mA —0.45mA 60uA Three-State 1kQ pullup
MRDC/, MWTC/ 32mA —2mA —1.6mA 40uA Three-State 1kQ pullup
XACK/ 20mA N/A -2mA 50uA Open Collector 5109 pullup

*A150Q/100pF series RC termination network is also installed on the backplane.

E-3

Connector Pin Assignments Intellec Series 11

Table E-3. IPC Signal DC Characteristics

Current Drive Current Load

Signal Mnemonic Type Termination

Low (Ig,) High (o) Low (1) High (I,44)
AACK/ 16mA -5.2mA -0.4mA 20uA Three-State 510Q pullup
ADRO/-ADRF/ 32mA -5mA —0.4mA 50uA Three-State 2.2kQ pullup
ADR10/-ADR13/ N/A N/A -0.4mA 20uA N/A 2.2kQ pullup
BCLK/, CCLK/ 60mA —-3mA —0.5mA 100pA TTL 220/330Q on backplane*
BHEN/ N/A N/A —0.4mA 20uA N/A 2.2kQ pullup
BPRN1/-BPRN9/ 20mA —-1mA 0 0 TTL None
BREQ1/-BREQ9Y/ N/A N/A -3.2mA 80uA N/A 1kQ pullup
BUSY/ 20mA N/A 0 0 Open Collector 1kQ pullup
CBRQ/ 20mA N/A 0 0 Open Collector 1kQ pullup
DATO/-DAT7/ 20mA -5mA —0.95mA 230uA Three-State 2.2k pullup
DAT8/-DATF/ 20mA -5mA —-0.25mA 70uA Three-State 2.2kQ pullup
INH1/ 48mA N/A -0.4mA 0 Open Collector 1kQ bullup
INH2/ 48mA N/A 0 N/A Open Collector . 1kQ pullup
INIT/ 48mA N/A 0 N/A Open Coliector 2.2kQ pullup
INTO/-INT?7/ 40mA N/A -0.2mA 20uA Open Collector 1kQ pullup
IORC/, IOWC/ 32mA -2mA -0.2mA 20pA Three-State 1kQ pullup
MRDC/, MWTC/ 32mA —-2mA —-2mA 50uA Three-State 1k pullup
XACK/ 16mA -5.2mA -0.4mA 20pA Three-State 510Q putlup

*A 150Q/100pF series RC termination network is also installed on the backplane.

E-4

Intellec Series 11

Connector Pin Assignments

Table E-4. SERIAL CH1/TTY Pin Assignments (Connector J2)

Current Drive Current Load
Pin Signal Function
Low (o) High (lon) Low (I;,) High (l;y4)
1 | PROT GND Protective Ground
2 | RxD (RS232) Transmitted Data In —-4mA* 4mA*
3 | TxD (RS232) Received Data Out 6mA -6mA
4 { RTS (RS232) Request to Send 6mA -6mA
5 | CTS (RS232) Clearto Send ~-4mA* 4mA*
6 | DSR (RS232) Data Set Ready —4mA* 4mA*
7 |GND Signal Ground
8 Not Used
9 Not Used
10 Not Used
11 Not Used
12 | RxD (CURRENT LOOP) Transmitted Data In <100uA (ON) | >16mA (OFF)
13 | TxD (CURRENT LOOP) Received Data Out >22mA (ON) | <100uA (OFF)
14 | TTY RDY Same as DSR (pin 6)
15 | TxC Transmit Clock
16 | DTR (CURRENT LOOP) Data Terminal Ready (Reader Control) | <100uA (ON) | >22mA (OFF)
17 { RxC Receive Clock —4mA* 4mA*
18 Not Used
19 Not Used
20 | DTR (RS232) Data Terminal Ready 6mA -6mA
21 | DTRRET Reader control Return (to —12V)
22 Not Used
23 Not Used
24 | RxD RET (CURRENT LOOP) | RxD Return (to +12V)
25 | TxD RET (CURRENT LOOP) | TxD Return (to -12V)

Note: The required mating connector is a Cannon DEC-25P (or equivalent).

*At12.0 volts

Connector Pin Assignments

Table E-5. SERIAL CH2 Pin Assignments (Connector J3)

Intellec Series 11

Current Drive

Current Load

Pin Signal Function
Low (|o|_) ngh (IOH) Low “"_) ngh (IIH)
1 PROT GND Protective Ground
2 TxD Transmitted Data Out 6mA -6mA
3 RxD Received Data In -1.7mA 1.7mA
4 RTS Request to Send 6mA —-6mA
5 CTS Clear to Send -1.7mA 1.7mA
6 DSR Data Set Ready -1.7mA 1.7mA
7 GND Signal Ground
8 Unassigned
9 Not Used
10 Not Used
11 +12V +12V (requires jumper connection)
12 Not Used
13 Not Used
14 Not Used
15 TxC Transmit Clock -1.7mA 1.7mA
16 Not Used
17 RxC Receive Clock -1.7mA 1.7mA
18 Not Used
19 Not Used
20 DTR Data Terminal Ready 6mA —-B6mA
21 Not Used
22 Not Used
23 -12v —12V (requires jumper connection)
24 EXT TxC External Transmit Clock 6mA -6mA
25 +8V +5V (requires jumper connection

Note: The required mating connector is a Cannon DEC-25P (or equivalent).

E-6

Intellec Series I1 Connector Pin Assignments

Table E-6. PT PUNCH Pin Assignments (Connector J4)

Current Drive Current Load
Pin Signal Function Termination
Low (lo.) | High(lon) | Low (l,) [High (i)

1 DATATRACK 1/ Output Data Bit 1 15mA —-1mA

2 DATATRACK 2/ Output Data Bit 2 15mA -1mA

3 DATA TRACK 3/ Output Data Bit 3 15mA -1mA

4 DATA TRACK 4/ Output Data Bit 4 15mA -1mA

5 DATA TRACK 5/ Output Data Bit5 15mA -1mA

6 DATA TRACK 6/ Output Data Bit 6 15mA —-1mA

7 DATATRACK 7/ Output Data Bit 7 15mA -1mA

8 | DATATRACK 8/ Output Data Bit 8 15mA -1mA

9 Not Used
10 DIRECTION Direction Control 1kQ pullup
11 PUNC COMMAND/ Punch Command 16mA —800uA
12 PUNCH READY/ Punch Ready —0.25mA 40uA 4709 pullup
13 SYSTEM READY/ System Ready —-0.25mA 40uA 470Q pullup
14 INPUT MODE SELECT Select Input Mode Ground
15 OUTPUT MODE SELECT | Select Output Mode Ground
16 CHASSIS GND Chassis Ground
17 CHASSIS GND Chassis Ground
18 GND Ground
19 Not Used
20 Not Used
21 Not Used
22 Not Used
23 GND Ground
24 Not Used
25 GND Ground

NOTE: *Slash (/) after signal mnemonic denotes that signal is true when <0.4V.
The required mating connector is a Cannon DEC-25P (or equivalent).

Connector Pin Assignments

Table E-7. PT READER Pin Assignments (Connector J5)

1

Intellec Series 11

Current Drive Current Load
Pin Signal Function Termination
Low (lgy) High (Iop) Low (I;) High (I,y)
1 DATATRACK 1/ input Data Bit1 —-0.25mA 40uA
2 DATA TRACK 2/ Input Data Bit 2 -0.25mA 40uA
3 DATA TRACK 3/ Input Data Bit 3 —0.25mA 40uA
4 DATA TRACK 4/ Input Data Bit4 -0.25mA 40uA
5 DATA TRACK 5/ Input Data Bit 5 —-0.25mA 40uA
6 DATATRACK 6/ Input Data Bit 6 -0.25mA 40uA
7 DATATRACK 7/ Input Data Bit 7 ~-0.25mA 40uA
8 DATA TRACK 8/ Input Data Bit 8 -0.25mA 40uA
9 DATA READY/ Data Ready -0.25mA 40uA 470Q pullup
10 Not Used
" GND Ground
12 GND Ground
13 GND Ground
14 SYSTEM READY/ System Ready —0.25mA 40uA 470Q puilup
15 Not Used :
16 DR/ Paper Tape Drive Right 16mA —800uA
17 DL/ Paper Tape Drive Left 16mA —800uA
18 Not Used
19 Not Used
20 Not Used
21 Not Used
22 Not Used
23 Not Used
24 GND Ground
25 CHASSIS GND Chassis Ground

NOTE: *Slash (/) after signal mnemonic denotes that signal is true when <0.4V.

E-8

The required mating connector is a Cannon DEC-25P (or equivalent).

Intellec Series 11

Connector Pin Assignments

Table E-8. LINE PRINTER Pin Assignments (Connector J6)

Current Drive Current Load
Pin Signal Function Termination
Low(lg) | High(lgy) | Low(l) | High(ly)
1 DATA1 Qutput Data Bit 1 15mA -1mA
2 DATA?2 Output Data Bit 2 15mA —-1mA
3 DATA 3 Output Data Bit 3 15mA -1mA
4 DATA4 Output Data Bit 4 15mA —-1mA
5 DATAS Output Data Bit 5 15mA —-1mA
6 DATA®6 Output Data Bit 6 15mA —-1mA
7 DATA7 Output Data Bit 7 15mA —-1mA
8 DATAS8 Output Data Bit 8 15mA -1mA
9 GND Ground
10 GND Ground
11 GND Ground
12 GND Ground
13 Not Used
14 LPT DATA STROBE/ Data Strobe 16mA -800uA
15 GND Ground
16 || ACKNOWLEDGE / Data Acknowledge -0.25mA 40uA 470Q pullup
17 BUSY/ Printer Busy -0.25mA 40uA 470Q pullup
18 Not Used
19 LPTCTL 1/ Control Line 1 18mA —800uA
20 LPTCTL 2/ Control Line 2 16mA —800uA
21 Not Used
22 SELECT/ Printer Select -0.25mA 40uA 470Q puliup
23 Not Used
24 Not Used
25 CHASSIS GND Chassis Ground
NOTE: *Slash (/) after signal mnemonic denotes that signal is true when <0.4V.

The required mating connector is a Cannon DEC-25P (or equivalent).

Connector Pin Assignments

Table E-9. UPP Pin Assignments (Connector J7)

Intellec Series 11

Current Drive Current Load
Pin Signal Function Termination
Low (lo,) | High(lon) | Low (1) | High(l,)
1 GND Ground
2 | PPACK/ | PROM Programmer Acknowledge —0.5mA 80uA 4709 pullup
3 | PPRC1/ PROM Programmer Read Control Line 1 16mA —800uA
4 PPRCO/ PROM Programmer Read Control Line 2 16mA —800uA
5 | PRD7/ PROM Read Data Bit7 —0.25mA 40uA
6 | PRD6/ PROM Read Data Bit 6 -0.25mA 40uA
7 | PRD5/ PROM Read Data Bit 5 -0.25mA 40uA
8 | PRD4/ PROM Read Data Bit 4 -0.25mA 40uA
9 | PRD3/ PROM Read Data Bit3 -0.25mA 40uA
10 | PRD2/ PROM Read Data Bit 2 —-0.25mA 40uA
11 PRD1/ PROM Read Data Bit 1 -0.25mA 40uA
12 | PRDO/ PROM Read Data Bit 0 -0.25mA 40uA
13 | GND Ground
14 | INIT/ Initialize 16mA —800uA
15 | PWD7/ PROM Write Data Bit 7 15mA -1mA
16 | PWD6/ PROM Write Data Bit 6 15mA -1TmA
17 | PWD5/ PROM Write Data Bit 5 15mA -1mA
18 | PWD4/ PROM Write Data Bit 4 15mA -1mA
19 | PWD3/ PROM Write Data Bit 3 15mA -1mA
20 | PWD2/ PROM Write Data Bit 2 15mA -1mA
2 PWD1/ PROM Write Data Bit 1 15mA -1mA
22 | PWDO/ PROM Write Data Bit 0 15mA -1mA
23 | PPWC2/ | PROM Programmer Write Control Line 2 16mA —800uA
24 PPWC1/ | PROM Programmer Write Control Line 1 16mA —800uA
25 | PPWCO/ | PROM Programmer Write Control Line 0 16mA —800uA
Note: *Slash (/) after signal mnemonic denotes that signal is true when <0.4V

The required mating connector is a Cannon DEC-25P (or equivalent).

- ®
In Intellec® Series Il Microcomputer Development System Hardware Interface Manual
9800555-02

REQUEST FOR READER’S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

cITy STATE ZIP CODE

Please check here if you require a written reply. [J

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All

comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTACLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

NO POSTAGE
NECESSARY
IF MAILED
INU.S.A,

intel
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080
Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	replyA
	replyB
	xBack

