
INTELLEC® SERIES III
MICROCOMPUTER

DEVELOPMENT SYSTEM
POCKET REFERENCE

Order No. 121610-002

L'::=================::::J DITU~®
Ce) Intel Corporation, 1980, 1981

TABLE OF CONTENTS

PAGE
Conventions ... 1
Device Filename Format 1
Control Characters 2
ISIS-II Console Commands 2
DEBUG-S6 Commands 5
Monitor Commands 12
ISIS-II Error Messages 14
RUN Program Error Messages 15
DEBUG-S6 Error Messages 15
Console Command Interface Errors 16
Hexadecimal-Decimal Conversion 17

All Mnemonics Copyright © Intel Corp., 1979, 1981

ii

CONVENTIONS:

UPPERCASE-must be entered as shown
lower case-variable information
[]-indicate optional field
... -field may be repeated
{}-one and only one entry must be selected
{} ... -at least one entry must be selected

DEVICE FILENAME FORMAT

:device:filename.extension ----- --L L 1-3 alphanumeric characters
or wildcards'

1-6 alphanumeric characters
or wildcards'

2 pre-established alphanumeric characters within
colons

'wildcards:
An asterisk (') matches any sequence of characters.
A question mark (?) matches any single character.

System Designated Device Names:

:FO: thru :F9: Directory on the disk in drive 0 ... 9
(shown as :Fn: in command syntax)

:TI: Teletypewriter keyboard
:TO: Teletypewriter printer
:TP: Teletypewriter punch
:TR: Teletypewriter reader
:VI: Video terminal keyboard
:VO: Video terminal screen
:HP: High-speed paper tape punch
:HR: High-speed paper tape reader
:LP: Line printer
:CI: Console input
:CO: Console output
:BB: Byte bucket

CONTROL CHARACTERS

RUBOUT Deletes preceding character

CNTL-C Terminates 8086 program execution and enters
RUN or ISIS-II

CNTL-D Interrupts 8086 program execution and enters
DEBUG-86

CNTL-E In a SUBMIT file, switches the console input
from the command sequence file to the initial
system console

CNTL-P Allows literal entry of control characters
(including itself)

CNTL-Q Resumes console display

CNTL-R Redisplays current input line as modified

CNTL-S Suspends console display

CNTL-X Deletes all characters since last carriage return

CNTL-Z Enters end-of-file

ISIS-II CONSOLE COMMANDS

Disk Maintenance

FORMAT-format a new disk and copy files
FORMAT :Fn:/abel [switches] <cr>
where label = name of disk

switches = A-copy all files
S-copy files with system attribute

set
FROM n-identifies disk containing

files needed for formatting

IDISK-format a new disk as a basic system or non­
system disk
IDISK :Fn:/abel [switches] <cr>
where label = name of disk

switches = S-copy files needed for basic
system disk

P-specifies single drive mode
FROM n-identifies disk containing

files needed for formatting

FIXMAP-map bad sectors on a hard disk
FIXMAP drive <cr>

where drive = number of hard disk unitO-1

2

Subcommands are:
MARK disk-address <cr> Change the known state of

a sector from good to bad.
FREE disk-address <cr> Change the known state of

a sector from bad to good.
LIST [filename] <cr> List all known bad sectors.
COUNT <cr> List the number of known

bad sectors.
RECORD <cr> Record changes specified

by MARK and FREE.
OUIT <cr> Exit to ISIS-II without

recording changes.
EXIT <cr> Record changes and exit

to ISIS-II.
where disk-address is given as:

track sector [T]
track = 0-199 sectar= 1-144
T = process 36 sectors at once

File Control

ATTRIB-change and lor display the attributes of a disk file
ATTRIB [:Fn:)filename [attriblist] [a] <cr>
where attribllst is: 10 or 11-invisible

WO or W1-write protect
FO or F1-format
SO or S1-system

COPY-copy a file from one device to another
COPY [:Fn:]infile [, ...] TO ~ [:Fn:][outfile] t [switches] <cr>
where switches are: (:devlce: \

S = system-copy only files with S attribute
N = non system-copy only files without F or S

attribute
P = pause-single drive mode
a = query-query before each copy
C = attribute-create autfile with same

attributes as infile
B = brief-delete, then recreate autfile with

new data
U = update-open outfile for update. Length

changes only if autfile is extended

HDCOPY-copy the contents of one hard disk to another

{
indriVe TO autdrive }

HDCOPY BACKUP <cr>
indrive specifies the source disk. autdrive specifies the
destination disk. The BACKUP option lets you backup a
removable hard disk platter.

DELETE-remove references to a file from the directory
DELETE [:Fn:]filename [a] [, ... [0]] [P] <cr>
where a = query-query before each deletion

P = pause-single drive mode

3

DIR-output the names of and information about the files
listed within the disk directory
DIR [FOR filename][TO listfile] [switches.] <cr>
where switches are:

0-9 -indicates drive number
I -invisible-list invisible files
F -fast-list only name.ext of files
P -pause-single drive mode
o -single column display
Z -show number of sectors in use

RENAME-change the name of a disk file
RENAME [:Fn:]oldname TO [:Fn:] newname <cr>
Note-:Fn: must be the same in oldname and
newname.

VERS-display ISIS utility version numbers
VERS [:Fn:] filename <cr>
where filename is the name of the ISIS file on :Fn:

whose version number is to be
displayed.

8080/8085 Program Execution

filename-execute the named program
filename [parameters] <cr>
where filename is the name of an 8080/8085 absolute

object module to be executed.
parameters are parameters needed by

filename

DEBUG-load an 8080/8085 program and give control to the
Monitor
DEBUG [[:Fn:] filename [parameters]] <cr>
where filename is the name of the absolute object

module to be debugged.
parameters are parameters needed by

filename

SUBMIT-enter a file that contains commands to be
executed

4

SUBMIT [:Fn:] filename [(parameter [, ...])9] <cr>
where filename is the name of the file containing the

command sequence definition. If
extension is omitted, SUBMIT looks
for the default extension .CSD.

parameter specifies real values that replace
formal parameters in the
command sequence definition.

8086 Program Execution

RUN-activate the 8086 execution mode
RUN [[:Fn:] filename [parameters][; comments]] <cr>
where filename is the name of an executable 8086

program. If you enter no extension, the
system assumes a default extension of
.86. If you enter an extension (or a
period and no extension, as in
MYPROG.), the default extension is not
assumed.

parameters are parameters needed by filename.

WORK-change/display workfile default drive
[RUN] WORK [:Fn:] <cr>
where :Fn: specifies the drive n to be set as the default

drive for temporary workfiles. Initial system
default is :F1:. If :Fn: is not specified the
current default is displayed.

DATE-change/display system date
[RUN] DATE [nn/nn/nn] <cr>
where nn = 00-99 specifying the date desired. If date is

not specified, the last date entered is
displayed.

EXIT-transfer control from RU N to ISIS-II
EXIT <cr>

DEBUG-86 COMMANDS

Utility Commands

DEBUG-Transfer Control to DEBUG-S6

[:Fn:]RUN DEBUG [[:Fn:]filename [parameters]] <cr>

where filename is the name (including extension) of a
program that is a valid absolute, PIC, or L TL 8086 object
module. If an extension (or name plus period) is not
specified, default extension of .86 is assumed.

parameters are ASCII characters (separated by
commas or spaces) representing variable data required
by your program.

EXIT-Exit DEBUG-S6

EXIT <cr>

5

LOAD-Load 8086 Object Code

LOAD [:Fn:]filename [{~g~~~BOL} ...] <cr>

where filename is the complete name of a valid
absolute, PIC or L TL 8086 object module. No default
extension is assumed.

NOSYMBOL prevents program symbol table from being
loaded.

NOLINE prevents program line number table from
being loaded.

Execution Commands

GO-Execute 8086 Instructions

GO [FROM addr]

{
[FOREVER]
[TILL break-addr [OR break-addr]]
[TILL break-reg [OR break-reg]]

} <cr>

where FROM addr specifies the address of the first
instruction to be executed. If it is omitted, the CS:IP
address is used. Use the form nnnn:nnnn, as in 800:0
(leading zeros need not be entered).

break-addr is an integer expression entered as a
pointer that references a 20- bit execution address.

break-reg is BRO or BR1.

GR Command

Display form:

GR<cr>

Change form:

GR=

{
FOREVER }
TILL break-addr [OR break-addr]
TILL break-reg [OR break-reg]

<cr>

where break-addr is an integer expression entered
as a pointer that references a 20- bit execution address.

6

break-reg is BRO or BR1 (or BR for both break­
point registers).

STEP-Execute a Single Instruction

STEP [FROM address] <cr>

where FROM address is the address where single step
execution is to begin. If it is omitted, the CS:IP address
is used. Use the form nnnn:nnnn, as in 800:0 (leading
zeros need not be entered).

Change Commands

Change Register-Change Content of a Register

register = change-exp <cr>

where register is RAL, RAH, RBL, RBH, RCL,
RCH, RDL, RDH, RAX, RBX, RCX, RDX, SP, BP, SI, 01,
SS, CS, OS, ES, IP, RF, CFL, PFL, AFL, ZFL, SFL, TFL,
IFL, DFL, or OFL.

change-exp is the new contents of register.

Change Memory-Change Contents of Memory
Locations

memory-type addr {[TO end-addr] }
[LENGTH n]

change-exp [, ...]19<cr>

where memory-type is BYTE, WORD, SINTEGER,
INTEGER, or POINTER.

addr is a memory location entered as a pointer
value containing a base and a displacement.

TO end-addr specifies the upper limit of a range of
memory.

LENGTH n specifies a number of bytes, words, or
pointers (depending on memory-type).

change-exp is the new contents of the specified
memory location and is a pOinter value if memory­
type = pointer; otherwise, it is an integer v~lue.

7

Change Port..,..Change Contents of VO Ports

port-type addr {[TO end-addr] } =
[LENGTH n]

change-exp [, ...]19<cr>

where port-type is one of the following: PORT, WPORT.

addr is the address of an 8086 port and is an integer
value between 0 and 65,535. .

TO end-addr specifies the upper limit of a range of
port addresses and is an integer value between 0 and
65,535.

LENGTH n specifies an integer value giving the number
of port or word port addresses.

change-exp is the new contents of the specified port.

Display Commands

Display Register..,..Display Contents of 8086
Registers

{
register [, ...]19}
REGISTER . <cr>

FLAG

Up to 19 register keywords can be listed (see Change
Memory Command.)

REGISTER displays all 16-bit 8086 registers.

FLAG displays all1-bit status flags.

Display Memory-Display 8086 Memory

8

memory. -type address { [TO end-.address] } <cr>
[LENGTH n]

where memory-type is BYTE, WORD, SINTEGER,
INTEGER, or POINTER.

address is a memory location entered as a pointer
value containing a base and a displacement.

TO end-address specifies the upper limit of a range of
memory.

lENGTH n specifies a number of bytes, words, or
pointers (depending on memory-type).

Display Memory-Display 8086 Memory in ASM
Form

{
[TO end-address] }

ASM address [lENGTH n] <cr>

where memory-type is BYTE, WORD, SINTEGER,
INTEGER, or POINTER.

address is a memory location entered as a pointer
value containing a base and a displacement.

TO end-address specifies the upper limit of a range of
memory.

lENGTH n specifies a number of bytes, words, or
pointers (depending on memory-type).

Display Port-Display 1/0 Port Contents

port-type address {[TO end-address] } <cr>
[lENGTH n]

where port-type is either PORT or WPORT.
address is the address of an 8086 port and is an integer
value between 0 and 65,535.

TO end-address specifies the upper limit of a range of
port addresses and is an integer value between 0 and
65,535.

lENGTH n specifies an integer value giving the number
of port or word port addresses.

Display Boolean-Display Boolean Value

BOOl expression <;:cr>

where expression is evaluated to a boolean value. If the
least significant bit of the result equals 1, the boolean
value is TRUE; otherwise the boolean value is FALSE.

9

Display Stack-Display User Stack Contents

ST ACK expression <cr>

where expression defines the number of words on the
user stack to be displayed.

EVALUATE-Display Integers in Five Bases

EVALUATE expression [SYM BOLICALL Yj <cr>

whereexpression is an integer expression.

SYMBOLICALLY displays each numeric value output by
the command as a symbol or a source statement, plus
a remainder.

Symbol Manipulation Commands

Define Symbol-Enter New Symbol

DEFINE [.. module j.symbol = change-exp [OF memory-
typej<cr> .

where module is the name of an existing program
module in which symbol is to be located.

symbol is a user-defined symbol to be entered into the
symbol table.

change-exp is the address of statement labels or
variables, or the value of a constant.

OF memory-type specifies any of the following: BYTE,
WORD, SINTEGER, INTEGER, or POINTER.

Display Symbols-Display One or More Symbols

{ SYMBOL } <cr>
[.. modulej.symbol [.symbol] ...

10

where SYMBOL causes the entire DEBUG-86 symbol
table to be displayed.

symbol is the name of an existing symbol.

Display Lines-Display Statement Numbers

{ LINE } <cr>
[.. module]#statement-number

where LINE displays all statement numbers in the
current domain.

statement-number is the source statement number
having a default decimal suffix.

Display Modules-Display Module
Names

MODULE<cr>

Change Symbols-Change Value of a Symbol

[.. module].symbo/[.symbol ...] ... =
change-exp [OF memory-type]<cr>

Remove Symbols Command

{
[.. mOdUle].SymbOI [.symbol ...]19 ""}<cr>

REMOVE SYMBOL
MODULE .. module [, .. module] ...

where up to 19 modules and 19 symbols can be listed.

SYMBOL deletes entire current DEBUG-86 symbol
table.

MODULE deletes all symbols and lines of the named
module from the symbol and statement number tables.

Set Domain Command

DOMAIN .. module <cr>

where DOMAIN establishes a default module for source
statement number references.

module is the name of an existing program module.

11

Compound Commands

REPEAT Command

REPEAT<cr>

[
command<cr>]
WHILE boolean-expression <cr> ...
UNTIL boolean-expression <cr>

ENO<cr>

COUNT Command

COU NT arithmetic-expression <cr>

[
command<cr>]
WHILE boolean-expression <cr> ...
UNTIL boolean-expression <cr>

ENO<cr>

IF Command

IF boolean-expression [THEN]<cr>
[command<cr>] ...

[ORIF. boolean-expression [THEN]<cr>] ...
[command<cr>] ...

[ELSE<cr>]
[command<cr>] ...

ENO<cr>

MONITOR COMMANDS

Monitor 1/0 Configuration Commahd
A-Assign Command

12

A logical-device = physical-device <cr>
Possible values of logical and physical device are:
Logical Device Physical Device
C or Console T or TTY

C orCRT
B or BATCH
1 (reserved)

R or Reader

P or Punch

L or List

Q-C.uery Command
Q<cr>

TorTTY
P or PTR
1 or 2 (reserved)
TorTTY
P or PTP
1 or2 (reserved)
TorTTY
CorCRT
Lor LPT
1 (reserved)

Memory Control Commands
D-Display Memory

D start-address, end-address <cr>
F-Fill Memory

F start-address, end-address, constant <cr>
M-Move Memory

Mstart-address ,end-address ,destination-address <cr>
S-Substitute Memory

S address, [data-byte)[,[data-byte m ...) <cr>

Register Commands
X-Register Command

Display Form: X <cr>
Modify Form:
Xregister, [data)[, [data))[, ...) <cr>

Paper Tape I/O Commands
R-Read

Rbias <cr>
W-Write

Wstart-address, end-address <cr>
E-End of File

Eentry-point <cr>
N-Null

N <cr>

Execute Command
G-Execute Command

G[start-address)[,breakpoint 1 [,breakpoint 2)) <cr>

Utility Command
H-Hexadecimal add and subtract

Hnumber 1 , number 2 <cr>

13

ISIS-II ERROR MESSAGES

1. Fatal error. Too few buffers were allocated.
2. Illegal active file table number.
3. Fatal error. Active file table is full.
4. Incorrectly specified filename.
5. Unrecognized device name.
6. Attempt to write to input device.
7. Fatal error. The disk is full.
8. Attempt to read from output device.
9. Disk directory is full.

10. Pathname is not on same disk.
11. File already exists.
12. File is already open.
13. No such file.
14. Write-protected file encountered.
15. Fatal error. ISIS overwrite.
16. Fatal error. Bad load format.
17. Not a disk file.
18. Illegal ISIS commands.
19. Attempted seek on non-disk file.
20. Attempted back seek too far.
21. Can't rescan.
22. Illegal access mode to open.
23. Missing filename.
24. Fatal error. Disk input/output hardware error. See note below.
25. Illegal echo file.
26. Illegal attribute identifier.
27. Illegal seek command.
28. Missing extension.
29. Fatal error. Premature EOF.
30. Fatal error. Drive not ready.
31. Can't seek on write only file.
32. Can't delete open file.
33. Fatal error. Illegal system call parameter.
34. Fatal error. Invalid return switch in a LOAD system call.
35. Seek past EOF.

When error 24 occurs, an additional message is displayed:

STATUS=OOnn
D=x T=yyy S=zzz

where x represents the drive number, yyy the track address, zzz the
sector address, and where nn has the following meanings:

For flexible disks:

01 Deleted record
02 Data field CRC error
03 Invalid address mark

14

04 Seek error
08 Address error
OA - ID field CRC error
OE
OF
10
20
40
80

No address mark
Incorrect data address mark
Data overrun or data underrun
Attempt to write on Write Protect
Drive has indicated a Write error
Drive not ready

For hard disks:

01 ID field miscompare
02 Data field CRC error
04 Seek error
08 Bad sector address
OA ID field CRC error
OB Protocol violations
OC Bad track address
OE No ID address mark or sector not found
OF Bad data field address mark
10 Format error
20 Attempt to write on write-protected drive
40 Drive has indicated a write error
80 Drive noi ready

RUN PROGRAM ERROR MESSAGES

101. HARDWARE NOT RESPONDING (fatal error)
102. INVALID SYNTAX
1ro. COMMAND LINE TOO LONG
104. INSUFFICIENT MEMORY TO LOAD
105. MISMATCHED SOFTWARE/FIRMWARE
106. ERROR 106 USER PC mmmm
107. ILLEGAL LOAD ADDRESS
108. INVALID OBJECT FILE
117. UNRESOLVED SYMBOLS (warning)
118. RAM FAILURE (warning)
119. ROM CHECKSUM ERROR (warning)

DEBUG-86 ERROR MESSAGES

120. Syntax error
121. Invalid token
122. No such line
123. Inappropriate number
124. Partition bounds error
125. Symbol already exists
126. Symbol does not exist
127. Memory failure

15

133. Null string error
134. Memory overflow
135. Stack overflow
136. Command too complex
137. Module does not exist
139. Excessive data
141. Unsuitable execute file
142. Line too long
143. Too many partitions
147. Pointer value required
148. Integer value required
149. Differing bases

CONSOLE COMMAND INTERFACE ERRORS
201. Unrecognized switch
202. Unrecognized delimiter
203. Invalid syntax
206. Illegal disk label
208. Checksum error
209. Relo file sequence error
210. Insufficient memory
211. Record too long
212. Illegal relo type
213. Fixup bounds error
214. Illegal SUBMIT parameter
215. Argument too long
216. Too many parameters
217. Object record too short
218. Illegal record format
219. Phase error
220. No EOF r~cord in object module file.
221. Segment overflow during LIN K operation
222. Unrecognized record in object module file
223. Fixup record pointer is incorrect
224. Illegal record sequence in object module file in LINK
225. Illegal module name specified
226. Module name exceeds 31 characters
227. Command syntax requires left parenthesis
228. Command syntax requires right parenthesis
229. Unrecognized control specified in command
230. Duplicate symbol found
231. File already exists
232. Unrecognized command
233. Command syntax requires a TO clause
234. Filename illegally duplicated in command
235. File specified in command is not a library file
236. More than 249 common segments in input files
237. Specified common segment not found in object file
238. Illegal stack content record in object file
239. No module header in input object file"
240. Program exceeds 64K bytes

16

HEXADECIMAL-DECIMAL CONVERSION

BYTE BYTE
HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 C 12
D 53,248 D 3,328 D 208 D 13
E 57,344 E 3,548 E 224 E 14
F 61,440 F 3,840 'F 240 F 15

17

3065 Bowers Avenue, Santa Clara, California 95051
(408) 987-8080

Printed in U.S.A.
A941 / 483 / 5K DD

