"'DEVELOPMENT
SYSTEMS

121632-O0]

A Qude o
INTELLEC" SERIES Il
MICROCOMPUTER

DEVELOPMENT
SYSTEMS

121632-001

Copyright © 1981 intel Corporation
intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP intel Megachassis
CREDIT Intelevision Micromap
i Intellec Muitibus
ICE iRMX Multimoduie
iCS iSBC PROMPT
im iSBX Promware
Insite Library Manager RMX/80
Intel MCS System 2000
UPI
uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

PREFACE

This book is a welcome mat for the Intellec Series lli Microcomputer Development System. It is
also an introduction to the world of software development for micro-applications. We assume
that you have some basic knowledge of microprocessors and their applications, but few
demands are made on that knowledge. We do not assume that you have had exposure to any
particular programming language. This book can be useful to beginners, and even
sophisticated readers should find it rewarding to skim through.

This book is a tutorial for using the Series lil system, especially the ‘8086 side’’ of it (the 8086
execution environment). The ‘8085 side’’ is similar to a Series Il system, which is described in
A Guide to Intellec Microcomputer Development Systems by Daniel McCracken.

We lead you through a typical software development process by providing an example of a
micro-application: a climate control system for a building. To keep the example easy to
understand, we only describe the software development effort, assuming that the hardware for
the climate system is being developed simultaneously. In fact, we illustrate some typical prob-
lems in software development that occur as a result of changing hardware designs.

Chapter 1 gives an overall view of the Series Il system and the application example. {t also
describes top-down design, stepwise refinement, modular programming, design considera-
tions, and how to choose the proper software language for each module.

Chapter 2 is a step-by-step tutorial on the Series Ill operating system, showing typical
operations.

Chapter 3 is a step-by-step tutorial on CREDIT, and it incidently shows the process of stepwise
refinement of the application’s main control algorithm.

Chapter 4 describes Pascal-86 programming, structured and modular design, parameter pass-
ing, data typing, and the Pascal-86 compiler.

Chapter 5 describes PL/M-86 programming, and it shows a sample PL/M-86 routine used in the
application. It also briefly describes the PL/M-86 compiler and the 8086/8087/8088 Macro
Assembler.

Chapter 7 describes program debugging with DEBUG-86 and hardware emulation with the
ICE-88 emulator.

There is also a bibliography of related material, and a list of Intel manuals supplied with the
Intellec Series Il Microcomputer Development System.

i

CONTENTS

Page

CHAPTER 1: THE SOFTWARE DEVELOPMENTPROCESScoviiiniainnnn. 1
Defining the Product’s Software i 3
Choosing the Software DevelopmentToolst 5
BN GUAG S i e e e e e 5
Modular Programming e 6
Debugging and In-Circuit Emulation 7
Using Your Final ProducCt i e e 8
CHAPTER2: OPERATING THESERIESHISYSTEMcoiiiiinin.. 9
Turning On YOUr Sy S emM L e e e 9
The Directory Listing ... e e e e 10
Formatting DisKS e 13
Hard Disk SUDSYStem USers ...t e e s 13
Flexible Disk USers ... e e 14
Filenames, Pathnames, and File Attributes 15
Renamingand Deleting Files i 18
Copying Files to Disks and DeVICESottt e 19
Executing Commands and Programs i e e, 22
Summary of the Series Ill Operating System i i 25
CHAPTER3: TEXTEDITING ... i e 27
Creatinga TextFileand inserting Text ... i e 28
Moving Around inthe TextFile L. 2
Finding Old Text and Substituting New Text i 33
Macros and Command fteration i e 36
Ending a Tex{ Editing Session and Managing Backup Filesout. 38
Displayingand Printing Text Files i et 39
From Textto Programt e e 39
CHAPTER4: PROGRAMMING INPASCAL-86ouieiiiiniiiiiaaaaaeiennn., 41
Translating Pidgin PascaltoPascal-86 41
Pascal-86 Data TyPesS ... s 45
Another Look at Modularizing and Hiding Information 46
Passing Data to Other Modules—Parameter Passing Techniques 48
The Interface Specification i e 49
Test Version of the Climate Control System i 49
The Pascal-86 COMPIlEr\ttt ettt et et e 55
SUMI M A Y ottt ettt et e et e et e e e e e e 61
CHAPTER5: PROGRAMMING INOTHERLANGUAGESccoiiiens 63
Another Look at Choosing Languages forModules i 63
Programming in PL/IM-86 e 64
Programming in 8086/8087/8088 Assembly Languagec.oviiiiiiiiennaannnn 69

Programming For the Series H Environment i 70

vi

CONTENTS (Cont’d.)

PAGE
CHAPTER 6: USING UTILITIES TO PREPARE EXECUTABLE PROGRAMS 75
Preparing a Library of ProgramModules ... 76
Linking Modules to Form aLocatable Programt 77
Locating and RUnning Programst e e 78
CHAPTER7: DEBUGGING AND EXECUTING PROGRAMS 81
Using DEBUG-86 For Symbolic Debugging ... 82
Using ICE-88, an In-Circuit Emulator ... i e 92
Execution ENVIFONMENtS e 95
BIBLIOG RAPHY . e 97
IN D EX o e e e 99
THE INTELLEC® SERIES 1l PUBLICATIONS LIBRARY
ILLUSTRATIONS
FIGURE TITLE PAGE
1-1 Developing Software on the Series liSystem, 2
1-2 Block Diagram of Our Climate Control Systemt 3
1-3 Nassi-Schneiderman Chart for Our Climate Control Software 4
31 The CREDIT Video Display ..ot e 28
3-2 The SerieslllKeyboard ... i 29
4-1 Algorithm for the Climate Control MainModule 42
4-2 First Try at Codingthe Main Program oo iiiiiiii i 43
4-3 Second Try at Coding the Main Program ittt 47
4-4 The Interface Specification 50
4-5 Test Version of Our Climate Control Systemo iut. 51
4-6 Lisingsof OurTestModules i 57
5-1 The PL/M-86 Typed Procedure THERMOSTATSSETTINGSFROMSPORTS 64
5-2 The PL/M-86 Typed Procedures
TEMPSDATASFROMSPORTS and INTERPOLATEt 66
5-3 Listing of PLMDATA withthe CODE Control, 7
6-1 Using Utilities to Prepare Executable Programsoooov... 75
6-2 Main Module with Subordinate Modules o i 77
7-1 Climate Control Program Listingand Sample Runot 85
7-2 Listing of the Modified PLMDATAModuleot 92
7-3 Possible Execution Paths for Pascal-86 Programs 96

CHAPTER 1
THE SOFTWARE DEVELOPMENT PROCESS

“Hardware is computing potential; it must be harnessed and driven by software to be useful.”
--Andrew S. Grove, President of Intel Corp.

The Intellec Series Il Microcomputer Development System is more than a keyboard, a video
display, an integral disk drive, and a box with two microprocessors. It is a useful tool for
designing microcomputer software for the iAPX 86,88 processor family or for the 8080/8085 pro-
cessors. You can choose the appropriate ianguage (PL/M, FORTRAN, Pascai, macro-
assembiy ianguage) for each piece of software, debug these pieces separateiy, and iink them
in different ways for different applications. The applications can then be run on this system or

any other system that is based on the iAPX 86,88 or 8080/8085 families of processors.

Intel’s iIAPX microprocessor family provides an architecture best suited for modular software
development using high-level languages. The Intellec Series lil Microcomputer Development
System takes full advantage of this architecture to provide a more cost effective programming
environment that guarantees a shorter development cycle.

To design a product that will contain a microprocessor, you must coordinate two efforts: the
design of the hardware that surrounds the microprocessor, and the design of the software that
controls the microprocessor. Hardware development involves planning the interaction of the
microprocessor, the associated memory and peripheral circuits, and the specialized
inputioutiput circuits and processors. Sofiware deveiopment invoives programming the
microprocessor with instructions that will eventually be stored in the product’s memory.
These instructions must be designed to correctly perform the required tasks.

It is possible to carry out these development efforts independently—-the hardware develop-
ment separate from the software development. In practice, however, it takes a long time to
develop error-free software on prototype hardware. To achieve good system integration and to
save time, software debugging must usuaily begin long before prototype hardware is available
to test the software.

The Intellec Series Ill with in-circuit emulation (ICE) is a development solution because it pro-
vides support for parallel hardware and software development efforts. Using the ICE-86 or
ICE-88 emulator, you can emulate parts of your prototype hardware in order to test your soft-
ware in a stable environment that resembles your final product. The ICE-86 or ICE-88 emulator
also allows you to substitute memory and other resources from the Series Ill system for the
memory and resources missing in your prototype hardware. With the ICE-86 or ICE-88
emulator, prototype hardware can be added to your product as you are designing it, and soft-
ware and hardware testing can occur simultaneously (thereby speeding up the entire develop-
ment process).

CHAPTER1

The chart in figure 1-1 summarizes a software development process, starting with an idea for a
final product. Such a process always starts with an idea, which you refine step by step until
you can define the actual product’s environment, hardware, and logic.

To provide a tutorial on using the Intellec Series Ill system, and to show how Intel’s software
development tools are used in a development situation, we provide a simple software applica-
tion for the iAPX 88 microsystem, at the heart of which is an 8088 microprocessor. The applica-
tion is a climate control system for a building that uses a solar collector for heating and cool-
ing, with backup methods of heating and cooling when the solar collector is not adequate. All
methods use water, storage tanks, and a water-to-air exchanger or heat pump.

START WITH
IDEA

DESIGN
—1 HARDWARE

USING INTEL'S UNIVERSAL PR

OM

PROGRAMMER TO PROGRAM PROMS

DEFINE PRODUCT

. ASSEMBLE
PROTOTYPE
HARDWARE

MODULES MODULES
INTEGRATE MANUFACTURE
1 ™1 aNDDEBUG PRODUCT
USING ISIS- OPERATING SYSTEM
NO CREDIT™ EXIT EDITOR
DESIGN SOFTWARE Do sTEPWISE CHOOSE b D
L] ATHIGHEST }—m{ REFINEMENTOF {—»1 LANGUAGES LOG'CAEEE —
LEVEL SOFTWARE DESIGN FOR MODULES il
USING TOP-DOWN DESIGN TECHNIQUES USING INTEL
LANGUAGE
MODULES THAT
CAN BE ASSEMBLED/ usms INTEL'S PROGRAMMING LANGUAGES; um(mG
COMPILED TING, AND LIBRARY MANAGEMENT UTILITIES: Al
SEPARATELY DEBUGAING TOOLS, INCLUBING ICE* IN-CIRCOT EMULATDRS

USE CREDIT™
TO WRITE
ALGORITHMS

Figure 1-1.

LINK MODULES,
LOCATE

AND
MODULES RUN THE PROGRAM

Developing Software on the Series |1l System

USE DEBUGGER
AND
EMULATOR

121632-1

SOFTWARE DEVELOPMENT PROCESS

Several decisions about this climate control system can be deferred to a later date. For exam-
ple, by designing the system’s software in a modular fashion, we can add more methods of
heating or cooling as necessary, and we can decide how to handle water pumps and valves ata
later date. We know now that the software’s primary purpose is to choose a method of heating
or cooling based on temperature data, and to operate the climate system’s pumps and valves.
Figure 1-2 is a simplified block diagram of the application.

DEFINING THE PRODUCT’S SOFTWARE

As you define your product’s hardware, you must also define the purpose of its software. For
example, the purpose of the software for our application is to gather and store the appropriate
method in the climate system, and maintain the operation of the climate system. Each task can
be designed as a piece of software called a module. By keeping tasks modular, you can
change the details of any task without affecting the details of the other tasks.

Keep in mind that software provides the capability to change or add to the product. The entire
product could consist of hardware and logic circuits, but then you might have to rebuild each
unit to add more capabilities or change the flow of the logic. Software that is not modular and
easy to maintain does not solve this problem; therefore, you must define the entire purpose of
the software, with an eye to the future of your product. Keep it modular so that you can replace
modules easily without rewriting modules that already work.

For our climate control system, we defined the software to be a set of modules that receive and
store data, decide heating or cooling methods based on that data, and decide how to operate
the hardware associated with the climate system.

At this time, we do not need a more detailed definition; in fact, more detail would hinder our
process of step by step refinement. It is important to realize the order for these actions: first,
the software has to start up the climate system. Once started, the scftware has {o do several
things over and over (unless the system shuts down): (1) read the various temperatures, (2)
store the data for future reference, (3) decide on a heating or cooling method to use, and (4)
operate- the climate system to provide heating or cooling and to maintain the system (e.g.,
maintain heat gain).

DATA CONTROLLING SOFTWARE CLIMATE SYSTEM

THERMOSTAT ————— — SOLARCOLLECTOR

[—> WATER TANKS
AIR TEMPERATURE —————]

MINIMUM SETTINGS,
TEQ"gE’E‘%TEURE COMPAROISONS [EXCHANGER
RMINE METHODS
WATERTENPERATORE T orweanwcanocoonG. |
AND FILE TO STORE ALL DATA HEAT PUMP

AMOUNT OF SUNLIGHT ———]

[— CIRCULATION VALUES
AND PUMPS

TIME OF DAY —————>] |——— INDICATOR LIGHTS

Figure 1-2. Block Diagram of Our Climate Control System 121632-2

CHAPTER 1

A good software definition breaks the problem into solvable tasks. The order in which these
tasks must occur also determines the structure of the software. If the structure is simple to
understand, it will be that much easier to implement and maintain.

A Nassi-Shneiderman Chart (shown in figure 1-3) is useful for showing structured blocks of
software. Use whatever charts you find useful, but hide many of the detaiis so that you are not
locked into doing things a certain way. In our application, we hid all details about data types,
input and output, and actual heating or cooling methods. It is most important that we design
each module to be self-reliant; that is, a module should not have to know about details hidden
in another module, especially details that might change in the future.

OPERATING =TRUE; PANIC =FALSE

WHILE OPERATING DO BEGIN

DETERMINEMETHOD (DATA):
DEMAND FOR HEATING/COOLING?

NO YES

WATER HOT/COLD ENOUGH?

(NO METHOD)
YES NO

OPERATING =FALSE:
PANIC=TRUE

OPERATION MODULE

: MAIN MODULE

GETDATA MODULE
Heating Methods Data
Collector To Exchanger InsideTemp
Tank To Exchanger ThermostatSetting
Collector To Heat Pump CollectorWaterTemp
Tank To Heat Pump TankWaterTemp
Heated Tank To Heat Pump HeatedTankTemp

No Method (No heating demand)

AmountOfSun (for collector operation)
Hour, Minute (for collector and immersion heater operation)

Figure 1-3. Nassi-Schneiderman Chart for Our Climate Control Software 121632-3

SOFTWARE DEVELOPMENT PROCESS

CHOOSING THE SOFTWARE DEVELOPMENT TOOLS

It is unfortunate but common in this industry to find software development systems sorely
lacking in the tools of the trade. There are some systems that force you to put together a whole
program in the limited space they allow, and they don’t provide the facility to create a library of
canned routines that you could use with many different programs.

The Intellec Series lii system provides both the ability to put together partial programs, and the
facilities to build libraries of routines that you can link to different programs. The concept of
module is inherent in this system. Whenever you build a partial program, it is a module; and
the module can refer to procedures, functions, and variables in other modules found in
libraries.

For our application, we do not have to decide on one programming language—the Intellec
Series lll system supports several, including the high-leve! languages PL/M-86, Pascal-86, and
FORTRAN-86. We can, however, decide whether or not to use modules that already exist, and
design our application with that decision, or change the decision later and create another
module to replace it.

For example, we already have a module written in PL/M-86 that performs a routine to convert
thermocouple voltage into degrees Celsius. We can decide now to tentatively use it, thereby
saving time by not coding this routine into our main program. We can also decide, at a later
time, not to use it, and substitute our own module to do it. The decision to link which module
does not have to be made until the main program is finished!

By choosing the right tools you can save time and defer decisions on specific details until you
are ready to deal with the details. By deferring such decisions, you keep your software
development effort from becoming too cluttered with rigid design decisions, and you keep the
effort flexible enough to accept change.

The right tools are (1) appropriate high-leve! languages to choose from, (2) a way to manage
libraries of canned routines, (3) a linker that allows you to link finished (or unfinished) modules
in different ways for different applications, (4) a locater that will locate programs in memory for
you, yet give you the opportunity to specify locations for sections of the program, (5) a sym-
bolic debugger you can use to test modules and partial programs easily, and (6) an in-circuit
emulator to emulate parts of your final product before they exist. The Intellec Series Il
Microcomputer Development System supports all of these tools.

LANGUAGES

When designing a system using top-down techniques, you think in and express concepts in
the highest-level language possible at each refinement step in order to expose the logical con-
cepts and conceal the details.

How can you tell whether you are thinking in a language that is “high-level”’? A language is
‘“high-level” for a given application if you use it to define the overall structure of the software.
You use a lower-level language to express in great detail each piece of code. With a high-level
language you gain a clear understanding of the control structures of the system at the highest
level, and you expose logical flaws in the structure that would have led to subtle bugs in the
code. With these advantages in mind, it makes sense to start your programming with the
highest-level language: English. After you have defined the software in English, you can use a
high-level programming language like Pascal, which allows you to express more detailed code
in alanguage that resembles English.

CHAPTER 1

In Chapter 3, we refine our climate control algorithm step by step. We use as a language
something called Pidgin Pascal, which is really a language of concise declarative English
sentences. Since our control structures can be translated easily from English into Pascal, we
decided to use Pascal-86 for our main climate control moduie (this decision does not have to
be final). We do not start the translation into Pascal-86 until after we have tested the logic of our
Pidgin Pascal algorithm.

Pascal is a language that resembles the control structures of human thought. We don’t think in
terms of GO TO branches normally; we consider a job to be a set of tasks to DO WHILE
something is true, or to DO UNTIL something is done. IF something is true or false, THEN do
one thing; ELSE do another thing. In the CASE of several different problems, solve each one
accordingly. Occasionally we might need a disaster bail-out (GO TO a panic routine), but we
should be planning our algorithm to take care of disasters elegantly.

The point is: we should think about control structures of a system as structures, not as
individual branch statements. Pascal is one language that was designed to express control
structures; PL/M is another, and some new versions of FORTRAN can be structured
accordingly.

Another point should now be obvious: you should choose the language best suited for the
algorithm. For example, our module that operates the climate system has to manipulate pumps
and valves to implement a chosen heating or cooling method. This operation module receives
the data from the decision-making main module written in Pascal. The operation module might
use bits in a word as control signals to send to the procedure that actually interfaces to the
hardware of the climate system.

We can code this operation module in assembly language or PL/M, since both languages can
easily manipulate bits in a byte or word and respond with appropriate actions based on the
pattern of bits. Our final decision will be made later; in the meantime, we will use a test version
of the operation module, until prototype hardware for the climate system is ready. Our test ver-
sion will be written in Pascal, and it will simply display appropriate test information at the
console.

It is most likely that the final version of the operation module will not be written in Pascal, since
Pascal does not provide bit manipulation operations. We can also guess that the module will
not be written in FORTRAN--the advantage FORTRAN has over PL/M is its ability to express
complex mathematical formulas. Our climate control system has no complex mathematical
formulas.

We would code the final version of the operation module in assembly language if the applica-
tion required the most efficient use of processor time and memory; however, PL/M program-
ming saves development and maintenance time since it is easier to learn and the programs are
easier to read and maintain. The only drawback to PL/M is that it is not as efficient in time or
memory, and it cannot compute decimal or real arithmetic. These are not drawbacks in our
application, since we do not need decimal or real arithmetic, nor do we have severe speed and
memory constraints. The advantage of saving development time and maintenance costs with
PL/M far outweigh the advantages of using assembly language.

MODULAR PROGRAMMING

The Intellec Series Ill system has the linking and locating tools to support modular pro-
gramming, and the library utility to maintain libraries of canned routines. The decisions we
make at this time are not binding, but they can be very helpful: we can decide now what types

SOFTWARE DEVELOPMENT PROCESS

of routines will be separated into which modules. We have several design criteria for making
these decisions. We must be able to (1) write the routines of one module with little knowledge
of the code in other modules, and (2) reassemble and replace any module without affecting
other modules. Each module of our climate control system will contain design decisions that
are hidden from the other modules so that the decisions are not binding.

With these criteria in mind, we designed our system to have several modules: the GetData
module gets and stores our data, the Operation module performs the actual climate system
operation (turning pumps and valves on and off, etc.), and the Main module makes the high-
ievel decisions.

The only binding decisions to be made at this time concern the data passed between modules.
We try to keep data passing to a minimum, or we try to enforce a data-passing standard that is
easy to comply with. In our climate system, we only need to pass a reference to a data record
to the other modules; the other modules must know what to do with the reference. This data-
passing technigue is one of the two we can use: pass-by-reference and pass-by-value, which
are described in more detail in Chapter 4.

With the intellec Series lll system capabilities, we can design different versions of the same
module, test each version, and decide at a later time which version to link with the other
modules. We can also defer decisions about the physical memory locations (locations in our
final product’s memory) for these modules until after we have debugged our prototype hard-
ware with an in-Circuit Emulator (ICE-86 or ICE-88). In some applications, you never have to
decide physical memory iocations; the Intellec Series Il locater can decide them for you.

DEBUGGING AND IN-CIRCUIT EMULATION

Atany time during software development, you can test a compiled module using DEBUG-86. In
certain cases you will want to alter the module to be self-contained; for example, our main
module needs the appropriate data from the GetData module, but the GetData module is not
yet written. We can quickly write a procedure that obtains the data from an interactive session
at the console, link this temporary data acquisition module to our main module, and test our
main module using DEBUG-86.

When we have our modules coded and compiled, we can test the modules in an ICE-86 or
ICE-88 session that can emulate the final product’s processor. We can use an ICE-86 emulator
if our final product will contain an 8086 processor, or use an ICE-88 emulator if it will contain an
8088 processor (remember, our iAPX 86, 88 applications software can run on either an 8086 or
an 8088).

For example, our data module will read data from ports of an 8088 processor in our final prod-
uct. The ICE-88 emulator can emulate those ports before we ever have a prototype of the final
product. Using ICE-88, you can begin testing your software before any prototype hardware
exists. As portions of your prototype become available, you can use them and still borrow
resources like memory from your Series Ill system.

With in-circuit emulation, you control, interrogate, revise, and completely debug your product
in its own environment, or in a stable environment that emulates the final product’s environ-
ment. Symbolic debugging is one of the key features of Inteliec microcomputer development
systems and in-circuit emulators. Symbolic debugging allows you to debug your program
using its own symbois and line numbers—you do not have to convert your symbols to physicai
memory addresses.

CHAPTER 1

USING YOUR FINAL PRODUCT

Intel supplies other tools to help you put together your final product. f you designed your
product to have its software in ROM (read-only memory), you can use Intel’s Universal PROM
Programmer (UPP) with its Universal PROM Mapper (UPM) software to create the PROM
(programmable read-only memory) device to hold the software. You can then install your
device in an SDK-86 or SDK-88 (System Design Kit with an 8086 or 8088 processor), or in an iSBC
(Single Board Computer) system.

You can also run your software in other systems, or in dedicated application environments. For
example, you could transfer your software to RAM (random-access memory) on an SDK-86 or
SDK-88, or to RAM on an iSBC 86/12A (Single Board Computer system with an 86/12A board),
by first using the OHB86 utility described in the /APX 86,88 Family Utilities User’s Guide for 8086-
Based Development Systems to convert the program to hexadecimal object format. You would
then use an appropriate tool to load the software into your execution board (the ICE-86
In-Circuit Emulator, the SDK-C86 Software and Cable Interface, or the iSBC 957 Interface and
Execution Package).

You can also use your Series Il development system as the environment for your final soft-
ware product. The Series Il system has an 8086 processor (the ‘8086 side’’ or 8086 execution
environment) to run iAPX 86, 88 applications software. As soon as you have debugged your
software, it is ready to be used in any Series Il system. Chapter 6 describes the run-time
libraries you use to run your Pascai-86 programs in the Series iil environment; you can aiso
supply your own versions of these libraries to run these programs in another execution
environment. Chapter 6 also shows how you can link modules and locate them in Series 1l
memory in one easy step to prepare them for execution in the Series i system.

Whatever environment you choose for your final product, Intel provides the appropriate hard-
ware and software tools to develop, debug, and produce your final product. The Intel
environments that are suitable for-final software products are excellent investments which can
be upgraded for the software of the future.

CHAPTER 2
OPERATING THE SERIES Il SYSTEM

“The benefits of using a standardized operating system should prove to be as significant as
the benefits of using standardized microcomputer hardware. Development and programming
costs will be reduced substantially, and you will have an upward compatible interface for future

products.”
—Andrew S. Grove, President of Intel Corp.

As you learned in Chapter 1, the Intellec Series HI Microcomputer Development System con-
tains the tools you need to develop software for your application. To use these tools, you must
operate the system; that is, use the system’s commands and utility programs.

A large multi-user computer system can serve as a useful analogy to point out the difference
between programming the system and using the system. A working system usually supports
both kinds of activities. In such a large system, one or more programmers might be designing
programs to run on the system. One or more users (who might also be programmers) might be
simply using the programs that have already been developed for the system. Obviously, a user
does not need to know complicated details about the system to use it, whereas a programmer
needs to know such details to write programs for the system.

The Series Ill system has most of the capabilities of larger systems, but it is only used by one
person at a time. This person could be using the system and its programs, or writing programs
for the system.

We wrote this chapter for peopie who need to know how to use the system. This information is
important to anyone using or programming the system, but itis not burdened with details that a
first-time user does not need. As we describe system commands and utility programs, keep in
mind that we swept the more complicated details under the rug to keep the chapter easy to
read. For more details on all of the system commands, see the Intellec Series Hll Micro-
computer Development System Console Operating Instructions.

TURNING ON YOUR SYSTEM

Every microcomputer has something called an operating system, which is sometimes called a
supervisor or monitor. It is usually the first piece of software you use—the software that is con-
trolling your computer when you first turn it on, and the software that responds to your first
typed command. Typically, you type a command to ask the computer for a list of the files you
have on disk, or to execute a particular program.

When you turn on the Intellec Series Iii Microcomputer Development System, the following
message appears on your screen:

SERIES II MONITOR, Vx.y

CHAPTER 2

10

This message tells you that the monitor is up and running (the x and y represent version
numbers). The monitor is a piece of software that gives you direct control of the Series Il hard-
ware. Although you can use the monitor for debugging and other operations, for your pur-
poses the monitor performs one quick activity: it loads the operating system from the system
disk in drive 0 into the computer when you push the RESET button.

To load or “‘boot”’ the system, you need a system disk: a disk that holds the operating system
files. Intel supplies a flexible disk labeled ‘‘ISIS-lIl Operating System’ which is your system
disk. One of the first operations you will perform is a formatting operation to create another
copy of the system disk—a copy designed to be used with the examples in this book.

You insert the ““ISIS-Il Operating System’’ disk into flexible disk drive 0, and push the RESET
button (for more detailed instructions, see the Intellec Series Ill Microcomputer Development
System Console Operating Instructions). The following message should appear on your
screen:

ISIS-1I, Vx.y

The operating system for the Inteilec Series Ill Microcomputer Development System is called
ISIS-1t (*“ISIS’" stands for Intel Systems Implementation Supervisor). The x ahd y represent ver-
sion numbers. 1SIS-ll is actually a version of the ISIS operating system that runs on older
Intellec systems (the Intellec Microcomputer Development System and the Intellec Series |l
Microcomputer Development System).

ISIS-Il manages your use of the software tools supplied with the system. Using ISIS-Il, you can
run utility programs like CREDIT (a text editor) to write programs, or LINK86 to link program
modules into a final program. You also use ISIS-I to run compilers like the Pascal-86 and
PL/M-86 compilers, and to run your own developed programs. You can also make copies of
programs and control the devices attached to your system by using ISIS-Il commands.

In most computer operations, you manipulate files, which are collections of information. Every
file has a name, called a filename. Files and filenames are described in detail after an introduc-
tion to the most popular operating system command—the DIR command.

You use the DIR command to display a directory of filenames on a certain disk. You use other
commands to perform file management operations. For example, you use the COPY command
to make copies of files, or to send copies of files to the printer to be printed. You use the
RENAME command to change a file’s filename. This chapter explains some of these
commands.

THE DIRECTORY LISTING

The first command to learn is the easiest to use—the DIR command. When your system is up
and running, you will see a dash (-) on the left side of the screen. This dash is called a prompt,
and it tells you that the system is ready for your next command. You can now type the DIR com-
mand by typing the letters “DIR”’, and execute the DIR command by pressing the RETURN
key. The following example is shown in blue to show that it is something you type; the part of
the example that is in ordinary black shows what the system displays. The symbol *<cr>"
means that you must press the RETURN key (‘'cr” stands for the “‘carriage return” key found
on most typewriters).

OPERATING THE SERIES Il

-DIRKecr>

DIRECTORY OF :F0:970003.06
NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
SYSTEM.LIB 24 2849 WS FPAL .LIB 74 9125 W
PLMBO .LIB 45 5615 W

143
1317/4004 BLOCKS USED

When you execute the DIR command, the system displays a list of filenames called a directory
listing. These filenames are the names of the files that are stored on the disk in drive 0. The
DIR command displays the directory for the disk in drive 0 unless vou specify another drive
number with the command, as explained in the next paragraph. Disk drive 0 is usually the drive
that holds the system disk (the disk that contains the system fiies), so by executing the DIR
command by itself, you get a directory listing of some of the files on the system disk in drive 0
(notall, because some files are invisible).

You can use the DIR command to display the directory listing for disks in other disk drives, and
for a hard disk subsystem, by specifying the drive number with the DIR command. For exam-
ple, to see a directory listing for a disk in drive 1, insert the ‘‘CREDIT iSIS-Il CRT-Based Text
Editor’’ disk in drive 1, and type the following command:

-DIR 1<cr>

DIRECTORY OF :F1:970049.02

NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
CREDIT 156 19470 CREDIT.HLP 25 2985 W
ADDS .MAC 3 171 W MICROB.MAC 3 158 W
VT52 .MAC 3 163 W VT100 .MAC 3 190 4
15107 .MAC 3 165 W 1510E .MAC 3 170 W
LEAR .MAC 2 123

201

310/4004 BLOCKS USED

The Intellec Series Ill Microcomputer Development System Console Operating Instructions
give details about typical hard disk and flexible disk configurations, and the associated drive
numbers.

On each line of the directory listing, you are shown the name of a file. Some of these filenames
are followed by a three-character extension, which is an optional identifier used to show types
of files. These extensions are sometimes required for certain files that are used with certain
programs. The section on filenames (following disk formatting) explains some of these
extensions.

Following each filename entry are three columns labeled ““BLKS”’, “LENGTH’, and ““‘ATTR”".
The “BLKS”’ column tells you how many ‘‘blocks’’ of space the file occupies, where one block
equals 128 bytes. The “LENGTH"' column gives the actual number of bytes occupied by the
file. At the bottom of the listing appears a message showing how many blocks are used out of
the total number of blocks available on the disk. You can use block figures to describe file
sizes and to determine whether a file of a given size (in blocks) will fit on a disk.

The “ATTR” column might be empty, or it may contain a “W’’, **‘S”’, or both. This column tells
you the aftributes of each file—certain characteristics that govern the file’s use. if a file has the
“W’’ attribute, it is write-protected; that is, you cannot write to or delete (overwrite) the file. If a

11

CHAPTER 2

12

file has the ‘S’ attribute, it is a system file that occurs on most system disks. You use the
ATTRIB command and file attributes to protect your files from inadvertant delete or write
operations, and to designate certain files as system files (as shown in the next section).

There are other files not displayed through normal use of the DIR command. These files are
invisible; that is, they have the | attribute. You can see them if you use a special form of the DIR
command:

-DIR I<cr>

DIRECTORY OF :F0:970003.06

NAME .EXT BLKS LENGTH ATTR NAME .EXT BLKS LENGTH ATTR
ISIS .DIR 26 3200 IF ISIS .MAP 5 512 IF
Is1s .70 24 2944 IF ISIS .LAB 54 6784 1F
ISIS .BIN 94 11740 SIF ISIS .CLI 20 2407 SIF
ATTRIB 40 4909 WwsSI CoPY 69 8489 WSI
DELETE 39 4824 WSI DIR 55 6815 WSI
EDIT 58 7240 WSI FIXMAP 52 6498 WSI
HDCOPY 48 5994 WSI HEXOBJ 34 4133 WSI
IDISK 63 7895 WSI FORMAT 62 7794 WSI
Lie 82 10227 WSI LINK 105 13074 WSI
LINK .0OVL 37 4578 MWSI LOCATE 120 15021 wWS1
OBJHEX 28 3337 wWS1i RENAME 20 2346 WSI
SUBMIT 39 4821 MWSI SYSTEM.LIB 24 2849 WS
FPAL .LIB 74 9125 W PLMBO .LIB 45 5615 W
1317

1317/4004 BLOCKS USED

The ‘I’ is called a switch, and it displays files that have the invisible attribute. When you
specify the “‘I’’ switch in a DIR command, the DIR command displays all of the filenames,
including ones that are invisible. The files that weren't displayed during the execution of a nor-
mal DIR command are now displayed, along with their attributes (one of which is the "I’
attribute). The *‘F”’ attribute is reserved for system files that are used to format the disk. These
files are called format files, and you should never alter their attributes.

You should practice using the DIR command, and at the same time, take a look at the directory
listings for each disk you received. Take each flexible disk, insert it into drive 1, and type “‘DIR
1" to see the directory listing.

NOTE
If you have a hard disk subsystem with only one flexible disk drive, use the following
form of the DIR command:

-DIR P<cr>
LOAD SOURCE DISK, THEN TYPE (CR)

Take out the system disk and insert the disk whose directory you want to display,
then press the RETURN key. After the directory listing, the following message
appears:

LOAD SYSTEM DISK, THEN TYPE (CR)

Put the system disk back into the flexible drive. To see other disk directory listings,
repeat these steps for each disk.

OPERATING THE SERIES il

FORMATTING DISKS

We present in this section a typical scheme for storing copies of your Intel-supplied files on
either hard disk or flexible disk. Subsequent examples in this book assume that certain pro-
grams reside in hard disk drives 0 and 1, or flexible disk drives 0 and 1. You may use your own
scheme and distribute files over disk drives as you wish, but in order to type the examples as
they are, you must use the scheme presented here. If you understand the use of pathnames as
described in this chapter, and if you use the COPY command correctly, you can copy files to
disks in any distribution scheme you choose, and stiil use the examples in this book as iong as
you substitute your own pathnames.

if you are using a hard disk subsystem, you must foiiow the procedures in the inteilec Series il
Microcomputer Development System Console Operating Instructions to install your disk plat-
ters and prepare them for use. If you are using flexible disk drives, you should refer to the
same manual for instructions on the care and insertion of flexible disks. This section shows
you how to prepare one hard disk platter or one flexible disk as the system disk, and another
hard disk or flexible disk as a non-system disk (to hold your files and other programs).

Hard Disk Subsystem Users

Follow the instructions in the Intellec Series Il Microcomputer Development System Console
Operating Instructions to install and power-up your hard disk subsystem. When the hard disk
subsystem is ready, insert your “‘ISIS-Il Operating System’’ flexible disk into the flexible disk
drive of your computer, and hit the RESET button. When the dash (-) prompt is displayed (after

the ISIS-Il message appears), type the following command:

-:F4:FORMAT :FO:SYSTEM.HDK S FROM 4<cr>

This command prepares (‘‘formats’’) drive 0 of the hard disk to be the system disk. We chose
*‘SYSTEM.HDK" for its name, but you can use any name that has at most six characters to the
right of the period, and three to the left. When this operation is finished, and the system
displays the dash (-) prompt, use the following command to transfer your system files to drive 0
of the hard disk:

=:F4:COPY :F&:x.,x TO :FO0:<cr>

This command will copy ali of the files from the *‘ISIS-Il Operating System’’ disk in the flexible
disk drive (called drive 4) to the hard disk drive 0. When this operation is finished, you can
remove the flexible disk from drive 4 and insert another flexible disk. In addition to the ““ISIS-I|
Operating System’’ disk, you should also copy files from the ““CREDIT ISIS-ll CRT-Based Text
Editor” disk, the ‘“Resident 8086/8087/8088 Macro Assembler’’ disk, and the ‘“Resident
8086/8088 Utilities and Linkage Libraries’ disk. For each flexible disk, execute the following
command:

-COPY :F4:x_.%x TO :F0:<cr>

This command copies ail files from the flexible disk to drive 0 of the hard disk. If you insert
each flexible disk you received and perform this operation, you will have in drive 0 all of the
files from those flexible disks. If you want to be more selective about the files you are copying
todrive 0, read the ‘‘Copying Files’’ section in this chapter.

13

CHAPTER 2

14

You should also copy files to drive 1 of the hard disk subsystem. First, you must prepare drive 1
by typing the following command:

-FORMAT :F1:PROG86.HDK<cr>

We chose ‘‘PROG86.HDK"’ for its name, because we intend to use it for our iAPX 86,88 applica-
tion programs. If you are a Pascal-86 user, insert the ‘“Pascal-86 Compiler and Run-Time
Libraries’’ disk into flexible disk drive 4 and copy all of the files to the hard disk drive 1:

=COPY :Fb:*x_ * TQ :Fl:<cr>

Do the same operation with your PL/M-86 flexible disk, and any other disks you have for your
Series lll system. The hard disk platters have plenty of room for your own files.

Flexible Disk Users

This section assumes that you have at least two double-density flexible disk drives. if you have
single-density drives, you may run out of room if you try these examples. Refer to instructions
in the Intellec Series Ill Microcomputer Development System Console Operating Instructions
for information about flexible disks.

To bring up your system, insert the “iSiS-li Operating System’’ disk into drive 0 and push the
RESET button. The ISIS-Il message should appear, followed by the dash (-) prompt. Insert a
blank disk into drive 1, and type the following FORMAT command:

~FORMAT :F1:SYSTEM.FLX S<cr>

This command creates a new system disk and automatically copies from drive 0 all files that
have the ‘S’ attribute. When this operation is finished, you can test your new system disk by
removing the “ISIS-Il Operating System’’ disk from drive 0, inserting your new system disk into
drive 0, and pushing the RESET button to restart the system.

With your new system disk in drive 0, insert the ‘‘CREDIT ISIS-Il CRT-Based Text Editor’’ disk
into drive 1, and type the following command:

-COPY :F1:CREDIT TO :FO0:<cr>

This command copies the program CREDIT to our system disk in drive 0. Remove the CREDIT
disk from drive 1 and insert the ‘‘Resident 8086/8087/8088 Macro Assembler’’ disk into drive 1.
Type the following command:

-COPY :F1:RUN.*x TO :FQ:<cr>
:F1:RUN COPIED TO :FO:RUN
:F1:RUN.OVO COPIED TO :FO:RUN.OVO

This command copied two files at once—RUN and RUN.OV0—from drive 1 into drive 0. You
need both files in order to use the special RUN command described later.

OPERATING THE SERIES il

Remove the flexible disk from drive 1 and replace it with the ““Resident 8086/8088 Utilities and
Linkage Libraries’’ disk. Now type the following commands:

-COPY :F1:L1B86.86 T0 :FO:<cr>
:F1:LIB86.86 COPIED TO :F0:LIB86.86
-COPY :F1:L0C86.86 TO :F0:<cr>
:F1:L0C86.86 COPIED TO :F0:L0C86.86
-COPY :F1:LINK86.86 TO :FO0:<cr>
:F1:LINK86.86 COPIED TO :FO:LINK86.86

You now have a system disk that is complete for the examples in this book. You still need
another disk for the Pascal-86 compiler if you have cone, to hold the compiler, the run-time

libraries, and your sample program used in examples in this book. To prepare a blank disk to
be a non-system disk, insert the blank disk into drive 1 and type the following command:

-IDISK :F1:PASC86.FLX<cr>
NON-SYSTEM DISK

The IDISK command can prepare both system and non-system disks, but it does not
automatically copy files except the ISIS-li format (“‘F’’) files.

With the new blank disk in drive 1 and the system disk in drive 0, you could put the ““Pascal-86"’
disk in drive 2 (if you have a drive 2). The following example assumes that you only have drive 0
and 1. To copy the files from the ‘““Pascal-86"" disk, first type the following command (don’t
forget the “P"’1):

-COPY *.% TO :F1: P<cr>
LOAD SOURCE DISK, THEN TYPE (CR)

The system pauses (because you specified a ‘P’ at the end of the command), and waits for
you to insert the ‘‘source’ disk into drive 0. The ‘““source’’ disk in this case is the ‘‘Pascal-86"
disk, assuming you are a Pascal-86 user (if you're using PL/M-86 only, you would substitute
your PL/M-86 disk in this example). Insert this flexible disk into drive 0 and press the RETURN
key.

LOAD OUTPUT DISK, THEN TYPE (CR)

Since the disk to receive the Pascal-86 files is already in drive 1, you only have to press
RETURN. The system should then display the above messages {along with the ‘*“COPIED”’
messages) every time it returns to drive 0 to copy more files—all you have to do is continue to
press RETURN until the entire copy operation is finished.

You can repeat these steps with another blank disk for the PL/M-86 compiler. After these for-
matting and copying operations, you should have disks that match the ones we used for the
examples in this book.

FILENAMES, PATHNAMES, AND FILE ATTRIBUTES

Most operating system commands manipulate files. A file can be any collection of information
including text, numeric data, program instructions, and combinations of all of these. You refer
to a file by using a filename, and filenames follow certain naming conventions so that the name
of a file also tells you the probable use of the file.

15

CHAPTER 2

16

Filenames can have six or fewer characters, followed by an optional period and three-
character extension. Extensions (and filenames themselves) follow certain conventions, but
there are no fixed rules. Certain extensions are necessary for certain programs, as you shall
see in the following discussion. The file naming conventions are relaxed so that you have the
flexibility to create your own file naming conventions for your particular application.

The term filename refers to both the name of the file and the extension, if any. Each new file
you create must have a unique name for that disk (that is, you can have two files with the same
name on two different disks, but not on the same disk). Some extensions have specific mean-
ings to utility programs in the system, but these should not cramp the style with which you
impose your own naming conventions. Here are the extensions that mean something to Intel-
supplied programs:

* The *“.BAK" extension denotes a backup of a text file created by CREDIT, the text editor
described in Chapter 3. For example, LETTER.BAK is the backup file for the text file
LETTER.TXT (a text file does not need a particular extension, but *“TXT’’ helps identify it).

s The ‘“.MAC’ extension denotes a ‘‘macro’’ file used with certain programs like CREDIT.
The *“.MAC” files supplied with CREDIT enable you to use CREDIT on other non-Intel con-
soles connected to Intel microcomputers.

¢ The‘“.0V0" extension denotes an ‘‘overlay’’ file used with certain programs.

¢ The ““.OBJ” extension denotes an object module, which is created by a compiler or
assembler, as described in Chapters 4 and 5. Compilers and assemblers also create files
with the *“.LST"* extension to denote program listings (also described in Chapters 4 and
5). Examples are PROG1.0BJ and PROG1.LST.

* The **.LNK” extension denotes a collection of object modules that were linked together
by the linker utility program, described in Chapter 6. When you run the locater utility pro-
gram on a file with the **.LNK"’' extension, the locater strips the ‘*.LNK’’ extension away,
leaving only the file's name without an extension.

¢ The '“.LIB” extension denotes a library module that is maintained by the library utility.
Library modules are described in Chapter 6.

* The ‘“.86" extension denotes a program that should be executed in the 8086 execution
mode (the ‘8086 side’’ of the system). Examples are PASC86.86 and PROG1.86.

Most completed programs have either the ‘“.86" extension (if they run in the 8086 execution
mode, described later in this chapter), or no extension. For example, the DIR command is
actually a program named ‘‘DIR”’ without any extension.

In addition to the above extensions, we use the *.SRC’’ extension to denote a special text file
that holds program instructions called source statements. A ““.SRC”’ (for ‘‘source”’) file can be
created by CREDIT and filled with assembly language, PL/M, or Pascal source statements; you
can then compile this file to create an object module (“.0BJ"’ file), as described in Chapters 4
and 5.

You can find more extensions explained in the Intellec Series Ill Microcomputer Development
System Console Operating Instructions.

You can display the directory information for a single file by using a version of the DIR com-
mand, DIR FOR:

-DIR FOR SUBMIT<cr>

DIRECTORY OF SYSTEM.FLX

NAME .EXT BLKS LENGTH ATTR
SUBMIT 39 4821

OPERATING THE SERIES il

The file SUBMIT is in the directory for drive 0, so the DIR command had no trouble finding it.
However, if SUBMIT happened to be on another disk in drive 1, you would have to tell DIR to
look in drive 1 for the file. To do this, you use a pathname—a filename with a directory
specifier. Whenever you specify a filename for a command or utility program, if the filename is
in the directory for drive 0, you only have to specify the filename. If the filename is not in the
directory for drive 0, you have to specify a pathname.

A pathname consists of a directory specifier and a filename:

:F1:PROGT.SRC

Tho 64,7 et ~f dlom mmdbmnn o io dha Aleasboac: amanifise Th o A
e N pPait VI UHIT paliiialie 15 T Ullcuivliy spoenici. 11C 1 dtanius

a iv
Therefore, to get the directory information for the file PROG1.SRC on the disk in drive 1, type
the following command:

-DIR FOR :F1:PROG1.SRC<cr>

The number of separate disk drives depends on the configuration of your system. The format
for directory specifiers is:

:Fn:

where n can be any drive number from 0 to 9 (0 would refer to drive 0, which does not have to be
specified).

If you type a directory specifier that is incorrect, you get an error message. For example, sup-
pose you typed the following DIR command with an incorrect directory specifier in the

pathname for PROG1.SRC:
-DIR FOR :G1:PROG1.SRC<cr>
:G1:PROG1.SRC, UNRECOGNIZED DEVICE NAME

The “UNRECOGNIZED DEVICE NAME” is the ‘“:G1:” directory specifier. ISIS-li thinks you are
referring to a device by that name, and there is no device by that name. You will find legai
device names in the section that describes copying files.

Another common error occurs when you forget to use the word FOR in the DIR command when
you are trying to get the directory information for one file. For example, you might type this
command:

-DIR :F1:PROGT.SRC<cr>

and get this error message:

:F1:PR0OG1.SRC, UNRECOGNIZED SWITCH
Since you forgot the word FOR, ISIS-ll thinks you are trying to specify a switch to the DIR com-
mand—and it doesn’t recognize ‘*:F1:PROG1.SRC"’ as a switch! Switches are usually only one

letter or number. Valid switches are described with the DIR command in the Intellec Series Il
Microcomputer Development System Console Operating Instructions.

17

CHAPTER 2

18

The ATTRIB command assigns attributes to files. You use file attributes to protect your files
from accidental deletions or modifications. You use the ATTRIB command to turn on or off the
file attributes that are described below:

s “W” for write-protected (The file cannot be written to, modified, renamed, or deleted
unless this attribute is turned off.)

e I’ for invisible (The file’s name and information is only displayed when you execute the
DIR command with the ““I’* switch.)

e S for system files (System files on a source disk are automatically copied to the output
disk in a FORMAT operation with the ‘S’ switch.)

s “F for format files (Format files are automatically copied by the FORMAT and IDISK
commands to format disks. Do not turn off this attribute, nor use it with your own files,
unless you've read its description in the Inteliec Series Il Microcomputer Development
System Console Operating Instructions.)

For example, to turn on the ‘W’ (write-protected) attribute for file CREDIT, type the following
command:

-ATTRIB CREDIT W1l<cr>
FILE CURRENT ATTRIBUTES
tFO:CREDIT W

To turn off the ““W’’ attribute, specify a0 instead of a1:

-ATTRIB CREDIT WO0<cr>
FILE CURRENT ATTRIBUTES
tFO:CREDIT

RENAMING AND DELETING FILES

Occasionally you will have a file with a name that needs to be changed for some reason. For
example, you could rename LiB86.86 to LIBRY.86 by using the RENAME command:

-RENAME LIB86.86 TO LIBRY.86<cr>

The RENAME command always expects to see the original name first, followed by a space,
then the keyword TO, followed by another space, and finally the new name. Both names must
be legal Series lil filenames or pathnames. You cannot RENAME a file in one directory to a
name with a different directory specifier—the new name must have the same directory
specifier.

If you actually renamed LIB86.86 to LIBRY.86, you should rename it back to LIB86.86, the name
used for it in future examples.

The DELETE command is very simple. Since there are no files in your system disk that you can
delete, we’ll use in this example a file that doesn’t actually exist on your disk:

-DELETE SAMPLE.TXT<cr>
:FO:SAMPLE.TXT DELETED

The DELETE command will irrevocably delete the file you specify. When you DELETE a file,
you cannot retrieve it—it's gone. Use DELETE with caution.

OPERATING THE SERIES I}

To delete a file on a disk in a drive other than drive 1, simply use the appropriate pathname for
the file. For example, suppose the file JUNK.TXT existed on the disk in drive 1. You would use
this command to delete it:

-DELETE :F1:JUNK.TXT<cr>
:F1:JUNK.TXT DELETED

You can also delete many files at once. As you will see in Chapter 3, CREDIT creates a backup
file with a *“.BAK’’ extension for every file you edit. At some point (to utilize disk space), you
might want to delete all of your backup files at once. For example, to delete all of the backup
files on the disk in drive 1, use the following command:

-DELETE :F1:%*.BAK<cr>

The asterisk (*) matches any name, and the ‘“.BAK’’ extension matches only filenames with
that extension. This *‘filename matching’’ technique is shown in more examples to come.

COPYING FILES TO DISKS AND DEVICES

The COPY command is useful for several operatiohs:

* Tomakeacopyofafile

* Tosend acopy of afile to another hard or flexible disk

¢ Tosend acopy of afile to a device like a printer or a paper tape punch
* Toreceive afile from a sending device like a paper tape reader

¢ Tocopyall non-system files from one disk to another
The COPY command is similar to the RENAME command. For example:

-COPY :F1:PROG1.SRC TO :F1:PROG1.BAK<cr>
COPIED :F1:PROG1T.SRC TO :F1:PROG1T.BAK

The COPY command expects to see the name of the source file or device (the source of the
information to be copied, not to be confused with a source fiie of program source statements),
followed by a space, then the keyword TO, followed by a space, and then the name of the out-
put file or device (the destination of the copied information). After the output (or destination)
file or device name, you can optionally specify a switch like ‘P> for pause, or ‘“U”’ for update
(these switches are explained in the Intellec Series il Microcomputer Development System
Console Operating Instructions).

More frequent uses of the COPY command are copying to devices, copying files onto other
disks, and copying all the files in one disk to another disk. In ali of these cases, you must
specify the device or disk that is the source of the information, and the device or disk that will
receive the copied information. For example, the RENAME program is in the directory for drive
0. If you want to puta copy of it on the disk in drive 1, you would type the following command:

-COPY RENAME TO0 :F1:<cr>
COPIED :FO:RENAME TO :F1:RENAME

When the source file is in the directory for drive 0, you don’t have to specify :F0: for the file,
because :F0: is the default directory if none is specified. When the destination is a disk in
another drive, you have to specify the directory (in this case, :F1:) for the destination file.

19

CHAPTER 2

20

In the example above, the file RENAME was copied to the disk in drive 1, and the drive 1 ver-
sion has the same name. When you make copies of files for other disks, you will probably want
the files on the other disks to have the same name. To keep the same name for the copy,
specify only the destination directory without a new filename, as we did in the above example.

To change the name for the copy, specify a different name with the destination directory. For
example, if you want to use RNAM as the name of the new copy in drive 1, use this command:

-COPY RENAME TO :F1:RNAM<cr>
tFO:RENAME COPIED TO :F1:RNAM

In the last two examples, the RENAME file was copied from drive 0 to drive 1. To demonstrate
another feature of the COPY command, we will first copy a file from drive 1 to drive 0 (you
should also try this example):

-COPY :F1:PROG1.SRC TO :FO0:<cr>
:F1:PROG1.SRC COPIED TO :F0:PROG1.SRC

Let’s suppose that we used CREDIT (described in the next chapter) to modify the new copy of
PROG1.SRC on the disk in drive 0 (:F0:PROG1.SRC), and that we want to copy the newly-
modified PROG1.SRC to the disk in drive 1. Since we already have a PROG1.SRC on the disk in
drive 1, we might want to DELETE that one first, then COPY the newly-modified one to the disk
in drive 1. However, let’s suppose that we forgot to DELETE the old one first, or that we don’t
even know the old one exists on the disk in drive 1. We would type the following COPY com-
mand:

-COPY PROG1.SRC TO :F1:<cr>
:F1:PROG1.SRC FILE ALREADY EXISTS
DELETE?

The COPY command found :F1:PROG1.SRC, and now it is asking us if we want to delete it in
order to replace it with the newly-modified :F0:PROG1.SRC. We type a “'Y’’ (or “'y”’) to delete
the old one and replace it with the new one, or type an ‘‘N’’ (or “‘n”’ or any other letter) to keep
the old one and abort the copy operation. In this case, we want to replace the old
:F1:PROG1.SRC with the newly-modified :F0:PROG1.SRC, so we type a “‘Y" followed by the
RETURN key:

DELETE?Y<cr>
:FO:PROG1.SRC COPIED TO :F1:PROG1.SRC

By using this feature of the COPY command, you can selectively update existing files by typing
“Y” (or **y”’) for the ones you want to update, and ‘‘N”’ (or ‘‘n’’) for the ones you don’t want to
update.

To send a file to a device like a line printer or a paper tape punch, specify the device name as
the destination device:

-COPY PROG1.SRC TO :LP:<cr>
:FO:PROG1.SRC COPIED TO :LP:
-COPY PROG1.SRC TO :HP:<cr>
:FO:PROGT1.SRC COPIED TO :HP:

The device name :LP: is the name of the line printer. The second example sends the file to the
high-speed paper tape punch, whose device name is :HP:. For other device names, see the
Intellec Series Il Microcomputer Development System Console Operating Instructions.

OPERATING THE SERIES Il

The COPY command can also be used to copy several files at once, if you make use of wild
card fifenames. You can specify a wild card filename with the DELETE, RENAME, COPY, DIiR,
HDCOPY, and ATTRIB commands. A wild card filename matches a group of filenames in order
to perform the action on several files at once. For example:

-COPY *.% TO :F1:<cr>

This command copies all of the files in directory :F0: to directory :F1:.

NOTE

To perform this example, you should insert a new disk into drive 1 and use the IDISK
command (described in the next section in more detail) to prepare the new disk in
drive 1 before copying aii of the fiies in drive 0 to it.

The above example demonstrates use of the wild card filename ‘“*.**’. The first asterisk will
match any number of characters in the name, and the second asterisk will match any three
characters in the extension of the filename.

You can also specify some of the characters of a filename in a wild card filename. For example,
if you wanted to copy all of the files that have “.SRC’’ as an extension, you would use this
COPY command:

-COPY *.SRC TO :F1:<cr>

There are other wild card filenames that are described in detail in the Intellec Series Ilf
Microcomputer Development System Console Operating Instructions.

There are several ways to copy entire disks. The IDISK and FORMAT commands are used to
prepare (‘‘format’’) disks for use in the Series lil system. The IDISK command will simply for-
mat the disk as a system or non-system disk, copying over to the new disk only the format
(““F’’}files that are needed to format the new disk as a system or non-system disk.

The FORMAT command will format a new disk as a system or non-system disk depending on
the source disk implied (drive 0) or specified (using FROM). The FORMAT command will also
copy certain files from the source disk. FORMAT with the ““S”’ switch copies all files from the
source drive that have the **S” (system) attribute. See the previous section on formatting disks
foran example of the FORMAT command with the ‘S’ switch.

To copy all of the files from the source disk, use the ‘A’ switch. To show an example of the
FORMAT command with the ““A’’ switch, insert another blank disk into drive 1, and type this
command:

—~FORMAT :F1:SYSTEM.BAK A<cr>
SYSTEM DISK

In this example, the FORMAT command formats the disk in drive 1 as a system disk because
the source disk in drive 0 is a system disk. The new disk is called SYSTEM.BAK. The “A”’
switch specified that all files from the source disk in drive 0 should be copied to SYSTEM.BAK
indrive 1.

So far, all of the FORMAT examples used the disk in drive 0 as the source disk. If, for example,
you have more disk drives and you want to FORMAT a disk in drive 1 using as a source a disk in
drive 2, you would specify FROM 2 as in the following example:

~FORMAT :F1:MYDISK A FROM 2<cr>

2

CHAPTER 2

22

In a previous section on formatting disks, we described formatting operations to prepare your
disks in a way that conforms with our examples. We do not necessarily recommend this for-
matting scheme for your particular configuration. Chapter 2 of the Intellec Series il Micro-
computer Development System Console Operating Instructions gives you the specific details
for setting up disks in any Series Ili configuration, using the IDISK, FORMAT, and HDCOPY
commands.

EXECUTING COMMANDS AND PROGRAMS

The Series lll has two processors: the 8085 (8-bit processor), and the 8086 (16-bit processor).
You can execute 8085-based programs in the 8085 environment (which is called the 8085 execu-
tion mode or ‘8085 side’’), and execute 8086-based (or 8088-based) programs in the 8086
environment (which is called the 8086 execution mode or ‘8086 side’’). When you type the
filename of a program as a command (as you have been doing when you type “‘DIR” or
“*‘GOPY”"), you are executing the program in the 8085 execution mode. In order to execute a
program or command in the 8086 execution mode, you must prefix the command RUN to the
program or command you wish to execute. For example, if you want to execute LI1B86.86, the
8086 librarian (which can only be run in the 8086 execution mode), you would type the following:

-RUN LIB86<cr>

You should notice two things that are different: the use of the command RUN, and the fact that
you do not have to supply the **.86’" extension for LIB86.86 when you RUN it.

The RUN command is actually a program supplied on the system disk that activates the 8086
execution mode. When you supply a filename with no extension, the RUN command
automatically attaches the *.86’’ extension to the name you supplied, and looks for the file by
that name (i.e., the name with the ‘*.86"" extension). This is a protection feature you can use for
your 8085 and 8086 programs: you can use the same name for both, with an **.86"" extension for
the 8086 program and no extension for the 8085 program. When you specify filenames without
extensions, RUN only looks for files that are supposed to run in the 8086 execution mode; i.e.,
files with the ‘*.86"’ extension. This protection feature assumes that you would put the **.86"
extension on files that are meant to run in the 8086 execution mode.

If you actually executed LIB86.86, the following would appear on your screen:

-RUN LIB86<cr>

SERIES III 8086 LIBRARIAN, Vx.y
*

The LIB86.86 program is now in control. To leave this program and return to the operating
system, use the librarian’s EXIT command:

*EXIT<cr>

You can, of course, supply an extension with the filename you supply to the RUN command,
and the RUN command would not supply the **.86’' extension. For example, if you have an 8086
program called MYPROG.PRG and you want to run it in the 8086 execution mode (on the **8086
side’’), you would type the following:

~RUN MYPROG.PRG<cr>

OPERATING THE SERIES 1]

You can also RUN a program whose filename has no extension. However, you must supply a
period to show that there should be no extension (i.e., to keep RUN from supplying the **.86’
extension). The foliowing is an example, assuming that the name of the program is not
MYPROG.PRG butis MYPROG:

~-RUN MYPROG.<cr>

When you use RUN as a command (as in the examples above), the 8086 execution mode is
turned on for program execution, and when the program terminates, the 8086 execution mode
also terminates, returning you to the 8085 execution mode. The 8085 execution mode is con-
trolled by ISIS-Il, which signifies its control by displaying the dash (-) prompt. You can,

To use RUN as a program, simply type RUN:

-RUN<cr>
ISIS-I1 RUN 8086, Vx.y
>

The RUN program displays a sign-on message and its own prompt, the right angle (>) bracket,
to signify that the RUN program is now in control. This mode is called the interactive 8086
mode, and you use it to execute more than one program. When you get the angle (>) prompt,
you can type the filename of a program in order to execute the program. The rule stated above
about the use of the “.86°’ extension stiil applies.

The following example shows the execution of several 8086-based programs: PASC86.86 (the
Pascal-86 compiler), LINK86.86 (the linker and binder), and PROG1.86 (the assembled, linked,
and bound program). If your Pascal-86 disk (containing the compiler, run-time libraries, and
sample PROG1.SRC) is in drive 1, and LINK86.86 is on the disk in drive 0, you can type this
example exactly as presented. The LINK86.86 command line shows use of the ‘&’ continua-
tion character that allows you to type commands over several lines without executing them.
The EXIT command turns off the 8086 execution mode and returns you to ISIS-Il and the 8085
execution mode:

-RUN<cr>
ISIS-II RUN 8086, V1.0
>:F1:PASC86 :F1:PROGT.SRC<cr>

This executes PASC86.86 to compile
PROGT1.SRC, both of which are on the
disk in drive 1. The Pascal-86

compiler displays some information.

>LINK86 :F1:PROG1.08J,:F1:P86RNO.LIB,:F1:P86RN1.LIB,&<cr>
>>:F1:P86RN2.LIB,:F1:P86RN3.LIB,:F1:E8087.LIB,&<cr>
>>:F1:E8087,:F1:LARGE.LIB TO :F1:PROG1.86 BIND<cr>

This example shows use of the ''&''
command line continuation character.
The entire command links the object
program with the run-time libraries,
and binds the [inked module to form
an executable program called
PROGT1.86

CHAPTER 2

24

>:F1:PROG1<cr> This command executes :F1:PROGT.86
Farenheit temperature is:72<cr>

PR0OG1.86 is a temperature conversion
program. When it asks for more
input, you can stop the program by
typing '‘'N''.

Another temperature input? tN<cr>

SEXIT<cr> This terminates the 8086 execution
mode and returns you to the 8085
execution mode.

In the above examples, commands and programs were executed directly by typing the com-
mand name or program name (sometimes followed by the name of a file to be acted upon by
the command or program; this is called an actual parameter). When you execute a program or
command directly, itis called interactive execution.

in many cases you will want to submit a batch of commands or programs to be executed in a
sequence. The SUBMIT command allows you to submit a file of commands as a job to be
handled by the system without any interaction on your part. This is calied non-interactive
execution.

You use SUBMIT by first providing a file of commands to be executed—a command sequence
definition file, which has the extension ‘.CSD". This file can contain operating system com-
mands, parameters for the commands, and comments—any line starting with a semicolon (;),
or any text following a semicolon, is a comment, not an executable command. In the following
example, note that the first command is the RUN command, which starts the 8086 execution
mode, and that blank spaces in command lines are allowed to improve readability:

CSD file to SUBMIT for linking a Pascal-86 object module
to run-time support libraries (with E8087 emulator)

Parameter 0 = :fn:myprog
Parameter 1 = drive containing run-time libraries

-y e wme we W ws we W

RUN

LINK86 %0.0BJ, &
tF%1:P86RNO.LIB,
cF%1:P86RN1.LIB,
tF%1:P86RN2.LIB,
:F%1:P86RN3.LIB,
:F%1:E8087.LIB, &
:F%1:£8087, &
:F%1:LARGE.LIB TO %0.86 BIND

R0 Q0 20 RO

EXIT

H
; Returns to 8085 execution mode.

OPERATING THE SERIES I}

When this file, cailed LNKBND.CSD, is submitted, the system will execute the RUN command,
then the LINK86.86 program (the 8086 linker), and finally the EXIT command to leave the ‘8086
side’ and return to the 8085 execution mode.

The percent symbols (%) indicate the use of formal parameters. When you execute the
SUBMIT command, you supply actual parameters for each of these formai parameters. The
following is an example:

-SUBMIT LNKBND(:F1:PROGT,1)<cr>

The SUBMIT command first looks for LNKBND.CSD (it supplies the missing “.CSD"’ exten-
sion), and then it substitutes the first actual parameter (: F1:PROG1) for “%0” and the
second actual parameter (1) for *“%1”’. The resulting command sequence is as follows:

RUN
LINK86 :F1:PROG1.0BJ, &
:F1:P86RNO.LIB, &
:F1:P86RN1.LIB, &
:F1:P86RN2.LIB, &
:F1:P86RN3.LIB, &
:F1:E8087.L1IB, &
:F1:E8087, &
:F1:LARGE.LIB TO :F1:PR0OG1.86 BIND

EXIT

The SUBMIT program creates another file with a **.CS” extension to hold the resulting com-
mand sequence. You should not modify this file.

SUMMARY OF THE SERIES 11l OPERATING SYSTEM

The Series lll system has two execution environments: the 8085 environment (the 8085 side’’)
where the ISIS-Ii commands and 8080/8085 programs run, and the 8086 environment (the ‘8086
side”’), activated by the RUN program, where 8086 and 8088 programs run. Programs that run in
the *‘8086 side’’ usually have an .86’ extension in their filenames. The RUN program actually
iooks foran **.86"" extension if you specify a filename without an extension.

You use the Series Il operating system and its tools to develop software, but there is another
way to use it: your software products can use it as an execution vehicle. The Intellec Series ili
Programmer’s Reference Manual describes the “‘innards’ of the Series Ill operating system
and how your programs can make use of sections of the system. By using PL/M or assembly
language, you can call operating system procedures directly (as described in the summary of
Chapter 5) from your program. Pascal-86 programs automatically use the operating system pro-
cedures by using run-time libraries which interface between the Pascal-86 programs and the
Series lll system.

The Series lll system has a standard set of procedures that your software products can use; by
using this standard programming interface, you can be sure that your future programs will
remain compatible with present and future Intel operating systems.

There are a few more commands that were not introduced because they are used infrequently,
or they are easy to use. These commands are adequately introduced in the Intellec Series Il
Microcomputer Development System Console Operating Instructions. You should consult this
manual anyway, to be aware of detaiis not mentioned in this tutorial.

25

CHAPTER 3
TEXT EDITING

‘‘A good workman is known by his tools.”” —proverb

You use a text editing program to create any kind of document, including a document that con-
sists of program instructions. CREDIT is a text editor that takes advantage of the capabilities
you have with CRT screens to:

e Dispiay and scroll text on the screen

¢ Rewrite text by typing new letters over old ones

¢ Rearrange lines of text and insert new lines of text between old lines

¢ Move to any position in the text file or to any point on the screen instantly

ect typing mistakes easily as you type

To simplify everyday text editing operations, CREDIT also provides features that allow you to:
e Save both the newly edited version and the old unedited version of the same document
* Find any string of characters and substitute another string of characters automatically

* Copy sections of a document to use in another document

e Create macros to execute several commands at once, or to repeat sets of commands
(command iteration)

CREDIT is useful for all documents; for example, we used CREDIT to write this book. CREDIT is
more often used to write the Pascal statements, PL/M statements, and assembly language
instructions that comprise program modules. Text files created by CREDIT are called
documents if they are meant to be read by humans; and they are also called source programs if
they consist of program statements (Pascal, PL/M, or FORTRAN statements, or assembly
language instructions) that are read by compilers or assemblers in order to be compiled or
assembled into working programs.

In the following examples, we show you how to create and edit a text file consisting of English
sentences that you can translate (eventually) into Pascal-86 statements. As described in
Chapter 1, this step of generating Pidgin Pascal (English sentences describing a Pascal pro-
gram) is a very important one in program development, because the program logic expressed
in English sentences closely resembles human thinking and is therefore easier to debug.

27

Chapter 3

CREATING A TEXT FILE AND INSERTING TEXT

When you run CREDIT, you also specify the name of a file to be edited. If CREDIT can find the
file you are specifying, it will open the file for editing. If CREDIT cannot find the file you are
specifying, it will create a new file by that name.

For example, let’s create a file called PIDGIN.TXT in the directory for drive 0. To create and edit
PIDGIN.TXT, type the following command:

-CREDIT PIDGIN.TXT<cr>
CREDIT responds with:

ISIS-I1 CRT-BASED TEXT EDITOR V2.0
NEW FILE 1982 FREE DISK BLOCKS

The number of free disk blocks depends on the number of files on your disk and the size of
your disk—you do not have to worry about it uniess you get a ““‘DISK FULL’’ warning. If you get
such a warning, terminate your CREDIT session by typing ‘‘EX’’ (followed by RETURN), and
specify another disk (like :F1:) for your text file.

The screen is partitioned into two areas, as shown in figure 3-1.

Notice the vertical line ‘| " in the text area? This symbol marks the end of the text in the file.
Since the file is new and holds no text yet, this symbol appears at the beginning of the file. As
you type text into the file, the symbol moves and continues to mark the end of the text.

The blinking cursor sits underneath this vertical line. You can immediately type text into the
file:

just type!]

As you type, you can make changes to the text you already typed by moving the cursor back to
the previous text and typing over it. Move the cursor by using the cursor control keys that sur-
round the HOME key (do not use the HOME key yet!). If you inadvertantly typed the HOME key,
hold down the CNTL key and type a V (Control-V) to return the cursor to the text body.

1S15-11 CRT-BASED EDITOR V2.0
NEW FILE 1982 FREE DISK BLOCKS

just type! |

COMMAND AREA

TEXT AREA

Figure 3-1. The CREDIT™ Video Display 121632-4

28

Text Editing

You end each line of text with a carriage return by typing the RETURN key, just like a
typewriter. CREDIT displays the carriage return operation as an uparrow (1). The carriage
return operation is actually performed by two ASCIl codes: one for the carriage return
character, and one for the line feed character. CREDIT uses one symbol, the uparrow (1), for
both characters. This symboil is called the /ine terminator.

There are several keys used often in editing:

¢ The RPT (Repeat) repeats whatever key you hold down. For example, hold down both the
RPT key and a cursor movement key, and the cursor will move faster. Use the RPT key
with RUBOUT to erase aline.

e The TPWR (Typewriter) key, when in the down position, displays every character in lower

P 11 VP U ¥ WRUILY ¥ 1 Mo S T P TUuy T PRyv | I A ey P
casSe iike a ypowi Ier. VWiei in ine up pUﬁlLlUll, all LifaiaclTiS ai © it Uppel Ladc.

* The ESC (Escape) key will cause a break in an executing command.

If your keyboard seems to freeze and does not display characters, you probably moved the
cursor past the vertical line. You cannot type any characters after the vertical line, since the
vertical line marks the end of the text. You can move the cursor to the vertical line and type,
thereby moving the vertical line, or you can move the cursor to any position before the vertical
line and type over the previously typed characters.

The ISIS-if CREDIT (CRT-Based Text Editor) User’s Guide contains an interesting tutorial ses-
sion. Before you learn how to use some of CREDIT s powerfu! editing commands, you should
learn how to end a CREDIT session properly, without Iosing the edits you have made. Figure
3-1 shows the layout of the screen; in the Command Area you’ll find an asterisk. To move the

cursor to this asterisk, press the HOME key.

CURSOR
ESCAPE CONTROL
(ESC) KEYS

CONTROL REPEAT HOME TYPEWRITER

(CNTL) (RPT) MODE
(TPWR)
Figure 3-2. The Series il Keyboard 121632-5

29

Chapter3

30

When the cursor appears after the asterisk, you can type a CREDIT command. The EX (exit)
command terminates a CREDIT session properly. Type “EX"’, followed by RETURN:

*EX<cr>

CREDIT will clear the screen and display the following message:

EDITED TO :FO:PIDGIN.TXT

By using the DIR command, you can see that the directory listing for :F0: now contains a new
file called PIDGIN.TXT.

You can use CREDIT to edit PIDGIN.TXT by invoking CREDIT again:
-CREDIT PIDGIN.TXT<cr>

This time, CREDIT does not have to create the file, because it already exists in the directory for
the disk in drive 0. CREDIT responds with:

ISIS-II CRT-BASED TEXT EDITOR Vv2.0
OLD FILE SIZE=2 1980 FREE DISK BLOCKS

The text you typed during the last example appears under this message. The message tells
you that PIDGIN.TXT is an old file, its size is 2 blocks (a block is 128 bytes), and you have 1980
free disk blocks in which to expand the file (these numbers vary depending on the space taken
up by files on your disk). If you do not have enough free disk blocks to expand the file, CREDIT
displays a warning message.

You can continue to experiment with CREDIT by typing and retyping lines of text. When you
are finished typing extraneous characters and are ready to type meaningful English
sentences, move the cursor to the first character or screen position, and type CNTL and Z
(hold down the CNTL key and type Z). The @ symbol will replace the character. Now move the
cursor to the end of the text—to the vertical line—and type CNTL and Z together again. ZAP!
You just deleted all the text you typed. All of the characters between the two @ symbols were
deleted, and you are left with an empty text file again.

Let’'s start with the simple problem definition. Type the following sentence:

Maintain the climate of a building using a system comprised oft
heating and cooling methods.?t
,

NOTE

The uparrow () stands for the RETURN key. Use the RETURN key to end each line of
text, including blank lines.

Using CREDIT, you can type the sentences you know you need, and insert more sentences
later. For example, you know you need the following sentences:

Based on temperature data, see if there is a demand,?
and determine the type of demand.?t
14 there is no demand, simply continue operating the climate system.*
1f there is a demand for heat, determine the heating method,*
and operate the system with this method.?®
1+ *~ere is a demand for cold, determine the cooling method,?
and cperate the system with this method.®

-

Text Editing

Two questions should immediately come to mind: what information does the program need,
and what else would a climate control program do? Let’s add new sentences by using
CREDIT s insert capability. Here is our text file so far:

Maintain the climate of a building using a system comprised oft
heating and cooling methods.*t
+
Based on temperature data, see if there is a demand,*t
and determine the type of demand.t
I1f there is no demand, simply continue operating the climate system.?®
If there is a demand for heat, determine the heating method,?®
and operate the system with this method.?*
If there is a demand for cold, determine the cooling method,*
and operate the system with this method.?®

Move the cursor to the beginning of the fourth line of text (the line that begins with
‘“‘Based on ..."”"). Hold down the CNTL key and type A (CNTL-A). The rest of the text disap-
pears, and you are now able to type sentences. Type the following sentences and blank lines:

+
Startup the climate system.?

*

While the system is operating, do (and repeat) the following:7*
+

Get the data needed for each pass: the time, the temperatures,?t
the weather, the state of the solar collector, etc.?

Store this data.?

+

Now type CNTL and A together again. The rest of the text file reappears with the new lines
inserted in their proper places. By typing CNTL and A together, you turn on the Add Text
Mode; by typing them again, you turn off Add Text mode. Here is your text file with the newly
inserted lines:

Maintain the climate of a building using a system comprised of?t
heating and cooling methods.?®

1

Startup the climate system.®

T

While the system is operating, do (and repeat) the following:*
+

Get the data needed for each pass: the time, the temperatures,?t

the weather, the state of the solar collector, etc.t

Store this data.t

1

Based on temperature data, see if there is a demand,?

and determine the type of demand.?

If there is no demand, simply continue operating the climate system.?®

If there is a demand for heat, determine the heating method,?*
and operate the system with this method.?®

If there is a demand for cold, determine the cooling method,*
and operate the system with this method.?t

3

Chapter 3

32

MOVING AROUND IN THE TEXT FILE

Using the cursor movement keys, you can move the cursor anywhere within a screenful of
text. If the text file is larger than twenty lines, it will not fit entirely in one screen—you have to
scroll the screen by using the scroiling commands.

The scrolling commands only operate when the cursor is in the text area (when the cursor is in
the text area, you are in screen mode). Refer to figure 3-1 for an illustration of the text and com-
mand areas. When the cursor is in the command area (command mode), you can only execute
command mode commands; to move into screen mode (and move the cursor to the text area),
type CNTL-V (hold down the CNTL key and type V).

The scrolling commands are CNTL-N (to see the next screenful of text), and CNTL-P (to see
the previous screenful of text). You can also use CNTL-V to see which character CREDIT is cur-
rently pointing to, and to move into screen mode. If you experiment with CNTL-V, you will
notice that the first use of CNTL-V moves the cursor to the character that CREDIT’s pointer is
pointing to (more on this pointer in the next paragraph). Subsequent executions of CNTL-V
rearrange the lines of text so that the line that contains the character pointed to by CREDIT
becomes the third line in a screenful of text. This is very useful for partial scroiling. You can
use these commands without fear, since they do not modify the text.

NOTE

The CNTL key, when used with another key (e.g., CNTL-V), is sometimes
represented by the uparrow (1) symbol in our manuals and pocket references. For
example, CNTL-V is shown as tV, and CNTL-A is shown as tA.

The character pointer mentioned above is a reference point for all of CREDIT’s commands. In
screen mode, the cursor represents the pointer. It is sometimes called ‘‘the CP’’. Most text
editors have some pointer or marker that points to a place in the file, and commands that insert
characters, delete characters, or search for characters use this pointer to find the place in the
file to perform their operations. CREDIT's pointer points to a single character, and this pointer
moves whenever you move the cursor within the text area. When you type the HOME key and
move the cursor to the command area, the pointer stays where it is, pointing to the character in
the text area. The CNTL-V command moves the cursor back to the text area and back to the
character pointed to.

In screen mode, the cursor movement keys and the scrolling commands move this pointer. In
command mode, all editing changes are made relative to the position of this pointer. Deleting a
single character, for example, erases the character pointed to by the pointer, and moves the
pointer to the next character. When you insert text, the text is inserted preceding this pointer.
Many other commands also move this pointer. CNTL-V will always move the cursor to the
character pointed to by this pointer.

One command that aiways moves the pointer is the J (jump) command. You can only use the J
command in command mode, and the J command leaves you in command mode (so you have
to do another CNTL-V to get into screen mode). You can jump to any location relative to the
pointer, or you can jump to specific locations called tags. You can set your own tags by using
the TS (tag set) command, and delete tags by using the TD (tag delete) command. There are
two permanent tags that need not be set, and that cannot be deleted: the beginning of the file,
known as TT (tag for top), and the end of the file, known as TE (tag for end). For example:

*JTT<ra

This command moves the pointer to the top of the text file (the beginning of the first line).

Text Editing

Since CREDIT usually puts the pointer at the top of the file when you start an editing session,
the JTT command (jump to tag for top of file) is more useful during an edit session. The JTE
command (jump to tag for end of file) is useful at any time:

*JTE<cr>

After using the J command, you are still left in command mode. Use the CNTL-V command to
return to screen mode, and to return the cursor to the character pointed to by the CP.

Use the JTE command (jump to tag for end of file), followed by a CNTL-V command to return to
screen mode, in order to add a sentence to the end of our Pidgin Pascal software definition.
The following example shows the execution of the JTE command, foliowed by a CNTL-V

{displayed as tV), followed by a display of the current text file with the added sentence at th

end:

*JTE<cr>
*1TV

Maintain the climate of a building using a system comprised of?t
heating and cooling methods.?t

N

Startup the climate system.*

-
T

While the system is coperating, do (and repeat) the following:®

+

Get the data needed for each pass: the time, the temperatures,?t

the weather, the state of the solar collector, etc.t

Store this data.t

+

Based on temperature data, see if there is a demand,*t

and determine the type of demand.?t

If there is no demand, simply continue operating the climate system.?

If there is a demand for heat, determine the heating method,*
and operate the system with this method.?®

If there is a demand for cold, determine the cooling method,*
and operate the system with this method.?®

»

If no method is possible (abnormal conditions),®

shut down the climate system.?t

N

FINDING OLD TEXT AND SUBSTITUTING NEW TEXT

There will be numerous occasions when you will want to find a specific word or group of
words, and move the character pointer at the same time. There will also be times when you will
want to substitute a new word or group of words for an old one. For example, you might write a
program that displays the name of your product (for example, ‘“ACME Solar Controller’’) in
several different places. Sometime later, you find out that the marketing people changed the
name to '*ACME Climate Controller’’. With one simple CREDIT command, you could substitute
the new word (*‘Climate’’) for the old word (‘‘Solar’’) wherever the old word occurs in the text
file. You would only have to make sure that you specified the old name using upper and lower
case characters as they appear in the file, and that the new name looks exactly as it should
look.

33

Chapter 3

34

The F (Find) command finds any string (group of characters) you specify. The S (Substitute)
command finds the old string you specify and substitutes the new string you specify, and rear-
ranges the text so that spaces aren’t introduced into the file. The SQ (Substitute after Query)
command finds the old string you specify, then asks you for a yes-or-no answer: a yes tells
CREDIT to substitute the new string you specified, and a no tells CREDIT not to substitute the
new string. If you executed the SQ command iteratively (see next section), CREDIT would con-
tinue looking for more instances of the old string.

To show examples of these commands, we’ll return to our Pidgin Pascal text file to add some
new text and substitute a new word for an old one. Use the F command to find the string
‘‘simply continue’’:

*F/simply continue/<cr>

When the F command finishes, it displays the asterisk once again. To see where it put the
character pointer, type CNTL-V. The cursor should be under the space after the last letter of
‘‘continue.”” We want to rewrite the sentence so that ‘‘no method’’ is one of the methods used
to operate the climate system.

At this point, it is easy to move the cursor to the appropriate place to insert new text. You can
type over the old text, and use the RETURN key to continue typing a line. You can also use the
CNTL-A combination to insert a lot of text. After inserting the new text, the sentences should
read as follows:

If there is no demand, choose ''no method'' as the method,?®
and operate the system with this method.?®

If there is a demand for heat, determine the heating method,®
and operate the system with this method.?®

1f there is a demand for cold, determine the cooling method,*
and operate the system with this method.?®

t

If no method is possible (abnormal conditions),?

shut down the climate system.?t

To illustrate use of the S and SQ commands, we will substitute the word ‘“‘request’ for
‘““demand” throughout our text file (and thereby make our program more polite). First, use the
JTT command to move the character pointer to the beginning of the file; then use the S com-
mand in the following manner:

*JTT<cr>
*S/demand/request/<cr>

The S command found the first instance of ““demand’’ and substituted ‘‘request’’ for it. Check
to see the result by typing CNTL-V:

Based on temperature data, see if there is a request,t
and determine the type of demand.?t

Note that S command only found the first instance of ‘‘demand’’ and substituted ‘‘request’’ for
it only. Note also that the S command must have moved the comma after the first "demand’” in
order to fit the word ‘‘request’’ in that place.

Text Editing

To execute the S or SQ commands repeatedly, you would use a form of command iteration.
The SQ command performs the same operation as the S command if you answer with a yes; on
a no answer, the SQ command does not substitute text. Here is an example of the SQ com-
mand, with a sneak preview of the easiest form of command iteration:

*1<SQ/demand/request/><cr>

The angle brackets around the entire SQ command, in conjunction with the exclamation point,
cause the SQ command to be executed repeatedly until the command reaches the end of the
text file. Do not be confused by the angle brackets surrounding the ‘‘cr’’—that is the symbol
depicting use of the RETURN key. Angle brackets delimit the command to be executed
iteratively, and the exclamation point replaces a number that would specify the number of
iterative executions. This is explained in more detail in the next section.

The SQ command displays the line that contains the old text, and then displays a question
mark. You must respond witha “'Y”’ for yes, oran ‘‘N’’ for no:

and determine the type of demand.?t
2y

You do not have to type RETURN after typing the “Y"’ or ““N”’, because CREDIT is expecting
such an answer. The SQ command goes on to find more instances of ‘‘demand’’:

If there is no demand, choose ''no method'' as the method,*
7Y

If there is a demand for heat, determine the heating method,*t
Y

If there is a demand for cold, determine the cooling method,?
?2Y

*

When the SQ command has found the end of the text file, the condition for iterative ex n
is satisfied, and the execution ends. Type CNTL-V, followed by a CNTL-P, to see the previous

page and the substitutions:

r itaratiy
rierat

Maintain the climate of a building using a system comprised of?t

heating and cooling methods.?t

+

Startup the climate system.t

1

While the system is operating, do (and repeat) the following:?t

+

Get the data needed for each pass: the time, the temperatures,?t

the weather, the state of the sotar collector, etc.?

Store this data.?

+

Based on temperature data, see if there is a request,*

and determine the type of request.?t

If there is no request, choose ''no method'' as the method,?
and operate the system with this method.?t

If there is a request for heat, determine the heating method,t
and operate the system with this method.?®

If there is a request for cold, determine the cooling method,*
and operate the system with this method.?t

+

If no method is possible (abnormal conditions),?t

shut down the climate system.?t

t

Chapter 3

36

MACROS AND COMMAND ITERATION

Our Pidgin Pascal program still needs a modification that will vastly improve its readability. We
need to indent all of the sentences that occur after the sentence ‘“While the system is
operating, do (and repeat) the following:’’. This will improve the readability, since it will then
be obvious that the indented sentences are the actions that have to be repeated.

To make this improvement, we will define a macro to hold several editing commands that will
be executed iteratively. Rather than explain the process of defining macros and the syntax for
command iteration, we’ll show you the steps to take to make this improvement to our text file,
and then we’ll explain them.

To begin, move the cursor (in screen mode, so that it also moves the character pointer) to the
beginning of the blank line that follows the sentence ‘‘While the system is operating...”. Your
cursor (and the character pointer) should now be at the beginning of this blank line, as shown
by the underscore ‘‘__"’ symbol:

Maintain the climate of a building using a system comprised oft
heating and cooling methods.?®

)

Startup the climate system.?t

+

While the system is operating, do (and repeat) the following:?t

Now type the HOME key to return to command mode.

You can only define macros while in command mode. We will now define a macro called X that
will make the improvement. Here is our definition of X:

*MSXQLO; A<L; I/ 2250/ ;P>a<er>

Type this macro definition exactly as it is shown above (the ‘1"’ symbol stands for a
space—type five spaces—and the ‘‘<cr>"" stands for the RETURN key). When CREDIT finishes
digesting this definition, it displays the asterisk again. Now type the following command:

*MFX(13)<cr>

You will see each line following the sentence ‘‘While the system is operating...”” being acted
upon by macro X. All of the lines following that sentence are now indented by five spaces, as
shown below:

Maintain the ctimate of a building using a system comprised of?t
heating and cooling methods.?t
,
Startup the climate system.?
+
While the system is operating, do (and repeat) the following:t
N
Get the data needed for each pass: the time, the temperatures,®
the weather, the state of the solar colltector, etc.?
Store this data.?t
+
Based on temperature data, see if there is a request,t
and determine the type of request.?
1f there is no request, choose ''no method'' as the method,*
and operate the system with this method.?*

Text Editing

If there is a reguest for heat, determine the heating method,?*
and operate the system with this method.t
If there is a request for cold, determine the cooling method,*
and operate the system with this method.*
™
If no method is possible (abnormal conditions),t
shut down the climate system.?
+

““‘What was that gibberish | typed?'’ To answer your question, dispiay the macro definition
again by typing the following command in command mode:

x*x7M<cr>
XLO;%<L;1/ /;P>

The display is exactly what you typed before, without the “@"’ symbols. The “@’’ symbols
were used to define the macro—they delimit the actual text of the macro, so they are not
necessary in this display (therefore CREDIT does not display them).

The macro starts with its name: X. Following the name is the first command in the macro: the
L0 command, which moves the character pointer (called CP from now on) to the beginning of
the current line (the line that the CP is currently sitting on—this line changes every time the
entire macro executes). Following the L0 command is a semicolon, which separates one
command from the next.

The next command in macro X is a set of commands to be executed repeatedly, or iteratively.
The ““%’’ {(percent) symbol is a special one in this case, and is explained in the next paragraph.
You saw the angle brackets in the last section—they delimit the set of commands to be
executed repeatedly. The commands to be executed repeatedly are the L command (move CP
to the beginning of the next line), the | command (insert the text that is specified within the
following /"’ (slash) symbols), and the P command (display the current line). The text within
the “‘/*’ (slash) symbols consists of the five spaces we need to insert in order to indent the
lines.

Now we’ll explain the %"’ (percent) symbol. When you typed the command to execute macro
X, you typed:

*MFX(13)<cr>

The “MF”’ command executes the macro ‘“X’’. The number 13 in parentheses is called a
parameter—the MF command substitutes the parameter you specify (in this case, 13) for the
“%” (percent) symbol. The result is that the iterative command set (“‘<L;l/ 1;P>") is
executed 13 times. Why did we pick 13? Because there were only 13 lines ahead of the
character pointer to be indented. We could have specified a *‘!"’ (exclamation point) symbol to
execute the iterative command set over and over until it reached the end of the file, but we
chose this method to show you the use of parameters in macros, and to make sure that the last
two lines would not be indented.

We also chose to use the ‘@’ symbol to delimit the entire macro, but you can use any symbol
that is not used within the macro.

Obviously, there are more details you should learn before using macros and other advanced
editing features. However, you do not need these features to perform simple editing opera-
tions. They exist only to make your text editing sessions easier, if you first learn how to use
them.

37

Chapter3

38

ENDING A TEXT EDITING SESSION AND MANAGING
BACKUP FILES

When you are editing text, the edited text is in the computer’s memory, but it is not yet on disk.
To update the text file with the edited text, you have to end your text editing session properly.
The EX command properly replaces the old text in the file with the newly edited text, and it also
saves the old version of the file in another file called a backup file. When the edit session ends,
control of the system returns to the operating system (ISIS-II).

If you have been following the examples in this chapter, you are now in CREDIT with your
edited text, and you are ready to end your edit session. If you are not in command mode (with
the asterisk prompt), use the HOME key to get into command mode. When you are in com-
mand mode, type the following command:

*EX<cr>
The text on the screen should disappear, and another message should appear:
EDITED TO :FO:PIDGIN.TXT

The file PIDGIN.TXT, on the disk in drive 0, now contains the newly edited text. Use the DIR
command to see the directory for drive 0. In the directory listing, you should see the filename
PIDGIN.BAK. CREDIT created this file to be the backup file that contains the old unedited ver-
sion of PIDGIN.TXT. Every time you use the EX command by itself, CREDIT automatically
creates a backup file with the ‘. BAK’’ extension to contain the previous version of the file.

NOTE

You should not execute CREDIT to edit a backup file (a file with the ".BAK’’ exten-
sion), because the EX command would first put the new edits into the ‘“.BAK”’ file,
then it would overwrite the **.BAK"’ file with the previous (unedited) version of it. Use
the REN (rename) command to rename the file before editing it, or use the filename
option with the EX command, described in the next paragraph.

You can optionally specify a filename with the EX command, so that the newly edited text
becomes a new text file, and the old text file remains unedited. For example, if you had typed
the following version of the EX command (rather than the preceding version):

*EX NEW.TXT<cr>
the following message would appear:
EDITED TO :FO:NEW.TXT

The file NEW.TXT would contain the newly edited text, and the old PIDGIN.TXT would not have
been updated (and PIDGIN.BAK would not have been created as a backup file).

NOTE

If you type “EXIT” rather than “EX’’, CREDIT assumes that you want to store the
newly edited text in the file IT (:FO:IT).

Another way to end an edit session is to use the EQ (quit) command. The EQ command will
keep all files unchanged, as if nothing had happened. Al edits you made while in the edit ses-
sion vanish, and the text and backup files (if they exist) remain unchanged. If you use the EQ
command in a session that created the text file, the new text file would not exist.

Text Editing

To keep you from making a mistake, the EQ command will first ask you for a Y or N answer
before it ends the session:

*EQ<cr>
QUIT?Y

If you reply with anything otherthana Y’ or “‘y’’, the EQ does not end the edit session.

DISPLAYING AND PRINTING TEXT FILES

Now that you have a text file, we can show you how to display the file on your screen and copy
the file to a printing device. You can display the text file on your screen without using CREDIT
by using the COPY command and the device name :CO: (for ‘‘console output’’):

-COPY PIDGIN.TXT TO :CO:<cr>

To print the text file PIDGIN.TXT, you use the COPY command to copy the file to the device
name :LP: (for “line printer”’), or to the device name :TO: (for *‘teletype output’). You can
COPY a file to any output device. You can find a complete list of device names in the Intellec
Series lil Microcomputer Development System Console Operating Instructions. This example
assumes that you have an :LP: device to receive a copy of the file :FO:PIDGIN.TXT:

-COPY PIDGIN.TXT TO :LP:<cr>

FROM TEXT TO PROGRAM

Your PIDGIN.TXT text file now contains an algorithm that is actually a program in disguise (the
disguise is English, or Pidgin Pascal). You should keep a copy of it somewhere, perhaps on
another disk (or leave it in drive 0 if you have a hard disk subsystem). To use this algorithm in
the next chapter, you will want to copy the text file to the Pascal-86 disk, and call it MAIN.SRC,
since it will become the source file of your main control algorithm:

-COPY PIDGIN.TXT TO :F1:MAIN.SRC<cr>
tFO:PIDGIN.TXT COPIED TO :F1:MAIN.SRC

The examples in this and subsequent chapters assume that you either have a hard disk sub-
system, or at least two double-density flexible disk drives. If you have single-density flexible
disk drives, you should have more than two of them; in this case, you should put your program
on the third disk, since it probably will not fit on the Pascal-86 disk in drive 1.

Although MAIN.SRC only has Pidgin Pascal statements at this time, you will edit them to make
them real Pascal-86 statements as they appear in figures in Chapter 4.

39

CHAPTER 4
PROGRAMMING IN PASCAL-86

“One of the most important aspecis of any computing tooi is its infiuence on the thinking
habits of those who try to use it...”’
—E. W. Dijkstra

The Series lll Microcomputer Development System was designed to support a variety of pro-
gramming techniques with several programming ianguages. The preceding chapters give you
the background you need to use this system wisely, and this and the following chapters help
you decide the criteria for decomposing your application into modules and picking the
appropriate language to use for each module.

One popular approach to programming is the top-down approach, where you define the prob-
lem completely, design an abstract algorithm to solve the problem, and refine this algorithm
into self-supporting modules that can be coded and compiled separately. Typically, the main
module would contain the most abstract algorithm—the control algorithm at the top of the
design that solves the entire probiem. The subordinate modules perform the procedures
dictated by the main module.

Pascal-86 is a language that is ideal for the main module of such a modular solution. Using
Intel’s Pascal-86 compiler, you can decompose a program into modules that can be compiled
separately, whereas other Pascal compilers only compile whole programs which have to be
tailored to fit into microprocessor environments.

Perhaps the most important reason for Pascal’s wide acceptance is the fact that it is a
language that closely resembles English. In the past, programmers had to keep their algorithm
designs well within the constraints of programming languages that were designed to express
mathematical equations. In other words, at the outset they had to think in terms of the pro-
gramming language available to them. This approach reinforced the practice of giving
implementation (‘‘how to’’) information in the problem definition (for example, “‘the input to
this program is to be formatted on cards in columns 0-15..."").

In Chapter 3 we designed an algorithm for the climate control of a building using English, which
we jokingly call Pidgin Pascal. Since our control structures are in English, we have been able
to communicate this algorithm easily and test its logic before translating it into Pascal-86. By
now we should have a complete problem definition and a clean algorithm that could be
translated into any programming language.

TRANSLATING PIDGIN PASCAL TO PASCAL-86

Figure 4-1 shows the main climate control algorithm, described in Pidgin Pascal. Several
assumptions are made: that another subordinate module will operate the climate system, that
yet another module wiil access and store the data, and that the data itself will be in the form of
arecord, which will be available to this algorithm.

41

CHAPTER4

42

As in typical development situations, a change has just occurred in our climate system that we
software engineers have to accomodate: the first version of our climate system will not have
cooling methods—only heating methods. We must design the software to make room for cool-
ing methods in the future.

We made another change to the algorithm to accomodate a ‘‘panic’’ condition. An algorithm is
not complete unless it can handle any situation; remember, Murphy said that if it can go wrong,
it will. Therefore, we added a test to see if the climate system can handle the request for heat.
If neither the coliector water nor the tank water is hot enough to heat the building, a panic con-
dition occurs that stops the normal operation of the climate system. At this time, it is sufficient
to simply stop the program and output warning messages; later, we can add more procedures
to handle such panics.

Using CREDIT (as described in Chapter 3), you can change this algorithm into Pascal-86 by
adding the Pascal-86 statements and using comment symbols to turn the English sentences
into program comments. The (* and *) symbols tell the Pascal-86 compiler to ignore whatever is
between them. Some comments are only a few words surrounded by the (* and *) symbols, but
comments can take up many lines, as shown at the end of the program in figure 4-2. As soon as
the compiler sees the (* symbols, it ignores the characters and lines following it until it sees
the *) closing symbols.

These comments are carried over with the program statements to the listing file produced by
the compiler. You use the listing file as documentation for the program. You’ll see a listing file
later in this chapter.

Figure 4-2 shows the same algorithm expressed in Pascal-86 statements, with the English
sentences masquerading as program comments. We also added more comments. It is a good
practice to write the comments of a program before writing the actual program statements.

Maintain the climate of a building using a system comprised of
heating methods.

Startup the climate system.
While the system is operating, do (and repeat) the following:

Get the data needed for each pass: the time, the temperatures,
the weather, the state of the solar collector, etc.
Store this data.

Based on temperature data, see if there is a request

for heat.

If there is no request, choose ''no method'' as the method,
and operate the system with this method.

If there is a request for heat, determine whether the
system can handle the request. If not, cause a panic.
Otherwise, determine the heating method,
and operate the system with this method.

If no method is possible (panic or abnormal conditions),
shut down the climate system.

Figure 4-1. Algorithm for the Climate Control Main Module

PROGRAMING IN PASCAL-86

(**Type and variable declarations to be supplied laterx*)
(x*Public procedures external to this program will be supplied laterx*x)

PROGRAM MainControl (INPUT,OUTPUT);

BEGIN (**Main Control Atgorithm¥x)
StartUpSystem; (*procedure to start up the climate systemx)
Operating:=TRUE;
Panic:=FALSE;
WHILE Operating DO (*While the system is operating, do
(and repeat) the following:*)
BEGIN
GetData(CurrentData);
(*Get data needed for each pass: temps, time, etc.*)
StoreData(CurrentData); (*Store this data as record%*)

(*xIf there is a request for heat, determine whether the system
can handle the request. If not, cause a panic.
Otherwise, determine the heating method,
and operate the system with this method.

I1f there is no request for heat, choose ''no method,''
and operate the system with this method. *k)

WITH CurrentData DO
BEGIN
1F InsideTemp<ThermostatSetting THEN (*if request*)
BEGIN
IF CollectorWaterTemp>MinimumForExchanger THEN
BEGIN ChosenMethod:=CollectorToExchanger;
OperateSystem(CurrentData);
END
ELSE IF CollectorWaterTemp>MimimumForHeatPump THEN
BEGIN ChosenMethod:=CollectorToHeatPump;
OperateSystem(CurrentData);
END
ELSE IF TankWaterTemp>MinimumForExchanger THEN
BEGIN ChosenMethod:=TankToExchanger;
OperateSystem(CurrentData);
END
ELSE IF TankWaterTempoMimimumForHeatPump THEN
BEGIN ChosenMethod:=TankToHeatPump;
OperateSystem(CurrentData)l;
END
ELSE IF HeatedTankTemp>MinimumForHeatPump THEN
BEGIN ChosenMethod:=HeatedTankToHeatPump;
OperateSystem(CurrentData);
END
ELSE Panic:=TRUE; Operating:=FALSE;
END (*if heating requestx)
ELSE (*no heating requestx)
BEGIN ChosenMethod:=NoMethod;
OperateSystem(CurrentData);
END;
END; (*End routine WITH CurrentDatax*)
END; (*While operatingx)
ShutDownSystem(CurrentData); (* panic or abnormal condition *)
END.

Figure 4-2. First Try at Coding the Main Program

43

CHAPTER 4

44

(**The following are only comments:

The following procedures will be coded in another module
called the Operation Module:

PROCEDURE OperateSystem(CurrentData)

This procedure will operate the system and constantly
maintain heat gain in the system. Depending on the
heating method chosen, it opens certain valves and
closes others, and turns on certain pumps and turns
off others. It also maintains a flow of heated water
to the storage tank.

NOTE: for our testing purposes, a dummy OperateSystem
procedure will only display messages telling us what
heating method was chosen, and temperature data.

PROCEDURE ShutDownSystem(CurrentData)

This procedure will perform an orderly shut dowh if a
panic or abnormal! condition cccurs. The shut down must
keep warm water flowing through the solar collector and
close any extraneous valves, etc. It must also send a
warning messages tc the console, advising manual operation
of the furnace, etc.

NOTE: for our testing purposes, 2 dummy ShutDownSystem
procedure will only display data and a shutdown message.

PROCEDURE StartUpSystem

This procedure will start the climate system (cold start,
or after ShutDownSystem occurs), open necessary valves,
etc. It will also display a startup message.

NOTE: for our testing purposes, a dummy StartUpSystem
procedure will only display a startup message.

The following procedures will be coded in another module
callted the GetData Module:

PROCEDURE GetData(CurrentData)

This procedure will obtain the data from a PL/M-86 module
called PLMDATA that accesses ports to obtain temperature
data. Data other than temperature data will come from
ports via port input/output procedures in this Pascal-86
module.

NOTE: for our testing purposes, a dummy GetData procedure
will obtain all data from the console.

Figure 4-2. First Try at Coding the Main Program (Cont’d.)

PROGRAMING IN PASCAL-86

PROCEDURE StoreData(CurrentData)

This procedure will store the data record CurrentData in a
file (the fiie would probabiy reside in non-volatite bubble
memory) .

NOTE: for our testing purposes, a dummy StoreData procedure
will simply output the data to the console.

This is the last line of comments.**)

Figure 4-2. First Try at Coding the Main Program (Cont’d.)

This guide cannot possibly explain Pascal syntax—there are several books mentioned in the
Bibliography that can give you the background you need, and the Pascal-86 User’s Guide pro-
vides all the information you need to use Intel’s extensions to standard Pascal.

PASCAL-86 DATATYPES

A major advantage that Pascal has over other high-level languages is its strong type checking
mechanisms that enforce data typing. By using Pascal's data types, you avoid some of the
classic causes of errors in programs—the ambiguities involved with using simple X and Y
variables to hold truly non-numeric data, the mistakes that occur when you attach arbitrary
meanings to numeric data, and the complexities that are magnified by ambiguous variable
names.

An example is worth a thousand explanations. In the Pascal-86 algorithm in figure 4-2, we make
assignments like this one:

ChosenMethod:=TankToExchanger;

If ChosenMethod and TankToExchanger are declared properly in the module heading (not
shown in figure 4-2, but shown later in this section), the Pascal-86 compiler will know their
meanings. When you read this assignment, you know exactly what heating method has been
chosen. The data type is a type of heating method, not an integer representing a method. In
other programming languages you might be able to have a variable named *‘ChosenMethod”
and another variable named “‘TankToExchanger'’, but you would also have to be sure to assign
proper numeric or string values to them. A typical way of expressing the above assignment in
PL/M would be:

CHOSENSMETHOD = 2
/*where 2 is the appropriate method*/

or
CHOSENSMETHOD = TS$TOSEXCH

/xwhere TSTOSEXCH has already been assigned the appropriate
valuex/

45

CHAPTER 4

46

In both cases, you have to know a numeric code for the heating method. In Pascal, however,
you only have to define a set of heating methods, and pick one for the assignment. Here is an
example of such a definition:

TYPE HeatingMethods = (CollectorToExchanger,
CollectorToHeatPump,
TankToExchanger,
TankToHeatPump,
HeatedTankToHeatPump,
NoMethod);

(*xThe above defines the data type HeatingMethods, which is
used to define the variable ChosenMethod below.*)

VAR ChosenMethod : HeatingMethods;

In order to assign a value to ChosenMethod, the program must assign one of the methods in
the set of type HeatingMethods. Any other assignment would cause a compiler error message
to occur. By enforcing this data typing mechanism, the Pascal-86 compiler reduces the number
of run-time errors by flagging the data type errors early in the game.

There are severai standard Pascal data types that are useful. For example, you can define a
variable to be of type BOOLEAN, which means that the only values that can be assigned to the
variable are the values TRUE and FALSE. The variables Operating and Panic are of type
BOOLEAN; they are either TRUE or FALSE.

Note that ChosenMethod and CHOSENMETHOD would refer to the same variable, since lower
case characters are treated as upper case. This feature allows you to create long identifying
names with combinations of upper and lower case characters that are easy to read and
understand.

ANOTHER LOOK AT MODULARIZING AND HIDING INFORMATION

The programming technique called information-hiding is not an excuse for designers to
withhold information from their documentors—it is more akin to a technique we use to hold a
lot of information in our minds. When we have to interface with several different organizations
within a company in order to get a job done, we don’t pay attention to the inner workings of an
organization; we simply assume that the organization will do its job, and we define our inter-
face with the organization. Their organization is one module, and ours is another module; the
job gets done because the modules know how to communicate to each other without interfer-
ing in each other’s details.

Most logical algorithms are designed with assumptions about working modules. In our
algorithm in figure 4-2, we assume that the procedures StartUpSystem, GetData, StoreData,
OperateSystem and ShutDownSystem will work as planned, even though they are not yet writ-
ten. We also assume that another group may write them. We can make these assumptions
because we designed our main module to hide most of the details about choosing heating
methods.

So far, the main moduie's algorithm decides the appropriate heating method based on a set of
data. Once the algorithm is written, it may never change; and if it had to change, its change
should not affect the other modules. However, we could change the control algorithm so that
changes to the heating methods, or additional heating methods, would not even affect the
main control algorithm. A simple way to do this would be to turn the heating method determina-

PROGRAMING IN PASCAL-86

tion algorithm into an independent procedure called DetermineMethod, extract from this
algorithm the calls to OperateSystem, and put the call to OperateSystem in the control
algorithm.

The resulting main module is shown in figure 4-3. We added the module heading, but we still
need the interface specification and variable declarations (shown later).

MODULE HainControl;

(x+ Interface specification goes here, to be supplied later. *)

*

~

PROGRAM MainControl (INPUT,QUTPUT);

PROCEDURE DetermineMethod(VAR CurrentData : SystemData);

BEGIN
WITH CurrentData DO
BEGIN
IF InsideTemp<ThermostatSetting THEN
BEGIN

IF CollectorWaterTemp>MinimumForExchanger THEN
ChosenMethod:=CollectorToExchanger

ELSE If CollectorWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=CollectorToHeatPump

ELSE IF TankWaterTemp>MinimumForExchanger THEN
ChosenMethod:=TankToExchanger

ELSE IF TankWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=TankToHeatPump

ELSE IF HeatedTankTemp>MinimumForHeatPump THEN
ChosenMethod:=HeatedTankToHeatPump

ELSE Panic:=TRUE; Operating:=FALSE;

END
ELSE (*no heating requestx)ChosenMethod:=NoMethod
END; (*With CurrentDatax)
END; (*DetermineMethod)

(kkkkrrxkhnknxxxx MAIN PROGRAM *ddkkkrhkhkkdkkkkkkkkkkh XXk XXX KXk h kX k k)

BEGIN
StartUpSystem;
Operating:=TRUE;
Panic:=FALSE;
WHILE Operating DO (*while system is operating, do:x)
BEGIN
GetData(CurrentData); (*Get the temps, time, etc.*)
StoreData(CurrentData); (xStore this data as recordx)
DetermineMethod(CurrentData); (*xthis detects a panic¥*)
OperateSystem(CurrentData);
END; (*while operating*)
ShutDownSystem(CurrentData);
END. (xMain Control Algorithm*)

Figure 4-3. Second Try at Coding the Main Program

47

CHAPTER4

48

The DetermineMethod procedure now hides all the information about choosing the
appropriate heating method. We could also rewrite it to include cooling methods, or to change
the heating methods. The procedure expects to receive the record CurrentData, and it only
changes the value of the variable ChosenMethod.

The OperateSystem procedure will not be written until more facts are known about the hard-
ware of the actual climate system. However, we already know that if we make a decision about
a chosen method, include that method in the data record CurrentData, and send that data
record to the OperateSystem procedure properly, the OperateSystem procedure will know
how to operate the system. We defer these details to a later time when we’ll have a prototype
system to operate.

PASSING DATATO OTHER MODULES—PARAMETER PASSING
TECHNIQUES

We designed our main module so that it will receive a record of information. A Pascal-86 record
is much like a PL/M-86 structure which can be defined to hold certain data types. We have to
define this record in order to write the main module, but we can defer decisions about obtain-
ing the data in order to preserve our options.

A PL/M-86 procedure couid easily obtain the data and buiid the structure according to inter-
face specifications; so could an 8086/8087/8088 Macro Assembly Language program, or an 8089
Assembly Language program. In fact, we might be able to use existing routines to obtain the
data, and simply write another routine to structure the data accordingly.

In any case, we only have to pass the address of the structure to the Pascal-86 main module,
which knows what to do with it. This parameter-passing technique is known as pass by
reference, because the main module only needs a reference to the address of the structure in
order to treat the structure as a Pascal record.

Another parameter-passing technique is pass by value, where a procedure calls another pro-
cedure and sends it a value rather than an address. We don’t use this technique in our applica-
tion, since our procedures need to access data in the record. We decided against passing
specific values from this data record, and decided instead to make the entire data record
available to the appropriate procedures.

To define the data record properly and still provide the ability to change it easily, we created a
data type for the record:

TYPE (xdefinitions publicly defined in this modulex)

SystemData = RECORD
ChosenMethod : HeatingMethods;
InsideTemp,
ThermostatSetting : AirTemperature;

CollectorWaterTemp,
TankWaterTemp,

HeatedTankTemp : WaterTemperature;
Amount0OfSunlight : Integer;

Hour 1 00..24;

Minute : 00..59;

END (*SystemDatax);

PROGRAMING IN PASCAL-86
Using the data type SystemData, we defined the variable CurrentData to be of that type:

VAR
CurrentData : SystemData;

We pass the variable CurrentData to other procedures. If we were to change the data fields in
the record, we would only have to change the definition of SystemData; we would not have to
change any of the calls that pass the variable CurrentData. If the data fields kept the same
names (ChosenMethod, ThermostatSetting, etc.), we would not have to change the routines
that use those data fields.

THE INTERFACE SPECIFICATION

A module that calls a procedure in another module must have some information about where
the other procedure is, and it must provide some information to the other procedure about the
data being passed. Intel’s Pascal-86 provides a mechanism for supplying the appropriate
information to aii moduies that are to be iinked to form a program—it is calied an interface
specification.

The interface specification typically holds the type definitions and variable declarations that
are needed by all modules, and it also contains the names of procedures (with their
parameters) that are public to other modules; that is, they can be called from other modules.
Each module of the entire program contains this information. Figure 4-4 shows the interface
specification for our program.

In addition to PUBLIC definitions in the interface specification, a module can have PRIVATE
type definitions and variable declarations for variables used only within the module. Our
Operation module will have a PRIVATE section for all variables that are only used within the
module, but our MainControl main modute does not need one. In Pascai-86, a PRIVATE
heading is used in non-main modules instead of a PROGRAM heading.

Several enumerated types are defined in our program: AirTemperature and WaterTemperature
are defined as types that can only have values in the ranges specified. The variables Hour and
Minute are also of enumerated types, but since their ranges do not change, their types are not
defined separately. By defining the temperature types separately, we can easily change their
ranges without affecting the data record.

By defining the data record as type SystemData, we can easily change data fields in the record
without changing the CurrentData declaration. By defining and declaring types and variables in
the interface specification, we can maintain the interface specification separately (and change
definitions and declarations) without affecting the procedures.

TESTVERSION OF THE CLIMATE CONTROL SYSTEM

Since our hardware designs are not yet firm, we should put together a test version of our
system that does not interact with any prototype hardware. This version should include
dummy procedures for the procedures that would normally rely on 8088 ports and other
hardware.

49

CHAPTER 4

PUBLIC MainControl; (*section of interface specificationx)
CONST (xdeclarations declared publicly in this modulex)

MinimumForExchanger =z 35,(xdegrees Celsiusx)
MinimumForHeatPump = 13;

TYPE (xdefinitions publicly defined in this modulex)

AirTemperature =-20..120;(*degrees in Celsius*)
WaterTemperature =0..120;
HeatingMethods =(CollectorToExchanger,

CollectorToHeatPump,
TankToExchanger,
TankToHeatPump,
HeatedTankToHeatPump,
NoMethod);

SystemData = RECORD
ChosenMethod : HeatingMethods;
InsideTemp,
ThermostatSetting : AirTemperature;

CollectorWaterTemp,
TankWaterTemp,

HeatedTankTemp : WaterTemperature;
AmountOfSunlight : Integer;
Hour 1 00..24;
Minute : 00..59;

END (*SystemData+*);
VAR (*variables publicly defined in this module.*)

CurrentData : SystemData;
Operating, Panic : BOOLEAN;

PUBLIC GetData; (*GetData Module containing GetData & StoreDatax*)

PROCEDURE GetData(VAR CurrentData:SystemData);
PROCEDURE StoreData(VAR CurrentData:SystemData);

PUBLIC Operation; (*Operation Module containing OperateSystem,
StartUpSystem and ShutDownSystem#)
PROCEDURE StartUpSystem;
PROCEDURE OperateSystem(VAR CurrentData:SystemData);
PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);

Figure 4-4. The Interface Specification

50

PROGRAMING iN PASCAL-88

The dummy versions are shown in figure 4-5. You should type these versions exactly as you
see them, with the StartUpSystem, OperateSystem, and ShutDownSystem dummy procedures
in the dummy Operation module stored in the file :F1:DUMOP.SRC, and GetData and StoreData
dummy procedures in the dummy GetData module stored in the file :F1:DUMDAT.SRC. The
MainControl module should be stored in :F1:MAIN.SRC, and the interface specification shown
in figure 4-4 should be typed into the file :F1:INSPEC.SRC. If you cannot fit all of these files on
the disk in drive 1, you should put all of them on another disk—and use your own pathname
(:Fn:) for the *“.SRC"’ files. For our examples we assume that these files are on the disk in drive
1, along with the Pascal-86 compiler and run-time libraries.

Figure 4-5 shows each module and the dummy procedures. Since the interface specification is
repeated in each module, we use a shortcut when compiling the modules by putting the com-
mon interface specification in a seperate file (:F1:INSPEC.SRC), and we use the INCLUDE con-
trolin a control line as shown:

$INCLUDE(:F1:INSPEC.SRC)

If you put INSPEC.SRC on a disk in a drive other than drive 1, use your own pathname instead
of :F1:INSPEC.SRC.

MODULE MainControl;
(* Interface specification common to all modules *)

$INCLUDE(:F1:INSPEC.SRC)

(x end of interface specification *)

PROCEDURE DetermineMethod (VAR CurrentData : SystembData);

BEGIN
WITH CurrentData DO
BEGIN
IF InsideTemp<ThermostatSetting THEN
BEGIN

IF CollectorWaterTemp>MinimumForExchanger THEN
ChosenMethod:=CollectorToExchanger

ELSE IF CollectorWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=CollectorToHeatPump

ELSE IF TankWaterTemp>MinimumForExchanger THEN
ChosenMethod:=TankToExchanger

ELSE IF TankWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=TankToHeatPump

ELSE IF HeatedTankTemp>MinimumForHeatPump THEN
ChosenMethod:=HeatedTankToHeatPump

ELSE Panic:=TRUE; Operating:=FALSE;

END
ELSE (*no heating request*)ChosenMethod:=NoMethod
END; (*With CurrentDatax*)
END; (*DetermineMethod)

Figure 4-5. Test Version of Our Climate Control System

51

CHAPTER 4

(hkwkkdoxkkkkkok MAIN PROGRAM *kkkdkhkhhhkhhhhhk Ak Ak kkk ok kkkhkdhk ok sk k)

BEGIN
StartUpSystem;
Operating:=TRUE;
Panic:=FALSE;
WHILE Operating DO (*while system is operating, do:x)
BEGIN
GetData(CurrentData); (*Get the temps, time, etc.*)
StoreData(CurrentData); (*Store this data as record*)
DetermineMethod(CurrentData); (*this detects a panic*)
OperateSystem(CurrentData);
END; (*while operating*)
ShutDownSystem(CurrentData);
END. (*Main Control Algorithm«)

(*xThis is a dummy GetData module, with dummy GetData
and StoreData procedures, for use with MainControl
module in testing phases. It only performs conscle
input to get Celsius temperatures, the time of day,
and the amount of sunlight (insolation) for the
solar collector. Use PLMDATA module for real
application.*)

MODULE GetData;
(x Interface specification common to all modules *)
SINCLUDE(:F1:INSPEC.SRC)

PRIVATE GetData;
(*+ end of interface specification *)

PROCEDURE GetData(VAR CurrentData:SystemData);
BEGIN
WITH CurrentData DO BEGIN

WRITE(*Type the thermostat setting in degrees Celsius:');
READLN(ThermostatSetting); WRITELN;
WRITE('Type the inside temperature reading in Celsius:');
READLN(InsideTemp); WRITELN;
WRITE('Type the temperature of the collector water in Celsius:');
READLN(CollectorWaterTemp); WRITELN;
WRITE('Type the temperature of the tank water in Celsius:');
READLN(TankWaterTemp); WRITELN;
WRITE('Type the temperature of the heated tank water in Celsius:');
READLN(HeatedTankTemp); WRITELN;
WRITE('Type the hour of day, as in 04 or 24:');
READLN (Hour); WRITELN;

Figure 4-5. Test Version of Our Climate Control System (Cont’d.)

52

WRITE('Type the minute of the hour, as in 01 or 59: *J;
READLN (Minute); WRITELN;
WRITE('Type the amount of suntight, any integer will do for now:');
READLN (AmountOfSunlight); WRITELN;
END; (*with CurrentDatax)

END;

PROCEDURE StoreData(VAR CurrentData:SystembBata);

BEGIN

(*Dummy procedure, eventualLy will store CurrentData in a filex)

WiTh CurrentData 00 BEGIN

WRITELN('-=----=-=-------mmmmmmm oo ;5
WRITELNC('CURRENT DATA IS AS FOLLOWS:');
WRITELN('--------c----e-coommmmmmm e)

WRITELN('Thermostat Setting is ',ThermostatSetting,'C');
WRITELN('Inside temperature is ',InsideTemp,'C');
WRITELN('Temperature of collector water is ',CollectorWaterTemp,'C');
WRITELN('Temperature of tank water is ',TankWaterTemp,'C'};
WRITELN('Temperature of the heated tank water is ',HeatedTankTemp,'C');
WRITELN('Time of day is ',Hour,':',Minute);
WRITELN('Amount of sunltight is ',AmountOfSunlight);
WRITELN; (*a blank linex)
END; (*with CurrentData*)
END.

(xThis is a dummy Operation module, with dummy StartUpSystem,
ShutDownSystem, and OperateSystem procedures,

for use with MainControl moduie in testing phases.*)

MODULE Operation;

(x Interface specification common to all modules *)
$INCLUDEC:F1:INSPEC.SRC)

PRIVATE Operation;

(* end of interface specification *)

PROCEDURE StartUpSystem;

BEGIN
WRITELN ('Climate system is now on.');
WRITELN ('--=-=--cocmmmmmmmommmmo oo N
WRITELN;

END;

PROCEDURE OperateSystem(VAR CurrentData:SystemData);
BEGIN
WITH CurrentData DO BEGIN
URITELN('::===========::::===:==::====::::==:===:::::::’);
WRITELN('The Climate System is now operating.');

Figure 4-5. Test Version of Our Climate Control System (Cont’d.)

53

CHAPTER 4

WRITELN;
WRITELN('The Time is ',Hour,':',Minute);
WRITELN('The inside temperature is ',InsideTemp,'C');
WRITELN('The thermostat setting is ',ThermostatSetting,'C');
WRITE('Method chosen to heat the building: ');
CASE ChosenMethod OF

CollectorToExchanger: WRITE('Solar Collector to Exchanger');

CollectorToHeatPump : WRITE('Solar Collector to Heat Pump');
TankToExchanger : WRITE('Tank to Exchanger');
TankToHeatPump : WRITE('Tank to Heat Pump');
HeatedTankToHeatPump: WRITE('Heated Tank to Heat Pump');
NoMethod : WRITE('No heat required');
END;
WRITELN;
WRITELN('=============z=z=z=z=z=zz=z=z=z=c=z=s=s=s===2==z==z=z=z=z==z=z==z1!) H
WRITELN; (*write a blank line.*)

END;
END; (*xOperateSystemx)

PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);
BEGIN
WRITELNC':ooroorososronrososoooronsesroarsasossossatzes’)
IF Panic THEN WRITELN('PANIC occurred, NORMAL shutdown.')
ELSE WRITELN('No panic occurred, ABNORMAL shutdown.');
WRITELNC'zzzrosezsosrosrosoosoosroasrorosroasraroassasssast)
WITH CurrentData DO BEGIN
WRITE('Last chosen heating method was: ');
CASE ChosenMethod OF
CollectorToExchanger: WRITE('Solar Collector to Exchanger');
CollectorToHeatPump : WRITE('Solar Collector to Heat Pump');
TankToExchanger : WRITE('Tank to Exchanger');
TankToHeatPump ¢ WRITE('Tank to Heat Pump');
HeatedTankToHeatPump: WRITE('Heated Tank to Heat Pump');
NoMethod ¢ WRITE('No heat required');
END;
WRITELN;
WRITELN('Thermostat Setting is ',ThermostatSetting,'C');
WRITELN('Inside temperature is ',InsideTemp,'C');
WRITELN('Temperature of collector water is ',CollectorWaterTemp,'C');
WRITELN('Temperature of tank water is ',TankWaterTemp,'C');
WRITELN('Temperature of the heated tank water is ',HeatedTankTemp,'C');
WRITELN('Time of day is ',Hour,':',Minute);
WRITELN('Amount of sunlight is ',AmountOfSunlight);
END; (*with CurrentData*)
WRITELN(':zrorororossooronsrsrororonoararatesessssisizassane 212');
WRITELN;
WRITELN('Goodnight, Irene...');
END.(*ShutDownSystemx)

Figure 4-5. Test Version of Our Climate Control System (Cont’d.)

54

THE PASCAL-86 COMPILER

A compiler is a program that translates your high-level language statements into machine
code. Machine code, sometimes cailed object code, consists of the instructions that machines
understand, whereas high-level language statements are instructions that humans under-
stand. You must translate your high-level language statements into machine code by compil-
ing your high-level language program.

The Pascal-86 statements we typed (using CREDIT) are program source statements. We now
nave three source files: :F1:MAIN.SRC (for the MainControl module), :F1:DUMDAT.SRC (for
the dummy GetData module), and :F1:DUMOP.SRC (for the dummy Operation module). To
translate these source statement modules into object code modules, we must compile each
source module separately.

The Pascal-86 compiler is supplied as the file PASC86.86. You invoke the compiler by using the
RUN command to load and execute it in the 8086 side”’ (8086 execution mode) of the Series IlI
system. The compiler usually produces two files: a /isting file that contains a listing of the
source program as the compiler saw it, and an object file that contains the actual machine
code. The listing file usually contains a listing of the source statements, additional information
about the compilation, and any errors that occurred during the compilation.

For example, assume that MAIN.SRC, the first module, is in directory :F1:. The Pascai-86
Compiler, PASC86.86, is also in directory :F1:.. To compile this module, use the following
command:

~RUN :F1:PASC86 :F1:MAIN.SRC DEBUG<c~>

Let’s analyze this command line. RUN is the command used to execute the program in the
8086 side’’ of the system. :F1:PASC86 is the pathname (without the **.86"’ extension) of the
Pascal-86 Compiler (RUN supplies the **.86’* extension). :F1:MAIN.SRC is the pathname for the
MAIN.SRC module. Finally, DEBUG is a compiler control which tells the compiler to do
something special (described later).

This compilation produced two files: :F1:MAIN.LST is the listing file, and :F1:MAIN.OBJ is the
object file that contains the object code. :F1:MAIN.SRC is still in drive 1. All of these files are in
directory :F1:, since that is where MAIN.SRC resides.

Compiler controls tell the compiler to perform certain operations. Most controls have defauit
settings that you do not have to specify. For example, the PRINT control is always on unless
you specify NOPRINT. The PRINT control tells the compiler to produce a listing file, and use
the name of the source file with an <“.LST”’ extension (e.g., :F1:MAIN.LST). We could have
used this version of the PRINT control:

-RUN :F1:PASC86 :F1:MAIN.SRC DEBUG PRINT(:LP:)<cr>

This version of the PRINT control sends the listing to the line printer (:LP:), rather than creating
:F1:MAIN.LST as a listing file.

Most of the compiler control default settings are useful for everyday compiling; that is, there is
no need to learn how to use the compiler controls unless you want to do something special.
For example, if you want the compiler to issue a warning message whenever it sees a non-
standard Pascal statement (an Intel extension to the standard Pascal language), use the
NOEXTENSIONS control.

55

CHAPTER 4

56

We used the DEBUG control for a good reason: we want to do symbolic debugging while the
program is running (using DEBUG-86, described in Chapter 7). You will want to do symbolic
debugging during the first run of your program. Use the DEBUG control to prepare your pro-
gram for symbolic debugging unless your program is extremely large.

Most compiler controls can be specified in the invocation line as we show above. Most com-
piler controls can also be imbedded in the source file—as control lines. For example, we used
the INCLUDE control in a control line:

$INCLUDEC(:F1:INSPEC.SRC)

The INCLUDE control allows you to insert source statements from another file into this com-
pilation. In this case, we wanted to insert the common interface specification (in
:F1:INSPEC.SRC) into our compilation. The INCLUDE control saved us from typing the same
interface specification for all three source files.

We also need to compilte the other modules separately. The following invocation line compiles
our GetData module in DUMDAT.SRC:

-RUN :F1:PASC86 :F1:DUMDAT.SRC DEBUG<cr>
SERIES III Pascal-86 V1.0

PARSE

68 99 0 O
*x**xWARNING, input: ''END '
***xwas repaired to: ''END ;'

END PARSE(1), ANALYZE(O), NOXREF, OBJECT

COMPILATION OF GETDATA COMPLETED, 1 ERROR DETECTED.
END OF Pascal-86 COMPILATION.

The compiler displays a sign-on message, then the word “PARSE’’ to show that it is parsing
the program statements. During the parsing phase, the compiler discovered an error—the
“"END "' statement was not punctuated correctly. The compiler repairs our error, and con-
tinues to compile. Each phase of compiling is displayed with a number in parentheses—the
number of errors detected during the phase. The compiler only detected that one error,
and since the error was easily repaired, the compilation was successful. We now have
:F1:DUMDAT.OBJ containing the object module.

To compile our dummy Operation module, we use the following invocation line:

-RUN :F1:PASC86 :F1:DUMOP.SRC DEBUG<cr>

The listing files :F1:MAIN.LST, :F1:DUMDAT.LST, and :F1:DUMOP.LST are shown in figure 4-6.

SERIES-III Pascal=-36, xT31 09/01/82 PAGE 1
MAINCONTROL

Source File: :F1:MAIN.SRC
Object File: $F1:MAIN.IBYJ
Controls Specified: DZBUG.

STMT LINE NESTING STURCE TEXT: :F1:MAINLSRC
1 10 2 MCOULE MainControl;
2 2 0 0

(* Interface specification common to all modulas *)

SINCLUDE(:F1:INSPECLSRC)
PU3LIC MainControl; (*saction of intarface specifications)

3 2 00
CONST (+daclarations daclzrsc punlicly in this modulex)
MinimumForixchanger = 35;(+degraeas Calsius+*)

4 6 2 0 MinimumFor<eatPump = 13
H 7 0 0

= TYPE (xdefinitions pudlicly defined in tnis module+)

=1 LirTemparature 2-20..1207(*degreas in Celsius*)
6 11 9 9= WatarTamperature =9..1207
7 12 0 0 HgatingMetnods z{CollectorToExchangaer,

CollectorToHeatPump,
TankTeixchanger.,
TankToHeatPump,
HeatedTankToHeatPumn,
NoMethod) s

SystemData = RECCRD
8 20 2 1 =1 ChosenMethod : HeatingMethods’;
9 21 0 1 =1 InsideTemp,
=1 ThermostatSetting 3 AirTemperature;
10 23 0 1 =1 CollectorwaterTemp,
=1 TankWaterTemp,
=1 HeatedTankTemp : WaterTemperature’
11 26 0 1 =1 AmountJfSunlight : Integer’
12 27 0 1 =1 Hour : 00..247
13 28 0 1 =1 Minute : 00..597
14 29 0 1 =1 END (*SystemDatax);
15 30 0 0 =%
=1 VAR (#variablas publicly defined in this module.*)
=1
=1 Currentlats
16 34 0 0 =1 Jperating, Panic
17 35 ¢ 0 =1
=1 PUBLIC GSetDatas (=GetDats Mocule containing GetDatas 8 StoreDatax)
18 37 0 0 =1
=1 PROCEDYRE Setdatal(VAR CurrentData:SystemDatal;
19 39 0 0 =1 PROCEDURE Storedata(VAR Currentlata:SystemData);
20 40 9 0 =1
=1 PU3LIC OJperation; (#xJperation Module containing OperateSystem,
21 42 0 0 =1 StartUpSystem and ShutDownSystem»)
=1 PROCSOURE StartupSystem’
22 44 0 0 =1 PRICEDURE OparateSystam{vaR CurrentData:SystemData);
23 45 0 0 =1 PRICECY 3hutlownSystem(VAR CurrentData:Systemlatal’
24 6 0 0 =1
PROGRAM MainlentrplCINPUT,JUTPUT)
25 8 3 0
(= 2nc of interface specification *)
PROCEDIJRE DetermineMetnod{VAR Currentldata : SystemData)’
26 13 1 0 3EGIN
26 16 1 1 WITH Currantlata O
27 15 1 1 3EGIN
27 16 1 2 If InsideTemp<ThermostatSetting THEN
28 17 1 2 SEGIN
28 18 1 3 If CollectorWwaterTamp>MinimumForExchanger THEN
29 19 1 3 ChosenMethod:=CollectorToExchanger
ELSE IF CollectorWaterTemp>MinimumForHeatPump THEN
31 21 1 3 ChosenMethod:=CollectorToHeatPump
ZLSE IF TankWaterTemp>MinimumForixchanger THEN
33 23 1 3 ChosenMethod:=TankToExchanger
SLSE IF TankwaterTemp>MinimumForHeatPump THEN
35 25 1 3 ChosenMethod:=Tank ToHeatPump
ZLSE IF HeatedTankTemp>MinimumForHeatPump THEN
37 27 1 3 ChosenMethod:=HeatedTankToHeatPump
ELSE Panic:=TRUE; Jperating:=FALSE;
40 29 1 3 SND
41 30 1 2 ELSE (%no 4enting request*)ChosenMethod:=NoMethod
42 3 12 END; (+With CurrentDatax)
44 32 1 ENC7 (#DetermineMethod)
45 33 0 0

Figure 4-6. Listings of Our Test Modules

57

CHAPTER 4

(rxnxnmannnnsnnn MAIN PROGRAM *askdtwk kst sk ke k ket kA ke kR Ak SRk AN)

BEGIN
45 37 StartupSystem;
46 38 Operating:=TRUE;
47 39 Panic:=FALSE?
48 40 WHILZ Operating OI (*uwhil2z system is operating, do:*)

BEGIN
GetData(CurrentData); (*Get the temps, time, etc.*)
StoreData(CurrentData); (*Store this data as recordx)
DetermineMethod(CurrentData); (*this detects a panic#*)
OperataSystem(CurrentDatal’
END; (*while operating#)
ShutlownSystem(Currentdata);
ENDS. (4Mainm Control Algorithm*)

v

o

-~

w
0PEVOUDOOODO
P AN S s

Summary Information:

PROCEDURE OFFSE COBE SIZE DATA SIZE STACK SIZE
DETERMINEMETHOD 20114 Q08Fw 1430 0006H 6D
Total 01475 3270 001¢6H 220 J04CH 76D

94 Lines Read.
Q0 Errors Detectad.

33% Utilization of Memory.

SERIES-IIT Pascal-36, X231

1F1:DUMDAT.SRE
1:0UM3AT.OBY
iec: UGe

Source File:
dbject File:
Controls Spec

SQURCE TEXT: :F1:DUMDAT.SRC
(#This is = dummy GetDatz module,
ano StoreData procedures, for use with MainControl
module in testing phases. It only performs console
input to get Zfelsius temperatures, the time of day.,
and the amount of sunlight (insclztion) for the
solar collector. Jse PLMB63DATA module for real
application.*)

STMT LINE NESTING
1 1 0 0 with dummy GetData

MOOULE GetDatas
(* Intzrface specification common to all modules *)

SINCLUDEC:F1:INSPEC,.SRC)
PU3LIC MainControl; (*section of interface specification*)

09701782 PAGE

3 2 0
CINST (*declarations declared publicly in this modulew)
MinimumForZxchanger = 35;(*xdegrees Celsiusx*)
3 6 0 MinimumForYeatPump = 13;
5 7 0
TYPE (*definitions publicly defined in this module*)
AirTemperaturs =+20..120; (*deqgrees in Celsius*)
6 1M 0 WaterTemperature =0..120;
7 12 0 HeatingMethods ={CollectorToExchanger,
CollectorToHeatPump,
TankToExchanger,
TankToHeatPump,
HeatedTankToHeatPump,
NeMethod);
8 18 ¢
Systemlata = RECORD
8 20 0 ChosenMethod : HeatingMethods;
9 21 0 InsideTemp,
ThermostatSetting : AirTemperature;
10 23 0 CollectorWaterTemps
TankWaterTemp,
HeatedTankTemp : WaterTemperature;
1 26 O AmountOfSunlight : Integer;
12 27 Q Hour : 00..247
13 28 0 Minute : 90..59;
14 29 0O SND (*SystemDatax)/

Figure 4-6. Listings of Our Test Modules (Cont’d.)

58

PROGRAMING IN PASCAL-86

15 30 0
16 3¢ 0
17 35 0
18 37 0
19 39 0
20 40 0
21 42 9
22 46 O
23 45 0
24 46 0

PRI
25 16 0 0

VAR (*variables publicly defined in this module.*)

Currentda

ta

Jperating, Panic

PUBLIC GetDatas

PROCEDURE GetData(VAR CurrentData:SystemDatad’;

{*GetData Module

SystemD
BOOLEAN

ata;

;

containing GetData & StoreData*)

PROCEDURE Storedata(VAR Currentdata:SystemData);

PUBLIC QJperation;?

VATE GetDat

as

StartUpSystem and ShutJounSystemx)
PROCEDURE StartUpSystem/
PRCCEDURE JperateSystem(VAR CurrantData:SystemData)’

PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);

{* end of interface specification *)

PRICEDURE GetData(VAR CurrentData:SystemDatal;

WITH CurrentData 00 3EGIN

(*Operation Module containing OperateSystem,

WRITE(Type the thermostat setting in degrees Celsius:’)/
REAOLN(ThermostatSetting);
WRITE(’Type the inside temperature reading in Celsius:’)’

RZADLN(InsideTemp)’

WRITELNZ

WRITELNS

WRITE{ Type the temperature cf the collector uat
READLN(ColiectorWaterTemn);
WRITE(Type the temperature of the tank water in Celsius:’);
READLN(TankWaterTemp)’
WRITZ(“Type the temperature of the heated tank water in Celsius:’);

READLN(HeatedTankTemp);

WRITELN;

WRITELN;

WRITELN;

WRITE("Tyne the hour of day, as in 04 or 24:°);

ourd;

WRITELNZ

WRITE(Type the minute of the hour, as in 01 or
READLN(Minute); WRITELN;
WRITEL{ Type the amount of sunlight,

READLN(AmountOfSunlight);

END; (*with CurrentDatax)

WITH CurrentData DC BEGI

WRITELNC"CURRENT DATA IS AS FOLLIWS:)’

WRITELN(Thermostat Setting is
N(‘Inside temperature is

WRITELN;

any integer

PROCEDURE StoreData{VAR CurrentData:SystemData)’

“:

)

WRITELN(Temperature of collector uater is
WRITELN(‘Temperature of tank water is-“,TankWaterTemp,“C");

“slol

WRITZLN(Temperature of the heated tank water is

WRITELN(Timz of day is
WRITELN(4mount of sunlight is

26 21 1 0 SEGIN
26 22 1 1
27 23 1 2
28 26 1 2
30 25 1 2
31 26 1 2
33 7 0% 2
34 28 1 2
36 29 1 2
37 30 1 2
39 31 1 2
40 32 1 2
42 33 1 2
43 38 01 2 READLNCH
45 35 1 2
46 36 1 2
48 7 o1 2
49 38 1 2
51 39 1 2
53 40 1 1 END;
54 41 0 O
55 43 1 0 3EGIN
55 446 1 1
56 46 1 2 WRITELNC
57 47 1 2
58 48 1 2 WRITELNC
59 49 1 2
60 50 1 2
61 51 1 2
62 52 1 2
63 53 1 2
b4 54 1 2
65 55 1 2
66 56 1 2 WRITELN?
67 57 1 2
11

x W ARNING, input: “IND
+«**was repaired to "END ;
70 58 0 O

Summary Information:

PROCEDURE
STOREDATA
GETDATA

Total
104 Lines Read.

1 Error Detected.
33X utilization of Memory.

DFFSET
J4D5H
C294H

(xa blank linz%)
ENJ; (*with CurrentData*)

CJ2E SIZE
02224 5460
02414 5770
0sF7H 17830

DATA

0000H

SIZE

“sHour,”: % Minute)s
‘sAmountOfSunlight);

STACK
0010H
0010H

0020+

SIZE
160
160

320

er in Celsius:®):

will do for now:")/

(*Jummy procedure, eventually will store CurrentData in a file*)

‘sThermostatSetting,"C")’;
‘sInsideTemp,"C");

lectorWaterTemp,“C’)J

‘sHeatedTankTemp, C°);

Figure 4-6. Listings of Our Test Modules (Cont’d.)

59

CHAPTER 4

SERIES~III Pascal-25, x031 09/01/8C PAGE

Source File: :F1:DUMQP.SRC
Object File: :F1:DUM3P.08J
Controls Specified: DEBUG.

STMT LINE NESTING SOURCET TEXT: :S1:3UMOP,SRC
1 10 0 (*xThis is a dummy Jperation module, witn dummy StartUpSystem,
ShutDownSystem, and JperataSystem procedures,
for use with MainControl module in testing phases.
*)

MCDULE Operation;
(* Interface soecification common to all modules *)

SINCLUJE(:FT1:INSPEC.SRC)
PUSLIC MainControl; (*section of interface specification=*)

=1 CONST (#*daclarations declared publicly in this modulex)

MinimumSorIxchanger 357 (*degrees Celsius*)

4 6 0 0 =1 MinimumForHeatPump 135
5 7 0 0=
=1 TYPE (+definitions publicly defined in this modulex)
=1
=1 AirTemperature =-20..120; (*degrees in Celsius*)
6 g 9 =1 WatarTemparature =2..120;
7 1 o 0 = ingMetrods =(Coll2ctorToExchanger,
=1 CollectorToYeatPump,
=1

TankToZxchanger,

=1 TenkToHeatPump,
HeatedTankToMeatPump,
NoMethod)/

1 Systemiata = ECIRD
5 20 0 1 =1 fhosenMethod : HeatingMethods;
9 21 0 1 =1 InsideTemp,
=1 ThermostatSetting : AirTemperatures
19 23 0 1 =1 CollectorWaterTemp,
= TankWaterTemp,
=1 HeatedTankTemp : WaterTemperature/
11 26 2 1 =1 tmountIfSunlight : Integer/
12 27 ¢ 1 =1 Hour : 00..247
13 28 2 1 =1 Minute : 00..597
14 29 2 1 =1 ENC (*SystemJatax);
15 30 ¢ C =
=1 V&R (*variznles publicly defirmed in this module.*)
=1
=1 Curra2ntlats : SystemDatas
16 34 2 0 =1 Cperztincs Janic : BIOLEANS
17 35 0 ¢ =1
=1 Getlrta; (*Getdotz Module containing G2tlata & Storedatex)
13 37 2 2=
= 2 Getlata(VAR CurrentData:Systemlata);
19 39 2 2 =1 UREZ Storebsta(VAR CurrentData:SystemData);
23 43 T 3=
=1 PU3LIC Joeration; (xJperation Module contzining OperateSystem,
21 42 0 0 =1 StartUpSystem and ShutDownSystem#*)
=1 PRICSDURE StartUpSystem;
22 44 9 0 =1 PROCEDURE UperateSystem(VAR Currentlata:SystemData);
23 45 0 0 =1 PRICEDURE ShutDownSystem(VAR CurrentData:SystemData);
24 46 0 G =1

PRIVATZ QOperation/

(* =2nd of interface specificaticn *)

PROCEDURE StertupSystem;

26 18 1 0 BEGIN
26 19 11 WRITELN (“Climate system is now on.’)’
27 20 1 1 WRITELN (“===---ocsccceecocnoonoonon "
28 21 1 1 WRITELNS
29 22 1 1 END;
30 23 0 0
PRICEJURE JperateSystem(VAR CurrentData:SystemData);
31 26 1 0 3ESIN
31 27 1 1 WITH Currant 02 BEGIN
32 28 1 2 WRITELNC” =):
33 29 1 2 WRITELN(The Climate System is now operating
34 30 1 2 WRITELN?
35 31 1 2 WRITZILN(The Time is “,Hour,”:’,Minute);
36 32 1 2 WRITELN(Tne inside temperature is ",InsideTemp,’C”);
37 33 1 2 WRITELN(The thermostat setting is “,ThermostatSetting,"C");
38 36 1 2 WRITE(“Methor chosen to heat the building:)7

Figure 4-6. Listings of Our Test Modules (Cont’d.)

60

PROGRAMING IN PASCAL-88

39 35 1 2 CASE ChosenMethod SF
40 36 1 3 CollectorToExchanger: WRITE(“Solar Collector to Exchanger”);
41 37 1 3 CollectorToHeatPump : WRITE("Solar Collector to Heat Pump’);
L2 38 1 3 TankToExchanger : WRITE(Tank to Exchanger”);
&3 39 1 3 TenkToHeatPump t WRITE(“Tank to Heat Pump®);
44 40 1 3 HeatedTankToHeatPump: WRITE(‘Heated Tank to Heat Pump®);
45 41 1 3 NoMethod : WRITE(“No heat reguired®)’
46 42 1 3 END’
48 43 1 2 WRITELN
49 46 1 2 WRITELN(=====zsz=zzs=zs==ss========szzsz====s===s==s===z=3=")
50 45 1 2 WRITELN; (*uwrite a blank line.¥*)
51 46 1 2 ENDZ
53 47 1 1 END; (*OperateSystem*)
54 43 0 O
PROCEDURE ShutDoznSystem{VAR CurrentDatasSystembatal;
55 51" 1 0 BEGIN
55 s2 1 1 WRITELN(C®
56 53 1 1 IF Panic THEN WRITELN ANIC occurred, NDRMAL shu down.')
57 56 1 1 ELS HRITELN(No panic occurred, ABNDRMAL shutdawn.'),
59 55 1 1 WRITELNC® ;
60 56 1 1 WITH CurrentData DD 3
61 57 1 2 WRITE(Last chosen heating method was: °);
62 58 1 2 CASE ChosenMethod OF
63 59 1 3 CollectorToExchanger: WRITE(Solar Collector to Exchanger®);
64 60 1 3 CollectorToHeatPump : WRITE(‘Solar Collector to Heat Pump®);
65 61 1 3 TankToExchanger : WRITE(“Tank to Zxchanger”);
66 62 1 3 TankTo4eatPump : WRITE(Tank to HMeat Pump’);
67 63 1 3 HeatedTankToHeatPump: WRITE(’Heated Tank to Heat Pump’);
68 66 1 3 NoMethod : WRITE("No heat required’};
69 65 1 3 END/
71 66 1 2 WRITELNZ
72 67 1 2 WRITELN(‘Thermostat Setting is ‘,ThermostatSetting,"C");
73 68 1 2 WRITELN(Inside temperature is ‘,InsideTemp,"C");
74 69 1 2 WRITELN(Temperature of collector water is “,CollectorWaterTemp,“C”");
75 70 1 2 WRITELN(Temperature of tank water is °,TankWaterTemp,*C”);
76 7101 2 WRITELN(Temperature cf the heated tank water is “,MeatedTankTemp, C°);
77 72 1 2 WRITELN(“Time of day is “,Hour,":",Minute);
78 73 1 2 WRITELN(“amount of sunlight is “,AmountOfSunlight);
7y 74 1 2 END; (*with CurrentDatax)
81 75 01 1 WRITELN(:zrzzszszesssszsassssisssiasstisatssssasssnasisazsssnas’ds
82 76 1 1 WRITELNS
33 77 0101 WRITELN(Goodnight, Irene...”)’
8 78 1 1

***WARNING, input:
***yas repaired to
85 78 0 0

+(*ShutDownSystems

Summary Information:

)

PROCEDURE CFFSET C00E SIZE DaTa SIZE STACK SIZE

SHUTDOWNSYSTEM 06984 0398H 9209 0010w 160
OPERATESYSTEM 044CH 02584 6000 0010H 160
STARTUPSYSTEM 03g2# 0QSEH 940 00104 160
Total 0430+ 26582 0032+ 0D 0030H 48D

125 Lines Read.
1 Error letected.
33% utilization of Memory.

Figure 4-6. Listings of Our Test Modules (Cont’d.)

Summary

We now have three Pascal-86 modules: MainControl, GetData, and Operation. Two of these
modules, GetData and Operation, are dummy versions that do not interact with any hardware
except the Series lil system; we will use them for examples in subsequent chapters. The Main-
Control module can remain unchanged even in our final application.

The final application will probably use an 8088 processor. In Chapter 5, we show PL/M-86 pro-
cedures we can use to obtain data from thermocouples via the input/output ports on the 8088.
Since you probably do not have prototype climate control hardware with an 8088, we will not
include these procedures in our test versions for execution on a Series Ill system; never-
theless, they are good examples of PL/M-86 procedures.

Our Pascal-86 modules cannot run by themselves on a Series Ill. Certain built-in procedures
(like WRITELN and READLN) rely on run-time support software, which consists of public
modules that contain the software needed to perform console input/output and other opera-
tions. In Chapter 6, we’ll show you how to link the run-time support libraries to these Pascal-86
modules to make them executable on a Series lll system.

61

CHAPTER 5
PROGRAMMING IN OTHER LANGUAGES

“It is possible by ingenuity and at the expense of clarity ... {to do almost anything in any

language]. However, the fact that it is possible to push a pea up a mountain with your nose
does not mean that this is a sensible way of getting it there.”

—Christopher Strachey

NATO Summer School in Programming

The Intellec Series Il system also supports PL/M, FORTRAN, and assembly language pro-
gramming for iAPX 86,88 and 8080/8085 applications. In the previous chapter we used Pascal-86
for our main control algorithm, but a modular strategy might take advantage of other languages
for other modules.

ANOTHER LOOK AT CHOOSING LANGUAGES FOR MODULES

In the best of all possible worlds, would we all speak the same language? Tower of Babel
enthusiasts would have us coding our entire program in one language—but which? We do not
want to return to the stone age and lose cultural variety and language diversity. There are
expressions that can only be expressed in Chinese characters, and there are problem-solving
statements that are better expressed in PL/M than in FORTRAN. A good carpenter should
have more tools than nails and a hammer; a good programmer should be fluent in several pro-
gramming languages.

When you design an algorithm, design it using a comfortable language. You will find the
algorithm easier to debug, and you will notice the paradigm inherent in your design. When you
are ready to translate your algorithm into code for a computer, use the language best suited for
the paradigm.

if you have many algorithms that must work together, you should keep the communication
among them simple. With simple interfaces, you can code each algorithm in the language best
suited for the algorithm. In some cases, you can use an algorithm that has already been
developed for use in another application—another reason for keeping your algorithms and
interfaces simple. With the Intellec Series Il development tools, you can link these algorithms
in different configurations to form several applications. |

For example, we chose to write our main control algorithm for the climate system in Pascal-86.
We still need an algorithm for retrieving the data and converting it to Celsius temperatures. We
decided to write a simple Pascal-86 routine for testing purposes only (this routine only
retrieves the data from the Series Il console); however, our final product will rely on ther-
mocouples and other sources of data, and we will need an algorithm to convert thermocouple
voltages to degrees Celsius. Fortunately, we already have a routine in PL/M-86 that performs
this activity, and we can save development time and money by using it.

63

Chapter 5

64

PROGRAMMING IN PL/M-86

PL/M is renowned for its structure and versatility. PL/M is one of the only structured high-level
languages that allow you to manipulate bits with AND, OR, and shift (SHR for “‘shift right’’ and
SHL for ‘‘shift left’’) operations. PL/M’s data types are not as strictly enforced as
Pascal’s—PL/M’s BYTE, WORD (ADDRESS), and POINTER types have loose definitions so
that you can use them for different kinds of data. For this reason, PL/M is easier to use for
system programming (designing computer systems or control mechanisms), yet harder to use
in application programming where enforced data typing makes it easier to write error-free
programs.

In our climate control system, there are two routines whose paradigms lend themselves easily
to PL/M: the routine to get BCD digits from a thermostat device and convert them to a Celsius
temperature, and the routine to get voltage data from a thermocouple and convert the voltages
to Celsius temperatures. Figure 5-1 shows the algorithm and the actual PL/M-86 code for the
routine to retrieve data from a thermostat device. You are already familiar with comments in
Pascal programs that occur between the (* and *) symbols; in PL/M, comments occur between
the /* and */ symbols.

A PL/M typed procedure is like a Pascal or FORTRAN function: it is called in an assignment
statement (as in X:=FUNCTION(Y)), and it returns a value (X receives the value of
FUNCTION(Y)). in figure 5-1, the typed procedure THERMOSTATSSETTINGSFROMSPORTS
returns the value of THERMOSSETTING, which it computes by accessing the two ports
HIGH and LOW and converting the BCD digits to a Celsius temperature. The value of
THERMOSSETTING is assigned to ThermostatSetting in the GetData procedure’s assignment
statement:

Y.
s

ThermostatSetting:=THERMOSTATSSETTINGSFROMSPORTS(StatPcortl,Stat Port

o

PLMDATA: DO;

/* This module holds the procedures THERMOSTATSSETTINGSFROM$PORTS,
TEMPSDATASFROMSPORTS, and INTERPOLATE (a procedure used by
TEMPSDATASFROMSPORTS) . These will be used in the final testing
phase of the ctimate control system (when prototype hardware is
available). For intermediate testing (and examples in this book),
do not use this module; use the dummy GetData module. */

/%
The algorithm for getting a Celsius temperature from a thermostat
device that can send BCD digits to two ports of the 8088:

The final version of the GetData procedure (to be
written in Pascal-86) will use this statement to get
the thermostat reading:

ThermostatSetting:=THERMOSTATSSETTINGSFROMSPORTS(StatPort1,StatPort2);

A PL/M-86 typed procedure called THERMOSTATSSETTINGSFROMSPORTS
receives two port numbers from GetData: StatPort? and StatPort2.
THERMOSTATSSETTINGSFROMSPORTS must access these ports, convert
the BCD digits to a Celsius temperature, and return the
temperature.

Figure 5-1. The PL/M-86 Typed Procedure THERMOSTATSSETTINGSFROMSPORTS

Other Languages

INPUTS

THERMOSTATSSETTINGSFROMSPORTS:

Formal parameters HIGH and LOW receive port numbers as actual
parameters.

Input ports HIGH and LOW: Three BCD digits for the thermostat setting:
Port HIGH, bits 3-0: hundred’s digit
Port LOW, bits 7-4: ten's digit
Port LOW, bits 3-0: unit's digit

ouTPUT

THERMOSTATSSETTINGSFROMSPORTS: Return WORD with Celsius temperature
*/

/*Here is the typed procedure THERMOSTATSSETTINGSFROMSPORTS:+/

THERMOSTATSSETTINGSFROMSPORTS:
PROCEDURE (HIGH, LOW) WORD;
DECLARE (HIGH, LOW) WORD;
DECLARE (INSPORTSHIGH, INSPORTSLOW) BYTE;
DECLARE THERMOSSETTING WORD;
DECLARE (HUNDREDS, TENS, UNITS) BYTE;

INSPORTSHIGH = INPUT(HIGH);

INSPORTSLOW = INPUT(LOW);

HUNDREDS = INSPORTSHIGH AND 000011118;

TENS = SHRCINSPORTSLOW, 4);

UNITS = INSPORTSLOW AND 000011118B;
THERMOSSETTING = UNITS + 10*TENS + 100*HUNDREDS;

RETURN THERMOSSETTING; /*this returns the temperaturex/
END THERMOSTATSSETTINGSFROMSPORTS;

More procedures follow--see figure 5-2.

Figure 5-1. The PL/M-86 Typed Procedure THERMOSTATSSETTINGSFROMSPORTS (Cont’d.)

There are notable similarities between Pascal and PL/M. Most notable are the logical struc-
tures that can occur in both languages—both have the DO WHILE and IF-THEN-ELSE con-
structs. The languages are lexically and syntactically different in data declarations, procedure
headings, and other constructs, but they are logically similar. By conforming to a logical struc-
ture, you make your program readable and easier to debug.

65

Chapter5

66

The data declarations in both languages are very similar. In both languages, you must declare
your data identifiers to be of some type before using the identifiers. In Pascal, you define data
types or use predefined Pascal data types. In PL/M, you are restricted to the acceptable PL/M
data types, but they are loosely defined. A BYTE can be any value expressed in eight bits, and
a WORD in PL/M-86 (ADDRESS in PL/M-80) can be any value expressed in sixteen bits; both
types of values are treated as unsigned integers. PL/M-86 offers several more types: INTEGER
(for signed integers), REAL (for floating point numbers), and POINTER (for 8086 and 8088
addressing).

PL/M-86 offers many features useful for system programming— arrays and structures, based
variables, easy type conversion, built-in procedures for manipulating strings, setting and
disabling interrupts, accessing the 8086 or 8088 hardware stack pointer and base registers, and
performing bit shift and rotate operations. We use the AND and SHR operators in the
THERMOSTATSSETTING$FROMSPORTS procedure in figure 5-1.

We also use PL/M-86 procedures to obtain temperature data from thermocouple voltage
data. the GetData procedure in our GetData module (written in Pascal-86) calls the
PL/M-86 procedure TEMP$DATASFROMSPORTS to obtain the temperatures InsideTemp,
CollectorWaterTemp, TankWaterTemp, and HeatedTankTemp using these assignment
statements:

InsideTemp:=TEMPSDATASFROMSPORTS(InsidePort1,InsidePortd);
CollectorWaterTemp:=TEMPSDATASFROMSPORTS(CollectPortl,CollectPort2);
TankWaterTemp:=TEMP$DATASFROMSPORTS(TankPort1,TankPort2);
HeatedTankTemp:=TEMPSDATASFROMSPORTS(HotTankPort1,HotTankPort2);

In all four assignments, the Pascal-86 identifiers on the left side of the := symbols receive the
values from the PL/M-86 typed procedure TEMP$DATASFROMS$PORTS. Figure 5-2 shows
TEMPSDATASFROMSPORTS.

/*

The typed procedure TEMPSDATASFROMSPORTS receives two port numbers:
HIGH and LOW. These ports are accessed for the binary ADC output
from a thermocouple device: HIGH gets the high-order 8 bits, and
LOW gets the low-order 8 bits. TEMPSDATASFROMSPORTS then uses

the typed procedure INTERPOLATE, a routine that interpolates a
Celsius temperature from a thermocouple voltage using two tables.
TEMPSDATASFROMSPORTS sends a WORD with the input voltage to
INTERPOLATE. INTERPOLATE returns a Celsius temperature, which

is returned to the GetData procedure (written in Pascai-86).

INPUTS

TEMPSDATASFROMSPORTS:

Formal parameters HIGH and LOW receive port numbers as actual
parameters.

Input port HIGH: Binary ADC output of thermocouple, high-order 8 bits
Input port LOW: Binary ADC output of thermocouple, low-order 8 bits

Figure 5-2. The PL/M-86 Typed Procedures TEMPSDATASFROMSPORTS and INTERPOLATE

Other Languages

QUTPUT

TEMPSDATASFROMSPORTS: Return WORD with temperature in Celsius
*/

/% INTERPOLATE is declared first, then its calling procedure
TEMPSDATASFROMSPORTS is declared. */

/* INTERPOLATE is a typed procedure that receives thermocouple
voltage and returns temperature in Celsius using an
interpolation routine. */

INTERPOLATE:
PROCEDURE(VOLTSIN) WORD;
DECLARE VOLTS(*) WORD DATA(0,51,102,154,206,258,365,472);
DECLARE TSCEL(%) WORD DATA(0,10,20,30,40,50,70,90);
DECLARE (I, VOLTSIN, NUMERATOR) WORD;

I1=20;
IF VOLTSIN=0 THEN RETURN TS$CEL(I);
DO WHILE VOLTSIN > VOLTS(I);
I =1+1;
END;
/* Shift for rounding, and return Celsius temperature */
NUMERATOR = SHLC(VOLTSIN-VOLTSC(I-1))*(TSCEL(I)- TSCEL(I-1)), 1);
RETURN T$CEL(I-1) + SHR(NUMERATOR/(VOLTS(I)- VOLTS(I-1))+1, 1);

END INTERPOLATE;

/***i************'k***‘k*******/

/* TEMPSDATASFROMSPORTS */

TEMPSDATASFROMSPORTS:
PROCEDURE(HIGH,LOW) WORD;
DECLARE (HIGH,LOW) WORD;
DECLARE INSPORTSHIGH WORD;
DECLARE INSPORTSLOW BYTE;
DECLARE (THERMOCOUPLESOUTPUT, TEMPERATURE) WORD;

INSPORTSHIGH = INPUT(HIGH);

INSPORTSLOW = INPUTC(LOW);

THERMOCOUPLESOUTPUT = SHLC(INSPORTSHIGH, 8) OR INSPORTSLOW;
TEMPERATURE = INTERPOLATE(THERMOCOUPLESOUTPUT);

RETURN TEMPERATURE;

END TEMPSDATASFROMSPORTS;

Figure 5-2. The PLM-86 Typed Procedures TEMP$SDATASFROM$PORTS
and INTERPOLATE (Cont’d.)

67

Chapter 3

68

Let's look closely at the following statement, which appears in the procedure
TEMP$DATASFROMSPORTS shown in figure 5-2:

THERMOCOUPLESOUTPUT = SHLC(INSPORTSHIGH, 8) OR INSPORTSLOW;

The variable INSPORT$HIGH was declared as a WORD with 16 bits, and the variable
INSPORT$LOW was declared as a BYTE with 8 bits. The thermocouple voltage data from an
analog-to-digital converter can have up to 13 bits, but our procedure was originally written to
access 8-bit ports. To assemble the 13 bits, we use the SHL (shift to the left) built-in procedure
to shift the rightmost 8 bits of INSPORT$HIGH to the left, and we OR this shifted value with
INSPORTSLOW.

The INTERPOLATE procedure uses a more complicated expression that includes both the SHL
(shift to the left) and SHR (shift to the right) built-in procedures. The INTERPOLATE procedure
also uses two tables, or arrays. They are declared in the following statements:

DECLARE VOLTS(*) WORD DATA(0,51,102,154,206,258,365,472);
DECLARE T$CEL(*) WORD DATA(0,10,20,30,40,50,70,90);

In both declarations, the arrays VOLTS and T$CEL are assigned actual values through the use
of DATA initializations. The DATA initialization allocates storage for the array and assigns the
values specified in parentheses after the word DATA in a single step.

The values chosen for the VOLTS array are from the National Bureau of Standards; they repre-
sent the output (in millivolts) of type J thermocouples that corresponds to the Celsius
temperature range assigned to the TSCEL array. For example, a thermocouple output of 102
millivolts should correspond roughly to 20 degrees Celsius. The INTERPOLATE procedure
uses these tables to arrive at an approximate Celsius temperature value for a known ther-
mocouple output value. Our calculations would be more accurate if the ranges between values
within each table were smaller.

Compiling a PL/M-86 program is very similar to compiling a Pascal-86 program. We execute the
PL/M-86 compiler in the 8086 execution environment by using the Series Il RUN command.
The PL/M-86 compiler is supplied in the file PLM86.86 on the PL/M-86 disk. We inserted a copy
of this disk into drive 1 (we also put our source program on the same disk). In the following
example, we execute the PLM86.86 using the RUN command. We do not have to supply the
86"’ extension, since RUN already assumes that the file you specify has that extension. The
following example shows the RUN command line for compiling the module PLMDATA, which is
in a source file called PLMDAT.SRC (PLMDAT.SRC and the PL/M-86 compiler are both in direc-
tory :F1:):

-RUN :F1:PLM86 :F1:PLMDAT.SRC CODE LARGE<cr>

This compiler invocation produces two output files: :F1:PLMDAT.OBJ to hold the compiled
object module, and :F1:PLMDAT.LST to hold the listing. The listing is shown in figure 5-3 (in the
next section).

Two compiler controls, CODE and LARGE, were also specified. The CODE control tells the
compiler to list the approximate assembly language instructions that would be necessary to
implement the PL/M-86 statements—this is useful for many reasons, some of which are
described in the next section. The LARGE control is needed here because Pascal-86 modules
are compiled with a default size control that is equivalent to the PL/M-86 LARGE model. All
modules of a program must conform to the same size control, so our PL/M-86 module must be
compiled as a LARGE module to conform to the default size of Pascal-86 modules.

Other Languages

You need to know more about the PL/M-86 language and compiler than the brief introduction
provided in this guide. Intel provides a manual for the PL/M-86 language and compiler
(PL/M-86 User’s Guide for 8086-Based Development Systems). Intel also supplies two manuals
for PL/M-80 program development (PL/M-80 Programming Manual and ISIS-II PL/M-80
Compiler Operator’s Manual) in the 8085 execution environment of the Series Ill. For tutorial
information on the PL/M language, see A Guide to PL/M Programming For Microcomputer
Applications by Daniel McCracken (listed in the Bibliography).

PROGRAMMING IN 8086/8087/8088 ASSEMBLY LANGUAGE

So far we have described high-level languages that are translated by compilers into machine
code; namely, Pascal-86 and PL/M-86. Another high-level language not described in this book
is FORTRAN, which is also translated by a compiler into machine code. Other high-level
tanguages like BASIC-80 are translated by interpreters into machine code.

An assembly language program is translated into machine code by an assembler. Intel pro-
vides the 8086/8087/8088 Macro Assembler, which is described in this section, to transiate
8086/8087/8088 Assembly Language programs. it is called a macro assembler because it will
also translate macro definitions written in the Macro Processor Language, which is described
with the 8086/8087/8088 Assembly Language.

The common denominator of all these languages is the machine code, which is the binary
language of ones and zeros that only the processor can ‘“‘speak’” well. The following is an
example of machine code, with comments to explain what action each code performs:

Memory Address Memory Contents Comments
(Hexadecimal) (Binary) {English)

00000 11100101 Read word into reg. AX...
00001 00000101 ...frominput port 5.
00002 01000000 Increment contents of AX.
00003 11100111 Write word from reg. AX...
00004 00000010 ...to output port 2.
00005 11101011 Repeat by jumping...
00006 11111001 ...back seven bytes.
00007

This machine code (sometimes called object code) is the code that the processor executes.
All languages are eventually translated into this type of code.

A program written in assembly language is a symbolic representation of machine code. The
relation between assembly language instructions and the resulting machine code is usually
very obvious; the relation between statements in a high-level language and the resulting
machine code is often not obvious (with some exceptions in the PL/M-86 language).

Assembly language gives you complete control over the resulting machine code and thereby
allows you to generate very efficient machine code. There are times when this control is
desirable, and other times when you want to be free of such details. Most high-level language
compilers are efficient enough for microcomputer applications; in fact, some compilers are
more efficient than most humans.

69

Chapter§

70

Assembly language is the closest language to machine code, but it does allow you to use sym-
bolic names. Here is a rewrite of the machine code instructions shown before, using
8086/8087/8088 Assembly Language (comments follow the semicolons):

CYCLE: IN AX,5 iRead word from port 5 into reg. AX.
INC AX ;Increment the contents of reg. AX.
ouT 2,AX ;Write word from reg. AX to port 2.
JMP CYCLE ;Jump to beginning and repeat.

This program fragment is simpler to read because it uses symbolic names like CYCLE instead
of binary and hexadecimal numbers. The 8086/8087/8088 Assembly Language also provides
sophisticated code and data structuring mechanisms usually found only in high-level
languages. The assembler enforces some consistency in data types to prevent inadvertent
errors, yetit also allows some deliberate ways to override data types.

The 8086/8087/8088 Macro Assembler also processes macro definitions. A macro is a short-
hand function name for a string of instructions. First you define a macro, using the Macro Pro-
cessing Language, to be a sequence of assembly language instructions. Once defined, you
can specify the macro name in an assembly language program, and the macro assembler
automatically replaces the macro name with the actual sequence of instructions from the
definition. Using this facility you can create many macros and use them in many programs.

There are many times when an assembly language version of a routine runs faster and takes
up less space than a high-level language version. Intel’s compilers can produce a listing of the
assembly language instructions that are approximately the ones you would use to implement
the compiled high-level language routine in assembly language. For example, we used the
CODE control in the previous section when we compiled the PL/M-86 program PLMDAT.SRC.
The CODE control produced the listing shown in figure 5-3.

PROGRAMMING FOR THE SERIES Il ENVIRONMENT

Assembly language and PL/M give you more direct control over the processor's operation;
however, the Series Il system gives you a set of operating system procedures called
primitives (or service routines) that your programs can use to perform standard operations. By
using these primitives, you save development time in two ways: first, you save time by not
implementing the standard operations yourself; and second, you save time in the future by
writing programs that will always be compatible with future Intel operating systems.

In Pascal-86, you are supplied with built-in procedures that automatically call these primitives.
You link the run-time libraries that contain the primitives to your Pascal-86 modules, and you're
all set to run the program on a Series lli system. The program will also run on future Intel
operating systems, since the only changes it would need would be contained in the run-time
libraries; that is, you would have a different set of run-time libraries for each system, but your
basic program modules would remain unchanged.

To have this modularity in PL/M or assembly language, you simply use the set of primitives
describad in the Intellec Series Iif Microcomputer Development System Programmer’s
Reference Manual, and then link in the appropriate system libraries to your PL/M or assembly
language modules (as described in the iAPX 86,88 Family Utilities User’s Guide). For future
Intel operating systems, you only need to use a different set of system libraries. Your basic
program modules would remain unchanged.

The next chapter describes the linking and locating operations for our Pascal-86 modules.

Other Languages

PL/v-86 CIMPILER

I8Is-II
JBJECT MJIDULE PLACES I
COMPILER INVOKEZD 3Y:

1 PLMDATA:

I*
INPUTS

PL/M=85 H121 C

FLM3ATA

SMPILAT
N PLMEX
PLM3&

by

THERMCSTATSSETTINGSFROMSPORTS:

Fformal parameters HIGH and L3W raceive port numbers as actual

Input ports HIGH and LJW:

Port
Port
Port

TEMPSDATASFROMSPIRTS:

Three 3CC digits for the thermostat

HIGH, bits 3-0:
LOW, bits 7-=4:
LOW, bits 3=~3:

parameters.

setting:

hundred‘s digit
ten’s digit
unit’s digit

Formal parameters HIGH and LOW receive port numbers as actual parameters.

Input port HIGH:
Input port LOW:

auUTPUTS

THERMOSTATSSETTINGSFRIMSPORTS:

TEMP3DATASFRIMSPORTS:

*/

~

THERMOSTATSETT
0000 55 PUSH
0001 8BEC MOV
PROCEDURE (HIGH, LOW) WOR
3 2 DECLARE (HIGH, LOW) WO
4 2 DECLARZ (INSPORTSHIGH,
s 2 DECLARE THERMOSSETTING
6 2 DECLARE (HUNDREDS, TEN
7 2 INSPORTEMIGH = INPUT(H
0003 885606 MOV
0006 EC IN
0007 88060C0O0 M3V
8 2 INSPORTSLOW = INPUT(LO
0008 885604 MoV
000E EC IN
000F 88060000 M3V
9 2 HUNDREDS = INSPORTSHIG
0013 8a060C00 Mav
0017 8OEQQF AND
001a 88060€&00 Mov
10 2 TENS = SHRCINSPORTSLOW
001E 8A060D00 MOV
0022 8104 M3V
0024 D2ES8 SHR
0026 88060F00 MOV
12 UNITS = INSPORTSLOW AN
002A 82060000 MOV
002E 8QEQOF AND
0031 88061000 MoV

3inary ADC output of thermocouple, high-order B bits
Binmary ADC output of thermoccuples,

lou-order 8§ bits

Return WORD with setting in Celsius

Return WORD with temperature in Celsius

; STATEMENT # 2

INGFROMPIRTS
8P
BP,SP

D’

RD;
INBPORTSLOW)
WORDZ

S, UNITS) BYTE?

BYTE,

IGH);
; STATEMENT
DX, (B8Pl HIGH

oX
INPORTHIGH, AL
W);

; STATEMENT
DX,[8PI.LOW
oX
INPCRTLOW, AL

H AND 000011113;

5 STATEMENT
AL,INPORTHIGH
AL,OFH
HUNDREDS,AL

2

; STATEMENT
AL,INPORTLOW
CLr4H
AL,CL
TENS,AL

5 0000111187

; STATEMENT
AL,INPORTLOW
AL,OFH
UNITS,AL

a

3

at

PROC NEAR

Figure 5-3. Listing of PLMDATA with the CODE Control

7

Chapter 5

12 2 THERMOSSETTING = UNITS + 10%TENS + 100*HUNDREDS;
i STATEMENT # 12
0035 84060F00 MoV AL/ TENS
0039 3104 MoV CL,0AH
0038 F6E1 MUL L
0030 8AOE1000 Mov CL/UNITS
0041 BS500 MOV CH,QOH
0043 03¢C1 40D AX,CX
0045 50 PUSH ax ;1
0046 B8A060EDD MgV AL,HUNDREDS
0044 3164 MOV CL,64H
004C F6E1 MUL cL
004E 59 e3P cx i
004F 03C1 ADD AXsCX
3051 89060000 MIV THERMOSETTING,AX
13 2 RETURN THERMOSSETTING.
5 STATEMENT # 13
0055 50 POP ELd
0056 (20400 RET 4H
1% 2 END THERMOSTATSSETTINGSFRIMSPIRTS:
i STATEMENT # 14
THERMOSTATSETTINGFROMPORTS ENDP

/* Another typed procedure to return temparature data, which
uses the INTERPJLATE typed procedure. */

/+# INTERPILATE is a typed procedure that receives tharmocouple
voltage and returns temperature in Celsius using an
interpolation routine */

15 1 INTERPOLATE:
; STATEMENT 2 15
INTERPOLATE PRUC NEAR
00592 55 PUSH 14
" 0054 835&C M3y 3P,5P
PRICEDURE(VOLTSIN) WIRD;
16 2 JECLARE VOLTS(#) WORD DATA(D,51,102,154,2056,258,365,472};
17 2 DECLARE TSCEL(%) WORD DATA(O0,1D,20,30,4C,50,70,90);
18 2 JECLARE (I, VOLTSIN, NUMERATOR) WORD;
19 2 1 =0;
;i STATEMENT # 19
005C C70602000000 MOV 1,04
20 2 IF VOLTSINCT THEN RETURN TSCELC(I);
i STATEMENT 4 20
0062 817£040100 CMP [SPI.VOLTIN,1H
Q067 7203 JB 3454
0069 £20000 FLLS n
; STATEMENT ¥ 21
006C 380000 MOV 8X,0H
006F D1E3 SHL BX,1
0071 88371000 MOV AX,TCELLBX]
0075 5D pPCP -1
0076 C20203 RET 2H
3z
22 2 DO WHILE VOLTSIN > vOLTS(I);
7 STATEMENT ¥ 22
az:
0079 8B1E0200 MoV 8x,I
0070 D1E3 SHL BX,1
007F 8B4604 MOV AX,[B8PJ.VOLTIN
0082 38870000 tHP AX,VOLTSIBX]
0086 7703 Ja $45H
Q088 £90700 JMP a3
23 3 I =1+1;
i STATEMENT # 23
0088 FF060200 INC 1
24 3 END/
; STATEMENT # 24
Q08F E9ETEF JMP a2
23:

/* Shift for rounding, and return Celsius temperature #/
25 2 NUMERATOR = SHLC(VOLTSIN=VOLTSCI-1))*(TSCELCI)=TSCEL(I-1)),
7/ STATEMENT # 25

-

0092 8B1E0200 MOV 8Xx,1

0096 4B DEC 8X

0097 D1€3 SHL BX,1

0099 88870000 MOV AX,vOLTSLBX]
0090 B8B4E0& MOV CXx,[BPI.VOLTIN
0020 28C8 Sus CXoAX

0042 8B360200 MOV SIsI

0046 D1ES SHL SIs1

Figure 5-3. Listing of PLMDATA with the CODE Controi (Cont’d.)

72

Other Languages

0048 83971000 MTV DX,TCELCBX]
00aC 889C1000 M3V BX,TCELLSI]
0080 2BDA SuB 8X,0X
0082 50 PUSH AX i1
0083 89C8 Mav AX,CX
0085 52 PUSH ox ;
0086 F7E3 MUL 8x
0088 D1EQ SHL axs1
0084 89060400 M3V NJUMERATOR, AX
26 2 RETURN T$CEL(I=1) + SHR(NUMZRATOR/(VOLTS(I)=VILTS(I=1)3+1, 1)}
; STATEMENT # 26
00BE 839C0030 MOV BX,YOLTSISI]
goc2 s5a POP X ;2
00C3 59 pCP cx ;1
00c4 2BDY sus EX,CX
Q0C6 52 PUSH 0x A
00C7 3102 X3R 0Xx,0X
Q0C9 F7F3 oIy 8X
00CR 40 INC ax
00CC 01E8 SHR AX,1
00CE 59 POP cx i1
QOCF 03C1 ADD A%, CX
0001 50 (414 B8P
Q0pzZ C20200 RET 2H
27 2 ENG INTERPOLATE;
;7 STATEMENT # 27
INTERPOILATE ENDP
8 1 TEMPSDATASFROMSPORTS:
; STATEMENT # 28
TEMPDATAFROMPORTS PROC NEAR
0005 55 PUSH 14
00D6 8BEC MOV BP,SP
PROCEDURE(HIGH,LOW) WORD}
29 2 DECLARE (HIGH,LOW) WORD;
30 2 DECLARE INSPORTSHIGH WIRD; /% ADDRESS in McCracken’s book */
31 2 DECLARE INSPQRTSLOW BYTE,
32 2 DECLARE (THERMACJUPLESJUTPUT, TEMPERATURE) WORD/
33 2 INSPORTSHIGH = INPUT(HIGH);
; STATEMENT # 33
0008 885606 MOV OX,[BPILHIGH
0008 EC IN ox
00DC 8400 MOV AH,0H
00DE 89060600 MOV INPORTHIGH,AX
34 2 INSPORTSLOW = INPUT(LOW);
> STATEMENT # 34
60ge &B5604 MOV 0X,03PJ.LOK
00e5 €C IN X
00E6 88061100 Mmov INPORTLOW, AL
35 2 THERMOCOUPLESSUTPUT = SHL(INSPORTSHIGH, 8) OR INSPORTSLOW:
; STATEMENT # 35
00EA 8B060600 MOV AX,INPORTHIGH
Q0Ee 8108 MoV CL,8H
00F0 D3EQ SHL AX,CL
00F2 84A0E1100 MOV CL,INPORTLOW
Q0Fé BS00 MOV CH,0H
00F8 0BC1 orR AX,CX
Q0Fa 89060800 MOV THERMOCOUPLEDUTPUT,AX
36 2 TEMPERATURE = INTERPOLATE(THERMOCOUPLESOUTPUT);
;7 STATEMENT # 36
OOFE S0 PUSH ax ;1
QOFF E8S7FF CALL INTERPOLATE
0102 89060400 Mov TEMPERATURE,AX
37 2 RETURN TEMPERATURE;
; STATEMENT # 37
0106 88060400 MOV AX,TEMPERATURE
010a S0 °gP 87
0108 C20400 WH
38 2 END TEMPSDATASFROMSPORTS;
; STATEMENT # 38
TEMPDATAFROMPORTS ENDP
39 1 END PLMDATAS
; STATEMENT # 39
MODULE INFORMATION:
CODE AREA SIZE = Q10¢H 2700
CONSTANT AREA SIZE = 0020H 320
VARIABLE AREA SIZE = 0012H 180
MAXIMUM STACK SIZE = 00104 162

95 LINES READ
Q0 PROGRAM ERROR(S)

END OF PL/M=86 COMPILATICN

Figure 5-3. Listing of PLMDATA with the CODE Control (Cont’d.)

73

CHAPTER 6
USING UTILITIES TO PREPARE
EXECUTABLE PROGRAMS

“Three things are to be looked to in a building: that it stand on the right spot; that it be securely
founded; that it be successfully executed.”
—Johann Wolfgang Von Goethe

You must do three things to prepare and execute programs successfully: link program
modules to resolve external references, locate the linked modules by binding them to memory
addresses, and run the program in the appropriate operating environment.

These things are easy to do for most high-ievel ianguage programs. Easy-to-use ufiiity pro-
grams perform these operations for you. They are also flexible enough to allow you to perform
more complicated linking and locating operations for programs that refer to physical memory
addresses. The compilers for high-level languages usually produce programs that do not refer
to physical memory addresses; these programs can be linked and located in one easy step.

The diagram in figure 6-1 shows the process of linking and locating (binding to addresses)
modules to prepare a program that can be RUN on the Series lll system (or debugged via
DEBUG-86, described in Chapter 7).

MODULES CONTAINED

OBJECT MODULES
INRUN Y IME FROM COMPILERS
OR ASSEMBLERS

USER’S LlBRARIES t
!
' Y

LINKS86 BIND
LINK 86
(WITH BIND
(DEFAULT) CONTROL)
LOC86

Y

DEBUG-86 RUN

Figure 6-1. Using Utilities to Prepare Executable Programs 121632-6

75

CHAFTER®

76

PREPARING A LIBRARY OF PROGRAM MODULES

Alibrary is any collection of public modules—modules that contain public procedures that can
be used by programs. Some libraries are supplied by Intel; for example, the run-time system
used with Pascal-86 programs is supplied as several library files. Pascal-86 has a number of
built-in procedures that you can use in any Pascal-86 program—these procedures can be
found in the supplied run-time libraries. To use any of the built-in procedures, you must link
the run-time libraries to your program modules using the LINK86 utility.

You can also build your own library files using the LIB86 utility. With the LIB86 utility you can
create a library, add modules from another library, add new modules, delete modules in a
library, and list the names of modules in a library.

The following example shows a session with LIB86. We create a new library called TONY.LIB,
and then we ADD to it some of the modules from a supplied run-time library called P86RN2.LIB.
We then LIST the modules in TONY.LIB, and EXIT from the LIB86 utility:

~“RUN LIB86<cr>
SERIES-III 8086 LIBRARIAN V1.0
*CREATE :F1:TONY.LIB<cr>
*ADD :F1:P86RN2.LIB(MOD1, MOD4, MOD?7) TO :F1:TONY.LIB<cr>
*LIST :F1:TONY.LIB<cr>
TONY.LIB
MOD1
MOD4&
MOD7
*EXIT<cr>

The linker (LINK886) treats library files in a special way. As shown in the next section, you
specify your program modules first in the LINK86 command line, then you specify the
appropriate libraries. You must be sure to link these modules in the proper sequence.

Why? Remember that your program’s main module refers to procedures that exist only in
other modules—external procedures. The linker must be able to find the external procedures.
LINK86 remembers the references to external procedures in the first module, and looks in the
subsequent modules for those external procedures. If it cannot find the external procedures in
subsequent modules (maybe because you erroneously specified the library before specifying
the program modules in the LINK86 command line), LINK86 will generate an error message.

The built-in procedures supplied with Pascal-86 (READLN, WRITELN, etc.) are external pro-
cedures contained in the modules included with the run-time support libraries. LINK86 will first
see the reference to these procedures in your program modules, and then it will look in the
libraries for the modules that will satisfy those references. LINK86 wil! only link in those
modules that are needed to satisfy external references; it will not link in the entire library of
modules unless your program modules refer to all of the library modules.

Since you do not need to use LIB86 to handle run-time libraries supplied with Pascal-86, you
only need LIB86 to handie your own libraries. Why wouid you set up your own libraries? To
manage sets of repetitive modules. In many software development labs, modules useful to
many different programs would either be lost or repeated. Libraries are sets of modules that
are easily maintained through use of the LIB86 librarian. The LINK86 utility is capable of
searching such a library and only checking out the modules needed for the linked program.

USING UTILITIES

LINKING MODULES TO FORM A LOCATABLE PROGRAM

Most modular programs have a main module that calls procedures in other subordinate
modules. Although a subordinate module can call a procedure in the main module, most calls
are from the main module to a subordinate module, and the modular structure resembles an
upside-down tree, as shown in figure 6-2. We included the run-time system modules in this
tree, since the program modules rely on the built-in procedures and operating environment
calls found in the run-time system.

When you link these modules together using the LINK86 utility, you allow LINK86 to see the
main module first, because the main module is the most abstract; that is, it has the highest
ievel of abstraction, and it calls procedures in lower levels o perform each activity. You should

then allow LINK86 to see the next subordinate level of modules, and so on.

The last group of modules for LINK86 should be any run-time system libraries that are needed
to perform the built-in procedures (READLN, WRITELN, etc.). The run-time system libraries
contain modules that are at the lowest level of abstraction—these are the modules that call
procedures in the operating environment of your system (the operating environment is usually
invisible to you, but not to your Pascal program).

For an example, we will link together the modules needed to test our main program in the
Series Il environment. We start with our main module MAIN.OBJ, which holds the MainControl
module. We link to it the test versions of the modules GetData found in DUMDAT.OBJ, and
Operation found in DUMOP.OBJ. Finally, we link in the modules we need from the run-time
system libraries P86RNO0.LIB, P86RN1.LIB, P86RN2.LIB, P86RN3.LIB, 87NULL.LIB, and
LARGE.LIB (we explain these libraries after the example):

-RUN LINK86 :F1:MAIN.OBJ,:F1:DUMDAT.OBJ,.:F1:DUMOP.0BJ.,&<cr>
S>> F1: PBERNC VLI, T T IPBERNT.LLIB, P iP8ERND . LIB, &>
>>:F1:P86RN 3.LIB,:F1:87NULL.LIB,:F1:LARGE.LIBE&<Ccr>

>>T0 :F1:PROGRM.86 BIND<cr>

Let’s explain this example. We used the RUN command to run the LINK86.86 utility in the **8086
side”’ of the Series WIl. We specified the three object modules of our program, and then we
specified all of the run-time libraries needed to run our program in the Series lil environment.

MAIN CONTROL

\ /

GET DATA OPERATION

y Y

RUN-TIME SYSTEM MODULES

Figure 6-2. Main Module with Subordinate Modules 1218327

7

CHAPTER 6

78

We directed the output to a file called PROGRM.86. Finally, we specified the BIND control in
order to make PROGRM.86 an LTL (load-time locatable) program. The BIND control is the
easiest way to make a program locatable in the Series Il environment (more on BIND in the
next section). PROGRM.86 can now be loaded and executed (via the RUN command) in the
Series lll system.

The run-time system libraries P86RNO0.LIB and P86RN1.LIB are required for any Pascal-86 pro-
gram that needs run-time support. The libraries P86RN2.LIB and P86RN3.LIB are required for
any Pascal-86 program that uses the file input/output procedures and other operations per-
formed by the operating system. The 87NULL.LIB is needed for programs that do not use
either the 8087 processor or emuiator to perform real arithmetic. Since our program has no
REAL data types, it does not perform real arithmetic; therefore, it needs the 87NULL.LIB
library (if it did perform real arithmetic, it would need other libraries). Finally, to run any
Pascal-86 program on the Series |ll system, you need to link the LARGE.LIB library to the pro-
gram. The LARGE.LIB library contains the primitives (service routines) used to perform opera-
tions in the Series lll environment.

The run-time system is separated into several libraries so that you can customize your run-
time environment if you so wish. The libraries described above are the default libraries used to
run programs on the Series Il system, if your programs do not use REAL data types. If your
programs use REAL data types, you would not use 87NULL.LIB; instead, you would use the
8087 processor with the library 8087.LIB, or the 8087 software emulator with the libraries E8087
and EB087.LiB. Consult the Pascal-86 User’s Guide tor specific information about the run-time
system libraries.

LOCATING AND RUNNING PROGRAMS

A program must reside in actual memory before it can run. The /ocating process assigns actual
(physical) memory addresses to a program. There are two ways to accomplish the locating
process:

1. Using LINK86 with the BIND control to produce an LTL module (discussed in the next
paragraph), which can be located, loaded, and executed automatically by the RUN
command

2. Using LINK86 (without the BIND control) to produce a linked module, then LOC86 to locate
the module in an area of memory you specify, and finally RUN to load and execute the
program

The simplest locating operation involves using the LINK86 utility with the BIND control, as
shown in the previous example. This simpler process, called binding, binds modules to logical
segments, which can be located in actual memory by the RUN command in one fast step.
Modules produced by the LINK86 utility with the BIND control are called /oad-time locatable
modules (LTL modules). An LTL module is a module that can be located aimost anywhere in
memory, and so the RUN loader can easily locate it in the Series lll environment for you. The
DEBUG-86 debugger can also locate an LTL module for you, as we will show in the next
chapter.

For example, our LINK86 example in the previous section bound the modules properly to form
the program PROGRM.86. Now, in one step, you can locate this bound program in actual
memory, load it into memory, and execute it in the *‘8086 side’’ (8086 execution mode) of the
Series il system by using the RUN command:

-RUN :;FT:PROGRM<Lcr>

Note that we did not type PROGRM.86, only PROGRM. The RUN loader iooks for the **.86"
extension automatically, uniess you specify another extension or a period at the end of the
name (the period signifies no extension).

High-level language programmers usually do not burden themselves with more details about
locating programs. However, assembly language programs and some PL/M programs fre-
quently refer to physical addresses rather than symbolic (logical) addresses. These program
modules are called absolute modules because they use absolute physical addresses.
Absolute modules cannot be located automatically by the RUN command—they must be
relocated first by the LOC86 utility.

debug your program using an ICE-86 or ICE-88 emulator, you must locate the program with
LOC86 to make it an absolute module. The ICE (In-Circuit Emulation) loaders can only load
absolute modules.

For an example, we will link our new PL/M-86 module PLMDAT.OBJ to our program, along with
another version of our GetData module in DATA.OBJ, and produce the linked module
MAIN.LNK:

-RUN LINK8S6 :F1:MAIN.COBJ,:F1:DATA.0BJ,:F1:PLMDAT.O0BJ,&<cr>
>>:F1:DUMOP.0BJ,:F1:P86RNO.LIB,:F1:P86RN1.LIB,:F1:P86RN2.LIB,&< cr>
>>:F1:P86RN3.LIB,:F1:87NULL.LIB,:F1:LARGE.LIB<cr>

Since we did not specify a new filename with a ““TO’’ clause, the LINKS86 utility directed the
linked output to the file :F1:MAIN.LNK (LINK86 takes the name of the first object module
MAIN.OBJ, and changes its extension to LNK to make MAIN.LNK). Now we are ready to locate
:F1:MAIN.LNK with the LOC86 utility:

~RUN LOC86 :F1:MAIN.LNK TO :F1:PROGRM.86 RESERVE(200H TO 77FFH)<cr>.
We used the RESERVE control with LOC86 to reserve an area of memory for the Series |li
operating system. LOC86 will not locate any program segments in the area between addresses
200H and 77FFH (‘‘H” is for hexadecimal). You must ieave room for the Series iii operating
system to execute programs in the Series lll environment.
The LINK86, LOCS86, and LIB86 utilities are described in detail in the /JAPX 86,88
Family Utilities User’s Guide for 8086-Based Development Systems. This manual
describes all of the utilities for iAPX 86 or iAPX 88 applications development.

These utilities are designed to be used in 8086-based development systems like
the Series lIl.

We can now RUN our program on the Series lll system:
~RUN PROGRM<cr>
Climate system is now on.
;;;;_;;;-;;;;;;;;;;_;;;;;ng in degrees Celsius:24<cr>
Type the inside temperature reading in Celsius:21<cr>

Type the temperature of the collector water in Celsius:50<cr>

Type the temperature of the tank water in Celsius:60<cr>

79

CHAPTER 6

80

Type the temperature of the heated tank water in Celsius:70<cr>
Type the hour of day, as in 04 or 24:13<cr>
Type the minute of the hour, as in 01 or 59:25<cr>

Type the amount of sunlight, any integer will do for now:1<cr>

Thermostat Setting is 24C

Inside temperature is 21C

Temperature of collector water is 60C
Temperature of tank water is 60C
Temperature of the heated tank water is 70¢C
Time of day is 13:25

Amount of sunlight is 1

The Climate System is now operating.

The time is 13:25

The inside temperature is 21C

The thermostat setting is 24C

Method chosen to heat the building: Solar Collector to Exchanger

No panic occurred, ABNORMAL shutdown.

Last chosen heating method was: Solar Collector to Exchanger
Thermostat Setting is 24C

Inside temperature is 21C

Temperature of collector water is 60C

Temperature of tank water is 60C

Temperature of the heated tank water is 70C

Time of day is 13:25 :

Amount of sunlight is 1

Goodnight, Irene...

What happened!? Our program stopped with an abnormal shutdown! It had no trouble picking
the right heating method; however, something caused the variable Operating to become
FALSE, without setting Panic to TRUE. We will have to debug the program in the next
chapter...

CHAPTER 7
DEBUGGING AND EXECUTING PROGRAMS

‘““‘Appearances are often deceiving.”” —Aesop

We have written program modules and they compiled correctly. We used the LINK86 utility with
BIND to link the modules into a program and prepare it for execution. By all appearances, it
looks like it will work as planned.

However, when we loaded and executed (via the RUN command) the program, something
mysterious happened—the “‘hidden glitch’’ struck!

We now have to debug our program-find ail of the ‘‘hidden glitches’” and fix them. Debugging
is so essential to programming that in most software development efforts, more time is alotted

[SORe1S1010)

Debuggers are programs that monitor a program’s execution and allow you to stop execution
and check details. Usually .a debugger is part of an execution vetiicle—a piece of hardware
your program executes on, or a piece of software your program executes in. The debugger
monitors the activity in the execution environment.

For example, the Series lil provides two execution environments or execution vehicles: the
8085 execution mode and the 8086 execution mode. To debug programs that run in the 8085
execution mode, you type the DEBUG command on the ‘8085 side’” (8085 execution mode) to
start the Monitor. To debug programs that run in the 8086 execution mode, you RUN the
DEBUG command on the ‘8086 side’ (8086 execution mode) to start the DEBUG-86 debugger.
Both debuggers reside in ROM.

With a debugger you can load and execute a program (rather than using RUN), and stop the
execution to check the values of variables, the contents of registers, and other details. You
can also change such values, and perform other activities that monitor a program’s execution.
You can even execute your program one step at a time.

Since the Monitor (for 8085 execution mode) is described in several Intel documents
(McCracken’s Guide to Intellec Microcomputer Development Systems and the Intellec Series
IIf Microcomputer Development System Console Operating Instructions), we will devote this
chapter to describing DEBUG-86 and the ICE-88 emulator (a version of the ICE-86 emulator) for
debugging programs in the 8086 execution mode for iAPX 86, 88 applications.

81

CHAPTER7

82

USING DEBUG-86 FOR SYMBOLIC DEBUGGING

Debuggers are useful because they load and execute a program for you, and they allow you to
stop execution at any point you specify. If you are an assembly language programmer, your
program directly uses registers and memory locations; you would want to check the contents
of these registers and memory locations. If you are a high-level language programmer (PL/M,
Pascal, FORTRAN, etc.), you do not directly refer to registers and memory locations; you
would rather check the values of your variables, or symbols.

For example, we know we have a problem with our program: the variable Operating should
always have the boolean value of TRUE as long as Panic is FALSE. If Panic is set to TRUE,
Operating should then become FALSE; however, Operating is somehow set to FALSE while
Panic remains FALSE. During the execution of our program, we should be able to stop execu-
tion and check the value of Operating.

One way to do this is to find the address of Operating and check its contents. A better way
would be to simply ask for the value of Operating in a command such as:

*BOOLEAN BYTE ..MAINCONTROL.OPERATING<cr>
FALSE

In DEBUG-86, you can execute our program and stop its execution anywhere. You can then
use the above command to find the booiean (true or false) vaiue of Operating without knowing
where Operating is located.

In our program there is only one symbol named Operating. If there were more than one, we
would specify the symbol by specifying both the module name and the symbol name (e.g.,
..MAINCONTROL.OPERATING), as we did in the above example. We would have obtained the
same result by specifying only “.OPERATING". You use two periods as a prefix to module
names, and one period as a prefix to symbol names.

To do symbolic debugging using the symbols in your program, you must compile your program
using the DEBUG compiler control (see Chapter 4 for the Pascal-86 compiler, and Chapter 5 for
the PL/M-86 compiler). The DEBUG compiler control produces a symbol table for your pro-
gram, which can be loaded by DEBUG-86. If you do not use the DEBUG compiler control while
compiling, you can still do symbolic debugging by defining all of your symbols from within
DEBUG-86.

To invoke DEBUG-86, use the following command:

-RUN DEBUG<cr>
DEBUG 8086, V1.0

*

DEBUG-86 is now in control, as shown by the asterisk (*) prompt. You can now type DEBUG-86
commands. To load PROGRM.86 and its symbol table, type the following command:

*LOAD :F1:PROGRM.86<cr>
You can check the symbol table by typing the SYMBOLS command:

*SYMBOLS<cr>

DEBUGGING AND EXECUTING PROGRAMS

The symbol table contains each moduie name and symbol name, with their addresses. You
can find the address of a single symbol by typing the name of the symbol. For example, we
want to know the address of the call (in module MainControl) to the procedure OperateSystem
(which is in the module Operation):

*, .MAINCONTROL.OPERATESYSTEM<cr>
..MAINCONTROL.OPERATESYSTEM=0481:06CCH

DEBUG-86 knows where to start executing the program by looking at the contents of the CS
and IP (CS:IP) registers. The CS register holds the starting address of the program’s code seg-
ment, and the IP register holds the address within the code segment where the program
should start execution. S and IP change as the program exscutes; therefore, to preserve the
starting location of the program, we create a new symbol called .START to hold the starting
address:

*DEFINE .START=CS:IP<cr>
We could also check the contents of CS:IP:

*CS<cr>
€S=0481H
*Ip<cr>
IP=0FD6H

You should familiarize yourself with addresses. The 8086 and 8088 processors use 20-bit
physical addresses separated into two words: the segment base address and the offset value.
The CS register holds the code segment base address, and the IP register holds the offset
value. All addresses are in hexadecimal notation (the “H’ stands for hexadecimal). All
addresses are dispiayed with the segment base, followed by a colon, followed by the offset.

The EVALUATE (abbreviated *‘EVA’’) command is useful for evaluating numeric and character
values and addresses. For example, the number 4142H can be represented in several ways:

*EVA 4142<cr>
1000001010000y 40502¢@ 167067 4142H 'AB'

When you type a number by itself, DEBUG-86 assumes the number is in hexadecimal notation.
The number 4142H is equivalent to the decimal number 16706 (‘‘T’’ denotes decimal notation),
the octal number 40502Q (‘*‘Q’’ denotes octal notation), the binary number 1000001010000Y (**Y’’
denotes binary notation), and the ASCII characters ““AB’’ (41H is the ASCII code for **‘A’’ and
42H is the ASCII code for “‘B”’).

The EVA command will also find the closest symbol that has the address you specify. The
keyword SYM tells the EVA command to evaluate the address symbolically:

*EVA 481:6CC SYM<cr>
..MAINCONTROL.OPERATESYSTEM

We will now execute our program and stop its execution before it executes the OperateSystem
procedure. The GO command will start executing at the beginning of the program, which it
knows by looking at the CS and IP registers (CS:IP). You could specify an actual address with
GO to start from, or the line number of a program statement, or a statement label; however, we
do not use statement labels in our program. We want our program to stop while it is executing
the main (WHILE Operating) loop, not at the start of the OperateSystem proced: e in the

83

CHAPTER?

84

Operation module (since procedure definitions do not actually execute). Our program will GO
until it reaches the starting address, in the MainControl module, of the call to the
OperateSystem procedure:

*GO TILL ..MAINCONTROL.OPERATESYSTEM<cr>
Climate System is now on.

During execution, we type in the
temperatures and other data. The program
stops and DEBUG-86 displays the next
instruction to be executed (in assembly
language form).

0481:06CCH PUSH BP

* %

At this point, we can check the boolean values of both Panic and Operating:

**BOOL BYTE .PANIC<cr>
FALSE

*BOOL BYTE .OPERATING<cr>
FALSE

To make sure the program stopped at the right place, we evaluate the CS and IP registers
symbolically:

*EVA CS:IP SYM<cr>
..MAINCONTROL.OPERATESYSTEM

Another useful DEBUG-86 command is the STEP command. From any point of program execu-
tion, you can execute the program step by step—one machine instruction at a time. The STEP
command also displays the next machine instruction to be executed. This display is in
‘‘disassembled’’ form—the machine instruction is translated back into assembly language:

*STEP<cr>
0481:06CDH MOV BP,SP

*

STEP executes one machine instruction and displays
the next one disassembled. Another STEP would
execute the displayed instruction.

We will now change the value of Operating to be TRUE. A boolean variable is TRUE if its
numeric value is odd; FALSE if its numeric value is even. Why? Because a boolean is TRUE if
its rightmost bit (in a binary representation) is 1, and FALSE if its rightmost bit is 0. All even
values written in binary form end with a 0 in the rightmost bit, and all odd values written in
binary form end witha 1.

To change the value of Operating, we must also specify BYTE, since it is only one byte long:

*BYTE .OPERATING=1<cr>
*BOOL BYTE .OPERATING<cr>
TRUE

DEBUGGING AND EXECUTING PROGRAMS

We can now continue execution with a GO command:

*G0<cr>

The Climate System is now operating.

Execution continues correctly, and the
program loops back to the GetData
procedure to obtain more data. As we
continue execution, the program once
again erroneously changes Operating

to FALSE.

We can use our .START symbol to start execution once again at the beginning of the program:
*G0 FROM .START TILL ..MAINCONTROL.OPERATESYSTEM<cr>

After repeating these debugging operations, we are sure that our error occurred at the state-
ment where Operating is set to FALSE while Panic is set to TRUE.

Refer to the listing in Chapter 4. The Pascai-86 statement numbers are in the *'STMT"’ column
of the listing. The “‘LINE’’ column shows the source fiie line numbers (you can use the line
numbers with CREDIT to display, edit, move, or copy particular lines).

Between statements 37 and 40 (source lines 68 and 70), we have an ELSE clause that should
only execute if the temperatures are not greater than the minimums necessary to heat the
building. Panic should be set to TRUE and Operating should be set to FALSE, if this ELSE
clause executes.

However, the “ELSE Panic:=TRUE”' is not executing, but the ‘‘Operating:=FALSE"’ is always
executing! The error is one of omission: to have two statements execute as part of an ELSE
clause, they must begin with BEGIN and end with END, as shown:

ELSE BEGIN)
Panic:=TRUE; Opemating:=FALSE;
END;

To make this change, we must re-edit MAIN.SRC, re-compile MAIN.SRC to obtain
a new MAIN.OBJ, and re-link the modules using LINK86 (with BIND, as shown in
Chapter 6). Figure 7-1 shows the revised listing, with the corrected ELSE clause
shaded, and a sample run of the program.

SERIES-III Pascal-36, xI31 099/01/730 PAGE

1

MAINCONTRZOL

Source File: :FT1:MAIN.SRC
Object File: :®1:MAIN.OJ8J
Controls Specified: D2E3UG.

STMT LINE NESTING SDJURCE TEXT: :F1:MAIN.SRL

2

1.0 0 MODULE Mainlentral;
2 0 0

(% Interface specificatior common to all modules *)

SINCLUDE(:F1:INSPECLSRO)
=1 PUBLIC MainContral; (+section of interface specification®)

Figure 7-1. Climate Control Program Listing and Sample Run

85

CHAPTER 7

v e

~o

16
17

18

19
20

21
22
24

25

~o

co

o oo o oo

ococooo

0o o oo ©o oo

A4 aaaaaan

PN N NN

Voouvoauvooooo

oo o0 oo o oo

W oW N =

w

O=NNWE s

B VL.V E VY V) VIO

CONST (#declarations declared publicly in this modulex)

MinimumForExchanger = 35/(«degrees Celsius*)
MinimumForHeat®ump = 13}

TYPE (#definitions publicly defined in this modulex*)

AirTemperature ==20..120; (*degrees in Celsius%*)

WaterTemperature =0..1207

HeatingMethods =(ColiectorToExchanger.,
CollectorToHeatPump,
TankToExchanger,
TankToHeatPump,

HeatedTankToHeatPump,
NoMethod)/;

SystemData = RECORD
ChosenMethod : HeatingMethods;
InsideTemp.,
ThermostatSetting : AirTemperature?
CollectordaterTemp,
TankWaterTemp,
HeatedTankTemp : WaterTemperature;
AmountOfSunlight : Integer’
Hour : 00..245
Minute : 00..59;

END (*SystemDatax);
VAR (*variables publicly defined in this module.*)

CurrentData : SystemDatas
Operating, Panic : BOOLEAN;

PUBLIC GetData’ (*GetData Module containing GetData & StoreDatax)

PROCEDURE GetData(VAR CurrentData:SystemData)’
PROCEDURE StoreData(VAR CurrentData:SystemData);

PUBLIC Operation’/ (*Operation Module containing OperateSystem.,
StartUpSystem and ShutDounSystem*)
PROCEDURE StartUpSystem;
PROCEDURE OperateSystem(VAR CurrentData:SystemData);
PROCEDURE ShutDownSystem(VAR CurrentData:SystemData);

PRGGRAM MainControl (INPUT,OUTPUT)S
(*x end of inter*ace specification w)
PRICEDURE DetermineMethod(VAR CurrentData : SystemData);

SEGIN
WITH CurrentData 00

SEGIN
IF InsideTemp<ThermostatSetting THEN
BEGIN
IF CollectorWaterTemp>MinimumcorExchanger THEN
ChosenMethod:=CollectorToExchanger
ELSE IF CollectorWaterTemp>MinimumForHeatPump THEN
CnosenMethod:=CollectorToHeatPump
ELSE IF TankWaterTemp>MinimumForExchanger THEN
ChosenMethad:=TankToExchanger
ELSE IF TankWaterTemp>MinimumForHeatPump THEN
ChosenMethod:=TankToHeatPump
ELSE IF HeatedTankTemp>MinimumForHeatPump THEN
ChosenMethod eatedTankToHeatPump
ZND

ELSE (*no heating request*)ChosznMethod:=NoMethod
END? (*With CurrentData+)
INDJ; (*DetermineMethod)

(hxraknhnnnktss MAIN PROGRAM Ah&4kswhsmkhhhhhdddkhhhudhhnaehthhes)

BIGIN
StartUpSystenm;
Jperating:
Panic:=FAL
WHILEZ Operating DO (*uwhile system is operating, do:*)

SESIN
GetDatallurrentDats); (%52t the temps, time, etc,*)
StoreDatalCurrentlatal)) (*Store this data as records)
DetermineMethod(Currentdata)’ (xthis detects 2 panic+)
OpezrateSystem(Currentfatal);
SND; (*while operating*)
ShutdounSystem(CurrentData);
END, (*Main Cortrol Algorithms)

Figure 7-1. Climate Control Program Listing and Sample Run (Cont’d.)

86

DEBUGGING AND EXECUTING PROGRAMS

Summary Information:

PRICEDURE J=FSET CoDE SIzE DATA SIZZ
DETERMINEMZITHOO 33114 Q337+ 1430 ol
Total J1474 3273 QC016H 222 0

9% Lines Read.
J Errors Detected.
33% utilization of Memory.

SERIES-III Pascal-86, X031

:F1:DUMDAT,. SR
1:0UMDAT.0BY
DEBUG.

Source File:
Object File:
Controls Specified:

SOURCE TEXT: :F1:DUMDAT.SRC

(*This is a dummy GetData module, with dumm
and Storedata procedures, for use with Main
module in testing phases. It only performs
input to get Celsius temperatures, the time
and the amount of sunlight (insclation) for
solar collector, Use PLM843DATA module for
application.*)

STMT LINE NESTING
1 1.0 0

MODULE GetData’
2 10 0 0
(* Interface specification commen to all mo
$INCLUCE(:FT:INSPECLSRL)
= PUBLIC MainControl; (*section of interface
3 2 0 0=
=1 CINST (%declarations ‘declared publicly i
=1
=1 MinimumForZxchanger = 35;(~degrees
& 6 0 0 =1 MinimumForHeatPump = 137
S 7 0 0=
=1 TYPE (*definitions publicly defined in t
=1
=1 dirTemperature ==20,.120; (*degrees i
6 11 0 0 =1 WaterTemperature =0..120;
7 12 0 0 =1 HeatingMethods =(CollectorToExchange
=1 CollectorToHeatPump
=1 TankToExchangers
=1 TankToHeatPump.,
= HeatedTankToHeatPum,
=1 NoMethod):
8 18 0 0 =1
=1 Systemlata = RECIRD
8 20 0 1 =1 ChosenMethod
9 21 0 1 =1 InsideTemp,
=1 ThermostatSetting
i0 23 0 1 =1 CollectordatarTenm

=1 TankWaterTenmp,

=1 HeatedTankTemp
11 26 0 1 = AmountCfSunlight
12 27 0 1 =1 Hour
13 28 0 1 =1 Minute
14 29 0 1=t END (*SystemDatax);
15 36 0 Q0 =t

=1 VAR (*variables publicly defined in this

=1

=1 CurrantData : SystemDa
16 34 0 0 =1 Operating, Panic : BOOLEAN;
17 35 ¢ 0=

=1 PUSLIC GetData; (*GetData Module containing
18 37 0 0 =1

=1 PROCEDYRE GetData(VAR CurrentData:System
19 39 0 0 =1 PROCEODURE StoreData(VAR CurrentData:Syst
20 40 0 0 =1

=1 PUBLIC Jperation; (#0peration Module contai
21 42 0 0 =1 StartUpSystem and ShutD

PROCEDURE StartUpSystem’
22 44 0 0 BROCEDURE OperateSystem(VAR CurrentData:
23 45 0 9 PROCEDURE ShutDownSystem(VAR CurrentData
26 46 0 0 =1
PRIVATE Geatlatas

25 16 0 0

(% end of interface specification *)

STACK SIZE
0065 60

04CH 76D

09/01/80 PAGE

y GetData
Control
console
of days
the
real

dules *)

specification%*)
n this modulex)

Celsius*)

his modulex)
n Celsius#*)
ry

’

Pr

HeatingMethodss

AirTemperature;

B

WaterTemperature/

; Integer’;
: 00..247
: 00..597
module.*)
ta;

GetData & StoreData®)

Datal)’;
emData)’

ning JperateSystem,
ownSystem)

Systemdata)’
:SystemData);

Figure 7-1. Climate Control Program Listing and Sample Run (Cont’d.)

87

CHAPTER 7

PROCZSURE Getdata(VAR CurrentData:SystemData);

26 21 1 0 BEGIN
26 22 1 1 WITH CurrentDates DT BEGIN
27 23 1 2 WRITE(Types the thermostat setting in degrees Celsius:’);
28 26 1 2 READLN(ThermostatSetting); WRITELN;
30 25 1 2 WRITE(“Type the inside temperature reading in Celsius:’);
31 26 1 2 READLN(Insid2Temp); WRITELN;
33 27 1 2 WRITE(Type the temperature of the collector water in Celsius:’);
34 28 1 2 REAJLN(CollectorWaterTemp); WRITELN;
36 29 1 2 WRITE(Type the temperature of the tank water in Celsius:’)’
3730 1 2 READLN(TankWaterTemp); WRITELN;
39 31 1 2 WRITS(*Type the temperature of the heated tank uwater in Celsius:”);
40 32 1 2 READLN(HeatedTankTemp); WRITELN;
42 33 1 2 WRITE("Type the hour of day, as in 04 or 24:°))
43 36 1 2 READLN(Hour); WRITEZ(N;
45 35 v 2 WRITE(“Type the minute of the hour, as in 01 or 5%: °);
46 36 1 2 READLN(Minute); WRITELN;
48 37 1 2 WRITE(“Type the amount of sunlight, any integer will do for now:’):
49 38 1 2 RIAILN(AmountDfSunlight); WRITILNS
51 39 1 2 EN3; (*uith CurrentDztas)
53 40 1 1 ENDZ
54 41 0 0
PRICEDURE Storedata(var CurrantData:SystemData);

55 43 1 0 BEGIN
55 4 1 1 («Jummy procedurzs eventuslly will store CurrentData in a filex)

#WITH Currentlats DD BEGIN
56 45 1 2 HRITELN(emmmmemm o me e cmcvwee e
57 47 1 2 WRITELN{ CURRENT DATA IS AS FOLLOW
58 48 1 2 WRITELN(====~~
59 49 1 2 WRI N('Tnermostat Setting is ',ThermostatSetting,’C’);
60 50 1 2 WRI N(“Inside temperature is ‘,InsideTemp,’C");
81 51 1 2 WRITELN(Temperature of collector water is “,CollectorWaterTemp,C°);
52 52 1 2 WRITZLNC Temperature of tank water is ‘,TankWatarTemp, C’);
63 53 1 2 WRITELN(Temperature of the heated tank water is “,HezatedTankTemp,"C°);
13 54 1 2 WRITELN(Time of cay is “,Hours, :’,Minuta);
65 55 1 2 WRITILN("amount of sunlight is “,AmountJfSunlight);
66 56 1 2 WRITELN; (¥a blank linex)
57 57 1 2 END; (*with CurrentDatat)
69 58 1 1 ENT

***WARNING, i1nput: "END
**+*was repaired to "ENJD ;
73 358 0 O

Summary Information:

PROCEDURE JFFSET CO2E SIZE DATA SIZE STACK SIZE

STOREDATA Q4054 2224 5460 00104 160
GETDATA 02944 D241 5770 0010+ 160D
Total CLF7?H 17830 J000K 0D 0020H 320

104 Lines Read.
1 Error Detected.
33% Utilization of Memory,

SERIES-III Pascal-86, X031

Source File: :F1:DUMOP.SRC
Object File: :F1:0UMOP.0BY
Controls Specified: DEBUG.

STMT LINE NESTING SOURCE TEXT: :F1:0UMGOP.SRC
1 1.0 o (#This is a dummy Operation module, wWith dummy StartUpSystem,
ShutDownSystem, and OperatsSystem procedures,
for use with MainControl module in testing phases.
*)
MODULE Operation;
(* Interface specification common to all modules *)

SINCLUDEC:F1:INSPEC.SRL)

=1 PUSLIC MainControl; (*section of interface specifications*)
3 2 0 0 =1
=1 CONST (*declarations declared publicly in this modulex*)
=1
=1 MinimumForExchanger = 325;(*degrees Celsius+)
4 6 12 0 =1 MinimumForHeatPump = 13
5 7 0 0=
=1 TYPE (xdefinitions publicly defined in this modules)
=1
=1 dirTenperaturs 20..1205 {xdegrees in Calsius*)
6 "M T o= WeterTemperature =0..1207

09701782 PAGE

Figure 7-1. Ciimate Control Program Listing and Sample Run (Cont'd.)

88

DEBUGGING AND EXECUTING PROGRAMS

16
17

18

19
20

21
22

24

18

20
21

23

34
35

37

39
40

42
44

46

coocoo o oo o

oo o oo

o

oo

[= RN

= Y S U UG N S S Y

JEP O NN Y

oo o oo -GN

coo o

=

Omaaa0

O=RNNNNUHWWWHWHWRN NN NN N 2O

WHRWUHWNN 2 - w0

0w

Wonoww N
-

"

-

(R
- -

- oS e e G e e Y 4

-

0o
-

wonow
-

HeatingMethods =(CollectorToExchanger.,
CollectorToHeatPump,
TankToExchanger,
TankToHeatPump,
HeatedTankToHeatPump,
NoMethod);

SystemData = RECJIRD
ChosenMethod : HeatingMethods;
InsideTemp,
ThermostatSetting : AirTemperature’
CollectorWaterTemps
TankWaterTemp,
HeatedTankTemp : WaterTemperature’
Amount0fSunlight : Integer’
Hour : 00..247
Minute : 00..59;

END (*SystemDatax);
VAR (*variables publicly defined in this module.*)

CurrentData : SystemData;
Operating, Panic : BOOLEAN?

PUBLIC GetData; (*GetData Module containing GetData & StoreData+)

PROCEDURE GetData(VAR CurrentCata:SystemData);
PROCEDURE Storedata(VAR CurrentData:SystemData)’

PUBLIC Operation; (*Jperation Module containing OperateSystem,
StartUpSystem and ShutDownSystem*)
PROCZDURE StartUpSystem;
PROCEDURE JperateSystem(VAR {urrentData:Systemdata)d;
PRICZDURE ShutdounSystem(VAR CurrentData:SystemDatal;

{* end of interface specification =)

PROCEJQURE StartUpSystem’
BEGIN
WRITELN (“Climate syste
WRITELN (°
WRITELNS

ENDZ

PROCEDURE OperateSystem(VAR CurrentData:Systemlatad’

BEGIN
WITH CurrentData DO BEGIN
WRITELNC®
WRITELN(The Climate System is now operating.”)’
WRITELN;

WRITELN(’The Time is “,Hour,":",Minute)?

WRITELN(The inside temperature is “,InsideTemp,"C")7
WRITELN(The tnermostat setting is “,ThermostatSetting,°C’);
WRITE("Method chosen to heat the building: “);
CASE ChosenMethod OF
CollectorToExchanger: WRITE(’Solar Collector to Exchanger’)’;

CollectorToHeatPump : WRITE{’Sclar Collector to Heat Pump’l’

TankToExchanger : WRITE(®Tank to Exchanger®);
TankToHeat®ump : WRITE(“Tank to Heat Pump®);
HeatedTankToHeatPump: WRITE(Heated Tank to Heat Pump®);
NoMethod : WRITE(’No heat required®)’

ENDZ

WRITELN;

WRITELNC

WRITELN; (*urite a blank line.*)

END;

END;(*DperateSystems*)

PROCEDURE ShutDownSystem(VAR CurrentData:SystemData)}
BEGIN
WRITELNC ::: LR $3i33 R : 3 333 H
IF Panic THEN WRITELN(’PANIC occurred, NORMAL shutdown.
ELSE WRITELN(“No panic occurred, ABNORMAL shutdown.’);
WRITELN(:zzszzzssszzssssss ‘)
WITH CurrentData DO BEGIN
WRITE(“Last chosen heating method was: ");
CASE ChosenMethod OF
CollectorToExchanger: WRITE(Solar Collector to Exchanger’);
CollectorToHeatPump : WRITE(’Solar Collector to Heat Pump’)/;
TankToExchanger : WRITE("Tank to Exchanger”);

TankToHeatPump WRITE(‘Tank to Heat Pump”);
HeatedTankToHeatPump: WRITE(’Heated Tank to Heat Pump’);
NoMethod : WRITE("No heat required”);

Figure 7-1. Climate Control Program Listing and Sample Run (Cont’d.)

89

CHAPTER7?

69 65 1 3 END;
71 66 1 2 WRITELN;
72 &7 1 2 WRITELN(Thermostat Setting is °,ThermostatSetting,"C°)’
73 68 1 2 WRITELN(“Inside temperature is “,InsideTemp,’C")}
74 69 1 2 WRITELN(Temperature of collector water is ‘,CollectorWaterTemp, " C")}
75 7 1 2 WRITELN(Temperature of tank water is “,TankWaterTemp,"C")}
76 711 2 WRITELN(Temperature of the heated tank water is “,HeatedTankTemp, C*);
77 72 1 2 WRITELN(Time of day is ‘,Hour, :°,Minute)’
78 73 01 2 WRITELN("Amount of sunlight is ‘,AmountOfSunlight);
79 74 1 2 ENDJ (*with Currentdata*)
81 75 1 1 WRITELNC zz:zszszsrsssatssassssasasssssasssarsssserararzezazae’)y
82 76 1 1 WRITELNS
83 77 11 WRITELN(Goodnight, Irene...”);
84 78 1 1 END
***YARNING, input: "END "
*x*yas repaired to "END ; "
85 78 0 0 L(*#ShutDownSystams)
Summary Information:
PROCEDURE OFFSET CODE SIZE DATA SIZE STACK SIZE
SHUTDOWNSYSTEM 06984 G398+ 9230 0010H 160
OPERATESYSTEM 2440H 0258+ s00C 00104 160
STARTUPSYSTEM 03E2H 0JSEH 943 0010H 160
Total 0a3CH 2603D {000 02 0030H 48D

125 Lines Read.
1 Error Detected.
33% Utilization of Memory.

~RUN PROGRM<cr>

Climate system is now on.

;;;;-;;;-;;;;;;;;;;—;;;;;ng in degrees Celsius:24<cr>

Type the inside temperature reading in Celsius:21<cr>

Type the temperature of the collector water in Celsius:é60<cr>
Type the temperature of the tank water in Celsius:60<cr>

Type the temperature of the heated tank water in Celsius:70<cr>
Type the hour of day, as in 04 or 24:13<cr>

Type the minute of the hour, as in 01 or 59:25<cr>

Type the amount of suntight, any integer will do for now:l<cr>

Thermostat Setting is 24C

Inside temperature is 21C

Temperature of collector water is 60C
Temperature of tank water is 60C
Temperature of the heated tank water is 70¢C
Time of day is 13:25

Amount of sunlight is 1

Figure 7-1. Climate Control Program Listing and Sample Run (Cont’d.)

90

DEBUGGING AND EXECUTING PROGRAMS

The Climate System is now operating.

The time is 13:25

The inside temperature is 21C

The thermostat setting is 24C

Method chosen to heat the building: Solar Collector to Exchanger

Type the thermostat setting in degrees Celsius:24<cr>

Type the inside temperature reading in Celsius:22<cr>

Type the temperature of the collector water in Celsius:10<cr>
Type the temperature of the tank water in Celsius:10<cr>

Type the temperature of the heated tank water in Celsius:10<cr>
Type the hour of day, as in 04 or 24:13<cr>

Type the minute of the hour, as in 01 or 59:30<cr>

Type the amount of sunlight, any integer will do for now:0<cr>

Thermostat Setting is 24C

Inside temperature is 22C

Temperature of collector water is 10C
Temperature of tank water is 10C
Temperature of the heated tank water is 10C
Time of day is 13:30

Amount of suntight is @

The Climate System is now operating.

The time is 13:30

The inside temperature is 22C

The thermostat setting is 24C

Method chosen to heat the building: Solar Collector To Exchanger

Last chosen heating method was: Solar Collector to Exchanger
Thermostat Setting is 24C

Inside temperature is 22C

Temperature of collector water is 10C

Temperature of tank water is 10C

Temperature of the heated tank water is 10C

Time of day is 13:30

Amount of sunlight is 0

Goodnight, Irene...

Figure 7-1. Climate Control Program Listing and Sample Run (Cont’d.)

Obviously this book only introduces DEBUG-86. For a complete description, see the Intellec
Series ill Microcomputer Development System Console Operating Instructions.

91

CHAPTER7

USING ICE-88™, AN IN-CIRCUIT EMULATOR

The ICE-88 emulator consists of three circuit boards, a cable, a buffer box, and software on
disk. The three circuit boards fit inside your Intellec Series il development system, and the
cable and buffer box assembly connects your Series Il system to your prototype hardware. A
forty-pin plug at the end of the cable plugs into your prototype system in place of your pro-
totype’s CPU, allowing the in-circuit emulator hardware to emulate all functions of your pro-
totype’s CPU. If you do not have any prototype hardware, keep the plug’s protector closed to
prevent damage to its pins.

In-circuit emulation shortens your development time in two ways. It provides symbolic debug-
ging capabilities and diagnostic hardware debugging capabilities, and it lets you borrow
resources (like memory) from your Series ll} system until your prototype system is complete.

Your program can be loaded into borrowed memory, prototype memory, or any combination of
the two, and run as if it were resident in the prototype. You can emulate program execution at
real-time speed or in single- or multiple-instruction steps. You can also stop emulation
manually at any time to examine system status, or you can specify breakpoints as you can with
DEBUG-86.

We will debug the PLMDATA module (first shown in Chapter 5) to see if it performs its port
input and interpolations correctly. We added statements (shaded in figure 7-2) to the module
that will execute the procedures. Figure 7-2 shows the listing of the compiled PLMDATA
module.

PL/M~E6 COMPILER PLMDATA PAGE

ISIS-II PL/M-86 H121 CIMPILATIOIN 25 MIDULEZ PLMJATA
OBUECT MOJQULE PLACED IN PLMDZB.GC3J
COMPILER INVOXED 8Y: PLM8% PLMJE3.SRC DEBUE

1 PLMDATA: 20,

2 1 DECLARE START LABEL PUBLIC,

3 1 DECLARE (SEITTING, TEIMPERATURED W3IRDJ
I
INPUTS

THERMOSTATISETTINGSCROMSOIRTS:
Formal paramaters HIGH and LIW receive port numbers as actual parameters.
Input ports HIGH and LOW: Three 3CD digits for the thermostat setting:
Port HIGH, bits 3-0: hundred’s digit
Port LOW, bits 7=4: ten’s digit
Port LW, bits 3-J: unit’s digit
TEMPIDATASEROMSPCRTS :
Formsl paramaters HIGH and LIW receive port numbers as actual parameters,
Input port HIGH: B3inary 83C cutput of thermoccoupler high-order 8 bits

Input port LIW: Binary ADC output of tnermocouple, low-order 8 bits

QUTPYTS

THERMOSTATSSETTINGS=ROMEPORTS: Return WORD with setting in Celsius
TEMPSDATASFRIMSPORTS: Return WIRD with temperature in Celsius

*/

Figure 7-2. Listing of the Modified PLMDATA Module

92

DEBUGGING AND EXECUTING PROGRAMS

25
26

27

1 THERMOSTATSSETTINGSFROMSPIRTS ¢
PROCEDURE (AIGH, LOW) WORD;

2 QECLARE (HIGH, LOW) WORD}

2 DECLARE (INSPORTSHIGH, INSPIRTSLCW) BYTE;
2 DECLARE THERMOSSETTING wWCR3S

2 DECLARE (HUNDREDS, TENS, UNITS) BYTE,

2 INSPORTSHIGH = INPUT(HIGH);

2 INSPORTSLIW = INPUT(LIW)/

2 HUNJREDS = INSPIRTSHIGH AND 0000111187

2 TENS = SHR{INSPCRTSLCW, 4);

2 UNITS = INSPDRTSLOW aND 00020111183/

2 THERMISSETTING = UNITS + 10#TENS 4 100#HUNDREDS:
2 RETURN THERMOSSETTING,

2 END THERMOSTATSSETTINGSFRIMSPIORTS,

/* Another typed procedure to return temperature data, whicn
uses the INTERPOLATE typed procedure. */

/= INTERPOLATZ is a typed procedure that receives thermocouple
voltage and returns tzmperature in Celsius using an
interpolation routine */

1 INTERPOLATE:

PROCEDURE(VILTSIN) WORD;
2 DECLARE VOLTS(x) WORD DATA(J,51,102,154,206,258,365,472);
2 DECLARE TSCEL(=) WIRD DATA(0,103,20,30,40,50,70,90);
2 DECLARE (I, VDLTSIN, NUMERATOR) WIRD;
2 I=0
2 DO WHILE VOLTSIN > VOLTS(ID);
3 I =1+
3 END/

f* Shift for rounding, and return Celsius temperature */

2 NUMERATOR = SHLC(VOLTSIN=VILTS(I=T))*(TSCEL(I)=TSCEL(I=1)), 1)
2 RETURN TSCEL(I=1) + SHR(NUMERATOR/(VOLTS(I)=VOLTS(I=1))+1, 1);
2 END INTERPOLATE;
1 TEMPSDATASFRIMIPCRTS:

PRIOCEDURZ(HIGH,LOW) WORD?
2 DECLARE (HIGH,LOW) WORD;
2 DECLARE INSPORTSHIGH WORD, /% ADDRESS in McCracken®s book */
2 OECLARE INSPORTSLIW BYTE,
2 DECLARE (THERMICCUPLESJQUTPUT, TEMPERATURE) WIRD,
2 INSPORTSHIGH = INPUT(HIGH),
2 INSPORTSLIW = INPUT(LOW):
2 THERMICQUPLESJQUTPUT = SHLCINSPIRTSHIGH, 3) OR INSPCRTSLIW,
2 TEMPERATURE = INTERPOLATS(THERMOCJUPLESDQUTPUT)
2 RETURN TEMPERATUREZ;
2 END TEMPIDATASFROMSPORTSS
1 STA&RT: 007
2 SETTING = THEZRMISTATSSETTINGSFRIMSPORTS(2200,1000)/
2 TEMPERATURE = TZMPSOATABZFRIMSPORTS(200,100),
2 END START,
1 END PLMDATA;

MODULE INFORMATION:

CJDE AREA SIZE =
CONSTANT AREA SIZE
VARIABLE AREA SIZ
MAXIMUM STACK SIZE
101 LINES READ

0 PROGRAM ERRIR(S)

312¢4
5520#
30164
0012H

END OF PL/M=86 COMPILATICN

3332
320
220
180

Figure 7-2. Listing of the Modified PLMDATA Module (Cont’d.)

93

CHAPTER7

94

We also have to link the LARGE.LIB run-time library to this module, and locate the final
module:

-RUN LINKB6 :F1:PLMDAT.O0BJ, :F1:LARGE.LIB TO :F1:PLMDAT.LNK<cr>

-RUN LOC86 :F1:PLMDAT.LNK RESERVE(200H TO 77FFH) TO :F1:PLMDAT.86<cr>

To use the ICE-88 emulator, copy the ICE88 program from its disk ohto a disk in your system
(for example, the system disk in drive 0), and type the following command:

-ICE88<cr>

You can now use the ICE-88 LOAD command to load the module and its symbols:

*LOAD :F1:PLMDAT RA<er>
*SYMBOLS<cr>

The SYMBOLS command displays the entire symbol table. We can start emulation with the GO
command, specifying both a starting location and a breakpoint. We can’use the .START label
as a starting location, and specify line #8 as a breakpoint:

*GQ FROM _START TILL #8 EXECUTED<cr>
EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0781:0040H

At this point, we want to change the contents of the 8088 ports so that the
THERMOSTATSSETTING$SFROMS$PORTS procedure can pick them up:

*PORT 2000=0 ;Hundred's digit of BCD thermostat setting.<cr>
*PQORT 1000=24 ;Tens and units of BCD setting.<zr>

*60 FROM CS:IP TILL .SETTING WRITTEN<cr>

EMULATION BEGUN

EMULATION TERMINATED, CS:1P=0781:002CH

Note that a semicolon and comment is allowed on an ICE-88 command line. We assigned 24H to
port 1000 to obtain a 2 as the tens digit and a 4 as the units digit (to represent a thermostat
setting of 24 degrees Celsius). Then we resumed emulation from the program counter (PC)
until a value was obtained for the .SETTING variable. At this point, we can check the contents
of .SETTING:

*WORD ,SETTING#<cr>
WOR 0794:0024H = 0018H
18 hexadecimal is 24 in decimal.

DEBUGGING AND EXECUTING PROGRAMS

Since .SETTING is correct, we can set the contents of the other two ports and continue
emulation:

*PORT 200=0 ;High order 8 bits are zero.<cr>

*PORT 100=66 ;Low order equal 66H, or 102 in decimal.<cr>
*G0 FROM CS:IP TILL #43 EXECUTED<cr>

EMULATION BEGUN

EMULATION TERMINATED, CS:IP=0781:003BH
*WORD .TEMPERATURE<cr>
WOR 0794:0026H = 0014H

*
14 hexadecimal is 20 in decimal.

We have a temperature reading of 20 degrees Celsius.

Obviously this session only introduces the ICE-88 emulator. The /CE-88 In-Circuit Emulator
Operating Instructions for ISIS-Il Users contains both tutorial and reference information on the
ICE-88 emulator. The similarities between DEBUG-86 and in-circuit emulators enhance their
usefulness in software development efforts, since both provide symbolic debugging. In-circuit
emulation also lets you emulate all of your prototype CPU functions, even though your pro-
totype CPU is not installed, and even if your prototype has not been built. It is a powerful
debugging and diagnostic tool for both the hardware and software of your final product.

EXECUTION ENVIRONMENTS

The Intellec Series lll system provides an 8086 execution environment and operating system
support—the support your program needs to be able to access devices and files. When you
link the run-time support libraries to your Pascal-86 program, you are providing the software
your program needs to “‘talk’’ to the Series Ill operating system.

You can also run Pascal-86 programs in other systems, or in dedicated application
environments, as long as you provide the run-time support software. For example, you could
transfer your program to RAM on an SDK-86 (System Design Kit with an 8086), or to RAM on an
iSBC 86/12A Single Board Computer system, by first using the OH86 utility described in the
iAPX 86,88 Family Utilities User’s Guide for 8086-Based Development Systems to convert the
program to hexadecimal object format, and then using an appropriate tool to load the program
into your execution board (the ICE-86 In-Circuit Emulator, the SDK-C86 Software and Cable
Interface, or the iISBC 957 Interface and Execution Package).

You could also transfer your program to ROM on an SDK-86 kit, iSBC Single Board Computer
system, or your own custom-designed hardware, by using the Universal PROM Programmer
(UPP) with its Universal PROM Mapper (UPM) software.

Figure 7-3 shows possible execution paths for Pascal-86 programs.

The Series lll operating system has a standard set of primitives (service routines) that any pro-
gram can use. Intel supplies run-time support libraries that act as an interface between your
Pascal-86 program and the Series lll system. By replacing this interface with your own custom-
designed interface, you can use the same Pascal-86 programs on other non-Intel systems.
With each future Intel system, Intel will supply the appropriate run-time interface so that your
present programs will also run in future Intel systems.

95

CHAPTER7

96

LOCATED
OBJECT
CODE
, i
ICE-86™
OH86 UPP/UPM OR
ICE-88™
¥ Y / i y
INTELLEC" SERIES Il} iSBC 86/12A™ SDK-86 SYSTEM CUSTOM-DESIGNED
DEVELOPMENT SYSTEM SYSTEM DESIGN KIT SYSTEM
Figure 7-3. Possible Execution Paths for Pascal-86 Programs 121632-8

A system library is also supplied for PL/M and assembly language programs; this library (or
system. By supplying your own interface, you can also use these programs on other systems.

The Series Il system was designed in this modular fashion to provide operating system sup-
port without necessarily binding programs to that particular system. It was designed to be
used as part of your application (as the operating environment), but it was also designed to be
useful for the development of applications that do not need full-blown operating system sup-
port. With several layers of interfacing between the system and your program, you can choose
exactly how much system you want in your final application, and you can preserve your soft-
ware investment with an eye to the future.

iy
—

12.

13.

14.

BIBLIOGRAPHY

Brooks, Frederick P., The Mythical Man-Month: Essays on Software Engineering;
Addison-Wesley Pub. Co., Phillipines, 1975.

Brown, P.J., “Programming and Documenting Software Projects,”” Computing Surveys,
Dec. 1974, pp. 213-220.

Dahl, O. J., Dijkstra, E. W., and Hoare, C.A.R., Structured Programming; Academic Press,
New York, 1972.

Dijkstra, E. W., “The Humble Programmer,’’ 1972 Turing Award Lecture, Communications
of the ACM; Vol. 15, No. 10, Oct. 1972.

Fioyd, Robert W., “The Paradigms of Programming,” 1978 Turing Award Lecture,
Communications of the ACM; Vol. 22, No. 8, Aug. 1979.

Hueras, J. F., Ledgard, H. F., and Nagin, P. A., Pascal With Style (Programming Proverbs
Series); Hayden Book Co., Rochelie Park, NJ., 1979.

Jensen, Kathleen, and Wirth, Nicklaus, PASCAL User Manual and Report;
Springer-Verlag, New York, Heidelberg, and Berlin, 1975.

Kernighan and Plauger, The Elements of Programming Style (2nd Edition); Bell Telephone
Labs, Inc., Murray Hill, NJ, and McGraw-Hill, New York, 1978.

Kernighan and Plauger, Software Tools; Bell Telephone Labs, Inc., New Jersey, Yourdon
inc., New York, and Addison-Wesley, Cambridge MA, 1976.

Ledgard, Henry F., Programming Proverbs; Hayden Book Co., Rochelle Park, NJ., 1975.

McCracken, D. D., A Guide to Intellec Microcomputer Development Systems; Intel Corp.,
1978 (No. 9800558B).

McCracken, D. D., A Guide to PL/M Programming For Microcomputer Applications;
Addison-Wesley Pub. Co., Menlo Park, CA., 1978.

Morse, Stephen P., The 8086 Primer: An Introduction to Its Architecture, System Design,
and Programming; Hayden Book Co., Rochelle Park, New Jersey, 1980.

Parnas, D. L., “On the Criteria To Be Used in Decomposing Systems into Modules,”
Communications of the ACM; Vol. 15, No. 12, Dec. 1972.

Polya, G., How To Solve It (2nd Ed.); Princeton Univ. Press and Doubleday Anchor Books,
Doubleday & Company, inc., Garden City, NY, 1957.

Strunk, William, Jr., and White, E. B., The Elements of Style (3rd Ed.); Macmillan, New
York, 1979.

Weinberg, Gerald M., PL/I Programming Primer; McGraw-Hill, Inc., New York, 1966.

Wirth, Nicklaus, “‘Program Development by Stepwise Refinement,”” Communications of
the ACM;Vol.14, No. 4, April 1971.

Wirth, Nicklaus, Systematic Programming: An Introduction; Prentice-Hall, Englewood
Cliffs, NJ, 1973.

97

Within this index, f or ff after a page number
means and the following page (or pages).

“&’' continuation character, 23ff

“< > (angle brackets) in CREDIT, 35ff

#>"" (angle) prompt, 23f

“<er>”’, See also RETURN key, 10, 35

«*» (asterisk) in CREDIT command area, 29f

“* (asterisk) in pathname, 19ff

“@" in CREDIT, 30

“—"" See also prompt, 10,13, 23

“1" in CREDIT, 35ff

“(* and “**)”’ comment symbols, 42

“i*” and “‘* /" comment symbols, 64

%" (percent) symbols for parameters, 25

“?M” in CREDIT, 37

+” (semicolon) for comments, 24f

8080/8085 processor family, 1, 22

8085 execution environment, Preface, 22ff,
25

8088 execution environment, Preface, 71, 18§,
22ff, 25, 55, 68, 78f

8086/8087/8088 macro assembler, 13ff, 48,
63, 63ff

8086/8088 Utilities, 13ff

8087 processor, 78

8087.LIB (Pascal-86 run-time library), 78

8087 software emulator, 78

86 extension, 16, 22ff, 25, 55, 79

8088 processor, 61

87NULL.LIB (Pascal-86 run-time library), 77f

A switch with FORMAT command, 21
absolute modules, 79

actual parameter, 24

ADD command (LIB86), 76

add text mode (CREDIT), 31f

addresses, See physical memory address
address, reference to, 48, 75ff

Aesop, 81

algorithm for climate control system, 42, 63
AND operation, PL/M-86, 64

angle brackets (CREDIT), 35ff

angle (>) prompt, 23f

application, climate control, 2ff

arithmetic, real, 6, 78

array, PL/M-86, 68

assembler, 8086/8087/8088, 13ff, 63, 68ff

INDEX

assembly language, 6, 25f, 48, 63, 68ff, 79, 82
asterisk in CREDIT command area, 29f
asterisk in pathname, 19ff

ATTRIB command, 18, 21

attributes, file, 11f, 15f, 18

backup of text file, 16, 19, 38f

BAK extension, 16, 19, 38f

base address, segment, 83

BCD digits, 64ff

binary, 83f

binary-coded decimal digits (BCD), 64ff
BIND control (LINK86), 78f, 81

binding modules, 75ff, 78f

bit-shift operations, PL/M-86, 64, 68
black printing, 10

block diagram of climate system, 3
blocks, file 11, 28, 30

blue printing, 10

BOOLEAN command (DEBUG-86), 82ff
BOOLEAN type, 46, 82ff

breakpoints, debugging, 92

carriage return, See RETURN key
Celsius degrees, 5, 24, 63ff, 68, 94f
character pointer (CREDIT), 32ff
choosing software tools, 5f
climate control application, 2ff, 41ff, 44f, 49ff,
571f, 63, 85ff, 92f
CNTL-A command (CREDIT), 31
CNTL-N (CREDIT), 32, 35
CNTL-P (CREDIT), 32, 35
CNTL-V (CREDIT), 28ff, 32ff
CNTL-Z (CREDIT), 30
:CO: (console output), 39
CODE control, PL/M-86, 68, 70ff
collector water, solar, 42, 45f
command area (CREDIT), 28f
command iteration, 27, 35ff
command mode (CREDIT), 32f
command sequence, 25
command sequence definition file, 24f
commands, executing, 22ff, 25
comment symbols — Pascal, 42
comment symbols — PL/M, 64
comments, semicolon, 24f
compilations, separate, 41

99

INDEX

100

compiler, See also Pascal-86 or PL/M-86, 16,
55f

compiler controls, Pascal-86, 55f

compiler controls, PL/M-86, 68

console output, 39

continuation character (&), 23ff

Control key, See CNTL

Control lines, source file, 51, 56

Controls, Pascal-86, 55f

convert voltage to temperature, 5, 63ff, 68

cooling methods, 3ff

COPY command, 19ff

copying files to disks and devices, 19ff

CP, See character pointer

CREATE command (L1B86), 76

creating a text file, 28f

CREDIT text editor, 2, 11, 13, 16, 20, 27ff, 30ff,
33ff, 36ff, 42

CS extension, 25

CS register (code segment), 83f

CSD extension, 24f

cursor (editing text), 28ff

cursor movement keys, 32f

dash, See prompt
DATA initialization, PL/M-86, 68
data passing between modules, 7, 48f
data type, REAL (Pascal-86), 78
data types, Pascal-86, 45f, 48f
data types, PL/M-86, 64, 66
DEBUG-86, 7, 55f, 75, 78, 81ff, 84ff
DEBUG control, Pascal-86, 55f, 82
debuggers, 81
debugging, 2ff, 5ff, 55f, 75, 78, 81ff, 84ff
default directory (:FO0:); 19ff
default settings, compiler controls, 55
DEFINE command (DEBUG-86), 83
defining software, 3ff
degrees in Celsius, 5
DELETE command, 18ff
deleting files, 18ff
Determine Method procedure, 471, 51, 86
device names, 20f
devices, copying files to, 19ff
Dijkstra, E.W., 41
DIR command, 10ff, 16f, 21
directory, default (:F0:), 19ff
directory listing, 10ff, 17
directory specifier, See pathname
disassembled display (DEBUG-86), 84
disk blocks, See file blocks
disks, See formatting disks
disks, copying files to, 19ff
displaying text file, 39
drive 0, See system disk,

See also RESET key

E8087 emulator, 78

EB087.LIB (Pascal-86 run-time library), 78

editor, text (CREDIT), 2, 18, 27ff, 30ff, 33ff,
36ff, 42

emulation, in-circuit (ICE), 11, 5ff, 8, 79, 92ff
emulator, 8087, 78
end of text, 28
ending text editing session, 38f
English, 5f, 27, 41
environment, execution, 81, 95f
Series Ill operating, 77ff
EQ (quit) command (CREDIT), 38f
ESC (Escape) key, 29
EVALUATE command, 83f
EX command (CREDIT), 28, 30, 38f
exchanger, See climate control
exclamation point in CREDIT, 35ff
executable programs, 75f
executing commands and programs, 22ff,
25, 81if
execution environment, 8085, Preface, 22ff,
25,81,95
8086, Preface, 8, 16, 22ff, 25, 55, 68, 78f, 81,
95
execution, interactive mode, 23ff
non-interactive mode, 24f
paths for Pascal-86 programs,
95f
execution vehicle, 81
EXIT command (L1B86), 22FF, 25, 76
extension, filename, 11, 16, 22, 25
extensions to standard Pascal, Intel, 55
external procedures, 76f
external references, 75

F attribute, 12, 15, 18, 21
F (Find) command (CREDIT), 34
:FO0: (default directory), 19ff
file attributes, 11f, 15f,18
blocks, 11, 28, 30
command sequence definition, 24f
copying to disks and devices, 19ff
deleting, 18ff
format (F) attribute, 12,15, 18, 21
input/output procedures (Pascal-86), 78
invisible (I) attribute, 12, 18
length, 11
library, 76f
listing, 16, 42, 55ff, 58ff, 68, 71ff
macro, 16 .
object, See object module
overlay, 16
renaming, 18ff
source, 27, 55f, 68
system(s) attribute, 12, 14f, 18, 21
text, 27ff
text backup, 16, 19, 38f
update with COPY command, 20
write-protected (w attribute), 11f, 18
filename, 10ff, 15ff, 18ff, 211f, 24f
filename matching, 19ff
files, manipulate, 10, 15
naming conventions, 15f
final product, using, 8
finding text, 33f

fiexibie disks, See also formatting disks, 14f
FOR, used with DIR command, 17f

formal parameters, 25

FORMAT command, 13ff, 18, 21

format files, 12, 15,18, 21

formatting disks, 10, 13ff, 16ff, 20f
FORTRAN-86, 5f

FORTRAN language, 6, 27, 63f

FROM with FORMAT command, 21

GETDATA module, 4ff, 7, 44f, 50, 55ff, 58ff,
66, 77, 871f

GetData procedure, 44, 46f, 50, 52f, 66, 87

glitch, hidden, 81

GO command (DEBUG-86), 83f

GO command (ICE-88), 94

Goethe, von, 75

Grove, Andrew S.,1,9

hard disk subsystem, 12ff

hardware development process, 1ff, 7f

HD COPY command, 21

heat pump, See climate contro!

heating methods, 3ff, 42, 45f

hexadecimal, 83f

hexadecimal object format, 8, 95

hidden glitch, 81

hiding information, 46f

high-level languages, 2ff, 5f, 41, 55, 63f, 69f,
75,79, 82

HOME key (CREDIT), 28f, 32f

:HP: (paper tape punch), 20

iAPX 86, 88 processor family, 1, 7f, 22

iCE-86, if, 7f, 79, 92if, 95

ICE-88, 1f, 7f, 79, 92ff, 95

IDISK command, 15, 18, 21

in-circuit emulation (ICE), 1f, 51, 8, 79, 92ff

INCLUDE control, Pascal-86, 51, 56

information-hiding, 46f

input/output procedures (Pascal-86), 61, 78

inserting text, 28f, 31f

interactive 8086 mode, 23

interactive execution, 23ff

Interface, iSBC 957, 8, 95
Software and Cable (SDK-C86), 8, 95

interface specification, Pascal-86, 47, 49f, 51

INTERPOLATE procedure, 66ff, 93

invisible file attribute, 12,18

Irene, goodnight, 54, 80, 1

IP {(instruction pointer) register, 83f

iSBC 86/12A system, 8, 95f

iSBC 957 Interface and Execution Package,
8, 95¢f

iISBC (Single Board Computer) System, 8,
95f

ISIS-li operating system, See also operating
the Series lll system, 10ff, 13ff, 16ff, 23

INDEX

J (jump) command (CREDIT), 32ff

keyboard, 29

L (Line) command (CREDIT), 37
language diversity, 63
languages, high-level, 2ff, 5f, 41, 55, 63f, 69f,
75,79, 82
LARGE control, PL/M-86, 68
LARGE.LIB (run-time library), 77f, 94
Ledbetter, Huddie (‘“Goodnight irene’’), 54,
80, 91
length, file, 11
LIB extension, 16
L1B86.86 utility, 22, 75f
librarian utility, 22, 75f
libraries, run-time, 14f, 23ff, 75ff, 78f, 94
library file, 76f
management, 2, 5ff, 16, 76
module, 16, 75ff, 78f
of routines, 2ff, 5ff, 13, 16, 75ff, 78f
line feed character, 29
line printer, 20, 39
line terminator (CREDIT), 29
LINK®86.86 Utility, 23f, 75ff, 78f, 81
linkage libraries, 13ff, 16, 23ff, 75ff
linker utility, 16, 75ff, 78f
linking modules, 2ff, 5f, 16, 75ff, 78f
LIST command (L.IB86), 76
listing of PLMDATA module, 71ff, 92f
listings, program, 16, 42, 55ff, 58ff, 68, 71ff,
85ff, 92f
of test modules, 57if, 85ff, 92f
LNK extension, 16, 79
LOAD command (DEBUG-86), 82f
LOAD command {ICE-88), 94
loader, RUN, 78f
loaders, ICE (in-circuit emulation), 79, 95
load-time locatable (LTL) module, 78f
LOC 86.86 utility, 16, 75ff, 79
locatable program, 77ff
locater utility, 16, 75ff, 78f
locating modules, 2ff, 5f, 16, 75ff, 78f
:LP: (line printer), 20, 39
LST extension, 16
LTL module (load-time locatable), 78f

M (Macro definition) command (CREDIT), 36f
MAC extension, 16
machine code, 69f
macro assembler, 8086/8087/8088, 13ff, 48,
63, 68ff
macro, assembly language, 69f
CREDIT, 36f
definitions, macro assembler, 69f
file, 16
processor language, 69f

101

INDEX

102

MAIN module, 4tf, 7, 41ff, 46f, 49f, 55ff, 58ff,
63, 771, 85ff
main program (climate control system), 43f,
46f, 49, 511f, 63, 77, 85ff
MainControl (main module), 43f, 47, 49§, 51f,
63, 77, 82f, 85ff
matching filenames, 19ff
memory addresses, See also physical
memory
addresses, 7, 75ff, 78f
methods, heating and cooling, 3ff, 42, 45f
MF command (CREDIT), 37
modular programming, 6ff, 41f, 461, 49, 63,
76f
modular structure, See a/so modular
programming, 77
module, absolute, 79
concept of, 5FF, 41, 46f, 49
heading, Pascal-86, 45, 49f
LTL (load-time locatable), 78f
names, 82f
object, See object module
subordinate, 41,77
modules, binding, 75ff, 78f
program, 2ff, 6ff, 16, 41f, 44f, 46f, 491, 63,
76ff, 85ff, 92f
monitor, 9f
moving around in text file, 32ff

naming conventions for files, 15f
Nassi-Schneiderman chart, 4

NDP (8087), 78

NOEXTENSIONS control, Pascal-86, 55
non-interactive execution mode, 24f
NOPRINT control, Pascal-86, 55
numeric data processor (8087), 78

object format, hexadecimal, 8, 95

object module also called object file, 18, 55f,
68, 75f

OBJ extension, 16, 55

octal, 83f

offset value, base address, 83

OH86 utility, 8,95

Operate System procedure, 44, 46ff, 50, 52ff,
83f, 89

operating environment, Series lll, 77ff

operating system procedures, 25, 78, 95
Series lll, See also operating the Series Il

system, 79, 95

summary of, 25

operating the Series Il system, 9ff, 12ff, 15ff,
184, 21, 24f, 78

OPERATION module, 4ff, 7, 44, 50, 55ff, 58ff,
77, 82f, 88ftf

operation of climate system, 3ff, 44, 46f

OR operation, PL/M-86, 64, 68

output disk or device, 19ff

overlay file, 16

OV0 extension, 16

P (switch), used with COPY, 15
P86RNx.LIB (Pascal-86 run-time libraries),
77t
panic condition in climate system, 42, 44
paper tape punch device, 20
parameter, actual, 24
parameter passing between modules, 7, 48
parameters, formal and actual, 25
parse phase, Pascal-86 compiler, 56
PASCB86.86 Compiler, 23f, 55f
Pascal language, 5ff, 27, 39, 411, 451, 48f, 55,
63f, 65f
record, 41, 48
Pascal-86 Compiler and Language, 5f, 14, 23,
25, 41ff, 45, 48f, 551, 63f, 66, 68f, 95f
data types, 45f, 48f
run-time libraries, 77ff
pass data by reference, 7, 48f
by value, 7, 48f
pathname matching, 19ff
pathnames, 15ff, 18ff, 21ff, 24f
percent symbols for parameters, 25
physical memory address, 7, 75ff, 78f, 83ff
Pidgin Pascal, 6, 27, 39f
PL/M-86 Compiler and Language, 5f, 14, 48,
63ff, 66ff, 69ff
data types, 64, 66
PLM86.86 Compiler, 68
PL/M language, 8, 25f, 45, 63ff, 66, 691, 79
PLMDATA module, 68, 71ff, 92f
pointer, character, 32ff
ports, input/output, 49, 61, 64ff
primitives, Series lll operating system, 70,
78,95
PRINT control, Pascal-86, 55
printing, blue or black, 10
printing text file, 39
PRIVATE definitions, Pascal-86, 49f
procedure, typed (PL/M), 64
procedures, built-in (Pascal-86), 76f
external, 76f
file input/output (Pascal-86), 78
operating system, 25
processor, 8080/8085, 1ff, 7, 61
iAPX 86, 88 (8086 and 8088), 1ff, 7, 61
numeric data (8087), 78
product, final, 8
program, executable, 75f
locatable, 77
listings, 16, 42, 55ff, 58ff, 68, 71ff
main (climate control system), 43f, 46f, 49,
51ff
modules, 2ff, 6ff, 16, 41f, 441, 46f, 49f, 63,
76ff
source statements, See also source file,
55, 85
programmable read-only memory, 2, 8
programming the system, 9, 70
programs, executing, 22ff, 25
PROGRM.86 (test version of application),
771, 791, 82ff, 90f

PROM, See programmable read-oniy
memory

prompt, dash (—), 10, 13, 23

prototype, hardware, 7f, 48f, 61, 92

PUBLIC definitions, Pascal-86, 49f

RAM, See random access memory
random access memory, 8, 95
READLN procedure (Pascal-86),-61, 76f
read-only memory (ROM), 8, 81, 95
real arithmetic, 6, 78
REAL data type (Pascal-86), 78
record, Pascal, 41, 48
recursive, See self-reference
reference, pass data by, 7, 48f

to address, 48, 75ff
references, external, 75ff
RENAME command, 18ff
renaming files, 18ff
RESERVE control (LOC86), 79
RESET key, 9f, 13f
RETURN key, 10, 12ff, 15, 20f, 28f, 35
ROM, See read-only memory
RPT (Repeat) key, 29
RUBOUT key, 29
RUN command, 14, 22ff, 25, 68, 75ff, 781, 81
run-time libraries, 14f, 23ff, 61, 70, 75ff, 78f,

94f
run-time system, See a/so run-time
libraries, 76ff"

S attribute, 12, 14f, 18, 21

S (Substitute) command (CREDIT), 34f

screen mode (CREDIT), 32f

scrolling text, 32f

SDK-86, 8, 95

SDK-88, 8, 95

SDK-C86 Software and Cable Interface, 8,
b 1o

segment base, 83

self-reference, See recursive

semicolon for comments, 24f, 94

separate compilations, See also modular
programming, 41

Series Il monitor, 9f
Series |l system, Preface

service routines, operating system, 70, 78,
95

shift operations, PL/M-86, 64, 68

SHL (shift teft) operation, PL/M-86, 64, 68

SHR (shift right) operation, PL/M-86, 64, 68

ShutDownSystem procedure, 44, 46f, 50, 54,
89f

Single Board Computer (iSBC) system, 8

size control, object module, 68

Software and Cable Interface (SDK-C86), 8,
95

Software definition, 3ff, 30f

Software deveiopment process, 1ff

Solar coliector, 2ff, 42, 45f
Source disk, 15, 19ff
source file or program, 27, 55f, 68
SQ (Substitute after Query) command
(CREDIT), 34f
SRC extension, 16
StartUpSystem procedure, 44, 46f, 50, 53, 89
STEP command (DEBUG-86), 84
stepwise refinement, 2ff
StoreData procedure, 45f, 50, 53, 87f
Strachey, Christopher, 63
string, 34f
structure, PL/M-86, 48
of software, 4ff
SUBMIT command, 24f
subordinate modules, 41,77
substituting text, 33f
summary of operating system, 25
switch used with DIR, 12, 17
SYM keyword (DEBUG-86), 83
symbol table (DEBUG-86), 82ff
symbolic debugging, 5ff, 82ff
symbols, 7, 82ff
SYMBOLS command (DEBUG-86), 82f
SYMBOLS command (ICE-88), 94
System Design Kits, 8, 95f
system climate control, 2ff, 41ff, 44f, 49ff,
55ff, 58ff, 63, 85ff, 92f
disk, 9ff, 12ff, 15ff, 21
files, 11ff, 14,18, 21
operation, Series lll, See operating the
Series lll system
run-time, See also run-time libraries, 76ff
turning on, 9f

tags (CREDIT), 32f
tank, water (climate system application), 42,

45¢
TD (tag delete) command (CREDIT), 32
TE (tag for end}, used in CREDIT, 32f
teletype output, 39
TEMPSDATASFROMS$PORTS, 66ff, 92f
temperature conversion program, 24
temperature data, 3f, 49, 63ff, 68
terminator, line (CREDIT), 29
text area (CREDIT), 28f

creating and inserting, 28f, 31

editing, ending session, 38f

editor (CREDIT), 2, 16, 27ff, 30ff, 33ff, 36ff,

42

file, 27ff

file backup, 16, 19, 38f

file, displaying, 39

file, printing, 39

finding, 33f

scrolling, 32f

substituting, 33f
thermocouple voltage, 5, 61ff, 68

THERMOSTATS$SETTINGSFROM$PORTS

procedure, 64ff, 92ff

INDEX

103

INDEX

104

:TO: (teletype output), 39

tools, software, 4ff, 7ff

top-down design, 2ff, 41

TPWR (typewriter) key, 29

TS (tag set) command (CREDIT), 32
TT (tag for top), used in CREDIT, 32f
turning on your system, 9f

TXT extension, 16

type, data, 45f, 64, 66

TYPE definition, Pascal, 46, 48
type, REAL (Pascal-86), 78

typed procedure, PL/M, 64
typeface, blue or black, 10

Universal PROM Mapper (UPM), 8, 95
Universal PROM programmer (UPP), 2, 8, 95
uparrow (1), 29

update files, 20

UPM, See universal PROM mapper
UPP, See universal PROM programmer
using the system, 9

using your final product, 8

utilities, Series Il 2ff, 6ff, 13, 75ff, 78f

value, pass data by, 7, 48f

VAR definition, Pascal, 46, 49
vehicle, execution, 81

video display (CREDIT), 28
voltage, thermocouple, 5, 61ff, 68

W attribute, 11f,18

wild card filename, See also filename
matching, 21

WRITELN procedure (Pascal-86), 61, 76f

The Intellec® Series il Publications Library

AGUIDETO THE INTELLEC SERIES H!

The 8086 Family User's Manual

5800722

The 8086 Familg User’s Manual
Numerics Supplement

121586

Microsystem D

1the iAPX 86,88 Family Microprocessors

INTELLEC® SERIES lll
MICROCOMPUTER
DEVELOPMENT SYSTEM
PRODUCT OVERVIEW

121575

AGUIDETO
INTELLEG' SERIES Il
MICROCOMPUTER

Using the
Inteliec® Series 11l System
Hardware and Software

DEVELOPMENT SYSTEMS

121632-001

Hardware Installation
and Checkout

and Systems Programming

Systems Operation

INTELLEC® SERIES Il
MICROCOMPUTER

INTELLEC® SERIES Ill
MPUTER

Programming for
iAPX 86,88 Applications

iAPX 86, 88 FAMILY UTILITIES
USER'S GUIDE
for 8086-Based Development Systems

121616

iAPX 86,88 FAMILY
UTILITIES POCKET REFERENCE
for 8086-Based Development Systems

121669

8086/8087/3088 MACRO

ICROCOMPUTE|
DEVELOPMENT SYSTEM DEVELOPMENT SYSTEM
INSTALLATION AND CHECKOUT NSOLE OPERATING
MANUAL INSTRUCTIONS
121612 121609
MODEL 556 INTELLEC® SERIES lli
RESIDENT PROCESSOR MICROCOMPUTER
1 DEVELOPMENT SYSTEM
INSTALLATION MANUAL POCKET REFERENCE
121663 121610
T T
INTELLEC® SERIES HI sanes |
- Assembly Languages
MICROCOMPUTER CRT-BASEDTEXT EDITOR
DEVELOPMENT SYSTEM - !
SCHEMATIC DRAWINGS USER'S GUIDE 8086/8087/8085 MACRO
ASSEMBLY LANGUAGE
121802 9800302 REFERENCE MANUAL
for 086-Based Development Systems
‘ 121827
r— — [1
) MODEL 740) CREDIT™
HARD DISK SUBSYSTEM CRIT-BASED TEXT EDITOR
OPERATION AND CHECKOUT l POCKET REFERENCE

9800343

L——— 1

LEGEND

MANUAL SUPPLIED
WITH SERIES HlI

9800903

ASSEMBLER OPERATING
INSTRUCTIONS

for 8086-Based Development Systems

[121628
INTELLEC® SERIES it
MICROCOMPUTER
PROGRAMMER'S HEFERENCE
8086/8087/8088 MACRO
MANUAL ASSEMBLER
POCKET REFERENCE

121618

MANUAL SUPPLIED WITH

OPTIONAL PACKAGE

for 4D86-Based Development Systems

121674

MCS-86™ ASSEMBLY
LANGUAGE CONVERTER
OPERATING INSTRUCTIONS
FOR ISIS-Il USERS
9800642
|
|

r—— 1

8089 MACRO ASSEMBLER
l USER'S GUIDE l

9800938

L — 4

r—— =1

I 8089 MACRO ASSEMBLER |

POCKET REFERENCE
9800936

L (- =

_____ 7 usin

| High-Level Languages

r—— =71

I PASCAL-86 USER'S GUIDE I

121539

L ———

r— 71

PASCAL-86 POCKET
I REFERENCE I
121541

L ————d

r—— 71

PL/M-86 USER’S GUIDE
| tors08s-8ased Developmem Systems |
]

Lo
|

r———=1

PL/M-86 POCKET REFERENCE
I for 8086-Based Development Systems |

121862

L —— — -

T ice™ in-Circuit Emulation
| foriAPX 86,88 Applications

ICE-86™ IN-CIRCUIT EMULATOR
OPERATING INSTRUCTIONS
I FOR ISIS-If USERS I

9800714

L——— -1

1
r— —_— — |
I ICE-86™ POCKET REFERENCE l
9800838

L — — — -

ICE-88™ IN-CIRCUIT EMULATOR
OPERATING INSTRUCTIONS
I FOR ISIS-Il USERS l

9800948

r———71

I 1CE-88™ POCKET REFERENCE I
9800950

L — 1

— e | — —
RABF-80 REAL-TIME
BREAKPOINT FACILITY
OPERATINGIINSL%%CTIONS I
IN-CIRCUIT EMULATOR USERS

1 9801018 i
L

—_— s e

Programming for
MCS-80/85™ Applications

MCS-80/85™ UTILITIES
USER’S GUIDE
1o

8080/8085-Based
Development Systems

121617

8080/8085
FLOATING-POINT
ARITHMETIC LIBRARY
USER’S MANUAL
9800452

121632-9

The Intellec Series Il Publications Library

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106

