
intJ

ic-a6 COMPILER USER'S GUIDE

Copyright © 1983, 1984 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 122085-002

iC-S6 COMPILER USER'S GUIDE

Order Number: 122085-002

Copyright © 1983, 1984 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Ii1tel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli­
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify Intel
products:

BITBUS im iRMX Plug-A-Bubble
COMMputer iMMX iSBC PROMPT
CREDIT Insite iSBX Promware
Data Pipeline intel iSDM QueX
Genius intelBOS iSXM QUEST

Intelevision Library Manager Ripplemode
l>.
I inteligent Identifier MCS RMX/80
I2ICE inteligent Programming Megachassis RUPI
ICE Intellec MICROMAINFRAME Seamless
iCS Intellink MULTIBUS SOLO
iDBP iOSP MULTICHANNEL SYSTEM 2000
iDIS iPDS MULTI MODULE UPI
iLBX

V AX is a registered trademark of Digital Equipment Corporation.

A1234 / 984 / 2K / DD / KH

SO FlWARE

REV. REVISION HISTORY DATE APPD.

-001 Original issue. 6/83

-002 Update to document new records and correct any 9/84 C.C.
previous errors in text.

iii

· " n PREFACE

This manual describes the C programming language compiler for the Intel iAPX 86
family of microprocessors. It is intended to support new users as well as those already
familiar with the C programming language.

This manual consists of eight chapters and four appendixes:

• Chapter 1, "Introduction," presents an overview of this particular implementa­
tion of the C programming language.

• Chapter 2, "Compiling a Program," details iC-86 compilation under VAX/VMS,
Series III, Series IV, and iRMX-86.

• Chapter 3, "Linking C Programs," explains the method for linking C programs
and special consideration applying to programs that use floating point.

• Chapter 4, "Using the Standard Libraries," describes the run- time libraries.

• Chapter 5, "Run-Time Issues," provides information on interfacing iC-86 code
with code generated by other Intel translators, such as ASM86 or PL/M-86. It
explains the calling sequence used by C functions, machine register conventions
and other low-level issues.

• Chapter 6, "Special Considerations," describes miscellaneous issues regarding
the compiler run-time environment such as absolute addressing and program­
ming debugging.

• Chapter 7, "The Standard Oibc) Library," describes the library routines used to
perform many of the common programming tasks.

• Chapter 8, "The System Interface (DQ$) Library," explains the system interface
(DQ$) routines.

• Appendix A, "Keywords," provides a list of identifiers that are used as keywords
by iC-86.

• Appendix B, "Error Messages," is a list of the error messages generated by the
compiler.

• Appendix C, "ASCII Codes," provides the standard ASCII to Hex conversion
tables.

• Appendix D, "iRMX-86 Libraries," describes the RMX-86 interface library and
linking under iRMX-86.

Notational Conventions

UPPERCASE

italic

directory-name

filename

Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or
lowercase.

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

Is a valid name for the part of a pathname that names a file.

v

Preface

vi

pathname

pathname1,
pathname2, ...

system-id

Vx.y

[]

{ }

L ..

[, ...]

punctuation

lnput Ilnes

< c r)

BOLDFACE

iC-86 Compiler User's Guide

Is a valid designation for a file; in its entirety, it consists of a
directory and a filename.

Are generic labels placed on sample listings where one or more
user-specified pathnames would actually be printed.

Is a generic label placed on sample listings where an oper­
ating system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other­
wise noted.

The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated.

The preceding item may be repeated, but each repetition must
be separated by a comma.

Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(PROGA)SRC)'9 SEPT 81')

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

N ames of routines which must be entered exactly as they
appear in the manual.

Related Publications

For further information on issues raised in this manual, refer to the following Intel
publications:

• Pascal-86 User's Guide (121539)

• PL/M-86 User's Guide (121636)

• PSCOPE 86 User's Guide (121790)

• 8086/8087/8088 Assembly Language Reference Manual for 8086-Based
Development Systems (121627)

iC-86 Compiler User's Guide Preface

• Guide to Using iRMX 86 Languages (143907)

• Introduction to the iRMX 86 Qperating System (9803124)

• iRMX 86 Debugger Reference Manual (143323)

• iRMX 86 Nucleus Reference Manual (9803122)

• iRMX 86 Systems Programmer Reference Manual (142721)

• Intellec Series III Console Operating Instructions (121609)

• Intellec Series III Programmer Reference Manual (121618)

• Intellec Series IV Operating and Programming Guide (121753)

• iAPX 86,88 Family Utilities User's Guide (121616)

• Run- Time Support Manual for iAP X 86,88 Applications (121776)

vii

CONTENTS

CHAPTER 1
INTRODUCTION

PAGE

1.1 Recent Additions to C Language 1-2
1.1.1 The Void Type ... 1-2

(1.1.2 The enum Type .. 1-2
1.1.3 Structure Assignment and Passing 1-3
1.1.4 I \ v I Vertical Tab Literal Character 1-3
1.1.5 Initialization of Automatic Aggregates 1-3
1.1.6 Addition Type Specifiers 1-4
1.1. 7 The #assert Preprocessor Directive 1-4
1.2 Additional Features of iC-86 1-4
1.2.1 Sizes and Formats of Types 1-4
1.2.2 Type Conversions 1-4
1.2.3 Register Variables ... 1-5
1.2.4 The argc, argv Parameters to main 1-5
1.2.5 I/O Redirection ... 1-5

CHAPTER 2
COMPILING A PROGRAM
2.1 Compilation on the Series III,

Series IV Development System 2-1
2.2 Compilation Under iRMXTM 86 2-3
2.3 Compilation Under V AX® jVMS 2-3

CHAPTER 3
LINKING C PROGRAMS
3.1 Floating Point ... 3-2

CHAPTER 4
USING THE STANDARD LIBRARIES
4.1 Standard Definitions 4-1
4.2 Overall Structure of Programs 4-1
4.3 Strings ... 4-2
4.4 Input/Output .. 4-3
4.4.1 The FILE Type 4-3
4.4.2 Opening (Creating) a FILE 4-3
4.4.3 Closing a FILE .. 4-3
4.4.4 Byte-by-Byte I/O .. 4-4
4.4.5 Word-by-Word I/O ... 4-4
4.4.6 String I/O .. 4-5
4.4.7 Block I/O .. 4-6
4.4.8 Formatted I/O ... 4-6
4.4.9 Random Access ... 4-7
4.5 Sorting .. 4-8
4.6 Allocating Dynamic Memory.............................. 4-9
4.7 The System Interface ... 4-9
4.8 Odds and Ends ... 4-10

TABLE OF CONTENTS I

CHAPTERS
RUN-TIME ISSUES

PAGE

5.1 Small Model of Segmentation 5-1
5.1.1 Segment Names and Attributes 5-1
5.1.2 Calling Sequence ... 5-1
5.1.3 Stack Allocation .. 5-4
5.1.4 Segment Register Initialization 5-4
5.1.5 Command Line Processing 5-4
5.1.6 Heap Allocation ... 5-4
5.1. 7 Interfacing with Intel Supplied Routines 5-5
5.2 Large Model of Segmentation 5-6
5.2.1 Segment Names and Attributes 5-6
5.2.2 Calling Sequence ... 5-6
5.2.3 Run-Time Start-Off ... 5-7
5.2.4 Heap Allocation .~... 5-7
5.2.5 Interfacing the LARGE Model........................ 5-7

CHAPTER 6
SPECIAL CONSIDERATIONS
6.1 Binary Files 6-1
6.2 Running Out of Memory..................................... 6-1
6.3 Fields ... 6-1
6.4 Absolute Memory Addressing 6-1
6.5 PSCOPE/FICETM Operation 6-2
6.6 External Identifiers 6-2

CHAPTER 7
The STANDARD (Jibe) LIBRARY
7.1 Character Classification 7-1
7.2 String Manipulation ... 7-2
7.3 Creating, Deleting, and Manipulating

FILE Objects .. 7-3
7.4 Byte-by-Byte I/O ... 7-4
7.5 Word-by-Word I/O .. 7-4
7.6 String I/O ... 7-5
7.7 Block I/O ... 7-5
7.8 Formatted I/O .. 7-5
7.9 Random Access .. 7-8
7.10 Sorting .. 7-8
7.11 Allocating Dynamic Memory............................ 7-8
7.12 Odds and Ends ... 7-9
7.13 Trigonometric Functions 7-10
7.14 Complex Absolute Value Functions 7-10
7.15 Hyperbolic Functions 7-11
7.16 Logarithmic and Exponential Functions 7-11
7.17 Bessel Functions of the First Kind 7-12

CHAPTER 8
THE SYSTEM INTERFACE (DQ$) LIBRARY
8.1 Segment Management 8-1
8.2 Exception Handling .. 8-2

ix

Table of Contents

PAGE

8.3 Exit .. 8-2
8.4 Get Time and Date .. 8-2
8.5 Get System Identification 8-3
8.6 Delete a File ... 8-3
8.7 Rename a File ... 8-3
8.8 Connection Management 8-3
8.9 Read from a File .. 8-4
8.10 Write to a File .. 8-4
8.11 Seek a Connection :................................... 8-4
8.12 Truncate a File ... 8-4
8.13 Get Connection Status 8-5
8.14 Change Extension 8-5
8.15 Load an Overlay... 8-5
8.16 Perform Special I/O Function 8-5
8.17 Command Tail Parsing 8-6
8.18 File Information ... 8-6

FIGURES

FIGURE TITLE PAGE

1-1 enum-specifier ... 1-3
1-2 Type Specifiers .. 1-4

x

APPENDIX A
KEYWORDS

APPENDIX B
ERROR MESSAGES

APPENDIX C

iC-86 Compiler User's Guide

ASCII CHARACTER SET

APPENDIXD
USING iRMX™ SYSTEM CALLS IN iC-86

INDEX

FIGURE TITLE PAGE

1-3 Bit Size in iC-86 .. 1-5

· ~~) CHAPTER 1
INTRODUCTION n

This user's guide describes the C compiler and run-time system for Intel iAPX 86
family of microprocessors. The C compiler may be used as a cross compiler running
under VAX/VMS, or may be used as a native compiler running under ISIS on the
Intel series III or Series IV microcomputer development system or under iRMX 86
on supported boards and systems.

The Intel C compiler compiles programs written in the C programming language, as
described in The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie (Prentice-Hall, 1978). The fundamental data types supported include char
(8 bits), short (16), int (16), long (32), float (32), and double (64); the modifier
unsigned may be applied to char, short, int, and long. Supported storage classes include
auto, extern, register, static, and typedef. The modifier readonly may be applied to
objects in extern and static classes to indicate that no value is written to the object.
Additional data types may be derived from the fundamental types by using arrays,
functions, pointers, structures, and unions.

Lines beginning with # are preprocessor directives. The iC-86 preprocessor supports
the directives #define, #else, #endif, #if, #ifdef, #ifndef, #include, #line, and #undef,
as described in The C Programming Language.

iC-86 supports several advanced features, in addition to the full range of features
described in The C Programming Language. The data type void is a special type that
may not be used in expressions; typically used in the definition of a function that
returns no value, data type void is used to prevent the use of a null value in a value
context. The derived type enum specifies an enumerated data type. iC-86 also supports
structure assignment and allows functions to take structure arguments and to return
structure values.

iC-86 translates programs into relocatable object files or assembly language-like source
files. Once generated, relocatable object code may be linked with the standard C run­
time support libraries (using LINK86) and, if necessary, converted into an absolute
module (using LOC86). iC-86 supports both the SMALL and LARGE models ·of
segmentation. A SMALL model program can have up to 64K bytes of code and 64K
bytes of data. All pointers occupy two bytes (16 bits). Two byte pointers permit
extremely compact and efficient code to be generated; thus, this model is recom­
mended for programs that can satisfy the size requirements just given.

The LARGE segmentation model is used by programs that require access to the full
addressing capabilities of the 8086 and 8088 processors. In this model, each source
file generates a distinct pair of code and data segments. A single source file can
generate up to 64K bytes of code and 64K bytes of data. All pointers occupy four
bytes (32 bits). The generated code in the LARGE model is not as compact or efficient
as that in the SMALL model. The large pointers are more difficult to manipulate
and the compiler must generate code to adjust the segmentation registers whenever
it detects a reference to an object in an unknown segment.

iC-86 does not support the MEDIUM or CaMP ACT models of segmentation.

The run-time system includes a full implementation of the standard I/O package, a
large number of generally useful routines for manipulating strings, and a complete
set of routines for interfacing with the DQ$ entry points of Intel's Universal Devel­
opment Interface (UDI) libraries.

1-1

Introduction

1-2

iC-86 Compiler User's Guide

The run-time library comes in two different versions: one is used by SMALL model
programs, the other by LARGE model programs. The libraries are completely
compatible; in fact, they are just two compilations (one SMALL, the other LARGE)
of the same C source code.

iC-86 can optionally specify symbols, lines and type information for use by Intel
debuggers such as PSCOPE-86, PICE and ICE-86A.

The C language has been enhanced slightly to make it easier to program in the 8086
and 8088 environment. There is no limit to the number of characters in an identifier,
other than the 39-character limit imposed by LINK86 and LOC86. The dollar sign
($) is accepted in identifiers exactly as it is accepted in PL/M-86 (it is silently thrown
away). This makes it possible for calls to the system interface library routines to look
exactly like the corresponding PL/M-86 system calls.

1. 1 Recent Additions to C Language

The C language as defined in the book "The C Programming Language" by Brian
Kernighan and Dennis Ritchie has undergone some extensions since the pUblication
of this book. The purpose of this section is to describe the recent additions to the
language supported by the Intel C compiler.

1.1.1 The Void Type

A recent addition to C is the addition of the type void. Declaring a function to be of
the type void indicates that the function does not return a value. This is useful in
error checking and enhances readability of programs. Only functions may be declared
to be void.

1.1.2 The enum Type

Another recent addition to C is the enumerated type. This is similar to the sub-range
types of Pascal. An enumerated type declaration lists a set of identifiers, which may
then be used as values for data of that enumerated type. An enumerated type decla­
ration mayor may not associate a tag with the type, similar to structure or union
tags. For example, the declaration:

enum opinion { yes, maybe, no } x;

declares an enumerated type opinion with three values: yes, no, and maybe, and
declares a variable of the type named x. This type may be used in further declarations
analogously to structure and union tags. The declaration:

register enum opinion *op;

declares a register pointer to the enumerated type opinion.

To add this type to the formal definition of the language in The C Programming
Language, amend the list of type-specifiers in section 8.2 of Appendix A of that book
to include the entry enum-specifier. The syntax of this type-specifier is shown in
Figure 1-1.

iC-86 Compiler User's Guide

enum-specifier:

enum-list:

enum { enum-list }
enum identifier { enum-list }
enum identifier

enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

Figure 1-1. enum-specifier

The identifier in the enum-specifier, as already indicated, behaves exactly like the
structure or union tag in a structure-specifier or union-specifier. The identifiers in
the enum-list must all be distinct, and must be distinct from other, ordinary identi­
fiers. They are constants, and may appear in any context where constants are appro­
priate. Values are assigned from left to right, beginning with 0 and increasing by 1.
If an enumerator containing an equal sign (' = ') appears in the list, the identifier in
that enumerator is set to the value of the constant-expression, and subsequent
enumerators increase by 1 from that value.

1. 1.3 Structure Assignment and Passing

The definition of C in The C Programming Language prohibits the assignment of
structures, the passing of structures to functions, and the returning of structures by
functions. Another recent change to C is the lifting of these restrictions. iC-86 allows
structures to be assigned, provided they are of the same type, and allows structures
to be passed to and returned from functions.

1.1.4 ' \ V' Vertical Tab Literal Character

iC-86 recognizes the literal character I \ v I for the ASCII vertical tab (octal 013)
character. This literal character may be used within strings, the same as the literal
characters I \ n I and I \ t ' . It is included in the definition of white space; in partic­
ular, the ctype macro isspace is true for ' \ v' .

1. 1.5 Initialization of Automatic Aggregates

One of the restrictions on C lifted by iC-86 is the prohibition of initialization of
automatic aggregates, made in section 8.6 of Appendix A of The C Programming
Language. iC-86 allows automatic arrays and structures to be initialized, provided
the size of the array, or any array contained within a structure, is known. The initial­
ization has the same form as the initialization of the external aggregate, but is
performed on entry to the routine instead of at compile time.

Introduction

1-3

Introduction

1-4

iC-86 Compiler User's Guide

1. 1.6 Addition Type Specifiers

Section 8.2 of Appendix A of The C Programming Language implies that only one
type-specifier may be used in a declaration, except for those cases shown in the left
hand column of Figure 1-2, below. iC-86 recognizes several additional cases, all
involving the adjective "unsigned" as listed in the right-hand column of Figure 1-2.

The first pair of "unsigned" terms have the same meaning, as do the second pair.
The type unsigned char is an addition to the language. If it is used in arithmetic
expressions it is automatically cast to unsigned int.

short int
long int
unsigned int
long float

unsigned long int
unsigned long
unsigned short int
unsigned short
unsigned char

Figure 1-2. Type Specifiers

1. 1.7 The #assert Preprocessor Directive

The only language construct recognized by iC-86 that is an entirely new construct is
the #assert preprocessor directive, which has the form:

#assert constant-expression

The preprocessor evaluates the constant expression. If it is false (zero), it prints a
diagnostic message. However, the failure of a "assert directive is not considered a
fatal error, and does not terminate the compilation process.

1.2 Additional Features of iC-S6

1.2.1 Sizes and Formats of Types

The sizes of various types in bits in iC-86 are shown in Figure 1-3.

There are no alignment restrictions on data in iC-86, because the 8086 processor
imposes no such restrictions. The order of significance of bytes and words in iC-86 is
that adopted by the 8086 processor, namely that the significance of bytes increase
with address. Dependence on these facts may result in code that is not portable to
other processors. Floating point types use the 8087 formats.

1.2.2 Type Conversions

In arithmetic expressions signed types promote to signed types by sign extension, and
unsigned types to unsigned types by zero padding. For example, the type char promotes
to the type int by sign extension, but the type unsigned char promotes to the type
unsigned int by zero padding.

iC-86 Compiler User's Guide

char
short
int
long
pointers
pointers
enum types
float
double

8
16
16
32
16 (small model)
32 (large model)
16
32
64

Figure 1-3. Bit Size in iC-86

1.2.3 Register Variables

iC-86 allows up to two register variables. These register variables may be used to
hold any 16 or 8 bit quantity; however, because of inefficiencies of the architecture
the type unsigned char cannot be supported in a register.

1.2.4 The argc, argv Parameters to main

The command line arguments, called the "command tail" are placed in a known
location in low memory. The iC-86 runtime startup parses this command tail in the
standard argc, argv pair expected by many C programs as arguments to main. This
enhances the portability of C programs written under iC-86.

A caution concerning the cases of arguments. UDI changes all alphabetic characters
in the command tail to upper case. Because most C programs expect arguments to be
in lower case, the iC-86 runtime start-off maps all alphabetic characters back to
lower case. Although a compromise, this approach seems to be the most helpful in
enhancing the portability of programs developed under iC-86.

1.2.5 I/O Redirection

Another of the services provided by main is the processing of I/O redirection
arguments on the command line, and the initialization of the standard streams, stdin,
stdout and stderr. I/O redirection works as follows:

<file

) file

)) file

An argument of this form causes the standard input stream, stdin, to
take its input from file.

An argument of this form causes the standard output stream, stdout,
to be redirected to the named file. If file does not exist, it is created; if
it does exist, the previous contents are lost.

This is identical to the last form, except that if file exists, the standard
output stream is appended to the file, instead of overwriting it.

Redirection specifications are not included in the argument count argc or the argument
vector argv passed to main. The standard error output stderr can not be redirected,
and always goes on to the console.

If any of the above forms is preceded by a sharp character (I # I), the appropriate
stream will be redirected in binary mode.

Introduction

1-5

• 1<' CHAPTER 2
COMPILING A PROGRAM n

2. 1 Compilation on the Series III, Series IV
Development System

The C compiler is a native mode program for the resident 8086 processor in the
Series III development system. The Series III must be in 8086 execution mode when
the compiler is invoked. For details on placing the Series III into 8086 execution
mode and executing commands in this mode, see the Series III Console Operating
Instructions. The same instructions apply to the operation of iC-86 on the Series IV.

The general syntax of the invocation line is

III F n 88":1# inputfile [TO outputfllel [contro15l

where

:Fn:

CC86

inputfile

outputfile

controls

specifies the drive number if not on zero. The default drive is
zero.

is the name for the compiler.

is a filename which you specify. It contains a C source
program prepared with one of the standard text editors.

is the optional file name you enter for output.

optionally specifies one or more compiler controls you may
enter.

The input file is a standard ASCII file that contains a C source program prepared
with one of the standard text editors.

The output of the compiler, whether object code or an assembly language program,
is normally written to a file on the same device as the source file and with the same
name as the source file, but with the file type changed to .OBJ or .A86. The TO
output file control may be used to place the output in any desired file.

iC-86 uses two temporary files, allocated on the: WORK: device.

The controls may be one or more of the following compiler control arguments:

DEBUG

LARGE
SMALL

ASM86

The DEBUG control causes iC-86 to place debugging
information (symbols, their types, and line number
records) into the object module. The default is no debug­
ging information.

This segmentation control causes iC-86 to generate
code that uses the assumptions of the specified model of
segmentation. The default is SMALL modeL

The ASM86 control causes iC-86 to generate assembly
language. The output file has a file type of .A86 (instead
of default.OBJ). The code is formatted in a style easily
understood by ASM86 users; however, it is not an
acceptable ASM86 program.

2-1

Compiling a Program

2---2

VERBOSE

INCLUDE(name)

DEFINE(name [, value])

UNDEFINE(name)

ROM
RAM

PRINT(file)

OPTIMIZE(n)

iC-86 Compiler User's Guide

The VERBOSE control causes the CC86 command to
print a running trace of the compiler phases as they are
executed. This trace may be used to obtain a step by step
trace of progress through a large compilation on a slow
system.

The INCLUDE control directs the preprocessor in its
search for #include files. Because the UDI specification
does not allow programs to know the syntax of file names,
the search rules are slightly different from those speci­
fied by the language. There is a limit of 3 nested #include
controls. In the source file, #include has two types of
requests: #include "file" and #include < file). In both
cases, additional names may be supplied by INCLUDE
directives (e.g., INCLUDE (name1), ... , INCLUDE
(nameN). In either case, if no additional names are
supplied, the preprocessor attempts to open file. If names
are supplied by the INCLUDE controls, the treatments
differ. In the case #include "file", the preprocessor first
attempts to open file. If it fails, it then prefixes the names
specified in the INCLUDE directives to the name file
and attempts, in sequence, to open the files namelfile,
... , nameNfile. In the case# include < file) , the prepro­
cessor first attempts to open the files name lfile, ... ,
nameNfile, and then attempts to open file last.

The name is defined to have the given value, just as if a
#define line appeared in the source program. If the value
parameter is omitted, the name is defined to have value
I (so it can be used as a flag in a #if preprocessor line).

The specified name is undefined, just as if a #undef
preprocessor directive appeared in the source program.
This control is used only to remove one of the preproces­
sor's built-jn definitions.

This control directs the placement of constants in the
object module. The impact of this control on the segmen­
tation of the generated code is described in Chapter 5.
The default is RAM control.

The PRINT control directs the iC-86 compiler to send
all messages, normally sent to the console by default, to
the specified file.

The OPTIMIZE control governs the kinds of optimiza­
tion to be performed in generating object code. n may be
0, I, or 2. OPTIMIZE(0) is the least level of optimiza­
tion (constant folding) and is recommended when debug­
ging programs with PSCOPE OR PICE. OPTIMIZE(2)
is the highest level of optimization that can be specified
and includes constant folding, deletion of unused labels
and dead or useless instructions, and simplification of
common code sequences and jumps. It also performs
peephole optimizations. OPTIMIZE(I) specifies all level
2 optimizations except peephole optimization.

iC-86 Compiler User's Guide Compiling a Program

2.2 Compilation Under iRMX™ 86

The invocation and control for iC-86 under iRMX86 are the same as those for iC-86
on Series III.

2.3 Compilation Under VAX® /VMS

The invocation, control instructions and their meanings under VAX/VMS are the
same as those on Series III above except that the default object file extension is .086
instead of .0 BJ.

2-3

• 1\ CHAPTER 3
LINKING C PROGRAMS n

The C compiler distribution kit includes two C run-time libraries (SCLIB. LIB for
the SMALL model of segmentation and LCLIB.LIB for the LARGE model of
segmentation). The kit includes two run-time start-off routines (SQMAIN.OBJ for
the SMALL model and LQMAIN.OBJ for the LARGE model). The object modules
produced by the Ccompiler must be linked with the appropriate run-time start-off
routine, the appropriate C library, and the appropriate Intel interface library
(SMALL.LIB or LARGE.LIB).

Following is a typical command sequence for linking a SMALL model program called
SMALLP with the standard libraries:

)

)

A load time locatable (LTL) image is being created (the BIND control is used). In
the SMALL model the L TL is necessary for the dynamic memory allocation routines,
used for correct functioning by the standard I/O library. The size of the MEMORY
segment is determined by a call to DQGETSIZE, which does not return a reason­
able value on absolute programs in the SMALL model. The amount of raw memory
available for the dynamic allocation routines is determined by the SEGSIZE control
that adjusts the size of the MEMORY segment. If suffiCient free space is unavailable
files cannot be opened and operations that require space in the dynamic storage
allocation pool cannot be performed.

It is recommended that SQMAIN.OBJ be linked as the first file to avoid a pointer
to DS:O.

The iRMX 86 operating system allocates memory for file connections, file buffers,
and other operating system objects from a memory pool. The MEMPOOL control of
LINK86 specifies the minimum amount of memory required to load the program and
the above-mentioned objects. Since the size of the buffers is device-dependent and
the number of buffers is program-dependent, a trial and error approach works best.

The maximum memory pool size needs to be coded to avoid partition fragmentation;
it should be set to OFFFFOH. For SMALL programs specify:

MEMPOOL (150000, OFFFFOH)

For LARGE programs total the segment sizes, add sizes of dynamically allocated
memory, and then add approximately 15K for UDI overhead.

The stack used by the program is normally defined by the SYSTEMSTACK module
in the SMALL library. The size of the stack can be determined from the link map.
If more stack is required by an application, a SEGSIZE control may be used to
increase the size of the STACK segment.

The following rough guidelines may be of use in estimating stack requirements on
the Series III. In the LARGE model, the overhead is 14 bytes per function call, plus
2 bytes per int and char, 4 bytes per long, float, and pointer, and 8 bytes per double.
In the SMALL model, the overhead is 8 bytes per function call, plus 2 bytes per int,
char, and pointer, 4 bytes per long and float, and 8 bytes per double. For RMX 86,

3-1

Linking C Programs iC-86 Compiler User's Guide

3-2

400H bytes is needed for operating system processing. If no other stack requirements
are made, this can be specified as

SEGSIZECSTACKC+400H»

on the link invocation. Additional stack space is needed for recursive function calls
(the same amount of space is required for each level of recursion) and for the local
buffers used by UDI system calls.

The link command for a LARGE model program is similar to that of a SMALL
model program. Following is an example of a typical command sequence for linking
a LARGE model program called LARGEP:

Once again, the BIND control has been used to create a load time locatable (LTL)
module. This speeds program development because a LOCATE step is not required;
however, the actual loading of the program is quite slow since all of the absolute
segment bases in the image must be fixed up. Absolute programs do, however, work
properly in the LARGE model, because system calls (DQ$ALLOCATE and
DQ$FREE) are used to perform all dynamic memory allocation.

The SEGSIZE control that adjusts the size of the STACK segment is almost always
required. The default stack provided by the SYSTEMSTACK module in LARGE. LIB
is seldom large enough for the substantially larger stack frames in the LARGE model.

The more elaborate features of LINK86 and LOC86 all, of course, work with the
object modules produced by the C compiler. Detailed descriptions of the features
(such as building libraries, creating overlaid programs or writing code that is scattered
all over physical memory) are beyond the scope of this manual.

3.1 Floating Point

Several special considerations apply to programs using floating point. The link
command must include the appropriate floating point library: 8087.LIB for hardware
floating point with the 8087, or E8087.LIB for software emulation. The floating point
library should be included after the C library (SCLIB.LIB or LCLIB.LIB) in the
LINK86 command.

NOTE
If your program does not use floating point, include the library 87NULL.LIB
to avoid loading the emulator.

With either hardware or software floating point, the run-time start-off routine issues
a call to INIT87 for initialization. A control word of 3BFH is loaded to mask excep­
tions and select round to nearest mode. Code generated by C routines may change
the 8087 rounding mode, but the mode will always be restored.

The code to output floating point numbers is quite bulky. Since most C programs do
not need floating point output, the conversion routine in the standard library is a
decoy, which always prints the string {Float}. The real floating point output
conversion routines are in the files SDTEFG.OBJ (SMALL model) and

iC-86 Compiler User's Guide Linking C Programs

LDTEFG.OBJ (LARGE model). The appropriate object file should be included in
the LINK86 command line immediately before the standard library.

Some users will always want floating point output conversion. To guarantee yourself
floating point conversion, delete the decoy floating point output module (FDTEFG)
from the standard library and replace it with the real version.

3-3

CHAPTER 4
USING THE STANDARD LIBRARIES

The standard C run-time libraries provide a large number of useful routines that
make it easy to manipulate some common data structures (such as strings), dynami­
cally allocate memory, and perform I/O operations to files.on all devices supported
by the operating system.

This section provides a quick overview of the features and facilities of the library.
The library routines (along with their calling sequences and the types of their
arguments) are all listed in later chapters.

The routines in the standard library on all hosts are identical; thus, it is easy to write
programs that can be transported from system to system without change.

4. 1 Standard Definitions

A number of header (.h) files are supplied with the libraries. These files, intended to
be included (using the #include preprocessor directive) by applications programs,
provide a number of useful definitions for using the routines in the standard libraries.
The header files and their applications are listed below.

stdio.h

udi.h

assert.h

ctype.h

rmu.h

setjmp.h

This is the most important and most often used of the header files.
It contains all of the definitions used by the I/O routines, a number
of symbolic constants (the value of the NULL pointer, for example)
and external definitions for the library routines that return non­
integer objects.

This header file contains typedefs, structures, macros and symbolic
constants used to interface with the UDI.

This defines the assert macro used for program verification.

This defines the character classification macros, such as isascii and
isupper.

This header file contains flags and register definitions for using the
8087 numeric data processor.

This defines a type needed for use by the pair of routines, setjmp
and longjmp.

4.2 Overall Structure of Programs

A C program consists of a set of functions, of which one and only one must be called
main. This function is called from the run-time start-off routine (SQMAIN.OBJ or
LQMAIN.OBJ) after all of the required initialization of the run-time environment
has been performed.

Programs may terminate in two ways. The easiest way is to simply terminate the
main routine, returning control to the run-time start-off code, that performs some
cleanup operations and returns control to the operating system. Some situations
(errors, perhaps) may require a program to be terminated, and returning to a the
main module may not be desirable (or even possible). When these conditions arise,

4-1

U sing the Standard Libraries iC-86 Compiler User's Guide

4-2

use the exit routine. It performs the standard cleanup and returns control to the
operating system.

A second exit routine, _exit, quickly returns control to the operating system without
performing any cleanup. This routine should be used only as a last resort because
bypassing the cleanup will leave files open and will leave buffers of write data in
memory.

4.3 Strings

A common data structure in C programs is the character string. The usual run-time
representation for a string is an array of characters delimited by a 0 byte (\ 0). This
representation is, in fact, the one used by the C compiler when a program contains a
string constant (e.g., "I am a string constant"). The address of the first character in
the string is used as the handle for the' string. Note that an array of 20 characters
holds a string of 19 (not 20) nonnull characters, delimited by a 0 byte.

Strings can often be assigned simply by shuffling pointers. If, however, _characters
must actually be moved, use the library routine. This function has two arguments.
The first (a pointer to a string) points to the destination array; the second (also a
pointer to a string) points to the source array. All characters up to and including the
o byte are copied, and the first argument is returned, as evidenced by the following
example:

extern char *strcpyO
char buf[20];
strcpy(buf, I I hello I ');

The length of a string may be determined by using the library routine strlen. This
function takes one argument, a pointer to a string, and returns the number of charac­
ters in the string, up to but not including the 0 byte.

The library function strcat performs simple string concatenation. It takes two strings
as arguments and appends a copy of the second string to the end of the first string.
The first string is assumed to have enough extra space at the end of it to hold the
new characters. Strcat returns a pointer to the new result, delimited by a 0 byte.

A typical use of strcat is to create file names. In this case, a specific file type must
be appended to a name that changes at run-time. For example, the following program
fragment puts the file name mumble.c in the buffer buf:

char buf[20];
extern char, *strcpy(), *strcat();
strcpy(buf, I 'mumble I I);

strcat(buf, I I • I ,);

strcat(buf, I I c I ,);

Strings must often be compared. This must be done, for example, if a list of strings
is being sorted. The library function strcmp performs string comparison. This function
takes two arguments (both pointers to strings) and returns an integer. This integer is
less than 0 if the first string is less than the second string (using native machine
character comparisons), is equal to 0 if the two strings are equal, and is greater than
o if the first string is greater than the second string.

Applications dealing with fixed length strings can use strncat, strncpy, and strncmp.
These routines perform the same functions as their variable length counterparts
(without the n); however, they all take an additional (third) argument that specifies
the maximum length of the string.

iC-86 Compiler User's Guide Using the Standard Libraries

4.4 Input/ Output

The standard library provides routines that do I/O at a number of levels to all devices
supported by the operating system. Facilities exist for byte by byte transfers, word
by word transfers, and string, block, and formatted transfers. All I/O modes may be
freely intermixed.

4.4. 1 The FILE type

The standard I/O header file stdio.h has a type definition (typedef) for the FILE
type. A FILE is a structure that contains all of the information needed by the I/O
routines to perform I/O operations on a connection. A pointer to a FILE is the exter­
nal name of an I/O stream (much like the file variables of PASCAL or the unit
numbers of FORTRAN), and is passed to the various routines in the I/O library to
specify which stream participates in the transfer.

4.4.2 Opening (Creating) a FILE

A file is opened (and a FILE allocated) by the routines fopen and freopen. The most
frequently used open routine is fopen. It takes two arguments. The first is a string
that contains the name of the file to be opened. The second is a mode string that
specifies the access mode required. The mode string is either r (for plain reading), w
(for plain writing), r+w (read and write, or update) or a (append). In addition, the
mode string can contain the character b (for binary). This character specifies that
this is a binary (as opposed to an ASCII) stream and that newline characters should
not be mapped into a carriage return/line feed sequence.

If the mode is w or a and the named file does not exist, it will be created. If the mode
is wand the file does exist, the named file will be truncated to zero length.

If the open is successful, fopen will return a pointer to a FILE object. If the open is
unsuccessful, fopen will return NULL.

When control is passed to the main routine, the run-time start-off has already created
three FILE objects. The first, stdin (standard input), is always attached to the :CI:
device. The second, stdout (standard output), is always attached to the :CO: device.
The third, stderr (standard error), is always attached to the video display device,
:VO:. A write to the standard error stream is always seen, no matter how the :CO:
stream IS redirected.

stdin, stdout, and stderr are defined as macros in the header file stdio.h. They cannot
appear on the left-hand side of an assignment.

The alternate open routine freopen is just like fopen except that it takes a third
argument. This argument is a pointer to a FILE that is closed and reopened, using
the file name and access mode specified in the freopen call. This argument is usually
used to redirect one of the standard streams to another file.

4.4.3 Closing a FILE

When all processing on a FILE is completed the stream must be closed by calling
fclose. This routine takes one argument, a pointer to a FILE. Any data buffered in
the stream is flushed; any buffers are released, and the connection is detached.

All open files are automatically closed (via internal calls to fclose in exit) when a
program terminates.

4-3

Using the Standard Libraries iC-86 Compiler User's Guide

4-4

4.4.4 Byte-by-Byte I/O

The lowest level of I/O is the byte-by-byte level. At this level, a call to the I/O
routine reads a single character from a FILE or writes a single character to a FILE.

All higher level I/O routines use these byte-by-byte routines to read and write data.

The most basic read routine is getc(fp). This function takes a single argument, a
pointer to a FILE, and returns the next character from the FILE or EOF. The defini­
tion of EOF is in the header file stdio.h. In ASCII -mode, all carriage return charac­
ters (ODR) are thrown away, and the line feeds at the end of the lines (OAR) mark
the end of the lines (the \ n in C is equal to OAR). In binary mode, all characters are
passed without interpretation.

The routine getchar is equivalent to getc(stdin). getchar reads characters from the
standard input FILE, normally the keyboard.

The routine ungetc(c, fp) returns c to the FILE fp. This routine is useful for looking
ahead at the next input character then returning it to the input file. Only a single
character can be unread with ungetc.

The most basic write routine is putc(c, fp). The function takes two arguments. c is
an integer that contains the byte to be written, fp is a pointer to an output FILE. The
first argument is returned unless a write error occurs, in which case EOF is returned.

The routine putchar(c) is equivalent to putc(c, stdout). putchar(c) writes characters
to the standard output FILE, normally the video display.

Following is a simple example that uses the I/O routines discussed so far. The
characters in the file mumble.c are copied to the display. A rude diagnostic is printed
if the file cannot be opened.

#include < stdio.h)

maine)
{

}

FILE *fp;
int c;

fp = fopen(I mumble.c I , I r I);

if(fp = = NULL) {

}

putchar(I N I);

putchar(I 0 I);

putchar(I ! I);

putchar(I \ n I);

exit(1);

while((c = getc(fp»! = EOF)
putchar(c);

fclose(fp);

4.4.5 Word-by-Word I/O

A program may read the next word (16-bit object, low byte first) from a FILE by
using the routine getw(fp). This routine takes one argument, a pointer to a FILE.
The word read is returned.

iC-86 Compiler User's Guide Using the Standard Libraries

Note that all bit patterns are legal return values for getw. A special token like EOF
cannot be returned on end of file. The program must instead explicitly test for end of
file by using the macro feof(fp) (from stdio.h). This macro looks at the FILE pointed
to by fp and returns true if the last call to getw ran into end of file. If a file has an
odd size, the last call to getw returns the data and an error is posted to the FILE.
This error may be detected by using the macro ferror(fp). End of file is posted only
if a call to getw gets no data.

A similar routine, putw(w, fp), writes a word to a file. The macro ferror must be used
to check for I/0 errors.

4.4.6 String I/O

A number of routines perform I/0 on strings.

The most basic string read routine is fgets(b, n, fp). This routine reads a new line­
delimited string from the FILE pointed to by fp and stores it into the array of charac­
ters (b). The new line-delimited character is transferred to the buffer, followed
immediately by a 0 byte. The integer n specifies the length of the buffer; this prevents
fgets from writing beyond the array if a long line is encountered in the input.

C also has a routine called gets(b). This routine reads a new line-delimited string
from the standard input stream and stores it in the array of characters (b). The new
line is then deleted (this is different from fgets), and a 0 byte is placed in the buffer
immediately after the last byte read from the FILE.

The most basic string output routine is fputs(s, fp). This routine writes out the string
s to the FILE pointed to by fp. A routine called puts(s) writes the string pointed to
by s, followed by a newline, to the standard output.

In the following example the program reads a filename from the keyboard and opens
the file and copies it, line by line, to the video display.

#include < stdio.h)

char b[128];
char f[128];

main ()
{

}

FILE *fp;
char *p;
int c;
puts(I I Enter a file name I I);

gets(f);
if «fp=fopen(f, I I r I '» = = NULL) {

puts(I I Go away I I);

exit(1);
}

while (fgets(b,sizeof(b),fp)!=NULL) {
p = b;

}

do {
c=*p++;
putchar(c);

} while (c!= I n ,);

4-5

Using the Standard Libraries iC-86 Compiler User's Guide

4-6

4.4.7 Block 1/ 0

The standard library provides facilities for transferring blocks of memory to and from
user programs. These facilities are most often used on binary streams to move raw
binary information to and from files. However, these library facilities may be used
on ASCII streams with no ill effects, with the possible exception of newline
interpretation.

The function fread(b, size, nitems, fp) reads nitems objects of size size bytes into the
buffer pointed to by b from the FILE pointed to by fp. The number of items actually
read is returned.

The analogous routine fwrite(b, size, nitems, fp) writes nitems objects, each of size
size bytes from the buffer b to the FILE pointed to by fp. The number of items
actually written is returned. The feof and ferror macros can be used to check for end
of file and transmission errors on block reads and writes.

4.4.8 Formatted 1/0

The C language provides routines that permit formatted I/O to and from FILE
streams. Data may be read in and written out in a number of formats and bases
(decimal, octal, hexadecimal), strings may be truncated or padded, and fields may
be justified to the left or to the right.

Although these routines are usually used on ASCII streams, they work perfectly well
on binary streams (they are just interfaces to putc and getc). These routines are useful
when dealing with scrambled command sequences that get sent to terminals, which
often are mixtures of ASCII characters and binary values.

The formatted I/O routines printf and scanf are complex. Section 7.8 describes the
details of all their formatting options.

All formatted I/O routines work by interpreting one of their arguments as a format
string. This string consists of format specifications (introduced by a % character) and
ordinary characters (everything else). For each format specification encountered in
the format string, an argument is extracted from the parameter list of the formatted
I/O routine and interpreted as determined by the format specification. The type of
the argument must agree with that expected by the format specification. If the type
does not agree (for example, if a long integer is placed in the argument list where a
normal integer is expected), the result is undefined.

The format directives most often used are %d (for decimal numbers), %0 (for octal
numbers), %x (for hexadecimal numbers) and %s (for strings).

Following is an example that uses the basic formatted output routine printf. This
program prints out the numbers from 0 to 100 in decimal, octal, and hexadecimal.

#include < stdio.h >

main 0
{

int i;

for i=O; i < = 100; + +i)
printf(I I %d, %0, %x \ n I I ,i,i,i);

}

Note that the format string contains one format directive for each argument in the
list. The format string also contains some literal characters that get copied directly
into the output.

iC-86 Compiler User's Guide Using the Standard Libraries

4.4.9 Random Access

All of the examples given up to this point deal with sequential access FILE streams.
However, the I/O library supports random access transfers as well. A seek pointer is
associated with every FILE. This pointer starts off at the beginning of the file (except,
of course, when a stream is opened for append, in which case it starts off at the end
of the file) and moves along as data is read from or written to the FILE.

The value of this pointer (as a 32-bit long integer) can be obtained with the routine
ftell(fp). This routine returns the current value of the seek pointer for the FILE pointed
to by fp.

The seek pointer can be moved about in the file by using the routine fseek(fp, where,
how). This routine resets the seek pointer in the FILE pointed to by fp to where (also
a 32-bit long integer). The how argument specifies if the seek is front-of-file relative
(how = 0), current-position relative (how = 1), or end-of-file relative (how = 2).
Fseek has no defined return value.

Some FILE streams (like the standard output, which is attached to the video display)
cannot perform random access operations. If ftell is pointed at one of these streams,
it returns garbage.

Returning the seek pointer to the start of a file (a special case) is made a little easier
by the routine rewind(fp). This routine is equivalent to fseek(fp, OL, 0).

The following example program opens a file on the disk and then lets the user display,
by number, 8-byte fixed length records.

#include (stdio.h)

char rec[8];

mainO
{

}

FILE *fp;
int rn;
char b[20];

fp = fopen(I I database I I " I rb I ,);

if (fp = = NULL) {

}

puts(I I No database I I);

exit(1);

while(gets(b)!=NULL) {

}

exit(O);

rn = atoi(b);
fseek(fp,(long)8*rn,0);
fread(rec, sizeof(char),8,fp);
printf(I I Record %d: I I ,rn);
print();

4-7

Using the Standard Libraries iC-86 Compiler User's Guide

4-8

atoi (s)
char *s;
{

int c, n;

n = 0;
while «c=*s+ +)!=O)

n= IO*n + c - , 0';
return (n);
}

char hex[] = {

} ;

print()
{

}

'0', 'I'; '2', '3', '4', '5', '6', '7',
'8' ,'9' ,'A' ,'B' ,'e' ,'D' ,'E' ,'F'

int i;
int byte;

forO =0; i < 8; + +i) {
ifO! =0)

}

putchar(, ,);
byte = rec[i];
putchar(hex[(byte)) 4)&OxOF])
putchar(hex[byte&OxOF]);

putchar(' \ n ');

4.5 Sorting

Data often needs to be sorted. However, good sorting routines are tricky and difficult
to debug. Because of this, the standard library contains two sort functions that imple­
ment only the skeleton of the sort algorithm. The user must provide a comparison
function and tell the sort function the size of the objects being sorted.

The routine qsort(b, n, size, f) implements Hoare's quicksort. The argument b points
to the base of the block of data being sorted. The n argument specifies number of
elements to be sorted. Each of these objects has size size (the routine needs the size
to be able to move the objects around and to update its internal pointers). The f is a
pointer to a function that performs comparisons. It is called with two arguments
(pointers to objects being compared) and it returns an integer that is less than 0,
equal to 0 or greater than 0 to indicate the ordering.

The routine shellsort(b, n, size, f) has exactly the same calling sequence but uses
Shell's sorting method. For most purposes, qsort is preferable.

The routine quicksort is recursive; it also uses a somewhat surprising amount of stack
if presented with data that is almost sorted. The SEGSIZE control can be used on
the LINK86 command line to allocate enough stack.

iC-86 Compiler User's Guide Using the Standard Libraries

In the following example, the quicksort routine is used to sort an array of integers.

#define NINTS

int ints[NINTS];

main()
{

int compareO;

20

qsort((char*)ints,NINTS,sizeof(int), &compare);

}

compare(pl, p2)
char *pl,*p2;
{

return(*(int *)pl - *(int *)p2);
}

4.6 Allocating Dynamic Memory

When building linked data structures or dealing with arrays whose size can be deter­
mined only at run-time, allocate blocks of memory dynamically. The standard
functions malloc, calloc, and free implement a general-purpose memory allocation
system that is used by user programs and the I/O library routines to allocate buffers.

The basic allocator is malloc(n). This routine allocates a block of memory of at least
n bytes and returns a (character) pointer to it. The block may be larger than requested,
if allocating the exact size creates a small (and probably unusable) block on the list
of free memory. The block contains garbage; it is not initialized in any way. If the
memory left in the free space pool is insufficient, a NULL pointer is returned.

The function calloc(n, size) allocates (with malloc) a block of memory large enough
to hold n objects of size size; this memory is zeroed. If there is insufficient free
memory, a NULL pointer is returned.

Blocks of memory no longer needed may be returned to the free pool by passing a
pointer to the block to free(p). This routine puts the block back in the free list and
merges adjacent free areas into single, larger, free areas. It is a grave error to pass a
nonsense pointer to free. No checking is done; a subsequent call to one of the alloca­
tion functions will probably return a very strange value.

4.7 The System Interface

The standard library provides a complete set of routines for dealing with the system.
These routines permit files to be renamed and deleted, and exceptions to be caught
(including the control C key). These routines also permit other low-level operations.

All of these routines, along with their calling sequences, are described in Chapter 8.
For additional details see the Series III System Programmer's Reference Manual.

4-9

U sing the Standard Libraries iC-86 Compiler User's Guide

4-10

4.8 Odds and Ends

Some routines in the library perform conversions between character strings and binary
values, generate random numbers, and perform other required actions. Chapter 7
describes all of these routines.

· " CHAPTER 5
RUN-TIME ISSUES n

The aim of this chapter is to assist those users who must interface code generated by
iC-86 with code generated by other Intel translators, such as PL/M-86 or ASM86.
Described in detail are the calling sequences used by C functions, the conventions
regarding the use of machine registers, the manner in which segment registers are set
up, and other, low-level issues. Experienced users, already familiar with Intel trans­
lators, may choose to skip this chapter.

The run-time environment used by the SMALL model of segmentation is quite
different from that used by the LARGE model of segmentation. Mixtures of the two
models may work (and may, in fact, be necessary) in some circumstances. However,
models should be mixed only by the most experienced of users.

5. 1 Small Model of Segmentation

5. 1. 1 Segment Names and Attributes

In the SMALL model of segmentation, a program has two segments, each 64K bytes
(maximum) in size. One segment, mapped by the CS segment register and spanned
by the group CGROUP, contains all of the machine code generated by iC-86. The
other segment, mapped by the DS, ES, and SS segment registers (which must contain
the same value at all times) and spanned by the group DGROUP, contains all the
pure and impure data, the stack, and the pool of free memory (the MEMORY
segment) used by the dynamic storage allocation functions malloc and free.

iC-86 places all instructions in a segment called CODE. This segment has a class
name of CODE and is a member of the CGROUP. All pure data and readonly data
is placed in a segment called CaNST. This segment has a class name of CONST. If
the ROM control is specified, strings are also placed in CONST. All impure data
(including strings, unless the ROM control is specified) is placed in a segment called
DATA. This segment has a class name of DATA. The CaNST, and DATA segments,
along with the machine stack (in a segment called STACK) and the free memory
pool (in a segment called MEMORY), are members of the DGROUP.

Users of PL/M-86 will recognize these names as those used by the PL/M-86 compi­
ler in the SMALL model of segmentation. iC-86 segment names, class names, groups,
and attributes are completely compatible with PL/M-86 segment names, class names,
groups, and attributes. The rules stated in the ASM86 Language Reference Manual
(order number 121703) that describe how to set up the segments for assembly
language subroutines for PL/M-86 also apply to C.

5.1.2 Calling Sequence

The C Galling sequence is different from the calling sequence used by PL/M-86 (and
other Intel translators). First and foremost, the C language does not require that the
number of arguments passed to a function be the same as the number of arguments
specified in the function's declaration. Routines frequently have a variable number
of arguments. In fact, the two formatted I/O routines in the standard library (printf

5-1

Run-Time Issues iC-86 Compiler User's Guide

5-2

and . scanf) take a variable number of arguments. Given this requirement, the
PL/M-86 convention of having the called routine remove the arguments from the
stack is not usable. Furthermore, the standard PL/M-86 calling sequence pushes the
arguments from left to right, making it difficult to locate the first argument if the
number of arguments is unknown.

The calling sequence below is used, The function arguments are pushed, right to left,
as described in detail below. The function is then called, either directly or indirectly,
with a NEAR CALL instruction. An ADD instruction after the call removes the
arguments from the stack.

Function arguments are pl:lshed as follows.

char
int
long
float
double
struct
union
pointer

widened to int, then pushed
pushed
high order word pushed, then low order word pushed
widened to double, then pushed in 8087 order
pushed in 8087 order
pushed in memory order
pushed in memory order
offset pushed

For example, the following function call:

int
long
char

f{a, b, c);

generates the code below:

movb
cbw
push
push
push
push
call
add

a;
b' ,
c' ,

al,c

ax
b+2
b
a
f_
sp,8

Note that an underscore character (_) has been appended to the function name. The
underscore character serves two functions. First, it makes it harder to call
a PL/M-86 routine by accident. Second, it means that two routines, both with the
same apparent name, can be identically called from iC-86 and PL/M-86. This facil­
ity is used in the UDI support library. The DQ functions in the C library (whose
names end in an underscore) are simply interfaces to routines in the Intel library that
reverse the argument list and (sometimes) convert null terminated C strings to leading
count UD I strings.

iC-86 Compiler User's Guide Run-Time Issues

Because C functions may use registers SI and DI for register variables, the C prolog
saves SI and DI. It also saves and resets BP. Arguments are at offsets B and up from
BP; locals are at offsets -2 and down. The SP points at the local variable with the
lowest address. The C epilog resets SP from BP and then restores DI and SI before
returning. Segment Registers are unchanged; all other registers have unknown
contents.

Functions return values as follows. Functions returning struct or union objects actually
return a pointer to the struct or union; the code generated for the function call block
moves the result to its destination.

char
int
long
float
double
struct
union
pointer

in AL
in AX
in DX:AX
on 8087 stack
on 8087 stack
pointer in AX
pointer in AX
in AX

For more detailed information, use the ASM86 option in iC-86 to examine the gener­
ated code.

f(a, b, c)
int a;
int b;
int c;
{

return(a *b-c);
}

a
b
c

proc

push
push
push
mov

sub

mov
imul
sub

mov
pop
pop
pop
ret

endp

equ
equ
equ

near

si
di
bp
bp,sp

sp,N_autos

aX,a
b
ax,c

sp,bp
bp
di
SI

word ptr [bp+8]
word ptr [bp+ 10]
word ptr [bp+ 12]

5-3

Run-Time Issues iC-86 Compiler User's Guide

5-4

5. 1.3 Stack Allocation

C programs use the stack provided by the SYSTEMSTACK module in SMALL.LIB.
The C run-time start-off routine contains a zero length stack segment that has a
symbol at the end of it. This symbol is relocated to the top of the stack segment by
LINK86. The stack may be set to any size by using the SEGSIZE directive· in
LINK86.

5. 1.4 Segment Register Initialization

The run-time start-off routine and/or the loader initializes the segment registers CS,
DS, ES and SS. It also sets up SP. Interrupts disabled before touching any of these
registers, are unconditionally enabled when the initialization is completed. The same
startup routine handles both absolute images and L TL images. As noted earlier, a C
function will preserve SI, DI, BP, SP and the segment registers; other registers may
be clobbered.

5. 1.5 Command Line Processing

The command line that invoked the C program is obtained by calling
DQGETARGUMENT repeatedly until an argument string delimited by a carriage
return is encountered. This command argument is collected in a static buffer in
SQMAIN. When control is passed to the user's main routine, three arguments are
passed to it. The first, argc, is the number of arguments. The second, argv, is a pointer
to an array of character pointers that point to the beginnings of the command strings
in SQMAIN's buffer. This argument array is also statically allocated in SQMAIN.
The third argument, envp, is always O.

As explained in Section 1.2.4, all alphabetic characters in the arguments are mapped
to lower case.

5.1.6 Heap Allocation

The MEMORY segment provides the raw material for the dynamic storage manage­
ment functions. The size of the MEMORY segment is determined by subtracting the
base address of the segment in the DGROUP (obtained simply by placing a label
into the segment in SQMAIN) from the size of the data segment (obtained by a call
to DQGETSIZE). All of the MEMORY segment is linked into the free memory
pool on the first call to malloc.

The size of the MEMORY segment may be adjusted by using the SEGSIZE control
on LINK86.

Note that DQGETSIZE does not return a useful result if the program has been
bound as an absolute image (that is, if the program has been processed by LOC86).
Consequently, the storage allocator malfunctions if it is used by an absolute program
- which means that absolute programs may not use the standard I/O package without
providing their own versions of malloc and free. This is so because the I/O routines
use the dynamic space allocator to obtain and release I/O buffers.

iC-86 Compiler User's Guide Run-Time Issues

5. 1.7 Interfacing with Intel Supplied Routines

Most routines supplied by Intel use the PL/M-86 calling conventions. The code
generated by the C compiler cannot, because of the semantics of C, use these conven­
tions. If it is necessary to call such routines (e.g., the interface routines of RMX86),
the linkage must be written in ASM86. In the following simple example, assume it is
necessary to call the PL/M-86 function USEFUL, which has the following
declaration:

USEFUL: PROCEDURE (A, B, C) EXTERNAL POINTER;
DECLARE (A, B, C) INTEGER;
END;

The ASM86 linkage to this function would look like this:

name

cgroup group
dgroup group

assume
assume

code segment
public
extrn

useful - proc
push
push
push
mov
sub

push
push
push
call

useful

code
const, data, stack, memory
cs:cgroup
ds:dgroup, es:dgroup, ss:dgroup

public I code I

usefuL
useful:near

near
si
di
bp
sp,bp
sp,N_autos

; Note the I I I I

; C save code

; Reserve locals, if needed

word ptr [bp+8] ; Push parameters
word ptr [bp+ 10] ; from left
word ptr [bp+ 12] ; to right and
useful ; call routine.

mov aX,bx ; Move return value.
; At this point, the SI and DI registers
; may have been altered.

mov sp,bp ; C return code
pop bp
pop di
pop si
ret

usefuL endp

code ends
end

5-5

Run-Time Issues iC-86 Compiler User's Guide

5-6

5.2 Large Model of Segmentation

5.2.1 Segment Names and Attributes

Object modules generated by iC-86 in the LARGE model of segmentation always
contain two segments. One segment holds all of the code produced by the functions
in the file; the other generally contains all of the data actually allocated by the
functions in the file. These segments are called name_CODE and name_DATA, where
name is the name of the source file (with all leading devices, VIC, and directory
information stripped off). The code segment always has class name CODE; the data
segment always has class name DATA. These same naming conventions are used by
PLjM-86 in the LARGE model of segmentation.

The segment name_CODE includes code, linkage vectors, literals, switch tables, and
read only data. If the ROM control is specified, it also includes strings. The
name_DATA segment includes ordinary external and static impure data items. If the
ROM control is not specified, it also includes strings.

There are no group definitions in the object code produced in the LARGE model.

5.2.2 Calling Sequence

The LARGE model calling sequence is similar in spirit to the SMALL model
sequence. Arguments are passed in exactly the same way, except that pointers are
two-word objects. The base part of the pointer is pushed first, followed by the offset
part. This makes the pointer object on the stack compatible with the standard 8086
pointer.

Because the return address pushed by the FAR CALL instruction is now a double
word, the first argument is at offset 10 from the BP (rather than at offset 8 as in the
SMALL model).

Functions return pointer objects in the DX:AX register pair. This is different from
PLjM-86, which returns pointer objects in the ES:BX register pair.

The following example copies a character string from the location pointed to by pI
to that pointed to by p2, changing all upper-case letters to the character '! I •

f(pl,p2)
char *pl, *p2;
{

int c;

whileCCc=*pl + +)!=O) {
ifC c) = I A I & & c (= I Z I)

C = '! ';
*p2++ = c;

}

*p2 = 0;
}

f_ proc far

push si
push di
push bp
mov sp,bp

iC-86 Compiler User's Guide Run-Time Issues

sub sp,2

pI equ dword ptr [bp+ 10]
p2 equ dword ptr [bp+ 14]
c equ word ptr [bp-2]

LO: les si,pl
inc word ptr pI
mov al,es:[si]
cbw
mov c,ax
or ax,ax
je L2

cmp c,' A'
jl Ll
cmp c,' Z'
jg Ll
mov c ,', , .

Ll: les si,p2
inc word ptr p2
mov ax,c
movb es:[si],al
jmp LO

L2: les si,p2
mov es:byte ptr [si],O

pop bp
pop di
pop si
ret

f_ endp

5.2.3 Run-Time Start-Off

The run-time start-off routine works exactly the same way in the LARGE model of
segmentation as it does in the SMALL model: only the SS and the SP registers are
set up (the DS and ES registers are set up to access internal data while the LQMAIN
routine is running).

5.2.4 Heap Allocation

The standard allocation routines malloc and free are simply interfaces to the library
functions DQ$ALLOCATE and DQ$FREE. LARGE model programs may be bound
as long as these Intel supplied routines function correctly.

5.2.5 Interfacing the LARGE Model

The LARGE model interface to routines supplied by Intel is similar to that used in
the SMALL model. Because of differences between the C and PL/M-86 calling
sequences, the linkage must be written in ASM86.

5-7

Run-Time Issues iC-86 Compiler User's Guide

5-8

In the following example, assume a LARGE model interface is required for the same
USEFUL PL/M-86 routine used as an example in the SMALL model. The following
ASM86 routine will perform the linkage:

name useful

extrn useful:far
usefuLcode segment public I code I

/ assume cs:usefuLcode
public usefuL

useful - proc far
push si
push di
push· bp
mov sp,bp
sub sp,N_autos

push word ptr [bp+ 10]
push word ptr [bp+ 12]
push word ptr [bp+ 14]
call useful
mov dX,es
mov aX,bx

; At thisopoint, the SI, DI, DS and ES registers
; may have been altered.

mov sp,bp
pop bp
pop di
pop si
ret

useful - endp

usefuL code ends

end

; Note the I I

; C save code

; Claim locals

; Push parameters
; from left
; to right, and
; call routine
; Return pointer
; in dx:ax

; C return code

• I~\ CHAPTER 6
SPECIAL CONSIDERATIONS n

This section documents some peculiarities of iC-86 and it's run-time environment and
warns the new user of the more common problems, especially when C programs are
ported from other machines to iC-86.

6. 1 Binary Files

The ISIS file structures maintain a distinction between ASCII and binary files. In a
binary file, all characters are simply read and written as encountered. However, in
an ASCII file all newlines must be expanded to carriage return/line feed sequence
on output, and the carriage return/line feed sequence must be converted to newline
on input. The routine fopen takes an extra format specifier in the mode field (, , b' ,)
to specify a binary stream; forgetting to specify the b will make extra ODh bytes
appear in output files and will make ODh bytes disappear on input files. These kinds
of problems happen most frequently when one is moving a program from an operat­
ing system that does not distinguish between ASCII and binary I/O to ISIS.

6.2 Running Out of Memory

Care should be taken when writing programs that allocate memory with the dynamic
memory allocation functions malloc and free. Typically, a program simply prints a
message and exits when it discovers that no more dynamic memory is available.
However, I/O buffers are claimed on demand. If the error message is the first write
to a stream, enough space may not be available to claim the I/O buffer. To make
programming easier, the standard error stream preallocates its buffers. Caution should
be used when writing diagnostics to the standard output or to some other stream.

The routine setbuf may be used to force buffer allocation.

6.3 Fields

The C language requires only that fields be implemented in integers. The language
also allows the implementation considerable liberty with respect to the zero or sign
extension of fields.

iC-86 allows fields of char, unsigned char, short, unsigned short, int, and unsigned
int. When referenced, fields in signed types are sign extended to integers when refer­
enced. On the other hand, fields in unsigned types are zero extended to integers when
referenced.

No attempt has been made to implement fields in long integers or unsigned long
integers.

6.4 Absolute Memory Addressing

All of the iAPX 86 memory is segmented and this fact must be borne in mind when
referencing absolute locations. In the SMALL case, all references to absolute locations
are relative to the beginning of the group (DGROUP for DATA and CGROUP for
CODE). In the LARGE case, both the offset and segment values must be specified
with a 32-bit value which has segment base in the most significant 16 bits and the
offset in the least signficant 16 bits.

6-1

Special Considerations iC-86 Compiler User's Guide

6-2

Example:

1* LARGE MODEL EXAMPLE *1

char c_var, *char_ptr, (*func_ptr)()j

char_ptr = Ox12000345i

char_ptr II 'A'i 1 Store A in address 12345H *1

fun c_p t r = 0 x 1 234 H i

c_ va r = . (* fun c_p t r) (2) i 1* call function at 01234H *1

6.5 PSCOPE/121CE™ Operation

All symbols in the source program have an underscore (_) appended to them in the
debug environment. For example, program symbol V AR is referenced as V AR_ under
PSCOPE. Also, lowercase characters in symbols are converted to uppercase. Using
names that differ only in case may lead to confusion under PSCOPE.

iC-86 programs have a separate startoff routine that collects the command line
parameters etc. and then calls MAIN_. After loading, the debug cursor points to this
startoff routine. Execution of program to the breakpoint MAIN_ will bring the debug
cursor to the beginning of the user program main. Therefore, under PSCOPE or
PICE, th~ first command line should be:

*GO TIL

6.6 External Identifiers

All program identifiers are mapped into uppercase when iC-86 emits the object file.
Therefore, although the iC-86 compiler treats uppercase and lowercase letters as
distinct characters in the program, this case sensitivity does not extend to external

_ identifiers.

· ~ .. \ CHAPTER 7
THE STANDARD (libc) LIBRARY n

The standard libraries contain a large number of routines that perform many common
programming tasks. This section describes each of the routines in the libraries. The
descriptions give the calling sequence (the type of the return value and the types of
each of the arguments) for each routine and give an explanation of the function of
each routine.

7. 1 Character Classification

The include file ctype.h contains definitions for a nUmber of character classification
macros. These macros permit the lexical class of a character to be determined easily.

The macros have a non-zero value if the condition tested is true, and value 0 if the
condition is not true.

The isaseii macro is defined on all integers. All other macros are defined only on the
special value EOF and the legal ASCII characters (as determined by isascii).

isalnum(c); int c;

The isalnum macro tests if c is either an alphabetic character or a numeric
character (as defined by the is alpha and isdigit macros).

isalpha(c); int c;

The isalpha macro tests if c is alphabetic. In this context, alphabetic means the
uppercase and lowercase letters and the underscore character (_).

isaseii(c); int c;

The isascii macro tests if the integer c is in the legal ASCII range (0 to 127
decimal). This macro is normally used to check the legality of a character before
presenting it to one of the other macros (which malfunctions on out-of-range
arguments).

isentrl(c); int c;

The isentrl macro tests if c is a rubout character (7FR) or a control character
(less than 20R).

isdigit(c); int c;

The isdigit macro tests if c is a digit (between 0 and 9).

islower(c); int c;

The islower macro tests if c is a lowercase letter (between a and z).

isprint(c); int c;

The isprint macro tests if c is a printing character (between a blank space
and ---).

ispunct(c); int c;

The ispunct macro tests if c is a punctuation character. A punctuation charac­
ter is a character that is neither a control character nor an alphanumeric
character.

7-1

The Standard (libc) Library iC-86 Compiler User's Guide

7-2

isspace(c); int c;

The isspace macro tests if c is a white-space character (space, tab, carriage
return, newline, line feed or form feed).

isupper(c); int c;

The'isupper macro tests if c is an uppercase letter (A through Z).

7.2 String Manipulation

The string manipulation routines work on O-byte terminated strings stored in arrays
of characters. These routines all assume that their arguments are well formed. If any
of the routines are called with ill-formed strings (strings without the O-byte termina­
tion), they may test, compare, or move all of memory.

char *strcat(5 1,52): char * 5 1, * 52,

The strcat routine concatenates to the end of the string pointed to by 51 a copy
of the string pointed to by 52. The destination string is assumed to have enough
memory allocated past its end to hold the extra characters. The 51 argument (a
pointer to the result)is returned.

char *strncat(s1, 52); char *51, *52, n;

The strncat routine is just like strcat except that it will never copy more than n
characters from tht(second string.

int strcmp(51, 52); char *51, *52;'

The strcmp routine performs lexicographic string comparision. It takes pointers
to two strings as arguments and returns an integer that is less than zero if the
first string is less than the second string, equal to zero if the first string is the
same as the second string, or greater than zero if the first string is greater than
the second string.

int strncmp(s1, 52, n); char *51, *52, int n;

The strncmp routine is just like strcmp except that it does not compare more
than n characters.

int strlen(~1); char *51;

The strlen routine returns the number of characters in the string pointed to by
51.

char *strcpy(s1, 52); char *51, *52;

The strcpy routine copies into the string pointed to by 51 the string pointed to
by 52. The 51 argument (a pointer to the result string) is returned.

char *strncpy(s1, 52, n); char *51, *52; int n;

The strncpy routine is just like 'strcpy except that no more than n characters
are copied.

char *index(s1, c); char *51; int c;

The index routine returns in the string 51 a pointer to the first occurrence of
the character c. A NULL pointer is returned if 'the character is not in the string.

iC-86 Compiler User's Guide The Standard (libc) Library

char *rindex(51, c); char *51; int c;

The rindex routine routine returns in the string 51 a pointer to the last occur­
rence of the character. c. A NULL pointer is returned if the character is not in
the string.

7.3 Creating, Deleting, and Manipulating FILE Objects

FILE *fopen(name, mode); char * name, * mode;
FILE *freopen(name, mode, fp); char *name, *mode, FILE *fp;

The fopen routine creates a new FILE object and attaches to it the device and/
or file specified by the name argument. The name argument is a string. Any
device and/or file name defined by the operating system is acceptable. The
mode string must be r (for reading), w (for writing), r+w (for updating) or a
(for appending). If the file does not exist and the mode is w or a, the file will
be created. If the mode is wand the file does exist, the file is truncated to zero
length (the old contents are destroyed). The mode string may also contain the
character b to specifiy that the new FILE should be set up for binary I/O. A
binary FILE is the same as a default (ASCII) file except that the special
processing of the newline character (OAH) is disabled. A pointer to the new
FILE object is returned. A NULL pointer is returned on any kind of error.

The freopen routine is like the fopen routine except that it takes a third
argument, fp. This FILE object is closed and the named file is attached to it.
This routine is normally used to associate one of the standard streams (stdin,
stdout, or stderr) with a specific file.

int fclose(fp); FILE *fp;

The fclose routine destroys the FILE object pointed to by fp. The routine first
finishes up any I/O operations associated with the FILE, then releases any
I/O buffers and detaches the connection. A 0 is returned if all goes well; a -1
on any type of error.

int fflush(fp); FILE *fp;

The fflush routine writes out any data that has been buffered in a FILE object.
This routine returns a 0 if all goes well; -Ion any kind of error. fflush performs
no ope~ation on an input stream; it always returns a successful status.

void setbuf(fp, b); FILE *fp; char b[BUFSIZ];

The setbuf routine causes the buffer b to be associated with the specified FILE.
The routine must be called before buffers are dynamically allocated to the FILE
(that is, before the first read or write operation is performed).

This routine is often used to prevent I/O buffers from being allocated in the
dynamic storage pool in programs that require precise control of their memory
usage.

feof(fp); FILE * fp;

The feof macro tests the _FEOF flag in the FILE fp. This flag is set when an
input FILE hits end of file. feof returns non-zero when an input stream reaches
end of file and 0 otherwise.

ferror(fp); FILE *fp;

The ferror macro tests the _FERR flag in the FILE fp. This flag is set on any
kind of I/O error, and a non-zero value is returned by ferror.

7-3

The Standard (libc) Library iC-86 Compiler·User's Guide

7-4

clearerr(fp); FILE * fp;

The clearerr macro clears the _FERR flag in the FILE· fp. This macro is used
by programs that recover from I/O errors.

fileno(tp); FILE * fp;

The fileno macro extracts the operating system's connection number from the
FILE fp. This macro might be used, for example, to obtain the connection
number to be passed to dq$special or dq$get$connectiori$status.

7.4 Byte-by-Byte I I 0

int fgetc(tp); FILE * fp;

The fgetc routine reads and returns the next byte from the input FILE fp. The
special value EOF(-1) is returned on end of file or any type of error.

int fputc(c, fp); int c; FILE *fp;

The fputc routine writes the byte c onto the output FILE fp. The c argument is
returned if all goes well. An EOF is returned on any kind of error.

The fgetc and fputc routines are the actual low-level, byte-by-byte I/O functions.
However, they are not normally called by users. User programs call these
routines through the following four standard macros:

getchar()

ThegetcharO macro is identical to fgetc(stdin).

getc(fp)

The getc(tp) macro is identical to fgetc(tp).

putchar(c)

The putchar(c) macro is identical to fputc(c, stdout). putc(c, fp).

The putc(c, fp) macro is identical to fputc(c, fp).

int ungetc(c, fp); int c; FILE *fp;

The ungetc routine pushes the character c back into the input FILE fp. Only one
character may be pushed back. This routine is useful, for example, in reading numbers
when an extra character must be read to determine that the end of the input has been
reached.

7.5 Word-by-Word 1/0

int getw(fp); FILE * fp;

The getw routine reads and returns the next 16(-bit word from the input FILE
fp. The routine returns EOF on end of file. However, since EOF is a legal word
value, the feof or ferror macros must be used to determine the success or failure
of a getw.

int p~tw{i, fo); int i; FILE * fp.

The putw routine writes the next 16-bit word i to the output FILE fp. The
routine returns i if the write is successful; EOF on any kind of error. Since EOF
is a legal word value, the ferror macro must be used to check the success of a
putw. .

iC-86 Compiler User's Guide The Standard (libc) Library

7.6 String I/O

char *fgets(b, n, fp); char * b; int n; FILE * fp;

The fgets routine reads characters from the input FILE fp and stores them into
the buffer b. fgets stops reading on the end of file, when a newline character is
read, or after n-1 bytes have been stored in the buffer. Newlines are stored in
the buffer. A 0 byte is stored in the buffer immediately after the last character
read.

The b argument is returned unless reading is terminated by an end of file, in
which case NULL is returned.

char *gets(b); char * b;

The gets routine is much like fgets except that it always reads from the standard
input FILE. This routine has no n parameter to specify the length of the buffer.
Delimiting newlines are not stored in the buffer.

int *fputs(b, fp); char * b; FILE * fp;

The fputs routine writes onto the output FILE fp the O-byte terminated string
in the buffer b. The routine returns EOF on failure.

int *puts(b);

The puts routine writes to the standard output FILE the O-byte terminated string
in the buffer b, followed by a newline. The routine returns EOF on failure.

7.7 Block I/O

int fread(b, s, n, fp); char * b; int s, n; FILE * fp;

The fread routine reads up to n objects each of size s bytes from the input FILE
fp into the buffer b. The number of items actually read is returned.

The feof and ferror macros must be used to check for end of file or error conditions.

int fwrite(b, s, n, fp); char *b; int s, n; FILE * fp;

The' fwrite routine writes n items each of size s bytes from the buffer b onto the
output FILE fp. The number of items actually written is returned.

The ferror macro must be used to check for error conditions.

7.8 Formatted I/O

printf(format [, list)); char * format;
fprintf(fp, format [, list]); FILE * fp; char * format;
sprintf(sp, format [, list)); char * sp, * fp ;

These three routines perform formatted output conversion. printf writes characters to
the standard output FILE, fprintf writes characters to the FILE fp, and sprintf stores
characters in the string sp.

7-5

The Standard (libc) Library iC-86 Compiler User's Guide

7-6

The format argument is a character string that controls the interpretation of additional
arguments in the comma-separated list. Ordinary characters (characters not part of
a format specification) are simply copied to the output.

Format specifications are introduced by a percent sign (%). The items below may
follow a percent sign:

1. A minus sign (-) specifying that the data in the output field should be left
adjusted instead of right adjusted (the default).

2. A string of decimal digits that specify the width of the output field. Normally, a
field is padded to its field width with space characters (blank spaces). However,
if the first character of the field width is a zero (0), the field is padded with 0
characters; the leading 0 does not cause the field width specification to be taken
as an octal number. If the field width is an asterisk (*), the next int from the list
is used as the field width.

3. A period (.) that only separates the two decimal digit strings.

4. A string of decimal digits that specifies the precision of an e, f or g conversion
item, or that specifies the maximum number of characters to be output by an s
conversion item. If the maximum number is an *, the next int from the list isused
as the maximum width.

5. An I specifying that the argument from the list is a long object rather than an
int object. Making the conversion character uppercase has the same effect.

6. A conversion character that specifies the exact form of the data conversion. The
legal conversion characters are as follows:

% The character % is output; the sequence %% is used to print a single
% character.

c The next int from the list is output as a character.

d (D) The next int (long) from the list is output in decimal.

e The next float or double from the list is output in the format
[-]d.ffffffE[+ - lee, where the length of thefraction string ffffff is
given by the precision(default 6).

f The next float or double from the list is output in the format [-]d.ffffff,
where the length of the fraction string ffffff is given by the precision
(default 6).

g The next float or double from the list is output in the shorter or either
the e or f conversion format.

o(0) The next int (long) from the list is output in octal.

r The next char * from the list is taken as a pointer to the argument list
of a function. A recursive invocation of printf, fprintf, or sprintf is
created to process this list as a printf argument list, with the pointer
pointing at the format argument. This format item is used to imple­
ment functions that take as arguments printf style format lists.

s The next item from this list is taken to be a character pointer to a
string. This string is output subject to the maximum length specifi­
cation.

u(U) The next int (long) from the list is output as an unsigned decimal
integer.

x(X) The next int (long) from the list is output in hexadecimal. The charac­
ters A through F (uppercase) are used for the digits with values 10
through 15.

iC-86 Compiler User's Guide The Standard (libc) Library

If you require floating point output, see section 3.1. Floating point output may print
several strings, in addition to the usual numbers. The string {Float} indicates that
the real floating point output routine is not included in the link, as described in section
3.1 above. The string {s Unnormal } , where sis + or -, indicates that the floating
point object is unnormalized. The string {s NAN} indicates that the floating point
object is not a legitimate floating point number. The string {s Infinity} indicates
that the floating point object represents infinity or -infinity. The string {s Denor­
mal} indicates that the floating point object is denormalized.

scanf(format[, list)); char *format;
fscanf(fp, format[, list]); FILE *fp; char *format;
sscanf(sp, format[, list]); char *sp *format;

These three routines perform formatted input conversion. scanf reads characters from
the standard input FILE, interprets them according to the given format, and stores
the results in the argument list. fscanf reads from the FILE fp, and sscanf reads from
the string sp.

The format argument is a character string that controls the interpretation of the input.
The list arguments must be pointers that indicate where the corresponding input item
is to be stored. White-space characters (space, tab, and newline) in format are ignored.
Other characters except % match non-white-space characters in the input. The %
character identifies the start of a conversion specification. Each conversion may use
one or more of the remaining arg arguments. Ensure type matching between the
arguments and the conversion specifications for correct results.

Each routine terminates when it encounters the end of the format string or when the
input does not match a specification. Each routine returns the number of successful
assignments.

The % character may be followed by characters that indicate the width of the input
field and the conversion type. A field is delimited by white space (space, tab, and
newline) or by the given field width, if any. Newlines are white space; thus, the input
can handle more than one line. The following modifiers may precede the conversion
type, but only in the order given:

1. An optional asterisk (*), indicating that the next input field should be skipped
(rather than assigned to the next variable in list).

2. An optional string of decimal digits, specifying a maximum field width.

3. An I specifies that the next input item is a long object rather than an int object.
Making the conversion character uppercase has the same effect.

4. A conversion character that specifies the exact form of the data conversion. The
legal conversion characters are as follows:

c The next input character is assigned to the next list member, which
should be char *.

d(D) The next input field is a decimal (long) integer; the next list member
should be int * (long *).

e The next input field is a floating point number; the next list member
should be float * or double *.

f Same as e.

o(0) The next input field is an octal (long) integer; the next list member
should be int * (long *).

s The next input field is a string; the next list member should be char *.

7-7

The Standard (libc) Library iC-86 Compiler User's Guide

7-8

7.9 Random Access

A long integer that contains the seek pointer is associated with every FILE. Initially,
this pointer is offset 0 bytes from· the start of the file. This pointer specifies the next
byte to be read or written, and is advanced as I/O is actually performed. This seek
pointer may be manipulated by programs to perform random access file operations.

int fseek(fp, offset, how); FILE *fp; long offset; int how;

The fseek routine adjusts the seek pointer associated with the FILE fp. If how
is 0, the seek pointer is set to offset. If how is 1, offset is added to the seek
pointer (permitting relative seeking). If how is 2, the seek pointer is set to the
sum of offset and the size of the file (in bytes). This permits seeking relative to
the end of the file.

long ftell(fp); FILE * fp;

The ftell routine returns the seek pointer associated with the FILE fp.

FILE *rewind(fp); FILE * fp;

The rewind(fp) routine is identical to fseek(fp, OL, 0). This routine is provided
only for programming convenience.

7.10 Sorting

The standard library provides two general sorting routines (given below) that imple­
ment· only the framework of the sort. The user program must provide a routine to
perform key comparision.

void shellsort(b, n, s, p); char *b; int n, s; int (*p)O:

The sh€lIsort is a general-purpose sorting function that uses Shell's sorting
algorithm. The argument b is a pointer to the base of the data block to be
sorted. The block contains n items; each of size s bytes. The p argument is a
pointer to a function that takes two arguments (both pointers to the objects
being compared) and returns an integer less than zero if the first object is less
than the second, equal to zero if the objects are identical, and greater than zero
if the first object is greater than the second object.

void qsort(b, n, s, p); char *b; int n, s; int (*p)O

The qsort routine is just like the shellsort routine except that it uses C. A. R.
Hoare's quicksort algorithm.

7. 11 Allocating Dynamic Memory

The standard library provides a general-purpose dynamic memory allocation system.
This system is used both by user programs and the I/O routines (in the standard
libaray) to dynamically allocate and release blocks of memory.

char *calloc(n, s); unsigned int n, s;

The calloc routine allocates (via an internal call to malloc) enough memory to
contain n objects, each of size s bytes. This routine clears memory to binary
zeros and returns a pointer. The routine returns NULL if the memory cannot
be allocated.

iC-86 Compiler User's Guide The Standard (libc) Library

void free(p); char * p;

The free routine takes a pointer p to a block of memory that has been allocated
by malloc or calloc and returns the block to the free memory pool. Passing to
free random pointers or pointers to blocks of memory not allocated by malloc
or calloc is dangerous.

char *malloc(n); unsigned int n;

The malloc routine allocates and returns a pointer to a block of memory at least
n bytes long. The memory is not cleared. The routine returns NULL if the
memory cannot be allocated.

7. 12 Odds and Ends

The standard library contains routines to convert numbers (stored in character strings)
from ASCII to binary, to generate random numbers, and to perform non local flow
control.

int abs(;); int i;

The abs routine computes the absolute value of its argument i. No overflow
checking is performed; the absolute value of the largest negative number is itself.

double atof(s); char *s;
int atoi(s); char *s;
long atol(s); char *s;

The atof, atoi and atol routines convert to a double, an int, or a long, respec­
tively, a number stored as an ASCII character string. Leading whitespace is
ignored. Leading signs (+ and -) are accepted and correctly interpreted. The
first unrecognized character (usually the 0 byte at the end of the string) stops
the conversion. No overflow checking is performed.

int randO;
void srand(seed); int seed;

The rand routine is a random number generator. Every time this routine is called,
it returns a new random number in the range 0 - 215 -1. The generator has a
period of 232. The srand routine can be called to seed (reset) the random number
generator. Often, a timing device (an Intel 8253, for example) can be used as
the source of such random seeds.

int setjmp(env); jmp_buf env;
void longjmp(env, value); jmp_buf env; int value;

The setjmp and longjmp routines manipulate machine environments and provide
a simple scheme for performing non local control transfers. An environment (env)
is an array of some sort. The include file setjmp. h contains a typedef(jmp_buf)
for this object.

'\

The setjmp routine saves the state of the run-time stack (SP, BP, and IP, plus
the CS in the LARGE model) in the supplied environment and returns O.

The longjmp routine restores the state of the run-time stack from the env, then
makes the call to setjmp, which again sets up the environment return. However
this time, the setjmp routine returns value.

The caller of setjmp must not have returned when longjmp is called, or the run­
time stack will be destroyed.

7-9

The Standard (libc) Library iC-86 Compiler User's Guide

7-10

7. 13 Trigonometric Functions

#include <math.h>
double acos(arg);
double arg;

double asin(arg);
double arg;

double atan(arg)
double arg;

double atan2(num, den);
double num, den;

double sin(radian);
double radian;

double cos(radian);
double radian;

double tan(radian);
double radian;

The trigonometric functions are sin, cos, and tan. The argument radian should be in
radian measure.

The inverse trigonometric functions are asin, acos, and atan. The argument of asin
or acos should be in the range [-1., 1.] while the argument of atan is any real number.
The result is in the range [-pij2, pij2] for asin, in the range [0, pi] for acos, and in
the range (-pi/2, pij2) for atan.

The atan2 function returns atan of the quotient of its arguments, numjden, with the
result in the range [-pi, pi]. The sine of the result will have the same sign as num,
and the cosine of the result will have the same sign as den.

Out of range arguments set errno to EDOM and return O. tan returns a very large
number where it is singular and sets errno to ERANGE.

7. 14 Cpmplex Absolute Value Functions

#include <math.h>
double cabs(z);
struct { double r, i; } z;

double hypot(r, i);
double r, i;

The cabs function computes the absolute value (or modulus) of its complex argument
z. The absolute value of a complex number is the length of the hypotenuse of a right
triangle with sides given by the real part r and the imaginary part i. The result is the
square root of the sum of the squares of the parts.

hypot computes the same value, but with rand i passed as separate parameters.

The functions return a very large number and set errno to ERANGE when the correct
result would overflow.

iC-86 Compiler User's Guide The Standard (libc) Library

7. 15 Hyperbolic Functions

#include <math.h>
double cosh(z);
double z;

double sinh(z);
double z;

double tanh(z);
double z;

The functions sinh, cosh, and tanh compute the hyperbolic sine, hyperbolic cosine,
and hyperbolic tangent, respectively. The argument z is in radians.

Both sinh and cosh set errno to ERANGE and return a huge value with the same sign
as the actual result when overflow occurs.

7. 16 Logarithmic and Exponential Functions

#include <math.h>
double exp(z);
double z;

double log(z);
double z;

double loglO(z);
double z;

double pow(z, x);
double z, x;

double sqrt(z);
double z;

The exp function returns the exponential of z, or e z.

The log function returns the natural (base e) logarithm of z. loglO returns the common
(base 10) logarithm of z.

pow returns z raised to the power x, or ZX.

The sqrt function returns the square root of z.

exp and pow indicate overflow by an errno of ERANGE and a huge returned value.
A domain error in log (z is less than or equal to 0), in pow (x is negative and not an
integer, or both z and x are 0), or in sqrt (z is negative) sets errno to EDOM and
returns O.

7-11

The Standard (libc) Library iC-86 Compiler User's Guide

7-12

7. 17 Bessel Functions of the First Kind

#include <math.h>
double jO(z);
double z;

double jt(z);
double z;

double jn(n, z);
int n;
double z;

jO, jt, and jn take an argument z and compute the Bessel function of the first kind
for order 0, order 1, and order n.

• j/l CHAPTER 8
THE SYSTEM INTERFACE (OQ$) LIBRARY n

Both C libraries contain a complete set of system interface (DQ$) routines. These
routines have the same names as their PL/M-86 counterparts (described in the Series
III System Programmer's Reference Manual). In almost all cases, the calling
sequences are identical.

The interface routines perform some transformations upon their parameters to make
it easier to call the system from C programs. In particular, the routines transform
the O-byte terminated strings of C into the leading count strings of PL/M-86 by
moving the data into a buffer on the stack.

The header file udi.h contains definitions and macros useful for dealing with the
system interface. This file includes symbolic names for the system error codes, some
structures for dealing with the time, date, and status of a connection, and definitions
for the types (such as token and Boolean) used by the interface routines.

Following are brief descriptions of each routine. Experienced Series III programmers
will find this information sufficient. Less experienced programmers should refer to
the Intel publications listed in the Preface of this manual for more elaborate
descri ptions.

8. 1 Segment Management

token dq$allocate(size, excep$p);
unsigned int size; int * excep$p;

This function allocates a new segment at least size bytes long (with 0 meaning 64K)
and returns a token representing the base of the new segment. If the operation fails,
a token of OxFFFF is returned. This routine is probably of very little use to programs
running in the SMALL model of segmentation, because the new segment may not be
addressable. However, this routine is used (almost directly) as a dynamic memory
allocator by programs in the LARGE model of segmentation.

void dq$free(segment, excep$p);
token segment; int *excep$p;

This routine returns the segment (previously obtained via a call to dq$allocate) whose
base is segment to the system's free memory pool.

unsigned dqgetsize(segment, excep$p);
token segment; int * excep$p;

This function obtains the size in bytes (with 0 representing 64K) of the segment
whose base is segment.

Programs using the SMALL model of segmentation can use this func~ion to obtain
the size of their expanding DATA segment. This is, in fact, how the standard memory
allocation routines (malloc and free) determine the size of the free storage pool.

8-1

The System Interface (DQ$) Library iC-86 Compiler User's Guide

8-2

8.2 Exception Handling

int (*dq$trap$exception(handler$p, excep$p»();
int (*handler$p)O; int *excep$p;

This function makes the function pointed to by handler$p the current exception
handler. The exception handling function is called with a single integer argument
(the exception code) when an exception occurs. This function returns a pointer to the
old exception handling function, or returns NULL if no handler has been established
yet.

This function has the same calling sequence in both models of segmentation. In both
cases, the actual exception handler is a FAR procedure concealed in the interface
routine. This hidden routine makes an indirect call to the user's handler (using either
a NEAR or FAR call, whichever is appropriate). The hidden routine saves all of the
8086 registers; it does not, however, save or restore the status of the numeric
coprocessor (8087).

int (*dqgetexception$handler(excep$p»();
int * excep$p;

This function returns a pointer to the current exception handling function, or returns
NULL if no handler has been established yet. This function is not a system interface
function. It simply returns the pointer to the exception handler that has been saved
by dq$trap$exception.

The excep$p argument is present only for calling sequence compatibility; it is
completely ignored.

void dq$decode$exception(code, but, excep$p);
int code; char buf[8l]; int *excep$p;

This routine obtains from the system an error message that describes the error code
passed in code, and stores the message in the buffer but as a UDI string.

int (*dq$trap$cc(handler$p, excep$p»();
int (*handler$p)O; int *excep$p;

This function makes the function pointed to by handler$p the current control C trap
handling function. This function returns a pointer to the old handler, or NULL if no
handler has been established yet. The handler function is called with no arguments.

As with dq$trap$exception, this routine is the same in both models of segmentation;
it handles all of the register saving and long pointer fabrication.

8.3 Exit

void dq$exit(code);
int code;

This routine terminates the current program. All connections are detached and all
resources are released. The code is a completion status, which is thrown away by the
system.

8.4 Get Time and Date

void dqgettime(gt$p, excep$p);
struct gt *gt$p; int *excep$p;

This routine asks the system for the current time and date. This information is returned
in the supplied gt structure (which is defined in udi.h) as UDI format strings.

iC-86 Compiler User's Guide The System Interface (DQ$) Library

8.5 Get System Identification

void dqgetsystem$id(id, excep$p);
char id [21]; int * excep$p;

This routine obtains the system identification and stores it in the supplied id buffer,
as a standard C string.

8.6 Delete a File

void dq$delete(path$p, excep$p);
char *path$p; int *excep$p;

This routine deletes the file whose pathname is the string path$p. This C string is
transformed into a UDI string by the interface routine via a buffer on the stack.

8.7 Rename a File

void dq$rename(old$p, new$p, excep$p);
char *old$p; char *new$p; int *excep$p;

This routine renames the file whose path name is in the C string old$p to the new
name in the C string new$p.

8.8 Connection Management

connection dq$attach(path$p, excep$p);
char * path$p; int * excep$p;

This function establishes a connection to an existing file. An error will be returned if
the file does not exist. The path$p argument is a C string containing the pathname
of the file.

connection dq$create(path$p, excep$p);
char *path$p; int *excep$p;

This function establishes a connection to a new file. If the named file exists, it is
deleted and recreated (truncating it to 0 length). The path$p argument is a C string
containing the pathname of the new file.

void dq$open(conn, mode, num$buf, excep$p);
connection conn; int mode, num$but, int *excep$p;

This routine takes a connection object and prepares it for I/O operations. This process
involves checking access rights, allocating buffers, and, in general, preparing for actual
read and/or write commands.

The conn argument is a connection object returned by a call to dq$attach or dq$create.

The mode argument specifies the desired access mode. Legal modes are 1
(DQ$MREAD) for read access only, 2 (DQ$MWRITE) for write access only, and 3
(DQ$MUPDATE) for read and write access. The symbolic definitions of the access
modes are in the udi. h header file.

8-3

The System Interface (DQ$) Library iC-86 Compiler User's Guide

8-4

The num$buf argument specifies the number of buffers. The console is usually run
unbuffered (num$buf = 0). Double buffering (num$buf = 2) is appropriate for
sequentially processed connections. Single buffering (num$buf = 1) may be more
appropriate for connections used randomly.

void dq$c1ose(conn, excep$p);
connection conn; int * excep$p;

This routine undoes the actions of a dq$open. All buffers are flushed and released.

void dq$detach(conn, excep$p);
connection conn; int * excep$p;

This routine undoes the actions of a dq$attach or dq$create. If the connection is open,
it is automatically closed before it is detached.

8.9 Read from a File

unsigned dq$read(conn, buf$p, count, excep$p);
connection conn; char * buf$p; unsigned count, int * excep$p;

This function obtains up to count bytes from the connection conn and stores them
into successive bytes starting at buf$p. The number of bytes actually read is returned.
On end of file, a count of 0 is returned.

The number of bytes read is never larger than count, although on line-edited connec­
tions the number of bytes may be less than count.

8.10 Write to a File

void dq$write(conn, buf$p, count, excep$p);
connection conn; char * buf$p; unsigned count, int * excep$p;

This routine writes count bytes beginning at buf$p to the connection specified by
conn. Files are automatically extended if the write goes beyond end of file.

8. 11 Seek a Connection

void dq$seek(conn, mode, offset, excep$p);
connection conn; int mode; long offset, int * excep$p;

This system interface routine moves the seek pointer in the connection specified by
conn to the position specified by the mode and offset. The mode may be 1 (DQ$BACK)
to seek backward by offset bytes, 2 (DQ$SET) to set the seek pointer to offset, 3
(DQ$FORWARD) to seek forward by offset bytes, or 4 (DQ$ENDBACK) to seek
backward by offset bytes from the end of file.

Note that the offset is a long integer. This is different from the PL/M-86 interface,
where the high and low halves of the offset are passed as separate arguments.

8. 12 Truncate a File

void dq$truncate(conn, excep$p);
connection conn;c int * excep$p;

This routine truncates the file open on the connection conn at the current seek position.
The connection must be open for write or update.

iC-86 Compiler User's Guide The System Interface (DQ$) Library

8. 13 Get Connection Status

void dqgetconnection$status(conn, gs$p, excep$p);
connection conn; struct gs * gs$p; int * excep$p;

This routine fills in the supplied gs structure with status information obtained from
the connection conn.

The gs structure definition is in the udi. h header file and looks like this:

struct gs {

char gs_open; /* Open flag * /
char gs_access; /* Access modes * /
char gs_seek; /* Seek modes * /
long gs_offset; /* Seek pointer * /

} ;

If the connection is open, the gs_open field is set true (not zero); if the connection is
not open, the field is set false (zero).

The gs_access field indicates the access mode of the connection. The gs_seek field
indicates the seek operations that are legal on the connection. The udi. h header file
contains the symbolic names of the bits in these bytes.

The gs_offset field is set to the current seek position. If the connection is not open or
cannot perform a backward seek, it is set to garbage.

8. 14 Change Extension

void dq$change$extension(path$p, new, excep$p);
char *path$p; char new[3]; int *excep$p;

This routine changes the extension of the filename in the string path$p to that speci­
fied by the new argument. If new[O]; is a blank, the extension is stripped from the
path$p.

8. 15 Load an Overlay

void dq$overlay(Jink$p, excep$p);
char * link$p;int * excep$p;

This routine loads the overlay whose link name is in the C string link$p from the
current load file.

8. 16 Perform Special 110 Function

void dq$special(type, parm$p, excep$p);
int type; connection * parm$p; int * excep$p;

This routine permits the setting and/or resetting of the line edit mode on the console.
The type argument is either 1, which makes console input transparent, or 2, which
makes it line edited. The dq$special routine does not check that the type argument is
one of these values. Any additional codes accepted by the operating system are
acceptable to this routine.

8-5

The System Interface (DQ$) Library iC-86 Compiler User's Guide

8-6

The parm$p argument is a pointer to a connection that represents a dq$attach of the
:CI: device.

8. 17 Command Tail Parsing

int dqgetargument(buf, excep$p);
char buf (81); int * excep$p;

This routine gets the next argument from the command tail and stores it in the supplied
buffer as a UDI format string. This routine returns the character that terminated the
argument.

This routine is not normally used by C programs. Instead, the command tail has been
preparsed by the run-time start-off and passed as arguments to the main routine.

unsigned dq$switch$buffer(buf$p, excep$p);
char *buf$p; int *excep$p;

This routine switches the input buffer used by dqgetargument to a user specified
area in memory. This routine is useful for parsing imbedded ' $ I control lines and
other related tasks.

The first time this routine is called, it returns O. On subsequent calls, it returns the
offset (in bytes) from the start of the buffer of the first character past the last delim­
iter returned by dqgetargument.

8.18 File Information

void dq$file$info(conn, mode, file$info$p, excep$p);
connection conn; int mode; struct file$info * file$info$p;
int excep$p;

This routine fills in the supplied file$info structure with file information obtained from
the connection conn. The file owner is identified if mode is 1 and is not identified if
the mode is O.

The file$info structure definition is in the udi. h header file and is shown below:

struct file$info {
char fLowner(15);
long fLlengthoffile;
char fLtype;
char fLowner$access;
char fLworld$access;
long fLcreate$time;
long fLlastmodtime;
char fLreserved(20);

} ;

The fLowner field is a C string identifying the system name of the file owner. The
fi_type field indicates the file usage: 0 for data; 1 for directory. The fLowner$access
and fi_ world$access fields describe the access rights of the file owner and others. The
fLcreate$time and fLlast$mod$time fields indicate the times of creation and last
modification of the file.

i

• I APPENDIX A
KEYWORDS n

iC-86 uses the following identifiers as keywords. These identifiers may not be used
for any other purpose.

auto extern short
break float sizeof
case for static
char goto struct
continue if switch
default int typedef
do long union
double readonly unsigned
else register void
entry return while
enum

A-I

• 1<) APPENDIX B
ERROR MESSAGES n

The following error messages may be printed by iC-86. '%s' will be replaced by a
string. '%d' will be replaced by a decimal number.

argo list syntax
array bound must be a constant
array bound must be positive
array row has 0 length
bad argument storage class
bad base type for field
bad external storage class
bad field width
bad filler field width
call of non function
cannot add two pOinters
cannot assign unlike structures
cannot declare flexible automatic array
cannot initialize fields
cannot initialize unions
cannot specify class in cast
'case' not in 'switch'
class not allowed in structure body
compound statement required
constant expression required
declarator syntax
'default' not in 'switch'
end of file in comment
enumeration constant '%s' is changing value
enumeration list syntax error
expression syntax
external syntax
extra 'long' or 'short'
field too wide
function cannot be an argument
'goto' statement syntax
identifier '%s' is not a label
identifier '%s' is not a tag
identifier '%s' is undefined
identifier '%s' not a formal
identifier '%s' not an enumeration tag
identifier '%s' not legal in expression
identifier '%s' redeclared
identifier '%s' reinitialized
identifier '%s' semantically forbidden
illegal character (%d)
illegal character constant
illegal label '%s'
illegal operation on 'void' type
illegal pointer subtraction
illegal use of 'void'
illegal use of 'void' in cast
illegal use of floating point
illegal use of pointer
illegal use of structure
indirection through non pointer

B-1

Error Messages iC-86 Compiler User's Guide

B-2

initializer too complex
left context required
left side of '-)' not usable
member '%5' is changing offset
member '%5' is changing width
member '%5' is undefined
mismatched conditional
misplaced':' operator
misplaced 'long'
misplaced 'short'
misplaced 'unsigned'
missing %5
missing member
missing right brace
missing semicolon
multiple 'default' labels
multiple classes
multiple types
no 'break' context
no 'continue' context
non scaler field
nonterminated string or character constant
number too long
registers lack an address
returnee) illegal in 'void' function
size of %5 '%5' is not known
structure or union in truth context
tag mismatch
too many case labels
too many initializers
too many 5tructure initializers
type clash
type required in cast
undefined label '%5'
unexpected end of enumeration list
unexpected end of file

The following fatal error messages may be printed by iC-86. '%s' will be replaced by
a string; '%d' will be replaced by a decimal number.

%s: cannot create, argv[dl
%5: cannot open, ifn
%5: cannot reopen, argv[Sl
%s: unknown option, argv [dl
8087 item
cannot allocate tree node5
grabnval
out of space (glookup)
out of tree nodes
aerr
afupdate
asmgen op=%d r=%d mode=%d regm~%d

asmgen
bad bit
bad func %d, op
bad macro %d, c
bad rev
bad temp.
base

file opcode %d, op

iC-86 Compiler User's Guide Error Messages

botch in popi!!tack
b!! !!
call no !!tar
call not of!!
cannot a!!semble Xd, opcode
code: data
collect
d def (glookup)
d def (llookup)
decrefc pa!!!!ed non label
genfield, modeXd, mode
goa 1
grab IvaI
increfc passed non label
J u m p
large item
1 de!!
1 p t r
macro body too long
macro expansion overflow
missing output file
modxfun
ndp item
no I: I

no lofs
no match op·Xd, tp-)t_op
no patp
no rofs
node will not fix
not an ofs
options
out of space (glookup)
out of space (llookup)
out of space
out of tree space
output write error
reach, disp·Xd, di5p
restlocals
s d i
sdibump
s ell v
switch overflow
switch underflow
temp. file write error
too many args
too many args in macro
too many cases
too many constants
too many directories in include list
too many members
too many stores
undef
write error on ouput object file
x seg 11
x seg 12
xeq

The following warning messages may be printed by iC-86. I %s I will be replaced by
a string.

B-3

Error Messages iC-86 Compiler User's Guide

B-4

divide by zero
%s in macro argument
empty switch
macro %s redefined, ident
macros nested %d deep, loop likely
missing ' .. '
multiple leIse's
nested comment
nested comments
preprocessor assertion failure
possible missing initializer
sizeof(function) set to 1
sizeof(void) set to 0
switch of non integer
symbol '%s' truncated to 39 characters
trailing \11, \1 in initialization list
zero modulus
%s '%s' %s is unused
constant '%s' is long
construction not in Kerni9han and Ritchie
identifier '%s' not bound to register
questionable structure access
risky type in truth context
structure '%s' does not contain member '%s'
union '%s' does not contain member '%s'

I . "

n

ASCII HEX
Character

NUL 00
SOH 01
STX 02
ETX 03
EOT 04
ENO 05
ACK 06
BEL 07
BS 08
HT 09
LF OA
VT OB
FF OC
CR 00
SO OE
SI OF
OLE 10
OC1 11
OC2 12
OC3 13
OC4 14
NAK 15
SYN 16
ETB 17
CAN 18
EM 19
SUB 1A
ESC 1B
FS 1C
GS 10
RS 1E
US 1F
space 20
! 21
II 22
23
$ 24
% 25
& 26

27
(28

~ 29
2A

+ 2B
, 2C
- 20

2E
/ 2F
0 30
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39
: 3A
; 3B
< 3C
= 3D

APPENDIX C
ASCII CHARACTER SET

ASCII HEX
Character

@ 40
A 41
B 42
C 43
0 44
E 45
F 46
G 47
H 48
I 49
J 4A
K 4B
L 4C
M 40
N 4E
0 4F
P 50
0 51
R 52
S 53
T 54
U 55
V 56
W 57
X 58
Y 59
Z 5A
[5B
\ 5C
] 50

!\(t) 5E
- 5F ,

60
a 61
b 62
c 63
d 64
e 65
f 66
9 67
h 68
i 69
j 6A
k 6B
I 6C

m 60
n 6E
0 6F
p 70
q 71
r 72
s 73
t 74
u 75
v 76
w 77
x 78
Y 79
z 7A
{ 78
I 7C
} 70

C-I

· " APPENDIX D
USING iRMX™ SYSTEM CALLS IN iC-86 n

All of the iRMX system calls provided in the Nucleus, BIOS, EIOS, Human Inter­
face, and Application Loader can be used in LARGE MODEL iC-86 programs. In
order to make use of these calls, once the program using these calls is compiled, it
has to be linked with the appropriate C Interface Library and then the appropriate
iRMX Interface Library routines.

D. 1 iRMX System Calls in iC-S6

The following iC-86 module has a procedure that can be used to write out a buffer
using BIOS calls. This procedure illustrates features such as the correspondence
between C data types and iRMX data types, and how to address structures embedded
within iRMX 86 objects. Following that are the commands needed to compile and
link the program:

#include < stdio.h)

j* BIOS_write: Procedure to write out a string to a device using BIOS calls.

*j

Interface variables:

device_conn: token of the connection to the device to which to write.
mbox_token: token of a mail box, created by the main program, and used in

asynchronous call to bios.
string_ptr : pointer to the array of bytes that are to be written out.
char_count : number of characters that are to be written out.

unsigned int dvice_conn, mbox_token, char_count;
char *string_ptr;

{

unsigned int exception_code;
unsigned int dummy;

typedef struct iors_structure {

union {

unsigned int status;
unsigned int unit_status;
unsigned int actual;

} iors_struc;

struct {unsigned int offset, base; } ptr_overlay;
iors_struc *iors_pointer;

} union_struct;

#define iors (*(union_struct.iors_pointer))

D-l

Using iRMXTM System Calls in iC-86 iC-86 Compiler User's. Guide

D-2

rqawrite (device_conn,string_ptr,char_couIlt,mbox_token, &
exception_code);

if (exception_code ! = 0)
{

printf(I I Exception %x on write. \ n I I ,exception_code);
exit(2);

}

union_struct.ptr_overlay.offset = 0;
union_struct. ptr _overlay. base = receivemessage(m box_token,

& Oxffff, dummy ,&exception_code);
if (iors.status ! = 0)

{

}

printf(I I Status = %x on write. \ n I I ,iors.status);
exit(2);

rqdeletesegment(union_struct. ptr_overlay. base, & exception_code);
} / * end bios_write * /

To compile the above program named DEMONSTRATE.C, use

cc86 DEMONSTRATE.C large

Once the object file is produced, you can get an executable file by using

link86 DEMONSTRATE.OBJ, /clibrary /rcifl.lib, /clibrary /lclib.lib, &
/clibrary /icifl.lib, /clibrary /lqmain.obj, &
/rmxlibrary /large.lib, /rmxlibrary /87null.lib, &
/rmxlibrary /ipifl.lib, /rmxlibrary /rpifl.lib &

to DEMONSTRATE bind map &
mempool(+ 20000,500000) segsize(stack(+ 512»

Notes

This is an example link command that assumes for readability that all the libraries
related to iC-86 are in the directory /clibrary, and that all the libraries related to
RMX 86 are in the directory /rmxlibrary.

The library rcifl.lib is the iC-86 interface to RMX 86 Nucleus calls. Since the example
used Nucleus calls, this library has been linked in. Similarly, the RMX library rpifl.lib
has been linked in the sample program; it is the RMX library for programs that make
calls to the Nucleus. The libraries icifl.lib and ipifl.lib were included to allow BIOS
calls in the example.

Following are the libraries you need to use to make calls to the different layers of
RMX 86:

Layer Name

Nucleus
BIOS
EIOS
Human Interface
Application Loader

iC-86 Library

reifl.lib
icifl.lib
ecifl.lib
hcifl.lib
lcifl.lib

RMX 86 Library

rpifl.lib
ipifl.lib
epifl.lib
hpifl.lib
lpifl.lib

As you can see in the example, the way to address structures embedded in RMX 86
objects is to overlay the pointer to the embedded structure with a pointer structure.
The union definition does just that, and by putting the token of the object into the
base field, you create a pointer to the structure in the object.

iC-86 Compiler User's Guide Using iRMXTM System Calls in iC-86

The correspondence between RMX 86 data types and iC-86 data types is as follows:

Token
Pointer
Word
Byte
Selector
Offset

RMX86

RMX (or UDI type
string)

iC-86

Unsigned int
char *
Unsigned int
char
Unsigned int
Unsigned int
c type null terminated string

1. Wherever the RMX calls require a string as one of the parameters, the user
supplies a c_type null terminated string. Similarly calls that return strings return
c_type strings.

2. Users are to be warned that they might not be able to use the Human Interface
parsing calls without modifying the sq/Lq main.A86. This is because main.A86
initially gets all the arguments, and thus the HI parse buffer is closed. Users who
want to use HI calls for parsing should modify their sq/Lq main.A86.

3. All of the iRMX calls follow the interface specified in their respective manuals
except for the two calls rq8create$ file and rq8delete$file. For these two
calls, the RMX manuals say that the subpath$ptr parameters is not used in
physical files. But the c_Iibrary interface requires a null string here, even though
these parameters are not used.

4. For those calls that return strings, the returned string should not be trusted if an
exception occurs on the call.

D-3

· ~~)

n

acos, 7-10
Addition type specifiers, 1-4
Additions to C language, 1-2
argc Parameters, 1-5
argv Parameters, 1-5
ASCII character set, C-l
ASCII file, 6-1
asin, 7-10
ASM86, 2-1, 5-1, 5-3, 5-7
assembly language source files, 1-1
assembly option, 2-1, 2-2
atan, 7-10
atan2,7-1O

Bessel functions of the first kind, 7-12
binary file, 6-1
block I/O, 4-6, 7-5
byte I/O, 4-4, 7-4

C language, 1-2
cabs, 7-10
calling sequence, 5-1 thru 5-3, 5-6, 5-7
CC86, 2-1, 2-2
change extension, 8-5
character classification, 7-1, 7-2
closing a FILE, 4-3, 7-3, 7-4
CODE segment, 5-1, 5-5
command line processing, 5-4
command tail parsing, 8-6
COMPACT model, 1-1
compilation on Series III, 2-1
compilation on Series IV, 2-1
compilation under iRMX, 2-3
compilation under VAX/VMS, 2-3
complex absolute value functions, 7-10
connection management, 8-3
connection status, 8-5
CONST segment, 5-1
conversion routines, 4-10, 7-7, 7-9
cos, 7-10
cosh,7-11
creating a FILE, 4-3, 7-3

DATA segment, 5-1 thru 5-3, 5-6
data types, 1-1
debug option, 2-1, 2-2
define option, 2-1, 2-2
delete file, 8-3
delete FILE objects, 7-3
derived data types, 1-1
directives, 1-1
dollar sign, 1-2
DQ$ library, 1-1, 8-1 thru 8-6
dynamic memory allocation, 4-9,6-1, 7-8

E8087.LIB, 3-2
enum type, 1-2
error messages, B-1 thru B-4
exception handling, 8-2
exit, 8-2
exp, 7-11
external identifiers, 6-2

fields, 6-1
File Information, 8-6
FILE Objects, 7-3
FILE type, 4-3
floating point, 3-2, 3-3, 7-5 thru 7-7
floating point output, 3-2, 7-5 thru 7-7
format specification, 4-6, 7-5 thru 7-7
formatted I/O, 4-6, 7-5 thru 7-7

Get connection status, 8-5
system Id, 8-3
Time and date, 8-2

hardware floating point, 3-2
header files, 4-1
heap allocation, 5-4, 5-7
hyperbolic functions, 7-11
hypot, 7-10

iC-86, 1-1 thru 1-5,2-1,2-2, 5-1, 6-1
identifier, 1-2
include option, 2-2
initialization of automatic aggregates, 1-3
input/output, 4-3 thru 4-8, 8-5, 8-6
I/O redirection, 1-5
Intel supplied routines, 5-5
iRMX86, Compilation, 2-3
iRMX86 system, 1-1, D-l
ISIS, 1-1,6-1

jO,7-12
jl,7-12
jn,7-12

keywords, A-I

LARGE model, 1-1, 3-1, 5-6 thru 5-8
large option, 2-1
LARGE.LIB,3-1
LCLIB.LIB, 3-1, 3-2
LDTEFG.OBJ, 3-3
Limits, compiler, 6-1
link, 1-1, 3-1, 3-2
LINK86, 1-1, 3-1, 3-2
load overlay, 8-5
LOC86,1-1

INDEX

Index-l

Index

log, 7-11
logl0, 7-11
logarithmic and exponential functions, 7-11
LQMAIN.OBJ, 3-1, 3-2,4-1

MEDIUM model, 1-1
memory addressing absolute, 6-1
memory allocation, 4-9, 6-1
MEMORY segment, 3-1, 5-1

opening a FILE, 4-3, 7-3
OPTIMIZE control, 2-2

perform I/O function, 8-5
PL/M-86, 1-2, 5-1, 5-5 thru 5-8
pow, 7-11
preprocessor, 1-1
printf, 4-6, 4-7, 7-5, 7-6
PSCOPE/FICE operation, 6-2

random access, 4-7 thru 4-8, 7-8
read from file, 8-4
relocatable object files, 1-1
rename file, 8'-3
RAM control, 2-2
ROM control, 2-2, 5-1, 5-6
runtime issues, 5-1
runtime library, 1-2,3-1,4-1 thru 4-10
runtime startoff routines, 3-1

scanf, 4-6, 7-7
SCLIB.LIB, 3-1
SDTEFG.OBJ, 3-3
seek connection, 8-4
segment management, 8-1
Segmentation model, 1-1, 3-1, 5-1, 5-6
Series III development system, 1-1, 2-2
sin, 7-10
sinh,7-11
sizes and formats, 1-4
SMALL model, 1-1, 3-1, 5-1
SMALL.LIB,3-1

Index-2

software floating point, 3-2
sorting, 4-8, 7-8
SQMAIN.OBJ, 3-1, 4-1
sqrt, 7-11
stack allocation, 5-4

iC-86 Compiler User's Guide

Stack requirements, 3-1, 4-8, 5-4
STACK segment, 3-1, 4-8, 5-1
standard library, 4-1
storage classes, 1-1
strict warning messages, B-2
string, 4-2, 4-5, 7-2
string I/O, 4-5, 7-5
string manipulation, 7-2
structure assignment, 1-3
structure passing, 1-3
system identification, 8-3
system interface, 4-9, 8-1

tan, 7-10
tanh, 7-11
time and date, 8-2
trigonometric functions, 7-10
truncate file, 8-4
Type Conversions, 1-4
Type Specifiers, 1-4
Types sizes, and formats, 1-4

UDI library, 1-1
undefine option, 2-2
universal Development Interface (UDI) library, 1-1

variables, register, 1-5
VAX/VMS Compilation, 2-3
verbose option, 2-2
vertical tab literal character, 1-3
void type, 1-2

warning messages, B-2
word I/O, 4-4, 7-4
WORK device, 2-2, 2-3
write to file, 8-4

inter
REQUEST FOR READER'S COMMENTS

iC-86 Compiler User's Guide
122085-002

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi­
cation. If you have any comments on the product that this publication describes, please contact your Intel repre­
sentative. If you wish to order publications, contact the Intel- Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve­
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ____________ _

NAME _____________________________ ___ DATE __________ _

TITLE __ _

COMPANYNAME/DEPARTMENT __________________________ __

ADDRESS ___________________________________ _

CITY __________________ _ STATE _________ __ ZIP CODE ____ ____

(COUNTRY)

PIA~!=;A r.hAr.k hArA if VOIJ rAnlJirA ~ writtAn rAnlv n

WE'D LIKE YOUR COMMENTS •••

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara,CA 95051

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

