INTELLEC® SERIES-IV
OPERATING AND
PROGRAMMING GUIDE

Copyright © 1982 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 121753-001

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli-
cation or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(2)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

AEDIT iMMX iPDS MULTIBUS

BXP Insite iRMX MULTICHANNEL
CREDIT intgl iSBC MULTIMODULE
i intIBOS iSBX Plug-A-Bubble
12ICE Intelevision iSDM PROMPT

ICE intgligent Identifier iSXM - Ripplemode

iCS intgligent Programming Library Manager RMX/80

iDBP Intellec MCS RUPI

iDIS Intellink Megachassis System 2000
iLBX iOSP MICROMAINFRAME UPI

'm

A987/683/ 4K DD

REV.

REVISION HISTORY

DATE

-001

Original issue.

1/83

iii

PREFACE

This manual provides operating and programming instructions for the Intellec
Series-IV Development System. The Series IV has two operating environments: one
for 8086/8088-based software and one for 8080/8085-based software. Chapters 1-5
comprise the operations guide; 6 and 7 comprise the programmers reference manual.

This manual is designed to support new development system users as well as those
who are already familiar with Intellec development systems. This manual assumes
that you have read the Intellec Series-IV Microcomputer Development System
Overview and are familiar with the terms listed in its glossary.

Series-IV Development System (Front View) 121753-11

Preface Series-IV Operating & Programming .

This manual has seven chapters and six appendices:

e Chapter 1, “Operational Introduction,” introduces you to the Series-IV
Development System.

e Chapter 2, “Human Interface,” describes the terminal, editing capabilities, device
names, console operations, menu selection, the command line interpreter,
command files, and job control functions.

e Chapter 3, “File System Management,” describes the iNDX hierarchical file
structure, directory files, file access and ownership, and file system
considerations.

e Chapter 4, “Commands,” describes the Series-IV commands and gives examples
for storing, identifying, and manipulating your files and jobs.

e Chapter 5, “Using the Series-IV in the Network,” describes the NDS-II and
remote job control, and operating your Series IV in the NDS-II Network.

» Chapter 6, “Programming Introduction,” describes operating system considera-
tions and target environments, and lists the built-in service routines.

» Chapter 7, “The 8086/8088-Based Environment,” defines the conceptual consid-
erations and external procedures for the Series-IV service routines in an 8086/
8088-based environment.

e Appendix A, “CLI Command Syntax,” lists the syntax of the commands detailed
in Chapter 4.

e Appendix B, “Parameters and System Service Routines,” is a condensed version
of the routines detailed in Chapter 7.

¢ Appendix C, “Error Messages and Exception Codes,” lists the various error
messages generated by the operating system and the UDI interface.

* Appendix D, “Object Module Relocation and Linkage,” defines the‘ possibilities
for combining object modules.

* Appendix E, “Boot Device-Configuration Switch Assignments,” shows the
configuration switch settings necessary to boot the operating system from various
physical devices.

* Appendix F, “ASCII Codes,” shows ASCII codes, their meanings, and their
decimal, octal, and hexadecimal values.

Required Software

The Series-1V is an Intellec Microcomputer Development System that provides support
for both development and execution of programs using either the 8086,/8088 chip or
the 8080/8085 chip. The Series IV contains both hardware and software beyond
earlier versions of Intellec development systems.

Your system contains:

iNDX — the 8086/8088-based operating system.

ISIS-IV — the 8080/8085-based operating system.
AEDIT™ — an 8086,/8088 screen-based text editor.
CREDIT — an 8080/8085 screen-based text editor.
DEBUG-88 — a low-level symbolic debugger.

MONS85 — a monitor for 8085 programs.

vi

Series-IV Operating & Programming

Related Publications

For more information on the Series-IV Microcomputer Development System, see the

following manuals:

AEDIT™ Text Editor User’s Guide, 121756

Intellec Microcomputer Development System Overview, 121752
Intellec Series-IV ISIS-IV User’s Guide, 121880

DEBUG-88 User’s Guide, 121758

Notational Conventions

UPPERCASE

italic

directory-name

filename

pathname

pathname1,

pathname2, ...

system-id

Vx.y

Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or
lowercase.

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

Is a valid name for the part of a pathname that names a file.

Is a valid designation for a file; in its entirety, it consists of a
directory and a filename.

Are generic labels placed on sample listings where one or more
user-specified pathnames would actually be printed.

Is a generic label placed on sample listings where an oper-
ating system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other-
wise noted.

The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated.

Preface

vii

Preface Series-1V Operating & Programming

(,...1 The preceding item may be repeated, but each repetition must
be separated by a comma.

punctuation Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLMBG6C(PROGA,SRC,*9 SEPT 81‘)

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

ccr> Indicates a carriage return.

Shading highlights the commands that can only be used if
your development system is part of the NDS-II Network (see
Chapter 5).

viii

CONTENTS

CHAPTER 1 PAGE
OPERATIONAL INTRODUCTION

Operational Procedures 1-1
Initiating Operation 1-1
Booting From a Flexible Diskccccccoevvicenuenane. 1-1
Booting From the Integrated
514" WInCheSterocoooveeruiieereeieecrerererennns 1-4
Terminating Operationccccceeceecveneveerernecrennne. 1-4
Terminate User Sessionccccccccvevrecenerecunenns 1-4
Power Down Development Systemc.ceceunneee 1-4
Types of Disk Files 1-5
Disk Formatting Proceduresccccociniiiccncacne 1-5
CHAPTER 2
HUMAN INTERFACE
The Intellec Terminalccccooeeviieniinccniniiniecenne. 2-1
Display SCreencccccceevecieieneniinenenneeneieceieene 2-1
Character Display 2-2
The Keyboard ..o 22
Key CIUSLETS .c.coveemeeiririercirecieeeiecire e 2-3
Console Operationcccceeveeeeecieerecieiieereeeieeeree e 2-5
Entering Commands—Menu Selection 2-5
Interactive Modecooeueecovmeeerienenicnenereienae 2-5
Command Language Interpreterccccoveeennee. 2-6
Command Delimitersccccovenviveeinniennne. 2-6
Command Line Inputccocceooviiiiininninnns 2-7
CLI Variablesccccovvveneninienirineceneeienns 2-7
System-Defined CLI Variables 2-8
User-Defined CLI Variablescccccoccec. 2-8
Commands for Manipulating CLI
Variablesccooceeiineenneciieee e 2-8
Examples of CLI Variable Substitution 2-8
Command Filesoccoveeeniiniceiicnncieicecenne
Dynamic File Creationcccevvcvvcenniecuicnannn.
Log Files ...t
Parameter Substitutioncccoceceevcveeienerenuennne
Parameter Filesc.cccccconvivininirniiinecienecenens

System-Designated Device Names
JOb COntrol ...oeceeeeicieiriecie ettt et

Foreground Jobcocooiiiiiiiiiieeeeeeeeee 2-12
Background JObccoooevieeiveiiineeeercreeeene 2-12
CHAPTER 3
FILE SYSTEM MANAGEMENT
INDX File Structurecccoceviveeeeveeiesencncrenrercnescnns 3-1
Pathnamescccoceeeveeeiveeniennieneeeeeeeeeeee e 32
Wildcard Filenamescocccooeeieueeieiennnunieerecrcennnnan. 32
Creating Directoriescc.cocevvierecereerereeserenerrennns 33
Directory Maintenance Guidelinescceueeennen. 33
Directory Filesccocoivieeineninenienieieniereeieeeieaennne 33
File Access and Ownershipocccevevveneveceeceniennne. 3-5
Protecting File Access on a
Mass Storage Deviceccoooevecveveeevrerecrennnn. 35

PAGE
Creation and Deletion of Userscccoccovicennnne 3-6
Management of User IDsccocoecceiiicecnnncnnne 3-6
Assignment of Passwordsccccoeeevncineencnnnes 3-6
File System Considerationscccceeveveericiruennennen 3-7
CHAPTER 4
COMMANDS
Command CategOri€scccevreeereeriarerairesreniererseneenens 4-1
Entering and Editing Line Commandscccccc.cee. 4-2
Commandsccoooiiiieeee e 4-2
LOGON ..ottt s 4-3
LOGOFF ..ottt e 4-5
TIME ..ottt et 4-6
Control Commandscoecoeiiiiiiiiriiie e 4-8
COUNT ..ottt e 4-8
EXIT oottt 4-9
FILL ottt s 4-10
IF 4-11
OPEN ..ottt 4-13
READ oottt ettt 4-14
REPEAT ...ttt 4-15
SET ettt ettt 4-16
File Maintenance Commandscceecevevveveeeerccnnen. 4-18
ACCESS ...ttt 4-18
ARCHIVE ...ttt 4-20
CHOWNER ..ottt 4-23
CHPASS ...ttt sttt 4-24
COPY et see e 4-25
CREATEDIRccoovniiiicecineeninrereeceerieeeeseens 4-27
DELETE
DIR ettt
DISMOUNT
LNAME
MOUNT
RENAME
SDCOPY
SPACE ...ttt e eeeae
USERDEF
USERS
VIEW ..ot e e
Job Management Commandscccoeceveeiceneeccniens 4-45
BACKGROUND ..ottt 4-45
BATCH ..ottt sresesseeeenaeane 4-47
CANCEL ..ottt see s 4-49
REGION .ottt 4-50
SUBMIT ...ttt ettt eeee e 4-51
Media Operations Commandsc.ccoocevvereeervecucnnene 4-54
FORMAT ...t e eee st e enes 4-54
FPORT ...ttt 4-56
TCOPY ettt ettt 4-61
PDSCOPY ...ttt 4-65
VERIFY ottt sencseseceseasens 4-68

ix

Contents
CHAPTER 5 PAGE
USING THE SERIES-1V
IN THE NETWORK
The NDS-II Networkcccooeevivreneiieieieereeeeenns 5-1
Physical Descriptioncccccoccenvenencrneecncnnnne 5-1
Functional Descriptioncccocevvveenvrinecrecuevennnnnn 5-1
Remote Jobsccoveveviiniiiiiceieecceeee 5-2
I/O DIffErencesoovvieeecereeunenirereiocneeseeneeneens 5-2
Initiating Workstation Operationcccccoecunvenene.. 5-3
Terminating Operationc.ccooeveveevecenereerereencenennn, 5-3
Terminate User Sessionccccoceveeveeeevreceeinennn. 5-3
Power Down Development System 5-3
Remote Job Commandsc.ccocvevvenreieienesieseecenne. 5-4
CANCEL ...ttt 5-4
EXPORT ...ttt ceeeenes 5-5
IMPORT ..ottt evsees e s snnene 5-7
QUEUE ...ttt seaenne 5-8
SYSTAT oottt stsasnnenae 5-9
CHAPTER 6
PROGRAMMING INTRODUCTION
Operating System Considerationsccceceeerveennee. 6-1
Needed Capabilitiesccccevevvereureenerrireeeeieererenee, 6-1
Desirable Featuresccoccemervevinecenieceieecenen, 6-1
Functions of the iNDX and ISIS-IV
Operating Systemsccceceeeeveereereeeeerenerenns 6-1
Program Development Cycleccoeveveeeirceenenennen. 6-2
Specific System Services for Each Target
ENVironmentccccececeveeiiemnnnenienrenseeseennenenenne 6-3
The 8086/8088-Based Environment 6-3
The 8080/8085-Based Environment 6-3
Built-In Service Routinesc.cooceevevieverecennenrnnnnen. 6-4
CHAPTER 7
THE 8086/8088-BASED ENVIRONMENT
Conceptual Considerationscccceeueevcvccceeenenee 7-1
Command Tail Argumentsc.ccceeverueecenerneencnens 7-1
Memory Managementcccccovvevivrcreeniecinenenenens 7-1
CONNECLIONS ...eovevieiiiiireireeeetee e eeeneetere e aes 7-2
BUfferscoccoeeeeeminineeen et e 7-2
Workfiles 7-3
Exception Conditions and Exception Handling 7-3
Unavoidable Errorsccccovevverieevininneeceennenen. 7-3
Avoidable Errorscccocevemvenicnnnnieereneen. 7-3
Data Types and Register Conventionc......... 7-4
External Procedure Definitions for Series-IV
System Service Routinesccccccceeveveereecrirennne 7-5
Introductionccceeicvncenenneiceeee e 7-5
Exception Handling Routinescccccooeeeeeenveenne 7-6
DQSDECODESEXCEPTIONccoocovvrvenrnnne 7-6
DQSGETSEXCEPTIONSHANDLER 7-7
DQSTRAPSCCeeeceeetreniee e 7-8
DQSTRAPSEXCEPTIONccocovimiiirrenranane 7-9
File Management Routinescccccooveeeeeeiernnenn. 7-10
Connection Routinesccceeeeereeeevecnvencecennnn, 7-10
DQSATTACHooeieeeieeieeerenieieernene 7-10
DQSCREATEccoooeccenerieeereeecreennen 7-11
DQSDELETEcccoiiiiteircrerecreneeeenennen 7-12
DQSDETACH ..ot 7-13

Series-IV Operating & Programming

PAGE
DQSGETSCONNECTIONSSTATUS 7-14
DQSFILESINFOccooviiecnrenenenecieenene 7-16
Naming Routinescceevevverivenecrierecesreeennee. 7-18
DQSCHANGESACCESScccocvvrrinnns 7-18
DQ$CHANGESEXTENSION 7-19
DQSRENAMEcocooiiiiirircererienenrenereenens 7-20
Usage Routinescocceceeeeveevniescevecreccesesieinnes 7-21
DQSCLOSEcvoirireereineieeeeeeeaeeeeeneeens 7-21
DQSOPENoiiictrerereeeeee s eesseseeaens 7-22
10101 137N 0 J N 7-23
DQSSEEK ...t 7-24
DQSSPECIALccooeciviiienririreceeeneeenene 7-25
DQSTRUNCATEccoooiicecieeieene 7-26
DQSWRITE ..ot seeeeeenens 7-27
Memory Management Routinesc.ccccevuvvennnn. 7-28
DQSALLOCATEcccoooeiirnineeieeeeeeene 7-28
DQSFREEccccoccniiiereiecreieeeec e 7-29
DQSGETSSIZEcoooiieeeereveene 7-30
DQSRESERVESIOSMEMORY 7-31
Program Control Routinesoccoeeevveveerrerennene. 7-32
DQSEXIT ...oovevieeriteeinteeeerereeiecse e 7-32
DQSOVERLAY ..o 7-33
Utility and Command Parsing Service Routines ... 7-34
DQSDECODESTIMEccccccceovmmnrrrennnnn. 7-34
DQSGETSARGUMENT ... 7-35
DQSGETSSYSTEMSIDccovvveiincrenne 7-37
DQIGETSTIME ..o 7-38
DQSSWITCHSBUFFERcccoevennnn. 7-39
APPENDIX A
CLI COMMAND SYNTAX
APPENDIX B
PARAMETERS AND

SYSTEM SERVICE ROUTINES

APPENDIX C
ERROR MESSAGES AND
EXCEPTION CODES

APPENDIX D
OBJECT MODULE
RELOCATION AND LINKAGE

APPENDIX E
BOOT DEVICE-CONFIGURATON
SWITCH ASSIGNMENTS

APPENDIX F
ASCII CODES

INDEX

Series-IV Operating & Programming Contents

TABLES
TABLE TITLE PAGE TABLE TITLE PAGE
2-1 Line Editor Featuresccooecoevieninnnnna, 2-4 B-1 Alphabetical List of Series-IV
6-1 Alphabetical List of Service Routines Service Routinesccceceuereverereennnee. B-1
Available in the Series-IV B-2 Alphabetical Parameter Definitions B-4
Operating Systemcccocoevvvererrrerenene. 6-4 E-1 Boot Device Assignment E-1
6-2 Service Routines by Functional Groups .. 6-4 F-1 ASCII Code Listcccoovvvrrerrennee. F-1
6-3 Hypothetical Steps in Program Execution F-2 ASCII Code Definition F-3
and Service Routines Relevant
to Each Step ..ocovveeeeeieeeee. 6-5
FIGURES
FIGURE TITLE PAGE FIGURE TITLE PAGE
1-1 Flexible Diskccccecoveveecimveninineeieecncs 1-2 2-3 Command File Exampleccccce....... 2-10
1-2 Flexible Disk Drivesccccoecevvirvnernnnene. 1-3 3-1 Hierarchical File Structurec.c.c..... 3-2
1-3 Series-IV Development System 32 Model of iNDX File System 3-4
(Rear VIEW) ..ooccocieinieniriecrieteseeeeene 1-3 D-1 Use of Relocation and Linkage
2-1 The Display Screen ... 2-2 Packages ... D-1

2-2 Series-IV Keyboard

CHAPTER 1
OPERATIONAL INTRODUCTION

This book will assist you in gaining hands-on experience with the Intellec Series-IV
Microcomputer Development System. The Series-IV provides two execution environ-
ments and development facilities: an 8086/8088 side and an 8080/8085 side. In
addition, the Series-IV has extensive facilities for teaching you to use it via a human
interface that has helpful messages.

This manual is organized by topical groupings, allowing you first to acclimate yourself
with the system, and then learn the theories of its operation and programming. Before
reading this manual, you should read the Series-IV Overview, 121752, because it
fully describes the features and reference library of the Series-IV. Once you learn to
interface with your development system, use this guide to supplement this and other
facilities of the Series-IV.

Operational Procedures

This section describes how to start-up and shut-down the Series-IV development
system.

When you initialize your development system, two different diagnostics tests will be
executed. The first tests the hardware (internal) power-up sequence, the second tests
the software (operating system) sequence.

WARNING I

Always power-up the Series IV before turning on any peripheral devices and
turn off any peripherals before shutting down the Series IV.

If you are using a Winchester disk drive, do not repeatedly shut it off and
power it up after booting the disk drive.

Never dismount the system volume.

Initiating Operation

Booting From a Flexible Disk

If your Series-IV has a single flexible disk and an integrated 5-1/4” Winchester disk
drive, use these instructions the first time you operate your system. Once you have
logged on, you can use example 2 of the “Disk Formatting Procedures” (which appear
later in this chapter) to configure your system to boot from the integrated 5-1/4”
Winchester. Thereafter, when you initiate operation of your development system,
follow the instructions for booting from the integrated 5-1/4” Winchester.

To boot from a flexible disk:
1. Verify the configuration switches are set as shown below.

1 3 4 5 6 7 8
OROONNnnK
2. Power up the Series IV by pressing on the breaker switch located at the left rear
of the terminal chassis.

2

OFF

3. Verify the system passed the power-up diagnostics test. If it did not, contact your
Intel Service Representative.

1-1

Operational Introduction Series-IV Operating & Programming

4. Turn on any peripherals such as a Winchester disk drive or a printer. When using
740 Hard Disk Drives, press the STOP/START button and wait for the READY
light before proceeding.

5. Insert the 5-1/4” flexible operating system diskette (see figure 1-1) into the right-
hand integral disk drive on the Series-IV and close the disk drive latch (see figure
1-2). The read/write access hole should face the rear of the drive and the (uncov-
ered) write/protect slot should face the left side of the disk drive.

6. Press the RESET switch (see figure 1-3) to boot the operating system.

7. Verify the diagnostics test passed. If it did not, refer to the Intellec Series-IV
Installation and Checkout Manual.

8. Enter the appropriate date and time as requested. The format is MM/DD/YY
for the date and HH:MM:SS for the time.

9. Enter your assigned user name. If a Winchester or Hard Disk is part of your
system, also enter your password when requested.

The first time you log on after installing your system, enter the user name
SUPERUSER. Your associated password is PASSME. This is your system
identification until you establish other users on a shared file structure. For infor-
mation on making your files and workstation accessible to others, see “File Access
and Ownership” in Chapter 3 and the USERDEF and CHPASS commands in
Chapter 4.

The system is now ready to accept commands. Use the facilities detailed in the
Series-1V Overview, 121752, to assist you in learning to interface with your system
as you design and develop your projects using the Series-IV.

LABELS
\
E WRITE-PROTECT SLOT
|__- SPINDLE HOLE
G___’____ L INDEX HOLE
7\ VoW
READ/WRITE ACCESS HOLE
Figure 1-1. Flexible Disk 1217531

Series-IV Operating & Programming Operational Introduction

LATCH

OFF /ON INDICATOR

Figure 1-2. Flexible Disk Drives 121753-2

 SERIAL

CHANNEL 2

Figure 1-3. Series-IV Development System (Rear View) 121753-3

Operational Introduction Series-IV Operating & Programming

Booting From the Integrated 5-1/4” Winchester
To boot from the integrated 5-1/4” Winchester:

. Verify the configuration switches are set as shown below.
1 2 3 4 5 6 7 8
HENNNAnn
OFF
2. Power up the Series IV by pressing on the breaker switch located at the left rear
of the terminal chassis.

3. Verify the system passed the power up diagnostics test. If it did not, contact your
Intel Service Representative.

4. Turn on any peripherals such as a Winchester disk drive or a printer. When using
740 Hard Disk Drives, press the STOP/START button and wait for the READY
light before proceeding.

5. Press the RESET switch (see figure 1-3) to boot the operating system. '

6. Verify the diagnostics test passed. If it did not, refer to the Intellec Series-IV
Installation and Checkout Manual, 121757.

7. Enter the appropriate date and time as requested. The format is MM /DD/YY
for the date and HH:MM:SS for the time.

8. Enter your assigned user name, then your password.

The first time you log on after installing your system, enter the name SUPERUSER.
Your associated password is PASSME. This is your system identification until
you establish other users on a shared file structure. For information on making
your files and workstation accessible to others, see “File Access and Ownership”
in Chapter 3 and the USERDEF and CHPASS commands in Chapter 4.

The system is now ready to accept commands. Use the facilities detailed in the
Series-1V Overview, 121752, to assist you in learning to interface with your system
as you design and develop your projects using the Series IV.

Terminating Operation

Terminate User Session

To terminate the user session and to allow another user to start a session:

. Log off by entering the command LOGOFF or by pressing the appropriate soft
key.

2. The new user may now log on by entering his user name and, if appropriate, his
password.

The system is now ready to accept commands from the new user.

Power Down Development System

To shut off the development system:

I. Log off by entering the command LOGOFF or by pressing the appropriate soft
key.

Turn off any peripheral devices.

3. If you are using a flexible disk(s), wait for the drive indicator light to go off (see
figure 1-2). Release the drive door latch(es) and remove the flexible disk(s).

4. Move the rocker switch located at the left rear of the terminal chassis to the OFF
position.

Series-IV Operating & Programming

Types of Disk Files

A disk is either a system disk or non-system disk, depending on its iNDX files.
e A system disk contains the files necessary to boot the operating system.

* A non-system disk contains only the files necessary for the creation and storage
of files, leaving more space for data than on a system disk.

When the system is reset with an iNDX system disk in the appropriate drive, the
operating system initializes and takes control of the system.

At system start-up, only the essential iNDX files are loaded into memory. iNDX
command files remain on disk until you enter a command that calls them. The required
program is then loaded into memory and executed. After the command program has
completed its functions, the memory it was using is again available. This allows
efficient use of the operating system and lets you reserve most of the memory space
for your work.

Each disk file has a name. iNDX program files come with assigned names. You must
assign a name to each file you create. To access a file, you need only specify its name,
not its address.

The basic types of files are:

« iNDX system files containing both the basic system programs and the command
programs.

+ User created files (data and program).

e Directory files.

Disk Formatting Procedures

You must format a blank disk before using it. The following examples provide step-
by-step disk formatting instructions for flexible disks, the integrated 5-1/4"
Winchester disk and the 8” Winchester disk.

Example 1 is used for formatting disks on a system with two flexible disk drives.
Examples 2 and 4 are used to format disks on a system with a single flexible disk
drive and an integrated 5-1/4” Winchester hard disk. Example 3 is used to format

the 8” Winchester hard disk.

The FORMAT command deletes any files that were on a previously
formatted disk.

Example 1 - Formatting a Flexible Disk in a System Containing
Two Flexible Disk Drives

. Log on to your Series IV.
2. Insert the disk to be formatted into drive 1.
3. Enter the following command:

FORMAT FLLI VOLUME NAME

Operational Introduction

1-5

Operational Introduction Series-1V Operating & Programming

Example 2 - Formatting the Integrated 5-1/4” Winchester Disk

l. Log on to your Series IV.
2. Format the integrated 5-1/4” Winchester with the following command:

3. Copy the iNDX files from the flexible disk to the integrated 5-1/4” Winchester
with the following command:

VOLUME NAME T30

Log off your Series I'V.
5. Reset the configuration switches to boot off the integrated 5-1/4” Winchester.

1 3 4 S 6 7 8
LY Tvlelalelege]
At this time, you may also want to copy the iNDX CUSPS files to the integrated
5-1/4” Winchester. Log on to your Series IV and insert the iNDX.CUSPS

diskette. Use the command in step 3 to copy from the flexible disk to the
integrated 5-1/4” Winchester.

2

OFF

Example 3 - Formatting an 8 Winchester Disk

l. Log on to your Series IV.
2. Format the Winchester with the following command:

SUBMIT /operating systemID/SYSTEM.BUILD (FLO, p1, p2)

where

operating system ID is iINDX.S31 for a Series IV/3 and iNDX.S41 for a
Series 1V /4.

FLO is the volume root directory name of the system
flexible disk.

p1 is the volume root directory name of the target system
device.

p2 is the fixed device name of the target system.

This command will also copy the system files of operéting system ID Vx.y to the
Winchester.

To build the system on the disk, name the volume of the Winchester (e.g., WINIO).
By naming the Winchester, you create the volume; by running SYSTEM.BUILD,
you set up the necessary directories.

For example, to format the Winchester (WDO0), and to copy the system files from the
operating system IDVx.y (iNDX.S31) to the Winchlgster (WINIO0), type:
no o

/SYSTEM.BUILD (FLO,

This formatting and copying process takes approximately one half hour. Once you
enter the SUBMIT command, you are not required to interact with the system until
the SUBMIT process is completed.

3. When the copy is complete, log off your Series IV.

Series-IV Operating & Programming Operational Introduction

4. Reset the configuration switches to boot off the Winchester.
1 3 4 5 6 7 8
RN nnn
F
At this time, you may also want to copy the iNDX CUSPS files to the integrated
5-1/4” Winchester. Log on to your Series IV and insert the iNDX.CUSPS

diskette. Use the command SUBMIT /WINIO/CUSPS.COPY (WINIO) to copy -
the CUSPS files to the integrated 5-1/4” Winchester.

2

OF

Example 4 - Formatting a Flexible Disk in a System that Boots
From an Integrated 5-1/4” Winchester Disk

1. Log on to your Series IV.
2. Insert the disk to be formatted into drive 0.
3. Enter the following command:

FORMAT FLO

CHAPTER 2
HUMAN INTERFACE

The human interface module of the Series IV provides a command language inter-
preter and a local command invocation/termination facility. The command language
interpreter (CLI) processes command input, initiates command execution and, when
execution is complete, prompts for another command. A batch command rocessmg

facility is available through the SUBMIT, BACKGROUND, an

commands. CLI also provides line editing facilities.

The iNDX operating system will ask you to log on. When log on is completed, the
operating system is in command mode (the prompt () is displayed). At this time,
you may enter any of the valid command sequences. To terminate the session you
must log off at the terminal. If you want to terminate execution of a file or command,
you must use the BREAK key on the terminal keyboard.

The Intellec Terminal

This section describes the display area and keyboard of the Intellec terminal.

Display Screen

The display screen (shown in figure 2-1) is partitioned into four display fields.
Information entered in a given field never carries over into another field.

Scrolling Field:

Message Field:

Operating System Field:

Prompt Field:

Lines 1-23 form the Scrolling Field. Each line is 80
characters wide. User-entered text will appear in the
Scrolling Field. If more than 23 lines are entered, the
field scrolls up one line. The topmost line disappears and
the additional information being entered appears on
Line 23.

The Message Field occupies character positions 1-60
(left-justified) of line 24. Many system programs use the
Message Field as a display area to avoid disturbing text
that appears in the Scrolling Field.

Character positions 61-80 of line 24 form the Operating
System Field. The operating system uses this field to
display Job Control messages, fatal error messages, the
names of mounted volumes, and the names of background

The Prompt Field occupies line 25. This field is used by
the operating system to display Menu entries. A
maximum of 8 entries may appear on line 25. Each of
the entries is associated with one of the 8 Function (or
Soft) keys. Reverse video and displaying the prompt field
as two side-by-side subfields of four entries each shows
the association between the Prompt Field and the Soft
keys.

Human Interface Series-1V Operating & Programming

g)

(Text Example

Scrolling field ——g—— J

>logon SUPERUSER

_ PASSWORD PLEASE

) Operating
field = | VOL. NAME — System
_____ Field
Prompt field DIR COPy DELete View REName AEdit L Name --more--
Y
[I
[
-
1 \
! \
1 \
ERlEE e
Figure 2-1. The Display Screen 121753-4

Character Display

Characters in the display fields will appear on the screen overlined, in reverse video,
blinking or highlighted.

Cursor: The cursor appears on the screen as a nonblinking, reverse
video rectangle. The cursor moves 1 character position
to the right with each keystroke until it reaches Column
80 (the right-most column). Pressing the Return key
causes the cursor to move to the initial (left-most)
character position of the next line. If the cursor is on the
bottom-most line of text (i.e., Line 23 of the Scrolling
Field), the text is scrolled up one line.

The Keyboard

The keyboard, shown in figure 2-2, is your interface with the system. From the
keyboard you control the system, enter data and commands, and request data.

The data you enter at the keyboard is stored in a line editing buffer until you press
the RETURN key.

Series-IV Operating & Programming

Human Interface

FUNCTIONAL (SOFT) KEYS

CHARACTER DELETE

CLEAR LINE
RESERVED (FOR FUTURE USE)

Figure 2-2. Series-IV Keyboard

121753-5

Key Clusters

The keyboard is organized into four clusters of keys: alphanumeric keys, function
keys, reserved keys, and edit keys. Following is a description of each key cluster.

Alphanumeric Keys:

Shift Key:

Caps Lock Key:

Function Keys:

Each of these keys generates the character inscribed on
the keycap. The Shift key or the Caps Lock key is used
to produce the uppercase character.

If two characters are inscribed on a given alphanumeric
key, the Shift key must be pressed with the alphanu-
meric key to produce the character inscribed on the upper
part of the keycap. When the Shift key is not used, the
lower character is generated. For alphabetic keys, using
the Shift key produces the uppercase letter. Holding down
the Shift key and then pressing a Function key (see
below) produces the Help Text for the command associ-
ated with the given Function key.

The Caps Lock key functions only with the 26 alphabetic
keys. It allows you to enter a series of uppercase alpha-
betic letters without having to hold down the Shift key.
To enter a string of uppercase characters, press the Caps
Lock key to its lower, “locked-in" position. To generate
lowercase characters again, press the Caps Lock key
again, returning it to its upper “unlocked” position.

When the Command Line Interpreter is executing, these
keys are used in conjunction with the Menu items in the
Prompt Field (line 25 of the Display Screen). Each of
the eight Function keys is associated, position-by-position,
with one of the Menu items. To select a given Menu item,
press the key associated with that item. For example, to
select the third Menu item (counting from left-to-right),
press the key inscribed F2 (F0, F1, F2 being the first
three keys from left-to-right). Pressing a Function key
while holding down the Shift key produces the Help Text
for the menu entry associated with that key.

2-3

Human Interface Series-IV Operating & Programming

The cluster of five keys located in the upper right of the
keyboard are reserved for future system use.

Reserved Keys:

Edit Keys: The Edit keys consist of the keypad on the right of the
keyboard and several other special keys along the right
and left edges of the alphanumeric key cluster. Of the
eleven keys in the right keypad cluster, only seven have
inscribed keycaps. The remaining keys do not have
assigned functions. The line editing keys are described in

table 2-1.

The BREAK and RESTART keys are special keys also. The BREAK key, located
to the right of the reserved key cluster, aborts the execution of a job and returns the
system to the interactive level (foreground). CONTROL-C has the same function if
the job is executing in the foreground mode.

The RESTART key is reserved for use by field service personnel so they can check

the 8086/8088 side of the monitor.

Table 2-1. Line Editor Features

Key Name Function
RETURN 1. Terminates the line at the current cursor position.
2. Enters the command line into the system.
ESCAPE (ESC) 1. When entered as the first character in a command line, it recalls
the last line to the display.
2. Terminates the line at the right margin, not at the current cursor
position (as with RETURN).
RUBOUT Deletes the character to the left of the cursor and moves the cursor
left one position.

CTRL X Deletes all characters in the current line which are to the left of the
(CONTROL plus X) cursor. The remainder of the line is re-displayed (left-justified) with
the cursor at the left margin of the line.

CTRLA Deletes all characters from the current cursor position to the end-

(CONTROL plus A) of-line. The cursor position does not change.

DEL CHAR Deletes the character at the cursor location. The cursor position
does not change.

CLEAR LINE Deletes the entire line and returns the cursor to the start position

t (up arrow)
l (down arrow)

— (right arrow)
«— (left arrow)

HOME

CTRLS
(CONTROL plus S)

CTRLQ
(CONTROL plus Q)

for that line. Control remains in the line editor.
Moves the cursor up one line; retains column positioning.
Moves the cursor down one line; retains column positioning.

Moves the cursor one position to the right but not past the current
end-of-line.

Moves the cursor one position to the left but not past the starting
position.

Moves the cursor position to the current end-of-line. if the last
character entered was a left arrow, this key moves the cursor to
the starting position.

Stops output to the console.

Resumes output to the console.

24

Series-1V Operating & Programming Human Interface

Console Operation

The iNDX operating system provides two features that help you enter commands:
the Syntax Guide and the Help Text. The Syntax Guide presents each command and
all of its options to you as menu entries. When you first begin using the system, open
this manual to Chapter 4 as you enter the commands. With experience, however, you
will be able to enter the commands by using only the information presented to you
on the screen; you probably will not have to remember them or look them up in the
manual.

The second feature of the iNDX operating system is the Help Text, an English
language description of a given command, option, or executable file. If you are unsure
of the function or operation of any command or any of its elements, you can obtain
the appropriate Help Text simply by pressing the Function key (FO-F7) associated
with that element while holding down the Shift key.

Entering Commands—Menu Selection
Interactive Mode

The Syntax Guide displays commands, options, and executable files as Menu entries
in the Prompt Field (line 25 of the display screen). Up to eight entries—grouped into
two blocks of four entries each—can be presented at one time. This arrangement
emphasizes the correspondence between the menu entries and the 8 Function keys
that can be used to select them. To select a given menu entry, either enter it from
the keyboard or press the Function key spatially associated with it. The first (left-
most) menu entry is associated with the FO key, the second with the F1 key, and so
on, to the eighth (right-most) entry, which is associated with the F7 key. Usually, the
eighth menu entry is “--more--,” indicating that additonal menu entries can be
displayed by pressing the F7 key. The menu scrolls, eventually returning to the initial
display. If you use the keyboard entry method rather than the function key method,
you need to know if the Fill option is operative (see the description of the Fill command
in Chapter 4). If Fill is operative, enter only the letters shown. in uppercase in the
menu line because the system fills in the remainder of the command automatically.
If Fill is inoperative, you must enter the complete command.

For each menu entry, the accompanying Help Text can be obtained by holding down
the Shift key while pressing the appropriate Function key. For example, consider the
following 8 menu entries:

DIR COPy DELete View REName AEdit LName --more--

To select the DELETE command, you could press the F2 key or, assuming for the
example that FILL is operative, you could enter the characters DEL. (If FILL was
inoperative, you would have entered DELETE). If you need more information about
the Delete command, press the SHIFT and F2 keys simultaneously to obtain Help
for the Delete command.

Once you have selected Delete from the menu line (either by pressing the Function
key or by entering the command from the keyboard), the menu line will no longer
display the original eight entries. Instead, the menu line will now contain the
following message:

ENTER file name

where file name is the file you wish to delete. Suppose you do not clearly understand
what is required as an entry. Since the original menu line is not on the screen, you

2-5

Human Interface Series-IV Operating & Programming

cannot obtain Help by pressing Shift-Function keys. The Syntax Guide allows you to
“back up,” thus recalling the previous menu line. To back up, press the cursor left
(=) key. The original menu line will now reappear.

To obtain more information about the Delete command, press the Function key
associated with the Delete menu entry while holding down the Shift key.

After reading the Help Text, you can return to the request for a file name by pressing
the cursor right (—) key. As long as you enter valid characters the menu line will
remain the same. When you have completed the file name, enter a delimiter by press-
ing the space bar. Note that the menu line has changed again and is now listing the
options for the Delete command, as shown below:

Dir Query --exec--

You can select either (or both) of the options by pressing the Function key associated
with them (i.e., FO and F1), or by entering D or Q at the keyboard (Dir or Query if
Fill is inoperative). If you want more information about the two options, press both
the Shift key and Function keys associated with the desired option. If you have already
selected an option but you decide you need information about it, “back up” the menu
by using the cursor left key.

After you have entered the entire command line, execute it by pressing the Function
key associated with the “--exec--” entry or by pressing the Return key or Escape
keys.

Command Language Interpreter

The Command Line Interpreter (CLI) is a program with which you directly interact.
The CLI prompts you for input with the > prompt, accepts a complete command
from the input device, substitutes the CLI variables with their values, and then loads
and invokes the requested program. A complete command may require several input
lines, each with a maximum of 128 characters. Each input line except the last contains
the continuation character, an ampersand. When the CLI detects the ampersand, it
issues a continuation prompt (> >) and allows you to enter another physical line.
Only when a complete command line has been entered is the program loaded and
invoked.

If you want to include comments in a command line, use a semicolon (;). All charac-
ters between the semicolon and the return are recognized as a command comment
and are ignored in execution.

Command Delimiters

A command consists of a sequence of characters. When a command is examined by
the system prior to execution, special characters called delimiters are used to divide
the command into words that are treated as units. The following characters function
as delimiters:

! <

)

$ >

% [

& \

(]

) .

+ |

, space

2-6

Series-IV Operating & Programming Human Interface

A delimeter can be used within a string by enclosing the string within quotation marks.

Pathnames must not be broken by the ampersand. If you enter a pathname as part
of a command and the pathname contains a delimiter, you must enclose the pathname
in quotation marks so the system will treat it as a unit. For example, if you enter the
pathname /VOL1.A/A!B as part of a command, you must enclose it within quotes:

copy "/vOL1.A/A'B" TO /VOL2.B

Command Line Input

Command input lines are entered one at a time using the system line editor. After
the Series IV has been initialized, you can enter commands at the terminal whenever
the iNDX prompt (>) appears. A single input line may consist of up to 80 charac-
ters. For each input line, the cursor will appear in character position 3, directly
following the prompt character. Enter your commands and use the edit control
characters described in table 2-1.

The terminal supports “type ahead.” This means that up to 32 keystrokes are saved
in the buffer when the system is not ready for them. Once 32 characters are saved,
you will hear a beep; any excess characters will be discarded.

The command line is not complete until a RETURN or ESC key is used to terminate
the line. During line input, the cursor (a video-enhanced block) indicates the position
of the next character. In line edit, the cursor does not move off the current line or to
the left of the starting position (the third character position). If you enter more
characters than can be displayed on the current screen line, an exclamation mark (!)
will appear in position 79 and the cursor will appear in position 80.

CLI Variables. CLI variables are symbols that have string values associated with
them. The command language allows these variables to be defined and referenced
within a command file. The scope of CLI variables is restricted to the command file
in which the CLI variables are defined. The name of a CLI variable can be a maximum
of six alphanumeric characters long. The first character of the name must be a letter.
Letter case is not significant. The value associated with a CLI variable is a string
with a maximum of 508 ASCII characters. A reference to a CLI variable consists of
a percent sign (%) followed by the name of the CLI variable.

The CLI must be able to distinguish the variable reference from the surrounding text.
You can guarantee this by:

1. Following the variable name with a delimiter character.

2. Enclosing the variable reference in matching quotes. The quotes are removed if
the program obtains its arguments through the DQSGETSARGUMENT
primitive.

3. Making the variable name a full six characters long. The CLI stops looking if a
delimiter has not been encountered within six characters.

Whenever a reference to a CLI variable is encountered in a command line read by
CLI, the interpreter replaces the reference with the current value of the CLI variable
before executing the command. If the referenced CLI variable is undefined, the refer-
ence becomes the null string. Examples of CLI variable use appear in figure 2-3.

There are two different types of CLI variables: system-defined CLI variables and
user-defined CLI variables. No more than ten CLI variables can be defined within
one command file, including both system-defined and user-defined variables.

Human Interface Series-IV Operating & Programming

System-Defined CLI Variables. One system-defined CLI variable is provided in the
Series IV: ‘STATUS’. Any reference to it takes the form ‘BSTATUS’. At any given
point, the value of STATUS represents the completion code returned by the last
DQSEXIT call executed (see Chapter 7). The completion code is converted to a string
of ASCII decimal digits, thereby expressing the value of the completion code in
decimal notation (leading zeros are suppressed). Control structures, together with the
STATUS variable, make possible the conditional execution of subsequent steps in a
command file.

User-Defined CLI Variables. You can also create CLI variables. No separate
command exists for defining CLI variables. Use the SET and READ commands (see
Chapter 4) to create your variable.

Commands for Manipulating CLI Variables. The SET command is an assignment
statement for CLI variables. If the receiving variable does not exist, SET creates it.
The string concatenation of any combination of literal strings and the values of CLI
variables can be assigned to a CLI variable (either system-defined or user-defined),
as shown in the following examples.

Assuming FILE and EXIT are user-defined CLI variables with the following values:

%FILE = ‘aprog’
%EXT = ‘oby’

The statement

SET NAME TO ‘%XFILE.XEXT’
results in

%NAME = ‘aprog.obj’

In this example, the quotes surrounding the values of the CLI variables are not part
of the values, but are included to separate the string values from the surrounding
text.

As CLI processes a command line, the following sequence occurs: (1) the line is read
(2) the line is scanned for references to CLI variables and all substitutions are
performed (3) the line is parsed as a command. The literal quotes around the object
following the TO are necessary because the values of the CLI variables being substi-
tuted may contain delimiters.

Examples of CLI Variable Substitution. Assume the following CLI variables have
been defined:

%FILE = ‘mod’
%NUMBER = ‘I’
BEXT = ‘p86’

Consider the following command lines before substitution after substitution, and at
execution (i.e., the command tail as it appears when retrieved by the
DQ$GETSARGUMENT UDI primitive).

before: plm86 %FILE%NUMBER.%EXT
subst: plm86 mod1.p86
exec: plm86 mod1.p86

Series-IV Operating & Programming Human Interface

before: pIm86 “%FILE”A%NUMBER.%EXT
subst: plm86 “mod”Al.p86
exec: plm86 modA1.p86

The quotes are necessary because the CLI would interpret %FILEA%NUMBER as
a command line containing a reference to a CLI variable called FILEA.

before: plm86 FILE%NUMBERA.%EXT
subst: plm&86 mod1A.p86
exec: plm86 mod1A.p86

Quotes are not necessary in this example because the CLI knows that variable names
are a maximum of 6 characters long. CLI assumes the second variable reference is
to NUMBER rather than to NUMBERA.

If a literal percent sign needs to be included in a command line it can be surrounded
by matching quotes:

before: a'%’ F1LE.obj

subst: a‘%’FILE.obj
exec: a%FILE.obj

Command Files

Commands are normally read from the physical console. However, you can create
permanent files that contain lists of commands. These permanent files are called

Refer to figure 2-3 for an example of command file usage. In addition to the normal
console commands, the Series IV has control commands that provide, at run time,
conditional or repetitive execution of a set of commands within a command file. CLI
variables may also be defined within the command file.

Dynamic File Creation

When you enter a command to CLI from the keyboard, the syntax builder is invoked.
Prompts are always displayed, although you can disable command keyword comple-
tion (refer to the FILL command in Chapter 4). If you attempt to create a command
file with a standard text editor, the syntax builder prompts will not occur. If you were
dependent on these, you might have to check a manual or the corresponding reference
card to create a command file. To avoid this inconvenience, CLI provides the BATCH
command. The BATCH commands allow you to use the syntax builder to create,
write, and execute a command file. Another advantage of the BATCH command is
that since it is part of the CLI, less memory is required to invoke it than is required
to invoke a separate text editor. When the BATCH command is invoked, only the
keyword BATCH and the pathname of the command file are specified.

If the command file already exists, the syntax builder’s editor can be used to alter
the contents of the command file. If the file does not exist, it is created and then
written at the end of the edit process. When the new command file is complete, the
BATCH command prompts you: abort, write it without executing it, execute it in the
foreground or background, . If you want
to execute it, BATCH allows you to write and execute the file, or allows you to
execute it only (a temporary file is created and then deleted after execution). If you

2-9

Human Interface

2-10

Command File (compil.csd)

QPEN FILES.NRM i get parameter file
SET LINKEM TO * ' i initialize
) ;i string to
i hold link file

name
REPEAT
READ NAME ; get module
; name
WHILE IYINAME <> ' i exit loop at
; end of

parameter file
H compile one module
PLM86 ¥NAME.P86 DEBUG COMPACT
H build string of file names for link step
IF XLINKEM = * 7
SET LINKEM TO ‘AINAME.OBJ'
ELSE
SET LINKEM TO “XLINKEM,XINAME.OBJ'
END
END
LINK86 YLINKEM,:FO0:SYSTEM.LIB TO DRIVER BIND
Parameter File (files.nrm)

driver, modl, mod2

Invoecation Line

SUBMIT compil

Figure 2-3. Command File Example

execute a file containing references to formal parameters, BATCH prompts you for
the actual parameter values to be used. Refer to Chapter 4 for a detailed description
of the syntax and operation of the BATCH command.

Log Files

The Human Interface provides a log facility that lets you specify that output written
to the logical console output device should also be written to a mass-storage file. In a
foreground job, normal console output is displayed on the physical screen. If a log
file is active, the same output is also written to the log file. In a background job, the
normal console output goes to the byte bucket. A log file can be requested in either
of two ways: by selecting the LOG command or by specifying the LOG option of the
SUBMIT, BACKGROUND, an ‘commands. (The LOG command is valid
only from the keyboard. See Chapter 4 for a description of the LOG command.)

The log file is the only attribute of a command file environment which is inherited
by nested command files. If a log file is active when a SUBMIT command is issued,
the console output from the newly submitted command file is also written to the
currently active log file unless the LOG keyword is specified on the SUBMIT

Series-IV Operating & Programming

Series-IV Operating & Programming Human Interface

command. If a log file is active when a SUBMIT command with the LOG keyword
is issued, the current log file is detached before the new log file is created. When the
inner nested command file has finished executing, its log file is detached, the log file
of the outer command environment is re-attached, and the file pointer is positioned
at the end-of-file. The log file of the outer command environment (either the keyboard
or another command file) resumes with the next command after the SUBMIT (with
LOG keyword).

Parameter Substitution

Actual parameters can be specified when a command file is submitted for execution.
The command file can have formal parameters of the form %n, where nis a decimal
digit (0-9). At submit time, a list of actual parameters is supplied along with the
name of the command file to be executed. Before the command file is executed, the
CLI creates a new copy of the command file where all occurrences of formal param-
eters have been replaced by the corresponding actual parameters. The formal param-
eter %n is replaced by the (n + 1)st element of the list of actual parameters (%0 is
replaced by the first list element, etc.). The parameter replacement is done by scanning
each line in the command file once from left-to-right. Every occurrence of the string
%n is replaced by the corresponding actual parameter in a string substitution. If the
actual parameter is enclosed in quotes, the quotes are removed before the substitution
is performed. If a formal parameter has no corresponding actual parameter, the
replacement is performed using the null string.

Parameter Files

To increase the power of command files as utility tools, the command language has
commands that allow the values of CLI variables to be read from mass-storage files.
These files, referred to as parameter files, are manipulated using the OPEN and
READ commands. At most, only one parameter file can be open at any given time.
The OPEN statement allows any pathname to be specified as a parameter file. The
READ command treats the parameter file as a byte stream subdivided into strings
by delimiters, and specifies a list of CLI variable names. The READ command
proceeds from the current file pointer position in the parameter file and assigns a
string to each variable in the list. If end-of-file is detected on the parameter file during
a READ, the parameter file is closed. If the list contains more variables than the
number of strings in the file, the variables without corresponding strings are set to
the null string.

Suppose file “files.nrm” contains the following two logical lines:

driver, modl
mod2, mod3

The execution of the command file fragment

OPEN FILES.NRM
READ FILEYV,FILE2,FILES

results in values of the CLI variables FILE1, FILE2, and FILE3:

%FILEl = ‘driver’
%FILE2 = ‘modl’
%FILE3 = ‘mod2’

The quotes are not part of the values of the variables. If a subsequent READ command
is issued, the string retrieved is ‘mod3’. Thus, general purpose utility command files
that can process groups of related modules, whose names are specified by parameter
files, can be constructed. An example for such a command file is given in figure 2-3.

2-11

Human Interface Series-IV Operating & Programming

System-Designated Device Names
The following device names are defined by the operating system:
TL Serial channel #1 input

:TO: Serial channel #1 output
. . 1 1 l l

:CL: Console input (typically Series-IV keyboard in foreground)
:CO: Console output (typically Series-1V display in foreground)
:BB: Byte bucket

Though nonexistent, the byte bucket is treated as a real device by
the commands. The byte bucket receives data you want to discard.
Writing to :BB:, always successful, simply discards data. Reading
from :BB: returns an end-of-file (i.e., a zero byte read).

FLO, FL1 Flexible disks
WMO Integrated 5-1/4” Winchester disk
WDO0, WD1 Winchester 35 MB disk

HDO thru HD3 HD5440 hard disks

Job Control

A job consists of a sequence of commands that perform activities. A job is explicitly
created by the LOGON command and terminated by the LOGOFF command, or
implicitly created by a BACKGROUND command. The type of job determines the
run-time environment created. The run-time environment consists of the standard
input and output files, a set of logical names, the STATUS variable, CLI variables,
and the user name and any associated access rights. Jobs are independent of each
other; changes made in one job do not affect another job.

Foreground Job

The only job you interact with is a foreground job. It is created when you log on to
the system using the LOGON command. It is terminated when you log off. The
physical console is the standard input and output device.

Background Job

A background job, created by the BACKGROUND command, allows you to run a
batch job in the background concurrently with the foreground job. Syntactically, the
BACKGROUND command is similar to the SUBMIT command: you specify the
name of a file that contains a sequence of commands to be executed. Upon receiving
the BACKGROUND command, job control creates a background job environment.
It then implicitly logs you on and assigns to a log file the input console to the disk
file that contains the commands and the standard output device (unless you have
requested that no log file be used, in which case the standard output device is the
byte bucket). The command line interpreter is loaded and the execution of the
background job starts. When the command file is exhausted, job control logs you off
and deletes the background job. Once created, a background job has no relationship
to the foreground job from which it was created; nor does it inherit any environmen-
tal information (e.g., logical names or CLI variables) from the foreground job.

2-12

Series-1V Operating & Programming Human Interface

The background job has no physical console attached to it. Thus, certain programs
cannot be executed in the background and certain primitives are disallowed. A screen-
oriented editor or debugger should not be invoked from the background. If a program
running in the background calls DQSTRAPS$CC (see Chapter 7), the call returns the
message EXCEPT = ES$OK, but no action is taken. If CONTROL-C is typed, the
CONTROL-C handler of the foreground job is always invoked. A background job
ignores a CONTROL-C request.

2-13

CHAPTER 3
FILE SYSTEM MANAGEMENT

The iNDX distributed file system offers a hierarchical file structure that provides:

« multiple user access to shared data and directory files

» owner controlled access (World and Owner to the files on mass storage devices)
« alist of files that reside in the directories

» the ability to create new directory and data files while other users are accessing
shared files

» flexibility in file maintenance
« an archiving facility for files stored on the shared disk

In previous versions of file systems, files and collections of files were tied to the media
(disk) and the disk drive (physical device) where the files were stored. Thus, the
terms disk, directory, directory identifier, logical device name, physical device name,
and disk drive were functionally identical and could be used interchangeably.

The additional functionality of the iNDX structure requires redefinition of these terms.
In this manual, the terms are used as follows:

* Disk - the media where directories of files can be stored.

» Directory - a logical collection of files stored on a disk.

« Directory File - a file that stores information about a directory.

» Directory Name - a user specified label for a directory (SYSTEM.DSK).

» Directory Identifier - a logical name (n) or fully qualified pathname used to access
a directory. 1

+ Disk Drive - a machine used to access a directory stored on a disk.

e Physical Device Name - a label assigned to a physical device (line printer, flexi-
ble disk drive 1, Winchester disk 1).

» Logical Device Name - a label (:BB:, :CO:, :SP:) assigned to a logical device
(byte bucket, console, spooler queue).

iNDX File Structure

The iNDX file system is structured hierarchically. This structure resembles an inverted
tree (see figure 3-1).

The root or origin of the file system is called the Logical System Root (in the first
tier of figure 3-1). It “connects” the volumes within the file system (shown as the
second tier). Each volume corresponds on a one-to-one basis to a physical mass storage
device. Thus, in the figure, VOL 1.A could be a flexible disk, VOL 2.B a Winchester
disk, and VOL 3.C a hard disk. Each volume is further divided into files (shown as
the third tier). Each file may be either a data file or a directory file. Data files contain
only data; directory files may contain both references to data files and additional
directory files.

File System Management Series-IV Operating & Programming

Pathnames

The files (data and directory) can be traced down through the file structure by a
pathname. The pathname identifies every volume and directory from the logical system
root to the data file. The pathname for the file pointed to by the arrow in figure 3-1
is /VOL1.A/DIRB.EXT/FILE3.EXT.

The pathname /VOL1.A/DIRB.EXT/FILE3.EXT is a fully qualified pathname
because the slash (/) acts as a delimiter between the names of the volume and the
various directories in the hierarchical path.

To directly access FILE3.EXT in figure 3-1, you may assign a directory identifier
(X) to the fully qualified pathname of the directory with the LNAME command, as
in the following example:

LNAME DEFINE X FOR /VOL1.A/DIRB.EXT
The pathname for this file is now X/FILE3.EXT.

For details and restrictions of the LNAME command, see Chapter 4.

Wildcard Filenames

The COPY, DELETE, ACCESS, DIR, and CHOWNER commands allow you to
specify filenames using a wildcard element to replace one or more characters in the
last component of a filename. The wildcard elements can appear only ‘in the last
component of the filename.

The two wildcard characters are the asterisk (*), which matches any number of
characters in the final path component, and the question mark (?), which matches
any single character in the final path component.

LOGICAL SYSTEM ROOT

VOLUMES VOL1.A | voL2.B I l voL3.C I

(PHYSICAL
DEVICES)

FILES

(BOTH
DIRECTORY & '

DATA FILES)
DIRA.EXT ‘ DIRB.EXT ’ ‘ DIRC.EXT) < DIRD.EXT)
FILES.EXT

I I ‘ FILE4.EXT ’
DIRE.EXT) (
C____) GILELEX'I Flusz.ExD (FILEa.EXT -

C—J = voume
(D = DIRECTORY FILE

O = DATAFILE

Figure 3.1 Hierarchical File Structure 121753-6

Series-IV Operating & Programming File System Management

Thus, the wildcard pathname /FAT* will match the filess /FATCAT, /FATLADY,
/FATCITY, etc. Note that the period (.) is treated like any other character. /FAT*
matches /FAT.CITY, /FATC.ITY, etc.

The wildcard pathname /FAT?AT will match the filenames /FATCAT, /FATHAT,
/FATBAT, but not /JFATXHAT or /FAT.HAT.

More than one asterisk may appear in wildcard filenames. Thus, /*FAT* matches
all filenames having the character string FAT appearing between any two other
character strings. /AFATCAT and /INFATCITY would be matched.

The other possible combinations of the two wildcard characters such as *B?, 7B* and
7B? are also acceptable.

The wildcard pathname * matches any files in that directory.

Creating Directories

You can create a new directory in the hierarchical tree structure by using the
CREATEDIR command described in Chapter 4 . The CREATEDIR command allows
you to add new directory files to existing directory files by specifying either the fully
qualified pathname (naming all of the branches of the tree) or the directory identifier
assigned to the existing directory file.

Directory Maintenance Guidelines

The guidelines that follow will help you take advantage of the versatility and flexi-
bility of the iNDX distributed file system.

To create and maintain your directory and data files:

1. Minimize the number of directories in each volume. To do this, subdivide the
directories by project and function.

Keep all of the “system files” in one directory file.

3. Create a separate directory of directory files for individual user “miscellaneous
files.”

NOTE

An extensive structure will retard file accessing and retrieval time.
The example figure is for a well defined and heavily structured multi-
user environment. Your file system should only be as structured as
required by yeur project. Use this larger structure with a detailed
project. Use only two or three levels of file-depth on a smali-to-
medium size single-user project.

Directory Files

Directory files reside within each volume. Directory files can contain other directory
files, or data files. Figure 3-2 shows a volume (WINCH!1.VOL) with six directory
files: INDX.SYS, PROJA,DIR, PROJB.DIR, JOHN.DIR, SHEILA.DIR, and
LEE.DIR.

File System Management Series-IV Operating & Programming

LOGICAL
SYSTEM
ROOT

///

| FUTURE.VOL I [WINCH1.VOL1 LFUTURZ.VOL]

s S S e e
| I l | | |
(.s,s.A) (m) Qmse.@ G\scse.%) (Asm.@ CF.m) C FLE2) (Fm)

| |
O

‘ BACKUP.DIR ’ PHASEZ DIR ‘ TEST.DIR '
‘ FILE1 ’ ‘ FILE2) (FILE3) ‘ FILE4)

DIR.B

‘ DIR4 ’
FILEA

l I l I l
‘ FILEA ’ (FILEB) (FILEC) (mso) (DIR-A) (D'R‘B) (DR.C)
[= vorume I |
(" = DIRECTORY FILE
= DATAFILE (HLE1) CHLEZ)

0

Figure 3-2. Model of iNDX File System 121753.7

34

Series-IV Operating & Programming File System Management

The iNDX.SYS directory file contains all the files a programmer would normally
look for in a default directory. Those files are:

» ISIS.A (basic system files ISIS.DIR, ISIS.BIN, ISIS.CLI, etc.)

¢ Command programs (COPY, RENAME, LOGON)

¢ Text editors (AEDIT™, CREDIT)

» Compilers and Translators (PASC86.86, PLM86.86, ASM86.86, FORT86.86)
¢ Linkers and Locators (LINK86, LOC86)

¢ Other-tools

« Latest stable version of the prototype software

Each project directory, PROJA.DIR and PROJB.DIR, contains directories that
subdivide the project into phases or sections depending on the application. Figure 3-2
shows four directories:

1. PHASEI1.DIR—contains various stages of prototype software and all .SRC, .LST,
.OBJ and other work files related to this phase of the project.

2. PHASE2.DIR—similar to PHASE1.DIR except this directory is further sub-
divided for programmer convenience.

3. BACKUP.DIR—stores backup copies of all relevant files related to the project.

4. TEST.DIR—contains separate directories of tests for various aspects of the
project. These directories each contain individual test files,

The directory files listed can be controlled as needed by individual programmers.

Each person in the structure has a directory (name.DIR) that can be used to store
status reports, memos, trip reports and other miscellaneous work.

File Access and Ownership

Every data and directory file in the hierarchical file structure has an “owner.” The
file is “owned” by the user who created it.

Every file on a shared mass storage device has separate Access Rights for the file
owner (Owner Access Rights), the other users (World Access Rights), and the
superuser (Superuser Acess Rights). These Access Rights are controlled by access
switches that can be manipulated by the file owner from the workstation.

Before accessing a file in a shared file system, you need the appropriate Access Rights
to the file. To create a file (directory or data), you must have Access Rights to the
directory where the file will reside.

Protecting File Access on a Mass Storage Device

If you are accessing files on a flexible disk, you are the superuser. File protection is
provided since you may remove the disk and store it somewhere. Thus, no one else
can access your files.

For files stored on Winchester or Hard disks, a file protection system is provided to
allow or prevent one user from.accessing another’s files. The person who manages
this system is defined as the SUPERUSER and is responsible for providing system
management for mass storage devices that the workstation user cannot provide—
devices such as creating and deleting users, managing user ID numbers, and assign-
ing passwords.

3-5

File System Management Series-IV Operating & Programming

Your group should choose one person to become the SUPERUSER. The SUPERUSER
should establish a user structure that allows the rest of your group to limit access to
their files as they see fit.

Once this is done, each user will have to use his user name and password when logging
on. Only the system manager can use the SUPERUSER log on sequence.

Creation and Deletion of Users

The SUPERUSER initially creates (and adds) each user by assigning a unique name,
a unique user ID number, a home directory, and a password. The user logs on by
entering his name and password at the workstation console. These identification
methods guarantee that only authorized users will be able to access the file system.
The user ID provides a way of tracking ownership of files throughout the system.

When you remove a user’s access rights to shared files, the files belonging to that
user are not deleted. An expanded directory listing shows an owner name of “NOT
FOUND” for files whose owners have been removed from the structure. The
SUPERUSER can then use the CHOWNER command to transfer ownership to
another user or can define another user with the same user ID to become owner of
the files.

The creation and deletion of users is accomplished via the USERDEF command (see
Chapter 4). The USERDEF command recognizes only the predefined user name
SUPERUSER. Only with this name can all the SUPERUSER functions be executed.
The user name SUPERUSER cannot be deleted from the system. Secondary super-
users can be created with distinctive user names and user ID numbers in the range
3-15. (The SUPERUSER has a predefined user ID of 2.) The secondary superusers
have all the superuser capabilities except the ability to execute the USERDEF and
USERS commands. Secondary superusers may be removed from the structure by the
primary superuser.

Management of User IDs

The primary superuser assigns user names and user ID numbers with the USERDEF
command. The system keeps a record of these identification assignments for the
SUPERUSER. He can access that record via the USERS command (see Chapter 4).

The USERS command can only be used by the primary superuser. The command
displays a list of both user names and their associated ID numbers. Valid user ID
numbers are in the range 1024-32767.

Assignment of Passwords

The USERDEF command assigns a null password to each newly created user name.
The SUPERUSER can then assign passwords using the CHPASS command.
Passwords can be unique for each user or can be common to a project or products.
The SUPERUSER decides how to assign passwords.

The CHPASS command (see Chapter 4) also changes existing passwords. The

SUPERUSER need not specify the old password to cause a change. Passwords are
restricted to a maximum of 14 characters.

3-6

Series-1V Operating & Programming File System Management

File System Considerations

Due to the structure of the hierarchical file system, users who have ALL WORLD
access rights to a shared file need to be careful when editing it. For example, if you
delete part or all of a shared file, no one else can access (that part of) it any longer.
Another example is: if user A renames a shared file without informing user B of the
new name, B can no longer access that file.

When editing shared files (especially in using the RENAME and DELETE
command), document the changes so others can understand how you have altered the
files.

CHAPTER 4
COMMANDS

The Series-IV development system provides console commands that enable you to
productively interface with the hardware, programs, files, and supporting peripherals.
These commands help you to distribute jobs, maintain files, and transport informa-
tion from other systems to the Series IV.

Command Categories

Except for LOGON, LOGOFF, and TIME, the commands are arranged in four
groups:

Control Commands

File Maintenance Commands
Job Management Commands
Media Operation Commands

Control commands help build a command file. You can select or execute commands
from the command file to help you in your program.

COUNT OPEN
EXIT READ
FILL REPEAT
IF SET
LOG

File maintenance commands are used to establish, change, and maintain files. Use
the file maintenance commands when you want to change the file set within your
directory.

ACCESS DISMOUNT
ARCHIVE LNAME
CHOWNER MOUNT
CHPASS RENAME
COPY SDCOPY
CREATEDIR SPACE
DELETE USERDEF
DIR USERS

Job management commands enable you to distribute your job load efficiently so more
than one job can be executed simultaneously.

BACKGROUND REGION
BATCH SUBMIT
CANCEL

Media operation commands can be used to transport information from another
medium to the Series IV.

FORMAT PDSCOPY
FPORT VERIFY
ICOPY

4-1

Commands Series-IV Operating & Programming

Entering and Editing Line Commands

For a full description of how to enter and edit line commands, refer to “Console
Operations and Command Language Interpretation” in Chapter 2.

Commands
The remainder of this chapter details the commands of each command category.

Each command—along with its syntax, a description of its functions, and some
examples—is listed alphabetically within its respective category.

The LOGON, LOGOFF, and TIME commands—not part of any of the four
command categories—are listed first.

42

Series-IV Operating & Programming . Commands

LOGON

Syntax

LOGON username [{ INIT (filename)”

NOINIT
where
username identifies the user to the operating system.
pathname is a pathname, wildcard pathname, or both.

INIT and NOINIT indicate whether the user environment is initialized with a
command file (INIT is the default).

Description

This command prevents unauthorized system access on protected device systems.

If you are accessing a mass storage device, the following prompt appears after you
enter your user ID:

PASSWORD PLEASE

Your password, followed by <cr >, must then be entered. Line editing is not allowed
when entering the password. Also, the password does not appear on the display screen.
If an incorrect character is entered, press < cr >, observe the new prompt, and enter
the password correctly.

System access will be granted if the entered username is found in the predefined
system USERDEEF file and the entered password corresponds to the username.

The INIT option determines which command file will be executed to initialize the
user’s execution environment (i.e., the initialization file will normally consist of
commands assigning logical names, etc.). If neither INIT nor NOINIT are specified,
a default filename of INIT.CSD will be used. Unless NOINIT is specified, the
following will occur:

1. If a filename is specified, the existence of the file will not be verified. The filename
will be Submitted for execution as the initialization file.

2. If no filename is specified, a default filename of INIT.CSD will be used as the
initialization file. The existence of this file will not be verified.

3. If a filename entered ends with a period, the filename (with the period truncated)
will be used as an initialization file.

4. If the filename entered does not end in a period, the suffix .CSD is appended.

5. In the default INIT case, the operating system looks for the directory INIT.CSD.
If the directory is found, it is used as the initialization file.

If no filename was entered, a search is made to determine if the default file
INIT.CSD exists in your home directory. If INIT.CSD does not exist in your
home directory, a search will be made to determine whether it exists in the System
Volume Root Directory. If the default file INIT.CSD does not exist in either
directory, no initialization will be performed.

43

Commands Series-IV Operating & Programming

1. LOGON is implicitly performed for BACKGROUND and

jobs. In these cases, initialization of the user environ-

ment will take place exactly as if you had logged on interac-

tively in Foreground and did not specify either NOINIT or an

initialization file (i.e., if an INIT.CSD file exists in your home

directory or in the System Volume Root Directory, it will be
executed as an initialization file).

2. Since INIT is the default case, you should be aware of what
occurs at interactive log on time. If an INIT.CSD file is present
on your home directory or on the Volume Root Directory but
you do not want that file executed, NOINIT or another initial-
ization filename must be explicitly stated.

3. If an invalid username is entered, or an invalid password is
entered 3 times in succession, the LOGON process is re-started.
Consequently, the INIT/NOINIT filename options must be
re-entered.

~ Examples

1. LOGON HARRY NOINIT
PASSWORD PLEASE: BLUE

HARRY logs on to the network and ‘correctly enters the password BLUE. No
initialization file is searched for.

2. LOGON HARRY INIT (SET.)
PASSWORD PLEASE: BILE
PASSWORD PLEASE: BLUE

This time HARRY logs on and specifies that initialization information is to be
obtained from file SET. The password BLUE is incorrectly entered as BILE. The
prompt reappears and the password is then correctly entered.

3. LOGON HARRY INIT (ENV)
PASSWORD PLEASE: BLUE

HARRY successfully logs on and specifies ENV as the initialization file. Since
the filename is not followed by a period, the system searches the user home direc-
tory for a file named ENV.CSD to use as an initialization file.

4. LDGON HARRY INIT
PASSWORD PLEASE: BLUE

HARRY successfully logs on and specifies the INIT option but does not specify

an initialization file. The operating system attempts to execute INIT.CSD as the
INIT file.

4-4

Series-IV Operating & Programming Commands

LOGOFF

Syntax

LOGOFF

Description

This command terminates your current foreground job. All environment information,
including logical names, is deleted.

Examples

1. LOGOFF

4-5

Commands Series-IV Operating & Programming

TIME

Syntax

TIME

Description

The program will sign on as follows:

systemid TIME (Vx.y)
DATE: mm/dd/yy TIME: hh:mm:ss

where
system id is the operating system’s identification.
Vx.y is the operating system’s version number.
mmy/dd/yy and hh:mm:ss are the current setting of the system clock.

The system then prompts:

ENTER COMMAND (SET/EXIT):

You can then enter a command in line-edit mode. (All keyboard entry to the TIME
command is in full line-edit mode.) TIME recognizes abbreviations of the commands.
If the command entered is not valid, TIME will display the following message:
INVALID COMMAND

and return to the ENTER COMMAND prompt.

If the command entered is EXIT<cr>» or EXI<cr> or EX<¢cr>» or E<cr>, the
program terminates and control returns to the Command Line Interpreter.

If the command entered is SET < cr > or any of its abbreviations, the following prompt
will be issued:

ENTER DATE (mm/ddfyy <cr>):
The user enters the current date in mm/dd/yy format. If yy is less than 78, the date is
assumed to be in the 21st century. If any of the characters in mm, dd, or yy are not
numeric, the following message will be displayed and control will be returned to the
ENTER COMMAND prompt:

INVALID ENTRY

If the entry is valid, TIME will prompt for the current time:

ENTER TIME C(hh:mm:ss<cry):

Enter the current time in military format (i.e., 1 pm = 13:00:00). If any of the
characters in hh, mm, or ss are not numeric, the following message will be displayed
and control will be returned to the ENTER COMMAND prompt:

INVALID ENTRY

If the entry is valid, the system clock will be set to the requested date and time. If
the date and time entered do nqt represent a valid combination, one of the messages

Series-IV Operating & Programming Commands

below will be displayed and followed by the ENTER COMMAND (SET/EXIT)
prompt:

EXCEPTION 201AH: INVALID TIME
EXCEPTION 20tBH: INVALID DATE

After the SET command is executed, the current setting of the system clock is
displayed and control returns to the CLI.

Additional Notes

. When invoked within SUBMIT file processing, TIME will display the current
system Date/Time and exit, returning control to the CLI.

2. Only the Superuser may set the system Date/Time. If the TIME _cusp is invoked
by a NON-SUPERUSER, the current system Date/Time will be displayed and
the TIME cusp will return control to the CL1.

a network enwronment if the system DATE/TIME is set
workstatlon DATE/TIME will be set at the NRM (via transm
“ston of the request). The NRM will then send Update Txme Reque
to all of the currently active workstations, thus ensurmg that DA
, IME is synchromzed throughout the network

4.7

Commands Series-IV Operating & Programming

Control Commands

Following are the control commands.

COUNT

Syntax
COUNT n

[commands]

WHILE =
UNTIL [@9ument } . (argument ...
commands
END
where
argument is a CLI variable value, a CLI variable name or a parameter.
n is the number of times the block will repeat.
Description

The Count command allows specified iteration of one or more commands. A decimal
number specifies the number of times the loop will be executed. The WHILE, UNTIL,
or EXIT options can be used for a premature exit from the loop. More than one
WHILE or UNTIL clause may be entered. See the following page to use EXIT.

In the UNTIL option, the command set is executed until the logical comparison
evaluates TRUE. The first time the comparison evaluates to TRUE the loop is exited
regardless of the value of the counter for the loop. In the WHILE option, the command
set is executed as long as the logical comparison evaluates to TRUE. The first time
the comparison evaluates to FALSE the loop is exited regardless of the value of the
counter for the loop. The logical comparison consists of testing one string against
another for equality or inequality. The string may be a CLI variable value, a CLI
variable name, or a parameter. Substitutions are made before the command line is

executed.
. NOTE
The WHILE or REPEAT options may be used as often as necessary in a
COUNT block.

Series-IV Operating & Programming Commands

EXIT

Syntax

EXIT [Cargument) 1 .

where
argument is a CLI variable value, a CLI variable name, or one of the
ten parameters %0 to %9.
Description

The Exit command allows you to terminate the processing of a command file before
it reaches its normal end. Usually, the Exit command will appear in an IF statement
that is used to check for proper execution. In that case, the Exit command is used to
provide an error escape and a return to the calling command file.

The optional value, if specified, is assigned to the predefined CLI variable name in
the calling command file (STATUS). If, for example, you establish the decimal
number 5 to reflect malfunction, you can check STATUS in the calling program
against a malfunction. If STATUS = 5, you know that the Exit command was
executed and a malfunction occurred in the called file. If the optional value is omitted
and if the EXIT command is executed in the called program, the value 0 will be
assigned to STATUS in the calling program. If a parameter file is open within the
current command file, the parameter file is automatically closed and detached.
Command files are called (or Submitted) either by other command files or interac-
tively from the keyboard (by the Submit, Jjjjjjjj or Background commands).

49

Commands Series-IV Operating & Programming

FILL

Syntax

ON
FILL {OFF}

Description

The Fill command allows you to enable and disable the Command Completion feature
on the Syntax Guide. Remember, each menu entry is presented on the Display Screen
in initial uppercase letters and subsequent lowercase letters. When Fill is enabled,
you may select a menu entry simply by entering only the uppercase letters. The syntax
driver automatically fills in the missing lowercase letters. FILL ON enables the
feature; FILL OFF disables it.

The Syntax Guide also has a Noise Word Fill feature. When the Syntax Guide enters
options on the Menu Line and only one option is available, the Syntax Guide will
automatically enter that word (called a redundant or “noise” word—hence the term
Noise Word Fill). When Fill is Off, Noise Word Fill is also inoperative. The ON
option is the default case.

410

Series-IV Operating & Programming

IF

Syntax
IF argument : : > } argument
commands
ORIF argument : s [argument []
commands
[ELSE commands
END
where
argument is a CLI variable value, a CLI variable name or a formal
parameter.
commands is a set of one or more console commands.
Description

The IF command provides conditional execution of one command set. The command
set choice is based upon the result of successive logical evaluations. In each evalua-
tion, the first argument value is checked for equality or inequality against the second
argument value. Each value may be a CLI variable value, variable name, or param-
eter. (Substitutions for CLI variable names and for formal parameters are made at
command file invocation.) Generally, the value of a CLI variable name or parameter
represents a filename to be tested to determine if the command set is to be executed
on that file. The command set consists of one or more commands.

If the IF comparison evaluates to TRUE, the command set immediately beneath it is
executed. If the IF comparison does not evaluate to TRUE, the ORIF comparison is
evaluated. If the ORIF comparison evaluates to TRUE, the command set immedi-
ately beneath it is executed. If the ORIF comparison does not evaluate to TRUE, the
command set immediately beneath the ELSE line is executed. If only the IF compar-
ison is used and it evaluates to FALSE, no commands are executed. The ORIF and
ELSE comparison lines are optional. More than one ORIF line may be used. Also,
the ORIF comparisons are checked sequentially. Only one ELSE line is allowed,
however.

Examples

1. IF ZSTATUS <> "o"
READ XABC
END

This command checks to see if the completion code returned by the operating
system (which is referenced by the predefined CLI variable name: STATUS) is
equal to 0. If the returned completion code equals 0, an open parameter file is
read and assigns the value read to the CLI variable whose name is defined by
%ABC.

Commands

Commands Series-IV Operating & Programming

LOG

Syntax
:BB:
LoG [pathname }
where
pathname is a fully qualified pathname or a logical name.
:BB: is the Byte Bucket.
Description

The Log command creates a log of all console activity within the file specified. If the
output filename specified conflicts with any existing filename, the existing file will be
destroyed. The Log continues to function until a second command is issued to disable
it. The Byte Bucket (:BB:) is used to disable the log process.

Examples

1. LOG /ONE.VOL/MARK.DIR/FILES3.EXT/FILES3.L0OG

A log of console activity is created under the filename ONE.VOL/MARK.DIR/
FILES3.EXT/FILES3.LOG.

2. LOG :BB:

The current log file is closed and further logging is disabled until another Log
command is received.

4-12

Series-IV Operating & Programming Commands

OPEN

Syntax
0PEN pathname

where
pathname is a valid pathname.

Description

Before character strings can be read from a file on a mass storage device and assigned
to CLI variables, the file must be opened. Only one such file can be open at any one
time in a given command file. If a parameter file has already been opened in the
current command file, it will automatically be detached and closed by the second
Open command before the second file is opened.

413

Commands Series-IV Operating & Programming

READ

Syntax

READ variable-name {,...]

where
variable-name is either the system defined CLI variable name (STATUS)
or any valid user defined CLI variable name.
Description

After the Open command has been used to access the appropriate file residing on a
mass storage device, the Read command is used to take character strings from the
file and assign them to the variable names given .in the Read command. The Read
command begins at the current position in the file and reads a character string for
each variable name in the command. The non-alphanumeric characters are used to
define where one string ends and another begins.

If the variable names given in the command line outnumber the successive strings
available in the file, the variable names for which strings are not present are each
assigned a null character string.

If a read is attempted but no file has been opened, an error message will appear on
the standard output device and all variable names listed in the Read command will
be assigned null strings.

Examples

1. OPEN /SYSTMRT/DOGS
READ NAME1, NAMEZ2, NAME3, NAMES4

Assume that file /SYSTMRT/DOGS contains only the character string
FIDO#ROVERS$“OLE-BLUE”. The variable name NAMEI1 will be assigned to
the character string FIDO and NAME?2 will be assigned the character string
ROVER. The character string OLE-BLUE has been placed in quotes so the
hyphen will be interpreted not as a delimiter but as the literal hyphen character.
Therefore, NAME3 is assigned the character string OLE-BLUE. Since no other
character string is available from the file, variable name NAME4 is assigned a
null string. If the character string OLE-BLUE did not appear in quotes, the
hyphen would have been interpreted as a delimiter, NAME3 would have been
assigned the character string OLE, and NAME4 would have been assigned the
character string BLUE. Failure to use the quotation marks would thus cause two
dogs to be given bad names.

4-14

Series-IV Operating & Programming Commands

REPEAT

Syntax

REPEAT

[commands]

WHILE = t
UNTIL [|@9gument | |t argumen

[commands)

END
where
argument is a CLI variable value, a CLI variable name, or a
parameter.
commands is a set of one or more commands.
Description

The Repeat command allows one or more commands to be looped. The Repeat
command has two optional forms: the WHILE form and the UNTIL form. In the
WHILE form, the command set is repeatedly executed (in loop fashion) as long as
the logical comparison evaluates to TRUE. The first time the comparison evaluates
to FALSE, the loop is exited.

In the UNTIL option, the command set is executed as long as the logical comparison
evaluates to FALSE (that is, until it evaluates to TRUE). The first time the compar-
ison evaluates to TRUE, the loop is exited. If neither a WHILE or UNTIL line is
used, indefinite command set execution will occur.

The logical comparison involves testing one string for equality or inequality against
another string. Each string may be a CLI variable value, a CLI variable name, or a
parameter. Substitutions are made before the command line is executed.

NOTE

The WHILE or REPEAT options may be used as often as necessary in a
REPEAT block.

4-15

Commands

4-16

Series-IV Operating & Programming

SET

Syntax
SET variable-name TQ ["] value ["]

where

variable-name is a valid CLI variable name (i.e., a string of up to six
characters, alphabetic and numeric, the first character of
which must always be alphabetic), or the predefined variable
name STATUS.

value is a character string. The quotation marks are necessary only
if the string contains non-alphanumeric characters.

Description

The Set command assigns a character string of up to 508 characters to a user-chosen
variable name or to the system predefined name (STATUS). The character string
may be a simple string or a conglomerate of CLI variable names, CLI variable values,
and parameters. In the latter case, the system will first substitute names or parame-
ters with their respective strings, then assign the resulting new name to a pure string.
This process is made clearer in the following examples.

Examples

1. Assume the CLI variable names %X, %Y, and %Z have been previously assigned
to character strings by the following commands.

SET X 70 "for™
SET Y TO0 "peg thankx"
SET 2 TO "1234"

X references the string for, Y references peg thankx and Z references 1234. If
you now enter the command

SET A TO "XXiy"“

the CLI variable name A refers to the string formed by the concatenation of %X
and %Y. Thus, A is defined as a reference to the character string “for peg thankx™.
The optional quotation marks are used to prevent any of the characters of the
string from being interpreted as delimiter characters.

2. Now, consider the command SET B TO “ . The CLI variable name B refers to
the null string (i.e., a string of zero characters). The null string can be useful
when testing job execution. For example, you could use the IF command to test
filenames against the null string. As long as the overall routine continues to find
files, it will execute the rest of the procedure; once the null string is recognized,
an exit from the loop will be taken.

3. SET TNT TO "X%XZ2"a.ciX

In this example, the string “1234” is substituted for the previously defined name,
%Z, and the string “for” is substituted for the previously defined name, %X.
Between these, the character string “a.c” is entered. The variable name %TNT
can now be used to reference the character string “1234a.cfor”.

Series-1V Operating & Programming Commands

It is also possible to redefine a variable name using the previously defined varia-
ble name as part of the new definition. For example, if the variable name %AK47
has previously been assigned to the character string “BANG?”, then the following
command

SET XZAK47 TO XAK4T7"--"X%AK47

reassigns the name %AK47 to be the character string “BANG--BANG.”

4-17

Commands

4-18

Series-IV Operating & Programming

File Maintenance Commands

Following are the file maintenance commands.

ACCESS

Syntax

. DATA ACCESS SPEC
ACCESS [ﬂlename SET I:(USER SPEC DIR ACCESS SPEC }:H

where

filename is a pathname, wildcard pathname, or null. Null
(entered as a filename) gives a list of the access rights
of the directory associated with the null logical name.

SET declares the specified attributes.

USER SPEC is null, WORLD, or SUPERUSER.

DATA ACCESS SPEC is READ, WRITE, DELETE, ALL, or NONE.
DIR ACCESS SPEC is DELETE, ADD, DISPLAY, ALL or NONE.

Description

The ACCESS function allows you to set and display the user access rights to a file.
Any user may use this command to display the owner and WORLD access rights of
a file. You may also change both your own and the WORLD access rights. The
Superuser can change only his own access rights (unless he is the file owner).

When you set the file access rights, replace the existing access rights with the speci-
fied access rights. Previous access rights not explicitly specified in the resetting process
will no longer be valid. Following are the valid access rights for data files:

READ
WRITE
DELETE
ALL
NONE

You may specify any combination of READ, WRITE and DELETE. ALL indicates
full access whereas NONE indicates loss of all access rights to a file.

Following are the valid access rights for directory files:

DELETE
ADD
DISPLAY
ALL
NONE

You may specify any combination of DELETE, ADD, and DISPLAY. ALL indicates
full access whereas NONE indicates loss of all access rights to a directory.

If conflicting access rights are specified, the access rights set are the last specified,
as shown in the following example:

Series-IV Operating & Programming Commands

ACCESS A SET READ NONE NONE will be set

ACCESS A SET NONE WRITE WRITE is set

ACCESS A SET NONE READ DELETE READ, DELETE are set
If no user is explicitly specified, the access rights of the owner will be changed. When
either WORLD or SUPERUSER is specified, only that class of accessor will be
altered.
When ACCESS is run in display mode, the following screen display appears:

FILENAME OWNER ACCESS WORLD ACCESS SUPERUSER ACCESS
XYz REA WRI DEL REA REA WRI DEL

When ACCESS is run in set access mode, the following message is displayed for each
completed operation:

SET ACCESS 70 FILE pathname

Examples
1. ACCESS /A SET READ

This command replaces the existing owner access rights with access for read only.
2. ACCESS /A

This command lists the access rights of the owner, world, and superuser to
file A.

3. ACCESS /A SET ALL

This command replaces the existing access rights with full access rights.

4-19

Commands Series-1V Operating & Programming

ARCHIVE

Syntax

T

U
[AND ...]lg}

[‘{B | s | ON} IMDY [HMS]J}
ARCHIVE old-dir TO new-dir| ¢ l{B ['s | ON} [MDY [HMSI]

OW owne: name
F pathname
where
old-dir is the name of the directory subtrec to be copied.
new-dir is the name of the new directory subtree.
owner-name is the name of a file(s) owner.
pathname is the file pathname component.
M is MODIFIED.
C is CREATED.
ow is OWNED BY.
F is FILES.
B is BEFORE.
S is SINCE.
ON is ON.
T is TODAY.
MDY is mm/dd/yy.
HMS 1s hh:mm:ss.
Description

This command is designed to copy files from one directory subtree to anothe T;I}C
files are stored as they last appeared when the command was executed e

With the MODIFIED qualifier, ARCHIVE selects only files that have been modified
since the last ARCHIVE operation. If the MODIFIED keyword is followed by an
optional time qualifier (SINCE/ON/BEFORE/TODAY), ARCHIVE will compare
the time qualifier with the time the file was modified; it will then copy those files
that have been modified and match the time qualifier. The default time for the
MODIFIED option is the time of the last ARCHIVE operation.

With the CREATED qualifier, ARCHIVE compares the date entered with the time
the file was created and copies only those files that match the time qualifier. The
time qualifier is required for CREATED.

With the OWNEDBY qualifier, ARCHIVE copies files selected on the basis of owner
name.

The FILES qualifier allows ARCHIVE to copy files selected on the basis of the
pathname component. The qualifier accepts wildcard characters as part of the
pathname.

4-20

Series-IV Operating & Programming Commands

Time Qualifiers

The BEFORE/SINCE time qualifiers allow you to specify a time that is compared
with the file create or modified time to qualify a file for archiving. BEFORE allows
you to specify files created or modified before the date entered. If a time is not entered,
the default time is 00:00:00. SINCE allows you to specify files created or modified
since the date entered. If the time is not entered, the default time is 00:00:00.

ON specifies the start of a 24-hour period.

TODAY gets the current date from the operating system and defines a 24-hour period
beginning at midnight.

The DATE (required for BEFORE/ON/SINCE) consists of the date in the form
mm/dd/yy and, optionally, the time of day in the form hh:mm:ss. The DATE must
be entered as two decimal digits. The time should be entered in 24-hour form with
midnight as 00:00:00. The default time is midnight.

The AND operator provide the capability of concatenating several requirements on

the files selected. If the same qualifier is specified more than once, only the last value
entered for that qualifier is used.

The QUERY (or Q) switch instructs the ARCHIVE program to display the file name
and then request user input before each file is copied or a destination directory created.
The user must enter Y or y for the operation to occur. If the file is a directory file
and the user does not answer Y or y, the directory is not created.

The UPDATE (or U) switch instructs the ARCHIVE program to delete duplicate
copies of a data file automatically. The user is not queried regarding deletion.

Read access is required to copy source directory and data files. Add entry access is
required to ADD files to existing destination directories. The Superusers, by default,
can read all source data files and copy them to destination directories.

When the ARCHIVE command is given, the program signs on:

operating system ARCHIVE UTILITY, Vxy

For each directory the screen displays the following information:
DIRECTORY = directory-name

After each copy the screen displays the following information:

COPY source-file TQ destination-file

or, if QUERY is specified, the screen displays the following information:

COPY source-file TO destination-file ?

When the ARCHIVE program has executed, the screen displays the following
information:

ARCHIVE COMPLETE

The source directory subtree structure, which is duplicated at the destination direc-
tory, includes the original owner, create time, and last time it was modified.

4-21

Commands

4-22

Series-IV Operating & Programming

When a directory is encountered at the maximum supported subtree depth, a warning
message is issued to the user and ARCHIVE continues, as shown in the following
example:

UNABLE TO COPY SUBTREE - LEVEL TOD DEEP
PATHNAME = directory-pathname

You are responsible for archiving these additional subtree branches.

Examples
1. ARCHIVE /source_dir T0 /dest_dir Q

This example will copy all files with the proper access from /source dir to
/dest_dir and will verify each operation with the user.

2. ARCHIVE /fatcat_dir TO /fatcity dir
FILES *.LST MODIFIED BEFORE 12/25/81

This example copies all files in the directory subtree ‘fatcat_dir’ which match the
pathname ‘*.LST’ and which have been modified before December 25, 1981, to
the destination directory ‘fatcity_dir.’

Series-IV Operating & Programming Commands

CHOWNER

Syntax

CHOWNER filename TO0 wusername

where
username is the name of the new owner of the file.
filename is a fully qualified pathname or logical name.
Description

This function permits a change in ownership of a file. Only the superuser or the
owner is authorized to use this command.

Examples
1. CHOWNER/MEDIA TO PAUL

This example changes the ownership of the MEDIA file, giving it to user PAUL.
2. CHOWNER/BOOK/ATEXT TO ART

This example changes ownership of the BOOT/ATEXT file, giving it to user
ART.

4-23

Commands Series-IV Operating & Programming

CHPASS

Syntax
CHPASS username

where
username is the assigned user’s identifier.

Description

This command changes the password associated with the specified user. Any superu-
ser may invoke CHPASS for any other user. However, the command will not execute
for ordinary users unless the old password is correctly entered in response to the
query produced. Superusers need not enter the old password.

Examples

1. CHPASS FRED

0ld Password?

New Password?

Verifé Password?

In this example, user FRED (or any other ordinary user who knows FRED’s old
password) changes his password from pass] to pass2. FRED then needs to verify
that he knows the new password (pass2) by responding correctly to the third
query (verify?). The new password (pass2) will not be displayed when entered at
the keyboard.

4-24

Series-IV Operating & Programming Commands

COPY

Syntax
COPY sourcefilename T0 destinationfilename [{ g SB 2 1 : }]
where
sourcefilename is a pathname or a wildcard pathname. If the source-

filename is a wildcard pathname, the destination-
filename must be a directory file.

destinationfilename is either an existing directory file or a data file.

UPDATE and QUERY are options that suppress and enable the querying
process, respectively.

Abbreviations
UPDATE can be abbreviated to U, QUERY to Q.

Description

The COPY command copies a file from one position within the file hierarchy to
another position. If the sourcefilename is a wildcard pathname, the destination file
must be a directory file.

The destinationfilename is either an existing directory file or an existing data file. If
the destinationfilename is an existing directory file, a new file is created in that direc-
tory and the final component of its filename is the final component of the source
filename. This operation cannot take place if you do not have ADD Entry Access to
the directory file.

If the destination file is an existing data file (and the UPDATE option has not been
specified, you are queried as shown in the following example:

FILE ALREADY EXISTS

PATHNAME = name of existing file
DELETE EXISTING FILE?

(In SUBMIT, only the first two lines will be printed; you will not be prompted to
delete the file). Entering a Y (or y) deletes the existing file and initiates the Copy
operation if you have Delete access. Any other entry aborts the operation. The
UPDATE option disables the querying.

Querying can be explicitly chosen by entering the QUERY option. In this case, each
Copy operation produces the following query:

CQPY pathname TQ pathname ?

Entering a Y (or y) causes the copy to take place. Any other entry terminates the
command. The QUERY option cannot be used in submit mode; if QUERY is entered,
it produces the following error message:

QUERY OPTION NOT USEABLE IN SUBMIT MODE.

Each successful copy produces the following message:

COPIED pathname T0 pathname

4-25

Commands Series-1V Operating & Programming

You can also specify the Line Printer as the destination of the Copy operation, thereby
allowing you to obtain printed output if the workstation has a local line printer. If
the network workstation does not have a local line printer, the files may be spooled
to a network printer. If the system does not have a local line printer, an error message
will appear. To print output locally, specify :LP: as the destinationfilename. To provide
for network spooling, enter :SP: request name as the destination. Copying to :CO:
sends the file to the console output device.

NOTE

File protection attributes are not copied from file to file. With a successful
copy, the owner of the destination file will have full access rights to that file.

4-26

Series-IV Operating & Programming Commands

CREATEDIR

Syntax
CREATEDIR pathname

where

pathname is the pathname identifying the new directory.

Description

This command creates a new directory with the pathname entered only if you had
ADD-Entry access to the parent directory and no existing file (either data or direc-
tory) already has that pathname. If a conflict in pathnames exists, the command will
abort. Following proper execution of the command, you are given complete access
rights to the file created. No access is conferred upon WORLD.

Examples

1. CREATEDIR /DIRA/DIRB

A new directory, DIRB, is created in the parent directory, DIRA.

4-27

Commands Series-IV Operating & Programming

DELETE

Syntax

DIR
DELETE | pathname | QUERY
: SP: /request name

where
pathname is the pathname or the wildcard pathname or a null string.
DIR is mandatory for deleting non-empty directory files and is
optional for deleting empty directory files and all data files.
QUERY is an option that produces interactive querying before each
delete operation is executed.
:SP: signifies a spool delete.
request name is the name of the spool request to be deleted.
Description

The Delete command lets you delete both data files and directory files. In the
command line, the keyword DIR is mandatory for deleting Non-Empty directory
files and is optional for deleting Empty directory files. If the keyword DIR is used
for data files (both empty and non-empty) an error message will be returned.

A given data file will be deleted only if you have DELETE access to that file.

In deleting a directory file, the following operations are performed: first, your access
rights to the given directory file are checked. If you do not have Delete access, the
operation terminates immediately; otherwise, every file in the directory will be deleted
except:

1. Non-empty directory files (which are not deleted).
2. A file within the directory to which you do not have DELETE access.

3. Any file within the directory to which connections exist at the time the delete
operation is requested. In this case, the directory is not deleted and no new
connections to the file are permitted. The file will be physically deleted from the
medium when the last connection to it is detached.

The specified directory will not be deleted if any of these conditions occur.

If the null string is entered as the logical directory name (i.e., DELETE <cr>), an
attempt is made to delete the directory associated with the null logical name.

Spool requests are deleted by specifying the name of the spool request to be deleted.
If no name is specified, the system will try to delete the request that is printing. With
the exception of the Superuser (who may delete any spool request), a spool request
may be deleted only by the owner.

The directory specified in the invocation will not be deleted if any file with that direc-
tory is being accessed by another user when the Delete command was attempted.

4-28

Series-IV Operating & Programming Commands

User Query Interaction

You may specify the QUERY option with any delete command.

In Interactive Mode: every delete (in the given delete invocation) produces the
following query:

DELETE pathname ?

If you want to delete that file, respond by entering either Y or y followed by €cr>.
If you do not want to delete that file, enter any other character.

In Submit Mode: the query option causes termination of the delete operation. The
following message appears on the console:

QUERY OPTION NOT USEABLE IN SUBMIT MODE.

Each successful deletion of a file is followed by the following console message:
DELETED pathname

Successful directory deletion produces the following console message:

DELETED DIRECTORY pathname

Examples
1. DELETE /A/*@Q
This example deletes files in directory A with a query before each file deletion.
2. DELETE /A/B/C
This example deletes File C in the Directory /A/B.
3. DELETE /A/B DIR

This example deletes the directory file /A /B.
Since /A /B is a non-empty directory file, the specifier DIR must be used.

Additional Notes

In a multi-programmed /shared file environment, certain time-dependent situations
may cause a delete operation on a directory to fail. For example, if a file is created
within a directory at the same time a delete operation is being performed on the
directory, the file may not be encountered by the search operation and the delete will
fail. If connections exist to one or more files within a directory at the time a delete is
attempted, the delete may fail.

A directory will not be deleted if it is the parent of a non-empty directory file.

Wildcard pathnames may not be used with the DIR specification.

4-29

Commands Series-IV Operating & Programming

DIR

Syntax
DIR [{ Pathr}ame] [FOR filenamel [EXPANDED] [TO pathname]il
where

pathname is either the pathname or a logical name.

FOR filename specifies directory information of filename to be displayed.

EXPANDED specifies that the completed information described below in
the “Description’ should be provided for the directory
pathname entered.

TO specifies a file where the completed information is to be
written (in addition to the console).

Description

The Directory command allows you to display the names of files within a directory.
When used without the expanded modifier, the Directory command produces a listing
of file names only. Omitting the pathname produces a listing of the names of all files
in the directory designated by the null logical name.

The EXPANDED modifier produces the following information:
+ File name

e Owner name

* Length (in bytes)

« File Type (Data or Directory)

e Owner Access rights

¢ World Access rights

A null entry cannot be used with the EXPANDED or TO Madifier. To obtain
expanded information on the file designated by the null logical name, you must enter
" as the directory name.

Information about the file system configuration can be obtained by performing a
Directory operation on */”. For each volume of the file system which is accessible
from the given node, the volume name and the volume location are returned. The
location is specified as being Public, Local or Shadowed. A volume is Public if the
WORLD can access it; use of that name as the first component of a fully qualified
pathname results in a file on that volume being accessed (i.e., the public). A volume
name is Local if only the owner can access it; use of the pathname as the first compo-
nent of a fully qualified pathname results in a file on that volume being accessed. A
volume is Shadowed if it resides in a shared file and a volume of the same name
exists locally. The local volume shadows the public volume, i.e., use of this name as
the first component of a pathname accesses the local volume, not the public volume.

For example, if WDO is the system device directory, DIR/WD0/SPOOL displays
the contents of the spool. The format of the display is the same as for file. The order
of the files listed in SPOOL DIR is unrelated to the printing order in the print queue.

4-30

Series-1V Operating & Programming Commands

The Directory command sends output to the console as a default condition. However,
the modifier TO can be used instead to designate any disk file or device (such as :SP:
or file).
TO is subject to the restrictions of any other action that creates/updates a file, i.e.,
ADD-ENTRY, DELETE, WRITE ACCESS RIGHTS must be updated. Default
rights on the new file will not necessarily be compatible with access rights in the
original file.
Examples
1. DIR /A EXPANDED

This example displays full information about all files in directory A.
2. DIR /A

This example displays only file names for directory A.
3. DIR /A TO /A/B

This example outputs file names of directory A to file /A/B.

4, DIR /SYS.DEVICE/SPODOL

This example displays files in SPOOL Directory if the system device root
directory is SYS.DEVICE.

5. DIR /DIR FOR PROGA.SRC EXPANDED

This example displays expanded information about the file PROGA.SRC, which
resides in the directory WORK.DIR.

6. DIR /WORK.DIR FOR *.SRC

This example displays all filenames in the directory WORK.DIR which have the
extension .SRC.

Additional Notes

Wildcard pathnames cannot be used with the Directory command.

DIR / EXPANDED is not a valid command.

4-31

Commands

4-32

Series-IV Operating & Programming

DISMOUNT

Syntax

DISMOUNT device name

where
device name is: FLO, FL1 for 5-!/4” Flexible Disks
WMO for the integrated Winchester 5-/4” Disk
WDO, WDI for a Winchester Priam 35-Megabyte Disk
HDO thru HD3 for HD5440 Hard Disks
Description

This command makes a mass storage device inaccessible to the file system and
detaches all connections previously made to the file. The Dismount program guaran-
tees that the specified volume will no longer be accessed by the file system. Never
dismount the system volume. An error message is returned if the specified device has
already been dismounted.
Examples
1. DISMOUNT HDO

This example removes the hard disk from the file system.

2. DISMOUNT WDO

This example removes the Winchester disk from the file system.

Series-IV Operating & Programming Commands

LNAME

Syntax
To CREATE a Logical Name:

LNAME DEFINE logicalname FOR pathname L UPDATE]

where
logical name is a user defined string of up to fourteen characters which
you use to reference a directory. A logical name has the same
syntax as a fully qualified pathname.
pathname is the pathname for a directory.
UPDATE is an option that automatically executes the command even

if the logical name has previously been assigned; UPDATE
refers the logical name to the new pathname.

To DELETE a Logical Name:
LNAME REMOVE logical name

where

logical name is the user defined string used as a logical name.

To DISPLAY a Logical Name:

LNAME PATH
where
PATH displays each logical name and its associated path
component.
Description

Logical names are user-defined character strings that are equivalent to pathnames.
Logical names are easier to remember than pathnames and often have greater meaning
to the user. The Define Logical Name command assigns a logical name string to a
pathname. If the logical name chosen conflicts with an already existing logical name,
you are queried:

LOGICAL NAME ALREADY EXISTS, REDEFINE?
Entering a Y (or y) causes the command to be executed and causes the existing

logical name to be redefined. Any response other than Y (or y) aborts the command.
The UPDATE option displays this querying.

Examples
1. LNAME DEFINE X FOR /A/B

The directory specified by the pathname /A /B is assigned the logical name X
and can be accessed as such.

4-33

Commands

4-34

Series-IV Operating & Programming

2. LNAME REMOVE DATA

The logical name DATA is deleted. The directory previously accessed by this
logical name must now be accessed by its pathname.

3. LNAME DEFINE "™ ™ FOR /FILE/A/C

The null logical name is assigned to the directory /FILE/A/C. That file can
now be accessed simply by entering a space. Assume that data files /DATA1
and /DEBT are in the directory file /FILE/A/C. After defining the null logical
name for /FILE/A/C, you can access the data files as simply (space) DATA1
and (space) DEBT. To obtain an expanded directory of /FILE/A/C, you must
enter DIR “” EXPANDED, not DIR EXPANDED.

4. LNAME PATH

Each logical name and its associated pathname is listed.

Additional Notes

Logical names may only be defined for directory files.

Logical names are defined for the duration of a log-on session only; they do not trans-
fer to background and Jggigge jobs. When you log off, the logical names created
during that session are deleted. In the next session, you must redefine all the logical
names.

Series-IV Operating & Programming Commands

MOUNT

Syntax
MOUNT device-name

where

device-name is: FLO, FL1 for 5-/4” Flexible Disks
WMO for the integrated 5-'/s/ Winchester Disk
WDO0, WD1 for a Winchester Priam 35-Megabyte Hard Disk
HDO thru HD3 for a Fixed Platter Hard Disk

Description

The Mount Command allows you to explicitly request a device to be mounted; each
device represents a different volume in the iNDX file system. The Mount command
enters the device’s volume root directory into the system root directory. If the name
of the volume root directory being entered conflicts with an existing volume name of
the local file system, the new disk will not be mounted. If the new volume name
conflicts with a public file name, the mount will take place because the new volume
name “shadows” the existing public volume name. When you enter a pathname that
contains the volume name as a component, the system will access the local filename.
The public volume name is effectively hidden from you and is not accessible.

The mount operation may be performed only on mass storage devices. Unless a device
has been operationally dismounted (DISMOUNT), you can usually access it without
using the MOUNT command. The floppy volume is mounted when it is inserted into
the drive. Hard disk volumes are mounted when the device is ready after power-up.
If the Mount operation is requested on an already mounted device, the following
message is displayed:
DEVICE ALREADY MOUNTED
This is not an error condition; the device will remain mounted.
The file structure on the volume being mounted is integrated into the existing direc-
tory structure by logically adding the volume root directory as an entry in the system
root directory.
Examples
1. MOUNT WDO

This example mounts the 35-Megabyte Winchester disk.
2. MOUNT HD1

This example mounts the removable hard disk.

4-35

Commands Series-IV Operating & Programming

RENAME

Syntax

RENAME old-pathname TO filename [UPDATE]

where
old-pathname is the pathname that presently identifies the file.
filename is the last path component that you now want to identify the
file.
UPDATE disables the user interactive querying.
Description

The RENAME command renames a file by changing the last element of its path to
the component specified by the filename. The filename must be a single path compo-
nent. To use the RENAME command you must have DELETE access to the given
file.

If the new name to be assigned to the file conflicts with an existing filename, you will
be queried as follows:

PATHNAME = pathname
DELETE EXISTING FILE?

where
pathname is the conflicting pathname.

If you respond to the query by entering a Y (or y), the existing file will be deleted
and the Rename will take place (provided you have proper access rights). Any response
other than Y (or y) will abort the command and the existing file will not be deleted.
The UPDATE option disables the querying process. If the conflicting file is a Direc-
tory file, the Rename cannot take place and the following message will appear on the
console:

FILE ALREADY EXISTS
NAME CONFLICTS WITH EXISTING DIRECTORY FILE
PATHNAME = pathname

Examples
1. RENAME /X/Y T0 Z UPDATE

File /X/Y is renamed to Z. You are not queried before the change takes place.

Additional Notes

Wildcard pathnames cannot be used as the new pathname.
Directory files cannot be deleted as the result of a Rename.

3. In Submit Mode, failure to specify the Update option results in an error message.
The Update option should always be used in Submit Mode.

4. When multiple users can access the same file, using the Rename command can
prevent other users from accessing that file.

4-36

Series-IV Operating & Programming Commands

SDCOPY

Syntax

FORMAT
SDCOPY source-device-name [T0 dest-device-namel{ REPEAT ;. ..| COMPARE
VERIFY REPEAT

where
source-device-name is the source device, i.e., either FLO or FL1.

dest-device-name is the destination device, i.e., either FLO or FLI.
FORMAT is an option that first formats the destination device.
VERIFY is an option that verifies the destination device after it has

received the copy of the source.

COMPARE is an option that compares the destination to the source to
see if they are the same.

REPEAT is an option that repeats the preceding operation (i.e.,
option) using the same source.

Abbreviations

FORMAT can be abbreviated to F, VERIFY to V, COMPARE to C, and REPEAT
to-R.

Description

SDCOPY allows you to duplicate 5-1/4” flexible diskettes using a single drive system.
SDCOPY provides track-for track copies of one disk to another with options that
permit formatting the destination device and/or verification after the copy is made.
Another option allows two diskettes to be compared for equality. SDCOPY cannot
operate in Submit mode.

User Interaction

After you have entered the SDCOPY command, the following message will appear:
operating systemID SDCOPY, Vxy

PLEASE LOAD type DISK INTO device name

Type <CR> to continue, E to exit

where type is either SOURCE or DESTINATION.

When SDCOPY has completed an operation, the following confirmation message
will appear:

SDCOPY COMPLETE

If the VERIFY or the COMPARE options were selected, one of the following
messages will appear (depending on the results of the operation):

VERIFICATION OK
or

VERIFICATION FAILURE

4-37

Commands Series-IV Operating & Programming

SDCOPY assumes it has only one drive to work with unless you specify the optional
TO clause. The single drive configuration is used when no TO clause is entered or is
used if the destination specified in the TO clause is the same as the source. If the
device-name is that of a system device, SDCOPY aborts and the following message
appears:

CANNDT COPY DISKS USING A SINGLE SYSTEM DEVICE

If a Winchester disk is available, SDCOPY will use it as temporary storage. The
entire source disk will be copied to the Winchester and only a single operation is
required to accomplish the copy. The number of disk swaps is calculated as the total
size of the source disk divided by the size of the work buffer. This number will be
displayed and the following prompt requesting permission to continue will appear:

IT WILL BE NECESSARY TO SWAP DISKS number TIMES.
DO YOU WISH TO CONTINUE? € [Y] or [N1)

Any response other than N (or N) is treated as Y, i.e., permission granted.

If the TO option is specified with different devices for destination and source, no
disks swaps are necessary. For example, with FLO as the source and FL1 as the desti-
nation, the following message will appear:

PLEASE LOAD SODURCE DISK INTO FLO
PLEASE LOAD DESTINATION DISK INTO FL1
Type <CR> to continue, E to exit

Any entry other than E (or ¢) is taken as permission to continue.

If you specify the REPEAT option, the same source may be used for multiple opera-
tions without requiring you to reload the source before each operation. This option is
useful if a Winchester disk can be used as a workfile or if two operable flexible disks
are available.

Possible Error Messages

All 1/O and syntax errors that take place during SDCOPY operation are fatal. In
case of a syntax error, the correct syntax will be displayed and the command will
terminate.

Verification errors are recoverable. Operation will continue after one of the following
errors is displayed:

VERIFY FAILED AT TRACK tracknumber SECTOR sector number
or

MISCOMPARED AT TRACK track number SECTOR sector number

Additional Notes

1. Duplicating disks using a single system device is not allowed because the system
device cannot be dismounted if the system is to remain operational.

2. SDCOPY can only execute in the Foreground. Failure to run SDCOPY in the
Foreground will result in command termination and the following message:

CANNOT RUN IN BACKGROUND PARTITION.

4-38

Series-IV Operating & Programming Commands

3. SDCOPY cannot be run in Submit mode because it queries the user. If you
attempt to run SDCOPY in Submit mode, the command will terminate and the
following message will appear:

CANNOT RUN UNDER SUBMIT MODE.
In BACKGROUND mode the message is:
CANNOT RUN CONCURRENTLY WITH A BACKGROUND JOB.

4. SDCOPY allows you to change the name of the volume root Directory on the
Destination Flippy Disk. When the copy is completed (Prior to SDCOPY
complete message), SDCOPY will ask the following question:

DO YOU WANT TO CHANGE THE VOLUME ROOT DIRECTORY NAME?

A response of y or yes (uppercase or lowercase) will result in the following message:

CURRENT VOLUME ROOT DIRECTORY NAME IS XVOL
PLEASE ENTER NEW VOLUME ROOT DIRECTORY NAME

You can enter a new volume root name of up to 10 characters.

4-39

Commands Series-IV Operating & Programming

SPACE

Syntax
SPACE /volume-name

where
volume-name is the volume root directory for the given physical device.

Description

The Space command returns information about the amount of available space on a
given disk at that time. Information is returned in the following format:

VOLUME GRANULARITY = number C(granularity = number of bytes/
sector)

FREE BLOCKS = number

TOTAL BLOCKS = number

FILES AVAILABLE = number

TOTAL FILES = number

MM/DD/YY hh:mm:ss

where
MM/DD/YY hh:mm:ss is the month, date, year, hours, minutes, and seconds.
number is a decimal integer.

Space will not accept logical names as input—volume names must be used.

Examples

1. SPACE /A
The information is provided for the volume whose root directory is A.

Series-IV Operating & Programming

USERDEF

Syntax
DEFINE usernamel ID wuserlDl1 [DIR filenamel
USERDEF {REMUVE username }
where
username is the name by which the system identifies the user.
userlD is the ID-number by which the system identifies the user.
filename is the name of the user’s home directory.
Description

This function allows the superuser to add or delete a user who has access to files on
mass storage devices. An attempt to create a new user will fail if the specified user
name or user ID is already used. When creating a new user, the superuser has the
option to simultaneously create a directory for that user. Likewise, the directory
creation will not be successful if a file with the same name already exists. When a
directory is successfully created, the newly created user owns it and has full access
rights to it.

The superuser has a predefined name within the system—SUPERUSER. This name
is used by the primary superuser and cannot be deleted. The primary superuser may
create secondary superusers with the USERDEF function by specifying a user ID in
the allowable range (3-15). (Other valid user IDs are in the range 1024-32767.)
Secondary superusers have full superuser capabilities; however, they may not execute
the USERDEF and USERS commands, and they may be deleted from the system
by the primary superuser.

When a user is deleted from the system, only the user name is deleted. If that user is
logged on the system, that session continues. All files that belong to the deleted user
remain in the system. An expanded directory listing returns a user name of NOT

FOUND for those files. You must use the CHOWNER command to transfer owner-
ship of these files.

A list of all users and user IDs assigned via the USERDEF command can be obtained
through the USERS command. For each user created, you should create a directory
on an available volume and tell that user the fully qualified pathname for that direc-

tory. The user should place all of his subsequent directories and files on the directory
you assigned.

Examples
1. USERDEF DEFINE PAUL ID 1025
This example adds user name PAUL with ID 1025.
2. USERDEF DEFINE SHEILA ID 32732 DIR /A/B

This example adds user name SHEILA with ID 32732 and a directory named
/A/B.

3. USERDEF REMOVE BARRY

This example removes user name BARRY.

Commands

441

Commands Series-IV Operating & Programming

4 USERDEF DEFINE LINDA DIR /FINANCE/ACCT

This example gives the existing user LINDA a directory named
/FINANCE/ACCT.

Additional Notes
1. The initial password for each user is (null). You should immediately use
CHPASS to assign a password after assigning a user name.

2. The USERDEF command manipulates two system files: UDF and HOME. These
files are located in the volume root directory of the system volume. Do not change
them.

Y32}

NOTE

Back up of the UDF and HOME files should always be done
simultaneously to ensure system consistency.

3. USERDEF can be used to change the home directory of an existing user by
entering the following command:

USERDEF DEFINE existingusername DI1R new filename

442

Series-IV Operating & Programming Commands

USERS

Syntax
USERS /volume-name

where

volume-name is the volume root directory name.

Description

This function lists in tabular form the user names and associated user IDs for all
users who have log-on rights to mass storage devices. The volume-name specified
should be the volume root directory name of the system volume.

NOTE

This command can only be used by the superuser; the secondary superuser
has no access rights to it.

Examples

1. USERS /ALPHA

This example requests a list of the users on volume ALPHA. The following list
is displayed:

USERNAME USERID

PAUL 1025
SHEILA 32723

4-43

Commands Series-IV Operating & Programming

VIEW

Syntax
VIEW pathname

where
pathname is a valid pathname.

Description

The View command is an interactive command that allows you to examine the contents
of the specified file. The View command must be entered from the keyboard and
cannot be placed in a command file. When the View command is entered from the
keyboard, the specified file is attached and its first page is displayed in AEDIT full
screen format. The text of the page appears on Lines 1-23 of the display. Line 24
(the AEDIT message line) displays “----VIEW pathname”, where pathname is the
name of the file being read. Line 25 (the AEDIT prompt line) displays the subset of
AEDIT commands available for use with the View command. The available commands
are: Again, Find, -Find, Jump, Quit, Roll, Set, View.

4-44

Series-IV Operating & Programming Commands

Job Management Commands

Following are the job management commands.

BACKGROUND

Syntax
BACKGROUND th [C ters) 1 LoG
pathname a-parameters ce NOLOG
where
pathname is a valid pathname.
a-parameters is a list of up to 10 parameters.

LOG and NOLOG specify whether a log is to be kept on a mass storage of all
console activity.

Description

The Background command, used to execute a command file on a workstation, permits
the simultaneous execution of a job requiring user interaction. The difference between
executing a given command file in the background and executing a given command
in the foreground is that background execution does not allow console interaction.
You may use the LOG option to provide a log-on to a mass storage device. The
Background,m and Submit commands all have similar structures. The similar
structures permit you to execute the same command file in any of these modes.

If the name of your command file does not have an extension, the system appends
the extension .CSD to the command file. If your filename ends with a period, the
system will use the filename you have given (with the period truncated). If your
filename includes an extension, the system uses that filename without modifying it.

The optional parameters specified in the command line are the actual parameters to
be substituted for the formal parameters embedded within the command file. A
maximum of ten actual parameters may be specified in the command line. Placing
formal parameters in the command file allows you to call the same command file for
varying sets of actual parameters. When no parameters are specified in the command
line, the specified command file is executed directly. When parameters are specified,
a second command file will be generated in which the actual parameters are sequen-
tially substituted for the formal parameters. Thus (reading from left-to-right), if you
enter the actual parameters ASM, PLM, and BLT, ASM replaces the formal param-
eter %0, PLM replaces the formal parameter %1, and BLT replaces the formal
parameter %2. The command file resulting from the parameter substitution is placed
in the same directory as the command file from which it was generated. The final
path component of the generated file is derived from the final path component of the
generating file as follows:

* The final component of the generating file after the fifth character or before the
first period (whichever comes first) is truncated.

* A unique character string obtained from the system job manager and the exten-
sion .TMP are appended.

When the LOG option is specified, a log of what would normally appear on the console
is kept on a mass storage device if the job is executing in the foreground. When LOG

4-45

Commands

4-46

Series-IV Operating & Programming

is specified, the log file gets the extension .LOG. NOLOG specifies that no log be
kept. If neither option is explicitly entered, LOG is the default condition.

When a background job is executed, the system implicitly re-enacts your LOGON.
The environment created is the same one that existed when you initially logged on to
the system. This environment is not necessarily the same as the foreground environ-
ment operating at the time the Background command was invoked. The logical names
defined in the foreground are not accessible in the background and vice versa. The
amount of memory available for the background is specified by the Region command.

Examples

Refer to the examples given under the Submit command for a comprehensive set of
examples that illustrate the manner in which command files are generated.

Do not debug in the foreground while background programs are running.

2. Never run experimental software in the foreground while programs are
running in the background.

3. Never run experimental software in the background o ©

Series-IV Operating & Programming

BATCH

Syntax
BATCH pathname

where

pathname is a valid pathname.

Description

The Batch command allows you to interactively create a command file using the
Syntax Guide. If the name of your command file does not have an extension, the
system appends the extension .CSD to the command file. If your filename ends with
a period, the system will use the filename you have given (with the period truncated).
If your filename includes an extension, the system uses that filename without
modifying it.

A search is made for the specified command file. If the specified command file exists,
it is read in and the Syntax Guide is invoked so you can modify the file. If the
command file does not exist, it is created and then the Syntax Guide is invoked.
When you have finished using the Syntax Guide to edit the command file, press the
Escape key (ESC). The following prompt will appear:

(Line24) — SELECT EXECUTION OPTION
(Line 25) — Abort Write Submit Background Export

Select the menu entry you desire by either pressing the Function key associated with
that entry (e.g., FO selects Abort, F4 selects Export), or by entering the uppercase
letters for that entry at the keyboard (e.g., A selects Abort). The entries have the
following effects:

Abort—Do not save the edited command file. Return to the Command Line
Interpreter (CLI).

Write— Write the edited command file. Return to the CLIL.

Submit, Background, an s selected,

you are prompted:

If Submit, Background, or

WRITE commandfile? (y or [nl)

A response of y (yes) causes the edited command file to be saved before being
executed. The default response of no will not save the edited command file.

You will also be prompted to check for parameters in the command file. If no
parameters are present, select execution mode.

Parameter substitution: for each formal parameter in the command file, respond to
each prompt as shown in the following examples:

Prompt: ENTER VALUE %n

where

n sequentially takes the values of 0-9 for each formal parame-
ter in the command file.

Commands

4-47

Commands

4-48

Series-1V Operating & Programming

Response: For each parameter, enter a parameter name of up to 36 characters
terminated by Escape or <cr>. The completed parameter name now appears on
the message line (Line 24) of the display screen.

After you have entered all of the parameters, the following prompt, which requests
verification of the parameter values, appears.

Prompt: ARE THE PARAMETERS CORRECT?

Response: If all of the parameters are correct, enter Yes (Default); if not, enter
NO. The system replies to the No response as follows:

Prompt: WHICH PARAMETER IS INCORRECT?

Response: Enter the number of the incorrect parameter (0-9). If the number is
valid, a prompt will appear. The prompt requests you to enter the correct value
of that parameter. If the number was valid (i.e., it did not have a formal param-
eter in the command file corresponding to it), the number prompt returns. After
the correction has been made, the prompt “ARE THE PARAMETERS
CORRECT?” reappears. Respond accordingly.

The parameter substitution is now performed and the resulting workfile created. The
pathname for this file is generated according to the rule described under the Submit
command.

Another prompt will appear asking you if you want a log kept of console activity.
Enter y for yes, N for No. The default condition for Submit is No; for Background
and Export the default is Yes.

The command file is now executed according to the execution mode you selected
earlier. If you selected Foreground execution, execution would take place precisely as
it would for a Submit command. If you selected Background, execution would take
place precisely as it would for a Background command. ‘

nd Submit commands for further information.

Series-IV Operating & Programming Commands

CANCEL

Syntax

CANCEL iBACKGRUUND

Description

The Cancel command is used to cancel either a background job or a remote job (see
the Cancel command in Chapter 5). If BACKGROUND is specified, the currently
executing background job is aborted.

4-49

Commands Series-IV Operating & Programming

REGION

Syntax

REGION

Description

The Region command is used to adjust the size of the regions and the binding between
regions and jobs. In Foreground/ Background systems, the free space is divided into
two regions: Region 1 and Region 2. The default condition is for Region 1 to be
allocated 96K of free space and for Region 2 to be allocated the remainder of the
free space. Region 1 begins immediately above the operating system and Regions 2
begins immediately above Region 1.

A foreground job may use either Region 1 or Region 2. Background jobs then use
the remaining region. If you are not executing 8-bit programs, it does not matter
whether the Foreground job runs in Region 1 or 2. If 8-bit programs are frequently
executed however, the binding between jobs and regions determines if 8-bit programs
can be executed in the top 64K of user memory (the region where the ISIS parameter
is true—the IEU memory space). Thus, 8-bit programs are usually executed in
Region 1.

When the Region command is invoked, it displays the current size of each region, the
binding between jobs and regions, the status (whether 8-bit programs can be executed
in that region) and the starting address of each region. A prompt will appear and will
ask you if you want to make changes or exit the command. If you want to make
changes, you will be further prompted for the appropriate entry to change. After the
change is entered, an updated display will appear, as will a request for verification of
the updated display. Since both regions share a fixed amount of space, any change to
one region produces an offsetting change to the other region. Thus, if you reduce
Region 1, you automatically increase the size of Region 2.

If only one job is running in the foreground, the system temporarily combines the
two regions into one and allocates the combined region entirely to the foreground.
Thus, it is not necessary to change the region size frequently to achieve maximum
utilization of memory. This also ensures that if no background job is currently running,
an 8-bit program can always be executed in the foreground.

The Region command can only be invoked from a foreground job.

4-50

Series-IV Operating & Programming Commands

SUBMIT

Syntax
LOG
SUBMIT pathname [(a-parameters)l ... NOLOG
where
pathname is a valid pathname.
a-parameters is a list of up to 10 actual parameters to be substituted during

execution for the formal parameters embedded within a file.

LOG or NOLOG specifies whether a log is to be kept on the mass storage
device.

Description

The Submit command is used to execute a command file that does not require user
interaction in the foreground of the local workstation. If the name of your command
file does not have an extension, the system will append the extension .CSD to the
command file. If your filename ends with a period, the system will use the filename
you have given (with the period truncated). If your filename includes an extension,
the system will use that filename without modifying it.

The option parameters specified in the command line are the actual parameters to be
substituted for the formal parameters embedded within the command file. A maximum
of ten actual parameters can be specified in the command line. Placing formal
parameters in the command file lets you call the same command file for varying sets
of actual parameters. If no parameters are specified in the command line, the speci-
fied command file will be executed immediately. When parameters are specified, a
second command file will be created and the actual parameters will be sequentially
substituted for the formal parameters in that file. Thus, reading from left-to-right, if
you enter the actual parameters ASM, PLM, and BLT, ASM will replace the formal
parameter %0, PLM will replace %1, and BLT will replace %2. The resulting
command file will be placed in the same directory as the generating command file.
The resulting command file’s final path component is derived from the final compo-
nent of the generating file as follows:

e The final component of the generating file after the fifth character or before the
first period (whichever comes first) is truncated.

¢ A unique character string obtained from the system job manager and the exten-
sion .TMP are appended.

When the LOG option is specified, a log with the extension .LOG is written to a
mass storage device. The NOLOG option specifies that no such log is to be kept. If
neither option is explicitly specified, NOLOG is the default condition.

Examples

1. SUBMIT 1/CMDFILE LOG

Since the filename in the command line does not contain an extension or termi-
nate in a period, the extension .CSD is automatically appended. The file executed
takes the name 1/CMDFILE.CSD. Since the LOG option has been specified, a
log file is created under the name 1/CMDFILE.LOG. Assume that 1 is a logical
name that has been assigned to a pathname.

4-51

Commands

4-52

Series-IV Operating & Programming

2. SUBMIT 1/CMDFILE. LOG

Since the filename in the command line terminates in a period, the period is
truncated and the name of the executed command is 1/CMDFILE. A log file is
created under the name 1/CMDFILE.LOG.

3. SUBMIT 1/CMDFILE.XXX LOG

Since the filename in the command line has an extension, a log file is created
with the name 1/CMDFILE.LOG.

4. SUBMIT 1/CMDFILE (VRD, 1) LOG

Since the filename does not contain an extension or end with a period, the exten-
sion .CSD is automatically appended. Since the paramecters VRD and 1 have
been specified, a new file in which these actual parameters replace every occur-
rence of the formal parameters is generated. This file is named 1 /CMDFI1E.TMP
as the CMD FILE is truncated to five characters and the number IO1E is
appended by the system as the extension . TMP. Note that the number I01E and
similar strings used in the following examples is simply a sample number. The
precise string used is determined by the state of the operating system at that
time. The strings have no effect upon order of execution or sequence of assign-
ment. Within a given log on session, up to 4,096 unique
numbers can be assigned. When that limit is reached, the numbers are assigned
all over again. Also note that in the example the system assigned number is used
in forming the name of the log file 1 /CMDIOIE.LOG.

5. SUBMIT 1/CMDFILE. (VRD, 1, DBG)

Since the input filename terminates in a period, the peiod is truncated to produce
the filename CMDFILE. Because parameters /VRD, 1 and DBG have been
specified, a file must be generated in which these actual parameters can be
substituted on a one-for-one basis with the formal parameters %0, %1, and %2.
Note that a file name, a symbol and a number are all acceptable actual param-
eters. The parameter substitutions are made into a file named 1/CMDI020.TMP
because the file name has been truncated to five characters and the system number
and extension .TMP appended. The log file is created under the name
1/CMDI020.LOG.

6. SUBMIT 1/CMDFILE.XXX (/VRD,1) LOG

Since an extension has been specified in this example, no extension is appended—
nor does truncation occur. The command file form in which substitutions are
made is 1 /CMDFILE.XXX. Because parameters have been specified, the substi-
tutions of the actual parameters for the formal parameters are made to the file
1/CMDI022.TMP. CMDFILE. XXX has been truncated to five characters and
the system assigned number and the extension .TMP have been appended. The
log file is created under the name 1/CMDI022.LOG.

Additional Notes

If the same command file is simultaneously executed in the foreground and in the
background, and no parameters are specified in the Submit command, only one log
file will be produced. This occurs because even if the LOG option is selected for both
Jobs, the naming rules produce two identically named log files. For example, if you
enter the following two commands:

SUBMIT 1/A LOG
BACKGROUND 1/A LOG

Series-IV Operating & Programming Commands

both will request log files having the file name 1/A.LOG. If the order of Background
and Submit were reversed, the conflict would still occur. To prevent this conflict,
always enter a null parameter for the Submit command if the same file is being
simultaneously executed in Background mode. Thus, by using SUBMIT 1 /A () LOG
you would produce a file for the Submit command called 1 /A. IOO1E.TMP even
though parameters to be substituted are nonexistent. The log file then takes the name
1/AIO1E.LOG.

4-53

Commands Series-IV Operating & Programming

Media Operation Commands

Following are the media operation commands.

FORMAT

Syntax

FORMAT physical-device volume-name [{FNODES Cnumber) NOINIT
RESERVE (reserve-option, ...)}]

where

physical-device is: FLO, FL1 is a flexible disk
WMO is a 5!/4” Winchester disk
WDO, WD1 is an 8 Winchester disk
HDO is a fixed platter hard disk
HD1 is a removable platter hard disk

volume-name is the volume root directory name of the physical device.

reserve-option is: OS (number)—operating system
OV (number)—overlay

Description

The FORMAT command formats a disk volume and initializes it with the volume
operations files. These files do not include system programs.

The FORMAT command verifies each block on the disk. Any block that cannot be
read is marked in the free space bit map and the bad block bit map to prevent the
block from being allocated to a file. If the bad block is in the fixed area reserved for
the volume label, the FORMAT command terminates after displaying the
appropriate message.

The FNODES parameter specifies the number of filenames to be reserved. If the
number is not specified, a default value is used:

Device Minimum Default Maximum
FLn 16 200 400
HDn 16 1000 2000
WDn 16 3000 6000

WMO 16 2000 4000

The NOINIT parameter specifies that only the file structure is to be initialized. This
option, used to reformat disks that have been previously formatted, speeds up the
formatting process because the formatting of disk sector IDs is not performed.
FORMAT will override the NOINIT keyword when the specified disk is one that
has not been previously formatted.

The RESERVE keyword specifies that one or more of the specified files are to be
created and that contiguous blocks are to be allocated to them. FORMAT does not
write data into these file blocks; SYSGEN writes into these files. The number of
reserved blocks, not to exceed 1000 blocks, may be explicitly specified. The default
numbers are 256 for the operating system and 192 for the overlay.

4-54

Series-IV Operating & Programming Commands

All workstation users should log off or refrain from accessing the target disk while
you are formatting any disk other than a flexible one. If a file on the target disk is
open at a workstation when the FORMAT command is entered, subsequent opera-
tions on the file will return an error indicating that the disk has been dismounted.
The file on the target disk that was open will be destroyed.

Examples
1. FORMAT FLO ONE.VOL.

This command will format the flexible disk volume and name it ONE.VOL. When
the return is entered, the following message will appear on the screen:

iNDX -system-ID FORMAT, Vxy

4-55

Commands Series-IV Operating & Programming

FPORT

Syntax
up iNDX-source-pathname T0 destination-pathname UPDATE
S4FPRT EXIT EXIT
S2FPRT DOWN [disk-dir] 15 1S-source-pathname
T0 iNDX-destination-pathname QUERY
where

S4FPRT and S2FPRT inform the operating system that you are
initiating the command from a Series IV or
Series 11, respectively.

iNDX-source-pathname is a valid iNDX pathname or wildcard
pathname.

destination-pathname is a disk-directory or an ISIS-filename
(optionally preceded by a disk-directory). ISIS-
filename and disk-directory are as defined in
the ISIS-II User’s Guide, 9800306.

disk-dir is a disk-directory as defined in the ISIS-II
User’s Guide.

ISIS-source-pathname is an ISIS-filename or an ISIS-wildcard-
filename as defined in the ISIS-II User’s
Guide.

iNDX-destination-pathname is a valid iNDX directory file or a valid

Series-IV pathname.

UPDATE, EXIT, and QUERY are options that determine if you are to be
queried prior to each copy operation.

Description

The FPORT utility program allows you to copy ISIS files to a specified location
within the iNDX file structure and vice-versa. The copy is accomplished by trans-
mitting data through a serial line connecting the Series-IV. system and the ISIS system.
While the FPORT program is executing, the ISIS system acts as a slave of the
Series-1V system and waits for commands to reach it from the Series IV. Either the
Exit function of FPORT or the EXIT option must be used to return the ISIS system
to independent operation.

The FPORT command has three functions: UP, EXIT, and DOWN. Each function
has its own set of qualifiers.

Physical Interaction

To execute the FPORT command, you must first boot up the ISIS operating system
on the Series II system and then enter the ISIS-II File Port program. The program
will then return the following message and enter a wait state:

ISIS-I1 FILE PORT, Vxy
ENTER FPORT COMMAND at the SERIES-IV CONSOLE

From this point on, enter all commands only from the Series-IV keyboard.

4-56

Series-IV Operating & Programming Commands

Copying iNDX Files to ISIS Files

The UP function allows you to copy an iNDX file to an ISIS file. If you specify an
iNDX wildcard-pathname as the iNDX source-pathname, the destination-pathname
must be a disk-directory. If the iNDX source-pathname is not a wildcard-pathname,
the destination-pathname may be either an ISIS-filename or a disk-directory or both.

If the destination-pathname is a disk-directory, the constructed ISIS file takes the
name of the source file. If the file name is invalid under ISIS, an error message is
returned. If the destination-pathname conflicts with the name of an existing file, you
will be queried as to whether you want to delete the existing file and copy the source
file to that file name. You can delete an existing file by writing over it only if the
file’s write and format attributes are not set. By using the UPDATE option, you can
disable the querying process.

Copying ISIS Files to iNDX Files

The DOWN function allows you to copy an ISIS file to a specified location within
the iNDX hierarchy. If the ISIS source pathname is an ISIS wildcard filename, the
iNDX destination pathname must be an iNDX directory name. If the ISIS source
pathname is not a wildcard filename, the iINDX destination pathname may be either
a data file or a directory file.

If the iNDX destination file exists and is a directory file, a file of the same name as
the ISIS source file is created within the iNDX directory file if you have ADD-entry
access to that directory file. If the pathname constructed for the file exceeds the
iNDX limit of 127 characters, an error message is returned.

If the iINDX destination file exists and is a data file, you will be queried as to whether
you want to delete the existing file and assign that name to the new file. Such deletion
can occur only if you have DELETE access for the existing file. You can suppress
the querying by specifying the UPDATE option in the control line.

If the destination filename does not already exist, a new file of the specified name is
constructed within the parent directory if you have ADD-entry access to the parent
directory.

Returning the ISIS System to Independent Operation

During execution of the FPORT command, the ISIS system acts as a slave of the
iNDX system. To return the ISIS system to independent operation, you must use
either the Exit option or the EXIT function. If you have a number of files to copy,
enter the Exit option after you have copied the final file. If you have only one file to
copy, enter the EXIT function in the command line and the ISIS system will return
to independent operation as soon as the file has been copied.

Transmission of the file begins when you terminate the command line on the
Series-IV system. When you terminate the command line, FPORT presents the
following sign-on message:

operating systemname FILE PORT, Vxy

FPORT then performs a syntax check and checks the validity of the pathnames you

have entered. If any errors are detected, an error message is generated and the
command is aborted. In this case, you must re-enter the entire command.

4-57

Commands Series-IV Operating & Programming

User Interaction

If no errors are detected, the querying process begins. If the destination filename
already exists, you will be queried to see if you want to delete the existing file by
copying the new file to this filename. The following message will appear if you are in
the interactive mode—

FILE ALREADY EXISTS
PATHNAME 1is pathname
DELETE EXISTING FILE?

If you respond by entering a Y (or y) followed by <cr>, the command proceeds and
the existing file is deleted, (if you have delete access rights to the file). Any response
other than Y (or y) causes the command to go on to the next file to be copied, to
repeat the process if a wildcard pathname were selected, and otherwise terminates
the command successfully. Since your console responses are line edited, you must
enter a line terminator (€ cr >) after each response.

If you specify the UPDATE option in the command line, the querying process is
suppressed. The QUERY option may be specified by invoking FPORT. In interactive
mode, the QUERY option causes the following query to appear before each file is
copied:

COPY pathname T0 pathname?

If you respond by entering a Y (or y) followed by <cr>, the FPORT operation will
execute. Any other response causes the operation to go on to the next file to be copied
(in the case of a wildcard pathname) and otherwise terminates unsuccessfully. Enter

a line terminator after each console response or the response will not be accepted.

In Submit Mode, the QUERY option is not allowed; if the QUERY option is
attempted, the following error message will appear:

QUERY OPTION NOT USEABLE IN SUBMIT MODE
Each successful FPORT copy operation results in the following message:
COPIED pathname TQ pathname

If at any time the expected data is not received by either system, the following error
message will appear:

DEVICE TIMEOUT ERROR
All operations will terminate and both FPORT programs (ISIS and iNDX) will be
aborted. (Both programs loop while waiting to receive responses from the other system;

if no response is received, the FPORT program will terminate (timeout) and control
will return to ISIS or iNDX.)

Examples

(Observe the prompts at the Series-II system and enter the responses shown beiow.)

U - F PORT

SERIES-II FILE PRT, Vxy

ENTER FPORT COMMAND at the SERIES-IV CONSOLE

4-58

Series-IV Operating & Programming Commands

(Enter the commands at the Series-IV system and observe the console messages shown
below.)

R PO0RT DCWN

COPIED:F1:A TO /A/B

This command copies the Series II file :Fl:A to a file of the Series-IV called
/A/B. A message verifying the copy operation appears on the console of the
Series-1V.

K- PORT UuP /A/B TO

COPIED /A/B TD :F1:4A

This command copies the Series-IV file /A/B to the Series II file :F1:A. A
message verifying the copy operation appears on the console of the Series-1V.

- PORT DOWN

COPY :F1:*.* TO /A UPDATE EXIT

COPY :F1:JUNK TO /A/JUNK ?
Y<cr)

COPIED :F1:JUNK TO /A/JUNK

COPY:F1:JUNK.LST TO /A/JUNK.LST ?

Y<cr

COPIED :F1:JUNK.LST TO /A/JUNK.LST

In this example, the ISIS wildcard pathname *.* is used. It specifies that all files
in the Series II directory file (:F1:) are to be copied to the INDX directory (/A).
The UPDATE option suppresses the querying and writes over existing files. After
each file in the directory has been copied, a verification message appears. The
EXIT option specifies that after the last file in the directory has been copied, the
Series-11 system should be returned to independent operation.

R FO0RT UP

COPY /A/JUNK TO :F1: JUNK ?

Y<cr

COPIED /A/JUNK TO :F1: JUNK

COPY /A/JUNK.LST TO :F1:JUNK.LST ?
Y<cr)

COPIED /A/JUNK.LST TO :F1: JUNK.LST

In this example, the iNDX wildcard character (*) is used to specify that all files
within directory /A are to be copied to the ISIS directory :F1:. The QUERY
option specifies that you should be queried before each copy operation.

FPORT EXIT

a*

This command releases the Series-II system from its slave status and returns it
to independent operation.

4-59

Commands

4-60

Series-IV Operating & Programming

Possible Error Messages

FILE DOES NOT EXIST
PATHNAME = pathname

INCORRECT FILE TYPE
PATHNAME = pathname
DIRECTORY FILE EXPECTED

FILE ALREADY EXISTS
PATHNAME = pathname

INSUFFICIENT ACCESS RIGHTS

PATHNAME = pathname

ADD ENTRY ACCESS TO DIRECTORY OR DELETE ACCESS TO EXIST-
ING FILE REQUIRED.

INSUFFICIENT ACCESS RIGHTS
PATHNAME = pathname
READ ACCESS REQUIRED

MASS STORAGE EXCEEDED
PATHNAME = pathname

PATH COMPONENT NOT A DIRECTORY FILE
PATHNAME = pathname

INVALID WILD CARD PATHNAME
PATHNAME = pathname

ILLEGAL COMMAND SYNTAX

DISALLOWED USE OF A WILDCARD CHARACTER IN PATHNAME
PATHNAME = pathname

DEVICE TIMEOUT ERROR

Additional Notes

Program Restrictions:
1. FPORT must be used as a foreground job only.
2. FPORT does not support output devices :CO: and :BB: as valid pathnames.

Hardware Restrictions:

FPORT requires that a standard CRT (or “system-to-system”) cable (pin 2-to-pin 2,
pin 3-to-pin 3, no reversal) be connected between the J1 CH1/TTY connector on the
back of the Series II and Serial Channel 2 on the back of the Series IV. The IEU
must be in slot J9.

Error Handling:

The error handling is similar to and consistent with that defined for the copy utility
program.

1. Syntax Error: Syntax is checked before operations begin. Invalid syntax causes
a fatal error; an error message will be displayed before the command aborts. You
must re-enter the command from the beginning.

2. Timeout Error: Whenever either system (Series II or Series IV) is expecting
data but does not receive data, a timeout error occurs. Timeout errors, fatal errors,
abort operation on both systems (Series II and Series I'V).

Series-IV Operating & Programming Commands

ICOPY

Syntax

READ ISIS-source-pathname TO0 iNDX-destination-pathname QUERY
ICOPY UPDATE

WRITE iNDX-source-pathname T0 destination-pathname
where

1S1S-source-pathname is an ISIS filename or an ISIS wildcard filename
as specified in the ISIS-1I User’s Guide, 9800306.
The ISIS-source-pathname may optionally be
preceded by a disk-directory.

iNDX-destination-pathname is a valid iNDX directory file or iNDX pathname.

iNDX-source-pathname is a valid iNDX pathname or wildcard pathname.

destination pathname is a disk-directory, an ISIS filename, or an ISIS
filename preceded by a disk-directory.

disk directory may be :FO:, :F1:, :F2, or :F3: for Floppy disks or

:F6, :F7, F8:, or :F9: for Hard disks.

QUERY and UPDATE are options that determine if querying is to occur
before files are copied.

Description

The ICOPY command has two forms: READ and WRITE. READ allows you to
copy ISIS files to a specified location in the iNDX file structure. WRITE allows you
to copy iNDX files to an ISIS file and, optionally, to an ISIS file pointed at by a
disk directory.

Copying ISIS Files to iINDX

The READ function of the ICOPY command copies files from an ISIS source file to
a destination file within the iNDX file hierarchy. If you specify an ISIS wildcard
filename as the source file, the iNDX destination file must be an iNDX directory
file. If the source file is not an ISIS wildcard file, the destination may be either an
iNDX data file or a directory file.

If the iINDX destination file specified already exists and is a directory file, a file of
the same name as the ISIS source file is created and placed in the iNDX directory
file if you have ADD-entry access to the directory file. An error message is returned
if the filename so constructed exceeds the iNDX limit of 127 characters.

If the iINDX destination file specified already exists and is a data file, you will be
queried to see whether you want to destroy the existing file by writing over it. If you
want to write over the existing file, and if you have delete access rights to the existing
file, the existing file will be deleted and the new data file will be created. You may
suppress the querying by specifying the UPDATE option in the command line.

If the iNDX destination file specified does not exist, a new file with the same name
as the ISIS source file will be created within the parent directory if you have
ADD-entry access to the parent directory.

Copying a File From iNDX to ISIS

The WRITE function of the ICOPY command allows you to copy an iNDX source
file to an ISIS destination file. If you specify an iNDX wildcard pathname as the

4-61

Commands Series-IV Operating & Programming

iNDX source file, the ISIS destination file must be disk-directory. If the source file
is not an iNDX wildcard pathname, the ISIS destination file may be an ISIS file, a
disk-directory, or an ISIS file pointed at by a disk-directory.

If the ISIS destination file is a disk-directory, a file of the same name as the iINDX
source file will be constructed. If the filename so constructed is an invalid ISIS
filename, a pathname syntax error message will be returned.

If the ISIS destination pathname already exists, you will be queried to see whether
you want to delete the existing ISIS file by writing over it. If you reply by entering
yes, the existing file will be deleted and the new file will be written to that filename
unless the write and the format attributes for the existing file have been set. You may
disable the querying by specifying the UPDATE option in the command line.

If the ISIS destination file does not yet exist, a new file will be created within the
ISIS directory.

If you select a hard disk as the disk-directory, ICOPY will read the disk-directory to
determine if the disk is an iNDX disk or an ISIS disk. If the disk is an iNDX disk,
all files copied to it will be Public files (i.e., their Public attribute, but no other
attribute, will be set).

Regardless of the hardware configuration, ICOPY always assumes the disk-directory
configuration to be the iNDX configuration, as shown below:

:FO: to :F3: represent Floppy drives 0 to 3, respectively, with :FO: as the

default. :
:F6: represents the first Hard disk fixed platter.
:F7: represents the first Hard disk removable platter.
:F8: represents the second Hard disk fixed platter.
:F9: represents the second Hard disk removable platter.

Physical Interaction

_Physical interaction is required to specify the type of ICOPY operation to be
performed. The command begins to execute as soon as’ you terminate the command
line by entering €cr>. ICOPY then returns the following sign-on message to the
console screen:

operating-systemname 1COPY, Vxy

ICOPY then checks all pathnames for valid syntax. If any syntax error is detected,
the command aborts and you must re-enter the command from the beginning.

If the destination file already exists and is a data file, and you have not selected the
UPDATE option to disable the querying process, the following query will appear on
the screen:

FILE ALREADY EXISTS
PATHNAME = iNDX-pathname
DELETE EXISTING FILE ?

If you reply by entering a Y (or y) followed by €cr >, the command will continue

to execute and the existing file will be deleted by being written over (provided you
have delete access to the existing file). Any input other than Y (or y) causes the

4-62

Series-IV Operating & Programming Commands

command either to go on to the next file to be copied (it the source file is a wildcard
pathname) or to terminate. Since your responses to the queries are line edited, each
response must be followed by <cr». The querying process can be eliminated by
specifying the UPDATE option in the command line.

You may specify the QUERY option with any invocation of the ICOPY command.
Using this option causes the following query to appear before each file is copied:

COPY source-pathname TO destination-pathname ?

If you reply by entering Y (or y) followed by <cr>, the file will be copied. Any
response other than Y (or Y) causes the command to either go on to the next file to
be copied (if the source file is a wildcard pathname) or to terminate. Since your
responses are line edited, they must be followed by <cr».

If you are in Submit Mode and you use the QUERY option, the following error
message will result:

QUERY OPTION NOT USEABLE IN SUBMIT MODE.
Each successful copy operation produces the following verfication message:

COPI1ED source-pathname T0 destination-pathname

Additional Notes

Program Restrictions:
1. IEU must be present at the top of the user memory.

2. The hard disk controller is configured differently for ICOPY than it is for the
Series-IV Operating System. Both programs cannot access the hard disk at the
same time.

ICOPY can be invoked f

] d job

from

5. ICOPY does not support single density disks.

In both the Read and Write functions of ICOPY, physical output devices such
as :CO:, :BB;, :TO:, :LP, etc., are not supported.

7. Wildcard pathnames used as destination pathnames are not supported.

Hardware Requirements

COPY requires that the Series-1I hardware controller be installed in the Series-I1V
chassis. Before installing the controller boards in the Series I'V, do the following:

A. For Double Density Floppy Disk Controller:
1. Set the switches on the CHANNEL board to 78H port address as in ISIS.

2. Set the rotary interrupt switch on the board marked INTERFACE From 3
completely in the clockwise direction—turning it past interrupt number 8.

3. Plug the boards into the Series-I1V chassis. The board marked INTERFACE
must be slot J2, J3, J5 or J7 (where J10 is the slot closest to the CRT and
J1 the farthest).

B. For Hard Disk Controller:
1. Set the switches on the board marked CHANNEL to 70H port address.

2. Set the rotary interrupt switch on the CHANNEL board completely in the
clockwise direction, turning it past interrupt number 8.

4-63

Commands Series-IV Operating & Programming

3. Set the switches on the board marked INTERFACE as follows:

SW1—set all switches to the OFF position.
SW2—set all switches to the OFF position.

4. Plug the board into the Series IV. The board marked CHANNEL must be
in slot J2, J3, or J5 (where J10 is the slot closest to the CRT and J1 the
farthest).

Error Handling
Error handling is the same as that defined for the Copy command.
Syntax Errors—Syntax is checked before any operations begin. Invalid syntax is a

fatal error; an error message will be displayed before the command aborts. You must
then re-enter the command from the beginning.

Disk Errors—Disk errors are fatal errors resulting from unsuccessful disk 1/0 opera-

tions on the controller boards. Such errors result in an error message; the command
aborts.

4-64

Series-IV Operating & Programming Commands

PDSCOPY

Syntax
PDSCOPY READ (disk-directory) PDS-source T0 iNDX-destination QUERY
WRITE iNDX-source TO PDS-destination UPDATE
where
PDS-source is- a valid PDS*filename or wildcard filename (that can

optionally be preceded by a disk-directory).
iNDX-destination is a valid iINDX directory file or pathname.

iNDX-source is a valid iNDX pathname or wildcard pathname.

destination is a valid PDS pathname (optionally preceded by a
disk-directory).

QUERY is an option that produces a user query before each
PDSCOPY operation.

UPDATE is an option that disables the automatic querying of
PDSCOPY.

Description

PDSCOPY allows you to copy PDS files to a specified location within the iNDX file
structure (READ) and to copy iNDX from the iNDX file structure to PDS files
(WRITE).

Copying PDS Files to iNDX Files

READ allows you to copy a PDS file to a specified location within the iNDX
hierarchy. If you enter a PDS wildcard as the source, you must designate an iNDX
directory file as the destination file. If you do not designate a wildcard as the source,
you may specify either a data or a directory file as the destination.

If the iNDX destination file exists and is a directory file, a file with the same name
as the PDS source file will be created within the iNDX directory. If the pathname
constructed for the destination file exceeds the iNDX limit of 127 characters, an
error will be returned. The Read operation executes only if you have ADD-entry
access to the destination directory.

If the destination file exists and is a data file, you will be queried before the delete
takes places. Specifying the UPDATE option disables the querying. If the destination
does not exist, a new file having the specified name will be created within the speci-
fied iNDX parent directory. You must have ADD-entry access to the parent direc-
tory to execute this command.

Copying iNDX Files to PDS Files

WRITE allows you to copy an iNDX file to a PDS file. If you designate an iNDX
wildcard pathname as the source, the PDS destination must be a disk-directory;
otherwise, the source may be either a PDS filename or a disk-directory.

If the destination is a disk-directory, a file with the same name as the source file will

be constructed as the destination. If the pathname constructed is not a valid PDS
pathname, an error will be returned.

4-65

Commands Series-IV Operating & Programming

If the destination pathname exists, you will be queried prior to deleting the existing
file. Deletion will take place only if you request it and the Write and Format attri-
butes of the existing file have not already been set. If you specify the UPDATE
option, the querying will not take place before the deletion. If the file does not exist,
a new file will be created within the PDS directory.

Regardless of your specific hardware configuration, the disk directory configuration
is always taken by PDSCOPY to be one of the following:

:FO:—flexible disk drive 0 (the default condition)
:F1:—flexible disk drive 1

User Interaction

After you have entered the command line for PDSCOPY, the following message
appears on the console:

operating systemname PDSCOPY, Vxy

PDSCOPY then performs a syntax check of the filenames entered. If any errors are
detected, an error message will be returned and the command will abort. You must
re-enter the command line with the correct filenames. If the filenames are correct,
the command proceeds as described in the following paragraphs.

If the destination file already exists and is a data file (and you have not specified the
UPDATE option—thus disabling querying), the following query will appear:

FILE ALREADY EXISTS
PATHNAME = destination pathname
DELETE EXISTING FILE ?

If you respond by entering a Y (or y) followed by <cr>, the command will proceed
and the existing file will be deleted if you have access to the file. Any input other
than Y (or y) terminates the command and no files are copied. If a wildcard file was
the source, the command will then query you for the next file. If no more files exist,
the command proceeds. Note that as the input for the PDSCOPY is line-edited, you
must enter a line terminator at the close of the command lines. If you explicitly specify
the QUERY option, the following query will appear before each copy takes place:

COPY sourcepathname T0 destination pathname ?

If you respond by entering a Y (or y) followed by <cr>, PDSCOPY executes. Any
response other than Y (or y) terminates the command. If the source was a wildcard,
the command will query you for the next file. If no more files exist or the source was
not a wildcard, the command will be exited. As the input is line-edited, you must end
each command line with a line terminator.

In Submit Mode, the QUERY option causes the following message:

QUERY OPTION NOT USEABLE IN THE SUBMIT MODE.

Every successful copy causes the following confirmation message to appear:
COPI1ED source pathname T0 destination pathname

Additional Notes

1. PDSCOPY can be invoked only from a foreground job.
2. PDSCOPY does not support the copying of spare files.

4-66

Series-IV Operating & Programming

Wildcard pathnames cannot appear as the destination file.

For both READ and WRITE, the devices :CO:, :BB:, :TO:, :LP:, etc., are not
supported.

Upon insertion of a PDS diskette into a Series [V, the iINDX Operating System
attempts to mount the PDS diskette. This attempt fails, and a NOT
SUPPORTED exception is returned. This message should be disregarded.

The possible errors are:

Syntax Error: syntax is checked before operations begin. Invalid syntax is a fatal
error and is displayed before aborting. You are required to re-enter the command
from the beginning.

Disk Error: fatal error. The program performed an unsuccessful Disk I/O
operation on the controller boards. After this message is displayed, PDSCOPY
is aborted.

Commands

Commands

4-68

Series-IV Operating & Programming

VERIFY

Syntax
VERIFY device-name [F1X]

where

device-name is: FLO or FL1 for 5'/4” Flexible Disks
HDO-HD3 for Hard Disks
WMO for the integrated 5'/4”-Winchester Disk
WDO-WD3 for a 35-Megabyte Priam Disk

FIX is an option specifying that an appropriate action be taken,
and an error message provided, if an error is detected.

Description

The Verify command verifies the volume (i.e., the disk) specified by checking:
Predefined fields in the System files, including file names.

The hierarchical file structure.

The integrity of the file system bitmaps.

The file contents of any bad blocks.

If deleted files have actually been deleted.

If bad blocks have been removed from usable disk space.

If allocated disk blocks are owned by more than one file.

i T A e e

If all allocated disk blocks are owned by a file.

The FIX option, if specified, checks for the following disk errors and corrects them
as follows:

1. Defective predefined system files are corrected.
Files not traceable to a parent directory are deleted.

w

Files containing a bad block are deleted upon your directions (see “User Inter-
action” below).

4. Files that were incompletely deleted are deleted upon your instructions (see “User
Interaction” below).

5. Bitmaps found in error are corrected.
Erroneous file allocation flags are corrected.

7. Bad blocks are marked as being allocated and thus are removed from the file
system.

8. Disk blocks that are marked as used but are not owned by any file are recovered
for. (re)allocation.

9. Names of system files will be changed from old formatted names to new formatted
names if a disk was originally formatted with an older version of the format
command.

User Interaction

User interaction is necessary to Verify and Fix disks. After you have entered the
command line for the Verify command, the following message appears on the console:

operating system VERFIY Vxy

Series-IV Operating & Programming

where

x.y designates the current version of the software.

If a syntax error is detected in the command line, an error message will appear and
you must re-enter the entire command. If no syntax error is detected, the following
tests are performed in the sequence shown. For each test, one of the following messages
appears, indicating the results of that test. The test result messages are:

VERIFICATION PASSED no errors of this type were found.
VERFICATION FAILED an error of this type was found.
VERFICATION FAILED/FIXED an error of this type was found as you

specified the FIX option; appropriate
action was taken to correct the error.

Following are the Verification Tests. They appear in the order in which they are -

performed.

TEST #0 Verifying Formatted File Names

This test checks the predefined system filenames, comparing them against their
expected contents. Discrepancies are reported as errors.

TEST #1 Verifying Predefined Fields in System Files

This test checks the predefined fields in the system files, comparing them against
their expected contents. Discrepancies are reported as errors.

TEST #2 Verifying the Hierarchical File Structure

This test reads in all allocated files and determines if they are Directory files. All
Directory files are read and all of their member files are marked as belonging to
that parent directory. The contents of the parent directory are then checked
against the roster of marked files. If an unmarked file is found, it is reported as
a file without a parent directory.

TEST #3 Verifying File System Bitmaps

This test consists of five steps. (1) The bitmap that monitors file allocation is
compared against the field in the file that marks whether that file has been
allocated. A mismatch is reported as an error. (2) All allocated files are checked
for type. An allocated file must be a System file, a Directory file, or a Data file.
(3) A check is made to see if all files in the process of deletion have been
completely deleted. (4) Files containing bad blocks are checked to see if they are
unusable. Errors detected by the second, third and fourth steps result in the
following error message:

PATHNAME is fully-qualified pathname
Delete (DIRECTORY OR DATA) file?

If you then respond by entering Y (or y) followed by <cr>, the file names will
be deleted. Any response other than Y (or y) does not delete that file. Note that
the verify command ignores file protection; thus, you may delete files that are
not your own. (5) The final step is the comparison of the bad block bitmap against
the free space bitmap. All disk blocks that are marked as bad in the bad block
bitmap must be marked as used in the free space bitmap, thus preventing their
future use.

Commands

4-69

Commands

4-70

Series-IV Operating & Programming

TEST #4 Verifying Used Disk Block Allocation

This test consists of two steps. (1) All allocated files are read and all disk blocks
belonging to each file are marked as such. If a block is encountered that had
been previously marked to another file, the given block is owned by more than
one file and an error message is displayed. (2) All used blocks are checked to see
if they were marked in step 1. If a block was not marked in step 1, the block is
being incorrectly marked as used but actually does not have an owner and there-
fore an error message is displayed.

When all four tests have been completed, one of the following messages is displayed:
DISK VERIFIES
No errors were detected so the disk is good.
DISK DID NOT VERIFY
At least one error was detected and so the disk is bad.
BAD DISK FIXED

Errors have been detected and some of the errors have been corrected.

Error Messages

Following is a list and explanation of all the error messages obtained with the Verify
command.

ERR: SYSTEM FILE NAME ERROR
This error, returned by Test #0, indicates a mismatch between the existing
name of a system file and the actual name found.

ERR: FILE(S) NOT TRACED BACK TO A PARENT DIRECTORY
This error, returned by TEST #2, indicates that a file cannot be traced to
a valid parent directory.

ERR: FILE ALLOCATE FLAG FILE ALLOCATE BITMAP
This error, returned by TEST #3, indicates a conflict between the flag in
a file indicating whether that file has been allocated and the correspond-
ing flag in the File Allocate Bitmap.

ERR: INVALID FILE TYPE
This error, returned by TESTS #1 and #3, indicates that the type of a
given file does not agree with the expected type.

ERR: FILE CONTAINS A BAD BLOCK
This error, returned by TEST #3, indicates that a bad block has been
detected in the file whose name is given.

ERR: DELETED FILE ENCOUNTERED
This error, returned by TEST #3, indicates that a file was not completely
deleted due to such circumstances as sudden device dismount during a
delete or truncate, or user-reset of the system during a delete or
truncation.

ERR: BAD BLOCK(S) NOT REMOVED FROM USABLE DISK SPACE
This error, returned by TEST #3, indicates that a bad block has been
found to be marked as free in the free space bitmap. All bad blocks should
be marked as allocated or used.

Series-IV Operating & Programming

ERR:

ERR:

ERR:

DISK BLOCK(S) ALLOCATED TO MULTIPLE FILES
This error, returned by TEST #4, indicates that a used block is marked
as belonging to two different owners, which is illegal.

DIRECT BLOCK COUNT ¢ » INDIRECT BLOCK COUNT

This error, returned by TEST #4, indicates that the total number or count
of disk blocks used by a file is not equal to the count made by the Verify
command. This is a system I/O error.

DISK BLOCK(S) NOT ALLOCATED TO ANY FILE
This error, returned by TEST #4, indicates that a disk block is marked as
being used but is not owned by any file. This is illegal.

Fix Messages

The following messages are displayed when an error is detected and you have
specified the FIX option.

fix:

fix:

fix:

fix:

fix:

fix:

Examples

1. VERI

system file content corrected
This fix message, returned by TEST #1, is displayed when defective system
file contents have been corrected.

bad file(s) deleted

This fix message, returned by TESTS #2 and #3, is displayed when the
Verify command has determined that a particular file is bad and cannot
be accessed. Bad files are defined as: (1) those not traceable to a parent
directory, and (2) files that contain a bad block. Files with a bad block
are deleted only if you explicitly request such action.

bad file flag corrected

This fix message, returned by TEST #3, is displayed when the Verify
command has determined that the allocation flag is bad. Verify changes
the flag to its correct status.

bad file bitmap corrected

This fix message is displayed when the Verify command has determined
that the bitmap monitoring the file allocation is bad. The bitmap is changed
to correct status.

bad blocks removed from usable disk space

This fix message, returned by TEST #3, is displayed when bad blocks are
detected in the bitmap that monitors whether a disk block is used or
available.

lost blocks recovered

This fix message, returned by TEST #4, is displayed when the Verify
command has marked lost blocks (i.e., disk blocks previously marked as
used but not owned by an file) as available or free.

FY FL1

This example Verifies 5!/4” flexible drive 1.

2. VERI

FY HDO FIX

This example Verifies the hard disk drive 0 and fixes detected errors.

Commands

4-71

Commands Series-IV Operating & Programming

Additional Notes

1. The use of the Verify command is restricted to foreground jobs only.

2. The Verify command dismounts the device, making it unable to verify a system
drive.

3. The Verify command does not free blocks that are multiply allocated.
4. The Verify command will not run concurrently with a background job.

4-72

CHAPTER 5
THE SERIES-IV IN THE NETWORK

5-1

Using the Series-IV in the Network Series-1V Operating & Programming

No e,, however that

mode LP desrgnates the;ioca% ine. prmter, not t network ‘spool prmte Any output
from workstations in the network mode should be sent to the spool printer (:SP:).

Series-IV Operating & Programming Using the Series-IV in the Network

; aior hght to ge o
tch(as) and‘remove,the fiexible dlS '

posxtmn

Using the Series-IV in the Network Series-1V Operating & Programming

Series-IV Operating & Programming Using the Series-1V in the Network

Series-IV Operating & Programming

Using the Series-IV in the Network

5-6

Series-IV Operating & Programming Using the Series-IV in the Network

5-7

Using the Series-IV in the Network Series-IV Operating & Programming

Series-IV Operating & Programming

Using the Series-IV in the Network

Series-IV Operating & Programming

Using the Series-IV in the Network

5-10

Series-IV Operating & Programming

Using the Series-IV in the Network

CHAPTER 6
PROGRAMMING INTRODUCTION

Operating System Considerations

An operating system is a group of programs that provide the functional (as opposed
to physical) environment in which your programs do their work. The group of
programs facilitates efficient production and allocation of resources.

Needed Capabilities

An operating system is capable of managing the devices attached to the system
hardware. These devices include the console input and output devices and auxiliary
memory devices such as flexible or hard disk drives. The operating system also recog-
nizes commands to invoke the execution of programs such as language translators or
programs you develop.

Desirable Features

By managing overlays and error conditions, you can extend the range of functions
(and recoveries) available to your programs. Overlays permit the design and use of a
program larger than the memory size by partitioning the program into modules whose
processing is mutually exclusive and whose size allows them to fit into the memory
available. These modules are linked by calls that cause memory to be reused by the
other sections of the program. Service routines designed to handle exceptions allow
early detection and handling of unwanted conditions arising during execution.

Functions of the iNDX and ISIS-IV Operating Systems

The iNDX and ISIS-1V operating systems have the capabilities just described. They
are also capable of command scanning and dynamic file or device manipulation (i.e.,
under program control during execution).

Command scanning allows your program to pick up options specified on the input
line that invokes program execution, or to treat specially formatted files as if they
were input from the console.

Dynamic file control during execution allows you to maintain a list of twelve files or
devices that are used by your program (e.g., written or read); but, you can only use
six at any one time. The ability to immediately access twice as many files and devices
can make input/output operations more efficient.

The Series-IV operating system also provides memory management and an inter-
active symbolic debugging aid.

Memory management during execution allows you to allocate memory for specific
processes as they arise and to free those blocks when they are no longer needed.

6-1

Programming Introduction Series-IV Operating & Programming

The debugging tool is called DEBUG-88. Its interactive language is similar to that
of Intel’s ICE-86 or ICE-88 emulators. Using DEBUG-86, you can insert break-
points into your program, execute until some predefined condition is encountered,
and halt—thereby allowing you to examine the state of processor registers or
variables in your program.

DEBUG-88 is fully described in the DEBUG-88 User’s Guide, 121758.

Program Development Cycle

The program development cycle begins with an idea and ends with a fully checked-
out program that performs the desired work acceptably.

The idea evolves into a design and, ultimately, into program specifications. Specifi-
cations are split up into smaller groups of functions, each performed by a single module
of code.

As work progresses, problems may arise—due, perphaps, to unforeseen gaps or
complications within the base design or difficulties in implementing it. Modules may
require expansion, modification, or integration with other modules. Some functions
may merge or be abandoned, and parameter lists may change.

To minimize such changes (and the redesign, rework, and relearning resulting from
them), you should remember the following guidelines:

1. Develop extremely clear and specific goals for the program. Write down the goals
and have the designers, implementers, and users all agree on them.

2. Isolate every non-trivial function of the system or program into separate modules;
even isolate difficult design decisions.

3. Write full and clearly understandable documentation for every module, including
liberal comments in the code.

4. Write clear standards for implementating modules, including conventions for
naming and passing parameters.

The closer you adhere to these guidelines, the farther you will get from unexpected,
costly changes.

Modules defined through the above process then form the units of actual program-
ming work which are separately specified at the detail level. They are coded, trans-
lated, and tested, both individually and in logical groups.

As these groups are tested and combined with other checked-out groups, the complete
program approaches final integration. Using input data that reflects the ultimate usage
as closely as possible, the final tests explore every major option defined by the
original program specifications.

At each stage of individual and multi-module testing, the debugging functions provided
in the operating system help to isolate the source of unexpected results. Under the
Series-1V operating system, DEBUG-88 permits: use of symbolic names for debug-
ging output; references to instructions by line number; access to the processor’s regis-
ters and flags; and alternate execution modes with or without the use of breakpoints.
Under the ISIS-IV operating system, the Monitor debugger or an In-Circuit Emulator
provide similar functions.

6-2

Series-IV Operating & Programming

Specific System Services for Each Target Environment

When you are developing a program to run on the Series IV, you must choose one of
the two environments provided for program execution: the 8086 /8088-based environ-
ment or the 8080/8085-based environment. Each has similar built-in facilities to aid
you in the development and testing of your program products, including standard
system services that can be called from your programs (e.g., I/ O). These I/0O routines
free you from rewriting routines already embedded in the operating system and provide
a standard interface for all modules or systems you develop. However, the interface
for each operating system environment is unique; the calls and parameters differ.

The 8086 /8088-Based Environment

For the 8086/8088-based environment, you develop the modules using the languages
that run on the 8086/8088 and produce code that works on the 8086/8088 (for
example, the resident FORTRAN-86, PASCAL-86, ASM-86 or PL/M-86 transla-
tors). (Earlier versions of these translators ran on the 8080/8085 chip but produced
code to run on the 8086/8088 chip. In some cases, modules compiled or assembled
with these prior versions of the translators can be used unchanged. Appendix D clari-
fies the circumstances in which this is workable.)

Over two dozen system service routines are available in the 8086/8088-based
environment. These routines enable you to use the capabilities of the Series-IV
operating system to manage the resources of the 8086/8088-based environment.

A conceptual introduction of expected parameters and results of routine execution
appears early in Chapter 7. A full discussion of each parameter used also appears
with the sample PL/M-86 declarations for these external procedures. The discussion
of each routine ends with syntax examples and the list of exception conditions that
can occur during the routine’s execution. Brief, combined usage examples appear
after these discussions.

Whenever you write a module that uses one of these service routines, you simply
declare it as an external procedure. LINK86 then provides the correct address to the
resident system program. You specify the library appropriate to the PL /M-86 model
of segmentation you programmed for: SMALL.LIB, COMPAC.LIB, or LARGE.LIB.

After you link and locate groups of modules that will work together in your final
system, you can test them alone or together. The DEBUG-88 feature described in
the DEBUG-88 User’s Guide, 121758, can help you isolate and correct defects as
they become apparent.

The 8080/8085-Based Environment

For the 8080/8085-based environment under the ISIS-IV operating system, use the
standard 8085-based versions of these same translators to build your modules. These
modules will then run under ISIS-IV on the 8080/8085. In this environment, the
modules may call upon ISIS routines for a variety of input /output services that already
exist as part of the ISIS-IV facilities. Many of these routines operate similarly to
those of the 8086/8088-based operating system; some, however, are unique to
ISIS-IV.

Fourteen ISIS-IV routines and nine Monitor routines are available.

Programming Introduction

6-3

Programming Introduction Series-IV Operating & Programming

As under Series-IV, whenever you write a module that uses one of these service
routines you simply declare it an external procedure. When the module is processed
by LINK, the correct address to the resident system program is provided. The DEBUG
feature of the Monitor can aid the program analysis and correction process. (Refer
to the ISIS-IV User’s Guide, 121880, for further discussion of the 8080/8085-based
environment).

Built-in Service Routines

The parameters appropriate to each service routine include the address of a word
(filled by the system) indicating whether the desired operation finished successfully.
Usually, your call should be followed by code that tests this word—permitting error
recovery, alternate processing, or exit, depending on the operation’s results.

To help you understand the available service routines, the following three tables name
all of the 8086/8088-based system routines:

1. Alphabetically (table 6-1)
2. In groups by function (table 6-2)

3. By sequence of use in a hypothetical program. Table 6-3 shows their nearest
functional equivalent under ISIS-IV. (Some procedures used under the Monitor
of ISIS-IV have no direct counterpart in the 8086 /8088-based environment.)

All 8086/8088-based procedures begin with DQS.

Table 6-1. Alphabetical List of Service Routines Available
in the Series-IV Operating System

6-4

DQSALLOCATE DQ$GETS$SIZE
DQ$ATTACH DQ$GET$SYSTEMSSID
DQ$CHANGES$ACCESS DQGETTIME
DQ$CHANGESEXTENSION DQ$OPEN

DQ$CLOSE DQ$OVERLAY
DQ$CREATE DQ$READ
DQ$DECODESEXCEPTION DQ$RENAME
DQ$DECODES$TIME DQ$RESERVESIOSMEMORY
DQ$DELETE DQ$SEEK

DQ$DETACH DQ$SPECIAL

DQSEXIT DQ$SWITCH$BUFFER
DQS$FILESINFO DQ$TRAP$CC
DQ$FREE DQ$TRAP$EXCEPTION
DQGETARGUMENT DQ$TRUNCATE
DQSGET$SCONNECTIONSSTATUS DQ$WRITE
DQ$SGET$EXCEPTION$SHANDLER

Table 6-2. Service Routines by Functional Groups

Utility and Input Scanning

DQ$DECODES$TIME
DQGETARGUMENT
DQGETSYSTEMSID
DQ$GETSTIME
DQ$SWITCH$BUFFER

Memory Management

DQSALLOCATE
DQ$FREE
DQGETSIZE

DQ$RESERVE$SEXCEPTION

Series-IV Operating & Programming

Programming Introduction

Table 6-2. Service Routines by Functional Groups (Cont’d.)

File Management

Program Connection and File Existence

DQ$SATTACH

DQ$CREATE

DQ$DELETE

DQ$DETACH

DQS$FILESINFO
DQ$GETSCONNECTION$STATUS

Naming

DQ$CHANGESACCESS
DQ$CHANGESEXTENSION

DQ$RENAME

Program Usage

DQ$CLOSE
DQ$OPEN
DQS$READ
DQ$SEEK
DQ$SPECIAL
DQ$TRUNCATE
DQ$SWRITE

Program Control

DQSEXIT
DQ$OVERLAY

Exception Handling

DQ$DECODES$SEXCEPTION
DQ$GETSEXCEPTIONSHANDLER
DQ$TRAP$CC
DQ$TRAP$EXCEPTION

Table 6-3. Hypothetical Steps in Program Execution and
Service Routines Relevant to Each Step

Steps

Service Routine Names

For Use in
8086 /8088 Environment

8080/8085 Environment®

For Use in

1. Finds out date and system
i.d. for logging/reporting
purposes

2. Allocates a memory work
area for intermediate
calculations

3. Determines whether
console input is trans
parent or line-edited

4. Rescans the last command
(at first, the one invoking
this program)

5. Asks user to enter needed
data or parameters at the
console

6. Writes to a file

DQ$DECODESTIME
DQ$GETS$TIME
DQGETSYSTEMSID

DQ$RESERVE$IO$MEMORY
DQ$ALLOCATE
DQS$GETS$SIZE

DQ$SPECIAL

DQ$GETSARGUMENT
DQ$SWITCH$BUFFER

DQ$WRITE
DQ$READ

DQ$WRITE

none

none

none: console is
always line-edited

RESCAN

WRITE
READ

WRITE

6-5

Programming Introduction

6-6

Series-IV Operating & Programming

Table 6-3. Hypothetical Steps in Program Execution and
Service Routines Relevant to Each Step (Cont’d.)

Steps

Service Routine Names

For Use in

8086/8088 Environment

For Use in
8080/8085 Environment®

10.

1.

12.
13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

. Loads overlay to process

next phase or user
response

. Checks to see if required

files are on-line; gets
status, including file pointer
position

. Creates files as needed for

program reads/writes

Opens the files for reads/
writes

Reads file(s) or seeks to
desired position in file

Calculates

Frees memory work areas
no longer needed

Closes and/or deletes files

Writes new or old file(s)

Renames certain files or
changes extension on
filename string; changes
file protection attributes

Change or check file
access rights

Obtains file device direc-
tory information

Truncates and/or closes
files no longer needed

Detaches files not currently
needed

Repeats as needed from
number one above

Naturally, errors or excep-
tions or unwanted condi-
tions can occur at each of
the above steps. Thus, an
implicit step after any of
them is the detection/
handling of such condi-
tions.

Exits when job is complete
or cannot continue

DQ$OVERLAY

DQ$ATTACH/DQ$OPEN

DQGETSCONNECTION$STATUS

DQ$CREATE/DQ$OPEN
DQ$OPEN

DQ$READ
DQ$SEEK

user supplied
DQ$FREE

DQ$CLOSE
DQ$DELETE

DQ$WRITE

DQ$RENAME
DQ$CHANGESEXTENSION

DQ$CHANGESACCESS
DQS$FILESINFO

none

DQ$TRUNCATE
DQ$CLOSE

DQ$DETACH
none

DQ$TRAPSEXCEPTION
DQ$DECODES$EXCEPTION
DQ$TRAP$CC

DQGETEXCEPTION$SHANDLER

DQSEXIT

LOAD

SEEK/OPEN

OPEN
OPEN
READ
SEEK

none
none
CLOSE
DELETE
WRITE

RENAME
none

ATTRIB/GETATT
GETD

CLOSE

none

none

ERROR

EXIT

*Some names repeat because routine is multi-function.

CHAPTER 7
THE 8086/8088-BASED ENVIRONMENT

This chapter discusses each system service routine available in the 8086/8088-based
environment of the Series IV. The routines provide a variety of capabilities to programs
running on the Series IV. The routines do not, however, require user development
and verification because they are part of the operating system.

Conceptual Considerations

The system service routines, which embody a variety of usage expectations, constitute
a model of the way programs interact with files, the console, and each other. The
expectations are directly reflected in the parameters you must supply when calling
the routines. Following are some of the key concepts underlying the parameters.

Command Tail Arguments

An 8086/8088-based program such as PROGRM can be invoked by typing
PROGRM. PROGRM may have options that can be specified on the invocation line.
If so, the remainder of that line, including any continuation lines, is called a “command
tail.”

This command tail is accessible to PROGRM via the DQSGETSARGUMENT
system service routine, which you call to get each option in the command tail. The
first parameter of this call tells the system where to put the next option found, i.e.,
the address of the name you declared in PROGRM as the string to receive these
options.

Successive calls to DQSGETSARGUMENT return successive options, each separated
by some delimiting character such as a blank or a parenthesis. (Details for using this
routine appear later in this chapter.) The concept of the command tail is basic to the
discussion of that routine and can influence your program design.

Memory Manageinent

Memory management routines monitor which memory areas are in use and which
are free to be allocated to new uses.

Free space memory management is handled by the service routines DQSALLOCATE,
DQSFREE, and DQSGETSIZE.

The Series IV does not support absolute object modules, but does support two types
of relocatable object modules: position-independent-code (PIC), and load-time-locat-
able (LTL). Segment register changes do not occur in PIC modules. The code can
work wherever it is ultimately loaded. LTL modules contain special records to resolve
program references that do require segment register changes, e.g., an intersegment
jump.

When a relocatable object module (PIC or LTL) is loaded, the lower limit of the free
space pool is set before the load. Memory required to load the segments is then
allocated from the initial free space pool by the free space manager.

The 8086/8088-Based Environment Series-IV Operating & Programming

A request for memory (i.e., invoking DQSALLOCATE) will return the lowest-
addressed segment within the requesting job’s region. When a segment is freed, it is
automatically combined with adjacent free memory to form the largest contiguous
area possible.

Connections

The operating system maintains a list of twelve devices or files your program can use
during its execution, i.e., a list of *“connections.” A connection is a word, named by
you, filled by the DQSATTACH or DQ$SCREATE system service routines. (Only six
connections may be open at once, although multiple opens of a single device count as
only one of the six.)

You use this word to specify a file or device whenever you need to perform any opera-
tion on either of them. For files that already exist, DQSATTACH and DQSDETACH
can add or delete connections. New files are connected with DQSCREATE.

For example, when your program performs console input and output, the connections
for :CI: and :CO: must be on this list. The list permits efficient specification and
manipulation of devices or files during execution.

Only objects on this list can be opened or closed, read or written. Use the connection
rather than the actual device or file name. During execution, your program may
perform these functions on multiple files—but, only six files and devices may be open
at one time (not counting :CO:).

Some Series-IV service routines include an “internal” open as part of their operation.
When you use such a routine, you may need to close another file or device temporar-
ily to avoid exceeding the limit of six open files-plus-devices at once. However, you
may open a physical device more than once because it counts only as one open “file.”

Before a file can be read or written (by DQSREAD or DQSWRITE), it must be
connected and opened (by DQSOPEN). When the activity to that file is completed,
it can be closed (by DQ$CLOSE). These four routines can be used only with connec-
tions established earlier.

Output devices are created; input devices are attached. For example, workfiles (defined
below) and console output :CO: must be created, not attached. Console input is the
opposite—:CI: must be attached rather than created.

Buffers

Buffers are areas reserved for expediting disk input/output. A request to buffer a
device will be ignored except when :CO: has been redirected to a disk file.

If a series of read operations can be interspersed with calculation, more efficient
operation will result. This occurs when the data being read in is not used immedi-
ately. Similarly, if a sequence of write operations can be interspersed with calcula-
tion, efficiency rises.

When you open a file, buffers are allocated according to your specifications. Your
program will read (only), write (only), or update (both). When a file is opened for
write, buffer use begins with the first call to DQSWRITE. When a file is opened for
read or update, buffer use begins with the call to DQSOPEN. When a file is open for
update, the most efficient use is clustering the reads (interspersed with calculations)
separately from the writes.

7-2

Series-1V Operating & Programming

You are responsible for indicating the optimal number of buffers for the type of
usage you see for a file. For seldom-used files and random 1/O, one buffer is best.
With sequential console input/output, zero buffers is the correct specification. In all
other cases, double buffering is appropriate.

Workfiles

Many programs need temporary files to store immediate results while processing.
These files need to be available each time the user logs on. On the Series IV, the
designator :WORK: is used to represent these files.

Prior to creating any temporary files, the user must define :WORK: using the
LNAME command in the LOGON INT file. This command assigns a directory that
allows temporary files to be created and stored under the directory named :WORK:.

Temporary files may be created any number of times. Each time DQ$CREATE is
involved with a pointer to the string “6,:WORK:,” a new workfile is established.

Workfiles must be created, opened, closed, and detached like any new file. They are
automatically deleted when they are detached.

Exception Conditions and Exception Handling

Exceptions, or errors, are detected when an indicated operation cannot be completed.
The Series-1V operating system classifies errors as either avoidable or unavoidable.
Every system service routine except EXIT returns an error code through a pointer
(referred to as excep$p in the descriptions later in this chapter). Your programs can
test this code to check if the operation you called for completed successfully.
Appendix C contains the standard error names and values.

An error code of zero means your call executed successfully. For example, when you
call DQSOPEN to prepare a file for input/output, you supply a connection number.
A zero error code would be returned if the connection representing that file were
successfully opened.

A non-zero error code indicates an inappropriate event during a routine’s execution.
For example, a write operation would fail if the connection representing the desired
file indicated that the file had already been closed or detached. A non-zero error code
would be returned. Your program should always check for this.

Unavoidable Errors

Unavoidable errors generally arise from environmental conditions outside program
control. Examples include insufficient memory for a requested operation, or inability
to find an expected file. These errors always return a non-zero value. Often, appro-
priate program action can be taken. In other instances, nothing can be done until the
correct disk is found and inserted, or until the available memory is increased by
adjusting other program functions.

Avoidable Errors

Avoidable errors typically are caused by coding errors such as inappropriate param-
eters or unusable numeric results. Hardware-detected errors, which also fall into this
category, include division by zero (interrupt 0), overflow (interrupt 4), and interrupts
generated by the 8087 Numeric Data Processor. These errors cause the system’s
default exception handler to be executed. (See Appendix C.)

The 8086/8088-Based Environment

7-3

The 8086/ 8088-Based Environment

7-4

However, you may establish your own routine to handle hardware-detected excep-
tions by using the system routine DQSTRAPSEXCEPTION and supplying a pointer
to your exception-handler. (The state of the stack when your routine gets control is
discussed under DQSTRAPSEXCEPTION.)

One special kind of exception is defined into the system: when a CONTROL-C is
typed at the physical console input device by default, the system cancels the current
foreground job. You can program your own response to a CONTROL-C via the
system routine DQSTRAPSCC and thereby cause the system to use the
CONTROL-C to provide a pointer to your private routine.

Data Types and Register Convention

The descriptions of the system service routines that appear later in this chapter assume
data types similar to those of PL/M-86. Your calls to system service routines must
supply parameters that meet the following specifications:

BOOLEAN A BYTE object taking the values TRUE (OFFH) or
FALSE (00H). The BOOLEAN specification assumes
the following literal definition (in PL/M-86 terms):

DECLARE BOOLEAN LITERALLY *BYTE’ ;
BYTE Equivalent to PL/M-86.

CONNECTION A token representing a connection to a file or device. The
CONNECTION specification assumes the following
literal definition (in PL/M-86 terms):

DECLARE CONNECTION LITERALLY

‘*WORD’ ;
DWORD Four-byte unsigned integer.
POINTER Equivalent to PL/M-86. Two bytes in the SMALL model

of segmentation, four bytes in all others.
SELECTOR Equivalent to PL/M-86.

STRING A sequence of bytes the first of which contains the
number of bytes following in the sequence, i.e., not
including the length byte. A length of zero indicates the
null string.

WORD Equivalent to PL/M-86.

The operating system follows the conventions for interfacing PL/M-86 programs with
assembly language programs, saving only registers CS, DS, SS, IP, SP, and BP on a
call. Other registers and flags may be used by the operating system routines; upon
return to your program, they have no predefined value.

Series-IV Operating & Programming

Series-IV Operating & Programming The 8086/8088-Based Environment

External Procedure Definitions for Series-IV System
Service Routines

Introduction

Any module using a service routine must first declare it an external procedure and
then link the final object module with the appropriate interface library. Following
are the appropriate PL/M-86 declarations with syntax and usage gxamples for all
Series-1V routines.

The routines are presented alphabetically in five categories:
¢ Exception handling

» File management

¢ Memory management

* Program control (overlays, exit)

+ Utility/command parsing

The file management category has three subclasses:
¢ Connection to files

¢ Naming of files

e Use of files

Appendix B lists the routines and parameters in alphabetic order.

7-5

The 8086/8088-Based Environment : Series-IV Operating & Programming

Exception Handling Routines
Syntax

DASDECODESEXCEPTION:
PROCEDURE (exception$code, message$p, excep$p) EXTERNAL
DECLARE exception$code WORD,
message$p POINTER,
excep$p POINTER;
END;

Description

exception$code is a word containing an excepion code. message$p is a pointer to the
81-byte area (minimum) you declared to receive the error message decoded by the
operating system. The first byte of the message is the length of the string. The word
whose address is excep$p will contain zero unless an unexpected problem in decoding
causes a non-zero code to be returned.

The routine returns a string containing the following information:

EXCEPTION nnnnH message

where
nnnn is the exception code value.
message is the exception message.

If the exception$code you supply as a parameter is not a recognized system error
number, an exception number, not a message, will appear.

Example

CALL DQSCODESEXCEPTION (ERRNDO, QERRMESS(0), @ERR);

Exception Codes Returned
E$SOK

Series-IV Operating & Programming The 8086 /8088-Based Environment

Syntax

DASGETSEXCEPTIONSHANDLER:
PROCEDURE C(handler$p, excep$p) EXTERNAL;
DECLARE handlerfp POINTER,
excep$p POINTER;
END;

Description

handler$p must point to a four-byte area the system can fill with a long pointer to the
current avoidable-exception handler. A four-byte pointer is always returned even if it
is called from a program compiled under the SMALL model of segmentation.

If called, this pointer will be the address specified in the last call of
DQSTRAPSEXCEPTION.

Example

CALL DQSGETSEXCEPTIONSHANDLER (@WHICH_HANDLER,
@ERR);

Exception Codes Returned
ESOK, ESPTR

The 8086,/8088-Based Environment Series-IV Operating & Programming

Syntax

DA$TRAPS$CC: PROCEDURE (handler$p, excep$p) EXTERNAL;
DECLARE handlerp POINTER,
excep$p POINTER;
END;

Description

Whenver CONTROL-C is pressed at the physical console device, the system executes
the default handler or your specially coded routine, whose address is specified as
handler$p via this system service call.

When your CONTROL-C routine receives control, the registers and flags are the
same as in the interrupted program. At that time, the stack looks like the following
figure:

SP ——n return P

return CS

stack when
exception occurred

121753-8

Write the CONTROL-C routine in assembly language. The program must save the
8086,/8088 processor flags and registers and load the DS register with the data
segment value of the CONTROL-C routine. Before returning to the interrupted
program, the CONTROL-C outline must restore the registers and flags and execute
a long return.

The default CONTROL-C handler closes files and terminates program execution. If
the key was pressed while the system was performing a system service routine (other
than a DQSREAD of :CI:), the routine is completed and the CONTROL-C routine
is not executed until just before the system returns to the calling program. If a
DQSREAD of :CI: is being serviced, the CONTROL-C handler is executed immedi-
ately and the DQSREAD returns an actual count of zero to the calling program. If
the job is being processed in BACKGROUND mode, the CONTROL-C request will
be ignored.

(If :CI: has been redirected to another device or a disk file, e.g., under SUBMIT, the
special meanings of CONTROL-C and CONTROL-D will not be recognized from

the SUBMIT file; they will be treated as ordinary characters unless they come from
the cold start console.)

Example

CALL DOGSTRAPSCC ¢ SPECIAL_C_PTR,@ERR_C);

Exception Codes Returned
ESOK

7-8

Series-IV Operating & Programming The 8086/8088-Based Environment

Syntax

DB@STRAPSEXCEPTION: PROCEDURE (handlerp, excep$p) EXTERNAL:
DECLARE handler$p POINTER,
excep$p POINTER;
END;

Description

handler$p is the address of a four-byte area containing a long pointer to the entry
point of your exception handler. (Programs compiled under the SMALL model of
segmentation have no access to CS and thus cannot create the long pointer directly.)

Hardware-detected exceptions will cause the exception handler to be executed. The
state of the stack upon entry looks as though the instruction pushed four words and
then executed a long call to the exception handler. The first word pushed is the condi-
tion code. The next three words are reserved for future use by the operating system
and the numeric data processor.

Upon entry to the exception handler, the stack looks like the following diagram:

SP ~——] return IP

return CS

0

0

0

exception code

stack when
exception occurred

121753-9

See Appendix C for exception code values and descriptions.

The default system action displays an error message, closes files, and terminates
program execution. Following is the message format:

#** EXCEPTION nnnnH error message
CS: 1P = xoxyyyy
Example

EXCEP_ROUT=DQ$STRAPSEXCEPTION (@USER_HANDLER, @ERR);

Exception Codes Returned
E$OK

The 8086/8088-Based Environment Series-IV Operating & Programming

File Management Routines
Connection Routines
Syntax

DASATTACH: PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL;
DECLARE path$p POINTER,
excep$p POINTER;
END;

Description

path$p points to a string containing a pathname. This string must begin with a number,
which denotes the length of the character string. The standard format for defining
these strings in the Series-IV operating system is X, ‘string’. If the pathname consists
only of a logical name, the connection created will refer to the directory file indicated
by the logical name.

Only input devices and disk files that are not workfiles can be specified via the
pathname. Attempting to attach :CO: (or :LP:) will cause an ESSUPPORT excep-
tion condition. (However, you may DQSATTACH, DQSCREATE, or DQ$SEEK
the Byte Bucket, :BB:.)

The console input device must be attached only via the :CI: pathname. The console
output device must be created only via the :CO: pathname.

A maximum of twelve connections can be maintained by Series I'V; multiple connec-
tions to physical devices (e.g., :LP:) and logical devices (e.g., :BB:, :CI:) are allowed.

DQSATTACH operates as a function, i.c., a typed procedure. It returns a connection
to an existing file in the variable to the left of the equal sign. If the named file does
not exist, the operation will fail and return a non-zero error code at the address pointed
to by excep$.

Examples

DECLARE TAX_CONNECTION WORD, ERR WORD;
TAX_CONNECTION = DQSATTACH (@C10, ‘*FEDTAX.JUN’) , @ERR);

Exception Codes Returned

ESFNEXIST, E$OK, ESSYNTAX, ESMEM, ESLIMIT, ESTYPE, ESSUPPORT,
ESDEVICESNOTSREADY, ESDEVICESERROR, ESCOMMSERROR,
ESNODESNOTSREADY, ESMARKEDSDELETED, ESPARAM

7-10

Series-IV Operating & Programming The 8086/8088-Based Environment

Syntax

DA$CREATE: PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL;
DECLARE path$p POINTER,
excep$p POINTER;
END;

Description

DQSCREATE is a type procedure that returns a connection to a new file. If a file of
the same name exists and is not connected, an attempt will be made to delete the
existing file and create a new file with this name. This function will fail if the user
does not have delete access to the existing file. A non-zero error code wiil then be
returned in the location pointed to by excep$p.

path$p points to a string containing a pathname.

Example

DECLARE NEW_CONNECTION WORD, ERR WORD;

NEW_CONNECTION = DQS$SCREATE (@C(15, */TAX/NEWTAX.AUG’)
@ERR) ;

/*A connection number will be created for*/

/*the named file and stored in NEW_CONNECTION.*/

Exception Codes Returned

ESSHARE, ESFACCESS, ESOK, ESSYNTAX, E$SSPACE, ESLIMIT, ESMEM,
ESSUPPORT, ESFNEXIST, ESFTYPE, ESPARAM, ESCONNECTIONSEXIST,
ESDEVICESNOTSREADY, ESCOMMSERROR, ESDEVICESIOSERROR,
ESNODESNOTSREADY, E$SPACE, ESPARAM, ESFEXIST

7-11

The 8086/8088-Based Environment Series-IV Operating & Programming

7-12

Syntax

DA$DELETE: PROCEDURE (path$p, excep$p) EXTERNAL;
DECLARE path$p POINTER,
excep$p POINTER;
END;

Description

This routine deletes the file specified by path$p. path$p points to a string containing
a pathname.

File deletion is a logical operation rather than a physical one. The deletion actually
occurs when the last connection to the file is detached.

In addition, the supplied pathname must contain a file-name part, and the file to be
deleted must not have the write-protect set. A directory file will not be deleted if the
directory contains files.

If this operation fails, a non-zero error code will be returned in the location pointed
to by excep$p.

Example

CALL DQS$DELETE C(FILESPTR, @ERR)
/*The file pointed to by FILESPTR will be deleted,*/
/*assuming it meets the above conditions.?*/

Exception Codes Returned

ESFACCESS, E$OK, ESPTR, ESSUPPORT, E$SSYNTAX, ESFNEXIST,
ESDEVICESNOTSREADY, ESPARAM, ESDEVICESIOSREADY,
ESCOMMSERROR, ESNODESNOTSREADY

Series-IV Operating & Programming The 8086 /8088-Based Environment

Syntax

DA$DETACH: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
excep$p POINTER;
END;

Description

DQS$DETACH breaks the connection created by DQSATTACH or DQSCREATE.
If the connection is open, it is closed before being detached.

conn is a word representing the connection to be detached, i.e., removed from the
current list of attached devices or files.

Example

CALL DQ$DETACH ¢ PAY_FILE_CONNECTION, @ERR);

/*The file whose connection is PAY_FILE_CONNECTION®*/
/*will be closed and removed from the list of*/
/*connected/attached files, i.e., it will be detached.*/

Exception Codes Returned

ESEXIST, ESOK, ESPARAM, ESDEVICESNOTSREADY,
ESDEVICE$SIOSERROR, ESCOMMSERROR, ESNODESNOTSREADY
ESDETACHED

7-13

The 8086/8088-Based Environment

7-14

Syntax

DASGETSCONNECTIONSSTATUS:
PROCEDURE (conn, info$p, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
info$p POINTER,
excep$p POINTER;
END;

Description

This routine supplies the connection status of a connection established earlier. conn
is a connection established earlier via attach or create. As seen in the following
example, the parameter info$p points to a structure you have declared to receive the
connection data found by this routine.

DECLARE INFO STRUCTURE

(OPEN BOOLEAN,
ACCESS BYTE,
SEEK BYTE,

FILESPTRS DWORD);

The fields just listed have the following interpretations:
OPEN
True if connection is open, otherwise false.
ACCESS

Access privileges of the connection. The rights are granted if the corresponding
bit is on.

Data Files Directory Files
Bit Access Bit Access
0 delete 0 delete
1 read 1 display
2 write 2 add-entry
3 update
SEEK

Following are the types of seek supported:

Bit Seek Types
0 seek forward
1 seek backward

2-7 undefined
FILESPTR
Lrrent position of the file pointer is interpreted as a four-byte unsigned integer

(DWORD) representing the number of bytes from the beginning of the file. This
file is undefined if the file is not open or if seek backward is not supported.

Series-IV Operating & Programming

Series-IV Operating & Programming The 8086/8088-Based Environment

When the connection you specified is established on a physical device or a logical
device, the access value returned depends on the nature of the device. For example,
access privilege of the line printer is write. For a disk file with the write protect
attributes set, access is read; for workfiles, access is read, write, and update. All
other disk files have access privileges of delete, read, and write.

Physical devices and the console do not support any type of seek. For the byte
bucket (:BB:), the returned file pointer is 0.
Example
CALL DQSGETSCONNECTIONSSTATUS C(INVENTORY_CONN,
@FILE_STATUS, @ERR);

Exception Codes Returned
ESEXIST, ESOK, ESPTR, ESPARAM, ESCOMMSERROR

7-15

The 8086/8088-Based Environment Series-IV Operating & Programming

7-16

Syntax

DASFILESINFO:
PROCEDURE (conn, mode, file$info$p, excep$p) EXTERNAL;

DECLARE conn, CONNECTION,
mode BYTE,
file$info$p POINTER,
excep$p POINTER;

END;

Description

DQSFILESINFO returns the file information normally associated with user security
and accounting.

Following are the input parameters:
conn identifies the connection of a currently attached file.
mode indicates whether the file owner is to be identified. Byte Value 0 indicates
that the owner name or identification is not to be returned. Byte Value 1 indicates
that the owner name or identification is to be returned.

file$info$p points to a table used for output.

As seen in the following example, the output of file$info$p points to the structure you
declare to receive the file information.

DECLARE FILESINFO STRUCTURE

(Owner(15) STRING,
LENGTH DWORD,
TYPE BYTE,
DWNERSACCESS BYTE,
WORLDSACCESS BYTE,
CREATESTIME DWORD,
LASTS$MODESTIME DWERD,
RESERVED(C20) BYTE);

The fields just listed have the following interpretations:
OWNER s a string that identifies the system name of the owner of the file.

TYPE indicates the type of file. O for a data file, 1 for a directory file, and 2-255
reserved.

OWNERSACCESS and WORLDSACCESS describe the access rights of the
file owner and the world.

Bit 0 = delete access.
Bit 1 = read access (for data files) or display access (for directory files).
Bit 2 = write access (for data files) or add_entry access (for directory files).

Bit 3 = update (read and write) access.

Series-IV Operating & Programming The 8086/8088-Based Environment

CREATESTIME, LASTSMODESTIME indicates the date and time of creation
and last modification for a file. If a file has been created but not modified, the
LASTSMODESTIME should be the same as the CREATESTIME. A modifi-
cation consists of a write or update since January 1, 1978. These dates may be
decoded into an ASCII string with DQSDECODES$TIME.

Example

CALL DQSFILESINFO Cconn, mode, file$info$p, excep$p) ;

Exception Codes Returned
E$OK, ESSUPPORT

7-17

The 8086/8088-Based Environment Series-IV Operating & Programming

7-18

Naming Routines
Syntax

DASCHANGESACCESS:
PROCEDURE (path$p, class, access, excep$p) EXTERNAL;

DECLARE path$p POINTER,
class BYTE,
access BYTE,
excep$p POINTER;
END;
Description ‘

DQ$CHANGESACCESS changes the owner and world access rights to a file. The
privilege to use this primitive is assured for the owner of the file. The granting of this
privilege to other users is operating-system dependent. If the privilege is not granted,
the error ESFACCESS is supported. ESFNEXIST indicates the file does not exist;
ES$SSUPPORT indicates an attempt to change the access rights of a non-disk file. The
access rights of the file will be changed immediately but will not affect connections
to the file until they are detached.

Following are the input parameters:

path$p points to a string containing the pathname of the file whose access rights
are to be changed.

class specifies the class of users whose access rights are to be changed. 0 indicates
the owner, 1 the world, and 2-255 reserved.

access specifies the type of access to be granted to the class of file users speci-
fied. If all bits are set to 0, the specified user’s access to the file will be denied.
If any bits are set to 1, the following access is granted:

Bit 0 = delete access (for data files and directory files).

Bit 1 = read access (for data files), display (for directory files).

Bit 2 = write access (for data files), add_entry access (for directory files).

Bit 3 = update access (read and write).

No output is returned by this call.

Example

CALL DQSCHANGESACCESS (@FILE_NAME, CLASS, ACCESS, @ERR);

Exception Codes Returned
E$OK, ESMEM

Series-IV Operating & Programming

Syntax

DASCHANGESEXTENSION:
PROCEDURE (path$p, extension$p, excep$p) EXTERNAL ;

DECLARE path$p POINTER,
extension$p POINTER,
excep$p POINTER;

END;

Description

DQSCHANGESEXTENSION replaces any existing extension on the file name with
the supplied extension.

path$p points to a string containing the pathname to be changed. extension$p points
to a three-character extension that is to become the extension in the pathname. These
characters may not be delimiters. This procedure changes only the specified string
and performs no file operations whatsoever.

If the first character addressed by extension$p is a blank, any prior extension of the
file-name, including the trailing period, will be deleted. (Trailing blanks are allowed,
i.e., the third character or both the second and third characters of the new extension
may be blanks.)

Examples

1. CALL DAG$CHANGESEXTENSION (@(8, ‘TASK.QRY’),
@(*ANS’), @ERRS$P);
/*Filename string will be changed from*/
/*TASK.QGRY to TASK.ANS*/

2. CALL DASCHANGESEXTENSION (FILESPTR, @C*0BJ’), EXCEPSP);

/*This will change the extension on the filename*/
/*pointed to by FILESPTR to be .O0BJ*/

Exception Codes Returned
ESOK, ESSTRINGSBUF, ESPTR, ESSYNTAX

The 8086/8088-Based Environment

7-19

The 8086/8088-Based Environment Series-IV Operating & Programming

Syntax

DRSRENAME: PROCEDURE (old, new$p, excep$p) EXTERNAL;
DECLARE old$p POINTER,
new$p POINTER,
excep$p POINTER;
END;

Description

DQSRENAME changes the name of a file within its parent directory. The new file
name is not restricted to a single path component; however, the old and new pathnames
should differ only in the last component.

old$p and new$p are pointers to the strings containing the existing pathname and the
new pathname, respectively.

An exception condition occurs if a file with a new name already exists or if the file

to be renamed has the write-protect attribute set. Renaming a file on which a connec-
tion is established is valid, and the connection does not need to be re-established.

Example

CALL DOSRENAME C(@FILE_PTR(3), (9, ‘TERMS.NOV'’), @ERR);

Exception Codes Returned

ESFACCESS, ESFEXIST, ESFNEXIST, ESOK, ESPTR, ESSUPPORT,
ESSYNTAX, ESMEM, ESFTYPE, ESDEVICESNOTSREADY,
ESCOMMSERROR, ESNODESNOTSREADY, ESPARAM

7-20

Series-1V Operating & Programming The 8086/8088-Based Environment

Usage Routines

Syntax

DASCLOSE: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
excep$p POINTER;
END;

Description

DQS$CLOSE waits for completion of input/output operations (if any) taking place
on the file, ensures output buffers are empty, and frees buffers. Once closed, a
connection may be either re-opened or detached. CLOSE does not truncate the file;
the original extent (or the new extent enlarged by writes) is maintained.

conn represents a connection established earlier using attach or create and opened
via OPEN.

Programs that attach :CI: and create :CO: should open, close and detach them. :CI:
and :CO: do not count towards the limit of open files.

Example

CALL DQS$SCLOSE (TAX;_CONNECTION, @ERR);
/*The file whose connection number is int*/
/*TAX_CONNECTION will be closed.*/

Exception Codes Returned

ESEXIST, ESNOPEN, E$SPARAM, ESOK,
ESDEVICESNOTSREADY, ESDEVICESIO$SERROR,
ESCOMMSERROR, ESMODESNOTSREADY, E$SPACE

7-21

The 8086/8088-Based Environment Series-IV Operating & Programming

Syntax

DGSOPEN: PROCEDURE (conn, access, nums$buf, excep$p) EXTERNAL ;
DECLARE conn CONNECTION,
access BYTE,
num$buf BYTE,
excep$p POINTER,
END;

Description

conn represents a connection established earlier via attach or create.

Value Type
1 read access only
2 write access only

3 update (both read and write)

num$buf, which indicates the optimal number of buffers, should be 0, 1, or 2. Zero
means that no buffering should occur; physical 1/O should occur during a DQSREAD
or DQSWRITE. For seldom-used files, num$buf should be 1. In all other cases it
should be 2 for double buffering. If program computation cannot be interspersed as
described earlier in this chapter, num$bufshould be 0 to maximize performance.

Files can be opened “externally” using this routine or “internally” as part of the
operation of other system service routines. The limit of six open files and devices
includes those opened internally by the system. DQSATTACH, DQSCREATE,
DQSTRUNCATE, and entry to DEBUG-88 all perform an “internal open.” Enter-
ing DEBUG-88 internally opens :CI..

Since it is possible to establish multiple connections on the same device, multiple
opens of such a device are also permitted. The device still counts as only one open
device on the list of six. The console input device and output devices do not count
toward this limit.

If access is write or update, the file represented by the connection must not have the
write-protect or format attributes set. The file pointer is set to 0, i.e., the beginning
of the file. If the next access to this file is write, writing begins at the first byte,
destroying earlier contents. You must read or seek to the end of the file first, and
then write to it to append information.

The use of DQSOPEN must not violate physical limitations; e.g., the line printer
must not be opened for read or update.
Example

CALL DGSOPEN (EMPLOYEE_CONN, 3, 2, @ERR);

Exception Codes Returned

ESEXIST, ESFACCESS, E$OK, ESPARAM, ESOPEN, ES$SIX,
E$SSHARE, ESFNEXIST

7-22

Series-IV Operating & Programming " The 8086/8088-Based Environment

Syntax
DA$READ: PROCEDURE (conn, buf$p, count, except$p) WORD EXTERNAL;
DECLARE conn CONNECTION,
buf$p POINTER,
count WORD,

excep$p POINTER;
END;

Description

conn represents an open connection established earlier via attach or create. buf$p
points to a buffer area at least count bytes long which you have declared to receive
the data read.

This routine is used as a function, i.e., a typed procedure returning the number of
bytes actually transferred. This number will equal count unless an error occurred or
an end-of-file was encountered.

count bytes are read from the current location of the file pointer and placed in your
buffer. If the procedure returns a value less than count and an exception code of
E$OK, end-of-file was encountered.

If your buffer is not long enough to receive the number of bytes requested, this routine
will over-write the memory locations that follow the buffer.

DQSREAD will not recognize CONTROL-C and CONTROL-D as having any
special meaning if the console has been assigned to a disk or device other than the
cold start console. (See also DQSTRAPS$CC.)

Example
DECLARE ACTUAL WORD ENTRIES (256) BYTE, ERR WORD;

ACTUAL = DQ$SREAD (JOURNAL_CONN, @ENTRIESC(0), 256,
eERR);

Exception Codes Returned
ESEXIST, ESNOPEN, E$SOK, ESOWRITE, ESPARAM, ESPTR

7-23

The 8086/8088-Based Environment Series-IV Operating & Programming

7-24

Syntax

DA$SEEK: PROCEDURE (conn,mode, offset, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
mode BYTE,
offset DWORD,
excep$p POINTER;
END;

Description

conn represents a currently open connection established earlier via attach or create.

mode indicates the type of seek required.

Value Type
1 move file pointer back by offset
2 set pointer to offset
3 move file pointer forward by offset
4 move file pointer to end-of-file minus offset

offset forms a four-byte unsigned integer (DWORD) representing the number of bytes
required to move the file pointer.

If the seek goes beyond the end-of-file and a subsequent write occurs, a file opened
for write or update will be extended with nulls. For a file opened for read, such a
seek will position the pointer beyond the end-of-file. If a seek would move the pointer
to a position before the start of the file, the pointer is set to the beginning of the file.
Seeks are invalid on connections to physical devices or the console.

Example

CALL DQ$SEEK (IDONS_CONN, 3, 22, @ERR);

This call does a seek from the current position forward—by an offset of 22 X 2!¢
bytes—on the file whose connection is IONS_CONN.

Exception Codes Returned

E$SEXIST, ESNOPEN, ESOK, ESPARAM, ESSUPPORT, ESSPACE,
E$DEVICES$IO$SERROR, ESDEVICESNOTSREADY, ESCOMMSERROR,
ESNODESNOTSREADY

Series-IV Operating & Programming The 8086,/8088-Based Environment

Syntax
DA$SPECIAL: PROCEDURE (type, parameter$p, excep$p) EXTERNAL;
DECLARE type BYTE,
parameter$p POINTER,
excep$p POINTER;
END;

Description

This routine determines whether subsequent console input is transparent or line-edited.
type = 1 indicates the subsequent console input is transparent, i.c., not line-edited.

type = 2 indicates the subsequent console input will be line-edited. The initial default,
when a job begins, is type two.

type = 3 is identical to a type of 1 except that a DQSREAD of :CI: will return only
the single character already in the system buffer.

type = 4 sets the word pointed to by PARAM_P to 1. This indicates to the calling
program that it is running on a Series-IV.

parameter$p must point to a connection representing a DQSATTACH of :CI..

:CI: can be assigned to a disk file with a SUBMIT system call. This routine returns
ESSUPPORT if type 1 or type 3 is specified; this occurs even if :Cl: is temporarily
restored to the cold start console via control E.

A call to this routine changes :CI: from line-edited to transparent and causes all
characters currently in the physical console buffer to be discarded. The key buffer
can be cleared by reading 32 characters in polling (DQSSPECIAL type 3) made
from :CI: and discarding the results.

Example

CALL DQ$SPECIAL (1, @CI_CONN, @ERR);

Exception Codes Returned
ESOK, ESEXIST, ESPARAM, ESPTR, E$SUPPORT

7-25

The 8086 /8088-Based Environment Series-IV Operating & Programming

7-26

Syntax

DASTRUNCATE: PROCEDURE Cconn, excep$p) EXTERNAL;
DECLARE conn WORD,
excep$p POINTER;
END;

Description

This routine truncates the file represented by conn at the current file pointer and
frees all previously allocated disk space beyond that pointer value. (If the pointer is
at the end-of-line or past the end-of-file, truncation has no effect.)

conn represents a connection established earlier via attach or create and currently
open for write or update.

Example

CALL DQS$TRUNCATE CINTERIM_CONN, @ERR);

Exception Codes Returned

ESOK, ESEXIST, ESNOPEN, ESSHARE, E$SPACE,
ESPARAM, ESMEM, ESOPENSMODE, E$SUPPORT,
ESDEVICESNOTSREADY, ESNODESNOTSREADY

Series-IV Operating & Programming The 8086/8088-Based Environment

Syntax
DA$WRITE: PROCEDURE (conn, buf$p, count,excep$p) EXTERNAL ;
DECLARE conn CONNECTION,
buf$p POINTER,
count WORD,

excep$p POINTER;
END;

Description

conn represents an open connection established earlier via attach or create. Access
must be write or update.

buf$p points to the start of the data to be written out.
count is the number of bytes to be written.

If the count exceeds the remaining length of your buffer, the contents of memory
locations following the buffer will be written to the device or file represented by the
connection you supplied.

Writing begins at the current value of the file-pointer, which is 0 if no prior reads,
seeks, or writes to this file have occurred.

A write to a pre-existing file you have opened will destroy earlier contents unless the
file-pointer is first positioned (by a seek) at the end-of-file or after the end-of-file. A
subsequent close, however, does not truncate the file; the original extent (or the new
extent enlarged by writes) is maintained.

Example

ALL DASWRITE C(INVENTORY_CONN,@PHYSICAL, 256, @ERR);

Exception Codes Returned

ESEXIST, ESNOPEN, ESOK, ESPARAM, ESMEM, ESOPENSMODE,
ESSPACE, ESDEVICESNOTSREADY, ESDEVICESIO$READY,
ESCOMMSERROR, ESNODESNOT$READY, ESDEVICESIOSERROR

NOTE

A DQS$WRITE can return the error message ESOK when the DQSREAD
call actually results in I/O errors. To detect this error, a subsequent
DQSREAD, DQSWRITE, DQSSEEK, DQSCLOSE, or DQ§TRUNCATE
call should be made to the same file connection.

7-27

The 8086/8088-Based Environment Series-1V Operating & Programming

7-28

Memory Management Routines
Syntax

DGSALLOCATE: PROCEDURE (size, excep$p) SELECTOR EXTERNAL;
DECLARE size WORD,
excep$p POINTER;
END;

Description

size is the number of bytes of memory desired. A size of zero means a request for
64K bytes. If enough memory is available, this function returns a SELECTOR repre-
senting the base of the acquired memory block—that is, the segment part of the
pointer to the acquired area. (The offset of this pointer is zero.) If the operation fails,
this SELECTOR will be OFFFFH.

When a program allocates memory using DQSALLOCATE, the program must not
try to access more memory than that allocated by the DQSALLOCATE call.

DQSALLOCATE is used as a function, i.e., to the right of an equal sign in a
PL/M-86 assignment statement. The variable to the left of the equal sign is filled
with the segment token.

Example

PAY_REC_STRUC_BASE = DQGS$SALLOCATE (12, @ERROR_PAY);
IF (PAY_REC_STRUC_BASE = 0FFFFH) THEN

CALL MY_ERRCHK (PAY_REC_STRUC_BASE, LESS_MEM);
IF CERROR_PAY 0) THEN

CALL MY_ERRCHK C(ERROR_PAY, MEM_ERR);

Exception Codes Returned
E$OK, ESMEM

Series-IV Operating & Programming The 8086,/8088-Based Environment

Syntax

DASFREE: PROCEDURE (segment, excep$p) EXTERNAL;
DECLARE segment SELECTOR,
excep$p POINTER;
END;

Description

segment is a SELECTOR representing a memory segment acquired earlier from
DQSALLOCATE. The indicated segment is freed. This liberation should be done at
the end of the task that allocated the segment, or whenever the segment will no longer
be needed.

DQSEXIT automatically frees all memory segments allocated by DQSALLOCATE.
Therefore, you need only DQSFREE a segment when the program needs to reclaim
the space for another purpose.

Once a program has freed a particular segment, do not access memory in that freed
segment.

Example

CALL DQS$FREE (PAY_REC_STRUC_BASE, @ERROR_LESS)

Exception Codes Returned
EOK, ESBADSSEGMENT

7-29

The 8086,/8088-Based Environment Series-IV Operating & Programming

Syntax

DASGETS$SIZE: PROCEDURE (segbase, excep$p) WORD EXTERNAL;
DECLARE segbase SELECTOR,
excep$p POINTER;
END;

Description

This function returns the size of the segment in bytes; zero means 64K bytes. This
segment must have been previously allocated with the DQSALLOCATE routine.

segbase is a SELECTOR for a memory segment.

The loader uses DQSALLOCATE to get the memory it requires to load your program
from the memory manager. When you link your program, you can specify an
“expanding segment,” which means the size will be determined when the program is
loaded. The size depends upon the amount of memory available.

Relocatable PL/M-86 programs compiled under the SMALL model of segmentation
can use an expanding data segment whose size is determined with a statement that
has the following form:

SIZE = DQS$GETS$SIZE (STACKBASE, @EXCEP);

In SMALL model programs, the stack segment base and the data segment base are
the same. Thus, the above PL/M-86 statement passes the token representing the data
segment base and obtains the data segment size.

Example
DECLARE ARRAY_SIZE WORD;

ARRAY_SIZE = DOSGETS$SIZE (ARRAY_BASE, @ERR)D;

Exception Codes Returned
ESOK, ESBADSSEGMENT

7-30

Series-IV Operating & Programming The 8086,/8088-Based Environment

Syntax

DASRESERVESIOSMEMORY :
PROCEDURE (number$files, number$buffers, excep$p) EXTERNA L;

DECLARE number$files WORD,
number$buffers WORD,
excep$p "POINTER;

END;
Description

DQSRESERVESIOSMEMORY informs the operating system of the maximum
number of files to be attached, and the maximum number of buffers to be requested
during the execution of a particular program. The call requests the system to reserve
enough memory to assure that the Creates, Attaches and Opens will be successful.
The default value for the two variables specified in this function is zero. F urthermore,
you may assume that at least twelve Attaches and six Opens will be supported by
calling DQSRESERVEIOSMEMORY—although some operating systems may
allow for more.

You can use this to anticipate calls to DQSATTACH and DQSOPEN which you will
need to make. By warning the operating system of these calls, the system can reserve
memory so that intervening calls to DQSALLOCATE do not prevent the Attaches
and Opens from being successful. Successive calls to this function are legal; they
simply change the current number of buffers requested for the corresponding program.
A request to increase the number of buffers can fail due to a lack of memory, especially
if calls to DQSALLOCATE have been made since the previous call to
DQS$RESERVESIOSMEMORY. The call to DQSRESERVESIOSMEMORY should
occur before the first call to DQSALLOCATE, thereby maximizing the probability
that it will be successful.

The input parameters are number$files and number$buffers. number$files is the
maximum number of files to be attached at any one time. If this value is exceeded,
the application takes the responsibility for ensuring that the additional memory is
preconfigured or available for allocation when the calls to DQSATTACH and
DQSCREATE are made. number$buffers is the maximum number of buffers to be
required for any concurrent set of open files. number$buffers limits the total number
of num$buffers parameters allowable in any set of calls to DQSOPEN for which
corresponding calls to DQSCLOSE have not been made. If this parameter is exceeded,
the application takes the responsibility of ensuring that the additional memory is
available for allocation when the calls to DQ$SOPEN are made.

For compatibility =~ when porting to other operating systems,
DQS$RESERVESIOSMEMORY allows the maximum number of connections and
opens allowed by that system (for example RMX-86) to be used. The default case in
the Series IV is a maximum of 12 connections and 6 opens.

Example
CALL DGSRESERVESIODSMEMORY (NUMBER_FILES, ‘NUMBER_BUFFERS,
8ERR);

Exception Codes Returned
E$OK, ESMEM

The 8086/8088-Base~' Environment Series-IV Operating & Programming

Program Control Routines
Syntax

DAS$EXIT: PROCEDURE (completion$code) EXTERNAL;
DECLARE completionfcode WORD ;
END;

Description

Exit terminates a job. All files are closed and all resources are freed. If ISIS-IV was
in control, it prompts for another command.

The completion$code indicates whether termination was normal. Following are its
values and interpretations:

0 — normal termination

| — warning messages were issued

2 — errors were detected

3 — fatal errors were detected

4 — job aborted
completion code has no exception pointer argument because it never generates an
exception.

Example

CALL DQSEXIT C(COMPL);

Exception Codes Returned

none

7-32

Series-IV Operating & Programming The 8086/8088-Based Environment

Syntax

DA$OVERLAY: PROCEDURE (name$p, excep$p) EXTERNAL;
DECLARE name$p POINTER,
excep$p POINTER;
END;

Description

This routine causes the loading of the overlay whose name is the string pointed to by
name$p. Only one level of overlays is allowed. This routine may be called only from
the root (non-overlaid) phase.

You must define the overlay name with the LINK86 OVERLAY control. The name
must not exceed 40 characters. The string used in the call must match the name used
in LINK86.

(See the iAPX 86, 88 Family Utilities User’s Guide, 121616, for a full discussion of
overlays.)

Example

CALL DAGS$SOVERLAY (@10 ‘*MYPROG.OV2’), @ERR);

Exception Codes Returned

ESOK, ESEXIST, ESPARAM, ES$SIX, ESSYNTAX, ESUNSAT, ESADDRESS,
ESBADSFILE

7-33

The 8086/8088-Based Environment Series-IV Operating & Programming

Utility and Command Parsing Service Routines
Syntax

DAQ$DECODESTIME: PROCEDURE (dt$p, excep$p EXTERNAL;
DECLARE dt$p POINTER,
excep$p POINTER;
END;

Description

DQS$DECODESTIME decodes the operating system dependent time and date
DWORD into ASCII data and time strings. It returns the current date and time in
binary DWORD format and/or as a decoded ASCII string.

dt$p is a pointer to a user declared structure of the following form:

DECLARE DT STRUCTURE
(SYSTEMSTIME DWORD,
DATE(8) BYTE,
TIME(8) BYTE);

system$time, the output parameter, is an operating-system-dependent formatted
DWORD containing the time and date. If system$time is zero, the system clock is
first read to obtain the current date and time. If system$time is non-zero, it is simply
decoded into the ASCII date and time string.

system$time will contain the binary format of the current date and time as selected
by the input value zero. The specified format is in seconds, beginning with January
1, 1978.

DATE has the form MM/DD/YY for month, day, and year. TIME has the form
HH:MM:SS for hours, minutes, and seconds. The value for hours is in the range
0-23.

Example

CALL DQGSDECODESTIME (dt$p, excep$p);

Exception Codes Returned
E$OK, ESSUPPORT

7-34

Series-IV Operating & Programming The 8086/8088-Based Environment

Syntax

DASGETSARGUMENT: PROCEDURE Cargument$p, excep$p) BYTE EXTERNAL;
DECLARE argument$p POINTER,
excep$p POINTER;
END;

Description

This function returns the arguments in the command line or user-supplied buffer.
Each successive call returns the next argument.

argument$p points to an 81-byte area you have declared to receive a strong argument
from the command tail (see the section on command tail arguments).

This typed procedure is used as a function (i.e., on the right side of an equal sign in
a PL/M-86 assignment statement). The variable to the left of the equal sign is filled
with the delimiter found by DQSGETSARGUMENT, as shown in the examples
below. If the exception code returned is zero, the call functioned properly. The possi-
ble delimiters include:

D(=#18%°\
— + — &I][» < :or DEL (RUB OUT)

or have a hexadecimal value of 0-20H for ASCII characters. For non-ASCII charac-
ters, possible delimiters also include hexadecimal values = 80H.

The command line is pre-scanned when your program is invoked. At that time, the
system makes the following changes to the command line before it is saved in a system
buffer:

1. Each continuation line sequence is converted to a blank. A continuation line
sequence begins with an “&” and ends with the line terminator.

2. A comment is removed entirely. A comment begins with a *;” and ends with the
character preceding the line terminator.

“3. Any DEBUG commands preceding the pathname are removed.

The following rules apply to the arguments and delimiters returned by

DQSGETSARGUMENT:
1. Lowercase alphabetic characters, except inside quotes, are converted to
uppercase.

2. Multiple adjacent blanks separating two arguments are treated as one blank.
One or more blanks adjacent to any other delimiter are ignored. A tab is treated
like a blank and returned as a blank.

3. Strings enclosed within a pair of matching quotes are considered literals and are

not scanned for interpretation. The enclosing quotes are not returned as part of
the argument. Quotes may be used in a quoted string by doubling the quote.

The DQSSWITCHS$SBUFFER routine may be used to get arguments from a user-
supplied buffer. The command line pre-scan is not performed on this buffer.

7-35

The 8086,/8088-Based Environment

7-36

Examples

The following examples illustrate the argument returned by calls to
DQSGETSARGUMENT:

Series-IV Operating & Programming

A) PLM86.86 LINKER.PLM PRINT (:LP:) NOLIST

B)

)

Argument
8,'PLM86.86°

10, LINKER.PLM’
5,PRINT’

4,LP>
6,'NOLIST’

PLM86.86 MODULE.SRC
TITLE (*MY MODULE‘)

Argument

8, PLM86.8¢’
10,,MODULE.SRC’
5,PRINT’
13,/VOL1/THISIS.IT
8,'OPTIMIZE’

1,0

5,TITLE

9.MY MODULE

0

Delimiter

Z(',
‘)’

<cr>

PRI

NTC/VOL1/THISIS.IT)OPTIMIZEC(CO)

Delimiter

s(,
)
(
)

(
‘)

. e
v ol v T

9

<cr>

LINK86.86/V0L4/X.0BJ, L
(/VOL3/FUNNY.LIBC(MOD1)) MAP; my link command

Argument

9,'LINK.86
9,°/VOL4/X.OBY
4,'LLIB’

0

10,'SYSTEM.LIB’
7,PUBLICS’ :
13,/VOL3/FUNNY.LIB’
4,'MODY’

0

3,'MAP’

Example

LINCMODL), SYSTEM,LIB, PUBLICS &

Delimiter

3R}
¢
of

Y

DECLARE DELIM_SCAN BYTE,
DECLARE NEXT_ARG STRUCTURE

(LENGTH BYTE, ARG (80) BYTE);
DELIM_SCAN=DQSGETSARGUMENT
(@NEXT_ARG.LENGTH, @ERR);

Exception Codes Returned
ES$OK, ESSTRINGSBUF, ESPTR

ERR WORD;

Series-IV Operating & Programming

Syntax

DAS$GETSSYSTEMSS$ID: PROCEDURE (id¥p, excep$p) EXTERNAL;
DECLARE id$p POINTER,
excep$p POINTER;
END;

Description

This routine returns a string identifying the operating system. id$p must point to a
21-byte buffer you define in your program.

Example

CALL DQS$GETS$SYSTEMSID (@ID, @ERR);

Exception Codes Returned
ES$OK, ESPTR

The 8086 /8088-Based Environment

7-37

The 8086/8088-Based Environment Series-IV Operating & Programming

7-38

Syntax

DASGETSTIME: PROCEDURE (dt$p, excep$p) EXTERNAL;
DECLARE dt$p POINTER,
excep$p POINTER;
END;

Description

This routine will return the system date, which can be set by the DATE command.
dt$p must be a pointer to a user structure of the following form:

DECLARE DT STRUCTURE
(DATE(8) BYTE, TIME(8) BYTE);

DATE has the form MM/DD/YY for month, day, and year. TIME has the form
HH/MM/SS for hours, minutes, and seconds.

Example

CALL DOGSGETSTIME (@PT, @ERR)

Exception Codes Returned
E$OK

Series-1V Operating & Programming The 8086/8088-Based Environment

Syntax

DASSWITCHSBUFFER: PROCEDURE (bufferSp, excep$p) WORD EXTERNAL;
DECLARE buffer$p POINTER,
excep$p POINTER;
END;

Description

This routine is used as a function.

The offset value (buffer$p) returned from the invocation of DQSGETSARGUMENT
points to the buffer position of the previous buffer. By keeping track of all previous
buffer position pointers you can switch between user-supplied buffers when parsing a
command line.

When this routine is first invoked, you cannot switch back to arguments from the
input command buffer.

Example

DECLARE NEXT_COUNT WORD, ERR WORD;
NEXT_COUNT=DG$SSWITCHSBUFFER (@ARGLIST, @ERR):

Exception Codes Returned
E$OK

7-39

APPENDIX A
CLI COMMAND SYNTAX

) DATA ACCESS SPEC
ACCESS [fllename [SET [USER SPEC DIR ACCESS SPEGC }]:I

L [{{B 'S | ON}Y MDY [HMS]]}
T
ARCHIVE old-dir TQ new-dir |C {{B | s | oN}Y (MDY [HMS]]} [AND]{gl
T
OW owner name
F pathname J
LOG
BACKGROUND pathname { (a-parameters) 1 ... NOLOG
BATCH pathname
CANCEL {BACKGRU }

CHOWNER filename T0 username

CHPASS wusername

COPY sourcefilename T0 destinationfilename [[g S g 2 § E }]
COUNT n
[commands 1

WHILE =
UNTIL argument O argument
commands
END
CREATEDIR pathname
DIR

DELETE| pathname [GUERY }
:SP: [/request name

DIRUPaf’;"ame}[FUR filenamel [EXPANDED] [TO pathname]]

DISMOUNT device name

EXIT [Cargument)]

CLI Command Syntax Series-IV Operating & Programming

FORMAT physical-device volume-name [{FNODES Cnumber) NOINIT RESERVE
(reserve-option, . . .) }1

up iNDX-source-pathname T 0 destination-pathname UPDATE
S4FPRT|JEXIT EXIT
S2FPRTJYDOWN [disk-dirl [SIS-source-pathname QUERY

T 0 iNDX-destination-pathname

1COPY [READ /SIS-source-pathname T0 iNDX-destination-pathname QUERY
WRITE iNDX-source-pathname T0 destination-pathname UPDATE

I F argument { I argument

<>

commands
argument |-=
I:Cl RIF commands{< >I argument]

[ELSE commands]

END

REMOVE logical name

LNAME {DEFXNE logical name F OR pathname [UPDATE]}
PATH

:BB:
L0o { pathname}

LOGOFF

INIT (filename)
NONIT

LOGON wsername [[
MOUNT device-name
0PEN pathname

READ (disk-directory) PDS-source T0 iNDX-destination GUERY
WRITE iNDX-source T0 PDS-destination UPDATE

PDSCOPY {

READ variable-name f,...1
REGION

RENAME old-pathname TO file-name [UPDATE]

A-2

Series-IV Operating & Programming CLI Command Syntax

REPEAT

[commands]

WHILE ¢ 1
UNTIL argumen <> | @argument

commands

FORMAT

SDCOPY source-device-namel T0 dest-device-namel{REPEAT} ...[LCOMPARE]
VERIFY [REPEAT]

SET variable-name T0 ["] value ["]

SPACE /volume-name

SUBMIT thname [(meters)] LOG

pathname a-parameters NOLOG

TIME

USERDEF DEFINE wusername [1D useridl [DIR f/lename]=

REMOVE username
USERS /volume-name
VERIFY device-name [F1X]

VIEW pathname

A-3

APPENDIX B
PARAMETERS AND
SYSTEM SERVICE ROUTINES

Table B-1 lists the system service routines in alphabetical order for study or refer-
ence. Table B-2 alphabetically lists the parameters used by the service routines.

Table B-1. Alphabetical List of Series-IV Service Routines

ALLOCATE
ATTACH
CHANGES$ACCESS
CHANGES$EXTENSION
CLOSE

CREATE
DECODES$EXCEPTION
DECODES$TIME

DELETE

DETACH

EXIT

FILE$SINFO

FREE
GET$ARGUMENT
GET$CONNECTION$STATUS
GET$EXCEPTION$SHANDLER
GET$SIZE
GET$SYSTEMS$ID
GET$TIME

OPEN

OVERLAY

READ

RENAME
RESERVEIOMEMORY
SEEK

SPECIAL
SWITCH$BUFFER
TRAP$CC
TRAPS$EXCEPTION
TRUNCATE

WRITE

DQ$ALLOCATE: PROCEDURE (size, excep$p) TOKEN EXTERNAL;
DECLARE size WORD,
excep$p POINTER;
END;

DQ$ATTACH: PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL;
DECLARE size POINTER,
excep$p POINTER,;
END;

DQ$CHANGESACCESS: PROCEDURE (path$p, class, access, excep$p) EXTERNAL;
DECLARE path$p POINTER,
class BYTE,
access BYTE,
excep$p POINTER;
END;

DQ$CHANGESEXTENSION: PROCEDURE (path$p, extension$p, excep$p) EXTERNAL;
DECLARE path$p POINTER,
extension$p POINTER,
excep$p POINTER;
END;

Parameters and System Service Routines

Table B-1. Alphabetical List of Series-IV Service Routines (Cont’d.)

DQ$CLOSE: . PROCEDURE (conn, excep$p) EXTERNAL;

DECLARE conn CONNECTION,
excep$p POINTER;
END;
DQ$CREATE: PROCEDURE (path$p, excep$p) CONNECTION EXTERNAL;
DECLARE path$p POINTER,
excep$p POINTER;
END;
DQ$DECODES$SEXCEPTION: PROCEDURE (exception$code, message$p, excep$p)
EXTERNAL;
DECLARE exception$code WORD,
message$p POINTER,
excep$p POINTER;
END;
DQ$DECODESTIME: PROCEDURE (dt$p, excep$p) EXTERNAL;
DECLARE dt$p POINTER,
excep$p POINTER;
END;
DQ$DELETE: PROCEDURE (path$p, excep$p) EXTERNAL;
DECLARE path$p POINTER,
excep$p POINTER;
END;

DQ$DETACH: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
excep$p POINTER;
END;

DQS$EXIT: PROCEDURE (completion$code) EXTERNAL;
DECLARE completion$code WORD;

END;
DQS$FILESINFO: PROCEDURE (conn, mode, file$info$p, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
mode BYTE,
file$info$p POINTER,
excep$p POINTER;
END;
DQ$FREE: PROCEDURE (segment, excep$p) EXTERNAL;
DECLARE segment TOKEN,
excep$p POINTER;
END;
DQGETARGUMENT: PROCEDURE (argument$p, excep$p) BYTE EXTERNAL;
DECLARE argument$p POINTER,
excep$p POINTER;
END;
DQ$GETSCONNECTION$STATUS: PROCEDURE (conn, info$p, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
info$p POINTER,
excep$p POINTER;
END;
DQGETSEXCEPTION$SHANDLER: PROCEDURE (handler$p, excep$p) EXTERNAL;
DECLARE handler$p POINTER,
excep$p POINTER;
END;

Series-IV Operating & Programming

Series-IV Operating & Programming

Table B-1. Alphabetical List of Series-IV Service Routines (Cont’d.)

DQGETSIZE: PROCEDURE (segbase, excep$p) WORD EXTERNAL;

DECLARE segbase TOKEN,
excep$p POINTER;
END;
DQGETSYSTEMS$ID: PROCEDURE (id$p, excep$p) EXTERNAL;
DECLARE id$p POINTER,
excep$p POINTER;
END;
DQGETTIME: PROCEDURE (dt$p, excep$p) EXTERNAL;
DECLARE dt$p POINTER,
excep$p POINTER;
END;

DQ$OPEN: PROCEDURE (conn, access, num$buf, excep$p) EXTERNAL;

DECLARE conn CONNECTION,
access BYTE,
num$buf BYTE,
excep$p POINTER;

END;

DQ$OVERLAY: PROCEDURE (name$p, excep$p) EXTERNAL;
DECLARE name$p POINTER,
excep$p POINTER;
END;

DQ$READ: PROCEDURE (conn, buf$p, count, excep$p) WORD EXTERNAL;

DECLARE conn CONNECTION,
buf$p POINTER,
count WORD,
excep$p POINTER;
END;
DQ$SRENAME: PROCEDURE (old$p, new$p excep$p) EXTERNAL;
DECLARE old$p POINTER,
new$p POINTER,
excep$p POINTER;
END;

DQ$RESERVES$IO$MEMORY: PROCEDURE (number$files, number$buffers, excep$p)
EXTERNAL,;
DECLARE number$files WORD,
number$buffers POINTER,;
END;

DQ$SEEK: PROCEDURE (conn, mode, offset, excep$p) EXTERNAL;

DECLARE conn CONNECTION,
mode BYTE,
offset DWORD,
excep$p POINTER;
END;

DQ$SPECIAL: PROCEDURE (type, parameter$p, excep$p) EXTERNAL;
DECLARE type BYTE,
parameter$p POINTER,
excep$p POINTER;
END;

DQ$SWITCH$BUFFER: PROCEDURE (buffer$p, excep$p) WORD EXTERNAL;
DECLARE buffer$p POINTER,
excep$p POINTER;
END;

Parameters and System Service Routines

B-3

Parameters and System Service Routines

Table B-1. Alphabetical List of Series-IV Service Routines (Cont’d.)

DQS$TRAPS$CC: PROCEDURE (handler$p, excep$p) EXTERNAL;
DECLARE handler$p POINTER,
excep$p POINTER;
END;
DQ$TRAPSEXCEPTION: PROCEDURE (handler$p, excep$p) EXTERNAL,;
DECLARE handler$p POINTER,
excep$p POINTER;
END;
DQ$TRUNCATE: PROCEDURE (conn, excep$p) EXTERNAL;
DECLARE conn WORD,
excep$p POINTER;
END;
DQ$WRITE: PROCEDURE (conn, buf$p, count, excep$p) EXTERNAL;
DECLARE conn CONNECTION,
buf$p POINTER,
count WORD,
excep$p POINTER;
END;

Table B-2. Alphabetical Parameter Definitions

Parameter Routines Using This Parameter and
Name Brief Definition of Parameter
access OPEN, SEEK, CHANGE$ACCESS
A number telling how you plan to use the file, e.g., read, write, or both
arg$p GET$ARGUMENT
Pointer to the 81-byte area you have declared to receive the argument
from a line-edited input source
buf$p READ, WRITE, SWITCH$BUFFER
Pointer to the area you have declared for reading from (or writing to)
a file; for read or write, it should be at least COUNT bytes long or
unintended results will occur
class CHANGES$ACCESS
Specifies the class of users whose access rights are to be changed
(0=owner, 1=world, 2-255=reserved)
compl$cod EXIT
A word telling the success of program completion and termination
conn DETACH, GET$SCONNECTION$STATUS, OPEN, SEEK, READ,
WRITE, TRUNCATE, CLOSE, SPECIAL, FILESINFO
Connection to a file or device, established earlier via attach or create
count READ, WRITE
The number of bytes you want read or written
delim GET$ARGUMENT
A byte filled by the routine with the delimiter ending the current
argument
dt$p GET$TIME, DECODES$TIME
Pointer to the structure you set up for date and time
excep$p ALL ROUTINES BUT EXIT

Pointer to the word you have declared to receive the exception value

Series-IV Operating & Programming

Series-IV Operating & Programming

Parameters and System Service Routines

Table B-2. Alphabetical Parameter Definitions (Cont’d.)

Parameter Routines Using This Parameter and
Name Brief Definition of Parameter

exception$cod DECODES$EXCEPTION
A word into which you have placed an exception code

exception$p DECODES$EXCEPTION
Pointer to the 81-byte area you have declared for receiving the
formatted message corresponding to excep$cod

extension$p CHANGES$EXTENSION
Pointer to the extension as you wish it to be

file$info$p FILE$SINFO
Pointer to table used for output

file$ptr Same as offset

handler$p TRAP$EXCEPTION, GET$EXCEPTIONSHANDLER, TRAP$CC
Pointer to the entry-point of your routine to handle current exceptions
(or Control C)

id$p GET$SYSTEMSID
Potinter to the location where you want the system-name or sign-on
pu

info$p GET$CONNECTION$STATUS
Pointer to the pathname whose connection you need to know

mode SEEK, FILE$INFO
Value representing direction and type of seek operation

name$p OVERLAY
Pointer to the pathname of the overlay to be loaded next

new$p RENAME
Pointer to the pathname as you wish to have it

num$buf OPEN

number$files

number$buffers

offset

old$p

path$p

segbase

size

type

Number of buffers to be used for 1/O to file being opened
RESERVEIOMEMORY

Maximum number of files that will be attached at any one time.
RESERVEIOMEMORY

Maximum number of buffers that will be requested.

SEEK

A four-byte unsigned integer representing the number of bytes to move
to the file pointer

RENAME
Pointer to the pathname as it is now

CREATE, DELETE, ATTACH, CHANGESEXTENSION,
CHANGES$ACCESS

Pointer to the pathname you wish to use

FREE, GET$SIZE

The word containing the base of a block of bytes
ALLOCATE

The number of bytes you want to use

SPECIAL

A value determining whether console input should be line-edited or
transparent

APPENDIX C
ERROR MESSAGES
AND EXCEPTION CODES

iNDX-Series IV Error Messages
A warning does not cause the command to be aborted.
BACKGROUND JOB ACTIVE

Background job is active at the time of user logoff. The logoff is delayed until the
background job finshes.

Following is a set of error messages; when these occur, the current command is
aborted.

INVALID USER

The user name is not recognized by the system.

INVALID PASSWORD

The password given by the user is incorrect.

SYNTAX ERROR

Illegal syntax was detected.

FILE NOT FOUND

File specified in the command cannot be found.

INVALID CONDITION

Condition specified in the IF, WHILE, UNTIL commands is not valid.

ILLEGAL COMMAND

May be one of a number of conditions:
ORIF command is not preceded by an IF command in the command file.
ELSE command is not preceded by an IF command in the command file.
UNTIL command is not preceded by a REPEAT or COUNT command.
WHILE command is not preceded by a REPEAT or COUNT command.
END command without a matching IF, REPEAT, COUNT command.
Attempt to read without an OPEN command.

INVALID NUMBER

The number specified in the COUNT command is not valid.

THE BACKGROUND IS ALREADY ACTIVE

The BACKGROUND command has been executed while a job is running in the
background.

C-1

Error Messages and Exception Codes

Series-IV Operating & Programming

OS-Series IV Exception Codes

General Exceptions

EXCEPTION 0000H:
EXCEPTION 0002H:
EXCEPTION 0020H:
EXCEPTION 0021H:
EXCEPTION 0023H:
EXCEPTION 0026H:
EXCEPTION 0028H:
EXCEPTION 0031H:
EXCEPTION 0032H:
EXCEPTION 0033H:
EXCEPTION 0035H:
EXCEPTION 0036H:
EXCEPTION 0037H:
EXCEPTION 0038H:
EXCEPTION 0045H:

EXCEPTION 0046H:
EXCEPTION 0047H:

EXCEPTION 004AH:

EXCEPTION 004BH:

EXCEPTION 0081H:
EXCEPTION 0105H:

EXCEPTION 0100H:

SUCCESSFUL COMPLETION

INSUFFICIENT MEMORY

FILE ALREADY EXISTS

FILE DOES NOT EXIST

UNSUPPORTED OPERATION OR DISK FORMAT
INSUFFICIENT ACCESS RIGHTS

SHARED STATE OF FILE PROHIBITS OPEN
ILLEGAL DEVICE NUMBER

ALL FNODES ARE IN USE

NO MORE AVAILABLE SPACE ON DISK
NON-EMPTY DIRECTORY CANNOT BE DELETED
DELETE IS PENDING ON THE REQUESTED FILE
REQUESTED DEVICE IS ALREADY MOUNTED
REQUESTED DEVICE IS NOT MOUNTED
DIRECTORY OPERATION ATTEMPTED ON DATA
FILE

FILE REQUESTED IS ALREADY ATTACHED
FILE SYSTEM ATTACH TABLE IS FULL

FILE NOT DELETABLE (SYSTEM FILE OR
CONTAINS BAD BLOCKS)

FILE CANNOT BE EXTENDED

STRING TOO LONG

INVALID ATTACH NUMBER PASSED AS A
PARAMETER

INVALID PATHNAME—COMPONENT EXCEEDS
14 CHARACTERS

Human Interface/UDI Layer Exceptions

EXCEPTION 2002H:
EXCEPTION 2006H:
EXCEPTION 2007H:
EXCEPTION 2008H:
EXCEPTION 2009H:

EXCEPTION 200AH:
EXCEPTION 201AH:
EXCEPTION 201BH:
EXCEPTION 201EH:
EXCEPTION 201FH:

EXCEPTION 2050H:
EXCEPTION 2052H:
EXCEPTION 2054H:
EXCEPTION 2060H:
EXCEPTION 2061H:

EXCEPTION 2101H:

EXCEPTION 2102H:

EXCEPTION 2201H:
EXCEPTION 2202H:
EXCEPTION 2203H:

CALL NOT VALID IN THIS CONTEXT
INVALID PARAMETER

INVALID PATHNAME

TOKEN DOES NOT POINT TO A VALID SEGMENT
WRONG JOB TYPE
SYNTAX ERROR

INVALID TIME

INVALID DATE

ALREADY EXISTS

LIMIT EXCEEDED

E_COMM

E_TIMEOUT
E_REMOTE_ABORT
INVALID SYSTEM CALL AT
DIRECTORY FORMAT
WILDCARD PROCESSING
OPERATION CONFLICT (FILE OPENED FOR
WRITE)

OPERATION CONFLICT (FILE OPENED FOR
READ)

OVERLAY INITIALIZATION FAILED

INVALID OVERLAY AREA REQUESTED
OVERLAY INITIALIZATION HAS NOT BEEN
COMPLETED

ERROR DURING

Series-1V Operating & Programming

Loader Errors

EXCEPTION 2300H:
EXCEPTION 2301H:
EXCEPTION 2302:

EXCEPTION 2303H:

EXCEPTION 2304H:
EXCEPTION 2305H:
EXCEPTION 2306H:
EXCEPTION 2307H:
EXCEPTION 2308H:

EXCEPTION 2309H:

EXCEPTION 230AH:
EXCEPTION 230BH:
EXCEPTION 230CH:

EXCEPTION 230DH:
EXCEPTION 230EH:

EXCEPTION 230FH:

EXCEPTION 2310H:

EXCEPTION 2311H:
EXCEPTION 2321H:
EXCEPTION 2322H:
EXCEPTION 2323H:
EXCEPTION 2324H:
EXCEPTION 2325H:
EXCEPTION 2326H:

EXCEPTION 2327H:

Error Messages and Exception Codes

UNEXPECTED END OF FILE DURING LOAD
INVALID LOAD FILE

ILLEGAL LOAD RECORD

LOAD FILE CONTAINS ABSOLUTE LOAD
ADDRESS

INVALID OVERLAY NAME REQUESTED
SPECIFIED OVERLAY NOT FOUND

INVALID LOAD FILE: DATA RECORD EXPECTED
INVALID LOAD FILE: NOT RELOCATABLE
LOADER LIMIT EXCEEDED: TOO MANY
SEGMENTS

LOADER LIMIT EXCEEDED: TOO MANY GROUPS
LOADER LIMIT EXCEEDED: TOO MANY
OVERLAYS
NON-RELOCATABLE
TERED

INVALID LOAD FILE: BAD SEGMENT DEFINI-
TION RECORD

NON-RELOCATABLE GROUP ENCOUNTERED
INVALID LOAD FILE: BAD SEGMENT IN GROUP
DEF RECORD

INVALID LOAD FILE: BAD GROUP DEFINITION
RECORD

INVALID LOAD FILE: OVERLAY DEFINITION
RECORD EXPECTED

INVALID LOAD FILE: ILLEGAL LOAD TIME
FIXUP

INVALID LOAD FILE: INVALID REGISTER
INITIALIZATION RECORD

LOAD FILE CONTAINS UNRESOLVED EXTER-
NAL REFERENCES

LOAD FILE HAS BAD REGISTER INIT,
UNRESOLVED EXTERNALS

INITIAL STACK FOR LOADED FILE IS TOO
SMALL FOR STARTUP

LOAD FILE HAS BAD REGISTER INIT AND
STACK IS TOO SMALL

LOAD FILE HAS UNRESOLVED EXTERNALS
AND STACK IS TOO SMALL

LOAD FILE HAS BAD REGISTER INIT,
UNRESOLVEDS, STACK TOO SMALL

SEGMENT ENCOUN-

Job Control Exceptions

EXCEPTION 2210AH:
EXCEPTION 240BH:

EXCEPTION 2406H:
EXCEPTION 2407H:
EXCEPTION 2408H:

JOB(S) NOT FOUND
USER
SYSTEM FILES

DJC ERROR: E_BUFFER_TOO_SMALL
DJC ERROR: E_LINVALID_DJC_REQUEST

C3

Error Messages and Exception Codes

C4

EXCEPTION 240CH: DJC ERROR: E_TIME

_DIC_BAD_ACK
EXCEPTION 2412H: DJC ERROR: E_DJC_COMM_SYNCH
JO

: : Q

EXCEPTION 2604H: DJC TCL ERROR: NO RESOURCE AVAILABLE
EXCEPTION 2608H: DJC ERROR: E_BUFF_TOO_SHORT
EXCEPTION 260AH: DJC TCL ERROR: TRIED TO SEND AFTER
ONNECTION WAS CLOSED

ISSUED ABORT
EXCEPTION 2610H: DJC TCL ERROR: LOCAL ABORT TIMEOUT
EXCEPTION 2612H: DJC: CLOSE COMPLETE (NOT AN ERROR)
EXCEPTION 2614H: DJC TCL ERROR: INVALID REQUEST BLOCK
POINTER
EXCEPTION 2616H: DJC PROTOCOL ERROR: PRB TO CLOSED
CONNECTION

BIOS Device Specific Exceptions

For errors in the range 3000H to 380FH, the low order nibble (half byte) is a number
that indicates the device on which the exception occurred. For different values of the
device number, a different message table is used. The error code is of the form 3xxnH.
If n=0orl,itisa flippy error. If n = 2, 3, 4 or 5, the error occurred on a 5440
hard disk. If n = 6 or above, the error occurred on a Winchester type hard disk.

Messages for Device Errors on 5-1/4” Flexible Disks

If n =0, ‘dev’
If n=1, ‘dev’

‘FLO’ (flippy drive zero)
‘FL1” (flippy drive one)

Device Specific Exceptions for 5440 Hard Disk

If n = 2, then ‘dev’ = ‘HDO’ (fixed platter of first 5440)

If n = 3, then ‘dev’ = ‘HD1’ (removable platter of first 5440)
If n = 4, then ‘dev’ = ‘HD2’ (fixed platter of second 5440)

If n = 5, then ‘dev’ = ‘HD3’ (removable platter of second 5440)

([

Device Specific Exceptions for Winchester Disks
If n-= 6, then ‘dev ‘WDO’ (first device)

If n = 7, then ‘dev’ = ‘WD1’ (second device)
If n = 8, then ‘dev’ = ‘WD2’ (third device)
If n = 9, then ‘dev’ = ‘WD3’ (fourth device)

*‘WFOQ’ (first device)
If n = b, then ‘dev’ = “WF1’ (second device)
If n = c, then ‘dev’ = ‘WF2’ (third device)
If n = d, then ‘dev’ = ‘WF3’ (fourth device)

If n = a, then ‘dev’

I
o

If n = e, then ‘dev’ = ‘WMO’ (first device)

Series-IV Operating & Programming

Series-IV Operating & Programming

EXCEPTION 3010H:
EXCEPTION 3011H:
EXCEPTION 3012H:
EXCEPTION 3013H:
EXCEPTION 3014H:
EXCEPTION 3015H:
EXCEPTION 3020H:
EXCEPTION 3021H:
EXCEPTION 3022H:
EXCEPTION 3023H:
EXCEPTION 3024H:
EXCEPTION 3025H:
EXCEPTION 3026H:
EXCEPTION 3027H:
EXCEPTION 3028H:

EXCEPTION 3029H:

EXCEPTION 302AH:
EXCEPTION 302BH:
EXCEPTION 302CH:
EXCEPTION 302DH:
EXCEPTION 302EH:

EXCEPTION 302FH:

EXCEPTION 3040H:
EXCEPTION 3041H:
EXCEPTION 3042H:
EXCEPTION 3043:

EXCEPTION 3044H:
EXCEPTION 3045H:

EXCEPTION 3046H:

Error Messages and Exception Codes

FLO ERR, UNEXPECTED DELETED DATA ADDRESS
MARK ON DISK

FL1 ERR, UNEXPECTED DELETED DATA ADDRESS
MARK ON DISK

HDO ERR, HARDWARE OR DISK FAIL, BAD ID
FIELD CONTENTS

HD1 ERR, HARDWARE OR DISK FAIL, BAD ID
FIELD CONTENTS

HD2 ERR, HARDWARE OR DISK FAIL, BAD ID
FIELD CONTENTS

HD3 ERR, HARDWARE OR DISK FAIL, BAD ID
FIELD CONTENTS

FLO ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD CRC

FL1 ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD CRC

HDO ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD CRC

HD1 ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD CRC

HD2 ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD CRC

HD3 ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD CRC

WDO ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD CRC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD CRC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD ECC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD ECC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD ECC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD ECC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD ECC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD ECC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD ECC

DEV ERR, HARDWARE OR DISK FAIL, BAD DATA
FIELD ECC

FLO ERR, HARDWARE FAIL, ID CYC FIELD SEEK
CYL

FL1 ERR, HARDWARE FAIL, ID CYC FIELD SEEK
CYL

HDO ERR, HARDWARE OR DRIVE FAIL, SEEK
ERROR

HD1 ERR, HARDWARE OR DRIVE FAIL, SEEK
ERROR

HD2 ERR, HARDWARE OR DRIVE FAIL, SEEK
ERROR

HD3 ERR, HARDWARE OR DRIVE FAIL, SEEK
ERROR

WDO ERR, HARDWARE OR DRIVE FAIL, SEEK
ERROR

C-5

Error Messages and Exception Codes

EXCEPTION 3047H:
EXCEPTION 3048H:
EXCEPTION 3049H:
EXCEPTION 304AH:
EXCEPTION 304BH:
EXCEPTION 304CH:
EXCEPTION 304DH:
EXCEPTION 304EH:
EXCEPTION 304FH:
EXCEPTION 3080H:
EXCEPTION 3081H:
EXCEPTION 3082H:
EXCEPTION 3083H:
EXCEPTION 3084H:
EXCEPTION 3085H:
EXCEPTION 30A0H:
EXCEPTION 30A1H:
EXCEPTION 30A2H:
EXCEPTION 30A3H:
EXCEPTION 30A4H:
EXCEPTION 30A5H:
EXCEPTION 30A6H:
EXCEPTION 30A7H:
EXCEPTION 30A8H:

EXCEPTION 30A9H:

EXCEPTION 30AAH:
EXCEPTION 30ABH:
EXCEPTION 30ACH:

EXCEPTION 30ADH:

DEV ERR, HARDWARE OR
ERROR

DEV ERR, HARDWARE OR
ERROR

DEV ERR, HARDWARE OR
ERROR

DEV ERR, HARDWARE OR
ERROR

DEV ERR, HARDWARE OR
ERROR

DEV ERR, HARDWARE OR
ERROR

DEV ERR, HARDWARE OR
ERROR '

DEV ERR, HARDWARE OR
ERROR

DEV ERR, HARDWARE OR
ERROR

Series-IV Operating & Programming

DRIVE FAIL, SEEK
DRIVE FAIL, SEEK
DRIVE FAIL, SEEK
DRIVE FAIL, SEEK
DRIVE FAIL, SEEK
DRIVE FAIL, SEEK
DRIVE FAIL, SEEK
DRIVE FAIL, SEEK

DRIVE FAIL, SEEK

FLO ERR, OS ERR, ATTEMPTING TO ACCESS

NON_EXISTENT SECTOR

FL1 ERR, OS ERR, ATTEMPTING TO ACCESS

NON_EXISTENT SECTOR

HDO ERR, OS ERROR, ATTEMPTING TO ACCESS

NON_EXISTENT SECTOR

HD1 ERR, OS ERROR, ATTEMPTING TO ACCESS

NON_EXISTENT SECTOR

HD2 ERR, OS ERROR, ATTEMPTING TO ACCESS

NON_EXISTENT SECTOR

HD3 ERR, OS ERROR, ATTEMPTING TO ACCESS

NON_EXISTENT SECTOR

FLO ERR, HARDWARE OR DISK FAIL, BAD ID

FIELD CRC

FL1 ERR, HARDWARE OR DISK FAIL, BAD ID

FIELD CRC

HDO ERR, HARDWARE OR
FIELD CRC CODE

HD1 ERR, HARDWARE OR
FIELD CRC CODE

HD2 ERR, HARDWARE OR
FIELD CRC CODE

HD3 ERR, HARDWARE OR
FIELD CRC CODE

WD0 ERR, HARDWARE OR
FIELD ECC

DEV ERR, HARDWARE OR
FIELD ECC

DEV ERR, HARDWARE OR
FIELD ECC

DEV ERR, HARDWARE OR
FIELD ECC

DEV ERR, HARDWARE OR
FIELD ECC

DEV ERR, HARDWARE OR
FIELD ECC

DEV ERR, HARDWARE OR
FIELD ECC

DEV ERR, HARDWARE OR
FIELD ECC

DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID
DISK FAIL, BAD ID

DISK FAIL, BAD ID

Series-IV Operating & Programming

EXCEPTION 30AEH:

EXCEPTION 30AFH:

EXCEPTION 30B2H:
EXCEPTION 30B3H:
EXCEPTION 30B4H:
EXCEPTION 30B5H:

EXCEPTION 30C2H:

EXCEPTION 30C3H:
EXCEPTION 30C4H:

EXCEPTION 30C5H:

EXCEPTION 30EOH:
EXCEPTION 30E1H:

EXCEPTION 30E2H:
EXCEPTION 30E3H:
EXCEPTION 30E4H:
EXCEPTION 30ESH:
EXCEPTION 30E6H:
EXCEPTION 30E7H:
EXCEPTION 30E8H:
EXCEPTION 30E9H:

EXCEPTION 30EAH:
EXCEPTION 30EBH:
EXCEPTION 30ECH:
EXCEPTION 30EDH:
EXCEPTION 30EEH:
EXCEPTION 30EFH:

EXCEPTION 30FOH:
EXCEPTION 30F1H:
EXCEPTION 30F2H:
EXCEPTION 30F3H:
EXCEPTION 30F4H:
EXCEPTION 30F5H:
EXCEPTION 3100H:
EXCEPTION 3101 H:
EXCEPTION 3102H:

EXCEPTION 3103H:

Error Messages and Exception Codes

DEV ERR, HARDWARE OR DISK FAIL, BAD ID
FIELD ECC

DEV ERR, HARDWARE OR DISK FAIL, BAD ID
FIELD ECC

HDO ERR, OS OR CONTROLLER FAIL, BAD
PROTOCOL

HD! ERR, OS OR CONTROLLER FAIL, BAD
PROTOCOL

HD2 ERR, OS OR CONTROLLER FAIL, BAD
PROTOCOL

HD3 ERR, OS OR CONTROLLER FAIL, BAD
PROTOCOL

HDO ERR, OS OR DRIVE FAIL, CYLINDER
ADDRESS OF OF BOUNDS

HDI ERR, OS OR DRIVE FAIL, CYLINDER
ADDRESS OF OF BOUNDS

HD2 ERR, OS OR DRIVE FAIL, CYLINDER
ADDRESS OF OF BOUNDS

HD3 ERR, OS OR DRIVE FAIL, CYLINDER
ADDRESS OF OF BOUNDS

FLO ERR, HARDWARE OR DISK FAIL, NO ID
ADDRESS MARK

FL1 ERR, HARDWARE OR DISK FAIL, NO ID
ADDRESS MARK

HDO ERR, DISK BAD, CAN’T FIND SECTOR

HDI1 ERR, DISK BAD, CAN'T FIND SECTOR

HD2 ERR, DISK BAD, CAN’T FIND SECTOR

HD3 ERR, DISK BAD, CAN'T FIND SECTOR

WDO ERR, DISK BAD, CAN'T FIND SECTOR

DEV ERR, DISK BAD, CAN'T FIND SECTOR

DEV ERR, DISK BAD, CAN'T FIND SECTOR

DEV ERR, DISK BAD, CAN'T FIND SECTOR

DEV ERR, DISK BAD, CAN'T FIND SECTOR

DEV ERR, DISK BAD, CAN'T FIND SECTOR

DEV ERR, DISK BAD, CAN'T FIND SECTOR

DEV ERR, DISK BAD, CAN’T FIND SECTOR

DEV ERR, DISK BAD, CAN'T FIND SECTOR

DEV ERR, DISK BAD, CAN'T FIND SECTOR

FLO ERR, HARDWARE OR DISK FAIL, NO DATA
ADDRESS MARK

FL1 ERR, HARDWARE OR DISK FAIL, NO DATA
ADDRESS MARK

HDO ERR, CONTROLLER OR DISK FAIL, NO BEGIN
OF DATA FIELD MARK

HD1 ERR, CONTROLLER OR DISK FAIL, NO BEGIN
OF DATA FIELD MARK

HD2 ERR, CONTROLLER OR DISK FAIL, NO BEGIN
OF DATA FIELD MARK

HD3 ERR, CONTROLLER OR DISK FAIL, NO BEGIN
OF DATA FIELD MARK

FLO ERR, MULTIBUS CONTENTION, ACCESS
OVER /UNDER RUN

FL1 ERR, MULTIBUS CONTENTION, ACCESS
OVER /UNDER RUN

HDO ERR, MULTIBUS CONTENTION, ACCESS
OVER/UNDER RUN

HD1 ERR, MULTIBUS CONTENTION, ACCESS
OVER /UNDER RUN

C-7

Error Messages and Exception Codes

C-8

EXCEPTION 3104H:
EXCEPTION 3105H:

EXCEPTION 3116H:
EXCEPTION 3117H:
EXCEPTION 3118H:
EXCEPTION 3119H:

EXCEPTION 311AH:

EXCEPTION 311BH:

EXCEPTION 311CH:
EXCEPTION 311DH:
EXCEPTION 311EH:

EXCEPTION 311FH:
EXCEPTION 3126H:
EXCEPTION 3127H:
EXCEPTION 3128H:
EXCEPTION 3129H:

EXCEPTION 312AH:
EXCEPTION 312BH:
EXCEPTION 312CH:
EXCEPTION 312DH:
EXCEPTION 312EH:

EXCEPTION 312FH:
EXCEPTION 3136H:

EXCEPTION 3137H:
EXCEPTION 3138H:

EXCEPTION 3139H:

EXCEPTION 313AH:
EXCEPTION 313BH:
EXCEPTION 313CH:
EXCEPTION 312DH:
EXCEPTION 313EH:

EXCEPTION 313FH:

EXCEPTION 3146H:
EXCEPTION 3147H:
EXCEPTION 3148H:

EXCEPTION 3149H:

EXCEPTION 314AH:

EXCEPTION 3148H:

EXCEPTION 314CH:

Series-IV Operating & Programming

HD2 ERR, MULTIBUS CONTENTION, ACCESS

OVER/UNDER RUN

HD3 ERR, MULTIBUS CONTENTION, ACCESS

OVER/UNDER RUN
WDO ERR, CONTROLLER RAM TEST FAIL
WD! ERR, CONTROLLER RAM TEST FAIL
WD2 ERR, CONTROLLER RAM TEST FAIL
WD3 ERR, CONTROLLER RAM TEST FAIL
WFO0 ERR, CONTROLLER RAM TEST FAIL
WF1 ERR, CONTROLLER RAM TEST FAIL
WF2 ERR, CONTROLLER RAM TEST FAIL
WF3 ERR, CONTROLLER RAM TEST FAIL
WMO ERR, CONTROLLER RAM TEST FAIL
WMI1 ERR, CONTROLLER RAM TEST FAIL
WDO ERR, CONTROLLER PROM TEST FAIL
WDI ERR, CONTROLLER PROM TEST FAIL
WD2 ERR, CONTROLLER PROM TEST FAIL
WD3 ERR, CONTROLLER PROM TEST FAIL
WF0 ERR, CONTROLLER PROM TEST FAIL
WF1 ERR, CONTROLLER PROM TEST FAIL
WF2 ERR, CONTROLLER PROM TEST FAIL
WF3 ERR, CONTROLLER PROM TEST FAIL
WMO ERR, CONTROLLER PROM TEST FAIL
WM1 ERR, CONTROLLER PROM TEST FAIL

WDO0 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WD1 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WD2 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WD3 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WF0 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WF1 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WF2 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WF3 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WMO ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

WMI1 ERR, OS OR CONTROLLER FAIL, SEEK

PROGRESS

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

WDO ERR, OS OR CONTROLLER FAIL, TRACK

TYPE DISALLOWS OPERATION

WDI. ERR, OS OR CONTROLLER FAIL, TRACK

TYPE DISALLOWS OPERATION

WD2 ERR, OS OR CONTROLLER FAIL, TRACK

TYPE DISALLOWS OPERATION

WD3 ERR, OS OR CONTROLLER FAIL, TRACK

TYPE DISALLOWS OPERATION

WF0 ERR, OS OR CONTROLLER FAIL, TRACK

TYPE DISALLOWS OPERATION

WF1 ERR, OS OR CONTROLLER FAIL, TRACK

TYPE DISALLOWS OPERATION

TYPE DISALLOWS OPERATION

"WF2 ERR, OS OR CONTROLLER FAIL, TRACK

Series-IV Operating & Programming

EXCEPTION 314DH:

EXCEPTION 314EH:
EXCEPTION 314FH:
EXCEPTION 3156H:
EXCEPTION 3157H:
EXCEPTION 3158H:

EXCEPTION 3159H:

EXCEPTION 315AH:

EXCEPTION 315BH:

EXCEPTION 315CH:
EXCEPTION 315DH:

EXCEPTION 315EH:

EXCEPTION 315FH:
EXCEPTION 3166H:
EXCEPTION 3167H:
EXCEPTION 3168H:

EXCEPTION 3169H:

EXCEPTION 316AH:
EXCEPTION 316BH:
EXCEPTION 316CH:
EXCEPTION 316DH:
EXCEPTION 316EH:

EXCEPTION 316FH.

EXCEPTION 3176H:
EXCEPTION 3177H:
EXCEPTION 3178H:
EXCEPTION 3179H:

EXCEPTION 317AH:
EXCEPTION 317BH:
EXCEPTION 317CH:
EXCEPTION 317DH:
EXCEPTION 317EH:
EXCEPTION 317FH:

EXCEPTION 3186H:

Error Messages and Exception Codes

WEF3 ERR, OS OR CONTROLLER FAIL, TRACK
TYPE DISALLOWS OPERATION

WMO ERR, OS OR CONTROLLER FAIL, TRACK
TYPE DISALLOWS OPERATION

WM1 ERR, OS OR CONTROLLER FAIL, TRACK
TYPE DISALLOWS OPERATION

WD0 ERR, OS OR CONTROLLER FAIL, ACCESS
BEYOND END OF MEDIA

WDI ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WD2 ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WD3 ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WF0 ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WF1 ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WF2 ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WF3 ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WMO ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WMI1 ERR, OS OR CONTROLLER FAIL,
BEYOND END OF MEDIA

WDO ERR, DISK BAD, INCORRECT SECTOR SIZE
FOUND

WDI1 ERR, DISK BAD,
FOUND
WD2 ERR,
FOUND
WD3 ERR, DISK BAD,
FOUND
WFO ERR,
FOUND
WF1 ERR,
FOUND
WEF2 ERR,
FOUND
WF3 ERR, DISK BAD,
FOUND

WMO ERR, DISK BAD,
FOUND

WMI ERR, DISK BAD, INCORRECT SECTOR SIZE
FOUND

WDO0 ERR, CONTROLLER DIAGNOSTIC FAULT
WD1 ERR, CONTROLLER DIAGNOSTIC FAULT
WD2 ERR, CONTROLLER DIAGNOSTIC FAULT
WD3 ERR, CONTROLLER DIAGNOSTIC FAULT
WF0 ERR, CONTROLLER DIAGNOSTIC FAULT
WF1 ERR, CONTROLLER DIAGNOSTIC FAULT
WEF2 ERR, CONTROLLER DIAGNOSTIC FAULT
WEF3 ERR, CONTROLLER DIAGNOSTIC FAULT
WMO ERR, CONTROLLER DIAGNOSTIC FAULT
WMI1 ERR, CONTROLLER DIAGNOSTIC FAULT
WDO ERR, CONTROLLER OR DRIVE FAIL, NO
INDEX SIGNAL

ACCESS
ACCESS
ACCESS
ACCESS
ACCESS
ACCESS
ACCESS
ACCESS

ACCESS

INCORRECT SECTOR SIZE
DISK BAD, INCORRECT SECTOR SIZE
INCORRECT SECTOR SIZE
DISK BAD, INCORRECT SECTOR SIZE
DISK BAD, INCORRECT SECTOR SIZE
DISK BAD, INCORRECT SECTOR SIZE
INCORRECT SECTOR SIZE

INCORRECT SECTOR SIZE

Error Messages and Exception Codes

C-10

EXCEPTION 3187H:

EXCEPTION 3188H:

EXCEPTION 3189H:
EXCEPTION 318AH:
EXCEPTION 318BH:
EXCEPTION 318CH:
EXCEPTION 318DH:
EXCEPTION 318EH:
EXCEPTION 318FH:
EXCEPTION 3196H:
EXCEPTION 3197H:
EXCEPTION 3198H:
EXCEPTION 3199H:
EXCEPTION 319AH:
EXCEPTION 319BH:
EXCEPTION 319CH:
EXCEPTION 319DH:
EXCEPTION 319EH:
EXCEPTION 319FH:
EXCEPTION 31A6H:
EXCEPTION 31A7H:
EXCEPTION 31A8H:

EXCEPTION 31A9H:

EXCEPTION 31AAH:
EXCEPTION 31ABH:
EXCEPTION 31ACH:
EXCEPTION 31ADH:
EXCEPTION 31AEH:

EXCEPTION 31AFH:

Series-IV Operating & Programming

WD1 ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WD2 ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WD3 ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WFO0 ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WF1 ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WF2 ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WF3 ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WMO ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WM1 ERR, CONTROLLER OR DRIVE FAIL, NO

INDEX SIGNAL

WD0O ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WD1 ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WD2 ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WD3 ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WF0 ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WF1 ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WF2 ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WF3 ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WMO ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WM1 ERR, OS OR CONTROLLER FAIL, INVALID

FUNCTION CODE PASSED

WDO0 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WD1 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WD2 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WD3 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WFO0 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WF1 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WF2 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WF3 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WMO ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

WM1 ERR, OS OR CONTROLLER
ADDRESS OUT OF BOUNDS

FAIL, DISK
FAIL, DISK
FAIL, DISK
FAIL, DISK
FAIL, DISK
FAIL, DISK
FAIL, DISK
FAIL, DISK
FAIL, DISK

FAIL, DISK

Series-IV Operating & Programming

EXCEPTION 3200H:
EXCEPTION 3201H:
EXCEPTION 3202H:
EXCEPTION 3202H:
EXCEPTION 3204H:
EXCEPTION 3205H:
EXCEPTION 3206H:
EXCEPTION 3207H:
EXCEPTION 3208H:

EXCEPTION 3209H:

EXCEPTION 320AH:
EXCEPTION 320BH:
EXCEPTION 320CH:
EXCEPTION 320DH:
EXCEPTION 320EH:

EXCEPTION 320FH:

EXCEPTION 3400H:
EXCEPTION 3401H:
EXCEPTION 3402H:
EXCEPTION 3403H:
EXCEPTION 3404H:
EXCEPTION 3405H:
EXCEPTION 3406H:
EXCEPTION 3407H:
EXCEPTION 3408H:

EXCEPTION 3409H:

EXCEPTION 340AH:
EXCEPTION 340BH:

EXCEPTION 340CH:

Error Messages and Exception Codes

FLO ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

F11 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

HDO ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

HD1 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

HD2 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

HD3 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WDO ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WDI1 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WD2 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WD3 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WF0 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WF1 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WF2 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WEF3 ERR, ATTEMPT TO WRITE WITH HARDWARE
WRITE PROTECT SET

WMO ERR, ATTEMPT TO WRITE WITH
HARDWARE WRITE PROTECT SET

WM1 ERR, ATTEMPT TO WRITE WITH
HARDWARE WRITE PROTECT SET

FLO ERR, DRIVE IS INDICATING A HARDWARE
FAILURE

FI1 ERR, DRIVE IS INDICATING A HARDWARE
FAILURE

HDO ERR, DRIVE IS INDICATING A HARDWARE
FAULT

HD1 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

HD2 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

HD3 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

WDO0 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

WD1 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

WD2 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

WD3 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

WFO ERR, DRIVE IS INDICATING A HARDWARE
FAULT :
WF1 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

WE2 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

C-11

Error Messages and Exception Codes

C-12

EXCEPTION 340DH:
EXCEPTION 340EH:

EXCEPTION 340FH:

EXCEPTION 3700H:
EXCEPTION 3701H:
EXCEPTION 3710H:
EXCEPTION 3711H:
EXCEPTION 3720H:
EXCEPTION 3721H:
EXCEPTION 3726H:
EXCEPTION 3727H:
EXCEPTION 3728H:

EXCEPTION 3729H:

EXCEPTION 372AH:
EXCEPTION 372BH:
EXCEPTION 372CH:
EXCEPTION 372DH:
EXCEPTION 372EH:

EXCEPTION 372FH:

EXCEPTION 3780H:
EXCEPTION 3781H:
EXCEPTION 3786H:
EXCEPTION 3787H:
EXCEPTION 3788H:

EXCEPTION 3789H:

EXCEPTION 378AH:
EXCEPTION 378BH:
EXCEPTION 378CH:
EXCEPTION 378DH:

EXCEPTION 378EH:

Series-1V Operating & Programming

WF3 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

WMO ERR, DRIVE IS INDICATING A HARDWARE
FAULT

WMI1 ERR, DRIVE IS INDICATING A HARDWARE
FAULT

FLO ERR, DISK BAD, CAN'T FIND SECTOR

FL1 ERR, DISK BAD, CAN'T FIND SECTOR

FLO ERR, UNEXPECTED BAD TRACK FLAG ON
DISK

FL1 ERR, UNEXPECTED BAD TRACK FLAG ON
DISK

FLO ERR, HARDWARE FAIL, SEEK DID NOT GET
TO EXPECTED TRACK

FL1 ERR, HARDWARE FAIL, SEEK DID NOT GET
TO EXPECTED TRACK

WDO0 ERR, DRIVE FAIL, ID CYL ADDR DOESN’T
MATCH SEEK ADDR

WD1 ERR, DRIVE FAIL, ID CYL ADDR DOESN’'T
MATCH SEEK ADDR

WD2 ERR, DRIVE FAIL, ID CYL ADDR DOESN’T
MATCH SEEK ADDR

WD3 ERR, DRIVE FAIL, ID CYL ADDR DOESN’T
MATCH SEEK ADDR

WF0 ERR, DRIVE FAIL, ID CYL ADDR DOESN’T
MATCH SEEK ADDR

WF1 ERR, DRIVE FAIL, ID CYL ADDR DOESN’T
MATCH SEEK ADDR

WF2 ERR, DRIVE FAIL, ID CYL ADDR DOESN’T
MATCH SEEK ADDR

WF3 ERR, DRIVE FAIL, ID CYL ADDR DOESN’'T
MATCH SEEK ADDR

WMO ERR, DRIVE FAIL, ID CYL ADDR DOESN’T
MATCH SEEK ADDR

WMI1 ERR, DRIVE FAIL, ID CYL ADDR DOESN’T
MATCH SEEK ADDR

FLO ERR, UNKNOWN ERROR CODE FROM
CONTROLLER

FL1 ERR, UNKNOWN ERROR CODE FROM
CONTROLLER

WD0O ERR, UNKNOWN ERROR CODE FROM
CONTROLLER

WD1 ERR, UNKNOWN ERROR CODE FROM
CONTROLLER

WD2 ERR, UNKNOWN ERROR CODE FROM

.CONTROLLER

WD3 ERR, UNKNOWN ERROR CODE FROM
CONTROLLER
WF0 ERR, UNKNOWN ERROR CODE FROM
CONTROLLER
WF1 ERR, UNKNOWN ERROR CODE FROM
CONTROLLER
WF2 ERR, UNKNOWN ERROR CODE FROM
CONTROLLER
WF3 ERR, UNKNOWN ERROR CODE FROM
CONTROLLER
WM0 ERR, UNKNOWN ERROR CODE FROM
CONTROLLER

Series-1V Operating & Programming

EXCEPTION 378FH:

EXCEPTION 3800H:
EXCEPTION 3801 H:
EXCEPTION 3802H:
EXCEPTION 3803H:
EXCEPTION 3804H:
EXCEPTION 3805H:
EXCEPTION 3806H:
EXCEPTION 3807H:
EXCEPTION 3808H:
EXCEPTION 3809H:

EXCEPTION 380AH:

EXCEPTION 380BH:
EXCEPTION 380CH:

EXCEPTION 380DH:

EXCEPTION 380EH:
EXCEPTION 380FH:

Error Messages and Exception Codes

WM1! ERR, UNKNOWN ERROR CODE FROM
CONTROLLER

FLO ERR, DISK NOT INSERTED AND SPINNING
FL1 ERR, DISK NOT INSERTED AND SPINNING
HDO ERR, DRIVE NOT READY

HD1 ERR, DRIVE NOT READY

HD2 ERR, DRIVE NOT READY

HD3 ERR, DRIVE NOT READY

WDO ERR, DRIVE NOT READY

WDI1 ERR, DRIVE NOT READY

WD2 ERR, DRIVE NOT READY

WD3 ERR, DRIVE NOT READY

WFO0 ERR, DRIVE NOT READY

WF1 ERR, DRIVE NOT READY

WF2 ERR, DRIVE NOT READY

WE3 ERR, DRIVE NOT READY

WMO ERR, DRIVE NOT READY

WMI1 ERR, DRIVE NOT READY

BIOS Exceptions That are not Device Specific

EXCEPTION 3CO0H:
EXCEPTION 3C10H:
EXCEPTION 3C20H:
EXCEPTION 3C30H:
EXCEPTION 3C40H:

EXCEPTION 3C50H:

EXCEPTION 3CFOH:

EXCEPTION 3D80H:
EXCEPTION 3DCOH:

EXCEPTION 3DCIH:
EXCEPTION 3DC2H:
EXCEPTION 3DC3H:
EXCEPTION 3DC4H:
EXCEPTION 3DEOH:

EXCEPTION 3DFOH:

EXCEPTION 3E01H:
EXCEPTION 3E02H:

EXCEPTION 3E04H:
EXCEPTION 3E10H:

EXCEPTION 3F00H:

DEVICE ERROR, OS FAILURE, BAD COMMAND
CODE PASSED TO DRIVER

DEVICE ERROR, OS FAILURE, BLOCKS ACCESSED
OVERFLOW DEVICE

DEVICE ERROR, MINI DRIVER FAILURE, INVALID
8272 COMMAND

DEVICE ERROR, OS MINI DRIVER FAILURE, Q IS
DAMAGED

DEVICE ERROR, OS MINI DRIVER FAILURE, 8089
NOT RESPONDING

DEVICE ERROR, ACCESS TO DEVICE W/MISSING
CONTROLLER HARDWARE

DEVICE ERROR, OS MINI DRIVER FAILURE, BAD
8272 PROTOCOL

KEYBOARD READ ABORTED

DEVICE ERROR, OS HD5440 DRIVER FAIL, BAD
CONTROLLER PROTOCOL

DEVICE ERR, OS HD5440 DRIVER FAILURE, Q IS
DAMAGED

DEVICE ERR, HD5440 CONTROLLER CONFIGU-
RATION SWITCHES WRONG

DEVICE ERR, UNKNOWN INTERRUPT SOURCE
ON MULTIBUS LEVEL @

DEVICE ERR, TRANSFER OVERFLOWS 8086
SEGMENT

ILLEGAL BX_SBIOS ACCESS BY MORE THAN ONE
JOB

DEVICE ERR, OS FAILURE, LIST DAMAGED
DEVICE ERR, PRINTER TIMEOUT, NO RESPONSE
IN 3 SEC

DEVICE ERR, PRINTER HARDWARE FAIL, FAULT
BEING SIGNALLED

DEVICE ERR, PRINTER NOT READY

DEVICE ERR, OS PRINTER DRIVER FAIL, PROTO-
COL ERROR

DEVICE ERR, OS WINC FAIL, DATA STRUCTURE
DAMAGED

C-13

Error Messages and Exception Codes

EXCEPTION 3F01H:

EXCEPTION 3F02H:

Series-IV Operating & Programming

DEVICE ERR, OS WINC DRIVER FAIL, BAD
CONTROLLER PROTOCOL

DEVICE ERR, UNSUPPORTED WINC CONTROL-
LER ENCOUNTERED

File Structure Exceptions

EXCEPTION 4000H:

EXCEPTION 4001H:
EXCEPTION 4002H:
EXCEPTION 4003H:
EXCEPTION 4004H:

EXCEPTION 4010H:

EXCEPTION 4011H:
EXCEPTION 4012H:

EXCEPTION 4013H:
EXCEPTION 4014H:

EXCEPTION 4015H:
EXCEPTION 4016H:
EXCEPTION 4017H:
EXCEPTION 4018H:
EXCEPTION 4019H:
EXCEPTION 401AH:

EXCEPTION 401BH:
EXCEPTION 401CH:

EXCEPTION 401DH:
EXCEPTION 401FH:
EXCEPTION 4020H:
EXCEPTION 8004H:

EXCEPTION DFFEH:
EXCEPTION DFFFH:

OPEN ATTEMPTED ON CONNECTION WHICH IS
ALREADY OPEN

CONNECTION NOT OPEN

INCORRECT FILE TYPE

PARAMETER HAS INVALID SYNTAX

DEVICE BEING ACCESSED IS NOT READY
COMMUNICATIONS SYSTEM ERROR

NNECTION PROHIBITS
OPERATION

FILE EXISTS AND HAS CONNECTION ESTAB-
LISHED ON IT

NONEMPTY DIRECTORY FILE

MAXIMUM NUMBER OF PERMITTED OBJECTS
EXCEEDED

CONNECTION DOES NOT EXIST

OPERATION NOT SUPPORTED FOR THE CONSOLE
DEVICE

LOGICAL NAME ALREADY EXISTS

ILLEGAL DEVICE ID VALUE

DISMOUNT ATTEMPTED ON SYSTEM DEVICE
LOGICAL NAME DOES NOT EXIST

INVALID PATHNAME SYNTAX

FILE IS WRONG TYPE; DIRECTORY FILE
EXPECTED

FILE DOES NOT EXIST

FILE EXISTS AND HAS CONNECTION ESTAB-
LISHED ON IT

EXTERNAL EVENT CAUSED DETACH OF
CONNECTION

DFS SERIES IV ERROR: ESNOTSLOGG
VOLUME WITH SAME VOLUME ROOT DIREC-
TORY NAME ALREADY MOUNTED

ILLEGAL PARAMETER VALUE

VOLUME DOES NOT EXIST

USER OPERATIONS NOT SUPPORTED ON
FLIPPIES

Syntax Guide Exceptions

EXCEPTION EOOOH:
EXCEPTION EOO1H:
EXCEPTION EO002H:

EXCEPTION EO03H:

SYNTAX GUIDE LIMIT EXCEEDED: ARGUMENT
BUFFER OVERFLOW

SYNTAX GUIDE LIMIT EXCEEDED: PARSE STACK
OVERFLOW

SYNTAX GUIDE LIMIT EXCEEDED: REMOVE
STACK OVERVIEW

SYNTAX GUIDE LIMIT EXCEEDED: EDIT BUFFER
OVERFLOW

Series-IV Operating & Programming

EXCEPTION E004H:
EXCEPTION EOO5H:

Error Messages and Exception Codes

SYNTAX TABLES INCOMPATIBLE WITH SYNTAX
GUIDE

SYNTAX GUIDE CONSISTENCY CHECK: INTER-
NAL ERROR

ISIS-IV Exception Codes

EXCEPTION E100H:
EXCEPTION EI01H:

EXCEPTION E103H:
EXCEPTION E107H:
EXCEPTION E109H:
EXCEPTION E10BH:
EXCEPTION E10DH:

EXCEPTION El11H:
EXCEPTION E112H:

EXCEPTION EIl13H:
EXCEPTION E114H:
EXCEPTION E115H:
EXCEPTION E116H:
EXCEPTION E117H:

EXCEPTION EI18H:
EXCEPTION E119H:

EXCEPTION El11AH:
EXCEPTION E11BH:

EXCEPTION EI11CH:
EXCEPTION EI11DH:

EXCEPTION El11EH:
EXCEPTION E200H:

INTERNAL ISIS-1V ERROR, BAD MIP CONNECT
INTERNAL ISIS-IV ERROR, UNKNOWN
MONITOR REQUEST TYPE

INTERNAL ISIS-IV ERROR, UNKNOWN
MESSAGE DESTINATION

INTERNAL ISIS-IV ERROR, NO RECEIVE
BUFFERS

INTERNAL ISIS-IV ERROR, CLOSED DESTINA-
TION PORT

IEU BOARD NOT RESPONDING (DAMAGED
SOFTWARE POSSIBLE)

INTERNAL ISIS-IV ERROR, BAD MESSAGE
ADDRESS

IEU HARDWARE NOT RESPONDING
INTERNAL ISIS-IV ERROR, UNKNOWN
MESSAGE TYPE

INTERNAL ISIS-IV ERROR, UNKNOWN ISIS
REQUEST TYPE

INTERNAL ISIS-IV ERROR, BAD LNAME
CANNOT LOAD ISIS. LM

READ FROM KEYBOARD IN BACKGROUND OR
IMPORT WAS ATTEMPTED

ERROR OCCURED WHILE WRITING TO :CO: OR
WHILE :CO: WAS CLOSED

INTERNAL ISIS-IV ERROR, BAD CONSOLE AFTN
UNSUPPORTED MONITOR FUNCTION WAS
CALLED

BAD PARAMETER TO MONITOR KIC ROUTINE
ISIS-IV ERROR: BAD REMOTE INTERFACE
COMMAND

ISIS-IV ERROR: REMOTE INTERFACE PROTO-
COL VIOLATION

ISIS-IV ERROR: IEU MEMORY NOT AVAILABLE
TO ISIS-IV

ISIS-IV ERROR: I/O ERROR ON CONSOLE FILE
INSUFFICIENT MEMORY AVAILABLE FOR VIEW

File Structure CUSP Exceptions

EXCEPTION FOOOH:
EXCEPTION FFE9H:
EXCEPTION FFEBH:
EXCEPTION FFECH:
EXCEPTION FFECH:
EXCEPTION FFEEH:

EXCEPTION FFEFH:

EXCEPTION FFF2H:
EXCEPTION FFF3H:

FATAL FILE SYSTEM CONSISTENCY ERROR
FATAL FILE SYSTEM CONSISTENCY ERROR
INCORRECT PASSWORD

USER NAME NOT KNOWN

LEGAL USER ID VALUE

OPERATION LIMITED TO SUPER USER/MASTER
SUPER USER

USER OR HOME DIRECTORY DEFINITION FILE
DOES NOT EXIST

USER ID ALREADY EXISTS

USER NAME ALREADY EXISTS OR USER SPECI-
FICATION MISMATCH

C-15

Error Messages and Exception Codes Series-IV Operating & Programming

EXCEPTION FFF4H: SYSTEM FILE INACCESSIBLE
EXCEPTION FFFAH: MAXIMUM FILE LENGTH EXCEEDED

UDI-Series IV Exception Codes

Exceptions Returned From System Calls

E$SOK (0000H)

ESABS (2303H)

Program contains an absolute record.

ESACTIVE

Open connections to the volume existed and had to be forcibly detached.
ESADDRESS

The overlay loaded contained addresses in the operating system area. The load was
not completed.

ESBADSFILE (2301H)

The file containing the overlay is not a valid object file.
ESCOMMSERROR

An error occurred in the communication system.
ESCONNECTIONSEXIST

Connections to the volume existed and were detached.
ESCONSOLE

An attempt was made to interface a connection with the console.
ESCONTEXT (0101H)

The routine was called in an illegal context. More specifically, this includes an attempt
to:

e Attach, create, or delete a file to which the console was assigned
e Attach, create, or delete the user file containing overlays

e Attach, create, delete or rename a file at the Network Manager when the user is
no longer logged on. (Applies only to NDS-II workstations.)

ESCROSSFS (0102H)
The operation attempted an illegal cross volume rename.
ESDEVICES$IOSERROR

An I/0O error occurred in the machinery.

Series-IV Operating & Programming Error Messages and Exception Codes

ESDEVICESNOTSREADY

The device is not ready for usage.

E$SDIRSNOTSEMPTY

The target file is not an empty directory file.

ESEXIST (0103H)

The specified token or connection did not exist, or the specified overlay did not exist.
ESFACCESS (0026H)

A deletion, rename, or destructive creation of a write-protect or format file was
attempted; or the mode of open did not agree with the file attributes or device
characteristics.

ESFEXIST (0020H)

The specified file exists when it is not expected to exist.

ESFNEXIST (0021H)

The specified file does not exist when it is expected to exist. The deletion, rename, or
attachment of a workfile will also cause the exception.

ESFTYPE

A non-terminal path component is not a directory file.
ESILLSRECORD (2302H)

Illegal OMF record detected by the loader.
ESILLSVOLUME

An illegal volume-name was specified.

ESLIMIT

The calling job has exceeded the allowable number of attaches.
ESMARKEDSDELETED

The file has been marked for deletion and cannot be attached.
ESMEM (0002H)

Insufficient memory for requested operation.

ESMOUNTED

The device is already mounted.

ESNODESNOTSREADY

The node is not responding to the request.

C-17

Error Messages and Exception Codes Series-IV Operating & Programming

C-18

ESNOPEN (0104H)

The operation attempted to close, read, write, or seek a connection that was not opened.
ESOPEN (0105H)

The operation attempted to open a connection that was already opened.
ESOPENSMODE

The opened mode does not allow reading to occur.

ESOREAD (0106H)

A write operation was attempted on a connection opened for read.
ESOWRITE (0107H)

A read operation was attempted on a connection opened for write.
ESPARAM (0108H)

An argument had an illegal value. This is usually the result of a bounds check (e.g.,
0O=<connection token=<12).

"ESPTR (0109H)

A pointer argument was illegal. If this was the excep$p argument, the operating system
aborts the job and prints an error message to the cold-start console.

ESSHADOWED

The (local) volume has been mounted, but shadows the corresponding public volume.
ESSHARE | (0028H)

An attempt was made to delete, rename, open, destructively create, or attach to a file
on which a connection was already established. This may mean that the file is currently
open by another user.

E$SIX (010AH)

An attempt was made to open a seventh connection.

E$SPACE (0029H)

The operation attempted to add a directory entry to a full directory.

E$STRINGS$BUF (0081H)

The string is over 45 characters long (DQSCHANGESEXTENSION) or the
argument is over 80 characters long (DQSGET$SARGUMENT).

ESSUPPORT (23H)

One of the following operations was attempted:
e The deletion or renaming of a physical or logical device
» The seeking of a physical device or the console

Series-IV Operating & Programming Error Messages and Exception Codes

» A DQSSPECIAL with a connection that was not established on :CI:

« A DQSSPECIAL with type 1 or type 3 when :CI: has been assigned to a disk
file.

ESSYNTAX (010CH)

An illegal ISIS pathname was specified. This includes device-name parts not supported
by Series IV, or an illegal overlay name.

ESSYSTEMSDEVICE

An attempt was made to dismount a system device.

Hardware-Detected Conditions
E$ZEROSDIVIDE (8000H)
A divide by zero was attempted.
ESOVERFLOW (8001H)
An overflow occurred.

E$8087 (8007H)

An 8087 error occurred.

C-19

APPENDIX D
OBJECT MODULE
RELOCATION AND LINKAGE

Figure D-1 presents the valid possibilities for combining object modules created by
resident and cross-product translators or by relocation-and-linkage packages. (“Cross-
product” here means software packages that execute on an 8080,/8085-based system
but create code to run on an 8086,/8088 based system.)

8086/8088
SOURCE
PROGRAM

A /

RESIDENT CROSS-PRODUCT
TRANSLATORS TRANSLATORS

\ /

only non-main
OBJECT modules OBJECT
MODULES MODULES

RESIDENT
LINK86

CROSS-PRODUCT
LINK86

a

¥ Yy

RESIDENT CROSS-PRODUCT
LOCS86 LOCB86
only

non-overlay
modules

Figure D-1. Use of Relocation and Linkage Packages 121753-10

Object Module Relocation and Linkage Series-IV Operating & Programming

As long as LINK and LOCATE are used in sequence, object modules developed
using cross-product translators can be combined with new object modules developed
using resident translators. The permitted and prohibited possibilities are as follows:

Permitted

1. The resident R&L86 will successfully process any object module produced by
any Intel cross-product or resident product.

2. The cross-product R&L package will successfully process any non-main object
module produced by resident translators.

3. Current absolute loaders (e.g., those named in figure D-1) will successfully process
non-overlay modules produced by resident products as well as the output of cross-
products.

4. Position-Independent Code (PIC) or Load-Time Locatable (LTL) modules do
not need L.OC86 and can be executed directly after being processed by LINKS86.

Prohibited

1. The cross-product R&L package cannot process the following kinds of modules:
a. Main object modules from resident translators.
b. Modules produced by resident R &L86.

2. Current absolute loaders cannot process overlay modules produced by resident
R &L386.

See the iAPX 86, 88 Family Utilities User’s Guide, 121616, for complete details on
Intel’s R&L packages.

NOTE

The Series IV will not load a module with any absolute records, i.e., a module
that has been “located,” variables declared at an absolute location (@), or a
procedure declared “interrupt.”

APPENDIX E
BOOT DEVICE-CONFIGURATION
SWITCH ASSIGNMENTS

Table E-1. Boot Device Assignment

Switch Label

Description

1 2 34 567 8

0 X 00 000 0 Jump to Mon88, no power-up test (see note 4)
0 X 00 001 0 Boot from 5 /4" floppy disk - dr 0 (see note 5)
0 X 01@ 001 0 Boot from 5 /4" floppy disk - dr 1 (see note 5)
0 X 00 010 0 Boot from Hard disk - dr 0 (see note 5)
0 X 01 010 0 Boot from Hard disk - dr 1 (see note 5)
0 X 00 011 0 Boot from Priam (35 MB Winchester)
0 X 00 101 0 Boot from Integrated 5 /4" Winchester
0 X 00 110 0 Reserved
0 X 00 111 0 Reserved

NOTES

1. 0 = Off (down)

2. 1 =0n(up)

The power on confidence test will not be run.
5. If the local boot fails, control is transferred to Mon88.

E-1

APPENDIX F
ASCIl CODES

Table F-1. ASCII Code List

Decimal Octal Hexadecimal Character
0 000 00 NUL
1 001 01 SOH
2 002 02 STX
3 003 03 ETX
4 004 04 EOT
5 005 05 ENQ
6 006 06 ACK
7 007 07 BEL
8 010 08 BS
9 011 09 HT
10 012 0A LF
11 013 0B VT
12 014 0C FF
13 015 0D CR
14 016 0E SO
15 017 0F Si
16 020 10 DLE
17 021 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM
26 032 1A SuB
27 033 1B ESC
28 034 1C FS
29 035 iD GS
30 036 1E RS
31 037 1F us
32 040 20 SP
33 041 21 |
34 042 22 "
35 043 23 #
36 044 24 $
37 045 25 %
38 046 26 &
39 047 27 ‘
40 050 28 (
41 051 29)
42 052 2A *
43 053 2B +
44 054 2C '
45 055 2D —
46 056 2E .
47 057 2F /
48 060 30 0
49 061 31 1
50 062 32 2
51 063 33 3
52 064 34 4
53 065 35 5
54 066 36 6
55 067 37 7
56 070 38 8
57 071 39 9
58 072 3A :
59 073 3B s
60 074 3C <

ASCII Codes

F-2

Table F-1. ASCII Code List (Cont'd.)

Series-IV Operating & Programming

Decimal Octal Hexadecimal Character
61 075 3D =
62 076 3E >
63 077 3F ?
64 100 40 @
65 101 4 A
66 102 42 B
67 103 43 C
68 104 44 D
69 105 45 E
70 106 46 F
71 107 47 G
72 110 48 H
73 111 49 |
74 112 4A J
75 113 4B K
76 114 4C L
77 115 4D M
78 116 4E N
79 117 4F o}
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 \'s
87 127 57 w
88 130 58 X
89 131 59 Y
90 132 5A z
91 133 5B {
92 134 5C \
93 135 5D]
94 136 5E A
95 137 5F —
96 140 60 !
97 141 61 a
98 142 62 b
99 143 63 c

100 144 64 d
101 145 65 e
102 146 66 f
103 147 67 g
104 150 68 h
105 151 69 i
106 152 6A]
107 153 68 k
108 154 6C |
109 155 6D m
110 156 6E n
111 157 6F [o}
112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 s
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 X
121 171 79 y
122 172 7A z
123 173 7B {
124 174 7C I
125 175 7D }
126 176 7E ~
127 177 7F DEL

Series-IV Operating & Programming

Table F-2. ASCII Code Definition

. - Decimal
Abbreviation Meaning Code
NUL NULL Character 0
SOH Start of Heading 1
STX Start of Text 2
ETX End of Text 3
EOT End of Transmission 4
ENQ Enquiry 5
ACK Acknowledge 6
BEL Bell 7
BS Backspace 8
HT Horizontal Tabuiation 9
LF Line Feed 10
vT Vertical Tabulation 11
FF Form Feed 12
CR Carriage Return 13
SO Shift Out 14
Sl Shift In 15
DLE Data Link Escape 16
DC1 Device Control 1 17
DC2 Device Control 2 18
DC3 Device Control 3 19
DC4 Device Control 4 20
NAK Negative Acknowledge 21
SYN Synchronous Idle 22
ETB End of Transmission Block 23
CAN Cancel 24
EM End of Medium 25
suB Substitute 26
ESC Escape 27
FS File Separator 28
GS Group Separator 29
RS Record Separator 30
us Unit Separator 31
SP Space 32
DEL Delete 127

ASCII Codes

F-3

INDEX

%, 2-7 thru 2-11
/,3-2, 430

access, 7-14, 7-22

ACCESS, 4-18

access rights, 3-5, 4-30
owner, 3-5, 4-18, 4-23, 4-26
WORLD, 3-5, 3-7, 4-18

ampersand, 2-6, 7-35

ARCHIVE, 4-20

argument, 7-35

ASCII codes, Appendix F

ASM-86, 6-3

attaching vs. creating files, 7-2, 7-10

ATTRIB, 6-6

BACKGROUND, 2-1, 2-9, 2-12, 4-45, 4-47, 4-48
BATCH, 2-9, 4-47

batch command processing, 2-1, 5-2

:BB;, 7-10, 7-15

bit map, 4-54, 4-68, 4-69

BOOLEAN, 74

BREAK KEY, 2-1, 24

buffers, 7-2, 7-3, 7-22, 7-23, 7-27

BYTE, 7-4

CANCEL
background job, 4-49
remote job, 5-4
character display, 2-2
CHOWNER, 3-6, 4-23, 4-41
CHPASS, 1-2, 14, 3-6, 4-24, 4-43
command
delimiters, 2-7
line input, 2-6, 2-7
mode, 2-1
command files, 2-9 thru 2-11, 4-1, 4-9, 4-45, 4-47, 4-51, 5-5
command line editing, 2-4, 2-7
command line interpreter (CLI), 2-1, 2-3, 2-6, 2-8
command syntax, Appendix A
see also each command
variables, 2-7, 2-9
substitution, 2-8
system-defined, 2-7, 2-8
user-defined, 2-7, 2-8, 4-14
command parsing routines, 7-34
command tail arguments, 7-1, 7-22, 7-35
comments
in a command line, 2-6
in a routine, 7-35
communication
of parameters, 6-2
among program developers, 6-2
COMPAC.LIB, 6-3
conceptual considerations, 2-1 thru 2-4
CONNECTION, 7-4
connections, 7-10, 7-11
configuration switches, 1-1, 1-4, 1-6, 1-7, 5-3, Appendix E

console
input (:CIL:), 7-2, 7-9
operation, 2-5
output (:CO:), 7-2
see also connection routines
console commands
control, 4-1, 4-8
file maintenance, 4-1, 4-17
job management, 4-1, 4-45
media operation, 4-2, 4-54
remote job, 5-4
continuation line
in a command line, 2-6
in a routine, 7-35
Control-C, 24, 2-13, 5-2, 5-7, 7-4, 7-8, 7-23
Control-D, 7-8, 7-23
COPY, 1-6, 4-25
COUNT, 4-8
CREATEDIR, 3-3, 4-27
cross products, 6-3, Appendix D
.CSD, 4-45, 447, 4-51, 5-5

data files, 1-5, 3-1, 3-2, 4-25, 4-28
data type, 7-4
DEBUG, 6-4, 7-35
DEBUG-88, 6-2, 7-22
debugging, 6-1 thru 6-4
default exception handler, 7-3
DELETE, 4-28
deleting a file
partially
via DQ$TRUNCATE, 7-26
via DQSWRITE, 7-27
via DQSCREATE, 7-11
via DQSDELETE, 7-12
delimiter, 7-1, 7-19, 7-35
design, 6-2
device management, 6-1, 7-2, 7-14
device-name part, 7-13, 7-20
device names, 2-12, 4-32, 4-35, 4-54, 4-68
ICOPY, 4-62
PDSCOPY, 4-66
diagnostic tests, 1-1, 1-2, 1-4, 5-3
DIR, 4-30
directory
files, 1-5, 3-1 thru 3-5, 4-25, 4-28, 4-30
identifier, 3-1, 3-2
maintenance, 3-3, 3-4, 4-1
disk block, 4-54, 4-68
disk files, 1-5
DISMOUNT, 4-32, 4-35
display fields, 2-1, 2-2
division by zero, 7-3
DQSALLOCATE, 7-1, 7-2, 7-28
DQSATTACH, 7-2, 7-10
DQS$CHANGESACCESS, 6-4, 7-18
DQSCHANGESEXTENSION, 7-19
DQSCLOSE, 7-2, 7-21

Index-1

Index

DQSCREATE, 7-2, 7-3, 7-11
DQSDECODESEXCEPTION, 7-6
DQ$DECODESTIME, 7-34
DQSDELETE, 7-12

DQSDETACH, 7-2, 7-13

DQSEXIT, 2-8, 7-32

DQSFILESINFO, 7-16

DQSFREE, 7-29
DQSGETSARGUMENT, 2.7, 2-8, 7-35
DQSGETSCONNECTIONSSTATUS, 7-14, 7-15, 7-24
DQSGETSEXCEPTIONSHANDLER, 7-7
DQS$GETSSIZE, 7-30
DQSGET$SYSTEMSID, 7-37
DQSGETSTIME, 7-38

DQSOPEN, 7-2, 7-3, 7-22
DQSOVERLAY, 7-33

DQSREAD, 7-2, 7-23, 7-25
DQSRENAME, 7-20
DQSRESERVESIOSMEMORY, 7-31
DQSSEEK, 7-10, 7-24

DQS$SPECIAL, 7-25
DQ$SWITCHSBUFFER, 7-35, 7-39
DQSTRAPSCC, 2-13, 7-4, 7-8, 7-22
DQSTRAPSEXCEPTION, 7-4, 7-9
DQSTRUNCATE, 7-26

DQSWRITE, 7-2, 7-3, 7-27

DWORD, 7-4

efficiency
input/output, 7-2
end-of-file, 7-22, 7-27
environment
execution, 1-1
operating, v
processing, 5-1
runtime, 2-12, 4-3, 4-46
€rrors
avoidable, 7-3
unavoidable, 7-3
error messages
ISIS-1V, C-15
iNDX-Series IV, C-1
OS-Series 1V, C-2
UDI-Series IV, C-16
Escape Key, 2-4, 2-6, 2-7, 4-47
excep$p, 7-3
exception conditions and handling, 7-3, Appendix C
stack state, 7-8
exception handling routines, 7-6
EXIT, 49
expanding segment, 7-30
expanding a file with nulls, 7-24
experimental software, 4-46
EXPORT, 2-1, 2-9, 4-47, 4-48, 5-2, 5-5
external procedure definitions, 6-3, 6-4, 7-5ff, Appendix B

FALSE, 7-3
file connections, 4-28
file control, 6-1
See connections
file existence routines, 7-10
deletion of a pre-existing file, 7-11
temporary, 7-3
file management, 6-1, 7-2, 7-3, 7-10
file-name part, 7-11, 7-20

Index-2

Series-IV Operating & Programming

file naming routines, 7-18
file pointer, 7-14, 7-22, 7-24
file protection, 3-5
file usage routines, 7-21
FILL, 2-5, 4-10
flexible disk drive, 1-3, 4-37, 4-38
flexible disk use, 1-2, 1-4
FORMAT, 1-5 thru 1-7, 4-54
formatting disks
flexible, 1-5, 1-7
integrated 5'/4” Winchester, 1-6
8” Winchester, 1-6
‘format’ file, 7-12, 7-14, 7-20, 7-22
FPORT, 4-56
hardware restrictions, 4-60
error messages, 4-60
free space, 7-1
created on a disk, 7-26
function keys, 2-1, 2-2, 2-3, 2-5, 2-6

GETATT, 6-6
GETD, 6-6

Help Text, 2-3, 2-5, 2-6

home directory, 4-3, 4-4, 4-41, 4-42
human interface, 1-1, 2-1
hypothetical program steps, 6-5, 6-6

ICOPY, 4-61
hardware requirements, 4-63
IEU, 4-50, 4-60, 4-63
IF, 4-11
IMPORT, 4-4, 5-2, 5-7
iNA, 5-1
iNDX files, 1-5, 1-6, 3-1, 4-43, 4-56, 4-57, 4-61, 4-65
structure, 3-1, 3-2, 4-56
terms, 3-1
iNDX.CUSPS, 1-6, 1-7
initiating operation, 1-1, 5-3
from a flexible disk, 1-1
from the integrated 5!/4” Winchester, 1-4
INIT.CSD, 4-3, 4-4
In-Circuit Emulators, 6-2
interface libraries, 6-3
invocation line, 7-1
argument, 7-35
ISIS files, 4-56, 4-57, 4-61
ISIS-IV operating system, 6-3
error codes, Appendix C
hypothetical service usage, 6-5, 6-6

job control, 2-1, 2-12, 4-1, 5-1 thru 5-5
queues, Chapter 5

jobs
background, 2-12, 2-13, 4-45, 4-50, 5-2
foreground, 2-12, 4-45, 4-50, 5-2
remote, 5-1 thru 5-5

keyboard, 2-2, 2-3
key clusters, 2-3, 2-4

LARGE.LIB, 6-3

limitation on opens, 7-21, 7-22
line-edited files, 7-1, 7-25, 7-35
line-editing buffer, 7-25

Series-IV Operating & Programming

LINK, 6-4, 7-36
LINKS6, 6-3, 7-33, 7-36
list of connections, 7-2
LOG

command, 2-10, 4-12

option, 2-10, 4-45, 4-48, 4-51, 5-5
log files, 2-10, 4-52
logical name, 3-1, 3-2, 4-5, 4-33, 4-34, 4-46
logical system root, 3-1, 3-2
LOGOFF, 1-4, 2-12, 4-5, 5-3, 5-4
log on, 1-2, 1-4, 2-1, 5-3, 5-7
LOGON, 2-12, 4-3, 4-46, 5-7
LNAME, 3-2, 4-33
LTL, 7-1

management of
commands, 6-1, 7-35
debugging, 6-1, 6-2
errors, 6-1, 7-8, 7-9
memory allocation, 6-1, 7-28
overlays, 6-1, 7-33
mass storage device, 3-5, 4-32, 4-35, 5-1
memory management, 7-1, 7-33
Menu entries, 2-1 thru 2-3, 2-5, 2-6, 4-10
modules, 6-2, 6-3
Monitor, 6-3, 6-4
debugger, 6-2
MOUNT, 4-35
multiple connections, 7-10, 7-11

NDS-II Network
definition, 5-1
files, 4-63
functions, 5-1
I/0 differences, 5-2
NRM, 4-7, 4-64, 5-1 thru 5-5
number of queues, 5-7

object module
absolute, 7-1
relocatable, 7-1
relocation and linkage, Appendix D
types, 7-1, 7-2
OPEN, 4-13
opens, 7-2
internal, 7-2, 7-11, 7-14, 7-22, 7-27
operating system, 6-1
operating system start-up, 1-5
operational procedures, 1-1
optional buffering, 7-3
options on command line, 7-1
output
printed, 4-26, 4-28, 5-3
spooled, 4-28, 4-30, 5-1, 5-3
overflow, 7-3
overlay, 7-33
exceptions, 7-10, 7-11, 7-33

parameters
communication among modules, 6-2
in CLI commands, 2-11, 4-45 thru 4-48, 4-51, 4-55, 5-5
files, 2-11, 4-9
substitution, 2-11, 4-47
of system service routines, 6-3, 6-4, Appendix B
see also each routine

Index

pointers, 7-3
password, 1-2, 3-6, 4-3, 4-24, 5-3
pathname, 2-7, 3-1, 3-2, 4-33, 7-10, 7-11, 7-20, 7-35
PDSCOPY, 4-65
PDS files, 4-65
PIC, 7-1
PL/M-86, 6-3, 7-3
POINTER, 7-4
pointer, 7-4
file, 7-12, 7-14
program connection routines, 7-10
program control routines, 7-33
program
development cycle, 6-2
integration, 6-2
interface with operating systems, 6-3
specifications, 6-2
standards, 6-2, 6-3
program execution, 6-3
hypothetical steps related to service routine
usage, 6-5, 6-6
program load, 7-1

QUEUE, 5-8

READ, 2-8, 4-14

reads interspersed, 7-2
reference library, 1-1
register conventions, 7-1
REGION, 4-46, 4-50
RENAME, 4-36

REPEAT, 4-15

RESET switch, 1-2 thru 1-4
RESTART key, 2-3, 2-4
Return key, 2-2, 2-4, 2-6, 2-7

SDCOPY, 4-37
seeking
types of, 7-14, 7-24
segment
expanding, 7-30
freed, 7-29
registers, 7-2
stack and data base, 7-30
sequence of service routine use, 7-2
Series-II, 4-56, 4-59
SET, 2-8, 4-16
shared files, 3-1, 3-5 thru 3-7, 5-1, 5-2
considerations, 3-7
SMALL.LIB, 6-3, 7-9, 7-30
soft keys, see function keys
SPACE, 4-40
STATUS, 2-8, 4-9, 4-14, 4-16
STRING, 7-4
string, 7-10, 7-19, 7-35 thru 7-37
SUBMIT, 2-1, 29, 4-47, 4-48, 4-51
SUPERUSER, 1-2, 1-4, 3-5, 3-6, 4-7, 4-18, 4-23, 4-24,
4-41, 4-43
primary, 3-6
secondary, 3-6
syntax builder, 2-9
Syntax Guide, 2-5, 2-6, 4-10, 4-47
command completion, 4-10
noise word fill, 4-10
SYSTAT, 5-4, 5-9

Index-3

Index

system
date, 7-39
identifying string, 7-38
system services
for ISIS-IV operating system, 6-3, 6-5
for Series-1V operating system, 6-3 thru 6-5
system volume root directory, 4-3, 4-4, 4-30, 4-35, 4-39

tab, 7-35
target environments, 6-3
terminating operation
for user only, 1-4, 5-3
for workstation, 1-4, 5-3
temporary files, 6-3
TIME, 4-6
TOKEN, 7-4
TRUE, 7-3

update mode, 7-2, 7-14
user

ID number, 3-6, 4-41, 4-43

name, 1-2, 3-6, 4-3, 4-24, 4-41, 4-43, 5-3
USERDEEF, 1-2, 14, 3-6, 4-3, 4-41
USERS, 3-6, 441, 4-43
utility routines, 7-34

Index-4

Series-IV Operating & Programming

VERIFY, 4-68
tests, 4-69, 4-70
error messages, 4-70, 4-71
VIEW, 4-44
volume
local, 4-30, 4-35
public, 4-30, 4-35, 5-5
shadowed, 4-30, 4-35
volume name, 1-5 thru 1-7, 3-1, 4-30

wild cards, 3-2, 3-3
WORD, 74
:WORK:, 7-3
work buffer, 4-38
workfiles, 7-2, 7-3, 7-10, 7-26
workstations

import, 5-2, 5-7

private, 5-2

initiating operation, 5-3

public, see workstations, import
write-protected file, 7-10, 7-11, 7-14, 7-20, 7-22
writes interspersed, 7-2

- ® Intellec® Series-IV Operating and Programming Guide
l 121753-001

REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi-
cation. If you have any comments on the product that this publication describes, please contact your Intel repre-
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve-
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating)

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

cITY STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. []

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

| || ” | NO POSTAGE

NECESSARY
IF MAILED
INU.S.A.

BUSINESS REPLY MAIL

FIRST CLASS PERMITNO.1040 SANTACLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

] l |®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	001
	002
	003
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	D-01
	D-02
	E-01
	F-01
	F-02
	F-03
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

