INTELLEC® SERIES IV ISIS-IV
USER’S GUIDE

Copynght @ 1982, Intel Corporation
Intel Corporaton, 3065 Bowars Avenun. Santa Clara, Cabtorma 95051 Order Number: 121880-001

intal

INTELLEC® SERIES IV ISIS-IV
USER’S GUIDE

Copyright © 1982, Intel Corporation

Intef Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 121880-001

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli-
cation or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP intgl iSBC MULTICHANNEL
CREDIT Intelevision iSBX MULTIMODULE

i intcligent Identifier iSXM Plug-A-Bubble
ICE intligent Programming Library Manager PROMPT

ICE Intellec MCS RMX/80

iCS Intellink Megachassis RUPI

im iOSP MICROMAINFRAME System 2000

iMMX iPDS MULTIBUS UPI

Insite iRMX

A833/1182/1K Jay

REV.

REVISION HISTORY

DATE

-001

Original issue.

12/82

il

PREFACE

The Intellec Series IV ISIS-IV User’s Guide provides an overview of the iNDX
operating system, and specific operating instructions for the ISIS-IV user of the
Series IV Development System.

This manual assumes you have read the Intellec Series IV Microcomputer Develop-
ment System Overview, 121752, and the Intellec Series IV Operating and
Programming Guide, 121753.

This manual contains six chapters and five appendixes:
» Chapter 1, “iNDX Overview,” briefly describes the iNDX operating system of
the Series IV, and introduces you to ISIS-IV, a subsystem of iNDX.

» Chapter 2, “File Creation and Management,” describes iNDX files, some console
user aids, and the ISIS-IV commands necessary to create, revise, and manage
files.

» Chapter 3, “Use of ISIS-IV by Other Programs,” describes the ISIS-IV system
calls available for writing programs. The memory organization and allocation of
Intellec, and parameters to system service routines are discussed.

¢ Chapter 4, “MON 85,” describes the function and commands of the ISIS
Executive Unit Monitor (MON 835).

» Chapter 5, “Interrupt Processing,” describes the levels, the acceptance, and the
removal of interrupts on the Series I'V.

+ Chapter 6, “ISIS-1V Error Codes and Messages,” describes the processing and
debugging of ISIS-IV errors. It also lists and explains all ISIS-IV error messages
and indicates appropriate corrective action.

* Appendix A, “Summary of Error Messages,” lists the error codes and messages
issued by ISIS-IV and some non-resident system routines.

* Appendix B, “Summary of ISIS-IV Command Syntax,” lists the ISIS-1V
commands and syntax.

* Appendix C, “Monitor Command Summary,” lists the commands and syntax for
the ISIS Execution Unit Monitor (MON 85).

* Appendix D, “ASCII Codes,” provides an ASCII Code list.

* Appendix E, ‘““Hexadecimal-Decimal Conversion,” provides a table for
hexadecimal to decimal and decimal to hexadecimal conversion.

Related Publications

For further information on the Series IV Development System, refer to the following
publications:

» Intellec Series IV Microcomputer Development System Overview, order number
121752

» Intellec Series IV Operating and Programming Guide, order number 121753
e Intellec Series IV Pocket Reference, order number 121760

» Intellec Series IV ISIS-1V Pocket Reference, order number 121890

e DEBUG-88 User’s Guide, order number 121758

Preface Series IV ISIS-IV

e jAPX 88 Book, order number 210200

e [APX 86,88 User’s Manual, order number 210201

e [APX 86,88 Family Utilities User’s Guide, order number 121616
o MCS-80/85 Family User’s Manual, order number 121506

o MCS-80/85 Utilities User’'s Guide for 8080/8085-Based Development Systems,
order number 121617

« 8080/8085 Floating-Point Arithmetic Library User’s Manual, order number
9800452

e An Introduction to ASM86, order number 121689
e ASMS86 Macro Assembler Operating Instructions, order number 121628
» ASMS86 Language Reference Manual, order number 121703

For information on the text editor that runs on ISIS, refer to the ISIS-II CREDIT
(CRT-Based Text Editor) User’s Guide, order number 9800902.

For the most complete and up-to-date list of software and hardware documentation,
refer to the current Literature Guide, order number 802800. This publication provides
references to such publications as PL/M-86 programming manuals, ASM80 and
ASM86 manuals, Pascal-80 and Pascal-86 manuals, and FORTRAN-80 manuals.
References to these manuals are also provided in Intellec Series IV Microcomputer
Development System Overview, order number 121752.

Notational Conventions

UPPERCASE Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or
lowercase.

italic Italic indicates a meta symbol that may be replaced with an

item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

directory-name Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

filename Is a valid name for the part of a pathname that names a file.

pathname Is a valid designation for a file; in its entirety, it consists of a

directory and a filename.

pathname1, Are generic labels placed on sample listings where one or more
pathnamez2, ... user-specified pathnames would actually be printed.
Vx.y Is a generic label placed on sample listings where the version

number of the product that produced the listing would
actually be printed.

[1 Brackets indicate optional arguments or parameters.
{ 1} One and only one of the enclosed entries must be selected

unless the field is also surrounded by brackets, in which case
it is optional.

vi

Series IV ISIS-1V

L]

punctuation

<cr)

At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other-
wise noted.

The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated.

The preceding item may be repeated, but each repetition must
be separated by a comma.

Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(PROGA,SRC,*9 SEPT 81‘)

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

Preface

vii

CONTENTS

CHAPTER 1 PAGE
iNDX OVERVIEW
Introductionccoocoviviiioiiciiiee e 1-1
iNDX Operating SYStemccoooveveevvvrrorrenn 1-1
8086,/8088 Execution Modeccooomvurveee.... 1-1
8080/8085 Execution Modecc.ccooovvveurennnn., 1-1
Foreground/Background Modecc.c........... 1-1
Standalone/Network Modeccooovvvverii.. 1-2
iNDX File Structure 1-2
ISIS System Directoryocoooovoveerererorsnn, 1-3
Entering ISIS-IV .o 1-3
Exiting ISIS-IV ..., 1-3
Functions of ISIS-IVcooocoiiiiieeeeeee 1-4
INDX File ACCESS ...ovvvivrrniieceeeeeeeeeeeeeee 1-4
File Creation and Management 1-4
Text EAitingocoovvvevieniiiniieeoeeeeee e 1-4
Use of ISIS-IV by Other Programs 1-4
MON 85 e 1-4
CHAPTER 2
FILE CREATION AND MANAGEMENT
File Characteristicsc..o.covemoveoommomemesoo 2-1
iNDX File Structure 2-1
Filenamesccocoovieioieiimoiionoeeoeeee 2-1
Wild Card Filenames 2-2
File Protectionccc........... 22
File ACCeSS ..oovverernierennn, 2-3
Console User Aidsc..o.......... 2-3
Line Editingcco.ooooievoiieeeeeooeooeeeoe 2-3
The System Console 2-4
Using ISIS-IV Commandscocooovivrovoeo . 24
Program Executionocccoovmeonvooi 2-5
File Maintenanceccoovevooeoereon. 2-5
File EQitingccocoeovevmuiieieiiieeeeeeeeeeoeo 2-5
Code COnversionoo.eeeeereveomeroseeeeseo 2-6
Program Controlcoooooiviiiiioiieeeee 2-6
Command Syntax 2-6
Program Execution Commands 2-6
Filename-Direct Program Execution 2-7
DEBUG — Execute a Prograim Under
the Monitorooooeivoiveevorveneeeeeeeee 2-7
EXIT — Terminate ISIS-IV Execution 2-9
SUBMIT — Take Console Commands from a
Disk Fileoo.ocommimririiriieieeeeeeeee 2-10
File Control Commandscooocovmmroremori 2-12
ACCESS — List or Change Access Rights
of @aFile ...ooooovieueeiiiieieeeeeeeeee 2-12
ASSIGN — Assign a Directory Identifier 2-14
ATTRIB — List or Change the Write-Protect
Status of @ Filecooevveveeuveevereenreee . 2-17
COPY — Copy a File ..o 2-19
CREATE — Create a Directoryco............. 2-23
DELETE — Delete a Fileocooovovvovveoreo . 2-25

PAGE
DIR — List @ Dir€Ctorycooooveooveeeoevovon 2-27
REMOVE — Delete a Directoryoun........ 2-29
RENAME — Rename a Filecococovvvioin., 2-31
SPACE — Display the Volume Information of
the Specified Filec.cocooovmvvvieee, 2-33
VERS — Display ISIS Utility Program Version
NUMDETS ..o 2-34
WHO — Display the Name of the User 2-35
Code Conversion Commandsoo.ocovvovoverovon 2-36
HEXOBJ — Convert Hexadecimal Code to
Absolute Object Codeooorveeeeerere, 2-36
OBJHEX — Convert ISIS-II, III(N), and IV
Absolute Object Code to Hexadecimal
Code oo, 2-37
CHAPTER 3
USE OF ISIS-IV BY OTHER PROGRAMS
Memory Organization and Allocation 3-1
Interrupt Vectors 3-1
The Kernel ..o 32
Input and Output to Filescocooovvovervieerinn . 32
BUffers ... 3-3
Computing Program Base Address w33
Program Areacocooiiiiieieieeeeeeeeeeee 33
Monitor Areaccoeeeereiiuiiniieeeeeeeeeee e, 34
Base Address of Your Program 34
General Parameter Discussioncc.oooooovevnon.. 3-4
ATGUMENLS ..ot 3-4
ConneCtionsc.euvveeueeeceeeeieeieseeeeeeeeeeeeee 3-5
Input/Output Parameters 3-5
TEIMS oo 3-5
Line-Edited Input Filesocoooovovivvmnoo 3-6
Terminating a Lineco.ccooovoioeere 3-6
Reading from the Line-Edit Buffer 3-6
Editing Charactersc.coccooooveveeveomemeieernn, 3-7
Reading a Command Lineococooovvivviii . 3-7
Summary of System Callsccooovevrerrrerrernn. 3-8
System Call Syntax and Usageccocooovrvvreerevnnn.. 3-9
PL/M Calls ..o 39
Assembler Language Callsccoooovvvvrnnnn... 3-9
System Calls Cautionsccocovevevrvreerrnn, 3-9
File Input/Output Callsccocvvevereerereerir 3-10
CLOSE — Terminate Input/Output Operations
onaFile ..., 3-11
OPEN — Initialize File for Input/Output
OPperationsceceuevevivioviriveeeseeeeereenn, 3-13
READ — Transfer Data from File to Memory 3-16
RESCAN — Position MARKER to
Beginning of Lineccccoouvveeeiiveiiieen, 3-18
SEEK — Position File Markercoooocoevnoo.... 3-20
SPATH — Obtain File Information 323

WRITE — Transfer Data from Memory to File ... 3-26

ix

Contents
PAGE
Directory Maintenanceccoevevceeiienirenienns 3-28
ATTRIB — Change the Write-Protect Status
of @ File .o 3-29
DELETE — Delete a File from the Directory 3-31
GETATT — Obtain Write-Protect Information ... 3-33
GETD — Obtain File Device Directory
Informationc.ccceeveceermmncecennieiecninieeene 3-35
RENAME — Change a Filenamecc......... 3-38
Console Device Assignment and Error Message
OULPUL oottt 3-40
CONSOL — Change Console Device 341
ERROR — Output Error Message on
System Consoleccoecvrviiienniiiniiiniiie s 3-43
WHOCON — Determine File Assigned as
System Consolecooeemieeriiieiiciicnieennnne 3-45
Program EXecutionccceceeceemivivncicniinnneinnenenienenes 3-47
EXIT — Terminate the Program and Return
10 ISIS-IV e 3-48
LOAD — Load a File of Executable Code
and Transfer Controlccccovevviiniiccnnennns 3-49
CHAPTER 4
MON 85
Monitor Usage and Activationccccevevviiecnnns 4-1
Command Line Editingccccooeeevvevnieiinnninicnnns 4-1
Entering Monitor Commandsccoooceevveuinicnnnnnn 4-1
Command Syntax 4-2
Memory Addresses 4-2
ReGISterscoccevmmmmrvieivnienn 4-3
Repeat Factorsccceeeeeee 4-3
Count FACLOrS ...eeeveeeiiriiiriiecree et 4-3
Range Specificationsceccvrmncrcmninienininiinnnnns 4-4
Command-Line Commentingcccoccveeeciencnnnnne 4-4
E1ror MeSSagesccccccveeueernienennineeeenrinnesesnesiossennens 4-4
Monitor Commandscccoooeiiinininieieeeces 4-4
Program Execution Commandsccccovvvercnvcnnnn. 4-5
G — Execute Commandccccceceveviicceicenenninnnn. 4-6
N — Single Step Commandcccceceverveeercrucnnne. 4-7
Memory Control Commands
C — Compare Command
D — Display Commandcccceeeeerneimcrenrennenne
F — Find Command
M — Move Commandc.ccoceeeemerrnercerccineennenns
S — Substitute Command
Register Commandccoocceemrmmncernereneiiececenne
X — Examine Register Commandcccc....c. 4-15

Series IV ISIS-IV

PAGE
Utility Commandc.coceeveeeveereenenreeeecreerercneseerenneens 4-15
P — Print Value Commandcccovevverrveenencnene 4-16
MON 85 Programmatic Interfacesccccccocereunnnc. 4-17
Monitor 1/0 Interface Routines
CI — Console Input Routine
CO — Console Output Routineccoevvvvenievnnns 4-20
IOCDR2 — Keyboard Interrupt Control 4-21
System Status Routinesccocecvecrvcneniiencninccnnns. 4-22
CSTS — Console Status Routinec.ccoeeerveennne 4-22
MEMCK — Memory Checkccccoevinevvncennccncnne 4-23
CHAPTER 5
INTERRUPT PROCESSING
Interrupt Prioritiesccocomeevceevniincivceinieneccccnnens 5-1
Interrupt Mask Registerccoovevcvenvvcinvccncnnncncn. 5-1
Interrupt Mask Register Initialization 5-2
Interrupt Acceptancecoccoceeiinicicncncnecnienne 5-2
Interrupt Removalccccovviiveninicicncninnccecicnee, 5-2
CHAPTER 6
ERROR CODES AND MESSAGES
Error Processing and Debuggingccccceevvernnnee. 6-1
ISIS-IV Error Message Codescccovueeneveencrincnnne 6-3
Resident Routine Error Message Codes
(8080/8085 Mode)occovirececccieiiiiiieaae 6-3
Non-Resident Routine Error Message Codes
(8080/8085 ModE)ccoeevrivirerirenirceirirenrnninnes 6-5
APPENDIX A

SUMMARY OF ERROR MESSAGES
Resident Routine Error Message Codes

(8080/8085 Mode)ccoouvviiiniiriiiincineneee A-1
Non-Resident Routine Error Message Codes

(8080/8085 Mode)ccceeverinniriirinicieenea A-6

APPENDIX B
COMMAND SYNTAX SUMMARY

APPENDIX C
MONITOR COMMAND SUMMARY

APPENDIX D
ASCII CODES

APPENDIX E
HEXADECIMAL-DECIMAL CONVERSION

Series IV ISIS-IV

TABLES

TABLE TITLE

2-1 iNDX Access Rightsccccoovvevvveieenn.

2-2 Write-Protect Status of a File

2-3 Directory Access Rights

3-1 Console Assignment by ISIS ...

32 Editing Keyscooeeemeeereeeecreeiccce e

33 Changing Write-Protect Status

4-1 Register Mnemonics for MON 85 4-3
FIGURES

FIGURE TITLE PAGE
1-1 Sample iNDX File Structure 1-2
2-1 Hierarchical File Structure 2-30
3-1 Intellec Memory Organization 31
32 File Input-Output System Calls 3-10

Contents

TABLE TITLE PAGE
A-1 Non-Fatal Error Numbers Returned by

System Callsooccoovveerrieiiircean A-7
A-2 Fatal Errors Issued by System Calls A-7
D-1 ASCII Code List ...covevevererrerrineeereeann.. D-1
D-2 ASCII Code Definitioncccovuunn....... D-3
E-1 Hexadecimal-Decimal Conversion E-1
FIGURE TITLE PAGE
33 Directory Maintenance System Calls 3-28
34 Console Control System Calls 3-40
3-5 Program Execution System Calls 3-47

Xi

CHAPTER 1
iINDX OVERVIEW

Introduction

This chapter provides an overview of iNDX (Intel Network Distributed Executive
Operating System) under which the Series IV development system runs. iNDX
provides you with dual execution modes (8080/8085 and 8086/8088) on the Series
IV Development System. To execute under the 8085 mode you invoke ISIS-IV, a
subsystem of the iINDX operating system. This chapter introduces you to the features
of ISIS-IV, the 8080/8085 user interface on the Series IV,

This manual assumes you have read the Intellec Series IV Microcomputer Develop-
ment System Overview, 121752, and the Intellec Series IV Operating and
Programming Guide, 121753.

iNDX Operating System

The iNDX operating system provides you, as a Series IV user, with the following
capabilities:

» File and device management
* Program execution control

+ Library of system interfaces accessible via ISIS-1V

8086 /8088 Execution Mode

The host execution mode of the Series IV is 8086/8088. Under this mode of iNDX
you can perform iAPX86/88 operations. Refer to the Intellec Series IV Operating
and Programming Guide, 121753, for information on 8086/8088 execution on a
Series IV system.

8080/8085 Execution Mode

ISIS-IV is the subsystem of iNDX that provides you with the environment to execute
80/85 operations. ISIS-IV provides you with a convenient environment for source
editing, assembly/compilation, linking, locating, debugging, and simulation.

Foreground/Background Mode

The iNDX operating system provides you, as the Series [V user, with the capacity of
foreground /background processing. All jobs that are user-interactive are foreground
jobs (e.g., editing or debugging). The foreground job is explicitly activated when you
log on to the system; the job ends when you log off.

Background jobs are executed simultaneously with foreground jobs. They differ only
in the fact that background jobs are not capable of user interaction. ISIS-IV will not
take a background command, but will operate in the background mode (e.g., SUBMIT
command).

1-1

iNDX Overview

Series IV ISIS-IV

Standalone/Network Mode

The iNDX operating system has been specifically designed to function similarly in a
standalone and in a network mode. ISIS-IV, a subsystem of iNDX, executes in either
mode of operation on the Series IV Development System.

The 8086 /8088 host execution mode of iNDX provides the environment for perform-
ing network operations (e.g., importing and exporting jobs). Refer to the Intellec
Series IV Operating and Programming Guide, 121753, for more details.

iNDX File Structure

The iNDX operating system employs a hierarchical file system that enables you to
group your data logically. The base of the file system is the logical system root that
connects the volumes within the file system. The root stores directory information for
all the volumes. The root is the highest level directory in the distributed file system
of iNDX. Each volume represents one physical mass storage device (e.g., a Winches-
ter device).

Volumes are further divided into files. Files can be either directory files, which consist
of directories and data, or data files, which consist of data only (see figure 1-1). Each
volume can contain as many files (directory or data) as available storage will allow.

LOGICAL
SYSTEM
ROOT

T~

ol

VOLUMES
(PHYSICAL
DEVICES)
VOL1.A PROJ.B PROJ.C
FILES

(BOTH DIRECTORY
& DATA FILES)

ISIS.LM

COPY

ASSIGN

Figure 1-1. Sample iNDX File Structure

‘ JBOOK.DIR > (ELLEN.DIR ’
SYS.DIR ISIS.SYS
FILE4.EXT
FILE1.EXT FILE2.EXT FILE3EXT |e—o
EXIT 1SIS.CLI SIS
() - omecTony FLE

[-oamaruee

121880-1

1-2

Series IV ISIS-IV

The iNDX file system provides you with a file protection feature. For details on this
file protection feature, iNDX file access rights, refer to Chapter 2.

ISIS System Directory

Basic ISIS-1V system files must be present for the ISIS program to be invoked. These
basic ISIS-IV system files (e.g., ISIS, ISIS.LM, ISIS.CLI, and EXIT) are provided
to you in a directory labeled ISIS.SYS. This directory also contains file maintenance
programs (e.g., COPY, DELETE, DIR).

The ISIS-IV system directory, ISIS.SYS, can be within a volume root directory, or
within another directory in the iNDX hierarchical file structure (see figure 1-1).

Entering ISIS-IV

You invoke ISIS-IV by executing the program ISIS. The ISIS program, found in the
ISIS.SYS directory, loads in ISIS.LM and ISIS.CLI. The ISIS program must have
access to these two files located in the ISIS system directory.

ISIS must have the logical name O defined for the ISIS system directory. You can
use the Series [V LNAME command to make this definition. If the logical name 0
is not defined for its directory, ISIS will try to define the logical name for you.
However, ISIS will look only in the volume root directory for the ISIS system
directory.

Therefore, when ISIS.SYS directory is located in the volume root directory of the
system, the ISIS program can be invoked by identifying it by its fully qualified
pathname. For instance,

b/ volume root /1S1S.SYS/ISIS «<cr>

When ISIS-IV is invoked, ISIS.SYS becomes the system directory, :FO:. See the
ASSIGN command in Chapter 2 for more information on directory identifiers.

The Series IV LNAME command enables you to access the ISIS program whether
ISIS.SYS is located in the volume root directory or another directory. For instance,

This ISIS command may be given interactively or from a SUBMIT file. Refer to the
Intellec Series IV Operating and Programming Guide, 121753, for information on
the LOGON command.

Exiting ISIS-IV

You may exit ISIS-IV in two ways:

* Use the ISIS-IV EXIT command to return control to the host 8086/8088 mode
of the iNDX operating system.

* Press the break key, located directly above the cursor control keys, and answer
the displayed question when prompted. This method of exiting is useful if for
some reason the EXIT program cannot be used—for instance, if it is accidently
deleted.

iINDX Overview

iNDX Overview Series IV ISIS-IV

Functions of ISIS-IV
iNDX File Access

One of the major functions of ISIS-IV is to enable you, as an ISIS user of a Series
IV system, to access iNDX files. The ISIS ASSIGN command allows you to gain
access to files in the distributed file system of iNDX. You access local (private) and
remote (public) iNDX files with the same procedure. You do not have to know where
the iNDX file is located physically. If you have the proper access rights to the file,
you use the same commands to access a local file of a standalone system, a local file
of a network workstation, or a remote file on a mass storage device of the network.
Refer to the File Access section and the ASSIGN command in Chapter 2 for more
details.

File Creation and Management

You can use ISIS-IV to create, revise, and manage files. These files can be either
program files that are generated by an assembler or compiler, or files that are created
through the use of the Text Editor. Refer to Chapter 2 for more details on file creation
and management.

Text Editing

CREDIT is the screen-oriented editor that is supported by ISIS-IV on the Series IV
system. CREDIT lets you display a file, move the cursor to any point in the text,
make insertions, deletions, or other corrections, and see the results of the changes
immediately. You can page forward or backward through the file and correct
misspellings by simply positioning the cursor at the incorrect character and typing
the correct one.

CREDIT also has a set of commands for command-mode editing. These include the
more complex editing functions such as move, copy, command iterations, macro
definition, and external file operations.

CREDIT also includes a Help command that displays the format and a brief
functional description of each command. See the ISIS-II CREDIT CRT-Based Text
Editor User’s Guide, 9800902, for details on CREDIT.

Use of ISIS-IV by Other Programs

You can write your own Series IV programs that include ISIS-IV system calls. See
Chapter 3 for more details.

MON 85

ISIS-1V also supports the ISIS Execution Unit Monitor (MON 85). MON 85 provides
you with the basic utility functions for debugging 8080/8085-based programs by
allowing you to

» Execute, single step, and breakpoint a program
» Display, modify, and scan memory

o Input from and output to I/O ports

» Perform arithmetic operations

¢ Disassemble instructions

1-4

CHAPTER 2
FILE CREATION AND MANAGEMENT

This chapter describes how to use ISIS-IV to create, revise, and manage files. In most
cases the files will be user files generated through the use of an assembler or compi-
ler. However, ISIS-IV can also create data files through the use of Text Editor
commands that are designed to add, delete, and replace characters or lines as displayed
on the system console.

This chapter begins with a description of the types of files that you will be manipu-
lating. Next, the various aids that are available to you as a console user are explained.
These aids are operating hints or simply descriptions of system characteristics that
should be understood before attempting more complex tasks. The chapter then goes
on to explain the use of ISIS-IV commands that allow you to create, revise, or delete
files and/or references to files within a directory. CREDIT CRT-Based Text Editor
is described in the ISIS-II CREDIT CRT-Based Text Editor User’s Guide, 9800902.

File Characteristics

Naming, protecting, and accessing of files by an ISIS-IV user are described for you
in the following sections.

iNDX File Structure

The iNDX file structure is a hierarchical (or inverted tree) file structure. Volumes
that are established during the System Generation process can contain directory or
data files. Each volume can contain as many files (directory or data) as available
storage will allow. A directory file may contain other directory files or data files.
Data files contain only data; a data file cannot contain a directory file (see
figure 1-1).

Filenames

Every file is identified by a filename (e.g., FILE3.EXT) that can have two parts: a
filename and an optional extension, separated by a period. The filename is a sequence
of from one to six ASCII characters; an extension is a sequence of from one to three
ASCII characters or a null extension with no separator-—*“."".

You can use the extension of the filename to reflect the type of data in the file. It is
important that you know the kind of data in a file so you can know what can be done
with the file. For example, source programs could have the extension .SRC (or .ASM).

The object code produced by the translators could have the extension .OBJ; in fact,
if you do not supply a name for the output file, the translators use the name of the
input file with the extension .OBJ.

Many ISIS-IV programs in addition to the translators assign a specific extension on
the input file if you do not supply it. One program, SUBMIT, assumes the extension
.CSD on the input file, builds a . TMP output file, and then reassigns the console to
the .TMP file. Other ISIS-IV programs create temporary working files with this TMP
extension (e.g., EDIT.TMP, LOCATE.TMP, LINK.TMP). This saves you time
entering commands but can lead to misunderstandings if you are not aware of what
the program does.

File Creation and Management

22

Filenames ending in .TMP that are created while you are operating in the 8080,/8085
execution mode are mapped into Series IV (8086/8088 execution mode) filenames.
This mapping of temporary filenames is performed to prevent SUBMIT, a compiler,
or an editor from conflicting on temporary files when the programs are being executed
on two network workstations.

Temporary files are renamed or deleted usually before the program that created the
temporary files exits. However, if the program is aborted, the temporary file will
remain. To enable another user at your workstation to re-use the same temporary
filename without receiving access right violation messages, ISIS-IV automatically
grants all users (WORLD) read, write, and delete access rights to the temporary file.
See the following section on file protection for more information on access rights.

Wild Card Filenames

Some ISIS-IV commands allow you to specify filenames using a wild card construct.
This means you can use an asterisk (*) or a question mark (?) to replace some or all
of the characters in a name or extension (see the examples that follow).

1. The following special characters mean match anything when searching a
directory for a filename:

name.* Match any filename with name and any extension or without an
extension.

* extension Match any filename with extension and any name.
* ¥ Match any filename.

2. The asterisk can also specify a wild card match for the remainder of the name or
extension but not for initial characters. For example,

AB*HEX means match any filename with AB as the first two characters of the
name and HEX as the extension. This example would match ABC.HEX,
ABXYZ HEX, and AB.HEX.

*B.HEX is illegal since * must follow initial alphanumeric characters.

*.BAK means match any filename with a .BAK extension. This example would
match A.BAK, AB.BAK, or ABC.BAK.

3. The question mark specifies a single character for a wild card match. For example,

A?B.HEX means match any filename with A and B as the first and third charac-
ters of a three-character name and HEX as the extension. This example would
match ACB.HEX, AXB.HEX, and AMB.HEX.

A?2.* means match any filename with A as the first character of a three-
character name and any extension.

4. :device: cannot include a wild card character.

File Protection

iNDX provides file access rights to protect your files from accidental addressing and
destruction. All files in the hierarchical file structure have access rights that can be
controlled with the ACCESS command. Data file access rights are read, write, and
delete a file. Directory file access rights are list, add, and delete a directory.

The ATTRIB command allows you to control the write-protect status of a file. The
ISIS-IV ATTRIB command maps the write-protect attribute of a file into the write
or add access rights of INDX. See the ATTRIB command in this chapter for further
details.

Series IV ISIS-IV

Series IV ISIS-IV File Creation and Management

File Access

The ISIS-IV ASSIGN command enables you to access both local and remote iNDX
files when executing in the 8080/8085 mode. You do not have direct access as an
ISIS-1V user to iNDX files. To access an iNDX file you must identify it by its fully
qualified pathname. To identify a target data file by its fully qualified pathname, you
must identify every volume and directory from the logical system root to the data
file. For example, the fully qualified pathname for the data file FILE3.EXT is
/PROJ.B/JBOOK.DIR /FILE3.EXT. The slash (/) acts as a delimiter between the
names of the volume and the directories in the path along the “branches” of the
“tree.”

The ISIS-IV ASSIGN command allows you to use directory identifiers to represent
the pathnames. For example, to assign a directory identifier to the fully qualified
pathname of the directory that contains the data file FILE3.EXT you would type

/PROJ.B/JBOOK.DIR «<cr>

You can now access this data file FILE3.EXT by identifying it by its iNDX pathname
—F1:FILE3.EXT.

These directory identifier assignments that you create while operating under the
ISIS-IV mode are not erased if you transfer to the host mode (8086/8088) of
Series IV. However, logging off will delete the directory identifier assignments.

Console User Aids

In manipulating files, as an ISIS-IV user, various console aids are available to you.
Line Editing

Prior to line termination, you can revise or delete the buffer contents by using special
non-printable editing characters and character combinations. These editing charac-
ters are not normally stored in the line-editing buffer but rather provide control over
the buffer contents. The editing characters are

RUBOUT Deletes the preceding character. Repeated usage is allowed. (On
systems using a teletypewriter, RUBOUT echoes the deleted
character to the teletypewriter.)

CONTROL-P Used before another editing character (including itself) to allow
entry of the editing character into the line editing buffer.

CONTROL-R Displays the current line entered.

CONTROL-X Deletes the entire contents of the line entered, and displays a
number sign (#) followed by a carriage return and a line feed.

CONTROL-Z Enters an end of file, deletes the contents of the line editing buffer,
and returns O bytes of data to the caller.

NOTE

The following characters are not editing characters, but they affect terminal
output:

CONTROL-S Suspends terminal output and delays program execution.

CONTROL-Q Resumes terminal output after the CONTROL-S
command is given.

2-3

File Creation and Management

The line-editing facility can be applied to files other than the console input device.
There is a complete description of line-editing in the Line-Editied Input Files section,
Chapter 3.

The System Console

The console, whatever device it is assigned to, is always the source of system
commands. The SUBMIT command directs ISIS-IV to take commands from a file.
The SUBMIT file can return control to the initial system console by means of a
CONTROL-E. The console can also use CONTROL-E to return control to the
SUBMIT file.

When CONTROL-E is input to ISIS-IV as part of the command line either from
the SUBMIT file or the console keyboard, CONTROL.-E is echoed but is not entered
in the input buffer. To enter a CONTROL-E into the input buffer and subsequently
into a SUBMIT file, the CONTROL-E must be preceded by CONTROL-P, in which
case CONTROL-E is entered as a literal.

Under ISIS-IV the files :CI: and :CO: are pseudonyms for the devices serving as
console input and output. The :CI: file is always the source of system commands. The
:CO: file receives console output such as the echo of a command. These two files are
always open. However, it is not an error for a program to issue an OPEN system call
for either of these files. Neither :CI: or :CO: count as one of the six files allowed open
simultaneously by ISIS-IV.

When ISIS-1V is invoked, it makes assignments for :CI: and :CO:. The device that is
assigned as console input and console output by ISIS is dependent upon the type of
invocation.

It is impossible for an ISIS program to read from the keyboard (:VI:), or to print to
the screen (:VO:) when it is being executed under background or import mode.

You may change the device assignments for console input and console output by
using

» The CONSOL system call

¢ Your own program

e The SUBMIT program

¢ The Enhanced Command Line Interpreter (ECLI)

» The CONSOL tool box program

Using ISIS-IV Commands

The file management capabilities of ISIS-IV can be controlled in several ways:
* Direct entry of ISIS-IV commands at a console keyboard
» Issuance of ISIS-IV system calls by a program

¢ Entry of console commands into a file by using the Text Editor. Execution of this
file via the SUBMIT command causes ISIS-IV to respond as if it were receiving
commands directly from you. The advantages are that you need not be present
when the submitted job is performed, and you need not re-enter the commands
each time the job is submitted.

The following text defines only those commands input by you at the console. The
definitions include a summary of the preparation of the file created by the command.
The use of system calls is described in Chapter 3.

Series IV ISIS-IV

Series IV ISIS-IV File Creation and Management

ISIS-1V console commands perform three basic tasks:
e Executes programs

e Creates, deletes, and revises files and directories
+ Converts object file formats

The ISIS-IV console commands associated with each of the preceding tasks is
identified in the following five sections.

Program Execution

filename Execute the program named filename.
DEBUG Load a program and give control to the Monitor.
EXIT Terminate ISIS-IV execution and return control to the host

execution mode (8086/8088).

SUBMIT Create a file to act as console input.

File Maintenance

ACCESS List or change the iINDX access rights of a file.

ASSIGN Assign a directory identifier to a directory pathname.

ATTRIB List or change the write-protect status of a file.

COPY Copy a file from one directory to another.

CREATE Create a new directory in the iNDX file structure.

DELETE Remove references to a file from the directory and free storage

space associated with that file.

DIR Output the names of and information about the files listed within
the directory.

REMOVE Delete an empty directory.

RENAME Change the name of a file.

SPACE Display volume information of the specified volume.
VERS Display ISIS utility program version numbers.

WHO Display the name of the user who is currently logged on.

File Editing
CREDIT Create and modify files.

The text editor subcommands are described in the ISIS-II CREDIT (CRT-Based
Editor) User’s Guide, 9800902.

File Creation and Management

2-6

Code Conversion

HEXOBJ Convert a program from hexadecimal to object module format.

OBJHEX Convert a program from object module to hexadecimal format.

Program Control

LIB Create and control program libraries.
LINK Combine program files and resolve external addressing.
LOCATE Convert relocatable object to absolute addresses for execution.

Series IV ISIS-1V

Refer to the MCS-80/85 Utilities User’s Guide for 8080/8085-Based Development

Systems, 121617, for information on program control commands.

Command Syntax
The general syntax of an ISIS-IV console command is

command parameters<cr >

where
command is the name of a program,
parameters are one or more items required by the command. When

entering more than one parameter, separate them with
command or blank spaces unless otherwise noted under the
individual commands. When a parameter consists of

switches, separate them by spaces, not by commas.

In most cases, a command executes when the carriage return is encountered. Any

exceptions are noted under the individual commands.

NOTE

Some of the ISIS-IV comr:iands (8050/8085 mode) have the same name and
a similar function as the Series IV commands (8086/8088 mode). However,
the syntax of the commands is different. You must use the correct command
syntax for the corresponding execution mode.

Program Execution Commands

You can call a program for direct execution, in which case you must respond to any
queries from the program and to any errors encountered during program execution.
You can also call for execution of the program under the Monitor, in which case the
debugging provisions of the Monitor aid you in identifying and locating program
errors. Finally, you can submit the program as a job to be handled by the system
without any interaction on your part. In this latter case you must prepare a file that
interacts with the program in the same manner as you would during direct execution

of the program.

Series IV ISIS-IV File Creation and Management

Filename — Direct Program Execution

Because ISIS-IV commands (except DEBUG) are actually the names of files
containing executable programs, simply enter the name of the file for program execu-
tion. You may also include parameters with the filename to provide control over the
program to be executed. However, the program must be written to accept these
parameters and must read the parameters from the line-editing buffer. Refer to
Chapter 3 for more information on the line editing of command lines.

DEBUG — Execute a Program Under the Monitor
Syntax

DEBUG [[:Fn:lfilenamel <cr>

where
:Fm: is the directory identifier of the directory where the file,
filename, resides. The value n is an integer between 0 and
9 inclusive. If :Fn: is not specified, :FO: is the default.
filename is any ISIS-IV command file or the filename of any
executable program. The program must be an absolute
object module. If filename is omitted, control transfers to
the Monitor, but no program is loaded.
Description

When your executable 8080/8085 program is loaded, the Monitor displays the
contents of the program counter and prompts for a command with a period (.) on the
system console.

Begin execution of the program by entering the Monitor G command. You may specify
a starting address (entry point address) and up to four breakpoint addresses in the G
command.

When execution of your program is suspended at the breakpoint address, use other
Monitor commands to inspect and/or change the contents of memory and/or regis-
ters. The Monitor N command will single step your program. Continue program
execution from the point of suspension with another G command.

You can return to ISIS-IV from the debug mode and reset the debug switch by
entering the Monitor G8 command.

Examples

1. This example shows a successful attempt to execute a program named LIST in
debug mode at a load address of 37EI:

2-7

File Creation and Management

2-8

This example executes the same program in debug mode, suspends execution at
the specified breakpoint address, and then returns to ISIS-IV with a G8 command
instead of letting the program issue an EXIT system call:

QDEBUG LIST FILE.TXT<cr>
BREAK at 37Ef

NG, 36A0<cr>

(Use Monitor commands to examine registers and memory when the breakpoint
37E1 is reached.)

NG8<¢cr>)
iNDX-S41 (Vx.y) ISIS-IV Vxy

This example transfers control to the Monitor with no program loaded. Enter the
Monitor G command with no address to return control to ISIS-IV.

BDEBUG<cr

#0008

Series IV ISIS-IV

Series IV ISIS-IV File Creation and Management

EXlT — Terminate ISIS-IV Execution

Syntax

EXIT <cr>

Description

The EXIT command terminates ISIS-I'V execution. Control transfers from the 8080/
8085 mode of ISIS to the 8086 /8088 host execution mode of Series IV. The appear-
ance of the iINDX prompt (>) indicates that control has been returned to the host
execution mode.

NOTE

You may also terminate ISIS-IV execution by pressing the break key and
then selecting the appropriate displayed option.

All of the directory identifier assignments that were made in ISIS will remain
after the EXIT command is executed.

2-9

File Creation and Management Series IV ISIS-IV

SUBM'T — Take Console Commands from a Disk File

Syntax
SUBMIT [:Fn:]filenamel (parameterl , . . .1)1<¢cr>
where
:Fn: is the directory identifier of the directory or drive where
the file resides.
filename is the name (and extension, if any) of the file that contains

the command sequence definition. If the extension is
omitted, SUBMIT assumes the default extension .CSD.

parameter is an actual value that is to replace a formal parameter in
the command sequence definition file. The maximum
number of parameters allowed is ten. If you omit a param-
eter from the SUBMIT list, enter a comma in its place.
Null parameters are allowed.

A parameter is a character string of up to 31 characters. Any ASCII character from
20H to 7AH is legal, except a comma, space, or right parenthesis. If a parameter
contains a comma, space, or right parenthesis, enclose the parameter in apostrophes.
To use an apostrophe inside a parameter with an apostrophe, use two apostrophes in
its place. For example,

‘TITLEC**QUOTE (’’) SEARCH ROUTINE?’)’
is used in the final command as

TITLEC*QUOTE (') SEARCH ROUTINE’)

Description

The SUBMIT command causes ISIS-IV to take its commands from a file rather than
from the console.

SUBMIT uses two files:

¢ A command sequence definition (CSD) file that contains the command sequence
definition. You create this file with formal parameters, using the editor.

e A temporary .CSD file that contains the command sequence to be executed.

SUBMIT creates this file with the actual parameters supplied in the SUBMIT
command that replaces the formal parameters. The temporary file has the same
name as the command sequence definition file but with the extension .TMP. Do
not modify this file.

SUBMIT reassigns the console input device to the . TMP file it creates and returns
control to ISIS-IV, which then executes the commands in the .TMP file. The
.TMP file has a final command that restores the console input device to its former
device assignment and deletes the . TMP file.

When creating the CSD file, specify formal parameters by using two characters, %n,
where nis a digit from 0 through 9. You may place formal parameters anywhere in
the CSD file. To enter a percent sign (%) that is not to be interpreted as a formal
parameter, enclose it in single quotes.

Any program—except a LOGON, LOGOFF, or IMPORT (ASSIGN cannot be used
in a nested SUBMIT file)—that reads its commands from :CI: noninteractively can
be executed.

2-10

Series IV ISIS-IV File Creation and Management

The CSD file can also contain commands to the programs being run. Using a
SUBMIT command in a CSD file causes another .TMP file to be created. SUBMIT
commands can be nested to any depth.

A CNTL-E (TE) in a .TMP file switches the console input from the .TMP file to the
initial system console, allowing interactive processing. To return control to the . TMP
file, enter CNTL-E at the console. If control is not returned to the .TMP file, or if

an error occurs after a command sequence has started processing, control returns to
ISIS-IV and the .TMP file is not deleted.

Any program running under SUBMIT must allow two buffers in addition to the open
files and buffers required by the program itself. See the M CS-80/85 Utilities User's
Guide for 8080/8085-Based Development Systems, 121617, for information on how
to determine the base address of your program.

Possible Error Conditions

Do not use LOGON, LOGOFF, ASSIGN, or IMPORT commands in a SUBMIT
file. Including any of these commands in the file causes an error message at the
workstation.

ILLEGAL LOGON WHILE :CI:/:C0: FILE ON NETWORK
or

ILLEGAL LOGOFF WHILE :Cl:/:C0: FILE ON NETWORK

Examples

1. This example shows a PL/M-80 compilation, a LINK, and a LOCATE executed

from a SUBMIT file with two directories. A CNTL-E is entered in the command
sequence definition after the PL/M compilation so you can remove the compiler
disk. When the regular system disk (with LINK and LOCATE) is mounted, you
enter CNTL-E to resume processing.
The file CMPLNK.CSD in drive 1 contains the following command sequence
definition. See the MCS-80/85 Utilities User's Guide for 8080/8085-Based
Development Systems (121617) for an explanation of controls in the PL/M-80
command. The CMPLNK.CSD file contains

PLM80 %0.%1 DEBUG XREF DATE(%2)
TE

LINK %¥0.0BJ,SYSTEM.LIB TO %0.SAT4
PRINT(%0.MP1) MAP

LOCATE %0.SAT PRINTC%0.MP2) MAP

The SUBMIT command entered to compile, link, and locate PROGA.SRC is:

QJSUBMIT :F1:CMPLNK

The command sequence actually executed is shown as it would be echoed on the
console output device:

-PLM80 :F1:PROGA.SRC DEBUG XREF DATE(3 0OCT 81)

ISIS-1IV PL/M-80 COMPILER V3.1
PL/Mm-80 COMPILATION COMPLETE 0 PROGRAM ERRORC(S)

- TE

-LINK :F1:PROGA.OBJ,SYSTEM.LIB TO :F1:PROGA.SAT &
**PRINTC:F1:PROGA.MP1) MAP

-LOCATE :F1:PROGA.SAT PRINTC:F1:PROGA.MP2) MAP
-:FO0:SUBMIT RESTORE :F1:CMPLNK.TMPC:VI:)

2-11

File Creation and Management Series IV ISIS-IV

File Control Commands

The file control commands are those commands that work directly with files and are
not concerned with the type of information within the files. This is in contrast to the
other ISIS-IV console commands that deal with program files specifically.

The file control commands provide for copying or deletion of files and revision or
display of file directory contents.

ACCESS — List or Change Access Rights of a File

Syntax
N . .
ACCESS {pa thname /} filename [switch]<c r >
where
:Fn: is the directory identifier that contains filename. The value
nis an integer between 0 and 9 inclusive. If :Fn: is not
specified, :FO: is assumed.
pathname is a fully qualified pathname.
filename is the name and extension, if any, of the file.
switch for the OWNER ACCESS RIGHT consists of three parts:
the OWNER Identifier, the ACCESS Identifier and the
RIGHT Identifier (see table 2-1).
Description

The ACCESS command lists or changes the Owner or World access rights of a data
or directory file. These switches can be used to protect files from accidental change
or deletion.

Listing Current Access Rights. To list the current access rights of a file, type

:fi1lename.extccr>

Changing Access Rights. To change the access rights of a data file or a directory
file, use the ACCESS command switches. The 24 different switches consist of three
characters typed with no intervening space.

The first character indicates the Owner Rights to be changed—the file owner (Owner)
or the other users (World).

The second character indicates the type of access to be altered. A file has three access
rights: Read, Write, and Delete. A directory also has three access rights: List,
Addentry, and Delete.

The third character indicates the access right as being denied (reset) or granted (set).
A zero (0) indicates the switch is off and the access right is denied. A one (1) indicates
the switch is on and the access right is granted.

After the access rights of a file or a directory are changed, the new access rights are
displayed.

2-12

Series IV ISIS-IV File Creation and Management

Table 2-1. iNDX Access Rights

identifier Options
OWNER O — Owner of the file or directory
W — World or public users
ACCESS Data files:
R — Read a file
W — Write a file

D — Delete a file

Directory files:
L — List a directory
A — Add a directory entry
D — Delete a directory

RIGHT 0 — Deny access right (reset, off)
1 — Grant access right (set, on)

To allow the World to read a file, set the World Read switch ON.

JACCESS FILET.EXT WRT<¢cr>

To allow the public to add a directory, set the World Add switch ON.

HACCESS MYDIR.ALL WAT<cr>

Altering Access Rights of Multiple Files and Directories. The access rights of more
than one file or directory can be changed simultaneously. However, the access rights
of the files must be changed to a common switch. To “turn off”” the Owner Delete
rights to files FILE1.EST, FILE2.EXT, and FILE3.EXT, type

Possible Error Conditions

An error occurs when
* You try to access a file or a directory that does not exist.

* You do not have access rights to change the access characteristics of a file or a
directory.

Examples

1. This example denies the World Add access rights of a file.

MACCESS NEWFIL.EXT WAO<cr>

2. This example grants the Owner Read and Write access rights to any file that
matches in an ISIS wild card search for DAT*.*,

File Creation and Management Series IV ISIS-IV

ASS'GN — Assign a Directory Identifier

Syntax

n
ASSIGN [{:Fn:}TG yl <cr>

where
n is a number 0 to 9. nand :Fn: are directory identifiers. The
directory identifier for the default system drive is :FO:. The
directory :FO: must contain the files ISIS, ISIS.LM,
ISIS.CLI, and EXIT.
y is one of the following:
» A fully qualified directory pathname
¢ The word NULL
Description

The ASSIGN command allows a directory identifier to be mapped into the iNDX
hierarchical file system. ASSIGN enables the ISIS-IV user to access iNDX files with
ISIS file naming conventions. A full understanding of the difference between iNDX
and ISIS file naming conventions is necessary. Refer to the Intellec Series IV
Operating and Programming Guide, 121753, for information on Series [V iNDX file
naming conventions.

Listing Current Assignments. To list current assignments of directory identifiers to
hierarchical directories type

This ASSIGN command generates a listing of all directory identifiers and their current
assignments (see the following example).

DEVICE ASSIGNED TO

:FO: /VOL1.A/1S1S.SYS

tF1: /PROJ.B/JBOOK.DIR

tF2: /VOL1.A/SYS.DIR

t1F3: /VOL1.A/IS1S.SYS/FINISHED.MODS
:Fa: /PROJ.C

:F5: /PROJ.C/ELLEN.DIR

:F6: NULL

tF7: NULL

:F8: NULL

+F9: NULL

In the preceding example VOLI1.A, PROJ.B, and PROJ.C are volume root directo-
ries. The ISIS.SYS and SYS.DIR directories are subdirectories of the volume root
directory VOL1.A. The JBOOK.DIR directory is a subdirectory of the volume root
directory PROJ.B, ELLEN.DIR is a subdirectory of PROJ.C, and FINISHED.MOD
is a subdirectory of ISIS.SYS.

Given the previously-listed assignments, the volume root directories VOL1.A and

PROJ.B are not accessible because they have not yet been defined. The volume root
directory PROJ.C is accessible because :F4: has been currently assigned to it.

2-14

Series IV ISIS-IV File Creation and Management

Changing Directory Identifiers. Use the ASSIGN command with the previously-
mentioned syntax conventions to change the directory identifier assignment(s). For
example, to change the directory identifier assignment of :F1: from the directory
/VOLI1.A/ISIS.SYS to the directory /PROIJ.C, type

NOTE

The directory identifier :FO: should always be assigned to the ISIS system
directory. You can reassign :FO: as long as the new directory has all of the
necessary ISIS system files (e.g., [SIS, ISIS.LM, ISIS.CLI, and EXIT).

You must always use a fully qualified pathname when making directory
identifier assignments.

Defining New Directories. If you need a new directory, use the CREATE command,
and then define this new directory with the ASSIGN command. For example,

Now you can use the directory identifier :F1: to access the NEW.DIR directory.

Examples

1. In the following example the directory identifier :F3: is assigned to :F3:.

Now any reference to :F3: will be the same as referencing :FO:.
2. Use the ASSIGN command to list the current assignments. For example,

BASSIGN <crd

DEVICE ASSIGNED TO

tFO: /VOL1.A/1SIS.SYS
tF1: /PROJ.B/JBODOK.DIR
1F2: /VOL1.A/SYS.DIR

1 F3: /VOL1.A/1S1S5.8YS
1F4: /PROJ.C

tFS: /PROJ.C/ELLEN.DIR
1F6: NULL

tF7: NULL

:F8: NULL

:F9: NULL

3. The following examples an illegal use of an unqualified pathname.

2-15

File Creation and Management Series IV ISIS-IV

The 0 represents :FO: when executing in the 8080/8085 mode, and not /VOL1.A/

ISIS.DIR as it would when executing in the host 8086/8088 mode of the iINDX
operating system.

NOTE

The directory identifier assignments that you make, as an ISIS-IV user,
are not deleted when you transfer to the 8086/8088 execution mode.
(The assignments remain after the EXIT command is executed.)
However, logging off will delete the directory identifier assignments.

2-16

Series IV ISIS-IV File Creation and Management

ATTRIB — List or Change the Write-Protect Status of a File

Syntax

ATTRIB [:Fn: filename I attriblistl [Q1<¢cr>

where
:Fn: is the directory identifier of the directory where the file
resides.
filename is a file whose write-protect status is to be changed or
displayed. The wild card construction can be used to change
and/or display the write-protect status of a group of files.
attriblist is one or more of the following:

WO or W1 Resets (WO0) or sets (W1) the write-protect attribute of a
local or remote file. When set, the file cannot be opened
for output or update, and cannot be deleted or renamed.

Q Specifies query mode operation.

If two values of the write-protect attribute are specified—for example, both

W0 and W1—the one rightmost in the command takes precedence.

Description

The ATTRIB command changes and/or displays the write-protect status of a local
or a remote file. ATTRIB allows you to change the write-protect status of a file by
mapping this attribute into the iNDX access rights (see table 2-2).

When you specify the Q switch, ATTRIB displays the following messages before
changing the write-protect status of a file.

filename, MODIFY ATTRIBUTE?

Type a Y or y to modify the write-protect status of the file. Any other response causes
ATTRIB to leave the write-protect attribute unchanged for the specified file and to
go on to the next file in the group. When attribute for a file has been changed, the
current write-protect status for the file is displayed.

If a nonexistent file is specified, ATTRIB displays

filename, NO SUCH FILE

If a non-disk file is specified, ATTRIB displays

filename, NON-DISK DEVICE

Possible Error Conditions

An error occurs when
» The file does not exist.
e The directories are not assigned.

2-17

File Creation and Management Series IV ISIS-1V

Table 2-2. Write-Protect Status of a File

Operation Action
W1 — Set write-protect on local files Deny WORLD WRITE
Deny WORLD DELETE
W1 — Set write-protect on remote files Deny WORLD WRITE
Deny WORLD DELETE
Deny OWNER WRITE

Deny OWNER DELETE

W0 — Reset write-protect on local files Grant WORLD WRITE
Grant WORLD DELETE

WO — Reset write-protect on remote files Grant OWNER WRITE
Grant OWNER DELETE

Examples

1. This example changes the write-protect attribute of a group of files.

JATTRIE PROGA.*

FILE CURRENT ATTRIBUTES
:FO:PROGA.SCR W
tFO0:PROGA.OBJ W

2-18

Series IV ISIS-IV

COPY — Copy a File

Syntax

[:Fn: [outfile]

COPY [:Fn:linfile [,...] TG{:deVice:

} [switches] <cr)

where

:Fn: refers to the directory identifier of the directory where the
file resides.

infile is a file (or group of files when using the wild card
construct) to be copied. The copy does not affect the
contents of infile. If more than one infile is specified, they
are concatenated in the order specified. When concatenat-
ing files, specify the full name and extension of each file;
do not use the wild card construct.

outfile is a file to be created or recreated. If :Fn: is not specified,
:FO: is assumed. outfile must include the extension, if any.
If outfile is not specified, :Fn: must be specified.

:device: is an output device, such as :LP:, :SP:, or :CO..
switches are one or more of the following:

Q Specifies the query mode. The system displays the follow-
ing message before a copy is performed—COPY infile TO
outfile 7. A yes or y response causes the copy to be
performed. Any other response causes the copy not to be
performed.

B Deletes an existing file without displaying the ALREADY
EXISTS prompt. The existing file is deleted and recreated
with new data.

U Opens outfile for update instead of deleting it. The
ALREADY EXISTS message is suppressed. The length is
not changed unless the copy causes an increase in the size
of the file.

If U and B are both specified, the U function is performed.

Description
The COPY command copies files from one directory to another.

When copying from one directory to another, the destination can be directory files or
physical devices. The copy must be made from an input device to an output device.
For example, you can copy from the console to the printer but not from the printer
to the console.

You must have read access rights to the infile (source file). If outfile (destination
file) is an existing file that you have been granted delete access rights to, the follow-
ing message is displayed:

outfile FILE ALREADY EXISTS
DELETE?

A yes or y response (followed by a carriage return) causes COPY to delete the exist-
ing file before making the copy. No change is made for any other response.

File Creation and Management

File Creation and Management Series IV ISIS-IV

If you have been denied delete access rights to outfile, the following message is output:

outfile 1NDX FILE ACCESS RIGHTS VIOLATION

Wild Card Designations. When you use wild card designations, the following rules

apply:

» Every position in the infile name that contains an asterisk must have a corre-
sponding asterisk in the outfile name.

« Every position in the infile name that contains a question mark must have a corre-
sponding question mark or asterisk in the outfile name.

e The wild card characters cannot be used in directory designations (you cannot
specify :F*:).

e You must have list access to the source directory.

* You must have add-entry access to the destination directory.

To copy files selectively with the wild card construct, use the query mode, for example,

The system then displays the query message before copying each file.

Copying to Another Directory. The COPY command provides a special case for
convenience when copying directory files to a different directory.If outfile is to have
the same name as infile, a specific outfile is unnecessary. For example,

At the end of the listing of files that were copied, the following message is displayed
if you have been denied delete access rights to the specified files:

iNDX FILE ACCESS RIGHTS VIOLATION
The specified files to which you have been denied delete access rights are not copied.

Using a wild card designation when concatenating files causes an error message to
be displayed.

- A, BC.*TO D«cecro»

WILD CARD DELIMITERS DURING CONCATENATE

When you use the concatenate operation, outfile must not have the same name as
infile. If it does, the following error message results:

2-20

Series IV ISIS-IV File Creation and Management

If the rules governing wild card designations are not followed, the following error
message is displayed:

FILE MASK ERROR

Possible Error Conditions

An error occurs when

o The source file is not present.

+ The destination file already exists.

« You do not have read access rights to the source file (infile).

e You do not have delete access rights to the destination file (outfile).

e You do not have list access rights to the source directory when you used a wild
card designation.

« You do not have add entry access rights to the designation directory when you
used a wild card designation.

Examples

1. This example copies three files to one, overwriting its contents.

COPY CHAP1,CHAP2,CHAP3 T0O BOOK<ccr>
:F0:B00K FILE ALREADY EXISTS
DELETE?
APPENDED :FO0:CHAP1 TO :FO0:BOCK
APPENDED :FO0:CHAP2 TO :FO0:BOOK
APPENDED :FO0:CHAP3 TO :FO0:BDOK

2. Example 1 could have been done in the following way:

BMcopy CHAP1,CHAPZ,CHAP3 T 8
APPENDED :FO:CHAP1 TO :F0:BOODK
APPENDED :FO:CHAP2 TO :F0:BOOK
APPENDED :F0:CHAP3 TO :F0:B0OOK

3. This example lists a file on the line printer.

COPIED :FO0:BOOK TO :LP:
4. This example copies a file from directory O to directory 1.

COPY PROGA TOQ :F1:NEWPRG Bcrd

:FO0:B*.CPY<cr>

2-21

File Creation and Management Series IV ISIS-IV

6. This example shows a valid use of the COPY command concatenating files on a
directory.

gCO0PY FB:REMTE. ', :FE:REMTE.2 TO :FB:REMTE. 3¢
APPENDED :F6:REMTE.1 TO :F6:REMTE.3
APPENDED :F6:REMTE.2 TO :F6:REMTE.3

3]
-
~

7. When the workstation is connected to the network, this example prints the file
:F1:BOOK at the network spooled printer.

JgCO0PY F1:BOC0K TO :SP:<cry

8. When the workstation is connected to the network, this example copies a file,
:F3:MYFILE.TXT, to the network spooled printer.

gCOPY F3:MYFILE.TXT T0O :SP:<cr)
tF3:MYFILE.TXT COPIED TO :SP:

2-22

Series IV ISIS-IV File Creation and Management

CREATE — create a Directory

Syntax
CREATE J:Fn: new directory name<cr >
pathname/
where
pathname is an existing directory.
:Fm: is the directory identifier assigned to a fully qualified

directory pathname.
new directory name is a string of up to 14 alphanumeric characters.

Description

The CREATE command creates a new directory in the iNDX file system. When
specifying a directory identifier, the user may specify a fully qualified pathname or a
pathname component prefixed by an assigned directory identifier.

All of the components in a pathname must point to existing directories, except the
new directory name. The new directory name is the only component that specifies a
non-existent directory.

Table 2-3 lists the default access rights of a new directory.

Any user (World) can use ACCESS to grant and to deny the World access rights of
a directory on a 5Y4 inch flexible diskette. However, Owner access rights to such a
directory can not be granted or denied because there are no owners of directories on
a 5Y4 inch flexible diskette.

Only the owner can grant and deny Owner and World access rights to his directory
on a Winchester device.

Table 2-3. Directory Access Rights

Operation Action
CREATE a directory on a GRANT:
51/ inch flexible diskette World Delete Access

World List Access
World Add Entry Access

CREATE a directory on a GRANT:

Winchester device or hard disk Owner Delete Access
Owner List Access
Owner Add Entry Access

DENY:
World Delete Access
World List Access
World Add Entry Access

Possible Error Conditions

An error will occur when

¢ You have not logged on.

¢ You have used invalid syntax.

e You have not been granted add access rights to the parent directory.

2-23

File Creation and Management Series IV ISIS-IV

¢ The parent directory does not exist.

e The new directory name already exists.

o The new directory name exceeds 14 characters.
¢ The directory identifier is not assigned.

NOTE

Use the REMOVE command to eliminate an unwanted, empty directory
created with the CREATE command.

Examples
1. This example creates a directory in the /VOL/NRM1/COMPILERS directory.

CREATE /VOL/NRM1/COMPILERSY/

2. This example creates a directory identical to the directory in example 1.

QJASSIGN

HCREATE

cFS5: T0 /VOL/NRM1/COMPILERCCcrY
:FS5S:SRCS«<cr

2-24

Series IV ISIS-IV File Creation and Management

DELETE — pelete a File

Syntax

DELETE [:Fn:lfilename [Q]1 [, . . . [Q]1] <cr>

where
:Fn: refers to the directory identifier of the directory where the
file resides.
filename is the name of a file to be deleted. The wild card construc-
tion can be used to delete a group of files.
Q Specifies the query mode. The system displays the follow-
ing message before each file is deleted—filename, DELETE.
A yes or y response causes the deletion. Any other response
causes the deletion not to be performed.
Description

The DELETE command deletes specified directory entries if you have been granted
delete access rights.

This command removes the specified file, directory, or group of files from a directory,
making the space it occupied available for reassignment. A file to which you have not
been granted delete access rights cannot be deleted.

If filename is a file to which you have delete access rights, the file is deleted and a
confirming message is sent to the console.

If filename specified in the DELETE command does not exist, the following message
is sent to the console:

filename, NO SUCH FILE

If the file cannot be deleted because you have not been granted delete access rights,
the following message is sent to the console:

filename, iNDX FILE ACCESS RIGHTS VIOLATION

NOTE
Before a directory can be deleted, all of the directory entries must be deleted.

Query Mode. Using the Q switch displays the query message before deleting each
file.

The query mode allows you to delete files selectively when using the wild card
construct, for example,

BMDELETE :Fn:CHAP?2.* Q<ccr>

The system then displays the query message for each file that matches the wild card
construct.

2-25

File Creation and Management Series IV ISIS-IV

Examples

1. This example deletes three files.

RDELETE CHAP? . *<cr)

tFO:CHAP1.TXT, DELETED
:FO0:CHAP2.LST, DELETED
:FO0:CHAP3.SRC, DELETED

2. This example shows an attempt to delete a file to which the user has not been
granted delete access rights.

DELETE PROGA.ASM<ccr)
:FO0:PROGA.ASM, iNDX FILE ACCESS RIGHTS VIOLATION

3. This example deletes a file from the spooled print queue when the workstation is
connected to the network.

DELETE :SP:BOOK<cr»
:SP:B0O0K, DELETED

2-26

Series IV ISIS-IV File Creation and Management

DIR — List a Directory

Syntax
DIR [FOR filenamel [TO listfilel [switchesl <cr)

The positions of these fields are not fixed.

where

filename is the file (or group of files specified with the wild card
construction) whose directory entry is to be listed. If FOR
filename is omitted, the entire directory is listed.

listfile is the name of a file or output device such as :SP:, :LP:, or
:F2:LIST.FIL, where the directory listing will be displayed.
If TO listfile is omitted, the listing is displayed on the screen.

switches are one or more of the following, separated by spaces:

0-9 Lists the directory. If omitted, 0 is assumed. If more than
one directory number is specified, only the rightmost one
has effect. The directory number also overrides any device
specification in FOR filename.

Lists the extended directory filename, number of bytes in
the file, the owner’s name, file type (directory or data),
owner access rights, and world access rights.

SP Lists the contents of the network spooler print queue when
the workstation is connected to the network.

0] Prints the directory in a single column format. The default
is a triple column format.

Description
The DIR command lists the contents of a specific directory.

NOTE

The wild card search matches only valid ISIS filenames. A directory name
that does not conform to these criteria will not be found in a wild card search.

DIR of pathname or directory identifier
FILENAME OWNER LENGTH TYPE OWNER ACCESS WORLD ACCESS

where
FILENAME lists the name of all of the data and directory files that
resides in this directory.
OWNER: consists of the following:
username is the username of the file owner.
SYSTEM is operating system and command files.
SUPERUSER s files that belong to the Superuser.
NOT FOUND s files assigned to a user whose username has been deleted
from the system.
LENGTH is the number of bytes the file takes up on the mass storage
device.
TYPE identifies the file as a data or directory file.

OWNER ACCESS lists the access rights of the file owner.
WORLD ACCESS lists the access rights for other users set by the file owner.

2-27

File Creation and Management Series IV ISIS-IV

Examples

1. This example lists the extended directory /PROJ.C to which the directory
identifier :F1: has been assigned.

JDIR 1 E<cro»

DIR of /PROJ.C

FILE NAME OWNER LENGTH TYPE OWNER ACCESS WORLD ACCESS
MEMOS.DIR SANDI 10904 DIR D RMUW R
MYPROG.SRC RITA 7299 DATA D R R
WORKFL.NEW JEANNE 8063 DATA R W R
SYSTEM.LIB SUPERUSER 3128 DATA D R W R

A USER1 7299 DIR D RMW DR M
ACC.DIR JEANNE 10904 DATA D W W

PROG.X12 DENNIS 10054 DATA D RWMW R
FMHP.CSD AMY 210 DATA D R R
ALTER.86 SUPERUSER 274867 DATA R DR

2. This example displays a directory of the spooler printer queue when the worksta-
tion is connected to the network.

REMOTE SPOOLER
FILE NAME OWNER LENGTH TYPE OWNER ACCESS WORLD ACCESS
9E.DIR A 00123 DATA DRM

3. This example copies the spooler directory to a file :FI:PRINT.LST, and prints it
at the spooler printer when the workstation is connected to the network.

2-28

Series IV ISIS-IV File Creation and Management

REMOVE — Delete a Directory

Syntax
:Fn: .
REMOVE directory name<cr »
pathname/
where
:Fn: is the directory identifier assigned to the parent directory
of the file to be removed.
pathname is the complete fully qualified pathname of the parent
directory.
directory name is the name of the directory to be removed.
Description

The REMOVE command removes an empty directory file from the parent directory.
To remove a directory file from the file system, the directory file must be empty and
you must have access to the file.

The sample file structure in figure 2-1 has an empty directory file DIRA. To remove
this file from the file system, type

MREMOVE /WINCH1 ., VOL/ISIS.SYS/DIRAKcr>
/WINCH1.VOL/ISIS.SYS/DIRA, REMOVED

or

BASSIGN F3:T0 /WINCH1T.VEL/1SIS.SYS<¢cr)>
BREMOVE :F3:DIRAcCcr)>
:F3:DIRA, REMOVED

Possible Error Conditions

An error will result when
¢ A directory file is not empty.

e Any user attempts to remove a directory file and does not have delete access
rights to the file.

Examples

1. This example shows a successful attempt to remove an empty directory file from
the file system.

/JWINCH1.VOL/DIRB/DIRC<cr>
/WINCH1.VOL/DIRB/DIRC, REMOVED

2. This example shows an attempt to remove an empty directory without the proper
access rights.

BREMOVE /WINCHT.VOL/PROJECT.DIR<Ccr
/WINCH1.VOL/PROJECT.DIR,
iNDX FILE ACCESS RIGHTS VIOLATION

3. This example shows an attempt to remove a directory file that is not empty.

GREMOVE /WINCHT. VOL/ISIS.SY
/WINCH1.VOL/ISIS.SYS,
ATTEMPT TO DELETE A NON-EMPTY DIRECTORY

2-29

File Creation and Management

Series IV ISIS-IV

LOGICAL
SYSTEM
ROOT

/\ ——

VOLUMES

(PHYSICAL DEVICES)

‘ WINCH1.vOL ’ ‘ voL2.B { vOoL3.C ’

| | | |

(ISIS.SYS ’ C DIRB) (DIREX) (DIRD.EXT) I FILES.EXT I

FILES
(BOTH
DIRECTORY & l
DATA FILES)
(PROJ.DIR)
| ISI1S

C DIRC rru.ss.sxr I
(" = DIRECTORY FILE

| | G | [[r==r]
)

I ISiS.CLl |

EXIT J
[[T - paTare

Figure 2-1. Hierarchical File Structure 121880-2

2-30

Series IV ISIS-IV File Creation and Management

RENAME — Rename a File

Syntax

RENAME [:Fn:loldname TO [:Fn:lnewname<cr)

where
:Fn: refers to the directory identifier of the directory where the
file resides, and must be the same for both oldname and
newname.
oldname is the name of an existing file to which you have been

granted delete access rights. oldname follows :Fn: with no
intervening space, as in :F2:MYPROG.

newname is the new name to be assigned to oldname. The newname
follows :Fn: with no intervening space, as in :F2:PROGI.

Description
The RENAME command changes the name of a file.
Enter the RENAME command to change the name of an existing file to a new name

that does not already exist; the system changes the directory. Wildcards cannot be
used.

However, if another file with the new name already exists, the system displays the
following message:

newname, ALREADY EXISTS, DELETE?

To delete the existing file, enter a Y or y followed by a carriage return. RENAME
will delete the existing file and change the name of oldname in the directory.

If you have not been granted delete access rights to the existing file, or if you enter
any character other than Y or y, the existing file is not deleted and the file to be
renamed is not renamed.

Possible Error Conditions

An error occurs when

e oldname is a nonexistent file.

¢ The device is not assigned.

* You do not have proper access rights.

Examples

1. To rename a file, assign a directory identifier to the directory first.

2. This example illustrates an attempt to rename a file to which the user has not
been granted delete access rights.

2-31

File Creation and Management Series IV ISIS-IV

3. In this example, the new name is the name of an existing file.

BMRENAME TEXT.,BAK TO TEXT.OLD<cr>
TEXT.OLD, ALREADY EXISTS, DELETE?

4. This example shows an attempt to rename a file and move to another directory.

MRENAME :F6:0LDFILE TO :F7:NEWFIL
:F7:NEWFIL, NOT ON SAME DISK

2-32

Series IV ISIS-IV File Creation and Management

SPACE — Display the Volume Information of the Specified File
Syntax

SPACE /volume name<cr)

where
/ volume name is the volume root directory (e.g., /VOLI1.A) for the given
physical device.
Description

The SPACE command returns information about the amount of available space on
any given disk at that specific point in time. Information is returned in the following
format:

VOLUME GRANULARITY = number(granularity = number of bytes/sector)

FREE BLOCKS = number

TOTAL BLOCKS = number

FILES AVAILABLE = number

TOTAL FILES = number

MM/DD/YY hh:mm:ss

where
MM/DD/YY hh:mm:ss is the month, day, year, hour, minutes and seconds.
number is a decimal integer.

Examples

(R S PACE /VOL1T.Accr>

The information is provided for the volume whose root directory is /VOL1.A.

NOTE

In a multiprogramming environment, the amount of space is volatile.
Therefore, the information returned by the SPACE command should be
considered as approximate.

2-33

File Creation and Management Series IV ISIS-IV

2-34

VERS — Display ISIS Utility Program Version Numbers

Syntax

VERS command<cr >

where

command is one of the ISIS command programs.

Description

The VERS command lists the version number of the ISIS-IV command programs.

The VERS command identifies the version number of the different versions of
ISIS IV command programs. Each version works correctly only with the correspond-
ing version of ISIS. Other Intel software such as editors and translators do not contain
version numbers.

Examples

L.

This example successfully lists the version number of a compatible ISIS-IV
command program.

BV ERS DIR<cr»
V1i.0N

This example shows an attempt to list the version number of a user file.

JVERS MYFILE.EXT<cr>
file does not contain a program version number

This example shows an attempt to list the version number of a file not in the
directory.

BV ERS NONFLE<cr)
ERROR 13 USER PC 375B

This example lists the version number of the command VERS.

BVERS VERS<cr»
vi.0ON

Series IV ISIS-IV File Creation and Management

WHO — Display the Name of the User
Syntax

WHO<cr>

Description

The WHO command displays the name of the user who is currently logged on. For
example,

oo,
1 AM SUSAN

NOTE

If there is no user currently logged on, the system will display the following
error message:

USER NOT LOGGED ON

2-35

File Creation and Management

2-36

Series IV ISIS-IV

Code Conversion Commands

The code conversion commands exist for two reasons:

* To provide compatibility with systems employing hexadecimal object file format

e To convert programs created under previous versions of ISIS

The programs called by the code conversion commands convert the character coding
of these files but do not otherwise alter the information of the original programs.

HEXOBJ — Convert Hexadecimal Code to Absolute Object

Syntax

Code

HEXOBJ hexfile TO absfile [START Caddr)l<cr)

where
hexfile
absfile

START adar

Description

is a file of machine object code in hexadecimal format.

is the output file from HEXOBJ containing the absolute
object module that can be loaded for execution under
ISIS-II, III(N), and IV. The module name stored with the
object module is the same as the name part of the absfile
filename. The absolute object module produced by
HEXOBI contains a symbol table if symbols were defined.

is used to include a starting address (the address of the
first instruction to be executed) in the absolute module. The
address can be specified by a hexadecimal, decimal, octal,
or binary number followed by a letter indicating the base.
The letter is H for hexadecimal, O or Q for octal, B for -
binary, D or omitted for decimal. Thus the address 4000
hexadecimal is specified as START (4000H).

If START addr is omitted, the starting address is taken
from the end-of-file record of the hexadecimal format file,
which is determined by the END assembly language
statement.

If no starting address is specified in any of the above ways,
zero is assumed. An attempt to execute such a program
will cause entry into the interactive monitor.

The HEXOBJ command converts object code in hexadecimal format to an absolute
object module compatible with ISIS-II, III(N), and IV. The hexadecimal format is
produced by cross-product translators that run on large machines and by assemblers
of earlier versions of ISIS.

Examples

1. This example converts a hex file to absolute object format, recording a starting
address in the object module.

PRIME.HEX TO PRIME.DBJ S

Series IV ISIS-IV File Creation and Management

OBJHEX — convert ISIS-II, HI(N), and IV Absolute Object Code
to Hexadecimal Code

Syntax

OBJHEX absfile TQ hexfile<cr)

where
absfile is the file containing an ISIS-II, III(N), or IV absolute
object module.
hexfile is the file to contain the hexadecimal object code converted
from the ISIS-II, ITI(N), or IV format. The starting address
(address of the first instruction to be executed) is taken
from absfile. The hexadecimal object code produced by
OBJHEX does not contain a symbol table.
Description

The OBJHEX command converts an ISIS-II, ITI(N), or IV absolute object module
to hexadecimal format.

2-37

CHAPTER 3

USE OF ISIS-IV BY OTHER PROGRAMS

Writing programs that make use of the capabilities of ISIS-1V is the same as writing
any other program except that the program includes ISIS-IV system calls. The place-
ment of your program in memory must take into consideration how memory is

organized under ISIS-IV.

Memory Organization And Allocation

The organization of Intellec memory under ISIS-IV is shown in figure 3-1.

Interrupt Vectors

Interrupts O through 2 are reserved for ISIS-IV. Interrupts 3 through 7 are available
for use within the program. However, other Intel software products can also use
interrupts 3 through 7. When using interrupts, you must be sure to avoid conflicts
with Intel software. The locations 24 through 63 are the only locations below 3100H
that can be loaded with user code. Loading other locations below 3100H is not allowed.

MONITOR

PROGRAM AREA
AND ISIS
NONRESIDENT AREA

VACANT AREA

LINE EDIT
BUFFER AREA

ISIS RESIDENT AREA

USER INTERRUPTS 3-7

ISIS INTERRUPTS 0,1,2

64K (FFFFH)

F6C1

PROGRAM BASE ADDRESS > = 3180H

TOP OF BUFFER AREA > = 3180H

BUFFER BASE ADDRESS = 3100H

LOCATIONS 24-63 (18H-3FH)

LOCATIONS 0-23 (0-17H)

Figure 3-1. Intellec® Memory Organization 121980-3

Use of ISIS-1IV by Other Programs

32

The Kernel

The ISIS-IV resident area is reserved for the kernel, the part of ISIS-IV that is always
resident in RAM memory. It may be viewed as a collection of subroutines. Although
the kernel is protected from a program load operation, it is not protected from an
executing program that may accidentally destroy the integrity of ISIS-IV by writing
to this area. This will cause subsequent errors when system services are requested.

Input and Output to Files

User programs perform input/output (I/O) by making calls to the kernel, i.e., system
calls. All I/O occurs to or from files and is status-driven rather than interrupt-driven.
Interrupts 0, 1, and 2 are reserved for ISIS-IV and must not be masked or altered by
your programs.

A file is an abstraction of an [/O device, considered to be a collection of information,
usually in machine-readable form. A file can be formally defined as a sequence of
eight-bit values called bytes.

ISIS-1V usually places no semantic interpretation on the byte values of a file, with
the exception of lined files. Programmers, programs, and devices frequently interpret
the bytes as representing ASCII values, and thereby characters.

Programs receive information by reading from an input file and transmit information
by writing to an output file.

Every file is identified by a file name that has two parts: a filename and an optional
extension, separated by a period (e.g., FILE3.EXT). A filename is a sequence of
from one to six ASCII characters; an extension is a sequence of from one to three
ASCII characters. To facilitate name specification within command strings, these
ASCII characters are constrained to be letters and /or digits.

A major purpose of ISIS-IV is to enable ISIS users of Series IV to access local
(private) and remote (public) iNDX files. For ISIS to access the iNDX files, the file
must be identified by its fully qualified pathname. The pathname (e.g., /VOL1.A/
DIRB/FILE3.EXT) identifies every volume and directory from the logical system
root to the file. You must assign a directory identifier (e.g., :F1:) to the fully qualified
pathname of the directory with the ASSIGN command before the file can be accessed.

JASSIGN :F1: TO VOL1.A/DIRB<cr>
The pathname for the file FILE3.EXT is now :F1:FILE3.EXT.

For every non-disk device supported by ISIS-IV, there are one or more associated
files, each identified by a name consisting of a pair of ASCII characters between
colons (see Appendix D for a complete list).

No file can exist on more than one physical device. In particular, a disk file must
reside entirely on one diskette/platter.

Three files (:BB:, :CI: and :CO:) deserve special mention:

ISIS-IV supports a virtual input/output device known as a Byte Bucket (:BB:).
This device acts as an infinite sink for bytes when written to, and a file of zero
length when read from. Multiple opening of :BB: is allowed; each open returns a
different connection number (AFTN).

ISIS-IV supports a virtual console known as the Console that is implemented as
two files, an input file (:CI:) and an output file (:CO:). These two files are always
open. :CI: is always a lined file; :CO: is its associated echo file.

Series IV ISIS-IV

Series IV ISIS-IV

When you invoke ISIS, the assignments in table 3-1 for :CI: and :CO: are made by
ISIS.

If :CO: is initialized to :BO: or :BB: and ISIS-IV is executing in the foreground, the
following message appears:

WARNING: ISIS CONSOLE QUTPUT IS DIRECTED TO THE SERIES IV
LOG FILE

Whenever an end of file is encountered on :CI:, a fatal error will occur.

The Command Line Interpreter (CLI) always obtains its command lines from the
current console. Briefly, each command contains a generalized keyword that specifies
either a user program or CLI command. If the former, CLI causes that program to
be loaded and run; otherwise CLI performs the indicated command and reads another
command line.

Table 3-1. Console Assignment by ISIS

Invocation from Initial assignment of
:Cl: made to
Keyboard :VI: (video terminal keyboard)
Command file :Bl: (batch input)
Invocation from Initial assignment of
:CO: made to
Foreground (but not import)
without a Series IV LOG file :VO: (video terminal screen)
Foreground (but not import)
with a Series IV LOG file :BO: (batch output)
Background or import
with a Series IV LOG file :BB: (byte bucket)
Background or import
with a Series IV LOG file :BO:
Buffers

The buffer area is used by ISIS-IV for input/output buffers of 128 bytes each. One
permanent buffer is used by [SIS-IV for console input/output. Other buffers are
allocated and deallocated dynamically by ISIS-IV according to the input/ output
requirements of the program. These requirements come from your explicit system
calls to ISIS-IV or are derived from your source code by the translator (e.g., PL/M
or assembler).

The minimum size of the buffer area is 128 bytes, allowing for one buffer, the

ISIS-IV permanent buffer. If the program requires more than one buffer, the buffer
area increases at the expense of the vacant area.

Computing Program Base Address
Program Area

The program area is above the buffer area. It is used alternately by the programs
and ISIS-1V.

Use of ISIS-IV by Other Programs

33

Use of ISIS-IV by Other Programs Series IV ISIS-IV

Nonresident ISIS-IV routines (all commands except DEBUG) run in the program
area. These include the command interpreter, the editor, assembler, compiler, linker,
locater, and library manager. Whenever you communicate with ISIS-IV via console
commands, you are using the nonresident command interpreter running in the program
area. These nonresident ISIS-IV routines may use all available RAM for buffers.

Monitor Area

The Monitor occupies memory from F6C1H to FFFFH for its workspace.

The Monitor MEMCK routine can be called if a program needs to know the highest
available location of contiguous RAM (below the Monitor workspace).

Base Address of Your Program

You determine the base address of the program by commands to LOCATE (or by
an ORG statement in 8080/8085 assembly language absolute programs).

Before deciding the base address, you must determine the maximum area required
for buffers under ISIS-IV. The number of buffers varies during execution, but the
buffer area must be large enough for the maximum number of buffers allocated
simultaneously.

If you locate the base address of your program below 3180H (or allocate less than
one buffer), an error message is generated.

The program base address can be calculated using the following formula:
12,288 + (128 * N)

where

N is the maximum number of buffers required simultane-
ously by the program. Use the following rule to determine

An open line-edited file (e.g., :CI:) requires one buffer until
the file is closed.

General Parameter Discussion

The parameters to system service routines presume certain uses. If your understand
the intended usage, you will readily see the reasons for the parameters and how to
specify them to achieve your purposes.

The easiest one to understand, used by every routine, is status$p. This address is
filled with a non-zero error code if the service operation could not complete its task
normally. (Appendix A gives these codes and their meanings.)

Arguments

To invoke the execution of a program, you can type its name at the console, e.g.,

PROGRM. PROGRM may have options that can be specified on the invocation line.
If so, the remainder of that line (after the program name) is called a command tail.

34

Series IV ISIS-IV Use of ISIS-IV by Other Programs

This command tail is accessible to PROGRM via ISIS-IV system calls to READ or
RESCAN. These routines can handle, in similar fashion, any file that you create to
be read as if it were the console. These are called lined or line-edited files and are
discussed later. The PROGRM using them can then alter its mode of operation
depending on the options specified with each invocation, adding flexibility to the user-
interface of the programs.

Connections

ISIS-IV maintains a list of six devices or files that the program may use during its
execution, i.e., a list of connections. A connection is a word, named and declared by
you, filled by the system service routine OPEN.

You then use this word to specify that file or device whenever you need to perform
any operation on it, i.e., to read, write, seek, rescan, or close it.

The list is also called an Active File Table, and the entries on it are Active File Table
Numbers, or AFTNs. Only objects on this list can be used for input/output opera-
tions. Such operations are accomplished using the connection rather than the actual
device or file name. During execution, your program may perform these functions on
multiple files. When I/O actions for a given file are complete or the file will not be
needed for the next phase of program activity, it can be closed to make room for
other files (no more than six) that may be needed sooner.

Input/Output Parameters

In order to perform a READ or a WRITE, several questions must be answered:
1. How many bytes are to be transferred?
2. To (or from) what file?

3. From (or to) what memory locations?

In the descriptions that follow, (1) is usually supplied as the parameter count, and
(3) as the parameter buffer$p, the address of the locations to be read from or written
into.

Question (2) naturally requires an ISIS-IV pathname, e.g., :FI:YOURDA.TAI, that
can be up to 14 characters long in the format shown. This format for a string differs
from the one used under the iNDX operating system in two respects: it does not begin
with a count of the characters to follow, and it must end with a nonvalid pathname
character. ISIS-1V interprets the first nonvalid pathname character encountered as
marking the end of the string. Thus the last character before the nonvalid character
is the last character in the string.

Rather than require you to give the name of each file every time you do any input/
output, ISIS-IV maintains the table of active files mentioned previously. One call to
OPEN establishes the full name as an entry in this table and returns to you a connec-
tion number for your use in all further references to this file while it is in use.

Terms

If you have used earlier ISIS systems, you will notice a change in the terms describ-
ing some parameters for system calls. The parameters have not changed. The new
terms highlight similarities between ISIS-II, ISIS-ITII(N), and ISIS-IV in both concept
and usage.

Use of ISIS-IV by Other Programs Series IV ISIS-IV

In several cases the change is simply appending the characters $p to each term that
is actually used as an address rather than as the value stored at that address. In the
PL/M calls to the routines, you simply use the dot operator to provide the address of
the variable you declared for use in these routines.

In other cases, there is a new name. For example, conn is used instead of AFTN to
represent a connection to a file (formerly called an active file table number, as
described previously). The pointer to this connection, giving its address, is called
conn$p where it was formerly named AFTNPTR.

The syntax charts introducing each functional grouping of commands show the place-
ment of each parameter, and the examples given with each individual command
illustrate actual declaration and usage.

Line-Edited Input Files

ISIS-IV provides a special way of reading ASCII files called line-editing. Line-editing
was designed for (but not restricted to) the case of a human user, prone to err, typing
characters at a keyboard. The rubout key and control characters allow you to correct
istakes and then transmit a perfect line by typing a carriage return to which a line
feed is appended automatically.

You tell ISIS-IV that a file is to be line-edited by supplying a parameter in the OPEN
system call. This must also specify an echo file you opened earlier because every line-
edited file must have an file to which ISIS-IV sends an echo of the input. If no echo
is desired, the byte bucket file :BB: can be specified as the echo file.

Terminating a Line

While a line is being physically entered from an input device, it is accumulated by
ISIS-1V in a 122-character line-editing buffer. The contents of the buffer are altered
by ISIS-IV when an editing character is entered. An explanation of editing charac-
ters follows. No data is transferred to the requesting program until the line is
terminated in one of four ways:

* A carriage return is entered (automatically appended to every line feed).
* A line feed is entered.
e An escape is entered.

e A non-editing character is entered as the 122nd character.

Reading from the Line-Edit Buffer

When the line has been terminated, the next (or pending) READ system call trans-
fers data from the line-editing buffer to the buffer of the requesting program.
ISIS-IV maintains a pointer to keep track of what characters have been read from
the line-editing buffer. For example, if the line-editing buffer contains 100 characters
and you issue a READ system call with a COUNT 50, the first 50 characters are
transferred to the buffer of the program and the buffer pointer is moved to the fifty-
first character. The next READ system call transfers characters starting at the fifty-
first character.

If the READ system call requests 100 bytes and the line-editing buffer contains 50,
only 50 bytes are transferred.

Series IV ISIS-IV

A READ call returns bytes from only one logical line at a time. This means only up
to 122 ““uncancelled” characters. Thus, READ’s of line-edited files often transfer
fewer bytes than requested by count.

A READ system call returns no characters from a logical line until the line has been
input in its entirety. Thus, during physical input, the logical line is accumulated in
an internal buffer; no information in the buffer is transferred to the reading program
until the termination character (normally a €cr® is seen. Therefore, ISIS-IV has
the opportunity to modify buffer contents conditionally on values entering the buffer.

When all the characters in the line-editing buffer have been read, the buffer pointer
is positioned after the last character; the buffer is not cleared yet. In fact, the
RESCAN system call can be used to reposition the buffer pointer to the beginning
of the line-editing buffer so subsequent READ system calls can reread the contents.

When the buffer has been completely read (the pointer is after the last character), a
new READ system call will transfer new input from the line-edited file into the line-
editing buffer. When the line is terminated, the number of characters requested by
READ is transferred to the program.

Editing Characters

The characters in table 3-2 are used to edit the input of a line-edited file. Control
characters are entered by holding down the control key (CTRL) while the character
is typed.

Table 3-2. Editing Keys

Key Action
RUBOUT Deletes preceding character from buffer.
CONTROL-P Causes next character typed to be entered literally in line-editing

buffer. Use when you want editing character or terminating
character to be entered in buffer rather than to cause its usual
editing or terminating function.

CONTROL-R Causes carriage return/line feed to be sent to console output
device, followed by current undeleted contents of buffer. No other
effects.

CONTROL-X Causes entire contents of buffer to be deleted, including itself.

Echoed as #, carriage return, line feed.

CONTROL-Z Is only way to indicate end-of-file from keyboard input device. Acts
like control-X except has no echo and causes READ system call
to return immediately without transferring any characters, thus
simulating end-of-file. If more characters are entered after
control-Z, they are entered in line-editing buffer and can be read
by subsequent READ system call.

Reading a Command Line

Reading a command line from the console input device is a special case of reading a
line-edited file.

When a command is entered at the console, it is collected by ISIS-IV in the line-
editing buffer for :CI: and is not available to the command interpreter (a nonresident
ISIS-IV routine) until it is terminated. The command interpreter reads only the
command name and then calls the program with that name, leaving the line-editing
buffer pointer positioned after the command name. The loaded program can issue a
READ, which transfers data starting with the first parameter, or the program can

Use of ISIS-IV by Other Programs

3-7

Use of ISIS-IV by Other Programs Series IV ISIS-IV

issue a RESCAN to position the pointer to the beginning of the buffer so it can also
read the command name.

For example, suppose the following command has been entered:

QJTYPE :F1:PROGA.SRC«<cr>

The line-editing buffer for :CI: contains 20 characters as follows:

T|Y|P|E :]JFl1]:|P|JR|JO|G|A].|S}|]C]|R]|CR|LF
11231415 (6]|7|8|9]|10|111]12]13|14]|15{16|17]|18]19]20

When the TYPE program is loaded, the buffer pointer is at the fifth character (the
space following TYPE). A READ call starts transferring characters at the fifth
character. New input from :CI: to the line-edit buffer does not happen until the buffer
pointer is moved to the end of the buffer (after the 20th character) and a READ call
1s issued.

Remember that when control is passed to the loaded program, the buffer pointer is
positioned after the command name, not at the end of the buffer. In the preceding
example the buffer pointer is positioned at the space after TYPE. If no parameters
are passed, the first READ from :CI: returns the carriage return/line feed left from
the command line. For example, suppose the following command has been entered:

JFPROGA.BIN<Ccr)

and the line-editing buffer contains 11 characters as follows:

PIRJOJG|JA]|.|B| I |N]|CR|LF
112|3|4|5]6|7|8|9]10]|11

When PROGA.BIN is loaded, the pointer is at the carriage return. If subsequent
input is expected from the console input device, an extra READ must first be issued
to clear the buffer of the carriage return/line feed.

If the program does not read from :CI:, the remaining carriage return/line feed is
cleared by ISIS-1V from the buffer before a new command is read by the command
interpreter (e.g., after PROGA.BIN exits).

Summary of System Calls

The ISIS-IV services that can be called by the program include the following:

* Input/output operations for the mass storage devices, keyboard, CRT, and the
standard Intellec peripherals, except the Universal PROM Programmer

* Directory maintenance (ATTRIB, DELETE, GETATT, GETD, RENAME)

* Console device assignment and error message output (CONSOL, ERROR,
WHOCON)

* Program loading and execution and return to the supervisor (EXIT, LOAD)

The interface to these services is a call to ISIS-IV that specifies the services desired
and the address of the parameter list the supervisor is to access. The specific calling
sequences are described with the call descriptions. Note that an ISIS-IV call uses
your stack. Your stack must have the depth necessary to handle the call. A call to
ISIS-IV destroys the contents of the CPU registers.

Series IV ISIS-IV Use of ISIS-IV by Other Programs

The system calls are described in terms of their operation and the parameters the
program must supply.

To clarify the effect of certain system calls on your files, two integer quantities,
LENGTH and MARKER, are associated with each file in this description. LENGTH
is the number of bytes in the file. MARKER is the number of bytes already read or
written in the file (that is, it acts as a file pointer).

System Call Syntax and Usage

The ISIS-IV system calls can be called from a PL/M or Assembler Language
program. If the program makes an ISIS-IV system call, link the object program with
SYSTEM.LIB using the LINK program.

SYSTEM.LIB contains the procedures necessary to interface your programs contain-
ing ISIS-IV system calls with the ISIS-IV system.

PL/M Calls

Any PL/M program can interface to ISIS by performing calls to procedures in
SYSTEM.LIB. The program must include external procedure declarations so the
proper procedures from SYSTEM.LIB will be included with the program by LINK.
These external procedure declarations may be declared as type ADDRESS, but may
also be values as well as addresses of values.

Assembler Language Calls

The interface between the 8080/8085 Assembler Language program and ISIS is
accomplished by calling a single ISIS entry point (labeled ISIS) and passing two
parameters. The first parameter is a number that identifies the system call; the second
is the address of a control block that contains the additional parameters required by
the system call. The first parameter is passed in register C and the address of the
control block is passed in the register pair DE. The entry point must be defined in
the program as an external:

EXTRN ISIS

The ISIS entry point is defined in a routine in SYSTEM.LIB that must be included
in the program. When using LINK, specify the name of the program followed by the
name SYSTEM.LIB. See the MCS-80/85 Utilities User’s Guide for 8080/8085-Based
Development Systems (121617) for more information on LINK.

Syntax charts that introduce each functional grouping of system calls show the place-

ment of each parameter, and the examples given with each individual system call
illustrate actual declaration and usage.

System Calls Cautions

ISIS-1V is non-reentrant. Consequently, an interrupt service routine that is
activated while ISIS-IV is executing must not call ISIS-IV.

Use of ISIS-IV by Other Programs

ISIS-IV references files by a connection number (AFTN, or active file table number).
Be careful not to confuse the AFTN with the PL/M construction .AFTN. The period
(.) specifies the address of the memory location where the AFTN is stored.

To reduce this potential confusion, both the syntax charts and the sample PL/M
declarations in the examples refer to the connection number as conn and to the address
as connp. Then in the CALLs of the PL/M examples, periods precede the names
when addresses are to be supplied.

Similarly, the charts and declarations show path$p to represent the address of a
memory location containing the string naming a device or file. The CALL then shows
a period before the variable you declared to hold that string.

File Input/Output Calls

Seven system calls are available to your program for controlling file input/output
(see figure 3-2). These subroutines let you open files for read or write operations,
move the pointer in an open file, and close the files when you are finished.

These data transferring services of the supervisor transfer variable-length blocks of
data between standard peripheral devices and a memory buffer area in the program.
These calls establish and maintain the MARKER and LENGTH quantities associ-
ated with the file being operated upon.

Series IV ISIS-1V

@

CLOSE (conn,

1
1

OPEN (conn$p, path$p, access, echo,

READ (conn, buf$p, count, actual$p,

T
TLIT

RESCAN (conn,

uiI\J

a

SEEK (conn, mode, block$p, byte$p,

)

SPATH (path$p, info$p,

WRITE (conn, buf$p, count,

I
g
.
Y Yy

Figure 3-2. File Input-Output System Calls

»f status$Sp

121980-4

Series IV ISIS-IV Use of ISIS-IV by Other Programs

CLOSE — Terminate Input/Output Operations on a File
Syntax
CALL CLDSE (conn, status$p)

You must pass two parameters, conn and status$p, in the CLOSE call,

where
conn is the connection number (AFTN) of the file to be closed.
The AFTN was returned by a preceding OPEN call.
status$p is the address of a memory lcation for the return of non-

fatal error numbers. The non-fatal error numbers issued by
CLOSE are listed in Appendix A.

The CLOSE call removes a file from the system input/output tables and releases the
buffers allocated for it by OPEN. All files should be closed when input/output
processing is complete.

Examples
1. PL/M CLOSE CALL
CLOSE:
PROCEDURE (conn, status$p) EXTERNAL;

DECLARE (conn, status$p) ADDRESS;
END CLOSE;

DECLARE AFTS$IN ADDRESS;
DECLARE STATUS ADDRESS;

CALL CLOSE C(AFTS$IN,.STATUS);
IF STATUS <> 0 THEN...

Use of ISIS-IV by Other Programs

3-12

2. Assembly Language CLLOSE Call

CLOSE

CBLK:

CAFT:

CSTAT:

EXTRN
EQU

LA
LXI

CALL
LDA
ORA
JNZ

DS
DW

DS

ISIS
1

C,CLOSE
D,CBLK

ISIS
CSTAT
A
EXCEPT

CSTAT

.
7

Series IV ISIS-IV

LINK TO ISIS ENTRY POINT
SYSTEM CALL IDENTIFIER

LOAD IDENTIFIER
ADDRESS OF PARAMETER
BLOCK

TEST ERROR STATUS

BRANCH TO EXCEPTION
ROUTINE

PARAMETER BLOCK FOR
CLOSE

FILE AFTN

POINTER TO STATUS

STATUS (RETURNED)

Series IV ISIS-1V

Use of ISIS-IV by Other Programs

OPEN — nitialize File for Input/Output Operations

Syntax

CALL OPEN (conn$p, path$p, access, echo, status$p)

You must pass five parameters, conn$p, path®p, access, echo, and status$p, in the

OPEN call,

where
conn$p

path$p

access

echo

status$p

is an address of a two byte field in which ISIS will store
the active file number (AFTN) of the file that is opened.
Your program will use this value for other calls relative to
this file. :CIl: and :CO: are always open and have the
AFTNs 1 and 0 permanently assigned. Excluding :CI: and
:CO:, you can only have six files open at any one time. Be
careful not to confuse AFTN with the PL/M construction
AFTN. The period prefacing .AFTN signifies AFTN’s
location in memory.

is the address of the ASCII string containing the name of
the file to be opened. The ASCII string can contain leading
space characters but no embedded space characters. It must
be terminated by a character other than a letter, digit, colon
(:), or period (.). A space can be used.

is a value indicating the access mode for which the file is
being opened.

A value of 1 specifies that the file is open only for input to
the system READ. MARKER is set to 0 and LENGTH is
unchanged. If the file is nonexistent, a non-fatal error
occurs.

A value of 2 specifies that the file is open only for output
from the system: WRITE.MARKER and LENGTH are
set to 0.

If the file is nonexistent, a file with the default iNDX access
rights (e.g., WORLD READ, WRITE, and DELETE on
a 5'/s-inch miniature flexible diskette, and OWNER
READ, WRITE, DELETE for all other devices) is created.
The filename is specified at location path$p. If it already
exists, information in the file will be overwritten.

A value of 3 specifies that the file is open for update: READ
and WRITE. MARKER is set to 0. LENGTH is
unchanged for existing files and set to O for new files. If
the file is nonexistent, a new file with the default iNDX
access rights is created. The filename is specified at location
path$p.

is the AFTN of the echo file if the file is to be opened for
line editing. The echo file must be previously opened for
output (access=2). The AFTN of the echo file is passed in
the least significant byte of the field. If this field contains
0, no line editing is done. To specify an AFTN of O for
:CO:, a nonzero value must be in the most significant byte
and zero in the least significant byte. For example, FFOOH
specifies the AFTN for the :CO: device.

is the address of a memory location for the return of non-
fatal error numbers. The error numbers that OPEN can
return are listed in Appendix A.

Use of ISIS-IV by Other Programs Series IV ISIS-1V

Description

The OPEN call initializes ISIS tables and allocates buffers that are required for
input/output processing of the specified file.

Possible Error Conditions

If you open a file for an access mode that is not physically possible, a non-fatal error
will occur. The following will cause non-fatal errors:

* Opening :VI: (video terminal keyboard) or :VO: (video terminal screen) when
you are executing ISIS-IV under Background or Import

e Opening :Bl: (batch input) when you have interactively invoked ISIS-IV. You
must be executing ISIS-IV under Background, SUBMIT, or Import to open :BI:.

* Opening :BO: (batch output) when you have no Series IV LOG file at the time
that you invoked ISIS-IV

* Opening a file that begins with an unassigned directory identifier (e.g., :Fn: has
not been identified)

* Open a file that begins with :SP: (spool printer) when you have not defined :SP:
as a logical name, or if the SPOOL directory is not present within the volume
root directory of the system device

If you do not have appropriate access rights to the specified file (e.g., opening for
read without read access rights), a non-fatal error will result.

Examples
1. PL/M OPEN Call

OPEN:
PROCEDURE (conn$p, path$p, access, echo, status$p) EXTERNAL;
DECLARE (conn$p, path$p, access, echo, status$p) ADDRESS;
END OPEN;

DECLARE AFTS$IN ADDRESS;
DECLARE FILENAMEC1S5) BYTE DATA (*:F1:MYPROG.SRC’);
DECLARE STATUS ADDRESS;

CALL OPENC.AFTSIN,.FILENAME,1,0,.5TATUS);
IF STATUS<>0 THEN...

Series 1V ISIS-1V

2. Assembly Language OPEN Call

EXTRN ISIS
OPEN EQU 0

MVI C,0PEN

LXI D,0BLK

CALL ISIS

LDA 0STAT

DRA A

JNZ EXCEPT
0BLK:

DW DAFT

DW OFILE
ACCESS: DW 1
ECHD: DW 0

DKW 0STAT
H
0AFT: DS 2
0STAT: DS 2
OFILE: DB

‘iFO:FILE.EXT

’

Use of ISIS-IV by Other Programs

LINK TO I1SIS ENTRY POINT
SYSTEM CALL IDENTIFIER

LOAD IDENTIFIER
ADDRESS 0OF PARAMETERS
BLOCK

TEST ERROR STATUS

BRANCH TQ EXCEPTION
ROUTINE

PARAMETER BLGCK FOR OPEN
POINTER TO AFTN

POINTER TO FILENAME
ACCESS, READ=1, WRITE=2,
UPDATE=3

[F ECHO <> 0,

ECHO = AFTN OF

ECHO QUTPUT FILE

POINTER TO STATUS

AFTN (RETURNED)
STATUS (RETURNED)
; FILE TO BE OPENED

Use of ISIS-IV by Other Programs

3-16

Series 1V ISIS-IV

READ — Transfer Data from File to Memory

Syntax

CALL READ (conn, buf$p, count, actual$p, status$p)

You must pass five parameters, conn, buf$ép, count, actual$p, and status$p, in the

READ call,

where
conn

buf$p

count

actual$p

status$p

Description

is the connection number (AFTN) of a file that is open for
input or update. The AFTN is returned by a preceding
OPEN call or is 1 for :CI:

is the address of a buffer to contain the data read from the
open file. The buffer must be at least as long as the count
described below. If the buffer is too short, the memory
locations that follow the buffer will be overwritten.

is the number of bytes to be transferred from the file to the
buffer.

is the address of a memory location in which ISIS will store
the actual number of bytes successfully transferred. The
same number is added to MARKER. The actual number
of bytes transferred is never more than the number speci-
fied in the count parameter above. For line-edited files the
actual number of bytes is never more than the number of
bytes in the line-edit buffer. When a file is not line edited,
the number of bytes is equal either to count or to LENGTH
minus MARKER, whichever is fewer. actual = 0 is the
only reliable way of detecting end-of-file (for both lined
and nonlined files).

is the address of a memory location in which ISIS will store
non-fatal error numbers. The error numbers returned by
the READ call are listed in Appendix A.

The READ call transfers data from an open file to a memory location specified by
the calling program. See “Line-Edited Input Files” in this chapter for information
concerning reading line-edited files.

Series IV ISIS-IV

Examples
1. PL/M READ Call

READ:

Use of ISIS-IV by Other Programs

PROCEDURE (conn, buf$p, count, actual$p, status$p) EXTERNAL ;
DECLARE Cconn, buf$p, count, actual$p, status$p) ADDRESS;

END READ;

DECLARE AFTS$IN ADDRESS;
DECLARE BUFFER(C128) BYTE;
DECLARE ACTUAL ADDRESS;
DECLARE STATUS ADDRESS;

CALL READ C(AFTSIN,.BUFFER,128,
IF STATUS <> 0 THEN

2. Assembly Language READ Call

EXTRN ISIS
READ EQu 3

MV I C,READ

LXI D,RBLK

CALL ISIS

LDA RSTAT

ORA A

JNZ EXCEPT
RBLK:
RAFT: DS 2

DW IBUF
RCNT: DW 128

DW ACTUAL

DW RSTAT
ACTUAL: DS 2
RSTAT: DS 2
1BUF: DS 128

.ACTUAL,.STATUS);

; LINK TO ISIS ENTRY POINT
i SYSTEM CALL IDENTIFIER

; LOAD IDENTIFIER
; ADDRESS OF PARAMETER
i BLOCK

; TEST ERROR STATUS

; BRANCH TO EXCEPTION
3 ROUTINE

; PARAMETER BLOCK FOR READ
; FILE AFTN

; ADDRESS OF INPUT BUFFER
i LENGTH OF READ REQUESTED
; POINTER TO ACTUAL

; POINTER 7O STATUS

; COUNT OF BYTES READ
; (RETURNED)

; STATUS (RETURNED)

; INPUT BUFFER;

Use of ISIS-IV by Other Programs Series IV ISIS-IV

RESCAN — Position MARKER to Beginning of Line
Syntax
CALL RESCAN (conn, status$p)

You must pass two parameters, conn and status$p, in the RESCAN call,

where
conn is the connection number (AFTN) of a file open for line-
edited input (echo file AFTN specified) by a preceding
OPEN call.
status$p is the address of a memory location for the return of non-
fatal error numbers. The error numbers returned by the
RESCAN call are listed in Appendix A.
Description

The RESCAN call is used on line-edited files only. It allows your program to move
the MARKER to the beginning of a logical line that has already been read. Thus the
next READ call starts at the beginning of the last logical line read. This line is not
echoed (output to the echo file); it has already been input from the keyboard and
echoed. Thus, the subsequent READ does not input from a file but only reads from
a buffer in memory.

Examples
1. PL/M RESCAN Call
RESCAN:
PROCEDURE (conn, status$p) EXTERNAL ;

DECLARE (conn, status$p) ADDRESS;
END RESCAN;

DECLARE AFTSIN ADDRESS;
DECLARE STATUS ADDRESS;

CALL RESCAN (AFTSIN,.STATUS);
IF STATUS <> 0 THEN

3-18

Series IV ISIS-IV

2. Assembly Language RESCAN Call

RESCAN

IBLK:

[AFT:

ISTAT:

EXTRN
EQU

MVI
LXI

CALL
LDA
ORA
JNZ

DS
DW

DS

ISIS
1"

C,RESCAN
D,IBLK

ISIS
I[STAT
A
EXCEPT

ISTAT

Use of ISIS-IV by Other Programs

LINK TO ISIS ENTRY POINT
SYSTEM CALL IDENTIFIER

LOAD IDENTIFIER
ADDRESS OF PARAMETER
BLOCK

TEST ERROR STATUS

BRANCH TO EXCEPTION
ROUTINE

PARAMETER BLOCK FOR
RESCAN

AFTN FROM OPEN
POINTER TO STATUS

STATUS (RETURNED)

Use of ISIS-IV by Other Programs Series IV ISIS-1V

SEEK — position Disk File Marker

Syntax
CALL SEEK (conn, mode, block$p, byte$p, status$p)

You must pass five parameters, conn, mode, block$p, byte$p, and status$p, in the
SEEK cali,

where

conn is the connection number (AFTN) of a file on a random
access device opened for update or input. This connection
was returned by a preceding OPEN call.

mode is a value from O through 4 that indicates what action
should be performed on the MARKER. The block and byte
parameters (see below) are used either to represent the
current MARKER position or to calculate the desired
offset, depending on mode. A detailed discussion follows
this parameter list.

block$p is the address of a memory location containing a 2-byte
value used for the block number. A block is equal to 128
bytes.

byte$p is the address of a memory location containing a 2-byte
value used for the byte number. The byte number may be
greater than 128.

status$p is the address of a memory location you declared to receive
non-fatal error numbers from ISIS. The error numbers
returned by the SEEK call are listed in Appendix A.

Description

The SEEK call allows your program to find the location of or to change the value of
MARKER associated with a file open for read or update. The SEEK call can be used
only with a file open for update or read. The MARKER can be changed in four ways:
moved forward, moved backward, moved to a specific location, or moved to the end
of the file. A nonfatal error occurs if SEEK is issued for a file opened for output.

Return Marker Location: Mode=0. Under this mode the system returns a pair of
block and byte values (at block$p and byte$p) that signify the current position of the
marker. For example, if the marker is just beyond the first block of the file, the
system might return the numbers 1 and 0 in the addresses assigned to block and byte,
respectively. It might also return the numbers 0 and 128, which point to the same
byte in the file. The value of MARKER is given by the following equation:

MARKER = 128* (block number) + byte number

Move Marker Backward: Mode=1. If the mode value is 1, the marker is moved
backward, toward the beginning of the file. The block and byte parameters determine
the offset; for example, if block is equal to 0 and byte is equal to 382, the marker is
moved backward 382 bytes. To define an offset of N, use block and byte values such
that

N = 128* (block number) + byte number

3-20

Series IV ISIS-IV Use of ISIS-IV by Other Programs

If Nis greater than MARKER, i.e., if the prescribed action would place the marker
before the beginning of the file, MARKER is set to 0 (beginning of file), and a non-
fatal error occurs.

Move Marker to Specific Location: Mode=2. If the mode value is 2, the marker is
moved to a specific position in the file. The block and byte parameters define the
position; for example, if block is equal to 27 and hyte is equal to 63, the marker will
be moved to block 27, byte 63. Similarly, if both Liock and byte are equal to O, the
marker is moved to the beginning of the file. If the file is open for update and the
prescribed action would place the marker beyond the end of the file, ASCII nulls
(00HH) are added to the file to extend the file to the marker. (Thus, LENGTH
becomes equal to MARKER.)

Move Marker Forward: Mode=3. If the mode value is 3, the marker is moved
forward, toward the end of the file. The block and byte parameters define the offset
N, according to the following equation:

N + 128* (block number) + byte number

If the file is open for update and the specified action would place the marker beyond
the end of the file, ASCII nulls (0OOHH) are added to the file to extend the file to the
marker. (Thus, LENGTH becomes equal to MARKER.)

If the extension of a file by the SEEK operation causes an overflow on the mass
storage device, a fatal error is reported, either during the execution of the SEEK call
or when a program tries to write into the extended area of the file. This error can
become evident at any time in the life of the file.

If an attempt is made to extend a file that is open only for input, the marker is set to
the former end-of-file, and a non-fatal error occurs.

Move Marker to End of File: Mode=4. If the mode value is 4, the marker is moved
to the end of the file. Block and byte parameters are ignored.

Examples
1. PL/M SEEK Call

SEEK:
PROCEDURE (Cconn, mode, block$p, byte$p, status$p) EXTERNAL ;
DECLARE (conn, block$p, byte$p, status$p) ADDRESS;
END SEEK;

DECLARE AFTS$IN ADDRESS;
DECLARE BLOCKND ADDRESS;
DECLARE BYTENDO ADDRESS;
DECLARE STATUS ADDRESS;

CALL SEEK C(AFTS$IN,O0,.BLOCKNO,.BYTEND,.STATUS);
IF STATUS<>»0 THEN

3-21

Use of ISIS-IV by Other Programs Series IV ISIS-1V

2. Assembly Language SEEK Call

EXTRN IS1S ; LINK TO ISIS ENTRY POINT
SEEK EQU 5 ; SYSTEM CALL IDENTIFIER
MV I C,SEEK i LOAD IDENTIFIER
LX1 D,SBLK ; ADDRESS OF PARAMETER
; BLOCK
CALL ISIS .
LDA SSTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT i BRANCH TO EXCEPTION
i ROUTINE
SBLK: ; PARAMETER BLOCK FOR SEEK
SAFT: DS 2 ; AFTN FROM OPEN
MODE: DS 2 i TYPE OF SEEK
DW BLKS i POINTER TO BLKS
DW NBYTE ; POINTER TO NBYTE
DW SSTAT ; POINTER TO STATUS
BLKS: DS 2 ; NUMBER OF SECTORS TO SKIP
NBYTE: DS 2 ; NUMBER OF BYTES TO SKIP

SSTAT: DS 2 ; STATUS C(RETURNED)

3.22

Series IV ISIS-IV Use of ISIS-IV by Other Programs

SPATH — Obtain File Information

Syntax
CALL SPATH (path$p, infodp, status$p)
You must pass three parameters, path$p, info$p, and status$p, in the SPATH call,

where

path$p is the address of an ASCII string containing the name of
the file for which information is requested. The string can
contain leading spaces but no embedded spaces. The string
must be terminated by a character other than a letter, digit,
colon (), or period (.). A space can be used.

info$p is the address of a 12-byte memory location in which the
system will return the information. After the call is
completed, the buffer will contain the following informa-
tion:
Byte O - device number
Bytes 1 through 6 - file name
Bytes 7 through 9 - file name extension
Byte 10 - device type
Byte 11 - drive type

status$p is the address of a memory location for a return of a non-
fatal error number. The non-fatal error numbers issued by
the SPATH call are listed in Appendix A.

The possible values for the contents of the info$p device number are

0 - directory 0
1 - directory 1
2 - directory 2
3 - directory 3
4 - directory 4
5 - directory 5
6 - teletype input (valid for ISIS-II and ISIS-III (N) only)
7 - teletype output (valid for ISIS-II and ISIS-III (N) only)
8 - CRT input
9 - CRT output
10 - user console input (valid for ISIS-II and ISIS-III (N) only)
11 - user console output (valid for ISIS-II and ISIS-III (N) only)
12 - teletype paper tape reader (valid for ISIS-II and ISIS-III (N) only)
13 - high speed paper tape punch (valid for ISIS-1I and ISIS-III (N) only)
14 - user reader 1
15 - user reader 2
16 - teletype paper tape punch (teletype) (valid for ISIS-II and ISIS-III (N)
only)
17 - high speed paper tape punch (valid for ISIS-II and ISIS-III (N) only)
18 - user punch 1 (valid for ISIS-II and ISIS-III (N) only)
19 - user punch 2 (valid for ISIS-II and ISIS-III (N) only)
20 - line printer
21 - user list 1 (valid for ISIS-II and ISIS-IIT (N) only)
22 - byte bucket (a pseudo input/output device)
23 - console input
24 - console output
25 - directory 6
26 - directory 7

3-23

Use of ISIS-IV by Other Programs Series IV ISIS-IV

27 - directory 8

28 - directory 9

29 - spool printer device

30 - batch input (Series IV SUBMIT file)
31 - batch output (Series IV LOG file)

The file name and extension are the ISIS file name.

The device type specifies the type of peripheral with which the file is associated. The
possible values for this field are

0 - sequential input device

1 - sequential output device

2 - sequential input/output device

3 - random access input/output device

If the field is 3 the possible values for device are

0 - controller not present (valid for ISIS-II and ISIS-III (N) only)

1 - two-board double density (valid for ISIS-IT and ISIS-III (N) only)
2 - two-board single density (valid for ISIS-II and ISIS-III (N) only)
3 - integrated single density (valid for ISIS-II and ISIS-III (N) only)
4 - reserved

5 - NDS-I remote mass storage (valid for NDS-I only)

6 - assigned device

7 - reserved

8 - unassigned device

Description

The SPATH call allows your program to obtain information relating to a specified
file. The information returned by this call includes the device number, file name and
extension, device type, and if a disk file, the drive type.

Examples
1. PL/M SPATH Call

SPATH:
PROCEDURE (path$p, info$p, status$p) EXTERNAL;

DECLARE (Cpath$p, info$p, status$p) ADDRESS;
END SPATH;

DECLARE FILENAMC15) BYTE;

DECLARE FILINF STRUCTURE (DEVICES NO BYTE,
FILENAME (6) BYTE;
FILESEXT (3) BYTE,
DEVICES TYPE BYTE,
DRIVES TYPE BYTE);

DECLARE STATUS ADDRESS;

CALL SPATH C(.(':F3:’),. INFO,.STATUS))
I[F STATUS<>0 THEN

IF INFO.DRIVESTYPE<)>E

THEN .../* UNASSIGNED*/

3-24

Series IV ISIS-IV

2. Assembly Language SPATH Call

EXTRN ISIS
SPATH EaQu 14

MV I C,SPATH

LXI D,SBLK

CALL ISIS

LDA SSTAT

ORA A

JNZ EXCEPT
SBLK;

DW FILEN

DKW BUFIN

DW SSTAT
FILEN: DS 15
BUFIN DS 12
SSTAT: DS 2

3

Use of ISIS-IV by Other Programs

LINK TD ISIS ENTRY POINT
SYSTEM CALL IDENTIFIER

LOAD IDENTIFIER
LOAD PARAM ADDR

TEST ERROR STATUS

BRANCH TO EXCEPTION
ROUTINE

PARAMETER BLOCK FOR
SPATH

POINTER TO FILE NAME
POINTER TO BUFFER
POINTER TO STATUS

FILE NAME FIELD

BUFFER FOR DATA
STATUS (RETURNED)

3-25

Use of ISIS-IV by Other Programs

3-26

Series IV ISIS-IV

WR'TE — Transfer Data from Memory to File

Syntax

CALL WRITE (conn, buf$p, count, status$p)

You must pass four parameters, conn, buf$p, count, and status$p, in the WRITE call,

where

conn

buf$p

count

status$p

Description

is the connection number (AFTN) of a file open for output
or update. The AFTN was returned by a preceding OPEN
call or is 0 for :CO..

is the address of the memory location of the buffer from
which data is to be transferred, or a string literal of the
format .string literal, where the period (.) specifies the
contents of the string buffer labeled .string literal.

is the number of bytes to be transferred from the buffer to
the output file. The value of the count is added to
MARKER. If this results in MARKER being greater than
LENGTH, then LENGTH is set equal to MARKER. The
number of bytes actually transferred by WRITE is exactly
equal to count. Thus, if the buffer length is less than count,
memory locations following buffer are written to the file.

is the address of the memory location for the return of non-
fatal error numbers. The error numbers returned by
WRITE are listed in Appendix A.

The WRITE call transfers data from a specified location in memory called a buffer

to an open file.

Examples

1. PL/M WRITE Call

WRITE:

PROCEDURE (conn, buf$p, count, status$p) EXTERNAL;
DECLARE (conn, buf$p, count, status$p) ADDRESS ;

END WRITE;

DECLARE AFTOUT ADDRESS;
DECLARE BUFFER(C128) BYTE;
DECLARE STATUS ADDRESS;

CALL WRITE (0,.C'this is an example of string

literal’,
CALL WRITE

0DH,0AH),38,.STATUS);
(AFTOUT, .BUFFER,128,.STATUS);

IF STATUS<»0 THEN

Series IV ISIS-IV

2. Assembly Language WRITE Call

EXTRN ISIS
WRITE EQU 4

MV 1 C,WRITE

LX1 D,WBLK

CALL ISIS

LDA WSTAT

ORA A

JNZ EXCEPT
WBLK:
WAFT: DS 2

DU 0BUF
WCNT: DW 128

DW WSTAT
WSTAT: DS 2

0BUF: DS 128

Use of ISIS-IV by Other Programs

LINK TO ISIS ENTRY POINT
SYSTEM CALL IDENTIFIER

LOAD IDENTIFIER
ADDRESS OF PARAMETER
BLOCK

TEST ERROR STATUS

BRANCH TO EXCEPTION
ROUTINE

PARAMETER BLOCK FOR
WRITE

FILE AFTN

ADDRESS OF OUTPUT BUFFER

POINTER TO STATUS

STATUS (RETURNED)
DUTPUT BUFFER

3-27

Use of ISIS-IV by Other Programs Series IV ISIS-IV

Directory Maintenance

Five system calls are available to your program for changing and accessing informa-
tion in a directory (see figure 3-3). These calls allow you to delete a file, rename a
file, change the write-protect status of a file, and obtain directory information about
a file.

;

g

ATTRIB (pathSp,

1
.
DUL

atrb, onoff,)—»

DELETE (path$p,

1
X

GETATT

(fileSp, attribSp

X

{did,conn$p, count, \

actual$p, table$p J

(old$p, H newpath$p,)——>

GETD

I

RENAME

Figure 3-3. Directory Maintenance System Calls 1219805

3-28

Series IV ISIS-IV

Use of ISIS-IV by Other Programs

ATTRIB — Change the Write-Protect Status of a File

Syntax

CALL ATTRIB (path$p, atrb, onoff, status$p)

You must pass four parameters, path$p, atrb, onoff, and status$p, in the ATTRIB

call,

where
path$p

atrb

onoff

status$p

Description

is the address of an ASCII string containing the name of
the file whose write-protect status is to be changed. The
string can contain leading space characters but no embed-
ded spaces. The string must be terminated by a character
other than a letter, digit, colon (:), or period (.). A space
can be used.

is a number indicating the attribute to be changed. The
identifier can be

0 - invisible attribute (valid for ISIS-II and III (N) only)
1 - system attribute (valid for ISIS-II and III (N) only)

2 - write protect attribute. This attribute will set or reset
the access right switches (Owner Write, Owner Delete,
World Write, and World Delete) of the file.

3 - format attribute (valid for ISIS-II and III (N) only)

is a value indicating whether the attribute is to be set
(turned on) or reset (turned off). The value is stored in the
low order bit of the low order byte. A value of 1 specifies
that the attribute be set and a value of 0 specifies that it
be reset.

is the address of a memory location for the return of a non-
fatal error number. The non-fatal error numbers issued by
the ATTRIB call are listed in Appendix A.

The ATTRIB call allows your program to change the write-protect status of a file.
ATTRIB supports the ISIS write-protect attribute by mapping this attribute into the
iNDX access rights (see table 3-3).

Table 3-3. Changing Write-Protect Status

Operation Action
Set write protect on miniature Deny WORLD WRITE
flexible diskette Deny WORLD DELETE
Set write protect on Deny WORLD WRITE
hard disk or Winchester device Deny WORLD DELETE

Deny OWNER WRITE
Deny OWNER DELETE

Reset write protect on miniature Grant WORLD WRITE
flexible diskette Grant WORLD DELETE
Reset write protect on Grant OWNER WRITE
hard disk or Winchester device Grant OWNER DELETE

3-29

Use of ISIS-IV by Other Programs

Examples
1. PL/M ATTRIB Call

ATTRIB:

PROCEDURE (path$p, atrb, onoff, status$p) EXTERNAL ;
DECLARE (path$p, atrb, onoff, status$p) ADDRESS ;

END ATTRIB;

DECLARE FILEC15) BYTE;
DECLARE STATUS ADDRESS;

CALL ATTRIB C(.FILE,2,0,.5TATUS);
IF STATUS«<>0 THEN

2. Assembly Language ATTRIB Call

EXTRN ISIS H
ATTRIB EQU 10 H
MVI C,ATTRIB ;
LXI D,ABLK ;
CALL I1S1S
LDA ASTAT 3
ORA A
JN2Z EXCEPT H
ABLK: H
DW FILEN ;
DUW 2 H
DW 0 H
DW ASTAT :
H
FILEN: DS 15 ;

ASTAT: DS 2 ;

3-30

Series IV ISIS-IV

LINK TO ISIS ENTRY POINT

SYSTEM CALL IDENTIFIER

LOAD IDENTIFIER
LOAD PARAM ADDR

TEST ERROR STATUS

BRANCH TO EXCEPTION
ROUTINE

PARAMETER BLOCK FOR
ATTRIB

POINTER TO FILE NAME
ATTRIBUTE IDENTIFIER
SET/RESET SWITCH
POINTER 70 STATUS

FILE NAME FIELD
STATUS (RETURNED)

Series IV ISIS-IV Use of ISIS-IV by Other Programs

DELETE — pelete a File from the Directory

Syntax

CALL DELETE (path$p, status$p)

You must pass two parameters, path$p and status$p, in the DELETE call,

where

path$p is the address of an ASCII string that specifies the name
of the file to be deleted. The file to be deleted must not be
open. The string can contain leading space characters but
no embedded spaces. It must be terminated by a character
other than a letter, digit, colon (:), or period (.). You can
use a space.

status$p is the address of a memory location for the return of a non-
fatal error number. The error numbers returned by
DELETE are listed in Appendix A.

Description

The DELETE call removes a specified file from its directory. The file must not be
open. The space allocated to the file is released. The space can then be reused for
another file.

Examples
1. PL/M DELETE Call
DELETE:
PROCEDURE (path$p, status$p) EXTERNAL;

DECLARE (path$p, status$p) ADDRESS;
END DELETE;

DECLARE FILENAMC20) BYTE;
DECLARE STATUS ADDRESS;

CALL DELETE C(.FILENAM,.STATUS);
IF STATUS«<>0 THEN

3-31

Use of ISIS-IV by Other Programs

3-32

2. Assembly Language DELETE Call

DELETE

DBLK:

DSTAT:
DFILE:

EXTRN

EQu

MVI
LXI

CALL
LDA
ORA
JNZ

DW
DW

DS
DB

ISIS
2

C,DELETE
D,DBLK

ISIS
DSTAT
A
EXCEPT

DFILE
DSTAT

‘FILE.EXT’

El

Series 1V ISIS-IV

LINK TO ISIS ENTRY POINT
SYSTEM CALL IDENTIFIER

LOAD IDENTIFIER
ADDRESS OF PARAMETER
BLOCK

TEST ERROR STATUS

BRANCH TO EXCEPTION
ROUTINE

PARAMETER BLOCK FOR
DELETE

POINTER TO FILENAME
POINTER TO STATUS

STATUS (RETURNED)
NAME OF FILE TO BE DELETED

Series IV ISIS-IV

Use of ISIS-1IV by Other Programs

GETATT — Obtain Write-Protect Information

Syntax

CALL GETATT (file$p, attrib$p, status$p)

You must pass three parameters, file$p, attrib$p, and status$p, in the GETATT call,

where
file$p

attrib$p

status$p

Description

is the address of an ASCII string representing the name of
the file for which attribute information is to be returned.
The string can contain leading space characters, but no
embedded spaces. It must end with a space.

is the address of a one-byte field to which the write-protect
status of the file is to be returned. The following defines
this byte:

bit 0 set = invisible (valid for ISIS-1I and I (N) only)
bit 1 set = system (valid for ISIS-II and III (N) only)
bit 2 set = write-protect

bit 3 set = reserved

bit 4 set = reserved

bit 5 = reserved

bit 6 = reserved

bit 7 set = format (valid for ISIS-II and IIT (N) only)

is the address of an address variable for the return of the
completion status for the requested operation. Zero
indicates completion with no error. A non-zero value is a
non-fatal error number. The error numbers issued by the
GETATT system call are listed in Appendix A.

The GETATT call allows your program to obtain the write-protect status of a file.
GETATT can return only the write-protect attribute. The GETATT call returns the
write-protect attribute under the following conditions:

e When the WORLD WRITE and DELETE access rights to the specified file

have been denied.

e When the OWNER WRITE and DELETE access rights to the specified file
have been denied, or the user is not the owner of the file.

NOTE

GETATT may return a false indication of the write-protect attribute if
the user is the Superuser. The state of the Superuser’s access rights does
not effect the setting or resetting of the write-protect attribute to a file.
Hence, the Superuser can have access to a file, yet GETATT could return
a false write-protect indication.

3-33

Use of ISIS-IV by Other Programs

3-34

Examples
1. PL/M-80 GETATT Call

GETATT:

PROCEDURE (file$p, attrib$p, status$p) EXTERNAL;
DECLARE(file$p, attrib$p, status$p) ADDRESS ;

END GETATT;

/*MUST BE LINKED WITH SYSTEM.LIB*/

DECLARE FILEC15) BYTE;
DECLARE STATUS ADDRESS;
DECLARE ATTRIB BYTE;

CALL GETATT C(.FILE, .ATTRIB,
IF STATUS«<>0 THEN

2. Assembly Language GETATT Call

EXTRN GETATT
; GETATT

LHLD FILEP

PUSH H

LHLD ATTP

PUSH H

POP B

LHLD STATP

PUSH H

PaopP D

CALL GETATT

LDA GSTAT

ORA A
PR JNZ EXCEPT
FILEP: DM GFILE
ATTP: DW ATTRIB
STATP: DW GSTAT
GFILE: DB ‘rFOSFILELEXT!
ATTRIB: DS 1
GSTAT: DS 2

1

LSTATUS)

MUST BE LINKED
WITH SYSTEM.LIB

FILE PARAMETER

ATTRIBUTE POINTER

STATUS

TEST ERROR STATUS

BRANCH TQ EXCEPTION
ROUTINE

POINTER TO FILE
PATHNAME

POINTER TO ATTRIBUTE

POINTER TO STATUS

FILE PATHNAME

ATTRIBUTE VALUE
(RETURNED)

STATUS (RETURNED)

Series IV ISIS-IV

Series IV ISIS-IV Use of ISIS-IV by Other Programs

GETD — Obtain File Device Directory Information

Syntax
CALL GETD (did, conn$p, count, actual$p, table$p, status$p)

You must pass six parameters, did, conn$p, count, actual$p, table$p, and status$p, in
the GETD call,

where

did is the address variable containing the number for the direc-
tory from which entries are to be returned. Valid integer
values are 0-9, representing :FO0:-:F9:.

conn$p is an address value that must be initialized to zero when
the first display request of a sequence is made. Changing
this value will cause an error. The system assigns a value
to this word that is returned in subsequent requests for
directory entries. This value acts as a pseudo-connection
for subsequent calls.

count is an address value that contains the number of entries to
be returned. A value of 0 terminates the current display
request sequence and releases the pseudo-connection. The
program must make a final call to GETD with count=0 to
release the connection unless it is automatically released.

actual$p is an address value containing the number of directories
returned by the system. When actual is less than count, the
last directory entry has already been returned and the
pseudo-connection will be released automatically.

table$p is the address of a memory structure where directory entries
are returned. The structure form is

DECLARE ENTRY STRUCTUREC

RESERVED1 (1) BYTE,
FILESNAME (9) BYTE,
RESERVED2 (6) BYTE);

where

FILESNAME is a 9-byte field with two subfields left-justified and zero-
filled. The first 6 bytes represent the name and the
remaining 3 bytes are the file extension.

status$p is a pointer to the memory location for the return of the
status for the requested operation. Zero indicates no error.
A nonzero value corresponds to a non-fatal error number.
The error numbers issued by the GETD system call are
listed in Appendix A.

Description

The GETD call allows your program to access information in a file device directory
defined by DID.

3-35

Use of ISIS-IV by Other Programs

You must load ISIS overlay (ISIS.OVO0) into the top of a 64K memory space
with the LOAD call before calling GETD. The ISIS overlay will reside
between OE8OOH and OF6BFH. Access the overlay entry point by linking to
SYSTEM.LIB. Do not overwrite the overlay when accessing the directory
desired. Reserved fields returned by GETD are different from one ISIS
operating system to another. Do not use reserved fields in a program that
employs GETD.

Examples
1. PL/M-80 GETD Call
GETD:
PROCEDURE (did, conn$p, count, actual$p, table$p, status$p) EXTERNAL;
DECLARE (did, conn$p, count, actual$p, table$p, status$p) ADDRESS;
END GETD;
DECLARE (dummy,status,conn,actual) ADDRESS ;
DECLARE TABLE (50) STRUCTURE
(Reserved (1) Byte,
Filename (9) Byte,
Reserved (6) Byte) ;
CONN=0;
CALL LOAD C.C*:FO0:15IS.0vV0’),0,0, .DUMMY,.STATUS);

CALL GETD (1,.CONN, 50, .ACTUAL, .TABLE (0), .STATUS);

I[F STATUS¢<>0 THEN...

Series IV ISIS-IV

Series IV ISIS-IV

2. Assembly Language GETD Call

ETD

ulrs.ovo

DID
CONNP:
COUNT:
ACTP:
BUFFP:
GSTAT:
DACT:

DBUF :
DSTAT:

EXTRN

GETD

i

.
i

Use of ISIS-1IV by Other Programs

MUST BE LINKED
WITH SYSTEM.LIB

MUST BE LOADED BEFORE CALLING GETD

LXI

SHLD
LHLD
PUSH
LXI

PUSH
LHLD
PUSH

LHLD
PUSH

LHLD
PUSH
POP
LHLD
PUSH
POP

CALL
LDA
ORA
JNZ

DW
DW
DW
DN
DW
DW
DS

DS
DS

H,0
CONNP
DID

H
H,CONNP
H

COUNT

GETD
DSTAT
A
EXCEPT

DACT
DBUF
DSTAT

128

1

INITIAL 0
DIRECTORY

CONNECTION POINTER

COUNT

ACTUAL

BUFFER POINTER

STATUS

TEST ERROR STATUS

BRANCH TO EXCEPTION
ROUTINE

DIRECTORY IDENTIFIER
DIRECTORY CONNECTION
ENTRY COUNT

POINTER TO ACTUAL
POINTER TO BUFFER
POINTER TO STATUS
COUNT OF ENTRIES READ
(RETURNED)

DIRECTORY BUFFER
STATUS (RETURNED)

Use of ISIS-IV by Other Programs Series IV ISIS-IV

Console Device Assignment and Error Message Output

Three system calls are available to your program for system console control (see figure
3-4). These system calls allow you to change the device used as the system console,
to determine which device is the current console, and, if needed, to send an error
message to the console.

—~GED)—~C)~ o
—>(ERROHH (errnum))—»
—b(WHOCON)—DC (conn, bufSpD—b
Figure 3-4. Console Control System Calls 121980-6

3-40

Series IV ISIS-1V

Use of ISIS-IV by Other Programs

CONSOL — Change Console Device

Syntax

CALL CONSOL (ci$path8p, co$path$p, status$p)

You must pass three parameters, ci$path$p, co$path$p, and status$p, in the CONSOL

call,

where
ci$path$p

co$path$p

status$p

Description

is the address of an ASCII string that contains the name
of the file to be used for the system console input. The string
can contain leading spaces but no embedded spaces. It must
end with a character other than a letter, digit, colon (:), or
period (.). You can use a space. If :CI: is the specified file,
the console input will not be changed. If the specified file
is not :CIL:, the old console input file will be closed and the
specified file (e.g., :BI:) will be opened. Do not use
SUBMIT to run programs that contain CONSOL calls that
change the console input device name.

is the address of an ASCII string that contains the name
of the file to be used for system console output. The string
can contain leading spaces but no embedded spaces. It must
end with a character other than a letter, digit, colon (:) or
period (.). You can use a space. If :CO: is the specified file,
the console output will not be changed. If the specified file
is not :CO:x, the old console output file will be closed, and
the specified file (e.g., :BO:) will be opened.

is the address of a memory location. status$p does not
return any non-fatal errors.

The CONSOL call allows your program to change the console input and output
devices (:CI: and :CO:) to devices other than the initial system console.

Possible Error Conditions

A fatal error will occur when

e The specified console input file cannot be opened (e.g., opening :VI: when you
are executing ISIS-IV under background or import; opening :BI: when you have
interactively invoked ISIS-1V).

» The specified console output file cannot be opened (e.g., opening :VO: when you
are executing ISIS-IV under background or import; opening :BO: when you have
no Series IV LOG file at the time that ISIS-IV is invoked).

3-41

Use of ISIS-IV by Other Programs

Examples

1.

3-42

PL/M CONSOL Call

CONSOL;
PROCEDURE (ci$path$p, co$path$p, status$p) EXTERNAL
DECLARE (ci$path$p, co$path$p, statusp) ADDRESS

END CONSOLE;

DECLARE INFILECG) BYTE;
DECLARE OQUTFILE(G) BYTE;
DECLARE STATUS ADDRESS;

CALL CONSOL C.INFILE,.OUTFILE,.STATUS);
IF STATUS¢<>0 THEN...

Assembly Language CONSOL Call

El

Series IV ISIS-1IV

EXTRN ISIS i LINK TO ISIS ENTRY POINT
CONSOL EQU 8 ; SYSTEM CALL IDENTIFIER
MV I C,CONSOL ; LOAD IDENTIFIER
LXxI D,CBLK ; LOAD PARAM ADDR
CALL ISIS
LDA CSTAT ; TEST ERROR STATUS
ORA A
JNZ EXCEPT ; BRANCH 70 EXCEPTION
; ROUTINE
CBLK: ; PARAMETER BLOCK FOR
; CONSOL
DW INFILE ; POINTER TO FILE NAME
DW OTFILE ; POINTER TO FILE NAME
DW CSTAT ; POINTER TO STATUS
1
INFILE: DS 15 i INPUT FILE NAME
OTFILE: DS 15 ; OUTPUT FILE NAME
URNED)

CSTAT: DS 2 i STATUS (RET

1

Series IV ISIS-IV Use of ISIS-IV by Other Programs

ERROR — Output Error Message on System Console

Syntax
CALL ERROR (errnum)
In assembly language you must pass two parameters, errnum and the address of a

memory location for return of an error number, in the ERROR call. You must pass
only one parameter, errnum, in PL/M,

where
errnum is the error number. The error number must be in the low
order eight bits of the parameter. The high order eight bits
are ignored. Only the numbers 101 through 199 inclusive
should be used for the user programs; the other numbers
(0-100 and 200-255) are reserved for system programs.
The format of the rror is ERROR dd USER PC hhhh.
where
ad is the decimal number of the error specified in the call.
hhhh is the hexadecimal number of the return address in the
calling program.
For error numbers in the range of OEIOOH
through OEIFFH ERROR reports the
DQSDECODESEXCEPTION message.
Description

The ERROR call enables your program to report an error message. In foreground,
but not import, the error is sent to the screen. In background or import the error is
sent to the ISIS file :CO..

Examples
1. PL/M ERROR Call
ERROR:
PROCEDURE (errnum) EXTERNAL;

DECLARE (errnum) ADDRESS;
END ERROR;

DECLARE ENUM ADDRESS;

CALL ERROR CENUM);

343

Use of ISIS-IV by Other Programs Series IV ISIS-IV

2. Assembly Language ERROR Call

EXTRN ISIS
ERROR EQu 12 i CALL IDENTIFIER
MV I C,ERROR s LOAD IDENTIFIER
LXI D,EBLK ; LOAD PARAM ADDR
CALL 181§
3
EBLK:
ERNUM: DS 2 ; ERROR NUMBER FIELD
DW STATUS i ISIS-IV WANT TO RETURN A
STATUS: DS 2 ;i STATUS, SO PUT IT HERE

3-44

Series IV ISIS-IV Use of ISIS-1V by Other Programs

WHOCON — Determine File Assigned as System Console
Syntax

CALL WHDCON (conn, buf$p)

In assembly language you must pass three parameters, conn, buf$p, and the address

of a memory Jocation for return of an error number, in the WHOCON call. You
must pass only two parameters, conn and buf$p, in PL/M,

where
conn is a value that indicates whether the input or output file
(:CI: or :CO:) name is to be returned. A value of 0 speci-
fies output and a value of 1 specifies input.
buf$p is the address of a 15-byte buffer reserved by your program
for the return of the name of the file assigned to :Cl: or
:CO:. The name is returned as an ASCII string terminated
by a space.
Description

The WHOCON call allows your program to determine what file is assigned as the
current system input console or output console.
Examples
1. PL/M WHOCON Call
WHOCON:
PROCEDURE (conn, buf$p) EXTERNAL;

DECLARE (conn, buf$p) ADDRESS;
END WHOCON;

DECLARE BUFFS$INC1S5) BYTE;

CALL WHOCONC1T, .BUFFSIND;

3-45

Use of ISIS-IV by Other Programs Series IV ISIS-IV

2. Assembly Language WHOCON Call

EXTRN [SIS

WHOCON EQU 13 ; CALL IDENTIFIER
MV I C,WHOCON ; LOAD IDENTIFIER
LXI D,WBLK ; LOAD PARAM ADDR
CALL ISIS

WBLK:

AFTN: DS 2 ; AFTN FOR IN OR OUT
DW BUFIN ; POINTER TO BUFFER
DW STATUS ; POINTER TO STATUS RETURN

H

BUFIN: DS 15 s BUFFER FOR RETURN

s FILE NAME

STATUS: DS 2 s STATUS RETURN

H

3-46

Series IV ISIS-IV Use of ISIS-IV by Other Programs

Program Execution

Two system calls allow your program to transfer control to another program (LOAD)
or to ISIS (EXIT) (scc figure 3-5). The LOAD call can be used to load another
program and then transfer control to it, to the Monitor, or have control returned to
the calling program. The EXIT call is used to terminate processing and return to
ISIS.

LOAD (pathS$p,)—»@dsoﬁset<control$sw,entry$p, status$p 0
EXIT i —

Figure 3-5. Program Execution System Calls 121980-7

3-47

Use of ISIS-1IV by Other Programs Series IV ISIS-IV

EXIT — Terminate the Program and Return to ISIS-IV

Syntax

CALL EXIT

You pass no parameters in a PL/M call to EXIT. In an assembly language call, one

parameter is passed: the address of a memory location for return of an error number.

Description

The EXIT call can be used by your program to terminate execution and return to
ISIS-IV. All open files are closed, with the exception of :CO: and :CI:.. The current
system console assignment is not changed.
Examples
1. PL/M EXIT Call

EXIT:

PROCEDURE EXTERNAL;
END EXIT;

CALL EXIT;

2. Assembly Language EXIT Call

EXTRN ISIS

EXIT EQU 9 ; CALL IDENTIFIER
My CLEXIT ; LOAD IDENTIFIER
LX1 D,EBLK i LOAD PARAM ADDR
CALL ISIS

EBLK:
DU ESTAT ; POINTER TO STATUS

ESTAT: DS 2 ; STATUS FIELD

3-48

Series IV ISIS-IV

Use of ISIS-IV by Other Programs

LOAD — Load a File of Executable Code and Transfer Control

Syntax

CALL LOAD (path$p, load$offset, control$sw, entry$p, status$p)

You must pass five parameters, path$p, load$offset, control$sw, entry$p, and status$p,

in the LOAD call,

where
path$p

load$offset

control$sw

entry$p

status$p

Description

is the address of an ASCII string containing the name of
the file to be loaded. The string can contain leading spaces
but no embedded spaces. It must be terminated by a
character other than a letter, digit, colon (:), or a period
(.). You can use a space.

is a bias value to be added to the load address of the
program. The program is loaded at the adjusted address.
The use of the bias does not mean that the program is
relocatable. Usually the code cannot be executed at the
biased address. For most applications, the bias will be zero.

is a value indicating where control is transferred after the
load. A value of zero returns control to the calling program.
The debug toggle is unchanged.

A value of one transfers control to the load program. The
debug toggle is reset. If the program is not a main program,
its entry point is zero, which causes control to vector
through location zero to the Monitor.

A value of two transfers control to the Monitor. The debug
toggle is set. The Monitor Execute (G) command can be
used to start the program.

is the address of a memory location for the return of the
loaded program entry point address when the control value
is zero. The entry point is obtained from the loaded
program. A zero is returned if the program is not a main
program.

is the address of a memory location for the return of a non-
fatal error number. The error numbers issued by the LOAD
call are listed in Appendix A.

The LOAD call allows your program to load a located or absolute object file. After
the file is loaded, control is passed to the loaded program, the calling program, or to
the Monitor depending on the value of a parameter.

3-49

Use of ISIS-IV by Other Programs Series 1V ISIS-IV

Examples
1. PL/M LOAD Call

LOAD:
PROCEDURE (path$p, load$offset, control$sw, entry$p, status$p) EXTERNAL;
DECLARE (path$p, load$offset, control$sw, entry$p, status$p) ADDRESS;
END LOAD;

DECLARE FILNAMC15) BYTE;
DECLARE ENTRY ADDRESS;
DECLARE STATUS ADDRESS;

CALL LOAD C.FILNAM,0,1, . ENTRY,.STATUS);
IF STATUS«<>»0 THEN

2. Assembly Language LOAD Call

EXTRN [SIS
LOAD Eau 6 ; CALL IDENTIFIER
MV I C,LOAD ; LOAD IDENTIFIER
LXI D,LBLK ; LOAD PARAM ADDR
CALL ISIS
LDA LSTAT i TEST ERROR STATUS
ORA A
JNZ EXCEPT ; BRANCH IF ERRGCR
LBLK
DU FILNAM ; POINTER TO FILE NAME
BIAS: DS 2 i BIAS FIELD
SWITCH: DS 2 ; CONTROL SWITCH
DW ENAD i POINTER TO ENTRY ADDRESS
DW LSTAT ; POINTER TO STATUS
FILNAM: DS 15 i FILE NAME FIELD
ENAD: DS 2 ; ENTRY POINT ADDR (RETURN)

LSTAT: DS 2 ; STATUS (RETURNED)

1

3-50

CHAPTER 4
MON 85

+ MON 85 is provided for 8080/8085 applications program debugging.

« Deb 88 is provided for 8086/8088 applications program debugging. Refer to the
Intellec Series IV Operating and Programming Guide, 121753.

Monitor Usage and Activation

The ISIS Execution Unit Monitor (MON 85) provides you with the basic utility
functions for debugging 8080/8085-based programs. MON 85 allows you to

o Execute, single step, and breakpoint a program
« Display, modify, and scan memory

+ Display and modify CPU registers

« Input from and output to I/O ports

¢ Perform arithmetic operations

¢ Disassemble instructions

MON 85 can be entered by

« Typing Debug at the ISIS prompt (-)

+ Pressing function key 0

« Transferring control to location 0 in programs

o Giving the ISIS-1V LOAD system-call the value of 2
» Executing a program without a start-address

o A fatal system error in debug mode

Command Line Editing

MON 85 provides you with line-oriented command line editing capabilities. Refer to
table 3-2 for more details on editing keys.

Entering Monitor Commands

You can enter commands at the console any time after the monitor prompt character,
a period (.), is displayed at the left margin.

Monitor commands are single alphabetic characters. Some of these-commands have
optional parameters. For example, the Examine Command (X) displays the contents
of all registers. If you want to see the contents of only one register, you must specify
that register in the command.

Other commands have required parameters. For example, the Display Command (D),
which displays the contents of memory, requires that beginning and ending memory
locations of a memory block be given in the command.

Some commands have optional characters that modify command functions. For
example, the D has an optional X suffix that allows you to display memory in disas-
sembled code.

MON 85

4-2

Series 1V ISIS-IV

Normally, commands are terminated by pressing carriage return on the keyboard.
There are some exceptions to this that wiii be explained in the individual command
descriptions.

Command Syntax
The general command syntax of MON 85 commands is

command [parametersj<cr >

where
command is the single alphabetic character for the basic command.
parameters are one or more variable data supplied with the command.

Parameters can be expressions, memory addresses, registers, and ranges. Numeric
fields within these parameters are entered as either hexadecimal digits (in the range
of 0000-FFFF) or decimal digits. A decimal digit generally requires the suffix T to
distinguish it from hexadecimal except when used as a repeat or count factor.

The memory addresses and range specifiers are flexible in that numbers and registers
can be added to or subtracted from one another, thereby evaluating to a hexadecimal
number. The following list defines these parameters:

dec digit:= {0/11213141516171819}
hex digit:= { < dec digit> |IAIBICIDIEIF?}
dec number::= { < dec digit> < dec number> | < dec digit> }
hex number.:= { < hex digit> < hex number> | < hex digit> }
number:: = < dec number> | < hex number >
add reg:= {RBIRDIRHI|PCISP}
byte reg::= { RAIRBIRCIRD|RE|RH|RLIRF}
reg:= {RAIRBIRCIRDIREIRHIRLIPCISPIRF}
addr expr:= { < addr term> | <addrexpr> { +1— ¥
< addr term > }
addr term::= { < number| < addr reg> }
byte expr:= { < byte term> | <byte expr> { +|— } < byte term> }
byte term::= { < number> | < byte reg> }
addr:={[+] < addrexpr> }

Memory Addresses

Memory addresses used with the MON 85 consist of one to four digits. Longer
numbers can be entered but only the four rightmost digits are used by the system.
For example, the value 123456 hexadecimal is treated as 3456 hexadecimal.
Hexadecimal byte values consist of one or two digits. Longer hexadecimal byte values
can be entered, but only the two rightmost digits are used.

The types of memory addresses used in MON 85 commands are

» start-address — the address where a display begins or where the control of a
system is passed

* destination-address — the beginning address of a block of memory that is going
to be compared to another block of memory, or the address where a block of
memory is moved

* break-address — address in a program where control is passed back to the monitor

Series IV ISIS-1V

With MON 85, you can examine and modify memory addresses 3180
hexadecimal through OF6CO hexadecimal inclusive, and interrupt vectors 3
through 7 (18 hexadecimal through 3F hexadecimal) unless they are being
used by an Intel product. You should not modify the memory outside this
range or ISIS and the monitor may malfunction and your data and files may
be destroyed.

Registers

A register evaluates its contents when the command referencing it is executed. Regis-
ters are referenced in command syntax by two letter mnemonics. Table 4-1 lists
register mnemonics for the MON 85.

Table 4-1. Register Mnemonics for MON 85

Register Name Mnemonic
CPU A Register RA
CPU B Register RB
CPU C Register RC
CPU D Register RD
CPU E Register RE
CPU H Register RH
CPU L Register RL
Program Counter PC
Stack Pointer SP
Flag RF

Repeat Factors

There are two ways to put more than one command on one command line. First, you
can put separate commands in the same command line if your separate them with
semicolons. Second, you can specify that a command be repeated any desired number
of times if you enclose the command in angle brackets and place a decimal repetition
factor ahead of the first bracket. A repetition factor of n says, “Do this command n
times.” For example,

5¢12¢G, 3B7>»; D 44>

is a valid command line in which the Execution Command (G) is repeated 60 times
and the Display Command (D) is repeated 5 times. Note that the T suffix is not used
for the repeat factors since only decimal numbers are accepted.

Count Factors

Count factors are closely related to repetition factors. When you put a decimal count
factor immediately ahead of a command letter or letters, you are telling the monitor,
“Do a command for nitems at a time.” For example,

20D 1B

causes the display of 20 consecutive bytes beginning at address 1B. Note that a T
suffix is not used since only decimal numbers are accepted.

MON 85

MON 85 Series IV ISIS-IV

Range Specifications

A monitor command can act on a block of memory called a range. You can specify
the range in one of the following forms:

* A start-address followed by an end address and separated by an exclamation
mark (1) (e.g., 1234!15678)

e A start-address followed by a length in bytes and separated by a pound sign (#)
(e.g., 12344#5F)

Note that range, used in the syntax descriptions of the commands, refers to a start
address followed by either an exclamation mark and an end-address or a pound sign
and a length in bytes.

Also remember this additional information about MON 85 range specifications.
e If you omit the start-address, PC is assumed.

* When a range is expected and you don’t specify an end-address or length, the
range is taken to be a single byte.

* PC is added to the address when the address begins with a plus sign (+).

Command-Line Commenting

You can enter comments into command-lines by typing an asterisk followed by a
comment. To put a command and a comment on the same command-line, enter a
semicolon following the command and then type the asterisk and the comment.

Example

BM*This whole line is a comment
M2D 10E; *This line ends with a comment

Error Messages

If you enter an invalid command, the monitor notifies you with one of the following
error messages:

Syntax Error

Bad Command

Invalid Expression

Improper nesting of repeat factors

Remember that when an error is detected in a command-line composed of multiple
commands, all commands prior to the error will be executed.

Monitor Commands

Categories of Monitor commands are grouped as follows:
¢ Program execution commands

Execute (G) Begins program execution and provides
breakpoints

44

Series IV ISIS-IV

Single Step (N)

+ Memory control commands
Compare (C)

Display (D)
Find (F)
Move (M)

Substitute (S)

« Register command
Examine Register (X)

« Utility command
Print Value Command (P)

Displays and executes a specified number of
instructions

Compares contents of one block of memory to
contents of another block of memory

Displays contents of a specified block of memory
in byte, word, or instruction format

Searches a block of memory for a sequence of
hexadecimal digits

Moves a block of memory to another location in
memory

Dispays one or more memory locations and
optionally madifies them on a byte or word basis

Displays and optionally modifies register contents

Displays a literal string, an address, or the value
of an expression

See Appendix C for a summary of the command syntax of these Monitor commands.

Program Execution Commands

The program execution commands, Execute and Single Step, are described in detail

on the following pages.

MON 85

MON 85 Series IV ISIS-IV

G — Execute
Syntax

G[start-address] [, { break-address}]<cr >

Description

The Execute command transfers control to a program at the address you specify in
the command and optionally sets one to four breakpoints in the program to which
control is passed.

The start-address is optional. If you don’t specify it in the MON 85 command, execu-
tion will begin at PC. You may enter this start-address directly following the G.
Break-addresses and ranges 0 to FFFF, however, must be separated from start-address
and G with a comma.

Breakpoints. You can set execution breakpoints in MON85 G commands. An
execution breakpoint occurs when a breakpoint address is fetched. To set an execu-
tion breakpoint, enter the G command followed by either a start-address, a comma,
and a break-address, or a comma and the break-address.

The instruction at the break-address is not executed until control is returned to the
program. When an execution breakpoint occurs, the monitor prints

BREAK at hexaddress
and issues the period prompt (.).

NOTE

When setting an execution breakpoint, be sure that there is enough memory
for six words to be pushed on the stack. You can ensure this by allocating 12
extra bytes to the stack.

If you would like to execute the G command successively with the same
breakpoint (as in doing loop iterations), enter the G, PC command. This
causes the start-address to be executed once without breaking and a break
to occur on the next reference.

Examples

Gecro

G , PC«<cry
10¢G40,40:><cr>

In the first example, execution begins with the instruction at the address given by
PC.

In the second example, execution begins at PC and continues until the instruction at
PC is about to be fetched again. The instruction at which it stops is fetched, but not

executed.

In the third example, execution begins at 40 and executes 40 ten times. The register
is display ten times.

46

Series IV ISIS-IV

N -— Single Step
Syntax

[count] N [P][start-address][,]¢<cr>

Description

The Single Step command allows you to display and then execute one or more
instructions. The decimal count factor specifies the number of instructions to be
displayed and executed. All but the last instruction displayed are executed. For
example, if you want to execute 23 instructions, you must specify the count factor as
24. This executes 23 instructions and displays the twenty-fourth. If you do not specify
a count factor, the default is one.

If you include a start-address in the MON 85 command line, PC is modified and
execution begins at this start-address.

When a start-address for the MON 85 command is not specified, execution begins at
the locations indicated by the PC register.

Single Step Continuation. If you want to continue in single step mode, insert a comma
at the end of the command line and then execute the command. The specified number
of instructions is displayed followed by a special hyphen prompt (-). The monitor
then waits for another comma. When you enter this comma, the displayed instruc-
tions are executed, the next instructions are displayed, and the monitor issues another
prompt or a comma. Repeat this cycle as often as you desire. When finished, return
to the general command level by entering a carriage return.

Command Suffix. A P command suffix is available if you are using MON 85. This
optional command causes any routine called by the CALL or conditional CALL
instruction to be treated as a single instruction. The CALL instruction is displayed,
the routine is executed, and the next instruction after the routine is displayed.

Examples

N,<cr)

24N 4 ,<cr>

In the first example, the current instruction is displayed and the monitor waits for
your input. If you type a comma, the displayed instruction is executed and the process
repeats. If you type a carriage return, you return to the general command level.

In the second example, execution and display begin at 4 and continue until 23

instructions are executed. The twenty-fourth instruction is displayed but not executed,
and the monitor waits for either the continuation comma or a carriage return.

Memory Control Commands

The memory control commands, Compare, Display, Find, Move, and Substitute, are
described in detail on the following pages.

MON 85

MON 85 Series IV ISIS-IV

In the second example, sixteen bytes, starting with the byte at 3E0, are displayed in
both hexadecimal and ASCII, and then a hyphen prompt is given. A comma is entered
after the hyphen prompt and the next sixteen bytes are displayed followed by another
hyphen prompt. A carriage return is then entered, terminating the command.

In the third example, three words in hexadecimal starting with SP are displayed.

4-10

Series IV ISIS-1V MON 85

F — Find
Syntax

F range , datac<cr)

Description

The Find command allows you to search a block of memory for a sequence of
hexadecimal digits. The block you indicate by range is searched for the sequence of
digits you put in your data argument. Each time a match is found, the address of the
first matching byte is displayed.

Your data sequence can contain from 1 to 32 hexadecimal digits representing from 1
to 16 bytes. An odd number of digits is not allowed except when there is only one
digit in your data sequence. When there is only one digit in your data sequence, it is
treated as if it had been entered with a leading zero.

Example

MF 18!'PC, 54455354«<cr>

0118

01A4

p212

In this example, the ASCII string TEST is found in three locations between the start

of the code segment and the first instruction. In each case, the first address of the
string is displayed.

4-11

MON 85

4-12

Series IV ISIS-IV

M— Move
Syntax

M range, destination-address<cr >

Description

The Move command moves a block of memory to another location in memory. The
block defined by range is moved to the location beginning at destination-address.

Example

M 32CD #15T,404A<Ccr>

This command-line moves the 15 bytes beginning at 32CD to the location starting
with 404A.

Series IV ISIS-IV MON 85

S — substitute
Syntax

[count] S [W][start-address][=expression][| expression]..[,]¢cr>

Description

The Substitute command allows you to display one or more memory locations and
gives you the option of modifying each location on a byte or word basis. The optional
count factor allows you to indicate the number of bytes or words to be displayed each
time a display is requested. If you include a start-address, display begins there. If you
do not, the display begins at the locations indicated by the PC register for MON 85.

Optional Command Suffix. You can use an optional W in MON 85. The W causes
the displays resulting from the Substitute command to be on a word basis. When
using the S command with the optional W, enter address expressions. When using
the S command without the optional W, enter byte expressions.

Modifying Memory. You can modify memory with Substitute commands in several
ways. You can enter S, use the optional start-address if desired, and then enter a
carriage return. This displays the desired memory locations followed by a hyphen
prompt (-). You can then enter new values or terminate the command with a carriage
return.

A second way to modify memory using the Substitute Command is by entering S,
skipping the display portion of the command, and then entering the memory location,
an equal sign, and then the new contents. If you are modifying a block of memory,
you must enter the new expressions following the equal sign or hyphen and separate
them with a slash. This causes the indicated expressions to be placed in memory
beginning at the first location displayed.

Substitute Continuation. If you want to continue in substitute mode, insert a comma
at the end of the command line and then execute the command. The new values are
placed in memory, the next location is displayed on the next line, and a hyphen prompt
is issued. You can then enter more expressions. You can repeat this cycle as often as
you desire. When finished, you can return to the general command level by typing a
carriage return.

Examples
Lo
0074 40 - JNNENACIR

0077 20 - ENEEWEEED

NS W 3234 = FFFF/FFFF/FFFF<ccr>

B4 S KW 4044 cr

4044 0001 0002 0003 0004 - ERECHES
4048 0005 0006 0007 0008 - ERESHIREEI

In the first example, the current location is displayed, the prompt is issued, and the
values 1, 2, and 3 are placed in locations 74 through 76. The comma indicates continue,

4-13

MON 85 Series IV ISIS-IV

so the next value is displayed, another prompt is issued, and new values are put in
locations 77 and 78. The carriage return terminates the process.

In the second example, there is no display and FFFF is placed in three consecutive
words of memory, beginning at location 3234.

In the third example, four words are displayed and 9090 is placed in location 4044.

The comma indicates continue, so the next four words are displayed and 9090 is
placed in location 4048. The carriage return terminates the process.

Register Command

The register command, Examine Register, is described in detail on the following page.

4-14

Series IV ISIS-IV MON 85

X — Examine Register
Syntax

X [register {[=expression]|, }]<cr>

Description

The Examine register command allows you to examine and optionally modify register
contents. It functions in several ways.

You can display all registers and their contents by just typing X. If you want to
examine one register at a time, you can enter the X followed by the mnemonic of the
register you want to see. This causes the register mnemonic and that register’s contents
to be displayed followed by a hyphen prompt (-). If you want to modify the contents
of the register, you enter the new hexadecimal value after the hyphen. Typing a comma
(,) will display the next register; otherwise, you type a carriage return.

If you want to modify a register without a display and a hyphen, you can enter the
command followed by the register mnemonic, an equal sign, and then the expression.
The modification is then immediate.

To modify the SP and PC registers in the MON 85 system, an address expression

must be given. For all other registers, a byte expression must be given.

Examples

2F<ccr

In the first example, all registers are displayed.

In the second example, the RA register is displayed and a hyphen prompt (-) for a
new hexadecimal value or a carriage return is issued. In the example, a carriage
return is entered, terminating the command. Using a comma instead of a carriage
return displays the next register along with new hyphen prompt.

In the third example, the RA register is set to its previous value plus the quantity
02FD and nothing is displayed.

Utility Command

The utility command, Print Value, is described in detail on the following page.

4-15

MON 85

4-18

Series IV ISIS-IV

Monitor |/0 Interface Routines

Cl — Console Input Routine

The Console Input Routine reads a character entered at the keyboard and returns
the character as a byte value if called from PL/M or in the RA register if called
from the assembler. RA and PC registers and CPU condition codes are affected. If
ISIS-II is executing in the background or in the import mode, calling CI will cause a
fatal error that will cancel the user’s job.

1. PL/M CI Call Example

This is an example of a routine that reads a string of characters from the keyboard.
The routine terminates when a carriage return is detected or when the number
of characters specified by BUFSIZ has been read. If a carriage return is detected,
the DONE code is executed, and if the buffer is filled, the OVFL code is executed.

Cl: PROCEDURE BYTE EXTERNAL; /*ENTRY POINT INTO SYSTEM.LIB*/
END CT;

DECLARE BUFSIZ LITERALLY *122’; /*BUFFER SIZE*/

DECLARE BUFFER(BUFSIZ) BYTE; /*BUFFER FOR STORING CHARACTERS*/
DECLARE INDEX BYTE; /*INDEX INTOD BUFFER*/

DECLARE CR LITERALLY “*O0DH'; /*CARRIAGE RETURN*/

INDEX = 03

BUFFERCINDEX) = CI AND 7H; /*READ IN CHARACTER AND STRIP OFF*/

/*PARITY BIT*/
DO WHILE BUFFERCINDEX)<¢> CR;
IF INDEX < LAST (BUFFER);
DO
INDEX = INDEX + 1;
BUFFERCINDEX) = CI AND 7FH; /*CONTINUE READING UNTIL A
/*CARRIAGE RETURN HAS BEEN INPUT*/
/*0R THE BUFFER IS FULL*/
END;
ELSE
DO;
/*0VFL CODE*/
END;
END;
/*DONE CODE*/

Series IV ISIS-IV

2. Assembly Language CI Call Example

BUFSIZ
CR
BUFFER:

1

LOCP:

DONE:

OVFL:

EXTRN

EQuU
EQU
DS

LXl

CALL

ANI

MoV

CPI
JZz

Jz

JMP

C1

122
0DH
BUFSIZ

H,BUFFER
Cl

7FH

M,A

CR
DONE

CVFL

Logp

ENTRY POINT INTO SYSTEM.LIB
FOR CI

BUFFER SIZE

CARRIAGE RETURN

BUFFER

HL POINT TO BEGINNING OF
BUFFER

GET CHARACTER

STRIP OFF PARITY

STORE IT IN BUFFER

IS IT A CARRIAGE RETURN

IF IT IS, JUMP TO THE DONE
CODE

DTHERWISE, MOVE THE

BUFFER POINTER

DECREASE CHARACTER

COUNT

IF BUFFER FULL, JUMP TO THE
OVFL CODE

GET THE NEXT CHARACTER

DONE CODE

OVFL CODE

MON 85

4-19

MON 85

4-20

Series IV ISIS-IV

CO — Console Output Routine

The Console Output routine takes a single character and passes the character as a
byte parameter if called from PL/M, or passed in the RC register if called from the
assembler. The character is transmitted to the screen if ISIS-IV is operating in
foreground, or to the file :CO: if ISIS-IV is executing in the background mode. RA
and RC registers and CPU condition codes are affected.

1.

PL/M CO Call Example

This example usesthe Console Output routine to output a string of characters.
The routine terminates after a carriage return is detected in the output string
and is transmitted to the console device. In this simple example there is no check
to see if the buffer has been exhausted.

CO: PROCEDURE (CHAR) EXTERNAL; /*ENTRY PCINT INTOD SYSTEM.LIB*/
DECLARE CHAR BYTE;

END CO;
DECLARE BUFFERC122) BYTE; /*BUFFER CONTAINING STRING TO BE*/
/*O0UTPUTH/
DECLARE INDEX BYTE; /*INDEX INTO BUFFER*/
DECLARE CR LITERALLY ‘O0DH'; /*CARRIAGE RETURN*/
INDEX = 03
CALL COCBUFFERCINDEX)); /*0UTPUT THE FIRST CHARACTER®/

DO WHILE BUFFERCINDEX) <> CR;
INDEX = INDEX + 1
CALL COCBUFFERCINDEX)); /*CONTINUE OUTPUTTING UNTIL A*/
/*CARRIAGE RETURN HAS BEEN OUTPUT*/
END;

Assembly Language CO Call Example

EXTRN CO 5 ENTRY POINT INTO SYSTEM.LIB
;7 FOR CO
CR EQU 0DH 3 CARRIAGE RETURN
BUFFER: DS 122 ; BUFFER CONTAINING OUTPUT
i STRING
LXI H,BUFFER 3 HL CONTAIN ADDRESS OF
; BUFFER
LOOP:
MoV c,M ;7 GET CHARACTER FROM
; BUFFER
CALL co ;3 OUTPUT THE CHARACTER TO
; THE CONSOLE
MV I A,CR
CMP M ;7 IS IT A CARRIAGE RETURN?
JZ EXIT i 60 TO EXIT IF IT IS
INX H ; INCREMENT BUFFER POINTER
JMP Loagrp ; OUTPUT NEXT CHARACTER
EXIT:

Series IV ISIS-IV

IOCDR2 — Keyboard Interrupt Control

The K.I.C. routine transmits an address value in BC to K.I.C. The RB and RC regis-
ters and CPU condition codes are affected. The only commands accepted by this
interface are those for enabling, disabling, and servicing keyboard interrupts that
occur on level 6 of the Local Priority Interrupt Controller.

1.

2.

PL/M IOCDR2 Call Example

10CDR2:
PROCEDURE (VALUE) EXTERNAL;
DECLARE VALUE ADDRESS
END T0CDR2;

DECLARE KEYBDSENABLE LITERALLY ‘0A02H‘;
DECLARE KEYBDSDISABLE LITERALLY ‘*0A00H‘;
DECLARE KEYBDS$SSERVICE LITERALLY'0402KH";

/* in main program*/
CALL TOCDR (Keyboard$Enable);

/* in interrupt service routinet®/
CALL I0CDR (Keyboard$Service); /* clears interrupt request®/

/* in main program*/
CALL T0CDR2 (Keybd$disable);

Assembly Language IOCDR2 Example

; I0CDR2 EGQU 0F844H
KBDEN EaQU 0A02H
LXx! B, KBDEN
CALL I0CDR2 ; enable keyboard intr.

MON 85

4-21

MON 85

System Status Routines
CSTS — Console Status Routine

Series IV ISIS-1V

The Console Input Status routine tests the ISIS-IV startup console to determine if a
character is ready for input. If this routine is called from PL/M, it returns a value of
00 if no key has been pressed since the last call to the Console Input routine (CI), or
a value of OFF if a key has been pressed. If this routine is called from the assembler,
then the 00 or OFF value will be returned in the RA register.

1. PL/M CSTS Call Example

The following example tests the ISIS-IV startup console during a Console Output
operation so that the operator has the facility to signal that the output operation
be terminated. A Control/C (03H) character entered at the console input device

will signal this termination.

CSTS: PROCEDURE BYTE EXTERNAL; /*
/.
END CSTS;
CI: PROCEDURE BYTE EXTERNAL; /¥
/Q
END C1;
DECLARE CTLC LITERALLY *O03H'; /*
/.
IF CSTS THEN
DO; [t
IF CI = CTLC THEN
DO;
/I
/i
END;
END;

2. Assembly Language CSTS Call Example

IS A CHARACTER,

ENTRY POINT INTO SYSTEM.LIB FOR*/

CSTS */

ENTRY POINT INTO SYSTEM.LIB */
FOR CI*/

CONTROL/C SIGNALS TERMINATE */
OPERATION */

A KEY HAS BEEN PRESSED */
CONTROL/C RECEIVED. TERMINATE */

QOUTPUT OPERATION. */

INTO SYSTEM.LIB FOR

INTO SYSTEM.LIB FOR CI

CONTROL/C SIGNALS TERMINATE

STATUS

CONTINUE OQUTPUT

GET IT

BRANCH TO TERMINATE CODE

; CODE TO CONTINUE OUTPUT

EXTRN CSTS ;s ENTRY POINT
CSTS
EXTRN CI s ENTRY POINT
cTLC EQU 03H ;
s QUTPUT
CALL CSTS s GET CONSOLE
RRC s ROTATE TO CARRY FLAG
JNC CONT 7 NO CHARACTER,
+ OPERATION
CALL Cl ; THERE
CPI cTLC ; IS IT A CONTROL/C
Jz TERM s IF YES,
CONT:
s OPERATION
TERM:

; CODE TO TERMINATE OUTPUT

; DPERATION

4-22

Series IV ISIS-1V

MEMCK — Memory Check

The Check RAM Size routine returns the highest memory address of contiguous
memory available to the user. This address is the highest address available after the
Monitor has reserved its own memory (320 bytes) at the top of contiguous RAM.
This value is returned as an address value (if called from PL/M) or in the RH and
RL registers (if called from the assembler). MEMCK will always return the constant
F6CO.

Remember that you can modify memory in the range 3180 to F6CO. The
memory outside this range should not be changed or the monitor may
malfunction and data and files may be destroyed.

PL/M MEMCK Call Example

The following example obtains the highest address of contiguous memory
available.

MEMCK: PROCEDURE ADDRESS EXTERNAL; /* ENTRY POINT INTD SYSTEM.LIB */
END MEMCK;

DECLARE MADR ADDRESS; /* ADDRESS TO CONTAIN VALUE RETURNED BY
/* MEMCK */

MADR = MEMCK;

Assembly Language MEMCK Call Example

EXTRN MEMCK ; ENTRY POINT INTO SYSTEM.LIB FOR
; MEMCK
MADR: DS 2 ; CONTAINS VALUE RETURNED BY
i MEMCK

CALL MEMCK
SHLD MADR ; STORE ADDRESS IN MADR

MON 85

4-23

CHAPTER 5
INTERRUPT PROCESSING

Interrupt processing is controlled by logic on the processor board. It provides an eight-
level priority interrupt structure, using an Interrupt Mask Register (the I-register),
and a current operating level indicator, which keeps track of the level of interrupt
currently serviced. The Interrupt Mask Register is set by a program. You select which
interrupts will be acknowledged at any time.

Do not write programs that use interrupts 0, 1, or 2 because the operating
system uses these interrupts.

Interrupt Priorities

These are eight levels of interrupts, numbered O through 7. The levels correspond to
the function keys 0 through 7 of Series IV. These function keys in the 8080/8085
execution mode correspond to the front panel interrupt switches of the MDS-800, the
Series I1 and the Series IIT Development Systems.

Interrupt O has the highest priority and interrupt 7, the lowest. An interrupt is not
serviced until all higher priority interrupts are serviced. An interrupt of level 4 that
is currently being serviced can be interrupted to service an interrupt of level 3, 2, 1,
or 0. It cannot be interrupted to service one of level 5, 6, or 7, nor can it be inter-
rupted by another level 4.

Interrupt Mask Register

The Intellec Interrupt Mask Register (I-register) determines which interrupts are

accepted by the system. The Interrupt Mask Register contains eight bits, each of
which correspond to an interrupt level:

BITS 7 6 5 4 3 2 1 0
INTERRUPT LEVELS 7 6 5 4 3 2 1 0

A 1 bit in the Interrupt Mask Register prevents the corresponding interrupt from
being serviced. A O bit allows the interrupt to be scrviced. For example, the Intellec
Monitor sets the Interrupt Mask Register to OFEH (11111110B), which blocks all
interrupts except interrupt 0.

The Interrupt Mask Register can be set programmatically by writing the desired
value to Port OFCH. For example,

MVIA,O0FOH
QUT OFCH

sets the Interrupt Mask Register to 11110000B, blocking interrupts 4 through 7 and
allowing interrupts O through 3.

5-1

Interrupt Processing Series IV ISIS-IV

A program can also read the current value of the Interrupt Mask Register from Port
OFCH. For example,

IN O0FCH

places the current value of the Interrupt Mask Register into the A-register.

Interrupt Mask Register Initialization

The Interrupt Mask Register is initialized when ISIS-1V is loaded or re-initialized.
The Mask Register is set to OFCH (11111100B); interrupts 0 and | are allowed.

Interrupt Acceptance

When an interrupt occurs, the Interrupt Mask Register is checked to see if an inter-
rupt of that level is permitted. If it is not, no further action is taken, but the interrupt
is not cleared and remains pending. If the interrupt is permitted, the current operat-
ing level is checked to see if another interrupt of equal or higher priority is being
serviced. If so, the new interrupt remains pending until the value of the current
operating level is less than the priority of the new interrupt.

When the new interrupt can be serviced, all MULTIBUS® interrupts are locked out,
while an RST instruction to the appropriate interrupt address (see the following list)
is generated and the current operating level is set to the new value. The interrupt
lockout is then removed.

The addresses called when an interrupt is accepted are

Interrupt

Level Address
0 0000H
1 0008H
2 0010H
3 0018H
4 0020H
5 0028H
6 0030H
7 0038H

Interrupt Removal

The program servicing an interrupt must do two things: transmit a signal to the inter-
rupting device telling it to remove the interrupt signal it generated initially and send
an end of interrupt signal to the 8259 programmable interrupt controller on the IEU
(ISIS Execution Unit) board. If your program is using the interrupt (function) keys
3-7, it is not necessary to transmit a signal to the interrupting device because the
circuitry does it automatically (auto-acknowledge). The end of the interrupt signal
to the interrupt controller is sent by writing a value of 20H to port OFDH with the

Series IV ISIS-IV

Interrupt Processing

interrupts disabled. (A stack overflow could result if the code permits another inter-
rupt to be serviced while this is being done.) The following is a sample sequence in

assembly language for doing this:

¢remove interrupt signal from external device)

DI

PUSH PSLU
MV A,20H
ouT 0FDH
POP PSW
El

; DISABLE INTERRUPTS
; SAVE A-REGISTER AND FLAGS

; RESTORE A-REGISTER AND FLAGS
; ENABLE INTERRUPTS

The following is a sample PL/M sequence for restoring the current operating level:

DISABLE;
OUTPUTCOFDH)=20H;
ENABLE;

The following example shows the
interrupt at level 5.

ASEG

ORG
JMP
CSEG

INTS
£l
PUSH
PUSH
PUSH
PUSH

<code to service interrupt and

POP
pop
paop
DI

MV
ouT
poP
£l

/*DISABLE INTERRUPTS*/
/*RESTORE THE INTERRUPT LOGIC*/
/*ALLOW INTERRUPTS*/

skeleton of the code necessary to service an

; VECTOR GOES AT ABSOLUTE

; LOCATION
28H ; RST ADDRESS FOR INTERRUPTS §
INTS
;3 PUT CODE IN RELOCATABLE CODE
s SEGMENT
;s ROUTINE CAN BE INTERRUPTED
PSW i SAVE
B ; REGISTERS
D H
H ;

remove signal>

H ; RESTORE
D ; REGISTERS
B ;

; CRITICAL SECTION:

3 DISABLE INTERRUPTS

A,20H ; RESTORE CURRENT OPERATING LEVEL
0FDH
PSH ; RESTORE A REG AND FLAGS

i PERMIT INTERRUPTS AFTER NEXT
; INSTRUCTION

; THE RETURN MUST IMMEDIATELY

; FOLLOW THE EI TO MAKE SURE

; IT 1S EXECUTED BEFORE ANOTHER
i INTERRUPT OCCURS

5-3

CHAPTER 6
ERROR CODES AND MESSAGES

This chapter describes the error codes and messages that are issued by ISIS-1V. See
Appendix A for a complete listing.

Error Processing and Debugging

Errors encountered by ISIS-1V are displayed as decimal numbers and are either non-
fatal or fatal. A non-fatal error occurs when you make a system call and an error
code is returned. When a non-fatal error occurs, you may either call ERROR to
display the error, or you may proceed to process the error.

The significance of each error number and identification of fatal errors are provided
in Appendix A. If the error encountered is non-fatal, processing is immediately
terminated and the error number is returned to the user program.

When ISIS-IV receives an error code from a lower level of the iINDX operating system,
and ISIS can not process that error code, a fatal error will occur.

A fatal error will cause the following type of message to appear:

ERROR dd USER PC hhhh

where
dd is the decimal number of the error.
hhhh is the hexadecimal number of the return address in the

calling program.

If the error number is 24, an additional message that displays the exception code
message number, a device identifier, and the corresponding exception code message
will appear, for example,

ERROR 24 USER PC hhhh
EXCEPTION 3201H: F11 ERR, ATTEMPT TO WRITE WITH
HARDWARE WRITE PROTECT SET

If the surface of the device is damaged, error 24 will occur, in which case you may
wish to retain as much of the data as possible. This may be done by copying the files
to a good device with the COPY command. See Chapter 2 for details on the COPY
command and Appendix A for a complete list of exception code numbers and messages
for error 24.

When you are executing ISIS-IV in the foreground, but not the import mode, the
error will be sent to the screen. The error will be sent to the ISIS file :CO: when you
are executing ISIS-1V in the background or the import mode.

The action taken in response to fatal errors depends on the setting of an internal
system switch called the debug toggle. That switch indicates whether control is to
return to ISIS-IV (debug=0) or to the Monitor (debug=1) when an error occurs.

6-1

Error Codes and Messages

6-2

If a fatal error occurs when you are executing ISIS-1V in the background or in the
remote mode, the following will result:

* An error message is displayed.

« All files are closed.

e The 8085 resident section of ISIS-IV is reloaded.

* The ISIS Execution Unit (IEU) is re-initialized.

e All SUBMIT levels, including Series IV, are cancelled.

« ISIS Command Line Interpreter (CLI) will be initialized.

If a fatal error occurs when you are executing ISIS-IV in the foreground, but not the
import mode, the following will result:

e ISIS-IV is exited.
» Command file execution is cancelled.

Either of the following actions sets the debug toggle to one and transfers control to
the Monitor:

¢ Executing a DEBUG command
¢ Executing a LOAD system call with a transfer value of 2

Any of the following actions sets the debug toggle to zero, performs the operation
listed, then transfers control to ISIS-IV:

* Pressing function key # 1 to generate an interrupt | while a program is running.
This action terminates processing.

» Executing an EXIT system call. This action terminates a program.

* Executing a LOAD system call with a transfer value of 1. This action loads an
absolute object file if ISIS-1V is still in memory.

« Executing a Monitor G8 command. This action exits the Monitor.

If the debug toggle is zero when a fatal error occurs, the following will occur:
« All open files are closed in their current state, including :CI: and :CO:..

* A fresh copy of ISIS-1V is read from the device, and [SIS-IV prompts for a
command with a hyphen (-).

If the debug toggle is set when a fatal error occurs, the following will occur:
¢ All open files are left open.
e Control passes to the Monitor.

¢ The Monitor prompts for a command with a period (.).

At this point Monitor commands can be used to examine registers and memory to
try to determine the cause of the error. However, the program cannot be restarted
with any Monitor 85 G or N commands because the ISIS-IV restart address has not
been saved. (A G or N command reloads ISIS.) Do not reset the system at this point.

NOTE

Although programs cannot be loaded in the [SIS-IV area, the ISIS-1V area
is not protected from a running program. If a program should happen to
destroy parts of ISIS-1V, subsequent system calls may not operate correctly
and input/output may destroy areas on your device. This would happen
mainly when an undebugged program is running.

Series IV ISIS-1V

Series IV ISIS-1V

Error Codes and Messages

ISIS-IV Error Message Codes

Error message numbers that are issued by ISIS-1V are allocated as follows:

1-99 inclusive—ISIS-IV resident routines (8080/8085 mode)
200-255 inclusive—non-resident system routines (8080/8085 mode)

Resident Routine Error Message Codes (8080/8085 Mode)

1.

Fatal error. The memory area from 3100H to program origin is used for input/
output buffers. Too few buffers were allocated to meet the current request in
addition to earlier requests.

Illegal AFTN argument. The number supplied as an AFTN (active file table
number) is inappropriate. Perhaps your program closed a file prematurely and
then tried to read it.

Fatal error. AFT (active file table) is full. At most, six files may be active at
one time. You must close one of your open files before a file can successfully
be opened.

Incorrectly specified filename. You have possibly entered too many characters
for filename, as in OLDFILE.l (the maximum is six characters before the
period, three after).

Unrecognized device name. You have entered an incorrect device name, as in
:PR: for the line printer :LP:.

Attempt to write to input device. An attempt has been made to write to an input
device. You can write only to an output device, such as a line printer (:LP:).

7. Fatal error. The disk is full. Check that you have specified the intended disk.
8. Attempt to read from output device. Some devices, like the line printer (:LP:),

10.

11

12.

13.

14.

15.

16.

17.

are output only and cannot be read. The current operation either should not be
a READ or needs to use a different device name.

Directory is full. There is no room on the target directory to add an additional
filename.

Pathname is not on same disk. A system call was attempted (RENAME) that
requires two pathnames on the same device but the specified pathnames did not
specify the same device.

File already exists. A filename identical to the one just used was found. Perhaps
a different directory was intended, or a different spelling of the filename.

File is already open. Only console input (:CI:) and console output (:CO:) may
be opened multiple times. If the spelling of the filename is correct, a flaw may
exist in the program logic. For example, an earlier module may be using the
file too soon or there may be an unintended loop.

No such file. The specified filename could not be found in the directory indicated
by your command. A different directory may have the file.

Write-protected file encountered. The intended operation (e.g., WRITE,
RENAME, DELETE) could not be done because the specified file has the write-
protect attribute set.

Fatal error. ISIS overwrite. The system detected an attempt to write into the
area reserved for the ISIS resident files, i.e., below 3100H. Such an operation
would create unpredictable results and is disallowed.

Fatal error. Bad load format. This error was possibly caused by a source-
language file. Files to be loaded for 8080/8085 execution must be in absolute
object module format.

Not a disk file. An attempt was made to reference a disk file on a wrong device
type with an improper pathname, such as :HP:FILE2 instead of :Fm:FILE2.

Error Codes and Messages Series IV ISIS-IV

18. Illegal ISIS commands. This error results when an ISIS system call is made
with an illegal command number.

19. Attempted seek on non-disk file. Seeks on physical devices other than disk drives
are invalid (:BB: is an exception and is valid).

20. Attempted back seek too far. The seek attempted to go beyond the beginning
of the file; MARKER is set to zero.

21. Cannot rescan. The file was not opened for line-editing.

22. lllegal access mode to open. Only 1, 2, and 3 are valid, meaning input (read),
output (write), or update (both read and write).

23. Missing filename. The system expected a filename, but one was not supplied.
24. Fatal error. Device input/output hardware error.

25. Illegal echo file. An echo file must have an active file table number (AFTN)
between 0 and 255, and must already be opened for output. Check that these
conditions are met.

26. lllegal attribute identifier. This error refers to the second parameter of the
ATTRIB system call routine. Check that you have specified a valid parameter.
Only 2 is valid, meaning the write-protect attribute.

27. Illegal seek command. An unsupported mode for the specified device was used
in a seek command.

28. Missing extension. An expected file extension was not supplied.

29. Fatal error. Premature EOF. An unexpected end of file was encountered from
the console.

30. Fatal error. Device specified was not ready.

31. Cannot seek on write only file. Seeks can be executed only on read or update
files.

32. Cannot delete open file. You need to close the file before attempting to delete
it. Verify the pathname.

33. Fatal error. lllegal system call parameter. A parameter was specified in a system
call that is meant to be used as a pointer to a memory area intended for the
receipt of data; however, ISIS found that this pointer was pointing to the memory
space that ISIS occupies. ISIS will not allow a user to write into its memory
space.

34. Fatal error. The return switch in a LOAD system call was not O, 1, or 2, the
only valid values.

35. Seek past EOF. An attempt was made to extend a file opened for input by
seeking past end-of-file.

61. Device not assigned. The user has attempted to open a file on a logical device
that has not been assigned to a directory. Use the ASSIGN command to map
the device to the directory.

63. Synchronization error. Communication messages between [SIS and the Network
Resource Manager are not synchronized. Reboot the ISIS software.

64. Network Comm error. The Network Resource Manager comm board is
malfunctioning or missing.

65. Local Comm error. The Series IV comm board is malfunctioning or missing.

66. Illegal attribute for iINDX file. User has attempted to change the system, format,
or invisible format attribute on an iNDX file. The Write attribute is the only
attribute supported on iNDX files. The write-protect attribute is changed with
the ATTRIB command or the ATTRIB system call.

70. iNDX file access right violation. User attempted to open an iNDX file without
appropriate access rights to the file. File access rights can be changed with the
ACCESS command.

b-4

Series IV ISIS-IV Error Codes and Messages

71. Illegal operator on public file. User attempted to open for write access an iNDX
public file that was being accessed by more than one user. When all other users
have exited from the file, try again.

72. Maximum number of files on a device exceeded. User attempted to create more
than the maximum number of files allowed for a particular device. The
maximum number of files per device is determined when the System Genera-
tion procedure is run.

73. Attempt to delete a non-empty directory. User attempted to delete an iNDX
directory that contains files. Delete all of the files in the directory before delet-
ing the directory.

74. lIllegal pathname syntax. User specified a fully qualified DFS pathname in a
CREATE command and did not begin the pathname with a slash (/). All fully
qualified pathnames must begin with a slash (/).

75. Non-terminating path element is not a directory. User specified a fully quali-
fied pathname in a CREATE command where one of the first elements of the
pathname was a data file. Only the final element of the pathname can be a data
file.

76. Attempt to create a connected iINDX file. User assigned :Fx: to /ROOT/A and
then attempted to CREATE /ROOT/A. No two directories can have the same
pathname.

77. Username/Password mismatch. User attempted to LOGON with a username
that is valid but an incorrect password for this user.

78. Username not known. User attempted to LOGON with an unknown username.
79. File error on system file. The system accessed the user definition file. This file
is a system file only.

80. iNDX file detached, device dismounted. While a user was accessing a file, the
device on which the file resided was dismounted or removed at the Network
Resource Manager.

81. Maximum remote attaches exceeded. User attempted to exceed the maximum
number of files that could be attached at one time. The user can attach only 12
remote files at once.

82. Illegal password syntax. Attempt to LOGON with a password of more than 14
characters.

83. Illegal username syntax. Attempt to LOGON with a username of more than
14 characters.

88. Remote error that does not map into ISIS error numbers.

Non-Resident Routine Error Message Codes (8080/8085 Mode)

201. Unrecognized switch. Certain predefined switches (e.g., E, O, Q, and B) can be
used depending on the ISIS-IV command. Some commands that have switches
are DIR and COPY.

202. Unrecognized delimiter. A character was encountered that was invalid in a name
and not known as a delimiter.

203. Invalid syntax. There is an error in the command as entered. The error may be
an unrecognized keyword or a missing comma.

206. Illegal disk label. The label supplied violates the rules for a valid disk label.

208. Checksum error. The bits of the records read do not add up properly. An
inappropriate input or medium was supplied. There may be an error in the
internal format of the specified file that may have occurred during translation
or linking. Retranslate and relink the source module.

Error Codes and Messages Series IV ISIS-1V

209. Relocation file sequence error. An inappropriate input file was specified.

210. Insufficient memory. The required amount of RAM is not present.

211. Record too long. A record longer than allowed was encountered.

212. Illlegal relocation type. Relocation types must conform to Intel standard formats.
213. Fixup bounds error. The required address violated numeric bounds on addresses.

214. lllegal SUBMIT parameter. An error was made in the actual parameter to be
substituted for a formal parameter in a command sequence file.

215. Argument too long. The number of characters in the actual argument must not
exceed 31.

216. Too many parameters. More parameters were supplied than defined.

217. Object record too short. This error may be caused by an [/O error in the file to
be loaded.

218. Illegal record format. The record format did not match the Intel standard.

219. Phase error. The expected phase input (e.g., for the next step of a translation
process) was not correctly supplied.

220. No end-of-file record in object module file. There is an error in the internal
format of the specified file. Retranslate and relink the source module.

221. Segment overflow during LINK operation. The output segment cannot be
greater than 64K bytes.

222. Unrecognized record in object module file. There is an error in the internal
format of the specified file. Retranslate and relink the source module.

223. Fixup record pointer is incorrect. There is an error in the internal format of the
specified file. Retranslate and relink the source module.

224. lllegal record sequence in object module file in LINK. There is an error in the
internal format of the specified file that may have occurred during translation.
Retranslate and relink the source module.

225. Illegal module name specified. An illegal or misspelled module name was
entered.

226. Module name exeeds 31 characters. Module names exeeding 31 characters may
not be used.

227. Command syntax requires left parenthesis. There is a missing left parenthesis
in the command line. Re-enter the command correctly.

228. Command syntax requires right parenthesis. There is a missing right paren-
thesis in the command line. Re-enter the command correctly.

229. Unrecognized control specified in command. A character string other than the
expected control keyword was entered. Enter the correct control keyword.

230. Duplicate symbol found. You have attempted to add a symbol that already exists.
231. File already exists. The file specified in a CREATE command already exists.
232. Unrecognized command. An illegal or misspelled command was entered.

233. Command syntax requires a TO clause. The command syntax requires a TO
clause to specify the output file.

234, Filename illegally duplicated in command. The same filename is specified both
as an input and output file.

235. File specified in command is not a library file. The specified file is not a library
file.

236. More than 249 common segments in input files. You cannot have more than
249 common segments.

237. Specified common segment not found in object file. The input module does not
contain the common segment specified in the command.

6-6

Series IV ISIS-IV Error Codes and Messages

238. Illegal stack content record in object file. There is an error in the internal format
of the specified file that may have occurred during the translation and link
process. Retranslate and relink the source module.

239. No module header in input object file. There is an error in the internal format
of the specified file. Retranslate and relink the source module.

240. Program exeeds 64K bytes. The output module to be placed in the output file
exeeds the maximum of 64K bytes.

Additional 8080/8085 link and locate error messages are described in the
MCS-80/85 Utilities User's Guide for 8080/8085-Based Development Systems.

APPENDIX A
SUMMARY OF ERROR MESSAGES

This appendix provides a list of error codes and messages issued by ISIS-I1V, and
some non-resident system routines. For further information on error codes refer to
the following ‘manuals:

Error Codes Manuals
101-149 DEBUG-88 User’s Guide, 121758
201-240 MCS-80/85 Utilities User's Guide for 8080/8085-Based

Development Systems, 121617

Resident Routine Error Message Codes
(8080/8085 Mode)

Fatal error. Too few buffers were allocated.
[llegal active file table number.

Fatal error. Active file table is full.
Incorrectly specified filename.
Unrecognized device name.

Attempt to write to input device.

Fatal error. The device is full.

P s WD~

Attempt to read from output device.

»

Directory is full.
Pathname is not on same device.

—_
—_—

. File already exists.

—
[\

. File is already open.
. No such file.
. Write-protected file encountered.

W

Fatal error. ISIS overwrite.

—_ -
AN L

. Fatal error. Bad load format.
. Not a device file.

—_—
[c BN |

. Illegal ISIS commands.

__.
©

Attempted seek on non-disk file.

[y
o

. Attempted back seek too far.

[\
—_—

. Cannot rescan.

[\
o

. Hllegal access mode to open.

o
(VS

. Missing filename.

[\
i

. Fatal error. Device input/output hardware error.

N
i

. Illegal echo file.

o
[=))

. Illegal attribute identifier.

[\
~

. Illegal seek command.

3]
[oe]

. Missing extension.

Summary of Error Messages

A-2

29.
30.
31
32.
33.
34.
35.
61.
62.
63.
64.
65.
66.
70.
71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.
82.
83.
88.

Fatal error. Premature EOF.

Fatal error. Device not ready.

Cannot seek on write only file.

Cannot delete open file.

Fatal error. Illegal system call parameter.

Fatal error. Invalid return switch in a LOAD system call.
Seek past EOF.

Device not assigned.

Reserved.

Synchronization error.

Network Comm error.

Local Comm error.

Illegal attribute for iNDX file.

INDX file access right violation.

Illegal operation on public file.

Maximum number of files on a device exceeded.
Attempt to delete a non-empty directory.

Illegal pathname syntax.

Non-terminating path element is not a directory.
Attempt to create a connected iNDX file.
Username /Password mismatch.

Username not known.

File error on system file.

iNDX file detached, device dismounted.
Maximum remote attaches exceeded.

Illegal password syntax.

Illegal username syntax.

Unknown remote error.

NOTE

When error 24 occurs, an additional message that reports the
hexadecimal exception code number of the operating system, the device
identificr, and the corresponding error message will appear.

EXCEPTION xxxxH: yyyERR, zzz

where

Series IV ISIS-IV

xxxxH is the hexadecimal number of the exception code of the

operating system.

When the last digit of the exception code number is a 0 or
a 1 (i.e., 3011H), the error message will be for a miniature

flexible diskette.

If the last digit is a 2, 3, 4, or 5 (i.e., 3013H), the error will

be for a hard disk.

If the last digit is a 6 (i.e., 3016H), the error message will

be for a Winchester device.

Series IV ISIS-IV

yyy

zzZ

Summary of Error Messages

ts the device identifier (i.e., FIl identifies a miniature

flexible diskette).

is the corresponding error message (i.e, ATTEMPT TO
WRITE WITH HARDWARE WRITE PROTECT SET)

that has the following meaning:

For a miniature flexible diskette if n=0 or 1:

301n
302n
304n
308n
30An
30En
30Fn
310n
320n
340n
370n
371n
372n
378n
380n

E$SBSDELETEDSDAM
ESBDATASCRC
E$SBSIDSCYLSMIS
ESBSSECTORSBOUNDS
ESBSIDSCRC
ESBSNOSIDSAM
ESBSBADSDATASAM
ESB$DATASOVERRUN
E$SBSWRITESPROTECT
ESB$SDRIVESFAULT
ESBSNOSSECTOR
EBBADSTRACK
ESBSSEEKSMIS
E$SBSUNEXPECTED
ESB$SDEVICESNOTSREADY

For a hard disk if n=2, 3, 4, or 5:

301n
302n
304n
308n
30An
30Bn
30Cn
30En
30Fn
310n
320n
340n
380n

ID field miscompare
Data Field CRC

Seek error

Sector address out of bounds
ID field CRC

Protocol error

Cyl addr out of bounds
Sector not found

No data field data mark
Format overrun

Write protected

Drive write error

Drive not ready

For a 35 megabyte Winchester if n=6:

302n
304n
30An
30En
311n
312n
313n
314n
315n
316n
317n
318n
319n
31An
320n
340n
372n

Data field ECC

Drive Seek error

ID field ECC

Sector not found

Controller RAM fail
Controller ROM fail

Seek in progress

Track type disallows operation
Beyond end of media

Illegal sector size
Controller diagnostic fault
No index signal

Invalid function code
Invalid address

Write protected

Drive fault

ID Cylinder address does not match seek

Summary of Error Messages

A-4

378n
380n

3C00
3C10
3C20
3C30
3C40
3C50
3CFO

3D80
3DCO
3DC1
3DC2
3DC3
3DC4
3DED
3DFO
3E01
3E02
3E04
3E10
3F00
3F01

4000
4001
4002
4003
4004
4005
4006
4007
4008
4009

4010
4011
4012
4013
4014
4015
4016
4017
4018
4019

401A
401B
401¢C
401D
401E

4FFF

Unexpected error code
Drive not ready

E$BSBADSCOMMANDSCODE
ESBSBLOCKSOVERFLOW
ESBS72$INVALID
ESBSMINISQ

EBB08YI
E$BSNOSCONTROLLER
EBs72$PROTOCOL

ESKEYBOARDSABORT
EB54408PROTOCOL
EB5440¢Q
ES$SBSS5440$CONFIG
ESBSUNKNOWNSINT
E$B46UF$SSEGSOVERFLOMW
EBSBIOSS$ACCESS
E$INSUFFICIENTSMIPSHEADERS
ESBSPRINTERSTIMEQUT
ESBSPRINTERSFAULT
E$SBSPRINTERSNOTSREADY
E$BSPRINTERSPROTOCOL
ESBSWINCSDATASSTRUC
ESBSWINCSPROTOCOL

E$OPEN

ESNOPEN

ESFTYPE

E$SYNTAX
E$SDEVICESNOTSREADY
E$SDEVICESIDSERROR
E$SCOMMSERROR
ESNODESNOTSREADY
E$SMARKEDSDELETED
ESOPENSMODE

ESCONNECTIONSSEXIST
ESDIRSNOTSEMPTY

ESLIMIT

ESEXIST

E$CONSOLE
ESLOGSNAMESEXISTS
ESILLEGALSDEVICESID
E$SYSTEMSDEVICE
ESLOGSNAMESDOESSNOTSEXIST
E$BADSPATH

ESNOTSDIRECTORY
ESPATHSDOESSNOTSEXIST
E$ATTACHED

E$DETACHED

ESNETWORK

ESCONSISTENCY

Series IV ISIS-IV

Series IV ISIS-IV

8004

CCB6
CCB7
cCB8
CCBS
CCBA
CCBB
CCBC
CCBD
CCBE
CCBFf
ccco
ccc1
cccez
cccs
CCC4
cccs
cCCe
cccv
cccs
ccc9
CCCA
CCCB
cccc
CCCD
CCCE

DFFD
DFFE
DFFF

E000
E00 1
E002
E003
E004
E00S
E116A
E119
E11D
E115
E111
E10B
FFEB
FFEC
FFED
FFEE
FFEF
FFFO
FFF1
FFF2
FFF3
FFF4
FFFS
FFFQ
FFFA
FFFB
FFFC

Summary of Error Messages

E$SPARAM

M$DISALLOWEDSQUERY
M$SINGLESCOMP
M$DIRSEXIST
M$DELSCREATESCONFLICT
M$DELETES$ACCESS
MEDIRSREQD
M$DISPLAY$SACCESS
M$ADDSACCESS
M$ILLEGALSWILDCARD
M$DISALLOWEDSWILDCARD
MSPARENTSNEXIST
M$DATASDIRSOPTIONS
M$DIRSOPTION
M$DATASOPTIDN
M$DIRSCREATE
M$PASSWORD
M$ILLEGALSVALUE
M$USERSID
MS$USERSNAME
M$NOTSCOMPLETED
M$CANNOTSCREATE
M$READSACCESS
MSCOMMANDSSYNTAX
M$SYSTEMSERROR
MSPATHSSYNTAX

E$SISISSWPSCONSISTENCY
ESVNEXIST
ESUSER$SUPPORT

ESSYNSSCANSOVF

ESSYNSPARSESOVF

ESSYNSREMOVESOVF

ESSYNSBUFSOVF

ESSYNSVERSION

ESSYNSCONSISTENCY

Bad parameter to monitor routine
Unsupported monitor function was called
No TEU memory

Cannot load ISIS.LM

IEU hardware not responding

IEU board not responding (damaged software possible)
ESPASSWORDSMISMATCH
ESUSERSUNKNOWN

ESUSERSID

E$SSUPERSUSER

ESFATALSUDFSFNEXIST
ESFATALSIOSERROR
ESREBOOTSREQUIRED

ESMULTIPLESID

ESMULTIPLESNAME

E$SYSTEMSFILE

ESID

E$BOUNDS

ESFILESTOOSLONG

ESDELETED

ESENDSOFSFILE

Summary of Error Messages

A-6

Non-Resident Routine Error Message Codes

(8080/8085 Mode)

201.
202.
203.
206.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.

Unrecognized switch.

Unrecognized delimiter.

Invalid syntax.

Illegal disk label.

Checksum error.

Relocation file sequence error.

Insufficient memory.

Record too long.

Illegal relocation type.

Fixup bounds error.

Illegal SUBMIT parameter.

Argument too long.

Too many parameters.

Object record too short.

Illegal record format.

Phase error.

No EOF record in object module file.
Segment overflow during LINK operation.
Unrecognized record in object module file.

Fixup record pointer is incorrect.

[llegal record sequence in object module file in LINK.

[llegal module name specified.

Module name exceeds 31 characters.
Command syntax requires left parenthesis.
Command syntax requires right parenthesis.
Unrecognized control specified in command.
Duplicate symbol found.

File already exists.

Unrecognized command.

Command syntax requires a TO clause.
Filename illegally duplicated in command.
File specified in command is not a library file.
More than 249 common segments in input files.

Specified common segment not found in object file.

[llegal stack content record in object file.
No module header in input object file.
Program exceeds 64K bytes.

Series IV ISIS-IV

Series IV ISIS-1V

Summary of Error Messages

Table A-1. Non-Fatal Error Numbers Returned by System Calls

System Call Error Number

OPEN 3,4,5,9,12,13, 14, 22, 23, 25, 28, 52, 54, 61, 70

READ 2,8

WRITE 2,6

SEEK 2,19, 20, 27, 31,35

RESCAN 2,21

CLOSE 2

DELETE 4,5,13, 14,17, 23, 28, 32,61, 70

RENAME 4,5,10, 11, 13,17, 23, 28, 52, 54, 56, 61, 70

ATTRIB 4,5, 13, 23, 26, 28, 52, 54, 61, 66, 70

CONSOL None; all errors are fatal

WHOCON None

ERROR None

LOAD 3,4,5,12,13,22,23, 28, 34,61,70

EXIT None

SPATH 4,5,23,28,61,70

GETD 3,4,5,13,23

GETATT 4,5,13, 23, 28

Table A-2. Fatal Errors Issued by System Calls

System Call Error Number
OPEN 1,7, 24, 30, 33, 51, 63, 64, 65
READ 24, 30, 33, 63, 64, 65
WRITE 7, 24, 30, 33, 63, 64, 65
SEEK 7, 24, 30, 33, 63, 64, 65
RESCAN 33, 63, 64, 65
CLOSE 33, 63, 64, 65
DELETE 1, 24, 30, 33, 63, 64, 65
RENAME 1, 24, 30, 33, 51, 63, 64, 65
ATTRIB 1, 24, 30, 33, 51, 63, 64, 65
CONSOL 1,4,5,12,13, 14, 22, 23, 24, 28, 30, 33
WHOCON 33
ERROR 33
LOAD 1,15, 16, 24, 30, 33, 63, 64, 65
SPATH 33
GETD 1, 24,30, 33
GETATT 1, 24,30, 33

AT

APPENDIX B
COMMAND SYNTAX SUMMARY

This appendix lists the ISIS-IV commands and syntax alphabetically. Chapter 2 of
this manual contains complete descriptions and examples of each command.

ACCESS
ACCESS { ;;tg,;ame y } filename [switch]< c r >
ASSIGN

ASSTIGN [:Fnel |:TU { fu/lyqua//fledd/rectoryname,}](”)

NULL

ATTRIB

ATTRIB [:Fn:filenamel attriblistl] [@1<¢cr>

COPY
- [:Fn: 1 loutfile])

COPY [Fn:linfilel,...1 TO {:device: [switchesl<cr>
CREATE

:Fn: .
CREATE {pathname /} new directory name<cr »
DELETE
DELETE [:Fn:] filenamel Q1 [,...[Q11<cr>
DIR

DIR [FOR filenamel [TO Ilistfilel [switchesl<cr)

EXIT

EXIT<cr>

B-1

Command Syntax Summary Series IV ISIS-1V

REMOVE

:Fn:

' b
pathname/ } directory name<cr

REMOVE {

RENAME

RENAME [:Fn:loldname TO [:Fn:lnewname<cr>

SPACE

SPACE /volumenameccr >

SUBMIT

SUBMIT [:Fnlfilename [(parameterl ,...1)1<cr>

VERS

VERS command<cr >

WHO

WHO<cr>

APPENDIX C
MONITOR COMMAND SUMMARY

This appendix provides a summary of the command syntax for the ISIS Execution
Unit Monitor (MON 85) Commands.

C — Compare Command

C range, destination-address<cr >

D — Display Command

[count]D U :: }:l [rangell , 1¢<cr>

F — Find Command

F range , dataccr)

G — Execute Command

G[start-address] [, { break-address} 1<¢cr>

M — Move Command

M range, destination-address<cr)

N — Single Step Command

[count]N [P][start-addressjl , 1<cr>

P — Print Value Command

P I:‘;}] [{ address| expression| literal}]l , 1...¢cr)

S — Substitute Command

[count] SIW] start-addressl = expression| expression}..I ,1¢cr>

X — Examine Register Command

X[register[= expression]]<cr >

C-1

APPENDIX D
ASCIl CODES

Table D-1. ASCII Code List
Decimal Octal Hexadecimal Character
0 000 00 NUL
1 001 01 SOH
2 002 02 STX
3 003 03 ETX
4 004 04 EOT
5 005 05 ENQ
6 006 06 ACK
7 007 07 BEL
8 010 08 BS
9 011 09 HT
10 012 0A LF
11 013 0B VT
12 014 ocC FF
13 015 0D CR
14 016 OE SO
15 017 OF Sl
16 020 10 DLE
17 021 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM
26 032 1A SuB
27 033 1B ESC
28 034 1C FS
29 035 1D GS
30 036 1E RS
31 037 1F us
32 040 20 SP
33 041 21 !
34 042 22 "
35 043 23 #
36 044 24 $
37 045 25 %
38 046 26 &
39 047 27 ‘
40 050 28 (
141 051 29)
42 052 2A *
43 053 2B +
44 054 2C ’
45 055 2D -
46 056 2E .
47 057 2F /
48 060 30 0
49 061 31 1
50 062 32 2
51 063 33 3
52 064 34 4
53 065 35 5
54 066 36 6
55 067 37 7
56 070 38 8
57 071 39 9
58 072 3A :
59 073 3B ;
60 074 3C <

D-1

ASCII Codes

Table D-1. ASCII Code List (Cont’d.)

Series IV ISIS-IV

Decimal Octal Hexadecimal Character
61 075 3D =
62 076 3E >
63 077 3F ?
64 100 40 @
65 101 41 A
66 102 42 B
67 103 43 C
68 104 44 D
69 105 45 E
70 106 46 F
71 107 47 G
72 110 48 H
73 111 49 |
74 112 4A J
75 113 4B K
76 114 4C L
77 115 4D M
78 116 4E N
79 117 4F (0]
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 \Y
87 127 57 W
88 130 58 X
89 131 59 Y
90 132 5A Z
91 133 5B [
92 134 5C \
93 135 5D]
94 136 5E A
95 137 5F —
96 140 60 !
97 141 61 a
98 142 62 b
99 143 63 c

100 144 64 d
101 145 65 e
102 146 66 f
103 147 67 g
104 150 68 h
105 151 69 i
106 152 6A j
107 153 6B k
108 154 6C |
109 155 6D m
110 156 6E n
111 157 6F o
112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 S
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 X
121 171 79 y
122 172 7A z
123 173 7B {
124 174 7C |
125 175 7D }
126 176 7E ~
127 177 7F DEL

Series IV ISIS-IV

Table D-2. ASCII Code Definition

e . Decimal
Abbreviation Meaning Code
NUL NULL Character 0
SOH Start of Heading 1
STX Start of Text 2
ETX End of Text 3
EOT End of Transmission 4
ENQ Enquiry 5
ACK Acknowledge 6
BEL Bell 7
BS Backspace 8
HT Horizontal Tabulation 9
LF Line Feed 10
VT Vertical Tabulation 11
FF Form Feed 12
CR Carriage Return 13
SO Shift Out 14
SI Shift In 15
DLE Data Link Escape 16
DC1 Device Control 1 17
DC2 Device Control 2 18
DC3 Device Control 3 19
DC4 Device Control 4 20
NAK Negative Acknowledge 21
SYN Synchronous Idle 22
ETB End of Transmission Block 23
CAN Cancel 24
EM End of Medium 25
SuB Substitute 26
ESC Escape 27
FS File Separator 28
GS Group Separator 29
RS Record Separator 30
us Unit Separator 31
SP Space 32
DEL Delete 127

ASCII Codes

D-3

APPENDIX E
HEXADECIMAL-DECIMAL CONVERSION

The following table is for hexadecimal to decimal and decimal to hexadecimal
conversion. To find the decimal equivalent of a hexadecimal number, locate the
hexadecimal number in the correct position and note the decimal equivalent. Add the
decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower decimal
number in table E-1 and note the hexadecimal number and its position. Subtract the
decimal number from the table from the starting number. Find the difference in the
table. Continue this process until there is no difference.

Table E-1. Hexadecimal-Decimal Conversion

Most Significant Byte Least Significant Byte
Digit 4 Digit 3 Digit 2 Digit 1
HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0
1 4 096 1 256 1 16 1 1
2 8 192 2 512 2 32 2 2
3 12 288 3 768 3 48 3 3
4 16 384 4 1 024 4 64 4 4
5 20 480 5 1 280 5 80 5 5
6 24 576 6 1 536 6 96 6 6
7 28 672 7 1 792 7 112 7 7
8 32 768 8 2 048 8 128 8 8
9 36 864 9 2 304 9 144 9 9
A 40 960 A 2 560 A 160 A 10
B 45 056 B 2 816 B 176 B 11
(o} 49 152 C 3 072 C 192 C 12
D 53 248 D 3 328 D 208 D 13
E 57 344 E 3 548 E 224 E 14
F 61 440 F 3 840 F 240 F 15

E-1

INDEX

*, 22
7,22

:BB:, 3-2
:BI, 3-3
:BO:, 3-3
:CI:, 2-4, 3-3
:CO;, 24, 3-3
:Fn:, 2-3
:LP:, 2-21
:SP;, 2-22
VI, 2-4, 3-3
VO, 2-4, 3-3

absolute code
converted from hexadecimal code, 2-36
absolute object module, 2-36, 2-37
accepting interrupts, 5-2
ACCESS command, 2-12
accessing files, 1-4
access rights
for data files, 2-2
for directory files, 2-2
changing from console, 2-12
changing with system call, 3-29
AFTN, 3-5
aids, user, 2-3
ASCII Codes, D-1
assembler, 2-1
assembly language calls, 3-9
ASSIGN command, 2-14
asterisk (¥), 2-2
ATTRIB command, 2-17
ATTRIB system call, 3-29
attribute, 2-17
attribute system call, 3-29
attributes, change
from console, 2-17
with system call, 3-29

background mode, 1-1

base address, 3-4

batch input (BI), 3-3, 3-24
batch output (BO), 3-3, 3-24
BB (byte bucket), 3-2

BI (batch input), 3-3, 3-24
BO (batch output), 3-3
break address, 4-2

break key, 2-9

breakpoint, 4-6

B switch of COPY command, 2-19
buffers, 3-3

buffer use by SUBMIT, 2-11
byte bucket (:BB:), 3-2
bytes, 3-2

calls, system
ATTRIB, 3-29
CI, 4-18
CLOSE, 3-11
CO, 4-20
CONSOL, 3-41
CSTS, 4-22
DELETE, 3-31
ERROR, 3-43
EXIT, 3-48
GETATT, 3-33
GETD, 3-35
IOCDR2, 4-21
LOAD, 3-49
MEMCHK, 4-23
OPEN, 3-13
READ, 3-16
RENAME, 3-38
RESCAN, 3-18
SEEK, 3-20
SPATH, 3-23
WHOCON, 3-45
WRITE, 3-26
capabilities of INDX, 1-1
C command, 4-8
change console device, 2-4
change file attribute, 3-29
change file name, 3-38
changing file attribute, 2-17
CI (device), 2-4, 3-2
CI (system call), 4-18
CLI (Command Line Interpreter), 3-3
CLOSE, 3-11
closing files, 3-11
CO (device), 2-4, 3-2
CO (system call), 4-20
code conversion commands
HEXOBJ, 2-36
OBJHEX, 2-37
command
categories, Monitor, 4-4
entry, Monitor, 4-1
line, editing, 4-1
line, reading, 3-3, 3-7
parameters, 2-6
sequence definition file, 2-10
suffix, 4-7
syntax
ISIS-1V, 2-6
Monitor, 4-2
tail, 3-4
Command Line Interpreter (CLI), 3-3
commands
ACCESS, 2-12
ASSIGN, 2-14
ATTRIB, 2-17
COPY, 2-19
CREATE, 2-23
CREDIT, 2-5

Index-1

Index

DEBUG, 2-7
DELETE, 2-25
DIR, 2-27
EXIT, 2-9
HEXOBJ, 2-36
LIB, 2-6
LINK, 2-6
LOCATE, 2-6
Monitor
C, 4-8
D, 49
F, 4-11
G, 4-6
M, 4-12
N, 4-7
P, 4-16
S, 4-13
X, 4-15
OBJHEX, 2-37
REMOVE, 2-29
RENAME, 2-31
SPACE, 2-33
SUBMIT, 2-10
VERS, 2-34
WHO, 2-35
compare command, 4-8
compiler, 2-1
connections, 3-5
CONSOL, 3-41
CONSOL and SUBMIT, 2-4
console
assignment, 2-4, 3-3, 3-40
changing, 2-4, 3-41
current, 3-40, 3-45
initial system, 2-4, 3-3
input, 2-4
input routine, 4-18
output, 2-4
output routine, 4-20
resuming output, 2-3
status routine, 4-22
stopping output, 2-3
system, 2-4
user aids, 2-3
content, data file, 2-1
content, directory file, 2-2, 2-27
control characters
control/e, 2-4, 2-11
control/p, 2-3, 3-7
control/q, 2-3
control/r, 2-3, 3-7
control/s, 2-3
control/x, 2-3, 3-7
control/z, 2-3, 3-7
control descriptions
LINK, 2-6
LOCATE, 2-6
control/e, 2-4
control/p, 2-3, 3-7
control/q, 2-3
control/r, 2-3, 3-7
control/s, 2-3
control/x, 2-3, 3-7
control/z, 2-3, 3-7
conversion commands

Index-2

HEXOBJ, 2-36
OBJHEX, 2-37
converting
absolute object code to
hexadecimal, 2-37

hexadecimal code to absolute object

code, 2-36
COPY command, 2-19

COPY command switches, 2-19

copying a file, 2-19
COUNT, 3-6
count factors, 4-3
CPU registers, 4-3
CREATE, 2-23

creation and management of files, 2-1

CREDIT, 14, 2-5

CSD, 2-1, 2-10

CSTS, 4-22

current system console, 3-45

data files
access rights, 2-2
contents, 2-1
D command, 4-9
DEBUG command, 2-7

debugging and processing errors, 6-1

debug mode, 4-1
debug toggle, 6-2

decimal to hexadecimal conversion, E-1

DELETE command, 2-25

delete file from directory, 3-31

DELETE system call, 3-31
deleting a directory, 2-29
deleting a file, 2-25
destination address, 4-2

determine console assignment, 3-45

Series IV ISIS-IV

determining memory space from program, 4-23

device
error messages, 6-1, A-2
number, 3-23
output, 2-19
space command, 2-33
type, 3-24

different source languages, using, 3-9

DIR command, 2-27
directory file
access rights, 2-2
content, 2-27
creating, 2-23
listing command, 2-27
maintenance calls, 3-28
parent, 2-24
removing, 2-29
system call, 3-35
volume root, 1-3
directory identifier (:Fn:)
assignments, 2-3
changing, 2-14, 2-15

file attribute changing, 2-17
file attribute system call, 3-29

file copying, 2-19
file deletion, 2-25

file directory system call, 3-35
file marker, positioning, 3-20

file renaming, 2-31, 3-38

Series IV ISIS-IV

files, 2-1

listing, 2-14

operating system, 1-1
display command, 4-9

echo file, 3-13
editing, line, 2-3
editing characters, 2-3, 3-7
Editor (CREDIT), 1-4, 2-5
end of file control, 2-3
entering ISIS, 1-3
entry error, Monitor, 4-4
error code, 6-1
error message codes
non-resident routine, 6-5, A-6
resident routine, 6-3, A-1
error message output, 3-43, 6-1
error processing and debugging, 6-1
ERROR system call, 3-43
E switch of DIR command, 2-27
examine register command, 4-15
execute command, 4-6
execution, non-interactive, 2-10
execution commands, program, 2-5
execution modes
8080/8085, 1-1
8086,/8088, 1-1, 1-2
background, 1-1 _
foreground, 1-1
network, 1-2
standalone, 1-2

execution of program under Monitor, 2-7

exit command, 2-9
EXIT system call, 3-48
exiting ISIS, 1-3, 2-9
exporting, 1-2
extension, 2-1

fatal errors, 6-1

F command, 4-11

file
accessing, 1-4, 2-3
access rights, 2-2, 2-13
access rights changing, 2-12
attribute, 2-2
attribute changing, 2-17
closing, 3-11
control commands, 2-12
copying, 2-19
creation and management, 1-4, 2-1
deletion, 2-25
editing, 2-5
extensions, 2-1
from memory, 3-16
input/output calls, 3-2, 3-10
maintenance commands, 2-5
marker, positioning, 3-20
name change, 3-38
name format, 2-1
names, wild card, 2-2
owner, 2-12, 2-27
protection, 2-2
renaming, 2-31, 3-38
system, 1-2, 2-1
to memory, 3-16

types, 2-1, 2-27
filename, 2-1
filename command, 2-7
filename format, 2-1
files, initializing for 1/0, 3-13
find command, 4-11
foreground mode, 1-1

FOR parameter of DIR command, 2-27

format of filename, 2-1
format of ISIS-IV commands, 2-6
function keys, 5-1

Editor functions, 2-5

ISIS, 1-4

G command, 1-4, 4-6

GETATT system call, 3-33
GETD system call, 3-35

getting starting with ISIS-IV, 1-3
go command, 4-16

hexadecimal

code, converting to absolute object code, 2-36

to decimal conversion, E-1
HEXOBJ command, 2-36
hierarchical file system (iNDX),

system root, 2-3

types of files, 1-2

volumes, 1-2, 2-1
host execution mode, 1-1, 1-2

importing, 1-2
iNDX file system, 1-2, 2-1
iNDX operating system,
background mode, 1-1
capabilities, 1-1
file structure, 2-1
file system, 1-2
foreground mode, 1-1
network mode, 1-2
standalone mode, 1-2
subsystem (ISIS), 1-1
initial system console, 3-3
initialization of mask register, 5-2
initializing files for I/0O, 3-13
input/output calls, 3-10
Intellec MDS, 5-1
Intellec Monitor, 4-1
interrupt
acceptance, 5-2
keys, 5-1
levels, 5-1
mask register, 5-1
processing, 5-1
removal, 5-2
introduction, 1-1
IOCDR2 (system call), 4-21
ISIS-1V command format, 2-6
ISIS-1V commands
ACCESS, 2-12
ASSIGN, 2-14
ATTRIB, 2-17
COPY, 2-19
CREATE, 2-23
CREDIT, 2-5
DEBUG, 2-7

Index

Index-3

Index

DELETE, 2-25
DIR, 2-27
EXIT, 2-9
Functions, 2-5
HEXOBJ, 2-36
LIB, 2-6
LINK, 2-6
LOCATE, 2-6
Monitor
C, 48
D, 49
F, 4-11
G, 4-6
M, 4-12
N, 4-7
P, 4-16
S, 4-13
X, 4-15
OBJHEX, 2-37
REMOVE, 2-29
RENAME, 2-31
SPACE, 2-38
SUBMIT, 2-10
VERS, 2-34
WHO, 2-35
ISIS-1V resident area, 3-1
ISIS-TV system calls
ATTRIB, 3-29
Cl, 4-18
CLOSE, 3-11
CO, 4-20
CONSOL, 3-41
CSTS, 4-22
DELETE, 3-38
ERROR, 3-43
EXIT, 3-48
GETATT, 3-33
GETD, 3-35
IOCDR?2, 4-21
LOAD, 3-49
MEMCK, 4-23
OPEN, 3-13
READ, 3-16
RENAME, 3-38
RESCAN, 3-18
SEEK, 3-20
SPATH, 3-23
WHOCON, 3-45
WRITE, 3-26
ISIS-IV system directory, 1-3
ISIS-IV version numbers, 2-34
ISIS.SYS, 1-3

kernel, 3-2
keyboard interrupt control routine, 4-21

language translations, 2-1
LENGTH, 3-9, 3-10
LIB command, 2-6
library, 1-1
line
edit buffer, reading, 3-6
edited input files, 3-6
editing, 2-3, 3-6
editing characters, 2-3, 3-7

Index-4

printer, 2-21
linkage and relocation, 3-9
LINK command, 2-6
listing directory, command, 2-27
LOAD, 3-49
local files, 1-4, 2-17
LOCATE command, 2-6
LOG file, 3-3, 3-24
logical system root, 2-3
LP, 2-21

M command, 4-12
maintenance, directory calls, 3-28

Series IV ISIS-1V

management and creation of files, 1-4, 2-1

MARKER, 3-9, 3-10
mechanics of relation and linkage, 3-9
MEMCK, 4-23
memory
addresses, 4-2
allocation, 3-1
buffers, 3-3
check, 4-23
control commands, 4-5
from file, 3-2
organization, 3-1
segment, 3-1
to file, 3-2
usage, 3-1
modes of execution, 1-1
Monitor
calls
Cl, 4-18
CO, 4-20
CSTS, 4-22
IOCDR2, 4-21
MEMCHLK, 4-23
command categories, 4-4
commands
C, 4-8
D, 49
F, 4-11
G, 4-6
M, 4-12
N, 4-7
P, 4-16
S, 4-13
X, 4-15
command syntax, 4-2
error messages, 4-4
functions, -4
memory control commands, 4-5
program execution under, 4-4
register command, 4-5
utility command, 4-5
move command, 4-12
moving data, 3-16

N command, 4-7
names system devices

:BB:, 3-2

:BI:, 3-3

:BO:, 3-3

:CI;, 24

:CO., 24

:Fn:, 2-3

Series IV ISIS-IV

:LP;, 2-21
:SP:, 2-22
VI, 2-4, 3-3
:VO:, 2-4, 3-3
nesting SUBMIT files, 2-10
network mode, 1-2
network operations, 1-2
non-interactive program execution, 2-10
non-fatal errors, 6-1

object file formats, 2-5
OBJHEX command, 2-37
obtaining file information, 3-23
OPEN, 3-13

operating system, 1-1
organization of memory, 3-1

O switch of DIR command, 2-27
OWNER, owner rights, 2-13
owner access, 2-12

owner of file, 2-12, 2-27

parameter passing to SUBMIT, 2-10
passing parameters to SUBMIT, 2-10
pathname, 1-3, 2-3
P command, 4-16
period (.), 4-1
PL/M, 3-9
PL/M calls, 3-9
position file marker, 3-20
printer, 2-21
print value command, 4-16
processing errors and debugging, 6-1
processing interrupts, 5-1
program
execution, non-interactive, 2-10
execution commands, 2-5
execution under Monitor, 4-4
loading, 3-49
protection of files, 2-2

Q switch
of ATTRIB command, 2-17
of COPY command, 2-19
of DELETE command, 2-25
query switch
of ATTRIB command, 2-17
of COPY command, 2-19
of DELETE command, 2-25
question mark (?), 2-2

range, 4-4

READ, 3-16

reading a command line, 3-7
reading from line edit buffer, 3-6
register, 4-3

register command, 4-5, 4-14
remote files, 1-4, 2-17
REMOVE command, 2-29
removing interrupts, 5-2
RENAME command, 2-31
RENAME system call, 3-38
renaming a file, 2-31

repeat factors, 4-3
RESCAN, 3-18

RIGHT identifier, 2-12
rubout, 2-3

S command, 4-13
SEEK, 3-20
single step command, 4-7
SP, 2-2
SPACE command, 2-33
SPATH, 3-23
spooled printer, 2-22, 2-28
SP switch of DIR command, 2-27
standalone mode, 1-2
standard devices

:BB:, 3-2

:BI:, 3-3

:BO:, 3-3

:CI;, 24

:CO:, 2-4

:Fn:, 2-3

:LP:, 2-21

:SP:, 2-2

:VI:, 2-4, 3-3

:VO:, 2-4, 3-3
start address, 2-36, 4-2
string, literal, 4-16
SUBMIT and CONSOL, 2-4
SUBMIT command, 2-10
SUBMIT files, preparing, 2-10
substitute command, 4-13

subsystem of iNDX (ISIS), 1-1, 1-2

summary of ISIS commands, 2-5
summary of system calls, 3-8
syntax of commands, 2-6
syntax of system calls, 3-9
system
attribute, 2-2
call syntax and usage, 3-9
calls
ATTRIB, 3-29
CI, 4-18
CLOSE, 3-11
CO, 4-20
CONSOL, 3-41
CSTS, 4-22
DELETE, 3-31
ERROR, 3-43
EXIT, 3-48
GETATT, 3-33
GETD, 3-35
IOCDR2, 4-21
LOAD, 3-49
MEMCHK, 4-23
OPEN, 3-13
READ, 3-16
RENAME, 3-38
RESCAN, 3-18
SEEK, 3-20
SPATH, 3-23
WHOCON, 3-45
WRITE, 3-26
calls, cautions, 3-9
calls, summary, 3-8
console, 2-4
directory, 1-3
status routines, 4-22
SYSTEM.LIB, 4-17

temporary files, 2-1, 2-2

Index

Index-5

Index

terminate 1/O operations, 3-11
terminate program, 3-48
terminating a line, 3-6
Text Editor, 1-4
TMP, 2-1
TO parameter
of ASSIGN command, 2-14
of COPY command, 2-19
of DIR command, 2-27
of HEXOBJ command, 2-36
of OBJHEX command, 2-37
of RENAME command, 2-31
top of memory, 4-23
transferring data, 3-10
types of files, 2-1

use of different source languages, 3-9
use of ISIS-IV by other programs, 3-1
user aids, 2-3

using ISIS-IV commands, 2-4

U switch of COPY command, 2-19

Index-6

Series IV ISIS-IV

utility command, 4-15
utility version numbers, 2-34

VERS command, 2-34
version numbers, 2-34
VI, 2-4

VO, 2-4

volumes, 1-2, 2-1, 2-3

WO parameter of ATTRIB command, 2-17
W1 parameter of ATTRIB command, 2-17
WHO, 2-35

WHOCON, 3-45

wild card file names, 2-2

working with program modules, 2-6
WORLD, owner rights, 2-2, 2-12

WRITE , 3-26

write-protect attribute, 2-2, 2-17

X command, 4-15

- ® Intellec® Series IV ISIS-IV User’s Guide
In 121880-001

REQUEST FOR READER’S COMMENTS

Intel’'s Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CiTty STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. [J

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

| ” || I NO POSTAGE

NECESSARY
IF MAILED
iN U.S.A.

BUSINESS REPLY MAIL

FIRSTCLASS PERMIT NO.1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

intgl

INTEL CORPORATION, 3065 Bowes Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	000
	001
	002
	003
	005
	006
	007
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	5-01
	5-02
	5-03
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	C-01
	D-01
	D-02
	D-03
	E-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB
	xBack

