intal

8080

PL/M~ Compiler

Operators Manual

~ REVISION A

98-103A

intel, Intellec and MCS are registered trademarks of Intel Corporation,k and PL/M is a claimed
trade mark of Intel Corporation. These trademarks may not be used in conjunction with
other than Intel products.

Page 2

This manual describes the operation of the INTEL 8080 PL/M*
Cross Compiler. The compiler comprises two distinct programs
written in ANSI standard FORTRAN IV and may be installed on most
medium to large scale computer systems. Some details presented
in this manual may vary due to system dependencies and compiler
options selected during the installation process. The PL/M lan-
guage itself is described in the 8008 and 8080 PL/M Programming
Manual. , . 5

- * PL/M is a claimed trademark of INTEL Corporation

1.

2.

3.

4.
4.1
4.2

5.

6.
6.1
6.2
6.3
6.4
6.5'

Appendices
A
B
o4
D

introduction e o o o o o o

CONTENTS

Compiler Controls-

File Systeﬁ e o o o s o o

Compiler Operation . . .

Pass 1 .« ¢« ¢ o o o«

. Pass 2 . . L d - - >

Sample Execution

Run-time Conventions . .

Storage Allocation

becednre Linkage

Stack Manipulation

Interrupt Processing

Error Messages . .
Compiler Controls

File Mappings . -

[2

(3

Use of Assembly Language

-

L3

Timesharing File Definitions

Page

[~ S 3

[)

10
12
21
21
22
23
26
26

28
36
42

43

Page 4

The 8080 PL/M Cross Compiler comprises two distinct programs
which must be executed consecutively to perform a complete com-
pilation of a PL/M source program. The two programs are known
as Pass 1 and Pass 2 of the PL/M Compiler, and are sometimes re-
ferred to as PLM81 and PLM82 respectively.

The first pass reads a PL/M source program and converts it
to an intermediate form on work files. Optionally, a listing of
the input source program may be obtained during this pass. Errors
in program syntax are detected at this stage, and appropriate er-
ror messages are sent to the list file.

The second pass of the PL/M Compiler processes the inter-
mediate files created by Pass 1, and generates the machine code
for the: MCS-80 CPU.: This machine code, which may be in either
BNPF or Hex format, may be loaded and executed directly on an
INTELLEC 8/Mod 80 Microcomputer Development System, or simulated
using INTERP/80, a cross-simulator of the 8080 CPU. It may also -
be- used for the programming of ROMs. Pass 2 of the compilation
process will produce, optionally, a symbol table, and mnemonic
listing of the generated machine code. Certain errors may be de-
tected during this phase, and these are also reported in the list
file. P E

Figure 1 illustrates the overall file structure and flow of
program execution of the PL/M Compiler. The reader may find it
helpful to refer to this diagram as he reads subsequent sections
of this manual. : ‘

page 5

Ihput
-file

I

Inter- Symbol
mediate - table
- 1language ' file
file

Pass 2
PLM82 listing
\//\
Object
file
Pigure 1

File structure and flow of program execution

Page 6

2. COMPILER CONTROLS

The operation of each pass of the PL/M Compller is governed
by a set of parameters known as compiler controls, each corntrol
being identified by a unlque letter of the alphabet. Compller

controls may perform one’ of three functlons, as follows. o

a) Definition of the characteristics of the files" accessed"
by the PL/M Compller,vsuch as FORTRAN unit number, and
maximum record size.

" by Selection ‘of those optional features of the ‘compiler
which.are to be invoked during a particular compilation.

- ey Speclflcatron of various compile-tlme parameters, such"

© as the Tocation of the ‘first pages of RAM and ROM in
the object system.

- In general, each compiler control contains a non-negative
integer value, although some controls -are restricted to the = -
values 1 and O In&lcatlng ‘an 'on' or "off' condition, - respec- -
tively. Each compiler control is provided with a default value’
which it assumes throughout the compilation process unless ex-
plicitly altered by the user. ° Appendix B provides a complete
list-of the controls available ‘in both Pass 1 and Pass 2 of the
PL/M compiler, ‘along with ‘their défault values. In practice,
however, some of these defaults may have been changed durlng in-
stallation of the PL/M Compller on any specific system. Further
details must be obtained from- your local programming or tlme-
sharing staff.

The value associated w1th:any partlcular compller control -
may be changed at any stage of the compilation process by the
compiler-user: This is accompllshed by a line of input with -

.a dollar sign ($) in the first character position processed.

' “ Thus the PL/M Compiler distinguishes between lines that belong

~to the PL/M source program proper and lines that change the .
values of compiler ‘controls by the absence or presence, respec-
‘tively, of a dollar sign in the first character position. Suchﬁ
lines which aIter'the values of compller controls are known as_
‘control records.

Each control record may respecify the values of a number of
compiler controls. Each specification comprises:

a) A dollar sign (appearing in the first character position
processed, for the first specification).

b) One or more letters, the first of which is that identify-
ing the particular control (see Appendix B), and the re-
mainder are optional and may be used for purposes of self-
documentation.

Page 7

c) An equals sign (=).
 d) A non—negativé integer.

Spaées are not‘permittedvbetween‘the first two elements
(a and b above) of a compiler control specification. They are
permitted elsewhere. For example:

$I=6
is a control record which changes the value of the I control to 6.

Several control épecifications may éppear in the same control
record. Each follows the format defined above, and is separated
from the next by zero or more space characters. For example:

$I=6 $0=2

is a control record which‘respecifies the values of the I and O
controls. Note that the new values of the controls do not become
operative until the whole record has been processed.

Two special specification formats are available which permit
the user to interrogate the current values of the compiler con-
trols. Two consecutive dollar signs ($$) appearing on their own
‘cause the compiler to list the values of all compiler controls.

A double dollar sign appearing in front of a control letter causes
the value of that control to be displayed. For example, the con-
trol record

$ INPUT=6$OUTPUT=2$$ INPUTS$

c;uses the I and O controls to assume the values 6 and 2, respec-
tively. The value of the I control is then displayed, in this
case 6, followed by the current values of all the compiler controls.

The user should be aware that only a small number of compiler con-
trols may require explicit setting during a particular compilation.
Many will usually be supplied with a permanent value during system
jnstallation, while others control diagnostic features useful only
in the event of compiler failure.

Page 8

3. FILE SYSTEM

All input-and output performed by the PL/M Compiler is spec-
ified in terms of 'FORTRAN Units', which are defined as part of
ANSI Standard FORTRAN and provide a machine independent file ad-
dressing scheme. , -

Each FORTRAN unit is identified by a unique integer; for
example, FORTRAN Unit 5, FORTRAN Unit 20. The compiler user directs
input and output to specific FORTRAN units by the use of certain
- compiler controls. Each value of such a control uniquely specifies
a FORTRAN unit. For example, in Pass 1 the I control defines the
unit supplying source input. The mapping between control values
and’EORTRAN'unit"numberS‘is defined in Appendix C. '

In any particular installation, each FORTRAN unit will corre-
spond either to. an input/output device, such as a teletype, card
reader or line printer; or a disk file identifjed by a specific
file name. This manual does not specify the device type or file
name corresponding to each FORTRAN unit. This information will
be local to any given implementation of the compiler. However,
Appendix D provides file definitions for the versions of the
compiler available from Tymshare, General Electric, and United
Computing Systems. Section 5 of this manual contains an example
of compiler operation on a PDP-10, and typical PDP-10 file names
have been specified. o ‘

Page 9

4. COMPILER OPERATION

. A complete compilation of a PL/M program is performed in
two distinct phases, known as Pass 1 and Pass 2. The operation
of each of these phases is discussed separately. :

4.1 Paés 1

~ The first pass of the PL/M Compiler reads a PL/M source i
program, and generates two intermediate files (an encoded symbol .
table, and an intermediate language) which may subsequently be
processed by Pass 2. A listing of the source program may be pro-
duced during Pass 1, depending on whether the P compiler control
is set 'on' or ‘'off' (i.e. has a value of 1 or 0, respectively).
Each line of the source file listing comprises three elements:

a) . Line number

b) Current level of nesting of the PL/M source.
c) An echo of the input source record.

A Error méssagesfmay AISo.bé‘prbduced during Pass 1 of the
compilation process. These take the form: :

" (nnnnn) ERROR m NEAR s

where nnnnn specifies the line number on which the error occurred,
's is a symbol on the line near the error, and m specifies an
error code which may be interpreted by reference to Appendix A.

N The operation of Pass 1 begins by taking input from the file
specified by the default value of the I compiler control. This
may be a card reader, or interactive terminal, for example, de-
pending on the system configuration established during the in-
stallation of the compiler. The compiler continues to accept
input (both PL/M source and control records) from this file until
an EOF token is detected, indicating end-of-file, or until the
value of the I control is respecified by a control record. In
the latter case, input switches to the new file which has been
specified. In this way, Pass 1 can compile a PL/M program which
has been previously created, and is resident in a file on disk.

Other controls commonly used during execution of Pass 1 are
as follows: :

L Left margin. This control specifies the first character
position of each input record to be processed during compi-
lation. It might be used for example to instruct the compi-
ler to ignore any sequence numbers which appear in the first
few character positions of each record in the file.

Page 10

R Right margin. This control is similar to L, but specifies
a right margin. ‘ o ' '
0 Output. This control is similar to the I control but speci-
fies the file which is to receive the program listing and
: error messages. For example, in some installations this
could be the terminal, or perhaps a designated disk file.

4.2 Pass 2

Pass 2 performs the second phase of a PL/M compilation by
processing the two intermediate files generated by Pass 1. The
operation of Pass 2 begins by accepting input from the file
specified by the default value of the I compiler control. Nor-
mally, this would correspond to the terminal in an interactive
environment, or card reader in a batch environment. At this
stage any number of control records may be input to set up the
desired values of Pass 2 compiler controls. The end of such in-
put is signalled by a special record containing zero or more
space characters only. (For example: a blank card if in batch
mode, or an extra carriage-return from a terminal.) When the
special blank record is encountered, Pass 2 automatically pro-
cesses the intermediate files and generates the MCS-80 object
code. :

Pass 2 generates a list file which contains the output of
the various compiler options - e.g. a symbol table. These op-
tions are discussed later with their respective controls. Pass 2
may also report on error conditions in a manner similar to Pass 1,
and appropriate error messages will appear in the list file. A
complete list of Pass 2 error codes is given in Appendix A. The
user should be aware that Pass 2 errors may arise from a number

of possible causes:

a) A source program error undetected by Pass 1. :

b) A compiler installation problem, or misoperation of the
compiler.

c) Compiler failure - for example, an internal table

overflow.

Compiler controls commonly used during Pass 2 are as
“follows: ‘

F If set, Pass 2 generates a decoded representation of the
object code produced.

G = If set, Pass 2 generates a table indicating the approximate
location in memory of the code produced by each line of
PL/M source.

Page 11

' The address, in decimal, of the start of the'object’code in
memory.

If sgt,lPass]Z gehé:ates é,symbol table in the list file.
File nﬁmbe:‘ofﬂthé_ligf file (see Pass 1),

If Q is zero, the object file is in BNPF format. If Q is
nonzero, the object file is in Hex format.

The number of the first page to be allocated as variable
storage, ,If_V is zero, the allocation is made automatically.

Page 12

o TR MU
Je LANME LD LALUWU

The exact manner in which PLM81 and PLM82 operate on any
particular computer is implementation dependent. Figure 5-1
gives a step-by-step example of the operation of both passes of
the compiler on a PDP-10 computer system. Figure 5-2 shows the
file structure and the flow of the program execution. File names
are specified for each of the files accessed. -

_ Using this version, for example, the programmer places the
PL/M source program into a file named FOR20.DAT, which corresponds
to the file referenced by a value of 6 in the I compiler control.
This file is read when a $I=6 control record is encountered during
PLM81 execution. PLM81 produces the intermediate files FOR22.DAT
and FOR23.DAT, along with a spooled source file listing, by set-
ting $0=2. The output of Pass 1 is shown in Flgure 5-3.

PIM82 is then initiated to process the intermediate files
produced by PLMS81l. Output listing is again directed to a
spooled print file using the $0=2 control. The hexadecimal
-object file produced by PLM82 is written to the file FOR21.DAT.

The output of the $G compiler option is illustrated by Figure
5-4. It comprises a table whose entries each have two numbers,
separated by an equals sign. To the left of an equals sign is a -
source line number, and to the right is the approximate location,
in hexadecimal, of the object code generated by the speclfled '
source line.

The output of the $M compiler option is illustrated by Figure
5-5. It comprises a table of PL/M identifiers (variables, labels,
and procedures) in order of their appearance in the PL/M source,
along with their assigned locatlons in memory (in hexadeclmal)

The output of the $F compller control is 1llustrated by
Figure 5-6. The left hand column of the table identifies loca-
tions in memory, and the entries in the remainder of each row in-
dicate the initial contents of the designated memory locations.
Operation codes are expressed in a mnemonic format, similar to
the mnemonics accepted by the 8080 assembler. Other locations,
for example those initialized by a DATA statement or INITIAL
attribute, are expressed as hexadecimal numbers.

Figure 5-7 shows the hexadecimal object file produced by
Passvz. Thls comprlses two sectlons.

a) A symbol map con51st1ng of symbol numbers, names, and
hexadecimal memory locations. This map is used by the
8080 cross simulator to provide symbolic debugging
facilities.

b) Hexadecimal object code in standard 8080 format.

Page 13

.COPY FOR20.DAT=MYPROG.PLM (1)
.RUN PLM81 ’ o - (2)
8080 PLM1 VERS 2.0 , - (3)
$\'\O=2'$I=6 - - (4)
NO PROGRAM ERRORS (5)
.RUN PLM82 (6)
8080 PLM2 VERS 2.0 (7
$0=2 $F=1 $G=1 (8)
- (9)
NO PROGRAM _,ERAROR_S (10)
_PRINT *.LPT (11)
.PUNCH FOR21.DAT (12)

(1) Copy the source program into file FOR20.DAT from file
MYPROG .PLM.
(2) Invoke Pass 1 of the PL/M Compiler.
(3) PL/M Compiler types its identity. _
(4) Divert input to file number 6, which corresponds to FOR20.
. DAT. Divert output to file number 2, the spooled list file.
(5 Pass 1 types an error summary. .
(6) Invoke Pass 2 of the PL/M Compiler.
(7) Pass 2 types its identity. .
(8) Divert output to a spooled list file, and select the F and
. G compiler options. : . v .
(9) Blank line starts Pass 2 compilation process.
(10) Pass 2 types an error summary.
(11) The spooled list files are printed. : ,
(12) The Pass 2 Hex output is punched, for subsequent loading
to an INTELLEC 8/MOD 80 Microcomputer Development System.

Note: Underlined commands are those typed by the user.

—

Figure 5-1 Compiler Operation on a PDP-10

page 14

f f 4

~FORTRAN Unit 20 ($I=6)

Input v
 file (FOR20.DAT)
& FORTRAN Unit 3 ($0=2)
. S\ - Pass 1 -
PLM81 > —3 LISTING |
/ ~J(*.LPT)
FORTRAN Unit 22/ Inter- - FORTRAN Unit 23
L mediate | -
(FOR22.DAT languag (FOR23.DAT)
file
f*l" o - .FORTRAN Unit 3 ($0=2)
\\\k . | pass 2 |
PLM82 N~ 4| wristiNG

{* .LPT)

e FORTRAN Unit 21 ($B=7)
Object | (FOR21.DAT) S
- file [:

_ Figure 5-2
File structure and flow of program execution on a PDP-10

LTI
00002
809803
00004
800805
09086
90087
80008
00089
09010
88611
80912
80013
80614
90015
98616
80017
90918
99019
800820
84821

- 90022

00923
80824
08825

#0926

00827
0da28
20829
800308
080831
80832
80833
00034
200835

08836

880837
g00838

00639

00048
g0e4l
08842
00843
80044
88845
08046
00847
oge4s8
000849
009580
08851
68852
20653
88054
80855
28856
80057
88658
86859

‘80060

90061
28062
86863
00064
880865
09066
20867
0068
80069
00878

1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
3
2
2
1
1
1
4
2
2.
2
1
1
2
2
2
2
3
2
1
1
2
2
2
2
2
3
3
3
3
3
3
2
2
1
1
1
1
1
1
1
1
1
1
1
2
3
3
3
3
2
2
2
1

1

/.
SAMPLE PL/M PROGRAM

THIS PROGRAM CALCULATES AND PRINTS OUT THE SQUARE ROOTS OF
ALL INTEGERS BETWEEN 1 AND 1808.

DECLARE CR LITERALLY ‘@DH’, LP LITERALLY ‘@AH’, TRUE LITERALLY ‘1°,

PALSE LITERALLY ‘0°;
108: /* IS THE ORIGIN OF THIS PROGRAM */

SQUARESROOT: PROCEDURE (X) BYTE;

DECLARE (X,Y,2) ADDRESS:

YsX; Z=SBR(X+1l,1):
DO WRILE Y<>Z;
y=2Z; 2=SHR(X/Y + Y + 1, 1)
END;

RETURN Y:

END SQUAREROOT;

/* PRINT USING INTELLEC MONITOR */

- PRINTSCHAR: PROCEDURE (CHAR);

~ DECLARE CHAR BYTE;

. DECLARE IOCO LITERALLY °‘3889H";
GO TO 10CO; .
END PRINTSCHAR;

PRINTSSTRING: PROCEDURE (NAME,LENGTH) ;
DECLARE NAME ADDRESS, - i .
(LENGTH,I,CHAR BASED NAME) BYTE;
DO I = 68 TO LENGTH-1; :
CALL PRINT$CHAR(CHAR(I)):
END;
END: PRINTSSTRING;

PRINT$NUMBER: PROCEDURR (NUMBER,BASE ,CHARS , ZEROSSUPPRESS) ;
DECLARE NUMBER ADDRESS, (BASE,CHARS,ZEROSSUPPRESS,I,J) BYTE
DECLARE TEMP(16) BYTE; L
IF CHARS > LAST(TEMP) THEN CHARS = LAST(TEMP):

DO I = 1 TO CHARS:

J=NUMBER MOD BASE + ‘8°;

IFI > ‘9" THEN I = J + 73

IP ZEROSSUPPRESS AND I <> 1 AND NUMBER = @ THEN

J - Ld 04’

TEMP (LENGTH(TEMP)-I) = J;

NUMBER = NUMBER '/ BASE;

END;
CALL PRINTSSTRING(.TEMP + LENGTH(TEMP) - CHARS,CHARS);
_END PRINTSNUMBER;

DECLARE I ADDRESS,)

© CRLF LITBRALLY ‘CR,LF’,
HEADING DATA (CRLF,LF,LF,
: -~ TABLE OF SQUARE ROOTS’, CRLF,LF,

* VALUE -ROOT VALUE ROOT VALUE ROOT VALUE ROOT VALUE ROOT’,

~-- CRLPLFY

/* SILENCE TTY AND PRINT COMPUTED VALUES */
DO I = 1 TO 1868;
IFP I MOD S = 1 THEN
‘DO3 IP I MOD 258 = 1 THEN -
“CALL PRINTSSTRING (.HEADING,LENGTH(HEADING)) ;

ELSE .
CALL PRINTSSTRING(.(CR,LF),2):
END;
CALL PRINTSNUMBER(I,16,6,TRUE /* SUPPRESS LEADING ZEROES */);
CALL PRINTSNUMBER(SQUARESROOT(I), 14,6, TRUE) 3
ENDg

EOF

NO PROGRAM ERRORS

FPiqure 5-3 Source Program Listing-Pass 1

*/

1=00038
17=08B1H
29=00D0H
37=00F8H
44=0156H
58=01ABH
63=027BH
69=02C6H

12=0013H
18=00BAH
31=006D3H
39=@0FCH
45=015AH
56=021EH
64=027EH

Figure 5-4 Source Line Number-Code Location

13=00616H

19=08COH

32=90DEH

40=00FFH

46=816AH
59=9226H
65=0288H

14=001CH
23=90C4H
33=00EAH
41=810FH
47=0186H
68=0235H

66=0292H

15=802FH
25=90C7H
34=QF1H
42=¢12CH
48=0191H

'61=@251H
67=029DH

Cross Reference Listing-Pass 2

page 16

16=0045H

- 26=00C8H
'35=0@F2H

43=0139H
49=01AAH
6£2=0270R
68=02B7H

.HEHORY‘.....‘..Q........‘.......030“8
SQUARBROOT.'...................‘80168

x.......‘......‘.........‘......ﬂzDAH
Y.....‘.....’...........‘QOQOOOOOBZDCH

vz..O‘.......O;QOOQOOOOOOQOQOQOOOBZDBH

‘pRINTCHAR...."....O..........OOGGCGB
CHAR.......................;....azgla
PRINTSTRING...........‘......‘.'.0“CBH
NAMB'......‘.....’..............ﬂzgzﬂ
LENGTH.......C....0........0.’...'234“
I.oooo.coooocoo.oooooooo.ooocou.ﬂzgSH
PRINTNUMBER.....Q.......O....Q..ﬂgpzﬁ
NUMBER.......O.CO...OC...Q...O..EZEGH
BASE-.‘.Q“...—‘...C.."..DOOOOQOOGZggﬂ
CHARS....‘.'....O........‘...COOOGZEAH
ZEROSUPPRESS..‘.O.....'.........azEBH

I.‘.Q.......................0..602ECH
J‘.0..'..0.’...‘.........'......ezEDH
TEHP......&...........‘..‘.....OGZEEH

I'..‘....‘Q.l..0.‘.’.‘....‘.‘....».ﬂzFEH

H‘EADING..CKOO'. O-Q.’....0...‘.;'....Q001ABB

Figure 5-5 Symbol Table-Pass 2

page 17

06148
90198
66228
002BH
08348
803DH
LLETY !
B884FH
08588
90618
286AH
88738

.- B87CH

8865H
808EH
88978
89A0E
98AIH
98B2H
@9BEH
86C4H
98CDH
88D6H
880FH
08ESH
#8FP1H
88FAH
01838
816CH
81158
e11EH
81278
91398
81398
81428
81488
8154H
#15DH
#166H
816FH
81788
81818
P18AH
81938
619CH
81ASH
#1ABH
81BBH
81CBH
81DBH
81EBH
91FBH
820BH
921BH
821E8
82278
82388
#2398
82428
82488
92548
92508
- 82668

826FE
#278H
#27EH
828988
82898
82928
829BH
82A4R
82ADR
#2868
828PH

LXI
MoV
INX

SP
MC

D4R
INX
MOV
MoV
LXI
MOV

TN D

Avan

INR
MOV
97H
MOV
MOV
DCR
988
MOV.
648
828

MOV

INR
MOV

SV

MOV
DAH
JMP
980
Mov
DCR
JNC
ADC M
CAL
D4H
INX B
DEH
DCH
JMp
MOV
MoV
MOV
CoH
RET
DCR
MOV
JC
INX
p8B
804
MoV
MoV
XRA
SuB
SBC
208
MOV LI
STAX D
aes -
INX
MOV
828
LXI
MOV
[),):]
20H
4SH
538
20H
55H
528
éDH
LXI
ESH
MOV
INX
D8R
glg
MoV
MOV
648
ORA B JNZ
CALL C8H
DB OAH

LXI B 7EH
PEB MOV
MOV LI E9H
P28 88
LI]:] LXI
E9H MOV
208 MoV
DAD B SHLD

MD

fog
154

028
MOV
09H
INR
DCR
asn
298
LXI
suB
o18
91m
MOV
MOV
MOV
398
DCR
DCR
888
ANA
MOV
EEBH
MoV
MOV
Mov
MoV
LXI
EAB

MB
M
BI

Al
MA
A
I-

A

;]

8AH
208
208
éDH
56n
45H
4FH
OAH
H

8AH
20H
4FH
GAH
41H
288
4FH
8AH
FEH
Mov
SBC
MOV
MOV
nov
D6H
INR
aen

AB
;4

LI
CM

H
MB
DA
H
ca

T
a

L
cM

cs
EA
L

ca

XCHG

AM

L
(o4

. LHLD -
LXI B - ESH.

-]
M

MI
MC
LB

L
L

828
MOV MB
LELD

MOV AE
DCH
MOV
MoV
MOV
INR
s
MOV
RZ

MoV
8es
INR
aen
MOV
MOV
MOV
INR
38H
MOV
MOV

JMP
DCR
DARH
RAR
B2H
SBC

VT Yt
nvy

MOV
MoV
MOV
RAL
MOV
SUB
DCR
SBC
MOV
CM INR
AD
MA INX
L MOV
RET
INR
INR

AB
BM
BM
L

AD
a8
L

ME
aAC

EAH 928
JNC.
LXI 8 EAH
81R, MOV
- MOV
INX- B MOV

MQV. HC- DAD.

SUB M -INC
MOV. CM DCR
ANA M MOV

- MOV. EA MOV

c

AI-

LI

LI
MB:
LI

D

BA MOV EM CALL -
0AH 20H
288 208
460 29#H
OAH 20H
4CH 558
208 528
S4H 208

BI
4

MI
MC
BA

L

CH

H
MI
LI

EB9B .

828

RRC
188 -
DAD B

JNC,

E6B -
CALL. .
ECH
lon
0928

648
:INR
068
SuB
csa
2080
20R
S38
56H
458
4FH
56H

MOV
LXI
C6R
868 MOV
INX B MOV
MOV AC SBC
MOV MI PAR
MOV BM MOV
MOV AB SUB
80 = 828
B8R Jmp

MOV
INR L MOV
MOV MI 6AH
MOV LI PER
E6H 62H
SAH MOV
FEH MOV
FEB 828

838
JC

828

ORA-

E28

818

--MOV LI
XCHG
MOV CM MOV, LI
- MOV CM_INR L.

888

20
208
Slm
418
20H
4FB. 54H
41RH

1EH
L MOV

82H

LXI

MOV
M ORA
LI olH
LI D6H
BM: MOV
EM DCR
MOV
RAL
Mov
MOV
SBC
D4R
MOV
RAR
MOV
RET
LXI
MOV

AB
M
L
A

[R Nl ol

[l >

828
8241
MOV
sl
228
LI

LI E6H

MB CALL
XCHG .

D
C

3AH
MOV
LI E6H
AD SBG
. SEH
ECR
LXL

M JmMP
Mov
MoV
88H
20m
208
558
4CH
208

4CH

MI
H FEH
- 828
.LY FER
MB
088

D8H
eln
LXI
88a

I
LI
I

EI
BM MOV
- MoV
MoV
MOV
CI 86H
CM- INR

Jnp

suB

E9H.

I

818

CALL
INX
B8

828

028 .
INR.
INX
DEH
INR
Jz. .
MOV M
MOV
D8H
MOV.
MOV
-Mav
INR
ADD
8an

LI
DA

BA
AB

BM LHLD
MOV DA
Jup .
LXI B
E2H.
een
JC
DAD B
"INR M
INR-L
MOV
MoV
MoV
MoV
64H
LXI
818
FPH .
MOV CA
aen
. 818
SUB
EDR
D6H.
MOV
MOV
ase
LC. MOV. HB.
EA- MOV AD
RET

208

20H
418
558
S2H
208
558

MD

MC

AM
cn

AL

)
8
BM
LI

208

45H
4FH
S6H
45H
INX B
820
MOV LI
MOV CM
648
. ORA
MOV MI
MOV MC
MOV BA
ABRH
828
CALL
E6H
[{3:]
INR
INX
MOV
MOV
26H

B
;)

LI
Ct
cm
MA

L
H
EI

L BM

- INX
- MOV

- MOV

~INR

MI.

CcH.
. B8R

200 20H
208
528 45H
20H
4FH
41K
200

LXI B
MOV BM
XCHG

82H
L)
BAH-

INX

H

H
MOV MC
NI
RAL
MOV AC
MOV BA
JMP .
L
DCH
MOV
35H
E1EH.
828
LXI
F1H
MOV

AE

" IMP

MOV
oFB
MOV
MOV.
INR

ME
LI
L.

EDH
MOV AM
JNZ
MOV
ORA
MOV
MOV
n2a
MOV
MOV
E6H
8IH .
DAD D
SBC I

E
LI

MC
LI

208
20H
208
20H
54H
4CH
28H

MOV
SuUB
D6H
INR
a8
JNZ
1)}
INX
MOV
818

MI
M

E

C8H --

MOV MC
MOV EI
MOV BM
MOV MI
61mn
LXI
828

AM

LL

AM

CA

DAH
INR
MOV
MOV
INR

- @8H
. MOV

MOV.
INX
118
MOV.
RAL

SBC.

INR
6CH
MOV
2R
RAR
ae8
828
MOV
E4H
oon
MOV
D3H
MoV
MOV
ECH:
D68
MOV
LXI
. 828

ADD.

438
. INR
SUB

EDH

MOV
MOV
INX
D8H
MOV
LXI

X

CA

Al
LI

D

L
I

BI
[of
B

MD
B

XCHG

28H
S4H
528
528
208
554
528

@9R
INR
MOV
MOV
MOV
88n

. MoV
- MOV

SBC
MOV

1]
INX

AlH -

20RH
41H
4FPH
4FH
56H
45H
4FH

@28
MOV
ORA
INX
suB
DCR

B DCR

MOV

MOV
MOV
MoV
004
LXI
DAD
LXT
MOV
MOV
INX
1]
MoV

[2 i< 3= < 1

LI
BI
CA

CA
AC

LI
MC

CM

CALL

fAon

8FH.

ECH
SUB

308
MOV
878
(2%:]
Mov
(1]
MOV
(1)]

MOV
MOV
INX
EER
MoV

208
428
4FH
4FH
41H
298
4FH

- MOV

MI
BM
AB

LI

EI

MOV
a58
Mov
suB
828
FEH

MC
LI

DM
MI

AC
MI
MC

AE
CE

2080
4CH
54d
548
4CH
28H
54H

Al
CA

LI

CALL

esn
738

- MOV

CALL

CALL

(28]
El

Figure 5-6 Generated Object Code-Pass 2

MOV

LI
MB

CALL

168
MOV
P28
BOH
BLT

LI

page 18

5 MEMORY 00309H

25 SQUAREROOT #8¢16H

26 X @892DAH

28 Y 882DCH

29 z 892DER

33 PRINTCHAR A88COH

34 CHAR 082E1H

37 PRINTSTRING 896C8H
38 NAME 862E2H

39° LENGTB 002E4H

41 I 002ESH :

46 PRINTNUMBER 980F2H
" 47 NUMBER 882E6H

48 BASE 002E9H

49 CHARS #82EAH :
* §8 ZEROSUPPRESS 902EBH -
52 1 @82ECH .
53 J 982EDH

54 TEMP 082EEH

64 1 092FEH :

66 BEADING 8@1ABH

t.tﬂﬁi*t..ﬁ'il.titb..'tt'...'*i'tﬁ.ﬁ'l0‘

:1080100931D482C31E6221DAR27123702D4E2C4608
:10!.200!2C71237BZADADZZ3!B7AB71PS77B]F212A
- +10863888DEG277237221DCA27TE2C462C962C4F7830
:1"94DI09251C58109204B2C46280C712370204367
,:10005!002C462ED671237GZEDA4BZC4GZED87173C4
j:lG9060007003970058205636110650487A17577BBD
:1!0'700317551D735PC878174779174?20207&9637
:18888888472C799E4FD2909082D7886472CT9RE4P4L
.:100'90'02C9?DBSOC36C09C064002204722C73ZIA3
- :1800A08D4B24E2C462ADCH20923EBTABTIF577879
+1002B0001F21DEA2772372C335082EDCTE2C46C959
:IDIQCOIOZIBI0271C3l938C92182027r23702C7346
- :1898D8802C360021E4824EAD792CI6DAF1884ER602
" +1989EB00882AE262097E4PCDCOAN21E58234C3D3CD

- +1088F88098C921EAB2712C733EOF2D96D201013508 -

f:IOIIOOOGGPZBBCSGGI2185027823&C96DA91!1ZBBA
:18011880E94E2ED6712336082EE64E2C462EDST1EF

fi:1"!200'2370CD646011300668611933218002737ﬁ“

_:10'13!0l3339960233017868l777ZDGBDDSBFPCZSC
. :10.I4!'l43915?20&623864?732C56D60”5P7ADEF9

,:IOGISOIBB!B3DGOI9PA1OFDZSBEI2BED362G3EIID6'
:199168802EECI64FB6982EEEAIEB21EDA24E791291

:1"175'!2!89422306712336002!864!2C462BD372
:19618808712376CD64882EE67223732ERC34C30508
,:10'19000Dl013302111000696019887521BA029661
:1091A8805F7ADEGG4B475ECDC800CIADAAAABAZOFF
:}IOIB!OGZB2021202020202020202020202020253?
:1001C000202820202020205441424C45204F462012
:1891D808053515541524528524F4AF5453ADOAGA2056
:1091E80856414C55452020524P4P542056414C55B6
11081 F800452020524F4P542056414C5545208285287
:10'23'0&4?4?542056414C55452028524?4?542088
:1002100556414C55452020524P4FS4ODOAOA2IPB9D
:180220808236812336083IEE8A60321FEA2962C4FDB
:10923808799EDAC6822ED636852336082EFE4E2CC8

:1001(100462!0871237OC064007806014779030040
:10!25.'03'628802280636?A2336002!?84!264629‘

zllfzﬁﬂll2BDB7IZ37OCDGJDI78D601477SDBGGBBB6
:1.'27ﬂ90c28!G20IBBII1273CDCK!0C38802000A93
;;10028DOG017BD21502CDC8I!2BP8482C46238671C7
:1882908023782EE9360ASES61E61CDF2082EFE4ESS
+1882A8802C46CD168821E6027723368F2EEI368ACI
:1092B980BEG61EF1CDP208 2EPEAE2C4621010809935
. :9802C80022FEAIC32682FB76B8
:808008060809 o ’ :

.ﬁﬁ’.t’.t*.."0*'."..‘*.“'ttiﬁt’.itt.

$

Figure 5-7 Hexadecimal Object Code File-Pass 2

page 19

Page 20

6. RUN-TIME CONVENTIONS

This section presénté'the run-time organization of PL/M pro-
grams, including storage allocation and subroutine linkage, in an
8080 CPU environment. : '

6.1 Storage Allocatioﬁ

The oEQanizétion of hemory fbr_é PL/M object program is shown
in Figure 6-1. Memory is allocated in three sections:

1. Instruction Stdrage Area (ISAa)

2. Variable Storage Area (vsa)
~ 3. Free Storage -Area (Fsa)

The ISA is occupied by the machine code geherated.by the PL/M"
source, and variables declared in DATA declarations.

The VSA is located above thé*ISA,‘an&'contains,(in order of
decreasing address): : o -

1. Variables, other than DATA variables, declared in the
PL/M source. They are arranged in order of declaration.
ADDRESS variables are aligned on an even-byte boundary.
BYTE variables arée not aligned. R

2.. . Compiler génerated'temporaries*i;ez'WOrksbace used by the
- 1.que¢t;program,vpuy not“gxplicjply‘geclared.

3. The stack. ‘The size of the stack area is determined by
the compiler, unless explicit overrides are used.
(See 6.4)' X

The compiler will normally locate the VSA directly above the
ISA. However the compiler user may specify the first page of the
VSA explicitly, using.the pass 2 $V-compiler control. (A page
contains 256 bytes). This may be used, for example, to ensure that
the VSA is located in:RAM for a system that has both RAM and ROM.

FSA is the area of memory above the VSA. The built-in PL/M
identifier MEMORY may: be used to reference the FSA.

65535

" Max. Mémory Size

-MEMORY » |

(page boundary) {”

Variable Stor-
age Area VSAﬁ

Program Origin —
$H or Numeric Label

$V ——D

‘ Storaée Fdr ‘
.} Declared Variables

page 21

g MEMORY VECTOR

y :
«— Last Declared Variable

: }4-—-First Declared Variable

Temporaries

» Unused area (always
less than 1 page if $V=0)

-

INSTRUCTION

.. - STORAGE

AREA
~ (18R)

\

| }ISA

,
s

SR
P o ’
S K
- 4
u rd

/

/7

/A / 4
UNUSED
v Vs

s,

7

/‘/ / - /

RESTART LOCATIONS

Figure 6-1 Run-time Storage Organization

Page 22

'Formal parameters declared in a procedure definition are
treated as locally defined variables. That is, eacheparameter’is‘
allocated storage sequentially in memory as if it were a variable
local to the procedure. During procedure invocation, actual para-
meters are evaluated, and’ the results a531gned to the correspondlng
formal parameters. ' All parameters are "call by value in PL/M

The conventions for passing parameters are as follows:

l. A single BYTE parameter“ls passed in register C. A single
ADDRESS parameter is passed in reglsters B (hlgh order byte)
and C (low order byte).~

2. "If these are two parameters, the first is passed as descrlbed
above; the second is passed in registérs D (hlgh order byte,
R § 4 any) and E tlow order byte). ‘

3. When there are more than two parameters, the last two are
- -sent as described above, and the remainder are a551gned
‘ dzrectIy, prlor to the actual CALL.

CPU registers are aIso used touhold results returned by pro-
cedures which have the BYTE or ADDRESS attribute. In the case of
a BYTE procedure, the value returned is in the A register, while
an ADDRESS procedure returns the low-order byte in register A, and
the high-order byte in register B.

Page 23

6.3 Use of Assembly Language Subroutines with PL/M

Assembly language subroutines can be incorporated with PL/M
programs provided they take account. of the PL/M conventions dis-
cussed in Section 6.2. 1 :

If assembly language subroutines are loaded at addresses Sl1,
S2, . « . Sn (see Figure 6-2), the PL/M program should have inter-
face procedures Pl, P2, . . . Pn where each Pi is a procedure con-
taining only the absolute jump: :

' GO.TO Si;

Each procedure Pi can have up to two parameters of type BYTE
or ADDRESS, and can also return a value. If more than two parameters
are required or more than one value is to be returned, then ADDRESS
variables may be used to ‘'point to' parameters or results. Each
assembly language subroutine Si obtains parameters and returns
results according to the convent%pns presented in Section 6.2.

. Suppose, for example, three subroutines are written in assembly
lanquage for handling teletype I/O. The subroutine CRLF sends a
line-feed-carriage-return, and is at memory location 50. The sub-
routine TTYOUT writes a single character at the teletype. TTYOUT
starts at location 75. The subroutine TTYIN reads one character from
the teletype, and is located at address 120. The following PL/M
fragment provides appropriate interface procedures:

DECLARE CRLFS LITERALLY '50',
TTYOUTS LITERALLY '75°,
TTYINS LITERALLY '120°';

/* INTERFACE FOR CRLF */

CRLF: PROCEDURE;
GOTO CRLFS;
END CRLF;

/* INTERFACE FOR TTYOUT */

TTYOUT: PROCEDURE (CHAR);
DECLARE CHAR BYTE:;
GOTO TTYOUTS:;
END TTYOUT:

/* INTERFACE FOR TTYIN */

TTYIN: PROCEDURE BYTE;
GOTO TTYINS;
END TTYIN;

PL/M Origin: -——p

Sn—.

Sz—ﬂb

f!igure 6-2 Including Assembly i’..anguage Subroutines

MCS-80 MEMORY

vsa

Containing Procedures

ISA

Pl, PZ' cee » Pn

- SUBROUTINE n

SUBROUTINE 2

SUBROUTINE 1

with PL/M Programs.

page 24

Page 25

The user should take care if his assembly language routines
make use of the 8080 stack. Firstly, the size of the VSA as deter-
mined by the PL/M compiler will take account only of the stack
requirements of the PL/M source. Secondly, the assembly language

routines, on return, must leave the stack pointer with the same
value as it had on entry. :

Page 26

6.4 Stack Manipulation

1Thé,usenof the 8080 stack is completely automatic in,fL/M. It
is used, for example, to hold return addresses, temporary results,
and system status during interrupt processing. S '

' .- The number of bytes allocated for the stack is determined during
compilation, and assumes no more than one simultaneous activation
of any given procedure (including INTERRUPT procedures) at any time
during execution. : R . o o

The 8080 stackvpdihter_regiétér‘is reset to the address of the
base of- the stack on the following occasions: ,

“a) Program entry. - 7 -
b) At’numeric labels in the outermost block.

c) Transfers of control to the outermost block from nested
inner procedures. i e
Automatic stack allocation may be bypassed with the $*=n com-

piler control in pass 2. In this case, no stack area is reserved

in the VSA, and the stack pointer is reset to the value n at (a),

(b), and (c), above. In this way the programmer may explicitly con-

trol the location, and consequently size, of the stack.

The PL/M compiler also provides for stack operation under total
control of the programmer. This is accomplished by setting $*=1
during pass 2. In this case, no space is reserved for the stack in
the VSA, and no automatic reset of the stack pointer takes place.
Its value must be controlled explicitly with the STACKPTR pseudo-
variable in PL/M.

6.5 Interrupt Processing

The object code corresponding to a procedure with the INTERRUPT
n attribute is such that it may be entered by a transfer of control
to location 8n in memory. Location 8n contains a jump to the re-
mainder of the object code of the procedure. Consequently, an inter-
rupt procedure can be invoked by forcing a RST n instruction on the
8080 interrupt port.

Upon execution of the RST n instruction, the current program
counter (PC) is pushed on the stack, and control passes via loca-
tion 8n, to the interrupt procedure. At entry to the interrupt pro-
cedure; CPU. registers are stacked in the following sequence:

1. (H,L) 2. (D,E) 3. (B,C) 4. (A, Flags).

Page 27

The interrupt procedure remains active until a corresponding PL/M
RETURN statement is encountered, or control passes to the end of
the procedure. All stacked registers (except PC) are restored,
interrupts enabled, and a RET operation is executed (which restores
PC), causing control to return to. the point of interruption.

: If a PL/M program contains interrupt procedures, locations 0
through 8n + 2 (where n is the highest numbered interrupt procedure)
will be reserved for unconditional branches to the procedure bodies.
Locations 0, 1, and 2 contain an unconditional jump to the origin
of the PL/M program (unless interrupt zero is used).

Note that the 8080 processor starts with interrupts disabled,
and disables interrupts when an interrupt is accepted. PL/M object
code enables interrupts before returning from an interrupt procedure,
and before all program halts. -

Page 28

Appendix A, Error Messages

8080 PL/M COMPILER PASS 1
ERROR MESSAGES

-——— - - - D . G G S R I D S S G e wn e e e U G TP D S W W G S D I D R D D G G S S D I .M T G G S T

1 The symbols printed below have been used in the
current block but do not appear in a DECLARE state-
ment; or label appears in a GO TO statement but
does not appear in the block.

2 "Pass-1 compiler Symbol Table overflow. Too many
symbols in the source program. Either reduce the
number of variables in the program, or re-compile
Pass-1 with a larger Symbol Table.

3 Invalid PL/M statement; the pair of symbols printed
below cannot appear together in a valid PL/M state-
ment (this error may have been caused by a previous
error in the program).

4 Invalid PL/M statement. The statement is improperly
' formed - the parse to this point follows (this may
have occurred because of a previous program error).

5 Pass-1 Parse Stack overflow. The program state-
ments are nested too deeply. Either simplify the
- program structure, or re-compile Pass-l with a
larger Parse Stack.
6 Number conversion error. The number either exceeds
65535 or contains dlglts which conflict w1th the ra-
" dix indicator.

7 Pass-l table overflow. Probable cause is a constant
: strlng‘whlch is too long. If so, the strlng should
be written as a sequence of shorter strings, separa-
ted by commas. OtherWLSe, re-complle Pass-1l with &
larger VARC table.

Page

Appendix A, Error Messages

10

11

12

13
14
15

16

17
18

19

20

Macro Table overflow. Too many LITERAL declara-
tions. Either reduce the number of LITERAL declara-
tions, or re-compile Pass-1 with a larger 'MACROS'
table.

Invalid constant in INITIAL, DATA, or in-line con-
stant.

Precision of constant exceeds two bytes (may be in-

ternal Pass 1 compller error)

Invalid program. Program syntax incorrect for ter-
mination of program. May be due to previous errors
which occurred within the program.

Invalid placement of a declaratlon within the PL/M
program. Declarations may only appear in the outer

 block or within DO-END groups (not iterative DO's,
" DO-WHILE's, or DO-CASE's). ,

29

Improper use of identifier follow1ng an END statement.

Identifiers can only be used in this way to close a
procedure definition. .

'Identifier°following an~ﬁND statement does not match

the name of the procedure which it closes.

' Duplicate formal parameter name in a procedure head-
: ln.gt' - :

Identifier following an END statement cannot be found

in the program.

Duplicate label definition at the same block level.

'Numeric label exceeds CPU addressing space.

Tnvalid CALL statement. The name following the CALL

is not a procedure.

“ Invalid destlnatlon in a G0 TO. . The value must be a

Iabel, simple varlable, or numerlc constant.

Macro Table~overf10w-(see error 8 above).

Page 30

Appendix A, Error Messages

21 Duplicate variable or label definition.
22 “ Variable\which appears in a DATA declaration has

‘ been previously declared in this block.
23 - Pass-1 Symbol Table overflow (see error 2 above).
24 ‘“f;Ihvalid use.ofdan‘identifier as a variable name.
25 Pass-l,Symboi Table overflow (see errof 2 above).
26 B ai'iﬁﬁroperly formed'BASED variableﬂdeclaration. The

form is I BASED J, where I is an identifier not pre-
viously declared in this block, and J is an ADDRESS

. variable.
27 . Symbol table overflow in Pass-l. '(éee error 2 above).
‘28 Invalid address reference. The DOT operator may only
precede simple and subscrlpted variables in this
context. . _
29 Undeclared variable. The variable must appear in a

DECLARE statement before its use.

30 - Subscripted variable or procedure CALL references
an undeclared identifier. The variable or procedure
must be declared before it is used.

31 The ldentlfler is 1mpreperly used as a procedure or
subscrlpted varlable.
32 Too many subscrlpts in a subscripted variable refer-
- ence. PL/M allows only one subscript.

33 Iterative DO index is invalid. In the form 'DO I
= E1 to E2' the variable I must be simple (unsub-
scripted).

3u Attempt to complement a compiler control where the
~ control currently has a value other than 0 or 1.

35 Input file number stack overflow. Re-compile Pass-l
with a larger INSTK table.

Page

Appendix A, Error Messages

36

37

38

39

40-

41

42

43

Ly

45
46
47

s terrupt attrlbute.

Too many block levels in the PL/M program. Either
simplify your program (30 block levels are currently
allowed) or re-compile. Pass-1 with a larger Block
Table.

'The number of actual parameters in the calling se-

quence is greater than the number of formal para-
meters declared for thls procedure.

The number of actual parameters in the calling se-
quence is: less than the number of formal parameters

‘declared for- thls procedure.

Invalld 1nterrupt number (must be between 0 and 7).

Duplicate interrupt procedure number. A procedure
has been prev1ously speczf1ed.w1th an identical in-

~-
L4

Procedure appears on left-hand 81de of an assign-
ment.

Attempted 'CALL' of a typed procedure« '

W Attemptedﬁuse of an: uniyped procedure as a function
~or:a varlable.f : : :

This procedure is untyped and should not return a
value.

This procedure is typed and'should return a value.

'RETURN' is.iuvaiid:outsideea procedure definition.

' Illegal use of a label as an identifier.

31

Page 32
Appendix A, Error Messages

8080 PL/M COMPILER PASS 2
ERROR MESSAGES

Error S ,
Number . Message oo -—

101 Reference to storage locations outside the virtual
memory of Pass-2. Re-compile Pass-2 with larger
'MEMORY' array.

102 (Same as 101).

103 Virtual memory overflow. Program’is too large to

‘ compile with present size of 'MEMORY'. Either
shorten program or recompile Pass-2 with a larger
‘virtual memory.-

104 (Same as 103).

105 ~ Control used. improperly in Pass-2. Attempt to com-
plement a control which has a value other than 0 or 1.°

106 Register Allocation Table underflow. May be due
to a previous error.

107 Register allocation error. No registers available.
May be caused by a previous error, or Pass-2 com-
piler error.

108 Pass-2 Symbol Table overflow. Reduce number of
symbols, or re-compile Pass-2 with larger Symbol
Table. ' ' '

108 Symbol Table overflow (see error 108).

110 Mémory allocation error. Too much storage speci-
fied in the source program. Reduce source progranm
memory requirements.

111 Inline data format error. May be due to improper

record size in Symbol Table file passed to Pass-2.

Page

Appendix A, Error Messages

112
113

11k

115
116
117
118
119
120
121
122..

123

124

125

126
127

128
129

" 130

(Same as error 107).

Register Allocation Stack overflow. Either sim-
plify the program or increase the size of the Allo-
cation Stacks. :

Pass-2 compiler error in 'LITADD' -- may be due to
a previous error. :

(Same as 114).
(Same as 114).

Line width set too narrow for code dump (use $W=n).

_.(Same as.107). .
(Same as 110).

(Same as 110, but may be a Pass-2 compiler error).

(Same as 108).

~ Program requires t°°'mvch program and variable

storage.

Initialized storage overlaps previously initialized
storage. :

InitialiZation Table format error. (See error 111).

Inline data error. May have been caused by previous
error. :

" Built-in function improperly called.

Invalid Intermediate Language format. (See error
111). ‘ ’

"'(Samé‘as‘érrbr'lis)ﬂ

Invalid use of built-in function in an assignment.

Pass-2 compiler error. Invalid variable precision

(not single byte or double byte). May be due to
previous error.

) Page 34
Appendix A, Error Messages

131 Labél resolution error in Pass-2: (may be compiler
error). i

132 (Same as 108).

133 (Same as 113). .

134 Invalid program transfer,

135 (Same as 134);

136 Error in built-in function call.

137 (Not used).

138 (Same as 107).

‘139 Error in changing variable to address reference.

‘May be a Pass-2 compiler error, or may be caused
by previous error.

140 - (Same as 107).

141 . Invalid origin. Code has already been generated in
the specified locations.

142 A Symbol Table dump has been specified (using the
$MEMORY toggle in Pass-1), but no file has been
specified to receive the BNPF output (use the $BNPF=n
control).

143 Invalid format for the Simulator Symbol Table dump
(see error 111).

144 Stack not empty at end of compilation. Possibly
caused by previous compilation error.

145 Procedures nested too deeply (HL optimization).
Simplify nesting, or re-compile with larger PSTACK.

146 Procedure optimization stack underflow. May be a
return in outer block.

147 Pass-2 compiler error in LOADV. Register stack
order is invalid. May be due to previous error.

. Page

Appepdix A, Error Messages

148

149

150

151

152

Pass-2 compiler error. Attempt to unstack too

- many values. May be due to previous error.

Pass-2 compiler error. Attempt to convert invalid
value to address type. May be due to previous
error.

(Same as 1u47).

Pass-2 compiler error. Unbalanced execution stack
at block end. May be due to a previous error.

Invalid stack order in APPLY. May be due to pre=
vious error. <

35

.. . Page 36
Appendix B, Compiler Controls

PASS 1 COMPILER CONTROLS

CONTROL VALUES DBFAULT,, USE
A 0,1 0 . Print syntax analysis trace.
' (Compiler diagnostic only).

B 0,1 1 Inhibit stack dump after syntax
errors. (Compiler diagnostic
only). ,

C m Contains current source line
~ number.

D Fixed 120 Pass 1 buffer size for output files.

E 0,1 0 Emergency termination when set.

F Unused

G 0,1 0 Display Intermediate Code. (Com-

: « piler diagnostic only).

H | ’ " Unused.

33 1-71"_ 1 ' File number of Pass 1 input stream.

J 1-7 6 File number for Intermediate Code

emitted by Pass 1.

K - Fixed 72 Value assumed by 'W' Toggle for In-
, - termediate Code file.

A -1 . Leftmargin. Specifies first charac-
ter position processed on each input
line. Any leading characters are

- ignored.
0,1 1 Transmit full Symbol Table to Pass 2;.
N Unused
%0 1-7 1 File number for list file.

* Compiler controls identified by an asterisk are the only ones
the compiler user should need to use.

-
“

Page 37
Appendix B, Compiler Controls

CONTROL VALUES DEFAULT | ‘USEV
*p 0,1 >>1'j Echo input if one. Suppress if
zero.
@« Unused
*R 80 Max 72 Rightmargin. Ignore characters

R+l, R+2,... on each input record.

S 0,1,2 O Print Pass 1 Symbol Table. (Com-
piler diagnostic only).

T . 0,1,2 1 0=zBatch. 1l=sInteractive. 2=Inter-
' IR 1ist. (See Note 1.) ‘
9] 1-7 7 Intermediate Symbol Table file num-
) ber. ,
v Fixed 72 Setting of 'W' dontrol for Inter-

mediate Symbol Table file.

W 120 Max 72 Maximum number of characters per
R . pecord output to the list file.
(See notes 2 and 3).

-X S Unused

Fixed 1 ' Qutput text begins at character
- position 'Y' of each record. Lead-
ing character positions are space-
filled.. (Applies to all files).

z Unused -

Page 38

Appendix B, Compiler Controls

Note 1.

Note 2.

Note 3.

'$T=1' signifies that Pass 1 is operating interactive-
ly. This causes output to be double-spaced, with the
intention of correctly interleaving it with input. Ad-
ditionally, if the Pass 1 listing is directed to a de-

~vice other than the terminal, a summary error report

is directed to the terminal at the end of Pass 1.

*$T=0' signifies batch operation. Output is single-
spaced but may not be synchronized with the input.
The error summary is suppressed. '

A1l output from Pass 1 is produced by the subroutine

'WRITEL'. This will write to all files using variable
length records in which all trailing space characters

‘are suppressed. Additionally, a leading space, over

and above those specified by the controls, is added
to each output record as a 'print control character'.
Note that this applies also to both intermediate files.

Complete echo of the source input requires a width

of 94 characters. A setting of the $W control to a

value less than this causes one input line to be echoed
using two print lines. If the latter portion of the input
line is blank this may give the appearance of double
spacing.

Page 39
Appendix B, Compiler Controls

PASS 2 COMPILER CONTROLS

CONTROL VALUES DEFAULT USE

A 0,1,2 o Régister allocation trace. (Com-
o o ' piler dlagnostlc only).

B 0,1-7 7T File number for BNPF/Hex output
‘ ' by Pass 2. O indicates BNPF/Hex
file not to be created.

c Contains line count from orlglnal
“source flle._
D ~ Fixed 120 Pass 2 buffer size for output
' ' ’ files.

E - 0,1 a Bmergency termlnatlon of Pass 2.
*F 5}; 0,1 0 Dlsplay'decoded memory lnltlallza-
‘ B tlon.yi ‘

%6 0,1,2 0 0: Off

1: Display cross-reference table of
approxlmate memory address versus
source line number.

2: Display intermediate language.
(Compiler diagnostic only).

-*H 0 Header. Decimal address at which
Pass 2 should start allocating space

for the generated code. i.e., the
start of the program's ISA.

I 1-7 -1 File number for Command File input
‘ to Pass 2.

J 1-7 6 Intermediate Code file number.

K ' ' Unused

Appehdix B, Compiler Controls

- CONTROL VALUES DEFAULT
L

%
X

i
-

=2

*0':'

*Q

*V

Fixed 1
0,1 1
0,1 0
1-7 1
0,1 0
0,1 1
" Fixed 73
0,1,2 ° 0
0,1,2 1
1-7 7
0

120 Max 72

Page 40

USE

Leftmargin. Specifies first
character position processed on
each record input from the com-
mand file. Leading characters
are ignored.

Display Symbol Table.

Display emitter trace. (Compiler
diagnostic only.)

File number for List File.

Echo input. (Compiler diagnostic
only)..

0: Object file written in 'BNPF'
format.
l: Object file written in Hex format.

Rightmargin. Ignore characters
R+1, R*+2, ... on each input record.

" (Applies to Command, Intermediate
‘Code, and Symbol Table Files).

‘Display codified Pass 2 Symbol

Table. (Compiler diagnostic on-
ly).

See Pass 1 'T' control.

File number of Intermediate Sym-
bol Table.

Page number of the first page of the VSA.
i.e., variable storage, stack, etc.

If set to zero: Pass 2 allocates

space at the first available page

above the ISA.

Maximum number of characters per record
output. (Applies to both the list,
and BNPF/Hex files. See Note 1).

Page 41
Appendix B, Compiler Controls

CONTROLS VALUES DEFAULT . USE
X 0 Unused
Y Fixed 1 ~ Output text begins at character

position 'Y' of each record.
Leading character positions are
spacefilled. (Applies to all out-
put files).

Z Fixed 2 Value of 'L' control for intermediate
files - both Symbol Table and Code.

Note 1. All output from Pass 2 is produced by the subroutine
“'WRITEL'. This will write to all files using vari-
‘able length records in which trailing spaces are
suppressed. Additionally, a leading space is added
to each output record as a 'print control character'.
Note that this applies to the BNPF/Hex file as well
as the list file.

Page 42
Appendix C, General File Mappings ;

GENERAL FILE MAPPINGS

. Pass 1
Input - Output
' Control Value FORTRAN Unit Control Value FORTRAN -Unit.
1 5 1 5
2 2 2 -3
3 6 3 7
11 16 L 17
5 -9 5 10
6 20 8 22
7 21 7 23
Pass 2
Input C _ » . Qutput
Control-Value FORTRAN Unit Control Value FORTRAN Unit
1 . 5 1 5
2 2 2 3
3 . B 3 7
4 16 4 17
5 . 9 5 10
6 22 6 20
7 23 7 21

Page 43
Appendix D, Timesharing File Definitions

GENERAL ELECTRIC FILE DEFINITIONS

Pass 1
Input o Output
Control Value File Definition Control Value File Definition
1 TTYIN1 1 TTYOUT1
2 2 PTR1
3 3
.4 Y
"5 5
6 FILEIN 6 INTFIL
7 7 SYMFIL
P&ss 2-
Input . Qutput
Control Value File Definition Control Value File Definition
1 TTYIN2 1 TTYOUT?2
2 2
3 3
B 4
3 o S
B INTFIL 6 LOGOUT
7 7 LOGBIN

SYMFIL

Appendix D, Timesharing File Definitions

Ingut,
Control Value

TYMSHARE FILE DEFINITIONS"

Pass 1—

File.Definition

Page 44

Qutput . .

Control Value

File Definition

QP aFWN P

InEut

Terminal

FOR02.DAT
FOR0G6.DAT
FOR16.DAT
FOR09.DAT
FOR20.DAT
FOR21.DAT

Pass 2

Control Value File Definition

N o FwWwN

Qutput

Control Value

Terminal

FOR07.DAT
FOR17.DAT
FOR10.DAT
FOR22.DAT
FOR23.DAT

File Definition

SN FWN

Terminal

FOR02.DAT
FORO06.DAT
FOR16.DAT
FOR09.DAT
FOR22.DAT
FOR23.DAT

NonFwnH

Terminal

FORO7.DAT
FOR17.DAT
FOR10.DAT
FOR20.DAT
FOR21.DAT

Page 45
Appendix D, Timesharing File Definitions

UNITED COMPUTING SYSTEMS FILE DEFINITIONS

Pass 1
Input Qutput
Control Value File Definition Control Value File Definition
1 P8O1IN 1 P8010UT
2 2 PTR801
3 3
4 4
5 5
6 FILESO 6 INTFIL
7 7 SYMFIL
Pass 2A'
Input ' » | OQutput
’Control'Vaiue File Definition Control Value File Definition
. 1 P802IN 1 P8020UT
2 2 .
3 3
i y
5 5
6 INTFIL 6 LOGS80
7 SYMFIL 7 LOGBS8G

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

