
ARTICLE
REPRINT

"Reprinted with permission from Electronic Design, Vol. 28, No.6, copyright Hayden Publishing Co., Inc., 1980."

AR·125

April 1980

Modular multitasking executive
cuts cost of 16-bit-OS design

A modular, real-time multitasking operating sys­
tem for single-board computers allows custom

operating systems to be assembled largely from off­
the-shelf software components. Such systems, when
needed in OEM single-board JIC applications, pose
problems-rarely can an OEM afford man-years of
effort to develop the intimate familiarity with the
hardware that's needed to design executive software.
But with Intel's RMX/86 system for iSBC 86 single­
board computers, he won't have to.

In addition, this second-generation, 16-bit system
added error-handling, flexible command-line decode,
and other advanced as capabilities to previous options
available on the older RMX/80.

All real-time multitasking systems require ex­
ecutive software not only to manage the resources
shared by the task programs (CPU time, memory and
1/ U), out alSO respono w mterrupts ano tnen allocaLe
the resources according to established priorities. Nor­
mally, these functions are intermingled in an as with
higher-level system functions that often prove super­
fluous in single-board computer applications.

The RMX/86 as package combines all those re­
quired executive functions in a single module, called
the nucleus. Other modules in the package tailor the
executive system to its application by adding higher­
level as functions such as disk-file systems. The task
programs and optional modules connect to the nucleus
with simple software interfaces. Users can also add
their own extensions.

Since the nucleus is essentially open-ended, it can
serve as the software foundation for expanding both
the operating system and the variety of task pro­
grams. Although most single-board computer applica­
tions are dedicated, many do require higher-level
capabilities.

The OEM way

The modular approach to system software fits in
with the way most OEMs (and high-volume end users)
apply single-board computers. They generally start
with a minimum amount of hardware (often, just a

Joseph Harakal, Software Product Manager, Intel Corp.,
5200 Elam Young PkWY., Hillsboro, OR 97123.

ELECTRONIC DESIGN 6, March 15, 1980

A MULTIPLE EVENT I MULTIPLE
TASK SYSTEM

HW

e HARDWARE

o INTERRUPT
SERVICE

ROUTINES

HW

1. In a real-time multitasking system, task modules (A
thrnuC7h F) r.::tn nften oerform their functions onlv after
hardware-generated interrupts are serviced (highlighted).
The executive in such a system provides intertask
communications and synchronization.

RMXj80 VS RMX/86 features

RMXj80

Nuclei

For iSBC S0/10

For iSBC SO/20

For iSBC SO/30

Optional modules

Disk-file system

Disk I/O

Terminal handlers

Free space manager

Analog I/O handlers

Bootstrap loader

Debuggers

Support packages

Fortran-SO run-time

Basic-SO interpreter

SOSO/SOS5 fundamental
support

I RMXj86

Nuclei

One serves all iSBC
boards

Free-space manager

Exceptional-conditions
handler

Optional modules

I/O system

Hierarchical file system

Numbered file system

Internal file system

Physical file system

Interfaces for custom
files and I/O

Human interface system

Command-line decoder

245

AFN-01435A

single board) to begin an application at low cost. Then,
when users are satisfied with the original functions
and are willing to buy more, the OEM adds the
executive options, tasks and hardware-with as fast
a turnaround as possible.

The problem with conventional "general-purpose"
software systems is that they usually depend on
hardware that the application may not need-for
example, standard peripherals whereas a typical OEM
system uses special peripherals. Modular OSs are
designed to accommodate both.

What's more, a conventional system can make it
difficult and/or awkward to use new peripherals or new
technology, such as magnetic-bubble memory-most
command-line decoders, for instance, are not ac­
cessible to the user. So, a user may discover that there
is no straightforward way of adding new facilities.

Call it foundation software

For an even closer fit with single-board computer
applications, the RMX/86 modules closely parallel
hardware modularity: Each computer board contains
program and data memory, serial and parallel I/O,
and other generally required functions in addition to
the CPU. Each user's system is expandable with
optional modules. Frequently used devices Hke disk
controllers and analog I/O are available. In addition,
the user can connect custom devices to his system via
the Multibus architecture.

Corresponding to the hardware, systems software
manages CPU, memory and VO resources. Linked to
optional modules, it can support standard iSBC de­
vices like consoles and disk controllers. Similarly,
users may add device-driver software modules for
their custom peripherals. All software can reside in
EPROM/ROM if mass storage is not available; other­
wise, most of the system can be disk-resident. The
disk-file module is suitable for such applications as
data logging.

The RMX/86 is designed for configuration on an
Intellec development system according to 'user re­
quirements. The same system supports task-module
development as well as linking and locating in both
high-level and assembly languages. It also provides
libraries of frequently used program functions to
minimize the amount of code the system designer
must write and debug.

To see how the RMX/86 works, consider a typical
example. Sayan OEM develops a factory heating and
air-conditioning control system having a single-board
computer, analog I/O, special control devices and an
operator terminal. He uses the nucleus, analog-han­
dler and terminal-handler modules, plus user tasks
stored in EPROM.

But suppose the OEM's customer wants to enhance
the system with, say, disk storage. He simply adds
a disk controller board and uses VO system software.
The original programs could also be made disk-resi­
dent. If the original application had been based on a

246

2. The RMX/86 operating system treats all I/O as files­
a feature that makes it easy to add new peripherals and
special files.

3. A hierarchical file system eliminates the need for
scanning all the files on a disk. If Smith is working on
Project A, he only has to choose between the files related
to his project.

ELECTRONIC DESIGN 6, March 15, 1980

AFN-Ol435A

conventional executive, extensive redevelopment
would have been necessary.

If, on the other hand, the application had used the
full I/O system from the start, initial sales would have
suffered because the OEM's system would have been
more costly. And if the software is not extensible,
future sales opportunities are lost.

A real-time multitasking executive gives a program
the means to monitor and control external events.
Tasks run concurrently, using communications and
synchronization services of the executive (Fig. 1),
Events are signaled with interrupts, and the executive
schedules resources on the basis of priority-for
example, a task trying to bring a factory under control
should have a very high priority. The executive decides
whether a running task should be interrupted to
process data from an interrupting device.

The RMX/86 nucleus makes such event-driven
priority scheduling happen through resource man­
agement. It monitors system states, determines task
requirements, allocates resources and gathers them
for reallocation. Resources include CPU time, memory
and I/O.

As in other systems, the highest-priority task that's
ready to run uses the CPU; others are put on a read
list. Finishing the high interrupt, the nucleus returns
the CPU to the highest-priority ready task.

Managing inner space

dIes the 8086's megabyte addressing range, making
sure that memory is used efficiently. The manager
organizes memory into a tree-structured hierarchy of
pools according to job requirements, and returns
memory to pools. When the nucleus requires memory
for a job, mailboxes or other functions, the manager

provides it. Or, when a task requests memory-for
example, to input data-the manager allocates it. This
is done in segments that are multiples of 16 bytes,
corresponding to the 8086's segmented memory.

Tasks send data to each other through mailboxes
which contain messages located in RAM. As in other
systems, separate mailboxes are used for receiving
and for responding.

In the RMX/86, however, mailboxes provide several
options, including synchronization, mutual exclusion
(which prevents one task from destroying another
task's data) and communications-for example, with
the outside world-through modules such as the
terminal handler.

The RMX/86 nucleus also provides other means for
communications. One example is semaphores-Iow­
overhead mechanisms for synchronization operations,
resource allocation and mutual exclusion that require
a simple flag. For example, one task can simply set
a flag to tell another task that an event has happened
("Analog data received").

All these functions are accessible with simple calls
to the nucleus. For example, just two calls are needed
to use the free-space manager: CREATE-SEGMENT to
request memory and DELETE-SEGMENT to relinquish
memory. Likewise, to obtain an mailbox, the task
simply names the mailbox desired. The programmer
doesn't need to know the internal structure of the
executive, since the functions are accessible through
easily programmed interfaces.

Errors, big and small

Another RMX/86 feature, the exceptional-condition
handling, makes error handling selective rather than
all or nothing. Programs can be designed to manage
error conditions and take corrective action.

Modular multitasking comes on
Multitasking design is coming to the fore, especially

for single-board-,uC applications that usually require
a lot more software than previous ,uCs-an advance
from simple foreground-background programs to
techniques based on event priorities.

Although single-board ,uCs started out in the
mid-1970s at the low end of the OEM performance
range, they have now reached the top in performance
and memory capacity. As more and more OEMs. and
users take advantage of that increased capability, the
size of applications programs grows-and grows.

In the same period~ the costs for developing software,
salaries and overhead have almost doubled. Moreover,
skilled programmers have become one of the
industry's most limited resources. No wonder that
software costs comprise up to 80% of system develop­
ment costs today, and that the emphasis has shifted
from in-house software design to buying off-the-shelf
programs.

Because multitasking designs have to be highly
modular, time-saving tools such as high-level lan-

ELECTRONIC DESIGN 6, March 15, 1980

gu ages , program libraries and off-the-shelf software
can be used freely to help keep development, main­
tenance and expansion costs under control. Code
written in high-level languages is a bargain today,
compared to code written in assembly language:
around $2.50 a byte vs $10 for assembly language.
High-level code is not as compact, but it's far mort
cost-effective for the 80% of the tasks that run only
about 20% of the time in typical applications.

Today, there's a growing choice of languages. Struc­
tured languages like PL/M and Pascal fit well into
the "top-down" modular design technique used to
divide an application into tasks. Others, like Fortran
for mathematical applications and Basic for easy end­
user programming, are also available.

In general, a real-time multitasking executive offers
a reasonable choice for the user who has a lot of
software to write, must meet special requirements,
and has no time to develop a custom operating system.
The RMX/86 system, with its modular design, fills
the bill to save development cost.

AFN-01435A

247

First, there's an option to specify to the nucleus
whether or not there should be any error handling
for a particular task. A programmer can write his own
handler either to abort a task or to program a specific
course of action-for example, report exceptional
conditions and continue with next instruction; load
copy of module and try again; start alarm program.

The exceptional-conditions support-also detects pro­
gramming errors such as a wrong call to the nucleus
and system problems like insufficient memory. Natu­
rally, the RMXl86 provides all normal OS functions.
System options include a terminal handler for CRT
and TTY consoles device drivers for Intel's floppy and
hard-disk controllers and an integrated VO system.
A subsystem of the 1/0 system supports tree-struc­
tured directories hierarchical named files (Fig. 2).

I/O features are vital

Most single-board computers are used with special
peripheral devices, and many with other kinds of files
and media. So, the 1/0 system is designed to make
it easier to add special files, new peripherals and
custom device drivers-the user need never feel locked
in.

The R!viX/86 liD system provides the user with a
very general file concept-as a data sink or source.

The characteristics of a specific storage medium
dictate the access techniques for a given file. For
example, a disk file may be accessed either in sequen­
tial or random fashion, while a file accessed over a
serial link (USART) must be processed serially.

Using the data sink/source concept, the user can
develop application programs without worrying about
the physical device where the data will be stored. Such
device independence simplifies application program~
ming, and existing programs can be used with many
devices.

The RMX/86 1/0 system supports three types of
files.

Physical files represent the lowest interface level to
retain device-independent characteristics. They pro­
vide a simple, consistent interface to all device drivers.
OPEN, CLOSE, READ, WRITE, SEEK and special instruc­
tions perform all desired VO operations.

Stream files provide a temporary data-transmission
path between tasks. One task may write data to the
stream file while another reads them. The 1/0 system
performs the required synchronization and buffering.
Stream files offer the user a simple mechanism for
passing data between tasks-one that remains consis­
tent with other file options. The user can simulate an
external device while waiting for hardware to be built.

lVamed files are used ior the conventional data
storage on mass-storage devices like floppy or hard

1 1ASKB1: P~UC~OukE puBLIC;

3

3
2

call rqendSinitStask;
CALL INIT;
do forever;

rosgstoken=rqreceiveSm~ssaqe(rra11bOXSx,

OFFFFH,@respS€x,@exsval);
call rqSsend$message(rqSnormalsthSout,

mSqStoKen,out$resp,@pxSval)~

rosgStoken= rq$recelveSmessaqe(CutSrA5f
, OFfFi' H, (arespsex,@ex$v81);

c a 11 r a S del e t e $ S € 9 rr e n t (If: 5 9 $ to !(en, 1(; € X $ V

all;

end; 1* of 00 forever *1
eno:

4. RMX/86 can easily be expanded with user-coded tasks.
The one shown here initializes a user program by calling
the procedure INIT and helps display messages.
RQRECEIVE$MESSAGE is a system primitive that examines the
mailbox to be serviced and places the token for the first

message there (MSG$TOKEN). Another system primitive,
RQ$SENDMESSAGE, puts the token for the message into the
terminal handler's output mailbox. The primitive
RQ$DELETE$SEGMENTClears the used memory and returns
it to the free-memory manager.

248 ELECTRONIC DESIGN 6, March 15, 1980

AFN-01435A

A postgraduate system
The lessons learned since 1977 about OEM require­

ments for executives have fueled the evolution of the
RMX/80 system. This has led to the powerful new
features of the RMX/86 system.

The RMX/80 began with a nucleus for the first
single-board computer (iSBC 80/10). Subsequent
boards contained more memory and offered higher
throughput. Nuclei for the three later boards were
made interchangeable, to act as the "software bus"
for transporting applications software from one board
to another. The RMX/86 solution is simpler: The new
nucleus is hardware-independent so it can be used on
future as well as current iSBC 86 boards.

So far, process-control designers have generally
refused to add user-programming facilities, to assure
that users do not interfere inadvertently with tasks
handling critical process conditions. If a program dies
during a chemical reaction, for example, a whole batch
can be ruined and the processing facilities may have
to be flushed out.

The RMX/86 system, however, incorporates facil­
ities for keeping programs alive. Its nucleus contains
an exceptional-conditions support. Actually, a pow­
erful error-processing subsystem, it allows single­
board computers to be made fault-tolerant with no
adverse impact on throughput.

disks for later access by another system. However,
.1.._ DlI.V IOC __ ~ ____ ~ _._~ __ ... 1.. __ 1.. •• __ :_
........... I ___ ~ "-'''''' 0·J ,. J:' --_ w ... '~'tJ _ • 0 '""-J:' "'-.

hierarchical directory of files. This feature lets the
user organize his files to be consistent with his
application (Fig. 3).

The named-file system has another advantage: It
permits file-access checking, so a user can decide
which of his files he wants to protect and which to
share with other users.

Each of the file options can be configured independ­
ently; the user may select the features he needs­
neither more nor less. Furthermore, the user can add
his own device drivers to the I/O system.

The RMX/86 is designed to offer the user a wide
spectrum of convenient functions (Fig 4). For example,
the user of mass-storage systems has a display direc­
tory and copy files available. Or, the OEM who needs
his own interactive capability can easily extend the
system's human interface routines to meet his require­
ments.

As ~p applications expand, so does the need for
loaders that allow parts of the applications software
to reside on disks. The RMX/86 package provides a
resident system loader that permits loading for either
absolute or relocatable format .••

ELECTRONIC DESIGN 6, March 15, 1980
Printed in U.S.A.lB-206/10K/0480/BAIDD

AF::\-01435A

249

