
intJ

PSCOPE-86 HIGH-LEVEL PROGRAM
DEBUGGER USER'S GUIDE

Proprietary information. 1982, 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, Ca. 95051

Order Number: 121790-002

PSCOPE-86 HIGH-LEVEL PROGRAM
DEBUGGER USER'S GUIDE

Order N umber: 1 21 790-002

NOTE

Before running PSCOPE on a Series IV development system,
rename the file PSCOPE.86 to PSCOPE. This allows the com-
mand RUN PSCOPE to invoke PSCOPE on both the Series III
and Series IV. Because the Series IV ignores RUN,
PSCOPE is sufficient for invocation.

entering

Proprietary information. 1982, 1983 Intel Corporation
J Intel Corporation, 3065 Bowers Avenue, Santa Clara, Ca. 95051 L

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A venue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update nor to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in
ASPR 7-104.9(a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent oflntel Corporation.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

AEDIT iLBX iOSP MULTIBUS
BITBUS im iPDS MULTICHANNEL
BXP iMMX iRMX MULTIMODULE
COMMputer Insite iSBC Plug-A-Bubble
CREDIT Intel iSBX PROMPT
i IntelBOS iSDM Promware
iATC Intelevision iSXM Ripplemode
I2ICE inteligent Identifier Library Manager RMX/80
ICE inteligent Programming MCS RUPI
iCS Intellec Megachassis System 2000
iDBP Intellink MICROMAINFRAME UPI
iDIS

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Copyright © 1983, Intel Corporation

REV. REVISION HISTORY DATE

-001 Original issue. 5/82

-002 Added Series IV information. 3/83
Made miscellaneous corrections.

iii/iv

PREFACE

The PSCOPE-86 High-Level Program Debugger User's Guide contains:

• An introduction to the PSCOPE High-Level Program Debugger

• An introductory PSCOPE debugging session

• A description ofPSCOPE's internal, screen-oriented editor

• Descriptions and examples ofPSCOPE command language

• Instructions for loading and executing user programs

• An introduction to debug objects and symbols, as well as an explanation of
the commands used to manipulate debug objects

• A description ofPSCOPE utility commands

• PSCOPE error messages

• Instructions for configuring non-Intel terminals to use PSCOPE

• PSCOPE syntax

• PSCOPE reserved keywords

Manual Organization

This manual contains 11 chapters and 7 appendices, consisting of:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

"Introduction" defines PSCOPE and describes the program devel­
opment process and the host system execution environment. Chap­
ter 1 also details PSCOPE's major functions and provides an intro­
ductory sample session.

"Using the Debugger" explains how to invoke the debugger and
discusses each of the invocation controls. Chapter 2 also describes
invocation error messages, how to enter commands from the
keyboard, and PSCOPE's internal editor.

"Command Language and Expressions" describes PSCOPE com­
mand lines and is an overview of tokens, symbolic references, and
symbol object types. Chapter 3 defines the operands and operators
used in expressions and explains expression types, stepping, and
the GO command.

"Loading and Executing Programs" details how to load programs
and control execution using the GO command.

"Examining and Modifying Program Symbols" describes how to
reference objects in a program and how to display and modify pro­
gram objects. Additionally, Chapter 5 discusses fully qualified and
partially qualified symbol references.

v

Preface PSCOPE-86

vi

Chapter 6 "Control Constructs" describes the four control constructs used by
PSCOPE command language: REPEAT, COUNT, IF, and DO.

Chapter 7 "Debug Object Manipulation Commands" describes the command
syntax necessary for defining, displaying, modifying, saving, and
removing debug objects.

Chapter 8 "Debug Procedures" describes what debug procedures are and
how to define, use, display, save, and remove them.

Chapter 9 "Code Patches" explains how to use code patches in a user's
program.

Chapter 10 "Utility Commands and String Functions" describes and explains
the syntax for each of the utility commands and string functions
available with PSCOPE.

Chapter 11 "Advanced Execution and Trace Commands" describes how to
use breakpoints and trace points to control and monitor program
execution.

Appendix A "Error Messages" is a numerically ordered list of the PSCOPE
error messages.

Appendix B "Configuring PSCOPE for Non-Intel Terminals" provides the
codes necessary to configure PSCOPE to run on non-Intel
terminals.

Appendix C "Additional Information for Series III Users" provides further in­
formation about using PSCOPE on the Series III Microprocessor
Development System.

Appendix D "Additional Information for Series IV Users" provides further in­
formation about using PSCOPE on the Series IV Microprocessor
Development System.

Appendix E "Sample Programs" contains the program upon which the exam­
ples in this manual are based.

Appendix F "PSCOPE Grammar" lists the lexical conventions PSCOPE
recognizes.

Appendix G "Reserved Keywords" lists the PSCOPE reserved keywords.

Related Publications

The following publications contain further information on the high-level languages
PSCOPE supports:

Pascal-86 User's Guide, 121539

PLIM-86 User's GUide/or 8086-Based Development System, 121636

FORTRAN-86 User's Guide, 121570

PSCOPE-86

The following publications contain further information on the Series III:

Intellec® Series III Microprocessor Development System Product Overview,
121575

Intellec® Series III Microprocessor Development System Console Operating
Instructions, 121609

IntelleC® Series III Microprocessor Development System Programmer's Reference
Manual, 121618

The following publications contains further information on the Series IV:

IntelleC® Series IV Microcomputer Development System Overview, 121752

IntelleC® Series IV Operating and Programming Guide, 121753

IntelleC® Series IV ISIS-IV User's Guide, 121880

Notational Conventions

This manual adheres to the following conventions when describing PSCOPE com­
mand syntax:

Convention Meaning

UPPERCASE WORDS PSCOPE keywords. You must enter these words exactly
as they appear, except that you can use either uppercase
or lowercase.

lowercase words

abc

[a b]

[a b]*

alb

a ::= bc

punctuation

filename

patbname

Grammar symbols for which you must substitute a
value. These symbols are underlined as well as printed in
lowercase.

You must enter the symbols a, b, and c in exactly the
order specified.

The items between the brackets are optional.

The items between the brackets are optional and may be
repeated zero or more times.

Enter either the symbol a or the symbol b.

Replace the symbol a with the symbol b followed by c .

You must enter punctuation other than ellipses C . .),
brackets ([]), and braces q ~) exactly as shown. For
example, you must enter all the punctuation shown in
the following command:

SUBMIT PLM86(PROGA,SRC,'9 SEPT 81 ')

filename is a valid name for the part of a pathname that
names a file.

A path name uniquely specifies a file and consists of a
directory-name and a filename.

Preface

vii

Preface

directory-name

system-id

CNTL

apostrophe

viii

A directory-name is that portion of a path name that lo­
cates the file by identifying the device and/or directory
containing the filename.

A system-id is a generic label placed on sample listings
where an operating system-dependent name would actu­
ally be printed.

CNTL denotes the terminal's control key. For example,
CNTL-C means enter C while pressing the control key.

If your terminal has two apostrophe (or single quotes)
symbols, determine which one PSCOPE accepts in com­
mand syntax.

PSCOPE-86

)

CHAPTERl
INTRODUCTION

Product Definition. .. 1-1
The Program Development Process 1-1
Host System Execution Environment 1-2

PSCOPE Restrictions 1-2
Major Functions 1-2
Introductory Sample Session 1-3

CHAPTER 2
USING THE DEBUGGER

Invoking the Debugger 2-1
CRT I NOCRT 2-1
MACRO I NOMACRO 2-2
NOSUBMIT I SUBMIT 2-3
WORKSPACE 2-4
Invocation Error Messages 2-4
Using the Debugger 2-5
Terminating a Session 2-6

Command Entry 2-6
Line-editing Keys 2-6
Syntax Errors 2-7
The Internal Screen-Oriented Editor 2-7

Entering the Internal Editor 2-8
Exiting the Internal Editor 2-8
Internal Editor Display 2-8
Internal Editor Commands 2-9

Cursor Control Keys 2-9
Up Arrow Key 2-10
Down Arrow Key 2-10
Left Arrow Key 2-10
Right Arrow Key 2-10
Home Key 2-10
RETURN Key 2-10
Delete Keys 2-10

Menu Commands 2-11
Block Command (B) 2-11
Delete Command (D) 2-12
GET Command (G) 2-12
INSERT Command (I) 2-12
QUIT Command (Q) 2-13
VIEW Command (V) 2-13
XCHANGE Command (X) 2-13

CHAPTER 3
COMMAND LANGUAGE
AND EXPRESSIONS

Tokens 3-1
Delimiters 3-1

CONTENTS

Names 3-2
Names Format 3-2
Referencing Names 3-3

Line Numbers 3-3
Numeric Constants 3-3

Integers 3-3
Floating Point Numbers 3-4

Character String Constants 3-4
Operators 3-5
Comments 3-6
Types of Symbol Objects 3-6
Expressions 3-7
Operands 3-7

Numeric Constants 3-8
String Constants 3-8
Program Symbol References 3-8
Machine Register References 3-8
Memory References with Explicit Typing 3-8
Line Number References 3-9

DEBUG Variable References 3-9
DEBUG Procedure Calls and

Parameter References 3-10
Operators 3-10
Type Conversions 3-10

Type Conversions for Expressions 3-12
Type Conversions for Assignments 3-12

CHAPTER 4
LOADING AND EXECUTING
PROGRAMS

The LOAD Command 4-1
The GO Command 4-2
The LSTEP and PSTEP Commands 4-3

CHAPTERS
EXAMINING AND MODIFYING
PROGRAM SYMBOLS

Program Symbol References 5-1
Current Name Scope 5-1

Fully Qualified References 5-1
Partially Qualified References 5-3

Display Program Symbol 5-3
Change Program Symbol 5-6
Change Name Scope 5-6
Active Function 5-7
Display Memory 5-8
Modify Memory 5-9

ix

CONTENTS I
(continued)

~--~ (

CHAPTER 6
CONTROL CONSTRUCTS

The REPEAT and COUNT Constructs 6-1
The IF Construct 6-2
The DO Construct 6-3

CHAPTER 7
DEBUG OBJECT MANIPULATION
COMMANDS

Debug Objects 7-1
Memory Type Debug Objects 7-2
Debug Type Debug Objects 7-2

The DEFINE Command....................... 7-2
The DISPLAY Command 7-4
The MODIFY Command 7-5
The REMOVE Command 7-6
The PUT and APPEND Commands 7-7

CHAPTER 8
DEBUG PROCEDURES

Define Debug Procedure 8-1
Debug Procedure Calls 8-2
Debug Procedure Return 8-2
Accessing Debug Procedure Parameters 8-3

CHAPTER 9
CODE PATCHES

Defining a Patch 9-1
Displaying a Patch 9-2
Removing a Patch 9-3

CHAPTER 10
UTILITY COMMANDS AND
STRING FUNCTIONS

The EXIT Command 10-1
The DIRectory Command 10-2
The CALLSTACK Command 10-4
The HELP Command 10-5
The LIST and NOLIST Commands 10-6
The INCLUDE Command 10-7
The EV AL Command 10-7
The BASE Co.mmand 10-9
The WRITE Command 10-10

x

The STRING Functions (SUBSTR, CONCAT,
STRLEN, and cn 10-12

The SELECTOR$OF and OFFSET$OF Functions 10-13

CHAPTER 11
ADVANCED EXECUTION AND
TRACE COMMANDS

Breaking and Tracing 11-1
Break Registers (BRKREG) 11-1
Trace Registers (TRCREG) 11-3

The GO Command 11-5
Exception Trapping 11-7

APPENDIX A
ERROR MESSAGES

Classes of Errors A-I
Help A-I
Error Messages A-I

APPENDIXB
CONFIGURING PSCOPE FOR
NON-INTEL TERMINALS

Configuration Commands B-1
Tested Configurations B-3

Adds Regent Model 200 B-4
Behive Mini-Bee B-5
DEC VT52 B-6
DEC VT100 B-7
Hazeltine 1510 B-8
Lear Siegler ADM-3A B-lO

APPENDIXC
ADDITIONAL INFORMATION FOR
SERIES III USERS

Operation of the Series III C-l
Program Development Process C-l
Hardware and Software Required. C-2
User Programs Supported C-3
System Resources Used C-3

Memory C-3
File Requirements C-3

Other Resources Required C-4
Invocation Line C-4

Example C-4

· (.)

APPENDIXD
ADDITIONAL INFORMATION FOR
SERIES IV USERS

Operation of the Series IV D-l
Program Development Process D-l
Hardware and Software Required. D-l
User Programs Supported D-2

System Resources Used D-3
Memory D-3
File Requirements D-3
Other Resources Required D-3

Invocation Line D-4
Example D-4

APPENDIXE
SAMPLE PROGRAM LISTING

CONTENTS
(continued)

APPENDIXF
PSCOPE GRAMMAR

PSCOPE Grammar F-l

APPENDIXG
RESERVED KEYWORDS

PSCOPE Keywords G-l
PSCOPE Operators and Delimiters G-l

APPENDIXH
PSCOPE COMMAND INDEX

xi

FIGURES

FIGURE TITLE PAGE FIGURE TITLE PAGE

1-1 Generalized Program Development Process 1-2 C-l Series III Program Development Process C-2
1-2 Sample Pascal Program 1-4
1-3 Sample PSCOPE Debug Session 1-5

2-1 Editor Display 2-9 D-l Series IV Program Development Process ... D-2

TABLES

TABLE TITLE PAGE TABLE TITLE PAGE

3-1 Special Character Delimiters 3-1 B-1 Configuration Commands B-2
3-2 Names Format 3-2 B-2 ADDS Regent Model 200 Configuration B-4
3-3 Elements ofInteger Constants 3-4 B-3 Beehive Mini-Bee Configuration B-5
3-4 Special Character Operators 3-5 B-4 DEC VT52 Configuration B-6
3-5 Standard Symbol Object Types 3-6 B-5 DEC VT100 Configuration B-7
3-6 Precedence of Operators (Highest to Lowest) 3-11 B-6 Hazeltine 1510 Configuration B-8

B-7 Lear Siegler ADM-3A Configuration B-I0
5-1 Default Display Formats 5-4

xii

CHAPTER 1
INTRODUCTION

This chapter introduces the high-level program debugger PSCOPE-86 and explains
how to use PSCOPE-86 on a software development system.

Product Definition

PSCOPE-86 is an interactive, symbolic debugger for object modules produced by
the PASCAL-86 compiler (version 1.0 or later), the PL/M-86 compiler (version
2.0 or later), and the FORTRAN-86 compiler (version 1.1 or later).

PSCOPE-86 (PSCOPE) lets you examine and modify a program's execution to
find software logic errors. PSCOPE features:

• Breakpoints, single stepping, and execution trace of procedures, statements,
and labels.

• High-level code patches, written in the PSCOPE command language.

• An internal screen-oriented editor for creating code patches and debug
procedures, as well as for editing commands.

• Unlimited (virtual) storage of program symbols.

• Access to program symbols using arbitrary expressions and Pascal-like varia­
ble references.

Both PSCOPE and the program being debugged reside in the development system
memory (which is expandable to one megabyte) .

The Program Development Process

PSCOPE is part of the development software for your microcomputer system.
Figure 1-1 shows how PSCOPE fits into the program development process.

Program development includes the following operations:

1. Write the source code using your host system editor.

2. Produce relocatable object code using the 8086/8088 compilers and
assembler.

3. Correct any compile-time errors using the editor, then recompile.

4. Link the program to run-time libraries and create a loadable version
of the program using LINK86 (with the BIND option).

5. Execute, test, and debug the loadable object module using PSCOPE.

1-1

Introduction

1-2

FORTRAN-a6
SOURCE

PASCAL-86
SOURCE

PLlM-86
SOURCE

RUN-TIME
LIBRARIES

OTHER
RELOCATABLE

OBJECT
MODULES

r-----------,
I I
I I
I I

I I
I I
I I L __________ -I

Figure 1-1 Generalized Program Development Process

Host System Execution Environment

Appendixes B, C, and D contain information about your host system's execution
environment, including related manuals, system hardware and software required,
maximum user program size, and host system resources used by the debugger
(such as memory and open files) .

PSCOPE Restrictions

Compiler controls used when the program object code is produced can affect the
reliability of some debug functions. To avoid possible confusion resulting from
compiler optimizations, use the OPTIMIZE(O) control when compiling code to
debug.

PSCOPE does not support debug load modules that use overlays.

Major Functions

This section briefly describes PSCOPE's major functions and references the
chapters containing more detailed information.

• Internal Editor (Chapter 2)

The internal, screen-oriented editor lets you edit commands, debug
procedures, and patches from the keyboard.

PSCOPE-86

1369

PSCOPE-86

• Single-stepping (Chapter 4)

PSCOPE provides two methods of stepping through a program.

• Symbolic Debugging (Chapter 5)

PSCOPE lets you symbolically examine and modify data for all PASCAL-
86/88 and PL/M-86/88 data types. A virtual symbol tables stores symbol and
line number information.

• Control Blocks (Chapter 6)

You can use PSCOPE command language conditional and repetitive control
constructs to build up blocks of debugger commands.

• Debug Objects (Chapter 7)

PSCOPE lets you define and manipulate various types of debug objects,
including LITERALLYs (a form of command macro) and debug variables.

• Debug Procedures (Chapter 8)

You can define and edit debugger procedures and symbols.

• Code Patching (Chapter 9)

PSCOPE lets you add and delete code at the statement level without per­
manently changing your program. Patches are valid for only the debugging
session in which they are generated.

• Utility Commands (Chapter 10)

The utility commands:

• Provide an online HELP command.

• Let you save part or all of a debug session in a log file.

• Let you execute a command file.

• Breakpoints and Tracepoints (Chapter 11)

Breakpoints and tracepoints let you control and monitor debugging.

Introductory Sample Session

Figure 1-2 shows a Pascal-86 program containing several bugs. Figure 1-3 shows
how to debug this Pascal-86 program using PSCOPE. Appendix E contains a more
sophisticated Pascal-86 program (DC.86). These two programs are used through­
out this manual as examples of various PSCOPE features.

Introduction

1-3

Introduction PSCOPE-86

1-4

S~RIES-III Plscal-86, v2.C

Sou~ee File: :F3:S~~PLE.P~S
Cbject File: :F3:SAMPL~.CSJ
~ontrols Specified: CE~LG.

ST~T LINE NESTIN~
1 1 0 0

2 14

3 16
4 17
5 18
6 19
7 20
7 21

0

0
0
0
0
0
0

o

o
o
o
o
o
1

SCU~CE T~XT: :F):SA~PLE.PAS
C····.·.·.**.********.** •• ***.****.**.***.** •• **.****.**

The followin~ p~o~~~m reads in a list of positive
inte~e~ val~es, prints the numbe~ of values resa, t~e
mean, and the high and low vllues. The end of the list
is indicate~ by a na;stive vllue •

• ** ~ote that this ve~sion of the program contains
several bugs, and is designee as I simple demo
fo~ PSCCPE.

.****)

va~

value
su",
hiQh
low
count

be~in

inte~er;

inte~a~;

inte~e~;

inte~er;
inte~e~;

C***** bug: su~ ~ count not initialized *)

S 23
9 24

0
0

writeln ('Input I list of r.on-n8Qative inte~ars, one per line.');
w~iteln ('CA n.;~tiva value indicates the eno of tha list.)');
~eadln (value);

10 25

11 27
12 28
13 29
15 30
17 31
18 32
20 33
21 34
22 3S
23 36
24 37

U

0
0
0
0
0
0
0
0
a
a
a

2
2
2
2
2
2
1
1
1
1
1

5ummmry Information:

PROCEDURE
SAMPLE
-CONST IN COCE-

Total

(****** bu~: high g lo~ not initi8liz80 *)
~hil. v~lue >= 0 do b.~in

count := count + 1;
su~ := su~ + value;
if vllue > high then hig~ := value;
if value < low then low := value;
reaoln (value);
end;

w~iteln ('~umba~ of valuas
writeln ('''aln
w~it.ln ('Low
w~it.ln ('Hi~h

and.

, co~nt);

, sum div count);
" low);

, hi~h);

OFFS=T CCOE SIZE CATA SIZE STACI<. S!Z:
OOC2H 01~AH 410C CC1Aii 26:l COOE:-i 14:

OOC2:-i 1Q4C

C2SCH 604C CC1A'-I 26J CG42H

Figure 1-2 Sample Pascal Program

1370

PSCOPE-86

SERIES-III PSCOPE-86, V1.0
*load :f7:,a.ple.e6
dir
OIR of :SAHPLE
PQ_OUTPUT
PQ_IhPUT •
VALUE
SUM
HIGH • •
LOW
COUNT

*

TEXT (f11e)
• TEXT (f11e)
• integer
• integer
• intlger

•• integer
• integer

* 1* We kno. there i, a bug in thil pro;ra~, *1
* 1* it print, .rong value, for all the variablls *1
* 1* Fir,t, ••• ill determine .hether the values are being input *1
* 1* correctly b~ letting a breakpoint after the 1st cycle *1

* *go til .17
Input a lilt of non-negative integers, one plr line.
(A negative v.lue indicate, the end of the list.)
5
[Bruk at '17l
* 1* input •• , 5 *1
* 1* look at lome variable, *1
*
*value
+S
*IUII
+309
* 1* let'l make it e.sier - define a proc to print out all the variables *1

* *define proc print a .rite 'valul a', value, , su~ =', lum, &
** ' high a', high, , low a', 10., , count =', "count

* * 1* lince count il a PSCOPE key.ord, it is neceslary to prefix it with" *1

* *print
value • +S lum a +309 high = +7632 low = -4091 count = +22
*
* 1* value i. right - everythin~ el •• is wrong. Looks like nothing is *1
* 1* getting initialized. Try letting to their corr.ct values and continue *1

* *Ium • S; hi,h • 5; 10. a S; "co~nt z 1

* *print
value • +5 .u~. +S
*go
9
[Bruk .t .17l
* 1* input .a, 9 *1
*print
v.lue • +9 IU ... +14
* 1* t. d.l *1
*,0 forever
3
10
6
o
-1
NUliber of valuel = 6
Me.n • S
Lo. • 0
High • 10

high = +5 lOll +5

high ,. +9

EXCEPTION: Progr ... call to D~SExit
CBreak at location 1Ct1H:0030HJ

count ,. +1

count +2

* 1* inputl .ere 3,10,6,C and -1
*exit

a ok *1

PSCOPE ter .. inated

Figure 1-3 Sample PSCOPE Debug Session

1371

Introduction

1-5/1-6

CHAPTER 2
USING THE DEBUGGER

This chapter describes how to use the debugger, including:

• Invoking the debugger using initialization and configuration controls.

• Entering commands from the keyboard.

• Editing command lines with the line editor or the internal editor.

• Using the menu commands.

Invoking the Debugger

Invoke the debugger by entering the following invocation line (notational conven­
tions are defined in the Preface):

[RUN] [directory-name] PSCOPE [controls]*

where:

directory-name is the host system's file path name.

controls is any of the following invocation controls. The first control listed in
each pair is the default. The controls can be specified in any order.

CRT I NOCRT
MACRO I NOMACRO
NOSUBMIT I SUBMIT
WORKSPACE

Each control is described individually in the following sections.

CRT I NOCRT

Syntax

CRT [(filename)]
NOCRT

Abbreviation

CR I NOCR

Default

PSCOPE.CRT

2-1

U sing the Debugger

2-2

Definition

CRT specifies a file which defines CRT characteristics that describe the control se­
quences for communicating with the terminal. The form of this file is described in
Appendix B "Configuring PSCOPE for Non-Intel Terminals".

If you do not enter either CRT or NOCRT, the debugger looks for the CRT file
PSCOPE.CRT in the same directory from which the debugger was invoked. If
PSCOPE does not find the file PSCOPE.CRT, the debugger assumes that the key­
board and CRT control sequences are the same as those on a standard Series III or
Series IV developement system.

If you specify CRT without a file name, the default file (PSCOPE.CRT) must
exist; otherwise, PSCOPE displays an error message.

If you specify NOCR T, the debugger does not look for a CRT file. It assumes a
Series 111- or Series IV -based machine.

If you rename the debugger file and invoke it with the new name, the debugger
looks for a CRT file with the new name.

Example

RUN PSCOPE

run pscope crt(151 Ot.crt)

RUN PSCOPE NOCRT

MACRO I NOMACRO

Syntax

MACRO [(filename)]
NOMACRO

Abbreviation

MRINOMR

Default

PSCOPE.MAC

Definition

MACRO specifies a file containing debugger commands to be executed during
debugger initialization. You create MACRO files containing command definitions
useful to a particular application, such as abbreviations or debugger procedures
which will be used over several debug sessions.

PSCOPE-86

PSCOPE-86 U sing The Debugger

If you do not enter either MACRO or NOMACRO, the debugger looks for the file
PSCOPE.MAC in the same directory from which the debugger was invoked.

The PSCOPE.MAC file can contain any number of debugger commands to be ex­
ecuted on initialization. For example, the MAC file can automatically define
abbreviations using the LITERALLY command (discussed in Chapter 7).

If you specify MACRO without a file name, the default macro file must already
exist.

If you specify NOMACRO, the debugger does not look for a macro file.

If you rename the debugger and invoke it with the new name, the debugger auto­
matically looks for a MAC file with the new name.

A macro file is not required.

Example

run pscope macro(procs.mac)

RUN PSCOPE NOMR

NOSUBMIT I SUBMIT

Syntax

NOSUBMIT
SUBMIT

Abbreviation

NOSM I SM

Default

NOSUBMIT

Definition

SUBMIT indicates that PSCOPE is to operate inside of a SUBMIT file. If you speci­
fy SUBMIT, you must use the standard system line editor rather than PSCOPE's
extended line editor. Using the standard system line editor ensures that SUBMIT
file commands are echoed properly to the system terminal.

Example

run pscope sm

RUN PSCOPE NOSM

2-3

U sing the Debugger

2-4

WORKSPACE

Syntax

WORKSPACE (decimal-number)

Abbreviation

WS

Definition

WORKSPACE assigns the amount of system memory to be used by PSCOPE for
storing debug objects. The WORKSPACE default is 15000 bytes. The minimum
value for decimal-number is 10000 bytes; the maximum value is 65535 bytes. The
amount of memory specified with WORKSPACE is taken from user memory at
initialization, thereby directly affecting the amount of memory available for the
program being debugged.

NOTE
Decreasing the the value of WORKSPACE below 15000 bytes
leaves more memory for user program but decreases room for
debugger objects. (Debugger objects are discussed in Chapter 7).

Example

run pscope workspace(12000)

Invocation Error Messages

You can make three types of errors when entering the invocation line:

• An unrecognized control

• A control missing a required parameter

• A control with an invalid parameter

When an invocation error occurs, PSCOPE displays an error message, followed by
the operating system prompt. You can then enter a corrected invocation line.

PSCOPE displays the following error message when you enter an unrecognized
control character:

UNKNOWN CONTROL: control

PSCOPE-86

PSCOPE-86 U sing The Debugger

PSCOPE displays the following error message when you do not include the re­
quired parameter with the invocation line:

PSCOPE OPTION ERROR
OPTION: control
ERROR: message

PSCOPE terminated

PSCOPE displays the following error message when you enter an invalid
parameter:

PSCOPE I/O ERROR
FILE: file-type
NAME: filename
ERROR: message

PSCOPE terminated

where:

file-type is CRT or MAC.

filename is the name of your file.

message is the error message that identifies the problem.

U sing the Debugger

After you correctly enter the invocation line, the debugger clears the screen and
displays the following sign-on message:

system-id PSCOPE-86, vx.y

The system-id identifies the host system. On the Series III, the host system-id is
"SERIES III".

In Vx.y, x is the debugger version number, and y is the change number. After sign­
ing on, the debugger prompts for commands with an asterisk (*). User software
can then be loaded, executed, tested, and debugged by entering the commands de­
scribed in subsequent chapters. After completing an operation in response to a
command, the debugger prompts for new input.

You can perform any of the following operations when the debugger prompt is
displayed:

• Enter a command from the keyboard

• Enter commands from an external file

• Re-execute the last command (CNTL-C)

• Enter the internal editor to create debug objects or edit commands

• Suspend or cancel debugger terminal output

While the debugger is executing, you can interrupt operation as follows:

• Suspend terminal output by entering CNTL-S and resume terminal output
by entering CNTL-Q.

• Cancel the command in progress by entering CNTL-C.

2-5

U sing the Debugger

2-6

You can create a file containing debugger commands, then use the INCLUDE
command described in Chapter 10, "Utility Commands", to enter the commands
from that file.

You can record the debugging session by using the LIST command (described in
Chapter 10). The LIST command sends all debugger terminal output to the speci­
fied file, either on disk or hard copy. The file includes PSCOPE prompts, user
input lines, PSCOPE output, and error messages. It does not, however, contain
output from the program being debugged.

Terminating a Session

Enter the EXIT command to exit the debugger:

EXIT

The debugger responds with:

PSCOPE terminated

The debugger closes all open files and returns to the operating system.

Command Entry

The debugger prompt (*) indicates that the system is in command-entry mode. In
this mode, the debugger places characters entered at the terminal in a command
buffer until the end of a complete command coincides with the end of a command
line. At this point, the debugger executes all commands in the buffer in the order
in which they were read. (Legal command line length is virtually unlimited,
depending on the amount of workspace available')

You can continue commands which will not fit on one line on subsequent lines.
The continuation flag, an ampersand (&) at the end of the line to be continued, is
optional because the debugger can recognize the end of a completed command in
most cases. (PSCOPE issues a double asterisk (**) prompt if it needs more com­
mand input.) The exception is when a command has an optional parameter that is
placed on the next line. In this case, the debugger executes the partial command
(since it is complete) unless you include the continuation flag.

Continuation flags let you specify a multi-line sequence of commands before they
are executed (without using the DO command explained in Chapter 6).

You must separate commands with a semicolon when you specify more than one
command on a line.

Line- Editing Keys

You can edit command input in line-oriented mode using the following line editing
functions:

RUBOUT key

CNTL-F
or

DEL CHAR
(RUB OUT)

Deletes the character left of the cursor.

Deletes the character at the cursor.

PSCOPE-86

PSCOPE-86 Using The Debugger

CNTL-X

CNTL-A

CNTL-Z

Deletes all characters left of the cursor.

Deletes the character at the cursor and all characters right
of the cursor.

or Deletes the entire current line.
CLEAR LINE

Left Arrow key Moves the cursor one character left.

Right Arrow key Moves the cursor one character right.

HOME key Operates with the left or right arrow key. Moves the
cursor to the beginning of the line if pressed after the left
arrow key. Moves the cursor to the end of the line if
pressed after the right arrow key.

CNTL-C Cancels command in progress.

ESC key Enters PSCOPE's internal editor.

Syntax Errors

A syntax error is an error in the command's format. When the debugger finds a
syntax error, it displays the following message:

T Syntax error

The arrow (n is aligned under the portion of the command line containing the
error. If the error is located near the right edge of the screen, the message takes
the form:

Syntax error T

You can correct commands in which errors were detected by pressing ESC to
invoke the internal editor and using the appropriate editor commands. You can
then execute the corrected command after exiting from the editor.

The Internal Screen-Oriented Editor

The debugger contains a built-in editor for creating and modifying debugger
objects. It helps you create long command lines and edit the last command line.

The internal editor is screen-oriented and has the options shown in figure 2-1. If
your terminal is not a standard Intel terminal, the internal editor uses information
in the PSCOPE.CR T file to define 110 sequences for cursor control. Additionally,
the PSCOPE.CRT file lets you reprogram special keys such as the direction
arrows, ESC, and HOME keys to map their functions to other keys.

Because the internal editor is interactive and screen-oriented, you cannot use it if
you specified the SUBMIT control when you invoked PSCOPE.

2-7

U sing the Debugger

2-8

Entering the Internal Editor

You can invoke the internal editor in two ways:

• By pressing the ESC key either at the debugger prompt or during command
entry.

If you press ESC immediately after the debugger prompt, the last command
is recalled for editing.

If you press ESC during command entry, you can edit the entire command
being entered.

• By entering the EDIT command immediately after the debugger prompt.

Syntax

EDIT [edit-item]

where:

edit-item is one of the following:

debug-symbol is the name of an existing debug object of one of the
debug types (not memory or user types) specified in Table 3-5. If
you specified debug-symbol, its definition (the command that
defined the debug object) is brought up for editing.

PATCH address

GO

If you specify PATCH, the corresponding debugger program PATCH is made
available for editing.

If you specify GO, the text of the last GO command is brought up for editing.

If you do not specify anything, the editor invokes with an empty edit space.

Exiting the Internal Editor

After exiting the internal editor (using the QUIT command), you can either exe­
cute or ignore the command (s) you just edited.

Internal Editor Display

As shown in Figure 2-1, the internal editor uses the screen's two bottom lines for
the edit message line and the menu option line. The remainder of the screen is the
edit display area.

PSCOPE-86

PSCOPE-86 U sing The Debugger

<text>

---<msg>
Block Delete Get Insert Quit View

1372

Figure 2-1 Editor Display

The internal editor displays a maximum of 79 columns of text but supports longer
lines. For lines exceeding 79 characters, an exclamation point (!) is displayed as
the last character to indicate that more text exists beyond the end of the display.
When you move the cursor logically beyond the display, it remains physically in
the right-most position in the line. All edit functions can act on text existing
beyond the display area, but the display is not affected.

The internal editor displays the printable ASCII characters (20h to 7Eh). It dis­
plays unprintable characters as question marks (?). The internal editor considers
carriage return (CR) and linefeed (LF) characters printable characters. The
CR/LF combination acts as a single character called Return. A tab is interpreted as
a single space.

Internal Editor Commands

The internal editor uses the cursor control keys and editor display options for com­
mand input.

Cursor Control Keys

The following cursor control keys control movement within the text being edited:

• Up Arrow

• DownArrow

• Left Arrow

• Right Arrow

• HOME

• RETURN

2-9

U sing the Debugger

2-10

The cursor control keys operate as follows:

Up Arrow Key Pressing the up arrow key moves the cursor up one line in its cur­
rent column position. If the cursor is already in the top line of the screen, pressing
the up arrow key moves the cursor to the preceding line and displays the text with
that line positioned six lines from the top of the screen (standard Intel terminals).
The up arrow has no effect if the cursor is on the first line of the text being edited.

Down Arrow Key Pressing the down arrow key moves the cursor one line down
in its current column position. If the cursor is already in the last line on the screen,
the text scrolls up one line. The down arrow key has no effect if the cursor is in the
last line of text.

Left Arrow Key Pressing the left arrow key moves the cursor one character to the
left. If the cursor is at the beginning of a line, the cursor moves to the carriage
return at the end of the preceding line. If the cursor is at the beginning of the
screen, pressing the left arrow key moves the cursor to the end of the preceding
line and displays the text with that line positioned six lines from the top of the
screen (standard Intel terminals). The left arrow key has no effect if the cursor is
at the beginning of the text.

Right Arrow Key Pressing the right arrow key moves the cursor one character to
the right. If the cursor is at the last character of the last line on the screen, the
screen scrolls up one line. The right arrow key has no effect if the cursor is at the
end of the text.

HOME Key The HOME key is used with the directional cursor keys, as follows:

• Pressing HOME after pressing an up or down arrow key displays the previous
or next screen of text, respectively. The cursor remains in the same relative
location on the new page.

• Pressing HOME after pressing a left or right arrow key moves the cursor to
the beginning or end of the line, respectively.

You can press HOME any number of times after pressing a directional key.

RETURN Key Pressing the RETURN key when the editor is expecting a com­
mand moves the cursor to the beginning of the next line of text. If the cursor was
in the last line of the text display area, the text is scrolled up one line. If the cursor
was at the end of the text, pressing the RETURN key has no affect.

Delete Keys You can use the following delete keys when the editor is at the com­
mand level or in the insert or exchange mode:

• RUBOUTkey
Deletes the character to the left of the cursor.

• CNTL-F
Deletes the character at the cursor.

• CHARDEL
Deletes the character at the cursor.

PSCOPE-86

PSCOPE-86 U sing The Debugger

• CNTL-X
Deletes all characters to the left of the cursor.

• CNTL-A
Deletes the character at the cursor and all characters to the right of the
cursor.

• CNTL-Z
Deletes the current line.

• CLEAR LINE
Deletes the current line.

Menu Commands

The menu provides the following command options:

• Block

• Delete

• Get

• Insert

• Quit

• View

• Xchange

To select each menu command, enter the first letter of the command (either
lowercase or uppercase). The editor beeps if you give it an unexpected command
character.

Enter CNTL-C to abort the menu command in progress. The editor ignores the
CNTL-C ifit is waiting for a command.

The menu always indicates which options are available. Some menu commands
lead to sub-menus (for example, Quit and Block).

Block Command (B)

The Block command lets you mark off a block of text and place it in the block
buffer for later retrieval (with the GET command) .

To place text into the buffer, move the cursor to the first character in the block of
text desired and press B. The editor displays the following sub-menu:

Buffer Delete

Move the cursor just beyond the character at the end of the block to be delimited
and again enter B. (The beginning and ending characters of the block being
delimited are marked with an at sign (@).) The text is now in the buffer.

2-11

U sing the Debugger

2-12

Use the left, right, up, and down arrow keys and the HOME and RETURN keys to
move the cursor to the end of the block.

Note that the block buffer holds only one block of text. If you execute a Block or
Delete command before retrieving the contents of the block buffer with the GET
command, the original contents are overwritten by the new block of text.

Delete Command (D)

The Delete command lets you mark off a block of text, place it in the block buffer
for later retrieval (with the GET command), and then delete it.

To place text in the buffer, move the cursor to the first character in the block of
text desired and press D. The editor displays the following sub-menu:

Buffer Delete

Move the cursor just beyond the character at the end of the block to be delimited
and again enter D. (The beginning and ending characters of the block being
delimited are marked with an at sign (@).)

Use the left, right, up, and down arrow keys and the HOME and RETURN keys to
move the cursor to the end of the block.

Note that the block buffer holds only one block of text. If you execute a Block or
Delete command before retrieving the contents of the block buffer with the GET
command, the original contents are overwritten by the new block of text.

Get Command (G)

The GET command retrieves the contents of the block buffer (see the Block and
Delete commands, above) and inserts it at the current cursor location. The block
buffer is initially the null string.

You can move text from one part of the file to another by:

• Placing the text to be inserted in the block buffer with the Delete command.

• Moving the cursor (with the cursor control keys) to where you want the text
inserted.

• Entering the GET command.

Insert Command (I)

The Insert command puts the editor into insert mode, which is indicated by
[insert] on the menu line. Each character you enter is then inserted at the cursor
until you press ESC. The display echoes the new text as you insert each character.

In Insert mode, you can use the cursor control keys (left, right, up, and down
arrow, HOME, and RETURN) and the delete keys (described earlier). Pressing
RETURN after inserting text in the last line scrolls the text up one line.

If the cursor is positioned beyond the end of a line when entering text in Insert
mode, the cursor moves to the point immediately before the end (or carriage
return) of the current line, and the insertion begins beyond the line.

PSCOPE-86

PSCOPE-86 U sing The Debugger

Quit Command (Q)

The Quit command lets you exit the editor and either pass or not pass a com
mand back to the debugger. The editor displays the following sub-menu when you
enter Q:

Abort Execute

Enter A (abort) to exit the editor without passing a command back to the
debugger.

Enter E (execute) to exit the editor and process the edited text as a command.

View Command (V)

The View command redisplays the screen with the line containing the cursor posi­
tioned in the middle of the screen, unless centering places the beginning of the
text below the top of the screen.

Xchange Command (X)

The Xchange command puts the editor into exchange mode, indicated by
[exchange] on the menu line. The Xchange command lets you replace the charac­
ter at the cursor, one for one. The cursor moves one character to the right each
time you replace a character.

Press ESC to end exchange mode.

While in exchange mode, you can use any of the cursor control keys to move the
cursor. Characters you enter beyond the end of a line are inserted before the
RETURN in that line.

2-13/2-14

CHAPTER 3
COMMAND LANGUAGE

AND EXPRESSIONS

This chapter describes PSCOPE command line format. It gives an overview of
tokens and symbol object types. It defines the operands and operators you can use
in expressions and explains the rules for combining different expression types.

Tokens

Tokens are the smallest meaningful units in a command line. Each token belongs
to one of the following classes:

• Delimiters

• Names

• Line numbers

• Numeric constants

• Character string constants

• Operators

• Comments

Delimiters

A delimiter is a character or pair of characters that separates or marks the begin­
ning or end of a token. The debugger recognizes delimiters for names, lines,
commands, strings, range specifications, modules, lists, and comments. Table 3-1
lists the delimiters.

Table 3-1 Special Character Delimiters

Character Description Function

Space Blank separator
Tab Blank separator

<cr> Carriage return Line terminator
& Ampersand Continuation

line indicator
; Semicolon Command separator
,

Apostrophe String delimiter
Dot Compound name separator

" Quotation marks User symbol flag
: Colon Module name prefix
, Comma List separator

1* Slash asterisk Start-of-comment delimiter
*/ Asterisk slash End-of-comment delimiter

3-1

Command Language and Expressions

3-2

Names

There are three types of names:

• Keywords

Keywords are reserved elements of the debugger command language. Key­
words have special meaning within the debugger language and, therefore,
cannot be used in other ways. For example, a keyword cannot be used as a
debug symbol.
Appendix G, "Reserved Keywords," contains a complete list of PSCOPE
keywords.

• Program symbols

The compiler includes program symbol information in your object file when
you compile your source module with the compiler DEBUG control. The
debugger enters the program symbols into its symbol table when you load
your 0 bject code.

• Debug symbols

Debug symbols are any symbols defined by the user in a debug session.
Chapters 7 and 8 describe debug symbols and their use.

N ames Format

A name is a sequence of letters, digits, underscores, at-signs, question marks,
and/or dollar signs, of which the first character must be a letter, underscore,
at-sign, or question mark. This format is summarized in Table 3-2.

Table 3-2 Names Format

Valid Valid
Description

First Character Remaining Characters

A-Z A-Z Letters
@ @ At-sign
? ? Question mark

0-9 Digits
$ Dollar Sign*

- - Underscore

*Embedded dollar signs are ignored by the debugger and may be used to improve the readability of a
name.

To convert Pascal labels (which are numbers in the source code) to the name
format, the compiler removes leading zeros from each label and attaches a leading
at sign (@) to the label. For example, the label '9999' in module 'DC' is:

:DC.@9999

The debugger accepts names of unlimited length; however, it uses only the first 40
characters. The debugger interprets uppercase and lowercase characters to be the
same character (i.e., band B are interpreted as the same character).

PSCOPE-86

PSCOPE-86 Command Language and Expressions

Referencing Names

Names have the following precedence: command keywords, debug symbols, pro­
gram symbols. The debugger checks symbols it encounters to see if they are
keywords. If a symbol is not a keyword, the debugger checks to see ifit is the name
of a debugger object. If the symbols is not the name of a debugger object, the
debugger assumes that the symbol is the name of a program object.

A debug symbol must not duplicate a keyword. A debug symbol is referenced by
entering its name.

A program symbol name may duplicate a keyword or debug symbol if you precede
it with quotation marks ("), as shown in the following example:

Faa + "Line

In all cases, you can reference a program symbol by using a fully qualified name. A
fully qualified name is a compound name, where each level of the name is specified
beginning with the module name, including any names of enclosing procedures,
and ending with the symbol name. For example, use the following reference for
the variable "TEST" in procedure "GETSCORE" of module "SYSTEM":

:SYSTEM.GETSCORE.TEST

Alternatively, you can use a partially qualified reference depending on where you
are in the program. A partially qualified reference lets you abbreviate the reference
by omitting leading parts of the reference, such as the module name. This method
is explained further in Chapter 5.

Line Numbers

The compiler produces line numbers. The format for a line number reference is:

[:module-name] # line-number

For example:

or
:MOD1#23

#23

Note that module names must begin with a colon (:), as shown in the first
example.

Numeric Constants

Numeric constants are integers or floating point numbers.

Integers

An integer constant is a number consisting of one or more digits and an optional
one-character suffix that identifies the number base. The suffix is not required if
the integer's number base corresponds to the current default base set with the
BASE command. (Note that a 0 (zero) must precede hexadecimal numbers begin­
ning with the letters A through F to distinguish them from names.)

3-3

Command Language and Expressions

3-4

You can enter alphabetic hexadecimal digits A through F and base suffixes (Y, T,
H, K) in either uppercase or lowercase.

Table 3-3 summarizes integer constants.

Table 3-3 Elements of Integer Constants

Number Base Valid Digits Suffix Example

Binary (base 2) 0,1 Y 11110011 Y
Decimal (base 10) 0-9 T 243T
Hexadecimal (base 16) 0-9,A-F H OF3H
Decimal multiple of 1024T 0-9 K 4K

Floating Point Numbers

Floating point numbers are decimal numbers consisting of a significand
(expressed in one or more digits), a decimal point, one or more additional digits,
and an optional exponent. The exponent consists of the letter E followed by a
signed integer value. For example, the decimal value:

0.24 x 10-2

may be expressed as

or
0.0024

0.24E-2

Use the following guidelines when working with floating point numbers:

• You must use the decimal point in a floating point number to distinguish the.
E as a scale factor (e.g., 44.0E30); otherwise, E might look like a digit in a
hexadecimal number (e.g., 44E30).

• Digits must appear on both sides of the decimal point. For example, 0.85E2
and 85.0E2 are acceptable, but .85E2 is not because there is no digit before
the decimal point.

• A floating point number must have a value in the following range: 64-bit
mantissa, 15-bit exponent, and a sign bit, for a total of 80 bits.

Floating point (real) arithmetic used in PSCOPE conforms to the proposed IEEE
standard for binary floating point arithmetic. This standard specifies internal data
representations, normalization, rounding modes, and error handling. All real
arithmetic performed by Intel microprocessors and software (except VSP
software) conforms to this standard. (The 8086 Family User's Manual explains the
proposed IEEE floating point standard.)

Character String Constants

The term string in a command format means a sequence of one or more ASCII
printing characters enclosed in delimiters of apostrophes. Examples are:

'ABCDE'
'Testing 1 2 3'
'X'
'THIS IS A STRING'
'This is a string'

PSCOPE-86

PSCOPE-86 Command Language and Expressions

To enter a literal apostrophe inside a string, use two apostrophes to distinguish the
literal apostrophe from those used as delimiters.

For example:

'WHAT"S UP?'

is stored as

WHAT'S UP?

The debugger accepts strings of up to 254 characters, not counting the enclosing
delimiters. You can extend strings over more than one line; the debugger concate­
nates (links) adjacent strings into a single string. You can separate adjacent strings
with spaces, tabs, or carriage returns.

When a string value is stored in memory, the value is the one-byte ASCII value of
each character. If the string has more than one character, the debugger stores the
subsequent ASCII values in consecutive locations.

Operators

The command language contains tokens that serve as operators. Table 3-4 lists the
special character operators that the debugger recognizes.

Table 3-4 Special Character Operators

Operator Description Function

* Multiply sign Multiplication
- Minus sign Negation or substraction
+ Plus sign Identity or addtion
/ Slash Division
-- Double equal signs Equality
<> Angle brackets Inequality
> Angle bracket Greater than
< Angle bracket Less than

>= Bracket, equals Greater than or equal
<= Bracket, equals Less than or equal

Dot Address of (prefix operator)
() Parenthesis Bracketing
[] Sq uare brackets Array indexing
= Equal sign Assignment
T Up arrow Indirection via pointer

Colon Pointer constructor

In addition to the special character operators shown in Table 3-4, PSCOPE also
supports several keyword operators. OR, XOR, AND, and NOT are the conven­
tional Boolean operators. MOD is the conventional remainder (or modulo) opera­
tor (as defined in Pascal), extended to also work with real numbers.

3-5

Command Language and Expressions

3-6

Comments

The debugger ignores characters enclosed by the comment delimiters, 1* and * /.
For example:

1* THIS PROGRAM WAS DEBUGGED WITH PSCOPE */

1* THIS COMMENT IS
SPREAD OVER TWO LINES. */

Types of Symbol Objects

All objects referred to by debug or program symbols have an associated type. Sym­
bols are divided into three types. The first two types, memory and debug, are basic
types whose names and definitions are determined by PSCOPE. The third type,
referred to as user types, consists of user-defined symbols. PSCOPE obtains this
type of information from the debug information in the load module of a program.
Table 3-5 lists the standard types recognized by the debugger.

Table 3-5 Standard Symbol Object Types

Symbol
Object Type Definition

Type

Memory BOOLEAN TRUE or FALSE
CHAR String of ASCII character(s)
POINTER Pointer value
BYTE Unsigned S-bit quantity
WORD Unsigned 16-bit quantity
DWORD Unsigned 32-bit quantity
SELECTOR Unsigned 16-bit quantity
ADDRESS Unsigned 16-bit quantity
SHORTINT Signed S-bit quantity
INTEGER Signed 16-bit quantity
LONGINT Signed 32-bit quantity
EXTINT Signed 64-bit quantity
BCD Signed 1S-digit binary coded decimal number
REAL 32-bit floating point number
LONGREAL 64-bit floating point number
TEMPREAL SO-bit floating point number

Debug PROC Debug procedure
LITERALLY String macro
BRKREG Break register
TRCREG Trace reg ister
PATCH Debug patch code

User ARRAY Array
RECORD Pascal record or PLIM structure
PROCEDURE User program procedure or function
LABEL User program label
LINE User program line number
FILE User file
MODULE User program module
ENUMERATION User-defined PASCAL enumerated type

PSCOPE-86

PSCOPE-86 Command Language and Expressions

Expressions

Expressions can be used as command arguments to specify numeric, Boolean, or
string values.

Expressions can be:

• A single number, constant, or symbolic reference. Examples are:

o (Number without explicit suffix)
100H (Hexadecimal numeric constant)
'A' (One-character string constant)
X (Symbolic reference yielding a value)

• A formula applying operators and functions to numbers, constants, and sym­
bolic references as operands.

The debugger performs the calculation, using parenthetical and operator
precedence and left-to-right order to determine the sequence of operations.

Examples of expressions are:

2 + 3
174 / 4
0100H + OOFH
2 * (6 + 4)
.BUFFER + 2
:MOD1.SAM + 21

To evaluate and display the value of an expression, enter the expression. An ex­
pression evaluates to a type component and a value component. The rules for
determining expression types and values are discussed later in this chapter.

Operands

You can use the following types of operands in expressions:

• Numeric constants

• String constants

• Program symbol references

• Machine register references

• Memory references with explicit typing

• Line number references

• Debug variable references

• Debug procedure calls

• Debug procedure parameters

• Debug built-in function calls

3-7

Command Language and Expressions

3-8

Numeric Constants

Numeric constants can be integers or floating point numbers, described earlier in
this chapter.

String Constants

You can use character strings as arithmetic values in expressions, as follows:

• A one-character string, which has a byte value corresponding to the charac­
ter's ASCII representation. For example, the string constant 'A' has the
value 41H.

• Longer string constants (up to 254 characters), which you may also use as
parameters of debug procedures or as arguments to built-in string functions.

Program Symbol References

When you enter a program symbol reference as an operand, its value is obtained
from the debugger symbol table and used in the associated expression.

To reference the value of a program symbol, use the format:

sym bolic-reference

where:

symbolic-reference is a fully or partially qualified reference as described in
Chapter 5.

To reference the address of a program symbol, prefix symbolic-reference with the
dot operator:

.symbolic-reference

Machine Register References

You can reference the 8086 registers symbolically, within expressions, just like
variables.

The registers are:

AH AL AX BH BL BP
BX CH CL CS CX DH
D1 DL DS DX ES FH
FL FLAG 1P SI SP SS

Memory References with Explicit Typing

To reference a memory location and interpret it as a particular type of object in an
expression, use the format:

memory-type location

PSCOPE-86

PSCOPE-86 Command Language and Expressions

where:

memory-type is one of the object types shown in Table 3-5.

location is an expression that evaluates to a pointer. The pointer must refer
to a single valid address.

The memory reference format uses memory-type to interpret the area of memory
pointed to by the address expression. For example,

BYTE .FOO

interprets the first byte at the address of FOO as a byte regardless of the type of
FOO.

Other examples of memory references are:

BYTE (. buffer + bufindex)

WORD DS:22H

x + (INTEGER .ABLE)

(LONGREAL TEST) MOD 5

Line Number References

When you use a line number reference in an expression, you get the address of the
first instruction generated by the compiler for the source line number. In other
words, you are referencing a program location through the line number.

If different modules (each with their own statement numbers) are linked, you
must sometimes specify a module name in the line number reference, as follows:

[:module1 # line-number

You must use fully qualified line references (those with a module specified) when
referring to a line number that is not in the current default module (determined by
the current name scope). You can use partially qualified references (those without
a module name) when the line reference is in the current default module.

The statement number must be a decimal integer. Examples of line number refer­
ences are:

#45
:TEST#l
#23

Debug Variable References

After defining a debug variable (described in Chapter 7), you can use its value as
an operand within an expression. PSCOPE also includes the following predefined
variables:

3-9

Command Language and Expressions

3-10

Name

BASE

NAMESCOPE

$

Object
Type

BYTE

POINTER

POINTER

Use

current default numeric base

starting point for program symbol lookup

value ofCS:IP

Debug Procedure Calls and Parameter References

After defining a debug procedure within the debugger (described in Chapter 8),
you can call that procedure from within an expression and have it return a value.

PSCOPE includes several built-in functions:

Name

SUBSTR

CONCAT

STRLEN

CI

ACTIVE

SELECTOR$OF

OFFSET$OF

Operators

Use

Substring selection (Chapter 10)

String concatenation (Chapter 10)

String length (Chapter 10)

Console Character Input (Chapter 10)

Testing for program symbol accessibility (Chapter 5)

Segment portion of pointer (Chapter 10)

Offset portion of pointer (Chapter 10)

An expression can contain any combination of unary and binary operators.

The debugger recognizes five groups of operators: dereference operator, pointer
selector operators (pointer selection uses built-in functions), arithmetic
operators, memory-type operators, relational operators, and logical operators.

Table 3-6 shows the operators in each group in descending order (from highest to
lowest precedence). In the table, all operators apply to both real and integer oper­
ands unless noted otherwise. All operations are binary unless specified as unary
operations.

Type Conversions

PSCOPE automatically converts values from one type to another during expres­
sion evaluation and during Modify commands (described in Chapter 7) .

PSCOPE-86

PSCOPE-86 Command Language and Expressions

The following type classification is useful for describing the type conversions per­
formed by PSCOPE. The numbers in parentheses are the number of bytes used to
store a value of that type (precision). The type in each class considered to have the
maximum precision for that class is listed at the bottom of each column.

Unsigned Signed Real

BYTE (1) SHORTINT (1) REAL (4)
WORD (2) INTEGER (2) LONGREAL (8)
ADDRESS (2) LONGINT (4) EXTINT (8)
SELECTOR (2) BCD (10)
DWORD (4) TEMPREAL (10)

Note that Pascal ENUMERATION types are treated as unsigned types of the smal­
lest precision necessary to hold the ordinal representation of that type.

Table 3-6 Precedence of Operators (Highest to Lowest>

Group Operator Operation Precedence

Arithemetic + Unary plus 1
- Unary minus (2's complement)

* Multiplication 2
/ Division
MOD Integer remainder

+ Addition 3
- Subtraction

Relational = = Is equal to 4
> Is greater than
< Is less than
>= Is greater than or equal to
<= Is less than or equal to
< > Is not equal to

Logical NOT 1 's complement 5
AND Logical AND 6
OR Logical OR 7
XOR Exclusive OR

Memory BOOLEAN TRUE or FALSE value 8
Type CHAR 8-bit ASCII character

POINTER Pointer value
BYTE Unsigned 8-bit quantity
WORD Unsigned 16-bit quantity
ADDRESS Unsigned 16-bit quantity
SELECTOR Unsigned 16-bit quantity
DWORD Unsigned 32-bit quantity
SHORTINT Signed 8-bit quantity
INTEGER Signed 16-bit quantity
LONGINT Signed 32-bit quantity
EXTINT Signed 64-bit quantity
BCD Signed 18-digit binary coded

decimal number
REAL 32-bit floating point number
LONGREAL 64-bit floating pOint number
TEMPREAL 80-bit floating point number

3-11

Command Language and Expressions

3-12

Type Conversions for Expressions

The automatic type conversions that PSCOPE performs during expression evalua­
tion are dictated by two things:

• The type of value expected by an operator or function.

• Not loosing any significant portion of a value when performing an operation.

To accomplish these objectives, PSCOPE performs the following type conversions
during expression evaluation:

1. Each value used by the operation is extended to the maximum precision for
that type class.

2. Each value is converted to the type required by the operation.

3. The operation is performed, and the resulting value is left in its maximum
precision and passed on as a value to other operations in the expression (if
any).

Type Conversions for Assignments

The type of the source value and the type of the target variable dictate the automat­
ic type conversions PSCOPE performs during assignment. In general, the type
conversion proceeds as follows:

1. The source value is extended to the maximum precision for its type class.

2. The resulting value is converted to the maximum precision type of the type
class of the target variable.

3. The resulting value is truncated to the exact precision required for the target
variable type.

There are a few minor exceptions to these rules when non-numeric types are in­
volved (CHAR, POINTER, and BOOLEAN). In these cases, conversions between
some types may not be allowed or are handled as special cases. However, even for
these types, the automatic conversions performed by PSCOPE extend those
provided by Pascal and PL/M.

PSCOPE-86

CHAPTER 4
LOADING AND EXECUTING PROGRAMS

This chapter describes how to load programs and control execution by setting
breakpoints with the GO command and by stepping through the program.

The LOAD Command

The LOAD command loads object files into the debugger. You can ignore debug
information when loading or specify that the 8087 emulator is linked into the
object file.

Syntax

LOAD file [load option]* [CONTROLS command-tail]

where:

file is the object file you want to debug

load-option is one of the following:

E8087 links the 8087 emulator to the program object file. You must
select this option if you want to use REALs. (The 8087 Support Li­
brary Reference Manual contains information on the 8087 emula­
tor and numeric support.)

NOLINES suppresses your program's line numbers.

NOSYMBOLS suppresses your program's symbol information.

command-tail is any arbitrary text expected by the loaded program for invo­
cation controls.

Description

LOAD loads the specified file into the development system memory. The debug
information in file is processed to produce PSCOPE's symbol table of information
about the loaded program. If necessary, PSCOPE sends part of this symbol table to
disk, using a temporary work file.

CONTROLS lets you specify information your program may need to execute.

You can extend the invocation line as you would any command line.

The object file must conform to the 8086 object module formats. The object pro­
gram must be position independent code (PIC) or load time locatable (LTL) , with
absolute segments for interrupt vectors only. Because they do not use absolute
addressing, PIC and LTL object programs are less likely to cause conflicts with
PSCOPE's address base. PSCOPE issues an error message if you try to load a pro­
gram which is neither PIC nor LTL.

4-1

Loading and Executing Programs

4-2

The loaded object file must contain information initializing the CS, IP, SS, and DS
8086 registers. If these registers are not initialized during loading, PSCOPE dis­
plays an error message.

PSCOPE removes all previously set break registers (BRKREGs), trace registers
(TRCREGs), and patches when you load a program, even if the load is
unsuccessful.

Example

*LOAD dc.B6

The GO Command

The GO command transfers execution control to the loaded program.

Syntax (simplified)

GO [TIL expression [, expression] *]

or

GO FOREVER

where:

expression is a symbolic expression specifying an address in the program
code where you want a breakpoint.

Description

The GO command transfers control from PSCOPE to the program under debug
and specifies the conditions under which the user program stops executing and
transfers control back to PSCOPE.

TIL lets you specify any number of breakpoints. Breakpoints are stopping points at
specific addresses in your program.

GO FOREVER specifies that your program will be executed without breakpoints.

If you do not specify either TIL nor FOREVER, control passes to your program
using the same breakpoints as those used by the previous GO command (if any) .

During program execution, you can interrupt execution any time by entering
CNTL-C. Note that entering CNTL-C while your program is executing the UDI
primitive DQ$Read from :CI: causes an end of file condition on :CI:. The sample
program DC (found in Appendix E) is included on the PSCOPE disk and shows
one way of avoiding this problem in its procedure GET_LINE.

Note that the GO command always executes at least one instruction, so you can
set a breakpoint at the current execution point.

Chapter 11 explains how to use the GO command with break and trace registers.

PSCOPE-86

PSCOPE-86 Loading and Executing Programs

Example

Each of the following examples is based on the sample program DC found in Ap­
pendix E.

The following example executes the program using two breakpoints, one set at a
specific statement and the other set at the address of a procedure.

*go til :dc#26, :dc.gettoken

The following example executes using the previous breakpoints:

*go

The following example executes using no breakpoints at all:

*go forever

The LSTEP and PSTEP Commands

The LSTEP and PSTEP commands let you single-step through the program by ex­
ecuting numbered (high-level) language statements.

Syntax

LSTEP

or

PSTEP

Description

PSTEP and LSTEP are PSCOPE's source-level statement stepping commands.
PSTEP treats a procedure or function as a single statement, executing it entirely
before returning control to you at the next statement. LSTEP steps through proce­
dures and functions one statement at a time.

IF you enter PSTEP or LSTEP from a normal command level, PSCOPE returns
the following message after executing the statement:

[Step at line-numbed

where:

line-number refers to the current execution point, after the step is complete.

PSCOPE does not print a message if either command is issued from a nested
PSCOPE command (DO, IF, COUNT or REPEAT).

PSTEP and LSTEP must be entered when the execution point is at the start of a
statement. Note that any code patches are executed when stepping, but that no
other user-set breakpoints are active (run-time exceptions, however, are still
trapped) .

4-3

Loading and Executing Programs

4-4

Note also that both PSTEP and LSTEP require line information; stepping from a
location with line information into one without it causes execution to continue
until a known line is reached.

Example

*pstep

PSCOPE-86

CHAPTER 5
EXAMINING AND

MODIFYING PROGRAM SYMBOLS

This chapter describes how to reference objects (variables, procedures, etc.) in a
program you have loaded and how to display and modify program objects. It ex­
plains the concept of current name scope (CNS) and how CNS allows abbreviated
(partially qualified) references to program symbols. The following commands are
explained in this chapter:

• Program object commands
Display Program Symbols
Change Program Symbols
Change Name Scope
Active function

• Memory manipulation commands
Display Memory
Modify Memory

Program Symbol References

Program symbols are produced by the compiler (when you specify the DEBUG
option) and loaded into the debugger symbol table with the LOAD command
(described in Chapter 4).

Current Name Scope

The current name scope (CNS) is the set of symbols accessible from a specific loca­
tion in the program, as defined by the compiler. This program location is called the
debug cursor and changes as the program execution point changes. You can also
change the debug cursor with the NAMESCOPE command (described later in the
chapter).

In a Pascal procedure, the scope of local variables is the procedure they are defined
in; outside that scope, the symbols have either no meaning or an entirely different
meaning. To illustrate, suppose you have two variables of the same name in two
different procedures. In this case, specifying the variable name alone is not
sufficient. You must also specify the procedure in which the variable is found.

References to program symbols can be fully or partially qualified, as explained
below.

Fully Qualified References

A fully qualified reference always begins with a module name. It also specifies the
name of the procedure (or procedures) containing the referenced symbol, includ­
ing the names of all procedures enclosing the symbol.

5-1

Examining and Modifying Program Symbols

5-2

Syntax

:module-name Lprocedure-symboI1* .symbol-reference

where:

module. name is the name of the load module.

procedure-symbol is the name of the procedure.

symbol-reference is one of the following:

variable-symbol is a program symbol that specifies a program variable.

variable-name [qualifier] *

Description

variable-name is a variable name.

qualifier is one of the following:

left-bracket expr [, expr] * right-bracket

left-bracket and right-bracket are the characters [and]
and specify array indexing.

expr is an expression used to index an array variable.

field-symbol specifies a field within a record (structure)
variable.

pointer is the character and indicates Pascal pointer
dereferencing.

For fully qualified references, procedure-symbols must be direct references to
procedure names; procedure variables are not allowed.

To illustrate, assume you want to reference a parameter named C contained in the
function DIGIT in the procedure GET_TOKEN of module DC. Your fully quali­
fied reference to the variable Cis:

:dc.get_ token.digit.c

A fully qualified reference establishes a path from the module level of the program
down to the desired symbol.

For example, to reference the variable named VARIABLE_INDEX of the proce­
dure FACTOR, you must specify both the variable and the procedure containing
it. Specifying:

:dc. variable_index

does not work. Because PSCOPE does not know which procedure contains the

PSCOPE-86

PSCOPE Examining and Modifying Program Symbols

variable VARIABLE_INDEX, it assumes that VARIABLE_INDEX is either a
variable or a procedure declared at the main level of DC. Specifying:

:dc.factor. variable_index

establishes a path for PSCOPE to follow to the desired variable.

Structures nested within other structures (or records within records) are refer­
enced in the same way (outer to inner levels), thus establishing a path that speci­
fies all enclosing structures.

Partially Qualified References

A partially qualified reference omits some or all of the leading part of a fully quali­
fied reference, depending on the current name scope (CNS).

Using the fully qualified reference example from above (:dc.get_token.digit.c), you
can use varying degrees of partially qualified references, depending upon the cur­
rent name scope. For example, if the CNS is within the procedure GET_TOKEN,
the partially qualified reference DIGIT.C is sufficient. If, however, the debug
cursor is at the main level of module DC, the partially qualified reference should
be:

get_token.digit.c

The fully qualified referenced is required when the debug cursor is in a module
other than DC.

The following examples illustrate fully qualified references
(FQR) and partially qualified references (PQR):

FQR
:dc.get_token.digit.c

:dc.term.term_ value

dc.@9999

PQR
c
digit.c

term_value
term.term_ value

@9999

Required eNS for PQR
:dc.get_token.digit
:dc.gectoken

:dc.term
:dc

:dc

Note that changing the name scope or using a more qualified reference lets you
reference symbols outside their scope. This is useful for operations like setting
breakpoints, patches, etc. However, referencing symbols outside their scope may
not let you examine the value of some local variables because the values are unde­
fined outside their scope.

Display Program Symbol

You can obtain the value of the program symbol, like the value of an expression,
by entering the name of the program object whose value you want.

5-3

Examining and Modifying Program Symbols

5-4

Syntax

symbol-name

where:

symbol-name is either a fully qualified or partially qualified symbolic refer­
ence to a program symbol.

Description

Entering symbol-name yields a typed value. The format of the symbol value dis­
played depends on the referenced symbol type. Table 5-1 describes default display
formats.

Example

The following example references a CHAR variable C (with a value of a) in the
sample program DC (found in Appendix E) :

* :dc.get_token.digit.c
a
*c
a

The following example displays the value of a field CLASS in the record T. Note
that class is of type enumeration:

*t.class
3

The following example references an element of an array within a record. Note
that the components of the array are of type CHAR:

*buffer.str[1]
a

Table 5-1 shows the default display formats for predefined program symbol types.
These formats are used by the Display Program Symbol, unformatted WRITE,
and Display Memory commands.

Table 5-1 Default Display Formats

Predefined Symbol Types

Type Display

BOOLEAN Byte value displays FALSE if low order bit is 0 or TRUE if low
order bit is 1.

BYTE Unsigned a-bit quantity in current base.

CHAR a-bit ASCII character.

WORD Unsigned 16-bit quantity in current base.

PSCOPE-86

PSCOPE Examining and Modifying Program Symbols

Table 5-1 Default Display Formats (continued)

Predefined Symbol Types

Type Display

BOOLEAN Byte value displays FALSE if low order bit is a or TRUE if low
order bit is 1.

BYTE Unsigned S-bit quantity in current base.

CHAR S-bit ASCII character.

WORD Unsigned 16-bit quantity in current base.

DWORD Unsigned 32-bit quantity in current base.

POINTER Pair of words as nnnn:nnnn (always hex).

ADDRESS Unsigned 16-bit quantity in current base.

SELECTOR Unsigned 16-bit quantity in current base.

SHORTINT Signed S-bit quantity in current base.

INTEGER Signed 16-bit quantity in current base.

LONGINT Signed 32-bit quantity in current base.

EXTINT Signed 64-bit quantity in current base.

BCD Signed 1S-digit quantity in current base.

REAL 32-bit quantity in floating point notation. Always decimal.

LONGREAL 64-bit quantity in floating point notation. Always decimal.

TEMPREAL SO-bit quantity in floating point notation. Always decimal.

ENUMERATION Elements displayed as ordinal number.

ARRAY Array components that are predefined symbol types are dis-
played as described above. PSCOPE does not display entire
arrays or array components that are not predefined types.

PROCEDURE Entry point address.

LABEL Address.

FILE No display.

MODULE Address.

RECORD Record fields that are predefined symbol types are displayed
as described above. PSCOPE does not display entire records
or fields that are not pre-defined types.

5-5

Examining and Modifying Program Symbols

5-6

Change Program Symbol

This section shows you how to change the value of a program symbol.

Syntax

symbol-name = new-value

where:

symbol-name is the name ofa program symbol.

new-value is the new value for symbol-name. The new-value can be an ex­
pression that evaluates to the correct type for the assignment. The ex­
pression can contain program or debug symbol references, constants,
strings, etc.

Description

The new value must yield a typed value that matches the type of the program
symbol referenced, or the new value can be forced to match under the type coer­
cion rules given in Chapter 3.

The debugger displays an error message if the change value yields the wrong type.

Example

*buffer.str[buffer.index] = 'x'

*buffer.index = buffer. index + 1

*term. factor _1_ value = 0

*:dc.variable_table['a'] = -23

Change Name Scope

This section explains how to move the debug cursor to a new location, thus chang­
ing the current name scope (CNS).

Syntax

NAMESCOPE [= expression]

where:

expression is the location to which the debug cursor is to be reset.

Description

If you do not specify an expression, PSCOPE displays the address of the current
name scope. Changing the current name scope affects the set of symbols to which

PSCOPE-86

PSCOPE Examining and Modifying Program Symbols

the debugger has access. However, changing the current name scope does not acti­
vate symbols that are not already active.

Note that the dollar sign ($) is a predefined symbol equivalent to the current exe­
cution point. Entering:

NAMESCOPE = $

retur;s the current name scope to the current execution point.

Resuming program execution (using GO, $STEP, or PSTEP) automatically resets
the debug cursor to the current execution point.

Example

The following example illustrates how changing the current name scope affects the
lookup of a partially qualified reference to the procedure DIGIT in the sample pro­
gram DC (found in Appendix E):

*get_token.digit
1 C50H :02D2H
*digit
DIGIT
ERROR #12: Symbol not known in current context.
*namescope = get token
*digit -
1 C50H :02D2H

Active Function

The ACTIVE function determines if a program object is active at the point where
execution was suspended. ACTIVE tell you if a stack-based variable is currently al­
located and accessible.

ACTIVE (symbolic-reference)

where:

symbolic-reference is any program symbol, fully or partially qualified.

Description

ACTIVE is a Boolean function which indicates whether a symbolic-reference
refers to a program object that can be displayed or modified at the current execu­
tion point. Statically allocated variables are always active. Dynamically allocated
(stack-based) variables are active if they are available in the current (top) stack
frame. ACTIVE returns a TRUE if symbolic-reference is active and a FALSE if it
is not.

5-7

Examining and Modifying Program Symbols

5-8

Example

*ACTIVE (:dc.factor.expression value)
TRUE -
*if ACTIVE(op} then write 'op = ',op
.* else write '-op not active-'
.*endif
-op not active-

Display Memory

This section explains how to display the contents of one or more memory
locations.

Syntax

memory-type start-address [length-specifier]

where:

memory-type is one of the predefined memory types listed in Table 5-1.

start-address is the address of the first location in memory to be displayed,
expressed with an expression. Recall that you can obtain the address of
a symbol by prefixing the symbol with the dot operator.

length-specifier is one of the following:

LENGTH expression specifies the number of adjacent objects of the
specified memory type to be accessed.

TO end-address specifies the last address of a range of memory to be
displayed

Description

You can specify portions of memory you want displayed using memory-type
(indicates the memory type to be used in displaying that portion of memory). The
memory address is displayed first (as a pointer value), followed by the value (s) at
that location.

Example

*char .buffer.str[1] to .buffer.str[buffer. "length]
1CCBH:0018H '1 +2+3+4+5+'

The following example references the CHAR variable c (in the sample program
DC found in Appendix E) as a BYTE. Displaying memory as BYTE values also dis­
plays them as CHARs, as shown below:

*byte.c
1 CCBH:0074H 97 'a'

PSCOPE-86

PSCOPE Examining and Modifying Program Symbols

Modify Memory

This section explains how to modify the contents of one or more memory
locations.

Syntax

mem-type start-addr [length-specifier] = chg-value

where:

mem-type is one of the memory types shown in table 5-1.

start-addr is the first memory address to be displayed.

length-specifier is one of the following:

LENGTH expression specifies the number of adjacent objects of the
specified memory type to be displayed.

TO end-addr is the last address of a range of memory to be displayed.

chg-value is the new value to which the contents of the specified memory lo­
cations are to be set; chg-value is one of the following:

expression [,expression]*

mem-type start-addr [length-specifier]

Description

The change value must be of a type that either matches the memory type or can be
forced to match under the type coercion rules given in Chapter 3. The debugger
displays an error message if the change value is the wrong type.

5-9/5-lO

CHAPTER 6
CONTROL CONSTRUCTS

This chapter describes the four control constructs used in PSCOPE's command
language; REPEAT, COUNT, IF, and DO.

The IF construct conditionally executes commands. The REPEAT and COUNT
constructs repeat a sequence of debugger commands under the control of a variety
of exit conditions. The DO construct groups multiple commands and treats them
as a single command.

The level to which you can nest REPEAT, COUNT, IF and DO control constructs
depends upon the amount of workspace available to the debugger.

After you enter the first line of a compound command, each subsequent line dis­
plays a prompt preceded by a dot (.). The dot indicates that the line is inside a com­
pound construct. The number of dots preceding the prompt indicates the current
nesting level.

The REPEAT and COUNT Constructs

The REPEAT and COUNT constructs let you repeat a sequence of debugger com­
mands controlled by any number of exit conditions.

Syntax

or

REPEAT
[loop-item] *

ENDREPEA'f

COUNT expression
[loop-item] *

END COUNT

where:

loop-item is any of the following:

command is any debugger command.

WHILE expression

UNTIL expression

expression is any expression that can be forced to a Boolean value.

Description

The loop-item of the REPEAT command executes until an UNTIL expression
evaluates to TRUE or until a WHILE expression evaluates to FALSE.

6-1

Control Constructs

6-2

The COUNT command is evaluated similarly, but the number of times that the
loop body is executed is bounded by COUNT expression. COUNT expression is
evaluated only once, when the command is first encountered.

If you prefer, you can use END in place of END REPEAT or ENDCOUNT.

Example

The following example uses REPEAT to implement a form of data breakpoint:

*repeat
.*Istep
.*until :dc.c = '+'
. *endrepeat

The following example steps through 10 statements and then stops:

*COUNT 10
.*LSTEP
.*END

The IF Construct

The IF construct lets you conditionally execute commands.

Syntax

IF expression THEN
[command] *

[ORIF expression THEN
[command] *] *

[ELSE
[command]*]

ENDIF

where:

expression is any expression that evaluates to a Boolean value.

command is any PSCOPE command.

Description

The IF construct contains an IF clause, any number of ORIF clauses, an optional
ELSE clause, and a closing ENDIF.

PSCOPE evaluates IFs as follows:

• If the IF expression evaluates to TRUE, PSCOPE executes the command list
following the IF expression up to the first ORIF clause, the ELSE clause, or
the ENDIF.

• If the IF expression is FALSE, PSCOPE evaluates the subsequent ORIF
clauses in order until it finds an ORIF expression that is TRUE, in which

PSCOPE-86

PSCOPE-86 Control Constructs

case it executes the ensuing command list up to the next ORIF clause, ELSE
clause, or ENDIF.

• If the IF clause is FALSE and there are no TRUE ORIF clauses (or no ORIF
clauses at all), PSCOPE executes the ELSE clause (if present) up to the
ENDIF.

• If the IF clause and no ORIF clauses are TRUE and no ELSE clause is
present, PSCOPE resumes execution with the first executable statement fol­
lowing the IF construct.

You may use END, if you prefer, in place of END IF.

Example

*IF 1 == 2 THEN
. * 'THIS SHOULDN"T BE PRINTED'
.*ORIF 2 == 2 THEN
.* 'THIS SHOULD BE PRINTED'
.*ELSE
.* 'THIS ALSO SHOULDN"T BE PRINTED'
.*END
THIS SHOULD BE PRINTED

The DO Construct

The DO construct lets you group commands.

Syntax

DO
[command] *

END

where:

command is any PSCOPE command (with a few restrictions, like LOAD and
INCLUDE).

Description

Debugger objects defined in a DO block (using the DEFINE command described
in Chapter 7) are local to that block and supercede any previously defined debug­
ger symbols with the same names. You can define global debugger symbols within
a DO block by using the GLOBAL option on the DEFINE command.

You can nest DO blocks; however, each DO must have a corresponding END. A
DO block is not complete (and is not executed) until PSCOPE reaches its match­
ingEND.

6-3/6-4

CHAPTER 7
DEBUG OBJECT

MANIPULATION COMMANDS

Debug objects, which you define during the debugging session, are symbolic enti­
ties similar to the variables and procedures in your program. Debug objects can be
variables of any memory type, command abbreviations, debug procedures, code
patches, or a collection of breakpoints and trace points.

Note that PSCOPE uses the same commands to display, modify, and obtain a
directory of program objects and debug objects. Program objects are part of a
program; they are accessible to PSCOPE when the program is loaded and are inac­
cessible when a different program is loaded. Debug objects are not tied to any par­
ticular program. PSCOPE has explicit commands to define debug objects, to
remove them, and to save their definitions.

This chapter describes the commands used to manipulate debug objects:

Define Debug Object

Display Debug Object

Modify Debug Object

Remove Debug Object

Putl Append Debug Objects

Debug Objects

Like objects in a program, debug objects have a name and a type. The DEFINE
command that creates the debug object specifies the name and type. Debug objects
are either global or local.

Global debug objects exist from the time you create them until you remove them
with the REMOVE command. (The LOAD command implicitly removes some
global debug objects. Chapter 4 describes the LOAD command.) Local objects can
exist only within PSCOPE's DO blocks. PSCOPE automatically removes them
when control passes out of the DO block within which they were defined.

Like keywords, debug object names have precedence over program symbol
names. Thus, to access a program symbol with the same name as a debug object,
you must prefix the program symbol with quotation marks ("). ("Referencing
Names" in Chapter 3 discusses how to do this.)

Some debug object names also have precedence over other debug object names.
Local debug objects have precedence over global debug objects of the same name.
Likewise, the most recently defined local debug object takes precedence over
other local debug objects with the same name.

You must remove a global debug object's name (with the REMOVE command)
before you can redefine the global debug object to be a different type. You can
define a local debug object with the same name as a global debug object without af­
fecting the definition or value of the global debug object.

7-1

Debug Object Manipulation Commands

7-2

You cannot find the address of a debug object using the dot operator (.) explained
in Chapter 3. PSCOPE displays an error message if you try.

Debug objects can have any of the memory types or debug types specified in Table
3-5. The properties of the debug objects depend on their type.

Memory Type Debug Objects

In general, you can use a debug object defined as a memory type (BYTE, WORD,
INTEGER, REAL, etc.), like a program variable of that type (in expressions, to
display and modify). Hence, a memory type debug object is a debug variable.

Debug variables of type CHAR have more capabilities than CHAR variables in a
Pascal-86 program. Debug variables can be assigned string values from 0 to 254
characters, including the results the PSCOPE built-in string functions CONCAT
and SUBSTR return.

Debug Type Debug Objects

A debug object defined to have one of the five debug types listed in table 3-5 has
different properties from those of program objects.

LITERALLY s are string-replacement macros. When PSCOPE finds a symbol that
is a LITERALLY name, it replaces the LITERALLY name with the string value
associated with that name Gust as in PL/M). LITERALLYs provide a convenient
way to abbreviate commands and keywords.

The debug type debug objects are:

Type

PROC
BRKREG
TRCREG
PATCH

Description

Debug procedure
Group of Breakpoints
Group of Tracepoints
Debug patch code

Reference

Chapter 8
Chapter 11
Chapter 11
Chapter 9

You must redefine debug type objects in order to change their definitions. Use the
EDIT command to recall the previous definition of a debug type object in order to
redefine it.

The DEFINE Command

The DEFINE command creates a debug object.

Syntax

DEFINE [GLOBAL] ~ symbol-name [= value]

PSCOPE-86

PSCOPE-86 Debug Object Manipulation Commands

where:

GLOBAL indicates that the debug object will be global. Debug type debug
objects are always global; the GLOBAL option is not allowed for these
objects. Memory type debug objects are local unless they are defined
inside a PSCOPE DO block. Hence, use the GLOBAL option for
memory type objects inside a DO block that you do not want to be auto­
matically removed when control passes out of that block.

~ is any of the memory types or debug types shown in Table 3-5.

symbol-name is any name other than a PSCOPE keyword (for local objects)
or a keyword or existing debug object name (for global debug objects).
The name can be up to 254 characters long; the first 40 characters must
be a unique combination.

value is the value to be assigned to the debug object. value can be the result
of evaluating an expression. PSCOPE assigns a null value if you do not
give a value. value is required for debug type debug objects. value is op­
tional for memory type debug objects.

Description

The DEFINE command creates a debug object with the name, type, and value you
specify. If the object being defined is a memory type, the debug object has the
same properties as a program variable of the same type. Memory type debug ob­
jects can be any of the object types listed in Table 3-5, but cannot be a user-defined
type. You cannot use the same name for two different debug objects unless a
debug object is defined locally within a DO block. When PSCOPE exits the block,
PSCOPE automatically removes the local debug object. You can then assign the
name to another object of a different type for use in another block.

The DEFINE command lets you optionally assign initial values to the objects
being defined.

Example

The following example illustrates memory type debug variables.

*define byte nurn
*define integer i = 13
*do
. *define word local word = 2 * i
.*end -
*define char char _1 = 'this is a string'

The following example illustrates LITERALLYs.

*define literally lit = 'literally'
*define lit def = 'define'
*def lit el = 'eva I $ line'

7-3

Debug Object Manipulation Commands

7-4

The Display Command

The Display command displays the values of debug objects.

Syntax

[~] symbol-name

where:

~ defines the debug symbol. If you specify~, PSCOPE displays the defi­
nition of the debug symbol. If you omit ~, PSCOPE expands the
symbol (for LITERALLYs) or executes the symbol (for PROCs). You
must enter ~ to display any of the following:

• LITERALLY
• PROC
• PATCH
• BRKREG/TRCREG

symbol-name is the name of a previously defined debug object.

Description

For program symbols and memory-type debug variables, you can access the value
of a symbol by entering the symbol name. PSCOPE displays the value of the
symbol on the following line. Similarly, you can access the value in an expression
by entering the name of the symbol.

For debug objects of any of the debug types, you can access the definition of the
debug object by entering the type, followed by the symbol name. PSCOPE displays
the definition of the named object.

Example

Suppose you defined a memory type debug variable as follows:

*define word w1 = 400

Entering the symbol name yields the value shown below:

*w1
400

However, a debug type debug object functions differently. Consider the following
LITERALLY definition:

*define literally w = 'write'

Entering w by itself automatically expands the LITERALLY, as though you en­
tered write. You can display w definitions by preceding the w with its type, as
follows:

*literally w

PSCOPE-86

PSCOPE-86 Debug Object Manipulation Commands

PSCOPE responds by printing the following:

define literally W = 'write'

which is the definition ofw.

The Modify Command

The Modify command modifies the previously defined value of a memory type
debug symbol.

Syntax

name = value -- --
where:

name is the name of a memory type variable.

value is the new value to be assigned to the debug symbol.

Description

value's type must be the same as name's type, or you must be able to force that
type (using the type coercion rules described in Chapter 3). PSCOPE displays an
error message if the change is not possible. Note that the Modify command for
debug memory type variables has the same syntax as the modify command for pro­
gram symbols.

The Modify command works only with memory type objects. You must redefine a
debug type object in order to modify it.

Example

The following example shows the operation of the modify command:

*define integer i = -150
*i
-150
*i = -2 * i
*i
+300

7-5

Debug Object Manipulation Commands

7-6

The REMOVE Command

The REMOVE command deletes one or more debug symbols from the debug
symbol table by symbol name and/or object type.

Syntax

REMOVE remove-list

where:

remove-list is one of the following:

DEBUG

remove-item [, remove-item] *

Description

remove-item is one of the following:

memory-type is one of the memory types given in Table 3-5.
PSCOPE delete all debug symbols of the specified type.

debug-type is one of the debug-types given in Table 3-5.
PSCOPE deletes debug symbols of the specified type.

PATCH expression is an expression yielding an address
where you set a patch. PSCOPE removes the patch at
this location.

symbol-name is the name of a debug symbol of any memory
type or debug type (except patch). PSCOPE deletes
the specified symbol.

The REMOVE command deletes global debug objects. The user specifies the
debug type or memory type object (or a list of objects) to be deleted by name
and/or type. Specifying DEBUG instead of a list of types and/or names removes all
debug objects.

Do not use the REMOVE command to delete local debug objects; PSCOPE auto­
matically deletes them once control passes out of the PSCOPE DO block in which
they are defined.

Example

*remove proc
*remove i
*remove debug
*remove proc, i

/* Remove all PROCs
/* Remove the single object i
/* Remove all debug symbols
/* Remove all PROCs and i

*/
*/

*/
*/

PSCOPE-86

PSCOPE-86 Debug Object Manipulation Commands

The PUT and APPEND Commands

The PUT and APPEND commands save the definitions of the debug objects in a
disk file.

Syntax

PUT pathname put-list

APPEND pathname put-list

where:

pathname is the path name that identifies a file (or any output device)
to which you want to send the text containing the debug object
definitions.

put-list is one of the following:

DEBUG

put-item [, put-item]*

put-item is one of the following:

memory-type is one of the memory types given in Table
3-5. PSCOPE saves the definitions of all debug sym­
bols of the specified type in the specified file.

debug type is one of the debug types given in Table 3-5.
PSCOPE saves definitions of all debug symbols of
the specified type in the specified file.

PATCH expression is an expression yielding an address
where you set a patch. PSCOPE saves the patch at
this address in the specified file.

symbol-name is the name of a debug symbol of any
memory type or debug type (except PATCH).
PSCOPE save the definition of the specified debug
symbol in the specified file.

Description

The PUT and APPEND commands place definitions of the specified objects in the
selected disk file (or the specified output device). (You can retrieve the definitions
with the INCLUDE command described in Chapter 10.)

PUT creates a new file to contain the specified definitions, unless a file of that
name already exists. In that case, PUT replaces the old file with a new file contain­
ing the definitions.

APPEND adds onto the end of an existing file or creates a new file if the specified
file does not already exist.

7-7

Debug Object Manipulation Commands

7-8

For debug type debug objects, the entire definition text (including the value
portion) is placed in the specified file. For memory type debug variables, only the
type and name are included in the object definition because memory type debug
objects can be easily changed using the Modify command, whereas debug type
debug objects must be redefined.

Note that except for the file specification, the formats of the PUT and APPEND
commands are identical to the REMOVE command's format.

Example

*define literally lit = 'literally'
*define lit def = 'define'
*def lit stacktop = 'word ss:sp'
*def integer i = 13
*def word j = 100
*put defs.mac debug

The file DEFS.MAC contains the following:

define literally lit = 'literally'
define literally def = 'define'
defliterally stacktop = 'word ss:sp'
define integer i
define word j

Note that the values of the memory type variables i andj are not saved.

The following PUT command

put defs2.mac lit, def, integer

places the following text into the file DEFS2.MAC:

define literally lit = 'literally'
define literally def = 'define'
define-integer i

Note that in this example, lit is not expanded to literally when it appears in the
PUT command. PSCOPE treats lit as the name of a debug object that happens to
be a LITERALLY. The same is true for the REMOVE command and, in fact, for
all commands that let you specify a debug object by name.

PSCOPE-86

CHAPTERS
DEBUG PROCEDURES

PSCOPE lets you define debug procedures to expand the debugger command lan­
guage and aid development of the program you are debugging. Debug procedures
are one ofPSCOPE's most powerful features.

You can use debug procedures (whose type is PROC) to: automate the software
test process, set up breakpoints based on data values or Boolean conditions, and
put together complex commands using PSCOPE's command language. Debug
procedures let you use parameters (LITERALLYS do not).

This chapter explains debug procedures basics: how to define them, return values
from them, make calls to them, and remove them.

Define Debug Procedure

The DEFINE command defines a debug procedure.

SYNTAX

DEFINE PROC name = command

where:

name is any name except a reserved keyword. name can be up to 254 charac­
ters long, of which the first 40 must be a unique combination.

command is a PSCOPE command.

Description

A debug procedure contains a single PSCOPE command. This command is usually
a DO construct, which allows mUltiple commands and the declaration of local
variables.

A debug procedure does not execute when it is defined, only when it is called.
PSCOPE checks syntax when you define the debug procedure. However, if you
define a debug procedure within another debug procedure, PSCOPE does not
define the inner debug procedure until the enclosing debug procedure is called.
Note that while you can define a debug procedure within another debug
procedure, all debug procedures are global.

PSCOPE determines the types of all objects in the debug procedure when you
define the debug procedure. Changing the type and/or definition of an object refer­
enced in a debug procedure before you execute it can cause errors when you run
the debug procedure.

Referencing actual and formal parameters when you execute a debug procedure is
described later in this chapter.

8-1

Debug Procedures

8-2

Debug Procedure Calls

You can call debug procedures using the syntax shown below.

Syntax

name [(expr[, exprl *])

where:

name is the name of the debug procedure.

expr is any expression yielding a numeric or string value that is to be passed
as an actual parameter in the debug procedure.

Description

PSCOPE executes the command specified in the debug procedure definition.
PSCOPE substitutes the values of expr for the actual parameter specifier during
the execution of the command.

You can call a debug procedure in three ways:

• In response to a PSCOPE prompt.

• As an operand of an expression.

• On reaching a breakpoint or trace point that uses the CALL option (as ex­
plained in Chapter 11).

Debug Procedure Return

You can return a value from a debug procedure by placing the RETURN command
in the debug procedure.

Syntax

RETURN [exprl

where:

expr is any expression.

Description

PSCOPE returns the null value if you do not specify expr. This can cause a type
conversion error if you use the debug procedure as a function.

PSCOPE displays the expr value if you use a RETURN command outside a debug
procedure. PSCOPE displays an error message if it expects a return value (such as
when the debug procedure is used in an expression) but no RETURN is executed.
Return values are required from debug procedures used as operands in expressions
or automatically called upon reaching a breakpoint or tracepoint (but not from
debug procedures called in response to a PSCOPE prompt).

PSCOPE-86

PSCOPE-86 Debug Procedures

Accessing Debug Procedure Parameters

You can reference the values of the parameters passed to the debug procedure
when it executes.

Syntax

% parameter

where:

parameter is one of the following:

integer-constant is an arbitrary unsigned integer constant specifying
which parameter you desire. Note that %0 specifies the first
parameter in the list of parameters passed to the debug
procedure, %1 specifies the second parameter in the list, and so
forth.

(expr) is an expression that specifies the desired parameter.

NP is the total number of parameters in the parameter list passed to the
debug procedure. PSCOPE does not limit the number of parame­
ters that you can pass to a debug procedure.

Description

All parameters are passed by value and are local to the specific execution of the
debug procedure to which they are passed. Thus, you can call debug procedures
recursively.

A debug procedure cannot assign new values to the parameters passed to it.

PSCOPE displays error messages if you try to access non-existent parameters or
try to access parameters when no debug procedure is executing.

Example

The following debug procedure executes a recursive factorial function:

*define proc factorial = do
. *if %0 < 2 then return 1
.. *else return %0 * factorial(%O - 1)
.. *endif
.*end

*factoriaI(5)
120

8-3

Debug Procedures

8-4

The following debug procedure returns the sum of all the parameters passed to it:

*define proc sum = do
· *define longint n = 0
· *define integer i = 0
.*count %np
.. *n = n + %(0
.. *i = i + 1
.. *endcount
.*return n
.*end

*sum(1,2,3,4)
+10

*sum(factoriaI(3), factorial(4»
+30

The following debug procedure lets you trace a byte value every time it is modified
in a program:

* define proc trace byte = do
· * define byte curre-nt value = byte %0
· * write 'value =', current value
· * repeat until $ == % 1 -
.. * Istep
.. * if current value < > byte %0 then
... * current value = byte %
.. .* eval $Ime
.. .* write 'value =', current value
.. .* endif -
. .* endrepeat
· * eval $ line
.* end

* trace byte (.c, get line)
value ~ 32 -
:DC#

PSCOPE-86

CHAPTER 9
CODE PATCHES

This chapter shows you how to define, display, and remove code patches from
your program.

This chapter describes the following commands:

Define Patch

Display Patch

Remove Patch

Defining a Patch

The DEFINE command is used to create a PATCH.

Syntax

DEFINE PATCH addrl [TIL addr2] = patch-value

where:

addrl and addr2 are expressions which evaluate to a program location (e.g.,
--line, procedure, or label reference, preceded by a module name if

necessary) .

patch-value is one of the following:

command is any PSCOPE command, except LOAD, GO, LSTEP, or
PSTEP. Use a compound construct (see Chapter 6) to specify
more than one command.

NOP is a special command which implies that no operation is to be per­
formed in the patch. When used with TIL addr2, NOP allows
statements in your program to be effectively deleted.

Description

A PSCOPE patch is a PSCOPE command that is executed prior to a statement in
your program or instead of a sequence of statements in your program. Like all
other PSCOPE commands, patches are interpreted (rather than translated).

Patches are active as soon as you define them and remain active until you remove
them. Note that the LOAD command implicitly removes them.

You are allowed only one patch per address; PSCOPE replace the first patch if you
specify a second patch.

If you specify only addrl, then program execu tion resumes at addr 1. If you specify
both addrl and addr2, then program execution resumes at addr2. In either case
the patch may have changed the execution point (by reassigning $ or cs:ip), in
which case execution resumes at the reassigned location.

9-1

Code Patches

9-2

PSCOPE executes patches after it handles any breaks or traces at the same
location. (Chapter 12 discusses break and trace commands.)

PSCOPE executes command (or NOP) upon reaching but before executing addrl.

Be careful not to overlap patches. For example, because

DEFINE PATCH #10 TIL #15

and

DEFINE PATCH # 13 TIL# 18

overlap, PSCOPE ignores part of the second patch. The first patch skips lines 10
through 14 and resumes at line 15; PSCOPE will not see the patch at line 13.

You can stop program execution and set the execution point to the location where
the patch exists by pressing CNTL-C while executing the patch.

Example

The following patch inserts a command before statement 10:

*define patch #10 = write 'x = ',x

This patch skips statement 15:

*define patch 15 til16 = NOP

Displaying a Patch

This section shows you how to display patches.

Syntax

PATCH addrl

where:

addrl is an expression that evaluates to a location in your program that is the
beginning of a patch.

Description

PSCOPE displays the patch that begins addrl.

Since addr is an expression, you can use any other expression which evaluates to
the same program location to reference a patch. However, do not use a symbol
whose name is a constant but whose value changes (e.g., $) as a patch name.

PSCOPE-86

PSCOPE-86

Example

The following example displays a patch in the sample program DC (found in Ap­
pendix E):

*define patch #41 = write 'enter get line'
*patch #41 -
define patch #41 = write 'enter get_line'

Removing a Patch

You can delete patches with the REMOVE command.

Syntax

REMOVE PATCH [addr]

where:

addr is the location of the patch you want to remove.

Description

The REMOVE command lets you delete the patch at addr. If you do not specify
addr, PSCOPE deletes all patches. PSCOPE displays an error message if you try to
remove a patch which you have not defined.

This syntax is required regardless of which form of the DEFINE command you
used to define the patch.

Example

The following example removes the patch at line (or statement) 10:

*remove patch #10

Code Patches

9-3/9-4

CHAPTER 10
UTILITY COMMANDS

AND STRING FUNCTIONS

SCOPE furnishes a variety of utility commands. This chapter discusses these
commands, which include:

• EXIT

• DIR
• CALLSTACK

• HELP
• LIST INOLIST

• INCLUDE

• EVAL

• BASE

• WRITE

This chapter also describes the following PSCOPE built-in functions:

• SUBSTR

• CONCAT

• STRLEN

• CI
• SELECTOR$OF

• OFFSET$OF

The EXIT Command

The EXIT command ends the debugging session.

Syntax

EXIT

The EXIT command has no arguments.

Description

The EXIT command automatically closes all open files, prints a termination
message, and returns you to the host operating system.

Example

*exit
PSCOPE terminated

/* User ends debug session * /
/* PSCOPE prints termination message * /

10-1

Utility Commands and String Functions

10-2

The DIRectory Command

The DIR command displays the names of all objects of a specified type that are
found in a specified set of symbols. The set of symbols can be either program sym­
bols or debug symbols.

Syntax

DIR [directory] [~]

where:

directory is one of the following:

DEBUG specifies that the symbols PSCOPE displays come from the set
of debug symbols (those that were created with the DEFINE
command).

PUBLIC specifies that the symbols PSCOPE displays are those found in
the user program and that only those symbols with the PUBLIC
attribute are to be listed.

module-name specifies that the program symbol table (as opposed to
the debug symbol table) is to be used for the directory and that
symbols in only the specified module are to be listed.

~ is any type (memory, debug, or user). PSCOPE lists only objects of the
specified type.

Description

The DIR command displays the names and types of the set of objects that
PSCOPE recognizes. You can list either program symbols or debug symbols with
the DIR command.

PSCOPE lists all symbols from the specified directory if you do not specify~.

If you do not specify directory, PSCOPE uses the current module of the user
program, unless ~ implies that PSCOPE uses the debug directory.

Example

Suppose that you entered the following commands:

*define literally lit = 'literally'
*define lit def = 'define'
*Ioad dc.B6

The following command lists all debug symbols:

*dir debug
DEF literally
LIT literally

PSCOPE-86

PSCOPE-86 Utility Commands and String Functions

The following command lists all symbols in the module DC. The indentation
within some of the procedures indicates local symbol definitions:

*dir :dc
DIR of :DC
PO OUTPUT TEXT (tile)
PO-INPUT TEXT (file)
@ fOOD label
@9999 label
T .. TOKEN (record)
C .. char
BUFFER TEXT BUFFER (record)
VARIABLE TABLE array of integer
ERROR . -:. .. procedure
E .. ERROR CLASS (enumeration)
GET LINE .. procedure
GET-TOKEN procedure

DiGIT . procedure
C char

UPPER CASE procedure
C .-... .. char

LOWER CASE procedure
C . :-. .. char

GET CHAR .. procedure
FACTOR .. procedure
FACTOR VALUE integer
EXPRESSION VALUE integer
VARIABLE INDEX ., char
TERM .. -:. procedure
TERM VALUE integer
FACTOR 1 VALUE integer
FACTOR-2-VALUE integer
OP ... :-.:-....................... char
EXPRESSION procedure
EXPRESSION VALUE integer
TERM 1 VALUE integer
TERM-2-VALUE integer
OP .-:. -:. .. char
STATEMENT procedure
EXPRESSION VALUE integer

In the following example, PSCOPE assumes module DC because the user did not
specify a module. Note that additional qualification indicates local (not module
level) symbols.

*dir procedure
DIR of :DC
ERROR
GET LINE
GET-TOKEN
GET-TOKEN.DIGIT
GET-TOKEN.UPPER CASE
GET-TOKEN.LOWER- CASE
GET-TOKEN.GET CHAR
FACTOR -
TERM
EXPRESSION
STATEMENT

In the following example, the user does not specify a module, but the type speci­
fied is a debug type. Hence, PSCOPE uses the debug symbol table for the
directory:

*dir literally
DEF
LIT

10-3

Utility Commands and String Functions

10-4

The CALLSTACK Command

The CALLSTACK command displays your program's dynamic calling sequence.

Syntax

CALLSTACK [g]

where:

Q is an optional integer expression that indicates how much of the call stack
you want to see.

Description

Using the CALLSTACK command, you can symbolically display the current
chain of procedure calls in your program. In response to this command, PSCOPE
prints a sequence of fully qualified references to procedures, one per line. The
reference listed first is the point to which execution control will return when the
current procedure returns (its return address). The second entry is the return ad­
dress for the procedure that called the current procedure, and so on.

The optional expression 11 indicates how much of the call stack you want PSCOPE
to display. PSCOPE displays the entire call stack if you do not specify n.. A positive
11 value indicates that the first 1l entries are to be displayed (the 11 most recent
procedure calls). A negative!!. value indicates that the bottom !l entries of the call
stack are to be displayed (the nleast recent procedures).

Note that the CALLSTACK command works only when the current execution
point is inside a module for which PSCOPE has symbol information.

Example

*Ioad dc.86
*go til get_char
[Break at get char]
*callstack -
:DC.GET TOKEN +323
:DC.FACfOR + 156
:DC.TERM + 15
:DC.EXPRESSION + 37
:DC.STATEMENT + 15
:DC+1787

PSCOPE-86

PSCOPE-86 Utility Commands and String Functions

The HELP Command

The HELP command displays explanatory text about various topics, including
PSCOPE commands and extended messages for those errors whose primary error
message ends with [*].

Syntax

HELP [topic]

where:

topic is one of of the following;

topic-name is the topic name for which you want help information.

En is the error number for which you want the extended error message.
Note that the form EQis used even for warnings.

Description

If you do not specify topic, PSCOPE lists all topics for which help is available.

Example

The following example shows how the HELP command is used to get information
about the BASE command.

*help base

BASE

... (The help information is printed here.)

The following example shows what happens when you request HELP on a topic
for which there is no HELP information.

*help problem

PROBLEM

< sorry, but no help is available>

10-5

Utility Commands and String Functions

10-6

The LIST and NOLIST Commands

The LIST command puts all of PSCOPE terminal output into the specified file,
and NOLIST closes the file.

Syntax

LIST [file-name]

NOLIST

where:

file-name is the name of the file into which all PSCOPE terminal output is
placed.

Description

The LIST command sends all PSCOPE output to the specified file. If you do not
specify file-name, PSCOPE displays the name of the currently selected LIST file.

NOLIST closes the currently active LIST file (if any). Changing LIST files closes
the old LIST file.

Note that PSCOPE sends only PSCOPE terminal output to the file. PSCOPE does
not send any terminal output printed by a user program to the LIST file.

Example

*list exampl.log
*list
exampl.log
*nolist

PSCOPE-86

PSCOPE-86 Utility Commands and String Functions

The INCLUDE Command

The INCLUDE command gets input from a file.

Syntax

INCLUDE file-name [NO LIST]

where:

file-name is the name of the file from which input is to be taken.

NOLIST suppresses echoing of the selected file's input on the screen.

Description

The INCLUDE command takes input from file-name until it reaches the end of
the file, at which point input continues from the previous source.

INCLUDE commands may be nested. The level of nesting depends upon available
memory.

You can enter INCLUDE commands from the terminal; they must be the last
command on a line.

Depending on the severity of the error, an error in the INCLUDE file returns exe­
cution to the next command or to the standard command level.

Example

*include regs.inc
include file2 nolist / Suppress printing of contents * /

The EVAL Command

The EVAL command has two forms. The first form evaluates expressions and
prints the results. The second form displays program locations symbolically.

Syntax

EVAL expr [eval-type]

where:

expr is the expression to be evaluated.

eval-type is one of three optional evaluation types:

LINE
PROCEDURE
SYMBOL

indicates line number
indicates procedure name
jndicates a fully-qualified reference

10-7

Utility Commands and String Functions

10-8

Description

EVAL prints the results of the expression according to the inClicated eval-type.
EVAL can evaluate an expression in different bases or as a program symbol or line
number.

If you do not specify eval-type, the value of expr is printed in the following
manner, depending upon its type:

Type

BYTE
BOOLEAN
WORD
ADDRESS
SHORTINT
INTEGER
LONGINT
SELECTOR
DWORD

POINTER

REAL
LONGREAL
TEMPREAL
EXTINT
BCD

CHAR

Form of EVAL Display

All 3 bases (binary, decimal, hex) and ASCII

seg:off (hex) and 20-bit normalized address

Hexadecimal bytes

Note that PSCOPE prints non-printing ASCII characters as a dot (.).

If you specify eval-type, PSCOPE tries to find a program symbol whose address is
equal to the value obtained by evaluating the expression.

If eval-type is LINE, then PSCOPE displays the following:

:module-name # line-number [+ offset]

where:

module-name is the name of the module in which the address occurs.

line-number is the nearest line number in that module-name to that address.

offset is the amount by which the address exceeds the exact address of line­
number.

If eval-type is PROCEDURE, then the message displayed is:

:module-name Lprocedure-name]* [+ offset]

PSCOPE-86

PSCOPE-86 Utility Commands and String Functions

where:

module-name is the name of the module in which the address occurs.

procedure-name is the name of the procedure that most nearly matches the
address.

offset is the amount by which the address exceeds the exact address of the
procedure-name.

If eval-type is SYMBOL, then the message displayed is:

fully-qualified-reference [+ offset]

where:

fully-qualified-reference is a fully qualified reference, such as ds:token_l.m.

offset is the amount by which the address exceeds the exact address of fully­
qualified-reference.

Example

*eval $ procedure
*eval$
*eval ds:14h symbol

The BASE Command

The BASE command establishes the default base for numeric constants during
input and output.

Syntax

BASE [= expr]

where:

expr is an expression that evaluates to 2, 10, or 16 (decimal).

Description

PSCOPE displays the current default base in the current base if you enter BASE
without expr.

You can modify BASE by setting it to an expr whose value is 2, 10, or 16 (decimal
values). Note that BASE acts like a variable; it is assigned a value or displayed just
like a BYTE debug variable.

The initial default base is decimal. During input, you can override the default base
by putting an explicit base suffix on the constant (for example, 12t).

10-9

Utility Commands and String Functions

10-10

Note that PSCOPE command processing goes through two steps:

• Scanning for syntax errors and figuring what to do.

• Executing the command.

PSCOPE evaluate numeric constants during the first phase of command
processing. PSCOPE assigns values to variables during the second phase. Thus,
commands such as

*base = 10t
*base = 16; VAR1 = 10

give VAR1 the value 10 (decimal), not 16 (decimal), because PSCOPE scans the
entire second command line before either of the two commands in the command
line are executed. Thus, the numeric constant 10, in the second command line, is
interpreted as 10 (decimal). If you want VAR1 interpreted as 16 (decimal), put
the expression VAR1 = 10 on a separate line, as shown below:

*base = 10t
*base = 16
*VAR1 = 10

Example

*base = 16t
*base = OA

The WRITE Command

The WRITE command lets you display and format information at the terminal.

Syntax

WRITE [USING (string-spec)] [expr [, exprl *]

where:

USING lets you control output using a format string.

string-spec is an expression that evaluates to a string.

expr is an expression whose value you want to display at the terminal.

Description

The WRITE command displays the items in its argument list at your terminal.

In its simplest form, the WRITE command lets you print a list of expressions.
PSCOPE prints the value to be printed according to the current output base.

PSCOPE-86

PSCOPE-86 Utility Commands and String Functions

The USING option lets you control output using a format string consisting of
format items separated by commas. PSCOPE recognizes the following format
items:

n Decimal number specifying the width of the output field. PSCOPE
determines the format of the field by the type of the expression in the
argument corresponding to this format item. If n = 0, then PSCOPE
uses the normal display length of the item without padding or trunca­
tion for the width of the output field.

nC Move output buffer pointer to column n (first column is 1.)

nX Skip nspaces in the output buffer.

H Set WRITE command display base to hexadecimal.

T Set WRITE command display base to decimal.

Y Set WRITE command display base to binary.

>

&

"text"

Terminates the format string (optional).

Terminates the format string and specifies that no carriage return or
line feed is to be issued following the WRITE command.

Terminates the format string and specifies that the write output buffer
is not to be flushed at the end of this WRITE command but is to be
added to by later WRITE commands.

Puts the· text between the quotation marks (") into the output buffer.

PSCOPE reuses the format string if the argument contains more items than speci­
fied in the format string.

Example

*write 'hello'
hello

*define byte b = 5
*write using ('''b =" ,0') b
b=5

10-11

Utility Commands and String Functions

10-12

The String Functions
(SUBSTR, CONCAT, STRLEN, and cn
PSCOPE provides three string manipulation commands: SUBSTR, CONCAT, and
STRLEN. In addition, the CI function lets you enter a single character string from
the keyboard.

Syntax

SUBSTR (string-spec, start, length)

CONCAT (string-spec [, string-spec]*)

STRLEN (string-spec)

CI

where:

string-spec is an expression that evaluates to a CHAR value.

start and length are expressions that evaluate to integer values.

Description

The SUBSTR function returns the specified substring starting at start and of
length length. The first character of a string is in position 1. PSCOPE returns the
null string if arguments do not make sense (for example, negative length, start
past end of string, etc.). If start is valid but length goes beyond the end of the
string, PSCOPE returns the rest of the string beginning at start.

The CONCAT function creates a new string by concatenating specified string­
specs. You can implicitly concatenate string constants (as described in Chapter 3).

The STRLEN function returns the length of its argument string. The length of the
null string is zero. You can use the STRLEN function anywhere a number is valid.

The CI function reads one character from the keyboard and returns a string of
length one having that character as its value. When CI is referenced in an
expression, execution pauses until you enter a character. PSCOPE does not display
the entered character on the terminal screen.

Example

*define char ch1 = 'The'
*define char ch2 = ' quick'
*define char ch3 = ' brown'
*define char ch4 = ' fox'
*concat (ch1 ,ch2,ch3,ch4)
The quick brown fox

*SU BSTR (ch3, 3, 3)
row

*STRLEN (CONCAT{ch1, ch4»
7

PSCOPE-86

PSCOPE-86 Utility Commands and String Functions

The following example assumes that the character z is entered when execution
pauses during the execution of the command:

*if ci = 'z' then write 'sleepy?'
.*endif
sleepy?

The SELECTOR$OF and OFFSET$OF Functions

PSCOPE provides two functions for extracting the selector (or segment) and
offset portions of a pointer value.

Syntax

SELECTOR$OF (expr)

OFFSET$OF (expr)

where:

expr is an expression that evaluates to a pointer value.

Description

SELECTOR$OF returns the selector (or segment) portion of a pointer value.

OFFSET$OF returns the offset portion of a pointer value.

The dollar sign ($) in the names of these functions is optional (as in all PSCOPE
names) and is included here to improve readability.

Note that these functions correspond to the PL/M V2.0 functions with the same
names.

Example

*base = 16t
*define pointer p = 123:456
*p
0123H:0456H

*selector$of(p)
123

*offset$of(p)
456

1O-l3/10-14

CHAPTER 11
ADVANCED EXECUTION

AND TRACE COMMANDS

This chapter explains how to control and trace program execution. It describes the
break and trace registers, as well as how to load and use them. Automatic calling of
debug procedures, conditional break and trace, and the break/trace/patch table are
covered as well.

Breaking and Tracing

Using procedures, labels, and statements, PSCOPE's breaking and tracing com­
mands let you control and monitor the execution of the program you are
debugging.

Breaking and tracing make use of debugger objects called break registers
(BRKREGs) and trace registers (TRCREGs). Breakpoints and tracepoints are
defined and stored in these registers and activated with the GO command.

Break Registers (BRKREG)

Break registers are named registers that can hold any number of breakpoints. You
can define any number of break registers within PSCOPE's workspace limits.

Placing breakpoints in a named break register lets you easily switch active break­
points while maintaining control of program execution.

PSCOPE lets you break upon reaching a particular program location, which can be
referenced symbolically as a line number, label, or procedure (see Chapters 3 and
5) or as an actual address. In the latter case, PSCOPE assumes that the user en­
tered a valid break location. This location must be on an instruction boundary.

A break occurs when PSCOPE reaches a specified location and before execution of
the statement at that location. If you set a breakpoint at a procedure, PSCOPE
stops execution at the prologue of the procedure, before processing the declara­
tions for the procedure and before the first executable statement of the procedure.

Since BRKREG is a debug type, the standard debug object manipulation com­
mands described in Chapter 7 apply to BRKREGs. Also, you must enter the value
in the definition; it must be a list of location references (line numbers, labels,
procedures, or actual addresses) separated by commas as specified below.

11-1

Advanced Execution and Trace Commands

11-2

Syntax

DEFINE BRKREG name = break-item [, break-item] *

where:

name is the name of the break register.

break-item is:

breaks [CALL proc-name]

Description

breaks is:

break-pt [, break-pt]*

break-pt can be any expression that evaluates to a loca­
tion in your program.

proc-name is the name ofa debug procedure that returns a value.

You can create a break register with a specified name that contains all the listed
break-pt's as its breakpoints. Note that PSCOPE associates the breakpoints only
with their defined break register. Breakpoints are not active until you specify their
break register in a GO command. (The GO command is discussed later in this
chapter.)

If you specify the CALL option, PSCOPE associates proc-name with the single or
parenthesized list ofbreak-pt's preceding it.

Note that you cannot modify break registers with a PSCOPE Modify command;
you must redefine break registers. However, you can add or delete breakpoints
from an existing break register by editing the BRKREG definition with PSCOPE's
internal editor (discussed in Chapter 2) .

After you activate a break register with the GO command, program execution pro­
ceeds until PSCOPE encounters one of the breakpoints contained in that register
(i.e., program execution reaches that point). Then PSCOPE stops program execu­
tion and displays a breakpoint message. If a debug procedure is associated with the
breakpoint, PSCOPE automatically executes the debug procedure. PSCOPE con­
verts the return value from the debug procedure to a Boolean. If the Boolean value
is TRUE, PSCOPE breaks and displays a break message, as if it had not called the
debug procedure. If the Boolean value is FALSE, PSCOPE continues execution
without interruption, as if no breakpoint were there. If there is no return value,
PSCOPE detects an error and stops execution. This feature lets you set conditional
breakpoints with the decision to break based on any Boolean condition, including
program variable values or terminal input (see the CI command in Chapter 10).
Note that PSCOPE does not allow parameters on the debug procedure specified in
the CALL option.

Break messages have the form:

[Break at break-pt]

where:

break-pt is the location you specified in the definition of the break register.

PSCOPE-86

PSCOPE-86 Advanced Execution and Trace Commands

Example

Note that all the following examples use the sample program DC (shown in Ap­
pendix E).

The following example defines one break register containing four breakpoints,
each at a different procedure in DC:

*Define Brkreg break_1 = error, statement, term, factor

This break register has one breakpoint, which calls a debug procedure:

*Define Brkreg input_check = get_line CALL PROC2

The following example defines a break register with four breakpoints, two of
which call the debug procedure PRl:

*Define Brkreg special = (term, value) CALL PR1 ,
** :dc#68, :dc + 1741

Trace Registers (TRCREG)

Trace registers (TRCREG) are defined and operate almost exactly like break regis­
ters (BRKREG). The only difference is that the tracepoints contained in trace
registers do not stop program execution; they display trace messages instead.

Trace registers are named registers that can hold any number of tracepoints. You
can define any number of trace registers within PSCOPE's workspace limits.

Putting tracepoints into a named trace registers lets you easily switch active trace­
points while maintaining control of program execution.

PSCOPE lets you trace upon reaching a particular program statement, label, or
procedure.

The trace occurs when PSCOPE reaches a specified location and before execution
of the statement at that location. Tracing a procedure stops execution at the prolog
of the procedure, before the declarations in the procedure are processed and
before the procedure's first executable statement.

Since TRCREG is a debug type, the standard debug object manipulation com­
mands described in Chapter 7 apply to TRCREGs. Also, you must enter the value
in the definition; it must be a list of location references (line numbers, labels,
procedures, or actual addresses) separated by commas as specified below.

11-3

Advanced Execution and Trace Commands

11-4

SYNTAX

DEFINE TRCREG name = trace-item [, trace-item] *

where:

trace-item is:

traces [CALL proc-name]

traces is:

trace-pt [, trace-pt] *

trace-pt can be any expression that evaluates to a location
within the user program.

proc-name is the name ofa debug procedure that returns a value.

Description

You can create a trace register with a specified name that contains all the listed
trace-pt's as its tracepoints. Note that PSCOPE associates the tracepoints only with
their defined trace register. Tracepoints are not active until you specify the trace
register in a GO command. (The GO command is discussed later in this chapter.)

If you specify the CALL option, PSCOPE associates proc-name with the single
trace-pt or parenthesized list oftrace-pts preceding it.

Note that you cannot modify trace registers with a PSCOPE modify command; you
must redefine trace registers. However, you can add or delete tracepoints from an
existing trace register by editing the TRCREG definition with PSCOPE's internal
editor (discussed in Chapter 2).

After you activate a trace register with the GO command, program execution pro­
ceeds until PSCOPE encounters one of the tracepoints contained in that register
(i.e., program execution reaches that point). Then PSCOPE displays a trace
message, and program execution continues. If a debug procedure is associated
with a tracepoint, PSCOPE automatically executes the debug procedure. PSCOPE
converts the return value from the debug procedure to a Boolean. If the Boolean
value is TRUE, PSCOPE displays the trace message, as if the debug procedure
were called. If the Boolean value is FALSE, PSCOPE continues execution without
displaying a message, as if there were no tracepoint. If there is no return value,
PSCOPE detects an error but continues program execution. This feature lets you
set conditional tracepoints with the decision to trace based on any Boolean
condition, including program variable values or terminal input (see the CI com­
mand in Chapter 10). Note that PSCOPE does not allow parameters on the debug
procedure specified in the CALL option.

Trace messages have the following format:

[At trace-pt]

where:

trace-pt is the location specified in the definition of the trace register.

PSCOPE-86

PSCOPE-86 Advanced Execution and Trace Commands

Example

Note that all the following examples use the sample program DC (found in Ap
pendix E).

The following example defines a trace register containing three trace points:

*define TRCREG trace_1 = #80, #224, @1 000

The following trace register contains one tracepoint, which calls a debug
procedure:

*define trcreg error_check = :dc.error CALL write_message

The GO Command

The GO command controls user program execution. It also lets you activate any
number of breakpoints or tracepoints.

Syntax

GO [brk-specl*

GO FOREVER

where:

brk-spec is one of the following:

TIL break-pt [, break-pt]*

USING reg-item [, reg-item]*

reg-item is one of the following:

break-register specifies a previously defined break register.

trace-register specifies a previously defined trace register.

BRKREG

TRCREG

Description

The GO command starts executing your program from the current execution
point ($). The LOAD command sets the initial value of$.

If you specify FOREVER, PSCOPE starts executing without any breakpoints.
Note that you can use CNTL-C to interrupt execution, but execution may stop in a
location for which PSCOPE has no symbol information (for example, inside UDI,
the Universal Development Interface).

11-5

Advanced Execution and Trace Commands

11-6

If you do not specify brk-spec, PSCOPE resumes execution with the same set of
break and tracepoints that the last GO command used (except for any break regis­
ters or trace registers that were removed or redefined, in which case they are
inactive). If you specify USING, PSCOPE starts program execution using the
breakpoints and tracepoints in the break and trace registers specified. If you specify
the keywords BRKREG and TRCREG with USING, PSCOPE uses all break regis­
ters or trace registers.

If you specify TIL, PSCOPE starts program execution using the points listed. As
described in Chapter 4, these may be labels, line numbers, procedures, or actual
addresses (in which case PSCOPE assumes that the user entered a valid break
address) .

You can specify any number of TIL and USING clauses. The number of active
breakpoints and tracepoints is limited only by the amount of PSCOPE workspace
available.

You can set both a breakpoint and a tracepoint at the same location but only one of
each type at the same location. PSCOPE displays a warning message if you try to
set a breakpoint (or tracepoint) where an active break (trace) point already exists.
The original breakpoint (tracepoint) remains intact.

In addition, you can define a patch at a breakpoint and/or a tracepoint location. In
this case, PSCOPE handles the tracepoint first (including any debug procedures as­
sociated with it). PSCOPE next handles the breakpoint (including any debug
procedures associated with it) and finally the patch. However, ifPSCOPE stops be­
cause of the breakpoint, PSCOPE does not execute the patch until the next GO
command.

Breakpoints and tracepoints are active only during execution initiated with the GO
command. They are automatically deactivated when control returns to PSCOPE.
Note that breakpoints and trace points are not active during stepping with the
PSTEP and LSTEP commands, while patches are active during stepping.

Note that PSCOPE deactivates all breakpoints and removes all break registers,
trace registers, and patches when you invoke the LOAD command.-

Example

The following example executes break and trace registers:

GO USING break_I, error_check, input

The following example reuses the breakpoints and trace points activated during the
previous GO command:

go

The following example activates all trace registers and one breakpoint:

GO USING trcreg TIL :dc.error

The following example initiates execution with no break or tracepoints:

go forever

PSCOPE-86

PSCOPE-86 Advanced Execution and Trace Commands

The following sequence of commands illustrates the combined use of break
registers, trace register, and breakpoints. The example starts execution and prints
a trace message every time procedure get_token is called. Execution stops when
either error or get_line is called:

*DEFINE TRCREG T1 = :dc.get_token
*DEFINE BRKREG 83 = error
*GO USING T1, 83 TIL get_line

Exception Trapping

PSCOPE automatically traps exception conditions within the user program. The
exceptions trapped are from UTS, UDI, and the 8087 Emulator and include
DQEXIT. Unlike standard user breakpoints, these exceptions are always active;
they are created, removed, and replaced only by the LOAD command.

PSCOPE displays two messages when an exception condition occurs. The first
messages identifies the type of exception. The second message is as follows:

[Stop at location]

where:

location is the line number or address of the exception handler, not the loca­
tion within the user program where the exception occurred.

A trap at DQ$EXIT lets you inspect variables and continue normal debugging
when the program has completed its execution. This is a good opportunity to save
definitions of debugger objects that you want to use in future debug sessions, such
as patches, debug procedures, and break registers. At this point, you cannot con­
tinue program execution. A GO command after trapping at DQEXIT causes
PSCOPE to exit.

11-7111-8

APPENDIX A
ERROR MESSAGES

This appendix lists the PSCOPE error messages. PSCOPE error messages are
coded by number and listed in numeric order for easy reference.

Classes of Errors

Each of the errors detected by PSCOPE falls into one of the following five classes:

• WARNING. A minor problem which PSCOPE attempts to correct, then
executes.

• ERROR. A problem of sufficient severity that PSCOPE aborts the com­
mand currently executing and either prompts for a new command or re­
trieves the next command from the current INCLUDE file Ofany).

• SEVERE ERROR. A problem that may cause difficulties beyond the cur­
rent command. PSCOPE aborts the current command, cancels any pending
commands from INCLUDE files, and prompts for a new command from the
terminal.

• FATAL ERROR. A problem from which PSCOPE cannot recover and reli­
ably continue operating. PSCOPE closes all files, frees all resources that it or
the program being debugged may have allocated, and returns control to the
host operating system. (Very few PSCOPE errors are fatal. Do not worry
about fatal errors aborting a debug session.)

• INTERNAL ERROR. A violation of one ofPSCOPE's internal consistency
checks. Please document the situation in which the error occurred and report
it to your Intel representative.

Help

Some errors have extended error messages. You can reach the extended error
messages using the HELP command:

HELP En

where:

.!! is the number of the error message.

PSCOPE indicates errors that have extended error messages by placing an asterisk
enclosed in brackets ([*]) at the end of the primary message for that error.

Error Messages

o Type definition record with unrecognizable format.

1 Array's lower bound is unknown - zero is assumed.

A-I

Error Messages

A-2

2 Symbol is not an array or has fewer dimensions than specified.

3 Size of array elements is not known.

4 Referenced array expects a single character array index.

5 Address of module is not known.
Tried to reference an assembly language module, a run-time library,
OS run-time, or a module with no debug information.

6 Unknown module specified.

7 No line information was loaded for module.

8 No symbol information was loaded for module.

9 Cannot determine module for specified location.
Could not find specified location in any known module. Specified loca­
tion is either outside of program or in a module for which there is no
symbol information.

10 Cannot determine current default module.
Could not find current location in any known module. Either current
execution point is outside of program or in a module for which there is
no symbol information.

11 Symbol currently not active.
Symbol is either not known or is not local to the current procedure.

12 Symbol not known in current context.
Change context with the NAMESCOPE command or use a fully quali­
fied symbol reference.

13 No symbol information was loaded for program.

14 Attempt to reference a program symbol of an unsupported type.

15 Symbol is not known to be a record and cannot be qualified.

16 Symbol is not a known record field name.

17 Cannot determine offset of field from start of record.
The requested field cannot be referenced because the debugger cannot
determine the size of one of the preceding record fields.

18 Nested symbolic references not permitted.

19 Symbol is not a pointer variable or its dereference type is unknown.

20 Specified line is not an executable statement.

21 Specified line does not exist in module.

22 Cannot evaluate line reference.
Segment part of line reference pointer not known. Maybe symbol infor­
mation was not loaded for module.

PSCOPE-86

PSCOPE-86 Error Messages

23 Specified type is incompatible with directory.
Specified type cannot be used with the specified (or default) directory.
For example, DIR PUBLIC LINE is contradictory, as there are no
public lines.

24 Cannot perform symbol table request. No user program loaded.

40 Tried to REMOVE debugger object declared locally in DO .. END block.

41 Workspace exceeded.
Out of workspace. Delete any unnecessary debugger objects (e.g.,
PROCs, LITERALLYs, PATCHes). This can also be caused by deeply
recursive debug procedures.

42 The name is either undefined or not of the correct type.

43 The name is undefined.

44 The name is already defined with a different type.

45 Parameter outside the body of a PROC.

46 The name is not a PROC.

47 Illegal type specified in DIR DEBUG command.

48 The named object is not a literally.

49 Illegal assignment to register.

50 String too long to perform assignment.

51 Error in debug symbol lookup.
May be caused by removing a global debug variable referenced in a
debug procedure (or patch) and then executing the debug procedure
(or patch).

52 No patch defined at the specified location.

64 Attempt to PUT or APPEND a local debug object.

65 110 error on PUT file.

66 This command is not currently implemented.

67 This command not allowed inside of a compound command.

68 Invalid type.

69 Invalid type conversion.

70 String longer than 254 characters.

71 String too long for numeric conversion.
Character strings must be oflength 1 to convert to unsigned numbers.

72 Illegal type in output.

73 Unmatched double quotes in format string.

A-3

Error Messages

A-4

74 Write list too long.
The maximum is 20 items.

75 Write data too large.
The maximum is 256 bytes.

76 Invalid format string in WRITE command.

77 Output buffer overflow.
The limit is 128 characters per line.

78 Invalid floating point value for output.

79 Invalid expression for MTYPE.
An illegal value is being assigned to a memory template.

80 Invalid boolean operation.

81 Invalid string operation.

82 Invalid pointer operation.

84 Attempt to assign value to code instead of variable.
Tried to assign an expression to a location associated with user data
(e.g., :main.proc1 = 5, where proc1 is a procedure in module main).
Straight assignments may be made only to variables or with memory
modify commands (e.g., byte 100:200 = 5).

85 Attempt to assign illegal value to BASE variable.

86 Cannot use editor if debugger was invoked with SUBMIT control.

87 Not in a procedure or in a procedure with no debug information.
In order for the calling procedure to be identified (and the CALL­
STACK command to function properly), the current execution point
must be in a procedure or in a procedure for which there is debug
information.

88 The debugger has overflowed its 86 stack.
The debugger has overflowed its stack, probably due to deep recursion
of a debug procedure.

89 UDI Exception.
A PSCOPE operation resulted in a UDI exception. A divide-by-zero on
unsigned values will cause this error.

90 Literally nesting too deep.

91 Illegal extended integer.

110 No data segment information. Program may execute incorrectly.
The load module did not provide any information about the data
segment. Therefore, execution of the program may have unexpected
results.

111 No stack segment information. Program may execute incorrectly.
The load module did not provide any information about the stack
segment. Therefore, execution of the program may have unexpected
results.

PSCOPE-86

PSCOPE-86 Error Messages

112 Program cannot be loaded.
Program start address needs fix up by linker.

113 The 8087 Emulator was not found in the load module.

If the E8087 option is specified in the load command, then the 8087
Emulator must be linked into the program being debugged. It was not
found at load, so it either never existed or was purged.

114 Missing E8087 option when loading a program with real math.

115 Bad object record in load file.
Verify that you are loading an LTL object file. If there are still bad
records, relink module.

116 Load file contains absolute load addresses.
Load file is not PIC or LTL. Relink with the BIND control.

117 Load file contains unresolved externals.
Program must be relinked before debugging.

118 Support for overlays not implemented.
Loaded program cannot contain overlays.

119 Memory segment request failure during load.
More memory is needed to load program. Deleting debugger objects
will not increase available memory for loading.

120 Load module contained no starting address information.
The load module did not provide any information about the starting
address. The load was aborted, and execution of the program is not
possible.

136 Divide by zero (operation yields 0 result).

138 Invalid integer operation.

139 Real math is not available.
In order to use real math (including any operations or reference to real
numbers), you must use the E8087 option on the LOAD command
and have the 8087 emulator linked into the program under debug. This
error may be detected if the E8087 option was used on the LOAD com­
mand with a program that appears to have the emulator linked into it
but does not. (This can happen with Pascal and FORTRAN programs
linked with 87NULL.LIB.)

140 Invalid real number.

141 Attempted real comparison with + infinity or -infinity or NaN.

142 Invalid real operation.

143 Invalid extended integer operation.

144 Illegal numeric constant.

160 Attempt to INCLUDE :CI:.

161 I/O error on INCLUDE file.

A-5

Error Messages

A-6

162 110 error on LIST file.

163 110 error while loading object file.

164 Could not open load file.

165 Error while attempting to open virtual symbol table.
The virtual symbol table uses :WORK: for the disk-resident portion of
the virtual symbol table. Ensure that the device for :WORK: is ready
and that PSCOPE has access rights to it.

166 Error while attempting to seek in virtual symbol table.

167 Error while attempting to write to virtual symbol table.

169 Error while attempting to read virtual symbol table.

196 - 511
Errors 196 through 511 are PSCOPE internal errors. They result from consistency
check failures and should never occur. If an internal error does occur, please
notify an Intel representative.

512 The cause of execution break is unknown to PSCOPE.
PSCOPE cannot determine how execution was broken; it was not
through a known breakpoint or a CNTL-C. Your probably placed an in­
terrupt at the given address or entered CNTL-D.

513 This breakpoint is already active.
You can activate only one breakpoint of each type (break, trace, or
patch) at anyone address. The break you originally activated is still
intact.

514 Invalid return type from PROC called at breakpoint.
The debugger procedure called at the breakpoint or tracepoint returned
a value with an invalid type or had no return value. The return value
must be a BYTE, WORD, DWORD, BOOLEAN, or INTEGER
(including LONG/SHORT). PSCOPE manufactured a return value of
TRUE, causing the associated break or trace to be executed.

515 There was a patch in progress and it was not completed.
A code PATCH was being executed when execution was interrupted.
The current execution point is the standard resume address (the point
in the program to which control would normally be transferred after the
patch), as if the PATCH had completed (unless the PATCH changed
it). The entire PATCH will most likely not have completed execution.
If the resume address is the PATCH address, then restarting execution
re-executes the patch.

516 Execution halted.
PSCOPE halted execution due to the unexpected setting of the single­
step trap flag. This can occur if you enter CNTL-C while executing an
interrupt routine entered while PSTEPing or LSTEPing. A subsequent
GO command should allow normal execution to continue.

528 Attempted recursive definition of a break or trace register.
Tried to define the named break register or trace register while already
in the process of defining one. This happens when an expression in the
definition of a break or trace register calls a debug procedure which
defines the named break or trace register.

PSCOPE-86

PSCOPE-86 Error Messages

529 Cannot determine proper statement address for step.
Either PSCOPE cannot determine the current execution point and,
therefore, cannot do statement level stepping, or you tried to start
statement-level stepping when the current execution point is not the
beginning of a statement. In the latter case, use the GO command to
get to a statement, then retry the step.

530 No break or trace registers (of the requested type) have been defined.

531 This command cannot occur inside ofa PATCH.

532 No program was loaded.

544 - 546
Errors 544 through 546 are PSCOPE internal errors. They result from consistency
check failures and should never occur. If an internal error does occur, please
notify an Intel representative.

A-7/A-8

APPENDIX B
CONFIGURING PSCOPE

FOR NON-INTEL TERMINALS

Configuration Commands

PSCOPE is designed to run on an Intellec Series III or Series IV development
system. The editor expects code from the terminal or sent to the terminal to be
code used by Intel terminals.

You can, however, configure PSCOPE to operate with other terminals. You need
configuration files when using a non-standard or non-Intel terminal with charac­
teristics different from those of the Series III or Series IV screen. Configuration
files let you indicate characteristics of your particular terminal by setting various
parameters and specifying control sequences by which various screen functions
can be performed. Configuration files are not needed when using a Series III or
Series IV with the integrated screen.

You should put configuration commands in a CRT configuration file (e.g.,
PSCOPE.CR T) so that they are automatically executed when you invoke
PSCOPE. The configuration commands let you modify certain keyboard and CRT
codes. In some situations, you may not be able to use certain editing functions.

To create a PSCOPE configuration file, compare your terminal's behavior to the
actions expected by PSCOPE. Refer to your user manual for the codes that your
terminal expects and generates. (See table B-1 for a list of the PSCOPE configura­
tion commands, their default values, and meaning.)

Note that the CRT configuration commands are compatible with the configuration
commands accepted by the Series III or Series IV text editor, AEDIT, in its
AEDIT.MAC file. (See AEDIT Text Editor User's Guide, 121756.)

PSCOPE expects the following characteristics in a terminal:

• ASCII codes 20H through 7EH display some symbol requiring one column
space. Carriage return (ODH) and line feed (OAH) perform their usual
functions.

• There are cursor key output codes and CRT cursor output codes for the fol­
lowing cursor functions: down, home, left, right, and up. Output codes for
clear screen, clear rest of screen, clear line, clear rest of line, and direct
cursor addressing are desirable but not required. You can change default
codes, shown in table B-1, with the configuration commands.

• The terminal accepts a blankout code that blanks out the contents of the
screen location from which it is entered. You can change the default, 20H,
with the configuration commands.

• The CRT has 22 to 25 lines. You can change the default, 25 lines, with the
configuration commands.

• PSCOPE automatically generates a line feed each time you enter a carriage
return. Your terminal should not generate a line feed with a carriage return.
You can switch this feature on and off on some terminals.

When configuring to execute on a non-Intel terminal, you may have to change
some or all of the codes assigned to the following configuration commands:

B-1

Configuring PSCOPE for Non-Intel Terminals

B-2

• The cursor key output codes expected by the editor: AFCH, AFCU, AFCD,
AFCR, and AFCL.

• The editor-generated cursor movement codes sent to the CRT: AFMH,
AFMU, AFMD, AFMR, AFML.

• The erase screen code, AFES.

• The blankout code, AFBK.

• The screen size code, AV.

• The BREAK character code, AB.

• The codes expected by the editor for the screen mode commands: AFXA,
AFXF, AFXX, AFXU, and AFXZ. You may want to change these codes to
match function keys or other convenient keys on the terminal keyboard.

Table B-1 lists the configuration commands, their default values, and their
meaning.

The following conventions apply to table B-1:

• nmust be 22,23,24, or 25.

• h is a one-byte hexadecimal number.

• hhhh is a one- to four-byte hexadecimal number. A null value indicates that
the function is not available.

• T is 'T' or 't', indicating true.

• F is 'F' or 'f, indicating false.

You must end all commands in the CRT file with a semicolon (;) or carriage
return.

Table B-1 Configuration Commands

Command Series III Meaning Default

AV=n 25 Sets the number of lines of the display.

AB=hhhh 1BH Sets ESC.

AR=hhhh 7FH Sets RUBOUT.

AFXA=hhhh 1H Sets DELETE RIGHT.
CONTROlA.

AFXF=hhhh 6H Sets CHAR DELETE.
CONTROL F.

AFXX=hhhh 18H Sets DELETE lEFT.
CONTROlX.

AFXZ=hhhh 1AH Sets CLEAR LINE.
CONTROlZ.

AFCD=hhhh 1CH Sets DOWN.

AFCH=hhhh 1DH Sets HOME.

PSCOPE-86

PSCOPE-86 Configuring PSCOPE for Non-Intel Terminals

Command

AFCL:::hhhh

AFCR:::hhhh

AFCU:::hhhh

AFIG:::h

AFMB:::hhhh

AFMD:::hhhh

AFMH:::hhhh

AFML:::hhhh

AFMR:::hhhh

AFMU:::hhhh

AFES:::hhhh

AFER:::hhhh

AFEK:::hhhh

AFEL:::hhhh

AFAC:::hhhh

AO:::h

AX:::T or F

AW:::T or F

AFIL:::hhhh

AFDL:::hhhh

AFBK:::h

Table B-1 Configuration Commands (continued)

Series III
Default

1FH

14H

1EH

ODH

1CH

1DH

1FH

14H

1EH

1B45H

1B4AH

1B4BH

OH

T

T

20H

Sets LEFT.

Sets RIGHT.

Sets UP.

Meaning

This character will be ignored if input. This character is
needed on terminals, such as the Hazeltine 1510, which have
multiple character key codes for UP and DOWN. AFIG should
be set to the lead in (tilde) and UP and DOWN should be set to
the second letter of the cursor up or down key code. This
avoids problems caused by the lack of a typeahead buffer.

Moves cursor to start of line.

Moves cursor down.

Moves cursor home.

Moves cursor left.

Moves cursor right.

Moves cursor up.

Erases entire screen.

Erases rest of screen.

Erases entire line.

Erases rest of line.

Addresses cursor lead in. When used, code will be followed by
column number (0 to 79) and row number (0 to 24).

Offset to add both row and column number with address
cursor command.

True if X (column) precedes Y (row) in address cursor
command.

Allows user to indicate that terminal wraps when character is
printed in column 80.

Inserts line code. Used in line 0 for reverse scrolling.

Deletes line code. Used to speed up display on the Hazeltine
1510 and similar terminals.

Blankout character. <BLANK> on most terminals.

Tested Configurations

This appendix contains tested configurations for several non-Intel terminals. The
terminals presented here are not the only ones on which you can use PSCOPE;
they are just the ones that have been tested. The following sections list the configu­
ration functions and values required to run PSCOPE on the Intel tested terminals.
The terminals are:

B-3

Configuring PSCOPE for Non-Intel Terminals

B-4

• ADDS Regent 200 (2400 baud only)
• Beehive Mini-Bee
• DEC VT52
• DEC VT100
• Hazeltine 1510
• Lear Seigler ADM-3A

The commands to configure PSCOPE for the tested terminals are included on the
disk with the PSCOPE program. The name of the file is included in each
description.

Adds Regent Model 200

This ADDS model has a 24-line CRT display with 80 character per line. Each char­
acter is formed in an 8 by 8 dot matrix as a dark character on a light background.
The 25th line of the screen displays the operating condition of the terminal. Table
B-2 shows the ADDS Regent Model 200 configuration.

Table B-2 ADDS Regent Model 200 Configuration

Function Hexadecimal

Code Value

CD OA

CH 01

CL 15

CR 06

CU 1A

MD OA

MH 1 B 59 2020

ML 15

MR 06

MU 1A

AC 1B 59

EK not available

ER 1B 6B

ES OC

XA 14
AO 20

AX F

XF 1B 45

XZ 1B6C

AB 5C

AV

Command File: ADDS.CRT

AFCD=OA; AFCL=15; AFCR=06; AFCU=lA;
AFCH=Ol; AFMD=OA; AFML=15; AFMR=06;
AFMU= 1A; AFMH= 1B 59 20 20; AFEK=;
AFER= 1B 6B; AV=24; AFXA= 14; AFES=OC;
AFER= 1b6b; AFAC= 1B 59; AO=20; AX=F
AFXF=lB45; AFXZ=lB6C; AB=5C

Graphic or

ASCII Name

Line Feed

SOH

NAK or BS

ACK

SUB

Line Feed

NAK or BS

ACK

SUB

ESCY

ESCK

FF

DC4
SP

ESCE

ESCI

\
24

PSCOPE-86

PSCOPE-86 Configuring PSCOPE for Non-Intel Terminals

NOTE
You must enter DEL CHAR instead of CNTL-F for the delete
character. You must enter DEL LINE instead of CNTL-Z for
delete line. You must enter CNTL-T instead of CNTL-A for
delete right. You must enter the backslash (\) instead of
ESCAPE.

Beehive Mini- Bee

You can format the Beehive Mini-Bee terminal to display either 12 or 25 lines of
80 characters per line. Only the 25-character format is usable with PSCOPE. Each
character is generated in a 5 by 7 dot matrix. The maximum transmission rate for
this terminal is 9600 baud. Note that you must change the ESCAPE character so
that the default ESCAPE code can be used; choosing the lK is a personal
preference. Table B-3 shows the Beehive Mini-Bee configuration.

Table B-3 Beehive Mini-Bee Configuration

Function Hexadecimal Graphic or
Code Value ASCII Name

CD 1 B 42 ESC B
CH 1B 48 ESCH
CL 1 B 44 ESCD
CR 1B 43 ESCC
CU 1 B 41 ESCA

MD 1 B 42 ESC B
MH 1 B 48 ESC H
ML 1 B 44 ESCD
MR 1B 43 ESCC
MU 1 B 41 ESCA

EL 1 B 4B ESCK
ER 1B 4A ESCJ
B DB tK
AV 24

Command File: MICROB.CR T

AFCU= IB 41; AFCD= IB 42; AFCR= IB 43; AFCL= IB 44;
AFCH=IB48 AFMU=IB41; AFMD=IB42; AFMR=IB43;
AFML= IB 44; AFMH= IB 48 AFEL= IB 4B; AFER= IB 4A
AB=OB; AV=24

NOTE
You must enter CNTL-K instead of ESCAPE.

B-5

Configuring PSCOPE for Non-Intel Terminals

B-6

DEC VT52

The DEC VT52 displays 24 lines of 80 characters per line. The characters are
generated in a 7 by 9 dot matrix. The maximum transmission rate is 19.2K baud.
Note that you must change the ESCAPE character so that the default ESCAPE
code can be used; choosing CNTL-K {fK) is a personal preference. The DEC
VT52 does not have a HOME key. Choosing CNTL-O {fa) for the HOME func­
tion is a personal preference. Table B-4 shows the DEC VT52 configuration.

Table B-4 DEC VT52 Configuration

Function Hexadecimal Graphic or
Code Value ASCII Name

CD 1B 42 ESCB
CH OF to
CL 1B 44 ESCD
CR 1B 43 ESCC
CU 1 B 41 ESCA

MD 1B 42 ESC B
MH 1B 48 ESCH
ML 1B 44 ESCD
MR 1B 43 ESCC
MU 1 B 41 ESCA

AC 1B 59 ESCY
W F
AO 20 SP
AX F

EL 1B 4B ESCK
ER 1B 4A ESCJ
ES not available
EK not available
AV -- ?4
B OB tK

Command File: VT52.CRT

AFCU= 1B 41; AFCD= 1B 42; AFCR= 1B 43; AFCL= 1B 44;
AFCH=OF AFMU= 1B 41; AFMD= 1B 42; AFMR= 1B 43;
AFML=lB44; AFMH=lB48 AFES=; AFER=lB4A;
AFEL=lB4B; AFEK= AB=OB; AV=24 AFAC=lB 59;
AO=20; AX=F; AW=F

NOTE
You must enter CNTL-K instead of ESCAPE. You must enter
CNTL-O instead of HOME.

PSCOPE-86

PSCOPE-86 Configuring PSCOPE for Non-Intel Terminals

DEC VT100

You can format the DEC VT100 terminal with 14 lines of 132 characters per line
or 24 lines of 80 characters per line. Only the 24-line format is compatible with
PSCOPE. The characters are generated in 7 by 9 dot matrix. The maximum trans­
mission rate is 19.2K baud. You can choose between the DEC VT52 compatible
and the ANSI standard (X3.41-1974, X3.64-1977) compatible terminal escape se­
quences for cursor control and screen erase functions. The ANSI codes are given
in the following table. See the DEC VT52 description for the VT52 codes. Note
that you must change the ESCAPE character so that the default ESCAPE code can
be used; choosing CNTL-K (fK) is a personal preference. The DEC VT100 termi­
nal does not have a HOME key. Choosing CNTL-O (f0) for the HOME function
is a personal preference. Table B-5 shows the DEC VT100 configuration.

Table B-5 DEC VT100 Configuration

Function Hexadecimal Graphic or
Code Value ASCII Name

CO 1842 ESC8
CH OF to
CL 1844 ESCO
CR 1843 ESCC
CU 1841 ESCA

MO 185842 ESC [8
MH 185848 ESC[H
ML 185844 ESC [0
MR 185843 ESC[C
MU 185841 ESC[A

EK 18583048 ESC [0 K
ER 1858304A ESC [OJ
ES not available
EL 185848

W F
AV 24
8 08 tK

Command File: VT100.CRT

AFCU= IB 41; AFCD= IB 42; AFCR= IB 43; AFCL= IB 44;
AFCH=OF AFMU= IB 5B 41; AFMD= IB 5B 42; AFMR= IB 5B 43;
AFML=IB5B44; AFMH=IB5B48 AFES=; AFER=IB5B304A;
AFEK= IB 5B 30 4B; AFEL= IB 5B 4B AB=OB; AV=24 AW=F

NOTE
You must enter CNTL-K instead of ESCAPE. You must enter
CNTL-O instead of HOME.

B-7

Configuring PSCOPE for Non-Intel Terminals

B-8

Hazeltine 1510

The Hazeltine 1510 terminal displays 24 lines of 80 characters per line. The charac­
ters are generated in a 7 by 10 dot matrix. The maximum transmission rate is
19.2K baud. You can choose between the ESC or the tilde character (~) as the
control sequence lead-in. However, if you use ESC, you must change the BREAK
character, so the tilde is easier to use. Table B-6 shows the Hazeltine 1510
configuration.

Table B-6 Hazeltine 1510 Configuration

Function Hexadecimal Graphic or
Code Value (- Lead-In) ASCII Name

1510T CD OB
CH 12
CL 08
CR 10
CU OC

MD 7EOB
MH 7E12
ML 08
MR 10
MU 7EOC
MB OD

AC 7E 11
EK not available
ER 7E18
ES not available
EL 7EOF
XP OF

IL 7E 1A
DL 7E13
AV

Command File: 1510T.CRT

AV=24; AFIG=7E; AFCU= ~C; AFCD= OB;
AFCR=10; AFCL=8; AFCH= 12 AFMU=7EOC;
AFMD = 7EOB; AFMR = 10; AFML = 8; AFMH = 7E 12
AFMB=OD; AFES=; AFER=7E18; AFEK=;
AFEL=7EOF AFAC=7E11; AFIL=7E1A; AFDL=7E13;

- VT
- DC2
- BS
- DLE
- FF

- VT
- DC2
- BS
- DLE
- FF

- DCI

- CAN

SI

-SUB
-DC3

24

PSCOPE-86

PSCOPE-86 Configuring PSCOPE for Non-Intel Terminals

Table B-6 Hazeltine 1510 Configuration {continued}

Function Hexadecimal Graphic or
Code Value (ESC Lead-In) ASCII Name

1510E
CO OB
CH 12

CL 08
CR 10
CU OC

MO 1BOB

MH 1 B 12

ML 08
MR 10

MU 1BOC

MB 00

EK not available
ER 1B18

ES not available
EL 1BOF

IL 1B1A

OL 1B13

XP OF

AC 1 B 11

AV
B 7E

Command File: l5l0E.CRT

AV=24; AB=7E; AFIG=lB; AFCU= ~C; AFCD= OB;
AFCR=lO; AFCL=8; AFCH= 12 AFMU=lBOC;
AFMD=lBOB; AFMR=lO; AFML=8; AFMH=lB12
AFMB=OD; AFES=; AFER=lB18; AFEK=;
AFEL= lBOF AFAC= lBll; AFIL= lBlA; AFDL= lB13;

NOTE
You must enter a tilde instead of ESCAPE.

ESCVT
ESC OC2
ESCBS
ESC OLE
ESC FF

ESCVT
ESC OC2
ESCBS
ESC OLE
ESC FF

ESC CAN

ESCSUB
ESC OC3
SI

ESC OC1
24 -

B-9

Configuring PSCOPE for Non-Intel Terminals

B-I0

Lear Siegler ADM-3A

The Lear Siegler ADM-3A terminal displays 24 lines of 80 characters per line. The
characters are generated in 5 by 7 dot matrix. The maximum transmission rate is
19.2K baud. Table B-7 shows the Lear Siegler ADM-3A configuration.

Table B-7 Lear Siegler ADM-3A Configuration

Function Hexadecimal Graphic or
Code Value ASCII Name

CO OA
CH 1E
CL 08
CR OC
CU OB

MO OA
MH 1E
ML 08
MR OC
MU OB

EK not available
ER not available
ES 1A

AX F
AO 20
AC 1B30
AV

Command File: LEAR.CRT

AFCU=OB; AFCD=OA; AFCR=OC; AFCL=08;
AFCH=lE AFMU=OB; AFMD=OA; AFMR=OC;
AFML=08; AFMH=lE AV=24; AFES=lA; AFER=;
AFEK=; AFAC=lB3D AX=F; AO=20

LF
RS
BS
FF
VT

LF
RS
BS
FF
VT

SUB

SP
ESC=
24

PSCOPE-86

APPENDIXC
ADDITIONAL INFORMATION

FOR SERIES III USERS

This appendix contains specific information on the Intellec Series III Micro­
computer Development System. It covers the following subjects:

• Series III program development process (and related manuals)

• Hardware and software required

• User programs supported

• System resources used by the debugger

• System-specific examples of debugger invocation line, sign-on message, and
commands

Operation of the Series III

The following manuals describe the general operation of the Series III:

• Intellec® Series III Microcomputer Development System Product Overview,
121575

• Intellec® Series III Microcomputer Development System Console Operating
Instructions, 121609

• Intelle~ Series III Microcomputer Development System Programmer's Reference
Manual, 121618

Program Development Process

Figure 1-1 shows how the debugger fits into your program development process.
Figure C-l shows the same process. The number under each operation refers to
the manuaI(s) that describe that operation.

1. ISIS-1I CREDIT™ CR T-Based Text Editor User's Guide, 9800902

2. AEDITTM TEXT EDITOR User's Guide, 121956

3. Pascal-86 User's Guide, 121539

4. PLIM-86 User's GUidefor 8086-Based Development System, 121636

5. FORTRAN-86 User's Guide, 121570

6. iAPX 86,88 Family Utilities User's Guide, 121616

C-l

Additional Information for Series III Users

C-2

FORTRAN-a6
SOURCE

PASCAL-a6
SOURCE

:' ..

FORTRAf4.86 f­
~ER

RUN-TIME
LIBRARIES

OTHER

RELg~J~1t,-BLE _

MODULES

LIBRARIES I---

Figure C-l Series III Program Development Process

Hardware and Software Required

You need the following hardware and software to run the debugger:

• Intellec Series III development system (run release 1.2 or later)

• ISIS-II operating system (release 4.1 or later)

• At least one single- or double-density flexible disk drive, a hard disk unit
plus a single- or double-density flexible drive, or a remote disk on an NDS I
or NDS II.

• Pascal compiler (release 2.0 or later), PL/M-86 compiler (release 2.0 or
later), or FORTRAN-86 compiler (release 1.1 or later).

• 8086-based utilities

• PSCOPE high-level program debugger

PSCOPE-86

1369

PSCOPE-86 Additional Information for Series III Users

User Programs Supported

The amount of memory available to your program (the program under debug)
depends upon the amount of memory in your system. You can expand the Series
III up to one megabyte of memory addressable by the 8086. PSCOPE requires ap­
proximately 96K bytes. You must add more memory to accommodate additional
workspace and your program.

Your program must be a load-time locatable (LTL) or position independent code
(PIC) object module produced by LINK86 with the BIND control. You must pro­
duce the object modules used as input to LINK86 with either a Pascal-86 compiler
(release 2.0 or later), a PL/M-86 compiler (release 2.0 or later), or a
FORTRAN-86 compiler (release 1.1 or later) with the'DEBUG control. Because
the reliability of some debug functions can be affected by cross-statement compiler
optimizations, you must use OPTIMIZE (0).

System Resources Used

The debugger requires certain system resources, such as memory space and open
files, that can affect your program.

Memory

The debugger occupies 96K bytes of memory, including space for symbol and line
number information.

To reduce memory usage, the debugger provides for virtual storage of compiler­
generated debug information. Symbol table information (from the compiler) is
sent out to disk if necessary. Your program must reside in memory, however.

File Requirements

Under the SERIES III operating system, up to six open files are available for an
application, plus terminal input. (Terminal output does not count as an open file.)
Terminal input does not count against the total of six open files allowed because
the operating system shares terminal input between PSCOPE and your program.

Of those six files, PSCOPE may require one or more files from each of the follow­
ing groups:

• Console input

• Virtual symbol table

• LOAD, HELP, PUT, INCLUDE, CRT, MACRO, PSCOPE overlay

• List

The number of open files increases if you have nested open files, such as a PUT
command inside of an INCLUDE file.

C-3

Additional Information for Series III Users

C-4

Other Resources Required

The debugger requires the following additional host system resources:

• The software interrupt 3 (the one-byte, debugger-oriented INT instruction)

• The trap flag (used for single-stepping)

• The CNTL-C trap (system call DQ$TRAP$CC)

Your program should not use these host system resources.

In addition, PSCOPE uses Interrupts 0, 4, 5, 16, 17, and 20 through 31 for error
handling and floating point operations. However, your program can use these
interrupts, since PSCOPE maintains separate copies of these interrupt vectors for
itself and your program.

Invocation Line

To invoke the debugger in the 8086 execution environment of the Series III, pre­
face the invocation line with the RUN command. The ISIS-II operating system
prompt is a hyphen (-).

The general format of the invocation is:

- RUN [:F!l:] PSCOPE [controls]

or

> [:F.n:] PSCOPE [controls]

where:

: Fn: is the disk in drive .n. !l can be 0 through 9.

controls is any number of invocation controls from the list specified in Chapter 3.

PSCOPE signs on with the following message:

SERIES-III PSCOPE-86, Vx.y

Example

The following example shows the beginning of a PSCOPE debugging session:

-RUN PSCOPE MACRO(:F1 :PROCS.MAC)

SERIES-III PSCOPE-86, Vx.y
*LOAD :F1 :DC.86
*GO

PSCOPE-86

APPENDIXD
ADDITIONAL INFORMATION

FOR SERIES IV USERS

This appendix contains specific information on the Intellec Series IV Micro­
computer Development System. It covers the following subjects:

• Series IV program development process (and related manuals)

• Hardware and software required

• User programs supported

• System resources used by the debugger

• System-specific examples of debugger invocation line, sign-on message, and
commands

Operation of the Series IV

The following manuals describe the general operation of the Series IV:

• IntelleC® Series IV Microcomputer Development System Overview, 121752

• IntelleC® Series IV Operating and Programming Guide, 121753

• IntelleC® Series IV ISIS-IV User's Guide, 121880

Program Development Process

Figure 1-1 shows how the debugger fits into your program development process.
Figure D-l shows the same process. The number under each operation refers to
the manuaI(s) that describe that operation.

1. ISIS-IV CREDIT™ CRT-Based Text Editor User's Guide, 9800902

2. AEDITTM TEXT EDITOR User's Guide, 121956

3. Pascal-86 User's Guide, 121539

4. PLIM-86 User's Guidejor 8086-Based Development System, 121636

5. FORTRAN-86 User's Guide, 121570.

6. iAPX 86,88 Family Utilities User's Guide, 121616

Hardware and Software Required

You need the following hardware and software to run the debugger:

• Intellec® Series IV development system.

• iNDX operating system.

D-l

Additional Information for Series IV Users

D-2

• At least one single- or double-density flexible disk drive, a hard disk unit
plus a single- or double-density 5 114 inch floppy, or a remote disk on an
NDS I or NDS II.

• Pascal compiler (release 2.0 or later), PL/M-86 compiler (release 2.0 or
later), or FORTRAN-86 compiler (release 1.1 or later).

• 8086-based utilities

• PSCOPE high-level program debugger

FORTRAN-a6
SOURCE

PASCAL-86
SOURCE

PlIM-86
SOURCE

RUN-TIME
LIBRARIES

OTHER
RELOCATABLE

OBJECT
MODULES

LIBRARIES

Figure D-l Series IV Program Development Process

User Programs Supported

The amount of memory available to your program (the program under debug)
depends upon the amount of memory in your system. You can expand the Series
IV up to one megabyte of memory addressable by the 8086. PSCOPE requires ap­
proximately 96K bytes. You must add more memory to accommodate additional
workspace and the user program.

Your program must be a load-time locatable (LTL) or position independent code
(PIC) object module produced by LINK86 with the BIND control. You must pro­
duce the object modules used as input to LINK86 with either a Pascal-86 compiler
(release 2.0 or later), a PL/M-86 compiler (release 2.0 or later), or a

PSCOPE-86

1369

PSCOPE-86 Additionallnformation for Series IV Users

FORTRAN-86 compiler (release 1.1 or later) with the DEBUG control. Because
the reliability of some debug functions can be affected by cross-statement compiler
optimizations, you must use OPTIMIZE (0).

System Resources Used

The debugger requires certain system resources, such as memory space and open
files, that can affect your program.

Memory

The debugger occupies 96K bytes of memory, including space for symbol and line
number information.

To reduce memory usage, the debugger provides for virtual storage of compiler­
generated debug information. Symbol table information (from the compiler) will
be sent out to disk if necessary. Your program must reside in memory, however.

File Requirements

Under the Series IV operating system, up to six open files are available for an
application, plus terminal input. (Terminal output does not count as an open file.)
Terminal input does not count against the total of six open files allowed because
the operating system shares terminal input between PSCOPE and your program.

Of those six files, PSCOPE may require one or more files from each of the follow­
ing groups:

• Terminal input

• Virtual symbol table

• LOAD, HELP, PUT, INCLUDE, CRT, MACRO, or PSCOPE overlay

• List

The number of open files increases if you have nested open files, such as a PUT
command inside of an INCLUDE file.

Other Resources Required

The debugger requires the following additional host system resources:

• The software interrupt 3 (the one-byte, debugger-oriented INT instruction)

• The trap flag and interrupt 1 (used for single-stepping)

• The CNTL-C trap (system call DQ$TRAP$CC)

Your program or any background program should not use these host system
resources.

In addition, PSCOPE uses interrupts 0, 4, 5, 16, 17, and 20 through 31 for error
handling and floating point operations. Your program can use these interrupts,
since PSCOPE maintains separate copies of these interrupt vectors for itself and
your program. However, a background program must not use any of these
interrupts.

D-3

Additional Information for Series IV Users

D-4

Invocation Line

The general format of the invocation is:

/W / PSCOPE [controls]

or

PSCOPE [controls]

where:

controls is any number of invocation controls from the list specified in Chapter 3.

PSCOPE signs on with the following message:

SERIES-IV PSCOPE-86, Vx.y

Example

The following example shows the beginning of a PSCOPE debugging session:

-PSCOPE MACRO(PROCS.MAC)

SERIES-IV PSCOPE-86, Vx.y
*LOAD :DC.86
*GO

PSCOPE-86

)

APPENDIX E
SAMPLE PROGRAM LISTING

This appendix contains the sample program DC referred to throughout this
manual.

5THT LINE NEST~NG

1 1 0 0

3

4

5

6
6
7
8
9

10
11
12
13
14
15

16
16
17
18
19
20

21
22
23

24

25

26
26
27

10 0 C

12 0 0

14 0 0

18 0 0

21
22
23
24
25
26
27
28
29
30
31

o
o
o
o
o
o
o
o
o
o
o

o
1
1
1
1
1
1
1
1
1
1

33 0 0
34 0 1
35 0 1
36 0 1
37 0 1
38 0 1

41 0 0
42 0 iJ
43 0 0

45 0 0

47 0 0

49
50
51

o
1
1

SCU~CE TEXT: :F7:DC7.PAS
(- ThlS pro~ra~ i~plements en inter~ctive Jesk Calc~l~tor. It

accepts lines of tixt l! input. :ach line sho~ld cont~in one
express1o~. =o:h lin~ is ~lrs~d, ~val~ated, ~nd the result
is printed. T~e ~xprelsions ~re allowed to cont~in enbadaao
~ssi~nment st~te~ents to sir~le-lltt.r vr.rir.bles. An error
will abort thg evalu~tion of the current expr~SSlon ••)

pro~r~m ac (input, o~tput);

lacel 1CJC, 9999;

typa error cl~ss (ille~!l_tokan, line_too_lon~, end_of_lina,
missin._r_paren, error_in_expression, error_in_factor,
error_in_statement, error_in_term);

(acd_op, mul_op, assi~n, l_paren,
r_p~ran, v~riable, int_const, lina_and);

token :: record
c~sa cl~ss token_cl~ss of

add_op e~dd_op_v~lue

mul_op emul_op_value
assi~n ();
l_paren e);
r_paren e);
vari~ble evari~ble_v~lue
int_const eint_const_v~lug
line_end ();

enQ (. record *);

text_buffer = record

char);
char);

c t- .. r);
integer);

status (empty, full);
length 0 max_linl_Iength;
index C •• ~ax_line_Iength;
last index C •• max_line_length;
str packed array (1 •• max_lin._len~thJ of ch~r

var t
c
buffer

enc (. record .);

token;
char;
text_buffer;

c· --- .)
procedure errorCe : error_class); (* print error & restart *)

be!:in
~rite C' ·:(butter.last_inaex+3), 'A DC Error: .);
cas. e of

E-l

Sample Program Listing

STMT
28
29
30
31
32
33
34
35
36
38
39
40

LINE
52
53
54
55
56
57
58
59
60
61
62
63

NESTING
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 1
1 1
1 1

41 65 0 0

42 67 0
42 68 1
43 69 1
44 7C 1
45 71 1
45 72 2
46 73 2
48 74 2
49 75 2
50 76 3
51 77 3

52 79 2
54 80 2
55 81 2
57 82 1
58 83 1
59 84 1
60 85 1

61 87 0 C

62 90 1 0
63 91 2 0
63 92 2 1

64 95 1 0
65 96 2 0
65 97 2 1

66 100 1 0
67 101 2 0
67 102 2 1

68 105 o

E-2

SCURCE TEXT: :F7:0C7.?AS
111eo81_ token
line_teo_long
end_of_line
missing_r_paren
error_in_factor
error_in_term
error_in_expression
error_in_state"ent

end (* case *);
",riteln;
goto 999Ci;

ene (* error *);

write
write
write
ILrite
,rite
write
write
wr ite

('Illeo~l token');
('Input line too lono');
C':nd of !ine');
('Missing right p~ren');
('llle~al f~cto,.·);
(':rror detected in term');
('crror detacted in expression');
('Illegal statement');

PSCOPE-86

(* --- *)
procedure oet_line; (* input line & set c to 1st cr~r of llne *)

begin (* get_line *)
buffer. length := c;
buffer. status := e~pty;
buffer. lest_index := 1;
repellt

write(' ');
_hile lof co reset(input);
while root eoln do

if buffer. length < max_line_length then be~in
buffer.l.n~th := buffer.lenoth + 1;
rezdCbuffer.strCbuffer.len;th)

end
lIse error(line_too_lonO);

reloln;
until buffer.len~th > 0;
buffer. status := full;
bufflr.i~dex := 1;
c := buffer.strCbuffer.index);

end (* get_line *);

C* --- *)
procedure get_t~ker; (* scan 11ne ~ set t to 1ts value *)

function dioitCc: char): boolean; C· true if c is ~ dioit *)

be oin
ai;it := ('0' <= c) ~no (c <= '9')

end;

f~nction uPPlr_case(c: crer): boole~ni (* true if c is upper caSi *)

blioin
upper_case := C'A' <= c) and (c <= 'Z')

endi

f~nction lower_case{c: crar): boole~n; (* true if c is 10~ir case *)
beoin

lOILar_casa := ('a' <= c) an~ Cc <= 'z')
end;

C* ---------------------------------- .)
procedUre oat_char; (* sat c to next char in lln8 *)

)

PSCOPE-86

STHT
69
69
10
11
72
13
74
15
16
77

LINE
107
108
109
110
111
112
113
114
115
116

NESTING
2 0
2 1
2 1
2 2
2 3
2 3
2 3
2 2
2 3
2 3

78 118 2 2
79 119 2 1

80 121

80 124
82 125

o

1
1

83 127 1 1
84 128 1 2
85 129 1 2
86 130 1 2
87 131 1 2

88 133
90 134
91 135
92 136
93 131

1
2
2
2
2

94 139 1 1
96 140 1 2
91 141 1 2
98 142 1 2
99 143 1 3

100 144 1 3
101 145 1 3
103 146 1 2

104 148 1 1
106 149 1 2
101 150 1 2
108 151 1 2

109 153 1 1
110 154 1 2
111 155 1 3
115 156 1 3
119 151 1 3
119 158 1 4
120 159 1 4
121 160 1 4
123 161 1 4

Sample Program Listing

SOURCE TEXT: :F7:0C7.PAS
begin C. get_char .)

if buffer.st~tus =
el.e begin

if buffer. index < buffer. length then begin
buffer.index := buffer. index + 1;
c

end
:= buffer.strCbuffer.indexJ;

else begin
c
buffer •• tatus

end
end

end C* get_char .);

:2 c,.;
oz errJ:ty

c· ---------------------------------- *) begin C* get_token: scan line & set t to its value .)

.hile c = ' , do get_char; C* skip leading spaces *)
buffer.la.t_inde. :a buffer. index; C. for error reporting *)

if lower_caseCc) then begin
t.cla'i :a variable;
t.variable_value := c;
get_chEri

end

e* lo~er case variable .)

el.e if upper_ca.eCc) then be~in C* upJ:er c •• e variable *)
t.cla.. :z variable;
t.variable_value := chrCordCc) + CordC'.') - ordC'A'»);
get_char;

end

el.e if digitCc) then be~in C* integer constant *)
t.cla.s :a int_const;
t.int_const_value := 0;
while digitCc) do begin

t.int_con.t_value := 10*t.int_con.t_value + ordec) - ordC'O');
get_char;

end;
end

el.e if c • Cr then begin
t.cla •• := line_end;

C* end of line *)

c := If;
.nd

el.e begin
ca.e c of

-+', '-'
'*', '/'
, : '

C* 'YNbol: + - * I := C) M *)

begin t.cla •• := add_op; t.add_op_value := c; end;
begin t.cla •• :a mul_op; t.mul_op_value :z c; end;
begin

get_ch.r;
if c a 'a' then t.cl ••• :a ••• ign
el.e errorCillegal_token);

end;

E-3

Sample Program Listing

STMT LINE NESTING
125 162 1 3
126 163 1 3
127 164 1 3
128 165 1 3
130 166 1 3
132 167 1 2
133 168 1 2

135 170

136 172 0 0

137 174 0

138 176 0
139 177 0
139 178 1
140 179 2
140 180 3
141 181 3
142 182 3
143 183 3

144 185 1 4
145 186 1 4
146 187 1 4
147 188 1 4
148 189 1 4
150 190 1 3
152 191 1 2
152 192 1 3
153 193 1 3
154 194 1 3
155 195 1 3
156 196 1 3

158 198 1 3
160 199 1 2
164 200 1 2
166 201 1 2
168 202 1 1

169 204 0 0

170 206 0

171 208 1 0
172 209 1 0
173 210 1 0
173 211 1 1
174 212 1 1
175 213 1 2
176 214 1 2
177 215 1 2
178 216 1 2

E-4

SOURCE TEXT: :F7:DC7.PAS
.(. t.ela •• :- l_paren;
'.). : t.ela •• ::. r_paren;
••• : goto 1000;
otherwise error(illegal_token);

enc! e* ea.e *);
get_ehlr;

end (* begin *);

end (* get_token *);

PSCOPE-86

(* --- *) procedure factorevar factor_value: integer);
(* par.e: <variable> C":=" <expres.ion>] I "("<expression>")" I <number> *)

vir expre •• ion_value integer;
variable_index : char;

be;in (* f.ctor *)
c •• e t.cla.s of

variable : begin
variable_index := t.variable_value;
get_token;
if t.cla.s <> I.si,n then

factor_value := variable_tableCvariable_index]
else begin

get_token;
expression(expre.sion_value);
variable_tableCvlriable_index] := expression_value;
factor_value := exprelsion_value;

end;
end;

l_paren : begin
get_token;
e~pres.ion(ex~re'lion_value);
factor_value :- expression_value;
if t.cla •• = r_paren then

get_token
else errore~i •• in~_r_paren);

end;
int_const : begin flctor_value := t.int_const_value; get_tokeni eno;
otherwise error(error_in_factor);

end (* clse *);
end (* factor *)i

(* --- *) procedure term(var ter~_value : integer);
(* parse: <factor> C<~ul_op> <factor~J ••• *)

var factor_1_value integer;
factor_2_value : integer;
op : char;

be~in (* ter~ *)
factor (factor_1_value);
~hile t.class = ~ul_op do begin

op :- t.mul_op_value;
get_token;
factor (factor_2_v.lue);
cale OJ: of

)

PSCOPE-86

STMT
179
180
181
183
185
187
188

LIHE
217
218
219
220
221
222
223

NESTING
1 3
1 3
1 3
1 3
1 2
1 1
1 1

189 225 0 0

190 227 0

191 229 1 0
192 230 1 0
193 231 1 0
193 232 1 1
194 233 1 2
195 234 1 2
196 235 1 2
197 236 1 1
199 237 1 1
200 238 1 1
201 239 1 2
202 240 1 2
203 241 1 2
205 242 1 2
207 243 1 1
208 244 1 2
209 245 1 2
210 246 1 2
211 247 1 2
212 248 1 3
213 249 1 3
214 250 1 3
216 251 1 3
218 252 1 2
220 253 1 1
221 254 1 1

222 256 0 0

223 258 0

224 260 1 0
224 261 1 1
225 262 1 1
226 263 1 1
228 264 1 1

229 267 0 0

229 269 0 1

$TNT LINE NESTING
231 272 0 1

232 275 0

232 278 0 2
233 279 0 2
234 280 0 2
235 281 0 2

237 283 0

2~8 287 0

Sample Program Listing

SOURCE TEXT: :F7:DC7.PAS
'*' : 1actor_1_value :~ 1actor_1_value * factor_2_value;
',' : 1actor_1_value :- 1actor_1_value div 1actor_2_value;
other.i •• error Cerror_in_ter~);

end (* ca •• *);
end;
ter~_valu. :- 1actor.1_value;

.nd C* ter. *);

(* --- *) proc.dure e.pre •• ion evar expre •• ion_value : integer);
e* par.e: C<add_op>J <ter~> C<add_op> <terN>J ••• *)

var terN_1_value: integer;
ter __ 2_value : integer;
op : char;

begin e* expre •• ion *)
i1 t.cla •• - add_op then begin

op :- t.add_op_value;
get_token;

end
el.e op :- '+';
ter. Ct.r._1_value);
ca •• op 01

'+' : C* null *);
'-' : t.r._1_v.lue :- -ter._1_value;
otherwi.e errorCerror_in_expre •• ion);

end (* ca.e *);
while t.cla •• - add_op do begin

op :- t.add_op_value;
get_token;
ter. Cter~_2_value);
ca •• op 01

'+' : ter~_1_value :~ ter._1_value + terN_2_value;
'-' : ter._1_value •• terN_1_value - ter~_2_v.lue;
other.i ••• rrorCerror_in_expre.sion);

end C* ca •• *);
end;
expre •• ion_value :- ter~_1_value;

.nd (* expre •• ion *);

C* --- *) procedure .tate.ent;
C* par.e: <expr ••• ion> <line_end> *)

var expre •• ion_value: integer;
begin C* .tate.ent *)

expre •• ion (expre.sion_value);
i1 t.cla •• - line_end then writelnCexpr •• sion_value:1)
else .rrorCerror_in_stateNent);

end C* .tate.ent *);

begin C* ~ain progra~ *)

C* in1tialize variable table *)
10r c :- '.' to 'z' do variable_tableCcJ :~ 0;

SOURCE TEXT: :F7:0C7.PAS
C* sign on *)

writ.ln C'De.k Calculator CDC)') ;

C* error re.tart *)
9999:
r.peat C* 10rever *)

get_lin.;
get_tok.n;
.tate.ent;

until 181 .. ;

C* sign 01f *)
1000:
writeln C'Exit');

end.

E-S/E-6

/
\

APPENDIX F
PSCOPE GRAMMAR

This appendix contains the grammar that describes the syntax of PSCOPE's com­
mand language. "Notational Conventions" in the Preface to this manual explains
the notational conventions used.

Note that the command line is the unit in which PSCOPE commands are
processed. Hence, the symbol command-line is the start symbol of the grammar.

PSCOPE Grammar

command-line :: = [command] [; command]*

command:: = callstack-command
count-command
define-command
directory-command
display -command
do-command
edit-command
eval-command
exi t -command
go-command
help-command
if-command
include-command
list-command
load-command
modify -command
put-command
remove-command
repeat-command
return-command
step-command
write-command

callstack-command :: = CALLSTACK [expr]

count-command :: = COUNT expr
[loop-command] *

end-count

loop-command:: = WHILE expr
I UNTIL expr
I [command]

end-count :: = END COUNT
I END

F-l

PSCOPE Grammar

F-2

define-command :: = DEFINE BRKREG name = break-group [, break-group]*
I DEFINE TRCREG name = break-group [, break-group]*
I DEFINE PATCH expr [TIL expr] = patch-value
I DEFINE PROC name = command
I DEFINE LITERALLY name = string [string]*
I DEFINE [GLOBAL] mtype name [= expr]

break-group:: = (break-point [, break-point]*) [CALL proc-name]
I break-point [CALL proc-name]

break-point :: = expr

patch-value :: = command
I NOP

directory-command :: = DIR [directory] [directory-type]

directory:: = DEBUG
I PUBLIC
I : module-name

directory-type :: = mtype
I~
I PATCH
I ARRAY
I ENUMERATION
I FILE
I LABEL
I LINE
I MODULE
I PROCEDURE
I RECORD
I SET

display-command :: = PROC proc-name
I LITERALLY literally-name
I BRKREG brkreg-name
I TRCREG trcreg-name
I PATCHexpr
I mtype address [length-spec]
I expr

length-spec:: = LENGTH expr
I TO expr

do-command ::= DO
[command] *

END

edit-command :: = EDIT [edit-item]

edit-item :: name
I PATCHexpr
I GO

eval-command :: = EVAL expr [eval-type]

eval-type:: = LINE
I PROCEDURE
I SYMBOL

PSCOPE-86

PSCOPE-86

exit-command :: = EXIT

go-command :: = GO [break-spec]*
I GO FOREVER

break-spec :: = USING brkreg-item [, brkreg-item]*
I TIL expr [, expr] *

brkreg-item :: = BRKREG
I brkreg-name
I TRCREG
I trcreg-name

help-command :: = HELP [name]

if-command :: = IF expr THEN
lcommand]*

[ORIF expr THEN
lcommandl *] *

[ELSE
[commandl*]

end-if

end-if:: = ENDIF
-- I END

include-command:: = INCLUDE path name [NOLIST]

list-command :: = LIST [pathname]
I NLIST

load-command :: = LOAD pathname [load-option] *
[CONTROLS controls-text]

load-option :: = NO LINES
I NOSYMBOLS
I lE8087

modify-command:: = variable = expr
I mtype address [length-spec] = modify-list

modify-list:: = expr [, exprl*
I mtype address [length-spec]

length-spec :: = LENGTH expr
I TO expr

put-command:: = PUT pathname put-list
I APPEND pathname put-list

put-list:: = put-item [, put-item]*
I DEBUG

put-item :: = mtype
I~
I name
I PATCH [exprl

PSCOPE Grammar

F-3

PSCOPE Grammar

F-4

remove-command:: = REMOVE remove-item [, remove-item]*
1 REMOVE DEBUG

remove-item:: = mtvpe
I~
1 name
1 PATCH [expr]

repeat-command :: = REPEAT
[loop-command] *

end-repeat

loop-command:: = WHILE expr
1 UNTIL expr
1 [command]

end-repeat :: = END REPEAT
1 END

return-command ::= RETURN [expr]

step-command:: = LSTEP
1 PSTEP

write-command :: = WRITE
1 [USING (string-expr)]
1 [expr [, expr] *]

expr:: = logic-term [or-op logic-term]*

or-op ::= OR
1 XOR

logic-term :: = logic-factor [AND logic-factor] *

logic-factor :: = [NOT] logic-primary

logic-primary:: = arith-expr [relational-op arith-expr]

relational-op :: = <
I>
1

1<=
1>=
1 < >

arith-exp :: = ~] address

address ::= term [add-op term]*

add-op ::= +
1 -

1 /

1 MOD

term ::= factor [mult-op factor] *

factor :: = [add-op] primary

PSCOPE-86

PSCOPE-86

primary:: = primitive [: primitive]

primitive :: = (expr)
I variable
I value

variable :: = symbolic-reference
I mtype-variable-name
I $
I BASE
I NAMESCOPE
I reg-name

symbolic-reference :: = [: module-name .1
symbol [qualifier] *

I [: module-name]
#line-number

symbol :: = ["] name

qualifier :: = left- bracket expr [, expr] *
right-bracket

I . symbol
I 1

left-bracket:: = [

right-bracket :: =]

reg-name :: = AX
/ BX

CX
OX
BP
SP
01
SI
CS
OS
ES
SS
IP
FLAG
AL
AH
BL
BH
CL
CH
OL
OH
FL
FH

PSCOPE Grammar

F-5

PSCOPE Grammar

F-6

~ :: = LITERALLY
I BRKREG
I TRCREG
I PROC

mtype ::= BOOLEAN
CHAR
BYTE
WORD
DWORD
ADDRESS
SELECTOR
POINTER
SHORTINT
INTEGER
LONGINT
EXTINT
BCD
REAL
LONGREAL
TEMPREAL

value :: = integer-constant
-- real-constant

Boolean-constant
string-constant [string-constant] *
proc-name [(expr [, expr]*)]
% actual-1aramefer -
SUBSTRstring-expr, expr, expr)
CONCAT (string-expr[, string expr]*)
STRLEN (string-expr)
CI
ACTIVE (symbolic-reference)
. symbolic-reference
SELECTOROF (expr)
OFFSETOF (expr)

actual-parameter :: = integer-constant
I (expr)
I NP

PSCOPE-86

APPENDIXG
RESERVED KEYWORDS

This appendix contains the keywords PSCOPE recognizes and uses. You cannot
use keywords as user-defined object names. To reference a program symbol whose
name is the same as a PSCOPE keyword, you must prefix the symbol with a quota­
tion mark ("), as discussed in Chapter 3. PSCOPE also recognizes special opera­
tors and delimiters which, like the reserved keywords, you cannot use in any other
way. PSCOPE reports all attempts to incorrectly use a PSCOPE keyword or delimi­
ter as syntax errors.

PSCOPE Keywords

A
AL
AX
BL
BX
CH
CONCAT
CX
DI
DS
EDIT
ENDIF
EVAL
FH
FOREVER
IF
LABEL
LITERALLY
LSTEP
NAMESCOPE
NOSYMBOLS
OFFSET$OF
PATCH
PSTEP
RECORD
SELECTOR
SHORTINT
STRLEN
THEN
TRACEREGS
USING
XOR

ACTIVE
AND
BASE
BOOLEAN
BYTE
CHAR
CONTROLS
DEBUG
DIR
DWORD
ELSE
ENDREPEAT
EXIT
FILE
GLOBAL
INCLUDE
LENGTH
LOAD
MOD
NOCODE
NOP
OFFSETOF
POINTER
PUBLIC
REMOVE
SELECTOR$OF
SI
SUBSTR
TIL
TRCREG
WHILE

ADDRESS
APPEND
BCD
BP
CALL
CI
COUNT
DEFINE
DL
DX
END
ENUMERATION
EXTINT
FL
GO
INTEGER
LINE
LONGINT
MODE
NOLINES
NOT
OR
PROC
PUT
REPEAT
SELECTOROF
SP
SYMBOL
TO
TRUE
WORD

PSCOPE Operators and Delimiters

AH
ARRAY
BH
BRKREG
CALLSTACK
CL
CS
DH
DO
E8087
ENDCOUNT
ES
FALSE
FLAG
HELP
IP
LIST
LONGREAL
MODULE
NO LIST
NP
ORIF
PROCEDURE
REAL
RETURN
SET
SS
TEMPREAL
TRACEACT
UNTIL
WRITE

, , : $ " 1 . [] () % <= < >

> = <> + * / 1* */

G-l/G-2

)

APPENDIXH
PSCOPE COMMAND INDEX

This appendix lists each PSCOPE command and refers you to the section in text where you can find more
information.

Command Page Command Page

0/0 ••• 8 - 3 LIST 10 - 6
LOAD 4-1

ACTIVE 5-7 LSTEP 4 - 3
APPEND 7-7

B (lock) 2 - 11 modify memory 5 - 9
BASE 10-9 modify debug symbol 7 - 5
BRKREG 11-1

NAMESCOPE 5 - 6
call debug procedures 8 - 2 NOLIST 10 - 6
CALLSTACK 10-4
change program symbol 5 - 6 OFFSET$OF 10 -13
CI 10 - 12
CONCAT 10 -12 PATCH 9-1

PSTEP 4 - 3
D(elete) 2 -12 PUT 7-7
DEFINE 7-2,8-1,9-1,11-2
DIR 10-2 Q(uit) 2 - 13
display debug objects 7 - 4
display memory 5 - 8 REMOVE 7 - 6, 9 - 3
display program symbol 5 - 3 RETURN 8-2

EDIT......................... 2 - 8 SELECTOR$OF 10 - 13
EVAL 10-7 STRLEN 10 - 12
EXIT 10-1 SUBSTR 10 - 12

G(et) 2-12 TRCREG 11-3
GO 4 - 2, 11 - 5

VOew) 2 - 13
HELP ,. 10-5

WRITE 10-10

I(nsert) 2 - 12
INCLUDE 10 - 7 X (change) 2 - 13

H-l/H-2

&,2-6

%,8-3

" ,3-3

Abort (A) command, 2-13
Accessing debug procedure parameters, 8-3
ACTIVE command, 5-7
ADDS Regent Model 200 configuration, 8-4
APPEND command, 7-7

BASE command, 10-9
Block command, 2-11
Break registers, 11-1
Beehive Mini-Bee configuration, B-5
Breakpoints, 11-1
BRKREG command, 11-2

Calling debug procedures, 8-2
Calling sequence, see CALLSTACK command
CALLSTACK command, 10-4
Change name scope, 5-6
Change program symbol, 5-6
Character string constants, 3-4
CI command, 10-12
Code patch display, 9-2
Code patches, 9-1
Command entry, 2-6
Command index, H-l
Commands, see PSCOPE commands
Comments, 3-6
Compile restrictions, 1-2
CONCAT command, 10-12
Configuration commands, B-1
Configuration:

ADDS Regent Model 200, B-4
Beehive Mini-Bee, B-5
DEC VT52, B-6
DEC VT100, B-7
Hazeltine 1510, B-8
Lear Siegler ADM-3A, B-lO

Configuring PSCOPE for non-Intel terminals, B-1
Constants, 3-8
Continuation flag (&), 2-6
Control constructs:

COUNT, 6-1
DO, 6-3
IF, 6-2
REPEAT, 6-1

COUNT control construct, 6-1
CRT invocation control, 2-1
Current name scope, 5-1
Cursor control keys (for edit), 2-9

INDEX

Debug objects:, 7-1
debug type, 7-2
memory type, 7-2

Debug procedure calls, 8-2
Debug procedure definitions, 8-1
Debug procedure parameter access, 8-3
Debug procedure return, 8-2
Debug session example, 1-5
Debug symbol object types, 3-6
Debug symbols, 3-2
Debug type debug objects, 7-2
Debug variable references, 3-9
Debugger invocation, 2-1
Debugging session termination, see EXIT command
DEC VT52 configuration, B-6
DEC VT100 configuration, B-7
DEFINE BRKREG command, 11-2
Define code patches, 9-1
DEFINE command, 7-2
Define debug procedures, 8-1
DEFINE PATCH command, 9-1
DEFINE PROC command, 8-1
DEFINE TRCREG command, 11-4
Delete (D) command, 2-12
Delimiters, 3-1
Developing programs, 1-1
DIR command, 10-2
Directory command, see DIR command
Display code patch, 9-2
Display command, 7-4
Display information at the terminal,

see WRITE command
Display memory, 5-8
Display program symbol, 5-3
DO control construct, 6-3

EDIT command, 2-8
Editor display, 2-9
Editor, internal screen-oriented, 2-7
End a debugging session, see EXIT command
Enter PSCOPE commands, 2-6
Error messages, A-I
Error messages, invocation, 2-4
Errors, A-I
Errors in syntax, 2-7
ESC key to invoke the internal editor, 2-8
EVAL command, 10-7
Evaluating expressions, see EVAL command
Example Pascal program, 1-4, E-l
Example PSCOPE debug session, 1-5
Exception trapping, 11-7
Execute (E) command, 2-13
Execute user program, see GO command
EXIT command, 2-6, 10-1

INDEX-l

Index

Explicit typing of memory references, 3-8
Expression evaluation, see EVAL command
Expressions, 3-7
Fatal errors, A-I
Floating point numbers, 3-4
Fully qualified line references, 3-9
Fully qualified name, 3-3
Fully qualified references, 5-1
Get (G) command, 2-12
Global debug objects, 7-1
GO command, 4-2,11-5
Grammar, PSCOPE, F-l

Hazeltine 1510 configuration, B-8
HELP commarid, 10-5, A-I

IF control construct, 6-2
INCLUDE command, 10-7
Index ofPSCOPE commands, H-1
Insert (I) command, 2-12
Integers, 3-3
Intellec Series III information, C-l
Intellec Series IV information, D-l
Internal errors, A-I
Internal screen-oriented editor, 2-7
Invocation error messages, 2-4
Invoking the debugger, 2-1

Keys:
Cursor control during edit, 2-9
Line-editing, 2-6

Keywords, 3-2, G-1

Lear Siegler ADM-3A configuration, B-10
Line editing keys, 2-6
Line number references, 3-9
Line numbers, 3-3
LIST command, 10-6
Listing file, see LIST command
LOAD command, 4-1
Local debug objects, 7-1
LSTEP command, 4-3

Machine register references, 3-8
MACRO invocation control, 2-2
Memory display, 5-8
Memory modification, 5-9
Memory references with explicit typing, 3-8
Memory symbol object types, 3-6
Memory type debug objects, 7-2
Menu commands, see PSCOPE menu commands
Modify command, 7-5
Modify memory, 5-9
Name scope, 5-1
Name scope change, 5-6
Names, 3-2
NOCRT invocation control, 2-1
NOLIST command, 10-6
NOMACRO, 2-2

INDEX-2

NOSUBMIT invocation control, 2-3
Number base, see BASE command
Numeric constants, 3-3, 8
Object file, 4-1
OFFSET$OF command, 10-13
Operands, 3-7
Operators, 3-5, 10
OPTIMIZE(O) compiler option, 1-2

Parameter accessing, 8-3
Parameter references, 3-10
Partially qualified line references, 3-9
Partially qualified references, 3-3, 5-3
Pascal program example, 1-4, E-1
PATCH command, 9-1, 2
Patch definition, 9-1
·Patch removal, 9-3
PROC command, 8-1
Procedure calls, 3-10
Product definition, 1-1
Program development process, 1-1
Program example, 1-4, E-1
Program execution, see GO command
Program symbol change, 5-6
Program symbol display, 5-3
Program symbol references, 3-8, 5-1
Program symbols, 3-2
PSCOPE command entry, 2-6
PSCOPE command index, H-1
PSCOPE commands:

ACTIVE, 5-7
APPEND, 7-7
BASE,10-9
BRKREG, 11-2
CALLSTACK, 10-4
CI, 10-12
CONCAT, 10-12
Configuration, B-1
DEFINE,7-2
DEFINE BRKREG, 11-2
DEFINE PATCH, 9-1
DEFINE PROC, 8-1
DEFINE TRCREG, 11-4
DIR, 10-2
Display, 7-4
EVAL, 10-7
EXIT, 10-1
GO, 4-2,11-5
HELP, 10-5
INCLUDE, 10-7
LIST, 10-6
LOAD, 4-1
LSTEP, 4-3
Modify, 7-5
NOLIST, 10-6
OFFSET$OF, 10-13
PATCH, 9-1, 2
PROC, 8-1
PSTEP, 4-3

PSCOPE-86

PSCOPE-86

PUT, 7-7
REMOVE, 7-6
REMOVE PATCH, 9-3
RETURN, 8-2
SELECTOR$OF, 10-13
STRLEN, 10-12
SUBSTR, 10-12
TRCREG,11-4
WRITE, 10-10

PSCOPE debug session example, 1-5
PSCOPE directory, 10-2
PSCOPE grammar, F-1
PSCOPE menu commands:

Abort (A), 2-13
Block (B), 2-11
Delete (0),2-12
Execute (E), 2-13
Get (G), 2-12
Insert (I), 2-12
Quit (Q), 2-13
View (V), 2-13
Xchange (X), 2-13

PSCOPE reserved keywords, G-1
PSCOPE restrictions, 1-2
PSCOPE.CRT file, 2-2, B-1
PSCOPE.MAC file, 2-3
PSTEP command, 4-3
PUT commands, 7-7

Quit (Q) command, 2-8, 13

Real numbers, 3-4
Referencing program symbols, 5-1
Registers:

Break, 11-1
Trace, 11-3

Remove code patch, 9-3
REMOVE command, 7-6
REMOVE PATCH command, 9-3
REPEAT control construct, 6-1
Reserved keywords, G-1
Restrictions, 1-2
RETURN command, 8-2
Returning from a debug procedure, 8-2
RUN command, 2-1

Sample Pascal program, 1-4, E-1
Sample PSCOPE debug session, 1-5

Screen-oriented editor, 2-7
SELECTOR$OF command, 10-13
Series III information, C-1
Series IV information, 0-1
Severe errors, A-I
Single-stepping through program, 4-3
Stepping commands, see LSTEP command

and PSTEP command
String constants, 3-4, 8
String functions:

CI, 10-12
CONCAT, 10-12
STRLEN, 10-12
SUBSTR, 10-12

STRLEN command, 10-12
SUBMIT file, 2-3
SUBMIT invocation control, 2-3
SUBSTR command, 10-12
Symbol object types, 3-6
Syntax errors, 2-7

Terminate debugging session, see EXIT command
Tokens, 3-1
. Trace registers, 11-3
Tracepoints, 11-3
Trapping exceptions, 11-7
TRCREG command, 11-4
Type conversions, 3-10, 12

Unprintable characters, 2-9
User symbol object types, 3-6
Utility commands:

BASE, 10-9
CALLSTACK, 10-4
DIR, 10-2
EVAL, 10-7
EXIT, 10-1
HELP, 10-5
INCLUDE, 10-7
LIST, 10-6
NOLIST, 10-6
WRITE, 10-10

Warnings, A-I
WORKSPACE invocation control, 2-4
WRITE command, 10-10

Xchange (X) command, 2-13

Index

INDEX-3

PSCOPE-86 HIGH-LEVEL PROGRAM
DEBUGGER USER'S GUIDE
Order Number: 121790-002

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

NAME ____________________________ __ DATE _____________ _

TITLE ___ __

COMPANYNAME/DEPARTMENT __ __

ADDRESS ___ ___

CITY ___________________ _ STATE _______ _ ZIP CODE ___________ _

(COUNTRY)

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS •••

This document Is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Parkway.
Hillsboro, Oregon 971 23

DSHO Technical Publications

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

DEVELOPMENT SYSTEMS

DS-139/5. 2K/0884/ AP

