
iRMX 861M 

OPERATING SYSTEM 

• Structured multiple application • Complete bootstrap and application 
environment loaders 

• Object-oriented architecture • Powerful error management 

• (P)ROM or RAM based • Comprehensive 110 system 

• User configurable and extensible • Extensive human interface 

• Real-Time priority-oriented scheduler • Interactive system debugger 

The Intel iRMX 86 Operating System is an easy to use, comprehensive multiprogramming software 
system for Intel iSBC 86 and 88 Single Board Computers and other iAPX 86 and iAPX 88-based microcom­
puters. The iRMX 86 Operating System extends the architecture of the underlying processor by providing 
a collection of new operations that act on the Operating System objects provided by the system or user 
created extensions. The multiprogramming environment of the iRMX 86 Operating System, based on a 
real time, event-driven scheduler, provides an efficient foundation for applications including process con­
trol, intelligent terminals, office systems, data communications and medical electronics. 

Each layer of the operating system simplifies user access to the underlying hardware by taking advantage 
of the mechanisms provided by the layers below. Each layer of the iRMX 86 Operating System is con­
figurable to allow applications to customize the system to particular needs. 

iRMX 86™ Operating System Layers 

The following are trademarks of Intel Corporation and may be used to describe Intel products: CREDIT, Index, Intel, Inslte, Intellec, Library Manager, Megachassls, Mlcromap, 
MULTIBUS, PROMPT, UPI,,.Scope, Promware, ICE, IRMX, ISBC, iSBX, MULTIMODULE and iCS, and the combination of ICE, iSBC, ISBX, IRMX or ICS, and a numerical suffix. 
Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. 

©INTELCORPORATION,l981 April 1981 
142988.01 



inter iRMX 86lM 

FUNCTIONAL DESCRIPTION 

Services provided by the iRMX 86 Operating 
System include facilities for executing programs 
concurrently, sharing resources and information, 
servicing asynchronous events, and interactively 
controlling system resources and utilities. In addi­
tion, the iRMX 86 Operating System provides all 
major real time facilities including priority-based 
system resource allocation, means for concur­
rently monitoring and controlling multiple exter­
nal events, real time clock control, interrupt 
management, and task dispatching. The iRMX 86 
Operating System contains the following 
modules: An object-oriented Nucleus; Device In­
dependent Basic and Extended 1/0 Systems; Ter­
minal Handler; Bootstrap and Application 
Loaders; Human Interface with complete com­
mand line interpreter; and an interactive, object­
oriented Debugger. 

Because the modules and services provided by 
the operating system are user selectable, applica­
tion specific operating systems can be created by 
iRMX 86 users. The iRMX 86 Operating System 
therefore eliminates the need for custom 
operating system design, thereby reducing 
development time, cost, effort, and risk. 

FEATURE OVERVIEW 

The iRMX 86 Operating System provides users 
with simple, easy-to-use, quality software tools for 
creating a wide range of application systems. 
Some important features are: 

Structured Application Environment 

The iRMX 86 Operating System provides a consis­
tent structure from application to application, and 
CPU to CPU, thus allowing experience gained on 
one system to be easily transferred to others. 
Often entire programs can be ported from one ap­
plication to another. 

Object·Oriented Architecture 

The iRMX 86 Operating System extends the 
capability of the underlying CPU by adding a 
number of new data structures (objects) and a 
number of functions to operate on these objects. 
This architecture provides a simple, symmetric, 
and easy to learn interface to a comprehensive 
system. The Nucleus provides the means to 
create, manipulate, and delete the basic objects 

2 

necessary for any application. It also provides a 
mechanism for users to create their own object 
definitions and use them as part of the basic 
operating system. Each of the outer layers of the 
system add to the list of available objects by using 
this same extension mechanism. 

(P)ROM or RAM Based 

The iRMX 86 Operating System can be made resi­
dent in (P)ROM or can be loaded into RAM from a 
secondary storage device using one of the sup­
plied Loaders. Being able to place all system soft­
ware in (P)ROM offers three benefits: 1) Systems 
may be moved to harsh environments that 
preclude the use of disks; 2)The overhead ex­
pense of providing mass storage devices can be 
eliminated; and 3) System performance can be in­
creased by eliminating the wait states required for 
most RAM's, and disk accesses required for most 
disk-based operating systems. 

User Configurable 

Users of the iRMX 86 Operating System are able to 
use a wide range of features or select only those 
which meet the specific requirements of a par­
ticular application. Each system call provided by 
the operating system may be removed from th~ 
system if it is not used. Each task can specify the 
use of the 8087. Numeric Data Processor. Jobs can 
be configured with specific running environ­
ments. Individual 1/0 port addresses are also con­
figurable, making the system ideal for component 
level applications. 

This complete modularity along with many other 
user options allows users to configure systems in 
a cost-effective manner regardless of the applica­
tion environment. Each layer of the system may be 
configured in this manner, or (with the exception 
of the Nucleus) left out of the system altogether. 

Nucleus 

The Nucleus of the iRMX 86 Operating System 
provides the foundation upon which a variety of 
applications systems can be built. It includes the 
facilities to manage the basic objects of the 
system necessary to perform multiprogramming, 
multitasking, critical section management, and 
extensive task-to-task communication and 
control. 

Embedded in the Nucleus are the facilities to sup­
port concurrent program execution and handling 

AFN-01723B 



iRMX 86™ 

of simultaneous asynchronous events. These 
facilities allow interrupts coming from specialized 
peripheral devices to be serviced in an efficient 
manner. The iRMX 86 Operating System allows 
the CPU hardware to be used by multiple applica­
tions, thus reducing the overall system size, com­
plexity, and cost. These facilities are built from 
four key concepts: 

OBJECT MANAGEMENT - Just as floating pOint 
numbers are data structures using operators such 
as multiply and subtract to operate on them, iRMX 
86 objects are data structures with system calls to 
manipulate them. Because of the uniform struc­
ture of the system, users have a foundation on 
which to tailor the Nucleus to the application by 
removing system calls not necessary for the ap­
plication and by adding objects and system calls 
customized for the application. The basic objects 
of the Nucleus are: 

• SEGMENTS - Store data in dynamically 
created RAM buffers with a specified length. 

• ·MAILBOXES - Provide a mechanism for inter­
task and interprogram object and data transfer. 
Mailboxes are locations for objects to be sent 
and received. For example, using a mailbox for 
intertask communication permits a time-critical 
task to forward data to a non-time-critical task 
for processing. Mailboxes are generally used to 
pass data segments from task to task, although 
any object (user or system defined) may be 
transferred. 

• SEMAPHORES - Manage mutual exclusion 
and synchronization. A semaphore is used to 
signal another task when processing has been 
completed or when resources are available. A 
semaphore provides a low-overhead signalling 
mechanism. 

• REGIONS - Control access to critical sections 
by allowing only one task at any given time to 
access a portion of code. Examples are a non­
reentrant procedure or code for controlling a 
peripheral device that can only service one re­
quest at a time. In addition, regions can be used 
to protect data structures from being manipu­
lated by more than one procedure at a time. 

• TASKS - Perform the actual work of the ap­
plication by executing software modules. Each 
task in the system has the characteristics of a 
unique processor. It has its own code, priority, 
stack, data area, and status. If the task is 

3 

designated as using the 8087 Numeric Data Pro­
cessor, it also has its own copy of the N DP 
registers, stack, and status. Task execution is 
based on an event-driven, priority-based 
scheduling algorithm. 

• JOBS - Permit isolation of application tasks, 
objects, and memory to provide a multipro­
gramming environment. Jobs encapsulate an 
application and limit the degree of interaction 
between sets of tasks. 

• COMPOSITE OBJECTS - Permit users to 
create objects not found in the set of Nucleus 
objects. These new objects appear to other 
facilities in the iRMX 86 system as if they are 
part of the original system. This means that 
Composite objects can be manipulated using 
the Mailboxes and Object Directories in exactly 
the same manner as other objects. 

SCHEDULING - The iRMX 86 Nucleus offers a 
priority-oriented, event-driven scheduling mecha­
nism that supports up to 255 different priority 
levels. The scheduler uses the task priority to 
determine which task receives control of the CPU, 
and to ensure that the highest priority task ready 
to execute is given control of the system. That 
task will continue to run until a higher priority in­
terrupt occurs, or until the running task requests 
resources that are not available. This priority 
scheduling allows the system to be responsive to 
the external environment while allocating 
resources among the application tasks. 

INTERRUPT MANAGEMENT - The iRMX 86 
Operating System provides two levels of interrupt 
management: Interrupt Handlers and Interrupt 
Tasks. The first optimizes response time, the 
other optimizes response capabilities. Interrupt 
tasks allow use of all iRMX 86 system calls and 
mask only lower priority interrupts. Interrupt 
handlers permit direct control over the CPU's in­
terrupt logic and only allow the use of interrupt 
system calls. This structure allows users to easily 
perform buffering of data while leaving complex 
processing of the data to interrupt tasks. 

For systems requiring more than the 8 interrupt 
levels of the master 8259A interrupt controller, the 
iRMX 86 Operating System allows applications to 
configure up to 7 slave 8259A's. Using the slave 
devices, systems can respond in real time to as 
many as 57 interrupt sources. 

ERROR MANAGEMENT - When a task issues an 
iRMX 86 system call, the results may not always 

AFN·01723B 



intJ iRMX 86™ 

be what the task expects to achieve. For example, 
the task may request memory that is not available, 
or it may use an invalid parameter. The iRMX 86 
Operating System may be configured to provide 
two levels of comprehensive error management: 
hierarchical error handling and selective error pro­
cessing. 

Hierarchical error handling permits a task to 
handle various errors at different levels of the 
system. Errors common to a number of tasks can 
be addressed by system-wide error handlers. 
Application-specific errors can be routed to job­
level handlers. In addition, if a task has a need for 
a unique error handler, an error handler can be 
specified for that task. This flexibility means 
global error handlers can be created for the ma­
jority of the errors, reducing the amount of error 
handling software to be written. 

In addition, each application can select the type of 
error to be processed by the error handlers. The 
errors are divided into two categories: program­
mer errors such as invalid parameters; and en­
vironmental condition errors such as detection of 
insufficient memory to meet requirements. 

Terminal Handler 

The Terminal Handler supports real time, asyn­
chronous 110 between the operator's terminal and 
application tasks. It provides a line buffer which 
stores ASCII characters as they are input from the 
console. Special editing characters are used to 
control the terminal and the buffer contents, and 
are not entered into the data. The Handler may be 
configured as an output-only version to support 
those applications not requiring terminal input. 

1/0 System 

The iRMX 86 110 System provides an extensive 
facility for device independent 110 through a 
series of supplied device drivers, or any number of 
user supplied device drivers that can be con­
figured to operate at any 110 port address. The 
Basic 110 System (BIOS) implements an asyn­
chronous interface to the device drivers allowing 
users to explicitly overlap 110 functions with other 
operations. The Extended 110 System (EIOS) per­
forms all of the synchronization necessary to do 
read-ahead and write-behind buffering 
automatically, and to reference files with logical 
names. By configuring the appropriate interface, 
applications can develop an 110 subsystem with 
the optimum degree of device control while re-

4 

quiring a minimum of design time and effort. Fur­
thermore, the device-independent nature of the 
system allows use of different devices without 
redesign. 

The 1/0 System provides access to three types of 
files: 

• NAMED FILES - allow applications to refer to 
collections of bytes (files) by using a name. 
These names are cataloged in directories to 
allow file access by different tasks and jobs. 
Directories are special named files that store 
directory and access information about other 
named files and directory files. 

• PHYSICAL FILES - provide a mechanism to 
make actual physical connections to storage 
devices. This type of file is typically used to 
communicate with simple devices such as 
printers and terminals. 

• STREAM FILES - are mechanisms for com­
municating between tasks and jobs as if the 
data were written and then read from a FIFO 
file. 

The named files may be organized in a hierar­
chical structure as shown in Figure 1, where the 
triangular files are named data files, and the rec­
tangular files represent directories. This hierarchy 
allows data to be grouped logically and accessed 
with a minimum of overhead. 

Figure 1. Example of Named·File Tree 

Loaders 

The iRMX 86 Operating System contains two 
loaders: A Bootstrap Loader capable of loading a 
file from mass storage into system RAM; and an 
Application Loader available to tasks as 110 
system calls. 

AFN-017238 



iRMX86™ 

The Bootstrap Loader can be configured to load 
from a specific device, or to use the first device 
that becomes ready after the system has been 
started. It can also be configured to load a file 
specified by the operator at the system console. 

The Application Loader provides a simple mecha­
nism for loading application code and data files 
into the system. It can be used to load absolute 
code into a fixed location, or to load relocatable 
code into dynamically allocated memory loca­
tions. It can also be used to support code overlay 
functions. 

Human Interface 

The Human Interface is the uppermost layer of the 
iRMX 86 Operating System. It supports the user by 
providing a number of utilities useful in typical ap­
plications. It also provides the application pro­
grammer with a number of tools to generate 
custom utilities using the basic system utilities or 
by interfacing directly to the Command Line Inter­
preter. 

Human Interface commands supplied with the 
iRMX 86 Operating System include commands to 
perform: creating a directory file; creating, copy-

SPECI FICATIONS 

iSBC™ Supported Hardware 

SINGLE BOARD COMPUTERS 

iSBC 88/40 
iSBC 86/05 
iSBC 86/12A 

MASS STORAGE 

iSBC 204 Flexible disk controller 
iSBC 206 Hard disk controller 
iSBC 215A Winchester disk controller 
iSBC 215B Winchester disk controller 
iSBC 220 SMD disk controller 
iSBC 254 Bubble Memory board 

5 

ing, deleting, and renaming files; loading and 
starting application programs; formatting a device 
volume; and submitting a command file in a batch 
mode. The Human Interface also provides some 
utilities useful in debugging applications: a debug 
command enabling users to start commands via 
the system debugger, and a file copying facility 
used in conjunction with the iSBC 957 A Monitor 
to convert MDS files to and from the iRMX 86 HIe 
format. 

Interactive System Debugger 

The iRMX 86 Operating System provides a com­
prehensive tool for interactive software debug­
ging. The Debugger has two capabilities that 
greatly simplify the process of debugging a 
multitasking system. First, the Debugger allows 
users to debug several tasks while the balance of 
the application system continues to run in real­
time. Second, the Debugger allows programmers 
to interactively view and modify system con­
structs as well as the system RAM and CPU 
registers. The debugger is structured to enable 
system designers to track system-wide problems 
easily. It can also remain in the final application as 
a continuous maintenance tool. 

MUL TIMODULETM BOARDS 

iSBX 218 Flexible disk controller (when used 
with the iSBC 215) 

iSBC 337 Numeric data processor 
iSBX 351 Serial 110 channel 

User iAPX 86 and iAPX 88 Based Systems 

The iRMX 86 system runs on user designed 
boards with the following components: 
8253 Programmable Interval Timer 
8259A Programmable Interrupt Controller 
8251A USART (When the Terminal Handler 

is configured into the system) 
8087 Numeric Data Processor (when NDP 

tasks are configured into the system) 

AFN-017238 



intJ iRMX 86™ 

ORDERING INFORMATION 

The ordering options for the iRMX 86 Operating 
System are listed below. All options include a full 
year of update service. All the options including 
the word "KIT" are shipped with a complete set of 
manuals, the iSBC 957A system monitor for the 
iSBC 86/12A Single Board Computer, and an iRMX 
86 Customer Training Course credit voucher that 
is valid for 6 months after the date of purchase. 

Part Number 

RMX 86 KIT ARO, 
and RMX 86 KIT BRO: 

RMX 86 KIT AST, 
and RMX 86 KIT BST: 

RMX 86 KIT ABY, 
and RMX 86 KIT BBY: 

RMX86 AWX, 
and RMX 86 BWX: 

Description 

Single and double 
density OEM license re­
quiring Royalties for each 
derivative work 

Single and double 
density license for one 
additional development 
site 

Single and double 
density OEM Buy-out 
requiring no further 
Royalties 

Single and double 
density update service 
for an additional year. 

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 • (408) 734-8102 x598 

Printed in U.S.A.lB·03211081/20KlBAlUC 
AFN·01723B 


