
'"

STRUCTURE OF iRMX 86™
NAMED FILE VOLUMES

An Intel Technical Specification

Manual Number: 143308-001

Copyright © 1981, Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP
CREDIT
i
ICE
iCS
im
Insite
Intel

Intel
Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS

Megachassis
Micromap
Multibus
Multimodule
PROMPT
Promware
RMX/80
System 2000
UPI
/lScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.
A 292/181/IK IP

-If '

ii

PREFACE

This document describes the structure of an iRMX 86 volume that contains
named files. Those users who wish to examine named file volumes or
create their own formatting utility programs can use this informtion.

READER LEVEL

This technical specification is intended for system programmers who have
had experience in reading and writing actual volume information. It does
not attempt to teach the reader these functions.

RELATED PUBLICATIONS

The following manuals provide additional background and reference
information about the iRMX 86 Operating System.

Manual

iRMX 86 Nucleus, Terminal Handler, and Debugger
Reference Manual

iRMX 86 I/O System and Loader Reference Manual

iRMX 86 System Programmer's Reference Manual

Guide to Writing Device Drivers for the iRMX 86
I/O System

iRMX 86 Configuration Guide for ISIS-II Users

iii

Number

9803122

9803123

142721

142926

9803126

iv

CONTENTS

PREFACE
Reader Level•...... ~ •... .,•.•...•.•........••.....••........ iii
Related Publications •• iii

CHAPTER 1
INTRODUCTION ..•..•••••.••.•••..••.••••.••..••.•••..••..••..•.••..•.... 1-1

CHAPT~R 2
VOLUME LABELS
ISO Volume Label •••••.•••.•••...••••••••.•.••..••••.••.•.•.•••••.••.•• 2-1
iRMX 86 Volume Label •• 2-2

CHAPTER 3
INITIAL FILES

File •• 3-1 Fnode
Fnode 0
Fnode
Fnode
Fnode

1
2
4

(Fnode Fi Ie) ... 3-6
(Volume Free Space Map File) •••••••••••••••••••••••••••••••••• 3-7
(Free Fnodes Map File) •• 3-8
(Bad Blocks File) ••••••••••••••••••••• ~ ••••••••••••••••••••••• 3-8

Root Directory •• 3-8
Other Fnodes•.....•...............................•............ 3-9

CHAPTER 4
LONG AND SHORT FILES
Short Fi Ie s ... eo ••••••••••••• • 4--1
Long Fi Ie s •........••.••.•••.•.........•..•....•...•.••............... 4-3

CHAPTER 5
EXAMPLE VOLUME
ISO Volume Label•...•............•......•.....•.• ., •......... 5-1
iRMX 86 Volume Label •• ~ ••••••• 5-2
Fnode File•......•••................ 5 2

Fnode
Fnode
Fnode
Fnode
Fnode
Fnode

0
1
2
3
4
5

(Fnode File) •....••...........•....•...•.....•...........•... 5 .. 2
(Free Space Ma.p) ••• 5-.3
(Free Fnode Map) ••• 5-4
(Accounting File) ••••••••••••••••••••••••••••• ~ •••••••••••••• 5-6
(Bad Blocks File) •• 5-7
(Root Directory) •••••••••••••••••••••.•••••••••••••••••••••••• 5-8
(E.x.ampl e Fi 1 e) •••••••••.•••••••••..•••••••••••••••••••••••••• 5-9

Free Space Map File •••••••••••••••••••••••• ~ •••••••••••••••••••••••••• 5-10
Free Fnodes Map File •• 5-11
Root Directory•.•.........•...................................... 5-11

Fnode 6

v

1-1.
4-1.
4-2.

FIGURES

Gen~ral Structure of Named File Volumes ••••••••••••••••••••• ~ •• 1-1
Short File Fnode ••• 4-2
Long File Fnode •• 4-4

vi

CHAPTER 1. INTRODUCTION

Each iRMX 86 named file volume contains ISO (International Organization
for Standardization) label information as well as iRMX 86 label
information and files. Figure 1-1 illustrates the general structure of a
named file volume.

single density flexible
disk sector number

01-03

reserved
for

Bootstrap
Loader

10

absolute byte
number

04

IRMX 86
VQlume
Label

0506 - 07

un Initialized,
reserved ISO for future Volume ISO Label standard-
Izatlon

08 0926 - 27

fnode
file

unlnltlallzed,
reserved reserved volume for future for free space ISO Bootstrap map file standard- Loader
Izatlon

free fnodes
map file

8951896 332713328 -

Figure 1-1. General Structure of Named File Volumes

1-1

bad
blocks

file

Data

and

Directory

flies

root
directory

INTRODUCTION

This specification discusses the structure in more detail. It includes
information concerning the following:

0 ISO Volume Label
0 iRMX 86 Volume Label
0 fnode file
0 volume free space map file
0 free fnodes map file
0 bad blocks file
0 root directory

It also discusses the structure of directory files and the concepts of
long and short files.

The blocks in Figure 1-1 that are reserved for the Bootstrap Loader are
not discussed. To include these blocks on a new volume that you are
formatting t you should copy them from an already formatted volume.

NOTE

The following chapters of this
specification refer to a data type
called DWORD. DWORD must be
declared literally as POINTER. This
results in a 32-bit variable for the
PLM/86 models COMPACT t MEDIUM t and
LARGE.

1-2

CHAPTER 2. VOLUME LABELS

This chapter describes the structure of the volume labels that must be
present on a named file volume. These labels are the ISO volume label
and the iRMX 86 volume label.

ISO VOLUME LABEL

The ISO (International Organization for Standardization) volume label is
recorded in absolute byte positions 768 through 895 of the volume (for
example, sector 07 of a single density flexible diskette). The structure
of this volume label is as follows:

DECLARE
ISOVOLLABEL STRUCTURE(

Where:

LABEL$ID(3)
RESERVED$A
VOL$NAME(6)
VOL$STRUC
RESERVED$B(60)
REC$SIDE
RESERVED$C(4)
ILEAVE(2)
RESERVED$D
ISO$VERSION
RESERVED$E(48)

BYTE,
. BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE) ;

LABEL$ID(3) Label identifier. For named file volumes, this
field contains the ASCII characters "VOL".

RESERVED$A

VOL$NAME(6)

VOL$STRUC

RESERVED$B(60)

Reserved field containing the ASCII character "1".

Volume name. This field can contain up to six
printable ASCII characters, left justified and
space filled. A value of all spaces implies that
the volume name is recorded in the iRMX 86 Volume
Label (absolute byte positions 384-393).

For named file volumes, this field contains the
ASCII character "N", indicating that this volume
has a non-ISO file structure.

This is a reserved field containing 60 bytes of
ASCII spaces.

2-1

REC$SIDE

VOLUME LABELS

For named file volumes, this field contains the
ASCII character "1" to indicate that only one
side of the volume is to be recorded.

RESERVED$C(4) This is a reserved field containing four bytes of
ASCII spaces.

ILEAVE(2)

RESERVED$D

Two ASCII digits indicating the interleave factor
for the volume, in decimal. ASCII digits consist
of the numbers 0 through 9. When formatting
named file volumes, you should set this field to
the same interleave factor that you use when
physically formatting the volume.

This is a reserved field containing an ASCII
space.

ISO$VERSION For named file volumes, this field contains the
ASCII character "1", which indicates ISO version
number one.

RESERVED$D(48) This is a reserved field containing 48 ASCII
spaces.

iRMX 86 VOLUME LABEL

The iRMX 86 Volume Label is recorded in absolute byte positions 384
through 511 of the volume (sector 04 of a single density flexible
diskette). The structure of this volume label is as follows:

DECLARE

Where:

RMX$VOLUME$INFORMATION
VOL$.NAME(10)
FILL
FILE$DRIVER
VOL$GRAN
VOL$SIZE
MAX$FNODE
FNODE$START
FNODE$SIZE
ROOT$FNODE

STRUCTURE(
BYTE,
BYTE,
BYTE,
WORD,
DWORD,
WORD,
DWORD,
WORD,
WORD);

VOL$NAME(10) Volume name in printable ASCII characters, left
justified and space filled.

FILL

FILE$DRIVER

Reserved field which is set to zero.

Number of the file driver used with this volume.
For named file volumes, this field is set to four.

2-2

VOL$GRAN

VOL$SIZE

MAX$FNODE

FNODE$START

FNODE$SIZE

ROOT$FNODE

VOLUME LABELS

Volume granularity, specified in bytes. This
value must be a multiple of the device
granularity. It sets the size of a logical
device block, also called a volume block.

Size of the 'entire volume, in bytes.

Number of fnodes in the fnode file. Refer to the
next section for a description of fnodes.

A 32-bit value which represents the number of the
first byte in the fnode file (byte 0 is the first
byte of the volume).

Size of an fnode, in bytes.

Number of the fnode describing the root
directory. Refer to the next section for further
information.

The remainder of the Volume Label (bytes 412 through 511) is reserved and
must be set to zero.

2-3

\

CHAPTER 3. INITIAL FILES

Any mechanism that formats iRMX 86 named volumes must place five files on
the volume during the format process. These five files are the fnode
file, the volume free space map file, the free fnodes map file, the bad
blocks file, and the root directory. The first of these files, the fnode
file, contains information about all of the fi1~s on the volume. The
general structure of the fnode file is discussed first. Then all of the
files are discussed in terms of their fnode entries and their functions.

FNODE FILE

A data structure called a file descriptor node (or fnode) describes each
file in a named file volume. All the fnodes for the entire volume are
grouped together in a file called the fnode file. When the I/O System
accesses a file on a named volume, it examines the iRMX 86 Volume Label
(described in the previous section) to determine the location of the
fnode file, and then examines the appropriate fnode to determine the
actual location of the file.

When a volume is formatted, the fnode file contains six allocated
fnodes. These fnodes represent the fnode file, the volume free space map
file, the free fnodes map file, the bad blocks file, the root directory,
and one other file. Later sections of this chapter describe these
files. The size of the fnode file is determined by the number of fnodes
that it contains. The number of fnodes in the fnode file also determines
the number of files that can be created on the volume.

NOTE

When formatting a volume, you may be
able to improve performance by
placing the fnode file in the middle
of the volume. By doing this, you
reduce the average latency by 50%.
For applications that have heavy file
access, this may be desirable.
However, the fnode file must start on
a volume block boundary.

3-1

INIrIAL FILES

The structure of an individual fnode in a named file volume is as follows:

DECLARE
FNODE STRUCTURE(

Where:

FLAGS

FLAGS WORD,
TYPE BYTE,
GRAN BYTE,
OWNER WORD,
CR$TIME DWORD,
ACCESS$TIME DWORD,
MOD$TIME DWORD,
TOTAL $ SIZE DWORD,
TOTAL$BLKS DWORD,
PTR(8) STRUCTURE (

NUM$BLOCKS WORD,
BLK$PTR(3) BYTE),

THIS$SIZE DWORD,
RESERVED$A WORD,
RESERVED$B WORD,
ID$COUNT WORD,
ACCESSOR(3) STRUCTURE (

ACCESS BYTE,
ID WORD),

PARENT WORD,
AUX(*) BYTE);

A WORD which defines a set of attributes for the
file. The individual bits in this word indicate the
following attributes (bit 0 is the rightmost bit):

Bit Meaning

o Allocation status. If set to one, this
fnode describes an actual file. If set
to zero, this fnode is available for
allocation. When formatting a volume,
this bit is set to one in the six
allocated fnodes. In other fnodes, it
is set to zero.

1 Long or short file attribute~ This bit
describes how the PTR fields of the
fnode are interpreted. If set to zero,
indicating a short file, the PTR fields
identify the actual data blocks of the
file. If set to one, indicating a long
file, the PTR fields identify indirect
blocks. Indirect blocks are described
later in this section. When formatting
a volume, this bit is always set to
zero, since the initial files on the
volume are short files.

3-2

TYPE

GRAN

INITIAL FILES

Bit Meaning

2 Reserved bit which is always set to one.

3-4 Reserved bits which are always set to
zero.

5 Modification attribute. Whenever a
file is modified, this bit is set to
one. Initially, when a volume is
formatted, this bit is set to zero in
each fnode.

6 Deletion attribute. This bit is set to
one to indicate that the file is a
temporary file or that the file is
going to be deleted (the deletion may
be postponed because additional
connections exist to the file).
Initially, when the volume is
formatted, this bit is set to zero in
each fnode.

7-15 Reserved bits which are always set to
zero.

Type of file. The following are acceptable types:

Mnemonic Value ~

FT$FNODE 0 fnode file
FT$VOLMAP 1 volume free space map
FT$FNODEMAP 2 free fnodes map
FT$ACCOUNT 3 space accounting file
FT$BADBLOCK 4 bad device blocks file
FT$DIR 6 directory file
FT$DATA 8 data file

During system operation, only the I/O System can
access file types other than FT$DATA and FT$DIR.
These file types are discussed later in this section.

File granularity, specified in multiples of the volume
granularity. The default value is 1. For the files
initially present on the volume (fnode file, volume
free space map file, free fnodes map file, bad blocks
file, root directory), this value can be set to any
multiple of the volume granularity.

3-3

OWNER

CR$TIME

ACCESS$TIME

MOD$TIME

TOTAL$SIZE

TOTAL$BLKS

PTR(8)

INITIAL FILES

User ID of the owner of the file. For the files
initially present on the volume, this parameter is
important only for the root directory. For the root
directory, this parameter should specify the user
WORLD (FFFFH). The I/O System does not examine this
parameter for the other files (fnode file, volume free
space map file, free fnodes map file, bad blocks file)
and so a value of zero can be specified.

Time and date that the file was created, expressed as
a 32-bit value. This value indicates the number of
seconds since a fixed, user-determined point in time.
By convention, this point in time is 12:00 A.M.,
January 1, 1978. For the files initially present on
the volume, this parameter is important only for the
root directory. A zero can be specified for the other
files (fnode file, volume free space map file, free
fnodes map file, bad blocks file).

Time and date of the last file access (read or write),
expressed as a 32-bit value. For the files initially
present on the volume, this parameter is important
only for the root directory.

Time and date of the last file modification, expressed
as a 32-bit value. For the files initially present on
the volume, this parameter is important only for the
root directory.

Total size, in bytes, of the actual data in the file.

Total number of volume block's used by this file,
including indirect block overhead. A volume block is
a block of data whose size is the same as the volume
granularity. All memory in the volume is divided into
volume blocks, which are numbered sequentially,
starting with the block containing the smallest
addresses (block 0). Indirect blocks are discussed
later in this section.

These structures locate the data blocks of the file.
These data blocks may be scattered throughout the
volume, but together they make up a complete file. If
the file is a short file (bit 1 of the FLAGS field is
set to zero), each PTR structure identifies an actual
data block. In this case, the fields of the PTR
structure contain the following:

NUM$BLOCKS

3-4

Number of volume blocks in the
data block.

THIS$SIZE

RESERVED$A

RESERVED$B

ID$COUNT

ACCESSOR(3)

INITIAL FILES

BLK$PTR(3) A 24-bit value specifying the
number of the first volume block
in the data block. Volume blocks
are numbered sequentially,
starting with the block with the
smallest address (block 0). The
bytes in the BLK$PTR array range
from least significant
(BLK$PTR(O» to most significant
(BLK$PTR(2».

If the file is a long file (bit 1 of the FLAGS field
is set to one), each PTR structure identifies an
indirect block, which in turn identifies the data
blocks of the file. In this case, the fields of the
PTR structure contain the following:

NUM$BLOCKS

BLK$PTR(3)

Number of volume blocks pointed to
by the indirect block.

A 24-bit volume block number of
the indirect block.

Indirect blocks are discussed later in this section.

Size, in bytes, of the total data space allocated to
the file. This figure does not include space used for
indirect blocks, but it does include any data space
allocated to the file, regardless of whether the file
fills that allocated space.

Reserved field which is set to zero.

Reserved field which is set to zero.

Number of access-ID pairs declared in the ACCESSOR
structure.

This structure contains the access-ID pairs which
define the access rights for the users of the file.
By convention, when a file is created, the owning
user's ID is inserted in ACCESSOR(O), along with the
code for the access rights. The fields of the
ACCESSOR structure contain the following:

3-5

PARENT

AUX(*)

ACCESS

ID

INITIAL FILES

Encoded access rights for the file.
The settings of the individual bits in
this field grant (if set to one) or
deny (if set to zero) permission for
the corresponding operation. Bit 0 is
the rightmost bit.

Bit
o
1
2
3

4-7

Data File
Operation
delete
read
append
update

reserved

Directory
Operation
delete
display
add entry
change entry

(must be 0)

ID of the user who gains the
corresponding access permission.

Fnode number of directory file which lists this file.
For files initially present on the volume, this
parameter is important only for the root directory.
For the root directory, this parameter should specify
the number of the root directory's own fnode. For
other files (fnode file, volume free space map file,
free fnodes map file, bad blocks file) the I/O System
does not examine this field.

Auxiliary bytes associated with the file. The named
file driver does not interpret this field, but the
user can access it by making GET$EXTENSION$DATA and
SET$EXTENSION$DATA system calls (refer to the iRMX 86
SYSTEM PROGRAMMER'S REFERENCE MANUAL). The size of
this field is determined by the size of the fnode,
which is specified in the iRMX 86 Volume Label. The
Files Utility allocates three bytes for this field by
default. If you format your own volume, you can make
this field as large as you wish; however, a larger AUX
field implies slower file access.

Certain fnodes designate special files that appear on the volume. The
following sections discuss these fnodes and the associated files.

3-6

INITIAL FILES

FNODE 0 (FNODE FILE)

The first fnode structure in the fnode file describes the fnode file
itself. This file contains all the fnode structures for the entire
volume. It must reside in contiguous locations in the volume. Fields of
fnode 0 must be set as follows:

o The bits in the FLAGS field are set to the following (bit 0 is
the rightmost bit):

Bit
o

1
2

3-4
5
6

7-15

Value
1
o
1
o
o
o
o

Description
Allocated file
Short file
Primary fnode
Reserved bits
Initial status is unmodified
File will not be deleted
Reserved bits

o The TYPE field is set to FT$FNODE.

o The GRAN field is set to 1.

o The OWNER field is set to o.

o The CR$TIME, ACCESS$TIME, and MOD$TIME fields are set to O.

o Since the iRMX 86 Volume Label specifies the size of an
individual fnode structure and the number of fnodes in the fnode
file, the value specified in the TOTAL$SIZE field of fnode 0
must equal the product of the values in the FNODE$SIZE and
MAX$FNODE fields of the iRMX 86 Volume Label.

o The TOTAL$BLOCKS field specifies enough volume blocks to account
for the memory listed in the TOTAL$SIZE field. The product of
the value in the TOTAL$BLOCKS field and the volume granularity
equals the value of the THIS$SIZE field, since the fnode file is
a short file.

o Since the fnode file must reside in contiguous locations in the
volume, only one PTR structure describes the location of the
file. The value in the NUM$BLOCKS field of that PTR structure
equals the value in the TOTAL$BLOCKS field. The BLK$PTR field
indicates the number of the first block of the fnode file.

o The ID$COUNT field is set to zero, indicating that no users can
access the file.

3-7

INITIAL FILES

FNODE 1 (VOLUME FREE SPACE MAP FILE)

The second fnode, fnode 1, describes the volume free space map file. The
TYPE field for fnode 1 is set to FT$VOLMAP to designate the file as such.

The volume free space map file keeps track of all the space on the
volume. It is a bit map of the volume, in which each bit represents one
volume block (a block of space whose size is the same as the volume
granularity). If a bit in the map is set to one, the corresponding
volume block is free to be allocated to any file. If a bit in the map is
set to zero, the corresponding volume block is already allocated to a
file. The bits of the map correspond to volume blocks such that bit n of
byte m represents volume block (8 * m) + n.

When the volume is formatted, the volume free space map file indicates
that the first 3328 bytes of the volume (the label and bootstrap
information) plus any files initially placed on the volume (fnode file,
volume free space map file, free fnodes map file, bad blocks file) are
allocated.

FNODE 2 (FREE FNODES MAP FILE)

The third fnode, fnode 2, describes the free fnodes map file. The TYPE
field of fnode 2 is· set to FT$FNODEMAP to designate the file as such.

The free fnodes map file keeps track of all the fnodes in the fnodes
file. It is a bit map in which each bit represents an fnode. If a bit
in the map is set to one, the corresponding fnode is not in use and does
not represent an actual file. If a bit in the map is set to zero, the
corresponding fnode already describes an existing file. The bits in the
map correspond to fnodes such that bit n of byte m represents fnode
number (8 * m) + n.

When the volume is formatted, the free fnodes map file indicates that
fnodes 0, 1, 2, 3, and 4 are in use. If other files are initially placed
on the volume, the free fnodes map file must be set to indicate this as
well.

FNODE 4 (BAD BLOCKS FILE)

The fifth fnode, fnode 4, contains all the bad blocks on the volume. The
TYPE field of fnode 4 is set to FT$BADBLOCK to indicate this.

If there are any unusable blocks on a volume, this fnode must be
initialized to describe a file which consists of all such bad blocks. If
there are no bad blocks on the volume, the fnode must still be set up as
allocated, and of the indicated type, but it should not assign any actual
space for the file.

3-8

INITIAL FILES

ROOT DIRECTORY

The root directory is a special directory file. It is the root of the
named file heirarchy for the volume. The iRMX 86 Volume Label specifies
the fnode number of the root directory. The root directory is its own
parent. That is, the PARENT field of its fnode specifies its own fnode
number.

The root directory (and all directory files) associates file names with
fnode numbers. It consists of a number of entries that have the
following structure:

DECLARE
DIR$ENTRY STRUCTURE (

FNODE WORD,
COMPONENT(14) BYTE);

Where:

FNODE Fnode number of a file listed in the directory.

COMPONENT(14) A string of ASCII characters that is the final
component of the path name identifying the file. This
string is left justified and null padded to 14
characters.

When a file is deleted, itsfnode number in the directory entry is set to
zero.

OTHER FNODES

When a volume is formatted, one other fnode is set up, representing a
file of type FT$ACCOUNT, The fnode is set up as allocated, and of the
indicated type, but it does not assign any actual space for the file.

When formatting a volume, no other fnodes in the fnode file represent
actual files. The remaining fnodes must have bit zero (allocation
status) set to zero.

3-9

CHAPTER 4. LONG AND SHORT FILES

A file on a volume is not necessarily one contiguous string of bytes. In
many cases, it consists of several contiguous blocks of data scattered
throughout the volume. The fnode for the file indicates the locations
and sizes of these blocks in one of two ways, as short files or as long
files.

SHORT FILES

If the file consists of eight or less distinct blocks of data, its fnode
can specify it as a short file. The fnode for a short file has bit 1 of
the FLAGS field set to zero. This indicates to the I/O System that the
PTR structures of the fnode identify the actual data blocks that make up
the file. Figure 4-1 illustrates an fnode for a short file. Decimal
numbers are used in the figure for clarity.

4-1

Label and
Bootstrap
Information
~

• • •

LONG AND SHORT FILES

3

2

3

fnode 8

· •

• •
THIS$SIZE

8192

• • •

Volume

I

fnode file Volume granularity = 1024

Figure 4-1. Short File Fnode

As you can see from Figure 4-1, fnode 8 identifies the short file. The
file consists of three distinct data blocks. Three PTR structures give
the locations of the data blocks. The NUM$BLOCKS field of each PTR
structure gives the length of the data block (in volume blocks) and the
BLK$PTR field points to the first volume block of the data block.

The other fields shown in Figure 4-1 include TOTAL$BLKS, THIS$SIZE, and
TOTAL$SIZE. The TOTAL$BLKS field specifies the number of volume blocks
allocated to the file, which in this case is nine. This equals the sum
of NUM$BLOCKS values (3 + 2 + 3), since short files use all allocated
space as data space.

The THIS$SIZE field specifies the number of bytes of data space allocated
to the file. This is the sum of the NUM$BLOCKS values (3 + 2 + 3)
multiplied by the volume granularity (1024) and equals 8192.

4-2

LONG AND SHORT FILES

The TOTAL$SIZE field specifies the number of bytes of data space that the
file occupies. This is designated in Figure 4-1 by the shaded area. As
you can see, the file does not occupy all the space allocated for it, and
so the TOTAL$SIZE value (8000) is not as large as the THIS$SIZE value.

LONG FILES

If the file consists of more than eight distinct blocks of data, its
fnode must specify it as a long file. The fnode for a long file has bit
1 of the FLAGS field set to one. This tells the I/O System that the PTR
structures of the fnode identify indirect blocks. The indirect blocks
identify the actual data blocks that make up the file.

An indirect block consists of a number of indirect pointers, which are
structures similar to the PTR structures. However, an indirect block can
contain more than eight structures and thus can point to more than eight
data blocks. The structure of each indirect pointer is as follows:

DECLARE
IND$PTR STRUCTURE(

NBLOCKS BYTE,
BLK$PTR BLOCK$NUM);

Where:

NBLOCKS

BLK$PTR

Number of ~volume blocks in the data block.

A 24-bit volume block number of first volume block in
the data block. Volume blocks are numbered
sequentially throughout the volume, starting with the
block with the smallest address (block 0).

Figure 4-2 illustrates an fnode for a long file. Decimal numbers are
used in the figure for clarity.

4-3

L .. bel and bootstrap
information -----

• • •

fnode file

LONG AND SHORT FILES

fnode 9
A.

TOTAL$SIZE ------

20

THIS$SIZE
--2"0480--

• • •

Figure 4-2.

Volume

Long File Fnode

data
blocks

volume granularity = 1024

As you can see from Figure 4-2, fnode 9 identifies the long file. The
actual file consists of nine distinct data blocks. One PTR structure and
an in4irect block give the locations of the data blocks. The NUM$BLOCKS
field of the PTR structure contains the number of volume blocks pointed
to by the indirect block. The BLK$PTR field points to the first volume
block of the indirect block.

In the indirect block, each NBLOCKS field gives the length of an
individual data block and each BLK$PTR field points to the first volume
block of a data block.

4-4

LONG AND SHORT FILES

Figure 4-2 als.o lists the TOTAL$BLKS, THIS$SIZE, and TOTAL$SIZE values,
which are more complex than for a short file. The TOTAL$BLKS field
specifies the number of volume blocks allocated to the file, which in
this case is 21. Twenty of the volume blocks are used for actual data
storage and one of the blocks is used for the indirect block.

The THIS$SIZE field specifies the number of bytes of data space allocated
to the file, and does not include the size of the indirect block. This
size is equal to the NUM$BLOCKS value (20) or the sum of NBLOCKS values
in the indirect block (2 + 1 + 2 + 3 + 2 + 3 + 3 + 2 + 2 = 20) multiplied
by the volume granularity (1024) and equals 20480.

The TOTAL$SIZE field specifies the number of bytes of data space that the
file currently occupies. This is designated in Figure 4-2 by the shaded
areas. As you can see, the file does not occupy all the space allocated
for it, and so the TOTAL$SIZE value (20300) is not as large as the
THIS$SIZE value.

4-5

)

CHAPTER 5. EXAMPLE VOLUME

This chapter lists the labels, fnode file, volume free space map file,
free fnode map file, and root directory of a single density diskette
which has been formatted by using Files Utility FORMAT command with
default parameters. Refer to the iRMX86 INSTALLATION GUIDE FOR ISIS-II
USERS for further information about the Files Utility. This volume also
contains one additional file whose fnode is shown.

ISO VOLUME LABEL

The following lists the individual fields of the ISO Label. Each
two-digit number represents one byte, and thus one ASCII character. This
label begins with byte number 768 of the diskette.

field value (hex) ASCII equivalent

LABEL$ID(3) 56 4F 4C VOL

LABEL$NO 31 1

VOL$NAME(6) 20 20 20 20 20 20 (spaces)

VOL$STRUC 4E N

RESERVED$A(60) 20 (60 times) (spaces)

REC$SIDE 31 1

RESERVED$B(4) 20 (four times) (spaces)

ILEAVE(2) 31 30 10

RESERVED$C 20 (space)

ISO$VERSION 31 1

RESERVED$D(48) 20 (48 times) (spaces)

5-1

EXAMPLE VOLUME

iRMX 86 VOLUME LABEL

The following lists the individual fields of the iRMX 86 Volume Label.
This label begins with byte 384 of the diskette. Following this listi~g,
the individual fields are shown.

ASCII or decimal
field value eguivalent

VOL$NAME(10) 45 58 41 4D 50 4C 45 00 00 00 EXAMPLE

FILE$DRIVER 04 4

VOL$GRAN 0080 128

VOL$SIZE E900 0003 256256

MAX$FNODE 0064 100

FNODE$START ODOO 0000 3328

FNODE$SIZE 005A 90

ROOT$FNODE 0005 5

FNODE FILE

The following lists the individual fields of the fnodes in the fnode
file. Included are fnodes for the fnode file, the free space map file, .
the free fnodes map file, the accounting file, the bad blocks file, the
root directory, and the example file. The fnode file begins at byte
number 3328 decimal (ODOOH) of the diskette, as shown in the iRMX 86
Volume Label.

FNODE 0 (FNODE FILE)

field

FLAGS

TYPE

GRAN

OWNER

CR$TlME

ACCESS$TlME

MOD$TIME

value (hex)

0005

00

01

0000

0000 0000

0000 0000

0000 0000

decimal eguivalent

o (FT$FNODE)

1

0000

o

o

o

5-2 •

field value (hex)

TOTAL$SIZE

TOTAL$BLKS

2328 0000

0047 0000

PTR(O)

NUM$BLOCKS 0047

BLK$PTR(O) - lA 00 00
BLK$PTR(2)

PTR(I) - PTR(7)

NUM$BLOCKS 0000

BLK$PTR(O) - 00 00 00
BLK$PTR(2)

THIS$SIZE 2380 0000

RESERVED$A 0000

RESERVED$B 0000

ID$COUNT 0000

ACCESSOR(O) -
ACCESSQR(2)

ACCESS

ID

PARENT

FF

0000

.0000

AUX(*) 00 00 00

FNODE 1 (FREE SPACE MAP)

field value (hex)

FLAGS 0005

TYPE 01

GRAN 01

OWNER ·0000

CR$TlME 0000 0000

EXAMPLE VOLUME

decimal equivalent

9000

71

71

26

o

o

9088

o

o

o

decimal equivalent

1 (FT$VOLMAP)

1

0000

o

5-3

field

ACCESS$TIME

MOD$TIME

TO TAL $ SIZE

TOTAL$BLKS

PTR(O)

value (hex)

0000 0000

0000 0000

OOFB 0000

0002 0000

NUM$BLOCKS 0002

BLK$PTR(O) - 61 00 00
BLK$PTR(2)

PTR(I) - PTR(7)

NUM$BLOCKS 0000

BLK$PTR(O) - 00 00 00
BLK$PTR(2)

THIS$SIZE 0100 0000

RESERVED$A 0000

RESERVED$B 0000

ID$COUNT 0000

ACCESSOR(O) -
ACCESSOR(2)

ACCESS

ID

PARENT

AUX(*)

FF

0000

0000

00 00 00

FNODE 2 (FREE FNODE MAP)

field value (hex)

FLAGS 0005

TYPE 02

GRAN 01

EXAMPLE VOLUME

5-4

decimal eguivalent
I .

o

o

251

2

71

97

o

o

256

o

o

o

decimal eg,uivalent

1 (FT$FNODE~)

1

field

OWNER

CR$TIME

ACCESS$TIME

MOD$TlME

TOTAL$SIZE

TOTAL$BLKS
,/

PTR(O)

value (hex)

0000

0000 0000

0000 0000

0000 0000

OOOD 0000

0001 0000

NUM$BLOCKS 0001

BLK$PTR(O) - 63 00 00
BLK$PTR(2)

PTR(I) - PTR(7)

NUM$BLOCKS 0000

BLK$PTR(O) - 00 00 00
BLK$PTR(2)

THIS$SIZE 0080 0000

RESERVED$A 0000

RESERVED$B 0000

ID$COUNT 0000

ACCESSOR(O) -
ACCESSOR(2)

ACCESS

ID

PARENT

AUX(*)

FF

0000

0000

00 00 00

EXAMPLE VOLUME

decimal equivalent

0000

o

o

o

13

1

1

99

o

o

128

o

o

o

5-5

EXAMPLE VOLUME

FNODE 3 (ACCOUNTING FILE)

No space for this file is allocated on the volume. However, its fnode
must appear in the fnode file.

field value (hex)

FLAGS 0005

TYPE 03

GRAN 01

OWNER 0000

CR$TIME 0000 0000

ACCESS$TIME 0000 0000

MOD$TIME 0000 0000

TOTAL $ SIZE 0000 0000

TOTAL$BLKS 0000 0000

PTR(0)-PTR(7)

NUM$BLOCKS 0000

BLK$PTR(O) - 00 00 00
BLK$PTR(2)

THIS$SIZE 0000 0000

RESERVED$A 0000

RESERVED$B 0000

ID$COUNT 0000

ACCESSOR(O) -
ACCESSOR(2)

ACCESS

ID

PARENT

AUX(*)

FF

0000

0000

00 00 00

5-6

decimal equivalent

3 (FT$ACCOUNT)

1

0000

o

o

a

a

o

o

o

o

o

o

o

EXAMPLE VOLUME

FNODE 4 (BAD BLOCKS FILE)

No space for this file is allocated on the volume. However, its fnode
must ap~ear in the fnode fife.

field

FLAGS

TYPE

GRAN

OWNER

CR$TlME

ACCESS$TlME

MOD$TlME

TOTAL$SIZE

TOTAL$BLKS

PTR(0)-PTR(7)

value (hex)

0005

04

01

0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

NUM$BLOCKS 0000

BLK$PTR(O) - 00 00 00
BLK$PTR(2)

THIS$SIZE 0000 0000

RESERVED$A 0000

RESERVED$B 0000

ID$COUNT 0000

ACCESSOR(O) -
ACCESSOR(2)

ACCESS FF

ID 0000

PARENT 0000

AUX(*) 00 00 00

5-7

decimal equivalent

3 (FT$BADBLOCK)

1

0000

o

o

o

o

o

o

o

o

o

o

o

FNODE 5 (ROOT DIRECTORY)

field

FLAGS

TYPE

GRAN

OWNER

CR$TIME

ACCESS$TIME

MOD$TIME

TOTAL$SIZE

TOTAL$BLKS

PTR(O)

value (hex)

0025

06

01

FFFF

0000 0000

0000 0000

0000 0000

0010 0000

0001 0000

NUM$BLOCKS 0001

BLK$PTR(O) - 70 00 00
BLK$PTR(2)

PTR(l) - PTR(7)

NUM$BLOCKS 0000

BLK$PTR(O) - 00 00 00
BLK$PTR(2)

THIS$SIZE 0080 0000

RESERVED$A 0000

RESERVED$B 0000

ID$COUNT 0001

ACCESSOR(O)

ACCESS FF

ID FFFF

EXAMPLE VOLUME

5-8

decimal equivalent

1 (FT$DIR)

1

(WORLD)

a

o

o

16

1

1

112

o

a

128

o

o

1

(WORLD)

field

ACCESSOR(1) -
ACCESSOR(2)

ACCESS

ID

PARENT

AUX(*)

value (hex)

FF

0000

0005

00 00 00

FNODE 6 (EXAMPLE FILE)

field value

FLAGS 0025

TYPE 08

GRAN 01

OWNER FFFF

CR$TlME 0000 0000

ACCESS$TIME 0000 0000

MOD$TIME 0000 0000

TOTAL$SIZE 01F4 0000

TOTAL$BLKS 0004 0000

PTR(O)
NUM$BLOCKS 0004

BLK$PTR(O) - 80 00 00
BLK$PTR(2)

PTR(1) - PTR(7)

NUM$BLOCKS 0000

BLK$PTR(O) - 00 00 00
BLK$PTR(2)

THIS$SIZE 0200 0000

RESERVED$A 0000

RESERVED$B 0000

EXAMPLE VOLUME

5-9

decimal equivalent

decimal equivalent

8 (FT$DATA)

1

(WORLD)

o

o

o

500

4

4

128

o

o

512

o

o

EXAMPLE VOLUME

field value decimal eguivalent

ID$COUNT 0001 1

ACCESSOR(O)

ACCESS OF

ID FFFF (WORLD)

ACCESSOR(I) -
ACCESSOR(2)

ACCESS 00

ID 0000

PARENT 0005

AUX(*) 00 00 00

FREE SPACE MAP FILE

The following is a listing of the free space map file. This file starts
at byte 12416 of the volume (volume block 61H).

byte

12416
12432
12448
12464
12480
12496
12512
12528
12544
12560
12576
12592
12608
12624
12640
12656

0000 0000 0000 0000 0000 0000 FFFO FFFE
FFFO FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF 0003 0000 0000

5-10

EXAMPLE VOLUME

FREE FNODES MAP FILE

The following is a listing of the free fnodes map file. This file starts
at byte 12672 of the volume (volume block 63H).

byte
12672
12688
12704
12720
12736
12752
12768
12784

FF80 FFFF FFFF FFFF FFFF FFFF OOOF 0000 .
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ROOT DIRECTORY

The following is a listing of the root directory. This file starts at
byte 14336 of the volume (volume block 70H).

byte
14336
14352
14368
14384
14400
14416
14432
14448

06 00 45 58 41 4D 50 4C 45 2E 46 49 4C 45 00 00
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5
E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5

5-11

Structure of iRMX 86™ Named File Volumes
An Intel Technical Specification

143308-001

REQUEST FOR READER'S COMMENTS

ntel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
'ou participate directly in the documentation process.

)Iease restrict your comments to the usability, accuracy, readability, organization, and completeness of this
tocument.

. Please specify by page any errors you found in this manual.

I Does the document cover the information you expected or required? Please make suggestions for
improvement.

Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

. Did you have any difficulty understanding descriptions or wording? Where?

Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

AME __ DATE ____________ _

ITLE

OMPANY NAME/DEPARTMENT __ __

DDRESS __ __

ITY _____________________________ STATE _____ ZIP CODE _____ _

lease check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing I ntel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
3585 S. W. 198th
Aloha, Oregon 97005

O.M.S. Technical Publications

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

