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OPERATING SYSTEMS 

Choosing a 
VLSI-compatible system 

PETER PALM, Intel Corp. 

VLSI offers expanded modularity for operating systems; 
the intended application will determine the most appropriate system 

By integrating more functions into silicon, very 
large-scale integrated (VLSI) circuitry lowers the cost of 
f.Lcs and improves their performance and ease of use. 
But the advent of VLSI raises a question: which f.LC 
operating systems enable a user, especially an OEM, to 
take advantage most quickly of these hardware im­
provements? This question can be answered by examin­
ing the characteristics of available f.LC operating sys­
tems in the light of VLSI advances. 

An operating system's intended application is a key 
consideration in its selection. No operating system is 
ideal for every application and customer. For this 
reason, designers tend to optimize operating systems 
for specific types of applications. 

Microcomputer operating systems fall into two cate­
gories: systems optimized for efficient development of 
new software and those optimized for efficient execu­
tion of existing software (Fig. 1). Development­
oriented systems tend to sacrifice performance to ease 
of use, while execution-oriented systems make the 
opposite trade-off. It is tempting to characterize the 

NDS·1 

/ 
// 

two types of systems as either end-user-oriented 
(execution) systems or OEM (development) systems. 
But such a categorization is inadequate because many 
end users are concerned with software development, 
and many OEMS are concerned with software execution. 

Development= versus execution=oriented 

In the 8-bit f.LC world, CP/M and Intel's ISIS (Intellec 
development system) operating systems are good 
examples of products targeted at efficient software 
development. In the fast-growing 16-bit f.LC segment, 
ISIS (Series III) and the UNIX operating system and 
derivatives, such as XENIX, fill the development need. 
Software developed with one of these operating 
systems is often executed on another machine running 
an execution-oriented operating system. As more 
development throughput is required, such as compila­
tions per hour, users move from single-terminal, 
single-task systems (such as CP/M) to multiterminal 
systems (such as UNIX or MP/M) and to multiprocessor 
development systems (such as Intel's NDS-l). 

Multiprocessing 
ISIS (Series III) // iRMXliMMX 

Increasing 
development 
throughput 

(lines of 
debugged 

code 
per day) 

Multiprogramming 

Multitasking 

Single task 

/ 

...-------........ ~--------------------------------

UNIX 

MP/M 

Efficient development 

ISIS (Series III) 
ISIS (Series II) 

iRMX 86 

CP/M 86 
CP/M 

more important ----------------
for the OEM 

iRMX 88 
iRMX 80 

Efficient execution 
more important 
for the end user 

Increasing 
execution 
throughput 

(transactions 
per min., 

loop updates 
per sec.) 

Fig. 1. fLC operating systems are design-optimized for efficient execution for end users (right) or for efficient program development for OEMs 
(left). They range from single-task, single-terminal systems (bottom) to multiprocessing systems (top). 
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An operating system's intended 
application is key in its selection. 

Most j.1c systems are execution-oriented and are 
often most critical for OEMs who must stay competitive 
in price and performance. Rapid program development 
is usually secondary to efficient software execution. An 
OEM can gain a significant competitive advantage by 
using an operating system that provides faster execu­
tion times, less expensive investment, ease of use and 
the ability to be upgraded. 

Operating system vendors, including Intel, have 
designed a range of products for different needs. CP/M, 
for instance, is a logical candidate for 8-bit j.1C 
applications, in which only single-task execution is 
required. For I6-bit applications, multiprogramming­
type operating systems, such as MP/M, iRMX 86 and 
iRMX 88, are more appropriate because they take 
advantage of the I6-bit processor's power. An OEM for 
whom real-time execution is important might consider 
iRMX 86. If background program development is 
crucial, MP/M might be a better choice. For highest 
performance, users should consider mUltiprocessing 
operating systems, such as iRMxlMMX800. 

Other selection criteria 

Although the intended application is paramount, 
other considerations are important in selecting an 
operating system. The overriding factor in light of 
current trends is probably the ability of a system to 
keep pace with the impact of VLSI on j.1C performance 
and cost. This consideration entails several selection 
criteria, including transferability, multiprocessing ar­
chitecture, configurability and interfacing to modules. 

First, an operating system should be easy to 
transfer-at least in part-into VLSI silicon. Putting an 

Intel 
languages 
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vendor 

languages 
Applications 

Language 
support 

Standard 110 
support 

Resource 
management 

Multiprocessing 
support 

disk 

Universal run-time 
interface 

Real-time nucleus 
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Disk 

Multibus message exchange 

Multiprocessing systems bus 
Multibus 

URI 

Ethernet 

IEEE 
floating 

point 

Fig. 2. Layered operating systems with standard interfaces, 
standard modules and configurability are key elements in designing 
~ operating systems to take maximum advantage of lower cost, 
higher performance VLSI_ 
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operating system into EPROM, for example, can improve 
speed and lower cost. Vendors should state which 
operating system functions will be integrated into 
silicon, and when. 

An operating system should provide support for 
multiprocessing, and VLSI has made multiple-j.1c sys­
tems practical. OEMs should look for operating systems 
with multiprocessor architectures or other features 
that ease the move to multiprocessing. Such systems 
typically include fast context switching, task-to-task 
communication, synchronization and memory message 
passing features. For example, the new iMMX800 
Multibus message-exchange software allows 8- and 
I6-bit, master-to-master and master-to-intelligent­
slave single-board computers to multiprocess loosely on 
the Multibus multiprocessor bus. 

Modularity is another important criterion in select­
ing an operating system. The iRMX 86, for example, 
consists of layers of modules that can easily be moved 
into silicon as required (Fig. 2). This modular design 
has enabled Intel to develop a new component dubbed 
80130 Operating System Firmware (iOSF) that inte­
grates a timer, an interrupt controller and the iRMX 86 
kernel. 

An operating system should include standard inter­
faces to modules. For example, iRMX 86 uses a standard 
object-oriented format for interfaces to jobs, tasks and 
UIC;:,;:,a.gC 1'1. ~Hl~"~" c;:,. ~\.. a. ~l~g~lC.l. ~a.'ye.l, :.1~i~.lA ou U:;Ci" 

standard device-independent interfaces to drivers for 
the new 8089/8272-based Winchester- and floppy-disk 
controllers and other device controllers. The interface 
itself eventually will move into silicon. Only standard 
interfaces will allow this to occur. 

An operating system should also provide industry­
standard interfaces to popular program-development 
languages, such as Intel's universal development 
interface (um) and universal run-time interface (URI). 
Intel's new UDI/uRI-compatible languages, FORTRAN 
86, Pascal 86, PLMl86 and ASM 86, can run on any 
uDIIuRI-compatible operating system. 

Operating systems should either support or should 
soon support the leading local-area networks, such as 
Ethernet, and global-area networks, such as X.25 
2780/3780. In November, iRMX 86 will provide the first 
high-level support for Ethernet, the tri-corporate 
Digital Equipment Corp., Intel Corp. and Xerox Corp. 
local-area network standard. Prestigious firms commit­
ting to Ethernet include Hewlett-Packard Co., Siemens 
Corp., Nixdorf Computer Corp., Olivetti Corp. and 
Zilog Corp. Intel will provide high-level, data-link-layer 
interfaces to an Ethernet controller (iSBC 550) on the 
standard Multibus, via the new Multibus interprocessor 
protocol (MIP). Ethernet will be supported in iRMS 86 
via iMMX. These are all standard modules with standard 
interfaces. • 

Peter Palm !s sy~tems and software product marketing 
manager, OEM Microcomputer Systems Operation Intel 
Corp., Hillsboro, Ore. ' 
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----SOFTWARE----

Microcomputer 
Operating 
n .. 
~ystem 

Trends 
advances in VLSI and other 
technologies force the 
development of advanced 
operating systems 

As the use of MCS expands, demand for high­
Il.levellanguages and human machine methods 
of interfacing will expand in 1982 and beyond. One 
major component of the expanding demand con­
cerns MC operating systems. 

DECE\1HER ll}gl Digital Design 
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by Peter I. Wolochow 

An operating system performs resource management and 
human-to-machine translating functions. Technically, it 
is just another computer program - a series of instructions 
that tell the machine what to do under a variety of conditions. 
Major operating system functions include management of 
memory, I/O peripherals. and the central processor. 

When computers were first developed, the programs (or 
instructions) were entered into the machine each time a parti­
cular job was started. Only with the ability to store a program 
in the computer's memory. over 30 years ago. did the concept 
of computers as we know them today truly emerge. The ability 
to store a program meant that a computer could perform 
repetitive tasks while the operator had only to enter informa­
tion upon which calculations were performed. 

Once it became possible to store programs. the development 
of operating systems began. Operating systems were stored in 
the computer's memory. and provided the user with a bank of 
stored computer instructions that could be used with a number 
of different application programs. 

Over the years. operating systems have evolved to the point 
where they have three main purposes. First. they provide 
clear. consistent. and easily understood guidelines to users 
concerning how the machine works. A sub-objective is to 
provide an easier, more "friendly" human interface to the 
J.,Lc. Second. they perform initialization and start-up func­
tions "automatically" so that - to the user-- the machine is 
ready to perform its basic functions. This initialization func­
tion originally included only initial start-up. but now often 
includes methods to recover from errors in both hardware and 
software. Third. they provide efficient macnme and storage 
resource management so that different users or programs can 

Network Development SYstems 

1 

Increasing 

Unix 
Development 

MP/M Throughput 
(Lines Of 

CP/M86 Isis (Series" J) Debugged 
CP/M Isis (Series II) Code/Day) 

Figure 1: These microcomputer operating systems are primarily 
for efficient program development. 

Peter I. Wolochm\' is with the OEM Microcomputer Systems 
Div. of Intel Corp. Hillsboro. OR. 
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Figure 2: These microcomputer operating systems are primarily 
for efficient execution. 

share the same resources. (e.g .. memory. peripherals. I/O 
ports. a floating point program or the processor itself). 

Although virtually all p,C operating systems provide users 
with methods to accomplish these three main purposes. cer­
tain operating systems - designed for specific types of 
applications - have gone far beyond the three common 
objectives. 

One method of viewing p,C operating systems has to do 
with the primary purpose to which the p,C is directed. Two 
... I.\.4JV ....... ,,1.. •• 11 .......... · ••• ) _ ..... J ............ ".,,10.. ........... - •• ,\"., ....... ,......- .'r-- ................. ,::-

systems are used primarily to develop new software systems. 
I n this case. the operating system often includes only features 
and routines that are useful to persons writing and compiling 
software programs. 

On the other hand. other p,C operating systems are directed 
primarily at efficient execution of software programs for 
various applications. In this case. the operating system often 
includes routines and abilities targeted to fast. easy program 
execution. 

software development OS 
Within the current world of p,C operating systems. examples 
of those oriented to efficient software development include 
such products as UNIX (developed by Bell Laboratories) and 
its related XENIX from MicroSoft. CP/M and CP/M-86 
from Digital Research. and ISIS and Networked Develop­
ment Systems from Intel. CP/M and ISIS-Series II are 
examples of operating systems designed for the technology 
and power of 8 bit p,C systems. UNIX was designed to match 
the 16 bit minicomputer. (e.g .. DEC PDP-II) and now is 
being ported (e.g .. XENIX) to the newer. more powerful 16 
bit p,C systems. 

Development oriented software systems provide growing 
levels of programmer support. CP/M. for example. is a 
single user. single terminal system. UNIX pnwides support 
to multiple terminals. so more than one person can be devel­
oping software at one time. Inters Networked Development 
System provides support for both multiple users over a 
network. and support for development on multiple proc­
essors as well. 

execution oriented OS 
The second major category of operating systems comprises 
those primarily targeted to meet the needs of efficient execu­
tion of application software already written. developed. and 
tested. This category includes the largest number of systems. 
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and is often critical to effective utilization of p,Cs in applica­
tions such as industrial control. communications. transaction 
and word processing. interactive graphics. and simulation. 

Often. execution programs working in conjunction with 
execution-oriented operating systems are developed on a 
mainframe or minicomputer. with a cross-translator. The 
other alternative is to develop the software on a p,C using a 
development oriented operating system that has tailored its 
human interface more to the trained programmer than users 
of the end product. 

In addition to the standard purposes of an operating system 
- simple human interfaces. initialization. and resource 
management - operating systems for efficient program 
execution have a number of other objectives as well. These 
include real-time operation. mUltiprogramming. multi­
tasking. multiprocessing. and effective scheduling and 
priority determination. 

real-time operation 
Many real-time operations are dedicated to specific applica­
tions. such as controlling a machine or series of machines. As 
such. they often run the same software programs over and 
over again. depending on inputs received from monitoring 
and measuring devices attached to the machine they control. 

The primary characteristic of such applications is that the 
data or input that causes the p,C to act is not regular. and does 
not occur at a particular rate. As a result. the p,C program and 
operating system must be able to handle inputs as they occur. 
and to monitor or control activities based on these real-time 
inputs . 

multiprogramming 
This refers to the ability of an operating system to support 
several independent applications executing concurrently. If a 
p,C. for example. is used to provide an integrated business 
office system. the software might be divided into a numberof 
separate applications. One might focus on WP. another to 
manage the printer. and perhaps another to manage an inter­
office electronic mail service. Each of these applications 
would involve a number of tasks devoted to different parts of 
the system. 

An operating system that supports multiprogramming al­
lows this division. and consequently makes it easier to devel­
op the different applications separately. and insure that they 
do not interfere with each other. This is accomplished by 
establishing a separate environment for each application. 
These environments provide the basic appearance of a series 
of individual machines. while sharing the resources of only 
one. A multiprogramming operating system must manage 
this division. keep track of the tasks and requirements of each 
application. and ensure that each task is given the correct 
priority. 

multitasking 
Multitasking refers to the ability of an operating system to 
effectively manage several tasks. of one computer program. 
that are operating simultaneously. Multitasking is an im­
portant sub-set of multiprogramming. wherein several pro­
grams are concurrently being executed. Many applications 
require that one applications program involve different tasks. 
Often. these tasks must operate based on data developed in 
other tasks. and hence a form of task-to-task communication 
is required. Generally. operating systems designed for effici­
ent progr-am execution require some form of "executive" to 

manage tasks. priorities. and intertask communication. As a 
result. common resources such as p,P memory and I/O de-

210341·004 



intJ AR·195 

vices can be shared by multiple tasks and can be kept as husy 
as possible, adding to overall system efficiency. 

multiprocessing 
MUltiprocessing refers to the ability of an operating system to 
support multiple processors. In certain applications, the 
demands of the applications exceed the capacity of a single 
processor or f-tc. As a result, more processors may he added. 
When this occurs, the role of the operating system is to 
efficiently allocate different processing requirements to the 
various processors. to keep track of which johs have heen 
sent where. and to assure that the total system resources are 
effectively utilized. MUltiprocessing is becoming more at­
tractive as a way to expand the functions of particular J.,Le 
applications without the need to entirely rewrite a program. 

Processor Management: iRMX86 UNIX 

Scheduling Realtime Multiprogram 

Multitasking Yes (64K) No 

Priority Levels 255 None 

Multiprogramming Yes (64K) Yes (64K) 

Multiprocessor iMMX No 

Multiuser Release 5 Yes 

Interrupt Management Yes No 

Error Management 4 levels Yes 

Powerfail Protect No No 

Memory Management: iRMX86 UNIX 

Dynamic Yes (1MB) Yes (64K) 

# of Memory Pools 64K One 

Memory Resident Yes No 

Application Loader Yes Yes 

Bootstrap Loader Yes Yes 

(P) ROM'able Yes No 

Device Management: iRMX86 UNIX 

Concurrent 110 Yes Yes 

110 Buffering Yes Yes 

Reentrant 110 Yes Yes 

Asynchronous 1/0 Yes No 

Synchronous 110 Yes Yes 

Device Independent 110 Yes Yes 

Max. # of Drivers 64K 

Data Management: iRMX86 UNIX 

File Support: 
1. Sequential Yes Yes 
2. Indexed Seq. No 
3. Direct Access Yes Yes 

Swapping No Yes 

Overlays Yes Yes 

Hierarchical Directories Yes Yes 

Stream Files Yes Yes 

Mailboxes Yes No 

Critical Regions Yes Yes 

Host System For Development Yes (With UDI) Yes 

Figure 3: Comparison of microcomputer operating systems 
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As JLCS become less costly compared to software develop­
ment and maintenance, many systems will use multiple 
processors. and operating systems will be required to effi­
ciently manage mUltiprocessing configurations. A means for 
linkage of multiple processors and operating systems is 
I nte!' s iMMX 800 (Multibus Message Exchange) software 
and iSBC 550 Erthemet communications controller. They 
support the needs of local area network applications such as 
office automation. distributed data processing, factory data 
collection, research data collection, intelligent terminal and 
other EDP-related applications. 

scheduling and priority determination 
As J.,LC operating systems are required to manage even more 
complex functions - such as multiple programs, mUltiple 

CP/M RSX-11M RT-11 MTOS-86 

Batch Realtime Realtime Realtime 

No Yes (64K) No Yes (4K) 

None 250 None 255 

No Yes (64K) Foreground No 
IBackground 

No No No Yes (16) 

No Yes (4) No No 

No Yes Yes Yes 

No Yes Yes No 

No Yes No No 

CP/M RSX-11M RT-11 MTOS-86 

No Optional No Yes (64K) 

One 8 One 32 
Yes Yes No Yes 

Yes Yes (11 S: No) Yes (Rf!: No) No 

No Yes Yes No 

No No No Yes 

CP/M RSX-11M RT-11 MTOS-86 

No Yes Yes Yes 

No Yes Yes No 

No Yes Yes Yes 

No Yes Yes Yes 

Yes Yes Yes Ne-

Yes Yes Yes Yes 

256 256 16 256 

CP/M RSX-11M RT-11 MTOS-86 

Yes Yes Yes Yes 
No Yes No No 
Yes Yes Yes Yes 

No Yes No No 

Yes Yes Yes No 

No No No No 

No No No No 

MP/M No No No 

No No No Yes 

Yes Yes (11 S: No) Yes (Rf!: No) No 
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tasks, and multiple processors - the ahility of the operating 
svstem to schedule activities becomes a primary considera­
tron. In early multiprogramming operating systems, many of 
these scheduling routines were time driven. That is, one 
program would be allowed to execute for a certain time. It 
would then be interrupted, and another program would he 
allowed to execute. This time driven scheduling, in effect, 
forced multiprogramming to occur, but also often involved a 
significant amount of operating system overhead to manage 
the process. 

Subsequently, the approach of event driven scheduling 
was developed. With this approach, programs and tasks are 
allowed to proceed until some predetermined event causes 
the operating system to interrupt the running task and sub­
stitute another. In many'applications, event driven schedul­
ing is the most efficient manner of allocating resources. In 
addition, event driven operating systems can often he 
modified to include some time driven scheduling routines, 
where the reverse is not possible. As a result, event driven 
svstems are more flexible and can manage the p..C and other 
system resources more efficiently. 

future issues 
As the JLC world continues to evolve rapidly, changes in 
semiconductor technology will continue to force evolution 
and improvement in operating systems. As this evolution 
occurs, a number of trends and developments will influence 
the user's choice of appropriate operating systems. Some of 
these developments include: 

Vprv I ,~rpp Scalp Intppration (VI ,Sf) Trends. A" more 
complex functions are integrated into p..C chips.operating 
systems will be required to support a broader variety of needs 
and application programs. The benefits of VLSI - such as 
increasing density. substantial improvements in function. 
and rapidly declining costs per function - accrue to those 
who rapidly use the newest technologies. As a result. p..C 
users on the leading edge often can build significant compet­
itive advantages by being first to market. 

With regard to operating systems, trends toward greater 
VLSI integration imply that operating systems should be 
evaluated based on their ability to most rapidly use technol­
ogical advances. This ability to capitalize on VLSI trends 
includes: 

• Operating systems with the potential to he integrated into 
silicon. Intel. for example. has introduced a device that 
integrates timers. an interrupt controller, and multipro­
gramming and multitasking~rating system "primitives" 
into one device. (These operating system functions are 
equivalent to those of the iRMX 86 kemal.) In essence. 
some of the traditional software functions will become part 
of the hardware. Such a development opens a number of 
vistas for future inte£ration. 

• Operating systems ~rganized to take advantage of new 
trends in JLC architecture. One of the most promising 
developments in this area is object-oriented architecture 
such as that implemented on iAPX 86 processors under the 
iRMX 86 operating system and on Inters new iAPX-432 32 
bit micromainframe product family. Essentially. an ohject­
oriented architecture treats different kinds of data and 
instructions as "objects" and provides common functions 
that can manipulate objects in a consistent manner. More­
over. the object oriented architecture also meshes closely 
with the ne~ types of high level languages - such as Ada 
- now being brought to market. These developments hegin 
to provide p..Cs designed to optimize hoth program devel­
opment and execution. 
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The benefits of VLSI - such as 
increasing density, substantial 

improvements in function, and 
rapidly declining costs per function 
- accrue to those who rapidly 
use the newest technologies. 

Standards for JLC Languages. p..C applications have 
evolved requiring higher level languages so less technical 
users can easily participate in VLSI technology. Without 
suhstantial advanced planning. the use of higher level lan­
guages can cause significant prohlems with operating systems. 
One example of how advanced planning is done is Inters 
approach. Inters iRMX 86 operating system contains hoth a 
Universal Development Interface (UDn and a Universal 
Runtime Interface (URI). These two interfaces provide a 
standard upon which high level languages can be hoth devel­
oped and run. In essence. the UDI/URI approach is develop­
ing a "software bus" or series of standards for easy and 
co~nsistent language development. Without such an approach 
to standardization. each new language could be retarded in its 
development and each new processor could require a com­
pletely new set of compilers. 

Among the many benefits of this approach are those of 
particular interest to persons who have been hesitant to use 

r-" , r .. 1.._ t. t . . 1: ......... J __ ~.J:_ ...... -J t...:_\.. 1, ....... ' ............ _..,._ •• + .... _ 
f"""-'- v_~_~_~~, "" •. "-,,, --" c • 

languages. With the development of the UDI/URI approach 
in iRMX 86. for example. languages currently or soon to be 
available include FORTRAN 86. PASCAL 86. PLM/86 and 
ASM 86. 

Another major advantage of software standards now being 
developed is that many vendors can now create languages 
that will operate effectively on the same operating system. 
The software bus concept provides these vendors assurance 
their languages will operate. and it also provides p..C users 
with a significantly broader range of application languages 
and even pre-developed software. Among the newer com­
puter languages currently under development by independent 
software vendors as a result of the UDI/URI standardization 
are BASIC, COBOL. and "C" . 

This one development - the standardization of software 
development and runtime environments - has the potential 
to be as significant to p..C users as earlier efforts to stand­
ardize on communications methods (such as the IEEE 488 
standard) or JLC standardization such as the Multibus (IEEE 
P796). Once a standard is developed and accepted. many 
different manufacturers can develop products with the assur­
ance that they will be compatible with other products. Hence. 
the user obtains a broader selection ,d applications innova­
tion is enhanced. Moreover. users need concentrate only on 
learning one approach. with a corresponding improvement in 
speed and productivity of applications efforts. 

Standards for p..C Networks. Increasing use of VLSI 
means that p..C costs per function are declining. As a result. 
many new applications will become cost-effective. One of 
the major new application areas VLSI is stimulating is local 
area networking. The costs of p..Cs and supporting memory 
are now declining to the point where local and even global 
area networks make more and more sense. As networking 
becomes more practical. however, new approaches to net­
working standards will be required. 

210341·004 
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Standards are particularly important for networking f-LC 
operating systems, since the operating system will be re­
quired to manage many of the networking resources. In this 
regard, Intel Corp, Xerox Corp, and Digital Equipment Corp 
have joined together to develop Ethernet, a local area net­
work standard. (Many other firms are also becoming in­
volved with Ethernet, including Hewlett-Packard, Siemens, 
Nixdorf, Olivetti, and Zilog.) 

One of Intel's Ethernet responsibilities is to provide stand­
ard modules and standard interfaces for Ethernet users. 
These include high level, data link layer interfaces to an 
Ethernet controller on the standard Multibus, a new Multi­
bus Interprocessor Protocol (MIP), and a method to support 
Ethernet with the iRMX 86 operating system in conjunction 
with Intel's new Multibus Message Exchange (iMMX). Intel 
intends to provide VLSI implementations of these standards, 
up to the data link layer. As futher Ethernet standards evolve, 
the major benefit to networking f-LC users will be the ability to 
take advantage of a wide variety of products with the assur­
ances they will work together effectively. 

Protection of Software Investment. Many f-LC users have 
substantial investments in f-LC software and are consequently 
concerned that these investments do not become obsolete 
before having provided an adequate return on the resources 
invested. Many current minicomputer users, for example, 
would like to ta..1ce advantage of the density, size, and low 
cost per function benefits of f-LCS but are hesitant to redevelop 
their existing application software. 

Recent developments in f-LC software are directed toward 
solving this concern. The trends toward software and net­
working standards, for example, will provide a basis for 
rapid development of new language compilers, and emula­
tors that allow minicomputer users to migrate to more tech-
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nically advanced I-LCS without a commensurate reinvestment 
in software development. 

Other trends in I-LC operating systems, such as increasing 
modularity and configurability, also support this direction. 
Intel's iRMX 86 operating system, following this trend, is 
developed in modules. This allows future integration of 
certain modules into silicon as conditions warrant. Modular­
ity and configurability also mean users can eliminate portions 
of the operating system not appropriate to their application 
without a performance penalty. In addition, Intel's approach 
to operating system design means that current f-LC systems 
users can easily and cost-effectively move most of their 
existing software from 8 bit to 16 bit I-LCS as their application 
requirements expand. This design consideration, most 
noticeable in the iRMX 86 operating system, guarantees 
substantial user software investments are protected while 
users can, at the same time, rapidly take advantage of the 
latest developments in VLSI technology. 

hardware advances mean change 
Rapidly advancing developments in I-LC technology are caus­
ing a corresponding change in JLC operating systems. More 
and different operating systems are becoming available as 
users' needs evolve and become more specialized. 

The rapid march of VLSI technology also pressures manu­
facturers, OEMs, and end users to develop and evaluate 
operating systems based on their ability to directly translate 
VLSI advances into applications. 

Moreover, the need for a series of operating systems 
standards is clear. Without standards such as the UDI and 
UR1, operating system development could retard the wide­
spread and fast growing use of productive microelectronics 
technology. G> 
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The overall structure of the iRMX 86 Operating System 
... an O.S. designed to exploit the advantages of 
intei's VLSi technology. 

INTRODUCTION 
Over the past several years, microcomputers have become 
faster and less expensive. Accompanying this increase in 
raw horsepower have been enhancements in hardware ar­
chitecture including high-speed floating-point co­
processors, multiple processor support, and soon, Local 
Area Network controller chips. 

This rapid increase in VLSI capability poses a question to 
microcomputer users: How do they keep up? Already, the 
cost of developing and maintaining software packages is 
many times more than the cost of developing the underlying 
hardware. Fortunately, microcomputer vendors have recog­
nized the problem. Some of the things they can do to help 
include: 

- Provide a wide variety of operating system features as 
a set of user-selectable building blocks. 

-Provide software support for co-processors. 

-Provide software that allows the application to take 
advantage of multiple processors for increased appli­
cation throughput. 

- Provide software that supports the use of the Ethernet* 
protocol. 

- Integrate operating system and hardware functions on 
the same VLSI component. 

-Support standard interfaces that make it easy to move 
application packages from one operating system to 
another and to take advantage of future generations of 
VLSI. 

The iRMX 86 Operating System and supporting Intel sub­
systems provide these capabilities. By taking advantage of 
them, users can tum the "future shock" ofVLSI to their ad­
vantage. As such, the iRMX 86 product can be described as 
a VLSI operating system. 

This paper provides an overview of the features of the 
iRMX 86 Operating System. Associated papers describe 
how its capabilities are used to support multiple processors 
[10] and Ethernet [11, 12]. Another paper describes how 
many of the basic features of the operating system are being 
integrated with hardware functions [13]. 

*Ethernet is a Trademark of Xerox Comoration. 17 

THE iRMX 86 OPERATING 
SYSTEM 

Bruce Schafer and Jack Davis 

PURPOSES OF MICROCOMPUTER 
OPERATING SYSTEMS 

Reduced Application Investment 

Because software costs are rising while hardware costs are 
falling, microcomputer customers have discovered that they 
must carefully account for their software development in­
vestment. This accounting must include both the original 
development and the maintenance of the software. Many 
microcomputer users have found that it is much cheaper to 
purchase software rather than deveiop software from 
scratch. An operating system allows customers to save a 
significant amount of time and money in developing their 
particular application program. By reducing their develop­
ment costs, applications that would otherwise be unprofita­
ble become profitable. 

Improved Portability of Applications 

Initial costs of development are not the only major concern 
for microcomputer customers. The cost of developing new 
products in an existing or new product line is also a key 
concern. When one microcomputer board is used to create 
an initial product offering, another member of the same 
board family is often used to extend the product line. This is 
true because Intel is constantly adding new features to its 
family of boards which offer new hardware functions and 
increased perfonnance. In order to take advantage of new 
microcomputer components or boards, customers are in­
terested in using as much of their existing software as possi­
ble. The use of an operating system will hide many of the 
details of the underlying hardware and greatly ease moving 
an application to a new board. 

Maximizing Hardware Utilization 

Many applications allow monitoring and controlling more 
than one device. An operating system can make it appear to 
the application programmer that he has more than one pro­
cessor at his disposal. This is accomplished by allowing 
more than one activity to occur asynchronously. The 
operating system can go further in providing mechanisms 
for communication and synchronization between programs 
running on the microcomputer. 

Support of Sound Development Methodology 

Modular construction is a key way to control the cost of 
software development and maintenance. Each module ide­
ally "hides" or encapsulates the effect of major decisions 
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such as how data is represented. Similar to structured prog­
ramming, the modular design process permits a complex 
design to be partitioned into a structure of cooperating mod­
ules. This both facilitates top-down development and 
simplifies the maintenance and evolution of large software 
systems. Even though users of microcomputer systems are 
usually familiar with these concepts, the lack of effective 
tools and tight development schedules often force them to 
take a choice between modular construction and quick im­
plementation. High level programming languages have 
played a key role in allowing customers to obtain the best of 
both worlds. An operating system can take this one step 
further by adding facilities to simplify modular implemen­
tation. For instance, it can allow the customer to identify 
separate asynchronous activities that his applications must 
accomplish and write a separate program for each of these 
activities. The operating system can allow these separate 
programs to be run as separate tasks and communicate with 
each other as necessary. When a particular part of the appli­
cation is to be modified, the change can be isolated to one or 
a very few number of the original application programs. 
When additional functions need to be added, additional 
tasks can be added to the system with little or no change to 
the existing tasks. 

l.,UIVIIVIUI" r-t:1-\1 UHt:\:) Ui 

MICROCOMPUTER OPERATING SYSTEMS 

The varied purposes of microcomputer operating systems 
have led to some relatively standard features. Following are 
some of the features provided by the iRMX 86 Operating 
System. 

Multitasking and Multiprogramming 

Based on the goals summarized above, a key role of a mic­
rocomputer operating system is to allow for multiple prog­
rams to execute on the same processor. This maximizes the 
utilization of the hardware and at the same time provides for 
modular construction of applications. Most importantly, it 
allows the application programmer to manage the complex­
ity inherent in real-time applications where multiple asyn­
chronous events are occurring. 

When several programs must execute concurrently (or at 
least appear to do so), an operating system can provide 
multitasking. Each executing program is called a task. 
When these tasks must execute in separate environments, 
the operating system can support multiprogramming to pro­
vide these environments: The set of tasks executing in a 
separate environment can then be called a job. 

Interrupt Mapping 

Since most real-time operating systems are event driven, 
they must use the interrupt structure of the underlying 
hardware. The operating system can provide the mechanism 
that transforms the hardware interrupts into events that will 

18 

cause particular tasks to execute and service the interrupt. In 
this way each task need be only aware of the interrupt that it 
is managing. 

Timer Support 

Real-time applications often require the use of the hardware 
timer provided by the microcomputer. This may be because 
they must be aware of elapsed time in order to accomplish 
their purpose. Another reason is that external events may 
not occur when they should. The software must be aware 
that they have not occurred and take corrective action. In 
either case the programs running as separate tasks may each 
need a separate timer. 

Memory Allocation 

Many applications cannot predict their actual memory usage 
ahead of time. This is because they must deal with an un­
predictable environment. A key part of this environment is 
the operator who invokes various functions of the applica­
tion. The parameters provided by the operator often affect 
how much memory the program needs. Besides the 
operator, the external devices connected to the microcom­
puter generate a variety of events to which the software 
must respond immediately. These events are not entirely 
nr"'rt;r-t",hl", "'"rt thllc;' thp "'lTlnl1nt nf ITlPlTlnnl rpnlllrpr! to rp-

spond to and control these events is not predictable. By pro­
viding for dynamic memory allocation, an operating system 
can help an application adapt to its unpredictable environ­
ment without statically allocating the worst-case memory 
requirements to each part of the application. 

Device Support 

Often a significant portion of the application development 
time is spent writing complex code that interfaces the appli­
cation to vendor-supplied devices. An operating system can 
provide software that does this interfacing. This feature re­
duces the customer's development cost and elapsed time. 

File Support 

Operating systems, in general, use random access devices 
such as disk drives or magnetic tapes to store and retrieve 
information. The very simplest of these applications might 
only store one set of data on each device. Far more common 
than this, however, is the situation where one disk is to store 
many different kinds of information. Examples of this in­
formation may be parametric information that affects the 
activity of the application, intermediate data required by the 
application to accomplish its purpose, and data that the ap­
plication generates which will be used later. 

An operating system must manage the secondary storage 
space represented by the random access device. This man­
agement will usually include support for dynamic allocation 
of random access space, automatic bookkeeping of this 
space, and naming each portion used by the application. In 
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this way the application can treat a single random access 
unit as if it were many separate devices each of which can 
be randomly accessed. 

Loading Support 

Many microcomputer applications involve no mass storage 
devices and thus all of the operating system and application 
code resides in read-only memory. For systems that include 
mass storage devices, this allows some of the code to be 
loaded into read/write memory and provides some signific­
ant advantages to the programmer. These include 

(1) Software can be updated and distributed on disk or 
similar media. 

(2) If not all parts of the applications must execute con­
currently, less total memory may be required if only the 
code required is loaded into memory. 

Human Interface 

The vast majority of microcomputer applications involve 
some interface to a human operator. Many of these applica­
tions use standard cathode-ray-tube terminals in order to ac­
complish this interface. An operating system can reduce the 
cost of using this interface in three ways: 

1) By providing for common editing functions that allow 
the human operator to correct his input before it is seen by 
the appiication. 

2) By providing for the automatic invocation of the cor­
rect application program based on input by the human 
operator. 

3) By providing functions that make it easy for the appli­
cation program to determine which parameters have been 
specified by the operator. 

This completes a general description of the features that are 
provided by iRMX 86. A detailed description of the func­
tional capabilities of this operating system follows. 

MAJOR FEATURES OF THE iRMX 86 
OPERATING SYSTEM 

In order to provide operating system support for applica­
tions using the 8086 microprocessor, Intel has developed the 
iRMX 86 Operating System.[l] Because the system is mod­
ular, it allows customers to choose only those features of the 
operating system that are needed by their applications. 

Nucleus 

The iRMX 86 Nucleus provides for multitasking, interrupt 
control, timer support, and intertask communication.[2] 
While many of these concepts are the same as in other mic­
rocomputer operating systems the application interface is 
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quite different. One reason for this is that iRMX 86 inter­
faces encapsulate the details of the implementation so that it 
can be more easily changed without affecting the applica­
tion. This encapSUlation is accomplished by implementing 
each mechanism as a type manager. Each type manager 
provides a set of objects that are defined by their attributes 
and the operations that can be performed by them. The basic 
object types supported are task, segment, mailbox, 
semaphore, region, job, and extension. One of these ob­
jects, the task, also serves as the subject in the sense that 
tasks are the active elements of the system and perform op­
erations on all objects. 

Tasks. All operations are performed by tasks. A task is an 
executing program and is characterized by a set of processor 
register values, a priority, a containing job, and a dispatcher 
state. 

Segments. A segment is a contiguous portion of memory de­
scribed 'by a base and a length in bytes. The base of a seg­
ment can be loaded into a segment register for use as a code 
segment, stack segment, data segment, or extra segment. 

Mailboxes. Mailbox objects are used by a task when it 
wishes to pass an object to another task in the system. A set 
of tasks can use this mailbox to implement synchronization, 
mutual exclusion, and communication. 

Semaphores. Semaphores are used in the place of mailboxes 
where no actual information needs to be communicated 
between the tasks. Semaphores have the advantage of re­
quiring less execution time overhead and thus may be a 
sound alternative where performance is critical. They are 
also useful in solving resource allocation problems, espe­
cially when the number of units of the resource is large or if 
it is desirable to allocate several units at once. 

Regions. The region object type is used to implement criti­
cal regions via mutual exclusion. Regions have the advan­
tage of preventing the deletion or suspension of a task dur­
ing a critical operation. They are also used to guarantee that 
a high priority task will not wait an excessive amount of 
time for a resource held by a lower priority task that is cur­
rently in a region. This is accomplished by raising the ef­
fective priority of the task holding the critical region 
whenever a higher priority task is waiting for it. 

Jobs. Job objects represent the environment in which a set 
of tasks can operate. This environment is limited by the re­
sources given to an application. Several different things can 
make it desirable to divide an application into multiple en­
vironments: 

1) Control Dynamic Memory Allocation. 

When multiple applications are implemented on a single 
microprocessor the extent to which each application can 
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account for the other applications' memory needs is li­
mited. By providing separate memory allocation envi­
ronments for each application, the user can allocate por­
tions of the total memory to each. In this way he can en­
sure that one application will not allocate memory to the 
disadvantage of others. This approach also makes it 
easier to avoid a key hazard of dynamic allocation, the 
possibility of memory deadlock. 

2) Separately Invoke & Abort Individual Applications 

While many applications only require a static set of tasks, 
some applications involve the dynamic invocation of in­
dividual subapplications and require the ability to abort 
these subapplications at any time. By providing separate 
environments, the iRMX 86 Operating System allows an 
individual subapplication to be aborted and have its re­
sources returned to the system without affecting other 
subapplications in the system. 

3) Provide Separate Name Spaces 

When multiple applications are run on the same mic­
rocomputer, these applications are often designed and 
implemented by separate programming teams. When 
these teams select names for external devices that are to 
hp Il,"prl h" thplr ~nnJjrMion" thpv t::lkp thp ri"k of rhoo,,-

ing names also used by other applications. By providing a 
separate environment for each executing application, the 
names used for each application can be kept separate. At 
execution time the operator can match the individual 
names used by the application against the resources pro­
vided by the operating system. A particular example of 
this concept occurs when one program is invoked more 
than one time concurrently. During each invocation the 
operator can match a set of devices that the application 
uses against a particular subset of the devices available. 
In this way the same program can access several sets of 
devices, at the same time, because from the point of view 
of the operating system the program is running in separate 
environments. 

Extensions. The final basic object type is the extension ob­
ject. [9] The extension object is used by operating extensions 
to create new types. New objects of the new type can be 
created as a composite of existing objects. Operators are 
also provided for deleting a ~omposite object and for ob­
taining the component objects of a composite object. 

The concept of restricting access to objects is an integral 
part of the iRMX 86 model. When a task creates an object 
all tasks in its job are automatically given access to the ob­
ject. A task can pass an object to a task in another job. Two 
mechanisms for communicating access to an object have 
been built into the iRMX 86 Nucleus: object directories and 
mailboxes. The advantage of object directories is that they 
allow a task to obtain access to an object by knowing only 

20 

its name. The advantage of mailboxes is that they also can 
be used for synchronization and communication between 
tasks. 

To increase the ease in which programs can be debugged, 
each iRMX 86 function returns an exception code. This 
code indicates whether the reqwested operation was suc­
cessfully performed, and if not, what went wrong. These 
exception codes may be handled either by instructions im­
mediately following the call to the operating system or by a 
separate error handler. In the latter case, an error condition 
will automatically cause control to transfer to a user­
provided routine or, by default, to one provided by the sys­
tem. 

Terminal Handler 

The Terminal Handler provides a real-time, asynchronous 
interface between a terminal and tasks running under the 
supervision of the Nucleus.[3] It can be used either with or 
without the Debugger. The Terminal Handler provides the 
following features: 

• Line editing 
• Multicharacter type-ahead 
• Control characters for suspending and resuming output 

at me term mal 
• A means of awakening the Debugger. 

The Terminal Handler can be accessed either directly under 
the supervision of the Nucleus or through the Basic 110 
System described later. 

Debugger 

The Debugger is designed specifically for debugging and 
monitoring systems running under the supervision of the 
Nucleus.[4J A special Debugger is very helpful in debug­
ging such systems because their real-time and multi-tasking 
characteristics render useless many ordinary debugging 
techniques. The iRMX 86 Debugger is Sensitive to the data 
structures used by the Nucleus and can give "snapshots" of 
tasks at critical moments. It can also be used to alter the 
con~ents of memory. If desired, the Debugger can be in­
cluded in a debugged application system for trouble­
shooting in the field. If it is included the Debugger requires 
only the support of the Nucleus and the Terminal Handler. 

Basic I/O System 

The iRMX 86 Basic VO System provides facilities for ac­
cessing devices and files residing on random access de­
vices.[5] By taking a modular approach, it allows the cus­
tomer to choose between support for physical devices such 
as terminals and random access devices, and sophisticated 
support for files on the random access devices. It ac­
complished this goal by providing two types of drivers. 
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The first are device drivers. Device drivers allow the cus­
tomer to choose from the set of Intel-provided device driv­
ers in order to support the controllers that are being used. In 
addition, the customer can add his own device drivers to 
match custom device controllers. 

The second type of driver is called a file driver. The file 
driver accomplishes goals similar to a device driver in that it 
is a modular piece of the VO System which allows the cus­
tomer just those facilities needed by his application. File 
drivers implement different types of files. 

Named files. The most general type of file provided by the 
iRMX 86 Basic VO System is that of a named file. A named 
file is a byte-oriented random-access file which is given a 
name to identify it among those on a particular volume. 
Files can serve as both data files and directories. Directories 
can point to both data files and directories. In this way a file 
can be designated by a sequence of file names from the root 
or main directory on a volume through a sequence of direc­
tory files to the actual file being designated. Once located, a 
file can be opened and closed as many times as desired 
without further directory searches. This type of file naming 
mechanism is called a hierarchical file structure. 

The accessing of the individual data blocks of a file is de­
signed to both minimize allocation of space on a volume and 
to minimize the number of disk accesses required to access 
an arbitrary location in a file. For small files an arbitrary 
data block can be read with a single physical seek-and-read 
operation. In large files this can be accomplished with at 
most, two seek-read combinations. Because there is inevit­
ably a trade-off between space and performance, the Basic 
I/O System allows the application to specify to what extent 
space should be compromised for performance or vice 
versa. 

Physical files. The second major type of file provided by the 
Basic VO System is the physical file type. Physical files are 
accessed similiarly to physical devices. In order to provide a 
common interface to a wide variety of devices the interfaces 
to physical files assumes that any byte on a device can be 
accessed. The device driver for a particular device then 
chooses to what extent it supports this file. For instance, a 
device driver for a line printer would return an error upon a 
request for seek or read. 

Stream files. A third type of file provided by the Basic VO 
System is called stream files. A stream file is a sequence of 
bytes. A task can add bytes to the end of this sequence of 
bytes and/or read bytes from the front of the sequence of 
bytes. Any bytes read are consumed by the read operation 
and thus can only be read once. A key use of string files is to 
allow a program that normally writes to a physical device or 
to a disk file to direct its Otltput to another program. 
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Because the Basic 1'0 System provides three basic file driv­
ers which are accessed via a common interface, application 
programmers do not have to be concerned whether the data 
that is being output is being written to a physical device, a 
data file, or directly to another prograIn~ 

Extended I/O System 

The iRMX 86 Extended I/O System[ 6] builds upon the 
facilities provided by the Basic I/O System and provides the 
additional facilities to accomplish two general goals: 

1) decreasing the cost of implementing applications that 
use the facilities of the Basic I/O System. 

2) providing additional features not found in the Basic I/O 
System. 

The fact that the Basic I/O System is designed to be very 
general means that some of its system calls are overly com­
plex when used in simple situations. The Extended I/O 
System provides an optional interface that allows calling 
sequences to be greatly simplified when some of the more 
sophisticated features of the Basic I/O System are not 
needed. 

One of the additional facilities provided by the Extended 110 
System is the notion of logical names. Logical names allow 
applications to refer to devices without using the actual 
physical names of the devices. This allows an application to 
be written for a standard set of devices and then be executed 
with a variety of different devices. This accounts for both 
the fact that the user of an application program will vary 
over time and the fact that the set of available devices will 
change over time. The Extended I/O System also extends 
the concept of logical names to include directory files and 
data files. In this wayan application program can refer to a 
device location without knowing whether it is using an en­
tire physical device, a directory on that device, or a par­
ticular data file on that device. Consequently a data file can 
be substituted for a device like a line printer or a directory 
on a large disk can be substituted for a smaller disk. 

The Extended I/O System provides support for automatic 
buffering as an optional facility. This support accomplishes 
two goals. 

1) Allow the physical accesses to the devices to match its 
physical characteristics. In particular, it allows the 
number of bytes requested of the device to match the 
characteristics of the device such as its sector size. 

2) Allow the physical access of the device to be concur­
rent with the execution of the application program. In this 
way the throughput of the system can be increased by 
overlapping CPU and 110 time. 
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The first goal is accomplished by having the Extended 110 
System allocate a buffer whose size matches the physical 
characteristics of the device. Input and output requests are 
accomplished using the buffer or buffers as intermediate 
storage. In this way the actual request made to the device 
controller matches the controller, and is independent of 
what the application has requested. 

The second goal is accomplished by providing one or two 
buffers where data can be moved to and from at the same 
time the application is executing. To use the example of se­
quential input, when the file is open, the Extended 110 Sys­
tem can initiate reads into the buffers that it has allocated for 
the application. When the application makes its first re­
quest, the data it needs may already be in one of those buf­
fers and can be returned immediately to the application. By 
the time the data in the first buffer is exhausted the second 
buffer may have been filled. While the second buffer is 
being used the Extended 110 System can refill the first. In 
this way, assuming that the execution time required to pro­
cess a buffer full of information is comparable to the time 
required to read from the disk, the application will run con­
currently with the physical reading of the device. The same 
approach can be used for sequential output, in this case the 
physical writing is delayed until the buffer is filled. 

By combining the notions of automatic butfer size and au­
tomatic overlap, the total throughput of the system can be 
increased and the execution time of a particular application 
can be decreased. The Extended VO System provides both 
these facilities in a way that makes them appear as if the ap­
plication is doing a simple sequence of reads and writes. It 
completely hides the buffering and the overlap algorithm 
from the application. 

Application Loader 

The Application Loader uses the 110 System that to load 
object files into memory[7]. With the loader, you can store 
some of your code on disk and load it into memory only 
when you actually need it. This can lower the memory re­
quirements for your application system. 

The Application Loader accepts the following types of 
files: 

1) Absolute Files: The loader places absolute code into 
memory at predetermined locations. 

2) Load Time Locatable (LTL): These files contain code 
which the loader can assign to any available memory in 
the job's memory pool. This version of the loader will 
automatically update instnlctlons as they are loaded to 
account for the fact that in a multisegment program the 
code in one segment may refer to code and data in other 
segments. Since the loader is responsible for allocating 
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the segments, it can update the code with the appropriate 
base values while it is loading the code. 

The Application Loader also supports overlays. This allows 
an application to be constructed as a "root" and a set of 
overlays. This significantly reduces the amount of memory 
required to support large applications. 

Human Interface 

The iRMX 86 Operating System provides an additional 
layer of software called the Human Interface.[8] This layer 
makes it particularly easy for customers to add customer 
facilities to the system. It is designed to provide support for 
interactive commands whose code is usually not resident in 
memory. In addition to this goal it provides a standard set of 
commands for the manipulation of files. 

In order to make it easy to add custom commands to the 
system, the Human Interface provides for automatically 
loading and invoking the appropriate program based on the 
commands entered by the operator. Once a program is 
loaded and invoked in this way, it can access its parameters 
by making a series of calls to the Human Interface routines. 
These routines will return connections to files as well as 
other parameters. 

Rather than require each customer to implement his own set 
of basic commands, the Human Interface provides a stan­
dard set of file manipulation commands. This set of com­
mands includes commands for renaming files, copying 
files, displaying a list of the files in a particular directory, 
creating files, changing access to files, and deleting files. 

Bootstrap Loader 

The iRMX 86 Bootstrap Loaderf7] is used to load the iRMX 
86 system and/or application programs into memory from 
mass storage and begin their execution. It consists of two 
stages. 

The first stage provides a rudimentary device driver and 
uses it to read in the first part of the second stage. In addi­
tion, the first stage may provide a file name to the second 
stage to identify which version of the system is to be loaded. 
The first stage may also provide for automatic or manual 
bootstrap device selection. 

The second stage reads the rest of itself in and then finds and 
loads the operating system. Using the device driver from the 
first stage, the second stage interprets the file structure on 
the disk. Since the first stage and device driver handle all 
the device dependent matters, the same second stage can be 
used on all iRMX 86 disks regardless of the type of device 
used. Separately located modules may be combined in a 
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library, so that the various layers of the operating system 
and the application may be loaded from one file. 

SUMMARY 
This paper has outlined the advantages of vendor-supplied 
operating systems software for microcomputers. Although 
these advantages parallel those used for operating systems 
in minicomputers and mainframe computers, the specific 
facilities required by a microcomputer customer are often 
different. For example, many microcomputer applications 
do not require operating system support for devices and 
files. The iRMX 86 Operating System answers this need by 
providing layered software. It is organized around a basic 
Nucleus that supports multitasking and offers VO facilities 
as optional layers above this Nucleus. A customer can 
choose how many of these facilities he requires and then add 
his application software on top of the operating system. 

By taking this approach iRMX 86 reduces the investment 
required by the customer, improves the portability of appli­
cations from one microcomputer to another, allows one 
microcomputer to be used for multiple concurrent applica­
tions, and provides a model that makes it much easier to 
change and add features. 

CONCLUSION 
The dramatic increase of computing power provided by 
microcomputers represents a challenge. How can this power 
be harnessed without turning the entire labor force into 
computer programmers? Part of the answer is provided by 
vendor-supplied operating systems. 

By taking advantage of the availability of both high­
performance microcomputer hardware and off-the-shelf 
software, designers can leverage their expertise and invest­
ment. End-users can quickly and effectively put microcom­
puters to use in their applications. Original Equipment 
Manufacturers can take advantage of what they know best, 
their market and their technology. In this way, they can play 
a leadership role in taking the microcomputer revolution to 
their marketplace. 
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Software That Resides in Silicon 
Ron Slamp and Jim Person, Intel Corporation 

S
ilicon software sounds like a contradiction in terms. The 
casting of software in silicon implies that the software 
cannot be changed; yet software does and must change. 

For example, it must be possible to alter a microprocessor 
operating system so that the system will support different hard­
ware and software designs, as well as accommodate new hard­
ware components and applications. And if the software has 
been committed to silicon, then a way must exist to overcome 
any bugs that are discovered later. 

Design Considerations 

Silicon software consists of two kinds of code: on-chip code 
and off-chip code (see Figure 1). In a typical case, some of the 
otT-chip code works closely with the on-chip code, and is devel­
oped as part of the silicon software package. This special otT­
chip (or "support") code might contain initialization, interface, 
system, and version update codes. For silicon software to 
tolerate change and be usable in more than one system, the 
on-chip code must have three qualities: position independence, 
configuration independence and stepping independence. 

Position Independence 

Because the most advanced microprocessors address at least 
I megabyte of memory, system software that resides in silicon 
must work right regardless of its location in memory. Absolute 
addresses in the read-only, on-chip code or data restricts the 
configuration of the system. Because the on-chip code recog­
nizes only offsets, absolute addresses are unacceptable. On­
chip code cannot presume to know the location of any code or 
data, it can only presume to know the structure of the data 
which it accesses. It cannot know, except relatively, where in 
memory it (or any other code) resides. If the on-chip code is to 
be position independent, then any absolute addresses needed 
by the on-chip code must be obtained via the processor's 
registers. 

Position independence is not a new concept; in fact, it is 
rather an obvious requirement for silicon software. Compilers 
and relocatable assemblers allow linking and locating, thus 
making it easier to produce position-independent code. But 
most of these tools can also produce code that is not position 
independent. Silicon software developers need to be aware of 
the position-independence requirement throughout the design, 
implementation and test phases for their products. 

Configuration Independence 

The second requirement for silicon-resident software is that 
the on-chip code must not depend on the underlying hardware 
and software configuration of the system. Instead, the on-chip 
code must have indirect access to other code or data, and must 
then check the run-time data to deduce the system 
configuration. 
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FIGURE 1. Silicon software is divided into on-chip code and off­
chip code. The off-chip code either directly supports the 
on-chip code or contains other applications code. 

Because of the read-only nature of silicon software, con­
stants can cause problems when they are located within the 
on-chip code. Values representing a hardware device must not 
reside on-chip if that device can be located anywhere in the 
system, or when values support several devices having similar 
functions but different programming interfaces. Indirect access 
is necessary for all values that vary depending on the configura­
tion of the system. 

Stepping Independence 

Stepping independence is an expansion of configuration in­
dependence, and is perhaps the most elusive of the 
requirements to be met by software intended for residence in 
silicon. A "step" is an updated version of the on-chip code. The 
on-chip code and the otT-chip code must remain compatible, 
regardless of changes in either of them. Stepping independence 
exists when all versions of the on-chip code work with all 
versions of the off-chip code. 

If stepping independence is taken into consideration when 
the silicon software is developed, then provisions can be made 
for the subsequent additions of options without changing the 
on-chip code. Otherwise, the static nature of the on-chip code 
might make it impossible to add options. Although configura­
tion independence can be designed into software from the start, 
stepping independence can be achieved only if a system's exist­
ing silicon software does not include features that prevent it. 

One type of data that is likely to change between steps is the 
value representing the size of a data area. If the software is to be 
stepping independent, it cannot know the sizes of the data areas 
accessed by on-chip code prior to run time. (No problems arise 
if on-chip and otT-chip code agree on the size of the data area.) 

But what happens if the on-chip code is not from the same 
version of the product as the off-chip code, and ifthe size of the 
data area has changed between versions? If the size of the data 
area is defined by a constant in the on-chip code, then that area 
might be smaller than the off-chip code expects it to be. This 
misunderstanding can lead to disaster as the off-chip code reads 
and writes beyond the data area. 
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This problem is solved when the on-chip code ascertains the 
size of the data area from off-chip data. Thus, the size of the 
data areas for the system becomes a configuration option. 

Getting the Bugs Out of Silicon Software 

Every large program contains bugs. Designers usually 
remove bugs by modifying the program to correct the problem, 
and then discarding the old program. However, a program in 
silicon cannot be modified without stepping the component. 
And even so, it is undesirable to discard the outdated 
component. 

Software designed for silicon should include a facility for 
fixing bugs in on-chip code. One way to fix an on-chip bug is to 
prevent access to the routine containing the bug. A correct 
version ofthe routine is provided off-chip, and program execu­
tion is forced to branch to the off-chip version whenever the 
routine is invoked. Modular programming practices during de­
velopment help reduce the cost of such off-chip duplication. 

This on-chip bug-fix works well over time. Each component 
step has an associated collection of bug-fix modules. The col­
lection is updated for each new version of the product, as 
component steps fix known bugs. During system configuration, 
the user specifies which component step is being used; the fixes 
for that step are included automatically in the off-chip code. 
Because of this facility, one step looks just like another to the 
user. 

Intel's OSF: A Software Component 

of several hardware modules (see Figure 2). These modules 
provide two functions that are essential to operating systems: 
interrupts and timers. The OSF modules include a Control 
Store (16K bytes of fast ROM) to contain the silicon software, 
three programmable interval timers, an eight-input program­
mable interrupt controller, a bus interface, control logic, a data 
buffer, and address latch logic. 

The 80130: The iRMX™ 86 Kernel in Silicon 

Intel's first software-on-silicon product is the 80130. It pro­
vides a functional subset of the iRMXTM 86 Nucleus, which is 
the heart of the iRMX 86 operating system (OS). The iRMX 86 
OS is a real-time, multi-tasking, multiprogramming operating 
system intended for 16-bit microprocessor designs. The iRMX 
86 family of standard software modules includes a nucleus, a 
stand-along terminal handler, a stand-alone debugger, an asyn­
chronous I/O system, a synchronous I/O system, a loader, a 
human interfac~, and options required for real-time applica­
tions. The nucleus manages the creation and dynamic deletion 
of all system architectural features (tasks, program environ­
ments, memory segments, data-communication managers, 
etc.). It also schedules tasks, based on priority, interrupt man­
agement, memory management, validation of parameters, 
management of exceptional conditions, and co-processor 
support. 

How the 80130 Satisfies 
the Silicon Software Criteria 

The iRMX 86 Nucleus provides both the on-chip and off-chip 
codes needed to implement the operating system. The on-chip 
code resides in the 16K-byte ROM space of the 80130. It is the 
main portion of the Nucleus code, and includes the kernel of the 
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nGURE 2. The OSF component works with systems that use the 
iAPX 86, 88, 186, or 188 microprocessor. Close coupling of the 
CPU and the OSF allows maximum zero-wait-state performance 
of the OSF software. 
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nGURE 3. The position-independent interface supplies data 
location and run-time values, and starts on-chip execution of 
the software. 

operating system and the primitives, which are present in the 
basic 80130 configuration. The off-chip code is stored in exter­
nal RAM or ROM. It consists of initialization code, and code 
that either cannot be position independent or cannot be known 
before a given system is configured. 

Position independence is guaranteed if entry to the on-chip 
code is possible only through an interface in the off-chip code 
that sets up the necessary registers. The off-chip position­
independence interface (see Figure 3) provides an absolute 
data location and begins on-chip execution by the silicon­
resident code. All run-time values can be determined based on 
the data location. On-chip execution gives the processor a 
location in the on-chip code from which other on-chip locations 
can be calculated. 

It was relatively easy to make the 80130 configuration inde­
pendent, because (like most operating-system kernels) it con­
tains only general-purpose functions. The off-chip code 
contains aU the drivers for particular peripheral chips. The 
Interactive Configuration Utility integrates the drivers with the 
80130. 

The interface between the off-chip and on-chip codes 
remains stable across component steps. The stepping­
independence interface (see Figure 4) resides on the chip, and 
is a map of the on-chip code. This interface gives the off-chip 
code indireci access to all on-chip "publics" (e.g., externally 
accessible routines, modules, and labels). It is also a chart that 
routes execution to the proper on-chip location. The off-chip 
code uses an index of this chart to specify which public should 
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FIGURE 4. All on-chip accesses are routed through the on-chip 
stepping-independence interface, which provides compati­
bility between on-chip and off-chip code. Because the 
interface stru'Cture stays constant, the extemal reference 
also stays constant, while the on-chip OFFSET changes to 
point to the new location of the on-chip code. 

be accessed. The index of a given routine remains the same 
across component steps, even though the actual address (offset 
into the component) of the public has changed. For different 
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versions of the on-chip and off-chip codes to work correctly, all T2500 

access from outside the component must be routed through the 
stepping-independence interface. 

The 80150: CP /M-86* in Silicon 

Intel's decision to implement CP/M-86 operating system in 
silicon (the 80150) raised a different design problem. With the 
80130, Intel only had to deal with Intel-designed software. Code 
design, implementation, extensions, corrections, support, and 
the subsequent effect on the end user were all under Inters 
control. The selection of an independent software system such 
as CP/M-86 (a product of ~igital Research, Inc.) introduced 
new factors into the implementation. 

The CP/M-86 Architecture 

The CP/M-86 operating system consists of three modules. 
The Console Command Processor (CCP) handles command 
line processing, and executes built-in utilities. The Basic Disk 
Operating System (BOOS) performs logical disk 110, including 
disk reading and writing, directory management, and sector 
allocation. The Basic Input/Output System (BIOS), which con­
tains the configuration-dependent code and data, also provides 
110 for specific peripheral chips. 

CP/M-86 is a single-user, single-tasking operating system 
written in position-dependent code. The 80150 contains the 
entire CP/M-86 operating system: for many configurations, it 
requires no off-chip code. Intel's goal was to use the 
configuration-independent CCP and BOOS elements as a base, 
and add to them a BIOS that supported a variety of peripheral 
components but was still configuration independent. 

The 80150 BIOS supports the following two functional con­
figuration options: 

1. A preconfiRured-mode s)'stem, for which the system de­
signer needs to do no operating-system code development 
or extension. 

2. A confiRurahle-mode system, for which the designer makes 
a selection from among the Intel drivers supplied, and 
makes changes as required to meet hardware needs. 

The 80150 BIOS includes drivers for the following chips: 

*CP/M-86 is a trademark of DiKira/ Research. Inc. 
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FIGURE 5. (a) The standard disk-based CP /M-86 module is one 
long structure containing both code and data. (b) Intel 
reorganized the basic CP /M-86 architecture to fit the operating 
system into the 80150 OS firmware component. 

8251A 

8274 
8255A 
8275 
8237 

Universal Asynchronous Receiver/Transmitter 
(UART) 
Multi-Protocol Serial Controller (MPSC) 
Programmable Parallel Interface (PPI) 
Floppy-Disk C:::ontroller 
Direct Memory Access (OMA) Controller 

If the 80150 is used as a co-processor with the iAPX 186 or 
the 188, then the on-chip peripherals of these processors 
(DMA, timers, interrupt controller, chip-select logic) are also 
used. 

Configuration independence is achieved via the Configura­
tion Block (CB), with which whole BIOS drivers, data struc­
tures, and built-in utilities can be selected independently by the 
system integrator. 

CP/M-861tansformations 

Intel and Digital Research together addressed the issues of 
position dependence and intermixed code, d.ata, buffers, and 
stacks. The CCP and BOOS were reorganized to consolidate 
code and to use the 80150's ROM space efficiently. 

CP/M-86 was originally developed using an 8080 model struc­
ture. The use of this structure implied that the code and data 
groups would overlap, as they do in the classical 8080-based 
CP/M design. Each module contained set-aside buffer areas, 
and included separate data stacks. Therefore, all variable areas 
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down from the 80150, and variables used at run-time. b) The BIOS portion of the CB contains configuration-dependent data. 
c)These addresses provide access to the 80150 on-chip code, to alter execution paths for different configurations and steppings. 

and stack areas had to be removed from code that would reside 
in ROM. 

Figure 5(a) shows the general structure of the original CCP 
and BOOS. Although a natural separation between code and 
data is clear, Digital Research did not distinguish between 
constants, literal messages, and pure scratch storage. 

Inters first step in the transformation of CP/M-86 was to 
group all variables within each module, including buffers and 
stacks. We then placed this data grouping at the end of the 
constants and literal messages for each of the CCP and BOOS 
modules. 

The new structure (Figure 5(b» includes all code, constants, 
and internal messages, as well as a 16-byte initial-program-Ioad 
(lPL) boot resident in the 16K-byte OSF ROM. We removed all 
variables from the body of CP/M-86, and put them in an exter­
nal RAM-based structure. 

Second, the implementation of CP/M via the Intel 8086 
"small model" (separate code and data segments) rather than 
via the 8080 model (intermixed code and data), meant that the 
necessary additional variable data space would be available at 
80] 50 execution time. The segmented architecture of the iAPX 
86 family made this implementation easy, because separate 
CPU registers were available for data and code addresses. As 
part of the BIOS initialization, we moved the constant data 
structures for the CCP, BDOS, and BIOS to the base of a 
RAM-resident Configuration Block (CB). An additional 
amount of RAM equivalent to the total variable space was also 
allocated and preset to zero. This 8086 "small-model" transfor­
mation not only made it easy to separate code and data, but also 
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made the code more efficient and eliminated approximately 
2100 bytes. 

We achieved configuration and stepping independence via 
the off-chip RAM-based Configuration Block. Figure 6(a) 
shows the overall structure of the CB as constructed during 
BIOS initialization. During initialization, the 80]50 BIOS 
copies the CCP, BOOS, and BIOS constant and literal struc­
tures into the Configuration Block, and appends additional 
space for variable and scratch-pad storage. Even the location of 
the CB is alterable, based on the address stored in locations 
0:3FE-3FF. 

Figure 6(b) shows expanded portions of the CB. The data 
area contains pointers that can be changed to select custom 
off-chip code instead of the standard on-chip code. The entire 
BIOS can be replaced. (The BIOS code insert in Figure 6(c) and 
the various code labels are reflected back to the CB.) Complete 
110 control block structures are Pcovided for each CP/M logical 
device, including CRT, keyboard, list, auxiliary, and disk. The 
control block includes port addresses, protocol support, and 
other default data needed to detect and control the status of 
each peripheral. Figure 6(b) also expands the systems tables 
and buffers created for disk support. 

The addresses in Figure 6(b) indicate how stepping indepen­
dence is achieved. Any off-chip routines changed by the user 
can be selected by altering the address of the CB. If Intel 
updates an on-chip routine, the address in the CB is updated 
automatically when the 80]50 copies its constant structures 
into the CB. As explained above, full stepping independence is 
maintained, because any ROM changes can also be imple-
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men ted off-chip by having the address in the CB point to an 
off-chip patch. (The CB contains BDOS entry points (shown in 
Figure 6(b) that make this change possible.) 

The Configuration-Independent Interface 

Use ofthe predefined configuration requires that the 80150 be 
installed at the top of the 8086 memory address space (FCOO:O). 
The 16-byte internal hardware boot is activated at all POWER 
ON and hardware resets, and passes control to the 80150. The 
80150 initialization sequence uses this positioning to indicate 
the default hardware configuration (floppy disk, printer port, 
serial console, or auxiliary port). Each device has predefined 
port addresses, interrupt assignments, and protocols. The 
iAPX 186 or 188 CPU supports programmable chip-selection 
and the on-chip DMA drives the floppy disk controller. 

If the configuration must be altered, or if the BIOS code 
needs revision, the 80150 can be installed on any 16K code 
boundary except at the very top or bottom of memory. A 
PROM that contains off-chip code and data for a user's particu­
lar configuration is also installed at the top of memory. 

The 80150 initializes the default system hardware tables, 
then calls an EPROM to complete or revise the existing data in 
the off-chip CB RAM area. At this point, the CB contains the 
addresses that select either on-chip or off-chip code. When the 
configuration is complete, control is returned to the 80150. The 
80150 completes the CP/M initialization, displaying the familiar 
CP/M "A" sign-on. 

Conclusion 

Converting software to silicon is not new. But redesigning 
software to consist of on-chip ROM code and configurable 
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RAM data is somewhat more innovative. One silicon-related 
specter that haunts software designers is the fear of 
"committing code before its time." But software designers can 
never expect to produce bug-free code the first time. And sys­
tem designers cannot always predict the capabilities or the 
implementation requirements of peripheral devices that have 
yet to be built. Nevertheless, software designers who use the 
general silicon-implementation strategies of position indepen­
dence and configuration independence, and who provide for 
stepping independence, can create standard silicon hardware 
without fear of component obsolescence. 0 
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SPECIAL REPORT 
Punching in for real-time jobs 

in industry, R&D, and offices, 

operating systems use special 

software structures to squeeze 

better -than-ever performance 

out of 16-bit microprocessors 

by Stephen Evanczuk, Software Editor 

o A special class of operating systems is hard at 
work in the 16-bit microsystem world. For controlling 
environmental processes, acquiring data at high 
speed, or even handling transactions at a commer­
cial bank, these operating systems contain mecha­
nisms that enable them to respond rapidly to exter­
nal events and that differentiate them from the more 
familiar general-purpose operating systems. 

In fact, all the operating systems for 16-bit micro­
processors respond in a reasonable period of time. 
But the general-purpose, or developmental, operating 
systems like CP/M, Bell Laboratories' Unix, and MS­
DOS are intended for standard programming activi­
ties like editing, compiling, and file management 
[Electronics, March 24, 1982, p. 113]. As such, they 
lack certain software structures needed for reliable 
control of processes producing data at a high speed. 

Real-time operating systems tend to fall into two 
general categories-multipurpose and embedded, re­
flecting the type of hardware they run on. Multipur­
pose real-time systems are typically built around full­
fledged microcomputer systems with terminal, 
keyboard, plenty of system memory, and mass stor­
age. Furthermore, in process-control or data-acquisi­
tion applications, some special-purpose hardware is 
usually included in these systems to serve equipment 
or high-speed data input operations. Besides the fa­
miliar applications for research and development, 
transaction-processing environments are an example 
of situations needing multipurpose real-time systems. 

No doubt the largest class in volume because of 
their growing use in consumer items, embedded sys­
tems are minimal hardware systems, often just one­
chip microprocessors that control limited parts of a 
larger system. Programmers ordinarily employ a spe­
cial development system to create the software, 
which is loaded into the target system for use and 
ideally is never seen again. 

To meet the needs of these two classes of appli­
cations, real-time operating systems come in three 
flavors for 16-bit microprocessors. Serving multipur­
pose real-time systems, one type-discussed in the 
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first part of this report (see p. 106)-includes all the 
software development support found in their general­
purpose counterparts. Furthermore, many can be 
stripped of the layers needed in the developmental 
environment and placed in programmable read-only 
memory for use in an embedded system. 

For those who swear by Unix, the group of Unix­
based operating systems discussed in the second 
part (see p. 111) may mean no need to swear at it in 
real-time applications. A growing number of vendors 
are starting to convert this admittedly non-real-time 
operating system into versions that can be used to 
handle external processes. Although the industry is 
cautious, if not downright skeptical, of real-time ver­
sions of Unix, the fact that C-the language of 
Unix-is so highly regarded for use in real-time appli­
cations may help swing this group into the forefront. 

The potential for distributed-control systems based 
on embedded microprocessors hinges largely on the 
availability of high-performance real-time operating 
systems that can be plugged into the application with 
the same ease as an integrated circuit. Called silicon 
software, these operating systems discussed in the 
last part (see p. 114) have been designed to be 
stored in read-only memory. Providing a fixed set of 
system calls, they present programmers with a con­
sistent set of high-level commands to perform the 
low-level functions usually built from scratch. 

Building system-level software from scratch has 
long been the hallmark of real-time programmers, 
even a mark of honor. Fortunately, however, the in­
creased acceptance of ready-made operating sys­
tems using well-understood algorithms (described in 
the first part) is helping to replace this software "ran­
dom logic" with rather more standardized packages. 

On still another level, the unique responsiveness 
and throughput demonstrated by real-time operating 
systems is a truly user-friendly feature. For this rea­
son, these systems should find their way into less 
obvious real-time applications, such as transaction 
processing, word processing, and personal work sta­
tions for office automation. 
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AI90rithms star in 
multipurpose sllstems 

o Whatever environment it finds itself in, the function of 
an operating system is the efficient management of 
shared resources by a number of users, whether these are 
human beings accessing a computer through terminals or 
programs vying for a single central processing unit. In 
fact, the degree of sophistication of an operating system 
is reflected by the number and types of physical re­
sources it manages and by the fineness of control it 
exercises in their management. And operating systems 
targeted for control of the external environment must 
wrestle with the most demanding resource of all-time. 
The degree of care with which such software is designed 
to manage time is what determines its suitability for the 
real-time environment. 

Schedulers and queues 

Two critical aspects of the real-time environment are 
the random nature of physical events and the simulta­
neous occurrence of physical processes. Consequently, 
interrupt handling and multitasking are primary attri­
butes of a real-time operating system. In fact, it might be 

EXECUTING 
PROCESS 

(al ROUND'ROBIN SCHEDULING 

TASK WAITING 
TO EXECUTE 

(bl PRIORITY'BASED PREEMPTIVE SCHEDULING 

RELATIVE 
PRIORITY 

1. Priorities. In round-robin scheduling (a), tasks (or processes) ta'ke 

equal turns executing, while a higher-priority task will supersede a 

lower-priority one in priority-based preemptive scheduling (b). Most 
schedulers employ some combination of these techniques. 
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argued that the mechanism for handling multitasking­
the scheduler-is the heart of the operating system. The 
rest of the operating system lies atop this kernel and 
serves the specific demands of the application 
environment. 

In particular, the lists, or queues, and their managers 
that surround the scheduler are constructed to deal with 
the different physical resources supported by the operat­
ing system. Thus, one queue may contain those tasks 
(processes, or programs in the course of being run) that 
are ready to execute on the processor, another queue 
may be tasks waiting for access to input/output hard­
ware, and another queue may contain tasks waiting for 
some specified event to occur. 

In any multitasking operating system, the scheduler 
uses the queues as input. Its output, on the other hand, is 
a single task that has been activated and allowed to 
execute on the central processing unit. The scheduling 
algorithm in large part defines the operating system. 

In one system, the scheduler may simply select a task 
on a first-come, first-served basis, allowing it to run until 
\,.tUJ11pl'-'L.U.ll V.l Ul,U,l~ ,:)Vl11\".. ~p\""".l11,"",U. l''-''l.lVU. V.l L .. I.1.1.1\... 11(.1..;:) 

elapsed. This type of relatively primitive algorithm was 
commonly used in mainframe computers running simple 
batch-oriented operating systems. 

In a slightly more sophisticated operating system that 
can be used interactively through terminals, the schedul­
er may select tasks on a round-robin basis and permit 
each of them to run for a specified period of time (Fig. 
1). Once the task exceeds its time slice, it is placed at the 
end of the queue and forced to wait until all other tasks 
have had a chance to execute. 

Round-robin scheduling with equal time slices is ade­
quate if every task is no more important than any other 
task. However, if some are considered to possess a higher 
priority, then a more sophisticated scheduling algorithm 
must be used-one that recognizes that some tasks are 
more important, but that no task should be excluded 
from using the cpu. 

One solution is the use of several queues, where the 
length of the time slice is related to the priority of 
elements in the queue. In this case, the scheduler would 
allow all tasks in each queue of a different priority to 
execute on the cpu, but lower-priority tasks would be 
given less time. 

A further refinement permits higher-priority tasks to 
suspend a running task. This technique, called preemp­
tive scheduling, is an important feature for real-time 
environments, in which the delayed execution of a high­
priority task could have disastrous results, rather than 
simply disappointing the user. 

In scheduling algorithms, tasks may exist in a number 
of logical states, depending on their readiness to run. In 
the Versatile Real-Time Executive (VRTX) from Hunter 
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& Ready Inc., Palo Alto, Calif., for example, tasks are 
driven through four possible states by external events, by 
other tasks and system utilities, or by their own system 
calls (Fig. 2). For example, an executing task may delete 
itself-in which case it enters a dormant state-or may 
cause itself to be blocked either explicitly through a call 
to suspend itself or implicitly through a call to perform 
some I/O function. On the other hand, once suspended, a 
task may reschedule itself through a system call, or an 
external real-time event may bring the task back into the 
ready queue. 

Recognizing the importance of scheduler design, at 
least one software vendor has made it easier for real-time 
users to build systems around a prepared kernel. United 
States Software of Portland, Ore., is offering a basic 
scheduler that assembles into less than 100 bytes of ob­
ject code for the target microprocessor [Electronics, Nov. 
17, 1982, p. 206]. Furthermore, in anticipation of real­
time systems targeted for specific application areas, U. S. 
Software supplies a list of design notes detailing exten­
sions to the basic kernel. 

Another use for queues 

In addition to having queues serving the scheduler 
directly, most systems use them as the preferred means 
of associating a task with a required resource. For exam­
ple, one capability commonly found in real-time operat­
ing systems is the ability to suspend a task for a specified 
period of time. Typically, the operating system contains a 
special queue for this function. Each element in the 
queue is a task in a suspended state. Associated with 
each task is a counter that contains the number of clock 
ticks remaining until it should be reactivated. 

For example, in iRMX-86 from Intel Corp., Santa 
Ciara, Calif., the counters keep track of the incremental 
time remaining with respect to the previous element in 
the queue, rather than the total time remaining before 

EXECUTING 
PROCESS 

SUSPENDED 
TASK 

DORMANT 
TASK 

2. Task states. As one task (or process) runs, others may be in 

various states of readiness. In Hunter & Ready's VRTX, fOi example, 

tasks can be ready (able to run immediately), suspended (waiting for a 

resource), or dormant (deleted by a system call). 
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the task may be reactivated. Thus at each clock tick only 
the counter in the element at the head of the queue need 
be decremented, rather than every counter in every queue 
element. This method takes longer to insert new elements 
into the queue and so requires slightly higher overhead 
for insertion than when the total time is maintained by 
each counter; however, that overhead is more than offset 
by the time saved by updating only a single counter. 

Real-time environments pose a special set of problems 
for resource allocation. Besides all the more familiar 
problems of scheduling, a real-time operating system 
must maintain reliable behavior under extremes of load 
when it is driven by a high rate of external stimuli. From 
the system user's point of view, the system must main­
tain a predictable level of response and throughput. 

In an interactive environment, users sitting at termi­
nals measure response as the time the system needs to 
react to a keystroke. In general, system response is the 
time that the system needs to detect and collect data 
from some external stimulus. Throughput, in an interac­
tive environment, is seen as the number of users able to 
utilize the installation simultaneously. In a more general 
real-time environment, throughput is the rate at which 
the system is able to collect, process, and store data. 

In fact, although response and throughput share some 
common software elements, operating-system designers 
will invariably find themselves forced to make choices 
that will tend to optimize one at the expense of the other. 
Often, the interrupt-handling requirements of a real-time 
operating system force this choice. 

Interrupt processing is hardware and software integra­
tion at its most demanding (see "Handling hardware 
interrupts," p. 108). To handle interrupts, operating sys­
tems often place layers of software between the user and 
the microprocessor in order to allow different levels of 
performance and capability. 

Intel's RMX-86 is a typical example of distinct levels 
of software used to perform basic interrupt processing. 
At the lowest level, an interrupt handler works intimate­
ly with the hardware to execute some operation, such as 
sending a message character by character to a printer. 
Code for interrupt handlers is kept compact and simple, 
since system interrupts are disabled during their opera­
tion. The higher level, called the interrupt task, works at 
a priority associated with the particular hardware it ser­
vices. Interrupt tasks act as interfaces between applica­
tion tasks, working with specific interrupt handlers to 
complete execution of operations dealing with external 
devices. RMX makes this interrupt-handling mechanism 
available to application programs through a special set of 
system calls. 

Protection and communication 

Once the interrupt software has completed its function, 
tasks that use the data are indistinguishable from any 
other task in the system as far as the operating system is 
concerned. Unless special care is taken, conflicts could 
still arise between two separate tasks that might need to 
use the same resource, such as the same location in 
memory. MP 1M: -86, for example, employs a special 
queue, called a mutual exclusion queue, that contains a 
unique message representing the shared resource. In or-
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der to use the resource, a 
task must first capture 
the message, much as a 
node in a token-passing 
network must first obtain 
the token before being at 
liberty to transmit. 

Per Brinch Hansen 1 

identified such shared resources as key elements in multi­
tasking systems. Sections of code that access critical re­
sources are called critical regions. The simple expedient 
of ensuring that only one task at a time is allowed in a 
critical region guarantees that multiple tasks may share 
the same critical resource without fear that its integrity 
may be compromised when two of them attempt to ac­
cess it simultaneously (Fig. 3). 

This concept of the mutual exclusion of tasks from 
critical regions is implemented in a structure called a 
monitor, in which critical regions are gathered in one 
section of code and protected from use by more than one 
task at a time. The MSP operating system from Hemen­
way Corp. of Boston [Electronics, Jan. 27, 1983, p. 119] 
explicitly supports mutual exclusion through monitors in 
its internal structure. 

Furthermore, user-written routines needing monitor 
protection are provided with four functions in MSP that 
are implemented using hardware traps for rapid access: 
Entermon, Exitmon, Wait, and Signal. Entermon and 
Exitmon serve as monitor entry and exit points, respec­
tivt"lv. nerforminl! reouired housekeeninl! functions. En­
termon disables system interrupts and preserves all regis­
ters, while Exitmon reverses these actions. Wait and 
Signal, on the other hand, work in tandem to control 
access to a critical resource. Wait queues up tasks need­
ing an unavailable resource. Signal releases them from 
the queue when the resource becomes available. 

Wait and Signal are examples of an intertask commu­
nication mechanism, called semaphores, found in most 
real-time operating systems. As noted, these commands 
simply queue up and release tasks needing a critical 
resource. Such a resource may be an I/O device, a memo­
ry location, or simply a go-ahead' signal that synchro­
nizes a pair of tasks. For example, task A may execute 
only after task B has completed. In this case, task A 
would begin with a Wait (flag) command, where the flag 
is used as an associated variable. Task B, on the other 
hand, would end with a Signal (flag) command. In this 
way, task A would be blocked until task B had executed 
its Signal command at the end of its processing. But 
exchanging simple go-no-go signals is not sufficient for 
many multitasking environments. 

For longer messages, real-time operating systems offer 
extensive intertask communication facilities called mail­
boxes. Mailboxes are essentially semaphores with storage. 
As such, tasks needing data from another task will wait 
until the other has loaded the mailbox with the informa­
tion. Intel's object-oriented RMX-86 transfers any of the 
defined objects in the system through mailboxes. Hemen­
way's MSP, on the other hand, provides a buffer of fixed 
size that may be used without restriction on its contents, 
as long as the 256-byte buffer is not exceeded. With its 
Multibus message exchange (iMMx) extension to RMX for 
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Handling hardware interrupts 
Underlying the special software of a real-time system is the 
assumption that the hardware itself can respond in a coordi­
nated fashion to external events, or interrupts. In fact, 
microprocessors contain subsystems whose sole function 
is to deal with interrupts in a way that eases integration of 
the interrupt-handling software. 

All modern computers integrate interrupt-handling hard­
ware and software at a very low level of design. When a user 
accesses a microprocessor through a terminal, the same 
hardware interrupt facilities come into playas when, for 
example, an analog-to-digital converter sends data to the 
same type of microprocessor. The software response, on 
the other hand, depends on the type of operating system, 
but both real-time and general-purpose operating systems 
must take some action, like read in the data value or the 
character. 

Examining the details of a simple keyboard task illus­
trates the complex nature of real-time processing. It also 
serves as a vehicle for introducing some of the basic 
vocabulary in this field. 

A standard software subsystem in a microcomputer sys­
tem, called the keyboard monitor, is responsible for working 
with the hardware interrupt system to detect a character, 
collect it, and effect some action based on the input 
character. When a key is struck on a terminal, the corre­
sponding byte is converted into a serial stream of bits that 
are Dassed from the terminal to a universal asynchronous 
receiver-transmitter. Once it receives the full character, the 
UART generates a hardware Signal, or interrupt, that noti­
fies the processor. Since interrupt management is a com­
mon activity, processors contain special hardware to re­
spond to this signal. 

Although the details may vary from one particular micro­
processor to the next, the result is the same for all. When its 
interrupt-request line is asserted, the processor ceases its 
current processing and places values from its internal 
registers into system memory. Typically, the processor 
status and instruction-address registers are saved in the 
system staCk, a last-in, first-out buffer located in some 
portion of system memory. As the figure shows, the proces­
sor responds to the original interrupt-request signal by 
issuing a signal of its own, called an interrupt acknowledge. 

The peripheral hardware that originated the interrupt 
detects the interrupt-acknowledge signal on the system bus 
and responds by returning the memory addresses of both 
the interrupt-handling subroutine and the new processor 
status. Typically, the new processor status will provide for 
disabling any further interrupts. This latter action is a simple 
precaution, preventing a single external stimulus from caus­
ing a continuous series of interrupts that will eventually 
result in an overflow of the system stack. 

Such an interrupt mechanism, called a vectored interrupt, 
allows the speediest identification and reaction to an inter­
rupt. (An alternative interrupt mechanism used by earlier 
processors, called a device-polling interrupt, simply forced 
the processor to switch to a defined address in memory 
containing software that polled each peripheral device until 
the device that generated the interrupt was discovered.) At 
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this point in the interrupt-handling task, all the activity was 
exdu$ivelyin hardware, but nevertheless resulted in exten­
sive processor activity and bus traffic due to multiple ac­
cesses of system memory and the involved oerioheral-
,device controller. - . . 

Consequently, it is not surprising that the time for hard­
ware to set the processor, to handle the interrupt-the 
hardwarEHnterrupt latency-should be several processor 
cycle times in length. In general, hardware-interrupt latency 
is not a fixed number,' but will lie within some range, since 
the proCessor will need a variable length of time to complete 
its current instruction and to initiate the interrupt-acknowl­
edge signal. For example, if a processor is involved in a 
lengthy floating-point operation, several microseconds 
could elapse before the interrupt is acknowledged. 

Once the processor has reached the interrupt-handling 
subroutine, the contents of only a minimal set of its internal 
registers have been preserved. How:ever, before the real 
work of the subroutine may commence. the contents of 
other registers and variables shared by independent sec­
tions of the operating system must be preserved. The time 
,ne8ded to ,perform this action is, catled the context-switch­
ing time. Only after the software context is switched is the 
system ready to begin handling the special requirements of 
the device that origip.ated the interrupt. The penod of time 
~tween the occurrence of the external event and this state 
is thet-otal interrupt-response latency. 

In reat-time oper~ting systems. interrupt-response laten­
cy is usually a,specified value-around 100 microseconds 
in very high .. performance systems based on 1()..bi1 micro­
proCessors. Designers often bypass the constraints irtl­
posed, by response .iatency byin¢luding special-purpose 
hardware to boost system response to external-ev~ts. , 

Throughout ali this time, system interrupts are still dis­
abled. However, now that the context,switch has"taken 
place. the keyboard handler is free to transfer the character 
from the UAAT.Oeciding where to put ,the character is 
important in terms of system throughput and, overaU effi.. 

, cianey. When it is put'in some specified location in system 
'memory, system interrupts must remain disabJed; other­
wise" if the: handler attempted, to service 8, subsequent 
mterruptt the' new character would overwrite the character 
aJready,n th' tocation, ,but not yet fully processed. ' 
tnge~ral. there are two methods for h~ndling this ' 

problem.1'n the first method, the character is simply pJaced 
, on,the,syStem':stack and referenced through the relevant-
, po,intQr .111 an alternative 
,_thod. the character is 
pJac~KL.in' • abtock of 

• 'mertl@'thal has been 
reServed just for the han­
dier and is cafled a con­
text block. In this case, " 
the character is referred 
to by using, a specified 
offset from the base of 
the context block. Each 
time the keyboard han­
dlei is called in response 
to an interrupt, one of 

EXT 
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NT 
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these context blocks is reserved from available system 
memory. Setting up a context block and ,switching the 
processor to it in a context switch accounts for a significant 
fraction of the time that is needed to respond to an interrupt 

Software code, such as the UART handler in this exam­
ple, that does not contain any memory lOcations for vari­
ables is called reentrant because the processor may asyn­
chronously enter it. be called away by an interrupt (even one 
that results in another call to the same piece of code), and 
return without loss of data or context. If the code is not 
already resident in system memory, another routine causes 
a copy of the code to be read from storage into'memory. 
With reentrant code, only a single copy of the program or 
task need be resident at any time. Each Context block, or 
logical copy of the task. is called an instance of the task. 

Multiple instances of a task help eXplain some of the 
confusion associated with performance figures reported as 
a result of benchmarks. In examining benchmark figures, it 
should be clear just what the values are that are being 
reported. T ota! interrupt latency generally includes hard­
ware interrupt latency, the time to ¢reate an instance of a 
task (piuS the time to call in the task into memory if not 
already resident), the context-switch time. and anadditionaJ 
period needed to execute a variable amount of code that 
causes the data tobs read from the parip.'leral regiSters. 
Creating a new task means either calling in a new task and 
creating a context block for an instance of it or just creating 
a new instance<>f a,task already existi~ in memory. 

Once the. handler in the UARTexampie reads in' the 
character from the receiver buffer, it wiD raenabfe interrupts. 
The time 'between entry to the interrupt routine, "when 
interrupts were .disabl~ until the time when iAterruptsare 
reenabled is an important factor in determining the effective 
iatency of system response. 

This dead time :must be minimized, or the system wiD 
remain deaf to externaJ stimuli for unacceptabtylong peri­
ods of time. In fact. thel9ngth of time that system interrupts 
are disabled is ,~ne Of, the criteria for determining the 
usefulness of an operating system for real .. time ~plica- ' 
tions. 'fhe Ionge$t' period during which interrupts are dis­
abled ,is, a direct measure· of the responsiveness of the 
syst$ttl. ~atiS$of. the weight of disabled interrupts on 
total syst~ performance, modern micropr~ use a 
number ,of hardware-interrupt levels. or, prioritie,s. that dis­
able interrupts at or below the priority Javel of the device 
originatin~, the interrupt. 

2. 

INTERRUPT REQUEST 5. 

JUMP TO 
MlCRO- INTERRUP T· 

3. PROCESSOR HANDLING 

INTERRUPT ACKNOWLEDGE ROUTINE .. 
4. 

ADDRESS OF ROUTINE FOR 
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multiprocessor-based sys­
tems, Intel replaces the 
concept of a mailbox 
with that of a software 
port connecting different 
tasks, whether they exist 
on the same or different 
physical processor. 

Unlike memory-intensive software development sys­
tems, real-time environments find less need to support a 
virtual address space. In fact, the increased system over­
head is less than desirable, because the designer seeks to 
minimize response latency. A useful feature, however, 
that can be found in some real-time operating systems is 
a set of system calls responsible for dynamically allocat­
ing and deallocating memory. 

For example, in the ZRTS system from Zilog Corp., 
which comes in different versions for the Cupertino, 
Calif., firm's segmented Z8001 and non segmented Z8002, 
a set of three system calls provides for dynamic alloca­
tion and deallocation, as well as information on the sta­
tus of memory allocation. The system call for memory 
allocation allows application programs to specify the at­
tributes of the memory block to be allocated and returns 
a name referring to the created structure. 

Besides similar system calls, Intel's RMX adds some 
calls suited to its context-based architecture. In RMX, 
each task lies within the context of a job environment 
that bounds the scope of tasks within it (Fig. 4). As such, 
p::lch task is allowed to draw from the memory pool of its 
job. In case more memory is required than that lmtlally 
allocated to the job, a pair of system calls provides for 
querying the system on the size of the job memory pool 
and for dynamically changing it. 

Dynamic memory allocation and deallocation is a rela­
tively advanced concept that exacts some overhead dur­
ing runtime. However, the alternative-static allocation 
before runtime based on expected requirements-may be 
less suitable for applications in which the real-time envi­
ronment is relatively unpredictable. 

In real-time operating systems, disk-file management is 
treated as just another asynchronous task possessing a 
particular set of critical resources-mass-storage devices. 
In real-time environments, file-management utilities have 

(a) 

TASK A TASK B 

STORECOUNT -~ 
I ~~ COUNT'" COUNT + 1 

COUNT'" 0 4- e--

RESULT 

STORED COUNT = N 
NUMBER OF EVENTS = N + 1 
COUNT = 0 

to meet not only the requirements of general-purpose 
systems but some additional demands. 

In terms of system response, a requirement of real-time 
operating systems in heavily loaded systems is the ability 
to conduct asynchronous I/O operations. In such an oper­
ation, the calling task simply queues up the I/O request, 
then immediately returns as if the task were completed in 
zero time. When the I/O request is fulfilled, the operating 
system switches ~he processor to a separate routine 
whose address is supplied when the original asynchro­
nous request was made. This completion routine then 
may continue any processing that may be required fol­
lowing the I/O request. 

System throughput depends heavily on the efficiency 
and performance of the I/O subsystem. Peripheral con­
trollers with direct memory access and the ability to 
move the disk's read-write head without necessarily per­
forming data transfer can significantly reduce the over­
head associated with data movement. 

Reducing overhead 

System software can also contribute to reduced over­
head by providing a simple disk organization when high 
throughput is needed. One of the simplest structures is a 
file consisting of an unbroken series of disk sectors, such 
as the contiguous file in Hemenway's MSP or the physical 
file in Intel's RMX. By ensuring that the next block of 
data will be written to the next physical sector on a disk, 
the operating system can reduce the delay caused by 
head movement on the disk. 

In thelr use ot an 110 mtenace mar IS common to all 

system device drivers, MSP and RMX attack another im­
portant aspect of system design, though one not necessar­
ily tied to their utility in real-time applications. In MSP, a 
basic I/O routine called Iohdlr serves for all operations by 
accessing a special block of information in memory. 
RMX, on the other hand, uses a number of device-inde­
pendent system calls to handle communication with pe­
ripheral devices. 

Next to multiprocessor-based software systems, real­
time software systems are the most difficult to debug. 
Again, the cause is the distinguishing feature of real-time 
operating systems-precise management of time. Stan­
dard debugging tools for single-user general-purpose op-

(b) 

TASK A 

ACQUIRE COUNT 
STORE COUNT 
COUNT "'0 
RELEASE COUNT 

RESULT 

TASK B 

ACQUIRE COUNT 
COUNT.'" . COUNT +1 
RELEASE COUNT 

STORED COUNT = N 
NUMBER OF EVENTS = N + 1 
COUNT = , 

3. Critical regions. If two asynchronous tasks use a counter, events can be miscounted if task B interrupts task A before the counter is reset (a). 

Forcing the tasks to acquire a counter before using it (b) ensures synchronization through the critical regions (tinted). 
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JOBB 

d TASK Al ~ 

4. Job context. In intei's RMX, ali jobs exist 
within the context of another job. A directory 
defines the objects that are known to other 
objects in the same context. For example, all 
three jobs may use mailbox RM since it is in 
the system's root-job object directory. 

MAILBOX AM MAILBOX AN 
TASK 81 

Y 

er~ting systems generally disable all system interrupts in 
various phases of the debugging routines. Since the object 
of a real-time software system is asynchronous involve­
ment with the task under control, this effect makes stan­
dard debugging tools useless. 

Ideally, debugging real-time software would use perfor­
mance-analysis tools and troubleshooting aids built into 
the operating system itself. Unfortunately, the processing 
overhead and additional memory requirements imposed 
by such a technique make this an unpopular notion in 
the design of an operating system. However, some sys­
tems do provide some means for run-time error handling. 
The exception handlers in RMX, for example, are proce­
dures that are associated with each task when it is creat­
ed. If a task attempts to use a system call but encounters 
an error, called an exception, the operating system in­
vokes the associated exception handler to allow some 
graceful recovery from the error. 

Although the technique in VRTX is not true exception 
handling, Hunter & Ready's silicon-software system does 
include a mechanism to build run-time debugging soft­
ware. A special location in the VR TX configuration table 
(see p. 115) causes a user-defined routine to be called 
whenever a context switch is performed. By recording 
information about the task as well as the processor, such 

TASK A2 ~ 

a routine can be used to create a list, called a trace, of 
the history of task execution. 

Because real-time systems often include special-pur­
pose hardware, the accepted technique for debugging 
user-written routines uses the classical approach of col­
lecting data before and after passing through a suspect 
region, along with a logic analyzer to monitor timing of 
traffic through critical regions. 

Intel offers some relief to this problem through the 
iRMX debugger In particular, the debugger allows the 
user to work with individual tasks without interfering in 
the operation of other tasks, as well as to monitor the 
activity of the system as a whole without disturbing it. 
The debugger recognizes data structures in the RMX ker­
nel, so the user may examine system objects. In addition, 
Intel's crash analyzer brings mainframe debugging power 
to microprocessor-based applications using RMX. 

Zilog's ZRTS configuration language offers another lev­
el of support to the development of systems targeted to 
specific hardware complements. By defining the details of 
the hardware, a system designer can configure ZRTS to 
particular systems. 

Reference 
1. Per Brinch Hansen, "Operating System Principles," Prentice-Hall, Englewood Cliffs, N. J., 
1973, p. 84. 

Desiqners tune Unix 
for real-time use 

o With an eye on the growing momentum of Bell Lab­
oratories' Unix, real-time system designers have endeav­
ored to saueeze this comolex ooerating svstem into the 
rigid confi~es imposed by ·the d~mands~of'real-time envi­
ronments. Although Unix brought advanced system ca-
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pability to mini- and microcomputers, the original intent 
was to provide a hospitable software-development envi­
ronment, rather than to include the features considered 
necessary for real-time uses. 

Until now, data-acquisition systems employing unmod-
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ified Unix typically used 
dedicated microproces­
sors to buffer a central 
computer from constant 
random activity caused 
by external events. For 
example, in the Conceps 
process-control system 

from Bell Laboratories, Murray Hill, N. J., a Unix-based 
host is linked with auxiliary microprocessors. In each 
microprocessor, software derived from Unix software 
handles the low-level details of real-time activity (Fig. 1). 

Unix goes real-time 

Appearing in all shapes and sizes, Unix-compatible 
executives, Unix lookalikes, and new Unix versions are 
bringing this popular environment into real-time applica­
tions. However, unlike their colleagues creating totally 
new operating systems (see pp. 106-111), designers of 
these second-generation systems are constrained by the 
boundaries set by the original. Caught between Unix's 
complex organization and the high-speed needs of some 
real-time applications, they have opted for preserving the 
basic architecture. Still, for intensive data-acquisition ap­
plications, vendors like VenturCom, Cambridge, Mass., 
and Masscomp, Littleton, Mass., add on dedicated hard­
ware like high-speed peripheral controllers to link devices 
into the main system without losing the generality of the 
Unix software architecture. 

For microprocessor-based dedicated systems, memory-
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resident kernels like the C Executive bring a measure of 
Unix compatibility to even dedicated systems. Offered by 
JMI Software Consultants of Roslyn, Pa., the C Executive 
combines support of an extensive C-Ianguage run-time 
library with many of the features considered important in 
real-time applications. Although not directly supporting 
shared data in its multitasking architecture, the execu­
tive's intertask-communication facilities include data ex­
change through a queuing mechanism. As befits a real­
time executive, the task-scheduling algorithm allows 
higher-priority tasks to preempt lower-priority ones. Be­
cause it is intended primarily for embedded systems­
that is, dedicated microsystems that do not have disks­
the C Executive is totally contained in system memory 
and does not support the extensive Unix file-management 
subsystem. 

Controlling real-time tasks 

Full-blown Unix lookalikes, on the other hand, find 
themselves forced to deal with some of the very internal 
structures that aided Unix's rise in popularity. For appli­
cations like program development where regular schedul­
ing is more important that instant response, scheduling is 
aided by Unix's manipulation of the priority levels of 
tasks (or processes, in Unix's preferred terminology). For 
real-time applications, however, the slight uncertainties 
this feature introduces could destroy the synchrony of 
timed events controlled by the system. 

Consequently, one enhancement commonly found in 
the real-time offshoots is the addition of some mecha-

technique that sits well within Unix's task-oriented (that 
is, process-oriented) design is the definition of a real-time 
class of tasks (or processes). This class earns special 
rights in the operating system, such as a guarantee that 
each task will not be swapped out of memory, but re­
main locked in and ready to respond more rapidly to 
events. 

VenturCom's Venix, for example, defines a real-time 
priority level. The scheduler allows tasks running at this 
level to maintain control of the processor for as long as 
necessary. In contrast, Regulus from Alcyon Corp. of 
San Diego, Calif., speeds response to real-time events 
through the use of 32 user-defined priority signals. 

Better 1/0 handling 

In addition to its scheduling algorithm, Unix's method 
of handling input/output operations needs improvement 
to perform well in real-time applications. Aiding total 
system response, the asynchronous I/O procedure in 
Venix supplements the conventional synchronous proce­
dure in Unix, in which the requesting task must be 
suspended until the I/O operation is completed (Fig. 2). 
By placing asynchronous requests at the head of the I/O 

request queue, Venix's manager lets real-time tasks issue 
a write request, for example, and immediately continue 
processing, assured that the request will be honored next. 

Concentrating instead on improving what happens 
1. Satellite processing. In Bell Labs' Conceps system, separate when I/O requests have been completed, Masscomp's en­
microprocessors handle low-level details of process control. Yet hanced version of Bell Labs' Unix System III adds a 
another processor-a host computer that runs the Unix operating modified signal called an asynchronous signal trap. Simi­
system-is in charge of coordinating these satellite machines. lar to the concept of completion routines in other operat-
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Going Forth with altemalives 
F9Wntghtmares evoke the feelings of dread experienced by 
a programmer who must alter code that has been devel­
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ing systems, the AST mechanism allows tasks to perform 
operations that were contingent on the completion of a 
separate real-time operation. For example, by issuing an 
AST when it has completed its work, a read task is able 
to notify another task that a buffer has been filled. The 
other task is then free to initiate whatever calculation 

MOS single-chip microcomputer from RCA Corp.'s SOlid 
State division, Somerville, N. J. [Electronics, Nov. 30. 1982, 
p. 1271. contains a core interpreter for' Micro, Conqurrent 
Pascal (mCP) from Enertec,fnc. of Lansdale, Pa. Baseclon 
Per Brinch Hansen's Concurrent Pascal. mCP contains all 
the constructs necessary tor real-time applications, such'a.$. 
shared data, monitors._ interrupt handling, and task qlf~uing 
and ,switching. RC~alsoprovides.a ,i=lOMthat extEJ~I3,lh~ 
core interpreter 'to include" -full multitaskiog'support..,SOft,;; 
ware for thismicrosystem is developed using an HCAcrQ~ 
oompiler available on va.rious host maqhines: 
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may be needed to make use of this new data. 
Besides such modifications improving Unix's response 

to asynchronous events, Masscomp upgraded the sys­
tem's throughput by adding support for contiguous files 
to the file-management system. In this way, large 
amounts of data may be written at a high speed to 

SYNCHRONOUSINPUT!OUTPUT 

2. No blocking. In synchronous 1/0, execu­

tion of a task blocks, or waits (tinted), until the 

data transfer is completed (a). Since 1/0 is 

handled independently, a task need only re­

quest an 1/0 operation (shaded) and contin­

ue on to the next operation. 
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consecutive disk sectors. Since other disk accesses are 
locked out in this mode, the disk head will be positioned 
correctly, thereby eliminating unnecessary and time-con­
suming movements. 

In addition to these I/O add-ons, Masscomp boosted 
intertask communication capability by enlarging the 
Unix standard intertask communication mechanism, 
called pipes, to allow tasks to transfer buffers. In an 
alternative approach, Charles River Data Systems of Na­
tick, Mass., allows tasks in its Unix-like Unos system to 
share data directly. A number of independently con­
structed software tasks may use a common set of loca­
tions in memory to transfer data between themselves or 
to perform some sequence of calculations. However, 
whenever asynchronous tasks share some common re-

source, their use of the resource could result in corrupted 
data-unless some mechanism coordinates their activi­
ties, such as the monitor concept described on page 108. 
Unos provides a mechanism called event counts to help 
avoid these conditions. 

Event counts are integer values that are a nondecreas­
ing count of the number of times some particular event 
has occurred. By using an event count associated with 
some task that produces shared data and another event 
count for a task that consumes the shared data, program­
mers may ensure the correct sequencing of asynchronous 
data-producing and -consuming tasks. Similarly, event 
counts serve as primitive operations for emulating the 
synchronization function that is provided by semaphores 
and the mutual exclusion that is furnished by monitors. 

Chips come to aid of 
embedded slJstems 

D Storing machine instructions in read-only memory is 
hardly a new concept in microprocessors. If supporting 
software totally breaks down, Digital Equipment Corp.'s 
LSI -11, for example, resorts to a basic keyboard monitor 
stored in a special ROM that is logically placed in the 
input/output address space. Using a primitive on-line 
UC;UU!:S!:SU1!:S lC;~lll11yUC; :'IlVI C;U 111 Lll~ :'Ia111", I'\.V1V. "" ... '" '''Vll-

itor, a software designer may read and alter memory 
locations and initiate a bootstrap loading operation from 
storage-a common provision in computer systems. 

From these primitive beginnings, however, ROM-based 
software has evolved into complete operating systems in 
memory, engendering the term silicon software. Comple­
menting hardware for distributed-processing architec­
tures, such silicon-software systems signal a migration of 
application software into dedicated microcomputers pre­
viously considered unable to gain full systems capability. 
For developers of dedicated microcomputers embedded 
in some larger real-time system, silicon software spells 
the end of the need to reinvent the wheel to carry out the 
fundamental functions of a real-time operating system. 

Extending the microprocessor 

Functionally, silicon operating systems extend the mi­
croprocessor's instruction set to include system-level in­
structions that perform operations on software structures, 
like queues and tabies, rather than on hardware registers. 
Application-program developers are then presented with 
a virtual machine-one that is perceived by the program­
mer as different from the actual host processor. In these 
virtual operating-system machines, their instruction set 
includes a well-defined set of system calls as well as the 
basic machine instructions of the host microprocessor. 
For example, with systems like VRTX and RMX, the virtu­
al microprocessor has a special set of instructions for 
handling interrupts (see Table 1). 

For system developers, however, the problems in devel­
oping reliable silicon software extend beyond resource 

protection, timing, and communication problems (see 
pp. 106-111). In fact, the development problems extend 
beyond the purely logistical exercise of maintaining a 
separate ROM-based instruction store and one for vari­
ables that need to be placed in system read-write memo­
ry. Treading a fine edge between the full function of a 
~, .... ~ ..... 

6""~1"".lU.l VP,,",lU".lJ..I.6 ~)..:JI""",,.i..a..& L4.JI.~ ~,jl..""'" .... J. ......... fl. ....................... p ......... aV ........ _.a. ............ 
of special-purpose software, silicon systems need to bal­
ance the need for a wide range of system functions with 
the requirement that they squeeze into a minimal amount 
of ROM. 

Flexibility for expansion 

Still, once a system meets a reasonable compromise 
between capability and size, it should not irrevocably 
lock the user into accepting its choices. For example, 
many real-time applications require some custom periph­
eral-device drivers and system-level functions. Conse­
quently, the program should provide a mechanism for 
logically incorporating user-written extensions to the op­
erating system, such as the user-defined pointers in the 
VRTX system from Hunter & Ready, Palo Alto, Calif. 

In VRTX, a configuration table (Table 2) in system 
random-access memory allows specification of a custom 
routine that is to be executed whenever the system is 
initialized. For even more delicate control of system op­
erations by custom software, a trio of pointers in the 
table specifies user-written routines to be accessed when­
ever a task is created or deleted or whenever a context 
switch is performed. Hunter & Ready also includes a 
location in this baseline configuration table for its antici­
pated file-management extensions to VRTX. 

The 80130, an RMX-86 kernel in silicon from Intel 
Corp., Santa Clara, Calif., generalizes this approach 
through an index table containing pointers to system 
routines. If circumstances require the replacement of an 
existing system routine, the index-table pointer is merely 
altered to indicate the address of the new routine. In an 
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UI-POST 

UI-EXIT 

UITIMER 

UIRXCHR 

UI-TXRDY 

ROSSETSINTERRUPT 

ROSRESETSI NTE R RUPT 

ROSGETSLEVEL 

ROSSIGNALSINTE R RUPT 

RO$WAITSINTERRUPT 

RO$EXITSINTERRUPT 

ROSENABLE 

RGSDISABLE 

deposit message from interrupt 
handler 

exit from interrupt handler 

timer Interrupt 

receiver ready interrupt 

transmitter ready interrupt 

assign interrupt handler 

deassign Interrupt handler 

return number of highest priority 
interrupt level currently being 
processed 

signal from interrupt handler that 
event has occurred 

wait for occurrence of event 

rellnqu ish control of the system 

enable hardware to accept interrupts 

disable hardware from accepting 
Interrupts 

embedded system, this new routine could be placed in 
ROM along with application software. 

Now that programs in ROM have matured into silicon 
systems, the development of software for embedded sys­
tems may now follow a more hospitable development 
cycle. The particular method used to create embedded 
systems will, in general, fall into one of two paths repre­
sented by the two major camps. 

On one hand, kernels in silicon from systems such as 
RMX-86 or the MSP from Hemenway Corp., Boston, 
Mass., for the 68000 or Z8000 are self-contained subsets 
of the full operating system. Consequently, software pro­
grammers may use the full development version of the 
same operating system as that in the eventual target to 
create the application package. On the other hand, devel­
opment of application programs around the ZRTS system 
from Zilog Corp., Cupertino, Calif., or Hunter & 
Ready's VRTX for the Z8002, iAPX-86 family, or 68000 
relies on the use of a separate development system to 
create software for the target microprocessor, since this 
software does not have development versions. 

Two approaches 

The significance of these two approaches as usual de­
pends on the intended application. Hunter & Ready 
views VRTX as a set of processor-independent building 
blocks that programmers use to construct application 
packages for embedded systems. As such, the program­
mers employ the same development systems that they 
might use to build application code, but now with the 
benefit of a sophisticated set of ready-made system-soft­
ware components. 

In playing its part in Intel's systematic drive toward 
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TABLE 2: VRTX CONFIGURATION TABLE 

Table Entry Entry Description 

sY5·RA~v1·addr system beginning address 

sys-RAM-SIZe system memory size 

t-----------r--------------------------1 
sys-stack-size 

user- RAM-addr 

user- RAM-size 

user-block size 

user-stack-size 

user-taskaddr 

user-task-count 

sys-init-addr 

sys-tcreate-addr 

sys-tdelete-addr 

sys-tswap-addr 

[RESERVED] 

system stack size 

starting address for available memory in 

initial partition 

size of Initial partition 

size of memory block for dynamic allocation 

size of stack for user tasks 

address of first user task 

maximum number of tasks 

address of user-supplied initialization routine 

address of user-supplied routine accessed 

when a task is created 

address of usersupp!ied routine accessed 

when a task is deleted 

address of user-supplied routine accessed 

when a context switch occurs 

address of Hunter & Ready future 

extensions to VRTX 

providing an integrated environment around the iAPX-
86 family, the 80130 holds the anchor position in an 
interlocked set of components. Able to function indepen­
dently of the upper layers of the operating system, it 
provides a hardware base for the rest of RMX-86. Serv­
ing as a viewport into this system-software base for the 
central processing unit, Intel's universal run-time and 
development interfaces offer the mechanism for software 
portability needed for the next stage in the company's 
plan to grow into higher-performance microprocessors, 
such as the 186, 286, and 386. 

While interlocking with the software in this way, the 
80130 also must play its role in the complementary rela­
tionships being established at the hardware level. As 
such, it includes on-chip hardware support for system­
level functions, including timers, interrupt controller, bus 
control, and bus interface. 

Meanwhile, Intel's plan for software-in-silicon becomes 
evident as it gathers the other pieces of the puzzle, such 
as the 82730 text-coprocessor chip, the 82586 local-net­
work coprocessor, and the 82720 graphics processor 
chip. Similar to the 80130 software connection, the 82720 
graphics part interlocks with the rest of the system at the 
software level through its support of another well-defined 
software interface-the virtual device interface. Yet to 
come are pieces for voice I/O support, as well as some 
level of hardware support for data-base access. D 
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Intel's Matchmaking Strategy: Marry 
iRMXTM Operating System With Hardware 

Intel's major software product, the iRMX'"M-86 16-bit 
operating system, which is now in its fifth release, 
represented a three-year development investment which 
most independent software vendors would have found a 
daunting prospect in 1978 when the project was conceived. 

The investment was essential. By the mid-1970s, feedback 
from OEMs working with Intel's hardware revealed prob­
lems with system integration-the marriage of software 
with hardware. It consequently slowed sales, with the 
prospect oj even greater problems at higher levels of cir­
cuit integration. Intei management, looking for ways of 
coping with the ballooning software requirements of the 
rapidly accelerating hardware program, began stepping up 
software development programs in the mid-1970s. 

"The RMX program illustrates a number of things one 
needs to keep in mind with developing a real-time 
operating system:' explained Bill Lattin, Intel's OEM 
microcomputer systems manager. "Foundations must be 
well laid so the system can grow and evolve over time. And 
there is a need for the system to be open to modification 
by typical OEM-specific applications. 

, 'Although the RMX program has been around since 
1978, it has only recently hit its stride, as processor 
technology has advanced to use the full range of its 
features:' Lattin said. 

The fast-paced microcomputer market had created a new 
situation for systems designers in terms of a radical shift 
in the hardware/software cost ratio. Earlier hardware 
generations involved various expensive centralized 
facilities. Not only was software cheap in comparison, but 
the hardware environment changed slowly, so that it was 
also feasible to rewrite systems as needed. 

But when the price of a computer drops to as low as $5, 
the hardware environment becomes volatile and software 
turns into a major investment. Intel was finding that 
customers might invest as much as two-thirds of their 
development costs in software, only to see it eclipsed by 
evolving VLSI technology. 

It became evident that merely supplying components 
would become increasingly counterproductive. Thus, the 
Intel "total solution" emerged-a consistent systems ap­
proach to hardware sales, which naturally depends heavily 
on a viable software program. 

49 

Object-oriented programming is a method which has 
worked best in creating a software program blending with 
the component approach. By hiding data representation 
within an object with its own object manager, changes in 
the hardware environment that affect the data can be ac­
commodated without having to change the rest of the 
software. 

A price is paid in terms of program size with this ap­
proach, however. And it was difficult at the time to justify 
this kind of liability with the existing onboard memories 
of the 8-bit generation. 

Bill Stevens, iRMX-86 program manager for release five, 
explained the difficult decisions that had to be made at the 
outset of the program. "Every engineering decision 
involves a trade-off. We wanted to optimize program pro­
ductivity and we had to have modularity. The conse­
quence of this was large size. It turned out that a minimum 
configuration was 12 kbytes wide and the full configura­
tion was 128 kbytes. At the time we did not have 64k 
dynamic RAMs and 64k EPROMs, so we didn't have the 
technology to realize the systems of initial specifications 
times. Bruce Schafer has to take credit for making that 
decision to go ahead anyway, early on. . . it was a gutsy 
decision, and it turned out to be absolutely right:' 
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Had Intel known of the difficulty it was about to en­
counter in producing its 64-kbyte RAM, Schafer may have 
had second thoughts. 

Schafer joined Intel in 1976 and began working on 
iRMX-80. "It was a nice little system:' Schafer said. "A 
miniature dispatcher had evolved to handle multiple asyn­
chronous events and became a primitive OEM operating 
system. It was tempting to do an enlarged version of it, 
mainly because I was already working on it for the 16-bit 
generation: ' 

Schafer soon found himself centrally involved in the task 
of heading off the 16-bit software crunch, laying ground­
work for a system that could cover a wide range of ap­
plications, many of them unknown at the time, and a 
system which could also evolve with hardware advances. 

"When you set out to design a system of that scope, you 
don't just sit down and start writing code. It's definitely 
a top-down process:' explained Schafer. He discovered 
early in the project that the purely technical hurdles in 
writing software were minor compared to orchestrating a 
team of engineers on such a comprehensive project. 

The iRMX-86 system is multi-layered, and the project had 
to be coordinated across these layers along with the se­
quence of planning, design and implementation. On top 
of that, a thorough testing program had to be coordinated 
with all phases. 

"I had a difficult time convincing engineers on the pro­
ject that documentation of their work was as important 
as the work itself. Specifications were absolutely crucial 
to the development phase:' said Schafer. 

Schafer began with a customer survey to discover the kind 
of problems OEMs were experiencing with system design. 
He wrote a production implementation plan, which was 
critiqued by marketing and engineering personnel. This 
was approved in June 1978 and formed the basis for 
engineering specifications. A critiquing process evolved as 
the organizing principle behind initial product design; 
engineers on the project would exchange documentation 
and then meet to evaluate the progress of the system. 

The sessions were lively and the problems of coordinating 
implementation, testing and design along with the pressure 
of deadlines for the whole program generated quite a bit 
of excitement. 

Development testing turned out to be a particularly thor­
ny problem-the asynchronous interrupts and multiple-
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processing aspects of real-time applications required a 
special test apparatus to simulate a real-world 
environment. 

What they came up with is a nucleus executing directly on 
the 8086 and 8088 processors as the basic building block 
of the system. Together with the next layer-a basic 110 
system-a minimal operating system can be configured, 
which has been found useful in many applications. 

However, it was necessary to develop an application on 
the Series-III development system even though the target 
was going to be RMX. "We quickly realized that users 
want to be able to do development work on the machine 
they target on:' said Schafer. "This is particularly impor­
tant for field maintenance ... you can't drag a Series-III 
out to an oil derrick:' To realize this goal, Intel built higher 
layers around iRMX so that program development could 
be done without a Series-III. Higher layers involve extend­
ed I/O and human interface facilities. After this, 
customer-written software can be added in high-level 
languages. 

A major objective has been to provide a stable base for 
independent software vendors; with its latest release, 
Intel also announced an ISV program initially involving 
three major vendors; Microsoft, Digital Research and 
Mark Williams Inc. 

The first release of iRMX-86 came out in April 1980. Since 
then, the system has been refined and released four more 
times, with release five appearing last December. An In­
teractive Configuration Utility appeared for the first time 
with release five, a further attempt to aid OEMs in put­
ting their systems together. The system designer runs the 
I CU program on a terminal and is quizzed on his re­
quirements, after which the program generates the unique 
iRMX software for his application. 

"It has been a successful product in its own right, apart 
from its role in the hardware program, but I doubt that 
anyone would have wanted to invest in a three-year 
development process before there was a chance at some 
return:' ..()bserved Stevens, who has been most excited by 
the diverse applications he has seen. "I've really enjoyed 
the iRMX symposiums. There is always some new system 
demonstrated. In Tokyo, I just saw an 8086-based scien­
tific system with really first-class graphics put together by 
Seiko. Another time I saw a blood analyzer based on the 
system. There are even RMX-based personal computers:' 
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iRMX™ 86 Has Functionality, Configurability 

The iRMXTM 86 operating system provides a modular set 
of building blocks from which users can create a wide 
variety of applications. iRMX 86 features include: 
multitasking; interrupt support; mUltiprogramming sup­
port; device independence; tree-structured directories, file 
access control; and interactive debugging. 

The iRMX 86 operating system combines the concepts of 
objects, types, and type extension to form a highly­
functional and highly-configurable foundation for ap­
plications software. The operating system is designed for 
use with programs executing on the iAPX 86 and iAPX 
88 processors. The 8087 numeric data processor is sup­
ported as on option. 

Execution Environment 

The iRMX 86 Operating System can be used with a variety 
of hardware configurations. Interactive disk-based 
systems as well as ROM-resident systems can be 
constructed. 

Any part of the operating system's code can reside in 
ROM/PROM memory. Alternatively, all or part of this 
code can be "bootstrapped" into RAM using a small, 
configurable bootstrap loader provided with the product. 
The application code can similarly be committed to 
PROM or bootstrapped into RAM. 

The operating system divides the execution environment 
into jobs and tasks. A task is described by a set of pro­
cessor registers, a stack, a priority, and a state. Jobs pro­
vide resources for tasks. A job can be viewed as a task 
environment. In the simplest case a job represents a 
memory pool. Tasks executing in the same .Lob share the 
same pool of memory. When a job is deleted, all tasks 
within the job are also deleted and all memory allocated 
to these tasks is deallocated. 

The iRMX 86 system is composed of several layers. The 
innermost layer is the Nucleus, which provides multitask­
ing, interrupt control, and multiprogramming support. 
The first optional layer , the Basic 110 System, supports 
device-independence, directories, random access, and file 
access control. 

"On top" of this iayer, users may add the Extended I/O 
System (providing services such as automatic buffering) 
or the Application Loader (which supports loading both 
absolute code and locatable code). The Human Interface 
uses these inner layers to support user-defined commands 
in addition to a set of standard commands. 
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The design of the iRMX 86 Operating System is based on 
a set of object types. The operating system supports 
dynamic object creation. Each time an object is created, 
the operating system allocates the proper resources to the 
object and returns a 16-bit virtual address called the ob­
ject's token. This token is subsequently used by the ap­
plication to identify the specific object. 

By implementing this object-oriented approach, the 
iRMX 86 Operating System hides implementation details 
from the application software. The iRMX 86 Nucleus also 
allows users to add custom object types without changing 
the Nucleus. 

110 Devices 

110 devices can be manipulated in two ways. The first ap­
proach allows the application to receive interrupts directly 
from the 110 device. The second approach utilizes the 
iRMX 86 Basic 110 System. With this approach, a device 
driver must be written for initiation of 110 requests and 
for interrupt handling. The application software interfaces 
to these drivers through the Basic I/O System by making 
read, write, seek, and special-function requests. 

The iRMX 86 Operating System currently includes device 
drivers for diskettes, Winchester disks, magnetic bubble 
storage devices, and Storage Module Device (SMD) 
interfaces. 

The iRMX 86 Extended 110 System defines the concept 
of a logical device. Using this feature, each device is 
assigned a logical name. Application programs refer to 
logical devices without knowing which physical device is 
associated with each logical device. In this manner, the 
physical device can be changed without changing the ap­
plication programs. 

The Basic 110 System provides asynchronous 110 func­
tions. Each asynchronous function is initiated by a pro­
cedure call that queues the request. The procedure call 
returns immediately with an indication of whether the re­
quest was successfully queued. When the request is actual­
ly completed, a response message is sent to the mailbox 
specified. 

The Extended I/O System automatically synchronizes I/O 
requests. Again, a procedure call is used to initiate I/O. 
The procedure, however, does not return until the request 
is complete. To enhance efficiency when this automatic 
synchronization is used, the Extended 110 System permits 
read-ahead and write-behind. 
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The iRMX 86 Human Interface automatically parses in­
put lines and invokes the appropriate program based on 
the first word in each line. A program executing under the 
iRMX 86 Human Interface can request command execu­
tion by providing the text for these commands to the com­
mand line interpreter. 

The iRMX 86 Human Interface is supplied with a basic 
set of commands to manipulate files. These commands in­
clude directory display, create directory, rename file, copy 
file, delete file, and submit a set of commands. Users can 
add custom commands to this set. 

The iRMX 86 Debugger provides the capability to debug 
one or more tasks while the rest of the system continues 
to execute. The Debugger allows a user to specify that a 
task be suspended when the task executes a particular in­
struction and when the task communicates with other 
tasks. 

The most general communication mechanism provided by 
the iRMX 86 Nucleus is the mailbox object type. Each ob­
ject of this type is described by two queues-a queue of 
messages waiting to be handled by tasks and a queue of 
tasks waiting for messages. An additional attribute of a 
mailbox is the specification of whether the queue of tasks 
is to be handled first-in, first-out or on a relative priority 
basis. 

The lR.MX g6 Operating System also provides a 
semaphore object type. Each semaphore is described by 
a queue of waiting tasks and a unit count. This unit count 
is equivalent to a count of empty messages at a mailbox, 
but, because no actual messages are involved, a 
semaphore is a more efficient mechanism than a mailbox. 
Since semaphores allow multiple units to be sent at the 
same time, semaphores are used to create deadlock alloca­
tion functions. 

To provide additional efficiency, the iRMX 86 Nucleus 
also provides a special type of semaphore called a region. 

Each iRMX 86 task has a dynamic priority attribute. This 
priority describes the relative importance of the Task's 
function with respect to other system functions. The 
iRMX 86 Nucleus always runs the highest priority ready 
task. When several tasks of the same priority are ready, 
the Nucleus arbitrarily chooses between them. 
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Scheduling requires changing the state of the task and 
placing the task in a queue of ready tasks. Whenever a task 
is scheduled or descheduled, the Nucleus checks the ready 
queue and allocates the processor to the highest priority 
ready task. In order to ensure event-driven scheduling, the 
iRMX 86 Nucleus is designed to place an absolute limit on 
the interval during which interrupts are masked. 
One attribute of the job type is a memory pool. Each 
memory pool represents the memory resources available 
to the tasks executing within a job. All objects created by 
these tasks are allocated memory from the pool. 

The iRMX 86 Operating System supports three file types. 
In all cases, application programs read and write data 
without knowing the device or the file type that is used. 
The following file types are supported: 

1) Physical-A device accessed as a physical file is treated 
as a contiguous sequence of bytes. 

2) Stream-Stream files do not exist on actual physical 
devices; rather, data is transmitted directly from one pro­
gram to another. 

3) Named-Named files represent the traditional notion 
of files. Named files are described by a path through a 
tree-structured network of directories. 

The name of an iRMX 86 file is given as a path through 

this structure can point directly to data files and to other 
directories. One directory on each device is considered the 
root directory. All paths on a particular device begin in 
this directory. 

The basic file functions for all three file types are: open, 
close, read, and write. When random file access is re­
quired, the seek system call is added to this set. For nam­
ed files, additional functions are needed. These functions 
include the rename function, the truncate function, and 
the change-access function. 

When a file is opened, the calling program specifies the 
type of file access required. For a data file, three types of 
access are permitted: read, write, and the read/write com­
bination. The 110 system verifies that the specified access 
is available and grants the open request only if the re­
quested access is available. 
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