iRMX "86
BASIC I/0 SYSTEM
REFERENCE MANUAL

W
Copyright® 1980, 1881, 1982 Intel Corporation Ofdﬁ Number: 9803123-05
Intel Corporation, 3085 Bowars Avenue. Sanis Clara, Calitornia 98086

—J

iRMX™"86
BASICI/0 SYSTEM
REFERENCE MANUAL

Order Number: 9803123-05

Copyright® 1980, 1981, 1982 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara California 95051

PRINT

REV. REVISION HISTORY DATE
-02 Application Loader added and unimplemented 11/80
system calls removed.
-03 Application Loader information removed. 5/81
Changes made to reflect Release 3 of the iRMX 86
Operating System.
-04 Exception codes updated. 10/81

Changes reflect Release 4 of iRMX 86 Operating
System. Change bars mark technical changes.

-05 Manual reorganized. 8/82
System programmer information and system calls
added. Configuration information added. Terminal
Support Code information added. Terminal drive in-
formation added.

Additional copies of this manual or other Intel literature may be obtained from:

.. Literature Department

-~ Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The Information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined as
ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP Intel iSBC Muitibus
CREDIT Intgl iSBX Mulitichannel

i Intelevision iSXM Multimodule
ICE Intellec Library Manager Plug-A-Bubble
iCS Intellink MCS PROMPT

im iOSP Megachassis RMX/80
iMMX iPDS Micormainframe System 2000
Insite iRMX Micromap UPI

Printed in U.S.A./JOM-014/5K/0383/S

ii

PREFACE

This manual documents the Basic I/0 System, one of the subsystems
available with the iRMX 86 Operating System. Although the manual
contains some introductory and overview material, it is intended

" primarily as a quick reference to system calls, providing detailed
descriptions of those calls.

READER LEVEL

This manual is intended for programmers who are familiar with the

concepts and terminology introduced in the iRMX 86 NUCLEUS REFERENCE
MANUAL and with the PL/M-86 programming language.

CONVENTIONS

Throughout this manual, system calls are named using a generic shorthand
(such as ASCREATESFILE instead of RQSASCREATESFILE). The actual PL/M-86
external-procedure names used to invoke these operations are shown only

in Chapter 8, which lists the detailed PL/M-86 calling sequences.

You can also invoke the system calls from assembly language, but in order

to do so, you must obey the PL/M-86 calling conventions, which are
discussed in the iRMX 86 PROGRAMMING TECHNIQUES manual.

1ii

PREFACE (continued)

RELATED PUBLICATIONS

The following manuals provide additional background and reference
information.

Introduction to the iRMX" 86 Operating System, Order Number:
9803124

iRMX™ 86 Operator's Manual, Order Number: 144523

iRMX™ 86 Nucleus Reference Manual, Order Number: 9803122

iRMX"™ 86 Debugger Reference Manual, Order Number: 143323

iRMX" 86 Terminal Handler Reference Manual, Order Number: 143324
iRMX" 86 Programming Techniques Manual, Order Number: 142982

Guide to Writing Device Drivers for the iRMX" 86 and iRMX" 88 I/0
Systems, Order Number: 142926

iRMX" 86 Extended I/0 System Reference Manual, Order Number:
143308

iRMX™ 86 Configuration Guide, Order Number: 9803126
PL/M-86 User's Guide, Order Number: 121636

ASM86 Language Reference Manual for 8080/8085-Based Development
Systems, Order Number: 121703

ASM86 Macro Assembler Operating Instructions for 8086-Based
Development Systems, Order Number: 121628

iv

CONTENTS

CHAPTER 1
ORGANIZATIONIQOOOQ...Il........"........0.....0.'..‘.'0‘D..‘.....O

CHAPTER 2

FEATURES OF THE BASIC 1I/0 SYSTEM

Asynchronous OperatioNiecsccescesssccavsescsveccccesscsnssscsssccctnoss

Device IndependencCeesccescecsccscscccscsscsscssscsscssoscsccssascsncncns

Support for Many Kinds of DeviceSeecceccescccaccscccssccescocscnassccs

Three Distinct Kinds of FileScececesscscccccscscccsocesccscsasoscscsne
Named Files‘I.l.l‘...'.l.‘Ol.................‘.....‘.0...........
Physical FileSeesesssscsnssscccascsesasssscccssscsssassccsscassanss
Stream FileSeesoecescossoscocescscscssccscsnsccosssosscsccsssccnccns

File Sharing and Access CONtrolececccsssccosccssscssosscscsscssnssscsse
File Sharingecccccescccescccsscoscscscccssssccnccsoscsccscncsosscns
Access COntrolecscscscecssesescsccsccsccscscsassssossccssosccsscssos

Separation of File Lookup and File Open OperatioOnSececscccsccsecsscce

Control Over Fragmentation Of FileSecececcscecssrcscscsccsccansocns

CHAPTER 3

FUNDAMENTAL CONCEPTS

System ProgrammerSeececccccceccsscsosssscsscsoscsssccscssssscscscsosscososss
Devices Controllers and Device UnitSeeseecceccccesscccccscsccscncns
VOlUMES.ceneoscascscsssassnsasencsnnssanssssssssssosassscsoscssscsssoss

Files.o.ucloooootoootol.o....oo.....o.o.....o....l..l.....oo...oloo

Connections for Communication Between Tasks and Device UnitSeeeeces.
Interlayer Bonds Preceding Initialization.escecscseccccccccnsccas
Post—~Initialization Bond -— The Configuration Interface.cescecesces

Device ConneCtiONSesecessccesvscccscccscssscssscssscsssssscsscnsscsese
File ConnectionBeiccessscscsscssoscsnssssscscosscscsssscssccsansas
Some Observations about Devices and ConnectionS.eccecceccececccscses

CHAPTER 4

NAMED FILES

Multiple Files on a Single DeviC@ececescsecosoacsosccsscsscassnscscas

Hierarchical Naming Of FileSeeesssecesccoccccsassssscscssssccsscnns
ConNNecCtionSsecssssecssecssececcsessscssssscsnsassosssosssscsscssssce

Paths...o-oo.oll.'..oOtoo.on.t..o...o...-o..oo..-luonloo.l..‘o...

Prefix and Subpathe.cccecscecesscecsocccscccncscsscscssoscscsascocscana
Default PrefiXeeecooesoceescsoscossoscscccsansscscsscscnscscsscnsnsansna
Controlling Access tO FileS:eeecossecsssssssasasssscsssccasacsssansa
Types of Access tO FileSesscescsssaccscscsosssosscccssssonsscsscncns
ID NumberSeeescecesceccsasscsossscssessvsesessasssasssssssssssscsasascss

User ObjectS...looo-o..o.ooo..a-..o..oi.....o...nl.ooo..oo..io...

Default User Object fOr @ JODesesecsossssscsocsssssoscssscsscncnces
File Access Lists.......'..................'."'...'......."....
Access Masks for File ConnectionSeecescsccesccscscscoscsscscncaccnse

PAGE

1-1

o
vubdsPEeEpPpWWWNOND -

NNNNNNI\l)NNNNN

|
NV WNNDNON - -

[

WWwwwwwww

#bbbbb?-‘-‘b#&‘b#\
NoOo oo UesE RSP LWWWE -

CONTENTS (continued)

CHAPTER 4 (continued)

An Exampleccesesesccecssccsocsscssoscscssscncssnscssonsssansssanssnssss
Special USerSeceecsesccscccccscsssssscscccassssssccsscsossssnosssnsns
Extension Dat@ceececcscsscscecesscsccsssssoosnscsscsscscsssssessncsssnnss
System Calls for Named FileSecoecscoeosossccecccctcscsccorsossosonnne
Obtaining and Deleting ConnectionSeccecccccscccscccsscccsccosccnss
User ObjectSeecessescscesscsscscssccccsssccosesccsscssssssocsssnsse
Default PrefiXeSecececcscccccccsccccrnsoncssscsccsnsasscscssssosccncs
Manipulating Dat@cececcscccesecssccscsscescsscsssescssssoscsossnssse
Obtaining StatUSccecscscscscssscsnsssassascesassccsssssscnscccscss
Reading Directory EntrieSeccscccesccccocsscsscscccccscscoccsscnssascs
Deleting and Renaming FileSe.:eeeececsececscesccssccscccsssesscsscscs
Changing AcCCeSSecesessescscsssscsscssscsscssscscscsscsscssoscssssscssss
Ascertaining a File's NamM@eescesossccssscessscssssssssssacasscsss
Manipulating Extension Dat@eeeccecsccecsscsscsccecsssccssccnsccnss
Detecting Changes in Device StatuS.cscccccsscscsssscscosssrescnnse
Chronological Overview of Named FileSececsvessccssccccscsssccsssssse
Most Frequently Used System CallSccccecccscsccscsccscscccscccssscss
Calls Relating to User ObjectSececcccsccccccascossoscccsccscssscsns
Calls Relating to PrefiXeSecscesccsccecccssosssccsccccncosocssacce
Calls Relating to StatuUSeceseccessccccecsossscscssncscconssascsncscscsns
Calls Relating to Changing AccesSSceececcesscsecssscsscscsssccscesns
Calls for Monitoring Device ReadinesSceccccccccsccccccescecsscscscs
Calls Relating to Extension Dat@cseececsccceccscscsssscsosscsascscss
Calls for Renaming FileSeeeecseccccossccsasscccccscocscesnsnsosnsnce
Calls for Ascertaining File NameS.ecsccsecccssccccsccccssccossscs

CHAPTER 5

PHYSICAL FILES

Situations Requiring Physical FileS.coeececccsccocescscsscssscccenss
Connections and Physical FileSeesececcsssenscscsccsccsssccscccssssns
Using Physical FileSecceesceccccosscsscacccscsssescsscsscacsccsasancsnns

CHAPTER 6

STREAM FILES

Actions Required of the Writing Taskeeeescecccscssssscscccccscncccsce
Actions Required of the Reading TasKeececsccsessscessccssscscscscsssce

CHAPTER 7
ASYNCHRONOUS SYSTEM CALLS..Q.....O.'0.l-.0'I'.OI..".....O...‘.....

CHAPTER 8

SYSTEM CALLS

Input Parameter SpecificatioNeccesccccscscccccscssscscsscscscsscssnsne
User Parametelecesssveccccscccssccscsssossescssssssscsssssccssssscssssossse
File-Path Parameter(s) for Named FileSceeessesccacsssssccsccssase

vi

8-1
8-1
8-1

CONTENTS (continued)

CHAPTER 8 (continued)
Response Mailbox Parametereecccescssscscssscsscsscsscccsacsccsscnse
I/0 BUff@ISescesscascsscscssssaasssscsoscasossasssssscscsssssnsosns
Condition CodeSeescsscscsscosssessssscccscscscsssscsscsscsscsosscssccsccccns
System CallSeeecsscsescccecsssasscsesscssscesossnsvosonsssansasssoses
System Call Dictionaryeeeccscscccesescscccscsecsscoccscsscocssscssssncssnns
Job-Level System CallSecesssscccsssscsescccsssssssncssscsscscccncs
Device-Level System CallSccecessscccccscscesoscscsccssscssccscccccnsce
File/Connection-Level System CallSecesecescscsscccsacccssccsaasncs
File-Modification System CallS.cescsccescccssccsccccscsosccscscocscs
File Input/Output System CallS.eceeseeccccccsseccsssssscsccsescccss
Get StatUS/Attribute System Calls................................
User Object System CallSsseccessssssssccsscsccncsecscstccsccncsccsnnce
Extension Data System CallSsceeccsssscssacescsescssccscscccssosnse
Time/Date System CallSececescosscocssccscscccccsssscsoscscccccsse
ASATTACHSFILEcsooscosccssssosssscsssacscscssssassssscsscsascssssnssaas
ASCHANGESACCESScesecoosessesssscssscsescsscsesersosscssscsssscssosssese
ASCLOSE.cccseocscssccnccnsccsssassoscssssscascsscnssscnscsssssncss
ASCREATESDIRECTORY ¢ececvocovooccsscoscsssosssosssscscssssscsnssscsnss
ASCREATESFILE.......;....ou-o.oooocoooooonoooo-ooo.oooooovooo-ooo
ASDELETESCONNECTIONc.ccccccosnosssscostssscosscsscscsscsssscsascssocs
ASDELETESFILEcceescecoceocccscsccsocasossccostssscsctccncsnssccnncse
ASGETSCONNECTIONSSTATUS ¢ eseeeccsscsosssssooscsccsssscccssssssnsonse
ASGETSDIRECTORYSENTRY e evoossococcansssscsossscscscscssosssscsccssse
ASGETSEXTENSIONSDATAceeeesessoscccnscassscscsscacsscosssssscaccsas
ASGETSFILESSTATUSeceeossessoccccsscccssscsssvssesossssssossssccnocs
ASGETSPATHSCOMPONENT e ¢ e ceeoovccoscnncssososasstsascssscsssssssssassse
A$0PEN....-.....--o--..o...
ASPHYSICALSATTACHSDEVICE . ceceeccsscccsetscocssoscsssccncsosnsscsnssoce
ASPHYSICALSDETACHSDEVICE. cceeesoosscssasesssssscoscssoossccsscsssse
AsREAD.OO0.......0........0...-QCl...-.'0.0..-.00.Q.oo.........lo
ASRENAMESFILEcececsossccsccoscccsscccssasssossssssscsssasancsssnsasecas
ASSEEKeseeesecocsoccsesssssssasssssossssascssssssssssssascssonsss
ASETEXTENSION$DATA...oooooo-o--oooo-.ooooo.-ooonooooooooooooo.c
A$SPECIAL.......‘.l..‘.O..0..00......00.0..'...".0....0...00‘..0
ASTRUNCATE e cccesceccsecsoccsccsocesassscsncosscncnansssancscsssss
A$UPDATE...O.‘..Q‘Q'..l..'..‘..O‘.........‘...000......0.........

AszITE.....C....l’..l‘...0..Qll..l......QID.O..O.....OI.O.l.....

CREATESUSER:cccecccceccscccceccscscsaccsssasssosssssssccscsssssccnnsse
DELETEsUSER......‘.“..0.......'..0..‘.'....‘..........l.........
GETSDEFAULTSPREFIXceeeceoesoscccccssosocccsssccsscscsccosscosscnns
GET$DEFAULT$USER............O..l...........0.‘.....‘....O...Ol.‘.
GETSTIMEccooescsssssccssscsassccssssscscsescssssssssscsscscsasssosse
INSPECTsUSERC.........l...'.l.l....'...........l‘I...O..'..‘I....
SETSDEFAULTSPREFIX.eeeecocoscscccssccssoscscssccocssonssessosnnasasos
SETSDEFAULTSUSERc e ceeeosceccscscscscacccosscscssssnssssssacscssasnse

SETsTmEOOOOQ.Q...l.o...ooo..o.0...0-.0.‘.‘0....l.‘ocooo..ul..ooo

wAITsIo.lococ0.oo.O..o..o....:..oo.o.ooo...o......ol......o.-l.lo

vii

PAGE

|
= OWWYORONSNNO LU W

I
o

ooocoooociooooooooo

oooooiooooo

CONTENTS (continued)

CHAPTER 9

CONFIGURING THE BASIC I/0 SYSTEM

Basic I/O System CallSesescessssccoscosscccsccsnssacsssscsnnssossssscssscs
Intel I/O DEeVicCeBesesersosserocscsssesccsosscsoscncsscssescssesscssnsssanae

BufferSQooﬁoloool.l'..o....o..oc....o.o0..0....O.........C...o.....

Timing FacilitieSetecesescececsscscsecsososcescsescscescssesscscscesccsassse
Service Task PrioritieSccecsscccscsccscascsscscscoscscscescccsccnns
Creation of Existing FileSeceessccccscscccsoccccsscscossascssccnscscnse
System Manager IDeeccsccscccscscocsssccsccsssscsenscsessssancscsccsnsce
Basic I/0 System in ROM OF RAMuseccesossocscososcccsacosscccscensase
Factors that Affect Basic I/0 System PerformancC€..escesecsscscescess

APPENDIX A
iRMx"‘ 86 DATA TYPES....‘..."......O.......Q......Q‘.........".'..

APPENDIX B
:i.RMXm 86 TYPE CODES...Q..........-o......n...-.0o..............oo-o

APPENDIX C

1/0 RESULT SEGMENT

Structure of I/0 Result Segment.eccececccesescscccssscssscssscscsssoss

Unit Status for Specific DeviceSeeceesccsccoscsesssosscoscsossssscnsne
iSBC® 204 and iSBC® 206 COnNtrollerSecececccsscscccscscsscscascsasnse
iSBC® 215 CONtIolleleeesccscsecsscnsscscosassasssescsassscnscasns
iSBC® 208 CONLIrO0lleTeecesccsseccssssscssssscosccccnscosaascssasse

APPENDIX D

EXCEPTION CODES

Synchronous (Environmental) Exception CodeS.eeescsccsccsscccsascsse
Sequential (Programmer Error) Exception CodeSiceceeescsesccrsssscss
Concurrent Exception COdeS..ccecsecccssscscssccscsscssscscssscscssons

APPENDIX E
LOGICAL DEVICESANDTHE BASIC I/O SYsTm...........l...........l...

APPENDIX F

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Controlling Input and Output from a Terminaleeececsccssssccsccsnnne
Line Editing at a Terminale.cecccesccccsssosscccssscsscsscscsccsnce
Controlling Output to a Terminaleeeececsceccsscsccscsosscsccccsscnne
Modifying Input and Output Control Character AssignmentS.ececccee

Modes of Terminal OperatioNicececcsccccscccscccsscsocssscsccscscsccce
Modes that a Terminal Inherits from a ConnectiONeecccsceccsscccecscs
Modes that Belong to a Terminal (Part l1)ecececcssesssescscsasccss

viii

PAGE

9-1
9-1
9-1
9-1
9-2
9-2
9-2
9-2
9-2

F-1
F-1
F-3
F-4
F-5
F-6
F-8

CONTENTS (continued)

APPENDIX F (continued)

Translation and SimulatioN.ecececceccccsscscscconscescccscscscsccncas
TranslatioONesceecsssscocscsssossesssscscsscsassscscscsscssssasscense
SimulationNeesessecccscosssscsssscsscsosccccsssscscscscssascssssanns
Terminal Capabilities Required to Support Simulationisecccesccsece
Specifying the Desired Translation and Simulation Functions....

Modes that Belong to a Terminal (PArt 2)eeeecessscessccsscssssasss

Using ASSPECIAL to Modify Connection and Terminal ModeS.eeeccececsss

Using a Modem with a Terminaleeeceecescecssosesccssscscsssscssscccsccses
The Terminal Query Commandecsscesccsscccsocscssssrsscsscscsscsssscnncs
Restricting the Use of a Terminal to One ConnectioN.secceccccccnsss
Programmatically Inserting Data into a Terminal's Input Stream.....
Composite Syntax Diagram for all 0SC SequencCeS.cecccecsccccsccsccces
Brief Review of the Uses and Modifications of Control Character

SequenCESooo-ooooooou-o..o-o..o'ocooooooooooooo.aocoo-ocooo.'

APPENDIX G

INTEL-SUPPLIED TERMINAL DEVICE DRIVERS

The 8251A USART DrivVerecececescscsceccsscacecssssssscscascsccsssssscsasnes
The iSBC® 534 Drivereeeeceecccccesescsssesoscssssassscscasacssnsssnses
The iSBC® 544 DriveTeesccececcccssccscossscossosscssosssossssssnscsscasna
The iSBX® 270 DrivVer.cceccccecocecsscccsscssssssssscssssssssssssscas

TABLES
F-1. Menu of Control Character FunctionS.ececececsssccscseccscsces
F-2. Inherited Terminal Iqodes....O...Qol......‘...C.CI......I.l.

F-3. Non-Inherited Terminal Modes in Terminal$Flags (Part 1)....
F-4. Other Non-Inherited Terminal Modes (Part l)eeceecscccsccsasscs
F-5. Escape SequencCeSccccessecscsscscososcssssscssscsssvsoesssssscssces
F-6. Terminal Character SeqUENCEeSececesscssscsscssscccssscsssscnse
F-7. Non-Inherited Terminal Modes in Terminal$Flags (Part 2)....
F-8. Other Non—-Inherited Terminal Modes (Part 2).eeceescceccccsce

FIGURES
3-1. Layers of Interfacing Between Tasks and a Deviceceeessocoss
3-2. Schematic of Software at Initialization Timeececsescecesssss
3-3. A System with Device and File ConnectionSeescececsccsscssscs
4-1, Example of a Named-File Tre€ecesesscecccossssocssccscsscccnss
4-2. Computing the Access Mask for a File Connectioniecsccecsccss
4-3. Chronology of Frequently-Used System Calls for Named Files.
7-1. Concurrent Behavior of an Asynchronous System Calleecccacee
8-1. Sample Named File Tre€eecececscecscccsscescosssssscsscacssase
F-1. Composite OSC Sequence DiagramMecsccceccccccccscsscsaccscscoses
ek

ix

PAGE

F-9

F-9

F-10
F-10
F-11
F-21
F-23
F-24
F-26
F-26
F-27
F-27

F-28

G-1
G-1
G-2
G-2

F-6
F-7
F-8
F-9
F-12
F-20
F-22
F-23

(UL
~

'-qoowb?bwww
NSNS W

i
o

CHAPTER 1. ORGANIZATION

This manual is divided into nine chapters. Some of the chapters contain
introductory or overview material that you do not need to read if you are
already familiar with the subsystems or if you have used this manual
before. Other chapters contain reference material that you will refer to
as you write your application tasks. You can use this chapter to
determine which of the other chapters you need to read. The manual
organization is as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4
through
Chapter 6

Chapter 7

Chapter 8

Chapter 9

This chapter describes the organization of the
manual. You should read this chapter if you are going
through the manual for the first time.

This chapter describes the features of the Basic I/0
System. You should read this chapter if you are going
through the manual for the first time or if you have
had very little previous exposure to the Basic I/0
System.

This chapter explains some basic terminology
associated with the Basic I/0 System, including the
concepts of system programmer, device, volume, file,
and connection. You should read this chapter if you
are looking through the manual for the first time or
if you are unfamiliar with the Basic I/0 System.

These chapters describe named, physical, and stream
files and how to use them. You should read one or
more of these chapters, depending on the kinds of
files your application uses.

This chapter describes how to use the asynchronous
system calls that are included in the Basic I/0
System. You should read this chapter before you write
tasks that make asynchronous system calls.

This chapter contains detailed descriptions of the
system calls of the Basic I/0 System, in alphabetical
order. When writing your application tasks, you
should refer to this chapter for specific information
about the format and parameters of the system calls.

This chapter lists the configuration options that
pertain to the Basic I/0 system. When configuring
your software with the Interactive Configuration
Utility, you define your system's requirements by
specifying which of these options you want. These
specifications are defined in the iRMX 86
CONFIGURATION GUIDE.

*dk
1-1

CHAPTER 2. FEATURES OF THE BASIC I/0 SYSTEM

Because the iRMX 86 Operating System is designed for use by Original
Equipment Manufacturers (OEMs), it provides a large number of features —-
including some that are not generally found in operating systems aimed at
end users. These features include:

° Asynchronous Operation

® Device Independence

° Support for Many Kinds of Devices

° Three Distinct Kinds of Files

° File Sharing and Access Control

] Separation of File Lookup and File Open Operations
. Control over Fragmentation of Files

The purposes of this chapter are to explain briefly each of these

features and to familiarize you with the terminology of the Basic I/0
System.

ASYNCHRONOUS OPERATION

When you examine the system call chapter of this manual, you will find
that the system calls can be divided into two categories according to

their names. The first category consists of system calls having the
names of the form:

RQ$ XXXXX

where XXXXX is a brief description of what the system call does. The
second category consists of system calls having names of the form:

RQ$AS XXXXX

System calls of the first category, without the A, are synchronous
calls. They begin running as soon as your application invokes them, and
continue running until they detect an error or accomplish everything they

must do. Then they return control to your application. In other words,
synchronous calls act like subroutines.

System calls of the second category (those with the A) are called
asynchronous because they accomplish their objectives by using tasks that
run concurrently with your application. This allows your application to

accomplish some work while the Basic I/0 System deals with mechanical
devices.

2-1

FEATURES OF THE BASIC 1/0 SYSTEM

For more detail on the behavior of asynchronous system calls, refer to
Chapter 7.

DEVICE INDEPENDENCE

The Basic I/0 System provides you with one set of system calls that can be
used with any collection of devices. For instance, rather than using a
TYPE system call for output to a terminal and a PRINT system call for
output to a line printer, you can use a WRITE system call for output to
any device.

This notion of one set of system calls for I/0O to any collection of
devices is called device independence, and it provides your application
with a lot of flexibility. For example, suppose that your application
logs events as they occur. The device independence of the Basic I/0
System allows you to create an application that can log the events on any
device rather than just one. When the event application is running and
circumstances force an operator to reroute logging from, for instance, the
teletypewriter to the line printer, your application can easily comply.

For a more detailed explanation of device independence, refer to the
INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM.

SUPPORT FOR MANY KINDS OF DEVICES

Although your application can be device independent, the Basic I/0 System
must be able to communicate with a wide variety of devices. In order to
connect a particular device to the Basic I/0 System, you must have a
device driver (a collection of software procedures) designed especially
for the device being connected.

The Basic I/0 System currently provides drivers for several devices,
including the following:

e iSBC 204 Single Density Flexible Disk Controller
e iSBC 206 Hard Disk Controller

e iSBC 208 Flexible Disk Controller

e iSBC 215 Winchester Hard Disk Controller

e 1SBX 218 Multimodule Flexible Disk Controller

e 1iSBC 220 SMD Disk Controller

e 1iSBC 254 Bubble Memory Controller

e iSBX 270 Video Display Terminal Controller

e iSBC 534 Four—Channel Communications Expansion Board

2-2

FEATURES OF THE BASIC I/0 SYSTEM

e USART
e Byte Bucket
e Terminal or Teletypewriter

For a complete list of the provided drivers, see the iRMX 86 CONFIGURATION
GUIDE.

If you want to use any of these drivers in your application, refer to the
iRMX 86 CONFIGURATION GUIDE. It contains detailed instructions for
including specific drivers in your application system.

If you need drivers for other devices, you must write the drivers. Refer

to the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 and iRMX 88 I/0
SYSTEMS.

THREE DISTINCT KINDS OF FILES

Files in the Basic I/O System are byte— (as opposed to record-) oriented.
The System provides you with three kind of files:

NAMED FILES

Named files are intended for use with random—access, secondary storage
devices such as disks, diskettes, and bubble memories. They allow your
application to organize its files into a tree—like, hierarchical structure
that reflects the relationships between the files and the application.
Furthermore, only named files allow your application to store more than
one file on a device, and only named files provide your application with
access control. Named files also provide a good starting place for

building custom access methods such as the indexed sequential access
method (ISAM).

For more information regarding named files, refer to Chapter 4.

PHYSICAL FILES

Physical files differ from named files in that each physical file occupies
an entire device. In fact, from the standpoint of the Basic I/0 System, a
physical file is a device. Yet with the Basic I/0 System, an application

can deal with a physical file as if it were a string of bytes.

Physical files provide several important advantages:

2-3

FEATURES OF THE BASIC I/0 SYSTEM

e An application can have direct control over a device.

e This direct control provides complete flexibility. For example,
an application can interpret volumes created by other systems.

e An application can conserve memory and still be able to
communicate with devices that do not need the power of named
files. Examples of such devices include line printers, display
tubes, plotters, and robots.

The disadvantages of physical files, as compared to named files, are that
hierarchical file structures and access control are not available.

For more information about physical files, see Chapter 5.

STREAM FILES

Stream files provide a means for two tasks to communicate with each

other. One task writes into the file while the other task concurrently
reads from it. Stream files use no devices and provide no access control.

For more information about stream files, see Chapter 6.

FILE SHARING AND ACCESS CONTROL

The Basic I/0 System provides your application with the ability to share
files and, in the case of named files, to control access to the files.

FILE SHARING

In a multitasking system it is often useful to have several tasks
manipulating a file simultaneously. Consider, for example, a transaction
processing system in which a large number of operators concurrently
manipulate a common data base. If each terminal is driven by a distinct
task, the only way to implement an efficient transaction system is to have
the tasks share access to the data base file. The iRMX 86 Operating
System allows multiple tasks to concurrently access the same file.

For more detailed information about sharing files, see Chapters 4, 5, and
6.

ACCESS CONTROL

Also useful in a multitasking system is the ability to control access to a
file. For instance, suppose that several engineering departments share a
computer. An engineer in one department may want to reserve to himself

2-4

FEATURES OF THE BASIC I/0O SYSTEM

the ability to delete his files, while allowing people in his department
to write and read his file, and people in other departments to only read
the files. The Basic I/0 named files provide your applications with this
kind of access control.

For more detailed information regarding access control, refer to Chapter 4.

SEPARATION OF FILE LOOKUP AND FILE OPEN OPERATIONS

Many operating systems waste valuable time by looking up a file whenever
an application tries to open one. The Basic I/0 System avoids this by
using a special type of object (called a connection) to represent the bond
between the file and a program.

Whenever your application software creates a file, the Basic I/0 System
returns a connection. Your application can then use the connection to
open the file without suffering the expense of having the Basic I/0 System
lookup the file. Even when your application wants to open an existing
file, the application can present the connection and bypass the file
lookup processe.

There are several other benefits associated with connection objects. In
the case of named files, connections embody access rights to the file.
This means that access need only be computed once (when the connection is
created) rather than each time the file is opened.

A second benefit of comnections is that several connections can
simultaneously exist for the same file. This allows several tasks to
concurrently access different locations in the file. This is possible
because each connection maintains a file pointer to keep track of the
location, within the file, where the task is reading or writing.

The process of obtaining a connection to a file is discussed in each of
Chapters 4, 5, and 6.

CONTROL OVER FRAGMENTATION OF FILES

When information is stored on a mass storage device, space is allocated in
chunks rather than one byte at a time. These chunks (called granules) can
be large or small, but all granules within one file must be of the same
size. This size is called the file granularity. Similarly, the data on
each mass storage volume, such as a flexible diskette, is divided into
granules, whose size is called the volume granularity. In addition, the
data on each mass storage device is divided into granules (called sectors
in the case of disk media), whose size is the device granularity. The
relationship between these three kinds of granularity are the following:

e The volume granularity is a multiple of the device granularity.

¢ The file granularity is a multiple of the volume granularity.

FEATURES OF THE BASIC I/0 SYSTEM

The Basic I/0 System allows your application to specify the granularity of

each mass storage file. This lets you trade faster I/0 for more efficient
use of space on the mass storage device.

For a detailed explanation of the benefits of control over file
fragmentation, see the INTRODUCTION TO THE iRMX 86 OPERATING SYSTEM.

*k%k

CHAPTER 3. FUNDAMENTAL CONCEPTS

Before you use the Basic I/0 System, you must understand several
fundamental concepts. Some of those concepts were presented in
Chapter 2. The remaining concepts are:

. System Programmers

e Device Controllers and Device Units

e Volumes

e Files

® Connections

The following sections explain these concepts.

SYSTEM PROGRAMMERS

There are two programming roles associated with the iRMX 86 Operating
System., One role involves using system calls and objects that affect
only your own job, while the other role involves manipulating system
resources and characteristics. These two roles are called application
programming and system programming.

Although the roles have different names, separate people are not
required. One individual can perform both roles. The reason for the
distinction is that the actions of the system programmer affect the
performance and security of the entire system, whereas the actions of the
application programmer have a more limited effect.

In Chapter 8 of this manual you will find several system call
descriptions that begin with caution notices. These system calls, if
misused, can have serious consequences for an application system.
Therefore, you should consider these system calls to be reserved for the
exclusive use of system programmers.

DEVICE CONTROLLERS AND DEVICE UNITS

You are undoubtedly familiar with the notion of a device. Devices
include such things as flexible diskette drives, line printers,
terminals, card readers, and the like. A device is a hardware entity
that tasks can use to read information, to write information, or to do
both.

FUNDAMENTAL CONCEPTS

In the iRMX 86 environment, it is convenient to make a distinction
between devices and the hardware interfaces that communicate directly
with an iRMX 86 application system. A hardware entity that talks
directly with iRMX 86 software is a device controller. The kinds of
things called devices in the previous paragraph are device units.
Typically, a device controller interfaces between iRMX 86 application
software and several device units. For example, an iSBC 220 SMD Disk
Controller board acts as an interface between application software and
from one to four Storage Module Devices (device units.)

VOLUMES

A volume is the medium used to store the information on a device unit.
For example, if the device unit is a flexible disk drive, the volume is a
diskette; if the device unit is a magnetic tape drive, the volume is the
reel of tape; and if the device unit is a multiplatter hard disk drive,
the volume is the disk pack.

FILES

Some operating systems treat a file as a device, while others treat a
file as information stored on a device. The Basic I/0 System considers a
file to be informatiom.

The Basic I/0 System provides three kinds of files, and each has
characteristics that make it unique. These characteristics are described
in general in Chapter 2 and in detail in Chapters 4, 5, and 6.

Regardless of the kind of file, the Basic I/0 System provides information

to applications as a string of bytes, rather than as a collection of
records.

CONNECTIONS FOR COMMUNICATION BETWEEN TASKS AND DEVICE UNITS

In complex environments such as those supported by the iRMX 86 Operating
System, several layers of software and hardware must be bound together
before communication between application tasks and device units can
commence. Figure 3-1 shows these layers.

INTERLAYER BONDS PRECEDING INITIALIZATION

The bond between a device controller and the device units that it
controls is a physical bond, usually in the form of wires or cables.

FUNDAMENTAL CONCEPTS

APPLICATION SOFTWARE

TASKS TASKS TASKS

FILE DRIVER SOFTWARE

DEVICE DRIVER

DEVICE CONTROLLER

HARDWARE

DEVICE UNIT

x-054

Figure 3~1. Layers of Interfacing Between Tasks and a Device

A device driver is bound to device controllers by data residing in a data
structure known as a Device Unit Information Block (DUIB). (DUIBs are
described fully in the Guide to Writing Device Drivers for the iRMX 86
and iRMX 88 I/0 Systems.) You supply the data for the DUIBs when
configuring the Operating System. (See the iRMX 86 CONFIGURATION GUIDE.)

When your application starts up, there is a gap between the application
software and the file drivers, and another gap between the file drivers
and the device drivers. Figure 3-2 illustrates this situation. The new
element, shown in the figure as the configuration interface, is the
"glue"” that provides the final bonds.

POST-INITIALIZATION BOND —- THE CONFIGURATION INTERFACE

The configuration interface provides two kinds of system calls. Before a
task can use a file, both of these kinds of calls must be invoked, and
each produces a connection. These connections are called device
connections and file connections, and several of them are shown in Figure
3-3 as conduits and wires through the conduits, respectively.

3-3

FUNDAMENTAL CONCEPTS

APPLICATION SOFTWARE

TASKS TASKS TASKS

PHYSICAL FILE DRIVER NAMED FIiLE DRIVER STREAM FILE DRIVER

CONFIGURATION INTERFACE

DEVICE DRIVER DRIVE DRIVER DEVICE DRIVER

DEVICE DEVICE DEVICE DEVICE
CONTROLLER CONTROLLER CONTROLLER CONTROLLER

DEVICE DEVICE DEVICE D. o.
UNIT UNIT UNIT

D. D. DEVICE
UNIT UNIT UNIT UNIT UNIT

x-055

Figure 3-2., Schematic of Software at Initialization Time

Device Connections

Tasks employ the configuration interface first by calling the
ASPHYSICALSATTACHSDEVICE system call, which returns a token for an

iRMX 86 object type called a device connection. This device connection
is the application's only pathway to the device. Moreover, there can be
only one device connection between a device unit and all of the
application tasks that need to use the device.

Because the device connection is so centrally important to the
application, only tasks written by a system programmer should call
A$PHYSICALSATTACH$DEVICE. Such a task could make the device connection
available to application tasks selectively by sending it to certain
mailboxes or by cataloging it in certain object directories. Or, to
ensure that all required device connections will be available to all of
the application tasks that need them, the system programmer could provide
an initialization task that creates all of those device connections and
catalogs them in the root object directory.

If and when the device is no longer needed by the application, an

appropriate task can call ASPHYSICALSDETACH$DEVICE to delete the device
connection.

FUNDAMENTAL CONCEPTS

APPLICATION SOFTWARE

TASK TASK TASK TASK TASK TASK TASK

o B ,'J"II"‘
ol HIER
1| !] !
e [N EIHETES I
o 1| omiver |1 | b
[| | |
|‘I | (]) ||
L Ty [|
sl im Bl 0 'I:'
N RIERI
||' 'I 'I | |l
iy (1| oewice || | | '
i | 1| oriver | 1 | '
! | | ! |
1y | [| !
Ly ! 1| \ N
||'--||‘ l'-l-t||-
1 ! [| i
pu! 1 1) i 1l
pr! 1 1 i N
U I IR
s T .
ROLLER || | 1 | rOLLER :l : 1
11! 11 ! | [
1 1 a . I
il I I .

viv V]

UN- | CONN. CONNECTED] CONN.| CONN.| CONN.

CONN. | pevICE DEVICE DE- | DE- | DE-

DEVICE | "yNiT UNIT vice | vice | vice
UNIT UNIT | UNIT | UNIT

TASK TASK

DRIVER

STREAM
FILE
—

TASK

]

]

| STREAM

! FILE
DRIVER

STREAM
FILE
—

DRIVER

DEVICE
CONT-
ROLLER

iy
by
I
I
|
N
Iy
Ly
|
|
|
11
1l
DEVICE ::
I
il
t
i
11
H
h
X
|
i
'l
|

CONN.
DE-

VICE
UNIT

FILE FILE FILE

CONNECTED
DEVICE
UNIT

CONDUITS REPRESENT DEVICE CONNECTIONS
WIRES IN CONDUITS REPRESENT FILE CONNECTIONS

Figure 3-3. A System with Device and File Connections

SHADED AREA
REPRESENTS A
DIRECTORY

x-056

File Connections

When an application task is ready to use a device unit, it must use the
device connection for that device unit to obtain a file connection
object, which is a connection to a particular file on that device unit.

How the task does this depends on whether the file already exists.

If

the file already exists, the task usually calls ASATTACHSFILE, although
it can also call ASCREATESFILE. If the file does not yet exist, the task

must call ASCREATESFILE.

FUNDAMENTAL CONCEPTS

NOTE

Even though a task can call ASCREATESFILE
to obtain a file connection for a file
that already exists, it is not a good
idea for a task to use ASCREATESFILE
unless the task is certain that the file
does not yet exist. There are two
reasons for this.

First, if a named file exists, then
calling ASCREATESFILE to obtain a
connection to the file might cause the
file to be truncated. This could cause
problems for tasks having other
connections to that file, because the
file pointers (discussed later in this
section) for those other connections are
not affected, even though the end-of-file
marker might be moved closer to the
beginning of the file.

Second, 1if a file exists as either a
physical or stream file, then it does not
matter whether new connections to the
file are obtained by a call to
ASCREATESFILE or ASATTACHSFILE. However,
it is possible that the code that does
this will someday be used to create a
connection to a named file, and as you
can see, this can cause problems.

Unlike device connections, there can be multiple file connections to a
file. This allows different tasks, if necessary, to have different kinds
of access to the same file at the same time, as the next paragraph shows.

After receiving a file connection, a task calls A$OPEN to open the
connection. In the call to A$OPEN, the task specifies how it intends to
use the file connection and how it is willing to share the file with
other tasks using other connections, by passing the following as
parameters:

e An open—mode indicator

The open—mode indicator tells the Basic I/0 System how your
application is going to use the connection. This parameter can
specify that the connection is open for reading only, for writing
only, or for both reading and writing.

FUNDAMENTAL CONCEPTS

e A share—mode indicator

The share-mode indicator specifies how other connections can
share the file with the connection being opened. This parameter
can specify that there can be no other open connections to the
file, that other connections to the file can be opened for
reading only, that other connections to the file can be opened
for writing only, or that other connections to the file can be
opened for both reading and writing.

For each open file connection to a random~access device unit, the Basic
I/0 System maintains a file pointer. This is a number that tells the
Basic I/0 System the logical address of the byte where the next I/0
operation on the file is to begin. The logical addresses of the bytes in
a file begin with zero and increase sequentially through the entire

file. Normally the pointer for a file connection points at the next
logical byte after the one most recently read or written. However, a
task can use the file connection, if need be, to modify the file pointer
by means of the A$SEEK system call.

Some Observations about Devices and Connections

Figure 3-3 is quite detailed and shows most of the situations that are

possible for device units and file connections to them. In particular,
you can observe the following:

® Device connections extend from the application software to the
individual device units, and each passes through one and only one
file driver.

e There is only one device connection to each connected device, and
multiple file connections can share the same device connection.

o Different device units with the same controller can be connected
via different file drivers.

e Tasks can share access to the same device unit through the
physical file driver, and they can share access to the same files
on the same device unit through the named file driver.

® There is only one device connection through the stream file
driver, reflecting the fact that a single, logical device
contains all stream files. There can be additional stream files
in the application if more are needed.

e The configuration interface, which is depicted as a pile of
conduits, is off to one side.

® All but one of the device units are connected. The unconnected
device unit is still separated from the application software by
the configuration interface.

k%

3-7

CHAPTER 4. NAMED FILES

Named files are intended for use with random—access, secondary storage
devices such as disks, diskettes, and bubble memories. Named files
provide several features that are not provided by physical or stream
files. These features include:

e Multiple Files on a Single Device

° Hierarchical Naming of Files

e Access Control

e Extra Data in a File's Descriptor
These features combine to make named files extremely useful in systems

that support more than one application and in applications that require
more than one file.

MULTIPLE FILES ON A SINGLE DEVICE

As shown in Figure 4-1, your application can use named files to implement
more than one file on a single device. This can be very useful in
applications requiring more than one operator, such as transaction
processing systems.

HIERARCHICAL NAMING OF FILES

The iRMX 86 named files feature allows your application to organize its
files into a number of tree—like structures as depicted in Figure 4-1.
Each such structure, called a file tree, must be contained on a single
device, and no two file trees can share a device. In other words, if a
device contains any named files, the device contains exactly one file
tree. Named file trees also must fit on a single volume.

Each file tree consists of two categories of files —— data files and
directories. Data files (which are shown as triangles in Figure 4-1)
contain the information that your application manipulates, such as
inventories, accounts payable, transactions, text, source code, or object
code. In contrast, directory files (shown as rectangles) contain only
pointers to other files. The purpose of the directory files is to
provide you with flexibility in organizing your file structure.

To illustrate this flexibility, take a close look at Figure 4-1, This
figure shows how named files can be useful in multi-user systems, Figure
4~1 is based on a collection of hypothetical engineers who work for three
departments (Departments 1, 2 and 3). Each engineer is responsible for
his own files.

NAMED FILES

DEPT1
DEPT2
DEPT3
DEPTI I DEPT2 DEPT31
BILL GEORGE SUE
TOM HARRY
SAM BiLL
BILL TOM GEOHGE[HARRY SAM] SUE BILL
SIM-SOURCE TEST-DATA
SIM-OBJECT TEST-OBJECT
SIM-SOURCE SIM-OBJECT TEST-OBJECT
TEST-DATA
BATCH-1 =
BATCH-2 DIRECTORY

A = DATA FILE
x-053

BATCH-1 BATCH-2

Figure 4-1. Example of a Named-File Tree

This multiperson organization is reflected in the file tree. The
uppermost directory (called the device's root directory) points to three
"department directories.” Each department directory points to several
"engineer's directories.” And the engineers can organize their files as
they wish by using their own directories.

Each file (directory or data) has a unique shortest path connecting it to
the root directory of the device. For instance, in Figure 4-1, the file
called SIM-SOURCE has the path DEPT1/BILL/SIM-SOURCE. This notion of
"path” reflects the hierarchical nature of the named-file tree.

Another characteristic of hierarchical file naming is that there is less
chance for duplicate file names. For example, note that Figure 4-1
contains directories for two individuals named Bill. (These directories
are on the extreme left and right of the third level of the figure.)
Even 1f the rightmost Bill had a data file with the file name of
SIM-OBJECT, its path would differ from that leftmost Bill's SIM-OBJECT.
Specifically, the leftmost SIM-OBJECT is identified by:

4=2

NAMED FILES

DEPT1/BILL/SIM-OBJECT
whereas the rightmost SIM-OBJECT would be identified by
DEPT3/BILL/SIM~-OBJECT

Whenever your application manipulates either kind of named file, the
application must tell the Basic I/0 System which file is to be
manipulated. There are several ways to specify a particular named file
to the Basic I/0 System, all of which involve connections and paths.

CONNECTIONS

Once you have a connection to a particular named file, you can use the

connection as the PREFIX parameter of any system call., If, in the same
call, you set the SUBPATH parameter to zero, the Basic I/0 System will

ignore the SUBPATH and use only the PREFIX to find the file.

PATHS

If you do not have a connection to the file you can specify the file by
using its path. To do this, build an iRMX 86 string of the form
described in the opening pages of Chapter 8. (An iRMX 86 string is a
representation of a character string. To represent a string of n
characters, you must use ntl consecutive bytes. The first byte contains
the character count, n. The following n bytes contain the ASCII codes
for the characters, in the same order as the string.) This string is
called a path name. Then use a pointer to this path name as the SUBPATH
parameter in the system call, and use the device connection as the PREFIX
parameter in the system call.

For example, if your named file tree is on Drive l, and it has the path
name DEPT2/HARRY/TEST-RESULTS, you can specify the file by using the
device connection for Drive 1 as the PREFIX parameter and a pointer to
the path name as the SUBPATH parameter.

PREFIX AND SUBPATH

Once your application has obtained a connection to a directory file
within a named file tree, the application can use that connection as a
basis for reaching all files that descend from the directory.

For example, referring again to Figure 4-1, suppose your application has
a connection to Directory DEPT1/TOM. The application can refer to Data
File BATCH-1 by using both the PREFIX and the SUBPATH parameters. The
application should use the connection to Directory DEPT1/TOM as the
PREFIX, and it should use a pointer to a subpath name as the SUBPATH.
The subpath name is a string that connects Directory DEPT1/TOM to Data
File BATCH-1l. For this example, the subpath name is TEST-DATA/BATCH-1.

4-3

NAMED FILES

DEFAULT PREFIX

Within one iRMX 86 job, most references to a named file tree are
generally confined to one branch of the tree. For example, in Figure
4-1, Tom will usually access the files in his directory more frequently
than files outside of his directory. Recognizing this clustering, the
Basic I/0 System provides the notion of default prefix.

The Basic I/0 System allows your application to specify one default
prefix for each iRMX 86 job. A default prefix is a connection to a
directory at the head of the most commonly used branch in your named file
tree. For instance, in Figure 4-1, Tom's application would probably use
a connection to Directory DEPT1/TOM as the default prefix. To use the
default prefix, the application sets the PREFIX parameter to zero.

A default prefix provides a job with two advantages. First, by providing
a reference point within a named file tree, it allows your application to
use subpath names instead of path names. If your tree is several levels
deep, this can save programming time during development. Second, and
more significantly, a default prefix provides a means of writing
generalized application code that can work at any of several locations
within a tree.

Consider an example. Suppose that an assembler (implemented as an

iRMX 86 job) uses a default prefix to find a location in a named file
tree. The assembler could then use a subpath name of TEMP to find or
create a temporary work file. Before an application invokes the
assembler, it sets the default prefix of the assembler job to a directory
in the application's named file tree. This allows more than one job to
invoke the assembler concurrently without the risk of sharing temporary
files.

The Basic I/0 System keeps track of a job's default prefix by using the
job's object directory. Whenever your tasks use the SET$DEFAULT$PREFIX
system call to specify a connection as being the default, the Basic I/0
System catalogs the connection under the name $ in the job's object
directory.

CONTROLLING ACCESS TO FILES

In most environments where files are shared among multiple users, it is
necessary to have a means of controlling which users have access to which
files. And among users who have access to a given file, it is frequently
necessary to grant different kinds of access to different users. This
section describes the features of the Basic I/0 System that can be used
to ensure that only the intended type of access is granted to each user
or class of user.

TYPES OF ACCESS TO FILES

Each of the two kinds of named files —- directory files and data files —--
can be accessed in four different ways.

4-4

NAMED FILES
Every directory file can potentially be accessed in one or more of the
following ways:
Delete Delete the directory file with ASDELETESFILE.

List Obtain the contents of the directory file with ASREAD
or ASGET$DIRECTORYSENTRY.

Add Entry Add entries to the directory with A$CREATESFILE,
ASCREATESDIRECTORY, or ASRENAMESFILE.

Change Entry Change the access rights (explained shortly) of files
listed in the directory with ASCHANGE$ACCESS.

Every data file can potentially he accessed in one or more of the
following ways:

Delete Delete the file with ASDELETESFILE or rename the file
with ASRENAMESFILE.

Read Read the file with ASREAD.

Append Add information to the end of the file with ASWRITE.

Update Change information in the file with ASWRITE or drop

information with AS$STRUNCATE.

A compact means of describing the kinds of access permitted a user of a
file is an access mask. An access mask is a byte in which individual
bits are used to represent the various kinds of access permitted or
denied that user. When such a bit is set to 1, it signifies that the
associated kind of access is permitted. When set to O, the bit signifies
that the associated kind of access is denied.

The association between the bits of the access mask and the kinds of
access they control are as follows:

Bit Directory Files Data Files

0 Delete Delete
1 List Read

2 Add Entry Append
3 Change Entry Update

The remaining bits in the access mask have no significance.

ID NUMBERS

An ID number, or ID for short, is a 16-bit number that represents any
individual or collection of individuals requiring a separate identity for
the purpose of gaining access to files.

NAMED FILES

USER OBJECTS

The Basic I/0 System uses a special type of object called a user object
when determining access rights to files. A user object consists of one
or more IDs.

The Basic I/0 System has three system calls that manipulate user objects:

e CREATESUSER creates a user object and returns to the calling task
a token for that user object.

e DELETESUSER deletes a user object.

e INSPECTS$USER returns to the calling task the list of IDs in the
user object specified in the call.

DEFAULT USER OBJECT FOR A JOB

In applications using the Basic I/0 System, each job can have a

default user object. Tasks in the job can specify this default user
object in certain system calls simply by passing a zero value as a user
object parameter.

SET$DEFAULTSUSER can be used either to change an existing default user
object or, in the case of jobs having no default user object, to
establish one. GET$DEFAULTSUSER can be used to ascertain the default
user for a job.

FILE ACCESS LISTS

The access list for a file is a collection of up to three pairs of IDs
and access masks. The IDs represent users or collections of users, and
the access masks specify the kinds of access to the file that those users
or collections of users are allowed.

For example, an access list for a data file might look like the following:

5831 00001110
9r2C 00000010

where the ID numbers (left column) are in hexadecimal and the access
masks (right column) are in binary. This means that the the ID number
5B31 has read, append, and update access rights, while the ID number 9F2C
has the read access right.

The first entry in a file's access list is placed there automatically
when the file is created. The ID portion of that entry is the first ID
number in the user object specified in the call to ASCREATESFILE and is
known as the owner ID for the file. The access mask portion is supplied
as a parameter in that same call.

NAMED FILES

Tasks can alter the access list of a file by means of the A$CHANGE$ACCESS
system call. With A$CHANGE$SACCESS, ID—access pairs can be added or
deleted, and the access masks for IDs already in the list can be changed.

ACCESS MASKS FOR FILE CONNECTIONS

Whenever a task calls A$SCREATESDIRECTORY, ASCREATESFILE, or
ASATTACHSFILE, the Basic I/0 System constructs an access mask and binds
it to the file connection object returned by the call. This access mask
is constant for the life of the connection, even if the access list for
the file is subsequently altered. When the connection is used to
manipulate the file, the access mask for the connection determines how
the file can be accessed. For example, if the computed access rights for
a connection to a data file do not include appending or updating, then
that connection cannot be used in an invocation of AS$WRITE.

Figure 4-2 illustrates the algorithm used to construct the access mask
that is computed for a file connection when that connection is created by
means of a call to A$SCREATESFILE or ASATTACHSFILE. As the figure shows,
the Basic I/0 System compares the IDs in the specified user object with
the IDs in the file's access list. The access masks corresponding to
matching IDs are logically ORed, forming an aggregate mask.

USER OBJECT FOR
CALLING TASK'S JOB

OWNER ID

ACCESS LIST FOR
TARGET FILE

iD / 3] ACCESS

(MATCHES) ACCESS MASK FOR

_ OR ———> FILE CONNECTION
\ /] ACCESS

iD ACCESS

x-058

Figure 4-2. Computing the Access Mask for a File Connection

4-7

NAMED FILES

AN EXAMPLE

The following example helps you to understand how to use IDs, access
masks, access lists, and user objects to permit each user in a system to
have exactly the kinds of access that you want that user to have.

Referring back to Figure 4-1, suppose that Tom is to have all kinds of
access to the file BATCH-1, that Bill is to have read and append access
only, and that the members of Department 2 are to have read access only.

Tom (or whoever creates BATCH-1) can arrange for these kinds of access by
doing the following:

® C(Create three user objects, each with one ID number. Assume that
the ID numbers are 4000H (for Tom), 8000H (for Bill), and FOOOH
(for the people in Department 2.)

e Use ASCREATESFILE to create the file BATCH-~1. In the call to
ASCREATESFILE, use the token for the user object containing the
4000H ID number and specify the access mask 00001111B. This call
returns a file connection that gives its user (Tom) all kinds of
access to BATCH-1. At this point the access list for BATCH-1 has
just one ID—access mask pair.

e Use ASCHANGESACCESS to add an ID-access mask pair to the access
list of BATCH-1. The ID should be 8000H and the access mask
should be 00000110B., This gives Bill read and append access to
Batch-1l. Now the access list for BATCH-1 has two ID-access mask
pairs.

e Use ASCHANGES$SACCESS to add a third pair to the access list of
BATCH~1. The ID should be FOOOH and the access mask should be

00000010B. This gives the people in Department 2 read access to
BATCH-1.

e Inform Bill that he can read the contents of BATCH-1 and append
new information to it. Describe to him the prefix and subpath
that are needed to attach BATCH-1, and tell him to create a user
object with the ID 8000H. Tell him to specify that user object
when attaching BATCH-1.

e Inform the head of Department 2 that the members of that
department can read the contents of BATCH-l. Describe for him
the prefix and subpath needed to attach BATCH-1, and tell him to
create a user object with the ID FOOOH. Tell him to specify that
user object when attaching BATCH-1.

When Bill attaches BATCH-1, he receives a file connection that he can use
in calls to ASREAD. He also can use ASWRITE, provided that the file
pointer for that connection is at the end of the file.

When the head of Department 2 attaches BATCH-1, he receives a file
connection that can be used in calls to ASREAD, After he gives the token
for that connection to the members of his department, they can all use
the connection to read BATCH-1.

NAMED FILES

Note that this example shows that one ID number can be used to give
certain access rights to an individual and that another ID number can be
used to give different access rights to a collection of individuals.

SPECIAL USERS

There are two ID numbers that can have special meaning to the Basic I/0
System. One is the number 0 and the other is the number OFFFFH.

If so indicated during the configuration process, the ID number O
represents the "system manager.” A user object containing this value is
privileged in two respects. First, when it is used to create or attach a
file, the resulting file connection automatically has read access to the
file if it is a data file or list access to the file if it is a directory
file. This is true even if the access list for the file does not contain
an ID-access mask pair whose ID value is 0. The second privilege granted
such a user object is that it can call ASCHANGESACCESS to change any
file's access list.

The ID number OFFFFH represents the "world.” World is special in that
any file whose owner ID is OFFFFH can have its access list modified by
anyone. That is, any file connection for that file can be used in a call
to ASCHANGESACCESS.

EXTENSION DATA

For each named file on a random access volume, the Basic I/0 System
creates and maintains a file descriptor on the same volume. The first
portion of the descriptor contains information for the Basic I/0 System.
The last portion, called extension data, is available to your operating
system extension, unless you are using the Human Interface, in which case
the first two bytes of the extension data are reserved. You specify the
number (from O to 255, inclusive) of bytes of extension data for each
named file on the volume, when formatting the volume with the FORMAT
utility. The FORMAT utility is described in the iRMX 86 OPERATOR'S
MANUAL.

If you are writing an operating system extension, and you want to record
special information in a file's descriptor, you can use
SETSEXTENSIONSDATA to place the data into the trailing portion of the
descriptor. GET$EXTENSIONSDATA can be used to access this data when it
is needed later.

4-9

NAMED FILES

NOTE

If you are using the Human Interface,
you must take care not to destroy the
data the Human Interface keeps in the
first two bytes of file descriptors.

To preserve this data, first use
GETSEXTENSIONSDATA to read and save the
data. Next, modify as many as
necessary of the remaining 255 bytes
without disturbing the first two

bytes. Finally, use SETSEXTENSIONSDATA
to transfer the data to the descriptor.

SYSTEM CALLS FOR NAMED FILES

Several system calls relate to iRMX 86 named files. Some of these calls

are useful for both data and directory files, some for only one kind of
file, and some (such as CREATESUSER) don't relate to either kind of file.

The following sections briefly explain the purpose of each of the system
calls. The descriptions are grouped by function rather than
alphabetically. These descriptions are very brief. Chapter 8 of this
manual contains detailed descriptions of the calls.

OBTAINING AND DELETING CONNECTIONS
Six system calls pertain to obtaining or deleting connections.
e ASCREATESFILE

This call applies only to data files. Your application must use
this call to create a new data file, and it can use this call to
obtain a connection to an existing data file. If the application
uses this call to create a new file, the Basic I/0 System

automatically adds an entry in the parent directory for this new
file.

e ASCREATESDIRECTORY

This call applies only to directory files. Your application must
use this call to create a new directory file. The call cannot be
used to obtain a connection to an existing directory. The Basic
1/0 System automatically adds an entry in the parent directory
for this new directory.

e ASATTACHSFILE

This call applies to both data and directory files. Your
application can use this call to obtain a connection to an
existing data file or directory.

4-10

NAMED FILES

ASDELETES$ CONNECTION

This call applies to both data and directory files. Your
application can use this call to delete a connection to either
kind of named file. This call cannot be used to delete a device
connection.

ASATTACH$DEVICE

This call does not directly apply to either data or directory
files. Your application uses this call to obtain a connection to
a device. Even though this connection is a device connection, it
can be used as the prefix for the root directory of the device.

ASDETACH$DEVICE

This call does not directly apply to either data or directory

files. Your application uses this call to delete a connection to
a device.

USER OBJECTS

Five system calls pertain directly to user objects. None of these calls
are specifically related to data or directory files. The calls are:

CREATESUSER
This call is used to create a user object.
DELETE$USER
This call is used to delete a user object.
INSPECTSUSER

This call is used to ascertain a user object's id and to find out
to which groups the user belongs.

SET$DEFAULT$ USER

Your application can use this call to establish a default user
for any iRMX 86 job.

GET$DEFAULTSUSER

Your application can use this call to ascertain the default user
for any iRMX 86 job.

4-11

NAMED FILES

DEFAULT PREFIXES

Two calls pertain to default prefixes, and neither of these calls
pertains directly to data files or directory files. The calls are:

SET$ DEFAULT$PREFIX

Your application can use this call to set the default prefix for
any iRMX 86 job.

GET$ DEFAULT$ PREFIX

Your application can use this call to ascertain the default
prefix for any iRMX 86 job.

MANIPULATING DATA

Six system calls allow you to manipulate the data in a file. All six can
be used with data files, while only four apply to directory files. The
system calls are:

ASOPEN

This call applies to both data and directory files. Before your
application can use any other system calls to manipulate file
data, the application must open a connection to the file. This
system call is the only way to open a connection.

ASCLOSE

This call applies to both data and directory files. After your
application has finished manipulating a file, the application can
use this system call to close the file connection. Your
application can elect to leave the file open, letting the Basic
1/0 System close it when the connection is deleted, but there is
an advantage to closing connections when they are not being used.

This advantage derives from the fact that, when a connection is
shared between two or more applications, some of the applications
can place restrictions on the manner of sharing. For instance,
an application can specify sharing with writers only. By closing
connections, your application can improve the likelihood that the
connections can be used by other applications.

A$SEEK

This system call applies to both data and directory files.
Whenever your application reads, writes, or truncates a file, the
application must tell the Basic I/0 System the location in the
file where the operation is to take place. To do this, your
application uses the A$SEEK system call to position the file
pointer of the file connection. The A$SEEK system call requires
that the file connection be open.

4-12

NAMED FILES

e ASREAD

This system call applies to both data and directory files. Your
application can use this system call to read file data from the
location indicated by the file pointer. Before using this system
call, your application can use the ASSEEK system call to position

the file pointer. The ASREAD system call requires that the file
connection be open.

The outcome of this system call depends upon whether a data file
or a directory is being read. If your application reads a data

file, the application will receive data that makes up the file.

If the application reads from a directory, the application will

receive data that represents the entries of the directory.

Each entry in a directory consists of 16 bytes. The first two
bytes contain a 16-bit file descriptor number corresponding to
the file descriptor number associated with the A$GETSFILE$STATUS
system call in Chapter 8. The remaining 14 bytes are the ASCII
characters making up the name of the file to which the directory
entry points. (A file's name is the last component of a path
name.) The advantage in using the ASREAD system call to read a
directory is that your application can obtain several entries
with one operation.

e ASWRITE

This system call applies only to data files. Your application
uses this system call to put new information in the file. Before
using this call, the application can use ASSEEK to position the
file pointer at the location within the file to receive the

information. The ASWRITE system call also requires that the file
connection be open.

e ASTRUNCATE

This system call can be used only on data files. Your
application can use this call to trim information from the end of
the file. To do so, the application first must use A$SEEK to
position the file pointer at the first byte to be dropped. Then
the application invokes the A$TRUNCATE call to drop the specified
byte and any bytes located after the specified byte. The
A$TRUNCATE system call requires that the file connection be open.

OBTAINING STATUS
There are two status—-related system calls, one for connections and one

for files. The calls are ASGET$FILE$STATUS and AGETCONNECTIONSSTATUS.
Both of these calls can be used with data files and directory files.

4-13

NAMED FILES

READING DIRECTORY ENTRIES

There are two system calls that your application can use to read entries
from a directory. The ASREAD system call (which can also be used to read
a data file) was discussed earlier, under the heading "Manipulating
Data.” The second system call is ASGET$SDIRECTORYSENTRY. This system
call can be used only on directory files, and can be used without opening
a connection.

DELETING AND RENAMING FILES

The Basic I/0 System provides one system call for deleting files and
another for renaming files. Both of these calls can be used with data
files and directory files. The calls are:

e ASDELETESFILE

Your application can use this system call to delete data files

and directory files. However, any attempt to delete a directory
that is not empty will result in an exceptional condition.

The process of deleting a file involves two stages. First, the
application must call ASDELETESFILE. This causes the file to be
marked for deletion. The second stage, which is performed by the
Basic I/0 System, involves deciding when to delete the file. The
Basic I/0 System deletes marked files only after all connections
to the file have been deleted. Refer to the ASDELETESCONNECTION
system call to see how to delete connections.

e ASRENAMESFILE

Your application can use this system call to rename both data
files and directory files. In renaming a file, your application
can move the file to any directory in the same named file tree.
For example, you can rename A/B/C to be A/X/C. In effect, this
example simply moves File C from Directory B to Directory X.
This means that your application can change every component of a
file's path name.

CHANGING ACCESS

The Basic I/O System provides one system call to let your application
change a file's access list. This call is A$CHANGE$ACCESS, and it
applies to both data files and directories. One rule governs the use of
A$CHANGESACCESS —- only the owner of a file or a user with change entry

access to the directory containing the file can change the file's access
list.

4-14

NAMED FILES

ASCERTAINING A FILE'S NAME

The Basic I/0 System provides a system call to let your application find
out the last component of a file's path name when the application has a
connection to the file. The system call is AGETPATH$COMPONENT, and you
can use it on data files and directories. See the description of this
system call in Chapter 8 for an explanation of how you can use this
system call repeatedly to obtain the entire path name for a file.

MANIPULATING EXTENSION DATA

When you format a volume to accommodate named files, you have the option
of allowing each file to carry extension data. The Basic I/0 System
provides two system calls that allow you to get and set extension data.
These calls apply to both data and directory files.

e ASSET$EXTENSION$DATA

This call provides a means of writing extension data.

ASSETSEXTENSIONSDATA can be used even if the file connection is
not open.

e ASGET$EXTENSIONSDATA

This call provides a means of reading extension data.

ASGETSEXTENSIONSDATA can be used even if the file connection is
not open.

DETECTING CHANGES IN DEVICE STATUS

The Basic I/0 System provides the ASSPECIAL system call to allow your
application to detect a change in the status of the device containing
your named file tree. Specifically, your application can use the
“"notify"” function of the A$SPECIAL system call to establish a mechanism
for finding out if the device ceases to be ready. For more information,
refer to the A$SPECIAL section of Chapter 8.

CHRONOLOGICAL OVERVIEW OF NAMED FILES

The system calls that can be used with named files cannot be used in

arbitrary order. This section provides you with a sense of how the calls
relate to one another.

4-15

NAMED FILES

MOST FREQUENTLY USED SYSTEM CALLS

Figure 5-2 shows the chronological relationships between the most
frequently used Basic I/0 System calls. To use the figure, start with
the leftmost box and follow the arrows. Any path that you can trace is a
legitimate sequence of system calls. However, there are also sequences
not represented in the figure.

CALLS RELATING TO USER OBJECTS

With one exception, the system calls relating to user objects are
completely independent of other Basic I/0 System calls. The one
exception is that your application must have a user object before it can
use any system call requiring a user object.

Five system calls pertain to user objects. Of the five, GET$DEFAULT$USER
and CREATESUSER can be invoked at any time. Two others, DELETESUSER and
INSPECTSUSER, can be invoked only after user objects exist. The
remaining call, SETSDEFAULT$USER requires that both a job and a user
object exist.

CALLS RELATING TO PREFIXES

The GETSDEFAULTSPREFIX system call can be invoked whenever a job exists.
However, the SET$DEFAULTSPREFIX requires both a job and a user object.

CALLS RELATING TO STATUS

Both of the status-related system calls, AGETSFILE$STATUS and

ASGETS CONNECTIONSSTATUS, can be invoked whenever your application has a
file connection.

CALLS RELATING TO CHANGING ACCESS

The only system call related to changing access, A$CHANGE$ACCESS, can be
invoked whenever your application has both a user object and a path or
connection to a file.

CALLS FOR MONITORING DEVICE READINESS

There is only one system call that lets your application monitor the
readiness of a device, the A$SPECIAL system call. Your application can
use the "notify” function of this call any time after your application
has obtained a device connection.

4-16

NAMED FILES

CREATE
FILE l l
READ
WRITE DELETE DELETE

OPEN [—> SEEK =1 CLOSE ™ “FuE CONNECTION
or
TRUNCATE I
ATTACH [(]

FILE

. i DATA FILES

DEVICE

DETACH

DIRECTORIES pevice

—

SEEK
> mggf:%snv OPEN ™ or > cLOSE
READ h
DELETE DELETE | J
FILE ICONNECTION
- J l
ATTACH GET
DIRECTORY
FILE ENTRY

x-057

Figure 4-3. Chronology of Frequently Used System Calls for Named Files

CALLS RELATING TO EXTENSION DATA

The two system calls relating to extension data, ASGETSEXTENSION$DATA and
AS$SETSEXTENSIONSDATA, can be invoked whenever your application has a
connection to a file.

CALLS FOR RENAMING FILES

The one call for renaming a file, ASRENAMESFILE, can be used whenever
your application has a connection to the file to be renamed, a user
object, and a path that is to become the new pathname.

4-17

NAMED FILES

CALLS FOR ASCERTAINING FILE NAMES
There is only one system call for finding out a file's name,

ASGETSPATH$SCOMPONENT. Your application can use this call whenever the
application has a connection to the file.

kkk

4-18

CHAPTER 5. PHYSICAL FILES

The Basic I/0 System provides physical files to allow your applications

. to read (or write) strings of bytes from (or to) a device. A physical
file occupies an entire device, and the Basic I/0 System provides your
applications with the ability to capitalize on the physical
characteristics of the device.

SITUATIONS REQUIRING PHYSICAL FILES

The close relationship between a device and a physical file is
particularly useful when your application uses sequential devices. For
example, you should use physical files to communicate with line printers,
display tubes, plotters, magnetic tape units, and robots.

There are even some instances where you should use physical files to
communicate with random devices such as disks, diskettes, and bubble
memories. For instance:

e Formatting Volumes

Whenever you create an application to format a disk or diskette,
the application must have access to every byte on the volume.
Only physical files provide this kind of access.

® Volumes in Formats Required by Other Systems

If your application must read or write volumes that have been
formatted for systems other than the Basic I/0 System, you must
use physical files. Your application will have to interpret such
information as labels and file structures. A physical file can
provide your application with access to the raw information.

e¢ Implementing Your Own File Format

Suppose that your application requires a less sophisticated file
structure than that provided by iRMX 86 named files. You can
build a custom file structure using a physical file as a
foundation.

CONNECTIONS AND PHYSICAL FILES

Although there is a one-to—one correspondence between the bytes on a
device and the bytes of a physical file, the device connection is
different than the file connection. The Basic I/0 System maintains this
distinction to remain consistent with named files and stream files. This
consistency helps you develop applications that can use any kind of file,

PHYSICAL FILES

USING PHYSICAL FILES

Several system calls can be used with physical files, but the order in
which they are used is not arbitrary. The following list provides a

brief description (in chronological order) of what an application must do
to use a physical file.

1.

2.

3.

Obtain a device connection.

Your application must call A$PHYSICALSATTACHSDEVICE to obtain a
device connection for the device. This needs to be done only
once for each device and is necessary for two reasons. When your
application creates the physical file, the device connection
tells the Basic I/0 System which device is to contain the file
and also that the file must be a physical file.

Obtain a file connection.

If your application knows that the file has not yet been created,
it should use the ASCREATESFILE system call to obtain a file
connection. This will work even if the physical file has already
been created. Use the token of the device connection as the
PREFIX parameter in order to tell the Basic I/0 System which
device you want as your physical file.

If, on the other hand, your application is certain that the file
has already been created, use the ASATTACHSFILE system call to
obtain the file connection. To do this, your application can use
either the device connection for the device or an existing file
connection to the file as the PREFIX parameter in the system call.

This careful distinction between the A$CREATESFILE and the
ASATTACHSFILE system calls is necessary to be consistent with
named files. If you want your application to work with any kind
of file, you must maintain this consistency.

Open the file connection.

Use the ASOPEN system call to open the connection. When opening
the connection, your application must specify how the file can be
shared and how the application uses the connection.

Manipulate the file.

Four system calls can be used to read, write, or otherwise
manipulate your physical file:

e The A$READ and ASWRITE system calls can be used to read from
the device and write to the device, respectively.

e The A$SEEK system call can be used to manipulate the file

connection's file pointer if the device is a random device
such as disk, diskette, or bubble.

5-2

All of

PHYSICAL FILES

e The A$SPECIAL system call can be used to request
device—dependent functions from the device driver. The
precise nature of these functions depends upon the kind of
device and the number of special functions supported by the
device driver. Be aware that use of special functions can
prevent an application from being device-independent.

Close the file connection.

Use the ASCLOSE system call to close the connection. This is
particularly important if the share mode of the connection
restricts the use of the file through other connections. Note
that your application can repeat steps 2, 3, and 4 any number of
times.

Delete the file connection.

Use the ASDELETE$SCONNECTION system call to delete the file
connection. This is only necessary if your application is
completely finished using the file.

Request that the device be detached.

Let the system program know when your application is certain it
no longer needs the device. The system program should keep track
of the number of applications using the device and should avoid
detaching it until it is no longer being used by any

application. Only then should the system program use the
ASPHYSICALSDETACH$DEVICE system call to detach the device.

these system calls are described in Chapter 8.

k%

5-3

CHAPTER 6. STREAM FILES

Stream files provide a means for one task to send large amounts of
information to another task in a different job. Be aware that this is
one of several techniques for job—to—job communication. If you are not
familiar with other techniques, refer to the iRMX 86 PROGRAMMING
TECHNIQUES manual.

The aspect of stream files that makes them very useful is that they allow
a task to communicate with a second task as though the second task were a
device. This extends the notion of device independence to include tasks.

Because two tasks are involved in using each stream file, each task must
perform one half of a protocol. There are several protocols that work,
but the following one is typical and serves as a good illustration. Note

that the two halves of the protocol can be performed in either order or
concurrently.

ACTIONS REQUIRED OF THE WRITING TASK

The writing task must perform seven steps in its half of the protocol to
ensure that it has established communication with the reading task. The
steps are:

1. Obtain a connection to the stream file device.

Although stream files do not actually require a physical device,
your application must call ASPHYSICALSATTACH$DEVICE to obtain a
device connection before creating a stream file. This is
necessary because, when your application invokes the
ASCREATESFILE system call, the device connection tells the Basic
1/0 System what kind of file to create.

The A$PHYSICALSATTACHSDEVICE system call requires a parameter
that identifies the device to be attached. For stream files,
there is only one device, and its name is specified during the
process of configuring the system. Intel recommends the name
“"stream”, but it is possible that the person responsible for
configuring your system changed this name. For the remainder of
this discussion, this manual assumes that the name of your
system's stream file device is "stream". For more information
regarding the configuration process, refer to the iRMX 86
CONFIGURATION GUIDE.

As with other devices, "stream" cannot be multiply attached, so
the system program should be written so as to call
A$PHYSICALSATTACHSDEVICE only once. The program can then save
the device connection and pass it to any application program that
requests it.

2,

3.

STREAM FILES

Create the stream file.

Use the ASCREATESFILE system call with the device connection to
create the stream file and obtain a token for a file connection
to the stream file. Use the token for the device connection as

the PREFIX parameter, in order to tell the Basic I/O System to
create a stream file.

Pass the file connection to the reading task.

There are several ways of doing this, including the use of object
directories and mailboxes. For explicit instructions, refer to
the iRMX 86 PROGRAMMING TECHNIQUES manual.

Open the file for writing.

Use the ASOPEN system call to open the file connection for
writing. Set the CONNECTION parameter equal to the token for the
file connection. Set the MODE parameter for writing. And set
the SHARE parameter for sharing only with readers.

Write information to the stream file.

Use the ASWRITE system call as often as needed to write
information to the stream file. Use the token for the file
connection as the CONNECTION parameter.

The Basic I/0 System uses the concurrent part of the ASWRITE
system call to synchronize the writing and reading tasks on a
call-by-call basis. The Basic I/0 System does this by sending a
response to each invocation of ASWRITE only after the reading
task has finished reading all information that was written by the
ASWRITE call.

Close the connection.

When finished writing to the stream file, use the A$CLOSE system
call to close the connection. Note that after this step, the
writing task can repeat steps 4, 5, and 6.

Delete the connection.

Use the ASDELETE$CONNECTION system call to delete the connection
to the stream file.

All of these system calls are described in Chapter 8.

6-2

STREAM FILES

ACTIONS REQUIRED OF THE READING TASK

The reading task must perform the following six steps in its half of the
protocol to successfully read the information written by the writing task.

1.

Get the file connection for the stream file.

The technique used to accomplish this depends on how the writing
task passed the file connection.

Create a second file connection for the stream file.

There are two reasons for doing this. First, the reading task
must have a different file pointer than that of the writing
task. Second, the Basic I/0 System rejects any connections
created in one job but used by another to manipulate a file.

Obtain this new connection by using the ASATTACHSFILE system

call. Set the PREFIX parameter to the token for the original
file connection.

NOTE

The reading task can also use the
ASCREATESFILE system call to obtain the
new connection to the same stream

file. The reason for this is that the
Basic I/0 System examines the nature of
the PREFIX parameter in the
ASCREATESFILE system call., If the
value provided is a device connection,
the Basic I/0 System will create a new
file and return a connection for it.

On the other hand, if the value
provided is a file connection, the
Basic I/0 System will just create
another connection to the same file.

This careful distinction between the
A$CREATESFILE and the ASATTACHSFILE
system calls is necessary to be
consistent with named and physical
files. If you want your application to
work with any kind of file, you must
maintain this consistency.

Open the new file connection for reading.

Use the ASOPEN system call to open the connection for reading.
Set the CONNECTION parameter equal to the token for the new
connection. Set the MODE parameter for reading, and set the
SHARE parameter for sharing with all connections to the file.

6-3

STREAM FILES

4, Commence reading.
Use the ASREAD system call to read the file until reading is no
longer necessary or until an end—of—-file condition is detected by
the Basic I/0 System.

5. Close the new file connection.
Use the ASCLOSE system call to close the new file connection.
Note that after this step, the reading task can repeat steps 3,
4, and 5.

6. Delete the new file connection.

Use the ASDELETE$CONNECTION system call to delete the new
connection to the stream file. The writing task deletes the old
connection, and, as soon as both connections have been deleted,
the Basic I/0 System deletes the stream file.

All of these system calls are described in Chapter 8.

%%k

CHAPTER 7. ASYNCHRONOUS SYSTEM CALLS

Each asynchronous system call has two parts —— one sequential, and one
concurrent. As you read the descriptions of the two parts, refer to
Figure 7-1 to see how the parts relate.

e the sequential part

The sequential part behaves in much the same way as the fully
synchronous system calls in Chapter 2. Its purpose is to verify
parameters, check conditions, and prepare the concurrent part of
the system call. The sequential part then returns control to
your application.

° the concurrent part

The concurrent part runs as an iRMX 86 task. The task is made
ready by the sequential part of the call, and it runs only when
the priority-based scheduling of the iRMX 86 Operating System
gives it the processor.

The reason for splitting the asynchronous calls into two parts is
performance. The functions performed by these calls are somewhat time-—
consuming because they usually involve mechanical devices. By performing
these functions concurrently with other work, the Basic 1/0 System allows
your application to run while the Basic I/0 System waits for the
mechanical devices to respond to your application's request.

Let's look at a brief example showing how your application can use
asynchronous calls. Suppose your application requires some information
that is stored on disk. The application issues the A$SREAD system call to
have the Basic I/0 System read the information into memory. Let's trace
the action one step at a time:

l. Your application issues the ASREAD system call. This call
requires, as do all asynchronous calls, that your application
specify a response mailbox for communication with the concurrent
part of the system call.

2. The sequential part of the A$READ call begins to run. This part
checks the parameters for validity.

3. If the sequential part of the call detects a problem, it signals
an exception and returns control to your application. It does
not make ready the Basic I1/0 System task to perform the reading
function.

7-1

ASYNCHRONOUS SYSTEM CALLS

APPLICATION CODE 1/0 SYSTEM CODE
INVOKE TEST FOR
ASREAD > VALIDITY
YES MAKE 1/0
TASK READY
NO L
RETURN WITH l
EXCEPTION
EXAMINE € CoDE '
EXCEPTION
CODE |
RETURN WITH
ESOK |

Y

DO ERROR
PROCESSING

1/0 TASK
PERFORMS
1’0
DO \
CONCURRENT
PROCESSING PUT STATUS
OF OPERATION
IN MESSAGE
Y
RECEIVES
MESSAGE FROM A
RESPONSE MAILBOX SEND MESSAGE
TO RESPONSE
1 MAILBOX
EXAMINE y
STATUS
AWAIT NEXT
1/0 REQUEST FOR
THIS CONNECTION

x-302

DO ERROR
PROCESSING

GET DATA
FROM
BUFFER

Figure 7-1. Concurrent Behavior of an Asynchronous System Call

7-2

ASYNCHRONOUS SYSTEM CALLS

Your application receives control. Its actions at this point
depend on the condition code returned by the sequential part of
the system call. Therefore, the application tests the condition
code. If the code is E$OK, the application continues running
until it must have the information from the disk. It is at this
point that your application can take advantage of the
asynchronous and concurrent behavior of the Basic I/0 System.

For example, your application can implement double (or multiple)
buffering by issuing another (or several) ASREAD system call(s)
while waiting for the first call to finish running.
Alternatively, your application can use this overlapping
processing to perform computations. The point is that you can
decide what you want your application to do while the
asynchronous system call is running.

On the other hand, if your application finds that the condition
code returned from the sequential part of the system call is
other than E$OK, the application can assume that the Basic I/O
System did not make ready a task to perform the function.

For the balance of this example, we will assume that the

sequential part of the system call returned an E$OK condition
code.

Your application now must have the information. Before taking
the information from the buffer, your application must verify
that the concurrent part of the ASREAD system call ran
successfully. There are two ways in which the task can do this.
One way is for the application to issue a RECEIVESMESSAGE system
call to check the response mailbox that the application specified
when it invoked the ASREAD system call. The other way (which can
be used only after a call to A$SREAD, ASWRITE, or A$SEEK) is for
the application to issue a WAITSIO system call, in which it
passes a token for the response mailbox and receives the
concurrent condition code directly.

By using the RECEIVESMESSAGE system call, the application obtains
a segment that contains, among other things, a condition code for
the concurrent part of the ASREAD system call., If this condition
code is ESOK, then the reading operation was successful, and the
application can get the data from the buffer. On the other hand,
if the code is not E$OK, the application should analyze the code
and attempt to ascertain why the reading operation was not
successful.

By using the WAIT$IO system call, the application receives
directly the condition code for the concurrent part of the ASREAD
system call. The application also receives directly another
value. If the concurrent condition code for ASREAD is E$OK, then
this other value is the number of bytes successfully read;
otherwise this other value has no significance.

7-3

ASYNCHRONOUS SYSTEM CALLS

In the foregoing example, we used a specific system call (ASREAD) to show
how asynchronous calls allow your application to run concurrently with
I/0 operations. Now let's look at some generalities about asynchronous

calls.

All asynchronous system calls consist of two parts =— one
sequential and one concurrent. The Basic I/0 System will
activate the concurrent part only if the sequential part runs
successfully (returns E$OK).

Every asynchronous system call allows your application to
designate a response mailbox through which the application
receives the result of the concurrent part of the system call.

Whenever the sequential part of an asynchronous system call
returns a condition code other than E$OK, your application should
not attempt to receive a message from the response mailbox, nor
should it call WAIT$IO. There can be no further information for
the application because the Basic I/0 System cannot run the
concurrent part of the system call.

Whenever the sequential part of an asynchronous system call runs
successfully (E$OK), your application can count on the Basic I/0
System running the concurrent part of the system call. Your
application can take advantage of the concurrency by doing some
processing before receiving the message from the response mailbox
or before calling WAITS$IO.

Whenever the concurrent part of a system call runs, the Basic I/0
System signals its completion by sending an object to the
response mailbox. The precise nature of the object depends upon
which system call your application invoked. You can find out
what kind of object comes back from a particular system call by
looking up the call in Chapter 8 of this manual. If more than
one type of object can be returned, your application can
ascertain the type of the returned object by calling GETSTYPE.

Whenever the Basic I/0 System returns a segment to your
application's response mailbox and the application calls
RECEIVESMESSAGE to obtain information from that segment, the
application should delete the segment when the segment is no
longer needed. The Basic I/0 System draws memory for such
segments from the memory pool of the calling task's job, so if
the application fails to delete such segments, the job might run
short of memory.

If your application calls WAIT$IO to obtain the results of a call
to ASREAD, ASWRITE, or ASSEEK, the application does not have
access to the I/0 result segment and therefore cannot delete it.
While this seems to be a problem at first glance, it is actually
an advantage, because it enables the Basic 1/0 System to maintain
a supply of I/0 result segments that it can use repeatedly.
Because most I/0-related operations are reads, writes, or seeks,
this means a significant performance enhancement for your

application.
Kk

7-4

CHAPTER 8. SYSTEM CALLS

This chapter describes the PL/M—86 calling sequences to Basic I/0 System
calls. The system calls are listed here alphabetically by the same
shorthand notation used throughout this manual. For example,
ASDELETESFILE refers to the asynchronous—level delete—file system call
and appears alphabetically before SETSDEFAULTSPREFIX. This notation is
language—independent and should not be confused with the actual form of
the PL/M~86 call. The precise format of each call is spelled out as part
of its detailed description.

Basic I/0 operations are declared as typed or untyped external procedures

for PL/M-86. PL/M-86 programs perform I/0 operations by making external
procedure calls.

INPUT PARAMETER SPECIFICATION

The following paragraphs explain special properties of certain input
parameters to Basic I/0 System calls.

USER PARAMETER

This parameter is specified in some asynchronous system calls. It
contains a token designating the caller's user object. A zero
specification designates the default user. The Basic I/0 System ignores
this parameter for physical and stream files.

FILE-PATH PARAMETER(S) FOR NAMED FILES

Named files are designated in system calls by specifying their path, that
is, their prefix and subpath. The prefix parameter can be a token
designating an existing device connection or file connection. If this
parameter is zero, the default prefix for the calling task's job is
assumed.

For named files, the subpath parameter is a pointer to an ASCII string.
The form of this string is described in the following paragraph. The
subpath can also be zero or can point to a null string, in which case a
prefix indicates the desired connection. For physical and stream files,
the subpath parameter is always ignored.

SYSTEM CALLS

NOTE

A file connection that was obtained in
one job cannot be used as a connection
by another job. However, a file
connection can be used as a prefix by
other jobs in any call requiring prefix
and subpath parameters. (The only
exceptions to this rule are that the
other jobs cannot use the connection as
a prefix while specifying a null or
zero—length subpath in calls to
ASCHANGESACCESS or ASDELETESFILE.)

This means that a file connection can
be passed to another job and the other
job can obtain its own connection to
the same file by calling ASATTACHSFILE,
with the passed file connection being
used as the prefix parameter in the
call.

System calls referring to named files can specify paths in the following
forms:

Prefix Subpath Designated Connection
0 0 or a pointer Connection whose token is
to a null string the default prefix.
0 Pointer to ASCII string defines a path
ASCII string from the connection whose

token is the default prefix to
the target connection.

token 0 or a pointer Connection whose token is
to a null string contained in the prefix.

token Pointer to Prefix parameter contains a
ASCII string token for a connection. ASCII

string defines a path from
that connection to the target
connection.

The subpath ASCII string is a list of file names separated by slashes,
terminating with the desired file. A file name can be 1-14 ASCII
characters, including any printable ASCII character except the slash (/)
and up—arrow () or circumflex (*). In Figure 8-1, for example, if the
prefix is the token for directory OBSTETRICS and we wish to reference file
OUT-PATIENT, the subpath parameter must point to the string:

DELIVERY/POST-PARTUM/OUT-PATIENT

8-2

SYSTEM CALLS

If the ASCII string begins with a slash, the prefix merely designates the
tree and the subpath is assumed to start at the root directory of the tree
associated with the prefix. For example, if the prefix designates
directory GYNECOLOGY in Figure 8-1, the subpath to OUT-PATIENT is

/OBSTETRICS/DELIVERY/POST-PARTUM/OUT-PATIENT

Named files can also be addressed relative to other files in the tree,
using "t" as a path component. The "t" refers to the parent directory of
the current file in the path scan. For example, now that we have a
connection to OUT-PATIENT in Figure 8-1, we can use that connection to
specify a subpath to IN-PATIENT. With the token for the OUT-PATIENT
connection as our prefix, the subpath string would be

4 IN-PATIENT
Note that no slash follows the "4" in this example.

Of course an even simpler approach would be to designate directory
POST-PARTUM as the prefix, in which case the ASCII string becomes:

IN-PATIENT

RESPONSE MAILBOX PARAMETER

This parameter is specified only in asynchronous system calls. It
contains a token designating the mailbox that is to receive the result of
the call. This information is provided by tasks to synchronize parallel
operations. To receive the result of the call, a task must either call
RECEIVESMESSAGE and wait at the designated mailbox or call WAIT$IO. Be
aware that if several calls share the same mailbox, the results may be
received out of order.

Most asynchronous system calls return only an I/O result segment to the
response mailbox. This segment contains an exception code and other
information about the operation. Appendix C describes the I/0 result
segment. Other system calls —— A$ATTACHS$FILE, ASCREATESFILE, and
ASPHYSICALSATTACHS$DEVICE ~— return to the mailbox a token for a connection
if the system call performs successfully or an I/0 result segment
otherwise. After calling RECEIVE$MESSAGE to obtain the result of one of
these system calls, a task should perform a GET$TYPE system call to
ascertain the type of object returned to the response mailbox. The

iRMX 86 NUCLEUS REFERENCE MANUAL describes the GETSTYPE system call in
detail.

NOTE

I/0 result segments should be deleted
when they are no longer needed.
Otherwise, they will consume available
memory.

8-3

SYSTEM CALLS

OBSTETRICS
GYNECOLOGY
.
.
ROOT
DIRECTORY
Y y
PRENATAL
DELIVERY
EMPTY
. DIRECTORY
L
1 1
IN-LABOR
POST-PARTUM
EMPTY
. -DIRECTORY
) IN-PATIENT
OUT-PATIENT
y
x-303

Figure 8~1. Sample Named File Tree

8-4

SYSTEM CALLS

1/0 BUFFERS

The ASREAD and ASWRITE system calls each require a buffer while
performing I/0. When you create these buffers, bear in mind the
following restrictions:

e Once the I/0 operation has been invoked, the tasks of your
application should avoid changing the contents of the buffer
until the Basic I/0 System finishes the operation.

° If you use an iRMX 86 segment as a buffer, be sure that the
buffer is not deleted while an 1/0 operation is in progress.

. If you choose to use an iRMX 86 segment as a buffer, you should
ensure that the segment is in the same job as the task performing
the I/0 operation. Using segments from one job as buffers for
1/0 operations in a different job can lead to a problem. For
instance, suppose that Job A owns an iRMX 86 segment, and that
Job B uses this segment as a buffer for I/0. If Job A is
deleted, the iRMX 86 Operating System automatically deletes the
buffer even if I/0 is in progress.

CONDITION CODES

The Basic I/0 System returns a condition code when a system call is
invoked. If the call executes without error, the Basic I/0 System
returns the code "E$OK." If an error is encountered, some other code is
returned.

For those system calls that do not require a response mailbox parameter,
the Basic I/0 System returns the condition code to the word pointed to by
the except$ptr parameter. If an exceptional condition occurs, the Basic
I/0 System can then either return control to the calling task or pass
control to an exception handler. See the iRMX 86 NUCLEUS REFERENCE
MANUAL for a detailed description of exception handling.

For those system calls that do require a response mailbox parameter (the
asynchronous calls), the Basic I/0 System returns a condition code for
the sequential portion of the call to the word pointed to by the
except$ptr parameter and a condition code for the concurrent portion of
the call to the status field of the I/0 result segment (see Appendix C).
If a sequential exceptional condition occurs, the Basic I/0 System either
returns control to the calling task or passes control to an exception
handler. It does not process the asynchronous portion of the call. If a
concurrent exceptional condition occurs, the calling task must signal the
exception handler or process the exceptional condition in line.

o_c

SYSTEM CALLS

SYSTEM CALLS

The following pages provide a detailed description of each Basic I/0
System call, listed alphabetically. The system call dictionary, which
appears first, provides a summary of these calls, grouped by function and
correlated to the file types to which they apply. That system call
dictionary also acts as a cross—reference to the detailed descriptions.

Throughout this chapter, PL/M-86 data types, such as BYTE and WORD, are
used. In addition, the iRMX 86 data type TOKEN is used. Definitions of
both PL/M-86 and iRMX 86 data types are given in Appendix A. Because
TOKEN is not a PL/M—-86 data type, if you use it you must declare it to be
literally a WORD or a SELECTOR in every module in which it is used.

8-6

SYSTEM CALLS

SYSTEM CALL DICTIONARY

This section summarizes the Basic I/0 System calls by function and, where
applicable, indicates the file types to which they apply:

PF Physical file

SF Stream file

NF Named data file

ND Named directory file

The page reference listed with each call points to the detailed

description for the call.

JOB-LEVEL SYSTEM CALLS
System Call
SETSDEFAULTS PREFIX
GETS DEFAULT$PREFIX
SET$SDEFAULT$USER

GETSDEFAULTS$USER

DEVICE-LEVEL SYSTEM CALLS
System Call

ASPHYSICALSATTACHS -
DEVICE

ASPHYSICAL$DETACHS -
DEVICE

A$SPECIAL

Function
Set default prefix for job.
Inspect default prefix.
Set default user for job.

Inspect default user.

Function

Asynchronous attach device.

Asynchronous detach device.

Asynchronous perform device-level
function.

8-7

Page

8-122
8-115
8-124

8-117

Page

8-66

8-70

8-87

SYSTEM CALLS

FILE/CONNECTION-LEVEL SYSTEM CALLS
System Call Function P
F
ASCREATESFILE Asynchronous data *
file creation.
ASATTACHSFILE Asynchronous attach *
file.
AS CREATE$ DIRECTORY Asynchronous directory
file creation.
ASDELETES$ CONNECTION Asynchronous delete *
file connection.
ASDELETESFILE Asynchronous data or
directory file deletion.
FILE-MODIFICATION SYSTEM CALLS
System Call Function P
F
AS CHANGESACCESS Asynchronous change
access rights to file.
ASRENAMESFILE Asynchronous rename
file.
AS TRUNCATE Asynchronous truncate
file.
FILE INPUT/OUTPUT SYSTEM CALLS
System Call Function P
F

AS OPEN

A$SEEK

ASREAD
ASWRITE

A$CLOSE

Asynchronous open file, *

Asynchronous move file *
pointer.

Asynchronous read file. *
Asynchronous write file. *

Asynchronous close file. *

Page

8-28

8-11

8-23

8-34

8-37

Page

8-15

8-76

8-101

Page

8-62

8-81

8-73
8-107

8-20

SYSTEM CALLS

FILE INPUT/OUTPUT SYSTEM CALLS (continued)

System Call

ASUPDATE

WAITSIO

Function P S
Asynchronous finish *
writing to output device.

Synchronous wait for * %
status after 1/0.

GET STATUS/ATTRIBUTE SYSTEM CALLS

System Call

ASGETS CON-
NECTIONS STATUS

ASGETSFILES$ STATUS

AGET DIRECTORYS ENTRY

A$ GET$ PATH$ COMPONENT

USER OBJECT SYSTEM CALLS
System Call
CREATE$USER
INSPECT$ USER

DELETE$ USER

EXTENSION DATA SYSTEM CALLS

System Call

AS SETS EXTENSIONSDATA

ASGET$ EXTENSIONSDATA

Function P S
Asynchronous get * %
connection status.

Asynchronous get file * %
status.

Asynchronous inspect
directory entry.

Asynchronous obtain

path name from
connection token.

Create a user object.
Get IDs in a user object.

Delete a user object.

Function

L]
 w

Asynchronous store a
file's extension data.

Asyuchronous receive a
file's extension data.

8-9

Page

8-104

8-127

Page

8-42

8-52

8-46

8-58

Page
8-111
8-120

8-113

Page

8-84

8-49

TIME/DATE SYSTEM CALLS
System Call

SET$ TIME

GET$ TIME

SYSTEM CALLS

Function

Set date/time value in
internally-stored format,

Get date/time value in
internally-stored format.

8-10

Page

8-126

8-119

ASATTACHSFILE

ASATTACHSFILE creates a connection to an existing file.

CALL RQ$SASATTACHSFILE(user, prefix, subpath$Sptr, respSmbox,

except$ptr);

INPUT PARAMETERS

user

prefix

subpath$ptr

OUTPUT PARAMETERS

resp$mbox

except$ptr

A TOKEN for the user object to be inspected in any
access checking that takes place. A zero
specifies the default user for the calling task's
job. This parameter is ignored when attaching
physical or stream files. Access checking does
occur for named files.

A TOKEN for the connection object to be used as
the path prefix. A zero specifies the default
prefix for the calling task's job.

A POINTER to a STRING containing the subpath of
the file to be attached. A null string indicates
that the new connection is to the file designated
by the prefix. The new connection will not be
open, regardless of the open state of the prefix.

A TOKEN into which the Basic 1/0 System places a
token for the mailbox that receives the result
object of the call. This result object is a new
file connection if the call succeeds or an I/0
result segment otherwise (see Appendix C). To
ascertain the type of object returned, use the
Nucleus system call GETSTYPE.

If the object received is an I/0 result segment,
the calling task should call DELETE$SEGMENT to
delete the segment after examining it.

A POINTER to a WORD where the sequential condition
code will be returned.

8-11

[\l

PAL LAVILIPL LLL

DESCRIPTION

ASATTACHSFILE creates a connection to an existing file. Once the
connection is established, it remains in effect until the connection
object is deleted, or until the creating job is deleted. Once attached,
the file may be opened, closed, read, written, etc., as many times as
desired. ASATTACHSFILE has no effect on the owner ID or the access list
for the file.

CONDITION CODES

ASATTACHSFILE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I1/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions.

ESDEVSOFFSLINE The prefix parameter in this system call refers to
a logical connection. One of the following is true:

® The device has been physically attached but is
now off-line.

e The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

ESEXIST Two conditions can cause this exception code to be
returned:

1. One or more of the following parameters is not
a token for an existing object:

° The user parameter
® The prefix parameter
o The resp$mbox parameter

2. The prefix connection is being deleted.

8-12

ESLIMIT

ESMEM

ESNOSPREFIX

E$SNOSUSER

E$SNOTS CONF IGURED

ESPARAM

ASATTACHSFILI

Processing this call would cause one or more of
these limits to be exceeded:

° The maximum number (specified when the job was
created) of objects allowed for this job.

e The number (255 decimal) of I/0 operatioms
that can be outstanding at one time for the
user object specified in the call.

e The number (255 decimal) of I/0 operations
that can be outstanding at one time for the
caller's job.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following reasons:

® When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

e The job's directory can have entries but a
default prefix is not cataloged there.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
token for a user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because of one of the following reasons:

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

e The job's directory can have entries but a
default user is not cataloged there.

e The object that is cataloged with the name
R?IQUSER is not a user object. The name
R?IOUSER should be treated as a reserved word.

ASATTACHSFILE was not included when the system was
configured.

The specified path name contains invalid
characters.

8-13

YA s A s SN RAYE AAsEs

E$TYPE

One of more of the following conditions caused
this exception:

e The prefix parameter is a token for an object
that is not of the correct type. It must be
either a connection object or a logical device
object. (Logical device objects are created
by the Extended I/0 System.)

e The respSmbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

E$OK

E$CONTEXT

ESFNEXIST

ESFTYPE

ESIO

ESMEM

No exceptional conditionms.

The file specified is on a device that the system
is detaching.

This indicates one of the following circumstances:

e Either a file in the specified path, or the
target file itself, does not exist.

e¢ Either a file in the specified path, or the
target file itself, is marked for deletion.

The subpath parameter in the call contained a
string that should have been the name of a
directory, but is not. (Except for the last file,
each file in a pathname must be a named directory.)

An I/0 error occurred, and it might or might not
have prevented the operation from being completed.

The memory pool of the Basic I/0 System job does

not currently have a block of memory large enough
to allow this system call to run to completion.

8-14

A$ CHANGES$ACCESS

AS CHANGESACCESS changes the access rights to a named data or directory

file.

CALL RQSACHANGESACCESS(user, prefix, subpath$ptr, id, access,

resp$mbox, except$ptr);

INPUT PARAMETERS

user

prefix

subpath$ptr

id

access

A TOKEN for the user object to be inspected in
access checking. A value of zero specifies the
default user for the calling task's job.

A TOKEN for the connection object to be used as
the path prefix. A zero specifies the default
prefix for the calling task's job.

A POINTER to a STRING giving the subpath of the
file whose access is to be changed. A null string
indicates that the prefix itself designates the
desired file.

A WORD containing the ID number of the user whose
access is to be changed. If this ID does not
already exist in the ID—access mask list, it is
added. This list may contain a total of three
ID-access pairs.

A BYTE mask giving the new access rights for the

ID. For each bit, a one grants access, and a zero
denies it. (Bit O is the low—order bit.) For a
named data file, the possible bit settings are:

=]
e

t Meaning
Delete

Read

Append

Update

4-7 Reserved (set to 0)

wEOP‘OI

8-15

APULLIMNV I LI PLAUVULIOO

OUTPUT PARAMETERS

| resp$mbox

except$ptr

DESCRIPTION

For a named directory file, the possible bit
settings are:

Bit Meaning
Delete

0
1 Display
2 Add Entry
3 Change Entry

4-7 Reserved (set to 0)

If zero is specified for the access parameter
(that is, no access), the ID specified in the id

parameter is deleted from the file's ID-access
list.

A TOKEN for the mailbox that receives an I/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETE$SSEGMENT to delete the
segment after examining it.

A POINTER to a WORD where the sequential condition
code will be returned.

A$CHANGESACCESS system call applies to named files only. It is called to
change the access rights to a named data or directory file. Depending on
the contents of the "id"” and "access" parameters specified in the system
call, users may be added to or deleted from the file's ID-access mask
list, or the access privileges granted to a particular user may be

changed.

NOTE

The caller must be the owner of the
file or must have change entry access
to the file's parent directory.
However, if the owner is "WORLD", that
is, OFFFFH, then any task may change
the access mask of the file.

8-16

APUHANUGLEDIAUULD

CONDITION CODES

ASCHANGESACCESS returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A

complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word
specified by the exceptSptr parameter of this system call.

ESOK No exceptional conditions.

ESDEVSOFFSLINE The prefix parameter in this system call refers to
a logical connection. One of the following is
true:

® The device has been physically attached but is
off-line.

¢ The device has never been physically

attached. (See Appendix E for a more detailed
explanation.)

ESEXIST Two conditions can cause this exception code to be
returned:

1. One or more of the following parameters is not
a token for an existing object:

e The user parameter
o The prefix parameter
¢ The response mailbox parameter
2., The prefix connection is being deleted.
ESIFDR This system call applies only to named files, but
the prefix and subpath parameters specify some

other type of file.

ESLIMIT Processing this call would cause one or more of
these limits to be exceeded:

¢ The maximum number (specified when the job was
created) of objects allowed for this job.

8-17

ey - e ———p e — ————

ESMEM

E$SNOSPREFIX

E$SNOSUSER

ENOT CONF IGURED

E$PARAM

E$ SUPPORT

E$TYPE

° The number (255 decimal) of I/0 operations
that can be outstanding at one time for the
user object specified in the call.

e The number (255 decimal) of I/0 operations
that can be outstanding at one time for the
caller's job.

The memory pool of the calling task's job does not
currently have a block of memory large emnough to
allow this system call to run to completion.

You specified a default prefix (prefix parameter
equals zero). But no default prefix can be found
because of one of the following:

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

e The job's directory can have entries but no
default prefix is cataloged there.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
token for a user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because of one of the following reasons:

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

e The job's directory can have entries but no
default user is cataloged there.

o The object which is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved word.

A$CHANGESACCESS was not included when the system
was configured.

The specified path name contains invalid
characters.

The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

One of more of the following conditions caused
this exception:

8-18

A$CHANGES$ACCES

o The prefix parameter is a token for an object
that is not of the correct type. It must be
either a connection object or a logical device

object. (Logical device objects are created by
the Extended I/0 System.)

e The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

ESOK

E$ CONTEXT

E$FACCESS

ESFNEXIST

ESFTYPE

E$IO

E$MEM

E$SUPPORT

No exceptional conditions.

The file specified is on a device that the system
is detaching.

The user object in the parameter list is not
qualified for "change entry access” for the parent
directory, nor is it the owner of the file.

This indicates one of the following circumstances:

e Either a file in the specified path, or the
target file itself, does not exist.

o Either a file in the specified path, or the
target file itself, is marked for deletion.

The subpath parameter in the call contained a
string which should have been the name of a

directory, but is not. (Except for the last file,
each file in a pathname must be a named directory.)

An I/0 error occurred, and it might or might not
have prevented the operation from being completed.

The memory pool of the Basic I/0 System job does
not currently have a block of memory large enough
to allow this system call to run to completion.

The call attempted to add another access ID to the

list of access ID's. The access list already
contained the limit of three such ID's.

o_10

ASCLOSE

ASCLOSE closes an open file connection.

CALL RQSASCLOSE(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection A TOKEN for the file connection to be closed.

OUTPUT PARAMETERS

resp$mbox A TOKEN for the mailbox that receives an I/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETESSEGMENT to delete the
segment after examining it.

exceptSptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

The A$CLOSE system call closes an open file connection. It is called
between uses of a file and when the application needs to change the open
mode or shared status of the connection. The Basic I/0 System will not
close the connection until all existing I/0 requests for the connection
have been satisfied, and the Basic I/0 System will not send a response to
the response mailbox until the file is closed.

CONDITION CODES

ASCLOSE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A

complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

8-20

APULUS

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$SOK

E$EXIST

ESLIMIT

ESMEM

ES$SNOT$ CONFIGURED

E$ SUPPORT

ESTYPE

No exceptional conditions.

Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

e The connection parameter

e The resp$mbox parameter
2, The connection is being deleted.
Processing this call would have exceeded the
maximum number (specified when the job was
created) of objects allowed for this job.
The memory pool of the calling task's job does not

currently have a block of memory large enough to
allow this system call to run to completion.

ASCLOSE was not included when the system was
configured.

The specified connection parameter is not valid in

this system call because the connection was not
created by this job.

One of more of the following conditions caused
this exception:

& The connection parameter contained a token for
an object that is not a connection.

e The resp$mbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

8-21

PuNTILL

ESOK No exceptional conditions.
ESCONTEXT The specified connection is not open.
I ESIO An I/0 error occurred, but the operation was
successful anyway.

8-22

A$CREATE$DIRECTOR

AS$ CREATE$ DIRECTORY

ASCREATESDIRECTORY creates a directory file.

CALL RQSASCREATESDIRECTORY(user, prefix, subpath$ptr, access,
resp$mbox, except$ptr);

INPUT PARAMETERS

user A TOKEN for the user object of the new directory's l
owner. The user object is inspected to make sure
the caller has proper access to the new

directory's parent. A zero specifies the default
user for the calling task's job.

prefix A TOKEN for the connection to be used as the path

prefix. A zero specifies the default prefix for
the calling task's job.

subpath$ptr A POINTER to a STRING containing the subpath of
the directory to be created. The subpath string
must not be null, and it must point to an unused
location in the directory tree.

access A BYTE mask giving the owner's initial access
rights to the directory. For each bit in the
mask, a one grants access and a zero denies it.
The possible bit settings are:

=
e

t Meaning
Delete

Display

Add Entry

Change Entry

4-7 Reserved (set to 0)

wrorol

OUTPUT PARAMETERS

respSmbox A TOKEN for the mailbox that receives the result l
object of this call. This result object is a
directory file connection if the call succeeded,
or an I/0 result segment otherwise (see Appendix
C). To ascertain the type of object returned, use
the Nucleus system call GETSTYPE.

8-23

PUKBEA TEIULILU LUK X

If the object received is an I/0 result segment,
the calling task should call DELETESSEGMENT to
delete the segment after examining it.

exceptSptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

The ASCREATE$DIRECTORY system call is applicable to named directory files
only. When called, it creates a new directory file and returns a token
for the new file connection. This system call cannot be used to create a
connection to an existing directory.

NOTE

The caller must have add-entry access
to the parent of the new directory.

CONDITION CODES

ASCREATESDIRECTORY returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential condition code. A code returned
as a result of asynchronous processing is a concurrent exception code. A

complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$OK No exceptional conditions.

ESDEVSOFFSLINE The prefix parameter in this system call refers to
a logical connection. One of the following is
true:

e The device has been physically attached but is
now off-line.

¢ The device has never been physically

attached. (See Appendix E for a more detailed
explanation.)

8-24

ESEXIST

ESIFDR

ESLIMIT

ESMEM

E$NOSPREFIX

E$NOSUSER

ASCREATE$DIRECTOR

Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

) The user parameter

) The prefix parameter

® The response mailbox parameter
2, The prefix connection is being deleted.
This system call applies only to named directory
files, but the prefix and subpath parameters

specify some other type of file.

Processing this call would cause one or more of
these limits to be exceeded:

e The maximum number (specified when the job was
created) of objects allowed for this job.

e The number (255 decimal) of I/0 operations
that can be outstanding at one time for the
user object specified in the call.

e The number (255 decimal) of I/0 operations
that can be outstanding at one time for the
caller's job.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one or more of the following reasons:

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

e The job's directory can have entries but no
default prefix is cataloged there.

If the user parameter in this call is not zero,

then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a

default user. But no default user can be found
because of one of the following reasons:

8-25

LY s - A ——— — — ———

E$NOTS CONFIGURED

ESPARAM

ESTYPE

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

e The job's directory can have entries but no
default user is cataloged there.

e The object that is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved word.

ASCREATE$DIRECTORY was not included when the
system was configured.

The specified path name contains invalid
characters.

One or more of the following conditions caused
this exception:

e The prefix parameter is a token for an object
that is not of the correct type. It must be
either a connection object or a logical device
object. (Logical device objects are created
by the Extended I/0 System.)

e The respSmbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

E$OK

E$ CONTEXT

E$FACCESS

ESFEXIST

ESFNEXIST

No exceptional conditions.

The file specified is on a device that the system
is detaching.

The user object in the parameter list is not
qualified for "add-entry” access to the parent
directory.

A file with the specified path name already exists.
This indicates one of the following circumstances:

e A file in the specified path does not exist.

e A file in the specified path is marked for
deletion.

8-26

ESFTYPE

E$IO

ESMEM

E$SPACE

ASCREATESDIKECIUR'

The subpath parameter in the call contained a
string which should have been the name of a
directory, but is not. (Except for the last file,
each file in a pathname must be a named directory.)

An I/0 error occurred, and it might or might not
have prevented the operation from being completed.

The memory pool of the Basic I/0 System job does
not currently have a block of memory large enough
to allow this system call to run to completion.

One or more of the following is true:
e The volume has no more space.

® No more named files or directories can be
created on this volume. The maximum number of
files or directories that can be created on a
particular volume is set when that volume is
formatted. (See the description of the FORMAT
command in the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL.)

8-27

ASCREATESFILE

ASCREATESFILE creates a physical, stream, or named file.

CALL RQSA$CREATESFILE(user, prefix, subpath$ptr, access, granularity,

size, must$create, resp$mbox, except$ptr);

INPUT PARAMETERS

I user

l prefix
subpath$ptr
access

A TOKEN for the user object of the owner of the
new file. It also furnishes the user ID for any
access checking that might occur. A zero
specifies the default user for the calling task's
job. This parameter does not apply to physical or
stream files.

A TOKEN for a device or file connection. The file
created by this call is of the type (physical,
stream, or named) that is associated with this

parameter. A zero for this parameter specifies
the default prefix for the job.

For stream files, if the prefix is a device
connection, a new stream file is created, and if
the prefix is a file connection, a new file
connection to the same stream file is created.
For named files, the prefix acts as the starting
point in a directory tree scan.

A POINTER to a STRING containing the subpath for
the named file being created. This parameter does
not apply to physical and stream files.

A BYTE mask giving the owner's initial access
rights to the new file. For each bit, a one
grants access and a zero denies it. (Bit O is the
low—order bit.)

[>-]
e

t Meaning
Delete

Read

Append

Update

4-7 Reserved (set to 0)

ool

This parameter does not apply to physical or
stream files.

8-28

granularity

size

mustScreate

OUTPUT PARAMETERS

resp$mbox

exceptSptr

ASCREATESFIL!

A WORD giving the granularity of the file being
created. This is the size (in bytes) of each
logical block to be allocated to the file. The
value specified in this parameter is rounded up,
if necessary, to a multiple of the volume
granularity. Note that a contiguous file can
become noncontiguous when it is extended.

The granularity parameter can have the following
values:

0 Same as volume granularity
FFFF The file must be contiguous
Other Number of bytes per allocation

When a contiguous file is extended, space is
allocated in volume-granularity units. If "Other"”
is specified, a multiple of 1024 bytes is
recommended.

This parameter is ignored for physical and stream
files.

A DWORD giving the number of bytes initially
reserved for the file. For stream files, this
value must equal zero. For physical files, this
parameter is ignored.

A BYTE whose value (OFFH for TRUE or O for FALSE)
determines the handling of input paths designating
an existing file (see following DESCRIPTION).

A TOKEN for the mailbox that receives the result I
object of this call. This result object is a new

file connection if the call succeeded or an I/0

result segment otherwise (see Appendix C). To

ascertain the type of object returned, use the

Nucleus system call GET$TYPE.

If the object received is an I/0 result segment,
the calling task should call DELETE$SEGMENT to
delete the segment after examining it.

A POINTER to a WORD where the sequential condition
code will be returned.

8-29

PUINVDILL L UPE LD

DESCRIPTION

The ASCREATESFILE system call creates a physical, stream, or named data
file and returns a token for the new file connection. If a named file
designated by the prefix and subpath parameters already exists, one of
the following occurs:

e Error: If the "mustScreate” parameter is TRUE (OFFH), an error
condition code (ESFEXIST) is returned.

e Truncate File: If the "must$create” parameter is FALSE (0) and
the path designates an existing data file, a new connection to
that file is returned (that is, ASCREATESFILE acts like
ASATTACHSFILE). In this case, the file is truncated or expanded
according to the "size" parameter, so data in the file might be
lost. As in the case of ASATTACHSFILE, the file's owner ID and
access list are unchanged.

e Temporary File Created: If the "must$create” parameter is FALSE
(0), and the path designates an existing directory file or
device, an unnamed temporary file is created on the corresponding
device. This file is deleted automatically when the last
connection to it is deleted. Because this file is created
without a path, it can be accessed only through a connection.

Any task can create a temporary file by referring to any
directory. This is true because temporary files are not listed
as ordinary entries in the directory, so no add-entry access is
required.

Many of the parameters specified in the A$CREATESFILE call do not apply
to physical and stream files. In these cases, the parameter is ignored.

NOTE

The caller must have add—entry access
to the parent directory of the new
named file.,

CONDITION CODES

ASCREATESFILE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent exception code. A

complete explanation of sequential and concurrent parts of system calls is
in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

8-30

A$CREATES$FILE

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions.

ESDEVSOFFSLINE The prefix parameter in this system call refers to
a logical connection. One of the following is true:

e The device has been physically attached but is
now off-line.

e The device has never been physically attached.
(See Appendix E for a more detailed
explanation.)

ESEXIST Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

e The user parameter
e The prefix parameter
e The respSmbox parameter

2. The prefix connection is being deleted.

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOSPREFIX You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following reasons:

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

e The job's directory can have entries but a
default prefix is not cataloged there.

E$NOSUSER If the user parameter in this call is not zero,
then the problem is that the parameter is not a
token for a user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because of one of the following reasons:

8-131

WAN/AVIULR & LIYPL AR

E$NOTS CONFIGURED

ESPARAM

E$TYPE

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user.

e The job's directory can have entries but a
default user is not cataloged there.

e The object which is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved word.

A$CREATESFILE was not included when the system was
configured.

The specified path name contains invalid characters.

One or more of the following conditions caused this
exception:

o The prefix parameter is a token for an object
that is not of the correct type. It must be
either a connection object or a logical device
object. (Logical device objects are created by

" the Extended I/0 System.)

® The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$OK

E$ CONTEXT

E$FACCESS

E$FEXIST

E$FNEXIST

No exceptional conditions.

The file specified is on a device that the system
is detaching.

The user object in the parameter list is not
qualified for "add entry” to the parent directory,
or is not qualified for "update” access to existing
file.

The "must$create” parameter in the call is TRUE,
and the file already exists. (See the DESCRIPTION
section.)

This indicates one of the following circumstances:
@ A file in the specified path does not exist.

e A file in the specified path is marked for
deletion.

8-32

ESFTYPE

E$IO

ESMEM

E$SHARE

E$SPACE

E$ SUPPORT

A$CREATES$FIL

The subpath parameter in the call contained a
string that should have been the name of a
directory, but is not. (Except for the last file,
each file in a pathname must be a named directory.)

An I/0 error occurred, which might or might not
have prevented the operation from being completed.
Try the operation again. If E$IO is returned
again, then the operation is not being performed
successfully.

The memory pool of the Basic I/0 System job does
not currently have a block of memory large enough
to allow this system call to run to completion.

The file this call is attempting to create already
exists and is open. It was opened with the
characteristic "no share with writers.” (See the
ASOPEN call in this chapter.)

one or more of the following is true:
® The volume has no more space.

) No more named files or directories can be
created on this volume. The maximum number of
files or directories that can be created on a
particular volume is set when that volume is
formatted. (See the description of the FORMAT
Command in the iRMX 86 HUMAN INTERFACE
REFERENCE MANUAL.)

s
>
o
=
s
’
Ve

The file exists, and the mustScreate parameter is
FALSE. When the Basic I/0 System was configured,
an option was chosen that prevented this
combination, so that files could not be
automatically truncated to zero size. See the
DESCRIPTION section.

8-33

SCONN ON

ASDELETE$CONNECTION

ASDELETE$CONNECTION deletes a named file connection created by
ASCREATESFILE, A$SCREATESDIRECTORY, or ASATTACHSFILE.

CALL RQSA$SDELETE$CONNECTION(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETERS

resp$mbox

except$ptr

DESCRIPTION

A TOKEN for the file connection to be deleted.

A TOKEN for the mailbox that receives an 1/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETE$SEGMENT to delete the
segment after examining it.

A POINTER to a WORD where the sequential condition
code will be returned.

The A$DELETE$CONNECTION system call deletes a connection object. It also
deletes the associated file if both of the following are true:

e The file is already marked for deletion (by a previous
ASDELETESFILE call)

® The specified connection is the only connection to the file.

If a connection is open when ASDELETESCONNECTION is called, it is closed

before being deleted.

NOTE

Connections should be deleted when no
longer needed.

8-34

CONDITION CODES

A$DELETE$CONNECTIO

ASDELETESCONNECTION returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential condition code. A code returned
as a result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

ESOK

E$CONTEXT

E$EXIST

ESLIMIT

ESMEM

ESNOTS CONFIGURED

E$ SUPPORT

No exceptional conditions.

The connection parameter is a device connection,
not a file connection,

Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

) The connection parameter

e The respS$mbox parameter
2. The connection is being deleted.

Processing this call would exceed the number
(specified during configuration) of objects
allowed for this job.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ASDELETESCONNECTIION was not included when the
system was configured.

The connection parameter specified is not valid in

this system call because the connection was not
created by this job.

DAL LTEPUUNNEU LIVIN

ESTYPE One or more of the following is a token for an
object that is not of the correct type:

e The connection parameter.

e The resp$mbox parameter.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an 1/0

result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

ESOK No exceptional conditions.
ESIO An I1/0 error occurred, but the operation was
performed successfully anyway.

8-36

ASDELETESFILE

ASDELETES$FILE

ASDELETESFILE marks a named or stream file for deletion.

CALL RQ$SASDELETESFILE(user, prefix, subpath$Sptr, resp$mbox,

except$ptr);

INPUT PARAMETERS

user

prefix

subpath$ptr

OUTPUT PARAMETERS

respSmbox

except$ptr

A TOKEN for the user object to be inspected in I
access checking. A zero specifies the default

user for the calling task's job. This parameter

does not apply to physical or stream files.

A TOKEN for the connection object to be used as I
the path prefix. A zero specifies the default
prefix for the calling task's job.

A POINTER to a STRING giving the subpath for the
file being deleted. A null string indicates that
the prefix itself designates the desired file. 1In
this instance, the user parameter is ignored,
since access checking was already performed when
the file was attached. This parameter does not
apply to physical or stream files.

A TOKEN for a mailbox that receives an I/0 result I
segment (see Appendix C) when the file is marked

for deletion. The file will not actually be

deleted until all connections to the file are

deleted, as explained under the DESCRIPTION

below. A value of zero means that you do not want

to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETESSEGMENT to delete the
segment after examining it.

A POINTER to a WORD where the sequential condition
code will be returned.

R-27

PLIEULILY L LePL LN

DESCRIPTION

The ASDELETE$FILE system call applies to stream and named files only.
When called, it marks the designated file for deletion and removes the
file's entry from the parent directory. The entry is removed
immediately, but the file is not actually deleted until all connections
to the file have been severed (by ASDELETE$CONNECTION calls.) Directory
files cannot be deleted unless they are empty.

NOTE

The caller must have delete access to
the file.

CONDITION CODES

ASDELETESFILE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$OK No exceptional conditions.

ESDEVSOFFSLINE The prefix parameter in this system call refers to
a logical connection. One of the following is
true:

e The device has been physically attached but is
now off-line.

® The device has never been physically
attached. (See Appendix E for a more detailed

explanation.)

E$EXIST Two conditions can cause this exception code to be
returned:

8-38

ESIFDR

ESLIMIT

ESMEM

ESNOSPREFIX

ESNOSUSER

ASDELETES$FIL

l. One or more of the following parameters is not
a token for an existing object:

e The user parameter

° The prefix parameter

e The response mailbox parameter
2, The prefix connection is being deleted.
This system call applies only to named or stream
files, but the prefix and subpath parameters

specified a physical file.

Processing this call would cause one or more of
these limits to be exceeded:

e The maximum number (specified when the job was
created) of objects allowed for this job.

e The number (255 decimal) of I/0 operations
that can be outstanding at one time for the
user object specified in the call.

e The number (255 decimal) of 1I/0 operations
that can be outstanding at one time for the
caller's job.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following reasons:

® When this job was created, a size of zero was

specified for its object directory, so the job
cannot catalog a default prefix.

e The job's directory can have entries but no
default prefix is cataloged there.

If the user parameter in this call is not zero,
then the problem is that the parameter is not a
token for a user object.

If the user parameter is zero, it specifies a
default user. But no default user can be found
because of one of the following reasons:

e When this job was created, a size of zero was

specified for its object directory, so the job
cannot catalog a default user.

8-39

SDELETESY 1LY

e The job's directory can have entries but no
default user is cataloged there.

e The object that is cataloged with the name
R?IOUSER 1is not a user object. The name
R?IOUSER should be treated as a reserved word.

E$NOTSCONFIGURED A$DELETE$FILE was not included when the system was

configured.
ES$SPARAM The specified path name contains invalid characters.
E$ SUPPORT The specified connection is not valid in this
system call because it was not created by this job.
ESTYPE One or more of the following conditions caused this
exception:

® The prefix parameter is a token for an object
that is not of the correct type. It must be
either a connection object or a logical device
object. (Logical device objects are created by
the Extended I/0 System.)

e The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

Concurrent Condition Codes
The Basic I/0 System can return the following condition codes in an 1/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

E$OK No exceptional conditions.

E$ CONTEXT One of the following caused this exception:

e The file specified is on a device that the
system is detaching.

e The call is attempting to delete a stream file
that is already marked for deletion.

® The call is attempting to delete a directory
containing entries.

E$FACCESS One of the following caused this exception:
e The user object specified by the prefix and
subpath parameters does not have delete access

to this file.

e The call attempted to delete the root directory
or a bit map file.

8-40

E$FNEXIST

E$FTYPE

E$IO

ESMEM

ASDELETES$FIL

This indicates one of the following circumstances:

e Either a file in the specified path, or the
target file itself, does not exist.

e Either a file in the specified path, or the
target file itself, is marked for deletion.

The subpath parameter in the call contained a
string that should have been the name of a
directory, but is not. (Except for the last file,
each file in a pathname must be a named directory.)

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

The memory pool of the Basic I/0 System does not
currently have a block of memory large enough to
allow this system call to run to completion.

Q_/1

SGET$CONNECTIONSSTATUS

ASGET$CONNECTIONS STATUS

ASGETSCONNECTIONSSTATUS returns information about a file connection.

CALL RQSASGETS$CONNECTIONSSTATUS(connection, resp$Smbox, except$Sptr);

INPUT PARAMETER

I connection A TOKEN for the file connection whose status is
desired.

OUTPUT PARAMETERS

resp$mbox A TOKEN for the mailbox that is to receive a
connection—-status segment. The calling task is
responsible for deleting the connection—status
segment after examining it.

The information in this segment is structured as
follows:

DECLARE conn$status STRUCTURE(

status WORD,
fileSdriver BYTE,
flags BYTE,
open$mode BYTE,
share$mode BYTE,
fileSptr DWORD,
access BYTE);

These fields are interpreted as follows:

status A condition code giving the outcome
of the status—fetch operation. 1If
this code is not ESOK, the remaining
fields must be considered invalid.

fileSdriver Tells the type of file driver to
which this connection is attached.
Possible values are:

Value Type
1 Physical
2 Stream
4 Named

8-42

A$SGET$CONNECTIONS$STATT

flags Contains two flag bits., If bit 1 is
set to one, this connection is
active and can be opened. If bit 2
is set, this connection is a device
connection. (Bit O is the low-order
bit.)

openSmode The mode established when this
connection was opened. Possible
values are:

0 Connection is closed

1 Open for reading

2 Open for writing

3 Open for reading and writing
share$mode The sharing mode established when

this connection was opened.
Possible values are:

0 Private use only

1 Share with readers only

2 Share with writers only

3 Share with all users
fileSptr The current byte location of the

file pointer for this connection.

access The access rights for this
connection. For each bit, a one

grants access and a zero denies it.
(Bit 0 is the low—order bit.)

Bit Data File Directory

0 Delete Delete
1 Read Display
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved
except$ptr A POINTER to a WORD where the sequential condition

code will be returned.

DESCRIPTION

The ASGET$CONNECTIONSSTATUS system call returns a segment containing
status information about a file connection.

o_12

SGETSCONNECTIONS$STATUS

CONDITION CODES

ASGET$CONNECTIONSSTATUS returns condition codes at two different times.
The code returned to the calling task immediately after invocation of the
system call is considered a sequential condition code. A code returned as
a result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls is
in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$OK No exceptional conditions.
ESEXIST Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

Y

o The connection parameter

\/

e The resp$mbox parameter
2. The connection is being deleted.

ESLIMIT Processing this call would exceed the number
(specified during configuration) of objects
allowed for this job.

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOTSCONFIGURED AGETCONNECTION$STATUS was not included when the
system was configured.

E$SUPPORT The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

ESTYPE One of or more of the following is true:

o The connection parameter contained a token for
an object that is not a connection.

e The resp$mbox parameter contained a token for
an object that is not a mailbox.

8-44

AGETCONNECTIONS$STATU!

Concurrent Condition Codes

The Basic I/0 System returns one of the following condition codes in an

I/0 result segment at the mailbox specified by resp$mbox. You are
responsible for deleting this segment.

E$OK No exceptional conditions.
ESIO An I/0 error occurred, which might or might not
have prevented the operation from being completed.

R-45%

ASGETSDIRECTORYSENTRY

ASGETSDIRECTORYSENTRY returns the file name associated with a named

directory file entry.

CALL RQSAGETDIRECTORYSENTRY(connection, entry$num, resp$mbox,

except$ptr);

INPUT PARAMETERS

connection

entry$num

OUTPUT PARAMETERS

respSmbox

except$ptr

A TOKEN for the directory file with the desired
entry.

A WORD giving the entry number of the desired file
name. Entries within a directory are numbered
sequentially starting from zero. The
ESEMPTYSENTRY condition code will be returned if
there is no entry associated with this number.

A TOKEN for the mailbox that will receive a

directory—entry segment. The task making the
ASGETSDIRECTORYSENTRY call is responsible for
deleting this segment after examining it.

Information in this segment is structured as
follows:

DECLARE '
dirSentry$info STRUCTURE(
status WORD,
name (14) BYTE);

where:

status Indicates how the operation was
completed. ESOK, ESEMPTYSENTRY, and
ESDIRSEND condition codes all indicate
successful completion.

name File name contained in the specified
entry, padded with blanks. This field
is valid only if status = E$OK.
A POINTER to a WORD where the sequential condition

code will be returned.

8-46

A$SGET$DIRECTORYS$SENTR

DESCRIPTION

The ASGET$SDIRECTORYSENTRY system call applies to named files only. When
called, it returns the file name associated with a specified directory
entry. This name is a single subpath component for a file whose parent
is the designated directory. As an alternative to using this system
call, an application task can open and read a directory file.

NOTE

The caller must have display access to
the designated directory.

CONDITION CODES

ASGET$DIRECTORYSENTRY returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential condition code. A code returned as
a result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls is
in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions.
ESEXIST Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

() The connection parameter
e The resp$mbox parameter

2, The connection is being deleted.

E$IFDR This system call applies only to named directories,
but the connection parameter specifies another type
of file.

ESLIMIT The call cannot be processed without exceeding the

maximum number (specified when the job was created)
of objects allowed for this job.

8-47

PUL TIVIREU ITUR X LIV LI X

ESMEM

ES$SNOT$ CONFIGURED

E$SUPPORT

E$TYPE

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ASGET$DIRECTORYSENTRY was not included when the
system was configured.

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One of more of the following is true:

® The connection parameter contained a token for
an object that is not a connection.

e The resp$mbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes

ESOK

E$DIRSEND

ESEMPTYSENTRY

ESFACCESS
ESFTYPE

I E$ IO

The Basic I/0 System can return the following condition codes in an I/O
result segment at the mailbox specified by resp$Smbox. After examining
the segment, you should delete it.

No exceptional conditions.

The entry$num parameter is greater than the number
of entries in the directory.

The file entry designated in the call is empty.

The specified connection is not qualified for
“display” access to the directory.

The specified connection does not refer to a
directory.

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

8-48

ASGETSEXTENSIONSDATA

The A$GETSEXTENSION$SDATA system call returns extension data stored with a

Basic 1/0 System file.

CALL RQSASGET$SEXTENSION$SDATA(connection, resp$Smbox, except$ptr);

INPUT PARAMETERS

connection

resp$mbox

OUTPUT PARAMETER

except$ptr

A TOKEN of a connection to a file whose extension
data is desired.

A TOKEN for the mailbox that will receive a
segment containing the named file—status
information. The calling task is responsible for
deleting this segment after examining it.

Structure of the named file-status information is
as follows:

DECLARE ext$data$seg STRUCTURE (
status WORD,
count BYTE,
info(*) BYTE);

These fields are interpreted as follows:

status A condition code indicating the
outcome of the status—fetch
operation. If this code is not E$OK,
the remaining fields must be
considered invalid.

count A number (from O to 255 decimal)
indicating the number of bytes
returned.

info The extension data.

A POINTER to a WORD where the sequential condition
code will be returned.

8-49

YNBSS K Y RALD B Ak dhV B AT EVYAILD A LD

DESCRIPTION

Associated with each file created through the Basic I/0 System is a file
descriptor containing information about the file. Some of that
information is used by the Basic I/0 System and can be accessed by tasks
through the ASGETSFILE$STATUS system call. Up to 255 additional bytes of
the file descriptor, known as extension data, are available for use by
Operating System extensions. O0S extensions can write extension data by
using ASSETSEXTENSIONSDATA and they can read extension data by using
AS$GETSEXTENSIONSDATA.

When a task calls ASGETSEXTENSIONSDATA, it specifies a response mailbox
to which the system returns a segment with the extension data. The
information is located in the low—memory portion of the segment.
ASGETSEXTENSIONSDATA can only be applied to connections created via the
named file driver.

CONDITION CODES

ASGETSEXTENSIONSDATA can return condition codes at two different times.
The code returned to the calling task immediately after invocation of the
system call is considered a sequential code. A code returned as a result
of asynchronous processing is a concurrent exception code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following exception codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions.
ESEXIST Two conditions can cause this exception code to be
returned:

1. One or more of the following parameters is not
a token for an existing object:

e The connection parameter
e The resp$mbox parameter.
2. The connection is being deleted.
E$IFDR This system call applies only to named files, but

the prefix and subpath parameters specify another
type of file.

8-50

ESLIMIT

ESMEM

ENOT CONFIGURED

E$ SUPPORT

ESTYPE

Concurrent Exception Codes

The Basic I/0 System will return one of the following codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

ESOK

ESIO

AYGETSEXTENTIUNSDAL.

The call cannot be processed without exceeding the
maximum number (specified when the job was created)
of objects allowed for this job.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ASGETSEXTENSIONSDATA was not included when the
system was configured.

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One or more of the following is true:

° The connection parameter contained a token for
an object that is not a connection.

e The resp$Smbox parameter contained a token for
an object that is not a mailbox.

No exceptional conditioms.

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

8-51

A w e 29 wpwnYw wj

ASGETSFILESSTATUS

ASGETSFILESSTATUS returns status and attribute information about a file.

CALL RQSASGETSFILESSTATUS(connection, respSmbox, except$ptr);

INPUT PARAMETER

connection

OUTPUT PARAMETERS

resp$mbox

A TOKEN for a connection to the file whose status
is sought.

A TOKEN for the mailbox that receives a segment
containing a data structure with the status
information for the specified file. The
information in the first part of this structure —-
down to the dev$conn field —— is returned for any
file (physical, stream, or named), but information
from the file$id field down to the end of the
structure is provided only for named files. The
contents of the named$file field indicates whether
the file is a named file.

DECLARE file$info STRUCTURE(

status WORD,
num$ conn WORD,
num$reader WORD,
num$writer WORD,
share BYTE,
named$file BYTE,
devSname(14) BYTE,
fileSdrivers WORD,
functs BYTE,
flags BYTE,
dev$gran WORD,
dev$size DWORD ,
dev$conn WORD,

8-52

A$GETS$FILE$STATU

OUTPUT PARAMETERS
resp$mbox (continued)

Information from this point on is returned only if the file is a named
file.

file$id WORD,
fileStype BYTE,
fileSgran BYTE,
owner$id WORD,

create$time DWORD,
access$time DWORD,
modify$time DWORD,

fileSsize DWORD,
file$blocks DWORD,
vol$name(6) BYTE,
vol$gran WORD,
vol$size DWORD,

accessor$count WORD,
firstSaccess BYTE,

first$ID WORD,
second$access BYTE,
second$ID WORD,
third$access BYTE,
third$ ID WORD);

These fields are interpreted as follows:

status A condition code indicating how the get file
status operation was completed. If this
code is not ESOK, the remaining fields must
be considered invalid.

num$ conn The number of connections to the file.

num$ reader The number of connections currently open for
reading.

nun$writer The number of connections currently open for
writing.

share The current shared status of the file;

possible values are:

0 Private use only

1 Share with readers only
2 Share with writers only
3 Share with all users

named$file Tells whether this structure contains any

information beyond the dev$conn field. OFFH
means yes and 0 means no.

8-53

$GETS$FILE$STATUS

dev$name

file$drivers

functs

flags

The name of the physical device where this
file resides. This name is padded with
blanks. To ensure the uniqueness of file
names, they should not be more than 13
characters in length.

A bit map that tells what kinds of files can
reside on this device. If bit n is on, then
file driver ntl can be used. Bit O is the
low-order bit.

Bit Driver No. Driver

Physical file
Stream file
reserved
Named file

W =O
SO =

A bit map that describes the functions
supported by the device where this file
resides. A bit set to one indicates the
corresponding function is supported. Bit O
is the low-order bit.

Bit Function

FSREAD
FSWRITE
F$SEEK
FSSPECIAL
FSATTACHSDEV
FSDETACHSDEV
FSOPEN
F$CLOSE

NoumpLNe=O

Meaningful only for diskette drives. This

field is interpreted as follows. (Bit O is
the low—-order bit.)

Bit Meaning
0 O=bits 1-7 are not significant
1=bits 1-7 are significant
1 O=single density
l=double density
2 O=single sided
l1=double sided
3 0=8-inch diskette
1=5 1/4-inch diskette
4 O=standard diskette, meaning

that track 0 is single-density
with 128-byte sectors
1=a non—standard diskette or not
a diskette
5-7 reserved

8-54

dev$gran

devSsize

devS$conn

ASGETS$SFILE$STATU

The device granularity, in bytes, of the
device where this file resides.

The storage capacity of the device, in bytes.

The number of connections to the device.

The information from here to the end of the structure is returned only
for named files, as indicated by a value of OFFH in the named$file field.

file$id

file$type

fileSgran

owner$id

createStime

accessStime

modify$time

fileSsize

file$blocks

volSname

vol$gran

volSsize

A number that distinguishes this file from
all other files on the same device. i

Indicates the type of the file: 6 means
directory file; and 8 means data file.

The file granularity, as a multiple of
vol$gran. For example, if fileSgran is 2
and vol$gran is 256, then the file's
granularity is 512.

The first ID in the user object that was
presented to the Basic I/0 System when the
file was created.

The time and date when the file was
created. Whether the Basic I/0 System
maintains this field is a configuration
option.

The time and date when the file was last
accessed. Whether the Basic I/0 System
maintains this field is a configuration
option.

The time and date when the file was last
modified. Whether the Basic I/0 System
maintains this field is a configuration
option.

The total size of the file, in bytes.

The number of volume blocks allocated to
this file. A volume block is a contiguous
area of storage that contains vol$gran bytes

of data.

The left—adjusted, null-padded ASCII name
for the volume containing this file.

The volume granularity, in bytes.

The storage capacity, in bytes, of the
volume on which this file is stored.

8-55

Y

PATL L P LLIIPRI L L2 L s

accessorScount The number of IDs in the user object that
was presented to the Basic I/0 System when
this file was created.

firstSaccess Access masks for as many ID's as are
second$access indicated by idScount. The bits of the
third$access access masks are defined in the following

table. An access right is granted if the
appropriate bit is set to l; otherwise, that
right is denied. Bit O is the low—order bit.

Bit Data File Directory File

0 Delete Delete
1 Read Display
2 Append Add Entry
3 Update Change Entry
4-7 Reserved Reserved
first$ID ID values for the accessors.
second$1ID
third$ID
exceptSptr A POINTER to a WORD where the sequential condition

code will be returned.

DESCRIPTION

The ASGET$FILESSTATUS system call returns status and attribute
information about the designated file. Certain information is returned
regardless of the file driver type (physical, stream, or named.)
Additional information is returned for named files.

Note that this call returns device—dependent information.

CONDITION CODES

ASGETSFILE$STATUS returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential condition code. A code returned
as a result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

8-56

A$GETS$FILE$STATU

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$OK No exceptional conditions.
ESEXIST Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

e The connection parameter
e The resp$mbox parameter
2., The connection is being deleted.

ESLIMIT The call cannot be processed without exceeding the
maximum number (specified when the job was
created) of objects allowed for this job.

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOTSCONFIGURED ASGETSFILESSTATUS was not included when the system
was configured.

E$SUPPORT The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

ES$TYPE One or more of the following parameters is a token
for an object of the wrong type:

® The connection parameter

e The resp$mbox parameter

Concurrent Condition Code

The Basic I/0 System returns one of the following condition code in an
I1/0 result segment at the mailbox specified by resp$mbox. You are
responsible for deleting this segment.

ESOK No exceptional conditions.
ESIO An I/0 error occurred, which might or might not
have prevented the operation from being completed.

8-57

ASGET$PATHS COMPONENT

ASGETSPATHSCOMPONENT returns the name of a named file as the file is
known in its parent directory.

CALL RQ$SASGETSPATHSCOMPONENT(connection, resp$mbox, exceptSptr);

INPUT PARAMETER

connection A TOKEN for the file connection whose name is
sought.

OUTPUT PARAMETERS

respSmbox A TOKEN for the mailbox that will receive the
fileSname segment. This segment contains the file
name associated with the designated connection and
is structured as follows:

DECLARE file$name STRUCTURE(
status WORD,
name STRING);

These fields are interpreted as follows:

status A condition code indicating the
outcome of the operationm.

name A STRING giving the desired file
name, This name is the same as the
last item in the subpath string
specified when the file was created or
renamed.

The task that makes the ASGETSPATHSCOMPONENT call

is responsible for deleting the file$name segment
after examining it.

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

8-58

AGETPATH$COMPONEN

DESCRIPTION

A caller who knows the token for a connection to a file can invoke this
system call and receive the name of the file in return. This name is the
name by which the file is cataloged in its parent directory. If the
connection is to the root directory of a volume (that is, if no parent
directory exists), a null string is returned. A null string is also
returned if the file is marked for deletion.

ASGETSPATHSCOMPONENT can be called no matter what type of file is
supported, but if a connection to a physical or stream file is specified,
the call simply returns a null string.

The ASGETS$PATHSCOMPONENT system call can be used in combination with the
ASATTACHSFILE system call to derive all of the components of a path
name. Suppose, for example, that a file has the path name A/B/C, and
that your task has only a token for the file. The following sequence of
calls will reveal all of the path”s components:

1. Call ASGETSPATHSCOMPONENT to obtain the file name C.

2. Call ASATTACHSFILE with the prefix parameter equal to the token
for file C and the subpath equal to a circumflex (*). This call
will return a token for a connection to directory file B.

3. After calling GETSTYPE to verify that the token is indeed for a
connection, call A$SGETSPATHSCOMPONENT to obtain the file name B.

4. Call ASATTACHSFILE with the prefix parameter equal to the token
for file B and the subpath equal to a circumflex ("). This call
will return a token for a connection to directory file A.

5. After calling GETSTYPE to verify that the token is indeed for a
connection, call ASGET$SPATHSCOMPONENT to obtain the file name A.

6. Call ASATTACHSFILE with the prefix parameter equal to the token
for file A and the subpath equal to a circumflex (). This call
will return a token for a connection to the root of the file tree.

7. After calling GETSTYPE to verify that the token is indeed for a
connection, call ASGETS$PATHSCOMPONENT again. This time, the null
string will be returned, and this tells you that you now have all
of the components of the desired path name.

CONDITION CODES

ASGETSPATHSCOMPONENT returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential condition code. A code returned
as a result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 4 of this manual.

SGETSPATHSCOMPUONENT

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$OK

ESEXIST

ESLIMIT

ESMEM

ESNOTSCONFIGURED

E$ SUPPORT

ESTYPE

No exceptional conditions.

Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

e The connection parameter

e The resp$mbox parameter
2. The connection is being deleted.
The call cannot be processed without exceeding the
maximum number (specified when the job was
created) of objects allowed for this job.
The memory pool of the calling task's job does not
currently have a block of memory large enough to

allow this system call to run to completion.

ASGET$PATHSCOMPONENT was not included when the
system was configured:

The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

One or more of the following is true:

e The connection parameter contained a token for
an object that is not a connection.

e The resp$mbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

8-60

E$SOK

E$FNEXIST

E$IO0

ESMEM

ASGETPATH$COMPONEN

No exceptional conditions.

The file is marked for deletion. (A null string
is returned in the name field of the file$name

segment.)
An I/0 error occurred, which might or might not
have prevented the operation from being completed.

The memory pool of the Basic I/0 System job does
not currently have a block of memory large enough
to allow this system call to run to completion.

8-61

ASOPEN

ASOPEN opens an asynchronous file connection for I/0 operations.

CALL RQSASOPEN(connection, mode, share, respSmbox, except$ptr);

INPUT PARAMETERS

connection

mode

share

OUTPUT PARAMETERS

resp$mbox

except$ptr

A TOKEN for the connection to be opened.

A BYTE giving the mode desired for the open
connection; possible values are:

1 Open for reading
2 Open for writing
3 Open for both reading and writing

A BYTE specifying the kind of sharing desired for
this connection; possible values are:

0 Private use only

1 Share with readers only
2 Share with writers only
3 Share with all users

A TOKEN for the mailbox that receives an 1/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETE$SEGMENT to delete the
segment after examining it.

A POINTER to a WORD where the sequential condition
code will be returned.

8-62

A$OPE

DESCRIPTION

The ASOPEN system call opens a connection for I/0 operations. The

connection must be opened before reading, writing, and seeking can be
performed on the associated file.

ASOPEN also initializes the file pointer to byte-position zero.
Subsequent Basic I/0 System calls (ASSEEK, ASREAD, and ASWRITE) will move
this pointer.

The mode and share parameters are compared to the current sharing status
of the file. If they are not compatible, an ESSHARE exceptional

condition is returned. No deadlock occurs, however, because open calls

are not queued. The system does not notify callers when the sharing

status of the connection changes. If such notification is important,

users of the file should arrange a suitable protocol.

If the file is attached by multiple connections, the file might be open
for reading by some connections and open for writing by others at the
same time. - Any modification of the file by a writer will be seen by
readers that subsequently read the modified part of the file.

NOTE

Directory files can be opened and read,
but only by specifying a one for the
mode parameter and a three for the
share parameter.

CONDITION CODES

ASOPEN returns condition codes at two different times. The code returned
to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of
asynchronous processing is a concurrent condition code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the WORD
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions.

8-63

FOPEN

ESEXIST

ESLIMIT

ESMEM

ENOT CONF IGURED

ESPARAM

E$ SUPPORT

ESTYPE

Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

e The connection parameter

e The respSmbox parameter
2., The connection is being deleted.
The call cannot be processed without exceeding the
maximum number (specified when the job was
created) of objects allowed for this job.
The memory pool of the calling task's job does not
currently have a block of memory large enough to

allow this system call to rum to completion.

ASOPEN was not included when the system was
configured.

The mode or share parameter has an invalid value
(out of range 1-3 or 0-3, respectively.)

The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

One or more of the following is true:

e The connection parameter contained a token for
an object that is not a connection.

e The respSmbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an 1/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

ESOK

ESCONTEXT

ESFACCESS

| ESIO

No exceptional conditionms.

The connection is a file or directory connection
that is already open, or it is a device connection.

The connection does not have access compatible
with the mode specified in this ASOPEN call.

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

8-64

APVULPL.

ESSHARE One or more of the following conditions caused

this exception:

° The current file share characteristic is not
compatible with the mode or the share
parameter in the ASOPEN call.

e This ASOPEN call is an attempt to open a
directory for some operation other than "read"”
(mode parameter) and "share with all users"”
(share parameter). (See DESCRIPTION for more
information on sharing files.)

8-65

AS$PHYSICALSATTACHSDEVICE

The ASPHYSICALSATTACH$DEVICE system call attaches a device to the Basic
I/0 System.

CAUTION

Any task that uses this system call
loses its device independence. To
maintain as much device independence as
possible in your application, a few
selected tasks should perform all
attaching and detaching of devices,
passing tokens for the devices to other
tasks as necessarye.

Also, if a task uses this system call
to attach devices, the devices are
automatically detached (and connections
to files on the device are
automatically deleted) when the
containing job is deleted. If you want
to prevent the device from being
detached in these circumstances, use
the Extended I/0 System's
LOGICALSATTACHSDEVICE system call
instead.

CALL RQSASPHYSICALSATTACHSDEVICE(devSname, file$driver, resp$mbox,
exceptSptr);

INPUT PARAMETERS

devSname A POINTER to a STRING containing the name (as
specified during configuration) of the device to
be attached. To prevent possible duplication of
names, this name should be no more than 13
characters in length.

file$driver A BYTE specifying which file driver is to supply

the connection to the device. Possible values are
as follows:

8-66

ASPHYSICALSATTACH$DEVIC]

Value File Driver
1 Physical
2 Stream
4 Named
respSmbox A TOKEN for the mailbox that receives the result

object of the call. This result object is a new
connection if the call is successful, or an I/0
result segment otherwise (see Appendix C). To
as¢ertain the type of object returned, use the
Nucleus system call GET$TYPE.

If the object received is an I/0 result segment,
the calling task should call DELETES$SEGMENT to
delete the segment after examining it.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

ASPHYSICALSATTACHSDEVICE returns a device connection to the device
specified by the devSname parameter. The fileSdriver parameter specifies
the kind of files (physical, stream, or named that the device will create

when the returned device connection is used in subsequent calls to
ASCREATESFILE.

The device connection object is returned to the response mailbox if the
call is successful; otherwise an I/0 result segment is returned to the
response mailbox. The returned connection object can be used as a prefix
in other system calls. It can be deleted only by calling
ASPHYSICALSDETACHSDEVICE.,

In the case of a connection to a disk device, where the file$driver
parameter specifies named files for the device, the connection is
actually to a volume mounted on the disk hardware. Such volumes must be
properly formatted. If they are not, an E$ILLVOL exceptional condition
is returned. Refer to the iRMX 86 OPERATOR'S MANUAL for information
about formatting disks.

CONDITION CODES

ASPHYSICALSATTACH$DEVICE can return condition codes at two different
times. The code returned to the calling task immediately after
invocation of the system call is considered a sequential code. A code
returned as a result of asynchronous processing is a concurrent exception

code. A complete explanation of sequential and concurrent parts of
system calls is in Chapter 7.

R-67

PL AL LIJLVAALIPLYL LAVLAPRAILI Y AV L

The following list is divided into two parts —— one for sequential codes
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following exception codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions.

ESEXIST The respSmbox parameter does not refer to an
existing object.

ESLIMIT Processing this call would cause one or more of
the following limits to be exceeded:

e The maximum number (specified when the job was
created) of objects allowed for this job.

e The number (255 decimal) of I/0 operations
that can be outstanding at one time for the
caller's job.

E$MEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESPARAM One or more of the following is true:

® The number representing the file driver is not

valid.
® A value of zero was specified for the response
mailbox.
ESTYPE The resp$mbox parameter in the call is a token for

an object that is not a mailbox.

Concurrent Exception Codes

The Basic I/0 System will return the following codes in an I1/0 result
segment at the mailbox specified by resp$mbox. After examining the:
segment, you should delete it.

E$ CONTEXT The specified device is already attached.

E$SDEVFD The specified device is not compatible with the
specified file driver.

E$FNEXIST The device specified by the deviceSname parameter
does not exist.

8-68

2

ESILLVOL

E$ IO

ESMEM

A$PHYSICALSATTACH$DEVIC

One or more of the following is true:

° The specified device is a disk volume not
properly formatted for use with the named file
driver. The volume being attached must have
FDSNAMED in its label.

© The connection object returned to the response
mailbox is a connection to the root directory
of the attached device, and the fnode of this
root directory is invalid.

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

The memory pool of the Basic I/0 System job does
not currently have a block of memory large enough
to allow this system call to run to completion.

R-AQ

ASPHYSICALSDETACHSDEVICE

The ASPHYSICALSDETACH$DEVICE system call detaches a device from the Basic
I/0 System.

CALL RQASPHYSICAL$DETACH$DEVICE(connection, hard, resp$mbox,
except$ptr);

INPUT PARAMETERS

connection A TOKEN for the connection object for the device
that is to be detached.

hard A BYTE containing a value that specifies whether
(OFFH) or not (0) a hard detach of the device is
desired.

respSmbox A WORD containing a TOKEN for the mailbox to which

the result segment is sent when the operation has
finishede A value of zero indicates that no
response is desired.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

The A$PHYSICALSDETACH$DEVICE system call breaks connections established
by calls to ASPHYSICALSATTACHSDEVICE. It also deletes the file
connection objects associated with those device connections. Devices
that are detached in this manner must be reattached before any files on
the device can be attached or reattached.

When detaching a device, you can choose to detach all attached files on
the device. A hard detach deletes the connection objects for all such

files on the device. To specify a hard detach, assign the value OFFH to
the hard parameter.

If you choose not to request a hard detach, there must not be any

attached files on the device. To specify that you do not want a hard
detach, assign the value O to the hard parameter.

8-70

A$PHYSICAL$SDETACHS$DEVI(

Note that, whether you specify a hard detach or not, there will be no
attached files on the device after the device is detached.

CONDITION CODES

ASPHYSICALSDETACHSDEVICE can return condition codes at two different
times. The code returned to the calling task immediately after
invocation of the system call is considered a sequential code. A code
returned as a result of asynchronous processing is a concurrent exception
code. A complete explanation of sequential and concurrent parts of
system calls is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following exception codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditionms.

ESCONTEXT The specified connection parameter is not a device
connection.

ESEXIST One or more of the foliowing parameters is not a

token for an existing object:

° The connection parameter
e The respSmbox parameter

ESLIMIT The call cannot be processed without exceeding the
maximum number (specified when the job was
created) of objects allowed for this job.

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOT$SCONFIGURED ASPHYSICALSDETACHSDEVICE was not included when the
system was configured.

ES$ SUPPORT The speci ed_connection parameter is not valid in
this system call.because the connection was not

created by this job.

8-71

WH IDIUALDUL L AVUILPLILI ¥V 1v/as

ESTYPE One or more of the following is true:

e The connection parameter contained a token for
an object that is not a connection.

° The resp$mbox parameter contained a token for
an object that is not a mailbox.

Concurrent Exception Codes

The Basic I/0 System will return the following codes in an I/0 result
segment at the mailbox specified by resp$mbox. After examining the
segment, you should delete it.

E$CONTEXT A soft detach was specified when connections to
the device still existed.

ESFNEXIST The device specified by the connection parameter
is being detached.

E$I0 An I/0 error occurred during the operation, but
the operation was successful anyway.

8-72

ASREAD

ASREAD reads the requested number of bytes, starting with the current
position of the pointer for the specified file connection.

CALL RQSASREAD(connection, buff$ptr, count, respSmbox, except$ptr);

INPUT PARAMETERS
connection
buffSptr

count

OUTPUT PARAMETERS

respSmbox

except$ptr

A TOKEN for the open file connection to be read.
A POINTER to the buffer that receives the data.

A WORD giving the number of bytes to be read.

A TOKEN for the mailbox that receives an I/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I1/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETE$SEGMENT to delete the
segment after examining it.

The number of bytes read is in the "actual” field
of the I/0 result segment. If a read operation is
requested with the file pointer set at or beyond
the end of the file, an actual value of zero is
returned.

If all the connections to a stream file are
requesting read operations, an actual value of

zero is returned.

A POINTER to a WORD where the sequential condition
code will be returned.

8-73

PHELAL

DESCRIPTION

The ASREAD system call initiates a read operation on an open connection.
The data is read as a string of bytes, starting at the current location
of the connection's file pointer. Any number of bytes can be requested.
Some efficiency may be gained by starting reads on device block
boundaries. After the read operation is finished, the file pointer
points just past the last byte read.

The buffer specified by the "buffSptr” parameter can be in a segment

allocated by the Nucleus, but this is not a requirement.

NOTE

A call to ASREAD will not be successful
unless the mode of the open connection
permits reading (see ASOPEN).

CONDITION CODES

ASREAD returns condition codes at two different times. The code returned
to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of
asynchronous processing is a concurrent condition code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions.

ESCONTEXT The connection parameter is a connection produced
by the Extended I/0 System.

ESEXIST Two conditions can cause this exception code to be
returned:

1. One or more of the following parameters is not
a token for an existing object:

° The connection parameter
® The respSmbox parameter
2. The connection is being deleted.

8-74

A$RE/

ESLIMIT The call cannot be processed without exceeding the
maximum number (specified when the job was
created) of objects allowed for this job.

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOT$SCONFIGURED ASREAD was not included when the system was
configured.

E$ SUPPORT The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

ESTYPE One or more of the following is true:

) The connection parameter contained a token for
an object that is not a connection.

e The respSmbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

E$OK No exceptional conditions.

ESCONTEXT This comnection is not open for reading or
updating.

E$FLUSHING The connection was closed before the read

operation was completed.

ESIO An I/0 error occurred, which might or might not
have prevented the operation from being completed.

ESSPACE The read operation attempted to read past the end

of the physical device. This applies only to
physical files.

8-75

ASRENAMESFILE

ASRENAMESFILE changes the path name of a named file.

CALL RQSASRENAMESFILE(connection, user, prefix, subpath$ptr,
respSmbox, except$ptr);

INPUT PARAMETERS

l connection A TOKEN for a connection to the file being
renamed. This connection and all other
connections to the file will remain in effect
after the file is renamed.

I user A TOKEN for the user object to be inspected in

access checking. A zero specifies the default
user for the job.

prefix A TOKEN for the connection to be used as the

starting point in a path scan. A zero specifies
the default prefix for the job.

subpath$ptr A POINTER to a STRING containing the new subpath
for the file. Prefix and subpath must not lead to
an already-existing file. The string pointed to
by the subpath parameter cannot be a null string.

OUTPUT PARAMETERS

l resp$mbox A TOKEN for the mailbox that receives an I/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETE$SEGMENT to delete the
segment after examining it.

exceptSptr A POINTER to a WORD where the sequential condition
code will be returned.

8-76

ASRENAMESFII

DESCRIPTION

The ASRENAMESFILE system call applies to named files only. It is called
to change the path name of a file. For named data or directory files,
ASRENAMESFILE can be used to recatalog files in different parent
directories, as long as the new directory is on the same volume as the
file's original parent directory.

There is one restriction concerning the manner in which a directory can
be renamed. Any attempt to rename a directory as its own parent causes
the Basic I/0 System to return an exception code. Also, be aware that

renaming a directory changes the paths of any files contained in the
directory.

NOTE

In order to rename a file, the caller
must have delete access to the file and
must have add—entry access to the
file's parent directory.

CONDITION CODES

ASRENAMESFILE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent exception code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts -— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the exceptS$ptr parameter of this system call.

E$OK No exceptional conditions.
E$ CONTEXT The connection and the prefix in the call refer to

different devices. You cannot simultaneously
rename a file and move it to another device.

8-77

PIVILIN ALVIELDT 110

E$DEVSOFFSLINE

ESEXIST

ESIFDR

ESLIMIT

ESMEM

The prefix parameter in this system call refers to
a logical connection. One of the following is
true:

e The device has been physically attached but is
now off-line.

e The device has never been physically
attached. (See Appendix E for a more detailed

explanation.)

Two conditions can cause this exception code to be
returned:

1. One or more of the following parameters is not
a token for an existing object:

o The connection parameter
e The user parameter
° The prefix parameter
e The resp$mbox parameter
2. One or more of the following is being deleted:
e The connection specified by the prefix.

e The connection specified by the connection
parameter.

This system call applies only to named files, but

the connection parameter specifies some other type
of file.

Processing this call would cause one or more of
the following limits to be exceeded:

e The maximum number (specified when the job was
created) of objects allowed for this job.

e The number (255 decimal) of I/0 operations
which can be outstanding at one time for the
user object specified in the call.

The memory pool of the calling task's job does not

currently have a block of memory large enough to
allow this system call to run to completion.

8-78

ASRENAMES$FIL

ENOPREFIX You specified a default prefix (prefix argument
equals zero). But no default prefix can be found
because of one of the following:

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

e The job's directory can have entries but a
default prefix is not cataloged there.

E$NOSUSER If the user parameter in this call is not zero,

then the problem is that the parameter is not a
user object.

If the user parameter is zero, it specifies a
default user object. But no default user object
can be found because:

o When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default user object.

° The job's directory can have entries but a
default user object is not cataloged there.

e The object which is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved word.

E$NOTSCONFIGURED ASRENAMESFILE was not included when the system was
configured. '

ESPARAM The path name contains invalid characters, or has
a length of zero.

E$ SUPPORT The specified connection parameter is not valid in

this system call because the connection was not
created by this job.

ESTYPE One or more of the following is true:

e The connection parameter is a token for an
object that is not a connection object.

® The prefix parameter is a token for an object
that is not of the correct type. It must be
either a connection object or a logical device
object (Logical device objects are created by
the Extended I/0 System.)

e The resp$mbox parameter in the call is a token
for an object that is not a mailbox.

8-79

SPAVASLN LAUVALSPL LAuLY

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/O
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

ESOK

E$CONTEXT

E$SFACCESS

E$FEXIST

E$FNEXIST

ESFTYPE
| ES IO
ESMEM

E$ SPACE

E$ SUPPORT

No exceptional conditions.
One or more of the following is true:

@ The file specified is on a device that the
system is detaching.

e The call is attempting to rename the directory
to a new path containing itself. This is
specifically forbidden; see DESCRIPTION.

One or more of the following is true:

e The specified connection does not have "add
entry” access to the parent directory.

e The specified user does not have "delete”
access to the file.

e The call is attempting to rename the root
directory or a bit-map file.

A file with the specified path name already exists.
One or more of the following is true:
@ A file in the specified path does not exist.

e A file in the specified path is marked for
deletion.

The subpath parameter in the call contained a file
that should have been a directory, but is not.
(Except for the last file, each file listed in a
pathname must be a named directory.)

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

The memory pool of the Basic I/O System job does
not currently have a block of memory large enough
to allow this system call to run to completion.

There is no more space on this volume.

As configured, the Basic I/O System does not allow
allocation of space on volumes.

8-80

A$SEEK

ASSEEK moves the file pointer of an open connection.

CALL RQSA$SEEK(connection, mode, move$size, respSmbox, exceptSptr);

INPUT PARAMETERS

connection

mode

moveSsize

OUTPUT PARAMETERS

resp$Smbox

exceptSptr

A TOKEN for the open file connection whose file
pointer is to be moved.

A BYTE describing the movement of the file
pointer. Possible values are:

1 Move pointer back by move$size bytes; if this
action moves the pointer past the beginning of
the file, the pointer is set to zero (first
byte).

2 Set the pointer to the location specified by
move$size.

3 Move the file pointer forward by move$size bytes.

4 Move the pointer to the end of the file, minus
moveSsize bytes.

A DWORD giving the number of bytes involved in the
seek. The interpretation of move$size depends on
the mode setting, as just explained.

A TOKEN for the mailbox that receives an I/0 result
segment indicating the result of the call (see
Appendix C). A value of zero means that you do not
want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETESSEGMENT to delete the
segment after examining it.

A POINTER to a WORD where the sequential condition
code will be returned.

8-81

PRI N

DESCRIPTION

The AS$SEEK system call applies to physical and named files only. This

call moves the file pointer for an open connection, allowing file
contents to be accessed randomly. The file pointer can be moved to any
byte position in the file; the first byte is byte zero.

CONDITION CODES

A$SEEK returns condition codes at two different times. The code returned
to the calling task immediately after invocation of the system call is
considered a sequential condition code. A code returned as a result of
asynchronous processing is a concurrent condition code. A complete
explanation of sequential and concurrent parts of system calls is in
Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

E$OK No exceptional conditions.

E$CONTEXT The connection parameter was produced by the
Extended I/0 System.

ESEXIST Two conditions can cause this exception code to be
returned:

1. One or more of the following parameters is not
a token for an existing object:

° The connection parameter
e The resp$mbox parameter
2, The connection is being deleted
ESIFDR This system call applies only to named and
physical files, but the prefix and subpath

parameters specify a stream file.

ESLIMIT The call cannot be processed without exceeding the
maximum number (specified when the job was
created) of objects allowed for this job.

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

8-82

ES$SNOTS$ CONFIGURED

ESPARAM

E$ SUPPORT

ESTYPE

A$SEEK was not included when the system was
configured.

The mode parameter value is out of the valid range
(1 to 4).

The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

One or more of the following is true:

o The connection parameter contained a token for
an object that is not a connection.

e The resp$mbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

ESOK
E$CONTEXT

ESFLUSHING

E$IO

ESPARAM

No exceptional conditions.
The connection is not open.

The connection specified in the call was closed
before the seek operation could be completed.

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

This call attempted to seek beyond the end of the

physical device. This applies only to physical
files.

8-83

A$SEE]

ASSETSEXTENSIONSDATA

The ASSETSEXTENSIONSDATA system call writes the extension data for a
Basic I/0 System file.

CALL RQ$ASSETSEXTENSIONSDATA(connection, data$ptr, resp$mbox,
except$ptr);

INPUT PARAMETERS

connection A TOKEN for an asynchronous connection to a file
whose extension data is to be set.

dataSptr A POINTER to a structure of the following form:
DECLARE ext$data$seg STRUCTURE(
count BYTE,
info(*) BYTE);

where:

count Number (up to 255) of bytes of
extension data being written.

info(*) The extension data.

respSmbox A TOKEN for the mailbox that receives an 1I/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling

task should call DELETE$SEGMENT to delete the
segment after examining it.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

8-84

ASSETEXTENTION$DAT/

DESCRIPTION

Associated with each file created through the Basic I/0 System is a file
descriptor containing information about the file. Some of that
information is used by the Basic I/0 System and can be accessed by tasks
through the AGETFILES$STATUS system call. Up to 255 additional bytes of
the file descriptor, known as extension data, are available for use by
Operating System extensions, depending upon how the volumes were
formatted. OS extensions can write extension data by using
ASSETSEXTENSIONSDATA and they can read extension data by using
AGETEXTENSIONSDATA. The maximum number of bytes of extension data may

be less than 255 since the limit is specified when the secondary storage
devices are formatted.

NOTE

The Human Interface uses the first two
bytes of extension data. If your
application includes the Human
Interface, take care, when using
ASSETSEXTENSIONSDATA, to preserve the
first two bytes. Do this by calling
ASGETSEXTENSIONSDATA before writing
into the remaining bytes.

After the new extension data is set, an I/0 result segment returns to the
response mailbox.

ASSETSEXTENSIONSDATA can only be applied to asynchronous connections
created via the named file driver.

CONDITION CODES

A$SETSEXTENSIONSDATA returns condition codes at two different times. The
code returned to the calling task immediately after invocation of the
system call is considered a sequential condition code. A code returned
as a result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following exception codes to the word
specified by the except$ptr parameter of this system call.

ES$OK No exceptional conditions.

SSETHEXTENTIONSDATA

ESEXIST

ESIFDR

ESLIMIT

E$SMEM

ESNOTS CONFIGURED

E$ SUPPORT

ESTYPE

Two conditions can cause this exception code to be
returned:

1. One or more of the following parameters is not
a token for an existing object:

® The connection parameter.
e The resp$mbox parameter.

2. The connection is being deleted.

This system call applies only to named files, but
the parameter list specified another type of file.

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

A$SETSEXTENSIONSDATA was not included when the
system was configured.

The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

One or more of the following is true:

e The connection parameter contained a token for
an object that is not a connection.

e The resp$mbox parameter contained a token for
an object that is not a mailbox.

Concurrent Exception Codes

The Basic I/0 System will return the following codes in an I/0 result
segment at the mailbox specified by resp$Smbox. After examining the
segment, you should delete it.

E$OK

ESIO

ESPARAM

No exceptional conditions.

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

The count field in the ext$dataSseg data structure

contains a value greater than the value specified
when the disk was formatted.

8-86

A$SPECIAL

A3$SPECIA

A$SPECIAL enables tasks to perform a variety of special functions.

CALL RQ$SASSPECIAL(connection, spec$func, ioparm$ptr, resp$mbox,

exceptSptr);
INPUT PARAMETERS
connection A TOKEN for a connection to the file for which the I
special function is to be performed.
specSfunc An encoded WORD that, with the connection argument,
specifies the function being requested. The
functions are described under the heading
DESCRIPTION and are summarized as follows:
File driver Spec$func
for connection value Function
physical 0 format track
stream 0 query
stream 1 satisfy
physical or named 2 notify
physical 3 get disk data
physical 4 get terminal data
physical 5 set terminal data
physical 6 set signal
ioparm$ptr A POINTER to a parameter block. The contents of

OUTPUT PARAMETERS

resp$mbox

except$ptr

the parameter block depends upon the requirements
of the special function being requested and are
described fully under the heading DESCRIPTION.

A TOKEN for the mailbox that receives an I/O result I
segment indicating the result of the call (see

Appendix C). A value of zero means that you do not

want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETE$SEGMENT to delete the
segment.

A POINTER to a WORD where the sequential condition
code will be returned.

8-87

AP LIVLAL

DESCRIPTION

The A$SPECIAL system call enables tasks to perform a variety of special
functions.

Tasks define their requests by means of the spec$func and ioparam$ptr
parameters. Spec$func is a code which, when combined with the file
driver associated with the connection argument, specifies the function
the Basic I/0 System is to perform. When more information is needed to
define a request, ioparam$ptr points to a parameter block containing the
additional data. Descriptions of the available functions follow.

Formatting a Track. This function applies to physical files only. To
format a track on a flexible diskette, call A$SPECIAL with an open file
connection, with spec$func equal to O, and with ioparam$ptr pointing to a
structure of the form:

DECLARE formatStrack STRUCTURE(

track$number WORD,
interleave WORD,
trackSoffset WORD);

To format a track on a disk, call ASSPECIAL with an open file connection,
with spec$func equal to O, and with ioparam$ptr pointing to a structure
of the form:

DECLARE formatS$track STRUCTURE(
trackS$Snumber WORD,

interleave WORD,
track$offset WORD,
fill$char WORD) ;

In each of these structures, the fields are defined as follows:

track$number The number of the track to be formatted.
Acceptable values are O to one less than the
number of tracks on the volume. Other values
cause an E$SPACE exceptional condition.

interleave The interleaving factor for the track. (That is,
the number of physical sectors to advance when
locating the next logical sector.) The supplied
value, before being used, is evaluated mod the
number of sectors per track.

trackSoffset The number of physical sectors to advance when
locating the first logical sector.

fill$char The byte value with which each sector is to be
filled.

8-88

A$SPECIA

Obtaining Information about Stream File Requests. Occasionally, a task
using a stream file needs to know what is being requested by the other task
using the same stream file. For example, the task doing a read operation
on a stream file might need to know how many bytes are being sent by the
task doing a write operation on the same file. Tasks can obtain this kind
of information by calling A$SPECIAL, using the connection for the stream
file, with spec$func set to 0 (query). The ioparam$ptr argument is ignored.

If a read or write request is queued at the file, the information requested
is returned in the I/0 result segment for the call to ASSPECIAL. The
actual field contains the number of bytes being sent, the count field
contains the number of bytes still remaining in the buffer, and the
buff$ptr field points to the buffer.

If no read or write request is queued at the file, the calling task's
request for information is queued at the file. If a second request for
information is made before the first one is satisfied, the I/0 result
segments for both requests are returned with ESCONTEXT in the status field.

Artificially Satisfying a Stream File I/0 Request When a task tries to
read or write to a stream file, the request is not satisfied until the
other task makes a request that matches the first request. For example, if
task A wants to read 512 bytes, but task B only wants to write 256 bytes,
only 256 bytes are transferred. Task A continues to wait for the other 256
bytes, even though Task B may never write them.

By using ASSPECIAL, with a stream file connection and with spec$func set to
1 (ioparam$ptr is ignored), either task can force the data transfer request
to be satisfied, even though the reading task is requesting more bytes than
the writing task is providing. After the transfer, the tasks can ascertain
the number of bytes sent by checking the actual field in their respective
I/0 result segments.

A task trying to satisfy an I/0 request in this way will receive an
ESCONTEXT exceptional condition if no request is queued at the stream file
or if a request for information is queued. In the latter case, the task
that submitted the request for information also receives an E$CONTEXT
condition.

Requesting Notification that a Volume is Unavailable., This function
applies to named and physical files only.

When a person opens a door to a flexible disk drive or presses the STOP
button on a hard disk drive, the volume mounted on that drive becomes
unavailable. A task can request notification of such an event by calling
ASSPECIAL. For flexible disk drives attached to an iSBC 204 controller,
notification occurs when the Basic I/0 System first tries to perform an
operation on the unavailable volume. For most other drives, notification
occurs immediately. The reason for this difference is that the iSBC 204
controller does not generate an interrupt when its drives cease to be
ready. In contrast, most other controllers do.

To request notification, a task calls ASSPECIAL with a token for a device
connection, with spec$func set to 2, and with ioparam$ptr pointing to a
structure of the form:

DECLARE notify STRUCTURE(
mailbox WORD,

object WORD) ;
where:
mailbox Contains a TOKEN for a mailbox.
object Contains a TOKEN for an object. When the Basic

I/0 System detects that the implied volume is
unavailable, the object is sent to the mailbox.

After a task has made a request for notification, the Basic I/0 System
remembers the object and mailbox tokens until either the volume is
detected as being unavailable or until the device is detached by the
ASPHYSICALSDETACH$DEVICE system call. When the volume becomes
unavailable, the object is sent to the mailbox. Note that this implies
that some task should be dedicated to waiting at the mailbox.

If the volume is detected as being unavailable, the Basic I1/0 System will
not execute I/0 requests to the device on which the volume was mounted.
Such requests are returned with the status field of the I/0 result seg-
ment set to ESIO and the unit$status field set to IO$OPRINT (value = 3).
The latter code means that operator intervention is required.

To restore the availability of a volume, four steps are required:

1. Close the door of the diskette drive or restart the hard disk
drive.

2. Call ASPHYSICALSDETACH$DEVICE. It may be necessary to do a
"hard” detach of the device.

3. Call ASPHYSICALSATTACHSDEVICE and reattach the device.
4, Create a new file connection.

To cancel a request for notification, make a dummy request using the same
connection with a 0 value in the mailbox parameter.

Obtaining Information About Winchesters and Certain Other Disks. This
function applies only to physical files. If your device is a Winchester
drive with an iSBC 215 disk controller or a drive with an iSBC 220 SMD
controller, you can obtain specification information about it by calling
ASSPECIAL with a token for a device connection, with spec$func set to 3,
and with ioparm$ptr pointing to a structure of the form:

8-90

DECLARE disk$drive$data STRUCTURE(

cylinders WORD,
fixed BYTE,
removable BYTE,
sectors BYTE,
sector$size WORD,
alternates BYTE);

ASSPECIAL returns information to the fields of this structure, as follows:
cylinders The total number of cylinders on the drive.

fixed The number of heads on the fixed disk or
Winchester disk.

removable The number of heads on the removable disk
cartridge.

sectors The number of sectors in a track.

sector$size The number of bytes in a sector.

alternates The number of alternate cylinders on the drive.

Getting or Setting Attributes of a Terminal. These functions apply only
to physical files. You can receive (get) or set the characteristics of a
terminal that is being driven by the Terminal Device Driver by issuing a
call to ASSPECIAL. In each case you supply a token for a connection to a
terminal. To get the data, set spec$func equal to 4, and to set the
data, set specSfunc equal to 5. In each case, ioparm$ptr should point to
a structure of the form:

DECLARE terminal$attributes STRUCTURE(
num$words WORD,
num$used WORD,
connection$flags WORD,
terminal$flags WORD,

in$baudSrate WORD,
out$baudSrate WORD,
scroll$lines WORD) ;
where:
num$words The number of words, not including num$words and

num$used, that are reserved for the remainder of
the terminal$attributes data structure.

A$SPECIA

PIOrLULAL

numSused

connection$flags

The number of fields, following the numSused
field, that are actually being used for getting or
setting terminal characteristics.

If you are getting terminal information, the
amount of data that is returned is governed by the
num$used field. For example, if spec$func is 4
and numSused is 2, then connection$flags and
terminal$flags will receive data but inS$haudSrate,
out$baud$rate, and scroll$lines will not.

If you are setting terminal attributes, numSused
specifies the number of nonzero words following
the num$used field that are to be used for setting
terminal attributes. For example, if numSused is
2, while connection$flags is O and terminal$flags
is not O, then the contents of terminal$flags will
be used to set terminal attributes, but the
contents of connection$flags will be ignored. In
this way, you can set some parameters without
affecting others.,

This word applies only to this connection to the
terminal. (All other parameters apply to the
terminal itself and therefore to all connections
to the terminal.)

The flags in this word are encoded as follows.
(Bit 0 is the low—order bit.)

Bits Value and Meaning

0-1 Line editing control. (See Appendix F
for a description of how to use a
terminal. In particular, this appendix
describes line editing.)

1 = No line editing. Input is
transmitted to the requesting task
exactly as entered at the terminal.
Before being transmitted, data
accumulates in a buffer until either
a carriage return is entered or the
requested number of characters has
been entered.

2 = Line editing. Edited data
accumulates in a buffer until either
a carriage return is entered or the
requested number of characters has
been entered.

8-92

A$SPECIA

Bits Value and Meaning

0-1 3 = No line editing. Input is
transmitted to the requesting task
exactly as entered at the terminal.
Before being transmitted, data
accumulates in a buffer until an
input request is received. At that
time, the contents of the buffer (or
the number of characters requested,
if the buffer contains more than that
number) is transmitted to the
requesting task. If any characters
remain in the buffer, they are saved
for the next input request.

2 Echo control.

0 = Echo. Characters entered into the
terminal are "echoed"” to the
terminal's display screen.

1 = Do not echo.

3 Input parity control, Characters entered
into the terminal have their parity bits
(bit 7) set to 0 or not set, according to
the value of the input parity control bit.
0 = Set parity bit to O.

1 = Do not alter parity bit.

4 Output parity control. Characters being
output to the terminal have their parity
bits (bit 7) set to O or not set,
according to the value of the output
parity control bit.

0 = Set parity bit to O.

1 = Do not alter parity bit.

5 Output control character control., This

bit specifies whether output control
characters are effective when entered at
the terminal. The value of this bit
applies only to output through this
connection. Control characters are
described in Appendix F of this manual.

0 = Accept output control characters in
the input stream.
1 = Ignore output control characters in

the input stream.

R-Q3

POrmLULAL

terminal$flags

0OSC control sequence control. These bits
specify whether OSC control sequences
should be acted upon when they appear in
the input stream and, separately, when
they appear in the output stream. These
bits apply only to input or output
through this connection. O0SC control
sequences are described in Appendix F of

0 = Act upon 0OSC sequences that appear in
either the input or output stream.
1 = Act upon OSC sequences in the input

2 = Act upon 0SC sequences in the output

3 = Do not act upon any OSC sequences.

Bits Value and Meaning
6-7
this manual.
stream only.
stream only.
8-15

Reserved bits. For future compatibility,
set to O.

This word applies to the terminal and therefore to
all connections to the terminal.

The flags in this word are encoded as follows.
(Bit 0 is the low-order bit.)

Bits Value and Meaning

0 Reserved bit. Set to O.

1 Line protocol indicator. Full-duplex
terminals support simultaneous and
independent input and output.
Half-duplex terminals support independent
input and output, but not simultaneously.
0 = Full duplex.
1 = Half duplex.

2 Output medium.

0 = Video display terminal (VDT).

1

Printed (Hard copy).

8-94

Bits

A$SPECIA

Value and Meaning

3

Modem indicator.

0 Not used with a modem.

1

Used with a modem.

Input parity control. The parity bit
(bit 7) of each input byte can be used in
a variety of ways. A byte has even
parity if the sum of its bits is an even
number. Otherwise, the byte has odd
parity.

0 = Always set parity bit to O.
1 = Never alter the parity bit.

2 = Even parity is expected on input.
Use the parity bit to indicate the
presence (1) or absence (0) of an
error on input. That is, set the
parity bit to O unless the received
byte has odd parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

3 = 0dd parity is expected in input. Use
the parity bit to indicate the
presence (1) or absence (0) of an
error on input. That is, set the
parity bit to O unless the received
byte has even parity or there is some
other error, such as (a) the received
stop bit has a value of 0 (framing
error) or (b) the previous character
received has not yet been fully
processed (overrun error.)

Output parity control. The parity bit
(bit 7) of each output byte can be used
in a variety of ways. A byte has even
parity if the sum of its bits is an even
number. Otherwise, the byte has odd
parity.

pOL AL

Bits

Value and Meaning

10

11

12

0 = Always set parity bit to O.

1

Always set parity bit to 1.

N
I

Set parity bit to give the byte even
parity.

W
1]

Set parity bit to give the byte odd
parity.

4

Do not alter the parity bit.

Translation control. Translation refers
to the ability to define certain control
characters so that whenever these
characters are entered at a terminal,
certain actions, usually cursor
movements, take place automatically.
Translation is described in Appendix F of
this manual.

0

]

Do not enable translation.

1

Enable translation.

Terminal axes sequence control. This
specifies the order in which
Cartesian—like coordinates of elements on
a terminal's screen are to be listed or
entered.

0

List or enter the horizontal
coordinate first.

—
]

List or enter the vertical coordinate
first.

Horizontal axis orientation control.

This specifies whether the coordinates on
the terminal's horizontal axis increase
or decrease as you move from left to
right across the screen.

0

Coordinates increase from left to
right.

—
"

Coordinates decrease from left to
righto

Vertical axis orientation control. This
specifies whether the coordinates on the
terminal's vertical axis increase or
decrease as you move from top to bottom
across the screen.

8-96

in$baudS$rate

out$baud$rate

scroll$lines

Bits Value and Meaning

0

Coordinates increase from top to
bottom.

—
L]

Coordinates decrease from top to
bottom.

13-15 Reserved bits. For future compatibility,
set to O.

NOTE

If bits 4-5 contain 2 or 3, and bits
6-8 also contain 2 or 3, then they must
both contain the same value. That is,
they must both reflect the same parity
convention (even or odd).

This word contains an input baud rate indicator,
which is encoded as follows:

0 = Not applicable.
1 = Perform an automatic baud rate search.
Other = Actual input baud rate, such as 2400,

This word contains an output baud rate indicator,
which is encoded as follows: -

0 = Not applicable
1 = Use the input baud rate for output.
Other = Actual output baud rate, such as 9600.

An operator at a terminal can enter a control
character (default is Control-W) when he/she is
ready for data to appear on the terminal's display
screen. The value contained in scroll$lines
specifies the maximum number of lines that are to
be sent to the terminal each time the control
character is entered.

Designating Characters for Signalling from a Terminal Keyboard. You can

use the A$SPECIAL system call to associate a keyboard character with a
semaphore, so that whenever the character is entered into the terminal,
the Basic I/0 System automatically sends a unit to the semaphore. Up to
12 character-semaphore pairs can be so associated simultaneously, with
each character being associated with a different semaphore, if desired.

8-97

APOrHUIA

PANIL AUNJRL LS

To set up a character—semaphore pair, call ASSPECIAL with a device
connection, with spec$func equal to 6, and with ioparm$ptr pointing to a
structure of the form:

DECLARE signal$pair STRUCTURE(

semaphore WORD,
character BYTE);
where:
semaphore A TOKEN for the semaphore that is to be associated
with the character.
character A hexadecimal value in the range O to 1FH. When

the ASCII equivalent of this value is entered into
the terminal, the Basic I/0 System will send a
unit to the associated semaphore.

To dissolve a semaphore-character relationship, make an identical call to
ASSPECIAL, except that the semaphore field must contain O,

CONDITION CODES

A$SPECIAL return condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the exceptSptr parameter of this system call,

E$OK No exceptional conditions.

E$CONTEXT The connection parameter is a connection produced
by the Extended I/0 System.

8-98

ES$EXIST

ESIFDR

ESLIMIT

ESMEM

ENOT CONFIGURED

E$ PARAM

E$ SUPPORT

A$SPECIA

Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters or
fields is not a token for an existing object:

e The connection parameter
e The resp$mbox parameter

e The mailbox field in the notify structure.
(Spec$func = 2.)

e The object field in the notify structure.
(Spec$func = 2.)

o The semaphore field in the signal$pair
structure. (Spec$func = 6.)

2. The connection is being deleted.

The function requested (spec$func) is not valid
for the type of file specified by the connection
parameter.

The call cannot be processed without exceeding the
maximum number (specified when the job was
created) of objects allowed for this job.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ASSPECIAL was not included when the system was
configured.

One or more of the following is true:

e The specSfunc parameter was 5, and one or more
of the following is true:

- Bits 0-1 of the connection$flags field was
equal to O.

- Bits 6-8 of the terminal$flags field was
greater than 4.

e The spec$func parameter was 6, and the
character field was greater than 1FH.

e The spec$func parameter was greater than 6.
The specified connection parameter is not valid in

this system call because the connection was not
created by this job.

Q.-.QQ

PR LANJ ALY

ESTYPE

One or more of the following parameters or fields
was a token for an existing object of the wrong
type:

e The connection parameter.
e The respSmbox parameter.

¢ The mailbox field of the notify structure.
(Spec$func = 2.)

e The semaphore field of the signalS$pair
structure. (Spec$func = 6.)

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by respSmbox. After examining
the segment, you should delete it.

ESOK

ESCONTEXT

ESFLUSHING

ESIFDR

ESIO

E$SPACE

No exceptional conditions.
One or more of the following is true:

e The function code is 'notify' and the
connection is not a device connection. This
applies only to named and physical files.

e The connection is not open. This applies only
to stream and physical files.

e This is a "query” request, but another query
is already queued This applies only to stream
files.

e This is a "satisfy” request, but either a
query request is queued, or no requests are
queued. This applies only to stream files.
(See Artificially Satisfying a Stream File I/0
Request in the DESCRIPTION.,)

The connection to which this special function
applies was closed before the function could be
completed.

The connection refers to a named file, but the
function is not "notify”.

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

The ASSPECIAL call attempted to format a physical
file past the end of the device.

8-100

ASTRUNCAT

AS$TRUNCATE

ASTRUNCATE truncates a named file at the current setting of the pointer,
freeing all allocated space beyond the pointer.

CALL RQSA$TRUNCATE(connection, resp$mbox, except$ptr);

INPUT PARAMETER

connection A TOKEN for an open connection to the file being I
truncated.

OUTPUT PARAMETERS

resp$mbox A TOKEN for the mailbox that receives an I/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an 1/0 result segment, the calling
task should call DELETESSE®MENT to delete the
segment after examining it.

exceptSptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

The A$TRUNCATE system call applies to named files only. This call
truncates a file at the current setting of the file pointer, freeing all
allocated space beyond the pointer. ASSEEK can be called to position the
pointer before ASTRUNCATE is called. If the file pointer is at or beyond
the end-of-file, no operation is performed. File pointers for other
connections to the file are not affected by the truncation operation.

Truncation is performed immediately:, rather than waiting until
connections to the file are deleted.
NOTE

The designated file connection must be

open for writing and must have update
access to the file.

8-101

PLAVULYULA L 52

CONDITION CODES

ASTRUNCATE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —-— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the exceptSptr parameter of this system call.

ESOK

E$ CONTEXT

E$EXIST

E$IFDR

ESLIMIT

ESMEM

ES$SNOTS CONFIGURED

E$ SUPPORT

No exceptional conditionms.

The connection is a connection produced by the
Extended I/0 System.

Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

[The connection parameter
e The respSmbox parameter
2. The connection is being deleted.

This system call applies only to named files, but
the connection parameter specified some other type
of file.

The call cannot be processed without exceeding the
maximum number (specified when the job was
created) of objects allowed for this job.

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ASTRUNCATE was not included when the system was
configured.

The specified connection parameter is not valid in

this system call because the connection was not
created by this job.

8-102

A$STRUNCA1

ESTYPE One or more of the following is true:

® The connection parameter contained a token for
an object that is not a connection.

e The resp$Smbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$mbox. After examining
the segment, you should delete it.

E$OK No exceptional conditions.

ES CONTEXT The specified file is not open for writing or
updating.

ESFACCESS The connection does not have update access to the
file.

E$I0 An I/0 error occurred, which might or might not

have prevented the operation from being completed.

R-1013

ASUPDATE

ASUPDATE requests that the Basic I/0 System write a partial sector that
remains after the most recent ASWRITE call.

CALL RQ$SASUPDATE(connection, resp$mbox, except$ptr);

INPUT PARAMETERS

connection A TOKEN for a connection to the file into which
the partial sector is to be written.

resp$mbox A TOKEN for the mailbox that receives an I/0

result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling

task should call DELETESSEGMENT to delete the
segment after examining it.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

The A$UPDATE call causes a partial sector of data to be written to the
file specified by the connection parameter in the call. Such a call can
be necessary because the I/0 System, when performing an ASWRITE
operation, writes only entire sectors. So if part of a sector remains to
be written, the I/0 System, unless requested to finish the writing
operation (that is, to "update the file"), leaves the data for a partial
sector in an output buffer. The next time ASWRITE is called on behalf of
that file, the leftover data in the buffer is combined with the data in
the new request, and the Basic I/0 System again begins writing entire
sectors. (Note that the ASUPDATE system call has no effect on buffers
that the Extended I/0 System manages.)

Three different events can cause the Basic I/0 System to "update” a
file. One, of course, is a call to ASUPDATE. The other two, called
fixed updating and timeout updating, are triggered by the passing of
(possibly different) amounts of time. You specify the time periods, and
the devices to which they apply, when you configure the Basic I/0 System.

8-104

ASUFPDA’]

Fixed updating occurs when an amount of time, whicﬁ is specified for an
entire application, passes. At that time, all devices to which updating
applies are "updated”. When configuring the Basic I/0 System, you

specify, for each I/0 device, whether fixed updating applies to that
device.

Timeout updating is just like fixed updating, except in two respects.
First, the time period is defined separately for each device, rather than
applying to the system as a whole. When configuring the Basic I/0
System, you specify, for each I/0 device, whether timeout updating
applies to that device, and if it does, what the timeout period is to be
for that device.

The second difference between timeout updating and fixed updating is
that, in timeout updating, the timeout period commences at the beginning

of each I/0 operation, whereas fixed updating is independent of I/0
activity.

CONDITION CODES

ASUPDATE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/O System can return the following condition codes to the word
specified by the exceptSptr parameter of this system call.

E$OK No exceptional conditions.
ESEXIST Two conditions can cause this exception code to be
returned:

1. One or more of the following parameters is not
a token for an existing object:

e The connection parameter
e The respSmbox parameter
2. The connection is being deleted.
ESLIMIT The call cannot be processed without exceeding the
maximum number (specified when the job was

created) of objects allowed for this job.

8-105

INJAL AJLA A LY

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ESNOTSCONFIGURED ASUPDATE was not included when the system was
configured.

E$ SUPPORT The specified connection parameter is not valid in
this system call because the connection was not
created by this job.

ESTYPE One or more of the following is true:

° The connection parameter contained a token for
an object that is not a connection.

e The resp$mbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$Smbox. After examining
the segment, you should delete it.

E$OK No exceptional conditions.

E$I0 An I/0 error occurred, which might or might not
have prevented the operation from being completed.

8-106

ASWRITE

ASWRITE writes data from the calling task's buffer to a connected file.

CALL RQSASWRITE(connection, buff$ptr, count, resp$mbox, except$ptr);

INPUT PARAMETERS

connection A TOKEN for the open connection through which the l
write operation is to take place.

buff$ptr A POINTER to the buffer that contains the data to
be written.

count A WORD giving the number of bytes to be written.

OUTPUT PARAMETERS

resp$mbox A TOKEN for the mailbox that receives an 1/0
result segment indicating the result of the call
(see Appendix C). A value of zero means that you
do not want to receive an I/0 result segment.

If it receives an I/0 result segment, the calling
task should call DELETESSEGMENT to delete the
segment after examining it.

If all the other connections to a stream file are
requesting write operations, an actual value of
zero and a status value of E$FLUSHING are returned
in the I/0 result segment.

except$ptr A POINTER to a WORD where the sequential condition
code will be returned.

DESCRIPTION

The ASWRITE call writes data from the caller's buffer to a connected
file. The data is written starting at the current location of the
connection's file pointer. After the write operation, the file pointer
is positioned just after the last byte written. Some efficiency may be

gained by starting writes on device block boundaries and writing an
integral number of device blocks.

8-107

PYVaAWL &ad

Be aware that it is possible to use the A$SEEK system call to position
the file pointer beyond the end of the file and commence writing. If a
task does this, the Basic I/0 System will extended the file to
accommodate the writing operation. However, the data located between the
old end of file and the beginning of the writing operation is undefined.

NOTES

The buffer supplying the data to be
written should not be modified until
the write request has been acknowledged
at the response mailbox.

The designated file connection must be
open for writing, and it must have
append or update access to the file.

CONDITION CODES

ASWRITE returns condition codes at two different times. The code
returned to the calling task immediately after invocation of the system
call is considered a sequential condition code. A code returned as a
result of asynchronous processing is a concurrent condition code. A
complete explanation of sequential and concurrent parts of system calls
is in Chapter 7 of this manual.

The following list is divided into two parts —— one for sequential codes,
and one for concurrent codes.

Sequential Condition Codes

The Basic I/0 System can return the following condition codes to the word
specified by the except$ptr parameter of this system call.

ESOK No exceptional conditions.

E$ CONTEXT The connection is a connection produced by the
Extended I/0 System.

ESEXIST Two conditions can cause this exception code to be
returned:

l. One or more of the following parameters is not
a token for an existing object:

e The connection parameter
e The resp$mbox parameter

2. The connection is being deleted.

8-108

ESLIMIT

ESMEM

ENOT CONFIGURED

E$ SUPPORT

ESTYPE

The call cannot be processed without exceeding the
maximum number of objects allowed for this job
(specified when the job was created).

The memory pool of the calling task's job does not
currently have a block of memory large enough to
allow this system call to run to completion.

ASWRITE was not included when the system was
configured.

The connection parameter specified is not valid in
this system call because the connection was not
created by this job.

One or more of the following is true:

e The connection parameter contained a token for
an object that is not a connection.

e The resp$Smbox parameter contained a token for
an object that is not a mailbox.

Concurrent Condition Codes -

The Basic I/0 System can return the following condition codes in an I/0
result segment at the mailbox specified by resp$Smbox. After examining
the segment, you should delete it.

ESOK
ES$ CONTEXT

ESFACCESS

E$SFLUSHING

E$ IO

No exceptional conditions.

The connection is not open for writing or updating.

The connection does not have update or append
access to the file.

One or more of the following is true:

e The connection was closed before the write
operation could be performed.

o The file specified by the connection parameter
is a stream file, and all other connections
are also requesting to write the file. (See
the description of resp$mbox.)

An I/0 error occurred, which might or might not
have prevented the operation from being completed.

Q-.1NnaA

A$WRIT

Y YVAWLL LAY

ESSPACE

E$SUPPORT

One or more of the following is true:

e The volume has no more space.

e The operation attempted to write beyond the
end of the device. This applies only to
physical files.

The write operation, if carried out, would extend

the file, but as the Basic I/0 System is
configured, extending a file is not allowed.

8-110

CREATE$USH

CREATESUSER

The CREATESUSER system call creates a user object.

This system call overrides the
protection mechanism provided by the
Basic I/0 System. It should be used
only by system programmers in charge of
security management.

user = RQSCREATE$USER(ids$ptr, except$ptr);

INPUT PARAMETER

idsS$ptr A POINTER to a structure of the following form:

DECLARE ids STRUCTURE(

length WORD,
count WORD,
id(*) WORD) ;

where:
length Number of elements in the ID array.

count Number of IDs (from the ID array) that
are to be included in the user
object. This number must be less than
or equal to length, but greater than
or equal to one.

id Array of IDs, each of which is
included in the user object. The
first ID is to be used as the owner ID
for any file created with reference to
this user object.

OUTPUT PARAMETERS

user A TOKEN where a token for the new user object will
be returned.

8-111

WA L DUP U DLV

except$ptr A POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The CREATESUSER system call creates a user object. It accepts a list of
IDs and returns a token for the new object.

If the number of ID slots, as specified by the length field, is greater
than the number of IDs, as specified by the count field, the effect is as
if length had been reduced to equal count.

CONDITION CODES

ESOK No exceptional conditions.

ESLIMIT The call cannot be processed without exceeding the
maximum number (specified when the job was created)
of objects allowed for this job.

ESMEM The memory pool of the calling task's job does not
currently have a block of memory large enough to

allow this system call to run to completion.

ESPARAM The count field in the ids structure either is zero
or is greater than the length field.

8-112

DELETE$US

DELETE$USER

The DELETESUSER system call deletes a user object.

This system call overrides the
protection mechanism provided by the
Basic I/0 System. It should be used
only by system programmers in charge of
security management.

CALL RQSDELETESUSER(user, except$ptr);

INPUT PARAMETER

user A TOKEN for the user object to be deleted.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The DELETE$USER system call deletes a user object. Deleting a user
object has no effect on connections created with the user object.

CONDITION CODES

E$OK No exceptional conditions.

ESEXIST The user parameter is not a token for an existing
object.

ESLIMIT The call cannot be processed without exceeding the

number (255 decimal) of I/0 operations which can be
outstanding at one time for the user object
specified in the call.

’-1113

LIRS L L3P UNILULY

ESNOTSCONFIGURED DELETESUSER was not included when the system was
configured.

ESTYPE The user parameter refers to an existing object of

the wrong type.

8-114

GETSDEFAULT$PREFIX

GET$DEFAULT$PREF

GET$DEFAULTSPREFIX returns the default prefix of a job.

connection = RQGETDEFAULTSPREFIX(job, except$ptr);

INPUT PARAMETER

job

OUTPUT PARAMETERS

connection

except$ptr

DESCRIPTION

The GET$DEFAULTSPREFIX
default prefix for the

CONDITION CODES
E$OK

ESNOS$PREFIX

A TOKEN for the job whose default prefix is I
sought. A zero specifies the calling task's job.

A TOKEN that receives a token for the connection l
object that is the default prefix for the
designated job.

A POINTER to a WORD where the condition code will
be returned.

system call allows the caller to ascertain the
specified job.

No exceptional conditions.

You specified a default prefix (prefix argument
equals zero), but no default prefix can be found
because of one of the following reasons:

e When this job was created, a size of zero was
specified for its object directory, so the job
cannot catalog a default prefix.

e The job's directory can have entries but a
default prefix is not cataloged there.

R-118

VIPDEIFAULLIPIRELI LA

e The prefix that is cataloged is not of the
correct type. The default prefix must be a
connection object or logical device object.
(Logical device objects are created by the
Extended I/0 System.)

o The job parameter contains a token for an
I object that is not a job.

ESNOT$SCONFIGURED GETSDEFAULTSPREFIX was not included when system was
configured.

8-116

GET$DEFAULT$USH

GET$DEFAULT$USER

GETSDEFAULTSUSER returns the default user object of a job.

user$id = RQSGETSDEFAULTSUSER(job, except$ptr);

INPUT PARAMETER

job A TOKEN for the job whose default user object is
sought. A zero specifies the calling task's job.

OUTPUT PARAMETERS

user$id A TOKEN for the user object that is the default
user for the designated job.

except$ptr A POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The GET$DEFAULT$USER system call allows the calling task to ascertain the
default user object associated with the designated job.

CONDITION CODES

E$OK No exceptional conditions.
E$NOSUSER No default user can be found because of one of the
following reasons:
o When this job was created, a size of zero was
specified for its object directory, so the job

cannot catalog a default user.

e The job's directory can have entries but a
default user is not cataloged there.

8-117

APULLL AU LILPUIILILY

E$NOTS CONFIGURED

e The object which is cataloged with the name
R?IOUSER is not a user object. The name
R?IOUSER should be treated as a reserved
word.

e The job parameter contains a token for an
object that is not a job.

GET$DEFAULT$USER was not included when the system
was configured.

8-118

GET$ TIME

The GET$TIME system call returns the system's date/time value.

date$time = RQSGETSTIME(exceptS$ptr); I

OUTPUT PARAMETERS

date$time A DWORD containing a date/time value expressed as
the number of seconds since a fixed,
user—determined point in time.

except$ptr A POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The GETSTIME system call returns the date/time value for the Basic I/0
System. The Basic I/0 System maintains the date/time value as the number
of seconds since some fixed, user—-determined point in time. Any time in
the past can be used as the "beginning of time".

CONDITION CODES

E$OK No exceptional conditions.

ESNOT$CONFIGURED GET$TIME was not included when the system was
configured.

8-119

INSPECTSUSER

The INSPECTSUSER system call returns a list of the IDs contained in a

user object.

CALL RQSINSPECT$USER(user, ids$ptr, exceptSptr);

INPUT PARAMETER

user

OUTPUT PARAMETERS

idsS$ptr

except$ptr

DESCRIPTION

A TOKEN for the user object being inspected.

A POINTER to a structure of the following form:

DECLARE ids STRUCTURE(

length WORD,
count WORD,
id(*) WORD) ;

where:

length Upper limit on the number of IDs that
are to be returned.

count Actual number of IDs that are being
returned.

id(*) The IDs being returned.

A POINTER to a WORD where the condition code will
be returned.

The INSPECTSUSER system accepts a token for a user object and returns a
list of the IDs in the user object.

The calling task must supply the length value in the data structure
pointed to by the ids$ptr parameter. The I/0 System fills in the
remaining fields in that structure.

If the length value 1is smaller than the actual number of IDs in the user
object, only the specified number of IDs will be returned.

8-120

CONDITION CODES
ESOK

ESEXIST

E$SNOT$CONFIGURED

ESPARAM

ESTYPE

INSPECT$USE

No exceptional conditions.

The user parameter is not a token for an existing
object.

INSPECTSUSER was not included when the system was
configured.

The length field contains a value of zero.

The job or user parameter refers to an object of
the wrong type.

8-121

SETSDEFAULT$ PREFIX

SET$DEFAULT$PREFIX sets the default prefix for an existing job.

CALL RQSETDEFAULTSPREFIX(job, prefix, except$ptr);

INPUT PARAMETERS

I job A TOKEN for the job whose default prefix is to be
set. A zero specifies the current job.

I prefix A TOKEN for the connection that is to become the
default prefix.

OUTPUT PARAMETERS

except$ptr A POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The SETSDEFAULT$PREFIX system call sets the default prefix for an
existing job. It does this by cataloging the connection (supplied as the
prefix parameter) in the object directory of the job (supplied as the job
parameter). The Basic 1/0 System catalogs the prefix under the name $.

CONDITION CODES
E$OK No exceptional conditions.
E$CONTEXT When this job was created, a size of zero was
specified for the object directory, so a default

prefix cannot be cataloged

E$EXIST One or more of the following parameters is not a
token for an existing object:

e The job parameter

e The prefix parameter

8-122

ESLIMIT

ENOT CONF IGURED

E$TYPE

SET$DEFAULT$PREF]

The prefix parameter cannot be cataloged because
the job object directory is full.

SET$DEFAULTSPREFIX was not included when the
system was configured.

One or more of the following is true:

e The job parameter is a token for an object
that is not a job.

o The prefix parameter is a token for an object
that is not of the correct type. It must be
either a connection object or a logical device
object. (Logical device objects are created
by the Extended I/0 System.)

8-123

SET$DEFAULTSUSER

SET$DEFAULTSUSER sets the default user object for a job.

This system call overrides the
protection mechanism provided by the
Basic I/0 System. It should be used
only by system programmers in charge of
security management.

CALL RQ$SETSDEFAULTSUSER(job, user, except$ptr);

INPUT PARAMETERS

job A TOKEN for the job whose default user object is
to be set. A zero designates the calling task's
job.

user A TOKEN for the user object that is to become the

default user.

OUTPUT PARAMETER

exceptSptr A POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The SET$DEFAULTSUSER system call sets the default user for an existing
job.

CONDITION CODES
E$OK No exceptional conditions.
E$ CONTEXT When this job was created, a size of zero was

specified for the object directory, so a default
prefix cannot be cataloged.

8-124

E$SEXIST

ESLIMIT

ENOT CONFIGURED

ESTYPE

SET$DEFAULT$USEI

One or more of the following parameters is not a
token for an existing object:

e The job parameter
o The user parameter

The user object cannot be cataloged because the
job object directory is full.

SETSDEFAULTSUSER was not included when the system
was configured.

The job or user argument refers to an object of
the wrong type.

o 19K

w

SET$TIME

This system call overrides the timing
mechanism provided by the Basic I/0
System. It should be used only by
system programmers setting the initial
system time.

The SET$STIME system call sets the date and time for the 1/0 System.

CALL RQSSETSTIME(date$time, except$ptr);

INPUT PARAMETER
date$time A DWORD containing a date/time value expressed as

the number of seconds since a fixed,
user—determined point in time.

OUTPUT PARAMETER

except$ptr A POINTER to a WORD where the condition code will
be returned.

DESCRIPTION

The SET$TIME system call sets the date/time value for the 1/0 system.
The 1/0 System maintains the date/time value a double word containing the
number of seconds since a fixed point in time. Any time in the past can

be used as the "beginning of time"”, but we recommend that you use 12:00
am (midnight), January 1, 1978.

CONDITION CODES
E$OK No exceptional conditions.

ESNOT$CONFIGURED SETSTIME was not included when the system was
configured.

8-126

WAITSIO

WAITSIO can be called following a call to ASREAD, ASWRITE, or A$SEEK.
When called, it returns to the calling task the concurrent condition code
for the prior call., If applicable, WAIT$IO also returns the number of
bytes read or written.

actual = RQSWAIT$IO(connection, resp$mbox, time$limit, except$ptr);

INPUT PARAMETERS

connection A TOKEN for the connection that was specified as

the connection in the prior asynchronous system
call. (See DESCRIPTION,)

resp$mbox A TOKEN for the mailbox that was specified as the

response mailbox for the prior asynchronous system
call. (See DESCRIPTION.)

time$limit A WORD specifying the number of Nucleus system
clock units that the task calling WAITSIO is
willing to wait for the I/O result segment to
arrive at the response mailbox. A value of 0
means that the task is not willing to wait at all,
and a value of OFFFFH means that the task will
wait indefinitely.

OUTPUT PARAMETERS

actual A WORD to which the Basic I/0 System returns the
number of bytes read or written in the prior
asynchronous system call. This value is undefined
if the prior call was to ASSEEK. (See
DESCRIPTION.)

except$ptr A POINTER to a WORD where either the (concurrent)
condition code for the prior asynchronous system
call or the (sequential) condition code for the
WAITSIO system call is to be returned. (See
' DESCRIPTION.)

8-127

AILSIV

DESCRIPTION

There are two ways in which a task calling ASREAD, ASWRITE, or ASSEEK can
receive the result of the concurrent portion of the call from the
designated response mailbox. One way is for the task to wait at the
mailbox, receive an I/0 result segment there, and extract the information
from the segment. It is then incumbent upon the task to delete the
segment, so that memory reserves are not needlessly depleted.

The other way for the task to receive this information is to call
WAIT$IO. After the concurrent portion of the previous I/0 call has been
completed, the WAITSIO system call returns the result of that call as
follows:

e To the actual word, the number of bytes read or written,
depending upon whether the previous call was to ASREAD or
ASWRITE, respectively. If the previous call was to ASSEEK, the
value in the actual word is undefined.

e To the word pointed to by the except$ptr parameter, the
concurrent condition code from the previous I/0 call or the
sequential condition code from the call to WAIT$IO. That is, if
either if these condition codes is not E$OK, then that code is
returned; if both of the condition codes are not ESOK, then the
code that is returned is the code from the call to WAIT$SIO. You
should take note of the following:

-~ There are four condition codes —— E$CONTEXT, ESLIMIT, ESMEM,
and E$SUPPORT -- that can be returned by either the
sequential or the concurrent portion of a system call.
However, WAITSIO does not return any of these codes, so if
one of them is returned, it came from the previous I/0 call.

- If the concurrent portion of the previous I/0 call caused an
E$I0 exceptional condition, this code is not returned.
Instead (in this case only), WAIT$IO returns the value in the
unit$status field of the I/0 result segment for the previous
I/0 call. The possible values are the following and are
described under CONDITION CODES:

Mnemonic Value
ESIOSUNCLASS 50H
ESTOS$SOFT 51H
E$IOSHARD 52H
E$IOSOPRINT 53H
ESIOSWRPROT 54H

The benefit of WAIT$IO is that, in applications that use it, tasks do not
always have to deal directly with I/0 result segments. In particular,
those tasks do not have to delete I/0 result segments. Because of this,
the Basic I/0 System, in applications using WAIT$IO, maintains a supply
of I/0 result segments that can be used repeatedly. This means that
performance is enhanced because the Basic I/0 System does not have to
create a segment every time an I/0 result segment is needed. This
provides a significant advantage because ASREAD, ASWRITE, and ASSEEK are
typically the most commonly invoked Basic I/0 System calls.

8-128

CONDITION CODES
E$OK

ESEXIST

E$ IO$HARD

E$SIOSOPRINT

E$ IO$SOFT

E$ IO$UNCLASS

E$ IO$SWRPROT

ENOT CONF IGURED

ES$STIME

WAITS$I

No exceptional conditionmns.
One or more of the following is true:

e In the call to WAIT$IO, the connection
parameter or the resp$mbox parameter (or both)
did not contain a token for an existing object.

e The specified connection or response mailbox
(or both) was deleted.

o The token returned to the specified mailbox
was for an object that had been deleted.

A hard I/0 error occurred. This means that a
retry is probably useless.

The device was off-line. Operator intervention is
required.

A soft I/0 error occurred. This means that the
Basic I/0 System tried several times to perform
the asynchronous operation and failed, so another
retry is probably useless.

An unknown type of I/0 error occurred.

The asynchronous operation was A$WRITE and the
volume was write—protected.

WAITSIO was not included when the system was
configured.

One of the following is true:

e The task calling WAIT$SIO specified that it
would not wait, and there was no I/0 result
segment at the specified mailbox.

e The task calling WAITS$IO specified that it
would wait for a specific period of time, but
an I/0 result segment was not sent to the
response mailbox in that time period.

fk-12Q

AlLLILIV

ESTYPE One or more of the following is true:

) The connection parameter was not a connection
or was a device connection.

® The respSmbox parameter was not a mailbox.
¢ The object received at the response mailbox

was not a segment or was a segment that was
not an I/0 result segment.

kk%k

8-130

CHAPTER 9. CONFIGURING THE BASIC I1/0 SYSTEM

The Basic I/0 System is a configurable layer of the iRMX 86 Operating
System. It contains several options that you can adjust to meet your

specific needs. To help you make configuration choices, Intel provides
three kinds of informatiom:

e A list of configurable options

o Detailed information about the options

e Procedures to allow you to specify your choices
The balance of this chapter provides the first category of information.

To obtain the second and third categories of information, refer to the
iRMX 86 CONFIGURATION GUIDE.

BASIC I/0 SYSTEM CALLS

You can select the system calls that your application requires. The
advantage in being able to do this is that you can reduce the amount of
Basic I/0 System code needed to support your application. Moreover, if
you choose to omit certain combinations of system calls, you can exclude
entire file drivers, such as the stream file driver.

INTEL I/0 DEVICES

You must specify which Intel I/0 devices (controllers) are part of your
hardware configuration. The devices that you can specify are listed in
the iRMX 86 CONFIGURATION GUIDE.

For each device that you select, you must specify a name, physical
characteristics, and desired operating modes.

BUFFERS

For each device, you must specify the number of buffers that the Basic
I1/0 System is to manage during I/0 operations on that device.

TIMING FACILITIES

You must specify whether you want your system to include the timing
facilities related to the SET$TIME and GETSTIME system calls.

CONFIGURING THE BASIC I/0 SYSTEM

SERVICE TASK PRIORITIES

You must specify the priorities of the Basic I/0 System tasks that attach
devices and delete connections.

CREATION A FILE WITH AN EXISTING PATHNAME

Occasionally, a task will call A$CREATESFILE, specifying a pathname that
is identical to the pathname of a file that already exists. The Basic
I1/0 System provides a configuration parameter (called NO_CREATE FILE)
that enables you to specify what should happen in this case.

If NO_CREATE FILE is selected, the call to ASCREATE$FILE will return the
exception code E$FEXIST, regardless of the value of the must$create
parameter in the call.

If NO_CREATE FILE is not selected, then what happens depends upon the
value of the must$create parameter in the call to ASCREATESFILE. If
must$create is true (OFFH), then the Basic I/0 System returns the
ESFEXIST exception code. If must$create is false (0), then the existing
file is truncated or expanded, according to the size parameter in the

" call to ASCREATESFILE.

SYSTEM MANAGER ID

You must specify whether you want a system manager (user).

BASIC I/0 SYSTEM IN ROM OR RAM

You must specify whether the Basic I/0 System is to be in ROM or in RAM.
If you specify RAM, as you will during the initial testing phase of your
development cycle, you will have to arrange to load the Basic I/0 System
into memory.

FACTORS THAT AFFECT BASIC I/0 SYSTEM PERFORMANCE

The purpose of this section is to make you aware of the factors that have
the greatest impact on the performance (speed) of the Basic I/0 System.
Note that you determine some of these factors during software
configuration, but you determine other factors at other times. The
factors are as follows:

e Device granularity, which is the smallest number of bytes that
can be read from or written to a device in a single I/0
operation. If this value is selectable, you determine it either
by jumpering hardware or by means of software, depending upon the
device.

CONFIGURING THE BASIC I/O SYSTEM

° Volume granularity, which is the smallest number of contiguous
bytes that can be allocated from a volume in a single
allocation. This value can vary from volume to volume and must
be a multiple of the device granularity. You specify it when
formatting the volume with the FORMAT command of the Human
Interface or with the Files Utility.

e File granularity, which is the smallest number of bytes that can
be allocated to a file in a single allocation. This value can
vary from file to file and must be a multiple of the volume
granularity. You specify each file's granularity when creating
the file with the ASCREATESFILE system call.

o The number of buffers for each device—unit. You specify this
value when configuring the Basic I/0 System.

® The number of bytes to be read or written. You specify this
value in calls to ASREAD and ASWRITE.

e The priority of tasks that the Basic I/0 System supplies for the
purpose of overseeing I/0 operations. There is one such task for
each device-unit; you specify the priority of each of these tasks
when configuring the Basic I/0 System.

® The amount of time between updates performed by the fixed update
and timeout update features. You specify these time intervals
when configuring the Basic I/0 System. These two kinds of
updating are explained in Chapter 8, in the description of the
ASUPDATE system call.

For best results with these factors, you should begin by using your best
judgment. Then, using the resulting performance figures as a base, you
can experiment by changing a few (perhaps only one) factors at a time.

Obtaining the optimum combination of these factors is vital to the

performance of any application of which I/0 operations are a major part.
Consequently, you would be wise to do some experimenting.

#%%

APPENDIX A. iRMX™ 86 DATA TYPES

The following are the data types that are recognized by the iRMX 86

Operating System:

BYTE

WORD

DWORD

INTEGER

OFFSET

SELECTOR

POINTER

STRING

TOKEN

An unsigned, 8-bit, binary number.

An unsigned, 16-bit, binary number.

An unsigned, 32-bit, binary number.

A signed, 16-bit, binary number that is stored in
two's complement form.

An unsigned, 16-bit binary number whose value
represents the distance from the base of an 8086
segment.

An unsigned, 16-bit binary number whose value
represents the base of an 8086 segment.

Two adjacent WORDs containing the base of an 8086
segment and an offset, in the order: offset followed
by base.

A sequence of consecutive BYTEs. The first byte
contains the number of bytes that follow it in the
string.

An unsigned, 16-bit, binary number that you must
declare to be literally a WORD or a SELECTOR.

k%%

APPENDIX B. iRMX™ 86 TYPE CODES

Each iRMX 86 object type is known within the iRMX 86 System by means of a
numeric code. For each code, there is a mnemonic name that can be
substituted for the code. The following lists the types with their codes
and associated mnemonics.

OBJECT TYPE INTERNAL MNEMONIC NUMERIC CODE
Job T$JOB 001H
Task T$ TASK 0021
Mailbox T$MAILBOX 003H
Semaphore TS SEMAPHORE 004H
Segment TS SEGMENT 006H
User TSNUM$SUSER 100H
Connection T$ CONNECTION 101H

*k%k

APPENDIX C. 1I/0 RESULT SEGMENT

Certain asynchronous I/0 system calls return a data structure called an
I/0 result segment to the mailbox specified by the “resp$mbox"”
parameter. The following system calls can return such a segment:

ASATTACHSFILE ASCHANGESACCESS
ASCLOSE ASCREATESDIRECTORY
ASCREATESFILE ASDELETE$CONNECTION
ASDELETESFILE ASOPEN

ASREAD ASRENAMESFILE
AS$SEEK ASSPECIAL
ASTRUNCATE ASUPDATE

ASWRITE

Three of these system calls (ASATTACHSFILE, ASCREATESDIRECTORY, and
ASCREATESFILE) can return either a connection or an I/0 result segment to
the mailbox. Your application task can determine which type of object
has been returned by making a GET$TYPE system call before trying to
examine the object.

Before waiting at the response mailbox to receive the I/0 result segment,
your application task should examine the condition code returned in the
word pointed to by the "except$ptr” parameter. If this code is "E$OK",
the task can wait at the mailbox. However, if the code is not "ESOK", an
exceptional condition exists and nothing is sent to the mailbox.

Immediately after receiving the I/0 result segment, the task should
examine the status field. This field contains an "ESOK" if the system
call was completed successfully or an exceptional-condition code if an
error occurred. The result segment also contains the actual number of
bytes read or written, if appropriate.

STRUCTURE OF I/0 RESULT SEGMENT

The I/0 result segment is structured as follows:

DECLARE iors STRUCTURE(
status WORD,
unit$status WORD,
actual WORD) ;

1/0 RESULT SEGMENT

where:
status the condition code indicating the outcome of the
call; Appendix D lists these asynchronous condition
codes.
unit$status contains, in the low-order four bits,
device—-dependent error code information that is
meaningful only if status = ES$IO; the codes, their
meanings, and their associated mnemonics are as
follows:
code mnemonic meaning
0 TOSUNCLASS Unclassifed error
1 I0$SOFT Soft error; the I/0 system
has retried the operation
and failed; another retry is
not possible
2 TOSEARD Hard error; a retry is not
possible
3 I0$OPRINT Operator intervention is
required
4 IOSWRPROT Write-protected volume
actual the actual number of bytes transferred

The I/0 result segment contains other fields which are of interest only
to the designer of a device driver. These fields are not described in
this manual. For information about the remaining fields of the I/0
result segment, refer to the GUIDE TO WRITING DEVICE DRIVERS FOR THE
iRMX 86 AND iRMX 88 I/0 SYSTEMS.

UNIT STATUS FOR SPECIFIC DEVICES

You may need to know the information contained in the “"unitSstatus” field
for the following devices.

iSBC® 204 AND iSBC® 206 CONTROLLERS

The iSBC 204 and 206 drivers place a controller—-generated result byte in
the high eight bits of this word. For information about this byte, refer
to the hardware reference manual for the iSBC 204 or 206 controller.

I/0 RESULT SEGMENT

iSBC® 215 CONTROLLER

Under certain circumstances, the iSBC 215 Winchester disk controller
places information in the high twelve bits of this word. If the low four
bits indicate IO$SOFT, the controller sets the high twelve bits as
follows:

Bit Interpretation

15 (leftmost) l=seek error

14 l=cylinder address miscompare
13 l=drive fault
12 1=1D field ECC error
11 l=data field ECC error
10-8 unused
7 l=sector not found
6-4 unused

On the other hand, if the low four bits indicate IOSHARD, the iSBC 215
controller sets the high twelve bits as follows:

Bit Interpretation
15 l=invalid address
14 l=gector not found
13 l=invalid command
12 l=no index
11 l=diagnostic fault
10 l=illegal sector size
9 l=end of media
8 l=illegal format type
7 =gseek in progress
6 1=ROM error
5 1=RAM error
4 unused

If you need more detailed information regarding the
meanings of these errors, refer to the iSBC 215
WINCHESTER DISK CONTROLLER HARDWARE REFERENCE MANUAL,

iSBC® 208 CONTROLLER

If the error is IO$SOFT (low four bits =1H), the next hex digit position
can be 0,1, or 2. That is, the value in the low byte of unitSstatus will
be Ol1H, 11H, or 21H. The upper byte of the unit$status word will indicate
the exact meaning of the error condition. The meanings are listed here.

I/0 RESULT SEGMENT

low byte high byte
bit meaning
01" 8,9 unit select
10 head select
11 not ready
12 equipment check
13 seek end
14,15

00 normal termination
0] 1 abnormal termination
10 invalid command

11 ready state changed

11H v 8 missing address mark
9 not writeable
10 no data, sector not found
12 over—-run, DMA late
13 CRC error in ID field
15 end of cylinder

21H 8 missing data address mark
9 wrong cylinder in ID field
12 wrong cylinder in ID field
13 CRC error in data field
14 deleted data mark

I1f you need more detailed information regarding the meanings of these
errors, refer to the iSBC 208 FLEXIBLE DISK DRIVE CONTROLLER HARDWARE
REFERENCE MANUAL.

k%

APPENDIX D. EXCEPTION CODES

This Appendix lists two types of exception codes. Those detected
synchronously with system call invocation (sequential codes) and those
detected during the asynchronous portion of system call processing
(concurrent codes). The sequential codes are returned to the location
addressed by the "excep$ptr” field of the system call. The concurrent
codes are returned in an I/0 result segment (see Appendix C). This
appendix lists all codes with their decimal and hexadecimal equivalents.

SEQUENTIAL (ENVIRONMENTAL) EXCEPTION CODES

CODE DECIMAL HEXADECIMAL
ESOK 0 OH
ESTIME 1 1H
E$SMEM 2 2H
ESLIMIT 4 4H
E$ CONTEXT 5 5H
ESEXIST 6 6H
E$STATE 7 7H
ENOT CONFIGURED 8 8H
E$SUPPORT 35 23H
ESDEV$OFFLINE 46 2EH
ESIFDR 47 2FH

SEQUENTIAL (PROGRAMMER ERROR) EXCEPTION CODES

CODE DECIMAL HEXADECIMAL
ESZEROSDIVIDE 32768 8000H
E$OVERFLOW 32769 8001H
ESTYPE 32770 8U02H
ESPARAM 32772 8004H
E$BADS CALL 32773 8005H
E$NOUSER 32801 8021H
E$NOPREFIX 32802 8022H

D-1

EXCEPTION CODES

CONCURRENT EXCEPTION CODES

CODE DECIMAL HEXADECIMAL
E$SMEM 2 2H
ESLIMIT 4 4H
E$CONTEXT 5 5H
ESFEXIST 32 20H
E$FNEXIST 33 21H
ESDEVFD 34 22H
E$SUPPORT 35 23H
ESEMPTY$SENTRY 36 24H
E$DIRSEND 37 25H
E$SFACCESS 38 26H
E$FTYPE 39 271
ES SHARE 40 28H
E$SPACE 41 29H
ESIDDR 42 2AH
ES$IO 43 2BH
ESFLUSHING 44 2CH
E$ILLSVOL 45 2DH
EIOUNCLASS 80 50H
EIOSOFT 81 51H
EIOSHARD 82 52H
EIOSOPRINT 83 53H
ESIOSWRPROT 84 54H

k%%

APPENDIX E. LOGICAL DEVICES AND THE BASIC I/0O SYSTEM

You can assign a logical name to any device with Extended I/0 System call
LOGICALSATTACHS$DEVICE. This creates a logical device object, (TLOGDEV)
and catalogs the object in the root object directory.

Typically, you will use these logical device objects with Extended I/0
System calls. However, Basic I/0 System calls also permit the prefix
parameter to be a logical device object. When you use a logical device
object as the prefix parameter in Basic I/0 System calls, you might
receive the exception code E$DEVSOFFSLINE. If you receive this exception
code and the device is online, the device was never physically attached.

Before you can use a logically named device, the device must be made
known to the system (attached), with the Basic I/0 System call
ASPHYSICALSATTACHSDEVICE. But when LOGICALSATTACHS$DEVICE is invoked, the
system does not immediately issue a call to ASPHYSICALSATTACHSDEVICE.
Instead, physical attachment occurs transparently during processing of
any Extended I/0 System call which references the logical device object.

You might create a logical device connection but not invoke any Extended
I/0 System call to perform the physical attach operation. If so, the
Basic I/0 System can return ESDEVSOFFSLINE. You can correct this
situation by invoking at least one Extended I/0 System call that
references the logical device by its logical name (such as :F0:).

For further information, refer to the descriptions of

LOGICALSATTACH$DEVICE, in the iRMX 86 EXTENDED I/O SYSTEM REFERENCE
MANUAL, and ASPHYSICALSATTACHSDEVICE, in this manual.

*%k%

APPENDIX F. USING THE iRMX™ 86 TERMINAL SUPPORT CODE

The iRMX 86 Operating System provides two software packages that you can
use to interface an operator's terminal with an iRMX 86—based application
system. One such package is the Terminal Handler, and it is described in
the iRMX 86 TERMINAL HANDLER REFERENCE MANUAL. The other package is the
iRMX 86 Terminal Support Code, and it is the subject of this appendix.

In addition to presenting different interfaces to terminal operators,
there is one major difference between these two packages. The Terminal
Handler is a complete package, providing all of the required software
links between the terminal and the tasks that interact with the
terminal. In contrast, the Terminal Support Code, although far more
powerful, is not complete. Before you can use the Terminal Support Code
in your operating system, you must provide a terminal device driver,
which is the software link between the Terminal Support Code and the

terminal. Intel supplies some of these drivers with the iRMX 86
Operating System.

The remainder of this appendix describes using and controlling a terminal
that interfaces with the Terminal Support Code. Refer to Appendix G of
this manual for information about the Intel-supplied terminal drivers.
For information about writing a terminal device driver, consult the GUIDE
TO WRITING DEVICE DRIVERS FOR THE iRMX 86 AND iRMX 88 I/0 SYSTEMS.

CONTROLLING INPUT AND OUTPUT FROM A TERMINAL

By entering control characters, such as Control-P or Control-X, you can
influence the manner in which data flows between the Basic I/0 System
portion of an iRMX 86 application system and a terminal that is connected
to that system. On input, these characters perform line editing
functions. On output, they stop the flow of data, resume the flow, or
allow data to flow in bursts of one or more lines.

LINE EDITING AT A TERMINAL

Three buffers are involved when data is entered at a terminal. The first
is a type—ahead buffer, where the Terminal Support Code places the data
until a task calls A$SREAD to request input from the terminal. When the
input request arrives, the Terminal Support Code transfers the data to a
line buffer, where it edits the line (unless line editing is disabled)
according to control characters that are intermixed with the data. If
additional data is entered at the terminal, it goes directly into the
line buffer for editing. When a line terminator is entered, the Terminal
Support Code transfers the edited data to the third buffer, where the
requesting task has access to it.

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

The Terminal Support Code automatically supplies the first two buffers,
and the task supplies the third buffer in its call to AS$READ.

In what follows, the term "current line"” refers to the set of characters
(possibly with editing having been performed on them) that have been
entered after the most—recently—entered carriage return or line feed. It
is not possible to say where the current line is, with respect to the
three buffers, because this varies according to changing circumstances.

The control characters that the Terminal Support Code uses to edit data
in the line buffer are described in the next few paragraphs. Each
control character described here is the default, and each can be replaced
with a different control character by means of a process that is
explained later in this appendix.

Carriage Return Terminates the current line. Entering either of

Line Feed these causes both to be placed into the current
line and also to be displayed at the terminal.
After displaying the CR/LF sequence, the Terminal
Support Code moves the current line (or the
number of characters specified in the input
request, if the request is for fewer characters
than are in the current line) to the buffer
specified in the input request. If characters
remain in the line buffer, they will be used to
fully satisfy the next request for input from the
terminal.

Rubout Rubs out the last data character in the current
line. That is, the rubout character and the data
character immediately preceding the rubout
character in the current line are both removed
from the current line. If the terminal has a
display screen, the deleted character disappears
from the display. If the terminal output is hard
copy, the deleted character is displayed a second
time, surrounded by the "#" character; for
example, the sequence
"CAT(rubout) (rubout)(rubout)” would appear as
CAT#TAC# and would enter and remove the letters
C, A, and T from the current line.

Control-P Causes the next character entered to be treated
as data, even if that character is normally a
control character. The Control—-P character,
which is operative only when line editing is
enabled, is not placed into the current line, and
neither the Control-P nor the next character
entered is displayed at the terminal.

Control-R

Control-U

Control-X

Control-z

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Causes the current line to be displayed with
editing already performed. This enables the
terminal operator to see the effects of the
editing characters entered since the most recent
line terminator. If the current line is empty,
the previous line is displayed. Moreover, if an
operator enters Control-R several times
successively, the Terminal Support Code displays
previous lines until it can't find any more
lines; then it repeatedly displays the last line
found until no more Control-R's are entered.

Immediately empties the type—ahead buffers that
the Terminal Support Code manages.

Deletes the current line. This control character
discards all characters entered since the most
recent line terminator and causes "#" to be
displayed.

Terminates the current line. Control-Z differs
from Carriage Return and Line Feed in that
Control-Z does not become part of the current
line that it terminates. Consequently, entering
Control-Z immediately after entering another line
terminator causes the I/0 result segment for the

next input request to be returned with the value
0 in its ACTUAL field.

CONTROLLING OUTPUT TO A TERMINAL

When sending output to a terminal, the Terminal Support Code always
operates in one of four modes. The current output mode can be switched
dynamically to any of the other output modes. The output modes and their
characteristics are as follows:

Normal

Stopped

Scrolling

The Terminal Support Code accepts output from
tasks and immediately passes the output to the
terminal for display.

The Terminal Support Code accepts output from

tasks, but it queues the output rather than
immediately passing it to the terminal.

The Terminal Support Code accepts output from
tasks, and it queues the output as in the stopped
mode. However, rather than completely preventing
output from reaching the terminal, it sends a
predetermined number (called the scrolling count)
of lines to the terminal whenever an operator

enters an appropriate control character at the
terminal.

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Discarding The Terminal Support Code discards all output for
the terminal, rather than queueing it or passing
it to the terminal.

The following control characters, when entered at the terminal, change
the output mode for the terminal. In addition, these control characters
will be acted upon when they appear in the output stream, provided that
the connection's connection$flags (see the description of A$SPECIAL in
Chapter 8 of this manual) word so indicates.

As in the case of the input control characters, each control character
described here is the default, and each can be replaced with a different
control character by means of a process that is explained later in this
appendix.

Control-0 Places output into or out of discarding mode. If
the output is not in discarding mode, Control-0
places output into discarding mode. On the other
hand, if output is in discarding mode, Control-O
places output into the mode it was in prior to
entering discarding mode.

Control—Q Places output into normal mode. However, if the
last output control character was Control-S, the
output mode returns to what it was before
entering stopped mode. Note that this implies
the following:

. The Control—-S, Control—-Q sequence always
returns the output mode to what it was
before the sequence was begun.

° The Control-Q, Control—Q sequence always
places output into normal mode.

Control-S Places output into stopped mode. However, if
output was in the discarding mode, Control-S
leaves it in discarding mode, but a subsequent
Control-0 will place it in stopped mode.

Control-T Allows one output line to be sent to the terminal.

Control-W Allows N lines to be sent to the terminal, where
N is the current scrolling count.

MODIFYING INPUT AND OUTPUT CONTROL CHARACTER ASSIGNMENTS

As indicated in the previous sections, control character assignments can
be altered dynamically. The mechanism for this kind of change is a
Software Control String, as defined in the American National Standards
Institute publication ANSI X3.64 (1979). 1In this appendix, we are
concerned with two kinds of Software Control Strings.

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

The first kind of Software Control String is used in communication from a
program or terminal to an operating system. The opening delimiter for
such a string is Escape Right Bracket (Esc]) and the closing delimiter
is Escape Backslash (Esc \). This appendix calls this kind of string an
Operating System Command sequence, or OSC sequence. Furthermore, the
appendix uses the abbreviation OSC to stand for the opening delimiter and
ST to stand for the closing delimiter.

The other kind of Software Control String is used in communication from
an operating system to an application program. The opening delimiter for
this kind of string is Escape Underline (Esc _) and the closing
delimiter, as in OSC sequences, is Escape Backslash (Esc \). This
appendix calls this kind of string an Application Program Command
sequence, or APC sequence. The appendix uses the abbreviation APC to
stand for the opening delimiter of an APC sequence.

Under conditions that are described later in this section, input and
output control character assignments are altered by means of 0SC
sequences of the form

’
N4
A A _/
0996
where:
T An abbreviation for any word, such as Terminal, that starts with
that letter.
C An abbreviation for any word, such as Control, that starts with

that letter.

n The decimal representation of the ASCII code for the desired
control character.

m A function code from Table F-1.

The following sequence cancels the default assignment of Rubout (DEL) as
the deletion character and assigns Backspace (BS) in its place:

0SC TERM: C127=0, C8=11 ST

MODES OF TERMINAL OPERATION

A terminal that is being supported by the Terminal Support Code is
governed by numerous modes of operation. Some of these modes apply
directly to the terminal, and are independent of the connection that a
task uses to communicate with the terminal. The remaining modes depend
entirely upon the connection being used.

USING THE iRMX" 86 TERMINAL SUPPORT CODE

Table F-1. Menu of Control Character Functions

m Abbreviated Functional Description Default Assignment
0 None None

1 Stop output Control-S

2 Start output Control—-0

3 Discard output Control-0

4 Scroll N lines Control-W

5 Scroll 1 line Control-T

6 Empty type—ahead buffer Control-U

7 Escape Escape

8 CR/LF line terminator Control-J, Control-M
9 Line terminator without CR/LF Control-Z

10 Accept next character literally Control-P

11 Delete character (Rubout) Rubout

12 Cancel line Control-X

13 Reprint line with editing Control-R

14 Line terminator without CR/LF None

MODES THAT A TERMINAL INHERITS FROM A CONNECTION

This appendix discusses the modes that a terminal inherits from a
connection first, because they are relatively few in number and are easy to
understand. Each of these modes is directly related to one or more bits in
the connection$flags word for the connection. The full definition of each
portion of the connection$flags word is provided in Chapter 8 of this
manual, in the description of the ASSPECIAL system call. The names of the
modes, the single-letter identification codes for the modes, the bits of
the connection$flags word to which they correspond, and a brief description
of their functions are given in Table F-2.

Assuming that the 0SC control mode is set appropriately, the modes that a
terminal inherits from a connection can be altered. The syntax of an 0SC
sequence that will change one or more of these modes is as follows:

‘.(4, 4/,-\\
(bl .

0997

where:
C An abbreviation for any word, such as Connection, that
begins with that letter.
mode id An ID letter from the list of modes given in Table F-2.

decimal number The value to which you want to change the mode.

For these decimal number values, refer to the description of A$SPECIAL in
Chapter 8.

F-6

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Table

F-2. Inherited Terminal Modes

Mode Name

ID

Bit(s)

Description

Line editing

Echo

Input parity
setting

Output parity
setting

Output control

0SC control

Indicates whether line editing is to
be enabled. If not, indicates whether
input requests should wait for a line
terminator to be entered.

Indicates whether characters entered
at the terminal are to be echoed to
the display.

Indicates whether characters entered

at the terminal are to have their
parity bits set.

for the terminal are to have their
parity bits set.

0 5 Indicates whether output control
characters are to be recognized and
acted upon when they are entered at
the terminal.

C 6-7 Indicates, for input and output

(separately), whether OSC control

sequences should be recognized and
acted upon.

NOTE

It is possible to use two or more

connections concurrently for obtaining
input from a terminal. When this is
the case, an operator at the terminal
cannot always be certain as to which
connection is being used to read the
characters the operator is entering.
In this case the operator cannot tell
which connection's modes are being
altered when the operator enters an 0SC
sequence as described in this section.
To avoid this problem, never use
multiple connections concurrently for
input when you are planning to use 0SC
sequences to alter connection modes.

W 4 Indicates whether characters destined

USING THE iRMX"™ 86 TERMINAL SUPPORT CODE

MODES THAT BELONG TO A TERMINAL (PART 1)

A terminal has several more modes of its own than modes that it has inherited
from a connection. This section discusses some of these modes. Then, after
covering the subjects of translation and simulation, a later section returns
to the subject of modes that a terminal owns and completes the coverage of it.

The structure of this section is similar to that of the previous sectiom, but
the focus is now on the terminal rather than on a connection to the

terminal. Consequently, this section is based on the fact that each of the
terminal modes is directly related to one or more bits in the terminal$flags
word for the terminal., The full definition of each portion of the
terminal$flags word is provided in Chapter 8 of this manual, in the
description of the ASSPECIAL system call. The names of the modes, the
single-letter identification codes for the modes, the bits of the
terminal$flags word to which they correspond, and a brief description of
their functions are given in Table F-3.

Table F-3. Non-Inherited Terminal Modes in Terminal$Flags (Part 1)

Mode Name ID | Bit(s) Description

Line protocol L 1 Indicates whether the terminal is
half-duplex or full-duplex.

Output medium H 2 Indicates whether the terminal has a
display screen or produces hard copy
(printed) output.

Modem indicator M 3 Indicates whether the terminal is
connected to the hardware by a modem.

Input parity R 4-5 Indicates how parity is to be
handling interpreted and altered on input.
Output parity W 6-8 Indicates how parity is to be
handling interpreted and altered on output.

In addition to bits in the terminal$flags word for the terminal, three
WORD parameters belong in this section. These parameters, also covered
in the description of A$SPECIAL, are described in Table F-4,

Assuming that the 0SC control mode is set appropriately, a terminal's

modes can be altered. The syntax of an 0SC sequence that changes one or
more of the modes covered in this section is as follows:

<%

decimal number

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

where:

T An abbreviation for any word, such as Terminal,
that begins with that letter.

mode id An ID letter from the list of modes given in Table
F-3 or F-4.

decimal number The value to which you want to change the mode.
For these decimal number values, refer to the
description of A$SPECIAL in Chapter 8.

Table F-4. Other Non-Inherited Terminal Modes (Part 1)

Mode Name iD Description

Input baud rate I The input baud rate that the terminal is
configured to handle.

Output baud rate 0 The output baud rate that the terminal is
configured to handle.

Scrolling number S The number of lines of output that are to be
sent to the terminal's display whenever the
scrolling control character (default is
Control-W) is entered at the terminal.

TRANSLATION AND SIMULATION

The Terminal Support Code supports both translation and simulation by

equating short commands (called terminal character sequences) with longer
commands (called escape sequences.)

Translation

Translation occurs when a task calls ASWRITE to write an escape sequence
through a connection to a terminal. The Terminal Support Code, instead

of simply passing the escape sequence on to the terminal, intercepts the
escape sequence and sends the equivalent terminal character sequence to

the terminal in place of the escape sequence. The terminal can

understand the terminal character sequence, and it responds as the task
had intended it to respond.

An example of a terminal character sequence that can be used in
translation is a code (such as Control-H) that tells the terminal to move
the cursor backward by one position. After the necessary steps
(described shortly) have been taken, if a task writes the appropriate

F-9

USING THE iRMX" 86 TERMINAL SUPPORT CODE

escape sequence to the terminal, the Terminal Support Code intercepts it
and replaces it with the Control-H that the terminal interprets as a
signal to move its cursor backward by one position.

Translation makes application systems easily adaptable to many terminal
brands and models. When one type of terminal is replaced with another
type, only the association between an escape sequence and a terminal
character sequence needs to be changed.

Simulation

Simulation occurs when a task calls ASWRITE to write an escape sequence
that the terminal does not recognize. The Terminal Support Code
intercepts the escape sequence and figures out what the task wants the
terminal to do. Then the Terminal Support Code sends a series of one or
more terminal character sequences that the terminal does recognize,
producing the effect that the task wanted.

"An example of simulation concerns tab stops. If a terminal does not
support tab stops, the Terminal Support Code, if given the right
information about the terminal, can simulate the tab stops, creating the
impression that the terminal does indeed support tab stops as if it were
a typewriter. All that the Terminal Support Code must do to accomplish
this is to:

° Remember where the cursor is on the display.

e Remember where the tab stops are supposed to be.

) Be able to tell the terminal to move the cursor forward by one
space.

Terminal Capabilities Required to Support Simulation

As was just shown, in order to simulate tab stops the Terminal Support
Code needs to know how to tell a terminal to move the cursor forward by

one space. As it happens, this comes close to answering the general
question of what capabilities the terminal must have to support
simulation. The abilities that the terminal must have are that it must
be able to move its cursor as follows:

° One position to the right

° One position to the left

° One position upward

° One position downward

) To the upper—left corner of the display

F-10

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Specifying the Desired Translation and Simulation Functions

As was shown, both translation and simulation are made possible by
establishing a one—to—one correspondence between escape sequences and
terminal character sequences. What has not yet been answered is the
question of how this correspondence is defined.

The answer is that each pairing in this correspondence must be
established individually by means of an O0SC sequence, although an 0SC
sequence can establish multiple pairings. Depending upon the
circumstances, the 0SC sequence can be entered into the terminal or it
can be issued from a task.

In order for an operator to establish a pairing by entering the 0SC
sequence into the terminal, the following conditions must exist:

o There must be a connection to the terminal, it must be open for

reading, and there must be an A$READ request awaiting fulfillment
at that connection.

e The 0SC control bits for that connection must be set to permit
the Terminal Support Code to recognize and act upon OSC sequences
on input.

o The line—-editing comntrol bits for that connection must be set to
permit line editing.

When these conditions exist, an operator may enter the OSC sequence
(which will be described soon) into the terminal.

In order for a task to establish a pairing, the following conditions must
exist:

e There must be a connection to the terminal, and it must be open
for writing.

e The OSC control bits for that connection must be set to permit

the Terminal Support Code to recognize and act upon OSC sequences
on output.

When these conditions exist, a task may call ASWRITE to send the OSC
sequence to the terminal.

Regardless of whether the 0SC sequences came from a task or from the

terminal, the Terminal Support Code intercepts the OSC sequence (thereby
preventing it from going any further) and establishes the desired pairing.

The syntax of an OSC sequence that will establish one or more escape
sequence—terminal character sequence pairings is as follows:

<)

ol)

_J S O U _/ 0999

where:

F-11

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

An abbreviation for any word, such as Terminal, that begins with
that letter.

An abbreviation for any word, such as Escape, that begins with
that letter.

The number of an escape sequence listed in Table F-5.

The number of a terminal character sequence listed in Table F-6.

Table F~5 lists the escape sequences that can be paired with a terminal
character sequence by means of OSC sequences. The following remarks
apply to Table F-5:

The code column contains codes used in the ANSI X3.64 document.

The expression "99" represents any decimal number. Unless
otherwise specified, the number can be omitted and the Terminal
Supply Code supplies the default value l.

In some cases, multiple escape sequences can be combined into a

single, compound escape sequence.

the table.

These cases are identified in

The Terminal Support Code can simulate the escape sequences
numbered 0, 1, 6 through 11, 13, 15, 16, 18 through 20, 22, and
The remaining escape sequences can only be translated.

23.

In almost all cases, tasks issue the escape sequences by calling

ASWRITE,

they are described in the table.

Table F_Sc

The exceptions concern escape sequences 7/ and 18, and

Escape Sequences

Code

Escape Sequence

Function

HTS

RIS

CUF

CUB

Esc H

Esc ¢

Esc [99 C

Esc [99 D

Sets a horizontal tab at the current
cursor positiomn.

Returns the terminal to its initial
state. This consists of resetting the
horizontal tab stops to four spaces apart,
beginning with the first space, and

returning
corner of

Moves the
number of

Moves the
number of

the cursor to the upper—left
the display.

cursor forward the specified
positions.

cursor backward the specified
positions.

F-12

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Table F-5.

Escape Sequences (continued)

Code

Escape Sequence

Function

10

cuu

CuD

CupP

CPR

CBT

CHA

CHT

Esc [99 A

Esc [99 B

Esc [99 ; 99 H

Esc [99 ; 99 R

Esc [99 2

Esc [99 G

Esc [991

Moves the cursor upward the specified
number of positions.

Moves the cursor downward the specified
number of positions.

Moves the cursor to the position specified
by the decimal numbers. The first number
specifies the horizontal coordinate
position, and the second number specifies
the vertical coordinate position. The
horizontal coordinates are numbered from
left to right, beginning with 1, and the
vertical coordinates are numbered from top
to bottom, also beginning with 1. If the
parameters are omitted, this sequence

moves the cursor to the upper-left corner
of the display.

Reports the coordinates of the current
cursor position. The Terminal Support
Code sends this sequence in response to
sequence number 19, which asks for the
cursor's coordinates. The first number
specifies the horizontal coordinate
position, and the second number specifies
the vertical coordinate position. The
horizontal coordinates are numbered from
left to right, beginning with 1, and the
vertical coordinates are numbered from top
to bottom, also beginning with 1.

Moves the cursor backward by the specified
number of horizontal tab stops. For

example, if the specified number is 2, the
cursor moves backward to the second tab
stop that it encounters.

Moves the cursor to the specified position

in the line where the cursor is currently
located.

Moves the cursor forward by the specified
number of horizontal tab stops. For
example, if the specified number is 2, the
cursor moves forward to the second tab
stop that it encounters.

F-13

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Table F_So

Escape Sequences (continued)

Code

Escape Sequence

Function

11

12

13

14

15

16

17

18

19

CTIC

CIC

CIC

CTC

CTC

CTC

CTC

DA

DSR

Esc

Esc

Esc

Esc

Esc

Esc

Esc

Esc

Esc

[OW

[2w

[6n

Sets a horizontal tab stop at the current
cursor position. This or any other CTC
escape sequence can be combined with one
or more CTC escape sequences to form a
compound CTC escape sequence. An example
of such a combined sequence is

ESC [0;1 W, which sets both horizontal
and vertical tab stops at the cursor
position.

Sets a vertical tab stop at the current

cursor position. See the description of
escape sequence number 11,

Clears a horizontal tab stop if there is
one at the current cursor position. See
the description of escape sequence number
11.

Clears a vertical tab stop is there is one
at the current cursor position. See the
description of escape sequence number 11.

Clears all horizontal tab stops on the

line where the cursor is located. See the
description of escape sequence number 11,

Clears all horizontal and vertical tab
stops. See the description of escape
sequence number 11.

Clears all vertical tab stops. See the
description of escape sequence number 1ll.

Tasks send this sequence with the number O
to request the ID number of the terminal
to which the request is being sent. The
Terminal Support Code intercepts the
request and returns to the requesting task
an identical sequence, except that the
number (which is greater than 0) is the
requested ID number.

Asks the Terminal Support Code to report
the coordinates of the current cursor

position. See sequence number 7 for a
description of the response.

F-14

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Table F-5.

Escape Sequences (continued)

Code

Escape Sequence

Function

20

21

22

23

24

25

26

27

28

29

TBC

TBC

TBC

TBC

TBC

DCH

DL

ECH

ED

ED

Esc

Esc

Esc

Esc

Esc

Esc

Esc

Esc

Esc

Esc

[O0g

[99 P

[99 M

[99 X

[1J

Clears a horizontal tab stop if there is
one at the current cursor position. This
or any other TBC escape sequence can be
combined with one or more TBC escape
sequences to form a compound TBC escape
sequence., An example of such a combined
sequence is ESC [0;1 g, which clears both
horizontal and vertical tab stops from the
current cursor position.

Clears a vertical tab stop if there 1is one
at the current cursor position. See the
description of escape sequence number 20.

Clears all horizontal tab stops on the line

where the cursor is located. See the
description of escape sequence number 20,

Clears all horizontal and vertical tab

stops. See the description of escape
sequence number 20.

Clears all vertical tab stops. See the
description of escape sequence number 20,

Deletes the specified number of characters,
beginning at the current cursor location.

Deletes the specified number of lines,
beginning at the line where the cursor is
located.

Replace the specified number of characters

with blanks, beginning at the current
cursor location.

Places blanks at all positions from the
cursor to the end of the display. This or
any other ED escape sequence can be
combined with one or more ED escape
sequences to form a compound ED escape
sequence. An example of such a combined
sequence is ESC [0;1 J, which clears the
entire display.

Places blanks at all positions from the
beginning of the display to the cursor.
See the description of escape sequence

number 28,

F-15

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Table F-5.

Escape Sequences (continued)

Code

Escape Sequence

Function

30

31

32

33

34

35

36

37

38

39

40

ED

EL

EL

EL

ICH

IL

NP

PP

SD

suU

Esc [

Esc [

Esc [

Esc [

Esc [

Esc [

Esc [

Esc |

Esc [

Esc |

0K

1 K

2K

99 @

99 L

9 U

9 vV

99 T

99 s

Reserved

Fills the entire display with blanks. See
the description of escape sequence number 28,

Places blanks at all positions from the
cursor to the end of the line This or any
other EL escape sequence can be combined
with one or more EL escape sequences to form
a compound EL escape sequence. An example
of such a combined sequence is ESC [0;1 K,
which places blanks throughout the line
containing the current cursor position.

Places blanks at all positions from the
beginning of the line containing the cursor
to the cursor itself. See the description
of escape sequence number 31.

Places blanks at all positions in the line

containing the cursor. See the description
of escape sequence number 31,

Inserts the specified number of blanks,
beginning at the location of the cursor.

Inserts the specified number of blank lines,
beginning at the location of the cursor.

Moves the display forward in a multiple—page
file by the specified number of pages. If
the specified number of pages is 0, the
display moves to the next page.

Moves the display backward in a
multiple—-page file by the specified number
of pages. If the specified number of pages
is 0, the display moves to the previous page

Moves the display downward (forward) by the
specified number of lines. If the specified

number of lines is 0, the display moves to
the next line.

Moves the display upward (backward) by the
specified number of lines. If the specified

number of lines is 0, the display moves to
the previous line.

F-16

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

Table F-5.

Escape Sequences (continued)

n | Coce| Escape Sequence Function

41| RM Esc [0 1 An error condition.

421 RM Esc [11 See the comment following this table.

431 RM Esc [21 Unlocks the terminal's keyboard, allowing
all characters to be input when typed.*

44 | RM Esc [31 Causes control characters not to be
displayed, but still causes those
characters to have their normal effects.*

45 RM Esc [4 1 Causes characters that are output to
overwrite characters on the display.*

46 | RM Esc [51 See the comment following this table.

47 RM Esc [6 1 See the comment following this table.

48 | RM Esc [71 See the comment following this table.

49 | RM Esc [8 1 Reserved.

50 | RM Esc [91 Reserved.

51 | RM Esc [10 1 See the comment following this table.

52 | RM Esc [11 1 See the comment following this table.

53 | RM Esc [12 1 Causes characters to be displayed on the
terminal's display screen as they are
entered.

54 | RM Esc [13 1 See the comment following this table.

55 | RM Esc [14 1 See the comment following this table.

56 | RM Esc [151 See the comment following this table.

57 | RM Esc [16 1 See the comment following this table.

58 | RM Esc [17 1 See the comment following this table.

59 | RM Esc [18 1 Causes horizontal tab stops to apply

equally to all lines, rather than on a
line-by-1line basis.*

* This is the normal (default) setting for most terminals.

F-17

USING THE iRMX" 86 TERMINAL SUPPORT CODE

Table F-5. Escape Sequences (continued)

n | Code | Escape Sequence Function

60 | RM Esc [191 Causes data on the terminal's display
screen to be treated as a continuous
stream, rather than as a collection of
disjoint, independent pages.¥*

61 RM Esc [20 1 Prevents the line feed character from

automatically performing a carriage return
when output to the terminal.*

62 | SM Esc [O h An error condition.

63 SM Esc [1 h See the comment following this table.

64 | SM Esc [2 h Locks the terminal's keyboard, preventing
characters from being input when they are
typed.

65 | sM Esc [3 h Enables the display of control characters

for debugging purposes.

66 | SM Esc [4 h Enables output characters to be inserted in

the display, rather than always overwriting
existing characters

67 | sM Esc [5h See the comment following this table.

68 | SM Esc [6 h See the comment following this table.

69 | SM Esc [7 h See the comment following this table.

70 | sM Esc [8 h Reserved.

71 | SM Esc [9 h Reserved.

72 | SM Esc [10 h See the comment following this table.

73 | sM Esc [11 h See the comment following this table.

74 | SM Esc [12 h Prevents characters from being displayed on

the terminal's screen as they are typed.

75 | sM Esc [13 h See the comment following this table.

76 SM Esc [14 h See the comment following this table,

77 | sM Esc [15 h See the comment following this table.

* This is the normal (default) setting for most terminals.
F-18

USING THE iRMX" 86 TERMINAL SUPPORT CODE

Table F-5. Escape Sequences (continued)

n | Code | Escape Sequence Function

78 | sM Esc [16 h See the comment following this table.

791 sM Esc [17 h See the comment following this table.

80| sM Esc [18 h Causes horizontal tab stops to apply only

to the line on which they are entered.

81 SM Esc [19 h Causes data to be treated as a collection

of disjoint, independent pages. In this
kind of environment, a terminal operator
typically accesses the various pages in a
file by pressing keys such as "next page",
"previous page", or "go to page”.

82 SM Esc [20 h Causes the line feed character to

automatically perform a carriage return
when output to the terminal.

Comment: This mode (or sequence or function) is included for

completeness, but a description is beyond the scope of this manual. For
details, refer to the 1979 version of the ANSI X3.64 standard.

Table F~6 is a list of the terminal character sequences that can be
paired with escape sequences by means of 0SC sequences. Recall that the
assignment portion of such an 0SC sequence has the form En=m, where n is
the number of an escape sequence and m is the number of a terminal
character sequence. In fact, there are three exceptions to this
generality, each of which is described in Table F-6.

Earlier in this appendix, there are two brief examples, one concerning

translation and one concerning simulation. You now have the tools to
better understand these examples.

In the first example, which illustrated translation, Control-H (m=8) was
suggested as a terminal character sequence that would cause the terminal
to move its cursor backward one position. From Table F-5, we see that
the escape sequence for moving a cursor backward by one position is

"Esc [D" (n=3). To define the relationship between m=8 and n=3 for the
Terminal Support Code, the 0OSC sequence:

0SC T:E3=8 ST

either can be entered at the terminal or can be written (to the terminal)
by a task, depending upon the circumstances described earlier. Once this
relationship is defined, any time a task writes the escape sequence
“Esc [D" to the terminal, the terminal's curser moves backward one

F-19

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

position. Moreover, if a task writes that escape sequence with a "repeat

factor”, as in "Esc [6 D", the cursor moves backward by the appropriate
number (in this case 6) positions.

Table F~6., Terminal Character Sequences

m Terminal Character Sequence or Special Instructions
0 Disable the translation of escape sequence n. That is, pass
the escape sequence through to the terminal without
modification.
1 O0l1H (Control-A)
2 02H (Control-B)
26 1AH (Control-Z)
27 1BH (Esc)
28 1CH (FS)
29 1DH (GS)
30 1EH (RS)
31 1FH (US)
32 Esc OOH
33 Esc OlH
159 Esc 7FH
160-191 Reserved
192 Simulate the escape sequence
193 Discard the escape sequence. That is, do not translate or
simulate it, and do not pass it on to the terminal.

The second example used cursor movements to simulate tab stops. Suppose
the terminal accepts Control-G as the terminal character sequence that
moves the cursor forward by one position. Suppose further that
application tasks wish to use CHT (n=10) to advance the cursor to the
next tab stop, and CTC (n=11) to set a tab stop. As you can verify by
looking at Tables F-5 and F-6, sending the following OSC sequence defines
all of these relationships for the Terminal Support Code:

0SC T:E2=7, E11=192, E10=192 ST

F-20

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

In addition, it is necessary to advise the Terminal Support Code of the
location of the cursor. You can do this by resetting the terminal, that
is, by sending the sequence Esc ¢ to the terminal. Having done these
things, you can set a horizontal tab stop by entering Esc [O W at the
terminal, and you can advance the cursor to the next tab stop by entering
Esc [1 ' I. The Terminal Support Code keeps track of the locations of the
horizontal tab stops as well as the position of the cursor.

MODES THAT BELONG TO A TERMINAL (PART 2)

As you might have guessed, before the Terminal Support Code can monitor
or control the position of a terminal's cursor, it must be informed of
the coordinate numbering conventions for that terminal. The Terminal
Support Code has its own "model” of a terminal's coordinate numbering
scheme, As was mentioned in Table F-5, this model is the following: The
horizontal coordinates are numbered from left to right, beginning with 1,
and the vertical coordinates are numbered from top to bottom, also
beginning with 1. Although this seems a perfectly reasonable way to
reference positions on a terminal's screen, it is not universally
applicable. Consider the following example, which is not as contrived as
it might seem.

Suppose that a terminal's horizontal positions (that is, its colummns) are
numbered, left to right, as 80, 81, 82, ..., 127, 16, 17, 18, ..., 31.
And suppose that its vertical positions (its rows) are numbered, top to
bottom, as 103, 102, 101, ..., 80. And, finally, suppose that when
referencing a particular position on the terminal's screen, you must
specify the vertical position first, followed by the horizontal

position., Note that this numbering convention differs from the Terminal
Support Code's numbering convention in the following ways:

e The numbering on each axis starts with 80, rather than starting
with 1.

e The numbering of the horizontal axis, when it reaches 127, drops
back to 16 before resuming its climb.

° The numbering of the vertical axis increases from bottom to top,
rather than increasing from top to bottom.

® The coordinates of a given screen position are vertical

coordinate first, then horizontal coordinate, rather than being
horizontal first and vertical second.

In fact, the only resemblances between the Terminal Support Code's
convention and this terminal's convention are:

e The numbering of both axes start with the same value and then
increase by ones (except for the drop from 127 to 16.)

e The numbering of the horizontal axis increases from left to right.

F-21

USING THE iRMX" 86 TERMINAL SUPPORT CODE

As bizarre as this example seems, it still falls within the requirements

of the Terminal Support Code. These requirements can be stated as
follows:

The numbering of both axes must start (at the left or right, and at
the top or bottom, it doesn't matter) with the same positive value.
From there, they must increase by ones until (or unless) they reach
127, After reaching 127, each must "fall back” to a lower positive
value, whereafter they must again increase by ones. If they both
reach 127, they must both fall back to the same value.

Having specified all of this, consider the question: How is it possible
to describe a terminal's numbering convention for the Terminal Support
Code? The answer is that each terminal has modes other than those
discussed in the earlier section that describes modes that a terminal
owns. Four of these modes are designated in bits 9, 10, 11, and 12 of
the terminal$flags WORD. (The full definition of each portion of the
terminal$flags word is provided in Chapter 8 of this manual, in the
description of the A$SPECIAL system call.) The names of these modes,
their single-letter identification codes, the bits of the terminal$flags
word to which they correspond, and a brief description of their functions
are given in Table F-7.

Table F-7. Non—Inherited Terminal Modes in Terminal$Flags (Part 2)

Mode Name ID | Bit(s) Description

Translation T 9 Indicates whether the Terminal Support
Code for this terminal will be called
upon to perform translation between
escape sequences and terminal character

sequences.
Terminal axis F* 10 Indicates whether the horizontal or the
sequence vertical coordinate is to be called out

first when referencing a position on
the terminal's screen.

Horizontal axis F* | 11 Indicates whether the numbering of
orientation coordinates on the horizontal axis

increases from left to right or from
right to left.

Vertical axis F* | 12 Indicates whether the numbering of
orientation coordinates on the vertical axis

increases from top to bottom or from
bottom to top.

*This is the only case where one letter denotes more than one terminal
mode.

F-22

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

In addition to bits in the terminal$flags word for the terminal, four
BYTE parameters belong in this section. These parameters, which are not
covered in the description of A$SPECIAL, are described in Table F-8.

Table F-8. Other Non—Inherited Terminal Modes (Part 2)

Mode Name 1D Description
Cursor addressing|{ U The value that is used to start the numbering
offset sequence on both axes.
Overflow offset v The value to which the numbering of the axes

must “fall back” after reaching 127.

Screen width X The number of character positions on each
line of the terminal's screen.

Screen Height Y The number of lines on the terminal's screen.

Assuming that the O0SC control mode is set appropriately, a terminal's

modes can be altered. The syntax of an 0OSC sequence that will change one
or more of the modes covered in this section is as follows:

V@AY

- ’
(N/ J
\/ \/ v \./ v \./0998
where
T An abbreviation for any word, such as Terminal, that
begins with that letter.
mode id An id letter from the list of modes given in Table F-7

or F-8.

decimal number The value to which you want to change the mode. For
information about the decimal number values that
pertain to the terminal$flags word, refer to the
description of ASSPECIAL in Chapter 8.

USING A$SPECIAL TO MODIFY CONNECTION AND TERMINAL MODES

As we saw in the previous section, you can use OSC sequences to modify
any connection or terminal mode. This brief section is here to remind

you that each of these modes (except for the four modes described in
Table F-8) can also be changed by means of the A$SPECIAL system call.

F-23

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

USING A MODEM WITH A TERMINAL

The Terminal Support Code supports terminals that interface with an
iRMX 86~based application system through a modem. For the most part,
tasks and terminals communicate through a modem as if linked by a

dedicated line, but they must use 0SC sequences to establish a link (dial
and answer) and to break the link (hang up).

Before describing the usual protocol for establishing and breaking a
modem—based link between a task and a terminal, we need to define the
syntax for the necessary OSC sequences. The syntax is as follows:

< D\

A ,

—/)

WAIT 6 A

_/ 1000

where:

M An abbreviation for any word, such as Modem, that begins with
that letter.

A An abbreviation for any word, such as Answer, that begins with
that letter.

H An abbreviation for any word, such as Hangup, that begins with
that letter.

Q An abbreviation for any word, such as Query, that begins with
that letter.

Assume that there is a task dedicated to monitoring the modem and

performing communication through it. Assume further that the task has a
connection to the modem and that the connection is open for both reading

and writing. Typical protocol (using the connection) is the following:

1. The task writes the OSC sequence "0SC M:H ST" to the terminal.

This means hang up the phone (break the link). This is the
initialization step.

2, The task writes the 0SC sequence "0SC M:WAIT=A ST" to the

terminal and then issues a read request to the terminal. This
means that the task wants to be informed when a terminal comes on

line and that it will wait for the proper response to return to
it by way of the connection.

F-24

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

3. (Eventually) the task receives the APC sequence "APC M:A ST".
(Recall that an APC sequence is a message from the Terminal
Support Code to a task.) This message means that a terminal user
has dialed up the modem and is ready to communicate.

4, The task writes the 0SC sequence "0SC M:WAIT=H ST" to the
terminal. This causes the Terminal Support Code to send the
sequence "APC M:H ST" to the task when the terminal user hangs up.

5. The terminal and the task communicate as if on a dedicated line

for as long as is necessary. However, whenever the task receives
input, it scans the input for the APC sequence "APC M:H ST".

6. (Eventually) the task receives the sequence "APC M:H ST". This
means that the terminal user has hung up and the link is broken.

7. The task returns to step 2.

This protocol is offered as a model and is by no means the only one
possible. Note, however, that only the task, and never the terminal,
should send 0SC sequences to the Terminal Support Code for modem
control. This restriction does not apply to other OSC sequences.

Under some circumstances, a task needs to find out whether a terminal is
ready to talk to the task via the modem. The task can ascertain the

state of the modem (answered or hung up) by performing the following
steps, in order:

l. Call ASWRITE to write the sequence "0SC C:T=1,E=1 ST" to the
modem. This disables line editing and turns off the echoing to
the terminal's screen of characters in the buffer. Note that

this is for this connection only, not for other connections (if
any) to the modem.

2. Call ASWRITE to write the sequence "0SC M:Q ST" to the modem.
This is the Modem Query command, and it is a request for

information as to the status of the modem, that is, answered (A)
or hung up (H).

3. Call ASREAD to read seven characters from the modem. This is a
request for an APC sequence of the form "APC M:x ST", where x is
A if the modem is answered and H otherwise. This technique will
work because the Terminal Support Code places the APC sequence,
without a line terminator, at the front of the line buffer for

the connection, where data (if any) is awaiting input requests
from the task.

After performing these steps, the task can restore the connection's line
editing and echo modes to their original states.

F-25

USING THE iRMX"™ 86 TERMINAL SUPPORT CODE

THE TERMINAL QUERY COMMAND

The previous section contained information about how to use the Modem
Query command. The Terminal Query command is similar, but much broader
in scope and purpose, returning the current values of all modes for a
terminal and all modes for the connection (to that terminal) through
which the command is issued.

A task issues the Terminal Query command by performing the following
steps, in order:

l. If desired, call ASWRITE to send an OSC sequence that will set
the line editing and echoing modes appropriately. If you want to
be able to modify the modes from the terminal, turn on the line
editing mode (L=2) and the echoing mode (E=0) for the
connection. Otherwise, turn off line editing (L=1) and turn off
echoing (E=1).

2, Call ASWRITE to send the OSC sequence "0SC Q ST". This is the
Query command, and it causes the Terminal Support Code to place
the requested information in the form of an APC sequence (without
a line terminator) at the front of the type—ahead buffer for the
connection.

3. Call ASREAD to read the appropriate number of characters at the
connection. This is the part where you have to be careful. The
number of characters returned depends on the values of the modes,
and some of these modes, such as the input baud rate (I) for the
terminal, can vary in length. You should allow two spaces for
the APC at the beginning, two spaces for the ST at the end, and
enough spaces for the modes in between. A simple, safe way is to
read one byte at a time, until "ST" appears. The modes are
separated by commas and packed together without blanks. An
example is:

APC C:T=2,E=0,R=0,W=1,0=0,C=0,T:L=0,H=0,M=0,R=2,W=2,T=1,F=0,I=9600,

0=0,5=18,X=64,Y=24 ,U=80,V=16 ST
The information returned by the Terminal Query command does not include

any information about escape sequence-terminal character sequence
pairings or about input or output control character assignments.

RESTRICTING THE USE OF A TERMINAL TO ONE CONNECTION

If there are multiple connections to a terminal, any one of the

connections can be used to "lock” the terminal. When this happens, the
connection used to lock the terminal can be used according to how it was
opened, and I/0 requests through that connection are processed normally.

The connections that are locked out may also be used according to how
they were opened, but I/0 requests through those connections are queued

up until the terminal is unlocked.

F-26

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

An 0SC sequence of the form "OSC L ST" locks a terminal, where the L
stands for any word that starts with that letter. The command to lock
the terminal can come from a task, or it can come from the terminal.

A locked terminal becomes unlocked in either of two ways. One way is for
the terminal to be unlocked explicitly, by means of an 0SC sequence of
the form "0SC U ST", where the U stands for any word beginning with that
letter. This command can come from a task, or it can come from the
terminal. The other way to unlock the terminal is to close the
connection used to lock the terminal.

After a terminal is unlocked, the queued I/0 requests are processed in
the order in which they were queued.

PROGRAMMATICALLY INSERTING DATA INTO A TERMINAL'S INPUT STREAM

If a task wants to insert data into the input stream at a terminal, it
can do so by means of an OSC sequence. After being inserted, the data
will appear on the terminal's screen, assuming that the echo mode for the
connection used is turned on. Once the data is on the screen, it can be
edited, provided that the connection's line edit mode is set for line
editing. Being able to do this is useful in cases where it 1s necessary
to enter large blocks of data that vary only slightly from one occurrence
to the next.

The form of the OSC sequence that inserts data in a terminal's data
stream is "0SC S:text ST"

where:

S An abbreviation for any word, such as Stuffing, that begins
with that letter.

text The data that is to be placed in the input stream.

COMPOSITE SYNTAX DIAGRAM FOR ALL OSC SEQUENCES

Throughout this appendix, small syntax diagrams for OSC sequences appear,
undoubtedly leading you to believe that OSC sequences must be short.
However, this is not the case. OSC sequences can be very lengthy, with
semicolons separating the pieces that correspond to the diagrams shown
earlier in this appendix. With only one exception, different types of
0SC sequences can be combined into a larger OSC sequence in any order.
The exception is that a composite OSC sequence can contain only one
subsequence for inserting data into a terminal's input stream, and that
subsequence must be the last subsequence. Figure F-1 shows how the 0SC
subsequences of this appendix can be combined.

w=-27

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

BRIEF REVIEW OF THE USES AND MODIFICATIONS OF CONTROL CHARACTER SEQUENCES

There are three general uses of control characters, and you should be
careful not to confuse them. They are the following:

® The Terminal Support Code contains assignments of certain control
characters to particular line-editing functions. By means of 0SC
sequences, these assignments can be altered.

e By means of OSC sequences, control characters can be assigned to
trigger translation or simulation.

¢ By means of the ASSPECIAL system call, control characters can be
assigned to be signalling characters.

It is true that you can use control characters for all of these
purposes. But be careful in your use of them. If you attempt to
dedicate the same control character to different purposes at the same
time, the results are unpredictable. '

F-28

USING THE iRMX™ 86 TERMINAL SUPPORT CODE

-@—L —

Y

Wy

decimal number

sos
@

il

(A 4

Figure F-1l. Composite 0SC Sequence Diagram
*dkk

F-29

0995

APPENDIX G. INTEL-SUPPLIED TERMINAL DEVICE DRIVERS

Appendix F of this manual describes the full range of I/0 capabilities
that the Terminal Support Code supports. While it is possible to write a
terminal device driver that utilizes all of these capabilities, in
practice it is unlikely that a given terminal device driver will require
all of them.

Intel Corporation provides, as part of the iRMX 86 product, several
device drivers. Among these are terminal drivers that act as interfaces
between the Terminal Support Code and the 8251A USART, iSBC 534,

iSBC 544, and iSBX 270 devices. The purpose of this appendix is to
document the Terminal Support Code capabilities that these drivers
support.

THE 8251A USART DRIVER

The USART driver supports an 8251A USART that is connected to any counter
of an 8253 Programmable Interval Timer. The hardware that each USART

driver supports is restricted to devices which may consist of only one
USART.

The only Terminal Support Code feature that the USART driver does not
support is modem control. The driver supports baud rate search, with
110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200 being the baud rates
the driver can recognize. To initiate a baud rate search at the
terminal, enter from one to three upper—case U°s. You can easily tell
when the baud rate search has been completed, because output to the
terminal is held back until then.

THE iSBC® 534 DRIVER

The iSBC 534 driver supports one or more iSBC 534 Four—Channel
Communications Expansion boards, each of which has as many as four
USARTs., Several iSBC 534 boards may share a single interrupt line, in
which case their USARTs are treated as separate units of a single device.

The only Terminal Support Code feature that this driver does not support
is separate input and output baud rates. The baud rates that are
supported and the manner in which a baud rate search is conducted are
exactly as in the case of a USART driver, described in the previous
section.

INTEL-SUPPLIED TERMINAL DEVICE DRIVERS

THE iSBC® 544 DRIVER

The iSBC 544 driver supports a number of iSBC 544 Four—Channel
Intelligent Communications Expansion boards (or other memory and I/0
expansion boards. Several iSBC 544 boards may share a single interrupt
line, in which case their channels are treated as separate units of a
single device.

The iSBC 544 controller is a self-contained communications processor that
incorporates an 8085A CPU for its on-board processing. This on—~board
processing makes the iSBC 544 driver faster and more efficient than the
iSBC 534 driver.

The only Terminal Support Code feature that this driver does not support
is separate input and output baud rates. The baud rates that are
supported and the manner in which a baud rate search is conducted are
exactly as in the case of a USART driver, described in a previous section.

THE iSBX™ 270 DRIVER

The iSBX 270 driver supports one iSBX 270 Video Display Terminal
Controller Multimodule board. This board may be mounted either on a CPU
board or on a Multimodule board that is directly accessible to the host
board®s CPU. The hardware that each iSBX 270 driver supports is
restricted to one device, which may consist of only one iSBX 270
controller.

The only Terminal Support Code features that the iSBX 270 driver does not
support are modem control, parity checking and setting, and baud rate
control, because they are not meaningful in this environment. However,
it can strip the parity bit off for input or output using individual
connections.

The i8BX 270 controller can be set for any of three display modes. The
initial (default) mode is the scrolling mode. The mode can be changed at
any time simply by writing an appropriate code to the iSBX 270
controller. The modes and the codes that switch them on are the
following:

Code Mode

OCOH Scrolling

OClH Paging with visible cursor
OC2H Paging without visible cursor

k%%

INDEX

Underscored entries are primary references.

8251A USART device driver G-1

ASATTACHSFILE 3-5, 4-7, 4-10, 5-2, 6-3, 8-11
ASCHANGESACCESS 4-5, 4-7, 4-14, 4-16, 8-15
ASCREATESDIRECTORY 4-5, 4-7, 4-10, 8-23
A$CREATESFILE 3-5, 4-5, 4-6, 4-7, 4-10, 5-2, 6-2, 6-3, 8-28
ASCLOSE 4-12, 5-3, 6-2, 6-4, 8-20
ASDELETESCONNECTION 4-11, 5-3, 6-2, 6-4, 8-34
ASDELETESFILE 4-5, 4-14, 8-37
ASGETSCONNECTION$SSTATUS 4-13, 4-16, 8-42
ASGETSDIRECTORYSENTRY 4-5, 4-14, 8-46
ASGETSFILESSTATUS 4-13, 4-16, 8-52
ASGETSPATHSCOMPONENT 4-15, 4-18, 8-58

ASOPEN 3-6, 4-12, 5-2, 6-2, 6-3, 8-62
ASPHYSICALSATTACH$SDEVICE 3-4, 5-2, 6-1, 8-66
ASPHYSICALSDETACH$SDEVICE 3-4, 5-3, 8-70
ASREAD 4-5, 4-13, 4-14, 5-2, 6-4, 8-73
ASRENAMESFILE 4-5, 4-14, 4-16, 8-76

ASSEEK 3-7, 4-12, 5-2, 8-81

ASSPECIAL 4-15, 4-16, 5-2, 8-87

ASTRUNCATE 4-5, 4-13, 8-101

ASUPDATE 8-104

ASWRITE 4-5, 4-13, 5-2, 6-2, 8-107

access list 4-6, 4-14

access mask 4-5, 4-7, 8-15

accessing files 2-4, 2-5, 4-4, 4-14
application programmers 3-1

asynchronous operation 2-1, 7-1

buffers 8-5

CREATESUSER 4-6, 4-11, 4-16, 8-111

communication between jobs 6-1

concurrent condition or exception codes D-1
concurrent part of an asynchronous system call 7-1
condition codes 8-5, D-1

configuring the iRMX 86 Basic I/0 System 9-1
connection modes 8-91, F-23

connection object 2-5, 3-3, 4-3

control characters F-1

controller 3-2

creating a file with an existing pathname 8-28, 9-2

DELETESUSER 4-6, 4-11, 4-16, 8-113
data files 4-1, 4-5

data types A-1

default prefix 4~4, 4-12, 4-16

Index-1

INDEX (continued)

default user object 4-6
device 3-1
device
connection 3-4, 5-2, 6-1
controller 3-1
drivers for terminals G-1
independence 2-2
unit 3-2
device unit information block 3-3
directory files 4-1, 4-5
disk information 8-90
dollar sign as a file name 4-4
DUIB 3-3
duplicate file names 4-2

example 4-2, 4-8, 7-1
exception codes 8-5, D-1
extension data 4-9, 4-15, 4-17

file
access 2-4, 2-5, 4-4, 4-14
connection 3-5, 4-3, 4-7, 4-10, 5-2, 5-3, 6-2, 6-3, 8-2

granularity 2-

names 4-1, 4-3, 4-15, 8-1
pointer 2-5, 3-7, 4-12, 5-2
sharing 2-4, 3-6, 4-4, 4-14

tree 4-1

truncated 3-6, 4-13, 8-30, 8-101
types 2-3

file—path parameters for named files 8-1
formatting a track 8-88

GET$DEFAULTSPREFIX 4-12, 4-16, 8-115
GET$DEFAULTSUSER 4-6, 4-11, 4-16, 8-117
GETSEXTENSIONSDATA 4-9, 4-15, 4-17, 8-49
GETSTIME 8-119

granularity 2-6, 9-2

heirarchical naming of files 4-1
Human Interface 4-9, 4-10

I/0 buffers 8-5
1/0 result segment 8-3, C-1
ID 4-5, 4-6, 4-9, 8-15
INSPECTSUSER 4-6, 4-11, 4-16, 8-120
IORS 8-3, C-1 '
iRMX 86 Basic I/0 System
concepts 3-1
terminology 2-1
iSBC 534 device driver G-l
iSBC 544 device driver G-2
iSBX 270 device driver G-2
inserting data into a terminal's input stream F-27

job object directory 4-4

Index—-2

INDEX (continued)

letter A in system call names 2-1

limiting use of a terminal to one connection F-26
line editing with the Terminal Support Code F-1
logical devices E-1

modem use with a terminal F-24

modifying control character assignments F-4
multiple connections to the same file 2-5, 3-6
multiple device support 2-2

multiple files on the same device 4-1

named files 2-3, 4-1
notification of unavailable volume 8-89

object type codes B-l
owner ID 4-6

PL/M-86 8-1

parameters §8-1

path name 4-3, 4-14, 4-15, 4-16, 8-1
physical files 2-3, 5-1

prefix 4-3, 4-4, 4-12, 4-16

prefix parameter 4-3, 5-2, 8-1
programmer roles 3-1

response mailbox 7-1, 7-4, C-1
root file directory 4-2
root object directory 3-4

SETSDEFAULT$PREFIX 4-4, 4-12, 4-16, 8-122
SET$DEFAULTSUSER 4-6, 4-11, 4-16, 8-124
SETSEXTENSIONSDATA 4-9, 4-15, 4-17, 8-84
SETSTIME 8-126
security of the system 3-1
separating file lookup and file open operations 2-5
sequential condition or exception codes D-1
sequential part of an asynchronous system call 7-1
sharing files 2-4, 3-6, 4-4, 4-14
signalling from keyboard 8-97
simulation F-10
special users 4-9
status 4-13, 4-16
stream file 2-4, 6-1
stream file request information 8-89
stream file request satisfaction 8-89
subpath name 4-3
subpath parameter 4-3, 8-1
synchronous operation 2-1
system

call 3-3, 4-10, 7-1, 8-1

call dictionary 8-7 =

manager 4-9

programmer 3-1, 3-4

security 3-1

Index-3

INDEX (continued)

temporary file 8-30

terminal attributes 8-91

terminal modes 8-91, F-5, F-23
Terminal Support Code F-1

translation F-9

truncated files 3-6, 4-13, 8-30, 8-101

updating a file 8-104
user object 4-6, 4-9, 4-11, 4-16
user parameter 8-1

volume 3-2
volume granularity 2-6

WAITSIOQ 7-3, 7-4, 8-127
world 4-9

k%

Index—4

- ®
' iRMX™ 86 Basic 1/0 System
Reference Manual

9803123-05
REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correctand improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME DATE

TITLE

COMPANY NAME /DEPARTMENT

ADDRESS

Ty STATE ZIP CODE
(COUNTRY)

Please check here it vou require a written reply. [.4]

WE'D LIKE YOUR COMMENTS . ..

This document is one of aseries describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

| " " , NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hilisboro, Oregon 97123

OMO Technical Publications

[} | I@
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

