
intJ

• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

iRMX®
Human Interface
System Calls
Reference Manual

Order Number: 462918-001

iRMX®
Human Interface

System Calls
Reference Manual

Order Number: 462918-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright ~ 1980,1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back of the manual.

The inforinatl~~'in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limH,edto;th~ impliedwarrantiesof.merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
doCUnient. .

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent ofIntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
Genius intel iSSB Ripplemode
¢.
1 Intel376 iSXM RMX/80
i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTIMODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980, 1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION mSTORY DATE

-001 Original Issue. 02/89

iii/iv

PREFACE

This manual documents the system calls of the Human Interface, a subsystem of the
iRMX® I and iRMX II Operating Systems. The information provided in this manual is
intended as a reference to the system calls and provides detailed descriptions of each call.

READER LEVEL

This manual is intended for programmers who are familiar with the concepts and
terminology introduced in the iRM)(® I Nucleus User's Guide and the iRM)(® II Nucleus
User's Guide and with the PL/M programming language.

CONVENTIONS

System call names appear as headings on the outside upper corner of each page. The first
appearance of each system call name is printed in blue ink; subsequent appearances are in
black.

Throughout this manual, system calls are shown using a generic shorthand (such as
CGETCHAR instead of RQCGET$CHAR). This convention is used to allow easier
alphabetic arrangement of the calls. The actual PL/M external-procedure names must be
used in all calling sequences.

You can also invoke the system calls from assembly language, but you must obey the PL/M
calling sequences when doing so. For more information on these calling sequences refer to
the iRM)(® I Programming Techniques Reference Manual or the iRM)(® II Programming
Techniques Reference Manual.

Human Interface System Calls v

CONTENTS

Chapter 1. iRMX® Human Interface System Calls

1.1 Introduction ... 1
1.2 System Call Dictionary .. 3

C$BACKUP$CHAR .. 5
C$CREATE$COMMAND$CONNECTION .. 6
C$DELETE$COMMAND$CONNECTION .. 10
C$FORMAT$EXCEPTION ... 11
CGETCHAR ... 13
CGETCOMMAND$NAME ... 15
CGETINPUT$CONNECTION ... 17
CGETINPUT$PATHNAME ... 23
CGETOUTPUT$CONNECTION .. 29
CGETOUTPUT$PA THNAME ... 36
CGETPARAMETER .. 39
C$SEND$COMMAND .. : 43
C$SEND$CO$RESPONSE .. 50
C$SEND$EO$ RESPONSE .. 53
CSETCONTROL$C ... 56
CSETPARSE$BUFFER ... 58

Index

Human Interface System Calls vii

iRMX® 1
HUMAN INTERFACE SYSTEM CALLS

1.1 INTRODUCTION

The Human Interface system calls described in this manual are presented in alphabetical
sequence and are not organized by function. However, the calls are grouped according to
function in the System Call Dictionary. For each call, the following information is
provided:

• Brief functional description

• Calling sequence format

• Input parameter definitions, if applicable

• Output parameter definitions, if applicable

• Considerations and consequences of call usage

• Potential exception codes and their possible causes

This manual refers to PL/M data types such as BYTE, WORD, and SELECTOR, and
iRMX data types such as STRING. These words, when used as data types, are always
capitalized; their definitions are found in Appendix A of the iRMX® Human Interface User's
Guide. This manual also refers to an iRMX data type called TOKEN. You declare a
TOKEN to be literally a SELECTOR. The word "token" in lowercase refers to a value that
the iRMX Operating System assigns to an object. The operating system returns this value
to a TOKEN (the data type) when it creates the object.

NOTE

The POINTER value of NIL is used throughout this manual. For the
iRMX I Operating System, you may also use a value of zero in place of NIL.
However, Intel recommends that you use NIL in your iRMX I code to
maintain upward compatibility with the iRMX II Operating System. For a
description of the NIL built-in function, refer to the PL/M-86 or PL/M-286
user's guides.

If you are a new user of the Human Interface calls, you should review the parsing
considerations in the iRMX® Human Interface User's Guide before writing your source
code. You should also review the format of the released Human Interface commands.
They are described in the Operator's Guide To The iRMX® Human Interface.

Human Interface System Calls 1

iRMX® HUMAN INTERFACE SYSTEM CALLS

2

This manual assumes that you are familiar with terms and concepts of the iRMX
'Operating System. If you are not, you should read Introduction To The iRMX® Operating
System and the chapters in the iRM)(® I Nucleus User's Guide or the iRM)(® II Nucleus
User's Guide that refer to the terms "memory pool" and "catalog."

Human Interface System Calls

iRMX® HUMAN INTERFACE SYSTEM CALLS

1.2 SYSTEM CALL DICTIONARY

I/O PROCESSING

Call Description Page

CGETINPUT$CONNECTION Return an EIOS connection for the specified
input file. 17

CGETOUTPUT$CONNECTION Return an EIOS connection for the specified
output file. 29

COMMAND PARSING

C$BACKUP$CHAR Move the parsing buffer pointer back one byte. 5

CGETCHAR Get a character from the command line. 13

CGETINPUT$PATHNAME Parse the command line and return an
input pathname. 23

CGETPARAMETER Parse the command line for the next parameter
and return it as a keyword name and a value. 39

CGETOUTPUT$PATHNAME Parse the command line and return an output
pathname. 36

CSETPARSE$BUFFER Parse a buffer other than the current command
line. 58

CGETCOMMAND$NAME Return the command name by which the current
command was invoked 15

MESSAGE PROCESSING

C$FORMAT$EXCEPTION Create a default message for an exception code
and place it in a user buffer. 11

C$SEND$CO$RESPONSE Send a message to the console output (CO)
and read a response from the console
input (CI). 50

C$SEND$EO$RESPONSE Send a message to the operator's terminal
and return a response from that terminal. 53

Human Interface System Calls 3

iRMX® HUMAN INTERFACE SYSTEM CALLS

COMMAND PROCESSING

Call Description Page

C$CREATE$COMMAND$- Create a command connection and return a
CONNECTION token. 6

C$DELETE$COMMAND$- Delete a specific command connection. 10
CONNECTION

C$SEND$COMMAND Concatenate command lines into the data structure
created by CREATE$COMMAND$CONNECTION
and then invoke the command. 43

PROGRAM CONTROL

CSETCONTROL$C Change the default response for a CONTROL-C. 56

4 Human Interface System Calls

C$BACKUP$CHAR

C$BACKUP$CHAR, a command parsing call, moves the parsing buffer pointer back one
byte.

CALL RQCBACKUP$CHAR(except$ptr);

Output Parameter
except$ptr

Description

A POINTER to a WORD in which the Human Interface returns a
condition code.

When an operator invokes a command, the command's parameters are placed in a parsing
buffer. The C$BACKUP$CHAR system call allows you to move the parsing buffer's
pointer back one character for each occurrence of the call.

Exception Codes

E$OK

E$LIMIT

E$CONTEXT

Human Interface System Calls

OOOOH No exceptional conditions were encountered.

0004H The parsing buffer's pointer is at the start of the
command.

GOOSH The job that issued the call is not an I/O job.

5

C$CREATE$COMMAND$CONNECTION

C$CREATE$COMMAND$CONNECTION, a command processing call, creates an iRMX
object called a command connection that is required in order to invoke commands
programmatically.

command$conn = RQ$C$CREATE$COMMAND$CONNECTION(default$ci, default$co,
flags, except$ptr);

Input Parameters
default$ci A TOKEN for a connection that is used as the :CI: (console input)

for any commands you invoke using this command connection.

default$co

flags

A TOKEN for a connection that is used as the :CO: (console
output) for any commands you invoke using this command
connection.

A WORD used to indicate that the Human Interface should return
an E$ERROR$OUTPUT exception code if the system call
C$SEND$EO$RESPONSE is used by any task. If the user wants
the exception code, then the parameter is set to one (1); otherwise,
the parameter must equal zero (0).

Output Parameters
command$conn

except$ptr

A TOKEN which receives a token for the new command
connection.

A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

6

You can use this call when you want to invoke a command programmatically instead of
interactively. It provides a place to store command lines until the command invocation is
complete.

The call creates an iRMX object called a command connection and returns a token for that
command connection. The C$SEND$COMMAND system call can use this token to send
command lines to the command connection, where they are stored until the command
invocation is complete. The command connection also defines default :CI: and :CO:
connections that are used by any commands invoked via this command connection.

Human Interface System Calls

C$CREATE$COMMAND$CONNECTION

Although a job can contain multiple command connections, the tasks in a job cannot create
command connections simultaneously. Attempts to do this result in an E$CONTEXT
exception code. Therefore, it is advisable for one task to create the command connections
for all tasks in the job.

A possible application where the parameter "flags" might be set to one is when you want to
write a custom CLI to perform batch jobs in the background. When any of the background
batch jobs attempt to communicate with the terminal through C$SEND$EO$RESPONSE,
the Human Interface issues an exception code. In this way, the Human Interface keeps all
the jobs in the background. Note that the Human Interface CLI does not provide resident
background or batch processing capability.

Exception Codes

E$OK OOOOH No exceptional conditions were encountered.

E$ALREADY$A TTACHED 0038H While creating a STREAM file, the Extended
I/O System was unable to attach the :STREAM:
device because another task had already invoked
a Basic I/O system call to attach the :STREAM:
device.

E$CONTEXT

EDEVDETACHING

E$DEVFD

Human Interface System Calls

OOOSH At least one of the following is true:

• Two command connections were being
created simultaneously by two tasks in the
same job.

• The calling task's job was not created by the
Human Interface.(Refer to the iRM)(®
Extended I/O Systenz User's Guide for
informa tion.)

0039H The :STREAM: device, the default$ci device, or
the default$co device was in the process of being
detached.

0022H The Extended I/O System attempted the
physical attachment of the :STREAM: device.
This device had formerly been only logically
attached. In the process, the Extended I/O
System found that the device and the device
driver specified in the logical attachment are
incompatible. The operating system would not
have returned this exception code if the
:STREAM: device had been properly configured.

7

C$CREATE$COMMAND$CONNECTION

E$EXIST 0OO6H The default$ci or default$co parameter is not a
token for an existing object.

E$FNEXIST 0021H The :STREAM: file does not exist or is marked
for deletion.

E$IFDR 002FH The Extended I/O System attempted to obtain
information about the default$ci or default$co
connection. However, the request for
information resulted in an invalid file driver
request.

E$INV ALID$FNODE 003DH The fnode associated with the specified file (:CI:
or :CO:) is invalid.

EIOMEM 0042H The Basic I/O System job does not currently
have a block of memory large enough to allow
the Human Interface to create a stream file.

E$LIMIT 0OO4H At least one of the following is true:

• The object directory of the calling task's job
has already reached the maximum object
directory size.

• The calling task's job has exceeded its object
limit.

• The calling task's job (or that job's default
user object) is already involved in 255
(decimal) I/O operations.

• The calling task's job was not created by the
Human Interface. (Refer to the iRMX®
Extended I/O Systenl User's Guide for
information.)

ELOGNAME$NEXIST 0045H The call was unable to find the logical name
:STREAM: in the object directories of the local
job, the global job, or the root job.

E$MEM 0OO2H The memory available to the calling task's job is
not sufficient to complete the call.

E$NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

8 Human Interface System Calls

ENOTCONNECTION

ENOTLOG$NAME

E$NOUSER

E$PARAM

E$SUPPORT

Human Interface System Calls

C$CREATE$COMMAND$CONNECTION

8042H The default$ci or default$co parameter is a
token for an object that is not a connection to a
file.

8040H The logical name :STREAM: refers to an object
that is not a file or device connection.

8021H The calling task's job does not have a valid
default user object.

8004H The system call forced the Extended I/O System
to attempt the physical attachment of the
:STREAM: device, which had formerly been only
logically attached. In the process, the Extended
I/O System found that the stream file driver is
not properly configured into your system, so the
physical attachment is not possible.

0023H The default$ci or default$co device connection
was not created by this job.

9

C$DELETE$COMMAND$CONNECTION

C$DELETE$COMMAND$CONNECTION, a command processing call, deletes a
command connection object and frees the memory used by the command connection's data
structures.

CALL RQCDELETE$COMMAND$CONNECTION(cornmand$conn, except$ptr);

Input Parameter
command$conn

Output Parameter
except$ptr

Description

A TOKEN for a valid command connection.

A POINTER to a WORD in which the Human Interface returns a
condition code.

This call deletes a command connection object previously defined in a
C$CREATE$COMMAND$CONNECTION call and releases the memory used by the
command connection's data structures.

Exception Codes

E$OK

E$EXIST

E$TYPE

10

OOOOH No exceptional conditions were encountered.

0006H The command$conn parameter is not a token for
an existing obj ect.

8002H The command$conn parameter is a token for an
object that is not a command connection object.

Human Interface System Calls

C$FORMAT$E)(CEPTION

C$FORMA T$EXCEPTION, a message processing call, creates a default message for a
given exception code and writes that message into a user-provided string.

CALL RQCFORMAT$EXCEPTION(buff$p, buff$max, exception$code,
reserved$byte, except$ptr);

Input Parameters
buff$max

exception$code

reserved$byte

Output Parameters
buff$p

except$ptr

Description

A WORD that specifies the maximum number of bytes that may be
contained in the string pointed to by buff$p.

A WORD containing the exception code value for which a message
is to be created.

A BYTE reserved for future use. Its value must be one (1).

A POINTER to a STRING into which the Human Interface
concatenates the formatted exception message.

A POINTER to a WORD in which the Human Interface returns a
condition code.

C$FORMA T$EXCEPTION causes the Human Interface to create a message for the
exception code. The message consists of the exception code value and exception code
mnemonic in the following format:

value: mnemonic

where the mnemonics are provided by the Human Interface from an internal table and are
listed in the Operator's Guide To The iRM)(® Human Interface.

The call concatenates the message to the end of the string pointed to by the buff$p pointer
and updates the count byte to reflect the addition. If a string is not already present in the
buffer, the first byte of the buffer must be a zero. The message added by
C$FORMAT$EXCEPTION will not be longer than 30 characters (not including the length
byte).

Human Interface System Calls 11

C$FORMAT$EXCEPTION

Exception Codes

E$OK

12

E$PARAM

E$STRING

E$STRING$BUFFER

OOOOH No exceptional conditions were encountered.

8004H An undefined exception code value was specified.

8084H The message to be returned exceeds the length
limit of 255 characters.

0081H The buffer pointed to by the buff$p parameter is
not large enough to contain the exception
message.

Human Interface System Calls

CGETCHAR

CGETCHAR, a command parsing call, gets a character from the parsing buffer.

char = RQCGET$CHAR(except$ptr);

Output Parameters
char

except$ptr

Description

A BYTE in which the Human Interface places the next character
from the parsing buffer. A null (OOH) character is returned when
the parsing buffer's pointer is at the end of the parsing buffer.

A POINTER to a WORD in which the Human Interface returns a
condition code.

When an operator invokes a command, the command's parameters are placed in a parsing
buffer. The CGETCHAR system call gets a single character from that buffer and moves
the parsing buffer pointer to the next character. Consecutive calls to CGETCHAR
return consecutive characters from the parsing buffer.

Exception Codes

E$OK

E$CONTEXT

E$LIMIT

Human Interface System Calls

OOOOH No exceptional conditions were encountered.

OOOSH The calling task's job was not created by the
Human Interface. Refer to the iRMX® Extended
I/O System User's Guide for information.

0004H At least one of the following situations occurred:

• The object directory of the calling task's job
has already reached the maximum object
directory size.

• The calling task's job has exceeded its object
limit.

• The calling task's job was not created by the
Human Interface. Refer to the iRM)(®
Extended I/O Systen'l User's Guide for
information.

13

CGETCHAR

E$MEM

14

0002H The memory available to the calling task's job is
not sufficient to complete the call.

Human Interface System Calls

CGETCOMMAND$NAME

CGETCOMMAND$NAME, a command parsing call, obtains the pathname of the
command that the operator used when invoking the command.

CALL RQCGET$COMMAND$NAME (path$narne$p, narne$rnax, except$ptr);

Input Parameter
name$max

Output Parameters
path$name$p

except$ptr

Description

A WORD that specifies the maximum length in bytes of the string
pointed to by the path$name$p parameter.

A POINTER to a buffer that receives a STRING containing the
name of the command.

A POINTER to a WORD in which the Human Interface returns a
condition code.

If a command needs to know the name under which it was invoked, the
CGETCOMMAND$NAME returns this information. This information is available to
each command and is stored in a buffer that is separate from the parsing buffer.
Therefore, calling CGETCOMMAND$NAME does not obtain information from the
parsing buffer, nor does it move the parsing pointer.

If the operator invokes the command without specifying a logical name, the Human
Interface automatically searches a number of directories for the command. In such cases,
the value returned by CGETCOMMAND$NAME also includes the directory name
(such as :SYSTEM:, :PROG:, or :$:) as a prefix to the command name.

Exception Codes

E$OK OOOOH No exceptional conditions were encountered.

E$LIMIT 0004H The calling task's job was not created by the
Human Interface.

E$PA THNAME$SYNTAX 003EH The specified pathname contains invalid
characters.

Human Interface System Calls 15

CGETCOMMAN D$NAME

16

E$PA THNAME$SYNTAX 003EH The specified pathname contains invalid
characters.

E$STRING$BUFFER 008IH The buffer pointed to by the path$name$p
parameter is not large enough to contain the
command name.

E$TlME OOOIH The calling task's job was not created by the
Human Interface.

Human Interface System Calls

CGETINPUT$CONNECTION

CGETINPUT$CONNECTION, an I/O processing call, returns an Extended I/O System
connection to the specified input file.

connection = RQCGET$INPUT$CONNECTION(path$name$p, except$ptr);

Input Parameter
path$name$p

Output Parameters
connection

except$ptr

Description

A POINTER to a buffer that receives a STRING. (The path of the
specified input file.)

A TOKEN in which the operating system returns the token for the
connection to the specified pathname.

A POINTER to a WORD in which the Human Interface returns a
condition code.

CGETINPUT$CONNECTION obtains a connection to the specified file. This
connection is open for reading and has the following attributes:

• Read only

• Accessible to all users

• Has two l024-byte buffers (This is the default size.)

CGETINPUT$CONNECTION causes an error message to be displayed at the
operator's terminal (:CO:) whenever the operating system encounters an exceptional
condition. The exceptional condition that triggers the error message can either be one of
those listed for CGETINPUT$CONNECTION or it can be one of those associated with
the Extended I/O System calls S$ATTACH$FILE and S$OPEN. The following messages
can occur:

• <pathname>, file does not exist

The input file does not exist.

• <pathname>, invalid file type

The input file was a data file and a directory was required, or vice versa.

Human Interface System Calls 17

CGETINPUT$CONNECTION

• <pathname>, invalid logical name

The input pathname contains a logical name that is longer than 12 characters, that
contains unmatched colons, invalid characters, or zero characters.

• <pathname>, logical name does not exist

The input pathname contains a logical name that does not exist.

• <pathname>, READ access required

The user does not have read access to the input file.

• <pathname>, <exception value>:<exception mnemonic>

An exceptional condition occurred when CGETINPUT$CONNECTION attempted
to obtain the input connection. The <exception value> and <exception mnemonic>
portions of the message indicate the exception code encountered. Refer to "Exception
Codes" in this call description and to the descriptions of S$A TT ACH$FILE and
S$OPEN in the iRMX® Extended I/O System Calls Reference Manual.

Exception Codes

E$OK OOOOH No exceptional conditions were encountered.

18

E$ALREADY$ATTACHED 0038H The device containing the file specified in the
path$name$p parameter is already attached.

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$EXIST

0005H At least one of the following is true:

• The calling task's job was not created by the
Human Interface. (Refer to the iRMX®
Extended I/O Systen'l User's Guide for
information.)

• The calling task's job was not created by the
Human Interface.

0039H The device specified in the path$name$p
parameter is in the process of being detached.

0022H The call attempted the physical attachment of a
device that had formerly been only logically
attached. In the process, the call found that the
device and the device driver specified in the
logical attachment were incompatible.

0006H The specified device does not exist.

Human Interface System Calls

E$FACCESS

E$FNEXIST

E$FTYPE

E$ILLVOL

E$INV ALID$FNODE

EIOHARD

EIOMEM

Human Interface System Calls

CGETINPUT$CONNECTION

0026H The specified connection does not have read
access to the file.

0021H At least one of the following is true:

• The target file does not exist or is marked for
deletion.

• While attaching the file pointed to by the
path$name$p parameter, the call attempted
the physical attachment of the device as a
named device. It could not complete this
process because the device specified when
the logical attachment was made was not
defined during configuration.

0027H The path pointed to by the path$name$p
parameter contained a file name that should
have been the name of a directory, but is not.
(Except for the last path component, each file in
a pathname must be a named directory.)

002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically attached.
The call found that the volume did not contain
named files. This prevented the call from
completing physical attachment because the
named file driver was requested during logical
attachment.

003DH The fnode for the specified file is invalid, so the
file must be deleted.

0052H While attempting to access the file specified in
the path$name$p parameter, the call detected a
hard I/O error. Another call is useless.

0042H While attempting to create a connection, the call
needed memory from the Basic I/O subsystem's
memory pool. However, the Basic I/O System
job does not currently have a block of memory
large enough to allow this call to run to
completion.

19

CGETINPUT$CONNECTION

20

EIONOT$READY

EIOSOFf

EIOUNCLASS

E$LIMIT

0053H At least one of the following is true:

• While attempting to access the file specified
in the path$name$p parameter, the call
found that the device was off-line. Operator
intervention is required.

• Communication failed between the local
system and the remote server. Operator
intervention is required.

0051H While attempting to access the file specified in
the path$name$p parameter, the call detected a
soft I/O error. It tried the operation again but
was unsuccessful. Another try might be
successful.

0050H An unknown type of I/O error occurred while
this call tried to access the file given in the
path$name$p parameter.

0004H At least one of the following is true:

• The calling task's job or the job's default user
object is already involved in 255 (decimal)
I/O operations.

• The calling task's job was not created by the
Human Interface.

• The object limit of the calling job has been
reached.

• Processing this call would deplete the remote
server's resources. For a list of remote
server resources, refer to the iRM)(!ID
Networking Software User's Guide.

ELOGNAME$NEXIST 0045H The pathname for the specified device contains
an explicit logical name. The call was unable to
find this name in the object directories of the
local job, the global job, or the root job.

ELOGNAME$SYNTAX 0040H The pathname pointed to by the path$name$p
parameter contains a logical name. This logical
name contains an unmatched colon, is longer
than 12 characters, has zero (0) characters, or
contains invalid characters.

Human Interface System Calls

CGETINPUT$CONNECTION

E$MEDIA 0044H The specified device was off-line. If the device
has removable media, the media may not be in
place.

E$MEM 0OO2H The memory available to the calling task's job is
not sufficient to complete the call.

E$NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

ENOTLOG$NAME 8040H The logical name specified by the path$name$p
parameter does not refer to a file or device
connection.

E$NOUSER 8021H The calling task's job does not have a valid
default user.

E$PARAM 8004H At least one of the following is true:

• The system call forced the Extended I/O
System to attempt the physical attachment of
the device referenced by the path$name$p
parameter. This device had formerly been
only logically attached. In the process, the
Extended I/O System found that the logical
attachment referred to a file driver (named,
physical, or stream) that is not configured
into your system, so the physical attachment
is not possible.

• The connection to the specified file cannot be
opened for reading.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PATHNAME$SYNTAX 003EH The specified pathname contains invalid
characters.

E$SHARE 0028H The file sharing attribute currently does not
allow new connections to the file to be opened
for reading.

E$STREAM$SPECIAL 003CH The call attempted to attach a stream file and in
so doing issued an invalid stream file request.

Human Interface System Calls 21

CGETINPUT$CONNECTION

EUDFIO

22

02DOH An error occurred while accessing the remote
server's User Definition File (UDF). The
server's UDF must have world read permission.

Human Interface System Calls

C$G ET$I N P UT$ PATH NAM E

CGETINPUT$PA THNAME, a command parsing call, gets a pathname from the list of
input pathnames in the parsing buffer.

CALL RQCGET$INPUT$PATHNAME(path$name$p, path$name$max,
except$ptr) ;

Input Parameter
path$name$max

Output Parame~ers
path$name$p

except$ptr

Description

A WORD that specifies the maximum length in bytes of the string
pointed to by the path$name$p parameter. The maximum length
that you can specify is 256 bytes (255 characters for the pathname
and one byte for the count).

A POINTER to a STRING which receives the next pathname in the
pathname list. A zero-length string indicates that there are no more
pathnames.

A POINTER to a WORD in which the Human Interface returns a
condition code.

The first call to CGETINPUT$PA THNAME retrieves the entire input pathname list
and moves the parsing pointer to the next parameter. CGETINPUT$PATHNAME
stores the list in an internal buffer and returns the first pathname in the string pointed to
by the path$name$p parameter. Succeeding calls to CGETINPUT$PATHNAME return
additional pathnames from the input pathname list but do not move the parsing pointer.
CGETINPUT$PA THNAME denotes the end of the pathname list by returning a zero­
length string.

CGETINPUT$PA THNAME accepts wild-card characters in the last component of a
pathname. It treats a pathname that contains a wild-card as a list of pathnames. To obtain
each pathname, it searches in the parent directory of the component containing the wild­
card, comparing the "wild-carded" name with the names of all files in the directory. It
returns the next pathname that matches.

The pathname returned by CGETINPUT$PA THNAME can be used for any purpose.
However, it is most often used in a call to CGETINPUT$CONNECTION, to obtain a
connection.

Human Interface System Calls 23

CGETINPUT$PATHNAME

Exception Codes

E$OK OOOOR No exceptional conditions were encountered.

E$ALREADY$ATIACHED 0038H The device containing the file pointed to by the
path$name$p parameter is already attached.

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$EXIST

E$FACCESS

E$FLUSHING

24

OOOSH At least one of the following is true:

• The calling task's job was not created by the
Human Interface. (Refer to the iRMX®
Extended I/O System User's Guide for more
information.)

• The task called
CGETOUTPUT$PATHNAME before
calling CGETINPUT$PATHNAME.

0039H The device pointed to by the path$name$p
parameter is in the process of. being detached.

0022H The Extended I/O System attempted the
physical attachment of a device that had formerly
been only logically attached. In the process, the
Extended I/O System found that the device and
the device driver specified in the logical
attachment were incompatible.

0006H At least one of the following is true:

• The connection to the parent directory of the
file pointed to by the path$name$p
parameter is not a token for the existing job.

• The calling task's job was not created by the
Human Interface.

0026H The connection used to open the directory does
not have read access to the directory.

002CH The device containing the directory was in the
process of being detached.

Human Interface System Calls

E$FNEXIST

E$FfYPE

E$IFDR

E$ILLVOL

E$INVALID$FNODE

EIOHARD

EIOMEM

Human Interface System Calls

CGETINPUT$PATHNAME

0021H At least one of the following is true:

• The target file does not exist or is marked for
deletion.

• While attaching the parent directory of the
file pointed to by the path$name$p
parameter, the I/O System attempted the
physical attachment of the device as a named
device. It could not complete this process
because the device specified when the logical
attachment was made was not defined during
configura tion.

0027H The path pointed to by the path$name$p
parameter contained a file name that should
have been the name of a directory, but is not.
(Except for the last file, each file in a pathname
must be a named directory.)

002FH The specified file is a stream or physical file.

002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically attached.
The call found that the volume did not contain
named files. This prevented the call from
completing physical attachment because the
named file driver was requested during logical
attachment.

003DH The fnode for the specified file is invalid, so the
file must be deleted.

0052H While attempting to access the parent directory
of the file pointed to by the path$name$p
parameter, the call detected a hard I/O error.
This means that another call is probably useless.

0042H While attempting to create a connection, this call
needed memory from the Basic I/O System's
memory pool. However, the Basic I/O System
job does not currently have a block of memory
large enough to allow this call to run to
completion.

25

CGETINPUT$PATHNAME

EIONOT$READY 0053H At least one of the following is true:

• While attempting to access the file specified
in the path$name$p parameter, the call
found that the device was off-line. Operator
intervention is required.

• Communication failed between the local
system and the remote server. Operator
intervention is required.

EIOSOFT 0051H While attempting to access the parent directory
of the file pointed to by the path$name$p
parameter, this call detected a soft I/O error. It
tried the operation again, but was unsuccessful.
Another try might be successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred while
this call tried to access the parent directory of the
file pointed to by the path$name$p parameter.

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job or the job's default user
object is already involved in 255 (decimal)
I/O operations.

• The calling task's job was not created by the
Human Interface.

• Processing this call would deplete the remote
server's resources. For a list of remote
server resources, refer to the iRM)(®
Networking Software User's Guide.

E$LIST 0085H The last value of the input pathname list is
missing. For example, "ABLE,BAKER," has no
value following the second comma.

ELOGNAME$NEXIST 0045H The pathname for the specified device contains
an explicit logical name. The call was unable to
find this name in the object directory of the local
job, the global job, or the root job.

26 Human Interface System Calls

CGETINPUT$PATHNAME

ELOGNAME$SYNTAX 0040H The pathname pointed to by the path$name$p
parameter contains a logical name that has an
unmatched colon, is longer than 12 characters,
has zero (0) characters, or contains invalid
characters.

E$MEDIA 0044H The specified device was off-line. If the device
has removable media, the media may not be in
place.

E$MEM 0002H The memory available to the calling task's job is
not sufficient to complete the call.

E$NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

ENOTLOG$NAME 8040H The logical name specified by the path$name$p
parameter does not refer to a file or device
connection.

E$NOUSER 8021H The calling task's job does not have a valid
default user object.

E$PARAM 8004H At least one of the following is true:

• The Extended I/O System attempted the
physical attachment of the device pointed to
by the path$name$p parameter. This device
had formerly been only logically attached. In
the process, the Extended I/O System found
that the logical attachment referred to a file
driver (named, physical, or stream) that is
not configured into your system, so the
physical attachment is not possible.

• The connection to the parent directory
cannot be opened for reading.

E$PARSE$TABLES 8080H The call detected an error in an internal table
used by the Human Interface.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PA THNAME$SYNTAX 003EH The specified path name contains invalid
characters.

Human Interface System Calls 27

CGETINPUT$PATHNAME

E$SHARE 0028H The connection to the parent directory cannot be
opened for reading.

E$STREAM$SPECIAL 003CH The Extended I/O System issued an invalid
stream file request when an attempt to attach a
stream file failed.

E$STRING 8084H The pathname to be returned exceeds the length
limit of 255 characters.

E$STRING$BUFFER 0081H The buffer pointed to by the path$name$p
parameter was not large enough for the
pathname to be returned.

E$SUPPORT 0023H This call attempted to read the parent directory
of the pathname pointed to by the path$name$p
parameter. However, the file driver
corresponding to that directory does not support
this operation.

E$WILDCARD 0086H The pathname to be returned contains an invalid
wild-card specification.

EUDFIO 02DOH An error occurred while accessing the remote
server's User Definition File (UDF). The
server's UDF must have world read permission.

28 Human Interface System Calls

CGETOUTPUT$CONNECTION

CGETOUTPUT$CONNECTlON, an I/O processing call, parses the command line and
returns an Extended I/O System connection referring to the requested output file.

connection = RQCGET$OUTPUT$CONNECTION(path$name$p, preposition,
except$ptr);

Input Parameters
path$name$p

preposition

Output Parameters
connection

except$ptr

A POINTER to a STRING containing the pathname of the file to
be accessed.

A BYTE that defines which preposition to use to create the output
file. Use one of the following values to specify the preposition
mode:

Value

o
Meaning

Use same preposition as was returned by
the last CGETOUTPUT$PATHNAME
call

1 TO

2 OVER

3 AFTER

4-255 Undefined, results in an error

A TOKEN in which the Human Interface returns a token for the
connection to the output file.

A POINTER to a WORD in which the Human Interface returns a
condition code.

Human Interface System Calls 29

CGETOUTPUT$CONNECTION

Descri ption

30

CGETOUTPUT$CONNECTION obtains a connection to the specified file.

This connection is open for writing and has the following attributes:

• Write only

• Accessible to all

• Has two 1024-byte buffers

If the call to CGETOUTPUT$CONNECTION specifies the TO preposition and the
output file already exists, CGETOUTPUT$CONNECTION issues the following
message to the terminal (:CO:):

<pathname>, already exists, OVERWRITE?

If the operator enters Y, y, R, or r, CGETOUTPUT$CONNECTION returns a
connection to the existing file, allowing the command to write over the file. Any other
response causes CGETOUTPUT$CONNECTION to return an E$F ACCESS exception
code.

CGETOUTPUT$CONNECTION causes an error message to be displayed at the
operator's terminal (:CO:) whenever an exceptional condition occurs. The exceptional
condition that causes the error message can be one of those listed below or one associated
with an Extended I/O System call. The following messages can occur:

• <pathname>, DELETE access required

The user does not have delete access to an existing file.

• <pathname>, directory ADD entry access required

The user does not have add entry access to the parent directory.

• <pathname>, file does not exist

The output file does not exist.

• <pathname>, invalid file type

The output file was a data file and a directory was required, or vice versa.

• <pathname>, invalid logical name

The output pathname contains a logical name longer than 12 characters, contains
unmatched colons, contains invalid characters, or zero characters.

• <pathname>, logical name does not exist

The output pathname contains a logical name that does not exist.

Human Interface System Calls

CGETOUTPUT$CONNECTION

• <pathname>, <exception value>:<exception mnemonic>

An exceptional condition occurred when CGETOUTPUT$CONNECTION
attempted to obtain the output connection. The < exception value> and < exception
mnemonic> portions of the message indicate the exception code encountered. Refer
to "Exception Codes" in this call description and to the iRM)(® Extended I/O Systenl
User's Guide.

Exception Codes

E$OK OOOOH No exceptional conditions were encountered.

E$ALREADY$ATIACHED 0038H The Extended I/O System was unable to attach
the device containing the file because the Basic
I/O System has already attached the device.

E$CONTEXT

EDEVDETACHING

E$DEVFD

E$EXIST

E$FACCESS

Human Interface System Calls

OOOSH The calling task's job was not created by the
Human Interface.

0039H The device referred to by the path$name$p
parameter was in the process of being detached.

0022H The call attempted the physical attachment of a
device that had formerly been only logically
attached. In the process, the call found that the
device and the device driver specified in the
logical attachment were incompatible.

0006H The connection parameter for the device
containing that file is not a token for an existing
object.

0026H At least one of the following is true:

• The default user for the calling task's job did
not have update access to an existing file
and/or add-entry access to the parent
directory.

• The TO or OVER preposition was specified
and the default user for the calling task's job
did not have the ability to truncate the file.

31

CGETOUTPUT$CONNECTION

E$FNEXIST

E$FTYPE

E$IFDR

E$ILLVOL

E$INVALID$FNODE

EIOHARD

EIOMEM

32

0021H At least one of the following is true:

• The target file does not exist or is marked for
deletion.

• While attaching the file pointed to by the
path$name$p parameter, the Extended I/O
System attempted the physical attachment of
the device as a named device. It could not
complete this process because the device
specified when the logical attachment was
made was not defined during configuration.

0027H The path pointed to by the path$name$p
parameter contained a file name that should
have been the name of a directory, but is not.
(Except for the last component, each file in a
pathname must be a named directory.)

002FH The call requested information about the
specified file, but the request was an invalid file
driver request.

002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically attached.
The call found that the volume did not contain
named files. This prevented the call from
completing physical attachment because the
named file driver was requested during logical
attachment.

003DH The fnode for the specified file is invalid, so the
file must be deleted.

0052H While attempting to access the file specified in
the path$name$p parameter, the call detected a
hard I/O error. A retry is probably useless.

0042H While attempting to create a connection, this call
needed memory from the Basic I/O System's
memory pool. However, the Basic I/O System
job does not currently have a block of memory
large enough to allow this call to run to
completion.

Human Interface System Calls

CGETOUTPUT$CONNECTION

EIONOT$READY 0053H At least one of the following is true:

• While attempting to access the file specified
in the path$name$p parameter, the call
found that the device was off-line. Operator
intervention is required.

• Communication failed between the local
system and the remote server. Operator
intervention is required.

EIOSOFf 0051H While attempting to access the file specified in
the path$name$p parameter, the call detected a
soft I/O error. It tried the operation again but
was unsuccessful. Another try might be
successful.

EIOUNCLASS 0050H An unknown type of I/O error occurred while
this call tried to access the file given in the
path$name$p parameter.

EIOWRPROT 0054H While attempting to obtain an input connection
to the file specified in the path$name$p
parameter, this call found that the volume
containing the file is write-protected.

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job or the job's default user
object is already involved in 255 (decimal)
I/O operations.

• The calling task's job was not created by the
Human Interface.

• The calling task's job has reached its object
limit. (Refer to the iRM)(® Extended I/O
System User's Guide for more information
about I/O jobs.)

• Processing this call would deplete the remote
server's resources. For a list of remote
server resources, refer to the iRM)(®
Networking Software User's Guide.

ELOGNAME$NEXIST 0045H The specified pathname contains an explicit
logical name. The call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

Human Interface System Calls 33

CGETOUTPUT$CONNECTION

ELOGNAME$SYNTAX 0040H The pathname pointed to by the path$name$p
parameter contains a logical name. However,
the logical name contains unmatched colons, is
longer than 12 characters, contains invalid
characters, or contains zero characters.

E$MEDIA 0044H The specified device was off-line. If the device
has removable media, the media may not be in
place.

E$MEM 0OO2H The memory available to the calling task's job is
not sufficient to complete the call.

E$NOPREFIX 8022H The calling task's job does not have a valid
default prefix.

ENOTLOG$NAME 8040H The logical name specified by the path$name$p
parameter does not refer to a file or device
connection.

E$NOUSER 8021H The calling task's job does not have a valid
default user object.

E$PARAM 8004H The system call forced the Extended I/O System
to attempt the physical attachment of the device
referenced by the path$name$p parameter. The
device had formerly been only logically attached.
In the process, the Extended I/O System found
that the logical attachment referred to a file
driver (named, physical, or stream) that is not
configured into your system, so the physical
attachment is not possible.

E$PASSWORD$- 004BH The password of the user object does not
MISMATCH match the password of the corresponding user

defined on the remote server.

E$PATHNAME$SYNTAX 003EH The specified pathname contains invalid
characters.

34 Human Interface System Calls

CGETOUTPUT$CONNECTION

E$PREPOSITION 0087H One of the following is true:

• The command line contained an invalid
preposition value (a value greater than 3).

• The command line contained a zero as the
preposition value. This indicated that the
same preposition was to be used as in the last
call to CGETOUTPUT$CONNECTION.
However, this is the first call to
CGETOUTPUT$CONNECTION.

E$SHARE 0028H The new connection cannot be opened for
writing.

E$SPACE 0029H One of the following is true:

• The volume is full.

• The volume already contains the maximum
number of files.

E$STREAM$SPECIAL 003CH The Extended I/O System issued an invalid
stream file request when an attempt to attach a
stream file failed.

EUDFIO 02DOH An error occurred while accessing the remote
server's User Definition File (UDF). The
server's UDF must have world read permission.

Human Interface System Calls 35

CGETOUTPUT$PATHNAME

CGETOUTPUT$PATHNAME, a command parsing call, gets a pathname from the list
of output pathnames in the parsing buffer.

preposition = RQCGET$OUTPUT$PATHNAME(path$name$p, path$name$max,
default$output$p, except$ptr);

Input Parameters
path$name$max A WORD that specifies the maximum length in bytes of the string

pointed to by the path$name$p parameter. The maximum length
that you can specify is 256 bytes (255 characters for the pathname
and one byte for the count).

default$output$p

Output Parameters
preposition

path$name$p

except$ptr

36

A POINTER to a STRING containing the command's default
standard output. If the first invocation of this system call does not
encounter a TO /OVER/ AFTER preposition, the text of this
parameter will be used as though it had appeared in the command
line. The text must specify TO, OVER, or AFTER for the output
mode. Examples: TO :CO: or TO :LP:.

A BYTE describing the preposition type that
CGETOUTPUT$PA THNAME encountered. You can pass this
value to CGETOUTPUT$CONNECTION when obtaining an
output connection to the file. The value will be one of the following:

Value Meaning

1
2
3

TO
OVER
AFTER

A POINTER to a buffer that receives a STRING. (The next
pathname in the pathname list.)

A POINTER to a WORD in which the Human Interface returns a
condition code.

Human Interface System Calls

CGETOUTPUT$PATHNAME

Description

You should not call CGETOUTPUT$PATHNAME before first calling
CGETINPUT$PA THNAME.

The first call to CGETOUTPUT$PA THNAME retrieves the preposition
(TO/OVER/AFTER) and the entire output pathname list; it then moves the parsing
pointer to the next parameter. If the parsing buffer does not contain a preposition and
pathname list, CGETOUTPUT$PA THNAME uses the default pointed to by the
default$output$p parameter (and does not move the parsing pointer). After retrieving the
pathname list, CGETOUTPUT$PA THNAME stores it in an internal buffer, returns the
first pathname in the string pointed to by the path$name$p parameter, and returns the
preposition in the preposition parameter. Succeeding calls to
CGETOUTPUT$PATHNAME return additional pathnames from the output pathname
list (as well as the preposition), but they do not move the parsing pointer.
CGETOUTPUT$PATHNAME denotes the end of the pathname list by returning a
zero-length string in the STRING pointed to by path$name$p.

CGETOUTPUT$PATHNAME accepts characters with a wild-card as the last
component of a pathname. It generates each output pathname based on this pathname
and wild-card, the corresponding pathname and wild-card that was input to
CGETINPUT$PA THNAME, and the most recent input pathname returned by
CGETINPUT$PA THNAME.

The pathname returned by CGETOUTPUT$PATHNAME can be used for any purpose.
However, it is most often used in a call to CGETOUTPUT$CONNECTION to obtain a
connection to the file. In such a case, CGETOUTPUT$CONNECTION processes the
TO /OVER/ AFTER preposition. If the pathname is used as input to a system call other
than CGETOUTPUT$CONNECTION, the interpretation of the TO /OVER/ AFTER
preposition is the user's responsibility.

Exception Codes

E$OK

E$CONTEXT

E$DEFAULT$SO

Human Interface System Calls

GOOOH No exceptional conditions were encountered.

GOOSH The calling task's job was not created by the
Human Interface.

8083H The default output string pointed to by
default$output$p contained an invalid
preposition or pathname.

37

CGETOUTPUT$PATHNAME

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job was not created by the
Human Interface.

• The calling task's job or the job's default user
object is already involved in 255 (decimal)
I/O operations.

E$MEM 0OO2H The memory available to the calling task's job is
not sufficient to complete the call.

E$PATHNAME$SYNTAX 003EH The specified pathname contains invalid
characters.

E$STRING 8084H The pathname to be returned exceeds the length
limit of 255 characters.

E$STRING$BUFFER 0081H The buffer pointed to by the path$name$p
parameter was not large enough for the
pathname to be returned.

E$UNMA TCHED$LISTS 008BH The numbers of files in the input and output lists
are not the same.

E$ WILD CARD 0086H The output pathname contains an invalid wild-
card specification.

38 Human Interface System Calls

CGETPARAMETER

CGETPARAMETER, a command parsing call, gets a parameter from the parsing
buffer.

more = RQCGET$PARAMETER(name$p, name$max, value$p, value$max,
index$p, predict$list$p, except$ptr);

Input Parameters
name$max

value$max

predict$list$p

Output Parameters
more

name$p

value$p

A WORD that specifies the maximum length in bytes of the string
pointed to by the name$p parameter. The maximum length is 256
bytes (255 characters for the name and one byte for the count).

A WORD that specifies the maximum length in bytes of the string
pointed to by the value$p parameter. The maximum length is 65535
decimal bytes.

A POINTER to a STRING$TABLE, as described in Appendix B of
the iRMX® Hunzan Inteiface User's Guide, that specifies the values
that this system call accepts as prepositions. The predict$list$p
POINTER should be NIL if you do not intend to retrieve
parameters that use prepositions.

A BYTE value that indicates whether or not the current call to
CGETPARAMETER returned a parameter. A value of OOH
indicates that there are no more parameters (and that no parameter
was returned); a value of OFFH indicates that a parameter was
returned.

A POINTER to a buffer that receives the keyword portion of the
parameter. If this parameter does not contain a keyword portion,
the Human Interface returns a null (zero-length) string.

A POINTER to a buffer used to store a STRING$TABLE, as
described in Appendix B of the iRMX® Human Inteiface User's
Guide, that receives the value portion of the parameter. If the value
portion contains a list of values separated by commas, the Human
Interface returns the values to the string table one value per string.

Human Interface System Calls 39

CGETPARAMETER

index$p

except$ptr

A POINTER to a BYTE that receives the index to the list of
prepositions pointed to by predict$list$p. This index identifies the
name$p keyword as a preposition and identifies it out of the list of
possible prepositions. If the predict$list$p list is empty, or if the
keyword name is not contained in the predict$list$p list, the system
call returns a value of zero for the index. That is, the index will be
non-zero only if a keyword exists and it is one of the prepositions in
the predict$list$p list.

A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

40

CGETPARAMETER retrieves one parameter from the parsing buffer and moves the
parsing pointer to the next parameter. The parameter can be one of the following:

• keyword/value-list parameter using parentheses

• keyword/value-list parameter using an equal sign

• keyword/value-list parameter with the keyword as a preposition

• value-list without a keyword

A description of the types, format, and syntax of acceptable parameters is provided in the
iRMX® Human Interface User's Guide.

CGETPARAMETER places the keyword portion of the parameter in the string pointed
to by name$p; it places the keyword list in the string table pointed to by value$p.

Without input from you, CGETPARAMETER cannot determine whether groups of
characters separated by spaces are separate parameters or a single parameter that uses a
preposition. CGETPARAMETER uses the list of prepositions that you supply in the
string table pointed to by predict$list$p to determine the prepositions that can appear.
When CGETPARAMETER retrieves a parameter, it obtains, from the parsing buffer,
the next group of characters that are separated by spaces. These characters are checked
against those in the predict$list$p list. If the characters match one of the values in the list,
CGETPARAMETER realizes that the characters represent a preposition and not an
entire parameter; it then obtains the next group of characters separated by spaces as the
value portion of the parameter.

Human Interface System Calls

Exception Codes

E$OK

E$CONTEXT

E$CONTINUED

E$LIMIT

E$LIST

E$LlTERAL

Human Interface System Calls

CGETPARAMETER

OOOOH No exceptional conditions were encountered.

OOOSH The calling task's job was not an I/O job. (Refer
to the iRMX® Extended I/O System User's Guide
for information about I/O jobs.)

0083H The call found a continuation character in the
parse buffer. Command lines should not contain
continuation characters.

0004H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job was not an I/O job.
(Refer to the iRMX® Extended I/O Systeln
User's Guide for information about I/O jobs.)

008SH At least one of the following is true:

• The parameter contains an unmatched
parenthesis.

• A value in the value list is missing or an
improper value was entered. Examples of
both these conditions are:

Value

A,B,

Comments

No value following second
comma.

A,B = C,D The equal sign can not be
used unless it is between
quotes: 'B = C' is valid.

A,B(C,E),F The parentheses can not be
used in a value unless it
is between quotes or set
off by commas.
A,B,(C,E),F is valid.

0080H The call found a literal (quoted string) in the
parsing buffer with no closing quote. This
condition should not occur in the command line
buffer.

41

CGETPARAMETER

E$MEM

E$PARAM

E$PARSE$TABLES

E$SEPARATOR

E$STRING

E$STRING$BUFFER

42

0002H The memory available to the calling task's job is
not sufficient to complete the call.

8004H The predict$list$p parameter pointed to a string
table, but the index$p parameter was set to zero
(0).

8080H The call found an error in an internal table used
by the Human Interface.

0082H The call found an invalid command separator in
the parsing buffer. This condition should not
occur in the command line buffer. The following
is a list of invalid command separators: > <,
< >, ", I, [, and].

8084H The string to be returned as the parameter name
or one of the parameter values exceeds the
length limit of 255 characters.

0081H The string to be returned as the parameter name
or one of the parameter values exceeds the
buffer size provided in the call.

Human Interface System Calls

C$SEND$COMMAND

C$SEND$COMMAND, a command processing call, sends command lines to a command
connection created by C$CREATE$COMMAND$CONNECTION and, when the
command is complete, invokes the command.

CALL RQCSEND$COMMAND(command$conn, line$p, command$except$ptr,
except$ptr);

Input Parameters
command$conn

line$p

A TOKEN for the command connection that receives the command
line.

A POINTER to a buffer used to store a STRING containing a
command line to execute.

Output Parameters
command$except$ptr A POINTER to a WORD in which the Human Interface returns

a condition code indicating the status of the invoked command.
This parameter is undefined if an exceptional condition code is
returned in the WORD pointed to by except$ptr.

except$ptr A POINTER to a WORD in which the Human Interface returns
a condition code indicating the status of the
C$SEND$COMMAND system call.

Description

You can use this system call when you want to invoke a command programmatically
instead of interactively. It stores a command line in the command connection created by
the C$CREATE$COMMAND$CONNECTION call, concatenates the command line with
any others already stored there, and (if the command invocation is complete) invokes the
command. The command can be any standard Human Interface command (as described in
the Operator's Guide To The iRMX® HUllzan Inteiface) or a command that you create.

As described in greater detail in the Operator's Guide To The iRMX® Hunlan Inteiface, a
command invocation can contain several continuation marks. The continuation mark (&)
indicates that the command line is continued on the next line. If the command line sent by
C$SEND$COMMAND is continued on another line (that is, contains a continuation
mark), the Human Interface returns an E$CONTINUED exception code and does not
invoke the command. You can then call C$SEND$COMMAND any number of times to
send the continuation lines.

Human Interface System Calls 43

C$SEND$COMMAND

C$SEND$COMMAND concatenates the original command line and all continuation lines
into a single command line in the command connection. It removes all continuation marks
and comments from this command line.

When the command invocation is complete (that is, the line sent by
C$SEND$COMMAND does not contain a continuation mark), the Human Interface
parses the command pathname from the command line. If no exception conditions halt the
process at this point, the Human Interface requests the Application Loader to load and
execute the command.

An Application Loader call creates an I/O job for the command, and validates the header,
group definition and segment definition records of the command's object file. Refer to the
8086 Family Utilities User's Guide or the iAPX 286 Utilities User's Guide For iRMX® II
Systems for explanations of segments, groups and object file formats.

C$SEND$COMMAND returns two condition codes: one for the C$SEND$COMMAND
call and one for the invoked command. The word pointed to by the except$ptr parameter
returns the C$SEND$COMMAND conditions, as described under the "Exception Codes"
heading in this command description. The WORD pointed to by the command$except$ptr
returns the invoked command's condition codes; the values returned depend on the
command invoked. The E$CONTROL$C exception code can be returned at either place.

NOTE

When a C$SEND$COMMAND call is made, the Human Interface sets the
CONTROL-C semaphore to the default Human Interface CONTROL-C
handler. If you previously set the CONTROL-C handler, it must be set
again after making this call. For more information see the iRMX® Human
Interface User's Guide.

Exception Codes

E$OK OOOOH No exceptional conditions were encountered.

44

E$ALREADY$A TTACHED 0038H The Extended I/O System was unable to attach
the device containing the object file because the
Basic I/O System has already attached the
device.

EBADGROUP 0061H The object file represented by the command's
pathname contained an invalid group definition
record.

Human Interface System Calls

EBADHEADER

EBADSEGDEF

E$CHECKSUM

E$CONTEXT

E$CONTINUED

EDEVDETACHING

E$DEVFD

E$EOF

E$EXIST

Human Interface System Calls

C$SEND$COMMAND

0062H The object file represented by the command's
path name does not begin with a header record
for a loadable object module.

0063H The object file represented by the command's
pathname contains an invalid segment definition
record.

0064H At least one record of the object file represented
by the command's pathname contains a
checksum error. This situation could occur if the
CHECKSUM amount calculated during the read
operation did not match the CHECKSUM field
of the record being read.

OOOSH The calling task's job was not created by the
Human Interface.

0083H The operating system detected a continuation
character while scanning the command line
pointed to by the line$p parameter. This
condition should occur if the command line is to
continue on the next line.

0039H The device containing the object file was in the
process of being detached.

0022H The Extended I/O System attempted the
physical attachment of a device that had formerly
been only logically attached. In the process, the
Extended I/O System found that the device and
the device driver specified in the logical
attachment were incompatible.

006SH The Application Loader encountered an
unexpected end of file on the object file
represented by the command's pathname.

0006H At least one of the following is true:

• The call detached the device containing the
object file before completing the loading
operation.

• The command$conn parameter is not a
TOKEN for a command connection.

45

C$SEND$COMMAND

E$FACCESS 0026H The default user for the calling task's job does
not have read access to the object file.

E$FLUSHING 002CH The device containing the object file was being
detached.

E$FNEXIST 0021H At least one of the following is true:

• The file in the command's pathname is either
marked for deletion or does not exist.

• While attaching the file specified in the
line$p parameter, the Extended I/O System
attempted the physical attachment of the
device as a named device. It could not
complete this process because the device
specified when the logical attachment was
made was not defined during configuration.

E$FTYPE 0027H The path pointed to by the path$name$p
parameter contained a component name that
should have been the name of a directory, but is
not. (Except for the last file, each file in a
pathname must be a named directory.)

E$ILLVOL 002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically attached.
The call found that the volume did not contain
named files. This prevented the call from
completing physical attachment because the
named file driver was requested during logical
attachment.

E$INV ALID$FNODE 003DH The fnode for the specified file is invalid, so the
file must be deleted.

EIOHARD 0052H While attempting to access the object file, this
call detected a hard I/O error.

EIOMEM 0042H The Basic I/O System does not currently have
enough memory to allow the Human Interface to
create the connection necessary to allow this call
to run to completion.

46 Human Interface System Calls

C$SEND$COMMAND

EIONOT$READY

EIOSOFT

EIOUNCLASS

E$LIMIT

0053H While attempting to access the object file, this
call found that the device was off-line. Operator
intervention is required.

0051H While attempting to access the object file, this
call detected a soft I/O error. It tried again, but
was not successful. Another try might be
successful.

0050H An unknown type of I/O error occurred while
this call tried to access the object file.

0004 H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job, or the job's default
user object, is already involved in 255
(decimal) I/O operations.

• The new I/O job, or its default user, is
already involved in 255 (decimal) I/O
operations.

• The calling task's job was not created by the
Human Interface. (See to the iRMX®
Extended I/O Systel11, User's Guide for
information.)

E$ LITE RAL 0080H The call found a literal (quoted string) with no
closing quote while scanning the contents of the
command line pointed to by the line$p
parameter.

ELOGNAME$NEXIST 0045H The command's pathname contains an explicit
logical name, but the call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

ELOGNAME$SYNTAX 0040H The pathname pointed to by the path$name$p
parameter contains a logical name. However,
the logical name contains an unmatched colon, is
longer than 12 characters, has zero (0)
characters, or contains invalid characters.

Human Interface System Calls 47

C$SEND$COMMAND

E$MEDIA

E$MEM

ENOLOADER$MEM

E$NOPREFIX

ENOSTART

ENOTCONNECTION

ENOTLOG$NAME

E$NOUSER

E$PARAM

48

0044H The device containing the object file was off-line.
If the device has removable media, the media
may not be in place.

0002H The memory available to the calling task's job,
the new I/O job, or the Basic I/O System job is
not sufficient to complete the call.

0067H At least one of the following is true:

• The memory pool of the newly created I/O
job does not currently have a block of
memory large enough to allow the
Application Loader to run.

• The memory pool of the Basic I/O System's
job does not currently have a block of
memory large enough to allow the
Application Loader to run.

8022H The calling task's job does not have a valid
defa ult prefix.

006CH The object file represented by the command
pathname does not specify the entry point for the
program being loaded.

8042H The default$ci or default$co parameter is a
token for an object that is not a file connection.

8040H The command pathname contains a logical name.
The logical name of an object that is neither a
device connection nor a file connection.

8021H The calling task's job does not have a valid
default user.

8004H The Extended I/O System attempted the
physical attachment of a device containing the
object file. This device had formerly been only
logically attached. While attempting this, the
Extended I/O System found that the logical
attachment referred to a file driver (named,
physical, or stream) that is not configured into
your system. Hence, the physical attachment is
not possible.

Human Interface System Calls

C$SEND$COMMAND

E$PARSE$TABLES 8080H The call found an error in an internal table.

E$PA THNAME$SYNTAX 003EH The command's pathname contains invalid
characters.

ERECFORMAT 0069H At least one record in the object file contains a
record format error.

ERECLENGTH 006AH The object file contains a record that is longer
than the Loader's maximum record length. The
Application Loader's maximum record length is
a parameter specified during the configuration of
the Loader. (Refer to the ICU reference manual
for details.)

ERECTYPE 006BH At least one of the following is true:

ESEGBOUNDS

E$SEPARATOR

E$STRING

E$STRING$BUFFER

E$TIME

E$TYPE

Human Interface System Calls

• At least one record in the file being loaded is
of a type that the Application Loader cannot
process.

• The Application Loader has encountered
records in a sequence that it cannot process.

0070H The Application Loader created multiple
segments in which to load information. One of
the data records in the object file specified a load
address outside of the created segments.

0082H The call found an invalid separator while
scanning the command line. The following is a
list of the invalid command separators: > <,
< >, II, I, [, and].

8084H The size of the command's pathname exceeds the
length limit of 255 (decimal) characters.

008IH The size of the command's pathname exceeds the
size of the command name buffer specified
during the configuration of the Human Interface.

000IH The calling task's job was not created by the
Human Interface.

8002H The command$conn parameter is a token for an
object that is not a command connection.

49

C$SEND$CO$RESPONSE

C$SEND$CO$RESPONSE, a message processing call, sends a message to :Co: and reads
a response from :CI:.

CALL RQCSENDCORESPONSE(response$p, response$max, message$p,
except$ptr);

Input Parameters
response$max A WORD whose value specifies the maximum length in bytes of the

string pointed to by the response$p parameter. The value in
response$max must equal the length of the string plus one

message$p

(string length + 1). If response$max is zero or one, no response
from :CI: will be requested; control returns to the calling task
immediately.

A POINTER to a STRING containing the message to be sent to
:CO:. If NIL, no message is sent.

Output Parameters
response$p

except$ptr

A POINTER to a buffer that receives the operator's response from
:CI:.

A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

so

When used with all its features, C$SEND$CO$RESPONSE sends the string pointed to by
message$p to :CO: and waits for a response from :CI:. It places this response in the string
pointed to by response$p. However, if message$p is NIL, C$SEND$CO$RESPONSE
omits sending the message to :CO:; if either response$max or response$p is NIL, it does
not wait for a response from :CI:. Therefore, the operations performed by
C$SEND$CO$RESPONSE depend on the values of the message$p and response$max
parameters, as follows:

message$p

NIL
NIL
NOT NIL
NOT NIL

response$max

zero
non-zero
non-zero
zero

Action

Perform no I/O
Send no message, wait for input
Send message, wait for input
Send message, don't wait

Human Interface System Calls

C$SEND$CO$RESPONSE

If C$SEND$CO$RESPONSE requests a response from :CI:, output from other tasks can
be displayed at :Co: while the system waits for a response from :CI:.

The difference between the C$SEND$CO$RESPONSE and C$SENDEORESPONSE
calls is that C$SEND$EO$RESPONSE always sends messages to and receives messages
from the operator's terminal; input and output cannot be redirected to another device. In
contrast, C$SEND$CO$RESPONSE sends messages to :CO: and receives messages from
:CI:; therefore, programs such as SUBMIT can redirect this input and output.

Exception Codes

E$OK

E$CONTEXT

E$CONN$OPEN

E$EXIST

OOOOH No exceptional conditions were encountered.

0005H The calling task's job was not created by the
Human Interface.

0035H At least one of the following is true:

• The connection to :CI: was not open for
reading or the connection to :CO: was not
open for writing.

• The connection to :CI: or :CO: was not open.

• The connection to :CI: or :Co: was opened
with A$OPEN rather than S$OPEN.

0006H The token value for :CI: or :Co: is not a token
for an existing object.

E$FLUSHING 002CH The device containing the :CI: and :Co: files was
being detached.

EIOHARD

EIONOT$READY

EIOSOFT

EIOUNCLASS

Human Interface System Calls

0052H While attempting to access the :CI: or :CO: file,
the operating system detected a hard I/O error.

0053H While attempting to access the :CI: or :CO: file,
this call found that the device was off-line.
Operator intervention is required.

0051H While attempting to access the :CI: or :CO: file,
this call detected a soft I/O error. It tried again,
but was unsuccessful. Another try might be
successful.

0050H An unknown type of I/O error occurred while
this call tried to access the :CI: or :CO: file.

51

C$SEND$CO$RESPONSE

EIOWRPROT 0054H While attempting to obtain a connection to the
:CO: file, this call found that the volume
containing the file is write-protected.

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job, or the job's default user
object, is already involved in 255 (decimal)
I/O operations.

• The calling task's job was not created by the
Human Interface.

E$MEM 0OO2H The memory available to the calling task's job is
not sufficient to complete the call.

ENOTCONNECTION 8042H The call obtained a token for an object that
should have been a connection to :CI: or :CO:,
but was not a file connection.

E$PARAM 8004H The call attempted to write beyond the end of a
physical file.

E$SPACE 0029H One of the following is true:

• The output volume is full.

• The call attempted to write beyond the end
of a physical file.

E$STREAM$SPECIAL 003CH When attempting to read or write to :CI: or
:CO:, the Extended I/O System issued an invalid
stream file request.

E$SUPPORT 0023H The connection to :CI: or :Co: was not created
by this job.

E$TIME OOOIH The calling task's job was not created by the
Human Interface.

52 Human Interface System Calls

C$SEND$EO$RESPONSE

C$SEND$EO$RESPONSE, a message processing call, sends a message to and reads a
response from the operator's terminal.

CALL RQCSENDEORESPONSE(response$p, response$max, message$p,
except$ptr);

Input Parameters
response$max

message$p

Output Parameters
response$p

except$ptr

Description

A WORD that specifies the maximum length in bytes of the string
pointed to by the response$p parameter. The value in
response$max must equal the length of the string plus one
(stringlength + 1). If response$max is zero or one, no response
from the operator's terminal will be requested; control returns to
the calling task immediately.

A POINTER to a buffer containing the message to be sent to the
operator's terminal. If NIL, no message is sent.

A POINTER to a STRING that receives the operator's response
from the terminal.

A POINTER to a WORD in which the Human Interface returns a
condition code.

When used with all its features, C$SEND$EO$RESPONSE sends the string pointed to by
message$p to the operator's terminal and waits for a response from the operator. It places
this response in the string pointed to by response$p. However, if message$p is NIL,
C$SEND$EO$RESPONSE omits sending the message to the operator; if either
response$max is zero or response$p is NIL, it does not wait for a response. Therefore, the
operations performed by C$SEND$EO$RESPONSE depend on the values of the
message$p and response$max parameters, as follows:

message$p

NIL
NIL
NOT NIL
NOT NIL

response$max

zero
non-zero
non-zero
zero

Human Interface System Calls

Action

Perform no I/O
Send no message, wait for input
Send message, wait for input
Send message, don't wait

53

C$SEND$EO$RESPONSE

If C$SEND$EO$RESPONSE requests a response from the terminal, no other output can
be displayed at the terminal until C$SEND$EO$RESPONSE receives a line terminator
from the operator. However, the operator can choose to ignore the displayed message by
entering a line terminator only.

The main distinction between the C$SEND$CO$RESPONSE and
C$SEND$EO$RESPONSE calls is that C$SENDEORESPONSE always sends messages
to and receives messages from the operator's terminal; input and output cannot be
redirected to another device. In contrast, C$SEND$CO$RESPONSE sends messages to
:Co: and receives messages from :CI:; therefore, programs such as SUBMIT can redirect
this input and output.

Exception Codes

E$OK

E$CONN$OPEN

OOOOH No exceptional conditions were encountered.

0035H At least one of the following is true:

E$CONTEXT

E$ERROR$OUTPUT

E$EXIST

E$FLUSHING

EIONOT$READY

54

• Either, the connection to the operator's
terminal was not open for reading or it was
not open for writing.

• The connection to the operator's terminal
was not open.

• The connection to the operator's terminal
was opened with A$OPEN rather than
S$OPEN.

0005H The calling task's job was not created by the
Human Interface.

8085H The call to SENDEORESPONSE was
attempted through an invalid method.

0006H The token values for the operator's terminal are
not for existing objects.

002CH The operator's terminal was being detached.

0053H While attempting to access the terminal, this call
found that the device was off-line. Operator
intervention is required.

Human Interface System Calls

C$SEND$EO$RESPONSE

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job or the job's default user
object is already involved in 255 (decimal)
I/O operations.

• The calling task's job was not created by the
Human Interface.

E$MEM 0OO2H The memory pool of the calling task's job does
not currently have a block of memory large
enough to allow this system call to run to
completion.

ENOTCONNECTION 8042H The call obtained a token for an object that
should have been a connection to the operator's
terminal, but was not a file connection.

E$PARAM 8004H The call attempted to write beyond the end of a
physical file.

E$STREAM$SPECIAL 003CH When attempting to read or write to the
operator's terminal, the Extended I/O System
issued an invalid stream file request.

E$SUPPORT 0023H The connection to the terminal was not created
by this job.

E$TIME OOOIH The calling task's job was not created by the
Human Interface.

Human Interface System Calls 55

CSETCONTROL$C

CSETCONTROL$C, a program control call, changes a calling task's CONTROL-C
exchange to the semaphore specified by the first parameter in the CSETCONTROL$C
call.

CALL RQCSET$CONTROL$C(controlcsernaphore, except$ptr);

Input Parameter
controlcsemaphore A TOKEN for a user-created semaphore that will receive units

when a CONTROL-C is typed on the console keyboard.

NOTE

When a C$SEND$COMMAND call is made, the Human Interface sets the
CONTROL-C semaphore to the default Human Interface CONTROL-C
handler. If you previously set the CONTROL-C handler, it must be set
again after making this call. For more information see the iRMX® Hun1an
Interface User's Guide.

Output Parameter
except$ptr A POINTER to a WORD in which the Human Interface returns a

condition code.

Description

56

This call lets you change the default response to a CONTROL-C entry to a response that
meets the needs of your task. (The Human Interface's default CONTROL-C action is to
delete the actingjob--for example, any Human Interface command.)

One unit will be sent to the semaphore each time a CONTROL-C is typed. Any units sent
to the semaphore that exceed the maximum number specified during system configuration
will be ignored.

Ajob running in background mode cannot set CONTROL-C.

Human Interface System Calls

Exception Codes

E$OK

E$CONTEXT

E$LIMIT

E$TYPE

Human Interface System Calls

CSETCONTROL$C

OOOOH No exceptional conditions were encountered.

0005H The calling task's job was not an I/O job. (Refer
to the iRMX® Extended I/O System User's Guide
for information about I/O jobs.)

0004H At least one of the following is true:

• The calling task's job has already reached its
limit.

• The calling task's job was not created by the
Human Interface.

• The calling task's job or the job's default user
object is already involved in 255 (decimal)
I/O operations.

8002H The TOKEN given in the parameter
controlcsemaphore is not a TOKEN for a
semaphore.

57

CSETPARSE$BUFFER

CSETPARSE$BUFFER, a command parsing call, permits parsing the contents of a
buffer other than the command line buffer whenever the parsing system calls are used.

offset = RQCSET$PARSE$BUFFER(buff$p, buff$max, except$ptr);

Input Parameters
buff$p A POINTER to a buffer containing a STRING containing the text

to be parsed. If the buff$p is NIL, the buffer used for parsing
reverts to the command line buffer and the buff$max parameter is
ignored.

buff$max A WORD that specifies the length in bytes of the STRING pointed
to by the buff$p parameter.

Output Parameters
offset

except$ptr

A WORD in which the Human Interface places the byte offset from
the start of the parsing buffer of the last byte parsed in the previous
parsing buffer.

A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

58

CSETPARSE$BUFFER allows you to parse buffers other than the command line. You
can change buffers at will; you can also revert to the command line parsing buffer by calling
CSETPARSE$BUFFER with buff$p = NIL. However, only one parsing buffer per job
can be active at any given time.

When called, CSETPARSE$BUFFER sets the parsing pointer to the beginning of the
specified buffer. However, it also returns a value (in the offset parameter) that identifies
the last byte parsed in the previous parsing buffer. This gives you the ability, when
switching back to the previous buffer, of positioning the parsing pointer to its previous
position with successive calls to CGETCHAR.

Note that CSETPARSE$BUFFER does not affect the buffer from which
CGETINPUT$PA THNAME and C$GET$OUTPUT$PATHNAME retrieve
pathnames. These system calls always obtain their pathnames from the command line.

Honlan Interface System Calls

Exception Codes

E$OK

E$CONTEXT

E$LIMIT

E$MEM

Human Interface System Calls

CSETPARSE$BUFFER

OOOOH No exceptional conditions were encountered.

OOOSH The calling task's job was not created by the
Human Interface. (Refer to the iRM)(® Extended
I/O System User's Guide for information.)

0004H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job was not created by the
Human Interface.

0002H The memory available to the calling task's job is
not sufficient to complete the call.

59

C
C$BACKUP$CHAR 5
C$CREATE$COMMAND$CONNECTION 6
C$DELETE$COMMAND$CONNECTION 10
C$FORMAT$EXCEPTION 11

exception code format 11
CGETCHAR 13
CGETCOMMAND$NAME 15
CGETINPUT$CONNECTION 17

errors returned to :CO: 17
CGETINPUT$PATHNAME 23
CGETOUTPUT$CONNECTION 29

errors returned to :CO: 30
CGETOUTPUT$PATHNAME 36
CGETPARAMETER 39
C$SEND$CO$RESPONSE 50
C$SEND$COMMAND 43
C$SEND$EO$RESPONSE 53
CSETCONTROL$C 56
CSETPARSE$BUFFER 58
Command connection 6

deleting 10
Command pathname 15
CONTROL-C

default handler 56
semaphore 56

D
Default message

creating 11
Deleting a commang connection 10

E
E$LIST

improper value examples 41
EIOS connection 17,29
Exception code

default message 11
format 11

Human Interface System Calls

INDEX

Index-l

INDEX

Invalid command separators 42
Invoking a command 43
Invoking commands programmatically 6

M
Message

reading from :CI: 50
sending to :Co: 50

reading from operator's terminal 53
sending to operator's terminal 53

p

Parsing buffer
changing 58
getting a character 13
getting a parameter 39
input pathnames 23
output pathname 36
pointer 5

Preposition parameter values
CGETOUTPUT$CONNECTION 29
CGETOUTPUT$PATHNAME 36

s
System call dictionary 3

Index-2 Human Interface System Calls

iRMX0 Human Interfc3
System Calls Reference Mam

462918-0

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of a
Intel product users. This form lets you participate directly in the publication process. Your commen1
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of thi
publication. If you have any comments on the product that this publication describes, please contac
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestion
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types 0

publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE
COMPANYNAM~DEPARTMENT __ ~

ADDRESS PHONE (
---~~--~-----------

CITY STATE ZIP CODE ------------------------- --------------------
(COUNTRY)

Please check here if you require a written reply. D

E'D LIKE YOUR COMMENTS ...

is document is one of a series describing Intel products. Your comments on the back of this form will
Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
mments and suggestions become the property of Intel Corporation.

'ou are in the United States, use the preprinted address provided on this form to return your
mments. No postage is required. If you are not in the United States, return your comments to the Intel
les office in your country. For your convenience, international sales office addresses are printed on
~ last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3·72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124·9978

11111.1"11 ••• 11'11.1.11111.111111 •• 1111111.11.1'111

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor
dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsi nki

FRANCE

Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.

Atidim Industrial Park

Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN
Intel Japan K.K.

Flower-Hill Shin-machi

1-23-9, Shinmachi

Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY
Intel Norway AlS

P.O. Box92
Hvamveien 4

N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA

28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvaegen 24

S-171 36 Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
0-8000 Munchen

inter

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •

•

• • • • • • • •
• • • • • • • •
• • • • • • • •

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051
(408) 987-8080

• • •
• • •
• • •

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

