
inter
• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• ••••••••••••
• ••••••••••••
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

IRMX®
Disk Verification Utility
Refef nee Manulil

Order Number: 462922"-001

iRMX®
Disk Verification Utility

Reference Manual

Order Number: 462922-001

Intel Corporation
3065 Bowers Avenue

Santa Clara, California 95051

Copyright © 1980, 1989, Intel Corporation, All Rights Reserved

In locations outside the United States, obtain additional copies of Intel documentation by
contacting your local Intel sales office. For your convenience, international sales office addresses
are located directly after the reader reply card in the back of the manual.

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in this document. Intel
Corporation makes no commitment to update or to keep current the information contained in this
document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation.
Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior
written consent ofIntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

Above iLBX iPSC Plug-A-Bubble
BITBUS im iRMX PROMPT
COMMputer iMDDX iSBC Promware
CREDIT iMMX iSBX QUEST
Data Pipeline Insite iSDM QueX
Genius intel iSSB Ripplemode
A

Intel376 iSXM RMXl80 1

i Intel386 Library Manager RUPI
I2ICE intelBOS MCS Seamless
ICE Intelevision Megachassis SLD
iCEL inteligent Identifier MICROMAINFRAME UPI
iCS inteligent Programming MULTIBUS VLSiCEL
iDBP Intellec MULTICHANNEL 376
iDIS Intellink MULTIMODULE 386

iOSP OpenNET 386SX
iPDS ONCE
iPSB

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a
trademark of Bell Laboratories. Ethernet is a trademark of Xerox: Corporation. Centronics is a
trademark of Centronics Data Computer Corporation. Chassis Trak is a trademark of General
Devices Company, Inc. VAX and VMS are trademarks of Digital Equipment Corporation.
Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc. IBM,
PCIXT, and PC/AT are registered trademarks ofInternational Business Machines. Soft-Scope is a
registered trademark of Concurrent Sciences.

CopyrightC 1980, 1989, Intel Corporation. All Rights Reserved.

ii

REV. REVISION mSTORY DATE

-001 Original Issue. 03/89

iii/iv

PREFACE

INTRODUCTION

The iRMX® Disk Verification Utility is a software tool for the iRMX I and iRMX II
Operating Systems. The utility runs as a Human Interface command verifying and
modifying the data structures of iRMX named and physical volumes.

This manual includes invocation instructions and detailed descriptions of all utility
commands. It also documents the iRMX capability of backing up and restoring volume file
descriptor nodes (fnodes).

In addition, the manual describes the structure of iRMX named volumes as users must be
familiar with volume structure to use the full capabilities of the Disk Verification Utility.

READER LEVEL

This manual is intended for programmers who have an understanding of the operating
system, and particularly the Basic I/O System and Human Interface layers. To use this
manual effectively, programmers should be familiar with iRMX volume structure.
Appendix A provides a description of iRMX named volume structure. However, it is
intended as a reference and not as a tutorial.

MANUAL OVERVIEW

This manual is organized as follows:

Chapter 1

Chapter 2

Chapter 3

Disk Verification

This chapter describes two ways of invoking the utility: single­
command mode or interactive mode. It explains single-command
mode and how to interpret output and error messages from the
single-command verification. It also describes the invocation in
interactive mode and the interactive mode error messages.
Commands for the interactive mode are explained in Chapter 2.

This chapter contains detailed descriptions of the Disk Verification
Utility commands. The commands are discussed in alphabetical
order. When verifying and modifying volumes, you should refer to
this chapter for specific information about the format and
parameters of the commands.

This chapter explains the fnode backup and restore feature in detail.
This feature provides a limited mechanism for attempting to recover
data when the volume label or the fnode file has been damaged.

v

PREFACE

Appendix A This appendix provides information on the format of iRMX named
volumes. It includes details of the volume label and fnode file,
differences between long and short files, and format information
specific to diskettes. Programmers should be familiar with this
information before attempting to modify a volume.

CONVENTIONS

vi

This manual uses the following conventions:

• Information appearing as UPPERCASE characters when shown in keyboard examples
must be entered or coded exactly as shown. You may, however, mix lower and
uppercase characters when entering the text.

• Fields appearing as lowercase characters within angle brackets (< >) when shown in
keyboard examples indicate variable information. You must enter an appropriate
value or symbol for variable fields.

• User input appears in as blue text.

• Blue text is used to indicate the first occurrence of each command described in Chapter
2; subsequent occurrences are printed in black.

• All numbers unless otherwise stated are assumed to be decimal. Hexadecimal numbers
include the "H" radix character (for example, OFFH).

Disk Verification

CONTENTS

Chapter 1. Invoking Diskverify

1.1 Introduction ... 1-1
1.2 Invocation ... 1-2
1.3 Output ... 1-5
1.4 Invocation Error Messages ... 1-6

Chapter 2. Diskverify Commands

2.1 Introduction ... 2-1
2.2 Command Syntax .. 2-1
2.3 Command Names ... 2-2
2.4 Parameters ... 2-3
2.5 Input Radices ... 2-3
2.6 Aborting Diskverify' Commands ... 2-4
2.7 Diskverif)r Error Messages .. 2-4
2.8 Command Dictionary ... 2-6

ALLOCATE .. 2-8
BACKUPFNODES .. 2-11
DISK .. 2-14
DISPLA YBYTE .. 2-17
DISPLAYWORD ... 2-19
DISPLA YDIRECfORY ... 2-21
DISPLA YFNODE .. 2-24
DISPLA YSA VEFNODE .. 2-29
DISPLA YNEXTBLOCK .. 2-30
DISPLA ypREVIOUSBLOCK .. 2-31
EDITFNODE .. 2-32
EDITSA VEFNODE ... 2-35
EXIT .. 2-36
FIX ... 2-37
FREE ... 2-40
GETBADTRACKINFO .. 2-43
HELP ... 2-45
LISTBADBLOCKS .. 2-46
MISCELLANEOUS COMMANDS ... 2-48
ADD .. 2-48
ADDRESS .. 2-48
BLOCK ... 2-49

Disk Verification vii

CONTENTS

Chapter 2. Diskverify Commands (continued)

DEC ... 2-50
DIV .. 2-50
HEX ... 2-51
MOD ... 2-51
MUL .. 2-52
SUB .. 2-52
QUIT ... 2-54
READ ... 2-55
RESTOREFNODE .. 2-57
RESTOREVOLUMELABEL .. 2-60
SAVE ... 2-62
SUBSTITUTEBYTE .. 2-65
SUBSTITUTEWORD ... 2-68
VERIFY ... 2-69
WRITE .. 2-79

Chapter 3. Backing Up and Restoring Fnodes

3.1 Introduction ... 3-1
3.2 Using FNODE Backup and Restore ... 3-4

3.2.1 Creating the R?SA VE FNODE Backup File .. 3-4
3.2.2 Backing up FNODEs on a Volume ... 3-5
3.2.3 Backing up the Volume Label .. 3-7
3.2.4 Restoring FNODEs .. 3-7
3.2.5 Restoring the Volume Label .. 3-10
3.2.6 Displaying R?SA VE FNODEs ... 3-11

Appendix A. Structure of a Named Volume

A.l Introduction ... A-I
A.2 Volume Structure ... A-I
A.3 Volume Labels .. A-3

A.3.1 ISO Volume Label. ~ ~ .. A-3
A.3.2 iRMX® II Volume Label ... A-4
A.3.3 Bootloader Location Table ... A-8

A.4 Initial Files ... A-I 0
A.4.1 FNODE File .. A-I0
A.4.2FNODE 0 (FNODE file) .. A-16
A.4.3 FNODE 1 (Volume Free Space Map File) ... A-17
A.4.4 FNODE 2 (Free FNODEs Map File) .. A-17
A.4.5 FNODE 3 (Accounting File) .. A-17

viii Disk Verification

CONTENTS

Appendix A. Structure of a Named Volume (continued)

AA.6 FNODE 4 (Bad Blocks Map File) : A-18
AA.7 FNODE S (Volume Label File) ... A-18
AA.8 FNODE 6 (Root Directory) ... A-18
A.4.9 FNODE 7 and 8 .. A-19

A.4.9.1 R?SECONDSTAGE .. A-19
A.4.9.2 R?SA VE ... A-19

A.4.10 Other FNODEs ... A-19
A.S Long and Short Files .. A-20

A.S.l Short Files .. A -20
A.S.2 Long Files ... A-22

A.6 Flexible Diskette Formats ... A-26

Tables

A-I 8-Inch Diskette Characteristics .. A-26
A-2 S 1/4-Inch Diskette Characteristics .. A-26

Figures

2-1 DISPLA YBYTE Format .. 2-18
2-2 LISTBADBLOCKS Format ... 2-46
2-3 NAMEDI Verification Output .. 2-71
2-4 NAMED2 Verification Output .. 2-72
2-S PHYSICAL Verification Output ... 2-73
A-I General Structure of Named Volumes ... A-2
A-2 Short File Fnode ... A-21
A-3 Long File FNODE .. A-24

Disk Verification ix

INVOKING DISKVERIFY 1
1.1 INTRODUCTION

When using an iRMX® application system, you will need to store data on secondary
storage devices. Unfortunately, occasional power irregularities or accidental reset may
destroy the index to the data on these devices, making the information inaccessible to the
system. In some cases, losing even a small amount of data can render an entire volume
useless.

You need a tool to examine and fix the damaged volume. The tool should enable you to
determine how much of the data was damaged and help you recreate file structures on the
damaged volume. The iRMX Disk Verification Utility (DISKVERIFY) is a tool that
enables you to verify the consistency and recover damaged data on iRMX volumes.

The Disk Verification Utility inspects, verifies, and corrects the data structures of iRMX
named volumes. It can also verify an iRMX physical volume. The Disk Verification Utility
can reconstruct the fnode file, the volume label, the file descriptor nodes (fnodes) map, the
volume free space map, and the bad blocks map of the volume. In addition, with
DISKVERIFY you can manipulate fnodes, bad track information, and the actual data on
the volumes. The Disk Verification Utility also supports auto-volume recognition which
means you can verify any iRMX named volume without detaching and attaching the device
with the correct DUIB.

You can use DISKVERIFY in one of two ways:

• As a single command that verifies the structures of a volume and returns control to the
Human Interface

• As an interactive program that enables you to check and modify data on the volume by
entering disk verification commands

To take full advantage of this utility, you must be familiar with the structure of iRMX
named volumes (either iRMX I or iRMX II; the volume structure is almost the same for
both operating systems). Appendix A contains detailed information about volume
structure. If you are unfamiliar with the iRMX volume structure, you should avoid using
the DISKVERIFY commands. Some commands, if not used correctly, can render your
volumes unusable.

Disk Verification 1-1

INVOKING DISKVERIFY

However, even if you know nothing about iRMX volume structures, you can still use the
Disk Verification Utility as a single command to verify that the data structures on an
iRMX volume are valid.

1.2 INVOCATION

1-2

To invoke DISKVERIFY, enter the following command:

where:

:logical name:

TO

OVER

W-0955

Logical name of the secondary storage device containing the volume
to be verified.

Copies the output from the Disk Verification Utility to the file
specified in OUTP A TH. If no "TO" is specified, output is directed
to the console screen (:CO:).

Copies the output from the Disk Verification Utility over the
specified file.

Disk Verification

AFTER

OUTPATH

INVOKING DISKVERIFY

Appends the output from the Disk Verification Utility to the end of
the specified file. If the file does not exist, it is created.

Pathname of the file to receive the output from the Disk
Verification Utility. If you omit this parameter and no preposition
is specified, output is directed to the console screen (:CO:) by
default. You cannot direct the output to a file on the volume being
verified. If you attempt this, the utility returns an
E$ALREADY _ ATIACHED error message.

Following is a list of the DISKVERIFY options. If you invoke DISKVERIFY without
specifying one of these options, you enter the interactive mode. In this case, the utility
displays a header message and the utility prompt (*). You can then enter any of the
DISKVERIFY commands listed in Chapter 2.

DISK Displays the attributes of the volume being verified. If you specify
this option, the utility performs the function and returns control to
you at the Human Interface level. You can then enter any Human
Interface command, provided that the device verified is not the
system device. Any parameter after this one is ignored. Refer to
the description of the DISK command in Chapter 2 for more
information.

NOTE

Although you can use DISKVERIFY to verify the
system device (:SD:), note that all connections to this
device are deleted by the operating system. After
exiting, you must reboot the system or use the warm
start feature (see the iRMX® System Debugger
Reference Manual).

GETBADTRACK- Reads the bad track information from the volume and
INFO or GB displays it. Bad track information that is redirected to a file can be

used as input to the FORMAT command by removing the header
information. Chapter 2 provides a conlplete explanation of this
command.

VERIFY or V Verifies the volume. This function and the associated options are
described in detail under "VERIFY" in Chapter 2. If you specify
only this option, the utility performs the NAMED verification
function and returns control toyou at the Human Interface level.
You can then enter any Human Interface command, provided the
device verified is not the system device.

Disk Verification 1-3

INVOKING DISKVERIFY

FIX

NAMED10rN1

NAMED20rN2

NAMEDorN

ALL

1-4

Performs the same functions as VERIFY. In addition, it tries to fix
several types of problems on the volume after performing the
verification. You should be careful when using FIX as it changes
the data on the disk (which may prove dangerous). For example,
during NAMED 1 verification, FIX corrects the checksums on
fnodes with bad checksums. However, an fnode with a bad
checksum may indicate another problem with the fnode which
should not be ignored. As a result, it is recommended that you use
FIX only after performing the following steps.

1. Use DISKVERIFY with the VERIFY optio~.

2. Examine the output and the problems on the volume to
determine the type of "fix" needed.

3. If the problems can be fixed by DISKVERIFY,
run DISKVERIFY with the FIX option to correct
the problems.

VERIFY or FIX option that applies to named volumes only. This
option checks the fnodes of the volume to ensure that they match
the directories in terms of file type and file hierarchy. This option
also checks the information in each fnode to ensure consistency.

When used with FIX, the NAMED1 option connects bad orphan
fnodes to their parents. Refer to the description of the VERIFY
and FIX commands in Chapter 2 for more information.

VERIFY or FIX option that applies to named volumes only. This
option checks the allocation of fnodes and space on the volume,
constructs the space and fnode bit maps to reflect the current
contents of the volume, and verifies that the fnodes point to the
correct locations on the volume. When used with the FIX option,
NAMED2 saves the correct bit maps, that were constructed during
the verification phase, on the volume. It also removes fnodes with
multiple references from their illegal parents. Refer to the
description of the VERIFY and FIX commands in Chapter 2 for
more information.

VERIFY or FIX option that performs both the NAMEDl and
NAMED2 verification functions on a named volume. If you specify
VERIFY or FIX with no option, the system assumes NAMED
(default).

VERIFY or FIX option that applies to both named and physical
volumes. For named volumes, this option performs both the
NAMED and PHYSICAL verification functions. For physical
volumes, this option performs only the PHYSICAL verification
function.

Disk Verification

PHYSICAL

LIST

1.3 OUTPUT

INVOKING DISKVERIFY

VERIFY or FIX option that applies to both named and physical
volumes. This option reads all blocks on the volume and checks for
I/O errors. When used with FIX, it adds the bad blocks that it
encounters to the volume's bad block map.

A control that you can use with any option that activates NAMED 1
verification (NAMED, NAMEDl, or ALL). When you use this
option, the file information generated by VERIFY or FIX is
displayed for every file on the volume, even if the file contains no
errors. Refer to the description of the VERIFY and FIX
commands in Chapter 2 for more informati~n.

When you enter the DISKVERIFY command, the utility responds with

iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved

where <version> is "I" or "ll", depending upon the version of the operating system, and
Vx.x is the version number of the utility. If you specify the VERIFY (or V) parameter in
the DISKVERIFY command, the utility verifies the volume and displays the verification
information on the screen (or copies it to the file specified by the outpath parameter). The
verification information is the same as that from the VERIFY utility command. After
generating the verification output, the utility returns control to the Human Interface, which
prompts you for more Human Interface commands. The following is an example of such a
DISKVERIFY command:

.DISKVERIFY :Fl: VERIFY NAMED2 <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved

DEVICE NAME - wfdO : DEVICE SIZE - 0003E900 BLOCK SIZE - 0080

'NAMED2' VERIFICATION
BIT MAPS O.K.

Disk Verification 1-5

INVOKING DISKVERIFY

If you omit the DISK or VERIFY parameter from the DISKVERIFY command, the utility
does not return control to the Human Interface. Instead, it issues an asterisk (*) prompt
and waits for you to enter DISKVERIFY commands. The following is an example:

-DISKVERIFY :Fl: <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved

*

At the asterisk prompt, you can enter any of the DISKVERIFY commands listed in the
DISKVERIFY COMMANDS chapter of this manual. If you enter anything else, the utility
will display an error message.

1.4 INVOCATION ERROR MESSAGES

1-6

The following is a list of error messages you might encounter when invoking the Disk
Verification Utility.

argument error

< logical name>, invalid logical
name.

0045 : E$LOG NAME NEXIST - -
or < logical name> , logical name
does not exist

< outpath >, 0038 :
E$ALREADY ATTACHED

command syntax error

<logical name>, outstanding
connections to the device have
been deleted.

< logical name> or < outpath > ,
invalid wildcard specification

The option specified is not valid.

The logical name does not exist; was
longer than 12 characters; contained
invalid characters; or was missing a
matching colon.

A nonexistent < logical name> was
specified in either the :logical name: or
outpath parameter.

The output was directed to a file on the
volume being verified.

A syntax error was made when entering
the command.

This warning is not fatal and will occur
every time you try to verify the system
device or any other volume on which files
have been attached.

The logical name or output pathname
contained a wildcard character.

Disk Verification

<logical name>, can't attach
device

device size inconsistent
size in volume label = <valuel> :
computed size = <value2>

not a named disk

<partial logical name>,
0081: E$STRING BUFFER

< logical name>, device does not
belong to you

< logical name>, device size is
zero

Disk Verification

INVOKING DISKVERIFY

The device cannot be attached and read.

When the Disk Verification Utility
computed the size of the volume, the size
it computed did not match the information
recorded in the iRMX volume label. The
volume label may contain invalid or
corrupted information. This is not a fatal
error, but it is an indication that further
error conditions may result during the
verification session. You may have to
reformat the volume or use the Disk
Verification Utility to restore the volume
label.

A NAMED, NAMEDl, or NAMED2
verification was requested for a physical
volume.

The logical name was longer than 14
characters in length, not including colons.

An attempt was made to verify a device
that was attached by another user. For
example, the system device is :SD: and
USER is not the super user.

The logical name entered does not define
a mass storage device. For example, you
cannot perform DISKVERIFY on a line
printer.

1-7

DISKVERIFY COMMANDS 2
2.1 INTRODUCTION

When the Disk Verification Utility issues the asterisk (*) prompt, you can enter
DISKVERIFY commands to examine or change file structure information on the volume.
This process usually involves reading a portion of the volume into a buffer, modifying that
buffer, and writing the information back to the volume. This chapter describes the
commands that enable you to perform these operations.

The commands in this chapter are presented in alphabetical order regardless of their
function. The only exception is when two commands are similar, such as DISPLA YBYTE
and DISPLA YWORD. In this case, the first command is explained in its alphabetical
order, and the second command follows it with only the differences described.

The first occurrence of each command name is printed in blue ink and appears on the
outside upper corner of the page; subsequent occurrences are printed in black ink. Blue or
bolded text is also used to indicate an entry you make from your terminal.

Before describing the individual commands, this chapter discusses command syntax,
command names, parameters, input radices, and error messages. It also provides a
command dictionary that gives a brief description of each command and the page number
on which the command is found.

2.2 COMMAND SYNTAX

The syntax for each command described in this chapter is presented in a "railroad track"
schematic, with syntactic elements scattered along the track. Your entrance to any given
schematic is always from left to right, beginning with the command name entry.

Elements shown in uppercase characters must be typed in a command line exactly as shown
in the schematic, however, you may enter them in either uppercase or lowercase. Syntactic
elements shown in lowercase are generic terms, which means you must supply the specific
item, such as the pathname of a file.

Disk Verification 2-1

DISKVERIFY COMMANDS

"Railroad sidings" go through optional parameter elements. In some cases, you have a
choice of going through one of several sidings before returning to the main track. In still
other cases, the main track itself diverges into two separate tracks, which means you must
select one track or the other but not both. For example, a command that consists of a
command name and two optional parameters would look like this:

param 1

You can enter this command in anyone of these forms:

COMMAND
COMMAND paraml
COMMAND param2
COMMAND paraml param2

param 2

W-0956

The arrows are used here to illustrate the possible flow through the tracks. They do not
appear in the schematics in the rest of this chapter.

2.3 COMMAND NAMES

2-2

When you enter a DISKVERIFY command, you can enter the command name or its
abbreviation (listed in this chapter), or you can enter any unique portion of the command
name. For example, when specifying the DISPLA YFNODE command, you can enter any
of the following:

DISPLAYFNODE <fnodenumber>
DF <fnodenumber>
DISPLAYF <fnodenumber>

You can also enter any other partial form of the word DISPLA YFNODE that contains at
least the characters DISPLA YF.

Disk Verification

DISKVERIFY COMMANDS

2.4 PARAMETERS

Several DISKVERIFY commands have parameters described as being in this form:

keyword = value

You can also enter these parameters in this form:

keyword (value)

For example, both of these specify a FREE command:

FREE FNODE = 10

FREE FNODE (10)

2.5 INPUT RADICES

DISKVERIFY always produces numerical output in hexadecimal format. You can provide
input to DISKVERIFY in anyone of the following three radices by including a radix
character immediately after the number. The valid radix characters are

character

hexadecimal horH

decimal torT

octal 0,0, q, or Q

example

l6h,7CH

23t, lOOT

270,33Q

If you omit the radix character, DISKVERIFY assumes the number is hexadecimal.

Disk Verification 2-3

DISKVERIFY COMMANDS

2.6 ABORTING DISKVERIFY COMMANDS

You can abort the following DISKVERIFY commands by entering a CONTROL-C, which
terminates the command and returns control to the Disk Verification Utility (not the
Human Interface command level).

DISK
DISPLA YBYTE
DISPLA YDlRECTORY
DISPLA YFNODE
DISPLA YNEXTBLOCK
DISPLA YPREVIOUSBLOCK
DISPLA YWORD
EDITFNODE
EDITSA VEFNODE
FIX
GETBADTRACKINFO
LISTBADBLOCKS
SUBSTITUTEBYTE
SUBSTITUTEWORD
VERIFY

2.7 DISKVERIFY ERROR MESSAGES

2-4

Each DISKVERIFY command can generate a number of error messages, which indicate
errors in the way the command was specified or problems with the volume itself. The
following messages can be generated by many of the commands (each command
description lists the error messages generated by the particular command):

block I/O error

command syntax error

illegal command

The utility attempted to read or write a block on the
volume and found that the block was physically
damaged and therefore, could not complete the
requested command. Or, an attempt was made to
write a block to a disk volume that is write protected.
The error message states whether read or write was
performed and the number of the block causing the
error.

A syntax error was made in a command.

The command specified is not a valid DISKVERIFY
command.

Disk Verification

fnode file/space map
file inconsistent

argument error

not a named disk

seek error

Disk Verification

DISKVERIFY COMMANDS

One of the files, R ?SA VE or R ?FNODEMAP, is
damaged and DISKVERIFY cannot perform further
verification.

The command was missing an argument, or the
argument was illegally specified.

The device is not a named volume (a tape, for
example) or the iRMX volume label, obtained when
DISKVERIFY begins processing, contains invalid
information. If the label contains' invalid information,
the utility (in some cases) can assume that a named
volume is a physical volume. In this case, the
commands that apply to named volumes only (such
as DISPLA YFNODE, DISPLA YDIRECTORY, and
VERIFY NAMED) issue this message. If you are
sure the volume is a named volume, this message
may indicate that the iRMX volume label is
corrupted. (If the file was formatted with the
RESERVE option of the FORMAT command,
DISKVERIFY issues this message only if both
volume labels are corrupted. When only the volume
label is invalid, the duplicate in the save area is
used.)

The utility unsuccessfully attempted to seek to a
location on the volume. This error normally results
from invalid information in the iRMX volume label .
or the fnodes, inserting a new volume after
DISKVERIFY is invoked, or a defective disk.

2-5

DISKVERIFY COMMANDS

2.8 COMMAND DICTIONARY

2-6

The command dictionary below lists the name and a brief description of each
DISKVERIFY command, as well as the page numbers of more complete descriptions.
Following each command name is its unique abbreviation, if any. For quick reference, you
can also locate the command using the page headers remaining in this chapter.

Command Synopsis Page

ALLOCATE Marks a particular fnode or volume block 2-8
as allocated.

BACKUPFNODES Copies current fnode file into abackup 2-11
BF file named R?SAVE.

DISK Displays the attributes of the volume 2-14
being verified.

DISPLAYBYTE Displays the working buffer in byte format. 2-17
DB orD

DISPLA YWORD Displays the working buffer in word format. 2-19
DW

DISPLAYDIRECTORY Displays directory contents. 2-21
DD

DISPLA YFNODE Displays the specified fnode information. 2-24
DF

DISPLA YSAVEFNODE Displays the fields of a single fnode in 2-29
DSF the R?SAVE file.

DlSPLA YNEXTBLOCK Displays the Mnext· volume block. 2-30
DNB or> or <CR>

DISPLA YPREVIOUSBLOCK Displays the ·previous· volume block. 2-31
DPB or <

EDITFNODE Edits the specified fnode. 2-32
EF

EDITSAVEFNODE Edits the specified saved fnode. 2-35
ESF

EXIT Exits the Disk Verification Utility. 2-36
E

Disk Verification

DISKVERIFY COMMANDS

Command Synopsis Page

FIX Verifies the disk and fixes inconsistencies. 2-37

FREE Marks a particular fnode or volume block as free. 2-40

GETBADTRACKINFO Displays the bad track information. 2-43
GB

HELP Lists the DISKVERIFY commands. 2-45
H

LlSTBADBLOCKS Displays all the bad blocks on the volume. 2-46
LBB

Miscellaneous Perform useful arithmetic and conversion functions; the 2-48
Commands commands include ADD, SUB, MUL, DIV, MOD, HEX,

DEC, ADDRESS,and BLOCK.

QUIT Exits the Disk Verification Utility. 2-54
Q

READ Reads a volume block into the working buffer. 2-55
R

RESTOREFNODE Copies one fnode (or range of fnodes) from the R?SAVE file 2-57
RF to the fnode file.

RESTOREVOLUMELABEL Copies the duplicate volume label to the volume label offset 2-60
RVL on track O.

SAVE Writes the updated fnode map, free space map, and bad block 2-62
map to the volume.

SUBSTITUTEBYTE Modifies the contents of the working buffer in byte format. 2-65
SB orS

SUBSTITUTEWORD Modifies the contents of the working buffer in word format. 2-68
SW

VERIFY Verifies the volume. 2-69
V

WRITE Writes the working buffer to the volume. 2-79
W

Disk Verification 2-7

ALLOCATE

2-8

This command designates file descriptor nodes (fnodes) and volume blocks as allocated.
You can also use this command to designate one or a range of volume blocks as "bad." The
format of the ALLOCATE command is as follows:

FNODE = fnodenum

FNODE = fnodenum, fnodenum

BLOCK = blocknum

ALLOCATE BLOCK = blocknum, blocknum

BAD BLOCK = blocknum

BAD BLOCK = blocknum, blocknum

W-0957

INPUT PARAMETERS

fnodenum

blocknum

OUTPUT

Number of the fnode to allocate. This number can range from 0
through (max fnodes - 1), where max fnodes is the number of fnodes
defined when the volume was originally formatted. Two fnode
values separated by a comma signifies a range of fnodes.

Number of the volume block to allocate. This number can range
from 0 through (max blocks - 1), where max blocks is the number of
volume blocks in the volume. Two block numbers separated by a
comma signifies a range of block numbers.

If you are using ALLOCATE to allocate fnodes, ALLOCATE displays the following
message:

<fnodenum>, fnode marked allocated

where <fnodenum> is the number of the fnode that the utility designated as allocated.

Disk Verification

ALLOCATE

If you are using ALLOCATE to allocate volume blocks, ALLOCATE displays the
following message:

<blocknum>, block marked allocated

where < blocknum > is the number of the volume block that the utility designated as
allocated.

If you are using ALLOCATE to designate one or more volume blocks as "bad,"
ALLOCATE displays the following message:

<blocknum>, block marked bad

where < blocknum > is the number of the volume block that the utility designated as "bad."
If this block was not allocated before you attempt to designate it as "bad," ALLOCATE
also displays

<blocknum>, block marked allocated

ALLOCATE checks the allocation status of fnodes or blocks before allocating them.
Therefore, if you specify ALLOCATE for a block or fnode already allocated, ALLOCATE
returns one of the following messages:

<fnodenum>, fnode already marked allocated

<blocknum>, block already marked allocated

<blocknum>, block already marked bad

DESCRIPTION

Fnodes are data structures on the volume that describe the files on the volume. They are
created when the volume is formatted. An allocated fnode is one that represents an actual
file. ALLOCATE designates fnodes as allocated by updating the FLAGS field of the fnade
and free-fnades-map file with this information.

Disk Verification 2-9

ALLOCATE

An allocated volume block is a block of data storage that is part of a file; it is not available
to be assigned to a new file. ALLOCATE designates volume blocks as allocated by
updating the volume free-space-map with this information. When you use ALLOCATE to
designate bad blocks, it not only updates the volume free-space-map but also marks an
associated bit as "bad" in the bad blocks file.

ERROR MESSAGES

argument error

< blocknum >, block out of range

< fnodenum >, fnode out of range .

no badblocks file

2-10

A syntax error was made in the command
or a nonnumeric character was specified in
the blocknum or fnodenum parameter.

The block number specified was larger
than the largest block number in the
volume.

The fnode number specified was larger
than the largest fnode number in the
volume.

The volume does not have a bad blocks
file. This message could appear if an
earlier version of the Human Interface
FORMAT command was used when the
disk was forma tted.

Disk Verification

BACKUPFNODES

This command copies the current fnode file into a designated fnode backup file named
R?SAVE. R?SAVE must have been reserved when the volume was formatted. (That is,
the RESERVE option of the FORMAT command must have been specified.) The format
of the BACKUPFNODES command is as follows:

-----l---~KUPFNO~~--J-----
----------~~~----------

W-0958

INPUT PARAMETERS

None.

OUTPUT

BACKUPFNODES displays the following message:

fnode file backed up to save area

DESCRIPTION

The BACKUPFNODES command ensures against data loss that occurs when the fnode
file is damaged or destroyed. To use this command, you must have formatted the volume
using the FORMAT command (Vl.l or later) to create a special reserve area (R?SAVE).
A switch in the FORMAT command (the RESERVE switch) controls the creation of
R?SA VE. If you did not specify the RESERVE parameter when the volume was
formatted, the BACKUPFNODES command will be unable to copy the fnode file to
R ?SA VE. An error message will be returned indicating that no save area has been
reserved. In this case, the volume must be reformatted if you wish to use the
BACKUPFNODES command.

Disk Verification 2-11

BACKUPFNODES

The FORMAT command writes the initialized copy of the fnode file into R?SAVE.
Therefore, you do not have to use BACKUPFNODES to back up a newly formatted
volume. Subsequently, you can routinely (for example, once a day) backup fnodes to
assure that the data in R?SA VE matches the data in the fnode file. You can do this by
using either the BACKUPFNODES command or the Human Interface SHUTDOWN
. command with the BACKUP option. (For more information on SHUTDOWN, see the
Operator's Guide to the iRMX® Human Inteiface.)

NOTE
Be sure that the current fnode file is valid before executing the
BACKUPFNODE command (using NAMED verification).

ERROR MESSAGES

.2-12

argument error

no save area was reserved when
volume was formatted

not a named disk

When the command was entered, an
argument was supplied.
BACKUPFNODES does not accept an
argument.

The volume has not been formatted to
support fnode backup. To allow future use
of backupfnodes on this volume, you
should invoke the Human Interface
BACKUP command to save the data on
the volume, reformat the volume with a
save area (using the RESERVE option of
the FORMAT command), and finally,
restore the volume data.

The volume specified when the Disk
Verification Utility was invoked is a
physical volume, not a named volume.

Disk Verification

BACKUPFNODES

EXAMPLE

super- diskverify :sd: <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
*verify NAMED <CR>

BIT MAPS O.K.
*backupfnodes <CR> or bf <CR>
fnode file backed up to save area

*

Disk Verification 2-13

DISK

This command displays the attributes of the volume being verified. You can abort this
command by typing a CONTROL-C. The format of the DISK command is as follows:

DISK

W-0959

INPUT

None.

OUTPUT

The output of the DISK command depends on whether the volume is formatted as a
physical or named volume. For a physical volume, the DISK command displays the
following information:

device name
physical disk

device granularity
block size

number of blocks
volume size

= <devname>

= <devgran>
= <devgran>
= <numb locks>
= <size>

where:

<devname> Name of the device containing the volume. This is the physical
name of the device, as specified in the ATTACHDEVICE Human
Interface command.

<devgran>

< numblocks >

<size>

2-14

Granularity of the device, as defined in the Device Unit Information
Block (DUIB) for the device. Refer to the iRMX® Device Drivers
User's Guide for more information about DUIBs. For physical
devices, this is also the volume block size.

Number of volume blocks in the volume.

Size of the volume, in bytes.

Disk Verification·

For a named volume, the DISK command displays the following information:

device name = <devname>
named disk, volume name = <volname>

device granularity = <devgran>
block size = <volgran>

number of blocks = <numb locks>
number of free blocks = <numfreeblocks>

volume size = <size>
interleave = <inleave>

extension size = <xsize>
number of fnodes = <numfnodes>

number of free fnodes = <numfreefnodes>
root fnode = <rootfnode>

save area reserved (yes/no)
MSA second stage included = (yes/no) <- - Appears in iRMX II

only

The < devname >, < devgran >, < numblocks >, and < size> fields are the same as for
physical files. The remaining fields are as follows:

DISK

<volname> Name of the volume, as specified when the volume was formatted.

<volgran>

< numfreeblocks >

< in1eave >

<xsize>

< numfnodes >

< numfreefnodes >

< rootfnode >

save area reserved

MSA second stage
included

Volume granularity, as specified when the volume was formatted.

Number of available volume blocks in the volume.

The interleave factor for a named volume.

Size, in bytes, of the extension data portion of each file descriptor
node (fnode).

Number of fnodes in the volume. The fnodes were created when
the volume was formatted.

Number of available fnodes in the named volume.

The number of the fnode that contains the volume's root directory.

Indicates whether the R ?SA VE file is reserved for volume label and
fnode file backups.

Indicates whether the MULTIBUS® II System Architecture second
stage bootstrap loader (R?SECONDSTAGE) is present on the disk.
This field only appears in the iRMX II version of the Disk
Verification Utility.

Refer to Appendix A of this manual or to the description of the FO RMA T command in
the Operator's Guide to the iRAfX® Human Interface for more information about the named
disk fields.

Disk Verification 2-15

DISK

DESCRIPTION

The DISK command displays the attributes of the volume. The format of the output from
DISK depends on whether the volume is formatted as a named or physical volume.

ERROR MESSAGES

None.

EXAMPLE

The following example shows the output of the DISK command for an 5.25-inch diskette.

2-16

super- diskverify :fO: <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved

*disk <CR>

device name = wmfO
named disk, volume name =

device granularity -
block size =

number of blocks =

number of free blocks =

volume size -
interleave

extension size =

number of fnodes
number of free fnodes =

root fnode

rmx286
0200
0200
0000027C
00000lE9
0004F800
0005
03
OOCF
OOBE
0006

save area reserved = no
MSA second stage included = no < - - Appears in iRMX II

only

Disk Verification

DISPLAYBYTE

This command displays the specified portion of the working buffer in BYTE format. It
displays the buffer in 16-byte rows. You can abort this command by typing a CONTROL­
C. The format of the DISPLA YBYTE command is as follows:

end offset

W-0960

INPUT PARAMETERS

startoffset

end offset

OUTPUT

Number of the byte, relative to the start of the buffer, that begins
the display. DISPLA YBYTE starts the display with the row
containing the specified offset. If you omit this parameter and the
endoffset parameter, DISPLA YBYTE displays the entire working
buffer.

Number of the byte, relative to the start of the buffer, that ends the
display. If you omit this parameter, DISPLA YBYTE displays only
the row indicated by startoffset. However, if you omit both
startoffset and endoffset, DISPLA YBYTE displays the entire
working buffer.

In response to the command, DISPLA YBYTE displays the specified portion of the
working buffer in rows, with 16 bytes displayed in each row. Figure 2-1 illustrates the
format of the display.

As Figure 2-1 shows, DISPLA YBYTE begins by listing the block number where data
resides in the working buffer. It then lists the specified portion of the buffer, providing the
column numbers as a header and beginning each row with the relative address of the first
byte in the row. It also includes, at the right of the listing, the ASCII equivalents of the
bytes, if the ASCII equivalents are printable characters. (If a byte is not a printable
character, DISPLA YBYTE displays a period in the corresponding position.)

Disk Verification 2-17

DISPLAYBYTE

~isp1aybyte 7,13 <CR>

BLOCK NUMBER = b10cknum

offset 0 1 2 3 4 5 6 7 8 9 ABC D E F
0000 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0010 61 6E 20 65 78 61 6D 70 6C 65 20 20 20 20 20 20

ASCII STRING

an example

Figure 2-1. DISPLAYBYTE Format

DESCRIPTION

DISKVERIFY maintains a working buffer for READ and WRITE commands. The size of
the buffer is equal to the volume's granularity value. After you read a volume block of
memory into the working buffer with the READ command, you can display part or all of
that buffer, in BYTE format, by entering the DISPLA YBYTE command. DISPLA YBYTE
displays the hexadecimal value for each byte in the specified portion of the buffer.

If you omit all parameters, DISPLA YBYTE displays the entire block stored in the working
buffer.

ERROR MESSAGES

argument error

< offset>, invalid offset

2-18

A syntax error was made in the command
or a nonnumeric character was specified in
one of the offset parameters.

Either a larger value was specified for
startoffset than for endoffset or an offset
value larger than the number of bytes in
the block was specified.

Disk Verification

DISPLAYWORD

This command is the same as the DISPLA YBYTE command, except that it displays the
working buffer in WORD format, 8-words per row. The format of the DISPLA YWORD
command is as follows:

startoffset

endoffset

EXAMPLES W-0961

Assuming that the volume granularity is 128 bytes and that you have read block 20H into
the working buffer with the READ command, the following command displays that block
in WORD format.

*DISPLAYWORD <CR>

BLOCK NUMBER = 20

offset a 2 4 6 8 A C E
0000 0000 0000 0000 0000 0000 0000 0000 0000
0010 0000 0080 0000 0000 0000 0001 FFOF OOFF
0020 0000 0000 0500 0000 0000 0025 0108 FFFF
0030 1F25 0000 002E 0000 1F25 0000 002B 0000
0040 0001 0000 0001 0080 0000 0000 0000 0000
0050 0000 0000 0000 0000 0000 0000 0000 0000
0060 0000 0000 0000 0000 0000 0000 0080 0000
0070 0000 0000 0001 FFOF OOFF 0000 0000 0500

*

The following command displays the portion of the block that contains the offsets 31H
through 45H (words beginning at odd addresses).

*DW 31, 45 <CR>
BLOCK NUMBER = 20

offset a 2 4 6 8 A C E
0031 001F 2EOO 0000 2500 001F 2BOO 0000 0100
0041 0000 0100 8000 0000 0000 0000 0000 0000

*

Disk Verification 2-19

DISPLAYWORD

The following command displays the portion of the block that contains the offsets 30H
through 45H (words beginning at even addresses).

* DISPLAYWORD 30, 45 <CR>
BLOCK NUMBER = 20

offset a 2 4 6 8 A C E
0030 1F25 0000 002E 0000 1F25 0000 002B 0000
0040 0001 0000 0001 0080 0000 0000 0000 0000

*

2-20 Disk Verification

DISPLA VDIRECTORY

This command lists all the files contained in a directory. You can abort this command by
typing a CONTROL-C. The format of the nISPLA YDIRECfORY command is as
follows:

~----(DO 1-----

INPUT PARAMETER

fnodenum

OUTPUT

W-0962

Number of the fnode that corresponds to a directory file. This
number can range from 0 through (max fnodes - 1), where max
fnodes is the number of fnodes defined when the volume was
originally formatted. nISPLA YDIRECfORY lists all files or
directories contained in this directory.

In response to the command, nISPLA YDIRECfORY lists information about all files
contained in the specified directory. The format of this display is as follows:

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE

<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>
<filenam> <fnode> <type> <filenam> <fnode> <type> <filenam> <fnode> <type>

where:

< filenam > Name of the file or directory contained in the directory.

<fnode> Number of the fnode that describes the file.

Disk Verification 2-21

DISPLAYDIRECTORY

<type> Type of the file. The <type> can be

Type of file

DATA
DIR
SMAP
FMAP
BMAP
VLAB

DESCRIPTION

Description

data files
directory files
volume free space map .
free fnodes map
bad blocks map
volume label file
indicates an illegal fnode type

DISPLA YDIRECTORY displays a list of files contained in the specified directory, along
with their fnode numbers and types. You can then use other DISKVERIFY commands to
examine the individual files.

ERROR MESSAGES

2-22

argument error

< fnodenum >, fnode not allocated

< fnodenum >, not a directory
fnode

< fnodenum >, fnode out of range

A nonnumeric character was specified in
the fnodenum parameter.

The number specified for the fnodenum
parameter does not correspond to an
allocated fnode. This fnode does not
represent an actual file.

The number specified for the fnodenum
parameter is not an fnode for a directory
file.

The number specified for the fnodenum
parameter is larger than the largest fnode
number on the volume.

Disk Verification

DISPLAYDIRECTORY

EXAMPLE

The following command lists the files contained in the directory whose fnode is fnode 6.

*'DISPLAYDIRECTORY 6 <CR>

FILE NAME FNODE TYPE FILE NAME FNODE TYPE FILE NAME FNODE TYPE
R?SPACEMAP 0001 SMAP R?FNODEMAP 0002 FMAP R?BADBLOCKMAP 0004 BMAP

R?VOLUMELABEL 0005 VLAB R?SAVE 0007 DATA RMX286 0008 DrR
MYFILE 0009 DATA YOURFILE OOOA DATA ONEFILE OOOB DATA

*

Disk Verification 2-23

DISPLAYFNODE

This command displays the fields associated with an fnode. You can abort this command
by typing a CONTROL-C. The format of the DISPLA YFNODE command is as follows:

W-0963

INPUT PARAMETER

fnodenum Number of the fnode to be displayed. This number can range from
o through (max fnodes - 1), where max fnodes is the number of
fnodes defined when the volume was originally formatted.

OUTPUT

In response to this command, DISPLA YFNODE displays the fields of the specified fnode.
The format of the display is as follows:

2-24

Fnode number - <fnodenum>
path name: <pathname>

flags
type

file gran/vol gran
owner

create,access,mod times
total size,total blks

block pointer (1)
block pointer (2)
block pointer (3)
block pointer (4)
block pointer (5)
block pointer (6)
block pointer (7)
block pointer (8)

this size
id count

accessor (1)
accessor (2)
accessor (3)

parent, checksum
aux(*)

<fIgs>
<typ>
<gran>
<own>
<crtime>, <acctime> , <modtime>
<totsize>, <totb1ks>
<b1ks> , <b1kptr>
<blks>, <blkptr>
<blks> , <blkptr>
<blks>, <blkptr>
<blks> , <b1kptr>
<blks> , <b1kptr>
<blks>, <blkptr>
<blks> , <blkptr>
<thissize>
<count>
<access>, <id>
<access>, <id>
<access>, <id>
<prnt>, <checksum>
<auxbytes>

Disk Verification

where:

<fnodenum>

<pathname>

<figs>

<typ>

Disk Verification

DISPLAYFNODE

Number of the fnode being displayed. If the fnode does not
describe an actual file (that is, if it is not allocated), the following
message appears next to this field:

*** ALLOCATION STATUS BIT IN THIS FNODE NOT SET ***
In this case, the fnode fields are normally set to zero.

Full pathname of the file described by the fnode. This field is not
displayed if the fnode does not describe a file.

A word defining the attributes of the file. Significant bits of this
word are as follows:

Meaning

o Allocation status. This bit is set to 1 for allocated
fnodes and 0 for free fnodes.

1

5

6

Long or short file attribute. This bit is set to 1
for long files and 0 for short files.

Modification attribute. This bit is set to 1
whenever a file is modified.

Deletion attribute. This bit is set to 1 to indicate
a temporary file or a file to be deleted.

The DISPLA YFNODE command displays a message next to this
field to indicate whether the file is a long or short file.

Type of file. This field contains a value and a description which is
displayed next to the value. The possible values and descriptions
are as follows:

00
01
02
03
04
06
08
09
any other value

Descriptions

fnode file
volume map file
fnode map file
account file
bad block file
directory file
data file
volume label file
illegal value

2-25

DISPLAYFNODE

<gran>

<own>

< crtime >
<acctime>
<modtime>

< totsize >

<totblks>

< blks >, < blkptr >

< this size >

<count>

<access>, <id>

<prnt>

<checksum>

<auxbytes>

File granularity, specified as a multiple of the volume granularity.

User ID of the owner of the file.

Time and date of file creation, last access, and last modification.
These values are expressed as the time, in seconds, since midnight
(00:00) on January 1, 1978.

Total size, in bytes, of the actual data in the file.

Total number of volume blocks used by the file, including indirect
block overhead.

Values that identify the data blocks of the file. For short files, each
< blks > parameter indicates the number of volume blocks in the
data block, and each < blkptr > is the number of the first such
volume block. For long files, each <blks> parameter indicates the
number of volume blocks pointed to by an indirect block, and each
-:::blkptr> is the block number of the indirect block.

Size in bytes of the total data space allocated to the file, minus any
space used for indirect blocks.

Number of user IDs associated with the file.

Each pair of fields indicates the access rights for the file and the ID
of the user who has that access ID. Bits in the < access> field are
set to indicate the following access rights:

o
1
2
3

Data File
Operation

delete
read
append
update

Directory
Operation

delete
list
add entry
change entry

The first ID listed is the owner's ID.

Fnode number of the directory file that contains the file.

Checksum of the fnode.

Auxiliary bytes associated with the file.

Appendix A contains a more detailed description of the fnode fields.

2-26 Disk Verification

DISPLAYFNODE

DESCRIPTION

Fnodes are system data structures on the volume that describe the files on the volume.
The fnode structures are created when the volume is formatted. Each time a file is created
on the volume, the Basic I/O System allocates an fnode for the file and fills in the fnode
fields to describe the file. The DISPLA YFNODE command enables you to examine these
fnodes and determine where the data for each file resides.

ERROR MESSAGES

argument error

< fnodenum >, fnode out of range

Unable to get pathname -
<reason>

Disk Verification

The value entered for the fnodenum
parameter was not a legitimate fnode
number.

The number specified for the fnodenum
parameter is larger than the largest fnode
number on the volume.

The pathname specified could not be
retrieved. Possible causes of this error are
seek error, I/O error, or invalid parent, or
insufficient memory.

2-27

DISPLAYFNODE

EXAMPLE

The following example displays fnode 10 of a volume. This fnode represents a directory.

2-28

*' DISPLAYFNODE 10 <CR>

Fnode number = 10
path name : /MYDIR

*

flags
type

file gran/vol gran
owner

create,access,mod times
total size,total blocks

block pointer (1)
block pointer (2)
block pointer (3)
block pointer (4)
block pointer (5)
block pointer (6)
block pointer (7)
block pointer (8)

this size
id count

accessor (1)
accessor (2)
accessor (3)

parent, checksum
aux(*)

0025 ->short file
06 =>directory file
01
FFFF -> world
10219017, 102l9E58, 102l9E58
00000360, 00000001
0001, 000050
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
00000400
0001
OF, FFFF
00, 0000
00, 0000
0006, 796D
000000

Disk Verification

DISPLA YSAVEFNODE

This command is identical to DISPLA YFNODE, except the DISPLA YSA VEFNODE
takes the fnode information from the R ?SA VE file, and displays the fnode as saved.
R?SA VE must have been reserved when the volume was formatted. (That is, the
RESERVE option in the FORMAT command must have been specified.) The format of
the DISPLA YSA VEFNODE command is as follows:

W-0964

OUTPUT

The output is identical to DISPLA YFNODE except for the first line, which indicates that
the fnode is saved. The format of the first line is as follows:

Fnode number = <fnodenum> (saved)

ERROR MESSAGES

argument error

< fnodenum >, fnode out of range

no save area was reserved when
volume was formatted

Unable to get pathname­
<reason>

Disk Verification

When the command was entered, no
argument was supplied.
DISPLA YSA VEFNODE requires a
designation of the fnode number.

The number specified for the fnodenum
parameter is larger than the largest fnode
number on the volume.

The volume was not formatted to support
backup fnodes. This means the
RESERVE option was not specified when
the volume was formatted.

The pathname specified could not be
retrieved. Possible causes of this error are
seek error, I/O error, invalid parent, or
insufficient memory.

2-29

DISPLAYNEXTBLOCK

This command displays the "next" volume block. (The "next" volume block is the block
immediately following the block currently in the working buffer.) The display format can
be either WO RD or BYTE. The utility remembers the mode in which you displayed the
volume block currently in the working buffer, and it displays the next block in that format.
So, if you used DISPLA YBYTE to display the current volume block, the next volume block
appears in BYTE format; if you used DISPLA YWORD, the next volume block appears in
WORD format. DISPLAYNEXTBLOCK uses the BYTE format as a default if you have
not yet displayed a volume block. You can abort this command by typing a CONTROL-C.
The format of the DISPLA YNEXTBLOCK command is as follows:

OISPLAYNEXTBLOCK r

carriage return

ONB

>

W-0965

OUTPUT

In response to the command, DISPLA YNEXTBLOCK reads the "next" volume block into
the working buffer and displays it on the screen.

DESCRIPTION

The DISPLA YNEXTBLOCK command copies the "next" volume block from the volume to
the working buffer and displays it at your terminal. It destroys any data currently in the
working buffer. Once the block is in the working buffer, you can use SUBSTITUTEBYTE
and SUBSTITUTEWORD to change the data in the block. Finally, you can use the
WRITE command to write the modified block back out to the volume.

2-30

NOTE

If you specify the DISPLA YNEXTBLOCK command at the end of the
volume, the utility "wraps around" and displays the first block in the volume.

Disk Verification

DISPLAYPREVIOUSBLOCK

This command is identical to DISPLA YNEXTBLOCK, except that it displays the volume
block preceding the current block in the working buffer. The format of the
DISPLA YPREVIOUSBLOCK command is as follows:

DISPLAYPREVIOUSBLOCK r--~_-

W-0966

Disk Verification 2-31

EDITFNODE

This command allows you to edit values within a specified fnode. It can be aborted by
entering CONTROL-C. The format of the EDITFNODE command is

W-0967 ,

INPUT PARAMETER

fnodenum Number of the fnode to edit. This number can be in the range of 0 through
(max fnodes -1), where max fnodes is the number offnodes defined when
the volume was originally formatted.

OUTPUT

When EDITFNODE is invoked it displays the following message:

Fnode number - nnnn

where nnnn is the number of the fnode you want to edit. The first field of the fnode is
displayed with its current value, as follows:

flags(xxxx):

where xxxx is the current value of the flags field. From this point on, you can edit the fnode
fields, one at a time. Mter the last fnode field has been edited or a "Q" has been entered
while in edit mode, the following query appears on the screen and the modified fnode is
displayed.

Write back?

2-32 Disk Verification

EDITFNODE

A response of "Yes" causes the fnode with the modified values to be written on the volume
and the following message to be displayed:

Fnode has been updated

Any other response causes the fnode to remain unchanged and the following message to be
displayed:

Fnode not changed

DESCRIPTION

EDITFNODE is used to change values within a specified fnode. When it is invoked, it
displays the message shown above. Once you receive the invocation message, you can edit
the fnode, one field at a time. The first field, flags, is displayed upon invocation (as shown
above). The current value of each field is displayed followed by a colon. EDITFNODE
then waits for one of the following responses from the terminal.

Response

<CR>

numerical value < CR >

QUITorQorq <CR>

Meaning

No modification to the field.

The new value to be assigned.
This value is always interpreted
as hexadecimal.

Skip the remaining fields and
display the query.

Any response, other than those listed above, causes the field to remain unchanged, and the
next field to be displayed.

Once the fnode has been updated, you can use DISPLA YFNODE to examine the contents
of the fnode and the changes you made. Changing the contents of an fnode causes it to
have a bad checksum. Use FIX with the NAMED 1 option to correct it. For more details,
see the explanation of FIX later in this chapter.

Disk Verification 2-33

EDITFNODE

ERROR MESSAGES

argument error

< fnode num >, fnode out of range

Error in Input

EXAMPLE

The option specified is not valid.

The fnode number specified was larger
than the largest fnode number on the
volume.

Invalid input was entered while editing an
entry.

The following example illustrates using EDITFNODE to edit fnode 10.

* editfnode 10 <CR>
fnode number = 10
flags(0025): <CR>
type(0006): <CR>
file gran/vol gran(Ol): <CR>
owner(OFFFF): 0 <CR>
create time(102l9CB2): q <CR>

Entering "q" causes the modified fnode to be displayed.

2-34

flags
type

file gran/vol gran
owner

create,access,mod times
total size, total blocks

block pointer (1)
block pointer (2)
block pointer (3)
block pointer (4)
block pointer (5)
block pointer (6)
block pointer (7)
block pointer (8)

this size
id count

accessor (1)
accessor (2)
accessor (3)

parent, checksum
aux(*)

Write back? yes <CR>
Fnode has been updated

*

0025 ->short file
06 =>directory file
01
0000
102l9CB2, 102l9CC8, 102l9CC8
00000360, 00000001
0001, 000050
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
00000400
0001
OF, FFFF
00, 0000
00, 0000
0006, 0000
000000

Disk Verification

EDITSAVEFNODE

EDITSA VEFNODE is identical to EDITFNODE, except that it allows you to edit an
fnode from the R ?SA VE file. (R ?SA VE must have been reserved when the volume was
formatted.) In addition, it designates the fnode as saved when displaying the fnode
number. You can abort this command by entering CONTROL-C. The format of the
EDITSA VEFNODE command is

fnodenum

W-0968

ERROR MESSAGES

The error messages are the same as in EDITFNODE with the addition of the following
message.

no save area was
reserved when volume
was formatted

Disk Verification

The volume was not formatted to support
backup fnodes. This means the
RESERVE option was not specified when
the volume was formatted.

2-35

EXIT

This command exits the Disk Verification Utility and returns control to the Human
Interface command level. The format of the EXIT command is as follows:

-l------C EXIT ~r---T"'--
--------~~~--------

W-0969

This command is identical to the QUIT command.

2-36

NOTE

Although you can use DISKVERIFY to verify the system device (:SD:),
note that all connections to this device are deleted by the operating system.
After exiting, you must reboot the system or use the warm start feature (see
the iRMX® System Debugger Reference Manual).

Disk Verification

FIX

This command verifies the volume in the same way as the VERIFY command to
determine if the data on the volume is consistent. In addition, this command "fixes" various
kinds of inconsistencies discovered during verification. You can abort this command by
entering CONTROL-C. (CONTROL-C is ignored when FIX is writing to the volume in
order to prevent inconsistencies on the volume.)

Because FIX and VERIFY perform the same verification functions and generate the same
error messages, the command description given below describes only the additional
functions of FIX. For a complete explanation of the verify functions, see the VERIFY
command described later in this chapter. The format of the FIX command is:

W-0970

INPUT PARAMETERS

ALL Performs all operations appropriate to the volume. For named
volumes, this option performs both the NAMED and PHYSICAL
verification functions. For physical volumes, this option performs
only the PHYSICAL verification function. For both NAMED and
PHYSICAL volumes, ALL performs the fixes for the relevant
verifica tions.

Disk Verification 2-37

FIX

LIST

NAMED10rN1

NAMED20rN2

NAMEDorN

PHYSICAL

OUTPUT

Lists the file information displayed in Figure 2-3 (see the VERIFY
command description later in this chapter) for any verification that
includes NAMED 1.

Performs NAMED1 verification and fixes the following
inconsistencies:

• Fixes bad checksums

• Attaches orphan fnodes to their parents. An orphan fnode is an
fnode contained within a directory and whose parent field does
not point back to this directory. If the parent field of the
specified fnode points to a second valid directory, and the
second directory also points to the fnode, no fix is performed
since the specified fnode belongs to an existing directory. This is
a case of multiple references (discussed in NAMED2).

If the parent field does not point to a valid parent, the parent field is
fixed to point to the directory that contains this fnode in its file list.

Performs NAMED2 verification and fixes the following
inconsistencies:

• Removes fnodes from their illegal parents. If there is a multiple
reference to an fnode, the fnode is removed from the directories
that it does not point to (if FIX was performed with NAMED 1,
the fnode should now point to one valid parent).

• Saves fnode and block bit maps on completion of NAMED2.

Performs both the NAMED1 and NAMED2 verification functions
on a named volume and fixes the inconsistencies defined for these
options.

Performs PHYSICAL verification and saves the bad block bit map.

FIX produces the same output as the VERIFY command (see Figures 2-3, 2-4, and 2-5)
with additional messages displayed when an inconsiste~cy is fixed. NAMED 1 output
includes these messages.

Checksum Fixed
fnode nnnn was attached to parent nnnn

The first message appears after a bad checksum is fixed. The second message is displayed
when the parent field of an fnode is modified to point to a valid parent.

2-38 Disk Verification

FIX

NAMED2 displays this message when an fnode with mUltiple references is removed from
the directory.

fnode removed from this directory

If an fnode exists on a disk and is marked allocated, but has not been referenced, FIX
issues a warning message and asks if you want to save the bit maps. This prevents SAVE
from freeing this fnode and its blocks and possibly causing a file to be lost.

Disk Verification 2-39

FREE

This command designates fnodes and volume blocks as free (unallocated). It also removes
volume blocks from the bad blocks file. The format of the FREE command is as follows:

FNODE = fnodenum

FNODE = fnodenum, fnodenum

BLOCK = blocknum

FREE BLOCK = blocknum, blocknum "-r

BADBLOCK = blocknum

BAD BLOCK = blocknum, blocknum

W-0971

INPUT PARAMETERS

fnodenum

blocknum

OUTPUT

Number of the fnode to free. This number can range from 0
through (max fnodes - 1), where max fnodes is the number of fnodes
defined when the volume was originally formatted. Two fnode
values separated by a comma signify a range of fnodes.

Number of the volume block to free. This number can range from 0
through (max blocks - 1), where max blocks is the number of volume
blocks in the volume. Two block numbers separated by a comma
signify a range of block numbers.

If you are using FREE to deallocate fnodes, FREE displays the following message:

<fnodenum>, fnode marked free

where < fnodenum > is the number of the fnode that the utility designated as free.

If you are using FREE to deallocate volume blocks, FREE displays the following message:

<blocknum>, block marked free

where <blocknum> is the number of the volume block that the utility designated as free.

2-40 Disk Verification

FREE

If you are using FREE to designate one or more "bad" blocks as "good," FREE displays the
following message:

<blocknum>, block marked good

where < blocknum > is the number of the volume block that the utility designated as
"good."

FREE checks the allocation status of fnodes or blocks before freeing them. Therefore, if
you specify FREE for a block or fnode that is already unallocated, FREE returns one of
the following messages:

<fnodenum>, fnode already marked free

<blocknum>, block already marked free

<blocknum>, block already marked good

DESCRIPTION

Free fnodes are fnodes for which no actual files exist. FREE designates fnodes as free by
updating both the FLAGS field of the fnode and the free fnodes map file.

Free volume blocks are blocks that are not part of any file; they are available to be assigned
to any new or current file. FREE designates volume blocks as free by updating the volume
free space map.

When you use the FREE command to designate one or more bad blocks as "good," it
removes the block number from the bad blocks file. However, FREE BADBLOCK does
not designate the blocks as free. To update the volume free space map and designate these
blocks as free, use the FREE BLOCK command.

ERROR MESSAGES

argument error

< blocknum >, block out of range

Disk Verification

A syntax error was made in the command
or a nonnumeric character was specified in
the blocknum or fnodenum parameter.

The block number specified was larger
than the largest block number in the
volume.

2-41

FREE

< fnodenum >, fnode out of range

no badblocks file

not a named disk

2-42

The fnode number specified was larger
than the largest fnode number in the
volume.

The volume does not have a bad blocks
file. This message could appear because
,an earlier version of the Human Interface
FORMAT command was used when the
disk was formatted.

FREE was performed on a physical
volume.

Disk Verification

GETBADTRACKINFO

This command displays the volume's bad track information. It can be aborted by entering
CONTROL-C. The format of GETBADTRACKINFO is

W-0972

INPUT PARAMETERS

None.

OUTPUT

The GETBADTRACKINFO command displays the volume's bad track information as
written by the manufacturer or the Human Interface FORMAT command. The output
displayed by the GETBADTRACKINFO command is compatible with the format required
by the Human Interface FORMAT command when writing bad track information on the
disk. To use the output as input to FORMAT, remove the first two lines, leaving only the
actual bad track information data. The display is as follows:

Bad track information:
cyl head sector
cccc hh ss
cccc hh ss

where ccce is cylinder number, hh is the head number and ss is the sector number (always
zero for all devices supported in this release of the operating system).

Disk Verification 2-43

GETBADTRACKINFO

As mentioned above, the output of the GETBADTRACKINFO command can be used as
input to the FORMAT command when creating the bad track information file. The
example below shows how to use GETBADTRACKINFO this way.

- attachdevice wmfO as :w: <CR>
- diskverify :sd: to :w:bad.list <CR>
*getbadtrackinfo <CR>
* exit <CR>

After exiting DISKVERIFY and rebooting the system, edit :w:bad.lst and remove the
header lines. The file can then be used as input to the bad track information file created by
the FORMAT command.

ERROR MESSAGES

2-44

I/O error while trying to read bad
track information

No valid bad track info found

No bad track info found

An I/O error occurred while reading the
bad track information.

Bad track information is not valid and
cannot be displayed.

The area designated for bad track
information is empty.

Disk Verification

HELP

This command lists all available Disk Verification Utility commands and provides a short
description of each command. The format of the HELP command is

-'L-----Ie HELP ~f----J""--
-.------~~~------~-

W-0973

OUTPUT

In response to this command, HELP displays the following information:

*help
allocate/free

backup/restore fnodes (bf/rf)
Control-C

disk
display byte/word (d,db/dw)

display directory (dd)
display fnode (df)

display next block (>,dnb)
display previous block «,dpb)

display save fnode (dsf)
exit, quit

list bad blocks (lbb)
read (r)

restore volume label (rvl)
save

substitute byte/word (s,sb/sw)
verify

write (w)
edit fnode (ef)

edit save fnode (esf)
fix

get bad track info (gb)
misc commands-

address
block

hex/dec
add,+,sub,-,mul,*,div,/,mod

Disk Verification

allocate/free fnodes, space blocks, bad blocks
backup/restore fnode file to/from save area
abort the command in progress
display disk attributes
display the buffer in (byte/word format)
display the directory contents
display fnode information
read and display 'next' volume block
read and display 'previous' volume block
display saved fnode information
quit disk verify
list bad blocks on the volume
read a disk block into the buffer
copy volume label from save area
save free fnodes, free space & bad block maps
modify the buffer (byte/word format)
verify the disk
write to the disk block from the buffer
edit an fnode
edit a saved fnode
perform various fixes on the volume
get the bad track info on the volume

convert block number to absolute address
convert absolute address to block number
display number as hexadecimal/decimal number
arithmetic operations on unsigned numbers

2-45

LISTBADBLOCKS

This command displays all the bad blocks on a named volume. You can abort this
command by typing a CONTROL-C. The format of the LISTBADBLOCKS command is
as follows:

----l-~~BADBLO~~--T~---
,-------~~~--------

W-0974

OUTPUT

In response to this command, LISTBADBLOCKS displays up to eight columns of block
numbers that you specified as "bad." Figure 2-2 illustrates the format of the display.

Badblocks on Volume: volumenum

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknurn>

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknurn>

<blocknum> <blocknum> <blocknum> <blocknum> <blocknum> <blocknurn>

Figure 2-2. LISTBADBLOCKS Format

If none of the blocks have been marked as "bad", LISTBADBLOCKS displays the following
message:

no badblocks

2-46 Disk Verification

LISTBADBLOCKS

NOTE

Bad tracks and bad blocks are different. Bad tracks are handled by the
device drivers in conjunction with the hardware, whereas, bad blocks are
handled by the Basic I/0 System.

ERROR MESSAGES

no badblocks file

Disk Verification

The volume does not have a bad blocks
file. This message could appear because
an earlier version of the Human Interface
FO RMA T command was used when the
disk was formatted or because the disk is a
physical volume.

2-47

MISCELLANEOUS COMMANDS

The following commands provide you with the ability to perform arithmetic and conversion
operations within the Disk Verification Utility. The commands perform the operations on
unsigned numbers only and do not report any overflow conditions. When the number is
displayed in both hexadecimal and decimal format, it appears in hexadecimal format first,
followed by the decimal number in parentheses. For example:

13 (19T)

ADD

This command adds two numbers together. Its format is

-t== ADD ?K a~1=>-O--C: arg2>

----...... 8r----
where:

argl and arg2

W-097S

Numbers the command adds together. The value of each argument
cannot be greater than 232_1.

In response, the command displays the unsigned sum of the two numbers in both
hexadecimal and decimal format.

ADDRESS

All memory in a volume is divided into volume blocks, which are areas of memory the
same size as the volume granularity. Volume blocks are numbered sequentially in the
volume, starting with the block containing the smallest addresses (block 0). The
ADDRESS command converts a block number into an absolute address (in hexadecimal)
on the volume, so that you don't have to perform this conversion by hand. The format of
this command is

W-0976

2-48 Disk Verification

where:

blocknum

MISCELLANEOUS COMMANDS

Volume block number that ADDRESS converts into an absolute
address in hexadecimal. This parameter can range from 0 through
(max blocks - 1)~ where max blocks is the number of volume blocks
in the volume.

In response, ADDRESS displays the following information:

absolute address = <addr>

where:

<addr>

BLOCK

Absolute address in hexadecimal that corresponds to the specified
block number. This address represents the number of the byte that
begins the block and can range from 0 through (volume size - 1),
where volume size is the size, in bytes, of the volume.

The BLOCK command is the inverse of the address command. It converts a 32-bit
absolute address (in hexadecimal) into a volume block number, so that you don't have to
perform this conversion by hand. The format of this command is

where:

address

BLOCK address

W-0977

Absolute address in hexadecimal that BLOCK converts into a block
number. This parameter can range from 0 through (volume size -
1), where volume size is the size, in bytes, of the volume.

In response, BLOCK displays the following information:

block number = <blocknum>

Disk Verification 2-49

MISCELLANEOUS COMMANDS

where:

<blocknum>

DEC

Number of the volume block that contains the specified absolute
address in hexadecimal. The BLOCK command determines this
value by dividing the absolute address by the volume block size and
truncating the result.

This command finds the decimal equivalent of a number. Its format is

where:

arg

DEC

W-0978

Number for which the command finds the decimal equivalent. The
value of the argument cannot be greater than 232_1. The default
base is in hexadecimal.

In response, the command displays the decimal equivalent of the specified number.

DIV

This command divides one number by another. Its format is

where:

argl and arg2

arg2

W-0979

Numbers on which the command operates. It divides argl by arg2.
The value of each argument cannot be greater than 232_1.

In response, the command displays the unsigned integer quotient in both hexadecimal and
decimal format.

2-50 Disk Verification

MISCELLANEOUS COMMANDS

HEX

This command finds the hexadecimal equivalent of a number. Its format is

where:

arg

HEX arg

W-0980

Number for which the command finds the hexadecimal equivalent.
If you are specifying a decimal number, you must specify a "T". The
value of the argument cannot be greater than 232.1.

In response, the command displays the hexadecimal equivalent of the specified number.

MOD

This command finds the remainder of one number divided by another. Its format is

MOD

where:

argl and arg2

arg1

W-0981

Numbers on which the command operates. It performs the
operation argl modulo arg2. The value of each argument cannot be
greater than 232.1.

In response, the command displays the value argl modulo arg2 in both hexadecimal and
decimal format.

Disk Verification 2-51

MISCELLANEOUS COMMANDS

MUL

This command multiplies two numbers together. Its format is

where:

arg1 and arg2

arg1 arg2

W-0982

Numbers the command mUltiplies t'1ether. The value of each
argument cannot be greater than 23 -1.

In response, the command displays the unsigned product of the two numbers in both
hexadecimal and decimal format.

SUB

This command subtracts one number from another. Its format is

where:

arg1 and arg2

W-0983

Numbers on which the command operates. The command subtracts
arg2 from argl. The value of each argument cannot be greater than
232-1.

In response, the command displays the unsigned difference in both hexadecimal and
decimal format.

2-52 Disk Verification

ERROR MESSAGES

argument error

< blocknum >, block out of range

< address>, address not on the
disk

EXAMPLES

*MUL 134T, 13T <CR>
6CE (l742T)

*+ 8, 4 <CR>
OC (l2T)

*pUB 8884, 256 <CR>
862E (34350T)

*MOD 1225, 256T <CR>
25 (37T)

*HEX 155T <CR>
9B

*ADDRESS 15 <CR>
absolute address - OA80
*~LOCK 2236 <CR>
block number - 44

Disk Verification

MISCELLANEOUS COMMANDS

A syntax error was made in the command,
a nonnumeric value for one of the
arguments was specified, or a value for a
block number parameter that was not a
valid block number was specified.

If the command was an ADDRESS
command, the block number entered was
greater than the number of blocks in the
volume.

If the command was a BLOCK command,
BLOCK converted the address to a
volume block number, but the block
number was greater than the number of
blocks in the volume.

2-53

QUIT

This command exits the Disk Verification Utility and returns control to the Human
Interface command level. The format of the QUIT command is as follows:

~1 -----I.e QUIT ~J-----T""'--
------~~~-------.

W-0984

This command is identical to the EXIT command.

2-54

NOTE

Although you can use DISKVERIFY to verify the system device (:SD:),
note that all connections to this device are deleted by the operating system.
After exiting, you must reboot the system or use the warm start feature (see
the iRMX® System Debugger Reference Manual).

Disk Verification

READ

This command reads a volume block from the disk into the working buffer. The format of
the READ command is

-t: READ~ocknu~
----...0(01----.."

W-Q985

INPUT PARAMETER

blocknum Number of the volume block to read. This number can range from 0
through (max blocks - 1), where max blocks is the number of volume
blocks in the volume. If you omit this parameter, the READ
command reads the most recently accessed block.

OUTPUT

In response to the command, READ reads the block into the working buffer and displays
the following message:

read block number: <blocknum>

where < blocknum > is the number of the block.

DESCRIPTION

The READ command copies a specified volume block from the volume to the working
buffer. It destroys any data currently in the working buffer. Once the block is in the
working buffer, you can use DISPLA YBYTE and DISPLA YWORD to display the block,
and you can use SUBSTITUTEBYTE and SUBSTITUTEWORD to change the data in the
block. Finally, you can use the WRITE command to write the modified block back to the
volume and repair damaged volume data.

ERROR MESSAGES

argument error

< blocknum >, block out of range

Disk Verification

A nonnumeric character was specified in
the blocknum parameter.

The block number specified was larger
than the largest block number in the
volume.

2-55

READ

FFFFFFFF, block out of range

2-56

No block number was specified and no
previous read request was executed on this
volume.

Disk Verification

RESTOREFNODE

This command copies an fnode or a range of fnodes from the R ?SA VE file to the fnode
file. Before changing the fnode file, RESTOREFNODE displays the fnode number to be
changed and prompts you to confirm (by entering a "Y" or "y") that the fnode is to be
restored. R?SA VE must have been reserved (the RESERVE option of the FORMAT
command must have been specified) when the volume was formatted. The format of the
RESTOREFNODE command is as follows:

INPUT PARAMETER

fnodenum

fnodenuml

fnodenum2

OUTPUT

W-0986

The hexadecimal number of the fnode to be restored. This number
must be greater than or equal to zero and less than the maximum
number of fnodes defined when the volume was formatted.

The initial hexadecimal fnode number in a range of fnodes to be
restored. This number must be greater than or equal to zero and
less than or equal to the final fnode number in the range
(fnodenum2).

The final hexadecimal fnode number in a range of fnodes to be
restored. This number must be greater than or equal to the initial
fnode number in the range (fnodenuml) and less than the maximum
number of fnodes defined when the volume was formatted.

When the fnode is restored (the response to the confirmation query is "Y" or "y"):

restore fnode (fnodenum)? Y <CR>
restored fnode number: (fnodenum)

*

Disk Verification 2-57

RESTOREFNODE

When the fnode is not restored (the response to the confirmation query is not "Y"):

restore fnode

*
(fnodenum)? <CR>

DESCRIPTION

The RESTOREFNODE command enables you to rebuild a damaged fnode file, thereby
re-establishing links to data that would otherwise be lost. RESTOREFNODE copies an
fnode or a range of fnodes from the R ?SA VB file (the fnode backup file) to the fnode file.
Before each of the specified fnodes is copied, RESTOREFNODE displays a query
prompting you to confirm that the indicated fnode is to be restored. You must reply to this
query with the letter "Y" (either "Y" or "y") to restore the fnode. If you enter any other
response, RESTOREFNODE will not restore the fnode and will pass on to the next fnode
in the range.

Since RESTOREFNODE operates on the R?SA VB file, you must have reserved this file
when the volume was formatted. (You reserve R?SA VB by specifying the RESERVE
parameter when you invoke the FORMAT command to format the volume.) If the
R?SA VB file was not reserved when the volume was formatted, RESTOREFNODE will
return an error message.

CAUTION

When using this command, be sure that any fnode you restore represents a
file that has not been modified since the last fnode backup.
RESTOREFNODE overwrites the specified fnode in the fnode file with the
corresponding fnode in the R?SA VE rlle. If that fnode has not been backed
up since the last file modification, a valid fnode may be overwritten with
invalid data. Thus, all links to the associated file will be destroyed, and
YOU WILL LOSE ALL OF THE DATA IN THE FILE.

ERROR MESSAGES

2-58

argument error

no save area was reserved when
volume was formatted

When the command was entered, no
argument was supplied. This command
requires an argument.

The volume was not formatted to support
backup fnodes. This means the
RESER VB option was not specified when
the volume was formatted.

Disk Verification

RESTOREFNODE

not a named disk

< fnode num>, fnode out of range

allocation bit not set for saved fnode
restore fnode < fnode num> ?

EXAMPLE

super- diskverify :sd: <CR>

The volume specified when the Disk
Verification Utility was invoked is a
physical volume, not a named volume.

The fnode number specified is not in the
range of 0 to (maximum fnodes - 1).

The fnode you specified has not been
backed up in the R?SA VE file. If you
respond to the query with a "Y" or "y",
THE DATA IN THE FILE
ASSOCIATED WITH THE ORIGINAL
FNODE WILL BE LOST.

iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
*restorefnode 9,OB <CR> or rf 9,OB <CR>
restore fnode 9? Y <CR>
restored fnode number: 9
restore fnode OA? Y <CR>
restored fnode number: OA
restore fnode OB? Y <CR>
restored fnode number: OB

*

Disk Verification 2-59

RESTOREVOLUMELABEL

This command copies the duplicate volume label to the volume label on track O. The
duplicate volume label must have been constructed when the volume was formatted. (That
is, the RESERVE option of the FO RMA T command must have been specified when the
volume was formatted.) The format of the RESTOREVOLUMELABEL command is as
follows:

RESTOREVOLUMELABEL

W-0987

INPUT PARAMETERS

None.

OUTPUT

Volume label restored.

DESCRIPTION

The RESTOREVOLUMELABEL command enables you to rebuild a damaged volume
label, thereby re-establishing links to data that would otherwise be lost.
RESTOREVOLUMELABEL copies the duplicate volume label to the volume label offset
on track O. When you use the Human Interface FORMAT command to create the
duplicate volume label (by specifying the RESERVE parameter), the volume label is
automatically copied to the end of the R?SA VE file. Because the contents of the volume
label do not change, no other volume label backup is required.

If a duplicate volume label has been reserved on a volume, the Disk Verification Utility can
access that volume as a Named volume even if the volume label is damaged. When the
original volume label is corrupted, the Disk Verification Utility attempts to use the
duplicate volume label. If the backup label is used, a "DUPLICATE VOLUME LABEL
USED" message appears when the utility is invoked.

If the duplicate volume label was not reserved when the volume was formatted,
RESTOREVOLUMELABEL will return an error message.

2-60 Disk Verification

ERROR MESSAGES

argument error

no save area was reserved when
volume was formatted

not a named disk

EXAMPLE

super- diskverify :sd: <CR>

RESTOREVOLUMELABEL

When the command was entered, an
argument was supplied. This command
does not accept an argument.

The volume has not been formatted to
support volume label backup.

The volume specified when the Disk
Verification Utility was invoked is a
physical volume, not a named volume.

iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
DUPLICATE VOLUME LABEL USED
*restorevolumelabel <CR> or rvl <CR>
volume label restored

*

Disk Verification 2-61

SAVE

This command writes the reconstructed free fnodes bit map, volume free space bit map,
and the bad blocks bit map to the volume being verified. (The NAMED2 and PHYSICAL
options of the VERIFY command originally created the maps.) The format of the SAVE
command is

SAVE

W-0988

OUTPUT

In response to this command, SAVE displays the following message:

save fnode map?

If you want to write the reconstructed free fnodes map to the volume, enter Y, y, or YES.
Otherwise, enter any other character or a carriage return. If you enter YES, SAVE writes
the free fnodes map to the volume and displays the following message:

free fnode map saved

In any case, SAVE next displays the following message:

save space map?

If you want to write the reconstructed free space map to the volume, enter Y or YES.
Otherwise, enter any other character or a carriage return. If you enter YES, SAVE writes
the volume free space map to the volume and displays the following message:

free space map saved

2-62 Disk Verification

SAVE

SAVE displays the following message if the bad blocks map is reconstructed:

save bad block map?

If you want to write the reconstructed bad blocks map to the volume, enter Y, y, or YES.
Otherwise, enter any other character or a carriage return. If you enter YES, SAVE writes
the volume bad blocks map to the volume and displays the following message:

bad block map saved

DESCRIPTION

Whenever you perform a VERIFY function with the NAMED2 option (refer to the
description of the VERIFY command for more information), VERIFY creates its own free
fnodes map and volume free space map. It does this by examining all directories and
fnodes on the volume, not by copying the maps that exist on the volume. To create the free
fnodes map, it examines every directory on the volume to determine which fnodes
represent actual files. To create the volume free space map, it examines the POINTER(n)
fields of the fnodes to determine which volume blocks the files use.

If the volume has a bad blocks file and you perform a VERIFY function with the
PHYSICAL option (refer to the description of the VERIFY command for more
information), VERIFY creates its own bad blocks map. It does this by examining every
block on the volume, not by copying the maps that exist on the volume.

VERIFY then compares the newly created maps with the maps that exist on the volume. If
a discrepancy exists, VERIFY displays a message indicating this.

The SAVE command takes the free fnodes map, the volume free space map, and the bad
block map created during the VERIFY operation and writes them to the volume, replacing
the maps that currently exist.

ERROR MESSAGE

nothing to save

Disk Verification

No bit map was constructed prior to
invoking SAVE. (Bit maps are
constructed by NAMED2 or PHYSICAL
verifications.)

2-63

SAVE

EXAMPLE

The following example illustrates the format of the SAVE command after you use
VERIFY and the NAMED or NAMED2 option.

2-64

* VERIFY NAMED2 <CR>
'NAMED2' VERIFICATION

BIT MAPS O.K.
* SAVE <CR>
save fnode map? Y <CR>

free fnode map saved
save space map? Y <CR>

free space map saved

*

Disk Verification

SUBSTITUTEBYTE

This command enables you to interactively change the contents of the working buffer (in
byte format). You can abort this command by typing a CONTROL-C. The format of the
SUBSTITUTEBYTE command is

INPUT PARAMETER

offset

OUTPUT

offset

W-0989

Number of the first byte, relative to the start of the working buffer,
that you want to change. This number can range from 0 to (block
size - 1), where block size is the size of a volume block (and thus the
size of the working buffer). If you omit this parameter, the
command assumes a value of o.

In response to the command, SUBSTITUTEBYTE displays the specified byte and waits for
you to enter a new value. This display appears as

<offset>: val -

where < offset> is the number of the byte, relative to the start of the buffer, and val is the
current value of the byte. At this point, you can enter one of the following:

• A value followed by a carriage return. This causes SUBSTITUTEBYTE to substitute
the new value for the current byte. If the value you enter requires more than one byte
of storage, SUBSTITUTEBYTE uses only the low-order byte of the value. It then
displays the next byte in the buffer and waits for further input.

• A carriage return alone. This causes SUBSTITUTEBYTE to leave the current value as
is and display the next byte in the buffer. It then waits for further input.

Disk Verification 2-65

SUBSTITUTEBYTE

• A value followed by a period (.) and a carriage return. This causes
SUBSTITUTEBYTE to substitute the new value for the current byte. It then exits
from the SUBSTITUTEBYTE command and gives the asterisk (*) prompt, enabling
you to enter any DISKVERIFY command.

• A period (.) followed by a carriage return. This exits the SUBSTITUTEBYTE
command and gives the asterisk (*) prompt, enabling you to enter any DISKVERIFY
command.

DESCRIPTION

With the SUBSTITUTEBYTE command you can interactively change bytes in the working
buffer. Once you enter the command, SUBSTITUTEBYTE displays the offset and the
value of the first byte. You can change the byte by entering a new byte value, or you can
leave the byte as is by entering a carriage return. The command then displays the next byte
in the buffer. In this manner, you can consecutively step through the buffer, changing
whatever bytes are appropriate. When you finish changing the buffer, you can enter a
period followed by a carriage return to exit the command.

The SUBSTITUTEBYTE command considers the working buffer to be a circular buffer.
That is, entering a carriage return when you are positioned at the last byte of the buffer
causes SUBSTITUTEBYTE to display the first byte of the buffer.

The SUBSTITUTEBYTE command changes only the values in the working buffer. To
make the changes in the volume, you must enter the WRITE command to write the
working buffer back to the volume.

ERROR MESSAGES

argument error

< offsetnum >, invalid offset

2-66

A nonnumeric character was specified in
the offset parameter.

An offset value larger than the number of
bytes in the block was specified.

Disk Verification

SUBSTITUTEBYTE

EXAMPLE

This example changes several bytes in two portions of the working buffer. Two
SUBSTITUTEBYTE commands are used.

* SUBSTITUTEBYTE<CR>

0000: AO - OO<CR>
0001: 80 - <CR>
0002: ES - <CR>
0003: FF - 31<CR>
0004: FF - .<CR>

*.SUBSTITUTEBYTE 40<CR>

0040: 00 - E6<CR>
0041: 00 - E6.<CR>

*

Disk Verification 2-67

SUBSTITUTEWORD

This command is identical to SUBSTITUTEBYTE, except that it displays the buffer in
WORD format, and substitutes word values in the buffer. The format of the
SUBSTITUTEWORD command is

offset

W-0990

EXAMPLE

This example changes several bytes in two areas of the working buffer. Two
SUBSTITUTEWORD commands are used. In the first command the words begin on even
addresses, and in the second command, they begin on odd addresses.

2-68

*SUBSTITUTEWORD<CR>

0000: AOBO - OOOO<CR>
0002: 8070 - <CR>
0004: E511 - <CR>
0006: FFFF - 3111<CR>
0008: FFFF - .<CR>

*SUBSTITUTEWORD 3S<CR>

0035: 0000 - E6FF<CR>
0037: 0000 - E6AB.<CR>

*

Disk Verification

VERIFY

This command checks the structures on the volume to determine whether the volume is
properly formatted. You can abort this command by typing a CONTROL-C. The format
of the VERIFY command is

W-0991

INPUT PARAMETERS

NAMED10rN1

Disk Verification

Checks named volumes to ensure that the information recorded in
the fnodes is consistent and matches the information obtained from
the directories themselves. VERIFY performs the following
operations during a NAMED1 verification:

• Checks fnode numbers in the directories to see if they
correspond to allocated fnodes.

• Checks the parent fnode numbers recorded in the fnodes to see
if they match the information recorded in the directories.

• Checks the fnodes against the files to determine if the fnodes
specify the proper file type.

• Checks the POINTER(n) structures of long files to see if the
indirect blocks accurately reflect the number of blocks used by
the file.

• Checks each fnode to see if the TOTAL SIZE, TOTAL BLKS,
and THIS SIZE fields are consistent.

2-69

VERIFY

NAMED20rN2

NAMEDorN

PHYSICAL

ALL

LIST

2-70

• Checks the bad blocks file to see if the blocks in the file
correspond to the blocks marked as "bad" on the volume.

• Checks the checksum of each fnode.

Checks named volumes to ensure that the information recorded in
the free fnodes map and the volume free space map matches the .
actual files and fnodes. VERIFY performs the following operations
during a NAMED2 verification:

• Creates a free fnodes map by examining every directory in the
volume. It then compares that free fnodes map with the one
already on the volume.

• Creates a free space map by examining the information in the
fnodes. It then compares that free space map with the one
already on the volume.

• Checks to see if the block numbers recorded in the fnodes and
the indirect blocks actually exist.

• Checks to see if two or more files use the same volume block. If
so, it lists the files referring to each block.

• Checks the volume free space map for any bad blocks that are
marked as "free."

• Checks to see if two or more directories reference the same
fnode. If so, it lists the directories referring to each fnode.

Performs both the NAMED1 and NAMED2 operations on a named
volume .. If you specify the VERIFY command with no option,
NAMED is the default.

Reads all blocks on the volume and checks for I/O errors. This
parameter applies to both named and physical volumes. VERIFY
also creates a bad blocks map by examining every block on the
volume.

Performs all operations appropriate to the volume. For named
volumes, this option performs both the NAMED and PHYSICAL
operations. For physical volumes, this option performs only the
PHYSICAL operations.

When you specify this option, the file information in Figure 2-3 is
displayed for every file on the volume, even if the file contains no
errors. You can use this option with all parameters that, either
explicitly or implicitly, specify the NAMED1 parameter.

Disk Verification

VERIFY

OUTPUT

VERIFY produces a different kind of output for each of the NAMED1, NAMED2, and
PHYSICAL options. The NAMED and ALL options produce combinations of these three
kinds of output.

Figure 2-3 illustrates the format of the NAMED1 output (without the LIST option).

DEVICE NAME = <devname> DEVICE SIZE = <devsize> BLOCK SIZE = <blksize>

'NAMEDl' VERIFICATION

FILE=«filename> , <fnodenum»: LEVEL--<lev>: PARENT=<parnt>: TYPE=<typ>
<error messages>

FILE=«filename> , <fnodenum»: LEVEL--<lev>: PARENT=<parnt>: TYPE=<typ>
<error messages>

FILE=«filename> , <fnodenum»: LEVEL--<lev>: PARENT=<parnt>: TYPE=<typ>
<error messages>

Figure 2-3. NAMEDI Verification Output

The following paragraphs identify the fields listed in Figure 2-3.

<devname>

<devsize>

<blksize>

<filename>

< fnodenum >

<lev>

Disk Verification

Physical name of the device, as specified in the ATTACHDEVICE
Human Interface command.

Hexadecimal size of the volume, in bytes.

Hexadecimal volume granularity. This number is the size of a
volume block.

Name of the file (1 to 14 characters).

Hexadecimal number of the file's fnode.

Hexadecimal level of the file in the file hierarchy. The root
directory of the volume is the only level 0 file. Files contained in the
root directory are level 1 files. Files contained in level 1 directories
are level 2 files. This numbering continues for all levels of files in
the volume.

2-71

VERIFY

<parnt>

<typ>

< error messages>

Fnode number of the directory that contains this file, in
hexadecimal.

File type, either DATA (data files), DIR (directory files), SMAP
(volume free space map), FMAP (free fnodes map), BMAP (bad
blocks map), or VLAB (volume label file). If VERIFY cannot
ascertain that the file is a directory or data file, it displays the
characters "****" in this field.

Messages that indicate the errors associated with the previously­
listed file. The possible error messages are listed later in this
section.

As Figure 2-3 shows, the NAMED1 option (without the LIST option) displays information
about each file that is in error. If you used the LIST option with the NAMED1 option, the
file information in Figure 2-3 is displayed for every file, even if the file contains no errors.
The NAMED1 display also contains error messages that immediately follow the list of the
affected files.

Figure 2-4 illustrates the format of the NAMED2 output. If VERIFY detects an error
during NAMED2 verification, it displays one or more error messages. in place of the "BIT
MAPS O.K." message.

DEVICE NAME = <devname> DEVICE SIZE = <devsize> BLK SIZE = <blksze>

'NAMED2' VERIFICATION

BIT MAPS O.K.

Figure 2-4. NAMED2 Verification Output

The fields in Figure 2-4 are exactly the same as the corresponding fields in Figure 2-3.

2-72 Disk Verification

VERIFY

Figure 2-5 illustrates the format of the PHYSICAL output.

DEVICE NAME = <devnarne> DEVICE SIZE - <devsize> BLOCK SIZE = <blksize>

'PHYSICAL' VERIFICATION

NO ERRORS

Figure 2-5. PHYSICAL Verification Output

The fields in Figure 2-5 are exactly the same as the corresponding fields in Figure 2-3.

If VERIFY detects an error during PHYSICAL verification, it displays the message:

<blocknum>, error

in place of the "NO ERRORS" message.

If you specify NAMED verification, VERIFY displays both the NAMED land NAMED2
output. If you specify the ALL verification for a named volume, VERIFY displays the
NAMEDl, NAMED2, and PHYSICAL output. If you specify the ALL verification for a
physical volume, VERIFY displays the PHYSICAL output.

DESCRIPTION

The VERIFY command checks physical and named volumes to ensure that the volumes
contain valid file structures and data areas. VERIFY can perform three kinds of
verification: NAMEDl, NAMED2, and PHYSICAL. NAMEDl and NAMED2
verifications check the file structures of named volumes. They do not apply to physical
volumes. A PHYSICAL verification checks each data block of the volume for I/O errors.
PHYSICAL verification applies to both named and physical volumes.

As part of the NAMED2 verification, VERIFY creates a free fnodes map and a volume
free space map, which it compares with the corresponding maps on the volume. You can
use the SAVE command to write the maps produced during NAMED2 verification to the
volume, overwriting the maps on the volume.

Disk Verification 2-73

VERIFY

When you perform a PHYSICAL verification on a named volume, VERIFY also creates a
bad blocks map. You can use the SAVE command to write the bad blocks map produced
during PHYSICAL verification to the volume; this destroys the bad blocks map already on
the volume.

ERROR MESSAGES

Four kinds of error messages can occur as a result of entering the VERIFY command:
VERIFY command errors, NAMED1 errors, NAMED2 errors, and PHYSICAL errors.

VERIFY Command Error

argument error The parameter specified is not a valid VERIFY parameter.

NAMED1 Messages

The following messages can appear in a NAMED1 display, immediately after the file to
which they refer.

• < blocknum 1 - blocknum n>, block bad

The block numbers displayed in this message are marked as "bad."

• < blocknum 1 - blocknum n >, invalid block number recorded in the
fnode/indirect block

One of the POINTER(n) fields in the fnode specifies block numbers larger than the
largest block number in the volume.

• directory stack overflow

This message indicates that a directory on the volume lists, as one of its entries, itself
or one of the parent directories in its pathname. If this happens, the utility, when it
searches through the directory tree, continually loops through a portion of the tree,
overflowing an internal buffer area. In this case, performing NAMED2 verification·
may indicate the cause of this problem.

• file size inconsistent

2-74

total$size = <totsize> :this$size = <thsize> :data blocks = <blks>

The TOTAL SIZE, THIS SIZE, and TOTAL BLKS fields of the fnode are
inconsisten t.

Disk Verification

VERIFY

• < filetype >, illegal file type

The file type of a user file, as recorded in the TYPE field of the fnode, is not valid. The
valid file types and their descriptions are as follows:

File we Number Description

SMAP 1 volume free space map
FMAP 2 free fnodes map
BMAP 4 bad blocks map
DIR 6 directory
DATA 8 data
VLAB 9 volume label file

• < fnodenum >, allocation status bit in this fnode not set

The file is listed in a directory but the flags field of its fnode indicates that fnode is free .
. The free fnodes map mayor may not list the fnode as allocated.

• < fnodenum >, fnode out of range

The fnode number is larger than the largest fnode number in the fnode file.

• < fnodenum >, parent fnode number does not match

The file represented by fnodenum is contained within a directory whose fnode number
does not match the parent field of the file.

• invalid blocknum recorded in the fnode/indirect block

One of the pointers within the fnode or within the indirect block specifies a block
number that is larger than the largest block number in the volume.

• insufficient memory to create directory stack

There is not enough dynamic memory available in the system for the utility to perform
the verification.

• sum of the blks in the indirect block does not match block in the fnode

The file is a long file, and the number of blocks listed in a POINTER(n) field of the
fnode does not agree with the number of blocks listed in the indirect block.

• total-blocks does not reflect the data-blocks correctly

The TOTAL BLKS field of the fnode and the number of blocks recorded in the
POINTER(n) fields are inconsistent.

• Bad Checksum, checksum is: <number>
Checksum should be: < number>

The checksum recorded in the fnode does not match the checksum calculated by
DISKVERIFY.

Disk Verification 2-75

VERIFY

NAMED2 Messages

The following messages can appear in a NAMED2 display.

• < blocknum 1 - blocknum2 >, bad block not allocated

The volume free space map indicates that the blocks are free, but they are marked as
"bad" in the bad blocks file.

• <blocknum>, block allocated but not referenced

The volume free space map lists the specified volume block as allocated, but no fnode
specifies the block as part of a file.

• < blocknum >, block referenced but not allocated

An fnode indicates that the specified volume block is part of a file, but the volume free
space map lists the block as free.

• directory stack overflow

This message can indicate that a directory on the volume lists, as one of its entries,
itself or one of the parent directories in its pathname. If this happens, the utility, when
it searches through the directory tree, continually loops through a portion of the tree,
overflowing an internal buffer area. The "Multiple Reference" message (explained
below) may help you find the cause of this problem.

• Fnodes map indicates fnodes > max$fnode

The free fnodes map indicates that there are a greater number of unallocated fnodes
than the maximum number of fnodes in the volume.

• < fnodenum >, fnode-map bit marked allocated but not referenced

The free fnodes map lists the specified fnode as allocated, but no directory contains a
file with the fnode number.

• < fnodenum >, fnode referenced but fnode-map bit marked free

The specified fnode number is listed in a directory, but the free fnodes map lists the
fnode as free.

• Free space map indicates Volume block > max$volume$block

The free space map indicates that there are a greater number of unallocated blocks
than the maximum number of blocks in the volume.

• insufficient memory to create directory stack

2-76

Not enough dynamic memory is available in the system for the utility to perform the
verification.

Disk Verification

VERIFY

• insufficient memory to create fnode and space maps

During a NAMED2 verification, the utility tried to create a free fnodes map and a
volume free space map. However, not enough dynamic memory is available in the
system to create these maps.

• insufficient memory to create bad blocks map

During a PHYSICAL verification, the utility tried to create a bad blocks map.
However, not enough dynamic memory is available in the system to create the map.

• Multiple reference to fnode < fnodenum >
Path name: < full path name>
referring fnodes:
< fnodenum > Path name: < full path name>
< fnodenum > Path name: < full path name>

The directories on the volume list more than one file associated with this fnode
number.

• Multiple reference to block <blocknum>
referring fnodes:
< fnodenum > Path name: < full path name>
< fnodenum > Path name: < full path name>

More than one fnode specifies this block as part of a file.

PHYSICAL Messages

• < blocknum >, error

An I/O error occurred when VERIFY tried to access the specified volume block. The
volume probably has a physical defect.

Miscellaneous Messages

The following messages indicate internal errors in the Disk Verification Utility. Under
normal conditions these messages should never appear. However, if these messages (or
other undocumented messages) do appear during a NAMED! or NAMED2 verification,
you should exit the Disk Verification Utility and re-enter the DISKVERIFY command.

directory stack empty
directory stack error
directory stack underflow

Disk Verification 2-77

VERIFY

EXAMPLE

The following command performs both named and physical verification on a named
volume.

2-78

*VERIFY ALL <CR>

DEVICE NAME = Fl

'NAMEDl' VERIFICATION

'NAMED2' VERIFICATION
BIT MAPS O.K.

'PHYSICAL' VERIFICATION
NO ERRORS

*

DEVICE SIZE - 0003E900 BLOCK SIZE = 0080

Disk Verification

WRITE

This command writes the contents of the working buffer to the volume. The format of this
command is

--""""'II~CWRITE~)----_------------

1 0 J ~ocknuiJ
W-0992

INPUT PARAMETER ,
blocknum Number of the volume block to which the command writes the

working buffer. This number can range from 0 through
maxblocks-l, where maxblocks is the maximum number of blocks in
the volume. If you omit this parameter, WRITE writes the buffer
back to the block most recently accessed.

OUTPUT

In response to the command, WRITE displays the following message:

write to block <blocknum>?

where < blocknum > is the number of the volume block to which WRITE intends to write
the working buffer. If you respond by entering Y or any character string beginning with Y
or y, WRITE copies the working buffer to the specified block on the volume and displays
the following message:

written to block nurnber:<blocknum>

Any other response aborts the write process.

Disk Verification 2-79

WRITE

DESCRIPTION

The WRITE command is used in conjunction with the READ, DISPLA YBYTE,
DISPLAYWORD, SUBSTITUTEBYTE, and SUBSTITUTEWORD commands to modify
information on the volume. Initially you use READ to copy a volume block from the
volume to a working buffer. Then you can use DISPLA YBYTE and DISPLA YWO RD to
view the buffer and SUBSTITUTEBYTE and SUBSTITUTEWORD to change the buffer.
Finally, you can use WRITE to write the modified buffer back to the volume. By default,
WRITE copies the buffer to the block most recently accessed by a READ or WRITE
command.

A WRITE command does not destroy the data in the working buffer. The data remains
the same until the next SUBSTITUTEBYTE, SUBSTITUTEWORD, or READ command
modifies the buffer.

ERROR MESSAGES

argument error

< blocknum >, block out of range

FFFFFFFF, block out of range

EXAMPLE

A syntax error was made or nonnumeric
characters were specified in the blocknum
parameter.

The block number specified was larger
than the largest block number in the
volume.

No blocknum was specified and no
previous read request was executed on this
volume.

The following command copies the working buffer to the block from which it was read.

2-80

* WRITE <CR>
write 4B? Y <CR>
write to block 4B? Y
written to block number: 4B

*

Disk Verification

BACKING UP AND
RESTORING FNODES 3

3.1 INTRODUCTION

To access data on a named volume (such as a disk), the iRMX I and iRMX II Operating
Systems use a mechanism common to virtually all operating systems: it maintains an index
to every file on the disk. This index is created when the disk is formatted and remains as a
permanent structure at a dedicated location on the disk. The index consists of a system of
pointers that indicate the location of the data files on the disk. Thus, when data must be
stored on or retrieved from the disk, the operating system can find the exact location of the
appropriate file by looking up the file name in the index.

In the operating system, the index consists of the iRMX volume label and an fnode file.
This volume label resides at the same location in all devices and serves as the initial entry
point into the device. The fnode file can reside anywhere on the disk (specified when the
disk is formatted) and contains a series of individual structures called file descriptor nodes
or "fnodes." There is one fnode for each file on the disk. The fnode contains information
essential to accessing and maintaining the respective file.

The iRMX file structure for a named volume is organized as a hierarchical tree. That is,
there is a root directory with branches to other directories and ultimately, to files. The
organization of the fnode file reflects this hierarchical structure. The iRMX volume label
contains a pointer to the fnode of the file structure's root directory. The root directory is
always the starting address for any file or directory on the volume. It lists all the first level
files and directories on the volume. First level directories point to second level files and
directories, and so on, down the hierarchical structure.

As previously mentioned, each file or directory is represented by an fnode. The fnode,
along with other data describing the file or directory, contains pointers to blocks on the
volume. If the fnode describes a short file, these blocks contain the actual file data. If the
fnode describes a long file, these blocks contain pointers to other blocks containing the
actual data. (For a description of short and long files, see Appendix A.) If the fnode
describes a directory, these blocks contain entries which describe the contents of the
directory. Each ~ntry lists the fnode number and name of the associated file or directory.

The operating system creates the iRMX volume label and the fnode file when the disk is
formatted.

Disk Verification 3-1

BACKING UP AND RESTORING FNODES

3-2

The number of unallocated fnodes in the fnode file is controlled by the FILES parameter
of the FORMAT command. In addition to the unallocated fnodes, seven (with an option
of nine) allocated fnodes are established when the fnode file is created. These allocated
fnodes represent

• the fnode file

• the volume label file - R ?VOLUMELABEL

• the volume free space map file - R ?SPACEMAP

• the free fnodes map file - R ?FNODEMAP

• the bad blocks file - R ?BADBLOCKMAP

• the root directory

• the space accounting file,

• optionally, the duplicate volume label file - R ?SA VE

• optionally, the MULTIBUS II second stage bootloader - R?SECONDSTAGE

For a full description of these files, see Appendix A, "Structure of A Named Volume."

Thereafter, when files or directories are created directly subordinate to the root, the
operating system must adjust a pointer in the root fnode to indicate the fnode number of
the new data file or directory file. Subsequently, directories subordinate to the root must
also have their pointers adjusted when they become parents to a new data file or directory.

This method of storing and retrieving data on a disk has one major drawback. All access to
files on the disk is through the iRMX volume label and the fnode file. If either the volume
label file or the fnode file is damaged or destroyed, there is no practical way to recover
data on the disk.

The backup and restore fnodes feature enables some recovery of data lost as a result of
damage to the fnode file or the iRMX volume label. With this feature, you create a backup
version of the volume label and all the fnodes on the disk. The backup version is stored in
one of the innermost tracks of the disk where the chance of accidental loss of data is
minimal. (In normal use, the disk heads do not extend to the innermost tracks.)

To implement this feature, the Human Interface FORMAT command has an optional
parameter -- RESERVE. The FORMAT command creates a file named R?SAVE in the
innermost track of the volume. A copy of the iRMX volume label is placed in the front
(that is, the physical end) of the file and an fnode is allocated for R?SAVE in the fnode
file. (The fnode for the R?SA VE file is allocated out of the fnodes reserved through the
FILES parameter of the FORMAT command. Thus, if you specify "FILES = 3000" when
you format, only 2999 of those fnodes will remain available after the R ?SA VE fnode has
been allocated.) Finally, FORMAT copies the fnode file into R?SA VE.

Disk Verification

BACKING UP AND RESTORING FNODES

Notice that the FORMAT command creates a backup of the fnode file in its initialized
state. R ?SA VB is not subsequently updated as files are written to or deleted from the
volume. Therefore, you will have to use the BACKUPFNODES Disk Verification Utility
command or the BACKUP option of the Human Interface SHUTDOWN command to
back up the fnode file at regular intervals. If the volume label or the fnode file become
damaged, you can attempt to recover files on the volume by using the Disk Verification
Utility commands (RESTOREFNODE and RESTOREVOLUMELABEL) to rebuild the
index. To assist in this process, the DISPLA YSA VBFNODE Disk Verification Utility
command enables you to look at individual fnodes stored in the R ?SA VB file.

Since the contents of the iRMX volume label do not change, the copy of the volume label
in R ?SA VB is always valid. Therefore, you can restore the volume label at any time
regardless of when the R ?SA VB file was last updated. (When the Disk Verification Utility
encounters a damaged volume label, it automatically uses the backup volume label if the
R?SA VB file is present, however, it does not restore unless explicitly instructed.)

CAUTION

One note of caution: The fnode file is changed each time a volume is
modified (that is, each time a file or directory is created, written to, or
deleted from the volume). Therefore, valid restoration can be assured only
for fnodes whose associated files or directories have not been changed since
the last backup.

If the fnodes are not backed up after each modification, the structure of the
R?SA VE file will differ from that of the fnode file. Some fnodes in R?SA VE
may not be associated with the same files as the corresponding fnodes in
the fnode file. Attempting to recover fnodes under these conditions is
dangerous because the RESTOREFNODE command will overwrite what
may be a valid fnode in the fnode file.

While the backup and restore fnodes feature is a useful aid in attempting to recover data
on a volume, this capability is limited in scope. If you are troubleshooting your system, you
may want to back up the fnodes on the system disk before taking any action that may risk
the disk's integrity. You may also decide to back up the fnodes on a routine basis (before
or during each system shutdown, for instance) so that the R ?SA VB file is always relatively
current. However, under normal circumstances, where a volume is accessed and modified
frequently, backing up the fnodes after each modification is not practical. The most
practical solution is to back up the fnode file once a day using the BACKUP option of the
SHUTDOWN command.

Disk Verification 3-3

BACKING UP AND RESTORING FNODES

Note that this feature is not intended to provide comprehensive protection from the loss of
data associated with damaged iRMX volume labels or fnode files. Rather, it offers a tool
that, when properly applied, can be useful in maintaining volume integrity in certain
situations. For comprehensive protection against loss of data use the Human Interface
BACKUP command.

3.2 USING FNODE BACKUP AND RESTORE

To use the fnode backup and restore feature, you must use the Human Interface
FORMAT command and the Disk Verification Utility. Used together; these enable you to

• format a volume to create the backup file (R?SA VE)

• back up the fnodes of any files written to the volume

• examine the contents of the backup file (R?SA VE)

• restore damaged fnodes

• restore the volume label

• edit fnodes or save fnodes

This section describes how to perform each of these operations. A brief overview of the
operation is followed by one or more examples of a typical implementation. In the
examples, blue or bolded text indicates an entry you make from your terminal. Standard
type (this is standard type) indicates system output to your terminal.

3.2.1 Creating the R?SAVE Fnode Backup File

3-4

If you intend to backup the volume label and the fnodes on a volume, you must first create
the R ?SA VE backup file on the innermost tracks of the volume. To do so, you must
invoke the Human Interface FORMAT command, specifying the RESERVE option.
NOTE THAT THE FORMAT COMMAND OVERWRITES ALL OF THE DATA
CURRENTLY ON THE DISK. Therefore, make a backup copy of any files you wish to
save using the Human Interface BACKUP command before invoking FORMAT.

Once the volume has been formatted, the R ?SA VE file will contain a copy of the fnode file
including the allocated fnodes (R?SPACEMAP, R?FNODEMAP, etc.). Therefore, you
need not back up the fnode file immediately after formatting the volume.

PROCEDURE

From the Human Interface, invoke the FORMAT command, specifying the RESERVE
parameter.

Disk Verification

BACKING UP AND RESTORING FNODES

EXAMPLE

Assume that you have booted your system from a flexible diskette to format the system
disk. The command listed below formats the disk and creates the R ?SA VE backup file.
The initialized fnode file is copied into R ?SA VE.

_attachdevice cmbo as :mydisk: <CR>
_format :mydisk: il = 4 files = 3000 reserve <CR>

volume () will be
granularity
interleave
files
extensionsize

formatted as a NAMED volume
- 1,024 map start

4
- 3000

3
save area reserved - yes

7",859

bad track/sector information written = no
MSA bootstrap information written = no
volume size = l5,984K

< - - Appears in iRMX II
only

TTTTTTTTTTTTTTTTT
volume formatted

NOTE

The "map start" value may change if R ?SA VE (and possibly
R ?SECONDSTAGE for iRMX II) is present.

The disk has now been formatted. A file named R ?SA VE has been reserved in the
innermost tracks of the disk. (If you use the Disk Verification Utility
DISPLA YDIRECfORY command on the volume root fnode (fnode 6) or the Human
Interface DIR command with the invisible (I) option on the volume root directory, you will
find an fnode listed for R?SA VB.) R?SA VE contains a duplicate copy of the fnodes in the
fnode file. That is, R?SA VE contains eight allocated fnodes (R?SA VE, R?SPACEMAP,
R?FNODEMAP, etc.) and 2;999 unallocated fnodes. (Remember, the R?SA VE fnode is
allocated out of the 3,000 fnodes specified through the FILES parameter.)

3.2.2 Backing up Fnodes on a Volume

DESCRIPTION

To back up the fnodes on a volume, you must have previously reserved the back up file
R ?SA VE when the volume was formatted. Thereafter, any modification to the volume
(creating, writing to, or deleting a file) requires that the fnodes be backed up if the
R?SA VE file is to contain an accurate copy of the fnode file.

Disk Verification 3-5

BACKING UP AND RESTORING FNODES

3-6

You can backup the fnode on a volume either by:

• Using the Human Interface SHUTDOWN command with the BACKUP option

• Using the BACKUPFNODES option of DISKVERIFY (see Chapter 2)

EXAMPLEl

This example shows how to backup the fnode file using SHUTDOWN with the BACKUP
option. The BACKUP option allows you to copy the volume fnode file to its duplicate file,
R ?SA VE, on any attached volume.

super-.SHUTDOWN B <CR>
***SYSTEM WILL BE SHUTDOWN IN 10 MlNUTE(S)
:SD:, outstanding connections to device have been deleted
***SHUTDOWN COMPLETED ***

R ?SA VE now contains a duplicate copy of all fnodes in the fnode file.

EXAMPLE 2

This example shows how to use the BACKUPFNODE command of DISKVERIFY to
backup the fnode file. Assume that the system disk is attached as logical device :SD:. The
initial contents of the :SD: fnode file were copied to R?SA VE by the FORMAT command.
A file has just been written to the volume. An fnode for this file is entered in the fnode
file; however, no corresponding entry has been made in R?SA VE. The following sequence
of commands will copy all fnodes in the fnode file into the R ?SA VE file.

super- diskverify :sd: <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
* backupfnodes <CR> bf <CR>
fnode file backed up to save area

*

R?SA VE now contains a duplicate copy of all fnodes (allocated and unallocated) in the
fnode file.

Note that in both cases you must reboot the system after backing up the fnodes on the
volume.

Disk Verification

BACKING UP AND RESTORING FNODES

3.2.3 Backing up the Volume Label

The volume label is initially copied to R ?SA VE when the volume is formatted. Since the
contents of the volume label do not change, no other volume label backup procedures are
required.

3.2.4 Restoring Fnodes

DESCRIPTION

To restore fnodes on a volume, you must have previously reserved the backup file
R ?SA VE when the volume was formatted. If damage has occurred to the fnode file, you
can attempt to rebuild the file (or portions of it) by using the Disk Verification Utility
RESTOREFNODE command.

RESTOREFNODE enables you to restore a single fnode or a range offnodes. You
designate the fnodes to be restored by entering the fnode numbers. The specified fnodes
in R ?SA VE are copied into the corresponding fnodes in the fnode file.

Before restoring each fnode, RESTOREFNODE prompts you with the message "restore
fnode <fnode number> ?". To restore the fnode, you must enter "yes" or the letter "Y"
(either Y or y). If you enter any other response, the fnode will not be restored.

When restoring fnodes, you must be very careful to ensure that you are not overwriting a
valid fnode in the fnode file with an invalid fnode from R ?SA VE. Be sure the volume has
not been modified since the fnodes were last backed up.

PROCEDURE

1. Invoke the Disk Verification Utility, using the logical device name of the volume to
be backed up.

2. When you receive the Disk Verification Utility prompt (*), enter the appropriate
Disk Verification Utility commands (VERIFY, DISPLA YFNODE, etc.) to examine
the fnodes file and determine which fnode must be restored.

3. Invoke the Disk Verification Utility RESTOREFNODE command to replace the
damaged fnodes. The Disk Verification Utility prompts you to confirm that the
proper fnode is being restored. Make sure you have specified the correct
hexadecimal number for the fnode, then enter the letter "Y" in response to the
prompt.

4. RESTOREFNODE returns the message "restored fnode < fnode number>" after
the fnode in the R ?SA VE file has been written over the corresponding fnode in the
fnode file.

Disk Verification 3-7

BACKING UP AND RESTORING FNODES

3-8

EXAMPLEl

Assume that a disk drive is attached as logical device :SD:. The volume :SD: contains the
R ?SA VB fnode backup file. You have not modified the disk since the fnodes were last
backed up. You suspect the fnode file has been damaged, so you use the Disk Verification
Utility to confirm your suspicions:

super- diskverify : sd: <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
* verify

After using the Disk Verification Utility to examine the structure of the disk, you find that
fnodes 09H through OCH have probably been destroyed. You then use the
RESTOREFNODE command to recover these fnodes.

* restorefnode 9, OC <CR> or rf 9, OC <CR>
restore fnode 9? Y <CR>
restored fnode number: 9
restore fnode OA? Y <CR>
restored fnode number: OA
restore fnode OB? Y <CR>
restored fnode number: OB
restore fnode OC? Y <CR>
restored fnode number: OC

Fnodes 09H through OCH in the R?SA VB file have been copied into fnode 09H through
OCH in the fnode file. Since the disk has not been modified since the last fnode backup,
restoring the damaged fnodes should now enable you to recover the data on the disk.

Disk Verification

BACKING UP AND RESTORING FNODES

EXAMPLE 2

Assume the same initial conditions as Example 1 with the following exception: two files
have been modified since the last time the fnodes were backed up. In the fnode file, the
new files are represented by fnodes ODH and OEH. Again, you suspect that the fnode file
has been damaged, so you use the Disk Verification Utility to check the condition of data
on the disk:

super- diskverify : sd: <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
* verify

After using the Disk Verification Utility to examine the structure of the disk, you find that
fnodes 9 through 10 have probably been destroyed. You decide to use the
RESTOREFNODE command to recover these fnodes. You do not wish to restore fnodes
ODH and OEH because they were not backed up. Since the data fields of fnodes ODH and
OEH in R ?SA VE contain all zeros, you would be destroying possibly useful data in the
corresponding fnodes. You then use RESTOREFNODE to restore a range of fnodes that
includes ODH and OEH. However, you intend to pass over the restoration of these two
fnodes by responding to the confirmation prompt with some character other than "Y."

*restorefnode 9,10 <CR> or rf 9,10 <CR>
restore fnode 9? Y <CR>
restored fnode number: 9
restore fnode OA? Y <CR>
restored fnode number: OA
restore fnode OB? Y <CR>
restored fnode number: OB
restore fnode OC? Y <CR>
restored fnode number: OC
allocation bit not set for saved fnode
restore fnode OD? <CR>
allocation bit not set for saved fnode
restore fnode OE? n <CR>
restore fnode OF? Y <CR>
restored fnode number: OF
restore fnode 10? Y <CR>
restored fnode number: 10

Disk Verification 3-9

BACKING UP AND RESTORING FNODES

Notice that because fnodes ODH and OEH were not allocated when they were backed up,
those fnodes in R ?SA VB are unallocated. Therefore, the Disk Verification Utility returns
the "allocation bit not set for saved fnode" message. Since you do not wish to restore this
fnode, you respond to the confirmation prompt with a character other than "Y."

The R ?SA VB fnodes 09H through OCH and fnodes OFH through lOH have been copied
over the corresponding fnodes in the fnode file. Fnodes OD and OE were not restored.

3.2.5 Restoring the Volume Label

DESCRIPTION

To restore the volume label, you must have previously reserved the backup file R ?SA VB
when you formatted the volume. If the volume contains the R ?SA VB file, a backup copy
of the volume label already exists. The FORMAT command automatically places a copy of
the volume label into R?SA YE when the file is created. Thereafter, the contents of the
volume label do not change and you can restore the label without fear of destroying data in
the existing label.

To restore the volume label, you must invoke the Disk Verification Utility using the logical
device name of the appropriate volume. If the volume label is corrupted, the Disk
Verification Utility attempts to use the backup copy of the volume label in R?SA YE.
When the backup label is used, the Disk Verification Utility issues a message that reads
"duplicate volume label used." If this message appears when the Disk Verification Utility is
activated, then the volume label is damaged. To restore the volume label, enter the Disk
Verification Utility RESTOREVOLUMELABEL command. The current volume label
will be overwritten with the volume label copy from R ?SA VB.

PROCEDURE

1. Invoke the Disk Verification Utility, using the logical device name of the volume to
be backed up.

2. If the "duplicate volume label used" message appears, the volume label must be
restored. Enter the Disk Verification Utility RESTOREVOLUMELABEL
command.

3. When the volume label has been restored, the Disk Verification Utility returns the
message "volume label restored."

3-10 Disk Verification

BACKING UP AND RESTORING FNODES

EXAMPLE

Assume that a disk drive is attached as logical device :SD:. The volume :SD: contains the
R?SA VE fnode backup file. When you attempt to access files on :SD:, the system returns
an E$ILLEGAL VOLUME message. You suspect that the volume label may be damaged.
You decide to ch-eck your suspicions using the Disk Verification Utility.

super- diskverify :sd: <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted
duplicate volume label used

*

The "duplicate volume label used" message confirms that the volume label has been
damaged. You restore the volume label using the RESTO REVOLUMELABEL
command.

*restorevolumelabel <CR>
volume label restored

*

or rvl <CR>

The original volume label has been ovetwrittenwith the duplicate copy from the R?SAVE
file. Attempts to access files on volume :SD: should now be successful.

3.2.6 Displaying R?SAVE Fnodes

DESCRIPTION

Any fnode (both allocated and unallocated) in the R ?SA VE file can be examined by using
the Disk Verification Utility DISPLA YSA VEFNODE command. The Disk Verification
Utility will display vital information about the fnode (total blocks, total size, block pointers,
parent node, etc.). The fnode is displayed in the same format used by the
DISPLA YFNODE command.

To display an R?SA VE fnode, enter the DISPLA YSA VEFNODE command and specify
the hexadecimal number of the fnode to be displayed.

Disk Verification 3-11

BACKING UP AND RESTORING FNODES

PROCEDURE

1. Invoke the Disk Verification Utility using the logical device name of the appropriate
volume.

2. When you receive the Disk Verification Utility prompt (*), enter the Disk
Verification Utility DISPLA YSA VBFNODE command. Specify the hexadecimal
number of the fnode to be displayed.

3. The Disk Verification Utility will return with an fnode display.

EXAMPLE

Assume that you cannot access a file on a disk attached as :SD:. You suspect that the
fnode file may be damaged. By entering the Disk Verification Utility and displaying the
file's directory, you find that the file you were unable to access is represented by fnode
3C8H. You use DISPLA YFNODE to display fnode 3C8H, but you are not confident of
the data you see. Since the fnode for the file has been backed up since the file was last
modified, you decide to use data in the R ?SA VB fnode to examine the fnode file. The
following command displays the data for fnode 3C8H in R ?SA VB.

3-12 Disk Verification

BACKING UP AND RESTORING FNODES

super- diskverify : sd: <CR>
iRMX <version> Disk Verify Utility, Vx.x
Copyright <year> Intel Corporation
All Rights Reserved
:sd:, outstanding connections to device have been deleted

* displaysavefnode 3CB <CR>

*

Fnode number = 3C8 (saved)
path name: jUSER/MYFILE

flags
type

file gran/vol gran
owner

create,access,mod times
total size,total blocks

block pointer (1)
block pointer (2)
block pointer (3)
block pointer (4)
block pointer (5)
block pointer (6)
block pointer (7)
block pointer (8)

this size
id count

accessor (1)
accessor (2)
accessor (3)

parent, checksum
aux (*)

or dsf 3CB <CR>

0025 => short file
08 => data file
01
0001
00000000, 00000000, 00000000
00002001, OOOOOOOC
OOOC, 004910
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
0000, 000000
00003000
0001
OF, 0001
00, 0000
00, 0000
03C4, 56CA
000000

You can modify the contents of the both the original fnode file and the saved fnode file by
using either the EDITFNODE or EDITSA VEFNODE commands.

Disk Verification 3-13

STRUCTURE OF A NAMED VOLUME A
A.1 INTRODUCTION

This appendix describes the structure of an iRMX volume that contains named files. It is
provided as reference information to help you interpret output from the DISKVERIFY
commands or to help you create your own formatting utility programs.

This appendix is for programmers with experience in reading and writing actual volume
information. It does not attempt to teach these functions.

A.2 VOLUME STRUCTURE

This appendix discusses the structure of named file volumes in detail. It covers the
structure of directory files and the concepts of long and short files. It also includes
information on:

• ISO Volume Label

• iRMX Volume Label

• MSA Bootloader Location Table (iRMX II only)

• fnode file

• volume free space map file

• free fnodes map file

• bad blocks map file

• root directory

The blocks reserved for the Bootstrap Loader (Figure A-I) are not discussed. Bootstrap
Loader blocks are automatically included on a new volume when you format a volume with
the FORMAT command. Refer to the FORMAT command for a description of the
bootstrap option.

Figure A-I illustrates the general structure of a named file volume.

Disk Verification A-I

STRUCTURE OF A NAMED VOLUME

reserved
iRMX® for

Volume
Bootstrap Label

Loader

10
lbsolute byte
number

3831384

Bootloader
Location ISO

Table Volume
(BOLT) Label
iRMX~1I

Only

5111512

uninitialized.
reserved
for future

ISO
standard-

ization

fnode
bad

blocks
file file

Data
reserved

for volume and

Bootstrap free space
Directory map file

Loader
files

free fnodes root

map file directory

332713328

W-0993

Figure A-I. General Structure of Named Volumes

A-2 Disk Verification

STRUCTURE OF A NAMED VOLUME

A.3 VOLUME LABELS

Each iRMX named volume contains ISO (International Standardization Organization)
label information as well as iRMX label information and files. This section describes the
structure of ISO volume labels and iRMX volume labels, both of which must be present on
a named volume.

A.3.1 ISO Volume Label

The ISO volume label is recorded in absolute byte positions 768 through 895 of the volume
(for example, sector 07 of a single-density flexible diskette). The structure of this volume
label (in PL/M notation) is:

DECLARE
ISOVOLLABEL STRUCTURE (

LABEL$ID(3)
RESERVED$A
.vOL$NAME(6)
VOL$STRUC
RESERVED$B(60)
REC$SIDE
RESERVED$C(4)
ILEAVE(2)
RESERVED$D
ISO$VERSION
RESERVED$E(48)

where:

LABEUID(3)

RESERVED$A

VOUNAME(6)

VOUSTRUC

RESERVED$B(60)

REC$SIDE

RESER VED$C(4)

Disk Verification

BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE) ;

Label identifier. For named file volumes, this field contains the
ASCII characters "VOL".

Reserved field containing the ASCII character" 1".

Volume name. This field can contain up to six printable ASCII
characters, left justified and space filled. A value of all spaces
implies that the volume name is recorded in the iRMX Volume
Label (absolute byte positions 384-393).

For named file volumes, this field contains the ASCII character "N",
indicating that this volume has a non-ISO file structure.

Reserved field containing 60 bytes of ASCII spaces.

For named file volumes, this field contains the ASCII character "1"
to indicate that only one side of the volume is to be recorded.

Reserved field containing four bytes of ASCII spaces.

A-3

STRUCTURE OF A NAMED VOLUME

ILEA VE(2) Two ASCII digits indicating the interleave factor for the volume, in
decimal. ASCII digits consist of the numbers 0 through 9. When
formatting named volumes, you should set this field to the same
interleave factor that you use when physically formatting the
volume ..

RESERVED$D Reserved field containing an ASCII space.

ISO$VERSION For named file volumes, this field contains the ASCII character "1",
which indicates ISO version number one.

RESERVED$E(48) Reserved field containing 48 ASCII spaces.

A.3.2 iRMX® Volume Label

The iRMX Volume Label is recorded in absolute byte positions 384 through 511 of the
volume (sector 04 of a single density flexible diskette). The structure of this volume label is
as follows:

DECLARE
RMX$VOLUME$INFORMATION STRUCTURE (

VOL$NAME(lO)
FLAGS
FILE$DRIVER
VOL$GRAN
VOL$SIZE
MAX$FNODE
FNODE$START
FNODE$SIZE
ROOT$FNODE
DEV$GRAN
INTERLEAVE
TRACK$SKEW
SYSTEM$ID
SYSTEM$NAME(12)
DEVICE$SPECIAL(8)
VOL$FLAGS

BYTE,
BYTE,
BYTE,
WORD,
DWORD,
WORD,
DWORD,
WORD,
WORD,
WORD,
WORD,
WORD,
WORD,
BYTE,
BYTE,
BYTE) ;

iRMX I Note: The iRMX I Volume Label does not contain a VOL$FLAGS field. All
other fields in the structure shown above are the same in the iRMX I and
iRMX II Operating Systems.

A-4 Disk Verification

where:

VOL$NAME(10)

FLAGS

FILE$DRlVER

VOL$GRAN

VOL$SIZE

Disk Verification

STRUCTURE OF A NAMED VOLUME

Volume name in printable ASCII characters, left justified and zero
filled.

BYTE that lists the device characteristics for automatic device
recognition. The individual bits in this BYTE indicate the following
characteristics (bit 0 is rightmost bit):

Bit Meaning

o

1

2

3

4

5-7

VF$AUTO flag. When set to one, this bit indicates
that the FLAGS byte contains valid data for
automatic device recognition. When set to zero, it
indicates that the remaining flags contain
meaningless data.

VF$DENSITY flag. This bit indicates the recording
density of the volume. When set to one, it indicates
modified frequency modulation (MFM) or double­
density recording. When set to zero, it indicates
frequency modulation (FM) or single-density
recording.

VF$SIDES flag. This bit indicates the number of
recording sides on the volume. When set to one, it
indicates a double-sided volume. When set to zero,
it indicates a single-sided volume.

VF$MINI flag. This bit indicates the size of the
recording media. When set to one, it indicates a
5 1/4-inch volume. When set to zero, it indicates an
8-inch volume.

VF$FORMAT flag. This bit indicates the type of
format on track o. When set to one, it indicates that
all tracks, including track 0, have the same format
(Uniform format). When set to zero, it indicates
track 0 is formatted to be single density with 128-byte
sectors (Standard format).

Reserved

Number of the file driver used with this volume. For named file
volumes, this field is set to four.

Volume granularity, specified in bytes. This value must be a
multiple of the device granularity. It sets the size of a logical device
block, also called a volume block.

Size of the entire volume, in bytes.

A-S

STRUCTURE OF A NAMED VOLUME

A-6

MAX$FNODE

FNODE$START

FNODE$SIZE

ROOT$FNODE

DEV$GRAN

INTERLEAVE

TRACK$SKEW

SYSTEM$ID

SYSTEM$­
NAME(12)

Number of fnodes in the fnode file. (Refer to the next section for a
description of fnodes.)

A 32-bit value that represents the number of the first byte in the
fnode file (byte 0 is the first byte of the volume).

Size of an fnode, in bytes.

Number of the fnode describing the root directory. (Refer to the
next section for further information.)

Device granularity of all tracks except track zero (which contains the
volume label). This field is important only when the system requires
automatic device recognition.

Block interleave factor for this volume. This value indicates the
physical distance, in blocks, between consecutively-numbered blocks
on the volume. A value of one indicates that consecutively­
numbered blocks are adjacent. A value of zero indicates an
unknown or undefined interleave factor.

Offset, in bytes, between the first block on one track and the first
block on the next track. A value of zero indicates that all tracks are
identical.

Numerical code identifying the operating system that formatted the
volume. The following codes are reserved for Intel operating
systems:

Operating System Code

iRMXI, II
iRMX88
iNDX

o -OFh
10h - lFh
20h - 2Fh

Currently, the iRMX I and iRMX II Operating Systems place a zero
in this field.

Name of the operating system that formatted the volume, in
printable ASCII characters, left justified and space filled. Zeros
(ASCII nulls) indicate that the operating system is unknown. The
iRMX I and iRMX II Operating Systems currently place several
pieces of information into this field, as follows:

• The leftmost eight bytes of this field contain the ASCII
characters "iRMX I "or "iRMX 286" to identify the operating
system. The iRMX 286, Release 1, Operating System and
versions of iRMX 86 before Release 7 filled this field with zeros.

Disk Verification

DEVICE$­
SPECIAL(8)

CYLINDERS

Disk Verification

STRUCTURE OF A NAMED VOLUME

• The next byte is an ASCII character that identifies the program
that formatted the volume. The following characters apply:

Character

F

U

Formatting Program

Human Interface FO RMA T command

iRMX 86 Files Utility (used prior to
iRMX 86, Release 7)

If the formatting program is unable to provide this information,
it places an ASCII space in this field.

• The Human Interface FORMAT command "that is part of iRMX
1.8 and iRMX 11.4 places the characters "03 " in the last 3 bytes
of this field. The iRMX 11.3 FORMAT command places "02 " in
the last three bytes.

Reserved for special device-specific information. When no device
-specific information exists, this field must contain zeros. For
example, if the device is a Winchester disk with an iSBC 214/215G
controller, the iRMX I and iRMX II Operating Systems imposes a
structure on this field and supplies the following information:

SPECIAL STRUCTURE(
CYLINDERS
FIXED
REMOVABLE
SECTORS
SECTOR$SIZE
ALTERNATES

where:

WORD,
BYTE,
BYTE,
BYTE,
WORD,
BYTE);

Total number of cylinders on the disk drive.

FIXED Number of heads on the fixed disk or
Winchester disk.

REMOVABLE

SECTORS

SECTOR SIZE

ALTERNATES

Number of heads on the removable disk
cartridge.

Number of sectors in a track.

Sector size, in bytes.

Number of alternate cylinders or spare
sectors on a track.

A-7

STRUCTURE OF A NAMED VOLUME

iRMX I Note: The iRMX I Volume Label does not contain a VOL$FLAGS field.

VOL$FLAGS Contains flags for general volume information. The following
flag is defined:

Flag Bit Meaning

VF$INTEGRITY o o = The volume has been
properly shut down.

1 = Indicates possible disk
corruption (the volume
was attached, but was not
subsequently detached).

The remainder of the, Volume Label (bytes 441 through 511) is reserved and must be set to
zero.

A.3.3 Bootloader Location Table

A-8

iRMX I Note: The iRMX I Operating System does not support the Bootloader
Location Table.

The Bootloader Location Table (BOLT) describes the location of the MUL TIBUS II
System Architecture (MSA) second stage bootstrap loader. For the iRMX II Operating
System, the MSA second stage bootstrap loader is in the file R?SECONDSTAGE. The
MSA first stage bootstrap loader requires the BOLT to read and load the MSA second
stage. The BOLT describes the location of the R?SECONDSTAGE file as a set of data
blocks on the disk by listing the nlimber of data blocks and the byte offset and length of
each block. The BOLT also contains other information about the MSA second stage
needed by the first stage.

The iRMX II Human Interface FORMAT command writes the BOLT structure to bytes
512 through 767 of a named volume. This replaces the area marked "uninitialized, reserved
for future ISO standardization" in previous versions of the iRMX II Operating System.

Disk Verification

STRUCTURE OF A NAMED VOLUME

The BOLT structure is as follows:

BOLT

where:

STRUCTURE (
RESERVED (4)
MAGIC WORDl
MAGIC WORD2
VERSION
TYPES
DATA SIZE
NUM ENTRIES
TBL_ENTRY(NUM_ENTRIES)

DWORD,
DWORD,
DWORD,
WORD,
WORD
DWORD,
DWORD,
STRUCTURE (
BYTE_OFFSET
LENGTH

DWORD,
WORD»;

RESERVED (4) Reserved for future use. Set to O.

MAGIC WORDI A value which defines a valid MSA second stage bootloader image.
- -

This value is OBOOFIOADH.

MAGIC WORD2 Reserved for future use. Set to O.

VERSION The version of the BOLT structure. The BOLT structure listed here
is version 2.

TYPES

DATA SIZE

NUM ENTRIES

Disk Verification

Defines the type of code and data segments used in the second stage
file to be bootloaded.

o

1

Meaning

Indicates the type of code segment.

o =Use16

1 = Use32

Indicates the type of data segment.

o = Use16

1 = Use32

The FORMAT command sets these bits to 0 (Use16).

The size of the data. segment for the second stage bootstrap loader.

The number of entries in the table describing the second stage
location. The iRMX II Operating System uses one entry in this
table.

A-9

STRUCTURE OF A NAMED VOLUME

TEL ENTRY
(NUM _ENTRIES)

A table containing byte offset and length pairs which indicate
where the second stage is located on the media.

BYTE OFFSET

LENGTH

A.4 INITIAL FILES

The offset, in bytes, from the beginning of the
media to this part of the second stage
bootstrap loader.

The length of this part of the second stage
bootstrap loader.

Any mechanism that formats iRMX named volumes must place seven files, with the option
of an eighth file (iRMX I and iRMX II) and a ninth file (iRMX II only), on the volume
during the format process. These files are

fnode file
volume label file
volume free space map file
free fnodes map file
bad blocks file
root directory
space accounting file,
Optionally, duplicate volume label file
Optionally, MSA second stage file

(iRMX II only)

File Name

R?VOLUMELABEL
R?SPACEMAP
R?FNODEMAP
R?BADBLOCKMAP

R?SAVE
R?SECONDSTAGE

The first of these files, the fnode file, contains information about all of the files on the
volume. The general structure of the fnode file is discussed first. Then all of the files are
discussed in terms of their fnode entries and their functions.

A.4.1 Fnode File

A data structure called a file descriptor node (fnode) describes each file in a named file
volume. All the fnodes for the entire volume are grouped together in a file called the
fnode file. When the I/O System accesses a file on a named volume, it examines the
iRMX Volume Label (described in the previous section) to determine the location of the
fnode file, and then examines the appropriate fnode to determine the actual location of the
file.

A-tO Disk Verification

STRUCTURE OF A NAMED VOLUME

When a volume is formatted, the fnode file contains seven allocated fnodes and any
number of unallocated fnodes. The original number of unallocated fnodes depends on the
FILES parameter of the FORMAT command. These allocated fnodes represent the fnode
file, the volume label file, the volume free space map rtIe, the free fnodes map file, the bad
blocks file, the root directory, and the space accounting file. (Later sections of this
appendix describe these files.) The size of the fnode file is determined by the number of
fnodes that it contains. The number of fnodes in the fnode file also determines the number
of files that can be created on the volume. The number of files is set when you format the
storage medium.

The structure of an individual fnode in a named file volume is as follows:

DECLARE
FNODE STRUCTURE(

FLAGS

Disk Verification

TYPE
GRAN
OWNER
CR$TIME
ACCESS$TIME
MOD$TIME
TOTAL$SIZE
TOTAL$BLKS
POINTR(40)
THIS$SIZE
RESERVED$A
CHK$SUM
ID$COUNT
ACC(9)
PARENT
AUX(*)

WORD,
BYTE,
BYTE,
WORD,
DWORD,
DWORD,
DWORD,
DWORD,
DWORD,
BYTE,
DWORD,
WORD,
WORD,
WORD,
BYTE,
WORD,
BYTE);

A-11

STRUCTURE OF A NAMED VOLUME

where:

FLAGS

A-12

, . .'

~ WORD that defines a set of attributes for the file. The individual
bits in this word indicate the following attributes (bit 0 is the
,rightmost bit):

Bit

o

1

2

3-4

5

6

7-15

Meaning

Allocation status. If set to one, this fnode .
describes an actual file. If set to zero, this
fnode is available for allocation. When
formatting a volume, this bit is set to one in
the seven allocated fnodes. In other fnodes,
it is set to zero.

Long or short file attribute .. This bit
describes how the PTR fields of the fnode
are interpreted. If set to zero, indicating a
short file, the PTR fields identify the actual
data blocks of the file. If set to one,
indicating a long file, the PTR fields identify
indirect blocks (described later in this
section). When formatting a volume, this bit
is always set to zero, since the initial files on
the volume are short files.

Reserved bit, always set to one.

Reserved bits, always set to zero.

Modification attribute. Whenever a file is
modified, this bit is set to one. Initially, when
a volume is formatted, this bit is set to zero in
each fnode.

Deletion attribute. This bit is set to one to
indicate that the file is a temporary file or
that the file will be deleted (the deletion may
be postponed because additional connections
exist to the file). Initially, when the volume is
formatted, this bit is set to zero in each
fnode.

Reserved bits, always set to zero.

Disk Verification

TYPE

GRAN

OWNER

CR$TIME

ACCESS$TIME

MOD$TIME

TOTAL$SIZE

Disk Verification

STRUCTURE OF A NAMED VOLUME

Type of file. The following are acceptable types:

Mnemonic Value Type

Ff$FNODE 0 fnode file
FT$VOLMAP 1 volume free space map
Ff$FNODEMAP 2 free fnodes map
FT$ACCOUNT 3 space accounting file
FT$BADBLOCK 4 device bad blocks file
FT$DIR 6 directory file
Ff$DATA 8 data file
FT$VLABEL 9 volume label file

During system operation, only the I/O System can access file types
other than FT$DATA and FT$DIR. These file types are discussed
later in this section.

File granularity, specified in multiples of the volume granularity.
The default value is 1. This value can be set to any multiple of the
volume granularity.

User ID of the owner of the file. For the files initially present on
the volume, this parameter is important only for the root directory.
For the root directory, this parameter should specify the user
WORLD (FFFFH). The I/O System does not examine this
parameter for the other files (fnode file, volume free space map file,
free fnodes map file, bad blocks file, volume label), so a value of
zero can be specified.

Time and date that the file was created, expressed as a 32-bit value.
This value indicates the number of seconds since a fixed, user­
determined point in time. By convention, this point in time is
midnight (00:00), January 1, 1978. For the files initially present on
the volume, this parameter is important only for the root directory.
A zero can be specified for the other files (fnode file, volume free
space map file, free fnodes map file, bad blocks file, volume label.)

Time and date of the last file access (read or write), expressed as a
32-bit value. For the files initially present on the volume, this
parameter is important only for the root directory.

Time and date of the last file modification, expressed as a 32-bit
value. For the files initially present on the volume, this parameter is
important only for the root directory.

Total size, in bytes, of the actual data in the file.

A-I3

STRUCTURE OF A NAMED VOLUME

TOTAL$BLKS

POINTR(40)

THIS$SIZE

RESERVED$A

CHK$SUM

A-14

Total number of volume blocks used by this file, including indirect
block overhead. A volume block is a block of data whose size is the
same as the volume granularity. All memory in the volume is
divided into volume blocks, which are numbered sequentially,
starting with the block containing the smallest addresses (block 0).
Indirect blocks are discussed later in this section.

A group of BYTES on which the following structure is imposed:

PTR(8) STRUCTURE (
NUM$BLOCKS WORD,
BLK$PTR(3) BYTE);

This structure identifies the data blocks of the file. These data
blocks may be scattered throughout the volume, but together they
make up a complete file. If the file is a short file (bit 1 of the
FLAGS field is set to zero), each PTR structure identifies an actual
data block. In this case, the fields of the PTR structure contain the
following:

NUM$BLOCKS

BLK$PTR(3)

Number of volume blocks in the data block.

A 24-bit value specifying the number of the
first volume block in the data block. Volume
blocks are numbered sequentially, starting
with the block with the smallest address
(block 0). The bytes in the BLK$PTR array
range from least significant (BLK$PTR(O))
to most significant (BLK$PTR(2)).

If the file is a long file (bit 1 of the FLAGS field is set to one), each
PTR structure identifies an indirect block (possibly consisting of
more than one contiguous volume block), which in turn identifies
the data blocks of the file. In this case, the fields of the PTR
structure contain the following:

NUM$BLOCKS Number of volume blocks pointed to by the
indirect block.

BLK$PTR(3) A 24-bit volume block number of the indirect
block.

Indirect blocks are discussed later in this section.

Size, in BYTES, of the total data space allocated to the file. This
figure does not include space used for indirect blocks, but it does
include any data space allocated to the file, regardless of whether
the file fills that allocated space.

Reserved field, set to zero.

Contains a checksum value for the fnode.

Disk 'Verification

ID$COUNT

ACC(9)

PARENT

AUX(*)

STRUCTURE OF A NAMED VOLUME

Number of access-ID pairs declared in the ACC(9) field.

A group of BYTES on which the following structure is imposed:

ACCESSOR(3) STRUCTURE (
ACCESS
ID

BYTE,
WORD) ;

This structure contains the access-ID pairs that define the access
rights for the users of the file. By convention, when a file is created,
the owner's ID is inserted in ACCESSOR(O), along with the code
for the access rights. The fields of the ACCESSO R structure
contain the following: .

ACCESS

ID .

Encoded access rights for the file. The
settings of the individual bits in this field
grant (if set to one) or deny (if set to zero)
permission for the corresponding operation.
Bit 0 is the rightmost bit.

Data File Directory
Bit Operation Operation

o delete delete
1 read list
2 append add entry
3 update change entry
4-7 reserved (must be 0)

ID of the user who gains the corresponding
access permission.

Fnode number of directory file that lists this file. For files initially
present on the volume, this parameter is important only for the root
directory. For the root directory, this parameter should specify the
number of the root directory's own fnode. For other files (fnode
file, volume free space map file, free fnodes map file, bad blocks file,
volume label) the I/O System does not examine this field.

AuxHiary BYTES associated with the file. The named file driver
does not interpret this field, but the user can access it by making
GET$EXTENSION$DATA and SET$EXTENSION$DATA system
calls. The size of this field is determined by the size of the fnode,
specified in the iRMX Volume Label. If you use the Human
Interface FORMAT command or create your own utility to format a
volume, you can make this field as large as you wish; however, a
larger AUX field implies slower file access.

Certain fnodes designate special files that appear on the volume. The following sections
discuss these fnodes and the associated files.

Disk Verification A-IS

STRUCTURE OF A NAMED VOLUME

A.4.2 Fnode 0 (Fnode File)

The first fnode structure in the fnode file describes thefnode file itself. This file contains
all the fnode structures for the entire volume. It must reside in contiguous locations in the
volume. The fields of fnode 0 must be set as follows:

• The bits in the FLAGS field are set to the following (bit 0 is the rightmost bit):

Bit Value Description

0 1 Allocated file
1 0 Short file
2 1 Primary fnode
3-4 0 Reserved bits
5 0 Initial status is unmodified
6 0 File will not be deleted
7-15 0 Reserved bits

• The TYPE field is set to Ff$FNODE.

• The GRAN field is set to 1.

• The OWNER field is set to the ID of the user who formatted it.

• The CR$TIME, ACCESS$TIME, and MOD$TIME fields are set to the time the
system was formatted.

• Since the iRMX Volume Label specifies the size of an individual fnode structure and
the number of fnodes in the fnode file, the value specified in the TOTAL$SIZE field of
fnode 0 must equal the product of the values in the FNODE$SIZE and MAX$FNODE
fields of the iRMX Volume Label. .

• The TOTAL$BLOCKS field specifies enough volume blocks to account for the
memory listed in the TOTAL$SIZEJield. The product of the value in the
TOTAL$BLOCKS field and the volume granularity equals the value of the
THIS$SIZE field, since the fnode file is a short file.

• Since the fnode file must reside in contiguous locations in the volume, only one PTR
structure describes the location of the file. The value in the NUM$BLOCKS field of
that PTR structure equals the value in the TOTAL$BLOCKS field. The BLK$PTR
field indicates the number of the first block of the fnode file.

• The ID$COUNT field is set to ~ne ..

A-16 Disk V~rification

STRUCTURE OF A NAMED VOLUME

A.4.3 Fnode 1 (Volume Free Space Map File)

The second fnode, fnode 1, describes the volume free space map file. The TYPE field for
fnode 1 is set to Ff$VOLMAP to designate the file as such.

The volume free space map file keeps track of all the space on the volume. It is a bit map
of the volume, in which each bit represents one volume block (a block of space whose size
is the same as the volume granularity). If a bit in the map is set to one, the corresponding
volume block is free to be allocated to any file. If a bit in the map is set to zero, the
corresponding volume block is already allocated to a file. The bits of the map correspond
to volume blocks such that bit n of byte m represents volume block (8 * m) + n. The bits in
the remaining space allocated to the map file (those that do not correspond to actual
blocks of memory) must be set to zero.

When the volume is formatted, the volume free space map file indicates that the first 3328
bytes of the volume (the label and bootstrap information) plus any files initially placed on
the volume (fnode file, volume free space map file, free fnodes map file, bad blocks file)
are allocated. Space is also reserved for the R?SA VE and R?SECONDSTAGE files if
they are selected during formatting.

A.4.4 Fnode 2 (Free Fnodes Map File)

The third fnode, fnode 2, describes the free fnodes map file. The TYPE field of fnode 2 is
set to Ff$FNODEMAP to designate the file as such.

The free fnodes map file keeps track of all the fnodes in the fnodes file. It is a bit map in
which each bit represents an fnode. If a bit in the map is set to one, the corresponding
fnode is not in use and does not represent an actual file. If a bit in the map is set to zero,
the corresponding fnode already describes an existing file. The bits in the map correspond
to fnodes such that bit n of byte m represents fnode number (8 * m) + n. The bits in the
remaining space allocated to the map file (those that do not correspond to actual fnode
structures) must be set to zero.

When the volume is formatted, the free fnodes map file indicates that fnodes 0, 1, 2, 3, 4, 5,
and 6 are in use. If either the RESERVE option or the MSABOOT option (iRMX II only)
are selected when the volume is formatted, the map file also indicates fnode 7 is in use. If
both options are selected, fnode 8 is also used. If other files are initially placed on the
volume, the free fnodes map file must be set to indicate this as well.

A.4.S Fnode 3 (Accounting File)

When a volume is formatted, fnode 3 is set up representing a file of type Ff$ACCOUNT.
The fnode is set up as allocated, and of the indicated type, but it does not assign any actual
space for the file.

Disk Verification A-17

STRUCTURE OF A NAMED VOLUME

A.4.6 Fnode 4 (Bad Blocks Map File)

The fifth fnode, fnode 4, contains a map of all the bad blocks on the volume. The TYPE
field of fnode 4 is set to Ff$BADBLOCK to indicate this.

The bad block map file keeps track of all the bad blocks on the volume. It is a bit map of
the volume, in which each bit represents one volume block (a block of space whose size is
the same as the volume granularity). If a bit in the map is set to zero, the corresponding
volume block has no bad blocks and may be allocated to any file. If a bit in the map is set
to one, the corresponding volume block is bad. If a block is marked "bad," it must also be
marked allocated in the volume free space file. The bits of the map correspond to volume
blocks such that bit n of byte m represents volume block (8 * m) + n.

A.4.7 Fnode 5 (Volume Label File)

This fnode contains the first 3328 bytes of any volume. The information in this file defines
the volume as a whole. The TYPE field of this fnode is set to Ff$VLABEL. You cannot
write to this fnode.

A.4.8 Fnode 6 (Root Directory)

The root directory is a special directory file. It is the root of the named file hierarchy for
the volume. The iRMX Volume Label specifies the fnode number of the root directory.
The root directory is its own parent. That is, the PARENT field of its fnode specifies its
own fnode number.

The root directory (and all directory files) associates file names with fnode numbers. It
consists of a number of entries that have the following structure:

DECLARE
DIR$ENTRY

where:

FNODE

COMPONENT(14)

STRUCTURE (
FNODE
COMPONENT (14)

WORD,
BYTE) ;

Fnode number of a file listed in the directory.

A string of ASCII characters that is the final component of the path
name identifying the file. This string is left justified and null padded
to 14 characters.

When a file is deleted, its fnode number in the directory entry is set to zero.

A-IS Disk Verification

STRUCTURE OF A NAMED VOLUME

A.4.9 Fnodes 7 and 8 (R?SECONDSTAGE and R?SAVE)

These fnodes mayor may not be reserved depending on whether the RESERVE and
MSABOOT (iRMX II only) options are used during formatting. If both options are used,
the R?SECONDSTAGE file is placed in fnode 7 and the R?SAVE file is placed in fnode 8.
If only RESERVE is used, R?SA VE is placed in fnode 7 and fnode 8 remains unallocated.
If only MSABOOT (iRMX II only) is used, R?SECONDSTAGE is placed in fnode 7 and
fnode 8 remains unallocated. If neither option is used, both fnode 7 and fnode 8 remain
unallocated.

A.4.9.1 R?SECONDSTAGE

R?SECONDSTAGE is a file which may be optionally created by the MSABOOT option of
the FORMAT command. R?SECONDSTAGE is the second stage bootloader for systems
that conform to the MULTIBUS II System Architecture (MSA) specification.
R?SECONDSTAGE is created at the end of the volume. However, if the RESERVE
option is also specified, R?SECONDSTAGE will be placed in the volume blocks
immediately preceeding R?SA YE. (The fnode for the R?SECONDSTAGE file is
allocated out of the fnodes reserved through the FILES parameter of the FO RMA T
command.)

A.4.9.2 R?SAVE

R?SA VE is a file which may be optionally created by the RESERVE option of the
FORMAT command. The FORMAT command creates a file named R?SA VE, which
contains the duplicate volume label, in the innermost track of the volume. A copy of the
iRMX volume label is placed at the physical end of the file and an fnode is allocated for
R ?SA VE in the fnode file. (The fnode for the R ?SA VE file is allocated out of the fnodes
reserved through the FILES parameter of the FORMAT command.)

The FORMAT command creates a backup of the fnode file in its initialized state.
R?SA VE is not subsequently updated as files are written to or deleted from the volume.
Therefore, you will have to use the BACKUPFNODES Disk Verification Utility command
or the BACKUP option of the Human Interface SHUTDOWN command to back up the
fnode file at regular intervals.

A.4.10 Other Fnodes

When formatting a volume, no other fnodes in the fnode file represent actual files. The
remaining fnodes must have bit zero (allocation status) set to zero.

Disk Verification A-19

STRUCTURE OF A NAMED VOLUME

A.S LONG AND SHORT FILES

A file on a volume is not necessarily one contiguous string of bytes. In many cases, it
consists of several blocks of data scattered throughout the volume. The fnode for the file
indicates the locations and sizes of these blocks in one of two ways, as short files or as long
files.

A.S.1 Short Files

If the file consists of eight or less distinct blocks of data, its fnode can specify it as a short
file. The fnode for a short file has bit 1 of the FLAGS field set to zero. This indicates to
the I/O System that the PTR structures of the fnode identify the actual data blocks that
make up the file. Figure A-2 illustrates an fnode for a short file. Decimal numbers are
used in the figure for clarity.

A-20 Disk Verification

STRUCTURE OF A NAMED VOLUME

Label and
Bootstrap

Information

. . .

fnode 8

~

TOTAL$SIZE

8000

TOTAL$BLKS

THIS$SIZE

8192

Volume

Data Block

Data Block

Data Block

fnode Rle Volume Granularity = 1024

Figure A-2. Short File Fnode

As you can see in Figure A-2, fnode 8 identifies the short file. The file consists of three
distinct data blocks. Three PTR structures give the locations of the data blocks. The
NUM$BLOCKS field of each PTR structure gives the length of the data block (in volume
blocks), and the BLK$PTR field points to the first volume block of the data block.

W-0994

Disk Verification A-21

STRUCTURE OF A NAMED VOLUME

The other fields shown in Figure A-2 include TOTAL$BLKS, THIS$SIZE, and
TOTAL$SIZE. The TOTAL$BLKS field specifies the number of volume blocks allocated
to the file, which in this case is eight. This equals the sum of NUM$BLOCKS values (3 +
2 + 3), since short files use all allocated space as data space.

The THIS$SIZE field specifies the number of bytes of data space allocated to the file. This
is the sum of the NUM$BLOCKS values (3 + 2 + 3) multiplied by the volume granularity
(1024) and equals 8192.

The TOTAL$SIZE field specifies the number of bytes of data space that the file occupies
(designated in Figure A-2 by the shaded area). As you can see, the file does not occupy all
the space allocated for it, so the TOTAL$SIZE value (8000) is not as large as the
THIS$SIZE value.

A.S.2 Long Files

If the file consists of more than eight distinct blocks of data, its fnode must specify it as a
long file. The fnode for a long file has bit 1 of the FLAGS field set to one. This tells the
I/O System that the PTR structures of the fnode identify indirect blocks. The indirect
blocks identify the actual data blocks that make up the file.

Each indirect block contains a number of indirect pointers, which are structures similar to
the PTR structures. However, an indirect block can contain more than eight structures and
thus can point to more than eight data blocks. In fact, an indirect block can consist of more
than one volume block; however, all volume blocks of an indirect block must be contiguous.
The structure of each indirect pointer is as follows:

DEClARE
IND$PTR STRUCTURE(

NBLOCKS
BLK$PTR

BYTE,
BLOCK$NUM) ;

where:

NBLOCKS

BLK$PTR

Number of volume blocks in the data block.

A 24-bit volume block number of the first volume block in the data
block. Volume blocks are numbered sequentially throughout the
volume, starting with the block with the smallest address (block 0).

The operating system determines how many indirect pointers there are in an indirect block
by comparing the NBLOCKS fields of the indirect pointers with the NUM$BLOCKS field
of the fnode. It assumes that the indirect block contains as many pointers as necessary for
the sum of the NBLOCKS fields to equal the NUM$BLOCKS field.

A-22 Disk Verification

STRUCTURE OF A NAMED VOLUME

Because indirect blocks can span several volume blocks, any utility that uses indirect blocks
must determine if an indirect block consists of more than one volume block. To do this,
the utility should do the following:

1. Read the volume block pointed to by the BLK$PTR field in the fnode's POINTR
structure. BLK$PTR points to the beginning of a volume block containing all or the
first part of an indirect block.

2. If the sum of all NBLOCKS fields in the volume block is less than NUM$BLOCKS,
the indirect block continues into the next contiguous volume block. The utility must
read and process the next volume block.

3. Add the NBLOCKS values in the new volume block to the sum of all previous
NBLOCKS. When the sum of the NBLOCK values equals NUM$BLOCKS you
have reached the end of the indirect block. If necessary, continue reading volume
blocks and summing NBLOCKS values until the sum of the NBLOCKS values equals
NUM$BLOCKS. The utility may have to read several volume blocks before finding
the end of the indirect block.

Figure A-3 illustrates an fnode for a long file. Decimal numbers are used in the figure for
clarity.

Disk Verification A-23

STRUCTURE OF A NAMED VOLUME

Label and
Bootstrap

Information

fnode 9

~

TOTAL$SIZE -----------
• • • 20300

TOTAL$BLKS

THIS$SIZE

20480

fnode Rle

Volume

Figure A-3. Long File Fnode

Volume Granularity = 1024

W-0995

As you can see in Figure A-3, fnode 9 identifies the long file. The actual file consists of
nine distinct data blocks. One PTR structure and an indirect block give the locations of the
data blocks. The NUM$BLOCKS field of the PTR structure contains the number of
volume blocks pointed to by the indirect block. The BLK$PTR field points to the first
volume block of the indirect block.

A-24 Disk Verification

STRUCTURE OF A NAMED VOLUME

In the indirect block, each NBLOCKS field gives the length of an individual data block, and
each BLK$PTR field points to the first volume block of a data block.

Figure A-3 also lists the TOTAL$BLKS, THIS$SIZE, and TOTAL$SIZE values, which are
more complex than for a short file. The TOTAL$BLKS field specifies the number of
volume blocks allocated to the file, which in this case is 21. Of these 21,20 are used for
actual data storage and 1 is used for the indirect block.

The THIS$SIZE field specifies the number of bytes of data space allocated to the file, and
does not include the size of the indirect block. This size is equal to the NUM$BLOCKS
value (20) or the sum of NBLOCKS values in the indirect block (2 + 1 + 2 + 3 + 2 + 3 +
3 + 2 + 2 = 20) multiplied by the volume granularity (1024) and equals 20480.

The TOTAUSIZE field specifies the number of bytes of data space that the file currently
occupies (designated in Figure A-3 by the shaded areas). As you can see, the file does not
occupy all the space allocated for it, so the TOTAL$SIZE value (20300) is not as large as
the THIS$SIZE value.

Disk Verification A-25

STRUCTURE OF A NAMED VOLUME

A.6 FLEXIBLE DISKETTE FORMATS

The flexible diskette device drivers supplied with the iRMX I and iRMX II Basic I/O
Systems can support several diskette characteristics, listed in Tables A-I and A-2.

Table A-I. 8-Inch Diskette Characteristics

Sector Sectors Device Size (in bytes)
Size Density per Track Format One-Sided Two-Sided

128 Single 26 Standard 256256 512512
256 Single 15 Standard 295168 590848
512 Single 8 Standard 314880 630272
1024 Single 4 Standard 315392 630784

256 Double 26 Standard 509184 1021696
512 Double 15 Standard 587264 1177600
1024 Double 8 Standard 626688 1255424

Table A-2. 5 1/4-Inch Diskette Characteristics

Device Size (in bytes)
Sector Sectors One-Sided Two-Sided
Size Density per Track Format 40 Tracks 80 Tracks 40 Tracks 80 Tracks

128 Single 16 Standard 81920 163840 163840 327680
256 Single 9 Standard 91904 184064 184064 368384
512 Single 4 Standard 81920 163840 163840 327680
1024 Single 2 Standard 81920 163840 163840 327680

256 Double 16 Standard 1617921 325632 325632 653312
512 Double 8 Standard 1617921 325632 325632 653312
512 Double 9 Uniform - - 368640 --
1024 Double 4 Standard 1617921 325632 325632 653312
512 Quad * 15 Uniform - - - 1228800

* Only supported in the iRMX® II Operating System.

For compatibility with ECMA (European Computer Manufacturers Association) and ISO
(International Organization for Standardization), the iRMX device drivers, when called by
the Human Interface FORMAT command, can format the beginning tracks of all flexible
diskettes in the same way. A configuration option for each driver enables you to specify
the following:

• For aIlS 1/4-inch and 8-inch flexible diskettes, the device drivers format track 0 of side
o with single-density, I28-byte sectors, with an interleave factor of 1.

A-26 Disk Verification

STRUCTURE OF A NAMED VOLUME

• For 8-inch, double-sided, double-density flexible diskettes, the device drivers format
track ° of side 1 with double-density, 256-byte sectors.

The iRMX device drivers map the sectors on these beginning tracks into blocks of device
granularity size so that the Basic I/O System and the Bootstrap Loader can treat flexible
diskettes as if they contained a contiguous string of blocks, all of the same size.

However, this mapping is not exact when you use 8-inch, double-sided, double-density
diskettes and specify a device granularity of 512 or 1024. A problem arises because there
are 26 128-byte sectors in a track, which is not an integral mapping for device granularities
of 512 or 1024. Thus, the device driver combines the leftover 128-byte sectors of track 0,
side ° with the first sectors of track 0, side 1 to make a block of device granularity size.
This continues throughout track 0, side 1, but the same problem occurs with the last 256-
byte sectors of track 0, side 1; not enough sectors are available to make a block of device
granularity size.

When the device driver tries to combine these leftover sectors of track 0, side 1 with the
first sectors of track 1, side 0, it finds that the sectors of track 1, side ° are already of device
granularity size. Therefore, since the device driver cannot access partial sectors, it is left
with one block (the leftover sectors of track 0, side 1) that is less than device granularity
size. When the device granularity is 512, this small block is block 19; when the device
granularity is 1024, it is block 9.

If nothing is done to exclude this smaller-than-normal block from use, the device driver will
treat this block as a normal block, assuming it is of device granularity size. Thus, if you try
to write information to that block, the driver will attempt to write an entire device
granularity block of information into a block that is much smaller, thereby losing data.

To prevent this situation, the Human Interface FORMAT command automatically
declares this smaller-than-normal block as allocated in the volume free space map when it
formats the volume. This prevents the Basic I/O System from ever writing information
into this block. If you write your own formatting utility, you should also declare this block
as allocated.

Disk Verification A-27

5 1/4-inch diskette characteristics A-26
8-inch diskette characteristics A-26
< command 2-6, 2-31
< CR > command 2-6
> command 2-6, 2-30

A
Aborting commands 2-4
Accounting file A-17
Add command 2-48
Address command 2-48
Allocate command 2-6, 2-8
Argument error 2-5
Automatic device recognition A-5, A-6

B
Backing up the volume label 3-7
Backupfnodes command 2-6, 2-11
Bad blocks 2-8, 2-46
Bad blocks file 2-10,2-62,2-63,2-70,3-2
Bad blocks map file 2-74,2-77, A-10, A-18
Bad track information, displaying 1-3
BF command 2-6, 2-11
Block allocation 2-8
Block command 2-49
Block I/O error 2-4
BOLT (Bootloader Location Table) A-8
Bootloader Location Table (BOLT) A-8
Bootstrap Loader blocks A-l

c
Checksums 1-4, 2-33, 2-38, 2-70
Command options

All 1-4
Disk 1-3
Fix 1-4
Getbadtrackinfo 1-3
List 1-5

Disk Verification

INDEX

Index-l

INDEX

C (continued)

Command options (continued)
Named 1-4
Named1 1-4
Named2 1-4
Physical 1-5
Verify 1-3

Commands
< 2-6,2-31
<CR> 2-6
> 2-6,2-30
Aborting 2-4
Allocate 2-6
Backupfnodes 2-6
BF 2-6,2-11
D 2-17
DB 2-17
DD 2-6,2-21
DF 2-6,2-24
Disk 2-6, 2-14
Displaybyte 2-17
Displaydirectory 2-6,2-21
Displayfnode 2-6, 2-24
Displaynextblock 2-6, 2-30
Displaypreviousblock 2-6, 2-31
Displaysavefnode 2-6, 2-29
Displayword 2-6,2-19
DNB 2-6, 2-30
DPB 2-6,2-31
DSF 2-6, 2-29
DW 2-6,2-19
E 2-6,2-36
Editfnode 2-6, 2-32
Editsavefnode 2-6, 2-35
EF 2-6,2-32
Error messages 2-4

Index-2

ESF 2-6, 2-35
Exit 2-6, 2-36
Fix 2-7, 2-37
Free 2-7, 2-40
GB 2-7,2-43
Getbadtrackinfo 2-7, 2-43
H 2-7,2-45
Help 2-7,2-45

Disk Verification

C (continued)

Commands (continued)
LBB 2-7,2-46
Listbadblocks 2-7, 2-46
Miscellaneous 2-7, 2-48
Names, entering 2-2
Parameters 2-3
Q 2-7,2-54
Quit 2-7,2-54
R 2-7,2-55
Radices 2-3
Read 2-7,2-55
Restorefnode 2-7, 2-57
Restorevolumelabel 2-7, 2-60
RF 2-7,2-57
RVL 2-7,2-60
S 2-7,2-65
Save 2-7, 2-62
SB 2-7,2-65
Substitutebyte 2-7, 2-65
Substituteword 2-7, 2-68
Summary 2-6
SW 2-7,2-68
Syntax 2-1
V 2-7,2-69
Verify 2-7, 2-69
W 2-7,2-79
Write 2-7,2-79

Conventions vi

D
D command 2-17
DB command 2-17
DD command 2-6,2-21
Dec command 2-50
DF command 2-6, 2-24
Directing output 1-2
Directories, displaying 2-21
Disk command 2-6, 2-14
Displaybyte command 2-17
Displaydirectory command 2-6,2-21
Displayfnode command 2-6, 2-24
Displaying R?SA VB 3-11

Disk Verification

INDEX

Index-3

INDEX

D (continued)

Displaynextblock command 2-6, 2-30
Displaypreviousblock command 2-6, 2-31
Displaysavefnode command 2-6, 2-29
Displayword command 2-6, 2-19
Div command 2-50
DNB command 2-6, 2-30
DPB command 2-6,2-31
DSF command 2-6, 2-29
Duplicate volume label file 3-2, A-I0, A-19
DW command 2-6, 2-19

E
E command 2-6, 2-36
Editfnode command 2-6, 2-32
Editsavefnode command 2-6, 2-35
EF command 2-6, 2-32
Error Messages 1-6, 2-4

Add 2-53
Address 2-53
Allocate 2-10
Backupfnodes 2-12
BF 2-12
Block 2-53
D 2-18
DB 2-18
DD 2-22
Dec 2-53
DF 2-27
Displaybyte 2-18
Displaydirectory 2-22
Displayfnode 2-27
Displaysavefnode 2-29
Div 2-53
DSF 2-29
Editfnode 2-34
Editsavefnode 2-35
EF 2-34
ESF 2-35
Free 2-41
GB 2-44
Getbadtrackinfo 2-44
Hex 2-53

Index-4 Disk Verification

E (continued)

Error Messages (continued)
LBB 2-47
Listbadblocks 2-47
Miscellaneous commands 2-53
Mod 2-53
Mul 2-53
R 2-55
Read 2-55
Restorefnode 2-58
Restorevolumelabel 2-61
RF 2-58
RVL 2-61
S 2-66
Save 2-63
SB 2-66
Sub 2-53
Substitutebyte 2-66
V 2-74
Verify 2-74
W 2-80
Write 2-80

ESF command 2-6, 2-35
Examples

Add 2-53
Address 2-53
Backupfnodes 2-13
BF 2-13
Block 2-53
D 2-18
DB 2-18
DD 2-23
Dec 2-53
DF 2-28
Disk 2-16
Displaybyte 2-18
Displaydirectory 2-23
Displayfnode 2-28
Displaying R ?SA VE 3-12
Displaysavefnode 3-12
Displayword 2-19
Div 2-53
DSF 3-12
DW 2-19

Disk Verification

INDEX

Index-S

INDEX

E (continued)

Examples (continued)
Editfnode 2-34
EF 2-34
H 2-45
Help 2~45
Hex 2-53
LBB 2-46
Listbadblocks 2-46
Miscellaneous commands 2-53
Mod 2-53
Mul 2-53
Restorefnode 2-59
Restorevolumelabel 2-61
Restoring fnodes 3-4, 3-8
Restoring the volume label 3-11
RF 2-59
RVL 2-61
RVL 3-11
S 2-67
Save 2-64
SB 2-67
Sub 2-53
Substituteword 2-68
Substitutebyte 2-67
SW 2-68
V 2-78
Verify 2-78
W 2-80
Write 2-80

Exit command 2-6,2-36

F
File descriptor node (fnode) A-10
File sizes A-22, A-25
Fix command 2-7,2-37
Fixing bad checksums 2-38
Flexible diskette formats A-26
Flexible diskette track 0 abnormalities A-26
Fnode allocation 2-8
Fnode file 3-1,3-2, A-16
Fnode file/space map file inconsistent 2-5

Index-6 Disk Verification

F (continued)

Fnodes
Access ID A -15
Altering 2-32
Auxiliary bytes A-15
Backing up on a volume 3-5
Creation time A-13
Data block identification A-14
Displaying 2-24
Flags 2-9, A-12
Freeing 2-40
Granularity A-13
last file access A-13
last modification A-13
C>vervievv A-I0
Ovvner A-13
Parent 2-69, A -15
Restoring 2-57, 3-1, 3-7
Size (bytes) actual data A-13
Size (bytes) data space A-14
Structure A-II
Type A-13
Volume blocks A-14

Free command 2-7, 2-40
Free fnodes map file 2-9, 2-41, 2-62, 2-63, 2-70, 2-73, 2-76, 3-2, A-17
Free space A-17
Free space map file 2-76

G
GB command 2-7, 2-43
Getbadtrackinfo command 2-7, 2-43

H
H command 2-7, 2-45
Help command 2-7, 2-45
Hex command 2-51

Disk Verification

INDEX

Index-7

INDEX

illegal command error 2-4
Initial files A-I0
Invocation

Error messages 1-6
Example 1-5
Interactive 1-6
Single command mode 1-5

Invocation 1-2
iRMX® II volume labels A-4
ISO volume label A-3

L
LBB command 2-7, 2-46
Listbadblocks command 2-7, 2-46
Location of files 3-1, A-21, A-22
Long files 2-69,3-1, A-22

M
Manual overview v
Marking bad blocks 2-8
Miscellaneous commands 2-7, 2-48

Add 2-48
Address 2-48
Block 2-49
Dec 2-50
Div 2-50
Hex 2-51
Mod 2-51
Mu12-52
Sub 2-52

Mod command 2-51
Modes of operation 1-1, 2-1
MSA first stage bootstrap loader A-8
MSA second stage bootstrap loader A-8
MSABOOT A-19
Mul command 2-52
MUL TIBUS® II second stage bootloader 3-2, A-8

N
Named volume structure A-I
Named volumes 1-4
Not a named disk error 2-5

Index-8 Disk Verification

o
Operational modes 1-1, 2-1
Orphan fnodes 1-4, 2-38

p

Parameters 2-3
Product overview v, 1-1

Q
Q command 2-7,2-54
Quit command 2-7,2-54

R
R command 2-7, 2-55
R?SA VB 2-11,2-15,2-29,2-35,2-57,2-58,2-60,3-2,3-5,3-11, A-19
R?SECONDSTAGE file 3-2, A-8, A-19
Radices 2-3
Read command 2-7,2-55
Reader Level v
Reading volume blocks 2-55
Restorefnode command 2-7, 2-57
Restorevolumelabel command 2-7, 2-60
Restoring fnodes 3-1
Restoring the volume label 3-10
RF command 2-7,2-57
Root directory A-IS
RVL command 2-7, 2-60

s
S command 2-7, 2-65
Save command 2-7,2-62
SB command 2-7,2-65
Seek error 2-5
Short files 3-1, A-20
Size of files 2-69, A-22, A-25
Space accounting file 3-2, A-I0
Structure of a named volume A-I
Sub command 2-52
Substitutebyte command 2-7, 2-65
Substituteword command 2-7, 2-68
SW command 2-68
Syntax error 2-4

Disk Verification

INDEX

Index-9

INDEX

T
Track ° Abnormalities, flexible diskettes A-26

v
V command 2-7, 2-69
Verify command 2-69
Volume attributes, displaying 1-3,2-14
Volume blocks, freeing 2-40
Volume free space map file 2-10,2-41,2-62,2-63,2-70,2-73,3-2, A-10, A-17
Volume label, backing up 3-7
Volume label file 2-60,3-1,3-2, A-10, A-18
Volume label, restoring 3-10
Volume labels

iRMXII A-4
ISO A-3

Volume structure, named A-2

w
W command 2-7, 2-79
Working buffer, changing contents 2-66
Write command 2-7,2-79

Index-lO Disk Verification

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue
Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND
Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsinki

FRANCE
Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yveli nes Cedex

ISRAEL
Intel Semiconductors LTD.
Atidim Industrial Park

NeveSharet
P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN

Intel Japan K.K.

Flower-Hill Shin-machi
1-23-9, Shi nmachi

Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY

Intel Norway AlS
P.O. Box 92

Hvamveien 4
N-2013, Skjetten

SPAIN
Intel Iberia

Calle Zurbaran 28-IZQDA

28010 Madrid

SWEDEN
Intel Sweden A.B.
Dalvaegen 24

S-171 36 Sol na

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
D-8000 Munchen

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

•

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051
(408) 987-8080

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

