ISBC 220™ SMD DISK CONTROLLER HARDWARE REFERENCE MANUAL

Manual Order Number: 121597-001, REV A

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

BXP	Intel	Megachassis
CREDIT	Intelevision	Micromap
i	Intellec	Multibus
ICE	iRMX	Multimodule
iCS	iSBC	PROMPT
im	iSBX	Promware
Insite	Library Manager	RMX/80
Intel	MCS	System 2000
		UPI
		μScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

CONTENTS

U11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Page	Page
GENERAL INFORMATION		Interrupts 3-20
Introduction		Example Controller I/O Program 3-20
Description Specifications		CHAPTER 4 PRINCIPLES OF OPERATION
CHAPTER 2		Introduction 4-1
PREPARATION FOR USE		Schematic Interpretation 4-1
Introduction	9-1	Functional Overview 4-1
Unpacking and Inspection		Detailed Functional Description 4-5
Board Installation Considerations		Controller to Host Communications 4-5
Power Requirement		Multibus Interface 4-6 8089 I/O Processor (IOP) 4-6
Cooling Requirement		Clock Circuit
Multibus Connector		Bus Arbiter 4-6
Switch/Jumper Configurations		Bus Controller Logic 4-6
Wake-Up Address Selection		Multibus Interface
Wake-Up I/O Port Address Selection		Data Transfer Logic 4-8
System Data Bus Selection		Controller Initialization
Interrupt Priority Level		Wake-Up Address Comparator 4-8
Any Request Selection		Controller Reset and Clear 4-9
Voltage Selection	2-7	Establishing A Link With
Drive Interface		I/O Communications Blocks 4-9
Cabling Requirements	2-7	Interrupt Priority Logic 4-11
Drive Pin Assignments		Local Memory Map 4-11
Single Drive Installations		ROM 4-11
Multiple Drive Installations		RAM 4-11
Power Up/Down Considerations		Local Memory Mapped I/O Ports 4-11
Diagnostic Check	2-9	Controller to Disk Drive Communications 4-12
		Controller to Disk Drive Interface 4-12
CHAPTER 3		Control Cable Signals 4-12
PROGRAMMING INFORMATION		Selection Lines 4-12
Introduction	3-1	Function Tags and Bus-Out Lines 4-13
Disk Organization		Status lines 4-15
Track Sectoring Format		Read/Write Cable Signals 4-16
Controller I/O Communications Blocks		Controller to Disk Drive Interface Timing 4-16
Host CPU-Controller-Disk Drive Interaction		DMA Mode 4-17
Wake-Up I/O Port		Disk Formatting 4-18
Wake-Up Block		Write Data Transfer 4-19
Channel Control Block		Read Data Transfers 4-20
Controller Invocation Block		SER/DES Logic 4-20
I/O Parameter Block		Sync Byte Comparator Logic 4-21
Typical Controller Operations		32-Bit ID Comparator Logic 4-21
Initializing the Controller		ECC Generator Logic 4-22
Track Formatting		Status Register Logic 4-22
Alternate and Defective Track Handling	. 3-10	Line Drivers and Receivers 4-22
Data Transfer and Verification	. 3-10	CHAPTER 5
Read Sector ID	. 3-12	SERVICE INFORMATION
Read Data	. 3-12	Introduction
Read Data Into Controller Buffer and Verify	3-14	Service Diagrams 5-1
Write Data		Service and Repair Assistance
Write Data from Controller Buffer to Disk		Self Diagnostic
Initiate Track Seek	. 3-16	Replaceable Components 5-1
Buffer I/O		
Diagnostic		APPENDIX A
Posting Status		EXAMPLE HOST PROCESSOR
Transfer Error Status	3.10	DISK CONTROL PROGRAM

TABLES

Table	Title	Page	Table	Title	Page
1-1.	Board Specifications	. 1-2	3-2.	Error Status Buffer	3-20
1-2.	Drive Characteristics (Typical)	. 1-3	3-3.	Bit Functions in Hard	
2-1.	Multibus Connector P1 Pin Assignment	2-2		and Soft Error Bytes	3-21
2-2.	iSBC 220 Controller/Multibus		4-1.	8089 Status Line Decodes	4-8
	Interface Signal Descriptions	. 2-3	4-2.	Host Wake-Up Commands	
2-3.	iSBC 220 Controller/Multibus		4-3.	Local I/O Ports	4-12
	Interface Signal Characteristics	. 2-3	4-4.	Function Tag/Bus-Out Definitions .	4-13
2-4.	Configuration Linkages and Switches .	. 2-6	4-5.	Control Tag and Bus Out Functions	4-14
2-5.	Interrupt Priority Level Selection	. 2-9	4-6.	Status Line Definitions	4-15
2-6.	Control Cable Signal/Pin List	. 2-9	4-7.	Status Register Bits	4-22
2-7.	Read/Write Cable Signal/Pin List	. 2-9	5-1.	Code for Manufacturers	
3-1.	Data Block Length vs.		5-2.	Controller Board Electrical Parts Lis	st 5-2
	Sectors Per Track	. 3-1			

ILLUSTRATIONS

Figure	e Title l	Page	Figur	e Title	Page
1-1.	Typical Multiple Drive System		3-14.	Write Data	_
2-1.	Serial Priority Resolution		3-15.	Write Data from Controller Buf	fer
2-2.	iSBC 220 Controller/Multibus			to Disk	3-16
	Interface Signal Timing	2-4	3-16.	Initiate Track Seek	3-17
2-3.	Location of Jumpers and Switches		3-17.	Buffer I/O	3-18
	on Controller Board	2-6	3-18.	Diagnostic	3-19
2-4.	Interconnecting Cable Requirements .		3-19.	Transfer Error Status	
2-5.	Pertec Drive Interconnecting		4-1.	Logic Conventions	4-1
	Cable Requirements	. 2-17	4-2.	Simplified Block Diagram	
2-6.	Priam Drive Interconnecting			of iSBC 220 Controller	4-2
	Cable Requirements	. 2-19	4-3.	iSBC 220™ Controller Functions	al
2-7.	Controller to Drive Interfacing	. 2-22		Block Diagram	4-3
2-8.	Installing the iSBX 218 Board		4-4.	Bus Arbitor and Bus Controller	Logic 4-7
	on the iSBC 215 Controller Board	. 2-25	4-5.	Data Transmission Between Mu	ıltibus
3-1.	Disk Drive Organization and			Interface and Controller Mult	ibus
	Terminology	3-1		Data Transceivers	4-9
3-2.	Sector Data Format	3-2	4-6.	Wake-Up Address Logic	4-10
3-3.	Host CPU-Disk Controller-		4-7.	Address Fetches in	
	Interaction Through the			Initialization Sequence	4-10
	I/O Communications Blocks		4-8.	Local Memory Map	4-11
3-4.	Wake-Up Block	3-4	4-9.	Set Cylinder Timing	4-13
3-5.	Channel Control Block		4-10.	Timing Diagram for RDY Signs	al 4-17
3-6.	Controller Invocation Block	3-6	4-11.	Timing Diagram for Disk Form	atting . 4-18
3-7.	I/O Parameter Block Description	3-7	4-12.	Timing Diagram for Write Data	a 4-20
3-8.	I/O Communications Blocks Linking	3-9	4-13.	Timing Diagram for	
3-9.	Track Formatting			Read Data Transfer	4-21
3-10.	Alternate Track Formatting	. 3-12	5-1.	iSBC 220 SMD Disk Controller	
3-11.	Read Sector ID	. 3-13		Parts Location Diagram	5-5
3-12.	Read Data	. 3-13	5-2.	iSBC 220 SMD Disk Controller	
3-13.	Read Data into Controller Buffer			Schematic Diagram	5-7
	and Varify	211			

PREFACE

This manual provides information regarding the installation, programming, operation, and servicing of the iSBC 220 SMD Disk Controller.

Related documents include:

- The 8086 Family User's Manual, Order No. 9800722
- Intel MULTIBUS Specifications, Order No. 9800683
- Intel 8080/8085 Assembly Language Reference Manual, Order No. 9800301
- Intel 8086 Assembly Language Reference Manual, Order No. 900640
- MCS-80 User's Manual, Order No. 9800153
- MCS-85 User's Manual, Order No. 9800722
- Intel 8089 Assembly Language Reference Manual, Order No. 9800938

V

CHAPTER 1 GENERAL INFORMATION

1-1. INTRODUCTION

The Intel iSBC 220™ SMD Disk Controller is designed to interface up to four Storage Module Device (SMD) Interface¹ compatible disk drives to any Intel Multibus™ interface compatible computer system. It can operate in a multiprocessor environment and is fully compatible with all Intel 8-bit and 16-bit computers. The Intel Multibus™ interface is the common interface between the iSBC 220 controller and the host computer, system memory, and other I/O boards. A typical drive subsystem is shown in figure 1-1.

Compatible disk drive storage range is from 12 to 600 megabytes. The number of tracks per surface, sectors per track, bytes per sector and alternate tracks per surface are software selectable for each drive unit.

The iSBC 220 controller's design is based on the Intel 8089 I/O Processor, which allows Direct Memory Access (DMA), error detecting and correc-

tion and data management. The single board assembly features automatic error recovery and retry, transparent data error correction and multiple sector transfers. Seek operations on multiple drives can be overlapped with a read/write operation on another drive. It is fully compatible with Intel 8086 CPU 20-bit addressing.

¹The Storage Module Device (SMD) Interface is a pending American National Standards Institute (ANSI) standard.

1-2. DESCRIPTION

The iSBC 220 SMD Disk Controller is a single board assembly. It may reside in any Intel backplane or in a custom-designed configuration that is physically and electrically compatible with the Intel Multibus interface.

The host Central Processing Unit (CPU) communicates with the Disk controller via four blocks of information in host memory. Once the controller is

Figure 1-1. Typical Multiple Drive System

General Information iSBC 220

initialized, a CPU I/O write to the controller Wake-Up Address initiates disk activities. The controller accesses the four blocks in the host memory to determine the specific operation to be performed, fetches the required parameters and completes the specified operation without further CPU intervention.

The controller board generates all drive, control and data signals and receives the drive status and data signals required to perform the entire disk drive interfacing task. During a disk read operation, the controller accepts serial data from the disk, interprets sychronizing bit patterns, verifies validity of the data, performs a serial-to-parallel data conversion, and passes parallel data or error condition indications to host memory. During a disk write operation, the controller performs parallel-to-serial data conversion and transmits serial write data and the write clock to the drive.

The Intel 8089 I/O Processor provides optimum performance with minimum CPU overhead. An Intel 8288 Bus Controller and 8289 Bus Arbiter control

access to the Multibus interface. Intel 2732 EPROMs and 2114 Static RAMs provide on-board local memory for storage of the controller I/O control program and a resident diagnostic exerciser, for data buffering and for temporary storage of read/write parameters.

To access system memory for a read or a write operation, the controller takes command of the Multibus interface and maintains control until the data transfer is complete. The buffer memory on the controller board limits this bus control time to a minimum.

1-3. SPECIFICATIONS

Table 1-1 lists the physical and performance specifications of the iSBC 220 SMD Disk Controller; table 1-2 lists typical characteristics of disk drives that are compatible with the iSBC 220 controller.

Table 1-1. Board Specifications

COMPATIBILITY					· ·		
CPU:	Any Intel mainframe or any Multibus™ interface compatible CPU. The con troller can operate with either 16- or 20-bit addresses and with either 8- or 16 bit data bus widths.						
Disk Drive:	SMD Interface compatible disk drive.						
DATA ORGANIZATION AND CAPACITY				·			
Bytes per Sector:	128	256	512	1024	Software Selectable		
Sectors per Track (Maximum Allowable for Corresponding Selection of Bytes per Sector):	108	64	35	18	Software Selectable		
Disk Drives per Controller:	Up to fou	r, daisy-cha	iined.				
Error Detecting and Correction:	Controller appends an Error Checking Code (ECC) at the end of each ID and data field. Using this ECC, the controller hardware can detect errors of up to 32 bits in length; controller firmware can correct errors of up to 11 bits in length.						
CONTROLLER CHARACTERISTICS							
Mounting:		a card slo t Multibus™			dular Cardcage/Backplane or		
Physical Characteristics: Width: Length: Height: Weight:	30.5 cm (1.3 cm (0	6.8 inches) 12.0 inches .5 inches) 19 ounces))				
Power Requirements:	\pm 5 Volts \pm 5% @ 3.25 amperes maximum; \pm 5 Volts \pm 5% @ 0.75 amperes maximum.						
	NOTE						
					allow –5 Volts or –12 Volts voltage source for –5 Volt.		
Environmental: Temperature:	0°C to +: -55°C to	55°C, opera +85°C, no	ating (+32°	F to +131°F 1 (-67°F to). +185°F).		
Humidity:		%, non-cond			,		

Table 1-2. Drive Characteristics (Typical)

Disk (spindle) Speed	3600 rpm
Tracks per Surface	823 typical
Servo Type	Closed loop, track following
Access Time	Track to track 6 ms Average 30 ms Maximum 55 ms
Data Transfer Rate	1.2 megabytes/second
Storage Capacity	12 to 600 megabytes

CHAPTER 2 PREPARATION FOR USE

2-1. INTRODUCTION

This chapter provides information for use in preparing and installing the iSBC 220 SMD Disk Controller. Included are instructions for unpacking and inspection, installation, setting switches, installing jumpers, and interfacing the controller board with the Multibus connector and disk drives.

2-2. UNPACKING AND INSPECTION

On receipt of the iSBC 220 controller from the carrier, immediately inspect the shipping carton for evidence of damage. If the shipping carton is damaged or water-stained, request that the carrier's agent be present when the carton is opened; if the carrier's agent is not present at the time of opening, keep the carton and packing materials for subsequent agent inspection.

For repairs or replacement of an Intel product damaged during shipment, contact Intel Technical Support Center (refer to Chapter 5) to obtain a Return Authorization Number and further instructions. A copy of the Purchase Order should be submitted to the carrier with the claim.

Carefully unpack the shipping carton and verify that the following items are included:

- iSBC 220 SMD Disk Controller Printed Wired Assembly
- iSBC 220 SMD Disk Controller Schematic Diagram

2-3. BOARD INSTALLATION CONSIDERATIONS

The iSBC 220 controller can be installed in any Intel cardcage/backplane or any user-designed backplane that is compatible with the Multibus interface and meets the controller's power and Multibus connector dimensional requirements. The controller occupies one backplane slot.

When installing the controller in a serial priority environment (e.g., within any of the Intel system chassis), wiring modifications are required to support serial priority; a daisy-chain technique, see figure 2-1, establishes priority. The priority input (BPRN/) of the highest priority master is tied to ground. The priority output (BPRO/) of the highest priority master is then connected to the priority input (BPRN/) of the next lowest priority master, and so on. ("/" following the signal name indicates an active low). Slaves are jumpered as shown. This technique can accommodate a limited number of masters due to gate delays through the daisy-chain.

2-4. POWER REQUIREMENT

The board requires a +5 Volt $\pm 5\%$ power source at a maximum current of 3.25 amperes and a -5 Volt $\pm 5\%$ source at 0.75 amperes maximum, both supplied through the Multibus connector. An on-board voltage regulator allows the -5 Volt or -12 Volt voltage sources from the Multibus connector to be jumper selected for use as a voltage source for -5 Volts (refer to paragraph 2-13). Before installing the controller into a system chassis, make certain that the associated power supplies can supply the additional current that the controller board requires.

Figure 2-1. Serial Priority Resolution

2-5. COOLING REQUIREMENT

When the controller is installed in a high temperature environment, make certain the ambient operating temperature does not exceed +55°C.

2-6. MULTIBUS™ CONNECTOR

The controller communicates with the CPU and other boards via the Multibus interface. Table 2-1 lists the Multibus connector pin assignments; table 2-2 describes the controller/Multibus interface signals. Figure 2-2 provides a diagram of the controller/Multibus interface timing signals and a table of the timing requirements. Table 2-3 gives current requirements and other characteristics related to the controller/Multibus interface.

The controller is connected to the Multibus interface through connector P1, an 86-pin, double-sided, printed circuit edge connector with 3.96 mm (0.156 in) contact centers. Connector P2 is not used.

Table 2-1. Multibus™ Connector P1 Pin Assignment*

		P1	(Component Side)		P1	(Circuit Side)
	Pin	Mnemonic	Description	Pin	Mnemonic	Description
Power Supplies	1 3 5 7 9	GND +5V +5V +12V -5V GND	Signal GND +5Vdc +5Vdc +12Vdc -5Vdc Signal GND	2 4 6 8 10 12	GND +5V +5V +12V -5V GND	Signal GND +5Vdc +5Vdc +12Vdc -5Vdc Signal GND
Bus Controls	13 15 17 19 21 23	BCLK/ BPRN/ BUSY/ MRDC/ IORC/ XACK/	Bus Clock Bus Pri. In Bus Busy Mem Read Cmd I/O Read Cmd XFER Acknowledge	14 16 18 20 22 24	INIT/ BPRO/ BREQ/ MWTC/ IOWC/ INH1/	Initialize Bus Pri. Out Bus Request Mem Write Cmd I/O Write Cmd Inhibit 1 disable RAM
Bus Controls and Address	25 27 29 31 33	BHEN/ CBRQ/ CCLK/ INTA/	Reserved Byte High Enable Common Bus Request Constant Clk Intr Achknowledge	26 28 30 32 34	INH2/ ADR10/ ADR11/ ADR12/ ADR13/	Inhibit 2 disable PROM or ROM Address Bus
Interrupts	35 37 39 41	INT6/ INT4/ INT2/ INT0/	Parallel Interrput Requests	36 38 40 42	INT7/ INT5/ INT3/ INT1/	Parallel Interrput Requests
Address	43 45 47 49 51 53 55 57	ADRE/ ADRC/ ADRA/ ADR8/ ADR6/ ADR4/ ADR2/ ADR0/	Address Bus	44 46 48 50 52 54 56 58	ADRF/ ADRD/ ADRB/ ADR9/ ADR7/ ADR5/ ADR3/ ADR1/	Address Bus
Data	59 61 63 65 67 69 71 73	DATE/ DATC/ DATA/ DAT8/ DAT6/ DAT4/ DAT2/ DAT0/	Data Bus	60 62 64 66 68 70 72 74	DATF/ DATD/ DATB/ DAT9/ DAT7/ DAT5/ DAT3/ DAT1/	Data Bus
Power Supplies	75 77 79 81 83 85	GND -12V +5V +5V GND	Signal GND Reserved -12Vdc +5Vdc +5Vdc Signal GND e indicates an active low.	76 78 80 82 84 86	GND -12V +5V +5V GND	Signal GND Reserved -12Vdc +5Vdc +5Vdc Signal GND

iSBC 220 Preparation for Use

Table 2-2. iSBC 220[™] Controller/Multibus Interface Signal Descriptions

Signal	Functional Description
ADR0/, ADRF/ ADR10/-ADR13/	Address. These 20 lines transmit the address of the memory location or I/O port to be accessed. For memory access, ADR0/ (when active) enables the even byte bank (DAT0/-DAT7/) on the Multibus™ connector; i.e., ADR0/ is active for all even addresses. ADR13/ is the most significant address bit.
BCLK/	Bus Clock. Used to synchronize the bus contention logic on all bus masters.
BHEN/	Byte High Enable. When active low, enables the odd byte bank (DAT8/-DATF/) onto the Multibus™ connector.
BPRN/	Bus Priority In. When low indicates to a particular bus master that no higher priority bus master is requesting use of the bus. BPRN/ is synchronized with BCLK/.
BPRO/	Bus Priority Out. In serial (daisy chain) priority resolution schemes, BPRO/ must be connected to the BPRN/ input of the bus master with the next lower bus priority.
BREQ/	Bus Request. In parallel priority resolution schemes, BREQ/ indicates that a particular bus master requires control of the bus for one or more data transfers. BREQ/ is synchronized with BCLK/.
BUSY/	Bus Busy. Indicates that the bus is in use and prevents all other bus masters from gaining control of the bus. BUSY/ is synchronized with BCLK/.
CBRQ/	Common Bus Request. Indicates that a bus master wishes control of the bus but does not presently have control. As soon as control of the bus is obtained, the requesting bus controller raises the CBRQ/ signal.
DAT0/-DATF/	Data. These 16 bidirectional data lines transmit and receive data to and from the addressed memory location or I/O port. DATF/ is the most-significant bit. For data byte operations, DAT0/-DAT7 is the even byte and DAT8-DATF/ is the odd byte.
INIT/	Initialize. Reset the entire system to a known internal state.
INTO/-INT7/	Interrupt Request. These eight lines transmit interrupt requests to the appropriate interrupt handler. INTO/ has the highest priority.
IOWC/	I/O Write Command. Indicates that the address of an I/O port is on the Multibus™ connector address lines and that the contents on the Multibus™ connector data lines are to be accepted by the addressed port.
MRDC/	Memory Read Command. Indicates that the address of a memory location is on the Multibus™ connector address lines and that the contents of that location are to be read (placed) on the Multibus™ connector data lines.
MWTC/	Memory Write Command. Indicates that the address of a memory location is on the Multibus™ connector address lines and that the contents on the Multibus™ connector data lines are to be written into that location.
XACK/	Transfer Acknowledge. Indicates that the address memory location has completed the specified read or write operation. That is, data has been placed onto or accepted from the Multibus™ connector data lines.

Table 2-3. iSBC 220[™] Controller/Multibus Interface Signal Characteristics

	Driver 1, 3								
Bus	Location	Туре	I _{OL}	Гон	c _o	Location	I _{IL}	I _{IH}	C _I
Signals			Min _{ma}	Min $_{\mu { m a}}$	Min _{pf}		Max _{ma}	Max_{\mua}	Max _{pf}
DAT0/- DATF/ (16 lines)	Masters	TRI	32	-5000	300	Masters and Slaves	-0.5	125	18
ADR0/- ADR13/, BHEN/ (21 lines)	Masters	TRI	32	-5000	300	Slaves	-0.8	90	18
MRDC/, MWTC/	Masters	TRI	32	-5000	300	Slaves	0.7	50	18
IOWC/						Slaves	-0.4	20	5

Preparation for Use **iSBC 220**

Table 2-3. iSBC 220™ Controller/Multibus Interface Signal Characteristics (Continued)

		Driver	1, 3	, 3 Receiver 2, 3			Receiver 2, 3			
Bus Signals	Location	Туре	I _{OL} Min _{ma}	I _{ОН} Min _{µa}	C _O Min _{pf}	Location	I _{IL} Max _{ma}	l _{iH} Max _{μa}	C _I Max _{pf}	
XACK/	Slaves	TRI	48	-2000	300	Masters	-1.2	60	18	
BCLK/						Master	-0.5	60	18	
BREQ/	Each Master	TTL	10	-400	60					
BPRO/	Each Master	TTL	10	-400	60					
BPRN/						Master	-0.5	60	18	
BUSY/, CBRQ	All Masters	o.c.	20	-	250	All Masters	-0.5	60	18	
INIT/			Í		}	All	-0.5	60	18	
INTO/- INT7/ (8 lines)	Slaves	O.C.	40	-	300			:		

Notes:

Driver Requirements: 1.

IOH = High Output Current Drive

IoL = Low Output Current Drive Co = Capacitance Drive Capability

TRI = 3-State Drive

O.C.= Open Collector Driver
TTL = Totem-pole Driver

Receiver Requirements:

 I_{IH} = High Input Current Load I_{IL} = Low Input Current Load

= Cap Active Load

3. Low and High Voltage Requirements:

Receiver:

 $0 \le V_{IL} \le 0.8V$

 $2.0V \le V_{IH} \le 5.5V$

Driver:

 $0 \le V_{OL} \le 0.5V$

 $2.4V \leqq V_{OH} \leqq 5.5V$

Figure 2-2. iSBC 220™ Controller/Multibus Interface Signal Timing

iSBC 220 Preparation for Use

Bus Exchange Timing

D	Time in Nanoseconds		
Parameter	Minimum	Maximum	Description
tsas tsds tsdhw tsdhw tacc txko tbcy tbl tbh tdrq tdby tdby tdbph tdbph tdbph	50 0 15 30 100 125 65 35	8000 35 60 35 25 ∞	Address Setup Time to I/O Command Data Setup Time to I/O Command Address Hold Time from I/O Command Data Hold Time from I/O Command I/O Access Time XACK/Hold Time from I/O Command Bus Clock Cycle Time Bus Clock Low Bus Clock High Bus Request Delay Bus Busy Turn On Delay Bus Busy Turn Off Delay Priority Input Setup Time BPRO/Serial Delay from BPRN/ Requesting Master Bus Access Time
tDB tSC tXKCO tAH tDHW tDHR tDSX	50 50 50 50 0	750	Busy to Address/Data Delay Address/Data Setup to Command XACK/ to Command Turn Off Address Hold Time Data Hold Time Read Data Hold Time Data Setup Time Before XACK/

Figure 2-2. iSBC 220™ Controller/Multibus Interface Signal Timing (Continued)

2-7. SWITCH/JUMPER CONFIGURATIONS

A number of switches and jumper links (see table 2-4) are provided on the controller board that allow the user to conveniently set the controller for the system environment in which it is to operate (8-bit or 16-bit system data bus, 8-bit or 16-bit I/O addressing, etc.). Figure 2-3 shows the location of these switches and jumpers on the board. They should be set, as described in the following paragraphs, prior to installing the board in a cardcage or backplane.

Table 2-4. Configuration Linkages and Switches

Function	Pin or Switch No.
Wake-Up Address	S1-1 through S1-8 S2-3 through S2-10
8-Bit or 16-Bit System Data Bus Compatibility	S2-1
8-Bit or 16-Bit Host I/O Processor Port Addressing	S2-2
Interrupt Priority Level	W4-C to W4-0 through W4-7
Any Request	W2
Voltage Selection	W1 and W5

2-8. WAKE-UP ADDRESS SELECTION

The controller communicates with the host CPU through four I/O communications blocks located in the host memory. When the controller is to receive instructions, it goes to the beginning address of the first I/O communication block. This address is called the wake-up address (WUA). The WUA may be any address in host memory. Sixteen WUA

switches (S1-1) through S1-8 and S2-3 through S2-10, see figure 2-3) are provided on the controller board that allow the user to set the controller for the selected wake-up address. The switch labels in figure 2-3 correspond to hexadecimal address bits 0 through F. Any switch set to ON represents a logical 1.

The controller multiplies the settings of the WUA switches by 2⁴ (shifts the number four places to the left) to create a 20-bit WUA. Note that due to this shift, the four least-significant bits of the selected WUA must be zeros. When accessing host memory, the controller transmits the entire 20-bit WUA through the Multibus interface. If the host memory uses 16-bit addressing, the four most significant bits of the 20-bit WUA must be zero. This is accomplished by setting the four most significant bits of the WUA switches (S1-1 through S1-4) to zero.

2-9. WAKE-UP I/O PORT ADDRESS SELECTION

The host processor communicates with the controller through an 8-bit I/O port. The WUA switches also set the address of this I/O port. For a host processor with 8-bit I/O port addressing, bits 0 through 7 of the unshifted WUA determine the wake-up I/O port address; for a host processor with 16-bit I/O port addressing, bits 0 through F determine the address.

I/O Address Selection switch S2-2 on the controller board (see figure 2-3) determines the type of I/O port addressing the host processor uses: ON for 16-bit addressing; OFF for 8-bit addressing.

Figure 2-3. Location of Jumpers and Switches on Controller Board

2-10. SYSTEM DATA BUS SELECTION

Host processor selection switch S2-1 on the controller board (see figure 2-3) sets the controller for the type of system data bus with which the controller is to interface: ON for 16-bit bus, OFF for an 8-bit bus. This switch allows the controller to use its 16-bit data transfer mode to access the system bus (if the system memory supports 16-bit accesses), even though the host processor only supports 8-bit accesses.

2-11. INTERRUPT PRIORITY LEVEL

The controller's internal interrupt request signal can be assigned to any of eight interrupt priority levels (INT0/ to INT7/) on the Multibus connector. To select the interrupt request priority level, place a jumper link as shown in table 2-5 and figure 2-3.

2-12. ANY REQUEST SELECTION

The any request function allows the controller to be set to relinquish control of the Multibus interface following a request from:

- A higher priority device only (jumper between pins W2-C and W2-1 on the controller board).
- 2. Any device, lower or higher priority, (jumper between pins W2-C and W2-2).

Figure 2-3 shows the location of the selection pins.

2-13. VOLTAGE SELECTION

Figure 2-3 shows the location on the controller board of the Voltage Source Selection pins for the -5 Volt power supply. Install a jumper at either W5 (-5 Volts) or W1 (-12 Volts) to select a voltage source for the on-board -5 Volt Supply.

2-14. DRIVE INTERFACE

The iSBC 220 SMD Disk Controller is designed for compatibility with SMD Interface compatible disk drives. Two interface cables per drive are required, one that daisy-chains command information (Control Cable) and another that provides the serial data (Read/Write Cable). The controller can support up to four drives. Refer to paragraphs 4-22 through 4-28 for a detailed description of the controller to drive interface signals.

2-15. CABLING REQUIREMENTS

Unless the drive manufacturer supplies them, the Interface cables between the controller and disk drives will have to be fabricated (see figure 2-4). Right-angle pin header connectors with ejector tabs are recommended for mating with each of the controller board's edge connectors. A 60-pin massterminated socket connector (3M 3334-6060 or equivalent) is recommended for mating with J1; a 40pin connector (3M 3417-6040 or equivalent) is recommended for mating with J2 and J3. The mass terminated sockets are easily attached to flat ribbon cable using the jig that the connector manufacturer supplies. The Control Cable, which connects to J1, requires a 60-conductor ribbon cable; the Read/Write Cables, which connect to J2 and J3, each require one or two 20-conductor ribbon cables, depending on the number of drives in the installation (refer to paragraph 2-17 and 2-18 below). Cable length for the Control Cable cannot exceed a total length of 100 feet; total length for any Read/Write cable must not exceed 50 feet.

2-16. DRIVE PIN ASSIGNMENTS

Tables 2-6 and 2-7 list the pin assignments for the J1, J2, and J3 connectors of the controller and the J1 through J4 connectors of the drives.

2-17. SINGLE DRIVE INSTALLATIONS

For single drive installations, two controller-to-drive interface cables are required. The 60-conductor Control Cable connects between J1 of the controller and the corresponding control cable connector on the drive. The Control Cable lines must be terminated as described in the drive manufacturer's hardware reference manual at the drive terminator. The 20-conductor Read/Write cable connects between either J2 or J3 of the controller and the corresponding read/write cable connector on the drive. In addition, jumpers or switches within the drive must be set to assign the drive a logical address. Since the controller can communicate with up to four drives, the logical address can be set to 0, 1, 2 or 3.

2-18. MULTIPLE DRIVE INSTALLATIONS

For multiple drive installations, a common Control Cable bus transmits control data between the controller and the drives (see figure 1-1). The Control Cable is connected between J1 of the controller and the corresponding control cable connector on the drive at physical address 0. Drive-to-drive control cables are then installed to daisy-chain the control data to the other drives. The control lines must be terminated at the last drive on the bus.

Figure 2-4. Interconnecting Cable Requirements

View of cable connectors from mating side.

iSBC 220 Preparation for Use

Table 2-5. Interrupt Priority Level Selection

Priority	Wire Wrap		
Level Selected	From Pin	To Pin	
0	W4-C	W4-0	
1	W4-C	W4-1	
2	W4-C	W4-2	
3	W4-C	W4-3	
4	W4-C	W4-4	
5	W4-C	W4-5	
6	W4-C	W4-6	
7	W4-C	W4-7	

Table 2-6. Control Cable Signal/Pin List

Signal Name	J1 Asserted State Pin Polarity		Source	Drive Input Connector	
	_	+		_	+
Device Select 0	23	53	CU	23	53
Device Select 1	24	54	cu	24	54
Device Select 2	26	56	cu	26	56
Device Select 3	27	57	CU	27	57
Device Select Enable	22	52	CU	22	52
Set Cylinder (Tag 1)	01	31	cu	01	31
Set Head Address (Tag 2)	02	32	CU	02	32
Control Select (Tag 3)	03	33	CU	03	33
Bus 0	04	34	CU	04	34
Bus 1	05	35	CU	05	35
Bus 2	06	36	cu	06	36
Bus 3	07	37	cu	07	37
Bus 4	08	38	CU	08	38
Bus 5	09	39	CU	09	39
Bus 6	10	40	cu	10	40
Bus 7	11	41	cu	11	41
Bus 8	12	42	CU	12	42
Bus 9	13	43	CU	13	43
Interface Enable	14	44	CU	14	44
Index Mark	18	48	Drive	18	48
Sector Mark*	25	55	Drive	25	55
Fault	15	45	Drive	15	45
Seek Error	16	46	Drive	16	46
On Cylinder	17	47	Drive	17	47
Unit Ready	19	49	Drive	19	49
Write Protected	28	58	Drive	28	58
Address Mark	20	50	Drive	20	50
Reserved	21	51	-	21	51
Pick	29	-	CU	29	-
Sequence Disable	59	-	CU	59	_
Reserved	30	60		30	60

*Not Used

Table 2-7. Read/Write Cable Signal/Pin List

Signal Name	Controller I/O Connector	Drive I/O Conn.
Servo Clock Gnd Read Data Gnd Read Clock Gnd Write Clock Gnd Write Data Gnd Unit Selected Gnd Seek End	J2/3-02,21 01 03,23 22 05,24 04 06,26 25 08,27 07 29,09 28 10,30	JXX-02,14 01 03,16 15 05,17 04 06,19 18 08,20 07 22,09 21 10,23
Servo Clock Gnd Read Data Gnd Read Clock Gnd Write Clock Gnd Write Data Gnd Unit Selected Gnd Seek End	12,31 11 13,33 32 15,34 14 16,36 35 18,37 17 39,19 38 20,40	JXX-02,14 01 03,16 15 05,17 04 Physical 06,19 18 1 and 3 08,20 07 22,09 21 10,23

Note: Each signal is a differential pair with pin numbers given by: JXX-1st pin, 2nd pin.

Two 20-conductor Read/Write Cables (see figure 2-4) connect between J2 and the corresponding read/write cable connectors on the drives at physical address 1 and 2. Read/write data can be transmitted between the controller and additional drives in the same manner through connector J3, with the two 20-conductor Read/Write Cables going to the drives at physical addresses 2 and 3. As has been described for single drive installations, the logical address of each drive is set at each drive.

If only two drives are to be connected to the controller, connect a single 20-conductor Read/Write Cable between J2 of the controller and the first drive and another cable between J3 and the second drive. This interconnection method eliminates the need to construct a split (double) Read/Write Cable.

2-19. POWER UP/DOWN CONSIDERATIONS

If power is applied to, or removed from, the system while a drive is READY, a spurious disk write operation could occur. To prevent this from happening always ensure that the drives are not spinning when system power to the controller is switched on or off.

2-20. DIAGNOSTIC CHECK

A PROM-resident self-diagnostic may be used to verify the controller operation. Instructions for execution of the diagnostic are given in chapter 3.

CHAPTER 3 PROGRAMMING INFORMATION

3-1. INTRODUCTION

This chapter describes the programming conventions that must be followed to initiate and monitor the transfer of data between the host memory and a disk drive. Included in this section are a discussion of: disk organization, track sectoring format, disk controller communications protocol, interrupt handling and the use of disk control functions.

3-2. DISK ORGANIZATION

The iSBC 220 SMD Disk Controller can communicate with from one to four disk drive units. Each drive has a number of disk surfaces, which are fixed, removable or both. In the following discussion, a head is assumed to be associated with a single disk surface. Each surface can have up to 1024 tracks (circular data paths numbered 0 through 1023). The set of tracks on multiple recording surfaces at a given head position or location is referred to as a

"cylinder" (see figure 3-1). A drive that has 1024 tracks per surface thus has 1024 cylinders.

Each track is divided into equal-sized sectors. Each of these sectors includes a sector identification block with error checking information and a data block, also with error checking information. The iSBC 220 controller allows the user to select the size of the data block; the size of the data block then determines the maximum number of sectors permitted per track (as shown in Table 3-1).

Table 3-1. Data Block Length vs. Sectors Per Track

Bytes Per Data Block	Maximum Number of Sectors Per Track
128	108
256	64
512	35
1024	18

Figure 3-1. Disk Drive Organization and Terminology

3-3. TRACK SECTORING FORMAT

The controller generates the format of the sector identification block, the data block and the error checking fields of each sector of the disk, one track at a time. Figure 3-2 shows how the controller organizes this information. Refer to the paragraph 3-12 and 3-13 for further information on track formatting.

3-4. CONTROLLER I/O COMMUNICATIONS BLOCKS

The host processor and the disk controller use four blocks of host memory and one host I/O port to exchange instructions and status. The I/O communications blocks are titled: Wake-Up Block, Channel Control Block, Controller Invocation Block and I/O Parameter Block. Sixty-eight bytes of host memory must be dedicated to the I/O communications blocks.

NOTE

Following the initialization of the controller, the Wake-Up Block, Channel Control Block and Controller Invocation Block must be maintained at their assigned locations. The location of the I/O Parameter Block can be changed providing that the I/O Parameter Block Pointer in the Controller Invocation Block is changed to correspond to the new location.

The controller uses these blocks to perform three basic functions: initialize the controller, check and transmit status, and obtain user selected disk access functions and parameters. In addition to these I/O communications blocks, certain controller functions (such as track formatting) also require data/parameter buffers in host memory. Dedicated locations in host memory, however, are not required for these buffers. One I/O port in the host processor's addressable I/O space is also required. The host uses this port, called the Wake-Up I/O Port, to initiate controller activity.

The sequence in which the controller accesses these blocks varies with the type of operation being performed, but for general data transfers (reads or writes), the blocks are accessed as follows:

- The host loads the I/O Parameter block in system memory with a command and parameters for the function the controller is to perform (for example read data). See Figure 3-3.
- (2) The host then transmits a wake-up command (01H) to wake-up I/O port, signaling the controller to go to I/O communications blocks for instructions.
- (3) The controller goes to the Channel Control Block and links its way through the Controller Invocation Block to the I/O Parameter Block. (The Wake-Up Block is used only during controller initialization and by 8089 firmware.)

Figure 3-2. Sector Data Format.

Figure 3-3. Host CPU-Disk Controller Interface Through the I/O Communications Blocks

- 4 At the I/O Parameter Block, the controller reads the command and parameter data into its RAM and begins the data transfer function.
- (5) The controller reads data from the selected drive into its RAM, then performs a DMA transfer of the data from RAM into system memory.
- 6 When the data transfer is complete, the controller posts the status in the Controller Invocation Block, sends an interrupt to the host and awaits further instructions.

These I/O communications blocks are accessed in a similar manner when performing a write function.

A detailed description of these blocks and the data required in each is provided in paragraphs 3-6 through 3-10. Refer to paragraphs 2-7 through 2-10 for a discussion of selecting the wake-up address, wake-up I/O port address and 8-bit or 16-bit host.

3-5. HOST CPU-CONTROLLER-DISK DRIVE INTERACTION

Figure 4-2 shows a simplified block diagram of the major hardware sections of the host CPU, host memory, controller and disk drives. The host system memory contains all the controller I/O communications blocks, as well as the data buffers. The host initiates controller activity through the wake-up I/O port, which it addresses through the Multibus interface. The Intel 8089 I/O processor (IOP) handles all communicates between the host CPU, host memory and disk drives, once the host has initiated controller activity. Controller opprations software is contained in on-board PROM. RAM on the controller board facilitates intermediate data storage between the host and the disk drive.

3-6. WAKE-UP I/O PORT

To invoke controller activity, the host CPU transmits a wake-up command byte to the controller through

the wake-up I/O port. Three wake-up commands are allowed:

00Н	CLEAR INTERRUPT — Controller to host interrupt is reset; controller reset is cleared.
01H	START OPERATION — Instructs controller to start the operation that the elements of the I/O parameter block define.
02H	RESET CONTROLLER — Performs hardware reset of controller. A clear interrupt (00H) must be initiated following this command. (Each time the controller is reset, the communications link between the controller and the host must be reestablished through the Initializing function.)
03H through FFH	Reserved.

03H through FFH Reserved.

The sixteen wake-up address switches on the controller board determine the address of the wake-up I/O port.

3-7. WAKE-UP BLOCK

The Wake-Up Block is the first of the I/O communications blocks (see Figure 3-4). It is used to establish a link between the controller and the I/O communications blocks in host system memory.

3-8. CHANNEL CONTROL BLOCK

The controller uses the Channel Control Block to indicate the status of the internal processor (the Intel 8089 I/O Processor) and to invoke processor program operations. The Channel Control Block requires 16 bytes (see Figure 3-5). Except for the BUSY 1 FLAG (byte 1) and the Controller Invocation Block address (bytes 2 through 5), the information contained in this block is used to invoke controller operations that are transparent to the host.

3-9. CONTROLLER INVOCATION BLOCK

The controller uses the Controller Invocation Block (CIB) to post status to the host CPU and to locate the starting address for the controller's on-board disk interface program. The status sempahore byte (byte 3) has a special purpose. The host uses this byte to indicate to the controller whether it has read the current contents of the status byte and is ready for a status update. The Controller Invocation Block requires 16 bytes (see Figure 3-6).

3-10. I/O PARAMETER BLOCK

The I/O Parameter Block (IOPB) contains the controller operating commands, which define the function the controller is to perform (read, write, etc.), and the parameters of the function (memory address, disk head and cylinder, etc.). The I/O Parameter Block requires 30 bytes of host memory space. Figure 3-7 describes the function of each byte.

Figure 3-4. Wake-Up Block

Figure 3-5. Channel Control Block

3-11. TYPICAL CONTROLLER OPERATIONS

The following section describes how to set up the I/O communications blocks in the host memory, how to initialize the controller and how to perform the various data transfer operations. It is assumed that the controller board has been properly installed as described in Chapter 2.

3-12. INITIALIZING THE CONTROLLER

The controller must be initialized before any data transfer activities between the host system memory and the disk drives can be initiated. Initialization of the controller involves:

 Establishing a link between the 8089 and the I/O communications blocks in host system memory. Reading the parameters that describe the disk drives with which the controller is to interface into the controller's RAM buffer, using the Initialize function (FUNCTION = 00H).

This initialization must be performed following a:

- 1. Power-on event.
- Controller reset (02H written to the wake-up I/O port).

After the controller has been initialized, any of the data transfer functions described in paragraphs 3-13 through 3-25 can be performed in any sequence. (Refer to paragraphs 4-12 through 4-15 for a detailed explanation of controller initialization.)

The following procedure gives the sequence in which the controller initializing activities must be performed. Prior to initializating the controller, check

Figure 3-6. Controller Invocation Block

that the system data bus switch (S2-1), the host system I/O address switch (S2-2), the wake-up address switches (S1-1 through S1-8 and S2-3 through S2-10), and the interrupt level jumper has been set as described in the procedure titled Switch/Jumper Configurations in Chapter 2.

To initialize the controller, the host CPU must perform the following steps:

1. Establish addresses for the four I/O communications blocks in host memory:

Wake-Up Block 6 Bytes Channel Control Block 16 Bytes Controller Invocation Block 16 Bytes I/O Parameter Block 30 Bytes

Remember that the address of the first byte of the Wake-Up Block must be equal to the wake-up address set in the controller's wake-up address switches times 24. For example, if the switches are set to 0673H, the address of byte 0 of the Wake-Up Block is:

06730H 20-Bit Addressing 6730H 16-Bit Addressing

Figure 3-7. I/O Parameter Block Description

Byte	Name and Function	
11	FUNCTION — Code for operation to be performed. Refer to following discussion of typical controller operations for a detailed discussion of these operations: OH INITIALIZE O1H TRANSFER STATUS O2H FORMAT O3H READ SECTOR ID O4H READ DATA O5H READ TO BUFFER AND VERIFY O6H WRITE DATA O7H WRITE BUFFER DATA O8H INITIATE TRACK SEEK O9H - 0DH Reserved OEH BUFFER I/O OFH DIAGNOSTIC	
12 and 13	MODIFIER — Code to modify function codes. Bit 0 Suppresses interrupt on command completion when set to 1. Bit 1 Automatic retries for error recovery are inhibited when set to 1. Bits 2 through 15 Reserved.	
14 and 15	CYLINDER — Binary number specifying logical cylinder code; bit 0 is least significant bit of number.	
16	HEAD — Binary number specifying logical head code; bit 0 is least significant bit of number.	
17	SECTOR — Binary number specifying logical sector code; bit 0 is least significant bit of number.	
18 through 21	DATA BUFFER ADDRESS — Address of first byte in host system memory data (parameter) buffer.	
22 through 25	REQUESTED TRANSFER COUNT — Count of bytes requested to be transferred between the system and the disk or controller. Four-byte binary number, least significant bits in first byte. See description of ACTUAL TRANSFER COUNT, bytes 4 through 7 in IOPB.	
26 through 29	Reserved.	

Figure 3-7. I/O Parameter Block Description (Continued)

- 2. Set up the Wake-Up Block (see Figure 3-8).
- 3. **Set BUSY 1 Flag (Optional).** Set the BUSY 1 flag (byte 1 of the Channel Control Block) to non-zero (FFH). This allows the host to monitor the BUSY 1 flag to find out when the initialization procedure is complete.
- Reset the controller. Host writes a 02H to the wake-up I/O port.
- 5. Clear the reset. Host writes a 00H to the wake-up I/O port.
- 6. Establish the host-controller communications link. Write a 01H to the wake-up I/O port. The controller goes to the Wake-Up Block in host memory and records the address of the Channel Control Block, then goes to the Channel Control Block and clears the BUSY 1 FLAG. On all subsequent 01H commands to the wake-up I/O port, the controller will go to the Channel Control Block.
- 7. Set up the Channel Control Block as shown in Figure 3-8.
- 8. Set up the Controller Invocation block as shown in Figure 3-8. Be sure the STATUS SEMAPHORE, byte 3, is set to 00H.
- Set up the I/O Parameter Block as shown in Figure 3-8. Be sure the UNIT, byte 10, is set for the correct unit number and the FUNCTION,

- byte 11, is set for the Initialize function (FUNCTION = 00H). Initialize unit 0 first.
- 10. Establish parameter buffer. Set up a disk drive parameter data buffer with the parameters for the drive to be initialized as shown in Figure 3-8. Be sure the data buffer address in the I/O Parameter Block points to the first address of this data buffer.
- 11. **Start initialize function.** Poll the BUSY 1 FLAG (Byte 1 of the CCB) and write a 01H to the wake-up I/O port when the flag is zero. The controller goes to the Channel Control Block, then links its way through the Controller Invocation Block and I/O Parameter Block and reads the disk drive parameters for the unit specified.
- 12. Respond to and process the resulting interrupt or status or both.
- 13. **Reset I/O Parameter Block.** Set the UNIT, byte 10, for the next unit to be initialized and set the data buffer address, byte 18 through 21, for the beginning address of the unit's disk parameters
- 14. Repeat steps 10 through 12 for each drive unit. Note that the initialization procedure MUST BE PERFORMED FOR ALL FOUR DRIVE UNITS, starting with unit 0, even if one or more of the drives do not exist. Initialize all unattached drives with all zeros.

NOTE: Set up the shaded bytes in each of the I/O Communications Blocks and in the Data Buffer.

Figure 3-8. I/O Communications Blocks Linking

The controller is now initialized. This procedure need not be repeated except after a power-on or a controller reset. For all subsequent disk activities, the host communicates with the controller through the Channel Control Block, the Controller Invocation Block and the I/O Parameter Block.

3-13. TRACK FORMATTING

The Format Track function (FUNCTION = 02H) writes the gaps, sector headers and data fields (see Figure 3-2) on a track — one track per command. A track can be designated as a normal, assigned alternate or defective track. A defective track generally points to an assigned alternate track. Refer to the discussion of alternate and defective track handling in paragraph 3-14.

Use the following procedure to format a track.

- Set up the I/O Parameter Block as shown in Figure 3-9.
- 2. Set up a 6-byte data buffer for the type of track to be formated as shown in Figure 3-9. A track can be designated as a data track, assigned alternate track or defective track. The user pattern is repeated throughout the data field of every sector. In the case of a defective track, the user pattern is a pointer to the alternate track. If the alternate track is defective, it can not be used to point to another alternate. An interleave factor of 1 corresponds to consecutive sectors.
- 3. **Initiate the format operation.** Write a 01H to the wake-up I/O port.
- 4. Respond to and process the resulting interrupt or status or both.

NOTE

Always format the last track on head 0 as a data track. This track should then be reserved for use by the on-board diagnostic.

3-14. ALTERNATE AND DEFECTIVE TRACK HANDLING

It is suggested that each disk surface be divided into two areas (see Figure 3-10), the data track area and the alternate track area. The user assigns the number of tracks in the alternate track area, typically 1 - 2% of the total number of available tracks on the surface. If a disk surface has 512 tracks, tracks 0 through 500 would constitute the data track area and tracks 501 through 510 would constitute the alternate track area. The last track at Head 0 must be reserved for the diagnostic program.

When a track within the data track area is deemed defective, the host reformats the track, giving it a defective track code and entering the address of the next available alternate track in the data fields. The alternate track that is selected must be formatted as an assigned alternate track.

When the controller accesses a track that has been previously marked defective, it will automatically invoke a seek to the assigned alternate track and use the alternate as if it were the data track area. This operation is automatic and is invisible to the user, except for the added time required to complete the operation.

3-15. DATA TRANSFER AND VERIFICATION

Seven data transfer and verification command functions are allowed, selected through the FUNC-TION byte in the I/O Parameter Block: Read Sector ID, Read Data, Read Data to Buffer and Verify, Write Data, Write Data from Buffer, Initiate Track Seek and Buffer I/O.

NOTE

All data transfers between the host system memory and a disk drive unit are buffered through the controller's on-board RAM buffer. During a write, the controller performs a DMA transfer of a one-sector block of data from the host system memory to the RAM buffer. It then transfers the sector serially from the RAM buffer to the disk in two byte increments. When reading from the disk, the controller performs a serial transfer of a sector of data from the disk to the RAM buffer in two byte increments. When the entire sector has been read into the RAM and all error checking has been completed. the controller then performs a DMA transfer of the one-sector block from the RAM to host system memory.

The controller contains a burst error checking code (ECC) computing circuit that creates an error checking code for each sector ID and each data block written into disk memory. When reading data from the disk, the controller verifies the sector ID and the information in the data blocks using these error checking codes. If errors are detected that can be corrected (occur within an eleven-bit burst or less), they are corrected and the remainder of the operation is completed. If the error cannot be corrected, the sector is re-read. If after 27 retries the errors remain uncorrectable, the operation is terminated and a Hard Error is indicated in the operation status byte (byte 1) of the Controller Invocation Block. To obtain detailed information on the nature of the error,

Figure 3-9. Track Formatting

Figure 3-10. Alternate Track Formatting

perform the Transfer Error Status function (refer to paragraph 3-25).

Each of the data transfer and verification functions is described in detail in the following paragraphs. To use any one of these functions, the host CPU must perform the following steps:

- 1. Set up the I/O parameter block as shown in the paragraph describing the function.
- 2. **Initiate the operation.** Write a 01H to the wake-up I/O port.
- Respond to and process the resulting interrupt or status or both.

3-16. READ SECTOR ID

The Read Sector ID function (FUNCTION = 03H) searches for the first error free sector on the selected track and writes the contents of the sector ID field into a 5-byte data buffer in host memory (see Figure 3-11). An implied seek, head select or volume change, is not performed. The Read Sector ID is performed on the cylinder, volume and head that the previous function selected. One use of this function is to search the alternate track area for tracks that have not been assigned as alternates.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-11, and reserve a 5-byte data buffer in host system memory.

3-17. READ DATA

The Read Data function (FUNCTION = 04H) reads data from the disk into host system memory. It begins reading with the first byte of the selected sector and ends reading when the requested byte count is reached, end of media is reached or a hard failure is detected. If multi-sector data transfers are requested the controller automatically seeks to the next sector, the next head and the next cylinder, in that order. Automatic head increments are supported only within the volume, fixed or removable, but not between volumes, for example, fixed across to removable. The last sector, head and track address in the data track area defines the end of media. An implied seek is invoked if the current head position is different from the specified track identification. The DATA BUFFER address set in the I/O parameter block is the address in host system memory where the first data byte read from the disk is to be transferred. Since the data being transmitted from the disk drive is buffered in the controller's RAM, data overruns cannot occur. To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-12.

Figure 3-11. Read Sector ID

Figure 3-12. Read Data

3-18. READ DATA INTO CONTROLLER BUFFER AND VERIFY

The Read Data into Controller Buffer and Verify function (FUNCTION = 05H) reads data from the disk into the controller on-board RAM and checks the ECCs to verify the sector ID and data fields for all sectors affected. It begins reading with the first byte of the selected sector and ends reading when the requested byte count is reached, end of media is reached or a hard failure is detected. The multisector data verification is supported through the auto-sector, auto-head, auto-cylinder protocol described for Read Data function. End of media and implied seek are also supported as described for the Read Data functions.

The Read Data into Controller Buffer and Verify function has two applications:

- 1. Allows data to be verified after it has been written from host system memory to the disk.
- 2. Allows data to be transferred from one disk location to another by coupling this function with the Write Data from Controller Buffer function.

To perform the Read Data into Controller Buffer and Verify function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-13.

I/O Parameter Block

Figure 3-13. Read Data into Controller Buffer and Verify

3-19. WRITE DATA

The Write Data function (FUNCTION = 06H) writes data from host system memory onto the disk. It begins reading from the specified host data buffer address and writes to the first byte of the selected sector. It ends writing when the requested byte count is reached, end of media occurs (system memory or disk space) or a hard failure is detected. When writing to more than one sector, the sector selection is automatic as described for the Read Data function. Auto-head increments and implied seek are also supported as described for the Read Data function. If writing ends in the midst of a sector, the remaining area of the sector is filled with zeros.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-14.

3-20. WRITE DATA FROM CONTROLLER BUFFER TO DISK

The Write Data from Controller Buffer to Disk (FUNCTION = 07H) writes data from the controller on-board RAM onto the disk. It begins reading from the first address of the controller's data buffer (4010H) and writes to the first byte of the selected disk sector. It ends writing when the requested byte count is reached, end of media occurs (controller memory or disk space) or a hard failure is detected. When writing to more than one sector, the sector selection is automatic as described for the Read Data function and the data in the buffer is repeated for each sector written. Auto-head increments, implied seek and end of media are also supported as is described for the Read Data function. If writing ends in the midst of a sector, the remaining area of the sector is filled with zeros.

I/O Parameter Block

Figure 3-14. Write Data

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-15.

3-21. INITIATE TRACK SEEK

The Initiate Track Seek function (FUNCTION = 08H) positions the read/write head on a specified track, if the head is not already on that track. When issued sequentially to several drives, this command allows multiple disk drives to perform concurrent (overlapping) seeks. If a seek to a cylinder beyond the end of media (which includes alternates) is initiated, the heads are automatically returned to track zero, and an invalid address error is posted. If an operation complete interrupt is enabled, it is invoked when the seek command has been initiated and a seek complete interrupt (which is always enabled) is invoked when the seek is completed. The operation complete interrupt allows a function to be initiated on a second drive while the seek is being performed on the first drive.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-16.

3-22. BUFFER I/O

The Buffer I/O function (FUNCTION = 0EH) transfers data between the host system memory and controller on-board RAM. Beginning addresses in the host system memory and controller buffer memory are specified. Data transfer begins at these addresses and ends when the requested byte count is reached. Since the controller has only 64K bytes of local memory address space, the most significant bytes of the REQUESTED TRANSFER COUNT (bytes 24 and 25) are ignored.

CAUTION

Data transfers from the host system memory to the controller-buffer must be written to addresses within the range of 4000H to 4600H.

I/O Parameter Block

Figure 3-15. Write Data from Controller Buffer to Disk

1 (Reserved) 0 (Reserved) 3 2 5 4 Actual Transfer Count 7 (Reserved) 9 8 **Function** Unit 10 11 Modifier 13 12 15 Cylinder 14 17 Sector Head 16 Data Buffer Offset 19 18 Data Buffer Segment 21 20 23 22 Requested Transfer Count 25 24 27 (Reserved) 26 29 (Reserved) 28

I/O Parameter Block

Figure 3-16. Initiate Track Seek

The beginning address in controller memory and the direction of data transfer are specified in the CYLINDER and HEAD fields, respectively:

Bytes 14 and 15 Starting controller memory address:

Byte 15 - High Byte

Byte 14 — Low Byte

Byte 16

Direction of data transfer:

00H — From controller to host

FFH - From host to controller

The Buffer I/O function has two applications. Its primary purpose is for use with the diagnostic program. It also allows memory-to-memory transfers with a minimum of host overhead.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-17.

3-23. DIAGNOSTIC

The Diagnostic function (FUNCTION = 0FH) causes the controller to perform a go/no-go self-diagnostic test that verifies internal data and status electronics and checks position and read/write electronics in the disk units. The diagnostic test program is contained in the controller's on-board PROM.

The diagnostic track is always located on a drive unit's last (highest number) track of head 0. When allocating memory space for the disk unit, this track must be dedicated to the diagnostic program. When initiating the diagnostic program, the head and cylinder are selected automatically, the user selects the drive unit. The diagnostic test is divided into three parts. The upper byte of the MODIFIER field (byte 13) determines the part of the diagnostic test that is executed:

Figure 3-17. Buffer I/O

Byte 13 Function Executed

- 00H Controller seeks the designated diagnostic track, performs a read ID and verifies the track position. It then writes and reads sector 0 with a 55AAH data pattern and verifies that the data read matches the data written.
- 01H Controller performs a ROM checksum test to verify the contents of ROM.

02H or Controller recalibrates the drive. greater

Any errors in the reading or writing are posted in the error status registers.

To perform this function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-18.

3-24. POSTING STATUS

When the controller has completed an operation (read data, seek track, etc.), it posts the operation status in byte 1, the OPERATION STATUS byte, of the controller invocation block, using the following procedure:

- 1. The controller checks the STATUS SEMA-PHORE byte (byte 3 of the controller invocation block) for 00H.
- 2. If the STATUS SEMAPHORE byte is non-zero, it indicates that the host CPU has not checked the OPERATION STATUS byte for the last status posted. When the host CPU does check the operation status, it sets the STATUS SEMAPHORE byte to 00H and clears the interrupt.
- 3. When the controller reads 00H in the STATUS SEMAPHORE byte, it posts the current status in the OPERATING STATUS byte, sets the STATUS SEMAPHORE byte back to non-zero and sets the interrupt.

1 (Reserved) 0 3 (Reserved) 5 4 Actual Transfer Count 7 6 9 (Reserved) 8 **Function** Unit 11 10 13 Madifier 12 Cylinder 15 14 17 Sector Head 16 19 Data Buffer Offset 18 Data Buffer Segment 21 20 23 22 Requested Transfer Count 25 24 27 26 (Reserved) 29 28 (Reserved)

I/O Parameter Block

Figure 3-18. Diagnostic

4. The host CPU in turn, either polls the STATUS SEMAPHORE byte periodically for a non-zero or is interrupted, indicating that new status is present.

The status posted includes: operation complete, seek complete, media change detected and errors detected. If an error was detected, the unit on which the error occurred and an indication of whether the error was a hard error or a summary error is posted (see Figure 3-6). A more detailed description of the error is recorded in the error status buffer in the controller memory. To examine this error status the user transfers the information in the error status buffer from the controller to host system memory using the transfer error status function (FUNCTION = 01H) described in the following paragraph.

It should be noted that error status information is not cumulative. The error status buffers are cleared at the beginning of each new command operation, except the Transfer Error Status Command.

3-25. TRANSFER ERROR STATUS

The Transfer Error Status function (FUNCTION = 01H) transfers error status from the 12-byte error status buffer in the controller memory to a data buffer in the host system memory. The user can then examine the status bits to determine the cause of the error. Table 3-2 shows the information stored in each byte of the error status buffer. Table 3-3 describes which kind of errors are indicated by the setting of the hard (unretrievable) error and soft (retrievable) error bits in bytes 0 through 2. To perform the Transfer Error Status function, set up the shaded bytes in the I/O parameter block as shown in Figure 3-19.

Table 3-2. Error Status Buffer

	Error Status Buffer	
Byte	Function	
0 and 1	HARD ERROR STATUS — See Table 3-3	
2	SOFT ERROR STATUS — See Table 3-3	
3 and 4	DESIRED CYLINDER	
5	DESIRED HEAD	
6	DESIRED SECTOR	
7 and 8	ACTUAL CYLINDER & FLAGS	
9	ACTUAL HEAD & VOLUME	
10	ACTUAL SECTOR	
11	NUMBER OF RETRIES ATTEMPTED	

The interrupt on command complete can be disabled by entering a one in bit 0 of the Modifier word in the I/O parameter block (bytes 12 and 13). The seek complete and media change interrupts can not be disabled. To clear an interrupt, the host writes a 00H to the Wake-Up I/O port.

Pins on the controller board allow the interrupt priority level of the controller to be set to from 0 to 7. Refer to the discussion of interrupt priority level selection in Chapter 2.

3-26. INTERRUPTS

The controller normally posts interrupts to the host on three conditions:

- 1. Command complete
- 2. Seek complete
- 3. Media change (change disk pack)

3-27. EXAMPLE CONTROLLER I/O PROGRAM

Appendix A provides an example of a host processor program to initiate data transfers between the host system memory and disk drives through the iSBC 220 controller.

I/O Parameter Block

Figure 3-19. Transfer Error Status

Table 3-3. Bit Functions in Hard and Soft Error Bytes

Byte	Bit	Function
0	0 through 2	Reserved for future use.
1	3	RAM ERROR — Controller RAM error was detected.
	4	ROM ERROR — Controller ROM error was detected.
	5	SEEK IN PROGRESS — Indicates a seek was already in progress for a unit when another seek was requested.
	6	ILLEGAL FORMAT TYPE — Both alternate track and defective alternate track flag set indi- cating an attempt to create an alternate track for a defective alternate track, which is not allowed, or an attempt to access an unassigned alternate track.
	7	END OF MEDIA — End of media was encountered before requested transfer count expired.
1	8	ILLEGAL SECTOR SIZE — Sector size read from the sector ID field conflicts with sector size information that controller specified in initialization command.
	9	DIAGNOSTIC FAULT — Micro-diagnostic fault detected.
	Α	NO INDEX — Controller did not detect index pulse.
	В	INVALID COMMAND — Invalid function code detected.
	С	SECTOR NOT FOUND — Desired sector could not be located on selected track.
	D	INVALID ADDRESS — Invalid address was requested.
,	Е	SELECTED UNIT NOT READY — Selected unit is not ready, not connected, or not respond- ing to unit connect request.
	F	WRITE PROTECTION FAULT — An attempt has been made to write to a write protected unit.
2	0 through 2	Reserved for future use.
	3	DATA FIELD ECC ERROR — Error has been detected in the data field of a sector. If bit 6 in Controller-Invocation status byte (byte 1) is set, error is hard and uncorrectable. If bit 6 is not set, error is soft and correctable.
	4	ID FIELD ECC ERROR — Error has been detected in the ID field of a sector. If bit 6 in Controller-Invocation status byte (byte 1) is set, error is hard and uncorrectable. If bit 6 is not set, error is soft and correctable.
	5	DRIVE FAULT — Hardware fault detected in selected drive unit. Fault characterized by: read/write fault, positioner fault, power fault or speed fault.
	6	CYLINDER ADDRESS MISCOMPARE — ID field contains a cylinder address different from the expected cylinder address.
	7	SEEK ERROR — Hardware seek error was detected.

CHAPTER 4 PRINCIPLES OF OPERATION

4-1. INTRODUCTION

This chapter provides a functional description of the iSBC 220 SMD Disk Controller circuit operation. The discussion assumes that the reader has a working knowledge of digital electronics and has access to the individual component description of each integrated circuit used on the board. As a prerequisite, the reader should be familiar with the programming conventions discussed in Chapter 3 of this manual, and the functional operation of the Intel 8089 I/O processor and the Multibus interface. Familiarity with the disk drive's operation and interface specifications will also prove beneficial in understanding the controller operation.

4-2. SCHEMATIC INTERPRETATION

A set of schematic diagrams for the controller board (figure 5-2) and a component location diagram (figure 5-1) are included in Chapter 5 of this manual.

The schematics are drawn to standard drafting conventions with input signals entering from the left and output signals exiting to the right. Input and output signals between individual sheets of a schematic include a location coordinate code immediately preceeding (input signals) or following (output signals) the signal name. This code defines the location of the origin or destination of the signal within the schematic diagrams. The first digit of the code is the schematic sheet number, and the last two characters specify the zone defined by the horizontal and vertical grid coordinates, which are printed around the perimeter of each schematic sheet. For example, the code "7B8" indicates that the origin or destination of the associated signal appears on sheet 7 of the schematic set within the zone defined by grid coordinates "B" and "8".

An "X" for one of the grid coordinates indicates an entire vertical column or horizontal row on the schematic sheet. For example, the code "7BX" indicates the entire "B" zone on sheet 7.

The logic symbols used in this manual are drawn as specified in ANSI Standards 14.15 and Y32.14. Standard definitions are used for symbols and active line levels on inputs and outputs (see figure 4-1). A small circle on the input of a logic element indicates that a relative low level is needed to activate the element. The absence of a circle indicates that a relative high level is needed to activate the element. Output levels are indicated in the same manner.

Logic gating symbols are drawn according to their circuit function rather than the manufacturer's definition. For example, the gates shown in figure 4-1 can be drawn in one of the two configurations shown, depending on their circuit application.

In addition to the inversion symbol convention, signal nomenclature also follows an active state convention. When a signal (or level) is active in its low state, the signal name is followed by a virgule or "slash" (e.g., XACK/); when a signal is active in its high state, the slash is omitted from the signal name, (e.g., XACK). This convention corresponds to putting a bar over a signal name to indicate it is active in its low state (e.g., XACK).

4-3. FUNCTIONAL OVERVIEW

General. The function of the iSBC 220 SMD Disk Controller board is to allow the host system to access any location on a specific disk of a selected disk drive and either:

- 1. Transfer data to that disk location from system (host) memory (write operation), or
- 2. Transfer data from that disk location to system memory (read operation).

To accomplish this task, the controller circuitry is divided into two sections (see figure 4-2):

Figure 4-1. Logic conventions.

Figure 4-2. Simplified block diagram of iSBC 220 controller.

- Logic that controls communications and data transfer between the host processor and the controller through the Multibus interface, and
- Logic that controls data transfer between the controller and the disk drive(s) through the SMD interface.

The Intel 8089 I/O processor (IOP) controls the data transfer process, using a program stored in on-board ROM. It receives instructions from the host processor through four I/O communications blocks in system memory. Once the host instructs the controller to begin a data transfer, the 8089's internal processor makes a DMA transfer to or from system memory, independent of the host processor.

2K bytes of RAM are included on the board for intermediate storage of data and to allow on-board error checking. This data buffer allows DMA transfer to be made between the controller and host system memory, which minimizes Multibus overhead and eliminates disk drive overruns.

Communicating with the host. Figure 4-3 provides a detailed block diagram of the controller. The Bus Arbiter and the Bus Controller manage the transfer of data between system memory and controller through the Multibus interface. The Bus Arbiter negotiates with the current bus master for control of the Multibus interface. The Bus Controller generates control signals that gate data transfers

between system memory and the on-board RAM. It also controls the transfer of data from RAM to the disk communication circuitry.

The Multibus interface Address Latches transmit 20-bit addresses to system memory via the Multibus interface. The Multibus interface Data Transceiver transmits data either to or from system memory via the Multibus Interface. The controller data bus is 16-bits. The Data Transceiver uses a byte-swap technique to allow data transfer with either an 8-bit or 16 bit system memory.

The Wake-Up Address Comparator is used to assign the controller a host system I/O port address and to set up a communications link between the 8089 IOP and the I/O communications blocks in system memory. (A detailed discussion of the controller initialization procedure is given in Chapter 3 and in paragraphs 4-12 through 4-15 in this section.)

Communicating with the disk. The 8089 IOP treats the ROM, RAM and disk communications side of the controller circuitry as local memory. The Local Address Latches transmit 16-bit addresses to local memory. The Local Data Transceiver transmits data either to or from local memory. Some of the addresses in local memory provide access to local I/O ports (see paragraph 4-20 for a detailed discussion of local I/O ports). The Address Decoder decodes these addresses and generates chip select or enable

Figure 4-3. iSBC 220™ Controller Functional Block Diagram

signals that control the transfer of data to and from the disk. For example, the address 8028H enables the 16-Bit Write Buffer to receive a data word from the local memory. The ROM and RAM are also assigned specific ranges of addresses in local memory.

The 16-Bit SER/DES (Serializer/Deserializer) performs the serial-to-parallel and parallel-to-serial conversion required to transfer data between the disk and system memory. The 16-Bit Write Buffer and the 16-Bit Read Buffer provide intermediate storage for a single 16-bit parallel word between the RAM and the SER/DES. On a write operation, a 16bit word is transferred from RAM to the write buffer. The SER/DES then converts the word from parallel to serial and transmits it to the disk through the write data driver. On a read operation, a 16-bit serial word is transmitted from the disk through the Read Data Receivers to the SER/DES. The SER/DES then performs a serial-to-parallel conversion and stores the resulting parallel word in the read buffer. The Write Data Driver and the Read Data Receivers are designed to generate and read SMD standard drive signals.

The 32-Bit ID Comparator determines when the selected sector on the disk is found during the search for sector ID operation that precedes a write or read function. When a write or read initiated, the 32-bit sector identification (cylinder, head and sector number) is loaded in the 32-Bit ID Comparator. Sector IDs from the disk are then read and compared with the selected sector ID. When the selected sector is found, data transfer is initiated.

The 32-Bit ECC Generator creates an error checking code (ECC) that is appended to the end of each sector ID field and to each data field (see figure 3-1). This ECC is used for error checking and correction of data errors. It allows all the errors in a burst of up to 11 bits to be corrected.

The Gap Control Logic controls the spacing of data within a sector. Three programmable Counters, which count disk clock pulses, provide timing for the Gap Control Logic. The ability to program the Counters allows the disk(s) to be formatted for a number of different record sizes.

The SMD Bus Control Logic transmits disk control information to the disk drive units through the Control Line Drivers. The Input Control Logic receives status information from the disk drive units and controls the sequencing of the controller read and write operations.

A more detailed overview of the read and write operations is given in paragraph 4-29 through 4-33.

4-4. DETAILED FUNCTIONAL DESCRIPTION

The detailed functional description of the iSBC 220 SMD Disk Controller circuitry is divided into two major sections: Controller to Host Communications and Controller to Disk Communications. Within each of these sections, the following subjects are discussed:

Controller to Host Communications:

- Multibus Interface
- 8089 IOP
- Bus Arbiter
- Bus Controller
- Multibus Interface Data Transfer Logic
- Controller Initialization
- Wake-Up Address Comparator
- Controller Reset and Clear
- Establishing a Link with I/O Communications Blocks
- Interrupt Priority
- Memory Map
- ROM
- RAM
- I/O Port Decode Logic

Controller to Disk Communications

- Controller to Disk Drive Interface
- DMA Mode
- Disk Formatting
- Write Data Transfer
- Read Data Transfer
- SER/DES Logic
- Sync Byte Comparator Logic
- 32-Bit ID Comparator Logic
- ECC Generator Logic
- Status Register Logic
- Line Drivers and Receivers

4-5. CONTROLLER TO HOST COMMUNICATIONS

The following discussion provides a detailed functional description of the section of the iSBC 220 SMD Disk Controller that communicates with the host through the Multibus interface.

4-6. MULTIBUS INTERFACE

The 8089 IOP communicates with the host processor and the system memory through the Multibus interface. The Multibus interface signal description and pin configurations are explained in Chapter 2. A detailed description of the Multibus interface operation can be found in the *Intel Multibus Specification* Intel Order Number 9800683.

4-7. 8089 I/O PROCESSOR (IOP)

The 8089 IOP, U79 (4X4), is a microprocessor device that has been designed specifically to perform high speed I/O transfers of data between system memory and mass storage devices such as disk drives. Its ability to perform DMA data transfers independent of the host processor allows it to carry out most system memory-to-disk transfers of data simultaneously with other host processor operations. Refer to *The 8086 Family User's Manual*, Intel Order Number 9800727 for a detailed explanation of the 8089 and supporting IC devices.

A number of 8089 control lines have important functions in the controller design. The RESET line (4D4), when pulled high, resets the 8089 to the beginning of its internal firmware control program. Channel Attention line CA (4C4) allows the host to gain the attention of the 8089. On the first channel attention following a reset, the 8089 fetches the contents of address FFFF6H and begins an internal initialization procedure. On subsequent channel attentions, the 8089 looks to the I/O communications blocks in system memory for further instructions. Refer to paragraphs 4-12 through 4-15 for a detailed discussion of the controller initialization procedure and the use of the CA line.

The Bus Interface Unit (BIU) in the 8089 controls the controller local data bus cycles, transferring instructions and data between the 8089 IOP and external memory or the disk. Every bus access is associated with a register tag bit that indicates to the BIU whether the host system memory or local memory is to be addressed. The BIU outputs the type of bus cycle on status lines S0/, S1/ and S2/. The 8288 Bus Controller decodes these lines and provides signals that selectively enable one bus or the other.

The 8089 is a 16-bit processor, but it is capable of making both single-byte fetches (8-bit system memory) or two-byte fetches (16-bit system memory). The address zero line, IADR-0 (5C1), controls the byte swapping facility of the controller when communicating with an 8-bit system memory.

4-8. CLOCK CIRCUIT

The clock circuit consists of U59, an 8284A Clock/Driver (4C5), and a 15 MHz crystal. The 8284A divides the crystal output by three to produce the 5 MHz CLK necessary to drive the 8089 IOP. The 8284A produces a reset signal (RST), which is used on power-up to reset the 8089, Interrupt Latch U60 (3B6) and the Read/Write Control logic. In addition to the reset signal, the 8284A also produces a synchronized ready input to the 8089. A high on the READY line received from the addressed device (XACK/ from external memory, RDY | TIME OUT from the on-board read/write port), indicates that the memory or read/write port has accepted data during a write operation or data is ready to be read during a read operation.

4-9. BUS ARBITER

The 8289 Bus Arbiter, U85 (3D6), controls the 8089 IOP's access to the Multibus interface (see Figure 4-4). The 8289 monitors the 8089's status lines (S01/, S1/ and S2/). When the lines indicate that the 8089 needs a Multibus interface cycle, and the 8089 does not presently control the bus, the 8289 activates a bus request (BREQ/). The low on BREQ/ is transmitted to the bus priority resolving circuitry in the host processor, which returns a low on Bus Priority In line BPRN/, giving the 8089 access to the Multibus interface. Having received access to the Multibus interface, the 8289 activates its busy signal (BUSY/), indicating to the other masters on the system that the Multibus interface is in use. The 8289 then activates the address enable signal (AEN/), which is transmitted to the 8288 Bus Controller, U86 (3C4), to enable its command outputs, to the 8284A Clock Generator, U59 (4C6), to enable its bus ready logic, and to the System Address Latches, U76-U78 (4X2), to allow an address to be gated on to the Multibus interface.

4-10. BUS CONTROLLER LOGIC

The 8288 Bus Controller, U86 (3C4), decodes the status line outputs (S0/, S1/ and S2/) from the 8089 IOP and generates the appropriate bus cycle signal. Table 4-1 shows the different signals generated for each configuration of the IOP's status lines.

These bus cycle signals can be divided into two groups: those which allow the 8089 to access system memory (MWTC/ and MRDC/) and those which allow the 8089 to access local memory (I-AIOWC/ and I-IORC/). The 8089 uses the I/O Read (I-IORC/) and I/O Write (I-AIOWC/) signals to read information from the local ROM, U82 and U83, (6X7), or to read from or write to the local RAM, U94 through

Figure 4-4. Bus Arbiter and Bus Controller Logic

Table 4-1. 8089 Status Line Decodes

Status Input		put	CPU Cycle	8288 Command
S2 /	S1/	S0/		
0	0	0	Instruction Fetch, Local	INTA/
0	0	1	Read Memory, Local	IORC/
0	1	0	Write Memory, Local	IOWC/, AIOWC/
0	1	1	Halt	None
1	0	0	Instruction Fetch, System	MRDC/
1	0	1	Read Memory, System	MRDC/
1	1	0	Write Memory, System	MWTC/, AMWC/
1	1	1	Passive	None

U97, (6X4). The 8089 also uses I-IORC/ and I-IOWC/ to gate on the Read and Write Function Decoders, U33 and U32 (5B2 and 5A2). The function decoders are explained further in paragraph 4-20.

The 8288 Bus Controller also generates a group of signals that control address and data flow throughout the iSBC 220 controller. The Address Latch Enable line (ALE) is used to strobe addresses from the 8089 into both the system Address Latches, U76-U78 (4X2), and the Local Address Latches, U80-U81 (5X7).

Data Transmit/Receive (DT/R), Data Enable (DEN), and Peripheral Data Enable (PDEN/) control the data flow through the controller. DT/R controls the direction of data transmission through the Multibus interface and local transceivers. If DT/R is high, data is transmitted either on to the Multibus interface through transceivers U91, U92 and U93 (4X7) or on to the local bus through transceivers U56 and U57 (4X6). If DT/R is low, the data transfer is in the opposite direction, into the 8089 through one of the two sets of transceivers. DEN and PDEN controls the selection of the transceivers. If DEN is high the Multibus interface transceivers U91, U92 and U93 are enabled, and if PDEN/ is low (indicating a peripheral cycle) local transceivers U56 and U57 are enabled.

4-11. MULTIBUS INTERFACE DATA TRANSFER LOGIC

The controller has three sets of Multibus interface data transceivers: low-byte transceiver U92, which buffers DAT-0/ through DAT-7/, high-byte transceiver U91, which buffers DAT-8/ through DAT-F/, and swap-byte transceiver U93, which takes the data from DAT-0/ through DAT-7/ on the Multibus interface and switches it to high-byte data bus lines AD8 through AD15 on the controller board (see figure 4-5). This byte-swap is performed only when

the controller is interfacing with an 8-bit system memory. In this case, every odd address read from system memory is transmitted to the high-byte data lines of the controller. The procedure is reversed when writing to the 8-bit system memory. Three signals control the transceiver: ENBL HI BYTE/(5C1), which controls the high-byte transceiver; ENBL LO BYTE/(5C1), which controls the low-byte transceiver (derived from ADRO/); and ENBL SWAP BYTE/(5C1), which controls the swap byte transceiver. Figure 4-5 shows when each of the control signals is active.

4-12. CONTROLLER INITIALIZATION

Before data can be transferred between system memory and the controller, the controller must be initialized. The initialization procedure, which is described in paragraph 3-12, involves:

- 1. Resetting the 8089 IOP.
- 2. Clearing the reset.
- 3. Establishing a communication link between the 8089 and the I/O communications blocks in system memory.
- Reading the disk drive parameters from system memory to the controller on-board RAM.

The following paragraphs describe the hardware operations that take place during this initialization procedure.

4-13. WAKE-UP ADDRESS COMPARATOR

For the purpose of resetting the controller, clearing the reset or getting the attention of the 8089 IOP (raising CA), the host addresses the controller as an I/O port in its system I/O space. To perform one of these functions it writes a one byte command to the specified I/O port called the wake-up I/O port (see Figure 4-6). Table 4-2 shows the three possible commands. The user determines the address of the I/O port at which the controller is to reside (called the "Wake-Up Address") and sets the address on the Wake-Up Address switches S1-1 through S1-8 and S2-3 through S2-10 (2x6), on the controller board. When the host issues a write command (IOWC/) to the Wake-Up Address in system I/O space, U70 and U71 (2A5) on the controller compare the address with the switch settings. If they agree, WAKEUP/is pulled low, enabling the controller to decode the command on the Multibus interface data lines and determine the action to be taken.

	8-BIT SYSTEM MEMORY		16-E System	
	I-ADRO/ = L	I-ADRO/ = H	I-ADRO/ = L	I-ADRO/ = H
ENBL LO BYTE/	L	Н	*	L
ENBL SWAP BYTE/	н	L	*	н
ENBL HI BYTE/	н	н	*	L
*NOT APPLICABLE				

Figure 4-5. Data Transmission Between Multibus™ Interface and Controller Data Transceivers

The host may use 8-bit or 16-bit I/O port addressing. The user sets switch S2-2 (2A7) to indicate to the controller the type of addressing that is being used. When S2-2 is open (8-bit addressing), pin 9 of U70 is held high, creating a "don't care" situation for the outputs of High-Byte Wake-Up Address Comparators U72 and U73.

Table 4-2. Host Wake-Up Commands

	Command Description	
	00H	Clear Interrupt and Clear Reset
į	01H	Channel Attention (Start 8089 IOP)
	02H	Reset 8089 IOP

As it is discussed in Chapter 3, the controller also uses the setting of the Wake-Up Address switches to calculate the address of the first byte of the Wake-Up Block, which is the first I/O communications block in system memory.

4-14. CONTROLLER RESET AND CLEAR

The first operation that must be performed during the initialization of the controller is a reset of the 8089 IOP. To reset the 8089, the host processor writes an 02H to the wake-up address. The WAKE-UP/lines goes low and gates the 02H (DAT-0/ high and DAT-1/ low) into the Wake-Up Decoder, U39 (3B7), producing a low on the controller reset (CNTLR RST/) line. A low on CNTLR RST/ resets the 8089 (4X4), resets Read/Write Control Logic U36 (sheet 8) and clears Control Register U21 (11B7). Once the controller has been reset, the host processor writes a 00H (Clear Interrupt) to the wake-up address, which clears the reset. The Wake-Up Decoder U39 decodes the highs on DAT-0/ and DAT-1/ to raise CNTLR RST/.

4-15. ESTABLISHING A LINK WITH I/O COMMUNICATIONS BLOCKS

Following a power-up event or a software reset (02H written to the wake-up I/O port), the link between

Figure 4-6. Wake-Up Address Logic

the controller and the I/O communications blocks in system memory must be established. To establish this link, a clear reset (00H) is written to the wake-up I/O port followed by a channel attention (01H). The 01H is gated into U39, producing a high on CHNL ATTN, which in turn raises the CA input to the 8089 IOP (4C4).

Being the first Channel Attention following reset, the 8089 begins an internal initialization process. The first step of this process is to do a fetch of address FFFF6H. The address is transmitted on the 8089 Address/Data lines (AD0-AD15) to latches U80 and U81 (5C7). Gates U61, U69, U71 and U47 (5D4) decode the output of these latches. The output of U71 enables U67, gating the status of the 16-bit SYS BUS switch (S2-1) through Data Bit 0 line (DAT-0/) to the 8089. Switch S2-1 on (16 Bit SYS BUS/low) indicates that the host memory system supports 16-bit data transfers and S2-1 off indicates 8-bit data transfers. Inverter U67 also generates Transfer Acknowledge (XACK/), which is sent to the 8089 (through the 8284A) indicating that the operation has been completed.

After determining the width of the system bus (8-bit or 16-bit) the 8089 fetches the addresses shown in figure 4-7 as part of the initialization sequence.

Fetching addresses FFFF8/9H gates zeros into the 8089. Fetching addresses FFFFA/BH causes the GATE SWS/ line (5C1) to go low. GATE SWS/ gates the settings of the wake-up address switches, S1-1 through S1-8 and S2-3 through S2-10 through buffers U88, U89 and U90 (2X2) and into the 8089. The 8089 multiplies the settings of the wake-up switch by 24, to determine the 20-bit address of the wake-up block, the first I/O communications block in system memory. The 8089 then uses this address to fetch the wake-up block and establish a link with the I/O communications blocks. On subsequent channel attentions (host writes 01H to the wake-up I/O port), the 8089 skips the wake-up block and goes directly to the channel control block, the second I/O communications block. The 8089 uses the channel control

Figure 4-7. Address Fetches In Initialization Sequence.

block to obtain the starting address of the controller's ROM resident I/O transfer program (also called the channel control program). From this point on, this firmware program directs the controller activities. One of the first operations of the firmware is to again fetch the starting address of the wake-up block. It then links its way through the channel control block and the controller invocation block to the I/O parameter block where it obtains instructions and parameters for a specific I/O operation.

4-16. INTERRUPT PRIORITY LOGIC

Wire wrap pins W4-C and W4-0 through W4-7 (3B2) allow the user to select the interrupt priority of the controller with respect to other peripherals in the system. To issue an interrupt to the host, the 8089 IOP writes an 0100H to local I/O port 8010H. A high on data line BDAT-8 and a low on write decoder line WDC10/ is then generated, causing interrupt latch U60 (3B6) to pull its output high and pull the selected interrupt line to the Multibus interface low. A 00H written to the system I/O port wake-up address, clears the interrupt (refer to paragraph 4-14).

Jumper pins W2-C, 1 and 2 allow the user to select the Any Request option. A jumper installed between pins W2-C and 1 causes the controller to relinquish control of the Multibus interface following a request from a higher priority device only. A jumper installed between pins W2-C and 2 causes the controller to relinquish control of the Multibus interface following a request from any device, higher or lower priority.

4-17. LOCAL MEMORY MAP

As was discussed in the Functional Overview, the 8089 IOP addresses the ROM, RAM and the disk communications side of the controller circuitry as local memory. Figure 4-8 shows a map of this local memory. The following paragraphs discuss the ROM, RAM and I/O ports.

4-18. ROM

The controller ROM, which contains the 8089 IOP's disk control program, consists of two (4K x 8-bit) ROM devices, U82 and U83 (6C7). On any read from local memory in the range of 0000H to 1FFFH, chip select decoder U39 (5C2) decodes address lines IADR-E and IADR-F and pulls ROM chip-select line CSROM/ low, enabling the ROM devices.

4-19, RAM

The controller RAM consists of four (1K x 4-bit) RAM devices, U94 through U97 (6X4). On any read or write to local memory in the range of 4000H to 47FFH, chip select decoder U39 (5C3) pulls RAM chip-select line CSRAM/low, enabling the RAM devices.

4-20. LOCAL MEMORY MAPPED I/O PORTS

The 8089 IOP views the controlling devices in the disk control circuitry (such as ID comparators, counters, write buffer, read buffer, etc.) as local I/O ports, each with an address in local memory space. To enable one of these devices, the 8089 executes a read or a write to the devices respective address. On any read or write to local memory in the range 8000H through 8038H, chip select decoder U39 (5C3) pulls its pin 10 low. When this low on pin 10 of U39 is accompanied by a low on I/O read line I-IORC/, read I/O port address decoder U33 (5B2) is enabled; when the low on pin 10 of U39 is accompanied by a low on I/O write line I-AIOWC/, write I/O port address decoder U32 (5A2) is enabled. When enabled, U32 or U33 decode local memory address lines IADR-3 through IADR-5 to select the desired disk control device. Table 4-3 shows the address of each local I/O port and its function.

Figure 4-8. Local Memory Map

		Read (U33 Enabled)	Write (U32 Enabled)	
Address	Enable Line	Function	Enable Line	Function
8000H	RDC00/	Read Disk Status	WDC00/	Write to bits 0, 1, 4, 5, 6 and 9 of SMD bus.
8008H			WDC08/	Clear index and ID not compare latches
8010H			WDC10/	Write to control register.
8018H	RDC18/	Raise 8089 Ch 2 CA input.	WDC18/	Write to SMD bus Unit Select register
8020H	RDC20/	Read contents of counter 2	WDC20/	Load counter 0
8022H	RDC20/	Read contents of counter 1	WDC20/	Load counter 1
8024H	RDC20/	Read contents of counter 2	WDC20/	Load counter 2
8026H			WDC26/	Write mode word
8028H	RDC28/	Read contents of read buffer	WDC28/	Write data to write buffer
8030H			WDC30/	Write sector ID to high comparator, start track format operation.
8038H			WDC38/	Write sector ID to low comparator

Table 4-3. Local I/O Ports

4-21. CONTROLLER TO DISK DRIVE COMMUNICATIONS

The following discussion provides a detailed functional description of the section of the iSBC 220 SMD Disk Controller that communicates with the disk drive through the SMD interface. The discussion is broken into four areas: (1) description of the SMD interface signals; (2) explanation of how the controller formats a disk prior to the performing read and write functions; (3) explanation of how writes and reads are performed; and (4) descriptions of the various circuits that perform the data transfer.

4-22. CONTROLLER TO DISK DRIVE INTERFACE

All the signals that are transmitted between the controller and the disk drives are transmitted through either the Control Cable or the Read/Write Cable. The physical configuration of these cables is described and illustrated in Chapter 2. The SMD specification requires signals that are transmitted between the drives and the controller to be differential signals, and receivers to translate the differential input signals to levels compatible with internal logic.

The following functional description of the interface signals is based on a typical drive installation. Different drive manufacturers may use these signals for other functions. While reading this discussion, consult the drive manufacturer's user manual for the specific drive being employed.

4-23. CONTROL CABLE SIGNALS

Control and status information is exchanged between the controller and the drive through the Control Cable. Output signals are defined as those signals that the controller transmits and input signals as those the controller receives. The Control Cable is connected to J1 on the iSBC 220 board and goes to the first drive in a string of up to four. Subsequent Control Cables are connected from drive to drive in a daisy chain fashion. The eighteen output lines, which the controller transmits to the disk drives through the Control Cable, are:

- Device Select Enable Line
- Device Select Lines (4)
- Function Tag Lines (3)
- Bus Out Lines (10)

The eight input lines, which the controller receives from the disk drives through the Control Cable, are status lines.

4-24. SELECTION LINES

The controller transmits five disk drive selection signals to the drives:

- Device Select Enable. (Unit Select Strobe). Enables the decode logic that the drive uses to decode the device select lines.
- Device Select 0 through Device Select 3. Four binary coded lines select the desired disk drive. A module select identifier plug in each drive (which the operator can change) determines the address of each drive. See the disk drive manufactuer's OEM manual for instructions.

BUS OUT BITS	FUNCTION DECODE				
	SET CYLINDER-TAG 1	SET HEAD ADDRESS-TAG 2	CONTROL SELECT-TAG 3		
0	Cylinder Address 1	Head Select 1	Write Select		
1 1	Cylinder Address 2	Head Select 2	Read Select		
2	Cylinder Address 4	Head Select 4	Offset Forward		
3	Cylinder Address 8	Head Select 8	Offset Reverse		
4	Cylinder Address 16	Head Select 16	Unsafe Reset		
5	Cylinder Address 32		Address Mark		
6	Cylinder Address 64		Rezero		
7	Cylinder Address 128		Data Strobe Early		
8	Cylinder Address 256		Data Strobe Late		
9	Cylinder Address 512		Not Used		

Table 4-4. Function Tag/Bus-Out Definitions

4-25. FUNCTION TAGS AND BUS-OUT LINES

The controller generates three different function tag signals. These lines are used in conjunction with the Bus-Out lines to control the disk drive operations. Only one of the tag lines may be active at a time. Table 4-4 shows how the Bus-Out lines and tag lines are decoded to perform tasks or transmit data to the disk drive.

a. SET CYLINDER (TAG 1). Transfers the cylinder address bits to the drive via the Bus-Out lines and initiates internal drive functions. Typically the Set Cylinder Tag line loads the next cylinder address into the drive logic at the leading edge of the set cylinder pulse (see Figure 4-9), allowing sufficient time for the drive logic to perform necessary internal operations (difference calculations and set up of the servo circuitry), and initiates the seek signal within the drive coincident with the trailing edge of the set cylinder pulse. The typical times required for this operation are provided in Figure 4-9.

b. SET HEAD ADDRESS (TAG 2). Gates the Bus-Out lines to the selected disk drive. These lines are decoded in the drive to select the fixed or removable volume and the head within the volume. Selection of a surface is normally referred to as selecting a head (the head that corresponds to a surface). The head address corresponds to one track in a given cylinder of a fixed or removable volume. The head number within a volume is always assumed to start with zero. Bus Out bit 4 selects the type of volume: fixed or removable.

c. CONTROL SELECT (TAG 3). Gates coded commands, as listed in Table 4-4, to a selected disk drive. A description of the functions of these commands is given in Table 4-5. A detailed functional description of each of the listed operations can be found in the disk drive manufacturer's OEM manual.

Figure 4-9. Set Cylinder Timing

Table 4-5 Control Tag and Bus Out Line Functions

CONTROL FUNCTIONS	DESCRIPTION
WRITE SELECT	Enable the write circuitry in the drive, permitting write data, sent to the drive over the Read/Write cable, to be written on the selected disk surface. If one of the following conditions occurs when the Write Select signal is sent to the drive, the drive fault logic activates and sends an Unsafe status to the controller:
	1. no write data is sent,
	2. the Write Protect Line in the drive is active,
	3. offset is active, or
	4. the drive Ready signal is not active,
READ SELECT	Causes the drive circuitry to read from a selected area of the disk, convert that raw data to Non Return To Zero format (NRZ) data, and transmits it over the Read/Write cable to the controller.
OFFSET FORWARD	Causes the head positioner in the selected disk drive to move the selected R/W head a fixed distance towards the center of the disk, from the nominal track position. If this signal is activated while Write Select is active, the drive will activate the Fault status line to the controller. This signal is activated in an attempt to recover hard to read data (suspected soft error).
OFFSET REVERSE	Causes the head positioner in the selected disk drive to move the selected R/W head a fixed distance towards the outer edge of the disk, from the nominal track position. If the signal is activated while Write Select is active, the drive will activate the Fault Status line to the controller. This signal is activated in an attempt to recover hard to read data (suspected soft errors).
FAULT CLEAR	Clears the Fault or Unsafe status line in a selected drive. This signal has no effect unless the fault condition has been corrected.
ADDRESS MARK ENABLE	Used in conjunction with either Write Select or Read Select. When it is used with Write Select, it allows the controller to write an AM. When used with the Read Select, it indicates the controller is looking for an address mark. Activating the address mark enable line in the drive enables the address mark detection logic to look for a 16 bit gap in read data pulses. See AM Found Status Line, Table 4-6.
REZERO	Causes the head positioner in the selected disk drive to position the Read/Write heads over cylinder 0. Activation of the Rezero signal in the drive causes the Seek Error and the Head Address Register (HAR) to be reset and set to zero respectively.
DATA STROBE EARLY	Used with the Read Select Signal to a selected disk drive to attempt to recover hard to read data (suspected soft error). Activation of this signal causes the clocked data separator in the disk drive to strobe the data at a fixed time earlier than nominal.
DATA STROBE LATE	Used with the Read Select Signal to a selected disk drive to attempt to recover hard to read data (suspected soft error). Activation of this signal causes the clocked data separator in the disk drive to strobe the data at a fixed time later than nominal.

4-26. STATUS LINES

The eight status lines sent to the controller form a selected disk drive over the Control Cable provide:

a. an indication of the drive status

b. data relating to the position of the R/W heads on the disk surface, which the controller uses to condition circuitry for timing, reading, or writing. A description of these status lines is provided in Table 4-6.

Table 4-6
Status Line Definitions

STATUS LINE	DESCRIPTION	
INTERFACE ENABLE	Indicates to the drive that continuity exists between the controller and the drive via the Control Cable. Without this continuity, line receivers in the disk drive will not be enabled for communications with the controller. This signal may be called Open Cable Detect in some drive manuals.	
INDEX MARK	A pulse received from a selected disk drive once every disk revolution (16.67 ms); nominally 2.4μ s in duration. The index pulse indicates to the controller that a particular reference on the disk is passing under the R/W heads.	
FAULT	Indicates to the controller that, within the selected disk drive, an unsafe condition has been detected, which would make the reliability of read/write operations questionable. Normally, logic in the drive will disable the read, write, and positioning circuitry until a Rezero operation, Fault Reset or operator intervention occurs.	
	Depending on the particular disk drive, some conditions that would cause the Fault circuitry to activate are: a. Write Unsafe	
	b. Write Transition Failure	
	c. Write Current Failure	
	d. Power Failure	
	e. Multiple Head Select	
SEEK ERROR	Indicates to the controller that the selected disk drive has failed to complete an initial head load, Seek operation, or Rezero operation within drive specified time limits. Seek Error is also set when an invalid cylinder address is sent to the drive. This signal may be reset by the controller issuing a Rezero command or by operator intervention.	
ON CYLINDER	Indicates to the controller that the selected disk drive has successfully completed the initial head load, a Seek operation, or Rezero operation within drive specified time limits. On Cylinder goes inactive coincident with the issuance of Seek, Offset Forward, Offset Reverse or Rezero and is reactivated at the completion of the operation.	
UNIT READY	Indicates to the controller the selected disk drive is:	
	a. Selected	
	b. The disk pack is up to its nominal speed	
	c. The head load operation was completed successfully	
	d. Fault (unsafe) conditions do not exist in the drive	
	e. The drive is not in the CE mode or off-line (see drive manufacturer's OEM manual).	

STATUS LINE	DESCRIPTION
WRITE PROTECTED	Indicates to the controller that the selected disk drive's Write Protect switch is in the Protect position. The operator sets this switch to prevent the controller from writing over sensitive data. To deactivate this line, the switch must be moved to the other position. Receipt of this signal by the controller prevents writing on the selected disk drive.
ADDRESS MARK FOUND	Indicates to the controller that the selected disk drive has detected an area of a selected track that has an absence of data bits for at least 16 bit cell times. This signal is used to establish timing in the controller for the assertion of Read Enable, prior to reading an ID field and header.

Table 4-6. Status Line Definitions (Continued)

4-27. READ/WRITE CABLE SIGNALS

Read Data, Write Data, Clocks, and some status lines constitute the information exchanged over the Read/Write cables. Output signals are defined as those signals that the controller transmits to the disk drives, and input signals those that the controller receives. The Read/Write cables are connected from the controller to the disk drive in radial fashion, that is one cable from the controller to each of the drives. The Read/Write cable that connects to J2 on the controller splits into two cables; one going to the drive at physical address 0; the other going to physical address 1. The Read/ Write cable that connects to J3 on the controller splits into two cables; one going to the drive at physical address 2; the other going to physical address 3. The physical configuration of these cables is explained and illustrated in Chapter 2. Each of the discussed signals are received or output by all the drives. The controller multiplexes all received signals (except SELECTED-DEV 0-3)(9B8) to common lines (see Figure 5-2, sheet 10). All output signals from the controller are fanned out to all four cables simultaneously. Therefore, the descriptions provided apply only to signals of a selected Read/ Write cable.

- a. WRITE DATA. The Write Data differential line pairs from the controller transmit the NRZ data to the drive for recording on the disk surface. The write data transmitted over this differential line pair is synchronized with the Write Clock signal.
- b. WRITE CLOCK. The Write Clock signal sent to the drive via differential line pairs synchronizes the write data. The write clock is derived from the Servo clock signal sent to the controller from the selected disk drive and thus ensures the proper bit rate transmission when writing as well as when reading the data back.

- c. READ DATA. The Read Data signal is transmitted from the disk to the controller via differential line pairs. This data read from the disk pack has been separated from the clocks and put into the NRZ format. The data is transmitted to the controller in a serial fashion, bit-by-bit. The read data received at the controller and gated through the line receiver is strobed into the controller logic by the Read clock.
- d. READ CLOCK. The Read Clock signal is transmitted to the controller via differential line pairs. It is derived in the disk drive from the data read from the disk. The controller uses Read Clock to strobe the read data onto the board at the proper time relationship, see U63 (10B2).
- e. SERVO CLOCK. The 9.677 MHZ Servo Clock signal is transmitted to the controller via differential line pairs. This signal is transmitted back to the drive as Write Clock. Since the Servo Clock is derived from the servo signal that is recorded on the rotating disk, it reflects any speed variations.

4-28. SELECTED

The only status line sent to the controller via the Read/Write cable is the Selected signal. This signal is a result of the disk drive comparing the four device select lines to the module select plug and achieving a favorable comparison. When the Selected line for a particular drive activates, it, in turn, enables the line receivers for the selected drive's Read/Write cable on the controller.

4-29. CONTROLLER TO DISK DRIVE INTERFACE TIMING

The following paragraphs provide a detailed discussion of the inter-circuit timing that occurs when formatting a disk, writing to a disk or reading from a

disk. The discussion is provided to describe the interaction of the timing logic shown on Sheet 8 of the Schematic Diagram, with the disk drive interface receivers and drivers shown on sheets 9 through 12 and the other data transfer circuitry described in paragraphs 4-34 through 4-39.

4-30. DMA MODE

In general, when the controller is performing a read or a write function it locates the area of the disk where the read or write is to be performed, then enters its DMA mode to perform the actual transfer. (The process of locating the area to be read or written to is discussed in the following paragraphs.) In the DMA mode, the 8089 IOP (see figure 4-2) controls the transfer of data between the local RAM block and the write and read buffers (called the read/write port). The data transfer circuitry on the controller board controls the transfer of data between the read/write port and the disk.

The RDY (Ready) line (8D1) is used for hand shaking between the 8089 and the data transfer circuitry. When RDY is low, the 8089 is quiescent; when RDY is high, the 8089 performs a DMA transfer of data either from local RAM to the write buffer (block-toport) or from the read buffer to local RAM (port-to-block). Gate U46 (8D3) controls the RDY line.

To perform a write or a read, the 8089 executes firmware to set up data (write only) and condition the hardware for the selected operation. It then enters the DMA mode and attempts to transfer data. At this time; the R/W GATE (8D1) is high (see Figure 4-10); U45-8 (8D3) is high, held so by the low on the ENBL XFER line (8D1); and the R/WDC 28 line, the output of U42-6 (8D7), is low. The low on R/WDC 28 is thus keeping RDY activated. On this first attempt to transfer data in the DMA mode, the 8089 activates either RDC 28/ or WDC 28/ (8D8), depending on whether a read or a write is being performed, respectively (refer to paragraph 4-34). When RDC 28/ or WDC 28/ is activated, the R/WDC 28 lines is activated, lowering RDY and putting the 8089 into its quiescent (wait) state. When the controller's data transfer circuitry has found the area on the disk where the read or write is to begin, it activates ENBL XFER (8D1). On the next occurance of a Bit Ring-0 pulse, BR-0 (8D1), following the activation of ENBL XFER, U45-8 (8D3) is activated, activating RDY. The 8089 then immediately performs the data transfer (writes a word into the write buffer or reads a word from the read buffer) and lowers R/WDC 28. On the next clock into U45-11, U45-8 is raised. On the 8089's next attempt to perform a data transfer, R/WDC 28 is also raised, lowering RDY. The data transfer does not occur and the 8089 goes into its wait state. During this time, the SER/DES either transfers the word from the write buffer to the disk or reads another word from

Figure 4-10. Timing Diagram for RDY Signal

the disk into the read buffer. Then on the next BR-0 pulse, RDY is again activated and the next DMA data transfer occurs. The 8089 continues in this DMA mode until the R/W GATE line is lowered.

4-31. DISK FORMATTING

Before the surfaces of a disk volume can be used for the writing and reading of data, the disk volume must be formatted. Formatting is the operation of writing all the address fields, gaps, ID headers, etc. for the complete disk volume. The controller performs this operation under software control. The software routine that controls this disk formatting operation allows only a single track to be formatted for each Format command. The host thus issues a new Format command to the controller board for each track to be formatted until the formatting of the entire disk volume is complete.

The implementation of the Format command is divided into two operations. During the first operation, address marks (AM), gaps and ID fields are written during a single disk revolution. During the second operation, data fields are written (using the write data sequence described in paragraph 4-32) with user supplied data. The second operation requires two disk revolutions, one to write the odd physical data fields (1, 3, 5,) and one to write the

even physical data fields (0, 2, 4, ...). Three disk revolutions are thus required to format a single track. The hardware execution portion of the format operation is discussed in the following paragraphs.

When the Format command is issued to the controller, the 8089 IOP begins the format operation by performing a Seek to the desired track (cylinder). When the heads are positioned over the desired track, the 8089 writes a 0000H to I/O port 8010H (decoded as WDC 10/), which enables U21 (11B7) and activates the Write Gate-F (U21-12), Control Select-Tag 3 (U21-2) and FORMAT lines (11A1). See Figure 4-11.) Write Gate-F, which is transmitted through U49 (11B4) and BUS 0 (11B1), and Control Select-Tag 3 are transmitted to the selected drive where they enable the write circuitry. The controller then writes all zeros to the drive while the 8089 waits for the receipt of the first Index pulse (12D8).

The receipt of Index sets latch U41 (12D5), which in turn sets bit F of the Status Register, U26 (12D3). To monitor the Status Register, the 8089 reads I/O port 8000H (decoded as RDC 00). Upon detecting Index, the 8089 writes a XXXXH to I/O port 8030H (decoded as WDC 30), which enables the format logic U41 (8B6). Then the 8089 writes a 0001H to I/O port 8000H (decoded as WDC 00), which activates WRT GATE and allows the writing of address marks (AM) and Sector ID fields.

Figure 4-11. Timing Diagram for Disk Formatting

The time that the 8089 allows between the detecting of Index and the activating of U41 (12D5) is approximately 38 byte times, which is the predetermined time for the first gap of the track format, G1 (see figure 3-1 for a pictorial representation of the track format). Also during G1, the 8089 writes the sync byte (0019H) to the write buffer, U50 and U53 (7C7 and 7D7), by writing to I/O port 8028H (decoded as WDC 28/). It performs this operation in preparation for writing the ID field on the track.

When U41 (8B7) is activated, it activates WRT AM/ (8B1), which is transmitted through BUS 5 (11C1) to the drive, causing the AM to be written on the disk. WRT AM/ also starts counter 1, CTR 1 of U64 (8A7). (The 8089 preset the counters in U64 at the beginning of the format operation.) When CTR 1 times out at the end of 11 byte times, it activates the WRT XFER/ line through U41-9 (8C4) and CTR 2. The activation of WRT XFER/ initiates the 8089's DMA mode (as discussed in paragraph 4-30), during which time the sync byte and the sector ID are written onto the disk. CTR 2 times out at the end of the ID field, starting CTR 0 and activating the ECC TIME line (8B1). During the ECC TIME, the ECC code from the ECC generator is written following the ID field (refer to paragraph 4-37 for a description of the operation of the ECC generator). At the end of ECC TIME, the END TIME line is enabled, which lowers the WRT XFER/ line and takes the 8089 out of the DMA mode.

CTR 0 is set for a time equal to the ECC+G3+DATA +G4, which the 8089 sets according to the sector size selected for the drive. When CTR 0 times out, it activates WRT AM/ and CTR 2, which begins the formatting of the second sector. This procedure is repeated until the 8089 determines that the last ID field has been formatted. The 8089 then begins searching for the Index pulse. Upon receipt of Index the 8089 resets WRITE GATE-F and FORMAT, inhibiting the writing of the next AM. The 8089 then continues through the Format routine to the second operation, which is the writing of the data fields with user supplied data. The write data function, discussed in the following paragraphs, describes the write data operation.

4-32. WRITE DATA TRANSFER

The write operation is divided into two steps: (1) read sector ID and (2) write data. When a write is initiated, the 8089 IOP writes 01H to I/O port 8000H (decoded as WDC00/). Latch U2 (11C6) then sets BUS 5 (11C1) high, enabling the drives address mark (AM) search; and sets BUS 1 (11B1) high, enabling the drive's read circuitry and raising the read gate, RD GATE (11A1). (See figure 4-12.)

The 8089 has previously written to I/O port 8020H (decoded as WDC20/) to load counters 0, 1 and 2 of U64 (8A7). It also writes to I/O ports 8030H and 8038H (decoded as WDC30/ and WDC38/), loading the ID of the sector to be written to, into the 32-bit ID comparator logic.

When an address mark is found, the drive activates the AM FND/ line, which resets U41 (8C7) and activates the ID FIELD/ line. The enabling of the ID FIELD/ line lowers the AM ENABLE gate to the drive and initiates the search for the sync byte.

In searching for the sync byte, serial data from the disk is read into the SER/DES. Sync byte comparator U68 and U58 (7B5) monitors the outputs of the SER/DES and pulls the SYNC BYTE/line (9C6) low when 19H — the sync byte — is detected. The enabling of SYNC BYTE/, enables the SYNC FND/line, which in turn activates the ID comparator U19, U20, U37 and U38 (9DX) and word clock U35 (8D6). (See the discussion of the Sync Byte Comparator Logic in paragraph 4-35.)

SYNC FND/ also raises the ENBL XFER line, which enables the ECC Generator logic (7AX) and Ready Latch U45 (8D3), and gates on counter 0 of U64 (8A7).

The 32-bit comparator (see paragraph 4-36) compares the ID read from the disk with the ID of the selected sector. At the end of the ID time, counter 0 times out, pulling the ECC TIME/ line low and initiating the ECC compare (see paragraph 4-37). If the ID and the ECC are valid, bit 6 of the controller status register U27 (12C3) is reset. At the end of ECC time, U36-7 (8A2) pulls the END TIME line high, which resets RD GATE. The 8089 then checks bit 6 of control status register U27 (12C3). If the bit is inactive, the 8089 continues with the write operation. If the ID or ECC are not valid (bit 6 active), the AM ENABLE and RD GATE lines are then reasserted and the controller searches for the next address mark.

To begin the second step of the write operation, the 8089 writes to I/O port 8000H (decoded WDC00/) and enables the write gate (WRT GATE), which in turn activates BUS 0 (11B1), enabling the drive's write circuitry. When counter 0 times out, counter 1 is started. Counter 1 is set for a time interval equivalent to the ECC time plus GAP 2. When counter 1 times out, counter 2 is started and the U41-9 (8C4) is set, activating WRT XFER/. WRT XFER/ enables write buffers U50 and U53 (7C7) and the ECC comparator logic (7AX), and raises the RDY line high indicating to the 8089 that the write buffer is ready to receive data.

Figure 4-12. Timing Diagram for Write Data

The 8089 then enters its DMA mode to write data from local RAM to the disk (see the discussion of the DMA mode in paragraph 4-30). The controller continues transferring data to the disk in this manner until Counter 2 times out, indicating the end of the data field, and raises the ECC TIME line. With the ECC TIME line activated, the ECC generated during the data transfer is written to the disk. END TIME then terminates the write operation.

4-33. READ DATA TRANSFERS

The read operation is divided into two steps: (1) read sector ID and (2) read data. The reading of the sector ID is performed in the same manner as for the write operation (see figure 4-13).

When the desired sector is located, the RD GATE is again raised to search for the sync byte of the data field. When SYNC FND/ is activated, counter 2 is started through U42-11 (8D5) and U31-6 (8A5), the ECC generator is enabled and the RDY line is activated, initiating the DMA read data transfer mode. Data is then transferred from the disk to local RAM for the duration of counter 2.

When counter 2 times out, ECC TIME is activated. Following ECC TIME, END TIME is raised, terminating the read operation.

4-34. SER/DES LOGIC

The serial/deserialize logic performs two functions: (1) converts parallel data words into a serial string of bits to be sent to the disk drive during a write operation, and (2) converts a serial string of bits into 16-bit words during a read operation. The SER/DES logic is made up of Write Buffer U50 and U53 (7C7), SERializer/DESerializer U51 and U54 (7C5), Read Buffer U52 and U55 (7C4), and Selector U65 (7A7).

During a write operation (WRT XFER/low), the 8089 IOP writes to I/O port address 8028H. Write I/O port address decoder U32 (5A2) decodes this address and pulls WDC28/low, clocking the data to be written to the disk (BDAT-0 through BDAT-F) into write buffer U50 and U53 (7C7). A high on load serial register line LDSR (7C6), derived from word clock U35 (8C6) loads the contents of the write buffer (SR-0 through SR-F) into the SER/DES (7C5). Read/write clock R/W CLK-B (7B8) then clocks the

Figure 4-13. Timing Diagram for Read Data

data bit by bit through the QH output of U51 (7D5), and through selector U65 (7A7) to the WRT DATA line. R/W CLK-A clocks the serial data string on WRT DATA through U12 (10C3) to the selected drive.

During a read operation, the R/W CLK-B (10B2) gates the serial data string (RD DATA) from the disk drive through U63 (10B2) and selector U65 (7A7) and into the SI input of U54 (7C5), creating a 16-bit parallel word. Bit ring-0 line BR-0 (7B7) then clocks this word into read buffer U52 and U55 (7C4). BR-0 is derived from word clock U35 (8C6). With the read buffer loaded, the 8089 initiates a read to I/O port address 8028H. Read I/O port address decoder U33 (5B2) decodes this address and pulls RDC28/ low, which clocks the data word from the read buffer onto internal data bus IDAT-0 through IDAT-F.

4-35. SYNC BYTE COMPARATOR LOGIC

The sync byte comparator detects the presence of a sync byte during a read operation and synchronizes word clock U35 (8C6) with the data. A sync byte (always a 19H) is written preceding each sector ID and each data field to indicate to the controller that data to be read is forthcoming (see Figure 3-1).

During a read operation, sync byte decoder U58 and U68 (7B5) monitors the output of the SER/DES, U51 and U54 (7C5). When a 19H is detected, SYNC

BYTE/ goes low indicating the presence of the sync byte. SYNC BYTE/ and the next output of R/W CLK-B set the SYNC FND flip-flop, U29 (9C6). SYNC FND activates word clock U35 (8D6), and activates the read/write logic (sheet 8). A further explanation of the sync byte logic can be found in paragraphs 4-31 through 4-33.

4-36. 32-BIT ID COMPARATOR LOGIC

The 32-bit ID comparator logic compares the sector ID of the record being searched for with the sector ID being read from the disk drive. The sector ID is made up of the flags, cylinder number, sector number and head address.

To load the sector ID of the record being searched for into 32-bit ID comparator U19, U37, U20 and U38 (9DX), the 8089 IOP writes to I/O ports 8030H, enabling the WDC30/ and WDC38/ lines, respectively. WDC30/ and WDC38/ initiate the loading of the sector ID into the ID comparator. This loading occurs prior to performing either a read or write data operation. The ID compare operation begins after the sync byte of an ID field has been detected (SYNC FND). R/W CLK-B clocks the ID information, which is stored in the ID comparator, out of U38 (pins 7 and 9) bit by bit. U28 (9D2) compares the serial string of bits with the sector ID from the disk drive (RD-DATA). If the two sector IDs differ, ID no-compare line ID NCMPR/ is activated; if they are the same,

ID NCMPR/ is raised. Selector U65 (7A7) ORs the ID NCMPR/ and the ECC NCMPR/ lines (see paragraph 4-37). The resulting ID-ECC NCMPR/ lines is latched into U29 (9B6). The Q/ output of U29, ID NCMPR-L, is transmitted to bit 6 of status register U27 (12C3). The 8089 IOP then reads the contents of the status register and checks the condition of bit 6. Bit 6 being set high indicates that the record read from the disk was either not the record being searched for or had an ECC error; conversely, bit 6 being set low indicates that the ID field compared and that there was not an ECC error. The 8089 IOP can then read or write the data portion of the record.

4-37. ECC GENERATOR LOGIC

The error checking code (ECC) logic performs two functions: (1) during a write operation, it generates a four byte ECC polynomial that is appended to the ID field (format operation only) and the data field (normal write) of a record (see figure 3-1), (2) during a read operation, it regenerates the ECC polynomial and compares it to the ECC field read from the disk record to ensure that the correct data was read from the drive.

During a write operation, serial data (either an ID field or a data field) is transmitted from the SER/DES (7C5) through selector U65 (7A7) and into the ECC generator through pins 1 and 2 of U98 (7A6), where the ECC polynomial is generated. At the same time a high on the WRT XFER DLYD line enables the serial data to be transmitted through gate U46 (7A7), U66 (7A3) and selector U65 (7A7) to the WRT DATA line, where it is transmitted to the disk. At ECC time (end of data field), WRT XFER DLYD goes low, inhibiting write data from being transferred through gate U46 (7A7). The ECC TIME/line goes low, causing the ECC polynomial to be written onto the disk through U66 (7A3), U65 (7A7) and the WRT DATA line.

During a read operation, serial data (again either a sector ID or a data field) is read into the ECC generator through selector U65 (7A7) and into the SER/DES through U66 (7A3) and U65. At ECC time, U66 compares the ECC polynomial from the ECC generator bit by bit with the ECC polynomial from the disk and transmits the difference through U65 to the SER/DES for storage in RAM. If the difference is zero, the ID-ECC NCMPR/ line is pulled high indicating the sector ID was error free. (Refer to paragraph 4-36). If the result of the

comparison is non-zero, the difference is called the error syndrome. The controller's firmware uses this syndrome to correct errors in a sector ID or data field (if correctable).

4-38. STATUS REGISTER LOGIC

Status register U26 and U27 (12X3) stores status information (see Table 4-7) transmitted to the controller from the selected disk drive and the status of the ID-ECC NCMPR/ line. When the 8089 IOP issues a Read Status command, Read Decode Output (RDC00/) goes low transferring the output of the status register U26 and U27 (12X3) onto the internal bus (IDAT-0 through IDAT-F). The status information is transmitted on IDAT-0 through IDAT-F to the 8089 through transceivers U56 and U57 (4A5). The 8089 analyzes the status information and communicates this status to the host processor, on request, through system memory. Refer to Chapter 3 for more detail on the status information.

4-39. LINE DRIVERS AND RECEIVERS

All the control, data and high speed clock signals transmitted between the controller and the disk drive use differential pair line drivers and receivers. The polarity on these lines is positive true logic i.e., when the + side of the line is more positive than the - side of line, a positive logic "1" is being transmitted.

Table 4-7. Status Register Bits

BITS	FUNCTION
F	INDEX
E	NOT DEFINED
D	NOT DEFINED
$^{\circ}\mathbf{C}$	WRITE PROTECT
В	UNIT 3 SELECTED/
Α	UNIT 2 SELECTED/
9	UNIT 1 SELECTED/
8	UNIT 0 SELECTED/
. 7	0
6	ID NOT COMPARE
5	0
4	DRIVE FAULT
3	SEEK ERROR
2	ON CYLINDER/
1	DRIVE READY/
0	0

CHAPTER 5 SERVICE INFORMATION

5-1. INTRODUCTION

This chapter provides service and repair assistance instructions, service diagrams, a complete electronic parts list for the printed circuit board assembly and a reference to the controller's self diagnostic.

5-2. SERVICE DIAGRAMS

The controller board component locations and schematic diagrams (figures 5-1 and 5-2, respectively) are included at the end of this chapter. Note that these diagrams are intended only for reference; they reflect the iSBC 220 controller design at the time this manual was printed. The schematics and component location diagrams packaged with the controller reflect the design version shipped and thus supercede the diagrams in this manual.

5-3. SERVICE AND REPAIR ASSISTANCE

United States customers can obtain service and repair assistance by contacting the Intel Product Service Hotline in Phoenix, Arizona. Customers outside the United States should contact their sales source (Intel Sales Office or Authorized Distributor) for service information and repair assistance.

Before calling the Product Service Hotline, you should have the following information available:

- a. Date you received the product.
- b. Complete part number of the product (including dash number). On boards, this number is usually silk-screened onto the board. On other MCSD products, it is usually stamped on a label.
- c. Serial number of product. On boards, this number is usually stamped on the board. On other MCSD products, the serial number is usually stamped on a label.
- d. Shipping and billing addresses.
- e. If your Intel product warranty has expired, you must provide a purchase order number for billing purposes.
- f. If you have an extended warranty agreement, be sure to advise the Hotline personnel of this agreement.

Use the following numbers for contacting the Intel Product Service Hotline:

Telephone

All U.S. locations, Except Alaska, Arizona, & Hawaii: (800) 528-0595

All other locations: (602) 869-4600

TWX Number

910 - 951 - 1330

Always contact the Product Service Hotline before returning a product to Intel for repair. You will be given a repair authorization number, shipping instructions, and other important information which will help Intel provide you with fast, efficient service. If you are returning the product because of damage sustained during shipment or if the product is out of warranty, a purchase order is required before Intel can initiate the repair.

5-4. SELF DIAGNOSTIC

A self diagnostic is provided with the iSBC 220 controller, stored in the on-board PROM. It performs a go/no-go test of the controller hardware and firmware. If the controller passes the test, it indicates with a high degree of certainty that the controller is operating properly. See the discussion of the diagnostic in Chapter 3 for a description of the program and instructions for initiating the operation.

5-5. REPLACEABLE COMPONENTS

This section contains the information necessary to procure replacement components directly from commercial sources. Component manufacturers have been abbreviated in the parts list with a two to five character code. Table 5-1 cross-references the manufacturer's code with the name and location of the prime commercial source. Table 5-2 lists all the replaceable components on the controller board. Note that the components that are available commercially are listed in the "MFR CODE" column as "COML" and that they are ordered by description (OBD). Procure commercially-available components from a local distributor whenever possible.

Table 5-1. Code for Manufacturers

Mfr. Code	Manufacturer	Location		
BECK	Beckman Instruments Inc.	Fullerton, CA		
BOUR	Bourns, Inc.	Riverside, CA		
CRYST	Crystek	Ft. Meyers, FL		
CTSK	CTS Keene, Inc.	Paso Robles, CA		
DALE	Dale Electronics	Columbus, NE		
FAI	Fairchild Semiconductor	Mt. View, CA		
INTEL	Intel	Santa Clara, CA		
мот	Motorola	Phoenix, AZ		
SNGMO	Sangamo-Weston, Inc.	Pickens, SC		
SPEC	Spectrol Electronics Corp.	City of Industry, CA		
SPRG	Sprague Electronic Co.	Adams, MA		
3M	ЗМ Со.	St. Paul, MN		
TI	Texas Instruments	Dallas, TX		
COML	Any Commercial Source; Order By Description (OBD)			

Table 5-2. Controller Board Electrical Parts List

Reference Designation	Description	Mfr. Part No.	Mfr. Code	Qty.
C1, C2, C3, C5	Capacitor, 220μF, Tant, ±10%, 15V	150D226X9015E2	SPRG	4
C4	Capacitor, 0.33µF, Cer. Z5U Axial	OBD	COML	1
C6	Capacitor, 10µF, Tant, ±10%, 20V	150D106X9020B	SPRG	1
C7 ,	Capacitor, 10pF, ±5%	D15-5C100J03	SNGMO	1
C8 through C35	Capacitor, 0.10μF, Cer. Z5U Axial	OBD	COML	28
CR1	Diode, Zener 7.5V ½W	1N5236B	COML	1
CR2	Diode, GP Switching 75V, 5W	1N4148	COML	1
J1	Connector, Header 60 Pin	3372-1302	3M	1
J2, J3	Connector, Header 40 Pin	3432-1302	3M	2
Q1	Transistor, NPN, GP 40	2N3904	TI	1
Q2	Transistor, PNP, GP 40V	2N3906	мот	1.
R1, R2, R7, R11, R13, R21, R29	Resistor, Carb, 1 kΩ, ¼W, ±5%	OBD	COML	7
R3	Resistor, Carb., 2.2 kΩ, ¼W, ±5%	OBD	COML	1.
R4, R10, R24, R25	Resistor, Carb., 680 Ω, ¼W, ±5%	OBD	COML	4
R5, R8	Resistor, Carb 2.7 kΩ, ¼W, ±5%	OBD.	COML	2
R6, R9, R12, R17, R19, R20, R27, R28	Resistor, Carb., 270 Ω, ¼W, ±5%	OBD	COML	8
R14, R15, R22, R23, R26	Resistor, Carb., 10 k Ω , ¼W, $\pm 5\%$	OBD	COML	5
R18	Resistor, Carb, 100 kΩ, ¼W, ±5%	OBD	COML	1
R30	Resistor, Wirewound, 3 Ω , 5W, \pm 5%	CW5	DALE	1
RP1 through RP7	Resistor, Pack, 56 Ω, 8 Pin	4308R-101-56D	BOUR	7
RP8, RP10, RP11 RP12, RP14, RP15	Resistor, Pack, 68 Ω, 8 Pin	4308R-101-68D	BOUR	6
RP9, RP13, RP16 through RP23 RP25 through RP27	Resistor, Pack, 470 Ω, 8 Pin	764-3-R470	BECK	13
RP 24	Resistor, Pack 47 kΩ	764-1-R4.7K	BECK	1
RP28, RP29	Resistor, Carb., 10 kΩ, 8 Pin	764-1-R10K	BECK	2
S1	Switch, 8 Position, DIP	206-08LPST	CTSK	1
S2	Switch, 10 Position, DIP	206-10ST	CTSK	1

Table 5-2. Controller Board Electrical Parts List (Continued)

Reference Designation	Description	Mfr. Part No.	Mfr. Code	Qty.
U1, U2, U36	IC, Hex D Type Flip-Flop	SN74LS174N	TI	3
U3 through U6, U11, U16	IC, Quad Differential Driver	MC3453	МОТ	6
U7	IC, Dual J-K Flip-Flop	SN74S112N	TI	1
U8 through U10, U14, U15, U24, U25	IC, Quad Differential Rec.	MC3450	МОТ	7
U12	IC, Dual Pos. Edge. Trig. Flip-Flop	SN74S74N	Τì	1
U13, U43, U49, U71, U87	IC Quad 2 Input OR	SN74LS32N	TI	5
U17, U29, U45, U60, U63	IC, Dual Pos. Edge Trig. Flip-Flop	SN74LS74N	TI	5
U18	IC, Quad 2 Input NOR	SN74S02N	TI	1
U19, U20, U37, U38	IC, 8 Bit Shift Reg	74LS165N	TI	4
U21	IC, Octal D Type Flip-Flop	SN74LS273N	TI	1
U22, U23, U88, U89, U90	IC, Octal Three State Buffer	SN74LS244N	ΤI	5
U56, U27, U50, U52, U53, U55	IC, Octal D Type Flip-Flop	SN74LS374N	TI	6
U28	IC, 2 Wide, 3 in, 2 in And-Or-Invert	SN74LS51N	TI	1
U30	IC, Hex Inverter	SN74LS04N	TI	1
U31, U47	IC, Quad 2 Input AND	SN74LS08N	Ti	2
U32, U33	IC, 3 to 8 Decoder	SN74LS138	ΤI	2
U34	IC, Hex Inverter	SN74S04	ΤI	1 1
U35	IC, 4 Bit Binary Counter	SN74LS161N	TI	1
U39	IC, Dual 2 to 4 Line Decoder	SN74LS139N	TI	1 1
U40, U42, U44	IC, Quad 2 Input NAND	SN74LS00	T1	3
U41	IC, Quad R-S Type Latch	SN74LS279	TI	1
U46, U70	IC, TR1 3 Input NAND	SN74LS10N	TI	2
U48	IC, Hex Inverting Buf/Drvr	SN7406N	TI	1
U51, U54	IC, 8 Bit Shift/Storage Register	SN74LS299N	TI	2
U56, U57	IC, Octal Bus Transceiver	8286	INTEL	2
U58	IC, Dual 4 Input NAND	SN74LS20	TI	1
U59	IC, Clock Generator	8284A	INTEL	1
U61	IC, 13 input NAND	SN74S133N	TI	1
U62, U68	IC, Quad 2 Input NOR	SN74LS02N	TI	2
U64	IC, Programmable Counter/Timer	8253-5	INTEL	1
U65	IC, 257 Quad 2:1 MUX	SN74LS257N	TI	1
U66	IC, 9 Bit Parity Generator	SN74S280N	TI	1
U67	IC, Quad 3 State Buffer	SN74LS125N	TI	1
U69	IC, Hex Schmidt Trigger	74LS14	TI	1
U72, U73, U74, U75	IC, Quad 2 Input XNOR OC	SN74LS266	TI	4
U76, U77, U78	IC, Octal Latch, Inverting	8283	INTEL	3
U79	IC, Input/Output Processor	8089	INTEL	1
U80, U81	IC, Octal D Type Latch	SN74LS373N	TI	2
U85	IC, Bus Arbiter	8289	INTEL	1
U86	IC, Bus Controller	8288	INTEL	1
U91, U92, U93	IC, Octal Bus Transceiver, Invert.	8287	INTEL	3
U94, U95, U96, U97	IC, Static RAM	2114A-5	INTEL	4
U98, U99, U100, U101	IC, 8 Bit Shift Register	SN74LS164	TI	4
VR1	Voltage Regulator, -5V	MC7905CT	мот	1
Y1	Crystal, 15.000 MHz	Type 44 Miniature HC45	CRYST	1

Figure 5-1. iSBC 220 SMD Disk Controller Parts Location Diagram

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 1 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 2 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 3 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 4 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 5 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 6 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 7 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 8 of 12)

iSBC 220

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 9 of 12)

Service Information

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 10 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 11 of 12)

Figure 5-2. iSBC 220 SMD Disk Controller Schematic Diagram (Sheet 12 of 12)

APPENDIX A EXAMPLE HOST PROCESSOR DISK CONTROL PROGRAM

INTRODUCTION

The following listing provides an example program that a host processor would run to direct data transfer between the host and the iSBC 220 controller. The program is written in MCS-86 Macro Assembler language. It illustrates the data structures that the iSBC 220 controller requires and shows a few simple disk operation drivers.

ISIS-II MCS-86 MACRO ASSEMBLER V2.1 ASSEMBLY OF MODULE PRGEXM NO OBJECT MODULE REQUESTED ASSEMBLER INVOKED BY: ASM86 :F0:PRGEXM.SRC DATE(80100611) NOOBJECT

LOC OBJ LINE SOURCE 1 \$PAGELENGTH(85) PAGEWIDTH(115) TITLE(1SBC 220 SMD DISK CONTROLLER PROGRAMMING EX AMPLE) XREF *********************************** ISBC 220 SHD DISK CONTROLLER PROGRAMMING EXAMPLE THIS PROGRAM ILLUSTRATES THE DATA STRUCTURES REQUIRED BY THE 1SBC 220 SMD DISK CONTROLLER. A FEW SIMPLE DISK OPERATION DRIVERS ARE ALSO SHOWN. THE HARDWARE CONFIGURATION SUPPORTED IS: ISBC 86/12A HOST CPU 20 BIT SYSTEM MEMORY ADDRESS WIDTH 16 BIT SYSTEM DATA BUS WIDTH 16 BIT SYSTEM I/O ADDRESS WIDTH 16 1SBC 220 a. WAKE UP ADDRESS (UUA) AT I/O PORT 06354 b. INTERRUPT 5 c. -12 VOLTS INPUT 19 22 RELINQUISH BUS CONTROL ON ANY REQUEST 23 FOR (2), PROGRAMMING OF DATA TRANSFERS MUST TAKE THIS INTO ACCOUNT, e.g. THERE IS NO WRAPAROUND IN SEGMENTS IF MORE THAN 64K BYTES ARE TRANSFERRED. 25 26 1SBC 220 SWITCH AND JUMPER SETTINGS: 28 FOR (3), SWITCH S2-1 IS CLOSED. 30 FOR (4), SWITCH S2-2 IS CLOSED.
FOR (5a), SWITCHES S1-6,S1-7,S2-5,S2-6,S2-8, AND S2-10 ARE CLOSED, THE REMAINING ADDRESS SELECT SWITCHES ARE OPEN.

FOR (5b), W4-C CONNECTS TO W4-5; INTERRUPT VECTORS MUST BE SET UP PROPERLY.

FOR (5c), W1-C CONNECTS TO W1-2, W5-C CONNECTS TO W5-1. 33 34 35 FOR (5d), W2-C CONNECTS TO W2-2. 36 \$EJECT TITLE(1SBC 220 COMMUNICATION BLOCKS) = 1 38 +1

FOC OR1		LINE	SOURCE						
	= 1	39							
	=1	40	;						
	=1	41	;	COMMUNE	CATION BLO	מאים ל			
	=1	42	;	COMMONE	oniion bho	J			
	= 1	4.3							
	= 1	44	•						
	=1	45	. =====						
	= 1	46	: I.	SCB					
	= 1	47	;						
	=1	48	;						
	-1	49	;				iSBC	220 THE WIDTH OF T	HE 8089's LOCAL
	= 1	50	;	BUS AND	POINTS TO	THE CCB.			
	=1	51	;						
	= 1	52	;						*******
	= 1	53	;	* THE				EQUAL TO THE I/O	
	= 1	54	;	*****				220 MULTIPLIED BY	*******
	=1	55 56	•		*****				
0635	= 1 = 1	57	;	WUA	EQU O	535H	. 1.7	AKE-UP ADDRESS I/C	DODT NUMBER
0033	=1	58		WUA	1540 0) J J N	, 14	ARE-OF ADDRESS 1/C	FORT NUMBER
	=1	59	; ccreec	SEGMENT	ATE TA		. 10	UTS SCB AT ADDRESS	0625011
	=1	60	;	SEGMENT	AI WUA		; P	UIS SCB AT AUDRESS	10.530:1
0000	=1	61	sсв	LABEL	FAR				
0000 01	=1	62	SOC	DB	0114		• т	ELL 8089 IT IS ON	A 16 BIT LOCAL BUS
0001 00	= 1	63	550	DB	00H			ESERVED	15 511 100111 555
0002 0000	R = 1	6.4	CCBPTR		ССВ			OINTER (SEGMENT +	OFFSET) TO CCB
	=1	6.5	:				, -	(32.11.11.11.11.11.11.11.11.11.11.11.11.11	,
	= 1	66	SCBSEG	ENDS					
	= 1	67	;						
	= 1	68	; =====		=				
	=1	69	; II.	CCB					
	= 1	70	;		=				
	= 1	71	;						
	= 1	72	;					ES, BUSY FLAGS, AN	
	=1	73	;	STARTIN	G ADDRESSE	S OF THE CHAN	INEL P	ROGRAMS FOR THE 80	189.
	= 1	74	;				_		
	= 1	75	CCBSEG	SEGMENT			; 0	CB MUST BE CONTIG	ious
0000	= 1 = 1	76 77	; ССВ	LADET	EAD				
0000 01	=1	7 7 7 8	CCW1	LABEL DB	FAR 01H			TART CH. 1 PROGRAM	TN LOCAL MEMORY
0001 00	=1	79	BSYFLG1		00H			H. 1 BUSY FLAG	I IN LUCKE MEMOKI
0002 0400	R = 1	80	CHIPTR		CHIPC			OINTER TO FIFTH BY	TE OF CIR WHICH
0002 0400	=1	81	OHITTE	,,,,	OHILO			CONTAINS STARTING	
	= î	82						FIRMWARE PROGRAM	inputation of our 1
0006 0000	= 1	83		DW	0000н			ESERVED	
0008 01	= 1	84	CCW2	DB	01H			TART CH. 2 PROGRAM	IN LOCAL MEMORY
0009 00	= 1	8.5	BSYFLG2	DB	00н		; c	H. 2 BUSY FLAG	
000A 0E00	R = 1	86	CH2PTR	DD	CH2PC		; P	OINTER TO LAST WOR	RD OF CCB, WHICH
	= 1	87						CONTAINS STARTING	
	= 1	88					;	FIRMWARE PROGRAM	
000E	. = 1	89	CH2PC	LABEL	FAR				
000E 0400	=1	90		DW	0004H		; S	TARTING ADDRESS OF	F CH. 2 PROGRAM
	= 1	91	;						
	-1	92	CCBSEG	ENDS					
	= 1	93	;						
	-1	94 +1	\$EJECT						

```
LOC OBJ
                                    LINE
                                                SOURCE
                                      96
97
                                                  III. CIB
                              = I
= 1
= 1
= 1
= 1
= 1
= 1
                                                           THIS BLOCK CONTAINS GENERAL PURPOSE COMMAND AND STATUS BYTES, SEMA-
                                      99
                                                           PHORES, AND POINTERS TO ALLOW THE USE OF THE 1SBC 220 IN A MULTI-
PROCESSOR/MULTI-PROCESSING SYSTEM.
                                     100
                                     101
                                     102
                                     103
                                                CIBSEG SEGMENT
                                                                                                        ; CIB MUST BE CONTIGUOUS
                                     104
0000
                                     105
                                                           LABEL
                                                                                                        ; CIB COMMAND BYTE NOT USED BY 1SBC 220
                                                CIRCHD
0000 00
                                                                       0011
                                     106
                                                           DB
                                     107
                                                OPSTS
                                                                       H00
                                                                                                        ; CIB STATUS BYTE IS USED BY 1SBC 220
0001 00
                                                           DВ
0002 00
0003 00
0004
                                     108
                                                CMDSEM
                                                           DΒ
                                                                       υон
                                                                                                        ; COMMAND BYTE SEMAPHORE
; STATUS BYTE SEMAPHORE
                                     109
                                                                       HOO
                                                 STSSEM
                                                           DB
                                     110
                                                 CHIPC
                                                           LABEL
                                                                       FAR
                                                                                                        ; STARTING ADDRESS OF CH. 1 PROGRAM; POINTER TO 10PB
0004 00000000
                                     111
                                                           D D
                                                                       0000H
0008 0000
                                                                       OFFSET IOPB
000A ----
                              = 1
                                     113
                                                 IOPBSG
                                                           กผ
                                                                       IOPBSEG
0000 00000000
                              = 1
= 1
= 1
                                                                                                        : RESERVED
                                     114
                                                                       H0000
                                                           DD
                                                CIBSEG ENDS
                                     116
                                                 ; ==========
                                     118
                                     119
                                                   IV. IOPB
                                     120
121
                                     122
                                                           THIS BLOCK CONTAINS THE DEVICE DEPENDENT CONTROL INFORMATION FOR THE
                                                           iSBC 220 CONTROLLER.
                                     123
124
                                     125
                                                 IOPBSEG SEGMENT
                                                                                                        ; IOPB MUST BE CONTIGUOUS
                              = 1
= 1
= 1
                                     126
                                     127
                                                 IOPB
                                                                      FAR
OOOOH
0000 00000000
                                                                                                        : RESERVED
                                                           ממ
                                                                                                        ; ACTUAL TRANSFER COUNT (32 BIT INTEGER)
; DEVICE CODE (= 0002H FOR iSBC 220)
; UNIT NUMBER (0 <= UNIT <= 3)
0004 00000000
                                                                       0000Н
                                     129
                                                 ACTONT
                                                           DD
0008 0200
000A 00
                                     130
131
                                                DEVCOD
UNIT
                                                           DW
DB
                                                                      0002H
00H
000B 00
000C 0000
000E 0000
                                                                                                        ; FUNCTION CODE (0 <= FUNCTION <= OFH); MODIFIER WORD; CYLINDER NUMBER
                                                 FUNC
                                                                       00H
                                                 MODIFY
                                     \begin{array}{c} 133 \\ 134 \end{array}
                                                           DW
                                                                       0000H
                                                 CYLNDR
                                                                       0000н
0010 00
                                     135
                                                 HEAD
                                                           DВ
                                                                       HO0
                                                                                                        ; HEAD NUMBER
                                                 SECTOR
                                                                                                          SECTOR NUMBER
POINTER TO DATA BUFFER
\begin{array}{cccc} 0.011 & 0.0 \\ 0.012 & 0.000 \end{array}
                                     \begin{smallmatrix}1\,3\,6\\1\,3\,7\end{smallmatrix}
                                                           DB
                                                                       0.011
                                                 BUFOFF
                                                                       0000н
0014 0000
0016 00000000
                              = 1
= 1
                                     138
                                                 BUFSEG
                                                           DW
                                                                       0000H
                                     139
                                                                       0000H
                                                                                                        ; REQUESTED TRANSFER COUNT (INTEGER)
                                                 REOCNT
                                     140
141
001A 00000000
                                                                       0000н
                                      142
                                                 IOPBSEG ENDS
                                     143
144 +1
                                                SINCLUDE (INITBL.SRC)
                                                $EJECT TITLE(DISK DRIVE INITIALIZATION TABLES)
```

LOC OBJ	LINE	SOURCE
	= 1 146 = 1 147 = 1 148 = 1 149	;
	=1 150 =1 151 =1 152 =1 153 =1 154	THIS SEGMENT CONTAINS THE DRIVE CONFIGURATION DATA TABLES THAT ARE USED BY THE INITIALIZATION ROUTINE. THEY MUST BE MODIFIED TO REFLECT THE PARTICULAR DRIVES BEING USED WITH THE 1SBC 220 SHD DISK CONTROLLER.
	=1 155 =1 156 =1 157 =1 158	- IF A DRIVE IS NOT PRESENT, ITS INITIALIZATION TABLE MUST BE ALL ZEROES.
	=1 159 =1 160 =1 161 =1 162 =1 163	3YTES PER SECTOR
	=1 164 =1 165 =1 166 =1 167	; 512 35 ; 1024 18
0000 3703	=1 168 =1 169 =1 170 =1 171 =1 172	INITBLEG SEGMENT ; DRIVE #0 CARTRIDGE MODULE DRIVE (CMD) (32MB: 16MB FIXED, 16MB REMOVABLE) ; DW 823 ; NUMBER OF CYLINDERS
0002 01 0003 01 0004 23 0005 0002	=1 173 =1 174 =1 175 =1 176	DB 1 ; NUMBER OF FIXED READ/WRITE SURFACES DB 1 ; NUMBER OF REMOVABLE R/W SURFACES DB 35 ; NUMBER OF SECTORS PER TRACK DW 512 ; NUMBER OF SYTES PER SECTOR
0007 05	=1 177 =1 178 =1 179 =1 180 =1 181	DB 5 ; NUMBER OF ALTERNATE CYLINDERS ; DRIVE #1 HIHI-HODULE DRIVE (HMD) (80MB WINCHESTER: ALL FIXED) ; DW 823 ; NUMBER OF CYLINDERS
0008 3703 000A 05 000B 00 000C 12 000D 0004	=1 181 =1 182 =1 183 =1 184 =1 185	DW 323 ; NUMBER OF CYLLIADES DB 5 ; NUMBER OF FIXED READ/WRITE SURFACES DB 0 ; NUMBER OF REMOVABLE R/W SURFACES DB 18 ; NUMBER OF SECTORS PER TRACK DW 1024 ; NUMBER OF SYTES PER SECTOR
000F 06	=1 186 =1 187 =1 188 =1 189	DB 6 ; NUMBER OF ALTERNATE CYLINDERS ; DRIVE #2 NONEXISTENT ;
0010 0000 0012 00 0013 00 0014 00 0015 0000	=1 190 =1 191 =1 192 =1 193 =1 194	DW 00004 ; NUMBER OF CYLINDERS DB 00H ; NUMBER OF FIXED READ/WRITE SURFACES DB 00H ; NUMBER OF REMOVABLE R/U SURFACES DB 004 ; NUMBER OF SECTORS PER TRACK DU 00004 ; NUMBER OF BYTES PER SECTOR
0017 00	=1 195 =1 196 =1 197 =1 198 =1 199	DB OOH ; NUMBER OF ALTERNATE CYLINDERS ; DRIVE #3 NOMEXISTENT ; DW OOOOH ; NUMBER OF CYLINDERS
001A 00 001B 00 001C 00 001D 0000	=1 200 =1 201 =1 202 =1 203	DB 00H ; NUMBER OF FIXED READ/WRITE SURFACES DB 00H ; NUMBER OF REMOVABLE R/N SURFACES DB 00H ; NUMBER OF SECTORS PER TRACK DW 0000H ; NUMBER OF BYTES PER SECTOR
001F 00	=1 204 =1 205 =1 206 207 208 +1	DB 00H ; NUMBER OF ALTERNATE CYLINDERS ; INITBLSEG ENDS ; \$INCLUDE(DATSEG.SRC)
	=1 209 +1	

```
LOC OBJ
                                   LINE
                                               SOURCE
                                    210
                                    211
                                    212
                                                          DATA SEGMENT
                                    213
                             = 1
= 1
= 1
                                    214
                                    215
                                               DATASEG SEGMENT
                             = 1
= 1
                                    217
                                     218
                                                          THIS SEGMENT CONTAINS VARIOUS DATA THAT ARE USED BY THE 1SBC 220 DRIVER
                                    219
                                    220
                                                 - THE FLAGS ARE SET BY THE INTERRUPT SERVICE ROUTINE, AND ARE COPIES OF THE CIB STATUS POSTED BY THE 1SBC 220. THE ROUTINES THAT USE THE FLAGS ARE RESPONSIBLE FOR CLEARING THEM AFTER USE.
                                     221
                                    222
                                     223
                                     224
                                    225
                                                          PUBLIC OPCMP, SKCMP, PKCHG, ERRSTS
                              = 1
= 1
                                    227
228
                                                          OPERATION COMPLETE FLAGS
                                     229
0000
                                               OPCMP
                                    230
                                                          LABEL.
                                                                     BYTE
0000 00
                                     231
                                               OPC11PO
                                                                     0011
                                                                                                     ; OPERATION COMPLETE ON UNIT O
                                                                                                     ; OPERATION COMPLETE ON UNIT 1 ; OPERATION COMPLETE ON UNIT 2
0001 00
                                    232
                                               OPCMPI
                                                          DR
                                                                     0011
                                     233
                                               OPCHP2
                                                          DB
                              = 1
0003 00
                                    234
                                               OPCHP3
                                                          D B
                                                                     0011
                                                                                                     ; OPERATION COMPLETE ON UNIT 3
                                     235
                                                          SEEK COMPLETE FLAGS
                              = 1
= 1
                                     237
0004
                                     238
                                               SKCMP
                                                          LABEL
                                                                     BYTE
                                                                                                     ; SEEK COMPLETE ON UNIT 0
; SEEK COMPLETE ON UNIT 1
; SEEK COMPLETE ON UNIT 2
0004 00
                                     239
                                               SKCMPO
                                                          DB
                                                                     00H
                              = 1
= 1
                                                                     00н
0005 00
                                     240
                                               SKCMP1
                                                          DB
0006 00
                                     241
                                               SKCMP2
                                                                     00H
                                     242
243
0007 00
                              = 1
                                               SKCHP3
                                                          DR
                                                                     0011
                                                                                                     : SEEK COMPLETE ON UNIT 3
                              = 1
= 1
= 1
                                    244
245
246
247
                                                          PACK CHANGE FLAGS
                                               PKCHG
PKCHG0
                                                                     BYTE
0008
                                                          LABEL
0008 00
                                                                                                     ; PACK CHANGE ON UNIT O
                              = 1
= 1
                                                                     0011
                                                          DB
                                                                                                     ; PACK CHANGE ON UNIT 1
; PACK CHANGE ON UNIT 2
0009 00
                                               PKCHG1
                                                                     0011
000A 00
                                     249
                                               PKCHG2
                                                          DB
                                                                     00H
000B 00
                                     250
                                               PKCHG3
                                                                     1100
                                                                                                     ; PACK CHANGE ON UNIT 3
                                     251
                                                          ERROR STATUS BLOCK
                              = 1
                                     252
                                     253
                                                          (LOADED FROM CONTROLLER BY ERROR HANDLER)
                                     254
255
000C 0000
                                               ERRSTS
                                                                     0000н
                                                                                                     ; ERROR STATUS WORD
000E 00
000F 0000
                                     256
257
                                                                                                       SOFT ERROR STATUS BYTE DESIRED CYLINDER
                                               SFERST
                                                                     H00
                                                                     0000н
                                               DESCYL
                                                          DW
0011 00
                                     258
                                               DESHD
                                                                     00H
                                                                                                        DESIRED HEAD
                                                                                                     DESIRED SECTOR

ACTUAL CYLINDER + FLAG BITS

ACTUAL HEAD

ACTUAL SECTOR
0012 00
0013 0000
                                     259
260
                                               DESSEC
                                                          DB
                                                                     0011
                                               ACTCYL
                                                                     0000н
                                                          DW
0015 00
0016 00
                                     261
262
                                               ACTHD
ACTSEC
                                                          DB
                                                                     00H
                                                          DB
                                     263
264
0017 00
                                               NMRTRY
                                                                     00H
                                                                                                     ; NUMBER OF RETRIES MADE
                                     265
                                                          LAST OPERATION COMPLETE BYTE
                                     266
267
                                                          (COPIED FROM CIB BY WAIT220)
                              = 1
= 1
0018 00
                                     268
                                               LSTSTS DB
                                                                     00H
                                     269
                                     270
                                                          EVEN
0019 90
                                     271
272
                              = 1
001A
                                               ENDDAT LABEL
                                                                                                     : END OF DATA SEGMENT
                                                                     FAR
                                     273
                                               DATASEG ENDS
                                     274
                                     275
                                               $INCLUDE(USER.SRC)
                                     276 + 1
                                               $EJECT TITLE(SYSTEM DEPENDENT INITIALIZATION)
                                     277 + 1
```

```
LOC OBJ
                                LINE
                                            SOURCE
                                 278
                                 280
281
                                                      SYSTEM DEPENDENT INITIALIZATION
                                  282
                                  283
                                                      THIS ROUTINE SETS UP THE INTERRUPT VECTOR FOR AN 1SBC 86/12A CPU RUNNING UMDER THE 1SBC 957A INTERFACE/EXECUTION PACKAGE.
                                  284
                                  285
                                  286
                                              - THE 8259 INTERRUPT CONTROLLER AND OTHER INITIALZATIONS ARE PERFORMED
                                  287
                                                     BY THE ISBC 957A FIRMWARE.
                                  288
                                  290
                                  291
                                  292
                                                      INTERRUPT VECTOR DEFINITION
                                  293
                                  294
  0005
                                  295
                                                      INTRPT EOU
                                                                                              : iSBC 220 INTERRUPT NUMBER
                                  296
                                            SECOOOD SECMENT AT 0000H
                                                                                              ; INTERRUPT VECTORS ARE FROM ABSOLUTE; ADDRESSES 000004 TO 00FF04
                                  297
                                  298
                                  299
300
0094
                                                      ORG
                                                                80H + 4*INTRPT
                                                                                              ; LOCATION OF INTERRUPT VECTOR WITH
                                                                                              ; iSBC 957A FIRMWARE; - INSTRUCTION POINTER
                                  301
0094 0000
                                                                000011
                                            INTRIP
                                  302
0096 0000
                                  303
                                                                000011
                                                                                              ; - CODE SEGMENT
                                            INTROS
                                  304
                                  305
                                            SECONON ENDS
                                  306
                            = ]
                                  307
                                  308
                                                      STACK ALLOCATION
                           = 1
= 1
                                  309
                                  310
____
                                  311
                                            STACK
                                                      SEGMENT
                                                                                              ; STACK SEGMENT
                                  312
313
                                            ;
0000 (64
                                                                64 DUP(00H)
                                                                                              ; ALLOW 64 BYTES FOR STACK
      0.0
                           = 1
= 1
                                  314
315
                                            ENDSTK
9.040
                                                     LABEL
                                                                FAR
                                  316
                                            ;.
STACK
----
                                  317
                                                      ENDS
                            = 1
                                  318
                                  319
                                                      STACK AND INTERRUPT CONFIGURATION ROUTINE
                                  320
                                  321
                                  322
323
                                            USERSEG SEGMENT
                                  324
                                            ;
                                                      PUBLIC CONFIG
                                  325
                                  326
                                                      ASSU'IE DS:SEG0000
                                  327
                            = 1
                                            CONFIG PROC FAR
0000
                                  328
                                  329
330
                            = 1
0000 FA
                                                      CLI
                                                                                              ; DISABLE INTERRUPTS WHILE SETTING UP
0001 B8----
                                  331
                                                      MOV
                                                                AX, STACK
                                                                                              ;;; SET UP STACK
0004 8ED0
0006 BC4000
                                  332
333
                                                                SS, AX
SP, OFFSET ENDSTK
                                                      MOV
                                                      TOV
0009 B80000
                            = 1
                                  334
                                                      MOV
                                                                P0000, XA
                                                                                              ;;; GET POINTER TO SEGUENT 00004
                                                                DS, AX
INTRIP, OFFSET INT220
000C 8ED8
000E C70694001202
                                  335
336
                                                      MOV
                                                                                              ;;; SET UP INTERRUPT VECTOR
                                                      1107
                                                                INTRCS, SEG INT220
AL, 0C2H
AL, 11011111B
0014 C7069600----
                                  337
                                                      100
                                                                                              ;;; INPUT INTERRUPT MASK FROM 8259
001A E4C2
                                  338
                                                      IN
001C 24DF
                                  339
                                                      AND
                                                                                              ;;; ENABLE INTERRUPT 5
                                                                                              ;;; WRITE NEW MASK OUT TO 8259
;;; ENABLE INTERRUPTS
                                  340
341
342
001E E6C2
0020 FB
                            = 1
                                                      OUT
                                                                OC24, AL
                                                      STI
                            = 1
                                                                3
                                                                                              ;;; GO TO MONITOR
0021 CC
                                  343
344
                            = 1
                                            CONFIG ENDP
                            = 1
                                  345
                                  346
                                            USERSEG ENDS
                                  347
                                            SBC220DRIVER
                                                                SEGMENT
                                  348
                                  349
                                                      ASSUME CS:SBC220DRIVER
                                  350
                                            SINCLUDE(RESET.SRC)
SEJECT TITLE(CONTROLLER RESET ROUTINE)
                                  353 + 1
```

```
LOC OBJ
                                        LINE
                                                       SOURCE
                                          355
                                          356
                                                                   CONTROLLER RESET ROUTING
                                   = 1
                                          358
                                                                    RES220 SETS UP THE COMMUNICATION BLOCKS FOR THE ISBC 220, LINKS THEM
                                           360
                                                                   TOGETHER AND CIVES A RESET, CLEAR RESET, GHANNEL ATTENTION SEQUENCE TO THE CONTROLLER. THIS CAUSES THE 8089 ON THE CONTROLLER TO SET UP ITS INTERNAL POINTER TO THE CCB BY THREADING DOWN THE LINKS STARTING HITH
                                          361
                                          362
363
                                                                   THE SWITCHES OF THE CONTROLLER. SUBSEQUENT CA'S WILL CAUSE THE 8089 TO FETCH ITS POINTERS STARTING AT THE CCB.
                                           364
                                          365
                                           366
                                                         - IF THE CH. 1 BUSY FLAG IS NOT CLEARED WITHIN A "REASONABLE" ABOUNT OF THE, THEN THE ISEC 220 IS PROBABLY NOT RESPONDING TO THE CHANNEL ATTENTION. ON THE CONTROLLER: CHECK SWITCH SUTTINGS; VOLTAGES; RESET, CLEAR RESET, CHANNEL ATTENTION SIGNALS; READY INPUT TO 8089; 8089 STATUS LINES; R/M
                                           367
                                           368
                                           369
                                          370
                                           371
                                           372
                                                         - THE SYSTEM INTERRUPT LOGIC AND VECTORS FOR THE CONTROLLER ARE ASSUMED TO BE CONFIGURED BY AN EXTERNAL PROGRAM.
                                           373
                                   = 1
                                   = 1
                                          375
                                           376
                                                          INPUT DATA:
                                                                   TONE
                                           377
                                           378
                                           379
                                                          OUTPUT DATA:
                                                                   CAPRY FLAG:
                                                                                             = 0 IF RESET OKAY
                                           380
                                           381
                                                                                             = 1 IF CH. 1 BUSY FLAG MOT RESET (NOT RESPONDING)
                                           382
                                           383
                                           384
                                                                   PUBLIC RES220
                                           385
                                                       RES220 PROC
0000
                                           386
                                                                                FAR
                                           387
0000 50
                                           388
                                                                                                                      : SAVE REGISTERS
0001 53
0002 51
                                          389
390
                                                                    PHSH
                                                                                вх
СХ
                                                                    PUSIL
0003 52
                                           391
                                                                    PHSH
                                                                                bх
                                                                    PUSIL
0004 1E
                                           392
                                                                                DS
                                           393
                                                                    SET UP LINKS BETWEEN COMMUNICATION BLOCKS
                                   = 1
                                           394
                                           395
                                           396
                                                          SCB
                                   = 1
                                           397
                                           398
                                                                    ASSUME DS:SCBSEG
                                                                                AX,SCBSEG
DS,AX
                                                                                                                     ; GET POINTER TO SCB
0005 B83506
                                   = 1
                                           399
                                                                    YOL
0008 8ED8
                                          400
                                                                    HOV
                                   = 1
                                                                   HOV WORD PTR SOC,00014 ; SET SOC BYTE AND CLEAR RESERVED BYTE HOV WORD PTR CCBPTR,0FFSET CCB ; SET POINTER TO CCB HOV WORD PTR CCBPTR+2,SEC CCB
000A C70600000100
                                           401
0010 070602000000
                                   = 1
                                          402
                                           403
0016 C7060400----
                                   = 1
                                           404
                                                         CCB
                                   = 1
                                          405
                                           406
                                                                    LDS AX, CCBPTR
ASSUME DS: CCBSEG
                                                                                                                     ; GET POINTER TO CCB
                                           407
001C C706000001FF
                                           408
                                                                    MOV WORD PTR CCW1, OFFOIH
                                                                                                                   ; SET COUL AND CH. I BUSY FLAG
                                                                   HOV WORD PTR CUIPTR, OFFSET CHIPC; SET POINTER TO FIFTH BYTE OF CIB
HOV WORD PTR CHIPTR+2,SEC CHIPC;
HOV WORD PTR CCW2,0001T;
HOV WORD PTR CU2PTR, OFFSET CH2PC; SET CCU2 AND CLEAR CH. 2 BUSY FLAG
HOV WORD PTR CH2PTR+2,SEC CH2PC; SET POINTER TO CH. 2 STARTING ADDRESS
HOV WORD PTR CH2PTP+2,SEC CH2PC
0022 C70602000400
0028 C7060400----
                                          409
                                           410
002E C70608000100
                                          411
0034 C7060A000E00
                                   = 1
                                          412
                                           413
003A C7060C00---
0040 C7060E000400
                                   = 1
                                           414
                                                                    MOV WORD PTR CH2PC,0004#
                                                                                                                     ; SET CH. 2 STARTING ADDRESS
                                   = 1
                                           415
                                                       ; CIB
                                   = 1
                                           417
                                           418
                                                                    ASSUME DS:CIBSEG
                                   = 1
0046 B8----
0049 8ED8
                                                                                AX,CIBSEG
DS,AX
                                           419
                                                                    von
                                                                                                                      ; GET POINTER TO CIB
                                   = 1
                                           420
                                                                    HOV
004B C70600000000
                                   = 1
                                           421
                                                                    MOV WORD PTR CIBCHD, 0000H
                                                                                                                      ; CLEAR CIB COMMAND AND CIB STATUS BYTES
0051 C70602000000
0057 C70604000000
                                          422
                                                                   MOV WORD PTR CMDSEM,0000H
MOV WORD PTR CHIPC,0000H
                                                                                                                     ; ...AND SEMAPHORES; SET CH. 1 STARTING ADDRESS
                                   = 1
005D C70608000000
0063 C7060A00----
                                           424
                                                                                IOPBOFF, OFFSET IOPB
IOPBSC, SEG IOPB
                                                                                                                      ; SET TOPB POINTER
                               R = 1
                                          425
                                                                   MOV
                                          427 +1 $EJECT
                                   = 1
```

LOC	OBJ		LINE	SOURCE			
		= 1	428	;	CLEAR O	UT DATA SEGMENT	
		= 1	429	;			
		= 1	430		ASSUME	DS:DATASEG	
.0069	B8	R = 1	431		MOV	AX, DATASEG	; GET POINTER TO DATA SEGMENT
006C	8 E D 8	= 1	432		MOV	DS, AX	
006E	B90D00	= 1	433		YOU	CX, (OFFSET ENDDAT)/2	; GET COUNT (# WORDS IN DATA SEGMENT)
0071	BB0000	= 1	434		110 V	вх,0000н	; CLEAR INDEX REGISTER
	C7070000	= 1	435	CLRLP:		D PTR [EX],0000H	CLEAR NEXT WORD IN DATA SEGMENT
0078		= 1	436		INC	BX	POINT TO NEXT WORD
0079		= 1	437		INC	BX	, the same and the
007A	EOF8	= 1	438		LOOPNE	CLRLP	: DONE?
.,,,,,,		= 1	439		1300011111	OBKIII	NOCLEAR ANOTHER WORD
		= 1	440				YESINITIALIZE COMMUNICATION LINKS
		= 1	441				, the little of the second
		= 1	442	;	OUTPUT	RESET/CLEAP RESET/CHAN	NEL ATTENTION TO CONTROLLER
		= 1	443	;	001101	Manual Charles College	ATTIMITED TO CONTROLLING
0070	BA3506	= 1	444	•	MOV	DX,WUA	; GET WAKE-UP I/O PORT ADDRESS
007F		= 1	445		1100	AL,02H	GET RESET COMMAND BYTE
0081		= 1	446		OUT	DX,AL	OUTPUT TO WAKE-UP I/O PORT
0082		= 1	447		100	AL,00H	GET CLEAR RESET COMMAND BYTE
0084		= 1	448		OUT	DX, AL	OUTPUT TO WAKE-UP I/O PORT
0085		= 1	449		10V	AL,014	GET CHANNEL ATTENTION COMMAND BYTE
0087		= 1	450		OUT	DX,AL	OUTPUT TO WAKE-UP I/O PORT
0007	1111	= 1	451		ASSUME	DS: CCBSEG	, OUTFOR TO WARR-OF THE FORT
0000	B8	R = 1	452		HOV	AX, CCBSEG	. CUE DATUMED MA COD
008в		= 1	453		107		; GET POINTER TO CCB
0000	0.0.00	= 1	. 454		100	DS,AX	. (OTHER THIS PARTITIONS OF APROACO COMES
		= 1	455				; (OTHER IMPLEMENTATIONS OF RES220 COULD ; INITIALIZE OTHER DEVICES WHILE THE
		. = 1	456				
0.080	B90010	= 1	457		10V	СХ.1000Н	; iSBC 220 DOES ITS RESET SEQUENCE HERE) ; SET TIME-OUT COUNTER
0090		= 1	458		CLC	5.X , 1000 II	; CLEAR CARRY FLAG
	F6060100FF	= 1	459	RESLP:	TEST	BSYFLG1,00FFH	: CHECK CH. 1 BUSY FLAG:
7071	roooroor	= 1	460	WESPE.	Tro.	satruat, ooren	•
0096	7403	= 1	461		JZ	RESDM	; ZERO FLAG = BSYFLG1 & FFR
0070	7403	= 1	462		3 %	KESDII	; BUSY FLAG CLEARED?
0098	EOE7	= 1	463		LOOPHE	RESLP	; YESRETURN CARRY CLEAR
01170	100 E 1	= 1	464		F006.11P	n to a to f	; NODECREMENT COUNTER
009A	70	=1	465		STC		; IF CX = 0, THEN BSYFLG1 NEVER GOT
009B		=1	466	RESDM:	POP	DS	; CLEARED, SO SET CARRY FLAG
009G		= 1	467	KESON:	POP	DX	; RESTORE REGISTERS
		_					
009D		= 1	468		POP	CX	
009E		= 1	469		POP	BX	
009F		= 1	470		POP	ΛX	D D TO A L
0000	CR	= 1	471		RET		; RETURN
		= 1 = 1	472	;	11.17.D.13		
		= 1	473	RES220	ENDP		
			474	, 0.T.N.O.L.U.O.	r/THIE C	D.C.)	
			475 +1		E(INIT.S		
=1 476 +1 \$EJECT TITLE(INITIALIZATION ROUTINE)							

```
LOC OBJ
                                    LINE
                                                SOURCE
                                     477
                                     473
                                     479
                                                             INITIALIZATION ROUTINE
                                     480
                                     481
                              = 1
= 1
                                     482
                                     483
                                                            INIT220 INITIALIZES THE 1SBC 220 CONTROLLER BY LOADING PERTINENT INFOR-
                              = 1
= 1
                                     484
                                                           MATION ABOUT THE DISK DRIVE(S) ATTACHED.
                                     485
                                                   - IF A DRIVE THAT IS SPECIFIED AS PRESENT WILL NOT RESPOND, INIT220 RETURNS IMMEDIATELY WITH THE CARRY FLAG SET.
                                     486
                                     487
                                     488
                                                  INPUT DATA:
DISK DRIVE IMITIALIZATION TABLES, IN SEGMENT "INITBLSEG".
                                     489
                                      490
                                     491
492
                                                 : OUTPUT DATA:
                                                                                            = 0 IF CONTROLLER INITIALIZED SUCCESSFULLY = 1 IM INITIALIZATION ERROR
                                     493
                                                           CARRY FLAG
                              = 1
= 1
                                     494
                                      495
                                     496
497
                                                           PUBLIC INIT220
ASSUME DS:IOPBSEC
                                     498
                                     499
00A1
                                      500
                                                 INIT220 PROC
                                      501
                                      502
                                                            PUSII
00A1 50
                                                                                                        ; SAVE REGISTERS
00A2 1E
00A3 B8----
                                      503
                                                            PHSH
                                                                       ns
                                                            HOA
                                      504
                                                                       AX, IOPESEC
                                                                                                        ; CET POINTER TO IOPR
00A6 8ED8
                                      505
                                                            nov
                                                                       DS,AK
00A8 C6060B0000
                                      506
                                                            YOU
00AD C7060C000000
                                      507
                                                                       MODIFY,0000!
                                                            MOV
                                      508
00B3 C7061400----
                                                           von
                                                                       BUFSEG, INITELSEG
                                     509
00B9 C7061200F8FF
                                      511
                                                            YOU
                                                                       BUFOFF.-8
                                                                       AL,00H
00BF B000
                                     512
                                                            MOV
00C1 8306120008
00C6 A20A00
00C9 E8CB00
                                                                       BUFOFF,8
UNIT,AL
G0220
                                      513
                                                INITLP: ADD
                                     514
                                                            CALL
                                                                                                        ; DO INITIALIZE;
; (RETURNS CARRY FLAG SET OR CLEAR);
; UNIT INITIALIZED?
; NO-TERMINATE WITH CARRY BIT SET
; YES-INGREHENT UNIT COUNTER;
; CHECK UNIT COUNTER (CLEARS CARRY);
; LAST DRIVE INITIALIZED?
; NO-INITIALIZE MEXT DRIVE
; YES-DESCROE BEGISTERS
                                      516
00CC 7205
                                      517
                                                            JС
                                                                       INITON
                                      518
00CE 40
00CF 3C04
00D1 75EE
                                                            INC
                                     519
                                                                       ΑX
                                      520
                              = 1
= 1
                                                                       INÍTLP
                                     521
                                                            1212
00D3 1F
00D4 58
                                      523
524
                                                 INITON: POP
                                                                                                         : YES--RESTORE REGISTERS
                                                                       ΛX
                                                            POP
00D5 CB
                                                                                                         ; RETURN
                                      526
                                      527
                                                 INIT220 ENDP
                                      528
                                                $ SINCLUDE (FORMAT.SRC)
$EJECT TITLE (FORMAT TRACK ROUTINE)
                                      529 +1
                                      530 +1
```

```
LOC OBJ
                                         LINE
                                                       SOURCE
                                           531
                                           532
                                           533
534
                                                                   FORMAT TRACK ROUTINE
                                           535
                                   = 1
= 1
                                           536
                                           537
                                                                    FHITTRK SETS UP THE IOPB FOR A FORMAT TRACK FUNCTION, AND
                                           538
                                                                    INVOKES THE ISBC 220 CONTROLLER TO PERFORM THE OPERATION.
                                           539
                                           540
                                                          INPUT DATA:
                                                                    BP + 9
BP + 8
BP + 7
                                           541
                                                                                      INTERLEAVE FACTOR
                                                                                      USER DATA BYTE 3
                                                                                      USER DATA BYTE 2
                                           543
                                                                                =>
                                           544
                                                                        + 6
                                                                    ВР
                                                                                      USER DATA BYTE 1
                                           545
546
                                                                    BP + 5
BP + 4
                                                                                =>
                                                                                      TYPE OF FORMAT
                                   = 1
                                           547
                                                                    ВР
                                                                        + 3
                                                                                      HEAD
                                           548
                                                                    ВP
                                                                                      CYLINDER
                                           549
                                                                                      UNIT
                                                                    ВP
                                           550
                                   =1
                                           551
                                                       ; OUTPUT DATA:
                                                                                            = 0 IF TRACK FORMATTED SUCCESSFULLY
= 1 IF NON-RECOVERABLE ERROR OCCURRED
                                           552
                                                                   CARRY FLAG
                                           553
                                           554
                                                       ; - INTERLEAVE FACTOR OF 1 IMPLIES SEQUENTIAL SECTOR NUMBERING.
                                           555
                                           556
557
                                                         - USER DATA BYTES 0 - 3 ARE REPLICATED THROUGHOUT THE DATA FIELD. - INTERLEAVE TYPES:
                                   = 1
                                                         - INTERLEAVE TYPES:

00 = NORMAL TRACK
40 = ALTERNATE TRACK (POINTED TO BY EXACTLY ONE DEFECTIVE TRACK,
CANNOT SUBSEQUENTLY BE FORMATTED DEFECTIVE)
80 = DEFECTIVE TRACK (DATA FIELD POINTS TO ALTERNATE TRACK)

TO SET UP A POINTER TO AN ALTERNATE TRACK, SET:
USER DATA BYTE 0 = ALTERNATE CYLINDER LOW BYTE
USER DATA BYTE 1 = ALTERNATE CYLINDER HIGH BYTE
USER DATA BYTE 2 = ALTERNATE HEAD
USER DATA BYTE 3 = 00H
                                           559
                                           560
                                           561
                                           563
                                           564
                                           565
                                           566
                                           567
                                           568
                                           569
                                                                   PUBLIC FMT220
                                           570
                                                                   ASSUME
                                                                               DS: IOPBSEG
                                           571
00D6
                                                       FMT220
                                                                   PROC
                                                                                FAR
                                          573
574
00D6 50
                                                                   PUSH
                                                                                                                     : SAVE REGISTERS
                                                                                ΑX
00D7 1E
00D8 B8----
                                          575
576
                                                                   PUSH
MOV
                               R
                                                                                AX, IOPBSEG
                                                                                                                     ; GET POINTER TO IOPB
                                                                               AX, IOPBSE
DS, AX
AL, [BP]
UNIT, AL
AX, [BP+1]
CYLNDR, AX
AL, [BP+3]
HEAD, AL
BUFOFF, BP
BUFOFF, 4
                                           577
00DB 8ED8
                                                                   HOV
00DD 8A4600
00E0 A20A00
                                  =1
                                          578
579
                                                                   моч
                                                                                                                     ; GET UNIT NUMBER INTO IOPB
                                                                   MOV
00E3 8B4601
00E6 A30E00
00E9 8A4603
                                          580
                                                                   моч
                                                                                                                     ; GET CYLINDER NUMBER INTO IOPB
                                          581
                                                                   MOV
                                           582
                                                                   MOV
                                                                                                                     ; GET HEAD INTO IOPB
00EC A21000
00EF 892E1200
                                          583
                                                                   MOV
                                                                                                                     ; GET POINTER TO FORMAT ARGUMENT LIST
                                          584
                                                                   MOV
00F3 8306120004
                                          585
                                                                                                                             INTO DATA BUFFER POINTER
                                                                   ADD
00F8 8C161400
                                   = 1
                                          586
                                                                   MOV
                                                                                BUFSEG, SS
                                                                                                                     ; SET FUNCTION = FORMAT
; CLEAR MODIFIER (ALLOW ERROR RECOVERY
00FC C6060B0002
0101 C7060C000000
                                  = 1
= 1
                                          587
588
                                                                   MOV
MOV
                                                                                FUNC.02H
                                                                                MODIFY,0000H
                                                                                                                        AND INTERRUPT ON COMPLETION)
START 1SBC 220 AND WAIT FOR DONE
(RETURNS CARRY FLAG SET OR CLEAR)
                                          589
0107 E88D00
                                          590
                                                                   CALL
                                                                               G0220
                                          591
010A 1F
010B 58
010C CA0A00
                                          592
                                                       FMTDN:
                                                                   POP
                                                                                DS
                                                                                                                     : RESTORE REGISTERS
                                  = 1
= 1
                                          593
                                                                   POP
                                          594
                                                                   RET
                                                                                10
                                                                                                                     ; RETURN (AND POP INPUT DATA OFF STACK)
                                          595
                                  = 1
                                                      FMT220 ENDP
                                          596
                                          597
                                          598 +1
                                                       $INCLUDE (RDWRT.SRC)
                                  = 1
                                          599 +1
                                                      $EJECT TITLE (READ DATA ROUTINE)
```

```
LOC OBJ
                                          LINE
                                                         SOURCE
                                            600
                                                            ______
                                            601
                                                                      READ DATA
                                    = 1
= 1
                                            603
                                            604
                                    = 1
= 1
= 1
                                            605
                                                                      RD220 SETS UP THE IOPB FOR A READ OPERATION, AND INVOKES THE 1SBC 220 TO PERFORM THE OPERATION.
                                            606
                                            607
                                            608
                                                         ; INPUT DATA:
                                            609
                                                                      BP + 11 =>
BP + 9 =>
BP + 7 =>
                                                                                         BYTE COUNT HIGH WORD
BYTE COUNT LOW WORD
DATA BUFFER SEGMENT
                                            610
                                            611
                                    = 1
= 1
= 1
                                                                      BP + 5 =>
BP + 4 =>
BP + 3 =>
                                            613
                                                                                         DATA BUFFER OFFSET SECTOR
                                            614
                                            615
                                                                                         HEAD
CYLINDER
                                            616
                                                                      3P + 1 =>
                                            618
                                            619
                                                            OUTPUT DATA:
                                                                                                = 0 IF TRANSFER OCCURRED WITH NO OR RECOVERABLE ERROR = 1 IF UNRECOVERABLE ERROR OCCURRED
                                                                      CARRY FLAG
                                                                      CARRY FLAG = 0 IF TRANSFER OCCURRED WITH NO OR RECOVERABLE ERROR
= 1 IF UNRECOVERABLE ERROR OCCURRED

DATA BUFFER FILLED WITH DATA FROM DISK IF NO UNRECOVERABLE ERROR
                                    = 1
= 1
= 1
                                            622
                                            623
                                    = 1
= 1
= 1
                                            625
                                                                      PUBLIC RD220
                                                                      ASSUME DS: IOPBSEG
                                            626
                                            627
                                                                      PROC
010F
                                                         RD220
                                                                                   FAR
                                            628
                                                                      PUSH
010F 50
                                    = 1
                                            630
                                                                                    ΑX
                                                                                                                          ; SAVE REGISTERS
                                    = 1
                                            631
632
                                                                       PUSH
0110 1E
0111 B8----
0114 8ED8
                                                                       MOV
                                                                                    AX, TOPBSEG
                                                                                                                           ; GET POINTER TO LOPE
                                                                                   DS,AY
AL,[BP]
                                    = 1
                                            633
                                                                      110 V
0116 8A4600
0119 A20A00
011C 8B4601
                                                                                                                           ; GET UNIT INTO LOPB
                                                                      MOV AL, [8P]
MOV UNIT, AL
MOV AX, [8P+1]
MOV CYLNDR, AX
MOV AX, [8P+3]
MOV HORD PTR HEAD, AX
MOV AX, [8P+5]
MOV BUFFOFF, AX
                                    = 1
                                            635
                                            636
                                                                                                                           ; GET CYLINDER INTO IOPB
011F A30E00
0122 8B4603
                                    = 1
= 1
                                            637
                                                                                                                           ; GET WEAD AND SECTOR INTO IOPB
                                            638
0125 A31000
0128 8B4605
                                    = 1
= 1
                                                                                                                           ; GET DATA BUFFER POINTER INTO IOPB
                                            640
0128 884603
012B A31200
012E 884607
0131 A31400
0134 884609
                                            641
                                    = 1
= 1
                                            642
643
                                                                                   AX,[BP+7]
BUFSEG,AX
                                                                      vor
                                                                      10V
                                             544
                                                                                   AX,[BP+9]
                                                                                                                           ; GET BYTE COUNT INTO IOPB
                                                                      MOV
0137 A31600
013A 8B460B
                                                                      MOV WORD PTR REQCNT,AX
MOV AX,[BP+11]
MOV WORD PTR REQCNT+2,AX
                                            645
013D A31800
                                    = 1
                                            647
                                                                                                                          ; CLEAR MODIFIER (ENABLE INTERRUPT ON ; COMPLETION AND RETRIES); SET FUNCTION = READ DATA; START FUNCTION AND WAIT FOR COMPLETION
0140 C7060C000000
                                            648
                                                                      nov
                                                                                   MODIFY,0000H
                                            649
0146 C6060B0004
014B E84900
                                            650
651
                                                                                   FUNC,04H
G0220
                                                                      1107
                                                                      CALL
                                            652
                                                                                                                           ; (RETURNS CARRY FLAG SET OR CLEAR); RESTORE REGISTERS
014E 1F
                                                                      POP
                                                                                   DS
                                    = 1
                                            653
                                                                      POP
                                                                                    ΑX
0150 CA0D00
                                            655
                                                                      RET
                                                                                    13
                                                                                                                           ; POP PARAMETERS OFF STACK AND RETURN
                                    = 1
                                            656
                                            657
                                                         RD220
                                                                      ENDP
                                            658
                                                         $EJECT TITLE(WRITE DATA ROUTINE)
```

```
LOC OBJ
                                  LINE
                                              SOURCE
                                   660
                                   661
                                   662
                                                        WRITE DATA
                                   663
                             = 1
                                   665
                                   666
                                                        WRT220 SETS UP THE 10P3 FOR A WRITE OPERATION, AND
                                   667
                                                        INVOKES THE ISBC 220 TO PERFORM THE OPERATION.
                                   568
                                                INPUT DATA:
                                                        BP + 11 =>
BP + 9 =>
BP + 7 =>
                                   670
                                                                      BYTE COUNT HIGH WORD
                                                                       BYTE COUNT LOW WORD
                                   671
                                                                       DATA BUFFER SEGMENT
DATA BUFFER OFFSET
                                   672
                                                              5 =>
4 =>
                                                        3P +
                                   673
                                                        BP +
BP +
BP +
                                                                       SECTOR
                                   675
                                                              3 =>
1 =>
                                                                       HEAD
                                   676
                                                                       CYLINDER
                                   677
                                                        зР
                                                                  =>
                                                                       UNIT
                                   678
                                   679
                                                        DATA BUFFER CONTAINS INFORMATION TO BE WRITTEN TO DISK
                             = 1
                                   680
                                   682
                                                        CARRY FLAC
                                                                            = O IF TRANSFER OCCURRED WITH NO OR RECOVERABLE ERROR
                                                                             = 1 IF UNRECOVERABLE ERROR OCCURRED
                                   683
                                   684
                                   585
                                   686
                                                        PUBLIC WRT220
                                   687
                                                        ASSUME DS: LOPESEG
                                   688
                                             WRT220 PROC
0153
                                   689
                                                                  FAR
                                   690
                                             ;
                                                                                                 ; SAVE REGISTERS
0153 50
                                   691
                                                        PUSH
                                                                  AΥ
0154 15
0155 R8----
                                   692
                                                        PUSH
                                                                  DS
                                   693
                                                        1107
                                                                  AX, IOPESEG
                                                                                                 ; GET POINTER TO TOPS
                                                                  DS, AX
AL, [BP]
UNIT, AL
0158 8ED8
                             = 1
                                   694
                                                        MOV
015A 8A4600
015D A20A00
                                   695
                                                        HOV
                                                                                                 ; GET UNIT INTO IOPB
                                   696
                                                        HOV
                                                                  AX, [BP+1]
CYLNDR, AX
                                                                                                 ; GET CYLINDER INTO IOPB
0160 884601
                                   697
                                                        MOV
0163 A30E00
                                                        107
                                   698
                                                       MOV AX, [BP+3]
MOV WORD PTR HEAD, AX
MOV AX, [BP+5]
0166 8B4603
0169 A31000
                                   699
                                                                                                 ; GET HEAD AND SECTOR INTO IOPB
                                   700
016C 8B4605
                                                                                                 ; GET DATA BUFFER POINTER INTO IOPB
                                   701
016F A31200
0172 8B4607
                                   702
                                                        1107
                                                                  BUFOFF.AX
                                   703
                                                        1100
                                                                  AX,[BP+7]
0175 A31400
0178 8B4609
                                   704
705
                                                        MOV
                                                                  BUFSEG, AX
AX, [BP+9]
                                                        MOV
                                                                                                 : GET BYTE COUNT INTO IOPB
                                                        MOV WORD PTR REQONT, AX
MOV AX, [BP+11]
MOV WORD PTR REQCHT+2, AX
017B A31600
                                   706
017E 8B460B
0181 A31800
                             = 1
                                   707
                                   708
                                                                                                 ; CLEAR MODIFIER (ENABLE INTERRUPT ON COMPLETION AND RETRIES)
0184 C7060C000000
                                   709
                                                        MOV
                                                                  MODIFY,0000H
                                   710
                                                                                                 ; COMPLETION AND RETRIES); SET FUNCTION = URITE DATA; START ISBC 220 AND WALT FOR DONE
018A C6060B0006
018F E80500
                                                        MOV
                                                                  FUNC,06H
GO220
                                   712
                                                        CALL
                                                                                                        (RETURNS WITH CARRY SET OR CLEAR)
                                   713
0192 1F
0193 58
                                   714
715
                                                                  DS
                                                                                                  : RESTORE REGISTERS
                                                        POP
                                                        POP
                                                                  AX
0194 CA0D00
                                   716
717
                                                        RET
                                                                                                 ; POP PARAMETERS OFF STACE AND RETURN
                                             WRT220
                                                       ENDP
                                   719
720 +1
                                             $INCLUDE(CORE.SRC)
                                             SEJECT TITLE (START FUNCTION AND WAIT FOR COMPLETION)
                                   721 +1
```

```
LINE
                                                                SOURCE
LOC OBJ
                                                 722
                                        723
                                                 724
725
                                                                              START FUNCTION AND WAIT FOR COMPLETION
                                                 727
                                                                              THIS ROUTING GIVES A CHANNEL ATTENTION (MAKE-UP) TO THE 15BC 220 AND MAITS FOR THE FUNCTION SPECIFIED (BY THE CALLING PROCEDURE) TO FINISH. IF AN ERROR OCCURRED, THE ERROR HANDLER IS INVOKED.
                                                 728
                                                 729
730
                                                 731
                                                 732
733
                                                                   INPUTS: NONE
                                                 734
735
                                                                   OUTPUTS:
                                                 736
737
                                                                              CARRY FLAG:
                                                                                                            = 0 IF NO ERROR OR A RECOVERABLE ERROR OCCURRED = 1 IF UNRECOVERABLE ERROR OCCURRED.
                                                 739
740
0197
                                                                G0220
                                                                               PROC
                                                                                             NEAR
                                                 741
742
                                                                                                                                         ; SAVE REGISTERS
0197 50
                                                                               PUSH
                                                                                              АΧ
                                                                                             DX, WUA
AL, 01U
DX, AL
UAIT220
0198 52
0199 BA3506
019C B001
                                                 743
744
745
                                                                               PUSH
                                                                                                                                         ; GET ADDRESS OF MAKE-UP I/O PORT
; GET WAKE-UP COMMAND BYTE
; GIVE MAKE-UP TO ISBC 220
; MAIT FOR FUNCTION COMPLETS
                                        = 1
= 1
= 1
= 1
= 1
= 1
                                                                               VO15
                                                                               VOI
019E EE
019F E80800
01A2 7303
                                                 746
747
748
749
                                                                               OUT
CALL
JNC
                                                                                              DOME
                                                                                                                                             ERROR?
                                                                                                                                             NO--RETURN
                                                                                                                                         ; YES-CALL ERROR HANDLER (RETURNS WITH
CARRY FLAG SET OR CLEAR)
RESTORE REGISTERS
01A4 E82900
                                                  750
                                                                               CALL
                                        = 1
= 1
= 1
= 1
= 1
= 1
                                                 751
752
01A7 5A
01A8 58
01A9 C3
                                                                DONE:
                                                                               POP
                                                                                              DX
                                                 753
754
755
                                                                               POP
RET
                                                                                              ΑX
                                                                                                                                         ; RETURN
                                                 756
757
758 +1
                                                                G0220
                                                                               ENDP
                                                                $EJECT TITLE(WAIT FOR FUNCTION COMPLETE ROUTINE)
```

```
LOC OBJ
                                          LINE
                                                        SOURCE
                                   = 1
                                           760
                                           761
                                                                     WAIT FOR FUNCTION COMPLETE
                                   = 1
                                           762
                                   = 1
= 1
= 1
                                           763
                                           764
                                                                    NOPMALLY, THIS WAIT ROUTINE WOULD TRAP TO THE SYSTEM DISPATCHER/
SCHEDULER TO ALLOW ANOTHER TASK TO EXECUTE WHILE THE ISBC 220 COMPLETED
ITS FUNCTION. HONEVER, FOR THIS EXAMPLE, THE ROUTINE SIMPLY WAITS FOR
THE INTERRUPT SERVICE ROUTINE TO LOAD THE OPERATION COMPLETE STATUS
FROM THE CIR OPERATION STATUS INTO THE DATA SEGMENT. IF AN ERROR
OCCURRED, THE STATUS IS AVAILABLE THERE FOR SUBSEQUENT PROCESSING BY
AN ERROR HANDLER.
                                           765
                                           766
                                   = 1
= 1
                                           767
                                           768
                                           769
                                   = 1
                                           770
                                           771
                                           772
773
                                                                    OPERATION COMPLETE STATUS FROM THE CIR, COPIED INTO THE DATA SEGMENT BY THE INTERRUPT ROUTING
                                   = 1
= 1
                                           774
                                           775
                                           776
777
                                                          OUTPUT DATA:
                                   = 1
                                                                    OPERATION COMPLETE SYTE
                                                                                                                       CLEARED
                                   = 1
= 1
                                           779
780
                                                                                                                       = 0 IF NO ERROR
= 1 IF ERROR OCCURRUD
                                                                    CARRY FLAG
                                           781
782
                                                                                                                       IN "LSTSTS" IF ERROR OCCURRED
                                                                    COPY OF CIB OPERATION STATUS
                                   = 1
                                           783
                                                                     ( OPERATION COMPLETE BYTE AND "LSTSTS" ARE IN SEGMENT "DATASEG" )
                                   = 1
                                           784
                                           785
                                                        ;
                                           786
                                                                    ASSUME DS: DATASEG
                                   = 1
= 1
                                           787
0144
                                           788
                                                        WAIT220 PROC
                                                                                 MEAR
                                           789
                                           790
                                                                     PUS!!
                                                                                                                        ; SAVE REGISTERS
01AA 50
01AB 53
                                   = 1
                                           791
                                                                     PHSH
                                                                                 ВΧ
01AC 1E
                                   = 1
                                           792
                                                                     PHSH
                                                                                 DS
                                            793
                                                                     nov
                                                                                  BX, DATASEG
                                                                                                                        ; GET POINTER TO DATA SEGMENT
                                   = 1
= 1
                                           794
795
OIRO SEDR
                                                                     MOV
                                                                                 DS, BX
OlB2 BBFFFF
                                                                     von
                                                                                                                        ; INITIALIZE INDEX REGISTER
                                                                                  BX .-1
                                                                                                                          MAKE SURE INTERRUPT CAN GET THROUGH ***** WAIT FOR INTERRUPT *****
GET INDEX FOR NEXT UNIT
MASK UPPER BITS
01B5 FB
                                           796
                                                                     STI
0186 F4
0187 43
0188 81E30300
                                           797
                                                                     HLT
                                           798
799
                                                       WAITLP: INC
                                                                                 BX.0003H
                                   = 1
                                                                    AND
TEST
OIBC F607FF
                                           800
                                                                                 BYTE PTR [BX], OFFI
                                                                                                                           OPERATION COMPLETE STATUS = 00H?
                                                                                                                          (SIGN FLAG = SIT 7 OF OP. STATUS,
TEST INSTR. CLEARS CAPRY FLAG)
STATUS <> OOH (OPERATION COMPLETE)?
NO--CHECK NEXT URIT
                                   = 1
                                           801
                                           802
01BF 74F6
                                   = 1
= 1
                                           803
                                                                    JZ
                                                                                 WAITLP
                                           804
                                                                                                                          YES--ERROR OCCURRED DURING FUNCTION?
NO--RETURN WITH CARRY FLAG CLEAR
01C1 7906
                                           805
                                                                     JNS
                                                                                 HAITDN
                                   = 1
                                           806
                                           807
                                                                     MOV
                                                                                  AL,[BX]
                                                                                                                           YES -- SAVE CIB OP. STATUS IN "LSTSTS"
01C3 8A07
01C5 A21800
01C8 F9
                                   = 1
                                           808
                                                                     VOI
                                                                                 LSTSTS, AL
                                                                                                                        ; SET CARRY FLAG TO INDICATE ERROR
                                           809
                                                                     STC
                                                                                                                        ; CLEAR OPERATION COMPLETE BYTE : RESTORE REGISTERS
01C9 C60700
                                                                           BYTE PTR [BX],00H
                                           810
                                                        WAITDN: MOV
01CC 1F
                                   = 1
                                           811
                                                                     POP
                                                                                 DS
01CD 5B
01CE 58
                                   = 1
                                                                                 вх
                                           812
                                                                     POP
                                           813
                                                                     POP
                                           814
815
01CF C3
                                   = 1
                                                                     RET
                                                                                                                        : RETURN
                                                        WAIT220 ENDP
                                           816
                                           817
                                                        $INCLUDE (ERROR.SRC)
                                   = 1
                                                        SEJECT TITLE (ERROR HANDLER)
                                           819 + 1
```

```
LOC OBJ
                                                              SOURCE
                                              LINE
                                                820
                                                                            ERROR HANDLER
                                               822
                                                823
                                                824
                                                                           THIS ROUTINE IS SYSTEM DEPENDENT. IN THIS EXAMPLE, THE ERROR INFORMATION FROM THE CONTROLLER IS READ INTO SOFTWARE REGISTERS IN DATASEC, WHERE IT CAN BE EXAMINED. "HORE SOPHISTICATED SYSTEMS MIGHT LOG THE ERRORS TO DETERMINE WHEN A TRACK IS COING BAD, FOR EXAMPLE.
                                       = 1
= 1
                                                826
                                                827
                                                829
                                                830
                                                                - THE TRANSFER STATUS FUNCTION WILL NOT RETURN AN ERROR.
- THE UNIT NUMBER IN THE LOPB IS NOT CHANGED, SO THAT THE OPERATION COMPLETE STATUS FOR THE TRANSFER STATUS FUNCTION WILL BE POSTED AGAINST THE SAME UNIT AS CAUSED THE ERROR.
                                                831
                                                832
                                                833
                                                334
                                       = 1
                                                                 INPUT DATA:
                                                836
                                                837
                                                                           CIB OPERATION STATUS IN "LSTSTS" IN DATA SEGMENT
                                                838
                                                                OUTPUT DATA:
ERROR STATUS FROM CONTROLLER
CIB OPERATION STATUS
                                               839
                                                                                                                                   IN DATA SEGMENT
IN "LSTSTS" IN DATA SEGMENT
= 0 IF SOFT (REGOVERABLE) ERROR
= 1 IF HARD (UNRECOVERABLE) ERROR
                                                840
                                                841
                                                842
                                       = 1
                                                843
                                                845
                                                                            ASSUME DS: IOPBSEC
                                                346
                                                847
0100
                                                              ERROR
                                                                            PROC
                                                                                          MEAR
                                                848
01D0 50
01D1 1E
                                               850
851
                                                                            PUSH
                                                                                                                                    ; SAVE REGISTERS
                                                                            PUSII
01D2 B8----
01D5 SED8
                                                852
853
                                                                            1107
                                                                                          AX, IOPBSEG
                                                                                                                                    ; GET POINTER TO IOPB
                                                                            110 V
                                                                                          DS,AX
AX,BUFOFF
01D7 A11200
                                                854
                                                                                                                                    ; SAVE IOPB DATA BUFFER POINTER
01DA 50
                                                855
                                                                            PUSH
                                                                                          ΑX
01DA 50
01DB A11400
01DE 50
01DF C70612000C00
01E5 C7061400----
01EB C606080001
                                                                                          AX, BUFSEG
                                                856
                                                                            MOV
                                                                                          AX,
BUFOFF, OFFSET ERRSTS
BUFSEG, DATASEG
                                                857
                                                                            PUSH
                                                858
                                                                                                                                    ; GET POINTER TO DATA SEGMENT ERROR
                                                                            MOV
                                                                                                                                    ; STATUS REGISTERS; SET FUNCTION = TRANSFER STATUS; CLEAR MODIFIER (ENABLE INTERRUPT ON
                                                859
                                                                            YOF
                                                                            NOV
VOI
                                                                                          FUNC,01H
HODIFY,0000H
                                       = 1
                                                860
                                                                                                                                       COMPLETION AND RETRIES)
START FUNCTION AND WALT FOR COMPLETE
BESTORE IOPB DATA BUFFER POINTER
                                                862
01F6 E89EFF
                                                863
                                                                            CALL.
                                                                                          G0220
01F9 58
01FA A31400
                                               864
865
                                                                            POP
                                                                                          AX
BUFSEC, AX
01FD 58
01FE A31200
                                                866
                                                                            POP
                                                                                          BUFOFF. AX
                                       = 1
                                                367
                                                                            MOV
0201 B8----
                                                868
                                                                                          AX, DATASEG
                                                                                                                                    ; GET POINTER TO DATA SEGMENT
                                       = 1
                                                                            MOV
0204 8ED8
                                                869
                                                                            nov
0206 F8
0207 A01800
                                               870
871
                                                                            CLC
                                                                                                                                    ; CLEAR CARRY FLAG; GET OLD (ERROR) CIB OPERATION STATUS
                                                                                          AL, DS: LSTSTS
                                                                                                                                       CHECK HARD ERROR BIT
HARD ERROR BIT SET?
NO--LEAVE CARRY FLAG CLEAR
YES--SET CARRY FLAG
020A 2440
020C 7401
                                                872
                                                                            AND
                                                                                          AL,40H
SFTERR
                                                873
                                                                            JΖ
                                                874
020E F9
                                                                            STC
                                                875
020F 1F
0210 58
                                       = 1
= 1
                                                876
877
                                                             SFTERR: POP
                                                                                                                                     ; RESTORE REGISTERS
                                                                                          DS
AX
0211 C3
                                                878
                                                                            RET
                                       = 1
= 1
                                                879
880
                                                              ERROR
                                                                           ENDP
                                                881
                                                              , SINCLUDE (INTRPT.SRC)
SEJECT TITLE (INTERRUPT SERVICE ROUTINE)
                                                882 +1
```

```
LOC OBJ
                                        LINE
                                                      SOURCE
                                          885
                                          886
                                                                  INTERRUPT SERVICE ROUTINE
                                          887
                                          888
                                                                  THIS ROUTINE SERVICES THE INTERRUPT GENERATED BY THE 1SBC 220 UPON OPERATION COMPLETE, SEEK COMPLETE, OR DISK PACK CHANGE. IT COPIES THE CIB OPERATION STATUS INTO ONE OF FOUR BYTES ASSOCIATED WITH EACH OF THESE EVENTS. IT IS ASSUMED THAT SYSTEM PROGRAMS MAKE USE OF THE INFORMATION TO RESUME TASKS, HANDLE ERROR LOGGING/RECOVERY, AND KEEP TRACK OF DIRECTORY INFORMATION. FOR THIS PROGRAMMING EXAMPLE, ONLY THE OPERATION COMPLETE BYTES ARE USED.
                                          890
                                          891
                                          892
                                          893
                                          895
                                          896
                                          897
                                                         - THE SYSTEM INTERRUPTS ARE CONFIGURED BY EXTERNAL PROGRAMS.
                                          898
                                          899
                                          900
                                                                  PUBLIC INT220
                                          902
0212
                                          903
                                                      INT220 PROC
                                                                               FAR
                                          904
905
0212 FB
                                                                   STI
                                                                                                                    ;;; ENABLE HIGHER PRIORITY INTERRUPTS
0213 50
                                          906
                                                                  HZUS
                                                                                                                    ;;; SAVE REGISTERS
0214 53
                                          907
                                                                  PUSH
                                                                               BX
                                          908
                                                                  PUSH
0216 1E
                                          909
                                                                  PHSH
                                                                               DS
                                          910
                                                                  ASSUME
                                                                               DS:CIBSEG
0217 B8----
                                          911
                                                                   vor
                                                                               AK, CIBSEG
                                                                                                                    ; GET POINTER TO CIB
021A 8ED8
021C A00100
021F 8AD0
                                                                               DS, AX
AL, OPSTS
DL, AL
STSSEH, OOH
                                          912
                                                                  210 V
                                                                                                                   ; GET CIB OPERATION STATUS ; SAVE IT
                                          914
                                                                  MOV
                                                                                                                   ; CLEAR CIB STATUS SEMAPHORE
0221 C606030000
                                          915
                                                                  nov
0226 8AD8
0228 81E33000
                                          916
917
                                                                                                                    MOVE IT TO INDEX REGISTER MASK ALL BITS EXCEPT UNIT NUMBER
                                                                  MOV
                                                                               BL,AL
BX,0030H
                                                                  AND
022C D1EB
                                                                  SHR
                                                                               BX,1
                                                                                                                    ; SHIFT UNIT NUMBER TO BITS 0 AND 1
022E DIEB
                                          919
                                                                  SHR
                                                                               BX,1
BX,1
0230 D1EB
                                          920
                                                                  SHR
0232 D1EB
0234 250600
                                          921
                                                                  SHR
                                          922
                                                                               АХ,0006Н
                                                                                                                   ; MASK ALL BITS EXCEPT SEEK COMPLETE
                                                                  AND
                                                                                                                    ; AND PACK CHANGE; SHIFT LEFT TO GET OFFSET INTO PROPER; BYTE IN DATA SEGMENT; COMBINE VITH UNIT IN INDEX REGISTER
                                          923
0237 D1E0
                                          924
                                                                  SILL
                                                                               AX,1
0239 0308
                                  = 1
                                          926
                                                                  ADD
                                                                               BX,AX
                                          927
                                                                               DS:DATASEG
                                                                  ASSUME
                                  = 1
023B B8----
                                          928
                                                                               AX, DATASEG
DS, AX
                                                                  von
                                                                                                                    ; GET POINTER TO DATA SEGMENT
023E 8ED8
                                                                               [BX],DL
DX,VUA*16
AL,O2U
                                                                                                                    ; MOVE OPERATION STATUS TO DATA SEGMENT; GET POINTER TO I/O WAKE-UP ADDRESS; GET CLEAR INTERRUPT COMMAND BYTE
0240 8817
                                          930
                                                                  MOA
                                          931
0242 BA5063
                                                                  MOV
0245 B002
0247 EE
                                          933
                                                                  OUT
                                                                               DX,AL
                                                                                                                    ; OUTPUT TO ISBC 220
                                          934
                                                      ;
0248 1F
                                                                  POP
                                                                                                                    ; RESTORE REGISTERS
0249 5A
024A 5B
                                          936
                                                                  POP
                                                                               DX
                                          937
                                                                   POP
                                                                               ВX
                                                                                                                   ; DISABLE INTERRUPTS FOR RESTORE ; (RESTORATION OF INTERRUPT LOGIC STATE
024B FA
                                          938
                                                                  CLI
                                          939
                                          940
                                                                                                                    ; IS SYSTEM DEPENDENT. THIS EXAMPLE USES ; THE ISBC 86/12A CPU.)
                                                                                                                    ;;; GET END-OF-INTERRUPT COMMAND
;;; OUTPUT EOI COMMAND TO 8259
024C B020
                                          942
                                                                  MOV
                                                                               AL.20H
024E E6C0
                                          943
                                                                  OUT
                                                                               OCÓH,AL
                                          944
0250 58
                                                                  POP
                                                                               ΑX
                                          945
                                                                                                                    ;;; INTERRUPT RETURN ENABLES INTERRUPTS
                                                                   IRET
                                          946
947
                                                      INT220 ENDP
                                          948
                                                      SBC220DRIVER
                                                                               ENDS
                                                                                                                    ; END OF ISBC 220 DRIVER CODE
                                          949
                                          951 +1
                                                      $TITLE(SYMBOL TABLE AND CROSS REFERENCE)
                                                                  END
                                                                                                                    ; END OF PROGRAMMING EXAMPLE
```

XREF SYMBOL TABLE LISTING

```
NAME
                                 TYPE
                                                       VALUE ATTRIBUTES, XREES
 ??SEG . . . SEGMENT
                                                                        SIZE=0000H PARA PUBLIC
ACTCNT. . . V DWORD ACTCYL. . . V WORD
                                                       000411
                                                                       IOPBSEG 129#
DATASEG 260#
                                                       0013H
ACTHD . . . . ACTSEC. . . .
                                                       0015н
                                                                       DATASEG
DATASEG
                                                                                             261#
                                 V BYTE
 ACTSEC. . . V BYTE BSYFLG1 . . V BYTE
                                                       001611
                                                                                             262#
                                                                       DATASEC 262#
CCBSEC 79# 459
CCBSEC 85#
IOPBSEC 137# 511 513 584 585 641 702 854 858 867
IOPBSEC 138# 509 586 643 704 856 859 865
CCBSEC 64 77# 402 403
SC3SEC 64# 402 403
                                                       0001H
BSYFLG2 . . . V BYTE
BUFOFF. . . V WORD
BUFSEG. . . V WORD
                                                       0009H
0012H
                                                       001411
BUFSEG. . V WORD

CCB . . . . . . . . . . . . V DUORD

CCBSTG . . . . . . . . . V DUORD

CCW1 . . V BYTE

CCW2 . . V BYTE

CHIPPC . L FAR

CHIPPTE . V DUORD

CH2PC . L FAR

CH2PTE . V DUORD

CTB . L FAR
                                                       H0000
                                                       000211
                                                                       SCHEC 64# 402 403
SIZE=0010H PARA 75# 92 40
CCBSEC 75# 400
CCBSEC 84# 411
CIBSEC 80 110# 409 410 423
CCBSEC 86 89# 412 413 414
CCBSEC 86# 412 413 414
                                                                                                                    75# 92 407 451 452
                                                       000011
                                                       00081
                                                       0004H
                                                       000EH
                                                       000A11
 CIB . . . L FAR
CIBCHD . . . V BYTE
CIBSEG . . SEGMENT
                                                                       CIBSEG
CIBSEG
                                                                                          105#
106# 421
                                                       200011
                                                       110000
                                                                       CIRSEG 106# 421

SIZC=00104 PARA 103# 116 418 419 910 911

SUC220DRIVER 435# 438

CIRSEC 108# 422

USERSEG PUBLIC 325 328# 344

LOPBSEG 134# 581 437 698

SIZE=001AH PAPA 216# 274 430 431 786 793 859 860 927 928

DATASEG 257#

DATASEG 258#

DATASEG 258#
                                  SECTEME
CIRSEG. SEGMENT
CLRLP. L NEAR
CMDSCH. V DYTE
CONFIG. L FAR
CYLNDP. V WORD
DATASEG SEGMENT
DESCYL. V WORD
DESID. V BYTE
FESSEC V RYTE
                                                       007411
                                                       000011
                                                       OOOCH
                                  SEGMENT
                                                       000F4
                                                       0011H
                                                                      DATASEG 258#
DATASEG 259#
DATASEG 259#
LOPRSEG 130#
SBC220DRIVER 748 752#
DATASEG 272# 433
STACK 315# 333
SBC220DRIVER 750 848# 880
DATASEG PUBLIC 226 255# 858
SBC220DRIVER PUBLIC 569 572# 596
SBC220DRIVER 592#
LOPBSEG 132# 506 587 650 711 860
SBC220DRIVER 515 590 651 712 740# 756 863
LOPBSEG 135# 503 639 700
SBC220DRIVER PUBLIC 497 500# 527
SLZE=0020H PARA 168# 206 509
SBC220DRIVER 91BLIC 497 500# 527
SLZE=0020H PARA 168# 206 509
SBC220DRIVER 517 523#
SBC220DRIVER 518# 521
SBC220DRIVER 91BLIC 336 337 901 903# 947
 DESSEC. . . V BYTE DEVCOD. . . V WORD
                                                       P$100
00089
DONE. L NEAR
ENDDAT. L FAR
ENDSTK. L FAR
ERROR L NEAR
ERROR . L NEAR
ERROR . L NEAR
                                                       01 \( 7 \)1
                                                       001AH
                                                       004011
                                                       01009
                                                       000011
000611
                                                       010AH
                                                       000BH
                                                       01971
                                                       00A1H
000311
                                                       000111
                                                                        SBC220DRIVER 918LIC 336 337 901 903# 947
SEG0000 303# 337
SEG0000 302# 336
                                                       0212E
INTECS. V UORD
INTRIP. V UORD
INTRIP. NUMBER
IOPB. L FAR
IOPBSEG SEGMENT
IOPBSEG V WORD
IOTSTEE V UNTR
                                                       00968
                                                       009411
                                                                       295# 300
IOPBSEC 112 127# 424 425
CIBSEC 112# 424
SIZE=001EH PARA 113 125
                                                       00059
                                                       110000
                                                       000811
                                                                                                                     113 125# 142 498 504 570 576 626 632 687 693 846 852
                                                                       CIBSEC 113# 425
DATASEC 268# 808 871
IOPBSCC 133# 507 588 648 709 861
                                                       HACOO
 LSTSTS. . . V BYTE MODIFY. . . V UORD
                                                       0018H
NMRTRY. . . V BYTE
OPCMP . . . V BYTE
OPCMPO. . . V BYTE
                                                                       DATASEG 263#
DATASEG PUBLIC 226 230#
DATASEG 231#
                                                       0017H
                                                       110000
                                                       1:0000
 OPCMP1. . . V BYTE
                                                       0001H
                                                                       DATASEG
DATASEG
                                                                                             232#
OPCMP1. . . V BYTE
OPCMP2. . . V BYTE
OPCMP3. . . V BYTE
OPSTS . . V BYTE
PKCHG . . V BYTE
                                                       000211
                                                                                             233#
                                                                       DATASEG
                                                       000311
                                                                                             234#
                                                                       CIBSEG 107# 913
                                                       0001H
                                                       H8000
                                                                       DATASEG PUBLIC 226 246#
 PKCHGO. . . V BYTE
                                                       118000
                                                                       DATASEG 247#
DATASEG 248#
PKCHG1. . . V BYTE PKCHG2. . . V BYTE
                                                       116000
                                                                       DATASEG
                                                       000AH
                                                                                             249#
PKCHG3. . . V BYTE
RD220 . . L FAR
REQCNT. . . V DWORD
                                                       OOOBH
                                                                                             250#
                                                                       SBC220DRIVER PUBLIC 625 628# 657
IOPBSEG 139# 645 647 706 708
SBC220DRIVER PUBLIC 384 386# 473
                                                       010FH
                                                       0016н
0000н
                                                                       SBC220DRIVER PUBLIC 30- 58
SBC220DRIVER 461 466#
SBC220DRIVER 459# 463
CT7E=0252H PARA 348# 350 949
RES220. . . L FAR
RESDN . . . L NEAR
                                                       009вн
RESLP . . . L NEAR SBC220DRIVER. SEGMENT
                                                       0091H
                                                                       SCBSEG 61#
SIZE=0006H PARA ABS 59# 66 398 399
IOPBSEG 136#
SIZE=0098H PARA ABS 297# 305 326
SCB . . . . L FAR
SCBSEG . . . SEGMENT
SECTOR . . . V BYTE
                                                       0000н
                                                       0011H
SEG0000 . . SEGMENT
```

NAME	TYPE	VALUE	ATTRIBUTES, XREFS
SFERST	V BYTE	000EH	DATASEG 256#
SFTERR	L NEAR	020FH	SBC220DRIVER 873 876#
SKCMP	V BYTE	000411	DATASEG PUBLIC 226 238#
SKCMPO	V BYTE	0004H	DATASEG 239#
SKCMP1	V BYTE	0005H	DATASEG 240#
SKCMP2	V BYTE	0006н	DATASEC 241#
SKCMP3	V BYTE	0007H	DATASEG 242#
SOC	V BYTE	0000н	SCBSEG 62# 401
STACK	SEGMENT		SIZE=0040H PARA
STSSEM	V BYTE	0003H	CIBSEG 109# 915
UNIT	V BYTE	HACCO	IOPBSEG 131# 514 579 635 696
USERSEG .	SEGMENT		SIZE=0022H PARA 323# 346
WAIT220 .	L NEAR	Olaah	SBC220DRIVER 747 788# 816
WAITDN	L NEAR	01C9H	SBC220DRIVER 805 810#
WAITLP	L NEAR	01B7H	SBC220DRIVER 798# 803
WRT220	L FAR	0153н	SBC220DRIVER PUBLIC 686 689# 718
WUA	- NUMBER	0635H	57# 59 444 744 931

ASSEMBLY COMPLETE, NO ERRORS FOUND

REQUEST FOR READER'S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

 Please specify by page any errors you found in the 	is manual.
	·
Does the document cover the information you improvement.	expected or required? Please make suggestions for
3. Is this the right type of document for your needs? needed?	Is it at the right level? What other types of documents are
4. Did you have any difficulty understanding descrip	tions or wording? Where?
5. Please rate this document on a scale of 1 to 10 w	th 10 being the best rating.
NAME	DATE
TITLE	
COMPANY NAME/DEPARTMENT	
ADDRESS	
CITY	STATE ZIP CODE

Please check here if you require a written reply.

WE'D LIKE YOUR COMMENTS . . .

This document is one of a series describing Intel products. Your comments on the back of this form will help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and suggestions become the property of Intel Corporation.

IF MAILED IN THE UNITED STATES

NO POSTAGE NECESSARY

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation 3585 S.W. 198th Aloha, Oregon 97005

MCSO Technical Publications

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.