intel

iINA 960 PROGRAMMER’S
- REFERENCE MANUAL

_
Copyright © 1984 intel Corporation :
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 122193-001

iNA 960 PROGRAMMER’S
REFERENCE MANUAL

Order Number: 122193-001

Copyright © 1984 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051

I

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli-
cation or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify Intel
products:

BITBUS im iIRMX Plug-A-Bubble
COMMputer iMMX iSBC PROMPT
CREDIT Insite iSBX Promware
Data Pipeline intel iSDM QueX

Genius int,!BOS iSXM QUEST

o Intelevision Library Manager Ripplemode

b int ligent Identifier MCS RMX/80
12ICE intgligent Programming Megachassis RUP]

ICE Intellec MICROMAINFRAME Scamless

iCS Intellink MULTIBUS SOLO

iDBP iOSP MULTICHANNEL SYSTEM 2000
iDIS iPDS MULTIMODULE UP}

iLBX

SOFTWARE

REV.

REVISION HISTORY

DATE

APPD.

-001

Original issue.

3/84

R.T.

iii

PREFACE

This manual provides all of the details necessary to use iNA 960 Release 1, and is
intended for use by system designers and application programmers.

This manual contains nine chapters and five appendixes:

« Chapter 1, “Introduction,” presents an overview, describes the ISO model, and
summarizes the portion of the ISO network implemented by iNA 960.

e Chapter 2, “User Interface to iNA 960,” describes the target environments of
iNA 960 and the user interface to iNA 960.

e Chapter 3, “Data Link Layer,” contains the data link services, data link
commands, and the data link configuration macros.

e Chapter 4, “Network Layer,” contains the description of the internet address,
which must be used when the transport services are used.

e Chapter 5, “Transport Control Layer,” describes virtual circuit service, datagram
service, buffers, and the user interface to the services.

» Chapter 6, “Network Management Facility,” describes layer management, down-
line loading, dumping, echo testing, and the configuration macros (boot server
and NMF).

+ Chapter 7, “ROM-Based NMF,” describes the boot consumer facility that can
be burned into ROM (this facility is used for booting a station from the network).

« Chapter 8, “iRMX 86 System Generation,” describes the configuration of the
communication software for iRMX 86-based systems.

» Chapter 9, “Component Support Interface,” describes the message delivery
mechanisms available, the hardware environment required, and the steps needed
to configure and initialize the communications software for non-iRMX-based
systems.

« Appendix A, “iNA 960 Files,” describes all the files included on the iNA 960
delivery diskettes.

» Appendix B, “Network Management Facility Objects,” describes all of the objects
for the network management facility in iNA 960.

* Appendix C, “Sample User Routines for Component Support,” describes how
iNA can be configured to run on an 8086/82586-based system.

+ Appendix D, “CONFIGURE Command Parameters,” gives the format from the
CONFIGURE command argument field and describes the command
parameters.

s Appendix E, “MULTIBUS Interprocessor Protocol (MIP),” is a specification of
the MIP interface.

Related Publications

For further information on the INA 960, refer to the following publications:
* iINA 960 Architecture Reference Manual, order number 122194

« IMMX 800 Software Reference Manual, order number 144912

o 82586 Reference Manual, order number 210891

e [APX 186 High Integration 16-bit Microprocessor Data Sheet, order number
210451

Preface

* iIRMX 86 Configuration Guide, order number 172765
e iAPX 86, 88 Family Utilities User’s Guide, order number 121616
* iSBC 550 Kit Ethernet Controller Kit Programmer’s Manual, order number

122113

References

1. ISO/TC97/SC16 N 1433 Second DP8073. Information Processing Systems —
Open Systems Interconnection — Connection Oriented Transport Protocol Speci-
fication. April, 1983.

2. IEEF 802.2 Local Area Network Standards. Logical Link Control Sublayer.

IEEE 802.3 Local Area Network Standards. CSMA/CD Access Method and
Physical Layer Specifications.

Notational Conventions

UPPERCASE

italic

directory-name

filename
pathname
pathnamel,
pathname2, ...

system-id

Vx.y

[]

vi

Characters shown in uppercase must be entered in the order
shown. You may enter the characters in uppercase or
lowercase.

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

Is a valid name for the part of a pathname that names a file.

Is a valid designation for a file; in its entirety, it consists of a
directory and a filename.

Are generic labels placed on sample listings where one or more
user-specified pathnames would actually be printed.

Is a generic label placed on sample listings where an oper-
ating system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

iNA 960

iNA 960

punctuation

Preface

Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM86(PROGA,SRC,*9 SEPT 817)

vii

TABLE OF CONTENTS

CONTENTS

CHAPTER 1 PAGE
INTRODUCTION

1.1 1-1
1.2 1-1
1.3 The ISO Model Summary 1-1
1.3.1 Application Layer 1-1
1.3.2 Presentation Layer 1-2
1.33 SESSION LAYET ..viiiiiiiiiieieieiiiei ettt sttt e a e b e eeas 1-2
1.3.4 Transport LAYETcccvicieviiiiiniiininiincnieniece et nssesseseesssenseesnenes 1-3
1.3.5 Network Layer 1-3
1.3.6 Data Link Layeroccocoviivcieiieieii ittt st sve e sve st b e b v st nean 1-3
1.3.7 Physical Layer 1-4
1.4 iNA 960 Software 1-4
1.4.1 Transport LAYETcccoovervieeiienieeiiinieeniinreseenrireestessssessessseasssessessssessssassesssns 1-4
142 Data Link Layerccocoviieveriieieniiieneiieieesce st siesvesteeesieseesseassasssensessssvas 1-5
1.4.3 Network Management Facilityccoooieeniinnciinicincccicc, 1-5
CHAPTER 2

USER INTERFACE TO iNA 960

2.1 OVETVIEW coeiriieieieiieetiieicst ettt ettt eb et s st et et et et ase b assansentesnssenbens 2-1
2.2 IRMX™ 86 INLETTACE ..eoviuiieeerieiiiieeiieieeet et er ettt e b aenas 2-1
2.2.1 iIRMX™ 86 User Idccoeeeevvevrvecneennnne 2-2
222 Request Blocksccceveiiveenvecireniennens 22
2.2.3 Request Block Interface 2-3
224 Procedure INterfacecocoiiiiiiiieiiien et e 2-3
2.2.5 User Include Files and Libraries 2-4
2.3 Component Support Interfacecoovevninieiiiccnenccnncren e 2-4
CHAPTER 3

DATA LINK LAYER

3.1 OVEIVIBW oottt seie et sre st et erie st e ra st se e b et e basbeeraesee seaaseessesbeensemsasseenes 3-1
3.2 Hardware Environmentc.ccoceervevieierrenvennnne. 32
33 Data Link Communication Protocol 32
3.3.1 Link Service Access Points (LSAPs) 32
332 Logical Link Control Sublayer (IEEE 802.2 class 1)cccoevvinicecnnnnrcnnns 3-3
333 Media Access Sublayer (IEEE 802.3) 3-3
34 Data Link Commandsccccocceveeieriiiieviiienenniniiesseeneseesesnesnenns 3-4
3.4.1 CONNECT ..ottt sestsesiee e sis e s aeseseesbenessersesesessessesnassanasses 3-6
34.2 DISCONNECT ..ottt seeestnsastesaesesiessesseeeassresbensensones 3-7
3.4.3 TRANSMIT .ottt ettt a et se st aneeneetas 3-8
3.4.4 POST_RPD ..ottt ettt sa et sbe et st enesbeean 3-10
3.4.5 POST_RBD ...ttt esbe et st sae b enaenas 3-12
3.4.6 CONFIGURE ..ottt s e ene sttt b st ebe s beseest b ssesens 3-13
3.4.7 TA_SETUP ..ottt ettt sbe e dnesbe e b s 3-14
3.4.8 MC_ADD

3.4.9 MC_REMOVE .ottt ettt eras 3-16
3.5 CONTIZUIALION .eovvvrveerieieieireeietenreseete st e e e steeresee st essesbeesaensesbassessseaseassensensessens 3-17
3.5.1 Data Link Configuration MacCroSccccccceeriiereriienireeneesreesieneeeersesisesssessrenns 3-17
3.5.2 DL_CTRL ettt ettt b ettt s snentas 3-17
3.5.3 DL_INT ittt ettt s st ae e et be e bes e sesee b asaeneesan 3-18
3.5.4 DL_STIGN Lottt sttt ettt s b et e asa st st asseneesan 3-18

Table of Contents iNA 960

PAGE
355 DL_SCP_ADDRESScootitrirtrieeertrieerse et et r e es e st evsss s eteneenas 3-19
3.5.6 DL_ISCP_ADDRESSccoiiirieiimieiiennieeiiesssessssetess s e s s sseseese e 3-19
3.5.7 DL_HOSTID ..ottt sttt ettt e sb st 3-20
3.5.8 DL_CONFIG ...ttt ettt 3-20
3.5.9 DL_INTERNAL ..ottt s ene s 3-21
3.6 EXCePtion COesoviiireiierieiiiicietiirieiece ettt e e ene 3-22
CHAPTER 4
THE NETWORK LAYER
4.1 INA 960 NetWork Layerccccccceiiieiiiveiiininienteetc et eeve e ee e eneas 4-1
4.2 Internet AdAress ..cccoovoeeerieieiiieie ettt e 4-1
CHAPTER 5
THE TRANSPORT CONTROL LAYER
5.1 TTanSPOIt SEIVICES ..cceeoiirieiieciieieiet e sttt e sb et cr e be s e aeersenvesbeen s 5-1
5.1.1 Virtual Circuit SEIVICEccccocieriivrriirinieieneiiiieiere e sseeeeressesseessesreesnerseene 5-1
5.1.2 Datagram SErVICESccccoevieierieriiiieeieertetetesiete et e s sre et e e e e eaneene 5-1
52 BUFTEIS oottt bttt ees 5-2
5.2.1 Pointers and TOKENSoocoviiiiiiiiiiiiiccee ettt 5-2
52.2 Transport Address Buffer 52
523 Contiguous BUffers ..ottt 5-3
5.2.4 Noncontiguous Buffersccccocvvviiiiiiiiiniiicceeecee e 5-3
5.2.5 Post Receive Buffer Policies 5-4
5.3 Request Block Interface Commandsccccoceiiiiiieeeniciiec e, 5-4
5.3.1 Command Description Conventionscccocceeivieveereneiioeinieesenreereenenns 5-6
5.3.2 OPEN 5-7
5.3.3 SEND CONNECT REQUEST ..ot 5-8
5.3.4 AWAIT CONNECT REQUEST/TRAN ..ottt 5-11
5.3.5 AWAIT CONNECT REQUEST/USER ..ottt 5-16
5.3.6 ACCEPT CONNECT REQUESTccviiiitiieiieiricieeesrevtevseeete e eanenes 5-19
5.3.7 SEND DATA or SEND EOM DATA ...cccctiiiiieencieeeseieie e 5-21
5.3.8 RECEIVE DATA ..ottt ettt 5-23
5.3.9 SEND EXPEDITED DATAoooiiiieieeeeececte et 5-25
5.3.10 RECEIVE EXPEDITED DATAocooieiieieeeriereieseve e seeaens 5-27
5.3.11 CLOSE
5.3.12 AWAIT CLOSE .ottt ettt bt s
5.3.13 SEND DATAGRAM ..ottt
5.3.14 RECEIVE DATAGRAM
5.4 Procedural Interface Commandscccccveviiiniiniieneniene e ereerenreereens 5-36
5.4.1 Procedural Call Description Conventionscececeeveneriereniseereriecnarenans 5-36
54.2 OPEN ettt bt s sre bbbt et e b e
5.4.3 SEND CONNECT REQUEST
5.4.4 AWAIT CONNECT REQUEST/TRAN ...ccoiiiieiinieieeereieenenneneens 5-39
5.4.5 AWAIT CONNECT REQUEST/USER ccoviiiiniirneiincecveseeens 5-40
5.4.6 ACCEPT CONNECT REQUESTccecviiiiiiseeeenrenrese e esesssesseveaaas
5.4.7 SEND DATA or SEND EOM DATA
5.4.8 RECEIVE DATA ..o
5.4.9 SEND EXPEDITED DATA
5.4.10 RECEIVE EXPEDITED DATAoooitritieninecseeeientersvesrese e ssesveneens
5.4.11 CLOSE ..ottt se et
5.4.12 AWAIT CLOSE ...ttt
5.4.13 SEND DATAGRAM ..ot
5.4.14 RECEIVE DATAGRAM
5.5 COnfIGUIation ...ccoeeeireeieiriiseneeeet ettt r et e st saeraereas
5.5.1 Customizing the Transport Layerccccovvvvvcniiiinincnneneens
5.5.2 Configuration TEMPIAtEccceveeriiirriirerierireieeeieeree et esb e ebe s
5.5.3 Configuring Transport Services
5.5.4 iRMX™ 86 Procedural Interface Configurationcccccocevreveereceeeerennene 5-55

iNA 960 Table of Contents

PAGE
5.6 Op Code/Response Code Include File 5-55
5.7 ISO Reason Codescooviimimemiinicniciiciinceinieensee e sesssseassseas 5-56
CHAPTER 6
NETWORK MANAGEMENT FACILITY
6.1 OVEIVIEW .ottt

6.2 Addressing Conventions
6.3 NME ODBJECES 1.viviveeuiiriertiitereeeetestesseesseesassesessesesietasaes et aseastssansesessassassessassssenss

6.3.1 NMF/Data Link Objectscccecerieinnennn.

6.3.2 NMF/Transport Layer Objects

6.3.3 NMEF /Boot Server ObJECtsccoivminiiiiiiininiiiiicie e
6.4 NMF Commandscoeueriiiiniiiniiiiiisie e s
6.4.1 Read/Set/Read_and_clear_object

6.4.2 Read/Set_memory Commands ...
6.4.3 Forced_load

6.4.4 Dump

6.4.5 Echo

6.4.6 Supply/Takeback_buffer ..o

6.5 Down-Line Loading

6.5.1 C1a85 COULS .oveuicimrrereieniintiterietre ettt et st ene ettt seeresbesaeseesaenseas

6.5.2 The BOOt TabIE ...cooiiieeiieicccece ettt e ene

6.6 Configuring the Boot Server and the NMFccccooeivninnninncineicnieenns 6-21
6.6.1 Boot_server_multicast_addresscococereriniiieiisencnee s 6-21
6.6.2 MaAX_NOAES ..eenievireiierieieieieceeet ettt ettt et et e nee et nr s

6.6.3 Max_simultaneous_boots

6.6.4 Class_code_iNfOccoevurieiririeieetee ettt

6.6.5 Device_info_DlOCKooiiieiiiii e

6.6.6 Nmf_cnfg

6.6.7 Sample Configurationc.c.ccccomenimmieniieneniicerereeree e
CHAPTER 7

NMF-BASED ROM

7.1 OVEIVIEW .ottt sttt sttt sttt seeebtseeebt bt e st e st s e e ae s e e sresseeaeenee 7-1
7.2 Boot_consumer 7-1
7.3 USET_COUE ..ttt ettt e st s bbb sene s ennenne 7-2
7.4 Configuring the ROM-based NMFcoooveiieiiiiicieieccre e crvtesanesee s 7-3
7.4.1 Boot_server_multicast_address 7-3
7.4.2 Data_linK_LYPE .c.eoivieeieririeieie ittt 7-3
7.4.3 3 003 A0 Lo SO USROS SURN 7-3
7.4.4 Board_typecccccieeeiennieiineeeceneieens 7-4
7.4.5 Master_PICcccovvvvmieerenieeenc e 7-4
7.4.6 Data_link_interruptccccccevvevvenincenennnens 7-5
7.4.7 System_configuration_pointer 7-5
7.4.8 Sample Configuration 7-6
7.5 Linking and Locating the ROM-based NMF 7-6
CHAPTER 8

iRMX™ 86 SYSTEM GENERATION

8.1 OVETVIEW ettt ee et et e b e b e s b et e s b e st e eseeseeanesnestaasseastannesseans 8-1
8.1.1 iNA 960 System Generation Procedure 8-1
8.1.2 Preparing the Hardwareccococovvvevenivrneciesicnenesneienveeieens 8-2
8.1.3 Transferring the iNA 960 Files 8-2
8.2 Configurationcecoceevveeereeneeeeeseeeeennes 8-2
8.2.1 Configuring the Base System 8-2
8.2.2 Configuring the Buffer Usage 8-3
8.2.3 Configuring the Data Link Layercccccceeeee. 8-4
8.2.4 Configuring the Transport Control Layer 8-5
8.2.5 Configuring Network Management Facility 8-6

Xi

Table of Contents

xii

PAGE
8.3 Selecting Optional FUNCLIONScccccviveeviemiceinierininieninencninieeninnesinesresesseenenions 8-6
8.3.1 Data Link OPtONSccceereevriminiinicrenninineeecniinsicsesesesessesessesmsssssssssesessesens 8-6
8.3.2 ~ Transport Layer Options ... 8-7
8.3.3 INMEF OPLIONS ..ottt st steee ettt senesbesentesesens 8-7
8.4 Linking and Locating the Configuration Filesc.cccccovinnnncininnnccncnnnene 8-8
8.5 Configuring the COMM Job into iRMX™ 86ccccceceerinirercirerneerereenieennen 8-8
8.6 COMM Job REQUITEMENEScecvimeiiercrieninreieeninieerieeereessee s sesessssesessesenessene 89
8.7 Initializing the IAPX 186ccooiriiiiiciieieeee ettt 8-10
CHAPTER 9
COMPONENT SUPPORT INTERFACE
9.1 OVEIVIEW .ttt ettt ettt eat bttt s e sr e et e e sbase et entssenssnessensens 9-1
9.2 Model of Operation 9-1
9.3 Hardware Environment 9-2
9.4 iNA 960 Address Space ... 9-3
9.4.1 Restricted Addressing 9-3
9.4.2 Unrestricted Addressing 9-4
9.5 Message Delivery Mechanism 9-4
9.6 MIP Interfaceccocoovoieicinnciieniiene e 9-5
9.6.1 MIP Initialization Routineccccecevirennne 9-6
9.6.2 Return_entity Field of a Request Block ... 9-7
9.6.3 POINTER Fields of a Request Block
9.6.4 User-Written Routines
9.7 BCB Interfacecccccevvennnen.
9.7.1 Base Control Block
9.7.2 Command Fieldcooviveniinienininiiiiene
9.7.3 Command_block_result Field
9.7.4 A Protocol Implementationccccocevvevirecrinieeniinccnnene et
9.7.5 BCB Interface Initialization Routine
9.7.6 User-Written ROULINEScccoceviiiiiiveiicieeniiineneesereceenneereeeseeneseeseesesreniene
9.8 User-supplied INterfacecococeviieiieineiiieircineeeee ettt seniene
9.8.1 Initialization
9.8.2 CAINT oottt ettt sttt e s ss et s e st s suesaan
9.8.3 SendBLOSHOSEFOS ...overeirieiiiiiiciieee ettt
9.8.4 Init_msg_delivery_mech
9.9 User-Supplied ROULINEScoviiiiirieieiiericecirre ettt cv et
9.9.1 Sys_to_loc_addr
9.9.2 Loc_to_sys_addr
9.9.3 Save_address_SPACEccvviiiieiiniiinieine e esnen
9.9.4 Restore_addreSS_SPACEcoeverieieueevereeiirieeriereetetnessessesteresseseeeesessareessesesinns
9.9.5 Gen_int
9.9.6 Clear_int
9.10 Configuring the Hardware-Dependent Moduleccoccovevrivvncenenrnenecrenennes 9-14
9.10.1 PIT ettt ettt st e b et bbbt a et eserassaben 9-14
9.10.2 PIC ettt ettt e b e e bbb s ebn 9-15
9.10.3 PIC_INPULS ooiiiiciiiiiiiiceiiiie ettt e bbb aeeeesnesasneenan 9-15
9.11 Configuring the Message Delivery Mechanismcccocevveeeinicinennnennenecnes 9-16
9.11.1 CBA e bbb bbbt eb e e eben 9-16
9.12 Component Support System Generationceevecceeerinenecninieneeenennens 9-16
APPENDIX A
iNA 960 FILES
Al The Delivery DisKettescccirinicriminieniirecnreeetieeesteseeeereenteee e seeeene e A-1
A2 Directory LINKocccoioiiiriicnnietinie e tniiereetsteseerseceses s besesssbesesesenassesesessenens A-1
A3 Directory CSD ..ccieeiviiriiicriciecrenircieene A-2
A4 Directory CONFIG A-2
A.S Directory LIB A-2
A6 Directory INC A-2

iNA 960

iNA 960

Table of Contents

PAGE
AT Directory INTT oottt st A-2
A8 The Boot Consumer DiSKetteccvvveveiivnienenenniniiinieneeeesreseevesne e A-3
APPENDIX B
NETWORK MANAGEMENT FACILITY OBJECTS
B.1 NMF/Data Link OBJECES ...c.cccurueeirimiriiriereiticieicerecietnieeeenei e sesssns B-1
B.2 NMF/Transport Virtual Circuit Connection Independent Objects B-1
B.3 NMF/Transport Virtual Circuit Connection Dependent Objects B-4
B.4 NMF/Transport Datagram ODJECtSccccvvvviniiiiniieininicierceceeneciaens B-5
B.S NMF/Boot Server OBJECtScocouiuieiiiiriieceeiiiiiiiiie et B-5
APPENDIX C
SAMPLE USER ROUTINES FOR COMPONENT SUPPORT
APPENDIX D
CONFIGURE COMMAND PARAMETERS
APPENDIX E
MULTIBUS® INTERPROCESSOR PROTOCOL (MIP)
E.1l WHhat i8 MIP? oot raer ettt bbb e seenes E-1
E.2 Implementing MIP ..o E-2
E3 The MIP MOl ..ottt sttt seeeeene
E.3.1 Basic Components
E.3.2 Three-Level StruCtUreooccovvevieiiiniiiniincciniiceie ettt cnre s E-3
E.3.3 Physical Level ...t E-6
E.3.4 Logical Level ..., E-7
E.3.5 Virtual Level ..o E-8
E.3.6 Memory Managementc.cocceveennene. E-8
E.3.7 Buffer Movement E-10
E.3.8 Signalingccooeveevnnnnieineeeeene E-10
E.3.9 Error Handlingccccccoceevivenencncncnnn E-11
E.4 Procedural Specificationccccecceneneen. E-11
E.4.1 Data Types E-11
E.4.2 Processor-Dependent Subroutines E-11
E.4.3 CONVERTSLOCALSADRcoeotnieiiieicircieneeeeeeeeeees E-12
E.4.4 CONVERTS$SYSTEMSADR E-12
E.4.5 TIMESWAIToooeiicireieennnes E-13
E.4.6 GENERATESINTERRUPT E-13
E.4.7 CLEARSINTERRUPTcccovennne. E-13
E.5 Physical Levelccoocvvevevvcennnenieeienrenen E-14
E.5.1 Request Queue Descriptor E-14
E.5.2 Request Queue Entrycccoccenieenne. E-15
E.5.3 Queue Procedure Returns E-15
E.54 INITSREQUESTSQUEUE E-16
E.5.5 TERMS$REQUEST$QUEUE E-16
E.5.6 QUEUESGIVESSTATUS ... E-16
E.5.7 REQUESTSGIVESPOINTERocooooiiiiiirieieteieeereeeeenesesieseesiesnens E-17
E.5.8 RELEASESGIVESPOINTERcceeviirininereriieineeriereeeteenneseneensneseenanes E-18
E.5.9 REQUESTSTAKESPOINTER ... E-18
E.5.10 RELEASESTAKESPOINTERccccociviiriiiiiniieceneceisenenensnnsaescsnes E-19
E.6 Logical Level Databasecccccccveeviireeriresiieieeneieinieseesieeessessssesnssssesssesssessne E-19
E.6.1 Configuration Constants E-19
E.6.2 Destination Socket Descriptor Table (DSDT)ccocccevvivvcinmecnincceinenns E-20
E.6.3 Local Port Table (LPT) ...cocciireeeeeiiereteeecenistesiasneseassesseessaseesseesessessesnees E-20
E.6.4 Device to Channel Map (DCM) E-20
E.6.5 Interdevice Segment Table (IDST) ..ccccoeeenerciininieriesercereeeeee e E-21
E.6.6 Response Queue List (RQL) ...ooovieireniniririencisienieieeeesteceereeeeseseesieneonone E-22
E.7 Local Level AlZorithmsccoovveveniiccriercecncntineseee et reesesssscneaees E-22

xiii

Table of Contents

Xiv

E.7.1
E.7.2
E.7.3
E.7.4
E.7.5
E.7.6
E.7.7
E.8

E.8.1
E.8.2
E.8.3
E8.4
E.8.5
E.8.6

DYINGSCHANNEL ..ottt sas s eee e
SERVESTURNAROUNDSQUEUE
SERVESCOMMANDSQUEUEccooeoiniieeriicieieeeeeeeteest et
OUTSTASK
RECEIVESCOMMAND
RECEIVESRESPONSEcctiiitiieentrereeee et et et eve s ennen
INSTASK
Virtual Level

FINDSSYSTEMSPORT ...
TRANSFERSBUFFERccccocccvvniiniiniccee,
ACTIVATE$SYSTEMS$PORT
DEACTIVATESSYSTEMS$PORT
RECEIVESBUFFERccociiiiiiiiiiinctceecectrtsenae e vesesesnnsnnanes

FIGURES

FIGURE

1-1
2-1
3-1
3-2
4-1
5-1
5-2
5-3
5-4
5-5
5-6
5-7
9-1

9-3
D-1
E-1
E-2
E-3

E-5
E-6

TITLE PAGE
ISO Open Systems Interconnection Modelccccocermeneniiiiininnnenrcncniee 1-2
iNA 960 as an iIRMX™ JOD ...coocviuiiviiieniciecninineerreeeie et etese st snneenees 2-1
Comparison of ISO Model/IEEE Specificationc.cececeeveirireceecverunenenes 3-1
Data Link Interfacec.cocecvveeveverieniiniicnncnncnnene 3-3
iNA 960 Internet Address Implementation
Transport Address Buffer Structure
Buffer Descriptor Structurecccveveevencnncrinnneneneercerennenens
Open RB Argument Fields

Connection Request RB Argument Fields
Standard VC RB Argument Fields
Standard VC RB Argument Fields
Connection Request Consideration Policy

TABLES

TABLE

5-1
6-1
8-1
D-1
E-1

The Component Support Interfacecccceuenee.
iNA 960 Hardware Environment
MIP Facility with iNA 960ccoevevvivevevrenen.
CONFIGURE Command Argument Field D-1
A MIP Systemccceeuenee E-1
A Configuration of Ports E-4
Data-Flow Structure of the MIP Modelcococerininiiiiiininiiniccnecene E-5
Format of a Request QUEUEcccoviruieierininenecinicceierreier et E-6
Conceptual Structure of a Channel E-7
Example of Interdevice Memory Segments E-9
TITLE PAGE
Maximum Total Buffer Lengthsc.cccccoivevnnriecinnernnnennecceeeneeenenns 5-22
The NMF Commands and Their Addressing Conventionscccceevevene... 6-2
Optional MOAUIES ccovvreececiiciiereeciccce e ereseseseat e esebenes 8-6
Communications Controller Configuration Parameterscccoceeerverererennnnns D-2
System Interdevice Segment Tablecccccvvevrivnireienreiniinreenereereeensaenns E-9

iNA 960

CHAPTER 1
INTRODUCTION

1.1 iNA 960

iNA 960 is a general purpose local area network software package implementing the
class 4 services of the ISO transport specification and network management functions.
iNA 960 is designed to operate in environments consisting of the 8086, 8088, and
80186 microprocessors and the 82586 communications co-processors. iNA 960 also
supports Intel’s board-level Local Area Network products, the iSBC 550 KIT and
the iSBC 186/51. Examples for using iNA 960 include network design stations,
manufacturing process control, communicating word processors, and financial services
workstations.

1.2 Functional Overview

The iNA 960 design is an 8073 standard implementation of the class 4 transport
protocol defined by the International Standard Organization. The transport layer
provides a reliable full-duplex message delivery service on top of the IEEE 802.3
standard packet delivery service implemented by the 82586 (or equivalent) physical
and data link protocols.

The software (which consists of linkable modules) can be configured to implement a
range of capabilities and interfaces. In addition to reliable process-to-process message
delivery, the capabilities include a datagram service, a boot server, a direct user access
to the data link layer, and a comprehensive network management facility. The inter-
face options accommodate the various system environments.

iNA 960 can be configured to run either under the iRMX 86 operating system along
with user software, or on top of a dedicated 8086, 8088, or 80186 processor coupled
with an 82586 to provide a communications front-end processor.

The software also includes a network management service. This facility enables the
user to monitor and adjust the network’s operation in order to maintain it and opti-
mize its performance.

The current release of iNA 960 includes a nul/l network layer supporting the data
link layer and transport layer interfaces without providing internetwork routing service.
This capability will be implemented in later releases of iNA 960.

1.3 The ISO Model Summary

The following paragraphs summarize the seven layers of the ISO model. Figure 1-1
illustrates the seven-layer ISO model.

1.3.1 Application Layer

The application layer supports public files and file consumers. File consumers are
stations (nodes) that access files on other stations (nodes). Transparent access for file
consumers is supported, although a file consumer need not take advantage of it. File
consumers may or may not have local mass storage devices. If local mass storage is

Introduction

1-2

LAYER
NUMBER FUNCTION
NETWORK
MANAGEMENT APPLICATION 7 SELECTS APPROPRIATE SERVICE FOR APPLICATIONS
PRESENTATION" 6 PROVIDES CODE CONVERSION, DATA REFORMATTING
> SESSION 5 COORDINATES INTERACTION BETWEEN
END-APPLICATION PROCESSES
> TRANSPORT 4 PROVIDES END-TO-END DATA INTEGRITY
AND QUALITY OF SERVICE
- NETWORK 3 SWITCHES AND ROUTES INFORMATION
DATA LINK 2 TRANSFERS UNITS OF INFORMATION TO
OTHER END OF PHYSICAL LINK
PHYSICAL 1 TRANSMITS BIT STREAM TO MEDIUM
Figure 1-1. ISO Open Systems Interconnection Model 1221931

not available, the file consumers must rely on other systems for initialization and all
mass storage capability.

Public file stations are systems that permit file consumers to access files-on their local
disks and to queue printer requests for their local printers. The application layer only
supports a limited number of transactions going on simultaneously. For example, a
workstation with local mass storage could be both a file consumer and a public file
station.

This layer is not implemented in iNA 960.

1.3.2 Presentation Layer

The presentation layer presents information to communicating application entities in
a format that preserves meaning while resolving syntax differences. An example of a
presentation layer function would be the conversion of character codes from EBCIDIC
to ASCII.

A presentation entity can access another presentation entity in only two ways: either
by initiating a session connection or by accepting a session connection. This session

connection takes place in the session layer.

This layer is not implemented in iNA 960.

1.3.3 Session Layer

The session layer provides the necessary methodology for cooperating presentation
entities to organize and synchronize the dialogue and to manage the exchange of
data. This layer also provides for dynamically binding process names to transport

iNA 960

iNA 960

addresses. This facility is available for both virtual circuit and datagram transport
services. The session layer translates process names to transport addresses and uses
the transport service to provide virtual circuit service between any two processes that
have names bound to network addresses. The datagram service works in much the
same manner. Thus, in order to communicate with a remote process, a process need
only know the name, not the transport address of the remote process. The session
layer uses the name server of the network management facility to maintain and trans-
late the process name to transport address bindings.

A process name is a character string that consists of an individual name or a member
of a group. Process names are the endpoints of session virtual circuits or datagrams.
If an endpoint is fully specified, it matches a particular individual or a particular
member of a group. If an endpoint is partially specified, it matches any member of a
particular group.

When a virtual circuit is used, a perfect channel is provided. No errors occur in trans-
mission, and all packets are delivered in the same order that they were sent.

When a datagram is used, an attempt is made to deliver each packet as an isolated
unit. The packets may arrive out of order, or not at all.

This layer is not implemented in iNA 960.

1.3.4 Transport Layer

The transport layer provides transparent transfer of data between session entities.
Therefore, the transport layer relieves the transport users from any concern with the
detailed way in which reliable and cost-effective data transfer is achieved.

The transport layer is designed primarily for user software that has moderate to large
amounts of data to be transferred over the network. Some examples might be file
transfers, block data moves, or file sharing applications.

The transport layer is designed to provide a widely-used, error-free service that does
not depend on the particular characteristics of any specific lower layer.

1.3.5 Network Layer

The network layer provides the means to establish, maintain, and terminate network
connections between systems containing communication application entities and the
functional and procedural means to exchange network service data units between
transport entities over network connections.

This layer also provides independence to transport entities from routing and relay
considerations associated with the establishment and operation of a network connec-
tion. The network layer of iNA 960 offers a datagram service to higher layer users.

1.3.6 Data Link Layer

The data link layer provides functional and procedural methodology to establish,
maintain, and release data link connections among network entities. The data link
layer is responsible for framing, addressing, error detection, and link management.

Introduction

1-3

Introduction iNA 960

1.3.7 Physical Layer

The physical layer provides functional and procedural characteristics to activate,
maintain, and deactivate physical connections for bit transmission between data link
entities. This layer is directly concerned with the actual transmission medium (wire,
fiber optics, radio), the signalling means (voltage or current levels), data rate, and
mechanical specifications.

1.4 iNA 960 Software

iNA 960 implements the transport layer, the network layer, and the data link inter-
face portion of the data link layer from the ISO model, as well as a network manage-
ment facility.

1.4.1 Transport Layer

The Transport Layer provides message delivery services between client processes
running on computers (network hosts or nodes) anywhere in the network.

Client processes are identified by a combination of a network address defining the
node and a transport service access point defining the interface point through which
the client accesses the transport services. The combined parameters, called the trans-
port address, are supplied by the user for both the local and the remote client processes
to be connected. The iNA 960 transport layer implements two kinds of message deliv-
ery services: virtual circuit and datagram.

The virtual circuit service provides a reliable point-to-point message delivery service
ensuring maximum data integrity; it is fully compatible with the ISO 8073 class 4
protocol. The virtual circuit services entail:

e Reliable Delivery — Data is delivered to the destination in the exact order it was
sent by the source, with no errors, duplications, or losses, regardless of the quality
of service available from the underlying network service.

* Data Rate Matching (flow control) — The transport layer attempts to maximize
throughput while conserving communication subsystem resources by controlling
the rate at which messages are sent. That rate is based on the availability of
receive buffers at the destination and its own resources.

* Multiple Connection Capability (Process Multiplexing) — Several processes
simultaneously use the transport layer with no risk that progress or lack of progress
by one process will interfere with others.

e Variable Length Messages — The client software can arbitrarily submit short or
long messages for transmittal without regard for the minimum or maximum
network service data unit (NSDU) lengths supported by the underlying network
services.

¢ Expedited Delivery — With this service the client can transmit up to 16 bytes of
urgent data bypassing the normal flow control. The expedited data is guaranteed
to arrive before any normal data that is submitted afterward.

1-4

iNA 960

The datagram service provides a best-effort message delivery between client processes

requiring less overhead, therefore allowing higher throughput than virtual circuits.

The datagram service entails:

¢ The datagram service option transfers data between client processes without
establishing a virtual circuit. The service is a best-effort capability; data may be
lost or misordered. Data can be transferred at one time to a single destination or
to several destinations (multicast).

1.4.2 Data Link Layer

The data link option allows the user to access the functionalities of the data link layer
directly, instead of going through the network and transport layers. This flexibility is
useful when the user needs custom higher layer software or does not need the network
layer and transport layer services.

Through the data link the capabilities supporting the lower layers in iNA 960 are
made directly available to the user. The data link enables the user to establish and
delete data link connections, transmit packets to individual and multiple receivers,
and configure the data link software to meet the requirements of the given network
environment.

1.4.3 Network Management Facility

Network management supplies a network with planning, operation, and maintenance
facilities. The planning capability gathers network usage information such as peak
activity, total packets sent, and CRC errors. This information allows the system
manager to make adjustments for day-to-day usage of the network. Normal day-to-
day operation deals with network functions such as initialization, termination,
monitoring, and performance optimization. Maintenance deals with detection, isola-
tion, amputation, and repair of network faults. Many functions can be performed
both on local and remote nodes.

iNA 960 includes extensive network management support for initialization, address
conversions, operation, and maintenance. Network management is a distributed
function that is built into every layer. Its activities are being performed constantly to
ensure the proper operation of the network. Enquiries into the state of the network
can be made from any system on the network. A central network control station does
not exist in iNA 960. Network management is the responsibility of every station.

Introduction

CHAPTER 2
USER INTERFACE TO iNA 960

2.1 Overview

The iNA 960 software is designed to run either under iRMX 86 or separately from
the host on a dedicated front-end processor. Hence, the user has two types of inter-
faces to iNA 960: the iRMX 86 interface and the component support interface. In
both environments, the interface is based on exchanging memory segments (called
request blocks) between iNA 960 and the client. The format and contents of the
request blocks are virtually the same in both configurations; only the request block
delivery mechanism is different.

This chapter describes these two interfaces. The general form of the request block is
given, along with the procedures for implementing each interface.

2.2 iRMX™ 86 Interface

In the iRMX 86 environment, both the user program and iNA 960 run under
iRMX 86. The communications software is implemented as a first-level user’s job
running on the iRMX 86 nucleus. In addition, if the boot server is configured into
the communication system, the Basic I/O System (BIOS) is required. Figure 2-1
shows iNA 960 as an iRMX 86 job.

iNA 960 will run in any iRMX 86 environment, including configurations based on
the 80130. Some of the typical hardware implementations include the iSBC 550 KIT
combined with an 8086-, 8088-, or 80186-based host and the iSBC 186/51
COMMputer board.

WUMAN INTERFACE

NUCLEUS

USER APPLICATIONS

Figure 2-1. iNA 960 as an iRMX™ Job 1221932

2-1

User Interface to iNA 960

2-2

With the iRMX 86 interface, the user sends communications commands to iNA 960
via request blocks. Either the user allocates and constructs the request blocks directly
(called the request block interface), or available PL/M style procedures construct
and deliver the request blocks for the user (called the procedure interface).

2.2.1 iRMX™ 86 User Id

Before issuing a communications request, the user must acquire a user id. This is
done by making the following system call:

COMMSUSERSTOKEN = CQ$CREATESCOMMSUSER (Exception_ptr)

This system call is performed only once for each user job. The returned value is a
token that identifies the COMM system user. All subsequent communications requests
should use this value in the User field of the request block or the User parameter of
the procedure interface, as described in the following sections.

2.2.2 Request Blocks

For the request block interface, the iRMX 86 user allocates memory segments called
request blocks. The components of a request block are called fields. Each request
block consists of fixed format fields and variable format fields. The fixed format
fields make up the first 16 bytes of the request block, and their field definitions remain
the same for all request blocks. The definitions of the variable format fields, however,
depend on the command being issued.

The general form of a request block is as follows:

DECLARE Rb STRUCTURE (

Reserved (2) WORD,
Length BYTE,
User WORD,
Response_port BYTE,
Return_mailbox WORD,
Segment_token WORD,
Subsystem BYTE,
Opcode BYTE,
Response WORD,
Arguments (+) BYTE);
where
Reserved is reserved for a system pointer.
Length is the length (in bytes) of the request block.
User is an identifier specifying the iRMX 86 user issuing the

command. This identifier is obtained by making a call to the
function CQ§CREATESCOMMSUSER, as described in the
previous section.

Response_port is OFFH for the iRMX 86 user.

Return_mailbox is a token for the iRMX 86 mailbox where the request block
is returned.

Segment_token is an iRMX 86 token for the request block segment.

iNA 960

iNA 960

User Interface to iNA 960

Subsystem has the following interpretation:

20H-Data Link Layer

40H-Transport Layer Virtual Circuit Services
41H-Transport Layer Datagram Services
80H-Network Management Facility

Opcode is a code identifying the specific command to be performed.
See each command for the appropriate value.

Response is set by iNA 960 after performing (or attempting to perform)
the command. This indicates the result of executing the
command.

Arguments are specific to each command.

2.2.3 Request Block Interface

To issue a particular command, the user fills in the fixed format argument fields as
required by the command. The user then calls the following iRMX 86 extension
procedure:

CALL CQ$SCOMMS$RB (Rb_token, Exception_ptr)

where
Rb_token is an iRMX 86 token for the request block segment.
Exception_ptr is a pointer to a word field that is to contain the returned

exception code. For descriptions of iRMX 86 exception codes,
see the Intel publication Getting Started with the Release 5
iRMX 86 System.

This procedure delivers the request block to iNA 960 for processing. At some future
time, iNA 960 returns the request block to the mailbox specified in the
Return_mailbox field of the request block. The iRMX 86 user then retrieves the
request block from the mailbox to determine the result of the request and obtain any
data received as a result of the request.

After processing a command, iNA 960 returns a response code in the Response field
of the request block. This code indicates whether the command was executed success-
fully; if the command was not executed successfully, the code specifies the reason the
command was terminated abnormally.

After extracting the returned request block from the return mailbox, the iRMX 86
user can determine from the Subsystem and Opcode fields which command was
returned. By examining the Response field, the user can take appropriate action for
that command.

2.2.4 Procedure Interface

The procedure interface provides the iRMX 86 user with a friendlier processing
environment than the request block interface. Here, the allocation and formatting of
the request blocks are performed by the iNA 960 software. The user simply calls the
procedure form of the command with parameters that specify the user’s command
options. See each command description for the format of the procedure call and for
descriptions of the command parameters.

(8]

User Interface to iNA 960 iNA 960

As an example, the ECHO command of the network management facility has the
following procedure call format:

CALL CQS$NMFS$ECHO (Transmit_data_count, Datalink_addr_ptr,
User, Return_mailbox, Exception_ptr)

The response interface is non-procedural. That is, the end of command processing is
the same as for the request block interface: the request block created from the proce-
dure call is returned to the mailbox specified by the Return_mailbox parameter. The
user must inspect the Subsystem, Opcode, and Response fields of the returned request
block to determine the appropriate course of action, then delete the request block
segment.

Each procedure also returns an exception code that usually indicates the status of
parsing the parameter list for syntax.

Although the procedure interface is easier to use, it is more expensive than the request
block interface in terms of processing overhead. The user must decide if the conven-
ience of using the procedure interface is worth the reduction in performance.

2.2.5 User Include Files and Libraries

The iNA 960 delivery diskettes contain include files and user interface libraries.
These are described in Appendix A.

The user must include some of the include files in the PL/M 86 procedures, as deter-
mined by the system calls used in the program. The include files are as follows:

CQRB.EXT Request block interface.
CQTL.EXT Transport procedure interface.
CQNMF.EXT - NMF procedure interface.
CQDL.EXT Data link procedure interface.

During the link process the appropriate iNA 960 user interface library must be linked.
There are two libraries, one for COMPACT, and one for LARGE and MEDIUM
modes. These contain the routines that satisfy external references to system calls made
in the application code. The libraries are as follows:

CQC.LIB — COMPACT mode.
CQL.LIB — LARGE or MEDIUM mode.

2.3 Component Support Interface

The iNA 960 software can be configured to support implementations where
iRMX 86 is not the primary operating system, where communications tasks are
separated from the host to increase performance, or where an existing front-end
communications processor configuration is being upgraded. iNA 960 supports such
implementations by providing network services on an 8086, 8088, or 80186 processor.
In these hardware environments, the component support interface is used for submit-
ting commands to iNA 960. This interface uses a request block interface similar to
the iRMX 86 interface. The procedure call interface, however, is not available to the
component support user.

See Chapter 9 for details on the component support interface.

2-4

CHAPTER 3
DATA LINK LAYER

3.1 Overview

The data link layer is responsible for transmitting data over the network. The data
link layer performs framing, addressing, and collision handling. The iNA 960 data
link is a datagram service only, and does not ensure accurate reception of data. Relia-
ble communication over the network is provided by the transport layer virtual circuit
service.

In addition to transmitting packets of data, the data link layer receives incoming
packets, checks them for CRC errors, and routes them to the proper user process.
The data link layer also keeps statistics that monitor the performance of the node
and the rate of errors. These objects are available to the network management layer
to read and set. Finally, the data link layer is responsible for configuring the 82586
controller.

Figure 3-1 shows the partitioning of the data link and physical layers into functions
performed by the 82501, 82586, and iNA 960 data link software. Data link software
is responsible for controlling the 82586 and interfacing with the other software
modules.

The iNA 960 data link and physical layers conform to the IEEE 802 specifications.
This is also illustrated in Figure 3-1. Data link software implements class I of the
Logical Link Control (LLC) sublayer as described in the JEEE 802.2 standard. The
82586 and 82501 together implement the Media Access Control sublayer as described
in the IEFE 802.3 standard. The media access method used is Carrier-Sense Multi-
ple-Access with Collision Detection (CSMA/CD).

LLC
IE| .
DATA LINK - — (IEEE 802.2)
LAYER
-— MAC
PHYSICAL (IEEE 802.3)
LAYER
1SO MODEL IEEE SPECIFICATION

Figure 3-1. Comparison of ISO Model/IEEE Specification 1221933

3-1

Data Link Layer

3-2

The user accesses the services of the data link through the iRMX 86 request block,
iRMX 86 procedure call, or component support interface. Data link commands avail-
able include Transmit, Post buffers, Data link host address setup, and Configure (the
hardware controller). Data link parameters can be read and cleared using the network
management facility.

The data link layer is initialized by a configuration module as described in
Section 3.5.

3.2 Hardware Environment

Future releases of iNA 960 may support different data link protocols. Currently,
however, only a single data link controller class is supported: the 82586. Within this
class of controllers, there are four subclasses. This differentiation is necessary because
of variations at the board level implementations or simulations of the 82586 interface.

Following are the four subclasses of the 82586 controller class:

iSBC 550FW A board level simulation of the 82586. It requires slightly
different interfaces from those of the 82586.

iSBC 552 Uses memory-mapped signaling and some predefined address
locations.

iSBC 186/51 The single board COMMputer. The software resets the
loopback mode on the board when data link is initialized.

general_82586 The same as the 186/51, except the loopback mode is not
reset.

3.3 Data Link Communication Protocol

As shown in Figure 3-1, the data link layer and the physical layer together corre-
spond to the LLC class I sublayer of the IEEE 802.2 specification and the MAC
sublayer of the IEEE 802.3 specification. This specification features a CSMA/CD
media access protocol and packet framing as described in this section. Data link users
are identified by link service access points (LSAPs), also described in this section.

3.3.1 Link Service Access Points (LSAPs)

Data link users communicate via link service access points (LSAPs). An LSAP is a
code that identifies a specific user process or another layer (see Figure 3-2). These
codes are explicitly defined as follows:

Data Link Layer 00H
Transport Layer FEH
Network Management Layer 08H
User Process multiple of 4 in the range 12 < LSAP =< 255

Each receiving process is identified by a destination LSAP (DLSAP), and each
sending process is identified by a source LSAP (SLSAP).

iNA 960

Data Link Layer

TRANSPORT USER USER USER | o oo
LAYER TASK TASK TASK
4 Lsap=12H Aisap=16H LSAP = 1AH
y
NETWORK NMF DAE‘S\ELF:NK
LAYER INTERFACE
A 3 A
LSAP = OFEH LSAP = 08H
A Y y
DATA LINK INTERFACE
A
Y
DATA LINK
CONTROLLER
A
4
NETWORK MEDIUM
Figure 3-2. Data Link Interface 122193-4

When a packet is sent, the destination process is identified by the DLSAP field in
the first data buffer. Before a destination process can receive a packet, however, its
DLSAP must be included in a list of the active LSAPs for the destination data link.
The data link layer only receives packets targeted for LSAPs on its active list.

To add an LSAP to the active list, use the CONNECT command. When a connection
is no longer needed, it should be disconnected. This is done with the DISCONNECT
command. A maximum of eight LSAPs can be active at one time.

3.3.2 Logical Link Control Sublayer (IEEE 802.2 class)

The iNA 960 software incorporates a class I Logical Link Control (LLC) sublayer
within the data link layer, as described in the IEEE 802.2 specification. This is a
datagram service only; it does not ensure the reliable reception of data.

3.3.3 Media Access Sublayer (IEEE 802.3)

In addition to the LLC sublayer, the data link layer also contains a Media Access
sublayer (MAC) that is based on the IEEE 802.3 specification. The MAC uses a
medium access technology known as Carrier-Sense Multiple-Access with Collision

3-3

Data Link Layer

3-4

Detection (CSMA/CD). In addition, the medium used has a bus topology as stated
in the IEEE 802.3 specification. The MAC sublayer of the data link layer performs
the following functions:

o Framing — frame boundary delimitation and frame synchronization.
» Addressing — handling of source and destination addresses.

o Error detection — detection of physical medium transmission errors.
* Medium allocation — collision avoidance.

e Contention resolution — collision handling.

Before transmitting a packet, the MAC tests the carrier-sense signal. If the signal
indicates that the bus is not busy, the packet is transmitted. If, however, the bus is
busy, the MAC waits for the carrier-sense signal to change. After the channel has
been freed, the MAC delays transmission for an additional period of time called the
interframe gap period, then attempts to transmit the packet again.

One station can access the bus. Before the carrier-sense signal can propagate to all
the other stations, a second station may also access the bus. This results in two inter-
fering transmissions, in other words, a collision.

When the physical layer detects a collision, it raises the collision detect signal. The
MAC then transmits a bit pattern called a jam. This ensures that the duration of the
collision is long enough to be detected by all the stations involved in the collision.
After the jam, each station terminates transmission and waits a random period of
time before attempting a retransmission.

As many retransmissions as needed are attempted to successfully transmit the packet
(up to a configurable limit). However, since repeated collisions are an indication of a
busy medium, the MAC attempts to reduce this load by successively increasing the
time interval from which the retry delay period is randomly selected.

3.4 Data Link Commands

This section gives a brief introduction to the data link commands, followed by a
detailed description of each command.

Data link identifies users by LSAPs. Therefore, a user must establish an LSAP with
data link. Any incoming packet with this LSAP is routed to this user. The connection
between a user and an LSAP is established and severed using the following commands:

CONNECT Establishes a connection between a user process and an LSAP.
DISCONNECT Severs the connection between the user process and the LSAP.

Data is transmitted over the network with the following command:
TRANSMIT Transmits a given packet over the network.

A packet descriptor is an iNA 960 request block with argument fields that contain
locations of buffers attached to the request block. A buffer is any user memory
segment set aside to hold data. To receive incoming data destined for a particular
user (LSAP), packet descriptors and sufficient buffers must be posted. This is done
with the following two commands:

POST_RPD Posts a receive packet descriptor that optionally specifies a
set of buffers to hold incoming packets.

iNA 960

iNA 960

Data Link Layer

POST_RBD Posts a single buffer for holding incoming data (in addition
to any buffers posted by the POST_RPD command).

Finally, certain data link parameters may be set dynamically by the application. These
parameters include the host id (except for the iSBC 550 FW) and the multicast
address list. In addition, the 82586 class hardware controller can be configured in a
limited way (see Appendix D). Commands that change these parameters are the
following:

CONFIGURE Sends configuration information to the data link controller.

IA_SETUP Sets the host id of the local node.

MC_ADD Adds a multicast address to the list of active multicast
addresses for the node.

MC_REMOVE Removes a multicast address from the list of active multicast

addresses for the node.

3-5

Data Link Layer iNA 960

3.4.1 CONNECT

This command provides a connection between the COMM system user (specified by
the User parameter) and the given DLSAP. If the DLSAP is already active, a new
association replaces the old one. Only eight DLSAPs can be active, and each user
can have only one connection.

NOTE

A connection to a given LSAP must be made before any buffers or packet
descriptors can be posted to that LSAP. An attempt to connect more than
eight DLSAPs results in a Connect command error (exception code 10H).
Also, each data link COMM system user (each iRMX 86 job using COMM)
can have only one LSAP.

Request Block Format

DECLARE Connect_rb STRUCTURE (

Rb_header (6) WORD,
Subsystem BYTE,
Opcode BYTE,
Response WORD,
Dlsap BYTE,
Reserved BYTE,
Port BYTE)

Procedure Call Format

CALL CQDLSCONNECT (Subsystem, Dlsap, User,
Return_mailbox, Exception_ptr);

Command Parameters

Opcode 82H.

Dlsap The DLSAP for the connection. This must be a multiple of 4
and have a value between 12 and 255.

Port Must be set to OFFH.

Subsystem 20H.

iNA 960

Data Link Layer

3.4.2 DISCONNECT

If the specified connection exists, it is severed. If the connection does not exist, the
command is ignored. When a connection is disconnected, all receive buffers and packet
descriptors posted with this LSAP (and this LSAP’s associated unigue COMM user
id) are returned to the user. Since a packet descriptor can hold up to four buffers,
the user must ensure that the number of buffers posted does not exceed four times
the number of packet descriptors.

Request Block Format

DECLARE Disconnect_rb STRUCTURE (

Rb_header (6) WORD,
Subsystem BYTE,
Opcode BYTE,
Response WORD,
Dlsap BYTE,
Reserved BYTE)

Procedure Call Format

CALL COSDLS$SDISCONNECT (Subsystem, Dlsap, User,
Return_mailbox, Exception_ptr)d;

Command Parameters

Opcode 83H.

Dlsap The DLSAP for the connection. This must be a multiple of 4
and have a value between 12 and 255.

Subsystem 20H.

3-7

Data Link Layer

3.4.3 TRANSMIT

This command transmits a packet consisting of from one to four buffers. If the total
number of bytes transmitted is less than the minimum packet size, padding is done
by data link. This padding is transparent to the user.

Request Block Format

DECLARE Transmit_rb STRUCTURE (

Rb_header (6) WORD,
Subsystem BYTE,

Opcode BYTE,
Response WORD,
Reserved WORD,
Buf_count WORD,
Byte_count (4) WORD,
Buf_loc (4) POINTER,
Dst_addr_ptr POINTER)

Procedure Call Format

CALL CQDLSSTRANSMIT (Subsystem,
Dst_addr_ptr,

Command Parameters

User,

Buf_param_token,
Return_mailbox, Exception_ptr)

Opcode
Buf_count

Byte_count
Buf_loc
Dst_addr_ptr

Subsystem
Buf_param_token

User Data Buffers

84H.

The number of buffers specified by the command. The number
of buffers can range from 0 to 4.

An array of 4 words. Each Byte_count (i) is the size in bytes
of buffer i.

An array of 4 pointers. Each Buf_loc (i) is a pointer to the
start of buffer i.

A pointer to an array of 6 bytes where the destination Host_id
is stored.

20H.
The token for a segment that has the following form:
DECLARE Buf_param STRUCTURE (

Buf_count WORD,
Byte_count (4) WORD,
Buf_token (4) TOKEN)

Here, Buf_count and Byte_count are as described above.
Buf_token (i) is a token to buffer memory segment i.

The first buffer specified by the TRANSMIT command contains ISO control infor-
mation in addition to user data. The second and all subsequent buffers contain only

user data. The first buffer takes the following form:

DECLARE First_transmit_buffer

STRUCTURE ¢«

Destination_lsap BYTE,
Source_lsap BYTE,
Iso_cmd BYTE,
Data (+«) BYTE)

3-8

iNA 960

.
1

iNA 960

Data Link Layer

The fields of the user transmit buffers have the following interpretation:

Destination_lsap The LSAP for the destination entity to which the packet is
forwarded.

Source_lsap The LSAP for the source entity that sends the packet.

Iso_cmd Must be set to 03H for user data, as specified by IEEE 802.2.

Data An aréay of BYTES that contains the actual data to be trans-
mitted.

All of the remaining buffers have this format:

DECLARE Next_transmit_buffer STRUCTURE (
Data (+«) BYTE)

Note that for the first transmit buffer, the value of the Byte_count parameter includes
Destination_lsap, Source_lsap, and Iso_cmd.

Data Link Layer

3.4.4 POST_RPD

The POST_RPD command posts a single packet descriptor together with up to four
user buffers. This user packet descriptor and any associated buffers are kept by data
link until they are used to hold information on a receive packet. An LSAP must be
established with the CONNECT command before receive packet descriptors and
buffers can be posted to that LSAP.

When a packet is received by data link, it is associated with a user packet descriptor

and buffers posted at the receiving destination LSAP. The packet descriptor provides
information on the return mailbox where the user waits for receive data.

Request Block Format

DECLARE Post_rpd_rb STRUCTURE (

Rb_header (6) WORD,
Subsystem BYTE,
Opcode BYTE,
Response WORD,
Dlsap BYTE,
Reserved BYTE,
Buf_count WORD,
Return_count WORD,
Byte_count (4) WORD,
Buf_loc (4) POINTER)
Procedure Call Format
CALL CQDLSPOSTS$RPD (Subsystem, Dlsap, Buf_param_token,

User,

Return_mailbox,

Exception_ptrd;

Command Parameters

Opcode
Dlsap

Buf_count

Return_count
Byte_count
Buf_loc

Buf_param_token

85H.

The DLSAP for the connection. This must be a multiple of 4
and have a value between 12 and 255.

The number of buffers associated with the packet descriptor.
The number of buffers can range from O to 4. When the
request block is given to data link, this field contains the
number of buffers posted with this request block. When the
request block is returned to the user, this field contains the
number of buffers returned with the packet descriptor.

Filled in by data link. This is the total number of bytes in the
receive packet returned by data link.

An array of 4 words. Each Byte_count (i) is the size in bytes
of buffer i.

An array of 4 pointers. Each Buf_loc (i) is a pointer to the
start of buffer i.

The token for a segment that has the following form:

DECLARE Buf_param STRUCTURE (
Buf_count WORD,
Byte_count (4) WORD,
Buf_token (4) TOKEN)

Here, Buf_count and Byte_count are as described above.
Buf_token (i) is a token to buffer memory segment i.

iNA 960

iNA 960

Data Link Layer

User Data Buffers

The first buffer returned with a packet descriptor contains destination and source
addresses, ISO control information, and user data. The second and all subsequent
buffers contain only user data. The first receive buffer must be at least 17 bytes long;
it has the following form:

DECLARE First_receive_buffer STRUCTURE (

Destination_addr (16) BYTE,
Source_addr (16) BYTE,
Information_len WORD,
Destination_lsap BYTE,
Source_lsap BYTE,
Iso_cmd BYTE,
Data (+) BYTE);

The remaining buffers have this format:

DECLARE Next_receive_buffer STRUCTURE (
Data (+) BYTE);

The fields of the user receive buffers have the following interpretation:

Destination_addr The host id of the destination node.
Source_addr The host id of the source node.
Information_len Identical to the Return_count field of the request block. Both

parameters contain the number of information bytes in a
received packet. This value is the number of bytes received
subsequent to an Information_len field.

Destination_Isap The LSAP for the destination entity to which the packet is
forwarded.

Source_lsap The LSAP for the source entity that sends the packet.

Iso_cmd Set to 03H for user data, as specified by IEEFE 802.2.

Data An array of bytes that contains the actual data.

For the first receive buffer, the Byte_count parameter includes the first 17 bytes of
control information.

Note that the last returned buffer may contain less information bytes than the full
buffer size. To determine the number of data bytes in the last buffer, subtract all the
previous buffer sizes (these buffers will be full) from Return_count.

Data Link Layer

3.4.5 POST_RBD

This command posts a single receive buffer described by the parameters Buf_count
and Buf_token. An LSAP must be established with the CONNECT command before
any receive buffers can be posted at this LSAP.

After the command to post a buffer is given, the request block is immediately returned
to the user. Note that this is in contrast to the POST_RPD command. Data link

keeps the buffer posted and associates it with a packet descriptor when this buffer is
used and returned to the user.

Request Block Format

DECLARE Post_rbd_rb STRUCTURE (

Rb_header (6) WORD,
Subsystenm BYTE,
Opcode BYTE,
Response WORD,
Dlsap BYTE,
Reserved BYTE,
Byte_count WORD,
Buf_loc POINTER)

Procedure Call Format

CALL CQDLSPOSTS$RBD (Subsystem, Dlsap, Buf_token,
Byte_count, User, Return_mailbox, Exception_ptir);

Command Parameters

Opcode 86H.

Dlsap The DLSAP for the connection. This must be a multiple of 4
and have a value between 12 and 255.

Byte_count The size (in bytes) of the buffer.

Buf_loc A pointer to the start of the buffer.

Buf_token A token for the receive data buffer segment.

User Data Buffers

See the POST_RPD command for a description of the format of the user data buffers.

iNA 960

iNA 960

Data Link Layer

3.4.6 CONFIGURE

This command configures the data link controller. The configuration information is
contained in a segment of memory that may be up to 12 bytes long. With the request
block format, the actual configuration data is part of the request block. For the
procedure format, a pointer to the configuration data is passed as a parameter to the
procedure.

For the 82586 class controller, the following restrictions apply to the configuration
data:

» The address allocation bit is always reset.
¢ The save bad packet option is always OFF.
e The host id must be 6 bytes long.

+ Data link performs packet padding operations. The user must not alter the
minimum packet length parameter.

See Appendix D for a description of the configuration segment.

Request Block Format

DECLARE Configure_rb STRUCTURE (

Rb_header (6) WORD,
Subsystem BYTE,

Opcode BYTE,
Response WORD,
Reserved WORD,

Count WORD,
Configure (12) BYTE)

Procedure Call Format

CALL CQDLSCONFIGURE (Subsystem, Count, Config_info_ptr,
User, Return_mailbox, Exception_ptr)d;

Command Parameters

Opcode 88H.

Count The size in bytes of the configuration information. This can
be up to 12 bytes.

Configure An array of 12 bytes that is the actual configuration infor-
mation segment.

Config_info_ptr A pointer to the configuration information segment.

Data Link Layer

3.4.7 IA_SETUP
This command sets up the individual address (host id) for a node. For the iSBC 550

the command becomes an address read command because the host id on an iISBC 550
FW cannot be changed by the software.

Request Block Format

DECLARE Ja_setup_rb STRUCTURE (

Rb_header (6) WORD,
Subsystem BYTE,
Opcode BYTE,
Response WORD,
Reserved WORD,

Count WORD,
Address (6) BYTE)

Procedure Call Format

CALL CQ$DLSIASSETUP (Subsystem, Count, la_addr_ptr,
User, Return_mailbox, Exception_ptr);

Command Parameters

Opcode 89H.

Count The size in bytes of the host id. This number must be 6.

Address An array of 6 bytes that comprise the host id.

Ta_addr_ptr hA po.igter to the start of a memory segment that contains the
ost id.

iNA 960

iNA 960

Data Link Layer

3.4.8 MC_ADD

This command adds a multicast address to the data link multicast address list. Multi-
cast addresses can only be added one at a time. Note that the iNA 960 data link
performs perfect multicast filtering, whereas the 82586 controller performs imperfect
multicast filtering.

With the request block format, the actual address is part of the request block. With

the procedure format, the address is stored as a segment of memory. A pointer to the
segment is then passed as a parameter to the procedure.

Request Block Format

DECLARE Mc_add_rb STRUCTURE (

Rb_header (6) WORD,
Subsystem BYTE,
Opcode BYTE,
Response WORD,
Reserved WORD,
Count WORD,

Mc_address (6) BYTE)

Procedure Call Format

CALL CQDLSADDSMC (Subsystem, Count, Mc_addr_ptr,
User, Return_mailbox, Exception_ptr)d;

Command Parameters

Opcode 87H.

Count The size in bytes of a multicast address. This number must
be 6. _

Mc_address An array of 6 bytes that comprise the multicast address.

Mc_addr_ptr A pointer to the start of a memory segment that contains the

multicast address.

Data Link Layer

3.4.9 MC_REMOVE

This command removes a single multicast address from the list of active multicast
addresses for a given data link. With the request block format, the address is part of
the request block. For the procedure format, the address is stored in memory, and a
pointer to the memory location of the address is passed as a parameter to the
procedure.

Request Block Format

DECLARE Mc_remove_rb STRUCTURE (

Rb_header (6) WORD,
Subsystem BYTE,
Opcode BYTE,
Response WORD,
Reserved WORD,

Count WORD,
Mc_address (6) BYTE)

Procedure Call Format

CALL CQ$DLSREMOVESMC (Subsystem, Count, Mc_addr_ptr,
User, Return_mailbox, Exception_ptrd;

Command Parameters

Opcode 8AH.

Count The size in bytes of a multicast address. This number must
be 6.

Mc_address An array of 6 bytes that comprise the multicast address.

Mc_addr_ptr A pointer to the start of a memory segment that contains the

multicast address.

iNA 960

iNA 960 Data Link Layer

3.5 Configuration

The procedure used to configure and initialize the COMM system is described in
Chapters 8 and 9. This procedure includes setting up the configuration file for each
layer. These files consist of calls to configuration macros to set the operating param-
eters of the layers. This section defines the configuration macros for the data link
layer.

3.5.1 Data Link Configuration Macros

The data link configuration macros define the data stucture of the data link layer.
Calls to these macros are included in the configuration file DLCFG.A86. This file
should be updated to reflect the desired data link configuration, and the result assem-
bled to generate the configuration module DLCFG.OBJ. This module is then included
in the link list when linking the communication system.

The file DLCFG.MAC contains the data link configuration macros. Therefore, the

configuration file must contain the following include statement before any macro
calls:

$INCLUDE (:SD:COMM/CONFIG/DLCFG.MAC)

Following are the data link configuration macros; they are given in the order that
they should appear in the configuration program:

DL_CTRL Specifies the controller subclass of the hardware.

DL_INT Specifies the interrupt level used by the data link layer.

DL_SIGN Specifies how the iNA processor signals the data link
controller.

DL_SCP_ADDRESS Specifies the location of the system control pointer (SCP).

DL_ISCP_ADDRESS Specifies the location of the intermediate system control
pointer (ISCP).

DL_HOSTID Specifies where the default host id can be read.

DL_CONFIG Specifies the default configuration of the 82586 controller and
some channel characteristics.

DL_INTERNAL Used infernally to generate the JEEE 802 protocol for the
82586 class of controllers.

3.5.2 DL_CTRL
This macro ‘informs the data link software whether the target system is an iSBC
550FW, iSBC 186/51, iSBC 552, or general_82586. This macro takes the following

form:

4# DL_CTRL (Ctlr_subclass)

where
Ctrl_subclass is the controller subclass and has the following values:
00H - 550FW
O01H - 186/51
02H - 552

03H — general_82586

Data Link Layer

The general_82586 controller subclass is created to allow for an iSBC 186/51-like
environment. The basic assumption is that the environment must provide I/O ports
where a default host id can be read during initialization. If these ports are not avail-
able, the user can provide one or more “dummy” host id ports that can be read during

initialization. Subsequently, an Ia_setup command can be used to establish the desired
host id.

Aside from the fact that the iSBC 186/51 provides six port addresses where the default
host id can be read, the difference between subclasses 1 and 3 is that for subclass 1
data link resets the loopback mode on the iSBC 186/51 during initialization. No
action is taken for a general_82586 subclass controller. For a general_82586 control-
ler, the user must assume the responsibility for initializing the environment where
data link functions.

3.5.3 DL_INT

This macro specifies the interrupt level used by data link and has the following form:

% DL_INT (Int_level)

where
Int_level is the interrupt level. This parameter has the same format as

that defined by the iRMX 86 nucleus and has these bit

assignments:

bits 7-15 must be set to 0.

bits 4-6 first digit (0-7) of the interrupt level.

bit 3 set to 0 if a slave level is specified. Here, bits
0-2 specify the second digit of the interrupt
level.

set to 1 if a master level is specified. Here,
bits 4-6 represent the entire level.

bits 0-2 second digit (0-7) of the interrupt level
(defined only if bit 3 is 0).

3.5.4 DL_SIGN

The macro DL_SIGN is used to specify how the iNA processor signals the data link
controller. In addition, the macro specifies the I/O port or memory location used by
the processor to signal the controller (if signaling is used.) The macro has the follow-
ing form:

% DL_SIGN (Signal_type, Signal_info)

where

Signal_type specifies how the processor signals the data link controller.
The values are as follows:

00H - processor never signals the controller. Signal_info is
not defined.

01H - memory-mapped signaling. The processor signals the
controller with a write to the memory location speci-
fied by Signal_info.

iNA 960

iNA 960 Data Link Layer

02H - I/O-mapped signaling. The processor signals the
controller with a write to the I/O port location speci-
fied by Signal_info.

Signal_info depends on the value of Signal_type, as follows:
If Signal_type is 0, this parameter is not defined.

If Signal_type is 1, this parameter must contain the upper 16
bits of the 20-bit memory location to which the processor
writes. In particular, memory-mapped signaling locations are
at 16-byte boundaries.

If Signal_type is 2, this parameter must contain the 16-bit
number of the I/O port used by the processor to signal the
controller.

The Signal_type should be set according to the controller subclass. The following
values are used:

iSBC 186/51 - 02H (I/O-mapped)

iISBC 550 FW — 02H (I1/0-mapped)

iSBC 552 - 01H (memory-mapped)

general_82586 — 01H (memory-mapped) or 02H (I/O-mapped)

Signal_info should be set as follows:

iSBC 186/51 — 00C8H (the port that channels to the 82586)

iSBC 550 FW — One of the I/O ports defined in the iSBC 550FW Hardware
Reference Manual

iSBC 552 — 4200H (a reserved number)

general_82586 — Any value compatible with the hardware

3.5.5 DL_SCP_ADDRESS

The macro DL_SCP_ADDRESS is used to specify the address of the system control
pointer (SCP) of the data link controller. This macro has the following form:

% DL_SCP_ADDRESS (Scp_addr_offset, Scp_addr_base)

where
Scp_addr_offset is the offset of the SCP address.
Scp_addr_base is the base of the SCP address.

For the iSBC 186/51, iSBC 552, and general_82586 controller subclasses, the address
of the SCP should be set to FFFF:6H. The iSBC 550 FW allows several SCP locations.
See the iSBC 550 FW Hardware Reference Manual for details.

3.5.6 DL_ISCP_ADDRESS

This macro is used to specify the intermediate system control pointer (ISCP) and has
the following form:

¥ DL_ISCP_ADDRESS (Iscp_addr_offset, Iscp_addr_base)

Data Link Layer

3-20

where

Iscp_addr_offset is the offset of the ISCP address.

Iscp_addr_base is the base of the ISCP address.
The ISCP offset must be set to 0 to be compatible with the 82586 controller. Other
than this requiremenet, the ISCP location is completely configurable. However, if

the user desires to conform to the iRMX 86 operating system, the ISCP should be
located at OOFF:0H.

3.5.7 DL_HOSTID

The macro DL_HOSTID is used to specify the port numbers where the default
host id can be read. The format of the macro is as follows:

% DL_HOSTID (Hostid_cnt, Hostid _loc0, Hostid_loct,

iNA 960

Hostid_loc2, Hostid_loc3, Hostid_locd4, Hostid_loc5)

where

Hostid_cnt specifies the number of host id address bytes. This number
must be 6.

Hostid_loc0-5 are the I/O port numbers of the ports where the host id
address bytes can be read.

The host id read from the port locations specified by this macro constitutes the default
host id upon initialization. The host id may subsequently be changed using the Ia_setup
command.

For all controller subclasses, the Hostid_cnt must be set to 6. Furthermore, for the
iSBC 186/51, Hostid_locO-5 should be set to

OFOH, OF2H, OF4H, OF6H, OF8H, OFAH
For the iSBC 550FW and iSBC 552 subclasses, Hostid_loc0-5 are undefined.
For the general_82586 subclass controller, Hostid_locO-5 should be set to the port
locations where a default host id can be read, if available. Data link always tries to
establish a default host id. Therefore, for the general_82586 subclass controller, any

Hostid_loc0-5 parameters are treated as valid port locations to establish the default
host id.

3.5.8 DL_CONFIG

This macro is used to initialize the communications controller and to provide some
additional link characteristics. The format is as follows:

% DL_CONFIG (Linespeed(, Linespeedi, Mc_number, Config_cnt,
Config0, Configl, Config2, Config3, Config4, Configh5)

where

Linespeed0-1 specifies the physical channel transmission rate in bits per
second. For example, if Linespeed0 is 0000H and Linespeed]
is 0010H, the transmission rate is 100000H (approximately
10 Mbps).

iNA 960 Data Link Layer

Mc_number specifies the maximum number of multicast address bytes
used. This number cannot exceed 60.

Config_cnt specifies the number of significant configuration bytes in the
6 word parameters (Config0—5). This parameter can be
between 0 and 12.

Config0-5 are 6 words that have the same form as the argument field
of the configuration command. Only the first Config_cnt
bytes are significant. The remaining fields should be set
to 0.

The default configuration has the following values:

Linespeed0-1 (0000H, 0010H)

Mc_number = 60
Config_cnt = 0
Config0-5 = (0,0,0,0,0,0)

A Config_cnt of 0 leaves the data link controller at its default configura'tion after
power up.

The DL_CONFIG macro allows the user to directly configure the 82586 communi-
cations controller. The configuration argument (as determined by Config_cnt and the
configuration words Config0-5) is passed straight through to the 82568 during
initialization. This forms the argument of the Configure command of the 82586. See
Appendix D or the 82586 Reference Manual and the iSBC 550 Ethernet Controller
Kit Programmer’s Reference for details on the argument fields of the 82586 Confi-
gure command. The configurability of the 82586 running under iNA 960 has limita-
tions. See Section 3.4.6.

To better understand the configuration process during initialization, consider the
following two cases. The first case is identical to the default and has the same affect
as if no configuration were given (Config_cnt = 0). Here, the parameters are as

follows:
Config_cnt = (OCH
Config0-5 = (080CH, 2600H, 6000H, F200H, OH, 2EH)

The second case configures data link to run with No Carrier Sense. The parameters
are as follows:

0CH
(080CH, 2600H, 6000H, F200H, 8H, 2EH)

Config_cnt
Config0-5

The user should note that when two or more nodes are connected without carrier
sensing, such as, when two nodes are connected using an Ethel cable, the Transmit
With No Carrier Sense bit of the configuration argument should be set as in the
second configuration example.

3.5.9 DL_INTERNAL

This macro configures the internal data link to run with the IEEE 802 protocol and
the 82586 category of controllers. This macro has no arguments. A call to this macro
has the following form:

% DL_INTERNAL

3-21

Data Link Layer

3-22

3.6 Exception Codes

For the procedure call interface, the location indicated by the Exception_pointer
parameter is set to one of the following:

0

8004

EXP$OK, the procedure parameters are copied into corresponding RBs with
no error detected.

EXPS$ERR, an error is detected when the procedure parameters are copied
to the corresponding request blocks.

For the request block interface, the Response field of the returned request block has
the following values in data link:

0

1

10

12

14

16

Failure. Reason not specified or unknown.
Execution with no errors.
Number of configuration information bytes exceeds maximum.

Received packet overflow. The received packet requires more than 4 user
receive buffers and therefore is truncated.

Size of transmit packet exceeds maximum (1500 bytes).
Invalid data link opcode.

CONNECT/DISCONNECT command error.
Subsystem not defined.

Number of address bytes in command exceeds maximum.

The 82586 reports that command execution is not OK.

iNA 960

CHAPTER 4
NETWORK LAYER

4.1 iNA 960 Network Layer

The network layer in iNA 960 Release 1 provides datagram delivery within a single
network environment; no internetwork routing is provided.

The network layer implements a zero-length protocol in which the network layer
header consists of one byte with a value of zero.

The network layer on iNA 960 is not accessible to the user. However, the network
address defined below must be used when the transport services are used.

4.2 Internet Address

In iNA 960, the internet address consists of a 32-bit subnet identifier, a 48-bit Ether-
net host identifier, and a 16-bit Network Service Access Point identifier (NASP ID).
The length field is maintained so this internet address format can fit into the future
“Variable Length Format” internet address scheme. The internet address described
in Figure 4-1 is used at the network service interface point. iNA 960 does not use any
internet address within the network protocol.

The internet address must contain the following values:
« Length (one byte) — OCH

e Subnet ID (doubleword) — 01 H

e Host ID (6 bytes) — the ETHERNET host address
e NSAP ID (one word) — O1H

A requested Subnet ID other than 1 causes a “cannot reach” error response.

LENGTH
[SUBNET ID —
ETHERNET
HOST ID
NSAP ID
Figure 4-1. iNA 960 Internet Address Implementation 122193-5

CHAPTER 5
THE TRANSPORT CONTROL LAYER

5.1 Transport Services

The iNA Transport Service (iTS) provides message delivery services between user
processes running on computers (network hosts or nodes) anywhere in an Intel
Network Architecture (iNA)-compatible system.

The user processes are identified by means of transport addresses (TAs). A TA consists
of a Network Address (NA) and a Transport Service Access Point (TSAP-ID). The
TSAP-ID identifies the access point between the user process and the iTS.

The iNA Transport Service provides the following two types of services to the user:

1. A reliable connection-oriented Virtual Circuit (VC) message delivery service
between two transport addresses.

2. A non-guaranteed connectionless datagram message delivery service between one
transport address and one or several other transport addresses (multicast).

5.1.1 Virtual Circuit Service

The virtual circuit iTS uses the standard /SO 8073 Class 4 transport protocol, which
provides the following services:

e Reliable Delivery—Data is delivered to the destination in the exact order it was
sent by the source, with no errors, duplicates, or losses, regardless of the quality
of service available from the underlying network service.

e Data Rate Matching (flow control)-The iTS attempts to maximize throughput
while conserving communication subsystem resources by controlling the rate at
which messages are sent. This is based on the availability of receive buffers at
the destination and its own resources.

* Process Multiplexing-Several processes can use the iTS simultaneously with no
risk that progress or lack of progress by one process will interfere with other
processes.

e Variable Length Messages—Short or long messages can be arbitrarily submitted
for transmittal without regard for the minimum or maximum Network Service
Data Unit (NSDU) lengths supported by the underlying network services.

e Expedited Data Service—Short, urgent messages can be transmitted ahead of the
normal messages by bypassing the normal flow control mechanisms.

The iTS provides these services by means of a connection or virtual circuit. Pairs of
users set up the connection (connection establishment phase), transfer data (data
transfer phase) and terminate or disconnect (connection disestablishment phase) the
connection between themselves.

5.1.2 Datagram Services

The datagram iTS uses proprietary mechanisms to transfer data between user
processes without setting up a connection. This service gives no guarantees of deliv-
ery. Data can be lost or misordered. Data can be transferred at one time to a single
destination or to several destinations (multicast).

5-1

The Transport Control Layer

5.2 Buffers

Use of the iTS requires the passing of address information and data back and forth
between the user and iTS. The address information and data transferred by the user
to iTS must first be loaded into a user buffer memory area. Pointers, segment tokens,
or buffer descriptors are then used to specify the location of the buffers.

The three types of buffers used by iTS are the following:
1. The Transport Address Buffer

2. Contiguous Buffers

3. Non Contiguous Buffers

5.2.1 Pointers and Tokens

In iRMX, a buffer can be located by either a PL/M long pointer or by a segment
token. If a segment token is used, the buffer must start at an 8086 paragraph bound-
ary, and the token represents the base address (i.e., paragraph number). The offset
is 0 if a token is used. The iTS interface allows the specification of buffers by either
pointers or tokens.

5.2.2 Transport Address Buffer

The user must tell the iTS the local and remote TAs between which a virtual circuit
is set up or a datagram is transferred. Here the word /ocal means point of reference.
Remote refers to a node or end of a connection that is on the other end of the local
node.

A transport address consists of a Network Address (NA) defining the node and a
TSAP-ID defining the point of access to a user process using iTS. At the local end,
the NA is maintained by the network layer and is not needed by the transport layer.
Thus, the iTS requires only the local TSAP-ID. However, iTS requires the complete
remote TA (remote NA and remote TSAP-ID).

The formats of NAs have not yet been standardized. The length of an NA depends
on the underlying network service provided to the transport layer. The contents of
the NA are transparent to the transport layer, but the length must be known to allocate
memory to save this address. Similarly, the lengths and format of TSAP-IDs have
not been standardized and depend on transport user conventions. However, the lengths
of TSAP-IDs must be known to store them in memory.

Thus, fundamentally, the iTS interface must allow for variable length NAs and TSAP-
IDs in order to be flexible in the future. The method provided by iTS is to store these
addresses in a user-defined buffer area, with a pointer to this area specified by the
user to iTS. A single remote/local transport address pair is stored in a single contig-
uous variable length buffer (the transport address buffer) as illustrated by the PL/M
declaration in Figure 5-1. The first byte of the transport address buffer must be 0
(for compatibility with future extensions of iNA).

For any implementation, it is assumed that the user is aware of the lengths and formats
of the network addresses used to specify the remote end nodes of a connection or a
datagram data transfer. The length of the NA is loaded into the remote NA length
field of the TA buffer. Enough space is allocated in the buffer to load the address.

Similarly, user processes cdmmunicating via the transport service must agree on format
and lengths of TSAP-IDs. The lengths are loaded into the appropriate TA buffer
length fields, and enough buffer space is allocated to accommodate those TSAP-IDs.

iNA 960

iNA 960

The Transport Control Layer

DECLARE

Transport$address$buffer STRUCTURE (

Reserved BYTE, /+ Must be set
Locs$tsap$idslen BYTE,

Locs$tsap$id (locs$tsapsidélen) BYTE
Remnetaddré$len BYTE

Remnetaddr (remnetaddrs$len) BYTE,
Rem$tsap$idslen BYTE,

Rem$tsap$id (rem$tsapsidslen) BYTE)

Figure 5-1. Transport Address Buffer Structure

to

0+/

Memory resource constraints impose limits on the lengths of the NA and TSAP-IDs.
For any implementation, these limits can be specified by the user at system genera-
tion time via the transport configuration parameters.

With one exception, the NA and TSAP-IDs are transparent to the iTS. When all
bytes of the NA = 0 or all bytes of the TSAP-ID = 0, the NA or TSAP-ID is called
unspecified. Otherwise, the NA or TSAP-ID is called fully specified.

A complete TA (NA plus TSAP-ID) is designated as follows:

1. Unspecified if both the NA and TSAP-ID are unspecified.

2. Partially specified if the NA is unspecified but the TSAP-ID is fully specified.
3. Fully specified if both the NA and TSAP-ID are fully specified.

Although the network addresses are transparent to the transport, the specific under-
lying network layer used by iNA 960 imposes restrictions on NA formats.

5.2.3 Contiguous Buffers

With the virtual circuit service, the transport protocol allows the optional transfer of
a small amount (32 or 64 bytes) of user data during the connection establishment
and disestablishment phases. If the user wishes to transfer data during these phases,
the iTS interface requires that a single contiguous buffer block be allocated in user
memory to send or receive the data. The lengths of the buffers depend on the command
issued. The user refers to the start of the buffer via a pointer or iRMX segment
token.

5.2.4 Noncontiguous Buffers

For the virtual circuit data transfer (during the data transfer phase) or datagram
data transfer, the user may allocate multiblock noncontiguous buffers to hold the
data. The buffers are referenced by a user buffer descriptor block. This will be either
a special memory area in the procedural interface or part of a Request Block (RB)
in the RB interface. In either case, the descriptor block will have the format specified
by the PL/M declaration of Figure 5-2.

The user may specify buffer locations via pointers or segment tokens. If tokens are
used, the buffer must start on a paragraph boundary. For tokens, the user sets all the
offset fields of the descriptor block to 0 and loads all base fields with the token for
each contiguous memory segment block.

5-3

The Transport Control Layer

5-4

DECLARE buffer$descriptor STRUCTURE (
num$blks BYTE,
blocks(nums$blks) STRUCTUREC(

offset WORD,
base WORD,
length WORD 1))

Figure 5-2. Buffer Descriptor Structure

5.2.5 Post Receive Buffer Policies
For Virtual Circuits

The iTS relies on the user to post all receive buffers for data received from a remote
TS via the virtual circuit service. iTS permits posting a buffer available only for a
specific connection. Data received under another connection cannot use the buffer.

The virtual circuit service supports both normal and expedited data services. Receive
buffers for normal data are posted and maintained separately from receive buffers
for expedited data.

Normal (nonexpedited) data is presented to iTS for transmission as arbitrarily long
messages called TSDUs. When the data is received by the remote Transport Service
(TS), it is passed to the receive buffers posted by the user (if available). If a buffer
is filled before the end of the TSDU, it is returned to the user. When the end of the
TSDU is buffered, the buffer is returned even if it is not filled. Such a return buffer
is marked EOM (End of Message) to indicate the end of the TSDU to the user. Thus,
iTS guarantees that no more than one TSDU is returned in a user’s buffer.

For Datagrams

iTS relies on the user to post all receive buffers for data received from a remote TS
via the datagram service. iTS permits posting a buffer available only to a specific
TSAP. Only datagrams addressed to that TSAP can use that buffer for passing data.

The data in each datagram sent by the iTS is a self-contained entity. If the total
datagram buffer space available for a TSAP is less than the length of the received
datagram data, the datagram is discarded with no data buffered. Otherwise, the data
is buffered. Data from one datagram can be buffered in one or more receive buffers
posted. The buffer containing the last byte of data in the received datagram is marked
“eom” to the user. The EOM buffer is returned when the last data of the datagram
is buffered, even if space remains in the buffer. Thus, a returned buffer can contain
data from at most one received datagram.

Datagram receive buffers are posted and maintained separately from virtual circuit
receive buffers.

5.3 Request Block Interface Commands

This section gives a detailed description of all iTS commands and responses using the
Request Block (RB) interface. As detailed previously in Section 2.2.3, the user issues
an RB command by first allocating an RB memory segment. Then the user fills in
the fixed format fields, fills in the opcode for the command, and formats the argument
field according to the format prescribed for the command. Section 5.3.2 defines the
formats of the argument fields for each iTS command. Four classes of iTS RB
argument fields exist. These classes are referenced in Section 5.3.2 and are illustrated
by Figures 5-3 to 5-6.

iNA 960

iNA 960

The Transport Control Layer

DECLARE openrbsargs
reference

STRUCTURE (
WORD)

Figure 5-3. Open RB Argument Fields

DECLARE connection$requesté$rbdargs STRUCTUREC
iso$readons$code BYTE,
reserved (4) BYTE,
ack$delay$estimate WORD,
tasbuffers$offset WORD,
tasbuffers$base WORD,
persistence$count WORD,
gaborts$timeout WORD,
reference WORD,
conns$class BYTE,
negotd$options WORD,
user$datasbuffer$offset WORD,
user$datasbuffer$base WORD,
user$dataslen BYTE)

Figure 5-4. Connection Request RB Argument Fields
DECLARE standardévcérbbargs STRUCTUREC
iso$reasons$code BYTE,
reserved (15) BYTE,
reference WORD,
connd$class BYTE,
buf$len WORD,
num$blks BYTE,
block(nums$blks) STRUCTURE ¢
offset WORD,
base WORD,
length WORD)
Figure 5-5. Standard VC RB Argument Fields
DECLARE datagramrbargs STRUCTURE(

reserved (4)
tasbuffers$offset
tasbuffer$base
tsap$class

bufé$len

num$éblks

block(nums$blks)
offset
base
length

BYTE,
WORD,
WORD,
BYTE,
WORD,
BYTE,
STRUCTURE (

Figure 5-6. Standard VC RB Argument Fields

WORD,
WORD,
WORD 1))

5-5

The Transport Control Layer

5-6

After iTS processes the RB, it is returned to the response mailbox specified in a fixed
format field of the RB. iTS fills the fixed format response code field of the RB with
a code indicating the result of the command. Section 5.3.2 specifies in detail for each
command the response codes and their meanings.

5.3.1 Command Description Conventions

The remainder of this section is divided into subsections, one for each iTS command.
Each command is described as follows:

Command:

Subsystem:

Opcode:

RB Class:

Input Arguments:

Output Arguments:

Function:

Response Codes:

A short descriptive name for the command.

The code the user must fill into the RB fixed format
subsystem field.

The symbolic name for the operation code that the
user must fill into the RB fixed format opcode field.
The numerical equivalent is defined in a PL/M
INCLUDE file.

One of the four classes of argument fields that applies
to this command.

A list with description of arguments that the user
must input to the RB before sending the RB to iTS.
The argument names coincide with the ones in
Figures 5-3, 5-4, 5-5, or 5-6 depending on the RB
argument field class.

A list with descriptions of RB arguments that iTS
sends back to the user. This includes a description of
any returned buffers.

A description of the operation performed by the
command.

A list of symbolic response codes returned by iTS to
the user in the fixed format response code field of the
RB. The meaning of each response code for that
command is described. Numeric equivalents for the
response codes are defined in a PL/M INCLUDE
file.

Several parameter default values or limits are implementation dependent. These
implementation dependencies are resolved by the iTS system configuration procedure

(see Section 5.5).

iNA 960

iNA 960

The Transport Control Layer

5.3.2 OPEN

Command

OPEN

Subsystem

40H (Virtual Circuit)

RB Class

Open (Figure 5-3)

Input Arguments

None

Output Arguments

Reference-(WORD) a value identifying the connection data base(CDB) allocated
by this command.

Function

This is the first command that must be issued whenever a new virtual circuit (or
connection) is opened. The use of an iTS virtual circuit or connection requires the
allocation of a memory area called a Connection Data Base (CDB).

All CDBs reside in memory on the same board that contains the communications
software. The maximum number, max_cdbs, of CDBs allowed is specified as a
configuration parameter.

A CDB maintains the state of the connection. Via entries in the CDB, the iTS can
keep track of the sequencing of send and receive data, maintain flow control status,
and recover from unacknowledged data packets.

The iTS user uses the connection by referencing the CDB using a 16-bit number
called a connection endpoint identifier or reference. The reference is returned to the
user when the CDB is allocated by this command. The iTS returns the reference to
the user in the reference field of the open RB. The user then refers to the connection
in other iTS commands as an input argument by using the reference value obtained
here.

The very first reference returned by the transport after system initialization is selected
via a 16-bit random number generation scheme. Thereafter, new references returned

are incremented by 1. When the 16-bit reference numbers overflow, the reference of
zero is skipped.

Response Codes
okS$resp-The CDB was allocated and the reference returned.

no$resource—Could not allocate any more CDBs. The reference is returned as 0.

The Transport Control Layer

5-8

5.3.3 SEND CONNECT REQUEST

Command

SEND CONNECT REQUEST

Subsystem

40H (Virtual Circuit)

Opcode

send$conn$req

RB Class

Connection Request (Figure 5-4)

Input Arguments

ta$buffer$offset—(WORD) The offset of a pointer to a TA buffer. The TA buffer
must be loaded with addressing information specifying end TAs of the connection.
The TAs must be fully specified. The offset is set to 0 if an iRMX segment token
points to the TA buffer. The length of the remote net address and local or remote
TSAP-IDs must not exceed the limits specified in the system configuration or an
addressing error occurs. Multiple connections can be requested from the same local
TSAP, to the same remote TA, or between the same local TSAP /remote TA pairs.

taSbuffer$base-(WORD) The base of a pointer to or of a segment token for a TA
buffer.

persistence count—-(WORD) The number of times to retry an active connection attempt
upon connection refusal before giving up.

If the value equals 0, use default (configuration dependent)
If the value equals 1 to OFFFEH (number of retries)
If the value equals OFFFFH, (do not give up)

abort$timeout- (WORD) Specifies the retransmission timeout given in units of
51 ms.

If the value equals O use default (configuration dependent)

If the value equals 1 to OFFFEH, (timeout value)

If the value equals OFFFFH, (do not timeout)

reference—(WORD) Identifies the CDB this request applies to.
conn$class-(BYTE) Set to 0.

negot$options—(WORD) Specifies class of service and options requested for negotia-
tion on this connection (see Reference 1 listed in the Preface):

If the value set is O, use the default options specified by the configuration parameter
def_negot_options.

If the value set is not 0, the user can specify the following options:

iNA 960

iNA 960

The Transport Control Layer

Break word up into 3 nibbles (I = least significant)

+ Nibble I
If nibble if equals 0, use 7 bit sequential numbers
If nibble 1 equals 2, use 31 bit sequential numbers

¢ Nibble 2
If nibble 2 equals 4, for class four service
¢ Nibble 3:

If nibble 3 equals 0, no expedited service but checksums are to be used.

If nibble 3 equals 1, expedited service and checksums are to be used.

If nibble 3 equals 2, no expedited service and no checksums are to be used.

If nibble 3 equals 3, expedited service but no checksum are to be used during
data transfer.

The most significant bit of the word must be set for user-specified (non-default)
negotiation options.

user$data$bufferSoffset—(WORD) The offset of a pointer to a contiguous 64-byte
buffer.

user$data$buffer$base-(WORD) The base of a pointer to or of a segment token for
a contiguous 64-byte buffer.

If both base and offset equal 0, no buffer is allocated and no transparent user data is
sent with the request. If either base or offset is not 0, the buffer is assumed to be
allocated. It must be loaded with O to 32 bytes of user data to be sent with the request.

user$data$len—(BYTE) Specifies the length of the user data.
¢ If the value specified is 0 to 32,
* [f the value specified is greater than 32,an error will occur.

Output Arguments

ackS$delay$estimate—(WORD) will always be returned with 0.

iso$reason$code—(BYTE)

¢ The iso$reason$code equals 82H if the connection negotiation failed. That is, the
request was accepted by the remote TS, but the local TS aborted the connection
because the options the remote TS negotiated were unacceptable.

¢ The iso$reason$Scode disconnects reason code if the connection was rejected by
the remote TS.

e The iso$reason$code equals O otherwise.

user$data$buffer—-(CONTIGUOUS BUFFER) If the connection attempt was
successful and a user buffer was allocated, the RB will return in its user buffer any
data contained in the connection confirmation received from the remote TS. If the
connection attempt was rejected by the remote TS and the local TS gives up, the RB
will return in its user buffer up to 64 bytes of any data contained in the disconnect
request from the remote TS. The received data overwrites any data that was in the
buffer used for the original connection request.

user$data$len—(BYTE) Set to the length of any data received in response to the
connection request.

5-9

The Transport Control Layer

Function

This command actively requests a connection to a fully specified remote TA using
specified ISO connection negotiation options. It is assumed that a local CDB was
allocated and a reference was returned to the user as a result of a previous OPEN
command. The reference returned previously is specified in the current command to
request the connection using the corresponding allocated CDB.

The user can request a connection with or without transparent data.

The user can ask that transport request the connection a specified number of times
in spite of a rejection by the remote transport service. This retry count is the persist-
ence count that the user specifies in the RB. When the number of retries exceeds the
count, the local TS gives up and indicates connection rejection to the user. However,
persistence is not invoked regardless of the count if the ISO reason code returned in
the remote TS’s rejection TPDU is either 0 or 88H. Persistence is also not applied
when the local user decides to close the connection while the transport is requesting
the connection.

This RB is returned to the user either upon detection of an error, upon connection

establishment, or upon rejection and the local TS giving up. Thus, the receipt of this
RB by the user serves as a connection confirmation or failure indication to the user.

Response Codes

ok$resp—The request was accepted by the remote TS, and the connection is now
established in the data transfer phase.

ok$closed$resp—The local user aborted the connection while the connection request
was outstanding.

conn$reject—-The connection attempt was rejected by the remote TS, and the local TS
gave up after the persistence count expired.

negot$failed—The request was accepted by the remote TS, but the local TS aborted
the connection because of a negotiation failure at the local end.

loc$timeout—The request was unanswered and the retransmission timer timed out,
aborting the connection attempt.

illegal$req—Invalid negotiation options were specified, and the connection attempt
was aborted.

buffertoolong-user$data$len was greater than 32, and the connection attempt was
aborted.

illegal$address—Invalid local or remote TAs were specified, or the network address
length exceeds max_net_addr_len, or the local or remote TSAP-ID exceeds max_tsap
id_len.

dup$req—A request was already in progress for this reference or the connection was
already established.

network$error—A network layer error exists at the transport network interface.

unknown$reference—The user-specified reference does not correspond to an allocated
CDB.

iNA 960

iNA 960

The Transport Control Layer

5.3.4 AWAIT CONNECT REQUEST/TRAN

Command

AWAIT CONNECT REQUEST/TRAN

Subsystem

40H (Virtual Circuit)

Opcode

await$conn$req$tran

RB Class

Connection Request (Figure 5-4)

Input Arguments

ta$buffer$offset—(WORD) The offset of a pointer to a TA buffer. The TA buffer
must be loaded with addressing information specifying the end TAs of the connec-
tion. The remote TA may be fully specified, partially specified, or unspecified. If the
remote TA is partially specified or unspecified, the TSAP-ID or network address
length in the buffer must still be fully specified to those lengths used in the network.
The contents field is filled with zeros up to the length for unspecified TSAP-IDs or
network addresses. This offset is set to 0 if the TA buffer is pointed to by an iRMX
segment token. The lengths of the remote net address and local or remote TSAP-IDs
must not exceed the limits specified in the system configuration or an addressing
error occurs. Multiple connection requests can be accepted at the same local TSAP,
from the same remote TA, or between the same local TSAP/remote TA pairs.

ta$buffer$base-(WORD) The base of a pointer to or of a segment token for a TA
buffer.

abort$timeout—(WORD) Same as for SEND CONNECT REQUEST command.
reference-(WORD) Same as for SEND CONNECT REQUEST command.
conn$class—(BYTE) Set to 0.

negot$options—(WORD) Same as for SEND CONNECT REQUEST command.

user$data$buffer$offset—(WORD) The offset of a pointer to a contiguous 64-byte
buffer.

user$data$bufferSbase-(WORD) The base of a pointer to or of a segment token for
a contiguous 64-byte buffer.

If both the base and the offset equal 0, then no buffer is allocated and no transparent
user data is expected with incoming connection requests. For this CDB, the local TS
will respond to incoming connection requests that are without user data.

If either the base or the offset does not equal 0, then the buffer is assumed to be
allocated. The local iTS can accept user data with an incoming connection request.

5-11

The Transport Control Layer

If the iTS receives a connection request with user data and the request has compati-
ble addressing and negotiation parameters, then the data will be passed to the user in
this buffer when this RB is returned to the user.

Output Arguments
ackS$delay$estimate—(WORD) Always 0.
iso$reason$code-(BYTE)

The iso$reason$code equals

» The ISO disconnect reason code if the connection was aborted by the remote TS
during the connection establishment phase.

The iso$reason$code equals
¢ 0 otherwise.

ta$buffer-(ADDRESS BUFFER) Contains within the remote TA fields the address
of the remote TS user with which the connection was established.

negot$options(WORD) The agreed-upon negotiation options using the encoding
defined for the SEND CONN REQ command.

user$data$buffer—-(CONTIGUOUS BUFFER) If data is to be returned from an
incoming connection request, the data is returned to the user in this buffer.

user$data$len—(BYTE) Set to the length of the user data returned.

Function

This command indicates that the iTS user is willing to consider incoming connection
requests from a remote transport service. iTS itself will decide to accept or reject the
request based only on addressing, negotiation option, and user data buffer availability
information. The connection request is not passed to the iTS user for further consid-
eration. The user thus pre-establishes its connection acceptance criteria with this
command prior to any connection request received from a remote TS. This mecha-
nism of pre-establishing the connection criteria is called passive open.

It is assumed that a local CDB was allocated and a reference was returned to the
user as a result of a previous OPEN command. The reference returned previously is
specified in the current command to await connection requests using the correspond-
ing allocated CDB.

For this command, a remote TA is specified in either the fully specified, partially
specified, or unspecified mode. The local TSAP-ID must be fully specified (not 0).

By a series of these commands, a user can await connection requests. For an incom-
ing connection request, the CDBs listening for requests via these commands are
scanned. A request is matched to a CDB if the request passes the following tests
described below:

1. Address match tests.
2. Negotiation option tests.
3. User data buffer availability test.

iNA 960

iNA 960

The Transport Control Layer

For the address match test, an await connection request may be fully specified,
partially specified, or unspecified.

» Fully specified (fully specified remote TA) means that only incoming connection
requests from the exact remote TA specified will be considered.

» Partially specified (partially specified remote TA) means that a connection request
from any remote NA, but only one specific TSAP at that NA, will be considered.

¢ Unspecified (unspecified remote TA) means that a connection request from any
remote TA will be considered.

A connection request passes the address match test only if all of the following condi-
tions exist: '

» The await connection request command is issued prior to receipt of the connec-
tion request, whose TA satisfies the remaining four requirements.

¢ The lengths of the NA and TSAP-ID fields of the remote source TA in the
incoming request equal the corresponding lengths specified in this command’s
TA buffer.

¢ The remote source TA in the incoming request matches the local user remote TA
specified in this command’s TA buffer.

¢ The length of the destination TSAP-ID in the incoming request equals the length
of the local TSAP-ID defined in this command’s TA buffer.

+ The destination TSAP-ID in the incoming request matches the local TSAP-ID
defined in this command’s TA buffer.

The address match test is performed first for a received connection request. For
multiple CDBs listening for connection requests, the matching attempt is done in the
following order of decreasing precedence:

e For a CDB with a fully specified remote TA in the TA buffer of this command.

» For a CDB with a partially specified remote TA in the TA buffer of this
command.

¢ For a CDB with an unspecified remote TA in the TA buffer of this command.

If the address match test fails for one CDB, then that CDB is skipped and the incom-
ing connection request is checked against other CDBs.

If an address match is found, a check is next made for compatible negotiation options
as defined by the ISO standard. For incompatible options, the connection request is
not matched to the CDB specified in this command and is checked against other
CDBs awaiting requests.

For compatible addresses and negotiation options, a check is made to see if the
incoming request contains user data. If so, then the CDB must be expecting data as
defined by this command (a nonzero pointer to the data buffer). If the CDB is not
expecting data, the connection request with data is not matched to the CDB specified
in this command and the incoming connection request with data is checked against
other CDB:s. If the CDB is expecting data, the incoming request is matched to it.

If the incoming request has no data, then it is matched to the CDB if it passes address
match and negotiation option tests.

If the incoming request matches a CDB, then for passive open await connection
requests the connection is immediately accepted for the request by the matched CDB.
In this case, the RB is not returned until completion of the three-way handshake (see
Reference 1 listed in the Preface) that establishes the connection. Thus, the return of
this RB serves as a confirmation of connection establishment. Also, any user data
received with the request is passed to the user on return of the RB.

The Transport Control Layer

5-14

However, if no awaiting CDB is found that matches the incoming connection request,
then iTS will reject the connection request. In this case, the RB is not returned to the
user. This permits iTS to await further connection requests that may be valid.

Figure 5-7 presents a flow-chart summarizing the connection request consideration
policy of iTS. For the passive open AWAIT CONNECT REQUEST command in
which the request is not passed to the user, the “No” path is taken at the decision
point, “Pass Request to User?”

The user may rescind their willingness to listen for connection requests by issuing a

CLOSE command with reference corresponding to the connection rescinded. This
will delete the CDB and terminate use of the reference.

Response Codes

ok$resp—The request was accepted. The connection is now established in the data
transfer phase.

ok$closed$resp—The local user withdrew its willingness to listen for remote connec-
tion requests.

loc$timeout—The request was accepted but transport timed out before completion of
the three-way handshake. The connection is aborted.

rem$abort-The connection request was accepted by transport but the remote TS
aborted the connection during the connection establishment phase.

illegal$req—The user specified invalid negotiation options. The connection attempt
was aborted.

illegal$address—The user specified invalid TA address options or the local TSAP-ID
or remote TA length exceeds the configuration limits.

dup$request—This is a duplicate connection request. That is the transport is already
awaiting a remote request or the connection is already established.

network$error—A network layer error is reported at the transport/network interface.

unknown$reference-The CDB corresponding to this reference is not allocated.

iNA 960

iNA 960

The Transport Control Layer

POINT TO
NEXT CONNECTION

Y

)
CONNECTION
LISTENING FOR

REQUESTS
?

NO

ADDRESS NO
MATCH
?

YES

COMPATIBLE
NEGOTIATION
OPTIONS

?

NO

DATA BUFFER
POSTED WITH
AWAITSCONN
REQUEST,

YES

PASS
REQUEST

LAS
CONNECTION

TO CLIENT SCANNED
” ?
\ A
ACCEPT PASS REQUEST REJECT
CONNECTION TO CLIENT CONNECTION
>V
RETURN

Figure 5-7. Connection Request Consideration Policy

122193-6

The Transport Control Layer

5.3.5 AWAIT CONNECT REQUEST/USER

Command

AWAIT CONNECT REQUEST/USER

Subsystem

40H (Virtual Circuit)

Opcode

await$conn$reqSuser

RB Class

Connection Request (Figure 5-4)

Input Arguments

ta$buffer$offset—(WORD) The offset of a pointer to a TA buffer. The TA buffer
must be loaded with addressing information specifying the end TAs of the connec-
tion. The remote TA may be fully specified, partially specified, or unspecified. If the
remote TA is either partially specified or unspecified, the TSAP-ID or network address
length in the buffer must still be fully specified to those lengths used in the network.
The contents field is filled with zeros up to the length for unspecified TSAP-IDs or
network addresses. This offset is set to 0 if the TA buffer is pointed to by an iRMX
segment token. The length of the remote net address and local or remote TSAP-IDs
must not exceed the limits specified in the system configuration, or an addressing
error occurs. Multiple connection requests can be accepted to the same local TSAP,
from the same remote TA, or between the same local TSAP /remote TA pairs.

taf$buffer$base-(WORD) The base of a pointer to or of a segment token for a TA
buffer.

abort$timeout—-(WORD) Same as for SEND CONNECT REQUEST command.
reference-(WORD) Same as for SEND CONNECT REQUEST command.
conn$class—(BYTE) Set to 0.

negot$options—(WORD) Same as for SEND CONNECT REQUEST command.

user$data$buffer$offset(WORD) The offset of a pointer to a contiguous 64-byte
buffer.

user$data$buffer$base-(WORD) The base of a pointer to or of a segment token for
a contiguous 64-byte buffer.

If both base and offset equal 0, then no buffer is allocated and no transparent user
data is expected with incoming connection requests. The local iTS will respond for
this CDB only to incoming connection requests without user data. If either the base
or offset does not equal 0, then the buffer is assumed to be allocated. The local iTS
can accept user data with an incoming connection request. If the iTS receives a
connection request with user data and the request has compatible addressing and
negotiation parameters, then the data will be passed to the user in this buffer when
this RB is returned to the user.

iNA 960

iNA 960

The Transport Control Layer

Output Arguments

ack$delay$estimate-(WORD)
e =0, always

iso$reason$code(BYTE)
« =0, always

ta$buffer-(ADDRESS BUFFER) Contains within the remote TA fields the address
of the remote TS user with which the connection is being established. The local user
can use this address information to partially base its decision to accept or reject the
connection.

negot$options-(WORD) The agreed upon negotiation options using the encoding
defined for the SEND CONNECT REQUEST command. This permits the user to
base its decision to accept or reject the connection partly on the new options
negotiated.

user$data$buffer-(CONTIGUOUS BUFFER) If data is to be returned from an
incoming connection request, the data is returned in this buffer. The user can use this
data to partially base its decision to accept or reject the connection.

user$data$len—(BYTE) Set to the length of the returned user data.

Function

This command indicates that the iTS user is willing to consider incoming connection
requests from a remote transport service. If the request has compatible addressing
and negotiation option information, the request is passed to the user for further
consideration. iTS will wait for the user’s reply as to whether the connection was
accepted or rejected.

It is assumed that a local CDB was allocated and a reference was returned to the
user as a result of a previous OPEN command. The reference returned previously is
specified in the current command to await connection requests using the correspond-
ing allocated CDB.

For this command, a remote TA is specified in either the fully specified, partially
specified, or unspecified mode. The local TSAP-ID must be fully specified (not 0).

By a series of these commands, along with passive opens, a user can await connection
request. For an incoming connection request, the CDBs listening for requests via this
command or via passive opens are scanned. A request is considered matched to a
CDB if the request passes the following tests:

1. Address match tests.
2. Negotiation option tests.
3. User data buffer availability test.

These tests are identical to those used for a passive open. However, for this command,
a matched request is not accepted immediately by iTS. Instead, the connection request
is passed to the user for further consideration by returning the RB with the address-
ing, negotiation option, and any user data information. iTS waits for the user’s reply,
which is one of the following:

« ACCEPT CONNECT REQUEST command to accept the connection.
* CLOSE command to reject the connection.

5-17

The Transport Control Layer

If no awaiting matches the incoming connection request, then iTS itself will immedi-
ately reject the connection request. In this case, the RB is not returned to the user.
This permits iTS to await further connection requests that may be valid.

Figure 5-7 presents a flow chart summarizing the connection request consideration
policy of iTS. For the user consideration AWAIT CONNECT REQUEST command

in which the request is passed to the user, the “Yes™ path is taken at the decision
point “Pass Request to User?”

Response Codes

ok$decide$req$resp-The request is acceptable based on addressing, negotiation options
and data buffer availability. The RB is being returned so that the user can decide
whether to accept the connection. Transport awaits the user’s response.

okSclosed$resp—The local user withdrew their willingness to listen for remote connec-
tion requests.

illegal®req—The user specified invalid negotiation options. The connection attempt
was aborted.

illegal$address—-The user specified an invalid TA, or the local TSAP-ID or remote
TA length exceeds the configuration limits.

dupSrequest-This is a duplicate connection request. That is, transport is already
awaiting a remote request or a local response from the user for this reference.

network$error—A network layer error is reported at the transport/network interface.

unknown$reference—The CDB corresponding to this reference is not allocated.

iNA 960

iNA 960

The Transport Control Layer

5.3.6 ACCEPT CONNECT REQUEST

Command

ACCEPT CONNECT REQUEST

Subsystem

40H (Virtual Circuit)

Opcode

accept$conn$req

RB Class

Connection Request (Figure 5-4)

Input Arguments
reference—<(WORD) Same as for SEND CONNECT REQUEST command.

user$data$buffer$offset-(WORD) The offset of a pointer to a contiguous 64-byte
buffer.

user$data$buffer$base—(WORD) The base of a pointer to or of a segment token for
a contiguous 64-byte buffer. This buffer (if allocated) should be loaded with any user
data that will be sent with the connection confirmation signalling the remote TS that
its connection request has been accepted. Only a maximum of 32 bytes can be trans-
mitted.

o If the offset or base equal 0, the buffer is not allocated. No data will be sent.
e If the offset or base do not equal 0, the buffer is allocated.

user$data$len—(BYTE) The length of the user data.
e If the length of the data is 0 to 32 bytes, no error occurs.
e If the length of the data is greater than 32 bytes, an error occurs.

Output Arguments
ack$delay$estimate~(WORD) Always 0.

iso$reason$code—(BYTE)

e = disconnect reason code if the connection was aborted by the remote TS during
the connection establishment phase.

e = (, otherwise.

ta$buffer—.(ADDRESS BUFFER) Contains within the remote TA fields the address
of the remote TS user with which the connection was accepted.

negot$options—(WORD) The final agreed upon negotiation options, using the encod-
ings defined for the SEND CONNECT REQUEST command.

The Transport Control Layer

5-20

user$data$buffer-(CONTIGUOUS BUFFER) Up to 64 bytes of data received from
the remote TS if the connection was aborted remotely during the connection estab-
lishment phase.

user$data$len—(BYTE) The length of any returned data.

Function

With this command, the user indicates their acceptance of a transport connection
specified by the reference. This command is the positive response to a previously
returned AWAIT CONNECT REQUEST/USER RB. The user returns in the
current command an optional buffer of user data to be sent with the connection
confirmation.

Response Codes

okS$resp-The connection just became established on completion of the three-way
handshake.

ok$closed$resp—The local user aborted the connection before completion of the three-
way handshake.

loc$timeout—The local iTS timed out before completion of the three-way handshake.
The connection was aborted.

rem$abort-The remote TS aborted the connection before completion of the three-
way handshake.

buffertoolong—More than 32 bytes of user data exist. The connection maintains its
current state awaiting another local user response.

dup$request-This is a duplicate connection response. That is, the transport already
accepted the connection or the connection is already established. This error can occur
if this call is made for a connection for which a connection request was not previously
returned to the user.

unknown$reference-The CDB corresponding to this reference is not allocated.

iNA 960

iNA 960

The Transport Control Layer

5.3.7 SEND DATA or SEND EOM DATA

Command

SEND DATA or SEND EOM DATA

Subsystem

40H (Virtual Circuit)

Opcode

send$data or send$Seom$data

RB Class

Standard VC (Figure 5-5)

Input Arguments
reference<(WORD) Same as for SEND CONNECT REQUEST.

num$blks-(BYTE) The number of separate buffer blocks each block a contiguous
memory area. This can be 0.

block(i).offset—(WORD) The offset of a pointer to the start of the it block.

block(i).base(WORD) The base of a pointer to or of a segment token for the i
block.

block(i).length—(WORD) The length of the data in the ™ block.

Output Arguments

iso$reason$code—-(BYTE)

e = ISO disconnect reason code if the RB was returned due to a remote abort.
e = (otherwise.
Function

With this command, the user requests the transmission of the data in the buffers
using the normal delivery service of the specified connection. The normal delivery
service uses the regular ISO flow control mechanisms.

The SEND EOM DATA command signals that the end of the data marks the end
of the Transport Service Data Unit (TSDU).

Any number of the blocks may have zero length; there may also be zero blocks. A
send request with zero bytes of data is allowed. If it is SEND EOM DATA, then an
EOM (in ISO called EOT) signal will be sent. If it is SEND DATA, the message is
null, so no data will be sent. The RB will be returned an indeterminate amount of
time later, but always after the previous send request is returned and before any
subsequent send requests are returned.

5-21

The Transport Control Layer iNA 960

The sum total length of all buffers pointed to by a single SENDSDATA or
SENDSEOMSDATA RB is limited to a maximum value specified in Table 5-1. The
65K (1K = 1000 bytes) limits are imposed by the WORD SIZE of the buf$len field
in the RB. The buffer size limitations for normal (7-bit) sequence number format
ensure that the 7-bit (module 128) sequence number range is not exceeded for smaller
max_tpdu-size_negotitated.

The SEND DATA request can be made any time after issuing the initial OPEN
command. Thus, iTS accepts SEND DATA requests even if the connection has not
yet entered the established state. When a connection enters the established state, iTS
transmits the corresponding transmit buffers in the order in which they are queued.
Since iTS always attempts to send full Transport Protocol Data Units (TPDUs), it
copies information from these transmit buffers into the TPDU without concern for
the buffer or block boundaries. However, iTS guarantees that an EOM not only
indicates the end of a message, but also the end of a TPDU. In other words, iTS
never copies information from more than one message into the same TPDU. The
remote receive buffers sizes need not match the transmit buffer sizes; progress in
delivering data will be made as long as there is any receive buffer space at the other
node.

Response Codes

ok$resp—All the buffers in the request have been successfully transmitted and
acknowledged by the remote TS.

okS$closed$resp-The local user aborted the connection and the queued RB is returned
without transmitting its data.

loc$timeout-The local iTS timed out without receiving an acknowledgment for some
of the data in the request.

rem$abort—The remote TS aborted the connection.
illegal$req—The connection was closing or was already closed.

no$resources—-The CDB send queue is full. No more RBs can be queued until some
already queued SEND RBs are returned.

unknown$reference—The CDB corresponding to this reference is not allocated.

Table 5-1. Maximum Total Buffer Lengths

Sequence Number Format
max_tpdu_size negotiated
7-Bit 31-Bit
7 (128 bytes) 8K~ 65K~
8 (256 bytes) 16K 65K
9 (512 bytes) 32K 65K
10 (1024 bytes) 64K 65K
11 (2048 bytes) 65K 65K

» 1K = 1000 bytes

5-22

iNA 960

The Transport Control Layer

5.3.8 RECEIVE DATA

Command

RECEIVE DATA

Subsystem

40H (Virtual Circuit)

Opcode

receive$data

RB Class

Standard VC (Figure 5-5)

Input Arguments
reference—~(WORD) Identifies the CDB for which the receive buffer is being posted.
conn$class<(BYTE) Set to 0.

num$blks—(BYTE) The number of separate buffer blocks, each block a contiguous
memory area to buffer the data.

block(i).offset—(WORD) The offset of a pointer to the start of the i block.

block(i).base(WORD) The base of a pointer to or of a segment token for the it
block.

block(i).length—(WORD) The length of the it block.

Output Arguments
reference<(WORD) The reference is returned for the connection that used the buffer.
iso$reason$code<(BYTE) Same as for SEND DATA command.

buf$len—(WORD) The length of the data received in the buffers posted by this
command.

block$buffer-(NONCONTIGUOUS BUFFER) Contains the data received from the
remote TS.

Function
By using this command, the user posts receive buffers for a specific connection. The
buffers are used to store data received using the transport normal delivery service.

This service is governed by the regular transport flow control mechanisms.

The sum total length of all receive buffers pointed to by a single RECEIVE DATA
RB must not exceed 65 K bytes.

Buffers may be posted prior to establishment of the connection.

5-23

The Transport Control Layer

5-24

Response Codes

okSresp—All the buffers pointed to by the RB are filled with data and no EOM was
signalled.

ok$eomSresp—Transport signalled an EOM. The data in the buffers constitute the
end of a TSDU.

ok$closed$resp—The local user aborted the connection or the connection was closing
on a user request when the buffer was posted.

loc$timeout-The buffer was returned due to a connection timeout abort.
rem$abort-The remote TS aborted the connection.

no$resources—The CDB normal receive queue is full. No more normal receive buffers
can be posted until some normal receive buffers already posted are returned.

unknown$reference—The reference does not correspond to any allocated CDB.

iNA 960

iNA 960

The Transport Control Layer

5.3.9 SEND EXPEDITED DATA

Command

SEND EXPEDITED DATA

Subsystem

40H (Virtual Circuit)

Opcode

sendexpdata

RB Class

Standard VC (Figure 5-5)

Input Arguments
reference—(WORD) Same as for SENDCONNREQ.

num$blks—(BYTE) This must equal 1, because 16 bytes is the largest buffer permit-
ted to be sent.

block(0).offset—(WORD) The offset of a pointer to the start of the block.
block(0).base-(WORD) The base of a pointer to or of a segment token for the block.

block(0).length—(WORD) The length of the data in the block. The block length must
be greater than 0 but cannot exceed 16.

Output Arguments

iso$reason$code—-(BYTE)

e The iso$response$code equals the ISO disconnect reason code if the RB was
returned due to a remote abort. (See Reference 1 listed in the Preface.)

* The iso$reason$code equals 0, otherwise.

Function

With this command, the user requests the transmission of up to 16 bytes of data in
the buffer using the expedited delivery service of the specified connection.

With this service, the expedited data is guaranteed to arrive before any normal data
submitted afterward.

Response Codes
ok$resp—The expedited data in the buffer was acknowledged.

ok$closed$resp—The local user aborted the connection.

5-25

The Transport Control Layer

5-26

loc$timeout-Transport timed out without receiving expedited acknowledgement of
the data.

rem$abort—The remote TS aborted the connection.

illegal req—Either expedited data requested to be transmitted but the service is not
available on this connection or the connection was closing or was already closed.

buffertoolong—-A user data length greater than 16 was specified or num$blks greater
than 1, aborting the transmission.

no$resources—The CDB expedited send queue is full. No more expedited send RBs
can be queued at this time until some already queued expedited send RBs are returned.

buffertooshort-The buffer is empty. Either num$blks equals O or the block length
equals 0.

unknown$reference—The specified reference does not correspond to an allocated CDB.

iNA 960

iNA 960

The Transport Control Layer

5.3.10 RECEIVE EXPEDITED DATA

Command

RECEIVE EXPEDITED DATA

Subsystem

40H (Virtual Circuit)

Opcode

receiveexpdata

RB Class

Standard VC (Figure 5-5)

Input Arguments

reference—(WORD) Identifies the connection data base for which the expedited receive
buffer is being posted.

conn$class—(BYTE) Set to 0.

num$blks—(BYTE) Should be set to 1, because the data from the ED TPDU will be
sent into the first block only.

block(0).offset—(WORD) The offset of a pointer to the start of the first block.

block(0).base-(WORD) The base of a pointer to or of a segment token for the first
block.

block(0).length—(WORD) The length of the first block. The length of the first block

must be at least 16 bytes, because the buffer must be able to hold data from the
longest ED TPDU having a maximum of 16 bytes.

Output Arguments

reference<(WORD) Same as for RECEIVE DATA command.
conn$class—(BYTE) Same as for RECEIVE DATA command.
iso$reason$code—(BYTE) Same as for SEND DATA command.

buf$len-(WORD) The length of the expedited data received in the buffers posted by
this command.

block$buffer-(NONCONTIGUOUS BUFFER) Contains the expedited data received
from the remote TS.

5-27

The Transport Control Layer

5-28

Function

By using this command, the user posts expedited receive buffers for a specific connec-
tion. The buffers are used to store expedited data received using the transport
expedited data delivery service. Expedited data bypasses the normal transport flow
control mechanisms. (See Reference 1 listed in the Preface.)

Each receive buffer can buffer data from only one ED TPDU received. Data from
two or more ED TPDUs are not combined into one buffer even if data were to fit.

The buffers for each request must be at least 16 bytes long to accommodate data in
the largest ED TPDU that can be received.

Expedited receive buffers may be posted prior to establishment of the connection.

The queues of expedited receive buffers are maintained separately from the queues
of normal receive buffers.

Response Codes

okeomresp-The buffer is returned with expedited data from a single received ED
TPDU.

ok$closed$resp—The local user aborted the connection.
loc$timeout—The connection terminated on a timeout.
rem$abort-The remote TS aborted the connection.
illegal$req—Expedited service not available.

buffertooshort-The length of the first buffer block posted with the request less
than 16.

no$resources—The CDB expedited receive queue is full. No more expedited receiver
buffers can be posted until some that are posted are returned.

unknownS$reference—The reference does not correspond to an allocated CDB.

iNA 960

iNA 960

The Transport Control Layer

5.3.11 CLOSE

Command

CLOSE

Subsystem

40H (Virtual Circuit)

Opcode

close$req

RB Class

Standard VC (Figure 5-5)

Input Arguments
reference-(WORD) Same as for SEND CONNECT REQUEST

iso$reason$code—(BYTE) The reason for the close using the ISO transport encodings
given in the standard. (See Section 5.8.)

num$blks—(BYTE) The number of separate buffer blocks with each block being a
contiguous memory area. The blocks contain optional data that can be sent with the
disconnect request to close the connection. Set to 0 if no data is to be transmitted.

block(i).offset—-(WORD) The offset of a pointer to the start of the i block.

block(i).base-(WORD) The base of a pointer to or of a segment token for the it
block.

block(i).length-(WORD) The length of the data of the it block. The total length of
data in all blocks cannot exceed 64.

Output Arguments

None

Function

With this command, the user requests the termination of an existing connection or
the rejection of an incoming connection request.

If the connection is already established, then this call initiates the ISO transport
connection disestablishment procedure. Any normal or expedited data queued up to
be sent will not be sent. However, the user may request up to 64 bytes of data to be
sent with the disconnect request. This data will be processed by the receiver if a
receive buffer is posted with an AWAIT CLOSE command. If the receiver had previ-
ously issued an AWAIT CLOSE command, then any data received with the discon-
nect request will be passed to the buffer allocated with that command along with the
ISO reason code. Otherwise, disconnect request data will be discarded.

5-29

The Transport Control Layer

If a connection request was previously passed to the user to decide whether to accept
the connection, this call signals transport that the connection request should be
rejected. Data passed with this command can be sent to the remote TS to explain the
reason for the disconnection. The iso$reason$code should be set to 88H to indicate
that the connection request was refused.

A CLOSE issued in response to a connection request or issued to abort an already
established connection will delete the CDB. Any posted receive buffers (normal or
expedited) or queued send requests (normal or expedited) will be returned to the
user. An AWAIT CLOSE command will also be returned. The CLOSE RB will
always be the final RB returned.

If the connection is aborted by a remote TS, then any posted receive buffers, queued
send requests, or AWAIT CLOSE RBs will be returned to the local user; and the
CDB will be deleted. If there are no queued RBs to report the remote abort, the CDB
will not be deleted, but will be marked “closed.” The user can send one more RB
command (SEND, RECEIVE, STATUS, DEFERRED STATUS, or
AWAITS$CLOSE) to determine the final status of the aborted connection. That RB
will be returned with a rem$abort response code and the CDB will then be deleted.
Any further requests on that connection will generate an unknown$reference error.

Response Codes

ok$closed$resp—For confirmed disconnection, disconnect collision, or if already closing
or closed.

- ok$reject$conn$resp—For rejection of a connection requested.

loc$timeout—If transport timed out without receiving a confirmation to its disconnect
request.

buffertoolong-If a user data length greater than 64 was specified.

unknown$reference—If the reference does not correspond to an allocated CDB.

"iNA 960

iNA 960 The Transport Control Layer

5.3.12 AWAIT CLOSE

Command

AWAIT CLOSE

Subsystem

40H (Virtual Circuit)

Opcode

await$close

RB Class

Standard VC (Figure 5-5)

Input Arguments

reference-(WORD) Same as for SEND CONNECT REQUEST.
num$blks-(BYTE) The number of separate buffer blocks, each block a contiguous
memory area, to receive disconnect request user data. Normally, this is set to one
because a maximum of 64 bytes of data can be received from disconnect request; O if
no buffer is to be allocated. In this case, disconnect request user data will be ignored.

block(i).offset—-(WORD) The offset of a pointer to the start of the i** block.

block(i).base<(WORD) The base of a pointer to or of a segment token for the it
block.

block(i).length—~(WORD) The length of the it block.

Output Arguments
reference—(WORD) The reference for the connection that was deleted.

iso$reason$code—~(BYTE)
» = ISO reason code received in the disconnect request. (See Section 5.8.)

buf$len—-(WORD) The length of any user data received with the disconnect request
which closed the connection.

block$buffer-(NONCONTIGUOUS BUFFER) Contains the disconnect request-user
data received from the remote aborting TS.

Function

With this command, the user requests to be notified that a specified connection has
terminated.

A buffer (if allocated) can be returned to the user filled with data from a received
disconnect request that may explain the cause of the disconnection. The user needs
only to allocate a maximum of 64 bytes of buffer space to accommodate the longest

The Transport Control Layer

disconnect message permitted by the ISO standard. If the buffer length allocated is
less than the received data length, then only the data that fits in the buffer is returned.
The rest is lost. In particular, if no buffer is allocated, any disconnect data received
is discarded. '

An ISO reason code is also returned to indicate the cause of the disconnection.

Response Codes

ok$closed$resp—The local user had aborted the connection or connection already
closed.

loc$timeout—The local transport service had timed out.

rem$abort—A disconnect request was received from the remote TS on the specified
connection.

dupSrequest-Another AWAIT CLOSE command was posted previously on this
connection.

unknown$reference—The reference does not correspond to an allocated CDB.

iNA 960

iNA 960 The Transport Control Layer

5.3.13 SEND DATAGRAM

Command

SEND DATAGRAM

Subsystem

41H (Datagram)

Opcode

send$datagram

RB Class

datagram (Figure 5-6)

Input Arguments

ta$bufferSoffset—(WORD) The offset of a pointer to a TA buffer. The TA buffer
must be loaded with addressing information specifying the source (local).

TSAP-ID and destination (remote) TA of the datagram. The TAs must be fully
specified. The remote NA can be multicase address. The lengths of the remote net
address and local or remote TSAP-IDs must not exceed the limits specified in the
system configuration or an addressing error occurs.

ta$bufferSbase-(WORD) The base of a pointer to or of a segment token for a TA
buffer.

num$blks—(BYTE) The number of separate buffer blocks, each block a contiguous
memory area containing datagram data to be sent.

block(i).offset—(WORD) The offset of a pointer to the start of the it block.

block(i).base<(WORD) The base of a pointer to or of a segment token for the it
block.

block(i).length-(WORD) The length of the data in the i** block. The total length of
all data over all blocks must be less than or equal to the maximum NSDU length
provided by the network layer (minus a small overhead for the transport datagram

header). For an IEEFE 802.3 network layer and a 2-byte TSAP, the maximum length
is 1486 bytes.

Output Arguments

None

Function
With this command, the user requests transmission of the data in the buffers using

the transport datagram service. This service is connectionless and gives no assurance
of delivery of the data. Data can be lost or misordered.

5-33

The Transport Control Layer

5-34

Transport datagram service does not provide a fragmentation/reassembly capability.
Therefore, the length of the data cannot exceed the maximum NSDU size provided
by the network layer. For an IEEE 802.3 network layer and a 2-byte TSAP, the
maximum length is 1486 bytes.

The destination transport address can be either a single station, multicast, or broad-
cast network address. The multicast or broadcast network address conventions are

transparent to the transport layer. They are dependent on the underlying network
service used.

Response Codes
okS$resp-The data has been queued for transmission by the network layer.
buffertoolong—The data length exceeds the maximum NSDU size.

illegal$address—The local TSAP-ID or remote TA exceeds the configuration limits.

iNA 960

iNA 960

The Transport Control Layer

5.3.14 RECEIVE DATAGRAM

Command

RECEIVE DATAGRAM

Subsystem

41H (datagram)

Opcode

receive$datagram

RB Class

datagram (Figure 5-6)

Input Arguments

ta$bufferSoffset—-(WORD) The offset of a pointer to a TA buffer. The remote NA
and TSAP-ID fields are not input parameters. However, the fields must be reserved
to the proper length to buffer the source TA of a received datagram.

The local TSAP-ID must be loaded into the buffer. The length of the local TSAP-
ID must not exceed the limit specified in the system configuration, else an addressing
error occurs. The local TSAP-ID which must be nonzero specifies the TSAP that
posts the buffer. This posts the buffer on a queue reserved only for that TSAP-ID.
Any received datagram with remote TSAP-ID matching the TSAP-ID of this queue
can pass its data to the buffer. Datagrams with non-matching remote TSAP-IDs
cannot use this buffer.

ta$buffer$base—(WORD) The base of a pointer to or of a segment token for a TA
buffer.

tsapS$class—(BYTE) Set to 0.

num$blks—(BYTE) The number of separate buffer blocks, each block a contiguous
memory area to receive datagram.

data.block(i).offset—(WORD) The offset of a pointer to the start of the ith block.

block(i).base(WORD) The base of a pointer to or of a segment token for the i®
block.

block(i).length—-(WORD) The length of the i** block.

Output Arguments

ta$buffer—(ADDRESS BUFFER) Contains in the remote NA and TSAP-ID fields
the remote source address of the received datagram.

buf$len—(WORD) The length of the data received in the buffers posted by the
command.

The Transport Control Layer

block$buffer-(NONCONTIGUOUS BUFFER) Contains the datagram data received
from the remote TS.

Function

By using this command, the user posts a receive buffer on behalf of a TSAP to receive
data from a transport datagram. The datagram buffer queues are maintained
separately from the virtual circuit buffer queues.

Response Codes
ok$resp-The buffers pointed to by the RB are completely filled with data.

okeomresp—Buffer contains data to the end of the datagram. An RB can return
data from at most one transport datagram.

illegal$address—An addressing error detected.

no$resources—No more resources to manage the buffers posted for the TSAP.

5.4 Procedure Interface Commands

The Transport Service procedural interface allows the user to invoke the transport
commands via a set of procedure calls with parameters. The procedure calls are iRMX
OS extensions. They provide a friendlier command interface to the iRMX user than
the RB command interface.

These procedure calls will create the request blocks defined from the user’s procedure
parameter list. As a result, iTS will return the RB to the user’s response mailbox
when iTS has processed the command. Thus the response interface is the same whether
the procedural or RB command interface is used.

5.4.1 Procedural Call Description Conventions

Previously, Section 5.3.2 gives a detailed description of the procedure name and call
arguments corresponding to each of the iTS interface commands defined in Section
5.3. Because the procedural interface does not add any new functionality and the
response interface is the same as the RB interface, no command function and response
descriptions appear here. These are found under the headings “Output Arguments,”
“Function,” and “Response Codes” for each command.

The remainder of this section is divided into subsections, one for each iTS command.
Each command is described as follows:

COMMAND: Same name given for the RB interface.
PROCEDURE: The name and parameter list of the interface procedure.
PARAMETERS: Definition of the parameters of the procedure. Those param-

eters that are identical in name with the input argument in
the RB interface are used the same way as in the RB inter-
face. Only those parameters that are different are described
here.

Each procedure also returns an exception code that usually indicates the status of
parsing the parameter list for syntax. See Getting Started with the Release 5 iRMX™
86 System for a description of the exception codes.

iNA 960

iNA 960

The Transport Control Layer

5.4.2 OPEN
Command

OPEN

Procedure

CA$TLVCS$OPEN (user$id, response$mbx, except$ptr)

Parameters

user$id*—(WORD) user ID.

response$mbx*—(WORD) iRMX response mailbox token
except$ptr*—pointer to a word containing exception codes.

These parameters are found in every procedure call. They are not described further.

5-37

The Transport Control Layer iNA 960

5.4.3 SEND CONNECT REQUEST

Command

SEND CONNECT REQUEST

Procedure

,CA$8TLVCSSENDSCONNSREQ(Ctasbuffer$ptr, persistence$count,
abort$timeout, reference, conn$class, negots$options,
user$datasbuffer$token, user$dataslen, users$id,
response$mbx, excepté$ptr)

Parameters
ta$buffer$ptr—(POINTER) A pointer to a TA buffer.
user$data$bufferStoken—(WORD) An iRMX segment token for the connection

request user data buffer. Set to 0 only if no user data buffer is allocated. The user
data buffer must be 64 bytes long if allocated.

5-38

iNA 960

The Transport Control Layer

5.4.4 AWAIT CONNECT REQUEST TRAN
Command

AWAIT CONNECT REQUEST TRAN

Procedure
CA$STLYCSAWAITSCONNSREQSTRANCtasSbuffersptr,
persistence$count, abort$timeout, reference, connd$class,

negot$options, user$datasbuffer$token, users$dataslen,
user$id, response$mbx, except $ptr)

Parameters

ta$buffer$ptr—(POINTER) A pointer to the TA buffer.
persistence$count—(WORD) Set to 0.

user$data$buffer$token—(WORD) Same as for SEND CONNECT REQUEST.

user$data$len(BYTE) Set to 0.

5-39

The Transport Control Layer iNA 960

5.4.5 AWAIT CONNECT REQUEST USER
Command

AWAIT CONNECT REQUEST USER

Procedure
CGSTLVC$ANAIT$CONNREGUSER(ta@buffer$ptr,
persistence$count, abort$timeout, reference, conns$class,

negot$options, user$datasbuffer$token, users$dataslen,
user$id, response$mbx, excepté$ptr)

Parameters

ta$buffer§ptr—(POINTER) A pointer to a TA buffer.

persistence$count—(WORD) Set to 0.

user$data$buffer$token—(WORD) Same as for SEND CONNECT REQUEST.

user$data$len—-(BYTE) Set to 0.

5-40

iNA 960 The Transport Control Layer

5.4.6 ACCEPT CONNECT REQUEST
Command

ACCEPT CONNECT REQUEST

Procedure

COA$TLVCSACCEPTSCONNSREQ(reference, negot$options,
user$datasbuffer$token, usersdataslen, users$id,
response$mbx, excepté$ptr)

Parameters

user$data$buffer$token—(WORD) Same as for SEND CONNECT REQUEST.

5-41

The Transport Control Layer iNA 960

5.4.7 SEND DATA or SEND EOM DATA
Command

SEND DATA or SEND EOM DATA

Procedure

CA$TLVCSSENDSDATA(reference, buffer$descr$token, users$id,
response$mbx, excepts$ptir)

COSTLVCSSENDSEOMSDATA(Creference, buffer$descr$token,
user$id, response$mbx, exceptéptr)

Parameters
buffer$descr$token—-(WORD) An iRMX segment token for a buffer descriptor

memory area formatted as shown in Figure 5-2. Prior to the call, the descriptor blocks
must be filled in and the buffers pointed to must contain the data to be transmitted.

5-42

iNA 960 The Transport Control Layer

5.4.8 RECEIVE DATA
Command

RECEIVE DATA

Procedure

CA$STLVCSRECEIVESDATA(reference, conn$class,
buffer$descr$token, user$id, responsed$mbx, excepté$ptr)

Parameters
buffer$descr$token—(WORD) An iRMX segment token for a buffer descriptor

memory area formatted as shown in Figure 5-2. Prior to the call, the descriptor block
must be filled in.

5-43

The Transport Control Layer

5-44

5.4.9 SEND EXPEDITED DATA
Command

SEND EXPEDITED DATA

Procedure

CA$STLVCSSENDSEXP$DATA(reference, user$datasbuffers$token,
user$datas$len, user$id, response$mbx, excepté$ptr)

Parameters

user$data$buffer$token—(WORD) An iRMX segment token for the expedited data
buffer. The procedural interface requires one contiguous buffer (max of 16 bytes).
The buffer should be filled with the data to be transmitted prior to the call.

user$data$len-(BYTE) The length of the data in the buffer (must be less than or
equal to 16).

iNA 960

iNA 960

The Transport Control Layer

5.4.10 RECEIVE EXPEDITED DATA
Command

RECEIVE EXPEDITED DATA

Procedure
CASTLVCSRECEIVESEXP$SDATA(reference, conn$class,

user$datasbuffer$token, user$datas$len, users$id,
response$mbx, except$ptr)

Parameters

user$data$buffer$token—(WORD) An iRMX segment token for the expedited data
receive buffer. The procedural interface requires one contiguous buffer of length
exactly 16 bytes.

user$data$len—(BYTE) Set to 0.

5-45

The Transport Control Layer

5-46

5.4.11 CLOSE
Command

CLOSE

Procedure

CA$TLVCS$SCLOSE(reference, iso$reasons$code,
user$datasbuffers$token, user$datas$len, users$id,
response$mbx, excepts$ptr)

Parameters

user$data$bufferStoken(WORD) An iRMX segment token for an optional discon-
nect user data buffer. This must be a contiguous buffer of length less than or equal
to 64. Set to 0 only if no buffer is allocated for no data with the disconnect request.

user$data$len—(BYTE) The length of the data in the buffer to be sent (must be less
than or equal to 64).

iNA 960

iNA 960

The Transport Control Layer

5.4.12 AWAIT CLOSE
Command

AWAIT CLOSE

Procedure

CA$STLVCSAWAITSCLOSE(Creference, user$datasbuffer$token,
user$data$len,user$id, response$mbx, except$ptr)

Parameters

user$data$bufferStoken—(WORD) An iRMX segment token for an optional discon-
nect user data buffer. This must be a contiguous buffer of length less than or equal
to 64. Set to 0 only if no buffer is to be allocated for no data reception on receiving
a disconnect request.

user$data$len—-(BYTE) Set to O.

5-47

The Transport Control Layer

5-48

5.4.13 SEND DATAGRAM
Command

SEND DATAGRAM

Procedure

CA$STLDGSSENDSDATAGRAM(tasbuffer$ptr, buffer$descr$token,
user$id, response$mbx, except$ptr)

Parameters
ta$bufferSptr—(POINTER) A pointer to a TA buffer.
buffer$descr$token—(WORD) Same as for SEND$DATA. The length of the data

transmitted cannot exceed the maximum NSDU length provided by the underlying
network service.

iNA 960

iNA 960 The Transport Control Layer

5.4.14 RECEIVE DATAGRAM
Command

RECEIVE DATAGRAM

Procedure
CA$STLDGSRECEIVESDATAGRAM(tasbuffer$ptr, tsap$class,

buffer$descr$token, user$id, response$mbx,
excepts$ptr)

Parameters
ta$buffer$ptr—(POINTER) A pointer to a TA buffer.

buffer$descr$token—(WORD) Same as for RECEIVE $DATA.

5-49

The Transport Control Layer

5-50

5.5 Configuration

To configure the Transport Layer configuration file, perform the following steps:

1. Customize the Transport Layer to a particular implementation in the configu-
ration file.

2. Decide on which transport layer services are to be provided by an implementation
and link the appropriate transport service modules at system generation time.

3. For iRMX users decide whether to use the iRMX Transport Layer procedural
interface and link the transport layer procedural library with the application job.

5.5.1 Customizing the Transport Layer

The iTS has several configuration parameters that customize the transport layer to a
particular implementation. The seven classes of configuration parameters are as
follows:

Transport Address Limits

Network Layer Interface Parameters
Transport Data Base Parameters

Client Request Default Parameters
Internal Negotiation Option Parameters

Retransmission Timer Parameters

N AW

Flow Control Parameters

The parameters in each class are defined in the following subsections. An assembly
language configuration template is also specified. The configuration template models
a typical iRMX subsystem configuration file that will be provided with the iTS
software package. The configuration file contains default values that can be modified
by a system implementor to customize the transport layer. The file is assembled and
the resulting code is used to initialize the appropriate internal transport software
variables.

Transport Address Limits

These parameters define the maximum lengths of the network address and TSAP-ID
components of the transport address.

Specifically, the parameters are as follows:
* max_net_addr_len = Maximum network address length. Must be set to OCH.

* max_tsap_id_len = Maximum length of local or remote transport service access
point identifiers (TSAP-IDs).

¢ max_nsap_id_len = Leave at default value of 2

Network Layer Interface Parameters

The only parameter in this class is the following:

* loc_nsap id = The local network service access point (NSAP) - Id required to
interface to the underlying network layer. Leave at default value of 1.

iNA 960

iNA 960

The Transport Control Layer

Transport Data Base Parameters

iTS requires a certain amount of RAM memory to maintain certain data structures
used for its operation. As such, limits exist on the size or number of these data struc-
tures. These limits are specified by the following parameters:

¢ max_cdbs = Maximum number of CDBs used to manage virtual circuits. Increase
this parameter value to accommodate more concurrent connections. Each new
connection requires about 200 bytes additional memory.

» max_conn_class = Maximum connection classes used to share receive buffers
among connections. Leave at 0.

* max_datagram_tsaps = Maximum number of TSAPs that can have datagram
receive buffers posted at one time. Set to 0 if datagram service is not provided.

* max_tsap class = Maximum number of datagram TSAP classes used to share
receive buffers among datagram TSAPs. Leave at 0.

e dg xsum_opt = Checksum Option Flag = 0 if checksums not used. OFFH if
checksums are used.

* max_irbs = Maximum number of internal request blocks used to queue connec-
tion related TPDUs for transmission. Leave at default value of 5.

* max_eirbs = Maximum number of internal request blocks used to queue connec-
tion related expedited TPDUs for transmission. Leave at default value of 2.

¢ max_lirbs = Maximum number of long internal request blocks used to queue
non-connection-related TPDUs for transmission. Leave at default value of 3.

e max_dirbs = Maximum number of internal request blocks used to queue
datagram TPDUs for transmission. Leave at default value of 2.

Client Request Default Parameters

In the RB interface the user can specify that iTS use certain default values. The
default values are the following configuration parameters:

o def_persis = Default persistence count to specify the default number of retries
to request a connection that is being rejected before giving up.

o def_abort_to = The default abort timeout to specify the default length of time
(in 51-millisecond units) to retransmit before timing out and aborting a connec-
tion due to a failure to acknowledge from the remote TS.

o def_negot_options = The default connection negotiation options specified via the
encoding. The default makes a choice for each of the following options.

e Sequence number format (7- or 31-bit).
e Class of Service (only value of 4 supported).
« Expedited Service/Checksum Options (Yes/No Combination).

Internal Negotiation Options

These concern options negotiated by the transport protocol during connection estab-
lishment, but are not specified by the iTS user. The parameters are the following:

» max_tpdu_size = Maximum TPDU size.

« no_addit_opt_field = Additional option field used as an assumed additional option
parameter that a remote TS requested, when, in fact, the request provided no
such option parameter.

o no_max_tpdu_size_field = Maximum TPDU size field used as an assumed
maximum TPDU size that a remote TS requested, when, in fact, the request
provided no size.

The Transport Control Layer

5-52

Retransmission Timer Parameters

These parameters specify the characteristics of the iTS retransmission timer algorithm.
These are used to fine tune the performance of the algorithm. The parameters are:

def_retran_to = Default retransmission timeout. This is the initial retransmis-
sion timeout value used to start the retransmission algorithm for each connection.
This retransmission timeout sends Connection Requests (CR) or conn.confirm
(CC) TPDUs. If CRs are to be passed to the user, the timeout should allow for
the user to process requests. Specified in 100 microsecond units.

min_retran_time = Minimum retransmission time. This is the lower bound on
the retransmission time computed by the algorithm to prevent excessive retrans-
missions. Specified in 100 microsecond units. An inappropriate value can adversely
affect performance. Too small a value will cause excessive retransmissions, creat-
ing excessive network traffic and excessive CPU overhead to send and receive
retransmitted TPDUs. Too large a value will waste time waiting to retransmit (if
a retransmission is required). The default value provided gives adequate
performance for several Intel data-communications processor boards and for IEEE
802.3 local area networks. This parameter need only be retuned if performance
degradation is observed in other hardware or network configurations.

closing_abort_to = Closing abort timeout. This is the total amount of time to
keep trying to send a disconnect request in order to receive a disconnect confir-
mation before closing the connection. Specified in 51 millisecond units. This
parameter normally does not have to be changed. The value of this parameter
could result in a delay (given by this time out in time units) to close a connection
only if the remote TS has already disconnected. Otherwise, this parameter has
no effect. :

inactivity ak_retran_to = Inactivity AK retransmission timeout. This is the
interval between flow control window AK TPDU transmissions when there is no
other activity on a connection. Specified in 100 microsecond units. Leave this
parameter at the default value.

max_inactivity count = Maximum inactivity count. This is the number of
consecutive flow control window AK TPDUs that are sent without receiving any
responses from the remote TS on a connection before considering the remote TS
as disconnected and aborting the connection. The product max_inactivity_count
and inactivity_ak retran_to parameters (converted to time) is the total length of
time allowed by the transport without receiving TPDUs from the remote TS before
assuming the connection is inactive and disconnected. Increase this count to
increase effective inactivity timeout. Decrease this count to decrease the timeout.

Flow Control Parameters

These parameters specify the characteristics of the transport protocol flow control
algorithm. The parameters are as follows:

max_window_size_normal = Maximum window size for normal (7-bit) sequence
number format. The largest receive buffer credit that can be reported on a
connection by the iTS to a remote TS for normal sequence number format. The
maximum value for this parameter is OFH, limited by the ISO 8073 Transport
protocol. Do not use a larger value. This number actually affects transport layer
performance. The value must be tuned as a function of the network layer buffer-
ing capacity allocated in the BUFCFG.A86 macro.

In BUFCFG.A86, the internal network buffering resources are specified. This
limits the number of transport packets (called (TPDUs) that can be buffered at
one time. For reasonable performance, the parameter max_window_size_normal
value should be less than or equal to the maximum number of TPDUs that can
be internally buffered, plus 3. For example, if 12 TPDUs can be simultaneously
buffered by the network layer, then a reasonable value for this parameter is 15
(decimal).

iNA 960

iNA 960

The Transport Control Layer

max window_size_extended = Maximum window size for extended (31-bit)
sequence number format. The largest receive buffer credit that can be reported
on a connection by the Transport service to a remote TS for extended sequence
number format.

The value can be from 0 to 65K. The same performance considerations are applied
to this parameter as for the parameter max_window_size_normal. On any one
connection either max_window_size_normal is used (if 7-bit sequence numbers
are negotiated) or max_window_size_extended is used (for 31-bit sequence
number negotiation).

min_credit = Minimum credit. The smallest receive buffer credit that can be
reported on a connection by the iTS to a remote TS. Set to 0 if the window can
close. Set to 1 if the window never closes. If this parameter is set to 0 to close the
window, all the normal ISO 8073 flow control mechanisms will be invoked to
open the credit window to prevent deadlock. If the value of min_credit equals 1,
and the window is never reported as closed by the receiver (even if no buffers are
available), these flow control window mechanisms never come into effect. The
default (min credit = 1) actually enhances performance, because the ISO 8073
open-window mechanisms incur substantial CPU overhead. The overhead can
outweigh the performance improvements that might occur by a closed window
preventing unnecessary retransmissions (to a receiver with no buffer).

open_window_to = Open window timeout. This is the interval between succes-
sive acknowledgements (AK TPDUs) that announce the opening of a previously
closed credit window used to avoid flow control deadlock. Specified in 100 micro-
second units. This parameter is not used if min credit equals 1.

max_open_window_count = Maximum open window count. This is the maximum
number of open window AKs that are transmitted before sender assumes that
the remote TS has received the open window credit information. When this count
is reached, the iTS stops transmitting the open window AKs. This parameter is
not used if min_credit equals 1.

5.5.2 Configuration Template

The assembly MACROS required the parameters defined in the above sections. The
INTEL supplied defaults are specified here.

NAME TCONF

$INCLUDE (TL/TCONF.MAC)

1
1

)

Transport Address Limits

XTransport_Address_Limits(max net_addren,max tsap_id_len,max_nsap_id_len)

A'max_net_add_len=12

Y'max_tsap id_len=2

#'max_nsap_id_len=2

1
1

.
i

Network Layer Interface

“Network_Layer_Interface(loc_nsap id)

¥'loc_nsap_id=1

1
)

1

Transport Data Bases

5-53

The Transport Control Layer iNA 960

“Connection_limits(max_cdbs,max_conn_class)

Y'max cdbs=21

A'max_conn_class=2

%Datagram_structure(max datagram_tsaps,max tsap class, dg xsum_opt)
%¥'max_datagram_tsaps=9

Y'magx tsap class=2

%¥'dg xsum_opt=0

Yinternal_request_blocks{max irbs,max_eirbs, maxi_lirbs,max dirbs)
X'max_irbs=5

A'max eirbs=2

Y'max_lirbs=3

X'max dirbs=2

;3 Client Request Defaults

3

%client_request_defaults(def_persist, def_abort_to, def_negot_options)
A’'def persist=1

%’'def_abort_to=1800H (about S5 min)

%’def_negot_options=8242H

L 31 bit seq.no
i Class 4
%’ No expedited service/No checksunms

; Internal Negotiation Options

i

Yinternal_negot_options (max_tpdu size, no_addit_opt_field,
no_max_tpdu_size_*field)

A'max_tpdu_size=0BH (2048 bytes)

X’'no_addit_opt_field=3 (expedited services and no checksum)

X'no_max_tpdu field=7 (128 bytes)

j

; Retransmission Timer Parameters

H

Yretran_timer(def_retran_to,min_retran_time,)

t'def_retran_to=10,000 (1 second)

Y'min_retran_time=1000 (100 milliseconds)

%closing_abort(closing_abort_to)

#'closing_abort_to=80H (7 seconds)

finactivity timer(inactivity ak_retran_to,max_inactivity count)

%’inactivity_ak_retran_to=300,000 (30 seconds)

X'max_inactivity count=8

.
3

s Flow Control

twindow_size (max_window_size_normal, max_window_size_extended, min_credit)
Y’'max_window_size_normal=0FH

%'max_window_size_extended=0FH

Y'min credit=1

%open_window_timer(open_window_to,max_open_window_count)
%“'open_window_to=10,000 (1 second)

%'max_open_window_count=8

iNA 960

5.5.3 Configuring Transport Services

The Transport Control Layer

The following sets of transport services can be configured at system generation time:

¢ No transport services. The transport configuration file is not used.

* Only the normal virtual circuit service. No expedited service and no datagram
service.

¢ Both the normal and expedited virtual circuit service. No datagram service. The
expedited service is meaningful only if normal service is also provided.

* Only the datagram service. No normal or expedited virtual circuit service.

e All transport services including normal virtual circuit, expedited virtual circuit,
and datagram services.

5.5.4 iRMX™ Procedural Interface Configuration

For iRMX applications using the iRMX Transport Layer procedural interface, one
of the following library modules must be linked into the application job:

¢« CQTLC.LIB: if the user program is compiled in COMPACT mode.
¢« CQTLL.LIB: if the usr program is compiled in MEDIUM or LARGE mode.

The user’s application programs can make use of the following INCLUDE file to
specify the external references to the iRMX Transport interface procedures:

« CQTL.EXT

5.6 Op Code/Response Code Include File

Declar

Declar

e

opens$req
send$conns$regq
awaits$conné$reqs$tran
await$conn$reqsuser
accept$connséregq
send$data
send$eomé$data
receive$data
withdraw$rcvs$buf
sendé$expd$data
receive$expé$data
withdrawexpbuf
closes$req
awaitsclose
statuss$reg
def$status

reserved
send$datagran
receive$datagranm
withdrawdgbuf

e
vcé$reqémax

firstédgécmd
req¥$max

/+0pcodes+/

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

/+Max opcode

LITERALLY
LITERALLY
LITERALLY

A}

A

0I
1l

\2!
\3I

\Sl
\6!
\71
\81
\9'

A}
A3
A}
\
\
\
\
\

A}

A

limitss/

A}
A}

A}

?
?
?
1
A} ’
4!,
?
b
?
?
?

10
117
127
137
147
15
16
17
18°
197

187,
17,

197

The Transport Control Layer

5-56

Declar

Declar

5.7

Code

W N = O

81H
82H
83H
84H
85H

86H
87TH
88H

89H
8AH

ok$resp

ok$eomé$resp
ok$decides$reqéresp
ok$closed$resp
ok$rejectSconnéresp

e

invalid$regq
no$resources
unknowné$reference
buffertooshort
buffertoolong
illegal$regq
rem$abort
locs$timeout
unknown$conn$class
dup$req
conn$reject
negot$failed
illegal$address
network$error
protocols$err
illegal$rbslength

ISO Reason Codes

Reason

Reason not specified.
Congestion at TSAP.
Client entity not attached to TSAP.
Address unknown.

Normal disconnect initiated by client.

Remote TS congestion at connect request time.
Connection negotiation failed (proposed classes not supported).
Duplicate connection detected.
Mismatched references.
Protocol error.

Not used.
Reference overflow.
Connection request refused on this network connection.

Not used.
Header or parameter length invalid.

/+«Non-error

/+Er

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
ror Respo
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

Response

nse

Codess/

\ 1 ’
A 3 ’
A} 5 ’
. 7 ’
‘11

e v s~

Codess*/

\2[
\4[
\el
\8l
\10'
\12'
\14!
\16!
\18!
\20l
\22!
\24'
\26'
\28!
\30!
\32[

-~ v e o~

iNA 960

CHAPTER 6
NETWORK MANAGEMENT FACILITY

6.1 Overview

The network management facility (NMF) supplies the network with plarnning, opera-
tion, and maintenance functions. The planning capability gathers network usage
information to help determine future expansion of the network. Operation deals with
the normal, day-to-day network functions such as initialization, termination,
monitoring and performance optimization. Maintenance performs the detection,
isolation, amputation, and repair of network faults.

The functions needed to implement all three goals of the NMF overlap considerably.
For instance, both planning and maintenance need to access the layer databases.
Similarly, the operation and maintenance functions must be able to bootstrap a remote
node. For this reason, the NMF functions are grouped not by purpose, but by function.

The functions afforded by the network management facility are layer management,
debugging operations, down-line loading, dumping, and echo testing.

Layer management provides the ability to examine and modify the internal databases
of layers at both local and remote nodes. These databases include counters that
indicate how the network is performing as well as network parameters affecting the
throughput of the network.

Debugging operations provided by the NMF are limited to the Read_memory and
Set_memory commands. With these commands, the user can read or alter the memory
of any host on the system.

Down-line loading provides the capability of loading a set of remote nodes from a
single host. This is done by a boot server module of the NMF. Besides offering boot-
strap services, the boot server can be used to down-line load databases.

Dumping is similar to down-line loading. A dump is initiated by a remote node issuing
a dump command to the target node. The target then responds by transmitting a
dump response packet that contains an image of the portion of memory requested.

Echo testing allows a host to determine if a particular node is present on the network,
and provides a test of the communication path to that node. Here, the NMF trans-
mits a packet to the remote node and then listens for the node to echo it back.

The NMF performs its operations on a remote node by communicating over the
network with the NMF at the remote node. In general, this is done by using the
transport control layers of each node to create a virtual circuit connection. For down-
line loading and dumping, however, the approach is different. Down-line loading is
used for booting systems. In particular, the system being loaded might be the commu-
nication system itself. Similarly, dumping is used during debugging or when a fault
is detected. Here, the operation of the transport control layer may be suspect. For
these reasons, communication between nodes for these two commands is restricted to
using just the raw data link facilities.

The network management facility is configured using a configuration module as
decribed in Chapters 8 and 9. This module consists of calls to NMF configuration
macros detailed in this chapter. Most of these macros are used to configure a boot
server into the local node. Stations that do not require the boot server can leave out
these particular macro calls.

6-1

Network Management Facility

62

6.2 Addressing Conventions

For most NMF commands, the user must specify the address of the node on which
the command is to be performed. This is done by including a pointer to a buffer in
memory. If the target node is a local node, this pointer should be 0. For remote nodes,
however, there are two possibilities. In some cases, the buffer contains the standard
6-byte Ethernet host address of the target. Otherwise, the buffer is in the format of
the transport address buffer as shown below:

Declare Address_buffer STRUCTURE (

Reserved BYTE,
Local TSAP_id_len BYTE,
Local _TSAP__id (Local TSAP_id_len) BYTE,
Remote_net_addr__len BYTE,
Remote_net__addr (Remote_net_addr) BYTE,
Remote TSAP_id_len BYTE,
Remote TSAP_id (Remote TSAP_id_len) BYTE
where
Reserved must be set to 0.
Local _TSAP_id_len is the length of the local TSAP id
Local_TSAP_id is a valid value for the local TSAP id.
Remote_net_addr_len is the length of the remote network address.
Remote_net_addr is a valid network address.
Remote_TSAP_id_len must be set to 2.
Remote_TSAP_id must be set to 3.

Table 6-1 lists the NMF commands with the associated addressing convention used
for each. Refer to Chapter 4 for further information regarding the transport address
buffer.

6.3 NMF Objects

During the operation of the network, the network management facility keeps track
of various parameters, called network management facility objects, for the local node.
Any node on the system can read, clear, or change the values of the objects at the

Table 6-1. The NMF Commands and Their Addressing Conventions

Command Address Convention
Read_object Transport address
Set_object Transport address
Read_and_clear_object Transport address
Read_memory Transport address
Set_memory Transport address
Forced_load Ethernet address
Dump Ethernet address
Echo Ethernet address
Supply_buffer —
Takeback_buffer —

iNA 960

iNA 960 Network Management Facility

local node or at any of the remote nodes, by using the NMF commands Read_object,
Read_and_clear_object, and Set_object. See Appendix B for detailed descriptions of
the NMF objects.

Objects are identified within a particular node by a two-byte id code. This code takes
the following form:

wxyzH
where
w is a digit that identifies the layer that the object belongs to.
The values are as follows:
1 Physical layer 5 Session layer
2 Data link layer 6 Presentation layer
3 Network layer 7 Application layer
4 Transport control layer 8 Network management facility
x specifies the entity within the layer. For example, the trans-
port layer hs two entities: the transport virtual circuit and the
transport datagram services sublayers. These have a value of
x that is 0 and 1 respectively.
yz identifies the particular object.

Such a coding arrangement is designed for future expansion of the capabilities of the
communication software. For the present release, however, only the following object
categories apply:

20yzH Data link layer objects.

40yzH Transport layer virtual circuit objects.
4lyzH Transport layer datagram objects.
80yzH NMF/Boot server objects.

Associated with each object is a modifier used in conjunction with the object to locate
a particular object value. The meaning of the modifier can be different for different
objects. In the current release of iNA 960, the modifier is ignored for data link and
NMF objects. For the transport layer, however, a modifier of 0 is used for connection
independent objects. Connection dependent objects use the connection reference as
the modifier.

NMF objects fall into one of these classifications:

Parameter adjusts the actual operation of the layer.

Counter records the number of times a particular event occurs. A
counter is an unsigned integer and can be either of the
following types:

wrap-around clears to O on overflow.

sticky sticks at “infinity”’ on overflow.

Statistic is a time-averaged measure of some aspect of system
operation.

Value is none of the above.

6-3

Network Management Facility

6.3.1 NMF/Data Link Objects

Data link objects are provided that track the raw communication activity of the station.
Included, are counters that monitor the total number of packets sent and received by
the node. Collision activity is gauged by counters for primary and secondary colli-
sions and for packets dropped due to excessive collisions. Finally, the rates of a number
of different types of reception errors are tallied. These are CRC errors, where packets
are dropped because the CRC code does not check; alignment errors, where a data
boundary is not aligned at a byte boundary; and resource errors, where packets are

dropped because no buffers are available for them.

The following is a list of the data link objects along with their object id codes. For a

complete description of each object, refer to Appendix B.

2000H Data Link Type
2001H Line Speed

2002H Host Id

2003H Total Sent

2004H Primary Collisions
2005H Secondary Collisions
2006H Exceeded Collisions
2007H Total Received
2008H CRC Errors
2009H Alignment Errors
200AH Resource Errors

6.3.2 NMF/Transport Layer Objects

The transport layer objects included in iNA comprise objects of the virtual circuit
subsystem and the datagram subsystem of the transport layer. The objects of the
virtual circuit subsystem are further classified as either connection independent or
connection dependent objects. For the connection dependent objects, the modifier of

the object is used to specify the connection identifier.

The transport objects include error counters, statistics, configuration parameters, and
timeouts. The following is a list of the transport objects. See Appendix B for a detailed

description of these objects.

NMF /Transport Virtual Circuit Connection Independent Objects

4000H Virtual Circuit Type

4001H Connection id Vector

4002H ISO Transport Number

4003H Maximum Connections

4004H Current Maximum Connections
4005H Maximum On-Board CDBs
4006H ActiveCDBs

4007H CDB Size

4008H Default Persistence Count
4009H Default Abort Timeout

400AH Default Retransmit Timeout
400BH Minimum Retransmit Timeout
400CH Closing Abort Timeout

400DH Flow Control Window Timeout
400EH Inactivity Maximum Count
400FH Total Duplicate Segments Rejected
4010H Total Checksum Errors

64

iNA 960

iNA 960

4011H
4012H
4013H
4014H
4015H
4016H
4017H
4018H
4019H
401AH
401BH
401CH
401DH
401EH
401FH
4020H

Total Retransmissions

Total Resource Errors

Maximum Network Address Length
Maximum TSAP-id Length

Local NSAP-id

Reserved

Reserved

Default Connection Negotiation
Maximum TPDU Size

No Additional Option Field

No Maximum TPDU Size Field
Maximum Normal Window Size
Maximum Extended Window Size
Minimum Credit

Open Window Timeout
Maximum Open Window Count

NMF /Transport Virtual Circuit Connection Dependent Objects

4081H
4082H
4083H
4084H
4085H
4086H
4087H
4088H
4089H
408AH
408BH
408CH
408EH
408FH
408FH
4090H
4091H
4092H
4093H

Local TSAP-id

Remote Network Address
Remote TSAP-id

Connection State

Remote Connection id
Persistence Count

Abort Timeout

Retransmit Timeout

Next Transmit Sequence Number
Duplicate Segments Rejected
Segments Retransmitted
Resource Errors

Client Options

Class Options

Additional Options

Maximum TPDU Size
Maximum TPDU Data Length
Inactivity Count

Reserved

NMEF/Transport Datagram Objects

4100H
4101H
4102H
4103H
4104H
4105H
4106H
4107H

6.3.3

Datagram Type

Datagram Receive Queue Size
Reserved

Total Datagrams Transmitted
Total Datagrams Received

Total Datagram Resource Errors
Total Datagram Checksum Errors
Total Datagram Address Errors

NMF /Boot Server Objects

Network Management Facility

The objects of the network management facility are restricted to those that are used
to configure the boot server. Most of these objects are determined at configuration
time and may not be altered. The single exception is the boot table that may be
changed dynamically during run time. This, in effect, changes the list of nodes that
are recognized by the boot server.

6-5

Network Management Facility

6-6

The following is a list of the NMF /Boot server objects. See Appendix B for a detailed
description of these objects.

8000H NMF Type

8001H Multicast Address

8002H Maximum Number of Nodes
8003H Maximum Number of Addresses
8004H The Boot Table

8005H Number of Class Codes

8006H List of Class Codes

80FFH Number of NMFs

6.4 NMF Commands

This section gives a brief introduction to the network management facility commands,
followed by a detailed description of each command.

As explained above, the network management facility manages the NMF objects that
control the operation of the data link layer, transport layer, and the boot server. The
NMF objects are viewed and modified with the following NMF commands:

Read_object Returns the value of the given object.
Set_object Sets the given object with the given value, if possible.

Read_and_clear_object Returns the value of the given object and sets the object to O,
if possible.

As a debugging aid, the NMF allows the user to read or set the memory of any node
on the network using the following commands:

Read_memory Downloads a given portion of memory from the remote node
to the local node.

Set_memory Loads the memory of the remote node with a given portion
of memory from the local node.

A particular node can force another node to initiate a down-line loading sequence
with the following command:

Forced_load Forces a given node to request a down-line load from the boot
server.

The following commands are used as debugging and maintenance aids:

Dump Downloads a given portion of memory from the remote node
to the local node using the raw data link facilities.

Echo Sends a block of random data to a remote node that echoes
the data back to the local node.

The user may add new commands to the existing NMF commands. Commands that
are not recognized by the NMF are forwarded to the user for dispensation. This is
done using the following commands:

Supply_buffer Supplies a user buffer to the NMF for storing an incoming
packet with an unrecognized command field.

Takeback_buffer Retrieves all outstanding Supply_buffer request blocks from
the NMF.

iNA 960

iNA 960

Network Management Facility

6.4.1 Read/Set/Read_and_clear_object

There are three commands available to interface with the objects of a layer:
Read_object, Set_object, and Read_and_clear_object. In addition, each command
may operate on several objects during a single invocation.

To use one of these commands, the user sets aside two buffers in memory. A command
buffer is used to specify the list of objects that are the subject of the command, and
(for Set_object) to store the new object values. A response buffer is used to return
the values read by the NMF. The user creates and fills in the command buffer before
invoking the command. The response buffer is filled by the NMF after executing the
command. The formats for these two buffers are specified later in this section.

Command failure (such as no response from the remote station) is indicated by a
code in the response field of the request block. In this case, nothing is written to the
response buffer. However, if an attempt is made to clear an object that cannot be
cleared or a nonexistent object is named, then the command is ignored only for that
particular object. Thus, the number of object values in the response buffer may be
less than the number specified in the command buffer.

The procedure is different for the Set_object command. First, an attempt is made to
set the object with the specified value. Then the value of the object is read and the
result returned in the response buffer, even if the object cannot be set.

Request Block Interface

DECLARE Rb STRUCTURE (

Rb_header (6) WORD,
Layer BYTE,
Opcode BYTE,
Response WORD,
Trans_addr_ptr POINTER,
Filled_length WORD,
Resp_buf_ptr POINTER,
Resp_buf_length WORD,
Cmd_buf_ptr POINTER,
Cmd_buf_length WORD)

Procedure Interface

CA$NMLS$READ$OBJECT (CMD_buf_ptr, Cmd_buf_length,
Resp_buf_ptr, Resp_buf_length, Trans_addr_ptr, User,
Return_mailbox, Exception_ptr)

CASNMLSREADCSOBJECT (CMD_buf_ptr, Cmd_buf_length,
Resp_buf_ptr, Resp_buf_length, Trans_addr_ptr, User,
Return_mailbox, Exception_ptr)

COSNMLSSETSOBJECT (CMD_buf_ptr, Cmd_buf_length,
Resp_buf_ptr, Resp_buf_length, Trans_addr_ptr, User,
Return_mailbox, Exception_ptir)

67

Network Management Facility

6-8

Command Parameters

Op_code

Response

Trans_addr_ptr
Filled_length

Resp_buf_ptr
Resp_buf_length
Cmd_buf_ptr
Cmd_buf_length

One of the following:

0 — Read_object
1 — Read_and_clear_object
2 — Set_object

Set by the NMF after executing the command. Values are as
follows:

1 — OK response

2 — no response from the remote node

8 — error while trying to connect with remote NMF
A - command not configured

C — illegal request

FFFE - command not configured

A pointer to a buffer containing the transport address of the
target node.

The size, in bytes, of the buffer filled in by the NMF. This
field is set by the NMF after executing the command.

Points to the response buffer.
The length of the response buffer.
Points to the command buffer.

The length of the command buffer. For commands on remote
nodes, this must be less than 90 bytes.

Command Buffer Format

The format for the command buffer is the following:

DECLARE Command_buffer STRUCTURE (

Number BYTE,
Obj_info (Number) STRUCTURE (
Object WORD,
Modifier WORD,
Length WORD,
Value (Length) BYTE));
where
Number is the number of objects included in the buffer.
Object is the id code for the given object.
Modifier is a code used with some objects to select a particular value
from within the given object.
Length is the length, in bytes, of the Value field. Set to O for the
Read and the Read_and_clear commands.
Value contains the new value of the object for the Set command.

Ignored for the Read and Read_and_clear commands.

iNA 960

iNA 960

Network Management Facility

Response Buffer Format

The format for the response buffer is the following:

DECLARE Response_buffer STRUCTURE (

Number BYTE,
Obj_info (Number) STRUCTURE (
Object WORD,
Modifier WORD,
Length WORD,
Value (Length) BYTE));
where

Number is the number of objects included in the buffer.

Object is the id code for the object. Only valid objects are returned
by the NMF. In addition, objects that cannot be cleared are
not returned during the Read_and_clear command.

Modifier is a code used with some objects to select a particular value
from within the given object.

Length is the length, in bytes, of the Value field.

Value contains one of the following:

« the value of the given object for a successful Read or
Read_and_clear command.

< the value read back from the given object after an attempt
has been made to set it (for a successful or an unsuccess-
ful Set command).

Network Management Facility iNA 960

6.4.2 Read/Set_memory

As an aid to debugging, the network management facility provides the host
with commands to read or set the memory of any node on the network. The
Read/Set_memory commands to remote nodes use the services of the transport control
layers at the two nodes.

To use one of these commands, the user sets aside a buffer in memory. For the
Read_memory command, this buffer is used to store the memory image retrieved
from the target node. For the Set_memory command, this buffer contains the memory
image that is loaded into the memory at the target node.

Request Block Interface

DECLARE Rb STRUCTURE (

Rb_header (6) WORD,
Layer BYTE,
Opcode BYTE,
Response WORD,
Trans_addr_ptr POINTER,
Filled _length WORD,
Buffer_ptr POINTER,
Buffer_length WORD,
Start_addr POINTER)

Procedure Interface

CO$SNMLS$READSMEM (Start_addr, Buffer_ptr, Buffer_length,
Trans_addr_ptr, User, Return_mailbox, Exception_ptr)

CASNMLSSETSMEM (Start_addr, Buffer_ptr, Buffer_length,
Trans_addr_ptr, User, Return_mailbox, Exception_ptr)

Command Parameters

Op_code One of the following:

3 — Read_memory
4 — Set_memory

Response Set by the NMF after executing the command. Values are as
follows:
1 — OK response
2 — no response from the remote node
8 — error while trying to connect with remote NMF
A — command not configured
C — illegal request

FFFE - command not configured

Trans_addr_ptr Pointer to a buffer containing the transport address of the
target node.

Filled_length Size, in bytes, of the memory area filled in by the NMF. This
field is set by the NMF after executing the command.

6-10

iNA 960 Network Management Facility

Buffer_ptr Points to a buffer in memory that does the following:

e contains the memory image read from the target node
(Read_memory).

e contains the memory image to be loaded into the target
node (Set_memory).

Buffer_length Length, in bytes, of the buffer selected by Buffer_ptr. If the
target node is a remote node, this value must be less than 90.

Start_addr Pointer containing the starting address in the memory of the
target node where the operation is to be performed.

6-11

Network Management Facility

6.4.3 Forced_load

Any node on the network may make a down-line load request from the boot server
using the handshake procedure described in the iNA 960 Architecture Reference
Manual. In addition, a node may force another node to initiate a down-line load
sequence. This is accomplished with the Forced_load command.

When the local NMF receives the Forced_load command, it transmits a packet
containing the Forced_load command and a class code for the boot request. This is
done using only the raw data link services. The NMF then waits for the remote node
to return a Forced_load response packet. If there is no response, the NMF tries two
additional times before assuming that the node is not responding.

Request Block Interface

DECLARE Rb_forced_load STRUCTURE (

Rb_header (6) WORD,
Layer BYTE,
Opcode BYTE,
Response WORD,
Datalink_addr_ptr POINTER,
Class_code WORD)

Procedure Interface

CO$SNMLSFORCESLOAD (Class_code, Datalink_addr_ptr, User,
Return_mailbox, Exception_ptr)

Command Parameters

Op_code 7
Response Set by the NMF after executing the command. Values are:
1 — OK response
2 — no response from the remote node
A — command not configured
C — illegal request

FFFE - command not configured

Datalink_addr_ptr Pointer to a buffer containing the data link address of the
node that should request a down-line load.

Class_code Class code used in the down-line load request.

iNA 960

iNA 960

Network Management Facility

6.4.4 Dump

The NMF provides the facility to enable a node to get a dump of the memory of a
remote node. This is done with the Dump command. Upon receiving this command,
the NMF transmits a packet containing the dump command and waits for the remote
node to return a dump response packet. If the remote node does not respond, the
NMF tries an additional two times before assuming that the remote node is not
responding.

To use the Dump command, the user sets aside a buffer in local memory. In addition,
the user specifies a starting address in the memory of the remote node. The memory
image returned begins at this starting address and is no larger than the buffer speci-
fied by the command. The maximum size of the memory image that can be returned
is 1489 bytes.

The Read_memory and Dump commands are similar in their operation. The differ-
ence, however, is that Read_memory uses the services of the transport control layer

to perform the communication between the nodes. Dump uses only the raw data link
services.

Request Block Interface

DECLARE Rb_dump STRUCTURE (

Rb_header (6) WORD,
Layer BYTE,
Opcode BYTE,
Response WORD,
Datalink_addr_ptr POINTER,
Filled _length WORD,
Buffer_ptr POINTER,
Buffer_length WORD,
Start_addr WORD)

Procedure Interface

CA$NMLS$DUMP (Start _addr, Buffer_ptr, Buffer_length,

Datalink_addr_ptr, User, Return_mailbox, Exception_ptr)

Command Parameters

Op_code 5
Response Set by the NMF after executing the command. Values are as
follows:
1 — OK response
2 ~ no response from the remote node
4 - received packet has wrong packet length field,
indicating a breach of the IEEE 802 data link
specifications by the remote node
A — command not configured
C — illegal request

FFFE - command not configured

Datalink_addr_ptr Pointer to a buffer containing the data link address of the
target node.

Filled_length Size, in bytes, of the memory area filled in by the NMF. This
field is set by the NMF after executing the command.

Network Management Facility iNA 960

Buffer_ptr Pointer to a buffer in memory where the NMF is to store the
requested memory image.

Buffer_length Length, in bytes, of the buffer selected by Buffer_ptr.

Start_addr Pointer containing the starting address in the memory of the

target node of the memory image that is requested.

iNA 960 Network Management Facility

6.4.5 Echo

Echo service is used to determine if a given node is present on the network, to test
the communication path to the remote node, and to ascertain the viability and
functionality of the remote station.

To use the command, the user specifies the address of the remote node along with a
count value. The NMF then transmits a packet containing the echo command with a
block of random data. The size of this block is that specified by the count value. The
local NMF then waits for the remote node to return the response packet. If the remote
node does not respond, the NMF tries an additional two times before assuming that
the remote node is not responding.

Upon receipt of the response packet, the local NMF determines whether the returned

block of data is the same as the transmitted block. Thus, the echo command tests
both the existence of the remote node on the network and the viability of the node.

Request Block Interface

DECLARE Rb_echo STRUCTURE (

Rb_header (6) WORD,
Layer BYTE,
Opcode BYTE,
Response WORD,

Datalink_addr_ptr POINTER,
Transmit_data_count WORD,
Received_data_count WORD)

Procedure Interface

CA$NMLSECHO (Transmit _data_count, Datalink_addr_ptr, User,
Return_mailbox, Exception_ptr)

Command Parameters

Op_code 6
Response Set by the NMF after executing the command. Values are as
follows:
1 — OK response
2 — no response from the remote node
6 — transmitted data and received data do not match
A — command not configured
C — illegal request

FFFE — command not configured

Datalink_addr_ptr Pointer to*a buffer containing the data link address of the
target node.

Transmit_data_count Number of bytes to be transmitted in the echo command
packet.

Received_data_count Number of bytes present in the echo response packet.

6-15

Network Management Facility

6.4.6 Supply/Takeback_buffer

When a packet is received with the DLSAP of the NMF (the DLSAP of the NMF
is 8), the command field is first examined to determine if the NMF recognizes the
command. If it does, the NMF executes the command. If not, the packet is forwarded
to the user for dispensation. In this way, the user may add NMF commands to those
that already exist.

This procedure can be employed by users who wish to write their own boot server
modules. Here, the vendor-supplied boot server is not configured into the system.
Then, the NMF no longer recognizes the boot request and boot data request
commands. These are instead forwarded to the user to process. The user can then
generate the appropriate response packet, using the services of the iNA 960 data link
layer.

When processing a packet that contains an NMF command to be forwarded, the
NMF needs a buffer to store the packet. This is supplied to the NMF by the user via
the Supply_buffer command. If a packet is received with no buffer available, the
packet is dropped. If the size of the buffer is smaller than the length of the received
packet, only the initial part of the packet is copied into the buffer.

Buffers given to the NMF to store incoming packets remain with the NMF until a
packet with an unrecognized command field is received. Thus, unlike other commands,
there is no time limit for the Supply_buffer request block to be returned to the user.

Occasionally, the user needs all outstanding buffers to be returned. This is accom-
plished by issuing the Takeback_buffer command. Upon receipt of this command, all
Supply_buffer request blocks are returned to the user (with a response code of 3, OK
takeback response) followed by the Takeback_buffer request block.

Supply_buffer RB Interface

DECLARE Rb_supply_buffer STRUCTURE (

iNA 960

Rb_header (6) WORD,
Layer BYTE,
Opcode BYTE,
Response WORD,
Filled_length WORD,
Buffer_ptr POINTER,
Buffer_length WORD)

Takeback_buffer RB Interface

DECLARE Rb_takeback_buff

er STRUCTURE (

Rb_header (6) WORD,
Layer BYTE,
Opcode BYTE,
Response WORD)

Procedure Interface

CA$NMLS$SUPPLY$BUF (Buffer_ptr,

Return_mailbox, Exception_ptr)

CA$SNMLSTAKEBACKS$BUFFER (

User, Return_mailbox,

Buffer_length,

User,

Exception_ptr)

iNA 960 Network Management Facility

Command Parameters

Op code One of the following:

8 — Supply_buffer
9 — Takeback_buffer

Response Set by the NMF after executing the command. The values
are as follows:

SUPPLY_BUFFER

1 — OK response; buffer contains a packet

3 - OK response; buffer is returned in response to a takeback
command

4 — received packet has wrong packet length field, indicating
a breach of the IEEE 802 data link specifications by the
remote node

C - illegal request

E — buffer too small; buffer must be at least 14 bytes

TAKEBACK_BUFFER

1 — OK response
C - illegal request

Filled_length Size, in bytes, of the memory area filled in by the NMF. This
field is set by the NMF after executing the command.

Buffer_ptr Pointer to the buffer in local memory offered by the
Supply_buffer command.
Buffer_length Length, in bytes, of the buffer selected by Buffer_ptr.

Network Management Facility

6-18

6.5 Down-Line Loading

The network management facility provides the means for downloading remote systems.
Usually, this feature is implemented to boot various stations. Individual stations
without mass storage can use it to boot themselves, or a station can force other remote
stations to boot or reboot. In particular, the down-line loading facility can be used to
boot a set of nodes with the same version of software. Implementations of this facility
are not restricted to booting operations, however. Down-line loading can also be used
to load a database from (or to) a remote node.

A down-line loading operation requires the cooperation of two stations. The node that
is to be loaded is called the target station. The node that supplies the required data
is called the executor station. At the time of a down-line load request, the target
station may be in a state that can use only minimal data link facilities. For example,
it may be the COMM system itself that is to be loaded. For this reason, the two
stations communicate by a primitive protocol that uses only the raw data link
facilities.

The process that runs on the target station is called the boot consumer, and the process
running on the executor station is termed the boot server. Because the two processes
together provide a service that is general enough to be used for purposes other that
booting, this terminology can be misleading.

Down-line loading is conducted in the following way. The boot consumer transmits
requests to the boot server and then waits for the boot server to respond. The response
typically consists of some data and some control information. The control informa-
tion informs the boot consumer how to interpret the data and whether more data is
to follow. A typical boot sequence would consist of the boot consumer issuing a request
for the first block of data; receiving a packet from the boot server; processing the
packet; and then issuing a request for the next block of data. This sequence of events
continues until the loading operation is complete.

In addition to a remote node initiating its own down-line load, a third node may force
the remote node to request down-line loading service. This is accomplished by the
Forced_load command.

6.5.1 Class Codes

Any request for a down-line load is accompanied by a class code for the request.
Each class code determines the sequence of operations to be performed by the execu-
tor station. Each operation can be either of the following:

e A given named file is transmitted to the target station.

e A user-written subroutine is executed by the executor station.

Those files that are transmitted in response to a down-line load request must
reside on the same device at the executor node. This device is specified by the
Dev_info_block macro in the NMF configuration file. In addition, any modules
transmitted have the following boot module format:

DECLARE Boot_module STRUCTURE (

Command BYTE;
Load _addr DWORD;
Length WORD;
Execution_addr DWORD;
Memory image (*) BYTE)

iNA 960

iNA 960

where

Command

Load_addr
Length
Execution_addr

Memory_image

Network Management Facility

indicates if the module is to be executed and if there are more
modules to be loaded. Only the two low-order bits are
meaningful and have the following values:

bit 0 = 1 another module is to be loaded (i.e., the current
module is not the last one).
bit 1 = 1 the execution address is to be called.

bits 2 — 7 must be set to 0.

specifies the first address where the data is to be placed.
specifies the length of the memory image data.

specifies the execution address of the loaded memory image.

is the memory image to be transferred. This can be between
0 and 2'*—1 bytes long.

To include one or more subroutines in a down-line load request, a pointer for each
subroutine is included in the class code definition. Each pointer indicates a location
in the memory of the executor station that contains the entry address of the selected

subroutine.

These routines can transmit any additional data to the requesting station. The decla-
ration of each routine is in the form:

User_boot_subroutine:
(Host_id_pointer,

DECLARE

Host_id_pointer

Class_code

Block_number

PROCEDURE

Class_code, Block_number) WORD;

POINTER, /+# Points to a buffer
containing the host id
of the remote node #/

WORD, /+ Class code of the remote
station «/

WARD, /+ Block number expected by
the remote station #/

End User_boot_subroutine;

The WORD returned by the procedure specifies the block number expected by the
remote node upon return from the procedure.

In addition to being in the above format, each user-provided subroutine must follow

these conventions:

e The routine must follow the LARGE PL/M-86 model of computation.

¢ The routine should not block for any reason. That is, it should not wait indefi-
nitely at a mailbox, semaphore, etc. This is because execution of the entire
communication system will not proceed until control returns from the subroutine.

¢ The stack size available is 20 bytes.

e The routine runs under the COMM job user id, that is, the same user id as the
boot server and the rest of the communication system.

¢ The routine must be loaded into memory by the user before the communication
system starts execution.

Network Management Facility

6-20

As an example, a class code might specify the following sequence of events:
1. Transmit file ’ABC’.

2. Call subroutine boot_A’.

3. Transmit file ’XYZ’.

The boot server sends the file ’ABC’ as a series of blocks with associated block
numbers, say, 0 — 5. The boot server then calls the user subroutine 'boot_A’. The
input parameter, Block_number, in this case is 6. If *boot_A’ does not send data to
the boot consumer, the value returned from the procedure is 6. On the other hand,
suppose 'boot_A’ sends three blocks (6, 7, and 8) of data. Here, the value returned
from the procedure is 9. Once the boot server has returned from procedure ’boot_A’,
the file *’XYZ’ is split into blocks and transmitted to the boot consumer. The details
of the protocol used between the boot consumer and the boot server are given in the
iINA 960 Architecture Reference Manual.

6.5.2 The Boot Table

Upon initialization, the boot server boots any node that requests its service. During
run time, the boot server can be reconfigured to service only a specified set of nodes.
The list of node addresses for this set of serviceable nodes forms a dynamic object
called the boot table. This is NMF object number 8004, and has the following struc-
ture:

DECLARE Boot__table STRUCTURE (
Num_nodes WORD,
Node_address (Num_nodes) STRUCTURE (
Address_byte (6) BYTE));

Here, Num_nodes specifies the number of addresses in the boot table, each address
being 6 bytes long. At initialization, the boot table has the following form:

(1, OFFH, OFFH, OFFH, OFFH, OFFH, O0FFH)

The sole address in the boot table is the broadcast address. In this case, the boot
server boots any node that requests its service.

The boot table can be changed any time after initialization by performing the follow-
ing steps:

1. Create the structure Boot_table in the format shown above. This contains a list
of the node addresses for the nodes to be included in the boot table. Only these
nodes will be recognized by the boot server.

2. Allocate a command buffer and a response buffer large enough to execute the
Set_object command on NMF /boot server object 8004.

3. Fill in the command buffer with the appropriate format, and include a copy of
Boot_table.

4. Execute the Set_object command on object 8004 using the command buffer.

S. If the command was successful, check the response buffer to confirm that the
boot table was set.

The NMF does not check the contents of Boot_table. Thus, if
Boot_table.Num_nodes = 6

then there must be 6 addresses in the boot table, and the size of Boot_table must be
38 bytes.

iNA 960

iNA 960 Network Management Facility

6.6 Configuring the Boot Server and the NMF

Configuration of the COMM system is detailed in Chapters 7 and 8. As part of the
configuration process, the user creates a network management facility configuration
file, NMFCFG.A86. This file consists of calls to several configuration macros via
user-supplied parameters. NMFCFG.AR86 is then assembled and linked to the COMM
system.

The NMF configuration macros and their associated parameters are described in this
section. Most of these macros are used to configure the boot server supplied with the
system. If this boot server is not used, the boot server configuration macros are not
included in the NMF configuration file.

6.6.1 Boot_server_multicast_address
This macro takes the following form:

%Boot_server_multicast_address (Multicast_address)

where

Multicast_address is the multicast address of the boot server.

Remote nodes requesting the services of the boot server issue packets containing a
boot request and the multicast address of the boot server. This address is also used
by a local boot consumer to locate a remote boot server.

6.6.2 Max_nodes

The boot server is initialized to boot any node that requests its services. Here, the
boot table has the following value:

(1, OFFH, OFFH, O0FFH, OFFH, O0FFH)

During run time, the boot table (NMF/boot server object 8004) may be changed
using the Set_object command. This restricts the boot server to recognizing boot
requests from nodes specified in the boot table. The Max_nodes macro allocates space
to hold the boot table by specifying the maximum number of node addresses that can
appear in the boot table at one time.

This macro takes the following form:
ZMax_nodes (Max_value)

where

Max_value is the maximum number of addresses in the boot table. The
space reserved for this table is:
(6 X Max_value) WORDS

Max_value must be greater than or equal to 1.

6-21

Network Management Facility iNA 960

6.6.3 Max_simultaneous_boots

Max_simultaneous_boots sets the upper bound for the number of boot consumers
serviced at a single time by the boot server. This value should be as small as necessary
to conserve resources.

This macro has the following form:
*Max_simultaneous_boots (Max_value)

where

Max_value is the maximum number of nodes that the boot server can
boot at any one time.

If the boot server is booting Max_value nodes and a new node requests service, the
request is ignored.

6.6.4 Class_code_info

This macro has the following form:

#Class_code_info (File_name, File_size)

where
File_name is the pathname of a file containing the definitions of the class
codes recognized by the boot server.
File_size is the maximum size of File_name.

The file specified in the Class_code_info macro is read by the boot server during
initialization. This specifies the set of class codes the boot server recognizes and the
associated list of files that are transmitted to the requesting station. The boot server
only reads this file when it initializes. It does not modify this file in any way or read
it at any other time. The user can, however, modify this file and then reboot the
system if the file is changed.

It is the user’s responsibility to ensure that the actual size of File_name does not
exceed the parameter File_size. In addition, it is important that the file specified in
Class_code_info is in the format indicated by the following PL /M-style structure:

DECLARE Cc_info STRUCTURE (

Num_class_codes BYTE,

Class_code_spec (Num_class_codes) STRUCTURE (
Class_code WORD,
Num_entries BYTE,
Entry (Num_entries) STRING));

Here, a STRING is a sequence of bytes, with the first byte specifying the number of
bytes in the string. For example, the file iNA 960 would be represented as follows:

7, "iNA 9607

If the first byte is 0, it would normally indicate a null string. In this case, however,
the entry is interpreted as a pointer, and the next 4 bytes are used as the value of the
pointer.

6-22

iNA 960

Network Management Facility

When the boot server receives a boot request with a given class code, it runs through
the list of entries for that class code in the order that they appear in the above file.
For each entry that is a filename, the boot server transmits the specified file to the
requesting station. When the entry is a pointer, the boot server uses the pointer as an
entry to a subroutine and calls that subroutine.

The class code information file (CC.INFO in the configuration file), must be in the
format shown above. The following is an example of this file, described as a PL /M-
style data type.

Class_code_info (s) DATA (
poo2, /+ The boot server recognizes 2 class codes.

1234H, /+ The first class code is ‘1234H’.

3, /+ The boot server performs the following 3 steps
12, ’'/user/inad60’, /+ 1. Transmits the file ‘/user/ina8é6
0, 2, 2F40, /+ 2. Calls a subroutine at location

16, ‘/user/ina960.pat’,/+ 3. Transmits the file ‘/user/ina9é6

4321H, /+ The second class code is ‘4321H’.
1, /+ The boot server performs the following step
12, '/user/ina960’) /+ 1, Transmits the file ‘/user/ina96

Note that this file is not an ASCII file. For instance, the first entry in the file is a
word with the value 2. The hex representation of the first two bytes in the file is
02,00. The order is reversed because in a word field, the least significant byte gets
placed before the most significant byte. The only ASCII entries in the file are the
filenames, enclosed in apostrophes. (The apostrophes in the above example should
not be included in the file. They are present to increase readability.)

6.6.5 Device_info_block

The Device_info_block macro specifies the physical device that contains all the files
used by the boot server. When this macro is called, the boot server physically attaches
the named device. This macro has the following form:

%Device_info_block (Logical_name, Device_name, File_driver)

where
Logical_name is the name for the connection that appears in the directory
of the ROOT job.
Device_name is the device unit that is used by the boot server.
File_driver is NAMED. This is the only type of file the boot server

expects to find.

It is imperative that the class code definition file and all other files used by the boot
server reside on the device specified in this macro. In addition, if a call to this macro
is included in the NMF configuration, the associated call to the same macro should
be removed from the configuration of the extended I/0O system (EIOS), if used.

01
2F40:2
0.pat’

0,

+/

+/
+/
%/
s/
+/

s/
%/
v/

6-23

Network Management Facility iNA 960

6.6.6 Nmf_cnfg

This macro sets the configuration state of the network management facility. This
can be used to restrict the services provided by the NMF. Commands such as
Read_and_clear_object, Set_object, and Set_memory can be catastrophic if provided
to normal users. By configuring only those services required by each user, system
security is maintained and considerable memory is saved.

The format for this macro is the following:

“Nmf_cnfg (Cnfg_state, Rem_access)

where
Cnfg_state can be any of the following:

0 - users cannot give commands to the NMF. The NMF
only processes packets with the NMF DSAP Id.

1 — in addition to the services provided by ’0’, NMF can
operate on local objects, read/set memory of the local
node, and perform the commands Echo, Dump, and
Forced_load.

2 - in addition to the services provided by ’1’, the user can
read objects and memory of remote stations.

3 - in addition to the services provided by ’2’, the user can
modify objects and memory of remote stations.

Rem_access can be either of the following:

0 - Remote stations do not have access to this station.

1 — Remote stations do have access to this station. In this
case, Cnfg_state must be greater than 0.

The macro call NMF_cnfg (0, 1) is not allowed.

Whenever a user issues a boot server request that is not configured into the system,
the response code returned by the NMF is 0AH or OFFFE — Exception, command
not configured.

6.6.7 Sample Configuration

The file NMFCFG.A86 should contain the macro calls to configure the network
management facility. If the boot server is to be left out or is written by the user, then
the following macro calls must not be made:

* Max_nodes
* Max_simultaneous_boots
e Class_code_info

e Device_info_block

6-24

iNA 960

Network Management Facility

The following example of an NMF configuration file, NMFCFG.A86, configures the
boot server as well as the NMF.

NAME NMF_CNFG_MACROS
$ INCLUDE (:SD:COMM/CONFIG/NMFCFG.MAC)

4Boot_server_multicast_address
(01, OAAH, 0, OFFH, OFFH, OFFH)
2’ The multicast address of the boot server.

*Max_nodes (20)
2’ The maximum number of nodes in the boot
2’ table (if used).

AMax_simultaneous_boots (10)
2’ The maximum number of nodes that can be booted
X’ at one time.

*Class_code_info (/USER/CC.INFO, 200H)
%’ The class code information file is called
%’ J/USER/CC.INFO.
%’ JUSER/CC.INFO is at most 200H bytes.

#Device_info_block (WDO, IWO, NAMED)
%’ The physical device IW0 is connected and
%’ the file connection is cataloged as WDO in the
%’ ROOT job directory. All files used by the boot
4’ server are on this device.

ANmf_cnfg (4, 1)
¥’ The full capability of the NMF is configured

¥’ into the system.
END

The NMF can be left out of the COMM system by omitting the files NMFCFG.OBJ
and NMF.LNK during the linking process.

6-25

CHAPTER 7
ROM-BASED NMF

7.1 Overview

A primitive NMF can be burned into ROM for system start-up and reset. This ROM-
based NMF or NMF ROM is primarily used for downloading. Since at system
initialization the communication system is not present, the functions of the NMF
that use the transport layer are not ROM-based. The NMF functions that use the
service of only the data link layer are ROM-based.

NMF ROM consists primarily of the boot consumer, which, in conjunction with the
boot server, can download the operating system. Nodes are expected to have NMF
ROM burnt into ROM’s. After a hardware reset, the NMF ROM begins execution.
It invokes the boot consumer which, in turn, downloads the operating system into
local memory. After the operating system is loaded, NMF ROM is not used again.
The similarity between NMF ROM and a bootstrap loader is evident; the only differ-
ence is that the bootstrap loader downloads the system from the local mass storage
controller, whereas NMF ROM downloads the system from the boot server.

The NMF ROM-based functions fall into two categories:

e Remote invocations — Upon receipt of a packet, the ROM-based NMF only
responds if the packet has the NMF DLSAP. Furthermore, only the following
commands are recognized: Echo, Forced_load, Dump.

* Local invocations — The only user-initiated function recognized by the ROM-
based NMF is the down-line loading facility. This facility uses a simple proctocol
in conjunction with the boot server to receive data and store it in the appropriate
memory locations. The ROM-based NMF can be configured to initiate a boot at
system reset.

The ROM-based NMF consists of two files, ROMA.OBJ and ROMB.OBJ. In
addition, the user must include a User_code module that performs any functions
required to be placed in ROM. For example, power-on diagnostics would be placed
in the User_code module. To configure the ROM-based NMF, the NMF ROM object
code, the user code, and a configuration file (CNFG.OBJ) are linked and located and
the resulting file is burned into ROM.

7.2 Boot_consumer

In order to force the NMF ROM to attempt a remote boot, include a call to the
procedure Boot_consumer in the User_code module. Boot_consumer is a typed proce-
dure included in the ROM-based NMF. It takes a class code as an input parameter
and returns a status byte for the result of the operation. A call to this procedure
initiates an attempt to contact the boot server with a downline load request with the
given class code. The procedure returns a value of OK or NOTOK depending on
whether the boot server responded to the request.

ROM-Based NMF iNA 960

This procedure is defined below:

Boot_consumer: PROCEDURE (Class_code) EXTERNAL BYTE;

DECLARE Class_code WORD;
/+ Responses are TRUE - 0k response
FALSE - No reponse from boot server %/

END Boot_consumer;

7.3 User_code

User code such as power-on diagnostics can be included in the ROM-based NMF.
To do this, create a User_code module in the format shown below. If the communi-
cations CPU is an 80186, include code that initializes the chip-select lines.

User_code: DO
/+ For the 80186, initialize the chip-select lines »/
/+ User code goes here . %/

DISABLE;
CALL Init_controller;
/+This procedure initializes the communications
controller and enables interrupts. Now, the
NMF ROM responds to Echo, Dump, IEEE XID and

Test commands. %/
Status = Boot_consumer (Class_code);
/+ This section of code is reached only when the
remote boot is unsuccessful. +/

IF Status <> 0 THEN DO
/+ No response from boot server. Take corrective
action such as calling the boot server again. x/
END;

END User_code;

The file AUTBOT.P86 is included in the delivery diskette. The user should examine
this file and use it as the user code module if it meets his requirements.

AUTBOT.P86 is the file generated by the following source code:
Autoboot: DO;
Boot_consumer: PROCEDURE (Class_code) EXTERNAL BYTE;
DECLARE Class_code WORD;

END Bootit_consumer;

Init_controller: PROCEDURE EXTERNAL;
END Init_controller;

DECLARE Status WORD;

/+ 1f the processor is an 80186, then code to
initialize the chip-select lines goes here. s/

7-2

iNA 960

ROM-Based NMF

DISABLE;
CALL Init_controller;

DO WHILE COFFH);

Status = Boot_consumer (Class_code);

/+ If the boot process is successful, then progranm
control never reaches here; hence, the infinite
loop. %/

END;

END Autoboot;

7.4 Configuring the ROM-Based NMF

The file CNFG.OBYJ is linked with the rest of the ROM-based NMF to form a file
that is located and burned into ROM. CNFG.OBIJ is the object file generated from
the configuration file CNFG.A86, described in this section. CNFG.A86 contains the
macro calls used to configure the ROM-based NMF,

7.4.1 Boot_server_multicast_address

This macro sets the multicast address of the boot server. The NMF uses this address
to locate the boot server. This macro has the following form:

YBoot_server_multicast_address (Multicast_address)

where

Multicast_address is the multicast address of the boot server.

7.4.2 Data_link_type

This macro specifies the type of the data link layer. Such a macro is needed for future
releases that support different data link types. Currently, the only valid value is
IEEE802. This macro takes the following form:

*Data_link_type (Dl_type)

where

Dl_type is IEEE802.

7.4.3 Host_id

The Host_id macro sets up the host id of the Ethernet controller. There are two
possibilities:

¢ The 550a Ethernet controller cannot have its host id changed. In this case, the
macro must still be invoked; however, a host id of 0 should be used.

« The 82586 Ethernet controller can have its host id changed using this macro. If
the default host id of the 186/51 is desired, the host id should be set to a broad-
cast address.

7-3

ROM-Based NMF

The Host_id macro has the following form:
%*Host_id (H_id)

where
H_id is the host id.

7.4.4 Board_type

This macro specifies the type of programmable interrupt controller (PIC) used. iNA
currently supports two PICs: the 8259a and the PIC in the 80130. This macro speci-
fies the master PIC in the system. This macro has the following form:

The macro has the following form:

“Board _type (Type, Wake_up_port, Reserved,
Scp_offset, Scp_base)

where
Type is one of the following:

186/51 — for the iSBC 186/51.
550A — for the iSBC 550A.

Wake_up_port is 0 for the iISBC 186/51. Otherwise, it is the wake-up port
of the iSBC 550A.

Reserved must be set to 0.

Scp_offset is 0 for the iISBC 186/51. Otherwise, it is the offset value of
the SCP address of the iSBC 550A.

Scp_base is 0 for the iSBC 186/51. Otherwise, it is the base value of

the SCP address of the iSBC 550A.

7.4.5 Master_PIC

This macro specifies the type of programmable interrupt controller (PIC) used. iNA
currently supports two PICs: the 8259a and the PIC in the 80130. This macro speci-
fies the master PIC in the system. This macro has the following form:

“Master_PIC (Type, Base_port, Increment, Buffered)

where

Type is the type of programmable interrupt controller, 80130 or
8259a.

Base_port is the port address of the PIC.

Increment is a value used to specify the other ports of the PIC. These
ports will be at I/O addresses having the following form:

Base_port + (i * Increment)

where 1 is a non-negative integer. Increment will usually have
the value 1 or 2.

Buffered has the following values:

Y - if the PIC supports vectored (cascaded) interrupts.
N - if the PIC does not support vectored interrupts.

iNA 960

iNA 960

ROM-Based NMF

7.4.6 Data_link_interrupt

This macro is used to configure the type of data link interrupts used in the system.
Although the form of the macro includes the specifications for either a master or a
slave interrupt, the interrupt must be configured as a master. The macro has the
following form:

*Data_link_interrupt (Int_type, Int_value, Int_level)

where
Int_type specifies the way the data link controller interrupts the CPU:
0 - level mode interrupts
1 — memory-mapped interrupts
2 — I/O-mapped interrupts
This value must be 0 if the 186/51 is used.
Int_value depends on the value of Int_type, as follows:
Int_type = O — Int_value must be 0.
Int_type = 1 — Int_value is the upper 16 bits of the memory
address for the interrupt. The lower 4 bits are
taken to be 0.
Int_type = 2 — Int_value is the port address.
Int_level specifies the interrupt level according to the following code:
bits 15-7 are 0.
bits 6-4 specify the master level (0-7) of the
interrupt.
bit 3 has the following values:

0 — The interrupt has a slave level, bits 6—4
specify the master level, and bits 2-0
specify the slave level.

1 — The interrupt has a master level, and bits
6-4 specify the entire level number.

bits 2-0 specify the slave level of the interrupt if bit
3is 0.

7.4.7 System_configuration_pointer

This is the only optional configuration macro. It is used only with the iSBC 186/51.
This macro specifies the size of the system data bus and the location of the interme-
diate system configuration pointer (ISCP) of the 82586 controller. The format for
this macro is as follows:

*System_configuration_pointer (Sys_bus, Iscp_low, lscp_high)

where
Sys_bus is one of the following:
0 — 8-bit system data bus
1 — 16-bit system data bus
Iscp_low specifies the lower 16 bits of the ISCP.
Iscp_high specifies the higher 8 bits of the ISCP.

7-5

ROM-Based NMF

7-6

7.4.8 Sample Configuration

The ROM-based NMF configuration file, CNFG.A86, contains macro calls that
configure the NMF, data link, and board parameters. Following is an example of this
configuration file:

NAME NMF_ROM_CNFG

$INCLUDE (:Fn:CNFG.A8B6)

*Master_PIC (80130, 0EOH, 2, Y)

#Boot_server_multicast_address
(1, OAAH, 0, OFFH, OFFH, O0FFH)

4Host_id (0FFH, OFFH, OFFH, OFFH, OFFH, O0FFH)

“Data_link_type (IEEE8B802)
“Board_type (ISBC 186/51, 0, 0, 0, 0)
“Data_link_interrupt (0, 0, 38H)

END

7.5 Linking and Locating the ROM-Based NMF

To prepare the ROM-based NMF for burning into EPROM’s, follow this procedure:

1. Copy the diskette containing the ROM-based NMF into the directory NMFROM
on the iRMX 86 system Winchester.

2. Write the user code.

3. If you use the file AUTBOT.P86 and have the iSBC 186/51, include the code to
initialize the 80186 chip select lines in the file AUTBOT.P86.

4. Compile the user code with the PL/M-86 compiler controls COMPACT, ROM,
and OPTIMIZE(3).

5. Modify and assemble the configuration file CNFG.A86.

The submit file ROM.CSD, which links and locates the ROM-based NMF, may
need modification. If user code is included, the user code object file should replace
AUTBOT.OBJ in the linker invocation. In addition, the BOOTSTRAP control
may be included in the locator invocation.

7. Link and locate the ROM-based NMF by typing the following:

SUBMIT NMFROM/ROM.CSD (Location_of_data,
Location_of_code)

where
Location_of_data is the address where the data is to be located.
Location_of_code is the address where the code is to be located.
The LINK86 warning message “Group Enlarged” is acceptable. LOC86 warning
messages 38 and 65 are also acceptable.
8. Burn the file ROM into the EPROMs,

iNA 960

CHAPTER 8
iRMX™ 86 SYSTEM GENERATION

8.1 Overview

To run on the iRMX 86 operating system, iNA 960 requires an environment that
includes the iRMX 86 nucleus, an 8086 or 80186 CPU, an 82586-like Ethernet
controller, and a dedicated timer. For example, iNA 960 can be configured to run on
an iSBC 186/51 or an iSBC 86/330 with a 550FW conversion kit as the data link
controller. In this configuration, the iNA 960 communications software runs as a
first-level job on the iIRMX 86 nucleus.

The iNA 960 software must be configured according to the underlying hardware.
For an iSBC 186/51 environment, iNA 960 has a set of default configuration files
that can be used directly. However, for the iSBC 86/330 with the 550 firmware kit,
and for any other hardware setups, the configuration files must be modified.

In addition to configuring iNA 960 for the hardware, the data link layer, the trans-
port layer, and network management must be configured. This procedure includes
provisions for selecting several optional functions. These optional functions are the
user data link, the transport normal virtual circuit services, the transport expedited
services, the transport datagram services, the network management functions, and
the bootstrap loader-server.

This chapter describes the procedure for configuring the hardware and software. After
configuring iNA 960, the COMM job can be used in the same manner as other first-
level user’s jobs. (See the iRMX 86 Configuration Guide for a description of the
configuration steps).

The end of the chapter contains a section describing the procedure for initializing the
1APX 186 microprocessor in iRMX 86 compatible mode.

8.1.1 iNA 960 System Generation Procedure

The iNA 960 software is configured and the communication system is generated by
the following steps:

1. Prepare the hardware environment.
2. Load the iNA 960 software modules onto the development system.
3. Configure iNA 960 by modifying the following configuration files:

RMXCFG.A86 Configures the iNA 960 base system.
BUFCFG.A86 Configures the iNA 960 buffer usage. .
DLCFG.A86 Configures the data link layer.
NMLCFG.A86 Configures network management functions.
TLCFG.A86 Configures the transport control layer.

4. Select those optional functions required by the system. The optional functions
are the user data link interface, the transport datagram services, the transport
normal virtual circuit services, the transport expedited services, the network
management functions, and the bootstrap loader-server.

5. Link the configuration files with COMM.LNK and any other necessary
iRMX 86 library files. Locate the resulting COMM job.

6. Use ICU to configure the COMM job as one of the first-level user jobs.

8-1

iRMX™ 86 System Generation

8-2

8.1.2 Preparing the Hardware

The iNA 960 software modules include default configuration files. These files
configure the software for an iSBC 186/51 hardware environment. In addition, the
interrupts are assumed to be configured as follows:

iAPX 186 Timer 1 OUT -«— 80130 IR4 Input (E78-E43)
82586 INT ~<«— 80130 IR0 Input (E39-E47)

For an 86/330 with 550FW environment or for any other hardware configuration,
the configuration files need certain modifications. These changes are described in the
following sections.

8.1.3 Transferring the iNA 960 Files

On an iRMX 86-based development system such as the 86/330, the iNA 960 software
should be transferred to the development system Winchester disk. To do this, insert
the iNA 960 Object - COMM diskette into disk drive O and type the following:

SUBMIT :FDO0:CSD/INSTALL.CSD (:logical_device:)

where

logical_device is the logical device name of the destination file system. It is
best to use the system drive :SD: for the logical device name.

The submit file then creates the directory :logical_device:COMM and copies the
iNA 960 Communication system directories and files to the COMM directory. If a
directory named COMM already exists on the destination file system, either rename
it or change the name of the target directory in the submit file.

WARNINGI

The default configuration and submit files described in this chapter assume
that the iNA 960 Communication system resides in :SD:COMM. If the
system is installed on a different directory or if you are an ISIS user, the
configuration and submit files must be changed to reflect the actual locations
of the files they reference. For the configuration files this means the
INCLUDE statements must be changed. For submit files, the pathname of
each file in the link list must be changed.

8.2 Configuration

Configuring the iNA 960 software consists of configuring the base hardware and the
buffer usage, and also configuring the operating parameters of the data link layer,
transport layer, and the NMF. Default configuration files are included; they may be
used directly or may be edited to reflect the desired configuration. Also included is a
submit file that assembles, links, and locates the communication system.

8.2.1 Configuring the Base System

For internal timing, the iNA 960 software requires a hardware timer such as the
iAPX 186 on-chip timer, an 8253, or something compatible. The default configura-
tion file RMXCFG.A86 configures the system for the iAPX 186 on-chip timer. If

iNA 960

iNA 960

iRMX™ 86 System Generation

the 8253 is used or if timer parameters other than the default are needed, a different
hardware timer configuration file must be created. This file consists of a single call
of the following macro:

ACOMM_TIMER (Type, Base_port, Timer, Level, Rate)

where
Type is the type of hardware timer used: 8253 or 80186.
Base_port is the port address of the programmable interrupt timer. This
address depends on the timer, as follows:
80186 — The 80186 control block base address (0OFFOOH
on reset).
8253 — The port address of timer 0.
Timer is the timer number (0-2) of the timer used by iNA 960.
Level is an encoded value for the interrupt level of the interrupt
controller to which the timer is connected. This value takes
the following form:
x8H - For master interrupt levels MO-M7 (where x can
be from O to 7).
yzH — For slave interrupt levels 00-77 (where y and z
can be from 0 to 7)
Rate is the frequency in KHz of the input clock to the selected
timer. This value must be between 10 and 2500 (10 KHz-2.5
MHz).

For the iSBC 186/51 user the default configuration file RMXCFG.A86 provides
proper timer configuration. This file has the following form:

NAME CONF.A86

$INCLUDE (:SD:COMM/CONFIG/RMXCFG.MAC)
XCOMM_TIMER(80186, OFFOOH, 1, 48H, 1500)
END

Here RMXCFG.MAC contains the definitions of the macros used for configuring
the system.

8.2.2 Configuring the Buffer Usage

The iNA 960 software allows the user to select the number of buffers used by the
internal transmitter and receiver. Thus, the software can be configured to make
optimum use of memory. The following entities are available for configuration:

RXBD receiver buffer descriptor — Each RXBD takes a 142-byte
block of memory, including 128 bytes for the buffer.

TXBD transmitter buffer descriptor — Each TXBD takes a 1520 byte
block of memory, including 1500 bytes for the buffer.

RPD receive packet descriptor — Each receive packet, regardless of
length, uses one RPD. Each RPD takes a 36-byte block of
memory.

ICB internal command block — The ICBs are resources internal

to iNA 960. They are used for passing requests internal to
the iNA 960 software. Each ICB takes 36 bytes of memory.

iRMX™ 86 System Generation

84

The following macro is used to allocate memory for the above entities:
%COMM_BUFF (N_rxbd, N_txbd, N_rpd, N_icb)

where

N_rxbd is the number of RXBDs. The minimum number of RXBDs
required for receiving a full length IEEE 802 packet is 12.
However, the more RXBDs specified, the more back-to-back
receiving can be achieved (providing enough RPDs are
specified).

N_txbd is the number of TXBDs. Each TXBD can send a full length
IEEE 802 packet. Setting N_txbd to 2 provides full transmit
throughput. A larger value does not increase the transmit
throughput.

N_rpd is the number of RPDs. N_rpd, together with N_rxbd, deter-
mines the number of back-to-back receiving of packets.

N_icb is the number of ICBs. For the current release of the
iNA 960 software, this number must equal N_txbd.

For iSBC 186/51 users the default configuration file BUFCFG.A86 provides adequate
initialization of the buffers. This file has the following form:

NAME BUFFCONF

$INCLUDE (:SD:COMM/CONFIG/BUFCFG.MAC)
*COMM_BUFF (144, 2, 20, 2)

END

Here, BUFCFG.MACcontainsthemacrodefinitionof COMM_BUFF.COMM_BUFF
is the buffer configuration macro described above.

The allocation of the number of internal receive buffers via the RXBD and RPD
parameters has a major impact on transport layer data throughput performance. The
critical dependency is the number of 1500-byte transport packets (TPDUs) that can
be buffered at one time without running out of internal receiver buffer resources.

For example, for the default 186/51 configuration (144 128-byte BDs and 20 RPDs),
a maximum of twelve 1500-byte TPDUs can be buffered at one time. For optimum
performance, the number of TPDUs specified here determines the proper maximum
window size parameters that must be used when configuring the transport layer.

8.2.3 Configuring the Data Link Layer

The data link software must be configured for the particular hardware environment.
For instance, all of the following are specified during data link configuration:

¢ Number of data links

¢ Protocol, controller class, and controller subclass

* Interrupt parameters

¢ Addressing information

e Channel transmission rate

¢ Maximum number of multicast addresses

» The configuration array used to initialize the 82586

iNA 960

iNA 960

iRMX™ 86 System Generation

Note that some operating parameters are fixed, such as number of data links, proto-
col, and controller class. These parameters are included for future expansion.

The default configuration file DLCFG.A86 has the following form:

NAME DLCFG

$INCLUDE (:SD:COMM/CONFIG/DLCFG.MAC)

ADl_ctrl (1)

#D1_int CO8H)

*Dl_signal (2, 0C8H)

*¥Dl_scp_addr (6H, O0FFFFH)

#Dl_iscp_addr (0, OFFH)

%#Dl_host_id (6, OFOH, OF2H, OF4H, OFG6H, O0F8H, O0FAH)
ADl_internal

END

See Chapter 3 for a description of the data link definition macros and their associated
parameters.

8.2.4 Configuring the Transport Control Layer

The transport control layer has a large number of configuration parameters that
customize the transport layer to a particular implementation. These parameters can
be split into the following parameter groups:

e Transport address limits

e Network layer interface parameters

e Transport data base parameters

e Client request default parameters

e Internal negotiation default parameters
¢ Retransmission timer parameters

¢ Flow control parameters

Chapter 5 contains descriptions of all of these parameter groups and shows the format
for the transport control layer configuration file. Following is the default transport
configuration file, TLCFG.A86:

NAME TLCFG

$INCLUDE (:SD:COMM/CONFIG/TLCFG.MAC)
¥Transport_address_limits (12, 2, 2)
iNetwork_layer_interface (1)
2Connection_limits (21, 2)
*Datagram_structures (9, 0, 0)
“Internal_request_blocks (5, 2, -3, 2)
#Client_request _defaults (1, 1800H, 8242H)
#Internal_negot_options (0BH, 3, 7)
*Retran_timer 10000, 1000)
“Closing_abort (80H)

Alnactivity timer (300000, 8)
tWindow_size C(OFH, OFH, 1)
%0pen_window_timer (10000, 8)

END

iRMX™ 86 System Generation

86

8.2.5 Configuring the Network Management Facility

The user has many options when configuring network management. In particular,
configuration may include a boot server that can down-load remote systems.
Chapter 6 describes the macros, parameters, and options available to the user when
creating the network management configuration file.

The completed network management configuration file resembles the following default
configuration file, NMLCFG.A86:

NAME NML_CNFG_MACROS
$INCLUDE (:SD:COMM/CONFIG/NMLCFG.MAC)
*¥BOOT_SERVER_MULTICAST_ADDRESS
(1, O0AAH, 0, OFFH, O0FFH, O0FFH)
ANML_CNFG (3, 1)
i MAX_NODES (109
; MAX_SIMULTANEOUS_BOOTS (10)
; CLASS_CODE_INFO (:SD:COMM/CONFIG/CC_INFO, 200)
; DEV_INFO_BLOCK (WDO, IWO, NAMED)
END

Note that in this default NMF configuration, the boot server is not selected.

8.3 Selecting Optional Functions

Before linking and locating the configuration files, the optional functions to be included
in the COMM system must be selected. Table 8-1 lists the files that provide these
options.

The default submit file COMM.CSD (see next section) includes TL.LNK and
TLVC.LNK. To include any other configuration files, edit COMM.CSD to add the
desired files to the link list.

8.3.1 Data Link Options

At link time, the COMM job can be configured to include user data link services. To
do this, include the file LNK/EDL.LNK in the COMM.CSD submit file link list.

Table 8-1. Optional Modules

Filename Code Size Option

LNK/EDL.LNK 4K User data link interface.

LNK/TL.LNK 3.3K Transport layer core.

LNK/TLDG.LNK 2.9K Transport datagram functions.

LNK/TLVC.LNK 15.4K Transport normal virtual circuit service.

LNK/TLEX.LNK 1.9K Transport virtual circuit expedited services.

LNK/BTSRV.LNK 4.7K Bootstrap loader server.

LNK/NMF.LNK 6K Network management functions. Subsets of the
NMF can be configured.

iNA 960

iNA 960 iRMX™ 86 System Generation

NOTE

Always include the data link configuration file, DLCFG.OBJ, in the
COMM.CSD submit file whether or not the user data link is required.

8.3.2 Transport Layer Options

At link time, the COMM job can be configured using several options for the trans-
port layer. To configure the transport options, select from the following modules:

LNK/TL.LNK - Transport layer core

LNK/TLVC.LNK — Transport normal virtual circuit services
LNK/TLEX.LNK — Transport virtual circuit expedited services
LNK/TLDG.LNK — Transport datagram services

CONFIG/TLCFG.OBJ - Transport configuration file

The user has the following options:

1. No transport layer services are configured into the COMM job. For example,
the COMM job may support only external data link services. In this configura-
tion, do not link in any of the above modules.

2. Only the normal virtual circuit transport service is configured into the COMM
job. This is the default system provided with the delivery diskette. In this config-
uration, link in the modules TL.LNK, TLVC.LNK, and TLCFG.OBJ.

3. Both the normal and expedited virtual circuit services are configured into the
COMM job. For this configuration, link in the modules TL.LNK, TLVC.LNK,
TLEX.LNK, and TLCFG.OBJ.

4. Only the transport datagram services, without any virtual circuit services, are
configured into the COMM job. In this configuration, link in the modules
TL.LNK, TLDG.LNK, and TLCFG.OBJ.

5. All transport services, including normal, expedited, and datagram services, are
configured into the COMM job. For this configuration, link in all of the above
transport modules.

8.3.3 NMF Options

The COMM job can be configured to include a subset of the network management
services and to include the boot server functions. Following are the NMF modules:

LNK/NMF.LNK — NMF services
LNK/BTSRV.LNK — Boot server services
CONFIG/NMFCFG.OBJ - NMF configuration file

The user has the following options:

1. No NMF services are configured into the COMM job. In this configuration, do
not link in any of the above modules.

2. Only the NMF services are configured into the COMM system. For this config-
uration, link in the modules NMF.LNK and NMFCFG.OBJ.

3. In addition to the NMF services, the boot server is configured into the COMM
job. For this configuration, link in all of the above modules.

iRMX™ 86 System Generation

8-8

8.4 Linking and Locating the Configuration Files

Once the configuration files are customized, the corresponding object files are linked
with the COMM job and with necessary library files. The result is then located to
match the user’s implementation. If any of the optional functions are used, first add
the necessary files to the link list in COMM.CSD, then perform the following:

>SUBMIT :SD:COMM/CSD/COMM.CSD (start_address)

where
start_address is the starting address of the COMM job.

COMM.CSD assembles the configuration files, links the selected modules, and locates
the COMM job at the specified address. The default COMM.CSD takes the follow-
ing form:

ASMB86 :SD:COMM/CONFIG/RMXCFG.ABG, &
:SD:COMM/CONFIG/BUFCFG.ABG, &
:SD:COMM/CONFIG/DLCFG.ABE, &
:SD:COMM/CONFIG/TLCFG.AB6, &
:SD:COMM/CONFIG/NMLCFG.ABG, &

LINK86 :SD:COMM/LNK/COMM.LNK, &
:SD:COMM/LNK/TL.LNK, &
:SD:COMM/LNK/TLVC.LNK, &
:SD:COMM/CONFIG/RMXCFG.0BJ, &
:SD:COMM/CONFIG/BUFCGF.0BJ, &
:SD:COMM/CONFIG/DLCFG.0BJ, &
:SD:COMM/CONFIG/TLCFG.O0BJ, &
:SD:COMM/LNK/AIMRMX.LIB &
:SD:COMM/LNK/COMM.LIB &

TO :SD:COMM/LNK/COMMCF.LNK &

NOCM NOLI NOMAP NOSB &
NOPUBLICS EXCEPT (COMMENTRY, CGERRORCODE)

LOC86 :SD:COMM/LNK/COMMCF.LNK &
TO :SD:COMM/LNK/COMM &

ORDER (CLASSES (CODE, ENTRYPTS, DATA, STACK)) &

SEGSIZE (STACK (0)) &
ADDRESSES (CLASSES (CODE (X0))) &
NOINITCODE, NOLINES, NOCOMMENTS, NOSYMBOLS, &

DBJECTCONTROLS C(NOLINES, NOCOMMENTS, NOPUBLICS,

NOSYMBOLS)

See the MCS-86 Utilities User’s Guide for descriptions of the LINK86 and LOC86
commands and the associated command options.

8.5 Configuring the COMM Job into iRMX™ 86

After linking and locating the COMM job, the iIRMX 86 ICU can be used to include
the COMM job into the iRMX 86 system, just as with the first-level user’s job.
Following are the suggested parameters:

User Job
(0DS) Object Directory Size [0 - O0FFOQH]
(PMI) Pool Minimum [20H - O0FFFFH]

iNA 960

&

0003H
0600H

iNA 960

iRMX™ 86 System Generation

(PMA) Pool Maximum [20H - O0FFFFH] FFFFH
(MOB) Maximum Objects [1 - O0FFFFH] FFFFH
(MTK) Maximum Tasks [1 - OFFFH] FFFFH
(MPR) Maximum Priority [0 - OFFH] 0000H
(AEH) Address of Exception Handler [CS:IP] 0000H:0000H
(EM) Exception Mode [Never/Prog/Environ/All] Never
(PV) Parameter Validation [Yes/No] No
(TP) Task Priority [0 - O0FFH] 0130
(TSA) Task Start Address [CS:IP] - start_address
(DSB) Data Segment Base [0 - O0FFFFH] 0000H
(SSA) Stack Segment Address [SS:SP] 0000H:0000H
(SS) Stack Size [0 - OFFFFH] 0400H
(NDX) Numeric Processor Extension Used [Yes/No] No
where
start_address is the address of the label “CommEntry” from the locate map
(COMM.MP2).

Refer to the iRMX 86 Configuration Guide for a description of the procedures to
configure the first-level user job.

NOTE

User tasks that use the COMM interfaces must have lower priorities (higher
numeric values) than the init task priority parameter of the JOB macro.

8.6 COMM Job Requirements

In order to run the COMM job, the Nucleus must be configured with the following
system calls used by the COMM job:

RA$SCATALOGSOBJECT
RA$SCREATESCOMPOSITE
RASCREATESEXTENSION
RASCREATESMAILBOX
RASCREATESSEGMENT
RA$SCREATESSEMAPHORE
RASCREATESTASK
RA$SDELETE$COMPOSITE
RA$SDELETESSEGMENT
RASENDSINITTASK
RASENTERSINTERRUPT
RASEXITSINTERRUPT
RASGETSTASKSTOKENS
RA$SRECEIVESMESSAGE
RA$SRECEIVESUNITS
RA$SRESUMESTASK
RA$SENDSMESSAGE
RA$SSENDSUNITS
RASSETSINTERRUPT
RASSETSOSSEXTENSION
RA$SSIGNALSINTERRUPT
RASWAITSINTERRUPT

iRMX™ 86 System Generation

If the boot server is configured into the COMM job, both the Nucleus and BIOS
must be configured into the system. In addition to the above system calls, the follow-
ing system calls must be included in the Nucleus configuration:

RAOSDELETESMAILBOX
RASGETSPRIORITY
RASGETSTYPE
RA$SLOOKUPSDBJECT

If the boot server is configured into the COMM job, the following system calls must
be included in the BIOS configuration:

RASASATTACHSFILE
RASASCLOSE
ROSASDELETESCONNECTION
RASASGETSCONNECTIONSSTATUS
RASASGETSFILESSTATUS
RASASOPEN
RASASPHYSICALSATTACHSDEVICE
RA$SASREAD

ROSASSEEK

RA$SCREATESUSER
ROSSETSDEFAULTS$PREFIX
RAOSSETS$DEFAULTSUSER

8.7 Initializing the iIAPX 186

The iNA 960 includes code to initialize the iISBC 186/51 in iRMX 86 compatible
mode. This initialization is required only for iRMX 86 release 5. iRMX 86 release 6
and subsequent releases perform their own initialization.

If the SDMS86 is used, the initialization code is not needed. Following is a description
of the initialization procedure. See the iAPX 186 Data Sheet for a description of the
registers used in the initialization code.

The initialization code performs the following actions:

¢ Sets the relocation register to OFFOOH. This, in particular, sets bit 14, selecting
the iRMX 86 compatible mede. The internal interrupt controller then operates
as a slave.

e Loads the memory and peripheral chip-select registers UMCS, LMCS, MPCS,
MMCS, and PACS. This loading establishes the sizes and address boundaries of
the chip-selectable memory and peripheral blocks. In addition, this loading selects
the WAIT state timing and READY generation logic for each of the chip-select
lines.

¢ Branches to the specified entry address (for example, the entry address of the
ROOT job.)

iAPX 186 initialization is activated by a call of the following macro:

#INIT_186_CF (UMCS, LMCS, MPCS, MMCS, PACS,
Branch_offset, Branch_base)

iNA 960

iNA 960 iRMX™ 86 System Generation

where
UMCS is a word that initializes the UMCS (upper memory chip-
select) register. To leave the register alone, specify 0.
LMCS is a word that initializes the LMCS (lower memory chip-
select) register. To leave the register alone, specify 0.
MPCS is a word that initializes the MPCS register. This register

selects the mid-range memory block size and controls the
operation of the peripheral chip-select. To leave this register
alone, specify 0.

MMCS is a word that initializes the MMCS register. This register
sets the base address of the mid-range memory block. To leave
this register alone, specify 0.

PACS is a word that initializes the PACS register. This register sets
the base address of the peripheral chip-select block. To leave
this register alone, specify 0.

Branch_offset is a word that specifies the offset of the address to be branched
to after initialization.

Branch_base is a word that specifies the base of the address to be branched
to after initialization.

The macro INIT_186 sets the relocation register, loads the memory and peripheral
chip-select registers with the parameter values, then vectors to the location specified
by the Branch parameters. Normally, this address is the entry address of the ROOT
job. However, it can also be the entry address for a user module. This module can be
used, for example, to perform a diagnostics function or to run an initialization routine
specific to the user’s system.

NOTE

Only a specific set of values for the chip-select registers is valid. See the
iAPX 186 Data Sheet for information on the bit fields of these registers.

The iAPX 186 initialization routine consists of a single call of the INIT_186_CF
macro. The iNA 960 software package includes a default iAPX 186 initialization
file, IN186.A86. This file takes the following form:

NAME INITIALIZE_186

$INCLUDE (:SD:COMM/INIT/IN186.MAC)

XINIT_186_CF (0, 0, 80BBH, 0, 003H, Offset, Base)
END

To modify IN186.A86, assemble it and generate the object code file, IN186.0OBJ.
The initialization code is then linked and located by typing:

>SUBMIT :SD:COMM/INIT/INIT.CSD (start_address)
Here, start_address is the address where the initialization code is to be located. Notice

that INIT.CSD has a BOOTSTRAP LOCS86 control. Here, a long jump to
start_address is placed at OFFFFOH when the module is loaded.

8-11

CHAPTER 9
COMPONENT SUPPORT INTERFACE

9.1 Overview

The iNA 960 communications software can run under iRMX 86 as described in the
previous chapter. In addition, iNA 960 can run as a standalone package. When
operating as a standalone system, iNA uses the component support interface as
detailed in this chapter.

iNA runs independently of the host system, on a processor that is different from the
host processor. The host passes commands to iNA by formatting request blocks and
delivering them to iNA to execute. Following execution, iNA passes the request block
back to the host.

iNA is a hardware-independent software package. The hardware-dependent features
are contained in a separate and configurable hardware-dependent module (HDM).
iNA is also independent of the mechanism that is used to pass request blocks to and
from the iNA software. The user has three choices for this message delivery mecha-
nism (MDM): the MULTIBUS interprocessor protocol (MIP), the base control block
(BCB) interface, and the user-supplied interface. For the MIP and the BCB, the
user needs to write only some initialization routines. The user-supplied interface must
be written entirely by the user.

This chapter describes the three types of message delivery mechanisms. In addition,
the hardware environment required to run the component support interface is detailed,
including the steps needed to configure the hardware-dependent module. The chapter
concludes with a description of the procedure for generating the COMM system from
the component modules.

9.2 Model of Operation

Figure 9-1 illustrates the component support interface model of operation. The
component support interface consists of the following modules:

MDM - The message delivery mechanism running on the host processor.

IMDM - The message delivery mechanism running on the iNA processor.

HDM — The hardware-dependent module.

Commands are passed from user tasks to iNA in the form of request blocks, via the
two message-delivery mechanisms. Each command is executed by iNA, the request
block is modified to reflect the result of the execution, and then the request block is
dispatched back to the user task. The following is the sequence of events:

1. The host formats a request block in system memory.

2. The host requests the MDM running on the host system to deliver the request
block to the MDM running on the iNA processor. The host must not modify the
request block after this step.

Component Support Interface iNA 960

MESSAGE
$§§§ - / DELIVERY /
/ MODULE
HOST /
PROCESSOR
TASKS COMPONENT
————————————————— SUPPORT
INA INTERFACE
PROCESSOR
TASKS /
Y y
iNA 960
Figure 9-1. The Component Support Interface 1221937

3. The MDM on the host processor accepts the request block. It uses the return
entity field of the request block to store information about the source of the request
block. This is used to identify the source task when returning the request block
to the same task, after it has been processed by iNA.

4. The MDM on the host generates a channel attention to interrupt the MDM
running on the iNA processor.

5. The channel attention interrupt service routine on the iNA processor services the
interrupt. Here, the MDM on the host processor and the MDM on the iNA
processor communicate following a predefined protocol.

6. The MDM on the iNA processor accepts the request block, if it has the resources
to handle it.

7. The MDM on the iNA processor delivers the request block to iNA to process. In
order to access the request block and the buffers specified in them, iNA calls a
set of address conversion routines.

8. After processing the request block, it is sent back to the original user task in a
similar fashion.

9.3 Hardware Environment

Figure 9-2 shows the hardware environment used by the iNA 960 communication
system. The 80186 CPU may be replaced by an 8086 CPU, an 8253 PIT and an
8259 Programmable Interrupt Controller (PIC). The 82586 Ethernet controller may
be replaced by a 550 FW board set. The system bus does not need to be a MULTI-
BUS, as user-written subroutines account for variations in buses and hardware.

iNA 960

Component Support Interface

HOST SYSTEM

BUS
INTERFACE
UNIT

I N
(SYSTEM BUS >
.

BUS
INTERFACE
UNIT

80186 82586 RAM ROM

LOCAL BUS >

AN

Figure 9-2. iNA 960 Hardware Environment 1221938

9.4 INA 960 Address Space

It may not be possible for the iNA processor to access all of system memory at the
same time. Different boards have different address spaces. For example, a hypothet-
ical iNA processor may be able to access 256 Kbytes of system memory at any time,
whereas system memory can be 1 Mbyte for a 8086-based system, and 16 Mbytes in
a 80286-based system.

Request blocks and the buffers specified in them are built by the host in system
memory. Due to the different addressing capabilities of the various processors, it may
not be possible for iNA to have access to all request blocks and associated buffers at
the same time. In any given hardware configuration, there are two possibilities:

¢ All request blocks and buffers specified in them are accessible by iNA at all
times.

+ Request blocks and buffers specified in them are not always accessible by iNA.

9.4.1 Restricted Addressing

Restricted addressing is the case where all request blocks and buffers are accessible
to the iNA processor at all times. Special routines to manipulate the address space
of the iNA processor are not needed. For example, if the iNA processor can access
256 Kbytes of system memory, then all request blocks and the buffers specified in
them must reside in this 256-Kbyte block of memory.

9-3

Component Support Interface

9-4

9.4.2 Unrestricted Addressing

In the case of unrestricted addressing, request blocks and buffers are scattered all
over system memory. The iNA processor must, however, have access to all request
blocks passed to the iNA software. Therefore, the MDM on the iNA processor first
copies the request block to local memory (called the onboard request block). The
MDM then delivers the onboard request block to iNA to process. After the request
block has been processed, the MDM copies the onboard request block back to the
user’s request block.

The iNA MDM maintains a pool of onboard request block buffers. The size and
number of these buffers is set during configuration. Whenever a request block is to
be delivered to iNA, a buffer from the onboard request block buffer pool is obtained
and a copy of the request block is made.

Note that buffers are not copied to local memory. iNA accesses buffers by calling a
user-supplied routine (see Section 9.9) that adjusts the address window of the iNA
processor to include the desired buffer.

The following ovefhead is associated with the unrestricted addressing of request blocks
and buffers:

* A pool of onboard request block buffers must be kept and maintained.
e Two sets of copies are performed for each request block delivered to iNA.

* The address space of the iNA processor is continuously adjusted.

Although the overhead due to the last point is minimal, the other points require a
substantial amount of memory, and considerable processing time. These overheads
are unavoidable.

9.5 Message Delivery Mechanism

The message delivery mechanism consists of two tasks running on the host and iNA
processors as shown in Figure 9-1. The MDM running on the host is part of the host
software and must be written by the user. The MDM running on the iNA processor
can be one of two MDMs packaged with the system, or it can also be written by the
user. Following are the three types of message delivery mechanisms:

1. MULTIBUS interprocessor protocol (MIP} is a set of mechanisms and protocols
that provide reliable and efficient exchange of data among tasks executing on
various single board computers connected to a common MULTIBUS system bus.
MIP solves the problems inherent in a multiprocessor system:

¢ Tasks can run on several different processors.

e Tasks can run on several different operating systems.

» Boards can use different signaling techniques.

¢ Boards can have different memory spaces.

* Boards can use different addressing schemes for the same shared memory.
+ Tasks can share areas of memory without interfering with one another.

2. Base control block (BCB) interface is used in systems that have a single host
processor utilizing iNA. It is simpler to use than MIP. However, it is not as
efficient. '

3. User-supplied interface can be used in systems where a user written interface is
desired.

iNA 960

iNA 960 Component Support- Interface

9.6 MIP Interface

One of the message delivery mechanisms available to iNA is the MULTIBUS Inter-
processor Protocol (MIP). The MIP facility included in the iNA package is an imple-
metation of the MIP specification. Readers interested in the full specification of this
protocol are referred to Appendix E.

The MIP facility isolates user tasks from the complexities of communicating across
the MULTIBUS system bus, and is recommended for MULTIBUS systems that have
multiple host processors.

MIP facilities support communication among tasks that are executing on different
processor boards that are attached to a common MULTIBUS system bus. Each
processor board in a MIP system runs a MIP facility. Each MIP facility may be a
different implementation of MIP, but adherence to the specification ensures compat-
ibility among them.

The term device is used for each processor board in a MIP system. Each device has
a device-id, a number between 0 and the number of devices in the system (less 1).
Figure 9-3 shows an example of a MIP system with a host device and the iNA 960
processor board.

Any two tasks can communicate with each other by passing data in an area of memory
that is accessible by both of the devices on which the tasks execute. A contiguous
block of memory through which data is passed under control of MIP facilities is
called a buffer. The content of buffers is not interpreted by MIP facilities.

F— - - - - 7= T r— """ —"~—""—"~—-"—/"—7—7~ 1
| DEVICE 1: THE HOST DEVICE | | DEVICE 0: iNA 960 DEVICE |
| I | |
| | | I
| I I |
| | | I
| TASK A TASK B | | iNA 960 |
| | | |
I | | I
] I | |
: PORT 1 PORT 0 : : PORT 16 ll
| | I |
| f I |
| | | |
| | | I
I | | I
| MIP FACILITY | | MIP FACILITY |
L_ _ L _ —

< MULTIBUS® >

Figure 9-3. MIP Facility with iNA 960 122193-9

9-5

Component Support Interface

9-6

Communications are delivered to tasks at ports. A port is a logical delivery mecha-
nism that enables delivery in first-in, first-out (FIFO) order. The ports at a given
device are identified by a port-id, a number between 0 and the number of ports
(less 1) at the device. To provide system-wide addressability, a port is also identified
by a socket, a pair of items in the form (d,p) where d is the device-id and p is the

port-id. Thus, in the example shown in Figure 9-3, iNA resides on device 0 and receives -

communications at port 16, that is, socket (00, 16). Similarly, TASK A and TASK
B are active at sockets (1,1) and (1,0) respectively.

9.6.1 MIP Initialization Routine

The MIP user must write the initialization code and link it with the rest of the COMM
software. This initialization code must do the following:

e It must have a variable called This_device_loc, which is a POINTER that is
declared PUBLIC and DATA.

¢ The memory location addressed by This_device_loc must be initialized with a
BYTE value specifying the device id of the iNA processor. It is recommended
that the iNA processor be assigned a device id of 0.

¢ It must have a variable called MIP_device_info_loc, which is a POINTER that
is declared PUBLIC and DATA.

¢ The memory area addressed by MIP_device_info_loc must be initialized with the

following:

DECLARE MIP_device_info BASED MIP_device_info_loc
STRUCTURE (

Device_id BYTE,
Status BYTE,
RA@D_in DWORD,
R@D_out DWORD,
Reserved (4) BYTE)
where
Device_id is the device id of the host processor.
Status must be set to OFFH.
RQD_in is the 32-bit absolute address of the request queue
descriptor to the iNA processor.
RQD_out is the 32-bit absolute address of the request queue

descriptor from the iNA processor.
* It must initialize both the incoming and outgoing MIP queues.

* It must perform any special hardware initialization required. This may include
loading iNA onto the RAM of the iNA processor, if iNA is RAM-based.

* It must follow the PL/M 86 COMPACT model with the ROM option in effect.

e After all of the above, it should jump to the routine Begin_aim. When it does
this jump, at least 20 bytes of stack space must be available.

iNA 960

iNA 960

Component Support Interface

9.6.2 Return_entity Field of a Request Block

The Return_entity field of a request block is 4 bytes long. When sending a request
block to iNA, the Return_entity field must be filled by the user. For the MIP message
delivery mechanism, the Return_entity field has the following interpretation:

DECLARE Return_entity STRUCTURE (

Port_id BYTE,
Device_id BYTE,
Reserved (2) BYTE)
where
Port_id is the port where the request block should be returned after
it is processed.
Device_id is the device id of the host processor. This value must be the
same as MIP_device_info.Device_id.
Reserved is set to 0.

9.6.3 POINTER Fields of a Request Block

All addresses specified in request blocks must be 32-bit absolute addresses. The
addresses present in the request queue should also be 32-bit absolute addresses, because
the iNA 960 MIP can communicate with just one device. While communicating with
this sole device, it assumes an interdevice segment base of 0.

9.6.4 User-Written Routines

In addition to writing the initialization routine, the user has to write the following
routines. These routines are described in Section 9.9.

e Sys_to_loc_addr

e Loc_to_sys_addr

o Save_address_space

* Restore_address_space

* Gen_int

9.7 BCB Interface

With the base control block interface, commands are given to iNA by placing the
address of the request block in a fixed location and then generating a channel atten-
tion to the iNA processor. The BCB interface then delivers the request block to iNA
to process. Once the request block is processed, the BCB interface returns the request
block to the host in a similar fashion.

9.7.1 Base Control Block

The memory location used to store the address of the request block is part of a contig-
uous block of memory called the base control block. In addition to the request block
address, the base control block contains fields used by the BCB interface to store

9-7

Component Support Interface

commands and responses used in the implementation of a request block passing
protocol. The base control block is 96 bits long and has a format defined by the
following PL/M-86 structure:

DECLARE BCB_structure STRUCTURE (

Command (16) BITS,
Command_block_result (16) BITS,
Command_block_address (32) BITS,

Response_block_address (32) BITS)y

Here, Command and Command_block_address are written to by the host, and read
from by the BCB interface. These fields are used to issue a command to (or to
acknowledge a channel attention from) the BCB interface, as described in the next
section. If the command field contains a Start directive, the 32-bit absolute address
of the request block to be sent to iNA, must be loaded into the Command_block-
_address field before issuing the channel attention.

Similarly, Command_block_result and Response_block_address are written to by the
BCB interface, and read by the host. Command_block_result is used by the BCB
interface to indicate the status of an issued command. The Response_block_address
field is used to pass the 32-bit absolute address of a request block after it has been
returned from iNA.

Operation of the two sides of the message delivery mechanism is asynchronous. In
particular, the BCB interface will accept new request blocks before it has completed
processing old ones, up to a configurable limit. The order that request blocks are
returned can be different from the order that they were issued. In addition, if the
BCB interface has issued a channel attention to the host, no more request blocks are
returned until the host has acknowledged the interrupt.

9.7.2 Command Field

Whenever the host generates a channel attention to the BCB interface, the reason for
generating the interrupt is specified in the Command field of the base control block.
This field is 16 bits wide and has the following interpretation:

Bit Mnem Description

15 Ack This bit is set by the host to acknowledge a channel attention issued
by the BCB interface.

14 Reset This bit is set by the host to reset iINA. The iNA processor disables
interrupts and jumps to location FFFF:0.

13 Start This bit is set by the host to deliver a request block to the BCB inter-
face. The 32-bit absolute address of the request block must be present
in the Command_block_address field.

12-0 - Unused. Must be set to 0.

The BCB interface interprets the bits in the following manner. If the Ack bit is set,
the BCB interface clears the channel attention it had generated. If it had not gener-
ated a channel attention, it ignores this bit. The BCB interface then examines the
rest of the bits. Not more than one of these bits should be set at any time. If more
than one of these bits is set, the BCB interface accepts the command corresponding
to the highest bit set (order of priority is Reset, Start). In particular, an Ack can be
combined with a Reset or a Start.

iNA 960

iNA 960

Component Support Interface

9.7.3 Command_block result Field

While the BCB interface is processing the command initiated by the channel atten-
tion, it uses the Command_block result field to indicate the status of the command.
This field has the following bit assignment:

Bit Mnem Description

15 Complete This bit is set by the BCB interface after it completes
processing the channel attention that the host has issued.

14 Busy This bit is set to 1 by the BCB interface to indicate it is busy
processing a channel attention generated by the host. The
BCB interface sets it to 1 when it begins processing the
channel attention and to 0 upon completion.

13 Status This bit is valid only if the Start command was issued and is
interpreted as follows:
0 - the request block has been delivered to iNA.
1 - the request block has not been delivered to iNA.

12-0 —_— Unused.

When bit 13 (the Status bit) is set to 1, it indicates the BCB interface does not have
the resources to deliver a request block to iNA. The user should wait for the BCB
interface to return some outstanding request blocks before trying to send another

request block.

9.7.4 A Protocol Implementation

Apart from conforming to the specifications of the BCB interface, it is up to the user
to implement his own BCB interface protocol. A possible 1mplementat10n to deliver
request blocks to iNA 1is the following:

1. If the Complete bit of the Command_block_response is not 1, wait for the BCB
interface to complete processing the previous channel attention.

2. Check the Status bit of the Command_block_response and handle the error if
there is one.

3. Load the Command_address field with the address of the next request block to

be processed by iNA.

4. Issue a channel attention to the iNA processor.

9.7.5 The BCB Interface Initialization Routine

As part of the initialization process, the BCB interface must be initialized by a user-
supplied routine. A typical way to initialize would consist of the host putting a
command at a fixed location in memory, and then generating a channel attention.
The initialization routine would accept each command and associated parameters

Component Support Interface

9-10

and perform the specified initialization chores. Once initialization is complete, iNA
is started. The user’s initialization routine is not called again and subsequent channel
attentions are processed by the BCB interface.

The user’s BCB interface initialization routine should perform the following:

1. It must have a variable named BCB_loc of type DWORD DATA. BCB_loc must
be initialized to the 32-bit absolute address of the base control block.

2. Initialize the iNA hardware so that the BCB can be addressed by the iNA
software.

3. Call the routine Begin_aim. This will start up the iNA software. The stack size
when Begin_aim is called must be at least 20 bytes.

9.7.6 User-Written Routines

In addition to writing the initialization routine, the user has to write the following
routines (described in Section 9.9):

¢ Sys_to_loc_addr

e Loc_to_sys_addr

» Save_address_space

¢ Restore_address_space
* Gen_int

¢ (Clear_int

9.8 User-Supplied Interface

If the user does not want to use the MIP or BCB interfaces, he can implement his
own message delivery mechanism as outlined in this section. To generate the user-
supplied interface, the user must write the routines detailed in the next section, as
well as the following:

CAINT This is the channel attention interrupt service routine that
is called by iNA upon receiving a channel attention inter-
rupt from the host.

SendtohostSos After processing a request block, iNA calls this routine to
send the request block back to the host.

Init_msg_delivery_mech After the iNA software starts running, it calls this routine
to initialize the user-written MDM.

In addition, the user must write the initialization code and assemble and link it with
the rest of the iNA software.

9.8.1 Initialization

After system reset, INA and the message delivery mechanism are in an uninitialized
state. The user must write, assemble, and link the initialization code to the iNA
software. The only requirement for this initialization code is that it ends by jumping
to the routine Begin_aim, which starts up the communication system.

iNA 960

iNA 960 Component Support Interface

9.8.2 CAINT

The routine CAINT is called by iNA upon receiving a channel attention interrupt
from the host. This routine is used to prepare the request block for delivery to iNA.
CAINT can assume the following:

» All registers have been saved on the stack. They are restored from the stack upon
return from this routine.

» The DS register has been initialized with the base of the data segment.
¢ An end of interrupt has been issued to the interrupt controller.
¢ Interrupts have been disabled.

* The return_entity field of the request block can be used and interpreted in any
way. This field is ignored by iNA.

CAINT must follow these conventions:
o It should not use more than 20 bytes of stack.
e It should follow the PL/M-86 COMPACT model of computation.

e It must be named CAINT. CAINT is declared PUBLIC and is linked with the
rest of the COMM system.

¢ If CAINT changes the address window of the iNA processor, it must restore the
window to the original value.

¢ It must not enable interrupts.

* The request block must be accessible to iNA. If this is not the case, CAINT
should copy the request block to an onboard request block. The onboard request
block is then delivered to iNA.

To deliver the request block to iNA, CAINT makes a call to the routine Ipsend. This
routine has the following format:

Ipsend: PROCEDURE (Reserved, Rb_ptr) EXTERNAL;

DECLARE Reserved BYTE; /+ Set to 16 %/
Rb_ptr POINTER; /+ Pointer to request %/
/+ block %/

/+ lIpsend follows the PL/M-86 COMPACT model
of computation «/

END Ipsend;

9.8.3 Sendtohost$os

After iNA has completed processing a request block, it calls the routine
Sendtohost$os to send the request block back to the host. This routine has the
following form:

Send$toshost$os: PROCEDURE (Rb_ptr)d;
DECLARE Rb_ptr POINTER; /+ Pointer to request block =/

END Sendtohost$os;

9-11

Component Support Interface iNA 960

This routine must follow these restrictions:
¢ It must not use more than 20 bytes of stack.
e It must follow the PL/M-86 COMPACT model of computation.

¢ If it changes the address window of the iNA processor, it must restore the address
window to the original value.

« If it changes the state of the interrupt flag, it must restore the original value.

9.8.4 Init_msg_delivery_mech

After iNA starts running, it calls the routine Init_msg_delivery_mech. Any initiali-
zation performed by the message delivery mechanism should be present in this routine.

9.9 User-Supplied Routines

Some of the routines that iNA uses depend on the hardware environment. These
routines are specified in this section and they must be written by the user. Combine
these routines in the file USERRT.LNK and link this file with the COMM system.

The user-supplied routines must be written according to the following conventions:
¢ They must conform to the PL/M-86 COMPACT model of computation.

¢ They must have all CONSTANTS in CGROUP. That is, the ROM option must
be selected.

e They must not use more than 20 bytes of stack size.

¢ If a routine changes the state of the interrupt flag, it must restore the original
value before returning.

9.9.1 Sys_to_loc_addr

This procedure converts a system address to a local address. If necessary, the address
space of the iNA processor is reset so the location specified by the system address is
accessible via the local address. This procedure takes the following form:

Sys_to_loc_addr: PROCEDURE (Sys_address) POINTER PUBLIC;

DECLARE
Sys_address DWORD;
IF Sys_address > OFFFFFFH
THEN DO; /+ larger than 16 Mbytes «/
/ %

- mask most significant 8 bits
- convert least significant 24 bits to a PLM86 POINTER
- RETURN (PLM86 POINTER) s/

ELSE DO; /+ smaller than 16 Mbytes «/
/

- note the parameters pertaining to the current address
space. If this takes more than 1 assembly instruc-
tion, then this must be done with interrupts disabled

- set the address space of the iNA processor 50 that
the 24 bit address Sys_address is accessible by iNA

- RETURN (the PLM86 POINTER that iNA should use to
access Sys_address) #/

END;
END Sys_to_loc_addr;

iNA 960 Component Support Interface

9.9.2 Loc_to_sys_addr

This procedure converts a local address to a system address. The format for this
procedure is the following:

Loc_to_sys_addr: PROCEDURE (Sys_ptr) DWORD PUBLIC;

DECLARE
Sys_ptr POINTER;

/+
This routine must convert the PL/M 86 pointer Sys_ptr
to a 32-bit absolute address, and set the most
significant byte of the double word to 1.

./

END Loc_to_sys_addr;

9.9.3 Save_address_space

This routine saves the current address space of the iNA processor. Here, the address
space parameters (see the Sys_to_loc_addr routine) are saved on the stack. When
this routine is called, the stack is in a form illustrated by the following PL/M-86
structure:

DECLARE Stack STRUCTURE (
Return_address WORD,
Rest_of_stack (x) WORD)

Upon return from this routine, the stack has the following form:

DECLARE Stack STRUCTURE (
Saved_parameters (y) WORD,
Rest_of_stack (x) WORD)

The Save_address_space routine has the following form:

Save_address_space: PROCEDURE PUBLIC;
!+ save the address space parameters on the stack #/
END Save_address_space;

9.9.4 Restore_address_space
This routine restores the address space of the iNA processor using parameters that
were stored on the stack by the Save_address_space routine. When this routine is

called, the stack is in a form illustrated by the following PL/M-86 structure:

DECLARE Stack STRUCTURE (

Return_address WORD,
Saved_parameters (y) WORD,
Rest_of_stack (x) WORD);

Upon return from this routine, the stack has the following form:

DECLARE Stack STRUCTURE (
Rest_of_stack (x) WORD)

Component Support Interface

9-14

This routine has the following form:

Restore_address_space: PROCEDURE PUBLIC;

/* restore the address space from the parameters
the stack #/

END Restore_address_space;

9.9.5 Gen_int

This routine has the following form:

Gen_int: PROCEDURE PUBLIC;
/% generate a channel attention to the host #/
END Gen_int;

9.9.6 Clear_int

This routine has the following form:

Clear_int: PROCEDURE PUBLIC;

/% if iNA has generated an interrupt to the host,
then clear the interrupt =/

END Clear__int;

9.10 Configuring the Hardware-Dependent Module

The hardware-dependent module must be configured for the timer, interrupt control-
ler, and interrupt controller inputs in the system. This is done with the macros PIT,
PIC, and PIC_inputs.

9.10.1 PIT

PIT configures the hardware-dependent module for the type of programmable inter-
val timer (PIT) used. This macro has the following form:

PIT(Type, Base_port, Increment, Alc, Frequency)

where
Type is the type of timer used: 8253 or 80186.

Base_port is a value that depends on the type of timer used. Base_port
is interpreted as follows:

8253 - this parameter is the port address of the PIT.

80186 — this parameter is the base of the 80186 control block
address. The hardware-dependent module sets the
control block in I1/O space to this value. The least
significant byte of this parameter must be 0.

Increment is a value used to specify the other ports of the PIT. These
ports will be at I/O addresses

Base_port + (i X Increment)

where i is a non-negative integer. Increment will usually have
the value 1 or 2. For the 80186 PIT, this parameter is ignored.

Alc specifies the timer (0, 1, or 2) used by the hardware-
dependent module.

Frequency is the frequency in Khz, of the PIT.

iNA 960

iNA 960 Component Support Interface

9.10.2 PIC

This macro configures the hardware-dependent module for the type of programmable
interrupt controller (PIC) used. There are currently two supported, the 8259a and
the PIC in the 80186. If the 80186 is specified as the PIT, it must also be specified
as the PIC. This macro specifies the master PIC in the system. The data link, timer,
and host interrupts must all be received at this PIC. This macro has the following
form:

PIC (Type, Base_port, Increment, Buffered)

where

Type is the type of programmable interrupt controller, 80186, or
8259a.

Base_port is the port address of the PIC. For the 80186 PIC, this
parameter is ignored.

Increment is a value used to specify the other ports of the PIC. These
ports will be at 1/O addresses

Base_port + (i X Increment)
where i is a non-negative integer. Increment will usually have
_ the value 1 or 2. For the 82186 PIC, this parameter is ignored.
Buffered has the following values:

Y’ if the PIC supports vectored (cascaded) interrupts.
"N’ if the PIC does not support vectored interrupts.

9.10.3 PIC_inputs

PIC_inputs is used to specify the inputs to the PIC. This macro has the following
form:

PIC _inputs (Type, Alc_input, Reserved, Dl_input,
Dl _edge_vs_level, Ca_input, Ca_edge_vs_level)

where

Type is the type of programmable interrupt controller, 80186, or
8259a.

ALC_input specifies the pin of the PIC (0-7) that receives interrupts from
the timer. If the 80186 timer is used, this parameter is
ignored.

Reserved must be set to 0.

Dl input specifies the pin of the PIC (0-7) that receives interrupts from

the data link controller.

Dl_edge_vs_levél depends on the interrupt at DI_input. It has the fdllowing
value:

0 if the interrupt is edge triggered
1 if the interrupt is level triggered
This parameter is ignored if the 8259 is used.

Ca_input specifies the pin of the PIC (0-7) that receives interrupts
generated by channel attentions from the host.

Ca_edge_vs_level depends on the interrupt at Ca_input. It has the following
value:

0 if the interrupt is edge triggered
1 if the interrupt is level triggered
This parameter is ignored if the 8259 is used.

Component Support Interface

9.11 Configuring the Message Delivery Mechanism

In addition to configuring the hardware-dependent module, the MIP and BCB inter-
face user must configure the message delivery mechanism. This is done by including
a macro call to CBA in the configuration file.

9.11.1 CBA

The CBA macro is used to specify whether or not the request blocks and buffers are
accessible by iNA at all times. If not, this macro also specifies the size and number
of the onboard request block buffers. This macro has the following form:

CBA (Rb_copy, Num_rb_buffers, Rb_buffer_size)

where

Rb_copy specifies whether the request blocks and buffers are accessi-
ble at all times. Values are:

0 request blocks and buffers are not accessible at all times.
Request blocks are copied to onboard request blocks.

I request blocks and buffers are accessible at all times. In
this case the remaining parameters are not used. Request
blocks are not copied to onboard request blocks.

Num_rb_buffers specifies the number of onboard request blocks that the
message delivery mechanism should maintain. This value will
limit the number of commands that the user can give to iNA
at the same time.

Rb_buffer_size is the size of the above buffers. This should be as big as the
largest request block to be given to iNA.

If the MIP or BCB interface with the copy option is used for the message delivery
mechanism, then Rb_copy must be set to 0. In this case, the maximum number of
request blocks that iNA can process at the same time is limited to Num_rb_buffers.
Each request block delivered to iNA must be less than Rb_buffer_size bytes in length.

If Rb_copy is 1, then any number of request blocks of any size can be delivered to
iNA.

This macro should not be invoked if the user-supplied message delivery mechanism
is used.

9.12 Component Support System Generation

The component support interface is configured and the COMM system is generated
by the following steps: :

1. Choose the message delivery mechanism. The following are the available options:
e MIP with request blocks copied to iNA memory.
¢ BCB interface with request blocks copied to iNA memory.
e BCB interface with request blocks not copied to iNA memory.

¢ A user-written interface.

iNA 960

iNA 960

Component Support Interface

Edit the file :SD:COMM/CONFIG/CMPCFG.A86 to reflect the hardware
configuration that supports iNA.

The file :SD:COMM/CONFIG/COMM.CSD generates iNA that runs under
iRMX 86. Make a copy of this file by giving the following command:

>COPY :5SD:COMM/CONFIG/COMM.CSD TO
:SD:COMM/CONFIG/COMMCMP.CSD

WARNING

The default configuration and submit files described in this chapter
assume that the iNA 960 Communication system resides in
:SD:COMM. If the system is installed on a different directory, or if
you are an ISIS user, the configuration and submit files must be
changed to reflect the actual locations of the files they reference.
For the configuration files, this means the INCLUDE statements
must be changed. For submit files, the pathname of each file in the
link list must be changed.

The file COMM.CSD has the following form:

ASMB86 :SD:COMM/CONFIG/RMXCFG.AB6, &
:SD:COMM/CONFIG/BUFCFG.AB6, &
:SD:COMM/CONFIG/DLCFG.ABE, &
:SD:COMM/CONFIG/TLCFG.AB6, &
:SD:COMM/CONFIG/NMLCFG.AB6, &

LINK86 :SD:COMM/LNK/CODMM.LNK, &
:SD:COMM/LNK/TL.LNK, &
:SD:COMM/LNK/TLVC.LNK, &
:SD:COMM/CONFIG/RMXCFG.O0BJ, &
:SD:COMM/CONFIG/BUFCGF.0BJ, &
:SD:COMM/CONFIG/DLCFG.O0BJ, &
:SD:COMM/CONFIG/TLCFG.0BJ, &
:SD:COMM/LIB/AIMRMX.LIB &
:SD:COMM/LNK/COMM.LIB &

TO :SD:COMM/LNK/COMMCF.LNK &
NOCM NOLI NOMAP NOSB &
NOPUBLICS EXCEPT C(COMMENTRY, CQERRORCODE)

LOC86 :SD:COMM/LNK/COMMCF .LNK &

TO :SD:COMM/LNK/COMM &
ORDER C(CLASSES (CODE, ENTRYPTS, DATA, STACK)) &
SEGSIZE (STACK (0)) &
ADDRESSES (CLASSES (CODE (%0))) &
NOINITCODE, NOLINES, NOCOMMENTS, NOSYMBOLS &
OBJECTCONTROLS (NOLINES, NOCOMMENTS, &
NOPUBLICS, NOSYMBOLS)

Edit the submit file COMMOCMP.CSD in the following way. First, replace the
line:

ASMB6 :SD:COMM/CONFIG/RMXCFG.AB6
by

ASM86 :SD:COMM/CONFIG/CMPCFG.AB86 MACRO(B0)

Component Support Interface

The LNK invocation to generate COMMCF.LNK links a number of files
including the following:

:SD:COMM/LNK/AIMRMX.LIB
:SD:COMM/LNK/RMXCFG.OBJ

Do not link these files while generating COMMCF.LNK. Replace them with the
following:

e One of the following:

:SD:COMM/LNK/MIP.LNK —the MIP message delivery
mechanism.

:SD:COMM/LNK/BCBNC.LNK —the BCB interface message deliv-
ery mechanism without the copy
option.

:SD:COMM/LNK/BCBCPY.LNK —the BCB interface message deliv-
ery mechanism with the copy
option.

:SD:COMM/LNK/USRMDM.LNK —the user-supplied message delivery
mechanism.

¢ One of the following:
:SD:COMM/LNK/AIM86.0BJ —if iNA runson an 8086 CPU.
:SD:COMM/LNK/AIM186.0BJ —if iNA runs on an 80186 CPU.
* :SD:COMM/LNK/CMPCFG.O0BJ — the object file produced by the
configuration of the component

support.

. :SD:COMM/LNK/USRRTN.OBJ - this module must contain all the
user-written routines.

Modify the arguments to the LOC86 command to reflect the hardware
environment.

To generate the iNA system, type the following:

>SUBMIT :SD:COMM/CONFIG/COMMCMP.CSD

iNA 960

APPENDIX A
iNA 960 FILES

A.1 The Delivery Diskettes

The delivery package contains the following diskettes in both ISIS and iRMX 86
format:

o iINA 960 Object Code RI.0 (COMM) Contains the object code for the Trans-
port, Data Link, and NMF functions.

e INA 960 Object Code RI1.0 (Boot Consumer) Contains the object code of the
boot consumer.

Files on the iIRM X 86 formatted diskettes are organized in directories. The same files
on the ISIS diskettes are flat. Following are the directories on the iRMX 86 diskettes:

LNK Contains the iNA 960 core and optional modules.

CSD Contains the SUBMIT fite for installing, linking, and
locating iNA 960.

CONFIG Contains the iNA 960 configuration files.

LIB Contains the user interface libraries.

INC Contains the INCLUDE files for using iNA 960.

INIT Contains the initialization code for iISBC 186/51.

A.2 Directory LNK

COMM.LNK Core of iNA 960 object code.

COMM.LIB Library file required by COMM.LNK.

BTSRV.LNK Boot server functions.

TL.LNK Transport core.

TLVC.LNK Transport normal virtual circuit services.
TLEX.LNK "Transport expedited services.

TLDG.LNK Transport datagram services.

EDL.LNK External data link services.

NMF.LNK Network management functions.

AIMRMX.LIB Library file required by AIMRMX.LNK.

AIM186.0BJ AIM-186 module.

AIM86.0BJ AIM-86 module.

MIP.LNK MIP module.

BCBNC.LNK BCBI (non-copy) module.

BCBCPY.LNK BCBI (copy) module.

iNA 960 Files

(89

A.3 Directory CSD

INSTALL.CSD
COMM.CSD

Submit file to install INA 960 to hard disk storage.

Submit file to assemble the configuration files, link all the
optional modules, and locate the iNA 960.

A.4 Directory CONFIG

The following files appear as pairs consisting of a configuration macro definition file
(MAC extension) and a default configuration file (A86 extension).

RMXCFG.MAC
RMXCFG.A86

CMPCFG.MAC
CMPCFG.A86

BUFCFG.MAC
BUFCFG.A86

TLCFG.MAC
TLCFG.A86

DLCFG.MAC
DLCFG.A86

NMFCFG.MAC
NMFCFG.A86

Configuration file to configure iNA 960 in the iRMX 86
environment.

Configuration file to configure iNA 960 in the component
support environment.

iNA 960 buffer configuration file.

Transport configuration file.

Data link configuration file.

NMF configuration file.

A.5 Directory LIB

CQC.LIB

CQL.LIB

INA 960 user interface library for PLM-86 COMPACT
mode.

INA 960 user interface library for PLM-86 LARGE and
MEDIUM modes.

A.6 Directory INC

CQRB.EXT
CQTL.EXT
CQDL.EXT
CQNMF.EXT
CQTL.LIT
CQNMF.LIT

External declarations for request block interfaces.
External declarations for transport procedure interfaces.
External declarations for data link procedure interfaces.
External declarations for NMF procedure interfaces.
Literal declarations for transport interface parameters.

Literal declarations for NMF interface parameters.

A.7 Directory INIT

ICODE.OBJ

IN186.MAC
IN186.A86

INIT.CSD

Initialization code for iSBC 186/51.

Configuration files for the initialization code.

Submit file for linking and locating the init code.

iNA 960

iNA 960

A.8 The Boot Consumer Diskette

CNFG.A86
CNFG.MAC

ROMA.OBJ
ROMB.OBJ

AUTBOT.OBJ
AUTBOT.P86
AUTBOT.LST

ROM.CSD

The configuration file for the boot consumer.
The boot consumer.

A sample user-written main module.

The submit file to link and locate the boot consumer.

iNA 960 Files

APPENDIX B
NETWORK MANAGEMENT
FACILITY OBJECTS

B.1 NMF/Data Link Objects

Id Type Access Size Description
2000H value R BYTE Data Link Type. Reserved for future expan-
sion. Set to 1.
2001H value R DWORD | Line Speed. The physical transmission rate in
bits/second.
2002H value R 48 BIT Host Id. The network physical address.
2003H counter RC DWORD | Total Sent. Total number of packets sent by
(wraparound) the station.
2004H counter RC WORD Primary Collisions. The number of packets
(sticky) transmitted by the station that had at least 1
collision.
2005H counter RC WORD | Secondary Collisions. The number of colli-
(sticky) sions encountered after each primary
collision.
2006H counter RC WORD Exceeded Collisions. The number of packets
(sticky) discarded because the maximum number of
collisions was exceeded.
2007H counter RC DWORD | Total Received. The number of packets
(wraparound) forwarded from the network to the client.
2008H counter RC WORD CRC Errors. The number of packets dropped
(sticky) because of CRC errors.
2009H counter RC WORD | Alignment Errors. The number of packets
(sticky) dropped due to alignment errors.
200AH counter RC WORD Resource Errors. The number of times data
(sticky) link ran out of resources.

B.2 NMF/Transport Virtual Circuit Connection

Independent Objects

Id Type Access Size Description
4000H value R BYTE Virtual Circuit Type. Set to 0.
4001H value R — Connection ID Vector. WORD array where each
nonzero element is an allocated connection ID.
The size of this object is as follows:
(2 X max_connections) BYTES
4002H value R BYTE ISO Transport Number. The version number of
the ISO virtual circuit subsystem.
4003H value R WORD Maximum Connections. The maximum number
of connections supported by the virtual circuit
subsystem.
4004H value R WORD Current Maximum Connections. The maximum
number of connections currently available.
4005H value R WORD Maximum On-board CDB’s. The number of
connection databases that have space already
allocated (on-board).

Network Management Facility Objects

B-2

B.2 NMF/Transport Virtual Circuit Connection
Independent Objects (Cont’d.)

Type

Access

Size

Description

4006H

4007H

4008H

4009H

400AH

400BH

400CH

400DH

400EH

400FH

4010H

4011H

value

value

parameter

parameter

parameter

parameter

parameter

parameter

parameter

counter
(sticky)

counter
(sticky)

counter

R

RS

RS

RS

RS

RS

RS

RS

RC

RC

RC

WORD

WORD

WORD

WORD

DWORD

DWORD

WORD

DWORD

WORD

WORD

WORD

WORD

Active CDB’s. The number of connection
databases currently in use.

CDB Size. The size in bytes of a connection
database.

Default Persistence Count. The number of times

the local transport entity attempts to establish a

connection when the remote transport entity
explicitly rejects the connection attempt. It is
assigned to new connections that request default
persistence count.

Default Abort Timeout. The amount of time (in
units of 51 ms.) an unacknowledged segment is
transmitted before automatically aborting the
connection. It is assigned to new connections
that request default abort timeout. A value of
OFFFFH indicates that an automatic abort is
never to occur.

Default Retransmit Timeout. The initial amount
of time (in units of 100 ms.) the transport layer
waits before retransmitting an unacknowledged
segment. This value is used on all new connec-
tions.

Minimum Retransmit Timeout. The minimum time
(in units of 100 ms.) the transport layer waits
before transmitting an unacknowledged
segment. The initial value is configurable, but
may be reset by the user.

Closing Abort Timeout. The amount of time (in
units of 51 ms.) the transport layer waits after
sending a connection close request before
aborting the connection.

Flow Control Window Timeout. Once a connec-
tion is established, the local transport sends flow
control window acknowledgement packets to the
remote entity at regular intervals to signal to the
remote entity that it is still functioning when no
other activity is on the connection. These
packets also inform the remote transport of the
most current local flow control window status.
This object specifies the time interval (in units of
100 ms.) between these packets.

Inactivity Maximum Count. The number of times
the local transport transmits an unacknow-
ledged flow control window acknowledgement
packet before aborting the connection.

Total Duplicate Segments Rejected. The total
number (over all connections) of received
segments that were rejected due to duplicate
sequence numbers.

Total Checksum Errors. The total number (over
all connections) of received segments that were
rejected because of checksum errors.

Total Retransmission. The total (sticky) number
of times (over all connections) that unacknow-
ledged segments were retransmitted.

iNA 960

iNA 960

Network Management Facility Objects

B.2 NMF/Transport Virtual Circuit Connection
Independent Objects (Cont’d.)

Type

Access

Size

Description

4012H

4013H

4014H

4015H

4016H
4017H
4018H

4019H

401AH

401BH

401CH

401DH

401EH

401FH

4020H

counter
(sticky)

value
value
value

value
value

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

RC

RS

RS

RS

RS

RS

RS

RS

RS

RS

WORD

BYTE

BYTE

WORD

BYTE
BYTE
WORD

BYTE

BYTE

BYTE

WORD

WORD

WORD

DWORD

WORD

Total Resource Errors. The total number (over
all connections) of segments discarded because
receive buffers were not available.

Maximum Network Address Length. The
maximum length of the network address.

Maximum TSAP-ID Length. The maximum length
of local or remote TSAP-ID’s.

Local NSAP-ID. The local NSAP-ID required to
interface to the underlying network layer.

Reserved.
Reserved.

Default Connection Negotiation Options. Speci-
fies the default connection negotiation options.

Maximum TPDU Size. The value (specified as a
power of 2) used for maximum TPDU size in the
negotiation phase of connection establishment
by the local transport entity.

No Additional Option Field. An additional option
field (as encoded in ISO 8073) used as an
assumed additional option parameter requested
by a remote entity when, in fact, no such option
parameter has been provided in the request.

No Maximum TPDU Size Field. The maximum
TPDU size (specified as a power of 2) used as
an assumed maximum TPDU size requested by
a remote entity when, in fact, no size was speci-
fied by the remote entity in its request.

Maximum Normal Window Size. The largest
receive buffer credit that can be reported on a
connection by the local TS to a remote TS for
normal sequence number format.

Maximum Extended Window Size. The largest
receive buffer credit that can be reported on a
connection by the local TS to a remote TS for
extended sequence number format.

Minimum Credit. The smailest receive buffer
credit that can be reported on a connection by
the local TS to a remote TS. This object has the
following values:

0 — window can close

1 — window can never close

Open Window Timeout. The interval (in units of
100 ms.) between successive acknowledge-
ments (AK TPDU’s) that announce the opening
of a previously closed credit window to avoid
flow control deadlock.

Maximum Open Window Count. The maximum
number of open window AK’s transmitted before
the sender assumes that the remote TS has
received the open window credit information.
When this count is reached, the local TS stops
transmitting the open window AK'’s.

B-3

B.3 NMF/Transport Virtual Circuit Connection
Dependent Objects

Type

Access

Size

Description

4081H

4082H

4083H

4084H

4085H

4086H

4087H

4088H

4089H

408AH

408BH

408CH

408DH

408EH

408FH

value

value

value

value

value

parameter

parameter

parameter

value

counter
(sticky)

counter
(sticky)

counter
(sticky)

value

value

value

R

R

RS

RS

RS

RC

RC

RC

BYTE

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

BYTE

BYTE

Local TSAP-ID. The local TSAP-ID for the speci-
fied connection.

Remote Network Address. The network address
of the entity at the remote end of the connection.
If the user performs a partially specified or
unspecified passive open, this object will be 0 until
the connection is established.

Remote TSAP-ID. The remote TSAP-ID for the
specified connection.

Connection State. The state of the connection.
This object has the following values:

0 — Listen 5 — Closed

1 — Cr Sent 6 — Open

2 — Ack Wait 7 — Calling

3 — Estab 8 — Cr Received

4 — Closing

Remote Connection ID. The connection ID of the
remote end of the specified connection. This
object is set after the connection is established.

Persistence Count. The number of times a
connection request is retransmitted when the
remote entity explicitly refuses it.

Abort Timeout. This has the same meaning as the
default abort timeout, but it is the actual abort
timeout used on a specific connection.

Retransmit Timeout. This has the same meaning
as the default retransmit timeout, but it is the
actual retransmit timeout used on a specific
connection.

Next Transmit Sequence Number. The sequence
number to be used with the next segment to be
transmitted (not always the highest).

Duplicate Segments Rejected. The total number
of duplicate received segments discarded by
transport on the specified connection.

Segments Retransmitted. The total number of
times that an unacknowledged segment has been
retransmitted over the specified connection.

Resource Errors. The total number of times that
segments received on the specified connection
were rejected because receive buffers were not
available.

Client Options. The options specified by the client
at the time the connection request was made.

Class Options. The ISO class of services and
sequence number format actually negotiated on
the connection. The only values are as follows:
40 — class 4 and normal (7-bit) format
42 — class 4 and extended (31-bit) format

Additional Options. The additional options actually
negotiated on the connection. Only bits 0 and 1
are meaningful. The values are as follows:

0 — no expedited service and checksum

1 — expedited service and checksum

2 — no expedited service and no checksum

3 — expedited service and no checksum

B-4

B.3 NMF/Transport Virtual Circuit Connection
Dependent Objects (Cont’d.)

Id Type Access Size Description

4090H value R BYTE Maximum TPDU Size. The negotiated maximum
TPDU size (as a power of 2) over the connection.

4091H value R WORD | Maximum TPDU Data Length. The maximum
length (in bytes) of the data that can be sent in
one TPDU; that is, the maximum TPDU size minus
the header length.

4092H value R WORD | /Inactivity Count. The number of times an unack-
nowledged flow control window acknowledge-
ment packet has been retransmitted over the
connection.

4093H value R — Reserved.

B.4 NMF/Transport Datagram Objects

Id Type Access Size Description
4100H value R BYTE Datagram Type. Set to 1.
4101H value R BYTE Datagram Receive Queue Size. The maximum
number of TSAP-ID’s for which the client can post
buffers.
4102H value R BYTE Reserved.
4103H counter RC WORD Total Datagrams Transmitted. The total number of
(sticky) datagrams transmitted.
4104H counter RC WORD Total Datagrams Received. The total number of
(sticky) datagrams received.
4105H counter RC WORD Total Datagram Resource Errors. The total number
(sticky) of datagrams rejected due to lack of buffers.
4106H counter RC WORD Total Datagram Checksum Errors. The total
(sticky) number of datagrams rejected due to checksum
errors.
4107H counter RC WORD Total Datagram Address Errors. The total number
of datagrams rejected due to illegal address fields
in the header.

B.5 NMF/Boot Server Objects

Id Type Access Size Description

8000H value R WORD NMF Type. Reserved for future expansion. Set
to 1.

8001H value R 6 BYTES | Multicast Address of the boot server. Set at

) configuration time.

8002H value R WORD Maximum Number of Nodes that the boot
server can boot at the same time. Set at config-
uration time.

8003H value R WORD Maximum Number of Addresses in the boot
table.

B-6

B.5 NMF/Boot Server Objects (Cont’d.)

Id Type Access Size Description

8004H | parameter RS — The Boot Table. The first WORD specifies the
number of addresses in the table.

8005H value R WORD Number of Class Codes recognized by the boot
server. Set at configuration time.

8006H value R — List of Class Codes that the boot server recog-
nizes. The size of this object is 2X number of
class codes BYTES. Set at configuration time.

80FFH value R WORD Number of NMF’s present in the system.

Reserved for future expansion. Set to 1.

APPENDIX C
SAMPLE USER ROUTINES
FOR COMPONENT SUPPORT

This appendix contains sample user-written routines for the iSBC 552. Use these
routines as a guideline when writing routines for your own specific hardware.

The iISBC 552 offers a low-cost Ethernet controller module for MULTIBUS-based
systems. The iISBC 552 has the following features:

+ 8 MHz 80186/82586 co-processors

+ 82501 Ethernet Serial Interface chip '

* 16 data bit/24 address bit MULTIBUS master capability
e 256 Kbytes of RAM/ROM

The iSBC 552 is totally memory-mapped. Local address bits 18 and 19 are decoded
to divide the 1-Mbyte 80186 memory space into four 256-Kbyte quadrants. The upper
quadrant (768K to 1M) and lower quadrant (O to 256K) are used solely for local
memory and will access the same physical memory. Quadrant 2 (256K to 512K) is
used for memory-mapped local I/O. Quadrant 3 (512K to 768K) is used as the 256K
window to the 16-Mbyte MULTIBUS memory.

The listings consist of 4 modules. The first module, BOOT_START, contains the
initialization code for the BCBI interface and the routines GEN_INT and
CLEAR_INT.

The second module, INITIALIZE_552, contains the routine that initializes the chip-
select lines of the 80186 processor.

The third module, LOC_TO_SYS_ADDR_FOR_552, contains the routine
LOC_TO_SYS_ADDR.

The last module, COPY, contains the routines SYS_TO_LOC_ADDR,
SAVE_ADDRESS_SPACE, and RESTORE_ADDRESS_SPACE.

SERIES-II1 8086/8087/8088 MACRO ASSEMBLER V1.1 ASSEMBLY OF MODULE
BOOT_START NO OBJECT MODULE REQUESTED
ASSEMBLER INVOKED BY: ASMBG6 .86 :F1:LLIBOT.A86 PAGEWIDTH(78) NOOJ

LocC 0BJ LINE SOURCE
1 NAME BOOT_START
2
3 AR EE RSN R A I
4 i
5 ;3 MODULE NAME: BOOT START ENTRY
6 i
7 ;73 FUNCTION: THIS IS THE START OF THE
8 i MAIN PROGRAM. IT ASSUMES THAT
9 s INA HAS ALREADY BEEN LOADED
10 i3 ONTO THE RAM.
1" s
12 R AR R R R
13
14 CGROUP GROUP CODE
15 DGROUP GROUP DATA
16 ASSUME CS:CGROUP, DS:DGROUP

Sample User Routines for Component Support

0000

0001

0003

0053

0053

0057

79
2999

(490
29979

2

2999

(2
2999

FF22

FFFF

FF28

FF24

0800
1000
1800
4000
4000

2100
2102
2104
2106
2108
210A

0000
0001
0002
0004
0006
0007
0008

17
18
19
20
21
22
23

24
25
26
27

28

29
30
31
32
33
34
35
36
37

38
39
40
41

42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

DATA SEGMENT PUBLIC

SAVED_INT_TYPE
SAVED_INT_ADDR

MY_STACK

MY_STACK_TOP

PUBLIC INIT_WINDOMW

INIT_WINDOMW

BCB_LOC

DATA ENDS

‘DATA’

DB ?
DW ?

DW 40 DUP (?)

LABEL WORD

BCB_LOC

DW 2 DUP (7)

DW 2 DUP (?)

iNA 960

......................................

L R R R A A R T I A A T A T T T T T A A A A T IO A A |

;3 LITERAL DECLS USED BY THIS ROUTINE

......................................

2 T R R O A A A S A TS N A T T O A I A T I N I B

PIC_EQI_P
EXTRN
tABS s CNFG PARM

MASK_ALL_INTS

PIC_MASK_P
EXTRN
; CNFG PARM

PIC_POLL_P
EXTRN
; CNFG PARM

SCP_O0_OFF
SCP_1_0FF
SCP_2_0FF
SCP_BASE
BASE_552

LED_ADDR
MB_WINDOW
MB_IO_ENABLE
MB_IO0_DISABLE
MB_INT_DISABLE
MB_INT_ENABLE

1SCP_STR STRUC
BUSY
STATUS
SCB_OFFSET
SCB_BASE_1
SCB_BASE_?2
UNUSED_1
INT_TYPE

EQU 0FF22H

CA_INT_VECTOR_TYPE

EQU OFFFFH

EQU O0FF28H
ENABLE_CA:ABS

EQU 0FF24H
INT_FROM_USER

EQU 0800H
EQU 1000H
EQU 1800H
EQU 4000H
EQU 4000H

EQU 2100H
EQU 2102H
EQU 2104H
EQU 2106H
EQU 2108H
EQU 210AH

DB
DB
DU
DU
DB
DB
DB

B I JRRT RS)

tABS

iNA 960

0009
000A

0000
0000
0001
0002

0003
0006
0008
000B
000E

0010
0010

0013

0014
0014
0015
0017
0019

001B

001¢C

001F
0021

0023

0025
0025

0026

S5E

58

SA
BF0040
8EC7
BFo0221
268815

B208

B30CO00

50

F8

D1DO
D1D2
E2F9

58

250F00

8BD8
8EC?2

FFE®G

FA

B8----

67
68
69
70
71
72
73
74
75
76
77
78
79
810
81
g2
83
84
85
86
87
88

89
90
91
92
93
94
95
96

97
98
99

100
101
102
103
104
105
106
107
108
109
110
U
112
113
114
115
116
117
118
119
120
121
122

Sample User Routines for Component Support

UNUSED_2 DB ?
INT_ADDR DW ?
ISCP_STR ENDS

CODE SEGMENT BYTE PUBLIC ‘CODE’
EXTRN CONFIDENCE_TESTS:NEAR
EXTRN INIT_HARD:NEAR

EXTRN BEGIN_AIM:NEAR

EXTRN SYS_TO_LOC_ADDR:NEAR

......................................

E N T N T T T O T A T A N A A T A O I A R B B A I

i SETS THE MBUS WINDOW AND RETURNS
i PTR TO ACCESS THE LOCATION

......................................

E I T A T O T A T R N U T A G A N A T T A B H I B I

SET_WINDOMW:
POP SI ; THE RETURN ADDRESS
POP AX ;7 THE LSW
POP DX ; THE MSHW

Mov DI, BASE_S552 i SET THE MBUS
WINDOMW

MOV ES, DI

MOV DI, MB_WINDOW

mov BYTE PTR ES:[DI], DL

Mov DL, 8 ;3 MBUS MAPPING AT 800007

STLA_1:

Moy CX, 12 ; CONVERT LOWCDL):BX TO
POINTER

PUSH AX ;+ SAVE LSW

; GET BASE OF THE POINTER IN THE DX
REGISTER

STLA_2:
cLC
RCL AX, 1
RCL DX, 1

LOOP STLA_2

; GET THE OFFSET OF THE POINTER IN AX
POP AKX
AND AX, OFH

Mov BX, AX ; RETURN AS POINTER
mMgv ES, DX

JMP S ;i RETURN

......................................

E2 N T N T T T T A (O O A N A N A O O T T A T R O I T O

i3 THE BEGINNING

......................................

E2NE T T R T T N T N T I T A O O T A O O A T T O A A N N IS O |

PUBLIC BOOT_START_ENTRY
BOOT_START_ENTRY:
CLI

Mav AX, DGROUP ; INIT SS,DS AND SP

0029
0028
002D

0030

0031
0034
0037

0038
003B
003B
003C
0040

0042

0045
0048

0049

004C
004E
0051
0054
0057

005A
005D
0060

0062
0063
0064

0067
0068

006C

0070
0073
0077

0074
007E
0082
0084

0088

008B
008E

0092

8EDS
8EDO
BCS53090 R

50

B8000O E
BA2BFF
EF

BA24FF

ED
81F20000 E
75F9

B8000O E

BA22FF
EF

BB0040

8EC3

BB0008
268A07
BB0O010O
268A27

BB0018
268A17
32F6

52
50
E899FF

58
26884701

268A4708

A20000 R
268B470A
A30100 R

268B4704

268A5706
32F6
26034702
83D200

A35700 R
89165900 R

C70653000000 R

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144

145
146
147
148
149

150
151
152
153
154
155
156
157
158
159

160
161

162
163
164
165
166

167
168
169
170
171
172
173
174
175

MoV
MOV
MoV

DS, AX
§S, AX
SP, OFFSET DGROUP:MY_STACK_TOP

; CALL CONFIDENCE TESTS

PUSH AX : SAVE RESULT
MOV AX, ENABLE_CA : UNMASK Ca
MOV DX, PIC_MASK_P
0UT DX, AX
MOV DX, PIC_POLL_P

WAIT_CA:

IN AX, DX

XOR DX, INT_FROM_USER

JNE WAIT_CA

MOV AX, CA_INT_VECTOR_TYPE ; EOI THE

PIC
MOV DX, PIC_EOI_P
0UT DX, AX
MOV BX, SCP_BASE : GET SCP AS

DWORD
MOV ES, BX
MOV BX, SCP_O0_OFF
MOV AL, BYTE PTR ES:[BX]

MOY BX, SCP_1_OFF

MOV AW, BYTE PTR ES:[BX]

MOV BX, SCP_2_OFF

MOV DL, BYTE PTR ES:[BX]

XOR DH, DH

PUSH DX 1 GET PTR TO ISCP

PUSH AX

CALL SET_WINDOW

POP AX : RESULT OF CONFIDENCE TEST
MOV ES:[BX].STATUS, AL

MOV AL, ES:[BX].INT_TYPE ; SAVE INT

INFO
MOV SAVED_INT_TYPE, AL
MOV AX, ES:[BX].INT_ADDR
MOV SAVED_INT_ADDR, AKX
MOV AX, ES:[BX].SCB_BASE_1 ; GET BC

ADDR
MOV DL, ES:[BX).SCB_BASE_2
X0R H, DH
ADD AX, ES:[BX].SCB_OFFSET
ADC DX, 0
MOV BCB_LOC, AX ; AND SAVE IT
MOV BCB_LOC+2, DX
MOV INIT_WINDOW, 0 ; NOTE THE VALUE

OF INITIAL WINDOW

0098

009¢C

00A0

00A1
00A2

00AS

00AB
00A8

00AB

00AD
00B9O
00B4

00B6
00B8

00BA

00BC

00BF
0oce2

00C3
00C3
goce
00CA
gocc
00CF
00D0
00D
00D4
00DS8

00D9
00D9
0oDC
00DF
00ED
00E3
00E6

89165500

26060700

52

50
EBSBFF

£E90000

BB0040

8EC3

A0DDO0OO
8B160100
FECS

7408
FECS

741D

BBOA21

26881F
c3

A15700
8BOESS00
03cC2
83D100
51

S0
EB000O
26C607FF
c3

BB0421
26881F
EE
BB0621
26881F
C3

176
177
178
179
180

181
182
183
184

185
186
187
188
189
190
191

192
193
194
195
196

197
198

199

200
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

MoV

Mov

PUSH
BCB

PUSH

CALL

JMP
SYSTEM

INIT_WINDOW+2, DX

ES:[BX].BUSY, 0; CLEAR BUSY BIT

DX ;

AX
SET_WINDOW

BEGIN_AIM ;

SET WINDOW TO

START COMM

RNE T T T A N T T TN TR T T T N A TN TN S T N N O N A S T A B O B

i3 GENERATES INT TOD HOST

......................................

E T T N T T T R T T A T A TN A N A T S T N T T N T T N I N B

PUBLIC GEN_INT
GEN_INT:
MOV BX, BASE_GS552
4000H
MOV ES, BX
MOV AL, SAVED_INT_TYP
MoV DX, SAVED_INT_ADD
DEC AL
MEM MAPPED
JZ MEM_MAPPED_INT
DEC AL
[/0 MAPPED
JZ [0_MAPPED_INT
MOV BX, MB_INT_ENABLE
MODE
MOV BYTE PTR ES:[BX],
RET

MEM MAPPED INT:

MOV
Mmav
ADD
ADC
PUSH
PUSH
CALL
MoV
RET

AX, BCB_LOC
Cx, BCB_LOC+2

AX, DX
cCx, o0
CX

AX

SYS_TO_LOC_ADDR
BYTE PTR ES:[BX],

[0_MAPPED_INT:

Mov
Mav
ouT
MoV
Mov
RET

BX, MB_IO_ENABLE

BYTE PTR ES:[BX],

DX, AL

BX, MB_IO_DISABLE
BYTE PTR ES:[BX].

1

E
R

i

1

BL

INIT ES WITH

IF AL=1

THEN

[F AL=2 THEN

; ELSE LEVEL

0FFH

BL

BL

L2 T T I TS L T R N T IS T T S T N D B S O B B ¢

33 CLEARS THE

[N I N N T R O T B I |

INT GENED TOD HOST

......................................

EJNE T T N T T T T R I N N O AN A N N T S O T T O IR T A B A |

PUBLIC

CLEAR_INT

00E7 228 CLEAR_INT:

00E7 ADOO0DO R 229 MOV AL, SAVED_INT_TYPE
00EA 0ACO 230 OR AL, AL
00EC 7508 231 JNZ CI_t
232
00EE BB0O040 233 mMov BX, BASE_G552
00F1 BEC3 234 MoV ES, BX
00F3 BBO0821 235 MOV BX, MB_INT_DISABLE
00F6 26881F 236 mMov BYTE PTR ES:[BX], BL
237
00F9 238 CI_1:
00F9 C3 239 RET
240
---- 241 CODE ENDS
242
243 END BOOT_START_ENTRY

ASSEMBLY COMPLETE, NO ERRORS FOUND

SERIES-III 8086/8087/8088 MACRO ASSEMBLER V1.1 ASSEMBLY OF MODULE
INITIALIZE_552

NO OBJECT MODULE REQUESTED

ASSEMBLER INVOKED BY: ASM86.86 :F1:INIS52.A86 PAGEWIDTH(78) NOOJ

LOC O0BJ LINE SOURCE
1 NAME INITIALIZE_S52
2 AR R R RN N R I
3 i
4 HE MODULE NAME:
5 - INITIALIZES THE 552 BOARD.
6 i3
7 s FUNCTION: THIS MODULE
8 s INIT_HARD- INITIALIZES THE
9 s PCS AND MCS OF THE 80186
10 i3
" AR R R R R R R R
12
13 CGROUP GROUP CODE
14 ASSUME CS:CGROUP
15
16 SRR R R AT EE ERH I
17 i LITERAL DEFS FOR HARDWARE
18 HH INITIALIZATION
19 R EE R R RIS S A I IR
FFAO 20 umMcs_p EQU OFFAOH
c038 21 UMCS_VAL EQU 0C038H
22
FFA2 23 LMCS_P EQU 0FFA2H
3FF8 24 LMCS_VAL EQU 03FF8H
25
FFAS 26 MPCS_P EQU 0FFASH
81F8 27 BLOCK_SIZE_8K EQU 081F8H
28
FFAG 29 MMCS_P EQU 0FFAGH
41F8 30 MCS_BASE EQU 041F8H
31
FFA4 32 PACS_P EQU 0FFA4H

4228

0000
0000
0003
0006

0007
000A
000D

000E
0011
0014

0015
0018
001B
0o01¢C
001F
0022

o023

ASSEMBLY COMPLETE,

B838C0
BAAOFF
EF

BBF83F
BAAZFF
EF

B8F881
BAASFF
EF

B8F841
BAAGFF
EF

BB2842
BAA4FF
EF

€3

SERIES-III

ASSEMBLER

Loc

0BJ

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

ASM8E.

LINE

S W 0 N, Ul s WD

—_

PCS_BASE EaQu 04228H

CODE SEGMENT BYTE PUBLIC ‘CODE’

......................................

I T T T S A I O T TN O N N TN O O N O N T T R TS B B B |

i INITIALIZES THE 552 HARDWARE, THE
1 PCS AND MCS

] this consists of initializing the
H chip selects lines of the 80186,
1 sets the esi chip

H into non loop back mode.

L2 T T T N T R I I O AN T A O O A T O T B O T O |

1
PUBLIC INIT_HARD

INIT_HARD:
MOV AX, UMCS_VAL
MOV DX, UMCS_P
ouT DX, AX
MOV AX, LMCS_VAL
MOV DX, LMCS_P
oUT DX, AX
MOV AX, BLOCK_SIZE_B8K
Mov DX, MPCS_P
guT DX, AX
MOV AX, MCS_BASE
MOV DX, MMCS_P
ouT DX, AX
MOV AX, PCS_BASE
mav DX, PACS_P
ouT DX, AX
RET

CODE ENDS

END

NO ERRORS FOUND

8086/8087/8088 MACRO ASSEMBLER V1.1 ASSEMBLY OF MODULE
LOC_TO_SYS_ADR_FOR_552

NO OBJECT MODULE REQUESTED

INVOKED BY:

86 :F1:LTSA.A86 PAGEWIDTH(78) NOOJ
SOURCE

NAME LOC_TO_SYS_ADR_FOR_552

T T T T L T I T A A A O S T TR A N I T N I |

33 MODULE NAME:
;33 LOCAL TO SYSTEM ADDRESS

HE FUNCTION:

HE CONVERTS PLM86 POINTER TO A 32
33 BIT ABSOLUTE ADDRESS AND THEN
H SETS BIT 25 T0 1

" -

12 B CALLING SEQUENCE:
13 s ADDR = LOC_TO_SYS_ADDRC PTR)}
14 HE
15 R R RN RN R I
16 CGROUP GROUP CODE
17 ASSUME CS:CGROUP
18
.- 19 CODE SEGMENT BYTE PUBLIC ’CODE”
20
21 PUBLIC LOC_TO_SYS_ADDR
0000 22 LOC_TO_SYS_ADDR:
0000 SF 23 POP DI ; THE RETURN ADDRESS
0001 SE 24 POP SI i THE OFFSET
0002 58 25 POP AX i THE BASE
26
0003 33D2 27 X0R DX, DX i CONVERT BASE TO
DWORD
0005 B90400 28 MOV CXx, 4
0008 29 LTSA_1:
0008 F8 30 cLe
0009 D1DO 31 RCL AX, 1
000B D1D2 32 RCL DX, 1
000D E2F9 33 LODP LTSA_T
34
000F 03C6 35 ADD AX, SI i AND ADD IT TD THE
OFFSET
0011 81D20001 36 ADC DX, 100H s SETTING BIT 25 TO 1
37
0015 8BD8 38 MOV BX, AX ; RETURN AS POINTER AS
WELL
0017 BEC2 39 MOV ES, DX
40
0019 FFE7 41 JMP DI i RETURN
42
---- 43 CODE ENDS
44 END

ASSEMBLY COMPLETE, NO ERRORS FOUND

SERIES-II] 8(086/8087/8088 MACRO ASSEMBLER V1.1 ASSEMBLY OF MODULE COPY
NGO OBJECT MODULE REQUESTED
ASSEMBLER INVOKED BY: ASMB86.86 :F1:COPY.A86 PAGEWIDTH(78) NOOJ

Lac 0BJ LINE SOURCE
1 NAME cCoPY
2 AR ERREEREEEEEE IR IR I I
3 33 THIS MODULE CONTAINS THE ROUTINES:
4 H 1. SYS_TO_LOC_ADDR
5] 2. SAVE_ADDRESS_SPACE
6 HH 3. RESTORE_ADDRESS_SPACE
7 R I A I I I I A A A S A AR AR TR AR A AR R T A A A A T I A
4000 8 BASE_5652 EQu 4000H
2102 9 MB_WINDOW EQU 2102H
10
11 CGROUP GROUP CODE

0000 ?°?

0000

0000 SE
0001 58
0002 SA

0003 0AFG
0005 7511

0007 BFOO040

000A BEC?7

000C BFoO221

000F 268815

0012 88160000 R

0016 B208

0018
0018 B30COO

001B S0

001¢C

001C F8
001D D1DO
001F D1D2
0021 E2F9

0023 58
0024 250F00

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
38
37
38
39
40
41
42
43
44
45

46
47
48
49

50
51
52
53

54
55
56

57
58
59
60
61
62
63
64
65
66

DGROUP GROUP DATA
ASSUME CS:CGROUP, DS:DGROUP

DATA SEGMENT PUBLIC ’‘DATA’
CUR_WINDOMW DB ?

i TO SAVE THE VALUE OF THE CURRENT
; MBUS WINDOMW

DATA ENDS

CODE SEGMENT BYTE PUBLIC ‘CODE’

L I T N R N T R R T T T T N T N O T T S T O T T R T IO I)

] FUNCTION:

13 IF ADDRESS » 16 MBYTES

o CONVERTS 24 BIT ADDRESS TO PLM86G
D POINTER

i3 ELSE SETS MULTIBUS WINDOW TO ACCESS
i 24 BIT ADDRESS AND RETURNS POINTER
] TO ACCESS THE ADDRESS

P CALLING SEQUENCE:
;3 PTR = SYS_TO_LOC_ADDRC ADDRESS)

LR A e e e e R A D A e e e B R |

PUBLIC SYS_TO_LOC_ADDR
SYS_TO_LOC_ADDR:

POoP SI i THE RETURN ADDRESS

POP AX ; THE LSW OF THE ADDRESS
POP DX ;i THE MSW OF THE ADDRESS
OR DH, DH ; GREATER THAN 16 MBYTES
JNZ STLA_A ; IT NOT THEN GOTO STLA_1

MOV DI, BASE_552 ; SET THE MBUS
WINDOMW

mov ES, DI

MOV DI, MB_WINDOW

Mov BYTE PTR ES:[DI], DL

MOV CUR_WINDOW, DL 5 NOTE THE ADDRESS
OF CURRENT WIDOMW

mov DL, 8 ; MBUS MAPPING AT 8000:°?
STLA_1:

Mov CXx, 12 ; CONVERT LOWCDL):BX
TO POINTER

PUSH AX ; SAVE LSHW

; GET BASE OF THE POINTER IN THE DX

REGISTER
STLA 2:
cLC
RCL AX, 1
RCL DX, 1

LOOP STLA_2

; GET THE OFFSET OF THE POINTER IN AX
POP AX
AND AX, OFH

C-9

0027 8BDS8
0029 8EC2

002B FFE®

002D
002D S5F
002E FF360000 R

0032 FFE7

0034

0034 5F
0035 58
0036 BBO0040
0039 BEC3

003B BBO0221
003E 268807

0041 FFE7

ASSEMBLY COMPLETE, NO

67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91

92

93
94
95
96
97
98
99

MoV BX, AX ; RETURN AS POINTER
MOV ES, DX

JMP S i RETURN

LI I T R R A A A R A A A D 2 I I I R A A A T BT AN N I B O I B I

33 SAVES THE PARM PERTAINING TO THE
o CURRENT ADDRESS SPACE ON THE STACK

LR A S T A R R A I R A A I A R A I I R I T A N A R T I T N A B I |

PUBLIC SAVE_ADDRESS_SPACE
SAVE_ADDRESS_SPACE:

POP DI ; THE RETURN ADDRESS

PUSH WORD PTR CUR_WINDOW ; THE CURRENT
ADDR SPACE

JMP DI i RETURN

......................................

T 1211113112311 1133113111331 111113119

i RESTORES THE ADDR SPACE SAVED BY
HE THE PRECEEDING CALL

EIN I I A R R R T A I A A A A N A 2 R T I I I A T T I R I T N A B IO A B I

PUBLIC RESTORE_ADDRESS_SPACE
RESTORE_ADDRESS_SPACE:
POP DI ; THE RETURN ADDRESS
POP AX ; THE OLD ADDR SPACE

MoV BX, BASE_552 ; NOW SET THE
ADDRESS SPACE OF

mov ES, BX ;7 THE 552 TO THAT
STORED IN AX

mMov BX, MB_WINDOW

MOV BYTE PTR ES:[BX], AL

JMP DI ;7 RETURN
CODE ENDS
END

ERRORS FOUND

APPENDIX D
CONFIGURE COMMAND PARAMETERS

The data link CONFIGURE command is used to load the 82568 (or the iSBC 550
FW) with its operating parameters. In addition, the DL_CONF configuration macro
is used to load the operating parameters in a similar manner during initialization.
This appendix gives the format for the CONFIGURE command argument field and
describes the command parameters. For more information on the particular param-
eters, see the 82586 Reference Manual or the iSBC 550 Ethernet Controller Kit
Programmer’s Manual.

Figure D-1 shows the format of the CONFIGURE command argument field. This
field has the same format for both the 82586 and iSBC 550FW controllers.

Table D-1 lists the CONFIGURE command parameters. The iISBC S50FW control-
ler only recognizes a subset of the 82586 configuration parameters. Those relevant to
the iISBC 550FW controller are identified by an asterisk beside the parameter

Figure D-1. CONFIGURE Command Argument Field

mnemonic.
15 (o]
I I 1 |
FIFO-LIM BYTE-CNT oo
| | | 1
T 1 1
EXT INT ’ AC ' sAav | sRpy 02
LPBK LPBK PREAM-LEN LOC ADDR-LEN BF ARDY
| | l
1 I T T [I
INTERFRAME-SPACING 32? EXP-PRIO LIN- PRIO 04
] | | 1 1 |
1 I T] 1 T
RETRY-NUM SLT-TIME(H} SLOT-TIME(L) 06
|] l
| | T
CcDT CRS BT CRC NCRC TONO |MANCH BC
SRC COTF SRC CRSF PAD | gy 16 ws | crs | wRz | DS 08
1]]
MIN-FRAME-LEN 0A
| | | |

122193-10

CONFIGURE Command Parameters

Table D-1. Communications Controller Configuration Parameters

Byte Bit(s) Mnemonic Default Description
1 0-3 BYTE-CNT* — Byte count. Number of bytes, including this one,
that hold parameters to be configured. A value
greater than 12 is truncated to 12. A value less
than 4 is interpreted as 4. Iin word mode, if the
value is an odd number, the last byte is truncated.
0-3 FIFO-LIM FIFO limit value.
6 SRDY/ARDY 0 — SRDY/ARDY pin operates as ARDY
(internal synchronization).
1 — SRDY/ARDY pin operates as SRDY
(external synchronization).
7 SAV-BF* 0 0 — Received bad frames are not saved in
memory.
1 — Received bad frames are saved in memory.
4 0-2 ADDR-LEN 6 Number of address bytes. Note: 7 is interpreted
as 0.
3 AC-LOC* 0 0 — Address and Type fields are separated from
data and associated with Transmit
Command Block or Receive Frame
Descriptor. For transmitted frame, the
Source Address is generated by the 82586.
1 — Address and Type fields are part of the
transmit/receive data buffers, including the
Source Address.
4-5 PREAM-LEN 2 Preamble Length, including the Beginning of
Frame indicator. Values are as follows:
00 — 2 bytes
01 — 4 bytes
10 — 8 bytes
11 — 16 bytes
6 INT-LPBK* 0 0 — No internal loopback.
1 — Internal loopback (if bit 7 = 1).
7 EXT-LPBK 0 0 — No external loopback.
1 — External loopback.
5 0-2 LIN-PRIO Linear Priority.
4-6 EXP-PRIO Exponential Priority.
7 BOF-MET Exponential Backoff Method.
0 — Ethernet.
1 — Short Topology and/or Low Bit Rate
(Interframe Spacing shorter than the Slot
Time).
6 0-7 IF-SPACING 96 Interframe Spacing in TXC period units. A value
less than 32 is interpreted as 32.
0-7 SLT-TM(L) 0 Slot Time number, low byte.
0-2 SLT-TM(H) 1 Slot Time number, high byte. Slot Time is the
(512) number of TXC period units. Slot Time number
= 0 is interpreted as 2048 (211).
4-7 RETRY-NUM~ 15 Number of transmission retries on collisions.
9 0 PRM= Promiscuous Mode.
0 — Non-promiscuous address filtering mode.
1 — Promiscuous mode.
1 BC-DIS+ 0 Broadcast Disable.
0 — Broadcasted frames accepted.
1 — Broadcasted frames rejected.
2 MANCH/NRZ 0 Manchester or NRZ encoding/decoding.

0 — NRZ.
1 — Manchester.

iNA 960

iNA 960

CONFIGURE Command Parameters

Table D-1. Communications Controller Configuration Parameters (Cont’d.)
Byte Bit(s) Mnemonic Default Description
3 TONO-CRS 0 Transmit on No Carrier Sense.

0 — Cease transmission if CRS goes inactive
during frame transmission (after pream-
ble is sent).

1 — Continue transmission even if there is No
Carrier Sense.

4 NCRC-INS 0 No CRC Insertion.

0 — 82586 generates and appends CRC to
transmitted frames.

1 — Disables the internal logic that generates
CRC.

5 CRC-16 0 CRC Type.
0 — 32-bit Autodin I CRC polynomial.
1 — 16-bit CCITT CRC polynomial.

6 BT-STF 0 Bitstuffing.

0 — End of Carrier mode (Ethernet).

1 — HDLC-like Bitstuffing mode.

7 PAD 0 Padding. Note: PAD has meaning only for
Bitstuffing. In the End of Carrier mode, PAD is
internally forced to 0.

0 — No Padding.

1 — Perform padding by transmitting flags for
the rest of the Slot Time.

10 0-2 CRSF 0 Carrier Sense Filter bits.
3 CRS-SRC Carrier Sense Source. -

0 — Carrier Sense signal externally
generated.

1 — Carrier Sense signal internally generated.

4-6 CDTF Collision Detect Filter bits.
7 CDT-SRC 0 Collision Detect Source.

0 — Collision Detect signal externally
generated.

1 — Collision Detect signal internally
generated. (Works for a transceiver that
does not feed back the transmitted signal
on the receive pair).

11 0-7 MIN-FRM-LEN 64 Minimum Frame Length in bytes. Frames shorter

than MIN-FRM-LEN are treated as bad frames.

APPENDIX E
MULTIBUS® INTERPROCESSOR
PROTOCOL (MIP)

E.1 What is MIP?

The MULTIBUS Interprocessor Protocol (MIP) is a specification of a set of mecha-
nisms and protocols that enable reliable and efficient exchange of data among tasks
executing on various single-board computers connected to a common MULTIBUS
system bus. Since MIP is a specification, it becomes useful only when it is imple-
mented. This implementation is known as a MIP facility. The MIP specification
ensures compatibility among MIP facilities. For an example of how MIP facilities
are used in a MULTIBUS configuration of single-board computers, see Figure E-1.

MIP DEVICE

TASK TASK TASK
1 2

|

|

J A I
L__q.. [E— | NON-MIP NON-MIP

|

|

I

Y DEVICE DEVICE

MIP FACILITY

I
| | i
| | l
MIP FACILITY | | MIP FACILITY |
| |] I
| NON-MIP DEVICE I |
y
TASK TASK } { TASK {
MIP DEVICE | | MIP DEVICE |

Figure E-1. A MIP System 121769-21

MULTIBUS® Interprocessor Protocol (MIP)

E-2

MIP facilities isolate user tasks from the complexities of communicating across the
MULTIBUS system bus. Without MIP facilities tasks trying to communicate across
the bus would have to solve one or more of the following problems:

» The tasks may be running on different kinds of processors.
e The tasks may be running under different kinds of operating systems.
* Different boards have different MULTIBUS signaling mechanisms.

+ Not all boards share the same memory space.
e Boards sometimes share memory but reference it by different addresses.

» Tasks sharing areas of memory may interfere with one another if not correctly
coordinated.

MIP facilities hide these details from user tasks, thereby making it easier to develop
programs for MULTIBUS configurations that include several intelligent boards.

MIP supports communication among intelligent devices such as single-board
computers and intelligent device controllers. MIP can be used by any device on which
a MIP facility can be programmed. The design of MIP does not limit the kinds of
processors or operating systems that can execute MIP facilities. MIP can be used by
the MCS-85 or the iAPX-86 families of processors. MIP facilities can run under the
ISIS-I1, iRMX-80, iRMX-86 or iRMX-88 operating systems. In addition, MIP
facilities can run on other processors and under other operating systems.

E.2 Implementing MIP

When using this specification as a guide for implementing MIP, be aware that it
deals only with global concerns; implementational details (for example, initialization
or memory management) are not addressed. You may add features that enable your
implementation to better interface with its local environment (e.g., the processor, the
operating system, or application tasks). Be aware also that the specification assumes
a general processing environment., For example, the algorithms in the specification
are designed to work in a multitasking environment. If your environment is simpler,
you may streamline your implementation as long as you retain the basic protocol
needed to communicate with other versions of MIP.

When implementing MIP using the MIP model, follow these guidelines:

e If an element or structure is never shared with another MIP facility, then its
function in the model is merely descriptive.

e If an algorithm requires the cooperation of another communicating MIP facility,
then the algorithm is required.

E.3 The MIP Model
E.3.1 Basic Components

A software application consists of several functional units called tasks. A task may
be a program, a part of a program or a system of related programs.

MIP facilities support communication among tasks that are executing on different
processor boards attached to a common MULTIBUS system bus. A MIP facility is
a functioning implementation of MIP. The set of intercommunicating tasks, along
with associated processor boards, operating systems and MIP facilities, is called a

iNA 960

iNA 960

MULTIBUS® Interprocessor Protocol (MIP)

MIP system. Each processor board in a MIP system runs a MIP facility. Each MIP
facility may be a different implementation of MIP, but adherence to this specifica-
tion ensures compatibility among them.

The term device is used for each processor board in a MIP system. Each device has
a device-1D, a number ranging from zero to the number of devices communicating in
one MIP system (less 1).

Any two tasks can communicate with each other by passing data in an area of memory
that is accessible by both of the devices on which the tasks execute. A contiguous
block of memory through which data is passed under control of MIP facilities is
called a buffer. The content of buffers is not interpreted by MIP facilities.

Communications are delivered at ports. A port is a logical delivery mechanism that
enables delivery in first-in, first out (FIFO) order. In the MIP model, a port is repre-
sented as a queue. In some operating systems ports are called mailboxes or exchanges.
The ports at a given device are identified by a port-ID, a number that ranges from
zero to the number of ports (less 1) at the device. To provide system-wide addressa-
bility a port is also identified by a socket, a pair of items in the form (d,p) where d
is the device-ID and p is the port-1D.

Refer now to Figure E-2. Task B on device 0 is receiving communications at port I,
also known as socket (0,1). Task C is active at socket (1,0). Socket (1,1) is not active
(no task is receiving messages). Socket (2,1) is not defined.

Each port is also known by a function-name. Function-names are symbolic means of
identifying ports, making tasks that identify ports by their function-names independ-
ent of changes in configuration.

E.3.2 Three-Level Structure

The MIP model is composed of three levels of interface:
1. The virtual level, by which user tasks interact with the MIP facility.

2. The physical level, by which MIP facilities on different devices interact with
each other.

3. The logical level, which translates between the virtual level and the physical level.

An implementation of MIP must rigidly adhere to the functions, structures, and
constants specified here for the physical level. Any implementation that deviates from
this requirement is not compatible with the MIP architecture and may not be able to
communicate with other MIP facilities.

At the logical level, however, the algorithms and data structures specified here merely
impose a logical framework. Implementations need only satisfy the relationships
between events and actions, but do not need to duplicate either the algorithms or data
structures as defined.

The virtual level of the model simply suggests one way for tasks to view the MIP
system. Any other viewpoint will work as well as long as the information passed
through the virtual level interface is sufficient to accomplish the desired results. You
may wish to create an interface that is more consistent with the interfaces to the
operating system you are using.

Figure E-3 illustrates the three-level structure. Refer to this figure during the follow-
ing discussion. -

MULTIBUS® Interprocessor Protocol (MIP)

iNA 960

I
I
I
|
|
|
l

L

—
DEVICEO

TASK
A

I
|
|
I
I
|

MIP FACILITY

| DEVICE 1

TASK
C

1 L L

MIP FACILITY

¢

MULTIBUS®

[— L MIP FACILITY

il

=
0

DEVICE 2

]

Figure E-2. A Configuration of Ports

121769-22

iNA 960

VIRTUAL LEVEL

INTERFACE
PROCEDURES

USER TASK

ACTIVATE

RECEIVING RECEIVE

DEACTIVATE

FIND
SENDING

TRANSFER

Figure E-3. Data-Flow Structure of the MIP Model

LOGICAL LEVEL

PHYSICAL LEVEL

I INCOMING
REQUEST
I QUEUES
l DEVICE 0
PORT I
QUEUE
|
IN |
DEVICE 1
TASK l
DEVICEN
RESPONSE RESPONSE
TURNAROUND
QUEUE VRO
| OUTGOING
E REQUEST
3 l QUEUES
l (—'[E DEVICE
COMMAND Y ‘
READY | |
QUEUE
\

7 ouT
TASK

-/
| I
| DEVICE1

. L'E DEVICEN

121769-23

MULTIBUS® Interprocessor Protocol (MIP)

MULTIBUS® Interprocessor Protocol (MIP)

E-6

E.3.3 Physical Level

The physical communication mechanism between devices is a fixed size, undirec-
tional, FIFO queue called a request queue. An element in a request queue is known
as a request queue entry (RQE). An RQE is added to a request queue at the give
end of the queue and removed from the take end. Each request queue is managed by
a request queue descriptor (RQD). An RQD and associated RQE’s forming one queue
occupy a contiguous block of memory as illustrated in Figure E-4. The RQD keeps
track of the give and take locations, and other information about the queue.

Each request queue contains at least two RQEs, and each queue is accessed at the
give end by only one device and at the take end by only one device. This helps to
avoid memory contention between devices using the same queue.

Two-way communication between two devices is implemented by a pair of request
queues, known collectively as a channel. The device that uses the give end of a request
queue is the owner of the queue. The owner is responsible for initializing the queue.
See Figure E-5 for a conceptual diagram of a channel.

8 BYTES
REQUEST QUEUE
DESCRIPTOR { RQD
RQE
i
1
RQE
f
1 J
REQUEST QUEUE] ¢ :
ENTRIES} © :
9 <
l
1
RQE
[
1
RQE
L
16 BYTES
Figure E-4. Format of a Request Queue 121769-4

iNA 960

iNA 960 MULTIBUS® Interprocessor Protocol (MIP)

ENQUEUE DEQUEUE
OWNER) | > — >
(— __Rroo | _

r N
GIVE | | TAKE
SOURCE REQUEST QUEUE
RQE }— ROE — RQGE —{ RQE p——>

DEVICE DEVICE

REQUEST QUEUE SOURCE

A

RQE‘ — RQE — RQE |—{ RQE

TAKE | | GIVE
- = L _
- 5| RO ¢ —»| (OwNER)
DEQUEUE ENQUEUE
Figure E-5. Conceptual Structure of a Channel 121769-24

E.3.4 Logical Level

The logical level of the MIP model uses request queues to transfer requests between
source and destination MIP facilities. A tequest is either a command or a response.
A command is an order sent from a source MIP facility to a destination facility. A
response is returned from the destination facility to the source facility and indicates
the result of an attempt to deliver a command. The request queues carry these requests
and their associated parameters between MIP facilities. .

The primary procedures of a logical level are INSTASK and OUT$TASK. In the
MIP model these are viewed as asynchronous tasks, thereby giving the flexibility
needed to service several user tasks simultaneously in a multitasking environment.
Because they are asynchronous, all communication with INSTASK and OUT$TASK
is through queues. There is one port queue for each destination task and one response
queue for each source task. For each channel there is one command ready queue, one
response turnaround queue and one incoming and one outgoing request queue. (See
Figure E-3.)

In the MIP model the port queue may contain entire buffers for reasons discussed
below under “Buffer Movement.” The other queues contain only buffer descriptors,
thereby minimizing movement of data in memory.

INSTASK is driven by its incoming request queues. Requests in these queues may
be either commands or responses. Commands are routed to the port queue of the
destination port; a response is generated and queued in the response turnaround queue
to be sent back to the source MIP facility by OUT$TASK. Responses from the
incoming request queues are routed to the response queue of the originating task.

MULTIBUS® Interprocessor Protocol (MIP)

E-8

OUTS$TASK is driven by the command ready queues and response turnaround queues.
When OUTSTASK finds a command in one of its command ready queues, it routes
it to the destination device’s request queue. (When a destination device is not
functioning, OUT$TASK sends a response directly back to the sending task’s response
queue.) When OUTSTASK finds a response in one of the response turnaround queues,
it routes it to the request queue of the source tasks’s device.

E.3.5 Virtual Level
User tasks interact with the MIP facility via the following five procedures.

For sending buffers:
1. FIND locates a port, given its function-name.

2. TRANSFER initiates transfer of a buffer to a given port by placing a command
in the destination device’s command ready queue. TRANSFER then waits for a
response before allowing the sending task to continue.

For receiving buffers:

3. ACTIVATE attaches a task to a port and enables reception of messages at that
port.

4. RECEIVE completes transfer of a buffer by taking a command from the task’s
port queue. '

5. DEACTIVATE disconnects a task from its port and terminates reception of
commands at that port.

E.3.6 Memory Management

Devices in a MIP system communicate via shared memory. The abilities of the devices
to access the memory available on the MULTIBUS system bus can be used to define
a partition of that memory. The MIP model partitions all of memory into non-
overlapping segments so that, for any segment and any device, either the segment is
continuously addressable within the address space of the device, or the device cannot
address any of the segment.

Each segment that can be shared among devices is called an interdevice segment
(IDS) and is identified by an IDS-ID (a number ranging from zero to the number of
IDS’s (less 1) in the MIP system).

Figure E-6 presents a hypothetical memory configuration and shows how the address
space is partitioned. Processor A and processor C can communicate through IDS 1.
Processor B and processor C can communicate through IDS’s 0, 1 and 3. IDS 3,
however, is a segment of dual-ported memory and is accessed by processor B using a
different range of addresses than processor C uses. Memory segments A, B, and C
cannot be used for interdevice communication.

Table E-1 summarizes the memory configuration shown in Figure E-6. The table
shows the lowest address (the base address) by which each device can access each
IDS.

iNA 960

iNA 960 MULTIBUS® Interprocessor Protocol (MIP)

GLOBALMEMORYBOARD | [PROCESSORBOARD | DEvIcEo
WITH PRIVATE |
IFFFFH | MEMORY 7FFFH
[:H] | | [
0
: pn‘?c |, SEGMENT I

l
|
|
|
|
L —— ‘E__.___J [_]

— = |
A _] N
< MULTIBUS® MULTIBUS® >
N 1| (T || T L
e | e
st1|ce [~ — - j - B —] DEVZICE
| FFFFH 2FFFFH | | TEEFH }
[|Dzs . } | i |
1 PrOC | 28000H { l PROC . SEGMENT |
| n |
o E | oH I
l PROCESSOR BOARD
‘_PROCESSOR BOARD WITH DUAL-PORT MEMORY _—J WITH PRIVATE MEMORY _J
Figure E-6. Example of Interdevice Memory Segments 121769-6
Table E-1. System Interdevice Segment Table
Base Addresses
IDS Length
Device Device Device
o) 1 2
0 8000H 18000H 18000H
8000H 10000H 10000H 10000H
2 8000H 8000H 20000H

The MIP model contains special features for handling the ‘“‘alias” problem posed by
dual-port memory. Dual-port memory may be addressed differently from the
MULTIBUS system bus than from its local processor. The only case of a shared
memory address in a MIP system is the buffer pointer in the RQED. This pointer is
stored in a special format, called an IDS pointer, that is independent of the address-
ing peculiarities of the different devices in a MIP system. The MIP pointer is 32 bits
wide, permitting an addressing range of 4 gigabytes. The high-order word (16 bits)
of the pointer stores the low-order word of the address, and the low-order word of the
pointer stores the high-order word of the address. Within each word the low-order
byte is stored before the high-order byte.

E-9

MULTIBUS® Interprocessor Protocol (MIP)

E-10

When a buffer is transferred, the sending MIP facility converts the local buffer pointer
to the MIP pointer format and normalizes it by subtracting the IDS base address of
the sending device. Upon receiving the RQE, the receiving MIP facility adds the IDS
base address of the receiving device and converts to the format required by the receiv-
ing device’s processor. In this way user tasks are not concerned with these addressing
problems.

E.3.7 Buffer Movement

Generally, buffers are not physically moved from one memory location to another
any more often than necessary. Instead, buffers are referenced by descriptors in the
RQEs. However, the MIP model provides for operating systems whose memory
management policies forbid introduction of new objects (buffers) into their memory
spaces. When delivering a buffer, the MIP model copies the buffer from the space
managed by the sending operating system into the space managed by the receiving
operating system. In such a case a special status code is returned so that the sender
can know when the buffer is available for reuse.

E.3.8 Signaling

MIP uses a signaling mechanism for efficient utilization of the interdevice request
queues. The mechanism is a software handshake using flags in the signal bytes of the
RQDs. This mechanism permits MIP facilities to decrease their activity when queue
activity decreases.

INSTASK does not examine incoming request queues that are known to be empty.
When the OUTS$TASK of a sending facility puts a request in an outgoing queue that
was previously empty, it also sets a flag to signal the INSTASK of the receiving
facility that the queue is no longer empty.

Similarly, OUT$TASK does not examine outgoing request queues that are known to
be full. When the INSTASK of a receiving facility removes a request from an incom-
ing queue that was previously full, it also sets a flag to signal the OUT$TASK of the
sending facility that the queue is no longer full.

When a MIP facility sets a signal flag it may generate an interrupt for the destina-
tion processor. A MIP facility designed to respond to interrupts does not need to
examine its signal flags until it receives an interrupt. Reception of an interrupt signi-
fies either that a previously empty input queue now has at least one entry or that a
previously full output queue now has at least one empty space. By scanning the signal
flags of all devices, the MIP facility can determine which device generated the
interrupt.

There are several techniques available for generating interrupts. Which of the follow-
ing methods you use depends both on the capabilities of the devices involved and on
the requirements of the processing environment.

¢ NO INTERRUPT. The device polls the RQD. This technique is suitable if a
processor is running only one task or if there is some way of guaranteeing that
the RQDs are examined regularly.

+ [-O MAPPED. Some devices (such as the iSBC 550 Ethernet Communications

Board) recognize a write to a specific I-O port address as an interrupt. This
technique is highly reliable; it should be used when available.

« MEMORY MAPPED. Some devices (such as the iSBC 544 Intelligent Commu-
nications Controller) recognize a write to a specific memory address as an inter-
rupt. This technique is also reliable.

iNA 960

iNA 960 MULTIBUS® Interprocessor Protocol (MIP)

+« EDGE LEVEL. The sending device raises one of the MULTIBUS interrupt lines
after lowering it briefly. The rising edge triggers a processor interrupt. This
technique is available on most current Intel processor boards, such as the 80/30,
80/24, and 86/12A.

¢ PURE LEVEL. The sending device asserts one of the MULTIBUS interrupt
lines. (If the interrrupt line is shared by several devcies, the sending device must
drop the line after a limited time to avoid continually reinterrupting all the
devices.) If the receiving processor has interrupts enabled and is not busy
processing other interrupts during this time, an interrupt is triggered. You must
implement some kind of signal (such as another interrupt) that enables the
receiving device to cause the sending device to drop the interrupt line before the
receiving device services the interrupt. To guard against missed interrupts the
receiving MIP facility should periodically poll the signal flags in its incoming
request queues.

E.3.9 Error Handling

The MIP architecture provides for device failure. A device is assumed to have failed
if it does not return a response to a command within a certain time. The timeout
period is implementation-dependent.

When a MIP facility determines that a destination device has failed, it takes three
actions:

1. It sets flags to prevent any further activity on the channel.
2. It discards any responses destined for the dead device.

3. It returns all commands for the dead device to the tasks that invoked them (along
with an appropriate error indication).

Any further recovery actions are application dependent.

E.4 Procedural Specification
E.4.1 Data Types

The following data types are used in the algorithmic specification of MIP.
« BYTE. Standard 8-bit variable.

*» WORD. Two-byte variable.

o IDENTIFIER. Byte variable generally used as an index into an array.
o STATE. Byte variable restricted to state constants.

e« POINTER. Device-dependent address reference.

« IDSS$PTR. Two-word, device-independent address reference.

E.4.2 Processor-Dependent Subroutines

All machine-dependent logic in the algorithmic specification is isolated in the follow-
ing procedures. In addition to these procedures, the value NULL$PTR is used for
some unique pointer value that can serve to indicate a null value. For example:

DECLARE NULLS$PTR LITERALLY ‘0000H';

E-11

MULTIBUS?® Interprocessor Protocol (MIP)

PTRSADD

Any implementation of MIP must handle pointer arithmetic according to the require-
ments of the processor that executes that implementation. Pointer arithmetic is used
to calculate the addresses of request queue elements.

PTR$ADD: PROCEDURE (PTR, SCALAR) POINTER;

DECLARE PTR POINTER, /+ Input. »/
SCALAR BYTE;

DECLARE NEWSPTR POINTER; /+ Local. =/

/ *

Using knowledge of processor-dependent POINTER

implementation, add PTR to SCALAR giving NEWSPTR.

%/
RETURN NEWSPTR;

END PTR$ADD;

E.4.3 CONVERTSLOCALS$ADR

This routine converts from an address pointer in the local address space to an IDS-
relative pointer in the IDS$PTR format. Details of this conversion depend on the
pointed format dictated by the local processor.

CONVERTS$LOCAL$ADR: PROCEDURE (IDS$ID, BUFFERS$PTR,

MIP$PTR);
DECLARE IDSS$ID IDENTIFIER, /+ Input. »/
BUFFERSPTR POINTER;
DECLARE MIPS$PTR IDS$PTR; /+ Output. +/
!+

Get base address for IDS$ID from IDST.
Subtract from BUFFERS$SPTR.
%/

END CONVERTS$LOCALSADR;

E.4.4 CONVERTSSYSTEMSADR

This routine converts from an IDS-relative pointer in the IDS$PTR format to an
address pointer in the iocal address space. Detaiis of this conversion depend on the
pointer format dictated by the local processor.

CONVERT$SYSTEM$ADR: PROCEDURE (IDS$ID, MIPS$PTR,
BUFFERS$PTR);

DECLARE IDSS$ID IDENTIFIER, /+ Input. »f
MIP$PTR IDS$PTR;

iNA 960

iNA 960 MULTIBUS® Interprocessor Protocol (MIP)

DECLARE BUFFERS$PTR POINTER; /+ Dutput. »/
[/ »
Get base address for I1DS$ID from IDST.
Add to BUFFERS$PTR.
%/

END CONVERTS$SYSTEMSADR;

E.4.5 TIMESWAIT
A destination device is assumed to be dead if it does not respond to a command
within a reasonable period of time. Just how you detect a timeout, however, depends

on the timing features of the local processor.

TIMESWAIT: PROCEDURE (TIMESOUT, RQL$ID);

DECLARE TIMESOUT WORD, /+ Input. «/
RALS$ID IDENTIFIER;
/%
Wait for TIMESOUT period or until something is
placed in the response queue identified by RQLS$ID.
s/

END TIMESWAIT;

E.4.6 GENERATESINTERRUPT

This routine generates an interrupt to signal another device of a change in queue
status (from full to not full, or from empty to not empty).

GENERATESINTERRUPT: PROCEDURE (DEVICESS$INDEX);
DECLARE DEVICESINDEX IDENTIFIER; /+ Input +/
[+
Using interrupt information in the DCM, generate an
interrupt for the device specified by DEVICESINDEX.
+/

END GENERATESINTERRUPT;

E.4.7 CLEARSINTERRUPT

This routine is used by INSTASK and OUT$TASK to clear the interrupt that invokes
them.

CLEARSINTERRUPT: PROCEDURE;
/+ Acknowledge and clear interrupt, if necessary. #/

END CLEARSINTERRUPT;

E-13

MULTIBUS® Interprocessor Protocol (MIP)

E.5 Physical Level

E.5.1 Request Queue Descriptor

A request queue descriptor controls a request queue. The request queue descriptor is
physically located before and adjacent to the associated request queue entries.

DECLARE RQD$STRUCTURE LITERALLY 'STRUCTURE
(EMPTY$SIGNAL STATE,
FULL$SIGNAL STATE,

RA$SIZE BYTE,
RAESLENGTH BYTE,
GIVESINDEX BYTE,
GIVESSTATE STATE,
TAKESINDEX BYTE,
TAKES$STATE STATE) '

EMPTYS$SIGNAL and FULLSSIGNAL are used by the two devices sharing a
channel to signal each other when there has been some activity on the channel. Signals
are written in the RQD of the outgoing queue and read from the RQD of the incom-
ing queue. The signal values are defined below. Unused bits are reserved for future
expansion.

DECLARE FULL$NOSLONGER LITERALLY "80H',

EMPTY$SNOSLONGER LITERALLY "01H",
NOSCHANGE LITERALLY "00H’;

RQS$SIZE defines the number of elements in the request queue. RQ$SIZE must be
a power of 2 and must have a value of 2 or greater.

RQESLENGTH defines the number of bytes in a request queue element (RQE). The
number of elements is 2 to the power RQESLENGTH. For all queues shared between
MIP facilities, REQSLENGTH is 4 (i.e., each entry is 16 bytes long).

GIVESINDEX identifies the request queue element available for enqueuing data.

TAKESINDEX identifies the request queue element available for dequeuing data.

DECLARE GIVESHALT LITERALLY "40H’,
GIVESFACTOR LITERALLY "80H’;
DECLARE TAKESHALT LITERALLY ‘40H",
TAKESFACTOR LITERALLY ‘80H';

GIVESFACTOR and TAKESFACTOR together distinguish between the full state
and the empty state when GIVESINDEX and TAKESINDEX are equal.

GIVESHALT and TAKESHALT prevent further activity in the queue when a device
failure is detected.

iNA 960

iNA 960 MULTIBUS® Interprocessor Protocol (MIP)

E.5.2 Request Queue Entry
A request queue entry is an element of a request queue.

DECLARE RQES$STRUCTURE LITERALLY ‘STRUCTURE
(REQUEST STATE,
SRC$REQS$ID IDENTIFIER,
DESTS$DEVS$ID IDENTIFIER,
DESTS$PORTS$ID IDENTIFIER,

SRCS$DEVSID IDENTIFIER,
DATAS$PTR IDS$PTR,
DATASLENGTH WORD,
IDS$1ID IDENTIFIER,
OWNERS$DEVS$ID IDENTIFIER,
RSRVD (3) BYTE)';

REQUEST identifies the RQE as a command or a response using one of the follow-

ing values:

DECLARE SENDS$COMMAND LITERALLY ‘70H’,
MSG$DELIVEREDSNOSCOPY LITERALLY ‘80H’,
MSG$DELIVEREDSCOPY LITERALLY ‘B2H’,
SYSTEMSMEMORY$NAK LITERALLY ‘8SH’,
DEADS$DEVICE LITERALLY "89H"’;

SRCSREQSID identifies the sending task so that responses can be returned. The
meaning of the identifier is defined by the local MIP implementation.

DESTS$DEVSID is the device identifier part of the destination socket.
DEST$PORTSID is the port identifier part of the destination socket.
SRCSDEVSID identifies the device from which a request is issued.

DATASPTR contains the IDS-relative address of a buffer to be delivered or returned
by a MIP facility.

DATASLENGTH specifies the number of bytes in a buffer.
IDSS$ID tells which interdevice segment contains the buffer.
OWNERSDEVICESID identifies the device that manages or “‘owns” the buffer.

RSVRD is undefined space reserved for future expansion.

E.5.3 Queue Procedure Returns

The following constants are used to return the results of procedures associated with
the request queues.

DECLARE READY LITERALLY ‘00H‘,
FULL LITERALLY "OFFH',
EMPTY LITERALLY "OFFH’,
FIRSTS$GIVE LITERALLY ‘20H’,
FIRST$TAKE LITERALLY ‘20H',
HALTED LITERALLY ‘40H',
GIVE$DISABLED LITERALLY "10H’,
TAKE$DISABLED LITERALLY ‘10H’,
POINTERS$MASK LITERALLY "TFH;

E-15

MULTIBUS® Interprocessor Protocol (MIP) iNA 960

E.5.4 INITSREQUEST$SQUEUE

This procedure enters a request queue descriptor in memory, thereby initializing a
request queue.

INIT$SREQUESTS$QUEUE: PROCEDURE (RQD$PTR, RQSLEN);

DECLARE RQS$LEN BYTE, /+« Input. «/
RAD$PTR POINTER,
RAD BASED RQD$PTR ROD$STRUCTURE;

RAD.EMPTYS$SIGNAL = NOSCHANGE;
RAD.FULLS$SIGNAL = NOSCHANGE;
RAD.RA$SIZE = RASLEN;
RAD.RAESLENGTH = 45
RAD.GIVESINDEX = 03
RAD.TAKESINDEX = 03
ROD.GIVESSTATE = 03
RAD.TAKESSTATE = 03

END INITSREQUESTSQUEUE;

E.5.5 TERM$SREQUESTSQUEUE

This procedure sets the request queue flags to prevent subsequent acitivity on a
channel.

TERM$REQUESTS$QUEUE: PROCEDURE (RADS$INSPTR, RQGD$OUTSPTR);

DECLARE RGQDSINSPTR POINTER, /+ Input =/
RADSOUTSPTR POINTER,
INSRAQD BASED RQGDINSPTR RQADS$SSTRUCTURE,
OUT$RAD BASED RQD$OUTS$PTR RGD$STRUCTURE;

INSRQD.TAKESSTATE
OUT$RGD.GIVESSTATE

IN$SRAD.TAKESSTATE OR TAKES$HALT;
OUT$RAD.GIVES$STATE OR GIVESHALT;

END TERMSREQUESTSQUEUE;

E.5.6 QUEUESGIVES$STATUS
This algorithm returns the status of a request queue without affecting the queue.
QUEUESGIVESSTATUS: PROCEDURE C(RQDS$PTR, STATUS);

DECLARE RQDS$PTR POINTER, /+ Input s/
STATUS BYTE; /+ Qutput »/

iNA 960

MULTIBUS® Interprocessor Protocol (MIP)

DECLARE RQGD BASED RGDS$SPTR RQGDS$SSTRUCTURE;

IF (RQGD.TAKE$STATE AND TAKESDISABLED) = TAKESDISABLED

THEN DO;
STATUS = HALTED;
RETURN;
END;
IF (RGD.TAKES$SSTATE AND TAKESHALT) = TAKESHALT THEN
DO
RAD.GIVESSTATE = RAQD.GIVESSTATE OR GIVESDISABLED;
STATUS = HALTED;
END:
ELSE
IF CCRAD.GIVESINDEX AND POINTERS$MASK) =
(RAGD.TAKESINDEX AND POINTER$MASK)I) AND
(CRAD.GIVESINDEX AND GIVESFACTOR) <>
(RAD.TAKESINDEX AND TAKESFACTOR)) THEN
STATUS = FULL;
ELSE
STATUS = READY;
RETURN;

END QUEUESGIVESSTATUS;

E.5.7 REQUESTSGIVESPOINTER

This algorithm returns the address of a request queue element from the tail (send
side) of a request queue, if one is not in use.

REQUESTS$GIVESPOINTER: PROCEDURE C(RGDPTR, RQEPTR, STATUS);

DECLARE RQGDSPTR POINTER, /+ Input %/
RAES$PTR POINTER, /+ Qutput «/
STATUS BYTE; /+« OQutput =/

DECLARE RQGD BASED RQGD$PTR RAD$STRUCTURE;

IF (RGD.TAKES$STATE AND TAKESHALT) = TAKESHALT THEN

DO;

END;

RAD.GIVESSTATE = GIVESDISABLED;
STATUS = HALTED;
RETURN;

IF CCRA@D.GIVESINDEX AND POINTERS$MAKS) =

DO

END;

(RAD.TAKESINDEX AND POINTER$MASK)) AND
(CRAD.GIVESINDEX AND GIVESFACTOR) <>
(RGD.TAKES$INDEX AND TAKES$FACTOR)) THEN

STATUS = FULL;
RETURN;

STATUS = READY;
RAE$PTR = SHLCCRGD.GIVESINDEX AND POINTERS$MASK),

RAD.ROGESLENGTH) + 8 + RQGD$PTR;

RETURN;

END REQUESTSGIVESPOINTER;

E-17

MULTIBUS?® Interprocessor Protocol (MIP)

iNA 960

E.5.8 RELEASESGIVESPOINTER

This algorithm makes a previously give-requested RQE available for take.

RELEASES$GIVESPOINTER:

DECLARE RADS$PTR

STATUS

PROCEDURE (RQDS$PTR, STATUS);
POINTER, /+ Input %/
BYTE; /+ Qutput «/

DECLARE RQD BASED RQAD$PTR RQAD$STRUCTURE,

TEMP WORD;
TEMP =

RAD.GIVESINDEX AND GIVESFACTOR;

IF CCRAD.TAKESINDEX AND POINTER$MAKS) =

(CCRAD.GIVESINDEX AND POINTERS$MASK) + 1)
(RAD.RAS$SIZE

TEMP =

AND

- 1)) THEN

(NOT (RAD.TAKESINDEX AND TAKESFACTOR)) AND

POINTERSMASK;

RAD.GIVES$INDEX =

+

1) AND

(CCRAD.GIVESINDEX AND POINTERS$MASK)
(RGD.RA$SIZE - 1)) OR TEMP;

IF (RAD.GIVES$INDEX AND POINTER$MASK) =
(CCRAD.TAKESINDEX AND POINTER$SMASK) + 1)

AND (RQD.RQAS$SIZE -
FIRST$GIVE;

STATUS

ELSE

STATUS
RETURN;

1)) THEN

READY;

END RELEASESGIVESPOINTER;

E.5.9 REQUESTSTAKESPOINTER

This algorithm returns the address of a request queue element from the head (receive

side) of a request queue.
REQUESTS$TAKESPOINTER:

DECLARE RAD$PTR
RAESPTR

STATUS

PROCEDURE (RQAD$PTR, RQES$PTR, STATUS);
POINTER, /+ Input +/
POINTER, /+ OQutput =/
BYTE; /+ Output «/

DECLARE RQD BASED RGD$PTR RQD$STRUCTURE;

IF (RGD.GIVE$SSTATE AND GIVESHALT) =

GIVESHALT THEN

TAKE$DISABLED;

RAD.TAKESINDEX) THEN

(CRAQD.TAKESINDEX AND POINTERS$MASK),

RAD$PTR;

DO
RGD.TAKESSTATE =
STATUS = HALTED;
RETURN;
END;
IF (RAGD.GIVESINDEX =
DO
STATUS = EMPTY;
RETURN;
END;
STATUS = READY;
RAQE$SPTR = SHL
RAD.RAESLENGTH) + 8 +
RETURN;

END REQUESTSTAKESPOINTER;

E-18

iNA 960

MULTIBUS® Interprocessor Protocol (MIP)

E.5.10 RELEASESTAKESPOINTER
This algorithm makes a previously take-requested RQE available for give.
PROCEDURE RELEASESTAKESPOINTER (RQD$PTR, STATUS);

DECLARE RAD$SPTR POINTER, /* Input */
STATUS BYTE; /+ Qutput =«

DECLARE RQGD BASED RQGD$PTR RQAD$STRUCTURE,
TEMP WORD;

TEMP = ROGB.TAKES$INDEX AND TAKESFACTOR;

IF CCRGD.GIVESINDEX AND POINTERSMASK) =
(CCRAD.TAKES$INDEX AND POINTERS$SMASK) + 1) AND
(RAD.RA$SIZE - 1))) THEN
TEMP = RGD.GIVESSTATE AND GIVESFACTOR;

RAD.TAKESINDEX = (CC(RQAQD.TAKESINDEX
AND POINTERS$MASK) + 1)

AND (RGD.RQ$SIZE - 1)) OR TEMP;

IF (RAQD.TAKESINDEX AND POINTER$MASK) =
(CCRAD.GIVESINDEX AND POINTER$MASK) + 1) AND
(RAD.RA$SIZE - 1)) THEN
STATUS = FIRSTS$TAKE;

ELSE
STATUS = READY;

RETURN;

END RELEASESTAKESPOINTER;

E.6 Logical Level Database
E.6.1 Configuration Constants

The following constants define the system configuration. In place of the descriptions
printed in italics, substitute the numbers that apply to your configuration.

DECLARE DEVICES LITERALLY the number of devices in the MIP system,
SOCKETS LITERALLY the number of destination ports ,
PORTS LITERALLY the number of local ports ,

HOMESDEVICE LITERALLY the identifier of this device,

TIMESDELAY LITERALLY maximum time to wait for a response before
a destination device is considered dead ,

IDSS$S LITERALLY the number of entries in the IDS table,

RALS$S LITERALLY the number of local response queues ;

MULTIBUS® Interprocessor Protocol (MIP)

E-20

E.6.2 Destination Socket Descriptor Table (DSDT)

The DSDT contains information for locating sockets in a MIP system. Each entry
associates a socket with a unique funtion-name. The MIP facility on each device has
a DSDT containing entries for all sockets to which tasks on that device send messages.

DECLARE DSDT (SOCKETS) STRUCTURE

(FUNCTIONSNAME WARD,
DESTS$DEVSID IDENTIFIER,
DEST$PORTS$ID IDENTIFIER);

FUNCTIONSNAME is a system-wide name for identifying the socket.
DESTSDEVSID is the device identifier of the device on which the socket resides.

DESTSPORTSID is the local port identifier for the socket on the destination device.
For the purposes of the algorithmic specification, DEST$PORTSID is the index of
the port in the Local Port Table on the destination device.

E.6.3 Local Port Table (LPT)

The Local Port Table is the list of ports and their parameters that are managed by a
device. For the purpose of this algorithmic specification, the index of a port in the
LPT is the port’s identifier.

DECLARE LPT (PORTS) STRUCTURE

(FUNCTIONSNAME WORD,
PORT$QUEUESPTR POINTER,
PORTS$STATE STATE) ;

FUNCTIONSNAME is the system-wide name for identifying the port.

PORTSQUEUESPTR is the address of the queue in which messages addressed to
this port are delivered.

PORTSSTATE tells whether a task is receiving messages at this port. Messages sent
to the port are accepted if the port is active, rejected (returned) if the port is inactive.
Values associated with this item are as follows:

DECLARE INACTIVE LITERALLY fO00H",
ACTIVE LITERALLY ‘01H",

E.6.4 Device to Channel Map (DCM)

The DCM table is used to route messages among intertask and interdevice request
queues and to manage the flow of messages into and out of the queues. Each MIP
facility has one entry in its DCM for every device in the MIP system, including the
device on which the MIP facility resides. The device identifier of a device is its index

iNA 960

iNA 960 MULTIBUSP® Interprocessor Protocol (MIP)

into the DCM. Each entry in a DCM represents a possible link between the home
device and the device associated with that entry. If no such link exists,
CHANNELSSTATE contains IDLE.

DECLARE DCM (DEVICES) STRUCTURE

(CHANNELS$STATE STATE,
RAD$SOUTSPTR POINTER,
RAD$OUTSSIZE BYTE,
RADSINSPTR POINTER,
RADS$INSSIZE BYTE,
COM$SRDYSQUEUESPTR POINTER,
RSPSTRNRNDS$QUEUES$PTR POINTER,
INTERRUPTSTYPE BYTE,
INTERRUPTS$ADDRESS WORD) ;

CHANNELSSTATE is a local management variable in which the run-time state of
a channel is maintained. This variable contains the booleans defined below.

DECLARE SENDSACTIVE LITERALLY ‘80H’,
SENDSFULL LITERALLY fTFH’,
RECEIVESACTIVE LITERALLY ‘O01H’,
RECEIVESEMPTY LITERALLY OFEH",
DYING LITERALLY ‘04H',
IDLE LITERALLY ‘08H',

RQDSOUTSPTR is the local address of the RQD of the interprocessor queue through
which commands and responses are sent to the associated device.

RQDS$OUTSSIZE is the number of entries in this queue.

RQDSINSPTR is the local address of the RQD of the interprocessor request queue
through which commands and responses are received from the received device.

COMSRDYSQUEUESPTR is the address of the local queue of responses waiting to
be sent to the associated device.

RSPSTRNRNDSQUEUESPTR is the address of the local queue of responses waiting
to be sent to the associated device.

INTERRUPTSTYPE tells which kind of interrupt the device recognizes as indica-
tion of a change of queue state.

INTERRUPT$ADDRESS may contain an [-O port address, a memory address or
an interrupt level, depending on INTERRUPTSTYPE.
E.6.5 Interdevice Segment Table (IDST)

The IDST defines the attributes of interdevice segments (IDSs). There is one entry
for each IDC in the MIP system. The entries are indexed by the IDS identifier.

DECLARE IDST (IDS$S) STRUCTURE
(LOS$SPART WORD,
HI$PART WORD);

Note that the low-order portion of the IDS base address is stored first, followed by
the high-order portion.

E-21

MULTIBUS® Interprocessor Protocol (MIP)

E.6.6 Response Queue List (RQL)

The RQL is a table of pointers to the request queues used to return the results of a
buffer delivery attempt. Each entry is assigned to a task for use with the TRANS-
FER function. The entries are indexed by RQLSID.

DECLARE RQL C(RQOL$S) STRUCTURE
(RSPS$QUEUESPTR POINTER);

E.7 Local Level Algorithms

E.7.1 DYINGSCHANNEL

OUTSTASK invokes this subroutine when a device failure is detected. The routine
disposes of any commands that may be waiting to be sent to the dead device.

DYING$CHANNEL: PROCEDURE (DEVICESINDEX);

DECLARE DEVICESINDEX BYTE; /* Input. »/
DECLARE STATUS BYTE, /+ Local. »/
RAESCOMSPTR POINTER,
COM$RAGE BASED RQGESCOMS$PTR RQES$STRUCTURE,
RAE$RSPS$PTR POINTER,

RSP$RQE BASED RQESRSP$PTR RGES$STRUCTURE;

CALL REQUESTS$TAKESPOINTER
(DCM(DEVICESINDEX).COMSRDYSQUEUESPTR,
RAESCOMSPTR, STATUS);
IF STATUS <> EMPTY
THEN DO; /+* Send back DEADSDEVICE response. +/
CALL REQUESTS$GIVESPOINTER
(RQLCCOMSRQE.SRCSREGS$ID) .RSPSQUEUESPTR,
RAESRSPS$PTR, STATUS);
CALL MOVE (16, RQESCOMSPTR, RQESRSPS$PTR);
RSP$RQE.REQUEST = DEADSDEVICE;
CALL RELEASESGIVESPOINTER
(RQLCCOMS$RAE.SRCS$REQ$ID).RSPSQUEUESPTR,
STATUS);
CALL RELEASESTAKESPOINTER
(DCMC(DEVICESINDEX) . COMS$RDYSQUEUESPTR,
STATUS);
END /+ THEN #/;
ELSE /+ No more outstanding command. +/ DO;
DCM(DEVICESINDEX) . CHANNELSSTATE = IDLE;
CALL TERMS$REQUESTS$QUEUE
(DCM(DEVICESINDEX).RADSINSPTR,
DCM(DEVICESINDEX).RGD$OUTS$PTR);
END /+ ELSE +/;
RETURN;

END DYINGSCHANNEL ;

E-22

iNA 960

iNA 960 MULTIBUS?® Interprocessor Protocol (MIP)

E.7.2 SERVE$STURNAROUNDS$QUEUE

This subroutine of OUTS$TASK transfers a response from the response turnaround
queue to the output queue of the sending device.

SERVESTURNAROUNDS$QUEUE: PROCEDURE (DEVICES$INDEX, STATUS);

DECLARE DEVICESINDEX BYTE; /+ Input. +/
DECLARE STATUS BYTE; /+ Output. =/
DECLARE RQADS$PTR POINTER, /+ Local. +/
RAD BASED RQGDS$PTR RAD$STRUCTURE,
RAESTRNSPTR POINTER,
TRN$RQE BASED ROGESTRN$SPTR RQGESSTRUCTURE,
RAESOUTSPTR POINTER,

OUT$RQE BASED ROGE$QUTS$PTR RAESSTRUCTURE;

CALL REQUESTSTAKESPOINTER
(DCM(DEVICESINDEX) .RSP$STRNRNDSQUEUESPTR,
ROESTRNS$PTR, STATUS);
IF STATUS = READY
THEN DO
RAQD$PTR = DCM(DEVICESINDEX) .RQDS$OUTS$PTR;
CALL REQUESTS$GIVESPOINTER (RGDS$PTR,
ROESOUTS$PTR, STATUS);
CALL MOVE (16, RQES$TRNSPTR, RQESOUTSPTR)
CALL RELEASESGIVESPOINTER (RGDS$PTR, STATUS);
IF STATUS = FIRSTS$GIVE
THEN DO; /+ Gave to an empty queue, so... */
RAGD.EMPTY$SIGNAL = EMPTYSNOSLONGER;
CALL GENERATESINTERRUPT (DEVICESINDEX);
END /+« THEN #/;
CALL RELEASESTAKESPOINTER
(DCM(DEVICESINDEX) . RSP$STRNRNDSQUEUESPTR,
STATUS) ;
END /% THEN +/;
RETURN;

END SERVESTURNAROUNDSQUEUE;

E.7.3 SERVESCOMMANDSQUEUE

This subroutine of OUT$TASK transfers command from the command wait queue
to the output queue of the destination device.

SERVESCOMMANDSQUEUE: PROCEDURE (DEVICESINDEX, STATUS);

DECLARE DEVICESINDEX BYTE; /+ Input. «/
DECLARE STATUS BYTE; /+ Qutput, «/
DECLARE RQGDSPTR POINTER, /+ Local. #/
RGD BASED RGDS$PTR RGD$STRUCTURE,
RAESCOMSPTR POINTER,
COMSRQE BASED RQESCOMS$PTR RAESSTRUCTURE,
RAESOUTSPTR POINTER,

OUT$RAGE BASED ROQES$OUTS$SPTR RGE$STRUCTURE;

E-23

MULTIBUS® Interprocessor Protocol (MIP) iNA 960

CALL REQUESTS$TAKESPOINTER
(DCM(DEVICESINDEX) .COMSRDYSQUEUESPTR,
RAE$COMSPTR, STATUS);

IF STATUS
THEN DO
RAD$PTR = DCM(DEVICESINDEX).RQD$OUTS$PTR;
CALL REQUESTSGIVESPOINTER (RADS$PTR,
RAESOUTS$PTR, STATUS);
CALL MOVE (16, RQESCOMS$PTR, RQES$SOUTSPTR);
CALL RELEASES$GIVESPOINTER (RQDS$PTR, STATUS);
IF STATUS = FIRSTS$GIVE
THEN DO; /+ Gave to an empty queue, so... #*/
RAD.EMPTYS$SIGNAL = EMPTY$SNOSLONGER;
CALL GENERATESINTERRUPT (DEVICESINDEX):
END /% THEN #/;
CALL RELEASESGIVESPOINTER
(DCM(DEVICESINDEX).COMS$RDYSQUEUESPTR,
STATUS);
END /% THEN «/;
RETURN;

READY

END SERVESCOMMANDSQUEUE ;

E.7.4 OUTS$STASK
This algorithm manages activity in the output request queues.

OUT$TASK: PROCEDURE;

DECLARE DEVICES$INDEX BYTE, /+ Local. «/
STATUS BYTE,
RGDS$PTR POINTER,
RAD BASED RQGDS$PTR RAD$STRUCTURE
/ * Initialization. %/
DO DEVICES$INDEX = 0 TO DEVICES - 1;
IF DCM(DEVICESINDEX).CHANNELS$STATE «¢= IDLE
THEN DO
CALL INIT$REQUESTS$QUEUECDCM(DEVICESINDEX) .RQDSOUTSPTR,
DCM(DEVICESINDEX).RQDS$OUTS$SIZE);
DCM(DEVICESINDEX) .CHANNELS$STATE = SEND$ACTIVE;

END /+ THEN #/;
END /» DO +/;

/ * Transfer request loop. %/

DO FOREVER;
DO DEVICES$INDEX = 0 TO DEVICES - 1;

RAD$PTR = DCM(DEVICESINDEX).RQDS$SINSPTR;

/+ Read signal from in-RQAD. =/

IF RGD.FULLS$SIGNAL = FULLSNOSLONGER

THEN DO;
DCM(DEVICESINDEX) .CHANNELS$STATE =
DCM(DEVICESINDEX) .CHANNELSSTATE OR RQD.FULLSSIGNAL;
CALL CLEARSINTERRUPT;
RAD.FULLS$SIGNAL = NOSCHANGE;

END /4 THEN +/;

IF (DCM(DEVICESINDEX) .CHANNELS$STATE AND DYING) <> 0

THEN CALL DYING$CHANNEL C(DEVICESINDEX); '

E-24

iNA 960 MULTIBUS?® Interprocessor Protocol (MIP)

ELSE DO
1F DCM(DEVICESINDEX) .CHANNELSSTATE
AND SENDSACTIVE <> 0
THEN DO; /+ Look more closely at this channel. »/
RAD$PTR = DCM(DEVICESINDEX).RQDSOUTS$PTR;
CALL QUEUESGIVESSTATUSC(RQADS$PTR, STATUS);
IF STATUS = HALTED
THEN DCM(DEVICESINDEX).CHANNELSSTATE
IF STATUS = FULL
THEN DCM(DEVICESINDEX) .CHANNELS$STATE
DCM(DEVICESINDEX) .CHANNEL$STATE AND SENDSFULL
/+ Don’t bother with trying to send on this
channel until it is no longer full. »/;

DYING;

IF STATUS = READY
THEN DO
CALL SERVESTURNAROUNDS$QUEUE C(DEVICESINDEX,
STATUS) ;
IF STATUS = EMPTY
THEN CALL SERVESCOMMANDSQUEUE
(DEVICESINDEX, STATUS);
END /# THEN «/;
END /+ THEN #/;
END /s ELSE +/;
END /% DO #+/;
END /s FOREVER #/;

END OUTS$TASK;

E.7.5 RECEIVESCOMMAND

This subroutine of INSTASK transfers a command from an incoming request queue
to the port queue associated with the socket specified in the command, first checking
to make sure that the port is active. The routine then generates an appropriate response
and enters it in the Response Turnaround Queue associated with the sending device.

RECEIVESCOMMAND: PROCEDURE C(RQESINSPTR);

DECLARE RQGESINSPTR POINTER, /+ Input. »/
INSRQE BASED RQES$INSPTR RQES$SSTRUCTURE;

DECLARE RQES$MSGS$PTR POINTER, /+ Local. »/
MSG$RAE BASED RQAQES$MSGS$PTR RAE$SSTRUCTURE,
LOCALS$DATASPTR POINTER,

STATUS BYTE;

IF LPT (INSRQE.DESTS$PORTS$ID).PORTSSTATE «¢>» ACTIVE
THEN INSRQE.REQUEST = SYSTEMS$PORTSINACTIVE;
ELSE DO; /+ Deliver command. #/
CALL REQUESTS$GIVESPOINTER
(LPTCINSRQE.DESTS$PORTS$ID).PORTSQUEUESPTR,
RAESMSGS$SPTR, STATUS)

E-25

MULTIBUS® Interprocessor Protocol (MIP) iNA 960

IF STATUS = FULL
THEN INSRGE.REGUEST = SYSTEMSMEMORYSNAK;
ELSE DO;
CALL CONVERTS$SYSTEMS$ADR (INSRQE.IDSS$ID,
INSRQE.DATASPTR, LOCALSDATASPTR);
CALL MOVE C(INSRQE.DATA$SLENGTH, /» Copies buffer «/
RQESMSGSPTR, LOCAL$DATASPTR); /* to port queue. +/
CALL RELEASESGIVESPOINTER
(LPTCINSRQE.DESTS$PORTS$ID).PORTSQUEUESPTR,
STATUS)
IN$RQE.REQUEST = MSGS$DELIVEREDSCOPY;

/% NOTE

Instead of copying the whole buffer, you may copy
only IN$RQGE.DATASPTR, INS$RQAQE.DATASLENGTH,
INSRQE.IDS$ID, and INSRQE.OWNERSDEVS$ID, In this
case, INSRQE.REQUEST is set to MSG$DELIVEREDSNOSCOPY.
*/
END /+ ELSE +/;
END /+ ELSE +/;

/+ Create response. */

CALL REQUESTS$GIVESPOINTER
(DCMCINSRQE.SRCS$DEVSID) . RSPSTRNRNDSQUEUESPTR,
RQESMSG$PTR, STATUS);

CALL MOVE (16, RQES$INSPTR, RQAESMSGS$PTR);

/* NOTE
I'f IN$RQE.REQUEST is set to MSG$DELIVERED$NOSCOPY,
the only fields that must be returned are
INSRGD.REQUEST and IN$RGD.SRCS$REQS$ID.

*/

MSG$RQE.DESTS$DEVS$ID = INSRQE.SRCS$DEVSID;

MSG$RQGE.SRC$DEVSID = INSRQE.DESTSDEVSID;

CALL RELEASE $GIVESPOINTER
(DCMCINSRQE.SRC$DEVSID) . RSPSTRNRNDSQUEUESPTR,
STATUS);

RETURN;

END RECEIVESCOMMAND;

E.7.6 RECEIVESRESPONSE

This subroutine of INSTASK transfers a response from an incoming request queue
to the response queue of the initiating task.

RECEIVESRESPONSE: PROCEDURE (RQESINSPTR);

DECLARE RQESINS$PTR POINTER, /% Input. »/
IN$RQE BASED RQE$INSPTR ROE$SSTRUCTURE;

DECLARE RQES$RSPS$PTR POINTER, /+ Local. «/
STATUS BYTE:

CALL REQUESTS$GIVESPOINTER
(RGLCINSREQ.SRCSREQID).RSPSGUEUESPTR,

E-26

iNA 960 MULTIBUS® Interprocessor Protocol (MIP)

RAESRSPSPTR, STATUS);

CALL MOVE (16, RQES$INSPTR, RQES$RSP$PTR);

CALL RELEASESGIVESPOINTER
(RALCINSRQE.SRCSREQS$ID) . RSP$SQUEUESPTR,
STATUS);

RETURN;

END RECEIVESRESPONSE;

E.7.7 INSTASK
This algorithm manages activity in the incoming request queues.

INSTASK: PROCEDURE;

DECLARE DEVICES$INDEX BYTE, /+ Local. =/
RQDSP TR POINTER,
RGD BASED RQAD$PTR RAD$STRUCTURE,
RQESINSPTR POINTER,
INSRQE BASED RQESINSPTR RQE$STRUCTURE,
STATUS BYTE;
DO FOREVER;

DO DEVICESINDEX = 0 TO DEVICES - 1;
RAD$PTR = DCM(DEVICESINDEX).RQDSINSPTR;
IF RAD.EMPTY$SIGNAL = EMPTYSNOSLONGER
THEN DO
DCM(DEVICESINDEX).CHANNELS$STATE =
DCM(DEVICESINDEX) .CHANNELS$STATE OR RQD.EMPTYS$SIGNAL
CALL CLEARSINTERRUPT;
RAD.EMPTY$SIGNAL = NOSCHANGE;
END /« THEN &/
[F (DCM(DEVICESINDEX) .CHANNELS$STATE AND
(DYING OR IDLE) = 0)
AND (DCM(DEVICESINDEX).CHANNELS$STATE AND
RECEIVESACTIVE <> 0)
THEN DO; /+ serve the input request queue., +/
CALL REQUESTSTAKESPOINTER
(DCM(DEVICESINDEX) .RAGDS$INSPTR,
RAESINSPTR, STATUS);
[F STATUS = HALTED
THEN DCM(DEVICESINDEX) .CHANNELS$STATE
IF STATUS = EMPTY
THEN DCMCDEVICESINDEX) .CHANNELSSTATE
DCM(DEVICESINDEX) .CHANNELS$STATE AND RECEIVESEMPTY
/+ Don’t bother with looking for input on this
channel until it becomes active again. #*/;

DYING;

IF STATUS = READY
THEN DO
IF INSRGQE.REQUEST = SEND$COMMAND
THEN CALL RECEIVESCOMMAND (RQESINSPTR);
ELSE CALL RECEIVESRESPONSE (RQESINSPTR);
CALL RELEASESTAKESPOINTER
(DCM(DEVICESINDEX) .RAGDSINSPTR, STATUS);

E-27

MULTIBUS® Interprocessor Protocol (MIP) iNA 960

IF STATUS = FIRSTS$TAKE
THEN /+ Took from a full queue, s50... */ DD;
RAGD$PTR = DCM(DEVICESINDEX).RGD$OUTS$PTR;
/+ Post signal in out-RGD. «/
RAD.FULL$SIGNAL = FULLSNOSLONGER;
END /+ THEN =/
END /% THEN #/;
END /+ THEN #/;
END /» DO +/;
END /» FOREVER #/;

END INS$TASK;

E.8 Virtual Level
E.8.1 Status Constants

The following values, along with values associated with RQESREQUEST, are
returned by the virtual level procedures to indicate the results of the procedures.

DECLARE SYSTEMS$PORTSAVAILABLE LITERALLY ‘84H',
SYSTEMSPORTSUNKNOMWN LITERALLY ‘81H',
SYSTEM$PORTS$ACTIVE LITERALLY f83H',
SYSTEMSPORTSINACTIVE LITERALLY "87H';

E.8.2 FINDSSYSTEMSPORT

This function provides you with the means to locate a socket by its function-name.

FIND$SYSTEMSPORT: PROCEDURE C(FUNCTIONSNAME,
SOCKET$DEVICE, SOCKETS$PORT, STATUS);

DECLARE FUNCTIONS$NAME WORD; /+ Input. «/

DECLARE SOCKETS$DEVICE IDENTIFIER, /+ Output. #/
SOCKETS$PORT IDENTIFIER,
STATUS BYTE;

DECLARE SOCKETS$INDEX BYTE; /+ Local., »/

DO SOCKETS$INDEX =
IF (FUNCTIONSNAME
THEN DO;

STATUS =
SOCKETS$DEVICE =
SOCKETSPORT =
RETURN;
END /+ THEN +/;

END /» DO +/;

STATUS = SYSTEMSPORTSUNKNOWN;

RETURN;

END FIND$SYSTEMSPORT;

E-28

0 TOD SOCKETS
= DSDT(SOCKETS$INDEX) . FUNCTIONS$NAME)

SYSTEMSPORTSAVAILABLE;

DSDT(SOCKETS$INDEX) .DEST$DEVS$ID;
DSDTCSOCKETSINDEX) . DEST$PORTS$ID;

13

iNA 960

MULTIBUS?® Interprocessor Protocol (MIP)

E.8.3 TRANSFERSBUFFER

This function generates a command to transfer a buffer to a destination device and
port. The command is queued in the Command Wait Queue of the destination device.
The procedure waits for a reply before relinquishing control.

TRANSFERSBUFFER:PROCEDURE C(BUFFERS$PTR, BUFFERSLENGTH,
IDS$ID, SOCKETS$DEVICE, SOCKETS$PORT, RQL$ID, STATUS);

DECLARE BUFFERSPTR POINTER, /+ Input. «/
BUFFERSLENGTH WORD,
IDS$ID IDENTIFIER,
SOCKETS$DEVICE IDENTIFIER,
SOCKETS$PORT IDENTIFIER,
RALS$ID IDENTIFIER;
DECLARE STATUS BYTE; /+ Qutput. »/
DECLARE RQESPTR POINTER, /+ Local. «/
RAE BASED RGES$PTR RAE$SSTRUCTURE,
CALL$STATUS BYTE;

CALL REGQUESTS$GIVESPOINTER
(DCMCSOCKETS$DEVICE) .COM$SRDYSQUEUESPTR,
RAESPTR, CALLS$STATUS);

RQE.REQUEST = SENDS$COMMAND ;
RAE.SRCSREQS$ID = RGLS$ID;
RQE.DESTS$DEVS$ID = SOCKETS$DEVICE;
RAE.DEST$PORTS$ID = SOCEKT$PORT;
RAGE.SRCS$DEVSID = HOMESDEVICE;
RQE.IDSS$ID = IDS$I1D;
RQE.OWNERSDEVSID = HOMESDEVICE;

CALL CONVERTS$LOCALS$ADR (IDSS$ID,
BUFFER$PTR, RGQE.DATASPTR);

RGE.DATASLENGTH = BUFFERSLENGTH;

CALL RELEASES$GIVESPOINTER
(DCMCSOCKETS$DEVICE) .COM$SRDYSQUEUESPTR,
CALLS$STATUS) ;

CALL TIMESWAIT (TIMESDELAY, RQLS$ID);

CALL REQUESTS$TAKESPOINTER (RGLCRQLS$ID).RSP$QUEUESPTR,
RQE$PTR, CALL$STATUS);
IF CALL$STATUS = EMPTY
/+ No response came back within TIMESDELAY period. =/
THEN DO ;
DCM(SOCKETS$DEVICE) .CHANNELS$STATE = DYING;
STATUS = DEADSDEVICE;
END /» THEN +/;
ELSE DO;
STATUS = RQE.REQUEST;
CALL RELEASESTAKESPOINTER (RQL(RQL$ID).RSPS$SQUEUESPTR,
CALL$STATUS) ;
END /% ELSE «+/;
RETURN;

END TRANSFERSBUFFER;

E-29

MULTIBUS® Interprocessor Protocol (MIP) ’ iNA 960

E.8.4 ACTIVATE$SYSTEMS$PORT

This funciton enables receipt of messages at a local port. If the port is not currently
active, the address of the port queue is returned.

ACTIVATESSYSTEMS$PORT: PROCEDURE C(FUNCTIONSNAME,
PORT$QUEUESPTR, STATUS);

DECLARE FUNCTIONS$NAME WORD, /+ Input. #/
PORTS$QUEUESPTR POINTER;

DECLARE STATUS BYTE; [+ Output., +/
DECLARE PORTS$INDEX BYTE; /+ Local. «/

DO PORTS$INDEX = 0 to PORTS - 1;
IF FUNCTIONSNAME = LPT(PORTS$INDEX).FUNCTIONSNAME
THEN IF LPTCPORTS$INDEX).PORTS$STATE = ACTIVE
THEN DO;
STATUS = SYSTEMS$PORTSACTIVE;
RETURN;
END /% THEN «/;
ELSE DO;
STATUS = SYSTEMS$PORTSAVAILABLE;
PORT$QUEUESPTR = LPT(PORTSINDEX).PORT$QUEUESPTR;
LPTCPORTSINDEX) .PORTS$STATE = ACTIVE;
RETURN;
END /% ELSE #/;
END /% DD +/;
STATUS = SYSTEMS$PORTSUNKNOWN;
RETURN;

END ACTIVATESSYSTEMSPORT;

E.8.5 DEACTIVATE$SYSTEMS$PORT

This function terminates reception of messages at a port.

DEACTIVATESSYSTEM$PORT: PROCEDURE
(FUNCTIONS$NAME, STATUS);

DECLARE FUNCTIONSNAME WORD; /+ Input. «/
DECLARE STATUS BYTE; /+ Output. «/
DECLARE PORTS$INDEX BYTE;

DO PORTS$INDEX = 0 TO PORTS - 1;
IF FUNCTIONSNAME = LPTC(PORTSINDEX).FUNCTIONSNAME
THEN IF LPT(PORTS$INDEX).PORT$STATE = INACTIVE
THEN DO;
STATUS = SYSTEMS$PORTSINACTIVE;
RETURN;
END /+ THEN +/;

E-30

iNA 960

MULTIBUS® Interprocessor Protocol (MIP)

ELSE DO;
STATUS = SYSTEMS$PORTSAVAILABLE;
LPTCPORTS$INDEX) .PORTS$STATE = INACTIVE;
RETURN;
END /+ ELSE #/;

END /+ DO «/;

STATUS = SYSTEMS$PORTSUNKNOMWN;

RETURN;

END DEACTIVATESSYSTEMSPORT;

E.8.6 RECEIVE$SBUFFER

This function retrieves a buffer from a port queue if there is a buffer in the queue.

RECEIVESBUFFER: PROCEDURE (PORTSQUEUESPTR,
USERSBUFFERS$PTR, STATUS);

DECLARE PORTSQUEUESPTR POINTER, [+ Input. #/
RGD BASED PORTS$QUEUESPTR ROAD$STRUCTURE;

DECLARE USERS$BUFFERS$PTR POINTER, /+ Dutput. +/
STATUS BYTE;

DECLARE ROES$PTR POINTER; /+ Local. s/

CALL REQUESTSTAKESPOINTER (PORT$QUEUESPTR,
RQE$PTR, STATUS);
IF STATUS = READY
THEN DO
CALL MOVE (RQD.RQGES$LENGTH, RQE$PTR, USERS$BUFFERS$PTR);
CALL RELEASESTAKESPOINTER (PORTS$QUEUESPTR, STATUS):
END /% THEN #/;

RETURN;

END RECEIVESBUFFER;

E-31

[® iNA 960 Programmer’s Reference Manual
Inté 122193-001

REQUEST FOR READER’S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi-
cation. If you have any comments on the product that this publication describes, please contact your Intel repre-
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve-
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS
CITY STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. []

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of intel Corporation.

| ” ” | NO POSTAGE

NECESSARY
IF MAILED
INU.S.A.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTACLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

[| l I®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

