intal

iMMX™ 800
MULTIBUS® MESSAGE EXCHANGE
REFERENCE MANUAL

Copyright © 1982 Intel Cor p n Order Number: 144912-001
tngp ation, 3065 Bow! A e, Santa Clara, California 95051

iMMX™ 800
MULTIBUS® MESSAGE EXCHANGE
REFERENCE MANUAL

Order Number: 144912-001

Copyright © 1982 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation

3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli-
cation or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Inte] Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP Intel iSBC Multibus
CREDIT Int,l iSBX Multichannel

i Intelevision iSXM Muitimodule
ICE Intellec Library Manager Plug-A-Bubble
iCS Intellink MCS PROMPT

im iosp Megachassis . RMX/80
iMMX iPDS Micromainframe System 2000
Insite iRMX Micromap UPI

A702/882/3K

PREFACE

This manual describes how to use iMMX 800 software to augment iRMX 80-,
iRMX 88—, or iRMX 86-based application systems to allow tasks on
different iSBC boards to communicate over the Multibus system bus.

It is assumed that readers of this manual already are familiar with
either the iRMX 80 or iRMX 88 Executive or the iRMX 86 Operating System.

The manuals listed below provide reference information concerning Intel

hardware and software products with which the iMMX 800 modules may be
used:

° Introduction to the iRMX™ 80/88 Real-Time Multitasking Executives,
Order Number: 143238

° iRMX™ 80 User's Guide, Order Number: 9800522

e iRMX™ 80 Installation Instructions, Order Number: 9803087

™ iRMX™ 80/88 Interactive Configuration Utility User's Guide,
Order Number: 142603

° iRMX™ 88 Reference Manual, Order Number: 143232
e iRMX™ 88 Installation Instructions, Order Number: 143241

e Guide to Writing Device Drivers for the iRMX™ 86 and iRMX™ 88 I/0O
Systems, Order Number: 142926

e Introduction to the iRMX™ 86 Operating System,
Order Number: 9803124

e iRMX™ 86 Nucleus Reference Maﬁual, Order Number: 9803122

e iRMX™ 86 Terminal Handler Reference Manual, Order Number: 143323
° iRMX™ 86 Debugger Reference Manual, Order Number: 143324

e iRMX™ 86 Basic I/O System Reference Manual, Order Number: 9803123

. iRMX™ 86 Extended I/0 System Reference Manual,
Order Number: 143308

e iRMX™ 86 System Programmer's Reference Manual,
Order Number: 142721

e iRMX™ 86 Configuration Guide, Order Number: 9803126

¢ iRMX™ 86 Installation Guide, Order Number: 9803125

iii

PREFACE (continued)

e PL/M-80 Programming Manual, Order Number: 9800268

e PL/M-86 Programming Manual for 8080/8085-Based Development
Systems, Order Number: 9800466

e PL/M-86 Compiler Operating Instructions for 8080/8085-Based
Development Systems, Order Number: 9800478

e PL/M-86 User's Guide for 8086-Based Development Systems,
Order Number: 121636

e ISIS-II User's Guide, Order Number: 9800306

e User's Guide for the iSBC® 957B iAPX 86, 88 Interface and
Execution Package, Order Number: 143979

o iSBC® 80/24 Hardware Reference Manual, Order Number: 142648
e iSBC® 80/30 Hardware Reference Manual, Order Number: 9800611
o iSBC® 86/05 Hardware Reference Manual, Order Number: 143153
e iSBC® 86/12A Hardware Reference Manual, Order Number: 9803074

° iSBC® 86/14 and iSBC® 86/30 Single Board Computer Hardware
Reference Manual, Order Number: 144044

° iSBC® 88/25 Single Board Computer Hardware Reference Manual,
Order Number: 143825

e iSBC® 88/40 Measurement and Control Computer Hardware Reference
Manual, Order Number: 142978

° iSBC® 88/45 Advanced Data Communications Processor Board
Hardware Reference Manual, Order Number: 143824

° iSBC® 544 Intelligent Communications Controller Board Hardware
Reference Manual, Order Number: 9800616

e iSBC® 550 Ethernet* Communications Controller Hardware
Reference Manual, Order Number: 121746

° Ethernet Communications Controller Programmer's Reference Manual,
Order Number: 121769

e iSBC® 569 Intelligent Digital Controller Board Hardware
Reference Manual, Order Number: 9800845

* Ethernet is a trademark of the Xerox Corporation.

iv

CONTENTS
PAGE

CHAPTER 1

INTRODUCTION TO THE iMMX 800 SOFTWARE

iMMX 800 Application EXampleeecccecscccscscosssacescsssscssssscncnes 1
Hardware Environment.cceccesecscsscscescscssosssssoscesossccssocsnncs 1-
Software Requirements for iMMX 800-Based SystemSeececeseccccssccesss 1
How This Manual is Organizedeececeseccscecscessecsacsacssscsancsancss 1

CHAPTER 2

The iMMX 800 INTERDEVICE COMMUNICATION MODEL

Intertask Message Sender/Receiver Modelecceecceseoecccoccescsoncnns

Interdevice Message TransferSececceccecscscsccscscscscccscrsocssocassnns
System and Local POrtSececscscescessscesvsossoscsssessnsoscssssocscsss

ChannelSeesceesecscscsecossscscsosososcscssscosssnssssossssscasssssoascs
iMMX 800 Message Exchange ServiceSesccececessscecccssscccccososncnns
Message~Transfer ProtoColeccccescesossscsosccscoscccsoscssccsoccss
The Find Port (CQFIND) Serviceececeseccescessoccssosscscsanccoss

The Transfer Message (CQXFER) Servic@ecccececcsececsccsccassancans

The Lose Port (CQLOSE) ServiC@ecseccecsscensecccsrssscscccsssssse
Message—Reception ProtoCO0leccceccesscccaccscccscssccscssssssssnsnns
The Activate Port (CQACTV) ServicCeecececsscsessccsssssssccccncs
Standard Message—Reception CallSecececcecsocscssccsossccssacscnnes

The Deactivate Port (CQDACT) ServicCe eceeesccccccccssccscccscssse
Interdevice Message~Exchange ProtocCo0lececececcecccesscsossnssssccaccsss
Intertask Message Exchanges on a Single Deviceeeecessecsnscecsoscecnns
iMMX 800 Memory Configuration and Managementeeeccececeessccsssvscess
The Mechanics of Message TransSferSecececcecccccssceccescssscscccsannns

| I |
ON~NULULUUULSESEEPRAPOLWLODNDNOD

CHAPTER 3

MMX 80 PROCEDURE CALLS

PL/M-80 Language Interface.escsescccsssesscsssocesensssssssscsanssss
iRMX 80 Message StrUCLUTEececsseossssssocscosvsscsooscsscossssossocsses
Condition COdeSecesocsetsscessssscssccssacssascsssosscscscsssnsssccas
MMX 80 Procedure SUMMATYecoeecesosecccescoscssccsscsscsssocssensasnscses

Find Port-.o-o..o...................-o.....a.....................

Transfer Messageo-..........-..a.................................

I

LOSE POTtecesscesosocssosccccscsnsoscssosncssscscssssvssscssssossssssnose
Activate POTteceecscessoesstssscsvscsossccsssonsssoscoosssscnnssosss
Message ReceptiOnNescecccesssscesscsccssocasssossssssscssssccscsonas
Deactivate POTrtececscecccessssccssoccsssesoscccsossonsosnossansnses
MMX 80 Usage ExXampleS.ceeceecsececcocecsacscscssosssccscncavosascscesss

[|

wwwwwklnwwwuw
o O W

CHAPTER 4

MMX 88 PROCEDURE CALLS

PL/M-86 Language INterfaceeecceescessscesssossssesccssscssssnssccsss 44—l
A Notational Convention for MMX 88 DiscusSSiOnScececccceccscccsscscss 4-1
IRMX 88 Message StrUCLUTE@ecesssscssoscssosccssssssssssssscssasscscs 4~2
Condition COdeSeeeecsscsccosscesecsassssssoasscscscssscsassssncssssssos 4-2

CONTENTS (continued)

CHAPTER 4 (continued)

MMX 88 Procedure SUMMATYeeecsseecoosososcccosssssocesssscsssssscsons
Find POrtececcecccecescsscoscessssccssscscscsscscsscsssosssssscsncsss
Transfer Messageeceseccscoscsacsecsccescsssssscssscacssssscsssassnsoe
LOSE POTtesecsessonesscscsssccesvsosasocsssossssosscossscssssasscsssnsnse
Activate POrLiccececscessrsessrsesscsessrsosssasscsoscssocssssscsssosncnse
Message Receptionicscscescecscceccscesccoscosssscecscsosscosceccssoca
Deactivate POTtecececeseoceersosccesorsoscasnscscsscssssssasccssoncsns
MMX 88 Usage EXampleSceeecscecscsccecccssscscsscssascssssccscssssasas

CHAPTER 5

MMX 86 PROCEDURE CALLS

PL/M—-86 Language Interfac@ccceccceescesseesccscscccsssessscssccccans

Condition CodeSeecersevsccosesosssccscsosasssasssssscssassnscssscssssose

MMX 86 Procedure SUMMAYYeeseosocecscsccsscssccosscscosscsssscnoscvonss
Find POrtececcececesscceoscsceocscccosscsscscssascssossscssscsssssscssscsse
Transfer Messageecscseecscscecassscossscsoscscscsssssscsscsssscsans
LOSE POTtecccecccsceeoscsonssssasossossescsssscesosssonsscssocsscssoes
Activate POrlececscccsceccescscsoscsossccossasscssscsscsssnsascsasssone
Message Receptioniceccceccccosccscecesccccssessscscscscsscscsscsscssce
Deactivate POrtecececccscccssccccsscccsossscssscsoscsnscsscscsncccs
MMX 86 Usage ExXampleSeececccesscscescstsosossecttsscassesosssassssccocs

CHAPTER 6

PARTITIONED MEMORY MANAGER

MemoTY POOlSecesescoscccccsccossscccenscsccsccscssssossccssscssssscscnsse

Using the Free Space PoOlecececcccesccccscsooescsccsnscsscsnssssccsacnss

Using Pools O Through Nieeeeseeececsscsoososasssencocscccosssccnnsans
Requesting MemOry.eeeeceecseccevessocscsssssoscscccsossscsvascsns
Returning Allocated MemOrYeeeceeecocososcocecscsccccccssssossaccsoss

Creating Memory Pools Dynamicallyeeeceeccocecsccsscccscccsssscnssssss

CHAPTER 7
CONFIGURING YOUR APPLICATION SYSTEM
Software Configurationesseeseesssesvescssscscsscscssssssscsncsncansss
Decisions that Provide Information Needed for Configuration......
System—Level DecisionSececesccccscsccssscescsosonscsocssossscssscsns
Device-Level DeciSiOnSeecceccccescssscscssccoscsossancsssccsssccs
Port-Level Decisionececeesccscccsceccccecsosssccccsvessocsocssscnes
Variables and Data Structures That Must Be Assigned ValueS:eseese
Device Description (CQDVCS) e ceeessecsescsscsecscscsscsscnscssnsonse
Channel Description (DCMSROM, DCMSRAM).ccovecccccscescsososaces
Port Descriptions (CQPRTS, LPTSROM, LPTSRAM)..cccecceccccccncns
Address Description (CQSKTS, DSDT)ecccesccesccsssccssccosssconss
Attribute Description (SFT, CQITWT, CQMDLY, CQIDPD, CQSGLV,
CQLMEX, MCBI)eooecccccccsccsssccccssscsossncssassascsossssnscsss

vi

NP DN

T
o

CONTENTS (continued)

CHAPTER 7 (continued)
Memory Description (CQIDSS, IDST)ececeocsescssccssccccsccnccnsas
Memory Assignment (CQPLHS, PLHTBL, CQBLKS, BKLTBL):eccoeccocscss
A Comprehensive View of the System Data StructureScecesceccssccsss
An Example of iMMX 800 Configurationeecesseeeseccscseccscscccccsns
Making the DecisSionSeeceeeccccsssecesssscoscsossoscsscssocnocsocss
Filling the StruCtUre@Seccescecesccceceascsrsccsscsoscsccscsccossccs
Linking and Locating iMMX 800 Application SystemSeeeeecccccsceccsse
Linking and Locating for MMX 80..cccccecscccsssccscsccccscecscsss
Linking and Locating for MMK 88.cccceceecccsscccccccccscscccnns
Linking and Locating for MMX 86.ceeeccccccccccscescosacasccsnns

Hardware Configuration.ceececescceccoscsoscsosscosocscscssccsssassccoscas

iSBC
iSBC
iSBC
iSBC
iSBC
iSBC
iSBC
iSBC
iSBC

iSBC 86/05 Device

iSBC
iSBC
iSBC
iSBC
iSBC
iSBC
iSBC
iSBC
iSBC
iSBC

CHAPTER 8

86/14
88/25
88/25
88/40
88/40
88/45
88/45

Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt

544 Device Interrupt GeneratioNeecesceseeccsceescsscsssssosss
544 Device Interrupt ReceptiONececececcccescecsccsccsccoscnns
569 Device Interrupt GeneratioNeecececececeececcecccascssscscescsss
569 Device Interrupt Receptioneeceeeccscccssecscascecscsccsns
80/24 Device
80/24 Device
80/30 Device
80/30 Device
86/05 Device

GeneratiONeecescescssscssecscassansss
Receptioneececcecscscescacsscecscncncs
GeneratiONeeceseccssscessscscosssscesss
Receptionescceccscsccssccsccccccnases
GeneratioNessececcsesscsscccsscsccnsasscse
Reception.scesceccesccccccsconscssases

86/12A Device Interrupt GeneratiONee.ececececccececcoccscccoces
86/12A Device Interrupt ReceptiONeceecececcecscscsccssccanas
86/14

and iSBC 86/30 Device Interrupt Generation.eececcececceese
and iSBC 86/30 Device Interrupt ReceptionNe.ececcececssn

Device
Device
Device
Device
Device
Device

Interrupt
Interrupt

Interrupt

Interrupt
Interrupt
Interrupt

PERFORMANCE CONSIDERATIONS
Avoid Unnecessary Traffic on the Multibus Interfac@esescessscecscses
Minimize the Number of Times that Messages Must be Copiedececcccess
Distribute the Workload Among the Boards in Your Systemecessccsccece
Minimize the Number of Message Transfers by Using Large Messages...
Experiment with Various Interrupt Mechanisms and Polling Periods...
Experiment with Various Hardware and Software Configurations...cs..

APPENDIX A

GeneratioONeeccecscsssccsacsscccasccocscss
Receptioniececeesccccesccscrscscascacses
GeneratioNecccescccsccoscsccsccssccnses
Reception.eeceeeescccvsecsscscsscsonsnns
GeneratioNeeceecececcscecccccccssccscscese
ReceptiOnNisecesecoscscesoscosccccasccnce

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

What 18 MIP.ueeeseecsosoceososcssessocsocascossonssccococscscsnnossssss
Implementing MIPecceeeeecoscsconssossssssssssssscsssscossossosesossss
The MIP Modelesseeeseesesesoeascccsceasoocscossocscsacsaasasccascnnsnes

vii

PAGE

A-1
A-2
A-2

CONTENTS (continued)

APPENDIX A (continued)

Three-Level Interface StIUCLUrE@eecessvscssccssssosssoscsssccssssons
Physical Leveleecoeecososreoceseasscscsoscsscsscsossossscsnocsnssncocss
Logical Leveleceseoeccscocesossscerssscsnssosssocsassscscssssscsccsccs
Virtual Leveleceeceocoeecscesasesososascossccasossoccscsnssssssocasss

Memory Managementeseoesecscscsescsesssescsssscscsoscsosssssecssossscsssnsssce

Buffer Movementeeeessesoscoesccsossscssscssosscsstssscsssosscscscsoscssscsss

Signallingececsececscssccccsccsocsscascscssssssssscssossscscssscsnssnse

Error Handlingeeeoeocoosesocceccccsconssscsososcessscsosscssscsosssssscccce

MIP Functional Specificationececececsccsceccccescscccccccsccsncsoccsonsns

Procedural SpecificationNeecccececscosccvececosessccssoscssccsscsssss
Data TypPeSeecsceeoscccsscccosscosssoccssscsccccssoosnsscssosssccsssossssces
Processor-Dependent SubroutineSesccececceccsscescsosssosscccssasnss

PTR$ADD..-ooooco..o.o.oooooooooooooo'o-ooooovooooooo--oo.oo.oo.oo

CONVERTSLOCALSADR . cceoeecesecsvsccssssoosscossssssssosossssnsconcs
CONVERTSSYSTEMSADR ¢ e cevoecccoossccscsoscsasacsccsooscasasssscssasss
TIMESWALT e e eeecescsoeecocsscsoscscnsesssssosssenosssccsscnssonssnes
Physical Level SpecificatiOnNeecscccccccecccoscscscsccsvesccsocsscscccccnss
Request Queue DesSCriptOTrecececcsccecccesessssccnssscsssccscsscsscs
Request Queue Entryeeeececoresocscsoscovooscssosvssscsscccssooosssanns
Queue Procedure ReturnNSeececcecceesescsoscssssosossssscssrssssssnsas
INITSREQUESTSQUEUE ¢ ccteesveecsoscccccccsocossooossoosovasossacss
TERMSREQUESTSQUEUE e ¢ e cceoovsvosssscssccscssssosssocsssssocsnsssssnss
QUEUESGIVESSTATUS s eeessonsersescccssossesvsccsssosssocssnsnsssnssssns
REQUESTSGIVESPOINTER ¢ ¢ oo e eeceoscsssvsocssosovsosassssnscnosasssonnss
RELEASESGIVESPOINTER « e ¢ ¢ o eeeacesacecoscsnscassesacsasccsasassanns
REQUESTSTAKESPOINTER « e ¢ ¢ e ¢ o aeseonssooesoeseneosacassansanossscsons
RELEASESTAKESPOINTER ¢ cceececcocscoscecosocsossoscscsssoscscsscssccans
Logical Level DatabasS@ecccecesccccccccesscssscccssssssossccsscsssoss
Configuration ConStantSeececceccscsccecssssssscosncsccscscossoscnns
Destination Socket Descriptor Table (DSDT)eeeseccccsescsccccscsse
Local Port Table (LPT)ecesccecssccccsvsscscccscscsssscsasssscsssssnss
Device to Channel Map (DCM)e.ceevececccccsnsccscsoassccssccsscccsocnss
Inter-Device Segment Table (IDST)ececcsccecccccoscoscocsosocvonnnsasn
Response Queue List (RQL)ececceceoeesccoescccccoocsscccoossscnasss
Logical Level AlgorithmSeececcecsesseccccosescssssssscsscscccsscsnaccs
DYINGSCHANNEL ¢ ¢ e ccooeocovecocccascsnsossasesosascsosssssscccncscsoses
SERVESTURNAROUNDSQUEUE ¢ ¢ ¢ cc oo vevccvscccssssccsccsssscsssnsscssasns
SERVESCOMMANDSQUEUE ¢ ¢ s ceceececcncocccocssonscsscsscsacsosonnsscsses
OUTSTASKe oo eesaosssososososocssossoscsscssosssosnossacssanssssassane
RECEIVESCOMMAND . ccseoecoacoosscssssscssasssscscssossssssosscsnacssssse
RECEIVESRESPONSE ccceececsescscecossssscscscscossssssscsoscssassssses
INSTASK . eosoessoccescoossosnascesseosssesssscsscscsssossscssssossnss

Virtual Levelt-o'n.‘-ooooatooooo.ooo.o.oooo.ooo'ooooolooooocootoooo

StatuS Constants.ooooucl‘.to-oooooo-o-o-0.0.000000...00.0-.....0ok

FINDSSYSTEMSPORT ¢ oo eeceevcovsescosssoscsosrsscssoscsasscnsnassscasscns
TRANSFERSBUFFER ¢ coceevcvscccscsvscovsscsscssscsoscscscssnsosscsanss
ACTIVATESSYSTEMSPORT e oo vevseccnscccscccsssonsocscsssosccssasscnves
DEACTIVATESSYSTEMSPORT ¢eeeeeococceocscssvsccsscsvsosessossasssccnse
RECEIVESBUFFER:eteeecoooscoscssctosascsssscsacseccsscsscsnssacssncasse

viii

PAGE

A-4

A-5

A-7

A-7

A-8

A-10
A-10
A-10
A-11
A-11
A-11
A-11
A-11
A-12
A-12
A-13
A-14
A-14
A-15
A-16
A-16
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-22
A-23
A-23
A-23
A-24
A-25
A-25
A-25
A-26
A-27
A-28
A-30
A-32
A-33
A-35
A-35
A-35
A-36
A-38
A-39
A-40

APPENDIX B

CONTENTS (continued)

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER
Ethernet-Related Intel Hardware and Software ProductSeeeeccceccccss
Putting the Hardware Togetheressecceccccccccseccscsscecconssacsscnces
Writing Tasks that Communicate on an Ethernet Networkeeeceocoeeoeooos
Building and iSBC 550 Request BloCKeceoseecscecseoooscsecaconccons

Sending the Request
The Ethernet Tasks®
Using the iRMX 86
Using the iRMX 86
Using the iRMX 88
Configuring, Linking,
for Use with 1iSBC
Configuring an iRMX

Block to the iSBC 550 Controllerececceccsccscss
Environment and DutieSeeccececccccccccccoccanse
Basic I/0 SysSteMesseoessessecsscasssssssnccss
Extended I/0 Systemecessccoscsssoccssssecccnss
I/0 SyStemMeceevesssccessssssosssssassosssssssee
and Locating an iRMX 86 or 88 I/0 System

550 ControllerSeececsceccescascscsasssssssasnas
86 I/0 System for Use with iSBC 550 Controllers

A Sample Basic I/0 System Configuration File..eeeeeccscecencons
A Sample MMX 86 Configuration File for the Host Device.sececsss
Linking and Locating the Configured iRMX 86 I/0 Systemeeeecececces
Configuring the iRMX 88 I/0 System for Use with
1SBC 550 CoOntrollerSeececsscssesssscssssscssoossnccssssscsssses

Responding to ICU

Prompts.ooo-o'o-.ool...ooooo.oooooooooocooo'i

Modifying Files Produced by the ICUcececcecccsccscscccccccscsas
A Sample MMX 88 Configuration File for the Host Device.ccecececes

APPENDIX C
MMX 80 DIAGNOSTICS

RQPBHX Port Diagnostic......................-..-..-.....-......-...
MEMSINITsSTATUS Diagnostic..................................-..-...

APPENDIX D

PAGE

B-1
B-3
B-4
B-5
B-5
B-6
B-6
B-9
B-11

B-14
B-14
B-17
B-21
B-25

B-26
B-27
B-28
B-30

iMMX 800 CONDITION CODESIQOQO0.00.0.0..0..'.O..0'OOfOOOOQOOQ.OQODOOOOCD—l

ix

.

| UL
VEWNEHENENMHENES;WONDR =
. . . .

i

\I\I\I\I\IU‘IU‘I-L\-TLOLDNNNNH

I

FIGURES

iMMX 800-Based Application Example..ceeecccccccccccssccssocs
Sending and Receiving Task ModelSe.essceeecssscoesssssccnnsns
Dedicated Channel EXamplecececeecscccesscoscsccoscscsscsccssoes
iMMX 800 Message Exchange CallS.cescesccssscscscoasssscocnce
Message Transfer Diagrameccececccececcescccscccssoccsccssscssse
Sending Task Program Example.secceccscssesscessoscsoccsccccane
Receiving Task Program Example.seecesscececcecscecsccaccccns
Sending Task Program Examplesceccecccsoscececcccccssccccssscne
Recelving Task Program ExXampleccececccesccccsccscsccssscsoscns
Sending Task Program ExXample.scececccscccscsccsscesccsocssosnona
Receiving Task Program Exampleeccscecccccecscscsccsscocscoses
A Level-Oriented Representation of Configuration Structures.
The Principal iMMX 800 Configuration Data Structures..eeece..
Example Target SySteMecsecescoscsocsssccsstsccssssssscsasccsas
Example Target System with ChannelSeececcccssecccoscecsscossoss
Initial Allocation Of MemOrYeocececvocccosecoscssoscscsoscocns
Memory Map for the EXamplececececccccscescscscscscssccccscsocsos
MIP System ExXample.csececcsceccccccocscsscsscosscssossonassosos
System Port Configuration Examplecceececsscscscacscccscsscsces
MIP Model Data Flow Examplecececececccscscescocsceonsscsccces
Request Queue FOTmMALeseeovessseccvsesssecsoscsssosossosossnes
Conceptual Structure of a Channelecccececesesocescccccccccccss
Example of Inter-Device Memory SegmentSeeccecececcccccccoses
Hardware for a System Communicating with Etherneteceeececeeee
Software for a System Communicating with Etherneteeccececescs.
MEMSINITS$STATUS Diagnostic Exampleeeeccececsccecescossccsssss

TABLES

MMX 80 Procedures SUMMATY.eeoescesscccscsosccscscsscscsssscscssse
MMX 88 ProcedureS SUMMATYYeeoeescesscosecscscccscsscssscnncssse
MMX 86 Procedures SUNMATYeeeeesscoscssscccsscocscsccsnscnsssss
System Inter—Device Segment Tableeeseseeescessscsccccacssnsse
iMMX 800 Condition CodeSeceecccescecsvsesossccscssssssssssscscs

CHAPTER 1. INTRODUCTION TO THE iMMX™ 800 SOFTWARE

The iMMX 800 software extends the communications capabilities normally
available to iRMX 80-, iRMX 88—, or iRMX 86-based applications. In these
applications, tasks reside on the same iSBC board and communicate with
the assistance of a single operating system. The iMMX 800 software
provides communication capabilities between tasks residing on different
iSBC boards. The only restriction is that the boards must all have
access to the same Multibus system bus. The boards can be of different
types and the tasks on the boards can be executing under different
operating systems. For example, with the aid of iMMX 800 software, tasks
running on an iSBC 80/30 board under the supervision of the iRMX 80
Executive can communicate with tasks running on an iSBC 86/12A board
under the supervision of the iRMX 86 Operating System.

Tasks executing in the iMMX 800 environment communicate by means of
messages, and the format requirements (if any) of the messages are
identical to those of the iRMX operating system supporting the iMMX 800
software.

There are three implementations of the iMMX 800 software and each is
fully compatible with one of the iRMX 80, iRMX 88, and iRMX 86 operating
systems. The three implementations are called MMX 80, MMX 88, and

MMX 86, respectively. With them, you can design powerful systems that
take advantage of the differing capabilities of the various iSBC boards
and iRMX operating systems.

For convenience, an iSBC board with an iRMX operating system and iMMX 800
software is known as a device.

iMMX 800 APPLICATION EXAMPLE

Some of the design flexibility provided by iMMX 800 software can be seen
in the example illustrated in Figure 1-1. The example shows that
application tasks on each device are serviced by device-resident iMMX 800
software for interdevice message transfers.

For purposes of the example, assume you are designing a database

application that allows operators at two terminals to access and modify
data files.

The terminals are under the control of iRMX 80 Executives residing on
their respective iSBC 80/24 processor boards, along with MMX 80 software
for interdevice message transfers.

INTRODUCTION TO THE iMMX™ 800 SOFTIWARE

TERMINAL TERMINAL
INTERFACE INTERFACE
TASK TASK

iSBC™ 80/24 iSBC™ 80/24

\ Y
<:: MULTIBUS t:}
A A

‘W

|

|

|

|

|

|
i

I

iSBC™ 86/12A
MMX 86

- —

I
| iSBC™ 215
|
|

x-124

Figure 1-1. iMMX™ 800-Based Application Example

The operators have access to files on a Winchester disk, with the iRMX 86
I/0 System handling requests from the terminals and performing the
necessary 1/0.

When an operator enters a request at a terminal, the following sequence
of events occurs:

1. A task on the iSBC 80/24 board in the terminal builds a message
that meets iRMX 80 message—format requirements and issues a
CQXFER call to the device-resident copy of MMX 80. (CQXFER is
the name of the iMMX 800 transfer procedure.)

2. MMX 80 transfers the message to MMX 86 on the iSBC 86/12A board.

3. MMX 86 reformats the message and passes it to an iRMX 86 task.

1-2

INTRODUCTION TO THE iMMX™ 800 SOFTWARE
4. The I/0 System performs the necessary I/0 operations for the
iRMX 86 task.

5. The iRMX 86 task puts the data in a message that satisfies format
conventions and issues a CQXFER call to MMX 86.

6. MMX 86 transfers the message to MMX 80 on the iSBC 80/24 board.

7. MMX 80 reformats the message to meet iRMX 80 format requirements
and passes it to the iRMX 80 task.

8. The iRMX 80 task extracts the data from the message and sends it
to the terminal.

For a more detailed description and also for configuration procedures for
this example, refer to Chapter 7.

HARDWARE ENVIRONMENT

Hardware systems supporting the iMMX 800 software are limited to three
bus masters with serial bus arbitration, or 16 bus masters with parallel
bus arbitration. An iMMX 800-based hardware system can employ a
combination of any of the following processor and intelligent slave
boards:

e iSBC 80/24 processor board, which must be a Multibus master.

e 1iSBC 80/30 processor board, which can be either a Multibus master
or a Multibus slave.

. iSBC 86/05 processor board, which must be a Multibus master.
e iSBC 86/12A processor board, which must be a Multibus master.
e iSBC 86/14 processor board, which must be a Multibus master.
e iSBC 86/30 processor board, which must be a Multibus master.
® iSBC 88/25 processor board, which must be a Multibus master.

e iSBC 88/40 processor board, which can be either a Multibus master
or a Multibus slave. ‘

e iSBC 88/45 processor board, which can be either a Multibus master
or a Multibus slave.

e iSBC 544 Intelligent Communications Controller, which can be a
Multibus unimaster or slave but not a multimaster.

e iSBC 550 Ethernet* Communications Controller, which must be a
Multibus master.
* Ethernet is a trademark of the Xerox Corporation.

1-3

INTRODUCTION TO THE iMMX™ 800 SOFTWARE

e 1iSBC 569 Intelligent Digital Controller, which can be a Multibus
unimaster or slave but not a multimaster.

The terms "slave, unimaster,” and "multimaster"” are defined in the
hardware reference manuals for the various boards.

SOFTWARE REQUIREMENTS FOR iMMX 800-BASED SYSTEMS

For each device serviced by an iMMX 800 implementation, the required
software modules are as follows:

® One copy of iRMX 80 or iRMX 88 Executive software without the
Free Space Manager —— the FSM is replaced by the Partitioned
Memory Manager that is supplied with the iMMX 800 software —= or
one copy of the iRMX 86 Operating System, depending upon the
device and the application requirements.

e One copy of the MMX 80, MMX 88, or MMX 86 software.

® Any desired application tasks.

HOW THIS MANUAL IS ORGANIZED

Chapter 2 of this manual contains general descriptions of the procedure
calls that are part of each implementation of the iMMX 800 software.

Chapters 3, 4, and 5 give the specific descriptions and calling sequences
for the procedures as they are implemented in MMX 80, MMX 88, and MMX 86,
respectively. The semantics of the procedures in the different
implementations are very similar, but the syntax requirements are
somewhat diverse, due to the differences among the iRMX operating systems.

Chapter 6 discusses the Partitioned Memory Manager, which is part of each
implementation of the iMMX 800 software. The Partitioned Memory Manager
is much like the iRMX 80 and iRMX 88 Free Space Managers, and, in fact,
replaces the FSM in applications using MMX 80 or MMX 88.

Chapter 7 explains how to configure your hardware and software for
iMMX 800 applications. It also expands upon the example of this chapter,
giving the example's configuration files for MMX 80 and MMX 86.

Appendix A describes the MIP (Multibus Interprocessor Protocol) that the
iMMX 800 services follow.

Appendix B discusses using the iMMX 800 software to build a Multibus-
based system that can communicate with an Ethernet controller.

Appendix C describes two diagnostic tools for debugging MMX 80-based
applications.

Appendix D gives the mnemonics and numeric values of the condition
(status) codes that the iMMX 800 procedure calls can return.

1-4

CHAPTER 2. THE iMMX™ 800 INTERDEVICE COMMUNICATION MODEL

This chapter introduces you to the intertask message-exchange model,
protocols, and memory structures for interdevice message transfers. You
need a good understanding of this architecture before you can design and
create an iMMX 800-based application system.

In the iMMX 800 context, a "device" refers to a single iSBC board that
contains its own copy of the iMMX 800 software, an iRMX operating system
that controls the device, and application tasks. In an interdevice
message transfer, an application task on one device sends a message to an
application task on another device.

INTERTASK MESSAGE SENDER/RECEIVER MODEL

The message sender/receiver model should be familiar to most iRMX
operating system users. It defines a simple system that consists of two
types of tasks: those that receive data, and those that transfer data.

A message-receiving task waits for a message to be posted at a particular
exchange or mailbox and takes control of the processor only when it has
received a message. This task performs an action that might be based on
the content of the message and then waits until it receives another
message. Usually, the receiving task acknowledges completion of its
function by returning the message to an exchange or mailbox where the
sending task is waiting for a response.

A message-sending task initiates its function by transferring a message
to an exchange or mailbox. The task can wait until it receives a
response to its message, or it can continue to run while the receiving
task processes the message.

Generally, the distinction between message—-sending and message~receiving
tasks is not absolute, because many tasks both send and receive
messages. - However, the sender/receiver concept presented in Figure 2-1
helps clarify the general interaction of tasks.

Because intertask communication is through an exchange or mailbox,
messages containing data are queued automatically. Thus, a sending task
can be allowed to "get ahead"” of a receiving task without loss of data.

The iRMX software supports the sender/receiver communication model on a
single device. The iMMX 800 software services generalize the model,
supporting it for communication between devices.

THE iMMX 800™ INTERDEVICE COMMUNICATION MODEL

SENDING TASK RECEIVING TASK
TASK ENTRY POINT TASK ENTRY POINT
INITIALIZE TASK INITIALIZE TASK

v ‘
——3»| PERFORM FUNCTION >—H WAIT FOR MESSAGE

‘ Y
| N
SEND MESSAGE PERFORM FUNCTION

—

:: f
WAIT FOR RESPONSE e SEND RESPONSE
!

X-119

Figure 2-1. Sénding and Receiving Task Models

INTERDEVICE MESSAGE TRANSFERS

Tasks using the iMMX 800 services to transfer and receive messages see
those services as procedures that are associated with ports. The link
between the port known to the sending tasks and the port known by the
receiving task is a channel.

SYSTEM AND LOCAL PORTS

In iRMX-based applications, tasks send and receive messages through
exchanges or mailboxes. In iMMX 800-based systems, a task might not know
which operating system supports the task with which it is communicating,
so the iMMX 800 software provides ports, which are similar to exchanges
and mailboxes.

A port can be viewed by a task in two ways, depending upon the task's
intentions. A task intending to transfer a message to another task by
means of iMMX 800 services views a message's destination as a system
port. On the other hand, a task intending to receive a message views the
same port as a local port that resides on the same device as does the
task. On devices controlled by iRMX 80 or iRMX 88 Executives, local
ports are exchanges. On devices controlled by iRMX 86 Operating Systems,

THE iMMX 800™ INTERDEVICE COMMUNICATION MODEL

local ports are mailboxes. In either case, the resident operating system
provides the software support for the local port, so tasks on a device
receive all messages, regardless of their origin, by using the
message-reception system call provided by the operating system on the
device.

CHANNELS

The iMMX 800 software supports the association between system and local
ports by providing a channel. Although a channel can be thought of as an
interdevice pipeline through which messages can be transferred (see
Figure 2-2), it is actually a pair of single-direction request queues in
memory shared by the two devices. See Appendix A for a more detailed
description of request queues.

The concept of "channel" is used to emphasize that the request—queue pair
is dedicated to the exclusive use of these two devices for interdevice
message transfers. No other device in an application has access to that
channel. If one of the devices also communicates with another device in
the system, the two devices use another channel for message transfers.

iMMX 800 MESSAGE EXCHANGE SERVICES

The iMMX 800 software provides services that application tasks see as
procedures for transferring and receiving messages.

The following sections provide a general description of the services, and
describe how they are used in combination to accomplish message transfer
and reception. '

Device n Device m

Channel in Public
Memory Partition

MULTIBUS

x-125

Figure 2-2. Dedicated Channel Example

2-3

THE iMMX 800™ INTERDEVICE COMMUNICATION MODEL

MESSAGE TRANSFER PROTOCOL

The following sections discuss the services that the sending task uses.

The FIND PORT (CQFIND) Service

When an application task wishes to send a message to a task on another
device, it must first "locate"” the destination system port. The task
does this by invoking the FIND PORT service (CQFIND procedure). The task
identifies the system port by its system—port name. This system-port
name, which is defined during software configuration (see Chapter 7),
distinguishes the system port from all other system ports in the entire
application.

The call to CQFIND causes the iMMX 800 software to return a unique
connection to the calling task. The sending task uses the connection as

a parameter when it subsequently calls the CQXFER procedure to send
messages. :

Each task wanting to send a message to the same system port must invoke
CQFIND in order to get its own connection to that port.

The TRANSFER MESSAGE (CQXFER) Service

If the call to CQFIND is successful, the sending task calls the TRANSFER
MESSAGE service (CQXFER procedure) to transfer messages, using the
connection returned by CQFIND as a parameter. The task can use the
connection to send as many messages as it wants to send.

The LOSE PORT (CQLOSE) Service

If and when a task has no further messages to transfer to the system port
by means of CQXFER calls, it invokes the CQLOSE procedure to release the
system resources that have been used to support the task's message
transfers. After the call to CQLOSE, the connection no longer refers to
the associated system port and cannot be used again by the sending task.

If the task later wishes to transfer more messages to that system port,

it must again invoke the CQFIND procedure to obtain a new connection to
the port.

MESSAGE-RECEPTION PROTOCOL

The following sections discuss the services that the receiving task uses.

THE iMMX 800™ INTERDEVICE COMMUNICATION MODEL

The ACTIVATE PORT (CQACTV) Service

Until a port is activated by some task resident on a device, tasks cannot
receive messages at that system port. Activating a port enables iMMX 800
services to deliver messages to the local exchange or mailbox associated
with that port.

Some device-resident task initially activates the local port by invoking
the CQACTV procedure. A parameter in the call to CQACTV identifies the
port by means of its system—port name. Once the port is activated,

iMMX 800 services deliver all messages sent to that port to the
associlated exchange or mailbox.

The CQACTV procedure returns an exchange address or a mailbox token,
depending upon which iRMX operating system is resident on the device.
The requesting task uses the returned address or token as input in
subsequent iRMX calls for message reception.

Standard Message—Reception Calls

Receiving tasks invoke the standard message-reception calls provided by
the device-resident operating system: RQWAIT and RQACPT for iRMX 80 and
iRMX 88 Executives, and RQSRECEIVESMESSAGE for iRMX 86 Operating Systems.

Once a device-resident task has activated a local port, all other tasks
on that device can receive messages at that port. Note, however, that
receiving tasks cannot distinguish between messages that come from
device-resident tasks and those that come from tasks on other devices,
unless the application has made special provisions that make this
distinction for the receiving tasks.

The DEACTIVATE PORT (CQDACT) Service

If and when it is appropriate, a task on the same device as a system port
deactivates (CQDACT) that port. The task identifies the port by means of
that port's system—port name. Once the port is deactivated, no further
messages can be sent to it. Thereafter, any task attempting to receive a
message at that port receives an exceptional condition. However,
transferred messages that are already queued at the exchange or mailbox
when the call to CQDACT is made are not affected, and these messages can
be received by tasks.

INTERDEVICE MESSAGE-EXCHANGE PROTOCOL

The flow diagram illustrated in Figure 2-3 shows the various interfaces
used in the interdevice message—exchange protocol. Note that the message
travels only one way, and that the receiving task on device B does not
return a reply to the sending task. If the sending task on device A
expects a reply, it must invoke (prior to its first CQXFER call) a call
to CQACTV to activate a system port on its own device for a reply

2-5

THE iMMX 800™ INTERDEVICE COMMUNICATION MODEL

message. Similarly, the receiving task on device B must invoke the
CQFIND and CQXFER calls to send a reply to device A before waiting for

further messages.

DEVICE A DEVICE B
Sending Receiving
Task Task
Y \
Find Port Activate
(CQFIND) Port
(CQACTV)
‘L Y
Exception NO Receive Msg.
Handler (local system -
T call(s))
s !
YES Y5 V
/\/ S
T ¢
Transfer Msg. E ' A Other
(CQXFER - M- Message
(Connection)) ' ?
* NO
. Deactivate
Exception Transferred Port
Handler ? (CQDACT)

Other
Message
?

+NO

YES

Lose Port
(CQLOSE)

x-126

Figure 2-3.

iMMX™ 800 Message Exchange Calls

THE iMMX 800™ INTERDEVICE COMMUNICATION MODEL

INTERTASK MESSAGE EXCHANGES ON A SINGLE DEVICE

The iMMX 800 message-exchange services can optionally be used for local
intertask message transfers on a single device. One possible reason for
doing so is on-board emulation of an entire application during system
development. That is, the total application is resident on a single
processor board for testing and debugging and, once debugged, is
off-loaded to its intended devices.

iMMX 800 MEMORY CONFIGURATION AND MANAGEMENT

In any system that employs the iMMX 800 services, some of the RAM on or
accessible by each device must be managed by the Partitioned Memory
Manager that resides on that device. Memory that must be managed is
divided into pools, where a pool is a contiguous area of RAM. If a pool
is to be shared between devices, it must lie in an interdevice segment,
which is a contiguous area of RAM with the following characteristics:

® It consists entirely of non-overlapping pools.

e All of it must be addressable by both devices. An example of
such memory is the dual-port RAM on an iSBC 80/30 board.

This means that there are two kinds of pools that the Partitioned Memory
Manager on a device manages: pools that lie entirely inside an
interdevice segment and are used for message—passing between devices or
occasionally between tasks on the device; and pools that lie entirely
outside of all interdevice segments and are used for message-passing
between tasks on the device.

The Partitioned Memory Manager on a device can manage up to 255 memory
pools. Each of those pools is identified by a pool id that you specify
during configuration. Each pool's id must be in the range O through
254. The pool denoted by the zero (0) pool id is defined as the "Free
Space Pool."” The PMM supports allocation and reclamation of memory from
this Free Space Pool in a manner that is compatible with the iRMX 80 and
iRMX 88 Free Space Managers. Existing iRMX 80- or iRMX 88-based
applications designed to use the Free Space Manager can use the PMM
without requiring any changes.

The iSBC 80/30, iSBC 86/12A, iSBC 86/14, iSBC 86/30, iSBC 88/40,

iSBC 544, and iSBC 569 boards each contain dual-port RAM. This memory is
accessible through both the processor's local bus and the Multibus system
bus. When two or more devices access a given memory location they need
not do so by using the same address. Instead, they can use "alias
addressing,” where an on-board processor accesses a range of dual-port
memory locations by one set of addresses, and other processors access the
same range of dual-port memory locations by a different set of

addresses. You define alias addresses at iMMX 800 configuration time.

2-7

THE iMMX 800™ INTERDEVICE COMMUNICATION MODEL

THE MECHANICS OF MESSAGE TRANSFERS

If special arrangements were not provided, a message created by a sending
task might be inaccessible by the intended receiving task. Of course,
this would prevent the message transfer from being successful. And this
is not the only possible obstacle to a successful message transfer.
Because the receiving task does not know which operating system
controlled activities on the sending device, it cannot know whether the
sending task put header information at the beginning of the message, nor
can it know how much header information there is. Because of these
potential obstacles to message transfers, every message transfer must
have the following properties:

e At some stage of the transfer process, the message must be in
memory that is accessible by both the sending and receiving
devices.

e When the message is accessible by both devices, it must have a

(generic) form that is completely independent of both the sending
and receiving operating systems.

To ensure that these properties are always in evidence, the iMMX 800
software requires that every message be copied into shared memory and
that all header information be stripped in the process. This is the
first copy operation required by the iMMX 800 software, and it can be
performed in either of two ways. If the task requests in its call to
CQXFER that the iMMX 800 software perform the copy operation, the
transfer is called transparent; otherwise, it is non-transparent.

The second copy operation is always performed by the iMMX 800 software,
and it always copies the message from shared memory into memory that is
accessible only by the receiving device. If the receiving device is
controlled by iRMX 80 or iRMX 88 executive, then the required header
information is added on during the second copy operation.

Figure 2-4 illustrates a typical message transfer from a task on an
iSBC 80/30 board to a task on an iSBC 86/12A board.

iSBC® 80/30 ADDRESSES

iSBC® 86/12A ADDRESSES
iRMX™ 80 MESSAGE PRIVATE
/// PRIVATE
MULTIBUS®
copy | _ ADDRESSES | — oo oo
GENERIC MESSAGE | GENERIC MESSAGE SHARED
_________ copy |
> PRIVATE \\
IRMX™ 86 SEGMENT PRIVATE
Y

X-120

Figure 2-4. Message Transfer Diagram

2-8

CHAPTER 3. MMX 80 PROCEDURE CALLS

The procedure calls described in this chapter apply only to tasks running
under the supervision of the iRMX 80 Executive. Although the iMMX 800
software is a single product, in the MMX 80 implementation, the syntax
requirements of procedure calls are different than the syntax
requirements of corresponding calls in the MMX 88 and MMX 86
implementations.

PL/M~-80 LANGUAGE INTERFACE

The MMX 80 procedures described in this chapter are defined in PL/M-80.
See the section of Chapter 7 entitled "Linking and Locating iMMX 800
Application Systems” for the names of files containing EXTERNAL
declarations of the procedures.

iRMX 80 MESSAGE STRUCTURE

The iRMX 80 message structure has the following fields in the following
order:

LINK ADDRESS
LENGTH ADDRESS
TYPE BYTE
HOMESEX ADDRESS
RESPSEX ADDRESS
MSGSAREA(*) BYTE

CONDITION CODES

After each call to an MMX 80 procedure, MMX 80 returns to the calling
task a status value called a condition code. The condition code reflects
the success or failure of the call. In case of failure, the code
indicates the reason for the failure. Consequently, tasks should always
check the condition code immediately after issuing an MMX 80 call.

MMX 80 PROCEDURE SUMMARY

Table 3-1 provides a summary description of the MMX 80 procedures for
fast reference.

MMX 80 PROCEDURE CALLS

Table 3-1. MMX 80 Procedures Summary
Procedure Parameters Description
FIND Input Values: Furnishes a connection for sending
PORT sysS$portS$name messages to the system port
condition$ptr represented by the specified system—
CQFIND port name.
Returned Value:
connection
TRANSFER Input Values: Delivers the iRMX 80 message to the
MESSAGE connection system port assoclated with the
message$ptr connection.
CQXFER condition$ptr
LOSE Input Value: Releases the memory and connection
PORT - connection previously acquired through a call to
CQFIND. The task can no longer use the
CQLOSE connection for message transfers to the
system port.
ACTIVATE Input Values: Activates a local iRMX 80 exchange that
PORT sys$port$name serves as the system port represented
condition$ptr by the specified system—port name.
CQACTV Messages transferred to the system port
Returned Value: are delivered to this exchange by the
exchange$ptr MMX 80 software.
WAIT FOR Input Values: Standard iRMX 80 operation that tasks
MESSAGE exchange$ptr use to receive messages at exchanges
time$limit representing system ports. If desired,
RQWAIT : tasks can specify a waiting period.
Returned Value:
messageSptr
ACCEPT Input Value: Standard iRMX 80 operation that tasks
MESSAGE exchange$ptr use to receive messages at exchanges
representing system ports. Tasks
RQACPT Returned Value: cannot specify a waiting period.
message$ptr
DEACTIVATE |Input Values: Deactivates a system port that had been
PORT sys$portSname activated earlier by a call to CQACTV.
condition$ptr Messages from another device can no
CQDACT longer be transferred to that system

port. Messages still queued there can
still be received by local tasks.

3-2

FIND PORT

FIND PORT

The CQFIND procedure returns a connection for a system port. The calling
task can use the connection to transfer messages to tasks on another (or
the same) device.

connection = CQFIND (sys$port$name, condition$ptr);

sys$port$name An ADDRESS containing the two-byte ASCII name of
a system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr The ADDRESS of a BYTE where MMX 80 returns the
condition code for the call.

connection An ADDRESS whose value is returned for use only
by the calling task. The task uses the
connection when invoking CQXFER to transfer
messages to the specified system port.

DESCRIPTION

When configuring MMX 80 for this device, you specify the name and
location of every system port to which tasks on this device transfer
messages. CQFIND returns to the calling task a connection that
identifies the system port whose name is specified in the call. The task
can use the connection in calling CQXFER. If and when the task is
finished making CQXFER calls with the connection, the task can call
CQLOSE to return the connection to the system.

CQFIND initiates the allocation of a 32-byte block of memory from the
Free Space Pool for internal needs, and also creates an exchange for
MMX 80 use. The resources allocated to the calling task by means of the
CQFIND procedure are returned to the system if and when the task calls
the CQLOSE procedure.

The connection returned by CQFIND should be used by the task to which it
is issued. If more than one iRMX 80 task on the same device needs to

send messages to the same system port, each task should invoke the CQFIND
procedure to obtain its own connection.

IND PORT

CONDITION CODES
SYSTEM$SERVICESREADY

INSUFFICIENT$MEMORY

UNKNOWN$SYSTEMSPORT

CQFIND executed without error.

There is insufficient memory in the Free

Space Pool to meet the requirements of
CQFIND.

The iMMX 800 software did not recognize the

system~-port name that the calling task
supplied.

TRANSFER MESSAGE

TRANSFER MESSAGE

The CQXFER procedure transfers an iRMX 80 message to the system port
associated with the specified connection.

CALL CQXFER (connection, message$ptr, condition$ptr);

connection An ADDRESS whose value identifies the system port
where the specified message is to be transferred.

message$ptr The ADDRESS of an iRMX 80 message that is to be
sent to the specified system port.

condition$ptr The ADDRESS of a BYTE where MMX 80 returns the
condition code for the call.

DESCRIPTION

The TRANSFER MESSAGE service transfers a message to the system port

specified by the connection. The task with the connection must invoke
CQXFER for each message sent to the system port.

An application task invoking the CQXFER procedure is suspended until the
message is delivered and queued at the destination port, or until the
MMX 80 software detects an error while attempting to deliver the message.

The LENGTH field of the message specifies the size of the message block

that was allocated by the PMM. The number of bytes actually transferred by
CQXFER equals the number specified in the LENGTH field in the header of the
message being transferred, minus the nine bytes of the header itself.

Do not send a zero-length message to a system port. Doing so causes
unpredictable results in the device-resident iRMX 80 Executive.

The TYPE field should normally be set to MMXSANYSTYPE (=0) or to
MMX$PRESLOCSTYPE (=48). Setting the TYPE field to MMXSANYSTYPE causes the
source message's contents to be copied into a buffer that can be accessed
by the destination device. Setting the TYPE field to MMX$PRESLOCSTYPE
prevents the message from being copied. Use of MMX$PRESLOCSTYPE assumes
that the message contents are accessible by the destination device. The
following table summarizes the effects of TYPE field options for each kind
of device. In the table, these statements apply:

(1) "Peer Device"” refers to a device characteristic that is defined for
each device during configuration for that device.

(2) Names of returned condition codes assume that no other errors
occurred in the call.

(3) "A copy"” is shorthand for "A copy of the message."”

3-5

RANSFER MESSAGE

Destination
Device

MMXSANY$TYPE

MMXSPRESLOCSTYPE

Peer
device
with the
ability
to make
copies

MMX 80 makes a copy in
memory that is accessible

by the destination device

and returns the
system$message$copySdelivered
condition code to the calling
task. Because MMX 80 returns
the message to the PMM, the
message area is not free for
reuse.

MMX 80 doesn't make a copy
and returns the
system$messageS$ScopyS$delivered
condition code to the calling
task. When control returns
to the calling task, the

message area is not free for
reuse.

Peer
device
without
the
ability
to make
copies

MMX 80 makes a copy in memory
that is accessible by the
destination device and returns
the systemS$messageS$delivered
condition code to the calling
task. Because MMX 80 returns
the message to the PMM, the
message area is not free for
reuse.

MMX 80 doesn't make a copy
and returns the
system$messageS$delivered
condition code to the
calling task. When control
returns to the calling task,
the message area is not free
for reuse.

When the message block was allocated, the PMM set the HOMESEX field of
When the message is successfully delivered, the original
copy of the message is sent for reclamation to the specified home

the message.

exchange, so the task must not alter this field.

If an exceptional

condition arises during the transfer process, CQXFER returns an
exceptional condition and MMX 80 does not send the original message to
the home exchange.

The RESP$EX field is undefined for use with messages passed via the

CQXFER procedure.

That is, the sending task cannot use this field to

tell the receiving task where to return a response.

All other fields within the message are as defined by the iRMX 80

Executive.
fields.

See Chapter 6 for a more detailed description of the message

If it is necessary for communicating tasks to pass additional information
concerning a message block, then some user—-defined convention can be
adopted that utilizes a "subheader” within the message itself for

conveying such information.

This subheader is considered part of the

message's data and will be transferred by CQXFER.

3-6

CONDITION CODES

SYSTEM$PORT$DEAD

TRANSFER MESSAGI

When you CQXFER a message from an

iRMX 80-based system to an iRMX 88~ or
iRMX 86-based system, the MMX 88 or
MMX 86 facility at the receiving end
increases the size of the message in
order to meet local iRMX 88 or iRMX 86
requirements. Consequently, if you use
the iMMX 800 software to shuttle
information back and forth between such
systems many times, as in a "do
forever” loop, and the task at each end
always "sends" the same buffer that it
just “"received”, then the buffers —-
there are at least two, because the
iMMX 800 software always make a copy on
the destination device —- will grow
beyond the limits of your system's
memory. To prevent this from
happening, one or more of the tasks
should take responsibility for
controlling the size of the buffers. A
task using MMX 80 can exercise this
control by always doing the following:
(a) obtain a new memory block of the
required size; (b) copy the data into
this new block; (c) dispose of
(reclaim) the old block; and (d) use
the new block for the message transfer.

MMX 80 has concluded that the indicated
destination device is dead and
therefore cannot receive transferred

messages. The message$ptr remains
valid.

SYSTEMSMESSAGESCOPYSDELIVERED The destination device copied the

message before it was successfully
delivered. The message$ptr is no
longer wvalid.

SYSTEMSMESSAGESDELIVERED The message was successfully delivered

to the destination system port without
being copied by the destination

device. The message$ptr is no longer
valid.

INSUFFICIENT$SMEMORY Not enough memory was available for

local or destination buffers. The
message$ptr remains valid.

3-7

"RANSFER MESSAGE

SYSTEMSPORTSINACTIVE

UNKNOWN$SYSTEMS$PORT

The destination port currently is not
active, so the message is not
deliverable. The message$ptr remains
valid.

The specified connection is not valid,
so the CQXFER call was not successful.
The message$ptr remains valid.

[.OSE PORT

LOSE PORT

The CQLOSE procedure allows a task to release resources that were A
previously allocated by the CQFIND procedure. After the CQLOSE call, the
connection can no longer be used to transfer messages.

CALL CQLOSE (connection);

connection An ADDRESS whose value was returned by CQFIND to
the calling task, for the purpose of using CQXFER
to transfer messages.

DESCRIPTION

When an iRMX 80 task no longer wishes to send messages to a specified
system port, the LOSE PORT service lets the task return to the system the
resources previously allocated for message transfers. The calling task
surrenders the following resources when it invokes the CQLOSE call:

e Connection -~ the calling task can no longer use the connection to
transfer messages to the system port.

e Free Space memory - the 32-byte memory block previously allocated
for system use is returned to the Free Space Pool.

® An exchange ~ the exchange previously created by CQFIND is

deleted.

The MMX 80 software does no validity
checking when the CQLOSE procedure is
called. Consequently, specifying an
improper connection, or one that was
invalidated by a previous CQLOSE call,
causes unpredictable results in the
device-resident iRMX 80 Executive.

CTIVATE PORT

ACTIVATE PORT

The CQACTV procedure activates a system port and creates a device-

resident iRMX 80 exchange for message reception at the specified system
Port. :

exchange$ptr = CQACTV (sys$port$name, condition$ptr);

sys$port$name An ADDRESS containing the two—-byte ASCII name of
a system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr The ADDRESS of a BYTE where MMX 80 returns the
condition code for the call.

exchangeS$ptr The ADDRESS of the iRMX 80 exchange that MMX 80
creates. Local tasks, including the calling
task, use exchange$ptr in calls to RQWAIT and
RQACPT in order to receive messages.

DESCRIPTION

The MMX 80 services do not deliver messages to a system port until that
port has been activated by a call to CQACTV. When called, the CQACTV
procedure attempts to associate the specified system—port name with a
device-resident system port. If the system port is defined for this
device and the port is not already activated, CQACTV activates the port
and returns an exchangeS$ptr for the associated iRMX 80-exchange address.

If other device-resident tasks are to receive messages at this iRMX 80

exchange, the task calling CQACTV must pass the iRMX 80 exchange address
to those other tasks. ‘

An activated system port remains active (that is, able to receive
messages) until it is deactivated by a call to the CQDACT procedure.

Although an application task can invoke the iRMX 80 system call RQCXCH,
to dynamically create exchanges for communication between tasks residing
on the same device, application tasks cannot call RQCXCH to create
exchanges for interdevice communication. Only the system ports (which
you define at iMMX 800 configuration time) can be used as exchanges for

interdevice communication and each must be activated by a call to CQACTV.

3-10

ACTIVATE POR1

CONDITION CODES

SYSTEMSSERVICESREADY Service completed without error.
SYSTEM$PORTSACTIVE The indicated port is already activated.
UNKNOWNSSYSTEMSPORT MMX 80 did not find the specified system

port name when it searched the local system
port table.

3-11

MESSAGE RECEPTION

RQWAIT and RQACPT are standard iRMX 80 system calls that tasks use to

receive messages at exchanges. In particular, tasks use RQWAIT and RQACPT
to receive messages at exchanges representing activated system ports.

messagesbtr = RQWAIT (exchange$ptr, time$limit);
or

message$ptr = RQACPT (exchange$ptr);

exchangeS$ptr The ADDRESS of an iRMX 80 exchange previously
created by the CQACTV procedure.

time$limit An ADDRESS (used in calls to RQWAIT only) whose
value is the length of time (in iRMX 80 system time
units) that the calling task is willing to wait for
a message to arrive.

message$ptr Normally the ADDRESS of the message at the front of
the exchange's message queue. However, if the task
called RQWAIT and then "timed out”, message$ptr
contans the address of a five-byte message of type
TIMESOUTSTYPE (=3).

DESCRIPTION

An application task receives messages sent to an iRMX 80 exchange by
invoking the iRMX 80 system calls RQWAIT and RQACPT. The exchange is
identified in the calls by exchange$ptr. If the exchange represents a

system port, the exchange pointer was previously returned to an application
task by the CQACTV procedure.

After a task calls RQWAIT or RQACPT, it must ascertain whether the call was
successful. If it calls RQWAIT, the task receives the address of a
message. The task must check the TYPE field of that message to learn
whether the message is what the task was waiting for. If the value in that
field is three (3), the message is from the iRMX 80 Executive and indicates
that the specified time limit expired before a message from another task
arrived at the exchange. Otherwise, the message is from another task.

If the task calls RQACPT, and the returned message$ptr value is zero (0),

then no message was queued at the exchange. Otherwise, the value is the
address of a message.

NOTE

The respS$ex field is undefined in

iRMX 80 messages delivered to a system
port by MMX 80 services. This field
should not be used by receiving tasks.

3-12

DEACTIVATE PORT

The CQDACT procedure deactivates the specified system port. Messages are
no longer delivered to that port by the device-resident MMX 80 software.

CALL CQDACT (sysSport$name, condition$ptr);

sys$port$name An ADDRESS containing the two~byte ASCII name of

a system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr The ADDRESS of a BYTE where MMX 80 returns the
condition code for the call.

DESCRIPTION

The DEACTIVATE PORT service allows an application task to deactivate a
system port. After the port is deactivated, messages can no longer be
sent to that port until it is re—activated by the same or another

device-resident task. A SYSTEM$PORTSINACTIVE exceptional condition is

returned to tasks attempting to send further messages to the deactivated
port.

CQDACT does not affect messages already queued at the iRMX 80 exchange

representing the system port when the CQDACT request is made. Such
messages remain available to tasks on the device. MMX 80 deletes the
exchange when the last remaining message is received by a task.

CONDITION CODES

SYSTEMSSERVICESREADY Service completed without error.

UNKNOWN$SYSTEMSPORT The iMMX 800 software did not recognize the
system port name supplied by the calling
task.

3-13

MMX 80 PROCEDURE CALLS

MMX 80 USAGE EXAMPLES

The program examples in Figures 3-1 and 3-2 show typical usage of the

MMX 80 interdevice message—transfer services. The program given in
Figure 3-1 represents portions of a task that sends messages to a task on
another device. The task that sends messages is called the
MMX$producer$task. The task to which it sends messages is similarly
portrayed in Figure 3-2 and is called the MMX$consumer$task.

In the examples, the data types of the variables can be derived from
context.

MMXS$producer$task:
DO;
DECLARE condition$code BYTE;
DECLARE consumer$connection ADDRESS;
DECLARE (consumersysport$name,
producer$sysSport$name) ADDRESS EXTERNAL;

consumer$connection = CQFIND (consumersysporténame,
.condition$code);

IF NOT (condition$code = SYSTEM$SERVICESREADY)
THEN CALL problem$handler;

producer$exch = CQACTV (producer$sysS$port$name,
.condition$code);

IF NOT (condition$code = SYSTEM$SERVICESREADY)
THEN CALL problem$handler;

CALL generate (.producerS$message); /* generate a message */
producer$message.type = MMXSANYSTYPE;

CALL CQXFER(consumerS$connection,
.producer$message,
.condition$code);

IF NOT (condition$code = (SYSTEMSMESSAGESDELIVERED OR
SYSTEMS$MESSAGE$COPY $DELIVERED))
THEN CALL problem$handler;

consumer$reply$message$Sptr = RQWAIT (producer$exch,
someS$delay);
CALL CQDACT(producersysport$name,
.condition$code);

END MMXS$producer$task;

Figure 3-1. Sending Task Program Example

3-14

MMX 80 PROCEDURE CALLS

MMXSconsumer$task:
DO;
DECLARE condition$code BYTE;
DECLARE producer$connection ADDRESS;
DECLARE (consumersysportSname,
producersysportSname) ADDRESS EXTERNAL;

consumer$exch = CQACTV (consumer$sysS$port$name,
.conditionS$code);

IF NOT (condition$code = SYSTEMSSERVICESREADY)
THEN CALL problem$handler;

producer$message$ptr = RQWAIT (consumer$exch, someS$delay);

IF producer$message.type = TIMESOUTSTYPE
THEN CALL problem$handler;

producer$connection = CQFIND (producer$sysSport$name,
.conditionScode);

IF NOT (conditionS$code = SYSTEM$SERVICESREADY)
THEN CALL problem$handler;

CALL generate (.reply$message); /*generate a reply*/
producer$msg.type = MMXSANYSTYPE;

CALL CQXFER (producer$connection,

.reply$message,
.condition$code);

IF NOT (condition$code = SYSTEMSMESSAGESDELIVERED OR
SYSTEMSMESSAGESCOPYSDELIVERED)
THEN CALL problem$handler;
CALL CQDACT (consumersysport$name,
.condition$code);

END MMX$consumer$task;

Figure 3-2. Receiving Task Program Example

3-15

CHAPTER 4. MMX 88 PROCEDURE CALLS

The procedure calls described in this chapter apply only to tasks running
under the supervision of the iRMX 88 Executive. Although the iMMX 800
software is a single product, in the MMX 88 implementation the syntax
requirements of procedure calls are different than the syntax
requirements of corresponding calls in the MMX 80 and MMX 86
implementations.

PL/M~-86 LANGUAGE INTERFACE

The MMX 88 procedures described in this chapter are defined in PL/M-86.
See the section of Chapter 7 entitled "Linking and Locating iMMX 800
Application Systems"” for the names of files containing EXTERNAL
declarations of the procedures.

A NOTATIONAL CONVENTION FOR MMX 88 DISCUSSIONS

Because two addressing modes —— megabyte and non—megabyte —— are
available to iRMX 88 Executive users, and these modes affect MMX 88
differently, this manual uses the convention stated as follows at the
beginning of the iRMX 88 REFERENCE MANUAL:

The addressing mode for a module is determined conditionally when you

compile the module. You can inform the compiler of your intentions
by inserting two statements at the beginning of your source module.
First, insert either

$SET megabyte
or
SRESET megabyte

depending upon whether you want megabyte or non—megabyte addressing,
respectively. Then insert

$IF megabyte
DECLARE LOCATION$OF LITERALLY '@';
DECLARE LOCATION LITERALLY 'POINTER';
SELSE
DECLARE LOCATIONSOF LITERALLY '.';
DECLARE LOCATION LITERALLY 'ADDRESS';
SENDIF)

MMX 88 PROCEDURE CALLS

The last of these instructions can be found in the INCLUDE file named
LOCATE.LIT, which is on your Nucleus diskette. Place the directive
SINCLUDE(:Fn:LOCATE.LIT) at the beginning of each task's module,
where n is the number of the disk drive with the LOCATE.LIT file.

This combination of instructions to the compiler enables you to use
the designations “"location$of” and "location"” in your code to achieve
the intended mode of addressing. For example, assuming that the
appropriate INCLUDE files have been specified and the structure

EXCHANGE has been declared, the following code will correctly invoke
the RQCXCH procedure.

CALL RQCXCH(LOCATIONS$OF EXCHANGE)

This procedure requires an argument that is either an address or a

pointer, depending upon whether non-megabyte or megabyte addressing
is being used, respectively.

Throughout this chapter, the generic term LOCATION is used in place
of ADDRESS and POINTER, except in those few instances where ADDRESS
or POINTER applies independently of the addressing mode.

In later chapters, this manual occasionally deviates from this
convention, because some discussions of MMX 88 are combined with
discussions of MMX 80, to which the convention does not apply. Such
deviations should not cause you any misunderstanding.

iRMX 88 MESSAGE STRUCTURE

The iRMX 88 message structure has the following fields in the following
order:

LINK LOCATION
LENGTH WORD
TYPE BYTE
HOMES$EX LOCATION
RESPSEX LOCATION
MSGSAREA(*) BYTE

CONDITION CODES

After each call to an MMX 88 procedure, MMX 88 returns to the calling
task a status value called a condition code. The condition code reflects
the success or failure of the call. In case of failure, the code
indicates the reason for the failure. Consequently, tasks should always
check the condition code immediately after issuing an MMX 88 call.

MMX 88 PROCEDURE SUMMARY

Table 4-1 provides a summary description of the MMX 88 procedures for
fast reference.

4-2

MMX 88 PROCEDURE CALLS

Table 4-1. MMX 88 Procedures Summary
Procedure Parameters Description
FIND Input Values: Furnishes a connection for sending
PORT sys$port$name messages to the system port
condition$ptr represented by the specified systemport
CQFIND name.
Returned Value:
connection
TRANSFER Input Values: Delivers the iRMX 88 message to the
MESSAGE connection system port associated with the
message$ptr connection.
CQXFER xfer$flag
xfer$length
condition$ptr
LOSE Input Value: Releases the memory and connection previously
PORT connection acquired through a call to CQFIND. The task
can no longer use the connection for message
CQLOSE transfers to the system port.
ACTIVATE Input Values: Activates a local iRMX 88 exchange that
PORT sys$port$name serves as the system port represented
condition$ptr by the specified system—port name.
CQACTV Messages transferred to the system port
Returned Value: are delivered to this exchange by the
exchange$ptr MMX 88 software.
WAIT FOR Input Values: Standard iRMX 88 operation that tasks
MESSAGE exchange$ptr use to receive messages at exchanges
time$limit representing system ports. If desired,
RQWAIT tasks can specify a waiting period.
Returned Value:
message$ptr
ACCEPT Input Value: Standard iRMX 88 operation that tasks
MESSAGE exchange$ptr use to receive messages at exchanges
representing system ports. Tasks
RQACPT Returned Value: cannot specify a waiting period.
message$ptr
DEACTIVATE| Input Values: Deactivates a system port that had been
PORT sys$port$name activated earlier by a call to CQACTV.
condition$ptr Messages from another device can no
CQDACT longer be transferred to that system port.

Messages still queued there can still be
received by local tasks.

4-3

ND PORT

FIND PORT

The CQFIND procedure returns a connection for a system port. The calling
task can use the connection to transfer messages to tasks on another (or
the same) device.

connection = CQFIND (sys$port$name, condition$ptr);

I sys$port$name A WORD containing the two~byte ASCII name of
a system port. You assign names to system
ports during iMMX 800 configuration.

l condition$ptr The LOCATION of a BYTE where MMX 88 returns
the condition code for the call.

I connection The LOCATION of a WORD where a connection is
returned. The task uses the connection when
invoking CQXFER to transfer messages to the
specified system port. No other task should
use this connection.

DESCRIPTION

When configuring MMX 88 for this device, you specify the name and location
of every system port to which tasks on this device transfer messages.
CQFIND returns to the calling task a connection that identifies the system
port whose name is specified in the call. The task can use the connection
in calling CQXFER. If and when the task is finished making CQXFER calls

with the connection, the task can call CQLOSE to return the connection to
the system.

CQFIND allocates a block of memory (32 bytes in the non—megabyte version;
48 bytes in the megabyte version) from the Free Space Pool for internal
needs, and also creates an exchange for MMX 88 use. The resources
allocated to the calling task by means of the CQFIND procedure are returned
to the system if and when the task calls the CQLOSE procedure.

The connection returned by CQFIND should be used by the task to which it is
issued. If more than one iRMX 88 task on the same device needs to send
messages to the same system port, each task should invoke the CQFIND
procedure to obtain its own connection.

FIND POR’

CONDITION CODES
SYSTEMSSERVICESREADY CQFIND executed without error.

INSUFFICIENT$SMEMORY There is insufficient memory in the Free

Space Pool to meet the requirements of
CQFIND.

UNKNOWNSSYSTEMSPORT The iMMX 800 software did not recognize the

system—port name that the calling task
supplied.

TRANSFER MESSAGE

The CQXFER procedure transfers an iRMX 88 message to the system port
associated with the specified connection.

CALL CQXFER (connection, messageS$ptr, xfer$flag, xfer$length,

condition$ptr);

connection

message$ptr

xfer$flag

The LOCATION of the system port to which the
specified message is to be transferred.

The LOCATION of an iRMX 88 message that is to be sent

to the specified port.

A BYTE that specifies the transmission mode for the
message transfer. The possible values and their
mnemonics are as follows:

Numeric Code ' Mnemonic

OH (000B) nloc$full$delivery
1H (001B) nloc$full$transfer
2H (010B) nloc$partial$delivery
3H (011B) nloc$partial$transfer
4H (100B) ploc$full$delivery
5H (101B) ploc$fuliStransfer
6H (110B) plocSpartial$delivery
7H (111B) ploc$partial$transfer

The general meanings of the mnemonics follow. Much
more detailed explanations of nloc, ploc, delivery,
and transfer are in the description portion of this
section.

® nloc and ploc - determine whether or not MMX 88
is to obtain a buffer (in an area that is
accessible by the destination device) and place a
copy of the message in the buffer. If MMX 88 is
not directed to do this, the calling task must
already have done so by the time it issues the
CQXFER call, and message$ptr must point to the
copy. "nloc” means MMX 88 should make a copy,

and "ploc” means the task has already made a copy.

e full and partial - determine whether the entire
message block or only the message portion
(without the header) is to be transmitted.
"full” means the entire block, and "partial”
means only the first n bytes of the message
portion, where n is the value specified in the
message header or the value of xfer$length,
whichever is smaller.

4-6

TRANSFER MESSAG

xfer$flag (continued)

° transfer and delivery — determine whether the
calling task plans to reuse the memory, perhaps
to broadcast the message to several devices.
"transfer” means the task plans to reuse the
memory, and "delivery” means the task does not
intend to use the memory again.

xfer$length A WORD whose value specifies the length, in bytes,
of the message to be delivered by MMX 88. 1If bit 1
of the xfer$flag is zero (meaning the entire
message block is sent), the xfer$length parameter
is ignored by CQXFER. (See the CAUTION in the
following DESCRIPTION section.) Otherwise, the
length of the message to be sent is equal to
xfer$lenth or to the length of the entire message
block, whichever is smaller.

condition$ptr A LOCATION of a BYTE where MMX 88 returns the
condition code for the call.

DESCRIPTION

The TRANSFER MESSAGE service transfers a message to the system port
specified by the connection. The task with the connection must invoke a
separate call to CQXFER for each message sent to the system port.

An application task invoking the CQXFER procedure is suspended until the
message is delivered and queued at the destination port, or until the
MMX 88 software detects an error while attempting to deliver the message.

The xfer$flag parameter specifies how the calling task wants the message

transmission to be handled. A table describing the full effects of the
options (except for "partial” and "full”), with some preliminary notes,
is as follows:

® "Message area" is the area defined by message$ptr and xfer$length.

. "Peer device"” and "slave device" refer to device characteristics
that you define for each device during iMMX 800 configuration for
that device.

° Names of returned condition codes assume that no other errors
occurred in the call.

e "A copy"” is shorthand for "a copy of the message.” Where the
copy is made (locally or remotely) is either stated or is clear
from context.

. "When control returns” is shorthand for "when control returns to
the calling task."”

4-7

TRANSFER MESSAGE

Device

Destination

Transfer

Deliver

Peer
device

nloc

MMX 88 makes a copy in
memory accessible by the
destination device and re-
turns the system$message$-
copy$delivered condition
code. The message area is
free for reuse.

MMX 88 makes a copy in memory
accessible by the destination
device and returns the system$-
messageS$copy$delivered con-
dition code. Because MMX re-
turns the message area to the
PMM, the message area is not
free for reuse.

with
the
ability
to make
copies

ploc

MMX 88 doesn't make a copy
and returns the system$-
message$copy$delivered con-
dition code. When control
returns, a copy has been
queued at the appropriate
exchange or mailbox on the
desination device, and the
message area is free for
reuse.

MMX 88 doesn't make a copy and
returns the system$message$—
copy$Sdelivered condition code.
When control returans, the
message area is not free

for reuse.

Slave

nloc

This is an error condition

because MMX 88 does not make
copies when transmitting

messages to slave devices.
MMX 88 returns the xfer$-
flag$error condition code.

This is an error condition
because MMX 88 does not make
copies when transmitting
messages to slave devices.
MMX 88 returns the xfer$-
flagSerror condition code.

device

ploc

This is an error condition
because a task that elects
to transfer a message ex—
pects to be able to use the
message area immediately
upon regaining control.

MMX 88 returns the xfer$-
flagSerror condition code.

MMX doesn't make a copy

and returns the system$-
message$delivered condition
code. When control re-
turns, the message area is
not free for reuse.

Peer
device
without

nloc

MMX 88 makes a copy in mem-
ory accessible by the desti-
nation device and returns
the system$message$delivered
condition code. When con-
trol returns, the message
area is free for reuse.

MMX 88 makes a copy in memory
accessible by the destination
device, returns the message
area to the PMM, and returns
the system$message$delivered
condition code. When control
returns, the message area is
not free for reuse.

the
ability
to make
copies

ploc

MMX 88 doesn't make a copy
and returns the system$mes-
sage$delivered condition
code. When control returns,
a copy has been queued at
the appropriate exchange or
mailbox on the destination
device, but the message area
is not free for reuse.

MMX 88 doesn't make a copy
and returns the system$mes-—
sage$delivered condition
code. When control returns,
the message area is not
free for reuse.

4-8

TRANSFER MESSAGI

In the event that a task chooses to let MMX 88 return the message block
to PMM (that 1s, if it selects the "delivery"” option in the xfer$flag
parameter), the task must not alter the HOMESEX field of the message.

The RESPSEX field of the message is undefined for use with messages
passed by means of the CQXFER procedure. That is, the sending task

cannot use this field to signify to the receiving task where to return a
response.

All other fields within the message are as defined by the iRMX 88

Executive. See Chapter 6 for a more detailed description of the message
fields.

If it is necessary for communicating tasks to pass additional information
concerning a message block, then some convention can be adopted that
utilizes a "subheader” within the message itself for conveying such
information. This subheader is considered part of the message's data and

will be transferred by CQXFER.

When you use the full delivery mode to
CQXFER a message from an iRMX 88-based
system to an iRMX 80- or iRMX 86-based
system, the MMX 80 or MMX 86 facility
at the receiving end increases the size
of the message in order to meet local
iRMX 80 or iRMX 86 requirements.
Consequently, if you use the iMMX 800
software to shuttle information back
and forth between such systems many
times, as in a "do forever” loop, and
the task at each end always "sends" the
same buffer that it just "received”,
then the buffers —-— there are at least
two, because the iMMX 800 software
always make a copy on the destination
device -— will grow beyond the limits
of your system's memory. To prevent
this from happening, one or more of the
tasks should take responsibility for
controlling the size of the buffers. A
task using MMX 88 can exercise this
control by using the partial$delivery
mode, with the xfer$length field set to
the appropriate value.

[RANSFER MESSAGE

CONDITION CODES

SYSTEMSMESSAGE$SCOPYSDELIVERED The destination device copied the message

SYSTEMSMESSAGES$DELIVERED

INSUFFICIENTSMEMORY

SYSTEM$PORTS$DEAD

SYSTEM$PORT$INACTIVE

UNKNOWN$S YSTEM$ PORT

XFER$FLAGSERROR

before it was successfully delivered.
The message$ptr may or may not be valid.

The message was successfully delivered to
the destination system port without being
copied by the destination device. The
message$ptr may or may not be valid.

Not enough memory was available for local

or destination buffers. The messageS$ptr
remains valid.

MMX 80 has concluded that the indicated
destination device is dead and therefore
cannot receive transferred messages. The
message$ptr remains valid.

The destination port currently is not

active, so the message is not
deliverable. The message$ptr remains
valid.

The specified connection is not valid, so
the CQXFER call was not successful. The
messageSptr remains valid.

The value of xfer$flag was not in the
range 0 through 7, or an incorrect value
was specified for the destination device.

4-10

LOSE PORT

The CQLOSE procedure allows a task to release resources that were
previously allocated by the CQFIND procedure. After the CQLOSE call, the
connection can no longer be used to transfer messages.

CALL CQLOSE (connection);

connection The LOCATION of a WORD containing a connection
that was previously returned to the calling task

by the CQFIND service, for the purpose of using
CQXFER to transfer messages.

DESCRIPTION

When an iRMX 88 task no longer wishes to send messages to a specified
system port, the LOSE PORT service lets the task return to the system the
resources previously allocated for message transfers. The calling task
surrenders the following resources when it invokes the CQLOSE call:

e Connection - the calling task can no longer use the connection to
transfer messages to the system port.

e Free Space memory — the memory block (32 bytes in the
non-megabyte version; 48 bytes in the megabyte version)

previously allocated for system use is returned to the Free Space
Pool.

® An exchange - the exchange previously created by CQFIND is

deleted.

The MMX 88 software does no validity
checking when the CQLOSE procedure is
called. Consequently, specifying an
improper connection, or one that was
invalidated by a previous CQLOSE call,
causes unpredictable results in the
device-resident iRMX 88 Executive.

4-11

ACTIVATE PORT

The CQACTV procedure activates the specified system port and creates a

device-resident iRMX 88 exchange for message reception at the specified
system port.

exchange$ptr = CQACTV (sysS$port$name, condition$ptr);

sys$port$name A WORD containing the two-byte ASCII name of a
system port. You assign names to system ports
during iMMX 800 configuration.

' condition$ptr The LOCATION of a BYTE where MMX 88 returns the
condition code for the call.

I exchange$ptr The LOCATION of the iRMX 88 exchange that MMX 88
creates. Local tasks, including the calling
task, use exchange$ptr in calls to RQWAIT and
RQACPT in order to receive messages from a task
on another device.

DESCRIPTION

The MMX 88 services do not deliver messages to a system port until that
port has been activated by a call to CQACTV. When called, the CQACTV
procedure attempts to associate the specified system~port name with a
device~-resident system port. If the system port is defined for this
device and the port is not already activated, CQACTV activates the port
and returns an exchange$ptr for the associated iRMX 88-exchange address.

If other device-resident tasks are to receive messages at this iRMX 88

exchange, the task calling CQACTV must pass the iRMX 88 exchange address
to those other tasks.

An activated system port remains active (that 1s, able to receive
messages) until it is deactivated by a call to the CQDACT procedure.

Although an application task can invoke the iRMX 88 system call RXCXCH,

to dynamically create exchanges for communication between tasks residing
on the same device, application tasks cannot call CQCXCH to create
exchanges for interdevice communication. Only the system ports (which
you define at IMMX 800 configuration time) can be used as exchanges for
interdevice communication, and each must be activated by a call to CQACTV.

4-12

ACTIVATE POR’

CONDITION CODES

SYSTEMSSERVICESREADY Service completed without error.
SYSTEM$PORTSACTIVE The indicated port i1s already activated.
UNKNOWNS$SYSTEMSPORT MMX 88 did not find the specified system

port name when it searched the local system
port table.

4-13

MESSAGE RECEPTION

RQWAIT and RQACPT are standard iRMX 88 system calls that tasks use to

receive messages at exchanges. In particular, tasks use RQWAIT and RQACPT
to receive messages at exchanges representing activated system ports.

message$ptr RQWAIT (exchange$ptr, time$limit);
or

RQACPT (exchange$ptr);

messageSptr

exchange$ptr The LOCATION of an iRMX 88 exchange previously
created by the CQACTV procedure.

time$limit A WORD (used in calls to RQWAIT only) whose value
is the length of time (in iRMX 88 system time
units) that the calling task is willing to wait for
a message to arrive.

message$ptr Normally the LOCATION of the message at the front
of the exchange's message queue. However, if the
task called RQWAIT and then “"timed out”,
message$ptr contains the address of a five-byte
(non-megabyte version) or seven-byte (megabyte
version) message of type TIMESOUTSTYPE (=3).

DESCRIPTION

An application task receives messages sent to an IRMX 88 exchange by
invoking the iRMX 88 system calls RQWAIT and RQACPT. The exchange is
identified in the calls by exchange$ptr. If the exchange represents a
system port, the exchange location was previously returned to an
application task by the CQACTV procedure.

After a task calls RQWAIT or RQACPT, it must ascertain whether the call was
successful. If it calls RQWAIT, the task receives the location of a
message. The task must check the TYPE field of that message to learn
whether the message is what the task was waiting for. If the value in that
field is three (3), the message is from the iRMX 88 Executive and indicates
that the specified time limit expired before a message from another task
arrived at the exchange. Otherwise, the message is from another task.

If the task calls RQACPT, and the returned message$ptr value is zero (0),
then no message was queued at the exchange. Otherwise, the value is the
location of a message from another task.

NOTE
The resp$ex field is undefined in
iRMX 88 messages delivered to a system
port by MMX 88 services. This field
should not be used by receiving tasks.

4-14

DEACTIVATE PORT

The CQDACT procedure deactivates the specified system port. Messages are
no longer delivered to that port by the device-resident MMX 88 software.

CALL CQDACT (sys$port$name, condition$ptr);

sys$port$name A WORD containing the two—byte ASCII name of a

system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr The LOCATION of a BYTE where MMX 88 returns the
condition code for the call.

DESCRIPTION

The DEACTIVATE PORT service allows an application task to deactivate the
specified system port. After the port 1is deactivated, messages can no
longer be sent to that port until it is re—activated by the same or
another device-resident task. A SYSTEM$PORTSINACTIVE exceptional

condition is returned to tasks attempting to send further messages to the
deactivated port.

CQDACT does not affect messages already queued at the iRMX 88 exchange
representing the system port when the CQDACT request is made. Such
messages remain available to tasks on the device. MMX 88 deletes the
exchange when the last remaining message is received by a task.

CONDITION CODES

SYSTEM$SERVICESREADY Service completed without error.

UNKNOWN$SYSTEM$SPORT The iMMX 800 software did not recognize the
system port name supplied by the calling
task.

4-15

MMX 88 PROCEDURE CALLS

MMX 88 USAGE EXAMPLES

The program examples in Figures 4-1 and 4-2 show typical usage of the
MMX 88 interdevice message—transfer services. The program given in
Figure 4-1 represents portions of a task that sends messages to a task on
another device. The task that sends messages is called the
MMX$producer$task. The task to which it sends messages is similarly
portrayed in Figure 4-2 and is called the MMXS$consumer$task.

In the examples, the data types of the variables can be derived from
context.

MMX$producerS$Stask:
DO;
DECLARE condition$code BYTE;
DECLARE consumer$connection LOCATION;
DECLARE (consumersysport$name,
producer$sysS$port$name) WORD EXTERNAL;

.
.

consumer$connection = CQFIND (consumersysport$name,
LOCATIONSOF conditionScode);

IF NOT (conditionScode = SYSTEMSSERVICESREADY)
THEN CALL problem$handler;

producer$exch = CQACTV (producer$sys$port$name,
LOCATIONSOF condition$code);

IF NOT (condition$code = SYSTEMSSERVICESREADY)
THEN CALL problem$handler;

CALL generate (LOCATION$OF producer$message); /* generate a message */

CALL CQXFER(consumer$connection,
LOCATIONS$OF producer$message,
nloc$partial$deliver,
xfer$length,

LOCATIONSOF conditionScode);

IF NOT ((condition$code = SYSTEMSMESSAGE$COPYSDELIVERED) OR

(condition$code = SYSTEMSMESSAGESDELIVERED))
THEN CALL problem$handler;

consumer$reply$messageSptr = RQWAIT (LOCATIONSOF producer$exch,
some$delay);

CALL CQDACT(producersysport$name,
LOCATIONSOF condition$code);

.

END MMX$producer$task;

Figure 4-1. Sending Task Program Example

4-16

MMX 88 PROCEDURE CALLS

MMXS$consumerS$task:
DO;
DECLARE condition$code BYTE;
DECLARE producer$connection LOCATION;
DECLARE (consumersysport$name,
producersysport$name) WORD EXTERNAL;
consumer$exch = CQACTV (consumer$sys$portSname,
LOCATIONSOF condition$code);

IF NOT (condition$code = SYSTEMSSERVICESREADY)
THEN CALL problem$handler;

producer$message$ptr = RQWAIT (consumer$exch,
some$delay);

IF producer$message.type = TIMESOUTSTYPE
THEN CALL problem$handler;

producer$connection = CQFIND (producersysport$name,
LOCATIONSOF conditionS$code);

IF NOT (conditionS$code = SYSTEMSSERVICESREADY)
THEN CALL problem$handler;

CALL generate (LOCATIONS$OF reply$message); /*generate a reply*/

CALL CQXFER (producer$connection,
LOCATIONSOF reply$message,
nlocSpartial$delivery,
xfer$length,

LOCATIONSOF conditionS$code);

IF NOT ((condition$code = SYSTEM$MESSAGES$COPY$DELIVERED) OR

(condition$code = SYSTEMSMESSAGESDELIVERED))
THEN CALL problem$handler;

CALL CQDACT (consumersysportSname,
LOCATIONSOF condition$code);

END MMXS$consumer$task;

Figure 4-2. Receiving Task Program Example

4-17

CHAPTER 5. MMX 86 PROCEDURE CALLS

The procedure calls described in this chapter apply only to tasks running
under the supervision of the iRMX 86 Operating System. Although the

iMMX 800 software is a single product, in the MMX 86 implementation, the
syntax requirements of procedure calls are different than the syntax

requirements of corresponding calls in the MMX 80 and MMX 88
implementations.

For iRMX 86 tasks, having different iMMX 800 implementations on the
various devices in an application has the following implications:

® Except for CQXFER calls, an iRMX 86 task calling an iMMX 800
procedure is serviced only by the MMX 86 software resident on its
own device. (CQXFER calls require interaction between iMMX 800
implementations residing on the source and destination devices.)

e An iRMX 86 task that sends messages to other devices need not
concern itself with which iMMX 800 implementation provides
services at the receiving devices.

e An iRMX 86 task that receives messages from another device need
not concern itself with the origin of those messages; the
receiving task's message-reception calls are serviced by MMX 86
and iRMX 86 software residing on its own device.

PL/M-86 LANGUAGE INTERFACE

The MMX 86 procedures described in this chapter are defined in PL/M-86.
See the section of Chapter 7 entitled "Linking and Locating iMMX 800
Application Systems” for the names of files containing EXTERNAL
declarations of the procedures.

CONDITION CODES

After each call to an MMX 86 procedure, MMX 86 returns to the calling
task a status value called a condition code. The condition code reflects
the success or failure of the call. In case of failure, the code
indicates the reason for the failure. Consequently, tasks should always
check the condition code immediately after issuing an MMX 86 call.

MMX 86 PROCEDURE SUMMARY

Table 5-1 provides a summary description of the MMX 86 procedures for
fast reference.

Table 5-1.

MMX 86 Procedures Summary

Procedure Parameters Description
FIND Input Values: Furnishes a connection for sending
PORT sys$port$name messages to the system port
condition$ptr represented by the specified system-—
CQFIND ' port name.
Returned Value:
connection
TRANSFER Input Values: Delivers the iRMX 86 message to the
MESSAGE connection system port associated with the
msg$token connection.
CQXFER xfer$flag
msg$length
condition$ptr
LOSE Input Value: Releases the memory and connection
PORT connection previously acquired through a call to
CQFIND. The task can no longer use the
CQLOSE connection for message transfers to the
system port.
ACTIVATE Input Values: Activates a local iRMX 86 exchange that
PORT sys$port$name serves as the system port represented
condition$ptr by the specified system—port name.
CQACTV Messages transferred to the system port
Returned Value: are delivered to this exchange by the
exchange$ptr MMX 86 software.
RECEIVE Input Values: Standard iRMX 86 operation that tasks
MESSAGE mailboxStoken use to receive objects at mailboxes
time$limit representing system ports. If desired,
RQ$- response$ptr tasks can specify a waiting period.
RECEIVE$~| condition$ptr
MESSAGE
Returned Value:
msg$token
DEACTIVATE | Input Values: Deactivates a system port that had been
PORT sys$portSname activated earlier by a call to CQACTV.
condition$ptr Messages from another device can no
CQDACT longer be transferred to that system

port. Messages still queued there can
still be received by local tasks.

FIND PORT

The CQFIND procedure returns a connection for a system port. The calling

task can use the connection to transfer messages to tasks on another (or
the same) device.

FIND PORT

connection = CQFIND (sys$port$name, condition$ptr);

sys$portSname A WORD containing the two—byte ASCII name of a
system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr The POINTER to a WORD where MMX 86 returns the
condition code for the call.

connection A TOKEN whose value is returned for use only by
the calling task. The task uses the connection

when invoking CQXFER to transfer messages to the
specified system port.

DESCRIPTION

When configuring MMX 86 for this device, you specify the name and address
of every system port to which tasks on this device transfer messages.
CQFIND returns to the calling task a connection that identifies the
system port whose name is specified in the call. The task can use the
connection in calling CQXFER. If and when the task is finished making
CQXFER calls with the connection, the task can call CQLOSE to return the
connection to the system.

CQFIND initiates the allocation of a 32-byte segment from the Free Space
Pool for internal needs, and also creates a mailbox for MMX 86 use. The
resources allocated to the calling task by means of the CQFIND procedure
are returned to the system if and when the task calls the CQLOSE
procedure.

The connection returned by CQFIND should be used by the task to which it

is issued. If more than one iRMX 86 task on the same device needs to
send messages to the same system port, each task should invoke the CQFIND
procedure to obtain its own connection.

Each call to CQFIND increases the object count for the task's job by 2.

IND PORT

CONDITION CODES

E$OK

ESLIMIT

E$MEM

E$UNKNOWNSSYSTEM$PORT

The CQFIND call was successful and the
returned connection is valid.

The CQFIND call was unsuccessful because to
complete the call would have exceeded the
object limit for the calling task's job.

The CQFIND call was unsuccessful because
there is insufficient free space in the job
containing the calling task.

The CQFIND call was unsuccessful because the
iMMX 800 software did not recognize the

system~port name that the calling task
supplied.

5-4

TRANSFER MESSAGE

TRANSFER MESSAGE

The CQXFER procedure transfers a message to the system port associated
with the specified connection.

CALL CQXFER (connection, msg$token, xfer$flag, xfer$length, I
condition$ptr);
connection A TOKEN whose value identifies the system port

where the specified message is to be transferred.

msg$token A TOKEN for the segment containing the message I
that is to be sent to the specified port.

xferS$flag A WORD that specifies the transmission mode for
the message transfer. The two low—order bits
determine the mode, as follows:

Bit 0 - Specifies whether the calling task
expects to reuse the message segment.
The value 1 means that the task does
expect to reuse the segment, and O
means that it does not. See the
description section below for more
detail on this.

Bit 1 - Specifies the amount of data to be
transmitted. O means transmit the
entire segment, and 1 means transmit n
bytes, where n is the size of the
segment or the value of xfer$length,
whichever is smaller.

xfer$length A WORD whose value specifies the length, in I
bytes, of the message to be delivered by MMX 86.
If bit 1 of the xfer$flag is zero (meaning the
entire segment is sent), the xfer$length
parameter is ignored by CQXFER. (See the CAUTION I
in the following DESCRIPTION section.)
Otherwise, the length of the message to be sent
is equal to xfer$length or to the length of the
entire segment, whichever is smaller.

condition$ptr A POINTER to a WORD where MMX 86 returns the
condition code for the call.

"RANSFER MESSAGE

DESCRIPTION

The TRANSFER MESSAGE service transfers a message to the system port

identified by the connection.

The task with the connection must issue a

separate call to CQXFER for each message sent to the system port.

An application task invoking the CQXFER procedure is suspended until the
message is delivered and queued at the destination port, or until an
exceptional condition is detected during the execution of the call.

The xfer$flag parameter specifies the mode of the message transmission.
The following table, which is preceded by some preliminary notes,

describes the full significance of bit O of xfer$flag.

In that table,

° "Peer device" and "Slave device" refer to device characteristics

that are defined for each device during iMMX 800 configuration
for the device.

° Names of returned condition codes assume that no other errors
occurred in the call.

e "Message segment"” is the segment whose token is msg$token.
Destination
Device Transfer Deliver

Peer
device

MMX 86 makes a copy of the
message in memory accessible
by the destination device and
returns the ESOK condition
code. When control returans to
the calling task, the message
segment is free for reuse.

MMX 86 makes a copy of the
message in memory accessible
by the destination device,
deletes the memory segment,
and returns the ESOK condition
code. When control returns to
the calling task, the message
segment is not free for reuse.

Slave
device

This is an error condition,
because MMX 86 does not make
copies when transmitting to
slave devices. MMX 86 returns
the E$CONTEXT exceptional con-
dition to the calling task.

MMX 86 doesn't make a copy of
the message, and returns the
ESOK condition code to the
calling task. When control
returns to the calling task,
the message segment 1s not
free for reuse.

5-6

TRANSFER MESSAGE

When you CQXFER a message from an

iRMX 86-based system to an iRMX 80- or
iRMX 88-based system, the MMX 80 or
MMX 88 facility at the receiving end
increases the size of the message in
order to meet local iRMX 80 or iRMX 88
requirements. Consequently, if you use
the iMMX 800 software to shuttle
information back and forth between such
systems many times, as in a "do
forever™ loop, and the task at each end
always "sends" the same buffer that it
just "received”, then the buffers --
there are at least two, because the
iMMX 800 software always make a copy on
the destination device —- will grow

beyond the

limits of your system's

memory. To prevent this from

happening,

one or more of the tasks

should take responsibility for
controlling the size of the buffers. A

task using
control by

MMX 86 can exercise this
setting the xfer$flag

parameter to 2 and the xfer$length
parameter to the appropriate value.

CONDITION CODES

E$OK

E$CONTEXT

E$DESTINATIONSCHANNELSMEM

ESEXIST

The CQXFER call was successful. If bit O
of xfer$flag was 1, msgStoken is still a
valid token for the message segment;
otherwise msg$token is not valid.

The CQXFER call was unsuccessful and the
message was not delivered. The call
attempted to transfer a segment to a

"slave"—type device. MsgStoken remains
valid.

The CQXFER call was not successful because
there was insufficient memory space on the
destination device to make a copy of the
message. Msg$token remains valid.

The CQXFER call was unsuccessful because
either connection or msg$token is not a
token for an existing object. Msg$token
remains valid.

KANSFLK MESSAGULE

ESLIMIT

ESMEM

E$SOURCE$CHANNELSMEM

E$SYSTEM$PORTSDEAD

E$SYSTEMSPORTSINACTIVE

ESTYPE

ESUNDEFINED$POOL

ESUNKNOWNSSYSTEMSPORT

The CQXFER call was unsuccessful because

completing the call would have exceeded the
object limit for the calling task's job.
Msg$token remains valid.

The CQXFER call was unsuccessful because

.there is not sufficient free space in the

calling task's job to provide the work
space that MMX 86 requires. Msg$token
remains valid.

The CQXFER call was unsuccessful because
there is not sufficient free space in the
shared memory space to make a local copy of
the message. Msg$token remains valid.

The CQXFER call was unsuccessful because
the destination device failed to respond to
a signal within a time period that was
specified during configuration and
consequently was declared dead. Subsequent
attempts to communicate with that device
are blocked. MsgS$token remains valid.

The CQXFER call was unsuccessful because
the destination system port was not
activated (via a CQACTV call) by some task
on the destination device prior to the
attempted message transfer. Msg$token
remains valid.

The specified connection is a valid token
for an object that is not a segment.

The CQXFER call was unsuccessful because
the pool specified for the destination
device was incorrectly specified during
configuration (of the DSDT table for source
device.) MsgStoken remains valid.

The CQXFER call was unsuccessful because
the specified connection does not refer to
a valid system port on the destination
device. Msg$token remains valid.

5-8

LOSE POR

LOSE PORT

The CQLOSE procedure allows an iRMX 86 task to release resources that
were previously allocated by the CQFIND procedure. After the CQLOSE
call, the connection can no longer be used to transfer messages.

CALL CQLOSE (connection, conditionS$ptr);

connection A TOKEN whose value was returned by CQFIND to the
calling task, for the purpose of using CQXFER to
transfer messages.

condition$ptr A POINTER to a WORD where MMX 86 returns the
condition code for the call.

DESCRIPTION

When an iRMX 86 task no longer wishes to send messages to a system port,
the LOSE PORT service lets the task return to the system the resources

previously allocated for message transfers. The calling task surrenders
the following resources when it invokes the CQLOSE call:

¢ Connection - the calling task can no longer use the connection to
transfer messages to the system port.

e Free space memory - the 32-byte segment previously allocated for
system use is returned to the Free Space Pool.

e A mailbox - the mailbox previously created by CQFIND is deleted.

CONDITION CODES

ESOK The call to CQLOSE was successful and the
connection is valid.

ESEXIST The call to CQLOSE was unsuccessful because the

specified connection is not a token for an
existing object.

ESTYPE The call to CQLOSE was unsuccessful because the
specified connection is a token for an object
that is not a connection object.

CTIVATE PORT

ACTIVATE PORT

The CQACTV procedure activates the specified system port and creates a
device-resident iRMX 86 mailbox for message reception at the specified
system port.

mailbox$token = CQACTV (sys$port$name, conditionSptr);

sys$port$name A WORD containing the two—-byte ASCII name of a
system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr A POINTER to a WORD where MMX 86 returns the
condition code for the call.

mailboxStoken A TOKEN to which MMX 86 returns a token for an
iRMX 86 mailbox. This mailbox is used by the
calling task (and all other device-resident tasks
that access the same mailbox for message
reception) in subsequent RQ$SRECEIVESMESSAGE calls.

DESCRIPTION

The MMX 86 services do not deliver messages to a system port until that
system port has been activated by a call to CQACTV. When called, the
CQACTV procedure attempts to associate the specified system—port name
with a device-resident system port. If the system port is defined for
this device and the port is not already activated, CQACTV activates the
port and returns a token for the associated iRMX 86 mailbox.

If other device-resident tasks are to receive messages at this mailbox,

the task calling CQACTV must pass the token for the mailbox to those
other tasks.

An activated system port remains active (that is, able to receive
messages) until it is deactivated by a call to the CQDACT procedure.

Although an application task can invoke the iRMX 86 system call
RQS$SCREATESMAILBOX, to dynamically create mailboxes for communication
between tasks residing on the same device, application tasks cannot call
RQSCREATESMAILBOX to create mailboxes for interdevice communication.
Only the system ports (which you define at iMMX 800 configuration time)
can be used as mailboxes for interdevice communication and each must be
activated by a call to CQACTV.

5-10

ACTIVATE PORT

CONDITION CODES

ESOK The CQACTV call was successful and the
returned mailbox$token is valid.

/E$SYSTEM$PORT$ACTIVE The CQACTV call was unsuccessful because the
’ indicated port is already activated.

ESUNKNOWNSSYSTEMSPORT The CQACTV call was unsuccessful because MMX
did not recognize the specified system port
name when it searched the local system port
table.

5-11

ESSAGE RECEPTION

MESSAGE RECEPTION

RQSRECEIVESMESSAGE is a standard iRMX 86 system call that tasks use to
receive objects at mailboxes. In particular, tasks use
RQSRECEIVESMESSAGE to receive messages at mailboxes representing
activated system ports.

msg$token = RQSRECEIVESMESSAGE (mailboxS$token, time$limit,
response$ptr, condition$ptr);

mailbox$token A TOKEN containing a token for a mailbox
previously created by the CQACTV procedure.

time$limit A WORD which,

e if zero, indicates the calling task is not
willing to wait.

e if OFFFFH, indicates the task will wait as
long as is necessary.

e if between O and OFFFFH, is the number of
clock intervals the task is willing to wait.
The length of the clock interval is
configurable. Refer to the iRMX 86
CONFIGURATION GUIDE for further informatiom.

response$ptr A POINTER to a WORD in which the system always
returns a value of zero, since response$ptr is
not supported in MMX 86 implementations.

condition$ptr A POINTER to a WORD where MMX 86 returns the
condition code for the call.

msg$token A TOKEN containing the token for the message
segment being received.

DESCRIPTION

An application task receives messages sent to an iRMX 86 mailbox by
invoking the RQSRECEIVESMESSAGE system call. The mailbox is identified
in the call by mailboxS$token. If the mailbox represents a system port,
the mailbox token was previously returned to an application task by a
call to the CQACTV procedure.

When used in conjunction with MMX 86 software, the RQSRECEIVESMESSAGE

system call behaves as expected, except that the value returned to the
WORD pointed to by the response$ptr is always O. This is because MMX 86
does not know where the message came from.

5-12

CONDITION CODES

E$OK

ESEXIST

ENOTCONFIGURED

E$TIME

ESTYPE

MESSAGE RECEPTION

The RQSRECEIVESMESSAGE call was successful and
the message has been received.

The RQSRECEIVESMESSAGE call was unsuccessful
because either:

e mailbox$token was not a token for an existing
object or

e the local iRMX 86 Operating System deleted the
MMX 86 job on the device while the requesting
task was waiting.

The RQSRECEIVESMESSAGE call was unsuccessful
because RQSRECEIVESMESSAGE was excluded during
iRMX 86 configuration.

The RQSRECEIVESMESSAGE call was unsuccessful
because the calling task either:

o specified a time$limit of 0 and no messages
were queued at the mailbox or

o specified a non~zero time$limit that was less
than OFFFFH and then "timed out”.

The RQSRECEIVESMESSAGE call was unsuccessful
because mailbox$token is a token for an object
that is not a mailbox.

5-13

DEACTIVATE PORT

DEACTIVATE PORT

The CQDACT procedure deactivates the specified system port. Messages are
no longer delivered to that port by the device-resident MMX 86 software.

CALL CQDACT (sysS$port$name, conditionSptr);

sys$port$name A WORD containing the two-byte ASCII name of a

system port. You assign names to system ports
during iMMX 800 configuration.

condition$ptr A POINTER to a WORD where MMX 86 returns the
condition code for the call.

DESCRIPTION

The DEACTIVATE PORT service allows an application task to deactivate the

specified system port. After the port is deactivated, messages can no
longer be sent to that port until it is re~activated by the same or
another device-resident task calling the CQACTV procedure. An

exceptional condition is returned to tasks attempting to send further
messages to the port.

CQDACT does not affect messages already enqueued at the iRMX 86 mailbox
representing the system port when the CQDACT request is made. Such
messages remain available to tasks on the device. MMX 86 deletes the
mailbox when the last remaining message is received by a task.

CONDITION CODES

E$OK The call to CQDACT was successful.

ESUNKNOWNSSYSTEMS$PORT The CQACTV call was unsuccessful because
MMX 86 did not recognize the specified

system port name when it searched the local
system port table.

5-14

MMX 86 PROCEDURE CALLS

MMX 86 USAGE EXAMPLES

The program examples in Figures 5-1 and 5-2 show typical usage of the
MMX 88 interdevice message-transfer services. The program given in
Figure 5-1 represents portions of a task that sends messages to a task on
another device. The task that sends messages is called the
MMX$producer$task. The task to which it sends messages 1s similarly
portrayed in Figure 5-2 and is called the MMX$consumer$task.

In the examples, the data types of the variables can be derived from
context.

MMX$producer$task:
DO;
DECLARE condition$code WORD;
DECLARE consumer$connection TOKEN;
DECLARE (consumersysport$name,
producersysport$name) WORD EXTERNAL;

.
.

consumer$connection = CQFIND (consumersysport$name,
@condition$code);

IF NOT (condition$code = ES$0K)
THEN CALL problem$handler;

producer$mbox = CQACTV (producer$sys$portS$name,
@condition$code);

IF NOT (condition$code = E$0K)
THEN CALL problem$handler;

CALL generate (@producerS$message);

CALL CQXFER(consumer$connection,
producer$message,

full$deliver, /* transfer and delete whole segment */
OFFFFH,

@Qcondition$code);

IF NOT (condition$code = E$OK)
THEN CALL problem$handler;

msg$token = RQSRECEIVESMESSAGE (producer$mbox,
some$delay,
@response,
@Qcondition$code);

CALL CQDACT(producersysport$néme,
@conditionS$code);

END MMXS$producer$task;

Figure 5-1. Sending Task Program Example

5-15

MMX 86 PROCEDURE CALLS

MMX$consumer$task:
DO;
DECLARE conditionScode WORD;
DECLARE producer$connection TOKEN;
DECLARE (consumersysport$name,
producersysport$name) WORD EXTERNAL;

consumer$mbox = CQACTV (consumer$sys$portSname,
@conditionS$code);

IF NOT (condition$code = ES$0K)
THEN CALL problem$handler;

msg$token = RQSRECEIVESMESSAGE (consumer$mbox,

someS$delay,
@response
@conditionS$code);

IF NOT (condition$code = E$0K)
THEN CALL problem$handler;

producer$connection = CQFIND (producersysport$name,
@condition$code);

IF NOT (condition$code = E$0K)
THEN CALL problem$handler;

CALL generate (Creply$message);

CALL CQXFER (producerS$connection,
replySmessage,
full$deliver, /* transfer and delete whole segment */
OFFFFH,
@conditionScode);

IF NOT (conditionScode = E$0K)
THEN CALL problem$handler;

CALL CQDACT (consumer$sysS$port$name,
@condition$code);

END MMX$consumerS$task;

Figure 5-2. Receiving Task Program Example

5-16

CHAPTER 6. PARTITIONED MEMORY MANAGER

The Partitioned Memory Manager (PMM) is provided to manage one or more
contiguous blocks of RAM. The PMM allocates memory to tasks on request
and accepts memory from tasks 1f and when the tasks no longer need the

memory. In systems that use it, the PMM replaces the Free Space Manager
(FSM).

NOTE

In iRMX 86-based applications, tasks
obtain memory for local needs by
calling RQSCREATESSEGMENT, and they
return memory by calling
RQSDELETESSEGMENT, so FSM-like features
are not needed. Furthermore, MMX 86
manages all pools on behalf of tasks
that communicate with other devices.
Consequently, MMX 86 users do not
explicitly use the PMM and need not
read this chapter.

MEMORY POOLS

The contiguous blocks of memory that the PMM manages are called pools.
You define the pools for each MMX80- or MMX88-based device during the
configuration process for the device. You also assign numbers called
pool id's to the pools during configuration. The pool id's for each
device usually start with O and continue upward sequentially, such as O
through 10. For convenience, we refer to the pools by their id numbers 0

through N. There can be up to 255 pools per device, and pool id's can
range from 0 to 254.

There can be many reasons for separating memory into pools. What the
reasons are and how you do the separating depend upon the requirements of
your application. How your tasks use the PMM also depends upon your
application and its requirements. The iMMX 800 software, like your
application tasks, is a PMM user; the primary use it has for the PMM is
to transfer messages between devices.

Memory pools are important when transferring messages between devices.
Suppose there is a channel for communication between task A on device A
and task B on device B. To support message transfers from task A to task
B, there must be a memory pool (pool A), managed by the PMM on device A,
that is accessible by both devices. Messages from task A to task B must
be put into pool A. Similarly, to support message transfers from task B
to task A, there must be a pool (pool B), managed by the PMM on device B,
and it too must be accessible by both devices. And, similarly, messages
from task B to task A must be put into pool B.

6-1

PARTITIONED MEMORY MANAGER

When task A sends a message to task B, task A has two choices as to how
the message is put into pool A. Task A can itself put the message into
pool A and then call CQXFER in such a way that the iMMX 800 software does
not make a separate copy of the message. Or task A can request that
CQXFER make a copy in pool A before transferring the message. Therefore,
one of the benefits of having the PMM procedures available to application
tasks is that the tasks can prevent the PMM from making the extra copy of
messages and using the extra memory that doing so entails.

In iRMX 80- and iRMX 88-based applications, pool O on each device is the
Free Space Pool for the device. Memory in a device's Free Space Pool is
usually dedicated to on-board needs, but, if desired, it can also be used
to transfer messages between the device and other devices, provided that
all of the memory in the Free Space Pool is accessible by all of those
devices.

In contrast, the memory in the other pools for the device is reserved for
transferring messages between the device and other devices. Each channel
between the device and another device uses one or more pools on the
device for transferring messages through that channel, provided that all
of the memory in each of the pools is accessible by the other device.

The other device also uses one or more pools for transferring messages
through the channel. If desired, the memory in a single pool on a device
can be used for transferring messages through more than one channel.

USING THE FREE SPACE POOL

In iRMX 80~ and iRMX 88~based applications, the PMM manages the Free
Space Pool in the same way that the iRMX 80 and iRMX 88 Free Space
Managers (FSM) manage their respective pools of memory. That is, tasks
obtain memory by sending request messages to the RQFSAX exchange, and
they return memory by sending it to the RQFSRX exchange. Consequently,
on IRMX 80- and iRMX 88-based devices, the PMM replaces the FSM.
Reference material describing the FSM's can be found in the iRMX 80
USER'S GUIDE and the iRMX 88 REFERENCE MANUAL. If you are planning to
use only FSM functions, you can read about them in the appropriate
manual, instead of reading the remainder of this chapter.

PMM management of the Free Space Pool on a device differs from FSM memory
management in the following ways:

e A PMM memory block must always begin on a paragraph boundary
(that is, its starting address must be a multiple of 16), and its
length, in bytes, is always a multiple of 16. If a task sends a
memory request to the RQFSAX exchange with the LENGTH field set
to a value that is not a multiple of 16, the PMM will round that
value upward to the nearest multiple of 16 before acting on the
request. Therefore, a task that always requests memory in
multiples of 16 bytes can see no difference between the
allocation algorithms of the PMM and the FSM.

6-2

PARTITIONED MEMORY MANAGER

e The memory for the Free Space Pool is normally defined during
configuration. When the application system begins to run, the
PMM automatically initializes the Free Space Pool. In contrast,
the FSM does not establish its own pool of memory, but requires
that some task give it memory that has been reserved by some
method, such as by being declared an array.

Tasks in the PMM environment must not send memory to the RQFSRX
exchange when that memory had not been obtainmed through the
RQFSAX exchange. This is because there is no way to guarantee
that such memory begins on a paragraph boundary. The rounding
process that takes place can cause up to 15 bytes to be chopped
off each end of such a memory block. For the same reason, tasks
normally should not return part of a memory block to the RQFSRX
exchange, even when the memory was obtained through the RQFSAX
exchange. However, if a task makes certain that the part of a
block being returned starts on a paragraph boundary and has a
length that is a multiple of 16, there should not be any problems.

NOTE

Memory sent to the RQFSRX exchange in
the MMX 88 environment will not be
reclaimed unless it starts on a
paragraph boundary and has a length
that is a multiple of 16. Instead,
the memory is "lost.”

In the MMX 88 environment, memory must
not be sent to RQFSRX exchange unless
it had previously been allocated from
the RQFSAX exchange.

USING POOLS O THROUGH N

Tasks needing memory for interdevice message transfers obtain memory

through the RQFLMX exchange. When the memory is no longer needed, it is
usually returned to the appropriate pool, either by an application task
or by MMX 80 or MMX 88.

REQUESTING MEMORY

The RQFLMX exchange has slightly different format requirements than do
the RQFSAX and RQFSRX exchanges. The message structures associated with
requesting memory from the RQFLMX exchange are as follows:

PARTITIONED MEMORY MANAGER

DECLARE MSG$HEADER LITERALLY

'LINK ADDRESS, /* LOCATION if MMX 88 */
LENGTH WORD,
TYPE BYTE,
HOMES$EX ADDRESS, /* LOCATION if MMX 88 */
RESPSEX ADDRESS'; /* LOCATION if MMX 88 */

DECLARE PMMSREQ$STRUC LITERALLY

' (MSGSHEADER,
NEEDEDSSIZE WORD,
/* FILLER WORD, if megabyte MMX 88 */

MEMORY$POOL BYTE)';

DECLARE PMMGOTBLK$STRUC LITERALLY
' (MSGSHEADER,
BLK$PTR ADDRESS, /* LOCATION if MMX 88 */
MEMORY$POOL BYTE)';

DECLARE PMMNOTALLOC$STRUC LITERALLY
' (MSGSHEADER,
BIGGEST$BLK WORD)';

Messages of the form PMMSREQS$STRUC are sent to the RQFLMX exchange in
order to request memory. The fields that the requesting task must fill in
are the following:

TYPE must be either PMM$GETSBLKSTYPE (=4H) or PMMSUCS$GETS$BLKSTYPE
(=5H). PMMSGET$BLKSTYPE signifies a conditional request, which means
that the task wants the requested memory but is not willing to wait
if a sufficiently large block is not available. PMM$SUCSGET$BLKSTYPE,
on the other hand, signifies that the task must have the memory and
will wait indefinitely for it.

RESPSEX must contain the address of the exchange where the requesting
task will wait for a response to its request.

NEEDEDS$SIZE must contain the number of bytes being requested. This
value must be large enough to accommodate both the body of the
message and the message header (12 bytes in MMX 80 and the
non-megabyte version of MMX 88; 20 bytes in the megabyte version of
MMX 88) that the PMM places at the beginning of the allocated memory.

MEMORYS$POOL must contain the pool id of the memory pool that is

dedicated to the channel that the requesting task is planning to
use. If the task doesn't know the number of the pool, it can obtain
that value by means of the CQGDPA procedure, as follows:

MEMORY$POOL = CQGDPA(CONNECTION);

where CONNECTION is the connection previously obtained for the
channel by a call to CQFIND.

6-4

PARTITIONED MEMORY MANAGER

After the requesting task sends the request message, it must wait at the
response exchange indicated in the request. When the task receives the

response message, the TYPE field reveals the disposition of the request,
as follows:

e If the value in the TYPE field is PMMSERRORSTYPE (=6H), the
response message is of the PMMSNOTSALLOCS$STRUC type and the
MEMORY$POOL field of the request message did not contain a valid
pool id value, so the request is denied.

e If the value in the TYPE field is PMMSNOSSPACESTYPE (=2BH), there
was not sufficient memory at the time of the request, so the
request is denied. In this case, the response message is of the
PMMSNOTSALLOCSSTRUC type and the BIGGESTS$BLK field contains the
number of bytes in the largest block that could have been
allocated. Note that there is no guarantee that a block of that
size still remains in the pool.

e Otherwise, the value in the TYPE field is the same as the value
in the TYPE field of the request message, and the request is
granted. In this case, the response message is of the
PMMSGOT$BLKSSTRUC type, the BLK$PTR field contains the address of
the allocated memory block, and the LENGTH and HOMESEX fields
should not be altered.

RETURNING ALLOCATED MEMORY

If and when a block of memory is no longer needed, a task can return the

memory to the PMM by sending the memory to the exchange whose address is
in the HOMESEX field of the memory block's message header.

If, for some reason, the task wants to return the memory to a different
pool than the pool from which the memory was allocated, the task can
easily do so, although this practice is not recommended in the MMX 80
environment and is absolutely forbidden in the MMX 88 environment. The
task must first put the appropriate pool id in the MEMORY$POOL field of
the memory block and the PMM$SFREESBLKSTYPE (=28H) in the TYPE field.
Then the task sends the memory block (as a message) to the RQFLMX
exchange.

When a block is sent to the RQFLMX exchange, the RESP$EX field 1s ignored
by the PMM, so if an error occurs, the task does not learn of it. In
iRMX 80-based applications, if the error is that a non~existent pool was
specified, the PMM has sent the memory to an exchange called RQPBHX.
Application tasks can do an RQACPT operation at that exchange to see
whether any blocks have been improperly reclaimed. In iRMX 88-based
applications, memory that is sent to the RQFLMX exchange with an invalid
pool id is "lost".

6-5

PARTITIONED MEMORY MANAGER

CREATING MEMORY POOLS DYNAMICALLY

For iRMX 80 applications, it is not necessary for all pools to be defined
during configuration. A task can request that a pool be created
dynamically by a process similar to that used for requesting memory from
an existing pool.

First, the task prepares a message of the PMM$REQSSTRUC type. The TYPE
field of the message must contain the value PMM$CREATE$POOLSTYPE (=29H).
The RESPS$EX field must contain the address of the exchange where the task
will wait for a response to its request. The MEMORY$POOL field must
contain the pool id of the pool that is to be created.

After preparing the message, the task must send it to the PMM exchange
RQPMX, and then the task must wait at the specified response exchange.

When the task receives the response message, the TYPE field reveals the
disposition of the request, as follows:

. If the value in the TYPE field is PMMSERRORSTYPE (=6H), there is

already a pool with the specified pool id, so the request is
denied.

e If the value in the TYPE field is PMM$NOSSPACESTYPE (=2BH),
either there was not sufficient memory available to form a pool
or the required 32 bytes of work area was not available in the
Free Space Pool, so the request is denied.

e Otherwise, the value in the TYPE field is the same as that in the
request, namely PMMSCREATESPOOLSTYPE (=29H), and the request is
granted.

Once the task has confirmed that the pool has been created, it must give
memory to the new pool. It prepares to do so by obtaining the memory
from the Free Space Pool. Then the task sends the memory to the RQFLMX
exchange with the TYPE field set to PMMSFREESBLKSTYPE (=28H) and the
MEMORY$POOL field set to the pool id of the new pool.

6-6

CHAPTER 7. CONFIGURING YOUR APPLICATION SYSTEM

After you have done high-level design of your hardware and written and
compiled your tasks, it is time for you to configure your system.
Configuring your hardware consists of making the final adjustments, such
as jumpering, that prepare your hardware for use with both the iRMX
operating system(s) and the iMMX 800 software. Configuring your software
involves describing the resources, including the hardware and memory
partitions, that the iMMX 800 services have at their disposal. These
descriptions take the form of files of PL/M declarations, and most of
this chapter 1s concerned with the process of declaring the appropriate
variables and data structures and assigning values to them. The
remainder of the chapter describes how to compile the iMMX 800
configuration file, how to link it to the iMMX 800 software and to the
iRMX tasks, and how to configure your hardware for the use of the

iMMX 800 services.

SOFTWARE CONFIGURATION

The hard part of software configuration consists of making a number of
decisions concerning the requirements of your application system. The
easy part consists of translating these decisions into the variables and
data structures that support the iMMX 800 internal control structures.

DECISIONS THAT PROVIDE INFORMATION NEEDED FOR CONFIGURATION

The decisions that you must make fall into three categories, depending
upon their scope: system—level decisions, device-level decisions, and
port-level decisions. So that you can use the following lists of
decisions as convieniently as possible, the name(s) of the variables and

data structures that are affected by each decision are listed immediately
after the description of the issue requiring the decision.

System~Level Decisions

(1) What types of devices make up the system, and how many are there of
each type? (CQDVCS)

(2) What pairs of devices require interdevice communication? (CQPRTS,
LPT$ROM, CQSKTS, DSDT)

7-1

(3)

(4)

)

(6)

CONFIGURING YOUR APPLICATION SYSTEM

What are the ID's for the devices and interdevice segments (IDS's)
that are involved in iMMX 800-supported interdevice communication?
An ID is a non—negative integer that identifies the device or IDS.
More important, the iMMX 800 software uses the ID's as indexes for
arrays of data structures pertaining to devices or IDS's. Both sets
of ID's must begin with zero and must increase sequentially. The
ID's in each set can be assigned in any order. (DSDT.DEST$DEVSID
and DSDT.SRCSDEVSID)

What are the addresses of the request queue descriptiors and how
many entries can each queue accommodate? Each request queue
descriptor is eight bytes long and is followed immediately by the
memory that is reserved for the queued entries. Each queued entry
occupies 16 bytes. If you decide to place all of your request
queues consecutively in the same area of memory, you might want to
skip the next eight bytes after each queue so that each request
queue descriptor can start on a paragraph boundary.
(DCM$ROM.RQD$OUTSPTR and DCM$ROM.RQD$INSPTR)

What do you want to call the ports in the system? Each port must

have a two—character name that uniquely represents it throughout the
whole system. (LPTSROM)

How many interdevice segments are there in the system, and where are
they? (CQIDSS, IDST)

Device~-Level Decisions

(7

(8)

(2

(10)

For how long a time period will the iMMX 800 software on the device
walt before beginning to communicate? (CQITWT)

For how long a time period will the device wait for a response from
other devices? (CQMDLY)

For each device, which of the following schemes is used to alert the
device to the occurrence of an external event: Multibus interrupt,
I/0-mapped interrupt, memory-mapped interrupt, or polling? A
Multibus interrupt travels to its destination along the Multibus
interface and has the disadvantage that it can interrupt every
device in the system. An I/O-mapped interrupt arrives at a device
through an 1/0 port. A memory-mapped interrupt arrives at a device
in the device's memory. (SFT.INTRS$TYPE)

For devices that are interrupted through the Multibus interface:
(a) To which bit (0-7) of port C of an 8255 Programmable Peripheral
Interface should a value be written to generate an interrupt?

(SFT . INTR$VALUE)

(b) What I/0 control port generates a Multibus interrupt for the
device? (SFT.INTRSLOCATION)

7-2

CONFIGURING YOUR APPLICATION SYSTEM

(11) For devices that receive 1/0-mapped interrupts:
(a) Which I/0 port receives interrupts? (SFT.INTRSLOCATION)

(b) What value is sent to the port to generate an interrupt?
(SFT.INTRS$VALUE)

(12) For devices that receive memory-mapped interrupts:
(a) What memory location receives the interrupt? (SFT.INTRSLOCATION)

(b) What value will be written to that memory location to generate
an interrupt? (SFT.INTRSVALUE)

(13) For each (MMX 86) device, what method does the device use to clear
interrupts that it has generated? (SFT.CLRSOUTSTYPE)

(l4) For each (MMX 86) device that is responsible for clearing interrupts
that it has generated:

(a) Which I/0 port or memory location is associated with interrupt
clearance? (SFT.CLRSOUTSINTRSLOCATION)

(b) What value is sent to the I/0 port or memory location to clear
the interrupt? (SFT.CLRSOUTSINTRSVALUE)

(15) For devices that are responsible for clearing interrupts that they
have received:

(a) What method does the device use to clear interrupts that it has
received? (SFT.CLRSINTRSTYPE for MMX 88; SFT.CLRSINSTYPE for
MMX 86)

(b) Which I/O port or memory location is associated with interrupt
clearance? (SFT.CLRSINTRSLOCATION for MMX 88;
SFT.CLRSINSINTRSLOCATION for MMX 86)

(c) What value is sent to the I/0 port or memory location to clear
the interrupt? (SFT.CLRSINTRSVALUE for MMX 88;
SFT.CLRSINSINTRSVALUE for MMX 86)

(16) What is the device's polling period? (CQIDPD)

(17) What is the interrupt level, if any, that the iMMX 800 software uses
to interrupt the device? (CQSGLV)

(18) For iRMX 80~ and iRMX 88-based devices, what is the address of the

interrupt exchange for the interrupt level that the iMMX 800
software uses? (CQLMEX)

(19) What are the ID's for the device's ports and memory pools? As is
the case for device and interdevice segment ID's, port and pool ID's
are used as indexes into arrays of data structures pertaining to
ports and memory pools. For each device in the system, its set of
port and pool ID's each begin with zero and increase sequentially.
(DSDT.DEST$PORTSID, DSDT.POOLS$ID, LPT$ROM, BLKTBL)

7-3

CONFIGURING YOUR APPLICATION SYSTEM

(20) What are the addresses of the interdevice segments as they would be
addressed by the device? (IDST)

(21) What are the locations and sizes of memory pools on the device?
(BLKTBL)

Port~Level Decision

(22) For each port on iRMX 80—~ and iRMX 88-based devices, what is the ID
of the pool into which messages destined for that port are to be
copied? (LPTS$ROM)

VARIABLES AND DATA STRUCTURES THAT MUST BE ASSIGNED VALUES

After you have made all of the necessary decisions, it is time to place
the appropriate values in the variables and data structures that describe
the system for the iMMX 800 software. Figure 7-1 shows the most
important of these data structures and some of the relationships among
them. The placement of the structures in the figure reflects a top—down
approach to configuration.

In the paragraphs that follow, the numbers of the decisions previously
listed are referenced to help you see more clearly the relationship
between the decision-making phase of configuration and the structure-
filling phase. As you read these paragraphs, remember that we are
discussing the configuration of software that will run on a particular
system device. Similar configuration has to be done for every other
device in the system.

Device Description (CQDVCS)

The number of devices in the entire system (decision 1) must be assigned
to the variable CQDVCS, which is of the BYTE data type.

Channel Description (DCMROM, DCMSRAM)

The DCMSROM (Device-to—Channel Map) array of structures has an entry for
each device in the system. The array is indexed by the device ID's.

Each entry represents the channel (or lack of a channel -- decision 2)
between the device for which this configuration is being done and another
(or the same) device in the system. In the case of an entry that
represents a channel, the entry contains the locations and sizes of the
request queues (decision 4) associated with the channel. Each entry in
this table has the following format:

CONFIGURING YOUR APPLICATION SYSTEM

0 RQDSOUTSPOINTER A
4 [RQSOUTSSIZE
5| RQESOUT3SIZE
6 RQDSINSPOINTER
10| RQSINSSIZE
11| RQESINSSIZE
MODEL IMPLEMENTATION

CHANNEL DCM
PORTS LPT
ADDRESS DSDT
ATTRIBUTES SFT
MEMORY IDST
aciemonyr | BxTaL, BLKTBL, BLKTBL
x-127

DEVICE, DEVICE, DEVICEk

Figure 7-1. A Level-Oriented Representation of Configuration Structures

7-5

CONFIGURING YOUR APPLICATION SYSTEM

where:

RQDSOUTSPOINTER and RQDSINSPOINTER are POINTERs (ADDRESSes in MMX 80)
to the outbound and inbound request queue descriptors, respectively.
If the entry is for the device for which this configuration is being
done, and this device will use an iMMX 800 channel to communicate
with itself, these two pointers should contain the same address.

This is because a channel between a device and itself requires only
one queue. In case the entry represents the lack of a channel

between the two devices, these fields must each contain the value
OFFFFH.

RQOUTSIZE and RQSINSSIZE are BYTEs containing the maximum allowable
numbers of entries in the outbound and inbound request queues,
respectively. Each of these values must be a power of two. In
addition, in systems that intermix Release 2.0 and Release 3.0
versions of the iMMX 800 software, RQSOUTS$SIZE and RQSINSSIZE should
each be greater than the total number of tasks (on both devices) that
will be using the channel corresponding to this DCM$ROM array entry.

RQEOUTSIZE and RQEINSSIZE are BYTEs containing the value 4. This
signifies that the entries in each of the queues are 16 bytes long.
The value 4 is used because it is the base 2 logarithm of 16.

When the iMMX 800 software goes through its initialization phase, it
builds a number of data structures in RAM. One of these is DCM$RAM, an
array of areas (20 bytes for each device in configurations of MMX 80, MMX
86, or the non-megabyte version of MMX 88; 24 bytes for each device in
configurations of the megabyte version of MMX 88) for which you must
provide space in storage. The number of areas in the array is the number
of devices in the system.

Port Descriptions (CQPRTS, LPT$ROM, LPTS$RAM)

The variable CQPRTS, which is of the BTYE data type, contains the number

of ports (decision 2) resident on the device for which this configuration
is being performed.

The array LPTSROM of structures has an entry for each port on the device
being configured. Each entry contains the unique name (decision 5) of
one of the ports on the device. The array is indexed by the port ID's
(decision 19) for the device. In MMX 86 systems, each entry has the
following format:

of SYSTEM$PORT$NAME |

and in MMX 80 and MMX 88 systems, each entry has the following format:

N O

SYSTEM$PORT$NAME |
POOLSID | ~

CONFIGURING YOUR APPLICATION SYSTEM

where:

SYSTEMSPORTSNAME is a WORD containing the unique two-character name of
the port that the entry represents.

POOLSID is a BYTE containing the ID of the pool (decision 22) into
which messages destined for the port are copied.

Another of the data structures that the iMMX 800 software builds during
its initialization phase is an array called LPT$RAM, and you must provide
room for it in storage. In MMX 86 applications, each entry in the array
consists of a BYTE followed by a WORD, in MMX 80 and MMX 88 (non—megabyte
version) applications each entry consists of 11 BYTEs, and in MMX 88
(megabyte version), each entry consists of 21 BYTEs. As in the case of
LPT$ROM, the array is indexed by the port ID's for the device.

Address Description (CQSKTS, DSDT)

The variable CQSKTS, which is of type BYTE, contains the number of system
ports (decision 2) to which the device being configured sends messages.

The DSDT (Destination System Port Descriptor Table) array of structures
has an entry for each port to which the device being configured sends
messages. Each entry in this table associates a system port with the
device where it resides. Each entry has the following format:

SYSTEMS$PORT$NAME]
DEST$DEVSID
DEST$PORTSID
SRCS$DEVSID
RESERVED
POOLSID
IDSSID

NoubWNDO

where:

SYSTEM$PORTSNAME is a WORD containing the unique, two—character name
of the port (decision 5) to which this DSDT array entry corresponds.

SRCS$DEVSID and DESTS$DEVSID are BYTEs containing the device ID's

(decision 3) of the source and destination devices, respectively. The
source device is the device for which this configuration is being done.

DESTSPORTSID is a BYTE containing the port ID (decision 19) of the
destination port.

POOLSID is a BYTE containing the ID of the pool (decision 19) into

which the iMMX 800 software will copy messages in preparation for
transferring messages between the specified source and destination
devices.

IDS$ID is a BYTE containing the ID of the interdevice segment
(decision 3) that contains the pool specified by POOLSID.

7-7

CONFIGURING YOUR APPLICATION SYSTEM

Attribute Description (SFT, CQITWT, CQMDLY, CQIDPD, CQSGLV, CQLMEX, MCBI)

The array SFT of structures has an entry for each device in the system
and is indexed by device ID's. Each entry describes the physical
characteristics of a device and how to generate an interrupt to that
device. The form of the structure depends upon whether the device is
being configured for MMX 80, MMX 88, or MMX 86.

If the device is being configured for MMX 80, each SFT entry has the
following format:

0| INTRS$LOCATION |

where INTRSLOCATION is a word whose meaning depends upon whether the
device corresponding to this array entry has memory-mapped interrupts.
If it does have memory-mapped interrupts, INTRSLOCATION contains the

device's wake—up address (decision 12). Otherwise, INTRSLOCATION should
contain OFFFFH.

If the device is being configured for MMX 88, each SFT entry has the
following form: a

DEVICESMODE
INTRSTYPE
INTRSLOCATION
INTRSVALUE
CLRSINTRSTYPE |
CLRSLOCATION
CLR3VALUE

oSN~ NH-HO

where:

DEVICESMODE is a BYTE containing a code that defines a characteristic
of a device in the system. The possible code values and their
literal equivalents are:

0 -- NOSDEVICE The device being configured will not

communicate with the device corresponding to
this array entry.

1 -- SLAVESDEVICE The device corresponding to this array entry

either is an iSBC 550 ethernet controller or
sends messages to itself.

2 —- PEERSDEVICE The device corresponding to this entry is
not an iSBC 550 Ethernet controller.

INTRSTYPE is a BYTE containing a code for the interrupt scheme
(decision 9) that the device being configured will use to interrupt
the device corresponding to this array entry. The possible code
values and literal equivalents of them are:

CONFIGURING YOUR APPLICATION SYSTEM

0 —- NOSINTERRUPT The device corresponding to this array
entry uses polling and cannot be
interrupted.

1 -- MBSINTERRUPT Multibus interrupts.

2 —— MMSINTERRUPT Memory-mapped interrupts.

3 —— IOSINTERRUPT I/0-mapped interrupts.

INTRSLOCATION is an ADDRESS containing the location where interrupts
are to be generated. For Multibus interrupts (decision 10), this is
the address of the I/0 control port on the 8255 Programmable
Peripheral Interface that is to generate an interrupt through the
Multibus. For I/O-mapped interrupts (decision 11), this is the
address of the I/0 port that is to generate interrupts. For
memory-mapped interrupts (decision 12), this is the base address of
the memory location that is to generate interrupts.

INTR$VALUE is a WORD containing the value that is to be used to
interrupt the device corresponding to this array entry. For Multibus
interrupts (decision 10), the value (0 through 7) specifies which bit
of Port C of an 8255 Programmable Peripheral Interface will generate
interrupts onto the Multibus interface. For memory-mapped interrupts
(decision 12), the value is to be written to the device's memory.

For I/0O-mapped interrupts (decision 11) the value is to be written to
an I/0 port.

CLRSINTRSTYPE is a BYTE containing a code indicating the manner
(decision 13) in which interrupts generated by the device are to be
cleared. The possible code values and their literal equivalents are:

0 —- NOSINTRSCLEARED It is not necessary to clear received
interrupts.

1 -- MEMORYSREADSCLR By reading from the memory location
specified in the SFT structure.

2 -—- MEMORYSWRITESCLR By writing to a memory location.

3 -— IOSREADSCLR By reading from the I/0 port specified in
the SFT structure.

4 —— TOSWRITE$CLR By writing to an I/O port.

CLRSLOCATION is an ADDRESS containing the base address (decision 14)
of the memory location or the I/0 port address to which the specified
value is to be written, in order to clear interrupts.

CLRSVALUE is a WORD containing the value that is to be written to the
specified I/0 port or memory location, in order to clear interrupts.

7-9

CONFIGURING YOUR APPLICATION SYSTEM

If the device is being configured for MMX 86, each SFT entry has the
following form:

0 OPSMODE

1 INTRSTYPE

2 INTRSLOCATION

4 INTRSVALUE

6 CLRSOUTSTYPE]

7 CLRSOUTSINTRSLOCATION
9 CLRSOUTSINTRSVALUE
11 CLRSINSTYPE]
12 CLRSINSINTRSLOCATION
14 CLRSINSINTRSVALUE

where:

OP$MODE is a BYTE containing a code that defines a characteristic of

a device in the system. The possible code values and their literal
equivalents are:

0 —- NOSDEVICE The device being configured will not
communicate with the device corresponding
to this array entry.

1 -- SLAVESDEVICE The device corresponding to this array
entry either is an iSBC 550 ethernet

controller or sends messages to itself.

2 —-— PEERSDEVICE The device corresponding to this entry is
not an iSBC 550 Ethernet controller.

INTRSTYPE is an encoded BYTE indicating the manner (decision 9) in
which the device being configured will interrupt the device
corresponding to this array entry. The bit-level fields and their
meanings are:

Bits 0-3 specify the type of interrupt, as follows:

0 —- No interrupts

1 == Multibus interrupts through port C of the 8255
Programmable Peripheral Interface.

2 -- I/0-mapped interrupts by writing.
3 -- Memory-mapped interrupts by writing.
4 -- I/0-mapped interrupts by reading.

5 —-- Memory-mapped interrupts by reading.

7-10

CONFIGURING YOUR APPLICATION SYSTEM

Bit 4 is reserved.

Bit 5 specifies whether the value in the INTR$VALUE field is to
be written into INTRSLOCATION as a BYTE of data or as a WORD of

data.
0 -- BYTE
1 -—- WORD

Bits 6-7 are reserved.

INTRSLOCATION is a WORD containing the location where interrupts are
to be generated. For Multibus interrupts (decision 10), this is the
address of the I/0 control port on the 8255 Programmable Peripheral
Interface that is to generate an interrupt through the Multibus. For
I1/0-mapped interrupts (decision 11), this is the address of the I/O
port that is to generate interrupts. For memory—mapped interrupts
(decision 12), this is the base address of the memory location that
is to generate interrupts.

INTRSVALUE is a WORD containing the value that is to be used to
interrupt the device corresponding to this array entry. For Multibus
interrupts (decision 10), the value (0 through 7) specifies which bit
of Port C of an 8255 Programmable Peripheral Interface will generate
interrupts onto the Multibus interface. For memory-mapped interrupts
(decision 12), the value is to be written to the device's memory.

For I/0O-mapped interrupts (decision 11) the value is to be written to
an I/0 port.

CLRSOUTSTYPE is an encoded BYTE indicating the manner (decision 13)
in which interrupts generated by the device are to be cleared. The
bit-level fields and their meanings are:

Bits 0-3 indicate the method of clearing the interrupts, as
follows:

0 -- It is not necessary to clear generated interrupts.
1 -- By writing to an 1/0 port.
2 —— By writing to a memory location.

3 -- By reading from the I/0 port specified in the SFT
structure.

4 -- By reading from the memory location specified in the SFT
structure.

Bit 4 is reserved.

Bit 5 specifies whether the value in the CLR$SOUTSINTRSVALUE field
is to be written into CLRSOUTSINTRSLOCATION as a BYTE of data or
as a WORD of data. (O means BYTE; 1 means WORD)

Bits 6-7 are reserved.

7-11

CONFIGURING YOUR APPLICATION SYSTEM

CLRSOUTSINTRSLOCATION is a WORD that specifies the location to which
the value in the CLRSOUTSINTRSVALUE is to be written, in order to

clear interrupts generated by the device.

I/0-mapped, this value is an
memory—mapped, this value is

CLRSOUTSINTRSVALUE is a WORD containing the value that is to be

If the interrupt was

I/0 port address. If the interrupt was

a base address.

written to the specified I/0 port or memory location, in order to
clear interrupts generated by the device.

CLRSINSTYPE is an encoded BYTE indicating the manner (decision 15) in

which interrupts received by

the device are to be cleared. The

bit-level fields and their meanings are:

Bits 0-3 indicate the method of clearing the interrupts, as

follows:

0 —— It is not necessary to clear received interrupts.

1 —- By writing to an I/0 port.

2 -- By writing to a

3 -- By reading from
structure.

memory location.

the I/0 port specified in the SFT

4 -- By reading from the memory location specified in the SFT

structure.

Bit 4 is reserved.

Bit 5 specifies whether the value in the CLRSINSINTRSVALUE field
is to be written into CLRSINSINTRSLOCATION as a BYTE of data or
as a WORD of data. (O means BYTE; 1 means WORD)

Bits 6~7 are reserved.

CLRSINSINTRSLOCATION is a WORD that specifies the location to which
the value in the CLR$INSINTRSVALUE is to be written, in order to

clear interrupts received by
I/0-mapped, this value is an
memory-mapped, this value is

the device. If the interrupt was

I/0 port address. If the interrupt was

a base address.

CLRSINSINTRSVALUE is a WORD containing the value that is to be

written to the specified I/0
clear interrupts received by

The variable CQITWT, which is of
time units (decision 7) that the
beginning to communicate.

The variable CQMDLY, which is of

time units (decision 8) that the
response from another device.

port or memory location, in order
the device.

type WORD, contains the number of
device being configured will wait
type WORD, contains the number of

device being configured will wait

7-12

to

system
before

system
for a

CONFIGURING YOUR APPLICATION SYSTEM

The variable CQIDPD, which is of type WORD, specifies the device's
polling period (decision 16).

The variable CQSGLV, which is of type BYTE (WORD in MMX 86), contains the
interrupt level (decision 17), if any, that the iMMX 800 software uses to
interrupt the device being configured. In iRMX 80- and iRMX 88-based
applications, CQSGLV can be any value from O to 7 (O to OAH if the device
is an i1SBC 544 or 569 board, where 9, OAH, and OBH correspond to INT 7.5,
6.5, and 5.5, respectively), whereas in iRMX 86-based applications, it
can range from O to 63. In the latter case, you must encode the level by
first expressing it in octal, then using the following encoding scheme
(bit 15 is the high-order bit):

15-7 0
6-4 First octal digit (0-7) of the interrupt level
3 If 1, the level is a master level and bits 6-4

specify the entire level number

If 0, the level is a slave level (refer to the
iRMX 86 NUCLEUS REFERENCE MANUAL) and bits 2-0
specify the second octal digit

2-0 Second digit (0-7) of the interrupt level if bit
3 is 0; ignored otherwise

The variable CQLMEX is used only by MMX 80 and MMX 88 devices. In MMX 80
it is of type ADDRESS; in MMX 88 it is of type LOCATION. When used, it
contains the address (decision 18) of the interrupt exchange for the
interrupt level that the iMMX 800 software uses.

The array MCBI of structures has an entry for every iRMX 80-based device
in the system. Each entry is 23 bytes in length. This array is used by
the iMMX 800 software for internal communication between its tasks, so it
does not need to be filled in during configuration.

Memory Description (CQIDSS, IDST)

The variable CQIDSS, which is of type BYTE, contains the number of
interdevice segments (decision 6) in the system.

The array IDST of structures has an entry for each interdevice segment in
the system and is indexed by the interdevice segment ID's. Each entry

contains the location of an interdevice segment (decision 6) and has the
following format:

OFFSET
PAGE

N O

where:

7-13

CONFIGURING YOUR APPLICATION SYSTEM

OFFSET is a WORD containing the offset of an interdevice segment.

PAGE is a WORD containing the page address of a 64K-byte page
containing the interdevice segment whose IDST entry this is.

NOTE

If the device cannot address the IDS, the
values of OFFSET and PAGE are each OFFFFH.

Memory Assignment (CQPLHS, PLHTBL, CQBLKS, BKLTBL)

The variable CQPLHS, which is of type BYTE, contains the number of memory

pools available to the Partitioned Memory Manager residing on the device
being configured.

The array PLHTBL of structures has an entry for every memory pool that is
available to the Partitioned Memory Manager residing on the device being
configured. The structures are filled in by the iMMX 800 software, but
space for them must be declared during configuration. The structures
vary in size, depending upon the operating system. For MMX 80, each
structure 1is one byte in length; for MMX 86, each structure is two bytes
in length; for the non—megabyte version of MMX 88, each structure is 29
bytes in length; and for the megabyte version of MMX 88, each structure
is 53 bytes in length.

Each memory pool that is available to the Partitioned Memory Manager that

resides on the device being configured consists of one or more contiguous
blocks of memory. The variable CQBLKS, which is of type BYTE, contains
the total number of such blocks in all such pools.

Each of the contiguous blocks (decision 21) just discussed is represented
by an entry in an array of structures called BLKTBL. The entries each
have the following format:

0 POOLSID L

1 STARTSADDRESS

3 LENGTH
where:

POOLSID is a BYTE containing the ID of the memory pool of which the
block is a part.

START$SADDRESS is an ADDRESS in MMX 80 and a SELECTOR in both MMX 88

and MMX 86, and contains the address of the first byte of the block.
(A1l blocks begin on paragraph boundaries.)

LENGTH is a WORD (ADDRESS in MMX 80) containing the length of the
block. This length is expressed as a number of bytes in MMX 80 and
as a number of (l6-byte) paragraphs in MMX 88 and MMX 86.

7-14

CONFIGURING YOUR APPLICATION SYSTEM

A COMPREHENSIVE VIEW OF THE SYSTEM DATA STRUCTURES

The various data structures are interrelated in ways that are easy to

Figure 7-2 is provided to help
you form a complete mental picture of these structures.

understand but fairly hard to visualize.

PHL TBL

mCBI

DR

il

MEMORY
BLOCK

.
POOL ID

START ADDR

DsDT

»

LENGTH

.
SYSTEM PORT NAME

IDST

DEST DEV ID

DEST PORT ID

SOURCE DEV 10

J

.
OFFSET

RESERVED

P

PAGE

POOL 1D

PMM FUNCTIONS

DS ID

\

.
.
.
SFT REQUEST QUEUE
™
: JERY
: Y
DCMSROM
" .
r ® RQD OUT PTR < m
RQ OUT SIZE U
RQE OUT SIZE
RQD IN PTR STATE
RQ IN SIZE SOURCE REQ ID
RQE IN SIZE DEST DEV ID
~——1 DEST PORT ID
SOURCE DEV 1D
DATA PTR
DCMSRAM DATA LENGTH
—>
DS ID
OWNER DEV ID
M REQUEST QUEUE ENTRY
LPTSROM hd
—»| SYSTEM PORT NAME |-———
0
LPTSRAM hd
—> STATE -————
MAIL BOX PTR

X-121

Figure 7-2.

The Principal iMMX™ 800 Configuration Data Structures

AN EXAMPLE OF iMMX 800 CONFIGURATION

The example of this section shows the process of creating a configuration
file for a small iMMX 800 application.

Making the Decisions

As is shown in Figure 7-3, the intended hardware configuration has a pair
of iSBC 80/24 devices each communicating with an iSBC 86/12A device
through the Multibus interface.

7-15

CONFIGURING YOUR APPLICATION SYSTEM

AU

TERMINAL
INTERFACE
TASK

iSBC™ 80/24 iSBC™ 80/24

A A

Y Y
< MULTIBUS >
A ~ A

it

iSBC™ 86/12A

iSBC™ 215

-

-——————————--————-————J x-128

Figure 7-3. Example Target System

A terminal is connected to each of the iSBC 80/24 devices, with a
supporting software interface. The iSBC 86/12A device is connected to an
iSBC 215 Winchester Disk Controller that it uses for file access.

In order to support the desired interdevice communication, we need two
channels, each connecting one of the iSBC 80/24 devices with the
iSBC 86/12A device. Figure 7-4 shows this arrangement schematically.

Tasks in the iSBC 80/24 devices receive requests from the terminals and,
with the support of MMX 80, pass the requests to a task on the

iSBC 86/12A device. That task uses the requests to update files on the
Winchester disk or to obtain information from the disk. The task on the
iSBC 86/12A device then uses MMX 86 either to return a message of
acknowledgment or to pass data back to a task on the iSBC 80/24 devices.

7-16

CONFIGURING YOUR APPLICATION SYSTEM

TERMINAL TERMINAL
A A
i
TERMINAL TERMINAL
HANDLER HANDLER
A A
isBC™ isBC™
80/24 >< 80/24 ><
Y /
MMX 80 MMX 80
| A

7

MMX 86)

iSBC™
86/12A

O P REQUEST QUEUE
FILE
HANDLER N/
/\

3 iIMMX™ PORT

isBC™
215

x-139

Figure 7-4. Example Target System with Channels

Information from both Terminal Handlers is delivered to the same system
port on the iSBC 86/12A device. A user—defined message protocol
identifies both the originator and the type of each message. Even though
there is no direct connection between the iSBC 80/24 devices, the tasks

on the two iSBC 80/24 devices can communicate with each other by way of
the iSBC 86/12A device.

7-17

CONFIGURING YOUR APPLICATION SYSTEM

All three devices are interrupted by means of Multibus interrupts. Each

device uses level 4 interrupts, so more devices can easily be added
later, if necessary. '

On each iSBC 80/24 device, we dedicate 16K of ROM to code for user tasks,
the iRMX 80 software to support them, and the Terminal Handler. In
addition, we set aside 8K of RAM for task stacks and tables, as well as
for other dynamic needs, such as messages.

The iSBC 86/12A device (with an iSBC 300 RAM expansion module) has 64K of
RAM and 16K of ROM. The 16K of ROM is for user tasks and the iRMX 86 and
MMX 86 software that supports those tasks. Of the 64K of RAM, 44K is for
the iRMX 86 I/0 System interface with the iSBC 215 controller, 16K is for
local use by the I/O System and other on—board tasks, and 4K is to be
shared by all devices for communicating by means of the iMMX 800
services. Off-board ROM and RAM is used to meet local memory
requirements where on—board memory does not suffice.

Figure 7-5 illustrates the allocation of these sections of memory and
gives their addresses.

DEVICE 0 DEVICE 1 DEVICE 2

iSBC™ 80/24 iSBC™ 86/12A iSBC™ 80/24

> Y >
64K 24K
ROM RAM

F000:0 FFFF:F 5000 FFFF

MEMORY
POOLS

Figure 7-5. Initial Allocation of Memory

The 4K of shared RAM includes space for the two pairs of request queues
and three pools of memory. Even though this memory is resident on the
iSBC 86/12A device, two of the pools are each managed by one of the

iSBC 80/24 devices, while the iSBC 86/12A device manages the other pool.
The pools managed by the iSBC 80/24 devices are used for communication
from the iSBC 80/24 devices to the iSBC 86/12A device, whereas the pool

managed by the iSBC 86/12A device is used for communication in the other
direction. :

7-18

Figure 7-6 shows the final layout of memory for the three boards.
also shows the device and pool ID's for the example.

in shared memory.

CONFIGURING YOUR APPLICATION SYSTEM

It

Notice that each of
the i1iSBC 80/24 devices has a private memory pool in addition to the pool

These private pools are used by the MMX 80 Partitioned
Memory Managers to allocate local memory to tasks.

FFFF

E000

4FFF

4000

DEVICE 0
iSBC™ 80/24

RAM
(PRIVATE)

DEVICE 0 POOL 0

Y

~

7

DEVICE 0 POOL 1

FFFF:F

F0000:0

FFFF

4FFF |

DEVICE 1
ISBC™ 86/12A

ROM

B

88

1/0 SYSTEM
RAM

00

70

DEVICE 2
iSBC™ 80/24

PFFF

RAM
(PRIVATE)

DEVICE 2 POOL 0

E000

%

\

_

4FFF

i

00

A

DEVICE 2 POOL 1

DEVICE 1 POOL 0

0000

-
-

po

REQUEST QUEUES

Y

w,

REQUEST QUEUES

REQUEST QUEUES

e

ROM

-

>

4000

-——\/
"—\/

LOCAL RAM

INTERRUPT VECTORS

4000

—

ROM

} IDSO

} IDS1

x-131

Figure 7

6.

Memory Map for the Example

7-19

CONFIGURING YOUR APPLICATION SYSTEM

Notice that Figure 7-6 shows two interdevice segments and that their ID's
are defined, as well. One IDS contains the two shared pools that are
managed by the 1SBC 80/24 devices, and the other contains the shared pool
managed by the iSBC 86/12A device. Because the two IDS's are adjacent,
they could be one IDS; we chose to use two IDS's for purposes of
illustration.

Each request queue has an eight-byte descriptor followed by eight 16~byte
slots for request queue entries, making 136 bytes in all. Rounding this
up to 144 bytes so that each queue can start on a paragraph boundary, the
addresses of the request queues are 4000H, 4090H, 4120H, and 41BOH. This
leaves addresses 4240H through 4FFFH, a total of 3520 bytes, for the

three shared pools. These three pools can then be 1168 bytes long, with
16 bytes being unused. Consequently, the pools begin at address 4240H,
46DOH, and 4B60H, and the IDS's begin at addresses 4240H and 46DOH.

The local pools on the 1SBC 80/24 devices are each 1K bytes in length.

Filling the Structures

Having gotten this far, we have only minor decisions to make, so we can
begin to fill in the data structures and provide declarations for the
areas of RAM needed by the iMMX 800 software.

Before actually filling in the configuration structures, however it is to
our advantage to prepare a list of literal declarations containing all
the data that is to go into those structures. The benefit of this
approach is that, if any of the data change in the future, only the
literal statements need to be changed.

/* DEVICE DESCRIPTION */

/* Three devices are present in the system. */

DECLARE MMX$DEVICES LITERALLY '3';

/* Each of the three devices requires an ID. */

DECLARE MMXS$DEVICE$O LITERALLY '0';
DECLARE MMXS$DEVICE$1 LITERALLY 'l';
DECLARE MMX$DEVICE$2 LITERALLY '2';

/* CHANNEL DESCRIPTION */

/* The DCM$ROM table for each device's configuration has an
entry for each device in the system. Each entry contains
the addresses of the inbound and outbound queues, the size
of each queue, and the size of the entry slots in each

queue. We define four request queues with a single entry
size for all queues. */

7-20

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE REQUEST$QUEUESENTRY$SIZE LITERALLY 'O4H';
DECLARE RQS$SADDRSDEVICES$OSTOSDEVICES$1 LITERALLY '4000H';
DECLARE RQ$SIZESDEVICE$OSTOSDEVICES1 LITERALLY 'O8H';

DECLARE RQ$ADDR$DEVICE1TOSDEVICESO LITERALLY '4090H;
DECLARE RQ$SIZE$DEVICE1TOSDEVICE$O LITERALLY 'O8H';

DECLARE RQ$ADDRSDEVICE$1$TOSDEVICE$2 LITERALLY '4120H';
DECLARE RQ$SIZES$DEVICE1TO$DEVICE$2 LITERALLY 'O8H';

DECLARE RQ$ADDR$DEVICE2TO$DEVICES$] LITERALLY '41BOH';
DECLARE RQ$SIZES$DEVICES2TOSDEVICES] LITERALLY 'O8H';

/* PORT DESCRIPTION */

/* Each device has one local port and therefore one entry in each
LPT$ROM table. */

DECLARE PORT0DEVICES$O LITERALLY 'OOH';
DECLARE PORT$0S$DEVICES$1 LITERALLY 'OOH';
DECLARE PORT0DEVICES$2 LITERALLY 'OOH';

/* The following specify that there is one port on each device. */

DECLARE SOURCE$PORTS$DEVICES$O LITERALLY 'l°';
DECLARE SOURCESPORTSSDEVICE$1 LITERALLY 'l';
DECLARE SOURCE$PORTS$DEVICE$2 LITERALLY 'l';

/* There is one system port on each device and each needs a
unique name. */

DECLARE SYSTEM$PORTSNAMESDEVICES$O LITERALLY '5030H'; /* PO */
DECLARE SYSTEM$PORT$NAMESDEVICE$1 LITERALLY '5031H'; /* PlL */
DECLARE SYSTEM$PORT$NAMESDEVICE$2 LITERALLY '5032H'; /* P2 */

/* ADDRESS DESCRIPTION */

/* Devices 0 and 2 each communicate with a single system port
(the one on device 1), while device 1 communicates with two
ports. */

DECLARE DESTINATION$PORTS$DEVICE$O LITERALLY 'l';
DECLARE DESTINATION$PORTSDEVICE$1 LITERALLY '2';
DECLARE DESTINATION$PORTSDEVICE$2 LITERALLY 'l';

/* No literals are shown here for the DSDT entries, because all

of the information for them either has already been declared
(system port names, device and port ID's) or will be declared
later (pool and interdevice segment ID's). */

7-21

CONFIGURING YOUR APPLICATION SYSTEM

/* ATTRIBUTE DESCRIPTIONS #*/

/* Each entry in an MMX 86 SFT table requires ten values to
describe the interrupt characteristics of a device. The
following declare these values for each of the iSBC 80/24
devices. Because the iSBC 86/12A device does not interrupt
itself, we don't need to define values for its entry. */

DECLARE OP$MODESDEVICE$O LITERALLY 'PEERSDEVICE';

DECLARE INTR$TYPESDEVICES$O0 LITERALLY '00000001B';

DECLARE INTRSLOCATION$DEVICE$O LITERALLY 'OOCEH';

DECLARE INTR$VALUE$DEVICE$O LITERALLY 'OOO05H';

DECLARE CLR$OUTS$TYPESDEVICE$O LITERALLY 'OOH';

DECLARE CLROUTINTR$LOCATIONS$DEVICE$O LITERALLY 'OOOOH';
DECLARE CLROUTINTRS$VALUESDEVICE$O LITERALLY 'O00OH';
DECLARE CLR$INSTYPESDEVICES$O LITERALLY 'OOH';

DECLARE CLR$INSINTRSLOCATION$DEVICE$0 LITERALLY 'OOOOH';
DECLARE CLR$INSINTR$VALUE$DEVICE$O LITERALLY 'O0000H;

DECLARE OP$MODESDEVICE$2 LITERALLY 'PEERSDEVICE';

DECLARE INTR$TYPESDEVICE$2 LITERALLY '00000001B';

DECLARE INTRS$LOCATIONSDEVICE$2 LITERALLY 'OOCEH';

DECLARE INTR$VALUES$DEVICE$2 LITERALLY 'OOO5H';

DECLARE CLR$OUTS$TYPESDEVICE$2 LITERALLY 'OOH';

DECLARE CLROUTINTRSLOCATIONSDEVICE$2 LITERALLY 'OOOOH';
DECLARE CLR$OUTSINTRSVALUESDEVICES$2 LITERALLY 'OOOOH';
DECLARE CLRSINSTYPESDEVICE$2 LITERALLY 'OOH';

DECLARE CLR$INSINTRS$LOCATIONSDEVICES$2 LITERALLY 'OOOOH';
DECLARE CLR$INSINTRSVALUESDEVICES2 LITERALLY 'OOOOH;

/* Each entry in an MMX 80 SFT table requires only one value.
The following define that value for the devices. */

DECLARE MM$INTERRUPT$ADDRESSSDEVICE$O LITERALLY 'OFFFFH';
DECLARE MM$INTERRUPTSADDRESS$DEVICES$1 LITERALLY 'OFFFFH';
DECLARE MM$INTERRUPT$ADDRESS$DEVICE$2 LITERALLY 'OFFFFH';

/* CQITWT defines the initial time period a device waits
before beginning interdevice communications. The following
specify 2.56 seconds for each device, assuming that the
system time unit is 10 milliseconds. */

DECLARE INITIAL$DELAY$DEVICE$O LITERALLY '0100H';
DECLARE INITIALS$DELAY$DEVICE$1 LITERALLY 'O100H';
DECLARE INITIALSDELAY$DEVICE$2 LITERALLY '0100H';

/* CQMDLY defines the amount of time a device waits for a
response from another device before timing out and
declaring the other device dead. This value must be larger
than the initial delay value for CQITWI. The following
specify a 40.96-second time period for the devices. */

7-22

/* MEMORY

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE DEAD$DELAY$PERIOD$DEVICE$O LITERALLY '1000H';
DECLARE DEADS$DELAY$PERIOD$DEVICE$1 LITERALLY 'l1000H';
DECLARE DEAD$DELAYSPERIODSDEVICE$2 LITERALLY '1000H';

/* On interruptible devices CQIDPD is an interrupt timeout
period. On polling devices it is a polling period. The
following specify .16 seconds for each device. */

DECLARE POLLING$PERIONSDEVICE$O LITERALLY 'OOlOH';
DECLARE POLLINRSPERIONSDEVICE$1 LITERALLY 'OOlOH';
DECLARE POLLING$PERIODSDEVICE$2 LITERALLY 'OO10H';

/* CQSGLV defines the interrupt level that the iMMX 800
software uses to interrupt each device. The following
define interrupt level 4 for each device. */

DECLARE INTERRUPTS$LEVELSDEVICES$O LITERALLY '4H';
DECLARE INTERRUPT$LEVEL$DEVICE$1 LITERALLY '48H';
DECLARE INTERRUPT$LEVEL$DEVICE$2 LITERALLY '4H';

/* CQLMEX, which does not apply to MMX 86, contains the
address of the interrupt exchange for the device for which
it is defined. The following establish the level 4
interrupt exchange addresses for the iSBC 80/24 devices. */

DECLARE RQL4EX ADDRESS EXTERNAL:

DECLARE EXCHANGE$ADDRESS$DEVICE$O LITERALLY '.RQL4EX';
DECLARE EXCHANGESADDRESSS$DEVICE$2 LITERALLY '.RQL4EX';

DESCRIPTION */

/* The number of interdevice segments is a global value in any
iMMX 800-based system. There are two in the example. */

DECLARE MMX$INTERDEVICE$SEGMENTS LITERALLY '2';

/* There are two IDS's in the example and no alias
addressing. For each device the IDST is the same. */

DECLARE IDS0ID LITERALLY '0';

DECLARE IDS$0S$OFFSET LITERALLY '46DOH';
DECLARE IDSOPAGE LITERALLY 'O00OH';
DECLARE IDS1ID LITERALLY 'l';
DECLARE IDS$1$0FFSET LITERALLY '4240H';
DECLARE IDS1PAGE LITERALLY 'OOO0OH';

7-23

CONFIGURING YOUR APPLICATION

/* MEMORY ASSIGNMENT */

That completes the declarations of the literals.

SYSTEM

/* There are five pools in the example. One is for MMX 86 to
manage and there are two for each copy of MMX 80. Of the
two pools that each MMX 80 manages, one is for private use
on the iSBC 80/24 device and is managed by the PMM, while
the other is for shared use on the iSBC 86/12A device. The
following values are used in CQPLHS */

DECLARE POOLS$DEVICES$O LITERALLY '2';
DECLARE POOLS$DEVICE$1 LITERALLY 'l';
DECLARE POOLS$DEVICE$2 LITERALLY '2';

/* There is one block of memory for
values are used in CQBLKS. */

DECLARE BLOCKS$DEVICE$O LITERALLY '2°';
DECLARE BLOCKSS$DEVICE$1 LITERALLY 'l';
DECLARE BLOCKS$DEVICE$2 LITERALLY '2';

each pool. The following

/* The BLKTBL table for each copy of MMX 80 has two entries,
"~ while for MMX 86 there is one entry. The values for those

entries are defined as follows. */

DECLARE
DECLARE
DECLARE

DECLARE
DECLARE
DECLARE

DECLARE
DECLARE
DECLARE

DECLARE

DECLARE
DECLARE

DECLARE
DECLARE
DECLARE

POOL0IDSDEVICESO LITERALLY '0';
ADDRBLKOSDEVICESO LITERALLY 'EOOOH';
LNGTHBLKO$DEVICES$O LITERALLY '0400H';

POOL1IDS$DEVICESO LITERALLY '1';
ADDRBLK1$DEVICE$O LITERALLY '4B60H';
LNGTHBLK1$DEVICESO LITERALLY '0490H';

POOL$OSIDSDEVICES1 LITERALLY '0';
ADDRSBLKSOSDEVICES1 LITERALLY '424H';
LNGTHBLKOSDEVICES1 LITERALLY 'O49H';

POOLOIDSDEVICES2 LITERALLY '0';

ADDRBLKOS$DEVICE$2 LITERALLY 'EOOOH';
LNGTHBLKO$DEVICES2 LITERALLY '0400H';

POOL1IDSDEVICES2 LITERALLY '1';
ADDRBLK1$DEVICES2 LITERALLY '46DOH';
LNGTHSBLK1$DEVICES2 LITERALLY '0490H';

Now we can begin the

actual process of configuring each of the three portions of the overall

system.

7-24

CONFIGURING YOUR APPLICATION SYSTEM

/* DEVICE O CONFIGURATION DECLARATIONS —- MMX 80 DEVICE */
DECLARE CQDVCS BYTE PUBLIC DATA (MMXSDEVICES);

DECLARE DM$ROMSENTRYS$TYPE LITERALLY 'STRUCTURE(

RQDSOUT ADDRESS,

RQSOUTSSIZE BYTE,

RQESOUTSSIZE BYTE,

RQDSIN ADDRESS,

RQSINSSIZE BYTE,

RQESINSSIZE BYTE)';
DECLARE NOS$SYSTEM$CHANNEL LITERALLY '

OFFFFH,

00H,

00H,

OFFFFH,

00H,

00H';

DECLARE DCM$ROM (MMX$DEVICES) DM$ROMSENTRYSTYPE PUBLIC DATA (
NOSSYSTEMSCHANNEL, /* No path between dev O and dev 0 */
RQ$ADDR$DEVICEOTOSDEVICES1,
RQ$SIZESDEVICES$OSTOSDEVICESL,
REQUESTSQUEUESENTRYSSIZE,
RQSADDRSDEVICES1TOSDEVICESO,
RQ$SIZESDEVICE$1$TOSDEVICESO,
REQUEST$QUEUE$ENTRYSSIZE,

NO$SYSTEMSCHANNEL); /* No path between dev O and dev 2 */

DECLARE DM$RAMSENTRYSTYPE LITERALLY 'STRUCTURE(
ENTRY(20) BYTE)';
DECLARE DCM$RAM(MMXS$DEVICES) DM$RAMSENTRYSTYPE PUBLIC;
DECLARE CQPRTS BYTE PUBLIC DATA (SOURCE$PORTSDEVICESO);
DECLARE LPT$ROMSENTRYSTYPE LITERALLY 'STRUCTURE(
SYSTEM$ PORT$NAME ADDRESS,
POOLSID BYTE)';

DECLARE LPT$ROM(SOURCE$PORTS$DEVICES$0) LPT$ROMSENTRYSTYPE PUBLIC
DATA (
SYSTEM$PORT$NAMESDEVICESO,
POOL1IDSDEVICESO);

DECLARE LPT$RAMSENTRY$TYPE LITERALLY 'STRUCTURE (
ENTRY(11) BYTE)';

DECLARE LPT$RAM(SOURCES$PORTSDEVICESO) LPT$RAMSENTRYSTYPE PUBLIC;

DECLARE CQSKTS BYTE PUBLIC DATA (DESTINATIONSPORTS$DEVICES$O);

7-25

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE DSDS$ENTRYSTYPE LITERALLY 'STRUCTURE(

SYSTEM$PORTS$NAME ADDRESS,
DEST$DEVSID BYTE,
DEST$PORTSID BYTE,
SRCS$DEVSID BYTE,
RESERVED BYTE,
POOL$ID BYTE,
IDS$ID BYTE)';
DECLARE DSDT(DESTINATION$PORT$DEVICE$O) DSDSENTRYS$TYPE PUBLIC
DATA(
SYSTEMS$PORT$NAMESDEVICESL,
MMX$DEVICES1,
PORT$0SDEVICES1,
MMX$DEVICESO,
0,
POOL1IDSDEVICESO,
IDS$0SID);

DECLARE CQITWT WORD PUBLIC DATA (INITIAL$DELAY$SDEVICESO);

DECLARE CQMDLY WORD PUBLIC DATA (
DEAD$DELAY$PERIOD$DEVICESO);

DECLARE MCBIS$ENTRYS$TYPE LITERALLY 'STRUCTURE(
ENTRY(23) BYTE)';

DECLARE MCBIT(MMX$DEVICES) MCBISENTRYS$TYPE PUBLIC;

DECLARE SFT$ENTRY$TYPE LITERALLY 'ADDRESS';

DECLARE SFT(MMX$DEVICES) SFT$ENTRYS$TYPE PUBLIC DATA (
MM$INTERRUPTSADDRESS$DEVICESO,
MM$INTERRUPT$ADDRESS$DEVICESL,
MM$INTERRUPT$ADDRESSS$DEVICES2) ;

DECLARE CQIDPD WORD PUBLIC DATA (POLLING$PERIOD$DEVICESO);

DECLARE CQSGLV BYTE PUBLIC DATA (INTERRUPTSLEVELS$DEVICESO);

DECLARE CQLMEX ADDRESS PUBLIC DATA (EXCHANGESADDRESSS$DEVICES$O);

DECLARE CQIDSS BYTE PUBLIC DATA (MMX$INTERDEVICE$SEGMENTS);

DECLARE IDS$ENTRYSTYPE LITERALLY 'STRUCTURE(

OFFSET ADDRESS,
PAGE ADDRESS) ';
DECLARE IDST(MMX$INTERDEVICE$SEGMENTS) IDSTS$ENTRYS$TYPE PUBLIC
DATA(
IDS$0S$OFFSET,
IDS0PAGE,
IDS$1$0FFSET,
IDSS1PAGE),

DECLARE CQPLHS BYTE PUBLIC DATA (POOLS$DEVICESO);

7-26

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE PLHTBL$ENTRY$TYPE LITERALLY 'BYTE';
DECLARE PLHTBL(POOLS$DEVICE$0) PLHTBLSENTRYSTYPE PUBLIC;
DECLARE CQBLKS BYTE PUBLIC DATA (BLOCKS$DEVICE$O);

DECLARE BLKTBLS$ENTRYS$TYPE LITERALLY 'STRUCTURE(
POOLSID BYTE,
START$ADDRESS ADDRESS,
LENGTH . ADDRESS)';

DECLARE BLKTBL(BLOCKS$DEVICE$O) BLKTBLSENTRYSTYPE PUBLIC DATA (
POOLS$0SIDSDEVICESO,
ADDRBLKOSDEVICESO,
LNGTHBLKO$DEVICESO,
POOL1IDSDEVICESO,
ADDRBLK1$DEVICESO,
LNGTH$BLKS$1$DEVICESO);

/* DEVICE 1 CONFIGURATION DECLARATIONS —-- MMX 86 DEVICE */
DECLARE CQDVCS BYTE PUBLIC DATA (MMXSDEVICES);

DECLARE DM$ROMSENTRYSTYPE LITERALLY 'STRUCTURE(

RQD$OUT POINTER,

RQ$OUTSSIZE BYTE,

RQESOUTSSIZE BYTE,

RQDSIN POINTER,

RQSINSSIZE BYTE,

RQESINSSIZE BYTE)';
DECLARE NO$SYSTEM$CHANNEL LITERALLY '

OFFFFH,

0OH,

OOH,

OFFFFH,

OOH,

00H';

DECLARE DCM$ROM (MMX$DEVICES) DMSROMSENTRYS$TYPE PUBLIC DATA (

RQ$SADDRSDEVICES1 $TOSDEVICESO,
RQ$SIZESDEVICES$1$TOSDEVICESO,
REQUEST$QUEUESENTRYSSIZE
RQ$ADDRSDEVICE$OSTOSDEVICES],
RQ$SIZESDEVICESOSTOSDEVICES],
REQUESTS$QUEUESENTRYSSIZE,

NO$SYSTEMS$CHANNEL,

RQ$ADDR$DEVICES1TOSDEVICES2,
RQ$SIZESDEVICES$1$TOSDEVICES2,
REQUEST$QUEUESENTRYS$SIZE,
RQ$ADDRSDEVICES$2$TOSDEVICES1,
RQ$SIZESDEVICES$2$TOSDEVICESL,
REQUEST$QUEUES$ENTRYS$SIZE);

DECLARE DMS$RAMSENTRYSTYPE LITERALLY 'STRUCTURE(
ENTRY(20) BYTE)';

7-27

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE DCM$RAM(MMX$DEVICES) DMSRAMSENTRYSTYPE PUBLIC;
DECLARE CQPRTS BYTE PUBLIC DATA (SOURCE$PORTS$DEVICESO);

DECLARE LPT$ROMSENTRYSTYPE LITERALLY 'STRUCTURE (
SYSTEMS$PORTS$NAME WORD) ';

DECLARE LPT$ROM(SOURCE$PORTS$DEVICE$1) LPT$ROMSENTRYSTYPE PUBLIC DATA (
SYSTEM$PORT$NAME$DEVICES1);

DECLARE LPT$RAMSENTRYS$TYPE LITERALLY 'STRUCTURE(
ENTRY(3) BYTE) ';

DECLARE LPT$RAM(SOURCES$SPORTS$DEVICES$1) LPT$RAMSENTRYSTYPE PUBLIC;
DECLARE CQSKTS BYTE PUBLIC DATA (DESTINATION$PORTS$DEVICESL);

DECLARE DSD$ENTRY$TYPE LITERALLY 'STRUCTURE(
SYSTEM$PORTS$NAME WORD,
DEST$DEVS$ID BYTE,
DEST$PORT$ID BYTE,
SRC$DEVSID BYTE,
RESERVED BYTE,
POOLSID BYTE,
IDS$ID BYTE)';

DECLARE DSDT(DESTINATION$PORT$DEVICE$1) DSDS$ENTRYSTYPE PUBLIC
DATA(
SYSTEM$PORTS$NAME$DEVICESO,
MMX$DEVICESO,
PORT0DEVICESO,
MMX$DEVICESL,
0,
POOLOIDSDEVICES],
IDS1ID,
SYSTEM$PORT$NAME$DEVICES2,
MMX$DEVICES$2,
PORT0DEVICES2,
MMX$DEVICES1,
0,
POOLOIDSDEVICES1,
IDS1ID);

DECLARE CQITWT WORD PUBLIC DATA (INITIALS$DELAY$DEVICES$1);

DECLARE CQMDLY WORD PUBLIC DATA (
DEAD$DELAY$PERIOD$DEVICES1);

7-28

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE SFT$ENTRYSTYPE LITERALLY 'STRUCTURE(

OP$MODE BYTE,
INTR$TYPE BYTE,
INTR$LOCATION WORD,
INTR$ VALUE WORD,
CLR$OUTSTYPE BYTE,
CLROUTINTRSLOCATION WORD,
CLR$OUTS$INTR$VALUE WORD,
CLR$INSTYPE BYTE,
CLR$SINSINTRSLOCATION WORD,
CLR$INSINTR$VALUE WORD)';
DECLARE NOT$INTERRUPTED LITERALLY '
00H,
OOH,
0000H,
0000H,,
00H,
0000H,
0000H .
OOH,
0000H,
0000H"' ;
DECLARE SFT(MMX$DEVICES) SFT$ENTRYSTYPE PUBLIC DATA (
OP$MODESDEVICESO,
INTR$TYPESDEVICESO,
INTR$LOCATIONSDEVICESO,
INTR$VALUE$DEVICESO,

CLRSOUTSTYPESDEVICESO,
CLRSOUTSINTRSLOCATIONSDEVICESO,
CLROUTINTR$VALUESDEVICESO,
CLRSINSTYPESDEVICESO,
CLR$INSINTRSLOCATIONSDEVICESO,
CLR$INSINTR$VALUESDEVICESO,
NOT$INTERRUPTED, /* Device 1 doesn't interrupt itself */
OP$MODE$DEVICES2,
INTRS$TYPESDEVICES2,
INTRSLOCATIONSDEVICES2,
INTRSVALUESDEVICES$2,
CLRSOUTSTYPESDEVICES2,
CLRSOUTSINTRSLOCATIONSDEVICES2,
CLRSOUTSINTRSVALUESDEVICES2,
CLR$INSTYPESDEVICES2,
CLR$INSINTRSLOCATIONSDEVICES2,
CLRSINSINTRSVALUESDEVICES2);

DECLARE CQIDPD WORD PUBLIC DATA (POLLING$PERIOD$DEVICES$1);
DECLARE CQSGLV WORD PUBLIC DATA (INTERRUPT$LEVELSDEVICES1);
DECLARE CQIDSS BYTE PUBLIC DATA (MMX$INTERDEVICE$SEGMENTS);
DECLARE IDSS$ENTRYSTYPE LITERALLY 'STRUCTURE(

OFFSET WORD,

PAGE WORD) ';

7-29

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE IDST(MMX$INTERDEVICES$SEGMENTS) IDST$ENTRYSTYPE PUBLIC
DATA(
IDS$0SOFFSET,
IDS$0S$PAGE,
IDS$130FFSET,
IDS1PAGE);

DECLARE CQPLHS BYTE PUBLIC DATA (POOLSDEVICE$1);

DECLARE PLHTBLSENTRYS$TYPE LITERALLY 'STRUCTURE(
ENTRY(2) BYTE) ';

DECLARE PLHTBL(POOLSDEVICE$1l) PHLTBLSENTRYSTYPE PUBLIC;
DECLARE CQBLKS BYTE PUBLIC DATA (BLOCKS$DEVICE$1);

DECLARE BLKTBLSENTRY$TYPE LITERALLY 'STRUCTURE(

POOL$ID - BYTE,
START$ADDRESS WORD,
LENGTH WORD) ';
DECLARE BLKTBL(BLOCKS$DEVICE$1) BLKTBLSENTRYSTYPE PUBLIC DATA(
POOL$0S$IDSDEVICES],
ADDR$BLKS$OSDEVICES1,

LNGTHBLKOSDEVICESL);

/* DEVICE 2 CONFIGURATION DECLARATIONS -- MMX 80 DEVICE */
DECLARE CQDVCS BYTE PUBLIC DATA (MMX$DEVICES);

DECLARE DMROMENTRYSTYPE LITERALLY 'STRUCTURE(

RQDS$SOUT ADDRESS

RQ$OUTSSIZE BYTE,

RQESOUTSSIZE BYTE,

RQDSIN ADDRESS,

RQSINSSIZE BYTE,

RQESINSSIZE BYTE)';
DECLARE NOSSYSTEMSCHANNEL LITERALLY '

OFFFFH,

00H,

00H,

OFFFFH,

O0H,

00H';

7-30

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE DCM$SROM (MMXS$DEVICES) DMSROMSENTRYSTYPE PUBLIC DATA (
NOSSYSTEMSCHANNEL, /* No path between dev O and dev 2 */
RQ$ADDR$DEVICE2TOSDEVICES],
RQ$SIZESDEVICES2S$TOSDEVICES],
REQUEST$QUEUESENTRY$SIZE,
RQSADDRSDEVICES1TOSDEVICES2,
RQ$SIZESDEVICES1$TOSDEVICES2,
REQUESTSQUEUESENTRYSSIZE,

NO$SYSTEMSCHANNEL); /* No path between dev 2 and dev 2 */

DECLARE DMS$RAMSENTRYSTYPE LITERALLY 'STRUCTURE(
ENTRY(20) : BYTE)';

DECLARE DCM$RAM(MMX$DEVICES) DMS$RAMSENTRYSTYPE PUBLIC;
DECLARE CQPRTS BYTE PUBLIC DATA (SOURCE$PORT$DEVICES2);
DECLARE LPT$ROMSENTRYSTYPE LITERALLY 'STRUCTURE(
SYSTEMS$PORTS$NAME ADDRESS,
POOLS$ID BYTE)';
DECLARE LPT$ROM(SOURCE$PORT$DEVICE$2) LPT$ROMSENTRYS$TYPE PUBLIC
DATA (
SYSTEM$PORT$NAMESDEVICES2,
POOL1ID$DEVICES2);

DECLARE LPT$RAMSENTRYSTYPE LITERALLY 'STRUCTURE(
ENTRY(11) BYTE)';

DECLARE LPT$RAM(SOURCE$PORTSDEVICES2) LPT$RAMSENTRYSTYPE PUBLIC;
DECLARE CQSKTS BYTE PUBLIC DATA (DESTINATION$PORT$DEVICES2);

DECLARE DSDSENTRYSTYPE LITERALLY 'STRUCTURE(

SYSTEM$PORT$NAME ADDRESS,
DEST$DEVICESID BYTE,
DEST$PORTSID BYTE,
SRC$DEVSID : BYTE,
RESERVED BYTE,
POOLS$ID BYTE,
IDSSID BYTE)';
DECLARE DSDT(DESTINATIONS$PORTSDEVICESO) DSDSENTRYSTYPE PUBLIC
DATA(
SYSTEMS$PORT $NAMEDEVICES1,
MMX$DEVICES1,
PORT1DEVICES1,
MMX$DEVICES2,
0,
POOL1ID$DEVICES2,
IDS0ID);

DECLARE CQITWT WORD PUBLIC DATA (INITIAL$DELAY$DEVICES2);

DECLARE CQMDLY WORD PUBLIC DATA (
DEADSDELAYSPERIODSDEVICES2);

7-31

CONFIGURING YOUR APPLICATION SYSTEM

DECLARE MCBI$ENTRYS$TYPE LITERALLY 'STRUCTURE(
ENTRY(23) BYTE) ';

DECLARE MCBIT(MMX$DEVICES) MCBISENTRY$TYPE;

DECLARE SFT$ENTRYS$TYPE LITERALLY 'ADDRESS';

DECLARE SFT(MMX$DEVICES) SFTSENTRYS$TYPE PUBLIC DATA (
MM$INTERRUPT $ADDRESS$DEVICESO,
MM$INTERRUPT$ADDRESSSDEVICES1,
MM$INTERRUPTS$ADDRESSS$DEVICES2);

DECLARE CQIDPD WORD PUBLIC DATA (POLLING$PERIODS$DEVICES$2);

DECLARE CQSGLV BYTE PUBLIC DATA (INTERRUPT$LEVELSDEVICES$2);

DECLARE CQLMEX ADDRESS PUBLIC DATA (EXCHANGES$ADDRESS$DEVICES$2);

DECLARE CQIDSS BYTE PUBLIC DATA (MMX$INTERDEVICES$SEGMENTS);

DECLARE IDSS$ENTRY$TYPE LITERALLY 'STRUCTURE(

OFFSET ADDRESS,
PAGE ADDRESS) ';
DECLARE IDST(MMX$INTERDEVICE$SEGMENTS) IDST$ENTRYSTYPE PUBLIC
DATA(
IDS0OFFSET,
IDS0PAGE,
IDS$130FFSET,
IDS1PAGE),

DECLARE CQPLHS BYTE PUBLIC DATA (POOLS$DEVICES$2);
DECLARE PLHTBLSENTRYSTYPE LITERALLY 'BYTE';

DECLARE PLHTBL(POOLS$DEVICE$2) PLHTBLSENTRYSTYPE PUBLIC;
DECLARE CQBLKS BYTE PUBLIC DATA (BLOCKSS$DEVICES2);

DECLARE BLKTBL$ENTRY$TYPE LITERALLY 'STRUCTURE(
POOL$ID BYTE,
START$ADDRESS ADDRESS,
LENGTH ADDRESS) ';

DECLARE BLKTBL(BLOCKS$DEVICE$2) BLKTBL$SENTRYSTYPE PUBLIC DATA (
POOL0IDSDEVICES2,
ADDR$BLKSOSDEVICES2,
LNGTH$BLKS$OSDEVICES 2,
POOL1IDSDEVICES2,
ADDRBLK1$DEVICES2,
LNGTHBLK1$DEVICES2) ;

7-32

CONFIGURING YOUR APPLICATION SYSTEM

This completes the example of how to create a configuration file. Note
that the literal file RICNFG.LIT could have been INCLUDEd at the beginning
of the MMX 80 files. This would have eliminated the need to write out
each literal declaration explicitly. Similarly, R4CNFG.LIT could have
been INCLUDEd at the beginning of the MMX 86 files. If there had been
MMX 88 files, R2CNFG.LIT (for non—-megabyte), R3CNFG.LIT (for megabyte,
COMPACT size control), or RS5CNFG.LIT (for megabyte, LARGE size control)
could have been INCLUDEd at the beginning of them.

Another aid that we could have used (but didn't, for purposes of
illustration) is files of non-literal declarations with the data missing.
These files are RICNFG.P80 (for MMX 80), R2CNFG.P86 (for MMX 88

non-megabyte), R3CNFG.P86 (for MMX 88 megabyte, COMPACT size control),
R4CNFG.P86 (for MMX 86), and R5CNFG.P86 (for MMX 88 megabyte, LARGE size

control), and they contain such things as
DECLARE BLKTBL() BLKTBLSENTRYSTYPE PUBLIC DATA(
Typical usage of these files is as follows:

l. Place the instruction $INCLUDE (RnCNFG.LIT) at the beginning of
the RnCNFG.P8x file (where n =1, 2, 3, 4, or 5, and x = 0 or 6.)

2. Fill in the data that is missing from the RnCNFG.P8x file.
3. Compile the file by entering either

PLM80 R1CNFG.P80 (cr) (for MMX 80)
or

PLM86 RnCNFG.P86 COMPACT ROM (cr) (for MMX 86 or MMX 88)
or

PLM86 RnCNFG.P86 LARGE ROM (cr) (for MMX 86 or MMX 88)

The result is the file RnCNFG.0BJ. We will say more about this file later.

LINKING AND LOCATING iMMX 800 APPLICATION SYSTEMS

This section assumes that you have compiled or assembled those tasks (or
jobs) that will run on the device for which this configuration is being
performed. In addition, it is assumed that you have compiled your
configuration module. If you have not yet done these things, the
following INCLUDE files can help you to save time and code space:

R1XMGR.LIT INCLUDE files containing declaratioms of

R2XMGR.LIT constants that pertain to MMX 80, non-megabyte
R3XMGR.LIT MMX 88, megabyte MMX 88 with the COMPACT size

R4COM.LIT control, MMX 86, and megabyte MMX 88 with the LARGE size
R5XMGR.LIT control, respectively.

RIXMGR.EXT INCLUDE files containing external declarations
R2XMGR.EXT of the procedures in MMX 80, non-megabyte MMX 88,
R3XMGR.EXT megabyte MMX 88 with the COMPACT size control,
R4XINF.EXT MMX 86, and megabyte MMX 88 with the LARGE size
RS5XMGR.EXT control, respectively.

7-33

CONFIGURING YOUR APPLICATION SYSTEM

R1PMM.EXT INCLUDE files containing external declarations of the
R2PMM.EXT PMM exchanges for MMX 80, non—megabyte MMX 88, megabyte
R3PMM.EXT MMX 88 with the COMPACT size control, and megabyte
R5PMM.EXT MMX 88 with the LARGE size control, respectively.

R1PMM.LIT PMM INCLUDE files containing message structure

R2PMM.LIT literals for MMX 80, non—megabyte MMX 88,

R3PMM.LIT megabyte MMX 88 with the COMPACT size control,

R5PMM.LIT and megabyte MMX 88 with the LARGE size control,
respectively.

If you INCLUDE any of these files and your version of the PL/M-86

compiler does not recognize the SELECTOR data type, you should INCLUDE
the file R4SELC.LIT (from the iMMX 800 diskette) ahead of the other

INCLUDEs in every module in which the other INCLUDEs appear.

Linking and Locating for MMX 80

The 1inking and locating operations that relate to MMX 80 usage involve
using the Interactive Configuration Utility (ICU80) for the iRMX 80
Executive. You respond to ICU80 prompts by entering descriptive
information about your hardware and software. The result of doing this
is a submit file that you SUBMIT to produce a linked and located system.

When you use ICU80 to accomplish linking and locating for an MMX 80-based
device, you must respond to certain prompts in certain ways. This
section explains the special actions that you must perform. One of these
is that, when you are prompted for the data concerning your tasks, you
must enter certain tasks In a particular order. The following excerpts
from an ICU80 dialogue illustrate this and the other requirements:

FSM: NO
[other prompts and responses here]

TASK NAME: CQDRVR
ENTRY POINT: CQDRVR
STK LENGTH: 150
PRIORITY: 129
DFLT EXCHG:
TASK DESCRIPTOR: [your choice]
EXTRA: o

TASK NAME: CQINTM
ENTRY POINT: CQINTM
STK LENGTH: 75

PRIORITY: [determined by interrupt level used by MMX 80]
DFLT EXCHG:

TASK DESCRIPTOR: [your choice]
EXTRA: 0

7-34

CONFIGURING YOUR APPLICATION SYSTEM

TASK NAME: RQPMT
ENTRY POINT: RQPMT
STK LENGTH: 40
PRIORITY: 131 [or whatever; must be same as priority
DFLT EXCHG: RQPMX of RQFLMT]
TASK DESCRIPTOR: [your choice]
EXTRA: 0

TASK NAME: RQFLMT

ENTRY POINT: RQFLMT
STK LENGTH: 40

PRIORITY: 131 [or whatever; must be same as priority
DFLT EXCHG: RQFLMX of RQPMT]
TASK DESCRIPTOR: [your choice]

EXTRA: 0

[user tasks here]

EXCHANGE : RQFSAX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE: RQFSRX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE : RQPMX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE : RQFLMX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE : CQMXIX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE : CQMXRX
SCOPE: EXTERNAL
INTERRUPT: NO

EXCHANGE: RQLnEX [n = 0-7, 9, OAH, OBH, depending on interrupt
SCOPE: PUBLIC level]
INTERRUPT: YES

[user exchanges here or mixed with the other exchanges]

[other prompts and responses here]

LINK: [user modules]
LINK: [compiled configuration module —- probably RICNFG.OBJ]
LINK: :Fn:R1XMGR.LIB
LINK: ¢tFn:R1DRVR.LIB
LINK: :Fn:R1PMM.LIB
LINK: ¢tFn:R17???7.LIB

7-35

CONFIGURING YOUR APPLICATION SYSTEM

where ??77?? is 8024 (for an iSBC 80/24 board), 8030 (for an iSBC 80/30
board), 544 (for an iSBC 544 board), or 569 (for an iSBC 569 board),
depending upon the type of device on which the located code will run.

Note that the Partitioned Memory Manager can be configured into an
application independently of the rest of MMX 80. To accomplish this,
follow the procedure just described, except omit the definitions of the
CQDRVR and CQINTM tasks, the CQMXIX, CQMXRX, and RQLnEX exchanges, and the
R1XMGR, RI1DRVR, and R1???? links.

Linking and Locating for MMX 88

The linking and locating operations that relate to MMX 88 usage involve
using the Interactive Configuration Utility (ICU88) for the iRMX 88
Executive. You respond to ICU88 prompts by entering descriptive
information about your hardware and software. The result of doing this is
a submit file that you SUBMIT to produce a linked and located system.

When you use ICU88 to accomplish linking and locating for an MMX 88-based
device, you must respond to certain prompts in certain ways. This section
explains the special actions that you must perform. One of these is that,
when you are prompted for the data concerning your tasks, you must enter
certain tasks in a particular order. The following excerpts from an ICU88
dialogue illustrate this and the other requirements:

FSM: NO

[other prompts and responses here]

TASK NAME: CQDRVR
ENTRY POINT: CQDRVR
STK LENGTH: 200
PRIORITY: 131
DFLT EXCHG:
TASK DESCRIPTOR NAME: [your choice]
8087 NDP: [yes/mno]

TASK NAME: CQINTM
ENTRY POINT: CQINTM
STK LENGTH: 200
PRIORITY: [depends upon the interrupt level used
DFLT EXCHG: by MMX 88]
TASK DESCRIPTOR NAME: [your choice]
8087 NDP: [yes/no]

TASK NAME: RQFLMT
ENTRY POINT: RQFLMT
STK LENGTH: 160
PRIORITY: 131
DFLT EXCHG:
TASK DESCRIPTOR NAME: [your choice]
8087 NDP: [yes/no]

7-36

CONFIGURING YOUR APPLICATION SYSTEM

TASK NAME: RQFSAT
ENTRY POINT: RQFSAT
STK LENGTH: 160
PRIORITY: 131

DFLT EXCHG: [your choice]
TASK DESCRIPTOR NAME: [your choice]
8087 NDP: [yes/no]

TASK NAME: RQFSRT
ENTRY POINT: RQFSRT
STK LENGTH: 160
PRIORITY: 131
DFLT EXCHG: [your choice]
TASK DESCRIPTOR NAME: [your choice]
8087 NDP: [yes/no]

[user tasks here]

EXCHANGE : RQFSAX

SCOPE: EXTERNAL

INTERRUPT LEVEL: NONE
EXCHANGE : RQFSRX

SCOPE: EXTERNAL

INTERRUPT LEVEL: NONE
EXCHANGE : RQFLMX

SCOPE: EXTERNAL

INTERRUPT LEVEL: NONE
EXCHANGE : CQMXIX

SCOPE: EXTERNAL

INTERRUPT LEVEL: NONE
EXCHANGE : CQMXRX

SCOPE: EXTERNAL

INTERRUPT LEVEL: NONE

[user exchanges here or mixed with the other exchanges]

[other prompts and responses here]

LINK: [user modules]

LINK: [compiled configuration module -- probably RxCNFG.OBJ]
LINK: :Fn:RxXMGR.LIB

LINK: ¢Fn:RxDRVR.LIB

LINK: ¢:Fn:RxPMM.LIB

LINK: ¢Fn:RxUTIL.LIB

LINK: :Fn:Rx???7?.LIB

7-37

CONFIGURING YOUR APPLICATION SYSTEM

where:

X A decimal digit that specifies the addressing mode for the
application being linked and, if the addressing mode is
megabyte, the compiler size control used, as follows:

2 Non-megabyte addressing.
3 Megabyte addressing and COMPACT.
5 Megabyte addressing and LARGE.

2727 An identifier for the class of the device, as follows:

957B You are going to use the iSBC 957B package

to execute the module on the device using
the parallel interface.

INTR You are going to use some other execution
vehicle instead.

If you do not specify the NOTYPE switch, TYPE MISMATCH warning messages
will appear, but you can ignore them.

Note that the Partitioned Memory Manager can be configured into an
application independently of the rest of MMX 88. To accomplish this, do
the above, except omit the definitions of the CQDRVR and CQINTM tasks, the

CQMXIX, and CQMXRX exchanges, and the RxXMGR, RxDRVR, RxUTIL, and Rx????
links.

Linking and Locating for MMX 86

The linking and locating process for MMX 86 is done in the same way as any
other iRMX 86 application, except that certain extra things have to be
done to accommodate the MMX 86 software. This section assumes that you
are familiar with the iRMX 86 configuration process, so that we can focus
on the aspects of configuration that are peculiar to configuring an MMX 86
application. We will discuss linking and locating four kinds of modules:
root job configuration file; the iRMX 86 Nucleus; the user configuration
file and the MMX 86 job; and user code files.

ROOT JOB CONFIGURATION FILE. The root job configuration file (for which
the supplied default version is called R4ROOT.A86) must have a %JOB macro
for the MMX 86 job, and this macro must be the first one, other than
macros for iRMX 86 system jobs, in the file. This ensures that the MMX 86
job will be the first user job (from the standpoint of the iRMX 86
software) to be initialized. The %JOB macro for the MMX 86 job is as
follows:

7-38

CONFIGURING YOUR APPLICATION SYSTEM

%JOB(OBJ$DIRSSIZE,
MINSPOOL$SIZE, MAX$POOLSSIZE,
MAXNBROBJ, MAXSNBRSTASKS,
MAXJOBPRIORITY,
EXCP$HNDLRSADDR, EXCP$HNDLRSMODE,
JOBSFLAGS ,
INIT$TASK$PRIORITY, INIT$TASK$START,
DATASSEG,
INIT$TASK$STACK, INIT$TASK$STACKSSIZE,
INIT$TASKSFLAGS)

where:?

OBJSDIRSSIZE is the maximum number of objects that can be cataloged

in the MMX 86 job object directory. MMX 86 does not catalog objects,
so this value is O.

MINSPOOLSSIZE is the minimum allowable size of the memory pool of the
MMX 86 job. This value is the initial size of the pool and therefore
must be sufficient for the start—up phase of the MMX 86 job. If

memory space 1s at a premium, this value can be calculated from the
number of local ports, the number of devices in the system, and the

stack requirements of the tasks in the MMX 86 job. A recommended
value is OFFFFH.

MAX$POOLSSIZE is the maximum allowable size of the memory pool of the
MMX 86 job. It must at least as large as MINSPOOLSSIZE. Because all
messages received at MMX 86 ports on the device being configured are
allocated from the MMX 86 job, this value is at least the minimum
initial pool size plus the space necessary to hold a maximum load of
concurrent incoming messages. A recommended value is OFFFFH.

MAXNBROBJ is the maximum number of objects that can exist
concurrently in the MMX 86 job. It can be calculated from the number
of MMX 86 tasks, the number of local ports, the maximum number of
incoming messages that can exist concurrently, and the number of

other objects that the MMX 86 job requires. A recommended value is
OFFFFH.

MAXSNBRSTASKS is the number of tasks in the MMX 86 job. Its value is
3.

MAX$JOBSPRIORITY is the maximum allowable priority for tasks in the
MMX 86 job. This priority must be greater than or equal to the
interrupt priority being used by the signalling task in the MMX 86
job. A recommended value is O.

EXCPSHNDLRSADDR is the entry point for the MMX 86 job's exception

handler. Because MMX 86 passes all exceptions back to the calling
function, this value is 0:0.

EXCP$HNDLRSMODE is the exception handler mode. For the MMX 86 job,
this mode is O.

7-39

CONFIGURING YOUR APPLICATION SYSTEM

JOBSFLAGS defines the characteristics of the MMX 86 job. During

system debugging, parameter validation should be used, so this value
should be O until the system is debugged. At that time, this value
can become 2.

INITSTASKSPRIORITY is the priority of the initialization task and

should be set to the priority of the message—handling function in the
MMX 86 job. As a rule, this priority should be the highest among all
non-interrupt tasks in the system.

INITSTASKSSTART is the start address of the initialization task in
the MMX 86 job. This address (which can be found on the LOCATE map
of the MMX 86 job) is at the beginning of the MMX 86 job's code area,
because the first byte there (normally in an area containing
constants) contains a jump instruction to the actual start address.

DATASSEG is the address of the data segment of the MMX 86 job.
Because the MMX 86 job sets its own data segment dynamically, set
this value to O.

INITSTASK$STACK is the address of the stack segment for the
initialization task of the MMX 86 job. Because the iRMX 86 Operating
System allocates this stack dynamically, set this value to 0:0.

INITSTASKSSTACKSSIZE is the size of the MMX 86 job's stack. While

debugging, set this value to 180H. After debugging, you will have a
better idea of the optimum value for this parameter.

INIT$TASKSFLAGS defines properties of the MMX 86 job's initialization
task. Because this task does not use floating point instructions,
this value can be set to O.

In the root job configuration file (R4ROOT.A86), you must also use %SAB
macros to delineate areas of memory that are to be used for the following:

e Code and data space for the MMX 86 job

e Local memory pool areas for the PMM to manage

e Request queues

® Any other space that is dedicated to other devices in the system
After the R4ROOT.A86 configuration file is complete, SUBMIT the file

named CROOT.CSD. This will assemble the configuration module, producing
a located file named R4ROOT.

NUCLEUS. To produce a located iRMX 86 Nucleus, you must specify two
kinds of information:

® The Nucleus system calls that are used by the jobs that will run
on this device.

o A description of this device.

7-40

CONFIGURING YOUR APPLICATION SYSTEM

Information of the first type i1s contained in a file called R4NUCL.A86,
while information of the second type is contained in a file called
NDEVCF.A86. NDEVCF.A86 is found on the iRMX 86 Nucleus diskette and
R4NUCL.A86 is found on the iMMX 800 diskette. Copy these files, as well
as g file named NUCLUS.CSD, to another diskette, maintaining the same
names except that R4NUCL.A86 should be renamed NTABLE.A86. Then edit the
copied NTABLE.A86 and NDEVCF.A86 files as described in the 1RMX 86
CONFIGURATION GUIDE. After that is done, SUBMIT the file NUCLUC.CSD.
This produces a located Nucleus.

THE USER CONFIGURATION FILE AND THE MMX 86 JOB. After you have compiled
your configuration module (we will assume that the compiled module has the
name R4CNFG.OBJ), you must link it to several MMX 86 modules. The link
statement that accomplishes this is:

LINK86 R4DRVR.LIB(MBEGIN), &
R4CNFG.OBJ,
R4DRVR.LIB,
R4XMGR.LIB,
R427?7.LIB,
R4PMM.LIB,
R4UTIL.LIB
RPIFC.LIB

TO R4CNFG.LNK

R RRRRR

where:

e R4DRVR.LIB, R4XMGR.LIB, R4??7?.LIB, R4PMM.LIB, and R4UTIL.LIB are
included on the iMMX 800 product diskettes

o ???? defines the device type for which this configuration is

being performed. Possible values are 957P, for any board using
the iSBC 957B monitor with the parallel port, and INTR, for any
other board.

e RPIFC.LIB is an iRMX 86 library for the PL/M-86 COMPACT model of
segmentation.

If you do not specify the NOTYPE switch, TYPE MISMATCH warning messages
will appear, but you can ignore them.

After linking, use the LOC86 command with the NOINITCODE control. The
address specified in the INITSTASKS$START field of the first ZJOB macro of
the root job configuration file and the address specified when locating
the R4NFG.LNK module must be the same. The NOINITCODE control prevents
the locator from inserting several commands, beginning at location 200H.

USER CODE. Two interface libraries are available to use when you link
your compiled code to MMX 86. They are R4CINF.LIB and R4LINF.LIB, for
the COMPACT AND LARGE models of segmentation, respectively.

7-41

CONFIGURING YOUR APPLICATION SYSTEM

Before you compile your code, however, you might want to INCLUDE
R4SELC.LIT or R4COM.LIT (both discussed earlier) or R4XINF.EXT in your
source code. R4XINF.EXT contains external declarations of the MMX 86
system calls.

HARDWARE CONFIGURATION

If your sysfem uses interrupts, you must jumper your hardware to provide
for interrupt reception and generation. The required changes are
described in the following paragraphs.

iSBC 544 DEVICE INTERRUPT GENERATION

The iSBC 544 device generates Multibus interrupts by means of its SOD

output. Jumper the SOD output (post 80) to one of the Multibus interrupt
lines INTO/-INT7/ (posts 82-89, respectively).

iSBC 544 DEVICE INTERRUPT RECEPTION

The iSBC 544 device is interrupted by means of its wake—up byte. Jumper
the wake—-up byte RST 5.5 (post 81) to one of the Multibus interrupt lines
INTO/-INT7/ (posts 82-89, respectively).

iSBC 569 DEVICE INTERRUPT GENERATION

The iSBC 569 device generates Multibus interrupts by means of its
programmable reset latch A7. Connect BUSINT to one of the Multibus
interrupt lines INTO/-INT7/ (connection 138-139, 135-136, 132-133,
129-130, 126-127, 123-124, 120-121, or 117-118, respectively).

iSBC 569 DEVICE INTERRUPT RECEPTION

The iSBC 569 device is interrupted by means of its wake-up byte. No

jumpering is required to support this arrangement, as it is hard-wired
into the device.

iSBC 80/24 DEVICE INTERRUPT GENERATION

The iSBC 80/24 device generates Multibus interrupts through one of its
I/0 ports. To enable the iMMX 800 interface procedures to utilize I/O
port E6, bit 7 to generate interrupts, disconnect jumper connection 35-50
and install connection 39-50. To select the correct interrupt line,
connect INTO/-INT7/ (post 168, 169, 171, 173, 170, 172, 174, or 175) to
INTROUT (post 166).

7-42

CONFIGURING YOUR APPLICATION SYSTEM

iSBC 80/24 DEVICE INTERRUPT RECEPTION

To receive interrupts from the Multibus interface, connect the Multibus
interrupt line INTO/-INT7/ (post 108, 107, 106, 105, 109, 110, 111, or

112, respectively) to the local interrupt line IRO-IR6 of the on~board
8259A P.I.C. (post 102, 101, 100, 99, 98, 97, or 96, respectively) or to
the local interrupt line on the 8259A P.I.C. (any post in the range 83-86).

iSBC 80/30 DEVICE INTERRUPT GENERATION

The iSBC 80/30 board generates Multibus interrupts through one of its I/0
ports. To support this, jumper post 1 (INTROUT) to I/O post 9, and jumper
one of INTO/-INT7/ (posts 181, 182, 183, 184, 187, 188, 189, or 190,
respectively) to post 185 (INTROUT).

iSBC 80/30 DEVICE INTERRUPT RECEPTION

To receive interrupts from the Multibus interface, connect the Multibus
interrupt line INTO/-INT7/ (post 148, 147, 152, 151, 150, 149, 146, or
136, respectively) to the local interrupt line IRO-IR7 of the on-board
8259A P.I.C. (post 133, 132, 131, 130, 129, 128, 127, or 126,
respectively) or to the RST 5.5 or 6.5 interrupt line on the 8085 (post’
140 or 139, respectively).

iSBC 86/05 DEVICE INTERRUPT GENERATION

The iSBC 86/05 device generates Multibus interrupts through port C of the
8255 P.P.I. Connect BUS INTR OUT (post 31) to one of the bits PCO-PC7
(post 50, 51, 52, 53, 45, 42, 43, or 44, respectively) of port C. Also
connect the Multibus interrupt level INTO/-INT7 (post 199, 201, 195, 197,
194, 196, 200, or 198, respectively) to BUS INTR OUT (post 193).

iSBC 86/05 DEVICE INTERRUPT RECEPTION

For the iSBC 86/05 device to receive interrupts from the Multibus
interface, one of the Multibus interrupt lines INTO/-INT7 (post 144, 136,
142, 143, 147, 146, 149, or 148, respectively) must be connected to one of
the 8259A P.I.C. input lines IRO-IR7 (post 132, 133, 124, 131, 130, 145,
128, or 127, respectively).

iSBC 86/12A DEVICE INTERRUPT GENERATION

The iSBC 86/12A device generates Multibus interrupts through port C of the
8255 P.P.I. Connect BUS INTR OUT (post 9) to one of the bits PCO-PC7
(post 26, 28, 30, 32, 15, 19, 17, or 13, respectively) of port C. Also
connect the Multibus interrupt level INTO/-INT7/ (post 141, 140, 139, 138,
137, 136, 135, or 134, respectively) to BUS INTR OUT (post 142).

7-43

CONFIGURING YOUR APPLICATION SYSTEM

iSBC 86/12A DEVICE INTERRUPT RECEPTION

For the iSBC 86/12A device to receive interrupts from the Multibus
interface, one of the Multibus interrupt lines INTO/-INT7/ (post 73, 72,
71, 70, 69, 68, 66, or 65, respectively) must be connected to one of the
8259A P.I.C. input lines IRO-IR7 (post 81, 80, 79, 78, 77, 76, 75, 74,
respectively).

iSBC 86/14 AND iSBC 86/30 DEVICE INTERRUPT GENERATION

The iSBC 86/14 and iSBC 86/30 devices generate interrupts through port C
of the 8255 P.P.I. Connect BUS INTR OUT 1 (post 24) to one of the bits
PCO-PC7 (post 57, 58, 59, 60, 56, 55, 54, or 53, respectively) of port
C. Also, connect the Multibus interrupt level INTO/-INT7/ (post 253,
252, 251, 250, 249, 248, 247, or 246, respectively) to the buffered BUS
INTR OUT 1 (post 244).

iSBC 86/14 AND iSBC 86/30 DEVICE INTERRUPT RECEPTION

For the iSBC 86/14 or iSBC 86/30 device to receive interrupts from the
Multibus interface, one of the Multibus interrupt lines INTO/-INT7/ (post
160, 149, 148, 159, 162, 151, 150, or 161, respectively) must be

connected to one of the 8259A P.I.C. interrupt lines IRO/-IR7/ (post 165,
164, 147, 136, 157, 152, 155, or 134, respectively).

iSBC 88/25 DEVICE INTERRUPT GENERATION

The iSBC 88/25 device generates Multibus interrupts through port C of the
3255 P.P.I. Connect BUS INTR OUT (post 29) to one of the bits PCO-PC7
(post 47, 48, 49, 50, 42, 39, 40, or 41, respectively) of port C. Also
connect the Multibus interrupt level INTO/-INT7/ (post 178, 180, 174,
176, 173, 175, 179, or 177, respectively) to BUS INTR OUT (post 172).

iSBC 88/25 DEVICE INTERRUPT RECEPTION

For the 1SBC 88/25 device to receive interrupts from the Multibus
interface, one of the Multibus interrupt lines INTO/-INT7/ (post 132,
124, 130, 131, 135, 134, 137, or 136, respectively) must be connected to
one of the 8259A P.I.C. input lines IRO-IR7 (post 116, 117, 133, 119,
120, 113, 122, or 121, respectively).

7-44

CONFIGURING YOUR APPLICATION SYSTEM

iSBC 88/40 DEVICE INTERRUPT GENERATION

The 1SBC 88/40 device generates Multibus interrupts through port C of the
8255 P.P.I. Connect AUX INT (post 49) to one of the bits PCO-PC7 (post
60, 62, 64, 66, 58, 56, 54, or 52, respectively) of port C. Also connect
the Multibus interrupt level INTO/-INT7/ (post 253, 252, 250, 249, 248,
246, 244, or 245, respectively) to AUX INT (post 247).

The iSBC 88/40 device generates memory-mapped interrupts by writing the
value OlH into the first byte of dual-port memory on the iSBC 88/40

device. The interrupted device must clear the interrupt and does so by
writing the value OOH via the system bus to that same byte. Connect

INTERRUPT MASTER (post 251) to a Multibus interrupt line INTO/-INT7/
(post 253, 252, 250, 249, 248, 246, 244, or 245, respectively).

iSBC 88/40 DEVICE INTERRUPT RECEPTION

The iSBC 88/40 device receives interrupts when data (OlH) is written from
the Multibus interface into the first location in dual-port memory. The
interrupt is cleared when data (O0OH) is written from the on-board CPU to
the same location. One of the 8259A P.I.C. input lines IRO-IR7 (post
161, 157, 153, 149, 145, 141, 137, or 133, respectively) must be
connected to INTERRUPT MASTER (post 251).

iSBC 88/45 DEVICE INTERRUPT GENERATION

The iSBC 88/45 device generates memory-mapped interrupts by writing the
value OlH into the first byte of dual-port memory on the iSBC 88/45
device. The interrupted device must clear the interrupt and does so by
writing the value OOH via the system bus to that same byte. Connect BUS
FLAG INT (post 86) to a Multibus interrupt line INTO/-INT7/ (post 179,
180, 181, 182, 183, 184, 185, or 186, respectively).

iSBC 88/45 DEVICE INTERRUPT RECEPTION

The iSBC 88/45 device receives interrupts when data (01H) is written from
the Multibus interface into the first location in dual-port memory.
Interrupts are cleared when data (OOH) is written to the same location.
The FLAG INTERRUPT line is hard-wired to the 8259A P.I.C. interrupt line
IR4, so no jumpering is required.

7-45

CHAPTER 8. PERFORMANCE CONSIDERATIONS

The purpose of this chapter is to suggest some basic principles that you
can use to improve the performance of your iMMX 800-based application
system. Because the iMMX 800 software operates in a multi-board
environment, you have considerable freedom and can apply these principles
in various combinations. To find the approach that works best for you,
you will probably have to do some experimenting.

Remember that the goal is to improve overall system performance. Perhaps
you will have to sacrifice efficiency in one part of your system in order
to attain even greater efficiency in another part. Try to approach the
task of maximizing your system's efficiency thoughtfully and with an open
mind.

AVOID UNNECESSARY TRAFFIC ON THE MULTIBUS INTERFACE

Indiscriminant use of the Multibus interface can seriously degrade a
system. You should be mindful of the ways in which the Multibus
interface is being used in your application system. For example, suppose
that a processor on one board is executing instructions that reside on
another board. In this case, the required instruction fetches can place
enormous demands on the system bus. To avoid this problem, try to design
your system so that each processor executes only instructions that are
local to that processor. If that is not possible, locate your code so
that each processor uses local memory for its most-used routines or for
routines that are most in need of speedy execution.

By designing your system with such matters in mind, you can make large

strides toward the goal of optimum performance. Perhaps you can even
achieve the ultimate in reduced Multibus traffic: a system that uses the
Multibus interface only for message transfers.

MINIMIZE THE NUMBER OF TIMES THAT MESSAGES MUST BE COPIED

Whenever you use MMX 80 or MMX 88, you have, in theory at least, the
option of building a message in memory that is accessible by the
destination device. Then, when you invoke the CQXFER service, you can
specify that the local iMMX 800 software should not make a copy when
transferring the message. By doing this whenever possible, you can save
processor time by eliminating unnecessary message copying operations.

PERFORMANCE CONSIDERATIONS

DISTRIBUTE THE WORKLOAD AMONG THE BOARDS IN YOUR SYSTEM

A key to performance is the extent to which processors are kept busy. At
the board level, the iRMX operating system assures this by providing
logical concurrency. This means that, as long as at least one task on
the board is in the ready state, some task will be executing.

In systems that are linked together by means of the iMMX 800 software, it

is possible to achieve actual concurrency. This means that tasks on
different boards can be executing at the same time.

By judiciously distributing the workload among the boards in your system,
you can exploit the concurrency principle and work toward the goal of
keeping all of your processors busy all of the time.

MINIMIZE THE NUMBER OF MESSAGE TRANSFERS BY USING LARGE MESSAGES

Because the overhead (aside from making copies) of a message transfer is
the same for large messages as it is for small messages, one way of
improving the performance of your system is to use a few large messages
instead of many small messages.

EXPERIMENT WITH VARIOUS INTERRUPT MECHANISMS AND POLLING PERIODS

As you perform configuration, you must specify for each board the kind of
interrupt mechanism that is to be used to interrupt the processor on that
board. The possibilities include Multibus interrupts, I/O-mapped
interrupts, and memory-mapped interrupts. You must also specify the
length of the polling period for each board. By trying different
interrupt mechanisms and by varying the length of the polling periods,
you can experimentally find the optimum combination for your system.

EXPERIMENT WITH VARIOUS HARDWARE AND SOFTWARE CONFIGURATIONS

The iMMX 800 software is very flexible, so you can use it with many
combinations of iSBC boards and iRMX operating systems. Because
different boards have different capabilities and strengths, and because
the same is true of operating systems, the optimum combination of boards
and operating systems might not be obvious. Even though it seems drastic
to do so, you might be able to improve the performance of your
application system by making a change at the hardware or operating system
level.

APPENDIX A. MULTIBUS® INTERPROCESSOR PROTOCOL (MIP)

WHAT IS MIP?

The Multibus Interprocessor Protocol (MIP) defines a set of mechanisms
and protocols that provide a reliable and efficient exchange of data
among tasks executing on various single—board computers connected to a
common Multibus system bus. See Figure A-1 for an example of how MIP
facilities are used in a Multibus configuration of single-board computers.

Non-MIP Device Non-MIP Device

Non-MiP Device

x-132

Figure A-1. MIP System Example

MIP facilities isolate user tasks from the complexities of communicating
across the Multibus system bus. Without these services, tasks trying to

communicate across the bus would have to resolve one or more of the
following conditions:

l. Tasks may be running on different kinds of processors.
2. Tasks may be running under different kinds of operating systems.
3. Different boards have different Multibus signalling mechanisms.

4. Not all boards share the same memory space.

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

5. Boards sometimes share memory but reference it by different
addresses.

6. Tasks sharing areas of memory may interfere with one another if
not correctly coordinated.

MIP facilities hide these details from user tasks, thereby making it

easier to develop programs for Multibus configurations that include
several intelligent boards.

MIP supports communication among intelligent devices such as single-board
computers (iSBC's) and intelligent device controllers. MIP can be used
by any device on which a MIP implementation can be programmed. The MIP
design does not limit the kinds of processors or operating systems that
can execute MIP services.

MIP can be used by the MCS-85 or the iAPX-86 families of processors. The
iMMX 800 Message Exchange, which is a MIP implementation, can run under
the iRMX 80, iRMX 86, or iRMX 88 Operating Systems. You can also
implement MIP facilities to run on other processors or under other
operating systems.

IMPLEMENTING MIP

When using this specification as a guide for implementing MIP, be aware
that it deals only with global concerns. Implementation details such as
initialization or memory management are not addressed. You can add
features that provide your implementation with a better interface with
its local environment; for example, the processor, the operating system,
or application tasks.

The MIP specification assumes a general processing environment. For

example, the algorithms in the specification are designed to work in a
multitasking environment. If your environment is simpler, you may

streamline your implementation, provided that you retain the basic
protocol needed to communicate with other versions of MIP.
When implementing MIP using the MIP model, follow these guidelines:

° If an element or structure is never shared with another MIP
facility, its function in the model is merely descriptive.

e If an algorithm requires the cooperation of another communicating
MIP facility, the algorithm must conform to the model.

THE MIP MODEL

The MIP specification defines several components that are required in all
MIP implementations. This section describes these components.

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

A software application consists of several functional units called

tasks. A task may be a program, a part of a program, or a system of
related programs.

A MIP facility is an implementation of MIP. MIP facilities support
communication among tasks executing on different iSBC devices that are
attached to a common Multibus system bus. The set of intercommunicating
tasks, along with associated iSBC devices, operating systems, and MIP
facilities, is called a MIP system. Each MIP facility may be a different
implementation of MIP, but adherence to this specification ensures
compatibility among them.

The term device is used for each iSBC device in a MIP system. Each
device has a device-ID, which is a number ranging from zero to the number
of devices communicating in one MIP system (less 1).

Any two tasks can communicate with each other by passing data in an area
of memory that is accessible by both of the devices on which the tasks
execute. A contiguous block of memory through which data is passed under
control of MIP facilities is called a buffer. The content of buffers is
not interpreted by MIP facilities.

Communications are delivered to tasks at system ports. A system port is
a logical delivery mechanism that enables delivery in "first-in,
first-out” (FIFO) order. In the MIP model, a system port is represented

as a queue. In some operating systems, system ports are called
"mailboxes" or "exchanges”.

Each system port on a given device is identified by a port id, which is a
number in the range zero to the number of ports (less 1) on the device.
To provide system-wide addressability, a system port is also identified
by a socket, which is an ordered pair (d,p), where "d"” is the device-ID

and "p" is the system—port-ID. Refer to Figure A-2 for a typical system
port configuration.

In Figure A-2, Task B on device 0 is receiving communications at port 1,
also known as socket (0,1). Task C is active at socket (1,0). Socket
(1,1) is not active (no task is receiving messages). Socket (2,1) is not
defined. Each port is also known by a function-name. Function names
identify system ports symbolically, so tasks that identify ports by their
function-names are independent of changes in configuration.

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

DEVICEO Nloevces ~— — — — 1|
| H
| Task | | ask [| TASK TASK |
| N PORT |
| quTE%E; E%E;PQﬁT ||quTEE%3 E%EJ EE%gpgfrl
I | I
! MIP facility | 1 MIP facility !
) 1
A
< MULTIBUS >
N ' 14
i MIP facility :
I $ PORT l
| ° |
- I TASK |
Local Pont 0 1 2 E
Device 0 Active Active
Device 1 [Acive | Tnacive | Acive] I |
Deviee 2 DEEEEz__________I

x-133

Figure A-2. System Port Configuration Example

THREE~LEVEL INTERFACE STRUCTURE

The MIP model is composed of three levels of interface:

1. The virtual level, by which user tasks interact with the MIP
facility.

2. The physical level, by which the MIP facilities on different
devices interact with each other.

3. The logical level, which associates the virtual level with the
physical level.

At the physical level, a MIP implementation must adhere to the specified
functions, structures, and constants. Any implementation that deviates
from this requirement is not compatible with the MIP architecture, and
might not be able to communicate with other MIP facilities.

At the logical level, however, the specified algorithms and data
structures merely impose a logical framework. Implementations need only
satisfy the relationships between events and actions, and need not
duplicate either the algorithms or the data structures.

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

The virtual level of the model simply suggests one way for tasks to view
the MIP system. Any other viewpoint will work as well, provided the
information passed through the virtual level is sufficient to accomplish
the desired results. You may wish to create an interface that is more
consistent with the interfaces to the operating system you are using.
Figure A-3 illustrates the three-level structure. Refer to this figure
during the following discussion of all three levels.

VIRTUAL LEVEL LOGICAL LEVEL PHYSICAL LEVEL

‘ I Incoming
Request
' l Queues
,——[[Device 0
. Port |
Queue |
‘ DIl
Interface TA'gK -+ I Device 1
Procedures <——ﬂl
I
ACTIVATE '
s | R Response Device n
. | Receiving | RECEIVE ‘c’;:e"l:‘:e Turnaround
@ | Queue I .
- Outoing
- DEACTIVATE Request
§ ‘ \ I Queues
FIND | .
Sending | | I Device 0
TRANSFER | Command Y |
Ready | |
[Queue q
-1 our | = .
, TASK | > Device 1
I
| I Device n

| | x-134

Figure A-3. MIP Model Data Flow Structure

PHYSICAL LEVEL

The physical communication mechanism between devices is a fixed size,
one—-direction, FIFO queue called a Request Queue. An element in a
Request Queue is known as a Request Queue Entry (RQE). An RQE is added
to a Request Queue at the "give" end of the queue and removed from the
"take" end. Each Request Queue is managed by a Request Queue Descriptor
(RQD). An RQD and associated RQE's forming one queue occupy a contiguous
block of memory, as illustrated in Figure A-4. The RQD keeps track of
the "give" and "take" locations as well as other information about the
queue.

A-5

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

8 bytes
R st Q
eque ueue §
Descriptor { RQD
RQE
RQE
Request Queue) |
Entries '
RQE
RQE

W
16 bytes

x-135

Each Request Queue contains at least two RQE's, and each queue is

Figure A-4.

Request Queue Format

accessed at the "give" end by only one device and at the "take" end by
only one device. This helps to avoid memory contention between devices
using the same queue.

Two-way communication between two devices is implemented by a pair of

Request Queues, known collectively as a channel.
the "give” end of a request queue is the owner of the queue.
is responsible for initializing the queue.

conceptual diagram of a channel.

The device that uses
The owner
See Figure A-5 for a

i Enqueue N B Dequeue .
(owner) |) >
r 7 N
give | | take
R st Q
Source eque reve RQE |— RQE}— RQE RQE >
DEVICE DEVICE
Request Queue Source
- RQE — RQE — RQE RQE
take I | give
S~ —Araof, = —~
D Dequeue > < Enqueue >| (ownen) | x-136
Figure A-5. Conceptual Structure of a Channel

A-6

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

LOGICAL LEVEL

The logical level of the MIP model uses Request Queues to transfer
requests between source and destination MIP facilities. A request is
either a command or a response. A command is an order sent from a source
MIP facility to a destination facility. A response is returned from the
destination facility to the source facility and indicates the results of
an attempt to deliver a command. The Request Queues carry these requests
and their associated parameters between MIP facilities.

The primary procedures of the logical level are INSTASK and OUTS$TASK. In
the MIP model, these are viewed as asynchronous tasks, thereby giving the
flexibility needed to service several user tasks simultaneously in a
multi-tasking environment. Since they are asynchronous, all
communication with INSTASK and OUT$TASK is through queues. There is one
Port Queue for each destination task and one Response Queue for each
source task. For each channel, there is one Command Ready Queue, one
Response Turnaround Queue, and one incoming and one outgoing Request
Queue. (See Figure A-3.)

In the MIP model, the Port Queue may contain entire buffers, for reasons
discussed under the "Buffer Movement"” section of this appendix. The
other queues contain only buffer descriptors, thereby minimizing movement
of data in memory.

INSTASK is driven by its incoming Request Queues. Requests in these
queues may be either commands or responses. Commands are routed to the
Port Queue of the destination port. A response is then generated and
queued in the Response Turnaround Queue to be sent back to the source MIP
facility by OUTSTASK. Responses from the incoming Request Queues are
routed to the Response Queue of the originating task.

OUT$TASK is driven by the Command Ready Queues and Response Turnaround

Queues. When OUTSTASK finds a command in one of its Command Ready
Queues, it routes it to the destination device's Request Queue. (When a
destination device is not functioning, OUTS$TASK sends a response directly
back to the sending task's Response Queue.) When OUT$TASK finds a
response in one of the Response Turnaround Queues, it routes it to the
Request Queue of the source task's device.

VIRTUAL LEVEL
User tasks interact with the MIP facility by use of five procedures:
For sending buffers:

l. FIND--locates a port, given its function-name.

2. TRANSFER--initiates transfer of a buffer to a given port by
placing a command in the destination device's Command Ready
Queue. TRANSFER then waits for a response before allowing the
sending task to continue.

For receiving buffers:

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)
3. ACTIVATE--attaches a task to a port and enables reception of
messages at that port.

4. RECEIVE--completes transfer of a buffer by taking a command from
the task's Port Queue.

5. DEACTIVATE--disconnects a task from its port and terminates
reception of commands at that port.

MEMORY MANAGEMENT

Devices in a MIP system communicate via shared memory. The abilities of
the devices to access the memory available on the Multibus system bus can
be used to define a partition of that memory. The MIP model partitions
all of memory into non—overlapping segments such that, for any segment
and any device, one of the following conditions is operative:

o The entire segment is continuously addressable within the address
space of the device.

o The device cannot address any of the segment.
Each segment that can be shared among devices is called an inter-—device

segment (IDS) and is identified by an IDS-ID, which is a number in the
range zero to the number of IDS's (less 1) in the MIP system.

Figure A-6 presents a hypothetical memory configuration and shows how the
address space is partitioned.

- - - — T '| . - - — T]Deviceo
!_Global memory board iSBC with private memory

1FFFFH 7FFFH

| | | |
| > | : |
| 17FFFH : , PRS o segg‘ et I
| } | |
| 10000H 10000H I OH I
L —— — ,_____I L — [____J
A J [) L A
< MULTIBUS - MULTIBUS >
N i] | 1 4
De:ice [— —_ r“ _ — - — — —‘l De;ice
] FFFFH | | TFFFH [
| | |
| PrOC | | | Proc segment :
| | |
| on k | oH L |
| [Secmnduatportmemery] [[fSeevwmenaememy - | e

Figure A-6. Example of Inter-Device Memory Segments

A-8

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

In Figure A-6, processors A and C can communicate through IDS 1.

Processors B and C can communicate through IDS's O, 1, and 2.

However,

IDS 3 is a segment of dual-ported memory and is accessed by processor B
by using a different range of addresses than those used by processor C.
Memory segments A, B, and C cannot be used for inter-device communication.

Table A-1 summarizes the memory configuration shown in Figure A-6. The
table shows the lowest address (the base address) by which each device

can access each IDS.

Table A'-]. .

System Inter-Device Segment Table

Base Addresses
IDS Length
Device 0| Device 1 |Device 2
0 8000H | — — — | 18000H | 18000H
1 8000H 10000H | 10000H | 10000H
2 8000H | — — — | 8000H 20000H

x-138

The MIP model contains special features for handling the "alias
addressing” situation posed by dual-port memory. Dual-port memory may be
addressed differently from the Multibus system bus than from its local
processor.

The only case of a shared memory address in a MIP system is the buffer
pointer in the RQE. This pointer is stored in a special format, called
an IDS pointer, which is independent of the addressing peculiarities of
the different devices in a MIP system. The MIP pointer is 32 bits wide,
permitting an addressing range of 4 gigabytes. The high—order word (16
bits) of the pointer stores the low-order word of the address, and the
low-order word of the pointer stores the high~order word of the address.
Within each word, the low-order byte is stored before the high-order byte.

When a buffer is transferred, the sending MIP facility converts the local
buffer pointer to the MIP pointer format and normalizes it by subtracting
the IDS base address of the sending device. Upon receiving the RQE, the
receiving MIP facility adds the IDS base address of the receiving device
and converts to the format required by the receiving device's processor.
User tasks therefore need not be concerned with these addressing
considerations.

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

BUFFER MOVEMENT

Generally, buffers are not physically moved from one memory location to
another unless moving them is necessary. Instead, buffers are referenced
by descriptors in the RQE's. However, the MIP model provides for
operating systems whose memory management policies forbid introduction of
new objects (buffers) into their memory spaces. When delivering a
buffer, the MIP model copies the buffer from the space managed by the
sending operating system into the space managed by the receiving
operating system.

SIGNALLING

MIP uses a signalling mechanism for efficient utilization of the
inter-device request queues. The mechanism employed is a software
handshake that uses flags in the signal bytes of the RQD's. This

mechanism permits MIP facilities to decrease their activity when queue
activity decreases.

INSTASK does not examine incoming request queues that are known to be
empty. When the OUTS$TASK of a sending facility puts a request in an
outgoing queue that was previously empty, it also sets a flag to signal
the INSTASK of the receiving facility that the queue is no longer empty.

Similarly, OUT$TASK does not poll outgoing request queues that are known
to be full. When the INSTASK of a receiving facility removes a request
from an incoming queue that was previously full, it also sets a flag to
signal the OUT$TASK of the sending facility that the queue is no longer
full.

INSTASK and OUT$TASK poll their signal flags to detect changes in the

states of their queues. Interrupts may be implemented to effect greater
efficiency in polling the signals.

ERROR HANDLING

The MIP architecture provides for device failure. A device is assumed to
have failed if it does not return a response to a command within a
certain time. The timeout period is implementation-dependent.

When a MIP facility determines that a destination device has failed, it
takes three actions:

l. Sets flags to prevent any further activity on the channel.
2. Discards any responses destined for the dead device.

3. Returns all commands for the dead device to the tasks that
invoked them (along with an appropriate error indication).

Any further recovery actions are application-dependent.

A-10

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

MIP FUNCTIONAL SPECIFICATION

The databases and algorithms described in the rest of this appendix
define the attributes of the Multibus Interprocessor Protocol.
Logically, the functional specification consists of the three levels
described previously in this appendix.

PROCEDURAL SPECIFICATION

DATA TYPES

The following data types are used in the algorithmic specification of MIP:
BYTE: Standard 8-bit variable.
WORD: Two~BYTE variable.
IDENTIFIER: BYTE variable generally used as an index into an array.
STATE: BYTE variable restricted to state constants.
POINTER: Device-dependent address reference.

IDSSPTR: Two-WORD, device-independent address reference.

PROCESSOR-DEPENDENT SUBROUTINES

All machine-dependent logic in the algorithmic specification is isolated
in the following procedures. In addition to these procedures, the value

NULLSPTR is used for some unique pointer value to indicate a null value.
For example:

DECLARE NULLSPTR LITERALLY 'OOOOH';

PTRSADD
Any implementation of MIP must handle pointer arithmetic according to the

requirements of the processor that executes that implementation. Pointer
arithmetic is used to calculate the addresses of Request Queue elements.

A-11

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

PTR$ADD: PROCEDURE (PIR,
SCALAR) POINTER;

DECLARE PTR POINTER, /* Input. */
SCALAR BYTE;
DECLARE NEWSPTR POINTER; /* Local. */
/*

Using knowledge of processor-dependent POINTER
implementation, add PTR to SCALAR giving NEWS$SPTR.
*/

RETURN NEW$PTR;

END PTR$ADD;

CONVERT$LOCALSADR

This routine converts from an address pointer in the local address space

to an IDS-relative pointer in the IDSSPTR format. The details of this
conversion depend upon the pointer format dictated by the local processor.

CONVERTSLOCALSADR: PROCEDURE (IDSSID,

BUFFER$PTR,
MIPSPTR);
DECLARE IDS$ID IDENTIFIER, /* Input. */
BUFFER$PTR POINTER;
DECLARE MIP$PTR IDS$PTR; /* Output. */

/*
Get base address for IDS$ID from IDST.
Subtract from BUFFERSPTR.

*/

END CONVERT$LOCALS$ADR;

A-12

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

CONVERTS$SYSTEMSADR

This routine converts from an IDS-relative pointer in the IDSS$PTR format
to an address pointer in the local address space. The details of this
conversion depend upon the pointer format dictated by the local processor.

CONVERTS$SYSTEMSADR: PROCEDURE (IDSS$ID,

MIP$PTR,
BUFFERS$PTR);
DECLARE IDS$ID IDENTIFIER, /* Input. */
MIP$PTR IDS$PTR;
DECLARE BUFFER$PTR POINTER; /* Output. */
/*

Get base address for IDSS$ID from IDST.
Add to BUFFERSPTR.

*/ 3

END CONVERT$SYSTEMSADR;

TIMESWAIT

A destination device is assumed to be dead if it does not respond to a
command within a reasonable period of time. How you detect a timeout
depends upon the local processor's timing features

TIMESWAIT: PROCEDURE (TIMESOUT, RQLSID);

DECLARE TIMES$OUT WORD, /* Input. */
RQL$SID IDENTIFIER;
/*
Wait for TIMES$OUT period or until something is placed in the
response queue identified by RQLS$ID.
*/ 3

END TIMESWAIT;

A-13

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

PHYSICAL LEVEL SPECIFICATION

This level defines the structure and function of Request Queues. To
ensure compatibility with the MIP architecture, an application must not
deviate from the functions, structures, and constants presented in the
Request Queue element descriptions provided under this heading.

REQUEST QUEUE DESCRIPTOR

A Request Queue Descriptor controls a Request Queue. It is physically
located before and adjacent to the associated Request Queue entries.

DECLARE RQD$STRUCTURE LITERALLY 'STRUCTURE

(EMPTY$SIGNAL STATE,

FULL$SIGNAL STATE,

RQ$SIZE BYTE,

RQESLENGTH BYTE,

GIVESINDEX BYTE,

GIVESSTATE STATE,

TAKESINDEX BYTE,

TAKESSTATE STATE)';

EMPTY$SIGNAL and FULLSSIGNAL are used by the two devices sharing a
channel to signal each other when there has been some activity on the
channel. Signals are written in the RQD of the outgoing queue and read
from the RQD of the incoming queue. The signal values are defined as
follows (unused bits are reserved for future expansion):

DECLARE FULL$NOSLONGER LITERALLY '80H',
EMPTY$NOSLONGER LITERALLY '0l1H',
NOS$CHANGE LITERALLY 'O0H';

RQSSIZE defines the number of elements in the Request Queue. RQS$SSIZE
must be a power of 2 and must have a value of 2 or greater.

RQESLENGTH defines the number of bytes in a Request Queue Element (RQE).
The number of elements is 2 to the power of RQESLENGTH. For all queues

shared between MIP facilities, RQESLENGTH is 4 (that is, each entry is 16
bytes long).

GIVESINDEX identifies the Request Queue Element available for enqueuing
data.

TAKESINDEX identifies the Request Queue Element available for dequeuing
data.

GIVESSTATE and TAKE$STATE contain the booleans defined as follows (unused
bits are reserved for future expansion):

DECLARE GIVES$HALT LITERALLY "40H!',
- GIVE$FACTOR LITERALLY "80H';
DECLARE TAKES$HALT LITERALLY "40H',
TAKE$FACTOR LITERALLY "80H";

A-14

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

GIVESFACTOR and TAKESFACTOR together distinguish between the full state
and the empty state when GIVESINDEX and TAKESINDEX are equal.

GIVESHALT and TAKESHALT prevent further activity in the queue when a
device failure is detected.

For making comparisons between GIVESINDEX and TAKESINDEX, the following
declaration is required:

DECLARE POINTERSMASK LITERALLY '7FH';

REQUEST QUEUE ENTRY
A Request Queue Entry is an element of a Request Queue.

DECLARE RQE$STRUCTURE LITERALLY 'STRUCTURE
(REQUEST STATE,
SRCSREQID IDENTIFIER,
DEST$DEVSID IDENTIFIER,
DESTS$PORTS$ID IDENTIFIER,
SRC$DEVSID IDENTIFIER,

DATA$PTR IDS$PTR,
DATASLENGTH WORD,
IDS$ID IDENTIFIER,

OWNERS$DEVSID IDENTIFIER,
RSRVD (3) BYTE)';

REQUEST identifies the RQE as a command or a response, using one of:

DECLARE SEND$COMMAND LITERALLY '70H',
MSG$DELIVEREDSNOSCOPY LITERALLY '80H',
MSGSDELIVEREDSCOPY LITERALLY '82H',
SYSTEMSMEMORY$NAK LITERALLY '85H',
DEADSDEVICE LITERALLY '89H"';

SRCSREQSID identifies the sending task so that responses can be returned.
The meaning of this identifier is defined by the local MIP implementation.

DESTSDEVSID is the device identifier part of the destination socket.
DESTS$PORTSID is the port identifier part of the destination socket.
SRC$DEVSID identifies the device from which a request is issued.

DATA$PTR contains the IDS-relative address of a buffer to be delivered or
returned by a MIP facility.

DATASLENGTH specifies the number of bytes in a buffer.

IDS$ID defines which inter-device segment contains the buffer.
OWNERSDEVICESID identifies the device that manages or "owns” the buffer.
RSVRD is undefined space reserved for future expansion.

A-15

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

QUEUE PROCEDURE RETURNS

The following constants are used to return the results of procedures
associated with the Request Queues:

DECLARE READY LITERALLY "00H',
FULL LITERALLY "OFFH',
EMPTY LITERALLY "OFFH',
FIRST$GIVE LITERALLY 120H',
FIRST$TAKE LITERALLY 120H',
HALTED LITERALLY "40H',
GIVE$DISABLED LITERALLY '"10H',
TAKE$DISABLED LITERALLY "10H';

INITS$REQUESTS$QUEUE

This procedure enters a Request Queue Descriptor in memory, thereby
initializing a Request Queue.

INIT$SREQUEST$QUEUE: PROCEDURE (RQD$PTR,

RQ$LEN);
DECLARE RQ$LEN BYTE, /* Input. */

RQD$PTR POINTER,

RQD BASED RQDS$PTR RQD$STRUCTURE;
RQD.EMPTY$SIGNAL = NOSCHANGE;
RQD.FULL$SIGNAL = NOS$CHANGE;

RQD.RQ$SIZE = RQS$LEN;
RQD.RQESLENGTH = 4;
RQD.GIVESINDEX = 0;
RQD.TAKESINDEX = 0;
RQD.GIVE§STATE = 0;
RQD.TAKESSTATE = 0;

END INITSREQUESTSQUEUE;

TERM$REQUEST$QUEUE

This procedure sets the Request Queue flags to prevent subsequent
activity on a channel.

TERM$REQUEST$QUEUE: PROCEDURE (RQD$INSPIR,

RQDSOUTSPTR) ;
DECLARE RQD$SINSPTR POINTER, /* Input */
RQDOUTPTR POINTER,

INSRQD BASED RQD$INSPTR RQD$STRUCTURE,
OUT$RQD BASED RQD$SOUT$PTR RQD$STRUCTURE;

INSRQD.TAKESSTATE = INSRQD.TAKESSTATE OR TAKESHALT;
OUT$RQD.GIVE$STATE = OUT$RQD.GIVESSTATE OR GIVESHALT;

END TERMS$REQUEST$QUEUE;

A-16

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

QUEUES$GIVE$STATUS

This procedure returns the status of a Request Queue without affecting
the queue.

QUEUE$GIVE$STATUS: PROCEDURE (RQD$PTR,
STATUS);

DECLARE RQD$PTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;

DECLARE STATUS BYTE; /* Output. */

IF (RQD.TAKE$STATE AND TAKESHALT) = TAKESHALT
THEN DO;
RQD.GIVE$STATE = RQD.GIVE$STATE OR GIVE$DISABLED;
STATUS = HALTED;
END /* THEN */;
ELSE IF (RQD.GIVESINDEX = RQD.TAKE$INDEX) AND
((RQD.GIVE$STATE AND GIVESFACTOR) <>
(RQD.TAKES$STATE AND TAKE$FACTOR))
THEN STATUS = FULL;
ELSE STATUS = READY;
RETURN;

END QUEUE$GIVES$STATUS;

A-17

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

REQUEST$GIVESPOINTER

This algorithm returns the address of a Request Queue element (if one is
not in use) from the "send” or "give” side of the queue.

REQUEST$GIVESPOINTER: PROCEDURE (RQDSPIR,

RQESPTRSLOC,
STATUS) ;
DECLARE RQD$PTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;
DECLARE RQEPTRLOC POINTER, /* Output. */
RQESPTR BASED RQEPTRLOC POINTER,
STATUS BYTE;

IF (RQD.TAKE$STATE AND TAKE$HALT) = TAKESHALT
THEN DO;
RQD.GIVESSTATE = GIVESDISABLED;
STATUS = HALTED;
RETURN;
END /#* THEN */;
IF ((RQD.GIVESINDEX AND POINTERSMASK) =
(RQD.TAKESINDEX AND POINTERSMASK)) AND
((RQD.GIVESINDEX AND GIVESFACTOR) <>
(RQD.TAKESINDEX AND TAKE$FACTOR))
THEN DO;
STATUS = FULL;
RETURN;
END /* THEN */;
STATUS = READY;
RQE$PTR = SHL(DOUBLE(RQD.GIVE$INDEX AND POINTER$MASK),
RQD.RQESLENGTH)
+ 8 + RQDSPTR;
RETURN;

END REQUEST$GIVESPOINTER;

A-18

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RELEASESGIVESPOINTER

This algorithm is always executed after a successful

REQUESTS$GIVESPOINTER. It actually enters the element in the Request
Queue, thus making it available for taking.

RELEASE$GIVESPOINTER: PROCEDURE (RQDS$PIR,

STATUS) ;
DECLARE RQD$PTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;
DECLARE STATUS BYTE, /* Output. */
GIVESINDEX BYTE;

GIVE$INDEX = ((RQD.GIVESINDEX AND POINTERSMASK) + 1) AND
(RQD.RQ$SIZE - 1)
IF (RQD.TAKES$INDEX AND POINTERSMASK) = GIVESINDEX
THEN /* GIVESFACTOR bit = NOT TAKE$FACTOR bit. */
RQD.GIVESINDEX = (GIVESINDEX OR GIVESFACTOR) AND
(NOT (RQD.TAKES$INDEX AND TAKES$FACTOR));
ELSE
RQD.GIVESINDEX = ((RQD.GIVESINDEX AND POINTER$MASK) + 1) AND
(RQD.RQS$SIZE - 1);

IF (RQD.GIVESINDEX AND POINTERSMASK) =
(((RQD.TAKESINDEX AND POINTER$MASK) + 1) AND (RQD.RQSSIZE - 1))

THEN STATUS = FIRSTS$GIVE; /* Gave to an empty queue. */
ELSE STATUS = READY;
RETURN;

END RELEASES$GIVESPOINTER;

A-19

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

REQUESTS$TAKE$POINTER

This algorithm returns the address of a Request Queue element (if one is
available) from the "receive” or "take" side of a Request Queue.

REQUESTS$TAKESPOINTER: PROCEDURE (RQDSPIR,

RQES$PTRSLOC,
STATUS);
DECLARE RQD$PTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;
DECLARE RQE$PTRS$LOC POINTER, /* Output. */
RQE$PTR BASED RQE$PTR$LOC POINTER,
STATUS BYTE;

IF (RQD.GIVESSTATE AND GIVESHALT) = GIVESHALT
THEN DO;
RQD.TAKE$STATE = TAKE$DISABLED;
STATUS = HALTED;
RETURN ;
END /* THEN */;

IF RQD.GIVESINDEX = RQD.TAKES$INDEX
THEN DO;
STATUS = EMPTY;
RETURN ;
END /* THEN */;

STATUS = READY;
RQE$PTR = SHL(DOUBLE(RQD.TAKE$INDEX AND POINTER$MASK),
RQD.RQESLENGTH)
+ 8 + RQDSPTR;
RETURN;

END REQUEST$TAKESPOINTER;

A-20

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RELEASESTAKES$POINTER

This algorithm is always executed after a successful

REQUESTSTAKESPOINTER. It actually purges the element from the Request
Queue, thus making the space available for a subsequent “give” operation.

RELEASE$TAKE$POINTER: PROCEDURE (RQD$PTR,

STATUS);
DECLARE RQD$PTR POINTER, /* Input. */
RQD BASED RQD$PTR RQD$STRUCTURE;
DECLARE STATUS BYTE, /* Output. */
MSB BYTE;

IF (RQD.GIVESINDEX AND POINTER$MASK) =

(((RQD.TAKESINDEX AND POINTER$MASK) + 1) AND
(RQD.RQ$SIZE - 1))

THEN /* TAKE$SFACTOR bit = GIVE$FACTOR bit. */
MSB = RQD.GIVES$STATE AND GIVESFACTOR

ELSE MSB = 0;

RQD.TAKE$INDEX = (((RQD.TAKE$INDEX AND POINTER$MASK) + 1) AND
(RQD.RQ$SIZE - 1)) OR MSB;

IF (RQD.TAKESINDEX AND POINTER$MASK =

((RQD.GIVE$INDEX AND POINTER$MASK)+ 1) AND (RQD.RQ$SIZE - 1)
THEN STATUS = FIRSTS$TAKE; /* Took from a full queue. */
ELSE STATUS = READY; .

RETURN;

END RELEASE$TAKE$POINTER;

A-21

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

LOGICAL LEVEL DATABASE

CONFIGURATION CONSTANTS

The following constants define the system configuration. In place'of the
descriptions printed in lower case, substitute the numbers that apply to

your configuration.

DECLARE DEVICES

SOCKETS
PORTS
HOMESDEVICE

TIME$DELAY

IDS$S

RQLS$S

LITERALLY

LITERALLY

LITERALLY

LITERALLY

LITERALLY

LITERALLY

LITERALLY

A-22

'the number of devices in the MIP
system',

'the number of destination ports',
'the number of local ports',
'the identifier of this device',

'maximum time to wait for a
response before a destination
device is considered dead’',

"the number of entriés in the IDS
table',

'the number of local response
queues’';

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

DESTINATION SOCKET DESCRIPTOR TABLE (DSDT)

The DSDT contains information for locating sockets in a MIP system. Each
entry associates a socket with a unique function-name. The MIP facility
on each device has a DSDT containing entries for all sockets to which
tasks on that device send messages.

DECLARE DSDT (SOCKETS) STRUCTURE

(FUNCTIONSNAME WORD,
DEST$DEVSID IDENTIFIER,
DEST$SPORTSID IDENTIFIER);

FUNCTIONSNAME is a system~wide name for identifying the socket.

DESTS$DEVSID is the device identifier of the device on which the socket
resides.

DEST$PORTSID is the local port identifier for the socket on the
destination device. For the purposes of this algorithmic specification,
DEST$PORTSID is the index of the port in the Local Port Table on the
destination device.

LOCAL PORT TABLE (LPT)

The Local Port Table is the list of ports and their parameters that are
managed by a device. For the purposes of this algorithmic specification,
the index of a port in the LPT is the port's identifier.

DECLARE LPT (PORTS) STRUCTURE

(FUNCTIONS$NAME WORD,
PORT$QUEUE$PTR POINTER,
PORT$STATE STATE);

FUNCTIONSNAME is the system-wide name for identifying the port.

PORT$SQUEUESPTR is the address of the queue in which messages addressed to
this port are delivered.

PORT$STATE tells whether a task is receiving messages at this port.
Messages sent to the port are accepted if the port is active; they are
rejected (returned) if the port is inactive. Values associated with this
item are:

DECLARE INACTIVE LITERALLY '00H',
ACTIVE LITERALLY '01H';

DEVICE TO CHANNEL MAP (DCM)

The DCM table is used to route messages among inter-task and inter-device

Request Queues and to manage the flow of messages into and out of the
queues. Each MIP facility has one entry in its DCM for every device in
the MIP system, including the device on which the MIP facility resides.

A-23

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

The device identifier of a device is its index into the DCM. Each entry
in a DCM represents a possible link between the home device and the
device associated with that entry. If no such link exists, CHANNEL$STATE
contains IDLE.

DECLARE DCM (DEVICES) STRUCTURE

(CHANNELSSTATE STATE,
RQD$OUTSPTR POINTER,
RQD$OUTS$SIZE BYTE,
RQDSINSPTR POINTER,
RQDS$INSSIZE BYTE,
COM$SRDY$QUEUESPTR POINTER,

RSPSTRNRNDSQUEUESPTR POINTER);

CHANNELSSTATE is a local management variable in which the run-time state
of a channel is maintained. This variable contains the booleans defined
below:

DECLARE SENDS$ACTIVE LITERALLY '80H',
SENDSFULL LITERALLY 'JFH',
RECEIVESACTIVE LITERALLY '01H',
RECEIVESEMPTY LITERALLY 'OFEH',
DYING LITERALLY '04H',
IDLE LITERALLY '0O8H';

RQDSOUTSPTR is the local address of the RQD of the interprocessor queue
through which commands and responses are sent to the associated device.

RQD$OUTSSIZE is the number of entries in this queue.

RQDSINSPTR is the local address of the RQD of the interprocessor Request
Queue through which commands and responses are received from the
associated device.

COMSRDYSQUEUESPTR is the address of the local queue of commands waiting
to be sent to the associated device.

RSPSTRNRNDSQUEUESPTR is the address of the local queue of responses
waiting to be sent to the associated device.

INTER-DEVICE SEGMENT TABLE (IDST)

The IDST defines the attributes of Inter-Device Segments (IDS's). There
is one entry for each IDS in the MIP system. The entries are indexed by
the IDS identifier.

DECLARE IDST (IDS$S) STRUCTURE
(LO$PART WORD,
HIS$PART WORD) ;

Note that the low-order portion of the IDS base address is stored flrst,
followed by the high-order portion.

A-24

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RESPONSE QUEUE LIST (RQL)
The RQL is a table of pointers to the Request Queues used to return the
results of a buffer delivery attempt. Each entry is assigned to a task
for use with the TRANSFER function. The entries are indexed by RQLS$ID.
DECLARE RQL (RQL$S) STRUCTURE
(RSPSQUEUESPTR POINTER);

LOGICAL LEVEL ALGORITHMS

DYINGSCHANNEL
OUTSTASK invokes this subroutine when a device failure is detected. The
routine disposes of any commands that may be waiting to be sent to the

dead device.

DYINGS$CHANNEL: PROCEDURE (DEVICES$INDEX);

DECLARE DEVICES$INDEX BYTE; /* Input. */
DECLARE STATUS BYTE, /* Local. */
RQE$COMS$PTR POINTER,
COMSRQE BASED RQE$COMSPTR RQE$STRUCTURE,
RQESRSPSPTR POINTER,

RSPS$RQE BASED RQESRSP$PTR RQE$STRUCTURE;

CALL REQUEST$TAKE$POINTER
(DCM(DEVICE$INDEX) . COMSRDY$QUEUESPTR,
RQESCOMSPTR,

STATUS) ;
IF STATUS <> EMPTY
THEN DO; /* Send back DEAD$DEVICE response. */

CALL REQUESTSGIVESPOINTER
(RQL(COM$RQE . SRCSREQSID) . RSPSQUEUESPTR,
@RQESRSPSPTR,

STATUS);

CALL MOVE (16, RQESCOMS$PTR, RQESRSP$PTR);

RSP$RQE.REQUEST = DEAD$DEVICE;

CALL RELEASESGIVESPOINTER
(RQL(COMS$RQE . SRCSREQS$ID) .RSPSQUEUESPTR ,
STATUS);

CALL RELEASESTAKESPOINTER
(DCM(DEVICES$INDEX).COMSRDYSQUEUESPTR ,
STATUS);

END /* THEN */;
ELSE /* No more outstanding commands. */ DO;

DCM(DEVICES$INDEX).CHANNEL$STATE = IDLE;

CALL TERMS$REQUEST$QUEUE
(DCM(DEVICES$INDEX).RQDSINSPTR,
DCM(DEVICES$INDEX).RQDSOUTSPTR) ;

END /* ELSE */;

RETURN;

END DYING$CHANNEL;

A-25

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

SERVESTURNAROUNDSQUEUE

This subroutine of OUT$TASK transfers a response from the Response
Turnaround Queue to the output queue of the sending device.

SERVE$TURNAROUNDSQUEUE: PROCEDURE (DEVICES$INDEX,

STATUS);

DECLARE DEVICESINDEX BYTE; /* Input. */
DECLARE STATUS BYTE; /* Output. */
DECLARE RQD$PTR POINTER, /* Local. */

RQD BASED RQDS$PTR RQD$STRUCTURE,

RQESTRNS$PTR POINTER,

TRN$RQE BASED RQE$TRNS$PTR RQE$STRUCTURE,

RQESOUTS$PTR POINTER,

OUT$RQE BASED RQE$OUT$PTR RQES$STRUCTURE;

CALL REQUESTS$TAKES$POINTER
(DCM(DEVICE$INDEX) . RSPSTRNRND$QUEUESPTR,
@RQESTRNSPTR,
STATUS) ;
IF STATUS = READY
THEN DO;
RQD$PTR = DCM(DEVICE$INDEX).RQD$OUTSPTR;
CALL REQUEST$GIVES$POINTER (RQDSPIR,
@RQE$OUTSPTR,
STATUS);
CALL MOVE (16, RQESTRNSPTR, RQES$OUTSPTR);
CALL RELEASES$GIVESPOINTER (RQDSPIR,
STATUS)
IF STATUS = FIRSTS$GIVE
THEN /* Gave to an empty queue, SO... */
RQD.EMPTY$SIGNAL = EMPTYS$NOSLONGER;
CALL RELEASE$TAKESPOINTER
(DCM(DEVICESINDEX).RSPSTRNRNDSQUEUESPTR,
STATUS);
END /* THEN */;
RETURN;

END SERVESTURNAROUNDS$QUEUE;

A-26

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

SERVE$COMMANDSQUEUE

This subroutine of OUT$TASK transfers a command from the Command Wait
Queue to the output queue of the destination device.

SERVESCOMMANDSQUEUE: PROCEDURE (DEVICE$INDEX,

STATUS);

DECLARE DEVICES$INDEX BYTE; /* Input. */
DECLARE STATUS BYTE; /* Output. */
DECLARE RQD$PTR POINTER, /* Local. */

RQD BASED RQD$PTR RQD$STRUCTURE,

RQECOMPTR POINTER,

COMSRQE BASED RQE$COMSPTR RQE$STRUCTURE,

RQESOUTSPTR POINTER,

OUT$RQE BASED RQE$SOUTS$PTR RQE$STRUCTURE;

CALL REQUESTSTAKESPOINTER
(DCM(DEVICE$INDEX) . COM$RDY$QUEUESPTR,
@RQE$COMSPTR,
STATUS);
IF STATUS = READY
THEN DO;
RQD$SPTR = DCM(DEVICESINDEX).RQD$SOUTSPTR;
CALL REQUEST$GIVESPOINTER (RQD$PTR,
@RQESOUTSPTR,
STATUS);
CALL MOVE (16, RQE$COMSPTR, RQESOUTSPTR);
CALL RELEASE$GIVE$POINTER (RQD$PTR,
STATUS);
IF STATUS = FIRSTSGIVE
THEN /* Gave to an empty queue, SO... */
RQD.EMPTY$SIGNAL = EMPTY$NOSLONGER;
CALL RELEASE$GIVESPOINTER
(DCM(DEVICESINDEX).COMSRDYSQUEUESPTR ,
STATUS) ;
END /% THEN */;
RETURN;

END SERVE$COMMANDS$QUEUE;

A-27

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

OUT$TASK

This algorithm manages activity in the output request queues.

OUT$TASK: PROCEDURE;

DECLARE DEVICE$INDEX BYTE, /* Local. */
STATUS - BYTE,
RQD$PTR POINTER,
RQD BASED RQD$PTR RQD$STRUCTURE ;

/* Initialization. */

DO DEVICESINDEX = O TO DEVICES - 1;
IF DCM(DEVICE$INDEX).CHANNEL$STATE <> IDLE
THEN DO;
CALL INIT$REQUEST$QUEUE(DCM(DEVICES$INDEX).RQD$OUTS$PTIR,
DCM(DEVICES$INDEX).RQDSOUTSSIZE);
DCM(DEVICES$INDEX).CHANNELSSTATE =
SENDSACTIVE;
END /% THEN */;
END /* DO */;

/* Transfer request loop. */

DO FOREVER;
DO DEVICESINDEX = 0 TO DEVICES - 1;
RQDSPTR = DCM(DEVICESINDEX).RQDSINSPTR;
/* Read signal from in-RQD. */
IF RQD.FULLSSIGNAL = FULLSNOSLONGER
THEN DO;
DCM(DEVICESINDEX).CHANNELSSTATE =
DCM(DEVICESINDEX).CHANNELSSTATE OR RQD. FULL$SIGNAL
RQD.FULLSSIGNAL = NO$CHANGE;
END /* THEN */;
IF (DCM(DEVICES$INDEX).CHANNELSSTATE AND DYING) <> O
THEN CALL DYING$CHANNEL (DEVICES$INDEX);

ELSE DO;
IF DCM(DEVICESINDEX).CHANNELSSTATE AND SENDSACTIVE <> 0O
THEN DO; /* Look more closely at this channel. */
RQD$PTR = DCM(DEVICE$INDEX).RQDSOUTSPTR;
CALL QUEUESGIVES$STATUS(RQDSPIR,
STATUS);
IF STATUS = HALTED
THEN DCM(DEVICESINDEX).CHANNELSSTATE = DYING;
IF STATUS = FULL
THEN DCM(DEVICES$INDEX).CHANNELS$STATE =
DCM(DEVICE$INDEX) .CHANNELSSTATE AND SENDSFULL
/* Don't bother with trying to send on this
channel until it is no longer full. */;

IF STATUS = READY

THEN DO;
CALL SERVESTURNAROUNDSQUEUE (DEVICE$INDEX, STATUS);

IF STATUS = EMPTY

A-28

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

OUTS$TASK (continued)

THEN CALL SERVE$COMMAND$QUEUE (DEVICE$INDEX, STATUS);
END /* THEN */;
END /* THEN */;
END /* ELSE */;
END /* DO */;
END /* FOREVER */;

END OUTS$TASK;

A-29

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RECEIVE $COMMAND

This INSTASK subroutine transfers a command from an incoming Request
Queue to the port queue associated with the socket specified in the
command, first checking to make sure that the port is active. The
routine then generates an appropriate response and enters it in the
Response Turnaround Queue associated with the sending device.

RECEIVE $COMMAND: PROCEDURE (RQESINSPTR);

DECLARE RQE$INSPTR POINTER, /* Input. */
INSRQE BASED RQESINSPTR RQES$STRUCTURE;

DECLARE RQES$MSGSPTR POINTER, /* Local. */
MSG$RQE BASED RQE$MSG$PTR RQES$STRUCTURE,
LOCAL$DATASPTR POINTER,

STATUS BYTE;

IF LPT (IN$RQE.DEST$PORTSID).PORTSSTATE <> ACTIVE
THEN INSRQE.REQUEST = SYSTEMSPURTSINACTIVE;
ELSE DO; /* Deliver command. */
CALL REQUESTSGIVESPOINTER
(LPT(INSRQE.DEST$PORTSID) . PORT$QUEUESPTR,
@RQESMSGSPTR,
STATUS);
IF STATUS = FULL
THEN INSRQE.REQUEST = SYSTEMSMEMORYS$NAK;

ELSE DO;
CALL CONVERT$SYSTEMSADR (INSRQE.IDSSID,
IN$RQE .DATASPTR,
LOCALSDATASPTR);
CALL MOVE (INSRQE.DATA$LENGTH, /* Copies the whole */
RQE$MSGSPIR, /* buffer into the #*/
LOCALSDATASPTR); /* port queue. */

CALL RELEASE$GIVESPOINTER
(LPT(IN$RQE.DEST$PORTSID) . PORT$QUEUESPTR,
STATUS);

INSRQE.REQUEST = MSG$DELIVEREDS$COPY;

/* NOTE

Instead of copying the whole buffer, you may copy
only INSRQE.DATASPTR and INSRQE.DATASLENGTH. In this
case, INSRQE.REQUEST is set to MSGSDELIVERED$NOSCOPY.
*/
END /* ELSE */;
END /* ELSE */;

/* Create response. */

CALL REQUESTS$GIVESPOINTER
(DCM(INSRQE.SRCSDEVSID) . RSPSTRNRNDSQUEUESPTR,
@RQE $MSGSPTR,
STATUS);

CALL MOVE (16, RQESINSPTR, RQESMSGSPTR);

A-30

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RECEIVE$COMMAND (continued)

MSGSRQE .DEST$DEVSID = INSRQE.SRCS$DEVSID;
MSGS$RQE.SRCSDEVSID = INSRQE.DESTSDEVS$ID;
CALL RELEASE$GIVE$POINTER
(DCM(INSRQE.SRCSDEVS$ID) .RSPSTRNRNDSQUEUESPTR ,
STATUS);
RETURN;

END RECEIVE$COMMAND;

A-31

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RECEIVESRESPONSE

This INS$TASK subroutine transfers a response from an incoming Request
Queue to the response queue of the initiating task.

RECEIVESRESPONSE: PROCEDURE (RQE$INSPTR);

DECLARE RQE$INSPTR POINTER, /* Input. */
INSRQE BASED RQESINSPTR RQES$STRUCTURE;

DECLARE RQESRSPPTR POINTER, /* Local. */
STATUS BYTE;

CALL REQUEST$GIVE$POINTER
(RQL(INSRQE.SRCS$REQSID) .RSPSQUEUESPTR,
@RQE$RSPSPTR,
STATUS) ;
CALL MOVE (16, RQESIN$SPTR, RQESRSPS$PTR);
CALL RELEASE$GIVE$POINTER
(RQL(INSRQE.SRCS$REQSID) . RSPSQUEUESPIR,
STATUS);
RETURN;

END RECEIVE$RESPONSE;

A-32

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

INSTASK
This algorithm manages activity in the incoming Request Queues.

INSTASK: PROCEDURE;

DECLARE DEVICES$INDEX BYTE, /* Local. */
RQD$PTR POINTER,
RQD BASED RQD$PTR RQD$STRUCTURE,
RQESINSPTR POINTER,
INSRQE BASED RQES$INSPTR RQE$STRUCTURE,
STATUS BYTE;
DO FOREVER;

DO DEVICESINDEX = O TO DEVICES - 1;
RQD$PTR = DCM(DEVICESINDEX).RQD$SINSPTR;
IF RQD.EMPTYS$SIGNAL = EMPTYS$SNOSLONGER
THEN DO;
DCM(DEVICESINDEX).CHANNELSSTATE =
DCM(DEVICESINDEX) . CHANNELSSTATE OR RQD.EMPTYS$SIGNAL;
RQD.EMPTY$SIGNAL = NOSCHANGE;
END /% THEN */;
IF (DCM(DEVICES$INDEX).CHANNELS$STATE AND
(DYING OR IDLE) = 0)
AND (DCM(DEVICESINDEX).CHANNELSSTATE AND
RECEIVESACLIVE <> 0)
THEN DO; /* serve the input request queue. */
CALL REQUESTSTAKESPOINTER
(DCM(DEVICESINDEX).RQDSINSPIR,
@RQESINSPTR,
STATUS);
IF STATUS = HALTED
THEN DCM(DEVICES$INDEX).CHANNELSSTATE = DYING;
IF STATUS = EMPTY
THEN DCM(DEVICE$INDEX).CHANNELSSTATE =
DCM(DEVICESINDEX) .CHANNELSSTATE AND RECEIVE$SEMPTY
/* Don't bother with looking for input on this
channel until it becomes active again. */;

IF STATUS = READY
THEN DO;
IF INSRQE.REQUEST = SEND$COMMAND
THEN CALL RECEIVESCOMMAND (RQESINSPTR);
ELSE CALL RECEIVESRESPONSE (RQES$INSPTR);
CALL RELEASES$TAKE$POINTER
(DCM(DEVICE$INDEX).RQD$SINSPTR,
STATUS);
IF STATUS = FIRSTSTAKE
THEN /* Took from a full queue, so... */ DO;
RQDSPTR = DCM(DEVICESINDEX).RQDSOUTSPTR;
/* Post signal in out-RQD. */
RQD.FULL$SIGNAL = FULL$NOSLONGER;

A-33

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

INSTASK (continued)

END /* THEN */;
END /% THEN */;
END /* THEN */;
END /* DO */;
END /* FOREVER */;

END INS$TASK;

A-34

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

VIRTUAL LEVEL

STATUS CONSTANTS

The following values, along with values associated with RQESREQUEST, are

returned by the virtual level procedures to indicate the results of the
procedures.

DECLARE SYSTEMS$PORT$AVAILABLE LITERALLY '84H',
SYSTEM$PORT SUNKNOWN LITERALLY '81H',
SYSTEM$PORTSACTIVE LITERALLY '83H',
SYSTEM$PORTSINACTIVE LITERALLY '87H';

FIND$SYSTEMSPORT

This function provides you with the means to locate a socket by its
function~name.

FIND$SYSTEM$PORT: PROCEDURE (FUNCTIONSNAME,
SOCKET$DEVICE,
SOCKET$PORT,
STATUS);

DECLARE FUNCTIONSNAME WORD; /* Input. */

DECLARE SOCKET$DEVICE IDENTIFIER, /* Output. */
SOCKETS$PORT IDENTIFIER,
STATUS BYTE;

DECLARE SOCKET$INDEX BYTE; /* Local. */

DO SOCKET$INDEX = O TO SOCKETS - 1;
IF (FUNCTIONSNAME = DSDT(SOCKET$INDEX).FUNCTIONSNAME)
THEN DO;
STATUS = SYSTEMSPORTSAVAILABLE;
SOCKETS$DEVICE = DSDT(SOCKETS$INDEX).DESTS$DEVSID;
SOCKETSPORT DSDT(SOCKET$INDEX).DEST$PORTSID;
RETURN;
END /* THEN */;
END /* DO */;
STATUS = SYSTEM$PORTSUNKNOWN;
RETURN;

END FIND$SYSTEM$PORT;

A-35

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

TRANSFER$BUFFER

This function causes generation of a command to transfer a buffer to a
destination device and port. The command is queued in the Command Wait
Queue of the destination device. The procedure waits for a reply before
relinquishing control.

TRANSFERSBUFFER: PROCEDURE (BUFFERSPIR,

BUFFERSLENGTH,
IDSS$ID,
SOCKET$DEVICE,
SOCKET$PORT,
RQLSID,
STATUS);
DECLARE BUFFER$PTR POINTER, /* Input. */
BUFFER$LENGTH WORD,
IDS$ID IDENTIFIER,
SOCKET$DEVICE IDENTIFIER,
SOCKET$PORT IDENTIFIER,
RQLSID IDENTIFIER;
DECLARE STATUS BYTE; /* Output. */
DECLARE RQE$PTR POINTER, /* Local. */
RQE BASED RQE$PTR RQESSTRUCTURE,
CALL$STATUS BYTE;

CALL REQUEST$GIVES$POINTER
(DCM(SOCKET$DEVICE) . COMSRDY$QUEUESPTR,

RQES$PIR,
CALL$STATUS) ;
RQE . REQUEST = SEND$COMMAND;
RQE .SRC$REQSID = RQLS$ID;
RQE .DEST$DEVS$ID = SOCKET$DEVICE;
RQE.DEST$PORTSID = SOCKETSPORT;
RQE . SRC$DEVSID = HOME$DEVICE;
RQE . IDSSID = IDS$ID;
RQE.OWNERSDEVSID = HOMESDEVICE;
CALL CONVERT$LOCALSADR (IDSS$ID,
BUFFERSPIR,
RQE .DATASPTR);
RQE . DATASLENGTH = BUFFER$LENGTH;

CALL RELEASE$GIVE$POINTER
(DCM(SOCKETS$SDEVICE) .COMSRDY$SQUEUESPIR,
CALL$STATUS);

CALL TIMESWAIT (TIMES$DELAY, RQLSID);
CALL REQUEST$TAKE$POINTER (RQL(RQL$ID).RSP$SQUEUESPTR,
RQE$PTR,

CALLS$STATUS);
IF CALLS$STATUS = EMPTY

A-36

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

TRANSFERSBUFFER (continued)

THEN /* No response came back within TIME$DELAY period. */
DO;
DCM(SOCKETS$DEVICE).CHANNELSSTATE = DYING;
STATUS = DEADSDEVICE;
END /% THEN */;
ELSE DO;
STATUS = RQE.REQUEST;
CALL RELEASESTAKESPOINTER (RQL(RQL$ID).RSPSQUEUESPTR,
CALL$STATUS);
END /* ELSE */;
RETURN;
END TRANSFERSBUFFER;

A-37

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

ACTIVATES$SYSTEMSPORT

This function enables receipt of messages at a local port. If the port
is not currently active, the address of the port queue is returned.

ACTIVATE$SYSTEM$PORT: PROCEDURE (FUNCTION$NAME,

PORT$QUEUESPTR,
STATUS);
DECLARE FUNCTION$NAME WORD, /* Input. */
PORTSQUEUESPTR POINTER;
DECLARE STATUS BYTE; /* Output. */
DECLARE PORT$INDEX BYTE; /* Local. */

DO PORTSINDEX = O TO PORTS - 1;
IF FUNCTIONSNAME = LPT(PORT$INDEX).FUNCTION$NAME
THEN IF LPT(PORT$INDEX).PORTSSTATE = ACTIVE
THEN DO;
STATUS = SYSTEM$PORTSACTIVE;
RETURN;
END /* THEN */;
ELSE DO;
STATUS = SYSTEM$PORTSAVAILABLE;
PORT$QUEUESPTR = LPT(PORTSINDEX).PORTSQUEUESPIR;

LPT(PORTS$INDEX).PORTSSTATE = ACTIVE;
RETURN;

END /* ELSE */;
END /* DO */;
STATUS = SYSTEM$PORT$UNKNOWN;
RETURN;

END ACTIVATE$SYSTEM$PORT;

A-38

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

DEACTIVATE$SYSTEM$PORT

This function terminates reception of messages at a port.

DEACTIVATE$SYSTEM$PORT: PROCEDURE (FUNCTIONS$NAME,
STATUS);

DECLARE FUNCTION$NAME WORD; /* Input. */
DECLARE STATUS BYTE; /* Output. */
DECLARE PORT$INDEX BYTE;

DO PORTSINDEX = O TO PORTS - 1;
IF FUNCTIONSNAME = LPT(PORTS$SINDEX).FUNCTIONSNAME
THEN IF LPT(PORT$INDEX).PORTSSTATE = INACTIVE
THEN DO;
STATUS = SYSTEM$PORTS$INACTIVE;
RETURN;
END /* THEN */;
ELSE DO;
STATUS = SYSTEMSPORTSAVAILABLE;
LPT(PORTSINDEX).PORTSSTATE = INACTIVE;
RETURN;
END /* ELSE */;
END /* DO */;
STATUS = SYSTEM$PORTSUNKNOWN;
RETURN;

END DEACTIVATES$SYSTEMSPORT;

A-39

MULTIBUS INTERPROCESSOR PROTOCOL (MIP)

RECEIVES$BUFFER

This function retrieves a buffer from a port queue if there is a buffer
in the queue.

RECEIVE$BUFFER: PROCEDURE (PORT$QUEUESPIR,

USER$BUFFERSPTR,
STATUS);
DECLARE PORT$QUEUE$PTR POINTER, /* Input. */
* RQD BASED PORT$QUEUESPTR RQD$STRUCTURE;
DECLARE USER$BUFFERSPTR POINTER, /* Output. */
STATUS BYTE;
DECLARE RQE$PTR POINTER; /* Local. */
CALL REQUESTS$TAKES$POINTER (PORT$QUEUESPTR,
RQESPTR,
STATUS);
IF STATUS = READY
THEN DO;
CALL MOVE (RQD.RQES$LENGTH,
RQES$PTR,
USER$BUFFER$PTR) ;
CALL RELEASESTAKE$POINTER (PORT$QUEUESPTR,
STATUS);

END /* THEN */;
RETURN;

END RECEIVES$BUFFER;

A-40

APPENDIX B. COMMUNICATION WITH AN iSBC® 550 ETHERNET*
COMMUNICATIONS CONTROLLLER

The MMX 86 and MMX 88 software each allow your application system to
communicate with an iSBC 550 Ethernet controller. The purpose of this
appendix is to provide you with instructions for building an application
system that communicates with an iSBC 550 Ethernet controller. This
information falls into the following categories:

o A list of the Intel hardware and software products that you can
use to build the application system.

e High-level directions for assembling the hardware.

® Special instructions for writing iRMX 86 and iRMX 88 tasks that

can communicate with an iSBC 550 Ethernet Communications
Controller.

e How to configure either the iRMX 86 Operating System or the
iRMX 88 Executive and either MMX 86 or MMX 88, respectively, for
communication with an Ethernet controller.

This appendix is designed to serve primarily as an overview. Although it

contains some detailed information, when feasible it refers to other
manuals rather than repeating information described elsewhere.

ETHERNET-RELATED INTEL HARDWARE AND SOFTWARE PRODUCTS

Figure B-~1 shows the hardware of a system that communicates with the
Ethernet network. In the figure and throughout the remainder of this
appendix, assume, for simplicity, that the primary hardware elements of
this system are an iSBC 86/12A or iSBC 86/30 computer (the host
computer), an iSBC 550 Ethernet communications controller, and an ICS 80
system chassis. Note, however, that you can use any iAPX 86- or

iAPX 88-based microcomputer as the host computer, and you can use any
chassis that incorporates the Multibus interface.

The primary software elements of the system are your application tasks,
the iRMX 86 Operating System or iRMX 88 Executive, and the MMX 86 or
MMX 88 software. These are shown in Figure B-2.

The hardware and software interact as follows:
® The Multibus interface is the hardware link between the iSBC 550

Ethernet communications controller and the iSBC 86/12A or
iSBC 86/30 single board computer.

*Ethernet 1s a trademark of the Xerox Corporation.

B-1

COMMUNICATION WITH AN 1SBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

iSBC® 550 SerDes Board

Transceiver

/I MULTIBUS® Intertace
: ®
iSBC o?6/12A iSBC® 550
: Processor
iSBC® 86/30
Board Board
Transceiver
Cable
X-122
Ethernet
Coaxial
Cable

Figure B-1. Hardware for a System Communicating with Ethernet

(N\

Application Task
iSBC® 86/12A
or iRMX™ 86 or iRMX™ 881/0 System
iSBC® 86/30 with the iSBC® 550 device driver
Board e
iMMX™ 860r iMMX™ 88
\ Tt _J
- 4 L ~N
MIP Boot
isBBg:ds: 0 Extgrnal Data Link
Data Link
\ it J
/‘___Al_/_\ Ethernet
network
X-123

Figure B-2. Software for a System Communicating with Ethernet

B-2

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

e The iRMX 86 Basic or Extended I/0 System or the iRMX 88 I/O
System 1s the software interface between the tasks of your
application system and the Ethernet network. Tasks communicate
through the Ethernet network by:

1. Explicitly formatting a message in an iRMX 86 segment or
iRMX 88 memory block. This message tells the iSBC 550
Ethernet communications controller what actions to
perform.

2. Using the system calls of the iRMX 86 Basic or Extended
I/0 Systems (your choice) or the iRMX 88 I/0 System to
read information from or write information to the iSBC
550 Ethernet controller board, which then communicates
with the network.

The interaction between the host computer and the communications
controller is different than the interaction between a host computer and
a non-intelligent controller in several respects:

o All the information sent between the host computer and the
communications controller is passed via MMX 86 or MMX 88
software. However, your application tasks do not explicitly
invoke MMX 86 or MMX 88 system calls. Instead, your tasks invoke
only iRMX 86 or iRMX 88 I/0 system calls that, in turn, use MMX
86 or MMX 88, respectively, to pass information.

° Your tasks can pass only information that is formatted for the
iSBC 550 controller. The formats for the various iSBC 550
commands (CONNECT, DISCONNECT, ADDMCID, DELETEMCID, TRANSMIT,
SUPPLYBUF, READ, and READC) are defined in the ETHERNET
COMMUNICATIONS CONTROLLER PROGRAMMER'S REFERENCE MANUAL.

e Your application system must include either the iRMX 86 Operating
System and MMX 86 or the iRMX 88 Executive and MMX 88. This
appendix provides a sample configuration of each. These samples,
which appear in the section entitled "Configuring, Linking, and
Locating an I/0 System for use with iSBC 550 Controllers,” will
simplify your configuration process.

PUTTING THE HARDWARE TOGETHER

There are several sources of information about assembling your hardware.
The principal sources are:

e 1iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER HARDWARE REFERENCE
MANUAL

e 1SBC 86/12A HARDWARE REFERENCE MANUAL or iSBC 86/14 AND
iSBC 86/30 SINGLE BOARD COMPUTER HARDWARE REFERENCE MANUAL

e iRMX 86 INSTALLATION GUIDE or iRMX 88 INSTALLATION INSTRUCTIONS
e The configuration chapter (Chapter 7) of this manual.

B-3

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

You should also consult the hardware reference manuals for any other
Intel hardware products that you are using.

WRITING TASKS THAT COMMUNICATE WITH AN ETHERNET NETWORK

The iSBC 550 Ethernet communications controller provides only basic
services. It transmits information to the Ethernet network, and it
receives information from the Ethernet network. It also does some
message filtering by accepting from the network only messages of the
requested Ethernet TYPE code.

Although the iSBC 550 controller does transmit, receive, and filter
messages, there are many services that it does not perform. For example,
it does not:

° Decide which task in your system is to receive a particular
message.

° Add or remove header information that is required in each
iSBC 550 request.

If your application system requires either of these or other similar
high-level services, your tasks must explicitly provide the services.

For this reason, the remainder of this appendix utilizes a collection of
three tasks to manage the iSBC 550 controller. The three tasks are an
Initialization Task, a Reader Task, and a Writer Task. These tasks will
be called Ethernet tasks, to distinguish them from the other tasks of an
application system. After presenting some background information, this
appendix describes the duties of each of the Ethernet tasks.

The Ethernet tasks insulate the rest of your application system from the
details of the iSBC 550 controller. For example, the other tasks of your
application system can send and receive (via iRMX 86 mailboxes or iRMX 88
exchanges) messages from the Ethernet network without having to add or
remove the special header information required by the iSBC 550 Ethernet
controller.

Another benefit of using Ethernet tasks is that you can implement
high-level features on top of the Ethernet protocol. For example, you
can design the Reader Task to examine a particular field of a received
message and then route the message to the proper task within your

application. If desired, you can also build special protocols to perform
other duties.

The Ethernet tasks of your iRMX 86— or iRMX 88-based application system
can communicate with an Ethernet network by using the system calls of the
iRMX 86 Basic I/0 System, the iRMX 86 Extended I/0 System, or the iRMX 88
I/0 System. Whenever one of your tasks uses an I/0 System call to read
or write to an Ethernet network, the following events occur:

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

e The I/0 System uses MMX 86 or MMX 88 to communicate with the
iSBC 550 communications controller.

° The iSBC 550 communications controller communicates directly with
the Ethernet network.

Although the process requires MMX 86 or MMX 88, your Ethernet tasks do
not explicitly invoke any MMX 86 or MMX 88 procedure calls. The I/0
System that you have chosen will invoke any MMX 86 or MMX 88 procedure
calls that are required. Of course, MMX 86 or MMX 88 services are still
available to your application tasks.

However, whenever one of your Ethernet tasks communicates with the

iSBC 550 communications controller by making calls to the I/0 System,
your task must explicitly set up an iSBC 550 request block that tells the
iSBC 550 controller what to do.

BUILDING AN iSBC 550 REQUEST BLOCK

Whenever one of your Ethernet tasks sends information to (or receives
information from) the iSBC 550 communications controller, the task must
use an I/0 System call to pass an iSBC 550 request block to the iSBC 550
controller. This request block is subject to two constraints:

1. With one exception, the request block must adhere to the format
described in the ETHERNET COMMUNICATIONS CONTROLLER PROGRAMMER'S
REFERENCE MANUAL. The exception is that your task need not fill
in the RESPONSE SOCKET and PROCESSOR ID fields. The I/0 System
fills in these fields. '

2. The iSBC 550 request block must be embedded in an iRMX 86
segment, with the first byte of the request block being the first
byte of the segment or block. This means that your task cannot
use an arbitrary block of memory as an iSBC 550 request block.
Instead, the task must first create an iRMX 86 segment or
allocate an iRMX 88 memory block and then construct the request
block within the segment.

SENDING THE REQUEST BLOCK TO THE iSBC 550 CONTROLLER

Once your task has built the request block, it must send the block to the
iSBC 550 controller. It does so by means of the RQ$ASWRITE system call
(of the iRMX 86 Basic I/0 System), the RQ$SSWRITESMOVE system call (of
the iRMX 86 Extended I/0 System), or the DQSWRITE system call (of the
iRMX 88 I/0 System), regardless of which iSBC 550 command is indicated in
the request block. (Eight i1SBC 550 commands are available. They are

CONNECT, DISCONNECT, ADDMCID, DELETEMCID, TRANSMIT, SUPPLYBUF, READ, and
READC.)

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

For any command that requires a response from the iSBC 550 controller,
your task can find the response embedded in the same request block that
was sent to the controller. If you have selected the iRMX 86 Basic I/0
System, and the Writer Task is handling many write requests, the IORS's
that are returned to the task might be returned in a different order than
the order in which the corresponding RQSASWRITE calls were issued. In
this case, the Writer Task can find the correct token for each request
block segment it has sent by looking in the BUFF$P field of the IORS that
is returned in the designated response mailbox. The address of the
segment is IORS.BUFF$P. If you have selected the iRMX 86 Extended I/0
System or the iRMX 88 I/0 System, the request blocks are returned in the
same order in which they were sent, so it is not necessary for the
requesting task to identify the request blocks that are returned.

When your Reader or Writer Task uses a writing system call to transfer a
request block to the iSBC 550 controller, the task can receive exception
codes other than those returned by the I/0 System. The iRMX 86 tasks can
receive MMX 86 exception codes and the iRMX 88 tasks can receive MMX 88
exception codes.

THE ETHERNET TASKS' ENVIRONMENT AND DUTIES

The three subsections of this section describe, separately for each of
the I/0 Systems of the iRMX 86 Operating System and iRMX 88 Executive,
both the structure of the Ethernet tasks and special use restrictions
regarding the sysyem calls of that I/0 System. Many readers will need to
read only one of these sections. Note that, in each high-level task
description, some important elements, such as exception handling, have
been omitted. This is intentional, so that you can more easily see the
structure of the Ethernet tasks.

Using the iRMX 86 Basic I/0 System

The following sections describe the Ethernet tasks and use restrictions
pertaining to the iRMX 86 Basic I/0 System.

The Ethernet Tasks. Ethernet Tasks that use the Basic I/0 System have
the following structures:

° Initialization Task
1. Attach the iSBC 550 controller.

2. Create the appropriate file on the device, using the
device token obtained in step 1.

3. Open the file for reading and writing, using the
connection obtained in step 2.

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

4.

7.

Create a segment, build an iSBC 550 CONNECT request block
in the segment, and use the RQ$ASWRITE system call to
send the segment to the iSBC 550 controller.

Create the Reader Task. Pass the connection to the

Reader Task.

Create the Writer Task. Pass the connection to the

Writer Task.

Suspend or delete itself.

° Reader Task

1.

40

5.

Create several segments containing iSBC 550 SUPPLYBUF
request blocks and use the RQ$SASWRITE system call to send
them to the iSBC 550 controller, with the same response
mailbox indicated in each call.

Wait at the response mailbox.

When a request block segment arrives at the response
mailbox, the Reader Task creates a segment, copies the
information from the block into the new segment, and
sends the new segment to the appropriate application
mailbox.

Call RQSASWRITE to send the SUPPLYBUF request block back
to the iSBC 550 controller, again indicating the same
response mailbox.

Go to step 2.

° Writer Task

1.

40

5.

Wait at a previously-designated reception mailbox for
write requests from application tasks and for returned
1SBC 550 request block segments.

If a write request from an application task arrives at
the mailbox, go to step 3. If an IORS arrives at the
mailbox, go to step 5.

Create a segment, and build an iSBC 550 TRANSMIT request
block with the data that is to be written. Specify that
the segment is to be returned to the reception mailbox,

and call RQSASWRITE to send the segment to the iSBC 550

controller.

Go to step 1.

Delete the IORS and write request segment, and go to step l.

Assume, when reading the following section about using the Basic I/0

System, that we are referring to a system in which Ethernet tasks are being

utilized as just outlined.

B-7

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

‘Use Restrictions. This section of the appendix assumes that you are
already familiar with the iRMX 86 Basic I/0 System. Consequently, rather
than providing a tutorial on the Basic I/0 System, this section of the
appendix discusses only matters relating directly to using the iSBC 550
Ethernet controller. Reference material concerning the Basic I/0 System
is divided between the iRMX 86 BASIC I/0 SYSTEM REFERENCE MANUAL and the
iRMX 86 SYSTEM PROGRAMMER'S REFERENCE MANUAL.

The Basic I/0 System, when used for communication with an iSBC 550
controller, has different restrictions or behaves differently than it
does in systems that do not support such communication. The differences
fall into three areas.

First, the software link between the Basic I/0 System and the iSBC 550
controller is implemented as a physical file. This means that your task
should not use any of the system calls reserved for use only with stream
files and/or named files. For example, if your task invokes the
RQ$ASGETSPATHSCOMPONENT system call for this file, the Basic I/0 System
returns an E$SUPPORT exception code.

Second, even among the system calls that generally are useful for

physical files, a few behave differently when used with the Ethernet
controller. These are RQSASREAD, RQSASSPECIAL, RQSASSEEK, RQSASTRUNCAIE,

RQSASGETSCONNECTIONSSTATUS, and RQSASGETSFILESSTATUS. The behavioral
differences are as follows:

® If your task attempts to use the RQSASREAD system call, the Basic
I/0 System responds as if the task had issued an RQ$ASWRITE
system call. The only prerequisite of the RQSASREAD system call
is that the connection be open for reading before your task
invokes RQS$SASREAD.

e If your task attempts to use the RQSASSPECIAL, RQ$SASSEEK, or

RQSASTRUNCATE system call, the Basic I/0 System returns an ES$IDDR
exception code, indicating that these system calls are not
supported on the Ethernet controller.

o If your task invokes the RQSASGETSFILES$STATUS or the
RQSASGETSCONNECTIONSSTATUS system call, some of the returned
information is undefined. For the RQSASGETSFILESSTATUS system
call, the following fields are undefined:

flags
dev$gran
dev$size

For the RQSASGETSCONNECTIONSSTATUS system call, the following
fields are undefined:

flags
file$ptr
access

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

Third, among the system calls that behave as expected, some of the input
parameters have special restrictions:

RQSASATTACHSFILE -- The user and subpath parameters are ignored.

RQSASCREATESFILE -- The user, subpath, access, granularity, size,
and mustS$create parameters are ignored. The prefix parameter
must be a token for the device connection for the iSBC 550
controller.

RQSASREAD and RQSASWRITE —- The buffer pointer must be a token
for an iRMX 86 segment containing the request block. The count
parameter is ignored, because the iSBC 550 controller ascertains
the count from the request block.

All other Basic I/0 System calls work exactly as expected.

Using the iRMX 86 Extended I1/0 System

The following sections describe the Ethernet tasks and use restrictions
pertaining to the iRMX 86 Extended I/O System.

The Ethernet Tasks. Ethernet Tasks that use the Extended I/0 System have

the following structures:

Initialization Task
1. Attach the iSBC 550 controller.

2. Create the appropriate file on the device, using the
device token obtained in step 1.

3. Open the file for reading and writing, using the
connection obtained in step 2.

4. Create a segment, build an iSBC 550 CONNECT request block
in the segment, and use the RQSWRITESMOVE system call
to send the segment to the iSBC 550 controller.

5. Create the Reader Task. Pass the connection to the
Reader Task.

6. Create the Writer Task. Pass the connection to the
Writer Task.

7. Suspend or delete itself.
Reader Task

l. Create a segment. (This is segment A.)

B-9

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

2., Build an iSBC SUPPLYBUF request block in segment A, and

call RQSSSWRITESMOVE to send it to the iSBC 550
controller.

3. (When control returns,) create another segment —--
segment B -- of the required size, copy the data from
segment A into segment B, and call RQ$SENDSMESSAGE to
send segment B to the appropriate mailbox.

4. Go to step 2.
e Writer Task

1. Wait at a previously-designated reception mailbox for
write requests from application tasks.

2. When a write request arrives, create a segment of the
appropriate size, build an iSBC 550 TRANSMIT request
block there with the data that is to be written, and call
RQ$SSWRITESMOVE to send the segment to the iSBC 550
controller.

3. Go to step 1.

Assume, when reading the following section about using the Extended I/0

System, that we are referring to a system in which Ethernet tasks are
being utilized as just outlined.

Use Restrictions. This section of the appendix assumes that you are
already familiar with the iRMX 86 Extended I/0 System. Consequently,
rather than providing a tutorial on the Extended I/0 System, this section
of the appendix only discusses matters relating directly to using the
iSBC 550 Ethernet controller. Reference material concerning the Extended

I/0 System is contained in the iRMX 86 EXTENDED I/0 SYSTEM REFERENCE
MANUAL.

The Extended 1I/0 System, when used for communication with an iSBC 550
controller, has different restrictions or behaves differently than it
does in systems that do not support such communication. The differences
fall into three areas.

First, the software link between the Extended I/0 System and the iSBC 550
controller is implemented as a physical file. This means that your task
should not use any of the system calls reserved for use only with stream
files and/or named files. For example, if your task invokes the
RQ$SSCHANGESACCESS system call for this file, the Extended I/0 System
returns an E$SUPPORT exception code.

Second, even among the system calls that generally are useful for
physical files, a few behave differently when used with the Ethernet
controller. These are RQ$SSREADSMOVE, RQ$SSSPECIAL, RQSSS$SSEEK,
RQ$SSTRUNCATE, RQS$SSSGETSCONNECTIONSSTATUS, RQSSSGETSFILESSTATUS. The
behavioral differences are as follows:

B-10

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

If your task attempts to use the RQ$SSREADSMOVE system call, the
Extended I/0 System responds as if the task had issued an
RQSSSWRITESMOVE system call. The only prerequisite of the
RQS$SSREADSMOVE system call is that the connection be open for
reading before your task invokes RQSREADSMOVE.

If your task attempts to use the RQ$SSSPECIAL, RQ$S$SSEEK, or
RQS$SSTRUNCATESFILE system call, the Extended I/0 System returns
an ESIDDR exception code, indicating that these system calls are
not supported on the Ethernet controller.

If your task invokes the RQ$SSGETSFILE$STATUS or the

RQSSSGETSCONNECTIONSSTATUS system call, some of the returned
information is undefined. For the RQ$SSGETSFILESSTATUS system
call, the following fields are undefined:

dev$gran file$blocks vol$size
dev8size vol$name accessor$count
file$gran vol$gran owner$access
owner$id

For the RQ$SSGETSCONNECTIONSSTATUS system call, the following
fields are undefined:

flags num$buf
file$ptr buf$size
access

Third, among the system calls that behave as expected, some of the input
parameters have special restrictions:

RQ$SSREADSMOVE —- The buf$ptr parameter must be a token for an
iRMX 86 segment containing the request block. The bytes$desired
parameter is ignored because the iSBC 550 controller ascertains
the number of bytes desired from the request block. For similar
reasons, the bytes$read output parameter is undefined.

RQ$SSSWRITESMOVE —-— The buf$ptr parameter must be a token for an
iRMX 86 segment containing the request block. The count
parameter is ignored because the iSBC 550 controller ascertains
the count from the request block. For similar reasons, the
bytesS$read output parameter is undefined.

All other Extended I/0 System calls work exactly as expected.

Using the iRMX 88 I/0O System

The following sections describe the Ethernet tasks and use restrictions
pertaining to the iRMX 88 I/0 System.

B-11

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

The Ethernet Tasks. Ethernet Tasks that use the iRMX 88 I/O System have

the following structures:

° Initialization Task

1.

2.

3.

Obtain a connection to the appropriate file by calling
DQSCREATE or DQSATTACH.

Open the file for reading and writing, using the
connection obtained in step 1.

Obtain a memory block by calling DQSALLOCATE, build an
iSBC 550 CONNECT request block in the memory, and call
DQSWRITE to send the request block to the iSBC 550
controller.

Create the Reader Task.

Create the Writer Task.

Suspend or delete itself.

® Reader Task

1.

2.

4,

Call DQSALLOCATE to obtain a block of memory. (This is
memory block A.) :

Build an iSBC 550 SUPPLYBUF request block in memory block
A, and call DQSWRITE to send it to the iSBC 550
controller. Reserve 15 bytes for the message header at
the beginning of memory block A, in addition to the 12
bytes that are reserved in any SUPPLYS$BUF request. When
calling DQSWRITE, set the length parameter to reflect the
size of the entire message, including headers.

(When control returns,) call DQSALLOCATE to obtain a
block of memory —— memory block B -- of the required

size, build an iRMX 88 message in memory block B, copy
the data from memory block A to memory block B, and call
RQSEND to send memory block B to the appropriate exchange.

Go to step 2.

° Writer Task

1.

Wait at a previously-designated exchange for write
requests from application tasks.

B-12

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

2. When a write request arrives, call DQSALLOCATE to obtain a
block of the appropriate size, build an iSBC 550 TRANSMIT
request block there with the data that is to be written,
and call DQSWRITE to send the request to the iSBC 550
controller. Reserve 15 bytes for the message header at
the beginning of the memory block, in addition to the 12
bytes that are reserved in any TRANSMIT request. When
calling DQSWRITE, set the length parameter to reflect the
size of the entire message, including headers.

3. Go to step 1.

Use Restrictions. This section of the appendix assumes that you are
already familiar with the iRMX 88 I/0 System. Consequently, rather than
providing a tutorial on the iRMX 88 I/0 System, this section of the
appendix only discusses matters relating directly to using the iSBC 550
Ethernet controller. Reference material concerning the iRMX 88 I/0 System
is contained in the iRMX 88 REFERENCE MANUAL.

The iRMX 88 I/0 System, when used for communication with an iSBC 550
controller, has different restrictions or behaves differently than it does

in systems that do not support such communication. The differences fall
into three areas.

First, the software link between the iRMX 88 I/O System and the iSBC 550
controller is implemented as a physical file. This means that your task
should not use any of the system calls reserved for use only with named
files. For example, if your task invokes the DQSRENAME system call for
this file, the iRMX 88 I/0 System returns an E$SUPPORT exception code.

Second, even among the system calls that generally are useful for physical
files, a few behave differently when used with the Ethernet controller.
These are DQSREAD, DQS$SPECIAL, and DQSSEEK. The behavioral differences
are as follows:

® If your task attempts to use the DQSREAD system call, the iRMX 88

I/0 System responds as if the task had issued an DQSWRITE system
call. The only prerequisite of the DQSREAD system call is that
the connection be open for reading before your task invokes

DQSREAD.
. If your task attempts to use the DQ$SPECIAL or DQSSEEK system
call, the iRMX 88 I/O System returns an E$IDDR exception code,

indicating that these system calls are not supported on the
Ethernet controller.

° If your task invokes the DQ$GETSCONNECTIONSSTATUS system call, the
following fields are undefined:

access file$ptr seek
All other iRMX 88 I/0 System calls work exactly as expected.
Third, RQFORMAT is not supported.

B-13

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

CONFIGURING, LINKING, AND LOCATING AN iRMX 86 OR 88 I/0O SYSTEM FOR USE
WITH iSBC 550 CONTROLLERS

The remainder of this appendix is devoted to describing the
configuration, linking, and locating processes required to prepare an
iRMX 86 or 88 I/0 System for use with iSBC 550 controllers. Each of the
following sections on configuring an iRMX 86 or 88 I/0 System assumes
that you are familiar with the general configuration process for that
operating system. Consequently, these sections focus on Ethernet-related
matters, insofar as such matters can be separated from other
configuration issues. If you need to learn more about configuring an
iRMX 86 or 88 system, refer to the iRMX 86 CONFIGURATION GUIDE or the
iRMX 80/88 INTERACTIVE CONFIGURATION UTILITY USER'S GUIDE.

In the remainder of this appendix, there are several references to

device-unit information blocks and device information tables. You don't
necessarily have to know the meanings of these terms, but if you do need

to, descriptions of them and other matters pertaining to device drivers
can be found in the GUIDE TO WRITING DEVICE DRIVERS FOR THE iRMX 86 and
iRMX 88 I/0 SYSTEMS.

CONFIGURING AN iRMX 86 I/0O SYSTEM FOR USE WITH iSBC 550 CONTROLLERS

Whether you are planning to use the Extended I/0 System or not, you must
configure the Basic I/0 System. And it is in the configuration module
for the Basic I/0 System that you put the descriptive information about
the iSBC 550 device. All that is needed in the configuration of the

Extended I/0 System, assuming that you have chosen to use it, is a
4#DEV_INFO BLOCK macro for the iSBC 550 device.

Four INCLUDE files are used for adding configuration information
concerning the iSBC 550 Ethernet controller to the Basic I/0 System's
standard device configuration file IDEVCF.A86. They are:

I550.EXT External declarations of the names of the device
driver routines that appear in the DUIB (device-unit
information block) for the iSBC 550 device.

IEDUIB.LIT A sample DUIB for an iSBC 550 device-unit.

IEDINF.INC A declaration of the device information table
structure for the iSBC 550 device.

IEDINF.LIT A sample device information table for the iSBC 550
device.

The data in both IEDUIB.LIT and IEDINF.LIT can be modified to fit your
special needs.

The DUIB for the iSBC 550 device is as follows:

B-14

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

define duib

device name,
file drivers,
functions,

flags,

device gran,

low device size,
high device size,
device number,
unit number,
device unit number,
15508init,
15508finish,
15508queue,
i5508%cancel,
device info,

unit info,

update timeout,
number buffers,
priority

RRRRRDDORXDPDRPRRRDPDRARRRAADIODRRAN

where the fields that you may or must change are:

device name A one-~ to fourteen-character name that is unique

among all device names in the system. This name,
which must be preceded and followed by single
quotes, is used in the call to
RQSASPHYSICALSATTACHSDEVICE, in order to identify
the device to be attached.

device number A BYTE containing the number of the device
associated with this DUIB.

device unit number A BYTE containing the number of the device-unit
associated with this DUIB.

i5508init A WORD containing the base address of the init$io
routine that the I/0 System calls.

i5508finish A WORD containing the base address of the
finish$io routine that the I/0 System calls.

15508queue A WORD containing the base address of the queue$io
routine that the I/0 System calls.

i550$%cancel A WORD containing the base address of the
cancel$io routine that the 1I/0 System calls.

device info A POINTER to the device information table for the
iSBC 550 device.

The device information table has the following format:

B-15

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

define devinf

init start addr
host device id

550 device id

RQ to 550

RQ from 550

IDS base strt addr
IDS base length
550 interrupt port
550 port name

host port info
timeout

priority

550 interrupt type

RMRPD R R RRRRR

.where the fields that you may or must change are as follows. An asterisk
(*) indicates that the same value must also appear in the iMMX 800
configuration file for the "host device"”, that is, the device with which
the iSBC 550 device communicates.

init start addr A POINTER to the start address of the iSBC 550
communication area that is used for
initialization. This address is a hardware
configuration option on the iSBC 550 controller.
See the ETHERNET COMMUNICATIONS CONTROLLER
PROGRAMMER 'S REFERENCE MANUAL for details
concerning this address.

host device id* A BYTE containing the device ID for the host

(iSBC 86/12A or 86/30) device. This ID value goes
into DSDT arrays.

550 device id* A BYTE containing the device ID for the iSBC 550
device. This ID value goes into DSDT arrays.

RQ to 550% A POINTER to the request queue for communication
from the host device to the iSBC 550 device. This
pointer goes into the DCM$ROM array.

RQ from 550* A POINTER to the request queue for communication
from the 1SBC 550 device to the host device. This
pointer goes into the DCM$ROM array.

IDS base strt addr* A BYTE containing the start address of the IDS
managed by the host device, as a multiple of 4K.
This value goes into the IDST array.

IDS base length* A BYTE specifying the size of the IDS managed by
the host device, as a multiple of 4K.

B-16

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

550 interrupt port A WORD containing the I/0 port address used for
waking up the i1SBC 550 device during
initialization. This port is a hardware
configuration option on the iSBC 550 controller.
See the 1SBC 550 ETHERNET COMMUNICATIONS
CONTROLLER HARDWARE REFERENCE MANUAL for details
concerning this port. This value goes into the
SFT array.

550 port name* A WORD containing the system port name of the
iSBC 550 port to which the iMMX 800 software will
deliver messages. This name goes into the DSDT
arrays.

host port info* A WORD containing the socket on the host computer
to which the 1iSBC 550 device will send messages.
A socket consists of a device ID, port ID pair.
For example, if the host device's ID were 1 and
the port ID on the host device were 2, the socket
would be 0102H. These device ID and port ID
values go into an entry in the DSDT array.

timeout A BYTE containing the time, in 52-millisecond
units, that the 1SBC 550 controller will wait for
a response from MMX 86 before declaring the host
device dead. The recommended value of OFFH
indicates that the iSBC 550 device will wait
forever.

priority A BYTE containing the priority of the Ethernet
driver task that receives messages from MMX 86. A
value of 129 is recommended.

550 interrupt type A BYTE containing a code for the method used by
the iSBC 550 device to interrupt the host device.
The values for this field are defined in the
ETHERNET COMMUNICATIONS CONTROLLER PROGRAMMER'S
REFERENCE MANUAL.

A Sample Basic I/0 System Configuration File

The following is a sample configuration file for the Basic I/0 System. It
also specifies a device driver for the iSBC 550 device.

B-17

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

we OJ
(1}
<
e
0
(1]
!
=
]
e
<
o
~

we O

onfiguration Module)
5553335333555553333533
Note:
The I/0 System has two configuration files: the itable.a86
for various interfaces and file-driver configurations; the

idevcf.a86 for device-driver configuration.

idevcf.a86
Sample I/0 System Device-Driver Configuration Module.

We WMo Ve we Ve Ve Ve Ve We Ve we

Configures:
iSBC 550 Device Driver (using MMX 86)

Byte~Bucket Driver

e we Ve Ve We we e

® ¢ & 0 0 5 0 9 0 00 B PP OO S GO GO SO DO LA LN OO SO NS S S PSSO NN
9932992929929 9922993999999 959995952559995929993999299295299595999999399%2992%2399%9%%)9%3%)
name idevcf

1 $include(:fl:idevef.inc)

$save nolist

1 S$nogen
$include(:fl:iedinf.inc)

[

I’
s specify 1SBC 550 Ethernet custom device driver information
b
i550 dev_info_struc
dw 0 ;s 550 comm area offset
dw 0 3 550 comm area base
db 0 s host device id
db 0 3 550 device id
dw 0 s host rqd offset
dw 0 3 host rqd base
dw 0 ;5 550 rqd offset
dw 0 s 550 rqd base
db 0 ;s ids base start addr
db 0 ;s ids base length
dw 0 s 550 interrupt port
dw 0 3 550 port name
dw 0 ;s host port name
db 0 ; timeout
db 0 ;3 priority
db 0 3 550 interrupt type

i550 dev_info ends

we
we
we
we
we
we
we
we
we
we
we
ve
we
we
we
we
we
we
we
ws
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
ws
we
we
we
we
we
we
we
we
we
we
we
we
we
we
ws
we
we
we
we
we
we
we

Define Device Driver External Procedures.

we we we Ve we

® 8 0 @ e 0 0 08 00 ® 8 5.0 0.0 5 6 05 0 0 00 00 00 0SS L LG O E O SO L 00O L L NSO L P S O EO00 080t e s e
9999599999995 39993395999999395959595959599399999959999959995999995535999595955939393%)%)
code segment

assume Ccs: cgroup

B-18

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

$include(:£f1l:1550.ext)
extrn i550init: near
extrn i550finish: near
extrn 1550queue: near
extrn i550cancel: near

extrn bytebucketinitio: near

extrn bytebucketfinishio: near
extrn bytebucketqueueio: near
extrn bytebucketcancelio: near

code ends
assume cs: nothing

© 0 0 0 5 6 009 00 660000005 000000 0000000800000 0LI0IOLOLETOEDS
9999995399 99599999959595599999539999559959559599395325399959599399333)%)

ws
we
we
we
ws
we
we
wse
we
we
we
we
-e
we

Define Device-Unit Information Blocks (DUIB's).

ws We we we Ve

“e
we
we
we
-
we
we
-
we
wse
we
we
we
we
we
we
we
we
we
-
we
we
-
-
-
-
-
we
we
we
we
we
we
ve
ve
we
we
-
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
“e
we
we
“e
we
ve
“e
we
we
we
we
we
we
we

code segment

duibtable label byte
public duibtable
$include(:fl:ieduib.1it)

?

;s Ethernet iSBC 550 device, unit O

b

define duib <

& 'EQ’, 3 name (14)

& 001H, ;3 fileSdrivers
& 033H, ;s functs

& OO0H, ;5 flags

& 00, s dev8gran

& OH,OH, 3 dev§size = 0
& 0, ;s device

& o, 5 unit

& 0, ; devSunit

& 1550init, s init$io

& 1550finish, ;3 finishSio

& i550queue, 3 queue$io

& i550cancel, ; cancel$io

& dinfo_ 550, ; device$info
& o, s unit$info

& Offffh, s updateS$timeout
& 0, ;s num$buffers
& 129 5 priority

&>

B-19

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

on o on on
o o on on
on on —i on on
el on on it on on
o~ on on + on on
= LY on + on X
< on on ~ oa oa
_ on on ~ WV o o
Q on en w0 - on on
o on on - 0 on °n
15} o on on £ e on e
- [T¥] on on w o on on
[-a]) on on o T on on
- - o on on h(v] on on
=1 o oen o [=] o on
[0 (o] [} [} on on o o on on
&~] [TRN] N on on i on o
[} Yoy g8 ~ Yy L] on on /)] on o
> o] o g O+ @ Qo [/} on on 0 - on on
N o = 0 L) o O o o U 4D U4 PN on on FRRE N on .n
= M O N ™ O Y B U W o .a en o ~ on oa
-~ T » o O e Svre= Ued O 3 (] on on [=J V] w3 on on
N> 8 0 U M0 O U OO N £ ~ on on =R =1 on o
U QU WU U 3 O d & @ O g [} oa on Ur o [&] o on
g8~ agagP> DPDPH P OodE berio g = ~ on on > > [y Y °on
Ced D4 O QOO0 O 330 O E QW3 N =} L [T o [] > o (T3
FHEHWTTT IV A TTOT 3 3 O A © on on T O = on o
[} &3 on o N (= on Xy
SR LA SR LA TR e SR TR A R PR SR SR A e R o =) LY on] _ on o
4+ o on on o o = on oa
o} on o == D on on
[3] ~ on . o = on on
[=] on [/} on e on P on on
o 1 on (] on [=] . .on f=]
- L Yt on - on i on on (o]
O &« O [7} ()] on £ on w on o on o
awl O o hv] +J on « on on (o] on -~
Q LI o4 > on Fu) on _ on o on [++]
- O O [=]] o on [~ o & on m
&3 0 e} on)] oo [<a] on (] on
- &0 = w o (4] on — = (=] on m en (o]
g 3 [o on o~ on | on .n Yy
o~ U4 g O (=] =] on > on + + W oo o en =]
NI U o< EN) on [J] on o Yoy on ot
v Vv o v e ~ on o] on o~ N = on [=} o
k k k k XY LTy 'y on o on ~~ (]
[S3 IS 3] - [[T o) o m o a (3]
29333 fu =] - on [=] °on [oa Q on 2 o o~d
- ~ £ 0.0 .0 [N « .o (4] °a =} on 7] en @ >
- ol & i QO 0 o v Iy oy 0 ea on o IS o en g o (0]
Mmoo o e Ry g [o i =] T en 9] on =T~ | o- > en 60 Y- o
MO a6 &« a a abiPDybDyvbDy & afy &N (=1 o o ea ~ on o o L1 Q e U &
Ve OO0 0ONON O 000000 o o VU o [} o 9 9 .on o en W o (=}
~ o o) on e o b o] [Ta)
o on (0] on L " Q on a [Ta}
(=¥ .on =] on () "a =1 on o
+ o on o on <7} (XY o on . [&]
[)] on ~ on = fa] IS Yy oa — m
-) o on (4] on - L0 on Q on Yoy wn
(3] o [\ *an o on =z K] on ~ on . L]
3 =} on on =& o+ XN on Al
[~2] o (4] =) on 0] on | | .o on 7}
| | D v B e BB U ea P
.w m 3 w on ﬁ °on m M m on on ..w
o on o oo on
> o (o] _ D oo)] on * _ > on a @ O
m Y4t = W o ea a o st W) on T o
(] /\ Q on on o] o on s O °r
h ta AT I I I I I IS I I IS I I I IS ITI en e o Z U *A e on o o = X on o o o s U U e e o

B-20

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

dinfo_ 550 1550 dev_info <

PR ARADARPRARPRAPRRDRRRRR

\4

0
o]
[2)
(0]

end

Oh, s comm area start address offset
2000h, ; comm area start address base
Oh, s host device id

01h, s 550 device id

Oh, ;s rqd to 550 offset

2010h, 3 rqd to 550 base

Oh, s rqd from 550 offset

2020h, 35 rqd from 550 base

Oh, 3 1ds base start addr

4fh, ;5 1ds length

O0a4h, 3 550 interrupt port

0101h, 3 550 port name

0000h, 3 host port name

Offh, s timeout

129, s priority

03h s 550 interrupt type

ends

A Sample MMX 86 Configuration File for the Host Device

This section contains a sample MMX 86 configuration file for the (host)

device that communicates with the iSBC 550 device.

Note that this example

exhibits the following properties, which are required of every MMX 86
configuration:

The depth (RQ$INSSIZE in DCMSROM) of the request queue, for
requests from the iSBC 550 device to the host device, must be 4.

The system port name (SYSTEMSPORTSNAME in LPT$ROM) that the
iSBC 550 device uses to reference the system port on the host
device must be the same as that specified in the device
information table for the host device.

The device id (DESTSPORTS$ID in DSDT) for the iSBC 550 device must

not be zero. Port zero has special meaning to the iSBC 550 device
and cannot be used by MMX 86.

In the SFT structure corresponding to the iSBC 550 device, OPSMODE
must be SLAVESDEVICE (=01H), INTRSTYPE must be IOSINTERRUPT
(=03H), and INTR$VALUE must be 02H.

If the interrupt type field in the iSBC 550 Start Command request
block for the iSBC 550 device is 3 or 4 —- where 3 is the
recommended value if the iSBC 550 device is to interrupt the host
device, and O is recommended otherwise —— the CLRSINSTYPE field in
the SFT should be OlH and the INTRSVALUE field should be O2H.
Moreover, the values for the INTRSLOCATION and
CLRSINSINTRSLOCATION fields of the SFT should correspond to the
values for which the iSBC 550 device is jumpered.

B-21

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

e Memory on the host device must be mapped so that all of the
iRMX 86 free space is addressable by the iSBC 550 device.

R4CNFG:
DO;

$INCLUDE(: F1: RACNFG.LIT)

DECLARE DSDSENTRYSTYPE LITERALLY 'STRUCTURE(

SYSTEMSPORT SNAME WORD,
DESTSDEVSID BYTE,
DEST$PORTSID BYTE,
SRC$DEVSID BYTE,
RESERVED BYTE,
POOLSID BYTE,
IDS$ID BYTE)';

DECLARE LPTROMSENTRYSTYPE LITERALLY 'STRUCTURE(
SYSTEM$PORT $NAME WORD) ';

DECLARE LPTS$RAMSENTRYSTYPE LITERALLY 'STRUCTURE(
ENTRY(3) BYTE)';

DECLARE DMS$ROMSENTRYSTYPE LITERALLY 'STRUCTURE(
RQDSOUT POINTER,
RQS$SOUTSSIZE BYTE,

RQESOUTSSIZE BYTE,
RQDSIN POINTER,
RQS$INSSIZE BYTE,
RQESINSSIZE BYTE)';

DECLARE NOS$SYSTEMSCHANNEL LITERALLY 'OFFFFH,
00H,
00H,

OFFFFH,
O0H,
00H)';

DECLARE DMS$RAMSENTRYSTYPE LITERALLY 'STRUCTURE(
ENTRY(20) BYTE)';

DECLARE SFT$ENTRYS$TYPE LITERALLY 'STRUCTURE(
OP$SMODE BYTE,

INTR$TYPE BYTE,
INTRSLOCATION WORD,
INTRSVALUE WORD,
CLRSOUTSTYPE BYTE,
CLRSOUTSINTRSLOCATION WORD,
CLRSOUTSINTRSVALUE WORD,
CLRSINSTYPE BYTE,
CLRSINSINTRSLOCATION WORD,
CLRSINSINTRSVALUE WORD) ';

B-22

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE NO$DEVICE LITERALLY 'OOH';
DECLARE SLAVE$DEVICE LITERALLY 'O1H';
DECLARE PEER$DEVICE LITERALLY 'O2H';
DECLARE NO$SYSTEM$SERVICE LITERALLY 'OOH,
00H,
0000H
0000H,
00H,
0000H,
0000H,
00H,
0000H,,
0000H' ;
DECLARE IDSS$ENTRYS$TYPE LITERALLY 'STRUCTURE(
OFFSET WORD,
PAGE WORD) ';
DECLARE POOLSENTRYSTYPE LITERALLY 'STRUCTURE(
ENTRY(2) BYTE) ';
DECLARE BLOCKSENTRYS$TYPE LITERALLY 'STRUCTURE(
POOL$ID BYTE,
STARTS$ADR SELECTOR,
LENGTH WORD) ';
DECLARE MMX$DEVICES LITERALLY '2°';
DECLARE DEV0PORTS LITERALLY '1';
DECLARE DEV0PORTSO$NAME LITERALLY 'O000OH';
DECLARE OUT$QUEUE $ADDRESS LITERALLY '20100H';
DECLARE OUT$QUEUE$SIZE LITERALLY 'O4H';
DECLARE OUT$QUEUESENTRYS$SIZE LITERALLY 'O4H';
DECLARE IN$QUEUE$SADDRESS LITERALLY '20200H';
DECLARE IN$QUEUES$SIZE LITERALLY 'O4H';
DECLARE IN$QUEUESENTRYS$SIZE LITERALLY 'O4H';
DECLARE DEV0DEST$PORTS LITERALLY '1';
DECLARE DEV1PORT$1S$NAME LITERALLY 'O101H';
DECLARE DEV1ID LITERALLY '1';
DECLARE DEV1PORT1ID LITERALLY '1';
DECLARE DEV0ID LITERALLY '0';
DECLARE DEV0POOL$0SID LITERALLY '0';
DECLARE IDS0ID LITERALLY '0';
DECLARE COMMUNICATESWAITSTIME LITERALLY 'O0OOOH';
DECLARE RESPONSESWAITSTIME LITERALLY 'O100H';
DECLARE DEV$1$0OP$MODE SLAVESDEVICE;
DECLARE DEV1INTR$TYPE LITERALLY '2';
DECLARE DEV1INTR$LOCATION LITERALLY 'OA4H';
DECLARE DEV1INTR$VALUE LITERALLY '02H';
DECLARE DEV1CLR$OUTSTYPE LITERALLY '0';

DECLARE DEV1CLRSOUTSINTRSLOCATION LITERALLY '0°';
DECLARE DEV$1S$CLRSOUTSINTRS$VALUE LITERALLY '0°';

DECLARE DEV1CLRSINSTYPE LITERALLY '1';
DECLARE DEV1CLRININTR$LOCATION LITERALLY 'OA4H';
DECLARE DEV1CLRSINSINTR$VALUE LITERALLY '04H';

B-23

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE DEV0INTSLEVEL LITERALLY 'OO048H';
DECLARE DEV0POLLING$PERIOD LITERALLY '200';
DECLARE MMX$INTERDEVICE$SEGMENTS LITERALLY 'O1H';
DECLARE DEV0IDS0OFFSET LITERALLY 'OOOOH';
DECLARE DEV0IDSOPAGE LITERALLY 'OOOOH';
DECLARE DEV0POOLS LITERALLY '1';
DECLARE DEV0BLOCKS LITERALLY '1';
DECLARE DEV0POOL$O0$ADDR LITERALLY '2030H';
DECLARE DEV0POOL$OSLENGTH LITERALLY 'OO020H';

DECLARE CQDVCS BYTE PUBLIC DATA(
MMX$DEVICES);

DECLARE DCM$RAM(MMX$DEVICES) DMSRAMSENTRYSTYPE PUBLIC;

DECLARE DCM$ROM(MMX$DEVICES) DMSROMSENTRYS$TYPE PUBLIC DATA(
NO$SYSTEMS$CHANNEL,
OUT$QUEUESADDRESS,
OUT$QUEUESSIZE,
OUT$QUEUESENTRY$SIZE,

IN$QUEUESADDRESS,
INSQUEUESSIZE,
IN$QUEUESENTRYSSIZE) ;

DECLARE CQPRTS BYTE PUBLIC DATA(
DEVOPORTS) ;

DECLARE LPT$RAM(DEVS$OS$PORTS) LPTS$RAMSENTRYS$TYPE PUBLIC;

DECLARE LPT$ROM(DEVS$0O$PORTS) LPTS$ROMSENTRY TYPE PUBLIC DATA(
DEV0PORT$OSNAME) ;

DECLARE CQSKTS BYTE PUBLIC DATA(
DEV$O0$DEST$PORTS) ;

DECLARE DSDT(DEV0DEST$PORTS) DSDSENTRYSTYPE PUBLIC DATA(
DEV1PORT1NAME,
DEVS$1$1ID,
DEV1PORT1ID,
DEV$0$1ID,
0,
DEV0POOL$0S$ID,
IDS$0SID);

DECLARE CQITWT WORD PUBLIC DATA(
COMMUNICATESWAITSTIME);

DECLARE CQMDLY WORD PUBLIC DATA(
RESPONSESWAITSTIME);

B-24

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE SFT(MMX$DEVICES) SFTSENTRYSTYPE PUBLIC DATA(
NO$SYSTEMS$SERVICE,
DEV$1$0P$MODE,

DEV1INTRSTYPE,
DEV1INTRSLOCATION,
DEV1INTR$VALUE,
DEV1CLRS$OUTSTYPE,,
DEV1CLR$OUTSINTR$LOCATION,
DEV1CLRSOUTSINTRSVALUE,
DEV1CLR$INSTYPE,

DEV$1 CLRINSINTRSLOCATION,
DEV1CLRSINSINTRSVALUE) ;

DECLARE CQSGLV WORD PUBLIC DATA(
DEV$OSINTSLEVEL);

DECLARE CQIDPD BYTE PUBLIC DATA(
DEV0POLLINGSPERIOD);

DECLARE CQIDSS BYTE PUBLIC DATA(
MMX$INTERDEVICESSEGMENTS) ;

DECLARE IDST(MMX$INTERDEVICESSEGMENTS) IDSSENTRYSTYPE PUBLIC DATA(
DEV0IDS0OFFSET,
DEV0IDSSOSPAGE) ;

DECLARE CQPLHS BYTE PUBLIC DATA(
DEV0POOLS) ;

DECLARE PLHTBL(DEVSOSPOOLS) POOLSENTRYSTYPE PUBLIC;

DECLARE CQBLKS BYTE PUBLIC DATA(
DEV0BLOCKS) ;

DECLARE BLKTBL(DEV0BLOCKS) BLOCK$ENTRYSTYPE PUBLIC DATA(
DEV0POOLS$0SID,
DEV0POOLOADDR,,
DEV0POOL$OSLENGTH) 3

LINKING AND LOCATING THE CONFIGURED iRMX 86 I/0 SYSTEM

In order to link and locate the configured I/0 System with the 1SBC 550
device driver, you must make some modifications to the sample submit file
10S.CSD, which is provided with the iRMX 86 Operating System for linking
and locating the I/0 System. The modifications are the following:

I1550.LIB, which contains the iSBC 550 device driver object code, must
be linked after IDEVCF.OBJ.

R4CINF.LIB, which is the MMX 86 compact interface library, gets linked
after IOS.LIB.

Here is a sample of I0S.CSD after it has been edited:

B-25

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

LINK AND LOCATE THE I/O SYSTEM

SUBMIT :fx:ios(date, loc_adrH)

where:
date = the date
loc adr = address where the IOS will be located

File-Drivers

SM86 :fl:itable.a86 DATE(Z0) PRINT(:fl:itable.lst) &
WORKFILES(:£f1:,:fl1:) OBJECT(:fl:itable.obj)

Device—-Drivers

we we we we

ASM86 :fl:idevef.a86 DATE(Z0) PRINT(:fl:idevcf.lst) &
WORKFILES(:fl:,:fl:) OBJECT(:fl:idevef.obj)

’

LINK86
:fl:ios.lib(istart),
:fl:itable.obj,
:fl:idevef.obj,
:£f1:1550.1ib,
:fl:ioopti.lib,
:fl:ios.1lib,
:flirbdecinf.lib,
tfl:rpife.lib,
TO :fl:jos.lnk
MAP PRINT(:fl:ios.mpl)

RRRRDRRRR R

; ,
LOC86 &
:fl:ios.lnk TO :fl:ios &
MAP PRINT(:fl:ios.mp2) &
OBJECTCONTROLS (NOLINES ,NOCOMMENTS ,NOPUBLICS ,NOSYMBOLS) &
SEGSIZE(stack(0)) &
ORDER(classes(code, data)) &
ADDRESSES(classes(code(0%1))

CONFIGURING THE iRMX 88 I/0 SYSTEM FOR USE WITH iSBC 550 CONTROLLERS

Configuring the iRMX 88 I/0O System for use with an iSBC 550 controller is
a three-stage process, which assumes that you have compiled your
application code and your MMX 88 configuration module. (A discussion of
the MMX 88 configuration module is at the end of this appendix.) In the
first stage, you carry on a dialogue with the iRMX 88 Interactive
Configuration Utility (the ICU). This stage produces several files,
including a SUBMIT file. In the second stage, you modify some of these
files, including the SUBMIT file. ' The third stage consists only of
executing the SUBMIT file. The result of the third stage is a
ready—~to—test application system.

B-26

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

Responding to ICU Prompts
This section provides you with the answers, in the order in which they are
requested, to ICU questions that pertain to an application system that
communicates with an Ethernet network. The following list, which contains
those answers, makes sense only in the context of an ICU session. Keep it
handy while you are carrying on your ICU dialogue.

e Double buffering is not used.

® The named file driver is not used.

® RQS$FORMAT is not used.

e The physical file driver is used.

e Whole-sector I/0 is not used.

e DQSREAD is used.

e DQSWRITE is used.

o DQSSEEK is not used.

e When prompted with "DEVICE TYPE -***" answer "CUSTOM" and then
provide answers as follows:

- For Level, specify O

~ For Interrupt Task Priority, specify O.

- For Interrupt Task Stack Size, specify O.

- For Data Size, use the default value of 256.
~ For Number of Units, specify 1.

- For each of Device Initialization, Device Finish, Device

Start, Device Stop, and Device Interrupt, use the default
value.

e The prompt "ADDITIONAL DEVICE INFORMATION TYPE -#*#*%*" marks the
beginning of a series of questions that the ICU uses to fill in a
device information table for the iSBC 550 device. The fields of
this table are defined earlier in this appendix under the heading
"Configuring an iRMX 86 I/0 System for Use with iSBC 550
Controllers”. The questions in this series are asked in pairs,
one pair per field. First, you are asked for the data type of the
field, and then you are asked for the numerical value that is to
go into that field. A summary of the requested information is as
follows:

B-27

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

Data Type of Field Name of Field
WORD init start addr offset
WORD init start addr base
BYTE - host device id
BYTE 550 device id
WORD RQ to 550 offset

. WORD , RQ to 550 base
WORD RQ from 550 offset
WORD RQ from 550 base
BYTE IDS base strt addr
BYTE IDS length
WORD 550 interrupt port
WORD 550 port name
WORD host port info
BYTE timeout
BYTE priority
BYTE 550 interrupt type

e Next, you are prompted for some procedure names that will go into

the unit information table for the iSBC 550 device. Proceed
according to:

Prompt Response
INIT I0 1550INIT
FINISH I0 i550FINISH
QUEUE 10 1i550QUEUE
CANCEL IO i550CANCEL

e When the ICU prompts you for timer data, specify the default
values.

® When the ICU prompts you for information about the Free Space
Manager, specify the default values and names. Later, you will
remove this information, because the Partitioned Memory Manager is
used in place of the Free Space Manager. (Note that you can't
convince the ICU that you don't need the FSM. It assumes that you
do need the FSM, because the I/0 System is part of your system.)

¢ When the ICU prompts you for\iﬁformation about tasks and
exchanges, supply the information that is given under the heading
"Linking and Locating for MMX 88" in Chapter 7 of this manual.

This ends the ICU session and cbmpletes the first stage of the

configuration process. The result is a collection of files, some of which
you will modify in the second stage of configuration.

Modifying Files Produced by the ICU
In this, the second stage of the configuration process, you modify the

following files, where this appendix assumes that MYSUB is the name you
supplied to the ICU as the name of your SUBMIT file and configuration file:

B-28

COMMUNICATION WITH AN i1SBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

° :Fx:DEVICE.A86, where DEVICE is the default name. This is the
file that describes the I/0 devices that the I/0 System will be
communicating with.

° :Fx:MYSUB.A86. This is the file that specifies which iRMX 88
modules are required by your application.

. ¢:Fx:MYSUB.CSD. This is the SUBMIT file that links together all of

the modules that you have specified during and after your ICU
session, and then produces a located system, ready for testing.

Modifying the Device File. You must make the following changes to the
:Fx:DEVICE.A86 file:

® Insert the following lines immediately after the line that reads
"extrn radcancelio: near”:

extrn i550INIT: near
extrn i550FINISH: near
extrn i550QUEUE: near
extrn 1550CANCEL: near

® Substitute "0" for each of "defaultstart” and "defaultinterrupt”.
e At the end of the file, remove the line "dd *kk",

Modifying the Configuration File. In order to remove the Free Space
Manager and all references to it, you must make the following changes:

® Remove all references to each of the following:

RQFSMSTACKSIZE RQFSAX
RQFSMPRIORITY RQFSRX

RQFMGR RQRECLAIM
RQFMGRTD RQRECLAIMTD
RQFMGRSTACK RQRECLAIMSTACK

The only exception is that references to RQFSAX and RQFSRX should
not be deleted from the Initial Exchange Table (IET).

® Decrement by two the number of tasks in the Create Table RQCRTB.

Modifying the SUBMIT File. Before executing the :Fn:MYSUB.CSD SUBMIT
file, you must make the following changes to it:

B-29

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

® Add the line ":Fn:188ios.LIB(isleep), &" to the first list of
modules that are to be linked together. If you are compiling your
PL/M-86 modules using the COMPACT size control, put this line
immediately after the line ":Fn:I88COM.LIB, &". If you are
compiling your PL/M-86 modules using the LARGE size control, put
this line immediately after the line ":Fn:I88LAR.LIB, &".

° If you are using the LARGE size control, add the line
":Fn:15588L.LIB(i5501I, 1550FC, i550QI), &" immediately after the
line ":Fn:I88I0S.LIB, &" in the first list of modules that are to
be linked together.

e Add the following lines to the "no publics except” portion of the
second list of modules that are to be linked together:

" rqdeletetask,
rqdeletesegment,
rqdeleteregion,
iosdataseg,
rqcreatesegment,
rqcreateregion,
rqcreatetask,
rqsendcontrol,
rqreceivecontrol,
rqgqsendmessage,
rgsleep,
iors_enqueue,
iors dequeue,
rqrezéivemessage,
psadd,
gettaskparms,

PO RARDRPDIDAIORRRRD R

° Add the Ethernet device driver library (either i5588L.LIB or
i5588C.LIB, depending upon whether your are using the LARGE or
COMPACT size control, respectively) to the last list of modules
that are to be linked together. The order of this list should be
as follows:

Configuration object module

Your application object modules

The link module produced by the second LINK86 command
The appropriate Ethernet device driver library

The MMX 88 configuration module

The appropriate MMX 88 libraries

The remaining libraries produced by the ICU

When this is done, you are ready to run your SUBMIT file :Fn:MYSUB.CSD.

A SAMPLE MMX 88 CONFIGURATION FILE FOR THE HOST DEVICE

This section contains a sample MMX 88 configuration file for the (host)
device that communicates with the iSBC 550 device. Note that this example

exhibits the following properties, which are required of every MMX 88
configuration:

B-30

COMMUNICATION WITH AN iSBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

e The depth (RQ$INSSIZE in DCMSROM) of the request queue, for
requests from the iSBC 550 device to the host device, must be 4.

e The system port name (SYSTEM$PORTSNAME in LPTSROM) that the
1SBC 550 device uses to reference the system port on the host
device must be the same as that specified in the device
information table for the host device.

e The device id (DESTSPORTSID in DSDT) for the iSBC 550 device must

not be zero. Port zero has special meaning to the iSBC 550 device
and cannot be used by MMX 88.

° In the SFT structure corresponding to the iSBC 550 device,
DEVICESMODE must be SLAVESDEVICE (=01H), INTRS$TYPE must be
IOSINTERRUPT (=03H), and INTRSVALUE must be O2H.

] If the interrupt type field in the iSBC 550 Start Command request
block for the iSBC 550 device is 3 or 4 —— where 3 is the

recommended value if the iSBC 550 device is to interrupt the host
device, and 0 is recommended otherwise —- the CLRSINTRSTYPE field
in the SFT should be 04H. Further, the values for the
INTRSLOCATION and CLR$LOCATION fields of the SFT should corrspond
to the values for which the iSBC 550 device is jumpered.

e Memory on the host device must be mapped so that all of the
iRMX 88 free space is addressable by the iSBC 550 device.

The following example of an iMMX 88 configuration file utilizes two files
(R3XMGR.LIT and R3CNFG.LIT) that are included with iMMX 88 and are not
listed here. This configuration applies whether the COMPACT or LARGE size
control is used to compile this configuration file.

R3CNFG:
DO;

$INCLUDE(: F1:R3XMGR.LIT)
$INCLUDE(: f1:R3CNFG.LIT)

/***

SAMPLE iMMX 88 CONFIGURATION :

es oo oo

***/

DECLARE
MMX$DEVICES LITERALLY '2°',
DEV0DESTS$PORTS LITERALLY '1°',
DEV$0S$PORTS LITERALLY '1°',

B-31

COMMUNICATION WITH AN 1SBC® 550 ETHERNET COMMUNICATIONS CONTROLLER

/* The following values are used for the DCM$ROM table */

OUTPUT$QUEUESADDRESS LITERALLY '2F150H',
OUTPUT$QUEUE$SIZE LITERALLY 'O4H',
OUTPUT$QUEUESENTRY$SIZE LITERALLY 'O4H',
INPUT$QUEUESADDRESS LITERALLY '2FO040H',
INPUT$QUEUESSIZE LITERALLY 'O4H',
INPUT$QUEUESENTRY$SIZE LITERALLY 'O4H',

/* The following values are used in the DSDT and LPTSROM tables */

DEV1PORT$NAME LITERALLY '0101H',
DEV1DEVSID LITERALLY '1°',
DEV1PORTSID LITERALLY '1',
DEV3$0$PORT$NAME ' LITERALLY '0000H',
DEVODEVSID LITERALLY '0°',
DEV0POOLSID LITERALLY '0',
DEV0IDSSID LITERALLY '0°',

/* The following are used for CQMDLY and CQITWT */

COMMUNICATESWAITSTIME LITERALLY '400',
RESPONSESWAITSTIME LITERALLY '0100H',

/* The following values are used in the SFT table */

DEV$1 $MODE SLAVESDEVICE,
DEV1INTR$TYPE IO$MAPPEDSINTR,
DEV1INTRSLOCATION LITERALLY 'O0A4H',
DEV1INTRSVALUE LITERALLY 'O2H,'
DEV1CLR$INTRSTYPE IO$WRITE$CLR,
DEV$1 $CLRSINTRSLOCATION LITERALLY 'OA4H',
DEV1CLR$INTRS VALUE LITERALLY 'O4H',

/* The following are used for CQSGLV and CQIDPD */

DEV$0SINTSLEVEL LITERALLY '4',
DEV0POLLINGS$PERIOD LITERALLY '200°',

/* the following are used for CQIDSS and the IDST table */

MMX$INTER$DEVICE$SEGMENTS LITERALLY '1°',
DEV0IDS0OFFSET LITERALLY '0000H',
DEV0IDS$OSBASE LITERALLY 'O0OOH',

/* The following fields are used for CQPLHS, CQBLKS, and the
PHLTBL and BLKTBL tables. /*

DEV0POOLS LITERALLY '1',
DEV0BLOCKS LITERALLY '1°',
DEV0POOLS$0SADDR LITERALLY '1000H',
DEV0POOLSOSLENGTH LITERALLY '1FOOH';

B-32

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE CQDVCS BYTE PUBLIC DATA (MMX$DEVICES);

DECLARE CQSKTS BYTE PUBLIC DATA (DEVODESTS$PORTS);
DECLARE CQPRTS BYTE PUBLIC DATA (DEVOPORTS);

DECLARE CQMDLY WORD PUBLIC DATA (RESPONSESWAITSTIME);
DECLARE CQITWT WORD PUBLIC DATA (COMMUNICATESWAITS$TIME);

DECLARE DSDT (DEVODEST$PORTS) DSDTS$TYPE PUBLIC
DATA (DEV1PORTSNAME,

DEV1DEVSID,

DEV1PORTSID,

DEV$0SDEVSID,

0,

DEV0POOLSID,

DEV0IDS$ID);

DECLARE LPT$ROM (DEV$O$PORTS) LPT$ROMSTYPE PUBLIC
DATA (DEVOPORTSNAME,
DEV0POOLSID);

DECLARE LPTS$RAM (dev$0S$ports) LPTSRAMSTYPE PUBLIC;

DECLARE DCM$ROM (MMX$DEVICES) DCM$ROMSTYPE PUBLIC
DATA (O, ‘

H
b

b

[oNeNeNoNe)
-

’

OUTPUT$QUEUES$ADDRESS,
OUTPUT$QUEUE$SIZE,
OUTPUT$QUEUESENTRYS$SIZE,
INPUT$QUEUE $ADDRESS ,
INPUT$QUEUESSIZE,
INPUTS$QUEUESENTRYS$SIZE) ;

DECLARE DCM$RAM (MMX$DEVICES) DCM$RAMSTYPE PUBLIC:

DECLARE CQSGLV BYTE PUBLIC DATA (DEVS$OSINTS$LEVEL);

DECLARE RQL4EX (28) BYTE EXTERNAL;

DECLARE CQLMEX POINTER PUBLIC DATA (@RQL4EX);

DECLARE CQIDPD WORD PUBLIC DATA (DEVOPOLLINGS$PERIOD);

B-33

COMMUNICATION WITH AN iSBC 550 ETHERNET COMMUNICATIONS CONTROLLER

DECLARE SFT (MMX$DEVICES) SFT$TYPE PUBLIC
DATA (O,
0,

-

OO O OO

’

DEV1MODE ,
DEV1INTRSTYPE,
DEV1INTRSLOC,
DEV1INTRSVAL,
DEV1CLRSINTRSTYPE,
DEV1CLRSINTRSLOC,
DEV1CLRSINTRSVAL);

DECLARE CQIDSS BYTE PUBLIC DATA (MMX$INTERSDEVICE$SEGMENTS);

DECLARE IDST (MMX$INTER$DEVICES$SEGMENTS) IDS$TYPE PUBLIC
DATA (DEV0IDSS$OSOFFSET,
DEV$0SIDSSOSBASE) ;

DECLARE CQPLHS BYTE PUBLIC DATA (DEV$0S$POOLS);
DECLARE PHLTBL (DEV0POOLS) POOLSTABLESTYPE PUBLIC;
DECLARE CQBLKS BYTE PUBLIC DATA (DEV0BLOCKS);
DECLARE BLKTBL (DEV0BLOCKS) BLOCKS$TABLE$TYPE PUBLIC
DATA (DEV0POOLSID,
DEV0POOLSOADDR,

DEVOSPOOLSOSLENGTH) ;
END R3CNFG;

B-34

APPENDIX C. MMX 80 DIAGNOSTICS

Two MMX 80 diagnostics are provided for trouble-shooting during the
development process.

RQPBHX PORT DIAGNOSTIC

The RQPBHX diagnostic provides you with a method of determining whether
memory is being improperly sent for reclamation by application tasks.
The RQPBHX port is an iRMX 80 exchange dedicated to use by the
Partitioned Memory Manager (PMM).

If an application task attempts to use a PMM request of type
PMMSFREESBLKSTYPE and specifies a memory$pool identifier for a pool not
previously created, the PMM sends the message block to the RQPBHX port.

In order to check whether a message block has been sent to the RQPBHX
port, use the statement

IF NOT(RQACPT(.RQPBHX) = O) THEN ...

and put an error-handling block of code after "THEN".

MEM$INIT$STATUS DIAGNOSTIC

The mem$init$status diagnostic allows you to determine whether the PMM
successfully allocated its initial memory blocks, as defined in the
configuration table PHLTBL.

Use the following code outline as an example of using the mem$init$status
diagnostic:

$include(: f1:R1PMM.LIT)
$include(: f1:R1PMM.EXT)
$include(: f1:R1DIAG.EXT)

DECLARE
dummy ADDRESS;
status BYTE;
bad$block BYTE;

MMX 80 DIAGNOSTICS

DO WHILE (status := mem$init$status(.bad$block)) = O;

dummy = RQWAIT(some$exchange$ptr, one$clockS$Stick);
END;

IF status = PMMnoSspaceStype

THEN

ELSE

DO

/*At this point, the bad$block variable contains the index into
the PHLTBL table of the next initial block that would have been
processed if no error had occurred. The problem was that there
was not enough memory allocated to the Free Space Pool (pool 0)
to process the remaining initial block declaration(s). :

Note that if an initial block declaration specifies a
non—existent memory pool, that pool is automatically created and
the initial memory block is allocated to it. However, to create
the new pool, a message block of at least 32 bytes must be
available in the Free Space Pool for PMM overhead. This is the
reason the PMMnospace$type error is returned.*/

END;

/* status = PMMoktype */ DO;

.

END;

Figure C-1l. MEM$INIT$STATUS Diagnostic Example

APPENDIX D. iMMX™ 800 CONDITION CODES

When an application task calls an iMMX 800 procedure, status information
is returned to the calling task in the form of a condition code that
indicates the successful or unsuccessful completion of the service. In
the case of unsuccessful completion, the code indicates the nature of the
problem.

The condition code mnemonics and their hexadecimal values are listed in
Table D-1l. For the mnemonics and values of other condition codes that
can be returned to an executing task, refer to the appropriate iRMX
operating system manuals.

Table D-1. iMMX™ 800 Condition Codes

MMX 80 and MMX 88 Condition Codes:

Message Value
SYSTEMS SERVICESREADY 00H
SYSTEMSMESSAGESDELIVERED 30H
UNKNOWNS SYSTEMS PORT 31H
SYSTEM$MESSAGES$ COPYSDELIVERED 32H
SYSTEM$ PORTSACTIVE 33H
XFLAGSERROR 34H
INSUFFICIENTS$MEMORY 35H
SYSTEMSPORTS$ INACTIVE 371
SYSTEMS$ PORTS DEAD 39H

MMX 86 Condition Codes:

Message Value
E$ SYSTEMSMESSAGESDELIVERED 130H
E$ UNKNOWNS SYSTEMS PORT 131H
E$ SYSTEMSMESSAGESCOPYSDELIVERED 132H
E$ SYSTEMS PORTSACTIVE 133H
ESDESTINATIONS CHANNEDSMEMORY 135H
ES$SYSTEMS PORTS INACTIVE 137H
E$SYSTEMS PORTS$DEAD 139H
ES$ SOURCE$ CHANNELSMEMORY 141H

E$SUNDEFINED$POOL 143H

INDEX

Underscored entries are primary references.
8255 Programmable Peripheral Interface 7-2, 7-9

Activate Port service 2-5, 3-10, 4-10, 5-10
ACTIVATESSYSTEMSPORT A-38

alias addressing 2-8, A-9

asynchronous tasks A-7

BLKTBL 7-3, 7-4, 7-14
buffer A-3

channel 2-2, 2-3, 6-2, 7-4, A-6
clearing interrupts 7-3, 7-9, 7-42
Command Ready Queue A-7
concurrency 8-2

condition code 3-1, 4-2, 5-1, D-1
configuration 6-1, 7-1, B-14
connection 2-4, 3-3, 4-4, 5-3, 6-4
CONVERTSLOCALSADR A-12
CONVERTSSYSTEMSADR A-12

CQACTV 2-5, 3-10, 4-12, 5-10

CQBLKS 7-4
CQDACT 2-5, 3-14, 4-15, 5-14
cQDVCS 7-1, 7-4

CQFIND 2-4, 3-3, 4~4, 5-3
CQGDPA 6-4

CQIDPD 7-3, 7-13

cQIDSs 7-2, 7-13

CQITWT 7-2, 7-12

CQLMEX 7-3, 7-13

CQLOSE 2-4, 3-9, 4-11, 5-9
CQMDLY 7-2, 7-12

CQPLHS 7-14

CQPRTS 7-1, 7-6

cQsGLV 7-3, 7-13

CQSKTS 7-1, 7-7

CQXFER 2-4, 3-5, 4-6, 5-5

creating memory pools 6-6

data structures 7-4, 7-15
data types A-1l1

DCMSRAM 7-4

DCM$ROM 7-2, 7-4
Deactivate Port service 2-5, 3-14, 4-15, 5-14
DEACTIVATE$SYSTEMSPORT A-39
device 1-1, 7-2, 7-7, A-3
device id 7-3

diagnostics C-1

DSDT 7-1, 7-2, 7-7
dual-port memory 2-7, A-9
DYINGSCHANNEL A-25

Index—-1

INDEX (continued)

Ethernet 1-3, B-1

Ethernet tasks B-4

example 1-1, 3-14, 3-15, 4-16, 4-17, 5-15, 5-16, 7-15, B-17
exchange 2-1, 3-12, 4-14

Find Port service 2-4, 3-3, 4-4, 5-3
FINDSSYSTEMSPORT A-35

Free Space Manager 1-4, 6-1

Free Space Pool 2-7, 6-2

generating interrupts 7-42
hardware configuration 7-42

1/0 port 7-2, 7-3, 7-9

I/0-mapped interrupt 7-2, 7-3, 7-9, 8-2
ICU 7-34, 7-36, B-26

IDS base address A-9

IDS pointer A-9

IDST 7-2, 7-4, 7-13, A-24

iMMX 800 1-1

INSTASK A-7, A-10, A-30, A-33

INCLUDE files 7-33

INIT$REQUESTSQUEUE A-16

interdevice message transfer 2-2, 2-4, 3-5, 4-6, 5-5
interdevice segment 2-7, 7-2, 7-4, 7-13, A-8, A-9, A-24
interrupt exchange 7-3, 7-13

interrupt level 7-3, 7-13

interrupts 7-2, 7-8, 7-42, 8-2

"iRMX 80 1-1, 3-1, 7-34

iRMX 86 1-1, 5-1, 7-38

iRMX 86 Basic I/0 System B-6, B-1l4

iRMX 86 Extended I/O System B-9

iRMX 88 1-1, 4-1, 7-36

iRMX 88 I/0 System B-11, B-26

iSBC 544 board 1-3, 2-7, 7-42

iSBC 550 board 1-3, B-1

iSBC 550 request block B-5

iSBC 569 board 1-3, 2-7, 7-42

iSBC 80/24 board 1-3, 7-42

iSBC 80/30 board 1-3, 2-7, 7-43

iSBC 86/05 board 1-3, 7-43

iSBC 86/12A board 1-3, 2-7, 7-43, B-1

iSBC 86/14 board 1-3, 2-7, 7-44

1SBC 86/30 board 1-3, 2-7, 7-44, B-1
iSBC 88/25 board 1-3, 7-44

iSBC 88/40 board 1-3, 2-7, 7-45

iSBC 88/45 board 1-3, 7-45

iSBC board 1-1

linking 7-34, 7-36, 7-38, B-25

local port 2-2, 3-10, 3-14, 4-12, 4-15; 5-10, 5-14, 7-6
locating 7-34, 7-36, 7-38, B-25

LOCATION 4-1

LOCATIONSOF 4-1

Index-2

INDEX (continued)

Lose Port service 2-5, 3-9, 4-11, 5-9
LPTS$RAM 7-6
LPT$ROM 7-1, 7-2, 7-3, 7-4

mailbox 2-1, 5-12

MCBI 7-13

megabyte addressing 4-1

MEM$INITSSTATUS C-1

memory allocation 6-3

memory management 6-1, 7-14

memory pool 2-7, 6-1, 7-14, 7-39
memory pool creation 6-6

memory-mapped interrupt 7-2, 7-3, 7-8, 8-2
memory reclamation 6-5

message copying 2-8, 8-1

message reception 2-4, 3-12, 4-~14, 5-12
message reception protocol 2-5

message sender/receiver model 2-1
message structure 3-1, 4-2, 6-3

message transfer 2-2, 2-4, 3-5, 4-6, 5-5
message transfer mechanics 2-8, 8-1
message transfer protocol 2-2

MIP A-1

MIP pointer A-9

MMX 80 1-1, 3-1, 7-34

MMX 86 1-1, 5-1, 7-38, B-1

MMX 88 1-1, 4-1, 7-36, B-1

Multibus Interprocessor Protocol A-1
Multibus interrupt 7-2, 7-9, 8-2
Multibus system bus 1-1, 8-1, B-1

Nucleus configuration 7-40

obtaining memory 6-1, 6-3
OUTSTASK A-7, A-10, A-25, A-28

Partitioned Memory Manager 2-7, 6-1, 7-14
peer device 3-6, 4-7, 5-6, 7-8, 7-10
performance 8-1

PL/M-80 3-1

PL/M-86 4-1, 5-1

PHLTBL 7-14

polling period 7-2, 7-3, 7-13, 8-2
pool 2-7, 6-1, 7-14, 7-39

pool id 6-1, 7-3

port 2-2, 7-2

Port Queue A-7

PTRSADD A-11

QUEUESGIVESSTATUS A-40
RECEIVES$BUFFER A-40
RECEIVE$COMMAND A-30

RECEIVESRESPONSE A-32
reclaiming memory 6-5

Index-3

INDEX (continued)

RELEASESGIVESPOINTER A-19
RELEASESTAKESPOINTER A-21

request queue 2-3, 7-2, A-5, A-6, A-7
REQUESTS$GIVESPOINTER A-18
REQUESTS$TAKESPOINTER A-20

requesting memory 6-3

response queue A-7, A-25

response turnaround queue A-7
returning allocated memory 6-1, 6-5
root job configuration 7-38
RQSCREATE$SEGMENT 6-1
RQ$DELETE$SEGMENT 6-1
RQSRECEIVESMESSAGE 2-4, 5-12

RQACPT 2-5, 3-12, 4-14

RQCXCH 3- 10 4- 11

RQFLMX 6-3
RQFSAX 6-2
RQFSRX 6-2
RQPBHX 6-5
RQWAIT 2-5

SERVE$SCOMMANDSQUEUE A-27
SERVESTURNAROUNDSQUEUE A-26
service 2-3

SFT 7-2, 7 8

slave device 4-7, 5-6, 7-8, 7-10
socket A-3, A—23

software configuration 7-1
software requirements 1-4

status constants A-35

system port 2-2, 3-3, 3-9, 4-4, 4-11, 5- 3 5-9, 7-7, A-3
system time unit 7—12

TERMSREQUESTSQUEUE A-16

TIMESWAIT A-13

Transfer Message service 2-4, 3-5, 4-6, 5-5
TRANSFERSBUFFER A-36

transparent message transfers 2-8, 6-2

virtual interface A-4, A-7, A-35

wake-up address 7-3, 7-8

Index-4

iMMXT™ 800

®
- MULTIBUS® MESSAGE EXCHANGE REFERENCE MANUAL
I 144912-001

REQUEST FOR READER’S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Piease restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ; DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. L]

WE'D LIKE YOUR COMMENTS . ..

This document is one of aseries describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible

person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 97123

OMO Technical Publications

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Inl |®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

