PROMPT 48
MICROCOMPUTER
USER’S MANUAL

Manual Order Number: 9800402C

Copyright © 1976, 1977, 1978 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

The information in this manual is subject to change without notice. Intel Corporation makes no warranty of any
kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this manual.
Intel Corporation makes no commitment to update nor to keep current the information contained in this manual.

No part of this manual may be copied or reproduced in any form or by any means without the prior written
consent of Intel Corporation. The following are trademarks of Intel Corporation and may be used only to
describe Intel products:

ICE LIBRARY MANAGER PROMPT
INSITE MCS RMX
INTEL MEGACHASSIS upl
INTELLEC MICROMAP uSCOPE
1SBC MULTIBUS

[Printed in U.5.A./B-50/0578/4K CP

PREFACE

This User’s Manual contains the information you will need to use your PROMPT 48.
The information presented herein is adequate to support normal user needs. Additional
information is available in the following documents.

MCS-48 Microcomputer User’' s Manual, Order No. 9800270
MSC-48 Assembly Language Manual, Order No. 9800255
PROMPT 48 Reference Cardlet, Order No. 9800404

iii

CONTENTS

CHAPTER 1

INTRODUCTION PAGE

How To Use This Bookccouvven.. 1-1
Voltage Selectioncccuunn.. 1-1
Handling The Processorccoouun. 1-1
Inserting Processor In Execution Socket 1-1

The Purpose of PROMPT 48 1-2

Getting Startedo, 1-2

CHAPTER 2

THE NUMBER SYSTEM AND ITS

SYMBOLS

Why Computers Need Symbols 2-1

Number Systemso, 2-1

Binary Numbersl 2-1

Converting Decimal Numbers to Binary Numbers 2-2
Converting Binary Numbers to Decimal Numbers 2-2

Binary Arithmetic, 2-2
Binary Additionol 2-3
Binary Subtractiono 23
Binary Multiplication 2-5
Binary Division................... 2-5

Hexadecimal Numbers 2-6

Electrical Representation of Binary Digits 2-8

Positive True Logic 2-8

TheInverse Stateoouin. 2-9

CHAPTER 3

HOW THE INTEL MCS-48 CHIP-

COMPUTERS WORK

Historical Perspective 3-1
The Harvard Architecture 3-1
Princeton Heard From 3-1

The MCS-48 Architecture 3-2
Bits, Bytes, and Where You Can Put Them......... 3-2
Accumulator il 3-2
Register Memory, Working Registers,

and RAM Pointers 3-2
Program Memory and Program Counter 3-3
Flagsand Stacksoiiiiian 3-4
Timer/Event Counterc.cvivuuunnnn 3-7
Input/Output Portsccoouiunnn.s 3-10
External Memory and Ports 3-11
External Program Memory 3-11
External Data Memory 3-12
External Ports i 3-13
DataPaths, 3-13

MCS-48 Instruction Setcooiuii... 3-15
Accumulator Instructions ERTRERE 3-15
Register Accumulator Instructions 3-15
Input/Output Instructions- 3-15
Control Instructionsooiieeeninns 3-20

ConcluSioncoiiiiiiiii i 3-20

CHAPTER 4

HOW THE PROMPT 48 WORKS PAGE

Introduction il 4-1

Hardware Description 4-1
MeMOTY ..ottt e 4-3
Program Memorycoiiiiiiiinn.. 4.3
DataMemorycooiiiiiiiiiiiiiin.. 4-4
Input/Output it 4-4
Monitor Firmware Description.................... 4-4
Bus Expansiono i 4-5
Restrictions oo i i, 4-6

CHAPTER 5§

PANEL OPERATIONS

Panel Description 5-1
Command Function Group 5-1
Reset/Interrupt Group oviieeineannna.. 5-2
1/0 Ports and Bus Connector (J1) 5-3
Execution Socketl 5-3
Programming Socket 53

Command Description Formats 5-4
Command Input Options 5-5
Command Promptscooennnn. 5-5
Access Mode Control 5-5
Port 2 and Port 2 Mapping 5-7
Examine/Modify Commands 5-9
Go Commands and Breakpoints 5-11
Search Memory Commands 5-12
Move Memory Commands 5-15
Clear Memory Commands 5-17
Dump Memory Command 5-17
Enter Into Memory Commands 5-18
Hexadecimal Arithmetic Command 5-19
EPROM Programming, Fetch, Compare Commands . .5-19

CHAPTER 6

HOW TO USE PROMPT 48

Setting UpaSystem................coiiinnnennnn 6-1
Educationoiiiiiiiiiiiiieen 6-1
Functional Definition 6-1
Hardware Configuration 6-2
Code Generationcoviieriianeennnn 6-2

Programming Techniques 6-3
Program Design il 6-3
Hand Assembly 6-5
Program Test and Debugging 6-6
Program Memory Paging 6-7
Assembling JMP and CALL Instructions 6-7
Care and Feeding of EPROMS 6-7
Prompt 48 Considerations 6-8

Hardware Considerationscccoevinenn 6-8
Data Memory Considerations 6-10
Using and Expanding PROMPT 48 /O Ports 6-10

CONTENTS (Continued)

PAGE
P2 Map, LSN of P2, Access Code Considerations ...6-11
Using the Serial fOPort 6-13
Interfacing to a Teletypewriter.................... 6-14
Questions Most Often Asked 6-18
Useof INSA,BUS ..., 6-18
RAM and I/O Selectionu... 6-19
TTY and CRT Peripherals Are Used Only For
Dumping and Reading Paper Tape 6-20
Speed Degradation Occurs When
‘GO WITH BREAKPOINTS™ 6-20
When Using PROMPT 48 System Calls, Do Not
**GO WITH SGL. STEP”’ or *‘GO WITH
BREAKPOINT", 6-20
APPENDIX A
A FAMILIARIZATION EXERCISE
APPENDIX B
PROMPT 48 SYSTEM CALLS

APPENDIX C
PROGRAMMING EXAMPLE: STOPWATCH

APPENDIX D
HEX OBJECT FILE FORMAT

APPENDIX E
COMMAND/FUNCTION SUMMARY

APPENDIX F
MICROMAP

APPENDIX G
INSTRUCTION SET SUMMARY

APPENDIX H
NUMBER CONVERSION TABLES

APPENDIX I
ACCESS CODE/LSN P2 MAP SUMMARY

APPENDIX J
EXPANDED ACCESS CODES WITH 6MHZ
OPTION

R
[\ YRR \g

> o
W

TABLES

TABLE TITLE PAGE
Pin List for /O Ports and Bus Connector 4-5
Summary Table of Access Mode Codes.......... 5-6
Access Code/P2 Map Summary 5-6
Access Code/LSN P2 Map Summary 5-7
Port 2 Map Command Data Bits Vs.

Port 2 Pin Numbers 5-8
Hexadecimal/Binary Conversion 5-8

TABLE TITLE PAGE
Special Purpose Register Memory

Summary 5-10

Command List Summary 5-22

Pin List for I/O Ports and Bus Connector 6-10

Connector J2 Pin Connections 6-13

Serial /O Port Strapping Options 6-14

Baud Rate Selection......................... 6-14

ILLUSTRATIONS

FIGURE TITLE PAGE
Stack Push 3-8
Stack Pop il 39
Functional Block Diagram.................... 4-2
Prompt 48 Panel Layout 5-1
Stopwatch Program Structure 6-4
Design for ‘‘von Neumann'' Expansion

Memoryo 6-S
PROMPT 48 Port 2 Bus Structure 6-12
Relay Circuit (Alternate) 6-15

FIGURE TITLE PAGE
Distributor Trip Magnet...................... 6-15
Mode Switch oo 6-15
Terminal Block 6-15
Current Source Resistor 6-16
Teletypewriter Layout 6-16

0 PROMPT/TTY Wiring Diagram 6-17
1 Strobed Datalnput.......................... 6-18

2 Data Path Within PROMPT 48

Using INS A, BUS 6-19

CHAPTER 1
INTRODUCTION

1-1. How To Use This Book

The cost of computers is now low enough that your software design and debug time is likely
to be a critical consideration. No doubt your decision to use good tools like Prompt 48 was
based on this kind of logical thinking. Since your time is valuable, this book is organized as
a reference work, not as a mystery story. Every page has headings that identify the topics on
that page. Look up what you want to know, in whatever order you need the information. If
Prompt 48 is new to you, you probably will want to go through the familiarization exercise
in Appendix A. Before operating Prompt 48 for the first time, please check the caution items
that follow.

1-2. Voltage Selection

Is the voltage selection switch on the back of Prompt 48 set for your local mains (line)
voltage? If not, open the Prompt box, remove the switch locking plate, and set the switch
properly, then reassemble the unit. If you change the switch setting, the fuse likely must be
changed to correspond. Ratings are:

105-125 V-2 A
208-250 V-1A

Now you may plug Prompt 48 in and turn it on.

1-3. Handling The Processor

THE CHIP COMPUTER IS FRAGILE! Dropping, twisting, or uneven pressure may break
it. Leave it in its protective package until ready to use it. Never press down upon the quartz
window area of the processor, or exert twisting or bending forces on any device. Never
subject any MOS device to the discharge of static electricity; touch the chassis of Prompt 48
before inserting a device in the socket on its panel.

1-4. Inserting Processor In Execution Socket

Never insert a processor in the PROGRAMMING SOCKET unless a second
processor is properly locked in the EXECUTION SOCKET.

Release the locking lever. Gently seat the processor in the Execution Socket,
notched end away from you. Move the locking lever down flush with the panel.

1-1

Introduction

1-5. The Purpose of Prompt 48

The difference between a computer and other calculating or controlling devices is the
general-purpose nature of their programmability. The 8048 is a true general-purpose digital
computer. Its purpose is undetermined until you design software for it, commit that software
design to a mask, and maunfacture the chip.

Prompt 48 is a tool to aid you in learning MCS-48 programming and in writing, debugging,
and testing the programs you write. There is enough information here to get you started,
whether or not you have ever written a program before.

Prompt 48 is a machine-language computer; making it support assembly-language pro-
gramming would have considerably raised its cost. Even so, it is general purpose, and
can be used to perform a variety of tasks, among which are the control of TTL-
compatible devices and the programming of PROMs. It can function as an Intellec
Microcomputer Development System peripheral in the latter respect. Once a program
has been deposited in an 8748 computer, that device can be installed in the
EXECUTION SOCKET on the panel of Prompt 48. The pins of either executory
processor—8748 or 8035—can be directly interfaced to your prototype via the 1/O
PORTS AND BUS CONNECTOR and a cable set provided with Prompt.

All of Prompt 48’s circuitry is located on a single board just beneath the panel. Aside from
the power supply, the remainder of the Prompt 48’s cabinet is empty. A slot at the back of
the cabinet provides access for interconnections.

1-6. Getting Started

Entering a program into Prompt 48’s random-access memory (RAM) is easy. The example
that follows can be loaded and run without any more instructions than are given here in this
paragraph. (The MCS-48 Assembly Language Manual has some other sample programs of
a tutorial nature.) Do the following, step by step, and you will be running a program in a
matter of minutes.

a. Connect power to Prompt 48.

Install the 8035 computer in the EXECUTION SOCKET. (Observe the precautions in
paragraph 1-3.)

c. Turn power ON. The display should respond with ACCESS = 0. If not, press
[SYS RST].

d. Enter the program by pressing each COMMANDS or HEX DATA/FUNCTIONS
key in the order listed on the next page. Each [] represents one keystroke. At the end
of each step (which may be several keystrokes), the results shown in the column at
right should appear on the display. If you make a mistake and the wrong data appears,
you can correct it by keying the field over again before touching the NEXT [] key. If
you realize a mistake after incrementing to the next address, you can go back and cor-
rect it by pressing the [] CLEAR ENTRY/PREVIOUS key and then keying the
step over again.

Prompt 48

Step

Result Instruction
Action Function Address Data Mnemonic Comment

wn

[]
(]

[
L)1
[.]1o
[.]{o

EXAMINE/MODIFY E :SELECT FUNCTION
PROGRAM MEMORY EP ;SELECT PROGRAM MEMORY
0] EP
1

:ADDRESS 0
[7] EP
[4] EP

EP

JMP #JUMP TO LOCATION
;00

N - OO0
88

]
]
]

INC A ;/INCREMENT ACCUMULATOR

1-2

CHAPTER 2
THE NUMBER SYSTEM AND ITS SYMBOLS

2-1. Why Computers Need Symbols

Digital computers perform functions accurately and at high speed by manipulating symbols
(characters) according to a set of instructions. Computer operation consists of the execution
of sequences of symbolically coded instructions and data. Within the machine, both data
and instructions are usually described in binary-number codes.

To understand the computer, you will need to understand how numbers are represented. Our
starting point is the study of the simplest of numbering systems—the binary number system.
But first, some definitions.

2-2. Number Systems

A number system is a set of symbols that may be operated upon by arithmetic rules. The
individual symbols are called digits, and each digit is assigned its own name. The decimal
system, as the name suggests, has ten digits: 0, 1, 2, 3,4, 5, 6, 7, 8, 9. A number system
also has a set of rules that define how to arrange the digits to form numbers. A number is,
therefore, a sequence of digits interpreted according to a particular set of rules.

Positional notation allows numbers to be written that express all quantities, no matter how
large or how small. The real value of a digit depends on its position in the number. The digits
of the number 5555 are identical, yet each has a different value. To write 5555 is a compact
way of writing five thousand + five hundred + fifty + five or, expressed in powers of 10,
5% 10® + 5 x 10% + 5 x 10! + 5 x 10°. The number 10 is the base, or radix, of the
decimal system. After learning a few simple rules (and memorizing or referring to some
wnfamiliar addition and multiplication tables), it is easy to perform calculations in any
non-decimal system. This chapter is concerned with the binary number system, whose radix
is 2, and the hexadecimal system, whose radix is 16.

2-3. Binary Numbers

Binary numbers are written using radix 2. That is, each column represents a power of 2, just
as in decimal, each column represents a power of 10. The binary number 101101 can be
written 1011015. Its value is expressed in the equation:

101101, =1x234+0x24+1x28+1x22+0x2 +1x2

=1X32+0x16+1X8+1%x4+0x2+1x%x1
'—‘4510

2-1

The Number System and Its Symbols

2-2

The following table lists eleven binary numbers and their decimal equivalents.

Binary Decimal
24282251 0

00000 0
000O01 1
00010 2
000 11 3
00100 4
00101 5
00110 6
00111 7
01000 8
01001 9
01010 10

Computer people have become accustomed to referring to digits in the binary system as bits,
which is a contraction of binary digits.

2-4. Converting Decimal Numbers to Binary Numbers

A simple method, suitable for converting large numbers, consists of repeatedly dividing the
decimal number by 2. The remainder at any step of the division can only be 0 or 1. These
remainders are the bits of binary equivalent. To illustrate, convert 37,9 to its binary
equivalent.

37
18 remainder 1 = 2° (least significant digit)
9 remainder 0 = 2!
4 remainder 1 = 22
2 remainder 0 = 23
1 remainder 0 = 24
0 remainder 1 = 2°

|
NN
11 1 A |

Binary equivalent =

2-5. Converting Binary Numbers to Decimal Numbers

The obvious method for binary to decimal conversion is to select the one bits in the binary
number and convert each one to decimal and then add the results together.

252123 2231 20
00101

x22 +1x22+1x2°
2+ 4+ 1

3710

/I
—
1

(9]

3
-
=)

2-6. Binary Arithmetic

Binary arithmetic operations are much simpler to perform than decimal number system
operatlons So much s1mpler that the advantage of using fewer digits to express a given
value in the higher radix is more than offset. The rules of arithmetic are identical in both
systems.

Prompt 48

Prompt 48

The Number System and Its Symbols

2-7. Binary Addition

All of the possible combinations that can occur when two bits are added are shown in the
following addition table:

0 0 1 1
1 +0 +1
0 1 1 0 withacamyof1

A carry 1 bitis produced from the addition of 1 and 1. Binary carries are treated in the same
way as decimal carries; they are carried over to the left. Indecimal, 1 + 1 = 2,4, but since
1 is the largest bit, 2 must be written as 103. Example:

Decimal Binary
15 1111

+ 7 + 111
22 10110

2-8. Binary Subtraction
As in the binary addition table the binary subtraction table contains only four entries:

0 1 1 0
-0 -0 -1 -1

0 0 0 1 withaborrowof 1

A borrow must be made in order to subtract a larger bit from a smaller bit, just as in a
decimal subtraction. Since there are only two bits, this only happens when 1 is subtracted
from 0. Inthis case a 1 is borrowed from the next column to the left. All binary subtraction is
performed according to the subtraction table. Example:

Decimal Binary
15 minuend 1111
-7 subtrahend — 111
1000

Decimal Binary
15 1111
-6 - 110
9 1001

The arithmetic used in most computers performs subtraction in a different way than we are
accustomed to using for decimal arithmetic. The method used is called the complement
method. Jts advantage lies in simpler physical circuitry to obtain the same result.

2-3

Prompt 48

24

The Number System and Its Symbols

Here is how the complement method would work in the familiar decimal system. First, form
the ten’s complement (in binary we would form the two’s complement). To form the ten’s
complement, subtract each digit from 9, forming the nine’s complement, and then add one
to the number as a whole: thus the ten’s complement of 0123456789 is

9999999999
—0123456789

9876543210 nine’s complement
+1

9876543211 ten’s complement
Then, subtracting a subtrahend from a minuend is simply adding the minuend complement.

Example: Subtract 56,¢ from 231,

NORMAL COMPLEMENT
231 minuend 231
—056 subtrahend +944 (ten’s complement)
175 (H175

Notice that the carry digit is ignored in the complement method. The subtrahend is the
smaller of the two numbers. If not, invert the problem and change the sign of the result.

So the rule for ten’s complement subtraction is
Add the ten’s complement of the subtrahend to the minuend, ignoring the carry digit.
You can see that in the decimal system the ten’s complement system is cumbersome.

The binary number system used by computers, however, makes subtraction by comple-
menting simple. first, form the two’s complement. Subtract each digit from 1, forming the
one’s complement, and then add one to the number as a whole:

11111111
—00000101

11111010 (1's complement)
+1

11111011 (2's complement)
Then, subtracting a subtrahend from a minuend is simply adding the minuend complement:

00001010
+11111011 (2's complement)

00000101
As before, the carry bit is ignored.
In fact, subtraction in the MCS-48 family of computers is explicitly programmed by the
complement method. Suppose you wanted to subtract A from RO, leaving the answer in A.

You would program

CPL A ;forms 1's complement of A.
INC A ;now 2’s complement of A.
ADD A,RO ;A now contains the desired subtracted result.

There need not be a subtract (SUB)!instruction.

Prompt 48

The Number System and Its Symbols

2-9. Binary Multiplication

There are two simple, easy-to-remember rules for binary multiplication:

1. Theproductof1x1 = 1.
2. All other products = 0.

o 1 o0 1
X0 X0 x1 xi

0 0 0 1

The reason for the simplicity of binary multiplication is readily apparent. Any number, digit
or bit muliiplied by 0 produces a product of 0. The simple procedure of binary multiplication
is illustrated in the following example:

Decimal Binary
7 111 multiplicand
X5 X101 multiplier
35 111

000 partial products
111

100011 product

Binary multiplication involves a series of shifts and additions of the partial products. The
partial products are easily found since they are equal to the multiplicand or to 0. Every 1 bit
in the multiplier gives a partial product equal to the multiplicand shifted left the correspond-
ing number of places. Every 0 in the multiplier produces a partial product of 0. Each partial

product is shifted left one position from the preceding partial product, the same as in
decimal arithmetic.

It is useful to remember that shift operations are used to multiply or divide binary numbers
by powers of 2 (not multiples of 2). A left shift of pne position multiplies by 2; a left shift of
two bit positions multiplies by 4. Similarly, a right shift of one position divides by two (i.e.,
multiplies by 1/2); a right shift of two positions divides by four.

2-10. Binary Division

Binary division is performed in much the same way as decimal long division. The process is
much simpler, since there are only two rules in binary division.

2-5

The Number System and Its Symbols

2-6

Division by 0 (1 + 0, 0 + 0) is meaningless in any numbering system. The following
examples illustrate the binary division process:

Decimal Binary
3 11
3)9 11) 1001
9 -
011

11

7 111
4)28 100)11100
28 100
110
100
100
100
Decimal Binary
12 1100
11)132 1011)IOOOOIOO
11 1011
22 1011
22 1011

So, acomputer does division in the reverse way as multiplication, by a series of subtractions
and right shifts to provide partial dividends as opposed to a series of additions and left shifts
to provide partial products.

2-11. Hexadecimal Numbers

The principal drawback of binary notation is the relative length of the numbers. It is tedious
to write, and so more vulnerable to error.

One shorthand method of expressing:any group of four bits is the hexadecimal number
system. This is not a code, merely a means of replacing four consecutive bits by a single
character. Since any four bits may represent the numbers O through 15, then 16 single-digit
numbers are required to replace the 16 binary numbers. For convenience, hexadecimal

numbers are symbolically represented by a set of familiar characters, arranged in a familiar
order.

Prompt 48

Prompt 48 ' The Number System and Its Symbols

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
o110 6 6
o111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 " B
1100 12 o]
1101 13 D
1110 14 E
1111 15 F

Since data is often represented by binary numbers in some codes, hexadecimal notation can
be used to express data. Prompt 48 uses 8-bit bytes, which can be expressed in two
hexadecimal characters. The computer still reads only binary numbers; hexadecimal is the
user’s shorthand, not the computer’s. The smallest hexadecimal number is 006
(000000005) and the largest is FFyg (111111115).

When making translations, you may find it helpful to divide each 8-bit byte into two 4-bit
nibbles. The left nibble represents the left (most significant) hexadecimal digit, and the right
nibble represents the right (least significant) hex digit. For example, 011100112 (1154¢)
might for convenience be written:

0111 0011
7 3

i.e., 7314, which looks a lot like 734 but is larger in value.

For another example, 110110115, which translates into decimal as 219,¢, can be translated
into *‘hex’’ like this:

1101 1011
D B

If thinking of DB ;g as a number somewhat larger than the number of bones in your body is
hard, you can calculate it using an equation much like the one used to find the decimal value
of binary numbers, thusly:

DBjg = 13 x 16" + 11 x 16°
=13x 16+ 11 x 1
=208 + 11
=21910

the decimal value stated previously. In hex, there are only two digits to contend with, and
each of those could be looked up in a table and thereby translated from binary in one step. As
you can see, there is no direct way to divide a binary number into decimal nibbles. That’s
why Prompt 48 uses a hexadecimal display and keyboard.

The Number System and Its Symbols

2-8

Since hexadecimal notation is merely a shorthand for binary notation, hexadecimal
arithmetic—addition, subtraction, multiplication, and division—is simply binary arithme-
tic. Thus,

Binary Decimal Hexadecimal
1001 11 B
+1010 +10 TA
10011, 2140 1516
1011 11 B
—1010 —-10 —A

1 1 1

Prompt 48 has a built-in hexadecimal calculator which facilitates hex addition and
subtraction.

Throughout this book, numerical values are stated in decimal numbers without subscript,
and program addresses and steps ar¢ stated in hexadecimal numbers without subscript.
Some books use suffix H to indicate hex, D for decimal, and B for binary.

2-12. Electrical Representation of Binary Digits

So far, the bit has been discussed in terms of 1 or 0. This is fine for arithmetic and logic
representation using a pencil and paper, but a computer is an electronic device, and needs
two signal states' that:

a. Can be represented by high speed circuits.
b. Can be readily distinguished.
¢. Cannot be confused.

In general, computers use voltage levels to represent binary digits. The level may be present
for arelatively short time period (or pulse) or a longer time period (which still may be a pulse
or a level).

2-13. Positive True Logic

One representation of a logic level is termed positive true, and the companion voltage levels
are +5 Vdc and 0Vdc, such that:

+5V =1 = HIGH = TRUE
0V =0 = LOW = FALSE

If the output of a logic element (circuit) is + 5V, that output may be referred to as logic 1, or
high, or true, depending upon the function of the logic element, i.e., whether it represents
data in some form, or a timing or control function. Conversely, when the output is 0V it may.
be referred to as a logic 0, or low, or false.

Prompt 48

Prompt 48

The Number System and Its Symbols

2-14. The Inverse State (Negative True)

Certain logic elements have two outputs, the one being the inverse of the other in terms of
voltage levels. In certain cases a level is purposely inverted because it is easier to use its
inverse. What does this mean?

Consider a logic element that has two outputs, which are named for schematic or illustrative
purposes. Now suppose that the logic element performs a control function and that the
control function is termed Fetch. The mnemonic for one output could be FETCH, and by
adopting the bar convention the other output would be FETCH/. How then is the Fetch
control function expressed in these terms?

FETCH =5V =HIGH = TRUE The Fetch control
FETCH/ =0V =LOW =TRUE is applied

FETCH =0V =LOW =FALSE The Fetch control
FETCH/ = 5V = HIGH = FALSE s not applied

Since the two signals are derived from the same logic element, they will always be opposite,
the one being the inverse of the other. However, you cannot say that if FETCH = TRUE,
then FETCH/ = FALSE. Both levels must be either true or false at the same time. The
foregoing applies to any signal or bit that has dual representation.

2-9/2-10

CHAPTER 3
HOW THE INTEL MCS-48
CHIP-COMPUTERS WORK

3-1. Historical Perspective

The Intel MCS-48 Chip-Computers are truly computers-on-a-chip, unlike earlier *‘micro-
processors.”’ Within this single-chip microcomputer are included all the computer building
blocks which have traditionally come to be regarded as basic: Central Processing Unit,
Memory, and Input/Output.

The concepts leading to present-day computers date back as far as the 1830’s, when Charles
Babbage envisioned his ‘*Analytical Engine.”’ Babbage's design included all the major
components of a general-purpose digital computer. He foresaw that its ‘*store’’ (memory)
should hold a thousand 50-digit numbers. Its ‘*mill"’ (processor) would perform operations
on the information and return the results to the ‘‘store.’” Babbage’s concept was complete
and accurate, for as in modern-day computers, it included **sequence mechanisms’’ which
would select the proper numbers from the ‘*‘store’’ and instruct the ‘*mill’’ to perform the
proper operation. But mechanical technology (later joined by electrical) required one
hundred years to realize a working computer according to Babbage’s conception.

This was the relay-powered **‘Complex Computer’’ built by Dr. George R. Stibitz at Bell
Laboritories around 1939. Stibitz used a roomful of reliable, proven telephone relays to
perform a limited repertoire of arithmetic operations. It worked, and was very fast alongside
the manual calculation methods available to mathematicians in 1939. It was not a general-
purpose machine.

3-2. The Harvard Architecture

The great technical visionary, Howard Aiken, conceived that the technique of Stibitz could
be extended to fulfill Babbage's dream of a practical, general-purpose computer. His
conception was of an electronic machine with vacuum-tube memory banks, used to store
both numerical data and changeable programs for the processing of that data. His particular
design called for split, independent memories for ‘*data’’ and ‘‘programs.”” He wrote the
specification for such an ** Automatic Sequence-Controlled Calculator’” in 1937.

Seven years later, the development and manufacturing skills of IBM Corporation
successfully completed and installed this system, Mark I, on which the Harvard
Computation Laboratory was founded. It was 51 feet (15.5 Meters) in length. Its
information was input by four paper-tape readers. Three were dedicated to data, one to
programs, whose instructions were coded in the sequence ‘‘source, destination, opera-
tion.”” The Mark I was very slow by modern standards: about 1/3 second was required to
execute a single ADD instruction.

3-3. Princeton Heard From

A computer named EDV AC was the result when mathematician John von Neumann and his
colleagues at Princeton constructed a machine for the U.S. Army. EDVAC could store 4K
of a mixture of 40-bit data words and program instructions in its vacuum-tube memory
matrix. The principal von Neumann introduced is that of numerical coding of programs, in
exactly the same format as data, stored side-by-side in the same memory. This was a
technique of such power and flexibility (especially so in an era when memory was costly)
that it has been adopted and used virtually universally. Intel’s 8008 and 8080 series of
microprocessors are designed fundamentally around the Princeton architecture; they are
‘‘von Neumann’’ machines, employing a ‘‘monomemory’’ addressing scheme. On the
other hand, the 4004 and 4040 are *‘ Aiken’’ machines, featuring the Harvard Architecture,
employing separate program and data memories.

3-1

How the Intel MCS-48 Chip-Computers Work

3.2

3-4. The MCS-48 Architecture

3-5. Bits, Bytes, and Where You Can Put Them

The basic unit of information in virtually any computer system today is the bit. A bit is a
binary (base 2) digit; that is, it can be either a O ora 1, represented in acomputer as a low ora
high voltage level. In the MCS-48 series computer systems, bits are handled in groups of
eight. Space for data is allocated in these eight-bit bytes. For easy identification, the bits ina
byte are numbered according to their position, or power of 2, from 0 through 7, or least
significant bit (LSB) to most significant bit (MSB), thus:

MSB LS8

An eight-bit byte is conventionally broken up into four-bit half bytes, called nibbles. A
nibble, containing four bits, can represent 2* = 16 different numbers, from 0000 to 1111.
For programming convenience, four-bit nibbles are usually represented as a single
hexadecimal digit (base 16), from O to Fy4. To understand the inner workings of the
computer you need to think binary, but when you are writing programs for the MCS-48
chip-computers you’ll be writing hex numbers, rather than bits.

A register is a place to store binary data so it can be worked with. Most MCS-48 registers are
8-bits wide (one byte). Each MCS-48 Chip-Computer contains Register Memory, Data
Memory, and separate Program Memory, thereby reintroducing the Harvard Architecture.
The MCS-48 also retains the Princeton concept of program instructions coded in the same
numerical format as data. Program memory is thus also organized as 8-bits (one byte) wide
per location.

3-6. Accumulator

The first register to be explained is the accumulator, designated A. An accumulator is
something like the display register in an electronic calculator. The accumulator is the focal
point of a majority of the instructions the computer can execute. Most arithmetic and logical
functions are performed on the data within the accumulator, or between the accumulator
data and the contents of other data sources (registers and data memory). The accumulator is
also the channel through which all data is transferred to and from external devices, and can
be used to access data contained in program memory.

We will illustrate the architectural features of the MCS-48 family with a device known as
the Micromap, which will gradually increase in complexity until it becomes a quick
reference to the features and capabilities of the MCS-48. The first Micromap, emphasizing
the accumulator, appears below.

3-7. Register Memory, Working Registers, and RAM Pointers

The MCS-48 Chip-Computers contain 64 8-bit bytes of register memory, numbered
00-3F;¢. These registers are divided into two major types, working registers and data stor-
age registers. The working registers have the special capability of being directly accessible
through a wide variety of register-accumulator instructions and register-only instructions.

The working registers are divided into two banks of eight registers each, designated RO, R1,
. . . » R7, of which only one bank is directly accessible at any given time. Working Register
Bank 0 (RBO) is found in locations 0-7 of the register memory, and working Register Bank |

Prompt 48

Prompt 48 How the Intel MCS-48 Chip-Computers Work

PORTS
ACCUMULATOR ".;"2.20":,,"
F AL 1 l i I
OTHER
T REGISTERS
DATA
MEMORY)

(RB1) in locations 18, —1F;6. The bank currently being used is selectable under software
control (see paragraph 3-17).

Two working registers in each bank, RO and R1, are also called RAM Pointers. Data storage
registers are only accessible through the use of the RAM Pointers. The RAM Pointers can
(in addition to the general capabilities of work registers) also function as **index’’ registers.
That is, they can contain the address (register number) of a byte of the register memory
whose data is to be accessed through certain instructions.

3-8. Program Memory and Program Counter

Program memory, like register memory, is a place to put information; in this case, the
instructions to be carried out by the computer. In MCS-48 computers program memory is 8
bits (one byte) wide. In the 8048 and 8748, there are 1024 (1k) bytes of program memory
on-chip, addressed as locations 000-3FF;¢.

The program memory is accessed by means of the program counter. The program counter is
a 12-bit register containing the address of the next instruction to be executed by the
computer. Most instructions are executed sequentially in ascending addresses of program
memory. That is, the program counter is ‘*incremented’’ after each instruction. Breaks in
the normal sequence of program execution are achieved through **jump’’ commands, which
load the program counter with an address other than that of the next instruction in program
memory. Note that a 12-bit register can address 2'2 = 4096 locations. The 3072 addresses
not on-chip are located in external program memory, discussed in Paragraph 3-12.

33

How the Intel MCS-48 Chip-Computers Work

Prompt 48

PORTS
ACCUMULATOR

NN

REGISTER MEMORY

n N
20
1F R7
REGISTER
BANK 1 PROGRAM
a1 MEMORY
19
18 Re
7”
OTHER
REGISTERS
8
7 R7
REGISTER
BANK 8
1 R1
o RE

34

The MCS-48 Chip-Computers manage program memory in 256-byte pages. The most
significant hex digit of the program memory address is the page number; the entire
4096-byte address range of the MC$-48 would amount to sixteen pages. The two least
significant hex digits point to 256 adjacent memory locations, numbered X00,g —XFF g,
where X is the page number in hex. Memory paging is implied by the fact that only the 8
least significant bits increment automatically after each instruction. The two exceptions to
this rule (the only means to cross * ‘page boundaries’’) are the CALL and JMP instructions,
which provide an additional 3 more significant bits of address information (a total of 11
bits). A 12" and most significant bit exists in the program counter, called the Memory Bank
select, or MB bit. This bit may be manipulated by software to select either of two 2k regions
(upper or lower) of program memory through the Designated Bank Flag (DBF), which is
moved into MB on the execution of a CALL or JMP instruction (see Paragraph 3-17).

3-9. Flags and Stack

The flags in the MCS-48 are independent on-bit registers which are used as aids to various
processing tasks. Four of the flags are organized into half of the flags register which contains
the processor status word, or PSW. These four are the Carry (C), Auxiliary Carry (AC), user
Flag 0 (F0), and working register Bank Select (BS) flags. The C flag represents the carry (or
barrow) from the last addition (or subtraction). The AC flag represents the carry from bit 3
to bit 4 of the last addition, which is needed for decimal arithmetic. FO is set, reset, and
sensed by software, and is useful as a means of communicating between two parts of a
program. BS determines which working register bank is currently in use: RBO (register

Prompt 48 How the Intel MCS-48 Chip-Computers Work

PORTS
ACCUMULATOR PROGRAM MEMORY
LI—L—I.—].—I—.I_.I_] "
MB
REGISTER MEMORY (PC 1) PROGRAM COUNTER
L A [0 IIII111
e M (2 VY]
DBF
20 D EXTERNAL
1F R7 PROGRAM
MEMORY
(OPTIONAL)
REGISTER
BANK 1
19 R1
18 Re
17
OTHER
REGISTERS 400
o173
8 3FF '
7 R7 (2 ¥} Ny
o nyY
REGISTER ON
BANK @ CHIP
. JMP
001
1 R1 INC A
[} Re "L -

memory locations 0-7) or RB1 (locations 18,5 — 1F;¢). Contained elsewhere in the MCS-48
are user Flag 1 (F1 — used like F0), the Timer Flag (TF — see Paragraph 3-10), and the
Designated Bank Flag (DBF — see Paragraph 3-8).

Also stored in the flags register are the three STP bits, the stack pointer. The stack pointer is
used to manage the MCS-48 stack. A stack is a splendid way to organize activities that
cannot be done at the same time. Here is an example from day-to-day life. Suppose that you
are writing at your desk and the phone rings. You set aside the writing (intending to return to
it) to take care of the phone call. Then a second person calls. You place the first caller on
hold and answer the second caller’s question. Then you return to the first caller and
ultimately to your writing.

How do you organize your responses to these multiple demands? When the first phone rings
you remember (perhaps on a mental list of things to do, or mental ‘*stack’") that you will
return to the writing. And when the second call comes you decide that the first call can be put
on hold, or stacked, for later return.

Your first call is now the most recent item on hold (on your stack). You will return to the first
caller when you have disposed of the second caller and then resume writing after both calls
are finished. Interrupted activities are pushed onto the stack to save them for later. When an
interrupting activity is finished, the interrupted activity is popped off of the stack to restore it

3-5

How the Intel MCS-48 Chip-Computers Work Prompt 48

PORTS
ACCUMULATOR PROGRAM MEMORY
LI-.I—II.I—I.—.I—J i
MB
REGISTER MEMORY (PC11) PROGRAM COUNTER

D EXTERNAL
¥ R7 1 PROGRAM
MEMORY
FLAGS F1
\ REGISTER {
BANK 1 C JACIFO 1182 S1lSo
19 H
A1
18
- Ao ¢
[‘
TF TIMER/EVENT COUNTER
>STACK
400
8
4 J 3FF
‘1 [y R?7 W
| REGISTER OoN
BANK 0 CHIP
1 R1
[} RO 000

for completion. The MCS-48 computers have facilities which allow a program to be
interrupted, made to perform more urgent tasks, and later be returned to the original activity
through the use of a stack.

In the MCS-48 Computers, the stack is implemented by saving the contents of the program
counter (return address in the interrupted activity) and the C, AC, FO, and BS bits of the
flags register (status of the interrupted activity). The twelve bits of the program counter and
the four bits of the flags register are combined into two bytes, which are saved on the stack.
The stack is a special area of register memory, locations 8,6 — 17;¢. These sixteen bytes of
register memory are divided into eight two-byte stack locations, or levels. This allows eight
levels of ‘‘nesting,”’ or eight interrupted activities waiting on the stack.

STACKED CURRENT

ACTIVITIES ACTIVITY
1st CALL 2nd CALL
WRITING

3-6

Prompt 48

How the Intel MCS-48 Chip-Computers Work

The stack is maintained through the use of the stack pointer (STP), the three low order bits of
the flags register. These three bits can point to (address) the 23 = 8 stack locations. Note that
the STP bits do not form the actual address in register memory of the stack, but rather
indicates the next available stack entry, called the stack ‘‘top.”” When STP = 000, the stack
is on level 0, and the next available stack location is at register memory locations 8 and 9.
Similarly, when STP = 001, the stack is on level 1, and the next location is in register
memory Ay and Byg.

The format of a stack push is shown in Figure 3-1. The eight low order bits, bits 7 to 0, of the
program counter, are saved in the low order byte, the lower address of the stack registers.
The four flag bits are combined with the program counter bits 11-8 (including MB) to form
the upper byte of the stack entry. After the transfer, 1 is added to the stack pointer to point to
the next available stack entry, on the next level.

A stack pop is shown in figure 3-2. The stack pointer (STP) points to the next available stack
level. First, 1 is subtracted from the stack pointer. Then the data to restore the interrupted
activity is transferred from the now available stack location to the appropriate registers.

The stack is also used to manage subroutines. A subroutine is a part of a program that is used
(“‘called’’) by other parts of the program. An example would be multiplication routine,
which would calculate and *‘return’’ the answer, the product. As with interrupts, the status
and return address are saved on the stack, and can be restored to the flags and program
counter registers in order to return to the calling routine (previous activity). In most cases
though, the status of the subroutine does not interfere with the main (calling) program
(self-interrupted activity), so there is a special instruction to pop only the return address
from the stack for use with subroutines (see Paragraph 3-17). -

All this is not to say that the memory in which the stack resides is any different then the data
storage registers, for they are equally accessable through the use of the RAM pointers.
While the register memory is available for data storage on those levels of the stack which are
not needed to monitor multiple activities, this very availability should be carefully checked.
Writing a byte of unrelated data over a return address can be disastrous.

3-10. Timer/Event Counter

Each MCS-48 computer has an on-chip timer/event counter to count external signals or to
generate time delays without tying up the processor. Basically, it is an 8-bit register that
(when enabled) increments every time it gets an input, and sets a flag when full. The input
can be either an external signal, or an internally generated signal, equal to 1/480 of the clock

crystal frequency. These are the event counter and timer modes, respectively. Dividing the
clock frequency by 480 means that, for example, if the system clock crystal frequency wa@

MHz, the timer would increment every .16 msec. This is equal to 32 instruction cycles.
When the timer/event counter is full (all ones), the next increment resets the timer/event
counter to zero, and sets the Timer Flag (TF). This flag can then be used by the software to
decide whether it is time to perform a time- or external event-dependent action. The
timer/event counter continues incrementing on each input, regardless of the reset when full,
until stopped by software. The instructions used to control and monitor the timer/event
counter are described in Paragraph 3-16 and the MCS-48 Microcomputer User's Manual.

4696 M3

3-7

8-€

(NOT USED)

|
STACK
POINTER of ¢
p——

Yy v Y Y Vv 3

Fle SAVED PC
01 S 141319098

o»
omn
(7]

STP BITS
01030

SAVED PROGRAM COUNTER
L 1 1 1 1

2 1

5 4 3 2 1 0
S W S Y W

ﬂl

Hop s1yndwo)-diy) gp-SIIA PIU] 3 Moy

1 T
CURRENT PROGRAM COUNTER
'l 1 1 1 1 1 1

]
5:[e=

Figure 3-1. Stack Push

8y dwoug

6t

(NOT USED)

STACK
POINTER

o

"o

STP BITS
0 1011

ol 0>

3 2 1 0

A
dclalr]e SAVED PC
Cl O] SJl11g100979)8 y

8 SAVED PROGRAM COUNTER RESTORED PROGRAM COUNTER
11 1 | L1 __1

10 9 8 7 6 5 4 3 2 1

'

5:: oz

7 6 5 4 3 2 1 0
MSB LSB

Figure 3-2, Stack Pop

gy 1dworg

op somdwo)-dm) 8-S 199U]) MOy

How the Intel MCS-48 Chip-Computers Work

Prompt 48

PORTS
ACCUMULATOR PROGRAM MEMORY
[]] FFF
MB
REGISTER MEMORY {PC14) PROGRAM COUNTER
3F
ip] il
i _
¥ D PROGRAM
o R MEMORY
FLAGS Fi1
REGISTER
smstE clac ru[ssla S2|S1|so D
19 -
18
” RO /
n
TF TIMER/EVENT COUNTER
\
STACK L4 1111 400
§ o ml IFF
2 ¢)
|, REGISTER
BANK 0
1 R1
0 RO 000

ON
CHIP

3-10

3-11. Input/Output Ports

The MCS-48 chip-computers each have 27 lines which can be used for input/output
functions. Comprising 24 of these lines are the three on-chip input/output ports, Bus (or
P0), P1, and P2.

Bus is an 8-bit bidirectional port with associated input and output strobes. Ports P1 and P2
are identical, latched static ports, i.e., data written out to these ports remains until
something else is written there. They are called quasi-bidirectional because they can be
driven as inputs when they have been latched high as outputs. (That’s because the output
impedance of each line is relatively high, so that a standard TTL gate can pull it down.) This
quasi-bidirectional operation is described fully in the MCS-48 Microcomputer User’s
Manual.

Of the remaining three lines, TO and T1 serve as external signal inputs, and are testable with
conditional jump instructions. INT/ is an input which initiates an interrupt if enabled by
software. The relevant instructions are given in the MCS-48 Assembly Language Manual,
and the hardware operation is described in detail in the MCS-48 Microcomputer User’s
Manual .

How the Intel MCS-48 Chip-Computers Work

Prompt 48
PORTS
P2
P1
ACCUMULATOR PROGRAM MEMORY
e AN
11 1 i1
MB
REGISTER MEMORY (PC11) PROGRAM COUNTER
p A
rU [
qu f‘y
DBF
20 D EXTERNAL
- PROGRAM
1F 1 MEMORY
FLAGS F1
REGISTER
* BANK 1 cla FoJ;in s, s Iso D
19 a1
18
® RO {
r
' TF TIMER/EVENT COUNTER
STACK
(D 1111t 400
8o a7 3FF
-8)
REGISTER ON
" BANK 0 CHIP
1 Rt
0 RO 000

3-12. External Memory and Ports

In addition to the on-chip features of the MCS-48 computers, there are several expansion
features which require additional hardware beyond the single-chip computer. These are
external program memory, external data memory, and external /O ports.

3-13. External Program Memory. If a given application requires more than the 1024
program memory bytes included on-chip, there is provision for expanding the program
memory with up to 3072 additional bytes of external memory, making a [total program
memory of 4096 (4k) bytes possible. (For details on how to implement program memory
expansion, see the MCS-48 Microcomputer User's Manual.)

The external program memory is treated in the same manner as in the 256 byte pages (see
Paragraph 3-8). There is, however, an additional condition which must be observed when
program memory exceeds 2048 bytes. This is the Memory Bank (MB) address bit, the most
significant bit in the 12-bit program counter. (Details on how the MB bit is manipulated are
given in Paragraph 3-17.)

How the Intel MCS-48 Chip-Computers Work Prompt 48

EXTERNAL
PORTS
P4
PS
PORTS
P2
P1
ACCUMULATOR PROGRAM MEMORY
BUS (P0) FFF
ol
MB
REGISTER MEMORY (PC11) PROGRAM COUNTER

3F
fL i1 1 L1 J—]
T

DBF

20 D EXTERNAL

2

1¥ R7) PROGRAM
MEMORY
FLAGS F1
Lneelsrzn
BANK 1 c jacjrolss| 1 Is2|sy
19
R1
18
” RO /
N
TF TIMER/EVENT COUNTER
STACK
r i1 114111 400
€ 3FF
Q R7
2 A
>HEGISTER ON
BANK 0 CHIP
4
R1
0 RO J 000

3-14. External Data Memeory. If the data requirements of an application exceed the
capacity of the on-chip 64 bytes of register memory, up to 256 bytes of external data
memory can be added. This external data memory is accessed through the accumulator,
using one of the RAM pointers for addressing. (Complete hardware details for data memory
expansion are given in the MCS-48 Microcomputer User' s Manual. The instructions which
read and write the external data memory are discussed in Paragraph 3-17).

3-12

Prompt 48

How the Intel MCS-48 Chip-Computers Work

3-15. External Ports. The most efficient means of I/O expansion for small MCS-48
systems is the 8243 I/O Expander Device (part of Intel’s compatible MCS -48 family) which
requires only 4 port lines (the lower half of Port 2) for communication with the MCS-48
Chip-Computer. The 8243 contains four 4-bit I/O ports which serve as extensions of the
on-chip /O and are referred to in software as P4-P7. The following operations may be
performed on these ports:

1. Transfer Accumulator Data to Port
2. Transfer Port Data to Accumulator
3. AND Accumulator to Port (result in Port)

4. OR Accumulator to Port (result in Port)

All communication between the MCS-48 Chip-Computer and ports P4-P7 takes place
through the Least Significant Nibble of Port 2 (LSN P2). LSN P2 corresponds to pins
P20-P23 on the Chip-Computer. Data is transferred between the LSN of the Accumulator
and the specified port (P4-P7). A 4-bit transfer from one of these ports to the LSN of the
Accumulator sets the Most Significant Nibble (MSN) of the Accumulator to zero.

Hardware details as well as other options for port expansion are given in the MCS-48
Microcomputer User's Manual. The use of related software instructions is discussed in the
MCS-48 Assembly Language Manual.

3-16. Data Paths

We have now introduced all the architectural features on the MCS-48 chip-computers.
These features are the:

a. Accumulator,

Register Memory (with Working Registers, RAM Pointers, and Data Storage
Registers), .

Program Counter and Program Memory,

Stack and Flags,

Timer/Event Counter,

Input/Output Ports, and

External Data Memory, Program Memory, and /O Ports.

™o o o

The MICROMAP below shows the path that data can take between these processor
elements. In this and in the MICROMAPS to follow, a single line denotes a data path on
which data can flow in either direction, and a line with an arrow on one end stands for a data
path on which data can only flow in the direction of the arrow.

Paragraph 3-17 discusses the instructions which facilitate movement along the various
MCS-48 data paths, as well as all other instructions available to the MCS-48 programmer.

3-13

How the Intel MCS-48 Chip-Computers Work Prompt 48

EXTERNAL TIMER/EVENT COUNTER
PORTS l
: i gt 11 I
P4
P?
Ps _
ACCUMULATOR FLAGS
PS5
—""—_'CACFOBs‘SquSO
P4 LAl 1 L.l L
PORTS

P2
P PROGRAM MEMORY

FFF

BUS(PO)
REGISTER MEMORY

1 ¢

coo
(8] i BFF
1 R7

REGISTER
BANK

19 800

7FF
18
17

PROGRAM COUNTER
Dr. llllllllll
8 400
7 3FF
ON CHIP

1 7 TIMER/CNT INT
0 3 EXTERNAL INT

000 0 RESET

EXTERNAL
DATA MEMORY

FF
00

3-14

Prompt 48 How the Intel MCS-48 Chip-Computers Work

3-17. MCS-48 Instruction Set

In this section we-will describe the various classes of instructions which allow data to be
manipulated in the MCS-48 Chip-Computers. (For details of any specific instruction, we
refer you to the MCS-48 and UPI-41 Assembly Language Manual, or the summaries in the
MCS-48 Microcomputer User's Manual.)

Roughly, the MCS-48 instructions break down into four categories:

1. Accumulator Instructions

2. Register-Accumulator Instructions
3. Input/Output Instructions

4. Control Instructions

The Micromaps which illustrate these four categories use the following terminology:

RO7 represents any one of the working registers, RO, R1, . . . , R7, in either Working
Register Bank RBO or RB1. (Which bank depends on the status of the BS flag bit.)

RO1 can be any of the four RAM pointers, RO, R1 (Register Bank 0), and RO, R1
(RB1).

@RO1 is the data memory location pointed to by the current register ROI; that is, the
two-hex-digit contents of RO1 represents the register number in register memory, or the
address in external data memory.

P12BUS represents Port 1, Port 2, or BUS (Port 0), the three .ports implemented
on-chip in the MCS-48 family.

P47 represents Port 4, 5, 6, or 7, the external I/O ports which can be added with very
little additional hardware.

3-18. Accumulator Instructions

Instructions which allow the manipulation of data already in the accumulator are called
Accumulator Instructions, and are shown in the Micromap below:

3-19. Register Accumulator Instructions

Register Accumulator Instructions are those which allow the manipulation of data already in
a register of register memory, or the transfer of data between the accumulator and either
register memory, the flags register, or external data memory. Also included are instructions
which move data from program memory into the accumulator, and those instructions which
affect the various flags.

3-20. Input/Output Instructions

The Input/Output Instructions are those which transfer data between the accumulator and an
I/O Port, or which in some way affect either the port or the data transferred through it. The
Timer/Event Counter is considered as a programmable I/O device which generates an
interrupt or which sets a flag when full, and whose contents are transferrable to the
accumulator.

3-15

How the Intel MCS-48 Chip-Computers Work Prompt 48
EXTERNAL TIMER/EVENT COUNTER
PORTS
.) 11 1 111
P4
7
P6
ACCUMULATOR FLAGS
P5
AC
pe L L1 c Fo|Bs| 1]s,| s
ACCUMULATOR
INC A AL A
TR
PORTS ChLA RRC A
A A
P2 SWAP A
Pt PROGRAM MEMORY
BUS(P0) FFF
REGISTER MEMORY
3:'1)
coo
W iy BFF
1F R7
REGISTER
BANK
19 R1 800
7FF
18 RO
17
PROGRAM COUNTER
STACK D r l I]
J | L1 1 L1 1
8 . 400
7 R7) 3FF
REGISTER
BANK ON CHIP
k Al 7 TIMER/CNT INT
3 EXTERNAL INT
° Ro/ 000 0 RESET
EXTERNAL
DATA MEMORY
FF
00

Prompt 48

How the Intel MCS-48 Chip-Computers Work

EXTERNAL
PORTS
Bl g P
P4
P7

PS5

P4

P

BUS(PO)

REGISTER MEMORY

S:L L'

(8% -
1F 'R?
19 R1
18 RO
17

B

7 A7

1 R1

0 RO

EXTERNAL
DATA MEMORY

FF
00

TIMER/EVENT COUNTER

i) N .

ACCURULATOR FLAGS
MOVAPSW ¢ lac|rolas|i|s 1] So
il S
1l il MOV PSW, A 2
\ CRC C CLR Fo SEL RB0
CPL C CPL FO SEL RB1
REGISTER ACCUMULATOR INSTRUCTIONS CLR F1
CPLF1 E]
DIRECT INDIRECT |MMEDIATE
INC RO7 @Ro1 —_—
DEC RO? — J—
DINZ RO7, addr — PROGRAM MEMORY
FFF
A, RO7 A, @ RO1 A =
MoV { RO7, A @ RO, A RO7, = }
_— w@ROY =
XCH A, RO7 A. @ ROT _ MOVPA, GA
XCHD -— A, (@ RO1
ADD A, RO7 A, « RO1 A, =
ADC A, RO7 A @ RO1 A =
ANL A, RO7 A @ RO A - coo
ORL A RO7 A, @ RO1 A - BFF
XRL A, RO7 A, @ RO A -
MOVP3 A. @ A
REGISTER
BANK
1 800
TFF
PROGRAM COUNTER
STACK D [l l ll
1 1 1 4 4 1 1 J
400
3FF
REGISTER
BAONK ON CHIP
7 TIMER/CNT INT
3 EXTERNAL INT
000 0 RESET
MOVX A, «: RO1
MOVX « RO1. A

3-17

How the Intel ICS-48 Chip-Computers Work Prompt 48

EXTERNAL TIMER/EVENT COUNTER
PORTS
: |
: N\ L)1 L1}
Pa INPUT/OUTPUT INSTRUCTIONS M L1 N
o7 \uovo a o7 STOP TCNT
MOVD P47. A
P6 ANLD P47, A
ORLD P47, A (_ ACCUMULATOR FLAGS
Ps
clac|rofes)1|s
P4 A S 2] $1] %0
INS) A, P12BUS
OUTL F128US. A
ANL P12BUS. -
PORTS ORL P12BUS, -
P2
P1 PROGRAM MEMORY
FFF
BUS(PO)

REGISTER MEMORY

(o] BFF
1F R?
REGISTER
BANK
1

800

19 A1 7FF

18 RO

17
PROGRAM COUNTER

sTACK (11
Ll Ll 1 A A1

8 400
7 R? 3FF
REGISTER .
BANK ON CHIP
1 R 7 TIMER/CNT INT
3 EXTERNAL INT
0 Ro 000 0 RESET
EXTERNAL
DATA MEMORY
FF
0

3-18

Prompt 48 How the Intel MCS-48 Chip-Computers Work
EXTERNAL TIMER/EVENT COUNTER
PORTS
: i et L1 111
P4
P7
Pé
ACCUMULATOR FLAGS
P5
ot L . Ly AclFoles| 1]s,]s,
PORTS
P2
P1 PROGRAM MEMORY
FFF
BUS(P0)
REGISTER MEMORY
co0
(% v BFF
1F R7 \
REGISTER
% BANK
19 R1 ! 800
osr LI St Me: i
18 RO)
17
PROGRAM COUNTER
> STACK D | I
CONTROL INSTRUCTIONS
8 ,J JNP addr ENI 400
7 R7 JMPP (« A ENTCNTI 3FF
DJNZ RO7. addr NOP
CALL addr Dis |
REGISTER RET DIS TCNTI
S BANK RETR ON CHIP
1 A1 7 TIMER/ICNT INT
° RO J JCJTO JFO JBO JB4 3 EXTERNAL INT
INC JNTO JF1 JB1 U85 | .0 000 0 RESET
U™ JTF JB2 JBe
JNZ UNT1 NI JB3 JB7
EXTERNAL
DATA MEMORY
FF ENTO CLK
70 T
00

How the Intel MCS-48 Chip-Computers Work

3-20

3-21. Control Instructions

Control Instructions are those instructions which allow the execution of non-sequential
instructions; that is, instructions executed in an order other than that in which they are stored
in program memory. Included in this category are jump instructions, conditional-jump
instructions, and subroutine call and return instructions.

3-22. Conclusion

Now that we have progressively demonstrated the architectural features, data paths, and
instruction set of the MCS-48 Chip-Computers, we can present the completed Micromap,
which appears in enlarged two-page format immediately following. Then, on the next
following page, a complete instruction set summary for the MCS -48 family is given in table
form. Again, we refer you to the other manuals in the PROMPT-48 documentation package
for further instruction set details.

Prompt 48

xa “lul’l» <0 ALUW LIIT LIICTL VAL D "0 VIIP L ULIPULTLD YYULR

EXTERNAL
PORTS
. e U W
Pa TIMER/EVENT COUNTER
7
- INPUT/OUTPUT INSTRUCTIONS H I —— l p—— '—I
- SYAT T b
MOVD A, Pa7 .
] MOVD P47, A STOP TCNT
ANLD P47, A
P4 ORLD P47, A
ACCUMULATOR FLAGS
MOV A, PSW
Ly L aa oV PEW. A C |AC| Fo]BS| 1 Sa] S1] So
L M
IN(S) A. P12BUS :
PORTS OUTL P12BUS, A / ACCUMULATOR CRC C CLR F0 SEL RBO
ANL P12BUS, = CPL C CPL FO SEL RB1
P2 ORL P12BUS, - INC A AL A
/ CLR A RRA CLAF1
P1 gl;LAA ARC A CPL F1
BUS(PO) REGISTER ACCUMULATOR INSTRUCTIONS SWAP A

PROGRAM MEMORY
DIRECT INDIRECT IMMEDIATE

FFF
MOVP A. @ A
INC RO7 «RO1 S
DEC RO? - _
DINZ RO7. addr — —
A, RO7 A. « RO1 A -
REGISTER MEMORY MoV { RO7. A W ROT. A RO?. =}
3F “ROY = MOVP3 A, A
f'L g
v} Y] XcH A. RO7 A, « ROY —_ 8FF
XCHD -— A« RO1
ADD A. RO7 A, o ROY A =
ADC A, RO7 A, ' RO1 Az
ANL A RO7 A, ROY A=
I A7 ORL A RO7 A, RO1 A -
XRL A. RO7 A. 1« RO1 A - D SEL MBO
DBF SEL MB1
e
800
PROGRAM COUNTER
19 R1 ! 7FF
18 RO DI]IIIIIIIIII
CONTROL INSTRUCTIONS
MOVX A, «« RO1 JMP addr CALL addr ENI DIS |
IMPP @ A RET EN TCNT) DIS TCNTI
~v MOVX «Rot. A DJINZ RO7. addr RETR NOP
EXTERNAL ~
DATA MEMORY 400
3FF
FF ~ Py
~ JC JTO JFO JBO JB4
INC UNTO UF1 4Bl 9BS | puar
7 R? T JTF U8z JBe
INZ UNTY ONI JB3 JB7 oN CHIP
ENTO CLK
REGISTER 7 TIMER/CNT INT
3 3 EXTERNAL INT
000 0 RESET
1 R1
00 o RO

T0 T

3-21/3-22

CHAPTER 4
HOW THE PROMPT 48 WORKS

4-1. Introduction

As a complete low cost microcomputer design aid, the Prompt 48 requires many more
features, both hardware and software, beyond the MCS-48 Chip-Computer itself, which the
user mounts in an external Execution Socket. Besides the 8748 or 8035 execution processor,
the Prompt box contains:

27-key front panel for Data/Control input

An eight-character, 7-segment LED display (results/status out)

Power supply

1k byte writable Program Memory (used in place of on-chip EPROM)

256 bytes of processor-external Data Memory

An EPROM programmer, with external Programming Socket

Bus and Port expansion capability for additional user memory or peripheral devices
A serial port allowing for interface to an external terminal (TTY or RS-232)

Hardware and Monitor firmware (4k'bytes) to provide such services as Examine/
Modify of Registers or Memory, and real-time execution of user programs with
Single Step and Breakpoints.

The hardware features of the Prompt 48 are shown in functional block diagram form in
Figure 4-1.

A few of the full capabilities of the MCS-48 Chip-Computer are restricted in the Prompt
environment. This is due to design tradeoffs necessary to provide the full versatility of
Prompt’s features and functions. It is possible to work around these restrictions, which
disappear once the development cycle is complete and the user system stands and runs
alone, provided that you are aware of them in advance. In the course of the development in
this chapter, they will be pointed out when appropriate, and summarized in Paragraph 4-9.

4-2. Hardware Description

All Prompt 48 circuitry is located on a single circuit board mounted on the inside of the front
panel. A functional block diagram of this circuitry is given in Figure 4-1.

4-1

(84

1/0 PORTS AND BUS CONNECTOR

ADDRESS

I

PORT 2 MAP USER

J |
nEEH e 1l |

PN
s
0a
i kL T] roon enoaTa
P210 > LATCH WRITABLE | _MEMORY |
0038 /] PROGRAM MONITOR
748 MEMORY RESERVED
MEMORY
A
ro
EA S6 OV
Yy ¢ 3
ADDRESS INHIBIT {} <
5251 a288 KEVBOARD DISPLAY
BREAK / BAUD RATE USART INTERFACF INTERFACE INTERFACE a“«
REENTRY MONITOR
TIMING ‘ PROGRAM
> RESET l MEMORY
' [AS 232/
J -] CURRENT PROGRAMMING INT —
LOAD SOCKET
A INTERFACE
MON svs
INT RSY
SER|AL
PORY

Figure 4-1. Functional Block Diagram

syiop gy dwoug iy moy

s ydwoag

Prompt 48 How the Prompt 48 Works

4-3., Memory

The memory in Prompt 48 consists of five different types:

Ik bytes read-only Program Memory internal to the 8748 or 8048 Chip-Computer
4k bytes Monitor Firmware (program Memory, read-only)

1k bytes writable Program Memory

256 bytes User Data Memory

256 bytes Monitor Data (Scratchpad) Memory

o a0 o

4-4. Program Memory

In the list above, the first three physical memories are program store memory, amounting to
a total of 6k bytes. The MCS-48 Chip-Computer has a total addressing range in Program
Memory of 4k bytes (12 address bits). The user can expand the writable Program Memory of
the Prompt (item 3 above) up to the 4k limit by configuring his own external hardware via
the Bus Connector (J1) and flat ribbon cable. If this were done, the Prompt ultimately would
have to arbitrate Program Memory requests across a total range of 9k bytes, with a CPU
whose address range is only 4k. This is accomplished indirectly in Prompt through *‘access
codes.”” The user has at his disposal six access codes which he can enter through the
appropriate Command Function on the keyboard (see Paragraph 5-13). For systems equip-
ped with the 6MHz upgrade package, there are twelve access codes, including the six
originals; refer to appendix J. Besides the user’s access codes, the Monitor can map
Program Memory in still another way. These seven access modes are summarized in the
diagram below.

USER MODES
MONITOR ACCESS ACCESS ACCESS ACCESS ACCESS ACCESS
MODE 5 a 3 2 1 0
ax FFF
ouTL PO OUTL PO
(US) . (8us)
3K SYSTEM SYSTEM EXPANSION B‘:fs‘:s SYSTEM EXPANSION auw;EAss gzt;
1o 1o MEMORY PORT 1o MEMORY PORT
AND AND AND AND AND
SYSTEM SYSTEM 10 NO SYSTEM 10 NO
MONITOR MONITOR OUTSIDE SYSTEM MONITOR OUTSIDE SYSTEM 800
2K SUBROUTINES CALLS BOX OR CALLS BOX OR
EXTERNAL EXTERNAL 7FF
MEMORY MEMORY
EXPANSION EXPANSION
400
K 3IFF
READ READ READ
SYSTEM ONLY ONLY ONLY WRITABLE WRITABLE WRITABLE
MONITOR ON CHIP ON CHIP ON CHIP IN BOX IN BOX IN BOX
KERNEL EPROM EPROM EPROM RAM RAM RAM
(8748) (8748) (8748)
o 000

4-3

How the Prompt 48 Works

4-4

4-5. Data Memory

Prompt 48 has 256 bytes of internal Data Memory locations, not including the 64 on-
chip Register Memory locations, available to the user as ‘‘External Data Memory,’’ via
the MOVX instructions.

External Data Memory can be examined and modified from the panel controls and displays,
through the resources of the Monitor; the address range is from 0 to FFg. In software,
however, this Data Memory cannot be operated upon directly, like the working registers, or
indirectly, like the remainder of on-chip Register Memory. To be operated upon, data from
External Data Memory must first be moved into the accumulator by the use of the Move
External Data Memory (MOVX A, @R01) command. This command does make use of
indirect addressing via any of the four RAM pointer registers.

Similar to the Program Memory, the Data Memory space allotment is controlled by user
selection in the user mode, and by hardware/firmware selection in Monitor mode. As a
result, the user may select via the Access Code, whether the memory space above 3FF g is
to be expansion Data Memory or Monitor /O functions. When neither expansion Data
Memory or I/O is selected, the user need not be concerned with any address space above
3FF¢. Butif it is selected, a page addressing scheme above 3FF ;g must be used, with Port 2
LSNibble used to select page number.

4-6. Input/Output

All I/O pins of the Execution Socket processor (MCS-48) are accessible via the /O Ports
and Bus Connector (J1) on the front panel of the Prompt, allowing the user to take full
advantage of the Input/Output power of the MCS-48 Chip-Computer. But a great deal of /O
capability is already resident to Prompt as delivered: the full range of Command Functions
described in Chapter 5 on Panel Operation are provided as inputs to the system by the
firmware Monitor, together with the corresponding display outputs of status and data.

There is also a serial I/O option for Prompt, allowing communication with the system via a
Teletype or RS-232C terminal. The installation of this option is described in Paragraph
6-14.

4-7. Monitor Firmware Description

The Prompt 48 System Monitor resides in 4k of non-volatile memory and is automatically
activated by a bootstrap routine on power-up or System Reset. The Monitor is responsible
for all maintenance of keyboard and display, and provides the full range of Command
Functions as described in Chapter 5, ¢*Panel Operation.”” A complete source code listing is
included in the documentation package provided with the Prompt. This listing is self-
documenting, including a rigorous structure definition of each Command Function in
Backus-Normal Form. However, to make use of the powers of the Monitor, it is unneces-
sary to understand the listing.

Included in the Monitor firmware are a series of routines known as System Calls. These are
general utility routines such as ‘ ‘read the keyboard’” and **display character’” which you the
user are likely to find useful. In order to prevent unnecessary *‘re-invention of the wheel,”’
these System Calls are made available to the user, and described in Appendix B. Note that
Access Code 2 or 5 must be selected in order to access the Monitor memory where the
System Calls reside.

Prompt 48

Prompt 48 How the Prompt 48 Works

4-8. Bus Expansion

In order to allow the user to expand the standard capabilities of the Prompt, some bus
expandability has been included in the design. Bus expansion allows the addition of more
Program Memory, more Data Memory, and the use of the 8243 I/O expansion chip. With a
few exceptions, all bus lines and control signals are present on the J1 connector on the front
panel of the Prompt (labled Bus Connector; a pin list for this connector is given in Table
4-1.) The lines not provided include EA (External Address), SS (Single Step), X1 and X2
(clock inputs), and there is a limitation on the bidirectionality of the LSNibble of Port 2. Due
to the multipurpose nature of the LSNibble of Port 2 and the Bus, care must be exercised
when interfacing to these ports to insure that the Access Code, P2 map, and external
circuitry do not allow the Prompt interface drivers to compete with the user’s drivers. (See
Paragraph 6-14 for details.) In all cases, the user must instruct the Prompt as to the
configuration of the system, including what type of expansion is desired. Since the EA line
is not available, all user external Program Memory must reside above 1k. For hardware
reasons, externally mapped Data Memory must be above 1k as well, though the External
Data Memory provided by Prompt may be used from 0-FF,¢. (LSNibble of Port 2 is used for
mapping user-added external Data Memory.)

Table 4-1. Pin List for 1/O Ports and Bus Connector

Signal Name Pin No.] Buffer Characteristic
BUS (0) 17]
n 21
2) 25
3) 29
4) 31 r 3-STATE BIDIRECTIONAL
(5 27
(6) 23
BUS (7) 19 J
PORT 1 (0) 18
1) 20
@ 22
3) 24 ? 8748 PSEUDO BIDIRECTIONAL
4) 26 CHIP (NO BUFFER)
(5) 28
(6) 30)
) 32
PORT 2 (0) 7
3-STATE MAPPED BIDIRECTIONAL
(1) 5 with 100 {} IN SERIES
@ 3
3) 1
PORT 2 (4) 4
(5) 6 8748 PSEUDO BIDIRECTIONAL
(6) 8 CHIP (NO BUFFER)
] 10
+ALE 13 TTL OUTPUT (10
+T0 14 CHIP BIDIRECTIONAL (CLOCK), 2.2K Pullup
+T1 12 CHIP INPUT, 2.2K input
—INT 49 1 TTL LOAD (MON. GATED)
—PSEN 15
—xg 9 } TTL OUTPUT (10 LS LOADS)
- 11 .
—P0O WRITE 33 TTL OUTPUT (5 LS LOADS)
—-PROG 2 CHIP OUTPUT (NO BUFFER)
—RESET 16 CHIP INPUT/OUTPUT (SYS RESET OVERRIDES), 2.2K pullup
GND 45, 46 Ground
47,48

4-5

How the Prompt 48 Works

4-6

4-9,. Restrictions

A few of the full capabilities of the MCS-48 Chip-Computer are restricted in the Prompt
environment. This is due {o design tradeoffs necessary to provide the full versatility of
Prompt’s features and functions. It is possible to work around these restrictions, which
disappear once the development cycle is complete and the user system stands and runs
alone, provided that you are aware of them in advance.

Monitor Reentry Uses Stack: When the MON INT key is pressed, the Monitor program
interrupts the user program, using one stack entry. If the user has calculated his stack needs
only for his own subroutines and interrupts, and has stored other data on the next available
stack location, that data will be *‘zapped’’ (overwritten) by the user program return address.

Unsupported Instructions: ANL BUS, A and ORL BUS. A will not work except in Access
Mode 3 and then with the GO/NO BREAK command. OUTL BUS, A can only be used in
Access Modes 0 and 3.

Monitor Reentry Code: The upper 16 bytes of the lower 1k block of program Memory
(addresses 3F0,6 through 3FF;¢) must be reserved for the Prompt 48 Monitor reentry code.
This code is automatically placed in Program Memory by the [7] Program PROM com-
mand. (See Paragraph 5-50.) These bytes must also be reserved when using the RAM
Program Memory inside Prompt 48.

Access Code, P2 Map, LSN P2 Relationship: Care must be taken to insure that these three
things are in agreement, as described in Paragraphs 5-13. 5-15, and 6-14.

Timer Routines: The Timer Interrupt is disabled when using the GO/WITH BREAK and
GO/SINGLE STEP commands. To debug timer routines, insert JTF (Jump if Timer Flag =
1) in the program loop.

Prompt 48

CHAPTER 5
PANEL OPERATION

5-1. Panel Description

The panel of the Prompt-48 provides the means for the user to communicate with the
computer. Commands and data are entered through keys on the panel, and status and data
are displayed through panel indicators. Figure 5-1 shows the layout of the Prompt-48 panel.
It is divided into two functional control groups, and also has two 40-pin sockets: one a
programming socket used for programming 8748s or 8741s, and the other an execution
socket which holds the 8035, 8048 or 8748 processor which functions as the system’s
controller. In addition, there is a 50-pin flat cable connector which gives access to the
executing processor’s input/output ports and bus for a user prototype circuit.

5-2. Command Function Group

5.3, Display. The display device on the Prompt-48 consists of 8 seven-segment LED

digits, together with LED periods between digits. These 8 digits are used to display
hexadecimal information in three fields: Function (2 hex digits), Address (3 hex digits), and
Data (3 hex digits). The system monitor (the program which reads user information input
through the keys and displays information to be output in the LEDs) displays information

©

1 | O PORTS AND 49
BUS CONNECTOR

-A_.:. =
3®

!llllll'lll‘l‘ll“ll\lIllll§

PROGRAMMING EXECUTION
SOCKET SOCKEY

COMMAND FUNCTION GROUP

CEEEEEEND)

| FUNCTION | ADORESS | DATA]

HEX DATA - FUNCTIONS

POWER ON EXAMINE -
so [e

—
SINGLE| meGrsTER Di @
RESET, INTERRUPT GROUP snear | MEmoRy
@ e

B ﬁ 90©

prompt 48"

~ oo

intel-

Figure S-1. Prompt 48 Panel Layout

5-1

Panel Operation Prompt 48

relevant to the current command being executed in these three fields. The LEDs are also
available to user programs as output devices through the use of subroutines contained in the
system monitor.

CEEEEEEED)

| FuncTion | ADDRESS | oara |

5-4. Command Keys. The keys in this eight-key group are used by the user to enter
commands to the monitor program. Entering a command causes the monitor to display a 2
digit command code in the function field of the display.

COMMANDS
GO}

NO| PROGRAM

BREAK | MEMORY S'Ns%sl REGISTER

WITH | DATA
BREAK | MEMORY

ChEa% | prEvious

EXECUTE

NEXT 7END

5-5. Hex Data/Functions Keys. This group of 16 keys, each representing a hex digit, is
used to enter address and data parameters to the monitor program, to be used in the
execution of the various commands. Some keys are also used to specify commands in
addition to those specified through the commands keys.

HEX DATA FUNCTIONS

5-6. Reset/Interrupt Group

There are three keys on the Reset/Interrupt Group. These are the SYS RST (System Reset),
MON INT (Monitor Interrupt), and USR INT (User Interrupt) keys.

5-2

Prompt 48 Panel Operation

The SYS RST (System Reset) key is used to reinitialize the system hardware, reset the
Access Mode to 0, and give control to the Prompt-48 monitor program. After actuating the
SYS RST key, the ACCESS = 0 prompt should appear in the LED display.

The MON INT (Monitor Interrupt) key is used to interrupt the current process (user
program) and turn over control to the monitor program so that its various functions are
available. The interrupted user program can be continued later, as the user program status is
saved by the Monitor program.

The USRINT (User Interrupt) key causes the Prompt-48 CPU to save its current program
address and status on the stack and begin execution at program memory location 003, if
interrupts have previously been enabled with the EN I instruction.

5-7. 1/0 Ports and Bus Connector (J1)

The /O Ports and Bus Connector (J1) is provided to allow Prompt to exchange data with
your external prototype device. It allows expansion of the Prompt-48 program memory,
data memory, and I/O ports to the full capacity of the MCS-48 family. Details of hardware
expansion through the I/O Ports and Bus Connector are given in Paragraph 6-14.

2 50

1 I/0 PORTS AND 49
BUS CONNECTOR

5-8. Execution Socket

The Execution Socket is a 40-pin zero insertion force socket in which resides the 8748,
8035, or 8Q48 chip-computer used to control the Prompt-48. The CPU chip in this socket
runs the monitor and user programs specified by the user.

LOCKED
TEXTOOL
1 40
20 2
®
EXECUTION
SOCKET

5-9. Programming Socket

The Programming Socket is a 40-pin zero insertion force socket which is used to program
the 1k bytes of EPROM program memory in an 8748. It can also be used to program an
8741, or with an adapter (Prompt-475) to program an 8755. Another use of the Program-
ming Socket is to read or verify the contents of any of these EPROM devices.

5-3

Panel Operation

LOCKED

PROGRAMMING
SOCKET

8048’s should not be used in the Programming Socket as it is designed for use

with EPROMS only.

RN

MOS devices such as these are sensitive to transients or static electricity.
It is possible to destroy their circuits by careless handling, especially if you
are working in a carpeted area or in extremely low humidity conditions.
Keep MOS devices in their protective packages when not in use. It is a
good idea to touch the grounded frame of the computer with your hand
before you place the EPROM device in the Programming Socket. This is to
keep the pins of the device from being the first to touch and thereby absorb
any static charges on your body.

5-10. Command Description Formats

In the following sections is described the various operating features of the Prompt-48 and
how to use them. These features are accessible through the use of monitor commands. Each
command is described with a command key sequence, those keys which must be pressed to
call up the command, the state of the LED display when the command is specified, and
ranges for all the parameters required by the individual command.

The command key sequence is the sequence of keys which must be pressed starting from a
command prompt, and continuing through to the next command prompt (see Paragraph
5-12). The keys are indicated with square brackets: [NEXT] stands for the key in the lower
left comer of the Commands keys. Key indications with capital letters, such as [GO],
[PREVIOUS], or [D], stand for actual keys on the Prompt-48 panel. Key indications with
lower case letters stand for command input parameters: [data] would stand for some element
of information needed by the command, and input through the Hex Data keys.

Keys with multiple names appear in key indications using the name best fitting the context in
which they appear. For example [EXECUTE], [END], and {.] all stand for the same key,
but since this key is used in slightly different ways at different times, multiple names are
used.

Prompt 48

Prompt 48 Panel Operation

The command description sections conclude with a short example of the appropriate
command. .

5-11. Command Input Options

The PROMPT Monitor is capable of accepting any of the commands from either of two
sources: the keyboard, or the serial port. Following power-up, both devices are polled. The
first one to send an input will be assigned as console until the next[SYS RST]. An input is
defined as any keystroke for the keyboard, and as a non-null character for the serial port.
The first serial character will be discarded while the keyboard first character will be
accepted. When the serial port is selected, only handshaking signals are transmitted by
PROMPT. These include a prompting character [**-""] to request each byte of data at
monitor level, a character request [**?"”] to request each byte of input data, and an error flag
[**e’’] if any command or character is unacceptable. Otherwide, data may be requested of
the system by the standard dump command. which will output to the serial port in the usual
manner (and in HEX record format).

It is important to note that the Monitor is looking for Hexidecimal, not ASCII codes. For this
reason a Teletype keyboard, which generates ASCII coded data. is not really an effective
substitute for the Prompt panel as an input device for commands. For example, the Fetch
command is implemented by hitting an **F’" on the Hex keypad of the Prompt. Inputting an
“F"" on the Teletype keyboard would result in a completely different code which the
Monitor would not recognize. The usual reason for connecting a Teletype through the serial
port would be to use it as a storage device (paper tape) and a hardcopy device (DUMP
Program Memory, etc.).

5-12. Command Prompts

The command prompts are displayed in the command function group display to indicate to
the user that the Prompt-48 monitor program is ready to accept a command. There are two
command prompts:

ACCESS =0

The first prompt (ACCESS = 0) is given only when power is turned on or when the system is
reset by pressing the SYS RST key. The second prompt (a dash on the display) is given
subsequently to indicate the completion of a command and the system’s readiness for the
next command.

5-13. Access Mode Control

The Access Mode defines thé configuration of the various memory and input/output features
of the Prompt-48. The proper setting of the Access Mode is therefore critical to the
operation of the Prompt-48.

Two things are specified by the Access Mode: which program memory is to be used, and
how the Bus input/output port (port 0) is used. There is, in addition to the 1k bytes of
program memory on the MCS-48 Chip-Computer, an additional 1k bytes of RAM memory
in Prompt-48. This memory can be used in place of the 1k bytes of on-chip program
memory for purposes of easy program development and modification. When using an 8035
in the execution socket, this is the only program memory available within Prompt-48. The
Bus I/O port can be used in three ways:

a. As a por, latched on output. Under this mode OUTL BUS,A will work. However,
ANL BUS,#data and ORL BUS, #data are not supported by Prompt-48 (refer to Para-
graph 4-9.);

Panel Operation

b. As a bus, to address expansion memory and /O ports outside the Prompt-48 box; or

As a bus, to address the Prompt system monitor memory and I/O devices rather than
any external hardware. This mode would be used if your user program wanted to talk
directly to the Prompt keyboard, displays or serial channel. A listing of the system
monitor program is included with your Prompt-48, and the use of some of its routines

is described in Appendix B: System Calls.

5-14. Access Mode Select Command. The format of the Access Mode Select Command

is as follows:

Command Key Sequence: [A] [data] [.]*

Function Display: “*Ac. . 007
Data Range: 0-5
Table 5-1. Summary Table of Access Mode Codes
Code Program Memory Bus Option
v 0 RAM See Paragraph 5-13a
1 RAM . See Paragraph 5-13b
2 RAM See Paragraph 5-13c
v 3 On-chip ROM/ See Paragraph 5-13a
EPROM .
4 On-chip ROM/ See Paragraph 5-13b
EPROM
5 On-chip ROM/ See Paragraph 5-13c
EPROM

*EXECUTE/END key.

Example: Set Access = 0. The key sequence is [A] [O] [.]. Alternately, [SYS RST] sets

Access = 0, as well as resetting various other system parameters.

The access codes are presented in a different format in Table 5-2.

Table 5-2. Access Code/P2 Map Summary

System Expansion
Access /O & Memory OUTL Allowed
Code Program Memory Calls & 10 Port 0 LSN P2 Map
(VAN RAM No No Yes output (0) only
1 RAM No Yes No input or output
2 RAM Yes No No output only
v 3 On-chip No No Yes input or output
ROM/EPROM
4 On-chip No Yes No input or output
ROM/EPROM
5 On-chip Yes No No output only
ROM/EPROM

5-6

Prompt 48

Prompt 48 Panel Operation

5-15. Port 2 and Port 2 Mapping

In an MCS-48 Chip-Computer, the Least Significant Nibble (LSN) :\fPon 2 (P2) is used for
a variety of functions. It is at various times an Input/Output port, a Data Memory page
select, the Most Significant Nibble (MSN) of the Program Memory address, or some
combination of these. In the case of Prompt-48, the monitor must be able to use the memory
expansion capabilities, and yet at the same time allow the user to specify input/output, etc.
To accomplish this, the port must be buffered. But in order to buffer, the direction of
buffering must be specified. This is accomplished with the P2 Map.

The P2 Map is therefore nothing more than a bit-by-bit specification of the buffer direction
of the corresponding bits of P2, with 1 = Input, and 0 = Output.

As mentioned above, MCS-48 Chip-Computers use the LSN P2 to address off-chip
(expansion) Program Memory and I/O ports. The Access Code (see Paragraph 3-13)
specifies the configuration and location of the various expansion memories and ports. Thus,
in Prompt-48, the LSN P2 Map, the Access Code, and the contents of LSN P2 are all
related. Furthermore, under some Access Codes, certain LSN P2 Maps could cause
conflicts, and the Chip-Computer would not work! Be sure to carefully study the following
information and the table which summarizes it.

With Access Codes 0, 2, or 5, LSN P2 Map must be output (0). In these modes LSN P2 is
used by the monitor program to select various internal memories in the Prompt-48 and must
not be affected by input devices.

Access Codes 1 or4 allow LSN P2 Map to be either input or output. In these modes, the user
program selects various external memories, I/O devices, and/or external ports which the
user may have connected to the /O Ports and Bus Connector, J1. The P2 Map is bypassed in
these modes and therefore immaterial.

Access Code 3 also allows LSN P2 Map to be either input or output. Expansion memory and
/O ports are not allowed in this mode, and both P2 and Bus (PO) are available as I/O ports
through J1.

This information is summarized in table 5-3, which also appears as Appendix I:

" Table 5-3. Access Code/LSN P2 Map Summary

System Expansion
Access /o & Memory OUTL Aliowed
Code Program Memory Calls - & 1/0 Port 0 LSN P2 Map
0 RAM No No Yes output (0) only
1 RAM No Yes No input or output
2 RAM Yes No No | output only
3 On-chip No No Yes input or output
ROM/EPROM
4 On-chip - No Yes No input or output
ROM/EPROM
5 On-chip Yes No No output only
ROM/EPROM

5-7

Panel Operation Prompt 48

5-16. Port 2 Map Command. The format of the Port 2 Map Command is as follows:

Command Key Sequence: [2] [data] [.]
Function Display: ‘*P2. MM”’

Data Range: MM;g where MM are two hexadecimal digits chosen to map the eight lines
of P2 according to table 5-4.

Table 5-4. Port 2 Map Command Data Bits Vs. Port 2 Pin Numbers

MS Nibble LS Nibble
Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Pin P27 | Pin P26 | Pin P25 | Pin P24 Pin P23 | Pin P22 | Pin P21 | Pin P20

A hexadecimal/binary conversion is given in table 5-5. 0 = Output, 1 = Input.

Table 5-5. Hexadecimal/Binary Conversion

Hex Binary
0 00O00O0
1 000 1
2 0010
3 00 11
4 0100
5 01 01
6 0110
7 01 11
8 1000
9 1 00 1
A 1010
B 10 1 1
C 1100
D 110 1
E 1110
F 1111

Example: Set P2 Map = 00,4 (all lines of P2 mapped as outputs). The key sequence is
2.).

It should be noted that Port 2 is treated by the monitor as * ‘register’” 47 and can be examined
and/or modified through the Examine/Modify Register command (see Paragraph 5-17).

5-8

Prompt 48

Panel Operation

5-17. Examine/Modify Commands

5-18. Examine/Modify Pregram Memory Command. The format of the Examine/
Modify Program Memory Command is as follows:

Command Key Sequence: [EXAMINE/MODIFY] [PROGRAM MEMORY]
[address] [NEXT] [data] [NEXT] [data] . .. [.]

Function Display: “‘EP. . "
Address Range: 0-FFF g
Data Range: 0-FF;q

The Examine/Modify Program Memory command is used to examine and/or modify one or
more Program Memory locations. An address in Program Memory is specified, and
optional data is input if desired to replace the existing data displayed in the DATA field of
the LEDs. The next greater address in Program Memory can be examined by then pressing
the [NEXT] key, or the next lesser address can be examined by pressing the [PREVIOUS]
key. Return to command prompt is accomplished by pressing the [END] key instead of
another [NEXT] or[PRE VIOUS]. The Program Memory accessed through this command is
the RAM Program Memory in Prompt-48 and expansion Program Memory the user may
have connected to J1. To read the on-chip EPROM Program Memory of an 8748 or 8741,
the EPROM contents must first be read into RAM with the Prom Fetch command (see
Paragraph 5-50).

Example: Change Program Memory locations 3A and 3B to contain 5C and E2, respec-
tively. The key sequence is [EXAMINE/MODIFY] [PROGRAM MEMORY]
[31[ATINEXT][5][C)[NEXT][E][2][.]. This could also be accomplished by

ressing [EXAMINE/MODIFY] [PROGRAM MEMORY][3] [B] [NEXT][E]
2][PREVIOUS][5][C][.], or by individually modifying locations 3A and 3B
in separate command sequences.

5-19. Examine/Modify Register Command. The format of the Examine/Modify Regis-
ter Command is as follows:

Command Key Sequence: [EXAMINE/MODIFY] [REGISTER] [address] [NEXT]
[data] [NEXT] [data] . .. [.]

LX}

Function Display: “‘Er.
Address Range: 0-484¢
Data Range: 0-FF¢

This command allows the user to examine and optionally modify the 64 bytes of Register
Memory on-chip with MCS-48 Chip-Computers. As with the other Examine/Modify
commands, [PREVIOUS] may be substituted for any [NEXT] after the first to examine the
previous register contents, or [.] may be substituted to terminate the command sequence.

There are in Prompt-48 an additional 9 bytes of special-purpose ‘‘Register’” memory, in
address locations 40,4-48 5. These ‘‘Register’” Memory locations represent other registers
in the Chip-Computer, such as the Accumulator, etc. according to table 5-6.

59

Panel Operation Prompt 48
Table 5-6. Special Purpose Register Memory Summary

Register

Address Significance
40 Accumulator
41 Timer/Event Counter

T
42 Flags Register Cy | AC|FO| BS | A STP —
43 Program Counter Low Byte
44 Program Counter High Byte
45 Bus (Port 0)
46 Port1 —
47 Port 2
48 Prompt-48 Misc.—] Cntr | Timr | Timr | Int Int Mem | TEST | TEST
Run | Run | Flag | Nest § Enab Bank 1 2

5-10

Ports 0 and 1 (*‘registers’’ 45 and 46) cannot be modified by the Examine/Modify Register
command. They are read only.

The bits of Prompt-48 Misc. (*‘register’’ 48) require some explanation:

COUNTER RUN must be setto **1°" if your program uses the MCS-48 timer/event counter
as an event counter. This allows the monitor to suspend and restart the timer/event counter
when a break in the user program occurs.

During breaks the Prompt-48 monitor saves the state of the broken user program so that it
can be restored as execution is resumed.

TIMER RUN will be setto **1°’ on break if the timer is running. If you clear this bitto “*0”’
the timer will not be restarted when execution is resumed.

TIMER FLAG allows you manually to examine and modify the user timer flag.

NESTED FROM INTERRUPT will be set to *“1’” if you have broken during a routine
servicing an interrupt. This is a user state bit.

WILL ENABLE INTERRUPT represents the user’s interrupt enable state if user interrupts
are enabled.

MEM BANK is the Designated Bank Flag (refer to paragraph 3-8).
T1 and TO are the MCS-48 test inputs and are read only.

Example: Change the contents of Register Memory location 2A to be 49,¢. The key
sequence is [EXAMINE/MODIFY] [REGISTER] [2] [A] [NEXT][4]{9]1[.].

Panel Operation

5-20. Go Commands and Breakpoints

5-21. Go/NoBreak Command. The format of the Go/No Break Command is as follows:

Command Key Sequence: [GO] [NO BREAK] [address] [.]

LX)

Function Display: *‘Go.
Address Range: 0-FFF¢

The Go/No Break command causes the MCS-48 Chip-Computar in the Execution Socket to
begin program execution at the address in Program Memory given in the command
sequence. Program execution will continue until either (1) control is returned to the monitor
by pressing [MON INT], or (2) the system is reset and control given to the monitor by
pressing [SYS RST]. The CPU runs at full speed.

Example: Begin execution of a program in PROGRAM Memory which starts at 1F0,¢. The
key sequence is [GO] [NO BREAK] [1] [F] [0] [.].

5-22. Breakpoints. A breakpoint is a location in program memory which, when reached
by the user program, causes control to be given to a monitor program. The state of the
processor is saved so that the current user program can be continued at a later time. Control
is then given to the monitor program so that the user can examine register contents, memory
contents, and so forth as an aid to program development and debugging.

The Prompt-48 monitor allows the user to specify up to eight breakpoints, numbered 0-7.
When running with breakpoints enabled (using the Go/With Break command) the monitor
single-steps the user program and checks after each step to see if a breakpoint address has
been reached in Program Memory. If it has, the monitor program suspends stepping, saving
the contents of all the MCS-48 registers, and displays information about which breakpoint
was reached, the contents of the Program Counter, and the contents of the Accumulator.
The monitor then allows the user access to all of the panel commands. If no other keys have
been pressed, the user program may be restarted by pressing [NEXT]. If other keys have
been pressed, one of the Go commands must be used.

These breakpoints do not affect memory contents. They may even be set in non-writable
ROM or PROM.

5-23. Examine/Modify Breakpoint Command. The format of the Examine/Modify
Breakpoint Command is as follows;

Command Key Sequence: [B] [breakpoint number] [NEXT]
[breakpoint address] [NEXT]
[breakpoint address] [NEXT]
oL

Function Display: “‘br.
Breakpoint Number Range: 0-7 (Appears in ADDRESS display field)
Breakpoint Address Range: 0-FFF;g (Appears in DATA display field)
The Examine/Modify Breakpoint command operates in a manner similar to the Examine/

Modify Program Memory, Data Memory, and Register commands. In this case the address
is the breakpoint number, and the data is the location in Program Memory where the

Panel Operation

5-12

breakpoint resides. As with the other Examine/Modify commands [PREVIOUS | can be
substituted for any [NEXT] after the first, or [END] can be substituted to terminate the

command sequence.

Example: Set Breakpoints 0 and 1 at Program Memory locations 106, and 3F2,4, respec-
tively. The key sequence is [B] [0] [NEXT] [1][0] [6] [INEXT] [3] [F]1[2][.].

5-24. Go/With Break Command. The format of the Go/With Break Command is as
follows:

Command Key Sequence: [GO] [WITH BREAK] [address] [.]

LX)

Function Display: ‘‘Gb.
Address Range: 0-FFF,¢

The Go/With Break command single steps the MCS-48 Chip-Computer through the user
program starting at the address in Program Memory given in the command sequence.
Program single stepping will continue until either (1) [SYS RST] is pressed, (2) [MON INT]
is pressed, or (3) a breakpoint is reached. Breakpoint information is displayed in the format,

*“bN.ADR. AC”’,

where N = the breakpoint number, ADR = the contents of the Program Counter (the
breakpoint address), and AC = the contents of the Accumulator. The monitor then allows
the user access to all of the panel commands. If no other keys have been pressed, the user
program may be restarted by pressing [NEXT]. If other keys have been pressed, one of the
Go commands must be used.

Example: Begin execution of a program in Program Memory which starts at EOy¢, with
breakpoints enabled. The key sequence is [GO] [WITH BREAK] [E] [0] [.].

5-25. Search Memory Commands

The Search Memory commands allow the user to search Program Memory, Data Memory,
or Register Memory for a one- or two-byte data pattern, called the search target. The
commands which search for a one-byte search target are called Byte Search commands, and
those which search for a two-byte search target are called Word Search commands.

The format for each of the Search Memory commands is the same, as follows:

[search type] [memory type] [starting address]
[NEXT] [ending address] [NEXT] [search target]
[NEXT] [mask] [EXECUTE] [NEXT] [NEXT] . .. [.],

where [search type] is [4] for a Byte Search or [5] for a Word Search; [memory type] is
[PROGRAM MEMORY], [DATA MEMORY], or [REGISTER]; [starting address] and
[ending address] define the area to be searched; [search target] is the object of the search;
and [mask] is a bit pattern the same length as [search target], which causes only those bits in
[search target] which correspond to 1’s in [mask] to be tested in the search. The sequence
[NEXT] [mask] is optional and may be omitted.

The [EXECUTE] key causes the search to commence. If no occurrences of the search target
(as modified by the mask) are found in the specified memory range, the monitor returns to
command prompt status. If the (modified) search target is found, the address of the
occurrence and the data matching the (modified) search mask are displayed as follows:

**SM.ADR. DD”’,

Prompt 48

Prompt 48

Panel Operation

where M is the memory type, ADRis the address in hexadecimal of the occurrence, and DD
is the data matching the (modified) search target. After [EXECUTE] is pressed and data is
found, [NEXT] may be pressed to reinitiate the search with ADR+1 as the new starting
address. All other search parameters remain constant.

5-26. Byte Search Program Memory Command. The format of the Byte Search Pro-
gram Memory Command is as follows:

Command Key Sequence: [4] [PROGRAM MEMORY] [starting address]
[NEXT] [ending address] [NEXT] [search target]
[NEXT] [mask] [EXECUTE]
[NEXT] [NEXT] ... []

LR}

Function Display: **SP.

Address Range: 0-FFFg

Search Target Range: O-FF;S

Mask Range: 0-FF;g

Note: [NEXT] [mask] and [NEXT] [NEXT] . . . are optional and may be omitted.

Example: Search Program Memory for the second occurrence of 6C;g or 6D (01101100,
or 01101101,) between the addresses 100;¢ and 2D04¢. This implies a mask of

FE ;6 (11111110,). The key sequence is [4][PROGRAM MEMORY][1]{0] [0]
[NEXT][2][D][0] [NEXT1[6] [C][NEXT][F][E][EXECUTE][NEXT][.].

5-27. Byte Search Data Memory Command. The format of the Byte Search Data
Memory Command is as follows:

Command Key Sequence: [4] [DATA MEMORY] [starting address]
[NEXT] [ending address] [NEXT] [search target]
[NEXT] [mask] [EXECUTE]
[NEXT] [NEXT] ... []
Function Display: **Sd.
Address Range: 0-FF4
Search Target Range: 0-FF4
Mask Range: 0-FFg
Note: [NEXT] [mask] and [NEXT] [NEXT] . . . are optional and may be omitted.
Example: Search Data Memory between 00 and 4B ¢ for the first occurrence of A9y¢. The

key sequence is [4] [DATA MEMORY] [0] [NEXT] [4] [B] [NEXT] [A] [9]
[EXECUTE] [.].

5-13

Panel Operation Prompt 48

5-14

5-28. Byte Search Register Memory Command. The format of the Byte Search Register
Memory Command is as follows:

Command Key Sequence: [4] [REGISTER] [starting address]
[NEXT] [ending address] [NEXT] [search target]
[NEXT] [mask] [EXECUTE]
[NEXT] [NEXT] . . . [.]

1

Function Display: *‘Sr.
Address Range: 0-48,¢
Search Target Range: 0-FF;q
Mask Range: 0-FF,q

Note: [NEXT] [mask] and [NEXT] [NEXT] . . . are optional and may be omitted.

Example: Search Register Memory for the first occurrence of 8X;4, where X signifies
“‘don’t care’’. This implies a mask of FO;(11110000,). The key sequence is [4]
[REGISTER] [0] [NEXT] [4] [8] [NEXT][8] [0 or any other hex key] [NEXT]
[F]1[0] [EXECUTE][.].

5-29. Word Search Program Memory Command. The format of the Word Search ¢
Program Memory Command is as follows:

Command Key Sequence: [5] [PROGRAM MEMORY] [starting address]
[NEXT] [ending address]
[NEXT] [search target MSB]
[NEXT] [search target LSB]
[NEXT] [mask MSB] [NEXT] [mask LSB] [EXECUTE]
[NEXT] [NEXT] . .. [.]

Function Display: *‘SP. . ”
Address Range: 0-FFFg

Search Target Range: 0-FFFFg
Mask Range: 0-FFFF;q

Note: [NEXT][mask MSB][NEXT][mask LSB] and [NEXT][NEXT] . . . are optional
and may be omitted.

Example: Search Program Memory for the first occurrence of A429,¢. The key sequence is
[5] [PROGRAM MEMORY][0] [NEXT] [F] [F] [F] [NEXT] [A] [4] [NEXT]
[2] [9] [EXECUTE] [.].

5-30. Word Search Data Memory Command. The format of the Word Search Data
Memory Command is as follows:

Command Key Sequence: [S] [DATA MEMORY] [starting address]
[NEXT] [ending address]
[NEXT] [search target MSB]
[NEXT] [search target LSB]
[NEXT] [mask MSB] [NEXT] [mask LSB] [EXECUTE]
[NEXT] [NEXT] . .. [.]

Prompt 48 Panel Operation

LX)

Function Display: *‘Sd.
Address Range: 0-FFy¢
Search Target Range: O-FFFF,¢
Mask Range: 0-FFFFy¢

Note: [NEXT][mask MSB][NEXT] [mask LSB] and [NEXT] [NEXT] . . . are optional
and may be omitted.

Example: Search Data Memory between locations 19,6 and 3F; for the first occurrence of
3B14,6. The key sequence is [S] [DATA MEMORY] [1] [9] [NEXT] [3] [F]
[NEXT] [3] [B] [NEXT] [1] [4] [EXECUTE] [.].

5-31. Word Search Register Memory Command. The format of the Word Search
Register Memory Command is as follows:

Command Key Sequence: [5] [REGISTER] [starting address]
[NEXT] [ending address]
[NEXT] [search target MSB]
[NEXT] [search target LSB]
[NEXT] [mask MSB] [NEXT] [mask LSB] [EXECUTE]
[NEXT] [NEXT] ... []

Function Display: **Sr.
Address Range: 0-48,¢
Search Target Range: O0-FFFF g
Mask Range: 0-FFFFq

Note: [NEXT][mask MSB] [NEXT][mask LSB] and [NEXT] [NEXT] . . . are optional
and may be omitted.

Example: Search Register Memory for an occurrence of A42D;¢. The key sequence is [5]
[REGISTER] [0][NEXT][4]([8]) [NEXT][A][4][NEXT][2] [D][EXECUTE]
[].

5-32. Move Memory Commands

The Move Memory commands allow the user to move blocks of data from one area to
another in any one of the three memory types: Program Memory, Data Memory, or Register
Memory. Data cannot be moved from one memory type to another.

The format for each of the Move Memory commands is the same, as follows:

[9] [memory type]
[source starting address] [NEXT] [source ending address]
[NEXT] [destination starting address] [EXECUTE]

where [9] is the Move Memory command; [memory type] is [PROGRAM MEMORY],
[DATA MEMORYY], or [REGISTER]; [source starting address] and [source ending ad-
dress] define the block of data to be moved; and [destination starting address] defines the
area of memory to which the data is to be moved.

5-15

Panel Operation

5-16

The memory move is commenced by pressing [EXECUTE]. The Move Memory commands
will move any block of memory data between any two memory areas of a single memory

type.

5-33. Move Program Memory Command. The format of the Move Program Memory
Command is as follows:

Command Key Sequence: [9] [PROGRAM MEMORY]
[source starting address] [NEXT]
[source ending address] [NEXT]
[destination starting address] [EXECUTE]

£

Function Display: *‘nP.
Address Range: 0-FFF¢
Example: Move the contents of Program Memory locations 0-FF,g to Program Memory

locations 270,—26F . The key sequence is [9] [PROGRAM MEMORY] [0]
[NEXT] [F] [F] [NEXT] [2] [7] [0] [EXECUTE] [.].

5-34. Move Data Memory Command. The format of the Move Data Memory Command
is as follows:

" Command Key Sequence: [9] [DATA MEMORY]

[source starting address] [NEXT]
[source ending address] [NEXT]
[destination starting address] [EXECUTE]

LX)

Function Display: *‘nD.
Address Range: 0-FF;¢

Example: Move the contents of Data Memory locations 6-2B¢ to Data Memory locations
Aj6—2F ;¢ (move the block ‘‘up’’ in memory four bytes). The key sequence is
[9] [DATA MEMORY] [6] [NEXT] [2] [B] [NEXT] [A] [EXECUTE] [.].

5-35. Move Register Memory Command. The format of the Move Register Memory
Command is as follows:

Command Key Sequence: [9] [REGISTER]
[source starting address] [NEXT]
[source ending address] [NEXT]
[destination starting address] [EXECUTE]

"

Function Display: ‘‘nr.
Address Range: 0-48,¢
Example: Move the contents of Register Memory locations 4-186 to Register memory

locations A;g— 1E ;6. The key sequence is [9] [REGISTER] [4] [NEXT] [1][8]
[NEXT] [A] [EXECUTE] [].

Prompt 48

Prompt 48

Panel Operation

5-36. Clear Memory Commands

5-37. Clear Program Memory Command. The format of the Clear Program Memory
command is as follows:

Command Key Sequence: [C] [PROGRAM MEMORY] [starting address]
[NEXT] [ending address] [.]

X

Function Display: *‘CP.
Address Range: 0-FFF;¢

The Clear Program Memory command clears each memory location between and including
the starting address and the ending address to 004¢.

Example: Clear Program Memory locations 0-3FF,¢. The key sequence is [C] [PRO-
GRAM MEMORY] [0] [NEXT] [3] [F] [.).

5-38. Clear Data Memory Command. The format of the Clear Data Memory Command
is as follows:

Command Key Sequence: [C] [DATA MEMORY] [starting address]}
[NEXT] [ending address] [.]

(3}

Function Display: *‘Cd.
Address Range: 0-FF¢

The Clear Data Memory command clears each memory location between and including the
starting address and the ending address to 00,¢.

Example: Clear Data Memory locations 20;6—4Fg. The key sequence is [C] [DATA
MEMORY] [2] [0] [NEXT] [4] [F] [.].

5-39. Clear Register Memory Command. The format of the Clear Register Memory
Command is as follows:

Command Key Sequence: [C] [DATA MEMORY] [starting address]
[NEXT] [ending address] [.]

"

Function Display: ‘‘Cr.
Address Range: 0-48;¢

The Clear Register Memory command clears each memory location between and including
the starting address and the ending address to 00¢.

Example: Clear Register Memory locations 0-1F,¢. The key sequence is [C] [REGISTER]
(0] INEXT] [1]1[F1 [.].

5-40. Dump Memory Commands

Any data that can be accessed by the Examine/Modify Memory commands may be output
through the serial port with these commands. The user may thereby save program, register,
or data information on paper tape, or hard copy or other peripheral. The format is the
hexadecimal Object File format, described in Appendix D.

5-17

Panel Operation

5-18

If the command is received from the Prompt-48 keyboard, then the Hexadecimal Object File
will be preceded and followed by a series of null characters for tape header and trailer. If the
command is received via the serial channel, then the Hexadecimal Object File will be
immediately dumped without any null insertion.

5-41. Dump Program Memory Command. The format of the Dump Program Memory
Command is as follows:

Command Key Sequence: [D] [PROGRAM MEMORY] [starting address]
[NEXT] [ending address] [.]

Function Display: *‘dP. . *

Address Range: 0-FFF;¢

Note: starting address must be less than or equal to ending address.

Example: Dump Program Memory locations 0-3FF;¢ through the serial port. The key
sequence is [D] [PROGRAM MEMORY] [0] [NEXT] [3] [F]1[F][.].

5-42. Dump Data Memory Command: The format of the Dump Data Memory Com-

mand is as follows:

Command Key Sequence: [D] [DATA MEMORY] [starting address]
[NEXT] [ending address] [.]

Function Display: ‘*dd. . ”
Address Range: 0-FF¢
Note: starting address must be less than or equal to ending address.

Example: Dump Data Memory through the serial port. The key sequence is [D] [DATA
MEMORY] [0] [NEXT] [F] [F] [.].

5-43. Dump Register Memory Command. The format of the Dump Register Memory
Command is as follows:

Command Key Sequence: [D] [REGISTER] [starting address]
[NEXT] [ending address] [.]

Function Display: *'dr. . v

Address Range: 0-48,¢4

Note: starting address must be less than or equal to ending address.

Example: Dump Register Memory through the serial port. The key sequence is [D]
[REGISTER] [0] [NEXT] [4] [8] [.]-

5-44. Enter Into Memory Commands

The Enter into Memory commands allow the user to load any file corresponding to the
Hexadecimal Object File Format (Appendix D) from the serial port into Program Memory,
Data Memory, or Register Memory . The parameters needed by the Enter commands are the
memory type and an offset to the starting address given in the Object File.

Prompt 48

Prompt 48

Panel Operation

5-45. Enter into Program Memory Command. The format of the Enter iato Program
Memory command is as follows:

Command Key Sequence: [E] [PROGRAM MEMORY] [starting address offset]
[]

Function Display: *‘rP.

5-46. Enter into Data Memory Command. The format of the Enter into Data Memory
command is as follows:

Command Key Sequence: [E] [DATA MEMORY] [starting address offset]
(]

LX)

Function Display: *‘rd.

5-47. Enter into Register Memory Command. The format of the Enter into Register
Memory command is as follows:

Command Key Sequence: [E] [REGISTER] [starting address offset]
[]

LX}

Function Display: ‘‘rr.

5-48. Hexadecimal Arithmetic Command

5-49. Hexadecimal Arithmetic Command. The format of the Hexadecimal Arithmetic
command is as follows:

Command Key Sequence: [6] [x data] [NEXT] [y data] [EXECUTE]
Function Display: ‘‘HE. "
Data Range: 0-FFF,¢

The Hexadecimal Arithmetic command performs hexadecimal addition and subtraction on
two one-to-three digit hexadecimal numbers, x and y. Upon pressing [EXECUTE] the sum
and difference are displayed in the following format:

“HE.x+y.x—y".
5-50. EPROM Programming, Fetch, Compare Commands

5-51. EPROM Programming Command. The EPROM Programming commands allow
the user to program all or part of the EPROM Program Memory on Microcomputer
with EPROM, an 8755 EPROM Program Memory and 1/O Expander, or an 8741
Microcomputer with EPROM (UPI-41 family).

There are two programming modes, one which does not insert the Prompt-48 byte reentry
code, and one which does. :

5-19

Panel Operation

5-20

The mode which does insert this code is intended for 8748’s which are to be used in the
Prompt-48 Execution Socket. The Prompt-48 16 byte reentry code is needed in Program
memory to allow the Monitor program to properly transfer control to the user program. It
occupies the 16 highest bytes of the lower 1024 bytes of Program Memory, locations
3F046—3FF;¢. This programming mode is inappropriate for 8755’s present via an adapter,
and an error display will appear in the LED’s to indicate that the wrong mode has been
selected.

The programming mode which does not insert the reentry code copies the RAM Program
Memory faithfully to the EPROM device in the Programming Socket. This mode will work
for 8741’s, 8748’s, and with the addition of a Prompt 475 adapter, 8755’s.

The Prompt-48 will not attempt to program EPROM devies which have not had the
appropriate locations completely erased. If an unerased location is detected an error display
with the address and EPROM contents will appear.

§-52. Program EPROM With Reentry Code Command. The format of the Program
EPROM With Reentry Code command is as follows:

Command Key Sequence: [7] [starting address] [NEXT] [ending address]
[NEXT] [starting EPROM address] [EXECUTE]

Function Display: ‘‘Pr 8748"

Address Range: 0-3FF;g

This command programs all or part of the EPROM Program Memory on an 8748 Micocom-
puter with EPROM. The 16 byte monitor reentry code is automatically substituted for any of
the 16 locations from 3F0;¢ to 3FF 6.

Example: Program the Prompt-48 RAM Program Memory into an 8748 intended for use in
the Prompt-48 Execution Socket. First install the 8748 in the Programming
Socket. The key sequence is [7] [0] [NEXT] [3] [F] [F] [NEXT] [0] [EXE-
CUTE]. The display will blank to indicate that the EPROM is being programmed
and the command prompt returns automatically after the EPROM has been
successfully programmed.

5-53. Program EPROM Without Reentry Code Command. The format of the Program
EPROM Without Reentry Code command is as follows:

Command Key Sequence: [3] [starting address] [NEXT] [ending address]
[NEXT] [starting EPROM address] [EXECUTE]

Function Display: *‘Pr 8741 or “‘Pr 8755"’*

Address Range: 0-3FF ¢

*with 475 adapter.

Prompt 48

Prompt 48

Panel Operation

This command programs all or part of the EPROM Program Memory on the 8741, 8748, or
8755 (if a Prompt 475 adapter is installed). The function display ‘‘Pr 8741’" appears for
the 8741 and 8748, and (if the adapter is installed) the function display ‘‘Pr 8755
appears. With this command the RAM Program Memory is written to the EPROM device
without modification.

Example: Program the entire Prompt-48 RAM Program Memory contents into the EPROM
device on an 8741. First install the 8741 into the Prompt-48 Programming
Socket. The key sequence is [3] [0] [NEXT] [3] [F] [F] [NEXT] [0] [EXE-
CUTE]. The LED display will blank to indicate that the EPROM is being
programmed and the command prompt returns automatically after the EPROM
has been successfully programmed.

5-54. Compare EPROM Command. The format of the Compare EPROM command is
as follows:

Command Key Sequence: [8] [starting Prompt address] [NEXT]
[ending Prompt address] [NEXT]
[starting EPROM address] [EXECUTE]

Function Display: **Co. . > 7”
Address Range: 0-FFF,6 (but not to exceed PROM capacity)

The Compare EPROM command compares the specified areas of Prompt-48 RAM Program
Memory and the EPROM device installed in the Programming Socket. Before specifying
this command, an 8748, 8741, or 8755 with 475 adapter must be installed in the Program-
ming Socket. If no EPROM device or 475 adapter is present and locked, or the device is
placed in the socket backwards, upon receipt of the [C] command the display will read out
an error message.

Example: Compare the contents of an 8748 installed in the Programming Socket with the
RAM Program Memory in Prompt-48. The key sequence is [J{] [0] [NEXT][3]
[F] [F] [NEXT] [0] [EXECUTE].

5-55. Fetch EPROM Command. The format of the Fetch EPROM command is as
follows:

Command Key Sequence: [F] [starting Prompt address] [NEXT]
[ending Prompt address] [NEXT]
[starting EPROM address] [EXECUTE]

X

Function Display: *‘FP.
Address Range: 0-FFF g (but not to exceed PROM capacity)

The Fetch EPROM command moves the contents of the EPROM Program Memory of the
device installed in the Programming Socket to the RAM Program Memory in Prompt-48.
Before specifying this command, an 8748, 8741, or 8755 with 475 adapter must be installed
in the Programming Socket. If no EPROM device or 475 adapter is present and locked, or if
the device is placed in the socket backwards, upon receipt of the [F] command the display
will read out an error message.

Example: Read the contents of an 8748 installed in the Programming Socket into the RAM
Program Memory in Prompt-48. The key sequence is [F][0] [NEXT][3][F][F]
[NEXT] [0] [EXECUTE].

5-21

Panel Operation

5-22

Table 5-7. Command List Summary

Command Prompts: “ACCESS=0" and “— . . "

Command Key(s)/(Description) Function Display Section
[GO]: “G . 5-20
— [NO BREAK] “Go . 5-21
- [WITH BREAK] “Gb. 524
— [SINGLE STEP] “GS. 5-24
[EXAMINE/MODIFY]: E . 5-17
- [PROGRAM MEMORY] “EP. . " 5-18
— [DATA MEMORY] “Ed . . " 5-17
— [REGISTER] “Er . . " 5-15
[2] (Port 2 Map) - P2, . MM 5-16
[3] (Program PROM — 8741 or 8748) “Pr 8741 5-53
[3] (Program PROM— 8755, with adapter) “Pr 8755 5-53
[4] (Byte Search): “S1. . " 5-25
- [PROGRAM MEMORY] “SP. . " 5-26
— [DATA MEMORY] “Sd . . " 5-27
— [REGISTER] “Sr . . " 5-28
[5] (Word Search): “82 . . " 5-25
- [PROGRAM MEMORY] “SP. . " 5-28
— [DATA MEMORY] “Sd . 5-30
- [REGISTER] “Sr . 5-31
[6] (Hexadecimal Arithmetic) “HE. . 5-49
[7] (Program PROM — 8748) “Pr 8748 " 5-52
[8] (Compare PROM) “Co. . " 5-54
[9] (Move Memory): “n . . " 5-32
- [PROGRAM MEMORY)] “nP . 5-33
- [DATA MEMORY] “nd . . " 5-34
—. [REGISTER] “nr . . " 5-35
[A] (Access Mode Select) “Ac . . cc 5-14
[B] (Examine/Modify Breakpoint) “br . . " 5-23
[C] (Clear Memory): “C . 5-36
— [PROGRAM MEMORY] “CP. . " 5-37
— [DATA MEMORY] “Cd . . " 5-38
— [REGISTER] “Cr . . " 5-39
[D] (Dump Memory): “d . . " 5-40
— [PROGRAM MEMORY] “dP . . " 541
— [DATA MEMORY] “dd . 5-42
— [REGISTER] “dr . 5-43
[E] (Enter into Memory): “ro. 5-44
- [PROGRAM MEMORY)] “P . 5-45
— [DATA MEMORY] ‘d . 5-46
— [REGISTER] “ro. 5-47
[F] (Fetch PROM) “FP 5-55

Prompt 48

CHAPTER 6
HOW TO USE PROMPT 48

6-1. Setting Up A System

As mentioned in the introductory chapter of this manual, your decision to use the Prompt-48
as adevelopment system was likely based on the observation that software design and debug
time is the critical path that stands between where you are now and a completely engineered
product. The hardware aspects of system design using the MCS-48 family of components,
though not trivial, are greatly simplified by the forethought and modularization of that
family.

In this chapter we will refer to your prototype of the desired end product as the user system.
This chapter will attempt to guide you in the efficient use of the development tools of the

Prompt-48, while giving the briefest of coaching in the modem discipline of systems

engineering.

6-2. Education

The first step is to become familiar with what the microcomputer is and what it can do. For
this, unless you are already familiar with the subject, reference should be made to Chapter
Three of this manual, ‘‘How the INTEL Chip-Computers Work.’’ An extensive documen-
tation package is included with Prompt-48, and this should also be consulted. In particular,
you should become familiar with the contents of MCS-48 Microcomputer User’s Manual
and the Prompt 48 Reference Cardlet.

If time is critical in getting started in microprocessors, designers or managers can attend one
of many INTEL-sponsored 3-day training courses which give basic instruction in the
MCS-48 as well as hands-on experience with MCS-48 development systems.

After general familiarization is complete, either through self-instruction or a training
course, the next step is to gain a better ‘‘feel’’ for what a microprocessor can do in your own
applications by writing several exercise programs which perform basic functions. You may
require such things as /O routines for various sorts of ports; or delays, counting functions,
look-up tables, arithmefic functions, and logical operations which can serve as a set of
building blocks for future applications programs. Several basic programming examples are
included in the Prompt-48 documentation package, such as the ‘‘Stopwatch’’ program
described and listed in Appendix C of this manual. The Intel User’s Library is a source of
more specific applications routines.

6-3. Functional Definition

After a thorough grounding in the basics of microcomputing has been achieved, the
functions of the intended user system should be thoroughly defined and documented. So
many “‘correct’’ methods for this sort of documentation exist that it is impossible to make
dogmatic prescriptions for all situations.

A traditional protocol of design-supportive documentation is the flowchart method. This
familiar device, for which templates and other drafting aids exist, calls for a separate *‘black
box’’ with summary description within for each distinct * ‘function’’ to be performed by the
computer, also, the proper sequencing and interconnection of functions, including the
possibility that certain paths may only be remote options, seldom used.

We will employ a different discipline of program design in this chapter and in Appendix C,
known as structured programming through Warnier-Orr diagrams. Rather than **graphics-
oriented’’ like flowcharts, this documentation is analogous to indented outlines. Examples
appear in Paragraph 6-6.

How to Use Prompt 48

6-2

6-4. Hardware Configuration

The next step involves the definition of the microcomputer hardware necessary to imple-
ment the complete user system. In general, any system will include CPU (Central Proces-
sor), Program Memory and Data Memory, Input/Output, and the appropriate interfaces
with the outside world. It will already be apparant that the MCS-48 component family
answers many system-building questions in a straightforward manner. In the first place, the
8748, if selected as Central Processor, already includes the first one thousand bytes of
Program Memory, the first 64 bytes of Register (data) Memory, and three 8-bit I/O ports.
For those many applications requiring no more resources, the 8748 (or its masked ROM
equivalent, the 8048) would have only a few hardware needs beyond the chip itself: a power
supply (which could be a battery), a simple oscillator or clock, a minimal amount of
interface/support circuitry, and possibly a chassis or other packaging.

But most user applications will be more involved than this, requiring a detailed hardware
system design study and the use of other components in the MCS-48 family. Such a design
study would require the separate consideration of requirements in Input/Output, Memory
and Throughput. Input/Output and Memory will now be discussed, but Throughput will be
covered in the subsection which follows, ‘‘Code Generation.”’

Input/Output capability must be defined in terms of number of inputs, number of outputs,
bi-directional lines, latching or non-latching I/O, output drive capability, and input
impedence.

In terms of Memory requirements, a separate study is necessary for Register (Data) Memory
and for Program Memory. The number of words of RAM storage required for intermediate
results and other data storage must be determined, and a decision made as to whether
off-chip expansion is needed. (An additional 256 bytes can be directly added, and up to 4K
bytes indirectly; see Paragraph 6-14 for details.) The type of system will dictate whether
battery backup is needed to maintain data in RAM during power failure.

Probably the most difficult parameter to define initially is the amount of Program Memory
needed to store the final user program. Although previously written exercise programs will
make this estimate more accurate, a generous amount of ‘‘breathing room’’ should be
allowed in program memory until coding is complete and the exact requirements are known.
The Prompt-48 allows for 1k byte (one thousand bytes) of RAM memory for program
development. If more proves to be necessary, the user can configure it externally to Prompt
with the Bus Connector (J1) and flat cable. (MCS-48 has an upward address limit of 4k in
Program Memory.)

The problem of *‘trade-offs’’ of hardware versus software is familiar to every experienced
system designer. For example, many special functions such as serial data communications
(TTY or RS-232) or keyboard/display interfaces may be implemented in software (pro-
grams); however, in cases where these functions place a severe load on the processor in
terms of time or Program Memory, special peripheral interface circuits such as the 8251,
Universal Synchronous or Asynchronous Receiver/Transmitter (USART) or 8279
Keyboard/Display interface may be used.

We are only sketching the essentials of hardware system development in this section. For
full details, see Paragraph 6-14.

6-5. Code Generation

The writing of the final program code for the application can begin once the system function
and hardware have been defined and can be generated in parallel with the detailed hardware
design (PC card layout, power supply, etc.) Often the final hardware definition is not
possible, however, until some or all of the coding is complete; the memory requirements,
both for Program Memory and Data Memory, may be unpredictable. Also, it may not be
possible to predict, in certain time-critical real-time applications, whether the processor will

Prompt 48

Prompt 48 How to Use Prompt 48

have sufficient throughput. ‘‘Benchmark’’ programs, which are typically only the most
critical sequences in a complete applications program, are often written in completely coded
form for the purpose of more exactly predicting memory and throughput requirements.

Throughput is defined loosely as the ‘‘amount of computing’’ that a system can accomplish
in a given time interval. Although a fast processor like the MCS-48 has throughput
“‘overkill’’ for most applications, it is easy to conceive that a sufficiently challenging
real-time application would overtax its processing power. For example, in some industrial
control application, a feedback loop between ‘‘sensing’’ and *‘correcting’’ might need to be
repeatedly established very quickly, say within 1/100th of a second. Such a final, dedicated
applications program may be able, in addition to any general ‘‘housekeeping’’ or record-
keeping duties, to periodically read the current outside-world data appearing at an input
port; to perform data analysis calculations; to compute a feedback or correction factor; and
to write this to an output port — all within perhaps 1/100th of a second.

If benchmark programs are carefully-selected and completely coded, it is possible to make
literal and accurate calculations for the time required to execute them. One simply counts
the number of bytes in the benchmark program (object code) and multiplies by the
instruction cycle time of the MCS-48. Assuming a clock frequency of 3 MHz (3 million
cycles per second), the basic instruction cycle for the fetching/executing of a program byte
would be 5.0 microseconds long. (Reference the MCS-48 Microcomputer User’s Manual.)
Note that most MCS-48 instructions generate only one byte of object code, but that many
have operands requiring a second byte. ‘

The whole process of applications software development, from program design to final
coding, is described in Paragraph 6-6.

6-6. Programming Techniques

The first part of this section is aimed primarily at beginning or intermediate assembly
language programmers. While it is not sufficient as a general introduction to assembly
language programming, it is intended to present concepts allowing efficient software
development in the MCS-48 environment. The advanced programmer may wish to spend
some time briefly examining the subsections on Program Design and Program Test and
Debugging for interest’s sake.

The subsections:

Assembling JMP and CALL Instructions,
Program Memory Paging, and
Prompt-48 Considerations,

are of general interest as they discuss aspects pertaining specifically to the MCS-48 family
or Prompt 48.

The MCS-48 Assembly Language Programming Manual should be consulted as a detailed
reference for all MCS-48 CPU software.

6-7. Program Design

The first step in the design of any system, hardware or software, is to define the problem.
Only when the exact function of the application is determined can the resources necessary to
execute that function be determined.

A common phrase in programming these days is ‘‘top-down’’ program design. By this we
mean that the designer divides the problem into smaller separate sections to be solved
separately. The words ‘‘top-down’’ describe the hierarchial or pyramid-like way in which
this division is made. As an example, let’s say that we are to design a program which will

6-3

How to Use Prompt 48 Prompt 48

allow a particular MCS-48 system to function as a stopwatch; perhaps we will design it to
run on Prompt 48 itself. When we say *‘stopwatch,’’ the precise instructions needed aren’t
immediately obvious. The problem must be divided into simpler sub-problems. One
possible division might be into subsections called: Display Functions, Timer Control
Functions, Data Functions, User Input/Output Functions, and so forth. These subsections of
the program are then themselves divided and subdivided until the problem is reduced to a
number of vastly simpler problems, such as adding 1 to the contents of a given memory
location. The final set of simple problems is then solved one at a time, and called the

program modules.

Figure 6-1 shows a possible partial breakdown of the stopwatch problem. While the figure
shows the organizational structure of the program, it does not indicate how the modules
communicate with one another.

The communication between modules is the second major phase of program design, called
designing the modular interfaces, which are simply the ways in which modules pass control
and data back and forth. For example, in the stopwatch the User Control Functions
(Commands) module must give control to one of its submodules, whose task is to read the
keyboard for user commands. The Read Keyboard For Command submodule would
examine keys and return control to the calling module. It would also pass data back to the
calling module indicating which key, if any, was pressed. The simpler these modular
interfaces are kept the easier it is to assemble all modules into a working program. For this
reason the modular breakdown process should attempt to separate the problem into sub-
problems which depend as little as possible on each other for data.

Start Stopwalch

User Stop Stopwatch

Control _____J

ns Freeze Display at Current Time

(Commands) Free (unfreeze) Dispiay
Set Time to 0
Clear LED Display
Enable LED Refresh

Display

Functions Display Minutes
Display Seconds

Stopwatch — Display Hundredths

Reset Timer

Tc:",:,'o, Start Timer Running
Stop Timer Running
Check Timer Status
Set Time to 00:00.00

Data

Functions ——1 Add 1 to Time

Read Keyboard for Command

Figure 6-1. Stopwatch Program Structure

6-4

Prompt 48 How to Use Prompt 48

When a given task must be performed the same way in two or more modules, it can'be made
into a subroutine. A good example of a subroutine is a multiplication routine. The
multiplication routine receives control, and the two numbers to be multipled, from the
calling routine, multiplies the two numbers together, and returns control and the product to
the calling routine. Since subroutines are called from a number of different areas in the
program, the address of the caller must be saved in order for control and data to pass back to
the calling module. This is accomplished very simply in the MCS-48 Chip-Computers and
is described in Paragraph 3-9.

The concept of executive modules is also useful. Briefly, an executive ‘module is any
module which controls other modules as subroutines. This idea can be applied at any level in
the structure of the program, just as the idea of modules itself. In the stopwatch structure, the
User Control Functions module is executive to the other three modules on its level.

6-8. Hand Assembly

When each program module and modular interface has been specified, the individual
modules must be translated into a form the computer can deal with. The first step of this
translationis to write the program in assembly language according to the MCS-48 Assembly
Language Manual. If an ISIS-II or other development system is available to then assemble
the assembly language program into machine language, hand assembly need not be used;
otherwise, the hexadecimal machine code contents of Program Memory must be determined
manually.

Let’s look at a simple example. Consider a single-module program which is to count. That
is, it will repeatedly add 1 to a specified memory location. The task of the program (module)
might look something like this:

1. Replace the variable COUNT with COUNT +1.
2. Repeat step 1.

The next step is to assign the location of the data called COUNT. Let’s put it in Working
Register 0. Now write the instructions:

START: MOV A,#1 ;Put 1 in the Accumulator
ADD A,RO ;Add 1 to RO (COUNT)
MOV R0O,A ;Replace RO with RO+1

JMP START ;Repeat forever.

The mnemenic instructions with comments are collectively called the program source code.
The hexadecimal contents of Program Memory which the source code stands for are called
the program object code. The essence of hand assembly is the translation from source code
to object code.

In our example we must now do just that: assemble the program.

First, a starting address must be chosen; say Program Memory location 0. Write the address
of each instruction at the extreme left of your program sheet:

Addr Label Ins Opnd Comment

000 START: MOV A,#1 ;Put 1 in the Accumulator

6-5

How to Use Prompt 48

Then go down the instructions one at a time, assigning hexadecimal values to the Program
Memory address in the left column:

Addr Data Label Ins Opnd Comment

001 2301 START: MOV A,#1 ;Put 1 in the Accumulator
002 68 ADD A,RO ;Add 1 to RO (COUNT)
003 A8 MOV R0O,A ;Replace RO with RO+1
004 0400 JMP START ;Repeat forever.

The hexadecimal values can be looked up in the Prompt-48 Reference Cardlet (‘‘by
mnemonic’’ section), the MCS-48 Microcomputer User’s Manual, or the MCS-48 Assem-
bly Language Programming Manual.

6-9. Program Test and Debugging

When each of the program modules and their modular interfaces have been identified and
written into an assembly language program, some effort should be devoted to determining
whether or not the program works as intended. This effort is called program testing.
Removing the errors uncovered by program testing is called debugging.

Large programs are frequently far too complex to exhaustively test as a whole. One answer
to this problem is to test as thoroughly as possible each module and modular interface
individually. If this is done carefully, the programmer is almost certain to have a correctly
working program when the modules are assembled, unless there are serious flaws in the
overall program design structure. The bugs that do (almost inevitably) crop up can usually
be identified as originating in a particular module and/or modular interface, and are easily
fixed.

In order to evaluate the performance of an individual module, its communication process
with other modules must be simulated. For example, if a multiplication routine is to be
tested, the input data (the numbers to be multiplied) must be somehow provided, and the
output data (product) must be available for verification. Thus, the stand-alone routine to be
verified must be provided with an ‘‘environment’’: that is, it must be surrounded with
sufficient other assembly-language instructions so that it can be run in the computer with
simulated values. Such a test program would be called a **dummy routine,”’ and the practice
of pre-verifying individual modules before the program is run as a whole is often referred to
as ‘‘echo checking.’’ If the module is found to be faulty, the resources of the development
system must be called on to trace its internal operation.

The basic facilities for testing modules and modular interfaces in Prompt-48 are the
Go/With Break, Go/Single Step, and Examine/Modify commands.

Breakpoints allow the user to stop program execution at pre-planned points in order to
supply input data, examine output data, check the status of various registers, and so forth.
The placement of breakpoints and use of the Go/With Break command are discussed in
Paragraph 5-20.

The Go/Single Step command allows the user to execute a routine instruction-by-
instruction, verifying the routine’s operation at each step. The use of this command is
described in Paragraph 5-20.

The Examine/Modify commands are the means by which all this verification takes place.
The MCS-48 registers and Data Memory are accessible through these commands, as shown
in Paragraph 5-17.

Prompt 48

Prompt 48

How to Use Prompt 48

6-10. Program Memory Paging

In MCS-48 Chip-Computers, Program Memory is divided into from 4 to 16 256-byte
pages. There are only two ways for program execution to cross page boundaries: the use of
the JMP or CALL instructions. The address of the next instruction to be executed is kept in
the Program Counter. After most instructions, only the lower eight bits are modified to form
the next address (2’3 = 256). With the JMP and CALL instructions, however, an additional
three bits are included as part of the instruction. The twelfth bit of the Program Counter (BS)
is also replaced by the DBF bit with the execution of these instructions. The JMP and CALL
instructions are therefore the only instructions which can transfer control to anywhere in the
212 = 4096 bytes of Program Memory.

The DBEF bit controls whether a JMP or CALL instruction passes control to a destination
above or below the 2!! = 2048 byte Program Memory boundary. This is accomplished by
replacing bit 11 (the twelfth bit) of the Program Counter, BS, with DBFonaJMP ora CALL
instruction. DBF is controlled with the SEL. MBO and SEL MBI instructions. SEL MBO
replaces DBF with 0, and subsequent JMP or CALL instructions will have destination
address of 0-7FF,¢. SEL MBI replaces DBF with 1, and JMP’s and CALL’s will have
destinations of 800,¢—FFFg.

6-11. Assembling JMP and CALL Instructions

With the JMP and CALL instructions, three bits of the destination address (next Program
Counter contents) are included in the hexadecimal object code for the particular instruction
involved. These bits are Program Counter bits 10, 9, and 8. They specify any 256 byte page
of Program memory in either of two Program Memory banks, 000-7FF ;¢ or 800,6—FFF16.
To determine which page of the given memory bank the destination lies in, take the full
address (000-FFF,g) and subtract 800,¢ from any address which is 800,¢ or greater. The
resultant page number indicates the proper JMP or CALL instruction’s object code.

The precise manner in which the JMP and CALL instructions operate is discussed in
Paragraphs 3-8 and 3-9, and the MCS-48 Microcomputer User's Manual.

6-12. Care and Feeding of EPROMS

At a certain point in program development you will make the decision that the process is
complete: that is, you will have verified that the program works as designed. Hopefully you
will already have attempted a certain number of dry runs under ‘‘dummy’’ parameters, in an
attempt to force u:r program into some sort of fluke under extreme conditions; perhaps it
will only be a random and arbitrary selection of parameters. Now it is time to commit the
proven program to'non-volatile EPROM, either the 1k resident on the 8748 processor, or
possibly the 2k 8755 EPROM Program Memory and I/O Expander device.

To do this, carefully insert the chip in the Programming socket with the marked pin on the
chip next to the numeral *‘1’” on the Prompt’s panel insuring proper orientation. There are
numerous cautions to observe while doing so. In the first place, never insert a processor into
the Programming socket unless a second processor (such as the 8035 provided with your
Prompt) is properly locked in the Execution socket. Secondly, the chips are fragile!
Dropping, twisting, or uneven pressure may break them. Also, avoid putting any pressure
on the quartz window area of the processor. Finally, as MOS devices the EPROMs are
subject to damage by static electricity contacting the pins. Never place the pins near any
metallic surface except the Prompt socket itself; and even then, discharge any residual
charges by touching your hand to the Prompt chassis before inserting the chip. At all other
times, keep the chip safe in its protective foam cushion.

The final step in EPROM programming is to execute one of the instructions for this purpose
detailed in Paragraph 5-50.

6-7

How to Use Prompt 48

If for any reason it is desired to erase a programmed EPROM to allow for reprogramming, it
is only necessary to expose it to light with wavelengths of light shorter than approximately
4000 Angstroms (ultraviolet). Sunlight and certain fluorescent lamps have wavelengths in
the 3000 A- 4000 A range. If the 8748 is to be exposed to sunlight or room fluorescent
lighting for extended periods, then opaque labels should be placed over the window, to
prevent unintentional erasure.

The recommended erasure procedure is exposure to shortwave ultraviolet light which has a
wavelength of 2537 A. The integrated dose (UV intensity multiplied by exposure time) for
erasure should be a minimum of 15 W-sec/cm™The erasure time with this dosage is
approximately 15 to 20 minutes using an ultraviolet lamp with a 12,000 ;.:.W/em2 power
rating. The 8748 should be placed within one inch from the lamp tubé during exposure.
Some lamps have a filter on their tube and this filter should be removed before erasure.

6-13. Prompt 48 Considerations

A few of the full capabilities of the MCS-48 Chip-Computer are restricted in the Prompt
environment. This is due to design tradeoffs necessary to provide the full versatility of
Prompt’s features and functions. It is possible to work around these restrictions, which
disappear once the development cycle is complete and the user system stands and runs
alone, provided that you are aware of them in advance.

Monitor Reentry Uses Stack: When the MON INT key is pressed, the monitor program
interrupts the user program, using one stack entry. If the user has calculated his stack needs
only for his own subroutines and interrupts, and has stored other data on the next available
stack location, that data will be ‘‘zapped’’ (overwritten) by the user program return address.

Unsupported Instructions: ANL BUS, A and ORL BUS, A will not work except in Access
Mode 3 and then only with the GO/NO BREAK command. OUTL BUS, A can only be used
in Access Modes 0 and 3.

Monitor Reentry Code: The upper 16 bytes of the lower 1k block of Program Memory
(addresses 3F0, g through 3FF;¢) must be reserved for the Prompt 48 Monitor reentry code.
This code is automatically placed in Program Memory by the [7] Program EPROM
command. (See Paragraph 5-50.) These bytes must also be reserved when using the RAM
Program Memory inside Prompt 48.

Access Code, P2 Map. LSN P2 Relationship: Care must be taken to insure that these three
things are in agreement, as described in Paragraph 5-13, 5-15, and 6-14.

Timer Routines: The Timer Interrupt is disabled when using the GO/WITH BREAK and
GO/SINGLE STEP commands. To debug timer routines, insert JTF (Jump if Timer
Flag = 1) in the program loop.

6-14. Hardware Considerations

In expanding either Program or Data Memory, the first step is to define how the expanded
memory is to be partitioned, i.e., Program vs. Data. In your final MCS-48 design,
processor control signals will distinguish Program Memory accesses from Data memory
accesses: PSEN/ signals instruction fetches from Program Memory, and RD/ and WR/
signal accesses to Data Memory. Thus your final design will be a ‘* Aiken’’ machine, with
separate Program and Data Memory (see Chapter 3).

However, during debugging you may find a ‘‘von Neumann’’ machine to be useful,
particularly if you are expanding Program Memory. While checking out software you need
to easily load and modify all of Program Memory, 1k or more. Expansion Program and Data

Prompt 48

Prompt 48 How to Use Prompt 48
Memory may be joined into a single, all-RAM store—though Program and Data addresses
may not overlap. In hardware, you must now AND the PSEN/ and RD/ signals to form what
we’ll call EXRD/ (expansion read). This signal selects the expansion RAM whenever an
instruction is fetched from expansion Program Memory or when an expansion Data
Memory location is read.

A design forsuch ‘‘von Neumann’’ expansion memory is shown in figure 6-2. Table 6-1is a
list of the pin functions on the I/O Ports and Bus Connector (J1) on the front panel of Prompt,
-necessary for the praper configuration of ribbon cable between the user system and Prompt.
[+§] crOuUND
' | +5V FROM EXTERNAL SOURCE
+ +6
g 22 uf . . ,
_powR [B J 74L5139 | .
+UP2-2 |3 A [
+UP2-3 |7 YL’ £l 1ps
—UPSEN [i5 - 2p8
-uRD [o L 741810 . P
+upo—0 [i7 =0 o b
+UPo-1 [21 5h s
+UPO-2 |3 o2 812 ;:‘
:3:::: = 1 : DI DOy I 13 12
+UP0-5 [27 5 s 74L510
+UMB-¢ [23 6 L 8
+UPD-7 7 72
UA M3l i! 2| haps
+' LE 3} 1 +5
- 3
-UWR 1 t . <
iy dio ds Lo s Jio b8 Jio A8 Jio 08 410 8
WE CS|WE S, 1‘5
e
A; 4
3
2114 ol
1
A8 ‘
17
A7fE—
/o 170 psl'®
1
IW‘I 1“1
4 -
4
+uP2-0 [7
+UP2-1 5 TL""’
1/0 PORTS AND BUS CONNECTOR

Figure 6-2. Design for ‘‘von Neumann”’ Expansion Memory

6-9

How to Use Prompt 48

6-10

Table 6-1. Pin List for /O Ports and Bus Connector

Prompt 48

Signal Name Pin No. Buffer Characteristic
BUS (0) 17
(1) 21
(2 25
3) 29
4) 31 3-STATE BIDIRECTIONAL
(5) 27
(6) 23
() 19
PORT 1 (0) 18
(1) 20
@ 22
3) 24 8748 PSEUDO BIDIRECTIONAL
4) 26 CHIP (NO BUFFER)
15) 28
(6) 30
) 32
PORT 2 (0) 7
3-STATE MAPPED BIDIRECTIONAL
U 5 with 100 IN SERIES
@ 3
@3 1
PORT 2 (4) 4
&) 6 8748 PSEUDO BIDIRECTIONAL
(6) 8 CHIP (NO BUFFER)
7 10
+ALE 13 TTL OUTPUT (10
+T0 14 CHIP BIDIRECTIONAL (CLOCK), 2.2K Puliup
+T1 12 CHIP INPUT, 2.2K input
—INT 49 1 TTL LOAD (MON. GATED)
—~PSEN 15
—xg 9 TTL OUTPUT (10 LS LOADS)
- 1
—PO0 WRITE 33 TTL OUTPUT (5 LS LOADS)
-PROG 2 CHIP OUTPUT (NO BUFFER)
—RESET 16 CHIP INPUT/OUTPUT (SYS RESET OVERRIDES), 2.2K pullup
- GND 45, 46 Ground
471 48

6-15. Data Memory Considerations

Prompt 48 has 256 internal Data Memory locations, not including the 64 on-chip Register
Memory locations, accessible to you as ‘‘External Data Memory,"’ via the MO VX instruc-
tions. These 256 bytes of external data memory — inside the Prompt box — will be accessed
by MO VX instructions whenever LSN P2 is less than or equal to 3. That is, external data
locations O will be accessed by addresses 0, 10044, 20046, or 300. Accesses to 400 and
beyond will be outside the Prompt box (except in Access = 2, 5).

For a fuller treatment of the vital P2 subject, see the appropriate subsection below.

6-16. Using and Expanding Prompt 48 1/O Ports

All I/O pins of the EXECUTION SOCKET processor are accessible via the I/O PORTS
AND BUS CONNECTOR (see Table 5-1). Some lines are buffered inside the Prompt, and
therefore differ somewhat from a standalone MCS-48 device.

The connector pins designated port 1 are not buffered; they are connected directly to the
EXECUTION SOCKET computer.

Prompt 48

How te Use Prompt 48

The connector pins designated port 24 through 27 are not buffered; they are connected
directly to the EXECUTION SOCKET computer. However, the pins designated port 20
through 23 (the LSN P2) are buffered. Ordinarily the P2 MAP function [2] specifies
whether the lines of port 2 are to be used as input or output. The map enables appropriate
port 2 b , and allows you to examine/modify port 2 (*‘register 47°") from the Prompt
panel. 'IhadefaultforPZ MAP is that all lines be output. Important: Do not confuse the P2
MAP with the port itself (register 47). They are entirely different.

If LSN P2 is to be used as input, you must map it accordingly, and execute from on-chip
program memory only (1K orless), ACCESS = 3 or5. The MSN P2 can be input whenever

it is so mapped.

The Prompt does not usually allow any P20-P23 pin to be both input and output. The one
exception is using an 8243 I/O expander (and ACCESS = 1, 4). Then Prompt ignores P2
MAP and automatically switches the LSN P2 buffers between input and output, as signalled
by the PROG pin.

The connector pins designated BUS 0 through 7 (also known as port 00 through 07) are
buffered. In access codes 0 and 3 will latch. These lines will be latched outputs. No inputs
are allowed, and memory may not be expanded outside Prompt box. The MCS 48 processor
can, however, execute monitor programs or user programs from writable program memory,

- and these bus transactions do not appear on the latched PORT 0. Only the OUTL PO

instruction or any instruction generating writes (WR) will alter the latched BUS (PO)
contents; ANL PO and ORL PO instructions have no effect.

If you are using BUS for input, for strobed output or for expansion memory (and memory-
mapped I/O) then you will select access 1, 2, 4 or 5. Prompt requires that LSN P2 >3 for
access outside the Prompt box, mcludmg input, strobed output expansion memory and
memory-mapped 1/O.

Prompt provides a signal called ~-POWR which goes low whenever Prompt’s port O latch
buffers are driving out of the box. You may use this signal to disable any of your user system
bus drivers which might be driving into the Prompt box.

6-17. P2 Map, LSN of P2, Access Code Considerations

P2, or Port 2, is one of the MCS-48 processor’s three 8-bit parallel I/O ports. It acquires
special si'gniﬁcance because it is used to output the Most Significant 4 address bits of
transacuops with both Program Memory and Data Memory (the 8 Least Significant bits of
the 12-bit address are provided by the BUS port). Only the Least Significant Nibble of P2 is
required for this purpose; thus the numerous references in this manual to LSN of P2
considerations.

The P2 is given by the user thmugh a panel command (see Paragraph 5-15) to establish
the signal/direction on a pin by pin basis within Port 2. (The default condition is *‘output.””)
The Most|81gmﬁcant Nibble of P2 may be freely mapped as *‘input’’ or *‘output’’ according
to the user’s needs. But because of the Prompt 48 environment, the LSN P2 Map could
compete with Prompt’s drivers under certain Access Modes. This requires explanation on a
mode-by-mode basis:

6-18. Modes 0, 2, or 5: Map LSN as Output. LSN pins are used in these modes by the
Monitor to select various-internal memories of the Prompt 48 and therefore must not be

* affected by input devices. Referring to Figure 6-3, we can see the datapathis P2, H, J, K. If

LSN is mapped input, data path J1, A, D, G, H could foul things up.

6-11

How to Use Prompt 48

6-19. Mode 1 or 4: Mapping is Don’t Care. LSN is used by the user to select various
external memories, I/O chips, and/or 8243 Port Expander chips he may have connected to
J1. Being select lines, the LSN function will always be output except if using an 8243 Port
Expander. In Figure 6-3 the path is H, G, B, E, J1, The LSN mapping mechanism is actually
bypassed in these modes and is therefore immaterial. If it is mapped as output, the contents
are saved by.the monitor during debug. If using an 8243, ona MOVD A, Pn command, the
path switches to J1, F, B, G, H.

6-20. Mode 3: Mapping May Be Input or Output as the User Requires. In this mode
we are running a program less than 1k long which resides on the processor chip. With Input
mapping the path is J1, A, D, G and H. With Output mapping the pathis P2, H,J, C, A, J1.
You might notice that if the Monitor takes control (due either to single-step, with-break, or
Monitor interrupt pressed) the last data on the 4-bit latch is held and the P2 Map is
temporarily switched to Output. Again, this is to prevent possible input lines from affecting
the internal memory select lines.

Prompt 48

EXECUTION ® . ® -
er | / | MODES 0.2.3,5
LSN 7 =~ | .
Luonss 1.4 <
|
|
| EXT. FETCH
| { P2 SELECT
MOVD Py, A
ANLD
| ORLD
TO INTERNAL | L © ® | ’
PROMPT 48 aBIT |
o Y — ~N o .y
® @ P2 /7 l @ / @ o
T MAPPED / P2 MAPPED | /\/
OUTRUT g\ / INPUT
B |®
WON - ALE %I MODES 0,2, 3.5
> J -—
| MODES 1.4
P2 MAP
(BIT SELECTABLE)

Figure 6-3. PROMPT 48 Port 2 Bus Structure

6-12

Prompt 48

How to Use Prompt 48

6-21. LSN P2 Considerations. Prompt 48 is designed to automatically select the correct
program memory: addresses O to 3FF (1K-1) are inside the box, either on-chip EPROM or
its writable substitute. Addresses 400 to FFF (1K or greater) are to expansion memory,
which you provide outside the box. The comrect memory is automatically selected by using
the LSN P2 as an “‘inside/outside resource switch’’.

If LSN P2 <3 (< 1K), then all accesses are to resources inside the Prompt box. It LSN P2
>3 (= 1K), all accesses are to resources outside the Prompt box.

6-22. Using the Serial 1/O Port

Prompt 48 is shipped from the factory with its default options strapped for use with the
Prompt-SPP Optjon, but may alternatively be strapped for 20-mA current loop Teletype-
writer terminal or for any RS$232¢-compatible terminal.

The Serial I/O Interface communicates with an external I/O device via a 26-pin double-sided
PC edge connector (J2), 0.1 inch centers. An external device can be connected to J2 using a
3M 3462-0001 flat cable connector or one of the following soldered connectors: TI
H312113 or AMP 1-583715-1. Table 6-2 provides a pin list for connector J2.

Expansion program memory is automatically selected by the most significant nibble of PC,
which is J‘trobed through LSN P2 during program memory fetch (PSEN/). However,
expansion data memory (or memory-mapped I/O) which is outside the Prompt box will be
selected only if LSN P2 >3, That is, if either P22 or P23 = 1.

For example, to access data memory outside the Prompt box (MOVX) you may need to
insert in your program LSN P2 >3. (If LSN P2 <3, MO VX will access the external data
memory inside the Prompt box.)

When your MCS 48 system finally stands alone, without Prompt, the LSN P2 requirement is
obviated.

From the Prompt 48 panel you can [EXAMINE/MODIFY][PROGRAM MEMORY] in the
range 400-FFF. Prompt’s monitor will generate reads (RD) and writes (WR) to whatever
expansion devices — program memory, data memory, or memory-mapped /O — are
addressed by the 12 bits LSN P2 BUS. The [EXAMINE/MODIFY] [DATA/MEMORY]
button only accesses the 256 bytes external data memory inside the Prompt box.

Table 6-2. Connector J2 Pin Connections

Pin Pin
1 CHASSIS GND 2 +5V (if 31-32 strapped)
3 TRANSMITTED DATA 4
5 RECEIVED DATA 6 TTY RD CONTROL
7 REQ TO SEND 8
9 CLEAR TO SEND 10
1 DATA SET READY 12
13 GND 14 Tx CLK/DATA TERMINAL RDY
1 g DATA CARRIER RETURN 16 TTY RD CONTROL RETURN
1 18
19 20
21 22 RECEIVE CLK/TTY Rx
23 TTY Rx RETURN 24 TTY Tx RETURN
25 TTY Tx 26 GND

6-13

How to Use Prompt 48
Table 6-3. Serial /0O Port Strapping Options
Prompt-SPP ™Y RS232
1-2 (J2-1 = GND) 1-2 1-2
3-4 (J2-6 = RD CNTL) 34 45
6-7 (J2-14 = DSR) 6-7 6-7
9-12 (RTS = CTS) 9-12 9-12
10-11 (J2-7 = Always 10-11 10-11
CTS High
14-15 (TXC = RXC) 14-15 14-15
17-18 (J2-23/32) 17-18 16-17
19-20 (2400 BAUD) 19-20 See Table 6-4
21-27 (2400 BAUD) 21-25 See Table 64
31-32 (J2-2 = +5V) Disconnect Disconnect 31-32
31-32
All others Disconnected

6-14

CAUTJON: Unrelated to the serial interface may be a jumper from 29-30. This must

remain untouched at all times.

Table 6-4. Baud-Rate Selection

Baud Rate Strapping Connections
4800 21-26 (19 & 20 DON'T MATTER)
2400 21-27 (19 & 20 DON'T MATTER)
1200 21-28 (19 & 20 DON'T MATTER)
600 21-22 (DISCONNECT 19 & 20)
300 21-23 (DISCONNECT 18 & 20)
150 21-24 (DISCONNECT 19 & 20)
75 21-25 (DISCONNECT 19 & 20)
110 (TELETYPE) 21-25 AND 19-20

6-23. Interfacing to a Teletypewriter

The teletypewriter must receive the following internal modifications and external connec-
tions, for use with the Prompt 48.

6-24. Internal Modifications. Complete the following internal modifications.

a. The current source resistor value must be changed to 1450€). This is accomplished by

b.

d.

moving a single wire (see Figure 6-8).

A full duplex hook-up must be created internally. This is accomplished by moving two
wires on a terminal strip (see Figures 6-6 and 6-10).

c¢. The receiver current level must be changed from 60 mA to 20 mA. This is accomplished
by moving a single wire (see Figures 6-7 and 6-10).

A relay circuit must be introduced into the paper tape reader drive circuit. The circuit
consists of a relay, resistor, a diode, a thyractor and a suitable mounting fixture. This
change requires the assembly of a smiall ‘ ‘vector’’ board with the relay circuit holes in the
base plate (see Figure 6-4). The relay circuit may then be added without alteration of the
existing circuit (see Figures 6-4 and 6-6). That is, wire ‘“A’’ (Figure 6-10), to be
connected to the brown wire near its connector plug. The “‘line’’ and *‘local’’ wires must

then be connected to the mode switch (see Figures 6-6 and 6-10).

Prompt 48

Prompt 48 How to Use Prompt 48

6-25. External Connections. Complete the following external modifications.

a. A two-wire receive loop must be created. This is accomplished by the connection of two
wires between the teletypewriter and the Prompt 48 in accordance with Figure 6-10.

b. A two-wire send loop similar to the receive loop must be created.

c. A two-wire tape reader loop connecting the reader control relay to the Prompt 48 must be
created.

RHIL BT OR

g

Figure 6-4. Relay Circuit (Alternate Figure 6-6. Mode Switch

. YELLOW WIRE
SBROWN WIREE

»

BMAGNE T

Figure 6-5. Dastributor Trip Magne i'igure 6-7. Terminal Block

6-15

How to Use Prompt 48

Figure 6-8. Current Source Resistor

MODE
SWITCH

MOUNT
REED
RELAY

CAPACITOR

CURRENT
SOURCE
RESISTOR

POWER
SUPPLY

TERMINAL
STRIP

F

O

TOP VIEW
| |
| |
' KEYBOARD | TAPE
. | | | reaoer
' |
' |
' |
—-*@ | PRINTER UNIT |
| | TAPE
| oistRiBUTOR | | PUNcH
~ w2 | | TRIPMaGNET |
x 8 g || assemsLy |
guyuagog | l
|
| |
| |
| |
i [
| I

Figure 6-9. Teletypewriter Layout

6-16

Prompt 48 How to Use Prompt 48

NOTES: UNLESS OTHERWISE SPECIFIED BLU
]
CUSTOMER EXTERNAL CONNECTIONS L/l
1 |
ITEMS WITHIN DASHED LINES REPRESENT CUSTOMER
REQUIRED MODIFICATIONS h n n n
IM IS INTERNAL MODIFICATION E—
EC IS EXTERNAL CONNECTION E 3 8 = 3
T N W
TERMINAL BLOCK 151411 @ CURRENT SOURCE RESISTOR
e vio 20 mA
9 e(
REAR PNL FULL DUPLEX YEL 60 mA b@-_—b
AMP {J4) -] —————_—— —_——l
8
D\ O<- BLK/GRN @
7 WHT/BRN
(13—
O RED/GRN
_ RECEIVE 6 WHT/YEL
szs\— WHT/BLK
@ WHT/BLU FULL DUPLEX
5| @C BRN/VEL S =
‘ e] — ————— —— — — — — /,
—@— oC @)
RED
SEND HALF DUPLEX
N\ 3 ~]
12} GRY
WHT/RED
BLK
@ 2| X BLK
WHT 117 VAC
1 -4 WHT @
@ CONNECTOR DISTRIBUTOR
_) TRIP MAGNET
b\ WIRE “A"
<15> Jr'f——"__#-___—-"‘ 115 AC
TAPE I | GE r— : COMMON
READER IN914 . 6RS20- [
CONTROL : —? SP4B4 | : C114F 4700
(z'> T |) I S —_—
| POTTER & BRUMFIELD L -]
RELAY | —— =" |
| i L i
| 12 VDC, 60051 COIL | - | ocAL
. L .
*ALTERNATE CONTACT PROTECTION CIRCUIT | R0 aMAL contacts| | $ St o
| |
|

|
,_5 % 47012 12w OPEN b —_ :
i T I g gl |

0.1 200V
MODE SWITCH
(FRONT VIEW)

Figure 6-10. Prompt/TTY Wiring Diagram

6-17

How to Use Prompt 48 Prompt 48

6-26. Questions Most Often Asked

6-27. Use of INS A, BUS.

At the chip level, the MCS-48 BUS port was designed to work in one of the following
configurations, not in a combination of these modes.

CONFIGURATION IN/OUT COMMAND
1) Bi-Directional both MOVX
2) Uni-Directional out OuTL
3) Uni-Directional in INS

In all 3 configurations, command RD/ and WR/ is produced but is not generally used on the
INS and OUTL.

PROMPT 48 supports the first and second configurations completely: bi-directional, using
access mode 1 or 4 and uni-directional output using access mode O or 3.

The INS command can be used by doing the following:

a. Use access mode | or 4
b. Set (Drive High) port 2 line 2 or 3 (explained in #8 below)
c. Strobe the data onto the bus with the RD line (Figure 6-11).

8212

PROMPT 48 (8) (8)

— (O DS1

g
LT-‘ Vce

|
S

USER'S EXTERNAL
SYSTEM

Figure 6-11. Strobed Data Input

6-18

Prompt 48 How to Use Prompt 48

Figure 6-12 shows the reason for the above steps. Access mode 1 or 4 enables a bi-
directional driver and tri-states a latch that holds the data on an OUTL Bus,A command.
Setting P22 or P23 deselects internal PROMPT 48 memories. Data must be strobed onto the
bus or else the inputs would fight the 8216 drivers which are driving out when RD is
inactive.

6-28. RAM And I/O Selection

On MCS-48 systems, the MO VX command is used for data and I/O transfers with RO orR1
as a pointer. The addressing capability is then limited to 1 page (256). This is expanded to
4K by using P20-23, decoded to 16 page selects. Internally the PROMPT 48 requires the
first 1K addresses, i.e., P22 and 23 low. There are 2 consequences of this:

a. Toaccess the 256 byte user RAM that's inside the PROMPT 48, the user program must
output 0’s to P22 and 23. (drive low). P20 and P21 are ‘don’t care’.

b. To select data and I/O that has been bussed to J1, either P22 or P23 has to be driven high
(logic 1). This deselects any internal memory.

Summarizing the above:

A1l A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

P23 P22 P21 P20 (RO)
(R1)
Internal
Prompt 48 ———— 0 0 X X
External 0 1 X X
Selection 1 0 X X
(Mode 1 0r4) 101 X X
EXECUTION
cPU
TRI-STATES IN
MODE 1 OR 4
/’/ -
ous jbe ——— S35, ~—=H--
i |
| |
: cs |
| |
I |
! 8216 |
T0 \ |
INTERNAL N e e —— — /
PROMPT 48 N __
BUSSES ’
cs
I—C DIR
(MODE
10R 4
RD

PATH CLOSED IF
P22 AND P23 ARE LOW

Figure 6-12. Data Path Within PROMPT 48 Using INS A, BUS

6-19

How to Use Prompt 48 Prompt 48

6-20

6-29. TTY and CRT Peripherals Are Used Only For Dumping Or
Reading Paper Tape

The keyboard input is not a substitute for the keypad on the PROMPT 48.

6-30. Speed Degradation Occurs When ‘GO WITH BREAKPOINTS”.

This is due basically because the operation is a replica of single-stepping. This means that
after every instruction the monitor re-takes control, saves the processor state, checks the PC
against the eight breakpoints, then restores the processor state and goes back to the User
mode. — If your program has timing loops in it, the speed of execution will be substantially
lengthened.

6-31. When Using PROMPT 48 System Calls, Do Not ‘“GO WITH SGL.
STEP”’ Or ¢“‘GO WITH BREAKPOINT”’

The monitor is like a lot of us; it does not handle self-examination very well!

0%

Do not try to read the program from an 8048 through the PROMPT Program-
ming Socket. It is meant for EPROMs only!

APPENDIX A
A FAMILIARIZATION EXERCISE

Voltage Selection

Check the voltage selection switch visible on the PROMPT rear chassis. Ensure it is set to
your local mains (line) voltage; if not, open the PROMPT box and remove the switch,
locking plate, set to proper voltage, and reinstall. If you change the switch setting you
probably should change the fuse. Plug the unit in and turn power on (switch is on rear
chassis).

Handling The Processor

Carefully remove either processor (8748 or 8035) from the conductive foam. The proces-
sors are mechanically and.electrically fragile, and will shear through the chip and package if
dropped. Do not apply uneven pressure to the processor—for example, pushing on the lid or
even on both ends of the package can destroy your processors.

Insert In Execution Socket

Pull EXECUTION SOCKET locking arm up towards you. Insert either processor in
EXECUTION SOCKET, and lock in place by pushing locking arm flush with panel.

Reset The System

Press [SYS RST] to reset system. ACCESS = O should appear on display. If not, try
repeating the above steps with the other processor, and notify your Intel service center or
representative of the problem.

INTEL SERVICE HOT LINES:

From locations within Califomia call toll free—
(800) 672-3507

From all other U.S. locations call toll free—
(800) 538-8014
TWX: 910-338-0026
TELEX: 34-6372

From Alaska, Canada or Hawaii call—
(408) 987-6218

From Europe call—
(322) 72-3565
TELEX: 846-24695

A-1

A Familiarization Exercise

A-2

There are six access codes, numbered 0 to 5. Whenever you power up or reset the PROMPT
system, ACCESS will be set to 0. We will explain how to change ACCESS codes and why
they are useful momentarily.

Your PROMPT 48 system is fundamentally different from all other computers: This is the
first time the processor has been outside the box. You can safely remove the processor(s)
from the panel sockets at any time, provided a processor is properly inserted in the
EXECUTION SOCKET whenever you insert or remove a processor from the PRO-
GRAMMING SOCKET.

Always insert the EXECUTION SOCKET processor first, and remove the PROGRAM-
MING SOCKET processor first.

The EXECUTION SOCKET processor is always executing either the monitor or your (user)
programs. When ACCESS = 0 or the prompting ‘*-’’ hyphen character appears, then the
monitor is ready to accept COMMANDS or FUNCTIONS.

Let us first exercise the monitor COMMANDS. Notice that the command buttons have been
color-coded white and blue. Throughout this exercise each bracket pair [] is a button to be
pressed.

Mnemonics enclosed in braces, e.g., {SMA} or {DIR} are parameters, usually self-
explanatory, such as SMA Starting Memory Address, or DIR, Direction. You have to push
two or three hex buttons for each parameter.

Examining and Modifying Registers

Press [EXAMINE/MODIFY] [REGISTER].

Now you may enter any number (address) of any register you wish to examine and/or
modify.

Press [0] for register 0.

Now press NEXT [,]—the comma button—to *‘open up’’ register location 0. The contents
(random) are displayed.

Now notice you can ‘‘roll in’* any data that you want in that open register. Press [0].
Suppose you want 1. Press [1]. Suppose you want 22. Press [2] [2].

The monitor allows you to roll data into any location as long as it is open. A location is open
until closed by terminating the command (press [.JEXECUTE/END) or by opening some
other location.

There is an easy way to open and close locations in succession.

A prompting hyphen character **-* should now be displayed. If not, press [.JEXECUTE/
END. Open register location 0 again—press [EXAMINE/MODIFY][REGISTER] NEXT
[,]- The data you left in register 0 (22?) should appear.

At this point you have opened register 0. To open register 1 (and close 0) simply press
NEXT [,]. To open 2 and close | press NEXT [,] once again. To go backwards, opening
previous locations, press [PREVIOUS]. Press [PREVIOUS] again. Register O should be
open now. Close it by terminating the command [.JEXECUTE/END.

Prompt 48

Prompt 48 A Familiarization Exercise

The MCS-48 has 64 registers, numbered 0 to 3F hexadecimal. All PROMPT 48 addresses
and data are entered and displayed in hexadecimal. There are some special purpose
locations, such as the accumulator, which we have assigned register numbers:

Number Location Format

40 ACCUMULATOR
41 TIMER

42 | Psw [cy|ac|Fo|Bs|F1]ss]sq]sg]

43 | PCL

a4 | PCH

45 | PORTO(BUS) | READ-ONLY

46 | PORT 1 READ-ONLY

47 | PORT 2

48 MISC Counter | Timer | Timer | Nested | Will | Mem |T1 | TO

Run Run | Flag | Frint |Enint | Bank

Note that the PSW (register 42) as EXAMINE/MODIFied from the Prompt panel includes
the Flag 1 F1 test bit. It’s been added for ease of debugging. The real MCS-48 PSW as
accessed by your program does not contain F1.

Note that ports 0 and 1 (registers 45, 46) cannot be modified by EXAMINE/MODIFY.
These can only be read.

The bits of MISC (register 48) require explanation:

COUNTER RUN—if your program uses the MCS-48 timer/event counter as an event
counter you must manually set this bit to **1"’. Otherwise PROMPT assumes you will use
the timer/event counter as a timer. Your program should still use STRT CNT, STRT T, and
STOP TCNT instructions as usual. The COUNTER RUN bit is the only way the PROMPT
monitor can tell whether you are using the EVENT COUNTER instead of the TIMER. It
allows the monitor to properly suspend and restart the timer/event counter when a *‘break””
oceurs.

The transition from user program to monitor program is called a * ‘break.”* During breaks the
PROMPT monitor takes pains to save the state of the broken user program so that it can be
restored if you resume execution.

For example, TIMER RUN will be set 1 on break if the timer is running. If you clear this bit
to O the timer will not be restarted when execution is resumed. You should not need to
change this bit.

TIMER FLAG allows you manually to examine and modity the timer flag.
NESTED FROM INTERRUPT will be set to 1 if you have broken during a routine servicing
a monitor interrupt. This bit is used for monitor housekeeping, and ordinarily should not be

changed.

WILL ENABLE INTERRUPT—The monitor sets this bit to 1 if it will enable interrupts
when you resume execution. You should not need to change this bit.

MEM BANK is the memory bank select bit, the high order bit address bit for fetches from
program memory.

T1 and TO are the test inputs (READ ONLY).

A-3

A Familiarization Exercise Prompt 48

A4

Correcting Errors (Clear Entry)

If you ever enter wrong COMMANDS, HEX DATA or FUNCTIONS you can easily
correct it. Of course, if a location is ‘‘open’’ (as in EXAMINE/MODIFY) you merely roll in
data until you are satisfied it is correct. At these times—when a location is *‘open’’—the
PREVIOUS button will open the previous location.

But notice the PREVIOUS button is also labeled CLEAR ENTRY. At all other times,
whenever a location is not ‘‘open’’, pressing CLEAR ENTRY will abort a command or
clear an error. Thus the CLEAR ENTRY/PRE VIOUS button does double duty, and it does
what makes sense.

For example, press

[EXAMINE/MODIFY] [CLEAR ENTRY].
Press [EXAMINE/MODIFY] [EXAMINE/MODIFY] [CLEAR ENTRY].
Press [EXAMINE/MODIFY] [REGISTER] [CLEAR ENTRY).

Whenever the monitor detects an error, such as Ud (undefined function) it will spell *“Err”’
and is ready to accept new commands with the next keystroke.

Examining And Modifying Program Memory

Besides the 64 registers there are 1K bytes of EPROM program memory on the 8748 chip.
This program memory is erasable, programmable read-only memory. It is non-volatile, and
can be programmed in seconds, but it requires several minutes to erase.

To speed your design efforts, 1 Kbyte of RAM (read-write) program memory has been
provided on the PROMPT system. This can be used in place of the on-chip EPROM
program memory. It is volatile, but can be quickly and conveniently examined and
modified.

For example, press

[EXAMINE/MODIFY] [PROGRAM MEMORY] starting at location
[0] NEXT [.].

Program memory location 0 is now **open’’ and any instruction can be rolled in. The code
for increment accumulator (INC A) is 17. Enter it. Press

(11 [7) NEXT[,].
Now enter the instruction ‘‘jump to 0*°, whose codes are 04, 00.
Press [0] [4] NEXT[,] [0] [.]JEND.

You have entered a simple program. To verify it, again open up program memory location 0
and step through the next locations.

Press [EXAMINE/MODIFY] [PROGRAM MEMORY] [0]

NEXT],]
NEXTY,]
NEXT[.].

Prompt 48 A Familiarization Exercise

Note you can step backwards, as with registers. Press

[PREVIOUS]
[PREVIOUS]
[PREVIOUS]

and then [.JEND the command.

We will run the simple program momentarily.

Examine/Modify Data Memory

The 64 registers on each MCS-48 chip are the primary *‘register memory’’ for data. But
should more data memory be required your MCS-48 system may be expanded with
*“‘external’’ data memory.

The PROMPT system provides 256 such external data memory locations number 0—FF.
You can examine and modify them by pressing

[EXAMINE/MODIFY] [DATA MEMORY]
[0] NEXT[.]

which opens location 0. You can roll in data and step through the next or previous locations
as with the other EXAMINE/MODIFY commands.

MCS-48 manuals refer to such data memory as *‘external’’ because it is outside the chip
computer. But 256 bytes of this memory are inside the PROMPT box. Thus we will refer to
the external data memory inside the PROMPT box.

You can add more data memory than the 256 bytes provided in PROMPT. Simply interface
expansion memory to the /O ports and BUS CONNECTOR, at address 1K (4004¢) or
greater. Then this expansion data memory is examined and modified by the [EXAMINE/
MODIFY] [PROGRAM MEMORY] keys, and appropriate addresses.

Access Codes [A]

Now we can explain the ACCESS codes, and run the program just entered in writable
(RAM) program memory.

ACCESS codes allow you to specify

a. which program memory you will use, either WRITABLE (RAM) in the PROMPT
box or READ ONLY (ROM/EPROM) on the CPU chip

b. how you will use Port 0 (BUS). It can be used either
1. as a port, latched on output. Under this access OUTL PORT 0 would work;
2. as a bus, to address expansion memory and 1/O outside the PROMPT box; or
3. as abus, to address the PROMPT system monitor memory and I/O devices. This
mode would be used if your user program wanted to talk directly to the PROMPT
keyboard, displays, or serial channel. A listing of the system monitor routines and
their use is in Appendix B.

The first two uses of Port 0 (as latched port or outside expansion bus) will be more common.

Of course, programs can be run from READ ONLY (on-chip) memory or from its
WRITABLE (RAM) replacement.

A-S

A Familiarization Exercise

A-6

The access codes are summarized:

Access Program System I/0 and Expansion OUTL
Code Memory System Calls Memory and I/O Port 0

0 WRITABLE (RAM) no no yes

1 WRITABLE (RAM) no yes no

2 WRITABLE (RAM) yes no no

3 READ ONLY (ON CHIP) no no yes

4 READ ONLY (ON CHIP) no yes no

5 READ ONLY (ON CHIP) yes no no

You can change access codes (or enter any other system commands or functions) whenever
the power-up message ‘*ACCESS=0"" or prompting hyphen **->* appears.

Here’s how. Press [A] [1][.] END. You have selected ACCESS code 1.

Press [A] [0] [.] END to return to ACCESS code 0.

P2 Map [2]

Just as ACCESS CODES establish how Port 0 (BUS) will be used, the Port 2 MAP
command establishes the DIR (direction) of each Port 2 line. The bits of DIR map each line
of Port 2: IN=1, OUT=0.

(2] {DIR} [.]

On power-up and [SYS RST] the monitor assumes all lines should be output, and therefore
clears the P2 MAP to zero.

Recall that MCS-48 processors use the least significant nibble (LSN) of Port 2 to address
off-chip (expansion) program memory and I/O ports. Thus the LSN P2 MAP, the contents
of LSN P2 and the ACCESS code are related.

If you have selected expansion memory and I/O (ACCESS = 1 or4) then the MAP for LSN
P2 is ignored because LSN P2 must be bidirectional to work with the 8243 /O expander.
PROMPT detects when signals must flow in or out through LSN P2, and switches buffer
drivers accordingly.

At any other time that you access off-chip resources—whether writable program memory,
external data memory, or expansion I/O—the LSN P2 should be mapped output. Thus if
ACCESS = 0 or 2, the P2 MAP should be X0, where X is user-defined.

Said another way, LSN P2 can be used as input and mapped input only if ACCESS = 3or5
and certain cautions about its contents are observed. We recommend that you use and map
LSN P2 as input only if PO (bus) is always output, that is if your program is less than 1K
bytes and on-chip, in EPROM. PROMPT monitor calls, PROMPT system /O, and
accesses to data memory should not be done.

Think of LSN P2 as an inside/outside resource switch. If the LSN of Port 2 is < 3,
corresponding to < 1023, then all memory accesses are inside the PROMPT box, to

a. The on-chip program memory, or
b. its writable program memory replacement, or
c. the 256 bytes ‘‘external’’ data memory (‘‘inside’’ the box).

Prompt 48

A Familiarization Exercise

If the LSN of Port 2 is greater than 3, corresponding to >1023,,, the accesses are to

a. Port 0 as an input/output port (ACCESS = 0, 3), or

b. program memory, data memory, or I/O devices outside the PROMPT box
(ACCESS = 1, 4), or

c. system monitor program memory and memory-mapped system 1/O devices inside the
PROMPT box (e.g., PROMPT serial channel) (ACCESS = 2, 5).

There are some subtle implications. For a program to access the external data memory inside
PROMPT, ensure LSN P2 < 3. To input on Port 0, ensure LSN P2 >3.
Remember, LSN Port 2 can be set several ways, by

a. manually [EXAMINE/MODIFY]-ing [REGISTER] 47 (Port 2);
b. executing an OUTL P2, ORL P2 or ANL P2 instruction;

allowing the program counter to exceed 3FF (1023,,). When PC = 400 then program
fetches are off-chip. The processor strobes the most significant PC nibble (e.g., 4)
through least significant P2 nibble.

Executing Programs (Go No Break)

There are three ways to run a program. See the white-color-coded COMMANDS:
[GO] [NO BREAK]
[GO] [WITH BREAK]

and [GO] [SINGLE STEP].

Let’s run the simple program we entered in writable program memory.

000 INC A
001 JMP O

First examine the accumulator. Press
[EXAMINE/MODIFY] [REGISTER] [4] [0] NEXT [,]
and remember its contents. Close the accumulator.
[.]JEND
Now enter [GO] [NO BREAK] [0] [.] EXECUTE.
The user program is running in real time, mindlessly incrementing the accumulator. Stop it.
Press [MON INT] to interrupt and break to the monitor.

Whenever a break occurs, the program counter address is displayed together with ac-
cumulator data.

You can always press [GO] [.] EXECUTE to resume execution at the current program
counter address. [MON INT] will break again to the monitor.

A-7

A Familiarization Exercise

A-8

Single Stepping Programs (Go Single Step)

Instead of running in real time, you can single-step a program. This is running as though
there were a break after every instruction.

Press [GO] [SINGLE STEP][0] to prepare for single-stepping at location 0. Each time you
press

NEXT [,]
NEXT [,]
NEXT [,] (etc)

one instruction is executed and a break occurs. Press [.] END.

As with the GO NO BREAK command, you may omit the starting address (0) and resume
single-stepping from the current program counter address. For example, press

[GO] [SINGLE STEP] (no start address needed)

NEXT [,]

NEXT [,]

NEXT [,] (etc.)
[.] END.

Setting Breakpoints (The [B] Function)

When you are debugging larger programs you will want selectively to set several break-
points. PROMPT allows you to set as many as eight breakpoint addresses.

Press the [B] function. Now open up breakpoint 0. Press:
[0] NEXT [,].

Probably it will contain random numbers. You can step through the entire breakpoint table,
opening NEXT or PREVIOUS table entries by pressing

NEXT [,]

NEXT [,]

NEXT [.]
[PREVIOUS]
[PREVIOUS] and so on.

Press [.] END to terminate the command.
To clear all breakpoints, press
[B][.] END.
Now examine the breakpoint table. Press
[B] [0]
NEXT [,]
NEXT [,]
NEXT [,]

and so on
[.] END

Prompt 48

Prompt 48

A Familiarization Exercise

Let us set a breakpoint at each instruction in our simple program. Suppose breakpoint 2 is set
at location 0, and breakpoint 3 is set at location 1. (Breakpoints 0, 1, 4-7 remain unused.)

Enter

[B] [2] NEXT [,] [0]
NEXT [,][1]
[.] END.

Check the breakpoint table. Enter

[B] [0] NEXT [,
NEXT [,]
NEXT [,]
NEXT [,]
NEXT [,]

NEXT [,]

[.] END.

Running With Breakpoints (Go With Break)

Now press [GO] [WITH BREAK] [0]
NEXT [,]
NEXT [.]
NEXT [,]
NEXT [,]
NEXT [,] and so on.

After each user instruction the monitor is run; the user program counter is compared with
entries in the breakpoint table. If the user PC is not at breakpoint, execution is resumed.

Of course this breakpoint checking after each user instruction requires many monitor
instructions. GO WITH BREAK runs programs about 2,000 times slower than real time.

You can selectively clear breakpoints. Pressing
[(BJ[3][.]END
will clear breakpoint 3. Try

[GO] [WITH BREAK] NEXT
NEXT

As with the other GO commands, the starting address is optional. If you omit it, execution
begins at the current program counter.

You are now familiar with all of PROMPT 48’'s commands, and a number of its functions.

Let us cover the remaining functions.

A9

A Familiarization Exercise

A-10

Clear Memory [C]

Allows you to clear either register, program, or data memory. Specify starting and ending
memory address.

For example:

[C] [REGISTER] [0] NEXT [,] [3] [F]1[.] END
clears all 64 registers.

[C] [PROGRAM MEMORY] [0] NEXT [,] [3] [F] [F][.] END
clears 1024 program memory locations.

[C] [DATA MEMORY] [0] NEXT [,][1][.] END
clears external data memory locations 0 and 1.
We compactly describe this function as

(CI—{[PROG MEMIY— (SMA} L] (BMA] L]

[DATA MEM]

where SMA s starting memory address, EMA is ending memory address.

Dump From Memory

Dumps register, program or data memory to paper tape in the standard Intel HEX FOR-
MAT. Assumes a teletypewriter has been interfaced to the PROMPT 48 via a PROMPT-
SER cable. See details in Appendix C. With this function you can prepare a paper tape
specifying your program memory pattern for volume ROM (8048) orders.

[REGISTER]

[D]—{[PROG MEM]— {SMA} [,] {EMA} []
[DATA MEM

Enter (Read) Into Memory [E]

Enters into register, program or data memory the contents of a paper tape punched in the
standard Intel HEX FORMAT.

[REGISTER])
[E]—<[PROG MEM] {BIAS} [.]
: [DATA MEM

The HEX FORMAT includes both data and load addresses. A bias (ordinarily 0) is added to
the load addresses allowing you to offset where anything is entered.

Notice a little *‘r’* appears when you press E. This stands for read. We have already used E
to stand for examine/modify.

Prompt 48

Prompt 48 A Familiarization Exercise

Byte Search Memory [4]

Searches REGISTER, PROGRAM or DATA memory for one byte of data with optional
mask.

[REGISTER]

]
[41—[PROG MEML)— (SMA} [{EMA} L] PATAY (T asky 1

For example, press [4].

**S1°" appears, indicating a search for one byte. Now press [PROGRAM MEMORY].
Notice ‘*S1’’ becomes ‘‘SP’’.

Let us search between program locations 0 and 3FF for the data pattern 0. Enter
(01 L. BI[FI[FI[.] [01[.]

The function should find the first zero at location 2. Other occurrences of zero may be
found by repeatedly pressing

NEXT[,]
NEXT [,]
NEXT [,]

until the ending memory address is passed or [.] END is pressed.

Think of the mask as a pattern of ones and zeroes. The ones select the bits of each byte which
will be compared; the zero-masked bit positions don’t count.

Formally, search stops if a match is found, that is, for all bits
[DATA] V [MEM CONTENTS] is 0

If an optional mask is entered then only on the bit masked **1°" will the exclusive OR test be
applied.

Word Search Memory [5]

Searches REGISTER, PROGRAM or DATA memory for two bytes of data with optional
two-byte mask

[REGISTER]

[]
[5] ——{Ell;li%i nix\;]] }— {SMA} [.]{EMA} {HDATA} []{LDATA} —({HMASK)] {LMASKL]

This function works like the one-byte search just described. HDATA is the high byte of

data, LDATA is the low byte of data. HMASK is the high byte of mask, and LMASK is the
low byte of mask.

A Familiarization Exercise

A-12

Hex Calculator [6]
[6] {DATA} [,] {DATA}[.]

This function simplifies hexadecimal arithmetic by providing you with a built-in three-digit
hexadecimal calculator.

For example, press

(61 (01 .11 L]
Both the hex sum 0+ 1=1 and difference 0— 1=FFF are displayed.
Press

(6] (B] [.1[A][.]

Both the hex sum B+A=15 and difference B—A=1 are displayed.

Move Memory [9]
[REGISTER]
[9] [PROG MEM SMA} [,] {EMA} [.] {NMA} [.
<[DATA MEM]]){ PLHEMA LT ONMATL]

This function moves blocks of register, program or data memory (with starting address
SMA, ending address EMA) to some new register/memory address NMA.

Finally, there are four PROMPT 48 functions that deal with the EPROM and PROGRAM-
MING SOCKET.

Fetch EPROM [F]

[F1{SMA} [.] {EMA} [,] {SEP} [.]
The FETCH EPROM function will fetch the contents of on-chip program memory from the
programming socket processor into a block of writable (RAM) program memory in the

PROMPT box.

The block of writable memory has starting and ending memory addresses SMA and EMA;
the starting EPROM address is SEP.

For example,
(F1{01[,) B1[FI[FI[.][0] [.]
fetches the entire EPROM contents into writable program memory.

This function will signal an error if the programming socket processor is not properly
seated.

Compare EPROM [8]

The COMPARE EPROM function compares the contents of the on-chip program memory
of the programming socket processor with the contents of the writable (RAM) program
memory in the PROMPT box.

(8] {SMA} [.] {EMA} [.] {SEP} [.].

Prompt 48

Prompt 48 A Familiarization Exercise

If the programming socket processor is properly seated this command will compare each
writable (RAM) program memory location in the range SMA to EMA with the correspond-
ing on-chip EPROM program memory in the range starting at SEP.

The hyphen **-"* prompting character appears if there are no errors, otherwise the first
mismatched EPROM address and data are displayed.

Successive mismatches may be displayed by pressing NEXT [,].

Program EPROM For Debug [7]

This is the most commonly used function for MCS-48 EPROM programming. The PROM
to be programmed must be properly seated. The function first ensures that the top sixteen
bytes of on-chip program memory have been programmed with special monitor re-entry
instructions. These instructions are required to permit debugging, that is to allow transitions
from user to monitor programs, and back.

[71{SMA} [,] {EMA} [.] {SEP} [.].

Then it will program from a block of writable program memory (SMA to EMA) into the
EPROM (at SEP).

Each location is verified after programming, and any errors are displayed.

Program EPROM [3]

This function is similar to the function [7] PROGRAM EPROM FOR DEBUG just
described.

However, it does not ensure that the top sixteen bytes of program memory contain the
special monitor re-entry code. Unless an MCS-48 processor is programmed with these
instructions it cannot be debugged using the PROMPT monitor.

Interrupts

The user interrupt [USR INT] key traps the processor to location 3 if interrupt is enabled.
The [USR INT] key is ignored whenever in the monitor, e.g., during breaks as in
[GO] [SINGLE STEP] or [GO] [WITH BREAK].

The timer/counter interrupt, however, will properly function only in [GO] [NO BREAK].
The processor traps to location 7.

Immediately upon monitor entry (and just before exit) the [USR INT] key can be locked out
(or unlocked) via hardware. But the timer/counter interrupt cannot be instantaneously
turned on and off this way. Disabling the timer/counter interrupt (DIS TCNTI) takes finite
time. Timer/counter interrupts are random with respect to your program, and could easily
occur within the monitor before they have been disabled.

Consider jumping on timer flag instead of trapping via interrupt in the early stages of your

program development. The timer/counter operates as though it were **ON’" only during
user program execution—not during breaks (the monitor program).

A-13/A-14

APPENDIX B
PROMPT 48 SYSTEM CALLS

There are 9 system calls in the PROMPT-48 monitor that allow the user to access the 24 keys
and 8-digit display of the PROMPT-48. Below are listed the entry points (for reference
purposes) and a brief explanation of each call.

Routine Name Function Address (Hex)
KDBIN Keyboard Status Loop and Data 7EA
KBST Keyboard Status 7E4
KBIN Keyboard Data 7E7
REFS Refresh Display 7E2
BLK Blank Display 7D0C
ENREF Hardware Enable of Interrupt Refreshing 7DF
DGSTG Display Hex Digits 7F3
DGOUT Update Display Buffer 7ED
HXOUT Decode and Update Display Digits 7F0

NOTE: All calls (except REFS) select MB1, which may necessitate programming SEL MBO after

the call. Access codes 2 or 5 must be selected to use these calls.

KDBIN (Address 7EA)

Function: Reads keyboard. If key is pressed when routine is entered, looping occurs until
the key is released and a new key is pressed. Then the character is returned in A and sets FO if
it is not a hex digit, i.e., one of the 8 control keys. Hex keys return exact hex value. Key
debouncing is done on this call.

Control Key Values

PREV =10H EXAM = 14H
PROG =11H GO =15H
DATA =12H NEXT = 16H
REG =13H EXECUTE = 7H

Reg. used: A, RO, R6, R7, P2, FO
Reg. madified: A, RO, R6, R7, P2, FO

Parameters expected: None.

B-1

Prompt 48 System Calls

B-2

KBST (Address 7E4)

Function: Checks keyboard status. Returns

C = 0 =no key pressed
C = 1 =key pressed.
Reg. used: A, RO, P2
Reg. modified: A, RO, P2
Parameters expected: None.
NOTE

This also applies to control keys such as ‘‘GO’’ which means your program
may catch the **GO’’ key still depressed from the initiation of the program.
There is no key debouncing done on this call.

KBIN (Address 7E7)

Function: Same as KDBIN except this routine reads the keyboard directly and does no status
checking. Used with KBST above. Key debouncing is done on this call.

REFS (Address 7E2)

Function: Refreshes one 7-segment character every time it is entered and sequences through
the entire display every 8 times. Displays decimal points from decimal point mask (see
below). This routine is generally interrupt-driven from loc. 3., i.e.:

ORG 3
JMP REFS

Reg. used: A, R24-R26, R30, R31, P2
Reg. modified: R24-R26, R30, R31, P2
Parameters expected: See figure Bl below.

A. loc. 38-3F: Display buffer. Contains digits to be displayed. (LED bit pattern
form. See DGSTG.)

B. loc. 37: Refresh count, i.e., which digit is to be refreshed. Updated every
time routine is called so initial value can be 1-8.

C. loc. 36: Decimal point mask. *‘1'" bit in any or all bit positions causes the
decimal point to be displayed in the corresponding display position.

Prompt 48

Prompt 48

Prompt 48 System Calls

3F]
3E]
3D

— DISPLAY —
ac DIGITS

— BUFFER -
38 (IN LED CODE)

— —
A
39

P— —
38
a7 REFRESH CRT
36 DECIMAL POINT MASK
35

poamn— —
20
1F L— '

RB1

18
17

— —

STACK
08 —
o7
RB®

00

Figure B-1: Register Memory Map

BLK (Address 7DC)
Function: Blanks entire display.
Reg. used: A, RO, R7

Reg. modified: A, RO, R7
Parameters expected: None.

NOTE: Modifies loc. 37-3F.

ENREF (Address 7DF)

Function: Enables the automatic display refresh mechanism on the PROMPT-48 (ORs
refresh timer into external interrupt system).

Reg. used: A, RO, P2
Reg. modified: A, RO, P2

Parameters expected: None.

B-3

Prompt 48 System Calls

B-4

DGSTG (Address 7F3)

Function: Converts hex digits into LED bit patterns and inserts them in the appropriate
positions of a display buffer. Buffer is 8 bytes long (one for each display digit) and is located
at 38H-3FH. See Figure B-1. This routine suppresses leading zeros.

Reg. used: A, R1, R2, R7, FO

Reg. modified: A, R1, R2, R7, FO

Parameters expected:

A. R7: Number of hex digits to be converted
B. RI: Address of the most significant byte where the most significant hex
digit is stored
C. RO: Address of the most significant digit in the display buffer that is to be
updated (i.e., 38 to 3F).
Typical sequence would be:

a. load hex buffer

b. CALL DGSTG

c¢. CALL ENREF (only done once)
d. EN I (only done once)

The next two routines are used as a part of the DGSTG routine but may be called separately.

DGOUT (Address 7ED)

Function: Moves character (in LED bit pattern form) into display buffer.
Reg. used: A, RO, R2

Reg. modified: A

Parameters expected:

A. RO: Location in display buffer (38-3F) in which character is to be inserted
B. R2: Character to be displayed.

HXOUT (Address 7FO0)

Function: Decodes hex digit into LED bit pattern then performs DGOUT routine.
Reg. used: A, RO, R2

Reg. modified: A, R2

Parameters expected:

A. R2 LSN: Hex digit to be displayed
MSN: Don’t care

B. RO: Same as DGOUT.

Prompt 48

Prompt 48

Prompt 48 System Calls

ASM8 F1:SYSCAL PAGELENGTH (52)

ISIS-11 8848 ASSEMBLER, V1.2

Loc 08J

a70c
@7F3
@7DF
@7ER
87E2

8820
8a3F
0836

0004 ES
0601 8489

0083 E4E2

SEaQ SOURCE STATEMENT

~N -

3 ;PROGRAM NAME: “SYSTEM CALLS’ EXAMPLE FOR PROMPT 48

4

5 ;FUNCTION: PROGRAM READS THE KEVBORRD ON THE PROMPT 48
6 ;AND SHIFTS THE CHARACTER INTO A HEX BUFFER. IT THEN
7 iDISPLAYS THE HEX BUFFER ON THE 8 DIGIT LED DISPLAY.

8 ;ANY OF THE CONTROL KEYS WILL ACT AS THE DELIMITER

9 ;CAUSING THE DISPLAY TO BE BLANKED AND RESTARTING

10 ; THE ENTRY PROCESS. IF MORE THAN 8 CHARACTERS RRE

11 ;ENTERED BEFORE THE DELIMITER THEY NILL BE SHIFTED

12 ; INTO THE LSD AND THE MSD WILL BE LOST.

13

14 ;ENTRY POINTS FOR MONITOR CALLS.

15

16BK EW 7DCH ; BLANK DISPLRY

17 D6ST6 EQU 7F3H ;DISPLAY ROUTINE
18 ENREF EQU 7DFH ;ENABLE REFRESH

19 KDBIN EQU 7EAM ; KEYBORRD ROUTINE
20 REFS EOU TEM ; REFRESH ROUTINE
2

22 ;RUFFER AND MASK POINTERS

2 ,

24 HBFPTR EQU 28H ;LSB OF HEX BUFFER
25 DBFPTR EQU 3FH iMSB OF DISP BUFFER
26 DPWPTR EOU 36H ;DECINAL POINT MASK
27

28 ; PROGRAM CONSTANTS

29

30 DPMASK EQU @ ;DECINAL POINT MASK
HBUFL EOU 4H iHEX BUFFER LENGTH
3

33 ; INTERRUPT VECTOR INITIALIZATION

34

35 oBRG @

3% SEL MB@

37 M MAIN

38

39 EXTERNAL INTERRUPT VECTOR

4

4 ¥ REFS ;REFR DONE ON INTERRUPT
4z

43 i TIMER INTERRUPT

44

B-5

Prompt 48 System Calis Prompt 48

ISIS-11 8648 RSSEMBLER, Vi 2

Loc o8J SEQ SOURCE STRTEMENT
8087 4 ORG ?
0087 E4E2 4% R REFS

L1
48 ; INITIALIZATION OF DISPLRY. HEX BUF AND REFR MECH.
49

0009 1435 58 MAIN: (AL CLR i HEX BUFR CLRD
8668 F4DC i (AL BLK ; BLANK DISP
0080 ES 2 SeEL L)
008t BS36 33 NOY RO, $OPHPTR i INIT DEC PT MASK
0010 2308 “ L1 R, IOPAASK
8012 Ao B oy oA
0813 18 3% INC Re ; POINT TO REFR CTR
0014 2388 57 v A ; T YAL OF REFR CTR
0016 RO 28 L i L Y
0017 F4DF » CRLL ENREF i HROMR: ENFBLE OF REFR
0819 E5 68 SEL e
991R 85 61 N I ; REFRESH STARTS
62
63 ;GET KYBD CHAR AND CHECK IF DELIMITER
o4
881B F4ER 63 MAINL: CALL KDBIN i GET CHAR
@D ES € SEL He8
@81k 95 67 crL Fa
@aiF B628 68 8 HEXDG i YES-HEX DIGIT
69
78 ;CLEAR AND START OVER IF CONTROL CHAR
7
0821 1435 72 CALL CLRWX
0823 F4DC 73 (AL BLK ; BLANK DISPLAY
0825 ES 74 SEL L
8026 B44F 75 ¥ MAIM
76
77 :HEX DIGIT - SHIFT INTO HEX BUFFER THEN DISPLAY BUFFER
78
8828 143F 79 HEXDG: CALL HEXFL i SHIFT INTO HEX BUFFER
982 Bres . v K7, MHBUFL*2 ;N0 OF DIG TO CONYERT
882C 8923 | Hov RL, SHBFPTR+2 ;MSB OF BUFFER
982t BS3F 82 MoY RO, #DBFPTR
0038 F4F3 83 CALL DGSTG - :CONVERT AND DISP BUFFER
@832 E5 84 SEL ..
8833 B41R 85 ¥ L 20
86
87
=
89 ; SUBROUT INES
9%

91 ; SUBRGUTINE FUNCTION: CLEAR HEX BUFFER

B-6

Prompt 48 Prompt 48 System Calls

ISIS-11 8848 ASSEMBLER. W12

LOC 08J Seq SOURCE STATEMENT

92 ;REG USED: AR, R2
93 ;REG MOD: A.Re,R2

94

8035 B828 95 CLRHX: MOV RO, $HBFPTR
0837 BAB4 % MY R MBUFL i LODP COUNT
0839 27 97 CLR A
8a3R RA 98 CLRHX1: MOV @8R8, A ; CLEAR MEM LOC
0838 18 9 INC R
883C EA3A 108 DINZ R2,CLRHX1
A83t 83 161 RET

182

103

164 ; SUBROUTINE FUNCTION: SHIFT ACCUM LSN INTO HEX BUFFER
185 ;REG USED: A, R4,R2
106 ;REG MOD: A, RL,R2

167
883F B92@ 188 HEXFL:. MOV Ri. MBFFTR
8041 BAG4 169 NOY R2, $HBUFL + LOOP COUNT
8843 21 118 HEXFL1: XCH fi, oR1 ;GET LOW DIGIT PRIR
8044 47 11 SWP R i SHAP NIBBLES
8045 31 112 X AER1 i INSERT A LSN
@846 21 12 XCH AL +RESTORE BYTE
8847 19 114 INC R
0848 EA4Z 115 DINZ R2 HEXFLY
884A 83 116 RET

117

118 END

USER SYMBOLS

BLK @7DC CLRHX 8835 CLRHX1 @@3A DBFPTR BB3F DGSTG O7F3 DPMASK 666@ DPWPTR 0836
ENREF O7DF HBFPTR 6428 HBUFL @084 HEXDG 9828 HEXFL @@3F HEXFLL 8843 KDBIN O7ER
FAIN 9889 MAINL @81R REFS @7Ez

ASSEMBLY COMPLETE. NO ERROR(S)

B-7/B-8

APPENDIX C
PROGRAMMING EXAMPLE: STOPWATCH

Problem Definition

Assume that you wish to write a program that will allow Prompt-48 to function as a
stopwatch. As always, the first step in accomplishing this task is to define exactly what you
want the program to do. At a minimum, a stopwatch must be able to stop, clear, start, and
display the contents of a timer. The timer must have a resolution suited to the intended use of
the stopwatch. Since the purpose of this program is to illustrate programming techniques,
you can be arbitrary and give the timer a resolution of 1/100 second. Let’s go further and add
two more things for the stopwatch to do: freeze the display at the current value of the timer
while allowing the timer to continue running; release the display to show the contents of the
timer. This will allow the stopwatch to function as a ‘*lap counter.”

Now that you have a slightly better idea of what the program is to do, you can take a stab at
dividing it into submodules. The first and most important submodule is the module which
decides what is to be done on the basis of keys pressed by the user. This module can be
thought of as the executive, as it is given control of the program at the start, and control
invariably returns to it after each command is executed. We will call this module the User
Control Functions (Commands) module.

The User Control Functions (Commands) module must have at least indirect access to the
LED display on the Prompt-48 panel. The module which contains the routines to take care
of the display will be called the Display Functions module.

The Data Functions module will give the User Control Functions module the means to read
the panel keyboard, clear the variable TIME, and correctly add 1 to the minutes, seconds,
and hundredths of seconds of TIME.

The last major submodule of the stopwatch program is the Timer Control Functions module.
This module contains the routines which start, stop, and reset for 1/100 second to overflow
that MCS-48 Timer register.

The majorsubmodules and their breakdowns into these more basic tasks are shown in Figure
C-1.

Modular Interfaces

Now that we have a general structure for the stopwatch program, we can design the modular
interfaces, or the ways in which the program modules communicate with one another.

The User Control Functions module must request data and tasks to be performed of the other
three major submodules. The easiest way, to establish the simple communications neces-
sary, is to assign one or more registers to hold instructions or data passing from one module
to another. For example, the User Control Functions module, when requesting the Data
Functions module to add 1 to TIME, might place a hexadecimal 02 in the Accumulator
before passing control to the Data Functions module. The Data Functions module would
then examine the Accumulator to see what was being requested of it, having been written
with the knowledge that hex 02 means ‘‘add 1 to TIME.”’ Any combination of Registers,
user Flags, or Data Memory locations can be used in this way to accomplish a given
programming task.

C-1

Programming Example: Stopwatch

C-2

User

Control
Functions
(Commands)

Display
Functions

Stopwatch]

Data
Functions

Timer
Control
Functions

Stop Stopwatch

Set time to 0

— Start Stopwatch

Freeze Display

Free Display

Clear LED Display
Enable Automatic LED Refresh
Display TIME in LED's

Set TIME to 00:00:00
Add 1 to TIME
Check Keyboard Status

Read Keyboard for Command

Reset Timer with 1/100 sec. to Overflow
Start Timer Running

Stop Timer Running

Figure C-1: Stopwatch Program Structure

This concept can also be used in another way, called *‘switching.’* A switch is appropriate
in the stopwatch program for the purpose of freezing the LED display at the value of TIME
when the freeze command is received from the keyboard. The Display TIME in LED’s
submodule of Display Functions module needs to know whether or not the display is
“*frozen.”’ This information can be stored in a bit of a Register or Data Memory location, or
in a user Flag, by the module deciding to freeze or unfreeze the LED’s, and later examined
by the Display TIME in LED’s module to see whether a new value should be displayed. This
switch amounts to the ability to turn on or turn off the automatic update of TIME in the

LED’s.

These concepts are used in the actual stopwatch program, and are commented upon in the

program listing.

Prompt 48

Prompt 48 Programming Example: Stopwatch

Display Functions

Control of the Prompt-48 panel LED's is handled through the use of various System Calls
(see Appendix B). These System Calls make it extremely easy to display whatever
numerical data we wish in the LED’s.

The System Calls used for display are BLK, ENREF, and HXOUT, each of whose use is
described in Appendix B. It should be noted that the actual LED refresh is handled on
interrupt from Program Memory location 03. This interrupt is automatically generated by
the Prompt-48 hardware after the ENREF System Call is used.

Data Functions

TIME is held in three consecutive bytes of Register memory, representing minutes,
seconds, and hundredths of seconds. These values are in decimal, requiring the capability to
add in decimal arithmetic instead of hexadecimal. This is easily accomplished with the
DA A (Decimal Adjust Accumulator) instruction, as described in the MCS-48 Assembly
Language Manual. A problem still remains in that seconds can never exceed 59¢. The Add
1 to TIME module must examine the result of adding 1 to seconds in the event of a carry
from hundredths. If the seconds portion of TIME is equal to 60, it is set to 00 and 1 is added
to minutes. This is called modulo arithmetic, with seconds being maintained mod(ulo) 60.
Decimal notation is mod 10, as no single digit is ever allowed to exceed 9.

The keyboard status is checked, and the keyboard read, through the use of two System
Calls, KBST and KBIN.

Timer Control

The value loaded into the Timer should result in a 1/100 second delay to when the Timer
overflows and sets TF (Timer Flag) = 1. To determine what the proper value is, we note
that the Timer gets incremented every 32 instruction cycles, or 1/480 the clock crystal
frequency. The standard MCS-48 Chip-Computer runs at a maximum frequency of 3 MHz,
so the Timer will increment 1/480 X 3 MHz = 6250 times a second, or 62.5 times every
1/100 second. The value to be loaded into the Timer should therefore allow the Timer to
increment 62 times before overflow occurs. This value is computed by taking the hexadeci-
mal equivalent of —62;¢, which is C2,¢. This will equal 00,4 plus a carry (overflow, or
TF = 1) when it has been incremented 624 times. For maximum accuracy, the .5 in 62.5
must also be taken into account. This is accomplished by delaying % of a Timer increment
(16 instruction cycles) between overflow of the Timer and the next load of —62.

C3

Programming Example: Stopwatch

asmid

tt1:stpweh

Prompt 48

181811 MCS=-4b/UFPI-41 MACKG ASSERELEL, VE.0 fAGh 1
LOC ¢Gbd Sky SVCUKCE STATEMENT

1 $print(:10:)

2 $pagewidtn(b0) pagelengtn(6b) noobject

3 R RBERBU R B BR R B AR R AR RN BR DR AR BB U ABER R U RN RN NN SRR
y

5 Prompt-4b Programming bkxample: Stopwatch

6

7 This program ic intendea as an illustration of medium
) complexity programming techniques for the M(S-4b

Y family or Chip-Computers, to be run in rrompt-4c&.

10

1 The complete and verified program will allow the user,
1e if desired, to observe the rrompt-4b computer in

13 action almost immediately upon delivery, and will

14 give him or her a practice example for EPhUM burning
15 as well. without needing to know anything of the

16 MCS-4¢ assembly language in which Stopwatch is

17 written, the user can simply enter into rrogram

16 Memory the sequence ¢f (hexadecimal) object code

19 which appears in the second (UkJ) column ot this
<0 listing. (hefer to Appenaix A, "A Familiarization

C-4

WL L L) L A RS RS A AY A AR R
SOV FTWNa2CO O~ WU SU N

w
-

We WE e We Ve We Ws We W W Ve Ve WE WE We WE We Ve e Ws Ws WE WS Ve W Yo We We W W W we w

kxercise", for key sequences used tor entering ana
examination of Program Memory contents.) Note that
there are two jumps in the normal sequence ol
addresses (found in the LUC column) in the program:
4k to 100n, and LS5t to 200h. These jumps are

made as a programming convenience arising from the
MCS=40 rrogram Memory paging teature. GUnce the
whole object file is correctly entered, and the
correct hccess hode is specitied, the Stopwatch
will be operational. lLeter to the listing for
program use and comtand key'aefinitions.

1t kAwnm Program Memory is usea, use Access hode ¢. 1f
the prcgram is burned into an bLT74bL, use Access mode 5.

;ibilii.i.!iii&i.liititiilitttliithktiitililiﬁiii.ilitl
jeject

Prompt 48 Pregramming Example: Stepwatch

1518-11 MLS=-4b/url-41 MAChU ASSEmELER, Vel G Phue 2
LUC OEkJ Sk SCURLE STalebbend

30
3Y rrogram structure in Lierarchical Form:
40
LR Stopwatch
bz
43 1. User tontrol runctions (kxecutive Section)
4y la. Start Stopwatch (LGU] key)
45 1b. Stop Stopwatch (Lbkehk] key)
ho ic. rreeze bLisplay (iLkXAM] Kkey)
&7 1d. rree bisplay (LhkX1] key)
4o te. Stop otcpwatch and Clear 11kk (LkLL)] key)
49

51 ca. Llear LbL aisplay

5¢ 20. tnapble hutomatic LtU ketresh
53 «C. Lisplay Timk in Lbkls

54
55
56
57
5b
5y
60
b1

3. bLata Functions (datatn)
s5a. (lear 11kk to 0:00.00
3b. Add 1 to 11lmk

35c. neturn neybcard Status
3a. heturn hey Lata

H
’
H
;
H
H
H
’
H
H
H
9
50 ; ¢. bLisplay runctions (aisttn)
H
’
9
H
’
H
?
H
H
;
; 4. limer keset noutine
H
4

63 seject

C-5

Programming Example: Stopwatch

1515211 KMLS-U46/UPI-41 MACKO ASSEMBLER, V

LocC

0001
0002
0003

0001
0002
0003
0004

('Y EX]
uTeT
07te

UTLL
UTur
07¢5
o7rG

v003
U0ecl

VIVA L]
001¢
0014
0016
vo17

00506
Lo00
0004

C-6

Ubd Sty

SULKCE ST

symbol declara

; disttn symbols
clrasp egu
enrtfsh equ
aistim equ

; aatatn syambols

clrtiac equ
inctim equ
keyst equ
kydata equ
’

;7 System call ad
’

Kbst eqgu
kbin equ
refs €qQu
’

blk equ

enret equ
dgstg equ
hxout €equ

’

; aata register
H

treeze equ
time equ

commanu key sy

we wo

starts equ
stops equ
treezs equ
tfrees eqgu
stpelr equ
H

;s miscellanecus
H

QL& SK eqgu
apott equ
donce eqgu

seject

Prompt 48

€.0 PAGL 3

ATEMENT

tions

1 ;clear lea display command
e ;jenable led retresh command
3 ;ydisplay Tlkt in leds command

1 ;clear 1limer commanda
2 jyaad 1 to 1lmk command
3 skeyboard status reqguest
) ;keyboard data request
dresses
Te4hn ;8et keybcard status
7e7h ;8€t keyooard aata
Teecn srefresn led aisplay
(on interrupt)
7deh ;blank led display
Tdth ;enable retresh interrupt
7t3h saisplay wmultiple hex aigits
7tGh ;aecode anc display nex digit
assignments
3 ;jireeze switch in r3
cln s11lbe in revU-rce

mepol assignuents

15n ;LGLU] = start commana
1¢h sLbhEAK] = stop command
14h sLLAAIN] = treeze command
1bh ;LEAT] = iree commanu

17h ;LEnL] = stop and clear

constants and aaaresses

5bh ;led dec. point mask asadress
0 saecimal points off pattern
100 ;jdebounce loop length

Prompt 48

1515-11 mid=-4o/Lrl=-41 rACKL ASSERMebLeh, Vo0

Lul Ubv

(HVIVIY

UUou &S
GUG1T <uGC

00G3
GO0Vl bbkc

110

121
lec
13

SLUACE S1ATemEN]

org 0

start of program

U =s we we

tart: sel mbC
JEp exec

interrupt vectors

-

org 3
jep refs
seject

Programming Example: Stopwatch

FAGL 4

.3starting address ot progran

;select program mem bank 0
;jJump to executive sectien

;led refresh vector address
;rciresh leds

C-7

Programming Example: Stopwatch

18515=11 MCS-4b8/Ur1-41 MACKC ASSEmMBLER, V

LuL

0160
6100
0101
G103
o104
0106
C10¢
0104
01060
010k
G110
011e
0114

C-8

UbJ

05

300
be

545
bb03
EOOC
ke U1
5400
Lro3
347k
broe
347k

SEG

124
125
126
127
126
129
150
131
1352
133
154
135
156
137
15b
159
140
14
The
143
144
145
146
1479
145
14y exec:
150

151

152

155

154

155

156

157

15¢

154

160

161 §eject

WE W Ve WE W W We WP WP WE WE WI Ve WE We WS WO W WO We We we W Ve

SOUALE ST

¢.0 PAGE 5

ATEMENT

(2 I X I X I E R R R XX AR SRR RS AR SRR 2 2}

executive section:

This section controls the overall program
execution. 1t comamunicates with the following

modules:

1) disttn - display functions. <(lears,

enabl
leds.

z) datat
1 to

es for retresh, or disglays T1ldk in

n - data tunctions. (lears 11AhE., adads -
1lmk, Lnecks keyboard status, or reads

keyboard for command input.

3) tarrst - timer reset. resets M(S=-4b
timer for 1/100 sec. to over{low.

nhhdbhabhbbabbhabotodtbbddbdbhbhkbndhnbbibhdbhabiEidids

start of executive: first, initialize timer, 11kb,

ana display.

org
stop
Kov
mov
call
mov
mov
LoV
call
wov
call
aov
call

1uOh ;jstart at page 1
tent ;stop timer

a,#0 ;clear a

t,a ;clear timer

tarrst ;1/100 sec delay in timer
rO,#freeze ;point to freeze switch
¢rd,+#+0 j;unfreeze aicsplay

r7,#clrtim ;clear T1lit ccommand

datafn ;data functions module
r{,#aistim ;aisplay 7T1lkk command
aisitn ;display funcions module
rft,#enrfsh ;enavle led refresh command
aisftn ;aisplay functicns mcaule

Prompt 48 Programming Example: Stopwatch

1515-11 mCS-4b/70PLl-41 tACKU ASSEMLBELER, Ve.0 FAGE 6
LUL (Ld Sky Scuuhle STATEMELT
16z ;
165 ; now wait tor input comamands.
104 ;
165 ; tne commands are:
16L LGu]) - start stopwatch
167 LthkhK] - stcp stopwatch
16b ; [LAaM]) - treeze display at present Tlme
1Y LkeAl] - free aisplay to tollow 1lht
170 ; LEwL] - stop stopwatch and clear 11hEk
171
1;£ ;itiit*.ittthitiiihiii*ttiitsﬁ.hilih&iﬁtlth*&!iiiiiit
175
174 ; monitor loop. 1nis part ot the executive waits
175 3 until aatatn indicates a key is veing
170 pressea, or tne timer overflows.
1771 5
170 ; it a key is pressea, the command (it aefinea)
174 5 is procescsea and tne executive returns
160 to the monitor loop.
101
1e2 1f the timer cvertlows, one is addea
163 3 to 1luit. ‘lhe aisplay is then upaatea it
104 Fhbter = G, and the executive returns to
165 ; .the monitor loop.
1606
0116 34bv 187 monitr: call uptim supdate 1lnk it necessary
0114 brG5 1ob mov r7T,vkeyst j;keyboard status reqguest
G11a 5400 109 call datafn j;data functions moaule
C11C EL1O 150 Jjnc monitr ;loop if no key pressed
191
19z ; key being pressed: input comwand for processing.
195 3
G111t brOu 194 Lov r7,i#kydata ;keypboard data request
U010 5400 195 call agatatn ;data functions moaule
190
147 ; start stopwatch command?
10 3
Ulcde b F 199 Gov a,rf ;key aata in a
01e3 O3Lt <00 aada a,¥-starts ;start command?
Uleb Yben <01 jnz next1 yJump if not
cle
Ulet? 5% <Gl strt t ;jstart timer
Ulet <45t 204 Jjap enacom ;end of ccmmand processing
cUb
U6t ; not start: stop stopwatch command?
<07
Cleh r¢t cUb nextl: nov a,r? skey aata in a
Gleb O3ker <0y audu a,#-stops ;stcp commana?
Jleb $bU3c 16 jnz neExte ;Jump if not
11
Llicr bbb 21z stop tent ;etop timer
U130 zlbse e 13 JhiEp €nacoL ;ena of command prccessing
ey

215 seject

Programming Example: Stopwatch

1515-11 MCS=4&/Url=41 MACKRG ASSEMELLEAR,

LuC

U15¢
G153
0155

0157
0159
G13k
0130
U135k
V140

Clyc
0145
U14Y

0147
U149
U114t
0140

Ul4b
Uty

0151,

Utlbs
G154
ulist
UG1b¢
U154
015¢L

C-10

Cky

rr
05kC
o4z

bb03
c301
A0

bro3
347k
chye

re
Y Y
Sobb

LoU3
300
AU

chbt

Ty
03kY
Yooho

(3]

545L
br01
5400
EbU3
sS4k

Sk

c3c
€35
54
e35
c3b
51
5%
c3Y
chy
cht
che
c43
cly
<4y
kb
<l
chu
cldy
ebHu
51
ebe
253
54

S we ws we

exte:

O ws wo we

ext>:

5 oee e e

ext&:

yeject

Prompt 48

V2.0 PAUE 7

SunCe STAlemENl]

not stop:

nmov
aaa
Jnz

mov
Lov
mov
wov
call
Jap

not Ifreeze:

LoV
aaa
jnz

wov
nov
niov

Jup

not tree:

wov
ada
Jnz

stop
call
mov
call
wLov
cali

freeze command?

a,ri ykey aata in a
a,#-treezs ;freeze commana?
nexts yJunp it not

rO0,#treeze ;point to treeze switch
a,#1 ;"treeze display"

er0,a ;yset freeze switch
rf,#distic ;display T1inbk coutang
aisttn jaisplay tunctions wmouule
enacon ;end ci coumana processing

tree ccamand’

a,r? shey aata in 2
a,i#=-trees ;tree comaana?t
nextd s jump it not

ri,#ftreeze ;point to ifreeze switch
a.40 y"tree disgplay"

eri,a ;clear freeze switch
endcor j;enu ot ccmaand processing

step and clear command, cr undeiined key.

a,ri skey aata in a
a,#=~stpelr ;stop zna clear command?
endcen jjump, undetined if not

tent ;stop ticer

tarrst ;Stop and reset timer
r{f.sclrtic ;clear time command
gataln ;aata ftunctions wmoaqule
rf,saistim j;display 11lnt comaand
aisitn j;aisgplay functions module

Prompt 48 Programming Example: Stopwatch

1518-11 mib=bo/LrPl=41 MACKU ASSEMELER, V2.0 FAGEL b
LGl ved sk@ SOUUALE STATEMENT
59 3
«u ; end oif command processing: wait for the key.
<57 to be releasea, then return to the mcnitor
ebb 3 loop.
eby
U115k 3400 2v0 endcom: call uptim supdate 1llsk it necessary
C160 kO3 261 mov r7,#keyst ;keyboara status request
0lbz 5400 26z call datain ;data functicns moaule
Cloh rosSk 2b)> je endcom j;loop until key released
by
0160 &1L zb% Jmp monitr ;return to monitcr loogp
cbo
267 ;
bt ; uptim - upaate ilnk it necessary. Subroutine
by to check the status of Tr (Timer ¥lag). and
PO ada 1 to Tlkk it 4+ = 1, Latain (vata functions)
271 module is used tc ada 1 tc T1lib.
egle ;
€15 ; reg wmouitied: a, r0, re, r7
cth
Gibb 1606C <75 uptim: jtt nexts ;skip aheaa it 1Fr = 1
z7b
U164a 247w 271 jap uptxit ;jump to exit if 1r = O
2to
0160 S45L 279 nextv: call tarrst ;1/100 sec delay tor timer
Olor kEFOz 20 mov rT,+#+inctim j;add 1 to Tlmbk command
U170 54060 eb1 call datatn ;aata tunctions mcaule
0172 Eo03 Zte fiov rO,#treeze j;point to ireeze switch
C174 ro zb3 nov a,er0 ;treeze switeh in a
0175 L3500 col xrl a,#0 ;treeze switch = 0%
0177 vb7uL b5 jnz uptxit ;jump to exit it not
zbb
017y L¥O3 zb7 mov r7,+#distim j;uisplay 11lubk command
017k 347k 28b call gisttn j;display tunctions module
ety
C17L o3 Y0 uptxit: ret ;exit uptim
291
cYe
293 ; ena of executive section
cY4
295
cYb $egect

Programming Example: Stopwatch

15i6-11

Luc

("R N]
(FREN]

Q1b3
(V) N
vlcoo

Clco
Gley
Otuk

("R I
(‘R YY)
DRE'D]
01y«
O1y4
23T
evyl
Uive

c13

Prompt 48

LUS-46/0F1-41 MACKG ASSEMBLER, VZ.0 rAGt 9
ULbd SEG SOUKkLe S1ATENMENT
CYT eERE R ARk kR R AR R R RNk Rk kR R R AR RN Rt kR LR ARk
cho
¢Yy ; disttn - aisplay tuncticns mocdule. ‘lhree commands
300 are execuled by this mocaule:
301
30z ; 1) clrdsp - clear led aisplay
305 3 reg modified: a, ru, rft
504
505 3 ¢) enrish - enaole automatic led retresh
506 ; reg aoaitied: a, rG, r7, pz
307 ;
3500 5) distiw - aisplay 11kt in leas
309 reg moditied: a, r0, r1, re, r7
310
311
51« ; 1lhe comaand is receivea in rj., 'lhe mocdule is called
315 as a suorcutine.
ST4
315 ;tiittktn*iiksihitiihhttttttn:iia-iittiiﬁtata-<ith-
51u
rr 317 disttn: wov a.rf7 scommana in a
31u
519
35¢0 ; clrasp ccumend?
521 ,
VTN jecc ada a.#=-clrdsp ;clrusp commana?
Yuob 3¢5 Jnz nextb yJump if not
J«8
rdLC 3¢5 call olk ;olank leas sys call
LY 5¢0 cel mbQ ;11X progran mea bank
P YL sef Jup dspxit ;Juap to exit
2«
5¢% ; not clrdsp: enrtsh command?
23V
ke 331 nexto: mov a,rf ;jconmand in a
O5r bk 33¢ ada a,¥-enrtsn ;enrfsn command?
Yoy 335 Jnz nexty ;auap it not
SR L
Lo3b 339 LOV rU.+apnsk ;point to deeimzl jpeint zack
eLOV 330 mov erd,#dpott ;decimal pcints off
10 337 inc ru sFolnt to reiresh char pointer
EVCO 33¢ mev «rO,#0 slec o 1irst
(X717 33y call enret ;enabie lea reiresn sys csll
&5 380 sel 4 19 114X prograk meLr bark
() FLA) en i ;€rigole refirecsh jimterrupts
FEY%) ELY: Juk egpEit ;juap te exit
343 scjeet

Prompt 48

1518-11 mCS-4b/uUPI1-41 MACRU ASSEbbLER,

Luc

0164
019k
RV

o1yr
G141
G143
014Y
0147

01AL
CG1AA
Gl14C
Ul4b
UlAk
01AF
01k
01ke
01k5
Clc4
01L5
C1b7

Clto
O1LA
Clke
01bL
Ulbtk
Olbr
o1C1
01Cc
01C)
01¢4
01cCu
u1CT
01Co
01CYy
O01CA
01CC

01CL
01Cr
01w
V1L3

ULd

re
G3ru
Yous

Lo 3E
£5<0
brie
F4r3
LS

bb3kb
bYyel
[
47
L&
rU4KO
£S5
1
LA
(07
rFUro
ES

Lb3A
'O
53Tr
AG
Co
Eyez
t1
47
LA
F4kFO
[9)
Co
F1
hA
bbar 0

(3]

Lo 3r
BOFE
bu 3L
bBOFrP

Sk

344
345
340
347
54¢%
3hy
350
351
3be
553
354
355
350
357
35¢
359
36C
361
Jbe
363
34
365
360
367
360
369
370
371
3¢
373
374
375
370
3717
376
37Y
360
361
382
5653
3b4
3065
366
387
3bo
309
340
391
3Ye
393
344
345
39¢
397
348

D ee e we

.

’

not enrfsh:

exti:

Programming Example: Stopwatch

Vel G rAGE 10

SUUKRCE STATbmENT

mov
ada
Jnz

either distim or undefined command

a.r7 jcommand in a
a,#-distim j;undefined command?
dspxit ;jump to exit if so

display minutes

displ

mov
mov
mov
call
sel

rO,#5eh j;led address of minutes
ri,#time ;minutes portion ot T1lhk
rf,tc ;2 digits to be displayed
agstg yconvert and display

mb0 ;fix program mem bank

ay seconas

mLov
Lo v
oV
swap
mov
call
sel
mov
mov
aec
call
sel

rU,#3bh ;msd led destination
ri,#time+1 ;seconds portion of Tltt

a,tkri ;move seconas to a

a ;ymsd in 1ls nioble

re,a shex aisplay data - msd
nxout ;display seconds msd

mbO y{ix program mem bank
a,tril smove seconas to a

re,a ;hex display data - 1lsa
ri ylsd led destination
hxout jaisplay seconds lsd

mbC ;1'ix program memory bank

display hunareaths of seconds

clear

nov
LoV
anl
nov
dec
LoV
GOV
swarp
nov
call
sel
aec
mov
mov
call
sel

rO,#3ah ;seccnds lsd led address

a,erQ ;led code in a

a,¥f7th jaecimal point on

¢ero,a jreplace in led buffer
ré ymed led agestination
ri,#time+z ;hundredths portion ot 11lmbk
a,kri shundredths in a

a ;ymsd in ls nibble

re,a ;hex display data - msd
hxcut ;aisplay hundreaths msd
mbl ;1ix prcgram mem bank
ro ;1sd lea destination
a.eril s1sa hex aata

re,a ;hex aisplay data - 1lsd
nxcut ;display hundredths lsa
mbQ ;1ix program mem bank

unusea leds

mnov
mov
Lov
nov

rO0,#3fn j;leftmost led

er0,#0fth j;clear leftmcst led
rO,#3ch ;led between minutes, seconds
¢er0,#0ftn ;clear it

C-13

Programming Example: Stopwatch

C-14

1510-11 htb-%b/brlfk1 HALKG ASSEIBLEK,., Ve.O raGLL

LOC vyt

01LS o3

SCOLrCE STAIERENT

’

; aisttn exit point

’

uspxit: ret yexit aisfttn
’

; ena ot uisitn moaule

veject

Prompt 48

11

Prompt 48 Programming Example: Stopwatch

1515-11 MLS-4b/UPl-41 RACRC ASSEELLEK, VZ.0 PAGE 1z

LUt Ubd Sk SOURCE STATEMENT
0200 412 org <00h ;jnew program mem page
413 ;i!itthlt.it-lt.iilit.htihi.iitlililtliihi!ihiiiiii!.
414
41% ; datafn - data funcions module. Four commands
416 are executed by tnis module:
417
410 ; 1) cirtim - clear 11Imk. Sets 11%k to 00:00:00.
419 ; reg mouified: a, rG, r7
420 ;
bz1 ; <) inctim - increment Tl&E. Adds 1 to 11ki.
42¢ ; reg noaitiea: a, ro, r7
423 ;
42y 35) keyst - key status. Letermines whether
4zy a key is being pressed.
Lzo output: ¢ = 1 i1 & key is pressed
421 ; ¢ = 0 i1 no kKey pressed
428 reg moditied: a, r0, r7, p2, ¢
bzy ;
430 ; 4) kyaata - key data, bLetermines which
431 key is vbeing pressed.
432 output: r7 = key value
433 3 reg moaitied: a, ré, r6, r7, pec, 10, ¢
4354 ;
435
43506 ; 1lhe module is called as a subroutine with the
437 ; command in r7.)
430 ;
435 ;tiktiitibiitﬁtiﬁik‘iihittiﬁtttht.iitihiiitilil‘#t‘:t*
Lyg
0zU0 rr 441 datatn: mov a,ri ;command in a
442
4u3 g
444 ; clrtim ccamana?
Lys
UeUl USEr 4y aad a,#=-clrtim ;clrtiz command?
02063 vo13 447 : jnz next$ sJjump it not
4iyp .
GeUb 2300 444 mov a,#0 ;put zero in a
CGzUT7 Loel 450 mov rG,#time ;roint to 11Kk
G0y bBrO3 451 wov ri,#3 ;loop counter
4ve
02Ut &4V 453 cltlp: mov ¢r0,a ;jclear one byte ot 1lirk
0200 10 454 inc ro ;point to next byte
Uz0L EFOE 455 ajnz ri,citly ;loop till 1itk = O
450
0cOF 1011 457 jt1 nextl1z ;clear timer flag, to prevent 11
blb
458 seesfrom incrementing atter clea
r
45y
V11 husC 400 nextle: Jup dtaxit ;juap to exit
401
4oz peject

Programming Example: Stopwatch

1515-11 #(S-4b/url-41 HMACKAU ASSerkbLbk,

C-16

LuL

Geelb
Oeets
Ucek
0231
023z

o
N R
U W
ur N

UbJ

ry
O3rs

- 9035

bocc
r0
G301
57
AQ
LbSL

Lo
r0
0301
5T
KO
U340
Lou5C

EOGO

(X
ry
G301
57
A0
yuse

SE(

463
Loy
465
46b nexty:

467

4oo

464

470 ; ada 1
471

L7c

473

L74

475

476

471

47%

479 ; carry
400

4e1

4oz

Loy

4ol

485

466

4o

4bou

4eg

490

41 ; carry
by

445

444

4ys

hyb

447

4y¢

494

500 gsegect

not ¢

weo weo we

SCGURCE

lrtim:

mov
add
Jnz

Ve.0

STATEmMENT

PAGL 13

inctim commana?

a,r?

;command in a

a,#=-inctim ;inctim command?

next 10

to hundredths

mov
GOV
aadu
da

mov
jne

rO,itime+c

a,ero
a,#l

a
erv,a
dtaxit

into seconas

aec
mov
adu
ua

mov
adu
jne

mov

ru
a,uro
a,#l

a

¢ro,a
a.,#=tlh
dtaxit

erQ,#0

into minutes

daec
oV
&Qd
aa

wLov
Jug

ru
a.ero
a,il

a
er0.a
dtaxit

yJump it not

;move data to a

Prompt 48

;point to hunaredths

;aua 1 to hundredths data

;jdecimal aajust
yupdate hunareaths
yexit it no carry

s;eoint to seconds
ymove data to a
;increment seconds
;jaecimal adjust
yLpdate secondas

ymod vl overfliow test
;exit if no overflow

16U beccmes O

;point to wminutes
symove data to a
sincrement minutes
;decimal aagust
supaate minutes
sJump to exit

Prompt 48 Programming Example: Stopwatch
1515-11 NCS=4b/LK1-841 MACKG ASSEmELER, V2.0 rAGL 14
LUt CGLd Sk SULKLE STATeMEn]
501 ;
502 ; not inctim: «eyst command?
503 ;
Uz35 rr 504 next10: mov a,rf scommand in a
0236 05ry 505 ada a,#-keyst j;keyst command?
0z3b 4640 S0b jnz next11 ;jump if nct
50%
0234 Eko4 50b mov rb,#dbnce j;debounce loop counter
50%
023C rhby 510 dbnelp: call kbst ;8et key status
Ues b5 511 sel mb0 ;tix program mem bank
0z3F BR6YC 51e Jjne ataxit ;exit it no xey pressed
Gz41 3400 513 call uptim ;ujpaate 1lke if necessary
Ozl43 bE3C 514 djnz rb,donclp ;lcop till debounce done
515
0245 Ero0e 5106 mcv rt,+#enrtsh j;reenavle retresh cf leds
Uchl 347b 5117 call aisftn ;...via disftn module
Gzhg 47 51b clr c ;ensure carry is
OQzhh 47 514 cpl c $+..5till set
Oczkb 4450 520 jap dtaxit ;jump to exit
521 3
“Ye¢é 3 not keyst: «kydata ccmwand?
523 ;
OzlL Fr bz4 next11: wov a,r? ;commana in a
Oclk G3FC 525 ada a,¥-kyaata j;kyaata comnmand?
Gz50 yosi 5zb jnz ataxit ;(undefined) exit if not
%21
OcHe rukl beb calis kbin ;8et key aata
0254 15 5e9 sel zb0 ;fix program mes bank
Gzbs Ak 530 nov rev,a ;save key data in ré
0256 broz 531 zov r7,#enrtsh j;reenaole led retresh
0cb¢ 347t 53¢ call aisttn j;...via disttn module
0z54 tb 533 Giov a,rb ;get key data
OcHbe AF 534 nov r7,a ;aata in output register
535 -
536 ;
537 ; datafn exit point
53¢
539
C0es0 b3 540 ataxit: ret ;exit datatn wmodule
541
542 ;
543 ; end datatn module
544
545
S5hb
547 seject

Programming Example: Stopwatch

Prompt 48

1515«11 MUS=40/ULFL1-41 MALRU ASSELLLER, Ve.0 rAGL 15

LUL Uby Sk SCLACE STATEMEWT
54y ;bitittiiiiiltiiittb&i.tilttiitiiaiiiiiiiiitii.i
549 ;
550 ; tmrrst - timer reset moaule. This routine adds to
%51 3 the contents of the timer -tz (decimal).
H5%e 1t is done this way because the timer may
553 have been incrementing during an interrupt
554 routine between the detection of Tr = 1
555 3 ana the actual reset.
55bL ;
557 -bz uecimal is the value closest to 1/10C
558 second delay tor a 3 Mhz clock freguency.
55y
566 A 1t instruetion cycle (1/< timer increwent)
501 aelay shoula ve audea at the beginning cf the
S5z routine., witn the timer stcpped, tor maximum
Loy accuracy.
504
565 ;tl’ititliilitiltitliititiiihl&iiihiiihiiiﬁiiitt
Sub

CebL ke 567 tuarrst: mov a,t ;timer data tc a

uebe (G3Cc 5bo aadu a,#=-bez j;counter tor 1/1060
5649 ; second delay

Uzbl be 570 mov t,a ;reset timer

Uebl ¢3 511 ret ;exit tmrrst
ble
515
574 ; end ot turrst moaule
515
576
5117
57¢ seject

Prompt 48 Programming Example: Stopwatch

1515=11 bLlS-40flrl=41 MACKhU ASSEmLLbE, VZ.0 rARGL 16
LGC OLd Ske SGuhtk S$TaTskbnl
G0GCe 519 ena 0 ;end of stopwatch progran
bikn SYLBULS
bLk eTLe CLhkbse 0001 CLK11E 0001 CL1LF 0Z0b LRLAFA 0200 .
- wento 0064 VEMLLP UZ3L LLSIC 07r3 DISETS 017k BlST1N 0003
brisKk 0036 brokr 000C vEPALT O1LS L1AA1T 0&5%¢C ENBCUE 015k
wivkbkt OTbe LxhrSh 000z basl 0100 rheES 0016 PhELZE 0003
rhebes G014 iUl OTFKFG Inelle 000z KEIN 0Te7 KEST OTE4
KEYST w003 KYILATA QLOA LUGLTR U110 KEATT Clza kEXT10 0235
WNEAT11 gkl wealle 0211 Lekie 013z seXxT3 0142 NeX14 OV4k
kbaib 016C MEXTb 016 LeX17 01Ya neXx1Y 013 Hefd 078
.ulakT 0000 S51AKLS GDT5 Siurs 001z S1¥CLE GO1T 11k 0026
Thhh&l 02bl Lrllh Glob LPlall O17L

ESSERMELY LUnPLElE, AU ERKUAS

C-19/C-20

APPENDIX D
HEXADECIMAL OBJECT FILE FORMAT

Hexadecimal object code format is an ASCII representation of program memory, expressed
as a series of hexadecimal digits. These are blocked into records, each of which contains the
record length, type, memory load address, and checksum, in addition to data.

Frame 0. Record Mark. The ASCII representation of a colon (3A¢) is used to signal the
start of a record.

Frames 1 and 2. Record length in hexadecimal. This is the count of the actual data bytes in
the record. Frame 1 contains the high-order digit of the count, and frame 2 contains the
low-order digit. A record length of zero indicates end of file.

Frames 3 to 6. Load address. The four-character starting address at which the following data
will be loaded. The high-order digit of the load address is in frame 3, and the low-order digit
is in frame 6. The first data byte is stored in the location indicated by the load address.
Successive data bytes are stored in successive memory locations.

Frames 7 and 8. Record type. A two-digit code in this field specifies the type of this record.
The high-order digit of this code is located in frame 7. Currently, all data records are type 0.
End-of-file records may be type O or type 1. In either case they are distinguished by a zero
record length field (see above).

Frames 9 to 9+ 2*(record length) — 1. Data. Each 8-bit memory word is represented by two
frames containing ASCII characters 0-9, A-F, which represent a hexadecimal value
between 0 and FF (0 and 255;9). The high-order digit of each byte is located in the first
frame of each pair.

Frames 9+ 2*(record length) to 9+2*(record length)+ 1. Checksum. The checksum is the

negative of the sum of all 8-bit bytes in the record, evaluated modulo 256. The sum of all
bytes in the record (including the checksum) should be zero.

D-1/D-2

APPENDIX E
COMMAND/FUNCTION SUMMARY

Commands
[]
[EXAMINE/MODIFY]—(EP'}E(();(IES Ifé‘&] (SMA} [] {DATAY Eiguvnous]
[DATA MEM] ' 7

MCS 48 processors have 64 bytes of register memory numbered 0-3F;. PROMPT 48
allows access to other *‘register’” locations via [EXAMINE/MODIFY] [REGISTER]. _ |

Number Location Format

40 ACCUMULATOR
4 TIMER

42 PSW C|AC|FO|RB|F1| So|S

42| Ps Lclac[rolms|Fi] sp] 1] so]

44 PCH

45 PORT 0 (BUS) READ-ONLY

46 PORT 1 READ-ONLY

47 PORT 2

48 MISC unter | Timer | Timer | Nested | Will | Mem | T1 | TO

Run Run | Flag | Frint | En Int| Bank

PROMPT 48 provides 256 bytes of data memory numbered 0-FFg.

JENCY TN
o :
[SINGLE STEP] {SMA} [] (][]

Ensure you have selected the correct access code, P2 MAP and LSN P2 contents before
running programs.

{SMA} Starting register/memory addresé
{DATA} Data

Functions
ACCESS [A] {0-5} [.]

Access Program System 1/O and Expansion OUTL
Code Memory System Calls Memory and I/O Port 0

0 WRITABLE (RAM) no no yes

1 WRITABLE (RAM) no yes no

2 WRITABLE (RAM) yes no no

3 READ ONLY (ON CHIP) no no yes

4 READ ONLY (ON CHIP) no yes no

5 READ ONLY (ON CHIP) yes no no

E-1

Command/Function Summary Prompt 48

(]
BKA 7Z<[.]
{0-7} [.] s (Bra) [PREVIOUS] 7
[B]<

BREAKPOINT [.] clears breakpoint number 0-7
[.] clears all breakpoints
[REGISTER]

CLEAR [c—{[PROG MEM] {SMA} [,] {EMA} [.]
[DATA MEM]
REGISTER]

DUMP [D}—{[PROG MEM]}— SMA} [] {EMA} []

] [DATA MEM] (SMA LI {EMAY

REGISTER]

ENTER [E]——-(%PROG MEM] (BIAS} [.]
[DATA MEM]

EPROM PROGRAM [7] {SMA} [,] {EMA} [.] {SEP} [.]

FOR DEBUG (8748)

EPROM PROGRAM NO [3] {SMA} [,] {EMA} [,] {SEP} [.]
DEBUG (8748,41,55)

EPROM COMPARE [8] {SMA} [,] {EMA} [,] {SEP} [.]
FETCH EPROM [F] {SMA} [,] {EMA} [.] {SEP} [.]
HEX CALCULATOR [6] {DATA} [,] {DATA} [.]
MAP P2 [2] {DIR} []
Each bit of DIR is direction, 1=input, O=output.
[REGISTER]

MOVE MEMORY [s]([PROG MEM]- {SMA} [,] {EMA} [,] {DMA} [.]
[DATA MEM]

SEARCH BYTE

[4] ——(FP;%(G#E Tﬁéﬂ%}- {SMA} [.] {EMA} [,]— {MASK} [.] — {DATA} -({]&):7

SEARCH 2 BYTES
REGISTER

y : .
[5]—451;(%9\ ME?)— {SMA} [.] {EMA} [.1—{HMASK} [.] {LMASK} {HDATA}[.] {LDATA}.(H&

E-2

Prompt 48

{BIAS}
{BKA}
{DATA}
{DIR}
{DMA}
{EMA}
{HDATA}
{HMASK}
{LDATA}
{LMASK}
{MASK}
{SEP}
{SMA}

Command/Function Summary

Bias offset to load address
Breakpoint address

Data

Direction for lines of Port 2
Destination memory address
Ending memory address
High byte of data

High byte of mask

Low byte of data

Low byte of mask

Mask

Starting EPROM address

Starting memory address

-V

APPENDIX F
MICROMAP

i
i
}
§
:
a
3 o
w 3 8 gt 8k 8
8
< 3
N -
) P EPY: —
i § 5 i} 3 <
m g8 ii H BN
g §oid
H i i)
i ; oo 3 &
i g3 ek
a w W
_ dtid
]
dddddad
« B| b
<as m; . il ddddd
Hi
T T AT
g
i
———
N N & c 2 .
N p)
R Rl 3G s RS - e
5
. L

F-1/F-2

APPENDIX G
INSTRUCTION SET SUMMARY

BY MNEMONIC

e ADD A,RO 68 DEC R6
R1 [R6
R2 6A R?
R3 68
R4 6C DIS |
RS 60 DIS TCNT!
RE 8E
R7 6F
e ADDA,@RO 80 DNz :?':::
oAl 81 R2,addr
e ADD A, #dsta 03 D R3.sddr
e ADDCA,RO) :;x:
a1 » R8,addr
A2 A R7.addr
A3 78
R4 7€
RS 1 ENI
RE 7€ EN TCNTI
R? 7 ENTO CLK
e ADDCA,@R0 70
1 n INS A, BUS
e ADDCA,#das 13 (IO INA,P1
INA, P2
ANL A, RO 58
R1 ot INCA
R2 SA INC RO
R3 5B INC R1
R4 6C INC R2
RS sD INCR3
A6 BE INC R4
R7? 5F INC RS
ANL A, @R0 50 INC RE
ANL A, @R1 51 INC R7
ANL A, #dsta s3 D INC OR0
ANL BUS, #dsta 98 [INC @R1
Pl #daa 99 (O
P2, #dsta 9A (D
JBO addr
CALL Osddr 1w (O 481 addr
addr 3 M J82 addr
Zaddr s¢ O 483 addr
3addr DO 484 addr
4sadr s4 (O JBS addr
Saddr 84 (D J86 addr
Gaddr o4 (D 487 addr
7sddr Fa (4D
JC addr
CLRA 27 JFO addr
e CLRC 97 JF1 addr
CLR FO 8s
CLR F1 A5 JMP Daddr
CPLA 37 Taddr
e CPLC A? 2addr
CPL FO 85 3addr
CPLF1 8§ 4addr
Saddr
* DAA 57 Gaddr
DEC A 07 7addr
DEC RO c8
R1 ce JNMPP @A
R2 cA INC addr
R3 ce IN1 addr
R4 cc JINTO addr

All mnemonics copyright © 1976, 1977, 1978 intel Corporation

co JINT1 addr 46 (D ORL A, RO 48
CE JINZ addr 96 [R1 49
CF JTF addr 18 O R2 4A
JTO addr 38 O R3 4B
15 JT1 addr s6 O R4 Pre
35 JZ addr cs M RS 4D
R6 4E
e8 (O MOV A. wdat R? aF
e M Mgz A :;"w' S o ORL BUS, wndasta 88 [J
ea [MOV A, RO F8 P, wdeta 89 [
es (D R1 f9 P2, sdata 8A [
ec (O R2 £A ORLD P4, A 8C
eo D R3 FB PS, A 8D
e (O R4 FC P6, A 8E
eF (MO RS FD ORLDP7,A 8F
R6 FE
0s R? FF OUTL BUS, A 02
% MOV A, @R0 FO P1LA 39
75 @R1 F1 P2,A 3A
MOV A, T 42
RET 83
pod o MOV PSW, A 7 RETR 93
o MOV RO, A A8
0A R1, A a9 AL A E7
R2, A AA e RALCA F?
17 R3, A AB RR A 77
18 R4, A AC ¢ RRCA 67
19 R5, A AD
1A R6, A AE SEL MB0 €S
18 R7, A AF SEL MB1 3
1c SEL RBO cs:
10 MOV RO, ®data 88 [1J SEL RB1 05
1€ R1, #data B9 (D
¥ R2, %data BA [D STOP TCNT 65
10 R3, #data 88 [STRT CNT 45
1" R4, #data BC [STRT T 55
RS, #daa BD % SWAP A 47
R6, #data E
12 R?, #data :F m XCH A, RO 2
32 (M ‘ Rl 2
52 O A2 2a
72 D MOV @RUO, A A0 R3 28
o4 D MOV @R1, A Al R4 2¢
82 (MO MOV @RO, #data 80 [IJ RS 20
p2 (D @R 1, #data m R6 2E
F2 R? 2F
0o MOV T, A 62
g MOVD A. P4 pod XCH A, @RO 20
m P& 0E XCH A, @R1 21
P? 0E
o4 O MOVD P4, A 3c XCHD A, @RO 30
24 MO PS5, A 3D @Rl 3
« O P6, A 3E
64 (D P1,A 3F XRL A, RO D8
s D R1 D8
As MOVP A, @A A3 R2 DA
ca MOVP3 A, BA E3 R3 0B
e4 O MOVX A, @R0 80 R4 [+
@Rt 81 RS oD
83 M MOVX ®RO,A 90 R6 DE
e @R1L,A N R? OF
88 [XRL A, @RO [+ 1]
2 M NOP 00 @R1 []]

e CARRY FLAG AFFECTED

G-1/G-2

APPENDIX H
HEXADECIMAL/BINARY |
CONVERSION TABLE

HEX BINARY
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

1110

MmO O W P»P © ® N O o oA W N =+ O

1111

H-1

Hexadecimal/Binary Conversion Table Prompt 48

ASCIlI CHARACTER SET (7-BIT CODE)

——————

- = ”5’“‘.95‘3"“'- con.u;msl 5 - MO | o 1 2 3 s s [e | 2
WEX = DEC | MEX = DEC |HEX = DEC JHEX = DECJHEX= DECJHEX= DEC LsD ocojoorjotojorrjroojrorjirofrre
[) ° [) ° o Jo o) oo [) 0 0000 | NUL | DLE sP [} e P ®
1 1,048576 1 66536 1 4096 1 256 1 %| 1 1 0001 SOH oc1 ' 1 A Q L] qQ
2 2097182 2 1072 2 892 |2 s12 2)2 2 2 0010 | STX pCc2 - 2 B R b v
i | 4 rvae | 4 vems [4vese | 4 efd 3oomfETxjocal ¥) 3| s |oc |

3 R 3 . R 4
s saome | owem | Smam iim |3 omle) Jy oweferiee)iloi)]
6 6.291.456 6 393216 6 24576 | 6 153 6 9|6 6
7 7340032 7 458,752 r ;62 |7 12 7 m2f2 ? 6 0110 | Acx | sYN & 6 F v [v
8 8.388.608 8 524288 s 3278 |8 2048 s s s 7 om | 8eL | EvB : 7 G w . w
9 9437184 9 589824 9 36,8064 9 2304 9 Wl 9 [1000 | 8S CAN { [H X h x
A 10.485.760 A 855,360 A 40960 | A 2560 A 180 {A 10 9 1001 | HT EM) 9] Y ' v
8 MN534.3% 8 72089 B 45056 | 8 2816 8 7|8 " A 1010 | LF suB . . 3 F3 ’ z
C 12582912 C 786432 C 4952 C 3orn2 (4 192]C 7?2
D 13831488 | D8s1968 | Ds3zes | D332 o 2080 3 8 1011 | VT | ESC + . X | &
€ 14,680,064 £ 917504 E 57344 E 3584 1 3 224 |E " [4 1100 FF FS * < L . ! |
F 15,720,640 F 983000 F 61440 F 3840 F 240 | F % [+ 1m0 CR GS - - L] 1 m
0123 4567 | 0123 | 4567 [0123 | 4567 E mojso jRs s} o NN
BYTE BYTE BYTE Founjs jvs ! ? C | -] o |OE
POWERS OF 2 POWERS OF 16
¥ n 16" n
58] 20 =16° 1 [
512 9 2 =16 16 1
1024 10 2 =162 256 2
2048 n 2172 .13 409 3
4096 12 26 = 164 65 536 q
8192 13 2D 165 1048 576 5
16 384 1 22 .18 16 777 216 6
32768 15 238 = 167 268 435 456 7
5536 16 232 - 168 4 294 967 296 8
131072 ” 2% .« 16 68 719476 736 9
262 144 1] 2% « 1% 1099511627 776 10
524 288 19 24 = 16" 17 592 186 044 416 n
1048576 20 248 - 1672 281 474 976 710 656 12
2097 152 4} 252 . 1613 4 503 599 627 370 496 13
4 194 304 22 256 - 16 72 057 594 037 927 936 14
8 388 608 23 250 = 168 1 152 921 S04 606 846 976 15
I NG 7]

APPENDIX |
ACCESS CODE/LSN P2 MAP SUMMARY

System Expansion
Access o & Memory OuUTL Allowed
Code Program Memory Calls & V0 Port 0 LSN P2 Map
0 RAM No No Yes output (0) only
1 RAM No Yes No input or output
2 RAM Yes No No output only
3 On-chip No No Yes input or output
ROM/EPROM
4 On-chip No Yes No input or output
ROM/EPROM
5 On-chip Yes No . No output only
ROM/EPROM

I-1/12

APPENDIX J
EXPANDED ACCESS CODES WITH
6 MHZ OPTION

For those systems equipped with the 6 MHz upgrade option, the following twelve access
codes are operative:

OouTL Expansion Expansion System 1/O
Access = Port 0 Memory [o] & Calls
(0 Yes No No No
1 No Yes No No
Prompt RAM y 2 Yes No No Yes
for Program Memory 3 Yes No Yes No
4 No Yes Yes No
| 5 Yes No Yes Yes
(10 Yes No No No
. 11 No Yes No No
On-chip
12 Yes No No Yes
for s?w:n': ?4?:1 ﬁ 13 Yes No Yes No
°9 ory 14 No Yes Yes No
\ 15 Yes No Yes Yes

The equivalenfs of the original 6 access codes are:

Old Access New Access
0 0
1 4
2 2 (with OUTL, too)
3 10
4 14
5 12 (with OUTL, too)

J-1/3-2

Prompt 48

{BIAS}
{BKA}
{DATA}
{DIR}
{DMA}
{EMA}
{HDATA}
{HMASK}
{LDATA)}
{LMASK}
{MASK}
{SEP}

{SMA}

Command/Function Summary

Bias offset to load address
Breakpoint address

Data

Direction for lines of Port 2
Destination memory address
Ending memory address
High byte of data

High byte of mask

Low byte of data

Low byte of mask

Mask

Starting EPROM address

Starting memory address

INDEX

Access Code Considerations, P2 Map, LSN
of P2, 6-11

Access Code/LSN P2 Map
Summary, 5-7, I-1

Access Code/P2 Map Summary, 5-6

Access Codes, A-5

Access Mode Code Summary, 5-6

Access Mode Control, 5-5

Access Mode Select Command, 5-6

Accumulator, 3-2

Accumulator Instructions, 3-15

Addition, Binary, 2-3

Arithmetic, Binary, 2-2

Assembling JMP and CALL
Instructions, 6-7

Assembly, Hand, 6-5

Baud-Rate Selection, 6-14

Binary Addition, 2-3

Binary Arithmetic, 2-2

Binary Digits, Electrical
Representation of, 2-8

Binary Division, 2-5

Binary Multipligation, 2-5

Binary Numbers1 2-1

Binary Subtraction, 2-3

Bits, Bytes, and
Where You Can Put Them, 3-2

BLK System Call, B-3

Breakpoints, 5-11 .

Breakpoints, Running With, A-9

Breakpoints, Setting, A-8

Byte Search Data Memory Command, 5-13

Byte Search Memory, A-11

Byte Search Program Memory
Command, 5-13

Byte Search Register Memory
Command, 5-14

Bus Connector and 170 Ports Pin List, 4-5

Bus Expansion, 4-5

Clear Register Memory Command, 5-17
Clear Data Memory Command, 5-17
CALL Instruction Assembly, 6-7
Care and Feeding of EPROMs, 6-7
Clear Memory Commands, 5-17, A-10
Clear Program Memory Command, 5-17
Code Generation, 6-2
Command Description Formats, 5-4
Command Function Group, 5-1
Command Input Options, 5-5
Command Keys, 5-2
Command List Summary, 5-22, E-1
Command Prompts, 5-5
Command/Function Summary, E-1
Command, Byte Search Data
Memory, 5-13
Command, Byte Search Program
Memory, 5-13

Command, Byte Search Register
Memory, 5-14
Command, Clear Data Memory, 5-17
Command, Clear Program Memory, 5-17
Command, Clear Register Memory, 5-17
Command, Compare EPROM, 5-21
Command, Dump Data Memory, 5-18
Command, Dump Program Memory, 5-18
Command, Dump Register Memory, 5-18
Command, Enter Into Data Memory, 5-19
Command, Enter Into Program
Memory, 5-19
Command, Enter Into Register
Memory, 5-19
Command, EPROM Programming, 5-19
Command, Examine Modify, 5-9
Command, Examine/Modify
Breakpoint, 5-11
Command, Fetch EPROM, 5-21
Command, Go/No Break, 5-11
Command, GO/With Break, 5-11
Command, Hexadecimal Arithmetic, 5-19
Command, Move Data Memory, 5-16
Command, Move Program Memory, 5-16
Command, Move Register Memory, 5-16
Command, Program EPROM With
Reentry Code, 5-20
Command, Program EPROM Without
Reentry Code, 5-20
Command, Search Memory, 5-12
Command, Word Search Program
Memory, 5-14
Command, Word Search Register
Memory, 5-15
Compare EPROM Command, 5-21, A-12
Configuration, Hardware, 6-2
Connector J2 Pin Connections, 6-13
Control, Access Mode, 5-5
Control Instructions, 3-20
Conversion Table, Hexadecimal/
Binary, H-1
Converting Decimal Numbers To Binary
Numbers, 2-2
Counter, Program, 3-3
Counter, Timer/Event, 3-7

Data Input, Strobed, 6-18

Data Memory, 4-4

Data Memory Considerations, 6-10

Data Memory, Examining and
Modifying, A-5

Data Memory, External, 3-12

Data Paths, 3-13

Data Paths Using INS A, Bus, 6-19

Debugging and Program Test, 6-6

Description, Hardware, 4-1

Description, Monitor Firmware, 4-4

Description, Panel, 5-1

Index-1

Prompt 48

Index-2

Design for *‘Von Neumann’’ Expansion
Memory, 6-9

Design, Program, 6-3

DGOUT System Call, B-4

DGSTG System Call, B-4

Display, Command Function Group, 5-1

Division, Binary, 2-5

Dump Data Memory Command, 5-18

Dump From Memory, A-10

Dump Memory Commands, 5-17

Dump Program Memory Command, 5-18

Dump Register Memory Command, 5-18

Electrical Representation of Binary
Digits, 2-8
ENREF System Call, B-3
Enter Into Data Memory Command, 5-19
Enter Into Memory Command, 5-18, A-10
Enter Into Program Memory
Command, 5-19
Enter Into Register Memory
Command, 5-19
EPROMs, Care and Feeding, 6-7
EPROM Programming Command, 5-19
EPROM Programming, Fetch, Compare
Commands, 5-19
Examine/Modify Breakpoint
Command, 5-11
Examine/Modify Register Command, 5-9
Examine/Modify Program Memory
Command, 5-9
Examine/Modify Commands, 5-9
Examining and Modifying Data
Memory, A-5
Examining and Modifying Program
Memory, A-4
Examining and Modifying Registers, A-2
Execution Programs, A-7
Execution Socket, 5-3, A-1
Expanded Access Code With 6 MHz
Option, J-1
Expanding PROMPT 48 /0 Ports, 6-10
Expansion, Bus, 4-5
External Connections, Teletypewriter, 6-15
External Data Memory, 3-12
External Memory and Ports, 3-11
External Ports, 3-13
External Program Memory, 3-11

Fetch EPROM Command, 5-21, A-12
Flags, 3-4

Firmware Description, Monitor, 4-4
Format, Hexadecimal Object File, D-1
Formats, Command Description, 54
Function Key, Hex Data, 5-2

Function Summary, E-1

Functional Block Diagram, 4-2

Functional Definition, 6-1

Generation, Code, 6-2

Getting Started, 1-2

GO Command and Breakpoints, 5-11
Go/No Break Command, 5-11
GO/With Break Command, 5-12

Hand Assembly, 6-5

Handling the Processor, 1-1

Hardware Configuration, 6-2

Hardware Considerations, 6-8

Hardware Descriptions, 4-1

Harrard Architecture, 3-1

Historical Perspective, 3-1

Hex Calculator, A-12

Hex Data/Function Keys, 5-2
Hexadecimal/Binary Conversion, 5-8, H-1
Hexadecimal Arithmetic Command, 5-19
Hexadecimal Numbers, 2-6

Hexadecimal Object File Format, D-1
Hot Lines, Service, A-1

How To Use This Book, 1-1

HXOUT System Call, B-4

1/0 Port, Serial, 6-13
1/0 Ports, Using and Expanding, 6-10
1/0 Ports and Bus Connector (J1), 5-3
170 Ports and Bus Connector
Pin List, 4-5, 6-10
Input/Output, 4-4
Input/Output Instructions, 3-15
Input/Output Ports, 3-10
INS A, Bus, Use of, 6-18
INS A, Bus Data Paths, 6-19
Inserting Processor In Execution
Socket, 1-1
Instruction Set Summary, G-1
Instruction Set, MCS 48, 3-15
Instructions, Accumulator, 3-15
Instructions, Control, 3-20
Instructions, Input/Output, 3-15
Instructions, Register Accumulator, 3-15
Intel Service Hot Lines, A-1
Interfacing To A Teletypewriter, 6-14
Internal Modifications,
Teletypewriter, 6-14
Interrupt/Reset Group Keys, 5-2
Interrupts, A-13
Inverse State (Negative True), 2-9

J2 Pin Connections, 6-13
JMP Instruction Assembly, 6-7

KBIN System Call, B-2
KBST System Call, B-2
KDBIN System Call, B-1

Logic, Negative True, 2-9
Logic, Positive True, 2-8
LSN P2 Map Summary, Access Code, 5-7

Map Command, Port 2, 5-8
Map, P2, A-6

Mapping, Port 2, 5-7

MCS 48 Architecture, 3-2
MCS 48 Instruction Set, 3-15
Memory, 4-3

Memory Move Command, 5-15
Memory Paging, Program 6-7
Memory, Byte Search, A-11
Memory, Data, 4-4

Memory, Dump, A-10

Memory, Enter Into, A-10

Memory, External Data, 3-12

Memory, External Program, 3-11

Memory, Program, 3-3, 4-3

Memory, Register, 3-2

Memory, Word Search, A-11

Micromap, F-1

Modes 0, 2, or 5, Map LSN as Output, 6-11

Mode 1 or 4 Mapping is Don’t Care, 6-12

Mode 3 Mapping May Be Input or
Output, 6-12

Mode Control, Access, 5-5

Modifying Data Memory, A-5

Modifying Program Memory, A-4

Modifying Registers, A-2

Monitor Firmware Description, 4-4

Move Program Memory Command, 5-16

Move Data Memory Command, 5-16

Move Memory Commands, 5-15, A-12

Move Register Memory Command, 5-16

Multiplication, Binary, 2-5

Negative True Logic, 2-9
Number Systems, 2-1
Numbers, Binary, 2-1
Numbers, Hexadecimal, 2-6

Options, Command Input, 5-5

P2 LSN Considerations, 6-13

P2 Map, A-6

P2 Map Summary, Access Code, 5-6

P2 Map, LSN of P2, Access Code
Considerations, 6-11

Paging, Program Memory, 6-7

Panel Description, 5-1

Panel Layout, PROMPT 48, 5-1

Paths, Data, 3-13

Pin List for 1/0 Ports and Bus
Connector, 4-5, 6-10

Pointers, RAM, 3-2

Pop, Stack, 3-9

Port 2 and Port 2 Mapping, 5-7

Port 2 Bus Structure, 6-12

Port 2 Map Command, 5-8

Port 2 Map Command Data Bits Vs
Port 2 Pin Numbers, 5-8

Port 2 Mapping, 6-11

Port Strapping Options, Serial 1/0, 6-14

Ports, Input/Qutput, 3-10

Ports, External, 3-13

Positive True Logic, 2-8

Princeton Architecture, 3-1

Princeton Heard From, 3-1

Processor, Handling, 1-1, A-1

Program Counter, 3-3

Program Design, 6-3

Program EPROM, A-13

Program EPROM For Debug, A-13

Program EPROM With Reentry
Code Command, 5-20

Program EPROM Without Reentry
Code Command, 5-20

Program Execution, A-7

Program Memory, 3-3, 4-3

Prompt 48

Program Memory, External, 3-11

Program Memory Examine/Modify
Command, 5-9, A-4

Program Memory Paging, 6-7

Program Test and Debugging, 6-6

Programming Example, Stopwatch, C-1

Programming Socket, 5-3

Programming Techniques, 6-3

PROMPT 48 Considerations, 6-8

PROMPT 48 Panel Layout, 5-1

Prompt 48 Purpose, 1-2

Prompts, Command, 5-5

Purpose of Prompt 48, 1-2

Push, Stack, 3-8

Questions Most Often Asked, 6-18

RAM and 1/0 Selection, 6-19
RAM Pointers, 3-2
REFS System Call, B-2
Register Accumulator Instructions, 3-15
Register Memory, 3-2
Register Memory Summary,

Special Purpose, 5-10
Register, Examine/Modify Command, 5-9
Registers, Examining and Modifying, A-2
Registers, Working, 3-2
Reset the System, A-1
Reset/Interrupt Group Keys, 5-2
Restrictions, Hardware, 4-6
Running With Breakpoints, A-9

Search Memory Command, 5-12
Select Command, Access Mode, 5-6
Serial I/0 Port, 6-13
Serial 170 Port Strapping Options, 6-14
Service Hot Lines, A-1
Setting Breakpoints, A-8
Setting Up a System, 6-1
Single Stepping Programs, A-8
Socket, Execution, 5-3
Socket, Programming, 5-3
Source Listing, System Calls, B-5
Special Purpose Register

Memory Summary, 5-10
Stack, 3-4
Stack Push, 3-8
Stopwatch, Programming Example, C-1
Strobed Data Input, 6-18
Stack Pop, 3-9
Symbols, Why Computers Need, 2-1
System Calls, B-1
System Calls Source Listing, B-5
System Reset, A-1
Systems, Number, 2-1
Subtraction, Binary, 2-3
Summary, Command/Function, E1l

Techniques, Programming, 6-3
Teletypewriter Interfacing, 6-14
Teletypewriter External Connections, 6-15
Teletypewriter Internal Modifications, 6-14
Teletypewriter Wiring Diagram, 6-17
Timer/Event Counter, 3-7

Index-3

Prompt 48

Index-4

Use of INS A, Bus, 6-18

Using and Expanding Prompt 48
I/0 Ports, 6-10

Using the Serial 1/0 Port, 6-13

Voltage Selection, 1-1, A-1

Why Computers Need Symbols, 2-1

Wiring Diagram, Teletypewriter, 6-17

Word Search Memory, A-11

Word Search Register Memory
Command, 3-15

Word Search Program Memory

Command, 5-14
Working Registers, 3-2

i ® Prompt 48 User’s Manual

REQUEST FOR READER'S COMMENTS
The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.
Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE
TITLE

COMPANY NAME/DEPARTMENT
ADDRESS
CITY. STATE ZiP CODE

Please check here if you require a written reply. [J

WE’'D LIKE YOUR COMMENTS. ..

This document is one of a series describing Intel products. Your comments on the back of this form will help
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of Intel Corporation.

First Class
Permit No. 1040
Santa Clara, CA

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Attention: MCD Technical Publications

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	G-01
	G-02
	H-01
	H-02
	I-01
	I-02
	J-01
	J-02
	Tmp177010998
	index-01
	index-02
	index-03
	index-04
	replyA
	replyB

